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ABSTRACT

This thesis contains two essays. The first essay develops an econometric framework that

estimates treatment effect in the event-study setup with panel data, while allowing for

unit-specific latent heterogeneity that has a finite support. The second essay discusses clus-

tered treatment assignment mechanism and develops a selection-on-observable type approach

when the clusters are large and thus the information available at the cluster level is high-

dimensional.
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CHAPTER 1

FINITELY HETEROGENEOUS TREATMENT EFFECT IN

EVENT-STUDY

1.1 Introduction

The event-study is an empirical methodology whose popularity among empirical researchers

has risen tremendously over the time. The seminal works by Ball and Brown [1968] and Fama

et al. [1969] started a huge literature in financial economics that utilizes the random timing

of shocks in capital markets to build empirical evidence of asset pricing theory. The increase

in the use of the event-study design was not confined to the field of financial economics.

Empirical economists in fields ranging from labor economics to education and environmental

economics soon realized the benefit of utilizing variations in treatment timing and the event-

study design has become one of the most widely used tools for causal analysis in empirical

microeconomics. An example of empirical contexts where the event-study design is most

frequently used is policy reforms. A policy reform is often gradually expanded within a

country, instead of being adopted across the whole country at once. Thus, economists use

the variation in the timing of policy adoption to estimate the effect of the policy reform; for

example, Meghir and Palme [2005] use variation in the timing of education reform across

municipalities and Havnes and Mogstad [2011] use variation in the timing of welfare benefit

expansion across municipalities. Natural disasters and health shocks are also examples of

empirical contexts where event-study design is often used. For example, Gallagher and

Hartley [2017] use the timing of hurricane Katrina to study its effect on financial market

outcomes of flooded households. Fadlon and Nielsen [2019] use the timing of heart attacks

to study their effect on family members’ health behaviors.

The most canonical estimation strategy in the event-study design is a difference-in-

difference (diff-in-diff) estimator, used when there are two units and two time periods. When
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the dataset has more than two time periods, the diff-in-diff estimator is extended to the

two-way fixed-effects (TWFE) regression specification. In this paper, I modify the TWFE

regression specification to a conditional TWFE regression model with a latent unit-level

type variable. In the model, outcome is modelled with unit fixed-effects, type-specific time

fixed-effects, type-specific dynamic treatment effects, and observable control covariates with

linear coefficients. The latent type variable denotes unit heterogeneity in treatment timing.

Thus, the distribution of treatment timing may vary across different types. With the latent

type variable, I make following assumptions. Firstly, I assume that conditioning on the type

variable, treatment timing is independent of potential outcomes. Thus, the usual event-study

estimation approaches for treatment effect, such as the TWFE regression specification, do

not have the selection bias problem1 when applied to units of the same type. Secondly, I

assume that the type variable has a finite support and the types are well-separated in terms

of pretreatment outcomes, motivated by Bonhomme and Manresa [2015]. This allows us to

find units of the same type, by looking at the time series of pretreatment outcomes.

The conditional TWFE model provides an econometrics framework that can be used

when a researcher suspects that the treatment timing is not completely exogenous in the un-

conditional TWFE specification. Suppose that a researcher uses the unconditional TWFE

specification to estimate treatment effect, even though the true model for the dataset is the

conditional TWFE model. Then, the treatment effect estimator will be biased since the type-

specific time fixed-effects, which are not controlled in the TWFE specification, have nonzero

correlation with the treatment timing; hence the selection bias. Under the assumption that

the latent type variable is recovered from the pretreatment outcomes, I solve the selection

bias problem by comparing units with the same pretreatment outcomes. In this sense, the

conditional TWFE model allows us to use the event-study type estimation approach even

when we suspect that the treatment timing is not completely random, as long as we believe

1. The term ‘selection bias’ can be used in different contexts but in this paper, what I refer to as the
selection bias is the selection into treatment.
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that the heterogeneity in treatment timing is recovered from the pretreatment outcomes.

In addition, the conditional TWFE model allows us to explore unobserved heterogeneity in

treatment effect. By assuming that the latent type variable is recovered from the pretreat-

ment outcomes, the conditional TWFE model connects the unobserved heterogeneity in the

pretreatment outcomes to the unobserved heterogeneity in treatment effect.

In estimation, I propose a least-square estimator to estimate the conditional TWFE

model. Though the least-square estimator is not analytically solvable, I propose an iterative

algorithm that finds a local minimum with little computational burden. The least-square

estimator is consistent and asyptotically normal, as the number of units goes to infinity,

under some regular assumptions. The key assumption is that (a polynomial function of) the

number of pretreatment time periods goes to infinity faster than the number of units. I use

this assumption to show that the probability of the least-square estimator misallocating the

types is negligible in the asymptotic distribution.

To provide an empirical illustration of my method, I revisit Lutz [2011] that studies the

effect of terminating school desegregation plans on racial segregation index at the school

district level. Lutz [2011] uses the variation in the timing of the district court ruling that

terminates court-mandated school desegregation plans and uses the TWFE specification.

I apply the conditional TWFE estimator and find interesting patterns between the pre-

treatment trend in school segregation index and the treatment effect of terminating school

desegregation plans. Specifically, I find strong segregation effect from terminating school

desegregation plans in school districts where segregation index was worsening even before

the termination, whereas I do not find significant segregation effect in school districts where

segregation index was relatively stable over the time.

In Section 2, I formally discuss the conditional TWFE model. In Section 3, I propose

a least-square estimator and an iterative algorithm to solve the optimization problem. In

Section 4, I discuss asymptotic results on the estimator. In Section 5, I provide the empirical
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illustration by revisiting Lutz [2011].

1.1.1 Related Literature

In this paper, I make contribution to the group fixed-effects model literature. [Bonhomme

and Manresa, 2015, Su et al., 2016, Wang and Su, 2021] The conditional TWFE model of

this paper can be understood as a group fixed-effects model in the sense that the latent type

variable induces a grouping structure and treatment effects and time fixed-effects of the model

are assumed to be type-specific. This paper makes contribution to the group fixed-effects

literature by developing a variant of group fixed-effects model for the event-study design and

providing asymptotic theory for the model. The nontrivial part of the adaptation comes from

the fact that one of the regressors in the model has a specific structure, i.e., the staggered

adoption of the treatment.

Secondly, I make contribution to the event-study literature, by proposing a new econo-

metric framework that relaxes the parallel trend assumption. The synthetic control method

[Abadie et al., 2010, 2015, Arkhangelsky et al., 2021] relaxes the parallel trend assumption by

using interactive fixed-effects modelled with a factor model, instead of using unit fixed-effects

and time fixed-effects. Between the factor model and the conditional TWFE model, there

is no clear order in terms of generality. At each time period, the interactive fixed-effects in

the factor model are not restricted across units while the type-specific time fixed-effects in

this paper are restricted in the sense that there can be only finite types. However, within

each unit, across time periods, the interactive fixed-effects have linear structure while the

type-specific time fixed-effects do not have any restriction. The same applies to the literature

that directly estimates the factor model to estimate treatment effect: Xu [2017], Moon and

Weidner [2015]. In a slight different path, Rambachan and Roth [2022] considers another

relaxation of the parallel trend assumption and develops a partial identification result.

Lastly, this paper contributes to the rapidly growing literature on heterogeneous treat-
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ment effect. The growing literature highlights the negative weighting problem of the TWFE

specification under treatment effect heterogeneity [De Chaisemartin and d’Haultfoeuille,

2020, Goodman-Bacon, 2021a, Borusyak et al., 2021]. This literature mostly focuses on

how to estimate the average treatment effect when there is unobserved heterogeneity in

treatment effect while this paper aims to explicitly model the unobserved heterogeneity and

estimates the heterogeneity in treatment effect. In Section 4, I discuss an extended condi-

tional TWFE model where the treatment effect is allowed to be heterogeneous within each

type and apply the solutions of the heterogeneous treatment effect literature to estimate the

type-specific treatment effect, free of the negative weighting problem.

1.2 Model

Let us consider a potential outcome model with staggered adoption for a panel data with N

units and T+1 = T0+T1+1 time periods: for i = 1, · · · , N and t = −T0−1, · · · , 0, · · · , T1−1,

Yit =
∞∑

r=−∞
Yit(r)1{t=Ei+r},

= Yit(−1) +
∞∑

r ̸=−1,r=−∞,

(
Yit(r)− Yit(−1)

)
1{t=Ei+r}. (1.1)

Ei denotes the treatment timing of unit i. T0 + 1 is the number of periods where no unit is

treated and T1 the number of periods where some units are treated; at the aggregate level,

t < 0 means pretreatment and t ≥ 0 means treatment. The outcome Yit is constructed

with Yit(r), the potential outcome for unit i at time t when unit t is treated at t − r. We

can think of positive r as lags and negative r as leads; at the individual level, r < 0 means

pretreatment and r ≥ 0 means treatment. For example, Yit(0) is the potential outcome for

unit i at time t when unit i is treated at time t; unit i is treated at time t. Yit(−1) is the

potential outcome for unit i at time t whe unit i is treated at time t+ 1; unit i is untreated
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at time t. In this model, I assume that treatment timing Ei is observed for every unit i. The

model can be easily extended to setup were some units are never treated by letting Ei = T1

for never-treated units and assuming Yit(r) = Yit(−1) for all r < −1.

In addition to Yit, a control covariate Xit and the treatment timing Ei is observed; a

researcher observes {Yit, Xit, Ei} for i = 1, · · · , N and t = −T0 − 1, · · · , T1 − 1. Also, there

exists a unit-level latent type variable. Conditional upon the latent type and the observable

covariate, the treatment timing is independent of the potential outcomes, at every time t.

Assumption 1.1. (Unconfoundedness with the Latent Type) There exists a latent

type variable ki such that for each t

{Yit(r)}r ⊥⊥ Ei | ki, {Xis}ts=−T0−1

with some observable control covariate Xis ∈ Rp.

Assumption 1 is the regular unconfoundedness assumption, but with a latent variable.

There exists a notion of sequential exogeneity in Assumption 1; the potential outcomes at

time t, {Yit(r)}r, are independent of the treatment timing Ei conditional upon the latent

type and the information available at time t. However, the potential outcomes for time

t′ > t can still be correlated with the treatment timing Ei if we are only conditioning on the

information available at time t.

Proposition 1.1. Under Assumption 1,

E
[
Yit|Ei, ki, {Xis}ts=−T0−1

]
=
∑
e

E
[
Yit(t− e)|ki, {Xis}ts=−T0−1

]
· 1{Ei=e}.

Proof. This is direct from Assumption 1.

Proposition 1 is important since it allows us to compare oranges to oranges. To illustrate
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this, let us consider a simpler cross-sectional potential outcome model:

Yi = Yi(1) ·Di + Yi(0) · (1−Di),

E [Yi|Di, Xi] = E [Yi(0)|Di = 0, Xi] +
(
E [Yi(1)|Di = 1, Xi]− E [Yi(0)|Di = 0, Xi]

)
︸ ︷︷ ︸

=β(Xi)

·Di.

The intercept β(Xi) has no causal interpretation; it is neither treatment effect on treated

nor treatment effect on untreated. However, once we assume the unconfoundedness as in

Assumption 1, we get β(Xi) = E [Yi(1)− Yi(0)|Xi]. Thus, Assumption 1 guarantees that

we have a causal interpretation.

Also, note that the residual defined as

Uit = Yit −
∑
e

E
[
Yit(t− e)|ki, {Xis}ts=−T0−1

]
· 1{Ei=e}

is mean independent of the treatment timing Ei, after conditioning on the latent type and

all the available information at time t:

E
[
Uit|Ei, ki, {Xis}ts=−T0−1

]
.

For the rest of the paper, let us impose more structures on the conditional expectation

function.

Assumption 1.2. (Linear Conditional Expectation of Potential Outcome)

E
[
Yit(r)|ki, {Xis}ts=−T0−1

]
= αi + δt(ki) + βr(ki)1{r ̸=−1} +Xit

⊺θ.

Assumption 2 imposes linearity and additive separability; roughly put, the expectation is a

sum of treatment effect βr(ki)1{r ̸=−1} and untreated potential outcome αi+ δt(ki)+Xit
⊺θ.

The coefficient on the control covariate, θ, is assumed to be time-invariant and homogeneous

across units. While both fixed-effect δt(ki) and treatment effect βr(ki) depend on the type
7



ki, δt(ki) depends on time t and βr(ki) depends on relative treatment timing r. In this sense,

I call δt(ki) time fixed-effect and βr(ki) dynamic treatment effect. Note that by dropping t

and introducing r for β, treatment effect is assumed to be time-invariant and dynamic and

that β−1(ki) is dropped to use Yit(−1) as a reference point as in Equation (1.1). Lastly αi

is unit fixed-effect. Assumption 1 and 2 imply the following linear outcome model:

Yit = αi + δt(ki) +
∞∑

r ̸=−1,r=−∞
βr(ki)1{t=Ei+r} +Xit

⊺θ + Uit, (1.2)

0 = E
[
Uit|Ei, ki, {Xis}ts=−T0−1

]
. (1.3)

The main goal of this paper is to develop an alternative econometric framework to be

used when a researcher suspects treatment endogeneity in the unconditional TWFE speci-

fication. Thus, I build upon the unconditional TWFE specification and impose the linear

structure as in the unconditional TWFE specification with Assumption 2. However, the idea

of using the pretreatment outcomes to control for unit heterogeneity in treatment timing is

not necessarily confined to the linear model. Though it will not be discussed in this paper,

one can develop a model where the unit heterogeneity in treatment timing can be recovered

from the pretreatment outcomes, without the linear structure.2

Lastly, let us adopt two more assumptions for tractability.

Assumption 1.3. (Finite Support)

ki ∈ {1, · · · , K}.

The finiteness of the type ki allows us to use the readily available literature of unsupervised

partitioning methods to estimate the type.

2. One noteworthy remark to be made here is that the linear structure helps us in estimating the latent
type variable and the model parameters simultaneously. For models with more complex structure, a two-step
estimation method can be more suitable. In the first step, the type assignment will be separately estimated
with the pretreatment outcomes and in the second step, the model parameters are estimated with the first
step type assignment estimates as given.
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Assumption 1.4. (No Anticipation)

β0r (k) = 0 ∀k and r < 0.

Assumption 4 is the standard parallel trend assumption in the event-study setup.

Here I would like to make two observations. Firstly, Assumptions 1-2 and 4 together

complete the conditional TWFE regression model with a latent conditioning variable. Note

that the standard TWFE regression model is nested in Equations (1.2) and (1.3) by imposing

δt(k) = δt(k
′) and βr(k) = βr(k

′) for every k, k′. Secondly, Assumptions 2-3 reduce the

heterogeneity across untreated potential outcomes to two channels: firstly, the unit fixed-

effect αi and secondly, the type-specific time fixed-effect δt(ki). With the unit fixed-effects,

unit heterogeneity is flexible across units but fixed across time periods. With the type-

specific time fixed-effects, unit heterogeneity is restricted at each time periods with the finite

type variable ki, but flexible across time periods.

1.3 Estimation

To proceed in more details, let us adopt following notations:

γ :=

(
k1 · · · kN

)⊺
∈ Γ,

Γ := {1, · · · , K}N ,

β =

(
β−T (1) · · · βT1−1(K)

)⊺
,

α =

(
α1 · · · αN

)⊺
,

δ =

(
δ−T0−1(1) · · · δT1−1(K)

)⊺
,

γ is a N × 1 vector of a type assignment. Γ is a set of all possible type assignments; N units

are assigned with K different types. β, α and δ are vectors of dynamic treatment effects,
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unit fixed-effects and time fixed-effects. With these, we can construct an objective function

to minimize:

Q̂c(θ, β, α, δ, γ)

=
1

N(T + 1)

N∑
i=1

T1−1∑
t=−T0−1

Yit − αi − δt(ki)−Xit
⊺θ −

T1−1∑
r ̸=−1;r=−T

βr(ki)1{t=Ei+r}

2

.

With parameter spaces Θ, B, A, D, Γ, a candidate estimator is

(
θ̂, β̂, α̂, δ̂, γ̂

)
= argmin(θ,β,α,δ,γ)∈Θ×B×A×D×ΓQ̂

c (θ, β, α, δ, γ) .

However, using both α and δ poses the multicollinearity problem. Thus, I will modify the

objective function Q̂c so that all the variables in it are first-differenced, relieving us of the

burden of estimating α.3 The dot notation below is used to indicate that the variables are

first-differenced. Also, motivated by A4, a proportion of treatment effects for pretreatment

leads is suppressed to be zero, for tractability. Note that treatment effects are included for

all treatment lags but only for l pretreatment leads. The objective function is

Q̂(θ, β̇, δ̇, γ) =
1

NT

N∑
i=1

T1−1∑
t=−T0

Ẏit − δ̇t(ki)− Ẋ
⊺
itθ −

T1−1∑
r ̸=−1;r=−l

β̇r(ki)1{t=Ei+r}

2

with Ẏit = Yit − Yi,t−1 and Ẋit = Xit −Xi,t−1 and the estimator is

(
θ̂, β̂, δ̂, γ̂

)
= argmin(θ,β,δ,γ)∈Θ×B×D×ΓQ̂

(
θ, β̇, δ̇, γ

)
. (1.4)

Note that the type-specific time fixed-effects δt(k) as well as the type-specific dynamic treat-

ment effects βt(k) are first-differenced. Thanks to the staggered adoption structure, the

3. An alternative of mean-differencing is discussed in Section 4.
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first-differenced treatment effects are uniform across units with different treatment timing

Ei. For every t, k and r,

δ̇t(k) = δt(k)− δt−1(k),

β̇r(k) = βr(k)− βr−1(k).

1.3.1 Algorithm

The algorithm that I use to solve the minimization problem (1.4) is a conventional K-means

clustering algorithm: given an initial type assignment γ(0) =
(
k
(0)
1 , · · · , k(0)N

)
,

1. First-difference Yit and Xit. Denote the first-differenced variables with a dot: Ẏit and

Ẋit.

2. (update θ, β) Given the type assignment γ(s) from the s-th iteration, construct

indicator variables for each relative treatment timing r and the assigned type k:

1
{t=Ei+r,k

(s)
i =k}

for r = −l, · · · ,−2, 0, · · · , T1 − 1 and k = 1, · · · , K. Be aware that

some of the indicators need to be dropped based on the type assignment since some

types may not get assigned units for every treatment timing. Also, construct indicator

variables for each time s and the assigned type k: 1
{t=s,k

(s)
i =k}

for s = −T0, · · · , T1−1

and k = 1, · · · , K. By running OLS regression of Ẏit on Ẋit and the indicators, we get

δ̂
(s)
t (k), β̂(s)r (k) and θ̂(s).

3. (update γ) Update k
(s)
i for each i by letting k

(s+1)
i be the solution to the following

minimization problem: for i = 1, · · · , N ,

min
k∈{1,··· ,K}

T1−1∑
t=−T0

Ẏit − Ẋ
⊺
itθ̂

(s) −
T1−1∑

r ̸=−1;r=−l

β̂
(s)
r (k)1{t=Ei+r} − δ̂

(s)
t (k)

2

.

If some of β̂(s) are not estimated in the previous step, use the values from β̂(s−1).
11



4. Repeat Step 2-3 until Step 3 does not update γ̂, or some stopping criterion is met. For

stopping criterion, one can set a maximum number of iteration or a minimum update

in β̂(s) and δ̂(s): set S and ε such that the iteration stops when

s ≥ S or max
{∥∥∥β̂(s) − β̂(s−1)

∥∥∥
∞

,
∥∥∥δ̂(s) − δ̂(s−1)

∥∥∥
∞

}
≤ ε.

The suggested algorithm quickly attains a local minimum of the minimization problem

(1.4), which is computationally difficult, with the space for the type assignment having the

cardinality of NK . In the application I used in Section 5, the algorithm mostly converged

within 20 iterations. The iterative algorithm proposed here has two stages. In the first stage,

the algorithm estimates δ, β and θ by running a OLS regression on the first-differenced

variables. In the second stage, the algorithm reassigns a type for each unit, by finding

the type that minimizes the squared sum of residuals evaluated with the type-specific time

fixed-effects and the type-specific dynamic treatment effects.

Since the iterative algorithm does not conduct an exhaustive search, there is a possibility

that it might not converge to a global minimum. Thus, it is recommended that a random

initial type assignment be drawn multiple times and the associated local minima be com-

pared. Another concern is the choice of K. There is growing literature on estimating the

number of types using an information criterion, though the rigorous application of those to

the model in this paper is yet to be investigated.

12



1.4 Asymptotic Results

In this section, I discuss the asymptotic theory on the estimator suggested in Section 3. The

true parameters are denoted with superscript 0: the true DGP is

Yit = α0i + δ0t (k
0
i ) +

∞∑
r=0

β0r (k
0
i )1{t=Ei+r} +Xit

⊺θ0 + Uit, (1.5)

0 = E
[
Uit|Ei, k

0
i , {Xis}ts=−T0

]
.

After first-differencing,

Ẏit = δ̇0t (k
0
i ) +

∞∑
r=0

β̇0r (k
0
i )1{t=Ei+r} + Ẋ

⊺
itθ

0 + U̇it

with U̇it = Uit − Ui,t−1.

To construct consistency results of the estimator defined in (1.4), let us adopt following

assumptions.

Assumption 1.5. With some M > 0,

a. Θ ⊂ [−M,M ]p, B ⊂ [−M,M ]T+1 and D ⊂ [−M,M ]T+1.

b. Independence and identical distribution across units: {Uit, Xit, Ei, ki}t
iid∼ F .

c. (Finite moments) For any t, s and q1, q2 ∈ N ∪ {0} such that q1 + q2 ≤ 4,

E [Uit
q1Uis

q2 ] ,E
[
||Xit||2

]
,E
[
Uit

2|{Xis}ts=−T0−1

]
,E
[
Ui,t−1

2|{Xis}ts=−T0−1

]
≤ M.

d. (Sequential exogeneity)

E
[
Uit

∣∣Ei, ki, {Xis}ts=−T0−1 , {Uis}t−1
s=−T0−1

]
= 0

E
[
Xit −Xi,t−1

∣∣Ei, ki, {Xis}t−1
s=−T0−1 , {Uis}t−1

s=−T0−1

]
= 0

13



e. (No multicollinearity) Given an arbitrary type assignment γ =

(
k1 · · · kN

)
, let

¯̇X
k∧k̃∧e,t denote the mean of Ẋjt within units such that k0j = k, kj = k̃, and Ei = e,

and let ρN,T (γ) denote the minimum eigenvalue of the following matrix:

1

NT

∑
i

∑
t

(
Ẋit −

¯̇Xk0i ∧ki∧Ei,t

)(
Ẋit −

¯̇Xk0i ∧ki∧Ei,t

)⊺
.

Then, minγ∈Γ ρN,T (γ)
p−→ ρ > 0 as N, T → ∞.

Note that Assumption 5.d is stricter than what I derived from Assumptions 1-3. As-

sumption 5.e means that for some (k, e, t), the subpopulation of units who share the same

type k and share the treatment timing e should show sufficient variation in Ẋit at time t. If

Ẋit is discrete, a criterion for the ‘sufficient’ variation is that the support of Ẋit within the

subpopulation should contain at least K + 1 points. Note that this does not have to hold

true for every (k, e, t), but for a set of (k, e, t)s whose measure is positive.

Theorem 1.1. Assume model (1.5). Let Assumption 3-5 hold. Then, as N and T go to

infinity,

θ̂
p−→ θ0.

Proof. See Appendix.

Theorem 1 is a consistency result for θ̂. For a consistency result on the type assignment

estimator and the treatment effects estimators, I will argue that the suggested estimator is

equivalent with the OLS estimator with the true type assignment as given, in probability.

14



Assumption 1.6.

a. T0
T1

→ τ ∈ (0, 1) as T → ∞.

b. For all k ∈ {1, · · · , K}, µ(k) = Pr
{
k0i = k

}
> 0

c. Pr
{
maxiEi ≥ Ẽ

}
= o(1) uniformly for all N , as Ẽ → ∞.

d. Let 0 ≤ l ≤ T0 increase with T , satisfying T0−l
T → τl ∈ (0, 1) as T → ∞. Then, for all

k, k̃ ∈ {1, · · · , K} such that k ̸= k̃,

 1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (k)− δ̇0t (k̃)

)21
2

p−→ c(k, k̃) > 0.

e. There exist d, ε∗ > 0 such that for any k ̸= k̃, e ∈ N, and ε > 0,

Pr

 1

T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) +

∞∑
r=0

(
β̇0r (k)− β̇0r (k̃)

)
1{t=e+r}

)2

≤ ε∗

 ≤ exp(−dT ),

Pr

{∣∣∣∣∣ 1T ∑
t

(
δ̇0t (k)− δ̇0t (k̃) +

∞∑
r=0

(
β̇0r (k)− β̇0r (k̃)

)
1{t=e+r}

)
U̇it

∣∣∣∣∣ > ε

}
≤ exp(−dT )

when T is large.

f. There exists M∗ > 0 such that for any ε > 0 and ν > 0,

Pr

{∣∣∣∣∣ 1T ∑
t

U̇it

∣∣∣∣∣ > ε

}
= o(T−ν)

Pr

{
1

T

∑
t

||Ẋit|| > M∗
}

= o(T−ν)

as N, T go to ∞.

Assumptions 6.a-b guarantees that each type is large and there are enough population-

level pretreatment periods for each type. Thus, the types can be recovered from the pre-
15



treatment outcomes under Assumptions 6.a-b. Assumption 6.d makes it possible for us to

distinguish each type by looking only at those pretreatment periods. Assumption 6.c allows

us to only consider finitely many treatment scenarios. When the distribution of the treat-

ment timing Ei does not depend on N , the independence assumption from A5.b combined

with A6.c implies that there are only finite treatment timings. When the distribution of Ei

depends on N , more flexible treatment timing distribution is allowed.

Assumptions 6.e-f impose weak dependency on random processes in the model. Assump-

tion 6.e firstly assumes two different types are distinct from each other in terms of their time

fixed-effects in probability. Also, Assumption 6.e assumes that the time fixed-effect difference

is orthogonal to individual error U̇it in probability. In both cases, the rate of convergence

is exponential. A sufficient condition for this is that the type-specific time fixed-effects and

the type-specific dynamic treatment effects are all degenerate random variables and the in-

dividual errors {Uit}t are iid. Lastly, Assumption 6.f assumes that the tail probability of

Uit − Uit−1 and Xit −Xit−1 go to zero fast.

Theorem 1.2. Assume model (1.5). Let Assumptions 3-6 hold. Let
(
θ̂ols

⊺
, β̂ols, δ̂ols

)⊺
denote the OLS estimator of (1.5) when the true type assignment γ0 is given. Then, as N, T

go to infinity,

Pr

{
sup
i

1{k̂i ̸=k0i }
> 0

}
= o(NT−ν) + o(1) ∀ν > 0.

for any ν > 0. Moreover, given two treatment timings for type k,

δ̂t(k) = δ̂olst (k) + op(T
−ν)

β̂r(k) = β̂olsr (k) + op(T
−ν)

for any ν > 0.

Proof. See Appendix.
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Theorem 2 shows that the probability of wrongly estimating the type assignment goes to

zero when N/T ν goes to zero for some ν > 0. To finalize the consistency result and derive

asymptotic distribution of the dynamic treatment effect estimator β̂r(k), let us discuss the

asymptotic behavior of the OLS estimators when the true type assignment is given. Let

X̃it = Ẋit − Ẋ ·t(k
0
i )− Ẋt−Ei·(k

0
i )

where

Ẋ ·t(k) =
1∑N

i=1 1{k0i=k}

N∑
i=1

Ẋit1{k0i=k},

Ẋr·(k)

=


1∑N

i=1

∑T1−1
t=−T0

1{k0i =k,t−Ei=r}

∑N
i=1

∑T1−1
t=−T0

(
Ẋit − Ẋ ·t(k)

)
1{k0i=k,t−Ei=r}, if r /∈ R0,

0, if r ∈ R0,

with R0 = {−l,−l − 1 · · · } ∪ {−1}. Ẋ ·t(k) is the mean of Ẋit for time t and type k and

Ẋr·(k) is the mean of
(
Ẋit − Ẋ ·t(k)

)
for relative treatment timing r and type k. X̃it is the

residual of Ẋit from projection onto the indicators for the time fixed-effects and dynamic

treatment effects. Note that Ẋr·(k) is zero for relative treatment timings that are not used

in the estimation.

Assumption 1.7.

a. With l satisfying A6.d, there exist positive definite matrices Σθ and Ωθ such that

Σθ
p
= lim

N,T→∞
1

NT

N∑
i=1

T1−1∑
t=T0

X̃itX̃
⊺
it

Ωθ = lim
N,T→∞

1

NT

N∑
i=1

N∑
j=1

T1−1∑
t=−T0

T1−1∑
s=−T0

E
[
X̃itX̃

⊺
jsU̇itU̇js

]
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b. As N, T go to infinity,

1√
NT

N∑
i=1

T1−1∑
t=T0

X̃itU̇it
d−→ N (0,Ωθ) .

c. There are only finite treatment timings: Pr {Ei ≤ E∗} = 1.

Corollary 1.1. Assume model (1.5). Let Assumption 3-7 hold and suppose that there exist

at least two treatment timings for type k. As N, T, T ν∗/N go to infinity for some ν∗ > 0,

θ̂
p−→ θ0,

r∑
r′=0

β̂r′(k)
p−→ β0r (k),

and

√
NT

(
θ̂ − θ0

)
d−→ N

(
0,Σθ

−1ΩθΣθ
−1
)
,

√
N

 r∑
r′=0

β̂r′(k)− β0r (k)

 d−→ N
(
0,1⊺Σr

−1ΩrΣr
−11

)
,

with some consistently estimable positive definite matrices Σr, Ωr as defined in Appendix.

Proof. See Appendix.

Note that the estimators β̂r′(k) are summed from r′ = 0 to r′ = r to construct an esti-

mator for βr(k) due to first-differencing. For any type that there are at least two treatment

timings with positive probabilities, every type-specific dynamic treatment effect is consis-

tently estimated. When every individual in a given type is treated at once, treatment effects

and time fixed-effects cannot be disentangled.
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1.4.1 Extension

1.4.1.1 Additional heterogeneity: treatment effect

In Theorem 2, the type assignment estimation is driven by the pretreatment type-specific

time fixed-effects: {δt(k)}t<0,k. Thus, as long as the type-specific time fixed-effects satisfy

Assumption 6, the type assignment can be consistently estimated at the rate of NT−ν with

some ν > 0, by using only the pretreatment periods. Motivated by this observation and the

heteregeneous treatment effect literature, let us further relax the model:

Yit = αi + δt(ki) +
∞∑
r=0

βir1{t=Ei+r} +Xit
⊺θ + Uit, (1.6)

0 = E
[
Uit|Ei, k

0
i , {Xis}ts=−T0

]
.

Note that the dynamic treatment effects are not anymore functions of the type, but sub-

scripted with unit indices.

A recent development in the event-study literature has shown that the presence of such

heterogeneity in treatment effect creates a negative weighting problem for the TWFE specifi-

cation [Goodman-Bacon, 2021a, De Chaisemartin and d’Haultfoeuille, 2020, Borusyak et al.,

2021]. Under (1.6), the type-specific treatment effect estimator from this paper faces the

same problem since it converges to the TWFE estimator under the true type assignment,

as discussed in Theorem 2. Fortunately, since the type assignment estimation is driven

by the pretreatment time fixed-effects, the available solutions in the literature are directly

applicable once the type assignment is estimated using only the pretreatment observations.

These solutions solve the problem by using some researcher-chosen weighting rather than the

one induced by the TWFE specification. For example, De Chaisemartin and d’Haultfoeuille

[2020] and Sun and Abraham [2021] uses an uniform weighting while Callaway and Sant’Anna

[2021] uses an inverse of propensity score. By applying the suggestion from Sun and Abraham
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[2021] after estimating the type assignment,

β̂het0 (k) =
1∑N

i=1 1{k̂i=k,Ei=0}

N∑
i=1

(Yi1 − Yi0)1{k̂i=k,Ei=0}

− 1∑N
i=1 1{k̂i=k,Ei>0}

N∑
i=1

(Yi1 − Yi0)1{k̂i=k,Ei>0}

is an interpretable estimator for the dynamic treatment effect at relative treatment timing

r = 0 for type k. As N/T ν∗ goes to zero with some ν∗ > 0, a similar argument as that for

Corollary 1 holds and an asymptotic distribution for β̂het0 (k) is obtained.

1.4.1.2 Additional heterogeneity: slope on control covariate

As we assume that there exists heterogeneity across units in terms of time fixed-effects

and treatment effects, a natural next direction of introducing more heterogeneity is in the

slope coefficient for control covariate θ. Let us consider the following relaxed model:

Yit = αi + δt(ki) +
∞∑
r=1

βr(ki)1{t=Ei+r} +Xit
⊺θ(ki) + Uit. (1.7)

Note that the slope coefficient on the control covariate is now a function of the type. Since

θ(k) is time-invariant, the existing asymptotic discussion of Bonhomme and Manresa [2015]

is directly applicable to (1.7) by only using the pretreatment periods and θ(k) is consistently

estimatable for each k.

1.4.1.3 Strict exogeneity and mean-differencing

In the main specification, the outcome variable Yit and the control covariate Xit are

first-differenced to remove the unit fixed-effects αi. For the type assignment estimation, it

is assumed that the first-differenced time fixed-effects and dynamic treatment effects show

enough variation across types in Assumption 6.d-e. However, it is possible that the time
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t

δt(k)

0

Figure 1.1: Constant time fixed-effects with a structural change

fixed-effects vary across types only in level, but not in first differences. A straightforward

example is constant time fixed-effects with a structural change presented as in Figure 1.1.

In this case, the distance between the two types evaluated with first-differencing used in

Assumption 6.d will be much smaller than that with mean-differencing:

0 ≈ 1

T

∑
t

(
δt(k)− δt−1(k)−

(
δt(k

′)− δt−1(k
′)
) )2

≪ 1

T

∑
t

(
δt(k)− δ̄(k)−

(
δt(k

′)− δ̄(k′)
) )2

.

This calls for mean-differencing.

Fortunately, though not free of cost, mean-differencing is also feasible. By adopting a

stronger assumption of strict exogeneity and using mean-differenced variables, accordingly

modified versions of Theorem 1, 2 and Corollary 1 hold.

Assumption 5.d’ (Strict exogeneity)

E
[
Uit

∣∣Ei, ki, {Xis}
T1−1
s=−T0−1 , {Uis}

T1−1
s=−T0−1

]
= 0

Under Assumption 5.d’, Step 1 of the proof for Theorem 1 is proven similarly. Then, the rest

of the proofs for Theorem 2 and Corollary 1 follow by modifying Assumption 5-6 accordingly

to accommodate for mean-differenced variables and mean-differenced treatment effects and

time fixed-effects, though a rigorous exposition of such accommodations is not discussed in
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this paper. The estimation results of the following application under the mean-differencing

are presented in Appendix.

1.5 Application

To see how the estimation method suggested in this paper fares with a real dataset, I revisit

Lutz [2011]. Since the Supreme Court ruling on Brown v. Board of Education of Topeka in

1954 that found state laws in US enabling racial segregation in public schools unconstitu-

tional, various efforts have been made to desegregate public schools, including court-ordered

desegregation plans. After several decades, another important Supreme Court case was made

in 1991; the ruling on Board of Education of Oklahoma City v. Dowell in 1991 stated that

school districts should be free of the court-ordered plans once it eradicated the effects of

previous segregation. Since the second Supreme Court ruling, school districts started to file

for termination of court-ordered desegregation plans, mostly in southern states.

Lutz [2011] used the variation in timing of the district court rulings on the desegregation

plan to estimate the effect on racial composition and education outcomes in public schools.

The paper uses annual data on mid- and large-sized school districts from 1987 to 2006,

obtained from the Common Core of Data (CCD), which contains data on school districts

from 1987 to 2006, and the School District Databook (SDDB) of the US census, which

contains data on school districts in 1990 and in 2000. To document if a school district

was under a court-ordered desegregation plan at the time of the Supreme Court ruling in

1991 and when and if the school district got the desegregation plan dismissed at the district

courts, Lutz [2011] collected data from various published and unpublished sources, including

a survey by Rosell and Armor (1996) and the Harvard Civil Rights Project.

Though Lutz [2011] looks at several outcome variable, I focus on one outcome variable,
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the segregation index: the segregation index for school district i is

Yi =
1

2

∑
j∈Ji

∣∣∣∣ bjBi
−

wj

Wi

∣∣∣∣× 100,

bj : # of black students in school j, wj : # of white students in school j

Ji : the set of school in school district i,

Bi =
∑
j∈Ji

bj , Wi =
∑
j∈Ji

wj ,

The segregation index ranges from 0 to 100, with 100 being perfectly segregated schools and

0 being perfectly representative schools.4

I followed the data cleaning process in the paper and chose the timespan of 1989-2007

to form a balanced panel of school districts that were under a court-ordered desegregation

plan in 1991, which gave me 102 school districts. In estimation, I included four indicators

for pretreatment leads (r = −5, · · · ,−2) and nine indicators for treatment lags (r = 0, · · · , 7

and all treatment lags beyond the eighth lag). Also, I set the dynamic treatment effects for

pretreatment leads to be shared across types, for bigger power:

Ẏit = αi + δt(ki) +
−2∑

r=−5

βr1{t=Ei+r} +
7∑

r=0

βr(ki)1{t=Ei+r}

+ β8(ki)1{t≥Ei+8} + Ẋ
⊺
itθ + Uit.

For the purpose of comparison, here I present the main empirical specification of Lutz [2011]:

Ẏit = δjt +

T1−1∑
r=−l

βr ·
r∑

r′=−l

1{t=Ei+r′} +Xi
⊺θt + Uit

Though two specifications look alike, there are some differences. Firstly, Lutz [2011] uses

4. In Lutz [2011], the segregation index ranges from zero to one but I rescaled the index for more visibility.
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a time-invariant control covariate Xi, with time-varying coefficient θt. In my main speci-

fication, I use time-varying control covariates Xit, with time-invariant coefficient θ. This

deviation is made to resemble the canonical TWFE regression specification. Secondly, Lutz

[2011] uses a type-specific time fixed-effects δjt, based on census region, which assigns every

school district into one of the four regions. In the terminology of the model used in this

paper, Lutz [2011] took the census region as the true type assignment and imposed that

βr(k) = βr(k
′) for any k and k′ whereas I used the data to estimate the type assignment.

Figure 1.2 contains the type-specific dynamic effect estimates where the number of types

is set to be 2.5 From Figure 1.2, we see that treatment effect is bigger for type 1 and

smaller for type 2; the termination of court-ordered desegregation plans exacerbated racial

segregation more severely for type 1. For reference on the magnitude, the mean of the

segregation index was 37 and its standard deviation was around 15 in 1990.

So, estimates on treatment effect suggest that type 1 and type 2 are different; the treat-

ment affects type 1 more. Are these types different in other regards? Table 1.1 shows us

some summary statistics on the outcome variable and other control covariates for type 1

and type 2. Note that we see small mean differences but in most of the cases the difference

is not significant individually. However, the null hypothesis that the entire vector of mean

differences between type 1 and type 2 is zero is rejected with a t-test at size 0.05, implying

that those estimated types are different from each other.

Lastly, Figure 1.3 provides us an illustrative evidence that the types are different from

each other in another dimension of unobservables as well, other than the treatment effects:

type-specific fixed-effects. Figure 1.3 contains the estimated type-specific time fixed-effects,

when K = 2. Over the time, type 1 has seen an increase in the segregation index while

type 2 has seen a slow decline. This implies that the termination of desegregation plans had

a bigger impact on type 1, where the segregation index was already rising. On the other

5. In practice, the choice of K should depend on data. In this application, setting K = 2 comes at relative
low price; increasing K creates a new type to which only a few units are assigned.
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Figure 1.2: Type-specific treatment effect, K = 2.
The graph reports the type-specific dynamic effects of terminating court-
mandated desegregation plan on the segregation index of a school district.
The segregation index ranges from 0 to 100. In 1990, the average segregation
index was 37 and the standard deviation was 15.
k = 1 is the first group where the segregation index was improving and k = 2
is the second group where the segregation index was mildly worsening.
The confidence intervals are at 0.05 significance level and are computed with
asymptotic standard errors clustered at the school district level.
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K = 2

(k = 1) (k = 2) Diff
Segregation index 29.45 41.12 -11.67

(16.33) (17.04) (3.30)
% (white) 52.70 48.74 3.96

(20.54) (22.29) (4.24)
% (hispanic) 4.31 14.46 -10.16

(9.88) (17.95) (2.85)
enrollment 39695 54647 -14952

(45920) (101922) (15555)
N 50 52 -

joint p-value 0.000

Table 1.1: Balancedness test
The table reports the group means of the school district characteristics and their dif-
ferences.
The standard errors are computed at the school district level.
The joint p-value is for the null hypothesis that the means of differences across group
are all zeros.
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Figure 1.3: Type-specific fixed-effects, K = 2

The graph reports the type-specific time fixed-effects in the segregation index
of a school district.
The segregation index ranges from 0 to 100. In 1990, the average segregation
index was 37 and the standard deviation was 15.
k = 1 is the first group where the treatment effects of terminating court-
mandated desegregation plan were significantly positive, meaning that the
segregation got worse from the treatment, and k = 2 is the second group
where the the treatment effects were insignificant.

hand, type 2, where racial segregation was being mitigated, the impact was close to zero.

This observation combined with Figure 1.2 presents numerous future research questions: for

example, why do the school districts that were getting more segregated also get affected

more from the dismissal of the desegregation plan?

1.6 Conclusion

In this paper, I motivate an event-study regression model with sequential exogeneity in

a panel data setting, from a sequential unconfoundedness assumption with a latent type

variable. When the latent type variable has a finite support, the K-means estimator retrieves

the true type assignment well. Also, based on the estimated type assignment we can estimate

the type-specific treatment effect, given that the type has more than two treatment timings

with positive measure. By applying the estimation method to an empirical application, I
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find some interesting empirical results where the estimates on the type-specific treatment

effects and those on the type-specific time fixed-effects tell a story: the effect of terminating

court-mandated desegregation plans were bigger for school districts where the segregation

index was worsening.

28



CHAPTER 2

CLUSTERED TREATMENT IN MULTILEVEL MODELS

2.1 Introduction

A vast majority of datasets used in economics are multilevel; units of observations have a

hierarchical structure [Raudenbush and Bryk, 2002]. For example, in a dataset that collects

demographic characteristics of the US population, such as the Current Population Survey

(CPS) or the Panel Study of Income Dynamics (PSID), each surveyee’s residing county and

state are also recorded; in development economics, field experiments are often run at the

village level and thus participants of the experiments are clustered at the village level [Voors

et al., 2012, Giné and Yang, 2009, Banerjee et al., 2015].1 Throughout this paper, I use

individual and cluster to refer to the lower level and the higher level of the hierarchical

structure, respectively. In light of the multilevel nature of the dataset, a researcher often

considers an econometric framework that utilizes the multilevel structure. For example,

when regressing individual-level outcomes on individual-level regressors with the CPS data,

heterogeneity across states is often addressed with state fixed-effects or by including some

state-level regressors such as population, average income, political party of the incumbent

governor, etc.

The goal of this paper is to develop an econometric framework that exploits the multilevel

structure, when a treatment is endogenously assigned at the cluster level and an outcome

of interest is observed at the individual level; every individual in the same cluster is under

1. The multilevel structure is not confined to datasets with a person as their unit of observation. In
datasets that record market share of each product for demand estimation, products are often clustered to a
product category or a market so that different brands are compared within a given product category or a
market. [Besanko et al., 1998, Chintagunta et al., 2002] The Standard Industrial Classification System (SIC)
and the North American Industry Classification System (NAICS) are another example of multilevel structures
widely used in economics. The systems assign a specific industry code to each business establishment and
they have a hierarchical system: each business establishment belongs to a finely defined industry category,
which belongs to a more coarsely defined industry category, and so on. [MacKay and Phillips, 2005, Lee,
2009, De Loecker et al., 2020]
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the same treatment regime. Many research topics in economics fit this description. For

example, economists study the effect of a raise in the minimum wage level, a state-level

variable, on employment status, an individual-level variable [Allegretto et al., 2011, 2017,

Neumark et al., 2014, Cengiz et al., 2019, Neumark and Shirley, 2022]; the effect of a team-

level performance pay scheme on worker-level output [Hamilton et al., 2003, Bartel et al.,

2017, Bandiera et al., 2007]; the effect of a local media advertisement on individual consumer

choice [Shapiro, 2018]; the effect of a class/school-level teaching method on student-level

outcomes [Algan et al., 2013, Choi et al., 2021], etc. When treatment is assigned at the

cluster level, within-cluster variation that compares individuals from the same cluster cannot

be used to identify treatment effect; every individual in a given cluster is either treated or not

treated. Thus, a researcher has to compare individuals from at least two different clusters,

i.e. between-cluster variation. In order to use between-cluster variation instead of within-

cluster variation, restrictions on cluster-level heterogeneity need to be made. In a model with

fully flexible cluster-level heterogeneity, cluster heterogeneity and treatment effect cannot be

separated; the researcher cannot know whether the difference between two clusters comes

from their cluster-level heterogeneity or treatment status. Let me illustrate this issue of

non-identification with an example. Consider a simple linear regression model:

Yij = αj + βDj + Uij . (2.1)

Yij is an outcome variable for individual i in cluster j. Dj is a binary treatment variable for

cluster j. Cluster fixed-effect αj flexibly controls for the cluster-level heterogeneity in level.

In the linear model (2.1), the treatment effect β is not identified due to multicollinearity

between αj and Dj , unless treatment is exogeneous, i.e. E
[
αj |Dj

]
= E

[
αj
]
.2 Thus, we

2. The cluster-level heterogeneity problem discussed in this paper is a treatment endogeneity/selection
bias problem in a sense. If the treatment is truly random, average treatment effect is identifed without
controlling for cluster-level heterogeneity; cluster-level heterogeneity can be left fully flexible. However,
when the treatment is endogenous and a researcher believes that cluster-level heterogeneity affects treatment
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need restrictions on cluster-level heterogeneity.

To impose restrictions on cluster-level heterogeneity, I focus on cases where a researcher

observes both individual-level and cluster-level covariates that are relevant for treatment

assignment. In particular, for the individual-level control covariates, the econometric frame-

work that I propose in this paper aggregates the information at the cluster level by looking

at within-cluster distribution of the individual-level covariates. Note that the distribution of

individual-level covariates is constructed for each cluster; each cluster has its own distribution

of individual-level covariates. Then, conditioning on cluster-level covariates and cluster-level

distribution of individual-level covariates, treatment is assumed to be as good as random.

This assumption puts restrictions on cluster-level heterogeneity in the sense that after con-

ditioning on the observable information at the cluster level, cluster-level heterogeneity does

not affect treatment assignment anymore. Thus, by comparing clusters with the same values

of cluster-level covariates and the same distribution of individual-level covariates, treatment

effect is identified. I call this approach selection-on-distribution.

The motivation for the selection-on-distribution comes from the selection-on-observable

assumption. The selection-on-observable assumption that treatment is random conditioning

on some observable control covariates is widely used in the program evaluation literature to

control for treatment endogeneity. To implement the selection-on-observable approach in a

clustered treatment setup, a researcher needs to gather all the available information for each

cluster since clusters are the units of treatment assignment. In an example of simple linear

regression model as before, the idea of selection-on-observable would motivate a model that

uses all the available information at the cluster level as regressors:

Yij = βDj +

(
Zj Xj

)⊺
θcl + Uij . (2.2)

Zj is a vector of cluster-level control covariates for cluster j and Xij is a vector of control

assignment, cluster-level heterogeneity needs to be controlled for.
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covariates for individual i in cluster j. Xj =
{
Xij
}Nj

i=1 is the cluster-level collection of Xij

across all individuals in cluster j; there are Nj individuals in cluster j. Let us compare

the linear model with model (2.1). Though both models contain an element of cluster-

level heterogeneity, model (2.1) stays flexible in terms of the cluster-level heterogeneity by

using cluster fixed-effect αj while model (2.2) imposes some structure on the cluster-level

heterogeneity by using cluster-level regressors Zj and Xj . Though free of the multicollinearity

problem, this direct application of the selection-on-observable assumption to a clustered

treatment setup also has a drawback. Note that the dimension of the model parameter(
β, θcl

)
is proportional to the cluster size Nj . Thus, even when the individual-level control

covariate Xij is low-dimensional, their cluster-level collection can be high-dimensional; the

model induced by the selection-on-observable is not parsimonious.

Thus, I impose additional restrictions on the observable information Xj . Firstly, I assume

exchangeability within a cluster: the distribution of individuals within a cluster is invariant

up to permutation on labeling. By assuming exchangeability, the names of each individual

in a given cluster do not have any additional information in terms of treatment assignment.3

Thanks to this condition, I can substitute the potentially high-dimensional object Xj , with

an empirical distribution of Xij for each cluster:

F̂j(x) =
1

Nj

Nj∑
i=1

1{Xij ≤ x}.

By shifting from Xj to F̂j , the dimension of the control variable reduces down.4 Secondly,

to have further dimension reduction, I assume that the expectation of F̂j contains all the

3. For a formal statement in terms of potential outcomes, see Appendix.

4. To illustrate this in a simpler setting, consider an one-dimensional Xij . Then, F̂j has a one-to-one
mapping to the vector of ordered statistics. By shifting from Xj to the ordered statistics, the support for
the control variable reduces down.
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relevant information for treatment assignment. Consider Fj such that for all x ∈ Rp

Fj(x) =
1

Nj

Nj∑
i=1

Pr
{
Xij ≤ x

}
= E

[
F̂j(x)

]
.

By shifting from F̂j to Fj , clusters of different sizes can also be matched whereas in general

empirical distribution functions cannot be the same for two clusters of different sizes. With

Fj , I formally state the key assumption of this paper: potential outcomes are independent

of the treatment conditioning on the distribution function Fj and the cluster-level covariates

Zj , i.e., selection-on-distribution.

The selection-on-distribution assumption suggests that a researcher use cluster-level dis-

tribution of individual-level control covariates in modeling cluster-level treatment assignment

and individual-level outcomes. In other words, we need to develop a model that is similar to

(2.2), but with the distribution Fj on the RHS, instead of Xj . To implement this strategy

I use a K-means clustering algorithm, an unsupervised learning method to group clusters,

to regress outcome variables on the distribution functions. The K-means algorithm groups

clusters into a finite number of groups such that clusters in each group are similar to each

other in terms of their distributions of individual-level control covariates.5 With the group-

ing structure from the K-means algorithm, I suggest two separate sets of treatment effect

estimators. Firstly when the dataset is cross-sectional and there is no control covariate at

the cluster level, I propose nonparametric estimators with inverse probability weighting. I

construct estimators for the average treatment effect (ATE), the average treatment effect

on treated clusters (ATT ), and the conditional average treatment effect (CATE). Secondly,

when the dataset is repeated cross-section/panel data, or there exist cluster-level control co-

5. Usually, the K-means algorithm is called “K-means clustering algorithm” since the result of the algo-
rithm is a clustering on the set of units that the algorithm is applied to. In this paper, this terminology can
be confusing since the units that the algorithm is applied to is already clusters of individuals. Thus, I use
‘group’ to denote the outcome of the K-means algorithm and ‘cluster’ to denote the clusters of individuals
that are given in the dataset.
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variates, I propose a least-square estimator under parametric models; an example is a linear

regression model with group-specific time fixed-effects.

My main theoretical results discuss the asymptotic properties of the K-means grouping

structure and the treatment effect estimators. To discuss the asymptotic properties of the

K-means grouping structure, I assume that the distribution Fj is a function of a cluster-level

latent factor λj : heterogeneity in Fj comes from a cluster-level random variable λj . Then,

I additionally assume that the latent factor λj has a finite support: heterogeneity in Fj

is finitely discrete. Under this discrete heterogeneity assumption, the K-means algorithm

successfully assigns the clusters with the same value of λj to the same group; the probability

of the K-means algorithm perfectly recovering the grouping structure induced by the latent

factor λj goes to one when the number of individuals per clusters increases at a polynomial

rate of the number of clusters.

Building on this perfect grouping result, I show consistency and asymptotic normality

of the nonparametric estimators for ATE, ATT , and CATE(λ), and the parametric least-

square estimator. In all of the asymptotic distributions, the asymptotic variance has a

closed-form expression that can be consistently estimated under regular assumptions. As

a relaxation of the finiteness assumption, I also discuss an alternative assumption that the

latent factor λj is a continuous random variable and its support is a compact set in Rq.

Under the continuity assumption, I show that the nonparametric treatment effect estimators

for ATE and ATT are consistent.

As an empirical illustration, I apply the econometric framework proposed in this paper to

revisit the disemployment effect of the minimum wage on teenagers. Using the econometric

framework of this paper, I address aggregate heterogeneity in state-level labor market fun-

damentals by controlling for the distribution of individual employment status history. Also,

I explore how the two channels of individual heterogeneity — age and race — interact with

the aggregate heterogeneity. I find differential disemployment effect in terms of both of the
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individual-level control variables and show that the differential also depends on labor market

fundamentals.

2.1.1 Related literature

This paper contributes to several literatures in econometrics. Firstly, this paper contributes

to the treatment effect and program evaluation literature. This paper is the first to use

a selection-on-observable type assumption in solving the treatment endogeneity problem of

a clustered treatment. Arkhangelsky and Imbens [2022], Hansen et al. [2014] use similar

selection-on-observable type assumptions at the cluster level but Arkhangelsky and Imbens

[2022] focus on individual-level treatment and Hansen et al. [2014] take pairs of comparable

clusters as given. Also, by using both cluster-level distribution and individual-level control

covariates, this paper models treatment effect to have two types of heterogeneity: aggre-

gate heterogeneity from the cluster-level distribution and individual heterogeneity from the

individual-level control covariates. With these two types of heterogeneity in treatment effect,

the econometric framework of this paper answers a variety of novel research questions. For

example, suppose a researcher is interested in how neighborhood of residence or migration

affects individual outcomes, as in Derenoncourt [2022], Chetty et al. [2016]. In the framework

of this paper, a researcher can answer questions such as “what demographic characteristic of

an individual makes migration successful?”, “does the demographic composition of a destina-

tion neighborhood matter?”, and “does individual-level demographic characteristic interact

with the demographic composition of the destination?” by looking at individual heterogene-

ity, aggregate heterogeneity, and interactive hetergoeneity in treatment effect, respectively.

Secondly, this paper contributes to the literature of regression with heterogeneous slopes,

and particularly to the group fixed-effect literature. Whereas the group fixed-effect literature

mostly focuses on panel data and assumes a finite grouping structure on unit-specific fixed

effects, I apply the idea of a finite grouping structure to a cross-sectional multilevel model.
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With the finite support assumption on the latent factor λj for the cluster-level distribution

Fj , I derive theoretical results for the estimation of the finite grouping structure in a cross-

sectional multilevel model. A key difference of the grouping approach in this paper from

most of the group fixed-effect literature is that the grouping structure is not recovered from

the LHS of the outcome model [Bonhomme and Manresa, 2015, Su et al., 2016, Ke et al.,

2016, Wang and Su, 2021], but from the RHS of the outcome model. Only the individual-

level control covariates are used to group clusters and therefore the grouping structure does

not suffer from overfitting. In this sense, Pesaran [2006b] is comparable to this paper. Both

papers use the information from the RHS of the equation to recover the slope heterogeneity.

Also, when the latent factor is assumed to be continuous, Bester and Hansen [2016] is closely

comparable. The difference between Bester and Hansen [2016] and this paper is that Bester

and Hansen [2016] mostly discusses the case where the grouping structure is readily observed

to a researcher while in this paper the researcher has to construct one from the observable

information.

Thirdly, this paper contributes to the distributional regression literature. To estimate

propensity score and treatment effect with cluster-level distributions of individual-level co-

variates, the selection-on-distribution assumption calls for a functional regression method

that regresses a one-dimensional variable onto a high-dimensional object such as distribu-

tion. By using the K-means grouping structure, this paper proposes a simple and easy-to-

understand functional regression method, compared to the alternatives of kernel or functional

principal component analysis: Póczos et al. [2013], Delicado [2011]. The use of the K-means

result as a functional regression can be understood as an extension of X-adaptive partition-

based regression [Cattaneo et al., 2020]; the K-means algorithm partitions clusters based on

their distributions of individual-level control covariates, hence X-adaptive, and propensity

score and treatment effect are estimated by projecting cluster-level treatment variable and

individual-level outcome variable onto a step function that is constant within the partitions.
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In addition, there are several literatures that my paper relates to. Firstly, the selection-

on-distribution assumption is comparable to the factor model: Abadie et al. [2010, 2015], Bai

[2009]. With a factor model, a linearity is imposed on a potentially high-dimensional time-

series of observable control covariates whereas in this paper exchangeability is imposed on

individuals within a cluster. While there is no ordering between the two assumptions in terms

of flexibility, the difference is intuitive. In the case of panel data, the time dimension, the

label of observations within each unit, conveys significant information; thus, exchangeability

is not desirable. However, in the case of multilevel data, the individual identity, the label of

observations within each cluster, has little information. Secondly, Auerbach [2022], Zeleneev

[2020] discuss a dataset with network structure and suggest matching units based on the

observable information, such as network links, to control for heterogeneity in the outcome

model. The idea of using the particular structure of dataset in hand and using the observable

information to control for latent heterogeneity is present in both this paper and their works.

The rest of the paper is organized as follows. In Section 2, I formally discuss the model

with the selection-on-distribution assumption. In Section 3, I explain the K-means algorithm

and the treatment effect estimators. In Section 4, I discuss asymptotic properties of the

estimators, under the finiteness assumption. Section 5 extends the model in use. In Section 6,

simulation results are presented and in Section 7, the empirical illustration of the econometric

framework is provided.

2.2 Model

An econometrician observes
{{

Yij , Xij
}Nj

i=1 , Dj

}J
j=1

where Yij ∈ R is an individual-level

outcome variable for individual i in cluster j, Xij ∈ Rp is a p-dimensional vector of individual-

level control covariates for individual i in cluster j, and Dj ∈ {0, 1} is a cluster-level binary

treatment variable for cluster j. Note that Xij may include lagged outcomes if the econome-

trician observes panel data. There exist J clusters and each cluster contains Nj individuals:
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in total there are N =
∑J

j=1Nj individuals. To discuss treatment effect, I let the observed

outcome Yij for individual i in cluster j be constructed from treated potential outcome Yij(1)

and untreated potential outcome Yij(0):

Yij = Dj · Yij(1) + (1−Dj) · Yij(0).

Potential outcomes are defined at the individual level but treatment is defined at the cluster

level: the multilevel structure plays a key role in treatment assignment.

Now, I introduce three assumptions: iid-ness across clusters, the selection-on-distribution,

and finiteness on the latent factor.

Assumption 2.1. (independent and identically distributed clusters with a latent factor)

There exists a cluster-level latent factor λj ∈ Λ. With λj,

(
Dj , Nj , λj

)
∼ iid.

Then, Hhyper
( {

Dj , Nj , λj
}J
j=1

)
, the conditional distribution of

{{
Yij(1), Yij(0), Xij

}Nj

i=1

}J
j=1

given
{
Dj , Nj , λj

}J
j=1, is a product of H(Dj , Nj , λj), the conditional distribution of

{
Yij(1), Yij(0), Xij

}Nj

i=1

given
(
Dj , Nj , λj

)
:

Hhyper( {Dj , Nj , λj
}J
j=1

)
=

J∏
j=1

H(Dj , Nj , λj).

38



In Assumption 1, I assume cluster-level iid-ness. Following Bugni et al. [2022], the iid-ness

discussed in Assumption 1 comes from a two-step data generating process: firstly, cluster-

level variables
(
Dj , Nj , λj

)
are independently drawn from a distribution. Then, conditioning

on the cluster-level variables
(
Dj , Nj , λj

)
, individual-level variables

{
Yij(1), Yij(0), Xij

}Nj

i=1

are drawn from a distribution denoted with H, independently of individual-level variables and

cluster-level variables from all the other clusters; independence. The distribution function H

is not cluster-specific; identicalness. Dependence structure within a cluster is unrestricted.

The cluster-level latent factor λj can be thought of as the latent heterogeneity across

clusters in terms of the distribution of individual-level potential outcomes and individual-

level control covariates. So far, no further restrictions are made on λj . Thus, by let-

ting λj be cluster-specific conditional distribution function of {Yij(1), Yij(0), Xij}
Nj

i=1 given(
Dj , Nj

)
, the latent factor λj becomes a placeholder and Assumption 1 can be rewritten

with H(Dj , Nj) and Hhyper({Dj , Nj}Ji=1).

Assumption 2 introduces more context on the latent factor λj and assumes conditional

independence of the treatment.

Assumption 2.2. (selection-on-distribution)

Let B(Rp) denote the space of distribution functions on Rp, with a metric ∥·∥w,2 defined with

a weighting function w as follows:

∥F∥w,2 =

(∫
Rp

F(x)w(x)dx

)1
2

.

Then, there exists an injective function G : Λ → B(Rp) such that for every x ∈ Rp,

Fj(x) :=
1

Nj

Nj∑
i=1

Pr
{
Xij ≤ x

∣∣Dj , Nj , λj
}
=
(
G(λj)

)
(x).
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w satisfies that Pr
{∥∥G(λj)

∥∥
w,2 < ∞

}
= 1. Also,

{
Yij(1), Yij(0), Xij

}Nj

i=1 ⊥⊥ Dj

∣∣∣ (Nj , λj
)
.

Assumption 2 has two parts. Firstly, Assumption 2 assumes that the latent factor λj is

the cluster-level heterogeneity in terms of the distribution of Xij . The connection between

the latent factor λj and the distribution of Xij is through the injective function G. To

define injectivity, a metric ∥·∥w,2 is defined on the space of distribution functions. Secondly,

Assumption 2 assumes that the individual-level potential outcomes and the individual-level

control covariates are independent of the cluster-level treatment status, after conditioning on

the cluster-level variables Nj and λj : H(Dj , Nj , λj) = H(Nj , λj). Thanks to the injectivity

of G, the individual-level potential outcomes are independent of the treatment conditioning

on Nj and Fj : {
Yij(1), Yij(0)

}Nj

i=1 ⊥⊥ Dj

∣∣∣ (Nj ,Fj
)
.

This means that the distribution of Xij for each cluster contains sufficient information in

treatment assignment process, along with Nj , so that the treatment is as good as random

after conditioning on Nj and Fj . I call this the selection-on-distribution assumption.

Remark 1. When p > 1, an additional assumption can be made on λj for model simplicity.

Let Xijl denote the l-th random variable of the p-dimensional random vector Xij :

Xij =
(
Xij1, · · · , Xijp

)
.

Assume the second part of Assumption 2 as is. In addition, assume that λj is a p-tuple of

latent factors, i.e.

λj =
(
λj1, · · · , λjp

)
,

and repeat the first part of Assumption 2 with each of λjl and the marginal distribution of
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Xijl: for every xl ∈ R,

Fjl(xl) :=
1

Nj

Nj∑
i=1

Pr
{
Xijl ≤ xl

∣∣Dj , Nj , λj
}
=
(
G(λjl)

)
(x).

This modification to Assumption 2 assumes that each of the marginal distributions of Xij

conveys information on one component of λj . Thus, we do not lose any information for

the latent factor λj , by shifting the conditioning object from the joint distribution Fj , to a

collection of the p marginal distributions Fj1, · · · ,Fjp.

Assumption 3 assumes that the latent factor has a finite support.

Assumption 2.3. (finite support) The latent factor λj has a finite support: with a fixed K,

Λ =
{
λ1, · · · , λK

}
.

To reduce the dimension of Fj , I assume that the support of the latent factor is finite. Fj ,

without any restriction, is an infinite-dimensional object; under Assumption 3, Fj can only

take K values. Thus the idea of selection-on-distribution from Assumption 2 is facilitated

under Assumption 3; there are finite types of clusters in terms of their distribution of the

individual control covariate Xij and the question of treatment effect estimation becomes

that of recovering the finite type for each cluster. I discuss the case where Assumption 3 is

relaxed and Λ is assumed to be a compact subset of Rq, in Section 5.

Remark 2. The parameter K is often unknown to an econometrician. An estimator of K

with the information criterion will be discussed in Section 3.

2.2.1 Treatment effect

In this subsection, I define various treatment effect parameters that are identified under

Assumptions 1-3. The multilevel nature of the model is evident in the definitions of the
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treatment effect parameters as well. I construct two sets of aggregate treatment effect pa-

rameters, depending on whether I put equal weights across clusters or across individuals.

Also, for conditional treatment effect parameters, I consider both cluster-level variables and

individual-level variables as a conditioning variable.

2.2.1.1 Aggregate treatment effect

Firstly, let us construct cluster-level aggregate treatment effect parameters:

ATEcl = E
[
Ȳj(1)− Ȳj(0)

]
, (2.3)

ATT cl = E
[
Ȳj(1)− Ȳj(0)|Dj = 1

]
. (2.4)

I used the superscript cl to indicate that the treatment effect parameters are defined with

cluster means, putting equal weights across clusters. Expanding this, we can construct

individual-level aggregate treatment effect parameters:

ATE = E

[
Nj

E
[
Nj
] (Ȳj(1)− Ȳj(0)

)]
, (2.5)

ATT = E

[
Nj

E
[
NJ |Dj = 1

] (Ȳj(1)− Ȳj(0)
) ∣∣∣Dj = 1

]
(2.6)

When the cluster size does not vary, individual-level aggregate treatment effect parameters

are equal to their cluster-level counterparts.

2.2.1.2 Conditional treatment effect

Now, let us discuss conditional treatment effect parameters. At the cluster level, I use

the cluster-level latent factor λj as a conditioning variable:

CATEcl(λ) = E[Ȳj(1)− Ȳj(0)|λj = λ]. (2.7)
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At the individual level, we add an additional conditioning variable at the individual level to

define conditional treatment effect parameters:

CATE(x, λ) = E
[
Yij(1)− Yij(0)|Xij = x, λj = λ

]
. (2.8)

Note that conditioning on λj , CATE and CATT are the same.

With CATE defined as above, multilevel nature of heterogeneity in treatment effect

can be explored. A first use of the model is to allow for heterogeneity in treatment effect

that comes from individual-level characteristics. Fix λ and let CATE(x, λ) be a function

of x: IHλ(x;λ) = CATE(x, λ). Then, IHλ(x) captures the individual-level heterogeneity

in treatment effect. Secondly, the model finds heterogeneity in treatment effect in terms of

cluster-level aggregation of the individual-level characteristics. Fix x and let CATE(x, λ)

be a function of λ: AHx(λ;x) = CATE(x, λ). AHx(λ) captures the aggregate heterogene-

ity. Individual heterogeneity discusses how the treatment affects individuals with different

characteristics differently while aggregate heterogeneity discusses how the treatment affects

the same individual differently depending on which cluster they belong to.

These heterogeneity parameters in treatment effects are often of interest in applications.

In a typical regression specification to estimate treatment effect, interaction terms between

some control covariates and the binary treatment variable are often included. If the control

covariate is an individual-level variable, the interaction term essentially captures individual

heterogeneity in treatment effect and if the control covariate is a cluster-level variable, the

interaction term captures aggregate heterogeneity. In addition to using cluster-level variables

given from the dataset, the econometric framework of this paper provides another window

to discuss heterogeneous treatment effect: the distribution of the individual-level control

covariates. By looking at the distribution, I suggest a sensible assumption to aggregate

the individual-level information available at each cluster and allow my model to capture

heterogeneity in treatment effect in terms of the composition of individuals for each cluster.
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2.2.2 Examples

There are a plenty of economic models where a distribution of individual-level control covari-

ates is a key determinat in cluster-level treatment assignment, and treatment effect shows

both individual heterogeneity and aggregate heterogeneity. In this subsection, I list three

examples.

2.2.2.1 Minimum wage and unemployment

Let us construct a dynamic model where state legislators decide whether or not to increase

their state’s minimum wage level. At each time period, the state legislators observe the

distribution of individual-level socioeconomic and demographic characteristics: with Xijt ∈

Rp being the socioeconomic and demographic characteristics of individual i in state j at time

t, the state legislators observe

Fjt(x) = Pr
{
Xijt ≤ x

}
∀x ∈ Rp,

Fjt = F(λjt,MinWagejt/Pt).

The distribution Fjt has two determinants: underlying labor market fundamental λjt and

the minimum wage level MinWagejt. Note that the nominal minimum wage level is divided

with a price level Pt = (1+p)t. It is assumed that the price level increases in a deterministic

way, at the rate of p, and the state of the labor market, λjt, follows a Markov process.

Let us further assume that the state space Λ of λjt is finite: Λ = {λ1, · · · , λq}. Then, the

transition probability is denoted with a q × q matrix: P. The nominal minimum wage level,

MinWagejt, is determined by the state legislators, in the process described below.

At each time period, after observing the distribution Fjt, the state legislators decide the

minimum wage level for the next period. The decision to raise the minimum wage level comes

at a cost cjt. In deciding the minimum wage level for the next period, the state legislators

44



maximize an infinite sum of a period-specific social welfare function:

SWjt = g(Fjt)− cjt1{MinWagejt+1 > MinWagej,t}

= g(λjt,MinWagejt/Pt)− c1{MinWagejt+1 > MinWagej,t}.

g is labor market welfare function that takes the distribution Fjt as its input and evalu-

ates the social welfare generated in the labor market. Suppose Xijt includes two variables:

Empijt, the employment status of individual i, and WageIncijt, the wage income of indi-

vidual i. If the state legislators only care about the unemployment rate, we would have

g(Fjt) = g(Pr
{
Empijt = 0

}
).

If the state legislators care about the proportion of their constituents making below the

federal poverty line, we would have

g(Fjt) = g(Pr
{
WageIncijt ≤ FederalPovertyLine

}
).

In general, the function g would be more complex. cjt is the menu cost of raising the

nominal minimum wage level. I assume that the menu cost process has no autocorrelation

and is independent of the labor market state: cjt ∼ iid and {cjt}t ⊥⊥ {λjt}t. The total

period-specific social welfare is the labor market welfare minus the cost of changing the

minimum wage level.

Based on the setup discussed above, let us construct a Bellman equation for the dynamic

optimization problem:

V (λ,m, c) = max
m′≥m

{
g(λ,m)− c1{m′ > m}+ δE

[
V

(
λ′,

m′

1 + p
, c′
) ∣∣λ]} .

λ is the labor market state, m is the real minimum wage level and c is the menu cost of raising
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the minimum wage level: (λ,m, c) is the state of the dynamic programming and m′ is the

action. Given (λ,m, c), V is the value function that evaluates the discounted sum of social

welfare. The expectation notation in the Bellman equation is a conditional expectation on

λ since the labor market state has Markov property. Specifically,

E

[
V

(
λ′,

m′

1 + p
, c′
) ∣∣λ] = (1{λ = λ1} · · · 1{λ = λq}

)
·P·


∫
V
(
λ1, m′

1+p , c
′
)
f(c′)dc′

...∫
V
(
λq, m′

1+p , c
′
)
f(c′)dc′

 .

f is the density function of cjt. The state legislators solve this dynamic optimization problem

and set the minimum wage level: the optimal policy function m∗(λ,m) sets the minimum

wage level for the next period. It is evident in this model that the distribution Fjt is the

key determinant in ‘treatment’ assignment process: selection-on-distribution.

In Section 7, I analyze the effect of a raise in the minimum wage level on employment

status of teenagers. Relying on this framework, I control for the state-level heterogeneity in

the minimum wage decision process, using the cluster-level distribution of individual-level

control covariates and solve the selection bias problem.

2.2.2.2 Team-level performance pay

Suppose a company introduces a team-level performance pay scheme under which workers

are rewarded r > 0 when the total output of their team is above some predetermined level y∗.

The company does not introduce the performance pay scheme to all teams at once. Instead,

the company considers each team’s worker composition and decides whether or not to apply

the performance pay scheme: Dj = 1 indicates that team j is under the performance pay

scheme.

To discuss treatment effect heterogeneity in this example, let us consider a simple linear

outcome model with latent effort level, which will be the main source of heterogeneity in
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treatment effect. Each worker’s output level Yij is determined from their productivity level

Xij ∈ [0, 1], latent binary effort level Eij ∈ {0, 1}, and some idiosyncratic error Uij :

Yij = β1Xij + β2Eij + Uij .

The productivity level Xij is observed to a researcher and comes from a distribution whose

parameter is λj .

The act of putting in ‘efforts’ is not free; worker’s utility decreases by c(Xij) when

Eij = 1. With monotone decreasing c,

utilityij =


r · 1{

∑
i Yij ≥ y∗} − c(Xij) · Eij , if Dj = 1

−c(Xij) · Eij , if Dj = 0

Without any reward on putting in efforts, effort level Eij is always 0. With the performance

pay scheme, a worker decides if they should put in efforts by looking at their team compo-

sition. Given some belief on the effort levels of his teammates, the optimal strategy of an

worker who maximizes expected payoff is to put in ‘efforts’ if and only if

PrX−j

β1
∑
i

Xij + β2
∑
i′ ̸=i

Eij +
∑
i

Uij ≥ y∗ − β2


− PrX−j

β1
∑
i

Xij + β2
∑
i′ ̸=i

Eij +
∑
i

Uij ≥ y∗

 ≥
c(Xij)

r
.

Note that the probability is an expectation over worker i’s belief on the productivity level and

the effort level of his teammates: the expectation is conditional on λj . As an equilibrium out-

come of this game that workers play within a team, the optimal effort level E∗
ij = e(Xij , λj)

would be a function of one’s own productivity level and the productivity distribution λj .

From the discussion above, it directly follows that the treatment effect on worker i is a
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function of both their own productivity level Xij and their team’s productivity distribution

λj :

Yij(1)− Yij(0) = β2E
∗
ij(1) = β2e

(
Xij , λj

)
.

Firstly, we see that the treatment affects workers differently within a given team; for ex-

ample, when c(x) decreases in x, workers with higher productivity are more reactive to the

treatment, thus having positive treatment effect, while workers with lower productivity may

not react and have a zero treatment effect: individual heterogeneity. Secondly, the perfor-

mance pay scheme affects workers with the same productivity level differently, when their

team compositions vary. For example, the performance pay scheme may increase output

from a worker of a certain productivity level when they are assigned to a high-productivity

team, but not when they are assigned to a low-productivity team: aggregate heterogeneity.

The construction of conditional treatment effect parameters as in CATE(x, λ) above allows

us to explore this heterogeneity in treatment effect.

2.2.2.3 School-level teaching strategy with peer effect

My third and last example is based on a network formation model. Suppose a school

district experiments with a new teaching strategy across schools. In this example, I assume

a latent network structure among students and resulting peer effect. Let Yij , test score of

student i in school j, be determined from their own ability Xij and their peers’ ability:

Yij = (θ1 +Djβ1) ·Xij + (θ2 +Djβ2) · ei⊺GjXj + Uij .

Note that the slope coefficients depend on Dj , the teaching strategy of school j. To allow

for peer effect, a NJ × NJ (reweighted) network matrix Gj is used. Gj is constructed in a

way that its i-th row j-th column element
(
Gj
)
hi is

Whij∑
i′ Whi′j
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where Whij ∈ {0, 1} is a binary linkage variable indicating whether student i and student h

in school j are friends. For example,
(
Gj
)
hi = 1/4 means that student h has four friends

and student i is one of them. Xj is a stacked vector of Xijs for cluster j:

Xj =

(
X1j · · · XNjj

)⊺
.

Then, GjXj is a column vector of mean ability of peers, for students in school j. ei is the

standard unit vector whose i-th element is one and the rest are zeros; ei⊺GjXj retrieves the

mean ability of student i’s peers.

The latent friendship network structure Gj is constructed from the following network

formation model:

Whij =


1{|X̃hj − X̃ij |⊺η + εhij ≥ 0}, if h ̸= i

0, if h = i

with some observable student characteristic X̃ij : e.g. sex, race, address, etc. With η < 0,

students with similar characteristic are more likely to be friends.

Let F(λ) denote the distribution of
(
Xij , X̃ij

)
for a certain school and (x, x̃) denote an

ability level and observable characteristics of a certain student at the school. Conditioning

on (x, x̃, λ),

CATE(x,F) = β1 · x+ β2 ·
∑
i ̸=1

E

[
W1ij∑
i′ W1i′j

∣∣F(λ)]xij
=: β1 · x+ β2 · g(x̃, λ).

It is easy to see that a change in (x, x̃) shifts both β1 · x, the direct treatment effect, and

β2 · g(x̃,F), the indirect peer effect, while a change in F only shifts the latter. Based

on this observation, I make following connection to the network effect/peer effect literature:
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individual heterogeneity defined as in this paper refers to a shift in the total treatment effect,

which is a sum of the direct treatment effect and the indirect peer effect, while aggregate

heterogeneity refers to a shift only in the indirectly peer effect.

2.3 Estimation

In this section, I propose a two-step estimation procedure. The first step is to find a finite

grouping structure on clusters by solving a K-means minimization problem with cluster-

level distributions of individual-level control covariates. The second step is to use the finite

grouping structure on clusters in treatment effect estimation. In the second step, I propose

two sets of estimators; nonparametric estimators with inverse probability weightings and a

least-squre estimator with parametric model.

2.3.1 First step: K-means grouping

In the first step, I construct a finite grouping structure by aggregating the individual-level

information at the cluster-level to a distribution. In practice, the cluster-level distributions

are not directly observed. Thus, as an estimator for the cluster-specific distribution of the

individual-level control covariate, Fj , I use the empirical distribution function F̂j : for all

x ∈ Rp,

F̂j(x) =
1

Nj

Nj∑
i=1

1{Xij ≤ x}. (2.9)

A key observation which directly follows Assumption 2 is that

E
[
F̂j(x)|Dj , Nj , λj

]
=
(
G(λj)

)
(x)
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for every x ∈ Rp: F̂j , the estimator I use for Fj , is pointwise unbiased. In Section 4, I

discuss conditions under which F̂j is a good estimator for Fj more rigorously.

To construct a finite grouping structure on clusters, I start with some predetermined

K ≤ J . With the predetermined K, I assign each cluster to one of K groups, based on

∥·∥w,2 from Assumption 2, so that clusters within a group are similar to each other in terms

of F̂j :

(
k̂1, · · · , k̂J , Ĝ(1), · · · , Ĝ(K)

)
= argmin

k,G

J∑
j=1

∥∥∥F̂j −G(kj)
∥∥∥
w,2

2
. (2.10)

The K-means minimization problem in (2.10) finds a grouping on J clusters, while minimiz-

ing the within-group variation of clusters measured in terms of ∥ · ∥w,2. In the minimization

problem, there are two arguments to minimize the objective over: kj and G(k). kj is the

group to which cluster j is assigned to: kj ∈ {1, · · · , K}. G(k) is the distribution of Xij

for group k. For each cluster j, k̂j will be the group which cluster j is closest to, measured

in terms of
∥∥∥F̂j −G(k)

∥∥∥
w,2

. The solution to (2.10) maps F̂j to k̂j , a discrete variable with

finite support: dimension reduction.

K, the dimension parameter of the finite grouping structure is often unknown. When K

is unknown, an information criterion can be used to estimate K.6 Assume in addition to

Assumption 3 that we are given a fixed constant Kmax < J such that K ≤ Kmax and let

QJ (K) = min
kj∈{1,··· ,K},G(1),··· ,G(K)

J∑
j=1

∥∥∥F̂j −G(kj)
∥∥∥
w,2

2
.

6. Using an information criterion, Bai and Ng [2002] estimates the dimension of the latent factor in a
factor model for panel data. More closely to the setup of this paper, Ke et al. [2016], Wang and Su [2021] also
use an information criterion to estimate the dimension of a finite grouping structure in a panel data model
with group fixed-effects. In the canonical models of Ke et al. [2016], Wang and Su [2021], slope coefficient
estimates in a linear model are used to group units; in this paper, distribution functions in a multilevel model
are used to group clusters.

51



Then, for example, an estimator based on the Bayesian Information Criterion (BIC) is

K̂ = arg min
K≤Kmax

(
QJ (K) +K log J

)
and an estimator based on the Akaike Information Criterion (AIC) is

K̂ = arg min
K≤Kmax

(
QJ (K) +K

)
.

Given estimated K̂ or known K, I use an iterative algorithm, called the (naive) K-means

clustering algorithm or Lloyd’s algorithm, to solve the minimization problem (2.10). Find

that at the optimum

(
Ĝ(k)

)
(x) =

1∑J
j=1 1{k̂j = k}

J∑
j=1

F̂j(x)1{k̂j = k}.

The estimated Ĝ for group k will be the subsample mean of F̂j where the subsample is the set

of clusters that are assigned to group k under
(
k̂1, · · · , k̂J

)
. Motivated by this observation,

the iterative K-means algorithm finds the minimum as follows: given an initial grouping(
k
(0)
1 , · · · , k(0)N

)
,

1. (update G) Given the grouping from the s-th iteration, update G(s)(k) to be the

subsample mean of F̂j where the subsample is the set of clusters that are assigned to

group k under
(
k
(s)
1 , · · · , k(s)J

)
:

(
G(s)(k)

)
(x) =

1∑J
j=1 1{k

(s)
j = k}

J∑
j=1

F̂j(x)1{k
(s)
j = k}.

2. (update k) Given the subsample means from the s-th iteration, update k
(s)
j for each
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cluster by letting k
(s+1)
j be the solution to the following minimization problem: for

j = 1, · · · , J ,

min
k∈{1,··· ,K}

∥∥∥F̂j −G(s)(k)
∥∥∥
w,2

.

3. Repeat 1-2 until
(
k
(s)
1 , · · · , k(s)J

)
is not updated, or some stopping criterion is met.

For stopping criterion, popular choices are to stop the algorithm after a fixed number of

iterations or to stop the algorithm when updates in G(s)(k) are sufficiently small.

There is no guarantee that the result of the iterative algorithm is indeed the global

minimum. For simplicity of the discussion, let the weighting function w in ∥·∥w,2 be discrete

and finite: with some x1, · · · , xd ∈ Rp,

∥F∥w,2 =

 d∑
d̃=1

(
F(xd̃)

)2
w(xd̃)

1
2

.

Then, Inaba et al. [1994] shows that the global minimum can be computed in time O(JdK+1).

On the other hand, the iterative algorithm is computed in time O(JKd). Thus, the iterative

algorithm gives us computational gain, at the cost of not being able to guarantee the global

minimum.7 Thus, I suggest using multiple initial groupings and comparing the results of

the K-means algorithm across initial groupings. For more discussion on how to choose the

initial grouping, see Appendix.

2.3.2 Second step: treatment effect estimation

In the second step, I use the finite grouping structure from the first step to estimate treat-

ment effect parameters. Specifically, I propose two sets of estimators for two different data

contexts. Firstly, suppose that a researcher is given a cross-sectional dataset without any

7. A number of alternative algorithms with computation time linear in J have been proposed and some
of them, e.g. Kumar et al. [2004], have certain theoretical guarantees. However, most of the alternative
algorithms are complex to implement.
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cluster-level control covariates relevant for treatment assignment; the hierarchical nature of

the model only exists in terms of the clustering structure on individuals. Then, no addi-

tional function form assumptions other than the basic model described in Assumptions 1-3

are needed to model the data. Thus, in this case, I propose nonparametric estimators di-

rectly motivated from Assumptions 1-3, using the finite grouping structure from the first

step and the inverse probability weighting principle. Secondly, suppose that a researcher is

given a panel data or cluster-level control covariates relevant for treatment assignment. In

this case, the researcher would want to impose more restrictions on the model to control for

time heterogeneity, or the cluster-level control covariates. To that end, I propose a least-

square estimator in a parametric model where the cluster-level latent factor is treated as a

categorical variable.

2.3.2.1 Nonparametric estimator

When the finite grouping structure {k̂1, · · · , k̂J} ∈ {1, · · · , K}J successfully recovers the

latent factor {λj , · · · , λJ} ∈ {λ1, · · · , λ1}J , a direct mean comparison within a group is a

natural estimator for CATEcl(λ), from the selection-on-distribution assumption. Thus, for

each group estimated in the first step, I construct cluster-level conditional treatment effect

estimators as follows: for k = 1, · · · , K,

ĈATE
cl
(k) =

∑J
j=1 ȲjDj1{k̂j = k}∑J
j=1Dj1{k̂j = k}

−
∑J

j=1 Ȳj(1−Dj)1{k̂j = k}∑J
j=1(1−Dj)1{k̂j = k}

. (2.11)

Note that I cannot construct an estimator for specific λk. From the construction of the

model, the realized value of λj cannot be identified, nor is it necessary to know the realized

value of λj to discuss aggregate heterogeneity. Thus, while I construct K distinct estimators

with ĈATE
cl
(k), I remain agnostic about how the estimators connect to CATEcl(λk).

In addition, when Xij is discrete, I estimate individual-level treatment effect parameter
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CATE(x, λ) as follows:

ĈATE(x, k)

=

∑J
j=1

∑NJ
i=1 YijDj1{Xij = x, k̂j = k}∑J

j=1

∑NJ
i=1Dj1{Xij = x, k̂j = k}

−
∑J

j=1

∑NJ
i=1 Yij(1−Dj)1{Xij = x, k̂j = k}∑J

j=1

∑NJ
i=1(1−Dj)1{Xij = x, k̂j = k}

.

(2.12)

When Xij is continuous, we can use kernel smoothing to construct a nonparametric estima-

tor, or use a parametric model as will be discussed in the next subsection. By comparing

ĈATE
cl
(k) across k = 1, · · · , K, I estimate aggregate heterogeneity in treatment effect.

Similarly, by fixing k and comparing ĈATE(x, k) across x, I estimate individual heterogene-

ity in treatment effect.

To construct aggregate treatment effect estimators, I estimate propensity score

π
(
λ
)
= E[Dj |λj = λ] (2.13)

as follows:

π̂(k) =
1∑J

j=1 1{k̂j = k}

J∑
j=1

Dj1{k̂j = k}, (2.14)

π̂j = π̂(k̂j).

The propensity score estimates are computed as a sample mean of treatment status variable

Dj for each group. Note that the propensity score estimator in (2.14) does not guarantee

overlap. There are multiple remedies to this problem of no overlap. For example, we may

drop the group without overlap altogether in estimating the aggregate treatment effect.

Or, we may pair the clusters before the K-means algorithm so that each treated cluster is

matched with the closest untreated cluster in terms of F̂j and have the K-means algorithm
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to group the pairs, instead of the clusters. In this paper, I choose the trimming strategy. I

trim the propensity score estimator to be on [h, 1− h]: with some h ∈ (0, 0.5),

π̂j = π̂(k̂j) = min

{
1− h,max

{
h,

∑J
l=1Dl1{k̂l = k̂j}∑J
l=1 1{k̂l = k̂j}

}}
. (2.15)

Given the propensity score estimators from (2.15), the cluster-level aggregate treatment

effect are estimated as follows. Using the inverse probability weighting principle,

ÂTE
cl
=

1

J

J∑
j=1

(
Dj Ȳj
π̂j

−
(1−Dj)Ȳj

1− π̂j

)
, (2.16)

ÂTT
cl
=

1∑J
j=1Dj

J∑
j=1

(
Dj Ȳj −

(1−Dj)π̂j Ȳj
1− π̂j

)
. (2.17)

Likewise, the individual-level aggregate treatment effect estimators are:

ÂTE =
1

N

J∑
j=1

Nj

(
Dj Ȳj
π̂j

−
(1−Dj)Ȳj

1− π̂j

)
, (2.18)

ÂTT =
1∑J

j=1DjNj

J∑
j=1

Nj

(
Dj Ȳj −

(1−Dj)π̂j Ȳj
1− π̂j

)
. (2.19)

2.3.2.2 Parametric estimator

In the baseline model discussed in Section 2, an econometrician only observes control

covariates at the individual level. In this subsection, I extend the baseline model to include

cluster-level control covariates, at the cost of parametrization: e.g., Yang and Schmidt [2021].

The econometrician now observes

{{
Yij , Xij

}Nj

i=1 , Zj , Dj

}J
j=1

where Zj ∈ Rpcl is a pcl-dimensional vector of cluster-level control covariates. To include the
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cluster-level covariates Zj , let us modify Assumption 1, by replacing Nj with an arbitrary

cluster-level random vector Zj that includes Nj .

(
Dj , Zj , λj

)
∼ iid.

Also, Hhyper
( {

Dj , Zj , λj
}J
j=1

)
, the conditional distribution of

{{
Yij(1), Yij(0), Xij

}Nj

i=1

}J
j=1

given
{
Dj , Zj , λj

}J
j=1, is a product of H(Dj , Zj , λj), the conditional distribution of

{
Yij(1), Yij(0), Xij

}Nj

i=1

given
(
Dj , Zj , λj

)
:

Hhyper( {Dj , Zj , λj
}J
j=1

)
=

J∏
j=1

H(Dj , Zj , λj).

In addition, there exists some function g : Rp × {0, 1} × Rpcl × Λ → R,

Yij = g(Xij , Dj , Zj , λj ; θ0) + Uij , (2.20)

0 = E
[
Uij |Xij , Dj , Zj , λj

]
, . (2.21)

Recall that the finite grouping structure from the first step cannot retrieve the specific

values of λj . Thus, additional assumption is made on θ and g. Let θ =
(
θ1, · · · , θK

)
and

θj =
∑K

k=1 θ
k1{λj = λk}. With some g̃ : Rp × {0, 1} × Rpcl → R,

g(x, d, z, λk; θ) = g̃(x, d, z; θj). (2.22)
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The parametric model in (2.20)-(2.22) adds restrictions on H. From this model, I construct

a least-square estimator as follows:

θ̂ =
(
θ̂1, · · · , θ̂K

)
= argmin

θ∈Θ

J∑
j=1

Nj∑
i=1

(
Yij − g̃(Xij , Dj , Zj ; θ

k̂j )
)2

. (2.23)

Again, each of the estimator θ̂k does not directly estimate θk; θ̂ as a whole estimates(
θ1, · · · , θK

)
, up to a relabeling.

Remark 3. Though the conditional treatment effect parameters are not directly estimated

here, a sufficiently flexible parametric model g̃ addresses aggregate heterogeneity and indi-

vidual heterogeneity in treatment effect. θ 7→ g̃(x, 1, z, θ) − g̃(x, 0, z, θ) captures aggregate

heterogeneity and x 7→ g̃(x, 1, z, θ)− g̃(x, 0, z, θ) capture individual heterogeneity.

Remark 4. A direct connection to the group fixed-effect estimators can be made here. The

parametric model in this paper can be understood as a group fixed-effects where a unit fixed-

effect θj takes one of the K values: θ1, · · · , θK . In this sense, the least-square estimator in

(2.23) is a group fixed-effect estimators.

Example 1. An example of the parametric model discussed here is a linear regression model

with group-specific time fixed-effects and group-specific slope coefficients.

Yij = g(Xij , Dj , Zj , λj ; θ0) + Uij

= δj + βjDj + Zj
⊺ηcl +Xij

⊺η + Uij ,

0 = E
[
Uij |Xij , Dj , Zj , λj

]
.

where δj =
∑K

k=1 δ
k1{λj = λk} and βj =

∑K
k=1 β

k1{λj = λk}. The parameter of the model

is θ =
(
δ1, · · · , δK , β1, · · · , βK , ηcl, η

)
and θk =

(
δk, βk, ηcl, η

)
. In Section 7, I extend the

cross-sectional linear regression model to panel data linear regression model.
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2.3.3 Alternative estimators

The K-means grouping structure is by no means the only way to implement the selection-

on-distribution approach. There are other functional regression methods that we can use to

run a regression on distribution. Firstly, there is a kernel estimator: Póczos et al. [2013].

With some tuning parameter hF and kernel κ,

π̂κ(F) =

∑J
j=1Djκ

(
∥F− F̂j∥w,2

/
hF

)
∑J

j=1 κ
(
∥F− F̂j∥w,2

/
hF
)

estimates the propensity score of a cluster with given distribution F. Then, the inverse

probability weighting estimators can be constructed as before. Note that the kernel estimator

does not have the dimension reduction property.

Secondly, there is functional principal component analysis (functional PCA): Delicado

[2011], Hron et al. [2016], Kneip and Utikal [2001]. Functional PCA constructs the following

J × J matrix M whose j-th row l-th column element is

Mjl =
∥∥∥F̂j − F̂l

∥∥∥
w,2

or
∥∥∥f̂j − f̂l

∥∥∥
w,2

where f̂j is the estimated density function of cluster j. Then, by choosing the first r largest

singular values of M , with some predetermined r ≤ J , functional PCA maps F̂j or f̂j to a

r-dimensional factor: dimension reduction. Building on functional PCA, one can solve the

K-means minimization problem in terms of the euclidean distance between the r-dimensional

factors for each cluster; spectral clustering. By matching cluster with the estimated factor

itself or the grouping variable from the spectral clustering, nonparametric estimation is

possible. Also, since functional PCA has nice dimension reduction property, we may use the

factor directly in a parametric model.

Thirdly, another alternative with the dimension reduction property is regularized regres-
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sions with variable selection property: e.g. LASSO [Tibshirani, 1996]. Set p = 1 for brevity

and let µk(F) be the k-th moment of some random vector X such that X ∼ F. With some

large K ≫ J , regress

Dj = β1µ1(F̂j) + · · ·+ βKµK(F̂j) + Vj

with LASSO. Suppose LASSO selects K̃ variables: {k1, · · · , kK̃} ⊂ {1, · · · , K}. Then, the

variable selection has reduced the dimension from the K × 1 vector
(
µ1(F̂j), · · ·µK(F̂J )

)
to

a K̃ × 1 vector
(
µk1(F̂j), · · · , µkK̃ (F̂J )

)
and selected the moments of X that are relevant

for treatment assignment. Again, we can use the selected moments to match clusters for

nonparametric estimation, or use the selected moments in a parametric model.

Compared to these alternative estimation strategies, the estimation strategy based on

the K-means algorithm has several definitive benefits. First of all, the grouping from the

K-means algorithm by itself is an interesting descriptive statistics. The grouping from the

K-means gives us clearly defined “controls” in estimating treatment effect. In the case of

the kernel estimator, for example, the ‘control’ would be some nonexistent hypothetical

cluster that is constructed to be a weighted average of untreated clusters. Under the discrete

structure of the K-means grouping, a researcher clearly sees which untreated clusters are

used as a ‘control’ for a given treated cluster. This simple structure of finite grouping also

gives us nice visual representations that help the audience understand the data structure, as

will be shown in Section 7.

Secondly, I can derive theoretical results on asymptotic behavior of the K-means esti-

mators, using the finite grouping structure assumption in Assumption 3. A vast literature

has studied estimators motivated from a finite grouping structure and justification for the

assumptions used to derive desirable asymptotic properties has been made with regard to

models with economic interpretation: Hahn and Moon [2010]. In this sense, the finite group-

ing structure assumption in Assumption 3 helps me with developing theoretical results for

the induced estimators while being in touch with the economic insight.
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Thirdly, the finite grouping structure from the K-means algorithm can motivate para-

metric models with group fixed-effects. As discussed in Section 1, a linear regression model

with cluster fixed-effects is not identified in a clustered treatment context due to the mul-

ticollinearity problem. Given the preference for a parsimonious model among empirical

researchers, the adaptation of the linear regression model with cluster fixed-effect to accom-

modate the restrictions imposed from clustered treatment assignment would be appealing.

The finite grouping structure assumption from Assumption 3 and the K-means algorithm

as estimation strategy directly motivate the use of group fixed-effects and allow empirical

researchers to develop a parametric model that suits their data contexts while allowing for

the aggregated individual-level information to enter the model in a parsimonious way.

Lastly, the dimension reduction assumption in the K-means algorithm has a straightfor-

ward interpretation; the number of groups K is the degree of discretization. For example,

K = 3 means that a researcher believes that there exist three distinctive patterns of the

distribution Fj among J clusters. On the other hand, for example, a modification of the

sparsity assumption used in LASSO that only a small number of moments of the distribution

are relevant for treatment assignment has little interpretable implications.

2.4 Asymptotic results

In this section, I discuss asymptotic properties of treatment effect estimators from Section

3. Firstly, I introduce Assumption 4 to discuss the asymptotic behavior of the first step

grouping structure estimator.

Assumption 2.4. Assume with some constant M > 0,

a) (no measure zero type) µ(λk) := Pr
{
λj = λk

}
> 0 ∀k.

b) (overlap) There exists some η ∈ (h, 0.5) such that η ≤ π(λk) ≤ 1− η for every k.
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c) (sufficient separation) For every k ̸= k′,

∥∥∥G(λk)−G(λk
′
)
∥∥∥
w,2

2
=: c(k, k′) > 0.

d) (growing clusters) Nmin,J = maxn{Pr
{
minj Nj ≥ n

}
= 1} → ∞ as J → ∞.

e) For any ε > 0,

Pr

{
ε <

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
}

≤ C1 exp
(
−C2Nmin,Jε

)
with some C1, C2 > 0 that do not depend on j.

Also,

E

[
Nj

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
]
≤ M.

for large J .

Assumption 4.a) ensures that we observe positive measure of clusters for each value of the

latent factor as J goes to infinity. Assumption 4.b) assumes that we have (uniform) over-

lap across treated clusters and control clusters, for each value of the latent factor. Under

Assumption 4.c), clusters with different values of the latent factor will be distinct from each

other in terms of their distributions of Xij . Thus, the K-means algorithm that uses F̂j is

able to tell apart clusters with different values of λj , when F̂j is a good estimator for Fj .

Assumption 4.d) assumes that the size of clusters goes to infinity as the number of clusters

goes to infinity. This assumption limits our attention to cases where clusters are large. It

should be noted that Assumption 4.d) excludes cases where the size of cluster increases only

for some clusters and is fixed for some other clusters; the estimator F̂j improves uniformly as

J increases. Assumption 4.e) discusses the properties of the empirical distribution function

F̂j . The first part assumes that the tail probability of the distance between F̂j and Fj in

terms of ∥·∥w,2 goes to zero exponentially. The second part assumes that the distance is
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bounded in expectation when normalized with Nj .

Theorem 1 derives a rate on the probability of the first step grouping from the K-means

algorithm retrieving the latent factor.

Theorem 2.1. Under Assumptions 1-4, up to some relabeling on Λ,

Pr
{
∃ j s.t. λk̂j ̸= λj

}
= o

(
J

Nmin,J
ν

)
+ o(1)

for any ν > 0 as J → ∞.

Proof. See Appendix.

Theorem 1 shows that the probability of the first step grouping from the K-means algorithm

making a mistake such that clusters with different values of λj are grouped together goes to

zero when J/Nmin,J
ν∗ goes to zero for some ν∗. Thus, when Nmin,J

ν∗ increases faster than

J for some ν∗ > 0, we can use the grouping from the first step as if the true values of λj are

known to us.

Now, I prove asymptotic normality of the nonparametric treatment effect estimators

under some regular assumptions. Before stating the formal assumptions, find that for any

(d, k), the expectation of 1{Dj = d, λj = λk}Ȳj is equal to the expectation of 1{Dj =

d, λj = λk}E
[
Ȳj(d)|Nj , λj = λk

]
:

E

1{Dj = d, λj = λk}
Nj

Nj∑
i=1

(
Yij − E

[
Ȳj(d)|Nj , λj = λk

])
= E

E
1{Dj = d, λj = λk}

Nj

Nj∑
i=1

(
Yij − E

[
Ȳj(d)|Nj , λj = k

]) ∣∣∣Dj , Nj , λj


= E

[
1{Dj = d, λj = λk}

(
E
[
Ȳj |Dj , Nj , λj

]
− E

[
Ȳj(d)|Nj , λj = λk

])]
= 0
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from Assumption 2, under some finite moments assumptions on E
[
Ȳj |Dj , Nj , λj

]
. Assump-

tion 5 formalizes the finite moments assumptions and assumes asymptotic normality on the

difference.

Assumption 2.5. Assume with some constant M > 0,

a) E
[
Yij

2|Xij , Dj , Nj , λj
]
< M and E

[
Ȳ 2
j

∣∣ {Xij
}Nj

i=1 , Dj , Nj , λj

]
< M uniformly.

b) N/J − EJ [Nj ] = op(1) as J → ∞. Also, EJ [Nj ] ≤ MNmin,J for large J .

c) Let

W cl
j =



√
E[Nj ]
Nj

Dj1{λj=λ1}√
Nj

∑Nj

i=1

(
Yij − E

[
Ȳj(1)|Nj , λj = λ1

])
...√

E[Nj ]
Nj

(1−Dj)1{λj=λK}√
Nj

∑Nj

i=1

(
Yij − E

[
Ȳj(0)|Nj , λj = λK

])


Then,

1√
J

J∑
j=1

W cl
j

d−→ N
(
0,ΣW cl

)
as J → ∞, with

ΣW cl = lim
J→∞

VarJ

(
W cl

j

)
.

d) Let

Wj =



√
Nj

E[Nj ]
Dj1{λj=λ1}√

Nj

∑Nj

i=1

(
Yij − E

[
Ȳj(1)|Nj , λj = λ1

])
...√

Nj

E[Nj ]
(1−Dj)1{λj=λK}√

Nj

∑Nj

i=1

(
Yij − E

[
Ȳj(0)|Nj , λj = λK

])


Then,
1√
J

J∑
j=1

Wj
d−→ N (0,ΣW )
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as J → ∞, with

ΣW = lim
J→∞

VarJ
(
Wj
)
.

Assumption 5.a) puts a bound on the conditional first and second moments of Yij and

Ȳj . Assumption 5.b) assumes that N/J is a consistent estimator of E[Nj ] and the ra-

tio of the average cluster size E[Nj ] and the minimum cluster size Nmin,J cannot diverge.

Assumption 5.c-d) assume asymptotic normality on 1{Dj = d, λj = λk}Ȳj , with relevant

rescaling with regard to the cluster size. Note that the expectation of Nj and the variance

of Wj is subscripted with J to denote that they depend on J .

Corollary 2.1. Suppose J/Nmin,J
ν∗ → 0 as J → ∞ for some ν∗ > 0. Under Assumptions

1-4 and Assumption 5.a-c), up to some relabeling on Λ,

√
N


ĈATE

cl
(1)− CATE

cl
(λ1)

...

ĈATE
cl
(K)− CATE

cl
(λK)

 d−→ N
(
0,Σcl

)

as J → ∞, where

CATE
cl
(λk) =

∑J
j=1E

[
Ȳj(1)|Nj , λj = λk

]
Dj1{λj = λk}∑J

j=1Dj1{λj = λk}

−

∑J
j=1E

[
Ȳj(0)|Nj , λj = λk

]
(1−Dj)1{λj = λk}∑J

j=1(1−Dj)1{λj = λk}
.

It directly follows that

√
N

(
ÂTE

cl
− ATE

cl
)

d−→ N
(
0, σcl

2
)

as J → ∞, where ATE
cl is the weighted average of CATE

cl with 1
J

∑J
j=1 1{λj = λk} as
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weights.

Also, under Assumptions 1-4 and Assumption 5.a-b,d),

√
N
(
ÂTE − ATE

)
d−→
(
0, σ2

)

as J → ∞, where

ATE =
K∑
k=1

∑J
j=1 1{λj = λk}

N

(∑J
j=1E[Ȳj(1)|Nj , λj = λk]DjNj1{λj = λk}∑J

j=1Dj1{λj = λk}

−
∑J

j=1E[Ȳj(0)|Nj , λj = λk](1−Dj)Nj1{λj = λk}∑J
j=1(1−Dj)1{λj = λk}

)

Proof. See Appendix.

Remark 5. By repeating the same argument that connects the asymptotic normality of

ĈATE
cl
(k) to that of ĈATE

cl
, but with different weighting, I derive the asymptotic nor-

mality of ÂTT
cl

and similarly for ÂTT .

Remark 6. The closed-form expression of the asymptotic variances are as follows:

Σcl =


1

π(λ1)µ(λ1)
− 1

(1−π(λ1))µ(λ1)
· · · 0

...
... . . . ...

0 0 · · · − 1
(1−π(λK))µ(λK)



ΣW cl


1

π(λ1)µ(λ1)
− 1

(1−π(λ1))µ(λ1)
· · · 0

...
... . . . ...

0 0 · · · − 1
(1−π(λK))µ(λK)


⊺

,

σcl
2
=

(
µ(λ1), · · · , µ(λK)

)
Σcl
(
µ(λ1), · · · , µ(λK)

)⊺

and similarly for σ2. Given consistent estimators for ΣW cl and ΣW , consistent estimators
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for Σcl, σcl, σ can be constructed.

With Corollary 1, we have the consistency and the asymptotic normality of the treat-

ment effect estimators. Note that the target parameter in the asymptotic distribution is a

weighted sum of conditional treatment effects. This is because the asymptotic distributions

in Corollary 1 are at the rate of
√
N : the variation from the cluster-level variables such as

Nj is approximated to the population mean at the rate of
√
J , not

√
N .

When the potential outcomes are conditionally mean independent of the cluster size, i.e.,

E
[
Ȳ (d)|Nj , λj = λk

]
= E

[
Ȳ (d)|λj = λk

]

for every k, the target parameters in the asymptotic distributions reduce down to the treat-

ment effect parameters defined in Section 2.

CATE
cl
(λk) = E

[
Ȳj(1)− Ȳj(0)|λj = λk

]
= CATEcl(λk),

ATE
cl
=

K∑
k=1

∑J
j=1 1{λj = λk}

J
CATEcl(λk),

ATE =
K∑
k=1

∑J
j=1 1{λj = λk}

J

(∑J
j=1DjNj1{λj = λk}∑J
j=1Dj1{λj = λk}

/N

J
CATEcl(λk)

∑J
j=1(1−Dj)Nj1{λj = λk}∑J
j=1(1−Dj)1{λj = λk}

/N

J
CATEcl(λk)

)
.

It is straightforward to see that the weights on the target parameter ATEcl are sensible: the

weights are sample analogues of µ(λk), the population weights for ATEcl.

ATEcl = E[Ȳj(1)− Ȳj(0)]

=
K∑
k=1

µ(λk) · CATEcl(λk).
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In the case of ATE, the weights on E
[
Ȳj(1)|λj = λk

]
are sample analogues of

µ(λk) · E
[
Nj |Dj = 1, λj = λk

]
/E[Nj ].

When the cluster size is conditionally mean independent of the treatment status, i.e.

E
[
Nj |Dj , λj = λk

]
= E[Nj |λj = λk],

for every k,

ATE = E

[
Nj

E[Nj ]

(
Ȳj(1)− Ȳj(0)

)]
= E

[
E

[
Nj

E[Nj ]

(
Ȳj(1)− Ȳj(0)

)
|Nj , λj

]]
= E

[
Nj

E[Nj ]
E
[(
Ȳj(1)− Ȳj(0)

)
|λj
]]

=
K∑
k=1

µ(λk)
E[Nj |λj = λk]

E[Nj ]
· CATEcl(λk).

Both of the target parameters ATE
cl and ATE can be thought of as the population pa-

rameter ATEcl and ATE whose weights on CATEcl(λk) are replaced with their sample

analogues.

Lastly, I show that the least-square estimator from the parametric model (2.20)-(2.22) is

asymptotically normal, under regular assumptions on a GMM estimator.

Assumption 2.6. Assume with some M > 0,

a) Θ, the parameter space of θ, is a compact subset of RrK .

Also, the true value θ0 lies in the interior of Θ.

b)
(
Xij , Uij

)
|
(
Dj , Zj , λj

)
∼ iid.
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c) θ =
(
θ1, · · · , θK

)
and there exists g̃ : Rp × {0, 1} × Rpcl → R such that for every k,

g(x, d, z, λk; θ) = g̃(x, d, z; θk).

d) (identification) Let gθ be the first derivative of g with regard to θ.

E
[(
Yij − g(Xij , Dj , Zj , λj ; θ)

)
· gθ(Xij , Dj , Zj , λj ; θ)

]
= 0

only if θ = θ0.

e) (continuity of g) θ 7→ g(x, d, z, λ; θ) is twice differentiable at every (x, d, z, λ).

f) E
[
supθ∈Θ

∥∥gθ(Xij , Dj , Zj , λj ; θ)
∥∥
sup

]
< M ,

E
[
supθ∈Θ

∥∥gθ(Xij , Dj , Zj , λj ; θ)gθ(Xij , Dj , Zj , λj ; θ)
⊺
∥∥
sup

]
< M ,

E
[
supθ∈Θ

∥∥gθθ⊺(Xij , Dj , Zj , λj ; θ)
∥∥
sup

]
< M .

g) E
[
−gθ(Xij , Dj , Zj , λj ; θ0)gθ(Xij , Dj , Zj , λj ; θ0)

⊺]
+E

[
(Yij − g(Xij , Dj , Zj , λj ; θ))gθθ⊺(Xij , Dj , Zj , λj ; θ0)

]
has full rank.

Assumption 6.a) assumes that the parameter space of θ is compact. Assumption 6.b) as-

sumes that the individual-level control covariate Xij and the idiosyncratic error Uij are

independently and identically distributed, after conditioning on the cluster-level covariates(
Dj , Zj , λj

)
. Assumption 6.c) assumes that the latent factor λj is treated as a categorical

variable in the model. Thanks to Assumption 6.c), the group membership variable k̂j esti-

mated as in Section 3 can be used to substitue for λj . Assumption 6.d-g) are the regularity

assumptions for the infeasible GMM estimator.

Corollary 2.2. Suppose J/Nmin,J
ν∗ → 0 as J → ∞ for some ν∗ > 0. Under Assumption
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1-4, 5.a) and 6, up to some relabeling on Λ,

√
N
(
θ̂ − θ

)
d−→ N (0,Σgmm)

as J → ∞.

Proof. See Appendix.

Remark 7. The
√
N -asymptotic variance of the least-square estimator is equal to the asymp-

totic variance of the infeasible oracle estimator with known λ1, · · · , λJ . Suppose that there

exists a consistent estimator for Σgmm when true λ1, · · · , λJ are known and that the estima-

tor does not depend on the values of λ1, · · · , λJ , but only depends on the induced grouping

structure: for Example 1, the White estimator satisfies the conditions. Then, the naive

approach of using the infeasible variance estimator under the estimated grouping structure

k̂1, · · · , k̂J consistently estimates Σgmm.

2.5 Extension

2.5.1 Continuous λ

Throughout Sections 2-4, the support of the latent factor λj is assumed to be a finite set

Λ = {λ1, · · · , λK}. With the finiteness assumption, the grouping structure based on F̂j can

be directly thought of as an estimate of the latent factor λj . However, in some contexts,

the assumption that Λ is finite, i.e. there are only finite types of clusters in terms of their

distribution of Xij , is not sensible. Thus, in this section, I discuss the asymptotic properties

of the K-means treatment effect estimator when Λ is not a finite set, but a compact subset

of Rq. With this assumption, K is not a population parameter anymore; it is a tuning

parameter that a researcher chooses in estimation.
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Assumption 2.7. Assume with some M > 0,

a) Either E
[
Ȳj(d)|Nj , λj

]
= E

[
Ȳj(d)|λj

]
or E

[
Dj |Nj , λj

]
= E

[
Dj |λj

]
with probability

one.

b) (dimension of heterogeneity) Λ is a compact subset of Rq.

c) (overlap) There exists some η ∈ (h, 0.5) such that Pr
{
η ≤ π(λj) ≤ 1− η

}
= 1.

d) For any λ, λ′ ∈ Λ and α ∈ (0, 1), there exists λ∗ ∈ Λ such that

∥αG(λ) + (1− α)G(λ)−G(λ∗)∥w,2 = 0

Also, G and its inverse function are τ -Lipshitz:

∥∥G(λ)−G(λ′)
∥∥
w,2 ≤ τ

∥∥λ− λ′
∥∥
2 ,

∥∥λ− λ′
∥∥
2 ≤ τ

∥∥G(λ)−G(λ′)
∥∥
w,2 .

e) π is twice differentiable. ∂2

∂λ∂λ⊺π is uniformly bounded.

f) (growing clusters) Nmin,J = maxn{Pr
{
minj Nj ≥ n

}
= 1} → ∞ as J → ∞.

g) For large J ,

E

[
Nj

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
]
≤ M.

Assumption 7.a) assumes that either cluster-level mean of outcome variable Yij or treatment

status variable Dj is mean independent of the cluster size Nj given the latent factor λj .

Assumption 7.a) can easily be relaxed when the support for Nj is finite, by estimating the

propensity score as a function of both Nj and k̂j : π̂(n, k). Assumption 7.d-e) assume that

the clusters that are close to each other in terms of their distance measured with Fj = G(λj)

should have similar λj and the functions G and π are smooth. Assumption 7.g) assumes that

the empirical distribution function F̂j is a good estimate of the true distribution function
71



G(λj), when the cluster size Nj is large. Combined together, these conditions allow us to

use the grouping structure based on F̂j as a good approximation of a grouping structure

based on λj .

Theorem 2.2. Under Assumptions 1-2, 5.a) and 7,

ÂTE
cl
− ATEcl = Op

(√
K

Nmin,J
+

1

K
2
q

+
K

J

)
,

ÂTT
cl
− ATT cl = Op

(√
K

Nmin,J
+

1

K
2
q

+
K

J

)
,

as J,K → ∞.

Proof. See Appendix.

Theorem 2 characterizes the convergence rate of ÂTE
cl

and ÂTT
cl

. The rate has three terms:

K/Nmin,J , 1/K
2
q and K/J . The first term K/Nmin,J is the variance of the distribution

function estimator F̂j . The second term 1/K
2
q is from the approximation bias of projecting Λ

onto a grouping structure with finite K. The third term K/J is the variance of the propensity

score estimator π̂(k). It is straightforward to see the classical bias-variance tradeoff in the

choice of the tuning parameter K. When K is large, a continuous variable of λj is better

approximated with a group membership variable k̂j , hence smaller bias, while the estimation

of the propensity score worsens, hence larger variance.

Remark 8. The number of groups K in the first step of the estimation procedure is not a

parameter of the model anymore; K is a tuning parameter. More discussion on the choice

of K is in Appendix.
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2.5.2 Generalized multilevel models

Another nontrivial direction of generalizing the model in hand is to allow for more than two

levels. Suppose an econometrician observes

{{{
Yijl, Xijl

}Njl

i=1 , Zjl

}Jl
j=1

Wl

}L

l=1
,

where i denotes individual, j denotes cluster, and l denotes hypercluster. Each individual

belong to a cluster and each cluster belong to a hyper-cluster. Thus, for example, Yijl is

an outcome variable for individual i in cluster j in hypercluster l. There are various data

contexts that are relevant to this model: individuals in counties in states, students in schools

in school districts, workers in firms in industries, etc.

The researcher wants his model to incorporate the cluster-level heterogeneity and the

hypercluster-level heterogeneity, in terms of the observables. To implement this multilevel

property with the K-means algorithm, firstly construct the cluster-level distribution with

individual-level control covariate as before: for every x ∈ Rp,

F̂jl(x) =
1

Njl

Njl∑
i=1

1{Xijl ≤ x}.

Then, use the K-means algorithm to group clusters into K groups: k̂jl ∈ {1, · · · , K}. Note

that the grouping was done irrespective of each cluster’s hypercluster membership: as long

as F̂jl are the same, the subscript l does not matter. Then, the cluster-level observable

information ({
Xijl

}Njl

i=1 , Zjl

)
,

which is high-dimensional, is summarized to

(
k̂jl, Zjl

)
.
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Given these cluster-level group membership k̂jl, construct the hypercluster-level distribution

with cluster-level observables: for every z ∈ Rpcl and k ∈ {1 · · · , K},

F̂l(k, z) =
1

Jl

Jl∑
j=1

1{k̂jl = k, Zjl ≤ z}.

By applying the K-means again to group the hyperclusters with Khyper, which may not be

equal to K, we reduce the dimension of the hypercluster-level observable

({{
Xijl

}Njl

i=1 , Zjl

}Jl
j=1

,Wl

)

into (
k̂l,Wl

)
.

Note that the dimension reduction property of the K-means is crucial in a multilevel models

with more than two levels since we use k̂jl, the dimension-reduced summary of the cluster-

level distribution F̂jl, to construct a hypercluster-level distribution F̂l. If we were to use F̂jl

as is, we need to construct a distribution of distributions, which there is yet to be a widely

accepted solution to.

2.6 Monte Carlo simulations

In this section, I present two sets of Monte Carlo results where I apply the K-means estima-

tors to simulated datasets and confirm the theoretical results from Section 4-5. In simulated

datasets, I let each cluster to be of the same size: N1 = Nj for j = 1, · · · , J . The data
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generating process I consider is as follows: given λj ,

Dj

∣∣ λj ∼ Bernoulli
(
π(λj)

)
,(

Uij , Xij
) ∣∣ (Dj , λj

) iid∼ N
((
0, λj

)⊺
, I2
)
,

Yij = β(λj)Dj + Uij

for i = 1, · · · , N1 and j = 1, · · · , J where

π(λ) =
λ

10
− λ

20
1{λ ≥ 0}+ 1

2
, β(λ) = λ− 2λ1{λ ≥ 0}+ 3.

Figure 2.1 shows the propensity score π and the treatment effect β as functions of λ.

0
λ

0.31

3

0.50.6

-2 2

β(λ) π(λ)

Figure 2.1: DGP for simulation: π and β

The red dashed line is the propensity score π(λ); the blue solid lines is the treatment
effect β(λ).
Both π(λ) and β(λ) have a kink at λ = 0.

Firstly, I let λj be discrete:

Pr
{
λj = λ

}
=

1

4
for λ = −1.5,−0.5, 0.5, 1.5.

I generate 2,000 datasets following the DGP and estimate the average treatment effect with

ÂTE
cl

for each dataset. Table 2.1 contains simulation results across different values of the

cluster size Nj while the number of clusters J is fixed to be 50 and then 200. The fourth

column, which contains the simulated probability of the estimated grouping structure being
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different from the true grouping structure, directly relates to Theorem 1. As the cluster size

Nj increase, the probability of making a mistake in the K-means grouping step goes to zero,

for fixed J . Also, the 95% confidence interval constructed with the true asymptotic variance

discussed in Remark 6 contains the true ATEcl = 2 with the probability of 0.95.

J Nj Bias rMSE Coverage prob. of grouping mistake

50

50 -0.005 0.091 0.939 0.126
70 -0.004 0.088 0.939 0.036
90 -0.009 0.090 0.950 0.018
110 -0.007 0.088 0.952 0.009
130 -0.005 0.084 0.954 0.013
150 -0.007 0.086 0.952 0.011

200

50 0.001 0.041 0.950 0.317
70 0.001 0.040 0.954 0.068
90 0.000 0.039 0.968 0.016
110 0.000 0.038 0.961 0.002
130 0.001 0.037 0.975 0.002
150 0.002 0.037 0.973 0.001

Table 2.1: Simulation results for ÂTE
cl

, under discrete λj

J clusters are simulated with varying cluster size Nj = 50, · · · , 150.
In the K-means grouping, K = 4 and 50 randomly drawn initial groupings were used.
The bias and rMSE are computed around the true value of CATEcl = 2.

Secondly, I let λj be continuous:

λj
iid∼ unif[−2, 2].

Again, I generate 2,000 datasets and estimate ATEcl. Table 2.2 contains simulation results

across different values of the number of clusters J and the tuning parameter K, while Nj is

fixed to be 150. As shown in the convergence rate of Theorem 2, larger J reduces the variance

in estimating the propensity score, hence decreasing the rMSE. Also, Table 2.2 shows that

bias and rMSE are U-shaped in terms of K: for K ≤ 5, both bias and rMSE improve and
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for K > 5, both bias and rMSE worsen.

J K Bias rMSE

30 5 -0.052 0.193
40 5 -0.024 0.142
50 5 -0.009 0.114
60 5 0.000 0.093
70 5 0.000 0.082
80 5 0.003 0.077
90 5 0.006 0.073
100 5 0.003 0.065
110 5 0.006 0.064
120 5 0.004 0.060

J K Bias rMSE

75 3 0.011 0.084
75 4 0.008 0.080
75 5 0.002 0.078
75 6 -0.004 0.081
75 7 -0.005 0.086
75 8 -0.010 0.090
75 9 -0.014 0.090
75 10 -0.019 0.099
75 11 -0.026 0.104
75 12 -0.022 0.099

Table 2.2: Simulation results for ÂTE
cl

, under continuous λj

For each cluster, 150 individuals were drawn randomly: Nj = 150.
In the K-means grouping, 50 randomly drawn initial groupings were used.
The bias and rMSE are computed around the true value of CATEcl = 2.

2.7 Empirical illustration: effect of minimum wage on employment

2.7.1 Background

I apply the K-means two-step estimation strategy to revisit the question of whether an in-

crease in minimum wage level leads to higher unemployment rate in the US labor market.

This quintessential question in labor economics has often been answered using a state-level

policy variation; each state has their own minimum wage level in addition to federal mini-

mum wage level in the United States and thus we see states with different minimum wage

levels for the same time period. The state-level policy variation is helpful in that it allows

us to control for time heterogeneity. However, there could still be spatial heterogeneity

that possibly affects both minimum wage level and labor market outcome of a given state

simultaneously, and researchers have long been debating how to estimate the causal effect
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of minimum wage on employment while controlling for spatial heterogeneity. For example,

difference-in-differences (DID) compares over-the-time difference in employment rate across

states, assuming that spatial heterogeneity only exists as state heterogeneity and the state

heterogeneity is cancelled out by taking the over-the-time difference [Card and Krueger,

1994]. Some researchers limited their scope of analysis to counties that are located near

the state border to account for spatial heterogeneity [Dube et al., 2010]. Some use a more

relaxed functional form assumption on state heterogeneity than DID, such as state specific

linear trends [Allegretto et al., 2011, 2017]. Some have the data construct a synthetic state

that is comparable to an observed state [Neumark et al., 2014].

In addition to the existing approaches, I would like to use the selection-on-distribution

approach suggested in this paper to study the effect of minimum wage on employment,

especially focusing on the heterogeneity in treatment effect. The multilevel model with

clustered treatment described in the paper fits the empirical context of the minimum wage

application very well. Firstly, employment status, the outcome of interest, is observed at

the individual level while the minimum wage level, the regressor of interest, is observed

at the state level, i.e. the dataset is multilevel. Secondly, an assumption that is shared

in the minimum wage literature as a common denominator is that there is no dependence

across states. In other words, it is believed that the decision of whether and how much the

state minimum wage level changes is only determined by what happens in that state. This

corresponds to Assumption 1. Thus, I believe the selection-on-distribution assumption and

the K-means estimation strategy suggested in this paper are a naturally appealing approach

when studying the effect of the minimum wage.

2.7.2 Estimation

Following Allegretto et al. [2011], Neumark et al. [2014], Allegretto et al. [2017], I focus on the

teen employment since it is likely that teenangers work at jobs that pay near the minimum
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wage level compared to adults, thus being more susceptible to a change in the minimum wage

level. I constructed a dataset by pooling the Current Population Survey (CPS) data from

2000 to 2021, collecting the same demographic control covariates on teenagers as Allegretto

et al. [2011], and additional control covariates on all individuals. The additional variables

were collected for every individual to construct state-level distributions that will be use in

the selection-on-distribution. Let Ijt denote the set of teens in state j at time t and Ĩjt

denote the set of all individuals in state j at time t: Ijt ⊂ Ĩjt. Since the CPS is collected

every month, the dataset contains 264 = 12 · 22 time periods in total.

The main regression specification I use is motivated from Allegretto et al. [2011]. As

one of the two main regression specifications, Allegretto et al. [2011] estimates the following

linear model: for teen i in state j at time t,

Yijt = αj + δcd(j)t + β logMinWagejt +Xijt
⊺η + ηclEmpRatejt + Uijt. (2.24)

logMinWagejt is the logged minimum wage level of state j at time t. Yijt is employment

status of teen i in state j at time t. Xijt is the control covariates of teen i: age, race, sex,

marital status, education. EmpRatejt is the average of Yijt for every individual in state j

while the regression runs only on teens: EmpRatejt = 1/|Ĩjt|
∑

i∈Ĩjt
Yijt. In addition to

the observable regressors, cluster fixed-effects αj and census division time fixed-effects δcd(j)t

are included.

Let us make two connections between (2.24) and the discussion on a multilevel model

from the previous sections. Firstly, the regressor of interest MinWagejt varies on the state-

by-month level, making state-specific time fixed-effects infeasible. This is exactly the same

type of multicollinearity problem discussed in Section 1; when treatment is assigned at

the cluster level, treatment effects cannot be identified under a model with fully flexibly

cluster heterogeneity. Thus, Allegretto et al. [2011] uses census division time fixed-effects by

grouping 50 states and Washington D.C. into 9 census divisions: δcd(j)t. Secondly, (2.24)
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already implements the idea of aggregating some individual-level information and using the

summary statistic in the regression: EmpRatejt. In Allegretto et al. [2011], a conscious

choice was made by a researcher to use the mean of Yijt for every individual in state j at

time t, to control for the state-level heterogeneity with observable information.

Building on (2.24), I motivate a linear regression model with group fixed-effects, where

each state is assigned to one of the K groups at each time t:

Yijt = αj + δ
k̂jtt

+ β logMinWagejt +Xijt
⊺η + ηclEmpRatejt + Uijt. (2.25)

As implied with the use of EmpRatejt and from the dynamic programming example from

Section 2, the fundamentals of the state labor market should play a role in an individual’s

employment status and/or the state legislator’s decision on the minimum wage level. To

control for that, I apply the first step of the two-step estimation procedure of this paper and

group states at each month using their distributions of individual-level employment history.

Specifically, I use

X̃ijt = EmpHistoryijt

=
(
Empijt−1, · · · , Empijt−4

)
∈ X := {Emp,Unemp,NotInLaborForce}4.

Empijt is an employment status variable for individual i in state j at time t; it is a categorical

variable with three possible values: being employed, being unemployed, and not being in the

labor force. X̃ijt collects Empijτ for τ = t− 4, · · · , t− 1; X̃ijt is a four-month-long history

of employment status. Since Empijt is a categorical variable with a finite support of three

elements, Xij has a finite support of 81 elements. Note that Yijt = 1 ⇔ Empijt = Emp

and thus X̃ijt can be understood as a vector of lagged outcome variables. To aggregate the

information from X̃ijt to learn about the labor market fundamental of a given state, I collect
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X̃ijt for every individual and compute the empirical distribution function: for x ∈ X ,

F̂jt(x) =
1

|Ĩjt|

∑
i∈Ĩjt

1{X̃ijt = x}.

When evaluating the distance between states measured in terms of F̂jt, I use the uniform

weighting function since X is a finite set.8 While (2.25) is the main regression specification

of this paper, I also consider modifications of (2.25) to discuss treatment effect heterogeneity.

2.7.3 Results

2.7.3.1 Motivational snapshot

Before providing the pooled estimation results under the main regression specification, I

illustrate how the K-means grouping step is implemented on an actual dataset, by looking at

a snapshot of the pooled data. Out of the available 264 time periods, I chose January 2007

since eighteen states raised their minimum wage levels then. It is the timing where the most

states raised their minimum wage levels without a federal minimum wage raise. By taking

out a month of the pooled data and treating it as cross-section, I create a binary treatment

Dj , where Dj = 1 means that state j increased their minimum wage starting January 1st,

2007:

Dj = 1{MinWagej,Jan07 −MinWagej,Dec06}.

Since X̃ijt captures the latest four month history of individual employment status, the

K-means grouping step that uses X̃ij,Jan07 and assigns 50 states and Washington D.C.

into one of the K groups is based on the distribution of employment status history from

September 2006 to December 2006. Figure 2.2 contains the grouping result when K = 3.

Each group is shaded with different color: red, blue and green. Below is the list of states in

8. I also consider a continuous control covariate in Appendix.
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Figure 2.2: Grouping of states when K = 3, January 2007
50 states and Washing D.C. are grouped into three groups based on the state-level
distribution of individual-level employment history from September 2006 to December
2006, which tracks employment, unemployment, and labor force participation. Colors
— red, blue, green — denote different groups and darker shades denote an increase in
the minimum wage level in January 2007.

each group:

Group 1: Arizona*, Arkansas, California*, DC, Louisiana, Michigan, Mississippi, New

Mexico, New York*, Oklahoma, Oregon*, South Carolina, Tennessee, West

Virginia

Group 2: Alabama, Connecticut*, Delaware*, Florida*, Georgia, Hawaii*, Idaho, Illi-

nois, Indiana, Kentucky, Maine, Maryland, Massachusetts*, Missouri*, Nevada,

New Jersey, North Carolina*, Ohio*, Pennsylvania*, Rhode Island*, Texas,

Utah, Virginia

Group 3: Alaska, Colorado*, Iowa, Kansas, Minnesota, Montana*, Nebraska, New Hamp-

shire, North Dakota, South Dakota, Vermont*, Washington*, Wisconsin, Wyo-

ming

82



group 1 2 3

Always-employed 0.532 0.586 0.642

Ever-unemployed 0.034 0.031 0.030

Never-in-the-labor-force 0.325 0.282 0.229

Table 2.3: Heterogeneity across states, January 2007
The table reports proportions of three types of employment history, across 50 states
and Washington D.C. The proportions of each employment history are firstly computed
within states, using the longitudinal weights provided by the IPUMS-CPS to connect
individuals across different months. Then, the group mean is computed by putting
equal weights on states.
Hotelling’s multivariate t-test rejects the null of same mean for any pair of two groups
at significance level 0.001.

Treated states, the states that raised their minimum wage level starting January 2007, are

denoted with boldface and asterisk in the list and with darker shade in the figure. Find that

we have overlap for each group.

Table 2.3 and Figure 2.3 contain empirical evidence that the groups estimated using the

distribution of X̃ij,Jan07 are heterogeneous. Table 2.3 takes three subsets of X and computes

the proportion of each subset across groups, putting equal weights over states. The three

subsets are:

- Always-employed: {Emp}4

- Ever-unemployed: {Emp,Unemp}4 \
(
Emp,Emp,Emp,Emp

)
- Never-in-the-labor-force: {NotInLaborForce}4

‘Always-employed’ is the proportion of individuals who have been continuously employed

from September 2006 to December 2006, ‘Ever-unemployed’ is the proportion of individuals

who have been continuously in the labor force, but was unemployed for at least one month,

and ‘Never-in-the-labor-force’ is the proportion of individuals who have never been in the

labor force from September 2006 to December 2006.

83



Figure 2.3: Heterogeneity across states, January 2007
This figure scatter plots 50 states and Washington D.C. The x-axis is the proportion
of always-employed individuals in each state and the y-axis is the proportion of never-
in-the-labor-force individuals in each state. Again, colors — red, blue, green — denote
the estimated group.

In addition, Figure 2.3 takes the first and the last types of employment history, ‘Always-

employed’ and ‘Never-in-the-labor-force’, and plots the states in terms of their state-level

proportions. It is clear that there is negative correlation between the two types: the bigger

the proportion of always-employed individuals is, the lower the proportion of never-in-the-

labor-force individuals is. Specifically, Group 1 states such as California and New York have

lower proportion of always-employed and higher proportion of never-in-the-labor-force while

Group 3 states such as Washington and Wisconsin have higher proportion of always-employed

and lower proportion of never-in-the-labor-force.

Based on the K-means grouping, I estimate ATT cl and CATEcl for each group. In

estimation, instead of using Yij,Jan07 in level, I used the over-the-year difference outcome

variables, to further control for state heterogeneity and seasonality: Y
post
ij = Yij,Jan07 is

a binary employment status variable from January 2007 and Y
pre
ij = Yij,Jan06 is a binary

employment status variable from January 2006. The treatment effect estimator for each

state is

Ȳ
post
j − Ȳ

pre
j −

(
Ȳ
post
control − Ȳ

pre
control

)
.
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Ȳj is the sample mean of Yij for teens in state j and Ȳcontrol is the average of those sample

means in the ‘control’ group, which is to be all of the untreated states for the DID estimator,

and the untreated states from the same group for the K-means estimator. Note that by

averaging the estimates within each group, I get the nonparmetric estimator ĈATE
cl
(k)

from (2.12).

Table 2.4 contains the estimates. Overall, one percentage point raise in the minimum

wage level leads to 0.291 percentage point decrease in the teen employment rate. Also,

there seems to be a huge heterogeneity across states in terms of the employment history

distribution. In Group 1 state, where the proportion of always-employed was low and the

proportion of never-in-the-labor-force was high, the raise in the minimum wage level reduced

the teen employment while in Group 3 states, the direction was the opposite. However, these

findings are not statistically significant with t-test with the grouping structure as given, due

to the small size of the dataset, except for CATEcl for Group 2.

2.7.3.2 Pooled least-square estimation

Now, I discuss the pooled estimation results from (2.25). For the pooled estimation, I

repeated the K-means grouping step I did for January 2007 for every month from 2000 to

2021. Then, taking the estimated grouping structure as given, I ran the linear regression

of (2.25). Table 2.5 contains the estimation result of the group fixed-effect specification,

along with the estimation results for the TWFE specification and the census division fixed-

effects specification as benchmarks. In the pooled estimation, the state minimum wage level

MinWagejt is not converted into a binary treatment variable; the logarithm of MinWagejt

is used as a regressor. Thus, by diving the slope coefficient on logMinWagejt with the

average teen employment rate from the pooled dataset, which is 0.326, we get the elasticity

interpretation. Based on column (3), the preferred specification for pooled estimate, the

elasticity of teen employment is -0.181, meaning that an one percentage point increase in

the minimum wage level reduces teen employment by 0.18 percentage point. Neumark and
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DID K-means

ATT -0.275 -0.291
(0.189) (0.191)

Group 1 -0.433
(0.312)

Group 2 -0.396∗

(0.211)
Group 3 0.982

(0.630)

Table 2.4: Impact of minimum wage on teen employment, January 2007
The table reports the effect of a raise in the minimum wage level on teen employment,
by comparing state which raised their minimum wage levels in January 2007 with states
which did not. The estimates are DID estimates where the over-the-time difference was
made between state teen employment rate for January 2006 and that for January 2006,
to control for seasonality.
The DID estimates are reweighted with the size of the minimum wage level increase,
so that each estimate is interpreted to be an elasticity:

Ȳ post
j − Ȳ pre

j −
(
Ȳ post
control − Ȳ pre

control

)
logMinWageJan07j − logMinWageJan06j

· 1

Ȳ pre
.

The standard errors are computed at the state level. * denotes significance level 0.1.
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β (1) (2) (3) (4) (5) (6)

pooled -0.024 -0.035** -0.059***
(0.017) (0.015) (0.017)

Group 1 -0.022 -0.034** -0.066***
(0.017) (0.015) (0.017)

Group 2 -0.024 -0.035** -0.037**
(0.017) (0.015) (0.019)

Group 3 -0.026 -0.038** 0.010
(0.017) (0.015) (0.026)

δjt TWFE Census Div. GFE TWFE Census Div. GFE

Table 2.5: Impact of minimum wage on teen employment, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
For each specification, in addition to the fixed effects, individual-level control covariates
— age, race, sex, marital status, education — and state-level employment rate are
included as regressors.
Columns (3) and (6) contain the results from the preferred specification.
Columns (4), (5) and (6) report the group-specific minimum wage effect. Group 1
is the group of states with lower employment rate and lower labor force participation
rate while Group 3 is the group of states with higher employment rate and higher labor
force participation rate.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.

Shirley [2022] provides a meta-analysis of studies on teen employment and minimum wage

and find that the mean of the estimates across studies is -0.170 and the median is -0.122.

The estimate from the group fixed-effect specification is slightly above the mean.

The columns (4)-(6) of Table 2.5 discuss the aggregate heterogeneity in treatment effect:

Yijt = αj + δ
k̂jtt

+ β(k̂jt) logMinWagejt +Xijt
⊺η + ηclEmpRatejt + Uijt. (2.26)

Note that the slope coefficient for logMinWagejt is a function of the estimated group

membership variable k̂jt. In the main regression specification, the labels of groups across

different time periods did not matter; the group membership variable k̂jt only entered the
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regression through time fixed-effects. However, in (2.26), states with the same ‘label’ of group

across different time periods are pooled together to estimate β1, β2, β3. Thus, I relabeled

the grouping structure from each time period and connect groups across months based on

their relative position so that Group 1 is always the group of states with lower employment

rate and lower labor force participation rate and Group 3 is always the group of states with

higher employment rate and higher labor force participation rate.

Column (6) shows us that teens in Group 1 states where the proportion of ‘Always-

employed’ is lower and the proportion of ‘Never-in-the-labor-force’ is higher are more affected

by the minimum wage and their counter parts in Group 3. We see that the labor market

fundamental measured with the employment history distribution affects the treatment effect

in a way that lower employment rate and lower labor force participation rate leads to bigger

disemployment effect of the minimum wage increase among teens.

In addition to aggregate heterogeneity, I further extend (2.25)-(2.26) to discuss individ-

ual heterogeneity and aggregate heterogeneity simultaneously. The left panel of Table 2.6

estimates

Yijt = αj + δ
k̂jtt

+ βyt logMinWagejt1{Ageijt ≤ 18}

+ βot logMinWagejt1{Ageijt = 19}+Xijt
⊺η + ηclEmpRatejt + Uijt.

(2.27)

Treatment effect is heterogeneous in terms of age, at the individual level: βyt is the treatment

effect on younger teens and βot is the treatment effect on older teens. The right panel of
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Table 2.6 estimates

Yijt = αj + δ
k̂jtt

+
3∑

k=1

βyt(k) logMinWagejt1{Ageijt ≤ 18, k̂jt = k}

+
3∑

k=1

βot(k) logMinWagejt1{Ageijt = 19, k̂jt = k}+Xijt
⊺η + ηclEmpRatejt + Uijt.

(2.28)

Interaction between individual heterogeneity in terms of age and aggregate heterogeneity in

terms of employment history is introduced.

Table 2.6 shows that younger teens, who are under the age of nineteen, are more affected

by a raise in the minimum wage level than older teens of the age nineteen. Though the indi-

vidual heterogeneity in evident in all of the three specifications I considered, the interaction

between the individual heterogeneity and the aggregate heterogeneity is most evident in the

group fixed-effects specification of Column (6). Younger teens tend to be more affected by a

raise in the minimum wage level and that tendency is stronger for group 1 states where the

employment rate and the labor force participation rate are lower whereas in group 3 states

a raise in the minimum wage level does not really affect either of younger and older teens.

Table 2.7 repeats the same regression specification, but in terms of race; Table 2.7 doc-

uments individual heterogeneity in terms of white teens against non-white teens. From the

left panel of Table 2.7, we see that a raise in the minimum wage level decreases the employ-

ment rate of white teens and increases the employment rate of non-white teens. This finding

is reasonable in the sense that a financial standing of a family should affect a teenager’s

labor market choices; non-white teens may have more financial burdens and thus the effect

of increased labor supply from non-white teens can dominate the effect of decreased labor

demand. Again, the racial disparity interacts with the labor market fundamentals. From

Column (6) of Table 2.7, it is shown that the racial disparity persists across groups and in-

teract with the aggregate heterogeneity in a way that a raise in the minimum wage level has
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β (1) (2) (3) (4) (5) (6)

Ageijt ≤ 18 -0.032* -0.043*** -0.067***
(0.017) (0.016) (0.017)

× Group 1 -0.030* -0.042** -0.074***
(0.017) (0.016) (0.017)

× Group 2 -0.032* -0.044*** -0.045**
(0.017) (0.016) (0.019)

× Group 3 -0.032* -0.044*** -0.015
(0.017) (0.016) (0.027)

Ageijt = 19 0.002 -0.009 -0.034
(0.020) (0.016) (0.021)

× Group 1 0.005 -0.007 -0.039**
(0.020) (0.017) (0.019)

× Group 2 0.003 -0.009 -0.010
(0.019) (0.016) (0.021)

× Group 3 -0.008 -0.020 0.008
(0.018) (0.016) (0.026)

δjt TWFE Census Div. GFE TWFE Census Div. GFE

Table 2.6: Impact of minimum wage on teen employment in terms of age, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
The regression pools teenagers between the age of 16 and 19 and allows the minimum
wage effect to differ across teens younger than 19 and teens of age 19. For each specifi-
cation, in addition to the fixed effects, individual-level control covariates — age, race,
sex, marital status, education — and state-level employment rate are included as re-
gressors.
Columns (3) and (6) contain the results from the preferred specification.
Columns (4), (5) and (6) report the group-specific minimum wage effect, while inter-
acting with race. Group 1 is the group of states with lower employment rate and lower
labor force participation rate while Group 3 is the group of states with higher employ-
ment rate and higher labor force participation rate.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.
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β (1) (2) (3) (4) (5) (6)

Whiteij = 1 -0.055*** -0.070*** -0.091***
(0.019) (0.017) (0.019)

× Group 1 -0.052*** -0.067*** -0.098***
(0.019) (0.018) (0.019)

× Group 2 -0.055*** -0.069*** -0.069***
(0.019) (0.017) (0.020)

× Group 3 -0.054* -0.069*** -0.037
(0.019) (0.018) (0.028)

Whiteij = 0 0.060*** 0.048*** 0.023
(0.017) (0.017) (0.018)

× Group 1 0.063*** 0.051*** 0.016
(0.017) (0.018) (0.016)

× Group 2 0.062*** 0.051*** 0.048**
(0.017) (0.017) (0.018)

× Group 3 0.050*** 0.038** 0.067**
(0.016) (0.017) (0.025)

δjt TWFE Census Div. GFE TWFE Census Div. GFE

Table 2.7: Impact of minimum wage on teen employment in terms of race, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
The regression allows the minimum wage effect to differ across white teens and non-
white teens. For each specification, in addition to the fixed effects, individual-level
control covariates — age, race, sex, marital status, education — and state-level em-
ployment rate are included as regressors.
Columns (3) and (6) contain the results from the preferred specification.
Columns (4), (5) and (6) report the group-specific minimum wage effect, while inter-
acting with age. Group 1 is the group of states with lower employment rate and lower
labor force participation rate while Group 3 is the group of states with higher employ-
ment rate and higher labor force participation rate.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.
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insignificant disemployment effect on non-white teens of states with lower employment rate

and lower labor force participation rate, but has statistically significant employment effect on

non-whote teens of states with higher employment rate and higher labor force participation

rate. For white teens, a raise in the minimum wage level has statistically significant dis-

employment effect in states with lower employment rate and lower labor force participation

rate, but has insignificant disemployment effect in states with higher employment rate and

higher labor force participation rate.

0 group
0.05

0.1

-0.1

-0.05

1 2 3

β̂

Age < 19 Age 19

0 group
0.05

0.1

-0.1

-0.05

1 2 3

β̂

White Non-white

Figure 2.4: Interaction between individual and aggregate heterogeneity in minimum wage
effect

The figure reports 95% confidence interval of the minimum wage effect estimators,
under the group fixed-effects specification where the minimum wage effect is allowed
to interact with both an indivdual-level covariate — age or race — and the state-level
group membership.
The x-axis denotes the group. The color denotes the individual-level control covariate.
The y-axis is estimates and confidence interval.
Comparison across colors at each point of the x-axis relates to individual heterogeneity
and comparison across x-axis for the same color relates to aggregate heterogeneity.

Figure 2.4 contains confidence intervals of treatment effect estimates from Column (6) of

Table 2.6 and Column (6) of Table 2.7 and summarizes the interaction between individual

heterogeneity in terms of age and race and aggregate heterogeneity in terms of employment

history distribution. The individual heterogeneity in treatment effect is more evident in

terms of race than age.
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2.8 Conclusion

This paper extends the idea of the selection-on-observable assumption and motivates the

selection-on-distribution assumption that individual-level potential outcomes are indepen-

dent of cluster-level treatment after conditioning on the distribution of individual-level con-

trol covariate. Under the selection-on-distribution assumption, treatment effects are identi-

fied by comparing clusters with different treatment status but with the same distribution of

individuals. By explicitly controlling for the distribution of individuals, two different dimen-

sions of heterogeneity in treatment effect are modelled, being true to the multilevel nature

of the dataset: individual heterogeneity and aggregate heterogeneity. I apply the estimation

method of this paper to revisit the question whether a raise in the minimum wage level has

disemployment effect on teens in the United States. I find the disemployment effect to be

heterogeneous both at the individual level and the cluster level, and the two dimensions of

heterogeneity interact.

This paper serves as a first step in developing multilevel models where the distribution

of individuals is used as a cluster-level object. For the choice of functional regression on

distributions, the K-means algorithm is used in this paper. Though the K-means algorithm

as a functional regression has several definitive benefits, application of an alternative func-

tional regression method to the selection-on-distribution assumption would complement this

paper by allowing for different sets of DGP assumptions on the cluster-level distribution.

Also, this paper mostly focuses on cross-section data and non-dynamic panel data. An ex-

citing direction for future research is to extend this and study a dynamic multilevel model

where the distribution of individuals for each cluster is modelled to be a dynamic process.

Lastly, there exist illustrative benefits to the K-means estimator even when the distribution

of individuals is not thought to be discrete. This paper advocates the use of the K-means

estimator in such contexts, though to a limited extent, with Theorem 2 where the K-means

estimator is proven to be consistent when the latent factor for the distribution of individuals
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is continuous. Further discussion on asymptotic properties of the K-means estimator with

a continuous latent factor would be an interesting direction for future research.
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APPENDIX A

APPENDIX TO CHAPTER 1

In the Appendix, I will abuse the subscript nontation in the following way:

∑
r

β̂r(k)1{t=Ei+r} = β̇t−Ei
(k).

Also, even though it is assumed that βr(k) = 0 and thus β̇r(k) = 0 for all r ≤ −1, β̇r(k) are

still used as placeholders for every r ≥ −l.

A.1 Proof for Theorem 1

Step 1

The first step is to obtain an approximation of the objective function. Note that
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Let
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Then,

∣∣∣Q̂(θ, β, δ, γ)− Q̃(θ, β, δ, γ)
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Firstly, find that
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The first two inequalities are from separating the summation into types and applying Cauchy-

Schwartz’s inequality to over t. The third is from A5.a. The fifth is from applying Jensen’s

inequality with x 7→ x2. The convergence in probability comes from A5.b-d. For any N and
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Since a sequence of random variables whose expectations are uniformly bounded is Op(1),
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We can repeat this for three other quantities in the first term of (A.1).

Secondly, again from applying Cauchy-Schwartz’s inequality and Jensen’s inequality,

∣∣∣∣∣ 1

NT

∑
i

∑
t

Ẋ
⊺
it

(
θ0 − θ

)
U̇it

∣∣∣∣∣
≤ 1

N

∑
i

∣∣∣∣∣ 1T ∑
t

U̇itẊ
⊺
it(θ

0 − θ)

∣∣∣∣∣ ≤ 1

N

∑
i

∣∣∣∣∣
∣∣∣∣∣ 1T ∑

t

U̇itẊit

∣∣∣∣∣
∣∣∣∣∣ · ∣∣∣∣∣∣θ0 − θ

∣∣∣∣∣∣
≤ 2M

N

∑
i

(
1

T 2

∑
t

∑
s

U̇itU̇isẊ
⊺
itẊis

)1
2

≤ 2M

T
1
2

· 1

N

∑
i

(
1

T

∑
t

∑
s

U̇itU̇isẊ
⊺
itẊis

)1
2

=
2M

T
1
2

·Op(1)
p−→ 0.
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The convergence in probability is from A5.c-d. For any T ,

∑
s

E
[
U̇itU̇isẊ

⊺
itẊis

]
= E

[
U̇2
itẊ

⊺
itẊit + U̇itU̇i,t+1Ẋ

⊺
itẊi,t+1

]
+ E

[
U̇itU̇i,t−1Ẋ

⊺
itẊi,t−1

]
≤ (2M +M +M) = 4M

1

N

∑
i

E

( 1

T

∑
t

∑
s

U̇itU̇isẊ
⊺
itẊis

)1
2

 ≤ 4M + 1.

Thus, 1
N

∑
i

(
1
T

∑
t

∑
s U̇itU̇isẊ

⊺
itẊis

)1
2
= Op(1) and Q̂(θ, β, δ, γ)− Q̃(θ, β, δ, γ) = op(1).

Step 2

By plugging in the true parameters, Q̃(θ0, β0, δ0, γ0) = 1
NT

∑
i,t U̇

2
it and

Q̃(θ, β, δ, γ)− Q̃(θ0, β0, δ0, γ0)

=
1

NT

∑
i,t

(
δ̇0t (k

0
i )− δt(ki) + Ẋ

⊺
it(θ

0 − θ) + β̇0t−Ei
(k0i )− βt−Ei

(ki)
)2

≥ 1

NT

∑
i,t

(
Ẋ

⊺
it(θ

0 − θ)− ¯̇Xk0i ∧ki∧Ei,t

⊺
(θ0 − θ)

)2
=

1

NT

∑
i,t

(θ0 − θ)⊺
(
Ẋit −

¯̇Xk0i ∧ki∧Ei,t

)(
Ẋit −

¯̇Xk0i ∧ki∧Ei,t

)⊺
(θ0 − θ)

≥ min
γ∈Γ

ρN,T (γ) ·
∣∣∣∣∣∣θ0 − θ

∣∣∣∣∣∣2 .
Note that the unknowns in Q̃(θ, β, δ, γ)−Q̃(θ0, β0, δ0, γ0) other than (θ0−θ) are dictated by

(t, k0i , ki, Ei). Thus, subtracting the group mean defined with (t, k0i , ki, Ei) from Ẋ
⊺
it(θ

0− θ)

could function as a lower bound for the difference, giving us the first inequality.

Step 3
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Since the estimator minimizes the objective function,

Q̃(θ̂, β̂, δ̂, γ̂) = Q̂(θ̂, β̂, δ̂, γ̂) + op(1)

≤ Q̂(θ0, β0, δ0, γ0) + op(1)

= Q̃(θ0, β0, δ0, γ0) + op(1).

Therefore from A5.e,

min
γ∈Γ

ρN,T (γ) ·
∣∣∣∣∣∣θ0 − θ̂

∣∣∣∣∣∣2 ≤ Q̃(θ̂, β̂, δ̂, γ̂)− Q̃(θ0, β0, δ0, γ0) = op(1)∣∣∣∣∣∣θ0 − θ̂
∣∣∣∣∣∣2 =

1

minγ∈Γ ρN,T (γ)
·min
γ∈Γ

ρN,T (γ)
∣∣∣∣∣∣θ0 − θ̂

∣∣∣∣∣∣2
p−→ 1

ρ
· 0 = 0.

Finally,

∣∣∣Q̃(θ̂, β̂, δ̂, γ̂)− Q̃(θ0, β̂, δ̂, γ̂)
∣∣∣

=

∣∣∣∣∣ 1

NT

∑
i

∑
t

(
δ̇0t (k

0
i )− δ̂t(k̂i) + Ẋ

⊺
it(θ

0 − θ̂) + β̇0t−Ei
(k0i )− β̂t−Ei

(k̂i)
)2

− 1

NT

∑
i

∑
t

(
δ̇0t (k

0
i )− δ̂t(k̂i) + β̇0t−Ei

(k0i )− β̂t−Ei
(k̂i)

)2∣∣∣∣∣
≤

∣∣∣∣∣ 2

NT

∑
i

∑
t

(
δ̇0t (k

0
i )− δ̂t(k̂i) + β̇0t−Ei

(k0i )− β̂t−Ei
(k̂i)

)
Ẋ

⊺
it(θ

0 − θ̂)

∣∣∣∣∣
+

∣∣∣∣∣ 1

NT

∑
i

∑
t

(
Ẋ

⊺
it(θ

0 − θ̂)
)2∣∣∣∣∣

≤ 2 · 4M
NT

∑
i

∑
t

||Ẋit|| ·
∣∣∣∣∣∣θ0 − θ̂

∣∣∣∣∣∣+ 1

NT

∑
i

∑
t

||Ẋit||2 ·
∣∣∣∣∣∣θ0 − θ̂

∣∣∣∣∣∣2 = op(1).

The second inequality is from A5.a and Cauchy-Schwartz’s inequality. Note that for any

N and T , both 1
NT

∑
i

∑
t ||Ẋit|| and 1

NT

∑
i

∑
t ||Ẋit||2 are bounded in expectation by
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max{2(M + 1), 4M} from A5.c, and thus Op(1). Since we have shown θ̂
p−→ θ0, we have the

last equality. Then,

1

NT

∑
i

∑
t

{(
δ̇0t (k

0
i )− δ̂t(k̂i) + β̇0t−Ei

(k0i )− β̂t−Ei
(k̂i)

)2
+ U̇2

it

}
= Q̃(θ0, β̂, δ̂, γ̂)

= Q̃(θ̂, β̂, δ̂, γ̂) + op(1)

= Q̂(θ̂, β̂, δ̂, γ̂) + op(1)

≤ Q̂(θ0, β0, δ0, γ0) + op(1)

=
1

NT

∑
i

∑
t

U̇2
it + op(1).

A.2 Proof for Theorem 2

Step 1

Note that Q̂(θ, β, δ, γ) does not vary for any (θ, β̃, δ̃, γ̃) defined with a permutation on

(1, · · · , K): with σ, a permutation on {1, · · · , K}, letting k̃i = σ(ki), β̃r(σ(k)) = βr(k), and

δ̃t(σ(k)) = δt(k) gives us Q̂(θ, β, δ, γ) = Q̂(θ, β̃, δ̃, γ̃). Thus, we need to find a bijection on

{1, · · · , K} to match k̂ with true k0. Define a function σ by letting

σ(k) = argmin
k̃

1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (k)− δ̂t(σ(k))

)2
(A.2)
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for each k. First, let us show that σ actually lets the objective go to zero for each k: fix k,

min
k̃

1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (k)− δ̂t(σ(k))

)2
≤ N∑

i 1{k0i=k}

T

T0 − l
·min

k̃

1

NT

∑
i

−l−1∑
t=−T0

(
δ̇0t (k)− δ̂t(σ(k))

)2
1{k0i=k}

≤ N∑
i 1{k0i=k}

T

T0 − l
· 1

NT

∑
i

∑
t

(
δ̇0t (k

0
i )− δ̂t(k̂i) + β̇0t−Ei

(k0i )− β̂t−Ei
(k̂i)

)2 p−→ 0

as N, T → ∞. The second inequality is from the fact that βr(k) are forced to be zero for all

r < −l. With A6.a-b, Theorem 1, and properly chosen l, we have the convergence.

For some k, k̃ such that k ̸= k̃,

 1

T0 − l

−l−1∑
t=−T0

(
δ̂t(σ(k))− δ̂t(σ(k̃))

)21
2

≥

 1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (k)− δ̇0t (k̃)

)21
2

−

 1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (k)− δ̂t(σ(k))

)21
2

−

 1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (k̃)− δ̂t(σ(k̃))

)21
2

p−→ c(k, k̃) > 0

from A6.d. Thus, Pr {σ is not bijective} ≤
∑

k ̸=k̃
Pr
{
σ(k) = σ(k̃)

}
→ 0 as N, T → ∞.

Note that σ depends on the dataset.

Step 2

Now, I extend the result of Step 1 to the entire time-series, by showing that for each k
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and e such that µe(k) = Pr {Ei = e, ki = k} > 0,

1

T

∑
t

(
δ̇0t (k)− δ̂t(σ(k)) + β̇0t−Ei

(k)− β̂t−Ei
(σ(k))

)2 p−→ 0 (A.3)

as N, T → ∞. From A6.b-c, there is at least one such e for each k. Then,

min
k̃

1

T

∑
t

(
δ̇0t (k)− δ̂t(k̃) + β̇0t−e(k)− β̂t−e(k̃)

)2
(A.4)

≤ N∑
i 1{k0i=k,Ei=e}

· 1

NT

∑
i

∑
t

(
δ̇0t (k)− δ̂t(k̂i) + β̇0t−e(k)− β̂t−e(k̂i)

)2
1{k0i=k,Ei=e}

≤ N∑
i 1{k0i=k,Ei=e}

· 1

NT

∑
i

∑
t

(
δ̇0t (k

0
i )− δ̂t(k̂i) + β̇0t−Ei

(k0i )− β̂t−Ei
(k̂i)

)2 p−→ 0

as N, T → ∞ from µe(k) > 0 and Theorem 1. We would like the solution to (A.4) to be

equal to σ(k). Let us denote the solution with k̃∗. Suppose σ is bijective and k̃∗ ̸= σ(k) ⇔

σ−1(k̃∗) ̸= k. Then,

 1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (σ

−1(k̃∗))− δ̇0t (k)
)21

2

− c
(
σ−1(k̃∗), k

)

−

 1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (σ

−1(k̃∗))− δ̂t(k̃
∗)
)21

2

−

 1

T0 − l

−l−1∑
t=−T0

(
δ̂t(k̃

∗)− δ̇0t (k)
)21

2

≤ −c
(
σ−1(k̃∗), k

)
≤ − min

k′ ̸=k′′
c(k′, k′′) < 0.
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The inequality above implies

−
∑
k′

∣∣∣∣∣∣∣
 1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (k

′)− δ̇0t (k)
)21

2

− c
(
k′, k

)∣∣∣∣∣∣∣
−
∑
k′

∣∣∣∣∣∣∣
 1

T0 − l

−l−1∑
t=−T0

(
δ̇0t (k

′)− δ̂t(σ(k
′))
)21

2

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
 1

T0 − l

−l−1∑
t=−T0

(
δ̂t(k̃

∗)− δ̇0t (k)
)21

2

∣∣∣∣∣∣∣
≤ − min

k′ ̸=k′′
c(k′, k′′) < 0.

Note that the LHS of the inequality is op(1). Thus,

Pr
{
k̃∗ ̸= σ(k)

}
≤ Pr {σ is not bijective}+ Pr

{
σ is bijective, σ−1(k̃∗) ̸= k

}
≤ o(1) + Pr

{
op(1) ≤ − min

k′ ̸=k′′
c(k′, k′′)

}
= o(1)

and consequently

1

T

∑
t

(
δ̇0t (k)− δ̂t(σ(k)) + β̇0t−e(k)− β̂t−e(σ(k))

)2 p−→ 0

as N, T → ∞. We can repeat this for any e such that µe(k) > 0 and the same σ as defined

in (A.2) gives us the convergence in probability to zero.

Before proceeding to the next step, let us drop the σ notation. Based on σ, we can

construct a bijection σ̃ : {1, · · · , K} → {1, · · · , K} such that

1

T

∑
t

(
δ̇0t (k)− δ̂t(σ̃(k)) + β̇0t−e(k)− β̂t−e(σ̃(k))

)2 p−→ 0

as N, T → ∞ for all k, by letting σ̃ = σ whenever σ is bijective. From now on, I will drop

σ̃ by always rearranging (θ̂, β̂, δ̂, γ̂) so that σ̃(k) = k.

Step 3
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Here, we study the probability of the K-means algorithm to assign a wrong type, in terms

of one single unit.

Pr
{
k̂i ̸= k0i

}
≤
∑
k̃ ̸=k0i

Pr

{
1

T

∑
t

(
Ẏit − δ̂t(k̃)− Ẋ

⊺
itθ̂ − β̂t−Ei

(k̃)
)2

≤ 1

T

∑
t

(
Ẏit − δ̂t(k

0
i )− Ẋ

⊺
itθ̂ − β̂t−Ei

(k0i )
)2}

=
∑
k̃ ̸=k0i

Pr

{
2

T

∑
t

(
δ̂t(k

0
i )− δ̂t(k̃) + β̂t−Ei

(k0i )− β̂t−Ei
(k̃)
)

·

(
Ẏit −

δ̂t(k
0
i ) + δ̂t(k̃)

2
− Ẋ

⊺
itθ̂ −

β̂t−Ei
(k0i ) + β̂t−Ei

(k̃)

2

)
≤ 0

}

=
∑
k̃ ̸=k0i

Pr

{
2

T

∑
t

(
δ̂t(k

0
i )− δ̂t(k̃) + β̂t−Ei

(k0i )− β̂t−Ei
(k̃)
)

·

(
δ̇0t (k

0
i )−

δ̂t(k
0
i ) + δ̂t(k̃)

2
+ Ẋ

⊺
it(θ

0 − θ̂) + β̇0t−Ei
(k0i )−

β̂t−Ei
(k0i ) + β̂t−Ei

(k̃)

2
+ U̇it

)
≤ 0

}

≤
∑
k

∑
k̃ ̸=k

Pr

{
2

T

∑
t

(
δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
)

·

(
δ̇0t (k)−

δ̂t(k) + δ̂t(k̃)

2
+ Ẋ

⊺
it(θ

0 − θ̂) + β̇0t−Ei
(k)−

β̂t−Ei
(k) + β̂t−Ei

(k̃)

2
+ U̇it

)
≤ 0

}
.
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The first inequality is from the Step 2 of the K-means algorithm. Let

A
ikk̃

=
1

T

∑
t

(
δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
)
U̇it

+
1

T

∑
t

(
δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
)
Ẋ

⊺
it(θ

0 − θ̂)

+
1

T

∑
t

(
δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
)

·

(
δ̇0t (k)−

δ̂t(k) + δ̂t(k̃)

2
+ β̇0t−Ei

(k)−
β̂t−Ei

(k) + β̂t−Ei
(k̃)

2

)

B
ikk̃

=
1

T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃)
)
U̇it

+
1

2T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃)
)2

.

Note that A
ikk̃

depends on the estimator (θ̂, β̂, δ̂, γ̂) while B
ikk̃

does not. Then,

Pr
{
k̂i ̸= k0i

}
≤
∑
k

∑
k̃ ̸=k

Pr
{
A
ikk̃

≤ 0
}
≤
∑
k

∑
k̃ ̸=k

Pr
{
B
ikk̃

≤
∣∣∣Bikk̃

− A
ikk̃

∣∣∣} (A.5)

We will show that A
ikk̃

and B
ikk̃

are sufficiently close to each other and that Pr
{
B
ikk̃

≤ 0
}
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converges to zero sufficiently fast.

∣∣∣Bikk̃
− A

ikk̃

∣∣∣
=

∣∣∣∣∣ 1T ∑
t

(
δ̇0t (k)− δ̂t(k) + β̇0t−Ei

(k)− β̂t−Ei
(k)
)
U̇it

∣∣∣∣∣
+

∣∣∣∣∣ 1T ∑
t

(
δ̇0t (k̃)− δ̂t(k̃) + β̇0t−Ei

(k̃)− β̂t−Ei
(k̃)
)
U̇it

∣∣∣∣∣
+

∣∣∣∣∣ 1T ∑
t

(
δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
)
Ẋ

⊺
it(θ

0 − θ̂)

∣∣∣∣∣
+

∣∣∣∣∣ 12T ∑
t

(
δ̇0t (k)− δ̂t(k) + β̇0t−Ei

(k)− β̂t−Ei
(k)
)

·
(
−δ̇0t (k) + δ̇0t (k̃)− β̇0t−Ei

(k) + β̇0t−Ei
(k̃) + δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
) ∣∣∣∣∣

+

∣∣∣∣∣ 12T ∑
t

(
δ̇0t (k̃)− δ̂t(k̃) + β̇0t−Ei

(k̃)− β̂t−Ei
(k̃)
)

·
(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃) + δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
) ∣∣∣∣∣.

We apply Cauchy-Schwartz’s inequality to each of the five terms so that we can use the

consistency result in (A.3). For the first term,

∣∣∣∣∣ 1T ∑
t

(
δ̇0t (k)− δ̂t(k) + β̇0t−Ei

(k)− β̂t−Ei
(k)
)
U̇it

∣∣∣∣∣
≤

(
1

T

∑
t

(
δ̇0t (k)− δ̂t(k) + β̇0t−Ei

(k)− β̂t−Ei
(k)
)2)1

2
(

1

T

∑
t

U̇2
it

)1
2

(A.6)
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and similarly for the second term. As for the third term, from A5.a,

∣∣∣∣∣ 1T ∑
t

(
δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
)
Ẋ

⊺
it(θ

0 − θ̂)

∣∣∣∣∣
≤ 1

T

∑
t

∣∣∣δ̂t(k)− δ̂t(k̃) + β̂t−Ei
(k)− β̂t−Ei

(k̃)
∣∣∣ · ||Ẋit|| ·

∣∣∣∣∣∣θ0 − θ̂
∣∣∣∣∣∣

≤ 4M

(
1

T

∑
t

||Ẋit||

)
·
∣∣∣∣∣∣θ0 − θ̂

∣∣∣∣∣∣ (A.7)

Last, for the fourth term, from A5.a,

∣∣∣∣∣ 12T ∑
t

(
δ̇0t (k)− δ̂t(k) + β̇0t−Ei

(k)− β̂t−Ei
(k)
)

·
(
−δ̇0t (k) + δ̇0t (k̃)− β̇0t−Ei

(k) + β̇0t−Ei
(k̃) + δ̂t(k)− δ̂t(k̃) + β̂t−Ei

(k)− β̂t−Ei
(k̃)
) ∣∣∣∣∣

≤ 4M

(
1

T

∑
t

(
δ̇0t (k)− δ̂t(k) + β̇0t−Ei

(k)− β̂t−Ei
(k)
)2)1

2

(A.8)

From A5.c, both 1
T

∑
t U̇

2
it and 1

T

∑
t ||Ẋit|| are bounded in expectation by the same bound

for every T and thus Op(1). To use (A.3), choose an arbitrary η > 0 and Ẽ ≥ 0 to focus

only on the event of

∣∣∣∣∣∣θ0 − θ̂
∣∣∣∣∣∣ ,( 1

T

∑
t

(
δ̇0t (k)− δ̂t(k) + β̇0t−e(k)− β̂t−e(k)

)2)1
2

< η (A.9)

for all k and e ≤ Ẽ such that µe(k) > 0. When (A.9) is true and Ei ≤ Ẽ, with some constant

C > 0,

∣∣∣Bikk̃
− A

ikk̃

∣∣∣ ≤ ηC

( 1

T

∑
t

U̇2
it

)1
2

+
1

T

∑
t

||Ẋit||+ 1

 .

Let D(η, Ẽ) be a binary random variable which equals one if (A.9) holds true for all k and
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e ≤ Ẽ. From A6.f,

Pr
{
B
ikk̃

≤
∣∣∣Bikk̃

− A
ikk̃

∣∣∣ , D(η, Ẽ) = 1, Ei ≤ Ẽ
}

≤ Pr

B
ikk̃

≤ ηC

( 1

T

∑
t

U̇2
it

)1
2

+
1

T

∑
t

||Ẋit||+ 1


≤ Pr

{
1

T

∑
t

U̇2
it ≥ M∗2

}
+ Pr

{
1

T

∑
t

||Ẋit|| ≥ M∗
}

+ Pr
{
B
ikk̃

≤ ηC(2M∗ + 1)
}
.

(A.10)

Note that the first inequality holds for every η and Ẽ and C does not depend neither on η

nor on Ẽ.

Now, let Pr
{

1
T

∑
i U̇

2
it ≥ M∗2

}
,Pr

{
1
T

∑
i ||Ẋit|| ≥ M∗

}
,Pr

{
B
ikk̃

≤ ηC(2M∗ + 1)
}
→

0. Note that the first two quantities are o(T−ν) for any ν > 0 from A6.f. For the last quan-

tity, let η∗ = ε∗
4C(2M∗+1)

with ε∗ > 0 from A6.e. Then,

Pr
{
B
ikk̃

≤ η∗C(2M∗ + 1)
}

≤ Pr

{
1

T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃)
)
U̇it ≤ η∗C(2M∗ + 1)− ε∗

2

}

+ Pr

{
1

T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃)
)2

≤ ε∗
}

≤ Pr

{
1

T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃)
)
U̇it ≤ −ε∗

4

}

+ Pr

{
1

T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃)
)2

≤ ε∗
}
.
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From A6.e, for any ν > 0,

T ν Pr

{
1

T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃)
)
U̇it ≤ −ε∗

4

}

≤
T1∑
e=0

T ν Pr

{
1

T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−e(k)− β̇0t−e(k̃)

)
U̇it ≤ −ε∗

4

}

≤ T 1+ν exp(−d2T ) = o(1)

and likewise for Pr
{

1
T

∑
t

(
δ̇0t (k)− δ̇0t (k̃) + β̇0t−Ei

(k)− β̇0t−Ei
(k̃)
)2

≤ ε∗
}

. Here, all control

units, i.e. Ei = ∞ and rewritten as Ei = T1. This abuse of notation is harmless thanks to

A4.

Finally, going back to (A.5) and (A.10), thanks to K being fixed,

Pr
{
k̂i ̸= k0i , D(η∗, Ẽ) = 1, Ei ≤ Ẽ

}
= o(T−ν) (A.11)

uniformly for Ẽ.

Step 4

In this step let us discuss the probability of assigning a wrong type at least to one unit.

As N, T → ∞, for any ν > 0

Pr

{
sup
i

1{k̂i ̸=k0i }
> 0

}
≤ Pr

{∑
i

1{k̂i ̸=k0i }
> 0, D(η∗, Ẽ) = 1,max

i
Ei ≤ Ẽ

}

+ Pr{D(η∗, Ẽ) = 0}+ Pr

{
max
i

Ei > Ẽ

}
≤ N · Pr

{
k̂i ̸= k0i , D(η∗, Ẽ) = 1, Ei ≤ Ẽ

}
+ Pr{D(η∗, Ẽ) = 0}+ Pr

{
max
i

Ei > Ẽ

}
= o(NT−ν) + o(1).
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The last equality holds from A6.c and (A.11). (A.11) holds uniformly for any Ẽ and thus we

can choose Ẽ to have Pr{D(η∗, Ẽ) = 0}+ Pr
{
maxiEi > Ẽ

}
= o(1) as N, T → ∞ without

jeopardizing the convergence of the first term.

Step 5

Now, let us consider the OLS estimator given the type assignment is known to econome-

trician.

(
θ̂ols, δ̂ols, β̂ols

)
= arg min

θ,δ,β

1

NT

Ẏit − δt(k
0
i )− Ẋ

⊺
itθ −

T1−1∑
r ̸=−1;r=−l

βr(k
0
i )1{t=Ei+r}.

2

= arg min
θ,δ,β

Q̂ols(θ, β, δ).

Fix ε, ν > 0. With any Ẽ > 0 and η ≤ η∗,

Pr
{∣∣∣Q̂(θ̂, β̂, δ̂, γ̂)− Q̂ols(θ̂, β̂, δ̂)

∣∣∣ > εT−ν
}

≤ Pr{D(η, Ẽ) = 0}+ Pr

{
max
i

Ei > Ẽ

}
+ Pr

{∣∣∣Q̂(θ̂, β̂, δ̂, γ̂)− Q̂ols(θ̂, β̂, δ̂)
∣∣∣ > εT−ν , D(η, Ẽ) = 1,max

i
Ei ≤ Ẽ

}
. (A.12)

To suppress the second probability, apply Cauchy-Schwartz’s inequality to get

∣∣∣Q̂(θ̂, β̂, δ̂, γ̂)− Q̂ols(θ̂, β̂, δ̂)
∣∣∣

=

∣∣∣∣∣ 2

NT

∑
i

∑
t

1{k̂i ̸=k0i }

(
δ̂t(k

0
i )− δ̂t(k̂i) + β̂t−Ei

(k0i )− β̂t−Ei
(k̂i)

)
·

(
Ẏit −

δ̂t(k
0
i ) + δ̂t(k̂i)

2
− Ẋ

⊺
itθ̂ −

β̂t−Ei
(k0i ) + β̂t−Ei

(k̂i)

2

)∣∣∣∣∣
≤ 2

(
1

NT

∑
i

∑
t

1{k̂i ̸=k0i }

)1
2

AN,T = 2

(
1

N

∑
i

1{k̂i ̸=k0i }

)1
2

AN,T .

Here, AN,T indicates the remainder term from applying Cauchy-Schwartz’s inequality. From
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A5.a and A5.c, AN,T is bounded by a uniform bound for all N , T . With some constant C > 0

such that Pr{AN,T > C} < ε̃ for large N, T ,

Pr

{∣∣∣Q̂(θ̂, β̂, δ̂, γ̂)− Q̂ols(θ̂, β̂, δ̂)
∣∣∣ > εT−ν , D(η, Ẽ) = 1,max

i
Ei ≤ Ẽ

}

≤ Pr


(

1

N

∑
i

1{k̂i ̸=k0i }

)1
2

AN,T > εT−ν , D(η, Ẽ) = 1,max
i

Ei ≤ Ẽ


≤ Pr

{(
1

N

∑
i

1{k̂i ̸=k0i }

)
· C2

ε2T−2ν
> 1, D(η, Ẽ) = 1,max

i
Ei ≤ Ẽ

}
+ ε̃

≤ Pr

{
C2

ε2T−2ν

(
1

N

∑
i

1{k̂i ̸=k0i }
1{Ei≤Ẽ}

)
D(η, Ẽ) > 1

}
+ ε̃

≤ C2

ε2T−2ν
E

[
1

N

∑
i

1{k̂i ̸=k0i }
1{Ei≤Ẽ}D(η, Ẽ)

]
+ ε̃

=
C2

ε2T−2ν
E
[
1{k̂i ̸=k0i }

1{Ei≤Ẽ}D(η, Ẽ)
]
+ ε̃

Note that E
[
1{k̂i ̸=k0i }

1{Ei≤Ẽ}D(η, Ẽ)
]
= Pr

{
k̂i ̸= k0i , D(η, Ẽ) = 1, Ei ≤ Ẽ

}
= o(T−ν).

Thus, by the same logic for Step 4, we have

∣∣∣Q̂(θ̂, β̂, δ̂, γ̂)− Q̂ols(θ̂, β̂, δ̂)
∣∣∣ = op(T

−ν).

Then, by repeating the same argument for the OLS estimators, not the K-means minimizer,

since we did not use any properties of
(
θ̂, β̂, δ̂

)
which come from its definition,

∣∣∣Q̂(θ̂ols, β̂ols, δ̂ols, γ̂)− Q̂ols(θ̂ols, β̂ols, δ̂ols)
∣∣∣ = op(T

−ν).
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Lastly, combining these two results,

0 ≤ Q̂ols(θ̂, β̂, δ̂)− Q̂ols(θ̂ols, β̂ols, δ̂ols)

= Q̂(θ̂, β̂, δ̂, γ̂)− Q̂ols(θ̂ols, β̂ols, δ̂ols) + op(T
−ν)

= Q̂(θ̂, β̂, δ̂, γ̂)− Q̂(θ̂ols, β̂ols, δ̂ols, γ̂) + op(T
−ν) ≤ op(T

−ν).

The first inequality is from the fact that the OLS estimtor minimizes Q̂ols and the last

inequality is from the fact the K-means estimator minimizes Q̂. Then,

Q̂ols(θ̂, β̂, δ̂)− Q̂ols(θ̂ols, β̂ols, δ̂ols)

=
1

NT

∑
i

∑
t

(
δ̂olst (k0i )− δ̂t(k

0
i ) + Ẋ

⊺
it(θ̂

ols − θ̂) + β̂olst−Ei
(k0i )− β̂t−Ei

(k0i )
)

·
(
2Ẏit − δ̂olst (k0i )− δ̂t(k

0
i )− Ẋ

⊺
it(θ̂

ols + θ̂)− β̂olst−Ei
(k0i )− β̂t−Ei

(k0i )
)

=
1

NT

∑
i

∑
t

(
δ̂olst (k0i )− δ̂t(k

0
i ) + Ẋ

⊺
it(θ̂

ols − θ̂) + β̂olst−Ei
(k0i )− β̂t−Ei

(k0i )
)2

The last equality is from the first order condition of the OLS estimator. Note that

2Ẏit − δ̂olst (k0i )− δ̂t(k
0
i )− Ẋ

⊺
it(θ̂

ols + θ̂)− β̂olst−Ei
(k0i )− β̂t−Ei

(k0i )

=
[
2Ẏit − 2δ̂olst (k0i )− 2Ẋ

⊺
itθ̂

ols − 2β̂olst (k0i )
]

︸ ︷︷ ︸
=2Ûols

it

+δ̂olst (k0i )− δ̂t(k
0
i )

+ Ẋ
⊺
it(θ̂

ols − θ̂) + β̂olst−Ei
(k0i )− β̂t−Ei

(k0i )

and the first order condition gives us

1

NT

∑
i

∑
t

Zit · Ûols
it = 0

for any Zit = Ẋit,1{t=s} or 1{t=Ei+r} with any s, r.
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By using the same argument as in Theorem 1 and A6.e,
∣∣∣∣∣∣θ̂ols − θ̂

∣∣∣∣∣∣ = op(T
−ν) for any

ν > 0. As for fixed-effects, from
∣∣∣∣∣∣θ̂ols − θ̂

∣∣∣∣∣∣ = op(T
−ν),

(
1

NT

∑
i

∑
t

(
δ̂olst (k0i )− δ̂t(k

0
i ) + β̂olst−Ei

(k0i )− β̂t−Ei
(k0i )

)2)1
2

≤
(
Q̂ols(θ̂, β̂, δ̂)− Q̂ols(θ̂ols, β̂ols, δ̂ols)

)1
2
+ op(T

−ν)

for any ν > 0. Then, for any (e, k) such that µe(k) > 0,

1

T

∑
t

(
δ̂olst (k)− δ̂t(k) + β̂olst−e(k)− β̂t−e(k)

)2
= op(T

−ν),

(
δ̂olst (k)− δ̂t(k) + β̂olst−e(k)− β̂t−e(k)

)2
≤ op(T

1−ν), ∀t.

For any t < −l, we have
(
δ̂olst (k)− δ̂t(k)

)2
= op(T

1−ν) and thus the K-means estimator

and the OLS estimator asymptotically equivalent. Note that the choice of ν was arbitrary

so we can swap 1 − ν with −ν. If there exists another treatment timing e′ ̸= e such that

µe′(k) > 0, we can iteratively recover

δ̂t(k) = δ̂olst (k) + op(T
−ν)

β̂r(k) = β̂olsr (k) + op(T
−ν)

for any ν > 0, for every t and every r estimated for type k.
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A.3 Proof for Corollary 1

Consider the OLS regression with the true type assignment known:

Ẏit = δ̂olst (k0i ) +

T1−1∑
r ̸=−1;r=−l

β̂olsr (k0i )1{t=Ei+r} + Ẋ
⊺
itθ̂

ols + Ûit

Ẏit − Ẋ
⊺
itθ̂

ols = δ̂olst (k0i ) +

T1−1∑
r ̸=−1;r=−l

β̂olsr (k0i )1{t=Ei+r} + Ûit. (A.13)

From A7.a-b,

√
NT

(
θ̂ols − θ0

)
=

 1

NT

N∑
i=1

T1−1∑
t=T0

X̃itX̃
⊺
it

−1

1√
NT

N∑
i=1

T1−1∑
t=T0

X̃itU̇it
d−→ N

(
0,Σθ

−1ΩθΣθ
−1
)
= Op(1).

Step 1

Let Nek =
∑

i 1{k0i=k,Ei=e} and N·k =
∑

i 1{k0i=k}. Fix T̃ and apply the Frisch-Waugh-

Lovell to (A.13) to get

Ẏit − Ẋ
⊺
itθ̂

ols =
T̃∑

r=0

β̂olsr (k0i )W̃
r
it + Ũit, (A.14)

W r
it =

(
1{t=Ei+r} −

Nt−r,k0i

N·k0i

)

W̃ r
it = W r

it −
∑
r′∈R∗

 1∑
j,s 1{s=Ej+r′,k0j=k0i }

∑
j,s

W r
js1{s=Ej+r′,k0j=k0i }

1{t=Ei+r′}

where R∗ = {−l, · · · ,−1} ∪ {T̃ + 1, · · · , T1 − 1} and Ũit and W̃ r
it are orthogonal. W r

it is

the residual of 1{t=Ei+r} after projecting onto indicators for time fixed-effects. W̃ r
it is the

residual of W r
it after projecting onto indicators for dynamic treatment effects that are not

used: R∗. Every projection is done within the known type. Note that we need at least
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two treatment timings to apply the FWL theorem; otherwise the regressors to be projected

out, the indicator for dynamic treatment effects, are in the column space of the projection

matrix, which is made from the indicators for time fixed-effects.

From the true model (1.5),

Ẏit − Ẋ
⊺
itθ̂

ols = δ̇0t (k
0
i ) +

T−1−1∑
r=0

β̇0t (k
0
i )1{t=Ei+r} + Ẋ

⊺
it

(
θ0 − θ̂ols

)
+ U̇it.

With a (T̃ + 1)× 1 vector

W̃it =

(
W̃ 0

it · · · W̃ T̃
it

)⊺
,

the OLS regression of (A.14) gives us


β̂ols0 (k)

...

β̂ols
T̃

(k)

 =

∑
i,t

W̃itW̃
⊺
it1{k0i=k}

−1∑
i,t

W̃it

(
Ẏit − Ẋ

⊺
itθ̂

ols
)
1{k0i=k}

=


β00(k)

...

β0
T̃
(k)− β0

T̃−1
(k)


+

∑
i,t

W̃itW̃
⊺
it1{k0i=k}

−1∑
i,t

W̃it

(
Ẋ

⊺
it

(
θ0 − θ̂ols

)
+ U̇it

)
1{k0i=k}.

Step 2

Note that W̃it contains nonzero elements only for finite t from A7.c. Since 0 ≤ Ei ≤ E∗,

1{t=Ei+r} is zero for any t > E∗ + r and t < r. Thus, W r
it is zero for any t > E∗ + r and

t < r. Likewise,
1∑

j,s 1{s=Ej+r′,k0j=k0i }

∑
j,s

W r
js1{s=Ej+r′,k0j=k0i }
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is zero if Ej + r′ < r or Ej + r′ > E∗ + r
(
⇐ r′ < r − E∗ or r′ > E∗ + r

)
. Thus,

∑
r′∈R∗

 1∑
j,s 1{s=Ej+r′,k0j=k0i }

∑
j,s

W r
js1{s=Ej+r′,k0j=k0i }

1{t=Ei+r′}

is zero if t − Ei < r − E∗ or t − Ei > E∗ + r (⇐ t < r − E∗ or t > 2E∗ + r). Ultimately,

W̃ r
it is nonzero only if r−E∗ ≤ t ≤ r+ 2E∗; we only need to consider 3E∗ + 1 time periods

for W̃ r
it. Let T̃ be the set of time periods t where W̃it is not a zero vector. T̃ is fixed, after

we fix T̃ . From A5.b-d, A6.b and A7.c,

1√
N

N∑
i=1

∑
t∈T̃

W̃itU̇it1{k0i=k}
d−→ N

(
0,Ω

T̃

)
,

1

N

N∑
i=1

∑
t∈T̃

W̃itW̃
⊺
it1{k0i=k}

p−→ Σ
T̃
.

as N → ∞, with some positive definite matrices Ω
T̃

and Σ
T̃
.

Step 3

Note that as N, T → ∞

√
N

 T̃∑
r=0

β̂olsr (k)− β0
T̃
(k)


= 1⊺

 1

N

N∑
i=1

∑
t∈T̃

W̃itW̃
⊺
it1{k0i=k}

−1

1

N

N∑
i=1

∑
t∈T̃

W̃itẊ
⊺
it1{k0i=k} ·

√
N
(
θ0 − θ̂ols

)

+ 1⊺

 1

N

N∑
i=1

∑
t∈T̃

W̃itW̃
⊺
it1{k0i=k}

−1

1√
N

N∑
i=1

∑
t∈T̃

W̃itU̇it1{k0i=k}

= 1⊺

 1

N

N∑
i=1

∑
t∈T̃

W̃itW̃
⊺
it1{k0i=k}

−1

1√
N

N∑
i=1

∑
t∈T̃

W̃itU̇it1{k0i=k} + op(1)
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since
√
N
(
θ̂ols − θ0

)
= 1√

T
Op(1) = op(1) and 1

N

∑N
i=1

∑
t∈T̃ W̃itẊ

⊺
it1{k0i=k} is bounded in

expectation from A5.c. As N, T → ∞,

√
N

 T̃∑
r=0

β̂olsr (k)− β0
T̃
(k)

 d−→ N
(
0,1⊺Σ

T̃
−1Ω

T̃
Σ
T̃
−11

)
.

Lastly, with ν∗ > 0 from Corollary 1,

√
NT

(
θ̂ − θ0

)
=

√
NT

(
θ̂ − θ̂ols

)
+
√
NT

(
θ̂ols − θ0

)
=

√
N

T ν∗ · T
1+ν∗

2

(
θ̂ − θ̂ols

)
+
√
NT

(
θ̂ols − θ0

)
=

√
NT

(
θ̂ols − θ0

)
+ op(1)

and

√
N

 T̃∑
r=0

β̂r(k)− β0
T̃
(k)


=

√
N

 T̃∑
r=0

(
β̂r(k)− β̂olsr (k)

)+
√
N

 T̃∑
r=0

β̂olsr (k)− β0
T̃
(k)


=

√
N

T ν∗ · T
ν∗
2

 T̃∑
r=0

(
β̂r(k)− β̂olsr (k)

)+
√
N

 T̃∑
r=0

β̂olsr (k)− β0
T̃
(k)


=

√
N

 T̃∑
r=0

β̂olsr (k)− β0
T̃
(k)

+ op(1).

A.4 Extension: mean differencing

As discussed in Section 1.4.1.3, depending on the variation in the type-specific fixed-effects,

mean-differencing may be more suitable than first-differencing, though mean-differencing
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requires more restrictive assumptions on the DGP. To illustrate the comparison, here I

present the estimation results under mean-differencing on the application Lutz [2011].

r

βr(k)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8+

0

5

10

15
k = 1

k = 2

Figure A.1: Type-specific treatment effect, K = 2.

t

δt(k)
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5
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Figure A.2: Type-specific fixed-effects, K = 2

We observe that the mean-differencing and first-differencing document the heterogene-

ity roughly in the same direction: type 1 where the segregation index was already rising

had a bigger impact from the treatment. Table A.2 contains the comparison between the

type assignment estimation under mean-differencing and that under first-differencing. 14

units that were assigned type 1 under first-differencing were assigned type 2 under mean-
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K = 2

(k = 1) (k = 2) Diff
Segregation index 30.22 38.61 -8.39

(14.44) (18.72) (3.30)
% (white) 51.91 49.92 1.99

(19.07) (22.88) (4.20)
% (hispanic) 4.09 12.82 -8.74

(8.01) (17.76) (2.58)
enrollment 46047 48104 -2057

(66614) (87075) (15301)
N 39 63 -

joint p-value 0.001

Table A.1: Balancedness test

differencing and 3 units that were assigned type 2 under first-differencing were assigned type

1 under mean-differencing; in total 17 out of 102 units were assigned differently across the

specifications, implying that the type assignment estimation is fairly robust to the choice of

differencing.

type 1, FD type 2, FD

type 1, MD 36 3

type 2, MD 14 49

Table A.2: Comparison between first-differencing and mean-differencing
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APPENDIX B

APPENDIX TO CHAPTER 2

B.1 Exchangeability

Assume the following two assumptions:

(selection-on-observable)

{
Yij(1), Yij(0)

}Nj

i=1 ⊥⊥ Dj

∣∣∣ {Xij
}Nj

i=1 .

(exchangeability) For any permutation σJ on {1, · · · , Nj},

({
Yij(1), Yij(0), Xij

}Nj

i=1 , Dj

)
d≡
({

Yσ(i)j(1), Yσ(i)j(0), Xσ(i)j

}Nj

i=1
, Dj

)
.

Note that the exchangeability assumption restricts dependence structure within a given clus-

ter in a way that the labelling of individuals should not matter. However, it still allows

individual-level outcomes within a cluster to be arbitrarily correlated after conditioning on

control covariates: for example, when Xij includes a location variable, individuals close to

each other is allowed to be more correlated than individuals further away from each other.

Proposition 1 follows immediately.

Proposition B.1. Under selection-on-observable and exchangeability,

{
Yij(1), Yij(0)

}Nj

i=1 ⊥⊥ Dj

∣∣∣ F̂j
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where

F̂j(x) =
1

Nj

Nj∑
i=1

1{Xij ≤ x}. (B.1)

Proof. Firstly, find that E[Dj |F̂j ] is an weighted average of E[Dj |Xσ(1)j , · · · , Xσ(NJ )j
]

across all possible permutations σJ . Thus, under the exchangeability,

E[Dj |F̂j ] = E[Dj |X1j , · · · , XNjj ] = E[Dj |Xσ(1)j , · · · , Xσ(Nj)j
]

for any permutation σ. Let π(F̂j) denote E[Dj |F̂j ]. Then,

Pr
{
Dj = 1

∣∣∣F̂j ,
{
Yij(1), Yij(0)

}Nj

i=1

}
= E

[
E
[
Dj

∣∣F̂j ,
{
Yij(1), Yij(0), Xij

}Nj

i=1

] ∣∣F̂j ,
{
Yij(1), Yij(0)

}Nj

i=1

]
= E

[
E
[
Dj

∣∣ {Yij(1), Yij(0), Xij
}Nj

i=1

] ∣∣F̂j ,
{
Yij(1), Yij(0)

}Nj

i=1

]
= E

[
E
[
Dj

∣∣ {Xij
}Nj

i=1

] ∣∣F̂j ,
{
Yij(1), Yij(0)

}Nj

i=1

]
= E

[
π(F̂j)

∣∣F̂j ,
{
Yij(1), Yij(0)

}Nj

i=1

]
= π(F̂j) = Pr

{
Dj = 1

∣∣F̂j

}
.

The third equality is from the selection-on-observable.

Proposition 1 suggests propensity score matching based on F̂j , the empirical distribution

function of Xij for cluster j. We can repeat the same argument with any mapping on{
X1j , · · · , XNjj

}
that is isomorphic to F̂j : e.g. order statistics when p = 1.

B.2 Addtional discussion on estimation strategy

B.2.1 Choice of initial values in the K-means grouping

Arthur and Vassilvitskii [2006] proposes an intuitive way of drawing an initial grouping for
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the naive K-means algorithm: K-means++

1. Randomly draw a cluster from {1, · · · , J} with uniform probability. Let j1 denote the

drawn cluster.

2. Given {j1, · · · , jk} from the k-th iteration, let

dk(j) = min
1≤k′≤k

∥∥∥F̂j − F̂jk′

∥∥∥
w,2

2
.

3. Given dk from Step 2, randomly draw a cluster from {1, · · · , J} \ {j1, · · · , jk}, with

probability
dk(j)∑J

j′=1 d
k(j′)

.

Let jk+1 denote the drawn cluster.

4. Repeat Step 2-3 until k = K and use F̂j1 , · · · , F̂jK as the initial values G(1)(1), · · · ,

G(1)(K) for the naive algorithm.

The motivation for this approach is that a desirable initial grouping structure should already

separate the clusters well. To that end, the K-means++ approach draws a cluster with

probability proportional to the minimum distance to clusters that have already been chosen

as G(1)(k).

B.2.2 Choice of K as tuning parameter

As discussed in Section 5, the number of groups used in the K-means grouping step is a

tuning parameter under Assumption 7. I suggest the following cross-validation approach to

choose K. Suppose we consider K = Kmin, · · · , Kmax as potential choices of the tuning

parameter, with some Kmin and Kmax.
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1. Randomly split J clusters into L subsamples of an equal size: for each l = 1, · · · , L,

the l-th subsample Jl contains approximately J/L clusters. Depending on {Nj}Jj=1,

the number of individuals for each subsample may vary.

2. Given K and l, take the l-th subsample Jl as a ‘test set’ and take the rest {1, · · · , J}\Jl

as a ‘training set.’ Apply the K-means algorithm to the training set and construct a

grouping with K groups, denoted with k̂−l
j and Ĝ(k)−l. Assign clusters from the test

set to the groups constructed from the training set, based on ∥·∥w,2: for each j ∈ Jl

k̂−l
j = min

1,··· ,K

∥∥∥F̂j − Ĝ−l(k)
∥∥∥
w,2

.

Evaluate the grouping structure with the test set:

∑
j∈Jl

Ȳj −
Dj
∑

j′ /∈Jl
Ȳj′Dj′1{k̂−l

j′ = k̂−l
j }∑

j′ /∈Jl
Dj′1{k̂−l

j′ = k̂−l
j }

−
(1−Dj)

∑
j′ /∈Jl

Ȳj′(1−Dj′)1{k̂−l
j′ = k̂−l

j }∑
j′ /∈Jl

(1−Dj′)1{k̂−l
j′ = k̂−l

j }

2

. (B.2)

3. Repeat 2 for every l = 1, · · · , L and evaluate K by summing (B.2) over l = 1, · · · , L:

L∑
l=1

∑
j∈Jl

Ȳj −
Dj
∑

j′ /∈Jl
Ȳj′Dj′1{k̂−l

j′ = k̂−l
j }∑

j′ /∈Jl
Dj′1{k̂−l

j′ = k̂−l
j }

−
(1−Dj)

∑
j′ /∈Jl

Ȳj′(1−Dj′)1{k̂−l
j′ = k̂−l

j }∑
j′ /∈Jl

(1−Dj′)1{k̂−l
j′ = k̂−l

j }

2

. (B.3)

4. Repeat 2-3 for every K = Kmin, · · · , Kmax and choose K that minimizes (B.3).
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B.3 Proofs

B.3.1 Theorem 1

For the convenience of notation, let us construct a new cluster-level variable kj : kj = k ⇔

λj = λk.

Step 1

WTS
1

J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
= Op

(
1

Nmin,J

)

From A5.e),

E

 1

J

J∑
l=1

Nmin,J

∥∥∥F̂l −G(λl)
∥∥∥
w,2

2

 ≤ 1

J

J∑
j=1

E

[
Nj

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
]
≤ M

for large J .

Step 2

Let us connect Ĝ(1), · · · , Ĝ(K) to G(λ1), · · · , G(λK). Define σ(k) such that

σ(k) = argmin
k̃

∥∥∥Ĝ(k̃)−G(λk)
∥∥∥
w,2

.

We can think of σ(k) as the ‘oracle’ group that cluster j would have been assigned to, when
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Fj is observed and Ĝ(1), · · · , Ĝ(K) are given. Then,

∥∥∥Ĝ(σ(k))−G(λk)
∥∥∥
w,2

2

=
J∑J

j=1 1{kj = k}
· 1
J

J∑
j=1

∥∥∥Ĝ(σ(k))−G(λj)
∥∥∥
w,2

2
1{kj = k}

≤ J∑J
j=1 1{kj = k}

· 1
J

J∑
j=1

∥∥∥Ĝ(k̂j)−G(λj)
∥∥∥
w,2

2

≤ 2J∑J
j=1 1{kj = k}

·

 1

J

J∑
j=1

∥∥∥Ĝ(k̂j)− F̂j

∥∥∥
w,2

2
+

1

J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2


≤ 4J∑J

j=1 1{kj = k}
· 1
J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
.

The last inequality holds since
∑J

j=1

∥∥∥Ĝ(k̂j)− F̂j

∥∥∥
w,2

2
≤
∑J

j=1

∥∥∥G(λkj )− F̂j

∥∥∥
w,2

2
from

the definition of Ĝ and k̂. From A5.a),
∑J

j=1 1{kj = k}/J → µ(k) > 0 as J → ∞. Thus,

∥∥∥Ĝ(σ(k))−G(λk)
∥∥∥
w,2

2
→ 0

as J → ∞ from A5.d) and Step 1.
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For k′ ̸= k,

∥∥∥Ĝ(σ(k))−G(λk
′
)
∥∥∥
w,2

2

=
J∑J

j=1 1{kj = k}
· 1
J

J∑
j=1

∥∥∥Ĝ(σ(k))−G(λj) +G(λj)−G(λk
′
)
∥∥∥
w,2

2
1{kj = k}

≥ 1

2

∥∥∥G(λk)−G(λk
′
)
∥∥∥
w,2

2
− J∑J

j=1 1{kj = k}
· 1
J

J∑
j=1

∥∥∥Ĝ(σ(k))−G(λj)
∥∥∥
w,2

2
1{kj = k}

≥ 1

2

∥∥∥G(λk)−G(λk
′
)
∥∥∥
w,2

2
− J∑J

j=1 1{kj = k}
· 1
J

J∑
j=1

∥∥∥Ĝ(k̂j)−G(λj)
∥∥∥
w,2

2

→ 1

2
c(k, k′) > 0.

as J → ∞ from A5.c-d) and Step 1.

Find that σ is bijective with probability converging to one: with ε∗ = mink ̸=k′
1
8c(k, k

′),

Pr {σ is not bijective.}

≤
∑
k ̸=k′

Pr
{
σ(k) = σ(k′)

}
≤
∑
k ̸=k′

Pr

{∥∥∥Ĝ(σ(k))− Ĝ(σ(k′))
∥∥∥
w,2

2
< ε∗

}

≤
∑
k ̸=k′

Pr

{
1

2

∥∥∥Ĝ(σ(k))−G(λk
′
)
∥∥∥
w,2

2
−
∥∥∥Ĝ(σ(k′))−G(λk

′
)
∥∥∥
w,2

2
< ε∗

}

≤
∑
k ̸=k′

Pr

{
1

4

∥∥∥G(λk)−G(λk
′
)
∥∥∥
w,2

2
+ op(1) < ε∗

}
→ 0

as J → ∞. When σ is bijective, relabel Ĝ(1), · · · , Ĝ(K) so that σ(k) = k.

Step 3

Let us put a bound on Pr
{
k̂j ̸= σ(kj)

}
, the probability of estimated group being different

from ‘oracle’ group; this means that there is at least one k ̸= σ(kj) such that that F̂j is

132



closer to Ĝ(k) than Ĝ(σ(kj)):

Pr
{
k̂j ̸= σ(kj)

}
≤ Pr

{
∃ k s.t.

∥∥∥Ĝ(k)− F̂j

∥∥∥
w,2

≤
∥∥∥Ĝ(σ(kj))− F̂j

∥∥∥
w,2

}
.

The discussion on the probability is much more convenient when σ is bijective and Ĝ(k)

is close to G(λk) for every k. Thus, let us instead focus on the joint probability:

Pr

k̂j ̸= kj ,

K∑
k=1

∥∥∥Ĝ(σ(k))−G(λk)
∥∥∥
w,2

2
< ε, and σ is bijective.

 .

Note that in the probability, σ(kj) is replaced with kj since we are conditioning on the event

that σ is bijective: relabeling is applied. For notational brevity, let Aε denote the event

of σ being bijective and
∑K

k=1

∥∥∥Ĝ(σ(k))−G(λk)
∥∥∥
w,2

2
< ε. From Step 2, we have that

Pr {Aε} → 1 as J → ∞ for any ε > 0.

Then,

Pr
{
k̂j ̸= kj , Aε

}
≤ Pr

{
∃ k ̸= kj s.t.

∥∥∥Ĝ(k)− F̂j

∥∥∥
w,2

≤
∥∥∥Ĝ(kj)− F̂j

∥∥∥
w,2

, Aε

}
≤ Pr

{
∃ k ̸= kj s.t.

1

2

∥∥∥Ĝ(k)−G(λkj )
∥∥∥
w,2

2
−
∥∥∥F̂j −G(λkj )

∥∥∥
w,2

2

≤ 2
∥∥∥Ĝ(kj)−G(λkj )

∥∥∥
w,2

2
+ 2
∥∥∥G(λkj )− F̂j

∥∥∥
w,2

2
, Aε

}
≤ Pr

{
∃ k ̸= kj s.t.

1

4

∥∥∥G(λσ
−1(k)=k)−G(λkj )

∥∥∥
w,2

2
− 1

2

∥∥∥Ĝ(k)−G(λk)
∥∥∥
w,2

2

≤ 2
∥∥∥Ĝ(kj)−G(λkj )

∥∥∥
w,2

2
+ 3
∥∥∥G(λkj )− F̂j

∥∥∥
w,2

2
, Aε

}

The bijective-ness of σ is used in the third inequality to link
∥∥∥Ĝ(k)−G(λkj )

∥∥∥
w,2

to
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∥∥∥G(λk)−G(λkj )
∥∥∥
w,2

: for every k, we can connect Ĝ(k) to G(k). Then,

Pr
{
k̂j ̸= kj , Aε

}
≤ Pr

{
∃ k ̸= kj s.t.

1

4

∥∥∥G(λk)−G(λkj )
∥∥∥
w,2

2

≤ 5

2

K∑
h=1

∥∥∥Ĝ(h)−G(λh)
∥∥∥
w,2

2
+ 3
∥∥∥G(λkj )− F̂j

∥∥∥
w,2

2
, Aε


≤ Pr

∃k ̸= kj s.t.
1

4
min
h̸=h′

c(h, h′) ≤ 5

2

K∑
h=1

∥∥∥Ĝ(h)−G(λh)
∥∥∥2
w,2

+ 3
∥∥∥G(λkj )− F̂j

∥∥∥2
w,2

, Aε


≤ Pr

{
∃k ̸= kj s.t.

1

12
min
h̸=h′

c(h, h′)− 5

6
ε ≤

∥∥∥G(λkj )− F̂j

∥∥∥
w,2

2
, Aε

}
≤ (K − 1) Pr

{
1

12
min
h̸=h′

c(h, h′)− 5

6
ε ≤

∥∥∥G(λkj )− F̂j

∥∥∥
w,2

2
}

The second inequality is from A5.c). The third inequality is from the construction of the

event Aε. In the last inequality Aε can be dropped since the probability does not require σ

being bijective. (K − 1) comes from repeating the argument for every k ̸= kj .

Set ε∗∗ = 1
20 mink ̸=k′ c(k, k

′) so that

1

12
min
k ̸=k′

c(k, k′)− 5

6
ε∗∗ =

1

24
min
k ̸=k′

c(k, k′) > 0.

By repeating the expansion for every j,

Pr
{
∃ j s.t. k̂j ̸= kj

}
≤ Pr

{
∃ j s.t. k̂j ̸= kj , Aε∗∗

}
+ Pr {Aε∗∗

c}

≤ (K − 1)
J∑

j=1

Pr

{
1

24
min
h̸=h′

c(h, h′) ≤
∥∥∥G(λkj )− F̂j

∥∥∥
w,2

2
}
+ Pr {Aε∗∗

c} .

We already know Pr {Aε∗∗
c} = o(1) as J → ∞. It remains to show that the first quantity in
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the RHS of the inequality is o(J/minj Nj
ν) for any ν > 0. Let ε∗∗∗ denote 1

24 mink ̸=k′ c(k, k
′).

Choose an arbitrary ν > 0. From A5.e),

(K − 1)
J∑

j=1

Pr

{
ε∗∗∗ ≤

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
}

≤ J(K − 1)C1 exp
(
−C2Nmin,Jε

∗∗∗)
= (K − 1)C1

(
J

Nmin,J
ν

)
Nmin,J

ν

exp
(
C2Nmin,Jε

∗∗∗) .
Thus, for any ν > 0, Nmin,J

ν/J · Pr
{
∃ k̂j ̸= kj

}
→ 0 as J → ∞.

B.3.2 Corollary 1

Let

C̃ATE
cl
(k) =

∑J
j=1 ȲjDj1{kj = k}∑J
j=1Dj1{kj = k}

−
∑J

j=1 Ȳj(1−Dj)1{kj = k}∑J
j=1(1−Dj)1{kj = k}

with some abuse of notation. I let

C̃ATE
cl
(k) =



−
∑

j Ȳj(1−Dj)1{kj=k}
(1−h)

∑
j 1{kj=k} , if

∑
j 1{kj = k} > 0,

∑
j Dj1{kj = k} = 0,∑

j ȲjDj1{kj=k}
h
∑

j 1{kj=k} , if
∑

j 1{kj = k} > 0,
∑

j(1−Dj)1{kj = k} = 0,

0, if
∑

j 1{kj = k} = 0

This adaptation is made so that C̃ATE
cl
(k) is well-defined and identical to ĈATE

cl
(k),

with respect to ÂTE
cl

, under the same grouping structure. With C̃ATE
cl
(k), I make two

claims:

C̃ATE
cl
(k)− CATE

cl
(λk) = Op

(
1√
N

)
,

ĈATE
cl
(k)− C̃ATE

cl
(k) = op

(
1√
N

)
.

as J → ∞.
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Claim 1

Firstly, find that

C̃ATE
cl
(k)− CATE

cl
(λk)

=

∑J
j=1

(
Ȳj − E

[
Ȳj(1)|Nj , kj = k

])
Dj1{kj = k}∑J

j=1Dj1{kj = k}

−
∑J

j=1

(
Ȳj − E

[
Ȳj(0)|Nj , kj = k

])
(1−Dj)1{kj = k}∑J

j=1(1−Dj)1{kj = k}

and

√
N

(∑J
j=1

(
Ȳj − E

[
Ȳj(1)|Nj , kj = k

])
Dj1{kj = k}∑J

j=1Dj1{kj = k}

)

=

√
N

JE
[
Nj
] · 1√

J
·
√

E[Nj ]
Nj

· Dj1{kj=k}√
Nj

∑Nj

i=1

(
Yij − E

[
Ȳj |Dj = 1, Nj , kj = k

])
1
J

∑J
j=1Dj1{kj = k}

and similarly for the second quantity in C̃ATE
cl
(k)− CATE

cl
(λk). From A6.b),

N

JE[Nj ]
− 1 = op

(
1

E[Nj ]

)
.

Thus,
√

N
JE[Nj ]

p−→ 1 as J → ∞. From A1 and A5.a-b),

1

J

J∑
j=1

Dj1{kj = k} p−→ E
[
Dj1{kj = k}

]
= π(k)µ(k) > 0

as J → ∞. Thus, from A6.c),

C̃ATE
cl
(k)− CATE

cl
(λk)

d−→ N
(
0, ek

⊺ΣW clek
)

where ek is a (2K) × 1 column vectors whose components except for the (2k − 1)-th and
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and 2k-th components are zeroes. The (2k − 1)-th component is 1/π(k)µ(k) and the 2k-th

component is 1/(1− π(k))µ(k). By repeating this for every k, we obtain


C̃ATE

cl
(1)− CATE

cl
(λ1)

...

C̃ATE
cl
(K)− CATE

cl
(λK)

 d−→ N
(
0,Σcl

)

where

Σcl =


1

π(1)µ(1)
−1

(1−π(1))µ(1)
· · · 0

...
... . . . ...

0 0 · · · −1
(1−π(K))µ(K)

ΣW


1

π(1)µ(1)
0 · · · 0

...
... . . . ...

0 0 · · · −1
(1−π(K))µ(K)

 .

The first claim has been proven.

Claim 2

It suffices to show the second claim to finish the proof. Find that ĈATE
cl
(k) =

C̃ATE
cl
(k) for every k if k̂j = kj for every j.

∣∣∣∣ĈATE
cl
(k)− C̃ATE

cl
(k)

∣∣∣∣
=

∣∣∣∣ĈATE
cl
(k)− C̃ATE

cl
(k)

∣∣∣∣1{∃ j s.t. k̂j ̸= kj}

≤
(∣∣∣ĈATE

cl
(k)
∣∣∣+ ∣∣∣C̃ATE

cl
(k)
∣∣∣)1{∃ j s.t. k̂j ̸= kj}.

Firstly, find that the indicator function converge to zero in probability at a rate faster
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than 1/
√
N . Fix ε > 0:

Pr
{√

N1{∃ j s.t. k̂j ̸= kj} > ε
}
≤ Pr

{
∃ j s.t. k̂j ̸= kj

}
·
√
N

ε

= Pr
{
∃ j s.t. k̂j ̸= kj

}√
JNmin,J

√
E[Nj ]

Nmin,J

√
N

JE[Nj ]

1

ε
.

From Theorem 1, with any ν > 0,

Pr
{√

N1{∃ j s.t. k̂j ̸= kj} > ε
}

≤ Pr
{
∃ j s.t. k̂j ̸= kj

} Nmin,J
ν

J
· J

3
2Nmin,J

1
2−ν

√
E[Nj ]

Nmin,J

√
N

JE[Nj ]

1

ε

= J
3
2Nmin,J

1
2−νo(1)M(1 + op(1))

1

ε

for large J . By letting ν > 3ν∗+1
2 > 0,

J
3
2

Nmin,J
ν−1

2

≤ J
3
2

Nmin,J
3ν∗
2

=

(
J

Nmin,J
ν∗

)3
2

→ 0

as J → ∞. Thus,
√
N1{∃ j s.t. k̂j ̸= kj} = op(1).
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It remains to show that
∣∣ĈATE

cl
(k)
∣∣ and

∣∣C̃ATE
cl
(k)
∣∣ are bounded in expectation:

E

[∣∣∣ĈATE
cl
(k)
∣∣∣]

= E

[∣∣∣∣∣
∑

j ȲjDj1{k̂j = k}∑
j Dj1{k̂j = k}

−
∑

j Ȳj(1−Dj)1{k̂j = k}∑
j(1−Dj)1{k̂j = k}

∣∣∣∣∣
]

≤ E

[∑
j

∣∣Ȳj∣∣Dj1{k̂j = k}∑
j Dj1{k̂j = k}

+

∑
j

∣∣Ȳj∣∣ (1−Dj)1{k̂j = k}}∑
j(1−Dj)1{k̂j = k}

]

= E

[
E

[∑
j

∣∣Ȳj∣∣Dj1{k̂j = k}∑
j Dj1{k̂j = k}

+

∑
j

∣∣Ȳj∣∣ (1−Dj)1{k̂j = k}}∑
j(1−Dj)1{k̂j = k}

∣∣∣ {{Xij
}
i , Dj , Nj , kj

}
j

]]

= E

∑j E
[∣∣Ȳj∣∣ ∣∣ {Xij

}Nj

i=1 , Dj , Nj , kj

]
Dj1{k̂j = k}∑

j Dj1{k̂j = k}


+ E

∑j E
[∣∣Ȳj∣∣ ∣∣ {Xij

}Nj

i=1 , Dj , Nj , kj

]
(1−Dj)1{k̂j = k}}∑

j(1−Dj)1{k̂j = k}


≤ M.

The third equality is from A1 and
{
k̂j

}
j

being a function of
{{

Xij
}Nj

i=1

}J
j=1

. The last

equality is from A6.a). By repeating the same argument, E
[
C̃ATE

cl
(k)

]
is bounded in

expectation as well. Then,

√
N

∣∣∣∣ĈATE
cl
(k)− C̃ATE

cl
(k)

∣∣∣∣ = Op(1) · op(1)

as J → ∞. By repeating this for every K,

√
N



∣∣∣∣ĈATE
cl
(1)− C̃ATE

cl
(1)

∣∣∣∣
...∣∣∣∣ĈATE

cl
(K)− C̃ATE

cl
(K)

∣∣∣∣

 = Op(1) · op(1)
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By combining the two claims in the beginning,

√
N


ĈATE

cl
(1)− CATE

cl
(λ1)

...

ĈATE
cl
(K)− CATE

cl
(λK)

 d−→ N (0,Σ) .

Averaging: ÂTE
cl

Find that, with some abuse of notations with zero denominators,

ÂTE
cl
=

1

J

J∑
j=1

(
Dj Ȳj
π̂j

−
(1−Dj)Ȳj

1− π̂j

)

=
K∑
k=1

1

J

 J∑
j=1

(
Dj Ȳj
π̂(k)

−
(1−Dj)Ȳj
1− π̂(k)

)
1{k̂j = k}


=

K∑
k=1

∑J
j=1 1{k̂j = k}

J

(∑J
j=1 ȲjDj1{k̂j = k}∑J
j=1Dj1{k̂j = k}

−
∑J

j=1 Ȳj(1−Dj)1{k̂j = k}∑J
j=1(1−Dj)1{k̂j = k}

)

=
K∑
k=1

∑J
j=1 1{k̂j = k}

J
· ĈATE

cl
(k)

since π̂(k) =
∑J

j=1Dj1{k̂j = k}/
∑J

j=1 1{k̂j = k}. The asymptotic normality of ÂTE
cl

directly follows from repeating the two claims, with ÂTE
cl

and

ÃTE
cl
=

K∑
k=1

∑J
j=1 1{kj = k}

J
· C̃ATE

cl
(k).

Averaging: ÂTE
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Again, with some abuse of notations with zero denominators,

ÂTE

=
1

N

J∑
j=1

Nj

(
Dj Ȳj
π̂j

−
(1−Dj)Ȳj

1− π̂j

)

=

√
E[Nj ]

N
· 1
J

J∑
j=1

√
Nj

E[Nj ]
·
√
Nj

(
Dj Ȳj
π̂j

−
(1−Dj)Ȳj

1− π̂j

)

=

√
E[Nj ]

N
·

K∑
k=1

1

J

J∑
j=1

√
Nj

E[Nj ]
·
√

Nj

(
ȲjDj1{k̂j = k}

π̂(k)
−

Ȳj(1−Dj)1{k̂j = k}
1− π̂(k)

)

=

√
E[Nj ]

N
·

K∑
k=1

∑J
j=1 1{k̂j = k}

J

·
J∑

j=1

√
Nj

E[Nj ]
·
√

Nj

(
ȲjDj1{k̂j = k}∑J
j=1Dj1{k̂j = k}

−
Ȳj(1−Dj)1{k̂j = k}∑J
j=1(1−Dj)1{k̂j = k}

)
.

By repeating the same argument for
√
N
(
ÂTE − ATE

)
, with

ÃTE =
1

N

J∑
j=1

Nj

(
Dj Ȳj

∑J
l=1 1{kl = k}∑J

l=1Dj1{kl = k}
− (1−Dj)Ȳj

∑J
l=1 1{kl = k}∑J

l=1(1−Dj)1{kl = k}

)

as an intermediary, we have the asymptotic normality of ÂTE.

B.3.3 Corollary 2

Consider an infeasible GMM estimator θ̃:

θ̃ = argmin
θ∈Θ

J∑
j=1

Nj∑
i=1

(
Yij − g̃(Xij , Dj , Zj ; θ

kj )
)2

.
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From Theorem 2.6. and 3.4. of Newey and McFadden [1994], we have the asymptotic

normality for
√
N
(
θ̃ − θ0

)
. As in Corollary 1, find that

√
N
∣∣θ̂ − θ̃

∣∣ ≤ M
√
N1{∃ j s.t. k̂j ̸= kj} = op(1).

B.3.4 Theorem 2

Let πj = π(λj) and

ÃTE
cl
=

1

J

J∑
j=1

(
Dj

πj
−

1−Dj

1− πj

)
Ȳj .

Find that

ÃTE
cl
− E

[
Ȳj(1)− Ȳj(0)

]
=

1

J

J∑
j=1

(
Dj

πj

(
Ȳj − E

[
Ȳj(1)

])
−

1−Dj

1− πj

(
Ȳj − E

[
Ȳj(0)

]))

+

 1

J

J∑
j=1

Dj

πj
− 1

E
[
Ȳj(1)

]

−

 1

J

J∑
j=1

1−Dj

1− πj
− 1

E
[
Ȳj(0)

]
= op(1)
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as J → ∞ since

E

[
Dj

πj

]
= E

[
E

[
Dj

πj

∣∣λj]] = 1,

E

[
Dj Ȳj
πj

]
= E

[
E

[
Dj Ȳj
πj

|Nj , λj

]]
= E

[
E

[
Dj Ȳj(1)

πj

∣∣Nj , λj

]]
= E

[
1

πj
E
[
Dj |Nj , λj

]
· E
[
Ȳj(1)|Nj , λj

]]
= E

[
E

[
1

πj
E
[
Dj |Nj , λj

]
· E
[
Ȳj(1)|Nj , λj

] ∣∣λj]] = E
[
Ȳj(1)

]
and similarly for (1 − Dj)/(1 − πj) and (1 − Dj)Ȳj/(1 − πj). The fourth equality is from

A2 and the last equality is from A7.a). The consistency is from A1 and A5.a).

Next, let γ1j = E
[
Ȳj(1)|λj

]
and γ0j = E

[
Ȳj(0)|λj

]
. Then, it remains to show

ÂTE
cl
− ÃTE

cl
=

1

J

J∑
j=1

(
1

π̂j
− 1

πj

)
Dj Ȳj −

1

J

J∑
j=1

(
1

1− π̂j
− 1

1− πj

)
(1−Dj)Ȳj = op(1).

Step 1.

Let us focus on the one side of ÂTE
cl
− ÃTE

cl
:

∣∣∣∣∣∣ 1J
J∑

j=1

(
Dj Ȳj
π̂j

−
Dj Ȳj
πj

)∣∣∣∣∣∣ ≤
 1

J

J∑
j=1

(
1

π̂j
− 1

πj

)2
1

2

·

 1

J

J∑
j=1

Ȳ 2
j Dj

1
2

=

 1

J

J∑
j=1

(
1

π̂j
− 1

πj

)2
1

2

Op(1)

from Cauchy-Schwarz inequality and A5.a). Then, from Taylor’s expansion and A7.e),

1

J

J∑
j=1

(
1

π̂j
− 1

πj

)2

≤ M

2J

J∑
j=1

(
π̂j − πj

)2
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with some constant M > 0. Lastly, since (a+ b)2 ≥ 0,

M

2J

J∑
j=1

(
π̂j − πj

)2
≤ M

J

J∑
j=1

[(
π̂j − π

(
λ̄(k̂j)

))2
+
(
π
(
λ̄(k̂j)

)
− πj

)2]
(B.4)

with λ̄(k) defined as

G
(
λ̄(k)

)
=

∑J
j=1G(λj)1{k̂j = k}∑J

j=1 1{k̂j = k}
(B.5)

for k = 1, · · · , K. The existence of such λ̄ and its uniqueness is guaranteed from A7.d).

Step 2.

Let us focus on the second quantity from (B.4).

1

J

J∑
j=1

(
π
(
λ̄(k̂j)

)
− πj

)2
≤ M

J

J∑
j=1

∥∥∥λ̄(k̂j)− λj

∥∥∥
1

2

≤ M

J

J∑
j=1

q
∥∥∥λ̄(k̂j)− λj

∥∥∥
2

2

with some constant M > 0. The first inequality is from Taylor’s expansion and A7.e) and

the second inequality is from Cauchy-Schwarz inequality.
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From A7.d and
∥∥∥a⃗+ b⃗

∥∥∥
2

2
≤ 2∥a⃗∥2

2 + 2
∥∥∥⃗b∥∥∥

2

2
, we have

J∑
j=1

∥∥∥λ̄(k̂j)− λj

∥∥∥2
2

≤
J∑

j=1

[
τ2
∥∥∥G(λ̄(k̂j))−G(λj)

∥∥∥2
w,2

]

≤
J∑

j=1

[
2τ2
∥∥∥G(λ̄(k̂j))− Ĝ(k̂j)

∥∥∥2
w,2

+ 2τ2
∥∥∥Ĝ(k̂j)−G(λj)

∥∥∥2
w,2

]

≤
J∑

j=1

[
2τ2
∥∥∥G(λ̄(k̂j))− Ĝ(k̂j)

∥∥∥2
w,2

+ 4τ2
∥∥∥Ĝ(k̂j)− F̂j

∥∥∥2
w,2

+ 4τ2
∥∥∥F̂j −G(λj)

∥∥∥2
w,2

]

≤
J∑

j=1

[
2τ2
∥∥∥G(λ̄(k̂j))− Ĝ(k̂j)

∥∥∥2
w,2

+ 4τ2
∥∥∥G(λ̃(k̃j))− F̂j

∥∥∥2
w,2

+ 4τ2
∥∥∥F̂j −G(λj)

∥∥∥2
w,2

]

≤
J∑

j=1

[
2τ2
∥∥∥G(λ̄(k̂j))− Ĝ(k̂j)

∥∥∥2
w,2

+ 8τ2
∥∥∥G(λ̃(k̃j))−G(λj)

∥∥∥2
w,2

+ 12τ2
∥∥∥G(λj)− F̂j

∥∥∥2
w,2

]

≤
J∑

j=1

[
2τ2
∥∥∥G(λ̄(k̂j))− Ĝ(k̂j)

∥∥∥2
w,2

+ 8τ4
∥∥∥λ̃(k̃j)− λj

∥∥∥
2

2
+ 12τ2

∥∥∥G(λj)− F̂j

∥∥∥2
w,2

]

where λ̃(k) and k̃j are defined as

(
k̃1, · · · , k̃J , λ̃(1), · · · , λ̃(K)

)
= argmin

J∑
j=1

∥∥∥λj − λ̃(k̃j)
∥∥∥
2

2
.

The fourth inequality is from the fact that Ĝ(k) and k̂j solve the minimization problem

(2.10). Lastly, from the observation that at the optimal solution of (2.10), Ĝ(k) is the
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average of F̂js such that k̂j = k, we have

1

J

J∑
j=1

∥∥∥G(λ̄(k̂j))− Ĝ(k̂j)
∥∥∥
w,2

2

=
1

J

K∑
k=1

#(k) ·

∥∥∥∥∥∥
∑J

j=1

(
G(λj)− F̂j

)
1{k̂j = k}

#(k)

∥∥∥∥∥∥
w,2

2

=
1

J

K∑
k=1

1

#(k)

∫ ( J∑
j=1

(
G(λj)− F̂j

)
1{k̂j = k}

)2
(x)w(x)dx

≤ 1

J

K∑
k=1

1

#(k)

∫ ( J∑
j=1

(
G(λj)− F̂j

)2
(x)
)
·
( J∑
j=1

1{k̂j = k}
)
w(x)dx

=
K

J

∫ J∑
j=1

(
G(λj)− F̂j

)2
(x)w(x)dx

≤ K

J

J∑
j=1

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

and similarly

1

J

J∑
j=1

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
≤ K

J

J∑
j=1

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
,

where #(k) =
∑J

j=1 1{k̂j = k}. The first inequality is from Cauchy-Schwarz inequality.

Note that
1

J

J∑
j=1

∥∥∥λj − λ̃(k̃j)
∥∥∥
2

2
= Op

(
K

−2
q

)
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as J,K → ∞ [Graf and Luschgy, 2002]. Thus,

1

J

J∑
j=1

(
1

π̂j
− 1

πj

)2

≤ M

J

J∑
j=1

(
π̂j − π

(
λ̄(k̂j)

))2
+ C

K
J

J∑
j=1

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
+Op

(
K

−2
q

)
with some constant C > 0.

Step 3.

From A7.f-g),
1

J

J∑
j=1

Nj

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
= Op (1) .

Thus,

K

J

J∑
j=1

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
≤ K

Nmin,J

1

J

J∑
j=1

Nj

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
= Op

(
K

Nmin,J

)
.

Step 4.

Let Vj = Dj − πj . With a slight abuse of notation,

1

J

J∑
j=1

(
π̂j − π

(
λ̄(k̂j)

))2

=
1

J

K∑
k=1

#(k)

(∑J
j=1 πj1{k̂j = k}

#(k)
+

∑J
j=1 Vj1{k̂j = k}

#(k)
− π

(
λ̄(k)

))2

≤ 2

J

K∑
k=1

#(k)

(∑J
j=1

(
πj − π

(
λ̄(k)

))
1{k̂j = k}

#(k)

)2

+

(∑J
j=1 Vj1{k̂j = k}

#(k)

)2


≤ 2

J

K∑
k=1

#(k)

∑J
j=1

(
πj − π

(
λ̄(k)

))2
1{k̂j = k}

#(k)
+

(∑J
j=1 Vj1{k̂j = k}

#(k)

)2
 .
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The last inequality is from Cauchy-Schwarz inequality. The first quantity rearranges to

2

J

J∑
j=1

(
πj − π

(
λ̄(k̂j)

))2
.

By repeating the argument from Step 2-3,

2

J

J∑
j=1

(
πj − π

(
λ̄(k̂j)

))2
= Op

(
K

Nmin,J
+K

−2
q

)
.

Now, it remains to put a bound on

2

J

K∑
k=1

#(k)

(∑J
j=1 Vj1{k̂j = k}

#(k)

)2

=
2

J

K∑
k=1

1

#(k)

 J∑
j=1

Vj1{k̂j = k}

2

.

Note that

E

 1

#(k)

 J∑
j=1

Vj1{k̂j = k}

2


=
J∑

j=1

E
[ 1

#(k)

J∑
j′=1

VjVj′1{k̂j = k̂j′ = k}
]

=
J∑

j=1

E
[ 1

#(k)
E
[
Vj

2|Nj , λj ,
{
Xij
}
i,j

]
1{k̂j = k}

]

+
J∑

j=1

E
[ 1

#(k)

∑
j′ ̸=j

E
[
VjVj′|Nj , Nj′ , λj , λj′ ,

{
Xij
}
i,j

]
1{k̂j = k̂j′ = k}

]

=
J∑

j=1

E
[ 1

#(k)
E
[
Vj

2|λj ,
{
Xij
}
i,j

]
1{k̂j = k}

]
≤ 1.

The second equality holds since k̂js are constructed only with F̂js and the third equality
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holds from A1 and A2:

E
[
VjVj′|Nj , Nj′ , λj , λj′ ,

{
Xij
}
i,j

]
= E

[
VjVj′|Nj , Nj′ , λj , λj′

]
= E

[
Vj |Nj , λj

]
· E
[
Vj |Nj′ , λj′

]
= 0.

Thus,

E

 1

J

K∑
k=1

1

#(k)

 J∑
j=1

Vj1{k̂j = k}

2
 ≤ K

J
.

Thus,

1

J

J∑
j=1

(
1

π̂j
− 1

πj

)2

= Op

(
K

Nmin,J
+K

−2
q +

K

J

)
.

We may repeat the same argument for ATT cl.

B.4 Additional empirical results

In Section 7, I use the distribution of the individual-level employment history to capture the

cluster-level heterogeneity in labor market fundamentals. In this section, I provide empirical

results with an alternative individual-level control variable: wage income. The basic monthly

CPS data does not contain information on income. Thus, I used the March Annual Social

and Economic Supplement (ASEC) of the CPS to find information on the wage income: for

each month t, y(t) is the calendar year that month t belongs to.

X̃ijt = WageIncomeijy).
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Thus, the K-means grouping step is not repeated for every month, but for every year:

22 grouping structures were estimated. Also, while EmpHistroyijt has a finite support,

WageIncomeijy is a continuous variable. Thus, I used the weighting function w that puts

equal weights on the 200-quantiles that are estimated from the pooled dataset within each

year. Figure B.1 contains the empirical distribution functions of the three groups from the

2007 ASEC supplement.

Figure B.1: Heterogeneity across states, March 2007
This figure plots average of the empirical distribution functions of wage income for each
group.
Group 1 contains states whose wage income distributions are more skewed to the right
and Group 3 contains state whose wage income distributions are more skewed to the
left.
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β (1) (2) (3) (4)

pooled -0.065***
(0.015)

Group 1 -0.025 -0.036** -0.075***
(0.017) (0.015) (0.014)

Group 2 -0.025 -0.036** -0.028**
(0.017) (0.015) (0.014)

Group 3 -0.027 -0.039** 0.020
(0.018) (0.015) (0.021)

δjt GFE TWFE Census Div. GFE

Table B.1: Impact of minimum wage on teen employment, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
For each specification, in addition to the fixed effects, individual-level control covariates
— age, race, sex, marital status, education — and state-level employment rate are
included as regressors.
Columns (1) and (4) contain the results from the preferred specification.
Columns (2), (3) and (4) report the group-specific minimum wage effect. Group 1 is the
group of states whose wage income distributions are skewed to the right while Group
3 is the group of states whose wage income distributions are skewed to the left.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.

Lastly, I consider a specification where I use both EmpHistroyijt and WageIncomeijy

in the grouping structure. As discussed in Remark 1, I separately construct two grouping

structures based on EmpHistoryijt and WageIncomeijy: k̂jt is the monthly grouping struc-

ture estimated with EmpHistoryijt and l̂jy is the yearly grouping structure estimated with

WageIncomeijy.

Yijt = αj + δ
k̂jt l̂jy(t)t

+ β(k̂jt, l̂jy(t)) logMinWagejt +Xijt
⊺η + ηclEmpRatejt + Uijt.

(B.6)

In total, I have 13464 = 51 · 22 · 12 of state-by-month pairs to apply the two grouping

structures. Table B.4 contains the proportions of the state-by-month pairs in each category
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β (1) (2) (3) (4)

Ageijt ≤ 18 -0.072***
(0.015)

× Group 1 -0.032* -0.043*** -0.083***
(0.018) (0.016) (0.014)

× Group 2 -0.034* -0.045*** -0.038***
(0.018) (0.016) (0.013)

× Group 3 -0.038* -0.050*** 0.009
(0.019) (0.016) (0.021)

Ageijt = 19 -0.039**
(0.019)

× Group 1 -0.001 -0.012 -0.053***
(0.019) (0.017) (0.018)

× Group 2 0.005 -0.006 0.002
(0.019) (0.016) (0.017)

× Group 3 0.010 -0.002 0.057**
(0.019) (0.017) (0.022)

δjt GFE TWFE Census Div. GFE

Table B.2: Impact of minimum wage on teen employment in terms of age, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
The regression pools teenagers between the age of 16 and 19 and allows the minimum
wage effect to differ across teens younger than 19 and teens of age 19. For each specifi-
cation, in addition to the fixed effects, individual-level control covariates — age, race,
sex, marital status, education — and state-level employment rate are included as re-
gressors.
Columns (3) and (6) contain the results from the preferred specification.
Columns (4), (5) and (6) report the group-specific minimum wage effect, while inter-
acting with race. Group 1 is the group of states whose wage income distributions are
skewed to the right while Group 3 is the group of states whose wage income distribu-
tions are skewed to the left.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.

defined with the two grouping structures.
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β (1) (2) (3) (4)

Whiteij = 1 -0.094***
(0.016)

× Group 1 -0.053** -0.066*** -0.101***
(0.020) (0.017) (0.016)

× Group 2 -0.056*** -0.070*** -0.059***
(0.019) (0.017) (0.015)

× Group 3 -0.057*** -0.073*** -0.011
(0.020) (0.018) (0.022)

Whiteij = 0 0.024
(0.017)

× Group 1 0.053*** 0.043** 0.008
(0.017) (0.018) (0.016)

× Group 2 0.061*** 0.050*** 0.062***
(0.017) (0.017) (0.014)

× Group 3 0.059*** 0.047** 0.108***
(0.019) (0.019) (0.020)

δjt GFE TWFE Census Div. GFE

Table B.3: Impact of minimum wage on teen employment in terms of race, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
The regression allows the minimum wage effect to differ across white teens and non-
white teens. For each specification, in addition to the fixed effects, individual-level
control covariates — age, race, sex, marital status, education — and state-level em-
ployment rate are included as regressors.
Columns (3) and (6) contain the results from the preferred specification.
Columns (4), (5) and (6) report the group-specific minimum wage effect, while interact-
ing with age.Group 1 is the group of states whose wage income distributions are skewed
to the right while Group 3 is the group of states whose wage income distributions are
skewed to the left.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.
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WageIncome

EmpHistory
Group 1 Group 2 Group 3

Group 1 0.011 0.118 0.179
Group 2 0.071 0.236 0.102
Group 3 0.170 0.107 0.008

Table B.4: Grouping structures based on EmpHistory and WageIncome

The rows denote the grouping structure with WageIncome and the columns denote
the grouping structure with EmpHistory. For example, out of 13464 state-by-month
pairs, approximately 11% are assigned to Group 1 under the WageIncome grouping
and Group 1 under the EmpHistory grouping.
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β (1) (2) (3) (4)

pooled -0.065***
(0.015)

WageIncome EmpHistory

Group 1 Group 1 -0.020 -0.032** -0.075**
(0.017) (0.015) (0.032)

Group 2 -0.025 -0.037** -0.042*
(0.017) (0.015) (0.023)

Group 3 -0.027 -0.038** -0.029
(0.017) (0.015) (0.030)

Group 2 Group 1 -0.023 -0.035** -0.013
(0.017) (0.015) (0.025)

Group 2 -0.026 -0.037** -0.021
(0.017) (0.015) (0.020)

Group 3 -0.029 -0.040** -0.061**
(0.017) (0.015) (0.026)

Group 3 Group 1 -0.026 -0.038** 0.046*
(0.018) (0.015) (0.025)

Group 2 -0.027 -0.039** -0.019
(0.018) (0.015) (0.023)

Group 3 -0.035 -0.050*** 0.123*
(0.018) (0.016) (0.071)

δjt GFE TWFE Census Div. GFE

Table B.5: Impact of minimum wage on teen employment, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
For each specification, in addition to the fixed effects, individual-level control covariates
— age, race, sex, marital status, education — and state-level employment rate are
included as regressors.
Columns (1) and (4) contain the results from the preferred specification.
Columns (2), (3) and (4) report the group-specific minimum wage effect.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.

155


	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Finitely Heterogeneous Treatment Effect in Event-study
	1.1 Introduction
	1.1.1 Related Literature

	1.2 Model
	1.3 Estimation
	1.3.1 Algorithm

	1.4 Asymptotic Results
	1.4.1 Extension

	1.5 Application
	1.6 Conclusion

	2 Clustered Treatment in Multilevel Models
	2.1 Introduction
	2.1.1 Related literature

	2.2 Model
	2.2.1 Treatment effect
	2.2.2 Examples

	2.3 Estimation
	2.3.1 First step: K-means grouping
	2.3.2 Second step: treatment effect estimation
	2.3.3 Alternative estimators

	2.4 Asymptotic results
	2.5 Extension
	2.5.1 Continuous latent factor
	2.5.2 Generalized multilevel models

	2.6 Monte Carlo simulations
	2.7 Empirical illustration: effect of minimum wage on employment
	2.7.1 Background
	2.7.2 Estimation
	2.7.3 Results

	2.8 Conclusion

	References
	A Appendix to Chapter 1
	A.1 Proof for Theorem 1
	A.2 Proof for Theorem 2
	A.3 Proof for Corollary 1
	A.4 Extension: mean differencing

	B Appendix to Chapter 2
	B.1 Exchangeability
	B.2 Addtional discussion on estimation strategy
	B.2.1 Choice of initial values in the K-means grouping
	B.2.2 Choice of K as tuning parameter

	B.3 Proofs
	B.3.1 Theorem 1
	B.3.2 Corollary 1
	B.3.3 Corollary 2
	B.3.4 Theorem 2

	B.4 Additional empirical results


