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ABSTRACT

As the world’s largest developing economy with growing concerns about how to counter

environmental and climate shocks while maintaining its economic growth, China has devel-

oped various environmental policy tools throughout the past few decades. My dissertation

includes three chapters of research that study the socio-economic impacts of two important

Chinese environmental policies, the public good of quality weather forecasts, which aims to

help people’s adaptation to extreme weathers happening in the near future, and the long-run

road rationing policy applied in nine major Chinese cities, which aims to limit emissions from

vehicles on road and lower city level pollutions. Overall, my research identifies the differen-

tial policy impacts of these different policy tools of China in tackling environmental problems.

The first two chapters are research under the greater project of “The Value of Weather

Forecasts". For this project, I construct a novel dataset of 24-hour city-level weather fore-

casts in China, using Google speech-to-text API to transcribe videos of the national weather

forecast TV programs to collect the actual information broadcast and received by the gen-

eral public. From these research, I find that there exist significant behavior responses to

the accuracy of weather forecast information in China. In Chapter 1, I show that accurate

instead of inaccurate daily temperature forecasts of uncomfortable temperatures (extreme

xix



hot and medium-cold) lead to significant decreases in labor working hours per day. This

shows that accurate weather forecast information helps in laborer’s decisions to work less

under weather shocks, in order to avoid potential health risks. Correspondingly, improved

accuracy of weather forecasts contributes significant social values. The welfare analysis of

this chapter estimates a marginal value of weather forecast accuracy as 930 2015 Yuan (148

2015 USD) per worker per year. Social benefits of accurate weather forecasts are also rep-

resented in Chapter 2, which demonstrates that when realized temperatures are extremely

low, the negatively impacted average social sentiment (summarized with natural language

processing analysis of city-level daily social media posts in 2014) is significantly improved, if

accurate instantaneous temperature forecasts are provided.

The third chapter analyzes the impacts of a well-known environmental policy in China,

the end-number license plate policy, of a long-run, less strict version imposed over a set of 9

big cities of China restricting one-fifth of private vehicles per day on weekdays. This version

of the road rationing policy is shown to have limited impacts in effectively reducing city-level

air pollutions over the timeline of a decade, contrary to previous literatures showing that

the short-run, strict version of this policy can significantly improve air qualities. The ambi-

guity of the policy effects implies people’s behavior changes in response to the long-run road

rationing policy, and provides useful implications on motivating instead of requiring people

to change their daily activities for the society goal of cutting air pollutant emissions with

different policy tools.
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Chapter 1

The Value of Weather Forecasts: Labor Responses to Accurate and Inaccurate

Temperature Forecasts in China

Abstract

This paper evaluates the economic value of the accurate information of weather forecasts,
a common and popular public good continuously invested by the government in modern
societies. Labor decisions of hours worked per day are found to respond to day-ahead tem-
perature forecasts, and only forecasts that are perceived as accurate are incorporated. From
this, improvements in weather forecast accuracy generate large social benefits. With the set-
ting in China, where the developing economy provides a trusted uniform source of national
weather forecasts to its large population, I collect a novel dataset of the city-level day-ahead
weather forecasts directly broadcast to the general public through video transcription for
over 2000 days of the country’s popular weather forecasts TV program. Constructing the
metric of perceived forecast accuracy based on the medium-run root mean squared errors
of historical temperature forecasts, I run a regression with the interaction of forecasts and
forecast accuracy to estimate how labor response to forecast temperatures varies under dif-
ferent levels of forecast accuracy across time and space. My main regression results suggest
large reductions of labor supply up to 4.5 and 1.2 hours per day under hot (above 30C) and
medium-cold (15C − 25C) daily maximum temperature forecasts only when these forecasts
are accurate. Instead, when forecasts are inaccurate, those negative labor responses diminish.
Using a simple utility maximization model for the next-day labor decision and evaluating
with the regression estimates, I estimate a large marginal value of forecast accuracy of 930
2015 Yuan (148 USD) per capita per year. For the entire country, an average 3.9% increase
in forecast accuracy from 2011 to 2015 generates a partial social benefit from the labor sector
alone at 25.3 billion 2015 Yuan (4.03 billion USD) per year, about covering the annual cost
of the national weather forecasting system.
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1.1 Introduction

Human beings have been interested in weather forecasting since thousands of years ago,

when meteorology, the study of weather, has been founded. Over the past hundred years, de-

velopments in technology and modern meteorology have led to significant increase of weather

forecast accuracy (Shuman, 1989)1. Into the 21st century, weather forecasting is expected

to continue progressing at an even greater pace (Teague and Gallicchio, 2017).

The economic value of weather forecasts is of great interest to many from physical scien-

tists to policy makers (Murphy, 1993). For one thing, accurate weather forecast information

is important to people’s everyday decision makings. People are using these information to

efficiently plan their daily activities ahead of time such that potential damages caused by

future weather shocks can be avoided (Katz and Murphy, 2005; Guido etal., 2021). For

another, developing accurate weather forecasts is costly. Every year, modern societies are

spending billions on national and international forecasting systems to ensure that the most

reliable weather forecasts can be delivered to the general public. Therefore, how weather

forecasts have affected people’s decisions and what social benefit is generated with more

accurate weather forecasts are important questions to answer.

In this paper, I identify the impacts of accurate weather forecasts on the decision-making
1There are multiple metrics meteorologists use to describe weather forecast accuracy, including absolute

mean errors, forecast skills and threat scores. In percentage terms, the recorded improvement of weather
forecast accuracy is large over the past decades across different metrics. Shuman (1989) shows the error
score for 36-hour predictions of geopotential height at 500mb drop by more than 50% from 1955 to 1988.
NOAA shows the NCEP forecast skill for 500mb geopotential height increases to more than 3.6 times from
1955 to 2015, and the mean absolute errors of short-range (3-7 days) maximum temperature forecasts drops
by about 45% from 1972 to 2017 (source: https://www.wpc.ncep.noaa.gov/).
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of the Chinese labor population, and estimate a large partial value of accurate weather fore-

casts in China. Showing that labors respond with decreasing hours worked per day when

they are provided with accurate forecasts for uncomfortable temperatures, I demonstrate

that the information of weather forecasts is being incorporated in people’s decisions on la-

bor. Finding that people reduce their labor supply under accurate instead of inaccurate

weather forecasts, I deduce that people make use of historical forecast accuracy in order to

avoid judgment errors in labor decision-making under mis-information about future weath-

ers. Through welfare analysis, I address that accurate weather forecasts are important to

the society because they contribute large social benefits enough to cover the expenditures

developing the forecasts. Furthermore, my research provides evidence for the value of infor-

mation in shaping people’s adaptation behavior to climate shocks, and my approach will be

useful in valuing similar public goods closely related to climate and technology development.

I select the research setting in China where the largest developing economy has a great

labor population exposed under climate risks. In the meantime, heterogeneous workers have

been used to the same sourced free-of-charge national weather forecasts because of the coun-

try’s vigorous investments into the provision of this information as a public good. To access

the actual weather forecasts perceived by the Chinese population every day, I collect a novel

dataset of city level day-ahead weather forecasts that has not been storage directly. I tran-

scribe over 130 hours of video recordings of the nation’s popular weather forecasts program

aired every evening on TV with Google speech-to-text API, and gather a panel dataset of

the 24-hour ahead temperature and precipitation category forecasts for cities all across the

country over 2000 days since 2010.
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For empirical analysis, I explore the impacts of these day-ahead weather forecasts on labor

supply, represented with the individual reported number of hours working from China Health

and Nutrition Survey (CHNS) by week and city, 2011 and 2015. Labor decisions on hours

worked per period are important adaptation behavior to climate shocks, because labors are

motivated to work less under uncomfortable temperatures in order to avoid disutilities likely

from health risks (Graff Zivin and Niedell, 2014; Garg, Gibson and Sun, 2020; Rode etal.,

2022). To separate the impacts of forecasts from those of realized temperatures in the simple

regression of labor hours on a non-linear function of daily maximum temperature forecasts

similar to previous literature, I consider the labor adaptation to forecast information relevant

to its perceived accuracy. Adding to the regression an interaction term of forecast function

and historical forecast accuracy, I apply an empirical design similar Carleton etal. (2020)

to estimate the differential labor responses under space-time varying historical accuracy of

weather forecasts, measured by the medium-run root-mean-squared error (RMSE) of daily

maximum temperature forecasts over the previous half-year rolling window.

My main results of the baseline regression with forecasts and forecast accuracy interac-

tion show that accurate forecasts of extreme hot (above 30C) and medium-cold (15C −25C)

temperatures lead to large magnitudes of labor reduction (up to 4.5 hours for hot and up to

1.2 hours for medium-cold). In the meantime, inaccurate forecasts induce no such responses

in labor. Therefore, I find that accurate weather forecasts can introduce early avoidance

behaviors in labor such that people work less under uncomfortable temperature forecasts.

These baseline results are verified by various robustness checks, and heterogeneity analysis
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shows that results are more prominent among cities with less heating availability and indi-

viduals more vulnerable in health and economic backgrounds.

Lastly, I construct a single-period theoretical framework outlining workers’ choice of

next-day labor supply based on temperature forecasts and the perceived accuracy of such

information. With this model and the main regression estimates, I quantitatively estimate

the partial value of accurate weather forecasts from the behavioral response in labor sector

in China. With implications of exaggerated beliefs under inaccurate forecasts, my method

conveniently identifies a quadratic utility function for the decision makers with an impact

function of realized weathers estimated by the labor response under sample maximum fore-

cast accuracy, and a scale factor determined by the labor supply elasticity referenced from

Chinese labor literature. In the end, I calculate that the marginal value of weather forecast

accuracy (represented by RMSE of daily maximum temperature forecasts) brings about 930

2015 Yuan (148 USD) for an average worker in China every year. In total, an average 3.9%

increase of city level annual forecast accuracy from 2011 to 2015 generates a large social ben-

efit of 25.3 billion 2015 Yuan (4.03 billion USD) per year for almost the entire country from

labor sector alone, about covering the annual spending of the national weather forecasting

system.

This paper contributes to literatures studying the impacts of weather and climate fore-

casts on economic activities. While existing literature focuses on the medium-range month-

ahead probabilistic forecasts useful for longer-run production decisions in specific industries,

this paper extend the impacts of study to short-range next-day weather forecasts more com-
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monly known to the general labor force and instead explores their short-run decision making

of labor take-up with forecast information. Among these literatures, Rosenzweig and Udry

(2019) finds that only skillful weather forecasts could affect farmers’ decision makings in

rural India. Shrader (2020) discovers that the production in fishery responds to medium run

ENSO forecasts. Downey, Lind and Shrader (2021) estimates a value of monthly rainfall

level predicted by ENSO events because the information provides employment benefits to

firms.

This paper also contributes to the broader literatures accessing the value of information.

Specifically, this paper estimates the social benefit for a type of scientific forecasting which

usually requires greater amount and longer run financial supports. More literatures are for

financial and economic forecasts (Ivkovic and Jegadeesh, 2004; Goodarzi, Perera and Bunn,

2019) or the value of real-time information in environmental economics (Barwick, Li, Lin and

Zou, 2019). Among the smaller volume of literatures on meteorological forecasts specifically,

both the existing forecasting system and any marginal improvement of forecast accuracy

have been estimated with large values (Katz and Murphy, 2005). Survey-based contingent

valuation method is one common approach in these literatures. The Chinese survey in 2006

estimates the country’s weather forecasting system to be a large social value of 46.5 billion

Yuan in 2006 (5.83 billion USD) (Yuan, Sun and Wang, 2016). Similarly, the US national

survey in 2006 estimates a 31.5 billion USD benefit of weather forecasts (Lazo, Morss and

Demuth, 2009).

This paper estimates a large monetary value of accurate weather forecasts as other lit-
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eratures. Similarly analyzing the short-range weather forecasts with revealed preference,

Bakkensen, Lemoine and Shrader (2022) finds the increase of the mortality rate under greater

forecast errors in the US that implies a large value of 75.1 billion USD per unit decrease in

forecast error standard deviation. Other related research also quantifies the large value of

weather forecasts through modeling and case studies, but concentrated more on developed

economies. Nurmi etal. (2012) considers the forecast impacts on the transportation sector

in the European Union and estimates a lower bound value of 3.4 billion Euros (4.5 billion

2012 USD) for 100% accurate forecasts. Fox, Turner and Gillespie (1999) studies the im-

pacts of precipitation forecasts on agriculture production in Canada and translate the value

of these forecasts to an average 100 CDN (67.6 1999 USD) per hectare per year. The less

common but critical disaster forecasts are also studied to have large social values. Martinez

(2020) shows that increased accuracy of hurricane forecasts in the US since 1970 leads to a

total reduction in damage worth 82 billion USD, far exceeding the amount invested by the

government.

This paper will proceed as the following. Section 2 describes the data and summary

statistics. Section 3 outlines the empirical design. Section 4 presents the main results,

heterogeneity analysis and robustness checks. Section 5 discusses the valuation model and

results. Section 6 concludes.
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1.2 Data

1.2.1 Weather Forecast Data

In this paper, I choose to study the 24-hour ahead daily and city level weather forecasts

in China. This forecast product is selected for several reasons. Firstly, the nationwide fore-

casts are produced by China Meteorological Administration (CMA)2, usually regarded as

the authority and is the almost uniform source of forecast information in the country for

decades. Secondly, the day-ahead weather forecasts are normally one of the most important

forecasting products for people in different age and location groups. Thirdly, these city-level

forecasts are distributed to people all around the country through a high viewership evening

weather program on TV, allowing me to collect the actual forecast information broadcast to

the general audience through transcribing these video recordings.

The day-ahead weather forecasts at city level are produced and distributed by the na-

tional forecasting system, managed under the CMA subordinate National Meteorological

Centre (NMC)3. These forecasts are traditionally trusted partly because they are scientific

forecasts generated by multiple well-established numerical models with inputs from high

resolution atmospheric observations, and summarized by professional meteorologists4. For
2CMA is founded in 1949 and reformed in 1994 (Source: http://www.gov.cn/banshi/qy/rlzy/2012-

11/12/content_2262675.htm). It is in charge of multiple duties in meteorology, including managing the
national weather forecasting system as one of the main duties. The largest portion of CMA’s annual
budget is allocated to it, spendings include for maintaining and developing forecasting technologies, us-
ing new satellites, hiring and training professional forecasters. Example of 2012 CMA budget report:
http://www.gov.cn/gzdt/att/att/site1/20120424/1c6f6506c7f81100fc9f1f.pdf.

3Source: http://www.cma.gov.cn/zfxxgk/gknr/jgyzn/jgsz/zsdw/202008/t20200813_4673126.html.
4The day-ahead national weather forecasts are generated as following. Each day, multiple nu-

merical models are run with inputs (e.g., historical climate variables) collected from observatory sta-
tions and weather satellites, and they output forecasts variables including the near future (usually
up to 2-3 days) temperatures, precipitations and pressures. I consulted the office of CMA, they did
not specify which forecast models they used. But they confirmed there are multiple models taken
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decades, these forecasts have been the almost single and uniform information source to the

general public, quoted and distributed by most media channels including papers, TV and

Internet5. They were reported to be popular among different groups of people all across

the country as they adapt this information in deciding their daily activities such as labor,

traveling and outdoor leisures6.

One major challenge for data collection of short-range weather forecasts (for this paper

and literatures) is that local agencies do not keep the historical data of city level fore-

casts7. This paper circumvents this problem by directly accessing the forecast information

distributed to the people as a public good through TV. As one of the most important prod-

ucts, the 24-hour ahead city level weather forecasts are distributed over the high viewership

evening Weather Forecast TV program right after the national news8. As a result, these

TV broadcast weather forecasts are the actual information received by the vast and diverse

into considerations, and the list of models had been updated over the years where old models were
dropped and new models were added. Some of the old models used are posted and shared un-
der their database at https://data.cma.cn/data/cdcindex/cid/0b9164954813c573.html. Next, professional
weather forecasters trained and employed at local weather stations evaluate these raw prediction out-
puts, and summarize the “average” forecasts with their best judgments. Thirdly, CMA holds the daily
conference with local forecasters across the country, collecting their final local forecasts, and verifies
their consistency at the national level (source: http://www.cma.gov.cn/2011xzt/2013zhuant/20130524/,
https://zhuanlan.zhihu.com/p/21598589). Lastly, the meteorological center distributes and broadcasts the
national forecasts to the general public through radios, TV, papers and Internet.

5Alternative sources of forecast information have become more common over the past decade, as new
mobile apps like the Apple Weather generate their own weather forecasts. The national weather forecasts
source still remain quite important to people around the country (source of recent survey conducted by
CMA: https://mp.pdnews.cn/Pc/ArtInfoApi/article?id=26003677.

6Nationwide CMA survey in 2006 source Yuan, Sun and Wang, 2016, most recent survey conducted in
2021 https://mp.pdnews.cn/Pc/ArtInfoApi/article?id=26003677.

7I ask a CMA person and he quoted “lack of storage spaces” as the main reason.
8The Weather Forecast program was first aired in 1980, since then become the most popular weather TV

program of the country (source:http://www.weather.com.cn/video/tqyb/05/508815.shtml. The program is
aired daily on CCTV Channel 1 (China Central Television - Main Channel) and Channel 13 (News Channel)
almost immediately after the national news concluding at 7:30pm. Until today, the evening Weather Forecast
program is with the highest viewership among all TV programs year round (TV viewership reference data:
https://eye.kuyun.com, http://www.csm-huan.com).
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audience around the country9. Even if more people do not watch TV for weather forecasts

over the most recent years, the same weather forecasts are distributed to alternative dis-

tribution channels they have accessed to from the dominant source of CMA. I then collect

these day-ahead weather forecasts through directly transcribing the video recordings for over

2000 days of this Weather Forecast program. Specifically, I download a total over 130 hours

of the program videos posted on the official site CCTV.com and transcribe all broadcast

information feeding transformed audios to Google Cloud speech-to-text API. For detailed

description of this data transcription process, see Appendix 1.A.1.

My video transcription dataset contains a panel data of the day-ahead forecast temper-

atures (daily temperature range including the minimum and maximum, Tmin and Tmax)

and category (e.g., sunny, shady, light rains, fog) over the next 24-hour, from 8pm today

to 8pm tomorrow. As labor literatures like Graff Zivin and Niedell (2014), I focus on the

daily maximum temperature forecasts for labor response, because labor activities are mostly

during daytime when Tmax is realized. Due to copy right issues accounted by NMC, my

data starts from 2010 with missing days especially among early years (prior to 2013) where

videos are either missing or corrupted from the website. Forecasts are issued at city level

for each of the 34 provincial capital cities, centrally-administered municipalities and special

administrative regions (SARs) across the country.

Historical weather forecasts for non-capital cities are more difficult to collect. Though
9According to CMA surveys, TV is an important channel for the general public for weather fore-

casts. In 2006, over 85% respondents receive weather forecast information through TV, dominant across
all age groups (Yuan, Sun and Wang, 2016). The ratio drops to 22%-24% in the 2021 survey (source:
https://m.thepaper.cn/baijiahao_16287375), but still remains the fourth most important information source.
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each province has their local channels to broadcast their own weather forecasts program

covering both capital and non-capital cities in the province right before the 7pm national

news, the viewership is much smaller and these program videos are relatively scarce on the

Internet. Due to time and resource constraints, I abstract away from these local forecasts

and focus on possible extrapolations from national forecasts since viewership data indicates

that people living in non-capital cities still take in the national forecasts seriously. As an

alternative, I assume a simple mechanism that people living in non-capital cities still watch

the Weather Forecast program (which is true according to viewership), and infer their cities’

weather forecasts from the forecasts of their capital cities and historical weathers. Specifi-

cally, I approximate temperature forecasts for any non-capital city by adjusting the forecasts

of its provincial capital with the difference in previous year monthly average realized temper-

atures (source ERA-Interim, see next subsection) between capital and non-capital cities10.

For details about this approximation process and statistical tests regarding its credibility,

see Appendix 1.A.2. Later analysis is also conducted on a sample restricted to capital cities

only and main results remain robust.

I further restrict the forecast sample to Mainland (31 provinces) excluding the SARs

where the Weather Forecast program is less popular among local audience. My final dataset

covers 342 cities in total, 31 provincial capitals with direct forecasts, and 311 non-capital

cities with approximated forecasts as addressed above. For this paper, I use the forecasts of

six years 2010 to 2015, covering 2097 days with non-missing data.
10Ideally for ongoing data works, existing videos of local weather forecasts would be transcribed and

compared with the collected capital city forecasts to derive relationships between non-capital city forecasts,
capital city forecasts and historical realized weathers using machine-learning.
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1.2.2 Realized Weather Data

Realized weather records are important to determine whether weather forecasts are ac-

curate. In this paper, I use realized weather data from ERA-Interim (ERAI) reanalysis

climate data product, produced by ECMWF (European Centre for Medium-Range Weather

Forecast)11. The ERAI reanalysis data product uses mathematical models to extrapolate on

existing station recordings of weathers, therefore not identical to the raw historical weather

series from weather station readings only. Climate scientists normally judge this data prod-

uct as sufficiently close to the “real” weathers (Dee etal., 2011), especially for temperatures,

though there are more uncertainties around precipitations (Copernicus, 2017). As a result,

the ERAI data product has been used in a variety of science and economic researchers as

the realized weathers.

The ERAI dataset has the advantage of greater world coverage with higher spatial and

temporal resolutions. It provides weather variables for all days post 1979 with the highest

data frequency of 12 hours, reported on 0.25 × 0.25 grids all across the globe. To match

the spatial and temporal resolutions of my forecast dataset, the ERAI data is aggregated to

city-day level spatially by population weights12 since in this paper the labor sample surveyed

individuals who are likely residing and working in more populous grids. Alternative aggre-

gation by area weights is also tested for robustness, and changes to main results of later

sections are negligible. The final realized weather dataset I obtain includes daily surface
11Website: https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20. For future analysis,

the most recent ERA5 data product will be considered (results are not expected to be very different since
predictions of the two models in population dense regions like China would be close).

12Gridded population of the world for 2010, data use and aggregation process authorized by Climate
Impact Lab, the Energy Policy Institute at the University of Chicago.
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temperatures Tmin, Tmax, and daily total precipitations from 2009 to 2016.

1.2.3 Labor Data

For this paper, I take the labor decision of how many hours to work as a behavioral

variable with likely response to weather forecasts on a daily basis. If people expect uncom-

fortable temperatures such as extreme heat, they will decrease their labor hours to avoid

increased health risks. As discussed in related literatures (Graff Zivin and Niedell, 2014;

Garg, Gibson and Sun, 2020; Rode etal., 2022), this makes labor decisions an important

adaptation in response to temperature shocks.

To quantify labor decisions, I use the individual worker self-reported labor time-use

data sourced from China Health and Nutrition Survey (CHNS), household and individual

datasets13 as my labor variable. The CHNS project is conduct once in 2-4 years, sam-

pling with a multistage, random cluster process in 15 north-eastern, central, eastern and

south-western provinces, accounting for 47% of the country’s population and over half of the

national GDP in 2010 (Zhang etal., 2014). To match with my forecast dataset, my labor

sample covers 2 years of survey (2011 and 2015) across 52 cities from 12 provinces, with the

survey period spanning 10 months in the second half of the two years (July-December 2011,
13This research uses data from China Health and Nutrition Survey (CHNS)

(https://www.cpc.unc.edu/projects/china), grateful to research grant funding from the National In-
stitute for Health (NIH), the Eunice Kennedy Shriver National Institute of Child Health and Human
Development (NICHD) for R01 HD30880, National Institute on Aging (NIA) for R01 AG065357, National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) for R01DK104371 and R01HL108427,
the NIH Fogarty grant D43 TW009077 since 1989, and the China-Japan Friendship Hospital, Ministry
of Health for support for CHNS 2009, Chinese National Human Genome Center at Shanghai since 2009,
and Beijing Municipal Center for Disease Prevention and Control since 2011, and thanks to the National
Institute for Nutrition and Health, China Center for Disease Control and Prevention, Beijing Municipal
Center for Disease Control and Prevention, and the Chinese National Human Genome Center at Shanghai.
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September-December 2015).

The labor take-up variable I use is the weekly labor supply in unit of hours, the answer to

the CHNS individual level survey question asking what is the participant’s total number of

hours working in the previous week. I link each observation of labor with my forecast dataset

by city of residence14 and date of survey15. When merging with the forecast data, I keep

only observations with non-missing Tmax forecasts across all seven days during the labor

reporting week16. Various demographic variables and household characteristics surveyed by

CHNS are kept in the labor dataset for later heterogeneity analysis, including age, gender,

education, previous year employment and income (2015 currency with inflation adjusted by

city level CPI provided by CHNS). Focusing on the working population, I limit the survey

sample to adults aged 16 − 65.

My merged labor sample size includes 11,012 individual level reports of non-missing

weekly labor hours17, almost evenly splitted between 2011 (5802) and 2015 (5210). Indi-

viduals reported in this sample are all employed in 12 occupation categories plus others or

missing, covering workers of various types with both low and high incomes, in urban and

rural areas. Since the sample does not contain the lower GDP and less population dense
14Spatial cross-work table from Volume I, p659-p662 of the published book “The Health and Nutrition

Conditions of Residents in Eight Provinces of China” by Keyou Ge, 1998. The greatest level of spatial
identification is district or county, but I take city level because people are likely to work in the same city
but different districts as their residence. Robustness check is conducted with available data matched at
district/county level, and the main results of this paper have almost no changes.

15To match the time scale of the labor variable, weather and forecast variables are also aggregated to
weekly by the previous natural week of the survey date.

16The attrition rate is 3% with observations dropped in 15 cities. They only apply to 2011 where more
forecast videos are missing.

17Some but not all individuals report in both surveys 2011 and 2015.
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western provinces, results of this paper may not apply to these underrepresented regions

of the country. But on a population weighted average, this sample has city characteristics

representative of the national average in 2011 and 201518. The dataset may have another

problem with bunching, where self-reporting errors make relatively larger mass of weekly

labor observations by multiples of 5 or 7, especially the 40 hours work per week (8 hours

per day over 5 weekdays as the standardized working time). Further works with alternative

Chinese labor dataset will be desirable for robustness.

1.2.4 Control Variables

I collect city-year or city level environmental and socio-economic variables from various

data sources for control. Demographic and macroeconomic variables (for example, GDP

per capita adjusted to 2015 value by GDP deflater source World Bank, population, city

area) come from China City Statistical Yearbook, 2011-201919. Complimentary geographical

variables including administrative boundaries come from the 2017 release of State Bureau

of Surveying and Mapping20. Elevation data is from the World Bank21. Number of weather

stations is obtained by counting stations within each city boundary, latitudes and longitudes

posted by CMA.
18Comparison of a selected set of climate and macroeconomic variables between the national and labor

sample cities by population weight is presented in Appendix 1.H.1.
19the electronic tables are published on CNKI.net. The yearbook records city level data for the previous

year of its publication. All these variables vary by city-year, except I take city areas and water resources as
time-invariant from the most recent 2019 yearbook.

20Applied from National Catalogue Service for Geographic Information. Grid files are summarized by 2018
city and district administrative codes to obtain boundaries, river lengths and lake areas.

21Pixel level elevations at https://datacatalog.worldbank.org/search/dataset/0037910. City level elevation
is summarized by averaging across pixel points falling within each city boundary.
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1.2.5 Summary Statistics

Figure 1.1 compares the city level daily forecast and realized Tmax distributions. For

the labor sample used in this paper (Panel (a)), realized and forecast temperature distri-

butions are of similar shape (negatively skewed, with modes about 25C − 30C, the usual

comfortable daily maximum temperature range for human). Forecast distribution is to the

right of the realized, by an average of 1.2C. This bias implies negative forecast errors, or the

daily weather forecasts of Tmax usually overestimate the realized temperatures22. Higher

moments are less different, with the standard deviation of the forecast distribution only 0.3C

higher than the realized. The same observations apply for the larger sample containing all

cities all days in 2011 and 2015 (Panel (b)). Because the full sample covers inland northern

and western cities with more complex atmospheric dynamics that are harder to predict, its

distributions have longer tails.

Summary statistics for the merged labor sample with 11,012 observations are displayed

in Table 1.1. The key labor variable, hours worked last week, is an average of 40.3 hours

(5.76 hours averaged by 7 days or 8.06 hours averaged by 5 weekdays). Its range is relatively

large, ranging from 0 to 24 (mostly service workers) hours worked every day of the week.

Looking into weather variables over the survey weeks, daily Tmax forecasts cover both hot

and cold temperatures from −5C to 40C. Its mean is 22.3C, again over-predicting by about

1.3C than the mean of realized Tmax23. Labor heterogeneity is featured in their demo-

graphic and the economic conditions. In the sample, 36.8% individuals are from provincial
22Actually, the percentage of city-days where Tmax forecasts overestimate in the sample is 73.5%.
23Note these summary statistics are different from the previous histograms because they are weighted by

number of individuals surveyed, while the histograms equal weight each city-day observation.
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Figure 1.1: Daily Maximum Temperature Distribution, Forecast and Realized
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capital cities or centrally-administered municipalities and 40.6% from urban areas, leaving

more than half that are likely in less developed areas. An average worker is about 43.8 years

old, with more male (53.9%) than female (46.1%). Only 21.5% with reported education level

has a college degree or higher, but the percentage is still greater than the national average24.

From questions answered regarding previous year of the survey, workers worked an average

of 10.3 months, earning monthly wages ranging from almost zero to above 1 million Yuan

with a mean of 3,505 Yuan. The sample represents a lower income group with annual wage

income 37,219 Yuan than the national average25.

Table 1.1: Labor Sample Summary Statistics

Variable N Mean STD Min Max

Avg. Hours Worked Last Week 11012 40.271 18.648 0.000 168.000
Daily Forecast Tmax [C] 77084 22.257 7.138 -5.000 40.000
Daily Real Tmax [C] 77084 21.004 6.804 -7.636 34.780

Weekly Precipitation [mm] 11012 17.018 21.049 0.000 109.898
In Capital City 11012 0.368 0.482 0.000 1.000

Urban 11012 0.406 0.491 0.000 1.000
Age 11012 43.752 10.987 16.000 65.000
Male 11012 0.539 0.498 0.000 1.000

College Degree or Higher 10672 0.215 0.411 0.000 1.000
Months Worked Last Year 10896 10.292 2.996 0.000 12.000

Monthly Wage Last Year [2015 Yuan] 6595 3505 20561 4 1149424
Wage Income Last Year [2015 Yuan] 7503 37219 59664 37 1967213

Note: The full labor sample includes N = 11,012 observations by individual-week-survey (2011 or 2015);
Daily forecast and realized Tmax are the only two variables summarized across all days included in the
reported labor week; Wages are inflation adjusted to 2015 currency by city level CPI.

24In 2021 the number is about 15%, source National Bureau of Statistics of China.
2553,615 Yuan in 2015, source National Bureau of Statistics of China.
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1.3 Empirical Strategy

1.3.1 Empirical Motivation

The empirical goal of this paper is to demonstrate there are labor response to forecast

temperatures. The identification strategy would necessarily assume that decision makers

take into consideration forecast information, and at least partially determine their labor

choices based on forecasts ahead of weather realizations. This is suggested by Hsiang (2016),

stating behavioral responses like labor can be dependent on both realization and belief about

weathers. And weather forecasts are usually believed to be important but imperfect infor-

mation in shaping the public’s belief of future weathers.

The first empirical strategy is the simple regression estimating the average labor response

to forecast temperatures. Similar to the models of labor-climate response from climate eco-

nomics literature such as Graff Zivin and Neidell (2014), Garg, Gibson and Sun (2020), Rode

etal. (2022), such relationship can also be addressed with the regression on realized tem-

peratures. Results are expected to be very similar, because forecasts are highly correlated

with realized temperatures26. Particularly, both simple regressions on forecast or realized

temperatures are likely to find that labor hours decrease under uncomfortable temperatures

like extreme heat, because of low productivity and increased health risks (Heal and Park,

2015).

The simple regression model misses an important fact, that labors may respond differently
26In my sample, the correlation is over 95%, and increases to over 97% if aggregate to weekly.
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to accurate versus inaccurate forecasts. So instead for my main analysis, I will incorporate the

impacts of average forecast accuracy perceived from historical forecast performance, which

may be more important in shaping people’s beliefs leading to labor decisions. In reality by

behavioral economic theories, overreacting to not-that-extreme longer run average weather

forecast errors is possible when people are making decisions under uncertainties, or knowing

the potentials to endure losses (Twersky and Kahneman, 1974; Kahneman, Knetsch, and

Thaler, 1991).

My baseline regression is then the simple regression adding the interaction with a sec-

ond treatment representing the perceived forecast accuracy in medium-run (defined in next

subsection). In this setting, my hypothesis is that individual decision makers plan their

labor activities according to weather forecasts as well as the perceived medium-run average

forecast accuracy over the past. Therefore, this regression estimates the labor response to

forecast accuracy. By this, I also solve the problem of indistinguishable effects from realized

temperatures with only the simple regression27.

In an ideal setting, both weather forecasts and forecast accuracy will be randomly as-

signed to individual decision makers, which is difficult to obtain even with field experiments28.

In this paper, I will argue that both forecasts and forecast accuracy are probably exogenous

as largely determined by the same numerical modeling uniformly applied to all regions of the
27Because of the high correlation between forecast and realized temperatures in my sample, controlling

realized temperatures directly in the simple regression will cause biased estimates due to multicollinearity.
28In that case, I would need to analyze the changes in labor outcomes before and after individual decision

makers are randomly provided with no, low and high quality weather forecasts. But since people in the
experiment can easily receive outside information about near-term forecasts provided as a public good, even
this RCT setting will be hard to achieve.
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country, and that meteorologists engaged in the forecasting process are roughly rational in

making their best judgments about the model outputs. To test this assumption, I will also

control interactions with observable economic and physical factors that may have impacts

on both forecasts and labor for robustness check against omitted variable bias (OVB).

My research design is different from other literatures on short-range weather forecasts,

in terms that I argue the labor reaction to forecasts through observing differential labor re-

sponses under different perceived forecast accuracy over historical forecasts. Lemoine (2018)

proposes a model and empirical approach of regressions controlling both forecasts and real-

ized weathers. Shrader, Bakkensen, and Lemoine (2022) uses an empirical design to address

the outcome variable (mortality) respond to instantaneous forecast errors while controlling

realized temperatures. These existing models focus on the impacts of instantaneous forecast

errors instead, assuming that decision makers rationally access the forecast information with

credibility.

1.3.2 Forecast Accuracy Metric

To complete the empirical design, I first need to define a forecast accuracy metric per-

ceived by individual workers in my labor sample. When it is almost impossible to keep in-

stantaneous forecast errors at almost zero everyday because idiosyncratic shocks in weather

conditions are unpredictable by even the most advanced meteorological models, perceived

accuracy of forecasts is more likely represented by the longer run average of forecast errors.

Consider i is the city and t is the date, Tmaxforecastit is the weather forecast broadcast at
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the night of date t−1 predicting the maximum temperature of the next day t. I represent the

perceived accuracy of this day t forecast with the root-mean-squared-error (RMSE) between

forecast Tmaxforecast and realized temperatures Tmaxreal, over a medium-run length rolling

window of the previous half-year:

RMSETmax
it =

¿
Á
ÁÀ 1

R

R

∑
s=1

(Tmaxrealit−s − Tmax
forecast
it−s )2

The forecast accuracy metric RMSEit is defined as the square root of average sum of

square errors eis = Tmaxrealis − Tmaxforecastis , realized middle of the day s, over all days s

on the rolling window t − 1, t − 2, ..., t − R with R = 183. As a result, my RMSE metric

summarizes the average forecast errors for nearest 183 days29. The lower the RMSE, the

smaller the average forecast errors, and the more accurate the weather forecasts are perceived.

By definition, the RMSE metric weights both bias and precision of forecasts (for analysis

of the two breakdown quantities, see Appendix 1.H.2). For my main analysis, I choose a

rolling window of R = 183 days (half a year) as it maximizes the explanatory power of the

main regression (see Appendix 1.B). This rolling window RMSE is not the unique metric of

perceived forecast accuracy. Alternative metrics are tested later for robustness checks, and

results do not diverge from the main specification and do no improve on the explanatory

power of the baseline regression.

The resulting RMSE metric varies both in time and in space. As summarized in Figure
29Forecast error for t − 1 is realized midday of date t − 1, hours before the date t forecast is aired on TV.
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Figure 1.2: Summary Plots for the Spatial and Temporal Variations of Forecast
Accuracy Metric, Half-Year Rolling RMSE.
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1.2, Panel (a) shows that RMSE spans a range of different values from about 1C to above

4C, featuring significant mass around the mode [2C,3C]. In Panel (b), spatial variations

are shown to be quite significant and persistent both within and across province boundaries

as well as topographical features (e.g., rivers and mountains). Very large RMSE occurs

for northern and western inland cities, where weather predictions are harder with higher

elevations and less stable climate conditions, but of small population and not included in

the labor sample of Panel (c). The labor sample average still covers a visible range of 2.35C,

with higher RMSE cities to the north-east and south-west of the country.

Meanwhile, temporal variations in RMSE are much smaller in magnitudes because of

smoothing over the half-year window. In my labor sample, 82.8% of total variations are

contributed by spatial (between) variations. As indicated in Panel (d), there is a seasonal

pattern when RMSE is maximum around fall and minimum around spring (resulting from

smaller forecast errors over colder months), but the size of their average difference is only

about 0.6C. Total RMSE averaged across all cities and dates of the year only decreases by

0.078C (2.3%) from 2011 to 2015. These decreases are non-monotonic, mostly coming from

the spring months.

An important question related to the exogeneity assumption of empirical design is where

these variations in forecast accuracy, especially the spatial variations, come from. Based

on the procedure of Chinese weather forecasting, forecast inaccuracy can arise from various

factors. Among the observables, economic and physical conditions are by design likely related

to forecasts performance. To examine that, I run the simple OLS regression of RMSE on
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the sets of selected economic and physical factors in Table 1.C.1 (economic factors) and

1.C.2 (physical factors)30. Both economic and physical factors explain some variations in

RMSE, with statistically significant coefficients for city area31, population, share of labor

force, annual mean and standard deviation of realized Tmax32, number of weather stations,

greenland area and length of rivers. Physical factors contribute more than economic factors33,

but neither can explain all the variations of RMSE34. The left over variations are can related

unobserved factors from more exogenous events35.

1.3.3 Regression Design

As discussed in previous subsection, I first run a simple regression estimating the average

labor response to forecast temperatures. This regression design is similar to previous liter-

atures, such as Graff Zivin and Neidell (2014), but replacing the response to realized with

forecast temperatures:
30The regression is run on distinct observations of RMSE by city-day covered by my labor sample.

Observations with missing economic or physical factors are dropped, remaining N = 9507. These city level
control variables are either invariant in time or averaged by years, therefore mainly representing the spatial
variations. To capture temporal variations also, I allow a date fixed effect δt in column (3) of these tables.
Since the labor sample is taken near end of the year, current year average may be more representative for
the climate condition. An alternative with previous 5-year average temperature and precipitation is also
run, giving similar results. The same regressions on the extended sample of all cities and all days with
non-missing forecasts in 2011 and 2015 are summarized in Table 1.C.3 and 1.C.4 with similar conclusions.

31Positive significant estimates consistent across all three columns, meeting the intuition that larger cities
are harder to cover with forecasts therefore come with greater RMSE.

32The negative coefficients are more counterintuitive, implying that hotter cities with more daily maximum
temperature variations enjoys lower RMSE, while the general belief is that more extreme and more variant
weathers are harder to predict.

33Comparing R-squared of columns (1) of the two tables, physical factors has greater explanatory power
than economic factors (0.489 vs 0.405), consistent with the theory that the physical conditions are more
correlated because they enter the scientific process generating those forecasts.

34The full regression column (2) containing both sets of factors explains just below 60% of the data, leaving
over 40% unexplained variations in the residual term. As expected in column (3), further controlling for
time fixed effect does not have great impacts on the regression results, still leaving over 30% to unobserved
factors.

35For example, the limitation of numerical models, the introduction of new meteorological satellites, the
decrease of human mistakes due to improved trainings, and the influence of global climate events like El
Nino.
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Laborikt = f(Tmax
forecast
it ;β) + γ′Xit + εikt (1.1)

Labor response to next-day forecasts is estimated as a non-linear function of Tmaxforecast.

Note that index k is per person surveyed, i is the city where the person resides, t is the day

that forecasts target. The control set X includes a quadratic function of real precipitations

(i.e., controlling for precipitation and its square). Month and city fixed effects are also in-

cluded. All variables on the right hand side (except for fixed effects) are summed by the same

natural weeks36 as the outcome variable of weekly labor hours to match the data frequency.

Standard errors are clustered at city level.

The baseline regression design is built on the simple regression Eq. 1.1 with the inter-

action of half-year rolling RMSE. The RMSE metric represents the perceived forecast

accuracy, entering the regression independently as the linear control as well in X. This

adapts an empirical design similar to Carleton etal. (2020), estimating the differential la-

bor responses to forecast temperatures under space-time varying perceived forecast accuracy

measured by the covariate RMSE:

Laborikt = f(Tmax
forecast
it ;β0) + f(Tmax

forecast
it ;β1) ×RMSEit + γ

′Xit + εikt (1.2)

Here I take the RMSE metric to be uniform across the labor reporting week as real-

ized on the first day (Monday), since the temporal variation of RMSE across seven days is
36Monday to Sunday.
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small37. All settings remain the same as the simple regression, with X containing precip-

itation and its square, city and month fixed effects besides RMSE as a linear control. In

robustness checks, X with more linear controls and more stringent fixed effects are tested.

Realized temperatures are not controlled in the baseline regression due to multicollinearity,

but will be included for robustness. Standard errors are again clustered at city level.

For main analysis, the non-linear labor response function f(.) is taken to be a restricted

cubic spline with 5 knots, (5C,15C,20C,25C,35C). Appendix 1.B discusses the specifica-

tion choice and justify the positions of knots based on balancing explanatory power and

precision of regression estimates for both Eq. 1.1 and Eq. 1.2). Robustness checks later

will perform analysis on alternative functional forms (non-parametric 5C bins and 3 knots

linear spline). The function parameter vectors β (β0, β1 in Eq. 1.2) are the key coefficients

for estimation, with which labor response to forecasts and forecast accuracy are identified

by these regression models.

To analyze the heterogeneity in labor response estimated by Eq. 1.2 by labors’ geograph-

ical, macroeconomic and demographic characters, I will also run the following regression

separating my sample by groups g ∈ G, with the set of group indicators 1g also included as

linear controls:
37Robustness is run for the explicit version allowing RMSE to vary across days of the week, but main

results have almost no changes.
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Laborikt =∑
g

1g[f(T
forecast
it ;β0g) + f(T

forecast
it ;β1g) ×RMSEit] + γ

′Xit + εikt (1.3)

Lastly, as argued in previous subsection, I run Eq. 1.2 controlling additional interaction

terms with potential omitted variables (OVB) possibly correlated with RMSE and are also

determinants for the labor-forecast responses to address robustness of my baseline results:

Laborikt = f(Tmax
forecast
it ;β0) + f(Tmax

forecast
it ;β1) ×RMSEit

+ ∑
m∈M

f(Tmaxforecastit ;βm) ×mit + γ
′Xit + εikt

(1.4)

Here M is the set of potential omitted variables with m ∈M as additional linear covari-

ates besides RMSE. In later robustness checks, I first consider m to be the average income

and climate variables commonly seen in climate literatures. I also use the saturated set with

all physical and economic factors possibly correlated with RMSE as discussed in previous

subsection. Each m is also included linearly in the control set X.

1.4 Results

1.4.1 Main Results

Main regression results are presented in Figure 1.3. The simple regression (Eq. 1.1) is in

Panel (b), and the baseline regression with RMSE interaction (Eq. 1.2) is in Panel (c) and
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(d). All three panels of labor responses are plotted against the horizontal axis of forecast

daily maximum temperatures in the range 0C−40C38. These labor responses are re-centered

at a reference temperature of Tmaxforecast = 25C, approximately the daily maximum tem-

perature where human feels comfortable (Graff Zivin and Neidell, 2014; Carleton etal., 2020;

Rode etal., 2022). These plots represent the changes in daily labor hours under the forecasts

Tmaxforecast, relative to the reference of 25C39.

First from the simple regression (Eq. 1.1) results in Panel (b), daily labor hours decrease

under high daily forecast temperatures relative to the reference of 25C. But the magnitude

of such decrease is small, about 13−16 minutes, and statistically insignificant at 5%. As ex-

pected giving the high correlation between forecast and realized temperatures, this regression

result is similar to the labor response estimated with realized temperatures (Figure 1.D.1)

and cannot be interpreted directly as labor decisions reacting to forecasts. The magnitudes

of these hot end estimates are consistent with previous literatures which give estimates of

17−22 minutes decrease of labor per day under extreme heat (40C) (Garg, Gibson and Sun,

2020; Graff Zivin and Neidell, 2014; Rode etal., 2022). Unlike these literatures showing ei-

ther flat or negative labor decreases under the cold (below 25C), my global regression results

have an uncommon jump of labor up to half an hour (30 minutes) under the medium-cold
38This range accounts for 99.8% of the sample temperatures, dropping only Tmaxforecast < 0. I focus

more on the hot end responses where labor take-up decreases due to health concerns are more evident in
previous literatures.

39The main reason to recenter at Tmaxforecast = 25C is because by design any labor response estimated
directly from the regressions would be relative to 0C, which is a cold temperature hard to interpret for
intuitions. But under a comfortable temperature forecast of Tmaxforecast = 25C, I can expect maximum
labor supply choices. I can further assume little labor variations under this reference forecast with changing
RMSE in the sample range [1.4C,4.3C], as the realized temperatures are likely still comfortable enough for
labors to choose their maximum working time.
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forecast range of 15C − 20C40. One explanation can be that there are overlooked factors

shifting the labor-temperature response such as forecast accuracy41.

From the baseline regression (Eq. 1.2), I estimate the labor responses to forecast tem-

peratures from 0C − 40C under different perceived forecast accuracy scenarios RMSE =

3C,2C,1C in Panel (c)42. From left to right, when forecasts are inaccurate at RMSE = 3C,

I observe an almost flat and statistically insignificant labor response across all forecast tem-

peratures relative to 25C, except for the positive labor change around 20C. Then moving

towards more accurate forecasts when RMSE decreases towards 1C, I observe the large and

5% statistically significant labor decrease relative to 25C over two ranges of forecast temper-

atures. One is the hot temperatures Tmaxforecast ≥ 30C, and the other is the medium-cold

temperatures 15C ≤ Tmaxforecast < 25C. On the other values of forecast temperatures in-

cluding the cold end Tmaxforecast < 15C, labor response remains statistically insignificantly

different from the reference 25C regardless of RMSE. Therefore, there are large and signif-
40This observation is actually quite consistent across different functional form choice f(.), or with the

estimation under realized temperatures Figure 1.D.1.
41It can also because this paper uses a different sample range and including more recent years of the CHNS

surveys compared with the previous study of Chinese labors (Garg, Gibson and Sun, 2020).
42RMSE range is based on in-sample distribution. RMSE = 4C is not selected because only 0.15%

observations have RMSE ≥ 4C. The sample even extending to all cities and days 2011 and 2015 features
RMSE with almost no weight below 1C, making labor responses under lower RMSE towards the “perfect”
forecasts at RMSE = 0C extrapolations (in real life, perfect forecasts are impossible because climate condi-
tions change with stochasticity and randomness). In Appendix Figure 1.D.2 I still illustrate the RMSE = 0
case extrapolated by my baseline regression model, featuring very large and statistically significant labor
decrease under extreme hot and medium-cold. The decrease of labor under perfect forecasts at 40C is very
large enough to reduce daily labors to zero. For more realistic representations, I also select five large provin-
cial capital cities (Jinan, Changchun, Beijing, Kunming and Chengdu) with increasing average RMSE from
about 1.5C − 3.8C over all days with non-missing forecasts 2011 and 2015. Under their different levels of
average RMSE, the labor response is estimated for each city using Eq. 1.2 in Table 1.D.1. Conclusions are
similar to Panel (c), showing negative labor responses relative to 25C under hot (Tmaxforecast = 35C,40C)
and medium-cold (Tmaxforecast = 20C) temperature forecasts for cities with smaller RMSE only (Jinan
and Changchun), but not significant and even the reverse positive for cities with higher RMSE (Beijing,
Kunming and Chengdu).
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icant labor decreases under hot or medium-cold forecasts only when forecasts are perceived

as accurate enough. Instead when forecasts are inaccurate, these labor responses diminish.

The same conclusion can be drawn from the RMSE marginal effects graphed in Panel

(d). For these two forecast temperatures ranges (hot and medium-cold), there are large

magnitudes of 5% statistically significant positive marginal effects of the RMSE covariate,

while the other values of Tmaxforecast correspond to near-zero and statistically insignificant

marginal effects relative to 25C. In interpretation, marginal decrease of RMSE will lead

to large and statistically significant labor reduction under hot or medium-cold temperature

forecasts, contributing to the negative labor responses under these two forecast ranges under

RMSE = 1 seen in Panel (c).

Focusing on the hot end response above 30C, the marginal effect of RMSE is mono-

tonically increasing in Tmaxforecast, resulting in greater decrease of labor under hotter tem-

perature forecasts when RMSE ≤ 2C. At maximum, 2.4 hours of work are reduced under

Tmaxforecast = 40C per 1C decrease of RMSE, leading to the large relative labor reduc-

tion by 4.5 hours per day under Tmaxforecast = 40C and RMSE = 1C. Even for not that

extreme hotness under Tmaxforecast = 35C, the labor reduction perceiving RMSE = 1C

forecasts is as large as 2.3 hours per day, suggesting 28.9% decrease in labor supply (com-

pared with standardized 8 hours of working per day)43. These values are not only large

impacts of forecasts and forecast accuracy in reality, but also factor of tens greater than
43Considering the country’s public policy ordering to pause outdoor labors during extreme heat (above

35C), these results can reflect a combination of the optimal labor choice on individual (intensive) and society
(extensive) margins under expected heat waves. In the main section, I discuss as if it is a rational public
policy consistent with labors’ utility maximization.
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the simple regression estimates in Panel (a) as well as previous literatures. However, these

large estimated labor responses are likely not contributing significantly to the overall welfare

changes because extreme hot forecasts represent only a small share of observations in reality

(Tmaxforecast ≥ 35C accounts for only 1.2% in Panel (a)).

Labor response to medium-cold forecasts [15C,25C) is non-monotonic, smaller in mag-

nitude but quite robust and statistically significant. When there are accurate forecasts with

RMSE = 1C, people work up to 1.2 hours less under colder temperature forecasts in this

range relative to 25C. When there are medium forecasts with RMSE = 2C, people’s labor

hours are similar to under 25C. When there are inaccurate forecasts with RMSE = 3C,

people work up to 0.8 hours more. The maximum marginal effect and labor decrease under

accurate forecasts happen around Tmaxforecast = 20C, with these effects decreasing both

above and below this temperature. These responses are again large in reality, especially

making greater welfare impacts with much higher frequency of occurrence for the medium-

cold temperature cohort compared with extreme heat (45.2% of the sample from Panel (a)).

According to this empirical analysis, it has been suggested that labors respond to both

forecasts and forecast accuracy. Related to theories in climate economics, main results can

be explained by workers reacting to forecasts for the trade-off between wage income and

utility gains from not working under uncomfortable temperatures. When people access the

forecast information when forecasts are accurate, they are more responsive in labor decisions

for health concerns. Otherwise if forecasts are perceived as inaccurate, they are reluctant to

change their labor time at the costs of wage and consumption. For the hot end, this theory
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matches the documented disutilities of labors working under heat. For the medium-cold

range, similar argument applies but it is less seen that the labor decrease disappears when

forecasts drop below 15C44. A reasonable explanation would be that heating is turned on

as temperature decreases, making labors less sensitive to forecasts45. In the next subsection,

this hypothesis will be tested with a heterogeneity analysis by availability of heating.

Figure 1.3: Main Regression Results - Forecast Temperature Histogram, Simple
Regression, Baseline Regression with RMSE Interaction Array and Marginal
Effect
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Note: The histogram shows distribution of
N = 77,084 observations of Tmaxforecast covered by
the labor sample (by individual-city-day, weighted
by number of individuals surveyed as in Table 1.1).
Observations are sorted into 5C bins with the end
bins (−∞,5C) and [35C,∞).

(b) Simple Regression
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Note: The simple regression run is Eq. 1.1. Daily
labor response is evaluated with the estimated
f(.;β) from the regression (keeping all other
controls in X constant), and subtracting the
reference labor response at 25C. In interpretation,
this plot indicates the labor response to forecast
Tmax relative to 25C. The shaded area is the 95%
confidence interval for the labor response.

44Other papers mostly focus on the hot end labor responses and do not find such labor response. At the
cold end, some find little to no response (Graff Zivin and Neidell, 2014; Rode etal., 2022), while others find
almost symmetrical labor decrease as the hot end (Garg, Gibson and Sun, 2020).

45According toWHO’s suggestion (source: https://apps.who.int/iris/bitstream/handle/10665/275839/WHO-
CED-PHE-18.03-eng.pdf) and the country’s engineering standard for industrial and commercial working
conditions of heating (GB/T18883-2002, GB 50019-2015, GB50019-2003), indoor temperatures in China are
suggested to maintain at 16−24 Celsius. This would indeed define below 15C, especially for daily maximum
temperature, as the range where heating should be provided in workplaces.
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Figure 1.3, continued

(c) Baseline Regression with RMSE Interaction - Array of Estimated Labor Responses
Under RMSE=3C,2C,1C
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Note: Baseline regression 1.2 is run. Daily labor response relative to 25C is evaluated with the regression
estimated functions f(.;β0) and f(.;β1) interacted with RMSE = 3,2,1, keeping other controls constant
and subtracting the labor response at the reference temperature of 25C. Shaded area represents the 95%
confidence interval. From left to right, array displays the scenarios when RMSE decreases from 3C to
1C. The above-graph notes summarize the sample share of each 1C range of RMSE by number of
observations in the labor sample (N = 11,012), and the population share of 2015 by city average RMSE
across the full 2011 and 2015 sample of 685 days and 291 cities with non-missing 2015 population (source:
China City Statistical Yearbook).

(d) Baseline Regression with RMSE
Interaction - Marginal Effect of RMSE
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1.4.2 Heterogeneity Analysis

An important question remained to answer is what types of labor in specific contribute

to the large and significant labor responses to weather forecasts estimated in this paper. For

this purpose, I run heterogeneity analysis separating my labor sample with Eq. 1.3.

Firstly, I test the hypothesis about heating availability and medium-cold labor responses.

To do so, I run heterogeneity analysis separating the sample by northern and southern cities

in China. These cities are traditionally defined by the Qin-Huai Line, where northern cities

have greater accessibility to heatings partially due to their central heating infrastructures

built by the government. Southern cities have individuals, households and corporates fully

in charge of their heating needs, with more costly and less convenient air conditioners or

smaller portable heating devices. By hypothesis, northern cities are more likely to have the

medium-cold temperatures 15C − 25C covered under some preventive measures like heating,

making labors less responsive to forecasts and forecast accuracy over this range, especially

for those working indoors. Meanwhile, southern cities would be more sensitive to forecasts,

until it is cold enough and heating is vastly turned on.

My results from regression Eq. 1.3 present the cold end arrays (hot ends are quite noisy)

for northern and southern cities in Figure 1.4. The labor decrease in response to medium-cold

forecasts under low RMSE is seen only in southern but not northern cities, then affirming

my hypothesis that heating may help the northern city labors to be less sensitive to work

under medium-cold forecasts. There is also an alternative test in Figure 1.D.3 instead sub-
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sampling for cold, moderate and hot cities by current year average realized Tmax tercile

groups46. Again, the labor decrease under medium-cold forecasts and low RMSE only ex-

ists for hot and moderate terciles, but not the cold tercile.

Secondly, I want to explore whether different groups of labors respond differently to fore-

casts and forecast accuracy. I first run the heterogeneity analysis with the CHNS primary

occupation categories. Figure 1.D.4, 1.D.5 and 1.D.6 show the results for every occupation47.

All categories have noisy estimates for both arrays and marginal effects, making any argu-

ments not conclusive due to lack of statistical significance. However, I can still see typical

outdoor occupations like drivers and farmers displaying results similar to the baseline, show-

ing labor reduction under hot and medium-cold forecasts as RMSE decreases. Instead for

some typical indoor occupations like managers, or jobs with less flexibility such as police-

men, the labor responses are either flat or opposite to the main results. Some categories like

office staffs and entertainment business are probably indoor but still display some negative

response to hot forecasts. Other occupations, such as service workers and technicians, are

less apparent in their exposure to climate risks. Overall, these results are about consistent

with previous literatures suggesting labor response to temperatures is mainly contributed by

high risk workers of more climate exposures (Graff Zivin and Neidell, 2014; Rode etal., 2022).

For evidence with greater statistical power, I run the subsample analysis on two subgroups

separated by 13 macroeconomic and demographic variables at city, household and individual
46Similar results are found using the previous five-year average or current year 20C based heating degree

days of Tmax.
47Missing or non-specified are included in the regression but results are not presented here. That con-

tributes to 5.9% of the sample.
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Figure 1.4: Heterogeneity Analysis with North-South Separation
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levels, and present the RMSE marginal effects comparison for each set in Figure 1.5. There

are some indications that labor decrease under accurate uncomfortable temperature forecasts

occurs only for more vulnerable labor groups (in health or in economic conditions) that can

also be more sensitive to climate risks. Those include the lower degree holders (Panel (b)),

the older population (Panel (c)), the lower household or individual incomes (Panel (d) and

(e)), labors working fewer hours and earning lower hourly wages last year (Panel (g) and

(h)), and workers living in rural districts (Panel (j)). These results match the classical labor

theory that those gaining less from labor or lose more to climate shocks would have greater

incentive to work less in trade-off with lower risks working under uncomfortable weathers

they believe to come.

1.4.3 Robustness to Factors that Affect Labor-Forecasts Responses

In my baseline regression Eq. 1.2, omitted variable bias (OVB) may affect the key esti-

mates of labor-forecasts responses. For robustness against OVB, I run Eq. 1.4 controlling

sets of potential omitted variables both as additional interaction terms and separately as

linear controls. Such variables are omitted variables if they are both determinants of the

labor response to temperature forecasts, and correlated with the half-year rolling forecast

RMSE covariate. As argued before, the RMSE metric can be correlated with the economic

and climate conditions of each city. In previous climate economic literatures (Carleton etal.,

2020; Hsiang, 2016; Rode etal., 2022), both conditions are important adaptation factors

under which labor responses to temperatures vary. Therefore, I want to include the set of

omitted variables representing the economic or climate conditions.
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Figure 1.5: Heterogeneity Analysis with Two-Group Subsamples - Comparison
of RMSE Marginal Effects

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

Male

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

Female

(a) Gender

-4
-2

0
2

4
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

College Deg. or Higher

-4
-2

0
2

4
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

Lower than College Deg.

(b) Higher Degrees

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

Age 40 or Lower

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

Age Above 40

(c) Age

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

HH Income<59.414K

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

HH Income>=59.414K

(d) Household Income

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

Ind. Income<25.361K

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

Ind. Income>=25.361K

(e) Individual Income

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

HH Size<=3

-2
0

2
4

6
D

ai
ly

 L
ab

or
[h

rs
]

0 5 10 15 20 25 30 35 40
Forecast Tmax[C]

HH Size>3

(f) Household Size

39



Figure 1.5, continued
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Note: Heterogeneity analysis is run with Eq. 1.3 where the two subgroups identified by 13 demographic
and economic variables are allowed with different direct and RMSE interacted marginal labor responses to
forecasts. Marginal effects of RMSE relative to 25C are estimated and compared by the variables defining
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40



First of all, I include the two most studied covariates representing economic and climate

conditions, income (as higher income groups can be more flexible in adjusting their labor

hours) and average climate (as residents living in hotter places can be more used to working

under heat). Specifically, I take the income variable as the city-year GDP per capita in 2015

Yuan, and the climate variable as the city-year average realized daily Tmax48. Adding ei-

ther or both covariates in Eq. 1.4, I estimate the marginal effects of RMSE in Figure 1.649.

Overall, these marginal effects are little changed from the baseline in both magnitudes and

statistical significance. Explanatory power increases with adjusted R-squared as expected,

especially after adding the climate covariate of average Tmaxreal. Arrays also maintain the

baseline features (Figure 1.D.7). Therefore, the two major potential omitted variables do

not alter my baseline estimates of labor responses to forecasts and forecast accuracy.

Next, I consider the sets of full economic and physical factors used in previous section

(Table 1.C.1 and 1.C.2) possibly correlated with forecast RMSE. This is a saturated set,

with both potential omitted variables like average income and climate, and those likely not

determinants of labor response such as elevation50. Marginal effects of RMSE are estimated

for regression Eq. 1.4 including either or both sets of economic and physical factors as in-

teractions51 are shown in Figure 1.7. The rest two columns include city and season dummy

indicators as the interaction covariates, meaning to allow the labor-forecasts response to be
48There is also a version with previous five-year average as the historical climate variable, but regression

results are little changed.
49Here I only take the common sample where neither covariates are missing, decreasing the sample size

and adjusted R-squared from the baseline.
50Elevation is likely correlated with RMSE through the forecast generation process, but it is unlikely to

directly impact the labor-forecasts relationship.
51On a common sample with all these variables non-missing.
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Figure 1.6: Regression with RMSE Interaction, Adding Income and Climate
Interactions - Marginal Effects of RMSE
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Note: Plots show the marginal effects of RMSE interaction covariate relative to 25C, estimated in the
regression with double or triple interactions 1.4. Panels are the original main regression design (only
RMSE interaction), adding income interaction, adding climate interaction, adding both income and
climate interactions. For comparison, common sample is taken where neither income nor climate
covariates are missing (N = 10,457). Income covariate is taken as the log of city-year GDP per capita, and
the climate covariate is the city-year average realized daily Tmax of 2011 and 2015.
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city-specific or season-specific. Overall after adding economic and physical factors as interac-

tion covariates, the positive significant marginal effects at hot end persist and even increase

in magnitudes. Meanwhile, both magnitudes and statistical significance of the medium-cold

forecasts positive marginal effects decrease. With the most controlled city-specific labor

responses to forecasts, the positive marginal effects at hot and medium-cold again persist,

though their magnitudes increase but statistical significance falls. The season-specific inter-

action controls post almost no change from the baseline, ruling out the impacts of seasonal

changes in labor supply.

To summarize, the baseline results of this paper are not significantly changed by potential

omitted variables to the interaction term of RMSE. The list of potential omitted variables is

not exhaustive, so alternative empirical designs may be needed to further argue robustness to

OVB. I then test with an instrumental variable regression using elevation52 as the instrument

for RMSE interaction. Regression results are shown in Figure 1.D.8, still showing the hot

and medium-cold labor decreases under low RMSE, though all estimates are quite noisy

with extreme magnitudes53.

1.4.4 Other Robustness Checks

To further verify my baseline regression results of Eq. 1.2 in Figure 1.3, other robustness

checks are addressed in this subsection.
52It correlates with climate conditions and possibly RMSE but not other channels affecting the labor

response to forecasts. In addition, I control for the yearly average real Tmax for exogeneity assumption.
53Possibly due to the IV being weak by multiple tests (Cragg-Donald, Stock-Yogo, the non-significant

correlations shown in Table 1.C.2).
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Figure 1.7: Regression with RMSE Interaction, Adding Potential Omitted
Variables Interactions - Marginal Effects of RMSE
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Note: The plots show the estimated marginal effects of RMSE interaction covariate relative to 25C from
regression 1.4, adding full sets of economic or physical controls used in Section 3.1 as interactions. Panels
are only RMSE interaction (main regression design), adding extra interaction covariates of all economic
factors, all physical factors, both, adding city indicator interactions, and adding season indicator
interactions. For comparison, common sample is taken across the panels where none of the economic or
physical factors are missing (N = 9507).
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Specification Tests for Functional Form f(.) To test whether my baseline results are

robust to the choice of functional form f(.), I run the baseline with two alternatives described

in Appendix 1.B, 5C bins and 3 knots linear splines. Results are compiled in Figure 1.D.9

together with the main restricted cubic spline specification, keep the half-year rolling RMSE

as interaction covariate. Overall, the labor responses estimated with the other functional

forms are not statistically different for the main (linear spline is quite similar, bin is with

much statistical uncertainties because of few observations in hottest bin). I also run the

baseline for an alternative rolling window of four months (122 days), a minimum window

size chosen with maximizing explanatory power (see Appendix 1.B). Results are presented in

Figure 1.D.10, again baseline results remain robust, but statistical significance and estimate

magnitudes drop for restricted cubic spline. These alternative functional forms and rolling

window will also be included for sensitivity analysis in the next valuation step.

Alternative Fixed Effects My main specification uses city fixed effects though the small-

est spatial unit is district, because I assume labors can work and live in different districts

of the same city. On the other hand in order to increase estimation power and precision, I

control month instead of the smallest temporal unit of week fixed effects. Replacing with

more stringent fixed effect choices by districts (community) and by survey weeks (clustering

alters with the same level as spatial fixed effects), Figure 1.D.11) shows that the baseline

results do not change much.

Sample Restriction My labor sample includes extreme values of reported weekly labor

hours ranging from 0 (no work at all) to 168 (24 hours all working per day). To check the
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possibility of over or under reporting, I trim the top and bottom 1% weekly labor hours in

my sample, dropping those working 0 hours and more than 84 hours (on average 12 hours

per day) and leaving the trimmed sample size N = 10,438. Alternatively, I winsorize the

weekly labor hours on the highest end by 84 hours and run with the original sample size

N = 11,012. Regression results replicating Eq. 1.2 are presented in Figure 1.D.12, almost

replicating the main results, especially the marginal effects.

Extra Linear Controls Considering the notable correlations of local economics and indi-

vidual demographic characteristics with labor activities, I include additional linear controls

of the city-year level log GDP per capita, log population and individual level age, gender

and college degree indicators inX. Figure 1.D.13 illustrates the robustness results, minimally

changed from the main.

Realized Temperature Controls Though the main regression design exclude realized

temperatures for multicollinearity concerns, I include the same 5 knots restricted cubic spline

function for realized temperatures Tmaxreal as a linear control in Eq. 1.2 for robustness

checks. Main results are again robust in Figure 1.D.14, when the large hot and medium-cold

effects on labor decisions persist. Marginal effects are little changed from the main, but array

estimates lose some statistical significance due to the high correlation between realized and

forecast temperatures.

Limiting Temporal Variations of Perceived Forecast Accuracy To check whether

including temporal variations of RMSE affects the baseline results, I limit the day-to-day

temporal variations of the RMSE metric and replace with the yearly average city level fore-
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cast RMSE over three options, current year (2011 and 2015), previous year (2010 and 2014),

and first observed forecast sample year (2010). In Figure 1.D.15, all three options replicate

the arrays and marginal effects, while their regression R-squared decreases, suggesting more

explanatory power contributed by the rolling RMSE used for main analysis.

Different Forecast Accuracy Metrics I consider the following alternatives of theRMSE

metric as the indicator of historical weather forecast accuracy. Figure 1.D.16 replaces RMSE

with its two breakdown components (see 1.H.2 for details). Figure 1.D.17 runs with rational-

ized forecasts which have normalized forecast errors of mean zero54. Figure 1.D.18 assumes

that individuals instead predict forecasts by themselves with an auto-regression model on

historical realized temperatures55. Figure 1.D.19 has the regression run with splitted RMSE

separately interacted for cold and hot forecasts below and above 25C56. Figure 1.D.20 ap-

plies maximum absolute error of forecasts over 183 and 30 days rolling windows57. Table

1.D.2 summarizes these alternative metrics with the main RMSE. From all these plots58,

my main results maintain throughout even though labor response estimates have decreased

statistical significance and magnitudes. Except for the splitted RMSE, none of them has a

higher adjusted R-squared than the main.

54Temperature forecasts are rationalized using the OLS estimates between realized and forecast tempera-
tures on a rolling window of 183 days, for each city each date independently.

55The auto-regression model I use is AR(7), assuming individual predicts next day temperature forecasts
with previous 7-day realized temperatures. Estimates are obtained from separate regression runs per city
per day on a rolling window of 183 days.

56For this version, cold and hot RMSE are summarized for forecasts over the previous 183 days below or
above 25C only. Then they are separately interacted with cold or hot forecasts below or above 25C in the
regression, so the result figure displays two marginal effects.

57Maximum absolute errors can be large especially for non-capital cities where forecasts are approximated
at this stage, and these extreme values will be smoothed for average error metrics like the RMSE.

58Arrays are plotted towards different covariate minimums over the labor sample.
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1.5 Valuation

1.5.1 General Model and Assumptions

The empirical section of this paper has addressed the impacts of increasing weather

forecast accuracy (as represented by rolling RMSE of city level daily Tmax forecasts) on

people’s daily labor take-up decisions, in this case causing significant labor reductions under

uncomfortable temperatures to work under (extreme hot, medium-cold). These results have

implied that workers make use of forecast and forecast accuracy information in their labor

decisions for day-ahead hours of work.

Based on this assumption, I propose a simple one-period utility maximization model

under the general economic framework of labor-consumption trade-off with impacts from

realized weather shocks. Consider the following setting. An individual decision maker has

utility at time t dependent on one exogenous variable, the realized weather w, and two choice

variables, labor l and consumption c. The decision maker needs to choose l and c in the night

of previous day t−1, with the information of a forecast for the weather f (free-of-charge as a

public good) and a forecast accuracy metric a. Utility is not realized until after the decisions

are made in day t, when actual weather w is recognized.

Therefore, a typical worker completes the single-period utility maximization with uncer-

tainty under his or her belief of the conditional distribution of real weathers w∣f, a:
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max
l,c

Ew[u(c, l,w)∣f, a]] = max
l,c

(∫
w
u(c, l,w)p(w∣f, a)dw)

s.t. − pll + c ≤ I

Here consumption price is normalized to 1, therefore c stands for the total amount spent

on any consumption goods. l is in unit of hours of working in a day, with hourly wage rate

pl. The budget of the day is I.

To simplify the solution, further simplifications are applied. Firstly, I assume no savings

or fixed income investments, therefore the budget I is a fixed endowment to be consumed

by the end of period. Under this assumption, the budget constraint binds and consumption

can be substituted as c = I + pll. Secondly, for the utility function u(c, l,w), I assume its

functional form to be separable in l, c with a quadratic part of l and a linear part of c.

Moreover, I assume the weather shock w affect worker’s utility only through its interaction

with the labor part, reflecting the disutilities of working under uncomfortable weathers.

With these additional assumptions, I define the utility function as a quadratic function

in labor l and realized weather w59:

u(l,w) = αl2 + β(w)l

The parameter α is directly related to the labor return to wage rate. The function β(w)

59Note that since c is expressed linearly by l from the binding budget constraint, substitution merges the
parameter pl into the constant term of the interaction function β(w).
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expresses the sensitivity of worker’s marginal utility of labor to realized weather w.

After simplifications, the worker’s utility maximization problem can be solved with first

order condition, assuming interior solution with budget I large enough60:

l∗ = g(f, a) = −
Ew[β(w)∣f, a]

2α

Following this, the value of forecasts with accuracy a can be expressed as the objective

function averaged across distribution of f :

V (a) = Ef [Ew[u(l∗,w)∣f, a]] = ∫
f
∫
w
u(l∗,w)p(f ∣a)p(w∣f, a)dwdf

For analysis, I also define the intermediate value function as the average utility realized

when the individual takes an action l∗ = g(f, a) and then counter the weather shock w:

V̄ (w,a) = Ef [u(l∗,w)∣w,a] = ∫
f
u(l∗,w)p(f ∣w,a)df

Using the Bayes’ relationship and assuming the realized weather distribution p0(w) is

independent of a, V (a) is then the expected value of V̄ (w,a) over the distribution of w:

V (a) = ∫
w
V̄ (w,a)p0(w)dw

In later subsections, valuations of V̄ (w,a) and then V (a) will be approached.
60I has been dissolved as a constant term of the utility function, independent of the utility maximization

problem.
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1.5.2 Model Estimation with Baseline Regression Estimates

Since the individual decision maker can have non-rational belief of the conditional distri-

bution w∣f, a, their perceived objective functions could be different from the realized values.

This paper will be presenting the realized instead of perceived objective value functions,

using a novel estimation method without explicitly assuming on these beliefs.

To estimate the value functions V (a) and V̄ (w,a), I need to identify β(w) for the utility

function u (the parameter α can be referenced from labor elasticity, see the following dis-

cussion). Fitting the model with my data, I have the estimated equilibrium labor supply

l∗ as a function of the daily maximum temperature forecast f , and the perceived fore-

cast accuracy metric RMSE as a, corresponding to the analytical solution in my model

l∗ = g(f, a) = − 1
2α(Ew[β(w)∣f, a]). Assuming the decision maker would perceive that fore-

casts are “perfect” for a threshold of a∗ such that when a ≤ a∗, uncertainty dissolves and the

decision maker believes that f = w with 100% probability. Then the expectation term drops

out under a ≤ a∗:

g(w,a∗) = −
1

2α
β(w)⇒ β(w) = −2αg(w,a∗)

Then the non-linear function β(w) can be directly identified through the estimated labor

response function g(f, a) given a∗.

There are different choices of this threshold forecast accuracy a∗. In main valuation

analysis, I will take a∗ = 1, the minimum of the forecast sample covering all cities and all
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days in 2011 and 2015. This value is selected assuming that people realize forecasts cannot

get to their perfect points at a = 0, and they will be content with the current best observed

forecasts. This value is also not far from the labor sample minimum a = 1.4 (to 1.d.p.),

therefore making little extrapolation outside of the regression sample. In later subsection of

sensitivity analysis, results with a∗ = 0 (rational so only perfect forecasts are accepted) and

a∗ = 1.4 (no out-of-sample extrapolation) will also be presented.

Then I can propose the following steps for model estimation:

Step 1: Referencing α In my model, the scaler parameter α is the constant return

of labor. I approximate this parameter α ≈ −1
2(

∆l
∆pl

)−1 ≈ −1
2(η

l
pl
)−1 with elasticity of labor

supply, referenced as η = 0.353 (Li, 2016)61. In addition, l = 7.496, pl = 20.548 are summarized

from the labor sample used in this paper. In the end, I reference α = −3.882.

Step 2: Identifying l∗ = g(f, a) and β(w) The optimal labor decision l∗ = g(f, a) is

directly estimated from the baseline regression Eq. 1.2. Relative to 25C, this labor response

function is deduced with reference labor l̄ = 7.410 hours summarized from the sample week

with average daily forecast closest to 25C (see Appendix 1.E for details). As argued above,

β(w) = −2αg(w,a∗) is estimated by this labor response function under the selection a∗ = 1.

Step 3: Simulating V̄ (w,a) V̄ (w,a) is evaluated by averaging the estimated utility

u(l∗,w) for any pair of (w,a) across the normal simulations of f ∣w,a ∼ N(w − µ,σ2). I
61This paper estimates the elasticity quantity with choice-based conjoint analysis on the China Urban

Labor Survey (CULS) with six cities (worker age 16-64, almost the same as my sample). I take its estimate
for all workers in 2010, but other estimates for subgroups of labors will be used in sensitivity analysis.
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simulate V̄ (w,a) for the series of realized temperatures w = 0,1, ...,40 under the RMSE

metric a ∈ [1,4], fixing µ = 0 (which is the sample minimum, see Appendix 1.H.2) and

varying σ = 1,1.25, ...,4 (range from 1 to about the maximum over the labor sample).

Step 4: Aggregating to V (a) I estimate V (a) by taking the average of simulated V̄ (w,a)

weighted by a selected realized temperature distribution p0(w), which is the empirical dis-

tribution of Tmaxreal over the pooled sample of all 342 cities and all 730 days in 2011 and

2015. V (a) is computed for a ∈ [1,4] same as V̄ (w,a). For display purpose, I normalize V (a)

subtracting the reference perfect forecast case a∗ = 1 and inflate it by 365 days to annual level.

This model estimation method has the advantage of being simple, with minimum as-

sumptions on workers’ beliefs of realized weather distribution given forecasts and forecast

accuracy. It is also directly linked to my baseline regression results from previous section,

applying the estimated labor responses as Figure 1.2 Panel (c). Appendix 1.E gives the

detailed descriptions of these valuation steps, including the generation of 95% confidence

interval with Monte-Carlo draws from the baseline regression estimates.

1.5.3 Valuation Results

Main valuation results are summarized in Figure 1.8. Panel (a) shows V̄ (w,a), featuring

similar curves as the labor responses with lower values under hot or medium-cold temper-

atures. This is because the baseline regression has estimated significant decrease of labor

under low RMSE, thus implying greater disutilities of working under these two tempera-

ture ranges. When a decreases, the V̄ (w,a) curve flattens as expected, as value increases
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with more accurate forecasts because under low RMSE decision makers are able to choose

closer-to-optimal labor responses to counter the weather shocks. The magnitudes of these

improvement in V̄ (w,a) with decreasing a is greater again over the two ranges, hot and

medium-cold temperatures, where RMSE has large magnitudes and statistically significant

marginal effects in the baseline regression.

Next, Figure 1.8 Panel (b) illustrates V (a) relative to V (1), the value loss per person

per year for workers facing non-ideal forecasts with RMSE ∈ [1,4]. As expected, V (a) is

a decreasing function of a, with greater (less negative) V (a) coming under greater forecast

accuracy (smaller a). Starting from zero relative value under a∗ = 1, to above 2800 2015

Yuan (446 USD)62 for a = 4, the negative slope of the curve increases in magnitude with a,

indicating that the marginal value of forecast accuracy is decreasing under lower RMSE.

This is consistent with the diminishing return story, that when forecasts are already quite

accurate, improving the accuracy is not as valuable as when they are with greater errors.

The 95% confidence interval generated by Monte-Carlo (MC) draws is wide but never cross

the zero line, affirming 5% statistical significance of these value estimates. The MC runs

have greater magnitudes mean and median than the direct estimates, indicating that the

distribution of V (a) is skewed towards even greater values.

Linearly averaging from RMSE = 4 to RMSE = 1, the value gains per person per year

per 1C decrease of RMSE (the marginal value of forecast accuracy) is about 930 Yuan
622015 Exchange Rate 6.2837, source https://www.exchangerates.org.uk/USD-CNY-spot-exchange-rates-

history-2015.html.
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(148 USD) in 2015. Comparing with the sample average (Table 1.1), this marginal value

is of considerable magnitude covering 26.6% of an average worker’s monthly wage income.

Referencing Bakkensen, Lemoine and Shrader (2022) who estimates the value of accurate

temperature forecasts from the mortality response to instantaneous forecast errors in the US,

their estimated marginal value of forecast accuracy is approximately 228 USD per person

per year63. My valuation estimate is of same order of large magnitudes, but half of their

value. This is sensible to the expectation that mortality is an aggregate measure with higher

valuation results than partial valuations through behavioral responses like labor.

So far, my valuation has used assumed forecast accuracy. To compare with expenditures

of the national weather forecast system in China, I conduct analysis to estimate the total

national benefit from actual improvement of weather forecast accuracy. Allowing the Tmax

forecast yearly RMSE for each city to change from their summarized values in 2011 to 2015

from my forecast dataset, I compare the changes in V (a) for 276 cities with non-missing 2015

employed labor data under Figure 1.8 Panel (c)64. There are scattered spatial variations in

these V (a) value changes. Though most of the cities covered, especially those with higher

populations, feature value gains due to their forecast RMSE decreases, there are also inland

cities with RMSE increases leading to value loss.
63The Bakkensen, Lemoine and Shrader (2022) valuation number is quoted from the presentation at EPIC

Workshop of the University of Chicago, November 1st, 2022. They conclude that the value per 1C decrease
in forecast error standard deviation is 75.1 billion USD per year. To compare with my valuation results, I
translate this number to the marginal value of RMSE (in their data forecasts are unbiased with mean 0,
same as my simulation) and divide 330 million US population.

64Simulations are run with parameters µ,σ empirically estimated by the annual forecast error mean and
standard deviation for each city. I aggregate to V (a) using the realized Tmax empirical distribution over
all days 2011 and 2015 for each city. Therefore, I allow the p0(w) distribution to vary by cities but not by
years. Actually, the average realized Tmax increases by about 0.7C over these 5 years.
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Then summing with each city’s 2015 employment number65, Figure 1.8 Panel (d) summa-

rizes a partial estimate of the annual national total value gain solely from changing the city

level forecast accuracy in 2011 to that of 2015. During the 5 years when an average of 3.9%

(0.087C) decrease of city-year forecast RMSE happens over these cities66, the society gains

25.3 billion 2015 Yuan (4.03 billion 2015 USD). This value is even greater by Monte-Carlo

means at 46.1 billion 2015 Yuan (7.34 billion 2015 USD) since the distribution is positively

skewed. The 95% confidence interval is [18.0,106.3] billion 2015 Yuan, making the estimate

5% statistically significant (actually all MC runs are positive from the histogram).

Overall, the magnitude of this national value gain estimate is quite large, consistent

with the value of weather forecast estimates for other countries (mainly developed countries)

discussed in introduction. The value of the entire national weather forecast system through

contingent valuation is at least 46.5 billion Yuan in 2006 (Yuan, Sun and Wang, 2016)67,

and my valuation as a lower bound accounting only the impacts in labor sector and only the

values from forecast accuracy improvement is over half of this total value. Comparing with

the CMA’s 2015 total reported expenditure of 26.3 billion Yuan, or the 22.4 billion Yuan

allocated to meteorological services, my estimated annual benefit of 25.3 billion Yuan about

covers their annual cost.
65Source China City Statistical Yearbook (CCSY) 2016, ignoring population growth. There are 364

million labor force covered in CCSY for 276 out of 342 cities, making this is a partial estimate. Ac-
cording to the national report of 774.51 million employed labors (Source: National Bureau of Statistics,
http://www.stats.gov.cn/tjsj/zxfb/201602/t20160229_1323991.html, the city level employment data may
be an underestimate by itself covering only 47% of the NBS’s national record.

66This would feature a greater decrease compared with that whole sample with all 342 cities, summarized
by Figure 1.2 Panel (d).

67Converted by World Bank GDP deflater, it is about 50.0 billion Yuan in 2015.
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Figure 1.8: Valuation Results - V̄ (w,a), V (a) relative to V (1), By-City Value
Gain from 2011 to 2015 RMSE Changes, Total Value Gain from 2011 to 2015
RMSE Changes.
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Note: V̄ (w,a) is the realized value of labors under
weather shock w and forecast accuracy a. It is
estimated by simulation assuming the realized
distribution of f ∣w,a ∼ N(w − µ,σ2) for each
w = 0,1, ...,40. The mean forecasts error is fixed at
µ = 0, but forecast error standard deviation σ is
allowed to vary. Each line indicates a case with
σ = 1,1.25, ...,4, where lighter color represents
greater σ. By definition, the RMSE metric denoted
as a in this case satisfies a ≈

√
µ2 + σ2. It ranges

from 1 to 4 in this plot, so the darkest line
represents the case a = 1 and the lightest line a = 4.
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Note: V (a) is estimated by averaging the simulated
V̄ (w,a) values on the distribution of realized
weather w. This distribution is taken as the
empirical distribution of daily realized Tmax over
the all-city all-day sample of two years, 2011 and
2015. V (a) is taken for various a under fixed µ = 0,
σ = 1,1.25, ...,4 so a =

√
µ2 + σ2 ∈ [1,4]. The values

are then subtract to relative of V (1) (perfect
forecast assumption under a∗ = 1) and inflated to a
year (×365). The plot shows result of the full
valuation with direct estimates from the baseline
regression in solid line/circle. Uncertainties are
captured by 300 Monte-Carlo draws from the
multinomial distribution of baseline regression
estimates. The shade represents the 95% confidence
interval. Dashed line is the MC median and
dash-dot line is the MC average.
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Figure 1.8, continued

(c) Value Gain in V (a) by City from Their
RMSE Changes 2011 to 2015

Note: Per person per year of the change in value
V (a) is computed for the scenario where each city
has its yearly average RMSE for Tmax forecasts
transformed from the value in 2011 to that in 2015.
In the intermediate process, V̄ (w,a) is simulated
with the Tmax forecast error mean and standard
deviation (µ,σ) summarized over each year and
each city. Note that RMSE is determined by
a =

√
µ2 + σ2. V (a) is estimated per person per year

averaging with the time-invariant realized
temperature distribution for each city’s daily Tmax
summarized over the all-day sample of two sample
years, 2011 and 2015. For each city, the difference in
V (a) estimates for forecast accuracy 2011 and 2015
is evaluated and those with non-missing
employment data in 2015 is illustrated in this map.

(d) Total National Value Gain from City
Level RMSE Changes 2011 to 2015
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MC Mean=46.118, Medium=40.971, 95% CI=[17.975,106.290]
Direct Est.=25.274

Note: Total national value gain is obtained by
summing the V (a) changes by cities multiplying
with city level employment in 2015 (source China
City Statistical Yearbook), ignoring population
growth. This is a partial estimate as total
employment covers approximately 47% of the
country’s labor population in 2015 (source National
Bureau of Statistics). The histogram features the
distribution of the estimation results with 300
Monte-Carlo draws from the multinomial
distribution of baseline interactive regression
estimates. The vertical line indicates the total value
gain with direct estimates of the regression.
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1.5.4 Sensitivity Analysis

In this subsection, sensitivity analysis will be performed for the valuation of V (a).

Different References of Scaling Factor α Estimates for the elasticity of labor supply

differ by methodologies and different sample selections. To test the sensitivity of my results

with different labor elasticity reference, I take the minimum and maximum elasticities by

subgroups of education levels in Li (2016), at η = 0.135 (primary school degree or lower)

and η = 0.567 (college degree or higher)68. These two elasticities convert to the parameter

α = −10.152 and α = −2.417. Plotting for comparison in Figure 1.F.1, I can see that the main

valuation result of V (a), by method design, is just scaled up by the factor of 2.6 or down by

the factor of 1.6.

Alternative Assumptions of a∗ As argued previously, the definition of a∗ can vary

by assumptions of people’s belief of “perfect” forecasts. To test the sensitivity with this

assumption, I take alternative a∗ at a∗ = 1.4 (the labor sample minimum), and a∗ = 0

(strictly rational with ideal forecasts of no errors). Valuation results of V (a) relative to the

corresponding V (a∗) with confidence intervals are presented under Figure 1.F.2. By the

average value gain per person per year per 1C decrease of RMSE69, a∗ = 1.4 decreases the

valuation by only 1%, supporting that a little extrapolation outside the labor sample does

not affect the main results. The a∗ = 0 case increases this marginal value of RMSE by up

to 34%, showing the significant changes when extrapolation extends to the unrealistic case
68This is still a rather narrow range. Lower labor elasticities are expected among floating population

(Chen and Zhu, 2021) and for later years (McClelland and Mok, 2012). In this case, floating population can
have elasticity below 0.1 and the 2001 elasticity from the same paper can go above 0.97.

69The simulation range of a in each plot is different, where the minimum is taken at a∗ and increases with
steps of 0.25 until 4.2.
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of RMSE = 0.

Change of Baseline Regression Specification To test the sensitivity with the esti-

mated labor response function to forecasts, I compile the V (a) estimates for three functional

forms of the baseline regression (bins, restricted cubic spline, linear spline) with two RMSE

rolling windows (half a year and four months) addressed in previous empirical robustness sec-

tion in Figure 1.F.3. The main valuation specification of restricted cubic spline with half-year

rolling RMSE actually gives conservative estimates compared with bin and linear spline,

but the four-month window generates only half the original relative V (a) in magnitudes. But

overall, different specifications and rolling windows give same orders of magnitudes V (a),

large in real life and statistically significant at 5%.

Simulation Choice For simplification in computation, the main valuation uses a simu-

lated range of a by fixing µ and varying σ. To verify the robustness of this simulation choice,

I run the valuation instead on 0.25 × 0.25 grids with pairs of (µ,σ) extracted directly from

the forecast data sample70. Results are summarized in Figure 1.F.4, where the simulation

approximation represented by the lines mostly trace the scattering points estimated by the

observed forecast accuracy grids. Therefore, my simulation process gives relatively good

approximation to the real forecast accuracy distribution.

Other Realized Temperature Distributions In the estimation process, V (a) as the

average value of forecast accuracy is affected by the realized temperature distribution p0(w).
70I restrict the test to both µ and σ in the range of grids centering at 0,0.25, ...,4, and run this for both

labor sample and the all cities all days sample 2011 and 2015. Here a∗ are taken as the minimum from these
set of grid point representations of forecast data, approximately but not identical to 1.4 for labor sample
and 1 for all-city sample.
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For sensitivity checks, I allow two alternative distributions of p0(w), for the hot city of

Haikou (the most south provincial capital city), and the cold city of Harbin (the most

north provincial capital city)71. Results compiled in Figure 1.F.5 show that V (a) does not

change drastically (7.1% for Haikou and -21.4% for Harbin). From the breakdowns, valuation

is significantly contributed by the medium-cold realized temperature cohort [15C,25C),

because these temperatures come with greater frequency in all three distributions. The

hotter city has greater magnitudes of V (a) and the colder city smaller values because of the

contribution from greater share of hot temperatures above 30C. These observations illustrate

the possible increasing value of accurate weather forecasts contributed by more frequent and

hotter temperatures, which is motivating for future works related to climate change.

Implied Overreaction Belief to Inaccurate Forecasts In this paper, the labor re-

sponses estimated by the baseline regression and used for main valuation do not produce

the highest realized utilities compared with two other labor responses not responding to

forecast accuracy (Figure 1.G.1). This implies that people in my model are not making

optimal labor decisions based on rational belief of forecasts. Actually, they may be putting

much smaller weights on uncomfortable temperatures than they should be if they take the

perceived RMSE rationally72. These implied overreaction to not-so-inaccurate forecasts

motivate a non-parametric model assuming individuals impose inflated conditional standard

deviation of the normal belief w∣f, a. This analysis detailed in Appendix 1.G concludes that

it is unlikely decision makers form completely rational belief about forecasts with forecast
71Empirical distributions are taken for these cities of all days in 2011 and 2015. In addition, I breakdown

the valuation of V (a) by 5C bins of Tmaxreal to observe the contribution of different temperature bins.
72For example, the baseline regression shows an average forecasts error of RMSE = 3C would completely

eliminate any negative labor response even under extreme heat Tmaxforecast = 40C, while if rationally
accessed people should respond like Tmaxreal ≥ 30C and significant labor reduction shall still be observed.
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accuracy. Overreacting as if there are greater uncertainties in forecasts would match the

main empirical estimates, but it does not have sufficient evidence either in statistics or in

reality.

1.6 Conclusion

This paper tries to estimate the economic value of weather forecasts, a common and pop-

ular scientific forecasting provided as public good in the modern world, with novel empirical

microeconomic approach of revealed preference method. My research makes use of a unique

video transcription panel dataset of daily weather forecasts in China, the largest developing

economy with a great population of workers sensitive to climate shocks adapting to fore-

cast information. My main empirical results suggest that labor decisions of hours worked

per day respond to day-ahead temperature forecasts, and the medium-run average historical

forecast accuracy determines whether these responses are significant. To be more specific,

higher accuracy temperature forecasts induce decrease in labor under uncomfortable hot and

medium-cold temperatures, but lower accuracy forecasts do not lead to significant changes

in labor responses. With a single-period utility maximization model that incorporate the

empirically estimated labor responses to forecasts and forecast accuracy, I evaluate a large

marginal value of weather forecast accuracy in China such that the labor sector alone gener-

ates about enough annual partial social welfare to cover the annual governmental investments

in its national weather forecasting system, from improving city level forecast accuracy by an

average 3.9% from 2011 to 2015.

62



This project has verified the significance of maintaining a modern weather forecasting

system that can provide accurate weather forecasts as a public good. Meanwhile, there re-

mains ambiguities need to be addressed in future researches. Firstly, the large magnitudes of

labor responses and valuations estimated in this paper are uncommon in previous literatures

on labor-climate relationships. Alternative labor datasets should be used for verification,

such as real-time labor records from specific industries (like Uber drivers), or repeated labor

surveys with greater time frequencies. Secondly, direct proofs of public awareness to weather

forecasts and historical forecast accuracy are required. This paper assumes people’s belief

of weather forecasts and their judgments with forecast accuracy based on the explanatory

power of regressions, but people’s belief system can be much more dynamic and complicated

especially when information channels diversify. Possible directions in the future include to

apply annual national survey data of weather forecasts from the government agency or use

machine learning text analysis tools on social media posts to identify people’s reactions to-

wards weather forecast information. Thirdly, my study does not consider longer-run average

impacts of forecasts or distinguish the influence from shorter-run forecast accuracy. For

example, instantaneous forecast errors may affect people’s final labor as they adjust their

choices after realization, and people may be also planning inter-temporal substitutions so

they work more under perceived accurate forecasts for comfortable temperatures. In that

case, different regression models with lags of forecasts and instantaneous errors and multiple-

period welfare analysis models should be considered.

The methodology of this paper can be applied to similar settings of identifying the eco-

63



nomic value of technology public goods through revealed preference. For the value of weather

forecasts, my other works in progress have also found the positive value of accurate cold tem-

perature forecasts on reducing road congestions and improving social media sentiments. To

compile the aggregate social value of weather forecasts and to determine which sectors of

the economy value accurate weather forecasts higher, other outcome variables common in

literatures will be explored in the future, including industrial production and productiv-

ity, mortality and health risks, energy supply and demand, land and asset markets (Burke,

Hsiang and Miguel, 2015; Severen, Costello and Deschenes, 2018). Last but not least, with

the consideration of climate change in mind, the valuation model in this paper can be applied

with future climate projections in order to estimate the extra value loss under accurate or

inaccurate weather forecasts when temperatures get more extreme over this century. This

would be important for the policy implication of how much improvements in forecasting

technology should be helpful in the future world.
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1.A Weather Forecast Data Collection and Approximation

1.A.1 Capital City Weather Forecast Data Collection

This paper collects weather forecasts data for capital cities with the following steps:

1. Search: I want to find the full videos of the eveningWeather Forecast program published

by the official website of CCTV.com. Those are the real-time recordings of the program

broadcast on TV, made available on the Internet hours later. By the time I started

this project in 2019, the station stored their historical program videos on the old site

tv.cntv.cn in five folders (2010-2012, 2013, 2014, 2015, 2016-current). I called the

station in request of older videos (non-official sources of other video sites only have a

few days of the program by individual blogger’s preference), and they said earlier dates
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could not be accessed due to copyright. Therefore, I can only collect weather forecasts

from the year of 2010.

My purpose is to select only the evening forecasts (the one with consistently high

viewership after the national news) and report the URL of these videos for downloading

use. Into each folder, the videos are listed as below:

In the old website video folders, there are other news programs as well. So I first apply

Bash commands curl and grep to collect all Weather Forecast videos, morning, noon

and evening (example of 2015):

The output .txt files contains title, image and hyperlink URL of all videos displayed on

the webpage. Then I use R codes to further filter only the hyperlink URL http://tv.

cntv.cn/... for evening Weather Forecast programs. I compile them by rows into

batches of about 15−20 lines such that I can copy and paste onto a video downloading

website.

For future forecasts data collection on the new website CCTV.com, I can directly search

videos with keywords “Evening Weather Forecast” plus the year, making this process
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much easier without the filtering commands.

2. Download: I batch download 15 − 20 videos per trial using the video consolidating-

downloading site FLVCD.com. These videos are flash, making them harder to down-

load using the other terminal commands.

The downloaded videos are in .mp4 format. A day’s full program is usually about 4 to

4.5 minutes, first half featuring the broadcaster discussing significant weather changes,

usually related to natural disasters (for example, forest fires, extreme heats, sudden

cold shocks). The second half just over 2 minutes are the next 24-hour temperature

and categorical weather forecasts for 34 cities (example of January 1st, 2015, forecast-

ing 6 cities in northern China):

In each video, the broadcaster goes through the cities starting from Beijing in a fixed

order, announcing in the format “City A, cloudy/sunny/rainy, Tmin to Tmax degree

C”. These lines are what my project wants to read and collect. There are other in-

formation in these videos, like the disaster forecasts first half of the program and the

day after next forecasts only displayed on screen but not pronounced by broadcaster.

These are useful information that may be applied to future researches.
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3. Transform: Since I only need the next day forecasts announced by the broadcaster,

I transform the .mp4 videos to .flac audio files by the ffmpeg command. To fit the

wavelength requirement of transcription API, command sox is applied and these .flac

files are converted to 1 (mono) channel, 16 bits. This process compresses the audio

files to less than half of its original size. Code example:

4. Transcribe: The .flac audio files with fitting wavelengths are then uploaded on Google

bucket, and fed into the Google Cloud speech-to-text API. Introduction of the API is

on https://cloud.google.com/speech-to-text, and I use the Linux command line package

Google Cloud SDK 273.0.0. I specify the language and keywords with gcloud ml speech

recognize-long-running and let this API transcribe my audio files to Chinese texts,

output with gcloud ml speech operations describe to Java format (.json) transcripts.

Code example:

The Google speech-to-text API has been a high quality transcription tool recommended

by computer scientists. The transcription speed is fast, about 2 minutes only for up
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to 30 audios. However, the transcription error rate is higher for non-English speeches.

For future research, native Chinese speech-to-text API (e.g. from Tencent) should be

an alternative option.

5. Clean: Finally, the JSON scripts are cleaned and read to .txt by grep and jq . I clean

the .txt scripts containing the Chinese text reading of the Weather Forecast program

with STATA. There are mainly two types of errors in cleaning. One is the regular

transcription errors (for example, the city Macao is occasionally transcribed to “We”)

probably due to the limitation of the Google database of Chinese texts, which can

be corrected systematically by STATA codes. The other is due to the quality of flash

videos. Though professional TV broadcasters are required to be clear in speeches, being

fast through over 34 cities within 2 minutes can make common ambiguities in speeches.

The Google API is still not advanced enough to decipher all ambiguous speeches (even

in English), thus resulting in random errors of transcription (for example in Chinese,

“Ten” can be easily confused with “Four”). Those errors require me to go back and

hand check with the original program videos.

Roughly measured by the amount of correction codes, overall transcription errors do

not necessarily distribute randomly across time and space. There are one or two broad-

casters whose speeches are particularly hard to transcribe correctly (possibly due to a

lower sound frequency), and for most broadcasters there are a couple of cities whose

punctuations make their lines reading faster than the other cities. Moreover, winter

temperatures below zero usually get more errors when the API seems to find tran-

scribing the Chinese phrase “below zero” ambiguous. In order to ensure data quality,
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I have run multiple sanity checks to ensure that transcription errors are eliminated

as thoroughly as possible. For the future, further spot checking can be conducted by

another researcher.

1.A.2 Non-Capital City Forecasts Approximation

For non-capital cities forecasts besides the 34 capitals reported in the popular national

program, the imminent ongoing data work is in finding and transcribing existing videos of lo-

cal province-wise weather forecasts (aired on local TV channels only right before the national

news with much lower viewership). Ideally, I should construct a machine-learning based rela-

tionship between capital and non-capital city forecasts and historical realized weathers. But

for now due to time and resource constraints, as an alternative, I approximate temperature

forecasts for any non-capital city i by adjusting the forecasts of their provincial capital p with

their difference of the monthly (m) average realized temperatures (source ERA-Interim) in

the previous year y − 1:

T forecastitmpy = T forecasttmpy +
1

Nmy−1
∑

s∈{year y-1, month m}
(T realismpy−1 − T

real
smpy−1)

Where Nmy−1 is number of days in year y − 1, month m. Categorized forecasts are taken

as the same as their provincial capitals, which would be very rough approximations.

This data approximation process necessarily assumes that people living in non-capital

cities still watch the Weather Forecast program (which is true according to viewership), and
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they would infer their cities’ weather forecasts from historical weathers and the forecasts of

their capital cities (which is hard to address and only with anecdotal evidence). Another

possible reason for this approximation is that the weathers and forecasts of nearby capital

and non-capital cities are quite correlated under stable climate conditions. Proving either

hypothesis would be difficult, so I conduct some statistical tests to indirectly support these

assumptions.

In particular, I propose the following hypothesis:

Hypothesis: Quality weather forecasts should be able to identify the similarity or discrep-

ancy between different cities’ temperature distributions.

For the argument that weather forecasts are “good enough”, the main section has shown

that forecast temperatures are usually higher than the real temperatures, but the second mo-

ments and shape of distributions have been quite similar. The same histograms are displayed

in Figure 1.A.1 here for capital and non-capital cities under the addressed approximation

process, for all days of the year 2011 and 2015. Again, forecasts are overestimating real

temperatures but shapes of the distributions are more similar for either sample.

Then under this hypothesis, I assume that if weather forecasts in China is good enough

and my approximations for non-capital forecasts reasonably track the actual forecasts, when

one group of cities have different realized temperature distribution than the other group of

cities, their forecast temperature distribution shall also be different. Vice versa, if the real-
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Figure 1.A.1: Daily Maximum Temperature Distributions for Capitals VS
Non-Capitals
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ized temperature distributions between the two groups are the same, so shall their forecast

temperature distributions. To test that, I perform the two-sample Kolmogorov-Smirnov test

for both realized and forecast Tmax, between pooled sample of capital and non-capital cities

under different temporal ranges in Table 1.A.1. For either of the three temporal ranges, the

sample of capital cities have different real temperature distribution than the sample of non-

capital cities with 1% KS test rejection. At the same time, the reported and approximated

forecast distributions of capitals and non-capitals also reject all KS tests at 1%. As a matter

of fact, if I separately test the samples on each year of 2011-2015, both real and forecast

tests are still rejected at 10%. Therefore, the forecast approximation process I proposed for

non-capital cities has been not unreasonable.

Table 1.A.1: Two-Sample Kolmogorov-Smirnov Test

Temporal Range Tmaxreal Tmaxforecast

D p-value D p-value
Full (2011-2015) 0.012 0.000 0.024 0.000

Two-Year (2011 and 2015) 0.013 0.002 0.027 0.000
Labor Sample 0.244 0.000 0.241 0.000

Note: Full time range covers all days of five years 2011-2015, the two-year sample only covers the survey
years of 2011 and 2015; Labor sample further narrow down to days only covered by the labor reporting
weeks; D is the KS test statistics, maximum distance between the capital and non-capital empirical CDFs,
p-value is the KS test p-value; As both capitals and non-capitals have size N > 50, exact option is not
required.

1.B Specification Choice

1.B.1 Regression Design

Firstly, I define the global regression (called “simple regression” in the main section) sim-

ilar to previous literatures, where people’s labor choice is estimated as a non-linear function
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of forecast temperatures:

Laborikt = f(Tmax
forecast
it ;β) + γ′Xit + εikt

Here index k is per person surveyed, i is the city where the person resides, t is day the

forecasts target. Controls Xit includes the real precipitation and its square, and month and

city fixed effects (FE). Standard errors are clustered at city level. To match the frequency

of the outcome variable, the weekly labor hours, all RHS variables are summed to weekly.

Then in this paper, the main interactive regression estimates the differential labor re-

sponses to forecast temperatures under different realized medium run forecast accuracy,

expressed as the RMSE of historical Tmax forecasts on a rolling window size R:

Laborikt = f(Tmax
forecast
it ;β0) + f(Tmax

forecast
it ;β1) ×RMSEit + γ

′Xit + εikt

And the control set X in addition to precipitations and fixed effects also include RMSE

as a linear control to complete the interactive regression design.

This specification choice section will first discuss the choice of non-linear function f(.).

Specifically, I perform specification choices for three non-parametric and semi-parametric

functional forms, bins, restricted cubic spline, and linear spline. For bins I need to deter-

mine the temperature bins to include, and for the splines I need to select their knots. These

selections should balance both the power of the regressions and precision of the estimates.

Since interactive regressions depend also on the choice of rolling window R for the RMSE
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metric, these functional form choice will weight higher on the performance of the global

regression.

In the following subsections, I will discuss each of the three functional form individually,

starting with bins. When evaluating the interactive regression, I take the rolling window

size half a year, R = 183, and rolling window size four months (one third of a year), R = 122.

The choice of window size R is then justified in Subsection B.6 after functional forms selec-

tions. The last subsection B.7 will run the non-parametric regression with binned RMSE

to robustness check the linear interactive design.

1.B.2 Bin Specification Choice

First of all, I run the relatively stringent non-parametric bin regression with 5C bin in-

tervals (−∞,0C), [0C,5C), [5C,10C), ..., [35C,∞). Basically, this means that function f(.)

includes series of dummies indicating whether the city-day temperature forecast is in each

temperature bins. 1C bins are not considered due to precision issue, as there will be too

many bins leading to noisy estimates. A reference bin [20C,25C) is omitted from the re-

gression, taken as the comfortable temperatures for human (same as Tmaxforecast = 25C in

the main analysis).

In previous literatures and in this paper, labor-temperature regressions usually focus on

the hot side response above Tmax = 25C, because there is considerable increase in health

risks working under heat. In that concern, I fix the hottest end bin at [35C,∞) and con-
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sider merging on the coldest end bin. I test four coldest bin choices, (−∞,0C), (−∞,5C),

(−∞,10C), and (−∞,15C). For each of these bin choices, I estimate both global and interac-

tive regressions with R = 183,122, array plot summary in Figure 1.B.1 and 1.B.2. To compare

the explanatory powers of the specifications, I summarize the adjusted R-squared and three

trials of the average 10-fold cross validation out-of-sample (OOS) pseudo R-squared in Table

1.B.1.

From Table 1.B.1, for global regressions, though adjusted R-squared roughly decreases

with more merged bins down the rows, their OOS R-squared are close and fluctuating by

different trials. The same applies to both interactive regressions, lending support to any bin

combinations. Then looking into arrays in Figure 1.B.1 and 1.B.2, the hot and the mid-

temperature responses are quite consistent throughout the choice of coldest bins, but cold

end response can be quite fluctuating. For smoother cold end responses, I prefer the end bin

choices (−∞,10C) and (−∞,15C). Going back to the R-squared table, the middle choice

with cold bin (−∞,10C) always have higher R-squared than (−∞,15C), and even greater

explanatory power than the other two choices (−∞,0C) and (−∞,5C) for some OOS trials.

Therefore, the final bin regression I choose is with 7 bins, (−∞,10C), [10C,15C), [15C,20C),

[20C,25C), [25C,30C), [30C,35C), [35C,∞), and [20C,25C) as the reference omitted bin.
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Figure 1.B.1: Bin Interactive Regression Rolling Window R=183
-5

0
5

10
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

Global

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=1

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=0

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

Marginal Effect of RMSE

(a) Coldest Bin (−∞,0C)

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

Global

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=1

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=0

-5
0

5
10

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

Marginal Effect of RMSE

(b) Coldest Bin (−∞,5C)

-4
-2

0
2

4
6

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

Global

-4
-2

0
2

4
6

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-4
-2

0
2

4
6

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2

-4
-2

0
2

4
6

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=1

-4
-2

0
2

4
6

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=0

-4
-2

0
2

4
6

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

Marginal Effect of RMSE

(c) Coldest Bin (−∞,10C)

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

Global

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=1

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

Marginal Effect of RMSE

(d) Coldest Bin (−∞,15C)
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Figure 1.B.2: Bin Interactive Regression Rolling Window R=122
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1.B.3 Splines Specification Knots Choice

The bin regressions in previous subsection have confirmed that the functional form for

f(.) shall be non-linear. Next, I could explore the parametric non-linear functional forms

for greater precision of estimates. In some less flexible parametric forms of f(.) taking poly-

nomials of orders 2,3,4, it seems only when order of polynomials are higher than 3 I could

efficiently replicate the non-linear labor response comparing with the bin specification choice

of previous subsection. As a result, I would consider the minimum degree of freedom for

parametric form to be 3. In this paper, I end up choosing restricted cubic spline with 5

knots and linear spline with 3 knots, both giving 4 degrees of freedom to the non-linear

labor response function f(.).

To determine the knots of splines, I propose the following selection rules:

1. Select from knots only at multiples of 5, i.e., knots are chosen from 7 values, 5C,10C,

15C,20C,25C,30C,35C.

2. The reference temperature 25C has to be one of th knots.

3. There needs to be at least 1 knot at either side of reference temperature, i.e., at least

one for > 25C and one for < 25C.

That would give permutations of 14 options for restricted cubic spline with 5 knots and

8 options for linear spline with 3 knots.

Besides adjusted R-squared and OOS R-squared, I also estimate the error comparing

global labor responses of splines with the non-parametric bin estimates. This method as-
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sume the non-parametric bin estimates to be the “closest to real”, and parametric splines

should approximate as much as possible to the bin regression. Specifically, I estimate the

residual sum of square (RSS) estimate in the following way for Tmaxforecast = 0,1, ...,40

(Y = Labor, T = Tmaxforecast, T̄ = 25C is the reference temperature, b is bin specification, p

is the parametric spline specification to be tested):

∆bŶ (T,RMSE) = [fb(T ) + fb(T ) ×RMSE] − [fb(T̄ ) + fb(T̄ ) ×RMSE]

∆pŶ (T,RMSE) = [fp(T ) + fp(T ) ×RMSE] − [fp(T̄ ) + fp(T̄ ) ×RMSE]

RSS =
40

∑
T=0

[∆bŶ (T,RMSE) −∆pŶ (T,RMSE)]2

For display purpose, I would summarize the root-mean of these RSS estimates as the

average prediction error of parametric specification p comparing with non-parametric bin

specification b. A smaller value of this will be preferred.

1.B.4 Restricted Cubic Spline Specification Choice

The R-squared, OOS R-squared and RSS estimates for 14 permutations of restricted cu-

bic splines are summarized in Table 1.B.2. The 14 permutations are further separated into

three groups by choices of hot knots being 30C, 35C or both. From this table for global re-

gressions, in general adjusted and OOS R-squared are higher and RSS lower for specifications

with 2 instead of 1 hot knots. Among choices with 1 hot knot, the ones with 35C has greater

R-squared and smaller RSS than the ones with 30C. Similar observations apply for both
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interactive regressions, where R-squared measures are overall in the decreasing order by hot

knots 30C,35C, only 35C and only 30C. Based on this table, I would consider the groups

of permutations with hot knots 30C,35C or only 35C, excluding the hot knot with 30C only.

Then Figure 1.B.3 presents the array plots of interactive regression with rolling window

R = 183, for two specifications with low RSS in their groups (first with both hotter knots at

30C,35C and then with one hotter knot at 35C). The response curves look similar, though

the two-hotter knots specification (not only the one shows, but also all others in this group)

estimates have wide confidence intervals towards the hottest end of the plots, both in arrays

and in marginal effects. Therefore for precision, I instead prefer the one-hotter knot at 35C

which would reduce over-identification and give statistical significant estimates at hot end.

Within this group of 4 specifications, I end up choosing the combination (5,15,20,25,35). It

has slightly higher global RSS than its peers (10,15,20,25,35) (the other two choices have

greater RSS), but Figure 1.B.3 has shown them to be very similar. This choice with lower

coldest knot has ensured higher R-squared especially for interactive regressions.

For the chosen specification with knots (5,15,20,25,35), I also test the location of a

mid knot 20C across 16C − 24C. Though OOS R-squared fluctuates as before, both higher

adjusted R-squared and lower RSS for global regressions have suggested the mid knot to be

as close to 25C as possible. But if I look at the graphs in Figure 1.B.4, mid knot closer

to the 15C knot would drive the cold end more wiggly, while closer to 25C would increase

the extreme cold end response under low RMSE to positive with a considerable magni-

tude. Otherwise important features like the hot end and medium-cold labor decrease at low

84



Figure 1.B.3: Cubic Splines Interactive Regression Rolling Window R=183
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Note: Left to Right, Global, RMSE decreases 3,2,1,0, Marginal effect of RMSE covariate.
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RMSE all persist throughout various mid knot selections. As a result, I would keep the

current selection of mid knot 20C at the middle of the range such that the cold end is neither

wavy nor positive.

Figure 1.B.4: Cubic Splines Interactive Regression Rolling Window R=183
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Note: Left to Right, Global, RMSE decreases 3,2,1,0, Marginal effect of RMSE covariate.

To summarize, the restricted cubic spline specification is chosen to be with 5 knots at

(5,15,20,25,35). This is also my main specification in the paper because it produces smooth

response curves and statistically significant estimates.
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1.B.5 Linear Spline Specification Choice

With similar agenda as the restricted cubic spline, I select linear spline specification

among the 8 permutations listed in Table 1.B.3. Firstly for both higher adjusted R-squared

and lower RSS of the global regressions, hot knot being 30C is preferred to 35C. Among

all permutations with hot knot 30C, the position of the cold knot does not change much of

the R-squared while OOS R-squared again fluctuates. The four specifications actually give

similar negative but statistically insignificant responses at hot end, but as shown in Figure

1.B.5 the position of the cold knot affects the cold end and mid temperature response. The

lower global RSS specification may be too wavy with positive and large in magnitude cold

end responses for both array (under low RMSE) and marginal effect, but the medium-cold

labor drop seen in the other specifications disappears. So to be consistent, I choose the

combination with cold knot closest to 25C, (20,25,30), such the mid-temperature dip is

preserved. This specification does not have lowest RSS or highest adjusted R-squared for

the global regression, but its OOS R-squared is close or higher than peers especially for

interactive regressions. Again to refine, I also test with altering the location of the cold knot

by increment of 1C, but again the regression curves and fitness metrics only vary little.

In the end, the linear spline specification is chosen to be 3 knots at (20,25,30).
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Figure 1.B.5: Linear Splines Interactive Regression
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1.B.6 Rolling Window Size Choice

After selecting the non-linear labor response functional forms, I want to verify the choice

of the size of rolling window for RMSE. For that purpose, I run the main interactive re-

gression and record their adjusted R-squared together with three trials of the 10-fold cross-

validation out-of-sample R-squared under different rolling window size R in Figure 1.B.6.

Results are shown for all rolling windows from 10 to 400 days with an increment of 10. The

horizontal lines feature the comparison taking the sample city-year forecasts RMSE (2011

or 2015 per city) as the covariate instead. Overall, rolling window RMSE delivers higher

R-squared and OOS R-squared (though smaller with more fluctuations) mostly higher than

the city-year RMSE reference on windows R = 60 − 200 days, highlighting the increased

explanatory power with possible adaptation to rolling estimation of the forecast accuracy

metric RMSE. These R-square measures peak at about R = 120 − 190 days, translating

to the medium run rolling RMSE on a window of 4 − 6 months, consistent for all three

selected functional forms. As expected, the non-parametric bin specification outputs higher

R-squared. Meanwhile, the two other semi-parametric spline specifications come with fairly

similar levels of explanatory powers.

Further plotting the interactive regression marginal effects for different rolling windows

in Figure 1.B.7, the estimates are not statistically different from one another across the

columns. For bins, the very noisy hot end estimates have magnitudes decreasing to zero

with larger rolling window size R. For restricted cubic spline, the reverse happens while

rolling window closer to 100 gives smaller magnitudes and statistically insignificant positive
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ME estimates at hot end. On the other hand, the marginal effect estimates for linear spline

is the most stable across different rolling window sizes.

Based these explorations, I choose the optimal window size as R = 183, half a year, for

my main restricted cubic spline specification. I also reserve the option at the lower end of

the optimal window range, R = 122, or the window of four months, for robustness checks.

Figure 1.B.6: Explanatory R-Squared for Different Temporal Definition of
RMSE
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Note: Adjusted R-Squared (Solid) and 10-Fold CV OOS R-Squared (Dashed) are presented; Horizontal
Line Indicates City-Year RMSE Choice.

1.B.7 RMSE Linear Interaction Robustness Test

In the main section, labor response to forecasts and forecast accuracy is estimated with

a parametric formula assuming linear interaction with the RMSE. To verify the robustness

of this linearity design, I run the non-parametric interactive regression as follows:
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Figure 1.B.7: Interactive Regression Marginal Effect
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(b) Restricted Cubic Spline
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(c) Linear Spline

Note: Left to Right, RMSE rolling window of 50, 100, 120, 150, 170 and 190 days.
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Laborikt =∑
q

1{RMSEit∈q}f(Tmax
forecast
it ;βq) + γ

′Xit + εikt

This is the regression estimating the non-linear labor response of labor to forecasts sep-

arately for different ranges of RMSE denoted by q. Here the covariates set includes the

series of dummies indicating the bins RMSE is in, 1{RMSEit∈q}, instead of the linear covari-

ate RMSE. Similarly, the independent linear control of RMSE in the set X is replaced by

these dummy variables as well.

I run this regression selecting q into three equidistance groups, [1C,2C), [2C,3C), [3C,∞),

and results are presented under Figure 1.B.8. Overall, the results matches the main arrays

estimated by the baseline regression design with RMSE interacting linearly (Figure 1.3

Panel (c)) in both shape and magnitudes, preserving the decreasing labor responses for hot

and medium-cold forecasts when RMSE is in smaller bins. As expected, adjusted R-squared

increases a bit for relaxing the linearity assumption, while estimates drop to statistical in-

significance. Therefore, this non-parametric bin interactive regression justifies the robustness

of my baseline regression design using RMSE as a linear covariate for interaction.

1.C RMSE Variation Decomposition Regression Tables
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Table 1.C.1: RMSE Variation Decomposition Regression with Economic Con-
trols

(1) (2) (3)
City Area [104km2] 0.243∗∗ 1.175∗∗∗ 1.326∗∗∗

(0.109) (0.380) (0.386)

GDP per Capita [108 2015 Yuan] -0.057 0.006 0.003
(0.086) (0.059) (0.056)

Population [109] -0.004 -0.010∗ -0.009∗
(0.006) (0.005) (0.005)

Road Area [106km2] 0.004 -0.005 -0.005
(0.009) (0.007) (0.004)

Labor Force/Pop. 0.719 0.402 0.765∗
(0.517) (0.417) (0.412)

Unemployment Rate [%] -0.038 -0.041 -0.041
(0.054) (0.061) (0.058)

Share of Primary Industry [%] 0.025 0.016 0.016
(0.019) (0.021) (0.020)

Share of Secondary Industry [%] 0.014 0.015 0.008
(0.014) (0.011) (0.010)

Factors Economic Both Both
Date FE No No Yes
Observations 9507 9507 9507
Adjusted R2 0.405 0.598 0.689
OOS R2 0.405 0.597 0.688

Note: Dependent variable is the half-year rolling RMSE for daily Tmax forecasts; Standard errors in
parentheses clustered by cities; * p < 0.10, ** p < 0.05, *** p < 0.01; Factors indicate whether the regression
include only economic or both economic and physical factors; FE indicates whether a date fixed effect is
included in the regression; Sample include only the city-days overlapping in the labor sample with all
economic and physical factors non-missing; OOS R2 indicates the average across 10-fold cross-validation
out-of-sample R2.
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Table 1.C.2: RMSE Variation Decomposition Regression with Physical Controls

(1) (2) (3)
Water Resources (108m3) 0.004 -0.000 -0.002

(0.003) (0.004) (0.004)

Greenland Area [104km2] -3.503 15.023∗∗ 11.981∗∗
(2.188) (5.623) (5.523)

Elevation [km] 0.190 -0.504 -0.755
(0.438) (0.457) (0.466)

No. Weather Stations -0.196∗ -0.171∗ -0.125
(0.098) (0.091) (0.082)

Area of Lakes [km2] -1.242 -0.649 -0.202
(2.416) (1.987) (1.791)

Lenghth of Rivers [Deg] 0.006 -0.021∗ -0.024∗∗
(0.008) (0.011) (0.011)

Annual Avg. Tmax [C] -0.090∗∗ -0.019 -0.050
(0.035) (0.038) (0.035)

Annual STD. Tmax [C] -0.190∗∗∗ -0.173∗ -0.254∗∗∗
(0.069) (0.090) (0.074)

Annual Avg. Precip. [mm] -0.048 -0.055 0.045
(0.068) (0.062) (0.064)

Factors Physical Both Both
Date FE No No Yes
Observations 9507 9507 9507
Adjusted R2 0.489 0.598 0.689
OOS R2 0.487 0.597 0.688

Note: Dependent variable is the half-year rolling RMSE for daily Tmax forecasts; Annual averages for
Tmax or Precip. are average real weathers of the current year; Standard errors in parentheses clustered by
cities; * p < 0.10, ** p < 0.05, *** p < 0.01; Factors indicate whether the regression include only physical or
both economic and physical factors; FE indicates whether a date fixed effect is included in the regression;
Sample include only the city-days overlapping in the labor sample with all economic and physical factors
non-missing; OOS R2 indicates the average across 10-fold cross-validation out-of-sample R2.
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Table 1.C.3: RMSE Variation Decomposition Regression with Economic Con-
trols, Full Sample 2011 and 2015

(1) (2) (3)
City Area [104km2] 0.165∗∗∗ 0.052 0.071

(0.058) (0.093) (0.096)

GDP per Capita [108 2015 Yuan] -1172.050∗∗∗ -408.521∗ -299.706
(362.850) (225.654) (227.855)

Population [109] -39.856∗ -0.320 6.519
(23.323) (22.421) (22.956)

Road Area [106km2] -7800.821 -6632.905∗ -6370.422∗
(5411.839) (3646.315) (3640.522)

Labor Force/Pop. 0.892∗ 0.625∗∗ 0.603∗∗
(0.457) (0.299) (0.292)

Unemployment Rate [%] -0.013 0.001 0.001
(0.030) (0.027) (0.027)

Share of Primary Industry [%] -0.015 0.015 0.015
(0.016) (0.010) (0.010)

Share of Secondary Industry [%] 0.003 0.016∗∗∗ 0.013∗∗
(0.009) (0.006) (0.006)

Factors Economic Both Both
Date FE No No Yes
Observations 156759 156759 156759
Adjusted R2 0.188 0.493 0.521
OOS R2 0.188 0.493 0.519

Note: Dependent variable is the half-year rolling RMSE for daily Tmax forecasts; Standard errors in
parentheses clustered by cities; * p < 0.10, ** p < 0.05, *** p < 0.01; Factors indicate whether the regression
include only economic or both economic and physical factors; FE indicates whether a date fixed effect is
included in the regression; Sample includes all 342 cities and 685 non-missing forecasts days of 2011 and
2015; Observations with either missing economic or physical factors are excluded; OOS R2 indicates the
average across 10-fold cross-validation out-of-sample R2.
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Table 1.C.4: RMSE Variation Decomposition Regression with Physical Controls,
Full Sample 2011 and 2015

(1) (2) (3)
Water Resources (108m3) -0.001 -0.001 -0.002

(0.001) (0.001) (0.001)

Greenland Area [104km2] -4.068∗∗ 4.795 3.254
(1.860) (3.167) (3.385)

Elevation [km] 1.066∗∗∗ 0.935∗∗∗ 0.900∗∗∗
(0.184) (0.220) (0.212)

No. Weather Stations -0.000 0.028 0.027
(0.040) (0.038) (0.039)

Area of Lakes [km2] -0.562 -0.374 -0.652
(0.864) (1.021) (0.998)

Lenghth of Rivers [Deg] 0.006∗∗∗ 0.003 0.003
(0.002) (0.004) (0.004)

Annual Avg. Tmax [C] -0.038 -0.057∗ -0.070∗∗
(0.031) (0.032) (0.033)

Annual STD. Tmax [C] -0.117∗ -0.145∗∗ -0.167∗∗∗
(0.061) (0.060) (0.063)

Annual Avg. Precip. [mm] -0.007 -0.017 0.014
(0.039) (0.041) (0.042)

Factors Physical Both Both
Date FE No No Yes
Observations 156759 156759 156759
Adjusted R2 0.456 0.493 0.521
OOS R2 0.456 0.493 0.519

Note: Dependent variable is the half-year rolling RMSE for daily Tmax forecasts; Annual averages for
Tmax or Precip. are average real weathers of the current year; Standard errors in parentheses clustered by
cities; * p < 0.10, ** p < 0.05, *** p < 0.01; Factors indicate whether the regression include only physical or
both economic and physical factors; FE indicates whether a date fixed effect is included in the regression;
Sample includes all 342 cities and 685 non-missing forecasts days of 2011 and 2015; Observations with
either missing economic or physical factors are excluded; OOS R2 indicates the average across 10-fold
cross-validation out-of-sample R2.
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Figure 1.B.8: Non-Parametric Interactive Regression
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Note: Left to Right, Bins of RMSE in Decreasing Order [3C,∞), [2C,3C), [1C,2C).
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1.D Additional Plots for Results and Robustness Checks

Figure 1.D.1: Simple Regression with Realized Tmax
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Table 1.D.1: Interactive Regression Table with Five Cities - Labor Response to
Forecast Temperatures Relative to 25C

Tmaxforecast [C] Jinan Changchun Beijing Kunming Chengdu
Avg. RMSE [C] 1.471 1.891 2.494 2.978 3.773

0 0.042 -0.084 -0.265 -0.410 -0.648
(0.816) (0.563) (0.403) (0.576) (1.086)

5 0.346 0.237 0.081 -0.045 -0.251
(0.522) (0.383) (0.349) (0.484) (0.823)

10 0.543 0.481 0.391 0.320 0.202
(0.520) (0.380) (0.344) (0.478) (0.815)

15 0.097 0.260 0.493* 0.681* 0.989
(0.493) (0.367) (0.292) (0.369) (0.628)

20 -0.763** -0.334 0.282 0.776*** 1.589***
(0.321) (0.267) (0.232) (0.251) (0.352)

25 0.000 -0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.)

30 -0.331 -0.315 -0.293 -0.275 -0.246
(0.360) (0.292) (0.209) (0.171) (0.206)

35 -1.758* -1.280 -0.594 -0.042 0.863
(1.029) (0.847) (0.619) (0.496) (0.526)

40 -3.368* -2.352 -0.896 0.275 2.198**
(1.778) (1.469) (1.085) (0.886) (0.950)

Note: Average RMSE is average rolling RMSE of half a year in year 2011 and 2015 with non-missing
forecasts (685 days) for the corresponding city.
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Figure 1.D.2: Main Interactive Regression Extrapolated to Perfect Forecasts
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Note: Left to right, RMSE decreases 3,2,1,0, marginal effect of RMSE.
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Figure 1.D.3: Interactive Regression with Tercile Separation by Current Year
Average Real Tmax
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Figure 1.D.4: Interactive Regression Subsample Analysis by CHNS Primary
Occupations, Part I
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Figure 1.D.5: Interactive Regression Subsample Analysis by CHNS Primary
Occupations, Part II
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103



Figure 1.D.6: Interactive Regression Subsample Analysis by CHNS Primary
Occupations, Part III
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Figure 1.D.7: Double and Triple Interactive Regression

-1
0

-5
0

5
hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-1
0

-5
0

5
hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2

-1
0

-5
0

5
hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=1

-1
0

-5
0

5
hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

Main

(a) Original Single Interactive

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=1

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

Add log(GDP/pc) Covariate

(b) Double Interactive with Income Covariate
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(c) Double Interactive with Climate Covariate
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(d) Triple Interactive with Both Income and Climate Covariates

Note: Left to Right: RMSE decreases 3,2,1, Marginal effect of RMSE covariate; Array estimates performed
fixing sample average income or climate covariates.
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Figure 1.D.8: Instrumental Variable Interactive Regression
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Note: IV being elevation; Left to right, RMSE decreases 3,2,1, marginal effect of RMSE; Confidence
intervals are wide and dropped for display purpose.
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Figure 1.D.9: Interactive Regression with Half-Year Rolling Window RMSE
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Note: Left to Right, RMSE decreases 3,2,1; Top to Bottom, Bins, Restricted Cubic Spline, Linear Spline.
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Figure 1.D.10: Interactive Regression with Four-Month Rolling Window RMSE

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2

-1
0

-5
0

5
hr

s
0 5 10 15 20 25 30 35 40

Temperature[C]

RMSE=1

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

Marginal Effect of RMSE

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2
-1

0
-5

0
5

hr
s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=1

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

Marginal Effect of RMSE

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=3

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=2

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

RMSE=1

-1
0

-5
0

5
hr

s

0 5 10 15 20 25 30 35 40
Temperature[C]

Marginal Effect of RMSE

Note: Left to Right, RMSE decreases 3,2,1; Top to Bottom, Bins, Restricted Cubic Spline, Linear Spline.
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Figure 1.D.11: Interactive Regression with Different Fixed Effects Settings
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Note: Left to Right, RMSE decreases 3,2,1, marginal effect of RMSE.
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Figure 1.D.12: Interactive Regression on Restricted Sample on Weekly Working
Hours
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(a) Trim Sample to in (0,84]
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(b) One-Side Winsorization to 84 Hours Max

Note: Left to right, RMSE decreases 3,2,1, marginal effect of RMSE.

Figure 1.D.13: Interactive Regression with Extra Economic and Demographic
Controls
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Note: Controls added include log GDP per capita, log population, age, gender and college degree dummy;
Left to right, RMSE decreases 3,2,1, marginal effect of RMSE.
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Figure 1.D.14: Interactive Regression with Realized Temperature Splines
Controlled
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Note: Including same 5 knots restricted cubic spline of realized Tmax as linear controls; Left to right,
RMSE decreases 3,2,1, marginal effect of RMSE.
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Figure 1.D.15: Interactive Regression with RMSE Defined with Smaller Tempo-
ral Variations
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(b) RMSE of Previous Year
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(c) RMSE of 2010

Note: Left to right, RMSE decreases 3,2,1, marginal effect of RMSE.
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Table 1.D.2: Summary Statistics Comparing RMSE with Alternative Forecast
Accuracy Metrics

Labor Sample All Cities All Days 2011 and 2015
Metric N Mean STD Min Max N Mean STD Min Max

Main RMSE 2968 2.478 0.676 1.351 4.306 234270 3.323 1.837 0.991 13.688
Abs. Mean Error 2968 1.091 0.847 0.005 3.257 234270 1.935 2.150 0.000 13.378

Error STD. 2968 2.100 0.554 1.227 4.032 234270 2.371 0.684 0.947 5.938
Rational RMSE 2968 1.990 0.480 1.227 3.729 233586 2.265 0.622 0.722 6.139

AR RMSE 2968 2.880 0.535 1.096 3.953 233586 2.932 0.678 0.367 4.816
Hot RMSE 2968 1.009 1.349 0.000 4.354 234270 1.316 2.005 0.000 20.710
Cold RMSE 2968 1.328 1.145 0.000 4.247 234270 1.937 2.208 0.000 13.680

Max Abs. Error
in Half Year 2968 7.554 2.219 4.025 15.531 234270 9.283 3.245 2.753 24.865

Max Abs. Error
in One Month 2968 5.030 1.754 1.867 12.111 233928 6.789 3.018 0.000 24.865

Note: Rational and AR generated RMSE has fewer observations in the all city all dates sample because
they are both run on rolling window of 183 days, hence the earliest days of 2011 could have missing
RMSE because not all previous rationalized (or AR predicted) forecasts can be estimated (my sample
starts from 2010). For maximum absolute error over a month, more observations are missing from the early
2011 sample because there are more than a month missing data for early that year.
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Figure 1.D.16: Interactive Regression with RMSE Breakdown Components
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(b) Covariate Error STD

Note: Absolute mean errors and standard deviation on rolling window of 183 days (half a year); Left to
Right, Global, RMSE decreases 3,2,1, Marginal effect of covariate.
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Figure 1.D.17: Interactive Regression with Rationalized Forecasts
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Note: Rationalization runs with ordinary least squared regression of Tmaxreal on Tmaxforecast on rolling
window of 183 days for each city each date, estimating Tmaxrational = α̂ + β̂Tmaxforecast; RMSE kept at
rolling window of 183 days (half a year); Left to right, RMSE decreases 3,2,1, marginal effect of RMSE.

Figure 1.D.18: Interactive Regression with Auto-regression Predicted
Forecasts
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Note: AR(7) runs with ordinary least squared regression of real temperature lags on rolling window of 183

days for each city each date, estimating TmaxAR = α̂+∑7
k=1 β̂kTmax

real
−k ; RMSE kept at rolling window of

183 days (half a year); Left to right, RMSE decreases 3,2,1, marginal effect of RMSE.
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Figure 1.D.19: Interactive Regression with Splitted RMSE Interactions
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Note: For Tmaxforecast < 25C interact with RMSE for forecasts only below 25C (zero otherwise); For
Tmaxforecast ≥ 25C interact with RMSE for forecasts only greater or equal 25C (zero otherwise); Both
RMSE adapted on rolling window of 183 days (half a year); Left to right, RMSE decreases 3,2,1, marginal
effect of hot end RMSE, marginal effect of cold end RMSE.

Figure 1.D.20: Interactive Regression with Maximum Absolute Error
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(b) Maximum Absolute Error over One-Month

Note: Absolute errors taken maximum over rolling window of 183 days (half a year) or 30 days (one month);
Left to Right, maximum absolute error decreases 12,8,4, Marginal effect of covariate.
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1.E Detailed Description of Valuation Steps

This section serves as an amendment to Section 5.2, in description of the detailed steps

for valuation to estimate the single-period utility maximization model with the baseline re-

gression estimates.

Step 1: Referencing α

In my model, the scaler parameter α is the constant return of labor. This quantity is

relate to the marginal labor return to wage rate, ∂l∗

∂pl
= − 1

2α . Further related to the more

studied quantity, the elasticity of labor supply η, I approximate this parameter with α ≈

−1
2(

∆l
∆pl

)−1 ≈ −1
2(η

l
pl
)−1. The numeric variables I use are:

• η = 0.353: I directly reference the elasticity of labor supply η in China from Li (2016).

This paper estimates the elasticity quantity with choice-based conjoint analysis on the

China Urban Labor Survey (CULS) with six cities (sample worker age 16-64, almost

the same as my sample). I take its estimate for all workers in 2010.

• l = 7.496 hours, pl = 20.548 2015 Yuan: In my 2011 and 2015 CHNS labor sample,

I summarize the average wage per hour and average hours worked per day from the

variables of previous year wage income and working time.

I estimate the parameter α = −3.882. This could be a relatively conservative estimate, as

elasticity of labor supply may decrease over time as the country get more industrialized73.
73In this reference paper, the estimate for 2001 is much larger than that of 2010.
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In the main section, sensitivity analysis with alternative range of α is performed.

Step 2: Identifying l∗ = g(f, a) and β(w)

As argued above, β(w) = −2αg(w,a∗) can be estimated by the extrapolated labor re-

sponse under RMSE = a∗. To compute the utility function, I also need to estimate the

optimal labor function l∗ = g(f, a). Therefore, I can directly use the representation from the

baseline interactive regression Figure 1.3 with a∗ = 1:

• l∗ = g(f, a) = l̄ + [f(f ;β0) − f(25;β0)] + a × [f(f ;β1) − f(25;β1)]: With l̄ = 7.410 hours

is the labor under reference temperature f = 25 summarized from the sample74, I back

up l∗ = g(f, a) from the labor response relative to 25C estimated in Figure 1.3 Panel

(c).

• β(w) = −2α(l̄ + [f(w;β0) − f(25;β0)]) + a∗ × [f(f ;β1) − f(25;β1)]: With the extrapo-

lated labor function under perfect forecasts and α parameter referenced, the non-linear

function β(w) = −2αg(w,a∗) is estimated.

Here the components of the non-linear labor response functions f(.;β0), f(.;β1) (for main

analysis, they are restricted cubic splines) have coefficient vectors β0, β1 directly estimated

from the baseline interactive regression. To account for uncertainties, I also sample β0, β1

74Assuming that the equilibrium labor l̄ at Tmaxforecast = 25C is roughly invariant with the forecast
accuracy metric RMSE (RMSE as a linear control in this regression does have its coefficient statistically
insignificant from zero), I estimate l̄ as the 7-day average labor hours within the city-week in my regression
labor sample where its average Tmaxforecast is closest to 25C (the value is 25.022C). In this estimation, I
assume fixing the other linear controls X. One can regard this as the case of precipitation zero (the in-sample
average daily precipitation is about 3mm).
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with Monte-Carlo runs (300 trials) drawing from the multinomial distribution with the re-

gression estimates as mean and their variance-covariance matrix.

Step 3: Simulating V̄ (w,a)

To calculate V̄ (w,a), I average the realized utility u(l∗,w) for any pair of (w,a) across

simulations of f ∣w,a. In real data, this conditional distribution is approximately normal75.

Therefore, I simulate (with 300 draws) from the normal distribution f ∣w,a ∼ N(w − µ,σ2)

with selections of two parameters, the error (w − f) mean µ and standard deviation σ:

• µ = 0: For main valuation analysis, I keep a constant average bias parameter µ = 0,

which is the sample minimum (see Appendix 1.H.2).

• σ = 1,1.25, ...,4: I allow the standard deviation of forecasts distribution to vary in

a range that covers from 1 to close to the maximum of the half-year rolling Tmax

forecasts error standard deviation in my labor sample.

Note that these assumptions are restricted to cases of unbiased forecasts with µ = 0 with

positive uncertainties σ > 0 in order to simplify computations. These assumptions are con-

sistent with the forecasts sample observations, where µ can get close to zero but σ is never

below 0.9. My analysis assume labors most care about the RMSE instead of the two com-

ponents, µ,σ so these simplifications are reasonable. In main section of sensitivity analysis,

the estimates on actual µ,σ pairs observed in the dataset are shown with the simplification
75Kolmogorov-Smirnov tests prove that 98.3% of the days in my labor sample does not reject the normality

test at 5%.
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results and they match.

V̄ (w,a) is then estimated for the series of real temperatures w = 0,1, ...,40 under the

RMSE metric simulated at a ∈ [1,4] by RMSE = a ≈
√
µ2 + σ2. By the quadratic utility

design, V̄ (w,a) achieve maximum under any given w if and only if a = a∗ (σ = a∗), which I

also compute as a reference for later use.

Step 4: Aggregating to V (a)

For main valuation analysis, I estimate V (a) by taking the average of simulated V̄ (w,a)

weighted by a selected real temperature distribution p0(w). To keep it constant, I maintain

p0(w) as the empirical distribution of Tmaxreal over the pooled sample including all 342

cities and all 730 days in 2011 and 2015. I compute V (a) for series of a ∈ [1,4] as described

with V̄ (w,a). For display purpose, I normalize V (a) subtracting the perfect forecast case

a = a∗ = 1 and inflate the values by 365 days of a year (because my labor sample does not

exclude weekends and holidays). In interpretation, the final value would be the estimated

value loss per worker per year given forecast RMSE = a relative to the perfect forecasts case

with RMSE = 1. The same process is repeated for 300 Monte-Carlo draws described with

the estimation of l∗ = g(f, a) and β(w) to generate confidence intervals.

1.F Additional Plots for Valuation and Sensitivity Analysis
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Figure 1.F.1: V (a) Relative to V (1), Per Labor Per Year, Different α.

-8
00

0
-6

00
0

-4
00

0
-2

00
0

0
Va

lu
e 

Pe
r Y

ea
r[2

01
5 

Yu
an

]

1 2 3 4
Forecast RMSE[C]

alpha=-10.152

-8
00

0
-6

00
0

-4
00

0
-2

00
0

0
Va

lu
e 

Pe
r Y

ea
r[2

01
5 

Yu
an

]

1 2 3 4
Forecast RMSE[C]

alpha=-3.882

-8
00

0
-6

00
0

-4
00

0
-2

00
0

0
Va

lu
e 

Pe
r Y

ea
r[2

01
5 

Yu
an

]

1 2 3 4
Forecast RMSE[C]

alpha=-2.417

Figure 1.F.2: V (a) Relative to V (a∗), Per Labor Per Year, For Different a∗
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(a) a∗ = 1.4, labor sample minimum
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(b) a∗ = 0, perfect forecasts

Note: MC generated 95% confidence interval in shade, dashed line MC mean, dash-dot line MC median.
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Figure 1.F.3: V (a) Relative to V (1), Per Labor Per Year, Different
Specifications and Different RMSE Rolling Window
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Figure 1.F.4: V (a) Relative to V (a∗), Per Labor Per Year, Evaluated on Real
Forecasts Data Points
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(b) All Cities Sample 2011 and 2015

Note: Selected (µ,σ) pairs from forecasts data sample summarized into 0.25 × 0.25 grids centering at
0,0.25, ...,4; a∗ taken to be the minimum across the gridded a =

√
µ2 + σ2; Line indicates the simulated

valuations in the main section, a∗ = 1 and a∗ = 1.4 respectively.

Figure 1.F.5: V (a) Breakdown by Real 5C Temperature Bins, Per Labor Per
Year Relative to V (1)
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Note: Lighter color indicates higher temperature bins; Gold shades the mid temperature bin [15C,20C);
Maroon shades the hottest temperature bin [35C,∞).
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1.G Non-Parametric Model with Rational and Overacting Belief of Forecasts

1.G.1 Motivation and Behavior Economics Links

The reason to argue for an overreacting model of forecast belief is because my valuation

using realized utilities of individual decision makers based on the regression estimated labor

response do not produce the highest realized utilities (Figure 1.G.1). These potentially im-

ply the overreaction of individuals to forecasts with not so high RMSE (not so low accuracy).

Figure 1.G.1: V (a) Relative to V (1), Per Labor Per Year, Different Labor
Response Assumptions
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Note: Circle/Solid Line = full valuation (main result), Triangle/Dash Line = fixing labor response l̄;
Diamond/Dot-Dashed Line = labor varying to forecast but not to RMSE, always assuming RMSE = 1.

There are related but indiscreet descriptions for this kind of overreaction in behavior

economics literatures. For example, common heuristics in real life decision makings include

biased judgments under uncertainties (Twersky and Kahneman, 1974). There are also the-

ories that can apply to decision makers being more risk averse towards bad information

(Kahneman, Knetsch, and Thaler, 1991). Other theories argue that decision makers can put

124



different weights than actual probabilities on uncertain outcomes (Kahneman and Tversky,

1979)76. In a way, the general utility maximization model used in this and many other pa-

pers do not always points to what people react, but instead what they should be reacting

(Thaler, 1980)77. These theories could explain my valuation results not being maximized

over alternative labor responses less sensitive to forecasts and forecast accuracy, but overall,

there are no literatures directly linking climate forecasts and behavioral models.

1.G.2 Model and Non-Parametric Estimation

With rational belief, individual decision maker shall form their expectation about the

real weather shock basing on a, in this case RMSE, correctly as its definition and respond

to the approximately normal distribution of w∣f, a ∼ N(f + µ,σ2). Here a =
√
µ2 + σ2 by

definition and µ,σ are the rolling mean and standard deviation of forecast error w − f .

However, since the empirical interactive regression results have suggested the possibility of

labors overreacting to larger a as if forecasts are much more inaccurate, I would allow an

overreaction factor of ξ ≥ 1 on the standard deviation term only. Therefore, individual

decision maker would form expectation about the real weather shock as:

w∣f, a ∼ N(f + µ, ξ2σ2)

This would actually suggest the RMSE perceived is inflated by a factor no greater than
76Kahneman, Daniel, and Amos Tversky. “Prospect theory: An analysis of decision under risk.” In

Handbook of the fundamentals of financial decision making: Part I, pp. 99-127. 2013.
77Thaler, Richard. “Toward a positive theory of consumer choice.” Journal of economic behavior &

organization 1, no. 1 (1980): 39-60.
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ξ. For µ = 0 in my simulations, the inflating factor for RMSE is exactly ξ. If ξ = 1, then

there is no overreaction and the decision maker accesses the rational conditional distribution

by weather forecasts.

With the normality structure of these conditional beliefs, I can then estimate this struc-

tural model with a non-parametric kernel approximation of β(w), instead of the extrapolation

method where beliefs are not assumed in the main section:

β(w) =
K

∑
k=1

βk(w)

E[β(w)] =
K

∑
k=1

E[βk(w)∣f, a]

When βk is a series of approximating piecewise functions on a given bin w ∈ Bk. With

the specific assumptions on the functional forms of βk(w), β(w) is taken to be restricted

linear spline where estimates are flat after the last knot wK :

β(w) = β0 + β1(w − (w −wK)1{w > wK}) +
K−1

∑
k=1

γk((w −wk) − (w −wK)1{w > wK})1{w > wk}

In that way, E[β(w)] can be expressed in closed form of f, a as truncated normal mo-

ments. Hence, I can directly estimate β(w) non-parametrically with the coefficients (scaled

by the same α = −3.882) in the following regression:

126



l = b0 + b1(f + ξµ −MK) +
K−1

∑
k=1

gk(Mk −MK) +m′X + ε

Where with normality assumption, f ∣w,a ∼ N(w − ξµ, ξ2σ2) and truncated normal pro-

vides:

Mk = E[(w −wk)1{w > wk}] = (f + µ −wk)(1 −Φ(
wk − µ − f

ξσ
)) + ξσφ(

wk − µ − f

ξσ
)

For here, I control all the same city and month fixed effects, RMSE as an independent

linear control, precipitation quadratic in X like the baseline interactive regression. All re-

gressors Mk are estimated on the estimated mean and standard deviation µ,σ on the same

rolling window of half a year (183 days) as the RMSE. For this exercise, I select K = 3 with

the temperature bin cut-offs at wk = 15,20,35 (my explorations would give similar results

for different trials of other numbers and positions of these knots).

1.G.3 Results and Valuation

I plot the estimated labor response arrays under the main simulation setting of µ = 0 and

σ = 1,2,3, again relative to Tmaxforecast = 25C with ξ = 1,2,5,10 in Figure 1.G.2. Comparing

with the main interactive regression, their labor decrease under hot temperature forecasts

remain small both in magnitudes and in statistical significance until the overreaction factor

becomes very large at ξ = 10. By ξ = 10, the labor decrease at hot end approaches the large

magnitude as the main results. The medium-cold labor drop at low RMSE no longer exists,
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instead there is a mid-temperature labor rise. Overall, the labor response curves smooth as

RMSE increases, and the degree of smoothing increases with ξ.

The disparity between main and non-parametric regressions suggests the possibility that

ξ ∈ [5,10]. However, the empirical determination of the optimal overreacting factor ξ gives

different results. My approach is to record the residual sum of squares (RSS) of each non-

parametric regression under series of ξ ∈ [1,40] with increment of 0.1, and by least-square

selection criteria choosing the minimized RSS (Figure 1.G.3). This criteria gives the best-

fitting ξ = 20.6, very large and making labor response extrapolation very extreme under low

RMSE. On the flip side, the peak of RSS exists over the range where the non-parametric

arrays are most similar to the main interactive regression at ξ ∈ [5,10], discrediting the

selection over this range.

With the coefficients estimated for the regressions and the deduced β(w) functions again

fixing the same reference labor at 25C, valuation is repeated towards V (a) in Figure 1.G.4.

From these plots, the choice of overreacting factor ξ is very significant to the valuation re-

sults. When ξ ≤ 5 the valuation of V (a) is less than 1/10 the magnitude of the main results.

When ξ reaches 10, the value inflates to almost 7.5 times the main values and more than

300 times the non-overreaction rational case (ξ = 1).
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Figure 1.G.2: Restricted Linear Spline Non-Parametric Regression, ξ = 1,2,5,10
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Figure 1.G.3: Residual Sum of Squares (RSS) of Non-Parametric Regression
with Respect to Different Overreaction Factor ξ
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Figure 1.G.4: V (a) Relative to V (1), Per Labor Per Year, Non-Parametrically
Estimated with Overreaction Factor ξ = 1,2,5,10
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1.G.4 Discussions

Overall, this analysis concludes that it is unlikely decision makers form completely ratio-

nal belief about w∣f, a, and the valuation following complete rational access of the conditional

distribution would result in more than 45 times smaller valuation than my main results.

Meanwhile, both estimated labor response and valuation move closer and then greater than

the main when people overreact with more than 5 times the true standard deviation of w∣f, a.

As a result, there are some reasonable arguments supporting this overreaction belief model.

However, the explanatory power for these regressions with the multiplier from 5 to 10 is

lower than the other ranges, not evidence to their picks. Also, there is no sufficient proofs

suggesting inflating the belief by more than five times are normal in reality. Therefore, the

paper reaches no conclusive evidence on what is people’s actual expectation of real temper-

atures when they receive information about forecasts and forecast accuracy, and this would

remain an interesting and important topic for future research.

1.H Other Appendix

1.H.1 National and Labor Sample Comparison

With N = 11,012 for my labor sample, there is a usual concern about the external va-

lidity problem, namely whether any results from this paper can be extended to conclude

cities and dates not covered in the sample. To address this issue, I run tests on whether the

labor sample could represents the national population. I compare a selected set of climate

and macroeconomic variables using t-tests, between the full year measures for 2011 and 2015
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averaged by city and weighted by 2015 city populations, and the summarized labor sample

characteristics with sample weights by number of individuals surveyed per city per year. Ta-

ble 1.H.1 reports the results, where most city characteristics are not statistically significantly

different between the labor and national samples as addressed by non-rejection of the t-tests

up to 10%. The only difference with significant t-test is that the labor sample cities have

more greenland coverage, which among other controls are not very correlated with the labor

sector. Therefore, the tests provide partial evidence supporting the labor sample used in

this paper being representative of the whole country.

1.H.2 RMSE Breakdown Analysis

By definition, the RMSE metric is related to two components, the mean error (bias) and

the standard deviation of the error (uncertainty), on rolling window half a year (R = 183):

MeanTmaxit =
1

R

R

∑
s=1

(Tmaxrealit−s − Tmax
forecast
it−s )

STDTmax
it =

1

R

R

∑
s=1

[(Tmaxrealit−s − Tmax
forecast
it−s )2 − (MeanTmaxit )2]

Under law of large numbers, RMSE ≈
√
Mean2 + STD2. For comparison purpose, I take

the absolute value of the Mean to indicate the size of average forecast error78. In my data

for all days and all cities with available forecasts 2011-2015, the correlation between RMSE

and absolute Mean is 0.945 and for STD is lower at 0.419. The two are not very correlated
7887% of this quantity is negative in the full forecast sample 2011-2015.
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Table 1.H.1: Summary Statistics of Labor VS National Sample, Year 2011 and
2015, Population Weighted

Variable Labor Sample National Sample Difference

Daily Forecast Tmax [C] 22.257 21.127 1.131
(4.348) (3.612) [0.450]

Daily Real Tmax [C] 21.004 19.128 1.875
(4.119) (3.820) [0.817]

Daily Precipitation [mm] 2.431 2.694 -0.263
(1.625) (1.275) [-0.722]

City Area [104km2] 1.954 1.756 0.198
(2.027) (1.930) [0.318]

GDP per Capita [104 2015 Yuan] 5.568 4.516 1.052
(2.882) (2.641) [1.245]

Road Area [104km2] 0.004 0.003 0.002
(0.004) (0.003) [1.417]

Labor Force/Pop. 0.374 0.256 0.117
(0.303) (0.229) [1.609]

Unemployment Rate [%] 2.592 2.693 -0.101
(1.404) (1.296) [-0.323]

Share of Primary Industry [%] 11.170 12.641 -1.471
(9.475) (7.585) [-0.844]

Share of Secondary Industry [%] 43.889 48.250 -4.360
(11.616) (8.376) [-0.829]

Water Resources (108m3) 90.799 75.896 14.903
(133.222) (95.132) [0.380]

Greenland Area [104km2] 0.027 0.010 0.017
(0.038) (0.020) [2.281]**

Elevation [m] 286.703 418.824 -132.122
(314.202) (507.991) [-1.525]

No. Weather Stations 2.304 2.056 0.248
(2.458) (1.861) [0.337]

Area of Lakes [104km2] 0.035 0.030 0.005
(0.057) (0.068) [0.516]

Lenghth of Rivers [Deg] 47.993 39.905 8.088
(40.500) (37.099) [0.647]

Note: Labor Sample has 52 cities and only labor reporting weeks, national sample covers all 342 over all
days of 2011 and 2015; All variables are averaged by city; GDP per capita adjusted to 2015 by World Bank
GDP deflater; Labor sample are weighted by number of individuals in each city; For national sample, city
averages are weighted by 2015 population; Standard deviations are in parenthesis; Difference has t-test
performed and t-statistics included in square bracket; For t-test results, ∗p < 0.1, ∗∗p < 0.5, ∗∗∗p < 0.01.
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between themselves, with a correlation coefficient of 0.151. But STD has twice the average

size as the absolute Mean, and in terms of squares, STD contributes on average 68.4% of

the RMSE square, while Mean only 32.0%. In summary, this mean that Mean likely has

more similar spatial and temporal trend as RMSE, but STD contributes greater to the

value of RMSE.

With summary plots Figure 1.H.1, absolute Mean and STD features quite differently

overall. From Panels (a) and (b), absolute Mean has smaller average across both samples

and greater distribution variation than STD. Both absolute Mean and STD components

have positive skewness for either sample choice. In Panels (c) and (d), both features large

spatial variations, but their correlation is not perfect and neither has great proximity to the

map of RMSE. For example, south-west regions have relatively small absolute Mean but

greater STD. Also by construction of forecast adjustment for non-capital cities, absolute

Mean varies much more across province borders than within same province, which does not

exist for STD.

More difference between the two occurs for temporal variations in Panels (e) and (f).

Absolute Mean increases by 2.3% while STD decreases by 5.1% from 2011 to 2015, imply-

ing that the forecast accuracy improvement is largely contributed by lowered uncertainties.

However, the magnitudes of both changes are still small, only 0.044C for absoluteMean and

0.124C for STD. Like RMSE, absolute Mean maximizes at fall and minimizes at spring,

while STD has very different monthly trend with maximum around summer (therefore first

half of the year has smaller forecasts precision). For yearly trend, absolute Mean sees more
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decrease among spring months but offset by the increase over fall months, while STD uni-

formly decreases for all months from 2011 to 201579.

So overall, there are improvement in forecasts precision over the 5 years I study. How-

ever, temporal variations still contribute little comparing with spatial variations for both

components (for absolute Mean, spatial contributions 91.5% for all sample, 62.2% for labor

sample; for STD, spatial contributions 80.0% for all sample, 72.7% for labor sample), mak-

ing any analysis using them instead of RMSE still focusing on spatial variations in forecast

accuracy. The choice of using RMSE instead of these two separate components are based

mainly on the hypothesis that people are concerned about both the bias and the precision

of weather forecasts. As a verification, the explanatory power of the baseline interactive re-

gression is greater than using the two breakdown components to represent forecast accuracy

instead (see robustness checks Appendix Figure 1.D.16).

79Though there are fluctuations in earlier years (for example, STD increases for some months 2011 to
2012).
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Figure 1.H.1: Summary Plots for the Spatial and Temporal Variation of Forecast
RMSE Breakdown

(a) Daily Maximum Temperature Absolute
Forecast Error Mean on Rolling Window of
Half a Year (183 Days)
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(b) Daily Maximum Temperature Forecast
Error STD on Rolling Window of Half a
Year (183 Days)
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(c) Half-Year Rolling Absolute Forecast
Error Mean Average Across Time By Cities

Note: All 342 cities, over 685 days with non-missing
forecasts in 2011 and 2015.

(d) Half-Year Rolling Forecast Error STD
Average Across Time By Cities

Note: All 342 cities, over 685 days with non-missing
forecasts in 2011 and 2015.
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Figure 1.H.1, continued

(e) Half-Year Rolling Absolute Forecast
Error Mean Average Across Cities By
Months
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(f) Half-Year Rolling Forecast Error STD
Average Across Cities By Months
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Chapter 2

The Value of Accurate Weather Forecasts: Social Sentiment Responses

Reflected in Social Media in China

Abstract

This paper combines real weather data with the city-daily weather forecasts broadcast by
the government, as well as the sentiment index expressed by posts on the popular social
media Weibo in China, and through an interactive regression design analyzes the differential
sentiment responses to temperatures under different sizes and signs of daily temperature
forecast errors. My main results have suggested that more accurate temperature forecasts
lead to smaller shifts towards unhappiness caused by the cold temperatures. The same effects
does not play out under hot weathers, unless in cities with higher income, greater long run
temperature forecast accuracy, or during holidays. My study also suggests that additional
negative sentiment shocks are likely related to cold or heat alarms issued according to the
national forecasts, resulting in that positive forecast errors have greater marginal effects on
sentiment than negative errors during the cold temperatures. Overall, these results meet
the intuition that advanced forecast technology provides more accurate daily temperature
forecasts, and adds to great social benefits in China in terms of improving people’s subjective
well-beings as expressed by social media sentiments. In the current time under climate
change, when extremal weather events are expected with greater frequency into the future,
my work would help to provide an insight of the value of developing a modern weather
forecasting system that can benefit billions of people in the long run.

2.1 Introduction

It has been known in economics, that subjective well-beings, sometimes expressed as

people’s happiness of life, are highly correlated but not equivalent to measurable economic
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standards such as income and consumption levels (Luigino, 2004). Other less quantified fac-

tors are also instrumental to the happiness index, such as health and general living standard

(Glatzer, Camfield, Moller and Rojas, 2015; Carleton etal., 2020). In modern days with

the wide usage of social media all across the globe, the traditional method of surveying to

measure the subjective well-beings have been replaced by text analysis using machine learn-

ing natural language processing (NLP) (Kahneman and Krueger, 2006; Dodds etal., 2011).

Through the fast growing literatures using social media expressed sentiment index represent-

ing people’s real-time subjective well-being, there have been many studies on contributors to

this happiness metric. For example, pollution, extreme temperatures, and natural disasters

are all found to be important factors for people’s sentiment on social media (Zheng etal.,

2019; Wang, Obradovich and Zheng, 2020; Kryvasheyeu etal., 2016). However, there has

not been much explorations on one factor that can potentially impact the society happiness

level in the long run, namely the technology development. In fact, technology development

has positively impact a range of known factors contributing to people’s utilities, including

economic growth, quality of living, health improvement, and risk reduction encountering

natural disasters.

In this paper, I want to focus on the modern technology of weather forecasting, one of

the most common technology available to most population across the globe as a free public

good. Nowadays, sophisticated weather forecasting systems managed by governments and

research institutions are combinations of numerical modeling and professional judgment,

guided by most advanced development in the fields of meteorology, engineering, statistics,

and computer science. Over the past decades, large amount of financial supports have been
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invested in predicting more accurate weather forecasts, from generating new numerical fore-

casting models to launching more meteorological satellites. Scientists and engineers have

been working on providing the best forecasting systems to ensure the timely and reliable

predictions of future weathers, from days ahead to weeks ahead and even years to come

(Edwards, 2011; Coen, 2021). From general public to governments, more accurate forecasts

help all these decision makers broadly with preparation to avoid potential damages caused

by future unpleasant weather events.

There have not been a large literature on how valuable is “good” weather forecasting to

the society. Previous studies have mostly focus on the medium-run precipitation forecasts

provided to smaller groups of decision makers in specific industries. For many of those,

historical forecast data is not available, so authors rerun numerical forecasting models or

use other first stage predictions. Most of them have found negative impacts of the failure of

forecasts on agriculture and fishery productions as well as related corporate revenues (Allen,

Graff Zivin and Shrader, 2016; Shrader, 2020; Rosenzweig and Udry, 2019; Downey, Lind

and Shrader, 2021). For a further step, quantifying the value of weather forecasts has been

non-trivial. Conventional methodologies applied have usually included contingent valuation,

which surveyed the benefit of weather forecast systems from several billions to more than

30 billion USD depending on the country and time of studies (Yuan, Sun and Wang, 2016;

Lazo, Morss and Demuth, 2009). Otherwise economic approaches have been applied to eval-

uate the impacts of accurate forecasts on transportation, economic damages and production

yields, giving estimates for the value of forecasts again from several billions to more than 80

billions (Nurmi etal., 2012; Martinez, 2020; Fox, Turner and Gillespie, 1999). Though their
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settings and methods differ, all of these studies have found a large benefit to cost ratio for

the weather forecasting systems around the world.

This paper instead focuses on the less studied short-term temperature forecasts, which

are easily accessible by the larger population. With the choice of setting in China, where the

nationwide weather forecast system has been managed by one state agency, China Meteoro-

logical Administration (CMA), this project studies the 24-hour daily forecasts provided by

an almost uniform source. For the outcome variable I choose to look at the sentiment index

expressed on one of the largest social media platform in China, Sina Weibo, since the day-to-

day sentiment response is likely sensitive to daily weathers, and whether those weathers are

forecast accurately. Combining two unique datasets in the year of 2014, I use the climate eco-

nomic approach to directly evaluate the impacts of accurate temperature forecasts on social

well-beings in China. In summary, my results provide evidence that more accurate temper-

ature forecasts help to improve people’s sentiment in real time. To be specific, greater daily

temperature forecast errors have contributed to greater unhappiness under cold weathers,

especially when forecasts give exaggerated cold warnings. Meanwhile, the negative sentiment

shock in response to heat has not been affected significantly by these instantaneous forecast

errors. The discrepancy between cold and hot sides may be contributed by the higher cost

of adaptation during heat.

This paper proceeds as the following. Section 2 describes datasets, data treatments and

summary statistics. Section 3 outlines the empirical design and then presents the main re-

sults. Section 4 conducts extension explorations and robustness checks. Section 5 concludes.
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2.2 Data and Summary Statistics

2.2.1 Sentiment Index

I received the unique sentiment index dataset for Chinese social media from MIT Sub-

stainable Urbanization Lab (SUL), which has been applied in their papers Zheng etal. (2019)

and Wang, Obradovich and Zheng (2020). As described in those literatures, they scraped

210 million microblog tweets with geotags (i.e., the authors microblogs choose to identify

their city) posted on the Chinese largest microblog platform Sina Weibo (similar to Twit-

ter). Then, the “Tencent” natural language processing (NLP) platform is used to code a

machine-trained sentiment analysis algorithm from computational linguistics. This algo-

rithm is applied to measure the sentiment for each Weibo post, with which post is given

an index ranges from 0 to 100, where 0 means a strongly negative (“Unhappy”) and 100 a

strongly positive (“Happy”) mood. Next, the overall happiness index for a city is constructed

by calculating the mean and median sentiment value of the sentiment indices across all the

geotagged posts generated on a given day. Eventually, the SUL sentiment index data covers

144 Chinese cities from all 31 mainland provinces, over the period of 275 days from March

to November 2014 (all seasons except for winter).1 The city mean sentiment index in this

dataset spans a range from 35.7 to 79.9 with an average of 55.2 and standard deviation 2.4.

Day-to-day shift in city mean sentiment index can be pretty large, ranging from −24.2 to

21.5, though the average shift is fairly close to zero.
1For the specific purpose related to their pollution studies, the lab uses a dictionary of pollution terms

to exclude the microblogs discussing air quality. The proportion being excluded is fairly low, about 0.047%
of all the posts.
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2.2.2 Weather Forecast Data

In China, the national weather forecasting system has been managed by the state depart-

ment of China Meteorological Administration (CMA), which is in charge of both producing

and broadcasting the national forecasts. Their forecasting job include several steps. First,

multiple numerical models take inputs including historical and current weathers from ob-

servatory stations and weather satellite images, considering parameters like local geographic

factors (for example, elevations), and output weather forecasts (including temperatures and

precipitations) for the near future (usually 2-3 days)2. Next, professional weather forecasters

trained and employed at local weather stations evaluate the raw predictions from different

models, and summarize the “average” forecasts with their personal experience and judgment

taken into considerations. Lastly, CMA holds the daily conference with local forecasters

across the country, collects their final local forecasts, verifies their consistency at a national

level, and distributes the final forecasts to the public via TV, radio, papers and Internet3.

The almost uniform source of weather forecasts from CMA in China has ensured a sce-

nario that most of the Chinese population receives the same forecast information 4. Accord-

ing to Yuan, Sun and Wang (2016), over 40% population in China receive weather forecast
2I consult the CMA, they did not specify which models they used, but confirm there are more than one

models involved and their list, and the list has been updated over the years. When old models are dropped
some will be posted on their website, but new models are being added and modified all the time.

3News source http://www.cma.gov.cn/2011xzt/2013zhuant/20130524/,
https://zhuanlan.zhihu.com/p/21598589.

4Many third-party websites and mobile apps also adapt weather forecasts, but majority of them quoting
the information from CMA. One common app not quoting CMA is the Apple weather app. However, though
people may rely on apps more for real time temperatures, in general they still tend to rely on the authority
source for weather forecast information.
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information from TV in 2006, the dominant source among all age groups. And among all

forecasts, the 24-hour weather forecast is one of the most popular and most emphasized

products. This information includes temperature forecasts of a range and a weather cate-

gory forecast (e.g., sunny, shady, small rains, fog) for cities across the country for the next

day to come. It is aired in one of the highest viewership TV programs of the country, the

Weather Forecast. This program is aired every day on CCTV Channel 1 (China Central

Television - Main Channel) and Channel 13 (News Channel). Over the past decades, the

program has expanded to three times a day, in the morning, at noon, and in the evening.

The evening Weather forecast receives significantly higher viewership comparing with the

other two, especially among elder generations, because it is aired almost immediately after

the daily national news ending at 7:30pm5.

I extracts these next-day weather forecasts from this popular evening Weather Forecast

program as information perceived by the majority of audience. To do so, I download the full

videos published by the official website of CCTV.com, which is real-time recording of the

program broadcast on TV and made available on the Internet by the end of each day. Due

to a copyright constraint, videos on the website only cover back to the year of 2010. I batch

download all videos available (some days especially in earlier years are missing) using the

video consolidating-downloading site FLVCD. The downloaded videos are then transformed

to FLAC audio files with fitting wavelength numbers, and fed into the Google Cloud speech-

to-text API. The API reads the audio files and transcribe speeches to Chinese texts in TXT
5The intermission between the news and weather forecasts is around 1 minute, filled by only a couple

commercials. This intermission period has been reported as one of the most expensive TV advertising slots
because of high viewership.
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scripts. Finally, I clean up the scripts with STATA to collect observations of forecasts identi-

fied by city and date, and those are finally compiled into my Chinese weather forecast dataset.

This weather forecast dataset contains the temperature range forecasts in the form of

Tmin and Tmax, as well as the categorized weather forecasts in the next 24 hours for all 34

provincial capital cities in China. I take daily average temperatures as the mid point of the

temperature range, Tavg = 1
2(Tmin+Tmax). To expand to all Chinese cities, I approximate

temperature forecasts for non-capital cities by adjusting a provincial capital forecast with a

difference between the monthly(m) average real temperature (source ERA-Interim, see next

subsection) of non-capital i and its capital city p in 2010:

T forecastitmp = T forecasttmp +
1

∑year=2010,month=m 1
∑

year=2010,month=m
(T realitmp − T

real
tmp )

And the categorized forecasts for those non-capital cities are approximated by the same

categorized forecasts as their provincial capitals. This would be relatively rough approxima-

tions comparing with the temperature forecasts, however.

In the end, this weather forecast dataset then cover all cities in the sentiment dataset.

That includes 31 provincial capitals which receive direct forecasts, and 113 non-capital cities

with approximated forecasts. I take the time range to be the year of 2014, which overlaps

with the sentiment dataset.
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2.2.3 Real Weather Data

The “real” climate data available for years 2009 to 2016 is sourced at ERA-Interim (ERAI)

reanalysis data product from ECMWF (European Centre for Medium-Range Weather Fore-

cast). This dataset covers daily temperatures Tmin, Tmax (and Tavg again taken as the

average), and precipitations in mm. Strictly speaking, this data product is neither the real-

time recordings nor the raw historical weather station readings, but instead extrapolations

using mathematical models on existing station recordings taken with time intervals. Their

models approximate weathers to a high frequency of 3 hourly, 0.25×0.25 grid level. Normally,

climate scientists judge this data product as efficiently close to the real historical weathers,

especially for temperatures, though there are more uncertainties around the extrapolation of

precipitations. Eventually, I source both this ERAI data product and the generating codes

from EPIC (Energy Policy Institutde at the University of Chicago) Climate Impact Lab

(CIL), to aggregate the ERAI real weather data to city-daily levels by population weights,

in order to match with the frequency of the forecast dataset.

2.2.4 Control Variables

Various environmental and socio-economic variables are used to separate subsamples anal-

ysis or testing of exclusion restriction. Specifically, main city and economic indicators are

obtained from China City Statistical Yearbook, including GDP per capita, population, road

area, green land coverage, labor force breakdown, industrial pollutant emissions, water and

electricity supply, coal and petroleum consumption, city areas and water resources. City
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boundaries, lake and river distributions are aggregated using the GDB shapefiles applied

from National Catalogue Service For Geographic Information, published year 2017, released

by State Bureau of Surveying and Mapping. City elevation data is obtained from Appendix

table of the Load Code for Design of Building Structure (GB 50009-2012). The location

of weather stations in China is obtained from records of NOAA (National Oceanic and At-

mospheric Administration) Integrated Surface Database (ISD). I also obtain air pollution

data scraped from Ministry of Ecology and Environment of the People’s Republic of China

(daily, 2013-2018) or the Anthropogenic Aerosol Optical Depth (AOD) (monthly, 2005-2015)

downloaded from NASA website.

2.2.5 Rationalization of Temperature Forecasts

In real life, it would be hard to argue how general public form their beliefs on tomorrow’s

weather after receiving the temperature forecasts today. For example, if the forecast has

been consistently off by 1C, will residents notice the constant error and induce an accurate

forecast by adding it back, or will they take the raw forecasts as given. This assumption not

only affects whether people respond to raw or adjusted forecast information, but also affects

their perceived forecast accuracy.

An alternative to raw forecasts would be the “rationalized” forecasts. By definition, a

rational forecast is a forecast with symmetrical forecast error centering around 0. Under

symmetric loss function, it follows that positive and negative forecast errors can be weighted

equally. To test whether the weather forecast data I have is rational, I follow the theory in
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Mincer and Zarnowitz (1969) and run the following simple OLS with all 12 months of year

2014 (including the winter months where the sentiment sample is not spanning) with robust

standard error:

T realit = αiy + βiyT
forecast
it + εit

Rational forecasts require the null αiy = 0 and βiy = 1 to be not rejected. Running the

F-test for all 144 sentiment index cities individually, over 99% of the p-values for all Tmin,

Tavg and Tmax falls below 5% (over 98% are rejected at 1% level). Therefore, vast majority

of the null are rejected, so that the raw forecasts are not rational.

As a result, I would consider this alternative hypothesis that individual adopt rationalized

forecast instead of the raw, where the “rationalization” of raw forecasts is conducted with

individuals adjust the raw forecasts linearly with the OLS estimates achieved above:

T̂ forecastit = α̂iy + β̂iyT
forecast
it

In Figure 2.1 it illustrates the daily Tavg distribution across all cities, only capital cities

and only non-capital cities. From the histograms we can see similar shapes of distributions

for real, non-rationalized and rationalized forecast temperatures regardless of the sample,

verifying that the forecast approximation process I proposed for non-capital cities has been

reasonable. In general, the non-rationalized forecasts (red) are higher than the real temper-

atures, but the rationalization process seems to correct it such that the rationalized forecast

(green) overlaps with the real temperature.
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Figure 2.1: Daily Average Temperature Tavg: Blue=Real, Red=Non-
Rationalized Forecast, Green=Rationalized Forecast; Covering the Sentiment
Sample March-November 2014; Left to right samples: all 144 cities, only 31 cap-
ital cities, only 113 non-capital cities.
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To encounter both assumptions regarding how the public take forecast information into

beliefs, for the later sections, results will be run with both raw “non-rationalized” forecasts

as well as these “rationalized” forecasts.

2.2.6 Forecast Error Definition

According to the model proposed in Hsiang (2016), for outcome variables sensitive to

weathers like the sentiment, there exists responses to both real weathers and weather expec-

tations. In the case of sentiment, which in nature has a fast-changing characteristic (e.g.,

sentiment can alter from minute to minute), response to real weathers is likely dominant.

However, such sentiment response to real weathers is also likely related to how well bad

weather events have been forecast and prepared for based on the accuracy of those forecasts.

For example, a reasonable hypothesis is that there will be negative sentiment shocks corre-
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sponding to bad weathers, but the magnitudes of those negative shocks would be lowered by

providing better quality weather forecasts.

In my setting, the Chinese national forecast system has been established since the 1980s,

and weather forecasts nowadays have become quite accurate thanks to technology develop-

ment. However, no forecasts can consider all the real-time factors perfectly, giving the rise

of instantaneous forecast error:

T realit − T forecastit

Here T is a daily temperature measure, Tmin, Tmax or Tavg. This error metric repre-

sents how accurate the forecast is for city i at day t. By definition, it can be either positive

or negative. A positive forecast error represents an underestimate of the temperature, and a

negative forecast error represents an overestimate. In Figure 2.2, we can see mainly negative

errors with non-rationalized forecast (red), but symmetrical error distribution of the rational-

ized forecasts (green) by design. Notably, there exists extreme errors with great magnitudes

> 10C on both positive and negative ends for the non-rationalized forecasts, for which I have

checked to be over the western part of the country where mountainous topography likely

makes weather forecasting more difficult and inaccurate.
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Figure 2.2: Forecast Error for Daily Average Temperature Tavgreal − Tavgforecast
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2.2.7 Spatial and Temporal Variations of Forecast Accuracy

Based on the process of Chinese weather forecasting, theoretically, forecast errors are

relevant to a series of observable and unobservable factors. Errors can due to missing and

mis-measured observational inputs for the numerical models (for example, errors in current

weather recording, inability to capture certain airmass movements with restriction to satel-

lite access), systematic prediction errors of modeling (for example, old models do not capture

the new earth dynamics under climate change, high elevation weathers are usually difficult

to predict due to fast and complex airmass movements), and human errors when forecasters

summarize the model outputs (for example, sincere mistakes or intentional tampering of

data). As a result, this metric is expected to vary both in time and in space. Spatially, geo-

graphical parameters (e.g., nearby a water body or inland, high versus low elevation) and the

ability of local weather forecasters varies. Temporally, numerical models and professionals

may be better at predicting weathers under specific weather conditions during some seasons

151



but not others.

In Figure 2.3, I show some instances of the temporal variation of the magnitudes of this

forecast error with Tavg. As it shows, there seems to be decreasing monthly trends of av-

erage ∣Tavgreal − Tavgforecast∣ (left) approaching end of year 2014, for both northern (solid)

and southern (dash) part of China, for both non-rationalized (red) and rationalized (green)

forecasts. There is less of a visible time trend over the day-of-week average (right) however,

implying that the forecasting system is carried out identically throughout the week with

small likelihood of human errors being dependent on weekdays or weekends.

On the other hand, spatial variations within and across province boundaries can be seen

from the yearly average absolute forecast error for Tavg in Figure 2.4. Especially for raw

forecast (left), large average errors seem to be persistent in the northern and western part of

the country, which are inland and mountainous. This observation overlaps with the extremes

of daily forecast errors noted in previously. But after rationalization, such outliers disappear

and average forecast errors are more similar across different regions (right).

2.2.8 Exclusion Restriction Assumption

The exclusion restriction hypothesis, namely the impacts of temperature forecast error

T real − T forecast on the sentiment responses to temperatures is not caused by other related

factors, is important for my argument that forecast and forecast accuracy plays a signif-

icant role in sentiment shocks related to weathers. There is no sufficient testing for this
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Figure 2.3: Daily Average Temperature Absolute Forecast Error ∣Tavgreal −
Tavgforecast∣
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Figure 2.4: Maps display the average absolute daily forecast error ∣Tavgreal −
Tavgforecast∣ for each city across the sample period of March-November, 2014.

(a) Non-Rationalized Forecast Error (b) Rationalized Forecast Error
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hypothesis though. Instead in this part, I would argue that the forecast error metric is not

fully generated by a series of observed exogenous factors. These factors can be those inputs

of numeric modeling like geographic variables, historical and current climate conditions, or

factors related to human errors of local forecasters such as city level socia-economic variables6.

Figure 2.5: Daily Average Temperature Absolute Forecast Error ∣Tavgreal −
Tavgforecast∣
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Cross(South).

In Figure 2.5 I present some simple scattering analysis of three factors that may have

been related to forecast accuracy and sentiment shocks simultaneously. For all these factors,

I see a scatter of the average absolute forecast error across northern and southern cities with

different GDP per capita, city area and population density. There are some correlations that

matches with intuitions, for example positive with city area (larger city make forecasting

harder to summarize over the greater area), and negative with population density (lower

population density cities are likely to be in mountainous areas where numerical modeling
6Human errors may be results of intentional manipulations, but it still would be less likely with the heavy

dependence of exogenous numeric modeling outputs and the validation check administrated by CMA.
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finds it harder to forecast), but they seem not able to explain all the scattering.

With these arguments, I further run the multivariate OLS with city level factors to predict

the forecast error metric:

T realit − T forecastit = α + β′Xit + γi + δt + εit

Where a selected set of controls X is chosen including the city area, amount of water

resources, area of city greenland, GDP per capita, population, total road area, ratio of la-

bor over population, unemployment rate, share of primary, secondary and tertiary industry,

industrial dust emission, city elevation, number of weather stations, area of water bodies,

total length of rivers, mean and standard deviation of real daily temperatures, mean daily

precipitation over the period 2002-2011, and average monthly AOD over period 2005-2015.

City and date fixed effects are also included.

Conducting 10-fold cross-validation for the regression, the out-of-sample R-squared (pseudo

R-squared) for this predicting regression is about 30%-40% for non-rationalized forecasts, and

only 10%-13% for rationalized forecasts. Overall, this shows that the forecast error metric is

not predicted by these possible relevant control factors, with predicting power lying below

50%. Thus as addressed by exclusion restriction, I may expect the forecast error to con-

tribute as the covariate for the sentiment response to daily temperatures.
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2.3 Empirical Design and Main Results

2.3.1 Main Interactive Regression

Now with city-daily temperature forecast errors as the perceived weather forecasts accu-

racy metric, my main goal is to estimate the differential sentiment responses to temperatures

under different forecast accuracy. The empirical design I adopt follows from setting in Car-

leton etal. (2020), it is an interactive regression treating the absolute instantaneous forecast

error as a linear covariate, and allowing the interactive terms to differ for negative and

positive forecast errors separately:

Sentimentit = α + f0(T
real
it )

+ f−(T realit ) × 1T realit −T forecastit <0 × ∣T realit − T forecastit ∣

+ f+(T realit ) × 1T realit −T forecastit ≥0 × ∣T realit − T forecastit ∣

+ γ′Xit + εit

(2.1)

Note index i is the city where forecast and sentiment reflects, t is the day. For here,

T forecast is the 24-hour day-ahead forecast broadcast in day t−1 reporting temperature fore-

cast of the next day t. The outcome variable is taken to be the mean sentiment at i in

day t, and regression is weighted by population of each city in 2014. In this design, the

direct temperature response f0 is common for any forecast errors. I allow for different in-

teractive responses with absolute forecast errors ∣T real − T forecast∣ when the error is positive

or negative, f+ and f−. The non-linear response functions f, f+, f− all take the same forms,
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in the main analysis they would be non-parametric 5C temperature bins (regression with

series of bin indicators Bk, each indicating the number of days where the temperature falls

in the bin range Tit ∈ Bk) with a reference bin dropped. Controls Xit include real precip-

itation and square, day and city fixed effects (FE). Standard errors are clustered at city level.

This interactive regression would estimate the non-linear temperature response for sen-

timent:

̂Sentiment(T,Error)

Where T = T real is real temperatures, Error = T real − T forecsat is the instantaneous fore-

cast error. In the analysis, these results will be illustrated with panels of ̂Sentiment −

̂Sentiment
ref

against T under given Error, where ̂Sentiment
ref

is taken under the refer-

ence temperature T ref supposed to be “comfortable” for human. To interpret, this would

be the trend of estimated change in sentiment at real temperature relative to the refer-

ence temperature given a forecast error. In my bin regression, T ref is the bin omitted and

̂Sentiment
ref

= 0. The plots will be taken for a series of forecast errors T real − T forecast

from negative to zero then to positive. Also, plots for the marginal effects (ME) of covari-

ate ∣T real − T forecast∣ will be presented for both negative and positive interactions, which are

f̂+(T )− f̂+(T ref) and f̂−(T )− f̂−(T ref) against T . These marginal effect (ME) plots illustrate

the estimated change in sentiment per 1C increase of error ∣T real − T forecast∣ under forecast

T relative to T ref .
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2.3.2 Global Regression Check

Before going into the main results, I want to check the global response losing the covariate

part with forecast errors:

Sentimentit = α + f(T
real
it ) + γ′Xit + εit (2.2)

This is the empirical design applied in the previous literature using this sentiment index

data, Wang, Obradovich and Zheng (2020). The results are presented in Figure 2.6. Here

we see inverse U-shape sentiment response to temperatures for all three panels, though the

cold end response is only negative and statistically significant for Tmax. Comparing with

Wang, Obradovich and Zheng (2020) which uses Tmax, the results are pretty similar, show-

ing negative sentiment shocks during temperature extremes and the shock is greater for hot

instead of to cold temperatures. The size of my estimates are smaller than the paper’s, but

of same order of magnitudes. In general the discrepancy may be because their paper uses

the raw post-daily sentiment data while I apply city-daily average sentiment with population

weighting. Also the source of our real temperatures differ.

Overall, these results show that my regression is similar to the previous paper using

the same data. This verifies the choice of the functional form as well as the hypothesis of

existing sentiment negative responses to extreme hot or cold temperatures. Another im-

portant implication is that the negative sentiment shock at the cold side is most prominent

for Tmax comparing with Tmin and Tavg (the hot side responses is large and significant

for all three, but the magnitude is greatest for Tmin instead). To explain, it can be that
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Figure 2.6: Global Regression of Sentiment Responses to Tmin, Tavg, Tmax
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people in cold weathers form their sentiment around the best temperature during the day,

or simply because Tmax is recorded during the midday when social media is most active,

while Tmin is usually at midnight when people are mostly offline. However, taking Tmax

only into account may still ignore the impact of daily minimum temperatures on sentiments,

especially under cold. Therefore, I will mainly take sentiment response to T = Tavg, which

is the average of Tmin and Tmax, in my following analysis.

2.3.3 Interactive Regression with Tavg

The main interactive regression results showing sentiment response to daily average tem-

peratures are shown in Figure 2.7, for both non-rationalized (gold) and rationalized (teal)

forecast errors. From the last two columns of marginal effects of this plot, a clear obser-

vation is that there is negative significant marginal effect of absolute forecast errors when

temperature is low (approximately Tavg < 5C), regardless of errors being positive or neg-
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ative. However, the ME at the hot end is close to zero (except for negative rationalized

forecast errors) and statistically insignificant. The same has been reflected in the first seven

columns, whenever the size of instantaneous forecast error decreases, no matter from neg-

ative to zero or positive to zero, the negative sentiment response under cold temperatures

has been decreasing to statistically insignificant and close to zero. Meanwhile on the hot

end, the negative sentiment shock in response to heat has always been sharp and significant

regardless of the size or sign of instantaneous forecast errors of Tavg.

In interpretation, people on social media are more unhappy about cold weathers when the

cold temperature forecasts is not that accurate. This is in line with the intuition that better

forecasts can better prepare people about the bad weathers coming up, therefore providing

relief to the related negative sentiment shocks. There can be various reasonings why it only

happens for the cold end. One important guess is that the potential costs on avoiding cold

weathers are much lower than that of avoiding hot weathers. For example, to comfort the

negative sentiment brought by cold weather, one may just need to bring more clothes, in

which case accurate forecasts are pretty useful. But to avoid heat, people may need to bear

the cost of getting a new air condition in the first place, by which accurate instantaneous

forecast is not very helpful. This hypothesis is in line with the global regression results that

sentiment drop during heat is greater than during cold, and will be tested in the next sec-

tion. Another explanation is that discomfort under misforecast heat may be taking longer

than a day to reflect on people’s sentiment. This would be partially tested in next subsection.

Another important observation comes comparing the size of the ME for positive and
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negative forecast errors at the cold end. As shown in the plots, the negative effect of fore-

cast errors is greater in magnitude for the positive rather than the negative forecast errors.

Running F-test with null that the interactive estimates on the coldest bin Tavg < −5C be-

tween negative and positive errors have been equal, the non-rationalized have F-statistics of

6.94 (p-value=0.0093), and the rationalized version has F-statistics of 1.41 (p-value=0.2377).

Though the null is rejected at 1% for non-rationalized forecast errors, the rationalized version

leads to no rejection of the null up to 10%. Similarly going through the first seven columns,

positive forecast errors with the same magnitudes is seen related to greater size negative

sentiment shocks of cold temperatures, comparing with negative forecast errors of the same

size. In other words, people feel more unhappy about misforecast cold weathers whether the

forecasts of the coldness are exaggerating rather than under-predicting. This is a bit sur-

prising, as one may expect in real life the unhappiness would be greater when extreme cold

is worse than expected. To explain, it may be related to the additional negative sentiments

caused by over-alarming and over-preparation being set according to the forecasts, as they

may generate greater cost than actually needed. Again, this hypothesis would be tested in

the next subsection.

2.3.4 Lead and Lag Sentiment Responses

One of the additional question to ask is whether instantaneous forecast errors may relay

to future sentiment responses, to real weathers or to future forecasts. As the trust towards a

good forecasting system may be shaped and altered by these instantaneous forecast errors,

the longer term impacts of these forecast errors are probable. To test that, I modify the
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Figure 2.7: Baseline Interactive Regression Results, Original and Rationalized
Forecasts
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Note: Column (1)-(7): Left to right, T real−T forecast increases from −3C to 3C; Column (8): Marginal effect
of negative forecast error; Column (9): Marginal effect of positive forecast error; Top to bottom: Covariate
∣T real−T forecast∣ non-rationalized (top) and rationalized (bottom); T = Tavg, reference bin [15C,20C); The
label of T on horizontal axis indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T ) and
ending bin [T − 5,∞); 95% confidence interval is shaded.

main analysis Equation 2.1 under two conditions which I call the lead and the lag responses:

1. Lead: Suppose today people receive forecasts and realize the real weather, therefore

realizing the forecast errors at time t as T real − T forecast, this error may affect people’s

sentiment response to the temperature forecasts for a future day to come t + l. This

requires to run the regression of sentiment at time t to non-linear response of the

forecast at t + l, with interaction of the instantaneous error at t:

Sentimentit = α + f0(T
forecast
it+l )

+ f−(T
forecast
it+l ) × 1T realit −T forecastit <0 × ∣T realit − T forecastit ∣

+ f+(T
forecast
it+l ) × 1T realit −T forecastit ≥0 × ∣T realit − T forecastit ∣

+ γ′Xit + εit

Since reliable daily forecast is normally taken to be up to 3 days, maximum lead is
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taken as l = 3.

2. Lag: Suppose some days ago people receive forecasts and realize the real weather,

therefore realizing the forecast errors at time t − l as T real − T forecast, this error may

affect people’s sentiment response to the real temperature days later at t. This require

to run the regression of sentiment at time t to non-linear response of the forecast at t,

with interaction of the previous forecast error at t − l:

Sentimentit = α + f0(T
real
it )

+ f−(T realit ) × 1T real
it−l

−T forecast
it−l

<0 × ∣T realit−l − T
forecast
it−l ∣

+ f+(T realit ) × 1T real
it−l

−T forecast
it−l

≥0 × ∣T realit−l − T
forecast
it−l ∣

+ γ′Xit + εit

In this case I make the maximum lag response to previous historical forecast error at

l = 5.

The results of these lead and lag responses are illustrated by the marginal effect plots for

negative and positive errors separately, for both non-rationalized and rationalized forecasts,

in Figure 2.8. Firstly looking at the cold end, negative ME persists for all leads with slightly

smaller magnitude negative ME, for both negative and positive, non-rationalized and ratio-

nalized forecast errors. All the leads marginal effect curves are very similar to Column (4),

which is the main regression. That is to say, people’s sentiment response to future forecasts

is similarly affected by instantaneous forecast errors realized today. However, as evidence by

the similarity to the main results, this is likely to be the result of forecasts in the next 3 days

are highly correlated with the real temperatures of today (correlation coefficient for Tavg is
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above 0.94 for all leads). On the contrary, the cold end marginal effect for the lag responses

are almost all flat and statistically insignificant (occasionally small and positive), meaning

that future cold temperature responses of sentiment is not quite related to the previous day

forecast errors. There is not a delayed or enduring effect of the cold forecast errors on sen-

timent.

Figure 2.8: Interactive Regression with Leads and Lags of Forecast Error
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(a) Non-Rationalized Forecast Errors

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lead=3

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lead=2

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lead=1

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lead/Lag=0

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=1

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=2

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=3

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=4

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=5

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lead=3

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lead=2

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lead=1

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lead/Lag=0

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=1

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=2

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=3

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=4

-1
-.5

0
.5

M
ea

n 
Se

nt
im

en
t I

nd
ex

-5 0 5 10 15 20 25 30 35
Temperature[C]

Marginal Effect of Lag=5

(b) Rationalized Forecast Errors

Note: Left to right: Marginal effect of absolute forecast error for leads 3,2,1 days, no lead/lags, to lags
1,2,3,4,5 days; Top to bottom: Negative and positive forecast error ME; T = Tavg, reference bin [15C,20C);
The label of T on horizontal axis indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T )
and ending bin [T − 5,∞); 95% confidence interval is shaded.
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On the other hand unlike the main results, there exists instances in both leads and lags

where hot end negative marginal effects exist with comparable magnitudes to the cold end

(though statistical significance is mostly lacking except for rationalized forecasts with positive

errors), especially for positive forecast errors. In summary, there may be impactful negative

effects of current forecast errors on people’s sentiment response to future heat forecasts up

to 3 days, or previous forecast errors up to 4 days on current sentiment response to hot

temperatures, especially when the forecasts are underestimates of likely hot days. On one

hand, people may feel more unhappy about future’s hot temperatures when previous forecast

underestimates, because they may expect to see “hotter” than forecast temperatures. On

the other hand, the extra negative sentiment shocks brought by a likely hot forecasts may

add to unhappiness under heat in future days. This observation is more spurious however,

because such negative sentiment seems only to be existing after 2 days of the errors realized.

Overall, this exercise implies that the impact of forecast errors can be delayed to future

sentiment responses to forecasts or to real temperatures, but only likely for under hot tem-

peratures when previous forecasts underestimate the heat. Lack of such evidence at the cold

end suggests that people’s sensitivity to inaccurate hot forecasts can be less instantaneous

but more memorable, as larger underestimates today may spur people to expect even hotter

and more unhappy temperatures tomorrow.
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2.3.5 Response to Temperature Forecast Warnings

One of the argument for why sentiment responses at cold temperatures is more sensitive

to the accuracy of forecasts when it is an overestimates of the coldness relies on the fact

that over-preparation may cause additional unhappiness among the public. To verify this

argument, I look at differentiated sentiment responses under cases when official heat or cold

warnings has been issued by the CMA, guided by the 24-hour weather forecasts.

According to official definitions, I would define the “Orange” heat warning issued when

24-hour forecast Tmax > 37C, and “Red” heat warning when Tmax > 40C. The warnings

issued for the cold side is more complicated, all must satisfy events of “considerable drop

of temperatures in a short time frame within 24 hours” besides a requirement on the Tmin

forecasts. Since the “large temperature drop” event is hard to observe from my dataset

(there are very few such instances comparing last day real temperatures and forecast tem-

peratures in my dataset), I instead use a rough approximate for the “Orange” cold warning

as Tmin < −5C and “Red” cold warning as Tmin < −10C. Number of such instances is about

the same as the heat warnings.

With those warning definitions, I run the following interactive regression:
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Sentimentit = α + f0(T
real
it )

+ f−(T realit ) × 1Cold × 1ColdWarning

+ f+(T realit ) × 1Hot × 1HeatWarning

+ γ′Xit + εit

Here in this version of the regression, I allow asymmetrical interaction of the warning

dummies as defined above, with heat warnings only interact on hot days and cold warnings

only on cold days. With the non-linear functional form specified to be 5C bins as in the

main, I let “Hot Days” to be of the hottest 3 bins and “Cold Days” the coldest 3 bins. The

middle bins, including the reference bin, has no interactions with both warning covariates.

Results for sentiment responses to Tavg has been shown in Figure 2.9. In summary,

we see negative marginal effects of the cold warnings especially when actual temperature

is not that cold (because when Tavg < −5C the ME becomes positive and statistically in-

significant). This can be interpreted as that when a cold warning is issued but coldness is

not as severe, there is a greater sentiment drop than without the warning issued. This is

consistent with the theory that over-reactions may affect people’s negative sentiment more

than unexpected extreme temperatures, as governmental temperature warnings are likely to

accompany local policies to shut down public places and decrease transportations. Mean-

while, there is also a hot side negative marginal effect for the heat warnings. In fact, it shows

a similarly symmetrical effect as the cold side, that when a heat warning is issued, people’s
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sentiment response to the heat is even greater when without the warning. This certifies

somehow that extra costs exist with forecasts overstating the temperature extremes because

forecasts based warnings can bring more inconvenience and unhappiness to people.

Figure 2.9: Interactive Regression with Cold and Heat Warnings
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Note: Column (1)-(3): Left to right, Cold Warning, No Warning, Heat Warning; Column (4): Marginal effect
of Cold Warning; Column (5): Marginal effect of Heat Warning; Top to bottom: Orange Warning and Red
Warning; T = Tavg, reference bin [15C,20C); The label of T on horizontal axis indicates the temperature
bin [T − 5, T ), with the starting bin (−∞, T ) and ending bin [T − 5,∞); 95% confidence interval is shaded.

2.4 Extensions and Robustness Checks

2.4.1 North vs South

In this part, I rerun the main analysis Equation 2.1 on separated subsample, 77 northern

and 67 southern cities. The north-south region separation in China follows the historical

convention of Qinling Mountain-Huai River, with which many policies differ across the bor-
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der. For one example, northern cities are provided with central heating organized by the

governments during cold months extending from October to April, but southern cities have

to use their own installation of house heating system or through AC.

Figure 2.A.1 shows the result of this subsample analysis. First for the cold side, both

north and south regions have negative contribution of forecast errors to the sentiment shock

under extreme cold, though for the southern cities such effects only exist for positive rather

than negative forecast errors. That is to say, southern sentiments are more relevant to fore-

casts when cold days are exaggerated rather than underestimated. Also noted from the first

seven columns of the plots, the negative sentiment shocks for southern cities are in general

greater than that for the northern cities by magnitudes. That is likely due to better adap-

tation to cold weathers for the colder cities in the north. For the hot end, there is some

negative ME with considerable magnitudes for positive non-rationalized errors, and negative

rationalized errors. These evidence, though inconclusive because of inconsistency between

rationalization and less statistical significance, still may show the sensitivity of sentiments

under heat to forecast errors only persists among people living under warmer climates. Like-

wise, the negative sentiment shocks under heat for northern and colder cities are mostly in

magnitude greater than those in the southern part of the country.

These results, comparing with the main, may imply that the role of forecast errors depend

on whether long run climate is warm or cold. However, the conclusion is rather inconclusive

and it is unclear whether this is more related to the climates or policies such as the acces-

sibility of central heating. Instead, I would summarize the results of this exercise as the
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relative consistent cold end marginal effects of forecast error regardless of south and north.

2.4.2 Low vs High Income

In Figure 2.A.2 it shows the interactive regression result for cities separated by GDP per

capita into two groups, the low versus the high, with GDP per capita cut-off defined by 2014

median among the 144 sample cities. From that plot, the cold side responses again looks

quite similar across different income group, with negative marginal effects of forecast errors

especially for positive errors. The hot side shows some evidence for both non-rationalized and

rationalized (but statistical significance only to rationalized) that negative marginal effect

for sentiment exists, either the forecast error is positive or negative, only for the high income

subsample. These observations then provide a partial proof for the argument that the avoid-

ance cost of cold is smaller versus hot. Because of the relative higher cost of heat avoidance

when facing a hot weather forecast (e.g., obtaining an AC), smaller negative sentiment shocks

come after an accurate hot weather forecasts to those being able to pay the higher cost in the

first place, i.e., those residing in higher income cities. For those without the resource to pay

for heat avoidance in the first place, their negative sentiment shocks would be less relevant

to forecast accuracy. On the other hand, because cold avoidance is more affordable for all in-

come levels, the marginal effect of forecast error is similarly negative for both income groups.
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2.4.3 Small vs Large Long Run Forecast Errors

In real life, people likely have different trusts for daily weather forecasts based on their

longer run reliability. To access that, I estimate the city-by-year root-mean-squared-error

(RMSE) of daily temperature forecasts in 2014, and divide the 144 cities in the sample into

low and high RMSE cities with median as the cut-off. The subsample analysis is run In Fig-

ure 2.A.3. Again, it shows that cold side marginal effects of the instantaneous forecast errors

are similarly negative across different cities with different long run forecast accuracies. Mean-

while, the hot end negative marginal effects only exist in the group where RMSE is low, or

say forecasts are generally more accurate. In other words, people living in cities likely trust-

ing more about daily temperature forecasts because of better long run performance tends to

experience less unhappiness during hot days because of smaller instantaneous forecast errors

(especially when forecasts are overestimates), because for them those would likely be heat

shocks that are more unexpected. These again verifies the theory that sentiment responses

related to heat is influenced by the fact that heat avoidance may occur with higher cost. For

example, when hot days are forecast and preparation made accordingly only when forecasts

are trusted, a coming forecast error would contribute to greater sentiment drops. Mean-

while on the cold side, the cost of avoidance is low enough that people may take precautions

whether or not they trust the forecasts, and their sentiment improves if the instantaneous

forecast errors are realized to be smaller.
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2.4.4 Holidays vs Working Days

Figure 2.A.4 runs the main interactive regression for subsamples separated by time in-

stead of by space, into holidays (including weekends) or working days. Likewise, the cold

side looks quite similar across the two subsamples, with negative marginal effects of forecast

errors especially for positive ones. However, the hot side only has negative marginal effects

with considerable magnitude and statistical significance for holidays rather than working

days. It means that during holidays people’s unhappiness during heat is more significant

when forecast fails to predict it. I think this again can be partially explained by the possible

higher cost of heat avoidance. For instance, during holidays people are more likely to go

outdoors and have more flexibility to adjust their activities according to forecasts, thus a hot

day forecast can change people’s plan during holidays. When the real temperature is real-

ized, it would be too late and too costly to rearrange if forecast errors are high. As a result,

sentiment drop is larger. Meanwhile during working days when such change of schedule is

not that flexible in the first place, the accuracy of hot day forecasts will be less relevant to

the negative sentiment shocks displayed during heats.

2.4.5 Responses to Tmin and Tmax

One argument regarding beliefs formed on weather forecasts is that people may be taken

the direct information in weather broadcasting, rather than the inferred information. In the

setting of this paper, the weather forecast program in China broadcasts Tmin and Tmax,

while Tavg has to be inferred as their mean. As a result, people’s response may not be very
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relevant to the forecast of Tavg, but instead to Tmax and Tmin. The response to Tmin

has the additional problem that it is usually observed during midnight, when social media

activities are the lowest. On the other hand, response to Tmax may be less representative

during the cold days as the sentiment index is likely reflecting on worse weather scenario of

the day.

To verify, I rerun the main regression with forecast error defined for Tmin and Tmax

respectively as the covariates (and the response of sentiment too), results shown in Figure

2.B.1. In general, the hot end result persists for both, that the marginal effect on forecast

errors for non-rationalized and rationalized, negative and positive errors are mostly close to

zero and statistically insignificant. The hot end marginal effect for Tmax even flips to posi-

tive significant at Tmax ≥ 35C, meaning that greater the forecast error for daily maximum

temperature the better the sentiments. However, since the negative sentiment response to

hot days are always sharp and persistent, the relative small size of those positive ME has

been quite insignificant in reducing the negative heat-related sentiment drop towards zero.

On the other hand, the cold end results for Tmin are only negative and significant

when forecasts has positive error (i.e., daily minimum temperature forecast is exaggerated).

Meanwhile, the negative ME for Tmax has been similar (and F-test not rejected for both

non-rationalized and rationalized) for both positive and negative errors. Comparing the

MEs of positive errors for Tmin and Tmax, their magnitudes have been quite similar at the

corresponding coldest bins. Those combines to bring the negative ME for Tavg of greater

magnitude for positive forecast errors. In implications, people’s greater unhappiness during
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cold weathers are driven by both exaggerated Tmin and Tmax forecasts, while undermined

Tmin forecasts seems not to be playing an important part. Overall, it verifies the guess that

Tmin response is less relevant to the sentiment index because most posts on social media

are due in daytime. However, positive forecast errors with Tmin still matters by causing

over-reactions to the extreme cold, possibly through cold warning issued by the government.

2.4.6 Different Functional Forms

Besides the non-parametric bin regression used as f in Equation 2.1, I also run the

analysis with two of the more parametric options, polynomial order 3 (cubic polynomial

approximation) and restricted cubic splines with knots (0,5,10,15,20,25) for T = Tavg, for

the purpose of robustness checks. The results are shown in Figure 2.B.2. Comparing with

the middle row bin regression, both parametric functional forms display smoothing in the

extreme temperature ranges such that the negative marginal effect of forecast errors at the

cold end has been significantly reduced both in magnitude and in statistical significance, for

both non-rationalized and rationalized forecasts. Actually, the significant negative sentiment

shock on the cold end has been almost disappearing for both parametric approximations. In

fact, the results at cold end with the non-parametric bin regression likely have been driven

by only 0.5% of the observation that Tavg < −5C (about the same percentage is at the hot

end, Tavg ≥ 30C). To robustness check whether the small number of outliers may be the

only driver to the main result, I will run the next subsection with trimming.
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2.4.7 Trimming Extremal Temperatures or Forecast Errors

In Figure 2.B.3, I run the main interactive regression with trimming of sample. The top

panel shows trimming of extreme 1% cold and 1% hot temperature days. As a result, though

the extreme temperature bins are deleted from the main results, the analysis still shows the

same results of negative marginal effects of instantaneous forecast error ∣T real − T forecast∣ on

sentiment under cold temperatures Tavg < 0C, for both positive and negative errors. It

also pertains the same results that positive forecast errors have greater marginal effect on

sentiment than negative ones after the trimming.

In the bottom panel, I run the analysis with trimming of top and bottom 1% fore-

cast error, i.e., trimming the very negative and very positive instantaneous forecast error

T real − T forecast. These will mainly trim days when the forecasting system may occasionally

do a bad job but the error would not necessarily persist. Again, the plots are very much

similar to the whole sample in main analysis, affirming that the main results are not driven

by extremal forecast errors.

2.4.8 Interactive Regression with Long Run Forecast Errors

People’s sentiment response may not only relying on instantaneous forecast errors, but

also on long run forecast accuracy, as previously explored. In this part, I rerun the interac-

tive regression in the main design but with a single-sided covariate for linear interaction, the

long run temperature forecast root-mean-squared-error (RMSE) by city-year. Correspond-
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ing results are shown in Figure 2.C.1. From those, we can reach a similar conclusion as the

instantaneous forecast error, that greater long-run average forecast errors enhance people’s

negative sentiment shocks during cold, but not during hot. In explanations, more accurate

forecasts (with lower long run RMSE) would allow people to prepare more promptly during

coming cold weathers, thus relieving the negative sentiment shocks after real temperature is

realized. However, similar effect could not happen for the hot days since there is greater cost

to avoid heat, thus even with accurate forecasts effective actions cannot be made in time

enough to offset the coming negative sentiment shocks. The magnitudes of these marginal

effects at cold end has been of same order of magnitudes with the instantaneous forecast

errors, stating that people’s sensitivities to forecast errors at long or short runs have been

quite similar in signs and sizes.

2.4.9 Naive Forecasts

In this paper, the forecasts people care about are assumed to be the “professional” fore-

casts provided by CMA. However, people may also be taking their own expectations of to-

morrow’s weathers based on historical climates. One question would be whether the weather

forecasting system, invested and managed by the government and aiming to provide higher

quality forecasts to the general public than people’s “naive” expectations, would indeed im-

pact their sentiment responses rather than the naive forecasts.

To disentangle between the effects of professional and naive forecasts, I consider a self-

prediction model for 24-hour temperature forecasts based on historical real temperatures
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using a autoregressive model AR(7):

Tis = α
t
i +

7

∑
k=1

βtikTis−k + φ
t
iw + δ

t
im + γtiy + ε

t
it

This is run for every city i and every day t with rolling windows s = s0, s0 + 1, ..., t − 1,

where s0 is January 1st, 2013. Fixed effects are for weekday (φiw), month (δim) and year (γiy).

After running these AR(7) regressions, I compile the “naive forecasts” indexed by city

i date t based on the series of estimated coefficients, T̂it. These naive forecasts are 97%

correlated with the real temperatures. Compare the average naive forecast absolute errors

within the sample with the state professional forecasts, the naive forecasts features 0.7C

lower prediction errors than the non-rationalized state forecasts, but up to 0.3C higher er-

rors than the rationalized state forecasts. In summary, the naive forecast correct some of

the negative bias persists over the non-rationalized forecasts, but would still be less accurate

than if individual rationalized that raw forecast information.

With naive forecast T̂it, interactive regressions are repeated in Figure 2.C.2. Overall, the

cold side still have some statistically significant negative marginal effects of both positive

and negative forecast errors at the cold end, but it is rather unstable (for negative errors,

ME only persists for the coldest bin Tavg < −5C, for positive error, it goes negative before

the coldest bin but switch to positive when Tavg < −5C) and is with a smaller magnitude

even comparing with the less accurate non-rationalized state forecasts. What is interesting

is on the hot side, which shows a significantly negative marginal effect under heat only for
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positive naive forecast errors. This has not been seen from the main results. In interpreta-

tion, if the naive forecast based on historical expectation tells an underestimate of the heat,

unhappiness generated during heat is greater. Though the size of this marginal effect can be

seen quite small comparing with the large sentiment drop on the hot end in the first seven

columns, its estimate has been statistically significant and comparable to the ME at the cold

end.

This exercise has suggested two points. Firstly, the ease of naive temperature estimations

cannot replace the professional forecasts provided by state agency. The non-rationalized pro-

fessional forecasts are less accurate, but the general public still seems to take them seriously

as evidence by the stronger marginal effects of cold temperature forecast errors. However, it

also implies that naive expectations can matter to people’s sentiment response to hot weath-

ers. It seems that such expectation will have its effect on reducing the negative sentiment

shock encountering heat if the expectation is realized to be accurate enough. Therefore, the

national forecasting system is important in shaping people’s sentiment responses to cold tem-

peratures, so is likely contributing to the social welfare in China. But meanwhile, people’s

sentiment is also linked to more naive expectations based on historical weathers, especially

during hot days. As the state forecast models also take historical weathers as inputs and

how people exactly form their naive expectations are unknown (and unlikely to be known

except running field experiments with surveys), this conclusion for the reliance on this naive

forecast is only suggestive and can also be just part of the results with state forecasts.
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2.4.10 Sentiment Response to Precipitations

Besides temperatures, sentiments are also likely affected by precipitation events, such

as rain, snow, thunderstorms. As a result, the accuracy of precipitation forecasts can be

of importance to people’s sentiment expressed on social media. For example, people would

complain if it is sunny but forecast to be rainy, even more than to note that today’s tem-

perature is 30C rather than 29C as forecast.

The major barrier to study is the different formats of precipitation records in forecast

and real weathers. For forecasts, categorized precipitation events are reported, while for real

weather records it is the actual precipitation in mm. Both methods of recording have their

limitations, with the categorical forecasts likely not representative for all area covered by a

city, and the numerical records notably biased on due to rainfall collection errors per weather

station as well as through approximation errors in the ERA-Interim modeling process. Nev-

ertheless, all these has made it hard to match between forecast and real precipitations, and

to compile a reliable metric for the precipitation forecast accuracy. In this exercise, I would

take a simplified approach by narrowing down precipitations into two broad categories, the

“Good Weather” (forecasts Sunny/Cloudy/Shady or non-positive real precipitations), and

the “Bad Weather” (forecasts otherwise with Rain/Snow/Fog or positive real precipitations).

Then I take the accuracy metric of the precipitation forecasts as the average probability of

“Good/Bad Weather” being forecast incorrectly.

I run the interactive regression with an empirical design similar to Shrader (2020):
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Sentimentit = α + βBadWeatherit + γBadWeatherit ×Errorit + δ
′Xit + εit (2.3)

Where BadWeather represents whether city i in day t has a real positive precipitation

being notated as “Bad Weather”. Errorit is the precipitation forecast error as defined above,

I will take multiple frequencies besides instantaneous daily error of the dummy 1 or 0, at

city-year or city-month average level. Again, I control for city and day FE, then cluster

standard errors by city.

Table 2.C.1 then presents the results. Overall, a day in “Bad Weather” with non-zero

precipitations generate as large as 0.3 decrease in sentiment index, comparable to the average

negative shock under cold but much smaller than the negative shock under hot (Figure ??).

Estimates across the columns have been statistically significant at 1%, showing the robust-

ness of such effects as expected by intuition. However, the interactive coefficients of “Bad

Weather” with precipitation forecast errors have been consistently positive with a similar

magnitude as the direct estimates, especially statistically significant when taking the error

to be instantaneous. In another word, the negative sentiment shock to “Bad Weather” would

be reduced significantly when this precipitation event is not predicted and instead weather

is forecast to be “Good”. This is quite counterintuitive because one may expect people’s

mood to drop when precipitation hits unexpectedly, while it seems that erroneous forecasts

actually help to improve the sentiment. Though I may blame the fact that forecasts for

non-capital cities are approximated by their capitals, the same regression with capital cities
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only (Table 2.C.2) shows the very similar results. I may still argue the reliability of these

results because of the inaccuracy of precipitation records, or my simplification of “Good/Bad

Weather”, but by far the overall results for sentiment response to precipitation forecasts have

shown the contrary of better forecasts helping with people’s sentiment during bad weathers,

as proved in the main results with sentiment-temperature responses. However, it might be

another instance showing that bad weather warnings add to the negative sentiment of peo-

ple on social media, even more than the negative sentiment shock caused by precipitation

weathers themselves.

2.5 Conclusion

In this paper, I analyze the effect of instantaneous temperature forecast errors on the

social media sentiment responses to temperatures in China. For both non-rationalized and

rationalized forecast beliefs, there are negative significant marginal effects of daily tempera-

ture forecast errors during cold weathers, regardless of positive or negative errors. Meanwhile

on the hot end, the negative sentiment shock in response to heat has always been sharp and

significant regardless of the sizes or signs of these instantaneous forecast errors. In short,

people are more unhappy about misforecast cold weathers but feel equivalently unhappy

during misforecast or correctly forecast hot weathers. In general, these results match the

intuition that better forecasts can better prepare people about the bad weathers coming up,

hence providing relief to the coming negative sentiment shocks. In addition, the negative

marginal effects of forecast errors are greater in magnitude for positive comparing with the
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negative forecast errors, meaning that exaggerations of cold is worse to people’s sentiment

than underestimates.

Further analysis also reveal reasonings of these results. For greater negative sentiment

responses when cold forecast is an exaggeration, it can be related to the additional negative

shocks brought by cold warning messages issued according to the forecasts. For small sen-

timent sensitivity to forecast errors on the hot end, it may be that there takes more than

one day to experience the negative effect of hot temperature forecast errors. Otherwise, it

is most likely that the relatively low cost of cold avoidance comparing with heat avoidance

limits the sensitivity to hot forecast errors only to subsamples of higher income, greater long

run forecast accuracy, and during holidays.

Overall, these results provide evidence for the positive welfare impacts of improving

weather forecasting technology. Maximum improvement in sentiment per 1C decrease of

daily forecast error for a cold day is at maximum 0.8 when daily average temperature is

below −5C, 1.4% of the average median sentiment index across days under this cold temper-

ature. This value is also comparable to the negative impact on sentiment index per one unit

increase of pollutant in Zheng etal. (2019). Comparing with the increase of average median

day-of-week sentiment from Tuesday to Saturday, this marginal effect is as large as 42% of

the weekday-weekend contrast. Coarsely related to GDP per capita of a city in 2014 by a

simple OLS between their median sentiment and income level, such marginal effect accounts

for the cost of 726 Yuan (currency in 2015) per 1C forecast error per day. Considering there

are on average 17.2 days in 2014 when Tavg < −5C across the 144 cities in sample, this
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means up to 20% the average city GDP per capita lost if this marginal 1C forecast inaccu-

racy carries persistently for a whole year.

This project serves as an analysis of the welfare impacts of improving weather forecast

accuracies in modern days. The results provide initial evidence for the value of accurate

weather forecasts and the relatively high economic returns of investing in a modern weather

forecasting system that create large social benefits for billions of people in China. For future

explorations, more research need to be done in verifying the detailed mechanism through

which forecast errors has been realized and impacting individual subjective well-beings. For

example, forecast errors can directly impact people’s sentiment or health, or it can affect how

well people prepare for extreme weathers, hence affecting people’s choice in labor and trans-

portation. To start with, breakdown analysis by occupations, genders and microblog topics

of discussion may reveal more. In real life, social media is also a tool for exchanging informa-

tion about extremal weather events. Therefore, more analysis regarding the microblog texts

may further reveal the process of shaping beliefs and forming sentiment responses around

forecast information.
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Figure 2.A.1: Interactive Regression with North-South Separation
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(a) Non-Rationalized Forecast Errors
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(b) Rationalized Forecast Errors

Note: Column (1)-(7): Left to right, instantaneous forecast error T real − T forecast increases from −3C to
3C; Column (8): Marginal effect of negative forecast error; Column (9): Marginal effect of positive forecast
error; Top to bottom: Southern cities (67) VS northern cities (77); T = Tavg, reference bin [15C,20C); The
label of T on horizontal axis indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T ) and
ending bin [T − 5,∞); 95% confidence interval is shaded.
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Figure 2.A.2: Interactive Regression with Low VS High Income
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(a) Non-Rationalized Forecast Errors
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(b) Rationalized Forecast Errors

Note: Column (1)-(7): Left to right, instantaneous forecast error T real − T forecast increases from −3C to
3C; Column (8): Marginal effect of negative forecast error; Column (9): Marginal effect of positive forecast
error; Top to bottom: Low Income VS High Income, cut-off by GDP per capita in 2014 by median over the
144 cities; T = Tavg, reference bin [15C,20C); The label of T on horizontal axis indicates the temperature
bin [T − 5, T ), with the starting bin (−∞, T ) and ending bin [T − 5,∞); 95% confidence interval is shaded.
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Figure 2.A.3: Interactive Regression with Low VS High Long-Run Average Fore-
cast Errors
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(a) Non-Rationalized Forecast Errors
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(b) Rationalized Forecast Errors

Note: Column (1)-(7): Left to right, instantaneous forecast error T real−T forecast increases from −3C to 3C;
Column (8): Marginal effect of negative forecast error; Column (9): Marginal effect of positive forecast error;
Top to bottom: Low VS High Yearly Forecast RMSE, cut-off by median over the 144 cities; T = Tavg,
reference bin [15C,20C); The label of T on horizontal axis indicates the temperature bin [T − 5, T ), with
the starting bin (−∞, T ) and ending bin [T − 5,∞); 95% confidence interval is shaded.
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Figure 2.A.4: Interactive Regression with Working VS Non-Working Days
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(a) Non-Rationalized Forecast Errors
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(b) Rationalized Forecast Errors

Note: Column (1)-(7): Left to right, instantaneous forecast error T real − T forecast increases from −3C to
3C; Column (8): Marginal effect of negative forecast error; Column (9): Marginal effect of positive forecast
error; Top to bottom: Working Days VS Holidays and Weekends; T = Tavg, reference bin [15C,20C); The
label of T on horizontal axis indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T ) and
ending bin [T − 5,∞); 95% confidence interval is shaded.
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2.B Robustness Checks

Figure 2.B.1: Interactive Regression with Tmin and Tmax
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(a) Non-Rationalized Forecast Errors
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(b) Rationalized Forecast Errors

Note: Column (1)-(7): Left to right, instantaneous forecast error T real − T forecast increases from −3C to
3C; Column (8): Marginal effect of negative forecast error; Column (9): Marginal effect of positive forecast
error; Top to bottom: T = Tmin,Tmax, reference bin [10C,15C) and [20C,25C) respectively; The label of
T on horizontal axis indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T ) and ending bin
[T − 5,∞); 95% confidence interval is shaded.
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Figure 2.B.2: Interactive Regression with Different Functional Forms
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(a) Non-Rationalized Forecast Errors
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(b) Rationalized Forecast Errors

Note: Column (1)-(7): Left to right, instantaneous forecast error T real−T forecast increases from −3C to 3C;
Column (8): Marginal effect of negative forecast error; Column (9): Marginal effect of positive forecast error;
Top to bottom: Functional forms of Poly 3, Bins and Cubic Splines; T = Tavg, reference bin [15C,20C);
The label of T on horizontal axis indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T )
and ending bin [T − 5,∞); 95% confidence interval is shaded.
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Figure 2.B.3: Interactive Regression with Sample Restrictions
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(a) Trim Temperature Outliers
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(b) Trim Forecast Error Outliers

Note: Column (1)-(7): Left to right, instantaneous forecast error T real−T forecast increases from −3C to 3C;
Column (8): Marginal effect of negative forecast error; Column (9): Marginal effect of positive forecast error;
Top to Bottom: Covariate ∣T real − T forecast∣ non-rationalized (top) and rationalized (bottom); Trimming
either temperatures or forecast errors at top and bottom 1% each; T = Tavg, reference bin [15C,20C); The
label of T on horizontal axis indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T ) and
ending bin [T − 5,∞); 95% confidence interval is shaded.
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2.C Other Explorations

Figure 2.C.1: Interactive Regression with Long Run Forecast RMSE
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Note: Column (1)-(4): Left to right, long run forecast RMSE
√

1
N ∑t T

real
t − T forecast

t decreases from 3C to
0C; Column (5): Marginal effect of RMSE; Top to bottom: Covariate RMSE with non-rationalized (top)
and rationalized (bottom) forecasts; T = Tavg, reference bin [15C,20C); The label of T on horizontal axis
indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T ) and ending bin [T − 5,∞); 95%
confidence interval is shaded.

Figure 2.C.2: Interactive Regression with Naive Forecast Error
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Note: Column (1)-(7): Left to right, T real−T forecast increases from −3C to 3C; Column (8): Marginal effect
of negative forecast error; Column (9): Marginal effect of positive forecast error; Covariate ∣T real −T forecast∣
with naive forecast based on AR(7) prediction; T = Tavg, reference bin [15C,20C); The label of T on
horizontal axis indicates the temperature bin [T − 5, T ), with the starting bin (−∞, T ) and ending bin
[T − 5,∞); 95% confidence interval is shaded.
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Table 2.C.1: Precipitation Category Response

(1) (2) (3) (4) (5) (6)
BadWeather -0.187∗∗∗ -0.188∗∗∗ -0.305∗∗∗ -0.298∗∗ -0.307∗∗∗ -0.336∗∗∗

(0.024) (0.024) (0.112) (0.146) (0.047) (0.029)

BadWeather ×Error 0.393 0.335 0.324∗∗∗ 0.247∗∗∗
(0.378) (0.444) (0.110) (0.021)

Control No Yes Yes Yes Yes Yes

Covariate NA NA City-Year
(2011)

City-Year
(2014)

City-Month
(2014)

City-Day
(2014)

N 39529 39241 39241 39241 39241 39241

Adj. R2 0.654 0.654 0.654 0.654 0.654 0.656
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 2.C.2: Precipitation Category Response, Capital Cities Only

(1) (2) (3) (4) (5) (6)
BadWeather -0.194∗∗∗ -0.194∗∗∗ -0.482∗∗ -0.771∗∗ -0.327∗∗∗ -0.331∗∗∗

(0.041) (0.041) (0.219) (0.330) (0.084) (0.052)

BadWeather ×Error 0.968 1.789 0.365∗ 0.248∗∗∗
(0.781) (1.061) (0.198) (0.036)

Control No Yes Yes Yes Yes Yes

Covariate NA NA City-Year
(2011)

City-Year
(2014)

City-Month
(2014)

City-Day
(2014)

N 39529 39241 39241 39241 39241 39241

Adj. R2 0.654 0.654 0.654 0.654 0.654 0.656
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Chapter 3

The Effect of the End-Number License Plate Driving Restriction on Reducing

Air Pollution in China

Abstract

This project explores the long-run efficiency of the end-number license plate driving restric-
tion in China, a traffic control policy aiming at reducing city level air pollution. Difference-in-
difference (DID) regression analysis is conducted for a panel including 9 cities implementing
this long run policy staggeringly over the period 2008-2013, contrasting to the set of con-
trol cities in China without the continuous implementations of this policy over the years
2005-2015. Consistent with previous studies on road rationing, this project has shown that
the driving restriction policy on average is not improving air pollution in China in the long
term. Quantitatively, the policy would reduce the daily city level AQI (air quality index) by
a statistically insignificant 0.04% at most, translating to welfare gains of only 0.08 dollars
per person per year and 0.004 life years per capita.

3.1 Introduction

Environmental issues, especially air pollution, have become quite serious concerns of the

general public over the past few decades in China. When the country is developing with a

fast pace of economic growth, worries around the proven health and mortality risk related

to air pollution continues to grow. Correspondingly, the central and local governments have

become increasingly progressive in issuing various environmental policies in order to render

such concerns effectively. Among those policies, since car emission has long been suspected
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to be one of the major sources of air pollution in city areas, road rationing, particularly in

the form of the end-number license plate driving restriction, has become one of the most pop-

ular choices for local policy makers. This policy mainly limits the number of private owned

vehicles driving on roads in city areas by forbidding sets by their end-number of plates, usu-

ally announcing its target to reduce air pollution and traffic congestion simultaneously. It

has been one of the environmental policies affecting general public implemented earliest and

longest since 2008, with its usage extending to many major cities across the country over the

years. Due to its nature directly affecting potentially large population with private vehicles

of any city implementing the policy, the efficiency of this kind of road-rationing policy has

long been debated over, from whether there are any significant and lasting effects of air

pollution reduction, to whether these policies sustain through the high costs of constraining

private transportation, vehicle sales and other normal form of economic activities.

Road rationing has been implemented all around the world, both in developed and de-

veloping countries. Short run road rationing with large proportion (usually 50%) of private

vehicles baned from road has frequently been noted as effective, thus often applied (Chen

etal. 2013).1 Long-run version of the policy banning less cars on major roads (usually 20%

on working days) for continuous time span over months and years is less adopted on a large

scale and shows more ambiguous effects on long term air pollution. One of the most known

study about long run road rationing has been set in Mexico city where the policy is shown

to have little to no immediate effects though the policy implementation being pretty strict
1Additional news article: https://www.nytimes.com/2014/03/18/world/europe/fighting-pollution-paris-

imposes-partial-driving-ban.html, Paris partial driving ban 2014.
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(Davis, 2008). The near-zero results are robust on multiple pollutants using regression dis-

continuity (RD) designs, verifying the ineffectiveness of the policy in immediate short-run

air pollution reduction. Similar RD designs have been widely adapted in other studies of this

kind of policy around the world, but reach heterogeneous conclusions regarding its efficiency

in different countries. In Quito, capital of Ecuador, a significant medium-size effect reducing

9%-11% CO level has been found (Carrillo, Malik and Yoo, 2016).

Within China, existing studies have mainly been focusing on the capital city of Beijing

where the policy is first implemented with strict guidelines, affecting the most population

among similar policy cities, and have attracted most public and media attentions through-

out the years. Long run continuous end-number license plate driving restriction of Beijing is

noted to reduce up to 21% air pollution from 2007 to 2009 (Viard and Fu, 2015), but other

literature questions the RD design and propose the actual reduction being much closer to

zero (Sun, Zheng and Wang, 2014). Not as many literatures occur for other policy cities in

China besides Beijing. Among those existing literatures, a study of Lanzhou in Middle-West

China has found some short run but little long run effects on city air pollution reduction

(Huang, Fu and Qi, 2016). There are also some evidence of pollution reduction is found in

Hangzhou, East China (Ye and Zhuo, 2018). However, a reverse effect of the policy increas-

ing air pollution instead has been noted in Chengdu, South-West China from 2011 to 2013

(Xu and Hou, 2015).

In this project, I will analyze the average long term lasting effect of the long run driving

restriction across all policy cities in China using a difference-in-difference (DID) design. The
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results would indicate whether this driving restriction has been effective on improving air

quality over various cities across China, and from which I will discuss briefly what are the

cost and trade-off for this policy. Since the long run end-number license plate driving re-

striction has been implemented gradually over a long time frame of a decade, I would focus

on the long run effect of this policy which is more likely to create greater welfare impacts

for the general public. Overall, my results show that the policy has little effects on average

in reducing air pollution in China, translating to only small gains in currency values and

public health, and thus likely unable to cover the potential high cost of implementations and

negative shocks to transportations and auto markets.2

This project would differ from previous literatures through analyzing the average effect

of the long run road rationing strategy across different cities of China, while existing studies

either focus on short run odd-even rationing during special events like the Olympic Game of

2008, when more than one policy interventions were happening simultaneously (Chen etal,

2013), or only study the short run effect of the policy in a single city with time series analysis.

There is (so far in my search) not enough evidence of panel studies on the average effects

of this policy in different cities of China comparing with those not adapting the policy, for

which my analysis will fill in the gap. I switch focus from the widely adapted regression

discontinuity design in time (RDiT) to a panel design difference-in-difference, which would

allow cross-sectional comparisons between policy and control cities. Unlike RD, this design
2This project is built on my 2014 undergraduate thesis paper analyzing the immediate direct effect

of end-number license plate driving restrictions on air quality in seven Chinese cities, applying regression
discontinuity design over a maximum time span of two-year window centered around the time of the policy
change. Heterogeneous effects have been found for different cities, revealing the efficiency of this specific
policy may have been ambiguous. This set of RD results are also replicated in Section 5.
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is also less reliable on the policy implementation dates where they are not always carried

out sharply as announced by the local governments, but rather gradually from days before

to days after.

This paper proceeds in the following order. Section 2 will introduce policy background

and data. Section 3 will consider empirical strategies. Section 4 will enlist results of the

main specifications. Section 5 will explore alternative specifications including the RDiT

design. Section 6 will approach welfare estimates and extensions of the policy effects in

other aspects besides air pollution reduction. Section 7 will conduct the robustness checks

with alternative air quality measures. Section 8 will conclude with discussions and future

remarks.

3.2 Data

3.2.1 Policy Background

For this project, I focus on the continuous long-run version of the end-number license plate

driving restriction policy. It is a design that is not as strict as the odd-even rationing often

applied when there is city alert for high level of air pollution, banning a smaller proportion

of private cars on road, but with no explicit termination dates into the future. In China,

this almost always means that the policy is in effect once it has been announced. Details

of the policy are refined slightly once per year, but among all the policy cities I look at it

has not been terminated until today. From local city governments’ official documents and
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authorized news reports, I find summary of the long-run end-number license plate driving

restriction in 9 cities of China before 2015, as showed in Figure 3.1:

1. Beijing (since October 11, 2008), capital city of China, a municipality city.

2. Nanchang (since June 22, 2009), capital city of Jiangxi Province.

3. Haerbin (since April 10, 2010), capital city of Heilongjiang Province.

4. Changchun (since May 4, 2010), capital city of Jilin Province.

5. Guiyang (since October 1, 2011), capital city of Guizhou Province.

6. Hangzhou (since October 8, 2011), capital city of Zhejiang Province.

7. Chengdu (since April 26, 2012), capital city of Sichuan Province.

8. Lanzhou (since June 1, 2013), capital city of Gansu Province.

9. Tianjin (since December 16, 2013), a municipality city.

This selected set of 9 cities are from across the country, but excluding those temporarily

adapting road rationing during international events (e.g., Guangzhou and Jinan), or those

only put restrictions on non-local plates (e.g., Shanghai), or those only using end-number

plate control on bridges linking to other cities (e.g., Wuhan). These 9 policy cities have been

adapting road rationing on major roads of their city centers, banning one-fifth of private cars

from running during rush hours each workday between 7am and 8pm, excluding weekends

and holidays. This make 20% cars in ban, and the set of bans rotates around the week by

their end-numbers of license plates. For example, number 1 and 6 cannot drive on road Mon-

day, then number 2 and 7 cannot drive on road Tuesday, and so on. Public transportations,

such as buses and taxis are exempted from the restriction (except for the city of Lanzhou
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Figure 3.1: Map of Policy Cities

Source: State Bureau of Surveying and Mapping

which also imposes restriction on taxis). By the definition of private cars, civil use vehicles

that are not owned by individuals (e.g., school buses or corporate use vehicles) may register

with local transportation department so they will not be restricted by the policy. Most of

these policies are set by the local government and announced months in advance. Violators

of the driving restriction once being caught are fined about 100 Yuan the first time with

negative record added on driver’s history report that may lead to cancellation of drivers’

licenses, and fine increases if caught a second time in the same day. Violators can be caught

by either local traffic police or traffic cameras around the cities.
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3.2.2 Air Quality Measure

The main city level air pollution measure I choose to use in this paper is AQI, short for

Air Quality Index. It has been the main index known and published online in China by Min-

istry of Ecology and Environment. AQI is an aggregate measure of air quality, considering

multiple pollutants at once. Before 2013 the Ministry adapt Ambient Air Quality Standards

GB 3095-1996 where pollutants in consideration are SO2, NO2, PM10. After 2012 the stan-

dard changed to GB 3095-2012 gradually 3, when pollutants considered for AQI measure

further include PM2.5, O3 and CO4.

The formula for AQI computation follows linear extrapolation from individual pollutant

concentration to the scale of AQI, and then taking the maximum over all pollutants in

measurement5:

IAQIP =
IAQIHi − IAQILo
BPHi −BPLo

(CP −BPLo) + IAQILo

AQI = max{IAQI1, ..., IAQIn}

Here IAQI is individual pollutant P ’s AQI index, Hi and Lo identifies the range pollu-

tant concentration CP in unit µg/m3 falls between in the concentration thresholds BP from

the conversion standard table. For both old and new standards of AQI, see tables Figure
3The goal is to alter all monitoring station data to the new standard by 2016, but major cities like Beijing

start shifting to new standard since 2013.
4Source: http://www.bjepb.gov.cn/bjhrb/xxgk/fgwj/qtwj/zcjd/608633/index.html,

http://kjs.mee.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml.
5Souce: Technical Regulation on Ambient Air Quality Index HJ633-2012, published by Ministry of Ecol-

ogy and Environment of the People’s Republic of China.
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3.A.1 and Figure 3.A.2 in Appendix. After converting all concentrations to IAQI values

for each of the n individual pollutants, max of the IAQI is taken as the overall AQI index.

The pollutant with maximum IAQI is called the major pollutant.

I process a web-scraped dataset 6 from the open source of Ministry of Ecology and Envi-

ronment of the People’s Republic of China. I drop 3 observations with negative AQI which

shall be bounded by 0. The Ministry publishes real time daily average AQI with an indi-

cator of major pollutant, from January 2000 to February 2015. When multiple monitoring

stations are recorded in one city, the average AQI across all stations covered is recorded as

the city measure. Number of cities in this dataset grows from 43 to 367 over the years as

more monitoring stations are being built, covering most prefecture level cities and then some

county level cities in China. I restrict my sample range to start from year 2005, so that the

number of prefecture level cities (all the treatment cities are at prefecture level) recorded

per year is 84 or above, covering the whole country.

Due to the major change of AQI standard calculation by the Ambient Air Quality Stan-

dards (GB 3095-2012 in place of GB 3095-1996) end of 2012, I only take the AQI from the

Ministry website (before 2013 it has the alternative name of API, Air Pollution Index) from

2005-2012. For the rest of the years I cover 2013-2015, I obtain the by-station by-pollutant

type daily concentration air quality records also scraped from web and shared by Professor

Guojun He of Hong Kong University of Science and Technology. Station level daily AQI is
6Shared by an online coder with the agreement of usage, https://www.gracecode.com/aqi.html, author

email lucky@gracecode.com.
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directly computed from the concentration of three individual pollutants using the pre-2013

standard (Figure 3.A.1 to keep consistency of dataset. Then I overlap the 1737 monitoring

station locations by latitude and longitude with shapefile of prefecture level cities in China,

average across all stations within boundaries of cities identified by QGIS to compute the

city level daily average AQI. Identifier of major pollutant is approximated by recording the

pollutant that become of the major one in the most stations within the city boundaries.

3.2.3 Robustness, Covariates and Extensions Data

Due to somewhat questioned credibility of published air quality data in China when local

monitoring stations may manipulate and under-report true air pollution level so the city gov-

ernment would have air quality seemingly meeting with national standard, alternative data

sources will be accessed for robustness checks in Section 7. Those include hourly PM2.5

concentration measures from US Embassy in 5 Chinese cities7, the NASA Anthropogenic

Aerosol Optical Depth (AOD)8, and annual average daily PM10 concentration by city data

from Professor Michael Greenstone. For more descriptions on these datasets, see Section 7.

For control covariates, I required permissions to use spatially aggregated population

weighted climate data from the EPIC Climate Impact Lab, with which I generate daily

ERAI temperature and precipitation at prefecture city level. GIS shapefile of the country

up to ADM3 (county/district level, represented by 6-digit district code) is obtained from

National Catalogue Service for Geographic Information, published by State Bureau of Sur-
7Souce: Kaggles.com
8Source: https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_AER_OD
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veying and Mapping in 2017 (the latest version) and boundaries effective to around 20159.

The centroid latitudes, longitudes and areas of prefecture cities in China are then computed

in QGIS from the shapefile at ADM2 level, merged with the first 4-digit prefecture level city

code 2015-2018 published by the Ministry of Civil Affairs10, projection system WGS84.

For extensions analysis on the policy effects on aspects other than air pollutions, I ob-

tain annual city level traffic, transportation, demographic and macroeconomic variables from

electronic tables published by China City Statistical Yearbook, and province level annual

auto market data from China Auto Market Almanac11. I also obtained labor time-use survey

data from China Health and Nutrition Survey (CHNS)12, with ADM2 level location cross-

walk compiled from the appendix table p659-p662 of Ge (1998).

3.3 Empirical Strategies

3.3.1 Event Study

First analysis I conduct will be an event study. The event study scheme aims to study

event window effects of the outcome AQI variable, as an indication of whether pre-policy

effects take place early before the official execution dates and whether post-policy effects

exists and last:
9Website: http://www.webmap.cn/commres.do?method=result100W

10Website: http://www.mca.gov.cn/
11Source: http://tongji.cnki.net
12Source: https://www.cpc.unc.edu/projects/china
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AQIit = α +
k̄

∑
k=k

βkD
k
it +X′

itγ + δt + φi + εit

For which Dk
it = 1t=c+k where c is the first day of the policy being implemented at city i.

Here I will take a window of [k, k̄] = [−30,30] for 60 days around the policy implementation

date for each city, and the key coefficients βk determines the average effect of event day k

within this window comparing with control cities without policy implementations. I bin up

and down the first and last bin such that Dk̄
it = 1t≥c+k̄ and Dk

it = 1t≤c+k. For the purpose of

normalization, I omit the dummy for first policy date c, i.e., D0
it is omitted and serve as the

reference date.

Since my study will focus on the long term effect of the driving restriction, I will also

conduct a longer event window analysis extending to 30 months (two and a half years) before

and after the policy dates, where Dit is now monthly instead of daily dummies. Under the

monthly setting, policy date is redefined as the first month with at least half a month treated

under the driving restriction.

The covariate control vector X includes climate variables (daily or monthly average tem-

perature and total precipitation), indicators for major pollutants being SO2, NO2 or PM10.

Day and city fixed effects are added. I also control for city-by-year fixed effects, capturing

macro city level annual shocks such as GDP growth, policy shocks, population changes, etc..

Standard errors are clustered at city-by-year level, allowing correlations within same city of

each calendar year.
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3.3.2 Difference in Difference (DID)

The main identification strategy this project use will be DID, which would estimate the

average effect for the end-number license plate control policy over all 9 treatment cities in

China comparing with control city sets. The following regression will be run on full set of

treatment and selected control cities:

AQIit = α + βPolicyit +X′
itγ + δt + φi + εit

Where the key policy indicator Policyit equals to 1 when the road rationing policy of

city i at time t is in effect. Control vector X again includes climate variables (daily average

temperature and daily total precipitation), indicators for main pollutants being SO2, NO2 or

PM10. Day and city fixed effects are added to maintain the DID design, and I again control

for city-by-year FE for other city-year level economics or demographic macro shocks. Stan-

dard errors are again clustered at city-by-year level. The key assumption of DID, namely

the parallel trend pre-treatment, can be tested through event study of previous subsection

if pre-policy trend levels around the zero axis.

Besides this main specification, I will also replicate the usual RDiT (regression disconti-

nuity in time) for immediate direct policy effects in shorter terms for individual policy cities,

and use extensions of synthetic controls to estimate the long run policy effects in different

policy cities. Details on those alternative specifications are in Section 5.
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3.3.3 Control Cities Selection

For both event study and DID, a comparable set of control cities need to be selected in

contrast to the 9 treatment cities. Before the selection process, I first keep my control cities

selection only among those with at least one day of non-missing AQI measurement per year

covering all 11 years 2005-2015. That counts to a pool of 75 control cities. To make sure

any results in the next sections will be robust across selections, I will adapt four different

sets of control cities:

1. Only include the set of 9 treatment cities which adapt the long-run driving restriction,

based on the argument that treatment cities are comparable to one another but not to

cities without such policy.

2. Select control cities within the same provinces as the treatment cities13. Same-province

cities are grouped together as controls because they may usually share common regional

time-varying policy and macroeconomic shocks.

3. Take 5 nearest matched neighbors of each treatment city, matching on covariates that

likely define the economic conditions, the public and government emphasis on environ-

mental issues, and geographical distances to the treatment city. The covariates I use

for matching include 2005-2007 prior policy average demographic, economic and geo-

graphic variables, which are population, population density, primary, secondary and
13For Beijing and Tianjin which are municipalities directly under the central government, the province

they geographically have been enclosed by is Hebei. Also many economic and environmental policies are
implemented to the whole area of Beijing, Tianjin and Hebei, which is called the the Beijing-Tianjin-Hebei
region.
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tertiary industrial share of GDP of the city, GDP per capita converted to 2015 value,

unemployment rate, private and self employment rate, ratio of labor force to city pop-

ulation, ratio of number of cell phone registers over city population, ratio of number

of Internet registers over city population, road area per capita, and then the spatial

distance between centroids of cities, and the indicator on whether the candidate control

city is within the same province of the treatment city. The metric used for determining

nearest neighbor is the Mahalanobis distance. Each control cities matched as 5 nearest

neighbors takes a weight of 0.2 per matching to a treatment city.14 For alternative

matching to different number of nearest neighbors, and with different set of covariates,

see Section 5 for checks.

4. Include the full sample of all 75 control cities available all time span 2005-2015 in my

air pollution dataset.

In later sections, most regression analysis will be conducted on all four sets of control

cities. Note that the set of control cities, however, may not be entirely unaffected by some

sort of driving restriction. Many of them occasionally use short run end-number license plate

control during major events of the cities, or on non-local vehicles, or temporarily during days

and months where air quality is bad. This would be more common among cities within the

same province of the treatment cities, because the treatment cities are always capitals and

policy makers in other cities tend to “follow” their policies. Overall, the number of cities

ever implementing some sort of road rationing is growing over years in China, and the city-
14The design is similar to Cicala (2015), though I do not limit the selection pool of control cities to be

within a certain distance to treatment cities because cities are much apart in my sample with large variety
in their areas and shapes. Therefore, for me determining the cutoff distance is not quite intuitive as the
reference paper. Instead I just incorporate the distance measure into my matching scheme.
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time specific details of each regulations have grown more complicated15. However, high cost

of implementation and potential opposition of the public has caused the number of cities

adapting long-run continuous version of road rationing not grow as much. That is one of

the reason why I restrict the time range of this study until 2015, before more of these noise

enter the treatment and control assignments in most recent years.

But my empirical strategies will still rely on the assumption of average effect of short-run

road rationing being on average similar in treatment and control cities. One may reasonably

argue that treatment cities have more emphasis on air pollution controls, thus they may be

applying short-run road rationing more frequently than control cities. This will make my

estimate biased as a combined effect of both the long-run policy and more frequent adapta-

tion of the short-run policy.

3.3.4 Unconditional Quantile Regression

Following a similar breakdown approach of the DID analysis to the US Clean Air Act in

Currie, Voorheis and Walker (2019), I conduct the unconditional quantile regression (UQR)

approach replacing LHS with 19 RIF (re-centered influence function) quantiles from 5% to

95%:

RIF(AQI, qτ) = qτ +
τ − 1p≤qτ
fAQI(qτ)

Where qτ is the τ th quantile function , and fAQI is the density function of AQI pollution
15Source: http://zhengzhou.auto.sohu.com/20140425/n398804182.shtml.
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measure. This regression would allow a distributional analysis of the policy impact based on

5% to 95% quantiles of pollution, for all four choices of control city sets.16 with This would

help answer questions regarding whether policy impacts varies based on current pollution

levels.

3.4 Main Results

3.4.1 Balance Checks

Before any regression analysis, a set of balance checks are performed for the 9 policy cities,

divided through those with early execution (year 2010 or before) and late execution (year

2011 or after). The early-group then includes Beijing, Nanchang, Haerbin and Changchun,

and the late-group includes Guiyang, Hangzhou, Chengdu, Lanzhou and Tianjin. Covariates

to check are various demographic, geographic, climate and pollution variables average across

3 three-year windows 2005-2007, 2008-2010, 2011-2013. As shows in Table 3.1, none of the

T-test between the early and late groups have been rejected at 10% level. Also regress some

of these major covariates on policy implementation dates17, results of Table 3.2 shows no

significant coefficients for any covariates, suggesting that there is not rejection of null hypoth-

esis that the date of policy implementation is independent on observables. However, note all

these tests are quite underpowered with N = 9. Therefore, the results still cannot rule out

possibilities of covariates imbalance by the implementation strategies of different policy cities.

16The set of quantile regressions is executed in STATA using existing package, source
https://www.stata.com/meeting/chicago19/slides/chicago19_Rios-Avila.pdf.

17I have to cut down number of regressors since I only have 9 observations.
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Table 3.1: Balance Table Check for Early and Late Policy Cities

Variable Early Group Average Late Group Average Difference P-Value

City Area (km2) 33597.770 14815.223 -18782.547 0.194

Average Over Period, 2005-2007

Daily AQI 80.667 84.759 4.091 0.702
Cellphone/Pop. 0.715 0.737 0.022 0.924

GDP per Cap. (2015 Yuan) 43381.335 42489.963 -891.372 0.948
Internet/Pop. 0.197 0.140 -0.057 0.330
Labor/Pop. 0.360 0.287 -0.074 0.551

Pop. Density (pc/m2) 382.756 465.703 82.947 0.606
Population (10000 pc) 850.106 676.919 -173.187 0.462
Daily Precip. (mm) 1.991 2.655 0.664 0.493
Prim. Ind. Shr. (%) 8.240 4.923 -3.317 0.266

Prop. Private Employed (%) 33.125 34.893 1.768 0.733
Road Area Per Cap. (m2) 8.178 9.298 1.120 0.426
Second. Ind. Shr. (%) 41.716 48.713 6.997 0.262
Daily Avg. Temp. (○C) 10.054 13.435 3.381 0.343

Ter. Ind. Shr (%) 50.043 46.363 -3.679 0.594
Unemployment Rate (%) 3.176 2.980 -0.196 0.785

Average Over Period, 2008-2010

Daily AQI 74.837 79.420 4.583 0.567
Cellphone/Pop. 0.969 1.095 0.126 0.574

GDP per Cap. (2015 Yuan) 53925.235 53095.286 -829.949 0.957
Internet/Pop. 0.215 0.201 -0.014 0.876
Labor/Pop. 0.367 0.366 -0.001 0.993

Pop. Density (pc/m2) 397.240 477.939 80.699 0.632
Population (10000 pc) 878.266 695.663 -182.603 0.461
Daily Precip. (mm) 2.171 2.695 0.524 0.608
Prim. Ind. Shr. (%) 6.833 3.998 -2.835 0.252

Prop. Private Employed (%) 36.770 42.869 6.099 0.189
Road Area Per Cap. (m2) 8.993 9.757 0.763 0.682
Second. Ind. Shr. (%) 41.851 47.758 5.907 0.396
Daily Avg. Temp. (○C) 9.514 12.980 3.466 0.333
Ter. Ind. Shr. (%) 51.317 48.244 -3.073 0.688

Unemployment Rate (%) 3.624 2.407 -1.217 0.253
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Table 3.1, continued

Variable Early Group Average Late Group Average Difference P-Value

Average Over Period, 2011-2013

Daily AQI 73.622 77.442 3.820 0.611
Cellphone/Pop. 1.377 1.605 0.227 0.519

GDP per Cap. (2015 Yuan) 69597.887 71755.298 2157.410 0.916
Internet/Pop. 0.259 0.232 -0.027 0.726
Labor/Pop. 0.455 0.465 0.011 0.945

Pop. Density (pc/m2) 403.762 493.875 90.113 0.602
Population (10000 pc) 889.008 717.473 -171.535 0.496
Daily Precip. (mm) 2.170 2.633 0.463 0.580
Prim. Ind. Shr. (%) 5.961 3.203 -2.757 0.207

Prop. Private Employed (%) 42.661 40.359 -2.303 0.583
Road Area Per Cap. (m2) 12.231 11.203 -1.028 0.691
Second. Ind. Shr. (%) 42.102 46.481 4.379 0.556
Daily Avg. Temp. (○C) 9.409 12.829 3.420 0.353
Ter. Ind. Shr. (%) 51.938 50.317 -1.622 0.841

Unemployment Rate (%) 2.533 2.063 -0.470 0.599

Note: Difference equals late group average minus early group average; P-value indicates T-test p-values
between the group means; Annual city-level data source China City Statistical Yearbook; Daily AQI from
Ministry of Ecology and Environment; ERAI climate data from Climate Impact Lab provides daily
temperature and precipitation, aggregated from grid to prefecture level cities population weighted; GDP
per capita in Yuan adjusted to 2015 by GDP deflator source World Bank.

Comparing treatment and control cities possess more power but also create more unbal-

ance. In Appendix Table 3.B.1 covariates balance checks are performed between treat-

ment cities and the three sets of control cities without policy interventions for 2005-2007

average. The three sets of controls namely are 1) the within-province control cities; 2) the

five-nearest-neighbor matched control cities and 3) full set of all control cities. From this

table, we can see that in all cases there exist some socio-economical variables with mean

statistically different between treatment and control groups, especially for daily average AQI

when treatment cities always start with higher levels before 2007. That reveals partially the

reasonings for treatment cities to adapt the policy in the first place, since they are in need

of controlling for air pollution levels. However overall, we still see over half of the balance
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Table 3.2: Balance Regression Check

(1)
Driving Restriction Implementation Date

Population Density (pc/m2) 0.167
(2.004)

GDP per Capita (2015 Yuan) -0.003
(0.031)

Unemployment Rate (%) 961.427
(862.655)

Daily Average Temp. (C) 93.881
(223.455)

Daily Precipitation (mm) 115.985
(809.212)

Daily AQI 70.911
(54.911)

Constant 8566.195
(8704.082)

N 9
Adj. R2 -0.808

Note: Robust standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01; All regressors are average
city level across pre-period 2005-2007.

214



null test not being rejected. Also most of these unbalanced covariates, such as population

size, ratio using Internet, ratio being in labor force, industrial structure, are likely to be

more time invariants, thus they can be controlled by the city-by-year FE in later regression

analysis.

3.4.2 Event Study

Figure 3.2 presents the result of event study with 60 days window, full set control

cities, plotting coefficients β̂k against k. The same event study plots with the other three

options of controls are very similar under Appendix Figure 3.C.1, 3.C.2, 3.C.3. From

the event study plots we can see several things. First of all, pre-policy trend almost never

statistically significantly diverge from zero and is fluctuating along a flat level, therefore

consistent with the parallel trend assumption for later DID analysis. Secondly, if we grade

the level of the estimates before and after the policy change over the 60 days window, there

seems no significant level difference on average. There is also no observable evidence of an

average immediate effect of the policy, the drop of βk right at the policy date seems more

likely a noisy return-to-mean behavior from unexplained high peak one day right before

the policy. Thirdly, majority of β̂k regardless of pre- or post-policy are not statistically from

zero, though the point estimate range from about −25 to 25. Confidence intervals are slightly

tighter when control covariates are added, but relative magnitudes of point estimates are not

shifted much. Overall this event study result implies pretty noisy but on average zero effects

over the event window around policy implementation dates, and that casts some doubts on

whether the policy is efficient in air pollution reduction even in the short run.
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Figure 3.2: Event Study with Window of 60 Days, Full Controls
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(b) With Covariates

Figure 3.3 shows the event study plots for 30 months window before and after the policy

cutoff. In this longer range of time, we still see pre-policy zero trend consistent with parallel

assumption. We also see more trend of decreasing AQI, thus improving air quality after about

1 year of the policy, but it is again quite noisy and fluctuating with 95% confidence intervals

mostly covering the zero axis. In addition, the downwards trend disappears after covariates

have been added. Therefore with those estimates, I can still claim that the event study in

longer runs of time shows at least uncertain and small policy effect in air pollution reduction.

3.4.3 Difference-in-Difference (DID)

The main result of DID regression with the multiple options for control cities selections is

presented in Table 3.3. This table shows on average there is no statistically significant de-

crease in AQI measure for cities implementing the long-run end-number license plate policy,

comparing with those without the policy change, once controlling for full set of covariates.
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Figure 3.3: Event Study with Window of 60 Months, Full Controls
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The no covariates version have some of the statistical significant negative estimates with

considerable magnitudes when control cities include not only those with a policy treatment,

but by balance checks in previous subsection those estimates are more likely biased without

covariates. Once all covariates are added, all estimates across the panel are statistically in-

significant and small in magnitudes regardless of the control groups selected. Even the 95%

confidence interval lower bound never exceeds −5 across the panel.

Comparing with a panel data mean of 80.8 across the 9 policy cities before policy imple-

mentation, regressions with control covariates all show at most 0.04% decrease of AQI from

point estimates, and maximum reductions of 4.4% to 5.7% by 95% confidence interval lower

bounds. These numbers are confirmed with even lower estimates when replacing dependent

variable with log AQI in Table 3.4. Point estimates on policy indicator become all positive

after covariates added, and lower bounds of 95% CI ranges from only 3.2% to 3.7% AQI

reduction. Thus overall, my DID main results show little to no average effects of this road

rationing policy on air quality improvement in China.
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3.4.4 Unconditional Quantile Regression

Unconditional quantile regression using RIF transformation has result presented in Fig-

ure 3.4, all four control city sets, with LHS quantiles on log AQI for the purpose of inter-

pretation. In those four plots, blue bars are DID without covariates added, red bars are with

covariates added. 95% CI are displayed as error bars.

UQR results shows the near-zero insignificant policy impact consistent across all quan-

tiles for covariates added regressions, and for no covariates added estimates with only policy

cities included. Negative policy effects shows up mostly only at high quantiles above 85%

indicating long-run policy impact may be more significant over very high air pollutions, but

with covariates in DID they are always statistically insignificant. Lower 95% CI bounds

stays small negative as well across the control selections, mostly below 10% AQI reduction

unless reaching high quantiles. Even for lower bounds without covariates, the magnitudes

are generally not exceeding a 20% reduction unless top quantiles.
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Figure 3.4: Unconditional Quantile Regression in Logs, 5%-95% RIF Quantiles
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3.5 Alternative Specifications

In this subsection, I will conduct some exercises on alternative specifications that may

be useful in supplementation of the results I achieve from main DID previous section. These

alternative specifications will, besides reinforce the robustness of the main results, perform

some tentative explorations on whether the small policy impacts achieved Section 4 is a

result of averaging heterogeneous significant positive and negative effects in different policy

cities, or the small estimate generally apply to all policy cities alike.
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3.5.1 Different Matching Controls

In my main Table 3.3, I choose nearest neighbor matching of 5 cities closest to each

treatment city. To see weather the arbitrary choice of 5 nearest neighbor affect the main

results, I also complete this exercise following Cicala (2015) varying the number of matching

size to m = 1,5,10, and then rerun the main DID. Results in Table 3.D.1 shows that,

matching DID is not very sensitive to the matching sample size m, where point estimates

on the policy dummy is always small in magnitude and statistically insignificant once co-

variates are added to the regressions. Also, the five-nearest-neighbor matching presented

in main table is actually with the most conservative, greatest size negative point estimate

and lower confidence interval bound across different m. Therefore, the matching results are

stable, small and insignificant around zero.

In light of the balance checks, where matched controls and treatment groups are not

completely balanced because I put more emphasize on matching with cities that are ge-

ographically closer to the treatment cities by including distance measures, I also conduct

alternative matching without including the distance to the treatment cities or the same-

province dummy indicator, such that we do not mechanically get control cities that are

close to the treatment cities but instead those more similar in terms of socioeconomic fac-

tors. Results with different matching size m = 1,5,10 are presented under Table 3.D.2.

While no-covariates regressions estimates become slightly smaller in magnitudes, estimates

for with-covariates regressions increase in magnitudes and flip signs from main matching ta-

ble. However, small insignificant estimates and similar size 95% CI lower bounds still persist
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across all matching sample sizes after covariates are controlled. The main matching results

are verified as stable.

Overall, the stable estimations lend some confidence to the matching algorithm I have

performed. When in main result table matching gives the greatest negative estimate and

confidence interval lower bound, I will be able to use this as the conservative “most” efficient

pollution reduction estimate in later discussions.

3.5.2 Regression Discontinuity Design

Based on the work by Hausman and Rapson (2018), Regression Discontinuity in Time

(RDiT) can help to break down and estimate heterogeneous policy impacts for different

cities in the short run, immediately after the policy change. For a general RD design, the

regression is run for each individual treatment city i:

log(AQIit) = αi + βiPolicyit + f(Rit) + εit

Where the key policy variable Policyit again equals to 1 when the policy of city i at

time t is in effect. No control vector is included. Standard errors will take AR(1) to handle

first-order serial correlations in time due to the nature of air pollution. f is a polynomial

of the running variable, defined as the current date t minus the policy cut-off date c. The

polynomial order of this RD running variable is chosen to be 1 (linear local regression) for

main analysis, asymmetric by left- and right- of the policy date. A uniform kernel is adapted
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weighting observations within the bandwidth equally. For choice of bandwidth h where the

RD is designed upon interval [c − h, c + h], I take trials of h = 30,180,360 days, from one

month to two years around the policy implementation dates. Since separate cities have dif-

ferent historical AQI when the policy become in effect, log AQI is used as the dependent

variable in this part.

Results are presented in Table 3.E.1. Results of the middle window h = 180 (a year

around policy implementation dates) are also plotted under Figure 3.E.1. From those table

and plots, we can see that the only city with a negative significant sizable impact of 30%-

35% AQI reduction consistent for all bandwidth choices is Lanzhou, followed by Changchun,

Chengdu, Harbin and Nanchang with significant and large estimate (reaches about 30% AQI

reduction) for some of the bandwidth choices. Beijing, Tianjin and Hangzhou seems to have

mostly counter-projected immediate result of increasing AQI by considerable magnitudes

at least 20%, while Guiyang has statistically insignificant estimates for the policy impacts

throughout the bandwidths. If we look at the h = 180 window RDiT plots, among the

cities showing negative significant immediate policy impacts on AQI reduction, Changchun,

Nanchang and Lanzhou in addition features the trend with increasing AQI within 180 days

after the policy, showing possibilities of attenuating the policy effect in the long run. Only

Chengdu in this regression seems to be pertaining a steady lowered AQI level after the policy.

However, note the shape of RD plots are only illustrative, as imposing higher polynomials

may reveal very different results.

For robustness checks running variable local polynomials order up to 4 are also performed
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for bandwidth of 180 in Table 3.E.2. As expected, when polynomial order increases, some of

the significant RDD estimates attenuate across the board. Among the cities identified with

negative instantaneous reduction of AQI after the policy, the city of Changchun, Harbin,

Lanzhou and Nanchang maintain a negative sizable impact but sign flips, size shrinks and

significance disappears for some of the polynomials at least. Chengdu, which has a negative

significant reduction effect around 20% from local linear specification, has the effect dropped

and even flipped to positive significant at higher polynomial orders. Beijing, Tianjin and

Hangzhou still seems to have mostly counter-projected immediate result of increasing AQI

while statistical significance also reduced with higher polynomial orders, while Guiyang has

statistically insignificant estimates again throughout the orders, though the estimates are

shown to be large and negative at higher polynomial orders.

Overall, the RDiT results have presented some evidence of the heterogeneous immediate

effects of this driving restriction policy across the 9 different cities. However comparing with

DID, we cannot completely rule out the possibility of regional time trend, and we do not

know whether the short term immediate effects can imply what happen in the long run. Any

negative effect on AQI may get reverted later on, and any positive or insignificant effects

may gradually phasing into effectiveness. The potential fuzziness of policy implementation

dates based on how strict the penalization on violation is enforced over time may also bias

the RDiT estimates.
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3.5.3 Synthetic Controls

I also conducted the synthetic control method on main DID design. In this exercise, syn-

thetic controls are constructed separately for each of the 9 treatment cities, according to all

pre-policy period AQI measures since 2005 until the policy date. For now the optimization

weighting matrix is taken to be the identity matrix.

With the synthetic control weights obtained, event study is rerun pooling treatment cities

and synthetic cities weights. Results are shown in Figure 3.F.1 and Figure 3.F.2. These

figures are virtually the same as my original event study plots in Section 4, implying small

pre- and post- effects of the policy on AQI reductions. The same DID design with synthetic

control weights are run for both pooled and individual cities using log AQI, for different

cities have different bases. Results are presented in Table 3.F.1. For the pooled DID with

all treatment and synthetic control cities, the average effect is again small, positive and in-

significant with 95% CI lower bound sit at 3.9% reduction similar as in the main table Table

3.4.

But in addition, we can see heterogeneous long run policy effects across different cities,

though four out of nine estimates remains statistically insignificant. Among all the pol-

icy cities, Beijing, Changchun, Guiyang and Hangzhou have negative policy impacts on

AQI, with Guiyang and Hangzhou statistically significant and large in magnitudes featur-

ing around 10% reduction of long term daily AQI. Meanwhile estimates of policy dummy

on Chengdu, Harbin, Lanzhou, Nanchang and Tianjin show positive signs, with Chengdu,
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Harbin and Tianjin statistically significant and large above 10%. The maximum AQI reduc-

tion size across all cities is 11% at point estimate (Hangzhou) and 19% at lower CI (Beijing).

These reductions are not a super big effect but also not minor.

These results do not seem to be dependent on the initial AQI level before policy is im-

plemented, since the higher AQI city Hangzhou and lower AQI city Guiyang has the similar

size negative significant policy estimates, while Harbin with a similar historical AQI pre-

policy as Hangzhou instead has a large significant reverse sign estimate. These estimates

also show little trace being dependent on the strictness of policy implementations, since the

two adjacent municipalities of Beijing and Tianjin likely with similar mechanisms of policy

implementations become to have reverse sign estimates. Results are also distinctively differ-

ent from the RDiT estimates for immediate policy impacts, showing some evidence of the

road rationing policy being more effective or less so in the short comparing with long run.

For example, Hangzhou is with a positive significant AQI increase over 20% by RDiT instead

has a long run DID estimate of 11% AQI reduction.

Overall, these results with synthetic control depict the possibilities of the end-number

license plate driving restriction not being ineffective generally across all cities, but instead

is capable of leading to heterogeneous large negative or positive effects on city level AQI.

However, the reasons why some cities have the same policy work towards the government

goal of AQI reduction while others work completely in the reverse direction remains unknown

by this section, and will be explored slightly over the next. Note the method of synthetic

controls matches only on pre-policy AQI trends, which may or may not be more defensible
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as AQI is an one-dimensional measure. The estimates from this method can be less reliable

if one believe the constructed synthetic control cities are not actually comparable to the

treatment cities.

3.6 Extensions

3.6.1 Conversion to Benefit Value

Welfare cost and benefit analysis of end-number license plate control policy involves con-

version of the main estimates previous section to currency values, which is not quite straight

forward since AQI is a compounding measure from concentrations of different pollutants

and only the health risk and costs of individual air pollutants have been estimated in pre-

vious literatures. I therefore only conduct a rough correlation estimation, regressing the

daily PM10 annual average measure with the daily AQI data averaged to city-year level

controlling for yearly aggregated daily average temperature and precipitation. The slope of

PM10 concentration on AQI is 1.800. Comparing with the scaling table in Appendix Figure

3.A.1, this estimate is sensible as AQI is usually scaled lower from PM10 concentration in

µg/m3. Then I use the Ito and Zhang (2016) estimate of willingness-to-pay (WTP) reducing

1µg/m3 of PM10 permanently by paying 1.34 USD per year per person, which by current

exchange rate is about 9.26 Chinese Yuan. Taking the DID estimate under Table 3.3 with

full sets covariates, point estimates of average reduction on AQI worth −2.72 − 0.08 dollars

and −20.28 − 0.58 Yuan. Considering the 95% CI lower bounds, the maximum reduction of

AQI would worth 8.50 − 11.10 dollars and 58.74 − 76.72 Yuan per year per person. These
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numbers are small and mostly affordable in Chinese households. In terms of other welfare

measures, the summary of EPIC18 claims that “sustained exposure to an additional 10µg/m3

of PM10 reduces life expectancy by 0.64 years”. Thus the result of this paper maps to a per

capita life expectancy gains of −0.140−0.004 years by point estimates, or maximum gains of

0.405 − 0.530 life years by 95% lower CI bounds. Those values are also small.

Though with the estimated low benefit of the end-number license plate driving restric-

tion in air pollution reduction, cost side of the policy is ambiguous and harder to evaluate.

However, many studies have suspected potential high costs of this long-run version of road

rationing. A survey study in Tianjin has suggested high public objection to the policy (Jia

etal., 2017), and constant arguments have arisen regarding property rights, arguing against

the legibility to ban private vehicles on road in the long term (Qian, 2011; Zhang, 2015).

In addition, there are implications of the driving restriction delaying people’s time to work,

effectively reducing labor time and economic outputs (Viard and Fu, 2015). On the benefit

side besides air pollution reduction effects, the policy may also have its gain in congestion

release (Sun, Zheng and Wang, 2014; Fan etal., 2017).19 Other studies showing transporta-

tion being a main driving force of carbon emission (Wang and Liu, 2015) have also advised

on applying the driving restriction to reduce CO2 emission, which is closely related to the

topic of climate changes. With these potential direct or indirect costs and benefits, one

may not easily reach the conclusion that this driving restriction is not obtaining any social
18Source: https://aqli.epic.uchicago.edu/about/methodology/
19A time-use dataset (https://www.cpc.unc.edu/projects/china/data/datasets/longitudinal/datasets)

managed by Chinese CDC and the University of North Carolina is being requested for future research
of this project. The plan is to analyze the policy effect on people’s transportation time as well as labor time
to estimate the potential cost and benefit in traffic and labor addressed in these literatures.
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welfare gains. However, the main results showing relatively small benefits from air pollution

reduction still address that one main goal implementing this policy have not been efficiently

achieved.

3.6.2 Simultaneous Air Pollution Controls

One confounding factor in my driving restriction policy effect analysis remains that the

policy may be compounded by other important environmental policies executed at the same

time, thus the estimate on driving restriction will be representing actually a compounding

effect of those simultaneous policies. This scenario is possible, since environmental policies

have been fast to propose and execute in China over the past decades due to deteriorating

pollutions, and it has been noted that governments are likely to take more than one measure

in order to lower their city level air pollutions. But on the other hand, the end-number

license plate driving restriction is likely a special policy managed by the local transportation

department and applies to the most population unlike the other environmental policies usu-

ally imposed on polluting industries. It is also a policy not involving longer time-line costly

monitoring, fining and negotiating between government and corporates, so it is more likely

to be implemented fast and take effect swiftly.

To briefly explore whether there are more restricting simultaneous environmental regu-

lations on air pollution in treatment cities around the same time as the driving restriction,

I compile same set-up DID regressions to analyze city-annual level industrial pollution mea-

sures obtained from China City Statistical Yearbook. This exercise is conducted since many
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environmental policies have been targeting heavy polluting industries, so if driving restric-

tion comes in a package with these industrial level policies imposed by the local government,

industries in treatment cities are likely also facing stricter regulations regarding their air

pollutant emissions around the same time. I include the set of covariates of aggregated an-

nual daily average temperature and precipitation, population, population density, primary,

secondary and tertiary industrial share of GDP, GDP per capita converted to 2015 value,

unemployment rate, private and self employment rate, ratio of labor force to city population,

ratio of number of cell phone registers to city population, ratio of number of Internet registers

to city population, and road area per capita. I translate the policy dummy to yearly level by

defining year t under policy if at least half of t (six months) is influenced under the policy.

For example, for Beijing executing the policy October 2008, year 2009 is the first year with

Policyit = 1.

For a couple of industrial pollution measures, the impacts of the road rationing policy

timings are presented under Table 3.G.1 for five-nearest-neighbor-matched control group.

From the result table, we see there little statistical significance across the industrial pollu-

tion measures, representing little concerns of simultaneous environmental policies targeting

at industries. However, though the water and solid waste treatment results can be less of

a concern since they are less likely to interact with air pollution, industrial dust and SO2

emissions will still be relevant. The estimates imply that policy cities may be having only

2.6% less dust emission and 14.3% more SO2 emissions, the latter 10% significant statisti-

cally. Instead of implying a stricter industrial level air pollutants emission controls, these two

estimates in turn present the possibilities of slacker industrial regulations in industries. Since
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they imply more contribution from industrial emissions for policy cities post-treatment, the

main conclusion in previous section may be altered since the long run end-number license

plate driving restriction may contribute more to air quality improvement, but the increased

industrial emissions undo the changes. But since there is not enough evidence and docu-

mentations about the treatment cities have more polluting industries, and this set of results

are with low statistical significance and sensitive to identification strategies20, I will put less

weight on these arguments.

3.6.3 Effects on Transportation and Traffic

The government of China has been persuading the public on the negative effects of private

car emissions deteriorating air pollution over the years, and they have been encouraging and

promoting alternative public transportations21. Actually, the driving restriction policy only

imposed on private vehicles is usually also regarded as one of these measures encouraging

public transportations. As a result, we may expect public transportation and traffic variables

to change accordingly in the long run due to the policy change. To test that, with the same

approximation and covariates as previous subsection, city level annual transportation and

traffic variables are regressed with DID. Results are presented under Table 3.G.2.

Overall across the panels estimates are again with low statistical significance, but that

may be contributed by power issues due to low number of annual observations. It appears

that among the number of unregulated vehicles (buses and taxis), volume of passengers by
20Actually if regressions are run no-logs instead of logs, the sign of these estimates will invert.
21Source: http://www.gov.cn/fwxx/kp/2007-09/17/content_751352.htm.
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buses, number of buses, number of buses per population, and total passenger traveled per bus

all have small and statistically insignificant estimates, while number of taxis has statistically

insignificant 5.6% increase in policy cities relative to control cities. Number of passengers

on highway has increased but insignificantly statistically. Therefore, there has been little

evidence that public transportation like buses have been encouraged in the treatment cities

both after the restriction applies on private vehicles. Instead, unregulated small vehicles that

likely are equally polluting as private vehicles such as taxis may have increased. That might

be one of the reasons why the driving restriction is not working as effectively as expected

in long-run air pollution reduction. But still there is lack detailed data for individual travel

time as well as actual traffic conditions (e.g., average speed of traveling within the city,

number of car accidents), these results on transportation and traffic will remain relatively

inconclusive.

3.6.4 Automobile Ownership

One of the argument why the driving restriction is not improving long run air quality

is that people will buy more cars with different license plate end numbers in so the policy

effect on air quality diminishes over time (Ma and He, 2016). In China, all vehicles must

be registered with the local transportation department before getting a plate by lottery.

In case this argument holds, we will expect to see more private vehicles registered on road

in treatment versus control cities post-policy. To explore briefly this argument, I obtain

the province-by-year private vehicles ownership dataset provided by China Auto Market Al-

manac and regress log of automobile ownership variables with the usual DID design. Since I
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lack city level data, I have to extend policy treatment-control status to province level, which

effectively reduce the number of controls making this set of analysis only proxies to previous

city level results. But since all the policy cities are capitals of the respective provinces where

population density is highest and GDP per capita the greatest, this approximation would

still be somewhat reasonable and instructive.

Results are presented in Table 3.G.3 broken down into subcategories of automobile

types classified by the Almanac (for passenger, cargo, other use, among which passenger

use takes the majority share), with province level population, population density, popula-

tion weighted average primary, secondary and tertiary share, GDP per capita converted to

2015 value, unemployment rate, ratio of labor force to city population, and road area per

capita as covariates22. From this result table, we see a total around 3.5% decrease in au-

tomobiles owned, but such estimate remains statistically insignificant, unable to verify the

policy actually affecting number of private vehicles owned. We also see the coefficients are

mainly negative, which may be attributed to decrease in private car ownership due to the

policy, contrary to the prediction that citizens will purchase more cars to avoid the driving

restriction. Note however, the test is again underpowered and biased due to approximation

to province level.

The same DID analysis is conducted for the yearbook provided annual dataset of new

registered civil use automobiles, which can be regarded as a proxy for yearly auto sales.
22Since number of observations decreased when panel is by province, I reduce number of covariates that

are less likely to correlate with auto markets.
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Note civil use autos would include all the private vehicles but also those purchased by non-

governmental groups such as schools and corporates, though they not classified as private

cars will report to local governments and not subject to the end-number license plate driv-

ing restriction. Results are presented under Table 3.G.4, from which there is again no

statistically significant estimates showing the policy affecting new car purchases in treat-

ment provinces. However point estimates are larger, with 17.2% decrease of newly registered

passenger cars while the other types have positive changes in new registrations. Again, a

decrease in passenger cars (which takes the majority of all civil use autos) is contrary to the

argument that policy citizens purchase more cars to avoid the policy.

3.6.5 Traffic and Auto Market Changes by Individual Cities

From previous section, I have found certain empirical evidence by synthetic control

method showing different cities with heterogeneous efficiency of the policy in air pollution re-

duction. To entangle the mechanisms and reasonings behind the set of heterogeneous effects,

I conduct some preliminary DID analysis for individual treatment cities showing significant

and large estimates in the synthetic control DID results Table 3.F.1 on selected depen-

dent variables of traffic and auto market variables presented in previous subsections. The

5 treatment cities with statistically significant estimates of log AQI regression under syn-

thetic controls are Guiyang and Hangzhou with negative significant estimates, and Chengdu,

Harbin and Tianjin with positive significant estimates. All of those estimates have magni-

tudes rank around 10%, with Tianjin higher above 20%. For this set of analysis, control

groups include all cities/provinces available without the policy treatment, and treatment
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city is only the one specified.23.

Results are presented in Table 3.G.5. We see the two treatment cities with negative

policy effects on AQI in previous section, Guiyang and Hangzhou, have reduced number of

buses and travels by buses, while the number of taxis increases like in the pooled analysis

Section 6.3. Both provinces of the capitals have little to a significant decrease in private

cars ownership. On the other hands, among the three cities with positive significant policy

effects on AQI, Chengdu has number of buses, number of travels by buses and number of

taxis all increase significantly while private vehicles number decreases significantly, contrary

to the belief that the policy works counter intuitively since people buy more private cars

but agree with the argument that passengers switch to public transportation. The other

two cities, Harbin and Tianjin both have some decrease in public transportation, buses for

Harbin and taxis for Tianjin. They also show decrease in number of total private vehicles,

Tianjin with a large magnitude and statistically significant estimate, and Harbin smaller and

insignificant from zero.

These results of breakdown analysis by cities have again shown that purchasing more

private cars to avoid the policy intervention is unlikely to intervene with the driving re-

striction policy as almost all selected policy cities have negative estimates on private owned

vehicles post-policy. It also cannot confirm that more public transportations through the

policy effects, either buses or taxis, are good or bad for the air qualities of the cities. For

example, both Chengdu and Tianjin have positive policy impacts on AQI but the former
23Alternative designs such as synthetic control is not pursued at this stage because insufficient observations.
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simultaneously experience increase in both buses and taxis, while the latter experiences a de-

crease. For another example, Hangzhou and Harbin both have decreased buses and increased

taxis by the policy, but the former city have negative policy effect on AQI and the latter

has positive. Those results may again turn to the reasonings that public transportations

not subject to the driving restriction potentially can contribute greater to city air pollution.

Since cities adopting to long-run end-number license plate control policies are capital cities

with great incentive and government subsidies to provide clean public transportations such

as electric buses24, this argument can be quite counterintuitive. Again note the reasonings

are not very conclusive due to power issues and the designs relatively biased using full set of

control cities/provinces.

3.6.6 Effects on Labor Time

As another main purpose of the end-number license plate driving restriction is to reduce

traffic congestions, an additional measure of the effectiveness of the policy will be whether it

sufficiently reduce traffic congestion, increase convenience of travels within the cities of policy

treatments, and positively affect people’s labor activities. For analysis of that purpose, the

China Health and Nutrition Survey (CHNS) dataset is obtained and identified at city level

(ADM2). This dataset include around 30,000 individuals from 7,200 households stratified

randomized selected from 15 provinces of China from 1989-2015 with about by-yearly inter-

vals. Surveys are usually conducted second half of the year August to December. For the

purpose of this project, I restrict to surveys between 2005 and 2015, which includes 2006,
24Source: https://kuaibao.qq.com/s/20190817A060OU00?refer=spider.
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2009, 2011 and 2015.

Individual interview questions include time traveled to work, however is not yet compiled

in their merged dataset. Instead, the alternative time-use variable this project is going to

look at for policy impact is labor time previous week of the interview. Policy intervention is

defined as if the whole week where labor time indicates falls after the policy change (which

is to say, the Monday of the “last week” of the survey date will be already under the driving

restriction policy). Due to sample restriction, there are only three treatment cities included

in the CHNS dataset, Beijing, Harbin and Guiyang. Among them since Beijing enters the

survey after its policy in 2008, only Harbin and Guiyang provide time variation to identify

the policy effect on labor time through a DID design. As a result, the conclusion of this

section will not be quite conclusive to extrapolate to the overall treatment effect of the policy

because two treatment cities are unlikely to represent the other five.

Due to limited sample size, all cities without policy change during the periods have been

included as the full control set in the DID following. Runs are also performed limited to

urban surveyors, rural surveyors and only to narrow window 2007-2012 (thus only include

2009 and 2011 two surveys). For covariates, temperature and precipitation are summed up

to weekly level to match the frequency of the data. Following the main DID design, city-

by-year fixed effects and week fixed effects are added. Other covariates likely determinant

of individual labor time have been included, indicator of gender, nationality, married or not,

education levels, categories of primary occupation, whether employed or not, whether living

in urban area, age, age squared, and household size. Since those covariates come from dif-
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ferent survey parts of CHNS, including them would notably decrease the sample size in the

regression. Again standard errors are clustered at city-by-year levels.

The regression results are presented under Table 3.G.6. From which we can identify

a consistent significant negative impact of the driving restriction on labor time. For larger

sample without covariates, the impact is 7% to 11% reduction of labor time no matter res-

idents of urban or rural areas of the city. For smaller sample with covariates added, the

impact is as high as 30%-47% labor time reduction. Within the narrow window, the effect is

smaller, insignificant 5% without covariates and 26% with covariates, which may indicates a

growing effect on labor time reduction by the policy change.

Though previous argument on if policy reduce congestion time and decrease travel time

may be increasing labor time is counter-proved by these regressions, there exist reasonable

explanations. Though congestion times may be reduced, travel time may still increase for

most workers who cannot afford to buy a second car avoiding the policy intervention pre-

venting them to drive for work. That will make people using public transportation for work,

possibly reducing their labor time either due to selection not going because of inconvenience

of traveling to work, or otherwise labor time is replaced by longer travel time. Another less

possible explanation is though the survey asks explicitly labor time, many surveyors may still

regard travel time to work as part of the time for work though it is not being paid. In that

case the results actually may indicate a reduction of travel time due to possible congestion

release in the cities of policy treatments.
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If we evaluate the results from this extension section seriously, we may be reaching the

conclusion that the driving restriction policy not only did not sufficiently improve air quality

in the long run, but also drive down labor time in treatment cities likely implying a counter

effect on people’s daily convenience of traveling around the city. That will then add to cost

side of the policy and reduce its net benefit. However note that this exercise is inconclusive

due to limited sample size only covering two of the nine treatment cities, and their may

be multiple errors in the survey questions, so such increase in policy cost is likely still be

uncertain.

3.7 Robustness Check

In this section, I will run some robustness checks for the main DID result Table 3.3.

First of all, since air quality records coming from ground monitoring stations are usually

under speculations of whether data is truthfully reported, I will conduct analysis on the

main AQI dataset excluding observations suspicious of data manipulations. Then, I will run

regressions with alternative air pollution measures. According to Zhang, Lin Lawell and

Umanskaya (2017), different pollutants can be impacted differently by policies, therefore

my conclusion from AQI index alone may not be extended to the scope of all pollutants.

Moreover, the old standard AQI I take in the main analysis have ignored some major pollu-

tants of concern like PM2.5. Therefore, I will run robustness checks on individual pollutants

including PM2.5 and PM10. Lastly, I will also repeat main analysis with alternative data

source from satellite images, the AOD index. Though these robustness checks may cast some
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doubts on the validity of my main results, note none of the alternative data sources have

comparable frequency and coverage as the main AQI dataset, which is a reason why I will

still regard the main AQI result with more weights.

3.7.1 Suspects of Data Quality Change

The reform in 2012 has not only change standards evaluating AQI in China, but also

started the process of making air quality real time, public and automated25. The change to

automation may cause a sudden jump in reported AQI levels, because manipulation have to

drop after automation happens. Though I could not identify when automation happens in

each city and whether manipulation exists before the process, the automation always happens

on January 1st per year. Therefore, I use regression discontinuity in time (RDiT) to estimate

the jump on reported AQI for each individual cities across the threshold of January 1 each

year 2013-2015. From those RDiT results, I classify any cities with at least 10% statistically

positive significant jumps across January 1st, for all three bandwidth windows 30,180,365

polynomial order 1, as cities with data manipulations before automations. That will leave

me with 64 cities, with one of the treatment city, Chengdu, also dropped from the sample.

I then repeat DID on this set of cities excluding those with suspicious data manipulations,

and results are presented under Table 3.H.1. Comparing with the main results Table

3.3, both negative point estimates and lower 95% CI bounds have increased in magnitude,

though all still remains statistically insignificant from zero once adding covariates. Estimates

shows at most 1.5 unit decrease of AQI by point estimates, and most negative maximum
25Reference with draft of Professor He’s working paper, “Can Technology Solve the Principal-Agent Prob-

lem? Evidence from Pollution Monitoring in China”, with Michael Greenstone, Ruixue Jia, and Tong Liu.
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reductions of 8.1 by 95% confidence interval lower bounds. These numbers are not huge

but still considerably larger than the main results. Since one of the treatment cities with

positive estimate in synthetic control section has been dropped, the outcome is not surprising.

In addition, more monitoring stations are added across China since start of 2013, leading

to large increase in the number of cities covered in my main AQI dataset from above 100

to above 300 during 2013-2014. Even in the sample cities I have selected with observations

throughout the sample period, the number of monitoring stations where the daily city level

AQI is averaged across has increased in time, giving possibilities to sudden shift in data

quality. Since AQI measurement will be much different from before or after the reform, I

perform the main DID with a narrow window of 2007-2012 restricting to prior to the reform.

Within this time range cities with the policy treatment decrease to 7, excluding Lanzhou

and Tianjin. Table 3.H.2 presents this set of results, showing generally zero and even pos-

itive insignificant estimates of the policy, much similar to the main table. Unlike the main

results, even specifications without covariates have been small in magnitude and statistically

insignificant, verifying the general zero effect of the policy at least until 2012.

3.7.2 Results with PM2.5

I obtain the US embassy hourly measurement of PM2.5 concentration for 5 cities, Bei-

jing, Chengdu, Guangzhou, Shanghai and Shenyang for years 2010-2015, within which two

(Beijing and Chengdu) have the policy treatment. I repeat DID for this dataset adding pol-

icy indicator interacting with a peak hour dummy (7am-8pm), which are the hours the policy
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is in effect. Results are presented under Table 3.H.3. Negative insignificant estimates on

the interactive dummy variable are identified throughout specifications. Magnitudes of these

point estimates are not huge comparing to the city average PM2.5 of Beijing and Chengdu,

91.3µg/m3, which counts to about 8% reduction and up to 22% at lower CI. This is still

notably larger than the AQI reduction in my main specification.

Since my AQI measure does not consider PM2.5, this set of results are instructive on the

potential higher benefit of the driving restriction in air quality improvement through low-

ering PM2.5 concentrations. However, these results shall be treated with caution. Unlike

AQI, the measure of PM2.5 has not been with great familiarity among public until 2012.

and there maintains various debates across China regarding whether car emissions contribute

more or less to the PM2.5 concentration in the city without very conclusive evidence26. Also

the PM2.5 dataset is quite limited in number of city and years covered, though it is very

high frequency hourly. It comes from a monitoring source outside of China and sometimes

more trusted for less data manipulations, but the US Embassy only have one monitoring

point each city so the measurement can also be less representative.

To value the effect on the same scale as AQI, I use conversion factor to PM10 from EPIC,

which is 0.65 PM2.5 -to-PM10. That then gives approximate equivalent 11µg/m3 peak hour

PM10 reduction by this long-run policy, equivalent to a much larger value gain of 50.93 Yuan

per person per year, maximum using 95% CI lower bound being 145.51 Yuan per person per

year, halving the effect since only applying to peak hours of a day. This result, though
26Source: http://news.ifeng.com/a/20170103/50512431_0.shtml.
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doubled comparing with the main AQI results, is still affordable comparing with annual per

capita household income in most urban areas of China.

3.7.3 Results with PM10

With the annual daily average PM10 pollution data 2005-2014 from Professor Green-

stone’s multiple studies, I rerun my DID with annual average daily PM10 as the dependent

variable. Since the data is annual by city I again use the approximations in Section 6 to

extend my policy treatment dummy from daily to yearly, and include the same city-by-year

level covariates controls from China City Statistical Yearbook. Note like all regressions in

Section 6, these regressions are underpowered comparing with other datasets I have been

using in this section. Estimates from these regressions are also more subject to omitted

variable biases not included in the yearbook source, like unobserved auto market changes

and unobserved consumer preference shocks.

Regression results with covariates are shown in Table 3.H.4. To summarize, there is a

sizable effect of the policy for 7.0−10.4µg/m3 PM10 reduction except for the only policy cities

regression Column (1). Statistical significance remains low, only 10% with same-province

and full control cities. The magnitude is not small but also not huge again comparing with

treatment cities pre-policy mean of 98µg/m3, which counts to 10%-23% reduction maxi-

mum at lower 95% CI bounds. Translating to WTP directly, that corresponds to about

13.27 − 96.64 Yuan per year per person gains (maximum 89.52 − 210.62 at 95% CI). This

is considerably greater than the AQI and PM2.5 estimates, though still affordable and not

243



super huge numbers.

3.7.4 AOD

One other popular source identifying air pollution is by satellite image, which is free

from ground monitoring station mistakes and manipulations. The AOD measure (Aerosol

Optical Distance) measured by NASA provides this alternative. However it simultaneously

possesses other disadvantages comparing with ground station records, one being besides air

pollutants, AOD is also related to confounding factors of windblown dust, sea salts, volcanic

ash, smoke from fires, etc.27.

Since satellite cannot pass each location on earth every single day, the AOD data is usu-

ally taken monthly. The AOD variable is recorded on the scale of [0,1]. I downloaded 0.1×0.1

grid resolution monthly AOD 2005-2015 from NASA and compile data to city level, through

matching each city centroids to 4 closest 0.1×0.1 grids, then computing the city average AOD

as the weighted average of the 4 grids AOD by inverse distance square28. I convert the policy

indicator used in DID design again to monthly level, defining at least half a month falling un-

der the policy as a policy treated month. I repeat my DID analysis with monthly aggregate

daily average temperature and precipitation as covariates, and again adding city-by-year FE.

Results are shown under Table 3.H.5. Point estimates are again small and never sta-

tistically significant. However the mean AOD for treatment cities pre-policy is low around
27Source: https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_AER_OD.
28Methods of matching referencing He, Fan and Zhou (2016).

244

https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_AER_OD


0.46, thus the point estimates can reach as large as 14% reduction, and maximum 38% by

lower 95% CI bound. We may call these results noisy and uncertain, not contradicting with

the main results, but there is still possibilities there is a sizable air pollution reduction effect

from the policy based on AOD measurements.

3.8 Conclusion

To summarize, this project has suggested little to no long run average effects improving

city level air quality of the continuous version Chinese end-number license plate driving re-

striction, across all 9 cities implementing the policy in long-term 2008-2013. Furthermore,

policy may be effective and ineffective for different cities, in immediate short-run and long-

run. Besides air quality changes, there have also not been found any effects of the policy on

traffic, transportation and private automobile ownership.

There could be various explanations why the policy is actually not on average effective in

air quality improvement suggested by previous literatures. One of the popular explanation

is quick behavior response, such as people buying more cars with different license plate end

numbers so total number of cars on roads do not change over the long run (Ma and He,

2016). Others have suggested improvement of traffic condition accompanied by the policy

instead would increase air pollution, as traffic and pollution have non-monotonic correlation

(Sun, Zheng and Wang, 2014). There are also arguments that the policy is not enforced

strict enough (Lu, 2016), such that if with higher fines and stricter rules on purchasing a

second car, the driving population will be able to conform by driving less and then leading
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to fewer car emissions and less air pollution.

From my analysis, I also tend to believe the policy is not effective enough even in the

short run as found in the narrow window DID and the RDiT design. For the reasons and

mechanisms of these results, through my extension regression analysis, I do not think it

is because citizens purchasing a second private car and changes in public transportation is

evident of the policy response. This is probably consistent with intuitions, since affording a

second car is not really universal in most Chinese households, let alone there have been strict

rules regarding how people are randomly assigned a license plate number of their new cars in

these cities. That potentially put on high enough cost of buying and supporting a new car

with the risk of having a plate end number same group of the current one, comparing with

inconvenience of not using private cars one-fifth of the week. However, my results also imply

that when private cars are forbidden from roads, passengers may switch more to transport

by taxis instead of buses, and that indirect effect on air pollution remains ambiguous. In ad-

dition, I am also less convinced on the explanation that the restriction is not applied strictly.

The policy is probably binding for the public, since it has long been under much debates

after over a decades, and most drivers knowing about the increasing level of surveillance on

road asks and cares about being caught as a violator of the policy. Therefore, I inclined to

think that the policy is not that effective in controlling for air pollution either because car

emissions contribute little to air pollutions of the city, or the policy decreases the number of

cars on road but maintains level or car emissions by putting more public transportations or

enabling current cars driving faster.
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With the ambiguous and on average little effect of air pollution reduction by this policy,

together with potentially higher cost of implementation, it is interesting to think of why

local governments still try to implement the policy for long run. One reason argued is that

this policy is chosen and favored because it can be easily and swiftly implemented across the

city, and it is associates with relatively lower cost for the local governments comparing with

other environmental policies usually involving monitoring and regulating high polluting in-

dustries. It is suggestive that policy makers have political concerns when public get annoyed

by continuous air pollutions in the city, so that they may have the urgent need to take and

stay with this progressive form of policy such that it appears an effort has been made to

control air pollution (Zheng etal., 2014). Furthermore, as the driving restriction policy gets

more and more popular across the country because they are reported to effectively release

short run air pollution problem, these governments may find it straightforward extrapolat-

ing the short-run strict form of the driving restriction to the long-run. However, all these

explanations will still require more theoretical grounds and empirical evidence, since they

imply that myopic governments are making such decisions and do not correct accordingly in

time.
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3.A Air Quality Measurement Standards

Figure 3.A.1: Air Quality Index Conversion Table, New Standard GB 3095-1996
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Figure 3.A.2: Air Quality Index Conversion Table, New Standard GB
3095-2012
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3.B Balance Checks

Table 3.B.1: Balance Table Check for Treatment and Control Cities, Average
Over Period 2005-2007

Variable Treatment Group Average Control Group Average Difference P-Value

Same-Province Control Groups

City Area (km2) 23163.022 21056.342 -2106.679 0.809
Daily AQI 82.940 71.282 -11.659 0.035

Cellphone/Pop. 0.727 0.496 -0.231 0.071
GDP per Cap. (2015 Yuan) 42886.128 29717.716 -13168.412 0.130

Internet/Pop. 0.166 0.083 -0.083 0.020
Labor/Pop. 0.319 0.163 -0.156 0.008

Pop. Density (pc/m2) 428.838 349.781 -79.057 0.375
Population (10000 pc) 753.891 494.924 -258.966 0.036
Daily Precip. (mm) 2.360 2.811 0.451 0.427
Prim. Ind. Shr. (%) 6.397 13.938 7.541 0.012

Prop. Private Employed (%) 34.108 36.161 2.054 0.475
Road Area Per Cap. (m2) 8.800 9.591 0.791 0.560
Second. Ind. Shr. (%) 45.603 47.305 1.702 0.682
Daily Avg. Temp. (○C) 11.933 13.859 1.927 0.396
Ter. Ind. Shr. (%) 47.999 38.757 -9.242 0.019

Unemployment Rate (%) 3.067 3.611 0.543 0.305

Five-Nearest-Neighbor-Matched Control Group

City Area (km2) 23163.022 13961.654 -9201.368 0.185
Daily AQI 82.940 70.638 -12.302 0.023

Cellphone/Pop. 0.727 0.495 -0.232 0.028
GDP per Cap. (2015 Yuan) 42886.128 35140.719 -7745.409 0.257

Internet/Pop. 0.166 0.081 -0.084 0.003
Labor/Pop. 0.319 0.198 -0.122 0.033

Pop. Density (pc/m2) 428.838 479.300 50.462 0.543
Population (10000 pc) 753.891 487.858 -266.033 0.019
Daily Precip. (mm) 2.360 2.439 0.080 0.864
Prim. Ind. Shr. (%) 6.397 10.507 4.110 0.027

Prop. Private Employed (%) 34.108 36.809 2.701 0.267
Road Area Per Cap. (m2) 8.800 10.907 2.107 0.011
Second. Ind. Shr. (%) 45.603 51.485 5.882 0.071
Daily Avg. Temp. (○C) 11.933 14.506 2.573 0.130
Ter. Ind. Shr. (%) 47.999 38.008 -9.991 0.003

Unemployment Rate (%) 3.067 3.345 0.278 0.436
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Table 3.B.1, continued

Variable Treatment Group Average Control Group Average Difference P-Value

Full Control Group

City Area (km2) 23163.022 16690.159 -6472.862 0.326
Daily AQI 82.940 71.337 -11.604 0.024

Cellphone/Pop. 0.727 0.597 -0.130 0.562
GDP per Cap. (2015 Yuan) 42886.128 35947.585 -6938.543 0.407

Internet/Pop. 0.166 0.107 -0.059 0.282
Labor/Pop. 0.319 0.260 -0.059 0.538

Pop. Density (pc/m2) 428.838 436.376 7.539 0.946
Population (10000 pc) 753.891 499.844 -254.047 0.070
Daily Precip. (mm) 2.360 2.548 0.189 0.647
Prim. Ind. Shr. (%) 6.397 10.218 3.821 0.130

Prop. Private Employed (%) 34.108 39.141 5.033 0.150
Road Area Per Cap. (m2) 8.800 10.904 2.104 0.352
Second. Ind. Shr. (%) 45.603 49.522 3.919 0.283
Daily Avg. Temp. (○C) 11.933 14.507 2.574 0.173
Ter. Ind. Shr. (%) 47.999 40.259 -7.739 0.028

Unemployment Rate (%) 3.067 3.546 0.479 0.362

Note: Difference equals late group average minus early group average; P-value indicates T-test p-values
between the group means; Annual city-level data source China City Statistical Yearbook; Daily AQI from
Ministry of Ecology and Environment; ERAI climate data from Climate Impact Lab provides daily
temperature and precipitation, aggregated from grid to prefecture level cities population weighted; GDP
per capita in Yuan adjusted to 2015 by GDP deflator source World Bank.

3.C Event Study Supplementary Figures

Figure 3.C.1: Event Study with Window of 60 Days, Only Policy Cities
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Figure 3.C.2: Event Study with Window of 60 Days, Controls within Same
Provinces
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Figure 3.C.3: Event Study with Window of 60 Days, Matched Controls
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Figure 3.E.1: Regression Discontinuity in Time Design with h = 180, Individual
Cities
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3.F Synthetic Controls

Figure 3.F.1: Event Study with Synthetic Controls, Window of 60 Days, Full
Controls
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Figure 3.F.2: Event Study with Synthetic Controls, Window of 60 Months, Full
Controls
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3.G Extension Results

Table 3.G.1: Difference-In-Difference (DID) Regression Results, Extension on
Industrial Pollution Emissions

(1) (2) (3) (4) (5) (6)
Industrial
Solid Waste
Utilized (%)

Waste Water
Treated (%)

Consumption
Waste

Treated (%)

Industrial Dust
Emission

(10,000 tons)

Industrial Waste
Water Discharged

(10,000 tons)

Industrial SO2

Emission
(10,000 tons)

Policy -0.263 -1.275 -10.952 -0.026 0.050 0.143∗
(2.667) (3.139) (7.221) (0.103) (0.080) (0.073)

Control Cities Matched Matched Matched Matched Matched Matched
Controls Yes Yes Yes Yes Yes Yes
SE Clustered Clustered Clustered Clustered Clustered Clustered
N 526 496 501 534 535 535
Adj. R2 0.756 0.677 0.492 0.812 0.907 0.870

Note: Standard errors in parentheses, clustering on city level; * p < 0.10, ** p < 0.05, *** p < 0.01; City and
year fixed effects are included; Dependent variables in logs for pollutant emissions and waste discharged;
Controls include climate variables, demographic and macroeconomic variables.

Table 3.G.2: Difference-In-Difference (DID) Regression Results, Extension on
Transportation and Traffic

(1) (2) (3) (4) (5) (6)

Highway
Passenger

Traffic (10,000)

Number
of Buses

Total
Passengers

Travel by Bus
(10,000)

Number
of Taxis

Number
of Buses

Per 10,000 Pop.

Total Passengers/
Num. Buses
(10,000)

Policy 0.317 -0.051 -0.005 0.056 -0.044 0.045
(0.239) (0.036) (0.124) (0.041) (0.039) (0.126)

Control Cities Matched Matched Matched Matched Matched Matched
Controls Yes Yes Yes Yes Yes Yes
SE Clustered Clustered Clustered Clustered Clustered Clustered
N 529 536 534 536 536 534
Adj. R2 0.834 0.985 0.918 0.982 0.901 0.464

Note: Standard errors in parentheses, clustering on city level; * p < 0.10, ** p < 0.05, *** p < 0.01; Province
and year fixed effects are included; Dependent variables all in natural logs; Controls include demographic
and macroeconomic variables.

262



Table 3.G.3: Difference-In-Difference (DID) Regression Results, Extension on
Private Owned Automobiles

(1) (2) (3) (4)
Total Passenger Cargo Other

Policy -0.035 -0.050 -0.059 -0.000
(0.064) (0.073) (0.113) (0.115)

Control Provinces Full Full Full Full
Controls Yes Yes Yes Yes
SE Clustered Clustered Clustered Clustered
N 332 332 332 324
Adj. R2 0.992 0.992 0.984 0.868

Note: Standard errors in parentheses, clustering on province level; Dependent variables are log number of
vehicles in 10000; * p < 0.10, ** p < 0.05, *** p < 0.01; City and year fixed effects are included; Controls
include climate variables, demographic and macroeconomic variables.

Table 3.G.4: Difference-In-Difference (DID) Regression Results, Extension on
New Registered Civil Use Automobiles

(1) (2) (3) (4)
Total Passenger Cargo Other

Policy -0.065 -0.172 0.024 0.224
(0.105) (0.111) (0.080) (0.181)

Control Provinces Full Full Full Full
Controls Yes Yes Yes Yes
SE Clustered Clustered Clustered Clustered
N 331 332 332 265
Adj. R2 0.894 0.929 0.910 0.597

Note: Standard errors in parentheses, clustering on province level; Dependent variables are log number of
yearly new registered civil use vehicles in 10000; * p < 0.10, ** p < 0.05, *** p < 0.01; City and year fixed
effects are included; Controls include climate variables, demographic and macroeconomic variables.
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Table 3.G.5: Difference-In-Difference (DID) Regression Results, Extension on
Traffic Variables and Private Owned Automobiles

(1) (2) (3) (4) (5) (6)

Number
of Buses

Total
Passengers

Travel by Bus
(10,000)

Number
of Taxis

Total Private
Vehicles

Total Private
Passenger
Vehicles

Total Private
Cargo
Vehicles

Chengdu 0.185*** 0.169*** 0.147*** -0.179*** -0.237*** -0.116
(0.037) (0.049) (0.030) (0.045) (0.042) (0.085)

Guiyang -0.188*** -0.199*** 0.653*** 0.011 0.105 0.071
(0.025) (0.040) (0.018) (0.108) (0.105) (0.155)

Hangzhou -0.086*** -0.029 0.051** -0.053 -0.047 -0.318***
(0.027) (0.037) (0.020) (0.043) (0.044) (0.079)

Harbin -0.091*** -0.151*** 0.096*** -0.060 -0.105** -0.028
(0.023) (0.039) (0.019) (0.048) (0.051) (0.087)

Tianjin -0.030 0.076 -0.229*** -0.194*** -0.240*** -0.050
(0.040) (0.065) (0.046) (0.050) (0.046) (0.100)

Note: Standard errors in parentheses, clustering on city or province level; City column indicates treatment
city for running individual DID for traffic variables, or the province they are capital of for auto market
variables; Dependent variables are log number of vehicles or passengers in 10000; * p < 0.10, ** p < 0.05,
*** p < 0.01; City and year fixed effects are included; Controls include climate variables, demographic and
macroeconomic variables.
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Table 3.H.3: Difference-In-Difference (DID) Regression Results, Robustness
Check with US Embassy Hourly PM2.5

(1) (2) (3) (4)
Policy × Peak Hour -7.299 -7.303 -7.016 -6.956

(4.652) (4.658) (3.790) (3.748)
[-20.215,5.617] [-20.238,5.631] [-17.538,3.506] [-17.361,3.448]

FE
City
Date
Hour

City-by-Year
Date
Hour

City
Date
Hour

City
Date
Hour

SE Cl. City Cl. City Cl. City Cl. City
Controls No No Yes Yes
Sampe Full Full Full Trim PM2.5 > 900
N 167354 167354 161986 161982
Adj. R2 0.421 0.425 0.429 0.431

Note: Standard errors in parentheses; 95% confidence interval in squared brackets; * p < 0.10, ** p < 0.05,
*** p < 0.01; Dependent variable is hourly PM2.5 in µg/m3.

Table 3.H.4: Difference-In-Difference (DID) Regression Results, Robustness
Check with Annual PM10

(1) (2) (3) (4)
Policy -1.433 -10.436∗ -7.024 -9.739∗

(4.106) (6.190) (4.778) (5.322)
[-9.668,6.803] [-22.745,1.872] [-16.621,2.573] [-20.216,0.739]

Control Cities Only Policy Same Province Matched Full
Controls Yes Yes Yes Yes
SE Robust Clustered Clustered Clustered
N 86 521 375 1715
adj. R2 0.831 0.633 0.683 0.685

Note: Standard errors in parentheses; Clustering on city level; 95% confidence interval in squared brackets;
* p < 0.10, ** p < 0.05, *** p < 0.01; Dependent variable is yearly average PM10 in µg/m3; City and day
fixed effects are included; Controls include climate variables and 3-year prior policy average of demographic
and macroeconomic variables.
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Table 3.H.5: Difference-In-Difference (DID) Regression Results, Robustness
Check with Monthly AOD

(1) (2) (3) (4)
Policy -0.063 -0.028 -0.041 -0.022

(0.056) (0.043) (0.044) (0.041)
[-0.175,0.048] [-0.113,0.057] [-0.128,0.046] [-0.103,0.059]

Control Cities Only Policy Same Province Matched Full
Controls Yes Yes Yes Yes
SE Clustered Clustered Clustered Clustered
N 977 10802 5711 37621
Adj. R2 0.555 0.653 0.605 0.661

Note: Standard errors in parentheses; Clustering on city-year level; 95% confidence interval in squared
brackets; * p < 0.10, ** p < 0.05, *** p < 0.01; Dependent variable is monthly average AOD on scale [0,1];
City and month fixed effects are included; Controls include climate variables and city-by-year FE.
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