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ABSTRACT

This paper studies a principal who commits to inform an agent about what the principal will

eventually do. The principal wishes to promote the agent if and only if the state is good, and

he gradually receives private information about the state. The agent always wishes to be

promoted, but faces a decreasing outside option and would rather leave if she expects not to

be promoted. The principal optimally induces the agent to stay by committing to commit,

that is, by committing today to tell the agent tomorrow about her chances of promotion

the day after. When the agent has a high initial outside option, with some probability, the

principal promotes the agent regardless of his information—even if he realizes early that the

state will turn out to be bad. The principal may ask the agent to stay until he fully observes

the state, only to deny her promotion; this does not necessarily mean that the principal leads

the agent on. We apply our results to worker retention, relationship-specific investment, and

forward guidance.
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CHAPTER 1

I’LL TELL YOU TOMORROW: COMMITTING TO FUTURE

COMMITMENTS

1.1 Introduction

A firm employs a worker and will, after two years, decide whether or not to promote her.

The firm wants to promote the worker if and only if she is productive. At the end of each

year, the firm privately receives information about the productivity of the worker. Ideally,

the firm would like to wait two years, receiving information after year one and again after

year two, and then promote the worker if and only if they believe her to be productive based

on the information received. The problem is that the worker’s outside option decreases every

year because she has competing offers that disappear every year. Although the worker’s most

preferred outcome is to stay with the firm for two years and be promoted, she prefers any

of her outside offers to staying with the firm and failing promotion. In fact, the worker’s

outside option today is sufficiently attractive that if she expects to be promoted only if the

firm prefers to do so after two years, then she would rather leave today. How can the firm

retain the worker until they gather more information?

The firm could commit today to promote the worker with a positive probability even if

the firm prefers not to promote her after receiving all the information. This could induce the

worker to stay in anticipation of being promoted. However, the firm has another important

lever; they could commit today to tell the worker after year one about what the firm will

do after year two. We call this a commitment about commitments, or a higher-order com-

mitment. To commit means to place restrictions on one’s future actions and communicate

such restrictions to another party. When the firm commits to commit, they commit today

that after year one, they will 1) place restrictions on their future promotion decision and 2)
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communicate these restrictions to the worker.1

Committing to commit can convince the worker to stay today in anticipation of future

information. To illustrate, suppose the firm makes the following promise: “after year one,

if I believe you are unlikely to be productive, I will no longer consider promoting you. If I

believe you are likely to be productive, I will continue to consider promoting you, and will

promote you after year two if and only if I still believe that you are likely to be productive.

Moreover, I will tell you after year one whether or not you are still being considered for

promotion.” If the worker trusts the firm to follow through on this promise, and her outside

option does not decay too much by next year, she would stay with the firm for a year in

anticipation of the update that the firm will provide. Next year, if the firm tells her that

she will not be promoted, she can then leave; otherwise, she learns that the firm is relatively

optimistic about her productivity, and will stay. In fact, we will show that this commitment

is optimal for the firm under the assumptions that the worker’s outside option today is not

too attractive, and the firm cannot lie to the worker about their belief, e.g. by continuing

to consider the worker for promotion despite believing that the worker is unlikely to be

productive.

Unfortunately, the firm will lie about their belief if they can. Formally, the mechanism

described by the above promise is not incentive compatible for the firm. The firms knows that

the worker will stay after year one if and only if they continue to consider her for promotion.

Moreover, if the worker stays after year one, the firm can make the promotion decision based

on the additional information that they receive after year two. Therefore, after year one,

no matter how pessimistic the firm is about the worker’s productivity, as long as there is

the smallest possibility that they might believe her to be productive after year two, they

should always pretend to believe that the worker is likely to be productive and continue to

1. Formally, a higher-order commitment refers to a principal’s commitment to a dynamic mechanism,
where the principal himself is a player in the mechanism and receives private information after committing
to the mechanism, and the principal’s report of his private information affects the mechanism’s choice of
allocation as well as the mechanism’s communication to an agent.
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consider her for promotion—the firm should never give up a free option. Anticipating this,

the worker does not expect to learn anything even if she stays for a year and so will leave

today. Because the firm’s belief cannot be contracted on, the promise described above is

useless.

How can the firm make the correct promotion decision while retaining the worker until

the firm receives enough information? More generally, how should a decision-maker who

gradually receives private, noncontractible information incentivize another person to pay

the opportunity cost of waiting for the decision? This question is relevant to a wide range of

social interactions. A regulator choosing how much to subsidize a firm would benefit from

having more time to privately assess the cost and benefit of the subsidy, but the firm may

wish to shut down early if they do not expect to be sufficiently subsidized. Alice might wish

to delay responding to Bob’s dinner invitation because she may or may not be hungry, but

if she equivocates, Bob could ask Carol instead.

This paper sheds light on these problems by introducing a parsimonious three-period

principal-agent model. The principal represents the firm in our leading example, and the

agent represents the worker. A binary state, which can be good or bad, represents the

productivity of the worker at the firm. In periods 0 and 1, the agent decides whether to stay

and continue interacting with the principal or to leave and take her outside option, which

decreases every period. If the agent stays until period 2, the principal chooses whether to

promote the agent. The agent always values being promoted, whereas the principal’s payoff

from promotion is positive in the good state and negative in the bad state. The state is

initially unknown to both parties, and the principal privately updates his belief about the

state over time. In period 1, he observes a signal that is correlated with the state; in period

2, he observes the state.

A mechanism takes as input the principal’s report of his updated belief about the state in

each period. In period 1, the mechanism outputs a recommendation to the agent, providing
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information about the likelihood of being promoted. In period 2, the mechanism decides

whether the agent will be promoted. Our problem is to find the mechanism that maximizes

the principal’s ex ante payoff while ensuring that the agent stays in period 0, the agent obeys

the recommendation in period 1, the principal reports truthfully in periods 1 and 2.

We first consider a benchmark case in which the principal’s information is contractible

and characterize the contractible-optimal mechanism that maximizes the principal’s ex ante

payoff subject to the agent’s participation and obedience constraints, but without being

subject to the principal’s incentive constraints. In period 1, if the posterior probability that

the state is good conditional on the principal’s signal is below a threshold, the contractible-

optimal mechanism informs the agent that she will fail promotion regardless of the realized

state, and she leaves. If the conditional probability is above the threshold, the mechanism

asks the agent to stay, promising to promote her in the good state and sometimes also promis-

ing to promote her with positive probability in the bad state. Thus the contractible-optimal

mechanism is parametrized by the period-1 threshold belief and the period-2 promotion

probability in the bad state, which can vary independently of each other. The chance of

leaving early in period 1 and the prospect of being promoted in the bad state incentivize the

agent to stay in period 0.

We then characterize the optimal mechanism, which maximizes the principal’s ex ante

payoff subject to the principal’s incentive constraints in periods 1 and 2, as well as the

agent’s participation and obedience constraints. We show that there always exists an optimal

mechanism that can be written as a convex combination of a constant mechanism, which

always promotes the agent regardless of the principal’s beliefs, and three single-threshold

mechanisms. Similarly to the contractible-optimal mechanism, a threshold mechanism never

promotes the agent if the principal reports that his posterior belief is below a threshold, and

if the report is above the threshold, the agent is always promoted in the good state and

promoted with a positive probability in the bad state. Unlike in the contractible-optimal
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mechanism, however, the threshold belief pins down the probability of promotion in the bad

state through the principal’s truth-telling incentives. In the optimal mechanism, the two

parameters of the contractible-optimal mechanism are bundled into one.

The optimal mechanism always places a positive weight on at least one threshold mecha-

nism, meaning that the optimal mechanism always involves a commitment to commit. That

is, the principal commits in period 0 to the restrictions on his promotion decision that may

be placed in period 1, and also commits to communicate the period-1 restriction to the

agent, in part or in full. When the value of the agent’s initial outside option is high, the

optimal mechanism must also place a positive weight on the constant mechanism that always

promotes the agent. As a result, even when the principal knows for sure in period 1 that

the state will be bad, the mechanism sometimes asks the agent to stay in period 1, and

then promotes the agent with certainty in period 2. In the same optimal mechanism, if the

principal has a more optimistic belief about the state in period 1, the mechanism may ask

the agent to stay in period 1, but then sometimes refuse to promote her in period 2 if the

bad state is realized. Therefore, conditional on having obeyed the recommendation to stay

in period 1, the agent may be less likely to be promoted in period 2 when the principal in

period 1 believed that the state was more likely to be good. Not only does the principal’s

past belief—which is payoff-irrelevant once the state is realized—affect the probability of

promotion, but an optimistic belief makes promotion less likely.

This seemingly unnatural feature of the optimal mechanism might lead one to wonder

how it could be implemented in real life. Here, the decomposition of the optimal mechanism

provides an insight. A firm can implement threshold mechanisms by committing to conduct

a midterm review and a final review. A mixture of threshold mechanisms and the mechanism

that always promotes the agent can be implemented by reviewing the worker only a fraction

of the time and otherwise promoting them by default. Although the mechanism may ask the

agent to stay in period 1 and then deny promotion in period 2, the agent is not necessarily led
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on—even if the agent knew everything that the principal knew when she was recommended

to stay, she may still have chosen to stay.

Our model does not have transfers. The probability of promoting the agent in the bad

state plays a role in our analysis similar to that of transfers in a standard single-object

monopolist screening model. This observation allows us to appeal to the envelope theorem

and an extreme point characterization due to Winkler [1988] to characterize the optimal

mechanism.

The final section of the paper presents additional results and extensions. The dual of our

problem is the problem of an agent who has commitment power and delegates the promotion

decision to a principal who learns about the state and has a participation constraint. In some

environments, being able to contract on marginal distributions of outcomes may allow the

contractible-optimal mechanism to be implemented. The principal may be worse off if they

learn more about the state in period 1.

Related Literature This paper combines dynamic mechanism design and dynamic in-

formation design, and our mechanism is an instance of the communication mechanism for

multistage games introduced by Myerson [1986]. As in dynamic mechanism design, such

as sequential screening [Baron and Besanko, 1984, Courty and Hao, 2000, Krähmer and

Strausz, 2015] and rules versus discretion [Kydland and Prescott, 1977, Barro and Gordon,

1983, Athey et al., 2005, Halac and Yared, 2014, 2022], our mechanism makes an allocation

decision (promotion of the agent) based on private information which is elicited from a player

(the principal) over time.2 In these models, the principal does not need to communicate to

the agent, since the agent does not take different actions in equilibrium. For example, in

standard sequential screening models, the buyer may be allowed to walk away from the seller

2. In particular, rules versus discretion studies how a principal who expects to receive private information
in the future optimally restricts his future decision. For example, Athey et al. [2005] considers an infinite
repetition of two-period interactions between a principal and a continuum of agents in the context of monetary
policy and shows that the optimal mechanism is a static upper bound on policy.
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at some point during the game. However, because the buyer’s outside option stays constant

throughout her interaction with the seller, it is without loss to consider mechanisms in which

the buyer always stays until the end of the game. Thus there is no reason for the seller to

provide any information to the buyer. In contrast, in our model, the agent sometimes leaves

in period 1, and the principal commits in period 0 to inform the agent in period 1 about

whether she should stay or leave. This promise of future communication plays a crucial role

in incentivizing the agent to stay in period 0.

Following the growth of the literature on information design [Kamenica and Gentzkow,

2011, Bergemann and Morris, 2013], there have been a series of papers that study how a

principal commits to provide over time information about the state of the world, chosen

exogenously by nature [Ely, 2017, Renault et al., 2017, Ely and Szydlowski, 2020, Orlov

et al., 2020, Smolin, 2021, Bizzotto et al., 2021, Ball, 2022]. In contrast, the principal in our

model commits to provide information over time about his own future decision. One might

think of our principal as solving an information design problem where the state of the world

is also chosen by the principal.

Methodologically, we appeal to the revelation principle for multistage games introduced

by Myerson [1986], which states that it is without loss for the mechanism designer to restrict

attention to direct mechanisms that satisfy incentive compatibility and obedience. To solve

for the optimal mechanism, we apply Proposition 2.1. of Winkler [1988], which characterizes

the extreme points of a subset of a linear space defined by a finite number of linear constraints.

In our context, the proposition characterizes the extreme points of the feasible set of direct

mechanisms. As Kleiner et al. [2021] notes, to be able to apply Winkler’s result, it is crucial

that the number of linear constraints is finite.3 Although our problem initially involves

infinitely many constraints, we use the envelope theorem to reduce these to a finite number

3. Kleiner et al. [2021] characterizes the set of extreme points of monotone functions that majorize or
are majorized by a given function and applies these results to various settings, including mechanism design
or information design problems. Because there are uncountably many majorization constraints, Winkler’s
characterization does not hold in their setting.
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of constraints. Our model does not have transfers, but by observing that the principal can

trade off the probability of promotion in the good state against the probability of promotion

in the bad state, we are able to appeal to the envelope theorem approach used in standard

screening problems [Riley and Zeckhauser, 1983, Myerson, 1981, Mussa and Rosen, 1978].

The interpretation of our results speaks to the literature on worker retention. A firm

benefits from retaining its workers because the workers possess, and choose how much to

invest in, firm-specific human capital [Oi, 1962, Becker, 2009, Mortensen, 1978, Hashimoto

and Yu, 1980, Hashimoto, 1981]. This paper considers how a firm can optimally retain its

worker via the prospect of promotion. Finally, our results are related to the literature on

investment under uncertainty [Bernanke, 1983, Dixit et al., 1994]. It has been argued that

uncertainty of government policy can hinder firms’ investment [Rodrik, 1991, Gulen and

Ion, 2016]. We show how a regulator can optimally incentivize investment by committing to

reduce policy uncertainty over time.

1.2 Model

A principal (he) and an agent (she) interact over three periods. There is a state θ ∈ {−1, 1}.

The players share a common prior belief that the state is good (θ = 1) with probability

µ0 ∈ (0, 1) and bad (θ = −1) with probability 1− µ0.

Period 0 (Ex Ante) The agent chooses whether to participate in the interaction. If she

chooses not to participate, the game ends, the principal receives a payoff of 0, and the agent

receives a payoff of c0 > 0. If the agent participates, the game proceeds to period 1.

Period 1 (Interim) First, the principal privately updates his belief that the state is good

to µ ∈ [0, 1]. We assume that µ is drawn according to a distribution F ∈ ∆[0, 1] that has a

density f > 0 and satisfies EF [µ] = µ0. For technical reasons, we require f to be continuous
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at µ = 1. The distribution F is commonly known to both the principal and the agent in

period 0, but only the principal observes the realized µ.4

The principal then sends to the agent a message, which may contain information about

the principal’s updated belief. We later describe the exact mode of communication. Having

observed the principal’s message, the agent chooses whether to stay or leave. Let A =

{stay, leave} denote the action set of the agent in period 1. If the agent leaves, the game

ends, the principal receives 0, and the agent receives c1 ∈ (0, c0). If the agent stays, the

game proceeds to period 2.

Period 2 (Ex post) First, the principal privately observes the state θ. Then, the principal

decides whether to promote the agent. If the agent is promoted, the agent receives b > c0

and the principal receives θ. If the agent is not promoted, both players receive 0. We

assume that the agent’s ex ante outside option is high enough that incentivizing the agent

is nontrivial for the principal, i.e. c0 > bµ0. Otherwise, the agent participates in period 0

and stays in period 1 even if the principal does not send any meaningful messages in period

1 and promotes the agent in period 2 if and only if θ = 1.

Mechanism Appealing to the revelation principal [Myerson, 1986], we restrict attention

to direct mechanisms, which we denote by σ = (σ1, σ2). In period 1, the principal reports

his belief to the mechanism. Given a report µ̂, with probability σ1(µ̂), the mechanism asks

the agent to stay. With probability 1 − σ1(µ̂), the agent is asked to leave. In period 2,

the principal reports the state to the mechanism. The mechanism promotes the agent with

4. The distribution F can be generated by a signal π : {−1, 1} → ∆[0, 1] such that, for all s ∈ [0, 1],

f(s) = µ0π(s|1) + (1− µ0)π(s| − 1)

and

(1− s)µ0π(s|1) = s(1− µ0)π(s| − 1).

9



probability σ2(µ̂, ã, θ̂) if the period-1 report was µ̂, the period-1 recommendation was ã, the

period-2 report is θ̂, and the agent stayed in period 1.5

Timeline Given a mechanism σ, the timeline of the game is as follows.

t = 0: Principal chooses mechanism σ.

Agent chooses whether to participate.

t = 1: Principal updates belief to µ and reports a belief µ̂ to σ.

σ recommends “stay” with probability σ1(µ̂) and recommends “leave” with probability

1− σ1(µ̂).

Agent stays or leaves.

t = 2: Principal observes state θ and reports θ̂ to σ.

σ promotes agent with probability σ2(µ̂, ã, θ̂).

Optimal Mechanism The principal’s expected payoff from a mechanism σ is

∫ 1

0
σ1(µ)(µσ2(µ, stay, 1)− (1− µ)σ2(µ, stay,−1)) dF (µ) . (1.1)

Our goal is to find a mechanism σ that maximizes the principal’s expected payoff subject

to the constraints that the agent participates and obeys recommendations and that the

principal reports truthfully to the mechanism. Notice that, on path, the game never proceeds

to period 2 if the agent is asked to leave in period 1. Moreover, if the mechanism never

promotes the agent in period 2 whenever the agent disobeyed the recommendation to leave

in period 1, the agent will always obey the recommendation to leave in period 1. Thus it is

without loss of generality to set σ2(µ, leave, θ) = 0 for all µ and θ and trivially satisfy the

5. Formally, we a mechanism a pair of functions σ1 : [0, 1] → [0, 1] and σ2 : [0, 1] × A × {−1, 1} → [0, 1],
each of which are Borel measurable.
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agent’s obedience constraint after being asked to leave in period 1. To simplify notation, we

write σ2(µ, θ) := σ2(µ, stay, θ).

The agent’s obedience constraint after being recommended to stay in period 1 is

c1 ≤ b

∫ 1
0 σ1(µ)(µσ2(µ, 1) + (1− µ)σ2(µ,−1))dF (µ)∫ 1

0 σ1(µ)dF (µ)
. (1.2)

The agent’s ex ante individual rationality constraint is

c0 ≤ b

∫ 1

0
σ1(µ)(µσ2(µ, 1) + (1− µ)σ2(µ,−1)) dF (µ) + c1

∫ 1

0
(1− σ1(µ)) dF (µ) . (A-IR)

It is easy to see that obedience after being asked to stay is implied by individual ratio-

nality. Intuitively, in period 0, the agent knows he will obey if recommended to leave. If

she is going to disobey when asked to stay, then she will always receive a payoff of c1 from

participating in the mechanism. However, by not participating in the first place, she receives

c0 > c1. We can thus ignore the agent’s obedience constraints.

In period t = 2, the principal observes θ and reports θ̂. Given that his period-1 report

was µ, his expected payoff is θσ2(µ, θ̂). If θ = 1, incentive compatibility is equivalent to

σ2(µ, 1) ≥ σ2(µ,−1). If θ = −1, incentive compatibility is equivalent to −σ2(µ,−1) ≥

−σ2(µ, 1), which is again equivalent to σ2(µ, 1) ≥ σ2(µ,−1). Thus incentive compatibility

in period 2 is given by

σ2(µ, 1) ≥ σ2(µ,−1), ∀µ ∈ [0, 1]. (P-IC2)

This means that reporting the good state should always lead to a higher probability of

promotion than reporting the bad state. Note that (P-IC2) also rules out double deviations.

Even if the principal falsely reports µ̂ ̸= µ in period 1, as long as (P-IC2) holds, it is optimal

for the principal to be truthful in t = 2. Hence the only remaining deviation for the principal
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is to misreport his belief in period 1 and then report the state truthfully in period 2. Such

deviations are ruled out by the incentive compatibility constraints in period 1:

σ1(µ)(µσ2(µ, 1)− (1− µ)σ2(µ,−1)) ≥ σ1(µ
′)(µσ2(µ

′, 1)− (1− µ)σ2(µ
′,−1)) ∀µ, µ′ ∈ [0, 1].

(P-IC1)

A mechanism σ is optimal if it solves

max
σ1,σ2

∫ 1

0
σ1(µ)(µσ2(µ, 1)− (1− µ)σ2(µ,−1)) dF (µ)

s.t. A-IR, P-IC1, P-IC2 .

Note that the principal’s ex ante payoff from the optimal mechanism may be negative, in

which case he will prefer to obtain a payoff of 0 by not inducing the agent to participate in

the first place. However, since it is straightforward to check whether the principal’s ex ante

payoff is positive, we restrict attention to mechanisms satisfy A-IR.

Interpretation of the Model The leading interpretation of our model throughout the

paper is that the principal is a firm who tries to retain the agent, who is the worker; see

section 1.8 for alternative interpretations. The state θ ∈ {−1, 1} represents the worker’s

productivity at the firm. We assume that the firm, but not the worker, updates information

about the worker’s productivity over time. This would be the case if the worker’s produc-

tivity depends on the demand for the firm’s goods, which only the firm observes. Even

if productivity is determined the worker’s innate ability, it may be that, by observing the

worker, the firm acquires information about the worker’s ability that the worker herself is

unaware of. We make the simplifying assumption that the firm does not receive any flow

payoffs from employing the worker in periods 0 or 1. This would be the case, for example,
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if the worker is paid her marginal product until she is promoted.6 The worker obtains a

payoff of b from being promoted but has two outside offers. The first outside offer gives the

worker a payoff of c0 and disappears after period 0. The second outside offer is worth c1 and

disappears after period 1. The mechanism can be interpreted as a human resources (HR)

policy which governs how the firm may communicate to or promote the worker.

We assume that utility is not transferable between the firm and the worker, and the firm

retains the worker through the prospect of promotion. For example, in the United States,

the majority of civilian white-collar federal employees are paid according to the General

Schedule, which determines the salary for employees in each grade and is set by Congress.

The director of a government agency can decide who to employ and which grade its employees

belongs to, but cannot change the salary for each grade or introduce arbitrary bonus schemes.

Similarly, an executive in a large company may have the discretion to promote a worker, but

the salary package may be determined at the corporate level.

1.3 Example

We illustrate via an example how the principal benefits from providing interim information

to the agent about the principal’s future promotion decision. Let b = 5, c0 = 2.8, c1 = 2,

and F = U [0, 1]. Let us restrict attention to mechanisms such that σ2(µ, 1) = 1 for all

µ. Without any constraints, the mechanism that maximizes the principal’s payoff would be

given by σ1(µ) = 1 and σ2(µ,−1) = 0 (Figure 1.1 (a)). That is, the agent always stays in

period 1 and is promoted if and only if θ = 1. Unfortunately, this gives the agent an ex ante

payoff of 2.5, which is lower than her ex ante outside option.

One way to incentivize the agent to participate is to promote her in the bad state with

some probability. For instance, choosing σ1(µ) = 1 and σ2(µ,−1) = 0.12 would satisfy the

6. Alternatively, the worker may be a contractor who may or may not be hired for a project that starts
in period 2. In each of periods 0 and 1, the contractor either waits for the possibility of being hired by the
firm or leaves and commits herself to an alternative project that precludes her from working for the firm.
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agent’s participation constraint with equality and give the principal an ex ante payoff of

0.44 (Figure 1.1 (b)). However, the principal does better under the mechanism given by

σ1(µ) = 1{µ ≥ 0.2} and σ2(µ,−1) = 0 (Figure 1.1 (c)). That is, the agent is asked to leave

if the principal’s interim belief is below 0.2; and if the agent is recommended to stay and

obeys, she is promoted in period 2 if and only if θ = 1. This mechanism also satisfies the

agent’s participation constraint with equality, but gives the principal a higher ex ante payoff

of 0.48. Intuitively, it is efficient to ask the worker to leave in advance if she is unlikely to

be valuable to the principal.

The problem with the last mechanism is that the principal’s incentive compatibility

constraints are violated.7 To see this, consider the principal’s choice of report in period 1

when his belief realization is µ < 0.2. If he reports truthfully, the agent leaves, so his interim

expected payoff is 0. However, if he deviates by reporting some µ′ ≥ 0.2, the agent stays. By

then reporting the state truthfully in period 2, the principal can induce the mechanism to

promote the agent in the good state. This deviation gives the principal an interim expected

payoff of µ and is thus profitable.

To incentivize the principal to truthfully report a low belief that leads the agent to

leave, the mechanism must make it costly for the principal to report a high belief that leads

the agent to stay. Consider the mechanism given by σ1(µ) = 1{µ ≥ µ∗ ≈ 0.0725} and

σ2(µ,−1) = q ≈ 0.0782 (Figure 1.1 (d)). This mechanism satisfies the agent’s participation

constraint with equality and gives the principal an ex ante payoff that is approximately equal

to 0.4637. Under this mechanism, it is costly for the principal to induce the agent to stay

in period 1 because the agent must then be promoted with probability q in the bad state.

The interim expected cost of promotion in the bad state is higher when the bad state is

more likely, that is, when the principal’s interim belief is lower. In fact, the principal is

willing to incur this cost precisely when µ ≥ µ∗; in other words, this mechanism is incentive

7. We later show that this mechanism is optimal if we ignore the principal’s incentive compatibility
constraints.
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compatible for the principal. Our results in section 1.5 imply that this mechanism is indeed

optimal among all feasible mechanisms.

O 1

1

µ

(a)

σ1(µ)

σ2(µ,−1)

O 1

0.12

1

µ

(b)

O 0.2 1

1

µ

(c)

µ∗ 1

q

1

µ

(d)

Figure 1.1: Example

1.4 Contractible Signals Benchmark

1.4.1 Characterization

Let us first consider as a benchmark the mechanism that maximizes the principal’s ex ante

payoff subject only to the agent’s individual rationality constraint, while ignoring the prin-

cipal’s incentive compatibility constraints. We call this the contractible-optimal mechanism,

since this mechanism would be optimal for the principal if his signals were contractible,

so that the mechanism can depend directly on the true signals rather than the principal’s

reports about the signals. This may be the case if, for instance, the firm’s signal comes
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from a formal evaluation of the worker, the result of which can be publicly verified when the

promotion decision is made.8

A contractible-optimal mechanism σ solves

max
σ1,σ2

∫ 1

0
σ1(µ)(µσ2(µ, 1)− (1− µ)σ2(µ,−1)) dF (µ)

s.t. c0 ≤ b

∫ 1

0
σ1(µ)(µσ2(µ, 1) + (1− µ)σ2(µ,−1)) dF (µ) + c1

∫ 1

0
(1− σ1(µ)) dF (µ)

(A-IR)

If σ2(µ, 1) < 1, we can increase σ2(µ, 1) to increase the objective while relaxing A-IR.

Intuitively, when the state is good, both the principal and the agent prefer promotion. Thus

we must have σ2(µ, 1) = 1, and finding a contractible-optimal mechanism means choosing

σ1(µ) and σ2(µ,−1) to solve

max
σ1,σ2

∫ 1

0
σ1(µ)(µ− (1− µ)σ2(µ,−1)) dF (µ)

s.t. c0 ≤ b

∫ 1

0
σ1(µ)(µ+ (1− µ)σ2(µ,−1)) dF (µ) + c1

∫ 1

0
(1− σ1(µ)) dF (µ) . (A-IR)

The following lemma simplifies the problem.

Lemma 1 (Memoryless Promotion). There exists a contractible-optimal mechanism σ =

(σ1, σ2) such that σ2(µ,−1) is constant in µ.

Proof. Suppose σ is a contractible-optimal mechanism. By the intermediate value theorem,

there exists qE ∈ [0, 1] such that

∫ 1

0
(1− µ)σ1(µ)σ2(µ,−1)dF (µ) = qE

∫ 1

0
(1− µ)σ1(µ)dF (µ).

8. The firm would not benefit from announcing the exam results before the worker chooses whether to
stay or leave in period 1, since this gives the worker additional information about her productivity and
therefore about her chance of promotion.
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Let σ′2(µ,−1) := qE for all µ ∈ [0, 1]. Clearly, the mechanisms (σ1, σ2) and (σ1, σ
′
2) induce

the same probability of promotion under each state and the same probability of the agent

staying in period 1.

The proof of Lemma 1 shows that if there is a contractible-optimal mechanism such that

σ2(µ,−1) varies with the period-1 belief report, we can make it constant without affecting

the outcome induced by the mechanism. Note that this argument fails when signals are

not contractible, as making σ2(µ,−1) constant may lead to a violation of the principal’s

incentive compatibilty to report truthfully in period 1.

In a general mechanism, the probability of promotion in period 2 in a given state can

depend non-trivially on the principal’s period-1 belief report, even after conditioning on the

period-1 recommendation to the agent. Indeed, we will see in Section ?? that this is some-

times the case in the optimal mechanism. In such mechanisms, in period 2, the principal

knows more than the agent about the promotion probability in each state. Lemma 1 shows

that such informational asymmetry is unnecessary if the principal’s signals are contractible.

Since σ2 does not depend on the principal’s belief conditional on recommendations, upon re-

ceiving the recommendation in period 1, the agent knows the exact probability of probability

that she will face in each state if she decides to stay.9

By Lemma 1, it is enough to choose σ1(µ) and a constant qE ∈ [0, 1], the probability of

promoting the agent in the bad state, to solve

max
σ1,q

∫ 1

0
σ1(µ)(µ− (1− µ)qE) dF (µ)

s.t. c0 ≤ b

∫ 1

0
σ1(µ)(µ+ (1− µ)qE) dF (µ) + c1

∫ 1

0
(1− σ1(µ)) dF (µ) . (A-IR)

9. Because the principal knows the state, it is always the case that the principal knows more than the
agent about the promotion probability unconditional on the state. On the other hand, the agent does
not know more than the principal, since although the principal does not observe the mechanism’s period-1
recommendation to the agent, once period 2 ensues, the principal knows in equilibrium that the agent was
asked to stay and obeyed.
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Since both integrands are increasing in µ, we have the following lemma.

Lemma 2. There exists a contractible-optimal mechanism such that σ1(µ) = 1{µ ≥ µE}

for some µE ∈ [0, 1].

Proof. See Appendix 1.11.1.

We may therefore restrict attention to (qE , µE) ∈ [0, 1]2 that solves

max
qE , µE

∫ 1

µE

(µ− (1− µ)qE)dF (µ)

s.t. c0 ≤ b

∫ 1

µE

(µ+ (1− µ)qE)dF (x) + c1F (µE).

Define

ĉ0 := b

∫ 1

c1/2b
µdF (µ) + c1F (c1/2b)

č0 := b (1− F (c1/2b)) + c1F (c1/2b).

The value ĉ0 is the ex ante payoff of the agent if she stays in period 1 if and only if the

principal’s belief is above c1/2b and is promoted in period 2 if and only if she stayed and

the state is good. The value č0 is the ex ante payoff of the agent if she stays in period 1

if and only if the principal’s belief is above c1/2b and is always promoted conditional on

staying. Clearly, we have bµ0 < ĉ0 < č0 < b. The following proposition characterizes the

contractible-optimal mechanism.

Proposition 1 (Contractible-Optimal Mechanism). Fix b, c1 ∈ R+ and F ∈ ∆[0, 1]. The

following are true:

(i) Suppose c0 ∈ (bµ0, ĉ0). Then, there exists a unique mechanism (qE , µE) with qE =

0 and µE ∈ (0, c1/2b) that is contractible-optimal. µE is strictly and continuously

increasing in c0.
18



(ii) Suppose c0 ∈ [ĉ0, č0]. Then, there exists a unique mechanism (qE , µE) with qE > 0

and µE = c1/2b that is contractible-optimal. qE is strictly and continuously increasing

in c0.

(iii) If c0 ∈ (č0, b), then there exists a unique mechanism (qE , µE) with qE = 1 and µE ∈

(0, c1/2b) that is contractible-optimal. µE is strictly and continuously decreasing in c0.

Proof. See 1.11.2.

Figure 1.2 depicts the contractible-optimal mechanism for different values of the agent’s

initial outside option, c0. Note that we have drawn σ2(µ,−1) only for the values of µ such

that σ1(µ) > 0, as σ2(µ,−1) is irrelevant if σ1(µ) = 0.

O µE c1
2b

1

1

µ

(i) bµ0 < c0 ≤ ĉ0

σ1(µ)

σ2(µ,−1)

O µE = c1
2b

1

qE

1

µ

(ii) ĉ0 < c0 ≤ č0

O µE c1
2b

1

1

µ

(iii) č0 < c0 < b

Figure 1.2: Contractible-Optimal Mechanism

Proposition 1 describes how the contractible-optimal mechanism changes as we increase

c0, starting from bµ0. First, the threshold belief µE increases up to c1/2b (case (i)), then

qE increases from 0 to 1 (case (ii)), and finally, µE decreases back to 0 (case (iii)). In case

(i), raising µE benefits the agent because as long as qE = 0 and µ ≤ c1/b, the agent would

prefer to leave in period zero rather than wait until period one to leave. A higher µE hurts

the principal because he would rather have the agent stay, given that he promotes her in

period 2 if and only if the state is good. In case (iii), lowering µE benefits the agent because

she will be promoted whenever she obeys the recommendation to stay. A lower µE hurts the
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principal because µE ≤ c1/2b implies that the principal with a belief µ ≤ µE would rather

have the agent leave than promote her for sure. Since we assume c0 > c1, if c1 is sufficiently

high, it may be that we are never in cases (i) or (ii).

A naive principal may have considered a mechanism that does not communicate to the

agent at the interim stage (or, equivalently, always asks her to stay) and makes the promotion

decision based on the state θ. Proposition 1 says that the principal can do better by using

the interim information.10 In particular, the optimal way to exploit the interim information

is to ask the agent to leave when the principal’s interim belief is low. This reduces the agent’s

ex ante opportunity cost of participating in the mechanism because she is able to leave in

period 1 and obtain c1 when the state is unlikely to be good. The principal and the agent

would forgo the potential benefit from promotion in the good state, but this is not too costly

ex ante because the agent leaves only when the interim belief is low.

Finally, we note that when the agent’s ex ante outside option is sufficiently high (c0 > č0),

whether or not she will be promoted in period 2 is fully determined in period 1, and this is

fully communicated to the agent in period 1. That is, in period 0, the principal says to the

agent, “I will tell you in period 1 whether or not you will be promoted in period 2.”

1.4.2 Violation of Principal’s Incentive Compatibility

The contractible-optimal mechanism characterized by Proposition 1 is never incentive com-

patible for the principal except in a knife-edge case.11 When bµ0 < c0 ≤ ĉ0 (case (i)), even

if the principal’s belief is below the threshold µE , he can deviate upward and misreport that

his belief is above µE , inducing the agent to stay. This is profitable for the principal because

he can then promote truthfully in period 2 and promote the agent if and only if θ = 1.

10. Any mechanism that ignores information in period 1 must have µE = 0. Proposition 1 shows that such
a mechanism can never be contractible-optimal.

11. The only case in which the contractible-optimal mechanism is incentive compatible is when µE = c1/2b
and qE = µE/(1 − µE). The value of c0 such that this is true will be defined as c̃0 when we describe the
optimal mechanism in Proposition 3.
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On the other hand, when č0 ≤ c0 < b (case (iii)), the principal with an interim belief in

(µE , 1/2) will have incentives to deviate downward and claim that his belief is below the

threshold µE , since he prefers not to promote the agent.

In order to incentivize the principal to report his beliefs truthfully, an optimal mecha-

nism must distort the recommendation and promotion decisions away from the contractible-

optimal benchmark. The next two sections explore how to optimally introduce such distor-

tions.

1.5 Optimal Mechanism

1.5.1 Simplifying the Problem

Recall from section 1.2 that an optimal mechanism solves

max
σ1,σ2

∫ 1

0
σ1(µ)(µσ2(µ, 1)− (1− µ)σ2(µ,−1)) dF (µ)

s.t. A-IR, P-IC1, P-IC2 .

To make the problem linear in the mechanism, we introduce the following change of

variables: σ+(µ) := σ1(µ)σ2(µ, 1) and σ−(µ) := σ1(µ)σ2(µ,−1). In words, σ+(µ) is the ex

ante probability that the agent will be promoteed when the principal reports a belief of µ

and reports that the state is good. σ−(µ) is the ex ante probability that the agent will be

promoted when the principal reports a belief of µ and reports that the state is bad. We thus
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choose three functions, σ1, σ+, and σ−, each mapping [0, 1] into [0, 1], to solve

max
σ1, σ+, σ−

∫ 1

0
(µσ+(µ)− (1− µ)σ−(µ)) dF (µ)

s.t. c0 ≤ b

∫ 1

0
(µσ+(µ) + (1− µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1− σ1(µ)) dF (µ) (A-IR)

µσ+(µ)− (1− µ)σ−(µ) ≥ µσ+(µ′)− (1− µ)σ−(µ′) ∀µ, µ′ ∈ [0, 1] (P-IC1)

σ+(µ) ≥ σ−(µ) ∀µ ∈ [0, 1] (P-IC2)

σ1(µ) ≥ σ+(µ) ∀µ ∈ [0, 1]. (Feasibility)

The feasibility constraint ensures that (σ1, σ+, σ−) corresponds to a mechanism (σ1, σ2)

with σ2 ≤ 1.12

Lemma 3. It is without loss of optimality to set σ1(µ) = σ+(µ).

Proof. Whenever σ1(µ) > σ+(µ), reducing σ1(µ) to σ+(µ) relaxes the A-IR constraint, does

not violate any other constraints, and does not affect the objective function.

Lemma 3 implies that σ2(µ, 1) = 1. That is, if the agent obeyed the recommendation to

stay in period 1, and the good state is realized in period 2, the mechanism should promote the

agent with probability 1 regardless of µ. Intuitively, if the mechanism sometimes recommends

“stay” but does not always promote the agent even in the good state, it would be more efficient

to have the agent leave more often in period 1.13

By Lemma 3, σ+(µ), which is the probability of promotion when the period-1 belief is µ

and the state is 1, coincides with the probability of recommending “stay” in period 1 when

the period-1 belief is µ. Thus our goal is to find σ+(µ) and σ−(µ) that solve the following

12. An astute reader might observe that we are no longer requiring σ2(µ, 1) ≥ σ2(µ,−1) when σ1(µ) = 0.
This is without loss since the conditional probabilities σ2(µ, 1) and σ2(µ,−1) do not matter if the mechanism
never recommends “stay” given belief µ.

13. One might be tempted by an alternative proof of Lemma 3 where, rather than decreasing σ1(µ), we
increase σ+(µ) to σ1(µ), i.e. increase σ2(µ, 1) to 1. We took this approach in finding the contractible-optimal
mechanism. However, this may violate P-IC1.
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maximization problem, which we denote (P).

max
σ+,σ−

∫ 1

0
(µσ+(µ)− (1− µ)σ−(µ)) dF (µ)

s.t. c0 ≤ b

∫ 1

0
(µσ+(µ) + (1− µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1− σ+(µ)) dF (µ) (A-IR)

µσ+(µ)− (1− µ)σ−(µ) ≥ µσ+(µ′)− (1− µ)σ−(µ′) ∀µ, µ′ ∈ [0, 1] (P-IC1)

σ+(µ) ≥ σ−(µ) ∀µ ∈ [0, 1]. (P-IC2)

The following lemma shows that an optimal mechanism (almost) always recommends the

agent to stay if the principal’s interim belief is (close enough to) 1.

Lemma 4. Any optimal mechanism must have lim
µ→1

σ+(µ) = σ+(1) = 1.

Proof. We first show σ+(1) = 1. Suppose to the contrary that there exists an optimal

mechanism σ with σ+(1) < 1. Consider the mechanism σ̃ defined by

σ̃+(µ) =


σ+(µ) if µ < 1

2

σ+(µ) + 1− σ+(1) if µ ≥ 1
2 ,

σ̃−(µ) =


σ−(µ) if µ < 1

2

σ−(µ) + 1− σ+(1) if µ ≥ 1
2 .

The mechanism σ̃ is well-defined since P-IC1 implies σ+(1) ≥ σ+(µ) for any µ ∈ [0, 1]. It

is straightforward to check that σ̃ satisfies all the constraints of P and gives the principal a

strictly higher ex ante payoff. Thus σ could not have been optimal.

Next, we argue that lim
µ→1

σ+(µ) = σ+(1). Consider the constraint P-IC1. Letting µ′ = 1
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and taking lim sup
µ→1

and lim inf
µ→1

on both sides of the inequality gives us

lim sup
µ→1

σ+(µ) ≥ σ+(1)

lim inf
µ→1

σ+(µ) ≥ σ+(1).

Since σ+(µ) ≤ σ+(1), we may conclude that lim
µ→1

σ+(µ) = σ+(1).

1.5.2 Characterization

To characterize optimal mechanisms, we start by considering two simple mechanisms that

are incentive compatible for the principal. The first is a mechanism that promotes the

agent regardless of the interim belief µ or the state θ. This mechanism is clearly incentive

compatible because it does not depend on the principal’s reports.

Definition 1. Let σ1 : [0, 1] → [0, 1] and σ− : [0, 1] → [0, 1]. The pair (σ+, σ−) is an

always-promote mechanism if σ+(µ) = σ−(µ) = 1 for all µ ∈ [0, 1].

O 1

1

µ

σ+(µ)

σ−(µ)

Figure 1.3: Always-Promote Mechanism

One may recall that, in Figure 1.2, we plotted σ1(µ) and σ2(µ,−1) to depict the contractible-

optimal mechanism. In this section, we instead plot σ+(µ) and σ−(µ). However, the figures

can be directly compared for the following reason. First, we have shown that σ1(µ) = σ+(µ)

24



for all µ. Moreover, in the contractible-optimal mechanism, either we have σ1(µ) = 1, so

that σ2(µ,−1) = σ−(µ), or we have σ1(µ) = 0, so that σ2(µ,−1) is meaningless.

The second simple mechanism asks the agent to leave if the principal’s interim belief

is sufficiently low. As in contractible-optimal mechanism, this can induce the agent to

participate because the agent prefers to receive c1 for sure rather than receive b with a low

probability. However, to satisfy the principal’s interim incentive compatibility constraints,

the mechanism must, upon keeping the agent in period 1, sometimes promote her even in

the bad state.

Definition 2. Let σ+ : [0, 1] → [0, 1] and σ− : [0, 1] → R+. The pair (σ+, σ−) is a threshold

mechanism if there exists µ∗ ∈ [0, 1) such that

σ+(µ) =


0 if µ < µ∗

1 if µ ≥ µ∗

σ−(µ) =


0 if µ < µ∗

q := µ∗
1−µ∗ if µ ≥ µ∗.

O µ∗ 1

q

1

µ

σ+(µ)

σ−(µ)

Figure 1.4: A Threshold Mechanism

If µ∗ > 1
2 , then q > 1, so that the threshold mechanism is not actually a feasible

mechanism; we might even have referred to the pair (σ+, σ−) satisfying the conditions of
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Definition 2 as a “threshold pre-mechanism”. Later in this section, we will construct an

optimal mechanism mechanism by taking a convex combination (an operation we define

shortly) over multiple threshold mechanisms. The resulting convex combination must be a

mechanism, but the individual threshold mechanisms need not be.

A threshold mechanism is parametrized by the threshold µ∗. In period 1, the principal

chooses from a menu consisting of two options. If the principal reports a pessimistic belief

µ < µ∗, the mechanism tells the agent, “I will never promote you, so please leave”. If the

principal reports an optimistic belief µ ≥ µ∗, the mechanism tells the agent, “I will promote

you with probability at least q = µ∗
1−µ∗ , so please stay”. Note that the principal’s interim

payoff from reporting that his belief is above µ∗ is increasing in his true belief. Therefore, the

mechanism is incentive compatible for the principal if and only if the principal is indifferent

between his two options when his belief is equal to the threshold µ∗. At µ∗, the probability

of promotion the worker in the good state jumps up by 1, while the probability of promotion

in the bad state jumps up by q. Since the state is good with probability µ∗, for the principal

to be indifferent, it must be that µ∗ = (1 − µ∗)q. In contrast to the contractible-optimal

mechanism (Proposition 1), where the principal could flexibly choose both µE and qE , here

µ∗ and q are bundled. To incentivize the principal to truthfully reveal whether his belief

is below or above the threshold, it must be that reporting an optimistic belief above the

threshold forces the principal to promote the agent in the bad state with a probability which

is pinned down by the threshold.

Given a family of mechanisms (σ+i , σ
−
i ), i = 1, . . . , I, we may define a new mechanism

(σ+, σ−) by taking a convex combination: σ+ =
∑I

i=1 kiσ
+
i and σ− =

∑I
i=1 kiσ

−
i , where

ki ∈ [0, 1] for each i, and
∑I

i=1 ki = 1. Note that P-IC1 is preserved under convex com-

bination. Figure 1.5 illustrates a convex combination of a threshold mechanism and the

always-promote mechanism.

Theorem 1 characterizes optimal mechanisms.
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Figure 1.5: (σ+, σ−) is a convex combination of threshold and always-promote.

Theorem 1. There exists an optimal mechanism that is a convex combination of the always-

promote mechanism and at most three distinct threshold mechanisms.

Sketch of proof. See Appendix 1.11.3 for a formal proof; here, we provide a sketch. Recall

from Section 1.5.1 that our problem (P) is

max
σ+,σ−

∫ 1

0
(µσ+(µ)− (1− µ)σ−(µ)) dF (µ)

s.t. c0 ≤ b

∫ 1

0
(µσ+(µ) + (1− µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1− σ+(µ)) dF (µ) (A-IR)

µσ+(µ)− (1− µ)σ−(µ) ≥ µσ+(µ′)− (1− µ)σ−(µ′) ∀µ, µ′ ∈ [0, 1] (P-IC1)

σ+(µ) ≥ σ−(µ) ∀µ ∈ [0, 1]. (P-IC2)

Because P-IC1 implies that σ+(µ) − σ−(µ) is non-decreasing when µ ≤ 1/2 and non-

increasing when µ ≥ 1/2, P-IC2 is equivalent to σ+(0) ≥ σ−(0) and σ+(1) ≥ σ−(1).

P-IC1 contains an infinite number of inequality constraints, but we may define ϕ(µ) :=

σ+(µ) + σ−(µ) and rewrite P-IC1 as

µϕ(µ)− σ−(µ) ≥ µϕ(µ′)− σ−(µ′) ∀µ, µ′ ∈ [0, 1].

This is reminiscent of the incentive compatibility constraints in a standard monopolist
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screening problem with a single good if we interpret µ as value, ϕ as allocation, and σ−

as transfer. Although the principal cannot pay money to the agent, σ− serves as a way of

transferring utility from the principal to the agent. By appealing to the envelope theorem,

we may conclude that P-IC1 holds if and only if

σ−(µ) = σ−(0) + µϕ(µ)−
∫ µ

0
ϕ(x) dx ∀µ ∈ [0, 1]

ϕ(µ) is non-decreasing.

Thus ϕ pins down σ−(µ) up to a constant, and our problem can be reduced to that of

choosing ϕ and σ−(0) ∈ [0, 1].

If we fix σ−(0) ∈ [0, 1], we have a constrained problem of finding a non-decreasing

function ϕ : [0, 1] → [2σ−(0), σ−(1) + 1] that maximizes a linear objective subject to two

linear inequality constraints, A-IR and ϕ(1) ≥ 2σ−(1). By the Bauer maximum principle,

there exists ϕ that solves the constrained problem and is an extreme point of the feasible set

of the constrained problem.

Let E be the set of non-decreasing functions on [0, 1] that take on at most two values,

2σ−(0) and σ−(1) + 1. It is well known that E is the set of extreme points of the set of

non-decreasing functions from [0, 1] to [2σ−(0), σ−(1) + 1]. By Proposition 2.1. in Winkler

[1988], any extreme point of the feasible set of the constrained problem is a function ϕ that is

a convex combination of at most three elements of E. We may therefore restrict attention to

functions ϕ : [0, 1] → [2σ−(0), σ−(1)+1] that are non-decreasing step functions with at most

three discontinuities. As we show in the formal proof, this implies that we may restrict σ+

and σ− to be non-decreasing step functions with at most three shared discontinuities. We can

then prove that each mechanism (σ+, σ−) is a convex combination of at most three threshold

mechanisms and the always-promote mechanism, where the weight on the always-promote

mechanism is σ−(0).
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Corollary 1, which follows from Theorem 1, explicitly describes the outcome of the convex

combination. Figure 1.6 depicts a generic form of the optimal mechanism.

Corollary 1. There exists an optimal mechanism σ = (σ+, σ−) that satisfies the following

conditions:

1. σ+(µ) is a non-decreasing step function taking values in {p0, p1, p2, 1}, where 0 ≤ p0 ≤

p1 ≤ p2 ≤ 1.

2. σ−(µ) is a non-decreasing step function taking values in {p0, q1, q2, 1}, where p0 ≤

q1 ≤ q2 ≤ 1

3. σ+(µ) ≥ σ−(µ) for all µ ∈ [0, 1].

4. σ+ and σ− share the same points of discontinuity.

5. σ+(1) = 1.

O µ1 µ2 µ3 1

p0

p1

p2

1

µ

σ+(µ)

σ−(µ)

Figure 1.6: Optimal Mechanism

Given an arbitrary belief distribution F , Theorem 1 reduces the problem of finding an

optimal mechanism to a finite-dimensional one. It is without loss of optimality for the

recommendation and promotion probabilities to be constant in each interval of interim beliefs,
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and there need be at most four such intervals. Consequently, it is also without loss of

optimality for the mechanism to have the principal only report which interval their belief

belongs to. For example, a firm may evaluate worker productivity with a letter grade of

A, B, C, or D. Even if the firm receives more information about the worker than can be

conveyed by the letter grades, such a coarse grading scheme performs just as well as any

finer grading scheme would.14

In light of Theorem 1, let us identify each of the three threshold mechanisms with the

pair (qi, µi) for i = 1, 2, 3. Let p0 be the weight placed on the always- mechanism. We now

describe how the optimal mechanism depends as the agent’s ex ante outside option.

Proposition 2 (General Comparative Statics). There exists c̄0 ∈ [c̃0, b) such that the fol-

lowing statements are true.

(i) If c0 ∈ (bµ0, c̄0], then there exists an optimal mechanism that is a convex combination

of three threshold mechanisms with thresholds µi ∈ [0, 1) for i = 1, 2, 3.

(ii) Suppose c0, c
′
0 ∈ (bµ0, c̄0] with c0 > c′0. Let {µi}i=1,2,3 be the three thresholds of

an optimal mechanism given c0, and {µ′i}i=1,2,3 the three thresholds for an optimal

mechanism given c′0. Then, it cannot be that µi < µ′j for all i, j ∈ {1, 2, 3}.

(iii) There exist µ̄1, µ̄2, µ̄3 ∈ (0, 1] such that, for each c0 ∈ (c̄0, b], we can find an optimal

mechanism that is a convex combination of the always-promote mechanism and three

threshold mechanism with thresholds µ̄1, µ̄2, µ̄3. The weight p ∈ (0, 1] placed on the

always-promote mechanism is unique and is strictly and continuously increasing in c0.

Proof. See Appendix 1.11.5.

14. On the other hand, it is not without loss for the principal to receive a coarse signal in period 1. As we
show in section 1.6, such a coarsening of the information structure relaxes the principal’s incentive constraints
in period 1 and may increase the principal’s ex ante payoff under the optimal mechanism.
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When the agent’s ex ante outside option is low (c0 ≤ c̄0), for the principal to incentivize

the agent to participate, using threshold mechanisms is cheaper than using the always-

promote mechanism. To see why, consider the ratio at which each of the always-promote

mechanism and the threshold mechanism transfers utility from the principal to the agent,

relative to the principal’s most preferred mechanism, σ+ ≡ 1 and σ− ≡ 0. Since promotion

in the bad state gives the agent b and costs the principal −1, the always-promote mechanism

transfers the principal’s utility to the agent at a rate of b. The threshold mechanism also

sometimes promotes the agent in the bad state, transferring utility at a rate of b. However,

the threshold mechanism also asks the agent to leave if µ < µ∗. When µ∗ is close to 0, this

is a very efficient transfer of utility, since the agent becomes better off by taking the interim

outside option of c1 for sure rather than most likely failing promotion and receiving 0, while

the principal does not lose from preemptively letting the agent leave because he was unlikely

to promote her even if she stayed. As a result, for low values of c0, threshold mechanisms

dominate the always-promote mechanism.

Once c0 is above c̄0, the thresholds remain constant at µ̄i, and the weight p0 on the

always-promote mechanism increases in tandem with c0. Intuitively, if c0 is very high, the

only way to meet the agent’s participation constraint is to promote her most of the time,

but threshold mechanisms cannot do this because the promotion probability in the bad state

can be increased only by decreasing the probability that the agent stays at the interim stage.

Thus, when c0 is sufficiently high, it becomes optimal to place a positive weight p on the

always-promote mechanism. Since increasing p transfers utility from the principal to the

agent at a constant rate of b, once c0 is high enough that p > 0 is optimal, for any higher

value of c0, it is optimal to increase p while holding the thresholds µi-s fixed.
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1.5.3 Optimal Mechanism: Single Threshold Case

We present a condition that guarantees the existence of an optimal mechanism that is a con-

vex combination of the always-promote mechanism and a single, rather than three, threshold

mechanism. Define

T (µ∗, λ) :=
∫ 1

µ∗

(
µ− (1− µ)

µ∗

1− µ∗

)
dF (µ)

+λ

(
b

∫ 1

µ∗

(
µ+ (1− µ)

µ∗

1− µ∗
)

)
dF (µ) + c1F (µ∗)

)
.

λ0 :=

∫ 1
0 (1− x)dF

b
∫ 1
0 (1− x)dF + f(0)c1

.

T (µ∗, λ) is the sum of the principal’s and the agent’s payoffs from a threshold mechanism,

where the agent’s payoff is weighted by λ ≥ 0.

Consider the following condition:

T (µ∗, λ) is strictly concave in µ∗ for any λ ≥ λ0. (1.3)

Intuitively, condition (1.3) holds if the density f of the interim belief distribution is

sufficiently flat. For instance, suppose f is differentiable, and define

f := min{f(µ) | µ ∈ [0, 1]}.

Condition (1.3) holds if f satisfies

0 ≤ f ′(µ) ≤ 2b

3b− c1
f, ∀µ ∈ [0, 1].

In particular, condition (1.3) always holds if the belief distribution F is Uniform.15

15. For an alternative sufficient condition for (1.3) that does not require f to be monotone, see Appendix
1.11.7.
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Theorem 2. Suppose condition (1.3) holds. Then, there exists an optimal mechanism that

is a convex combination of the always-promote mechanism and a single threshold mechanism.

Proof. See Appendix 1.11.6.

Define

c̃0 := b

∫ 1

c1/2b

(
µ+ (1− µ)

c1
2b− c1

)
dF (µ) + c1F (c1/2b)

to be the ex ante payoff to the agent under the threshold mechanism with threshold c1/2b.

It is straightforward to verify that c̃0 ∈ (ĉ0, č0). The following proposition is an analogue of

Proposition 2 for when condition (1.3) holds.

Proposition 3 (Comparative Statics). Suppose condition (1.3) holds. Then, there exist

c̄0 ∈ [c̃0, č0) and µ̄ ∈ (c1/2b, 1/2] such that:

(i) If c0 ∈ (bµ0, c̄0], there exists a unique mechanism that is a threshold mechanism and is

optimal. The threshold satisfies µ∗ ≤ µ̄, and µ∗ is strictly increasing in c0.

(ii) If c0 ∈ (c̄0, b), there exists an optimal mechanism that is a convex combination of the

threshold mechanism with threshold µ∗ = µ̄ and the always-promote mechanism. The

weight p ∈ (0, 1] placed on the always-promote mechanism is unique and is strictly and

continuously increasing in c0.

Proof. See Appendix 1.11.8.

The two cases of Proposition 3 are depicted in Figure 1.7. When the agent’s ex ante

outside option is low (c0 ≤ c̄0), the optimal mechanism is a threshold mechanism, and µ∗

increases as c0 increases. Once c0 is above c̄0, µ∗ stays fixed at µ̄, and the weight p on the

always-promote mechanism increases.
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O µ∗ 1

q

1

µ

(i) bµ0 < c0 ≤ c̄0

O µ∗ = µ̄ 1

p

q

1

µ

(ii) c̄0 < c0 < b

σ+(µ)

σ−(µ)

Figure 1.7: Optimal Mechanism When (1.3) Holds

1.6 Properties of the Optimal Mechanism

1.6.1 Interim Screening: Committing to Commit

Proposition 2 tells us that, regardless of the parameter values or the interim belief distribution

F , it is always optimal to place a positive weight on at least one threshold mechanism with

a strictly positive threshold µ∗ > 0.16 The important feature of a threshold mechanism

that it screens the agent based on the principal’s interim beliefs, asking the agent to leave

if the principal’s belief is below the threshold. As was the case for the contractible-optimal

mechanism, such interim screening incentivizes the agent to participate in the mechanism by

reducing her ex ante opportunity cost of participation. Unlike in the contractible-optimal

mechanism, incentive compatibility requires that in order to ask the agent to leave when the

principal’s interim belief is low, when the principal’s interim belief is high, the mechanism

must sometimes promote the agent even if the state turns out to be bad. Proposition 2 tells

us that interim screening remains valuable to the principal despite this friction. It is always

optimal for the principal to commit in period 0 to provide information in period 1 about his

decision in period 2; in other words, the principal should commit to commit.

16. Even in case (i), not all thresholds can equal 0, as otherwise the the agent’s ex ante payoff from the
mechanism would equal bµ0 < c0.
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It is crucial that the mechanism in period 1 not only restricts the period-2 promotion

decision decision, but communicates this restriction to the agent. In our environment, the

value of interim screening comes entirely from aiding the agent’s decision whether to stay

or leave in period 1. Indeed, if we were to assume that the principal were unable to send

messages to the agent in period 1, he would have no reason to make any decision in period

1 with only partial information about the state.17

The following observation illustrates the importance of interim screening: it is even possi-

ble for the optimal mechanism to induce a lower ex ante probability of promotion compared

to the principal’s most preferred mechanism, σ+(µ) = 1 and σ−(µ) = 0.18 This means that

the agent’s benefit from being able to make a better interim decision more than outweighs

her loss from a lower ex ante probability of promotion.

Necessity of Interim Screening Although we do not claim that the optimal mechanism

characterized by Proposition 2 is the unique optimal mechanism, the following results imply

that interim screening is a necessary component of any optimal mechanism.

Lemma 5. If σ is an optimal mechanism, it cannot be that σ+(0) > σ−(0) > 0.

Proof. See Appendix 1.11.9.

Proposition 4. If σ is an optimal mechanism, σ+ cannot be constant in µ.

Proof. Suppose to the contrary that σ+ is constant. By P-IC1, σ− must be constant as well.

By Lemma 4 and Lemma 5, the only two cases in which σ+ and σ− may be constant is if

17. There may be other environments in which the principal benefits from committing to restrict his
decision based on interim information, even if the restriction is kept hidden from the agent. Such a commit-
ment can relax the principal’s incentive compatibility constraints and may allow the principal to implement
outcomes (i.e. distribution over decisions conditional on each state) that he could not implement without
commitment.

18. This is the case, for example, if b = 10, c0 = 8.975, c1 = 8, and f(µ) = (−1/10)(µ − 1/2) + 1. We
can easily check that the threshold mechanism with µ∗ = 1/2 is optimal. In this mechanism, the ex ante
promotion probability is

∫ 1

0.5
f(µ)dµ = 0.4875. In the principal’s most preferred mechanism, the agent is

promoted with probability
∫ 1

0
µf(µ)dµ ≈ 0.4917.
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σ+ = 1 and σ− = 0 or if σ+ = σ− = 1. The former is ruled out by our assumption that

c0 > bµ0. The latter is ruled out by our assumption that c0 < b.

By Proposition 4, in any optimal mechanism, it cannot be that σ+(µ) = 1 for all µ ∈ [0, 1].

This means that in any optimal mechanism, the agent must sometimes be asked to leave in

period 1, i.e. there must be interim screening.

1.6.2 Ignoring Information

When the agent’s ex ante outside option c0 is sufficiently high, the optimal mechanism places

a positive weight p > 0 on the always-promote mechanism. That is, with probability p, the

mechanism promotes the agent regardless of the principal’s reports in period 1 or 2. To make

optimal use of the principal’s signals, the mechanism commits to sometimes ignore them.

As a result, the mechanism sometimes asks the agent to stay in period 1 and promotes her

in period 2 even when the principal already knows in period 1 that the state is bad, i.e.

µ = 0.19

On the other hand, the contractible-optimal mechanism always asks the agent to leave if

the principal’s interim belief is sufficiently low, µ ∈ [0, µE). That is, the contractible-optimal

mechanism never ignores the principal’s information. Thus the ignoring of information is

a distortion that is caused by the interaction of the principal’s incentive compatibility con-

straints and the agent’s participation constraint.

1.6.3 Memory

Consider σ2(µ, θ), which is the probability of promotion in period 2, conditional on the

agent having obeyed the interim recommendation to stay, and conditional on the state being

19. Note that the probability that the agent stays in period 1 is constant at p0 on the interval [0, µ1). Thus
there exist µ, µ′ ∈ [0, µ1) such that µ < µ′, and such that the agent sometimes stays when the belief µ and
sometimes leaves when the belief is µ′. It would be more efficient to leave more often µ and stay more often
at µ′, but such Pareto improvements are not achievable because of the principal’s incentive constraints.
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θ. In the optimal mechanism, does σ2(µ, θ) depend on µ? One might have answered in

the negative, since µ is payoff-irrelevant given θ, but our characterization of the optimal

mechanism tells otherwise. Although we know from Lemma 3 that σ(µ, 1) is constant at 1,

σ(µ,−1) can depend non-trivially on µ. For instance, if condition (1.3) holds and c0 is large

(statement (ii) of Proposition 3), we have σ2(µ,−1) = 1 for µ < µ̄ and σ2(µ,−1) = p < 1

for µ ≥ µ̄. In other words, when making the promotion decision in period 2, the optimal

mechanism must remember what the principal reported in period 1. This is in contrast to

the contractible-optimal mechanism, which does not need to remember the period-1 belief

report in making the period-2 promotion decision (Lemma 1).

1.7 Implementation

How would a firm deciding whether to promote a worker actually implement the optimal

mechanism? When σ2(µ,−1) is decreasing in µ, if the worker turns out to be unproductive

in period 2, she is less likely to be promoted if the firm had a higher belief about her value

in the past. One might worry that this feature makes implementation difficult, but the firm

can implement the optimal mechanism in a natural way that mirrors how the mechanism

is constructed. Theorem Theorem 1 implies that the optimal is a convex combination of

1) a convex combination of at most three threshold mechanisms and 2) the always-promote

mechanism. The firm implements this by randomizing between two different promotion

schemes - with probability 1− p, the firm implements the convex combination of threshold

mechanisms, and with probability p, the firm implements the always-promote mechanism.

Although our definition of a threshold mechanism allows for the possibility that a thresh-

old mechanism is not a feasible mechanism by itself, the convex combination of all thresh-

old mechanisms that constitute the optimal mechanism must be a feasible mechanism, as

otherwise the optimal mechanism would not be feasible either. Moreover, the conditional

probability σ2(µ,−1) of promoting the worker in the bad state is increasing in µ under
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any convex combination of threshold mechanisms. To see this, suppose we place weight

ki ∈ (0, 1) on a threshold mechanism with threshold µi, for i = 1, 2, 3. Let µ1 ≤ µ2 ≤ µ3.

Then σ2(µ,−1) = σ−(µ)/σ+(µ) is given by

σ2(µ,−1) =



0 if µ ∈ [0, µ1)

µ1
1− µ1

if µ ∈ [µ1, µ2)

1

k1 + k2

(
k1

µ1
1− µ1

+ k2
µ2

1− µ2

)
if µ ∈ [µ2, µ3)

k1
µ1

1− µ1
+ k2

µ2
1− µ2

+ k3
µ3

1− µ3
if µ ∈ [µ3, 1],

which is clearly increasing in µ on µ ∈ [0, 1].20

Therefore, we may interpret the convex combination of threshold mechanisms as a pro-

motion scheme that consists of a midterm review and a final review. During the midterm

review, which takes place in period 1, the firm forms a belief about whether the worker is

productive. The probability that the worker passes the midterm review is a non-decreasing

step function of the firm’s belief.21 The worker is asked to stay with the firm if she passes the

midterm; otherwise, she is no longer considered for promotion and is asked to leave. If the

worker obeys the recommendation to stay, she is reviewed again in period 2. During this final

review, the firm observes whether the worker is productive. If the worker is productive, she

is promoted with certainty. Even if she is not productive, she is promoted with a probability

which is increasing in the firm’s belief during the midterm review.

The interpretation of the always-promote mechanism is straightforward - the firm simply

promotes the worker without a review. Thus, to implement the optimal mechanism, the firm

commits to review the worker only some of the time. With probability 1− p, a review takes

20. If µ ∈ [0, µ1), we have σ1(µ) = σ+(µ) = 0, so σ2(µ,−1) is irrelevant and may be set to zero.

21. Such randomization may be implemented, for example, by having the low-productivity worker complete
a so-called performance improvement plan, the outcome of which depends mostly on luck rather than the
worker’s productivity.
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place, and the worker is promoted if she passes both a midterm and a final review. With

probability p, the worker is promoted by default.

Can the worker know whether she is subject to a review or not? Since the worker’s partic-

ipation constraint binds in the optimal mechanism, when deciding whether to stay or leave in

period 0, the worker should not know whether she will be reviewed in the future; otherwise,

the worker will leave if she knows that she will be reviewed. Although the worker’s interim

obedience constraint does not bind in the optimal mechanism, if the worker who is asked to

stay learns that she was subject to passed the midterm review, her conditional probability of

being promoted decreases, and this may lead her to disobey the recommendation and leave

the firm. If this is the case, to implement the optimal mechanism, the firm must ensure that,

even after the midterm review takes place, the worker does not know whether the she has

been reviewed. For example, if the review consists of an interview, the firm may need to

nominally interview the worker even if she will be promoted by default.

However, the threshold mechanism may be sufficiently attractive that the worker’s interim

obedience holds even if she learns that she has been reviewed. To see this, consider a

threshold mechanism with a threshold of µ∗ > c1/2b. Under this mechanism, the worker’s

interim expected payoff after being recommended to stay in period 1 is

b

1− F (µ∗)

∫ 1

µ∗

(
µ+ (1− µ)

µ∗

1− µ∗

)
dF (µ) (1.4)

>
b

1− F (µ∗)

∫ 1

µ∗

(
µ∗ + (1− µ∗)

µ∗

1− µ∗

)
dF (µ)

= 2bµ∗

>c1.

(1.4) shows that if a worker knows that she is playing a threshold mechanism with

µ∗ > c1/2b, and she has been recommended to stay, she should obey. The same would

hold if the worker is playing a convex combination of such threshold mechanisms. Therefore,
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if the optimal mechanism is a convex combination of the always promote mechanism and

threshold mechanisms with thresholds all greater than c1/2b, the worker obeys the interim

recommendation to stay even if she learns that she is playing the convex combination of the

threshold mechanisms.

In fact, (1.4) implies an even stronger result. Suppose the worker is asked to stay in

period 1 and know that she is subject to reviews. Furthermore, suppose the worker becomes

aware that she barely passed the midterm review. That is, the firm’s belief about her was µ̄,

which is the lowest possible belief under which she is asked to stay. Even then, the worker

will be willing to stay because her expected payoff of staying. Our interpretation is that the

firm does not lead the worker on. The firm is sometimes more pessimistic than the worker

about the probability of promotion, but even if the firm honestly conveyed their pessimism

to the worker, she would still choose to stay when asked to do so.

Proposition 5 (No Leading On). Suppose σ is an optimal mechanism that is a convex com-

bination of the always promote mechanism and threshold mechanisms. Suppose all thresholds

satisfy µi > c1/2b. Then, the agent obeys the recommendation to stay in period 1 even if she

knows the principal’s interim belief µ and knows that the convex combination of threshold

mechanisms is being played.

The thresholds are greater than c1/2b if, for example, condition (1.3) holds and c0 ≥ c̄0

(Proposition 3 (ii)).

1.8 Alternative Interpretations

Although the leading interpretation of our model throughout this paper is that of worker re-

tention, our model can be also used to understand relationship-specific investment or forward

guidance in policy-making.
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1.8.1 Relationship-Specific Investment

Let us continue to interpret the principal as a firm and the agent as a worker. However,

suppose the worker does not have outside options. Instead, in period 0, the worker chooses

an amount of human capital investment, e ≥ 0, that is specific to the firm. The cost of e

units of this firm-specific human capital is 1/2e2. In period 1, the worker chooses whether

to incur a cost of ke to maintain the investment. If the worker maintains the investment in

period 1 and is promoted in period 2, she receives a benefit of be + d, where d ≥ 0. The

worker receives 0 regardless of her choice of e if she does not maintain the investment or if

she is not promoted in period 2. Neither the worker’s choice of e in period 0, nor her choice

of whether to maintain the investment in period 1, is observed by the firm.

The firm receives a payoff of 1 from promoting the worker in period 2 if the state is good,

and the worker invested at least ē in period 0 and maintained this investment in period 1. If

the state is bad, the worker’s investment was less than ē, or the worker did not maintain the

investment, the firm’s payoff from promotion is −1. The firm obtains 0 from not promoting

the worker in period 2. In period 1, the firm observes a signal about the state and forms a

belief µ ∼ F . In period 2, the firm observes the state.

The firm’s ideal contract would have the worker invest ē and maintain it, and then

promote the worker if and only if the state is good. On the other hand, the worker does

not wish to invest unless she believes the firm is likely to promote her. Because the worker’s

choice of e is never observed by the firm, it cannot be contracted on; for example, the firm

cannot commit to promote the worker only if the worker invested ē. The only way for the firm

to incentivize the worker to invest is by committing to promote her with a high probability

so that the worker is more likely to benefit from her investment, and by committing to let

the worker know in advance, in period 1, if she is unlikely to be promoted, so that she may

avoid paying the cost of maintaining her investment.

If the worker chooses to invest a strictly positive amount e > 0, she will obey the firm’s
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recommendation to maintain the investment in period 1, as otherwise, she should not have

invested to begin with. If the worker is promoted in period 2 with ex ante probability x and

is asked with ex ante probability y to maintain the investment in period 1, then the worker’s

expected payoff from investing e in period 0 is

xbe− 1

2
e2 − key + xd.

Thus the worker’s optimal choice of investment level in period 0 is xb− ky. The optimal

mechanism σ = (σ1, σ2) maximizes the firm’s expected payoff subject to the firm’s incentive

compatibility constraints and the constraint that the worker invests at least ē, i.e.

ē ≤ b

∫ 1

0
σ1(µ)(µσ2(µ, 1) + (1− µ)σ2(µ,−1)) dF (µ)− k

∫ 1

0
σ1(µ) dF (µ) .

This is equivalent to our model if we let c1 = k and c0 = ē+ k.

Note that even if we allow the firm to make monetary transfers to the worker, the firm

cannot incentivize the worker to invest by paying her. Because the worker’s level of invest-

ment is noncontractible, transfers would not affect the worker’s marginal benefit of investing.

1.8.2 Forward Guidance

Suppose the agent is a company that may exert positive externalities in the future but

will require a government subsidy to be profitable. For example, the company could be

making investments to develop a source of renewable energy that may or may not end up

being valuable. The company is willing to incur the investment cost only if they expect the

principal, who is a regulator, to subsidize its final product.

In period 2, the regulator decides the level of subsidy, x ∈ [0, 1], to be provided to the

company. The regulator’s payoff is θx, where θ ∈ {−1, 1} is an uncertain state of the world

and represents the net marginal benefit of subsidizing the company—the marginal value of
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the positive externality less the financial cost of a subsidy. The regulator forms a belief

µ ∼ F about the state in period 1 and observes the state in period 2. In each of period 0

and 1, the company can either irreversibly shut down or continue to invest in the product. If

the company invests in both periods and receives a subsidy of x in period 2, the company’s

payoff is bx, where b > 0. If the company shuts down in period 0 (1), they receive a scrap

value of c0 (c1). Before the company chooses whether to invest in period 0, the regulator

can commit to a mechanism which communicates to the company in period 1 and chooses

the subsidy level in period 2 as functions of the regulator’s reports.

Our analysis how the regulator should provide forward guidance about their future policy.

The optimal forward guidance tells the company not only about the subsidy level in period

2, but also about how the regulator will provide additional information in period 1. By

committing to reduce uncertainty for the company in period 1, the regulator can induce

the company to invest in period 0. Intuitively, when they invest in period 0, the company

purchases a real option which allows them to either shut down or invest once more in period 1.

By committing to provide information in period 1 about the period-2 subsidy, the regulator

increases the value of the real option to the company and induces them to purchase it.

1.9 Additional Results and Extensions

1.9.1 Agent-Optimal Mechanism: Tell Me Tomorrow

Suppose the principal has an ex ante outside option of terminating his relationship with the

agent. What mechanism maximizes the agent’s ex ante payoff subject to the participation

and incentive compatibility constraints of the principal? This can be viewed as a model of

optimal delegation, where the agent has commitment power and delegates the promotion

decision to the firm, who receives private, noncontractible information. Although the agent

always wants to be promoted, she must meet the principal’s participation constraint and
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thus chooses to delegate the decision to the principal by committing to a mechanism that

makes promotion decisions as a function of the firm’s reports. Our novelty relative to most

of the literature on delegation is that the principal and the agent disagree not only about

what the promotion decision should be, but also about the speed in which the uncertainty

about the decision should be resolved. Unlike the agent, the principal does not incur a cost

from waiting to receive more information. The agent-optimal delegation mechanism must

therefore induce the principal not only to decide in the agent’s favor, but to swiftly restrict

their future decision.

The problem of finding the agent-optimal mechanism subject to the principal’s participa-

tion constraint is the dual of our original problem of finding the principal-optimal mechanism

subject to the agent’s participation constraint.22 Since the problem is linear in the mecha-

nism σ = (σ+, σ−), we may invoke strong duality. If a mechanism σ is a principal-optimal

mechanism given that the agent’s outside option is c0, and the principal’s ex ante payoff from

this mechanism is x, then σ maximizes the agent’s ex ante payoff subject to the constraint

that the principal’s ex ante payoff must be at least x, and the agent’s payoff from σ equals

c0. Thus the agent asks the principal not only to sometimes promote her against his wishes,

but also to inform the agent in period 1 about her chance of promotion in period 2.

1.9.2 Commitment to Marginal Distributions

One way to justify the use of a stochastic mechanism is to assume that there is a continuum

of agents. For example, if a firm employs a large cohort of workers, the firm may commit to

pass 80% of the workers in the midterm review and promote at least 50% of those who passed

the midterm. Note that this is only possible if the principal can make different decisions for

different agents; this may not be the case, for instance, for a regulator who is legally required

to to equally subsidize all companies in an industry.

22. Both problems are also subject to the principal’s incentive compatibility constraints.
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Formally, suppose that there is a unit mass of agents, and that the principal can deviate

from the mechanism as long as the marginal distribution of outcomes—the measure of agents

who stay in period 1 and the measure of agents in period 2—is a distribution that can arise

from implementing the actual mechanism.23 What mechanisms can the principal implement?

The answer to this question depends crucially on the distribution of the state θ. First, it

may be that there is a continuum of agents that are only ex ante homogeneous, and both µ

and θ are drawn independently and identically for each agent. This would be the case, for

example, if θ represents the innate ability of each worker. On the other hand, it may be that

the agents are ex post homogeneous, so that a single µ is drawn in period 1 and a single θ is

drawn in period 2. For example, θ may represent the demand for the firm’s goods and thus

be shared by all workers at the firm.

When the agents are ex ante homogeneous but ex post heterogeneous, being able to com-

mit to marginal distributions allows the contractible-optimal mechanism to be implemented

even when the principal’s signals are non-contractible. To illustrate, suppose c0 ∈ [ĉ0, č0] and

consider the contractible-optimal mechanism (qE , µE) = (qE , c1/2b) (Proposition 1. (ii)).

If the principal implements this mechanism, the measure of agents who stay in period 1 is

m1 := 1− F (c1/2b), and the measure of agents who are promoted is

m2 :=

∫ 1

c1/2b
(µ+ (1− µ)qE) dF.

Suppose the principal commits to recommend “stay” to m1 agents and promote m2 agents,

and suppose he is allowed to deviate to any direct mechanism as long as these two moment

conditions are satisfied. In period 2, the principal will promote all agents with θ = 1 and

additionally promote agents with θ = −1 until m2 agents have been promoted. Knowing this,

in period 1, the principal will recommend “stay” to the agents that he is the most optimistic

23. This is an application of quota mechanisms pioneered by Jackson and Sonnenschein [2007]. See Lin
and Liu [2022] for a recent application to Bayesian persuasion.
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about. This is precisely what the contractible-optimal mechanism specifies. Intuitively, since

the contractible-optimal mechanism already allows the principal to keep the agents who are

the most likely to be productive and then promote the most productive agents, the principal

cannot profitably deviate while honoring his commitment to the the marginal distributions.

Next, suppose the agents are ex post homogeneous. Since only one µ is realized in period

1, period 1 incentive compatibility must be satisfied, and the contractible-optimal mechanism

cannot generally be implemented. However, the optimal mechanism can be implemented.

For example, suppose condition (1.3) holds and c0 ∈ (c̄0, b). To implement the optimal

mechanism given by statement (ii) of Proposition 3, says that the principal commits to

either keep p agents in period 1 and promote all of them in period 2, or keep all agents in

period 1 and promote q of them in period 2.

Finally, one may wish to microfound the principal’s ability to commit to marginal dis-

tributions by requiring that each agent observes the measure of agents who stay in period

1.24 This means that agents receive additional information about both the principal’s belief

about the state and the promotion probabilities conditional on the state. Proposition 5 de-

scribes the condition under which the agents obey the recommendation to stay even if they

become aware of such information.

1.9.3 Comparative Statics on Belief Distribution

The principal is better off when he is ex ante more optimistic about the state.

Proposition 6. Let F, F ′ be two belief distributions with supp(F ) = supp(F ′) = [0, 1] and

EF [µ] = EF ′ [µ] = µ0. If F first-order stochastic dominates F ′, then the principal obtains a

higher ex ante payoff under F than F ′.

Proof. Given a mechanism σ, the partial derivative of the principal’s interim payoff with

24. This is related to the notion of credibility studied by Akbarpour and Li [2020].
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respect to interim belief µ at µ ̸= µ∗ is

σ+(µ) + σ−(µ) + µ(σ+)′(µ)− (1− µ)(σ−)′(µ)

=σ+(µ) + σ−(µ)

≥ 0.

Also, the principal’s interim payoff is continuous at µ∗. Therefore, the principal’s interim

payoff is increasing in µ. Likewise, the agent’s interim payoff is increasing in µ. Therefore,

if σ′ is an optimal mechanism under F ′, the principal with belief distribution F can choose

σ′ and do no worse than under F ′.

Does the principal always prefer a more informative interim belief distribution F? It

is clear that no F can be strictly worse for the firm than the uninformative distribution

F = δµ0 , since the firm with an informative F could simply commit not to communicate in

the interim period and obtain the same payoff as under F . Also, no distribution F can be

strictly better than the fully informative distribution F̄ (µ).

However, the principal sometimes prefers to receive a less informative signal in period

1. To illustrate, let F = U [0, 1], b = 15, c0 = 13, and c1 = 7. The optimal mechanism is

depicted in the left-hand panel of Figure 1.8, and the principal’s expected ex ante payoff is

0.156.

Consider the following mean-preserving contraction of the Uniform distribution:

µ =


µ∗/2 with proability µ∗

(1 + µ∗)/2 with proability 1− µ∗.

Although this less informative signal does not have a density, it is straightforward to
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Figure 1.8: Effect of Mean Preserving Contraction (b = 15, c0 = 13, c1 = 7)

show that under the new distribution, the principal can obtain a payoff of 0.183 by choosing

σ+(µ) = σ−(µ) =


0.07 if µ = 0.135

1 if µ = 0.635.

Intuitively, receiving less information relaxes the principal’s period-1 incentive compati-

bility constraints. Because the principal cannot promise not to act upon his period-1 belief,

learning less in period 1 can help him commit to a mechanism that otherwise would not

have been incentive compatible. Thus a firm may benefit from degrading the quality of

information that it acquires about its employees, even when information can be acquired for

free.

1.9.4 Deterministic Mechanisms

The optimal mechanism generally involves randomization of both action recommendations

and promotion decisions. If one were to restrict attention to deterministic mechanisms,

there would only remain two direct mechanisms that are incentive compatible and may

satisfy the agent’s ex ante participation constraint: the always-promote mechanism and

the threshold mechanism with µ∗ = 1/2. These are depicted in Figure 1.9. The princi-
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pal’s optimal deterministic mechanism would be the threshold mechanism with µ∗ = 1/2

if c0 ∈ (bµ0, c1F (1/2) + b(1 − F (1/2)], and would be the always-promote mechanism if

c0 ∈ (c1F (1/2)+b(1−F (1/2), b). Thus the restriction to deterministic mechanisms interacts

with noncontractibility of signals. It may be costless to use deterministic mechanisms when

signals are contractible, but under noncontractibility, the restriction is binding except possi-

bly when the agent’s ex ante outside option happens to be c0 = c1F (1/2)+b(1−F (1/2).2526

O 1

1

µ

Always-promote

O 1/2 1

1

µ

Threshold

σ+(µ)

σ−(µ)

Figure 1.9: Two Deterministic Mechanisms

In contrast, when the principal’s signals are contractible, Proposition 1 shows that there

exists a deterministic contractible-optimal mechanism as long as c0 ∈ (bµ0, ĉ0]∪ c0 ∈ [č0, b).

In addition, if signals are contractible, it is without loss for interim recommendations to be

deterministic regardless of the value of c0.

1.10 Conclusion

This paper studies the problem of a principal who must make a decision in the future,

gradually receives private information about his payoffs from the decision, and faces an

agent who wants know what the principal will do. This problem is not uncommon—workers

25. Even if c0 = c1F (1/2)+b(1−F (1/2), there is no guarantee that the threshold mechanism with µ∗ = 1/2
is actually optimal.

26. Restricting attention to deterministic mechanisms would also be without loss if c0 ≤ bµ0 or c0 = b,
which are corner cases that we have assumed away.
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ask firms about promotion prospects, firms ask regulators about future policy, and friends

ask one another to reply to dinner invitations—and yet have received little attention from the

literature. We introduce a parsimonious model that captures this problem and characterize

the optimal mechanism. To convince the agent to wait for his decision, the principal commits

today to commit tomorrow. Because his private information cannot be contracted on, the

principal sometimes ignores his information and decides in the agent’s favor.

50



1.11 Omitted Proofs

1.11.1 Proof of Lemma 2

Fix q ∈ [0, 1] and consider the problem

max
σ1(µ)

∫ 1

0
σ1(µ)(µ− (1− µ)q)dF (µ)

s.t. c0 ≤ b

∫ 1

0
σ1(µ)(µ+ (1− µ)q)dF (µ) + c1

∫ 1

0
(1− σ1(µ))dF (µ).

Letting σ1 ∈ L1[0, 1], the problem has a solution σ∗1. Since both the objective and the

constraint are affine in σ1, there must exist a Lagrangian multiplier27 λ ≥ 0 such that

choosing σ1 = σ∗1 maximizes

∫ 1

0
σ1(µ)(µ− (1− µ)q)dF (µ)

+λ

(
b

∫ 1

0
σ1(µ)(µ+ (1− µ)q)dF (µ) + c1

∫ 1

0
(1− σ1(µ))dF (µ)− c0

)
.

Therefore, it must be that σ1(µ) = 1 if µ ≥ µE :=
q+λ(bq−c1)
1+q+λb(1−q)

and σ1(µ) = 0 if

otherwise.

1.11.2 Proof of Proposition 1

The problem of maximizing the Lagrangian is

max
q∈[0,1]
µ∈[0,1]

∫ 1

µE

(µ− (1− µ)q) dF (µ) + λ

(
b

∫ 1

µE

(µ+ (1− µ)q) dF (µ) + c1F (µE)− c0

)
.

If we find qE and µE that maximizes the Lagrangian and satisfies the A-IR constraint,

then (qE , µE) is an efficient mechanism. Conversely, the statement and the proof of Lemma 2

27. See, for example, Luenberger [1997].
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implies that given an efficient mechanism (qE , µE), there exists a multiplier λ ≥ 0 such that

qE and µE maximize the Lagrangian.

If the A-IR constraint does not bind, λ = µE = qE = 0 solves the Lagrangian. Suppose

that the constraint binds, so that λ > 0.

The first derivatives of the Lagrangian with respect to qE and µE are, respectively,

(λb− 1)

∫ 1

µE

(1− µ) dF (µ) (1.5)

(µE(λbqE − λb− qE − 1) + qE − λbqE + λc1)f(µE). (1.6)

First, suppose λ > 1/b. Then, setting qE = 1 and

µE = max{0, 1 + λ(c1 − b)

2
}

maximizes the Lagrangian. (qE , µE) solves the problem when the constraint holds with

equality, i.e.

b(1− F (µE)) + c1G(µE) = c0. (1.7)

This corresponds to case (iii).

Next, if λ < 1/b, setting qE = 0 and

µE =
λc1

1 + λb

maximizes the Lagrangian. (qE , µE) solves the problem when the constraint holds with

equality, i.e.

b

∫ 1

µE

µ dF (µ) + c1F (µE)− c0 = 0. (1.8)
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This corresponds to case (i).

Finally, suppose λ = 1/b. Then,

µE =
c1
2b

and any value qE ∈ [0, 1] maximizes the Lagrangian. (qE , µE) solves the problem when

the constraint holds with equality, i.e.

b

∫ 1

c1/2b
(µ+ (1− µ)q) dF (x) + c1F (c1/2b)− c0 = 0. (1.9)

This corresponds to case (ii).

1.11.3 Proof of Theorem 1

Define ϕ := σ+ + σ− and rewrite P-IC1 as

µϕ(µ)− σ−(µ) ≥ µϕ(µ′)− σ−(µ′) ∀µ, µ′ ∈ [0, 1].

By standard envelope theorem arguments, this is equivalent to

σ−(µ) = σ−(0) + µϕ(µ)−
∫ µ

0
ϕ(x) dx ∀µ ∈ [0, 1]

ϕ(µ) is non-decreasing.
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The problem (P) is to choose ϕ : [0, 1] → [0, σ−(1) + 1] and σ− : [0, 1] → [0, 1] to solve

max

∫ 1

0
(µϕ(µ)− σ−(µ)) dF (µ)

s.t. c0 ≤ b

∫ 1

0
(µϕ(µ) + (1− 2µ)σ−(µ)) dF (µ) + c1

∫ 1

0
(1− ϕ(µ) + σ−(µ)) dF (µ) (A-IR)

ϕ(µ) is non-decreasing (P-ICb
1)

ϕ(µ) ≥ 2σ−(µ) for µ = 0, 1, (P-IC2)

σ−(µ) = σ−(0) + µϕ(µ)−
∫ µ

0
ϕ(x) dx ∀µ ∈ [0, 1]. (P-ICa

1)

Since ϕ is non-decreasing, without loss of generality, we may restrict attention to ϕ (and

thus σ−) that is right-continuous on µ ∈ [0, 1].

Fix σ−(0), σ−(1) ∈ [0, 1] such that σ−(0) ≤ σ−(1). Let L1([0, 1], [2σ−(0), σ−(1)+1]) de-

note the normed linear space of Lebesgue integrable functions from [0, 1] to [2σ−(0), σ−(1)+

1]. Let M ⊂ L1([0, 1], [2σ−(0), σ−(1)+1]) denote the convex set of non-decreasing functions

in L1([0, 1], [2σ−(0), σ−(1) + 1]). Let the feasible set F ⊂ M be the subset of functions in

M that satisfy A-IR and28

σ−(1) = σ−(0) + ϕ(1)−
∫ 1

0
ϕ(x) dx

⇔
∫ 1

0
ϕ(x) dx = σ−(0) + 1. (1.10)

Thus F is the subset of M that satisfies two linear constraints, A-IR and (1.10).

By Helly’s selection principle29, a sequence of functions contained in M has a subsequence

that converges pointwise to an element of M. By the dominated convergence theorem, this

subsequence converges in the L1 norm. Therefore, M is sequentially compact and thus

compact.

28. All other constraints have been built into the definition of M.

29. See, for example, Kolmogorov and Fomin [1975].
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It is well known that the set E := {e : [0, 1] → {2σ−(0), σ−(1)+1} | e is non-decreasing}

is the set of extreme points of M. Since F is the subset of a compact set M that is the

preimage of a linear mapping from M into a convex set in R2, Proposition 2.1. in Winkler

[1988] allows us to conclude that any extreme point of F , if it exists, is a convex combination

of at most three elements of E.

Since F ⊂ M is the continuous preimage of a closed set in R2, F is also compact.

Moreover, the objective function is affine in ϕ. Thus by the Bauer Maximum Principle,

given each choice of σ−(0) and σ−(1), there exists an extreme point of F that maximizes

the objective. That is, given σ−(0) and σ−(1), there exists a constrained-optimal mechanism

such that ϕ is a convex combination of at most three elements of E.

Now, let us unwrap (ϕ, σ−) back into (σ+, σ−). Keeping σ−(0) and σ−(1) fixed, consider

a constrained-optimal mechanism. Let e1, e2, e3 be the three elements of E that constitute

the ϕ of this constrained-optimal mechanism. Let µi denote the point at which ei is discon-

tinuous.

By P-ICa
1, σ

− is also non-decreasing and is a convex combination of at most three func-

tions e−1 , e
−
2 , e

−
3 contained in E− := {e− : [0, 1] → {σ−(0), σ−(1)} | e− is non-decreasing}.

We index each e−i so that it shares the same discontinuity as ei. Likewise, σ+ is a con-

vex combination of at most three functions e+1 , e
+
2 , e

+
3 contained in E+ := {e+ : [0, 1] →

{σ−(0), 1} | e+ is non-decreasing}, and each e+i shares the same discontinuity as ei and e−i .

Unless σ−(0) = 1, in which case the optimal mechanism is simply the always-promote

mechanism, none of e+i can be equal to the constant function e(x) = σ−(0).30 This means

that each (e+i , e
−
i ) is the convex combination of a threshold mechanism with threshold µi

and the always-promote mechanism, where the weight on the latter is σ−(0). Therefore, the

constrained-optimal mechanism, which is a convex combination of (e+i , e
−
i ) for i = 1, 2, 3, is

30. In an optimal mechanism, the function σ+ can never be written as a convex combination that places
a positive weight on e(x) = σ−(0) < 1, as this would imply that σ+ is bounded away from 1, contradicting
Lemma 4.
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a convex combination of three threshold mechanisms and the always-promote mechanism.

Of course, any mechanism that is a convex combination of three threshold mechanisms and

the always-promote mechanism is a convex combination of three elements of E+ × E− for

some value of σ−(0) and σ−(1).

We have so far shown that, given each σ−(0) and σ−(1), there exists a convex combination

of three threshold mechanisms and the always-promote mechanism that solves the principal’s

constrained problem. It remains to prove that there exists a solution of this form to the

unconstrained problem. For this, it is enough to show the existence of a mechanism which

is a convex combination of three threshold mechanisms and the always-promote mechanism,

and which solves the principal’s unconstrained problem across all mechanisms that are a

convex combination of three threshold mechanisms and the always-promote mechanism. We

defer this to Lemma 8 in subsection 1.11.4.

1.11.4 Lagrangian Approach

This subsection describes the Lagrangian approach to solving the problem (P).

By Theorem 1, (P) can be reduced to the choice of a 7-tuple x = (µ1, µ2, µ3, k1, k2, k3, k4),

representing the three thresholds, µ1, µ2, µ3 ∈ [0, 1), and a weight ki for each of the four

mechanisms such that
∑4

i=1 ki = 1, to maximize the principal’s expected payoff subject to

the individual rationality constraint and σ+(1) ≥ σ−(1).31 Define

X1 = {x ∈ [0, 1)3 × [0, 1]4 |
3∑

i=1

ki = 1 and
3∑

i=1

ki
µi

1− µi
≤ 1}

X2 = {x ∈ [0, 1)3 × [0, 1]4 |
3∑

i=1

ki = 1}.

31. A linear combination of threshold mechanisms and the always-promote mechanism by construction
satisfies P-IC1 and σ+(0) ≥ σ−(0).
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For multipliers λ, η ≥ 0, define

t(µi, λ, η) :=

∫ 1

µi

(
µ− (1− µ)

µi
1− µi

)
dF (x)

+λ

(
b

∫ 1

µi

(
µ+ (1− µ)

µi
1− µi

)

)
dF (x) + c1F (µi)− c0

)
+ η

(
1− µi

1− µi

)
a(λ) :=

∫ 1

0
(µ− (1− µ)) dF (x) + λ(b− c0) .

The expression t(µiλ, η) represents a weighted sum of the principal’s and agent’s payoffs

(and the term corresponding to P-IC2 at µi = 1) induced by a threshold mechanism with

a threshold at µi. a(λ) is the weighted sum of payoffs induced by the always-promote

mechanism.

The Lagrangians are

L1 = L(x, λ, 0) =
3∑

i=1

kit(µi, λ, 0) + k4a(λ)

L2 = L(x, λ, η) =
3∑

i=1

kit(µi, λ, η) + k4a(λ) .

A vector x1 ∈ X1 solves (P) if and only if there exists λ ≥ 0 such that x1 solves

max∈X1
L1, the A-IR constraint

b

∫ 1

µi

(
µ+ (1− µ)

µi
1− µi

)

)
dF (µi) + c1F (µi)− c0 ≥ 0

holds, and the complementary slackness condition is satisfied—either λ = 0, or the A-IR

condition holds with equality. Although t(µi, λ, 0) is not guaranteed to be concave in x for

arbitrary belief distributions F , the “only if” direction of the statement holds here because
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the problem (P) is linear in (σ+, σ−).32

Similarly, a vector x2 ∈ X2 solves the (P) if and only if there exist λ, η ≥ 0 such that

x2 solves maxX2
L2, A-IR and

∑3
i=1 ki

µi
1−µi

≤ 1 hold, and the complementary slackness

conditions are satisfied—either λ = 0, or A-IR holds with equality; and either η = 0, or∑3
i=1 ki

µi
1−µi

= 1. We will make use of the both Lagrangians to prove our results. The

following lemma provides a justification for this.

Lemma 6. Let λ ≥ 0. The following are equivalent.

(i) x maximizes L1 = L(x, λ, 0) across X1, satisfies A-IR, and satisfies complementary

slackness—either λ = 0, or A-IR binds.

(ii) There exists η ≥ 0 such that x maximizes L2 = L(x, λ, η) across X2, satisfies A-IR

and
∑3

i=1 ki
µi

1−µi
≤ 1, and satisfies complementary slackness—either λ = 0, or A-IR

holds with equality; and either η = 0, or
∑3

i=1 ki
µi

1−µi
= 1.

Proof. Interpret L1 =
∑3

i=1 kit(µi, λ, 0)+k4a(λ) as the objective function and
∑3

i=1
µi

1−µi
≤

1 as the single constraint. (ii) implies (i) by the Lagrangian sufficiency theorem. Conversely,

(i) implies (ii) by the Lagrangian necessity theorem, which holds because the problem of

maximizing L1 across X1 can be recast as the linear problem of choosing a mechanism

(σ+, σ−).

The Lagrangian necessity theorem tells us that if x solves the (P), there exists λ1 such

that (i) is true, and that there exists λ2 such that (ii) is true. Lemma 6 shows that we may

take the two λ-s to be equal. We next show that we can choose each µi from a compact

interval.

Lemma 7. There exists ϵ > 0, dependent on b, c1, and F but independent of c0, such that

any solution x to the problem (P) must satisfy µi ∈ [0, 1− ϵ] for each i = 1, 2, 3.

32. See, for example, Luenberger [1997].
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Proof. The partial derivative of t(µi, λ, η) with respect to µi is

λb− 1

(1− µi)2

∫ 1

µi

(1− µ) dF (µ)− λf(µi)(2bµi − c1)−
η

(1− µi)2
. (1.11)

This can be rewritten as

−1

(1− µi)2

∫ 1

µi

(1− µ) dF (µ) + λ

(
b

(1− µi)2

∫ 1

µi

(1− µ) dF (µ)− f(µi)(2bµi − c1)

)
− η

(1− µi)2
.

(1.12)

L’Hopital’s Rule and the continuity of f at µ = 1 imply that

lim
µi→1

−1

(1− µi)2

∫ 1

µi

(1− µ) dF (µ) = −1

2
f(1)

lim
µi→1

(
b

(1− µi)2

∫ 1

µi

(1− µ) dF (µ)− f(µi)(2bµi − c1)

)
=

(
−3

2
b+ c1

)
f(1).

Both are strictly negative since f(1) > 0. Therefore, there exists ϵ > 0, independent of

λ and η, such that for any µi ∈ (1− ϵ, 1), we have (1.11) < 0. Thus it can never be optimal

to choose µi > 1− ϵ.

In light of Lemma 7, we now restrict attention to

X̄1 = {x ∈ [0, 1− ϵ]3 × [0, 1]4 |
3∑

i=1

ki = 1 and
3∑

i=1

ki
µi

1− µi
≤ 1}

X̄2 = {x ∈ [0, 1− ϵ]3 × [0, 1]4 |
3∑

i=1

ki = 1}.

Lemma 7 allows us to complete the proof of Theorem 1 by proving the following lemma.

Lemma 8. The restriction of the problem (P) to X̄2 has a solution.

Proof. X̄2 is compact. All three terms in t(µi, λ, η) are continuous in µi. Thus the objective

function, which is a convex combination of the first term of t(µi, λ, η) and the first term of
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a(λ), is continuous in x ∈ X̄2. Similarly, the two constraints, A-IR and P-IC2, are continuous

in x ∈ X̄2. Thus there exists x ∈ X̄2 that solves the restriction of the problem (P) to X̄2.

The following lemma is similar to Propositions 3 and 2, but is stated in terms of the

Lagrangian multipler rather than the ex ante outside option.

Lemma 9. There exists a unique λ̄ > 0 such that

(i) For λ < λ̄, any x1 ∈ X̄1 that maximizes L1 must have k4 = 0.

(ii) For λ = λ̄, there exists x1 ∈ X̄1 with k4 > 0 that maximizes L1.

Proof. Consider the problem of maximizing the first Lagrangian L1 across x1 ∈ X̄1. Any

solution x1 has ki > 0 only if the corresponding t(µi, λ, 0) or a(λ) has the largest value

among the four terms of the Lagrangian. Moreover, if k4 < 1, then x1 must solve

V (λ) ≡ max
x1∈X̄1

3∑
i=1

kit(µi, λ, 0) .

It is easy to see that V (0) > a(0). We now argue that when λ is large enough, we have

V (λ) < a(λ). Consider the difference between the ex ante payoffs to the agent under a

mechanism with k4 = 1 and the the maximum ex ante payoff that can be given to the agent

under a mechanism with k4 = 0:

D := b− max
x∈X̄1

3∑
i=1

ki

(
b

∫ 1

µi

(
µ+ (1− µ)

µi
1− µi

)

)
dF (µ) + c1F (µi)

)
.

It is clear that D is non-negative, since the agent cannot do better than obtaining a
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payoff of b with probability 1. Moreover, we can show that D is bounded away from zero:

D ≥ bF (
1

2
)− max

x∈X̄1
µi≤1/2

3∑
i=1

ki

(
b

∫ 1/2

µi

(
µ+ (1− µ)

µi
1− µi

)

)
dF (µ) + c1F (µi)

)

= min
µ1≤1/2

(b− c1)F (µ1) + b

∫ 1/2

µ1

(1− µ)
1− 2µ1
1− µ1

dF (µ)

≥ min{b
∫ 1/2

1/4

2

3
(1− µ)dF (µ), (b− c1)F (

1

4
)} > 0 .

The first inequality holds because the RHS minimizes the difference between the ex ante

payoffs conditional on µ ≤ 1/2, and because the difference is positive at every µ. The

equality holds because we may take all µi’s to be equal.

Also, the difference between the maximum ex ante payoff that can be given to the princi-

pal under a mechanism with k4 = 0 and the ex ante payoff to the principal under a mechanism

with k4 = 1 is bounded above by 2, since the principal’s payoff cannot be higher than 1 or

lower than -1. Therefore, it must be that when λ is large enough, we have V (λ) < a(λ).

Intuitively, as we place an increasingly large weight on the agent’s payoff, it must eventually

be that the always-promote mechanism is used.

By the Maximum Theorem, V (λ) is continuous in λ. Clearly, a(λ) is also continuous in

λ. Hence there exists a smallest λ, strictly greater than 0, such that V (λ) = a(λ); take λ̄

to be this number. For λ < λ̄, we have V (λ) > a(λ), so any optimal x must have k4 = 0.

When λ = λ̄, we can maximize the Lagrangian with any value of k4.

Finally, we state a basic property of the Lagrangian.

Lemma 10. Fix b, c1, and F . Let λ and λ′ be two Lagrangian multipliers such that λ > λ′.

Suppose x = (µ1, µ2, µ3, k1, k2, k3, k4) maximizes L(x, λ, 0) across X1, and

x
′ = (µ′1, µ

′
2, µ

′
3, k

′
1, k

′
2, k

′
3, k

′
4) maximizes L(x, λ′, 0) across X1. Then x must induce a weakly
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higher ex ante payoff to the agent than does x′:

4∑
i=1

ki

(
b

∫ 1

µi

(
µ+ (1− µ)

µi
1− µi

)

)
dF (µ) + c1F (µi)

)

≥
4∑

i=1

k′i

(
b

∫ 1

µ′i

(
µ+ (1− µ)

µ′i
1− µ′i

)

)
dF (µ) + c1F (µ′i)

)
.

1.11.5 Proof of Proposition 2

We prove (i) using Lemma 9. Consider the second Lagrangian L2, and suppose λ ≤ 1/b. The

partial derivative (1.11) is always strictly negative when µi > c1/2b, so if L2 is maximized

at some x, it must be that η = 0 and that x has µi ≤ c1/2b < 1/2 for all i.

For λ = 1/b and η = 0, setting µ = c1/2b gives us t(µ, 1/b, 0) > a(1/b), which implies

V (1/b) > a(1/b). However, for µ = c1/2b, the coefficient of λ in a(µ, λ, η),

b

∫ 1

µ

(
µ+ (1− µ)

µ

1− µ
)

)
dF (x) + c1F (µ)− c0 ,

is always smaller than b− c0, which is the coefficient of λ in a(λ). Thus t(c1/2b, λ, 0) >

a(λ) for any λ ≤ 1/b, which implies that V (λ) > a(λ) for any λ ≤ 1/b.

We have shown that k4 = 0 when λ ≤ 1/b. Also, when λ = 1/b, the only threshold

mechanism that is optimal is the one with a threshold at c1/2b. The agent’s ex ante payoff

from this mechanism is c̃0.

As in Lemma 9, define λ̄ to be the smallest λ such that V (λ) = a(λ). Define c̄0 to be the

smallest value of the agent’s ex ante payoff that can be obtained from a mechanism x ∈ X̄1

that maximizes L(x, λ̄, 0):

c̄0 := min{k4b+
3∑

i=1

ki

(
b

∫ 1

µi

(
µ+ (1− µ)

µi
1− µi

)

)
dF (µ) + c1F (µi)

)
| x

∈ arg max
x∈X̄1

L(x, λ̄, 0)}.
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The minimum is well defined because argmax
x∈X̄1

L(x, λ, 0) is a compact set. It is clear

that we must have k4 = 0 to obtain c̄0. It is clear that c̄0 < b, since the agent cannot obtain

a payoff of b from a mechanism with k4 = 0. By the definition of λ̄, we have λ̄ > 1/b. By

Lemma 10, the corresponding ex ante outside options, c̄0 and c̃0, must satisfy c̄0 ≥ c̃0.

Note that for any c0 < c̄0, the multiplier λ corresponding to c0 must be weakly smaller

than λ̄ because of Lemma 10. By the definition of c̄0, it cannot be that λ = λ̄. Thus λ < λ̄,

and by the definition of λ̄, there exists x ∈ X̄ with k4 = 0 that solves the problem (P) and

induces c0 as the agent’s ex ante payoff.

(ii) holds because the principal cannot be better off when c0 is higher.

To show (iii), suppose we start from x that induces c̄0 for the agent. Let µ̄i denote

the thresholds of x. By keeping each threshold fixed at µ̄i, increasing k4 from 0 to 1, and

proportionally decreasing ki for i = 1, 2, 3, we can obtain an optimal mechanism that induces

any value of ex ante outside option in [c̄0, b]. Finally, Lemma 5 implies that whenever p0 > 0,

we must have µ̄i > 0 for each i = 1, 2, 3.

1.11.6 Proof of Theorem 2

We know from Theorem 1 that there always exists an optimal mechanism that is a convex

combination of three threshold mechanisms. Recall that we defined

t(µi, λ, η) :=T (µi, λ)− λc0 + η

(
1− µi

1− µi

)
=

∫ 1

µi

(
µ− (1− µ)

µi
1− µi

)
dF (µ)

+λ

(
b

∫ 1

µi

(
µ+ (1− µ)

µi
1− µi

)

)
dF (µ) + c1F (µ)− c0

)
+ η

(
1− µi

1− µi

)
.

As we argued in the proof of Theorem 1, for any optimal mechanism that is a convex
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combination of three threshold mechanisms, there exist multipliers λ, η ≥ 0 such that, if a

nonzero weight ki is placed on a threshold mechanism with threshold µi, then µi maximizes

t(µi, λ, η) across µi ∈ [0, 1). Since η(1− µi
1−µi

) is concave in µi, t(µi, λ, η) is strictly concave

in µi as long as T (µi, λ) is strictly concave in µi, which we have assumed to be true for

λ ≥ λ0.

It remains to show that it is without loss to restrict attention to λ ≥ λ0. Since t(µi, λ0, η)

is strictly concave in µi, one can see from (1.12) that t(µi, λ0, 0) is maximized at µi = 0.

That is, when λ = λ0 and η = 0, the mechanism that maximizes the Lagrangian (and thus

solves (P)) is the principal’s most-preferred mechanism, σ+(µ) = 0 and σ2(µ,−1) = 0. This

mechanism gives a payoff of bµ0 to the agent. By Lemma 10, for any mechanism that is

optimal given an ex ante outside option c0 > bµ0, the corresponding multiplier must be at

least as large as λ0.

Strict concavity of t(µi, λ, η) implies that there can be at most one µi that maximizes

the Lagrangian. Therefore, it must be that the three threshold mechanisms are actually

identical.

1.11.7 Alternative Sufficient Condition for Regularity

The following proposition provides an alternative sufficient condition for the principal’s prob-

lem to be regular.

Proposition 7. Suppose f is continuously differentiable and satisfies

|f ′(µ)| < min

{
2b

3b− c1
,

2λ0b

1− λ0b+ λ0(2b− c1)

}
f ∀µ ∈ [0, 1].

Then, the principal’s problem is regular.
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Proof. The second partial derivative of t(µi, λ, η) with respect to µi is

∂t

∂µi
=

λb− 1

1− µi

(
2

(1− µi)2

∫ 1

µi

(1− µ)f(µ) dµ− f(µi)

)
(1.13)

−λf ′(µi)(2bµi − c1)− 2λbf(µi)−
2η

(1− µi)3
.

Define f̄ := max{f(µ) | µ ∈ [0, 1]} and f̄ ′ := max{|f ′(µ)| | µ ∈ [0, 1]}, which are

well-defined because f is continuously differentiable. We have

∣∣∣∣λb− 1

1− µi

(
2

(1− µi)2

∫ 1

µi

(1− µ)f(µ) dµ− f(µi)

)∣∣∣∣ ≤ |λb− 1| f̄ − f(µi)

1− µi
≤ |λb− 1|f̄ ′ ,

and

|λf ′(µi)(2bµi − c1)| ≤ λ(2b− c1)f̄
′.

Therefore, the second partial (1.13) is strictly negative if

f̄ ′ <
2λbf

|λb− 1|+ λ(2b− c1)
∀µ ∈ [0, 1]. (1.14)

The assumption of the proposition implies that (1.14) holds for λ → ∞ and λ = λ0. But

the RHS of (1.14) is single-peaked in λ (with the peak at λ = 1/b). Therefore, (1.14) holds

for all λ ≥ λ0.

For example, when b = 2c1, |f ′(µ)| < 0.47 implies regularity.

1.11.8 Proof of Proposition 3

Let µ̄ be the unique value of the optimal threshold µ∗ when the agent’s ex ante outside option

is c̄0. For c0 ∈ (c̄0, b), it is optimal to place positive weights on both the always-promote
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mechanism and a the threshold mechanism with threshold µ̄. We showed in 1.11.5 that a

positive weight is placed on the always-promote mechanism only if λ > 1/b. Since a positive

weight is placed on the threshold mechanism and λ > 1/b, by (1.11), it must be that either

the threshold satisfies µ̄ > c1/2b or η > 0. If η > 0, the period-2 incentive compatibility

constraint σ+(1) ≥ σ−(1) must bind, so it must be that µ̄ = 1/2 > c1/2b. We have thus

shown that µ̄ > c1/2b.

Uniqueness and monotonicity of µ∗ in (i) hold because the principal’s payoff is strictly

decreasing in µ∗. Likewise, the uniqueness, monotonicity, and continuity of p in (ii) hold

because the principal’s payoff is strictly and continuously decreasing in p, while the agent’s

payoff is strictly and continuously increasing in p.

All other results follow directly from Theorem 2 and Proposition 2.

1.11.9 Proof of Lemma 5

Suppose to the contrary that σ = (σ+, σ−) is optimal and satisfies σ+(0) > σ−(0) > 0.

Since σ− is non-decreasing, and σ+ − σ− is non-decreasing when µ ≤ 1/2, it must be that

σ−(µ) ≥ σ−(0) and σ+(µ) − σ−(µ) ≥ σ+(0) − σ−(0) for µ ∈ [0, 1/2]. For ϵ > 0, consider

the functions σ+ϵ and σ−ϵ defined by

σ+ϵ (µ) =


σ−(0)− σ+(0) if µ < ϵ

0 if µ ≥ ϵ

σ−ϵ (µ) =


ϵ

1−ϵ(σ
−(0)− σ+(0)) if µ < ϵ

0 if µ ≥ ϵ.

For ϵ small enough, we have ϵ
1−ϵ(σ

−(0)−σ+(0)) > −σ−(0), so that the pair of functions

σ + σϵ := (σ+ + σ+ϵ , σ
− + σ−ϵ ) defines an incentive compatible mechanism. However, for ϵ

small enough, σ + σϵ must induce a greater value of the Lagrangian L1 compared to σ. To
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see this, evaluate L1 at σϵ to get:

∫ ϵ

0
(σ−(0)− σ+(0))

(
(µ+ λbµ− λc1) +

ϵ

1− ϵ
(1− µ)(λb− 1)

)
dF (µ).

For ϵ small enough, the integrand converges to λc1(σ
+(0) − σ−(0)), which we know to

be strictly positive because we showed that λ ≥ λ0 > 0 in the proof of Theorem 2.
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