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ABSTRACT

Modern computer systems are becoming increasingly complex. Apart from functional cor-

rectness, they are expected to provide strict guarantees on their quality-of-service, expressed

as goals over important quantifiable metrics such as latency, in the face of unpredictable

changes in operating conditions and workloads during the execution of the system. Fur-

thermore, these systems expose a plethora of tunable parameters that, combined with the

unpredictable external conditions, impact the quality-of-service of the system. It is a well

established fact that no single configuration of the tunable parameters is optimal for all

workloads and operating conditions, hence, systems are required to dynamically adapt their

tunable parameters to cope with dynamic changes in workloads and operating conditions.

The systems community views adaptation as a crucial capability for systems to deliver

reliable quantitative behavior in the presence of dynamic external factors. However, develop-

ing modules for robust adaptation is difficult and requires specialized knowledge of machine

learning and/or control theory. This increases the burden on developers who are expected to

be experts in the aforementioned fields along with their specific system domain. To alleviate

this burden, prior work suggests packaging adaptation modules as a library or in the run-

time of a language. During execution, systems can simply instantiate these modules using

the goal that needs to be met and the parameters that can be adapted to meet it. Once

instantiated, the frameworks then continually monitor the relevant behavior of the system

and adapt the configurations on behalf of the system to ensure that the system continues to

meet its goal.

However, A major limitation of prior frameworks is that they are implemented for a

specific, narrow set of goals and knobs. Hence, they cannot be used for complex adaptive

systems that must meet different goals using different sets of knobs in different deployments,

or different execution stages of a single deployment. For such scenarios developers are ex-

pected to embed different frameworks in their systems to support different goals. This, in
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turn, increases the size of the system code base and makes development and maintenance

more difficult.

Hence, in the first part of this body of work we propose a first-of-its-kind generalized

adaptation framework that is agnostic of knobs and goals. We show the deployment and

runtime benefits of using such a framework in a number of real-world systems including

a networked video analytics pipeline. Our research shows that it is not only possible to

implement a generalized adaptation framework but that using such a framework is more

favorable from a development, deployment and performance perspective.

Another problem in the same domain is that of colocation. To maximize resource uti-

lization and efficiency, system administrators, such as cloud providers, colocate multiple

systems on the same hardware. However, when multiple adaptive systems are colocated

they negatively interfere with each other leading to misbehavior which results in significant

degradation of quality-of-service.

Prior works have suggested many approaches to mitigate the negative interference. How-

ever, they impose severe restrictions on the systems that use them. For example, they

restrict the mechanism that can be used for adaptation, they require information of internal

details of colocated systems to be shared amongst each other and oftentimes they require all

adaptation of colocated systems to be delegated to a monolithic adaptation module. Such

restrictions make prior work suboptimal for use in the real-world where it is seldom possible

to share proprietary information and coordinate development between stakeholders. And

since they require all colocatable systems to be enumerated beforehand, they restrict the

administrators’ ability to colocate systems freely.

Hence, in the latter part of this body of work we propose a novel framework that can

be used by all colocated adaptive systems independently to enable harmonious execution

without explicit coordination or information sharing. We show that such a framework is

beneficial because it provide freedom to stakeholders to develop their systems independently

xv



without worrying about the other systems that their systems may be colocated with.

Hence, this body of work contributes frameworks for: (1) adding complex, generalized

adaptation in computing systems and (2) ensuring their successful and harmonious execution

when they need to be colocated with each other.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Statement

This dissertation explores three problems that have become essential for modern computing

systems: (1) supporting general-purpose adaptation, (2) supporting dynamic changes in

all aspects of adaptation and (3) supporting harmonious colocation of multiple adaptive

applications.

We address the first two problems together by proposing a first-of-its-kind framework for

general-purpose and dynamic adaptation that allows systems to interact with all aspects of

adaptation dynamically as first-class programming objects. We address the last problem by

proposing an easy-to-use framework that can be incorporated by colocated adaptive system

individually to ensure harmonious execution without explicit coordination or information

sharing between systems. With the presented frameworks we hope to ease the development,

deployment and colocation of general-purpose adaptive systems that can meet complex and

changing adaptation requirements throughout their lifetimes.

1.2 Challenges

Adaptation has become a first-order concern for modern computing systems. From embed-

ded devices to servers, all need to meet strict quality-of-service requirements in the face

of changing workloads and operating conditions. While prior works recognize the need for

adaptation and present several approaches for adding adaptation to computer systems, their

suggested approaches have severe limitations that constrain the applications’ ability to ex-

press complex adaptation requirements. These limitations also make it difficult for system

administrators like cloud providers to colocate multiple adaptive systems on the same hard-

ware to maximize resource utilization. At a high-level, the challenges that have been left
1



unaddressed by prior work can be broken down into two smaller components.

1.2.1 Supporting Generalized Adaptation

Adaptive computing systems automatically tune their internal knobs, or configurable compo-

nents, to meet quality-of-service (QoS) goals—specified in terms of constraints and objectives

on metrics such as latency, energy, or accuracy—despite unpredictable external changes in

workload and operating conditions. Constructing an adaptation logic that ensures goals are

met is difficult, so prior work has proposed several adaptation frameworks, which package

such logic up in a language [110, 154, 103] or library runtime [43, 29, 183, 50] making it

easy to add adaptation to existing applications. Unfortunately, a major limitation of prior

adaptation frameworks is that their internal adaptation logic is implemented for a specific,

narrow set of goals and knobs. This narrow focus on specific goals and knobs makes it

difficult to develop systems that use a different set of knobs and metrics for different deploy-

ments. Achieving this capability would require reimplementing adaptation using a different

framework for different deployments. As the reader can imagine, this is an untenable ap-

proach to development of complex systems because maintaining several different versions of

the same system is very difficult.

Furthermore, due to their narrow focus, their implementation makes it inherently difficult

to interact with different aspects of adaptation during execution. This behavior is important

for systems that need to dynamically modify the goal or knobs used for adaptation dynam-

ically. Just as there is no single configuration that is optimal for all operating conditions,

there is no single goal or set of knobs that is best for adaptation in all situations during the

lifetime of a system. Hence, prior works impede the development of complex systems that

need to modify different aspects of adaptation dynamically.

The limitations of prior works are discussed in detail in Section 3.1. These limitations

result in the core challenge that using approaches suggested prior work computing systems
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are unable to fulfil complex, general-purpose adaptation requirements that are expected to

change during the lifetime of the system.

1.2.2 Supporting Generalized Multi-Agent Adaptation

To maximize resource utilization, system administrators often colcoate multiple applications

on the same underlying hardware. This is a common practice in the cloud where resources are

notoriously underutilized [38, 186, 39]. However, when adaptive applications are colocated,

their adaptation decisions change the operating environment of the colocated adaptive appli-

cations at a rate that exceeds the applications’ ability to cope with these changes [99]. This

leads to misbehavior which if often manifested as severe oscillations in important quality-of-

service metrics, such as tail latency. Hence, being able to mitigate this misbehavior is crucial

to enable successful colocation of adaptive applications to ensure high resource utilization in

the cloud.

To this end, prior work has suggested three approaches to mitigate misbehavior caused by

colocating adaptive applications. The first suggested approach is to coordinate adaptation

decisions between application by passing signals between them [99, 100, 162]. The second

approach works by assigning priority to applications and using heirarchical adaptation meth-

ods to meet goals of as many high priority applications as possible [78]. Finally, the third

approach works by delegating adaptation for all applications to a monolithic adaptation

module [181, 148].

A common feature of all prior approaches is that they require internal details of colocated

applications to be shared with each other. However, such details are often proprietary and

stakeholders are seldom willing to share them. Similarly, they impose strong restrictions on

the mechanism of adaptation that can be used by the colocated applications. This severaly

limits the cloud providers ability to colocate different applications. Furthermore, even minor

changes to one of the applications could cause compatibility issues with other applications.

3



This makes the development of applications to be hosted on cloud platforms extremely

difficult.

The real-world implications of these limitations are discussed in detail in Section 4.1.3.

But at a high-level these limitations mean that cloud providers are practically not able to colo-

cate adaptive latency-sensitive applications resulting in continued underutilization of cloud

platforms.

1.3 Contributions

This dissertation makes three concrete contributions:

• DDS, The DNN-Driven Streaming protocol: An iterative and adaptive protocol for

machine learning based video-analytics applications. We present a concrete implemen-

tation of this protocol and evaluate the efficacy of its iterative design in conserving

bandwidth while achieving high accuracy and the efficacy of its novel control system

for dealing with variations in bandwidth availability.

• GOAL, The Goal-Oriented Adaptation Language: A novel, first-of-its-kind, adap-

tation framework that allows developers to add general-purpose adaptation to their

applications and allows applications to dynamically modify all aspects of adaptation

as first-class programming objects. We illustrate the usefulness and efficacy of GOAL

by adding adaptation to several applications from prior works and comparing their

performance with version using application-specific adaptation frameworks.

• WASL1: A novel framework that allows adaptive applications to dynamically alter

their rate of adaptation to ensure that they meet their adaptation goals in the presence

of colocated competing adaptive applications. We illustrate the efficacy of WASL by

incorporating it in a number of benchmark applications and colocating them to simulate

1. WASL is a roman transliteration of an Urdu word which means a meeting of friends.
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real-world scenarios and evaluating their ability to meet their respective adaptation

goals.

The remainder of this section provides brief introductions to the aforementioned contri-

butions.

1.3.1 DDS

Internet video must balance between maximizing application-level quality and adapting to

limited network resources. This perennial challenge has sparked decades of research and

yielded various models of user-perceived quality of experience (QoE) and a plethora of QoE-

optimizing streaming protocols. In the meantime, the proliferation of deep learning and

video sensors has ushered in many distributed intelligent applications (e.g., urban traffic

analytics and safety anomaly detection [28, 5, 21]). They also require streaming videos from

cameras through bandwidth-constrained networks [23] to remote servers for deep neural nets

(DNN)-based inference. We refer to it as machine-centric video streaming. Rather than

maximizing human-perceived QoE, machine-centric video streaming maximizes for DNN

inference accuracy. This has inspired recent efforts to compress or prune frames and pixels

that may not affect the DNN output (e.g., [211, 57, 58, 56, 216, 122, 205, 74]).

A key design question in any video streaming system is where to place the functionality of

deciding which actions can optimize application quality? Surprisingly, despite a wide variety

of designs, all video streaming systems (both machine-centric and user-centric) take an es-

sentially source-driven approach—it is the content source that decides how the video is best

decoded/streamed. In traditional Internet videos (e.g., YouTube, Netflix), the video server

determines the best encoding for a given bandwidth constraint, without explicit feedback

from the viewer. Similarly, current machine-centric video streaming relies largely on the

camera (source) to determine which frames and pixels to stream.

While the source-driven approach serves user-viewed videos well, we argue that it is nec-
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essarily suboptimal for analytics-oriented applications. The source-driven approach hinges

on two premises: (1) the application-level quality can be estimated by the video source,

and (2) it is hard to measure user experience directly in real time. While the assumptions

largely hold in Internet video streaming, they need to be revisited in machine-centric video

streaming.

First, it is inherently difficult for the source (camera) to estimate the inference accuracy of

the server-side DNN by itself. Inference accuracy depends heavily on the compute-intensive

feature extractors (tens of NN layers) in the server-side DNN. The disparity between most

cameras and GPU servers in their compute capability means that any camera-side heuristics

are unlikely to match the complexity of the server-side DNNs, and thus, the performance of

the source-driven protocols is inherently limited. For instance, some works use inter-frame

pixel changes [56] or cheap object detectors [216] to identify and send only the frames/regions

that contain new objects, but they may consume more bandwidth than necessary (e.g.,

background changes causing pixel-level differences) and/or cause more false negatives (e.g.,

small objects could be missed).

Second, while incorporating real-time feedback from human users may be hard in tradi-

tional video streaming, DNN models can provide rich and instantaneous feedback! Running

an object-detection DNN on an image returns not only detected bounding boxes, but also ad-

ditional feedback for free, like the confidence score of these detections, intermediate features

etc. Moreover, such feedback can be extracted on-demand by probing the DNN with extra

images. Unfortunately, such abundant feedback information has not yet been systematically

exploited by prior work.

In this paper, we explore an alternative DNN-driven approach to machine-centric video

streaming, in which video compression and streaming are driven by the server-side DNN

and how it reacts to real-time video content. Architecturally, DNN-driven video streaming

follows an iterative workflow. For each video segment, the camera first sends it in low quality
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to the server for DNN inference; the server runs the DNN and derives some feedback about

the most relevant regions to the DNN inference and sends this feedback to the camera; and

the camera then uses the feedback to re-encode the relevant regions in higher resolution

and sends them to the server for more accurate inference. (The workflow can have multiple

iterations though this paper only considers two iterations). Essentially, by deriving feedback

directly from the server-side DNN, it will send high-resolution content only in the minimal

set of relevant regions necessary for high inference accuracy. Moreover, unlike prior work

that requires camera-side vision processing or hardware support (e.g., [216, 56, 122]), we

only need standard video codec on the camera side.

The challenge to realize this promise, however, is how to derive useful feedback from

running DNN on a low-quality video stream? We present DDS (DNN-Driven Streaming),

a concrete design of a DNN-driven protocol which utilizes the region proposals from DNN

output on the low-quality video and sparingly uses high-quality, high-bandwidth encoding

for the relatively small number of regions of interest. The insight is that the low-quality

video may not suffice to get sufficient DNN inference accuracy, but it can produce surpris-

ingly accurate region proposals. Region proposals are robust to low-quality video because

they represent a binary classification task (i.e.,whether contains an object or not), which is

easier than multi-class object detection (i.e.,what objects are in which region). Most modern

computer-vision pipelines have a region proposal step to identify areas of interest in an image

(e.g., where the queried object/identity may appear), followed by inference modules to com-

pute the boxes or masks for the queried objects. Even when region proposal is not explicitly

used, we show that it can be extracted from DNN’s per-pixel/region confidence scores com-

monly found in modern computer vision models. Thus, leveraging region proposals does not

incur additional burden on the system development.

There is parallel between DDS and the emerging recent trend in deep learning com-

munity of using attention mechanisms in DNN architectures (e.g., [199, 106]). Attention
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Figure 1.1: Performance of DDS and the baselines
on a video dataset with object detection.

mechanisms learn to attend to the important pixels that will likely improve the DNN accu-

racy, thus sharing the same high-level insight with DDS that not every pixel affects the DNN

output equally. These works are complementary to DDS – they improve DNN accuracy with

additional DNN layers to focus computation on the important regions, while DDS proposes

a suite of techniques to increase bandwidth efficiency (by sending only a few regions in high

quality) for the same DNN accuracy.

We evaluate DDS and a range of recent proposals, including reusing existing video stream-

ing ([211, 205]) and camera-side filtering heuristics ([56, 216]) on three vision tasks. Across

49 videos, we find DDS achieves same or higher accuracy while cutting bandwidth consump-

tion by upto 59% or uses the same bandwidth consumption while increasing accuracy by

3-9% (Figure 1.1 shows an example.)
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1.3.2 GOAL

Many software systems face the critical challenge of meeting quality-of-service goals, ex-

pressed as constraints and objectives on metrics ; e.g., request latency, energy consump-

tion, and result accuracy. As a further complication, these goals must be met despite

unpredictable—yet inevitable—runtime variations in workload and operating environment.

To provide predictable behavior in unpredictable deployments, it is crucial to build computer

systems that adapt by adjusting their configurable components, or knobs, as they execute

[133, 126].

Implementing adaptive systems requires an adaptation logic (AdaptLog) that can efficiently—

at runtime—convert observed metrics into knob settings that meet the goals [208, 144, 185,

189, 92]. However, implementing a reliable and robust AdaptLog is difficult. For example,

when the hardware for the Samsung Galaxy S9 was upgraded for the S9+, the achieved per-

formance and energy efficiency was worse despite the better hardware [83]. The problem was

tracked down to misconfigurations in the AdaptLog of the HMP scheduler [82]. In short, a

heuristic-based AdaptLog that was appropriate for one hardware architecture, was inefficient

on a closely related, but different architecture.

To ease development of adaptive computing systems, researchers have proposed several

adaptation frameworks in the form of libraries or language runtimes [43, 173, 219, 123,

129, 49, 75, 112, 110, 87, 63, 62]. Using the framework’s interface, developers provide an

adaptation specification (AdaptSpec): a declaration of the system’s goals and the knobs that

can be configured to achieve it. The framework’s internal AdaptLog then tunes the knobs

in response to any runtime changes.

Although helpful, all existing frameworks focus on a narrow, predefined set of possible

AdaptSpecs (i.e., one or two metrics and a small collection of knobs). For example, Eon [183]

only supports accuracy and energy metrics using alternative method implementations as

knobs. Similarly, PowerDial [103] only supports accuracy and throughput tradeoffs using
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application-level parameters as knobs.

This lack of generality arises because prior adaptation frameworks develop their AdaptLog

using specialized models that relate specific metrics to specific knobs. Whether the AdaptLog

is based on machine learning, control theory, or heuristics, the model is essential to predict

how metrics will change with changes in knobs, which then guides the AdaptLog to set the

knobs to ensure the goals are met. However, because the model relates specific knobs to

specific metrics, the relevant knobs and metrics need to be enumerated before the model

is constructed and that model must be reconstructed for use with a different knobs and/or

metrics. This reliance on a narrowly defined model makes it difficult to implement a general

adaptive system that can deploy with different goals in different environments.

The use of fixed models also prevents a system from dynamically changing AdaptSpecs

during execution. We define the runtime alteration of an AdaptSpec as meta-adaptation.

For many applications it is not enough to just adjust knob configurations; meta-adaptation

is necessary as the goals themselves must be changed in response to external conditions

[90, 165]. For example, consider a CCTV camera installed with a backup battery [177]. It

must always meet a target frame rate to prevent data loss, but its other goals vary depending

on power source. On line power the system must maximize quality, however, during a power

outage, it must minimize energy to prolong battery life [3]. Running this system in either

AdaptSpec for its entire execution is suboptimal, either wasting energy on battery or lowering

quality on line power.

To support more general and dynamic adaptation, including meta-adaptation, this work

presents GOAL: Goal-Oriented Adaptation Language. GOAL provides novel adaptation

framework implemented in Swift [30]. Its key components are its (1) runtime AdaptLog and

(2) its interface for writing AdaptSpecs.

Central to GOAL’s design is its AdaptLog, which takes the form of a virtualized, time-

variant, adaptive control system. Unlike prior approaches, GOAL’s virtual control system is
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independent of any specific model relating metrics to knobs; instead, it is parameterized by

a model which is passed in at runtime. Furthermore, GOAL’s controller continually adjusts

itself at runtime while also carefully exploiting structure of optimization problems so that it

can control non-linear systems with a series of linear approximations.

GOAL’s AdaptSpecs are written using a novel domain specific language (DSL), which

is compiled just-in-time (JIT), separating the AdaptSpec declaration from system imple-

mentation. This separation allows different AdaptSpecs to be used with the same binary for

deployments with different requirements or even for changing the requirements while the sys-

tem is running. GOAL also provides a Library API so users can declare knobs and metrics

and alter these values during execution. These features support complex adaptive behavior

that would have been difficult and inefficient to implement with existing frameworks.

To demonstrate GOAL, we re-implement seven adaptive applications from the litera-

ture. Collectively, these case studies cover a wide range of metrics (throughput, latency,

accuracy, power, cost, reliability and efficiency) and knobs (at both the application and

system level, including two different hardware systems with distinct knobs). Our results

show that GOAL’s generalized approach meets goals just as well as prior work that synthe-

sizes AdaptLogs specifically for each application’s narrow goals and knobs [76]. To highlight

GOAL’s benefits, we then modify each application to perform meta-adaptation. We observe

that due to GOAL’s ability to support a wide range of AdaptSpecs and meta-adaptation,

GOAL-based applications exhibit a 1.69× average improvement in corresponding metrics

after meta-adaptation is performed, compared to prior approaches that cannot support meta-

adaptation. Furthermore, we show that GOAL incurs negligible overhead and is robust to

errors in profiling, changing workloads and operating conditions.

This work makes the following contributions:

• Motivates the benefits of support general purpose adaptation and meta-adaptation.

• Proposes a general adaptation logic and runtime that supports a wide range of knobs,
11



metrics and goals.

• Proposes a programming framework and DSL for writing adaptation specifications.

• Implements GOAL and releases it as open source.2

1.3.3 WASL

In recent years cloud computing has become ubiquitous. And with the promise of resource

efficiency and cost efficiency, the cloud has become the preferred platform for hosting latency-

sensitive applications [37, 60, 9].

While ensuring functional correctness, modern latency-sensitive applications are also ex-

pected to fulfil quality-of-service (QoS) requirements defined as goals over important metrics,

e.g. tail latency, in the face of changing request patterns and operating conditions [31, 61].

For example, a search-engine may be expected to maximize the accuracy of results while

meeting a tail-latency constraint [159, 110]. Such applications also expose several config-

urable parameters, or knobs, that impact the applications’ ability to their goals. Hence,

such applications are often augmented with adaptation modules that dynamically tune their

knobs to ensure that the application meets the QoS goal in the face of changing operating

conditions and request patterns.

The cloud platform providers allocate resources to latency-sensitive applications carefully

to balance the QoS of the applications with cloud efficiency. Since latency-sensitive appli-

cations experience diurnal usage patterns, statically assigning resources to latency-sensitive

applications for peak usage can lead to severe underutilization of resources [38]. Hence, the

cloud provider also use adaptation to dynamically adjusts the resources of applications to en-

sure that they meet their QoS requirements [128]. This allows the cloud provider to colocate

applications with variable load on the same hardware to maximize utilization of hardware

2. GOAL source code available at: https://github.com/GOAL-Adaptation.
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resources [62, 63]. However, in such situations colocated LS applications must compete for

resources such as cores, cache and memory bandwidth. This resource contention causes neg-

ative interference between applications resulting in suboptimal performance. This leads to

latency-sensitive applications missing tail-latency deadlines and, hence, violating their QoS

requirements.

Prior work has proposed many different techniques to deal enable successful colocation of

applications on the same hardware. A suggested approach is to simply not colocate latency-

sensitive applications with other latency-sensitive applications [151, 64, 62, 63]. However,

as one would expect this reduces the efficiency of the system. Furthermore, dynamically

modifying resources for an LS application by checkpointing and migrating the colocated

non-latency-sensitive applications requires time in the order of tens of seconds [40, 55, 141].

This is suboptimal for latency-sensitive workloads which experience changes in usage pat-

terns over significantly shorter timescales [152, 114]. Another suggested approach is to not

colocate applications that can interfere with each other [140, 196, 176, 63]. However, this

approach severely limits the cloud-provider’s ability to schedule different applications as this

requires each new workload to be profiled with existing workloads to determine if there is

a possibility of interference that will lead to misbehavior resulting in the applications be-

ing unable to meet their QoS goals. Finally, prior work also suggests methods to mitigate

negative interference between applications. This is done by coordinating adaptation of all

colocated applications and the underlying system by either delegating adaptation entirely

to a monolithic adaptation module or by passing signals between different adaptation mod-

ules [162, 100, 99, 181]. Such approaches, while promising in terms of mitigating negative

interference, are sub-optimal for use in the real-world. This is because they require colocated

applications to share internal details with each other and the cloud provider. However, dif-

ferent stake-holders often use proprietary technologies in their applications and are seldom

willing to share information about the internals of their applications. Furthermore, even if
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the information were to be shared, such techniques make strong assumptions about the tech-

niques being used for adaptation and require wholesale changes to the colocated adaptation

modules to enable co-ordination. This would also make the development of cloud appli-

cations significantly difficult because minor changes could require co-ordination between

multiple independent stakeholders. This is also clearly impractical from the cloud provider’s

perspective because this would require the cloud provider to enumerate all combinations of

colocatable applications.

Readers can easily imagine that in order for a proposed solution to be considered practical

and usable in the real world, it is essential that it fulfills some important requirements. First,

it must not require any kind of a model that could be invalidated if changes are made to

the applications that are using it or its operating environment. Second, it should not be

restricted to any particular method of adaptation. Third, it should impose a low (ideally

negligible) overhead. Finally, it should integrate easily with the existing adaptation modules

and not require extensive modifications. Unfortunately, to the best of our knowledge, no

existing solution fulfils these crucial requirements.

In this project we propose WASL, a novel framework that, while meeting all of the

aforementioned requirments, mitigates negative interference between applications to ensure

that they are able to meet their respective QoS goals. Unlike prior approaches, WASL

does not require any information sharing between colocated modules and does not make any

assumptions about the techniques being used to perform adaptation. WASL is based on the

fundamental understanding that all adaptation modules operate with the key assumption

that changes in their operating environment are rare and last long enough for the adaptation

module to react to those changes [96]. However, this assumption is broken when colocated

adaptation modules are competing for resources. At a high-level, WASL reinstates this

assumption for colocated modules dynamically to prevent misbehavior by modifying rate at

which colocated adaptation modules modify each other’s operating environment. To do so,
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WASL uses the difference between the expected behavior and the measured behavior of each

application, which is already collected by all adaptation modules as feedback [96], to alter

the rate of adaptation, a ubiquitous feature of adaptive systems, of applications individually.

WASL is designed to be used by each adaptation module independently without needing to

worry about the other modules with which it may be colocated.

We implement WASL as a framework that can be easily integrated with any existing

adaptation modules. WASL is intended to be used by each adaptation module indepen-

dently. Adaptation modules use WASL by calling a single function and provide it two

floating-point arguments, i.e. the expected and measured behavior of the application, and

returns a single floating-point value that represents the ratio by which the rate of adaptation

of the module needs to be modified. Using WASL requires only minimal changes to the

adaptation module as the information required for the arguments is either already available

or can be easily calculate using the data that is already available to the adaptation modules.

To evaluate WASL we first add adaptation to applications from tailbench [125] using

adaptation modules suggested by prior work. We colocate these applications along with a

system level adaptation module that modifies system resources for each application dynam-

ically. We show how in such a scenario colocated modules interfere with each other which

results in misbehavior and loss of QoS. We then augment these adaptation modules with

WASL and show how it is able to help eliminate misbehavior from these modules allowing

them to return to the desired behavior. We show that using WASL, colocated control and

learning based adaptive applications achieve upto 84% lower tail latency than naive adap-

tive execution without requiring any kind of information sharing or coordination. We show

that WASL achieves this adding only a trivial performance and memory overhead to the

adaptation modules.

This work makes the following contributions:

• Motivates the benefits of supporting harmonious execution of colocated adaptation
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modules without explicit coordination or adaptation delegation.

• Outlines key features that are required for a practical and feasible solution.

• Implements WASL that can be readily used by adaptation modules and releases it as

open source3.

1.4 Thesis Organization

This dissertation is organized to allow the reader to follow the progression of ideas between

contributions. Chapter 2 provides details of the design, implementation and evaluation

of DDS. Chapter 3 describes how during the implementation of DDS we realized major

limitations of prior works in adaptation, presents details of adaptation approaches suggested

by prior works and discusses their limitations and present GOAL a framework that overcomes

said limitations. Appendix A provides details about the implementation and execution of the

applications used for evaluating GOAL Finally, Chapter 4 describes the related problem to

colocating adaptive applications to ensure high resource utilization, discusses the limitations

of approaches suggested by prior works that make them impractical for use in the real-wolrd

and presents a WASL, a novel framework that overcomes limitations of prior work to become

a feasible solution for allowing colocation of adaptive applications in real-world scenarios.

Chapter 5 concludes the dissertation and provides a brief overview of the future work in this

domain.

3. https://github.com/ahsanp/wasl.git
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CHAPTER 2

DDS: DNN-DRIVEN VIDEO STREAMING FOR DEEP

LEARNING INFERENCE

This chapter details the first contribution of this body of work: the DNN-driven streaming

protocol. DNN-driven streaming is a generalized protocol that can be used for a variety of

machine-learning centric analytics tasks.

DNN-driven streaming is a novel machine-learning centric streaming protocol that follows

an iterative workflow. Using this iterative workflow each video segment is processed in two

distinct phases. During the first phase, the server processes a low-quality input provided by

the camera on the edge and produces feedback about regions that are most relevant to the

analytics task and sends it to the camera. During the second phase, the camera uses the

feedback to re-encode the relevant regions in a higher-quality and send them to the server

for more accurate inference.

This project also presents DDS, a concrete implementation of the aforementioned proto-

col. DDS uses a novel control-based adaptation module that allows it to handle bandwidth

variations significantly better than prior works that utilize hueristics to handle bandwidth

variations. DDS can be used for a variety of vision-related analytics tasks. We evaluate

DDS against a variety of prior works for video object detection, face detection and seman-

tic segmentation. Our evaluation shows that DDS achieves same or higher accuracy while

reducing bandwidth consumption by upto 59% or uses the same bandwidth consumption

while increasing accuracy by upto 9%.

This chapter is organized as follows: Section 2.1 provides the motivation behind this work,

Section 2.2 and Section 2.3 provides an overview and details of the proposed DNN-Driven

Video Streaming protocol and the concrete implementation of the protocol, Section 2.5

provides an evaluation of DDS on three vision tasks. Finally, Section 2.6 provides an overview

of the related work, Section 2.7 provides a brief discussion about the limitations of the
17



protocol and Section 2.8 concludes our presentation of this part of this body of work.

Credit Assignment: This project was done in collaboration with Dr. Junchen Jiang’s

group and his students Kuntai Du and Xin Yuan. The presented discussion is taken directly

from the publication resulting from the project [72].

For brevity and to maintain coherence between contributions of this project and the

overall thesis we omit the discussion of vision tasks other than video object detection from

this discussion of the project. The omitted discussion can be found in the publication of the

project [72].

2.1 Motivation

We start with the background of video streaming for distributed video analytics, including

its need, performance metrics and design space. We then use empirical measurements to

elucidate the key limitations of prior solutions.

2.1.1 Video streaming for video analytics

Why video streaming? Two trends contribute to the wide spread of distributed video

analytics and much recent effort (e.g., [211, 205]). On one hand, computer vision accuracy

has been greatly improved by deep learning at the cost of increased compute demand. On

the other hand, low prices of high-definition cameras have enabled cheaply scaling out the

analytics of ever more cameras [20, 2, 6].

While one can always add accelerators [13, 1] to cameras,1 an economical way of scaling

out camera networks is to offload the compute-intensive inference (partially or completely)

to remote GPU servers. For instance, buying 180 HD cameras and an NVIDIA Tesla T4

GPU (with a throughput of 5,700fps [14]) to process the feeds each at 30fps (total 5,400fps)

1. Of course, some video feeds cannot be sent out due to privacy regulation and have to be processed
locally, and they are beyond the scope of this work.
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(a) Video streaming for human viewers

(b) Video streaming for computer-vision analytics

Source
(Video server)

Human 
Viewer

Source
(Camera)

Server
(DNN)

Figure 2.1: Contrasting video streaming for human viewers and machine-centric video
streaming leads to unique bandwidth-saving opportunities.

costs $25×180(cameras)[17]+$2000(GPU)[11]= $6.5K; whereas buying 180 NVIDIA Jetson

TX2 cameras (each runs ResNet50 barely at 30fps) costs about $600[12]×180 = $108K,

1-2 orders of magnitude more expensive. Therefore, camera network operators increasingly

stream videos from network-connected cameras to servers for deep learning inference in traffic

monitoring [28], surveillance in buildings, video analytics in retail stores [10], and inspection

of warehouses or remote industrial sites with drone cameras [86].

Why saving bandwidth? We aim to reduce bandwidth usage of video analytics for

three reasons. First, while many Internet videos are still destined to viewers, the video feeds

processed by analytics engines have grown dramatically; by one analysis, the amount of

data generated by new video surveillance cameras installed in 2015 is equal to all Netflix’s

current users steaming 1.2 hours of ultra-high HD content simultaneously [25]. Second,

many cameras are deployed in the wild with only cellular network coverage [23], so setting
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up network connections and sending videos upstream to remote servers can be expensive

(more so than streaming videos from CDN servers to wifi-connected PCs). Finally, while

purchasing GPU servers is not cheap, it is a one-time cost that is amortized over time (so

cheaper in the long run); while the communication cost is not amortized thereby incurring

substantial operational costs for many large-scale camera networks.

Performance metrics An ideal video streaming protocol for video analytics should bal-

ance among three metrics: accuracy, bandwidth usage, and freshness. Most real-world sce-

narios either detect/segment objects of interest, recognize faces or classify if the images

contain a person or an object-of-interest. Here, we define them in multi-class object detec-

tion and semantics segmentation.

• Accuracy: Accuracy is measured by the standard metrics: F1 score for object detection

(the harmonic mean of precision and recall for the detected objects’ location and class

labels) and IoU for semantic segmentation. We use the outputs of running the server-

side DNN over the video in its highest quality as the reference and treat them as the

ground truth when calculating accuracy. This is consistent with other work (e.g., [211,

117, 212]).

• Bandwidth usage: We measure the bandwidth usage by size of the sent video divided

by its duration.

• Response delay (freshness): Finally, we define freshness by the average processing delay

per object, i.e., the expected time between when an object first appears in the video

feed and when its region is reported and correctly classified, which includes both the

time to transmit to the server and run inference. We report the average delay.
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Figure 2.2: Bandwidth-saving opportunities: Over 50-80% of frames, the objects (cars or
pedestrians) only account for less than 20% of the frame area, so most pixels do not

contribute to the accuracy of video analytics.

2.1.2 Potential room for improvement

Traditional video streaming maximizes human quality of experience (QoE)—a high video

resolution and smooth playback (minimum stalls, frame drops or quality switches) [118,

70, 131]. For machine-centric video streaming, however, it is crucial that server-received

video has sufficient pixels in regions that heavily affect the DNN’s ability to identify/classify

objects; however, the received video does not have to be high definition or smooth at all.

This contrast has profound implications that machine-centric streaming could achieve

high “quality” (i.e., accuracy) with much less bandwidth. Each frame can be spatially en-

coded with non-uniform quality levels. In object detection, for instance, one may give low

quality to or even blackout the areas other than the objects of interest (Figure 2.1(b))2.

While rarely used in traditional video streaming, this scheme could significantly reduce band-

width consumption and response delay, especially because objects of interest usually only

occupy a fraction of the video size. Figure 2.2 shows that across three different scenarios

2. This may look like region-of-interest (ROI) encoding [153], but even ROI encoding does not completely
remove the background either, and the ROIs are defined with respect to human perception.
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Better

Figure 2.3: Current solutions exhibit a rigid bandwidth-accuracy tradeoff: any gain in
accuracy comes at a cost in bandwidth.

(the datasets will be described in Section 2.5.1), in 50-80% of frames, the objects of interest

(cars or pedestrians) only occupy less than 20% of the spatial area. We also observe similar

uneven distributions of important pixels in face recognition and semantic segmentation. The

question then is how to fully explore the potential room for improvement?

Limitations of existing solutions Existing solutions for video streaming are essentially

source-driven—the decisions of how the video should be compressed or pruned are made at

the source with no real-time feedback from the server-side DNN that analyzes the video.

However, they show unfavorable trade-off between bandwidth and accuracy (illustrated in

Figure 2.3): any gain of accuracy comes at the cost of considerably more bandwidth usage.

The fundamental problem is that any heuristic that fits camera’s limited compute capacity

is unlikely to precisely imitate a much more complex DNN, with no real-time feedback from

it.

This problem manifests itself differently in two types of source-driven solutions. The

first type is uniform-quality streaming that modifies the existing video streaming protocols
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and adapts the quality level to maximize inference accuracy under a bandwidth constraint.

AWStream [211] uses DASH/H.264 and periodically re-profiles the inference accuracy under

each quality level. CloudSeg [205] sends a video at low quality but upsizes the video by super

resolution by the server. They have two limitations: First, they do not leverage the uneven

distribution of important pixels; instead, the videos are encoded by traditional codecs with a

spatially uniform quality. Second, while AWStream does get feedback from the server DNN,

it is not based on real-time video content, so it cannot suggest actions such as increasing

quality on a specific region in the current frame.

The second type is camera-side heuristics that identifies important pixels/regions/frames

that contain information needed by the server-side analytics engine (e.g., queried objects) by

running various local heuristics (e.g., checking significant inter-frame difference [56], a cheap

vision model [57, 58, 216, 122]), or some DNN layers [74, 190]. These solutions essentially

trade camera-side compute power to run inference for better accuracy/bandwidth trade-

off [74]. For instance, Glimpse [56] and NoScope [122] rely on the inter-frame differences

to signal which frames contain objects, but any false positives (e.g., pixel changes on the

background) will cost unnecessary bandwidth usage and any false negatives will preclude the

server from detecting important information.

2.2 DNN-Driven Video Streaming

We explore an alternative approach, called DNN-driven streaming (DDS). In DDS, the com-

pression/streaming adaptation is driven by feedback generated by the server-side DNN,

rather than low complexity local heuristics, in order to capture what the analytics engine

needs from the real-time video content. Figure 2.4 contrasts the workflow of DDS with

the traditional source-driven approach. The key distinction is that source-driven streaming

is “single-shot” (i.e., camera using simple heuristics to determine how the video should be

streamed out), but DDS is iterative and logically contains two streams:
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(a) Traditional video streaming
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Figure 2.4: Contrasting the new real-time DNN-driven streaming (iterative) with
traditional video streaming in video analytics.

• Stream A (passive, low quality): The camera continuously sends the video in low

quality to the server.

• Stream B (feedback-driven): The server DNN frequently (e.g., every handful of

frames) generates and sends back feedback based on its output on the real-time low-

quality video. Upon receiving the feedback from the server, the camera then re-encodes

the recent history video accordingly and sends it to the server for a second-round

inference on these “zoomed-in” images.

An important design question then is what should be the feedback? An ideal feedback

should meet two criteria. First, it needs to entail sufficient information to inform desirable

follow-up actions in the second iteration. Second, it should generalize to a wide range of

DNN-based vision applications.

The DDS feedback encodes region proposals—which regions/frames should be sent in the

second iteration, if any, and at what quality level. We argue that region proposals meet
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Figure 2.5: Illustration of the DDS workflow on a single frame. The two rounds of
server-side inference use the same DNN.

the two principles of an ideal feedback. On one hand, if the proposed regions completely

cover where all objects of interest appear, the server-side DNN should very likely detect all

objects.3 On the other hand, region proposals are (explicitly or implicitly) used in many

modern object detection and face recognition pipelines [108]. See Section2.4.1 for details.

Figure 2.5 shows a simplified example of DDS in action. On the low quality frame, the

server DNN proposes three regions and sends them back as feedback. The camera then re-

encodes these regions in higher quality, and sends them to the server, which then runs DNN

again and returns more accurate result.4 DDS can adaptively choose the second-iteration

quality level to cope with bandwidth variance.

We should stress that DDS makes minimum assumption about the codec and the server-

side DNN. Thus, it can work with off-the-shelf video codecs (e.g., MPEG/H.264) and DNN

models (e.g., FasterRCNN-ResNet101). DDS does not require any camera-side computing

3. It may still miss some objects due to the known sensitivity of DNNs to pixel level alternations [88],
but such behavior is generally negligible.

4. In theory, the iterative process can have more than two iterations, though the response delay will grow
with more iterations and we found the performance benefit diminishes after two iterations.
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except basic video encoding.

Why DDS might work The rationale is that region proposal is essentially binary clas-

sification (i.e.,whether some object is a region), which is easier than object detection or face

recognition (i.e.,what object/identify is in a region). By accurately identifying a few regions

of interest based on just the low-quality video, DDS only needs to send selective regions in

high quality.

At first glance, the idea of server-driven region proposal seems similar to Vigil [216],

which also identifies and sends only regions likely with objects to the server, but as we will

show in Section2.5.2, even if Vigil uses a model (MobileNet-SSD) that runs only 3× faster

than the server-side DNN [18], it still misses about 40% more objects of interest than DDS

and sends over 50% more data. The reasons are two-fold. First, Vigil’s local model uses

inherently simpler feature extractor, and thus tend to miss some (especially small) objects

even on high quality images. Second, the local model does not change with the server-side

vision task, so it may propose more regions than necessary (if the server only looks for a

specific type of objects). Finally, unlike DDS, Vigil and Glimpse require extra computing

power on the camera side.

2.3 DDS protocol design

2.3.1 Formalizing DDS control logic

We start with a general framework of DDS’s control logic. A video stream is chopped to

segments5 (each contains a set of n consecutive frames), and DDS operates on a segment-

by-segment basis. In each frame, one can “spatially sample” one or more regions (a region

is a bounding box) and together they form a region set. We use S to denote a segment, R

5. The concept of segments is equivalent to video chunks used in the DASH protocols [7] and AW-
Stream [211].
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a region set, and VS,R,Q the video generated from a region set R of segment S encoded in

quality level Q, which specifies the resolution and qp (quantization parameters). Two special

types of regions are particularly useful. First, a region covering the full frame can form a

region set, labeled Rfull, so VS,Rfull,Q denotes the entire segment encoded in quality level Q

(i.e., without any spatial sampling). Second, a frame can have an empty region set which

effectively means it is skipped.

DDS’s iterative protocol (Section2.2) can now be formalized as follows. For each seg-

ment S, the camera first encodes it at low quality level Qlow and sends the resulting video

VS,Rfull,Qlow to the server (Stream A). Then, the server-side DNN runs inference on the

video and returns the high-confidence inference output Ddnn (the part of DNN output that

already has high confidence with low-quality video), as well as the proposed region set Rdnn

(regions deemed as likely to contain inference). The high-confidence inference output and

the set of proposed regions are then combined to generate the feedback region set, denoted

by Rfeedback. The feedback region set will then be sent back as feedback to the camera,

which then encodes these regions at higher quality level Qhigh and sends the resulting video

VS,Rfeedback,Qhigh to the server for a second iteration inference (Stream B).

2.3.2 Extracting feedback from DNN

We first introduce how the proposed region set Rdnn and high-confidence inference output

Ddnn are extracted from DNN output for various vision tasks (e.g., object detection, face

recognition, and semantic segmentation)6. It is important that their definitions are agnostic

to the exact vision tasks and the DNNs. This means the generation of feedback regions is

independent to the particular vision task and DNN.

6. Face recognition and semantic segmentation are discussed in the protocol design to illustrate the
generality of the protocol. But evaluation of vision tasks other than object detection is omitted in this
document. Please refer to the DDS paper for more details on evalution of other tasks.
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High-confidence inference output Ddnn, in object detection (face recognition or se-

mantic segmentation), is a list of DNN-returned elements (labeled bounding boxes in object

detection, faces in face recognition, or pixels in semantic segmentation), each associated with

its coordinates and confidence score. We use the elements that have confidence score over a

threshold, which suggests they are ready to be reported.

Proposed region set Rdnn includes the regions (we use rectangle-shape boxes for encod-

ing efficiency) that have high objectness scores—likelihood to be part of object of any class of

interest. The objectness scores of proposed regions can be obtained in two ways. First, they

can be directly obtained from the RPN results, if the inference pipeline is based on RPN

(e.g., FastRCNN, FasterRCNN, MTCNN, or MaskRCNN [94]) which explicitly proposes re-

gions and evaluates their objectness scores. Second, they can be obtained from the DNN’s

inference output. For instance, Yolo [167] assigns each potential region a list of per-class

confidence scores, and the scores of various classes can be summed up to get the objectness

score per region7. Another example is that pixel-level inference output can be similarly used

to derive objectness scores of regions. In semantic segmentation output, each pixel will be

assigned with a per-class confidence score. For each region (DDS uses 64x64 blocks), we can

calculate its objectness score by summing up the confidence scores across all pixels and all

classes.

Selecting feedback regions As described in Algorithm 1, DDS picks from Rdnn the

feedback regions that meet two criteria: (a) each feedback region (in terms of the fraction

of the whole frame) is less than a threshold γ (by default, 4%8); (b) each feedback region

7. We acknowledge that the sum of confidence scores across all classes does not directly translate to the
likelihood of a region being in any of the classes. That said, we have empirically found it a good indicator
of objectness.

8. Although 4% of the whole frame size looks low, it actual is quite high (roughly the size of a truck in a
distance of 70ft from the camera).
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Listing 1 DDS logic to select feedback regions.
Input: The DNN-generated region proposal Rdnn and detection results Ddnn on the low-quality

video.
Output: Feedback region set Rfeedback (which the camera then sends again in higher quality level

Qhigh)
1 Function create_feedback_per_frame(Rdnn, Ddnn):

/* Initialize feedback region set */

2 Rfeedback ← ∅
for region r ∈ Rdnn do

3 keep← True
/* Skip large regions */

4 if r.area > γ then
5 keep← False

/* Skip if it overlaps with high-confidence inference result */

6 for b ∈ Ddnn do
7 if r and b overlap then
8 keep← False; break

/* Skip low objectness sore regions */

9 if r.objectness < θ then
10 keep← False

11 if keep then
12 Rfeedback ← Rfeedback ∪ {r}

13 return Rfeedback

does not overlap significantly with any high-confident inference output Ddnn,9; and (c) the

objectness score of a region is over a threshold θ; The rationale behind them is as follow.

(a) filters out the regions that the DNN is already confident based on the low-quality video.

(b) filters out large proposed regions, because if it does contain an object, it should have

been detected by the DNN with high confidence already. Finally, (c) uses a threshold of

objectness score (by default 0.5) as a control knob to adjust the bandwidth demand of the

second round (Stream B).

Figure 2.6 shows an example of Algorithm 1 in action (on a single frame). The region

9. In object detection, a proposed region does not overlap with a detected region if their IoU (intersection-
over-union) is below a predetermined threshold (0.3, by default). In semantic segmentation, a proposed region
(64x64 block) overlaps with the high-confidence pixels if by excluding these high-confidence pixels, the block’s
objectness score is below a threshold 0.5.
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Figure 2.6: Illustrative example of DDS’s logic to choose feedback region set (Algorithm 1)
from region proposal and detected result returned by the server-side DNN.

proposal Rdnn and inference result Ddnn are produced by running FasterRCNN-ResNet101,

a typical object detection model, on one frame from one of the traffic video; we get Rdnn

the FasterRCNN output (after the built-in non-maximum suppression removes duplicated

bounding boxes). The example shows that, among the nine DNN-proposed regions, one is

too large and four overlap substantially with detected bounding boxes, so the feedback region

set contains four regions.

2.3.3 Handling bandwidth variation

Like other video streaming protocols, DDS must adapt its bandwidth usage to handle band-

width fluctuation. There are three control knobs: the low quality level and the high quality

level, and the region proposal objectness threshold θ. We empirically find that these knobs

affect the bandwidth/accuracy tradeoff in a similar way (i.e., on the same Pareto boundary;

Section2.5.4), so DDS only tunes low quality level and high quality level, while fixing the

objectness threshold at 0.5.

To tune the low and high quality regions we implement a feedback control system, illus-

trated in Figure 2.7. We base this controller on prior work that proposed a virtual, adaptive
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Figure 2.7: DDS’s adaptive feedback control system dynamically tunes the low and high
quality configurations based on the difference between the estimated available bandwidth

for the next segment and that used for the previous segment.

control system that can be customized for specific deployments [154, 35]. Instantiating the

controller requires specifying three things: a bandwidth constraint to be met, feedback for

monitoring whether or not the bandwidth constraint is met, and the tunable parameters

that affect the bandwidth. For DDS, the bandwidth constraint is the estimated bandwidth

for the next segment (labelled (1) in the figure), the feedback is the total bandwidth (for

both low and high quality) from the last segment (2), and the tunable parameters are the

resolution and quantization parameters of both the low and high quality (3). The controller

continually estimates the base behavior—in this case, the last segment’s bandwidth if the

default parameter settings had been used. The controller then takes this base behavior as

well as the difference between the desired bandwidth for the next segment and the achieved

bandwidth for the previous segment and computes a scaling factor for the base bandwidth.

This scaling factor is passed to an optimizer which finds the low and high quality settings

that deliver the scaled bandwidth while maximizing F1 score.

Our dynamic adaptation has several useful formal properties based on its use of feedback

control. First, the content estimator handles non-linearities in the relationship between the

parameters and bandwidth. Intuitively, we can think of the parameter-bandwidth relation-
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ship as a curve and the content estimator as drawing a tangent to that curve. The controller

then uses that tangent as a linear approximation to the true behavior [77]. The achieved

bandwidth, then, will converge to the desired bandwidth in time proportional to the loga-

rithm of the error in this estimation [154]. Second, the optimizer finds the highest quality

given the bandwidth specified by the controller. This optimality is achieved by schedul-

ing configurations over multiple segments. As the system has a small, constant number of

constraints, an optimal solution can be found in constant time [127].

2.4 Implementation

We implement DDS with about 2K lines of code, mostly in Python and the code is available

and will be updated in [8].

2.4.1 DDS Interface

DDS sits between the low-level functions (video codec and DNN inference) and the high-

level applications (e.g., object query or face recognition). It provides “south-bound” APIs and

“north-bound” APIs, both making minimum assumptions about the exact implementation

of the low-level and high-level functions.

The South-bound APIs interact with the video codec and DNN. Our implementation only

uses the APIs already exposed by the x264 MPEG video, such as x264_encoder_encode [24].

From DNN, DDS implements two functions: (1) region proposals (Rdnn), each with a speci-

fied location; and (2) detection results (Ddnn) including the detected objects/identities each

with a specified location and a detection confidence score.

The North-bound APIs implement the same analyst-facing (north-bound) APIs as the

DNNs (DDS can simply forward any function call to DNNs), so the high-level applications

(e.g., [142, 132]) do not need to change and DDS can be deployed transparently to analysts.

The only assumption is that, because DDS runs the DNN twice on the same video segment,
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the two DNN detection results must be merged into a single detection result; we did this in

a similar way as how DNNs internally to merge redundant results (e.g., [193]).

2.4.2 Performance optimization

Saving bandwidth by leveraging codec A naive implementation of Stream B would

encode each region as separate images where the requested regions have high quality and

the rest of the frames have low quality. But the total size of these images would be much

greater than the original video segment in even the higher quality level without cropping the

regions! The reason is that video codecs (e.g., H.264/H.265), after decades of optimization,

are very effective in exploiting spatial redundancy and temporal redundancy between video

frames to reduce the encoded video size. So instead, we leverage this encoding effectiveness.

In each frame, we set the pixels outside of the requested regions in the high quality image

to black, i.e., RGB=(0,0,0), and encode these images into a video file (mp4).

Reducing delay via early reporting The cost that DDS pays to get better performance

is the worst-case response delay; the result of Stream B will wait for two “round trips” before it

can be returned to the analysts. To address this problem, we leverage the observation that

a substantial fraction of the DNN output from the low-quality video (Stream A) already

has high confidence and thus can be returned without waiting for Stream B. While this

optimization does not change the bandwidth consumption or worst-case response delay, it

substantially reduces the delay of many inference results. In object detection, we empirically

found that over 90% of all final detected objects could have been detected in Stream A.

These objects can be returned much faster than any prior approach, because Stream A uses

a quality level much lower than what other work (e.g., [211, 58, 57]) would need to achieve

the same accuracy.
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Leveraging camera-side heuristics DDS can also leverage camera-side computing power.

The key advantage of doing so is not only incorporating more computing power, but to lever-

age that the cameras have access to the raw (full resolution) video. Here, we use tracking as

a camera-side heuristics that can be incorporated in DDS. Tracking is usually less compute-

intensive than tasks such as object detection, so some prior work has proposed having the

camera track objects (e.g., using [97]) detected by the server-side logic (e.g., [56]). DDS can

benefit from a similar idea by requesting fewer frames in the feedback regions and performing

camera-side tracking between the requested frames. For instance, given a 30-frame segment,

the server will decide regions in each of the 15 frames, but instead of requesting all of them

from the camera, it only requests the regions in the first frame and sends back the final

results of the first frame to the camera which then tracks them using local tracking logic.

2.5 Evaluation

The key takeaways of our evaluation are:

• On three vision tasks, DDS achieves same or higher accuracy than baselines while using

18-58% less bandwidth (Figure 2.8) and 25-65% lower response delay (Figure 2.9).

• DDS sees even more improvements on certain video genres where objects are small

(Figure 2.10) and on applications where the specific target objects appear rarely (Fig-

ure 2.11).

• DDS’s gains remain substantial under various bandwidth budgets (Figure 2.12) and

bandwidth fluctuation (Figure 2.13).

• DDS poses limited additional compute overhead on both camera and server (Fig-

ure 2.15).
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Figure 2.8: The normalized bandwidth consumption v.s. inference accuracy of DDS and
several baselines on various video genres shows that DDS achieves high accuracy with 55%

bandwidth savings. Ellipses show 1-σ range of results.
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Name Vision tasks Total length # videos # objs/IDs
Traffic obj detect 2331s 7 24789
Drone obj detect 163s 13 41678

Dashcam obj detect 5361s 9 24691

Table 2.1: Summary of our datasets.

2.5.1 Methodology

Experiment setup We build an emulator of video streaming that can measure the exact

analytics accuracy and bandwidth demand of DDS and our baselines. It consists of a client

(camera) that encodes/decodes locally stored videos and a fully functional server that runs

any given DNN and a separate video encoder/decoder. Unless stated otherwise, we use

FasterRCNN-ResNet101 [169] as the server-side DNN for object detection. DDS extracts

region proposals of the object detection pipeline using FasterRCNN[169], those of the face

recognition pipeline using MTCNN[214] using the method described in Section 2.3.2. As we

will see in Section 2.5.3, different choices of DNNs will not qualitatively change the takeaways.

When needed, we vary video quality along QP parameters (from {26,28,30,36,38,40}) and

resolution (from scale factors of {0.8,0.7,0.5}), and DDS uses 36 (qp) as low quality and 26

(qp) as high quality, both with resolution scale of 0.8. In most graphs, we assume a stable

network connection, but in Section 2.5.4, we will vary the available bandwidth as well as

increase bandwdith variance.

Datasets To evaluate DDS over various video genres, we compile five video datasets each

representing a real-world scenario (summarized in Table 2.1 and their links can be found

in [4]). These videos are obtained from two public sources. First, we get videos from

aiskyeye [22], a computer-vision benchmark designed to test DNN accuracies on drone videos.

Nonetheless, the key difference between DDS and baselines not the DNN but the client-server

pipelines which can be affected by other factors such as fraction of frames with objects of
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interest or size of the regions with objects. To cover a range of dynamism along these

features, we also get videos from YouTube as follows. We search keywords (e.g., “highway

traffic video HD”) in private browsing mode (to avoid biases from personalization); among

the top results, we remove the videos that are irrelevant (e.g., news report that mentions

traffic), and we download the remaining videos in their entirety or the first 10-minutes (if

they exceed 10 minutes). The vision task is to detect vehicles in traffic and dashcam videos,

to detect humans in drone videos. Because we use public sources to cover more real-world

videos, many videos do not have human-annotated ground truth. So for fairness, in all videos

in our dataset, we use the DNN output on the full-size original video as the reference result

to calculate accuracy. For instance, in object detection, the accuracy is defined by the F1

score with respect to the server DNN output in highest resolution (original) with over 30%

confidence score.

Baselines We use four baselines to represent two state-of-the-art techniques (see Sec-

tion 2.1.2): camera-side heuristics (Glimpse [56], Vigil [216]) and adaptive streaming (AW-

Stream [211], CloudSeg [205]). Following minor modifications are made to ensure the com-

parison is fair. First, all baselines and DDS use the same server-side DNN. Second, although

DDS needs no more camera-side compute power than encoding, camera-side heuristics base-

lines are given enough compute resource to run more advanced tracking [97] and object

detection algorithm [174] than what Glimpse and Vigil originally used, so these baselines’

performance is strictly better than their original designs. Third, all DNNs used in baselines

and DDS are pre-trained (i.e., not transfer-learned with samples from the test dataset like in

NoScope [122]); so our version of CloudSeg uses the pre-trained super-resolution model [26]

from the website [15]. This ensures the gains are due to the streaming algorithm, not due

to customization of DNN, and also helps reproducibility. Finally, although DDS could lower

frame rate, but to ensure accuracies of all baselines are calculated on the same set of images,

we only tune resolution and QP in DDS, which are also the most effective knobs [211].
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Performance metrics We use the definition of accuracy and response delay from Sec-

tion 2.1.1. To avoid impact of video content on bandwidth consumption, we report band-

width demands of DDS and baselines after normalizing them against the bandwidth con-

sumption of the original videos.

2.5.2 End-to-end improvements

We start with DDS’s overall performance gains over the baselines along bandwidth savings,

accuracy, and response delay.

Bandwidth savings Figure 2.8 compares the bandwidth-accuracy tradeoffs of DDS with

those of the baselines, when the total available bandwidth is set to match the size of the

original video (we will vary the available bandwidth in Section 2.5.4). Across three vision

tasks, DDS achieves higher or comparable accuracy than AWStream and CloudSeg but uses

55% less bandwidth in object detection. Glimpse and Vigil do sometime use less bandwidth

but they have much lower accuracy. Overall, even if DDS is less accurate or uses more

bandwidth, it always has an overwhelming gain on the other metric.

Response delay Figure 2.9 shows the response delay of DDS and AWStream (the baseline

that is the closest to DDS performance-wise) with the same length of a segment (number of

consecutive frames encoded as a segment before sent to the server). The segment length limits

the lower bound of the delay, and same segment length, we see that despite the need for two

iterations, DDS reduces the response delay by 25-65% compared to AWStream. Moreover,

the gap widens as the segment length increases. To put it into perspective, popular video

sites use 4-second to 8-second segments [217] (i.e., over 120 frames per segment), a range in

which DDS’s gains are considerable.
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Figure 2.9: Response delay of DDS is consistently lower than AWStream under various
lengths of video segment.

Intuition DDS achieves significant bandwidth savings compared to AWStream because

DDS is driven by DNN-generated feedback on the real-time video content while AWStream

is content agnostic. Thus, DDS aggressively compresses video by cropping out only regions

of interest in the second iteration. The bandwidth savings compared to Glimpse or Vigil

result from the fact that camera-side heuristics lack crucial server-side information required

to select the important frames. For fairness, we do not customize the super-resolution model

to the specific video content; as a result, the super-resoluted frames actually leads to lower

accuracy from the server DNN. DDS’s response delay is much lower than AWStream because

it detects most of the objects in the first, low quality iteration. AWStream sends a single

video stream and spends more time to encode that stream with quality.

2.5.3 Sensitivity to application settings

Impact of video genres Next, Figure 2.10 shows the distribution of per-video bandwidth

savings w.r.t AWStream (dividing AWStream’s bandwidth usage by DDS’s when DDS’s

accuracy is at least as high as AWStream) in three datasets. As expected, there is substantial
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variability of performance among videos of the same type. This is because DDS’s gains

depend on the fraction of pixels occupied by objects of interest, which can varies with videos.

That said, the impact of content on performance gains can also be task-dependent. In

fact, it highlights the different nature between the two vision tasks. In object detection,

in presence of a large object that cannot be confidently classified, DDS will need to send

a large region in its entirety to the server. Dashcam videos have more large objects than

drone/traffic camera videos, so contrast will appear only in dashcam videos.

Better

Figure 2.10: Distributions of per-video bandwidth savings in two datasets. The gains of
DDS are video dependent.

Impact of inference tasks So far we have evaluated DDS when the vision tasks deal with

the common object classes (or all classes) in videos. An additional advantage of DDS is it

can save more bandwidth by taking advantage of the server-side application when needs only

a few specific object classes. To demonstrate this, we change the segmentation task from

detecting all objects to detecting only motorcyles. Figure 2.11 shows the DDS’s bandwidth

savings (when achieving same or higher accuracy than AWStream) on three traffic videos in

which motorcyles appear for a small non-zero fraction of frames, and compare the savings

with those when the task is over all classes. We see that DDS’s gains are significantly higher
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when only motorcyles are the segmentation target, and the additional gains are higher when

the motorcyclists take a smaller fraction of pixels and frames (e.g., Video 2).

Better

Figure 2.11: Segmentation on only motorcycles achieves 2-4× more bandwidth savings
than segmentation on all classes.

Impact of DNN architecture Last but not least, we test different DNN architectures

on a randomly selected traffic video (5-minute long), and find that DDS achieves substantial

bandwidth savings under different server-side DNN models: FasterRCNN-ResNet101 (44%)

and FasterRCNN-ResNet50 [18] (54%) has the same architecture but different feature ex-

tractors, while Yolo [167] (51%) uses a different architecture and feature extractor. This

implies that we can design the video streaming protocol agnostic to the model architecture

of the server-side DNN. We leave a full examination of different DNN architecture (e.g.,

MaskRCNN [94]) to future work.

2.5.4 Sensitivity to network settings

Accuracy vs. bandwidth budget We then vary the available bandwidth and compare

DDS with AWStream, which is performance-wise the closest baseline. Figure 2.8 shows that

as available bandwidth varies, DDS always uses 35-43% bandwidth in object detection while

achieving higher accuracy.
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Figure 2.12: DDS outperforms (the closest baseline) in accuracy under various bandwidth
consumption budgets.

Impact of bandwidth variance Figure 2.13 compares DDS with AWStream under in-

creasing bandwidth variance. We use synthetic network bandwidth traces where available

bandwidth is drawn from a normal distribution of 900 · N(1, σ2)kbps while we increase σ

from 5% to 100%. We observe that DDS maintains an accuracy advantage over AWStream.

Although DDS and AWStream use the same bandwidth estimator (average of last two seg-

ments), DDS uses the available bandwidth more efficiently because DDS’s feedback control

system continually adapts the model relating configuration parameters to bandwidth. Thus,

DDS adaptively selects the best possible configuration parameters at each time instant. Fur-

ther, the available configuration parameters for low and high quality video enable a wider

range of possible adaptations and thus DDS tunes its behavior at a finer granularity com-

pared to AWStream. Even when the variance in available bandwidth is high (σ > 70% of the

mean), DDS maintains a relatively low response delay while AWStream’s delay increases.

Impact of parameter settings Figure 2.14 shows the impact of key parameters of DDS

on its accuracy/bandwidth tradeoffs: the QP of the first iteration in Stream A (“low qp”), the

QP of the second iteration in Stream B (“high qp”), and the objectness threshold. We vary
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Figure 2.13: DDS can handle bandwidth variance and maintain a sizeable gain over the
baseline of AWStream even under substantial bandwidth fluctuation.

one parameter at a time and test them on the same set of traffic videos. The figures show

that by varying these parameters, we can flexibly trade accuracy for bandwidth savings.

Overall, we observe their effect roughly falls on the same Pareto boundary, so there may

not be significant difference between the choices of parameters to vary when coping with

bandwidth fluctuation.

2.5.5 System microbenchmarks

Camera- & server-side overheads Figure 2.15 puts the systems overhead of DDS into

the perspective of the baselines. We follow the assumptions in Section 2.5.2 that the camera

has 4 CPUs and the server has 4 CPUs and 8 GPUs. On the camera (client) side, all methods

use relatively low overhead, except Vigil and Glimpse which run local heuristics of tracking

and object detection logic. On the server side, Vigil and Glimpse use much less GPU and

CPU cycles than DDS and AWStream, because they run inference only on a small fraction

of frames (which in part leads to lower accuracy). The reason DDS has lower GPU usage

than AWStream, despite running inference twice per frame, is that AWStream profiles a list
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Figure 2.14: Sensitivity analysis of DDS’s parameters. By varying these parameters, DDS
can flexibly adapt itself to reach desirable accuracy for a given bandwidth constraint.

of configurations (e.g., pairs of QP and resolution) (total 216 configuration in [211]) and that

cost is non-trivial. In our implementation, we evaluate only 24 configurations on 15 frames

in each 300-frames video, and the average GPU usage of AWStream is already higher than

DDS. That said, we acknowledge that if AWStream updates the profile less frequently (e.g.,

every few minutes), its GPU usage could be lower than DDS, but that might cause its profile

to be out of date.

Fault tolerance We stress test DDS under the condition that the server-side DNN is

unreachable. By default, the camera runs DDS protocol, and it also has a local tracking

algorithm as a backup. Figure 2.16 shows the time-series of response delay and accuracy.

First, DDS maintains desirable accuracy, and at t = 5 second, the server is disconnected.

We see that DDS waits for a short time (until server times out at t = 5.5) and fall back to

tracking the last detection results from the server DNN. This allows for a graceful degradation

in accuracy, rather than crashing or delaying the inference indefinitely. Between the server

disconnection and the timeout, the segments will be placed in a queue temporarily, and when

the local inference begins, the queue will be gradually cleaned up. When the server is back
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Figure 2.15: Compared to prior solutions, DDS has low additional systems overhead on
both client and server.

online (at t = 13), the camera will be notified with at most a segment-worth of delay (0.5

second), and begin to use the regular DDS protocol. Meanwhile the camera will continue to

send a probe per segment.

Performance optimization Figure 2.17 examines two performance refinements. First,

figure 2.17(a) shows that (1) putting the proposed regions on a black background frame yields

about 2× bandwidth savings over encoding each region separately and (2) compressing these

frames in an mp4-format leads to another 10× bandwidth savings. Second, figure 2.17(b)

shows that returning the first-iteration output, i.e. the high-confidence results in Stream A,

before second iteration starts, we reduce the average response delay by about ∼ 40%.

45



0 2 4 6 8 10
0.0

0.5

1.0

De
la

y 
(s

)

0 2 4 6 8 10
Time (s)

0.0

0.5

Ac
cu

ra
cy

 (F
1)

Figure 2.16: DDS can handle server disconnection (or server failure) gracefully by falling
back to client-side logic

2.6 Related work

We discuss the most closely related work in three categories.

Video analytics systems The need to scale video analytics has sparked much systems

research: DNN sharing (e.g., [116, 109]), resource allocation (e.g., [212, 135]), vision model

cascades (e.g., [122, 180]), efficient execution frameworks (e.g., [142, 132, 160]), as well as

camera/edge/cloud collaboration (e.g., [56, 216, 58, 211, 190, 205], see Section2.1.2 for a

detailed discussion) or multi-camera collaboration (e.g., [115, 117]). The most related work

to DDS is AWStream [211] which shares with DDS the ethos of using a server DNN-generated

profile. The key distinction is that such feedback is not real-time video content, so it cannot

zoom in on specific regions on the current frames. Vigil [216] on the other hand does send

cropped regions, but it is bottlenecked by the camera computing power (see Section2.1.2).

Vision applications Computer vision and deep learning research has a substantial body of

research (e.g., [168, 169, 166, 209, 119, 139, 66]). Recent works on video object detection show
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Figure 2.17: System refinements (introduced in Section 2.4.2) to (a) reduce Stream B
bandwidth and (b) reduce response delay.

it is inefficient to apply object detection DNN frame by frame; instead it should be augmented

by tracking [98] (similar to Section2.4.2) or by a temporal model such as LSTM [138, 136].

This work complements DDS by designing new, server-side deep learning models. DDS’s

distinctive advantage is that it explicitly optimizes the bandwidth/accuracy tradeoffs in a

way that is largely agnostic to the server-side DNN.

Internet video encoding/streaming Recent innovations in video encoding have pro-

vided better compression gains [59]. The closest efforts to DDS are scalable video coding [156]

and region-of-interest encoding [153]. However, these approaches optimize human quality of

experience (QoE) and are largely agnostic to what is in the video. Region-of-interest encod-

ing requires the viewer to specify the region of interest. Scalable video coding can utilize the

bandwidth more efficiently than traditional encoding methods, but it still compresses video

uniformly in its entirety. Similarly, much work has been done in adaptive bitrate streaming
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(e.g., [178, 118, 131, 70]), which focuses on adapting bitrate of pre-coded video chunks to

bandwidth fluctuation, rather than dynamic content as in DDS.

2.7 Limitations and discussion

Strict server-side resource budget In some sense, DDS reduces bandwidth usage at

the expense of relying on server-side DNN to run inference more than once per frame. Sim-

ilar tradeoffs can be found in AWStream, which triggers costly reprofiling periodically, and

CloudSeg, which enforces an upfront super-resolution model customization process. All these

techniques may not be directly applicable where server resources have strict budgets or GPU

cost is proportional to its usage (e.g., cloud instances).

Implication to privacy: Privacy is an emerging concern in video analytics [200]. While

DDS does not explicitly preserve privacy, it is amenable to privacy-preserving techniques.

Since DDS does not send out full resolution image, it could be repurposed to denature videos

before sending only a part of the video to the server for analytics.

Edge AI accelerators: Though DDS makes little assumption on camera’s local compu-

tation capacity, it can naturally benefit from the trend of more accelerators being added on

edge devices, by using camera-side heuristics as described in Section 2.4.2. We also envision

DDS running along side the camera local analytics to share the workload to provide higher

inference accuracy with minimal bandwidth overheads.

2.8 Conclusion

Video streaming has been a driving application of networking research that has inspired

innovative design paradigms. This work argues that the emerging AI applications inspire a

paradigm shift away from the basic source-driven approach to video streaming. We advocate
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for a DNN-driven design that exploits opportunities unique to deep learning applications:

(1) unlike user QoE, video inference accuracy depends less on pixels than on what is in

the video, and (2) deep learning inference (receiver) offers extra information that can be

leveraged to decide how video should be encoded/streamed. We believe development of such

video streaming protocols will significantly impact not only video analytics, but also the

future analytics stack of many distributed AI applications.
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CHAPTER 3

GOAL: GOAL-ORIENTED PROGRAMMING LANGUAGE

Chapter 2 provided details of a novel iterative algorithm for machine-learning centric stream-

ing. The presented concrete implementation, DDS, was augmented with a control-theoretic

adaptation module that allowed it to cope with changes in video content and changing band-

width availability by modifying the parameters for its high and low quality iterations. The

adaptation module allowed DDS to handle variations in bandwidth and video content sig-

nificantly better than heuristics-based prior works. However, while implementing the adap-

tation module for DDS we noticed a significant issue in the approach towards adaptation in

computer systems.

Along with functional correctness, modern computer systems need to provide certain

quality-of-service guarantees [91, 134, 107]. However, it is a well established fact that no

single parameter configuration is optimal for the entire lifetime of the system as the optimal

configurations depend on factors outside of the control of the application [202, 134, 197].

Hence, prior work has suggested using principled adaptation to allow computer systems to

dynamically modify their configurations to ensure that they meet their quality-of-service

goals in the face of changing operating conditions and workloads.

However, a major issue with prior work is that it requires the details of the computer

system that is to be adaptation, e.g. its parameters, important metrics and quality-of-service

goals, to be enumerated before the adaptation module can be constructed. As such, a major

limitation of prior work becomes that they are implemented for a specific, narrow set of

goals and parameters. For example, the adaptation module in DDS was built specifically

for DDS and supports only the goal of maximizing accuracy while meeting a bandwidth

constraint using only the high and low quality knobs. This impedes the development of

complex adaptive systems that must meet different goals using different sets of knobs for

different deployments, or even change goals dynamically during one deployment. Another
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disadvantage of such an approach to adaptation is that the purpose-built adaptation module

has to either be completely scrapped or needs to be heavily modified when adaptation needs

to be added to another application. This is a significant deviation from good practices for

engineering computer systems which hold that components should be designed to be easily

reusable between different systems.

To overcome this limitation, we suggest a fundamental change in the way adaptation

is handled in computer systems. All aspects of adaptation should be treated as first-class

programming objects that the computer system can interact with dynamically through con-

venient interfaces. Hence, in this chapter we present GOAL, an adaptation framework

distinguished by its virtualized adaptation logic implemented independently of any specific

goals or knobs. GOAL supports this logic with a programming interface allowing users

to define and manipulate a wide range of goals and knobs within a running program. We

demonstrate GOAL’s benefits by using it re-implement seven different adaptive systems from

the literature, each of which has a different set of goals and knobs. We show GOAL’s gen-

eral approach meets goals as well as prior approaches designed for specific goals and knobs.

In dynamic scenarios where the goals and knobs are modified at runtime, GOAL achieves

93.7% of optimal (oracle) performance while providing a 1.69× performance advantage over

existing frameworks that cannot perform such dynamic modification.

This chapter is organized as follows: Section 3.1 motivates the need for adaptation, dis-

cusses approaches suggested by prior work and their shortcomings, Section 3.2 provides a

tour of the GOAL framework by implementing adaptation in an example application and

discusses how GOAL overcomes the disadvantages of prior work. Section 3.3 provides details

of the underlying GOAL runtime, Section 3.4 provides details of the GOAL API and its

novel Adaptation Specification Language. In Section 3.5 and Section 3.6 we provide details

of evaluation methodology and present our evaluation results that illustrate the generality

and robustness of GOAL. In Section 3.7 we present a brief discussion of the cost semantics
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and static analysis of GOAL-based systems. Finally, in Section 3.8 we conclude our discus-

sion of GOAL. Additionally, we provide implementation and execution details of individual

applications used for evaluating GOAL in Appendix A.

3.1 Related Work and Motivation

Adaptation is a key mechanism for building robust software systems that operate effectively

despite unpredictable dynamic changes to inputs or operating environment [133, 126]. This

section discusses prior approaches to building adaptive software systems, and discusses how

limitations of prior works motivate the need for adaptation as a first class programming

construct.

3.1.1 Complexity Requires Adaptation

Computer systems have numerous configuration parameters and settings that impact their

ability to meet their quantifiable behavioral goals [126]. Improper configuration is a notorious

source of performance issues and bugs [107, 163, 203]. Selecting a good configuration is

difficult because optimal configurations depend upon dynamically varying external factors

such as workload and operating conditions [91, 134, 197]. Adaptive systems address this

problem by automatically and dynamically adjusting configuration parameters to ensure

goals are met. Thus, there is a need for principled approaches to building adaptive computing

systems recognized by both industry [126, 133, 44, 157, 95, 85, 104] and academia [73, 105,

158, 80].

Two design patterns—Observe-Orient-Decide-Act (OODA) [171, 45, 46] and Monitor-

Analyse-Plan-Execute (MAPE) [126]—have been proposed for creating adaptive software.

Both establish a control loop as the basic structure for adaptation. During a loop iteration

the software first observes/monitors its environment and its own quantifiable behavior. It

then orients/analyzes itself with respect to these metrics to decide/plan what should be done

52



next. The subsequent iteration then acts/executes these decisions by changing the values

of configuration parameters. Because it results in more robust and flexible software, many

approaches implement adaptive loops in the OODA/MAPE pattern.

3.1.2 Existing Support for Adaptation

As mentioned earlier, prior work models the OODA/MAPE design pattern as a control loop

and several researchers have proposed that general scheme as a basis for system [101], soft-

ware [36], and language [170] design. Many existing works suggest control theory [78, 210,

215, 79, 96, 187, 179, 34, 149, 175, 198], machine learning [41, 204, 113, 68, 93], and combina-

tions of the two [194, 130, 100, 154, 102] as the basis for building principled AdaptLogs that

perform the orientation/analysis and decision/planning phase of the OODA/MAPE loop to

dynamically adjust configuration knobs in a running computer system. Such approaches

provide formal, mathematical guarantees about the precise assumptions and operating con-

ditions under which the goals will be met. However, a challenge is that specialized knowledge

in control, learning, or both is required to successfully deploy such approaches.

To make principled adaptation easy to implement, recent work proposes adaptation

frameworks that package a control- or learning-based AdaptLog into a programming lan-

guage [29, 183, 50, 33, 173, 219, 43, 123, 49, 129] or a library [87, 215, 110, 203, 164, 63,

154, 192, 54, 80, 182] runtime. Developers do not need to possess specialized knowledge

in learning or control to use these frameworks. Instead, they instantiate it with an initial

AdaptSpec, after which the AdaptLog monitors the metrics and independently tunes the

knobs to meet the goal.

While the OODA/MAPE design patterns themselves provide a general strategy, their im-

plementations in existing approaches have significant limitations. These limitations arise be-

cause each framework is designed to support specific metrics and knobs and their AdaptLogs

do not generalize to the metrics and knobs in other works. In other words, the OODA/MAPE
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concepts are generalizable, but specific instantiations of these concepts are problem-specific.

Table 3.1 illustrates this idea, showing that while there is wide support for different goals

and knobs across frameworks, the support provided by any one is specific and thus limited.

For example, Green uses a heuristic AdaptLog based on a specific model of how alternative

function implementations affect an application’s power and accuracy tradeoffs [33]. Similarly,

Aeneas’s reinforcement learning model uses a reward signal based on energy measurements,

and introducing new metrics requires a new reward function and learning model. To the

best of our knowledge, there is no single framework that generalizes across a wide range of

goals and knobs. This limitation also means that existing frameworks cannot be used for

meta-adaptation because they do not support any alternative AdaptSpecs.

Overcoming these limitations requires users to extend the framework’s internal AdaptLog

for additional AdaptSpecs. This entails reconstructing the model and reimplementing the

AdaptLog and its interface to support other knobs, metrics, goals and meta-adaptation.

However, doing so defeats the purpose of using an adaptation framework because it requires

users to have specialized knowledge of the AdaptLog.

While prior work has also explored making adaptation components configurable [27], we

believe that performing meta-adaptation using such works is difficult because such works

encapsulate the application itself rather than making the adaptation framework a natural

component of the application which would allow it to exert fine grained control on all aspects

of adaptation.

Thus, we argue that the aforementioned limitations would be best addressed through

a generalized adaptation framework that allows applications to interact with all aspects of

adaptation dynamically. However, developing such a framework is not trivial because it re-

quires a uniform interface and an AdaptLog whose underlying model allows the declaration

and use of AdaptSpecs that work with any user-defined measures, knobs and goals. Fur-

thermore, to enable meta-adaptation, the framework must coordinate the interface with the
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runtime to ensure that goals are met even when the AdaptSpec changes. Our contribution

is such a framework, GOAL.

3.2 Implementing Adaptation with GOAL

We provide a high-level overview of GOAL, later sections detail its AdaptLog (Sec-

tion 3.3) and interface (Section 3.4). We implement a meta-adaptive video encoder for a

CCTV camera that meets a target frame rate, while maximizing quality on line power and

minimizing energy on battery. Figure 3.1 shows this example: the original Swift code without

adaptation (a), the GOAL version (b), and an example GOAL AdaptSpec (c).

3.2.1 Original (Non-adaptive) Code

As shown in Figure 3.1a, the developer initializes the encoder and defines parameters: qp and

me (quantization parameter and motion estimation algorithm, respectively), which govern

tradeoffs between the video quality and frame rate. Subsequently, the system enters a while

loop where it calls the encodeNextFrame method with qp and me as input. The record

function logs per-frame encoding quality.

The code in Figure 3.1a neither meets a target frame rate, nor reacts to changes in

power source. Carefully selecting static values for qp and me could ensure the frame rate;

however, without adapting to frame-to-frame differences, quality will be sacrificed (e.g., set

the parameters for the worst case and live with lower quality for other cases). In fact,

video encoding is a challenge problem for adaptive computing because it is difficult to tune

encoding parameters [145].
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let encoder = initEncoder ()

var qp = 30

var me = 1

while(true)

{

encoder.encodeNextFrame(qp ,

me)

record(encoder.getQual ())

}

(a) Original Code

import GOAL

let encoder = initEncoder ()

var qp = Knob("qp", 30)

var me = Knob("me", 1)

optimize("encoder", [qp , me])

{

encoder.encodeNextFrame(qp.get(),

me.get())

measure("quality",

encoder.getQual ())

}

(b) GOAL Code

goal encoder

max(quality)

such that throughput == 30.0

measures

quality: Double

energy: Double

throughput: Double

knobs

qp = [10, 30 reference]

me = [1 reference , 5]

coreFreq = [600, 1200 reference]

numCores = [2, 4 reference]

such that

numCores * coreFreq > 2400

(c) Adaptation Specifications

Figure 3.1: The encoder application.

57



3.2.2 Adding Adaptation with GOAL

GOAL provides constructs that allow developers to implement all parts of the OODA/MAPE

control loop with minor modifications to existing software. Concretely, the developer needs

to: (1) identify and declare configurable components as Knobs, (2) specify the code seg-

ment in which to perform adaptation, and (3) report application-level metrics to the GOAL

runtime using measure.

Figure 3.1b illustrates the CCTV system implemented with GOAL. qp and me are de-

clared as Knobs, using a stringified name and a default value for initializing the knob. The

relevant metrics to be monitored are identified using measure. For example the encoding

quality is reported for the CCTV. The while loop is replaced with GOAL’s optimize

loop (Section 3.4.1) whose inputs are the list of Knobs to tune, and the loop body. This

syntax tells the GOAL runtime to iteratively execute the loop body (as in the original pro-

gram) while tuning the knobs after each iteration, according to the AdaptSpec. Hence, with

such minor modifications we have converted the non-adaptive application to an adaptive

application that implements a complete OODA/MAPE control loop.

3.2.3 Writing Adaptation Specifications

The next step is writing an AdaptSpec. Figure 3.1c shows an example, defining the knobs,

allowed values for each, the measures to monitor, and the goal that formally specifies the

constraints and objective. This example is how the CCTV should behave on line power:

maximize quality, with a throughput of 30 iterations per second (which translates to 30

frames/s). The application-level metrics (e.g., quality) and knobs (e.g. qp and me) in the

AdaptSpec must match the string arguments in calls to Knob and measure. GOAL’s runtime

automatically declares metrics such as throughput, energy, etc. and hardware specific knobs

such as core count (numCores) and DVFS frequency (coreFreq), allowing them to be used

without explicit declaration.
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Figure 3.2: The GOAL Adaptation Framework.

This AdaptSpec tells the runtime to measure quality, energy, and throughput, while

tuning qp, me, numCores and coreFreq. Additionally, the AdaptSpec states that the runtime

must choose configurations that meet a further constraint on the knobs: the product of

numCores and coreFreq should be greater than 2400. See Section 3.4.3 for a full description

of the DSL’s grammar and capabilities.

GOAL AdaptSpecs are compiled just-in-time (Section 3.3.2) and can be written in text

files independent of the application code. This allows developer’s to produce a single binary

that can be deployed to meet different goals by writing different AdaptSpecs. Such flexibility

distinguishes GOAL from existing adaptation frameworks.

Given the GOAL system and an AdaptSpec, the last step before deployment is to use

GOAL’s model builder (Section 3.3.3), which runs the application on test inputs to learn

a function the knob configurations’ impact on the specified metrics. Figure 3.2 presents a

high-level overview of the OODA/MAPE loop implemented using GOAL. During execution,

GOAL monitors the metrics identified by measure, analyzes and plans which values to use

for each of the Knobs to meet the goal specified in AdaptSpec, then sets the Knobs to those

values and executes the loop body.

Finally, the system can dynamically change any aspect of the AdaptSpec during execu-

tion, telling GOALs runtime to meet new goals, use new knobs, or both.
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3.2.4 Adding Meta-Adaptation

The CCTV requires meta-adaptation to change goals based on power supply. GOAL’s

intend method uniquely supports this by dynamically changing the AdaptSpec in a running

system. The intend function takes a string representation of the goal and replaces the active

goal with this argument. To illustrate this, we augment the optimize loop in Figure 3.1b

with the following code (not shown in the figure):

if getPowerSupply () == .DirectPower {

intend(to: .maximize , objective: "quality",

suchThat: [( measure: "throughput",

goal: 30.0 )])

} else if getPowerSupply () == .Battery {

intend(to: .minimize , objective: "energy",

suchThat: [( measure: "throughput",

goal: 30.0 )])

}

The code in red specifies the parameters of intend and the code in blue represents the

arguments specific to the requirements of the CCTV system.

With this handful of changes, the encoder will now meet the throughput constraint

while optimizing either quality or energy based on the power source. This large increase

in adaptive capability for small code changes highlight how GOAL’s general adaptation

framework supports complex adaptive behavior and seamless meta-adaptation.

3.2.5 Quantitative Benefits of Using GOAL

Figure 3.3 compares the execution of our GOAL CCTV with a version that uses prior work

to synthesize a customized, Application-specific AdaptLog [76]. However, using prior work,

the CCTV can only meet one goal; we begin with the goal corresponding to line power:

maximize quality and meet a throughput constraint.

Both versions execute identically until a power outage (at frame 650), where the GOAL

version performs meta-adaptation to start reducing energy. In contrast, the Application
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Figure 3.3: GOAL meets all CCTV requirements robustly.

specific version cannot change the goal, continues using high energy, and risks depleting

the battery, rendering the camera inoperable. After frame 650, GOAL consumes 32% less

energy than the Application-specific approach. An additional AdaptLog could have been

synthesized to run the CCTV with minimal energy. However, such a version would need-

lessly sacrifice quality while operating on line power, and switching between independent

AdaptLogs at runtime is quite costly—in both execution time Section 3.6.3 and engineering

effort Section 3.6.4. This example shows the importance of providing support for general

adaptation and meta-adaptation and also the ease with which this can be achieved using

GOAL.

3.3 The GOAL Runtime

Figure 3.4 illustrates GOAL’s runtime, which consists of three key pieces: (1) the virtualized

AdaptLog, (2) the AdaptSpec Compiler, and (3) the Model Builder. The Glue code coor-

dinates these three components with the rest of the software and hardware. Furthermore,

some application and system level metrics such as throughput and power consumption are

measured by the Glue code [111]. The AdaptLog (Section 3.3.1) is implemented indepen-

dently of any specific AdaptSpec; it receives the goals, the model, and current metrics and
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Figure 3.4: The GOAL Runtime.

produces a schedule of configurations. The compiler (Section 3.3.2) takes an AdaptSpec

and produces four outputs: (1) the space of allowable knob configurations, (2) metrics to

monitor, (3) any constraints on knobs and (4) the goal to meet. The goal is defined as a con-

strained optimization problem (COP) in GOAL’s DSL (Section 3.4.3). Before deployment,

the model builder (Section 3.3.3) samples configurations from the compiled AdaptSpec and

executes the system in those configurations while observing the metrics listed in the Adapt-

Spec. From these observations the model builder learns a model that estimates changes in

metrics as a function of knob configuration. During deployment, the AdaptLog schedules

knob configurations to optimally meet the goal according to the model’s estimates.
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3.3.1 A Virtualized Adaptation Logic

GOAL virtualizes a control theoretic adaptation logic using two key principles: relativity and

translation. While typical control systems find absolute values for the knobs they configure,

GOAL controls virtual values that represent the necessary change in behavior—relative to

the default knob configuration—that must be achieved to meet the goals. This virtual value

by itself is not useful; it must be translated into a schedule of specific knob configurations.

Critically, this translation can be done online once the metrics and knobs are known and the

Model Builder (Section 3.3.3) has produced the function that estimates metrics given knob

configurations.

A Traditional Control Example Filieri et al. propose a framework for automatically

synthesizing controllers for software systems [76]. We use this approach to illustrate a typical

way that AdaptLogs are created, specifically building a controller for the qp knob from the

CCTV example (Section 3.2). We begin assuming the original goal: meeting a frame rate

constraint with maximum quality. Following [76], we first learn a simple linear model,

relating frame rate to qp:

FPS(t) = 0.354 · qp(t− 1) (3.1)

The constant 0.354 is specific to qp. To meet a target performance, the controller monitors

the current performance FPS(t) at time t and computes the error with the desired perfor-

mance FPSgoal: e(t) = FPSgoal−FPS(t). With this error and the model from Equation 3.1,

we set qp at time t as:

qp(t) = qp(t− 1)− e(t− 1)

0.354
(3.2)

Equation 3.2 is a simple and efficient AdaptLog, suitable for qp. However, this AdaptLog

is not general; it is entirely specific to (1) the constraint metric (frames per second in this

example) and (2) the available knobs (qp).
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While this example uses a control approach, similar problems occur with other techniques.

For example, reinforcement learning (RL) is a popular basis for AdaptLogs [50, 195, 155,

150, 201]. However, RL requires a reward function and a set of possible actions; in existing

frameworks, the reward is tied to specific metrics, while the actions are tied to sets of specific

knobs (e.g., application alternatives for Aeneas [50]). We are not aware of a way to virtualize

the actions in RL based AdaptLogs that is both useful for optimization and general with

respect to user-defined knobs.

GOAL’s Virtualized Control Logic We now show how subtle changes in the above

formulation implement a virtual control signal. The key here is to model relative behavior

rather than absolute metrics as in typical control approaches. We then translate that relative

behavior into specific knob settings. This formulation provides a layer of indirection. The

controller (which only understands relative values) can be implemented independently of

any specific knobs or metrics. The additional logic for translating a relative value into

specific knobs settings is parameterized by the learned model that enables the translation

(Section 3.3.1).

We begin by noting that a simple equation relates the behavior in any metric m at time

t to a scalar multiple xup(t− 1) of some baseline behavior mbase:

m(t) = mbase · xup(t− 1) (3.3)

Given this relationship, to control metric m, we first compute the error between the target

behavior (mtarget, the constraint from the AdaptSpec) and the measured behavior (m(t)):

em(t) = mtarget −m(t) (3.4)
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We can then control the behavior by tuning the xup(t):

xup(t) = xup(t− 1)− em(t− 1)

mbase
(3.5)

Equation 3.5 looks similar to Equation 3.2, but instead of a constant appropriate for one

knob, Equation 3.5 is parameterized by the base behavior for this metric; i.e., the metric’s

expected value in the default knob configuration.

While independent of any specific knobs, this approach is clearly dependent on the base

behavior mbase for the application in metric m; i.e., the expected metric value when the

application’s knobs are all set to their default values. This value will obviously vary from

application to application and even as the application runs.

Adapting to Workloads To adapt the controller to the current behavior in metric m

at runtime, GOAL’s AdaptLog continually estimates mbase, using a Kalman Filter [206],

an approach used in prior work [121, 120]. Thus, if the behavior varies during execution,

this estimation compensates and ensures that the constrained metrics can still be controlled.

This process is analogous to approximating a nonlinear function (in this case the application’s

behavior with respect to execution time) with a series of tangent lines, where mbase is the

tangent’s slope. More formally, GOAL’s Kalman filter estimates the base behavior at time t

as mbase(t) and uses this estimate in place of mbase in Equation 3.5. GOAL uses a standard

Kalman filter formulation:
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m−base(t) = mbase(t− 1)

e−b (t) = eb(t− 1) + qb(t)

kb(t) =
e−b (t) · xup(t)
xup(t)2 · e−b (t)

mbase(t) = m−base(t) + kb(t)(
1

m(t)
− s(t) ·m−base(t))

eb(t) = [1− kb(t) · xup(t− 1)]e−b (t)

(3.6)

In this formulation, kb(t) is the Kalman gain for the constrained metric, m, being con-

trolled. The m(t) denotes measured behavior of the constrained metric during the last win-

dow. The m−base(t) and mbase(t) are the next to last and last estimates of mbase. Similarly,

e−b (t) and eb(t) are the next to last and last estimates of the error variance.

The Kalman Filter is useful because it provides optimal estimates of the application

workload and is exponentially convergent [51]; i.e, the estimate will converge in a number of

iterations proportional to the logarithm of its error. Furthermore, the user or the developer

does not need to provide any additional data, these guarantees are provided using data that

is available to GOAL during execution.

Scheduling Knob Configurations Even after accounting for workload changes, the vir-

tual xup from Equation 3.5 is not useful by itself; it must be translated into actual knob

configurations. A set of values for knobs can be represented as a vector k, and a knob con-

figuration is an assignment of a value to each knob component in the vector. For example,

our video encoder from Figure 3.1 has a knob vector with four components (one each for qp,

me, numCores and coreFreq), and the default configuration is ⟨30, 1, 1200, 4⟩. Each knob

configuration has an expected effect on each metric, as estimated by GOAL’s model builder.

In our example those metrics are throughput (frame rate), quality, and energy. In addition,
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the xup signals are continuous while the available knob settings are discrete.

We translate xup from Equation 3.5 to discrete knob configurations by scheduling over

time; i.e., spending different amounts of time in knob configurations such that the average

over the time period is the desired continuous value. This scheduling problem is formulated

as a constrained optimization problem (COP, which is extracted from the AdaptSpec by

GOAL’s compiler) where the xup value is the constraint to be met and the decision variables

are the time to spend in the knob configuration vectors:

optimize
∑
T

F (k) · Tk (3.7)

s.t. xup(t) =
1

T
·
∑
k

ˆxupk · Tk (3.8)

T =
∑
k

Tk (3.9)

Tk ≥ 0, ∀k (3.10)

Here T is the time window (defaults to 40 but can be set using an environment variable)

over which to schedule, Tk is the time to spend in the kth knob configuration, and ˆxupk is

the expected xup for k (from GOAL’s model builder Section 3.3.3). F (k) is an objective

function over knobs defined in the AdaptSpec and extracted by the compiler. For example,

in the CCTV application (Section 3.2), the objective on line power is to maximize quality.

Equation 3.8 requires that the average of all configurations’ predicted ˆxupk values come out

to the desired xup(t) value, while Equation 3.9 requires that the sum of times spent in each

configuration is equal to the total time over which we are scheduling. Equation 3.10 ensures

that there are no negative time values. The controller sets the virtual xup(t) to ensure the

AdaptSpec’s constraint is met, and this optimization problem ensures that virtual signal is

translated into specific knob settings to deliver the desired xup.
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Handling Non-Linear Behavior GOAL’s AdaptLog uses a linear control model (Equa-

tion 3.5) and solves a linear optimization problem (Equations 3.7–3.10). Of course, most

computer systems will exhibit non-linear behavior, especially when combining knobs. Thus,

we discuss why this formulation suffices to handle non-linearities. Note the adaptive control

(Section 3.3.1) approximates non-linear shifts in application behavior over time. We there-

fore focus on non-linear interactions in knob behavior. For example, the performance of a

knob configuration is likely a non-linear function of each component knob in the configura-

tion. The key intuition is that Equations 3.7–3.10 transform a non-linear optimization over

the space of all knobs into a linear problem over an exponential search space. Fortunately,

however, the problem structure makes it practical to solve.

GOAL’s model builder estimates the ˆxupk values for each knob configuration. Given

that k here is a vector of knob configurations, the total size of the configurations space is

the cross product of all allowable knob settings. So, while the optimization problem in the

previous section is linear, there is a nonlinear number of decision variables (the times to

spend in each configuration).

However, there are only two non-trivial constraints (Equations 3.8 and 3.9). By the dual-

ity of optimization problems there is an optimal solution where exactly two of the configura-

tions are allocated non-zero time [47]. Furthermore, those two configurations correspond to

two configurations on the convex hull of the tradeoff space represented by the values of F and

xup. For example, if the goal is to meet a performance constraint (xup) and optimize accu-

racy (F ), then the optimal solution will involve two configurations on the optimal frontier of

performance and accuracy; specifically, the two configurations whose estimated ˆxupk values

are just below and just above the target xup(t) [47]. Those two configurations can easily be

found from a lookup table, so GOAL’s Glue takes the model from the model builder and

the AdaptSpec from the compiler and forms a lookup table that considers only the Pareto-

optimal tradeoffs in the objective and constraint metrics. Sorting into the Pareto-optimal
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points can still be expensive (O(|k| log(|k|)), but is only done when a new AdaptSpec is

made available. We evaluate the practical overhead in Section 3.6.3 and Section 3.6.8.

Control Theoretic Formal Properties The most important guarantee is that the sys-

tem converges to the constraint. Unlike AdaptLogs based on learning methods such as RL

or Bayesian Optimization which do not provide guarantees of convergence to constraint,

GOAL’s AdaptLog uses adaptive control. It thus inherits the formal control theoretic guar-

antees of a typical control system [96]. GOAL’s AdaptLog will converge provided that the

estimated base behavior mbase(t) and the predicted speedups ˆxupk are within a factor of 2 of

their true values. This analysis is based on straightforward application of control theory [76].

Furthermore, even if the base behavior estimation is incorrect momentarily, the Kalman filter

is exponentially convergent in error, meaning that estimate will be corrected in a logarith-

mic number of iterations. We evaluate GOAL’s empirical error tolerance (Section 3.6.6)

and find that GOAL’s practical behavior matches the theoretical analysis: GOAL tolerates

extremely large over-estimations of xup and tolerates under-estimations up to a factor of

0.55; e.g., predicting 16.5 frames per second when the true behavior is 30. This robustness is

yet another reason we favor a control theoretic formulation for GOAL’s AdaptLog and it is

consistent with prior work that shows adaptive control techniques do a better job of meeting

operating constraints than learning-based techniques [146].

Connecting with the Rest of GOAL GOAL’s virtualized adaptation logic requires

the following parameters to be supplied by the rest of the GOAL runtime:

• Target behavior mtarget: Users specify this value as a constraint in their AdaptSpec

and it is extracted by the JIT compiler (Section 3.3.2).

• Objective function F : This too is provided by the user in the AdaptSpec, extracted

by the compiler.

• Expected behavior for target metrics ( ˆxupk): These values are stored in lookup
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tables, dynamically constructed by the runtime using the model learned using the

model builder (Section 3.3.3).

• Schedule window (T ): This value is the window parameter to GOAL’s optimize

method. T is provided to the AdaptLog at initialization.

• Measured Behavior (m(t)): These measurements are provided by the runtime.

This parameterized AdaptLog is general and dynamic. It is general because it works

with any knobs and measures that can be specified using GOAL. It is dynamic because the

runtime can rapidly change the AdaptLog by simply passing in new parameters.

3.3.2 Adaptation Specification Compiler

The GOAL compiler extracts the following from the AdaptSpec: (1) a list of metrics, (2)

a list of all knob configurations, (3) knob constraints and (4) the goal, which includes m,

mtarget and F (Section 3.3.1). All values except for F are used to initialize the GOAL

runtime and interpret the model learned by the model builder. However, F needs to be

evaluated repeatedly when computing schedules as it is the objective function to optimize.

F cannot be precomputed because it might be an arithmetic expression over several metrics.

Therefore, we adopt a two-step evaluation approach.

In the first step, all aforementioned objects from the AdaptSpec’s abstract syntax tree

are translated to Swift objects using the technique proposed by Carrette et al [52]. All

configurations from the extracted list are converted into knob configurations objects. A knob

configuration is an object with an apply method, that sets the application and system level

knobs to their corresponding values. These objects correspond to the k from Equations

3.7–3.10. The m and knob constraints are used to make a lookup table containing the

ˆxupk and a configuration object for configurations, k, that meet all knob constraints. F

is translated into a Swift closure so that it can be executed by the AdaptLog with low

overhead while computing schedules. In the second step, the AdaptLog continually executes
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the aforementioned closure—once the observed values for each measure are available—to

evaluate F as it produces the knob schedule. During execution, a GOAL application can

modify the AdaptSpec which triggers recompilation (starting over from the first step).

3.3.3 Model Builder

GOAL’s model builder operates in two modes. In the first—pre-deployment—it runs user-

specified test workloads and measures how changes in knobs cause changes in metrics. Specif-

ically, it executes a sampled subset of all knob configurations and estimates the metrics for all

allowable knob configurations. The model builder then learns the model using this collected

data by using linear regression to compute a piecewise linear model representing the expected

behavior for a metric given a knob configuration. In the second mode—during deployment—

the model builder interprets and uses the learned model to predict the impact of particular

knob configurations on all metrics. Prior work could be used to replace our learner with

more accurate or efficient learners [69, 63, 62]. However, our empirical evaluation shows that

GOAL’s control system is robust to substantial errors in profiling (Section 3.6.6), so we use

piecewise linear models as a proof of concept and leave the investigation of more advanced

learning methods to future work.

3.3.4 Limitations

While GOAL provides significant advantages over prior work, there are several aspects that

deserve further discussion.

Foremost, GOAL can only manage goals that can be expressed in terms of quantifiable

measures that can be used by the adaptation logic to make adaptation decisions.

GOAL’s AdaptLog handles non-linear, non-convex optimization problems by exploiting

problem structure and Pareto-optimality to schedule combinations of knob configurations

(Section 3.3.1). This approach works because there are a small number of possible con-
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straints. Essentially, we have transformed a problem that would be exponential in the space

of possible knob configurations into a problem that is exponential in the number of con-

strained metrics. In practice, we believe this is a reasonable tradeoff because there are

typically many knobs that affect one constraint and there is usually only a small number of

metrics for which there is required behavior. Thus, the number of constraints will be much,

much smaller than the number of possible knob configurations.

GOAL actuates hardware-specific knobs on the system’s behalf. While it is easy to ma-

nipulate some hardware platform specific knobs (e.g., the core usage), others (e.g., DVFS

frequency) require special permissions. Hence, GOAL systems may require elevated privi-

leges to manipulate certain knobs. Section 3.6.5 shows that system and application knobs

can be split into multiple modules, however.

As a proof of concept, GOAL’s semantics currently only support discrete knobs. Inter-

esting future work would be assessing the benefits of continuous knobs.

3.4 The GOAL Programming Interface

We implement GOAL as an extension to Apple’s Swift [30]. Thus, GOAL is statically

typed and memory-safe with predictable performance thanks to reference counting storage

management and a strict evaluation strategy. GOAL consists of ∼9.5K lines of code written

in a combination of Swift and C, not including third party libraries.

3.4.1 The GOAL Library API

The GOAL library API provides a type (Knob), and two core functions (measure and

optimize). Figure 3.1b shows the adaptive version of the application that makes use of

the GOAL programming interface

GOAL provides three additional functions: restrict, control and intend. These

allow programmers to interact with the runtime from the core application. restrict limits
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the range of allowable knob values. control returns the knobs to their original range.

intend updates the entire adaptation specification. We discuss the benefits and uses of

control/restrict functions in Sections A and 3.6.

The Knob Type From the user’s perspective, the type Knob<T> is a type-safe immutable

cell that replaces a variable in the base program, and enables the runtime to adapt the cell’s

value. In our example, qp, me, rf become knobs and their original values initialize the Knob

instances. The reference values represent the knob’s default values and make it possible

to compile and execute a GOAL application as a normal Swift program, with the original

semantics. A Knob’s is accessible with a get() method.

While the GOAL runtime will generally be responsible for setting the knobs, the Knob

type can be manipulated directly from within the core application using: restrict and

control. restrict explicitly defines a range of values for a particular Knob. The runtime

uses this range to constrain the configuration space available for adaptation. Calling the

method without any arguments fixes the Knob to the value it had at the time of the method

call. The control method removes any limits from previous calls to restrict. Note that

these functions are really semantic sugar for intend and are provided because many changes

to the adaptation specifications simply change the knobs’ allowable settings.

The Measure Function The measure(name,value) API reports a value of the measure

name, providing a view of the application’s current quantifiable behavior.

Some measures are explicitly reported through the measure API and others are implicitly

recorded by the runtime. The implicit measures include performance, latency, and system-

level measures such as total energy, energy per iteration, and power consumption. The

runtime expects the measures declared in the adaptation specification to be reported during

execution. If a measure is not reported the application terminates gracefully and provides

an error message including the name of the missing measure. Any extra measures reported
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by the application that are not a part of the active AdaptSpec are tracked but not used for

adaptation.

The developer may dynamically introduce new measures dynamically. However, the

developer must also provide a corresponding model (Section 3.3.3). The runtime then starts

tracking the new measure as it would any other.

Optimize Loop optimize takes as parameters: a list of knobs that the runtime should

use for control, a routine (block of code) that should be monitored to provide feedback

to the adaptation backend, and an optional window size over which measure statistics are

computed. Conceptually the optimize function replaces the part of code that is repeatedly

executed by the application and needs adaptation. In our example application the optimize

function replaces the while loop over frames. Thus, optimize captures the adaptive loop

that is common to any application that implements the OODA or MAPE patterns.

The window size segments the sequence of iterations into conceptual blocks. For a suf-

ficiently small window size, the application behavior is assumed to be sufficiently uniform

that average measure values of the previous window are representative of the iterations of

the next window. On the other hand, the window size should be large enough that the

windowed statistics filter out transients, caused by rare and unsystematic events. Thus, the

window size is typically identified by the application developer, who will be a domain expert,

familiar with the expected behavior of the application under different conditions.

GOAL is not tied to a single control structure. For brevity, we omit full of discussion

an alternative design for optimize that can be used with recursive and asynchronous codes.

In this version, optimize is a method invoked by the core application at the completion of

a ‘step’ of computation upon which the runtime needs to modify the values of the Knobs

to continue to meet the adaptation goal for the next ‘step,’ where a step is just the time

between recursive calls or asynchronous events.
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The Intend Method intend changes the adaptation specification at runtime. The

method takes as arguments the type of optimization that needs to be performed, a string

representation of the objective function, and a string representation of the constraint expres-

sion. While all GOAL applications start with an initial adaptation specification, intend

overwrites any previous specification and the runtime immediately adjusts to meet the new

AdaptSpec.

3.4.2 Supporting Multi-Module Adaptation

In large computing systems, multiple developers might want to independently develop adap-

tive modules and GOAL supports this by allowing multiple optimize calls. However, the

sets of knobs used by different optimize calls have to be disjoint and the GOAL runtime

will throw an error if this is not the case. After initialization, the runtime manages execution

and actuates knobs of each optimize independently.

During execution, one module might modify a knob that affects a metric monitored by

another module. For example, a module might meet a power goal by lowering clock frequency

and thus reduce throughput in a different module. The base speed of the latter module will

thus be underestimated. However, GOAL’s adaptive control (Section 3.3.1) will observe and

account for this change. In this example, the runtime’s base speed estimation will update

to account for the lowered frequency. GOAL will meet goals of all modules if they are

noncompeting (i.e., GOAL cannot constrain system power in one module and minimize it in

another). Supporting competing goals is an open research problem in adaptive computing.

Having language support could make this problem easier and we leave that to future work.

3.4.3 Adaptation Specification Language

Figure 3.5 shows the adaptation specification language’s grammar. {·} and ⟨·⟩ denote a set

and a sequence of elements, respectively. The arity of a function f is denoted by |f |. The set
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s ∈ Spec ::= goal o(e) [ such that m == c ]

measures { mi : ti }1≤i≤|Ms|

knobs {ki = ei [reference ci] }1≤i≤|Ks|

[ such that e ]
o ∈ Opt ::= min|max
e ∈ Expr ::= c|m|f⟨ei⟩1≤i≤|f |

c ∈ C ::= constants
t ∈ T ::= type names
m ∈ M ::= metric names
k ∈ K ::= knob names
f ∈ F ::= function names

Figure 3.5: The GOAL Adaptation Specification Language

of names of knobs declared in an AdaptSpec s ∈ Spec is denoted by Ks. The set of names

of measures declared in s is denoted by Ms. Figure 3.1c is an example AdaptSpec for the

encoder in Figure 3.1b. An AdaptSpec consists of a COP, the metrics to monitor and the

knob along with their valid values that can be used to meet the COP.

Goal This section encodes a constrained optimization problem (COP), expressing correct

application behavior in terms of its measures. The goal has five parts:

• The optimization type (o ∈ Opt), either min or max.

• The objective (e ∈ Expr), an expression on measures.

• The constraint metric (m ∈ M), a metric (latency in our example) that is associated

with constraints.

• The constraint target (c ∈ C), the constraint value (30.0 seconds per iteration in our

example).

Measures This section declares quantifiable metrics like latency, bitrate, etc., that should

be observed by the runtime. Currently, metrics may only have the Double type, but any

totally ordered type that supports the operations used in the objective function could work.

Knobs This section defines the available configuration space. The knob definitions consist

of a name, a range expression that evaluates to a list of constants, and a reference value.
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The name associates the knob definition with a Knob instance in the application. The list of

Knobs in the AdaptSpec can be a subset of the Knobs from the code. The runtime will only

use the Knobs defined in the AdaptSpec during execution. For all the Knobs not defined in

the AdaptSpec, the runtime will only use the reference value in the code. Reference values

in the AdaptSpec override those passed to the knob constructor. Optionally, developers can

define a knob constraint : an arbitrary Boolean expression over the knobs. GOAL’s runtime

then filters out any configurations that violate these knob constraints before passing the

model to the AdaptLog.

3.5 Evaluation Methodology

We evaluate the following:

• Generality: Can GOAL support a wide range of metrics and knobs while meeting

goals as well as prior approaches designed for specific goals and knobs?

• Dynamism: When meta-adaptation is performed, does GOAL converge to the new

AdaptSpec while providing near-optimal behavior for the objective function?

• Robustness: Does GOAL reliably meet goals even in the face of multi-module adap-

tation, errors in the learned model, and time varying workloads?

This section details the applications, platforms, points of comparison, and metrics used to

evaluate these properties.

3.5.1 Applications and Platforms Evaluated

We implement 7 adaptive applications from prior work and then augment them to perform

meta-adaptation. We start each with an AdaptSpec equivalent to one used in existing

literature. At runtime, however, we change the goals or knobs. Table 3.2 shows the details,

including the number of application and system knobs, the initial objective and constraint,

and the required meta-adaptation. The applications cover a wide range of system and

78



Figure 3.6: SAR’s throughput is non-linear with local optima.

application knobs, metrics, and goals; and they exhibit nonlinear knob interactions and thus

are difficult to model and control [218, 71, 67]. Consider the Synthetic Aperture Radar (SAR)

application. Figure 3.6 shows SAR’s throughput (represented by color) as a function of the

application (y-axis) and system (x-axis) knobs. The figure shows the non-linear relationship

with many local optima. All other example applications have similar knob interactions.

Hence, optimizing such applications requires escaping local optima and accounting for non-

linearities.

To further demonstrate generality, we use two system platforms with distinct knobs. Four

applications target an embedded system: an ARMv7 based ODROID-XU3 (Exynos5422)

with 2GB of RAM, running Ubuntu 16.04 (GNU/ Linux 3.10). Three target a server: an

x86 (Intel i7-6700) with 8GB of RAM, running Ubuntu 18.04 (GNU/Linux 5.30). All use

multi-threading equal to the core count.

79



3.5.2 Adaptation Approaches Compared

We compare GOAL to prior approaches including:

• Linear Control: This approach uses a single linear control model for all applica-

tions [96]. This comparison is illustrate GOAL’s ability to cope with profiling errors

and shifts in application workload.

• Application-specific AdaptLogs: Using prior work, we synthesize a specialized

AdaptLog for each application’s specific AdaptSpec [76]. This approach can meet each

application’s initial AdaptSpec, but not the new one created through meta-adaptation.

This comparison is performed to prove that GOAL is able to meet goals as well as any

application specific AdaptLog.

• Multiple Application-specific AdaptLogs: We synthesize a specialized AdaptLog

for each application’s AdaptSpecs both before and after meta-adaptation. At runtime,

we perform meta-adaptation by shutting down the first AdaptLog and initializing the

second. However, it should be noted that this approach is clearly impractical as users

must know the new goals and knobs ahead of time

• Oracle: We exhaustively search the configuration space to find the best knob config-

uration for all AdaptSpecs.

3.5.3 Evaluation Metrics

We quantify the approaches using the following metrics:

• Mean Absolute Percentage Error (MAPE): Each application’s AdaptSpec has a

constraint for a particular metric. To calculate MAPE, at each call to optimize() we

measure the absolute error between the constraint and the achieved metric, then take

the mean over all iterations. Lower is better.
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• Normalized Performance: The AdaptSpecs also specify an objective, or a metric

to be optimized. To measure how well GOAL optimizes the objectives we normalize

to the Oracle’s performance. Higher is better as the oracle will achieve an optimum

performance of 1.

• Iterations until Convergence: We measure the iterations required to converge to

the goal after meta-adaptation. This metric will be used to compare GOAL to the

approach that pre-synthesizes multiple, application specific AdaptLogs. Lower is better

as it represents faster convergence after meta-adaptation.

3.6 Evaluation And Observations

This section evaluates key aspects of GOAL, specifically:

1. Does GOAL meet user-defined constraints across a range of knobs and metrics?

2. Does GOAL achieve near-optimal objectives when performing meta-adaptation?

3. Does GOAL converge quickly after meta-adaptation?

4. How much user effort does GOAL require?

5. Does GOAL support multi-module adaptation?

6. Is GOAL robust to errors in modeling?

7. Is GOAL robust to large changes in workload?

8. How much overhead does GOAL incur?

These aspects justify GOAL’s generality, dynamism and robustness. In Section A, we discuss

each case study in detail.
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Figure 3.7: GOAL reliably meets the constraint of adaptation.

3.6.1 Does GOAL meet user constraints?

For each, we measure the MAPE for the application-specified constraints (as listed in Ta-

ble 3.2). Figure 3.7 shows the results with MAPE on the vertical axis, applications on the

horizontal axis, and a bar for each AdaptLog. Due to the complicated and varied application

behavior, the Linear Controller fails to reliably meet the constraint exhibiting a mean MAPE

of ∼29%. However, both GOAL and Application-specific AdaptLogs meet the goal reliably,

exhibiting less that 4% MAPE. We note that the results for the Application-specific Adapt-

Logs and Multiple Application-specific AdaptLogs are the same for this experiment, so we

omit the latter for clarity. In summary, GOAL provides a single AdaptLog implementation

that generalizes across a range of metrics and knobs while achieving errors comparable to

approaches that do not generalize.

3.6.2 Does GOAL optimize objectives?

We now consider the normalized performance when each application performs meta-adaptation,

changing its AdaptSpecs as listed in Table 3.2. We report results for application-specific

AdaptLogs, Multiple application-specific AdaptLogs, GOAL, and the Oracle. We omit the

Linear Controller results because it fails to meet the constraints (as shown in the previous

section), so its performance is not meaningful.
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Figure 3.8: GOAL is optimal when meta-adaptation is needed.

Figure 3.8 shows the results. The single Application-specific AdaptLog has poor per-

formance because it must use the initial AdaptSpec throughout execution. However, the

versions using Multiple application-specific AdaptLogs and GOAL improve on relevant met-

rics by 1.69× over application specific AdaptLogs, while achieving ∼93.7% of the Oracle’s

performance.

These results show that when an application’s requirements change, the application per-

forms suboptimally with prior work that does not support meta-adaptation. GOAL, how-

ever, performs as well as an approach that knows how the requirements will change ahead

of time and synthesizes multiple application-specific AdaptLogs for both requirements. This

demonstrates GOAL’s support for dynamic changes in adaptation specifications, as it per-

forms near optimally when applications trigger meta-adaptation.

3.6.3 How quickly does GOAL converge?

The previous section shows that GOAL’s average performance is equivalent to an approach

that is custom built for a specific AdaptSpec. We now show that GOAL provides an addi-

tional benefit by measuring how quickly each approach (Multiple Application-specific Adapt-

Logs and GOAL) reconverges to the new constraint after meta-adaptation.

Figure 3.9 shows the results with iterations required for convergence on the vertical
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Figure 3.9: GOAL’s runtime allows rapid convergence after meta-adaptation.

axis. GOAL converges ∼2.14× faster than using multiple application-specific AdaptLogs.

The application-specific approach takes longer due to the expense of destroying the old

AdaptLog and initializing the new one. This process incurs two sources of overhead: (1) the

time required to perform these costly operations and (2) a loss of accumulated history of

observed metric values, which must be collected by the new AdaptLog from scratch. Such

history is crucial for any control or learning based AdaptLog and without it, convergence is

delayed. This ability to retain history across multiple metrics and knobs is an advantage to a

single, general adaptation framework like GOAL. GOAL converges quicker to the new goals

because the runtime tracks all relevant metrics at all times, ensuring that no data is lost when

performing meta-adaptation. These results support the claim of dynamism by showing that

GOAL converges much quicker than combining existing AdaptLogs without explicit support

for meta-adaptation.

3.6.4 How much effort does GOAL require?

We count the lines of code that need to be added/modified to the original non-adaptive

versions of the applications. We do not count lines of code to implement the AdaptLog.

Here we only compare GOAL and Multiple Application-specific AdaptLogs because these

are the only two approaches which can implement meta-adaptation.
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Figure 3.10: GOAL requires minimal development effort for adding adaptation and
meta-adaptation.

Figure 3.11: GOAL reliably meets goals of multiple modules.

Figure 3.10 shows the number of lines added/modified on the vertical axis. Multiple-

application specific AdaptLogs require around 1.92× more changes than GOAL. These

results show that GOAL’s interface facilitates adding adaptation in a wide range of ap-

plications without significant development effort, and much less than trying to dynamically

switch between prior approaches. Finally, note that GOAL can support any type of meta-

adaptation, while prior work takes more effort and yet only supports the AdaptSpecs specific

to each application.

85



3.6.5 Does GOAL support multiple modules?

Results so far have used a single optimize() call per application. However, in many sce-

narios, multiple developers may each want to contribute a module with its own optimize()

method (as described in Section 3.4.2). Here, we evaluate how well GOAL performs in such

multi-module adaptation scenarios.

Specifically, for each application, we implement two modules: one for the application

knobs and one for system knobs. The application modules meet the constraints from Ta-

ble 3.2. The system modules meet a power constraint while delivering maximum perfor-

mance. The challenge here is that both modules affect performance, meaning that even

though the knobs are independent they still affect each other.

We then measure the MAPE for both the application and system modules. Figure 3.11

shows the results. Both the application and system modules meet their constraints reliably,

exhibiting a low mean error of ∼4%. These results show that GOAL effectively deals with

complex, multi-module adaptation, a capability that other approaches do not support.

3.6.6 Is GOAL robust to errors in modeling?

As mentioned in Section 3.3.3, GOAL development includes modeling the application. We

now evaluate how sensitive GOAL is to possible errors in the model learning step. For each

application, we introduce errors by scaling all the model’s estimates (i.e., the ˆxupk values

used in Equations 3.8–3.10) by an error factor and perform the same experiments as above.

Figure 3.12 shows two charts with MAPE (vertical axis) for each application given a model

that is scaled by the value on the horizontal axis; the left chart shows under-estimates, the

right chart shows over-estimates. For underestimated models, GOAL performs reliably in

the presence of large errors, producing a MAPE that stays relatively low at a value that

is roughly equivalent to results from above (Figure 3.7) until scaled down to 0.55. Thus,

the model has to be significantly underestimated before GOAL fails to meet its constraints.
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Figure 3.12: GOAL is robust to substantial error in profiling.

In contrast, MAPE is not impacted by overestimated models. This suggests that GOAL

can support a wide range of learners for model building, but they should be biased slightly

towards overestimates. Overall, these results illustrate that GOAL is robust to substantial

errors in modeling.

3.6.7 Is GOAL robust to changes in workload?

Adaptive systems, in general, should meet goals despite unpredictable, external disturbances.

We now demonstrate that GOAL provides this capability by adapting to different scenes for

a video encoder. The first is a high-motion soccer game and the second is a low-motion news

cast. Without adaptation—i.e., with a constant knob configuration—the scene change causes

significant changes in throughput because different levels of motion require significantly

different amounts of work to encode.

Figure 3.13 shows the power and throughput for three different video encoder implemen-

tations: (1) Non-Adaptive, using the fixed, default knob configuration; (2) Linear Controller,

similar to the one above, but now we carefully calibrate the control to meet the goal for the

initial scene, and (3) GOAL. The different colored regions show two different input scenes.

The impact of scene changes can be seen in the execution of Non-adaptive whose throughput

and power change from scene to scene. Linear Controller and GOAL both have a throughput
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Figure 3.13: GOAL is robust to shifts in workload.

constraint of 30.0 frames/s. The changing workload negatively impacts Linear Controller,

which, is stable only for the first scene, but then starts to oscillate after the scene change and

overall has a high MAPE of 22.5%. However, GOAL copes with these changes and meets

the goal reliably during all scenes, exhibiting a much lower MAPE of 2.8%. The Linear

Controller fails because the difference in the base throughput (mbase from Equation 3.5) is

over a factor of 2× different from scene to scene. GOAL can handle this change, however,

because it continually estimates the time-varying base behavior to account for these types of

changes. These results further demonstrate the value of GOAL’s adaptive control approach

that adjusts the control to handle non-linearities in application workload.(Section 3.3.1).

3.6.8 How much overhead does GOAL incur?

We evaluate the overhead of performing adaptation and meta-adaptation in terms of the

geometric mean of times required to perform essential operations using GOAL.

Adaptation only requires computing schedules using the AdaptLog (Equations 3.4–3.10).

The time to compute a single schedule in the embedded applications is ∼0.68ms, while for

server applications it is ∼0.045ms. Obviously, these numbers are highly influenced by the

underlying hardware. Schedules are only computed once per window (Section 3.3.1). Hence,

the total overhead per iteration becomes negligible.
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Meta-adaptation requires calls to intend, restrict and control. The time required

for intend in the embedded applications is ∼5.14ms, while in the server applications it is

∼1.07ms. The times for calls to restrict and control in the embedded applications is

∼11.79ms and ∼8.31ms, respectively. These times in the server applications are ∼0.68ms

and ∼0.55ms, respectively. This overhead includes the time to recompile the AdaptSpec

and compute the new lookup table (Section 3.3.1). GOAL adjusts the goal for the window

immediately after meta-adaptation is performed. For all subsequent windows, the goal is

set to the value in the AdaptSpecs. This means that, GOAL accounts for its own effect on

metrics and ensures constraints are met despite GOAL’s own overhead. It should be noted

that applications are expected to perform meta-adaptation far less frequently than they

compute schedules. These results show that GOAL incurs low overhead for both adaptation

and meta-adaptation.

3.7 Analysis of GOAL-based Programs

Analyzing adaptive software is strictly harder than analyzing non-adaptive software. The

difficulty arises due to both the number of dimensions along which the system can adapt

and that adaptation happens over time. Thus, extending a programming language with

adaptation specifications drastically alters its semantics, and also introduces several classes

of bugs. Though a full treatment of verification for adaptive programs in GOAL is beyond

the sope of this body of work, the following sections briefly introduce a notion of cost

semantics for adaptation inclusive programming, define some simple static analyses that

are useful in this context, and describe a testing approach for iterative adaptation inclusive

programs.
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3.7.1 Cost Semantics

While many different cost semantics have been proposed, they share the property that the

cost of an expression is compositional [42, 184]. In other words, an expression’s cost is solely

determined by the cost of each of its sub-expressions, and the rule that binds them together.

If this algebraic system captures the real cost of computation across different machines with

respect to a set of parameters, then we obtain a useful abstraction of real computational

cost. Most existing cost semantics only model a specific kind of cost; e.g. time or memory.

To extend such a semantics to GOAL, we must further abstract away the the details of the

computation’s resource usage. We call this an asymptotic cost semantics. As long as the

resource is: (a) not reusable, (b) measurable for every single execution, and (c) its cost is

additive, then the cost of a sequence of executions of a single expression can be modeled

by a sequence of i.i.d. random variables, conditional on the value of the expression’s input.

Further, the average of this sequence converges to some fixed value with an i.i.d sequence of

inputs, by the law of large numbers. We call this value the asymptotic cost of an expression e

with respect to the underlying machine M , the resource r and the distribution of the inputs

d and denote it by C[e;M, r, d].

This semantics tries to capture the average (and thus cumulative) cost instead of the cost

of each call. Intuitively, this means that the impact of compiler optimizations and external

disturbances may be smoothed out in the long run, and the asymptotic cost semantics offers

a more robust and manageable way to model the behavior for further tuning, in contrast to

call-wise cost semantics and even relational cost semantics [53].

A convenient property of an asymptotic cost semantics is that if we “unroll” the loop (i.e.

this infinite sequence) n times (denoting e; e; . . . ; e by en), then:

C[en;M, r, dn] ≤ nC[e;M, r, d],
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where the inequality would become strict only after some sort of (program) optimization.

From this, we can further define a lower bound for our asymptotic cost:

CL[e;M, r, d] = lim inf
n→∞

C[en;M, r, dn]

n
≤ C[e;M, r, d],

which characterizes (gives an upper bound for) the best cost that (program) optimization

could achieve asymptotically.

This notion of asymptotic cost semantics provides a natural way to understand GOAL

program behavior. Further, it provides a distinct advantage over other (non-asymptotic)

cost semantics, since constrained optimal parameter tuning is easily achievable with it and

almost always (that is, with probability one for all constrained non-degenerate cases which

we will elaborate below) better than tuning each execution independently. Let us consider

the knob control problem in GOAL. Suppose we have an expression ek, which depends on

a parameter k that corresponds to application knobs and a machine Mk′ , which depends on

a parameter k′ that corresponds to platform configuration knobs both defined previously in

Section 3.4.3. Our cost functions C[ek;Mk′ , ·, d] represent metrics defined in Section 3.4.3.

To minimize the asymptotic cost, we solve an infinite system corresponding to our AdaptSpec

defined in Section 3.4.3:

min
k,k′

lim
N→∞

N∑
i=1

1

N
C[eki ;Mk′i

, o, d]

subject to lim
N→∞

N∑
i=1

1

N
C[eki ;Mk′i

, rl, d] ⪯ Rl, ∀l,

where o is the resource corresponding to the objective function in the AdaptSpec, rl is the

resource we want to constrain, and Rl is the constraint value. Notice here that, although the

cost is defined differently for every different AdaptSpec, the restrict API merely changes

the domain of optimization and thus (1) the original asymptotic cost still provides an upper
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bound after restriction and (2) all the information contained in the original cost function

can be reused.

The above is equivalent to the following system:

min
w

∑
k∈K

C[ek;Mk′ , o, d]wk,k′

subject to Aw ⪯ R,∑
(k,k′)∈K

wk,k′ = 1,

wk,k′ ⪰ 0.

where Al,k = C[ek;Mk′ , rl, d], wk,k′ is the weight corresponding to each configuration (k, k′),

R is the constraint value vector, and we can denote the corresponding optimal schedule

{(k∗i , k
′∗
i )}
∞
i=0. A uni-constraint version of this equivalence has been established and studied

by Imes et. al [110].

It is easy to see that:

limN→∞
∑N

i=1
1
NC[ek∗i

;Mk′∗i
, o, d]

≤ limN→∞
∑N

i=1
1
NC[ek∗∗ ;Mk′∗∗ , o, d]

= C[ek∗∗ ;M, o, d],

where (k∗∗, k′∗∗) is a solution of the corresponding system without iterating:

min
k

C[ek;Mk′ , o, d]

subject to C[ek;Mk′ , rl, d] ⪯ Rl,∀l.

The equality happens either when the system is unconstrained, or the system is degener-
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ate. This inequality shows what we stated earlier: in the long run, optimal tuning with

our asymptotic cost model almost always outperforms tuning with a non-asymptotic cost

semantics (i.e., tuning executions independently).

3.7.2 Static Analysis

The GOAL architecture separates the specification of programs from the specification of

AdaptSpecs. The resulting flexibility comes at the cost of possible program errors, when

the definitions in the two parts of a GOAL program are inconsistent. For example, for

a program to be correct, uses of the Knob type must correspond to entries in the knobs

section of an associated AdaptSpec. In addition, the optimize construct takes a list of

knobs and passes them to the runtime. Using static analysis techniques, the system can

provide meaningful feedback early during GOAL application development, and eliminate

the possibility of certain types of runtime errors. This subsection presents three static

analyses, illustrated in Figure 3.14, which are specific to the implicit programming model.

Finding Unused Knobs Knobs defined in the AdaptSpec but not declared as a Knob

type are ignored by the runtime. On the other hand, declared knobs without configurations

in the AdaptSpec cannot be used in trade-offs while tuning the system. This can be detected

statically by collecting the list of knobs defined in the AdaptSpec, and those declared in the

GOAL application code, respectively. The analysis reports the difference, if any, between

the two lists of knobs, and marks them as unused to aid in further analysis.

Define KI to be the set of knobs defined in the AdaptSpec, KD to be the set of knobs

declared in the GOAL application code, KO to be the set of knobs passed to the optimize

construct, and KA to be the set of knobs affecting the body of optimize construct. A knob

k ∈ KA if there is a branch of execution which depends on the value of k. Then the unused

knobs KUU are defined as (KD \KI)∪ (KI \KD). The uncaptured knobs KUC are defined

as KD −KO. The unaffected knobs KUA are defined as KO −KA.

93



import FAST

let uncaptured = Knob(" uncaptured", 1)

let unaffected = Knob(" unaffected", 1)

let affected = Knob(" affected", 1)

optimize ("app", [unaffected , affected ]) {

var x = read (...)

if (x < affected.get())

{ sleep(unaffected.get ()) }

else

{ for i in 1.. <10 { sleep (20) } }

}

(a) Application Code

goal app

min(energy)

such that

latency == 0.1

measures

latency: Double energy: Double

knobs

unused = [1 reference ,2,3,4]

uncaptured = [1,2 reference ,3,4]

unaffected = [1,2 reference ,3,4]

affected = [1,2,3,4 reference]

(b) Adaptation Specifications

Figure 3.14: An Example Showing Three Kinds of Problematic Knobs

Finding Uncaptured Knobs In the case where a knob is declared, but is not passed

to the optimize construct, it is not controlled by the system. We say that these knobs are

uncaptured. An analysis finds such knobs and emits a warning.

Finding Unaffected Knobs Even when a knob is captured, the user may forget to

use it, or inadvertently misuse it in the program. Any tuning done by GOAL of such a

knob will have no effect on the system, meaning that the runtime will be unable to exploit

any trade-offs exposed by this knob. Profiling can expose the presence of such knobs, which

will correspond to near-identical entries in the measure table (Section 3.3.3). However, such

dynamic analysis can be prohibitively expensive when the configuration space is large. A

more efficient alternative is to use static analysis to identify such situations. The analysis

begins by building a data flow graph starting from the optimize construct. For each node

in the graph, it computes the knobs that affect it. Given the annotated graph, it is possible

to compute the list of all effective knobs for the optimize construct, and issue a warning

when this list is missing some declared knob.
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This definition of an unaffected knob amounts to an all-or-nothing identification problem,

and the optimization problem to be solved by the controller may be ill-defined in the presence

of such knobs. Therefore, we did not include sensitivity in our static analyses. Surely,

some form of sensitivity (how the initial condition will affect the solution) similar to the

“condition number” of a linear system can be defined for our control problem, to detect

whether the control system is functioning well. However, this would be computationally

expensive, input-dependent and platform-dependent. On the other hand, finding a branch

of code that possibly will not be controlled by some knob at runtime is a cheap solution

that is both input-independent and platform-independent. To reiterate the main difference:

the statistical approach is to detect whether the system is “ill-conditioned” while our current

approach is to find whether the system is ill-defined.

3.8 Conclusion

This work motivates the benefits of supporting general purpose adaptation and meta-adaptation.

We implement this idea as GOAL, a first-of-its-kind adaptation framework which, unlike

prior work, is not restricted to a particular set of knobs and goals. Instead GOAL uses a

virtualized AdaptLog that is parameterized by a model after the developers have declared

application knobs and metrics. This allows GOAL applications to define the AdaptSpecs,

using wide range of knobs and metrics, and seamlessly modify them during execution. The

AdaptLog is, itself, adaptive and therefore robust to adapt to nonlinear behavior and chang-

ing workloads and operating conditions. We show that GOAL’s general approach handles a

diverse range of goals and knobs, while performing just as well as problem specific AdaptLogs.

However, when the application requires meta-adaptation, GOAL performs significantly bet-

ter than prior work. Furthermore, GOAL provides an easy-to-use interface that requires

minimal effort to add adaptation and meta-adaptation to applications and even supports

applications with multiple, independent adaptive modules. We believe that GOAL’s gen-
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erality, dynamism and robustness goes a long way to fulfilling the requirements of complex

emerging systems.
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CHAPTER 4

WASL: SUPPORTING HARMONIOUS EXECUTION OF

COLOCATED ADAPTIVE COMPONENTS

Our work, GOAL, provided a natural way for developers to implement adaptation and meta-

adaptation in their applications. However, during our evaluation of GOAL we encountered

a critical missing piece for our vision of general-purpose adaptation.

We noticed that once developers have augmented their applications with adaptation

they need to deploy their applications. These applications will meet their goals desirably if

they execute individually. However, when multiple adaptive applications are colocated, they

begin competing for resources and break key assumptions that are required for successful

adaptation. This results in negative interference between adaptive applications resulting in

an inability to meet their goals.

Latency-sensitive (LS) adaptive applications are often deployed on cloud platforms which

are severely underutilized. Hence, to combat this underutilization, cloud providers often

colocate multiple applications on the same hardware. Furthermore, to improve efficiency

cloud providers may also run a system-level module that adapts knobs of the underlying

hardware to minimize power consumption in order to minimize the cloud provider’s operating

cost. Hence, adaptive applications are expected to deal with negative interference from

colocated modules in the real-world.

Prior works have suggested several approaches that allow adaptive applications to deal

with negative interference due to colocated adaptive applications. However, the design of

prior works have strict requirements on when they can be used. However, severve limitation

of prior work such as their requirement of access to knowledge of internal details of the

applications, the colocated applications and the underlying platform render them impractical

for use in the real-world.

To overcome these limitations we introduce the last part of this body of work, WASL,
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a novel model-free framework that can be used by adaptive applications individually to

allow them to meet their goals in the presence of competing colocated adaptation modules

without explicit coordination. At a high-level, WASL works by reinstating assumptions

that are broken due to the negative interference between colocated modules by modifying

the rate of adaptation of adaptive applications individually so that they do not negatively

interfere with each other. WASL is based on properties that are common to all principled

adaptation mechanisms, hence, it is a truly general-purpose framework that can be used

with any application regardless of the internal details of the application, its adaptation

mechanism or the adaptation modules with which the application may be colocated. Our

evaluation shows that using WASL applications are able to meet their adaptation goals in

the presence of more than one colocated adaptation modules. Latency-sensitive applications

achieve up to an 84% reduction in tail latency over naive uncoordinated execution. WASL

allows applications achieve performance that is similar to prior work without requiring any

explicit coordination making it a practical solution for use in the real-world.

This chapter is organized as follows: Section 4.1 motivates the need for WASL by de-

scribing the need for multi-tenancy in the cloud, discussing prior works and their limitations

that make them impractical. Section 4.2 the requirements for a usable solution, describes

how colocated applications negatively interfere with each other and presents the design and

implementation of WASL. Section 4.3 and Section 4.4 provides details of the experimental

setup used for evaluation and the evaluation itself respectively. Finally, Section 4.5 provides

a brief dicussion of potential limitations of WASL and Section 4.6 provides a conclusion.

4.1 Background and Motivation

In this section we discussion prior work and its limitations that motivate this work. Sec-

tionhow low utilization of resources in cloud datacenters leads to inefficiencies. Section 4.1.1

discusses inefficiencies in cloud datacenters’ resource utilization and presents contributions
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from prior work that aim to increase the efficiency of datacenters via multi-tenancy. In Sec-

tion 4.1.2 discusses adaptation in latency-sensitive applications, the challenges of colocating

multiple adaptive applications and prior works for adapting colocated latency-sensitive ap-

plications. Finally, in Section 4.1.3 we discuss the limitations of prior works that make them

impractical for use in the real-world.

4.1.1 Multi-Tenancy in the Cloud

Several studies have established that average resource utilization in datacenters is low [186,

39, 151]. This is because user facing, latency-sensitive applications experience significantly

different levels of traffic at different times to the day while being scaled out to thousands of

servers. This low utilization negatively impacts the operational cost of datacenters. Hence,

to maximize server utilization, service providers have started colocating different workloads

on the same physical resources [151, 81, 55] rather than powering new resources for each

workload.

However, colocating workloads is not straightforward because interference caused by colo-

cated workloads can lead to significant performance degradation. Prior work suggests tacking

this problem in two ways. The first way is to infer and colocate workloads that are least likely

to interfere with each other [151, 64, 62, 63]. The second approach is to minimize interference

by using different software and hardware-level isolation techniques [65, 124, 140, 141].

4.1.2 Adaptation for Latency-Sensitive Applications

Latency-Sensitive (LS) applications operate with service level objective (SLOs) on tail la-

tency [32, 61, 48]. Furthermore, LS application stakeholders want to reduce their own costs

my minimizing resources required to meet their SLOs.

However, meeting these requirements is difficult because modern LS applications have

several configuration parameters which impact their ability to meet their requirements [126].
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Selecting configurations that meet the application’s requirements is not easy because optimal

knob configurations depend on dynamically varying external factors such as workload and

operating conditions [91, 134, 197]. Furthermore, suboptimal configurations can lead to

significant performance issues and bugs [84, 207, 107, 163, 203].

Prior work has suggested adaptation as a way of dynamically adjusting these parameters

at both the application and the system layer to ensure that application requirements are met.

Control theory [110, 103, 78], machine learning [41, 204, 93] and combination of both [100,

154, 102] have been suggested as basis for principled adaptation.

While adaptation allows applications to meet their goals reliably, their guarantees are

violated in the presence of other colocated adaptation modules. This is because colocated

adaptive modules compete for resources and destructively interfere with each other leading

to SLO violations. Prior work mitigates this interference in several ways. First, prior work

has suggested synthesizing a single adaptation module that sets parameters on behalf of all

colocated adaptation modules [181, 213, 191, 148]. Another approach is to assign priorities

colocated modules so that lower priority modules sacrifice their SLO satisfaction for higher

priority modules [78]. Alternatively, prior works suggests modifying colocated adaptation

modules to enable passing signals between them to perform global coordination [162, 100, 99].

4.1.3 Limitations of Prior Work

To the best of our knowledge, all prior work uses the internal details of each colocated module

to delegate adaptation to a global module or perform global coordination using signaling.

Table 4.1 shows the adaptation mechanism and the coordination required for using some

of the prior works in this domain. Hence, to use prior work, all colocated workloads need

to be redesigned and reimplemented along the lines suggested by prior work. This requires

different stakeholders to share internal details and coordinate the development with other

stakeholders. Additionally, minor changes to individual adaptive modules would require
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retesting and modification of the entire multimodule system.

The restrictions and requirements imposed by prior works make their use impractical

because stakeholders are seldom willing to share proprietary information and even minor

changes to individual modules would require reconciliation with all modules. Furthermore,

even if the stakeholders are ready to share proprietary details and perform required changes,

it would be impossible to enumerate the modules with which their application might be

colocated dynamically. This would significantly restrict cloud providers’ ability to perform

dynamic colocation requiring them to colocate only compatible modules.

Furthermore, such requirements break the assumption of transparent and exclusive re-

source usage in the cloud as cloud users will have to modify their applications according to

the colocated modules. This adds signficant burden on cloud providers as they will need to

implement interfaces for discovering and coordinating with colocated modules.

4.2 WASL Design and Implementation

WASL is based on a model-free control algorithm that can be used by colocated adaptive

systems independently to dynamically adjust the rate at which they perform adaptation to

meet their goals. In this section we describe WASL in detail. We explain how WASL’s

design allows it to overcome the limitations of prior work, making it a practical framework

for mitigating negative interference between colocated adaptive systems.

4.2.1 Key Requirements

To address all limitations of prior work any proposed solution must fulfill the following

requirements:

• No a priori requirements. While the adaptive modules themselves may or may not

require models to operate, the proposed solution itself should not rely on any model
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because such models are invalidated if the colocated modules change, hence, restricting

the cloud provider’s ability to colocate any desired modules.

• Does not require internal details. The solution should not require colocated adap-

tive modules to expose internal details such as the knobs being actuated and the method

used for adaptation.

• General-Purpose. The solutions should be agnostic of the application that it is going

to be used with, the principles used for adaptation and the modules with which it may

be colocated.

• Low Overhead. The solution should have a trivial overhead compared to the adaptive

module itself, both in terms of performance and memory.

• Easily Integrated. Using the solution should not require the module to make signif-

icant changes to its implementation.

In the rest of this section, we discuss how WASL fulfills the aforementioned requirements.

4.2.2 Key Insights

This section illustrates principles underlying WASL. We first show how co-located adaptive

systems can destructively interfere with each other, show intuitively how this misbehavior

can be avoided, and then demonstrate the key insight that allows us to apply the intuition

in practice for a wide variety of adaptive systems.

Specifically, the example is an indexing search engine—Xapian [125]—running on a cloud

server. Both have been modified using prior work to make them adapt [154]. We modify

Xapian so that it adapts to its workload, meeting a QoS (latency) requirement while mini-

mizing operating cost. Our version of Xapian adaptively changes its use of hyperthreading

and core utilization (i.e., it matches the resources it requests from the cloud provider to
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Figure 4.1: Execution Trace of Xapian

the workload). Similarly, the cloud provider adapts to workload by changing both core and

uncore frequency. The cloud provider’s goal is to ensure that the application meets its QoS

requirements while minimizing its own operating cost. Both application and system adapta-

tion modules are based on control theoretic principles and thus both provably meet the QoS

requirement—when run in isolation [154].

Understanding Adaptive Interference

Figure 4.1 shows Xapian’s core usage (top), power (middle) and request latency (bottom)

as a function of time while running in three different scenarios. In the first (shown with the

blue line), only the system module is active (the application does not adapt). In the second

(orange line), only the application module adapts (the system does not). In the third (green

line), both modules adapt.

This figure illustrates the problem with co-locating multiple, independent adaptive mod-
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ules. Xapian starts well below the required latency (region 1 in Figure 4.1) and thus all

adaptation approaches reduce resource usage to minimize costs. The application module

reduces core usage (from 8 to 2) and the system module reduces core and uncore frequency

(from 2.8Ghz to 2.1Ghz and from 2.8Ghz to 1.2Ghz respectively). Figure 4.1 shows that

when only one module is allowed to adapt (i.e. without a co-located adaptation modules),

the latency requirements are met. However, when both modules adapt simultaneously, the

latency far exceeds the target and the QoS constraint is violated (region 2 in the figure).

Hence, in the next adaptation window, both modules independently increase resource usage,

but the cumulative impact of these changes drives the latency back below the target (region

3 ). This oscillatory behavior repeats throughout Xapian’s execution (region 4 of Figure 4.1

and causes its 95th percentile latency to increase by 35% compared to scenarios with only

one adaptive module. This example leads to observation 1:

Observation 1: Multiple adaptive modules interfere with each other because they assume

they are the only actor in the system and thus do not account for the behavior of other

adaptive modules.

Mitigating misbehavior

Observation 1 tells us that because of the cumulative impact of changes made by all co-

located modules, the application behavior becomes significantly different from the behavior

expected by individual modules during each adaptation window. This mismatch in measured

and expected application behavior leads to the aforementioned oscillatory behavior. How-

ever, the magnitude of mismatch could have been decreased if the modules had lowered the

amount by which they attempt to modify application behavior in a single adaptation window

by making less drastic changes to their respective knobs. For example, in the multimodule

scenario, if the application module had reduced the number of cores to 4 and the system

module had reduced the core and uncore frequencies to 2.4Ghz and 1.2Ghz respectively in-

105



stead of the values mentioned in our discussion on understanding adaptive interference, the

application would have achieved the target latency during the second adaptation window

(region 2 in the figure), thus avoiding oscillations. This reasoning leads us to observation 2:

Observation 2: Interference between co-located adaptive modules can be mitigated if each

module modifies the magnitude by which it tries to adapt the application behavior.

Modifying the Rate of Adaptation of Modules

To use observation 2 modules need to dynamically modify the rate at which they attempt

to change the behavior of the application. We found that, to the best of our knowledge,

all prior principled adaptation modules contain quantities, often scalar variables that are

a part of their formulations, that determine the weight of the most recent measurements

towards adaptation decisions. Setting them to high values increases sensitivity to recent

measurements leading to more drastic configuration changes in each adaptation window

and vice versa. Hence, by changing these values dynamically we can directly modify the

magnitude by which the adaptation module tries to adapt the application behavior. For

example, in Odyssey and Lin et al. we can directly change variables denoting the weight

assigned to the most recent measurements [80, 137]. In POET, CALOREE and Powerdial

this behavior can be achieved by modifying the poles [110, 103, 154]. Similarly, we can

modify the Kalman Gain, interaction rate and the workload in ALERT, Aeneas, Grape

respectively [198, 50, 175]. This leads us to observation 3:

Observation 3: To the best of our knowledge, all adaptation modules contain variables

that can be dynamically modified to change the rate at which they respond to the measured

behavior.
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Determining the Amount by which to Change the Rate of Adaptation

Using observation 2 in any meaningful way requires adaptation modules to determine the

amount by which their rate of adaptation should be modified. We note that a vast majority of

prior adaptation modules implement adaptation using feedback control loops [172, 147, 161].

Hence, modules need to measure application behavior for feedback. Similarly, modules base

the choice of configurations for the following window on a computed expected behavior or

reward, this is the behavior expected to be achieve after running the application with the

chosen configurations for the next adaptation window. As explained in Section 4.2.2, a

high difference between the expected and measured behavior is the root cause of application

misbehavior. For our discussion we define inaccuracy as the difference between the expected

and measured behavior of a module. We note that the higher the rate of change of inaccuracy,

the higher the chances that changes made by the adaptation module will not achieve expected

behavior and, hence, lead to misbehavior. This leads us to observation 4:

Observation 4: The inaccuracy of an adaptation module can be computed easily using

information that is already being used by the module and the rate of change of this inaccuracy

can be used to determine the amount by which to modify the rate of adaptation of a module.

4.2.3 WASL Design

In this section we describe how WASL implements the aforementioned insights while meeting

the requirements stated in Section 4.2.1. To this end, we first describe how WASL uses

the rate of change of inaccuracy to update the rate of adaptation of adaptive modules

dynamically. Then we describe how WASL addresses the challenge of estimating the rate of

change of inaccuracy.
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Algorithm

At the end of each adaptation window, WASL’s algorithm estimates the rate of change of

inaccuracy and computes the factor by which the adaptation module needs to modify its

rate of adaptation.

Instead of estimating inaccuracy using raw latency, WASL calculates the inaccuracy at

each step using the latency slowdown, this allows WASL to account for the magnitude of

the inaccuracy as well. However, we note that not all adaptation modules explicitly use or

calculate the slowdown during their operation. But since the measured and expected latency

is already available, the slowdown can be calculated easily by dividing it by the estimate

of the latency achieved using the most performant configuration which can be estimated

in constant time using only the information that is already available in the adaptation

module [110, 154, 206].

WASL’s algorithm, shown in Algorithm 2, is a straightforward implementation of the

aforementioned insights. The algorithm takes as input the expected latency from when

the knobs were last modified and the measured latency. It computes a difference between

the two and provides this as an input to the computeRateOfChange method which returns

an estimate of the rate of change of inaccuracy. If this rate of change is greater than a

predefined threshold, inaccuracyThreshold, then it computes a fraction by which the rate

of adaptation should be modified and returns it to the adaptation module, otherwise, it

returns the last calculated fraction.

The inaccuracyThreshold is used to filter out the noise both from process and mea-

surement and action of colocated controllers. It is expected that all controllers are robust

to such noise but not robust to the noise due to the actions of colocated controllers. The

value of this threshold is independent of other controllers and depends on the environment

in which the controller is deployed. WASL gives additional feature for the controller to be

aware of the others. Each controller itself should be robust from the noise from the very
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Listing 2 WASL Algorithm
Initialize:

inacc−1 = 0
inacc−2 = 0
fraction−1 = 0
inaccuracyThreshold = T

Inputs:
expected = Expected Latency Slowdown
measured = Measured Latency Slowdown

inacc0 = measured - expected
rateOfChange = rateOfChangeEstimator(inacc0, inacc−1, inacc−2)
if rateOfChange > inaccuracyThreshold then

fraction = min(max(inaccuracyThreshold / rateOfChange, 0), 1)
else

fraction = fraction−1

inacc−1 = inacc0
inacc−2 = inacc−1
fraction−1 = fraction
return fraction

beginning during the design phase.

This algorithm does not require any knowledge of the of the internal details of the adap-

tation module and since the algorithm is based on insights that are widely applicable to

adaptive systems, the WASL can be used with adaptation modules regardless of the un-

derlying principles used to make adaptation decisions and the knobs being actuated by the

adaptation modules.

Next, we discuss four possible implementation for rateOfChangeEstimator which is used

by WASL to estimate the rate of change of inaccuracy using the inaccuracy and present the

most promising solution that was used for WASL.

Estimating Rate of Change of Inaccuracy

Estimating the rate of change of inaccuracy is an integral part of calculating the rate by

which an adaptation module should change its rate of adaptation. Hence, we compare four
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different approaches for estimating the rate of change of the inaccuracy. All methods rely

on the inaccuarcy,inacc.

The first estimator is the Linear Instantaneous that calculates a rate of change of inac-

curacy as a numerical derivative [96]:

rateOfChange = inacc0 − 2 · inacc−1 + inacc−2 (4.1)

The second estimator is based uses Exponential Weighted Moving Average, EWMA(α), with

a standard formulation in which α denotes the weight assigned to the historical average. The

thrid estimator uses an Autoregressive Model, AR(p), in which p is the order of the model.

Finally, the fourth estimator uses an Autoregressive Moving Average Model, ARMA(p, q), in

which p is the order of the autoregressive part and q is the order of the moving average part

of the model.

To evaluate the aforementioned estimators, we use the same application and system setup

that was described in Section 4.2.2. We augment both the adaptation modules with versions

of WASL that use the aforementioned estimators. Figure 4.2 shows the inaccuracy when

the modules use WASL with different rate of change estimators normalized to inaccuracy

resulting from using the linear estimator. Our experimental evaluation shows that EWMA,

AR and ARMA exhibit higher inaccuracy compared to linear instantaneous estimator for

both the application and the system module regardless of the parameters for each approach.

In fact, the inaccuracy increases as we modify the parameters for EWMA, AR and ARMA to

assign more weight to the corresponding historical terms for estimating the rate of change.

AR, ARMA and EWMA exhibit high inaccuracy because they retain some proportion

of the rate of change from previous adaptation steps. However, this information is already

accounted for by the adaptive module itself. Hence, these methods double count inaccuracy

from the previous terms. Furthermore, decisions taken by the adaptation modules and the

change in their operating environment can render this historical information useless for new
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(a) System Module Error

(b) Application Module Error

Figure 4.2: Inaccuracy in application and system modules when using different methods for
estimating rate of change of inaccuracy.
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estimations. This phenomenon can be most clearly observed with EWMA as the error

increases with increase in α which is the weigh assigned to previous averages.

Linear instantaneous estimation is ideal for WASL because it does not rely on estimations

from previous windows that are no longer relevant due to decisions taken by the adaptation

modules. This understanding is validated by our empirical evaluation as shown in Figure 4.2.

Hence, in the final version of WASL we use the linear instantaneous estimator as the

rateOfChangeEstimator.

4.2.4 Implementation

is implemented as an easy to use framework with a single function which is designed to

be used by adaptation modules independently. The function, get_multiplier, is a di-

rect implementation of Algorithm 2 with a linear instantaneous rate of change estimator.

get_multiplier takes 2 floating point variables as arguments:

1. The expected latency slowdown.

2. The measured latency slowdown.

As mentioned in Section 4.2.3, the latency slowdown can be calculated by dividing the raw

latency with an estimate of the lowest achievable latency, i.e. the latency when using the most

performant configuration [110, 154, 206]. get_multiplier returns a single scalar floating

point number that indicates the ratio by which the adaptation module needs to modify its

rate of adaptation. The returned value can be used directly by the calling adaptation module

as described in Section 4.2.2.

4.3 Experimental Methodology

We evaluate WASL in several different scenarios to validate two main properties:
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• Generality: Is WASL compatible with different types of adaptation modules?

• Robustness: Is WASL usable in complex real-world scenarios in which multiple adap-

tive applications potentially using different methods for adaptation may be colocated

with a system-level adaptation module being run by the cloud provider?

To evaluate these properties, we augment benchmark applications with adaptation modules

suggested by prior work and colocate them with a system level adaptation module that is

also based on prior work.

This section provides details of the components required for adaptation. Section 4.3.1

provides details of the applications used for evaluations and Section 4.3.2 describes the

adaptation modules that are used to add adaptation of the applications. Finally, Section 4.3.3

provides details of the hardware used for evaluation.

4.3.1 Benchmark Applications

We use five applications from the tailbench benchmark suite to represent the latency-sensitive

applications that need to be hosted by the cloud provider [125]. These applications are:

1. Xapian: An open-source search engine.

2. Moses: A statistical machine translation system.

3. Masstree: A fast, scalable key-value store.

4. Silo: An in-memory transactional database.

5. DNN: An OpenCV based handwriting recognition application.

All applications execute with multiple threads that take up all of the cores that are allotted

to them. During execution, based on their requirements, all applications can request the

cloud provider to increase or decrease the number of cores allotted to them based. Similar

113



to Section 4.2.2, for the purposes of this evaluation, the number of cores requested from the

cloud provider is considered a proxy for the cost that the application owners have to pay

to host their applications on the cloud platform. As mentioned earlier, the applications are

augmented with the adaptation modules mentioned in Section 4.3.2.

4.3.2 Adaptation Modules

We make use of three different adaptation modules presented in prior work to add adaptation

to the test applications.

• Adaptive Control Module: A time-varying adaptive controller module [154].

• PI Module: A discrete-time Proportional-Integral (PI) controller module [96].

• RL Module: A reinforcement-learning based adaptation module [198].

All applications use one of the aforementioned adaptation modules to meet a high-level

goal of minimizing operating cost while meeting a tail latency constraint, as described in

Section 4.2.2, by actuating hyperthreading and the number of cores requested from the cloud

provider.

The system module, expected to be operated by the cloud provider, also uses one of the

aforementioned adaptation modules to actuate the core and uncore frequnecy (as mentioned

in Section 4.2.2) to meet the high-level goal of minimizing power consumption while ensuring

that all hosted applications are able to meet their goals. Hence, the system module is

expected to have some insight into the performance of the hosted applications [81, 55]. In

our experiments, all applications hosted on the node periodically provide their tail-latency

constraint and the measured tail-latency to the system module.
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4.3.3 Hardware Platform

We conduct all of our experiments using hardware provided by the Chameleon configurable

cloud computing platform [117]. We run all experiments on a single node running Ubuntu

18.04 (GNU/Linux 5.4) with an Intel Xeon 6126 Gold processor with hyperthreading and

TurboBoost and 192 GB of RAM. The node has 12 physical threads and 24 hyperthreads.

The system modifies the core and uncore frequency of the hardware to ensure that the hosted

applications meet their goal.

4.4 Evaluation

In this section we present our evaluation of the key aspects of WASL, specifically:

1. How well does WASL perform with different adaptation modules?

2. How well does WASL perform with multiple application modules?

3. How does WASL impact the operating environment of colocated adaptation modules?

4. How much overhead does WASL incur?

These aspects justify the generality and robustness of WASL making it a feasible solution

for the real-world. In all of the presented experiments the tail latency constraint are set to

values close to the expected real-world requirements of such applications [125, 61].

4.4.1 How well does WASL perform with different adaptation modules?

To validate generality, we evaluate WASL’s ability to allow applications that are using

different adaptation modules to meet their latency constraints when they are colocated with

a system-level module.

For comparison, we present results from three different executions. First, we present

results from a version in which the application and the system module are executing naively
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(Uncoordinated Multimodule). Second, we present results from a version based on prior

work in which all adaptation has been delegated to a single specialized adaptation module

(Monolithic). Finally, we present results from a version in which both the application and

the system module individually modify their rate of adaptation dynamically using WASL

(WASL).

Adaptive Control Module In these experiments both the application and the system

module use the Adaptive Control Module for adaptation. The monolithic module used for

this set of experiments is also based on the Adaptive Control Module. Figure 4.3 shows the

tail latencies from the three different versions of executions normalized with respect to the

Monolithic version.

Figure 4.3: Tail latencies of applications colocated with a system module both using
Adaptive Control Module for adaptation.

As we can see the uncoordinated multimodule execution leads to a ∼1.3x increase in the

tail latencies of the applications based on the geometric mean. This results in a significant

drop in applications’ QoS. However, when using WASL the application is able to success-

fully temper its rate of adaptation such that it successfully meets its tail latency constraint

providing performance that is comparable to versions in which both the application and the

system module delegate their adaptation to a monolithic module.

PI Module In these experiments all the applications, the system module and the

monolithic adaptation module use the PI module for adaptation. The parameters for each
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of the aforementioned modules are fine-tuned such that when they are able to meet their

goal when they are executing in isolation. Figure 4.4 shows the tail latencies of the different

versions of the experiment normalized with respect to the monolithic version.

Figure 4.4: Tail latencies of applications colocated with a system module both using a PI
Module for adaptation.

Similar to the results with the adaptive control module, based on the geometric mean,

the uncoordinated multimodule execution leads to a ∼1.84x increase in the tail latencies of

applications resulting in a significant drop in their QoS. On the other hand, WASL allows

the adaptation modules to effectively modify their rate of adaptation ensuring that the tail

latencies are roughly equivalent to the executions using a monolithic version.

RL Module We get a similar outcome when all components use the RL module for

adaptation. Figure 4.5 shows the tail latencies normalized with respect to the tail latency

of the monolithic version.

Based on the geometric mean, uncoordinated execution results in a ∼1.66x increase in

tail latencies of applications. However, WASL is able to guide the rate of adaptation of the

adaptation modules individually to ensure that the applications provide performace that is

similar to the performance when using a monolithic adaptation module.

It should be noted that while the monolithic versions allow the applications to meet their

QoS requirements, they are impractical for the real-world because of the reasons stated in

Section 4.1.3. On the other hand, WASL is able to provide performance similar to the
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Figure 4.5: Tail latencies of applications colocated with a system module both using the
RL Module for adaptation.

monolithic versions without requiring any adaptation delegation, information sharing be-

tween modules or significant changes in implementation. This is achieved by incorporating

WASL in each adaptation module individually with only minimal changes. Furthermore,

WASL did not require any kind of a model to allow the applications to recover their perfor-

mance.

These experiments illustrate the generality of WASL. WASL allows applications to meet

their QoS goals without possessing any knowledge of the application itself, the technique

being used for adaptation or what external factors impact the operating conditions of the

application.

4.4.2 How well does WASL perform with multiple application modules?

As mentioned in Section 4.1.1, cloud providers are expected schedule multiple applications

together on the same node. Hence, to valide the robustness of WASL for use in real-world

scenarios, we evaluate the tail latency when the cloud provider colocates two applications

together with a system-level adaptation module (as described in Section 4.3.2) on the same

node. In such scenarios, using prior work to share information or delegate adaptation will

be impossible because it will not be possible to know which applications are colocated by

the cloud provider. We breakdown this part of the evaluation into two distinct scenarios.
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Symmetric Adaptation Scenario In this scenario both the applications and the

system module use the same module for adaptation. We present tail latencies normalized

with respect to the tail latency of the versions of applications that use WASL.

Figure 4.6 shows the tail latencies of the applications when all colocated adaptation

modules use adaptive control for adaptation. As we can see, in this scenario uncoordinated

multimodule execution hopelessly degrades the QoS service with latency increasing by upto

∼2.5x. However, WASL allows applications to recover their performance. Based on the

geometric mean, applications that use WASL are able to provide ∼1.36x lower tail latency.

Figure 4.6: Tail latencies of two applications colocated with a system module all using the
Adaptive Control Module for adaptation.

Similarly, Figure 4.7 shows tail latencies when all adaptation modules use the PI Module

for adaptation. As mentioned in Section 4.4.1, the parameters of the PI module are set such
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that each module individually meets its QoS goal.

Figure 4.7: Tail latencies of two applications colocated with a system module all using the
PI Module for adaptation.

Similar to the Adaptive Control Module, the PI Module significantly degrades perfor-

mance, increasing the tail latency by upto 30x in certain situations. However, WASL allows

applications to recover this lost performance. Based on the geometric mean, WASL based

applications provide a ∼3.6x reduction in tail latency.

Finally, Figure 4.8 shows results when all adaptation modules use the RL Module for

adaptation. Using WASL applications are able to provide a tail latency that is ∼1.48x

lower than naive uncoordinated adaptation.

Asymmetric Adaptation Scenario Now we present results from another scenario

that is likely to occur in the real-world in which all colocated adaptation modules use a
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Figure 4.8: Tail latencies of two applications colocated with a system module all using the
RL Module for adaptation.

different underlying adaptation module for adaptation. Figure 4.9, shows results from our

experiments. For these experiments, the first application always uses an adaptive control

module, the second application always uses a PI module and the system module always uses

a RL module for adaptation. As expected, uncoordinated execution degrades performance

significantly. However, WASL allows applications to recover the lost performance even when

colocated modules use different adaptation methodologies. As we can see, using WASL

applications exhibit ∼1.35x lower tail latency than uncoordinated execution.

It should be noted that along with ensuring a low tail latency, WASL also ensures that

the applications meet their tail-latency constraint in absolute terms as well by providing a

mean-absolute-percentage-error of less than 5%.
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Figure 4.9: Tail latencies of two applications colocated with a system module all using a
different module for adaptation.

These experiments illustrate that WASL allows applications to meet their QoS goal

without requiring any knowledge of the application itself, the mechanism used for adaptation

or any kind of a model. Similarly, it does not need to know the modules that may be

colocated with it or the mechanism used for adaptation by the colocated modules. Hence,

WASL overcomes the limitations of prior work making it a practical solution for use in the

real-world.
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4.4.3 How does WASL impact the operating environment of colocated

adaptation modules?

Now we examine how well WASL is able to manipulate the operating environment of

colocated modules to allow them to adapt applications successfully. As mentioned in Sec-

tion 4.2.2, adaptation modules operate with the assumption that their operating environment

either does not change or when it does change the changes last long enough for them to re-

cover from those changes by actuating their knobs. However, this assumption is broken when

multiple colocated adaptation modules operate naively. WASL reinstates this assumption

by manipulating the rate at which adaptation modules change the operating environment of

colocated modules. The evidence of this is not only in the recovered performance but also

in the operating environment.

However, since there is no direct method to measure the operating environment, we use

an alternative metric. We first estimate the tail-latency that can be achieved by setting the

application in the most performant configuration. This is the same value that is used to

calculate the slowdowns for WASL as mentioned in Section 4.2.3. To measure changes in

the operating environment, we measure the standard deviation in the estimated values of

the tail latencies for the applications.

Figure 4.10a shows the standard deviation of our estimates normalized with respect to

the estimates from the Monolithic execution. As we can see Uncoordinated Multimodule

execution leads to a ∼1.8x increase in standard deviation of the

Figure 4.10 shows the standard deviation of our estimates normalized with respect to the

estimates from the Monolithic execution. As we can see, regardless of the module used for

adaptation, Uncoordinated Multimodule execution leads to a increase in disturbance of the

operating environment compared to the Monolithic execution. However, WASL allows the

operating environment to stabilize resulting in a roughly 46%, 95% and 88% reduction in

standard deviation of the operating environment when all modules use the Adaptive Control
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Module, RL Module and PI Module respectively.

(a) Normalized Standard Deviation with Adaptive Control Module

(b) Normalized Standard Deviation With RL Module

(c) Normalized Standard Deviation With PI Module

Figure 4.10: Normalized Standard Deviation in the estimated lowest tail-latency.

These results show that WASL successfully reinstates the key assumption for the colo-

cated adaptation modules allowing them to meet their respectively goals successfully.
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4.4.4 How much overhead does WASL incur?

All experiments from the presented evaluation use the WASL algorithm with the Linaer

Instantaneous estimator. This means that, overall, WASL computes its return values

in O(1). Similarly, WASL only needs to store four scalar floating point values, namely,

inacc−1, inacc−2, fraction−1 and inaccuracyThreshold. Hence, the memory overhead

of WASL is also in O(1). We note that, as mentioned in Section 4.2.3, some adaptation

modules do not explicitly estimate the lowest achievable tail latency. In this case, the cost

of estimation would also be incorporated in WASL’s overhead. However, as in the presented

evaluation, this can be calculated in O(1). For all of the presented experiments, we use a

Kalman Filter to estimate the lowest tail latency [206].

We define the total time for a single adaptation action as the total time required to

perform tail-latency estimation, execute WASL and compute the optimal configuration for

the following adaptation window. We found that the time required to estimate the lowest

tail-latency along along with time to execute WASL was dominated by time required to

compute configurations the configurations. Concretely, based on the geometric mean, the

tail-latency estimation and WASL consumed less than 1% of the total time spent to perform

a single adaptation action. This is significantly smaller than the nontrivial overhead incurred

by prior approaches that need to coordinate information sharing or adaptation delegation

between adaptation modules.

4.5 Discussion and Limitations

Our evaluation shows interesting results in which Uncoordinated Multimodule execution

perform significantly worse for extreme-low-latency applications. This is understandable be-

cause applications with extremely low latencies are impacted greatly by smaller changes in

the operating conditions. Furthermore, in such applications a large number of requests will

be served between adaptation actions. This is done to amortize the cost of performing adap-
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tation. We found that even for such applications WASL is able to moderate the operating

environment effectively to allow them to meet their QoS goals.

The most basic requirement of WASL is that the adaptation module that uses WASL

must have a quantifiable way to modify its rate of adaptation. WASL cannot be used

for adaptation modules which do not have this capability. However, during our review of

principled adaptation modules suggested by prior work we could not find such a module.

WASL allows adaptation modules to cope with changes in operating environment caused

by colocated modules. The underlying assumption is that the adaptation modules themselves

have the robustness to respond successfully to other external factors. WASL cannot be

used in scenarios in which the adaptation modules would not be able to perform successful

adaptation even if they were not colocated with any other modules.

4.6 Conclusion

This work motivates the benefits of supporting harmonious execution of multiple colocated

adaptation modules with minimal explicit coordination. The requirements for using prior

works, such as sharing proprietary information between modules or delegating adaptation,

make them sub-optimal for real-world use. To overcome these limitations, this work intro-

duces WASL, a novel framework that allows colocated adaptation modules to achieve their

quality-of-service goals without any explicit coordination. This allows the stakeholders to

develop their applications and modules independently without having to considering the de-

tails of the colocated adaptation modules. Since, WASL does not rely on any knowledge

of the application or the technique used for adaptation, developers can completely decouple

their development from WASL. Furthermore, adding WASL to adaptation modules requires

minimal effort. And unlike prior work, using WASL, cloud providers have the freedom to

colocate different adaptation modules without having to worry about their compatibility.

Our evaluation shows that WASL allows applications to achieve behavior that is compara-
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ble to prior works, allowing them to meet their quality-of-service requirements in a range of

real-world scenarios. We believe that WASL’s generality and robustness make it a feasible

solution for use in the real-world.

127



CHAPTER 5

CONCLUSION

This dissertation addresses the requirement of general-purpose and dynamic adaptation in

computing systems.

The first project, DDS, proposes a novel iterative and adaptive protocol for streaming in

machine learning based video-analytics applications. DDS’ novel adaptation module allows

it to handle variations in bandwidth significantly better than the heuristic-based approaches

used by prior work.

However, building adaptation for DDS highlighted issues in the existing approach for

engineering adaptation modules for systems. The prevailing approach for engineering adap-

tation for systems treats adaptation as an after-thought rather than a core component of

the system. Hence, adaptation is added using system-specific modules once the critical parts

of the system have been implemented and its tunables and goals have been finalized. This

results in non-reusability of adaptation modules which is fundamentally opposed to good

engineering practices in software systems. Furthermore, it requires developers to be experts

both in their domain and in principles required to implement robust adaptation modules

such as machine learning and control theory. Prior work recognizes and addresses this issue

by suggesting frameworks that package pre-built adaptation modules in libraries and lan-

guage runtimes. However, a major limitation of suggested frameworks is that they focus on

adaptation for a specific set of knobs and goals. Hence, frameworks from prior approaches

cannot be used to perform adaptation involving different sets of knobs and goals. Further-

more, due to their limited support they do not have any interfaces for the system to interact

with any aspect of adaptation once the framework has been instantiated. Thus, they cannot

be used to perform any meta-adaptation.

Hence, to overcome these limitations, in the second project we propose, GOAL, a first-of-

its-kind framework for general-purpose adaptation in computing systems. GOAL’s library

128



API can be used to easily augment systems with adaptation. GOAL uses a virtualized,

time-varying adaptation module that is independent of any specific model relating metrics

to knobs. Furthermore, GOAL allows developers to declare desired adaptive behavior using a

novel domain-specific language and provides interfaces that allows the system to dynamically

modify all aspects of adaptation during execution.

Finally we turn our focus towards the deployment of adaptive applications. We moti-

vate the need for colocating adaptive applications to increase resource usage efficiency while

recognizing that colocating competing adaptive applications results in negative interference

that leads to applications’ inability to meet their goals. This phenomenon has been widely

studies by prior work which suggested several approaches to mitigate the negative interfer-

ence between adaptive applications. However, a common feature of suggested approaches is

that they impose restrictions on the methods that can be used by colocated applications for

adaptation. Similarly, such approaches require details of applications and adaptation to be

shared between colocated applications. Some of the suggested approaches even require syn-

thesizing a monolithic adaptation module and expect all colocated applications to delegate

the entirety of their adaptation to the monolithic adaptation module. Needless to say, these

features of prior work make them sub-optimal for use in the real-world since applications of-

ten have proprietary information that stakeholders are seldom willing to share. Furthermore,

such approaches limit the system administrators’ ability to colocate applications together as

it requires all colocatable applications to be enumerated beforehand so that the necessary

changes may be made to those applications.

Hence, in the last part of this dissertation we present WASL, a novel easy-to-use and

model-free framework that allows harmonious execution of adaptive applications without any

explicit coordination. WASL imposes no restrictions on the method that an application uses

for adaptation and it can be used by all applications independently without requiring any

knowledge of the applications themselves or other applications that may be colocated with
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them. WASL utilizes information that is already available to an application’s adaptation

module to modify the rate of adaptation of the modules to ensure that the application

continues to meet its goal. Because of its minimal requirements, WASL is the only feasible

solution for use in real-world adaptive applications.

We hope that using contributions of this dissertation developers will be able to develop

and deploy systems that can fulfil complex adaptation requirements and respond to changing

adaptation requirements over the lifetime of systems. We also hope that the presented

frameworks provide motivation for further work in building practical solutions for adaptation

and meta-adaptation in real-world systems.

5.1 Future Work

We strongly believe that the frameworks presented in this dissertation are a first step towards

providing general-purpose robust adaptation to computing systems.

GOAL focuses on performing generalized adaptation for applications executing on a

single node. A natural next step would be to propose methods for adaptation of distributed

applications on over-provisioned clusters. The solution must be scaled out appropriately

so as to perform adaptation with minimal overhead and coordinate adaptation decisions

between nodes in a cluster.

The dissertation focuses on performing adaptation from within applications. However,

another venue for adaptation is the operating system on which the application executes.

Modern operating systems have hundreds of tunable parameters that govern how they man-

age their virtual memory, file systems and block I/O. As with application parameters, it is

well known that setting kernel-level parameters appropriately is essential to ensure high per-

formance of applications running on the OS. Hence, a system that modifies the parameters

of the kernel based on the application and its workload would be profoundly interesting. For

such a system to be general, instead of relying on information directly from the applications,
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it would have to use microarchitectural and OS-level counters available in the kernel to iden-

tify the workload and set configurations accordingly. Our initial studies show that, when

running real-world workloads, data from such counters can often have significant noise due

to background kernel level processes. Identifying workload patterns from this data would a

valuable contribution and an essential first step in developing a system for adapting kernel

parameters.
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APPENDIX A

INDIVIDUAL CASE STUDIES FOR GOAL

We now present details of the implementation and execution for each of the applications

used in the case studies (Section 3.5.1). We implement 6 case studies with a published adap-

tive design from the literature and consider a scenario that requires runtime modification of

the AdaptSpecs. As mentioned earlier, Table 3.2 summarizes the initial goals, the required

meta-adaptation, and the platform for each case study. For each case study, we compare

GOAL based version’s execution to a version that uses an application-specific AdaptLog

as described in Section 3.5.2. We show that for a single AdaptSpec, GOAL’s more gen-

eral AdaptLog performs as well as prior work for synthesizing AdaptSpec-specific AdaptLogs;

however, when the application performs meta-adaptation, GOAL provides large benefits in

performance across a range of metrics.

A.1 Video Object Detection

Consider a CCTV camera augmented with object detection. It has a required frame rate.

It should also minimize power when there is no object in the scene. But, when an object of

interest appears, it should meet a minimum quality requirement. To do so, we dynamically

modify the AdaptSpec to restrict the range of certain knobs when the object is present.

Knobs. We declare four app-level knobs: qp, subme, merange and reframes and two

sys-level knobs: the number of cores and core frequency. qp, merange, reframes, and subme

control throughput/quality tradeoffs.

Measures. We consider throughput, power, and quality.

Goal. We start with goal:

min(powerConsumption) such that throughput == 20.0

Figure A.1 shows the behavior with GOAL and prior work that synthesizes a specialized
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Figure A.1: Time series of the execution of Video Object Detection.

AdaptLog. Both meet the 20 frame/s goal despite dynamic changes from frame to frame.

The difference is quite noticeable, however, when an object is detected (frame 150). Here,

the GOAL implementation performs meta-adaptation using restrict as follows:

if detector.objInFrame() { qp.restrict([10, 20]) }

In contrast, prior work continues with the initial AdaptSpec. Figure A.1 shows that between

when an object is detected (frame 150) and when it leaves (frame 900), the frames are encoded

with a higher quality. While the object of interest is present the GOAL’s AdaptLog handles

this knob restriction intelligently—using more cores at higher frequencies—so the goal is still

met. Here, the runtime increases energy, but it is consistent with the updated AdaptSpec,

and is exactly what the developer desires: higher quality at a cost of higher energy when an

object is present. The GOAL version provides roughly 22% higher quality while the object

of interest is in the frame.

Once the object of interest is gone, the restriction is lifted:

if !detector.objInFrame() { qp.control() }

Upon a call to control GOAL version seamlessly returns to minimizing power while meeting

the throughput constraint.
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Figure A.2: Time series of the execution of Service Oriented Architecture.

The limited adaptation support of prior work forces the system to execute with a single

AdaptSpec and thus live with sub-optimal behavior, potentially missing important informa-

tion while the object of interest is in the frame. But the GOAL version allows the system to

easily perform meta-adaptation, facilitating behavior that is in line with the requirements.

A.2 Service Oriented Architecture

Consider a provider who has three distinct service implementations [76]. Incoming requests

are redirected to any of the three implementations, which, while functionally the same, have

different latency, reliability and cost. During high traffic times the priority is meeting a

latency target while maximizing reliability. However, during low traffic times the goal is to

minimize cost while delivering acceptable reliability. The system needs to quickly switch

between goals because taking longer to perform this meta-adaptation would result in the

queue changing again, leading to a different goal.

Knobs. We use: p1, p2, and sl. p1, p2 dictate the probability of the request being

allocated to the services and sl dictates the request’s service level.

Measures. Response time, cost and reliability.
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Goals. The application starts with a goal to maximize reliability with a response time

of 0.5 seconds:

max(reliability) such that latency == 0.5

During low-traffic times the goal switches to:

min(cost) such that reliability == 0.6

Implementing this meta-adaptation using GOAL requires a single call to intend. How-

ever, using prior work that synthesizes a specialized AdaptLog, the system is forced to

execute using a single AdaptSpec throughout the execution [76].

Figure A.2 shows the results of both GOAL and prior work. Both maintain an average

latency of 0.5 seconds while the length of queue is greater than the threshold. When the

queue length drops below the threshold the goal is changed. The GOAL-based system

adjusts the goal using a single call to intend, reducing the cost by roughly 63%

The limited support by existing frameworks forces the system to continue execution using

a higher cost during a time when the reliability and latency can be relaxed to reduce the cost.

Hence, GOAL allows the system to exhibit optimum behavior according to the developer’s

requirements.

A.3 Synthetic Aperture Radar

Consider a Synthetic Aperture Radar (as previously implemented with compile-time adap-

tation [188]). In normal operation mode, the SAR should produce the highest quality results

while meeting a throughput constraint. However, when its current field has already been

scanned or is deemed unimportant by a human operator it should maximize throughput

while meeting a quality constraint that is enough for the human operator to determine when

to change the operating mode.
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Figure A.3: Time series of the execution of Synthetic Aperture Radar.

Knobs. We use filter sizes (Coarse Decimation Ratio, Fine Decimation Ratio), spatial

granularity (Number of Beams, Number of Ranges), core number, and frequency.

Measures. The throughput and quality (as energy above threshold) of the signal pro-

cessing.

Goals. The system starts with an initial goal of maximizing quality while meeting a

throughput constraint:

max(quality) such that throughput == 80.0

But as the plane flies over an unimportant region, the application changes the goal to:

max(throughput) such that quality == 0.7

Figure A.3 shows the execution of the GOAL and prior work [76] versions. Both versions

maintain an average throughput of 80 signals per second with an average quality of 0.7 (70%

above threshold). However, when the SAR passes over a region that is deemed unimportant

by the human operator, the GOAL version changes the adaptation goal using a single call

to intend, as shown above. However, the prior work based version is forced to continue

execution with the initial goal that produces low throughput.
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Figure A.4: Time series of the execution of AES Encryption

While over the already scanned region, GOAL version provides 1.44× higher throughput

than the existing framework based version (as illustrated using the green region in Fig-

ure A.3), allowing it to quickly pass over the area while still providing high enough quality

for the operator to make accurate decisions.

A.4 AES Encryption on Mobile Systems

When plugged in, the system wants maximum throughput and high power consumption

is tolerable. But when unplugged, efficiency (throughput / power consumption) should be

maximized. Additionally, certain critical data requires a higher level of encryption and a

longer key. We consider a scenario in which critical data needs to be encrypted and the

phone is unplugged simultaneously.

Thus, the system must perform meta-adaptation to ensure the highest security and energy

efficiency. Here, energy efficiency can be declared as a separate metrics or it can be derived

from metrics that GOAL already tracks. We do the latter to demonstrate the expressiveness
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of GOAL’s interface. This expressiveness allows developers to express goals compoased of

arithmetic expressions over the metrics defined in the AdaptSpec without changing the core

implementation.

Knobs. We use keySize, cores, and core frequency.

Measures. Throughput, power and encryption strength.

Goals. At the beginning when the phone is plugged in the program uses the following

goal:

max(throughput) such that powerConsumption == 1.5

Figure A.4 compares the GOAL application to prior work that builds a customized

AdaptLog for managing the original AdaptSpec. The critical data arrives at block 700.

At this point, GOAL, using the intend function, allows dynamic construction of more

complicated goals and adapts to both the battery and security changes (note the objective

is a function of two measures):

if batteryState () == .BatteryStateCharging {

intend(to: .maximize ,

objective: "throughput/powerConsumption",

suchThat: [( measure: "blockStrength",

is: .equalTo , goal: 256.0)])

}

When the system is processing critical data while unplugged, the GOAL based version

increases the energy efficiency by roughly 18% while still meeting the strict security require-

ments. But the version based on prior work suffers with low energy efficiency and high power

consumption during a time when power is an important concern.

A.5 Search Engine

We now examine the execution of our final application the Search Engine. The search engine

example is a simplified Swift port of swish++ [143] that runs index-based search on books
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from Project Gutenberg [16].

Consider a scenario in which the search engine provider maintains a target throughput.

But when certain terms that indicate a critical event are encountered in large numbers,

the application needs to perform meta-adaptation to return more thorough results; e.g.,

providing more results for searches related to developing public safety issues.

Knobs. We use maxDocs, number of cores, core frequency.

Measures. The throughput and power.

Goals. The application starts out with the goal of meeting a throughput target while

minimizing power:

min(powerConsumption) such that throughput == 18

When more thorough results are required, we call restrict() to force GOAL’s to use large

values of maxDocs.

Figure A.5, shows the executions using a specialized AdaptLog and GOAL. Both meet

the throughput requirement of 18 queries per second while minimizing power consumption.

However, only the GOAL version responds appropriately when the heuristic determines that

more thorough search results are needed (query 900) by making a call to restrict:

if triggerSearchTermsMetric () > threshold {

maxDocs.restrict ([150, 170])

}

After a call to restrict, the GOAL version immediately starts producing results based on

higher number of searched documents (a proxy for quality). During this time, GOAL version

produces results that are roughly 3× higher in quality than results from prior work version.

Once the critical situation has passed a call to control lifts the restrictions on maxDocs.

139



Figure A.5: Time series of the execution of Search Engine.

A.6 Optical Character Recognition

We now examine the execution of our final application an Optical Character Recognition

pipeline. Using this pipeline, a client submits images to a server which then extracts text from

them using libtessarct[19] and sends it back to the client. The server can resize images

to control the time required to extract text from a particular image thereby impacting the

quality of the results.

Consider a scenario in which the server is required to a target throughput while mini-

mizing power. After a period of time the user requests the server to maximize the quality of

results for a certain set of images while maintaining the target throughput.

Knobs. We use imageSize, number of cores, core frequency.

Measures. The throughput, power and quality.

Goals. The application starts out with the goal of meeting a throughput target while

minimizing power:

min(powerConsumption) such that throughput == 8

During this time the server chooses to perform recognition on images with a reduced size,

lowering the quality of the images.
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Figure A.6: Time series of the execution of Optical Character Recognition.

Figure A.6, shows the executions using a specialized AdaptLog and GOAL. Both meet

the throughput requirement of 8 images per second while minimizing power consumption.

However, only the GOAL version responds appropriately when the client requests the server

to maximize the quality of results (query 700) by making a call to intend:

intend(to: .maximize ,

objective: "quality",

suchThat: [( measure: "throughput",

is: .equalTo , goal: 8.0)])

After an adjustment period the GOAL version starts producing the higher quality results

while still meeting the throughput target. However, during this period, the power consump-

tion of the GOAL version also increases. During this time, GOAL version produces results

that are roughly 1.9× higher in quality than results from prior work version.
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