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ABSTRACT 

Artificial intelligence (AI) has become a driving force in medical imaging, from applications in 

breast cancer screening to COVID-19. Within the field of breast cancer screening, AI systems 

using human-engineered radiomic features and deep learning extracted features have shown 

promising performance in breast imaging diagnosis, detection, and risk assessment. However, AI 

has not yet been applied to the investigation of a breast cancer field effect, in which histologically 

normal areas of the parenchyma show molecular similarity to the tumor. Identification of a cancer 

field effect in mammography has the potential to provide a novel approach to stratification of 

breast cancer risk in the general population. Furthermore, development of a temporal risk 

assessment model would expand upon the potential impact of utilizing AI-based tools to predict 

risk of future cancer from the breast parenchyma. 

As a result of the explosion of machine intelligence algorithm development for understanding 

and characterizing a wide variety of diseases, including breast cancer and COVID-19, validation 

of algorithm performance and generalizability have become increasingly important. To ensure that 

AI systems are robust and generalizable, the data with which they are evaluated should be 

population-representative and independent of that used for training. The development of novel 

algorithmic methods for the creation of a large, common sequestered dataset and task-based 

sampling would enable robust evaluations of AI algorithms on representative datasets. A 

sequestered database for algorithm testing could also allow for expedited clinical implementation 

of algorithms developed for medical decision-making if accepted by regulating bodies. 

Aim 1: Mammograms and mastectomy specimen radiographs of women with a malignant 

tumor were investigated using radiomic and deep learning based features to provide initial 

characterization of a breast cancer field effect in imaging. Features were extracted from four 
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regions: within the tumor, near to the tumor, far from the tumor, and in the contralateral breast. 

Results found statistically significant correlations of feature values with the region’s proximity to 

the tumor in intensity-based features and select structure-based features.  

Aim 2: To improve upon conventional breast cancer risk assessment models, a method that 

analyzes prior mammography data to predict future occurrence of breast cancer was implemented. 

The long-short-term memory network (LSTM), a network that can incorporate AI-based features 

into a temporal model, was utilized and compared to classification using only a single time point. 

The resulting LSTM network was able to predict incidence of cancer in the subsequent year with 

performance significantly better than guessing. 

Aim 3: Data used in the development and evaluation of AI models play a significant role in 

the robustness and generalizability of the model performance. To enable independent assessment 

of algorithms using a multi-institutional data commons, a first-of-its-kind sequestered commons 

was initiated using a developed method of multi-dimensional stratified sampling. To draw an 

independent sample for performance evaluation from the commons, a novel method of task-based 

distribution sampling was also developed. This aim was completed in collaboration with the 

Medical Imaging and Data Resource Center (MIDRC), a multi-institutional effort to accelerate 

machine intelligence research for COVID-19. 
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CHAPTER 1: INTRODUCTION 

1.1 Artificial intelligence in medical imaging 

Despite the recent explosion of artificial intelligence (AI) in medical imaging, facilitated by 

advances in deep learning networks and computing power, medical imaging AI research has been 

ongoing for decades. The first publications on the use of computers for cancer detection from 

radiographic images were published in the 1950s and 60s [1]. However, computational limitations 

and inadequate image quality prevented practical use of these methods. In the late 1980s and 

1990s, AI tools for the detection of lung and breast cancer were revisited and developed, with the 

names CADe and CADx (for computer-aided detection and computer-aided diagnosis, 

respectively) to represent their role as an aid to the radiologist as opposed to a replacement [2,3]. 

The first observer study with mammography to compare radiologist performance with and without 

CADe was published by Chan et al. in 1990 [4,5]. The first use of deep learning in medical imaging 

using a convolutional neural network (CNN) was published by Zhang et al. in 1994 for detecting 

microcalcification clusters in mammograms and then incorporated into CADe commercial systems 

[6]. This first commercial CADe system was the ImageChecker M1000 (R2 Technology, now 

Hologic Inc., Bedford, MA), approved by the Food and Drug Administration (FDA) in 1998 to 

serve as a second reader to be used after a radiologist’s initial review [4]. By 2008, CADe was 

used in 70% of mammographic screening studies at outpatient hospitals and in 81% of screenings 

at private practices [7]. 

The late 1990s and early 2000s brought about increased research in AI for breast cancer, 

especially for diagnostic tasks (i.e., CADx) with a focus on the use of human-engineered 

(radiomic) features in the task of distinguishing between malignant and benign lesions [8–13]. In 

reader studies, the impact of added computer-extracted attributes (i.e., features, graphical 
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representations comparing to other cases, and machine-learning-driven lesion signatures indicating 

a likelihood of malignancy) to radiologists reading tasks in multiple modalities were evaluated 

[14–17]. CNNs were also investigated for the task of distinguishing biopsy-proven masses from 

normal tissue on mammograms, similar to other CADx applications [18]. 

While artificial intelligence (AI) has been developing for interpretation tasks associated with 

routine medical imaging exams, such as breast cancer screening, for decades, its potential to 

combat the subjective nature and improve the efficiency of human image interpretation is always 

expanding. The rapid advancement of computational power and deep learning has dramatically 

impacted AI research, with promising performance in detection and classification tasks across 

imaging modalities [19]. Many AI systems based on human-engineered or deep learning methods 

currently serve as concurrent or secondary readers, i.e., as aids to radiologists for a specific, well-

defined task. In the future, AI may be able to perform multiple integrated tasks, making decisions 

at the level of or surpassing the ability of humans. AI may also serve as a partial primary reader to 

streamline ancillary tasks, triaging cases or ruling out obvious normal cases. However, before AI 

is used as an independent, autonomous reader, various challenges must be addressed, including 

ensuring repeatability and generalizability of algorithms so that AI can provide a significant 

clinical benefit to imaging tasks across all populations. 

1.2 Breast cancer screening and risk assessment 

Breast cancer is the most commonly diagnosed cancer for women in the United States, and is 

estimated to be diagnosed in approximately one in eight women in their lifetime [20]. Mortality of 

breast cancer has been declining since in the United States since 1989, which can partially be 

attributed to increased breast cancer screening with mammography [20]. There has an overall 43% 

reduction in mortality since that time, with annual reductions in mortality from approximately 3% 
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in the late 1990s to approximately 1% in recent years [20]. Screening mammography helps to 

reduce mortality by enabling detection at earlier stages, when treatment is more effective and 

generally less invasive [21,22]. The Society of Breast Imaging and the American College of 

Radiology recommend annual mammography screening beginning at age 40 for women at average 

risk, and additional screening is recommended for women at a higher risk [21]. However, 

guidelines for screening vary from different recommending bodies, as the World Health 

Organization recommends bi-annual screening for average risk women age 50 to 69 years old [22].  

Recommendations in screening frequency and age for initiation of mammographic screening 

vary across national and international bodies due to the balancing of the harms and benefits of 

additional screening in the general population [22,23]. Current recommendations in the United 

States stratify average- from high-risk primarily on the factors of family or personal history of 

breast cancer, gene mutation status, and history of chest irradiation. However, risk factors derived 

from mammographic imaging may provide a more personalized method of risk stratification,  

without increasing the existing need for imaging or testing. Breast density is an example of one 

such factor that can be assessed from screening mammography and is associated with an increased 

risk of breast cancer. However, breast density alone provides marginal improvement to screening 

sensitivity, as over 40% of screening-age women have heterogeneously or extremely dense breasts 

on mammograms, while the five-year absolute risk of breast cancer for all screening-age groups is 

1-2.5% [23,24]. As a result, mammographic density alone has not been found to have high enough 

specificity  in predicting future cancer to be used independently in most accepted risk stratification 

schemes [21,23]. 

Breast cancer screening has evolved substantially over the past few decades due to 

advancements in both image acquisition systems and novel AI algorithms. While AI has been used 
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in interpretation tasks for breast cancer screening since the 1980s, its potential impact is greater 

now due to the increased memory and computational power of typical clinical workstations and 

the growing need for enhanced efficiency of interpretation [2,3,7]. The benefit of a medical 

imaging exam depends on both the quality and interpretation of the image. Inherent limits to labor-

intensive human interpretation include errors due to structure noise, incomplete visual search 

patterns, suboptimal image quality, and fatigue [25,26]. Previous studies have shown that AI tools, 

including human-engineered radiomic features and deep learning features extracted from 

mammograms, have additive value to other breast cancer risk assessment metrics, including breast 

density [27,28]. Radiomics and deep learning features offer ways to quantify a wide variety of 

parenchymal texture characteristics that are also fast and less subjective to radiologist judgment, 

as is the case for breast density. In addition, most studies have focused on the images from the year 

of diagnosis, potentially overestimating the classification ability of such methods for future risk 

stratification applications [29–31]. 

1.3 Need for diverse and generalizable data for AI evaluation 

The broad adoption of AI in medical imaging research in recent years has prompted a number of 

new considerations for the clinical utility and ethical use of such methods [32]. While AI methods 

have been shown to be useful for a wide variety of tasks, the generalizability and robustness of 

these algorithms are highly dependent upon the data available for model development [33]. 

Consequently, many academic journals now encourage authors to make datasets and algorithms 

public when publishing so that algorithms can be compared and evaluated more meaningfully.  

Resources such as ImageNet, a database with millions of labeled natural images, have greatly 

accelerated the field of computer vision [34]. However, due to patient privacy regulations, large, 

well-curated datasets are particularly difficult to obtain in the field of medical imaging. As a result, 
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many studies utilize small, single-institutional datasets, and calculated performance estimates do 

not readily generalize to other populations or imaging systems [35]. Furthermore, verification of 

algorithm performance for a specific task presents an ethical burden to both regulators and 

researchers to assure that data used for testing are independent of data used for development and 

that data are representative of the population that these algorithms will serve. 

A recent and critical example of the impact of data in developing clinically relevant AI systems 

is the use case of COVID-19. Due to the urgency of biomedical research presented by the COVID-

19 pandemic, numerous AI tools were rapidly developed for COVID-related image analysis [36–

40]. However, many algorithms developed early in the pandemic were noted to have a high or 

moderate risk of bias in their reported performance. Multiple reasons were cited for the potential 

bias, including a lack of representative patients in control groups, non-standard exclusion of 

patients, and overfitting of models due to the limited available data [36,37,40]. As robustness and 

generalizability are critical aspects of the clinical utility of an algorithm, to improve upon future 

AI development in medical imaging of the COVID patient, access to large, population-

representative datasets will be of key importance.  

1.4 Research scope and goals 

In this research, we propose to utilize AI to build an improved risk assessment model for breast 

cancer mammography screening and to develop a methodology for centralized algorithm 

performance assessment through the implementation of a sequestered database. AI-based image 

analysis methods, including human-engineered radiomic features and deep learning-based 

features, have shown additive value to current breast cancer risk assessment metrics. However, 

each of these methods, their potential interpretations, and the general challenges of the use of AI 
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must be understood. Thus, this dissertation will begin by presenting the background and the 

potential limitations of these AI-based methods in Chapter 2. 

Applying AI methods to mammography for quantitative risk assessment has the potential to 

personalize screening efforts and optimize the prevention of disease; however, such developments 

may be dependent upon the identification of a field effect in the breast parenchyma. Chapter 3 will 

summarize the characterization of computer-extracted feature relationships among tumor, near-

tumor, and far from the tumor parenchymal patterns of women with at least one malignant tumor 

identified on mammograms and whose mastectomy specimens have been radiographed. To our 

knowledge, this is the first study to investigate a field effect in mammography and the first to 

evaluate radiomic features of specimen radiographs and their relation to mammographic features.  

To fully understand the potential clinical utility of a mammography-based field effect, 

parenchymal characteristics of women with cancer must be compared to those of women at average 

risk. Further, characteristics of the breast parenchyma should be evaluated over time, to identify 

potential signatures of pre-diagnostic changes in imaging features, compared to images from 

women who did not develop cancer. Chapter 4 will describe the work accomplished by 

incorporating temporal imaging data extracted from multiple screening mammograms over time, 

to improve classification performance in the task of distinguishing women who develop breast 

cancer from those at average risk. 

In recent years, the rapid development of AI models using small, independent datasets has 

greatly expanded the scope of AI applications in medical imaging but has caused a crisis of 

reproducibility and generalizability, restricting the clinical translation of these models. The 

development of a centralized, sequestered database for algorithm performance assessment that 

contains representative data from multiple institutions seeks to provide a solution to this problem. 
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Initiation of a sequestered database requires balancing of many demographic variables to create a 

database that is representative of the population. Additionally, since the proposed database will be 

used to evaluate various research claims, methods to sample the database for each task and create 

a custom, representative test set will be necessary. The development and evaluation of the 

methodology for the creation and sampling of a sequestered database for algorithm testing will be 

presented in Chapter 5.  

A summary of the conclusions and potential future directions of this work will be discussed in 

Chapter 6. The proposed research aims to investigate methods of improved breast cancer risk 

assessment by utilizing AI tools such as radiomics and deep learning and integrating these tools 

within a temporal risk assessment model. We also aimed to develop a methodology for the 

initiation and utilization of a sequestered database for algorithm performance evaluation and 

acceleration of clinical translation. Overall, the proposed work in this dissertation will improve the 

management of cancer patients through the use of artificial intelligence. 
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CHAPTER 2: A REVIEW OF ARTIFICIAL INTELLIGENCE 

METHODS UTILIZED 

Artificial intelligence refers broadly to the use of computers to learn and perform tasks typically 

conducted by humans. AI can be subcategorized by the extent of its scope or the learning capability 

of the system. Most currently available AI systems are considered to be limited learning or narrow 

AI. These systems perform a single, well-defined task, such as detection, diagnosis, or 

segmentation, learned from a labeled set of information directly related to the task. On a broader 

scale, future implementations could potentially enable AI to perform many integrated tasks at an 

organizational or societal level and to make decisions at the level of or surpassing the ability of 

humans [32,41]. 

Machine learning is a subset of AI that utilizes specific programs to identify patterns from an 

input and learns to make inferences without direct intervention from humans. Conventional 

machine learning methods in medical imaging use human-engineered radiomic features to 

characterize an image. These features are extracted from images and can be used as inputs into 

simple classifiers, i.e., random forest or support vector machines [33,42]. Image features can also 

be extracted from deep learning networks, a subset of machine learning that directly learns image 

features from pixel- or voxel-level data. However, these networks contain many learned 

parameters and components, necessitating large datasets for the training of the network, which are 

frequently difficult to obtain in medical imaging applications [33,42,43]. Machine learning can be 

further categorized as supervised or unsupervised learning. In supervised learning, the data on 

which an algorithm is trained are labeled; in unsupervised learning, the data are unlabeled [44]. 

Most medical imaging tasks use supervised learning to perform classification, training a network 

on a set of ground truth labels and then applying the network to a new set of data. Supervised 
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algorithms must be trained on large datasets of well-annotated images to "learn" complex patterns 

and relationships within the data. As such, many supervised learning tasks in medical imaging are 

limited in their performance as a result of a lack of annotated data for training due to patient privacy 

standards [19]. Whereas, unsupervised learning is commonly used for clustering or dimensionality 

reduction, as it implicitly or explicitly learns underlying probability distributions of the dataset  

[45–47]. 

Overall, AI can potentially improve both the efficacy and efficiency of medical imaging 

through quantitative, reproducible, and objective algorithms. AI techniques are capable of 

recognizing complex patterns that may be difficult to notice with the human eye; however, to do 

so, they should be developed to be robust to noise and generalizable to a variety of disease 

representations [33,48,49]. AI also has the potential to simultaneously interpret data from multiple 

streams, including images, genomics, and patient history [48]. Techniques for automatic 

longitudinal monitoring of images, such as sequential mammograms, could lead to personalized 

care decisions, particularly beneficial for high-risk screening populations. The benefits of 

improved detection rates, saved time, and profitability are currently challenged by the risk of 

increased recall rates, increasing costs, and less than favorable perceptions of AI [50]. However, 

further advances in AI systems could enhance the role of a radiologist by allowing them to focus 

on "value-added tasks," such as patient interactions and integrated care, rather than interpretation 

tasks [51]. 

2.1 Radiomics 

In digital images, each pixel is represented in the computer by a numerical grayscale or color value. 

The resulting numerical representation of the image can then be stored as a matrix, with each row 

and column representing a pixel in the image and the corresponding numerical value stored in the 
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matrix element. Matrix representations of image data allow for mathematical and computational 

analysis of medical images, providing the foundation for medical image quantification. Radiomics, 

specifically human-engineered radiomic features, utilize the numerical relationships of image 

patterns to characterize image features through a number of expert-generated formulas that may 

relate to clinically relevant aspects of the image. An example pipeline of the use of radiomics to 

perform image classification is shown in Figure 2.1. Radiomics, much like other types of AI and 

ML, can be used for many tasks, such as image characterization, classification, or prognostication. 

 

 

Figure 2.1. Typical pipeline of radiomics used in medical imaging. 
 

Radiomics has been used in medical imaging for decades, with thousands of potential human-

engineered features defined [52–54]. Potential feature categories include gray value histogram 

features, power spectral features, fractal analysis features, and features based on spatial 

relationships among gray levels, among many others. Commonly used formulas for calculating 

these features have been described in the literature [55–57]. The subsets of features that may be 

useful will vary based on the imaging modality and clinical task. A primary advantage of radiomics 
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is that the features are human-defined; their values can be understood through the image 

characteristics and the feature's equation. This allows for a relatively simple explainability of 

feature relationships with the variations in the images used to generate the features. However, 

radiomic features have been found to be quite variable depending on their source definitions and 

location within an image [58,59]. Thus, the feature definitions utilized should be clearly stated, 

and region of interest locations should be verified to be robust to slight variations. 

2.2 Deep learning 

Deep learning is a subset of machine learning based on artificial neural networks with multiple 

hidden layers, and it has been widely adopted in medical imaging. Deep learning focuses on 

developing predictive models that can be applied to new, unseen images. In medical imaging, deep 

learning is used for a variety of tasks, including image classification, segmentation, registration, 

and generation.  

2.2.1 Convolutional neural networks 

Convolutional neural networks (CNNs) are a type of deep learning algorithm used in computer 

vision and image processing tasks. CNNs are designed to process data with a matrix structure, 

such as an image, and they are particularly well suited for tasks that require the extraction of spatial 

features and patterns within the data [19,45,60]. 

The fundamental building block of a CNN is the convolutional layer, which applies a set of 

filters to the input data to extract spatial features. The filters are learned during the training process 

and are designed to detect specific patterns or features in the data. After the convolutional layer, 

the data is usually processed through one or more additional layers, such as pooling layers, which 

reduce the dimensionality of the data, and fully connected layers, which make the final predictions 

based on the extracted features [45]. One of the key advantages of CNNs is that they are able to 
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learn hierarchical representations of the input data, where each layer extracts increasingly complex 

and abstract features from the previous layer. The hierarchical representation learned by the CNN 

is capable of capturing both local and global features in the data, allowing the network to make 

robust predictions [19]. 

2.2.2 Transfer learning 

Limitations in performance with deep networks due to dataset size have been partially alleviated 

in recent years through the use of transfer learning. Transfer learning utilizes networks that are 

pre-trained on other images, i.e., the millions of natural images (cats, dogs, etc.) available in 

ImageNet, that can then be used directly to extract generic features from medical images or 

subsequently fine-tuned to produce features specific to a medical imaging dataset [34,61,62]. 

When used for feature extraction, all weights of the pre-trained network are frozen at their 

learned values from the original dataset. Features can then be extracted from selected layers within 

the network using the new data as input. This process is illustrated in Figure 2.2. The extracted 

generic features can be used directly or reduced in dimension using common unsupervised learning 

methods such as principal component analysis (PCA), t-distributed stochastic neighbor embedding 

(t-SNE), or uniform manifold approximation and projection (UMAP) to create “pseudo-features” 

that more specifically characterize your dataset [46,47,63–65]. These features can be used in a 

manner similar to radiomic features, as described previously, for classification or image 

characterization. 
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Figure 2.2. General process of feature extraction using transfer learning. 
 

2.2.3 Recurrent neural networks 

Recurrent neural networks (RNNs) are a type of deep learning algorithm designed to process 

sequential data, such as a time series or sequences of words [45].  The unique component of an 

RNN is the recurrent hidden layer, which is designed to allow information to be passed from one 

step of the sequence to the next [45,66,67]. Within each step of training, the hidden layer receives 

information from the previous step and the current input and produces a combined output that is 

passed on to the next step. As a result, the weights are shared across multiple steps of network 

training. This allows the RNN to maintain a “summary” of information from all previous steps in 

the sequence within the hidden layer. RNNs are particularly well suited for tasks that require 

modeling of temporal dependencies and relationships within the data. This is particularly useful 

for tasks such as language modeling, where the meaning of a word can depend on the context 

provided by the preceding words [66,67]. 
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Long-short term memory networks 

Long-short term memory (LSTM) networks are a specialized form of RNN developed to improve 

the preservation of long-term dependencies in the data [68]. The LSTM architecture was motivated 

by error propagation in RNNs, which showed that backpropagated errors would rapidly grow or 

decay exponentially, termed the vanishing gradient problem, rendering the long-term 

dependencies inaccessible [45,68]. The vanishing gradient problem occurs when gradients used to 

update weights of the network become very small during backpropagation, reducing the network’s 

ability to learn long-term dependencies.  

Each LSTM “cell” contains several gates that control the flow of information into and out of 

the cell using sigmoid functions and element-wise multiplication [45,68]. The forget gate takes as 

input the current input and the previous hidden state and outputs a number between 0 and 1 for 

each element in the hidden state. These numbers are used to determine which elements of the 

previous hidden state should be "forgotten" and which should be retained. The input gate, 

similarly, takes the current input and the previous hidden state as input and outputs a number 

between 0 and 1 for each element in the hidden state. However, this output is used to determine 

how much new information should be added to the hidden state. The output gate takes the current 

input and the current hidden state as input and outputs a number between 0 and 1 for each element 

in the hidden state. These numbers are used to determine which elements of the hidden state should 

be output at the current time step. Finally, a "memory cell" stores the current hidden state. This 

cell is updated based on the output of the forget gate, the input gate, and the current input 

[45,66,68]. 

By using these gates, LSTM networks can selectively remember or forget information from 

previous time steps, which allows them to handle long-term dependencies more effectively than 
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traditional RNNs. LSTM networks are particularly powerful for processing long sequences of data, 

such as natural language or time-series weather data, but they have been widely used in various 

applications, including speech recognition, machine translation, and stock price prediction [66]. 

2.3 Challenges of applying artificial intelligence to medical imaging 

2.3.1 Explainability and interpretability 

One critical challenge in AI is the "black-box” nature of algorithms; many physicians are hesitant 

to accept AI output when the decision-making processes are opaque. To reach full clinical 

potential, technology needs to be explainable, interpretable, and user-friendly [44,69]. Developers 

should also consider that various users, including clinicians, researchers, regulators, and insurance 

providers, will have differing interest in the system’s output,  such as disease likelihood, pixel-

level activation, data collection method, workflow efficiency, or cost [70,71]. Researchers have 

found some potential solutions for explainability in medical imaging through applications, which 

highlight pixels within an image used by the algorithm in its decision-making, i.e., Grad-CAM 

[72]. Correlating AI output with human descriptions can also help its interpretability. These 

applications can aid users in understanding why an AI algorithm may be failing in certain instances 

or populations. Nevertheless, the issue remains of how to trust and explain instances when an 

algorithm makes a prediction that does not align with the user's (i.e., radiologist's) interpretation 

of an image, such as highlighting areas outside the body [73]. 

2.3.2 Robustness and repeatability 

Another key challenge focuses on the robustness and repeatability of AI algorithms. Due to the 

challenging nature of detection and diagnosis in medical images, the performance level of AI 

systems developed for these tasks may be very sensitive to slight variations in image data. As a 

result, the output of such algorithms could be perturbed by many factors, e.g., image acquisition 
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parameters, segmentation selection, or biased training data. Robustness and repeatability 

challenges have been widely documented for systems that use conventional human-engineered 

radiomic features, as feature definitions and calculation methods can vary widely from system to 

system [58,59,74]. Deep learning AI methods are not immune to robustness challenges either, as 

the trained model and classifier performance can be impacted by the training data [75]. In addition, 

Whitney et. al demonstrated that by bootstrapping classifier prediction scores, robustness of the 

classifier prediction score may be reduced for cases that are in between the extremes of a prediction 

score range [75,76]. 

2.3.3 Generalizability, bias, and harmonization 

Similar to the necessity for robustness and repeatability, AI algorithms should also be 

generalizable to new populations and imaging systems and as free from bias as possible [77]. 

Acquiring extensive and high-quality datasets for medical imaging is particularly challenging due 

to the stringent patient privacy regulations in place. As a result, many studies are based on small, 

single-institution datasets. For AI methods that rely on training with limited available data, 

performance estimates can result and may not readily generalize to other populations or imaging 

systems. A few publicly available image repositories, including the Medical Imaging and Data 

Resource Center (MIDRC) and The Cancer Imaging Archive (TCIA), aim to alleviate this 

challenge by providing equitable access to a diverse population of imaging studies for a variety of 

diseases and clinical tasks [78,79]. However, these resources require the initiative of researchers 

and clinicians to adopt an image-sharing culture for society to truly benefit from the power of AI 

in medical imaging. Conversely, to maintain useful and trusted outputs, it may be best to develop 

algorithms for specific tasks or acquisition systems rather than general systems [70]. Standardized 

training and testing protocols could be established to determine the generalizability of models, and 
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it is important to evaluate the performance of the computer algorithm as well as the end users when 

they are interpreting images with and without the AI system [44,70]. 

2.3.4 Ethical implementation and integration 

Other challenges include the ethical use and integration of AI systems into the clinical setting as 

most AI systems are not yet approved by the FDA or are approved for a narrow, specific 

application. The user has the ethical obligation to implement approved algorithms only as they are 

intended, including using an algorithm only with appropriate images and use cases and not for 

"off-label" applications. Also, clinical workflows may need to be modified to account for altered 

workflows, such as switching from reading cases manually to reading with an AI aid. Clinicians 

and hospitals may need to construct new billing codes for such AI tools, and future investigations 

should evaluate the clinical and financial impact of AI on radiologists and patients across 

healthcare systems [50]. 

2.4 Conclusions 

In summary, AI is a rapidly developing tool widely used in medical imaging applications. This 

chapter reviewed the technical details of several AI-methods utilized in this work including 

radiomics, transfer learning, and recurrent neural networks. Despite challenges and concerns, AI 

has the potential to improve medical imaging tasks and further advance patient care decisions.   
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CHAPTER 3: BREAST CANCER FIELD EFFECT IN 

MAMMOGRAPHY USING HUMAN-ENGINEERED RADIOMIC 

FEATURES AND DEEP LEARNING 

3.1 Introduction 

To screen for breast cancer, annual mammography or digital breast tomosynthesis screening is 

recommended by the American College of Radiology starting at age 40 years for average-risk 

women [21,80]. As discussed in Chapter 1, current risk assessment models primarily use clinical 

factors and personal or family history of breast cancer. However, AI-based metrics from 

mammography images have been shown to potentially provide additive value to such risk 

assessment models. Many approaches for quantifying risk using AI metrics have been developed; 

however, it appears that none have investigated a potential cancer field effect in mammography as 

a signature of breast cancer risk. 

In women with biopsy-proven breast cancer, histologically normal areas of the parenchyma 

within the ipsilateral (and the contralateral) breast have shown molecular similarity to the tumor, 

supporting a potential cancer field effect [81,82]. It is hypothesized that such an effect may be a 

precursor of malignancy or impact tumor recurrence [83]. A field cancerization that is identifiable 

via mammography, and confirmation of the distance to which this cancerization extends into the 

normal adjacent tissue for various breast cancer subtypes, has yet to be confirmed in the literature. 

Identification of a cancer field effect in mammography has the potential to provide a novel 

approach to the stratification of breast cancer risk in the general population by augmenting current 

risk assessment models. Radiomic texture analysis and deep learning are particularly well suited 
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to identify and characterize potential signatures of a field effect in mammography due to their 

ability to quantify a multitude of image characteristics. 

The work included in this chapter aims to characterize relationships among tumor, near-tumor, 

and far from the tumor parenchymal patterns of women with at least one malignant tumor 

identified in mammograms with corresponding radiographs of mastectomy specimens. Human-

engineered radiomic features and deep learning features were used to identify and characterize 

texture signatures of a field effect in mammograms and specimen radiographs of women with 

biopsy-proven breast cancer. Results aim to characterize the parenchymal field in women with 

confirmed breast cancer at the time of diagnosis by comparing similarities and variations in 

parenchymal texture as a function of distance from the tumor. Analysis of specimen radiographs 

using texture analysis, while not clinically implementable, will provide a more fundamental 

understanding of parenchymal field relationships. Thus, this is the first study to investigate a field 

effect in mammography and the first to evaluate radiomic features of specimen radiographs and 

their relation to in-vivo mammogram features. 

3.2 Methods 

3.2.1 Database 

The dataset consisted of 103 retrospectively collected patients with at least one identified 

malignant tumor. Inclusion in the initial cohort was specified by patients who were diagnosed with 

breast cancer and had undergone mastectomy for treatment of their breast cancer at MD Anderson 

Cancer Center between 2010 and 2017. Preoperative mammograms and intraoperative radiographs 

of the mastectomy specimens were retrieved under Health Insurance Portability and 

Accountability Act (HIPAA)-compliant Institutional Review Board (IRB) protocols. Patients with 

tumors occult on the craniocaudal (CC) view (n = 18), no preoperative mammogram available (n 
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= 8), preoperative mammogram not for presentation (n = 2), and breast region too small to fit ROIs 

(n = 1) were excluded.  The remaining 74 patients were used in the analysis. In addition, a subset 

of 32 patients had also undergone intraoperative radiographic imaging of the mastectomy 

specimen. In a conventional clinical setting, specimen radiographs are used to verify removal of 

the targeted abnormality and to evaluate the margins of the resection. Although evaluating 

specimen radiographs is not typical clinical practice for risk assessment, radiomic features of the 

tissue in- and ex-vivo will allow for a deeper understanding of the relationships of tissue texture 

for a potential cancer field effect. Mammograms were acquired with a Hologic Lorad Selenia 

system (12-bit quantization, 70-micron pixels), and specimen radiographs were acquired with a 

Fuji imaging system (12-bit quantization, 50-micron pixels).  

 To characterize a potential field effect, regions of interest (ROIs) of 128x128 pixels were 

selected from four regions in the craniocaudal mammogram: within the tumor (A), near to the 

tumor (B), far from the tumor (C and D), and behind the nipple on the contralateral breast (E), as 

shown in Figure 3.1. Tumor locations were identified with the assistance of a research specialist 

with over 15 years of experience in mammography. For each paired mammogram and specimen 

radiograph analysis, corresponding 128x128-pixel ROIs were selected by a breast surgical 

oncologist with over 20 years of experience in the field from three regions across the serially 

sectioned specimen radiographs, as shown in Figure 3.1. Specimen radiograph ROI locations were 

selected by a breast surgical oncologist with over 20 years of experience in the field, and ROIs 

near to the tumor (B) were designated as less than 2 cm from the tumor, while ROIs far from the 

tumor (C and D) were designated as greater than 2 cm from the tumor. 
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Figure 3.1. Examples of ROI locations for (A) tumor, (B) near to tumor, (C and D) far from 
tumor regions, and (E) in the central region behind the nipple on the contralateral breast depicted 

on (a) cranio-caudal-view mammogram and on (b) specimen radiograph. The specimen 
radiograph shows four serial sections of breast tissue from the same breast shown in (a). 

 

3.2.2 Feature Extraction 

An in-house AI workstation was used to automatically extract 45 radiomic texture features 

describing tissue contrast/intensity and structure in each breast region. Table 3.1 gives the 

category, name, and brief description of all 45 radiomic features calculated. More detailed feature 

descriptions and formulas can be found in the literature [55–57]. These features are based on (a) 

fractal analysis, including box-counting and Minkowski methods; (b) edge-frequency analysis; (c) 

gray-level histogram analysis; (d) Fourier transform analysis; (e) the neighborhood gray-tone 

difference matrix; (f) Powerlaw beta from power spectral analysis; (g) the gray-level co-

D

(a) ROI locations on mammogram

(b) ROI locations on specimen radiograph

A
B

C



 22 

occurrence matrix (GLCM). For deep learning-based features, a transfer learning approach was 

used. A VGG19 convolutional neural network (CNN) architecture was first pre-trained on 

ImageNet [34]. The generically trained network was then used with the mammogram and 

specimen radiograph ROIs as the input, and 1472 generic deep learning features were extracted 

from each of the five max-pooling layers, similar to the approach described by Antropova et al. 

[62]. To select only features relevant to each data set, deep learning features with zero variance or 

features in which greater than 50% of the values were zero were removed. To further reduce the 

number of features, principal component analysis (PCA) utilized to reduce dimensionality of the 

remaining features. The first 20 principal components (86.53% of the total variance for 

mammograms and 89.67% for specimen radiographs) were used as pseudo-features, i.e., principal 

components take to be characteristic features,  for each region.  

 

Table 3.1. Categories, names, and brief descriptions of 45 radiomic features calculated for each 
ROI. 

 
Category Feature Name Description 

(a) Fractal analysis, including box-
counting and Minkowski methods 

Boxcounting Dimension Fractal dimension estimated based on 
box-counting method 

Boxcounting Dimension 1 Fractal dimension estimated based on 
box-counting method 

Boxcounting Dimension 2 Fractal dimension estimated based on 
box-counting method 

Boxcounting Dimension 3 Fractal dimension estimated based on 
box-counting method 

Boxcounting Dimension 4 Fractal dimension estimated based on 
box-counting method 

Boxcounting Dimension 5 Fractal dimension estimated based on 
box-counting method 

Minkod Global MD Fractal dimension estimated based on 
Minkowski method 
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Table 3.1. (Continued) Categories, names, and brief descriptions of 45 radiomic features 
calculated for each ROI. 

 

(b) Edge-frequency analysis 

Edge Frequency: Mean 
Gradient Average of edge gradient 

Edge Frequency: Max 
Gradient Maximum of edge gradient 

Edge Frequency: Min 
Gradient Minimum of edge gradient 

Edge Frequency: St. Dev. 
Gradient Standard deviation of edge gradient 

(c) Gray-level histogram analysis 

Histogram Average Average gray value within region of 
interest 

Histogram Max CDF 
Gray level threshold yielding 95% of 
the area under the histogram of the 
region 

Histogram Min CDF Gray level threshold yielding 5% of the 
area under the histogram of the region 

Histogram Balance Ratio of (95% threshold-Average) to 
(Average-5% threshold) 

Histogram Seventy CDF 
Gray level threshold yielding 70% of 
the area under the histogram of the 
region 

Histogram Thirty CDF 
 Gray level threshold yielding 30% of 
the area under the histogram of the 
region 

Histogram Quasi Balance Ratio of (70% threshold-Average) to 
(Average-30% threshold) 

Histogram Skewness Denseness measure used to characterize 
local tissue composition 

(d) Features based on Fourier 
transform analysis 

Fourier Root Mean Square 
(FRMS) 

Root-mean-square variation based 
on Fourier transform analysis 

Fourier First Moment of 
Power Spectrum (FFMP) 

First moment of power spectrum 
based on Fourier transform analysis 

(e) Neighborhood gray-tone 
difference matrix 

Coarseness 
Coarseness measure calculated from 
neighborhood gray-tone difference 
matrix 

Contrast 
Contrast measure calculated from 
neighborhood gray-tone difference 
matrix 

(f) Powerlaw beta from power 
spectral analysis 

Powerlaw Beta 1 Exponent beta estimated based on 
powerlaw spectrum analysis 

Powerlaw Beta 2 Exponent beta estimated based on 
powerlaw spectrum analysis 

Powerlaw Beta 3 Exponent beta estimated based on 
powerlaw spectrum analysis 
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Table 3.1. (Continued) Categories, names, and brief descriptions of 45 radiomic features 
calculated for each ROI. 

 

(f) Powerlaw beta from power 
spectral analysis (Continued) 

Powerlaw Beta 4 Exponent beta estimated based on powerlaw 
spectrum analysis 

Powerlaw Beta 5 Exponent beta estimated based on powerlaw 
spectrum analysis 

Powerlaw Beta 6 Exponent beta estimated based on powerlaw 
spectrum analysis 

Powerlaw Beta 7 Exponent beta estimated based on powerlaw 
spectrum analysis 

Powerlaw Beta 8 Exponent beta estimated based on powerlaw 
spectrum analysis 

(g) Gray-level co-occurrence matrix 
(GLCM) 

GLCM Contrast Measure of local image variations  
GLCM Correlation Measure of image linearity 

GLCM Difference 
Entropy 

Measure of the randomness of the difference 
of neighboring pixels’ gray-levels 

GLCM Difference 
Variance 

Measure of variations of difference of gray-
levels between pixel-pairs 

GLCM Energy Measure of image homogeneity  

GLCM Entropy Measure of the randomness of the gray-
levels 

GLCM Homogeneity Measure of the image homogeneity 
GLCM Information 
measure of correlation 
1 (IMC1) 

Measure of nonlinear gray-level dependence 

GLCM Information 
measure of correlation 
2 (IMC2) 

Measure of nonlinear gray-level dependence 

GLCM Max 
Correlation Coefficient Measure of nonlinear gray-level dependence 

GLCM Sum Average Measure of the overall image brightness 

GLCM Sum Entropy Measure of the randomness of the sum of 
gray-levels of neighboring pixels 

GLCM Sum Variance Measure of the spread in the sum of the gray-
levels of pixel-pairs distribution 

GLCM Variance Measure of the spread in the gray-level 
distribution 
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3.2.3 Statistical Analysis 

To assess correlation of features between ROI regions, the Kendall’s Tau-b correlation test was 

used. This test allows for quantification of correlation between a categorical independent variable 

(ROI region) and a numerical dependent variable (feature values); thus, it was selected for 

evaluating correlations in mammograms and specimen radiographs separately. Kendall’s Tau-b is 

a nonparametric measure of the strength and direction of the association between two variables 

and is considered an alternative to the Spearman rank order correlation coefficient for data with 

many numerical ties in each group [84].  

To evaluate correlations in features between mammograms and specimen radiographs, the 

Pearson correlation test was used [84,85]. Pearson’s Rho is a commonly used measure of linear 

correlation between two variables [85]. This test allows for quantification of correlation between  

two numerical variables, which is why it was selected to evaluate feature correlation between both 

modalities. For calculation of Pearson’s Rho, only matched pairs of patients and corresponding 

ROI regions with both mammograms and specimen radiographs were used (n = 32 patients, 118 

ROIs).  

 The Pearson correlation test was also used to evaluate correlation between radiomic and 

deep learning features (only from the mammogram) for a more comprehensive understanding of 

the deep learning features evaluated. Strong correlations between radiomic and deep learning 

features may indicate that the deep learning feature described similar characteristics of the 

parenchyma as the radiomic feature, such as intensity or structure. 

Both the test statistics of Kendall’s Tau-b and Pearson’s Rho are bounded between -1 and 1, 

with values of zero indicating no correlation and one indicating a strong correlation, with the sign 

indicating the direction of the relationship. All hypothesis tests were adjusted for multiple 
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comparisons using the Benjamini-Hochberg correction [86]. This procedure controls for the false 

discovery rate (FDR), the proportion of significant results that are actually false positives. The 

Benjamini-Hochberg correction is recommended when the number of comparisons is large and is 

commonly used in exploratory procedures, such as identifying differentially expressed genes 

[86,87]   In this correction, to be considered significant, the p-value must be less than the rank of 

said p-value (the smallest p-value would have a rank of 1, and the greatest p-value would have a 

rank of the total number of comparisons) divided by the total number of comparisons, multiplied 

by the selected FDR. Since this was completed for each set of tests, 45 was the total number of 

comparisons for radiomic features and 20 was the total number of comparisons for deep learning 

features. A FDR of  5% was selected to keep the number of potential false discoveries low, whereas 

FDRs of 10% to 25% are commonly used in genomic studies [87]. 

Preliminary analysis on the statistical similarity of features across the mammogram was also 

evaluated, as described in Appendix Section 1. From this analysis, it was determined that there 

was broad similarity in the feature distribution shapes using the Kolmogorov-Smirnov (KS) test. 

However, additional analysis evaluating the impact of shifting distributions to align the means 

before conducting a KS test revealed key differences in absolute (non-shifted) feature values 

between tumor and non-tumor regions. As such, the analysis described here was completed using 

absolute values of features, without shifting distributions.  

3.3 Results 

3.3.1 Correlation of radiomic features between ROI regions and image modalities 

Results of Kendall’s Tau-b and Pearson correlation tests for all calculated radiomic features are 

shown in Figure 3.2. Features were grouped into categories representing similar underlying 

characteristics. The color of cells for a given comparison represents the magnitude of the test 
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statistic. For Kendall’s Tau-b, more saturated green cells represent stronger positive correlations, 

and more saturated red cells represent stronger negative correlations. Similarly, for Pearson 

correlation, more saturated blue cells represent stronger positive correlations, and more saturated 

orange cells represent stronger negative correlations. All color scales reached a maximum color 

saturation at a value of +/- 0.5 and are shown in white for test statistics equal to zero. Asterisks in 

each cell represent correlations considered significant after Benjamini-Hochberg correction using 

a 5% FDR. It is important to note that statistical significance here is for the purposes of discovery 

only, not to indicate a clinical difference between two groups. Results of this test emphasize 

changes in the absolute values of features across the ROI regions. 

For radiomic feature analysis, Kendall’s Tau-b test results indicated a majority of statistically 

significant correlations between the tumor, near, and far regions in mammograms for intensity-

based histogram features, edge frequency features, and Fourier-based power-law beta features. In 

the specimen radiographs, results indicated a majority of statistically significant correlations 

between intensity-based histogram features, edge frequency features, and GLCM features. Distinct 

subgroups showing statistical significance of power-law beta features and GLCM features in 

mammograms and specimen radiographs, respectively, demonstrate key differences in the results 

between the two modalities. Pearson correlation results identified a majority of statistically 

significant correlation in intensity-based histogram features between mammograms and specimen 

radiographs, presenting a strong relationship across both modalities' tumor, near, and far regions. 

This result seems reasonable, given that tumors have been found to be more dense and coarser in 

texture than parenchymal tissue, while indicating strong correlations across tumor and non-tumor 

tissue [27,88,89]. 
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Highlighted features in Figure 3.2 were selected significant correlations from radiomic feature 

analysis and are plotted in Figure 3.3. Correlations indicated that radiomic features from ROIs 

closer to the tumor tended to show more similarity to the tumor than features from far ROIs and 

showed strong relationships of these features across the parenchymal field in in- and ex-vivo 

imaging. Features were selected as follows: (1) Histogram Max CDF – the strongest correlation 

for all mammogram and all specimen Kendall’s Tau-b and Pearson tests, (2) Powerlaw Beta 2 – 

the strongest correlation in a subgroup of features where only the mammogram Kendall’s Tau-b 

test indicated statistical significance in a majority of the features, (3) GLCM Max Correlation 

Coefficient – the strongest correlation in a subgroup of features where only the specimen Kendall’s 

Tau-b test indicated statistical significance in a majority of the features. 
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Figure 3.2. Color scale plot of Kendall’s Tau-b and Pearson correlation test results for radiomic 
features calculated from mammograms and specimen radiographs. The color of each cell 

represents the direction and strength of each correlation, as noted in the legend. The asterisks 
denote correlations considered significant after Benjamini-Hochberg correction with a 5% FDR. 
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Figure 3.3. Boxplots of selected radiomic features and Kendall’s Tau-b significance in 
mammograms (a) and specimen radiographs (b). Scatterplot of selected intensity-based 

histogram feature Max CDF, which had the strongest correlation between mammograms and 
specimen radiographs, and Pearson’s Rho significance (c). Significant correlations among tumor, 

near, and far regions indicate relationships of feature values with proximity to the tumor. 
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3.3.2 Correlation of deep learning features between ROI regions and image modalities 

Results of Kendall’s Tau-b and Pearson correlation tests for all calculated deep learning 

features are shown in Figure 3.4. Since deep learning features cannot be easily categorized nor do 

they possess intuitive meanings as the radiomic features do,  it is important to note that the deep 

learning features represent principal components and thus are listed in order of decreasing 

variance. The color scales and markers used to indicate correlation strength, direction, and 

significance are the same as described for radiomic features in Figure 3.2. 

For the deep learning feature Kendall’s Tau-b test, results indicated statistically significant 

correlations between the tumor, near, and far regions in mammograms for the first three features 

and feature 7. In specimen radiographs, results indicated a statistically significant correlation in 

only a single feature (feature 2). Pearson correlation results showed a statistically significant 

correlation in feature 1 between mammograms and specimen radiographs. These results seem 

reasonable, given that the first principal components/features will describe the majority of the 

variance in the dataset and fundamental characteristics of the images [46]. 

Highlighted features in Figure 3.4 were plotted in Figure 3.5 to demonstrate significant 

correlations from deep learning feature analysis. In agreement with the results from the radiomics 

feature analysis, correlations indicated that deep learning features from ROIs closer to the tumor 

tended to show more similarity to the tumor than features far from the tumor in both the in- and 

ex-vivo imaging. 



 32 

 

Figure 3.4. Color scale plot of Kendall’s Tau-b and Pearson correlation test results for deep 
learning features calculated from mammograms and specimen radiographs. The color of each 

cell represents the direction and strength of each correlation, as noted in the legend. The asterisks 
denote correlations considered significant after Benjamini-Hochberg correction with a 5% FDR. 

 

Mam
mo. 

Ta
u-b

Spe
cim

en
 Ta

u-b

Pea
rso

n's
 Rho

(All plots) Feature 1
(Mammo. & specimen plots) Feature 2

Feature 3
Feature 4
Feature 5
Feature 6
Feature 7
Feature 8
Feature 9

Feature 10
Feature 11
Feature 12
Feature 13
Feature 14
Feature 15
Feature 16
Feature 17
Feature 18
Feature 19
Feature 20

** **
*

*

Tau-b > 0.5
Tau-b < -0.5
Rho > 0.5
Rho < -0.5
P-value, significant after 

Benjamini-Hochberg 
correction 

p < (rank/20)*FDR

*



 33 

 

Figure 3.5. Boxplots of selected deep learning features and Kendall’s Tau-b significance in 
mammograms (a) and specimen radiographs (b). Scatterplot of the first principal component, 

taken to be feature 1, which had the strongest correlation between mammograms and specimen 
radiographs, and Pearson’s Rho significance (c). Significant correlations among tumor, near, and 

far regions indicate relationships of feature values with proximity to the tumor. 
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3.3.3 Correlation between radiomic and deep learning features 

The Pearson correlation test was used to evaluate correlation between human-engineered radiomic 

features and the 20 principal components, taken to be the deep learning pseudo-features. Results 

are shown in the color scale plot, Figure 3.6. Within the plot, values closer to negative one, 

representing stronger negative correlations, were shown in red; values closer to one, representing 

stronger positive correlations, were shown in green; and values in the middle (closer to 0.5) were 

represented in white. Colors were scaled linearly in proportion to their numerical values. 

Mammogram features from all ROI regions were combined for this analysis. 
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Figure 3.6. Pearson correlation results for all mammographic features between radiomic-based 
and deep learning-based features. The color of each cell represents the direction and strength of 

each correlation, as noted in the legend. 
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3.4 Discussion 

3.4.1 Correlation of features between ROI regions and image modalities 

Kendall’s Tau-b and Pearson correlation results from mammograms and specimen radiographs 

exemplify relationships of the parenchymal field in women with cancer. Understanding these 

features and relationships provides further important information in understanding a potential 

mammography-based cancer field effect. Correlation results from radiomic features and deep 

learning principal component features showed evidence of a relationship between feature values 

and ROI location with increasing distance from the tumor.  

For radiomic features calculated within the mammogram, statistically significant correlations 

were primarily identified in histogram or intensity-based features, edge frequency features, and 

Fourier-based features using Kendall’s Tau-b. Similarly, for deep learning features calculated 

within the mammogram, the first three and seventh principal components indicated statistically 

significant correlations. Although the underlying characteristics of principal component features 

cannot be understood in the same way as radiomic features, the first principal components will 

represent the foundational characteristics of the object [46]. Thus, it could be reasonable to infer 

that the first principal components may also quantify the brightness of the pixels from a given ROI 

are, describing the tissue intensity as well. This relationship in intensity across the mammographic 

field may be related to underlying density of breast tissue in a given region, as the tumor tissue has 

been shown to be denser, and therefore brighter in a radiographic image [27,88,89]. Correlations 

across the field in Fourier-based features, as seen in the mammogram radiomic features, have not 

been well documented in the literature and should be investigated further to understand how these 

relationships may relate to a potential field effect and breast cancer risk. 
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Kendall’s Tau-b correlation in radiomic features extracted from specimen radiographs showed 

slightly different results than those found in the mammograms. Similar to the mammogram results, 

the intensity-based and edge frequency features showed significant correlation with increasing 

distance from the tumor. The significant correlation in the intensity-based features in specimen 

radiographs could similarly be attributed to the underlying tissue density as represented in a 

brighter area in radiographic imaging, as the solid tumor mass tends to be denser, and therefore 

brighter [88]. However, the significant correlations in GLCM features, as opposed to the Fourier-

based features seen in the mammogram analysis, show a different aspect of the tissue structure 

exhibiting the correlation with increasing distance from the tumor. This change could due to 

structural changes of tissue after excision from the body or due to imaging variations resulting 

from use of a different system. Only the second feature or principal component showed a 

statistically significant correlation with ROI region location for deep learning features extracted 

from specimen radiographs. Figure 3.5 shows that the first feature indicated lower values on 

average for tumor ROIs than near or far ROIs but did not show as linear a correlation with ROI 

region as feature 2 and was not statistically significant after multiple comparisons correction. Since 

these features do not have intuitive meanings in the same way that radiomic features do, the exact 

reasoning for this is not fully understood and may be investigated further in future study. However, 

the first principal component for specimen radiographs may describe a characteristic that is not 

strongly correlated with ROI regions, like many radiomic feature categories are also not strongly 

correlated with ROI regions. Although evaluation of radiographs of mastectomy specimens is not 

standard clinical practice for risk assessment, investigation of these features offers a unique 

opportunity to gain a fundamental understanding of the field effect in both in- and ex-vivo imaging. 
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Further, to our knowledge , this is the first study to evaluate radiomic features of mastectomy 

specimens. 

Pearson correlation analysis between features calculated from mammograms and specimen 

radiographs extended the results and demonstrated statistically significant correlations in both 

feature types across in- and ex-vivo imaging. This was shown primarily in the intensity-based 

histogram features, indicating radiomic features describing tissue intensity were highly correlated 

between mammograms and specimen radiographs. Structure-based radiomic features did not show 

these significant correlations between modalities, which may be explained by changes in the tissue 

presentation when excised from the body or changes resulting from the use of a different imaging 

system. For deep learning features, only the first feature reached statistical significance. Given that 

the first feature is the first principal component, it describes the largest percentage of variance of 

all deep learning features, indicating a correlation between fundamental characteristics of the 

mammographic and specimen radiograph deep learning features. 

3.4.2 Correlation between radiomic and deep learning features 

Correlation analysis of deep learning-based features and radiomic features revealed that the first 

two features, or principal components, of the deep learning features were strongly correlated with 

many of the radiomic feature values from all mammogram ROI regions. As mentioned previously, 

the first principal components are known to represent the foundational characteristics of the object 

[46]. It is somewhat unsurprising then, that the undefined, foundational characteristics of the ROI 

images are strongly correlated with human-engineered definitions of image texture and intensity. 

However, this result does aid our general understanding of deep learning-based features as they 

are not simply explainable with mathematical formulations as are radiomic features. Principal 

components are also generated to be orthogonal to each other in feature space, so it is expected to 
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observe the strong distinction in the correlation directions between the first two deep learning 

features. This is particularly highlighted in the power-law beta features, which are Fourier-based 

features. The strong correlation was shown to nearly alternate between features one and two for 

each power-law beta feature, emphasizing how the deep learning features may be related to the 

spatial frequency components of the ROI images.  

Strong correlation of the deep learning features with radiomic features was also notably 

reduced after the first two features. This result may also align with expectations, as the total 

variance of higher principal components tends to fall off rapidly after the first few components, 

depending on the complexity of the dataset [46]. 

3.4.3 Limitations and future work 

Implications of these results and future studies may influence how patients are designated as 

high vs. average risk of breast cancer. This will require future studies that better describe the 

physical extent of the cancer field for each tumor subtype and that quantify the risk associated with 

the mammographically derived cancer field.  

It is important to note key limitations of this work. One primary limitation was the focus only 

on the features of women with breast cancer. Future work will incorporate these findings into 

classification models of women with malignant tumors compared to those at low risk.  However, 

this work aimed to characterize features of women with breast cancer in order to gain an 

understanding of potential signatures of a mammography-based field effect. Since this analysis 

only investigates features from women with confirmed breast cancer, density values were not 

controlled for, and the results likely represent an average distribution of breast densities, and this 

could be investigated further in future studies. The results also did not stratify findings by the 

molecular subtype of breast cancer present for each woman due to the low number of patients 
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within each subtype. The dataset of 74 total patients included 26 hormone receptor-positive / HER-

2 negative tumors, 25 HER-2 positive tumors, and 23 triple negative tumors. However, future 

analysis may find that feature relationships or presentation of a field effect may be more prevalent 

for specific molecular subtypes, just as the clinical profile and treatment of each molecular subtype 

varies. 

3.5 Conclusions 

The results of this study identified characteristics of a potential mammography-based cancer field 

effect using human-engineered radiomic and deep leaning-based features from women with breast 

cancer. Radiomic analysis within mammograms indicated that features in the subcategories of 

intensity-based, edge frequency, and Fourier-based features were significantly correlated with the 

parenchymal region in relation to the tumor location. In corresponding images of specimen 

radiographs showed similar results in intensity-based, edge frequency, and GLCM features. In 

deep learning features, similar associations were found in both mammograms and specimen 

radiographs within the first two principal components. Integration of novel data from specimen 

radiograph radiomic features showed strong relationships of intensity-based features across the 

parenchymal field in in- and ex-vivo imaging. These results provide potential support for the 

presence of a cancer field effect that is detectable from imaging studies alone and support the 

development of computerized analysis of mammographic parenchymal patterns to assess breast 

cancer risk. 
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CHAPTER 4: BREAST CANCER RISK ASSESSMENT IN 

MAMMOGRAPHY USING TEMPORAL NEURAL NETWORKS 

4.1 Introduction 

Despite variation in the frequency and age of mammogram initiation recommended by medical 

organizations, breast cancer screening guidelines recommend mammographic imaging at regular 

intervals during a woman's lifetime [21–23]. Screening exams produce a series of mammographic 

images over time, which can be compared by radiologists. Past studies have found that a 

radiologist’s comparison of prior mammograms with a current exam may lower the recall rate in 

screening populations [90,91]. Such practice is important since changes in parenchymal 

characteristics may indicate the presence of a new suspicious lesion.  

In the context of quantifying risk of future breast cancer, utilizing information from prior 

mammograms may also aid in classification performance of patients at high-risk from average-

risk controls. However, most clinically used breast cancer risk models rely on genetic and clinical 

factors, such as germline mutation or family history of breast cancer [92,93]. Artificial intelligence 

(AI) based metrics from mammography have shown potential in providing additional value to 

these models, but most current work in mammography-based breast cancer risk assessment focuses 

on metrics calculated at the time of mammography screening in combination with clinical factors 

[28,94]. However, due to the presence of annual screening images, the calculation of AI-based 

metrics from prior mammograms offers an opportunity to provide imaging-based temporal data 

and potentially improve performance. Tan et al. investigated the classification performance of 

features calculated from prior mammograms, [95] but we hypothesize that combining this 
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information through a temporal deep learning approach could provide further improvements to 

performance [95]. 

As a recurrent neural network, long-short term memory (LSTM) networks are able to retain 

information about previous time points in a series and use this information to inform decisions on 

present time points of that same series [68]. Given the relevance of serial imaging in the diagnostic 

interpretation of mammographic findings and the importance of incorporating temporal data for 

the classification of future disease state, we sought to investigate the additive value of multiple 

sequential antecedent mammograms to the classification of malignant vs. low-risk images. LSTM 

networks have been used in similar studies to incorporate the multiple acquisition times points 

within a dynamic imaging protocol; Antropova et al. demonstrated higher classification 

performance of lesions imaged with dynamic contrast-enhanced MRI using an LSTM-based 

classifier than using a fine-tuned feed-forward network at a single time point in predicting 

malignancy of breast lesions [96].   

In this research, we aim to develop a model to assess a patient’s future risk of developing 

cancer using AI-based parenchymal characteristics from sequential mammograms collected in the 

years prior to diagnosis. To appropriately quantify risk, the analysis utilizes only prior images from 

women who went on to develop cancer, or those who were confirmed to be cancer-free. This 

research will compare methods of classification using a single time point model and the additive 

value of multiple time points integrated into a temporal model using an LSTM classifier. This 

work will also seek to extend the research described in Chapter 3 by distinguishing characteristics 

of parenchymal patterns of women with biopsy-proven breast cancer from cancer-free controls, 

considered to have average risk for developing breast cancer. 
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4.2 Methods 

4.2.1 Database 

This analysis used a retrospectively collected database of patients who had undergone 

mammographic imaging at MD Anderson Cancer Center under Health Insurance Portability and 

Accountability Act (HIPAA)-compliant Institutional Review Board (IRB) protocols. All patients 

underwent at least three rounds of screening between 2008 and 2018. Note that this cohort is 

distinct from the cohort used in Chapter 3. Within this cohort, 193 eligible patients were identified 

with confirmed breast cancer who received treatment for this cancer at MD Anderson Cancer 

Center. To construct a corresponding cohort of cancer-free controls, patients whose images were 

classified by a radiologist as having a BIRADS category of 1 or 2 only and who were confirmed 

breast cancer-free in the two years following their final image were first identified as eligible 

controls.  A matching algorithm was used to select controls for each cancer patient with the 

following matched characteristics: (1) race, (2) age at the final image within a margin, (3) year of 

the final image within a margin, and (4) an average time interval between screening exams of 10-

14 months. The algorithm initially identified at least two potential matches for 93.3% of the 193 

eligible cancer patients using a margin of 1 year and 2 years for patient age and year of final 

imaging, respectively. To identify potential matches for the remaining patients, the algorithm was 

applied iteratively while increasing each margin by 1 year. At least two potential matches were 

identified for all 193 eligible cancer patients within an age margin of 5 years and a final year of 

imaging margin of 5 years. From the identified potential cancer-free control matches, records were 

verified to confirm patients were breast cancer-free in the two years following their final image. 

Images were manually verified to be free of artifacts and all images were acquired with the same 

system (Hologic). This check included verifying image labels matched presentation, checking for 
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unavoidable calcifications or scars, and the breast size was large enough for placement of a 

512x512 pixel ROI.  If potential cancer-free control matches were found to have a history of breast 

cancer or image issues, including calcifications or scars that could not be excluded from the ROI, 

they were removed from the cohort and the algorithm was re-applied to identify a new match if 

possible. 

Using this sequential matching approach, 183 of the initial 193 eligible cancer patients had at 

least one cancer-free control match with acceptable image quality. Four patients were eliminated 

due to lack of a match, while three patients were eliminated due to small breast size/pervasive 

calcifications and another three due to having no available mammogram corresponding to the 

clinical record of treatment. Of the total 366 potential cancer-free control matches for the 183 

cancer patients, 357 matches were identified (n = 9 cancer patients without a second match). A 

summary of the characteristics from the final selected cancer and corresponding cancer-free 

controls is shown in Table 4.1. 

For the 183 cancer patients included in this study, cancer type and subtype for all patients are 

summarized in Table 4.2 and Table 4.3, respectively. Patients labeled as undefined or other for 

breast cancer type, Table 4.2, had synchronous bilateral breast cancer of different types or history 

of contralateral breast cancer of an undefined or different type than those identified with the most 

recent cancer. Patients labeled as undefined or other for breast cancer subtype, Table 4.3, had 

synchronous bilateral breast cancer of different subtypes or subtype classification could not be 

designated due to lack of biomarker data. 
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Table 4.1. Summary of the selected cohort of matched cancer and corresponding cancer-free 
control patients included in analysis. Age at last image is listed as mean (standard deviation). 

Control patients were matched to cancer patients using an approximate 2:1 ratio using matched 
(1) race, (2) age at final image within a margin, (3) year of final image within margin, and (4) 

having an average time interval between screening exams of 10-14 months. 
 

 Cancer Control 
Total number of patients 183 357 
Total number of images 1951 4626 

Average number of exams per 
patient 5.6 6.6 

Age at last image 64.8 (10.5) 64.5 (10.3) 

 p = 0.79 

Race   

African American 8.7% 7.8% 
Asian 5.5% 6.4% 

Hispanic 5.5% 5.6% 
Other/Unknown 0.6% 0.3% 

White 79.8% 79.8% 
 

Table 4.2. Distribution of breast cancer type from 183 cancer patients included in analysis. 
 

Type Count Percent 
DCIS 45 24.6% 

Invasive 133 72.7% 
Undefined or 

other 5 2.7% 

 

Table 4.3. Distribution of breast cancer subtype from 183 cancer patients included in analysis. 
 

Subtype Count Percent 
ER+ 153 83.6% 

HER2 11 6.0% 
TNBC 15 8.2% 

Undefined or 
other 4 2.2% 
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For all patients included in the selected cohort (n = 540), all images were acquired on Hologic 

mammography systems (pixel size: 70 µm x 70 µm) and were processed according to the clinical 

standard at MD Anderson Cancer Center.  Only the craniocaudal view was used. Figure 4.1 shows 

a histogram of the mammographic exams included in the study by months prior to the final or 

diagnosis image for cancer and cancer-free control patients. In this figure, the large spike at zero 

months before the final image represents all the available images as diagnosis or the final year of 

imaging for control patients that was used for matching, but not included in analysis. Along the x-

axis from left to right represents going back in time (in months) relative to the final image for each 

cohort. Thus, the spike at approximately 12 months represents the first prior, the spike at 

approximately 24 months represents the second prior, and so on. From the figure, it can be seen 

that the overall number of exams tends to decrease as the months before the final image increases. 

This may align with expectation, as the further back in time one may search in the medical records, 

the sparser the information may become on average, as women may have only initiated screening 

a few years prior or changed institutions at which they attended screening exams. In addition, the 

spikes at the month markers representing each successive year become slightly more right skewed 

as the months before the final image increases. This may be a result of women tending to attend 

their screening exams on or after the date at which it is “due,” with less likelihood to attend the 

screening exam before one full year has passed .  Figure 4.2 shows a histogram of the number of 

mammographic exams included in the study for cancer and cancer-free control patients. Note that 

mammographic exams at diagnosis or final time point were not included in the analysis to 

appropriately quantify risk of future breast cancer. 
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Figure 4.1. Histogram of mammographic exams included in the study by months prior to the 
final or diagnosis image for cancer and cancer-free control patients. Mammographic exams at 

diagnosis or final time point (months = 0) were not included in analysis to appropriately quantify 
risk of future breast cancer. 
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Figure 4.2. Histogram of the number of mammographic exams included in the study for cancer 
and cancer-free control patients. Mammographic exams at diagnosis or final time point were not 

included in analysis to appropriately quantify risk of future breast cancer. 
 

4.2.2 Feature Extraction 

Regions of interest (ROIs) of 512x512 pixels were manually selected from the central breast region 

posterior to the nipple on both lateralities of the craniocaudal mammogram, as shown in Figure 

4.3. This ROI location has been found in previous studies to be robust to small variations in user 

placement and have improved classification performance when compared to other regions of the 

breast [89,97].  An in-house AI workstation was used to automatically extract 45 radiomic texture 

features, as previously listed in Table 3.1, describing tissue contrast/intensity and structure in each 

breast region. Feature formulas and descriptions can be found in the literature [55–57]. A transfer 

learning approach, similar to that described in Chapter 3, was used for deep learning-based 

features. A VGG19 convolutional neural network (CNN) architecture was first pre-trained on 

ImageNet [34]. The pre-trained network was then used with the mammogram ROI as the input, 
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and 1472 generic deep learning features were extracted from each of the five max pooling layers. 

CNN feature extraction and network training were performed in Keras using a TensorFlow 

framework [98,99].  

 

 

Figure 4.3. Example 512x512 pixel region of interest (ROI) placement on mammogram and 
priors with notation for the time point for each mammogram. Diagnosis or final (t0) 

mammograms were not included in analysis. 
 

4.2.3 Single time-point classification using support vector machine 

To assess a patient’s future risk of developing cancer using radiomics and deep learning-based 

parenchymal characteristics from a single time point, classification was performed on 

mammograms collected in the year prior to diagnosis (t1).  Features extracted from the first prior 

were used as the input to a support vector machine (SVM) classifier using five-fold cross validation 

[100]. A summary of the analysis pipeline is shown in Figure 4.4.  To reduce the dimensionality 

of deep learning-based features input to the classifier, principal component analysis (PCA) was 

used to reduce the features to the first 20 principal components. 

t0
Year	of	diagnosis	or	final	image

Not	included	in	analysis
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Figure 4.4. Summary of analysis methods used to classify patients who will be diagnosed with 
cancer from cancer-free controls using a single time point, representing the first prior (t1) and an 
SVM classifier and a temporal sequence of time points (t1, t2, t3, etc.) and an LSTM classifier. 

 
4.2.4 Temporal classification using long-short term memory networks 

Temporal classification was performed on mammograms collected in the years prior to diagnosis 

(t1, t2, t3, etc.) to assess a patient’s future risk of developing cancer using parenchymal 

characteristics from multiple time points.  Features extracted from each image were organized into 

sequences, where each sequence is n time points long, representing n imaging exams for each 

patient. As such, features from one patient were only contained in a single fold for k-fold cross-

validation. Analysis was completed with both a maximum sequence length of four time points and 

nine time points to compare the impact of sequence length on performance. The sequence length 

of four time points was selected as almost all patients had at least four time points, so this classifier  

would be trained with a relatively “full” dataset, and the sequence length of nine time points was 
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selected to be inclusive of all available imaging exams. For evaluation with a maximum sequence 

length of four time points, imaging studies collected at least 10 months prior to diagnosis and no 

more than 58 months prior to diagnosis were included. These limits were selected as they represent 

approximate relative minima between sequential years, as shown in Figure 4.1. For evaluation with 

a maximum sequence length of nine time points, imaging studies collected 10 to 150 months prior 

to diagnosis were included to evaluate all possible images from prior years. Since patients had 

varying numbers of time points, sequences were post-padded with zeros to the maximum length 

of a sequence specified. Post-padding has been shown to be an effective method of sequence length 

standardization compared to other methods and was found in preliminary analysis to be the most 

effective method for this dataset when compared to pre-padding and padding with feature averages 

between time points with gaps greater than 18 months [101]. Sequences were used as the input to 

a long-short term memory (LSTM) network classifier using five-fold cross validation [68].  

The LSTM network was trained using a standard stochastic gradient descent optimizer, and 

hyperparameters were determined through a limited sweep of learning rate, batch size, hidden 

dimensions, and epochs values [102]. Selected parameters included a learning rate of 10-3, a batch 

size of 32, 512 hidden dimensions, and 25 epochs.  

4.2.5 Statistical analysis 

The performance of classifiers was assessed using receiver operating characteristic (ROC) analysis 

using the area under the ROC curve (AUC) as the figure of merit in the task of predicting cancer 

in the following year’s mammogram. AUC values were compared using a 2-sample z-test, and p-

values were corrected for multiple comparisons using the Holm-Bonferroni method [85,103]. A 

significance threshold of 0.05 was used and 27 total comparisons were corrected for. 
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4.3 Results 

4.3.1 Receiver operating characteristic analysis performance 

ROC analysis results for the task of predicting the future occurrence of breast cancer from the three 

classifiers are shown in Figure 4.5 and Table 4.4. These results show (1) the single time point SVM 

classifier using only the first prior, (2) the temporal sequence LSTM classifier using four prior 

time points, and (3) the temporal sequence LSTM classifier using nine prior time points. All AUC 

values were statistically compared to the baseline value of 0.5, which indicates performance 

equivalent to random guessing, and corrected for the 27 multiple comparisons using the Holm-

Bonferroni method using a threshold of significance of 0.05 [103]. For the single time point SVM 

classifier, only the AUC of the merged feature classifier from the tumor side indicated statistical 

difference from 0.5 after multiple comparisons correction. All AUC values from the temporal 

sequence LSTM classifiers using four and nine prior time points were found to be statistically 

better than random guessing after multiple comparisons correction. As such, the temporal sequence 

LSTM classifiers generally outperformed the single time point SVM classifier on all feature types 

and image lateralities. 

 These results also show that the performance of from the temporal sequence LSTM 

classifiers did not vary much between the use of four maximum time points and nine maximum 

time points. The nine time point classifier slightly outperformed the four time point classifier when 

using radiomic features, the four time point classifier slightly outperformed the nine time point 

classifier when using deep learning features, and both classifiers performed similarly when using 

merged radiomic and deep learning features. Given that the highest overall performance resulted 

from the four time point classifier, it is the primary temporal sequence classifier discussed for the 

remainder of the results. 
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Figure 4.5. ROC analysis results for the single time point (SVM) classifier using only the first 
prior (t1) and the temporal sequence (LSTM) classifiers using four and nine prior time points (t1, 

t2, t3, etc.). Results are separated by feature type, radiomic (RTA) features and deep learning 
(DL) features, and the image side. An image side label of “Both” indicates the tumor side and 

contralateral predictions were combined into a single classifier. Error bars indicate one standard 
error, and the dashed line at AUC = 0.5 indicates performance of guessing. 
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Table 4.4. Summary of ROC analysis results for single time point (SVM) classifier using only 
the first prior (t1) and temporal sequence of timepoints (LSTM) classifier using four and nine 

prior time points (t1, t2, t3, etc.). P-values indicate comparison to random guessing (AUC = 0.5). 
Values considered statistically significant after Holm-Bonferroni multiple comparisons 

correction are shown in italics. 
 

  
Single time point 
classifier (SVM) 

4-time point sequence 
classifier (LSTM) 

9-time point sequence 
classifier (LSTM) 

  
AUC [95% CI]  AUC [95% CI]  AUC [95% CI]  

Radiomics, tumor side 0.55 [0.51,0.59] 
p = 0.015 

0.62 [0.57,0.67] 
p < 0.001 

0.63 [0.58,0.68] 
p < 0.001 

Radiomics, 
contralateral 

0.55 [0.51,0.60] 
p = 0.018 

0.63 [0.58,0.68] 
p < 0.001 

0.64 [0.59,0.69] 
p < 0.001 

Radiomics, both 
lateralities 

0.55 [0.51,0.59] 
p = 0.013 

0.63 [0.59,0.66] 
p < 0.001 

0.64 [0.60,0.67] 
p < 0.001 

Deep learning features, 
tumor side 

0.54 [0.50,0.58] 
p = 0.071 

0.68 [0.63,0.73] 
p < 0.001 

0.66 [0.62,0.71] 
p < 0.001 

Deep learning features, 
contralateral 

0.54 [0.50,0.58] 
p = 0.079 

0.68 [0.64,0.72] 
p < 0.001 

0.67 [0.62,0.72] 
p < 0.001 

Deep learning features, 
both lateralities 

0.53 [0.48,0.58] 
p = 0.191 

0.69 [0.65,0.72] 
p < 0.001 

0.67 [0.64,0.70] 
p < 0.001 

Merged features, 
tumor side 

0.58 [0.53,0.63] 
p < 0.001 

0.65 [0.60, 0.70] 
p < 0.001 

0.65 [0.60, 0.70] 
p < 0.001 

Merged features, 
contralateral 

0.56 [0.51,0.61] 
p = 0.027 

0.65 [0.60, 0.70] 
p < 0.001 

0.66 [0.61, 0.71] 
p < 0.001 

Merged features, both 
lateralities 

0.54 [0.50,0.58] 
p = 0.054 

0.66 [0.62,0.69] 
p < 0.001 

0.65 [0.62,0.69] 
p < 0.001 

 

ROC curves for the single time point SVM classifier using only the first prior and the temporal 

sequence LSTM classifier using four prior time points for radiomic, deep learning, and merged 

deep learning and radiomic features are shown in Figure 4.6, Figure 4.7, and Figure 4.8, 

respectively.  
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Figure 4.6. ROC curves for radiomic features, comparing performance between single time point 
(SVM) and four time points (LSTM) for tumor side (a), contralateral (b), and both lateralities (c). 

The dashed diagonal line indicates performance of guessing. 
 

(a) (b)

(c)
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Figure 4.7. ROC curves for deep learning features, comparing performance between single time 
point (SVM) and four time points (LSTM) for tumor side (a), contralateral (b), and both 

lateralities (c). The dashed diagonal line indicates performance of guessing. 

(a) (b)

(c)
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Figure 4.8. ROC curves for merged radiomic and deep learning features, comparing performance 
between single time point (SVM) and four time points (LSTM) for tumor side (a), contralateral 

(b), and both lateralities (c). The dashed diagonal line indicates performance of guessing. 
 

4.3.2 LSTM network predictions 

To gain a better understanding of the distributions of the LSTM classifier’s predictions with 

respect to the patient subgroups, LSTM prediction scores were plotted as a function of the features 

from which they were generated in Figure 4.9. This figure shows a slight separation between 

(a) (b)
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clusters of cancer patients and cancer-free controls from both plots. The cancer patients tended to 

have higher prediction scores, plotting very slightly towards the upper right of the cluster. This 

distribution was further evaluated with respect to the cancer patients' future cancer type and 

subtype, as shown in Figure 4.10 and Figure 4.11, respectively. However, from these figures, no 

apparent clustering of cancer patients of a specific type or subtype could be visually identified, 

indicating no strong correlation of a select cancer subgroup that helped bolster or deteriorate 

classifier performance. 

 

Figure 4.9. LSTM prediction scores from radiomic features and deep learning features for all 
patients analyzed. Slight clustering of the cancer patients towards the upper right away from the 

primary cancer-free control cluster indicates differences between the two cohorts. 
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Figure 4.10. LSTM prediction scores from radiomic features and deep learning features with all 
cancer patients labeled by cancer type. No distinct clustering of a cancer type (DCIS vs. 

invasive) can be noted from their distributions. 
 

 

Figure 4.11. LSTM prediction scores from radiomic features and deep learning features with all 
cancer patients labeled by cancer subtype. No distinct clustering of a cancer subtype can be noted 

from their distributions. 
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4.4 Discussion 

For the task of assessing a patient’s future risk of developing cancer using AI-based 

parenchymal characteristics from mammograms, a single time point SVM classifier using only the 

first prior image and temporal sequence LSTM classifiers using multiple prior images were 

investigated.  Results failed to show statistical differences of the single time point SVM classifier 

using only the first prior image from random guessing. However, results indicated statistical 

differences of the temporal sequence LSTM classifiers performance from guessing. While the 

performance of this classifier was modest, results show a small but significant ability to classify 

women who were diagnosed with cancer in the following year versus those with no evidence of 

cancer. The temporal LSTM classifier performance is also comparable to other risk models based 

on prior imaging, as found in the literature [104,105].  

An important component of this study, in contrast to other investigations of breast cancer risk 

in the literature, is the emphasis on constructing and verifying cancer and cancer-free control 

cohort that were matched on the demographic factors of age, race, and year of imaging. 

Furthermore, this study utilized manual methods of image review and ROI selection, ensuring that 

data included in the study did not contain any erroneous markers that could influence classifier 

performance. Increased age at imaging has been cited to be significantly associated with breast 

cancer diagnosis and should be adjusted for or controlled within the dataset, as performed in this 

study [31,105]. Although race is not typically a demographic factor controlled for in breast cancer 

risk studies, recent work by Gichoya et al. indicates the ability of AI deep learning models to 

predict self-reported race as a potential bias learned by AI models for other tasks, such as 

predicting breast cancer [106].  Future work should also investigate integrating clinical factors into 

the classification model to improve performance.  
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An interesting result from this study included the similarity of classifier performance in 

predicting future unilateral cancer from both the tumor side and contralateral breast. Across all 

classifiers and feature types investigated, AUC values were not systematically higher for tumor 

side or contralateral images. In the context of predicting future cancer, this is an important finding, 

as one will not know in which side cancer will develop. However, this finding also supports the 

hypothesis of a broad cancer field effect, extending across both the tumor side and contralateral 

breast. While the tumor side breast may present changes in texture in the immediate tumor area, 

results of this study support that changes are also present in the contralateral breast that may be 

indicative of future cancer. 

In addition, similar AUC values were found between LSTM classifiers on this dataset using a 

maximum of four or nine time points across all feature types and both lateralities. One potential 

reason for this may be that as the months prior to the final image increased, as shown in Figure 

4.1, the overall number of patients with additional exams decreased. As such, the LSTM classifier 

with a maximum of nine time points contained sequences with more zero-padding than is present 

in sequences truncated at four time points, as most patients in the dataset had at least three prior 

exams. This zero padding would not be expected to degrade performance but would produce 

relatively less populated time points available to train the model. Contribution from images at very 

early time points also may not have added substantially to the model. Future work should seek to 

comprehensively evaluate classification performance with fewer and additional time points to 

understand how much data is needed to reach satisfactory performance.   

LSTM network prediction distributions did not indicate clustering of predictions from 

radiomics or deep learning features for any specified cancer type or subtype investigated. 

However, for the variable of cancer subtype, it is important to note that the database contained a 
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higher prevalence of ER+ cancers (83.6%, Table 4.3) than is typical (60-70%) [107]. As a result, 

other cancer subtypes were underrepresented in this database and may not have had the statistical 

power necessary to demonstrate variation within the current model. 

A limitation of this study is that the database used in this investigation only included a single 

institution and single mammography system (Hologic). Future work should seek to investigate 

these findings in patients from multiple institutions and imaging systems.  

4.5 Conclusions 

This research focused on the development of an AI model to evaluate a patient's future risk of 

developing cancer, based on parenchymal characteristics from sequential mammograms collected 

prior to diagnosis. Our analysis only utilized radiomic and deep learning features from pre-

cancerous and control images to accurately quantify risk. Results failed to show statistical 

difference of a single time point SVM classifier, using only the first prior image, from random 

guessing but indicated the performance of temporal sequence LSTM classifiers to be statistically 

better than guessing and comparable to other risk-based models in the literature. Further, the 

similarity of classifier performance across both lateralities may support the hypothesis of a cancer 

field effect, extending the work described in Chapter 3.  



 63 

CHAPTER 5: STATISTICAL METHODS FOR DEMOGRAPHIC 

BALANCING AND POPULATION SAMPLING IN A MULTI-

INSTITUTIONAL DATA COMMONS 

5.1 Introduction 

The recent explosion of AI development has led to an increased emphasis on the need for algorithm 

performance validation and generalizability. While AI methods have shown great utility for many 

tasks, the availability and quality of data used to develop models have been shown to affect their 

generalizability and robustness significantly. Reliance on small, single-institution datasets may 

produce performance estimates that will not generalize to other populations. However, obtaining 

large, well-curated datasets in medical imaging is challenging due to patient privacy regulations. 

Furthermore, verification of algorithm performance presents an ethical burden to regulators and 

researchers. The medical imaging AI applications of COVID-19 highlight the impact of this 

challenge on developing clinically relevant AI systems, as the pandemic has presented an urgent 

and critical public health crisis with many essential biomedical research and development needs 

to address.  

Since early 2020, the COVID-19 pandemic has stimulated a rapid research effort in AI model 

development for COVID-19 applications [108]. Many AI tools for medical imaging of the COVID 

patient were developed, including early detection and differential diagnosis of COVID-19, 

prognosis and assessment of response to treatment, and monitoring of the post-COVID patient 

[37–40,71,109,110]. Many studies have shown promising performance of AI models for various 

applications. However, the potential impact of algorithm bias and lack of clinical utility have been 

noted as major shortcomings in AI for COVID-19 medical imaging [36,77]. In response to this 
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urgent public health need, the Medical Imaging and Data Resource Center (MIDRC; MIDRC.org) 

was established in August of 2020 to accelerate medical imaging machine intelligence research 

for COVID-19. 

MIDRC is a multi-institutional research collaboration between the American College of 

Radiology (ACR®), the Radiological Society of North America (RSNA), and the American 

Association of Physicists in Medicine (AAPM) created to address critical gaps in resources and 

technology for AI in medical imaging. Through the work of five technology development projects 

and twelve collaborating research projects, MIDRC is providing processes for data intake, de-

identification, quality assessment, and distributed public access in addition to organizing research 

challenges and curated datasets to support high-quality research methods. The aim of MIDRC is 

to accelerate machine intelligence research for COVID-19 and eventually for other diseases that 

utilize medical imaging in, for example detection, diagnosis, or prognosis. One primary component 

of MIDRC is the development of a publicly available image repository (data.MIDRC.org), as well 

as a sequestered database for performance evaluation and benchmarking of algorithms. 

While the majority of the de-identified data (both images and metadata) submitted to MIDRC 

are open, i.e., accessible to the public, approximately 20% of the data are being sequestered from 

public use for the purpose of machine intelligence algorithm evaluation. These sequestered data 

will act as a large base from which task-based samples, or “test-sets,” can be drawn to provide an 

estimate of an algorithm’s performance or generalization ability, without ever releasing the data 

publicly or giving users direct access to the cases used for testing, thus maintaining the integrity 

of the test set. While MIDRC aims to provide a platform with a wide array of diverse data 

representative of the American population, gaps and biases may inadvertently arise. Purposeful 

selection of patients for the sequestered database will be a useful tool for the future assessment of 
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the bias of the database itself, as well as the algorithms developed from it. Potential bias and lack 

of generalizability in AI algorithms have been key shortcomings of the clinical utility of AI, and 

multiple studies have found demographic differences to have a profound impact on the 

performance of medical image classifiers [106,111]. To ensure both datasets are similarly 

representative of the population, we developed a methodology, described in Section 5.2.1, to 

balance demographic characteristics, or variables, across the sequestered and public data. This 

process is implemented for incoming batches of data on an ongoing basis. 

Balancing multiple variables among subgroups is a widely studied topic in the field of clinical 

trial development [112,113]. However, similar approaches have rarely been applied in the field of 

machine intelligence due to the use of typical train-test splitting in datasets that are often small or 

moderate in size. In both clinical trials and image analysis studies , there are similar patient 

variables, but imaging contributes additional complexity including imaging machine type, 

protocol, etc., as the data collection process is more varied. Furthermore, the process must balance 

variables within each batch of incoming imaging data on an ongoing basis. 

To utilize a data commons for algorithm development or performance assessment tasks, each 

user will need to select a sample that is specific to their task and target population (e.g., all COVID-

19 positive images from CT, or 50:50 COVID-19 positive and negative in chest radiographs, with 

a demographic profile matching that of the U.S. Census). Matching data from a public repository 

to a specified demographic group is a conventionally arduous task that may require hours of 

manual modification to datasheets, which are also frequently subject to human error. Section 5.2.2 

will outline the process developed for large-scale sampling of the MIDRC data commons to create 

task-based samples matched to a specified target demographic population. 
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In this research, we describe the developed sequestration method of multi-dimensional 

stratified sampling to separate incoming data batches into “open” and “sequestered” commons, 

evaluate the performance of this sequestration method in terms of similarities between the two 

commons, and describe a developed method of task-based distribution sampling. These methods 

were all developed for direct application and implementation in MIDRC; however, they are 

intended to be generalizable to other databases and fields of research.  

5.2 Methods 

5.2.1 Sequestration by stratified sampling 

To describe the developed method of sequestration, we will first begin by describing the associated 

data pipeline for receiving batches of data to sequester. An overview of this pipeline is shown in 

Figure 5.1. Before sequestration, de-identified clinical data of patients are submitted to MIDRC 

through data input portals hosted by ACR and RSNA. The quality of submitted medical imaging 

studies is assessed, and the associated metadata are harmonized for representation within the 

MIDRC data model at data.MIDRC.org. Subsets of the incoming data then undergo separation and 

are designated as “open” or “sequestered” on an ongoing basis in batches created at regular 

submission time intervals. 

 

Figure 5.1. Simplified pipeline of data intake and sequestration in MIDRC. 
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To sequester approximately 20% of an incoming data batch, first, de-identified patient IDs are 

compared across all previously processed batches. If a patient ID  already exists in either the public 

or sequestered commons, the incoming data for this patient are placed in the relevant commons. 

This process ensures data are placed into the open or sequestered commons at the patient level, 

and all images from longitudinal studies of a given patient are contained in only one of the two 

commons. Following this longitudinal data check, the data of remaining patients in the intake batch 

are sequentially separated into multiple strata based upon the anonymized clinical site ID, image 

modality, COVID status (whether a patient ever tested positive for COVID), and reported patient 

race, age, sex at birth, and ethnicity. A diagram of the sequestration process is shown in Figure 

5.2. Within each resulting bin or strata, i.e., a group of patients with a particular combination of 

characteristics, the patients are randomly assigned to the open dataset or the sequestered dataset 

with proportions of approximately 80% and 20%, respectively. Thus, for n variables of interest, 

the balance of the n-dimensional distribution of variable combinations can be controlled.  

 

Figure 5.2. Diagram of demographic factors used to stratify data into sequestered and open 
databases. The input data batch is sequentially split into all possible variations of each category 

until an individual stratum, containing a unique combination of variables, is achieved. This 
individual stratum is then randomly separated into the open and sequestered commons with 

proportions of approximately 80:20. 
 

Since, for any given patient, imaging studies from multiple modalities might be available, such 

as computed tomography (CT) or radiographs, the sequestering of patient data by modality was 
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accomplished by first identifying the most prevalent image modalities in an intake data batch. If a 

patient entry contained more than one modality, the modality most prevalent in the intake data 

batch was established to be that patient’s “primary” modality, and images from any less prevalent 

modality were assigned along with the most prevalent modality. Modalities present in this analysis 

included computed radiograph (CR), CT, digital radiography (DX), and magnetic resonance (MR) 

images.  Patient age data were grouped into categories matching the age group categories provided 

by the Center for Disease Control COVID-19 database [114]. Patient sex at birth, race, and 

ethnicity were grouped in agreement with the categories defined by the NIH [115,116]. 

Demonstrating sequestration algorithm use in an example database 

To demonstrate use of the previously described sequestration algorithm and variability of the 

produced results, we applied the algorithm to an example input dataset for 2000 independent trials. 

In each trial, a different random seed was used to initiate the splitting. 5000 patients were randomly 

selected from the public data commons (data.MIDRC.org) to serve as the example of an input 

dataset. This number of patients approximates a typical data submission from a single clinical site 

to MIDRC from 2021-2022. As such, the example input dataset was not separated by contributing 

clinical site. The developed sequestration algorithm was applied to the remaining demographic 

variables (age, race, sex at birth, ethnicity, COVID-19 status, and image modality) to achieve a 

similar distribution of variables between the input dataset and the two subsets, i.e., the open and 

the sequestered data commons. The variables of age, race, sex at birth, ethnicity, COVID-19 status, 

and image modality contained 9, 7, 4, 3, 3, and 4 categories respectively, resulting in a total of 

9,072 strata. The mean and standard deviation of each demographic category’s prevalence were 

calculated over all independent trials and compared to the prevalence in the input dataset and 

between the two subsets. 
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Comparison of sequestration algorithm to naïve random sampling 

To extend this evaluation of the sequestration algorithm,  the performance of the sequestration 

algorithm was compared to “naïve” separation of the dataset with an overall 80:20 random 

drawing. In this ‘naïve’ separation the assignment to either the open or sequestered dataset is made 

randomly without considering demographic variables. This was applied to the input dataset for 

2000 independent trials and the resulting distribution of cases across demographic categories were 

compared. Balance of demographic distributions were first compared by creating histograms of 

the scaled difference from expectation in each category, calculated according to Equation (5.1). 

𝑆𝑐𝑎𝑙𝑒𝑑	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑓𝑟𝑜𝑚	𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 = 	 !
(#)%!&%"#$%!

(#)%!
      (5.1) 

Here, f represents the fraction placed in the open commons (here equal to 0.8), and NT 

represents the total number of patients in a given category from the input dataset. Similarly, NOpen 

represents the number of patients in a given category in the open dataset, which would be expected 

to be 80% of NT in size if the dataset split was exact. The value of this metric from all trials was 

plotted in histograms for a given bin within a category, e.g., in the race categories, all Asian 

patients. Distributions from our developed stratified sampling algorithm and from naïve random 

sampling were compared using the one-tailed Mann-Whitney U test, with an alternative hypothesis 

indicating the median of the distribution of the scaled difference from expectation, Equation (5.1), 

for stratified sampling was less than that for the naïve random sampling. P-values less than 0.05 

were considered significant. Results were adjusted for multiple comparisons using the Holm-

Bonferroni multiple comparisons correction [103]. In this correction, the calculated p-value must 

be less than the chosen significance threshold divided by the rank of said p-value, after ordering 

from least to greatest where the smallest p-value would have a rank of the total number of 

comparisons. In this analysis, 29 comparisons were evaluated. 
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Evaluation of sequestration methodology through joint distribution balance 

While the balance of demographic variables was evaluated individually to verify the developed 

sequestration methodology in individual batches, verification of joint distribution balance over all 

data must also be confirmed. To ensure the developed method works as intended in a larger cohort 

over multiple dimensions, we also investigated the balance in the joint distributions of patient 

demographic characteristics between the open and sequestered commons. 

This study included 54,185 patients whose de-identified imaging studies and metadata had 

been submitted to and curated by MIDRC as of August 31st, 2022, including patient data ingested, 

but not yet published on data.midrc.org. Imaging studies were analytically separated by patient 

into open and sequestered commons using the previously described sequestration method, aiming 

to jointly balance distributions of demographic characteristics. Variables stratified over included 

acquisition site, imaging modality, COVID-19 status, age, race, sex assigned at birth, and ethnicity, 

as outlined in Figure 5.2. Patient age data were grouped into categories matching the age group 

categories provided by the Center for Disease Control COVID-19 database [114]. Patient sex at 

birth, race, and ethnicity were grouped in agreement with the categories defined by the NIH 

[115,116]. The resulting public and sequestered commons included 41,556 (77%) and 12,629 

(23%) patients, respectively.  

To compare the balance of the joint demographic distributions between the commons, patient 

characteristics were re-separated into bins representing unique combinations of the selected 

variables. To limit the dimensionality of our analysis, we selected four of the seven demographic 

variables: COVID-19 status, age, race, and sex at assigned birth. Patients with COVID-19 status, 

age, or sex at assigned birth fields that were not reported were omitted from the analysis (n = 24, 

0.04% of all patients). Patients with reported race as “Multi-Race/Ethnicity” (n = 15, 0.03% of all 
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patients) were grouped with the category of reported race as “Other.” The remaining selected 

demographic variables contained 224 unique combinations, resulting in 224 total bins (two 

COVID-19 statues × two sex at birth × seven race × eight age categories).  The resulting multi-

dimensional distributions were plotted on a three-dimensional heatmap for qualitative analysis. 

Within the heatmap, each unique combination of demographic variables was represented by a 

point, and the color of each point represented the population in each bin.  

To quantitatively compare each joint distribution bin to a theoretical “perfect” balance of 

demographic variables, the absolute and percent differences from an exact 77:23 split were 

calculated for all demographic combinations evaluated, according to Equations (5.2) and (5.3), 

respectively. 

(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑓𝑟𝑜𝑚	𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛)' = 9(𝑓):𝑁',)**< − 𝑁',+,-*'.9             (5.2) 

 

(𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑓𝑟𝑜𝑚	𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛)' =
!(#)/%&,())0&%&,#*+)&,!

(#)/%&,())0
                   (5.3) 

In Equations (5.2) and (5.3), i represents the individual bin (i = 1, … 224)  for which each 

difference was calculated,  f represents the fraction placed in the open commons, Ni,all is the total 

number of patients across both commons, and Ni,public is the total number of patients in the public 

commons. Bins containing fewer than 10 patients (n = 69 bins) were not included in the calculation 

of percent difference from expectation, as the small denominator would induce large fluctuations 

in the value.  

5.2.2 Task-based sampling 

To describe the developed method of task-based sampling, we first begin with describing the 

associated processes of data use within MIDRC. The open data commons (approximately 80% of 

all images and metadata) is published publicly and serves as a large pool from which representative 
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samples can be drawn to develop and test users’ algorithms. Once a user has finalized their 

algorithm and is preparing for regulatory evaluation, they may submit the algorithm to MIDRC 

for formal performance evaluation using data from the sequestered commons (approximately 20% 

of all images and metadata). An overview of this process is shown in Figure 5.3. The sequestered 

commons will serve as a large pool from which task-specific samples can be drawn to evaluate the 

performance of user-developed algorithms. It is important to note that algorithms will be tested on 

subsets of a cohort matched to a user’s task, to enable estimates of performance variation and an 

opportunity to have their algorithm re-evaluated on new data.   

 

 

Figure 5.3. Use of sequestered data in MIDRC. A subset of the sequestered commons, which is 
restricted from public access, matched to the user’s task is selected for algorithm performance 

assessment. MIDRC provides the user summary results without letting the user know what cases 
were used for testing, to maintain integrity of the sequestered data commons. 

 

Task-based sampling optimization algorithm 

In this workflow, the developed algorithm optimizes the initial cohort to be matched to the 

target population, while keeping as many patients as achievable. An overview of the described 

process is shown in Figure 5.4. To select a sample for testing of a research claim on a specified 

Sequestered commons 
Finalized 

user-developed 
algorithm Performance assessment

Submit to 
MIDRC for 

testing

MIDRC 
provided 
results

AUC = #
95 CI = [# #] …



 73 

demographic, the user must first specify the initial cohort, the target population, and a threshold 

value used to stop the optimization.  

 

 

Figure 5.4. Schematic of the developed task-based sampling process and optimization algorithm 
flowchart. 
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should be filtered, to ensure all key variables are labeled uniformly, and only unique patients 

remain. Leaving duplicate patients in the optimization will lead to misleading results since 

demographic characteristics will be represented twice.  

The target demographic distribution describes the population characteristics the user is seeking 

to match. For integration with the developed optimization algorithm and the data model within 

data.MIDRC.org, a standardized list for the demographic categories of age, race, sex at birth, 

ethnicity, and COVID-19 status was established, as shown in Table 5.1. This list outlines the 26 

default subcategories for the four demographic categories listed above. A user must specify 

percentages of each subcategory to their target demographic distribution. For an example 

generated for this report, a target population approximately matched to the CDC case distribution, 

with a 50:50 COVID-19 status, was defined, as shown Table 5.1. 

Table 5.1. Example target demographic specification. List includes the 26 default subcategories 
used in the optimization algorithm and the data model at data.MIDRC.org. 

 

Demographic 
category Demographic subcategory 

Example 
target 

distribution 

Age group 

[0, 18) 0.00 
[18, 30) 0.26 
[30, 40) 0.21 
[40, 50) 0.17 
[50, 65) 0.22 
[65, 75) 0.08 
[75, 85) 0.04 
[85, 140) 0.02 

Not Reported 0.00 

Race 

American Indian or Alaska Native 0.01 
Asian 0.04 

Black or African American 0.12 
Native Hawaiian or other Pacific Islander 0.00 

Not Reported 0.00 
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Table 5.1. (Continued) Example target demographic specification. List includes the 26 default 
subcategories used in the optimization algorithm and the data model at data.MIDRC.org. 

 

Race 
Other 0.04 
White 0.79 

Sex at birth 

Female 0.53 
Male 0.47 
Other 0.00 

Not Reported 0.00 

Ethnicity 
Hispanic or Latino 0.25 

Not Hispanic or Latino 0.75 
Not Reported 0.00 

COVID-19 Positive 
No 0.50 

Not Reported 0.00 
Yes 0.50 

 

The threshold value is defined as the maximum percent deviation allowable in any 

demographic subcategory, between the current sample and the target prevalence.  The threshold is 

set by the user prior to initiating the optimization and is used to stop the optimization. This value, 

the maximum task-demographic deviance metric, is shown in Equation (5.4). In Equation (5.4), 𝑖 

represents each individual demographic subcategory, as defined in Table 5.1.  

Maximum	task-demographic	deviance	metric	=	    

 𝑀𝑎𝑥(|Current	prevalence' − Target	prevalence'	|)			for	all	𝑖        (5.4) 

One the optimization process has begun, in each iteration, the distributions of all demographic 

subcategories are compared to the target prevalence distribution and each patient is assigned a 

patient demographic-fit deviance metric, calculated according to Equation (5.5).  

Patient	demographic-fit	deviance	metric	= 

	∑ (Current	prevalence' − Target	prevalence')2
'34 	for	all	𝑖	specific	to	each	patient  (5.5) 

The patient demographic-fit deviance metric is equal to the sum of the deviances of each 

demographic subcategory of that patient to the target prevalence, where a negative value would 
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indicate more of that given category is needed to reach the target prevalence, and a positive value 

indicates less of a given category is needed to reach the target demographic. The sum of the 

deviances jointly balances how the demographic profile of each patient matches the target 

prevalence distribution. After calculation of both metrics, if the maximum task-demographic 

deviance metric is greater than the specified threshold, patients with the highest patient 

demographic-fit deviance metrics are removed from the sample at a fixed rate and the algorithm 

begins a new iteration. The rate at which patients are removed from the sample is the greater of  

1% of the current sample or 5 patients, by default, but may be modified to accommodate different 

circumstances. Once the calculated maximum task-demographic deviance metric is less than the 

specified threshold, the process is complete, and the selected sample may be saved for future use.  

Example cohort task-based sampling 

To demonstrate the task-based sampling process in simulation, metadata from 5539 imaging 

studies (4193 patients) were selected from the public data commons (data.MIDRC.org) to serve as 

an example of an initial cohort. This cohort was selected on March 11, 2023, as imaging studies 

with selected LOINC properties of Method (Modality) = ‘CT’ and System (Body Region) = 

‘Chest’. The target demographic distribution was defined in agreement with the modified CDC 

case demographic as listed in Table 5.1. 

 Patients with listed age as less than 18 or not reported were removed from the sample (n = 5 

studies), and multiple entries from the same patient were removed to have only one study per 

patient remain (n = 1318 studies).  The developed task-based sampling algorithm was applied to 

the remaining 4016 patients to select a sample matched to the target demographic distribution with 

a maximum task-demographic deviance metric thresholds of 10% and 5%. To summarize the 

performance, we calculated the difference in each demographic subcategory from the final cohort 
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generated with each maximum task-demographic deviance metric threshold to the target 

distribution.  

5.3 Results 

5.3.1 Sequestration by stratified sampling 

Demonstrating sequestration algorithm use in an example database 

Results obtained from splitting the input dataset using our stratified sampling method over 2000 

trials are shown in Table 5.2. The mean and standard deviation of each demographic category’s 

prevalence was calculated over all trials and compared to the prevalence in the input dataset and 

between the two subsets. For all demographic subcategories, the prevalence in the input dataset 

was matched in both the open and sequestered subsets within one standard deviation. For the 

category of image modality, the prevalence represents the percentage of patients with a given 

image modality available, and since many patients have images from multiple modalities, these 

percentages will not add to 100%. 

Table 5.2. Distribution of all balanced variables in the input, open (approximately 80%), and 
sequestered (approximately 20%) datasets following splitting via stratified sampling. Prevalence 

values are written as the mean percent (standard deviation) over 2000 independent trials. The 
label of “Not Reported” was added to variables with blank entries. 

 

Demographic Subcategory 

Input 
Dataset 
Count 

Input 
Dataset 

Prevalence 
Open Subset 
Prevalence 

Sequestered 
Subset 

Prevalence 
Age Group     

[0, 18) 74 1.5% 1.5% (0.1%) 1.4% (0.3%) 
[18, 30) 393 7.9% 7.9% (0.1%) 7.9% (0.3%) 
[30, 40) 529 10.6% 10.6% (0.1%) 10.3% (0.4%) 
[40, 50) 687 13.7% 13.7% (0.1%) 13.9% (0.4%) 
[50, 65) 1434 28.7% 28.6% (0.1%) 29.1% (0.4%) 
[65, 75) 909 18.2% 18.2% (0.1%) 18.1% (0.4%) 
[75, 85) 597 11.9% 11.9% (0.1%) 11.9% (0.3%) 
[85, 140) 284 5.7% 5.7% (0.1%) 5.5% (0.3%) 

Not Reported 93 1.9% 1.8% (0.1%) 1.9% (0.2%) 
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Table 5.2. (Continued) Distribution of all balanced variables in the input, open (approximately 
80%), and sequestered (approximately 20%) datasets following splitting via stratified sampling. 
Prevalence values are written as the mean percent (standard deviation) over 2000 independent 

trials. The label of “Not Reported” was added to variables with blank entries. 
 

Race     
American Indian or Alaska 

Native 17 0.3% 0.3% (0.0%) 0.3% (0.2%) 
Asian 294 5.9% 5.9% (0.1%) 5.9% (0.4%) 

Black or African American 1386 27.7% 27.8% (0.1%) 27.6% (0.4%) 
Native Hawaiian or other 

Pacific Islander 15 0.3% 0.3% (0.0%) 0.3% (0.2%) 
White 2568 51.4% 51.2% (0.1%) 51.8% (0.6%) 

Not Reported 554 11.1% 11.1% (0.1%) 10.8% (0.5%) 
Other 166 3.3% 3.3% (0.1%) 3.3% (0.4%) 

Sex at Birth     
Female 2533 50.7% 50.6% (0.1%) 50.8% (0.5%) 
Male 2464 49.3% 49.3% (0.1%) 49.1% (0.5%) 
Other 0 0.0% 0.0% (0.0%) 0.0% (0.0%) 

Not Reported 3 0.1% 0.1% (0.0%) 0.1% (0.1%) 
Ethnicity     

Hispanic or Latino 499 10.0% 10.0% (0.1%) 9.7% (0.6%) 
Not Hispanic or Latino 4443 88.9% 88.8% (0.2%) 89.2% (0.6%) 

Not Reported 58 1.2% 1.2% (0.1%) 1.2% (0.3%) 
COVID-19 Status     

No 2602 52.0% 52.0% (0.1%) 52.2% (0.5%) 
Not Reported 1 0.0% 0.0% (0.0%) 0.0% (0.0%) 

Yes 2397 47.9% 48.0% (0.1%) 47.8% (0.5%) 
Image Modality     

CR 2049 41.0% 40.9% (0.2%) 41.3% (0.8%) 
CT 910 18.2% 18.3% (0.2%) 18.0% (0.8%) 
DX 2596 51.9% 52.0% (0.1%) 51.9% (0.5%) 
MR 27 0.5% 0.5% (0.0%) 0.5% (0.2%) 

 

Comparison of sequestration algorithm to naïve random sampling 

Histograms of the scaled difference from expectation over 2000 independent trials for the 

categories of age and race in the “Open” subset (approx. 80%) are shown in Figure 5.5. For most 

categories analyzed, sequestration by stratified sampling provided lower scaled differences from 
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expectation, in general, than from the naïve randomization, as indicated by the narrower 

distributions for stratified sampling than naïve randomization. However, for some categories with 

low prevalence, such as race of American Indian or Native American, stratified sampling showed 

similar variation from expectation as the naïve randomization. 



 80 

 

Figure 5.5 Histograms of the scaled difference from expectation for the categories of age and 
race in the “Open” dataset after 2000 independent trials of dataset splitting using naïve random 

sampling (blue) and our stratified sampling method (orange). 
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Results of the statistical comparison of the histograms of the scaled difference from expectation 

for all demographic subcategories categories in the “Open” subset using the one-tailed Mann-

Whitney U test are shown in Table 5.3. Similar results were found for the “Sequestered” subset, 

despite having smaller relative sample size, but are omitted for brevity. Statistical results support 

the qualitative summary that sequestration by stratified sampling provided lower differences from 

expectation, in general, than did the naïve randomization, with the exception of demographic 

subcategories with very low prevalence. P-values less than 0.05 were considered significant. 

Correction for multiple comparisons using Holm-Bonferroni did not change significance between 

the differences from expectation for any subcategory except the category of having an Ethnicity 

of Not Hispanic or Latino. As a result, for most demographic categories, using our developed 

method of stratified sampling provided significantly “more balanced” distributions on average than 

naïve random sampling. 
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Table 5.3. Results of the one-tailed Mann-Whitney U test, comparing distributions of the scaled 
difference from expectation in the “Open” dataset after 2000 independent trials of dataset 

splitting using naïve random sampling and using our stratified sampling method. P-values shown 
in bold were considered significant (p < 0.05) and p-values with two asterisks were considered 

significant after Holm-Bonferroni multiple comparison correction. 
 

Demographic Subcategory Input dataset count Mann-Whitney U test result 
Age Group   

[0, 18) 74 p < 0.01** 
[18, 30) 393 p < 0.01** 
[30, 40) 529 p < 0.01** 
[40, 50) 687 p < 0.01** 
[50, 65) 1434 p < 0.01** 
[65, 75) 909 p < 0.01** 
[75, 85) 597 p < 0.01** 
[85, 140) 284 p < 0.01** 

Not Reported 93 p < 0.01** 
Race   

American Indian or Alaska Native 17 p = 0.70 
Asian 294 p < 0.01** 

Black or African American 1386 p < 0.01** 
Native Hawaiian or other Pacific Islander 15 p = 0.29 

White 2568 p < 0.01** 
Not Reported 554 p < 0.01** 

Other 166 p < 0.01** 
Sex at Birth   

Female 2533 p < 0.01** 
Male 2464 p < 0.01** 
Other 0 N/A 

Not Reported 3 p = 0.52 
Ethnicity   

Hispanic or Latino 499 p < 0.01** 
Not Hispanic or Latino 4443 p = 0.01 

Not Reported 58 p = 0.57 
COVID-19 Status   

No 2602 p < 0.01** 
Not Reported 1 p = 0.29 

Yes 2397 p < 0.01** 
Image Modality   

CR 2049 p < 0.01** 
CT 910 p < 0.01** 
DX 2596 p < 0.01** 
MR 27 p < 0.01** 
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Evaluation of sequestration methodology through joint distribution balance 

Joint distributions of patient characteristics in both the public and sequestered imaging commons 

were found to closely match each other as well as that of all available data. Qualitative results 

showing three-dimensional heatmaps of all joint distribution categories analyzed in all available 

data, the public commons, and the sequestered commons, are plotted in Figure 5.6. From these 

plots, it can be noted that the joint distributions of patients within both the public and sequestered 

commons follow a very similar pattern to the joint distributions of patients from all available data, 

and to each other. 
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Figure 5.6. Joint distributions of patient demographic characteristics of 54,185 patients collected 
from August 2021 to August 2022 in all available data, the public commons, and the sequestered 
commons. Color scales have been adjusted to reflect the maximum number of patients in one bin 

for each set. 
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Figure 5.7 shows histograms of (a) the total number of patients in each of the 224 unique 

patient-characteristic bins from all available data, (b) the absolute difference from expectation in 

the public commons, Equation (5.2), and (c) the percent difference from expectation in the public 

commons in bins containing 10 or more patients (n = 155 of 224 total bins), Equation (5.3). Since 

the absolute difference from expectation is inherently mirrored in the public and sequestered 

commons, as patients are only ever in one of the two commons, the histogram of the absolute 

difference from expectation for the sequestered commons would be identical to Figure 5.7 (b). 

Absolute differences in the patient population of each bin from an exact split indicated 54.0% of 

bins obtained differences of 5 patients or less, and 75.9% of bins obtained differences of 15 patients 

or less, with a median difference of 3.6 patients from the total data for both public and sequestered 

commons. Percent differences in the patient population of each bin from an exact 77:23 split in 

the open commons indicated 54.5% of bins obtained a percent difference of 5.0% or less, with a 

median percent difference of 4.6% for the public commons. 
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Figure 5.7. Histogram of (a) the total population in each bin from all available data, (b) the 
absolute difference from expectation in the public commons (Eq. 1), and (c) the percent 

difference from expectation in the public commons (Eq. 2). 
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As can be seen from Figure 5.6 and Figure 5.7, there exists a large variation in the population 

of individual demographic category bins across the 224 total bins. Over 50% of the bins contained 

250 patients or less, while the highest populated bin contained 2256 patients (representing White, 

50-64 year old, female, patients with no positive COVID-19 test). This highly skewed data 

distribution is an important aspect in the subsequent analysis of absolute and percentage 

differences. Since the majority of bins are quite sparsely populated the absolute difference from 

expectation, Equation (5.2), may give a more interpretable metric of “achieved balance” for sparse 

bins. For example, a difference of less than 5 patients in a bin of 50 patients may be simply deemed 

reasonable balance. However, since the absolute difference from expectation, Equation (5.2), is 

not scaled by the individual bin population, its overall magnitude tends to be correlated with the 

bin population. A difference, for example, of 10 patients from a bin of 20 total patients or 10 

patients from a bin of 2000 total patients would be interpreted very differently in terms of 

“achieved balance”. Conversely, the percent difference from expectation, Equation (5.3), is scaled 

by the individual bin population; but for very sparsely populated bins, a small denominator may 

inflate the percentage, reducing the interpreted “achieved balance”, while the absolute difference 

may only be off by a few patients. Given these two conflicting circumstances, and the highly 

skewed nature of the data distributions, both metrics are included for evaluation. However, a 

threshold of at least 10 patients in each bin was implemented for the percent difference from 

expectation, Equation (5.3), to avoid over-inflation from very sparsely populated bins. 

5.3.2 Task-based sampling 

Example cohort task-based sampling 

Results obtained from splitting the initial cohort using our task-based sampling method with 

maximum task-demographic deviance thresholds of 10% and 5% are shown in Table 5.4 and  
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Table 5.5, respectively. Using the threshold of 10%, the resulting final cohort contained 870 unique 

patients. Using the threshold of 5%, the resulting final cohort contained 542 patients. The average 

absolute difference across all demographic subcategories was 2.1% and 1.0% for thresholds of 

10% and 5%, respectively.  

Table 5.4. Task-based sample results for 10% threshold of the maximum task-demographic 
deviance metric. The target demographic prevalence is defined in alignment with Table 5.1. 

Differences in prevalence from the target greater than 10% are shown in italics, and the 
maximum value in each difference column is shown in bold and italics. 

 
  Initial cohort, n = 4016  Final cohort: 10% threshold, 

n = 870 
Demographic 
subcategory 

Target 
prevalence 

Initial 
cohort 
count 

Initial 
cohort 

prevalence 

Difference 
from 
target 

 
Final 

cohort 
count 

Final 
cohort 

prevalence 

Difference 
from 
target 

Age         

[0, 18) 0.0% 0 0.0% 0.0%  0 0.0% 0.0% 
[18, 30) 26.0% 146 3.6% 22.4%  140 16.1% 9.9% 
[30, 40) 20.5% 247 6.2% 14.3%  190 21.8% -1.3% 
[40, 50) 17.4% 380 9.5% 7.9%  167 19.2% -1.8% 
[50, 65) 22.1% 1259 31.3% -9.2%  210 24.1% -2.0% 
[65, 75) 8.1% 1071 26.7% -18.6%  84 9.7% -1.6% 
[75, 85) 3.9% 698 17.4% -13.5%  46 5.3% -1.4% 
[85, 140) 2.0% 215 5.4% -3.4%  33 3.8% -1.8% 

Not Reported 0.0% 0 0.0% 0.0%  0 0.0% 0.0% 
Race         

American 
Indian or 

Alaska Native 
1.1% 10 0.2% 0.9%  2 0.2% 0.9% 

Asian 3.8% 320 8.0% -4.2%  16 1.8% 2.0% 
Black or 
African 

American 
12.3% 714 17.8% -5.5%  87 10.0% 2.3% 

Native 
Hawaiian or 
other Pacific 

Islander 

0.3% 9 0.2% 0.1%  2 0.2% 0.1% 

Not Reported 0.0% 701 17.5% -17.5%  80 9.2% -9.2% 
Other 4.0% 62 1.5% 2.5%  23 2.6% 1.4% 
White 78.5% 2200 54.8% 23.7%  660 75.9% 2.6% 
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Table 5.4. (Continued) Task-based sample results for 10% threshold of the maximum task-
demographic deviance metric. The target demographic prevalence is defined in alignment with 
Table 5.1. Differences in prevalence from the target greater than 10% are shown in italics, and 

the maximum value in each difference column is shown in bold and italics. 
 

Sex at birth         

Female 53.1% 1955 48.7% 4.4%  464 53.3% -0.2% 
Male 46.9% 2060 51.3% -4.4%  406 46.7% 0.2% 
Other 0.1% 0 0.0% 0.1%  0 0.0% 0.1% 

Not Reported 0.1% 1 0.0% 0.1%  0 0.0% 0.1% 
Ethnicity         

Hispanic or 
Latino 25.0% 309 7.7% 17.3%  155 17.8% 7.2% 

Not Hispanic 
or Latino 75.0% 3468 86.4% -11.4%  695 79.9% -4.9% 

Not Reported 0.0% 239 6.0% -6.0%  20 2.3% -2.3% 
COVID-19 

positive 
        

No 50.0% 2517 62.7% -12.7%  438 50.3% -0.3% 
Not Reported 0.0% 0 0.0% 0.0%  0 0.0% 0.0% 

Yes 50.0% 1499 37.3% 12.7%  432 49.7% 0.3% 
 

 
Table 5.5. Task-based sample results for 5% threshold of the maximum task-demographic 

deviance metric. The target demographic prevalence is defined in alignment with Table 5.1. 
Differences in prevalence from the target greater than 10% are shown in italics, and the 

maximum value in each difference column is shown in bold and italics. 
 

  Initial cohort, n = 4016  Final cohort: 5% threshold,  
n = 542 

Demographic 
subcategory 

Target 
prevalence 

Initial 
cohort 
count 

Initial 
cohort 

prevalence 

Difference 
from 
target 

 
Final 

cohort 
count 

Final 
cohort 

prevalence 

Difference 
from 
target 

Age         

[0, 18) 0.0% 0 0.0% 0.0%  0 0.0% 0.0% 
[18, 30) 26.0% 146 3.6% 22.4%  127 23.4% 2.6% 
[30, 40) 20.5% 247 6.2% 14.3%  110 20.3% 0.2% 
[40, 50) 17.4% 380 9.5% 7.9%  101 18.6% -1.2% 
[50, 65) 22.1% 1259 31.3% -9.2%  121 22.3% -0.2% 
[65, 75) 8.1% 1071 26.7% -18.6%  49 9.0% -0.9% 
[75, 85) 3.9% 698 17.4% -13.5%  22 4.1% -0.2% 
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Table 5.5. (Continued) Task-based sample results for 5% threshold of the maximum task-
demographic deviance metric. The target demographic prevalence is defined in alignment with 
Table 5.1. Differences in prevalence from the target greater than 10% are shown in italics, and 

the maximum value in each difference column is shown in bold and italics. 
 

Age (continued)        
[85, 140) 2.0% 215 5.4% -3.4%  12 2.2% -0.2% 

Not Reported 0.0% 0 0.0% 0.0%  0 0.0% 0.0% 
Race         

American 
Indian or 

Alaska Native 
1.1% 10 0.2% 0.9%  2 0.4% 0.7% 

Asian 3.8% 320 8.0% -4.2%  14 2.6% 1.2% 
Black or 
African 

American 
12.3% 714 17.8% -5.5%  60 11.1% 1.2% 

Native 
Hawaiian or 
other Pacific 

Islander 

0.3% 9 0.2% 0.1%  2 0.4% -0.1% 

Not Reported 0.0% 701 17.5% -17.5%  25 4.6% -4.6% 
Other 4.0% 62 1.5% 2.5%  17 3.1% 0.9% 
White 78.5% 2200 54.8% 23.7%  422 77.9% 0.6% 

Sex at birth         

Female 53.1% 1955 48.7% 4.4%  291 53.7% -0.6% 
Male 46.9% 2060 51.3% -4.4%  251 46.3% 0.6% 
Other 0.1% 0 0.0% 0.1%  0 0.0% 0.1% 

Not Reported 0.1% 1 0.0% 0.1%  0 0.0% 0.1% 
Ethnicity         

Hispanic or 
Latino 25.0% 309 7.7% 17.3%  113 20.8% 4.2% 

Not Hispanic 
or Latino 75.0% 3468 86.4% -11.4%  421 77.7% -2.7% 

Not Reported 0.0% 239 6.0% -6.0%  8 1.5% -1.5% 
COVID-19 

positive 
        

No 50.0% 2517 62.7% -12.7%  273 50.4% -0.4% 
Not Reported 0.0% 0 0.0% 0.0%  0 0.0% 0.0% 

Yes 50.0% 1499 37.3% 12.7%  269 49.6% 0.4% 
 

To describe the process of the optimization algorithm as it selects patients for the final cohort, 

the maximum task-demographic deviance metric was plotted as a function of the optimization 
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iteration for both thresholds, as shown in Figure 5.8 and Figure 5.9. These plots may be interpreted 

similar to an optimization loss function. As expected, Figure 5.8 represents a subset of Figure 5.9, 

as the optimization follows the same process to reach a threshold of 10% before continuing on to 

the final value of 5% in Figure 5.9. As such, we can establish the optimization algorithm follows 

a deterministic path given the same initial cohort and set of input parameters. Discontinuities in 

the plot slope indicate a shift from one category dominating the maximum task-demographic 

deviation to another category, as subjects are removed from the sample and overall demographic 

distributions shift. Jagged fluctuations in the maximum task-demographic deviance metric, as seen 

toward the end of both figures, indicate rapid shifts in the current sample’s demographic 

distribution with each iteration of patients that are removed. Small fluctuations such as those 

present in Figure 5.8 and Figure 5.9, are to be expected for a relatively small sample size. However, 

if this metric plots erratically or unexpectedly increases, the demographic distribution of the 

sample is shifting too fast for the optimization. The number of patients removed in each iteration 

may need to be decreased, or the optimization may be initiated with a higher threshold. 

In each iteration of drawing from the available data to reach the specified  population, every 

patient is assigned a demographic-fit deviance metric, in which higher values indicate the 

demographic characteristics of that patient are over-represented in the sample compared to the 

target population (i.e., having higher prevalence than the target population). The patient 

demographic-fit deviance metric histograms are shown in Figure 5.10 for all patients in the current 

sample at four selected timepoints in the optimization: (a) near initiation at 10 iterations, (b) at 50 

iterations, (c) at the final iteration for the threshold of 10%, and (d) at the final iteration for the 

threshold of 5%. As the histogram narrows, the drawn sample becomes closer to the target 

population. However, the histogram may also take on a bi-modal shape around zero, such as is 
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shown in Figure 5.10 (c), as a few demographic categories are strongly overrepresented, while 

others are underrepresented, skewing the “balance”. 

 
 

Figure 5.8. Maximum task-demographic deviance metric plotted for algorithm initiated with 
initial cohort as defined in Table 5.4 and 10% stopping threshold, minimum percent deviation 

equal to 0.1. 
 

 
 

Figure 5.9. Maximum task-demographic deviance metric plotted for algorithm initiated with 
initial cohort as defined in Table 5.5 and 5% stopping threshold, minimum percent deviation 

equal to 0.05. 
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Figure 5.10. Patient demographic-fit deviance metric histograms for patients in the current 
sample at four selected timepoints in the optimization: (a) near initiation at 10 iterations, (b) at 
50 iterations, (c) at the final iteration for the threshold of 10%, and (d) at the final iteration for 
the threshold of 5%. A narrower histogram indicates a closer match to the target distribution. 
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5.4 Discussion 

5.4.1 Sequestration by stratified sampling 

We demonstrated, using our proposed method of multi-dimensional stratified sampling, that 

splitting an input dataset of 5000 COVID-19 patients into an 80% open dataset and a 20% 

sequestered dataset based on the variables of age, race, sex at birth, ethnicity, COVID-19 status, 

and image modality resulted in subsets that exhibited distributions very similar to those of the input 

dataset and each other. The high degree of similarity in the distributions indicates that the 

sequestration algorithm operated as expected. Moreover, distributions of the differences from the 

expected values for the developed stratified sampling algorithm and naïve randomization indicated 

that the stratified sampling algorithm provided, in general, more balanced distributions of variables 

in subsets of patients versus those obtained from the naïve randomization. 

Assessment of machine learning algorithm performance is often achieved through methods 

such as k-fold cross validation or bootstrapping [117]. These methods sample a limited dataset 

many times to test the algorithm on a variety of sample characteristics. Additionally, stratified 

randomization is an existing process used in separating training and testing datasets, but generally 

only allows for stratification across a single variable. However, balancing of multiple variables 

across public and sequestered datasets, from which cases cannot be made known, or used and 

replaced, is a task not typically considered in machine intelligence applications. Using the 

presented process, which sequentially steps through each branch until a single multi-variable 

stratum is obtained, balance across all possible combinations of the selected variables can be 

controlled. Similar processes are used in the construction of case and control populations in clinical 

trials, but these processes are typically conducted once, after collection of the entire population. 

Our process is implemented on each incoming MIDRC data batch, which are received on an 
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ongoing basis. To the knowledge of the authors, this is the first application to machine intelligence 

datasets [112,113]. 

Results of the evaluation of sequestration methodology through joint distribution balance 

showed an in-depth investigation of the demographic balance, beyond simple comparison of 

individual demographic distributions, evaluating the joint distribution of four key demographic 

variables from over 54,000 unique patients collected over one year. Results demonstrated that the 

joint distributions for data submitted to MIDRC from August 2021 to August 2022 in the public 

and sequestered subsets reasonably match the joint distributions from all available data. This high 

degree of balance indicates that the multi-dimensional stratified sampling algorithm, used to 

separate the data into the respective subsets, is operating as intended and both data commons are 

representative of the data available. 

While the high degree of similarity in the distributions of variables across both subsets is 

promising, indicating that the proposed sampling method worked as intended, the ultimate goal in 

constructing a sequestered dataset for algorithm evaluation does not aim for perfect symmetry 

relative to the data going to the open dataset. This is to avoid matching a test set to a training set, 

since that could allow one to approximately “train to the test.” Sequestration will provide an 

ongoing method to monitor and maintain a high level of similarity in the variable distributions, but 

perturbations in the demographics will also be purposely implemented to assure algorithm 

generalizability. When an algorithm is tested using data from the sequestered dataset, test samples 

will be drawn from the sequestered set according to the distributions related to the task (e.g., 

clinical question, clinical claim, intended population), that is, the sequestered set in its entirety will 

not be used in the test. Furthermore, from the algorithm testing using sequestered data, only 

summary performance information will be reported back and not case-specific results. 
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5.4.2 Task-based sampling 

Using the developed method of task-based sampling, the process and outcomes of drawing subsets 

matched to an approximate CDC distribution from an example cohort of over 4000 patients were 

described. Results indicated the developed optimization algorithm operates as expected, selecting 

subsets matched to the target demographic distribution within the specified thresholds of the 

maximum task-demographic deviance metric. Explanatory figures of the maximum task-

demographic deviance metric and the patient demographic-fit histograms provide supportive 

feedback on the optimization process, such that the optimization parameters may be modified to 

ensure an acceptable result.  

This research outlines the proposed framework for large-scale sampling of task-based 

populations to create test sets from a large data commons. Using the described task-based sampling 

optimization algorithm will provide researchers with the ability to curate a dataset from public data 

repositories for AI development or for internal MIDRC performance assessment to nearly any 

demographic distribution, through a relatively simple and efficient workflow. It will also allow 

MIDRC to perform formalized evaluation of algorithms using data from the sequestered commons 

that are matched to a user’s task with a reduced burden of data curation and patient selection. If 

task-based sampling is being used for cohort building in the open data commons, the initial cohort 

can be specified by the metadata downloadable from the MIDRC data explorer. Alternatively, if 

used for algorithm performance assessment on sequestered data, the initial cohort will be selected 

internally. 

A large, demographically diverse sequestered commons which is restricted from public access 

and can be repeatedly sampled for task-specific algorithm testing may provide a new gold standard 

for performance verification and could allow for expedited regulatory clearance of algorithms if 
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accepted by regulating bodies. However, for performance assessment from the sequestered 

commons, it is important to note that algorithms will only be tested on subsets of task-based 

cohorts matched to a user’s task. This will enable estimates of performance variation and allow 

users the opportunity to have their algorithm re-evaluated on new data, if elected. Users will not 

be allowed to have their algorithm tested on sequestered data an unregulated number of times, or 

without due process, to prevent the possibility of users training to the test distribution.  

The methodology of task-based sampling described here was also implemented for selection 

of test and validation cohorts for the first two MIDRC Grand Challenges. The first challenge 

sought to classify chest radiographs of patients with COVID-19 from those without COVID-19. 

From an initial cohort of 4,639 patients processed, but not yet published on the public-facing data 

portal, 409 patients matched with a threshold maximum deviance metric of 10% to an approximate 

CDC case distribution were selected, and 334 patient were used in the challenge after adjustments 

for image quality. The 334 patients were separated between test and validation using the 

sequestration methodology described in Section 5.2.1 to maintain approximately even distributions 

of demographic variables in validation and test sets. The second Grand Challenge will seek to 

evaluate COVID-19 severity on chest radiographs. From an initial cohort of 6,202 patients 

processed, but not yet published on the public-facing data portal, 1,502 patients were selected  with 

a threshold maximum deviance metric of 10% to an entirely COVID-19 positive, approximate 

CDC case distribution. The number of patients in the final test and validation cohorts for this 

challenge will be made public when the challenge is hosted in Summer 2023. Variance in the 

proportion of patients selected for each of these challenges from the patients initially available 

were likely due to the initial distributions of patients available from which to draw.  
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5.4.3 Limitations and future work 

For all developed methodologies and measurements of evaluation described, the size and initial 

demographic distribution of the input dataset may present a limitation. An input dataset that does 

not contain sufficient patients may result in poor performance of the described methods. However, 

the “sufficient” number of patients is dependent on the specified goals of each task. The ability of 

stratified sampling to achieve a much higher degree of balance than simple randomization is highly 

dependent on the incoming dataset size and prevalence of a given demographic subcategory. This 

is noted to be a limitation for clinical trials that use similar methods as well [112]. Incoming dataset 

size and distributions are also a limitation in the evaluation of the joint demographic distributions, 

as sparsely populated bins may also be more difficult to quantify “achieved balance.” For task-

based sampling, the ability of the developed optimization program to achieve the specified level 

of similarity to a target demographic distribution is likewise limited by the availability of patients 

that match the target distribution in the initial cohort. 

An important component of this work is the validation of the demographic balance between 

patients placed in the public and sequestered commons. Recent work by Gichoya et al. has 

illustrated the potential influence of patient demographic profiles on machine learning network 

performance and generalizability due to unintended bias [106]. MIDRC places a strong emphasis 

on ensuring the data publicly available on data.midrc.org and data held in the sequestered 

commons are diverse and representative of the intended population. Ensuring appropriate 

representation of demographic characteristics in the MIDRC data commons will increase user and 

regulatory body confidence that performance estimates from algorithm testing will generalize to 

real-world use. While ensuring that the distributions of demographic characteristics remain 

balanced across the two data commons may aid in a reduction of potential algorithm bias, 
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algorithm bias may still arise and must be monitored. It is also acknowledged that certain labels of 

race, ethnicity, or sex assigned at birth may not adequately describe all populations or provide a 

clear correlate to genetic ancestry. Analysis of demographic balance will be modified to 

accommodate additional descriptors as they become available through future data contributions 

and on the data model available at data.MIDRC.org. 

5.5 Conclusions 

In summary, this research presents a novel sequestration method using multi-dimensional stratified 

sampling that effectively separates incoming data batches into "open" and "sequestered" commons 

and assessed the performance of this method in terms of similarities between the two commons. 

In addition, we proposed a task-based distribution sampling method to draw from a data commons 

a sample matched to a specified demographic distribution. With the continuous growth of both 

commons, performance of the developed methodology with respect to changing population 

distributions will continue to be monitored. While these methods were primarily developed for use 

in the MIDRC, we believe they can be applied to other databases and research fields as well. 

Overall, our findings demonstrate the potential of these methods to improve data management and 

analysis across various domains.  
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CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 

This work presents major contributions to the field of mammography-based breast cancer risk 

assessment through characterization of AI-based features across the parenchymal field and 

evaluation of a temporal classifier for predicting future occurrence of cancer. Also, contributions 

to the field of data informatics for AI applications were made through development, evaluation, 

and implementation of methodology for sequestration and task-based sampling of imaging studies 

for a COVID-19 use-case. 

The use of AI methods in mammography may improve screening sensitivity in the general 

population through identification of a potential cancer field effect in the breast parenchyma. 

Chapter 3 demonstrated the characterization of relationships among computer-extracted features 

in women with cancer, specifically in mammograms and radiographs of mastectomy specimens, 

including tumor, near-tumor, and far from the tumor parenchymal patterns. This study investigated 

a mammography-based field effect and the radiomic features of specimen radiographs and their 

relation to mammographic features. Results found radiomic features in the subcategories of 

intensity-based, edge frequency, and Fourier-based features from ROIs closer to the tumor tended 

to show more similarity to the tumor than features from ROIs far from the tumor within 

mammograms. In corresponding specimen radiographs, intensity-based, edge frequency, and 

GLCM radiomic features followed a similar trend. Integration of mammogram and specimen 

radiograph radiomic features showed strong relationships of intensity-based features across the 

parenchymal field in in- and ex-vivo imaging. 

To better understand the potential clinical utility of mammography-based field effect for risk 

assessment, it is necessary to examine characteristics of the breast tissue in sequential imaging 

before cancer development to identify any pre-diagnosis changes in imaging features. Chapter 4 
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evaluated two methods for predicting future cancer risk: a single time point SVM classifier and a 

temporal LSTM classifier that integrated multiple time points. Results showed that the single time 

point SVM classifier, which used only the first prior image, did not perform significantly better 

than random guessing. However, the temporal sequence LSTM classifiers showed statistically 

significant performance better than guessing and were comparable to other risk-based models in 

the literature. Further, the similarity in classifier performance across both lateralities further 

supported the detectability of a cancer field effect in mammography imaging.  

This first portion of research focused on the application of breast cancer risk assessment, and 

a few limitations were identified. While the characterization of the potential cancer field focused 

on the general location in relation to the tumor, future studies should aim to better define the 

physical extent of the cancer field for each tumor subtype. Additionally, the relative size of the 

cohort used in Chapter 3 was limited due to the connection with corresponding specimen 

radiographs, which are not typically available for many patients. Chapter 4 focused on the 

performance of commonly used SVM and LSTM classifiers, but many alternative single time point 

and temporal networks exist that could be investigated in the future. For both chapters investigating 

breast cancer risk, the data used was only from a single institution and utilized only the cranio-

caudal mammogram. Future work could expand similar analysis to other institutions and other 

mammographic views and tomosynthesis derived images. Lastly, alternative neural networks for 

generating deep-learning features, other than VGG19, could be investigated. 

To ensure that AI models are reliable and applicable to a broader population, the data used to 

evaluate them must be independent from the data used to train them, and both sets of data must be 

representative of the population. A possible solution to this common challenge is to create a 

centralized database with representative data from multiple institutions that can be used to assess 
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algorithm performance. In Chapter 5, a novel sequestration method was presented that uses multi-

dimensional stratified sampling to effectively separate incoming data batches into two subsets. The 

performance of this method was evaluated in terms of similarities between resulting subsets of an 

example database. Additionally, a novel task-based distribution sampling method was discussed, 

which draws from a data commons to create a sample that matches a specified demographic 

distribution. This method was demonstrated on an example cohort of patients. 

For the developed methodology and evaluations described in Chapter 5, a few key limitations 

were noted. The size and initial demographic distribution of the input dataset to both sequestration 

and task-based sampling methods may present a limitation, as an input dataset that does not contain 

sufficient patients may result in poor performance of the described methods. The size of a sufficient 

database is dependent on the goals of each task. For stratified sampling to achieve a higher degree 

of balance than simple randomization, each unique combination of demographic variables must be 

populated enough to be separated in proportions of 80:20. For task-based sampling, the ability of 

the optimization algorithm to achieve a specified level of similarity to a target demographic 

distribution is inherently limited by the availability of patients that match the target distribution in 

the initial cohort.  

Future directions for this work may include evaluating alternative metrics of balance in the 

optimization algorithm developed for task-based sampling. The current algorithm utilizes a 

maximum deviance from the target distribution, but average deviance or squared deviance from 

the target may prove to be advantageous in certain applications. Lastly, the methodology 

developed in this work is intended to be made publicly available and used for selecting data to 

evaluate algorithm performance before submission for regulatory clearance. To ensure consistent 
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performance, the algorithms and workflow processes will need to be regularly evaluated for 

compatibility with current software functionality. 

This work has the potential improve patient care through the use of AI in breast cancer risk 

assessment and COVID-19. To characterize a mammographically detectable breast cancer field 

effect with the goal of improving risk stratification in general public, radiomics and deep learning 

features were evaluated across the parenchymal field, and a risk model utilizing temporal 

mammography data prior to diagnosis was developed. To create robust tools for algorithm 

performance assessment and acceleration of clinical translation, a methodology for the initiation 

of a sequestered data commons and task-based sampling methods of a public data commons were 

described. Overall, this work demonstrated advancements in AI-based evaluation, classification, 

and methodology with applications in breast cancer risk assessment and COVID-19.  
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APPENDIX A: PRELIMINARY USE OF THE KOLMOGOROV-

SMIRNOV TEST IN ASSESSING FEATURE STATISTICAL 

SIMILARITY ACROSS THE PARENCHYMAL FIELD  

 
In Chapter 3, analysis of radiomic and deep learning features to characterize a potential cancer 

field effect focused on the correlation of features between ROI regions and between modalities. 

However, features were also investigated for statistical similarity across ROI regions using the 

Kolmogorov-Smirnov (KS) test. 

A.1 Methods 

The KS test was used to compare human-engineered radiomic and deep learning features 

across the tumor, near, and far regions of the breast, as defined in Figure 3.1. The KS test statistic 

is defined as the maximum vertical distance between the cumulative distribution functions of the 

two feature distributions [85]. A KS test statistic equal to zero would represent perfectly equivalent 

distributions, and larger KS test statistics represent distributions that are more different. If the KS 

test statistic is greater than the critical value, as defined by Sheskin (2000) for the size of the two 

subsets, the distributions are considered to be significantly different at the applicable significance 

threshold [85]. The KS test is known to be robust, as it is not dependent on sample size and does 

not assume any distribution shape. For the purposes of this study, the KS test was used to test for 

equivalence, as described by Ahn et al. [118].  After computing a KS test statistic and critical value 

for each feature comparison, a 95% confidence interval (CI) on the KS test statistic was constructed 

through bootstrapping, using 2000 bootstrap iterations. Using the calculated KS test statistic and 
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95% CI, statistical equivalence or noninferiority between the two ROI feature distributions was 

assessed, using the critical value as the cutoff point, delta.  

Only the mammogram features were used in this preliminary evaluation of statistical similarity 

using the KS test. To compare the shape of feature distributions between ROI regions only, 

distributions were shifted to align the means of each distribution. To compare both feature 

distribution shape and absolute feature values, no shifting of distribution means was applied. 

A.2 Results 

KS statistical equivalence test results for evaluating the shape of feature distributions between ROI 

regions only (means aligned) are shown in Figure A.1 and Figure A.2 for radiomic and deep 

learning features, respectively. Results indicated that most feature distributions in all ROI regions 

were found to be equivalent, with an equivalence threshold equal to the critical value at the p = 

0.05 level. Table A.1 shows the percentages of feature comparisons found to be statistically 

equivalent.  81.8% of human-engineered radiomic features and 90.5% of deep learning extracted 

feature distributions across all regions reached statistical equivalence. A slightly higher percentage 

of non-tumor to non-tumor ROI comparisons were found to be equivalent than tumor to non-tumor 

ROI comparisons for both human-engineered radiomic features and deep learning extracted 

features. This result seems reasonable, given that tumors have been found to be more dense and 

coarser in texture than parenchymal tissue, while indicating a high degree of similarity across all 

tumor and non-tumor tissue feature distributions [88,89]. 
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Figure A.1. KS equivalence test results for comparisons of mammogram ROI regions using 
radiomic features (A – tumor, B – near to the tumor, C and D – far from the tumor, and E – 

contralateral breast). KS test statistic values (means aligned) are shown with a 95% CI calculated 
from bootstrapping with 2000 iterations. Dotted line indicates the critical value threshold, below 

which a KS test statistic would indicate distributions that are statistically equivalent at the p = 
0.05 significance threshold. 

Radiomic features calculated from mammogram
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Figure A.2. KS equivalence test results for comparisons of mammogram ROI regions using deep 
learning features (A – tumor, B – near to the tumor, C and D – far from the tumor, and E – 

contralateral breast). KS test statistic values (means aligned) are shown with a 95% CI calculated 
from bootstrapping with 2000 iterations. Dotted line indicates the critical value threshold, below 

which a KS test statistic would indicate distributions that are statistically equivalent at the p = 
0.05 significance threshold. 
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Table A.1. Percentage (%) of features that reached statistical equivalence for each ROI region 
comparison. For each, the KS test statistic and 95% CI were less than the equivalence margin, 
calculated at the p = 0.05 critical value. Regions A, B, C, D, and E are defined in Figure 3.1. 

 

 A vs. 
B 

A vs. 
C 

A vs. 
D 

A vs. 
E 

B vs. 
C 

B vs. 
D 

B vs. 
E 

C vs. 
D 

C vs. 
E 

D vs. 
E All 

Radiomic 
features 80.0 75.6 57.8 80.0 95.6 75.6 93.3 88.9 91.1 80.0 81.8 

 
Deep 

learning 
features 

80.0 85.0 80.0 95.0 95.0 95.0 90.0 95.0 95.0 95.0 90.5 

 

Results shown in Figure A.1, Figure A.2, and Table A.1 indicate strong similarity in feature 

distribution shape between ROI regions. However, similarity in the absolute magnitude of feature 

distributions in addition to their shape provides important information and should be evaluated as 

well. To enable comparison of KS test statistics in ROI regions with and without alignment of 

distribution means, the test statistics were represented in color scale plots. Within the plots, values 

closer to zero that represented more similar distributions were shown in blue while values closer 

to one that represented more different distributions were shown in red; values in the middle (closer 

to 0.5) were represented in white.  Colors were scaled linearly with numerical values. The color 

scale plots for radiomics features with and without alignment of the distribution means are shown 

in Figure A.3 and Figure A.4, respectively, while the corresponding plots for deep learning features 

are shown in Figure A.5 and Figure A.6, respectively. 
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Figure A.3. KS test statistic color scale plot for radiomic features after alignment of feature 
distribution means. The color of each cell represents the direction and strength of each 

correlation, as noted in the legend. 
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Figure A.4. KS test statistic color scale plot for radiomic features without alignment of 
distribution means. The color of each cell represents the direction and strength of each 

correlation, as noted in the legend. 
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Figure A.5. KS test statistic color scale plot for deep learning features after alignment of feature 
distribution means. The color of each cell represents the direction and strength of each 

correlation, as noted in the legend. 
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Figure A.6. KS test statistic color scale plot for deep learning features without alignment of 
distribution means. The color of each cell represents the direction and strength of each 

correlation, as noted in the legend. 
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coarser in texture than parenchymal tissue, while indicating a high degree of similarity across all 

tumor and non-tumor tissue feature distributions. 

This broad similarity in feature distribution shapes across all ROI region comparisons may be 

an important component of a potential mammography-detectable field effect. However, it is also 

important to investigate other aspects of the data through alternative approaches, as is done in the 

subsequent color scale figures, which highlight the impact of alignment of the means of each 

distribution for each comparison.  

Alignment of the distribution means only investigated the similarity of distribution shape and 

removed the effect of the absolute feature value change. As is shown in radiomic feature results, 

not aligning the distribution means particularly decreased similarity of tumor to non-tumor 

comparisons for histogram or intensity-based features and power law beta features, indicating 

differences in the absolute values of feature distributions. This is expected for intensity-based 

features, as their absolute values correlate to average gray values in the ROI, which are known to 

differ within a solid mass compared to “normal” parenchyma. For deep learning based features, 

not aligning the distribution means particularly increased the test statistic values for the first two 

principal components of tumor to non-tumor comparisons, again indicating differences in the 

absolute values of feature distributions. Although the underlying characteristics of these pseudo-

features cannot be explained as simply as radiomic features, it is known that the first principal 

components will represent the most fundamental characteristics of the object [46]. Thus, it could 

be reasonable to infer that the first principal components may also quantify how light or dark the 

pixels from a given ROI are, describing the tissue intensity as well. 
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A.4 Conclusions 

Given the distinctive subsets of features that were seen to change from “similar” to “non-

similar” between Figure A.3 and Figure A.4, and between Figure A.5 and Figure A.6, the 

remainder of the analysis for mammogram and specimen radiographs was completed using 

absolute values of features without shifting of distributions. As a result of these distinctive groups 

of features indicating differences in the absolute values of feature distributions, these relationships 

were investigated further using the Kendall’s Tau-b rank correlation test and the Pearson 

correlation test as described in Chapter 3. However, it is important to note that the two results do 

not contradict one another but highlight different aspects of the feature relationships. 
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