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Abstract 

The functions of microbial communities are crucial to sustaining life on Earth and have a 

pervasive impact on human society. Thus, there is great interest in developing a nuanced 

understanding of the processes that control microbial communities, with the hope that we can apply 

such knowledge to manipulate and potentially engineer microbial communities to carry out specific 

functions. However, a complex set of interacting biotic and abiotic factors influence the structure 

and function of microbial communities. The rise of ‘omics technologies has offered excellent tools 

to obtain observational data from microbial communities and generate hypotheses regarding the 

ecology of these systems. However, experimental approaches are required to evaluate such 

hypotheses and ultimately unravel the complexity of microbial communities. Artificially constructed 

communities of bacteria, referred to as “synthetic communities”, offer a powerful approach with 

which we can investigate ecological hypotheses in a controlled environment.  

Here, I present work using synthetic bacterial communities to study interspecific interactions, 

coexistence, and ecological invasion. In the first chapter, I evaluated the assumption that the 

interaction between two members of a community is unaffected by the surrounding community 

context and found that changes in community richness and density were strong predictors of how 

interaction effects varied across contexts. In the second chapter, I decomposed a set of bacterial 

isolates into all pairwise and n-2 communities to compare coexistence between these “bottom-up” 

and “top-down” contexts and found that pairwise observations of coexistence and exclusion were 

useful but incomplete predictors of the composition of complex assemblages. In the third chapter, I 

investigated how the timing of an ecological invasion affected the success of the invader and the 

impact on the resident community. I found evidence that the effect of timing on invasion outcome 

was associated with changes in resource use efficiency over the course of community assembly.
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Introduction 

The biochemical processes performed by microbial communities are vital to life on our planet 

and impact human society in countless ways. Our various human-associated microbial communities 

affect our health in many ways by performing vital nutritional, immunological, and even 

developmental functions (Lynch and Pederson, 2016). Soil and plant microbiomes play an important 

role in our supporting the crops that sustain our society (Trivedi et al., 2020). Microbial communities 

even help us process waste (Narihiro and Sekiguchi, 2007) and remediate polluted landscapes (Brune 

and Bayer, 2012). An appreciation of the widespread importance of microbial communities is 

relatively new to the field of microbiology and has been ushered in by the rapid advances in ‘omics 

technologies. However, as our ability to characterize the structure (composition) and function of 

microbial communities has rapidly advanced, our understanding of the forces that shape these 

complex communities has not matched pace (Widder et al., 2016; Prosser 2020). There is great 

interest, however, in developing an advanced understanding of the forces that govern microbial 

communities, as many hope that such an understanding will enable us to modify, and even design, 

microbial communities to perform a desired function (Brenner et al., 2008; De Souza et al., 2020). 

To do so will require us to understand the ecology of these complex systems. A diverse set of 

forces jointly determine microbial community structure and function. Like all ecological 

communities, environmental conditions have great impact on microbial communities. Abiotic 

factors like temperature (Biller et al., 2015) and pH (Lauber et al., 2009) are primary determinants of 

microbial community structure. Stochastic factors such as migration and disturbance are also 

relevant to microbial communities (Symons and Arnott, 2014; Fukami, 2015). Another important 

determinant of microbial community structure and function is interaction between community 

members, referred to as “interspecific interactions”. Indeed, microbes are well known for their 
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metabolic interactions, especially “cross-feeding”, a form a metabolic exchange which has received 

great attention in studies of gut microbiomes. 

Ecologists have long been interested in interspecific interactions and have attempted to measure 

them as pairwise relationships between members of a community. Georgy Gause provides a famous 

and early example of such efforts, which were aptly performed in pairwise cocultures of two species 

of Paramecium, a genus of aquatic ciliate, or two species of yeast (1934). In such studies, he 

demonstrated that although the species of each pair could grow independently, when grown in 

coculture, one species would outcompete the other, and in the case of the Paramecia, lead to 

exclusion from the community. Such work represents one of the first efforts to quantitatively 

measure ecological interactions and were done so as an empirical evaluation of the theoretical work 

of Alfred Lotka (1920) and Vito Volterra (1926). Decades beyond the work of these pioneering 

scientists, our understanding of ecological interactions has progressed, but our basic framework for 

conceptualizing and estimating such interactions exists on the foundations they established. 

Today, microbial interactions are estimated through a variety of approaches. High throughput 

amplicon and metagenomic sequencing opened the gates for efforts to catalogue the complexity of 

natural microbial communities, and following this flood of genetic data came the development of 

computational approaches which could use such data to infer microbial interactions. A very 

common approach is to infer ecological interactions from correlations in relative abundances across 

cross-sectional samples of microbial communities (Faust and Raes, 2012; Carr et al., 2019). 

However, this approach has drawn scrutiny for the limitations of using compositional data to 

perform such analyses (Weiss et al., 2016; Gloor et al., 2017; Röttjers and Faust, 2018). A more 

complex approach fits longitudinal data to a model of community dynamics that considers 

interspecific interactions, often the generalized Lotka-Volterra (gLV) model (Fisher and Mehta, 
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2014; Bucci et al., 2016; Clark et al., 2021). This approach, however, requires the additional 

estimation of absolute abundances (via colony counting, optical density, qPCR, flow cytometry, etc.) 

and dense timeseries, both of which can be challenging to collect. A final approach is simply the 

continuation and expansion of the empirical approach employed by Gause and others (e.g., 

Vandermeer, 1969). Namely, working with synthetic microbial communities assembled (and 

disassembled) in the laboratory. Synthetic communities are simpler than most natural microbial 

communities but have become increasingly popular as experimentally tractable systems for 

evaluating specific ecological hypotheses (Widder et al., 2016). Despite the differences between these 

computational and empirical approaches, all have been used to investigate how knowledge of 

interactions can be leveraged to predict the structure and function of microbial communities.  

A multitude of approaches, ranging in complexity and capacity, exist for using interactions to 

predict features of microbial communities. An approach that has received much recent attention is 

an extension of the gLV approach described above, where the interactions inferred by fitting data to 

a gLV model of dynamics are used to predict the outcome of unobserved communities (Fisher and 

Mehta, 2014; Venturelli et al., 2018; Rao et al., 2021). A notable example of this approach included a 

simple functional model alongside the gLV model of community dynamics to accurately predict the 

target function (butyrate production) of unobserved communities (Clark et al., 2021). Although 

powerful, this approach is complex and data intensive, requiring multiple rounds of a design-test-

learn cycle. A lower complexity, less data intensive approach was recently developed which offers a 

method for inferring interactions and predicting the composition of unobserved ecological 

communities without requiring assumptions of an underlying model of community dynamics 

(Maynard et al., 2020). This approach is exciting because it offers an experimentally efficient 

approach for estimating interactions in communities of moderate complexity, which may prove 

especially useful for working with synthetic microbial communities. A final approach worth 
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discussing is a so called “assembly rule” of microbial communities, which states multispecies 

assemblages will only coexist if all species can coexist in pairwise (Friedman et al., 2017). This naïve 

approach is limited in application but well studied and surprisingly useful for predicting coexistence 

in microbial communities (Meroz et al., 2021; Ortiz et al., 2021; Lax and Gore, 2022). The 

approaches described here, and the many others that exist, demonstrate that we can apply 

knowledge of interactions to predict features of unobserved microbial communities.  However, as 

described earlier in this introduction, a multitude of forces shape the structure and function of 

microbial communities, and if we wish to better understand the assembly of these communities, we 

must grapple with those forces as well. 

One such ecological force pertinent to many microbial systems is migration/invasion. Indeed, 

given the ubiquitousness and scale of microbial communities, commonplace events like a rain 

shower, the turning over of soil, or eating a meal can be thought of as largescale migration events. 

Almost any designed microbial community would thus need to be robust to migration and, 

conversely, efforts to change the composition of communities would be facilitated by understanding 

this process. The study of ecological invasions in macroecological systems has often focused on the 

relationships between community diversity, productivity, and invasibility. An early postulate of the 

field proposed that more diverse communities should be more robust to invasion (Elton 1958), with 

a possible mechanism being the increased productivity of diverse communities. In other words, 

more diverse communities are more productive because they are better able to use the available 

environmental resources and are thus more robust to invasion because they deny an invader the 

resources it requires (Tilman, 1999). These relationships have been investigated in the context of 

microbial communities as well. In fact, microbial communities represent an excellent system in 

which to study invasion because one can feasibly manipulate and study diverse communities in high 

replication over short time frames – which cannot be said for studies working in macroecological 
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systems, such as plant communities. As such, studies working with experimental microbial 

communities have identified several factors relevant to invasion of these systems, many of which 

align with studies in macroecological systems. Many studies have demonstrated that increased 

community diversity and productivity are associated with decreased invasibility of microbial systems, 

as in some macroecological systems (Hodgson et al., 2002; Van Elsas et al., 2012; Jones et al., 2021). 

Other factors like “propagule pressure” (i.e., invader density) and biotic interactions have also been 

identified as relevant to community invasibility (Acosta et al., 2015; Jones et al, 2017; Albright et al., 

2020). We do not yet have a full understanding of the ecological invasion of microbial communities, 

but it is apparent that experimental microbial communities are an effective tool with which we can 

interrogate the determinants of invasibility. 

In this dissertation, I present three separate studies in which I used synthetic bacterial 

communities to investigate several of the concepts briefly reviewed above. The three studies can be 

broadly summarized as focusing on interspecific interactions, coexistence, and ecological invasion, 

respectively. All three, however, are united in the experimental approach they take, namely, the use 

of synthetic bacterial communities. This approach offers a high level of experimental control and 

scalability, both factors vital to the work I sought to conduct.  

In my first chapter, I evaluated a common simplifying assumption made when studying 

interspecific interactions in microbial communities; namely, that the relationship between two 

members of a community is unaffected by the surrounding community context.  To investigate this 

assumption, I compared interactions across a set of synthetic bacterial communities. I found that 

interactions were generally weak and negative in effect, with interactions between bacteria of the 

same genus more negative than those between different genera. Community richness and density 

were strong predictors of interaction effects, which generally decreased as richness increased. 
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Despite this, the modest changes in interaction strength across similar community contexts could 

serve as predictors for those same interactions in different contexts, as long as they were not 

substantially different. This work suggests that by better understanding emergent patterns in 

microbial interactions, we can better predict the structure and function of microbial communities.  

In my second chapter, I decomposed a previously observed synthetic community into all 

pairwise and n-2 communities to compare coexistence between these “bottom-up” and “top-down” 

contexts. In doing so, I sought to evaluate the importance of emergent effects in determining the 

composition of simple microbial communities. I found that pairwise coexistence frequently did not 

persist in the top-down contexts, but this could generally be explained by observations of pairwise 

exclusion with other relevant community members. I also found that most isolates that did not 

coexist in pairwise also failed to coexist in more complex assemblages. Further, instances of context-

dependent coexistence were largely attributable to a small set of isolates which frequently displayed 

such unexpected coexistence. Finally, I observed that there was a strong positive correlation 

between prevalence rank in pairwise and complex communities. These results demonstrate that 

pairwise observations of coexistence and exclusion can make accurate, but incomplete, predictions 

of coexistence in complex assemblages, a finding with useful implications for designing simple 

microbial communities. 

And in my third chapter, I investigated how the timing of an ecological invasion affects the 

success of that invasion and the impact on the resident community. To investigate this, I invaded 

synthetic bacterial communities at three different stages of community assembly: the initial assembly 

of the community, 24 hours into community dynamics, and 7 days into community dynamics.  I 

found that the timing of the invasion had a significant impact on its success and effect on the 

community, with early invasions being most successful and having the largest impact.  This result was 
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statistically associated with the growth of the invaders on spent media. Further, invader success was 

positively associated with lower community richness and resource use efficiency. These results 

suggested that the effect of invasion timing was largely due to changes in resource use efficiency 

over the course of community assembly. 
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Chapter 1: Richness and density jointly determine context 

dependence in bacterial interactions 

 

1.1 Abstract 

The structure and function of a microbial community is in part determined by the network of 

interactions among its constituent members. To simplify the complexity of these networks, it is 

often assumed that an interaction between two community members is unaffected by the 

surrounding community context. Here, we investigate that assumption and search for patterns 

describing variation in the effect of pairwise interactions across contexts. To do so, we used shallow 

short-read sequencing to compare a set of interactions across several synthetic bacterial community 

contexts. We found that the full set of interactions was largely composed of weak interactions with a 

negative average effect. We also observed a phylogenetic effect, with interactions between bacteria 

of the same genus more strongly negative than inter-genus interactions. Community richness and 

total density emerged as strong predictors of interaction effects and contributed to a general 

attenuation of interaction effects as richness increased. This attenuation was observed in both 

population level and per-capita measures of interaction effects, suggesting factors beyond systematic 

changes in population size were involved; namely, changes to the interactions themselves. Despite 

the effect of community context in attenuating interaction strengths, the modest change in the 

strength of pairwise interactions across similar community contexts meant that they could serve as 

predictors of those same interactions across community contexts, provided the contexts were not 

substantially diverged. These results suggest we can advance our ability to predict the structure and 

function of microbial communities through a better understanding of the emergent properties of 

microbial interactions. 
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1.2 Introduction 

Microbes are the engines of many biochemical processes that support life on Earth (Falkowski et al., 

2008), and as such may serve as a tool to modify or design biological systems (Brenner et al., 2008; 

Liu et al., 2019). Importantly, however, microbes rarely perform these complex functions in 

isolation, instead acting within communities. Many efforts are thus underway to design microbial 

communities that perform desired functions, enabling us to co-opt these powers of chemical 

transformation and develop applications relevant to human health, agriculture, and industry. 

However, the intricate relationships underlying such complex functions provide a challenge that 

must be overcome, as interactions among members constrain the extent to which the abundance 

and distribution of a focal microbe can be manipulated. Overcoming this challenge will require 

understanding the forces that determine the structure and function of microbial communities.  

Interactions between community members have long been known to affect community 

composition (Diamond, 1975; Gotelli and McCabe, 2002; Horner-Devine et al., 2007) and therefore 

the emergent functions performed by a community (Foster and Bell, 2012; Yu et al., 2019). 

Leveraging an understanding of interspecific interactions is a promising and actively researched 

approach for designing the structure and function of microbial communities (Clark et al., 2021; 

Connors et al., 2022). However, for such an approach to be effective, observations of interactions 

made in one community context must inform the extent of that interaction in another context.  

Interactions are often modelled as a network of unchanging pairwise per-capita or proportional 

effects between members of a community (Wootton and Emmerson, 2005; Levine et al., 2017; 

Momeni et al., 2017). By assuming that it is appropriate to distill an interaction into a simple static 

relationship, we can reduce the complexity of interaction networks (Gonze et al., 2018), a practical 

necessity for diverse microbial communities, and apply knowledge of interactions gleaned from 
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other contexts to make predictions about unobserved communities (Maynard et al, 2020). However, 

a variety of known effects call this simplification into question. Interactions can be subject to higher 

order effects (“higher order interactions” or “HOIs”) where a pairwise interaction is altered by the 

presence of one or more other community members (Wootton, 1993; Billick and Case, 1994; Bairey 

et al., 2016). Habitat modification can also affect microbial interactions (McNally and Brown, 2015), 

an example being environmental pH modification, which has been observed as a relevant factor in 

microbial community assembly (Amor et al., 2020; Aranda-Díaz et al., 2020; Ratzke et al., 2020). 

Due to effects such as these, knowledge of pairwise interaction strength or coexistence can have 

limited predictive power in complex communities (Friedman et al. 2017; Chang et al., 2022). Thus, 

advancing our understanding of what contributes to the variation of interactions between contexts 

stands to facilitate the rational design of microbial communities.  

One potential solution to these complexities is to identify patterns in how pairwise interactions 

vary across contexts and uncover what gives rise to such patterns. Applying such an understanding 

stands to improve our predictions of how microbial interactions will change between community 

contexts. Encouragingly, recent work has demonstrated that stronger negative interactions are found 

at high nutrient concentrations (Ratzke et al., 2020), confirming the possibility of identifying broadly 

general patterns. By expanding our understanding of such patterns, we hope to improve the 

predictive power of pairwise interactions. Here, we use synthetic bacterial communities to observe 

how interactions vary across community contexts and identify patterns underlying that variation. 

 

1.3 General Methods 

Assembly of synthetic communities and measurement of interactions – We began by assembling a set of 

synthetic communities from a pool of 56 bacterial strains isolated from the leaves of wild and field-
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grown Arabidopsis thaliana by randomly dividing isolates into seven pools of eight members. We then 

created all combinations of those pools (i.e., seven 8-member groups, all twenty-one 16-member 

groups, etc.) for a total of 127 unique communities (figure 1.1a). These communities were inoculated 

into a custom growth-medium derived from A. thaliana leaves (Arabidopsis leaf medium, ALM) 

(methods) at a consistent total community titer, with each member accounting for an equal 

proportion of the population given the initial richness (number of community members). To allow 

the communities to reach a steady state reflective of the long-term composition, we passaged each 

community for 6 days by performing a 1:100 dilution into fresh medium every 24 hours (figure 

1.1b). This period was sufficiently long to allow the community composition to stabilize 

(supplementary figure 1.1). We characterized the compositions of these communities by mapping 

Illumina short reads against a nearly complete and high-quality genome assembled for each isolate 

(methods). 

From this set of 127 communities, we then identified putative interactions by finding pairs of 

communities where a focal isolate was observed to be both excluded by and capable of coexisting 

alongside one or more specific isolates (figure 1.1c, supplementary figure 1.2). In these scenarios, we 

posited that the observed context-dependent coexistence was related to interactions between the 

focal isolate and/or its context-dependent excluder with additional members of the community. We 

thus focused on communities featuring this phenomenon. From all paired communities in which we 

observed context-dependent coexistence, we selected a set of ten pairs that would maximize 

compositional diversity. 

To probe these potential interactions, we then decomposed these communities into assemblages 

varying by a single isolate (figure 1.1c), always including a focal isolate and/or its excluder. Our goal 

was to assemble a set of nested subcommunities with compositions varying by a single member. 
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With these sets of communities, we were able to measure a given interaction across multiple 

community contexts (figure 1.2a). In total, we assembled 245 communities and passaged them for 6 

days, as previously described. A subset of communities was passaged for 12 days, with samples from 

days 6 and 12 sequenced to confirm that community composition was stable by day 6 

(supplementary figure 1.3). 

Absolute abundance information is required to measure interactions. Thus, we performed 

colony counting from serial dilutions of each day-6 sample to measure absolute community density, 

which was partitioned by the relative abundance sequencing data to estimate the absolute density of 

each isolate in a community. 

With measures of absolute abundance in hand, we measured interactions by comparing 

abundances between pairs of communities that varied by a single member. For example, the 

interaction between a “focal” isolate A and an “interactor” isolate B was observed by comparing the 

abundance of A in a community lacking B to the abundance of A in a community where B was 

present (A’). Here, we measure interactions using two metrics (figure 1.2a, methods), and refer to 

the “strength” of an interaction as the absolute value of the interaction effect.  Our first metric 

measures an interaction as the ratio of the abundance of the focal isolate in contexts with and 

without the interactor. This is a commonly used metric (Baichmann-Kass et al., 2022; Hsu et al., 

2019; Kehe et al., 2021; Schafer et al., 22; Weiss et al., 2022), which represents an interaction as a 

population level effect on the focal isolate. Our second metric measures an interaction as the per-

capita effect of an interactor B on the abundance of a focal A (Gonze et al., 2018). Conceptually, the 

population level effect of an interaction is a function of the per-capita effect of an interactor scaled 

by the density of that interactor in a given community context. This is relevant, as below we will 
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show that a general relationship between richness and density existed in our communities and 

contributed to the observed effect of interactions. 

1.4 Results 

Negative interactions were more common and stronger than positive interactions – We observed a total of 388 

pairwise interactions across all community contexts (figure 1.2). Negative interactions were more 

common, representing 67% of population level interactions. We observed median values of -0.29 

and -0.22, for population level and per-capita effects, respectively (figure 1.2). Negative interactions 

were statistically stronger than positive interactions for both measures (one-sided Wilcoxon rank 

sum test: p-values <4e-8 and 0.002, respectively). We also observed phylogenetic effects for both 

population level and per capita level measures of interactions, where isolates belonging to the same 

genus tended to have a stronger negative interaction than those belonging to distinct genera (one-

sided Wilcoxon rank sum test: p-value 0.004 and 0.017, respectively). 

Individual interactions attenuated as richness increased – Our method of measuring interactions compares 

contexts that differ in richness by a single “interactor” isolate. To observe  how interactions change 

between contexts, we extended this framework to compare the strength of a pairwise interaction 

between focal and interactor isolates across community contexts with or without a single 

“background” isolate (figure 1.2a). In this way, we compared how an interaction varied between two 

community contexts differing in richness by one. Use of our complete dataset enabled us to analyze 

275 instances of such paired contexts. First focusing on the population level effects, we observed 

that interactions generally attenuated in strength when measured in a community with one additional 

background member (Wilcoxon signed rank test, p-value 0.003). When grouping interactions by 

their initial direction, the median positive and negative interaction became less positive and negative, 
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respectively (figure 1.3a). Interaction strength, however, was significantly weaker for initially negative 

interactions and significantly stronger for initially positive interactions (one-sided Wilcoxon rank 

sum test: p-values <1e-5 and 0.007, respectively). 

As previously stated, the population level effect of an interaction is a function of the per-capita 

effect of an interactor and the density of that interactor in each community context. Thus, the 

observed decrease in population level effects suggests a decrease in the strength of per-capita effects 

and/or a systematic decrease in interactor density. Indeed, when we consider the shift in per-capita 

interactions, we observe again that interaction effects attenuated as richness context increased 

(Wilcoxon signed rank test, p-value 0.003). As with the population level effects, per-capita effects 

grouped by initial direction showed consistent shifts (figure 1.3b). Interaction strength became 

significantly weaker for initially negative interactions; however, unlike at the population level, it 

remained statistically unchanged for positive interactions (one-sided Wilcoxon rank sum test: p-

values 0.002 and 0.64, respectively). These results suggest that part of the decrease in the population 

level effects can be explained by a decrease in the per-capita effects. Next, we evaluate an alternative 

explanation by investigating the relationships between richness and density in our communities.  

Relationships between richness and density help explain trends in population effects across richness –We observed 

that, as richness increased, average total density of communities gradually increased to a modest 

extent (figure 1.4a), while the average density of each member decreased before reaching an 

asymptote of about four (figure 1.4b). This relationship between richness and the density of 

community members was experienced consistently across individual isolates (supplementary figure 

1.4). This general decrease in density with increasing richness helps explain the observed attenuation 

of interactions when measured as a population effect. Namely, as individual densities decreased with 

an increase in community richness, the population level effect of the interactor should decrease. 
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Indeed, interactor density explained a significant portion of variance in population level effects 

(linear regression, adjusted R2: 0.09, p-value <5e-10). Additionally, the relationship between the 

densities of community members and total community density meant that as richness increased, the 

absolute change in total density associated with an interaction decreased (figure 1.4c, Pearson’s r: -

0.23, p-value 0.002). In other words, on average, adding a given interactor to a community resulted 

in a smaller change to total community density in higher richness contexts. 

Interactions are predictive between contexts – We next asked, what is the remaining predictive capacity of 

an observed interaction across community contexts? We attempted to answer this question by 

modelling the change in abundance of a focal isolate between community contexts (i.e., the effect of 

an interaction), informed by richness, total density, and interactions observed in different contexts. 

First, while modelling the change in abundance associated with all 388 observed interactions, 

both richness and the change in total density emerged as highly explanatory variables associated with 

the change in focal isolate abundance (table 1.1). Richness context was less explanatory than the 

change in total density (adjusted R2 of 0.08 and 0.33, respectively), and joint models including both 

variables and their interaction could explain 57% of variance in focal isolate change in abundance.  

Next, we used the set of 275 paired interaction contexts differing by a richness of one to 

interrogate the predictive power of interactions across contexts (e.g., compare interaction effects 

between richness contexts 1=>2 and 2=>3). In this dataset, interactions in one context were able to 

describe ~16% of the variance in the change in density of a focal isolate (i.e., interaction effect) in 

the other context (table 1.2). A model using the change in total density of the context for which the 

interaction effect was being predicted (akin to the models above) explained ~27% of variance. A 

joint model of these two variables (change in total abundance of the predicted context and 

interaction effect in another context) explained ~42%, suggesting that the two variables are largely 
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independent. Expanding the dataset to consider comparisons between any observations of a given 

interaction (e.g., compare richness contexts 1=>2 and 4=>5) reduced the explanatory power of 

interactions between contexts to ~10% of variance, suggesting the predictive power of interactions 

decays as communities diverge in richness and composition (supplementary table 1.2). Ultimately, 

these results demonstrate the persistent but limited predictive power of interactions across contexts 

and highlight the relevance of community level properties in understanding the assembly of 

microbial communities. 

 

1.5 Discussion 

Here, we used synthetic bacterial communities to observe a large set of interactions across 

community contexts, ranging from the simplest possible community of two coexisting isolates to 

complex communities with up to seven isolates. These interactions were on average weakly negative 

and displayed a phylogenetic effect, in alignment with other studies of microbial interactions (Russel 

et al., 2017; Schafer and Vorholt., 2019; Kehe et al., 2021). However, positive interactions were not 

uncommon, an observation that has growing recent empirical support (Kehe et al., 2021;  

Baichmann-Kass et al., 2022). When comparing interactions across contexts of increasing richness, 

we observed a general attenuation of interactions, though this arose predominately due to a 

consistent shift in negative interactions (figure 1.3). Interestingly, we observed that much of this 

change can be explained by relationships between individual density and richness/total density (table 

1.1, figure 1.4). Namely, as richness increased, the modest increase in total density resulted in a 

decrease in individual isolate density (figure 1.4b). This relationship can help explain the observed 

attenuation of population level effects, as decreased density of interactor isolates in higher richness 

contexts should lead to smaller effects and did, in fact, explain ~9% of variance in population level 



 

19 

 

effects. However, the per-capita effects also showed some decrease in strength with an increase in 

richness, at least for negative interactions, suggesting additional processes were present that 

imparted a systematic change on the interactions. 

Why would per capita effects be attenuated at high richness, and why predominately among 

initially negative interactions? Previous observation of the attenuation of pairwise interactions in the 

zebrafish gut was attributed to the effect of higher order interactions (Sundarraman et al., 2020), 

though that study was unable to identify the mechanisms of such effects. We have a similarly limited 

mechanistic understanding of observed interactions and what underpins their variation between 

community contexts. The importance of HOIs in microbial community assembly remains an actively 

debated subject, with theoretical and empirical evidence to support both sides (Vandermeer, 1969;  

Foster and Bell, 2012; Bairey et al., 2016; Grilli et al., 2017;  Venturelli et al., 2018; Mickalide and 

Kuehn, 2019; Sanchez-Gorostiaga et al., 2019). However, HOIs are challenging to appropriately 

identify (Case and Bender, 1981; Wootton, 1993 & 1994), and our lack of fully characterized 

interaction networks precludes us from determining their relevance here.  

Another possible explanation for the attenuation of per-capita effects is non-additivity in 

interactions. In other words, overlap in the mechanisms underpinning how multiple interactors 

affect a given focal isolate could result in a reduced per-capita effect when multiple interactors are 

present. Such non-additivity has been recently reported (Baichmann-Kass et al., 2022). This effect 

would be likely if metabolic interaction (such as competition over labile carbon sources) 

predominately underlies interactions and community assembly, as has been shown in synthetic 

communities that were organized into functional guilds by preferred metabolic strategy (Goldford et 

al., 2018; Estrela et al., 2021; Estrela et al., 2022). In the context of how we measure and compare 

interactions here, such mechanistic overlap would be hypothesized to reduce the impact of a novel 
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interactor due to a function already being performed by a “background” isolate in the community . 

Such mechanistic redundance would be probabilistically more likely as richness increases . 

Despite the limitations of our data, some interesting insights can be inferred by asking what 

gives rise to the relationships we observed between richness and individual or total density. The 

apparent modest increase in total density in higher richness communities might have emerged for 

two reasons: 1) larger initial pools of isolates entailed greater metabolic diversity, thus allowing the 

community to occupy more of the available niche space, or 2) larger initial pools may simply have 

had a greater chance of including one or more isolates with high fitness in the environment.  Both 

possibilities would result in higher levels of community metabolic activity at higher levels of 

richness, which has been observed to have a positive effect on those community members with 

relatively low fitness as a result of cross-feeding or general metabolic leakiness (Medlock et al., 2018; 

Kehe et al., 2019; Kehe et al., 2021). In this way, positive effects absent in simpler contexts may have 

emerged in more complex settings. This hypothesis would address the fact that we predominately 

observed attenuation among negative interactions, as it would result in an apparent decrease in per-

capita effect while actually representing an independent emergent positive effect. 

A key finding here was that the relationship between individual isolate density and richness/total 

community density was informative for predicting the change in abundance of an isolate between 

community contexts (table 1.1). But why were changes in total density informative of changes in 

individual density? We suggest that this result arose because individual isolate density decreased as 

richness increased (figure 1.4b) due to the modest changes in total density (figure 1.4a). The 

associated attenuation of interactions in higher richness contexts was inherently observed as a 

decreased change in individual density but also a decreased change in total community density 

(figure 1.4c). This link between the two effects meant that the change in total density was an 
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informative predictor of change in individual density (i.e., interaction effect) as well. Nonetheless, 

interaction effects themselves were useful predictors across contexts (table 1.2), suggesting that 

context-dependency generally does not redefine an interaction, but instead changes interactions to 

varying degrees. Indeed, we observed the explanatory power of interactions decayed as the 

divergence between community contexts increased (supplementary table 1.2). Such an outcome is in 

line with results from other studies, as it has been shown that predictions of coexistence based on 

pairwise cultures decay as complexity of the predicted community increases (Friedman et al., 2017). 

We sought to advance our understanding of microbial interactions by observing how they vary 

across contexts and identifying patterns in that variation. Our observation of the general attenuation 

of interactions as richness increased is a straightforward and potentially useful result. And our 

finding that the relationships between individual density, richness and total density could help 

explain changes in pairwise interactions demonstrates both the usefulness of understanding 

community level properties and the value of considering interactions from the per-capita 

perspective. The observation that negative per-capita interactions nonetheless generally attenuated 

with richness suggests that context-dependency of interactions is a common feature in microbial 

communities. Further study of the specific processes that give rise to such context-dependence 

would be a fruitful endeavor that, combined with the observed population level processes, may 

improve our ability to predict the structure and function of microbial communities.  

 

1.6 Detailed Methods 

Bacterial isolates and reference genomes – All bacterial isolates were originally isolated from the 

leaves of wild or field grown Arabidopsis thaliana in the midwestern states of the USA (IL, IN, MI). 

Reference genomes for the isolates used in these experiments were assembled from Illumina short 
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reads using Spades v3.13.0 (Bankevich et al., 2012) with the “careful” flag. Assembled genomes were 

then manually curated in the Anvi’o v6.2 (Eren et al., 2021) software platform, specifically using the 

interactive interface to remove outlier contigs assembled from contaminating sequences. Anvi’o was 

also used to estimate the completion and contamination of assembled genomes and assign 

taxonomy. The isolate names, taxonomy, and assembly information are presented in Supplementary 

Table 1.1. 

Arabidopsis leaf medium (ALM) – Arabidopsis thaliana (KBS-Mac-74, accession 1741) plants were 

grown in the University of Chicago greenhouse from January to March 2020. Seeds were densely 

planted in 15-cell planting trays and thinned after germination to 4-5 plants per cell. Above ground 

plant material was harvested just before development of inflorescence stems. Plant material was  

coarsely shredded by hand before adding 100g to 400mL of 10mM MgSO 4 and autoclaving for 55 

minutes. After cooling to room temperature, the medium was filtered through 0.2µm 

polyethersulfone membrane filters to maintain sterility and remove plant material.  The medium was 

stored in the dark at 4°C. Before being used for culturing, the medium was diluted 1:10 in 10mM 

MgSO4. 

Experimental set up and culturing – Fresh bacterial stocks were prepared by first inoculating the 

isolates into 1mL of ALM shaking at 28°C and growing overnight. 100uL of these cultures were 

then used to inoculate 5mL of ALM shaking at 28°C. Once the cultures were visibly turbid, they 

were divided into 1mL aliquots with sterile DMSO added to a final concentration of 7% as a 

cryoprotectant. Stocks were stored at -80°C. Additionally at this time, stocks were diluted and plated 

to quantify density through colony counting.  

To initiate an experiment, stocks were diluted to target densities determined by the initial 

community titer (~1x106 cells) and the number of initial members. For the preliminary synthetic 
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communities, isolates were first combined into 7-member pools, subsequently combined into all 127 

combinations of pools, and then distributed into three randomly selected wells containing 600µL of 

ALM in sterile 1mL deep-well plates. Similarly, for the synthetic communities used to measure 

interactions, isolates were first combined into desired initial community compositions and then 

randomly distributed in triplicate into 1mL deep-well plates. All such manipulations were performed 

under an open atmosphere with a Tecan Freedom Evo liquid handling robot. Deep-well plates were 

covered with sterilized, loosely fitting plastic lids to allow air exchange. Plates were cultured in the 

dark at 28°C on high-speed orbital shakers capable of establishing a vortex in the deep-well plates to 

ensure that the cultures were well-mixed. After 24 hours, 6µL of each culture was manually 

transferred by multi-channel pipette into new plates containing 594µL of fresh ALM. The new plates 

were immediately returned to the incubator and the day-old plates were stored at -80°C. The sample 

plates from the final time point (day 6) were amended with 15% glycerol prior to storage in the 

freezer to preserve the cultures for subsequent colony counting.  

DNA Extraction – DNA was extracted from synthetic communities using an enzymatic digestion 

and bead-based purification. Cell lysis began by adding 250µL of lysozyme buffer (TE + 100mM 

NaCl + 1.4U/µL lysozyme) to 300µL of thawed sample and incubating at room temperature for 30 

minutes. Next, 200µL of proteinase K buffer (TE + 100mM NaCl + 2% SDS + 1mg/mL 

proteinase K) was added. This solution was incubated at 55oC for 4 hours and mixed by inversion 

every 30 minutes. After extraction, the samples were cooled to room temperature before adding 

220µL of 5M NaCl to precipitate the SDS. The samples were then centrifuged at 3000 RCF for 5 

minutes to pellet the SDS. A Tecan Freedom Evo liquid handler was used to remove 600µL of 

supernatant. The liquid handler was then used to isolate and purify the DNA using SPRI beads 

prepared as previously described (Rohland & Reich, 2012). Briefly, samples were incubated with 

200µL of SPRI beads for 5 minutes before separation on a magnetic plate, followed by two washes 
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of freshly prepared 70% ethanol. Samples were then resuspended in 50µL ultrapure H2O, incubated 

for 5 minutes, separated on a magnetic plate, and supernatant was transferred to a clean PCR plate. 

Purified DNA was quantified using a Picogreen assay (ThermoFisher) and diluted to 0.5ng/µL with 

the aid of a liquid handler. 

Sequencing library preparation – Libraries were prepared using Illumina Nextera XT kits and 

following a custom, scaled down protocol. This protocol differed from the published protocol in 

two ways: 1) the tagmentation reaction was scaled down such that 1µL of purified DNA, diluted to 

0.5ng/µL, was added to a solution of 1uL buffer + 0.5µL tagmentase, and 2) a KAPA HiFi PCR kit 

(Roche) was used to perform the amplification in place of the reagents included in the Nextera XT 

kit. PCR mastermix (per reaction) was composed of: 3µL 5X buffer, 0.45µL 10mM dNTPs, 1.5µL 

i5/i7 index adapters, respectively, 0.3µL polymerase, and 5.75µL ultrapure H2O. The PCR protocol 

was performed as follows: 3 minutes at 72  o; 13 cycles of 95  oC for 10 seconds, 55  oC for 30 seconds, 

72 oC for 30 seconds; 5 minutes at 72  oC; hold at 10 oC. Sequencing libraries were manually purified 

by adding 15µL of SPRI beads and following the previously described approach, eluting into 12µL 

of ultrapure H2O. Libraries were quantified by Picogreen assay, and a subset of libraries were run on 

an Agilent 4200 TapeStation system to confirm that the fragment size distributions were of 

acceptable quality. The libraries were then diluted to a normalized concentration with the aid of a 

liquid handler and pooled. The pooled libraries were concentrated on a vacuum concentrator prior 

to size selection for a 300-600bp range on a Blue Pippin (Sage Science). The distribution of size-

selected fragments was measured by TapeStation. Size-selected pool libraries were quantified by 

Picogreen assay and qPCR (KAPA Library Quantification Kit).  

Sequencing – Leveraging our previously assembled genomes, we characterized the compositions of 

our synthetic communities with a shallow metagenomics approach. We chose this approach as 
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opposed to 16S amplicon sequencing as some of our isolates had identical 16S sequences and 

preliminary work with mock synthetic communities demonstrated that amplicon sequencing yielded 

less accurate characterizations of community composition. Initial synthet ic community samples were 

sequenced on a HiSeq 4000 platform while follow up synthetic community samples were sequenced 

on a NovaSeq 6000 platform. Reads were quality filtered and adapter/phiX sequences were removed 

using BBDuk from the BBTools suite. Reads were mapped to reference genomes using Seal 

(BBTools) twice, once with the “ambig” flag set to “toss” (where ambiguously mapped reads were 

left out) and once with the “ambig” flag set to “random” (where ambiguously mapped reads were 

randomly distributed to equally likely references). By comparing the results between these two 

strategies, we identified sets of reference genomes which resulted in high numbers of ambiguous 

reads (due to similarity) and corrected for such ambiguity by reallocating “tossed” reads based on 

proportions of unambiguous reads mapped in each sample containing a given set. To avoid 

mischaracterizing the composition of our synthetic communities due to contamination or non-

specific mapping, for a given sample, isolates with less than 1% of total mapped reads were ignored. 

Estimating absolute abundance – Absolute density of each community culture was measured by 

counting colonies from serial dilutions of the cultures (specifics below). Specifically, glycerol 

preserved final timepoint samples were plated on 1X tryptic soy agar (TSA) plates, in triplicate serial 

dilution (3e-5, 1e-6, and 3e-6 dilutions), and cultured at room temperature. Colony forming units 

(CFU) were counted by eye over the course of the next few days. 

Calculation of interactions – Population level effects were calculated as the ratio of focal isolate 

density with and without the interactor and presented as (ratio - 1) for ease of interpretation. The 

per-capita effects were calculated as the change in focal isolate density between contexts with and 

without the interactor, divided by the density of the interactor from the context in which it was 
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present. To remove spurious interactions that arise from the presence of low abundance isolates 

close to the 1% relative abundance threshold, we pruned interactions to only include those within 

one standard deviation from the mean for both the population level and per-capita effect measures. 

Statistical analysis and data visualization – Statistical analysis and figure generation was performed in 

R v4.0.2 with aid from the following packages: tidyverse (Wickham et al., 2019), reshape2 (Wickham, 

2007), and car (Fox and Weisberg, 2018). Linear regression was performed with the “lm” function in 

R. All scripts are provided in the supplementary materials. Figures were made using Microsoft Paint 

3D and PowerPoint. 
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1.7 Figures and Tables 

 

 

Figure 1.1: Experimental outline – A) A set of 56 isolates representing 21 genera were randomly 
pooled into 7 pools. All combinations of those pools were assembled at equal titers, with respective 
densities scaled to the total number of isolates initially present. B) These combinations were 
inoculated in triplicate into a custom medium derived from Arabidopsis leaves (ALM) and passaged 
daily into fresh medium at a 1:100 dilution for 5 days. To characterize the community compositions, 
the day-6 samples were sequenced, and short-reads were mapped to reference genomes. C) Ten 
communities displaying context-dependent coexistence were decomposed into nested 
subcommunities containing the focal isolate and/or putative excluder isolate. These communities 
were assembled, passaged, and sequenced as described for the previous communities. To provide 
the absolute abundance information necessary to measure interactions, the final timepoint (day-6) 
was quantified by counting colonies on 1X TSA plates. 



 

28 

 

 

Figure 1.2: Distributions of observed interactions A) Interactions between a “focal” isolate and 

“interactor” isolate were calculated as two measures, 1) a population effect, calculated as the ratio of 

the focal isolate’s density with and without the interactor present, and 2) a per-capita effect, 

calculated as the change in density of the focal isolate between contexts with and without the 

interactor, scaled by the abundance of the interactor. Interactions were always calculated between 

communities varying by a single isolate – the interactor. However, additional isolates (“background” 

isolates) could also be present in the compared communities. The “richness context” of an 

interaction refers to the richness of the pairs of community contexts from which an interaction is 

observed (e.g., 1=>2 for the first example interaction, 2=>3 for the second example interaction 

including a “background” isolate). C) the distribution of all observed interactions, as population level 

effects, (natural-log transformed to symmetrize ratios), C) the distribution of all observed 

interactions, as per-capita effects
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Table 1.1: Summary of linear regressions modelling the change in density of a focal isolate (i.e., the 

effect of an interaction) by emergent community properties. “Focal change” indicates the change in 

density of the focal isolate in the predicted context. “Total change” indicates the change in total 

density between the community contexts of the interaction. “n-context” indicates the richness 

contexts over which the interaction was observed. “+” models separate variables with no 

interaction, “:” models only an interaction, “*” models separate variables with an interaction term.  

 

 

 

Table 1.2: Summary of linear regressions modelling the predictive power of interactions between 

contexts differing in richness context by a single community member.  “Focal change” indicates the 

change in density of the focal isolate in the predicted context. “Total change” indicates the change in 

total density between the community contexts of the interaction. “n-contexts” indicates the richness 

contexts from the pair of interactions (e.g., 1=>2 & 2=>3). “Interaction effect” indicates the change 

in density of the focal isolate in the interaction context which was not being predicted. We 

considered predictive power of interactions from the bottom-up, i.e., “interaction effects” came 

from the lower richness context (continuing the example above, 1=>2), while “total change” came 

from the predicted higher richness context (2=>3), as in the models described in Table 1.1. “+” 

models separate variables with no interaction, “*” models separate variables with an interaction 

term. 
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1.8 Supplementary figures and tables 

 

Supplementary Table 1.1: isolate detail

name

in followup 

communities

genome 

length (bp)

number 

contigs N50

GC 

content

percent 

completion

percent 

redundancy Genus

CFBP2214_S67 1 5577436 33 662387 59.1 100.0 0.0 Agrobacterium

fls2-241-TYG-188a_S156 1 5347584 16 1492510 57.1 100.0 0.0 Agrobacterium

lyk4-40-TYG-31_S151 1 5137870 25 466280 57.5 100.0 1.4 Agrobacterium

efr-133-R2A-120_S25 1 5124622 81 124276 63.7 98.6 1.4 Arthrobacter

efr-133-R2A-63_S85 0 4425045 59 134882 63.9 98.6 1.4 Arthrobacter

efr-133-TYG-118_S22 0 5279483 50 176600 63.6 98.6 5.6 Arthrobacter

efr-133-TYG-120_S21 0 4970673 55 159873 63.7 98.6 1.4 Arthrobacter

fls2-241-R2A-200_S19 1 3813896 27 255168 62.6 100.0 0.0 Arthrobacter

lyk4-R2A-2_S134 1 3638498 19 764156 42.0 100.0 0.0 Bacillus

MEB006b_S157 1 2943144 11 455680 66.3 100.0 0.0 Brevundimonas

lyk4-R2A-23_S48 0 7707676 60 202001 66.6 100.0 2.8 Burkholderia

MEB011_S37 0 3658679 20 352868 70.9 100.0 0.0 Curtobacterium

ME-Dv--P-122a_S32 0 3769316 20 285580 71.1 100.0 0.0 Curtobacterium

efr-133-R2A-84_S152 1 4445808 23 399529 52.9 100.0 0.0 Enterobacter

MEB024_S129 1 4770259 18 465211 54.6 100.0 0.0 Enterobacter

ME-P-080_S24 0 3275705 11 588193 71.5 100.0 2.8 Frigoribacterium

fls2-241-R2A-40a_S122 0 3753110 4 3749333 69.5 98.6 1.4 Leifsonia

ME-Dv--P-043b_S39 0 4411491 50 171549 66.2 100.0 1.4 Luteibacter

fls2-241-R2A-57_S113 1 5275670 229 35215 36.4 100.0 1.4 Lysinibacillus

LMC-P-041_S56 0 3701438 14 543905 67.8 100.0 0.0 Microbacterium

lyk4-40-TSB-66_S53 0 3570227 18 477020 70.3 100.0 0.0 Microbacterium

lyk4-40-TYG-92_S29 0 6170652 34 342268 66.8 98.6 1.4 Mycolicibacterium

fls2-241-R2A-195_S10 1 5738748 61 187846 65.2 100.0 2.8 Novosphingobium

LMC-P-059a_S33 0 3889587 11 597505 69.7 100.0 0.0 Plantibacter

lyk4-40-MEA-4_S41 0 3969825 13 626676 69.5 100.0 0.0 Plantibacter

ME-Dv--P-095_S58 0 4005071 21 458290 69.6 100.0 0.0 Plantibacter

ME-Dv--P-122b_S64 0 3920291 14 374919 69.3 100.0 4.2 Plantibacter

MEB111_S57 0 6233258 35 311840 72.5 98.6 5.6 Promicromonospora

efr-133-R2A-89_S7 0 4553351 18 526635 66.2 98.6 1.4 Pseudarthrobacter

fls2-241-R2A-127_S5 0 4696413 59 170107 65.6 98.6 2.8 Pseudarthrobacter

fls2-241-R2A-168_S45 0 4884402 64 178784 64.4 98.6 1.4 Pseudarthrobacter

lyk4-40-TYG-27_S50 0 4557169 24 542361 66.2 98.6 1.4 Pseudarthrobacter

CFBP2511_S1 0 6188923 48 215684 58.6 100.0 1.4 Pseudomonas

efr-133-R2A-59_S78 0 6207741 41 223084 58.9 100.0 0.0 Pseudomonas

efr-133-TYG-103a_S91 1 6115300 51 206697 60.3 98.6 0.0 Pseudomonas

efr-133-TYG-23_S107 1 5676264 58 159512 60.7 100.0 0.0 Pseudomonas

efr-133-TYG-5_S79 1 6116959 13 793520 62.1 94.4 1.4 Pseudomonas

fls2-241-R2A-110_S136 1 6839427 53 218702 59.0 98.6 0.0 Pseudomonas

fls2-241-TYG-175_S105 1 5975177 64 153260 59.3 98.6 1.4 Pseudomonas

FR229a_S127 1 5926019 46 231831 60.2 98.6 1.4 Pseudomonas

lyk4-40-TSB-59a_S125 1 6355326 26 392868 60.5 98.6 1.4 Pseudomonas

lyk4-R2A-10_S69 1 6325665 30 494191 60.6 98.6 1.4 Pseudomonas

lyk4-R2A-8_S103 1 5480925 44 211405 61.1 97.2 0.0 Pseudomonas

lyk4-TYG-107_S51 1 6149173 50 260186 60.1 97.2 1.4 Pseudomonas

MEB105_S97 1 6091259 24 328361 60.3 100.0 0.0 Pseudomonas

MEJ086_S119 1 5850881 64 164366 62.3 100.0 0.0 Pseudomonas

MEJ108_S148 0 5910147 87 130449 59.2 100.0 1.4 Pseudomonas

ME-P-057_S98 0 5703857 59 159821 60.1 98.6 0.0 Pseudomonas

MEB032_S102 0 7154115 67 202086 62.3 98.6 2.8 Rhodococcus

MEB041_S88 0 4571639 15 1089805 68.5 98.6 1.4 Rhodococcus

efr-133-TYG-104_S8 0 3849934 38 178207 62.6 100.0 0.0 Arthrobacter

fls2-241-R2A-172_S17 0 4473686 27 565181 62.9 100.0 2.8 Arthrobacter

MEB009_S83 0 4281525 28 228093 66.2 98.6 1.4 Pseudarthrobacter

efr-133-TYG-130_S11 1 7080647 64 245655 67.2 100.0 2.8 Variovorax

fls2-241-TYG-148_S106 1 4965705 32 273625 65.4 100.0 0.0 Xanthomonas

LMC-A-07_S149 1 4937033 31 289890 65.3 100.0 1.4 Xanthomonas
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Supplementary Figure 1.2: An example of context-dependent coexistence of a Lysinibacillus isolate 

(“emergent” isolate) from the initial set of synthetic communities. That Lysinibacillus isolate was 

excluded by the other members of the 8-member pool to which it belonged (“endemic pool alone 

A-C”). However, in the three additional contexts shown here (“endemic pool + outside pools 1 -3”) 

which were assembled from that pool of 8 and at least one other pool, the Lysinibacillus isolate 

persisted to 6-days. The relative abundances of the non-emergent isolates are depicted by stacked 

bars in shades of blue (if from the “endemic pool” to which the Lysinibacillus isolate belonged) or 

shades of orange (if from pools other than the endemic pool). 
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Supplementary Table 1.2: Summary of linear regressions modelling the predictive power of 

interactions across any richness contexts (e.g., 1=>2 & 4=>5). “Focal change” indicates the change 

in density of the focal isolate in the predicted context. “Total change” indicates the change in total 

density between the community contexts of the interaction. “Interaction effect” indicates the change 

in density of the focal isolate in the interaction context which was not being predicted. We 

considered predictive power of interactions from the bottom-up, i.e., “interaction effects” came 

from the lower richness context (continuing the example above, 1=>2), while “total change” came 

from the predicted higher richness context (4=>5). “+” models separate variables with no 

interaction, “*” models separate variables with an interaction term.  
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Chapter 2: Pairwise observations of coexistence make accurate, but 

incomplete, predictions in synthetic bacterial communities 

 

2.1 Abstract 

Ecological communities are often studied from the “bottom-up”, as an assemblage described by a 

network of pairwise relationships. However, some communities possess features that cannot be 

explained from a pairwise perspective, provoking the perspective that we should study communities 

from the “top-down”, where emergent properties have the potential to present themselves. Here, we 

assembled all pairs and all n-2 communities from a set of 21 bacterial isolates to compare 

observations of coexistence between pairwise and 19-member “complex” contexts. In doing so, we 

evaluated the importance of emergent effects in determining the composition of simple microbial 

communities. We observed that isolates that coexisted in pairwise frequently did not coexist in more 

complex contexts, but that this failure to coexist was generally predictable based on observations of 

pairwise exclusion with other community members. Further, we observed that most isolates that 

were excluded in pairwise were also excluded by that same competitor in more complex 

assemblages. And although context-dependent coexistence was frequently observed in complex 

contexts, most instances of such unexpected persistence involved only a small set of frequently 

observed isolates. Finally, we found that prevalence ranks when measured in pairwise and complex 

contexts had a strong positive correlation. Thus, pairwise observations of coexistence and exclusion 

can go a far way in explaining the composition of complex assemblages, a result with useful 

implications for the rational design of simple microbial communities.  
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2.2 Introduction 

Coexistence of species in an ecological community is often studied from the “bottom-up” by 

decomposing communities into constituent interactions between community members (Gause, 

1934; May 1972; Chesson, 2000). In microbial ecology, this perspective is embodied by efforts to use 

observations of pairs of community members studied in isolation to describe or predict more 

complex assemblages. This reductionist approach has proven useful for predicting the composition 

and function of ecological communities (e.g., Vandermeer, 1969; Richmond et al., 1975; Foster and 

Bell, 2012; Venturelli et al., 2018). However, it has also been demonstrated that this bottom-up 

approach can provide an incomplete understanding of ecological communities, especially as diversity 

increases (Friedman et al., 2017). 

It is unsurprising that such a reductionist approach can fail to accurately describe microbial 

communities, especially when one considers the disparity in complexity between a pairwise coculture 

and a natural microbial community. A change in the interaction between two species across different 

community contexts is referred to as a “higher order interaction” (HOI), and many mechanisms can 

give rise to such an effect in microbial communities. Microbes can have profound impacts on their 

environments, and through mechanisms such as biofilm formation (Elias and Banin, 2012; Lee et al., 

2014), environmental pH change (Aranda-Díaz et al., 2020; Ratzke et al., 2020) and production of 

inhibitory metabolites (Lax and Gore, 2022), the activity of one microbe might change the 

relationship between others. Additionally, given that many microbial interactions are mediated 

through metabolic competition or exchange (cross-feeding) (Gralka et al., 2020), changes in 

community context that alter the functional potential of a microbial community can change the 

available nutrient environment, with widespread effects on the community (Pascual-García et al., 

2020; Dal Bello et al., 2021; Diaz-Colunga et al., 2022).  
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Debate as to the importance of HOIs in ecological systems is longstanding (Case and Bender, 

1981; Pomerantz, 1981; Wootton, 1993) and ongoing in microbial systems, with evidence both 

supporting (Mickalide and Kuehn, 2019; Sundarraman, 2020; Schäfer et al., 2022) and minimizing 

(Vandermeer, 1969; Foster and Bell, 2012; Venturelli et al., 2018) their importance. Part of the 

debate stems from the challenge of identifying HOIs, and specifically distinguishing them from 

indirect effects, where the effect of one species on another is mediated by a density change in an 

intermediate species (Billick and Case, 1994). Insight into the importance of HOIs and indirect 

effects may be gleaned by studying microbial communities from the “top-down”, i.e., focusing on 

how community members behave and interact when embedded in a complex community of more 

than two members (Carlström et al., 2019; Chang et al., 2022; Romdhane et al., 2022). As with the 

bottom-up approach, top-down community data has been used to predict the composition and 

function of microbial communities (Maynard et al., 2020; Clark et al., 2021; Schäfer et al., 2022).  

Whether HOIs are important will strongly impact efforts to design microbial communities to 

assume a desired composition or perform a desired function (Brenner et al., 2008; Liu et al., 2019; 

Clark et al., 2021). With such goals in mind, one might then ask whether it would be most effective 

to study microbial communities from the bottom-up or top-down. The top-down approach is 

appealing from an experimental perspective because a single observation of a complex community 

can provide information about the relationships between multiple members (Maynard et al., 2020). 

Indeed, experimentally studying all subcommunities required to thoroughly investigate HOIs quickly 

becomes experimentally infeasible for anything but the simplest natural microbial communities. 

Only if HOIs have relatively little impact is a bottom-up approach feasible because then pairwise 

communities alone are needed for direct measurement of interactions. Additionally, it has been 

suggested that leveraging observations from both perspectives can improve predictions of microbial 

community composition and function (Maynard et al., 2020). 
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Ultimately, we must ask, what are the limitations of pairwise observations in describing more 

complex communities? In an effort to relate how observations of coexistence in pairwise and 

complex contexts relate to one another, we decomposed a 21-member synthetic bacterial 

community into all possible pairs and n-2 subcommunities to compare coexistence observed from 

the bottom-up and top-down. 

 

2.3 General Methods 

Assembly of synthetic communities – We began with a set of 21 bacterial strains isolated from the leaves 

of wild and field-grown Arabidopsis thaliana (supplementary table 2.1). From this set, we assembled all 

two-member and 19-member (n-2) communities, representing “pairwise” and “complex” 

communities, respectively (figure 2.1). Each community was inoculated in triplicate into a custom 

growth-medium derived from A. thaliana leaves (Arabidopsis leaf medium, ALM) (methods) at a 

consistent total community titer, with each member accounting for an equal proportion of the 

population given the initial richness (number of community members). To allow the communities to 

reach a steady state reflective of the long-term composition, we passaged each community for 7 days 

by performing a 1:100 dilution into fresh medium every 24 hours. This period was sufficiently long 

to allow the community composition to stabilize (supplementary figure 2.1). We characterized the 

composition of all synthetic communities by mapping Illumina short reads against a nearly complete 

and high-quality genome assembled for each isolate (methods). These final, top-down communities, 

ranged in richness from 2 to 14 isolates. 
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2.4 Results 

Coexistence in complex communities was a good predictor of pairwise coexistence  – We began our comparisons of 

coexistence between complex and pairwise contexts by evaluating how well coexistence in complex 

contexts predicted coexistence in pairwise coculture. To do this, we decomposed the final 

composition of each complex community into its constituent pairs and determined what proportion 

of those pairs coexisted in pairwise (figure 2.2a). We observed that a high proportion of pairs 

coexisting in complex communities also coexisted in pairwise (median ~98%), demonstrating that 

coexistence in a complex context was a strong predictor of coexistence in pairwise.  

Only a small set of isolates that failed to coexist in pairwise coexisted in complex communities  – Despite our 

observation that ~98% of pairs coexisting in complex communities also coexisted in pairwise, 68% 

of complex communities contained at least one pair of species that did not coexist when alone. 

These examples of unexpected coexistence based on pairwise results were a subset of the 55 isolate 

pairs that failed to coexist in our measures of all pairwise interactions. For each of these 55 pairs, we 

asked if, and how often, that pair coexisted in complex contexts (figure 2.2b). We observed that 

~93% of pairs that failed to coexist in pairwise nonetheless coexisted in at least one complex 

community context. However, when considering all complex communities in which each pair was 

initially present, these pairs persisted in a median of only 3% of communities. Surprisingly, this 

general rule did not apply to a small set of pairs (n = 12) that were able to coexist in at least 10% of 

complex contexts; these 12 pairs represented ~76% of all instances of context-dependent 

coexistence (figure 2.2d). Thus, although context-dependent coexistence was broadly observed in 

complex contexts, it was largely represented by a small set of isolates observed very frequently.  

Isolates that coexisted in pairwise often failed to coexist in complex communities – We next evaluated how well 

pairwise coexistence translated to complex community contexts. For each pair that coexisted in 
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coculture (n = 155, ~74% of all pairs), we identified the proportion of complex contexts 

(conditioned on whether those isolates were initially present) where the pair coexisted (figure 2.2c). 

We observed that most of these pairs (n = 110) only coexisted rarely in complex contexts (<20% of 

contexts). Another group of pairs (n = 30) were more successful, coexisting in ~20-60% of contexts. 

And a final set of pairs (n = 29) showed robust coexistence, coexisting in >60% of complex 

contexts.  

In investigating the compositions of these rough groupings, we observed that the set of 29 pairs 

demonstrating robust coexistence were composed of the most common isolates in the complex 

contexts, representing a set of high prevalence “core” isolates (with prevalence defined as the 

proportion of communities in which an isolate persisted relative to all communities in which it was 

initially present). We found that the set of pairs which exhibited middling frequencies of coexistence 

in complex contexts were generally composed of one “core” isolate and one isolate with 

intermediate complex-context prevalence. And those pairs that coexisted in the lowest number of 

top-down contexts were generally composed of isolates with low or middling top-down prevalence. 

Thus, we observed that aside from the set of pairs containing only core isolates, most pairs observed 

to coexist in pairwise showed rare or variable coexistence in complex communities. An obvious 

explanation for the failure of pairs that coexisted in pairwise to coexist in a complex context is that 

one or both isolates is excluded by other community members in the complex context. To address 

this, we asked how well our pairwise observations of exclusion can explain the composition of 

complex communities in the section that follows. 

Expectations of persistence in complex contexts from pairwise exclusion were generally accurate – We evaluated 

how well the final composition of each complex community aligned with coexistence as expected 

from the pairwise contexts. To do this, we asked whether the final composition of each complex 
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community could be predicted by knowledge of pairwise competitive exclusion in isolation. As an 

extremely strict test of this hypothesis, we asked whether membership in each complex assemblage 

included only isolates that were not excluded by any other isolate from the initial pool when 

cocultured in pairwise. For example, suppose that in pairwise contexts, isolate A excludes isolate B, 

which in turn excludes isolate C (figure 2.3a). With our strict application of pairwise results, only A 

would be expected to persist, as B and C are both excluded in pairwise by another isolate. This is a 

naïve approach as it assumes the absence of higher order interactions and ignores indirect effects, 

i.e., how being embedded in the full network of interactions might alter pairwise outcomes.  

Aware of this limitation, we assessed how well this approach performed by calculating the 

number of isolates expected to persist that were excluded (unexpected exclusion) and the number of 

isolates expected to be excluded that persisted (unexpected coexistence). Expectations of persistence 

were relatively accurate, with all isolates expected to persist successfully persisting in ~69% of 

compositions and low levels of unexpected exclusion generally (figure 2.3b). However, this approach 

often failed to identify isolates that would persist, as demonstrated by the fact that every prediction 

contained at least one instance of unexpected coexistence (figure 2.3c). 

Isolate prevalence was consistent between pairwise and complex contexts  – Finally, in further evaluating the 

consistency of coexistence outcomes between pairwise and complex contexts, we compared isolate 

prevalence in both datasets. We observed a strong positive correlation in prevalence ranks between 

the two contexts (Spearman’s Rho = 0.87, p-value < 5e-7, figure 2.4). Consistent with this, when 

considering instances of competitive exclusion in the pairwise assays, we observed that the isolate 

that was excluded from a given pair was of a lower prevalence rank among complex communities 

~98% of time. 
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2.5 Discussion 

An ecological community can be conceptualized from two perspectives: from the bottom-up, as 

the sum of its parts, or from the top-down, as a product of emergent community-level properties. 

Here, we used synthetic bacterial communities to investigate how observations of coexistence taken 

from either perspective relate to one another, and in doing so, evaluated the importance of 

community-context-dependence on coexistence. Our results tend to support the proposed 

“assembly rule” that posits the coexistence of a multispecies assemblage requires coexistence 

between each pair of species (Friedman et al., 2017; Meroz et al., 2021). First off, in our system, 

~98% of pairs present in final complex communities were pairs that coexisted in isolation (figure 

2.2a). Further, a failure to coexist in pairwise generally translated into a failure to coexist in more 

complex contexts (figure 2.2b), demonstrating that a complex context only rarely enabled, 

coexistence of isolates that could not coexist in a pairwise setting. And on the flip side, unexpected 

failure to coexist in complex communities (figure 2.2c) was generally due to exclusion that could be 

explained by the pairwise interactions between excluded isolates and other members of the initial 

pool (figure 2.5b). Thus, pairwise cooccurrence assays were largely effective in predicting species 

capable of coexistence in more complex contexts. 

Nevertheless, we commonly observed instances of context-dependent coexistence in our 

complex communities. Indeed, 68% of complex communities contained a pair which did not coexist 

in pairwise (figure 2.2a). These instances of unexpected coexistence were largely restricted to a set of 

just 12 pairs, which together constituted ~76% of all instances (figure 2.2d). Thus, although context-

dependent coexistence was common, it was limited to few isolate pairs. 

The frequency of context-dependent coexistence raises the question of what gave rise to these 

instances of unexpected coexistence? It is likely that such unexpected coexistence results from 
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indirect and/or higher order interactions, possibilities that are excluded by our naïve approach to 

predicting the composition of final communities. Indirect interactions are a likely cause; our 

approach treats all observations of pairwise exclusion as independent binary effects but, of course, 

the specific strengths of competitive interactions and dynamics of the community will determine its 

final composition. Returning to our previous example where isolate A persisted while B and C were 

excluded (figure 2.3a), it could instead be the case that the exclusion of B by A prevented the 

exclusion of C by B, resulting in a final composition of A and C. Such indirect effects are well 

documented as relevant to community composition (Paine, 1966; Calbet and Landry, 1993; 

Wootton, 1994). Additionally, higher order interactions may have attenuated the effect of some 

competitive interactions, resulting in unexpected coexistence.  

A recent study on synthetic bacterial communities (Chang et al. 2022) identified many examples 

of pairs of strains from multispecies communities that could not coexist in a pairwise context, 

suggesting that coexistence was often an emergent community-level property. Although we also 

found context-dependent coexistence, Chang et al. observed this to a considerably higher degree. In 

their study, only ~40% of pairs from a set of 13 synthetic communities could coexist in pairwise, 

while we found that ~74% of pairwise assemblages resulted in coexistence and that, on average, 

~98% of pairs from a complex context coexisted in pairwise. One important difference between our 

experimental systems is that Chang and colleagues cultured their communities in a minimal medium 

with glucose as a single carbon source, while we used a complex leaf-based medium containing many 

potential carbon sources at varying concentrations (supplementary table 2.2). The relative 

complexity of our medium might have facilitated coexistence by enabling multiple bacteria to pursue 

non-overlapping metabolic strategies, thus decreasing competition through niche partitioning (Baran 

et al., 2015; Brochet et al., 2021). Thus, if competition was less severe in our experimental setting, 

the higher levels of coexistence that we observed would have been expected.  
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Our results further suggest that the relative competitive ability of an isolate was a strong 

determinant of its fate in a community, irrespective of community context. We observed differences 

in the general competitive abilities of the isolates in our communities, as some isolates persisted in 

most communities whereas others showed variable or consistently low persistence (figure 2.4). 

Interestingly, we observed a strong relationship between prevalence ranks when measured in 

pairwise or complex settings, indicating that an isolate’s ability to persist in a community was 

consistent across community contexts, despite variation in the number and nature of interactions it 

faced. This finding is in line with other studies that have found that relative competitive ranking is a 

strong predictor of microbial community composition (Higgins et al., 2017; Ortiz et al., 2021; Chang 

et al., 2022).  

In summary, we found that the complex communities we assembled were largely composed of 

isolates that coexisted in pairwise. And although context-dependent coexistence was common, it was 

mainly exhibited by a small set of isolates in high frequency. Thus, predictions of isolate persistence 

in complex contexts inferred from pairwise outcomes generally had high accuracy. Interestingly, 

ranked prevalence between pairwise and complex contexts were strongly positively correlated, nicely 

demonstrating the consistencies we observed across community types.  These results can help guide 

efforts to predict or design the composition of simple microbial communities. 

 

2.6 Detailed Methods 

Bacterial isolates and reference genomes – All bacterial isolates were originally isolated from the 

leaves of wild or field grown Arabidopsis thaliana in the midwestern states of the USA (IL, IN, MI). 

Reference genomes were assembled as previously described (methods, chapter 1). The isolate names, 

taxonomic information, and assembly information are presented in Supplementary Table 2.1. 
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Arabidopsis leaf medium (ALM) – Arabidopsis thaliana (KBS-Mac-74, accession 1741) plants were 

grown in the University of Chicago greenhouse from January to March 2020. Seeds were densely 

planted in 15-cell planting trays and thinned after germination to 4-5 plants per cell. Above ground 

plant material was harvested just before development of inflorescence stems. Plant material was 

coarsely shredded by hand before adding 100g to 400mL of 10mM MgSO 4 and autoclaving for 55 

minutes. After cooling to room temperature, the medium was filtered through 0.2µm 

polyethersulfone membrane filters to maintain sterility and remove plant material. The medium was 

stored in the dark at 4°C. Before being used for culturing, the medium was diluted 1:10 in 10mM 

MgSO4. 

Assembly and culturing of synthetic communities – Fresh bacterial stocks were prepared by first 

inoculating the isolates into 1mL of ALM shaking at 28°C and growing overnight. 100uL of these 

cultures were then used to inoculate 5mL of ALM shaking at 28°C. Once the cultures were visibly 

turbid, they were divided into 1mL aliquots with sterile DMSO added to a final concentration of 7% 

as a cryoprotectant. Stocks were stored at -80°C. To initiate an experiment, stocks were diluted to 

target densities determined by the target initial community titer (~3x10 6 cells) and the number of 

initial members. Diluted stocks were then combined into all pairs (“pairwise”) and all n-2 

(“complex”) communities in triplicate with the aid of a liquid handling robot (Freedom Evo, liquid 

handling robot). Pools of stocks were used to inoculate 600µL of ALM in sterile 1mL deep-well 

plates, in triplicate. Deep-well plates were covered with sterilized, loosely fitting plastic lids to al low 

air exchange. Plates were cultured in the dark at 28°C on high-speed orbital shakers capable of 

establishing a vortex in the deep-well plates to ensure that the cultures were well-mixed. After 24 

hours, 6µL of each culture was manually transferred by multi-channel pipette into new plates 

containing 594µL of fresh ALM. The new plates were immediately returned to the incubator and the 
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day-old plates were stored at -80°C. The pairwise and complex communities were passaged for 7 

days. 

DNA Extraction – DNA was extracted from synthetic communities using an enzymatic digestion 

and bead-based purification. Cell lysis began by adding 250µL of lysozyme buffer (TE + 100mM 

NaCl + 1.4U/µL lysozyme) to 300µL of thawed sample and incubating at room temperature for 30 

minutes. Next, 200µL of proteinase K buffer (TE + 100mM NaCl + 2% SDS + 1mg/mL 

proteinase K) was added. This solution was incubated at 55oC for 4 hours and mixed by inversion 

every 30 minutes. After extraction, the samples were cooled to room temperature before adding 

220µL of 5M NaCl to precipitate the SDS. The samples were then centrifuged at 3000 RCF for 5 

minutes to pellet the SDS. A liquid handling robot was used to remove 600µL of supernatant. The 

liquid handling robot was then used to isolate and purify the DNA using SPRI beads prepared as 

previously described (Rohland & Reich, 2012). Briefly, samples were incubated with 200µL of SPRI 

beads for 5 minutes before separation on a magnetic plate, followed by two washes of freshly 

prepared 70% ethanol. Samples were then resuspended in 50µL ultrapure H2O, incubated for 5 

minutes, separated on a magnetic plate, and supernatant was transferred to a clean PCR plate. 

Purified DNA was quantified using a Picogreen assay (ThermoFisher) and diluted to 0 .5ng/µL with 

the aid of a liquid handler. 

Sequencing library preparation – Libraries were prepared using Illumina Nextera XT kits. Our 

protocol differed from the published protocol in two ways: 1) the tagmentation reaction was scaled 

down such that 1µL of purified DNA, diluted to 0.5ng/µL, was added to a solution of 1uL buffer + 

0.5µL tagmentase, and 2) a KAPA HiFi PCR kit (Roche) was used to perform the amplification in 

place of the reagents included in the Nextera XT kit. PCR mastermix (per reaction) was composed 

of: 3µL 5X buffer, 0.45µL 10mM dNTPs, 1.5µL i5/i7 index adapters, respectively, 0.3µL 
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polymerase, and 5.75µL ultrapure H2O. The PCR protocol was performed as follows: 3 minutes at 

72 oC; 13 cycles of 95  oC for 10 seconds, 55  oC for 30 seconds, 72  oC for 30 seconds; 5 minutes at 72  

oC; hold at 10  oC. Sequencing libraries were manually purified by adding 15µL of SPRI beads and 

following the previously described approach, eluting into 12µL of ultrapure H2O. Libraries were 

quantified by Picogreen assay, and a subset of libraries were run on an Agilent 4200 TapeStation 

system to confirm that the fragment size distributions were of acceptable quality. The libraries were 

then diluted to a normalized concentration with the aid of a liquid handler and pooled. The pooled 

libraries were concentrated on a vacuum concentrator prior to size selection for a 300-600bp range 

on a Blue Pippin (Sage Science). The distribution of size-selected fragments was measured by 

TapeStation. Size-selected pool libraries were quantified by Picogreen assay and qPCR (KAPA 

Library Quantification Kit). 

Sequencing – We characterized the compositions of our synthetic communities with a shallow 

metagenomics approach. Pairwise and complex synthetic communities were sequenced on a  HiSeq 

4000 platform. Reads were quality filtered and adapter/phiX sequences were removed using BBDuk 

from the BBTools suite. Reads were mapped to reference genomes using Seal (BBTools) twice, once 

with the “ambig” flag set to “toss” (where ambiguously mapped reads were left out) and once with 

the “ambig” flag set to “random” (where ambiguously mapped reads were randomly distributed to 

equally likely references). By comparing the results between these two strategies, we identified sets of 

reference genomes which resulted in high numbers of ambiguous reads (due to similarity) and 

corrected for such ambiguity by reallocating “tossed” reads based on proportions of unambiguous 

reads mapped in each sample containing a given set. To avoid mischaracterizing the composition of 

our synthetic communities due to contamination or non-specific mapping, for a given sample, 

isolates with less than 1% of total mapped reads were ignored. 
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Statistical analysis and data visualization – Statistical analysis and figure generation was performed in 

R v4.0.2 with aid from the following packages: tidyverse (Wickham et al.,  2019), reshape2 (Wickham, 

2007), car (Fox and Weisberg, 2018), and margins (Leeper, 2021).  All scripts are provided in the 

supplementary materials. 
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2.7 Figures and tables 
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Figure 2.2 – Relating coexistence between bottom-up and top-down contexts: A) Each unique final 

composition of a top-down community was decomposed into all possible pairs and the proportion 

of those pairs that coexisted in pairwise was calculated. The distribution of these proportions is 

represented as a histogram. B) For each pair of isolates that did not coexist in pairwise, the 

proportion of top-down community contexts in which that pair coexisted was calculated. The 

distribution of these proportions for all such pairs is represented as a histogram. C) For each pair of 

isolates observed to coexist in pairwise, the proportion of top-down community contexts in which 

that pair coexisted was calculated. The distribution of these proportions for all such pairs is 

represented as a histogram. D) For each pair that failed to coexist in a bottom-up context, the 

number of top-down samples in which that pair was conversely observed to coexist is represented as 

a column in the bar plot. 
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Figure 2.4 – Pairwise and complex context prevalence rank were positively correlated: Prevalence at 

either level was calculated as the number of communities in which an isolate persisted over the total 

number of communities in which that isolate was initially present. 
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2.8 Supplementary Figures and Tables 

 

 

Supplementary Table 2.1: isolate details 

 

 

 

 

 

 

 

 

 

 

 

 

name

genome 

length (bp)

number 

contigs N50

GC 

content

percent 

completion

percent 

redundancy genus

lyk4_R2A_8 5.48E+06 44 2.11E+05 61.1 97.2 0.0 Pseudomonas

lyk4_R2A_2 3.64E+06 19 7.64E+05 42.0 100.0 0.0 Bacillus

fls2_241_TYG_120a 4.55E+06 128 5.92E+04 63.9 98.6 4.2 Arthrobacter

lyk4_TYG_106 3.75E+06 12 6.55E+05 69.8 98.6 4.2 Leifsonia

fls2_241_TYG_148 4.97E+06 32 2.74E+05 65.4 100.0 0.0 Xanthomonas

efr_133_TYG_23 5.68E+06 58 1.60E+05 60.7 100.0 0.0 Pseudomonas

lyk4_R2A_23 7.71E+06 60 2.02E+05 66.6 100.0 2.8 Burkholderia

fls2_241_R2A_45 5.67E+06 421 2.62E+04 61.4 100.0 0.0 Pseudomonas

fls2_241_TYG_188b 3.69E+06 7 9.21E+05 57.3 100.0 0.0 Agrobacterium

fls2_241_R2A_57 5.28E+06 229 3.52E+04 36.4 100.0 1.4 Lysinibacillus

lyk4_40_MEA_2 5.32E+06 605 1.44E+04 64.4 100.0 5.6 Ralstonia

efr_133_TYG_103a 6.12E+06 51 2.07E+05 60.3 98.6 0.0 Pseudomonas

efr_133_TSB_1 4.11E+06 1150 4.67E+03 66.0 97.2 5.6 Pseudarthrobacter

lyk4_R2A_7 4.16E+06 912 6.07E+03 66.6 95.8 5.6 Pseudarthrobacter

efr_133_R2A_92 2.78E+06 1056 3.02E+03 69.0 91.5 0.0 Plantibacter

ME(Cv)_P.064 3.53E+06 29 5.06E+05 41.6 100.0 0.0 Bacillus

LMC_B.46 6.27E+06 33 3.65E+05 60.4 98.6 0.0 Pseudomonas

LMC_A.08 5.93E+06 51 2.60E+05 59.2 98.6 1.4 Pseudomonas

ME_P.043 4.17E+06 876 6.81E+03 66.6 97.2 2.8 Pseudarthrobacter

FR229a 5.93E+06 46 2.32E+05 60.2 98.6 1.4 Pseudomonas

LMC_P.011 5.04E+06 24 3.15E+05 65.4 100.0 0.0 Xanthomonas
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Supplementary Table 2.2: Compounds detected in Arabidopsis Leaf Medium using GC/MS 

profiling and a standard targeted panel of metabolites (with the Duchossois Family Institute Host-

Microbe Metabolomics Facility, University of Chicago). Peak areas are included to provide semi-

quantitative references for the relative amounts of the metabolites detected from the targeted panel.

Compound peak area

Caffeic acid 0.000 Catechol 0.008 Aminocaproic acid 0.112

Indole-3-pyruvic acid  0.000 L-(+)-Ornithine 0.008 Valerate 0.127

Chlorogenic acid 0.000 Caffeine 0.008 Glycolic acid 0.136

Rosmarinic Acid 0.000 2-hydroxyisocaproate 0.008 Pyruvic acid 0.138

Dihydrocaffeicacid 0.000 Malonic acid 0.008 Vanillin 0.149

Indole-3-lactic acid 0.000 Asparagine 0.009 2-hydroxyhexanoic acid 0.154

Cystine 0.000 Desaminotyrosine 0.009 Phenylacetic acid 0.155

Testosterone  0.000 2-deoxy-D-Ribose 0.010 1,2-Propanediol 0.174

Coprostanol 0.000 Indole-3-propionic acid 0.010 Dulcitol 0.175

Phenyllactic acid 0.001 Glutamine 0.012 Fumarate 0.233

3,4-Dihydroxyphenylacetic acid 0.001 Cresol 0.012 Lysine 0.237

Oxaloacetic acid 0.001 2-hydroxy-3-methylbutyric acid 0.012 Ethanolamine 0.256

trans-ferulic acid 0.001 Tryptophol 0.012 Glycine 0.289

Dihydrotestosterone 0.001 Indole-3-acryclic acid 0.013 2-Hydroxybutyric acid 0.318

Cholesterol 0.001 alpha-Ketobutyrate 0.017 Threonine 0.436

3-(3-hydroxyphenyl)propionic acid 0.002 4-Hydroxyphenylacetic acid 0.017 L-Arabinose 0.488

Sinapic acid 0.002 p-Toluate 0.018 gamma-Aminobutric acid (GABA) 0.517

Alpha-Ketoglutaric acid  0.002 Indole-3-acetic acid 0.018 Benzoic acid 0.602

Glutamic acid 0.002 Tryptophan 0.021 DL-Methionine Sulfoxide 0.617

Melatonin 0.003 Imidazoleacetic acid 0.022 Cadaverine 0.637

O-Phosphorylethanolamine 0.003 Glutaric acid 0.028 D-Gluconic acid 0.695

m-Coumaric acid 0.003 3-aminoisobutyric acid 0.032 Tyrosine 0.792

Dihydroferulic acid 0.003 Histidine 0.042 4-Ethylphenol 0.840

Tryptamine 0.003 Linoleic acid 0.044 N-Acetylglucosamine (GlcNAc) 0.864

Dihydrocholesterol 0.003 Maltitol 0.046 Succinic acid 0.885

Phenylpyruvic acid 0.003 Maleic acid 0.046 Oxalate 0.895

Urocanic acid 0.003 4-methylvalerate 0.051 Citric acid 1.073

5-aminovalerate 0.004 Rhamnose 0.054 (2R,3R)-(-)-2,3-Butanediol 1.290

Imidazole Propionic acid 0.004 meso-Erythritol 0.058 Malic acid 1.370

Shikimic acid 0.004 Urea 0.063 Aspartic acid 1.423

DL-5-Hydroxylysine 0.004 Deoxycarnitine 0.066 Serine 1.759

Creatinine/Creatine 0.004 L-2-Aminobutyric acid 0.066 Lactic acid 1.793

Quinolinic acid 0.005 p-Coumaric acid 0.068 Valine 1.824

Methylsuccinic acid 0.005 Phenylalanine 0.071 Indole-3-acetamide 1.975

Hydrocinnamic acid 0.005 Indole 0.073 trans-4-Hydroxy-L-Proline 2.320

Aconitic acid 0.005 Histamine 0.073 Palmitic acid 2.452

D-(-)-Tartaric acid 0.006 Picolinic acid 0.074 Proline 3.226

(+-)-Octopamine 0.006 Dopamine 0.079 Indole-3-carboxaldehyde 3.867

Tyramine 0.006 Cysteine 0.079 Isoleucine 4.678

Quinic acid 0.006 trans-Cinnamic acid 0.081 Sucrose 8.419

Itaconate 0.007 D-Sorbitol 0.083 Alanine 12.947

Niacin 0.007 Hexanoate 0.088 Leucine 14.896

Methionine 0.007 Phenethylamine 0.089 D-Galactose 15.722
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Chapter 3: Invasion timing affects invasion outcome in synthetic 

bacterial communities 

 

3.1 Abstract 

Microbial communities regularly experience ecological invasions that can change their 

composition and function. And some factors thought to affect the outcome of such invasions can 

vary over the course of community assembly. Here, we use synthetic bacterial communities to 

evaluate how the timing of an invasion, relative to the community assembly process, affects its 

success and impact on the invaded community. We invaded 15 distinct communities with 3 bacterial 

invaders at the initial assembly of the community (“initial”), 24 hours into community dynamics 

(“early”) and 7 days into community dynamics (“late”). Communities were passaged every 24 hours 

and characterized through shallow short-read sequencing once reaching a stable composition. We 

observed that communities with lower richness or resource use efficiency were less robust against 

invasion. We also observed that even unsuccessful invasion could have large impacts on invaded 

communities, most strongly affecting the most abundant communities members. Invasions were 

most successful and had the largest effect on community composition in the “early” treatment. This 

result was statistically associated with invader growth on spent media, suggesting it was related to 

changes in resource use efficiency over the course of community assembly. Our results demonstrate 

that invasion timing can affect the outcome of that invasion, a finding relevant to efforts to adjust or 

maintain the composition of microbial communities.  
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3.2 Introduction 

Microbial communities are ubiquitous and of great importance to human health (Clark et al. 

2021), agriculture (Liu et al., 2019), and industry (Zhou et al., 2015). As such, many efforts are 

underway to design or modify microbial communities that assume a desired composition or perform 

a desired function. But, like all ecological communities, microbial communities are exposed to 

environmental fluctuations and migration that can affect community composition and function 

(Burns et al., 2017; Nguyen et al., 2021). This represents a challenge for our efforts to manipulate 

microbial communities to serve our own ends. 

Take, for example, efforts to design a microbial community that performs a desired function. As 

has often been observed, such a community might perform as designed in vitro or in a host under 

well controlled conditions but shift in composition and function when exposed to the complexity of 

a natural environment (Burns et al., 2017; Morella et al., 2020; Bergelson et al., 2021). Or, as an 

inverse example, consider the engraftment of a probiotic bacterium in the gut microbiome. The 

potential positive effect of that probiotic on host health is irrelevant if it cannot persist in the host 

microbiome (Santos et al., 2006; Robinson et al., 2010). Both scenarios deal with the complexities of 

ecological invasions. 

Invasion ecology concerns the establishment and impact of outside species on ecological 

communities. A primary factor that has been demonstrated to affect the outcome of ecological 

invasions is the relationship between diversity and resource use efficiency (Stachowicz et al., 1997; 

Tilman, 1999; Hodgson et al., 2002). This relationship suggests that a successful invasion is more 

likely to occur when an invader has greater access to resources, and that a positive relationship 

between diversity and resource use efficiency deprives invaders of such access. Previous work has 

also related invasion timing and outcome as a function of change in resource availability, namely, 
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through synchronization of invasion with periods of decreased community productivi ty (Li and 

Stevens, 2012: Mallon et al., 2015). However, communities arise from a dynamic assembly process, 

during which composition (diversity) and function (resource use) are in flux. Thus, we posit that the 

timing of an invasion, relative to the community assembly process, is likely relevant to its outcome. 

Here, we used synthetic bacterial communities to ask the question: as community assembly 

progresses towards a stable state, how does the timing of an invasion affect its outcome? We 

consider the “outcome” of an invasion as both the success/failure of the invader to persist in a 

community over time and the effect of invasion on the composition of the invaded community.  

 

3.3 General Methods 

Experimental design and assembly of synthetic communities – To study invasion across multiple community 

contexts, we assembled a set of 15 synthetic bacterial communities from a pool of 48 bacterial 

strains, representing 24 genera, originally isolated from the leaves of wild and field-grown Arabidopsis 

thaliana (supplementary table 3.1). These communities ranged in initial richness from 8 to 48 strains. 

We inoculated these pools into a plant-based medium derived from the leaves of greenhouse grown 

A. thaliana (methods). Communities were inoculated at an initially consistent total cell density, with 

each member at an equal density reduced in proportion to the richness of the pool. To ensure we 

analyzed these communities in a state reflective of their long-term compositions, we passaged each 

community into fresh medium (1:100 dilution) every 24 hours for 7 days (figure 3.1). We have 

previously demonstrated that such a period is sufficient to allow communities in this system to reach 

an ecologically stable state (chapter 1). 
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To test the effect of invasion timing on community assembly, we invaded each of these 15 

communities with three different bacterial invaders at each of three time points in the community 

assembly process (figure 3.1). We chose to work with multiple community contexts and invaders to 

seek general patterns in the effect of invasion timing, rather than outcomes specific to a certain 

invader and/or community context. We used a strain of Pseudomonas poae (Pseudomonas_MEJ082), a 

strain of Pseudomonas viridiflava (Pseudomonas_RMX31.b), and a strain of Xanthomonas campestris 

(Xanthomonas_S130) as invaders. Each invader was added at a density determined in preliminary 

experiments to be sufficient to lead to successful invasion in some, but not all, community contexts 

(methods). These densities were 0.1% of estimated total community density for X. campestris and 

10% for both P. poae and P. viridiflava. 

We assessed three invasion timing treatments that targeted distinct phases of the community 

dynamics. In the “initial” invasion treatment, invaders were added to the community during initial 

community assembly (T0), when the assembly process has just begun. In the “early” invasion 

treatment, invaders were added immediately after the first round of passaging (24  hours, T1), which 

is an especially dynamic point in the assembly process (chapter 1). And in the “late” invasion 

treatment, invaders were added after 7 days of growth (entailing 6 rounds of passaging, T7), when 

community dynamics had reached a steady state. After adding invaders, communities were passaged 

for an additional 7 days. We used NGS to characterize the composition of these communities; 

specifically, by mapping short reads back to previously assembled reference genomes (methods).  

 

3.4 Results 

Invasions were commonly unsuccessful, and more so in high richness communities – We define a successful 

invasion as one where an invader persists in the community in which they invade. In general, 
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successful invasions were uncommon. Across all invaders and all invaded communities, successful 

invasion was only observed ~24% of the time. Some invaders were more successful than others, 

while some invaded communities were more likely to be invaded. Specifically, there was a statistical 

association between invader identity and invasion success (Chi-square test of independence, p-value 

< 2e-9), with X. campestris displaying the highest success rate at 39% successful invasions and P. 

viridiflava showing the lowest at 6% (table 3.1, supplementary figure 3.1a). Interestingly, these two 

invaders showed an opposite relationship in relative abundances, with the relative abundance of P. 

viridiflava in the successfully invaded communities reaching the highest levels (±SD) at 0.27±0.12 

and X. campestris showing the lowest at 0.03±0.02. 

We also observed a statistical association between invaded community and invasion success, 

with communities 3,4 and 6 experiencing notably high invasion success rates (table 3.1, 

supplementary figure 3.1b). Given that our communities varied in richness across invasion 

treatments, we used logistic regression to analyze the relationship between invasion success or failure 

and average richness of an invaded community prior to invasion (supplementary table 3.2). We 

found that successful invasion was less likely as community richness increased, but with a low 

average marginal effect, with an increase in richness of one being associated with a 3.3% reduction 

in the probability of an invasion attempt being successful (figure 3.2a). 

Resource use efficiency was associated with invasion success – If invaders are more successful when invading 

communities with low resource use efficiency and/or with an abundance of metabolites suitable for 

cross-feeding, then we would expect invasion success to be related to an invader’s growth on the 

nutrients available in each invaded community. To examine this possibility, we evaluated how well 

invaders were able to grow on “spent media” of the uninvaded communities (methods), and 

whether growth on spent media was predictive of invasion outcome. Briefly, we filtered each of the 
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communities after one day and seven days of growth (representing the communities immediately 

prior to the “early” invasion and “late” invasion treatments, respectively) through 0.2µm 

polytetrafluoroethylene filters to remove bacterial cells and isolate sterile “spent” medium. We then 

assessed the growth of each invader by culturing each of the three invader species in each spent 

medium (amended with M9 salts, final concentration 0.3X) and measuring OD600 after 48 hours. 

Extensive growth was rare and generally restricted to P. poae (supplementary figure 3.2), which 

was the invader with an intermediate level of invasion success at 27%. We used logistic regression to 

analyze the relationship between invader growth on spent media and invasion outcome and found 

that P. poae displayed a significant, positive relationship (supplementary table 3.2). For that invader, 

we observed that growth on spent media was a significant predictor of invasion outcome, with a 0.1 

increase in optical density associated with a ~40% average increase in the probability of a successful 

invasion (supplementary table 3.2, figure 3.2b). 

We observed no difference in growth between the filtrates from day 1 versus day 7 for any of 

the invaders (two sample t-tests, all p-values > 0.4). However, to assess if community resource use 

efficiency may have changed over the course of community assembly, we compared the initial (T1) 

and late stage (T6) densities (OD600) of each uninvaded community. Using logist ic regression, we 

observed a significant relationship between the change in density and invasion success, with an 

increase in density of 0.1 associated with a 7% average decrease in the probability of invasion 

success (supplementary table 3.2, figure 3.2c). 

Invaders had an outsized effect on the most abundant members of invaded communities  – We next asked if there 

were any consistent patterns in how community compositions shifted after invasion. For each 

member detected in a given community prior to invasion, we related its pre-invasion rank 

abundance to the log-ratio of its relative abundances in the post-invasion and pre-invasion contexts 
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(disregarding isolates not detected after invasion). We observed a significant difference between 

ranks (one-way ANOVA: F8,532 = 9.37, p-value < 4e-11), with post-hoc testing (Tukey’s honest 

significance test) identifying the most abundant isolates as significantly different from all other ranks 

(figure 3.3a). Interestingly, only the highest rank abundance community members showed a 

significant decrease in relative abundance (one-sample t-test: p-value < 2.2e-16).  In some cases, in 

which an invader persisted, the change in community composition was largely due to the presence of 

the invader (figure 3.3b). However, there were also instances where, despite occupying a low relative 

abundance (figure 3.3c) or even failing to invade (figure 3.3d), an invader had a large effect on 

community composition. 

Invasion timing affected invasion outcome but can be explained by invader growth on spent media  – To assess the 

effect of invasion timing on invasion outcome, we first compared the invasion success rate of each 

invasion treatment. A Chi-square test of independence demonstrated there was a significant 

association between invasion treatment and invasion outcome (success/failure) (p-value < 6e-5), with 

successful invasions more common than expected in the early invasion treatment and less common 

than expected in the initial invasion treatment (figure 3.4a) when all invaders were considered jointly. 

To further test if invasion timing affected invasion outcome, we measured the effect of each 

treatment on the composition of invaded communities. Specifically, for a given invasion treatment, 

we calculated the average Bray-Curtis dissimilarity between samples of that treatment and uninvaded 

control communities, for each of the 15 communities separately and disregarding an invader if it was 

present (figure 3.4b). We then used pairwise single-factor PERMANOVA tests to determine if the 

invasion treatments resulted in community compositions distinct from the uninvaded controls 

(methods). We observed that all invasion timing treatments resulted in significantly distinct 

community compositions, regardless of the success of the invasion (all p-values ≤ 0.006 after 

multiple testing correction). 
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Pursuing these results further, we sought to determine if there were differences in the extent to 

which invasion timing treatments affected community composition. Thus, we compared the Bray-

Curtis dissimilarities of each treatment (relative to the uninvaded controls) to each other. A one-way 

ANOVA found that the average dissimilarity from the uninvaded controls differed between the 

invasion treatments (F2,384 = 5.02, p-value 0.007, supplementary table 3.3). Post-hoc tests showed 

strong support for a significant difference in dissimilarity between the early and initial invasion 

treatments with an average difference of 0.08 (Tukey’s honest significant test: 95% CI [0.02, 0.14], p-

value = 0.006, supplementary table 3.3). There was also marginal statistical support for a difference 

between the early and late invasion treatments (Tukey’s honest significant test: 95% CI [-0.007, 

0.11], p-value = 0.092, supplementary table 3.3). 

Given that we had previously identified associations between invasion outcome and community 

richness, invader identity, and invader growth on spent media, we performed additional analyses 

including these variables in the model (supplementary table 3.4). Neither richness nor invader 

identity had significant effects in the model or on the effect of invasion timing. However, invader 

growth on spent media entered the model as a significant covariate and, importantly, reduced the 

effect of invasion timing. Note, however, that this model only considered the “early” and  “late” 

invasion treatments, as those are the only treatments for which we could measure growth on spent 

media prior to invasion. 

 

3.5 Discussion 

We hypothesized that invasion timing would be relevant to invasion outcome because factors 

affecting ecological invasions have the potential to change over the course of the community 

assembly process. Community diversity is one such dynamic factor. Indeed, the relationship between 
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diversity and community invasibility has long been studied in plant communities (Peart and Foin, 

1985; Tilman 1999; Kennedy et al., 2002; Fridley et al., 2007) as well as experimental bacterial 

communities (Hodgson et al., 2002; Eisenhauer et al., 2012) and in the context of enteric pathogens 

(Dillon et al., 2005; Britton and Young, 2014). It has been demonstrated that the relationship 

between diversity and invasibility is related to the relationship between diversity and resource use 

efficiency; namely, that increased diversity can result in more complete occupancy of available niche 

space, thus increasing community resource use efficiency and reducing the availability of resources 

an invader needs to successfully invade (Tilman, 1999; Loreau and Hector, 2001; Hodgson et al., 

2002). Our results are in general alignment with this effect, as we observed that higher richness 

(more diverse) communities were less likely to be successfully invaded (figure 3.2a). We also 

observed that P. poae growth on spent medium was positively associated with invasion success 

(figure 3.2b), suggesting communities that left higher levels of remaining resources after 24 hours of 

growth were more likely to be invaded by that invader. And finally, in our analysis of the effect of 

invasion timing on compositional divergence relative to uninvaded controls, the effect of invasion 

timing was reduced when we incorporated invader growth on spent media (supplementary table 3.4), 

suggesting that differences in the vulnerability of communities to invasion over time were, at least in 

part, modulated by available resources. 

Another relevant factor is community composition, which inherently changes as community 

members are filtered out during assembly. This is relevant to invasibility in that invaders can be 

excluded if they compete with species that share similar nutrient requirements (Innerebner et al., 

2011; Yang et al., 2017). This mechanism, referred to as a “sampling effect”, is also related to 

richness, as higher richness increases the chance that a community contains species capable of 

excluding an invader through competition (Tilman, 1999; Mallon et al., 2015; Wei et al., 2015).  Thus, 

as community composition changes over the course of the assembly process, invasibility, as 
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mediated through this mechanism, will vary. And, in particular, communities should become more 

vulnerable to invasion as they settle into stable communities of reduced complexity.  

We can use the effects described above to contextualize the differences we observed between 

invasion timing treatments. First, we observed that successful invasions were under-represented in 

the initial invasion treatment (figure 3.4a). This may have resulted from a “sampling effect”, where 

the increased richness encountered by invaders in the initial invasion treatment (as no competitive 

exclusion could yet have occurred) increased the chances that there was a community member 

present which could exclude the invader, thus decreasing the chance of successful invasion.  

Further, when comparing the impact of each treatment on community composition, we 

observed the greatest differences between the early and the initial/late invasions treatments 

(supplementary table 3.3), suggesting the late invasion treatment (like the initial invasion treatment) 

was relatively robust to invasion as compared to the early treatment. We demonstrated that this 

treatment effect was associated with invader growth on spent media (supplementary table 3.4) and 

may have resulted from increased community resource use efficiency later in the assembly process 

(figure 3.2c). Resource use efficiency might increase over time because communities early in the 

assembly process can exhibit non-optimal resource use due to high levels of early competition 

(Rivett et al., 2016; Jones et al., 2017), but achieve higher resource use efficiency once reaching a 

stable state (Bittleston et al, 2020), through mechanisms such as changes in metabolic regulation or 

evolution that result in community members better able to utilize available resources (Lawrence et 

al., 2012; Fiegna et al., 2015). 

Previous work investigating the importance of invasion timing on invasion outcome has focused 

on the synchronization of invasions with periods of increased resource availability (Li and Stevens, 

2012: Mallon et al., 2015). This is also related to work investigating the relationship between 
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disturbance and invasibility, which has posited that disruptions in community resource use efficiency 

due to disturbance provide a greater opportunity for invasion (Burke and Grime, 1996; Clark and 

Johnston, 2011; Symons and Arnott, 2014). Our results are in general alignment with these 

perspectives, as they rely on periods of increased relative resource availability as predictors of 

invasion outcome. 

Consistent with our results, Rivett et al. (2018) reported decreased success of invasions later in 

the assembly process and identified change in resource availability across community assembly as a 

mechanism underlying invasion outcome. In that study, however, assembly occurred in a static 

environment with no nutrient replenishment. Our method of assembly through passaging represents 

a distinct assembly process akin to environments with higher sustained metabolic activity resulting 

from periodic influxes of resources (e.g., the gut environment). Despite the difference in nutrient 

dynamics between our two systems, the convergence of our results suggests the relationship 

between invasion timing and outcome is robust across different environments. 

An interesting finding of this work is that even unsuccessful invasions could have large effects 

on the final composition of the communities from which they were excluded (figure 3.3d). Transient 

invasions were observed to have profound impacts on the composition of simple synthetic bacterial 

communities (Amor et al., 2020). More generally, it has been shown that priority effects (Martinez et 

al., 2018; Carlström et al., 2019) and minor differences in transient states early in the assembly of 

bacterial communities can lead to divergent final community compositions (Bittleston et al., 2020). 

These results highlight the importance of transient community states during the assembly process 

and can help us understand why the initial and early invasion treatments led to such distinct 

community compositions (supplementary table 3.3). Namely, the community compositions at T0 
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and T1 were sufficiently distinct that it is unsurprising disruption via invasion would drive distinct 

paths of further assembly. 

Overall, we show that invasion of a synthetic bacterial community at different points of the 

community assembly process affects invasion success and the impact of the invaders on the resident 

community. While differences in invaders were identified, we found rather consistent increases in 

the rates and impact of invasion during the community assembly process that were consistent with 

the effects of community composition, and resource use efficiency. These results further our 

understanding of the factors affecting the invasibility of microbial communities, with implications 

relevant to human health, agriculture, and industry. 

 

3.6 Detailed Methods 

Bacterial isolates and reference genomes – All bacterial isolates were originally isolated from the 

leaves of wild or field grown Arabidopsis thaliana in the midwestern states of the USA (IL, IN, MI). 

Reference genomes were assembled as previously described (methods, chapter 1). The isolate names, 

taxonomic information, and assembly information are presented in Supplementary Table 3.1. 

Arabidopsis leaf medium (ALM) – Arabidopsis thaliana (KBS-Mac-74, accession 1741) plants were 

grown in the University of Chicago greenhouse from January to March 2020. Seeds were densely 

planted in 15-cell planting trays and thinned after germination to 4-5 plants per cell. Above ground 

plant material was harvested just before development of inflorescence stems. Plant material was 

coarsely shredded by hand before adding 100g to 400mL of 10mM MgSO4 and autoclaving for 55 

minutes. After cooling to room temperature, the medium was filtered through 0.2µm 

polyethersulfone membrane filters to maintain sterility and remove plant material. The medium was 
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stored in the dark at 4°C. Before being used for culturing, the medium was diluted 1:10 in 10mM 

MgSO4. 

Assembly and culturing of synthetic communities – Fresh bacterial stocks were prepared by first 

inoculating the isolates into 1mL of ALM shaking at 28°C and growing overnight. 100uL of these 

cultures were then used to inoculate 5mL of ALM shaking at 28°C. Once the cultures were visibly 

turbid, they were divided into 1mL aliquots with sterile DMSO added to a final concentration of 7% 

as a cryoprotectant. Stocks were stored at -80°C. To initiate an experiment, stocks were diluted to 

target densities determined by the target initial community titer (~1x10 6 cells) and the number of 

initial members. Diluted stocks were then combined into 15 unique pools ranging in initial ri chness 

from 8-48 isolates. These pools were used to inoculate 600µL of ALM in sterile 1mL deep-well 

plates, in triplicate. Deep-well plates were covered with sterilized, loosely fitting plastic lids to allow 

air exchange. Plates were cultured in the dark at 28°C on high-speed orbital shakers capable of 

establishing a vortex in the deep-well plates to ensure that the cultures were well-mixed. After 24 

hours, 6µL of each culture was manually transferred by multi-channel pipette into new plates 

containing 594µL of fresh ALM. The new plates were immediately returned to the incubator and the 

day-old plates were stored at -80°C. 

Determining appropriate invading densities for invaders – Given that we aimed to assess the effect 

of invaders on the composition of invaded communities, we wanted to avoid instances where 

invader density was too low to impact a community or so high such that an invader would dominate 

every invaded community. To identify an appropriate invading density for each isolate, 8 of the 

communities (#8-15) were invaded with each invader across a range of initial densities (0.01%, 0.1%, 

1%, 10%, 25%, 100% of estimated invaded community density). These cultures were passaged as 

described for the main experiment, and invader presence was tracked over t ime by spot plating 20µL 
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of each culture from each timepoint onto 1X TSA plates containing 70µg/mL gentamicin. The 

invader isolates had been previously transformed to contain gentamicin-resistance cassettes through 

mini-Tn7 insertion, allowing us to track the presence of the invaders over time. In this way, we 

identified invader densities which produced a variety of invasion outcomes (i.e., failure to establish 

versus persistence at variable abundances). 

Spent media assays – We performed spent media assays that relate to the “early” and “late” invasion 

treatments. Specifically, to assess the nutrient environment invaders encountered in the “early” 

treatment, we isolated spent medium from uninvaded communities after 24 hours of growth 

(immediately prior to passaging and addition of invaders). For the “late” treatment, we isolated spent 

medium from uninvaded communities after 7 days of growth (immediately prior to the 7 th passage). 

We isolated spent medium from each community by pelleting the bacterial cells (centrifuged for 10 

minutes at 3000 RCF) and filtering ~150µL of supernatant through 0.2µm polytetrafluoroethylene 

filtration plates (Pall Corporation). The filtrate was then pooled by community (to homogenize 

variation among replicates and produce a representative spent medium for a given community) and 

amended with M9 salts (at a final concentration of 0.3X). Prior to inoculation, invader stocks were 

pelleted and washed in 10mM MgSO4 twice to minimize media carryover from the stocks. Each 

invader was subsequently resuspended in 10mM MgSO 4, and 5µL was inoculated into 200µL of each 

spent medium in triplicate and cultured statically at 28oC in 96-well clear bottom plates. Negative 

controls were present in each plate, containing only 10mM MgSO 4 buffer and M9 salts (0.3X). These 

negative controls were used to subtract background growth from the invaders cultured in spent 

medium. Growth was assessed by optical density (OD600) after 24 and 48 hours.  

DNA Extraction – DNA was extracted from synthetic communities using an enzymatic digestion 

and bead-based purification. Cell lysis began by adding 250µL of lysozyme buffer (TE + 100mM 
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NaCl + 1.4U/µL lysozyme) to 300µL of thawed sample and incubating at room temperature for 30 

minutes. Next, 200µL of proteinase K buffer (TE + 100mM NaCl + 2% SDS + 1mg/mL 

proteinase K) was added. This solution was incubated at 55oC for 4 hours and mixed by inversion 

every 30 minutes. After extraction, the samples were cooled to room temperature before adding 

220µL of 5M NaCl to precipitate the SDS. The samples were then centrifuged at 3000 RCF for 5 

minutes to pellet the SDS. A Tecan Freedom Evo liquid handler was used to remove 600µL of 

supernatant. The liquid handler was then used to isolate and purify the DNA using SPRI beads 

prepared as previously described (Rohland & Reich, 2012). Briefly, samples were incubated with 

200µL of SPRI beads for 5 minutes before separation on a magnetic plate, followed by two washes 

of freshly prepared 70% ethanol. Samples were then resuspended in 50µL ultrapure H2O, incubated 

for 5 minutes, separated on a magnetic plate, and supernatant was transferred to a clean PCR plate. 

Purified DNA was quantified using a Picogreen assay (ThermoFisher) and diluted to 0.5ng/µL with 

the aid of a liquid handler. 

Sequencing library preparation – Libraries were prepared using Illumina Nextera XT kits. Our 

protocol differed from the published protocol in two ways: 1) the tagmentation reaction was scaled 

down such that 1µL of purified DNA, diluted to 0.5ng/µL, was added to a solution of 1uL buffer + 

0.5µL tagmentase, and 2) a KAPA HiFi PCR kit (Roche) was used to perform the amplification in 

place of the reagents included in the Nextera XT kit. PCR mastermix (per reaction) was composed 

of: 3µL 5X buffer, 0.45µL 10mM dNTPs, 1.5µL i5/i7 index adapters, respectively, 0.3µL 

polymerase, and 5.75µL ultrapure H2O. The PCR protocol was performed as follows: 3 minutes at 

72 oC; 13 cycles of 95 oC for 10 seconds, 55  oC for 30 seconds, 72  oC for 30 seconds; 5 minutes at 72  

oC; hold at 10  oC. Sequencing libraries were manually purified by adding 15µL of SPRI beads and 

following the previously described approach, eluting into 12µL of ultrapure H2O. Libraries were 

quantified by Picogreen assay, and a subset of libraries were run on an Agilent 4200 TapeStation 
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system to confirm that the fragment size distributions were of acceptable quality. The libraries were 

then diluted to a normalized concentration with the aid of a liquid handler and pooled. The pooled 

libraries were concentrated on a vacuum concentrator prior to size selection for a 300-600bp range 

on a Blue Pippin (Sage Science). The distribution of size-selected fragments was measured by 

TapeStation. Size-selected pool libraries were quantified by Picogreen assay and qPCR (KAPA 

Library Quantification Kit). 

Sequencing – We characterized the compositions of our synthetic communities with a shallow 

metagenomics approach. Samples were sequenced on a NovaSeq 6000 platform. Reads were quality 

filtered and adapter/phiX sequences were removed using BBDuk from the BBTools suite. Reads 

were mapped to reference genomes using Seal (BBTools) twice, once with the “ambig” flag set to 

“toss” (where ambiguously mapped reads were left out) and once with the “ambig” flag set to 

“random” (where ambiguously mapped reads were randomly distributed to equally likely references). 

By comparing the results between these two strategies, we identified sets of reference genomes 

which resulted in high numbers of ambiguous reads (due to similarity) and corrected for such 

ambiguity by reallocating “tossed” reads based on proportions of unambiguous reads mapped in 

each sample containing a given set. To avoid mischaracterizing the composition of our synthetic 

communities due to contamination or non-specific mapping, for a given sample, isolates with less 

than 1% of total mapped reads were ignored. 

PERMANOVA analysis – Single-factor PERMANOVA tests were used to determine if the shifts in 

community composition resulting from the invasion timing treatments were distinct from the 

uninvaded control communities. Tests were performed using the “adonis2” function from the R 

package “vegan” (v2.6-4, Oksanen et al., 2013). Bray-Curtis dissimilarity was used to measure the 
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compositional effect of a given treatment. All tests were performed with 999 permutations and the 

permutations were blocked by community identity. 

Statistical analysis and data visualization – Statistical analysis and figure generation was performed in 

R v4.0.2 with aid from the following packages: tidyverse (Wickham et al., 2019), reshape2 (Wickham, 

2007), car (Fox and Weisberg, 2018), vcd (Meyer et al., 2020), and vegan (Oksanen et al., 2013). All 

scripts are provided in the supplementary materials. Figures were made using Microsoft Paint 3D 

and PowerPoint. 
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3.7 Figures and Tables 

 

Figure 3.1 – Experimental design: 15 pools of bacterial isolates were separately subjected to invasion 

by three bacterial isolates across three timing treatments. Across all treatments, passaging always 

occurred after 24 hours and involved a 1:100 dilution into fresh media. In the “initial invasion” 

treatment, a given invader was added alongside the other community members at the time of 

community initiation (T0). In the “early invasion” treatment, a given community was assembled and 

passaged after 24 hours (T1), before an invader was added immediately after passaging. And in the 

“late invasion” treatment, a given community was assembled and passaged for 7 days (T7) before an 

invader was added. Post-invasion, communities were passaged for seven days and characterized 

using shallow short-read sequencing. Sequenced samples are indicated by (*) while samples filtered 

for the spent-media assays (methods) are indicated by (*).
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Table 3.1 – Summary of invasion outcomes by invader and invaded community: Success rate is 

calculated as the number of successful invasions out of the total number of invasions.  
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Figure 3.3 – Highest rank abundance community members were most affected by invasion: A) Bar 

and whisker plots display the distribution of log-ratios between post- and pre-invasion relative 

abundances for all community members across all communities, grouped by rank abundance in a 

respective uninvaded context. Significant differences between groups determined through Tukey’s 

honest significance test. B-D) Examples demonstrating how invasion affected community 

composition. In B), the invader (Pseudomonas_RMX3.1b) had a strong effect on the most-

abundant member of the invaded community (Pseudomonas_S105) by supplanting it. In C),  the 

invader (Xanthomonas_S130) had a strong effect on the most-abundant member of the invaded 

community (Pseudomonas_S107), despite itself occupying a very low relative abundance. And in D), 

the invader (Pseudomonas_RMX3.1b) had a strong effect on the most-abundant member of the 

invaded community (Pseudomonas_S107), despite not persisting in the community.  
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3.8 Supplementary Figures and Tables 

 

Supplementary Table 3.1: isolate details 

name

genome 

length (bp)

number 

contigs N50

GC 

content

percent 

completion

percent 

redundancy genus

MEB111_S57 6.23E+06 35 3.12E+05 72.5 98.6 5.6 Promicromonospora

fls2-241-R2A-57_S113 5.28E+06 229 3.52E+04 36.4 100.0 1.4 Lysinibacillus

efr-133-R2A-89_S7 4.55E+06 18 5.27E+05 66.2 98.6 1.4 Pseudarthrobacter

efr-133-TYG-23_S107 5.68E+06 58 1.60E+05 60.7 100.0 0.0 Pseudomonas

LMC-P-059a_S33 3.89E+06 11 5.98E+05 69.7 100.0 0.0 Plantibacter

ME-Dv--P-122a_S32 3.77E+06 20 2.86E+05 71.1 100.0 0.0 Curtobacterium

efr-133-R2A-84_S152 4.45E+06 23 4.00E+05 52.9 100.0 0.0 Unknown_genera

MEB024_S129 4.77E+06 18 4.65E+05 54.6 100.0 0.0 Unknown_genera

FR229a_S127 5.93E+06 46 2.32E+05 60.2 98.6 1.4 Pseudomonas

efr-133-TYG-118_S22 5.28E+06 50 1.77E+05 63.6 98.6 5.6 Arthrobacter

lyk4-R2A-8_S103 5.48E+06 44 2.11E+05 61.1 97.2 0.0 Pseudomonas

lyk4-40-TSB-66_S53 3.57E+06 18 4.77E+05 70.3 100.0 0.0 Microbacterium

fls2-241-R2A-200_S19 3.81E+06 27 2.55E+05 62.6 100.0 0.0 Unknown_genera

MEB011_S37 3.66E+06 20 3.53E+05 70.9 100.0 0.0 Curtobacterium

CFBP2214_S67 5.58E+06 33 6.62E+05 59.1 100.0 0.0 Agrobacterium

MEB006b_S157 2.94E+06 11 4.56E+05 66.3 100.0 0.0 Brevundimonas

lyk4-R2A-10_S69 6.33E+06 30 4.94E+05 60.6 98.6 1.4 Pseudomonas

lyk4-R2A-2_S134 3.64E+06 19 7.64E+05 42.0 100.0 0.0 Bacillus

efr-133-TYG-120_S21 4.97E+06 55 1.60E+05 63.7 98.6 1.4 Arthrobacter

fls2-241-R2A-168_S45 4.88E+06 64 1.79E+05 64.4 98.6 1.4 Pseudarthrobacter

fls2-241-TYG-188a_S156 5.35E+06 16 1.49E+06 57.1 100.0 0.0 Agrobacterium

ME-Dv--P-095_S58 4.01E+06 21 4.58E+05 69.6 100.0 0.0 Plantibacter

lyk4-R2A-23_S48 7.71E+06 60 2.02E+05 66.6 100.0 2.8 Burkholderia

ME-Dv--P-043b_S39 4.41E+06 50 1.72E+05 66.2 100.0 1.4 Luteibacter

CFBP2511_S1 6.19E+06 48 2.16E+05 58.6 100.0 1.4 Pseudomonas

fls2-241-TYG-175_S105 5.98E+06 64 1.53E+05 59.3 98.6 1.4 Pseudomonas

MEB032_S102 7.15E+06 67 2.02E+05 62.3 98.6 2.8 Rhodococcus

MEB041_S88 4.57E+06 15 1.09E+06 68.5 98.6 1.4 Rhodococcus

lyk4-40-TYG-92_S29 6.17E+06 34 3.42E+05 66.8 98.6 1.4 Mycolicibacterium

efr-133-TYG-104_S8 3.85E+06 38 1.78E+05 62.6 100.0 0.0 Micrococcaceae

LMC-A-07_S149 4.94E+06 31 2.90E+05 65.3 100.0 1.4 Xanthomonas

fls2-241-TYG-148_S106 4.97E+06 32 2.74E+05 65.4 100.0 0.0 Xanthomonas

MEJ086_S119 5.85E+06 64 1.64E+05 62.3 100.0 0.0 Pseudomonas

efr-133-TYG-103a_S91 6.12E+06 51 2.07E+05 60.3 98.6 0.0 Pseudomonas

efr-133-TYG-130_S11 7.08E+06 64 2.46E+05 67.2 100.0 2.8 Variovorax

LMC-P-041_S56 3.70E+06 14 5.44E+05 67.8 100.0 0.0 Microbacterium

ME-P-080_S24 3.28E+06 11 5.88E+05 71.5 100.0 2.8 Frigoribacterium

lyk4-TYG-107_S51 6.15E+06 50 2.60E+05 60.1 97.2 1.4 Pseudomonas

MEB105_S97 6.09E+06 24 3.28E+05 60.3 100.0 0.0 Pseudomonas

lyk4-40-TSB-59a_S125 6.36E+06 26 3.93E+05 60.5 98.6 1.4 Pseudomonas

ME-P-057_S98 5.70E+06 59 1.60E+05 60.1 98.6 0.0 Pseudomonas

fls2-241-R2A-127_S5 4.70E+06 59 1.70E+05 65.6 98.6 2.8 Pseudarthrobacter

fls2-241-R2A-110_S136 6.84E+06 53 2.19E+05 59.0 98.6 0.0 Pseudomonas

fls2-241-R2A-195_S10 5.74E+06 61 1.88E+05 65.2 100.0 2.8 Novosphingobium

efr-133-R2A-120_S25 5.12E+06 81 1.24E+05 63.7 98.6 1.4 Arthrobacter

efr-133-TYG-5_S79 6.12E+06 13 7.94E+05 62.1 94.4 1.4 Pseudomonas

lyk4-40-TYG-31_S151 5.14E+06 25 4.66E+05 57.5 100.0 1.4 Agrobacterium

lyk4-40-TYG-27_S50 4.56E+06 24 5.42E+05 66.2 98.6 1.4 Pseudarthrobacter
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Supplementary figure 3.2 – Growth on spent media varied by community and invader: Bar plots 

display the average optical density, as a proxy for growth, of each invader across spent-medium from 

each community. Averages were taken across both the initial and early invasion treatment spent 

media.  
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Supplementary Table 3.2 – Invaded community richness and resource use efficiency were associated 

with invasion success: Details of logistic regressions analyzing the relationships between invasion 

outcome with the richness of an invaded community (“Richness”), the density of a specific invader 

(P. poae MEJ082) on spent-media (“Density”), or the change in community density between day 1 

and day 6 (all density measurements represent optical density at 600nm). The average marginal 

effects of: an increase of 1 in richness, an increase of 0.1 in the density of P. poae, and a change in 

density of 0.1 are presented in the lower section of the table.  
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Supplementary Table 3.3 – The initial invasion treatment was the most dissimilar treatment relative 

to the uninvaded communities: A) One-way ANOVA (Type III) results analyzing the relationship 

between Bray-Curtis dissimilarity (relative to the uninvaded communities) and invasion timing 

treatment. B) Tukey’s Honest Significance Test results comparing the differences in Bray-Curtis 

dissimilarities between the invasion timing treatments.  

 

 

Supplementary Table 3.4 – Invader growth on spent media is a significant covariate in the 

relationship between invasion timing and outcome: A) One-way ANOVA results from 

supplementary table 3.3, for reference. B) One-way ANCOVA including pre-invasion community 

richness as a covariate. C) Two-way ANOVA including invader identity as a blocking effect. D) 

One-way ANCOVA including invader growth on spent media as a covariate (limited to “early” and 

“late” invasion treatments).  
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Conclusion 

In this dissertation, I used synthetic bacterial communities to investigate interspecific 

interactions, coexistence, and ecological invasion. In the first chapter, I evaluated the assumption 

that the interaction between two community members is unaffected by the surrounding community 

context and found that changes in community richness and density were robust predictors of 

variation in interaction effects. In the second chapter, I deconstructed a synthetic community into all 

pairwise and n-2 communities to compare coexistence between "bottom-up" and "top-down" 

contexts and concluded that pairwise observations of coexistence and exclusion were useful but 

imperfect predictors of the structure of more complex assemblages. And lastly, in the third chapter, 

I investigated how the timing of an ecological invasion affected the outcome of that invasion and 

found evidence indicating that the effect of timing on invasion outcome was linked to changes in 

resource use efficiency over the community assembly process. 

Though each chapter focuses on separate aspects of microbial community ecology, the findings 

of each are not wholly unrelated. The relationships between richness, community density, and 

interactions observed in chapter 1 are related to the relationships between richness, productivity and 

invasibility observed in chapter 3. Namely, in interpreting the results of chapter 1, I proposed that 

the attenuation of competitive interactions associated with an increase in richness and total density 

may have arisen due to increased community metabolic activity which spilled over into positive 

effects for the less fit species present. This is akin to the “sampling effect” mentioned in chapter 3 , 

where increased richness increases the chances of an especially fit species being present in a 

community and thus increasing community productivity; except in this case, the fitness of that 

species additionally may have further increased community productivity by positively affecting other 

community members. More generally, the sampling effect is thought to reduce the invasibility of 
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ecological communities, as indeed appeared to be the case in chapter 3, where reduced invasibility 

was associated with higher community resource use efficiency.  

Further, the context dependence of interactions observed in chapter 1 is related to the 

observations of context-dependent coexistence I observed in chapter 2. Namely, the emergent (and 

potentially higher order) effects that led to the attenuation of interactions in chapter 1 may have 

been present in the complex communities from chapter 3 and led to the context-dependent 

coexistence we observed there. And finally, the emergent coexistence we observed in the complex 

communities of chapter 2 indicates another mechanism by which increased richness might lead to 

decreased invasibility, namely, that starting from a richer initial pool results in a diversity-begets-

diversity effect which in turn increases the resistance of a community to invaders. Thus, although 

the three chapters of this dissertation were designed to ask different questions, they all overlap in 

some of the fundamental ecological principles they investigate.  

Though the experimental system I developed was effective for investigating the community 

ecology of simple microbial systems, there are limitations that I feel it would be fruitful to discuss 

here. The major limitation of this system is its reliance on sequencing to assay the composition of 

each community. This is a limitation in at least two important ways. First, my strategy of shallow 

metagenomic sequencing was imperfect due to genomic similarity between the isolates I worked 

with. Despite my best effort to select isolates that were sufficiently divergent in genomic content, I 

ultimately had to apply a correction to my sequencing data as some samples had high numbers of 

reads that were thrown out due to ambiguous read mapping. This addition of technical uncertainty 

was better than the alternative (dropping affected samples) but could have been avoided. One 

potential solution would have been to genetically barcode the isolates I was working with and use 

amplicon sequencing to assay community composition. This would have removed the challenge of 
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ambiguous read mapping with the additional benefit of reducing the per library price of sequencing. 

Unfortunately, I chose not to pursue this option, concerned by the effort it would have taken to 

barcode the diverse set of bacterial isolates I was intent on working with. And second, although 

sequencing is an excellent way to generate large amounts of data, it is comparatively slow and 

expensive unless performed in large batches. This made it challenging to perform iterative cycles of 

experimentation. Indeed, the data for chapters 1 and 2 were each collected from two large 

sequencing runs, and chapter 3 from only a single large sequencing run. However, all chapters likely 

would have benefited from smaller scale follow-up experiments based on earlier results. This is 

partly an issue of my own limitations in how quickly I could produce and process these results, but 

also a limitation of the system’s reliance on sequencing. What would have been a better approach, 

you ask? Well, dear reader, please permit me to dream for a moment and conclude my dissertation 

with a description of what I feel would be an exciting and powerful improved experimental system. 

My ideal experimental system is one that allows for the rapid, inexpensive, and unambiguous 

characterization of microbial communities. Others have recently developed approaches that come 

close to this ideal, specifically using microfluidics to randomly assemble large quantities of simple 

microbial communities, which can then be characterized through sequencing or microscopy (Hsu et 

al., 2019; Kehe et al., 2019). Although I feel these approaches are powerful and useful, to me, they 

represent limited tools for the study of microbial communities for a couple of reasons. First, one 

does not have precise control over community composition. And second, such systems offer little 

opportunity to study the dynamics of microbial communities, as communities are encapsulated 

within microdroplets which quickly limit growth. I would ideally take a different approach that 

permits a greater level of experimental control and the opportunity for community dynamics to 

unfold, thus allowing the study of more complex and realistic communities. 
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I envision a system that uses flow cytometry and multiplexed fluorescent markers to allow the 

rapid and direct tracking of microbial community dynamics. This system would rely on a recently 

developed approach for transforming microbes to express multiple fluorescent proteins at different 

expression levels (Anzalone et al., 2021). By discriminating between the unique fluorescence profiles 

resulting from the unique expression profiles, this approach was able to distinguish between 20 yeast 

strains using only two fluorescent proteins. Such a system would certainly require a good deal of 

technical and molecular effort to establish, which would likely necessitate focusing on a relatively 

limited set of bacterial isolates one could work with. However, with even 20 uniquely marked strains, 

one would have no shortage of communities to assemble and study. And given sufficient methods 

development, I think it would be feasible to use an automated flow cytometer (which could 

autonomously measure preserved samples from a 96 or 384-well plate) to efficiently measure and 

analyze many samples. With such a system, one could run experiments like mine but obtain results 

in almost real time. This would bypass the challenges of working with indirectly measured relative 

abundance sequencing data, facilitate measurements at a finer timescale, and enable rapid iterative 

experiments. Individual experiments would also be comparatively cheaper to perform, although the 

upfront and recurring cost of a flow cytometer capable of performing this work would likely require 

a considerable (but worthwhile) investment. I think such a system is technically feasible and would 

produce fruitful experimental data, especially when guided by and partnered with ecological theory.  
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