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ABSTRACT

This dissertation consists of two parts. The first part studies the effects of flexible work

scheduling policies typically used by employers to efficiently manage their staffing operations

in the context of variable customer demand. In particular, I study how such policies impact

the quality of frontline work arrangements, the extent to which they are associated with

higher employee turnover and quantify the value of such arrangements to employees. To this

end, I construct and analyze a matched employer-employee dataset with precise information

on employee scheduling arrangements from 10 million worked shifts. I motivate my empirical

analyses with a model of workforce scheduling in which managers internalize the fact that

employees jointly consider their work arrangements and wages when evaluating whether to

remain with their current employer. I use my results to simulate the effects of shocks to

customer demand on employee turnover.

In the second part, we study the link between household consumption decisions and

earnings dynamics. We use the enhanced consumption data in the Panel Survey of In-

come Dynamics (PSID) from 2005-2017 to explore the transmission of income shocks to

consumption. We build on the nonlinear quantile framework introduced in Arellano, Blun-

dell and Bonhomme (2017). Our focus is on the estimation of consumption responses to

persistent nonlinear income shocks in the presence of unobserved heterogeneity. To reliably

estimate heterogeneous responses in our un-balanced panel, we develop Sequential Monte

Carlo computational methods. We find substantial heterogeneity in consumption responses,

and uncover latent types of households with different life-cycle consumption behavior. Or-

dering types according to their average log-consumption, we find that low-consumption types

respond more strongly to income shocks at the beginning of the life cycle and when their

assets are low, as standard life-cycle theory would predict. In contrast, high-consumption

types respond less on average, and in a way that changes little with age or assets. We

examine various mechanisms that might explain this heterogeneity.
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CHAPTER 1

FRONTLINE WORK ARRANGEMENTS AND EMPLOYEE

TURNOVER
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1.1 Introduction

Current management practices for hourly employees are associated with schedules that are

both highly variable and unpredictable ([2], [3], [4]). Surveys indicate that of the 73 million

hourly workers in the United States (BLS, 2021) almost 40% receive less than a week’s

notice about when they are required to work ([4]) and as many as 80% of these workers have

fluctuations in their weekly hours that exceed a full day of pay each month ([4]).

Such findings have made policymakers and researchers increasingly interested in under-

standing both the nature of employer scheduling practices as well as the broader impacts of

such practices on employee and firm outcomes. In the United States so-called ‘Fair Work-

week’ legislation has been introduced in 6 cities and one state since 2014, with the stated goal

of establishing universal scheduling standards for hourly workers ([5]). Related initiatives

have been introduced in the the EU through the Directive on Transparent and Predictable

Working Conditions (2019) and in Australia though the Fair Work Act (2009). Similar in-

terest is seen amongst firms seeking to reduce employee separations in a market environment

with record high quit rates and rising wages.

This gives rise to several questions of both policy and practical importance. First, what

are the precise mechanisms through which manager scheduling policies relate to the quality

of worker schedules? Second, to what extent is the quality of schedules valued by workers?

Third, does a failure to provide high quality schedules cause higher turnover within a firm?

The goal of this paper is to answer these questions using a unique dataset obtained from a

global provider of workforce management software with precise information from almost 10

million shifts worked by 100,000 workers in relevant frontline industries.

We start by developing a simple model of workforce scheduling at the weekly level.

Importantly, we show how preferences depend on schedule quality and allow for the possibility

that some variability may be desirable if chosen by workers. Our modeling incorporates
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several features which are common across modern scheduling applications. Workers have

access to a shift-swapping technology which allows them to trade shifts with co-workers.

This provides a mechanism through which variability in hours can be attributed to worker

preference shocks. Managers have access to demand forecasting and scheduling algorithms

which allow them to scale aggregate worker hours in response to changes in customer demand

which follows an ARCH process. This provides a mechanism through which variability in

worker hours can be attributed to the variance of weekly customer demand facing the firm.

When manager imposed variability is undesirable to workers we expect higher turnover

rates to impose additional costs which should be internalized when making scheduling de-

cisions. We microfound these turnover costs in the spirit of on-the-job search ([6]). Within

each period employed workers receive outside utility offers drawn from some exogenous dis-

tribution and accept offers yielding higher expected utility than at their current employer,

where utility is given as a linear combination of wages, amenities and realized schedule qual-

ity. Fluctuations in customer demand imply that schedule quality will vary over time and

so optimal worker behavior will depend on how expectations are formed. If workers have

adaptive or rational expectations about the future path of realized schedule quality then

current realized values can have a direct impact on turnover. Solving for the manager’s op-

timal policy taking this behavior as given reveals that the realized quality of schedules in a

team will depend on the conditional variance of team-level demand and the extent to which

workers get disutility from poor quality schedules. The model unambiguously predicts that

schedule quality will be decreasing in the variance of customer demand but that, ceteribus

paribus, managers will compensate workers for lower schedule quality in the form of wages.

To investigate the model empirically we leverage our unique dataset to map variables of

interest into observable counterparts. First, we combine timestamps from when employees

were notified about work with detailed time-tracking records from actual worked shifts to

construct measures of schedule quality which precisely capture both variability in an em-
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ployee’s weekly hours as well as the predictability of their schedule. Our data show that

from week-to-week a worker employed in the average team receives 5.96 days advance notice

about upcoming work and has hours that fluctuate by approximately 25%, with meaningful

heterogeneity observed across both measures. Second, we reconstruct the demand forecasts

which were rendered to managers when making their scheduling decisions and can be used

to infer shocks to demand at the team level. We document meaningful heterogeneity in

the nature of demand across teams and show that, consistent with our model predictions,

schedule quality is decreasing in the variance of team-level demand forecasts.

Our main empirical analyses attempt to identify the causal effect of schedule quality on

employee turnover and to quantify worker WTP for improved schedule quality. Turnover

is of particular interest for industries in our current setting where annual turnover rates

typically exceed 100%. Similar causal parameters are studied by [7] in a Home Care setting

and by [8] in the retail and food service sectors. In addition to direct turnover costs, which

are surveyed in [9], a large literature documents the negative economic effects of turnover on

the long-run performance of firms ([10], [11], [12], [13]).

Although a simple theory of compensating differentials implies that there must exist

positive wage differentials if unpredictable and variable schedules are perceived negatively

by employees ([14]) it is well known that hedonic prices need not coincide with worker

preferences if there exist market frictions when searching for jobs ([15], [16]). Accordingly,

our identification strategy leverages information from employee separations in the spirit

of [17]. Intuitively, relative worker valuations for schedule quality and wages are revealed

through the probability of separating from their current employer.

We apply this strategy using the variation in schedule quality, wages and separation

rates observed within a team over time. Our model highlights two reasons why within-team

variation is preferable to cross-sectional comparisons. Firstly, the stochastic process for

customer demand may be directly correlated with team amenities. This induces a correlation

4



between schedule quality and amenities in the cross-section because it is the realized values

of customer demand which determine observed schedule quality. Recent empirical work

documents positive correlations between the productivity distribution of firms and the level

of amenities that they offer ([18], [19]). Secondly, the total compensation chosen by managers

depends directly on the level of amenities in the team. As a result cross-sectional comparisons

may underestimate the causal effects of schedule quality and wages on account of high (low)

amenity teams who, ceteribus paribus, have lower (higher) levels of separations and for whom

it is optimal to offer lower (higher) compensation.

To further account for the fact that some of the observed within-team variation in schedule

quality will reflect employee preference shocks we leverage instruments constructed from

the demand forecasts which were rendered to managers. For estimation we treat team-

level amenities as additional parameters to be estimated jointly under an asymptotic where

both the number of time periods and the number of teams grows. We adjust our reported

coefficients to correct for the asymptotic bias which arises with incidental parameters in

these settings ([20], [21], [22], [23]). In addition to our own estimates we also present results

using specifications based on identification strategies that have been proposed in the existing

literature. We use our model to provide an economic and econometric interpretation of these

existing strategies and make comparisons to our baseline estimates.

Across all of our specifications we document that improved schedule quality has a signif-

icant and negative effect on the probability of worker separations. Our preferred estimates

indicate that a 1% increase in schedule quality as measured by a reduction in the variability

of hours results in a decrease in the probability that a worker separates the following week

of 0.01 percentage points. When comparing these effects to those which correspond to an

increase in wages our estimates suggest that workers would be willing to accept a reduction

in wages of 1.2% for a 1% increase in schedule quality.

The insights from our paper relate first and foremost to a recent and growing literature
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which studies the scheduling arrangements of hourly workers and to which we make three

contributions. First, we provide a simple model that explains the mechanisms through which

schedule quality is determined as a function of shocks to both team-level demand and worker

preferences. The model highlights the challenges that arise when observable quality measures

that can be constructed from data are used as proxies for the schedule quality perceived by

workers.

Second, we provide empirical estimates of both worker valuations for improved quality

as well as the causal effect of schedule quality on separations. Our estimates are based on

detailed personnel data that can precisely construct the observable measures of schedule

quality which are typically referenced in the existing literature. In contrast to our work,

many existing studies have typically relied on qualitative interviews and surveys ([24], [25],

[26], [27], [28]) and so much research focuses on the potential mechanisms through which

schedule quality is valued, focusing on the potentially negative effects of variability and

unpredictability on work-life conflict ([29]), parent-child interactions ([24]) and resultant

earnings volatility ([30]).

Third, we use our model to provide an economic and econometric interpretation of identi-

fication strategies using two-stage least squares or fixed effects which have been proposed in

the existing literature ([8], [7]). Whilst two-stage least squares may approximate the causal

effect of schedule quality on separations under an assumption that the proposed instrument

is orthogonal to employee preference shocks we show that fixed effects strategies will gener-

ally not yield consistent estimates and provide expressions that approximate the resultant

bias.

Our paper also contributes to a large literature in economics studying how employees

may trade-off higher wages in exchange for better job characteristics ([31], [32], [33], [34]).

Most recently a range of studies have focused on the importance of flexibility and control

over one’s working hours ([35], [36], [37] [38]). We complement this work by documenting
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related empirical findings across a large number of teams in relevant frontline industries with

job characteristics that are particularly salient for hourly workers.

Finally, we also contribute to an active operations research literature studying firm

scheduling decisions. Within this literature researchers are interested in understanding both

how scheduling decisions may be optimized in order to improve overall firm performance

([39], [40]) as well as understanding the various mechanisms through which scheduling de-

cisions may be linked to various performance drivers ([41], [42], [43]). Relative to existing

work our paper highlights how managers may internalize the costs of downstream effects

when making their scheduling decisions. Of particular interest to this current paper is work

examining the interaction of manager performance with the use of algorithmic tools ([44]).

The outline of the paper is follows: Section 1.2 outlines our data and presents some

descriptive statistics which motivate our subsequent modelling choices. Section 1.3 then

presents our model of workforce scheduling. Section 1.4 presents our empirical strategy and

identification arguments. Section 1.5 uses the model to provide an economic and econometric

interpretation of identification strategies that have been proposed in the existing literature.

Section 1.8 presents our main results which are used to simulate impulse responses in Section

1.9. Section 1.10 concludes.

1.2 Data

This section describes our dataset, sample restrictions and presents summary statistics de-

scribing the sample. We then explain how we use our data to construct the main variables

of interest used in our analysis. We present descriptive evidence of heterogeneity in both the

average quality of schedules and the characteristics of demand forecasts across teams and

report team-level correlations documenting a negative relationship between schedule quality

and the variance of demand forecasts. These descriptive findings motivate our subsequent
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modelling choices.

1.2.1 Overview

To perform our analyses we obtained data from a global provider of workforce management

software serving businesses in frontline service industries such as retail, QSR, restaurants,

hotels, staffing and healthcare. By the cutoff date used for data collection the provider

was operating across a total of 21 countries including Australia, the United Kingdom and

the United States. Businesses use workforce management tools as a means of forecasting

customer demand which can then used as an input to scheduling algorithms and templates

offered by the provider to generate optimized employee schedules. The software also offers

additional features to facilitate the tracking of employee time and attendance, co-ordinating

payroll and communicating with employees. As such their data offers a unique opportunity

to study questions related to frontline work arrangements.

Our dataset is constructed in the form of a worker-week panel by combining data from

four separate sources which we detail below: planned schedules; time-stamped activity logs;

forecasting integrations; and HR records. The HR records provide only a limited set of

demographic information about age and employment history and so in order to perform

additional analyses studying heterogeneous effects we performed an imputation exercise to

predict an employee’s gender based on their reported first and last name.

The planned schedules provide information on the businesses, teams and locations in

which individual employees are assigned as well as the weekly schedules set by their managers.

These records include details as to when individual employees were supposed to start and

finish work each day as well as information on any scheduled breaks or days off. These logs

also provide us with records as to when employees were last notified about any updates to

their schedule. Whilst researchers have long been interested in studying the effects of having

short notice of schedule changes and last-minute shift cancellations they have typically had
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to rely on survey-based datasets to infer the prevalence of such practices ([8]).

The time-stamped activity logs are obtained from geo-fenced time clocks which are in-

stalled on employee mobile devices and are used by employers to track the hours worked by

their employees. They provide information as to when each individual actually punched in

and out for a shift, any breaks taken and any unscheduled absences. The logs also provide

information on the total wage costs incurred by the firm for each shift which we use to

determine employees’ hourly earnings.

The forecasting integrations allow us to observe the time series data which businesses

use to inform their day-to-day staffing operations. For example, the data for a restaurant or

hospitality business might provide details on the number of sales and transactions through

each of the cash registers in the organization; a retail business may use total footfall; and a

hotel might use total room bookings. In addition to the realized values for these time series

we were also provided with details related to the forecasting algorithms used by the software

provider to display forecasts to managers when making scheduling decisions. Importantly,

prior to 2021 these algorithms comprised of a set of deterministic heuristics which allow

demand forecasts to be reconstructed exactly.

1.2.2 Sample

In order to focus our analyses on teams using the software as part of their day-to-day staffing

operations we restricted our sample to teams that we observe for at least 3 months. This

restriction also ensures that our data excludes organizations that may be in the process of

migrating across from other software vendors and whose data may not yet offer an accurate

insight into their current operations. We also excluded firms who the software provider

indicated were using the software as part of an on-going pilot or sales process. At the

employee level we restrict ourselves to a sample of workers with non-missing data who have

been continuously working in a team for at least four weeks. Such a restriction allows us
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to focus on a subset of workers most likely to be employed by the firm and for whom our

variables of interest are well defined. For example, it is common for businesses to use a small

number of trial shifts as part of their recruitment process which we wish to exclude from our

analyses.

Our final sample contains detailed records for the period 2012-2021 and covers a total of

2,123,228 worker weeks for 83,095 employees working across 5,274 teams within 790 separate

organisations. Sampled organisations are typically medium-sized enterprises with an average

of 70 employees. We present a set of summary statistics in Table 1.1 and highlight some

important features. Most workers are young and would not typically be considered full-

time. The average employee is 21.08 (σ = 6.87) and typically works 15.07 hours per week

(σ = 9.10) across 3.13 separate shifts (σ = 1.31). We see no meaningful disparities in the

gender composition of our sample which is 57% male (σ = 0.49).

1.2.3 Variables of Interest

We describe below how our main variables of interest are calculated using our data. In

constructing these measures we join a recent body of research attempting to measure the

quality of shift-based work using personnel data collected as part of the management of

a firm’s day-to-day workforce operations ([45], [44], [42], [7] ). This work adds to earlier

research making use of employee interviews and surveys ([24], [25], [26], [27] [28]).

Separations — Our primary outcome of interest is the separation of employee i from

team j in week t, denoted as Sijt. A separation is defined as the first week in which an

employee with a continuous employment history is no longer observed within a firm. This

definition automatically excludes temporary separations related to vacations and absences as

well as separations which occur as a result of internal mobility between teams within the same

firm. To avoid falsely including separations which arise when a firm closes or changes software

providers we exclude separations that occur within 4 weeks of a firm exiting our sample.
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Table 1.1: Descriptive statistics

Mean Standard Deviation

Workers

Proportion male 0.57 0.49
Age at entry 21.08 6.87
Shifts per week 3.13 1.31
Hours per shift 4.70 1.67
Hours per week 15.07 9.10
Log wage 3.02 0.37
Average tenure at separation (weeks) 26.81 31.78

Firms

Teams per firm 6.67 19.93
Employees per team 10.10 7.37
Separation rate (weekly) 0.02 0.06
Log output per worker 8.81 1.34

Sample Size

Firms 790
Teams 5,274
Employees 83,095
Worker weeks 2,123,228
Shifts 6,645,704
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Although our definition doesn’t enable us to separately distinguish between voluntary and

involuntary separations it is well documented that voluntary separations typically account for

the vast majority of total separations. For example, the JOLTS report 12/31/2022 indicates

that 70% of all separations are voluntary (US [46]). We expect this number to be higher for

the industries covered in our sample.

Our data indicate that the average employment spell of an employee within any given

team is short. The average tenure at separation is 26.81 weeks (σ = 31.78) which at the team

level manifests itself in a weekly separation rate of close to 2% (σ = 0.06). This separation

rate is consistent with numbers typically reported for businesses in the retail, leisure and

hospitality sectors. These numbers suggest that the costs of turnover will be of first-order

importance to the firm even though weekly separation rates may be small on a per-worker

basis.

Schedule Quality — We use our data to construct a baseline measure of schedule quality

Vijt as well as two additional measures V Daily
ijt and V Predictability

ijt which we use to highlight

the robustness of our results. These measures are commonly used in the existing litera-

ture and are motivated by existing research from the University of Chicago’s Employment

Instability, Family Well-being, and Social Policy Network ([25]) and the Harvard Kennedy

School’s SHIFT project ([26]). This work highlights the central roles played by variability

and unpredictability in determining the quality of a worker’s schedule. In Section 1.3 we de-

scribe the relationship between our observable quality measures and the primitives of worker

preferences.

For worker i working in team j in week t our primary measure of schedule quality Vijt is

constructed as follows

Vijt = −
(
Hijt − H̄ij

)2
(1)
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where Hijt denotes i’s total hours worked in week t and H̄ij denotes worker i’s average

weekly hours. Our V Daily
ijt measure of schedule quality captures variability in daily hours and

is constructed as

V Daily
ijt = −

(
Sijt − S̄ij

)2
where Sijt denotes worker i’s average shift length in t and S̄ij denotes worker i’s average shift

length. Our V Predictability
ijt measure captures the predictability of a schedule and is calculated

as

V Predictability
ijt =

1

Kijt

Kijt∑
s=1

Mijts

where Kijt denotes the number of shifts worked by worker i in week t and Mijts denotes the

amount of notice that was provided to worker i in advance of each of those shifts.

To help motivate the policy relevance of our subsequent findings it is useful to explain

how our observable measures of schedule quality may be linked to common features of ‘Fair

Workweek’ legislation which has been proposed in multiple US jurisdictions. For example,

our V and V Daily measures of schedule quality are often formalized by a requirement that,

prior to or upon employment, employers provide written estimates of the usual number of

days and hours each employee can expect to work. Our V Predictability measure of schedule

quality is often formalized by a requirement that employers pay an hourly wage premium

after making changes to employees’ shifts at short notice. In many cases proposed legislation

will link predictability and variability by making the aforementioned wage premia dependent

on whether or not shift changes resulted in a loss or increase of hours.

Customer Demand —We measure customer demand Ajt at the team level by reconstruct-

ing the demand forecasts which were rendered to managers when making their scheduling
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decisions. We divide by the team size to obtain per-worker measurements. Whilst in practice

we cannot rule out the possibility that managers have access to additional information when

making scheduling decisions we believe these forecasts to be a reasonable proxy.

1.2.4 Descriptive Statistics

We document below three descriptive features of our data which motivate our subsequent

modelling decisions.

Heterogeneity in Quality Between Teams — Previous work suggests there may be mean-

ingful heterogeneity in the provision of schedule quality across teams and firms. For example,

several studies highlight that low predictability and high variability are typically more preva-

lent for workers in certain industries, such as retail and service sectors ([47], [26], [25]). To

investigate this idea Figure 1.1 provides a first illustration of the extent to which our mea-

sures of schedule quality vary across teams. The left panel reports team-level medians of

our V measure and documents noticeable heterogeneity. The average value of these team-

specific measures is given by -55.65 which corresponds to a deviation from week-to-week of

7.42 hours or approximately 25% of total weekly hours. The standard deviation across teams

is 39.67 and the distribution displays negative skew suggesting the presence of certain teams

with significantly greater variability in hours.

The right panel reports team-level medians of our V Predictability measure and indicates that

there is also a large amount of variability in the amount of notice received by employees about

their upcoming shifts. The average value of these team-specific measures of V Predictability is

given by 5.96 days. The standard deviation of this measure across teams is 2.77 and the

distribution displays positive skew. We document a sizeable number of teams requiring their

employees to work at very short notice. For example, the bottom 10% of teams provide less

than 3.56 days notice ahead of employee shifts.
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Heterogeneity in Demand Between Teams —To investigate whether similar heterogeneity

exists in the variability of customer demand we estimated the following ARCH specification

separately for each team:

At = µ+ ϵt, E[ϵt] = 0

ϵt = σtet et ∼ N (0, 1)

σ2
t = ρ0 + ρ1ϵ

2
t−1

(2)

where µ is a constant mean, ϵt is a time-varying shock, et is a standardized residual and σ2
t

is the conditional variance of demand. The normality assumption is not essential but will

allow us to generate closed form solutions for optimal manager behavior when incorporated

into the model in Section 1.3.

Our results are illustrated in Figure 1.2. The left panel shows a histogram of the uncon-

ditional variance and shows substantial heterogeneity across teams. The average variance

is given by 0.17 and the standard deviation across teams is given by 0.81. The estimated

variances also document positive skew with certain demand streams exhibiting particularly

high variance. The right panel shows a histogram for the absolute value of the estimated

team-specific ARCH coefficients and also shows substantial heterogeneity. The average co-

efficient has an absolute value of 0.31 which is consistent with the presence of meaningful

autoregressive conditional heteroskedasticity. The standard deviation across teams is 0.279.

Cross-Sectional Correlations — Table 1.2 reports estimates from team-level OLS re-

gressions of average schedule quality on the variance of customer demand within a team.

Estimates for each of our quality measures V , V Daily and V Predictability are shown in Columns

(1), (2) and (3) respectively. The estimates indicate that, on average, teams in which the

variance of customer demand is higher are associated with lower quality schedules. Coeffi-

cients are statistically significant at conventional levels for both our V and V Daily measures.
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We note that these findings at the team level are consistent with our subsequent analysis

using worker panel data.
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Figure 1.1: Distribution of average schedule quality across teams
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Figure 1.2: Distribution of forecast demand across teams

(1) (2) (3)
(Intercept) −2.3195∗∗∗ 2.0420∗∗∗ 4.7369∗∗∗

(0.0173) (0.0227) (0.0083)
Var(Ajt) −0.9603∗∗∗ −1.6397∗∗∗ −0.0354

(0.1218) (0.1599) (0.0583)
Quality Measure V V Daily V Predictability

Num. obs. 5274 5274 5274
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Team level regressions of average
schedule quality on the variance of demand forecasts. Standard errors
in parentheses.

Table 1.2: Relationship between variance of customer demand and schedule quality
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1.3 Model

Time is discrete and runs from t = 1, ..., T . We consider a representative manager who

is responsible for a team comprised of a large set of N workers indexed by i = 1, ..., N .

We begin by formalizing how worker preferences depend on schedule quality and show how

variable scheduling may lead to higher turnover rates. Next, we present a simple model of

team aggregation in which shift swaps between workers can be used to derive a mapping

between worker level utilization rates and the aggregate variables that are chosen by the

manager. Lastly we study the optimal behavior of the manager who takes worker choices

as given and internalizes the effect of variable scheduling on turnover costs when choosing

aggregate variables.

1.3.1 Workers

We assume that in period t an employed worker i receives the following flow utility from

wages W, a set of time-invariant team amenities ξ and hours H:

uit(W,H, ξ) = αwW − αv

(
H −H∗

it

)2
+ ξ + νEit,

where H∗
it represents worker i’s ideal total hours in period t and νEit represents a shock to

the utility that worker i receives from their continued employment in the team. We assume

that H∗
it and νEit are identically and independently distributed across both individuals and

time and introduce the following distributional assumptions

H∗
it ∼ N (1, σ2

H) νEit
∼ T1EV
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Schedule quality is defined at the worker level using the term

V ∗
it ≡ − (Hit −H∗

it)
2 (3)

so that the quality of a worker’s schedule depends on the extent to which their hours deviate

relative to their desired level. Our definition is motivated by a large sociology literature

suggesting that poor quality schedules make it difficult for employees to effectively plan

activities and meet responsibilities outside work ([47], [48]). Such findings will be consistent

with the model only if αv > 0 so that utility is decreasing in the squared difference between

actual and ideal hours.1

Exposing the worker to variability in hours will be useful for the manager because it will

allow them to scale hours worked in response to fluctuations in customer demand. When

αv > 0 we also expect there to be additional costs associated with variable scheduling that

arise on account of higher employee turnover. To microfound these turnover costs Appendix

1.A.1 presents a stylized model of on-the-job search (e.g. [6]) in which each period employed

workers within a team receive outside utility offers drawn from some common distribution

with mean Ō. When outside offers are independent, Ō is sufficiently unattractive2 and

workers have adaptive expectations over the future paths of schedule quality and wages the

model yields the following structural equation describing the relationship between weekly

separation rates and the level of amenities, wages and schedule quality in the team

P(ξ,W, V ∗) ≡ Pr(Sit = 1|ξ,W, V ∗) =
1

1 + exp(ξ̃ + α̃wW + α̃vV ∗)
(4)

1. It is also possible to generate preferences which depend on variability in hours through mean-variance
or quadratic utility functions.

2. This assumption is consistent with our worker-level data in which weekly separation rates at the indi-
vidual worker level are small.
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where we defined ξ̃ = ξ−Ō
1−β

, α̃v = αv

1−β
and α̃w = αw

1−β
for some discount rate β. When

αv > 0 and αw > 0 weekly separation rates will be decreasing in schedule quality, wages and

amenities.

1.3.2 Shift Swapping and Aggregate Team Hours

We allow the realized values of schedule quality V ∗
it which enter Equation 4 to depend on a

two-stage scheduling process which incorporates both manager choices and the idiosyncratic

worker shocks {H∗
it}Ni=1. In a first-stage, before worker preference shocks have been drawn,

managers use demand forecasts to determine a desired total number of hours to be worked

at the team level. The distribution of total hours across workers is then determined during

a second stage in which workers have access to a shift-swapping technology that enables

them to adjust hours by trading their shifts with other workers. Shift-swapping tools are a

standard feature in the majority of scheduling software applications.

The presence of shocks to workers’ ideal hours suggests that there will be gains from

trade relative to a baseline policy in which hours are distributed equally across workers. To

exhaust these gains we model shift swaps by assuming that the resultant allocation of hours

across workers will be equivalent to that obtained from maximizing total worker surplus

subject to the constraint that total hours worked by the team coincides with the manager’s

desired total in the first-stage:

{Hit}Ni=1 = argmin
{hit}Ni=1

N∑
i=1

(hit −H∗
it)

2 subject to
N∑
i=1

hit = H̄t

where H̄t is the manager’s desired total team hours from the first-stage. In Appendix 1.A.2

we show that solving this program yields the following expression for worker i’s allocation
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of hours in period t:

Hit =
H̄t

N
+H∗

it −
1

N

N∑
m=1

H∗
mt︸ ︷︷ ︸

πit

, (5)

so that total hours at the worker level is increasing in both the aggregate total chosen by

the manager and the net value of idiosyncratic shocks. Intuitively, the result shows that

a worker’s idiosyncratic preferences are more likely to be satiated in large teams whilst in

smaller teams workers will be more exposed to the taste shocks of co-workers.

1.3.3 Managers and Demand Driven Scheduling

Managers have access to a linear production technology which allows the production of

output Yt as a function of customer demand At and total hours worked H̄t:

Yt = AtH̄t

where total hours is calculated as the sum across the N worker-level variables, Hit, derived

in Equation 5:

H̄t =
N∑
i=1

Hit

and customer demand is modeled according to the ARCH(1) process given in Equation 2.

Importantly, we allow for the possibility that in the cross-section the level of amenities may

be endogenous to the stochastic process faced by the firm.

We assume that managers have access to a scheduling tool which allows them to adjust

total scheduled hours in response to realized values of customer demand according to some
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policy rule g(.) chosen by the manager from a class of policy rules G

H̄t = g(At), g(·) ∈ G

Workers are paid hourly and receive a fixed wage Wt that must be set by the manager in

advance of observing At such that the total wage costs in period t are given by H̄tWt. We

model the ongoing turnover costs of replacing employees as c · Qt where c is a per-worker

turnover cost and Qt is a random variable which measures the number of employees who

separated in period t and whose distribution is characterized by Equation 4. The manager’s

problem can then be written as

max
{g(·), W}

E
[
At · g(At)−W · g(At)− c ·Qt

]
subject to g(·) ∈ G

where expectations are taken with respect to the information set in period t− 1. Note that

there are two causes of uncertainty in the model which arise from the fact that both At and

Qt are random variables.

Our main analysis considers policy rules in which hours-per-worker scales linearly with

shocks to demand

g(At)

N
= 1 + ϕ[At − µ], ϕ ∈ [0, 1] (6)

where the parameter ϕ determines the responsiveness of allocated hours-per-worker to de-

mand shocks and is chosen by the manager in advance of observing At. A value of 0 implies

that employees’ hours are completely fixed whilst a value of 1 implies that hours adjust

one-for-one with changes to demand. Whilst restrictive, this class is representative of the

policy rules used in industry settings where so-called ‘labor ratios’ or ‘labor standards’ are
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used to determine a target number of scheduled employee hours which scales linearly with

additional units of demand.

Combining Equations 2, 5, and 6 implies that worker-level utilization is given by

Hit = 1 + ϕtϵt +H∗
it −

1

N

N∑
m=1

H∗
mt︸ ︷︷ ︸

πit

(7)

which implies that for large enough teams Qt will follow a Poisson distribution with rate

parameter given by λ = N · P(ξ,W, ϕ2ϵ2t ), where P(·) is the structural function defined in

Equation 4. Combining this result with our parametric assumptions on ϵt allows us to to

derive the following closed form expression for the firm’s expected turnover cost:3

E[c ·Qt] =
cN exp(−α̃wWt − ξ̃)√

1− 2α̃vϕ2
tσ

2
t

where we have the added regularity condition 1− 2αvϕ2
tσ

2
t

1−β
> 0 to ensure existence. Intuitively,

turnover costs are decreasing in wages and the level of team amenities. This follows directly

from the fact that workers are less likely to receive outside offers which are preferable to

their current employment when in a team which offers a high level of wages and amenities.

Since variability is undesirable (αv > 0) we see that turnover costs are increasing in ϕ2
tσ

2
t ,

which measures the amount of the conditional variance in customer demand to which the

worker is exposed. This highlights the fundamental trade-off facing the firm under variable

scheduling policies since marginal (expected) revenue is increasing in ϕt.

The closed form expression for turnover costs allows us to solve for the manager’s optimal

choice of Wt and ϕt which we collect in Proposition 1. The proof is given in Appendix

1.A.3. Related comparative statics are given by Corollary 1. Interestingly, whilst a long line

3. Specifically, the normality assumption for et implies that ϵ2t has a gamma distribution G( 12 , 2σ
2
t ).
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of research examines how shocks to the conditional mean of productivity pass through to

employee wages ([49], [50], [19]), our result highlights that higher order moments are relevant

for the quality of worker schedules.

Proposition 1 For managers of large teams in which the average weekly separation

rate is small the optimal choice of Wt and ϕt is given by

ϕ∗
t =

√
2α̃vα̃2

wσ
2
t + α̃2

v

2α̃vα̃wσ2
t

− 1

2α̃wσ2
t

(8)

W ∗
t =

ln(c α̃2
wσt)

α̃w

−
ln
(√

2α̃vα̃2
wσ

2
t + α̃2

v − α̃v

)
2α̃w

− ξ

α̃w

(9)

Corollary 1 (a) Wages are decreasing in the level of amenities ξ and increasing in the total

amount of risk to which the worker is exposed σ2
t ϕ

2
t . (b) The variance of observed weekly

worker hours is increasing in both the conditional variance of customer demand σ2
t and the

variance of employee preference shocks σ2
H .
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1.4 Empirical Strategy

We are interested in obtaining estimates of the following quantities

Parameters of Interest: ∆v∗P ≡ ∂P(·)
∂V ∗ , α̃v , α̃w

where P(·) is the structural probability that a worker separates defined in Equation 4. The

parameter ∆v∗P measures the causal effect of schedule quality on employee turnover which

is of independent interest in our setting where annual turnover rates exceed 100%. A similar

parameter is studied in [7] and [8]. We will also be interested in obtaining estimates of αv

αw

which measures an employees’ willingness to forgo wages in exchange for improved schedule

quality. The definition given in Equation 3 indicates that V ∗ is unobserved and so we

highlight what can be learnt when our observable measure V defined in Equation 1 is used

as a proxy.

1.4.1 Endogeneity in Cross-Sectional Comparisons

Cross-sectional comparisons of separation rates between teams which fail to control for the

unobserved level of amenities ξj which enter into Equation 4 will generally not yield consistent

estimates of our target parameters. This holds even in the absence of idiosyncratic shocks to

a worker’s ideal number of hours. To see this, start by fixing σ2
H = 0 so that actual schedule

quality and observed schedule quality coincide (i.e. V ∗
ijt = Vijt) and combine with Equation

7 to yield

Vijt = V ∗
ijt = ϕ2

jtϵ
2
jt,

which indicates two mechanisms through which schedule quality and wages will be endoge-

nous. In the first instance we will be concerned that the level of amenities in a team and
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the conditional variance of customer demand may be correlated such that E[ϵ2jtξj] ̸= 0. For

example, an underlying factor such as the amount of face-to-face customer interaction re-

quired to perform a role may simultaneously make a role innately undesirable and expose

it to higher variability in customer demand. Recent empirical work documents a positive

relationship between the productivity of firms and the level of amenities that they offer ([18],

[19], [51]). These findings suggest that similar relationships may exist between amenities and

empirical moments of customer demand.

Secondly, we expect that teams endowed with better quality amenities are able to offer

lower quality compensation to their workers than teams with lower quality amenity endow-

ments such that E[Vijtξj] ̸= 0 and E[Wijtξj] ̸= 0. Intuitively, a team which is conveniently

located next to a public transit hub is likely to find that its weekly staff turnover rates are

lower than an equivalent team offering similar quality schedules and wages but located in an

inconvenient location. As a result the optimal policy of the manager will be to offer lower

compensation. This result is seen formally using the model by observing the dependence of

Equation 9 on ξ from which it follows that neither αw nor αv are identified. That neither

coefficient is identified even though Equation 8 does not depend directly on ξ is a result of the

fact that Hijt and Wijt are jointly determined by σjt which implies that |Cov(Wijt, Vijt)| > 0.

1.4.2 Endogeneity in Time-Series Comparisons

When there are idiosyncratic shocks to a worker’s ideal number of hours, σ2
H > 0, comparisons

of separation rates within a team over time will also fail to yield consistent estimates of

target parameters. This is because worker preferences depend on both the realized level

of hours worked and the idiosyncratic shocks to their ideal number of hours. Whilst we

observe the former the latter are latent from the perspective of the researcher. When hours

at the individual worker-level are able to adjust in response to these worker preference

shocks, as is the case with a shift-swapping technology, then observed schedule quality will
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fail to adequately capture the actual quality experienced by the worker. Intuitively, when

naively using observed schedule quality as a proxy for the quality experienced by a worker

we fail to account for the fact that some of the observed variation in quality may in fact

be desirable. As a result, attempts to estimate Equation 4 using Vijt instead of V ∗
ijt will

generally underestimate the true value of αv.

To show this formally, Appendix 1.A.4 shows that for large T our observed quality mea-

sure V can be mapped to actual quality V ∗ according to the relationship

Vijt →p V
∗
ijt + errvijt (10)

where errvijt is a measurement error which depends on worker i’s realized hours Hijt and

preference shocks H∗
ijt. Subsequently substituting for Hijt using Equation 7 reveals that

|Cov(errvijt, V ∗
ijt)| > 0 and highlights that the measurement error is non-classical.

1.4.3 Identification using within-firm variation and instrumental variables

Motivated by the above concerns our main identification arguments combine two approaches.

Firstly, we account for the potential endogeneity of schedule quality and wages in the cross-

section by leveraging the large time-dimension of our panel to focus on the variation in

separation rates, schedule quality and wages observed within a team over time. To further

account for the potential endogeneity which arises when using Vijt as a proxy for V ∗
ijt we use

the realized variance of demand forecasts as an instrumental variable.

In Appendix 1.A.7 we use our model to show that Equation 4 can be approximated with

the following quantity

Pr(Sijt = 1|ξ,Wijt, V
∗
ijt) ≈ F (ξj,Wijt, ϕ

2
jtϵ

2
jt) =

1

1 + exp(ξ̃ + α̃wWijt − α̃vϕ2
jtϵ

2
t )

(11)

which suggests a simple approach to estimation using limited information maximum likeli-
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hood ([52]). In particular we estimate the conditional distribution of separations Sijt accord-

ing to the following specification

fS(s|Xijt, ξj, λt) = F (X ′
ijtα + ξj + λt)

s[1− F (X ′
ijtα + ξj + λt)]

1−s, s ∈ {0, 1}

where Xijt =
(
Wijt, ϕ

2
jtϵ

2
jt

)′
, ξj are team fixed-effects and λt are an additional set of effects

controlling for calendar time.

Since ϕjt is unobserved it must also be estimated in a first-stage. Using Equation 7 we

can write observed quality as

Vijt = E[π2
ijt] + ϕ2

jtϵ
2
jt + νijt,

where νijt = 2πijtϕjtϵjt + π2
ijt − E[π2

ijt] is an error term satisfying E[ϕ2
jtϵ

2
jtνijt] = 0. This

implies that OLS regressions will recover consistent estimates of ϕ2
jt after appropriately

parameterizing ϕ2
jt. We use Equation 8 to motivate the following parameterization for some

flexible choice of f(.):

ϕ2
jt = f(σ2

jt, σ
2
j )

in which ϕjt is allowed to vary as a function of the conditional and unconditional variances

of team demand. We additionally include the unconditional variance of demand forecasts

to account for the fact that in practice it is known that managers typically update their

scheduling software configurations at irregular intervals. As a robustness we also report

estimates based on parameterizations involving higher order moments.

It is well known that an incidental parameter problem can cause severe bias in nonlinear

panel data models when either J or T is held fixed ([53]). Accordingly we take advantage

of the length and width of our panel and rely on results showing consistency of estimators
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for α, {ξj}j=1:J and {λt}Tt=1 when both J and T are allowed to grow with the sample size

under an asymptotic where T → ∞, J → ∞ and J
T
→ κ > 0 ([23]). Importantly, although a

standard maximum likelihood estimator will be consistent, it has an asymptotic bias which

can result in severe under-coverage of confidence intervals. To address this concern we

utilize results from [20] and [21] who demonstrate how to construct an alternative estimator

based on the split-panel Jackknife introduced by [22]. Confidence intervals constructed using

this corrected estimator are shown to have significantly improved coverage properties. For

average partial effects the incidental bias problem is negligible asymptotically because the

order of the bias can be shown to be smaller than the rate of convergence ([21]).
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1.5 Relationship to Existing Literature

We can use our model to provide an economic and econometric interpretation of identification

strategies which have been proposed in the existing literature. We focus on two common

strategies. The first uses the two-stage least-squares estimator and the second uses a logit

specification without instrumental variables.

1.6 Estimates Using 2SLS

Strategies involving two-stage least squares use some form of the following specification

described in [7]

Sijt = α2SLS
v Vijt + α2SLS

w Wijt + λj + λt + eijt (12)

Vijt = ω1Zijt + ω2Wijt + κj + κt + vijt (13)

in which Zijt is an instrumental variable to be used in the first-stage described by Equation

13. The main disadvantage of the linear probability model is that it will be misspecified when

the true separation rate is given by Equation 4. Although in many cases it has been shown

that marginal effects from a linear probability model are similar to true marginal effects

when the correct specification is known ([54]), theoretical arguments typically require fitted

probabilities to be close to 0.5 in order for linear approximations to be valid. By contrast,

fitted probabilities will be small in our setting. In Section 1.8 we compare estimates obtained

using 2SLS specifications to those obtained from our model and do report some quantitative

differences, although qualitatively our results are very similar.

In addition, we note that coefficients obtained from the two-stage least squares specifi-

cation in Equation 12 cannot be interpreted directly in terms of the preference parameters

from Section 1.3, however, the signs of coefficients will have an inverse relationship. For
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example, when αw > 0 and αv > 0, so that utility is increasing in schedule quality and

wages, we expect separations to decrease when wages and quality increase which implies

that α2SLS
w < 0 and α2SLS

v < 0.

Our model suggests a natural choice of instrument constructed using shocks to the de-

mand forecasts which were rendered to managers. In particular, setting Zijt = ϵ2jt will satisfy

the necessary exogeneity and relevance conditions. To see this we show in Appendix 1.A.5

how our model can be used to derive

Cov
(
ϵ2jt , errvijt

)
= 0 (14)

Cov
(
ϵ2jt , Vijt

)
< 0 (15)

which shows that realized demand shocks are correlated with observed schedule quality

Vijt but uncorrelated with the measurement error errvijt described in Equation 10. The

autoregressive conditional heteroskedasticity in the variance of customer demand implies

that lagged values of ϵ2jt may also be used as relevant instruments. The use of lagged forecasts

may have additional robustness properties in cases when managers’ demand forecasts make

use of team outcomes such as sales or transactions.

It is useful to highlight the restrictions on economic behavior imposed by Equation 14.

In particular we require that the shocks to a worker’s preferred hours are independent of the

demand shocks facing the team. Such an assumption may be restrictive if there are common

underlying shocks which jointly determine both customer demand and worker preferences.

An example of such a shock might be a holiday or an event which simultaneously increases

customer demand whilst reducing an employee’s desired hours. The inclusion of time effects

at the weekly level across our specifications is designed to address this concern.

The economic content of this restriction turns out to be similar to that required when

using the instrumental variable proposed in [7]. In that paper the authors instrument for
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observed schedule quality using paid days off (PDO) or unexplained absences of co-workers

in the same team. Recall that Equation 5 derives worker-level shocks to utilization in period

t as

πit = H∗
it −

1

Nj

Nj∑
m=1

H∗
mt =

N − 1

N
H∗

it −
1

Nj

∑
m ̸=i

H∗
mt

which suggests an interpretation of PDO and absences as negative shocks to the H∗
mt of co-

workers. Using our model we see that these instruments will satisfy an exogeneity restriction

when

Cov
( 1

Nj

∑
m̸=i

H∗
mt , −2ϕtϵtH

∗
it − 2πitH

∗
it +H∗

it
2
)
= 0 (16)

which is satisfied under our stated assumptions and similarly requires independence between

employee preference shocks and team-level demand shocks. Note that in contrast to our

own proposed instrument, instruments constructed from PDO and absences may not satisfy

a necessary relevance condition in large teams. This follows from direct application of the

WLLN to the LHS of Equation 16.

1.7 Estimates Without Instrumental Variables

Strategies using logit models without instrumental variables use some form of the following

specification described in [8]4

logit(Sijt) = αlogit
v Vijt + αlogit

w Wijt + λj + λt (17)

4. In practice the authors use time-invariant team-level covariates as opposed to team fixed-effects.
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In this case, directly using Vijt in place of V ∗
ijt results in misspecification. Although the

resultant bias has no closed form in the logit case, it can be characterized when approximated

using a linear probability model using standard formulas for omitted variable bias. In this

case, we show that within-firm OLS estimates for the effect of schedule quality on separations

using our observed measure of schedule quality in team j can be written as

α̂LPM
v = α̃v + b where sign(b) = sign

(
Nj − 1

Nj

[
1

2
− 1

N2
j

+ ϕ2
jt

σϵj

σH

])

where Nj is the number of workers employed in team j. The result implies that separation

elasticities based on naively substituting Vijt for V
∗
ijt when estimating Equation 4 will yield

estimates that underestimate their true values in teams of size 2 or more. Motivated by this

concern [8] include a dummy variable Dijt in their specifications which indicates whether or

not an employee had no input into their schedule. Whilst this may reduce the size of the

resultant bias it is unclear whether it is sufficient to fully remove it.
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1.8 Results

1.8.1 Main Estimates

Baseline estimates of the separation function in Equation 4 using our main observed quality

measure V are reported in Table 1.3. Estimates are obtained using the limited information

maximum likelihood procedure described in Section 1.4. In Column (1) we report coefficient

estimates which are directly interpretable in terms of the scaled preference parameters α̃w and

α̃v and have been bias-corrected following the procedure outlined in [21]. The corresponding

average marginal effects are reported in Column (2). A similar set of estimates using our

alternative V Daily and V Predictability measures are reported in Table 1.8.

We first examine the average marginal effects which have an interpretation as the causal

effects of schedule quality and wages on weekly separations. The estimated effect for log

quality is -0.0057 (0.0029) and is significant at the 5% level. This result indicates that

a 10% increase in schedule quality is associated with a decrease in weekly separations of

approximately 0.057 percentage points. The estimated effect using log wages is -0.0050

(0.0009) and is significant at the 1% level. This result indicates that a 10% increase in wages

is associated with a similar decrease in weekly separations of 0.050 percentage points. Table

Utility Coefficients Marginal Effects
(1) (2)

Log quality 0.3557∗∗ −0.0057∗∗

(0.1815) (0.0029)
Log wage 0.3087∗∗∗ −0.0050∗∗∗

(0.0540) (0.0009)
Num. obs. 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Structural estimates for the
effect of schedule quality on separation rates. Standard errors
in parentheses are block bootstrapped at the team level and
account for first-stage estimation.

Table 1.3: Structural estimates for the effect of schedule quality on separation rates
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1.8 shows that these main qualitative conclusions, that wages and schedule quality both have

a negative effect on the probability of worker separations, are unchanged when estimated

using our alternative quality measures, although we note that the estimate for V Predictability

is not significant at conventional levels.

We next examine the estimated utility parameters. The estimated coefficient on schedule

quality has a value of 0.36 (0.18) and is statistically significant at the 5% level which indicates

that αv > 0 such that workers do get positive utility from better quality schedules. Similarly,

the reported coefficient on wages has a value of 0.31 (0.05) and is statistically significant at

the 1% level which indicates that αw > 0 such that, unsurprisingly, utility is also increasing

in wages. Comparing the ratio of coefficients allows to interpret the value to employees of

improved schedule quality when measured in terms of wages. Our estimates suggest that

workers would be willing to accept a reduction in wages of 1.2% in exchange for a 1%

improvement in schedule quality. Table 1.8 again shows that our qualitative conclusions are

robust when estimated using our alternative quality measures although we note again that

the coefficient for V Predictability is not significant at conventional levels. These findings are

consistent with the experimental evidence reported in [35] who document a strong aversion

to jobs that permit employer discretion in scheduling. In their setting job applicants are

willing to take a 20 percent wage cut to avoid these jobs.

In Table 1.4 we probe the robustness of our estimates to alternative parameterizations

of ϕjt. Specifically, focusing on our preferred V measure, we report estimates obtained from

alternative specifications in which ϕjt is allowed to depend on higher-order moments of the

unconditional distribution of team-level demand. Columns (1) and (4) report results from a

specification in which ϕjt is also allowed to depend on the unconditional skewness, Columns

(2) and (5) report results from a specification in which ϕjt is also allowed to depend on the

unconditional skewness and kurtosis, and Columns (3) and (6) report results from a fully

interacted specification involving all conditional and unconditional moments. Across all of
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the specifications our main conclusions are unchanged relative to our baseline estimates.

Utility Coefficients Marginal Effects
(1) (2) (3) (4) (5) (6)

Log quality 0.2711∗∗ 0.2851∗∗ 0.2134∗ −0.0046∗∗ −0.0049∗∗ −0.0036∗

(0.1555) (0.1322) (0.1248) (0.0025) (0.0021) (0.0020)
Log wage 0.2870∗∗∗ 0.2906∗∗∗ 0.2722∗∗∗ −0.0047∗∗∗ −0.0048∗∗∗ −0.0045∗∗∗

(0.0485) (0.0474) (0.0453) (0.0008) (0.0008) (0.0007)
Moments 1 2 3 1 2 3
Num. obs. 2123228 2123228 2123228 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Structural estimates for the effect of schedule quality on separation
rates. Standard errors in parentheses are block bootstrapped at the team level and account for first-
stage estimation.

Table 1.4: Robustness to alternative parameterizations of ϕjt

1.8.2 2SLS Estimates

Next, we compare our main estimates to an additional set of results obtained when using the

two-stage least-estimator outlined in Section 1.5. We start by first assessing the relevance of

using ϵ2jt as an instrument for schedule quality. Column (1) of Table 1.5 reports coefficient

estimates for the first-stage relationship described in Equation 13. Since the ARCH process

for customer demand implies that lagged forecasts may also be used to construct valid

instruments in Columns (2) and (3) we also include specifications estimated with instruments

constructed from demand forecasts at 1 and 2 week lags respectively. Column (4) reports

estimates when all instruments are included. A similar set of estimates using our alternative

V Daily and V Predictability measures are reported in Table 1.9.

Focusing on the contemporaneously displayed forecasts in Columns (1) and (4) we see

that estimated coefficients are negative and statistically significant at the 1% level which is

consistent with both our understanding of how managers use the scheduling software tool

and the team-level relationships which were documented in Table 1.2. Intuitively, our results

suggest that when shown a demand forecast which indicates that demand per worker is likely
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to either fall below or exceed its usual level managers respond by adjusting employee hours

which causes a reduction in schedule quality. Larger deviations in demand are associated

with larger decreases in schedule quality. Coefficients from specifications using only lagged

demand forecasts are less precisely estimated. Table 1.9 documents similar results when

using our alternative quality measures. In general, we find that the magnitude of coefficients

is slightly smaller for these alternative measures.

2SLS estimates corresponding to the outcome equation given in Equation 12 are reported

in Table 1.6. Column (1) reports IV estimates when contemporaneously displayed forecasts

are used as a single instrumental variable. Columns (2) and (3) report estimates when ad-

ditional instruments constructed using lagged demand forecasts are also included. Reported

coefficients are quantitatively similar across IV and 2SLS specifications. An alternative set

of estimates using our V Daily and V Predictability measures are reported in Table 1.10

We document that whilst these findings are qualitatively consistent with our main esti-

mates we do observe some quantitative differences. For example, we document that both

improved schedule quality and wages have a significant and negative effect on the probabil-

ity of worker separations. Since coefficient estimates from linear probability specifications

(1) (2) (3) (4)
ϵ2t −0.132∗∗∗ −0.172∗∗∗

(0.026) (0.023)
ϵ2t−1 −0.030 0.032

(0.024) (0.021)
ϵ2t−2 0.004 0.053∗∗∗

(0.023) (0.020)
Num. obs. 2123228 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Regression estimates for the
effect of shocks to the variability of customer demand on schedule
quality (as measured by variability in weekly hours). Standard errors
in parentheses are clustered at the team level.

Table 1.5: Effect of demand shocks on schedule quality
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can be interpreted directly as marginal effects our results can be compared directly to the

reported effects in Table 1.3. The magnitudes of estimated effects are slightly larger when

estimated using the 2SLS specification. Specifically, the reported coefficients for schedule

quality and wages in our most precisely estimated 2SLS specification are -0.02 (0.008) and

-0.01 (0.002) which are 4 and 2 times larger than our baseline estimates respectively.

To further probe the robustness of our results Tables 1.11 and 1.12 report coefficient

estimates obtained from specifications using instruments constructed from lagged demand

forecasts only. Table 1.11 reports IV estimates for our preferred V measure when forecasts

from the previous week are used as a single instrumental variable. Table 1.12 reports results

when additional instruments constructed using demand forecasts from higher-order lags are

also included. Estimated coefficients are quantitatively and qualitatively similar to those

from the specification using contemporaneously displayed demand forecasts.

1.8.3 Comparison to Fixed-Effects Estimators

Section 1.4 predicted that fixed-effects estimators which do not instrument for schedule

quality may be upward biased on account of the fact that some of the observed variability

in schedule quality may in fact be desirable from the perspective of the worker. To evaluate

this prediction Table 1.13 reports coefficient estimates when estimating Equation 17 using

(1) (2) (3)
Log quality −0.0310∗∗∗ −0.0239∗∗∗ −0.0237∗∗∗

(0.0109) (0.0090) (0.0084)
Log wage −0.0127∗∗∗ −0.0109∗∗∗ −0.0109∗∗∗

(0.0030) (0.0025) (0.0024)
Additional Lags None 1 2
Num. obs. 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Coefficient estimates from 2SLS
specifications. Standard errors in parentheses are clustered at the
team level.

Table 1.6: Estimates using 2SLS for effect of schedule quality on separation rates
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observed quality without instruments. Across all of our measures of schedule quality the

reported marginal effects are higher as predicted by the theory. The magnitude of the

differences between both sets of reported estimates is consistent with similar findings in [7]

who document similar differences between their OLS and IV estimates.

1.8.4 Heterogeneity by gender

A growing literature documents noticeable heterogeneity by gender in the extent to which

employees value having flexibility and control over their schedule ( [35], [55], [37]). In our

current setting such results suggest that the relationship between separation rates and sched-

ule quality may also vary when estimated separately by gender. As a simple way to test

this idea we examine the implications of interacting schedule quality in a 2SLS specification

with a dummy variable corresponding to employee gender. Results are reported in Table 1.7.

Across all of our measures of schedule quality we are unable to reject the null that gender

has no effect on our reported coefficients.

Whilst this specification is parsimonious, simple interactions of schedule quality and

gender implicitly impose additional restrictions on preferences. For example, a single inter-

action imposes the assumption that there are no differences by gender in the extent to which

employees value non-quality attributes such as wages or amenities. Given this concern we

also investigated alternative specifications in which we either included additional interaction

terms or re-estimated our baseline specification separately for male and female sub-samples.

Our qualitative conclusions were similar across each of these specifications.

The model in Section 1.3 suggests a simple mechanism which may be used to reconcile

these findings with the heterogeneous effects reported in the existing literature. First, recall

that our definition of schedule quality V ∗ uses the deviation in a worker’s weekly hours from

some ideal level. One possibility is that even if there is no heterogeneity in the underlying

preferences for V ∗, there may still be systematic differences in the distributions characterizing
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(1) (2) (3)
Log quality −0.0311∗∗∗ −0.0382∗∗ −0.0893∗∗

(0.0108) (0.0149) (0.0348)
Log quality x male 0.0002 −0.0008∗ 0.0004

(0.0004) (0.0005) (0.0002)
Log wage −0.0127∗∗∗ −0.0248∗∗∗ −0.0003

(0.0030) (0.0079) (0.0020)
Quality Measure V V Daily V Predictability

Num. obs. 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Key coefficient estimates from 2SLS
specifications for each of the proposed measures of schedule quality inter-
acted with gender. Standard errors in parentheses are clustered at the
team level.

Table 1.7: Heterogeneity in 2SLS estimates

the worker-level shocks to this ideal level. When expressed in terms of our model parameters

this suggests that σ2
H may be heterogeneous even though αv is not.
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1.9 Impulse Responses

To better contextualize the economic significance of our findings we also report impulse

responses implied by the model’s estimates. Specifically, we simulate the effect of a 90th

percentile demand shock at time t on separation rates over the subsequent 16 weeks. Figure

1.3 estimates the impact of this demand shock to average separation rates when fixing the

unconditional variance of customer demand in teams at its long-run average. In order to

incorporate the effects of different amenities across teams we simulate responses for each of

the observed teams in our sample and report the subsequent averages. We divide the figure

into two parts to illustrate the differences which arise on account of the stochastic process

which drives demand. Specifically, in the left panel we report the average effect of the shock

to a firm with an ARCH coefficient of 0.33. In the right panel we report the average effect of

the shock to a firm with an ARCH coefficient of 0.66. Both panels include 95% confidence

intervals obtained from a block-bootstrap of the two-stage LIML procedure described in

Section 1.4.

The figures reveal clear differences with regards to the extent to which the effects of

demand shocks propagate forward to subsequent periods. Specifically, we see that when

the ARCH coefficient is given by 0.33 the firm experiences an immediate increase in it’s

separation rate of almost 2%. This effect quickly dissipates and after 4 weeks separations

have returned to their steady state averages. Integrating under the curve implies that the

total number of separations over the 16 week period increases by 0.25%. By contrast, when

the ARCH coefficient is given by 0.66 we see that separation rates remain elevated for a

prolonged period. Our results indicate that persistence in the variability of demand can

have significant implications for cumulative separation rates. Integrating under the curve

implies that the total number of separations over the 16 week period now increases by almost

1%.
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Our impulse responses can also be used to highlight the effects of non-linearities in Equa-

tion 4 on average separation rates. In Figure 1.4 we repeat the analysis but instead report

the effects of a 90th percentile demand shock at time t on the median separation rate over the

subsequent 16 weeks. We see that when the ARCH coefficient is given by 0.33 the dynamics

are similar between the median and mean separation rates. By contrast, when the ARCH

coefficient is given by 0.66 we see that the mean separation rate adjusts more slowly to its

steady-state value than the median.
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Figure 1.3: IRFs - Average Separation Rates
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Figure 1.4: IRFs - Median Separation Rates
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1.10 Conclusion

The goals of this paper were to understand the mechanisms through which scheduling policies

impact the quality of worker schedules, to provide causal estimates of the effects of man-

ager scheduling policies on employee turnover and to obtain quantitative estimates of worker

valuations for unpredictable and variable schedules. To this end we developed a model of

workforce scheduling at the weekly level which highlighted the role of both worker preference

shocks and team-level demand shocks in explaining how the realized quality of worker sched-

ules is determined. Using matched employer-employee panel data obtained from a global

provider of workforce management software we documented meaningful heterogeneity in the

quality of schedules across teams that is consistent with our model predictions.

Our preferred empirical estimates suggest that improved schedule quality has a significant

and negative effect on the number of employee separations. We document that a 1% increase

in schedule quality is associated with subsequent decreases in worker separation rates of 0.01

percentage points and find that workers would be willing to accept a reduction in wages of

between 1.2% for a 1% improvement in schedule quality. We highlight that the economic

significance of these effects over prolonged periods depends on the nature of the stochastic

process for customer demand at the team-level. Our results add to a growing literature

studying the importance to workers of flexibility and control over one’s schedule ([35], [37],

[38]).

We outline a few caveats and extensions of our study. First, when microfounding the

turnover costs which are internalized by managers when making scheduling decisions our

analysis assumes that workers form adaptive expectations over the future path of realized

schedule quality. Although we believe this assumption to be a reasonable approximation

of actual worker behavior it may be inappropriate when used to evaluate counterfactual

worker responses to proposed policy changes. Second, since our model is primarily one of
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worker utilization it abstracts away from firm-level decisions related to optimal team size.

Whilst relaxing both of these restrictions would be interesting it presents challenges for

identification on account of the need to incorporate both non-linear dynamics and agent

expectations thereof. Finally, in future work it will be interesting to extend the model to

incorporate a distribution of teams to better understand how the cross-sectional distribution

of schedule quality and wages arises in a general equilibrium context.
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1.A Proofs and Derivations

1.A.1 Deriving the Separation Equation of Workers

At the start of each period t a worker i chooses between continued employment with their

current team and an outside offer yielding lifetime utility Oit. If they choose to remain

employed at j they receive their flow utility. If instead they choose to accept their outside

offer they are assumed to quit immediately and do not receive their flow utility. We assume

that Oit can be written as

Ōit = Ō + νOit

where Ō captures the average value of outside offers and νOit is an additional idiosyncratic

shock that also follows a Markov process with independent innovations across individuals

which are drawn from a logistic distribution. Additional restrictions are required if we wish

to allow Ō to vary systematically across workers or teams, as such differences will not be

separately identified from amenities.5

The value function for worker i at the start of period t is given by:

V (ξ,Wt, V
∗
t , νit) = max

{
uit(Wt, V

∗
t , ξ) + βE[V (ξ,Wt+1, V

∗
t+1, νi,t+1)] , Ō + νOit

}
(18)

so that the optimal policy is to accept any outside offers which exceed the current flow utility

and expected continuation utility from continued employment at j. Importantly, the model

highlights that worker behavior depends on how they form expectations about the path

of future utilization. In turn, this implies that the optimal behavior of firms will depend

5. [6] interpret ν0it as representing outside job offers which requires additional modelling for the dependence
of ν0it on Wt.
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on their beliefs as to how workers form expectations. Our baseline analysis assumes that

workers have adaptive expectations over the future path of schedule quality and wages:

E
[
V ∗
t+1|V ∗

t

]
= V ∗

t

E [Wt+1|Wt] = Wt

To make progress let V̄ (ξ,Wt, V
∗
t ) denote the expected value function defined as

V̄ (ξ,Wt, V
∗
t ) ≡

∫
V (ξ,Wt, V

∗
t , νit)g(νit)dνit, (19)

where g(.) denotes the density of taste innovations. When the distribution of outside offers

is sufficiently unattractive (which is implied in our current setting where weekly separation

rates are c.2%) then this expected value function will be approximately linear and of the

following form:

V̄ (ξ,Wt, V
∗
t ) ≈

1

1− β
ξ +

αw

1− β
Wt +

αv

1− β
V ∗
t (20)

To see this, start by guessing that the expected value function has the following form:

V̄ (ξ,Wt, V
∗
t ) = γ0 + γ1ξ + γ2Wt + γ3V

∗
t
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Combining (18) with the definition of the expected value function yields

γ0 + γ1ξ + γ2Wt + γ3V
∗
t

=

∫ (
max

{
uit(Wt, V

∗
t , ξ) + βE[γ0 + γ1ξ + γ2Wt+1 + γ3V

∗
t+1] , Ō + νOit

})
g(νit)dνit

=

∫ (
max

{
uit(Wt, V

∗
t , ξ) + β[γ0 + γ1ξ + γ2Wt + γ3V

∗
t ] , Ō + νOit

})
g(νit)dνit

= ln
(
exp (αwWt + αvV

∗
t + ξ + β[γ0 + γ1ξ + γ2Wt + γ3V

∗
t ]) + exp

(
Ō
) )

where the first line follows from the definition of the expected value function, the second

line follows from the linearity of expectation and our assumption of adaptive expectations,

and the final line follows from standard results about the expected maximum of iid Type I

Extreme value random variables. Exponentiating both sides yields

exp (γ0 + γ1ξ + γ2Wt + γ3V
∗
t )

= exp (αwWt + αvV
∗
t + ξ + β[γ0 + γ1ξ + γ2Wt + γ3V

∗
t ]) + exp

(
Ō
)

≈ exp (αwW + αvV
∗
t + ξ + β[γ0 + γ1ξ + γ2Wt + γ3V

∗
t ])

where the last line holds for sufficiently unattractive values of Ō. Matching coefficients

yields γ0 = 0, γ1 =
1

1−β
, γ2 =

αw

1−β
and γ3 =

αv

1−β
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1.A.2 Deriving the Shift Swap Allocation

Here we derive worker-level utilization rates under a shift-swapping technology that max-

imizes total worker surplus. Specifically, we assume that the shift swapping allocation in

period t is equivalent to the allocation obtained from solving the following program:

min
{Hit}Ni=1

N∑
i=1

(Hit −H∗
it)

2 subject to
N∑
i=1

Hit = H̄t

where H̄t is the total number hours that must be allocated. The corresponding Lagrangian

is given by

L =
N∑
i=1

(Hit −H∗
it)

2 − λ
( N∑

i=1

Hit − H̄t

)

which yields the following first-order condition which holds for any pair of workers i and m

Hit −H∗
it = Hmt −H∗

mt

Re-arranging for Hit and substituting into the constraint yields

H̄t = Hit +
∑
m ̸=i

(
Hit −H∗

it +H∗
mt

)
= NHit − (N − 1)H∗

it +
∑
m ̸=i

H∗
mt

= NHit −NH∗
it +

N∑
m=1

H∗
mt
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which can be re-arranged to obtain the following expression for worker i’s utilization in

period t:

Hit =
H̄t

N
+H∗

it −
1

N

N∑
m=1

H∗
mt (21)

=
H̄t

N
+ πit (22)
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1.A.3 Proof of Proposition 1

Using Equation 6 the manager’s problem can be written as

max
{ϕ, W}

E
[
NAt +NϕtA

2
t −NϕtAtµ−NWt −NWtϕt(At − µ)− c ·Qt

]

where for large teams Qt follows a Poisson distribution with rate parameter given by λ =

N · P(ξ,Wt, ϕ
2
t ϵ

2
t ), where P(·) is the structural function defined in Equation 4. Applying the

law of iterated expectations with the result given in Equation 4 yields

E[Qt] = E
[
E [Qt|ϵt]

]
= NE

[
P(ξ,W, ϕ2ϵ2t )]

≈ N exp(−α̃wWt − ξ̃)√
1− 2α̃vϕ2

tσ
2
t

where the last line follows by combining (i) the approximation that for large x we have that

exp(−x) ≈ 1
1+exp(x)

and (ii) the closed form expression for the moment generating function

of the gamma distribution.6

The manager’s problem can then be written as

max
{ϕt, Wt}

Ntµ+Ntϕtσ
2
t −NtWt −

cNt exp(−α̃wWt − ξ̃)√
1− 2α̃vϕ2

tσ
2
t

6. when ϵt is normally distributed then ϵ2t has a chi-squared distribution which is a special case of the
gamma distribution.
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The first-order conditions are given by

cα̃w exp(−α̃wWt − ξ̃)√
1− 2α̃vϕ2

tσ
2
t

− 1 = 0 (23)

2cα̃vϕ exp(−α̃wWt − ξ̃)

(1− 2α̃vϕ2
tσ

2
t )

1.5
+ 1 = 0 (24)

which can be combined to yield the desired result.
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1.A.4 Deriving the Measurement Error Expression

We use the model from Section 1.3 to show that observed quality Vijt can be written as

Vijt = V ∗
ijt + errvijt + op(1) (25)

where the definition of observed quality corresponds to V from Section 1.2

Vijt ≡ −(Hijt − H̄ij)
2

To start, we need to account for the observed heterogeneity in the average hours worked by

employees within a team. To do so, we modify our parametric assumption describing the

shocks to a worker’s preferred hours H∗
ijt to allow for an employee-specific mean H̄∗

ij

H∗
ijt ∼ N (H̄∗

ij, σ
2
H)

We impose that 1
Nj

∑Nj

i=1 H̄
∗
ij = hj which requires that the average preferred hours in a team

equals some constant hj. Setting hj = 1 maintains consistency with our presentation of the

model in Section 1.3, although our results are not dependent on any particular choice of hj.

Making the necessary adjustments to Equation 7 to account for this change yields

Hijt = H̄∗
ij + ϕjtϵjt + (H∗

ijt − H̄∗
ij)−

1

Nj

N∑
m=1

(H∗
mjt − H̄∗

mj) (26)

which implies that H̄ij ≡ 1
T

∑T
t=1Hijt is an unbiased and consistent estimator of H̄∗

ij.
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Second, use the definition of V ∗
ijt to write

V ∗
ijt = −(Hijt −H∗

ijt)
2

= −
(
Hijt − H̄∗

ij − (H∗
ijt − H̄∗

ij)
)2

= −
(
Hijt − H̄∗

ij

)2
+ 2(Hijt − H̄∗

ij)(H
∗
ijt − H̄∗

ij) − (H∗
ijt − H̄∗

ij)
2

Combining the above results then yields the desired result

Vijt = V ∗
ijt − 2(Hijt − H̄∗

ij)(H
∗
ijt − H̄∗

ij) + (H∗
ijt − H̄∗

ij)
2 + op(1)

= V ∗
ijt + errvijt + op(1)
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1.A.5 Deriving the Orthogonality Condition

In this section we use results from Appendix 1.A.4 to show that conditional on a given team

j the following exogeneity condition holds when H∗
ijt ⊥ ϵjt

Covj

(
ϵ2jt , errvijt

)
= 0

By combining the definition of errvijt from Appendix 1.A.4 with Equation 26 we see that the

desired result is equivalent to

Covj

(
ϵ2jt , −2ϕjtϵjt(H

∗
ijt − H̄∗

ij)− 2πijt(H
∗
ijt − H̄∗

ij) + (H∗
ijt − H̄∗

ij)
2
)
= 0

where πijt is given by (H∗
ijt− H̄∗

ij)− 1
Nj

∑N
m=1(H

∗
mjt− H̄∗

mj). Using linearity of the covariance

operator gives

Covj

(
ϵ2jt , −2ϕjtϵjt(H

∗
ijt − H̄∗

ij)− 2πijt(H
∗
ijt − H̄∗

ij) + (H∗
ijt − H̄∗

ij)
2
)
= −2Covj

(
ϵ2jt , ϕjtϵjt(H

∗
ijt − H̄∗

ij)
)

︸ ︷︷ ︸
A

− 2Covj

(
ϵ2jt , πijt(H

∗
ijt − H̄∗

ij)
)

︸ ︷︷ ︸
B

+Covj

(
ϵ2jt , (H

∗
ijt − H̄∗

ij)
2
)

︸ ︷︷ ︸
C

Combining the definition of πijt with our assumption that H∗
ijt ⊥ ϵjt implies that the terms

B and C are equal to zero. To see that the term A is also zero observe that

Covj

(
ϵ2jt , ϕjtϵjt(H

∗
it − H̄∗

ij)
)
= Ej[ϕjtϵ

3
t (H

∗
it − H̄∗

ij)]− Ej[ϵ
2
t ]Ej[ϕjtϵt(H

∗
it − H̄∗

ij)]

= Ej[ϕjtϵ
3
jt]Ej[(H

∗
ijt − H̄∗

ij)]− Ej[ϵ
2
jt]Ej[ϕjtϵjt]Ej[(H

∗
ijt − H̄∗

ij)]

= 0
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1.A.6 Characterizing Endogeneity from Measurement Error

Consider the following structural outcome equation for the effect of wages and schedule

quality on separations conditional on a fixed team j

Sijt = α0 + αwWijt − αv

(
Hijt −H∗

ijt

)2
+νijt

where we assume that Ej[νijtWijt] = 0 and Ej

[
νijt
(
Hijt −H∗

ijt

)2]
= 0. We want to char-

acterize the endogeneity bias when estimating αv using only the observable components

of schedule quality. It is helpful to first introduce the following variable which describes

deviations in the shocks to preferred hours from their means

H̃∗
ijt = H∗

ijt − H̄∗
ij

Next, combine Equations 25 and 26 to re-write the outcome equation

Sijt = α̃0 + αwWijt − αv

(
ϕ2
jtϵ

2
jt + 2ϕjtϵjt

(
H̃∗

ijt −
1

Nj

Nj∑
m=1

H̃∗
mjt

)
+
(
H̃∗

ijt −
1

Nj

Nj∑
m=1

H̃∗
mjt

))
︸ ︷︷ ︸

Vijt

+ νijt − αv

(
−2ϕjtϵjtH̃

∗
ijt +

1−Nj

Nj

((H̃∗
ijt)

2 − E[(H̃∗
ijt)

2
]) +

1

Nj

∑
m̸=i

H̃∗
ijtH̃

∗
mjt

)
︸ ︷︷ ︸

errvijt

where α̃0 = α0+
1−Nj

Nj
E[(H̃∗

ijt)
2
] is the new structural intercept. Whether or not we can recover

αv depends on the extent to which our observable data is related to the unobservables which

enter into the expression for the structural errors. Standard application of the formulas for

omitted variable bias imply that we have

αOLS
v = αv +

Cov(Vijt, err
v
ijt)

Var(Vijt)
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which we calculated by utilizing the independence of ϵjt and H∗
ijt along with the properties

of moments of the normal distribution.
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1.A.7 Deriving Approximation Used in Limited Information Likelihood

Here we show how to obtain the limited information maximum likelihood estimator when

team sizes are large. Recall that our definition of schedule quality is given by

V ∗
ijt ≡ −

(
Hijt −H∗

ijt

)2
and that Equation 26 gives the following expression for worker-level utilization rates

Hijt = H̄∗
ij + ϕjtϵjt + πijt

πijt = (H∗
ijt − H̄∗

ij)−
1

N

∑
m̸=i

(H∗
mjt − H̄∗

mj)

where H̄∗
ij is the mean value of the shocks to worker i’s preferred weekly hours. We see that

for large teams πijt →p (H
∗
ijt − H̄∗

ij) which implies that V ∗
ijt →p −ϕ2

jtϵ
2
jt
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1.A.8 Discussion on Endogenizing Team Size

Here we discuss how the size of a team might be endogenized within the model. A natural

approach is to consider a firm which solves for its optimal size when taking the manager’s

behavior as given:

max
N

Efirm

[
At · g∗(At)−W ∗

t · g∗(At)− cQt

]

where {g(·)∗,W ∗
t } denotes the manager’s optimal choice of policy rule and wages. Note that

g(·) and Qt are both implicit functions of N . The firm’s expectation is taken with respect to

the unconditional distribution of random variables. Directly applying the same assumptions

from Section 1.3 reveals that the problem is approximately linear in N so that the model

needs to be adjusted to ensure that everything remains well-behaved.

A natural approach replaces the constant per-worker replacement cost c with some strictly

convex function C(q). Closed form solutions for the manager’s revised problem are available

for certain choices of C(·). A natural specification uses C(q) = cq(q
2 − q) where cq is some

additional cost parameter (by properties of the Poisson distribution the inclusion of a linear

term ensures that expected costs depend only on q2). In general obtaining a closed form

solution for the firm’s subsequent outer problem is challenging on account of the fact that

the manager’s optimal policies have a non-linear dependence on ϵ2t−1.
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1.A.9 Discussion on Infrequent Adjustment

Suppose that firms only update their choices of Wjt and ϕjt at irregular intervals. As a

result, our parameterization of ϕjt will also need to control for higher-order moments in the

distribution of customer demand. To see this, consider the following expression which uses

Equation 11 to derive expected turnover costs when Wjt = W and ϕjt = ϕ

E
[
c ·Qt

]
= E

[
E[c ·Qt|ϵt]

]
= E

[
c · P(ξ,W, ϕ2ϵ2t )

]
A second-order Taylor approximation then yields

E
[
c ·Qt

]
≈ c · P(ξ,W, ϕ2σ2

ϵ ) +
c · P ′′(ξ,W, ϕ2σ2

ϵ )

2
E
[
ϵ4t − 2σ2ϵ2t + σ4

]
︸ ︷︷ ︸

K

which highlights the dependence on expectations of higher-order moments of ϵt.

To see why these higher-order moments don’t appear in our baseline model, we can use

the normality assumption for the standardized residual in Equation 2 to derive

Et−1

[
ϵ4t − 2σ2

t ϵ
2
t + σ4

t

]
= 2σ4

t

from which it follows that when choosing wages and pass-throughs each period the optimal

policy will only depend on the conditional variance. However, when making longer-run

decisions the manager will need to account for higher-order moments.
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1.B Additional Tables and Figures

Utility Coefficients Marginal Effects
(1) (2) (3) (4)

Log quality 1.5121∗∗∗ 0.2932 −0.0245∗∗∗ −0.0050
(0.4893) (1.1263) (0.0079) (0.0183)

Log wage 1.0001∗∗∗ 0.2024∗∗∗ −0.0162∗∗∗ −0.0033∗∗∗

(0.2538) (0.0629) (0.0041) (0.0010)
Quality Measure V Daily V Predictability V Daily V Predictability

Num. obs. 2123228 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Structural estimates for the effect of schedule
quality on separation rates. Standard errors in parentheses are block bootstrapped at
the team level and account for first-stage estimation.

Table 1.8: Structural estimates for the effect of schedule quality on separation rates

(1) (2) (3) (4)
ϵ2jt −0.107∗∗∗ −0.099∗∗∗ −0.046∗∗∗ −0.048∗∗∗

(0.027) (0.023) (0.011) (0.009)
ϵ2j,t−1 −0.000 0.008

(0.022) (0.008)
ϵ2j,t−2 −0.018 −0.006

(0.022) (0.008)
Quality Measure V Daily V Daily V Predictability V Predictability

Num. obs. 2123228 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Regression estimates for the effect of shocks to the
variability of customer demand on schedule quality. Standard errors in parentheses
are clustered at the team level.

Table 1.9: Effect of demand shocks on schedule quality
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(1) (2) (3) (4)
Log quality −0.0384∗∗∗ −0.0370∗∗ −0.0894∗∗ −0.0818∗∗

(0.0149) (0.0148) (0.0349) (0.0328)
Log wage −0.0247∗∗∗ −0.0239∗∗∗ −0.0002 −0.0006

(0.0079) (0.0078) (0.0020) (0.0019)
Quality Measure V Daily V Daily V Predictability V Predictability

Additional Lags No Yes No Yes
Num. obs. 2123228 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Key coefficient estimates from 2SLS specifications
for each of the proposed measures of schedule quality. Standard errors in parentheses
are clustered at the team level.

Table 1.10: Estimates using 2SLS with alternative quality measures

(1) (2) (3)
Log quality −0.1103 −0.0537∗ −0.1632

(0.0968) (0.0292) (0.1025)
Log wage −0.0331 −0.0326∗∗ 0.0036

(0.0250) (0.0153) (0.0054)
Quality Measure V V Daily V Predictability

Additional Lags No No No
Num. obs. 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Key coefficient estimates from
2SLS specifications for each of the proposed measures of schedule
quality. Specification uses single lagged instrument only. Standard
errors in parentheses are clustered at the team level.

Table 1.11: Estimates using 2SLS with only lagged instruments
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(2) (4) (6)
Log quality −0.0775∗ −0.0411∗ −0.1120

(0.0461) (0.0238) (0.0728)
Log wage −0.0246∗∗ −0.0261∗∗ 0.0010

(0.0120) (0.0125) (0.0038)
Quality Measure V V Daily V Predictability

Additional Lags Yes Yes Yes
Num. obs. 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Key coefficient estimates from
2SLS specifications for each of the proposed measures of schedule
quality. Specification uses multiple lagged instruments. Standard
errors in parentheses are clustered at the team level.

Table 1.12: Estimates using 2SLS with only lagged instruments

(1) (2) (3)
Log quality 0.0003∗∗∗ −0.0001 0.0005∗∗∗

(0.0000) (0.0002) (0.0000)
Log wage −0.0047∗∗∗ −0.0048∗∗∗ −0.0045∗∗∗

(0.0007) (0.0007) (0.0007)
Quality Measure V V Daily V Predictability

Num. obs. 2123228 2123228 2123228
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1. Key coefficient estimates from OLS
specifications for each of the proposed measures of schedule quality.
Standard errors in parentheses are clustered at the team level.

Table 1.13: Estimates using OLS for effect of schedule quality on separation rates
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CHAPTER 2

HETEROGENEITY OF CONSUMPTION RESPONSES TO

INCOME SHOCKS IN THE PRESENCE OF NONLINEAR

PERSISTENCE
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2.1 Introduction

The empirical analysis of consumption and income dynamics has an important place in a

number of key areas of economic research and policy design. A large literature aims at

understanding income persistence, income inequality and income volatility, see [56], [57] and

references in [58]. A parallel literature studies how income shocks impact consumption and

savings decisions, see [59] and [60] among many other references. In this paper our goal is

to empirically document the nature of consumption responses, with a particular focus on

household heterogeneity and nonlinear persistence.

Economic models inform the empirical analysis of consumption and income. In a stan-

dard incomplete markets model of the life cycle, how much a household consumes in a given

period is determined by the level of assets, the stage of the life cycle, as well as the income

stream, see [61] for a comprehensive review. Changes to income components with different

degrees of persistence lead to different consumption responses. In addition, the shape of the

consumption function may differ among households for a variety of reasons, such as hetero-

geneity in preferences or discounting, household-specific returns to assets, or heterogeneous

access to other sources of insurance.

Our starting point is the nonlinear panel data framework proposed by [1] (ABB here-

after) which involves a Markovian permanent-transitory model of income, and a flexible

age-dependent nonlinear consumption rule that is a function of assets, permanent income

and transitory income. ABB found that individual income dynamics feature nonlinearities

that matter for economic decisions. Specifically, they found evidence that the persistence

of past earnings varies substantially with the sign and magnitude of shocks across the past

earnings distribution. Thus, ex ante identical individuals may have experienced a very differ-

ent propagation of a past shock into their income depending on their history of subsequent

shocks. Using a balanced panel from the PSID, from 1999 to 2009, ABB showed how non-
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linear income dynamics lead to nonlinear responses of consumption to income shocks.7

Given this background we make three main contributions. First, we exploit the important

extension to the set of consumption goods in the recent waves of the PSID to produce new

estimates of the degree of nonlinear persistence and consumption insurance. The improved

panel survey redesign in the 1999 PSID was further enhanced in 2005 and, in addition to

food at home and food away from home, includes health expenditures, utilities, gasoline,

car maintenance, transportation, education, clothing, and leisure activities, see [64]. We

bring this together with the detailed data on earnings, family income, and financial and

real estate assets. Using the 2005-2017 PSID panel survey waves, we estimate the nonlinear

nature of income shocks and the consumption implications of the insurance to income shocks.

In addition, unlike ABB we do not restrict the sample to be balanced. This leads us to

consider a larger and more comprehensive sample, more than 2000 households compared to

approximately 800 in ABB.

Our second main contribution is to empirically document household heterogeneity in

consumption responses. To do so, we move away from the partial insurance consumption

growth framework of [60] and estimate a dynamic model where we specify the entire con-

ditional distribution of consumption given assets, age, and the income components. This

modeling approach contrasts with that adopted in ABB, who specified the link between con-

sumption and its determinants using a nonlinear mean model with separable heterogeneity.

Allowing for non-separabilities, we show how to estimate the joint distribution of latent and

observed variables, and to consistently estimate log-derivatives of the consumption function

as a result.8

7. See [62] and [63] for recent applications of the nonlinear dynamic approach introduced in ABB.

8. As we will explain below, our approach exploits the weak exogeneity of the observed state variables (i.e.,
assets and income components), conditional on a latent time-invariant type, to identify average response
functions, see [65] for a review of identification results in models with non-separable heterogeneity. Relaxing
exogeneity would require valid instruments and appropriate structure on the first stage ([66]). Also, while
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The average log-derivatives of the consumption function that we focus on are nonlinear

coefficients quantifying how well insured households are, at different points of the life cycle

and depending on their level of assets. Importantly, we model the consumption function

as heterogeneous across households, by indexing consumption on a latent time-invariant

continuous type. This unobserved consumer type may reflect heterogeneity in economic

primitives, and leads to different consumption derivative responses for two households that

are at the same point of the life cycle, face the same income stream, and own the same level

of assets. We show this heterogeneity to be a salient feature of the PSID.

To study a larger sample using a more complex model, we modify the computational

techniques that ABB relied on. The use of new computational tools represents our third

main contribution. Specifically, we examine improved sequential computational methods

for the estimation of the nonlinear latent/hidden quantile Markov model. The Markovian

structure for latent earnings components allows us to make use of Sequential Monte-Carlo

(SMC) methods to improve the Markov Chain Monte Carlo algorithm, see [68] for a review.

SMC methods can be used to generate efficient proposals within a Particle Markov Chain

Monte Carlo (PMCMC) algorithm, as proposed by [69]. We develop an implementation

in the latent Markov setting of this paper. The PMCMC approach allows us to produce

numerically robust estimates of derivatives of log-consumption with respect to the latent

income components, in a nonlinear quantile model that allows for unobserved types.

Empirically, we confirm the nonlinear income dynamics found in ABB while documenting

new patterns in consumption responses. The estimated quantile Markovian permanent-

transitory model of income reveals asymmetric persistence of earnings and income shocks.

We show the use of enhanced computational techniques leads to essentially the same results

the distribution of consumption responses is generally not identified beyond its mean, partial information
about this distribution can be obtained by using a result from [67]. We will apply this strategy to compute
a lower bound on the variance of responses.
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as ABB in their balanced sample. However, estimates based on SMC techniques are more

stable numerically. The use of sequential Monte Carlo methods allows us to draw robust

conclusions in our larger unbalanced sample, and to document nonlinear patterns in the

dynamics of income.

Our main results concern the nature of consumption responses to income shocks. We

find that older and wealthier households adjust their consumption less as a response to

an income shock than younger and less wealthy households. For our main sample of dual

earners the average derivative of log-consumption to the persistent income component is

0.33 on overall average, yet it can be much higher for younger households with low levels of

assets and, conversely, as low as 0.10 for older and wealthy households. These findings are

qualitatively consistent with the implications of standard life-cycle models of consumption

and saving behavior. We show that accounting for latent income components with varying

degrees of persistence, and for unobserved heterogeneity in consumption, are both important

to accurately document these patterns quantitatively. Heterogeneity in consumer responses

to income shocks matters for understanding the impact not only of fiscal policies but also of

monetary policies which, as [70] notes, can create large redistribution in favor of high MPC

agents and be expansionary over and beyond the effect on real interest rates.

Our key finding is that consumption responses vary substantially with unobserved types.

Our results clearly separate lower consumption types, who appear to follow the life-cycle

patterns in consumption responses implied by standard models, from higher types, whose

consumption responses to income shocks vary little with either assets levels or the stage of the

life cycle. High-type households consistently have higher consumption levels, and relative to

low-type households they have slightly higher incomes and levels of assets. For the younger

low types, consumption responses to persistent income shocks exceed 0.50 while for older

low types this falls below 0.20. Moreover, based on bootstrapped confidence intervals we

conclude the difference between the two coefficients is significant at conventional levels. For
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the higher types, consumption responses are flatter across age and assets, and differences

across age and assets are insignificant. These findings shed new light on the presence of

heterogeneity in consumption behavior across households, on which there has been extensive

micro- and macroeconomic research, see [71], [72], and references therein.

We examine several mechanisms that could lead to such heterogeneous consumption

responses. First, the fact that high types consume more and hold more assets is difficult to

reconcile with an explanation based on heterogeneity in preferences or discounting. Second,

we estimate a specification that allows for latent heterogeneity in asset accumulation and

find that the heterogeneity in consumption responses is virtually unaffected. Lastly, we

link a subset of household heads in our sample (33%) to their parents, using the inter-

generational linkages that the PSID provides. We find that high-type household heads

have on average parents with higher consumption and income levels, suggesting that the

heterogeneous responses that we find might in part reflect heterogeneity in access to other

sources of insurance such as parental insurance.

We show the main results are robust to a number of specification changes. In particular,

while we use disposable income in most of the analysis, we find similar patterns when using

pre-tax labor income, with some quantitative differences. In addition, we find that including

households where one member may not be working does not lead to major changes in our

results. Lastly, we probe the robustness of our scalar individual effect modeling approach by

allowing for a separate effect of education on consumption responses, in addition to the latent

type. While the heterogeneity results remain qualitatively similar, the findings based on this

specification allow us to discuss some limitations of our scalar individual effect modeling

approach and to motivate future work.

The outline of the paper is as follows. In Section 2.2 we describe the sample and present

motivating evidence on the nature of consumption responses. In Section 2.3 we provide a

general description of the model, and in Section 2.4 we discuss implementation and present
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the computational methods we use. We then show our main empirical results in Section 2.5.

In Section 2.6 we study possible mechanisms for those results. In Section 2.7 we show results

based on extensions of our main model. We conclude in Section 2.8. An appendix describes

implementation and provides additional empirical results.

2.2 Data

In this section we describe the PSID sample, and we provide preliminary motivating evidence

about how consumption responds to income changes.

2.2.1 The PSID sample

We rely on the newly redesigned PSID, from 2005 to 2017. Since 1999, the PSID presents a

unique combination of longitudinal data on income, consumption, and assets holdings for the

US. Unlike the annual information available every year before 1997, after 1999 a new wave is

only available every other year. Since 2005, the consumption information has been enhanced,

with additional categories, see [73]. The recent waves include food at home and away from

home, gasoline, health, transportation, utilities, clothing, and leisure activities. [64] provide

a detailed analysis of the post-2005 data and assess the new methodology developed by

the PSID for collecting household expenditure data. The new survey methodology allows

unfolding brackets as well as choice of time-frame for different consumption categories. They

show that since 2005 the PSID has captured almost all expenditures measured in the cross-

sectional Consumer Expenditure Survey (CE) and suggest the new measurement design is

likely to improve on the accuracy of the expenditure data. For this reason, we expect the

post-2005 PSID to provide more accurate information about household consumption patterns

than the earlier period used in ABB.

Another difference with ABB is that we do not restrict the panel to be balanced. Fol-
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lowing [74], we focus on a sample of household heads that participate in the labor market

and are between 25 and 60 years old. Since we do not model labor supply, either at the

extensive or intensive margin, in our baseline sample we focus on households where both

adult members are working and present in at least two waves, and we keep their first spell

of non-zero income observations. We refer to this baseline as the “dual earners” sample.

However, in Section 2.7 we will also present results based on a broader sample that includes

households where only one member is employed.

Our final dual earners sample contains 2,113 households and seven biennial waves from

2005-2017. In Table 2.1 we report some descriptive statistics about this sample. Food con-

sumption, which was the only consumption item available in the PSID prior to the redesign

of the data set, accounts for approximately one fourth of total non-durables consumption.

Net disposable income is approximately 30% lower than pre-tax labor income. Since it is

disposable income and not pre-tax income that should affect consumption decisions, we will

focus on disposable income in most of the analysis. In Section 2.7 we will also present results

using pre-tax labor income.

Table 2.1 also shows that total wealth tends to decrease around the 2008 recession,

whereas income and especially consumption seem more stable over the period. See [75] for

an analysis of consumption, income and wealth using the PSID with a focus on the great

recession. In our analysis we will not focus on business cycle fluctuations, and we will attempt

to remove calendar time effects in a prior partialling-out estimation step.

In Appendix Table 2.4 we show additional statistics in order to describe the unbalanced

structure of the panel sample. In the first column of that table we report statistics for house-

holds who are only observed for one wave, although we do not include these households in our

main sample due to our focus on unobserved heterogeneity. More than half of households in

our main sample are observed for at most three waves. For this reason, it will be important

to account for the unbalancedness of the PSID in the modeling of income and consumption
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dynamics.

Table 2.1: Descriptive Statistics

(1) (2) (3) (4) (5) (6) (7)
2005 2007 2009 2011 2013 2015 2017

Food 10,681.46 10,652.44 10,356.33 10,516.91 10,778.89 11,287.65 11,916.79
(5,280.66) (5,497.57) (5,035.15) (5,107.21) (5,744.91) (5,385.16) (5,673.31)

Non-durables (excl. food) 28,476.06 29,563.67 28,264.68 28,694.76 30,310.30 29,906.71 28,432.69
(19,445.13) (19,881.54) (19,295.93) (18,331.37) (18,247.37) (17,265.61) (14,547.69)

Total Non-durables 39,179.31 40,233.90 38,669.21 39,265.89 41,129.95 41,246.63 40,383.30
(22,220.87) (22,516.17) (21,678.39) (21,154.18) (20,962.80) (19,845.41) (17,547.23)

Home equity 161560.91 169580.40 137089.26 121021.37 111956.54 113269.94 130350.80
(216942.00) (229763.44) (197997.93) (166538.89) (154874.43) (143419.48) (144146.96)

Negative Equity Dummy 0.01 0.01 0.03 0.03 0.02 0.01 0.01
(0.08) (0.10) (0.16) (0.16) (0.15) (0.09) (0.10)

Wealth (excl. home) 206679.75 278971.16 269420.39 247951.44 231130.23 256813.63 333757.83
(709285.07) (1.00e+06) (933414.69) (536086.47) (516957.59) (566105.75) (1.06e+06)

Total wealth 446917.54 512678.86 448989.83 388763.07 349033.92 370083.56 448654.75
(970857.51) (1.25e+06) (1.14e+06) (656915.67) (621844.77) (636801.00) (1.07e+06)

Labor income 126181.76 127847.66 133105.34 129458.55 128366.66 124779.30 131051.39
(143916.08) (148500.93) (194142.24) (129247.51) (128479.97) (72,585.03) (69,355.95)

Net income 95,598.70 97,089.32 100204.10 99,234.77 98,238.57 95,004.23 99,192.91
(86,212.45) (89,857.83) (116281.39) (78,750.29) (77,931.32) (46,552.59) (45,252.48)

Observations 1288 1544 1400 1149 1023 948 755

Notes: PSID, 2005-2017. Means of variables, standard deviations in parentheses. Our baseline measure

of consumption includes the following categories: food at home, food delivery, eating out, food stamps,

clothing, gasoline, utilities, telephone bills, automobile insurance, parking, transport, education, childcare,

institutional medical services, doctor services, prescriptions, health insurance, and trips and other recreation.

Following a common practice in the previous literature on income dynamics, we will

work with residuals of log-disposable income on a set of demographics and time indicators.

This partialling-out is meant to make household demographics as comparable to each other as

possible, and to control for aggregate time effects. Specifically, we net out household size, year

of birth, state indicators, number of kids, race of both adults, a higher education indicator

for both adults interacted with age indicators, and a full set of age indicators interacted with

year indicators. We similarly construct residuals of log-consumption and log-assets net of the
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Figure 2.1: Average derivative of log-consumption with respect to log-income

Notes: The graph shows averages of the derivative of log-consumption with respect to log-income, conditional
on log-income, age and log-assets. Estimates are based on a linear regression of log-consumption on a second-
order polynomial in log-income, age, and log-assets. The two horizontal axes show age and assets percentiles.
µ and σ denote the mean and standard deviation of the average derivatives, respectively.

same set of controls. Working with logarithms requires removing observations with zero or

negative assets, which reduces the number of observations by approximately 200 households

per year. In Appendix Table 2.5 we report additional statistics for a sample which includes

households with negative asset balances.

2.2.2 A first look at consumption responses

We will analyze the PSID sample using a dynamic model of income, consumption, and

assets holdings. The model is flexibly parameterized and it features various latent variables.

Before describing how we specify the model and estimate it, here we provide preliminary

motivating evidence about consumption and income, only using observed covariates and

simple econometric methods. We highlight two features of the data in turn.

In Figure 2.1, we show average derivatives of log-consumption with respect to log-income,

controlling for age and log-assets.9 The derivative effect is 0.45 on average, with a standard

9. Here and in the following we simply refer to log-income residuals in a regression on demographics and
time indicators as “log-income”, and we similarly refer to log-consumption residuals and log-assets residuals
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Figure 2.2: Quantile derivatives of log-consumption with respect to log-income

(a) Bottom Tercile (b) Top Tercile

Notes: The graphs show averages of the derivatives of quantile functions of log-consumption with respect to
log-income, conditional on income, age and assets. In the left graph we report results for the bottom tercile
(averaged over a fine grid of percentiles), in the right graph we report results for the top tercile. Estimates
are based on quantile regressions of log-consumption on a second-order polynomial in log-income, age, and
log-assets. The two horizontal axes show age and assets percentiles.

deviation of 0.07. In particular, wealthier and older households have a lower derivative (i.e.,

lower than 0.30), suggesting that they are relatively well insured against income shocks. In

contrast, younger and less wealthy households have a higher derivative (i.e., higher than

0.50), suggesting less ability to insure.

In Figure 2.2, we show quantile derivatives of log-consumption with respect to log-income.

In the left graph, we average quantile derivatives over the bottom tercile, while in the right

graph we report an average over the top tercile. We see that these quantile derivative

coefficients tend to be somewhat higher at the bottom of the consumption distribution (0.48

on average) than at the top (0.43 on average). The main difference between the two graphs

concerns the younger and less wealthy households, for whom the derivative drops from 0.60

to 0.40 when moving from the bottom tercile to the top tercile.10

as “log-consumption” and “log-assets”, respectively.

10. In Appendix Figure 2.10 we show bootstrapped confidence bands corresponding to both Figures 2.1 and
2.2.

74



This evidence is suggestive of the presence of heterogeneity in consumption responses and

insurance. However, there are several reasons why it may be incomplete and quantitatively

inaccurate. Standard consumption models imply that income components with varying

degrees of persistence have a different impact on consumption. Hence, while in Figure

2.1 we report derivatives with respect to observed income, in a model where log-income

is the sum of a persistent and a transitory component, economically-relevant consumption

derivatives should be computed with respect to the latent components of income. To do so,

a dynamic model with latent variables is needed. The heterogeneity suggested by Figure 2.2

is similarly ambiguous. Indeed, consumption quantiles are likely to reflect a combination

of time-invariant household heterogeneity and time-varying shocks. Distinguishing the two

requires estimating a dynamic panel data model that features latent heterogeneity explicitly.

In the next two sections we describe such a model, and we explain how we estimate it using

the PSID.

2.3 Overview of the model

2.3.1 Consumption behaviour

Our primary interest is to understand how shocks to income translate into consumption for

different types of consumers. Consumers are allowed to differ along a number of dimensions,

specifically according to their assets, the stage in their life cycle, observable characteristics,

and unobserved heterogeneity. Our underlying framework is one where households act as

single agents with access to a single risk-free asset. They receive income shocks each period

and make consumption decisions subject to a period-to-period budget constraint. We assume

all distributions are known to households, and there is no aggregate uncertainty.

In modeling the dynamic responses of consumption to earnings shocks, one strategy is to

specify the functional form of the utility function and the distributions of the shocks, and
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to calibrate or estimate the model’s parameters by comparing the model’s predictions with

the data, see [76] and references therein. Another strategy is to follow the partial insurance

approach of [60] and linearize the Euler equation, with the help of the budget constraint.

The approach we follow in this paper builds on the framework introduced in ABB. It differs

from the earlier strategies as we directly estimate the consumption rule that comes from the

optimization problem. In this approach the level of consumption is modeled as a function

of beginning of period assets, income components, consumer characteristics and individual

heterogeneity. The framework we develop here is a generalization of the main specification

in ABB to allow for individual unobserved heterogeneity and a more flexible policy rule.

The shape of the consumption function and its derivatives will depend on the distributions

of beliefs about future incomes and characteristics. We are therefore able to document a

rich set of derivative effects but, as our model does not separate the role of preferences from

expectations, we cannot recover counterfactuals that involve a change in the income process.

In our approach, the income process is modeled using the framework of ABB which allows

for nonlinear persistence. In this framework, log-income is decomposed into a predetermined

life-cycle component and two latent stochastic factors that represent the level of persistent

income and the level of transitory income. We consider an unbalanced panel of households,

i = 1, ..., N , in which household i is observed Ti consecutive time periods. For any household

i at time t we denote the persistent income component as ηit and assume it follows a nonlinear

first-order Markov process. The transitory income component εit is assumed to be distributed

independently across time and independent of the η′s. Log-income residuals are then yit =

ηit + εit. The details of the income specification are developed in the next subsection.

Given beginning-of-period-t assets ait, and the realizations of the persistent and transitory

income components ηit and εit, consumers make their consumption choices according to the
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policy rule

cit = gt (ait, ηit, εit, ageit, ξi, νit) , i = 1, ..., N, t = ti, ..., ti + Ti − 1, (27)

where ti denotes the period when i enters the panel, cit is log-consumption for household i in

period t, ait is log-assets, ageit is the age of the household head in period t, and unobserved

heterogeneity is given by the “fixed effect” ξi.
11 As mentioned above, both cit and ait are

net of common effects of age and other demographics, and of time indicators. We also allow

consumption choices to depend on transitory preference shocks νit, with arbitrary dimension.

Our main goal is to estimate the empirical consumption response parameters

ϕ(ageit, ait, ηit, εit, ξi) = Eνit

[
∂gt (ait, ηit, εit, ageit, ξi, νit)

∂η

]
. (28)

Average derivative effects such as (28) can be identified without restricting the dimensionality

of νit, see [65] and references therein.12 Reporting features of estimates of the individual

transmission parameters

ϕit = ϕ(ageit, ait, ηit, εit, ξi)

in the PSID will shed light on how much variation there is in consumption responses and

insurance, over the life cycle and as a function of assets and income. Importantly, the

dependence of the consumption function on the latent type ξi will allow us to document

individual heterogeneity in consumption responses. Exploring the relationship between ϕit

11. Below we will postulate that ξi follows a certain distribution (albeit a rather flexible one) conditional
on cohort, education and income. An alternative description of ξi would thus be as a “correlated random
effect”.

12. However, in our setting, some of the arguments of the structural function gt (i.e., ηit, εit, and
ξi) are latent. Identification of average derivatives thus requires showing that the distribution of
(cit, ait, ηit, εit, ageit, ξi) is identified.
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and ξi is a main objective of this paper.

In order to estimate the consumption function gt in (27), one needs to recover the persis-

tent and transitory income components ηit and εit, and the time-invariant consumption type

ξi, all of which are unobserved to the econometrician. For this purpose, we will estimate a

dynamic model of income and consumption with latent variables, following ABB.

Asset accumulation. Estimation of the consumption function gt requires taking a stand

on the accumulation of assets. A simple case is when current assets only depend on lagged

assets, income, and consumption, but not on the latent income components and heterogeneity

separately. This would hold in a textbook asset accumulation rule with a constant risk-free

interest rate, for example. Under the assumption that asset accumulation does not depend

on the latent variables, one can estimate the consumption function consistently without

having to model the assets process, in the spirit of partial likelihood estimation. We will use

this approach in our main results. More generally, our approach can allow the latent income

components and type heterogeneity to affect current assets, and we will report results based

on such a specification as well, see Subsection 2.6.3.

Dispersion of consumption derivatives. Lastly, while we focus on recovering the av-

erage response parameters ϕit, the distribution of the consumption derivatives

∂cit
∂η

=
∂gt (ait, ηit, εit, ageit, ξi, νit)

∂η
,

conditional on (ait, ηit, εit, ageit, ξi), is generally not identified unless νit is scalar and has a

monotone effect on gt. Yet, using an insight from [67], one can compute a lower bound on the

variance of the consumption derivatives ∂cit
∂η

, even though the variance itself is not identified.

We make this point formally in Appendix 2.D, and we will report empirical estimates of

bounds on variances as a complement to our main average coefficients.
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2.3.2 Income and consumption

Our modeling of the income process closely follows ABB, with the main difference that we

extend the model to an unbalanced panel. Specifically, let yit be the log-disposable income

of household i in year t, net of common effects of age and other demographics, and time

indicators. We specify the following persistent-transitory model

yit = ηit + εit, i = 1, ..., N, t = ti, ..., ti + Ti − 1, (29)

where the persistent and transitory components ηit and εit, respectively, are zero-mean con-

tinuous latent variables given age.

We model the processes ηit and εit using their quantile representations. Let QA(B, v) be

a generic notation for the conditional quantile of A given B, evaluated at the percentile v

in the unit interval. The quantile representation of A given B implies that A = QA(B, V ),

where V is standard uniform independent of B.13

The persistent income component ηit follows a nonlinear first-order Markov process with

age-specific transitions; that is,14

ηit = Qη(ηi,t−1, ageit, u
η
it), (uη

it | ηi,t−1, ageit) ∼ iidUniform (0, 1) , t > ti. (30)

In order to model entry in the panel, we let the initial persistent latent component ηi,ti

depend on years of education and birth cohort of the household head, and on age at entry

13. For example, QA(B, 0.50) is the conditional median of A given B, and QA(B, 0.90) is the conditional
90th percentile of A given B. The fact that A = QA(B, V ), where V is standard uniform independent of B,
is referred to as the Skorohod representation in the literature, see, e.g., [77].

14. In our sequential model, we assume that uηit | η
t−1
i , ageti is standard uniform, where ηt−1

i and ageti denote
sequences of lags of η and age. For conciseness we leave the full conditioning implicit in the notation.
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in the sample:

ηi,ti = Qη1(cohorti, educi, agei,ti , u
η1
i ), (uη1

i | cohorti, educi, agei,ti) ∼ iidUniform (0, 1) .

(31)

In turn, the transitory component εit is assumed to be independent over time and inde-

pendent of ηis for all s with an age-specific distribution,

εit = Qε(ageit, u
ε
it), (uε

it | ageit) ∼ iidUniform (0, 1) . (32)

Note that the income process is common across households. In this paper we do not attempt

to model latent time-invariant heterogeneity in the income process beyond heterogeneity in

initial conditions. However, we allow for an unobserved type that affects consumption and

may be correlated with income.

Turning to consumption, we let the unobserved heterogeneity variable ξi be correlated

with birth cohort, education, and income; that is, we specify

ξi = Qξ(cohorti, educi, incomei, u
ξ
i ),

(
uξ
i | cohorti, educi, incomei

)
∼ iidUniform (0, 1) .

(33)

Here incomei is a measure of the household’s “normal” income. In our baseline specification

we will take incomei to be the average log-income over the period of observation. In addition,

note that the age at entry in the panel does not affect ξi given cohort, education, and

income. Hence, ξi is a time-invariant household characteristic that does not depend on when

the household starts being recorded in the PSID, whereas the value of the initial persistent

latent component in (31) depends on the stage of the life cycle the household was at when

she entered the panel.
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We then specify the log-consumption function as

cit = Qc(ait, ηit, εit, ageit, ξi, u
c
it), (uc

it | ait, ηit, εit, ageit, ξi) ∼ iidUniform (0, 1) . (34)

For the purpose of documenting consumption responses, it is important to know under which

conditions estimating (34) allows one to learn about features of the household’s consumption

function gt in (27). Suppose that the transitory preference shocks νit in (27) are i.i.d.,

independent of past assets and income components, age, and latent type ξi. If in addition

νit are scalar and have a monotone impact on the consumption function gt, then gt will be

identified based on (34), up to a nonlinear transformation of its last argument. Moreover,

when the economic primitives are such that νit are multidimensional or have a non-monotone

impact on consumption, the conditional mean function of log-consumption implied by (27)

will still be identified based on (34), even though the individual consumption function gt will

not be identified in general. Indeed, under our assumptions we have

ϕit = Eνit

[
∂gt (ait, ηit, εit, ageit, ξi, νit)

∂η

]
= Euc

it

[
∂Qc(ait, ηit, εit, ageit, ξi, u

c
it)

∂η

]
.

In other words, using quantile methods to flexibly estimate the function Qc in (34), we will

be able to consistently estimate our main target parameters, which are the average derivative

quantities ϕit.

Note that, under mild assumptions, the consumption response parameters in (28) are

equal to the derivatives of the conditional mean of consumption given the state variables,

ϕit =
∂

∂η
E
[
cit | ait, ηit, εit, ageit, ξi

]
.

However, ηit, εit and ξi are unobserved in the data, so it is not enough to model the conditional

mean E [cit | ait, ηit, εit, ageit, ξi] to recover our key parameters ϕit. ABB specified a nonlinear
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mean model with separable heterogeneity. A concern with their specification is that it might

be too restrictive as a model of the conditional distribution of cit given (ait, ηit, εit, ageit, ξi).

In contrast, in this paper we employ a quantile specification to achieve a more flexible

modeling of that conditional distribution.

In our baseline model where assets do not depend on the latent variables ηit, εit, and ξi

directly, a specification of the assets process is not needed. However, assuming that asset

accumulation does not depend on the latent variables might be restrictive if, for example,

assets returns are heterogeneous and the assets process is not independent of ξi. For this

reason, we will also estimate a model where we specify a reduced-form assets process as

ai,t+1 = Qa(ait, ηit, εit, cit, ageit, ξi, u
a
i,t+1),

(
ua
i,t+1 | ait, ηit, εit, cit, ageit, ξi

)
∼ iidUniform (0, 1) ,

(35)

where in addition ua
i,t+1 and uc

i,t+1 are independent. In this model, we will specify initial

assets holdings as

ai,ti = Qa1(ηi,ti , agei,ti , cohorti, educi, ξi, u
a1
i,ti
),(

ua1
i,ti

| ηi,ti , agei,ti , cohorti, educi, ξi
)
∼ iidUniform (0, 1) . (36)

To summarize the framework laid out in this section, we have described a model with three

latent components. The time-invariant type ξi is intended to capture household pre-sample-

period observed and unobserved heterogeneity. The other two latent components enter the

income process. The persistent component ηit captures household heterogeneity that results

from the accumulation of persistent shocks over time. Finally, independent transitory shocks

εit with an age-specific distribution combine with the persistent component and its profile

to produce observed labor income.

The presence of the latent type ξi as an argument of the consumption function may po-
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tentially reflect several mechanisms. For example, ξi may indicate preference or discounting

heterogeneity. Alternatively, it may capture heterogeneity in returns to assets. Yet another

possible interpretation of ξi is as additional resources that are available to the household

but not observed in the data, such as consumption insurance provided by parents. We will

examine the plausibility of these various mechanisms empirically in Section 2.6. We let the

latent type ξi correlate with income through the conditioning on incomei in (33). In addition,

although here we will use our most parsimonious specification as a baseline when report-

ing results, in an extension we will let ξi enter asset accumulation directly, see equations

(35)-(36).

The model thus features two levels of heterogeneity: (a) demographics and time effects,

which we partial out linearly in an initial step, and (b) the latent type ξi, which we include as

part of our nonlinear model. We will study the possibility of an additional nonlinear impact

of demographic heterogeneity in Subsection 2.7.4.

2.4 Estimation methodology and implementation

To specify and estimate the model, we closely follow ABB, with some differences. While in

this section we focus on estimation and practical implementation, we note that given the

similarity of the model’s structure to that of ABB, nonparametric identification can be shown

using the arguments they provide. Those arguments rely on insights from the literature on

nonparametric instrumental variable models and nonlinear models with latent variables (see,

among others, [78], [79], and [80]).

2.4.1 Specification

Following ABB, we model all conditional quantile functions using linear quantile specifica-

tions at a grid of percentiles. As an example, we model the conditional quantile function of

83



the persistent latent component of income in (30) as

Qη(ηi,t−1, ageit, τ) =
K∑
k=0

aηk(τ)φk(ηi,t−1, ageit), (37)

where φk are low-order products of Hermite polynomials in age and the lagged persistent

latent component of income, and aηk(τ) are piecewise-linear polynomial functions of τ . In

practice we use a grid of 11 equidistant percentiles. In addition, following ABB we augment

the model by specifying aηk(τ) using an exponential modeling of the tails of the intercept

coefficients. We use similar specifications for all the other equations (32)-(36). We provide

details in Appendix 2.A.

A difference with ABB is that, while they modeled the nonlinear mean of log-consumption

and assumed separable errors, here we flexibly estimate the entire conditional quantile func-

tion of log-consumption in (34) without imposing separability between uc
it and the other

determinants of consumption. This is important for estimating the average consumption

derivative parameters ϕit in the presence of latent variables, in a way which is robust to the

presence of non-separabilities implied by the economic model.

Fully nonlinear estimation of consumption quantiles has implications for the econometric

specification of the model, given that the type ξi is a latent variable. Indeed, note that ξi and

the conditional quantile function Qc are not separately nonparametrically identified, since it

is always possible to take a transformation of ξi, and to undo it in Qc.
15 In a general quantile

model such as (34), we impose the following restriction:

E[cit | ait = a, ηit = η, εit = ε, ageit = age, ξi = ξ] =

∫ 1

0

Qc(a, η, ε, age, ξ, τ)dτ = ξ, for all ξ,

(38)

15. For example, for any invertible function ψ we can write Qc(ξ) = (Qc ◦ ψ−1)(ψ(ξ)).
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where a, η, ε, age are some fixed reference values for log-assets, persistent and transitory

income components, and age. Imposing this restriction resolves the indeterminacy.16 In this

way, ξi is measured in consumption units, which is meaningful when studying its distribution.

In the implementation we set a, η, age to be the unconditional sample averages of log-assets,

log-income and age, respectively, and we set ε to zero.

2.4.2 Estimation

To estimate the model we adapt the multi-step approach proposed by ABB to our setting. In

a first step, we compute regression residuals of log-income, log-consumption, and log-assets

on a set of controls, which includes demographics and time indicators, see Section 2.2 for

the full list of controls. This allows us to construct the residualized variables yit, cit, and ait.

In a second step, we estimate the income process. To this end, we use a stochastic EM

algorithm ([81]), which alternates between draws of the latent income components ηit and

εit, and parameter updates based on the latent draws. The updates are performed using

quantile regressions, similarly to ABB. For example, to estimate the parameters aηk(τ) at a

grid of τ values in (37), we run multiple quantile regressions.17

To generate the latent draws, we depart from ABB who relied on Metropolis Hastings,

and use a Sequential Monte Carlo sampling method. We describe this method in the next

subsection. The reason for using a different sampler compared to ABB is numerical stability.

Indeed, the performance of Metropolis Hastings tends to deteriorate as the length of the

panel and the number of households increase. In the longer and larger panel sample we use

in this paper, Sequential Monte Carlo methods tend to be more robust to numerical issues

16. If Qc is linear, (38) selects a form of the fixed effect that is inclusive of all the intercept components.
See [79] and the subsequent literature for related assumptions.

17. Before every update step, we compute an empirical counterpart of the left-hand side in (38) by regressing
log-consumption on the draws of η, ε, ξ, log-assets, and age, and we set ξi to be the corresponding predicted
value. See Appendix 2.A for details.
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such as initialization and seeding than Metropolis Hastings in our experience. A feature of

Sequential Monte Carlo methods is that they take advantage of the Markovian structure of

the model to improve performance relative to naive importance sampling.

In a third step, we estimate the consumption function, for given values of the parameters

governing the income process. We perform this step using a similar strategy to the one we use

for income. In this case also, we depart from ABB in the sampling step of the stochastic EM

algorithm. However, the presence of the latent type ξi further complicates implementation,

since one needs to repeatedly draw ξi together with the sequences of persistent and transitory

components. To generate valid draws, we rely on the pseudo-marginal Markov Chain Monte

Carlo algorithm proposed by [69], which itself makes use of Sequential Monte Carlo sampling.

We describe our implementation in the next subsection.

Quantile monotonicity. Given our quantile modeling, the parameters satisfy monotonic-

ity restrictions (e.g., [82]). For example, in (37) the mapping τ 7→ aηk(τ)φk(ηi,t−1, ageit) is

non-decreasing. In practice we do not enforce monotonicity in estimation. However, in each

expectation step of the stochastic EM algorithm we draw from the likelihood implied by the

estimated parameters. This ensures that we obtain posterior draws from a valid distribution

of η’s and ξ’s, irrespective of the lack of monotonicity of the quantile parameter estimates.

To provide intuition in a simple setup, note that to draw ηit according to model (37) one

can compute, as in [83],

η̃it =
K∑
k=0

âηk(u
η
it)φk(η̃i,t−1, ageit) for t > ti, η̃i,ti = ηi,ti ,

where uη
it are i.i.d. standard uniform. Although the estimates âηk(τ) may not satisfy mono-

tonicity restrictions, this approach produces η̃it draws from a valid distribution function. In

our setting we use this strategy to generate posterior draws of η’s and ξ’s, see Appendix 2.A
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for details.

Asymptotic distribution and inference. Under the assumption that the parametric

model is correctly specified,18 averages of parameter draws are consistent and asymptoti-

cally normal with an asymptotic variance that can be estimated by bootstrap or analytical

approximations, see [84] and ABB for details. We will report confidence bands computed us-

ing two versions of the bootstrap: a parametric bootstrap that relies on the model’s structure

for simulations, and a nonparametric bootstrap clustered at the household level.

2.4.3 Computational sampling techniques

Here we describe how we draw latent variables in every step of the stochastic EM algorithm.

We present, in turn, the methods we use for the latent income components ηit, εit, and for

the latent consumption type ξi. In practice we run these simulation steps in parallel across

households, which makes it easy to estimate the model on an unbalanced panel.

Income components: Sequential Monte Carlo. Estimating the income process re-

quires solving a nonlinear filtering problem, where ηi,ti , ..., ηi,ti+Ti−1 are latent variables. To

draw from their posterior distribution given the income data we use a Sequential Monte

Carlo (SMC) approach, see [68] and [85] for surveys.

To describe the SMC approach, we focus on the problem of sampling ηi,ti , ..., ηi,ti+Ti−1

for a single household i from the posterior distribution f(ηi,ti , ..., ηi,ti+Ti−1|yi,ti , ..., yi,ti+Ti−1).

In practice we sample in parallel across households. With importance sampling, one might

first sample directly from some proposal distribution π(ηi,ti , ..., ηi,ti+Ti−1), and then re-sample

18. One may also view the parametric model as a sieve approximation to a nonparametric distribution,
where the size of the grid of τ values, and hence the number of parameters, would grow with the sample
size at an appropriate rate. The theoretical justification we mention here is for a well-specified parametric
model.
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using importance sampling weights

wi ∝
f(ηi,ti , ..., ηi,ti+Ti−1|yi,ti , ..., yi,ti+Ti−1)

π(ηi,ti , ..., ηi,ti+Ti−1)
,

where ∝ is a proportionality symbol. However, finding a suitable proposal distribution in

our flexible nonlinear model is challenging. Instead, we try and generate draws (also called

“particles”) sequentially.

At t = ti, we initialize S particles η
(s)
i,ti

from a suitable proposal distribution π(ηi,ti).

Re-sampling with weights

w
(s)
i,ti

∝
f
(
η
(s)
i,ti
|yi,ti

)
π
(
η
(s)
i,ti

)
gives S particles approximately distributed according to f(ηi,ti |yi,ti).

At t = ti + 1, we now aim to approximate

f(ηi,ti , ηi,ti+1|yi,ti , yi,ti+1) =
f(yi,ti+1|ηi,ti+1)f(ηi,ti+1|ηi,ti)

f(yi,ti+1|yi,ti)
f(ηi,ti |yi,ti).

Since we already have S particles approximately distributed according to f(ηi,ti |yi,ti), we can

simply use a second proposal distribution π(ηi,ti+1|ηi,ti) to extend these existing particles.

Re-sampling with weights

w
(s)
i,ti+1 ∝

f
(
η
(s)
i,ti+1|yi,ti+1, η

(s)
i,ti

)
π
(
η
(s)
i,ti+1|η

(s)
i,ti

)
gives S particles approximately distributed according to f(ηi,ti , ηi,ti+1|yi,ti , yi,ti+1). The pro-
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cess continues until we obtain S particles approximately distributed as19

f(ηi,ti , ..., ηi,ti+Ti−1|yi,ti , ..., yi,ti+Ti−1)

The choice of proposal distributions π is important for numerical performance. We found

that a simple generalization of a linear permanent-transitory earnings model with Gaussian

errors performed well. Specifically, we postulate the following model:

yit = ηit + εit, εit ∼ iid N (0, σ2
ε), (39)

ηit = m(ηi,t−1, ageit) + vηit, vηit ∼ iid N (0, σ2
v), (40)

where εit and vηit are independent at all lags, and m is a Hermite polynomial. We re-estimate

this model at each iteration of the stochastic EM algorithm, and then set π(ηit|ηi,t−1) to

be the posterior distribution based on it. We provide details about the implementation

of the SMC sampler in Appendix 2.A. In addition, we provide a comparison of the SMC

and Metropolis Hastings sampling methods in the ABB sample in Appendix 2.C. We find

that, while our SMC algorithm recovers similar estimates of nonlinear persistence to those

reported in ABB, the SMC method is less sensitive to numerical instability than Metropolis

Hastings.

Unobserved type in consumption: Particle Markov Chain Monte Carlo. In order

to incorporate unobserved heterogeneity ξi, we embed the SMC sampler into a Particle

Markov Chain Monte Carlo (PMCMC) algorithm, following [69]. We use this method to

estimate the parameters of the consumption process, after having estimated the parameters

19. In practice, re-sampling at every time increment can result in degeneracy among the available particles.
For this reason, we instead use an adaptive rule which avoids degeneracy (see Creal, 2012).
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of the income process.

To outline the PMCMC approach, suppose we wish to sample ξi, ηi,ti , ..., ηi,ti+Ti−1 from the

posterior distribution f(ξi, ηi,ti , ..., ηi,ti+Ti−1 |wi,ti , ..., wi,ti+Ti−1), where wit = (yit, cit, ait) is a

vector of household i’s observed income, consumption and assets at time t. In the PMCMC

approach, SMC algorithms are used to generate efficient proposals to be used within a

Metropolis Hastings algorithms. An important feature of these methods is that they only rely

upon the availability of unbiased estimates of the marginal likelihood f(wi,ti , ..., wi,ti+Ti−1|ξi),

which are readily available as a by-product of the SMC algorithm. The use of unbiased

estimates of a target distribution within a Metropolis Hastings algorithm can be viewed more

generally as an example of a pseudo-marginal approach in which the resulting algorithms can

be presented as bona fide Metropolis Hastings samplers whose marginal distribution is the

target distribution of interest. We provide details about the implementation of the PMCMC

sampler in Appendix 2.A.

2.5 Main results

In this section we present the main empirical results on income and consumption, obtained

using our baseline nonlinear model with unobserved heterogeneity.

2.5.1 Income persistence

We start by reporting the results on nonlinear income persistence. In the left graph of Figure

2.3 we show the derivative of the conditional quantile function of log-income given lagged

log-income and age, with respect to lagged log-income. Formally, we compute an estimate

of

ρy(y, age, τ) =
∂Qy(y, age, τ)

∂y
, for τ ∈ (0, 1),
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where Qy is the conditional quantile function of log-income given lagged log-income and age,

and average it with respect to age. The nonlinear persistence parameters ρy(y, age, τ) can

be interpreted as heterogeneous autoregressive coefficients, which may depend on both the

income level y and the income shock τ .20 We plot the derivative as a function of lagged log-

income (which we refer to as “initial income”) and of the innovation in the quantile model

(which we refer to as “income shock”).

The results show that most households, for most shocks, have current disposable incomes

that are quite persistent, with a derivative coefficient that is above 0.80. However, households

with low initial income and high income shocks have incomes that are substantially less

persistent, with a coefficient as low as 0.40. Likewise, persistence is also low for households

with high initial income and low income shocks, with a coefficient of a similar magnitude.

These nonlinear persistence estimates are closely related to those found by ABB on a smaller

balanced sample drawn from the earlier pre-recession years of the PSID.

In the right graph of Figure 2.3 we show nonlinear income persistence, but now for the

persistent latent component ηit. That is, we show

ρη(η, age, τ) =
∂Qη(η, age, τ)

∂η
, for τ ∈ (0, 1),

where Qη is the conditional quantile function of ηit given ηi,t−1 and age, see (30). We plot

the derivative as a function of ηi,t−1 (“initial income”) and the innovation in the quantile

model (“income shock”).21 We see that average persistence is higher than for the case of

log disposable income — it is 0.92 in the right graph, versus 0.78 in the left graph — due

20. In Appendix Figure 2.11 we show a different projection of the same three-dimensional surfaces, to ease
visualization.

21. To produce the plot, we use posterior draws computed from the model. We proceed similarly when
plotting all subsequent results involving latent variables.

91



Figure 2.3: Nonlinear income persistence

(a) Log-income (b) Persistent component
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Notes: PSID, 2005-2017 sample, disposable income, dual earners. The left graph shows quantile derivatives of
log-income with respect to lagged log-income, ρy(y, age, τ) averaged over y. The right graph shows quantile
derivatives of the persistent latent component ηit with respect to ηit−1, ρη(η, age, τ) averaged over η, in
a model estimated using sequential Monte Carlo with a stochastic EM algorithm. In this case, the two
horizontal axes show percentiles of ηit−1 (“initial income”) and conditional percentiles of ηit given ηit−1

(“income shock”), respectively.

to the removal of the transitory income component. For households with high values of

initial persistent income and high shocks, persistence is close to unity, and similarly for

households with low initial persistent income and low shocks.22 The nonlinear pattern for

the persistent latent component ηit is qualitatively similar to the one for log-income, although

it is quantitatively less pronounced.

These nonlinear persistence patterns are rather precisely estimated, see the parametric

bootstrap 95% confidence bands in Appendix Figure 2.12 and the nonparametric bootstrap

95% confidence bands in Appendix Figure 2.13. In addition, comparing Figure 2.3 to Ap-

pendix Figure 2.8, we see that, while nonlinearities are somewhat more salient in our larger

and more recent sample compared to the balanced sample used in ABB, the persistence

patterns in both cases are comparable.23

22. Note that it is possible for the nonlinear income persistence measure to exceed one.

23. In Figure 2.3 we average the persistence measure across age values. In contrast, the main nonlinear
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Figure 2.4: Average consumption responses

A. Models without filtering
(a) No heterogeneity (b) Heterogeneity

B. Models with filtering
(c) No heterogeneity (d) Heterogeneity

Notes: PSID, 2005-2017 sample, dual earners. The graphs show the average derivative of log-consumption
with respect to log-income (in the top panel) and the persistent latent component ηit (in the bottom panel).
The left graphs correspond to a model without unobserved heterogeneity ξi in consumption, whereas the
right graphs correspond to a model with unobserved heterogeneity ξi. The two horizontal axes show age and
assets percentiles, respectively.
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2.5.2 Average consumption responses to income shocks

The main goal of the paper is to study heterogeneity in consumption responses to unexpected

changes in income. That is, the way income shocks are transmitted into consumption which

underpins the degree of “partial insurance” achieved by the household. In this subsection,

and the next, we document several key features of household partial insurance, which we

measure using the household-and-time-varying transmission coefficients

ϕit = ϕ(ageit, ait, ηit, εit, ξi)

given by the average derivative effects (28) introduced in Subsection 2.3.1. The transmission

coefficient ϕit quantifies the change in consumption induced by an exogenous marginal change

in the persistent latent component of income.

In Figure 2.4 we start by showing how the mean of the estimated transmission parameters

ϕit varies with assets levels and over the life cycle. We compare four specifications. The

“models without filtering” in the upper panel correspond to specifications without transitory

component εit, so the derivative on the right-hand side of (28) is taken with respect to log

current disposable income yit instead of the persistent latent component ηit. The “models

with filtering” in the lower panel allow for a separate role of ηit and εit. For both models

with and without filtering, we distinguish two specifications with and without unobserved

heterogeneity ξi, in the left and right columns, respectively.

Figure 2.4 shows that all specifications agree quite well qualitatively. In particular, the

association between consumption and income or its persistent latent component is weaker

for older and wealthier households. At the same time, there are important quantitative dif-

persistence figures in ABB are evaluated at a reference age value. The analog of Figure 3(a) in ABB is
Figure S3 in their supplemental appendix.
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ferences between the four specifications. We find that allowing for unobserved heterogeneity

ξi tends to dampen the consumption impacts of income shocks, the difference being particu-

larly noticeable for the models without filtering where average responses decrease from 0.40

to 0.14. The impact of heterogeneity can be explained by the fact that, according to our

estimates, ξi is positively correlated with income, see Section 2.6. In contrast, allowing for a

transitory income component tends to increase consumption responses to income shocks, as

is typically the case in estimates that correct for measurement error bias. As a result, in our

main model with unobserved heterogeneity and a transitory component, the lower right hand

graph shows an estimated average response parameter of 0.33. There are strong differences

by assets and age too, with the estimated average transmission coefficient dropping toward

0.10 for older and wealthier households, while for younger households the estimated mean

transmission rises to around 0.40.24

Comparison with ABB. It is informative to compare the average responses in Figure

2.4 to the results obtained by ABB. In a model without heterogeneity but with a transitory

component, ABB found an average transmission coefficient of 0.38. This is lower than the

responses in Figure 2.4 (c), which are 0.54 on average.25 As we previously noted, the period

of observation, the sample of households, and the income measure used in ABB all differ

from the ones we focus on in the current paper. In particular, ABB focus on labor income

as opposed to disposable income. Our estimates of consumption responses based on labor

24. The relative magnitudes of the nonlinear estimates in Figure 2.4 are reminiscent of the situation in a
linear model with a mismeasured persistent regressor and fixed effects, where the (positive) fixed effects bias
and the (negative) measurement error bias tend to offset each other, while only accounting for fixed effects
exacerbates the measurement error bias ([86]).

25. The consumption responses in a model without heterogeneity in ABB can be found in their Figure 5(c).
In addition, ABB also reported average responses based on a model with unobserved heterogeneity, albeit
using a different specification for the consumption rule. They found lower responses in this case, amounting
to 0.32 on average, see Figure S24(b) in the supplementary appendix of ABB.
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income are substantially lower than the responses based on disposable income shown in

Figure 2.4, see Section 2.7.

Test of homogeneity. By comparing average response coefficients in models with and

without household-specific heterogeneity, one can assess whether the data supports an ho-

mogeneous model without latent types. To do this, in Appendix Figure 2.14 we report

confidence bands based on the nonparametric bootstrap clustered at the household level for

the average responses depicted in the lower panel of Figure 2.4. We find a 95% confidence

interval for the mean across these responses of [0.50, 0.59] in the model without heterogene-

ity, and of [0.21, 0.44] in the model with heterogeneity. The fact that the two confidence

intervals do not overlap represents a formal rejection, at the 5% level, of the null hypoth-

esis of homogeneity. The same conclusion holds when we use the parametric bootstrap to

produce confidence intervals, see Appendix Figure 2.15.

2.5.3 Heterogeneity in consumption responses to income shocks

We have already seen that the introduction of unobserved heterogeneity has a systematic ef-

fect on the estimated average response of consumption to changes in income. We hypothesize

that there are also systematic differences in responses across consumers that differ according

to unobserved heterogeneity. To examine this, we study how consumption responses differ

among households that are at the same point in the life cycle and have the same level of

assets. For this purpose, we show how the transmission coefficients ϕit vary by quantiles of

the unobserved type ξi, in addition to showing how they vary with assets levels and over the

life cycle.

In Figure 2.5 we show transmission parameters as a function of assets and age, for five

different percentiles of ξi, and we also show the average across ξi values. The results show

clear evidence of household heterogeneity in consumption responses to income shocks. Con-
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sider the 10th percentile of ξi, in the top left graph. For these “low consumption type”

households, average transmission is 0.36, yet the magnitude of the transmission coefficient

varies substantially with age and assets. Indeed, while younger and less wealthy households

have transmission coefficients of close to 0.60, the coefficient is as low as 0.10 for older and

wealthier households. This pattern is qualitatively consistent with the implications of a

standard life-cycle model of consumption and saving behavior in which persistent shocks are

harder to self-insure for young consumers and for those consumers with low levels of net

assets.

This “life-cycle consistent” pattern of responses is maintained through to the median type,

albeit less pronounced. As we move to the higher consumer types, a pattern that is much

less sensitive to assets and age appears. Consider the 90th percentile of ξi, in the bottom

right graph of Figure 2.5. For these high-type households, the transmission coefficients are

0.29 on average, hence lower than the coefficients of the low-type households. In addition,

the variation of the transmission coefficients with assets and age is less pronounced than for

the low types. Indeed, while coefficients are approximately 0.15 for the older and wealthier

households, the young and less wealthy households have coefficients that do not exceed

0.40. These patterns for the high-types are less in accordance with the forces at play in

conventional life-cycle models of the individual household.

In order to provide measures of uncertainty associated with our main results, we rely

on the bootstrap. We report results based on a parametric bootstrap approach, where we

use the model to simulate bootstrapped data sets given parameter estimates. In Appendix

Figure 2.16 we report pointwise 95% bands for the transmission parameters of Figure 2.5. We

see that our estimates are rather precise. As a complement to the parametric bootstrap, in

Appendix Figure 2.17 we report pointwise 95% bands based on the nonparametric bootstrap

clustered at the household level. Precision is lower in this case, which is is not surprising,

since, relative to the clustered nonparametric bootstrap, the parametric bootstrap exploit
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Figure 2.5: Heterogeneity in consumption responses

(a) 10th percentile (b) 25th percentile

(c) Median (d) Mean

(e) 75th percentile (f) 90th percentile

Notes: See the notes to Figure 2.4. Here we report the results by percentiles of heterogeneity ξi in consump-
tion.
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Table 2.2: Summarizing heterogeneity across types, parametric bootstrap

A. 90th vs 10th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.31 0.22 0.09
[0.20,0.39] [0.12,0.34] [-0.03,0.19]

Low ξ 0.48 0.21 0.27
[0.40,0.62] [0.13,0.33] [0.16,0.38]

∆ -0.17 0.01 -0.18
[-0.36,-0.06] [-0.15, 0.13] [-0.34,-0.06]

B. 75th vs 25th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.36 0.21 0.15
[0.28,0.42] [0.14,0.31] [0.04,0.20]

Low ξ 0.45 0.21 0.24
[0.38,0.55] [0.15,0.31] [0.14,0.31]

∆ -0.09 0.00 -0.09
[-0.17,-0.03] [-0.08, 0.06] [-0.17,-0.03]

Notes: See the notes to Figure 2.4. Here we report average consumption responses for young and low
assets households compared to old and high assets households, for different percentiles of heterogeneity ξi
in consumption. Values are calculated by evaluating the average consumption response for households at a
fixed percentile of ξi when assets and age are fixed at the τth percentile. Reported values for young and low
assets households are then shown by averaging over τ ∈ (0, 0.5). Reported values for old and high assets
households are then shown by averaging over τ ∈ (0.5, 1). Parametric bootstrap 95% confidence intervals
based on 200 replications are shown in brackets.
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our modeling of the time-series dependence.

As a summary measure of the salient dimensions of heterogeneity that we find, in the

top panel of Table 2.2 we report estimates of average transmission parameters for various

categories of households: high and low types, corresponding to ξi being at the 90th percentile

or the 10th percentile, young/low assets for whom age and assets are below the median, and

old/high assets for whom age and assets are above the median. In the bottom panel we

repeat the exercise for high types corresponding to ξi being at the 75th percentile and low

types corresponding to ξi being at the 25th percentile. Alongside point estimates, we report

95% confidence intervals based on the parametric bootstrap.

We find that, while for high consumption types at the 90th percentile the transmission

of income shocks is only 0.09 higher for young/low assets households and insignificant at

conventional levels, for low types at the 10th percentile the average response coefficient is 0.27

higher for the young and low assets and significant at the 5% level. This supports our main

conclusion regarding the fact that the behavior of low types appears to be consistent with a

standard life-cycle model of consumption and saving, yet the behavior of high types appears

less consistent with the mechanisms of the model. In addition, the cross-type difference

0.09− 0.27 = −0.18 between these two estimates, which is akin to a difference-in-differences

estimate, is significant at the 5% level.26

The results in this section, based on a dynamic model with latent income components

and unobserved heterogeneity, provide evidence for the presence of heterogeneous types of

consumers, confirming what Figure 2.2 suggested. In the next section, we develop the impli-

cations of these results for life-cycle patterns of consumption and savings, and we examine

26. In Appendix Table 2.6 we report confidence intervals based on the nonparametric bootstrap clustered
at the household level. In this case, for low types below the 10th percentile the average response coefficient
remains significantly higher for the young and low assets. However, the cross-type difference is insignificant
at the 5% level.
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various possible mechanisms for the patterns in transmission parameters displayed in Figure

2.5.

Dispersion of consumption responses around their means ϕit. While our main focus

is on the average consumption response parameters ϕit, there may be dispersion around those

averages. In Appendix 2.D we show how to compute an upper bound on the share of variance

in responses ∂cit
∂η

explained by the means ϕit, obtained by calculating a lower bound on the

variance of ∂cit
∂η

conditional on (ait, ηit, εit, ageit, ξi). The reason why only bounds are available

is because transitory preference shocks νit, which may generate additional heterogeneity in

responses beyond the mean transmission parameters ϕit, may be multi-dimensional. We

report estimates of the upper bounds on the variance shares in Appendix Figure 2.18. We

find high variance shares, in many cases higher than 80%, suggesting that the ϕit parameters

capture a large part of the heterogeneity in responses (although we note that, since those are

upper bounds, this evidence does not strictly speaking rule out the presence of substantial

additional heterogeneity).

2.6 Candidate mechanisms to explain the heterogeneity

In this section we study various mechanisms that might potentially explain the type hetero-

geneity that we find.

2.6.1 Three candidate mechanisms

Informed by standard models of consumption and saving decisions, which guide our empirical

analysis, we can outline three candidate mechanisms to explain the heterogeneous types that

we document.

A first possible explanation is heterogeneity in preferences and discounting. There is

a long history of incorporating discount rate heterogeneity to help explain lifetime wealth
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accumulation, for example [87] and [88]. Everything else equal, individuals with higher

marginal utility of consumption will consume more, and hold fewer assets. Individuals

with higher discount factors will delay consumption relative to those with lower discount

factors, and hold more assets. This type of heterogeneity should lead to high-type households

consuming more and holding fewer assets. We examine this hypothesis by showing how

consumption and assets profiles depend on the latent type.

A second candidate explanation is heterogeneity in returns to assets. The rate of return is

a key determinant of consumption choice in standard models, so the types we find might in

fact reflect heterogeneity in those returns across households. [89] find evidence of individual

heterogeneity in returns to wealth using administrative records from Norway. We examine

this heterogeneity in the PSID by estimating an extension of the model with heterogeneity

in the asset accumulation rule (see equations (35)-(36)), and by empirically documenting the

form of this rule.

A third candidate explanation is heterogeneity in access to external resources, such as

parental insurance. Individuals with access to other forms of insurance would be expected

to consume more, for a comparable level of income and assets. [90], [91] and, more recently,

[92] and [93], use the generational links in the PSID to document a significant role for parents

and family networks in providing additional insurance. To probe this hypothesis, we link

the household heads in the PSID to their parents, and study how the latent types relate to

parental income, wealth, and consumption.

2.6.2 Life-cycle profiles

As a step towards examining the plausibility of a preference and discounting channel, we show

the life-cycle profiles implied by our dynamic model, for various percentiles of the unobserved
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heterogeneity ξi. In the top panel of Figure 2.6 we show consumption profiles, in logs.27

We see that consumption levels are monotone in the types. This is partly a result of our

restriction in (38), which implies monotonicity at the reference age. In addition, comparing

the dispersion of the solid lines (which correspond to the ξi percentiles) with the dashed

lines (which correspond to 10th and 90th unconditional percentiles of log-consumption), we

see that type heterogeneity explains a large part of the overall variation in log-consumption.

Our results imply that ξi accounts for 25% of the variance of log-consumption.28

Figure 2.6: Life-cycle profile

(a) Log-consumption

25 30 35 40 45 50 55 60

Age

9.5

10

10.5

11

11.5

F
it
te

d
 v

a
lu

e
 o

f 
c
o
n
s
u
m

p
ti
o
n

10

25

50

75

90

(b) Log-assets (c) Log-income
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Notes: Average non-residualized log-consumption in graph (a), log-assets in graph (b), and persistent latent

component of log-income in graph (c), for different ages and percentiles of ξi (10%, 25%, Median, 75%, 90%).

The dashed lines show the age-specific unconditional 10th and 90th percentiles for each outcome measure.

27. To draw these profiles we proceed by simulation, using a similar strategy to ABB. In addition, in the
graphs we show non-residualized variables; that is, we add back the predictions of the first-stage regressions
to the residuals of log-consumption, log-assets, and log-income. Note these predictions include the effects of
calendar time in addition to those of demographics.

28. In Appendix Figure 2.19 we plot the median and 10th and 90th percentile of log-consumption, over the
life cycle, for three percentiles of ξi (10th, median, and 90th). This confirms that the between-ξi dispersion
of consumption is substantial, even though there is large within-ξi variation as well.
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In the bottom panel of Figure 2.6 we show the profiles of assets and income, in logs. In

the left graph we see that, similarly to consumption, assets are monotone in types. This

suggests that, while high-type households consume more than low types, they also hold

more assets. However, the variation in types explains a relatively small share of the overall

variation in log-assets. Note that, while the restriction in (38) imposes that log-consumption

increases with the type ξi at particular covariates values, nothing in our approach restricts

log-assets to be monotone in the type. Quantitatively, we find that ξi accounts for 3% of

the variance of log-assets. In the right graph we show the results for the persistent latent

component of income. We see the same monotone behavior in the type as for consumption

and assets. Our results imply that ξi accounts for 4% of the variance of the persistent latent

component of log-income.29 We have already seen that the correlation between the latent

type and income is sufficient to generate sizable differences between specifications with and

without latent heterogeneity, see Figure 2.4.

Overall, our results show that high-type households consume more, hold more assets,

and have higher income. Quantitatively, individual types mainly differ in their consumption

profiles. While these findings do not rule out that differences in preferences and discounting

may be present in the data, they are difficult to reconcile with this channel being the main

driver of the heterogeneity in consumption responses that we find.

2.6.3 Heterogeneity in consumption and assets

We next assess the role of heterogeneity in assets returns as an explanation for type het-

erogeneity. For this purpose, we estimate a specification where asset accumulation depends

on the latent type ξi, see equations (35)-(36). The results based on this specification are

29. In Appendix Figure 2.20 we plot the median and 10th and 90th percentile of log-assets and the persistent
latent component of log-income, over the life cycle, for three percentiles of ξi. The results confirm that most
of the dispersion in assets and income is within-ξi.
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similar to the baseline ones for both income and consumption. In Appendix Figure 2.21 we

show the type heterogeneity in consumption responses to variation in the persistent latent

component of income, and find overall very similar responses to the ones based on a specifi-

cation without assets heterogeneity. In Appendix Figures 2.22 and 2.23 we report estimates

of assets responses, by type, in this generalized specification that allows the latent type to

enter the asset accumulation rule. We find that the association between lagged assets and

current assets conditional on lagged income and consumption increases with the latent type,

and that assets responses are higher for the young, decrease with the level of lagged assets,

and increase with the type ξi, especially for older households.

Overall, the results based on the extended specification with latent heterogeneity in assets

and consumption suggest that returns to assets are indeed heterogeneous across households

in the data. However, allowing the heterogeneity to enter asset accumulation does not

materially affect the conclusions regarding the heterogeneity in consumption responses.

2.6.4 Heterogeneity in parental insurance

A third candidate mechanism is heterogeneity in access to other forms of insurance, such

as parental insurance. In order to examine the plausibility of this mechanism, we take

advantage of the inter-generational linkages available in the PSID to match households to

their parents. This aspect makes the PSID uniquely suited to study income and consumption

dynamics in the presence of links across generations. Specifically, we start by matching the

heads of each household to those households headed by a parent of the head. If matches

to the household head are not available, we alternatively try and match the spouse of each

household to those households headed by a parent of the spouse. In our baseline sample we

are able to successfully match approximately 33% of households.

Given this matched panel dataset, we then regress posterior means of the types ξi on

various parental outcomes, such as consumption, income, and assets. In Table 2.3 we report
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Table 2.3: Heterogeneity and parental outcomes

A. All households

(1) (2) (3) (4) (5) (6) (7) (8)

Parent consumption 0.05 0.07 0.04 0.05
(0.02) (0.02) (0.02) (0.02)

Parent income 0.03 0.04 0.02 0.02
(0.01) (0.01) (0.02) (0.02)

Parent assets 0.01 0.01 0.00 0.00
(0.01) (0.01) (0.01) (0.01)

Controls No Yes No Yes No Yes No Yes

B. Young adults only

(1) (2) (3) (4) (5) (6) (7) (8)

Parent consumption 0.05 0.06 0.03 0.04
(0.02) (0.02) (0.02) (0.02)

Parent income 0.03 0.04 0.02 0.02
(0.01) (0.01) (0.02) (0.02)

Parent assets 0.01 0.01 0.00 0.00
(0.01) (0.01) (0.01) (0.01)

Controls No Yes No Yes No Yes No Yes

Notes: PSID, 2005-2017 sample, household heads aged 25-60 (top panel) and 25-45 (bottom panel). Re-
gressions of posterior ξi draws on parental outcomes. Parental links are obtained for approximately 33% of
panel. Parental outcomes are obtained as average residuals net of cohort and year effects. Results are based
on 10 posterior draws per household. Controls include an education dummy for the household head and a
quadratic specification for first period age. Standard errors clustered at the household level do not account
for the uncertainty in the posterior parameter estimates.
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the results of various specifications with different sets of controls. For robustness, in addition

to the results for all households (in the top panel) we also report results for household heads

who are less than 45 years old (in the bottom panel). We find that parental income and

consumption correlate positively with the mean type, although the correlation with assets is

insignificant from zero at conventional levels. When including all parental variables together,

parental consumption remains significantly positively correlated with the type. This suggests

that, indeed, the latent type ξi may partly reflect heterogeneous access to parental insurance.

This interpretation is further supported by the monotonicity of assets in the type documented

in Figure 2.6.

However, these results are purely indicative and we leave it to future work to assess

whether this channel is quantitatively important.

2.7 Other results and extensions

In this section we report results based on extensions of the model and other robustness

checks.

2.7.1 Impulse responses

We start by reporting impulse responses implied by the model’s estimates. In Figure 2.7

we estimate the impact of a shock to the persistent latent component of income, ηit, at

age 34. The figure is divided into three parts. In the upper part, we report the difference

between the average persistent latent component of income for households hit by the shock

and the average persistent latent component of income for households hit by a “median”

shock, i.e., corresponding to the 50th percentile of ηit conditional on ηi,t−1. To highlight

the heterogeneity in impulse responses, we show results for various percentiles of the latent

type distribution. In the middle and bottom parts of the figure we proceed similarly for
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log-consumption and log-assets, respectively, instead of the income component.

Within each part of the figure, we show impulse responses for various values of initial

income and the shock. In the left, middle and right columns we consider households who are

at the 10th, 50th and 90th percentile of the distribution of the persistent income component

at age 32, respectively. In the top (respectively, bottom) subpanels, we show the results for

a shock at the 10th (respectively, 90th) percentile of the distribution of shocks. Hence, top

subpanels correspond to negative income shocks, whereas bottom subpanels correspond to

positive income shocks.

Focusing first on the upper part of Figure 2.7, and moving across columns, we observe that

negative shocks tend to have a stronger impact for those on higher income, and that positive

shocks have a stronger impact for those on lower income. This illustrates the nonlinear

persistence in the income process documented in ABB. In addition, the fact that all lines

corresponding to different values of the latent type ξi reflects our assumption that the income

process does not depend on ξi.

Moving then to the middle part of Figure 2.7, we also observe nonlinearities in con-

sumption responses, although those are stronger for the negative income shocks than for the

positive ones. In addition, the differences between lines reflect the heterogeneity between

types. In particular, low types with higher income tend to respond more strongly to negative

shocks than other types. To further illustrate this heterogeneity, in Appendix Figure 2.24

we show how consumption levels evolve, on impact, after an income shock.

Lastly, focusing on the bottom part of Figure 2.7 we see only moderate differences in

assets evolution after a shock depending on the initial income level. In Appendix Figure

2.25 we show impulse responses based on the model that allows for heterogeneity in both

assets and consumption, see equations (35)-(36) and the results discussed in Subsection 2.6.3.

The responses to a shock to the persistent latent component of income are overall similar to

the ones based on the model without heterogeneity in the asset accumulation rule.
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Figure 2.7: Heterogeneity in impulse responses

10th ηit-percentile Median ηit 90th ηit-percentile
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32 34 36 38 40 42

Age

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

10

25

50

75

90

32 34 36 38 40 42

Age

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

10

25

50

75

90

32 34 36 38 40 42

Age

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

10

25

50

75

90

32 34 36 38 40 42

Age

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

10

25

50

75

90

32 34 36 38 40 42

Age

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

10

25

50

75

90

32 34 36 38 40 42

Age

-0.375

-0.25

-0.125

0

0.125

0.25

0.375

10

25

50

75

90

B. Consumption

32 34 36 38 40 42

Age

-0.125

-0.0625

0

0.0625

0.125

C
o
n
s
u
m

p
ti
o
n

10

25

50

75

90

32 34 36 38 40 42

Age

-0.125

-0.0625

0

0.0625

0.125

C
o
n
s
u
m

p
ti
o
n

10

25

50

75

90

32 34 36 38 40 42

Age

-0.125

-0.0625

0

0.0625

0.125

C
o
n
s
u
m

p
ti
o
n

10

25

50

75

90

32 34 36 38 40 42

Age

-0.125

-0.0625

0

0.0625

0.125

C
o
n
s
u
m

p
ti
o
n

10

25

50

75

90

32 34 36 38 40 42

Age

-0.125

-0.0625

0

0.0625

0.125

C
o
n
s
u
m

p
ti
o
n

10

25

50

75

90

32 34 36 38 40 42

Age

-0.125

-0.0625

0

0.0625

0.125
C

o
n
s
u
m

p
ti
o
n

10

25

50

75

90

C. Assets
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Notes: Impulse responses shown for shocks at the 10th (top subpanels) and 90th (bottom subpanels) per-
centiles, relative to median. See the text for a description. The different lines correspond to different
percentiles of ξi.

109



2.7.2 Robustness to the complexity of the quantile model used in estimation

The complexity of our empirical specification is controlled in part by the number of knots

at which we evaluate the quantiles of the variables in the model (i.e., the income compo-

nents, consumption, and the latent type). Our estimates of the functions, such as aηk(τ) in

(37), interpolate between those τ values. Hence, a large number of knots can approximate

any continuous quantile function well, while a small number of knots may provide a worse

approximation. However, in estimation one faces the usual bias/variance trade-off, and the

impact of the number of knots on the estimates is a priori unclear. To probe the sensitivity

of our main results to the number of knots, we report average consumption derivatives based

on 19 knots in Appendix Figure 2.26. By comparison, our baseline results were obtained

using 11 knots (see Figure 2.5). Overall the two sets of estimates agree very well.

2.7.3 Robustness to income definition and sample restriction

Next, we probe the robustness of our results to changes in income definition and sample

restriction. While our main results rely on using disposable, post-tax income, in Appendix

Figure 2.27 we report results on nonlinear income persistence based on pre-tax labor income.

In Appendix Figure 2.28 we report the corresponding results for heterogeneity in consump-

tion responses. The findings suggest a higher degree of nonlinearity in income persistence,

and a higher degree of consumption insurance, compared to the results based on disposable

income. This is not surprising, as the non-proportionality in the tax system can be inter-

preted as a source of insurance to households. Moreover, since the results in ABB were based

on labor income, these findings help explain the quantitative differences between the results

in ABB and the ones we report in this paper when relying on disposable income.

Another important feature of our sample is the restriction to dual earner households.

While this restriction is motivated by the goal to abstract from extensive labor supply
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decisions, it also results in a smaller and potentially more insured sample. We have estimated

our model on a larger sample that also includes single earners, where the second member of

the household is not working.30 In Appendix Figure 2.29 we report the results for income

persistence, and in Appendix Figure 2.30 we reproduce our main results on heterogeneity in

consumption responses to income shocks. Our findings are qualitatively unchanged relative

to our baseline sample of dual earners.

2.7.4 Additional dimensions of heterogeneity

Our specification of the consumption function flexibly allows for heterogeneity in income,

assets, age effects, and the effect of the latent type, see equation (27). However, it is possible

that the effects of additional observed and unobserved factors might matter for consump-

tion insurance. For example, differences in education and birth cohorts might be associated

with different consumption responses to income shocks. In Appendix Figure 2.32 we show

that neither education nor cohort are strongly associated with the latent type ξi. Yet, it

is theoretically possible that they enter the consumption function, and interact with in-

come components in meaningful ways, even though our modeling approach rules out this

possibility.

To tentatively explore this question, in Appendix Figure 2.33 we report consumption

responses to income shocks, by type ξi, in a specification that also controls for a fully in-

teracted education indicator. Since we do not re-estimate the model with latent variables,

we view this exercise as indicative. We see that the consumption responses across types

are qualitatively similar to the baseline ones, yet those responses appear somewhat muted.

This motivates future work extending our framework to allow for multiple observed and

unobserved sources of heterogeneity in consumption insurance and income processes across

30. In Appendix Table 2.7 we show descriptive statistics for this broader sample.
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households.

2.8 Conclusion

The motivation for this research has been to better understand nonlinear income dynamics

and heterogeneous consumption responses to changes in income. In this paper we have

developed methods that build on and extend [1], and we have applied them to a larger

and more comprehensive sample from the PSID which includes a richer set of consumption

categories. We have developed computational tools to better handle larger and more complex

models, including in settings with unbalanced panels, within a nonlinear quantile-based

latent variables framework. These new data and tools allow us to go beyond confirming the

presence of nonlinear income and consumption dynamics, and to document rich heterogeneity

in consumption responses across households.

Our results point to consumption responses to income shocks that vary substantially with

unobserved types. We distinguish lower types, who appear to follow the life-cycle patterns in

consumption responses implied by standard models, from higher types, whose consumption

responses to income shocks vary little with either assets levels or the stage of the life cycle.

High-type households consistently have higher consumption levels and, relative to low-type

households, have slightly higher incomes and levels of assets. For the younger low types,

consumption responses to persistent income shocks are close to 0.60 while for older low

types this falls to 0.10. For the higher types, consumption responses are flatter across age

and assets.

We examined alternative mechanisms that could lead to such heterogeneous consumption

responses. The fact that high types both consume more and hold more assets is difficult

to reconcile with an explanation based on heterogeneity in preferences or discounting. We

also argue that it is difficult to align with a specification that allows for latent heterogeneity

112



in asset accumulation, finding that the heterogeneity in consumption responses is virtually

unaffected by this extension. To explore a third mechanism, parental insurance, we used the

inter-generational linkages in the PSID to link a subset of household heads in our sample to

their parents. We found that high-type household heads have on average parents with higher

consumption and income levels, suggesting that the heterogeneous responses might in part

reflect heterogeneity in access to other sources of insurance such as parental insurance.

Our findings motivate further work on two fronts. First, whilst we have examined several

mechanisms and found a correlation between the latent types and parental consumption,

we lack a quantitative understanding of how these and other factors shape the household

differences in consumption responses and insurance. Second, although we have leveraged a

single-latent-factor model to maintain tractability in the presence of heterogeneous responses,

generalizing the model to account for other sources of heterogeneity is an important next

step. In particular, it would be valuable to extend the model to allow for time-invariant

heterogeneity in income, in addition to the latent consumption type.

2.A Modeling and estimation details

2.A.1 Empirical specification

Earnings components. Let φk, for k = 0, 1, ..., denote a dictionary of functions, with

φ0 = 1. In practice we use low-order products of Hermite polynomials for φk. We specify,

for t ∈ {ti + 1, ..., ti + Ti − 1}, the conditional quantile function of ηit given ηi,t−1 and ageit

as in (37). We specify the quantile function of εit (for t = 1, ..., T ) given ageit, and that of
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ηi1 given age at the start of the period agei1, in a similar way. Specifically, we set

Qε(ageit, τ) =
K∑
k=0

aεk(τ)φk(ageit),

Qη1(cohorti, educi, agei,ti , τ) =
K∑
k=0

aη1k (τ)φk(cohorti, educi, agei,ti),

with outcome-specific choices for K and φk.

Consumption type. To specify the latent type we set

Qξ(cohorti, educi, incomei, τ) =
K∑
k=0

aξk(τ)φk(cohorti, educi, incomei).

Consumption rule. To specify the consumption process we set

Qc(ait, ηit, εit, ageit, ξi, τ) =
K∑
k=1

ack(τ)φk(ait, ηit, εit, ageit, ξi). (41)

To fix the scale of the function we impose that

∫ 1

0

Qc(a, η, ε, age, ξ, τ)dτ = ξ,

which translates into linear restrictions on the parameters
∫ 1

0
ack(τ)dτ .

Assets evolution. For initial assets we set

Qa1(ηi,ti , agei,ti , cohorti, educi, ξi, τ) =
K∑
k=0

aa1k (τ)φk(ηi,ti , agei,ti , cohorti, educi, ξi). (42)
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For assets evolution we set

Qa(ait, ηit, εit, cit, ageit, ξi, τ) =
K∑
k=0

aak(τ)φk(ait, ηit, εit, cit, ageit, ξi, τ). (43)

Implementation. We base our implementation on ABB, and model the functions ak(τ)

as piecewise-linear interpolating splines on a grid [τ1, τ2], [τ2, τ3], ... , [τL−1, τL], contained in

the unit interval. We extend the specification of the intercept coefficient a0 on (0, τ1] and

[τL, 1) using a Laplace model indexed by λ− (for the left tail) and λ+ (for the right tail).

All ak for k ≥ 1 are constant on [0, τ1] and [τL, 1], respectively. We denote akℓ = ak(τℓ). In

practice, we take L = 11 and τℓ = ℓ/(L+1). We use tensor products of Hermite polynomials

for φk, each component of the product taking as argument a standardized variable.

2.B Estimation

Overview of the estimation strategy. We start by estimating the earnings parameters.

Next, we recover estimates of the consumption, assets, and type parameters, given the

previous earnings estimates.

Parameters. We collect all parameters governing the income process into a vector θ, given

by

θ =

(
aη, λη, aε, λε, aη1 , λη1

)
.

Likewise, we collect all parameters governing the consumption process into a vector µ, given

by

µ =

(
aξ, λξ, ac, λc, aa1 , λa1 , aa, λa

)
.
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We estimate θ and µ sequentially.

Model’s restrictions Let ρτ (u) = u(τ−1{u ≤ 0}) denote the “check” function of quantile

regression. Consider the parameters of Qη; that is, the aηkℓ and the corresponding Laplace

parameters λη. The true values of aηkℓ maximize

E

[
ti+Ti−1∑
t=ti+1

∫
ρτℓ

(
ηt −

K∑
k=0

aηkℓφk(ηt−1, ageit)

)
fi(η)dη

]
= 0,

where fi is the posterior distribution of the (ηi,ti , ..., ηi,ti+Ti−1) given the data and the true

parameter values. In turn, the true values of λη satisfy

λ
η

− =

−
E
[∑ti+Ti−1

t=ti+1

∫
1
{
ηt ≤

∑K
k=0 a

η
k1φk(ηt−1, ageit)

}
fi(η)dη

]
E
[∑ti+Ti−1

t=ti+1

∫ (
ηt −

∑K
k=0 a

η
k1φk(ηt−1, ageit)

)
1
{
ηt ≤

∑K
k=0 a

η
k1φk(ηt−1, ageit)

}
fi(η)dη

] ,
with an analogous formula for the upper tail parameter λη

+. The model implies related

restrictions on all the other quantile and tail parameters in θ and µ.
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Likelihood function. The likelihood function is, letting zi = (cohorti, educi) and Ti =

{ti, ..., ti + Ti − 1},

f(yTii , cTii , a
Ti
i , η

Ti
i , ξi | ageTii , zi; θ, µ)

=
∏
t∈Ti

f(cit|ait, ηit, yit, ξi, ageit;µ)

×
∏

t∈Ti,t>ti

f(ait|ai,t−1, yi,t−1, ci,t−1, ηi,t−1, ξi, ageit;µ)

×
∏
t∈Ti

f(yit|ηit, ageit; θ)
∏

t∈Ti,t>ti

f(ηit|ηi,t−1, ageit; θ)

× f(ai,ti|ηi,ti , agei,tizi, ξi;µ)f(ηi,ti | zi, agei,ti ; θ)f(ξi | zi, incomei;µ),

where notice we have imposed the assumption that ξi is independent of (yTii , ηTii ) given

(zi, incomei).

Similarly to ABB, the likelihood function is available in closed form. For example, we

have

f(yit|ηit, ageit; θ) = 1 {yit − ηit < Aε
it(1)} τ1λε

− exp
[
λε
− (yit − ηit − Aε

it(1))
]

+
L−1∑
ℓ=1

1 {Aε
it(ℓ) ≤ yit − ηit < Aε

it(ℓ+ 1)} τℓ+1 − τℓ
Aε

it(ℓ+ 1)− Aε
it(ℓ)

+1 {Aε
it(L) ≤ yit − ηit} (1− τL)λ

ε
+ exp

[
−λε

+ (yit − ηit − Aε
it(L))

]
,

where

Aε
it(ℓ) ≡

K∑
k=0

aεkℓφk(ageit) for all (i, t, ℓ).

Note that the likelihood function is non-negative by construction. In particular, drawing

from the posterior density of η automatically produces rearrangement of the various quantile

curves ([82]).
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Estimation algorithm. Like in ABB, starting from initial parameter values, we iterate

between two steps.

In the stochastic E-step, we draw M values η
(m)
i = (η

(m)
i,ti

, ..., η
(m)
i,ti+Ti−1) and ξ

(m)
i from their

posterior distribution. In practice we take M = 1.

In the M-step, we estimate parameters by solving empirical counterparts of the population

restrictions. This involves running multiple quantile regressions in order to estimate the akℓ

parameters, and estimating the λ parameters which are available in closed form.

Solving the indeterminacy in consumption. To impose the restriction (38), which

solves the indeterminacy in the relationship between consumption and the latent type, we

proceed as follows. At the start of every M-step, given draws η
(m)
i and ξ

(m)
i , we regress cit

on polynomials in ait, η
(m)
it , ε

(m)
it = yit − η

(m)
it , ageit, and ξ

(m)
i , using the same polynomial

specification as in the quantile model for log-consumption. Letting ĉit denote the predicted

value at (a, η, ε, age, ξ
(m)
i ), we then reset ĉit 7→ ξ

(m)
i .

Stochastic E-step (income estimation). The target for a given household i is the

posterior distribution

f(ηi,ti , ..., ηi,ti+Ti−1|yi,ti , ..., yi,ti+Ti−1).

At t = ti, we initialize S particles η
(s)
i,ti

from the following proposal distribution π:

ηi,ti ∼ N (µi, σ
2),

µi =

(
1−

σ2
η1

σ2
η1
+ σ2

ε

) K∑
k=0

βε
kφk(cohorti, educi, agei,ti) +

σ2
η1

σ2
η1
+ σ2

ε

yi,ti ,

σ2 =
c

1
σ2
η1

+ 1
σ2
ε

,

where the βε
k, σ

2
η1

and σ2
ε are parameters estimated by running OLS counterparts to the M-
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step quantile regressions (in the previous stochastic EM iteration), and c ≥ 1 is a constant

(we take c = 2). Time t = ti re-sampling weights are then given by

w
(s)
i,ti

∝
f(η

(s)
i,ti
|yi,ti)

π(η
(s)
i,ti
)

,

where π is the normal density with mean µi and variance σ2. These weights, which are

available in closed form, are used to re-sample particles with replacement from the set of

particles η
(s)
i,ti
, if the effective sample size 1∑S

s=1(w
(s)
i,ti

)2
exceeds some threshold (see below). This

simple adaptive rule avoids degeneracy of the particles. After re-sampling we reset w
(s)
i,ti

= 1
S
.

Otherwise we keep all the existing particles and weights.

At t = ti + r > ti, we use the following proposal distribution, again denoted as π, to

generate new draws to append to the existing set of particles:

ηi,ti+r | ηi,ti+r−1 ∼ N (µ̃i,r, σ̃
2),

µ̃i,r =

(
1−

σ2
η

σ2
η + σ2

ε

) K∑
k=0

βε
kφk(ηi,t+r−1, agei,ti+r) +

σ2
η

σ2
η + σ2

ε

yi,ti+r,

σ̃2 =
c

1
σ2
η
+ 1

σ2
ε

,

where again the βε
k, σ

2
η and σ2

ε are parameters estimated by running OLS counterparts to

the M-step quantile regressions. The re-sampling weights are given by

w
(s)
i,ti+r ∝ w

(s)
i,ti+r−1

f(η
(s)
i,ti+r|yi,ti+r, η

(s)
i,ti+r−1)

π(η
(s)
i,ti+r|η

(s)
i,ti+r−1)

,

which are used to re-sample particles if the effective sample size 1∑S
s=1

(
w

(s)
i,ti+r

)2 exceeds the

threshold.
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Stochastic E-step (consumption estimation). The target for a given household is the

posterior distribution

f(ξi, ηi,ti , ..., ηi,ti+Ti−1 |xi,ti , ..., xi,ti+Ti−1),

where xit = (yit, cit, ait, ageit) is a vector of household i’s observed income, consumption,

assets and age at time t. Algorithm 1 below provides a pseudo-code for the implementation.

The SMC sampling steps (used to generate efficient proposals within a Metropolis Hastings

algorithm) are identical to those outlined above with the exception that re-sampling weights

at times t = ti and t > ti are now given by

w
(s)
i,ti

∝
f
(
η
(s)
i,ti
|ξ∗i , xi,ti

)
π
(
η
(s)
i,ti

) ,

and

w
(s)
i,ti+r ∝

f
(
η
(s)
i,ti+r|ξ∗i , xi,ti+r, η

(s)
i,ti+r−1

)
π
(
η
(s)
i,ti+1|η

(s)
i,ti

) ,

respectively, where ξ∗i is a draw from a random walk proposal. We make use of the same

proposal distributions π as in the income estimation.

In the very first iteration of the stochastic EM algorithm we initialize the Metropolis

Hastings chains using random draws from the following proposal:

ξ∗i ∼ N (νi, ω
2),

where νi =
∑K

k=0 β
ξ
kφk(cohorti, educi, incomei). The parameters βξ

k and ω2 are estimated by

running OLS counterparts to the corresponding M-step quantile regressions. At subsequent

iterations of the stochastic EM we initialize the Metropolis Hastings chains using draws from

the previous iteration. After initialization we use a Gaussian random walk proposal with
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variance 3.5ω2.

Whilst running the SMC samplers we obtain unbiased estimates of the marginal likelihood

which can be calculated recursively as p̂(xi,ti+r, ...|ξ∗i ) =
∑S

s=1 p̂(xi,ti+r−1, ...|ξ∗i )w
(s)
i,ti+r. The

unbiasedness of these marginal likelihood estimates implies that the resulting algorithm can

be represented as a bona fide Metropolis Hastings algorithm yielding the desired target as

its marginal.

Pseudo-code of the stochastic EM algorithm. A short pseudo-code for the algorithm

we use is presented in Algorithm 1.

Algorithm 1. (Stochastic EM)

1: for ℓ=1:L do

2: Stochastic E-Step:

3: Set ξ0i and (η0i,ti , ..., η
0
i,ti+Ti−1) to some starting values.31

4: for k=1:K do

5: Sample ξ∗i ∼ q(.|ξk−1
i ), where q is a proposal distribution.32

6: Run an SMC algorithm targeting p(ηi,ti , ..., ηi,ti+Ti−1|ξ∗i , wi,ti , ..., wi,ti+Ti−1).

7: Store the marginal likelihood estimate, p̂(ξ∗i ) = p(wi,ti , ..., wi,ti+Ti−1|ξ∗i ), and the

resulting particles η∗i,ti , ..., η
∗
i,ti+Ti−1, both of which are available as output of the SMC

algorithm in line 6.

8: Let f denote the density of ξi, whose expression is given in Appendix 2.A. With

probability min
(
1,

p̂(ξ∗i )f(ξ
∗
i )q(ξ

k−1
i |ξ∗i )

p̂(ξk−1
i )f(ξk−1

i )q(ξ∗i |ξ
k−1
i )

)
set ξki = ξ∗i and

(ηki,ti , ..., η
k
i,ti+Ti−1) = (η∗i,ti , ..., η

∗
i,ti+Ti−1); otherwise set ξ

k
i = ξk−1

i and (ηki,ti , ..., η
k
i,ti+Ti−1) =

31. When ℓ > 1 we simply take ξ0i to be the ξi draw from the previous (ℓ− 1) step. When ℓ = 1 we always
accept the first proposal. In both cases, we run an SMC algorithm (see line 6 in the pseudo-code) based on
ξ0i to generate a draw (η0i,ti , ..., η

0
i,ti+Ti−1).

32. In practice, we use a random walk proposal. We tune the variance of the proposal so that the acceptance
rate is approximately 30%.
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(ηk−1
i,ti

, ..., ηk−1
i,ti+Ti−1).

9: end for

10: Keep the last values ξKi and (ηKi,ti , ..., η
K
i,ti+Ti−1).

11: M-Step:

12: Estimate the quantile parameters by quantile regressions given the draws ξKi and

(ηKi,ti , ..., η
K
i,ti+Ti−1), as explained in Appendix 2.A. Estimate the Laplace tail parameters.

13: Update the parameters of the proposal distribution, as explained in Appendix 2.A.

14: end for

Practical issues: number of particles and threshold for effective sample size. In

practice, we set an i-specific number of particles equal to Si = 50Ti, where Ti is the number

of observations of household i. We set the threshold for effective sample size to Si/2.

Practical issues: specification. In practice we set the following polynomial degrees K

for our baseline specification, chosen after some experimentation:

• Qη: K
η = 3, Kage = 2.

• Qη1 : K
educ = 1, Kcohort = 1, Kage = 2.

• Qε: K
age = 2.

• Qc: K
age = 1, Ka = 2, Kη = 2, Kε = 1, Kξ = 1.

• Qa: K
age = 1, Ka = 2, Ky = 1, Kc = 1.

• Qa1 : K
age = 1, Kη = 1, Kξ = 1, Keducation = 1, Kcohort = 1.

• Qξ: K
income = 1, Keduc = 1, Kcohort = 1.
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Practical issues: starting values. In practice, we start the algorithm from different

parameter values. For example, for the initial values of the quantile parameters in ηit, we

run quantile regressions of log-earnings on lagged log-earnings and age. We proceed similarly

to set other starting parameter values, including those for the proposal distributions. In

addition, we use latent draws from the income model as initial draws when estimating the

consumption model. We experimented with a number of other choices.

Practical issues: numerical performance. Our aim is to ensure that the stochastic EM

parameter Markov chains mix well. Among the factors that influence mixing (as measured

by the decay rate of auto-correlations along the parameter Markov chains), we found three

key ones to be the number of particles, the length of the Metropolis chains, and the number

of iterations in the overall EM algorithm. Given our experiments, we found that setting

moderate numbers for the first two (we set Si = 50Ti particles, as indicated above, and

we run each Metropolis chain for 50 iterations), and relatively large numbers for the third

(we run the stochastic EM for 2000 iterations), gave best performance given computation

constraints in our short panel data setting.

2.C Numerical comparison with ABB

The SMC approach differs from the Metropolis Hastings method that was used in ABB.

Here we compare the income persistence implied by SMC and Metropolis Hastings, when

using the original 6-wave balanced panel from ABB.

In Figure 2.8 we show the nonlinear income persistence predicted by the algorithm using

SMC, and compare it to the estimates based on the Metropolis Hastings algorithm from

ABB. We see that the results are little affected by the change in method. In particular, we

see that, for households with a low persistent income component, high shocks are associated

with less income persistence, and for households with a high persistent income component,
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Figure 2.8: Comparing Metropolis Hastings and Sequential Monte Carlo in the balanced
panel used in [1]

(a) Metropolis Hastings (b) Sequential Monte Carlo
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Notes: 6-wave balanced sample from the PSID used in ABB, 1999-2009. The graphs show the quantile
derivatives of the persistent income component ηit with respect to ηit−1, averaged over ages in the sample.
In the left graph we show the result obtained using a Metropolis Hastings, using the codes from ABB. In the
right graph we show the results obtained using the Sequential Monte Carlo algorithm. The two horizontal
axes show percentiles of ηit−1 (“initial income”) and conditional percentiles of ηit given ηit−1 (“income
shock”), respectively.

low shocks are associated with more income persistence. These patterns differ from the

implications of a linear process such as a random walk, where income persistence would

be flat, independent of both the income level and the income shock. Formally, the income

persistence measure proposed by ABB is, in the case of the persistent income component ηit,

ρ(η, age, τ) =
∂Qη(η, age, τ)

∂η
, τ ∈ (0, 1), (44)

where Qη is the quantile function appearing in (30).33

The income persistence results reported in ABB are based on comparing various estima-

tion runs, and selecting the one that provides the highest value of the likelihood. However,

compared to Metropolis Hastings used in ABB, we found the SMC approach to be more effec-

33. Note that ρ(η, age, τ) also depends on age, which we average out in Figure 2.8.
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Figure 2.9: Pointwise numerical stability bands of nonlinear persistence estimates

(a) Metropolis Hastings (b) Sequential Markov Chain

Notes: 6-wave balanced sample from the PSID used in ABB, 1999-2009. The graphs show the quantile
derivatives of the persistent income component ηit with respect to ηit−1, averaged over ages in the sample,
and evaluated pointwise at the 2.5th and 97.5th percentiles over 200 runs of the stochastic EM algorithm,
using different seeds every time. In the left graph we show the result obtained using a Metropolis Hastings
sampler, using the codes from ABB. In the right graph we show the results obtained using the Sequential
Monte Carlo algorithm. The two horizontal axes show percentiles of ηit−1 (”initial income”) and conditional
percentiles of ηit given ηit−1 (”income shock”), respectively.
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tive at reducing the numerical instability across estimation runs. To illustrate this, in Figure

2.9 we report numerical stability bands that indicate the variability of income persistence

estimates obtained from 200 runs of our estimation algorithm using different seeds, based on

the two different sampling methods. In the left graph of the figure we report results based

on Metropolis Hastings. In the right graph we report results based on the SMC algorithm

we rely on in this paper. The SMC results show substantially less numerical variability.

Lastly, although reported estimates in ABB appear reliable in the shorter balanced sam-

ple, in our experience increasing the number of households and the length of the panel makes

it more challenging to rely on Metropolis Hastings for sampling. In contrast, we found our

SMC implementation to remain numerically stable in such cases.

2.D Which features of the consumption policy rule can be

identified?

Consider a structural policy rule of the form

C = g(X, ν),

where ν, of unrestricted dimension, is independent of X. To simplify the presentation we

assume that X is scalar. In this paper, C denotes consumption, and X contains all state

variables, including the income components. Denote the conditional quantile function of C

given X as Q(X, τ). Hence, for U uniform independent of X, we can write

C = Q(X,U).
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We are interested in moments of the marginal effects

∆xC =
∂g(x, ν)

∂x
.

The key challenge is that, while Q is identified from data on (C,X), g is generally not.

Average responses. We have, under standard conditions,

E [∆xC] =
∂

∂x
E [g(x, ν)] ,

hence

E [∆xC] =
∂

∂x
E [C |X = x] ,

or, equivalently,

E [∆xC] =
∂

∂x
E [Q(x, U)] ,

that is,

E [∆xC] = E

[
∂

∂x
Q(x, U)

]
.

Hence, average marginal effects are identified, irrespective of the dimensionality of ν and the

monotonicity properties of g.

Variance of responses. By Theorem 2.1 in [67] we have

E [∆xC |X = x,C = Q(x, τ)] =
∂

∂x
Q(x, τ),

for all τ and x. We thus can write

∂

∂x
Q(x, U) = E [∆xC] + V,
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where

V =
∂

∂x
Q(x, U)− E [∆xC] .

Now, V has mean zero, and variance

Var

(
∂

∂x
Q(x, U)

)
= Var (E [∆xC |X = x,C = Q(x, U)])

= R2Var (∆xC) ,

where R2 corresponds to the nonparametric regression of ∆xC on C and X. Hence, the

variance of ∂
∂x
Q(x, U) underestimates the variance of ∆xC, by an amount that depends on

how well C and X explain ∆xC.

For example, if ν is scalar and has a monotone effect on g, then R2 = 1 and the variances

are equal. In that case, Q = g, and g is identified. More generally, even though g is may

not be identified, the mean of ∂g(x,ν)
∂x

is identified and one can compute a lower bound on the

variance of ∂g(x,ν)
∂x

.
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2.E Additional tables and figures

2.E.1 Tables and figures for Section 2.2

Table 2.4: Additional descriptive statistics about the unbalanced panel

(1) (2) (3) (4) (5) (6) (7)

Waves 1 Waves 2 Waves 3 Waves 4 Waves 5 Waves 6 Waves 7

Age 38.29 39.66 40.58 40.95 40.90 40.08 38.25

(10.51) (10.70) (10.13) (9.55) (9.23) (8.52) (6.71)

Education 4.88 4.95 5.00 5.06 5.05 5.16 5.14

(1.09) (1.10) (1.10) (0.99) (1.05) (0.95) (0.98)

Kids 1.22 1.05 1.08 0.90 1.02 1.17 1.35

(1.16) (1.15) (1.17) (1.00) (1.22) (1.08) (1.01)

Food 10,224.82 10,297.24 10,231.33 10,417.36 10,618.86 10,873.81 10,339.80

(5,618.54) (4,871.19) (4,884.57) (5,322.02) (5,205.25) (5,295.29) (5,566.94)

Non-durables (excl. food) 24,446.69 25,271.07 27,640.10 26,705.96 27,597.78 29,553.66 27,365.30

(23,423.94) (14,975.07) (20,170.04) (19,519.81) (18,453.14) (18,044.51) (18,732.42)

Total Non-durables 34,818.81 35,657.00 37,929.68 37,137.98 38,269.81 40,427.48 37,731.48

(26,171.72) (17,197.60) (22,674.04) (22,345.36) (21,752.17) (20,778.80) (21,432.31)

Home equity 94,353.18 93,634.64 134445.57 142168.95 146854.98 144322.37 145431.99

(221908.96) (157549.09) (218194.70) (196533.44) (231684.48) (171917.47) (182450.48)

Negative Equity Dummy 0.03 0.01 0.02 0.02 0.03 0.02 0.01

(0.16) (0.12) (0.13) (0.12) (0.16) (0.15) (0.10)

Wealth (excl. home) 236379.23 151718.99 192237.00 207947.79 245846.12 149537.06 144836.15

(1.85e+06) (452508.81) (480574.21) (1.03e+06) (713417.52) (437249.71) (607971.51)

Total wealth 369397.05 283854.13 387068.75 414928.35 464594.00 349645.50 352285.71

(2.26e+06) (648961.96) (714758.54) (1.30e+06) (1.00e+06) (604613.97) (791042.37)

Labor income 105504.37 106842.60 121094.14 134196.63 136728.34 118852.50 117218.18

(131690.40) (90,625.35) (131051.85) (226750.06) (132471.38) (65,851.87) (53,500.79)

Net income 83,800.29 84,063.03 92,061.60 100974.16 101662.12 90,869.67 90,045.96

(80,287.10) (57,270.53) (80,307.77) (132837.00) (79,228.69) (42,442.62) (34,698.92)

Observations 1002 668 484 263 223 177 299

Notes: PSID, 2005-2017. Means of variables, standard deviations in parentheses.
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Table 2.5: Additional descriptive statistics about the main sample, including negative assets

(1) (2) (3) (4) (5) (6) (7)
2005 2007 2009 2011 2013 2015 2017

Food 10,632.46 10,584.68 10,231.23 10,517.05 10,701.87 11,154.70 11,761.09
(5,299.94) (5,480.66) (4,985.32) (5,039.51) (5,575.75) (5,262.43) (5,514.86)

Non-durables (excl. food) 28,005.27 29,138.06 27,784.64 28,336.56 30,089.00 29,597.75 28,312.56
(18,936.74) (19,416.39) (18,768.90) (17,696.35) (17,860.16) (17,018.40) (14,572.47)

Total Non-durables 38,669.31 39,750.28 38,081.61 38,921.75 40,869.60 40,824.46 40,119.38
(21,699.98) (22,033.74) (21,113.38) (20,391.50) (20,440.32) (19,538.10) (17,414.63)

Home equity 150404.41 156582.18 117029.77 97,240.09 91,229.90 94,851.48 108298.61
(212201.08) (224409.31) (192280.79) (161856.05) (146908.40) (135356.38) (135913.11)

Negative Equity Dummy 0.01 0.01 0.07 0.08 0.06 0.02 0.02
(0.12) (0.12) (0.26) (0.28) (0.24) (0.14) (0.12)

Wealth (excl. home) 188962.86 255179.00 230841.97 201148.10 183919.95 203580.64 272524.94
(683870.01) (964936.86) (874673.16) (497471.78) (476877.85) (519691.15) (1.01e+06)

Total wealth 411875.17 470628.74 384224.26 314392.55 279919.36 298432.12 368142.89
(940132.05) (1.20e+06) (1.07e+06) (617956.79) (578419.27) (590056.80) (1.01e+06)

Labor income 122972.70 124391.48 126510.00 123237.46 121745.86 120544.04 125475.14
(139187.13) (143195.31) (182296.90) (119741.17) (118132.57) (72,546.62) (66,226.60)

Net income 93,504.28 94,804.55 95,893.52 95,289.90 94,087.25 92,224.02 95,572.56
(83,501.16) (86,771.32) (109386.52) (73,204.74) (71,919.39) (46,205.59) (43,329.49)

Observations 1397 1684 1616 1399 1269 1192 968

Notes: PSID, 2005-2017. Means of variables, standard deviations in parentheses.
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Figure 2.10: Consumption responses at various quantiles, confidence bands

(a) Average

(b) Bottom tercile (c) Top tercile

Notes: See the notes to Figures 2.1 and 2.2. Bootstrapped pointwise 95% confidence bands clustered at the
household level.
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2.E.2 Tables and figures for Section 2.5

Table 2.6: Summarizing heterogeneity across types, nonparametric bootstrap

A. 90th vs 10th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.31 0.22 0.09
[0.08,0.48] [0.04,0.44] [-0.15,0.22]

Low ξ 0.48 0.21 0.27
[0.27,0.68] [0.04,0.42] [0.01,0.43]

∆ -0.17 0.01 -0.18
[-0.56,0.08] [-0.27,0.28] [-0.54,0.08]

B. 75th vs 25th percentile of ξ

Young, low assets Old, high assets ∆

High ξ 0.36 0.21 0.15
[0.19,0.46] [0.08,0.40] [-0.02,0.24]

Low ξ 0.45 0.21 0.24
[0.27,0.58] [0.09,0.39] [0.02,0.34]

∆ -0.09 0.00 -0.09
[-0.27,0.04] [-0.13,0.14] [-0.25,0.04]

Notes: See the notes to Figure 2.4. Here we report average consumption responses for young and low
assets households compared to old and high assets households, for different percentiles of heterogeneity ξi
in consumption. Values are calculated by evaluating the average consumption response for households at a
fixed percentile of ξi when assets and age are fixed at the τth percentile. Reported values for young and low
assets households are then shown by averaging over τ ∈ (0, 0.5). Reported values for old and high assets
households are then shown by averaging over τ ∈ (0.5, 1). Nonparametric bootstrap 95% confidence intervals
clustered at the household level based on 200 replications are shown in brackets.
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Figure 2.11: Nonlinear income persistence

(a) Log-income (b) Persistent component

Notes: PSID, 2005-2017 sample, disposable income, dual earners from an alternative perspective. The left
graph shows quantile derivatives of log-income with respect to lagged log-income. The right graph shows
quantile derivatives of the persistent latent component ηit with respect to ηit−1, model estimated using
sequential Monte Carlo with a stochastic EM algorithm. The two horizontal axes show percentiles of ηit−1

(“initial income”) and conditional percentiles of ηit given ηit−1 (“income shock”), respectively.

Figure 2.12: Nonlinear persistence in ηit, 95% pointwise confidence bands (parametric boot-
strap)

Notes: Pointwise 95% confidence bands based on the parametric bootstrap. 200 replications.
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Figure 2.13: Nonlinear persistence in ηit, 95% pointwise confidence bands (nonparametric
bootstrap)

Notes: Pointwise 95% confidence bands based on nonparametric bootstrap. 200 replications. Bootstrap is
clustered at the household level.

Figure 2.14: Average insurance in model with and without heterogeneity 95% pointwise
confidence bands (nonparametric bootstrap)

(a) Without heterogeneity (b) With heterogeneity

Notes: Pointwise 95% confidence bands based on nonparametric bootstrap. 200 replications. Bootstrap is
clustered at the household level.
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Figure 2.15: Average insurance in model with and without heterogeneity 95% pointwise
confidence bands (parametric bootstrap)

(a) Without heterogeneity (b) With heterogeneity

Notes: Pointwise 95% confidence bands based on parametric bootstrap.

Figure 2.16: Heterogeneity in consumption responses, 95% pointwise confidence bands (para-
metric bootstrap)

(a) 10th percentile (b) 50th percentile (b) 90th percentile

Notes: Pointwise 95% confidence bands based on parametric bootstrap. 200 replications.
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Figure 2.17: Heterogeneity in consumption responses, 95% pointwise confidence bands (non-
parametric bootstrap)

(a) 10th percentile (b) 50th percentile (b) 90th percentile

Notes: Pointwise 95% confidence bands based on nonparametric bootstrap. 200 replications. Bootstrap is
clustered at the household level.

Figure 2.18: Heterogeneity in residual variation of consumption responses

(a) 10th percentile (b) 50th percentile (c) 90th percentile

Notes: See the notes to Figure 2.5. The figure shows an upper bound on the proportion of the variation in
consumption responses to ηit explained by the average consumption response, conditional on age and assets,
see Section 2.D of the appendix. The various graphs corresponds to different percentiles of ξi.

136



2.E.3 Tables and figures for Section 2.6

Figure 2.19: Life-cycle profile of log-consumption, for different percentiles of unobserved
types
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Notes: Average non-residualized log-consumption, for different ages and percentiles of ξi (10%, Median,

90%). The dashed lines show the age-specific and ξi-specific 10th and 90th percentiles of log-consumption.

Figure 2.20: Life-cycle profiles of log-assets and log-income, for different percentiles of un-
observed types
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Notes: Average non-residualized log-assets and persistent latent component of log-income, for different ages

and percentiles of ξi (10%, Median, 90%). The dashed lines show the age-specific and ξi-specific 10th and

90th percentiles for each outcome measure.
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Figure 2.21: Heterogeneity in consumption responses, model with heterogeneity in assets

(a) 10th Percentile (b) 25th Percentile

(c) 50th Percentile (d) Average

(e) 75th Percentile (f) 90th Percentile

Notes: See the notes to Figure 2.5. The results are based on a model with latent heterogeneity ξi in
consumption and assets. Here we report the results by percentiles of heterogeneity ξi.
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Figure 2.22: Heterogeneity in assets dynamics, model with heterogeneity in assets

(a) 10th Percentile (b) 25th Percentile

(c) 50th Percentile (d) 75th Percentile

(e) 90th Percentile

Notes: The figure shows the average total derivative of log-assets with respect to lagged log-assets, conditional
on lags of log-assets, income components, log-consumption, age, and the latent type. Here we report the
results by percentiles of heterogeneity ξi.
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Figure 2.23: Heterogeneity in assets responses, model with heterogeneity in assets

(a) 10th Percentile (b) 25th Percentile

(c) 50th Percentile (d) 75th Percentile

(e) 90th Percentile

Notes: The figure shows the average total derivative of log-assets with respect to lagged η, conditional on
lags of log-assets, income components, age and the latent type. Here we report the results by percentiles of
heterogeneity ξi.
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2.E.4 Tables and figures for Section 2.7

Figure 2.24: Heterogeneity in impulse responses: consumption trajectories
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Notes: Trajectories shown for shocks at the 10th (top subpanel), 50th (middle subpanel) and 90th (bottom
subpanel) percentiles.
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Figure 2.25: Heterogeneity in impulse responses, model with heterogeneity in assets

10th lagged η percentile 50th lagged η percentile 90th lagged η percentile
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Notes: Impulse responses shown for shocks at the 10th (top subpanels) and 90th (bottom subpanels) per-
centiles, relative to median.
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Figure 2.26: Heterogeneity in consumption responses based on 19 knots

(a) 10th percentile (b) 50th percentile (b) 90th percentile

Notes: See the notes to Figure 2.5. In this figure we use 19 knots in estimation. For our baseline results in
Figure 2.5 we used 11 knots.

Figure 2.27: Nonlinear income persistence, labor income

(a) Log-income (b) Persistent component

Notes: PSID, 2005-2017 sample, household labor income. The left graph shows quantile derivatives of log-
income with respect to lagged log-income. The right graph shows quantile derivatives of the persistent latent
component ηit with respect to ηit−1, model estimated using sequential Monte Carlo with a stochastic EM
algorithm. The two horizontal axes show percentiles of ηit−1 (“initial income”) and conditional percentiles
of ηit given ηit−1 (“income shock”), respectively.
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Figure 2.28: Heterogeneity in consumption responses, labor income

(a) 10th percentile (b) 25th percentile

(c) Median (d) Mean

(e) 75th percentile (f) 90th percentile

Notes: See the notes to Figure 2.5. Household labor income. Here we report the results by percentiles of
heterogeneity ξi in consumption.
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Table 2.7: Descriptive statistics about the main sample without dual earners restriction

(1) (2) (3) (4) (5) (6) (7)
2005 2007 2009 2011 2013 2015 2017

Food 10,739.58 10,629.51 10,294.05 10,523.17 10,728.10 11,195.42 12,049.05
(5,602.43) (5,617.21) (5,131.22) (5,066.30) (5,701.24) (5,290.79) (5,872.98)

Non-durables (excl. food) 27,847.42 28,588.68 27,339.21 27,883.75 29,368.71 29,549.63 27,907.17
(23,625.00) (20,214.59) (19,243.79) (19,340.37) (19,382.75) (19,794.72) (16,322.99)

Total Non-durables 38,625.09 39,265.87 37,731.22 38,532.60 40,205.65 40,843.42 40,002.57
(26,482.07) (23,195.91) (21,701.55) (21,932.92) (22,194.81) (22,563.15) (19,525.89)

Home equity 168358.82 176300.55 136154.76 121783.91 116463.18 118089.14 133596.76
(262246.00) (283429.69) (207398.72) (175957.85) (165962.97) (152785.21) (150451.14)

Negative Equity Dummy 0.01 0.01 0.03 0.03 0.03 0.01 0.01
(0.08) (0.10) (0.17) (0.17) (0.16) (0.10) (0.10)

Wealth (excl. home) 211547.79 279544.52 278268.96 268297.79 260584.33 291511.77 346692.78
(1.09e+06) (1.16e+06) (1.02e+06) (704058.90) (656770.57) (765195.01) (1.07e+06)

Total wealth 461075.98 521015.10 457730.90 411004.15 383583.34 409600.91 464296.87
(1.51e+06) (1.51e+06) (1.23e+06) (841641.87) (762537.13) (834428.29) (1.09e+06)

Labor income 121962.17 120618.90 124276.87 121469.61 127809.57 124560.33 129948.36
(155403.02) (143009.67) (181097.03) (129296.65) (241344.84) (172615.50) (115383.29)

Net income 93,333.70 93,262.22 95,306.98 95,476.95 98,924.10 95,790.47 99,431.91
(92,700.09) (86,962.24) (108935.54) (82,869.14) (145844.22) (98,144.09) (69,882.14)

Observations 1730 2004 1843 1578 1436 1321 1090

Notes: PSID, 2005-2017. Means of variables, standard deviations in parentheses.

Figure 2.29: Nonlinear income persistence, no dual earners restriction

(a) Log-income (b) Persistent component
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Notes: PSID sample, no dual earners restriction. See the notes to Figure 2.3.
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Figure 2.30: Heterogeneity in consumption responses, no dual earners restriction

(a) 10th Percentile (b) 25th Percentile

(c) 50th Percentile (d) Average

(e) 75th Percentile (f) 90th Percentile

Notes: See the notes to Figure 2.4. No dual earners restriction. Here we report the results by percentiles of
heterogeneity ξi in consumption.
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Figure 2.31: Average consumption responses to labor income

Notes: PSID, 2005-2017 sample, dual earners, labor income. The graph shows the average derivative of log-
consumption with respect to the persistent latent component ηit in a model without unobserved heterogeneity
ξi in consumption. The two horizontal axes show age and assets percentiles, respectively.

Figure 2.32: Quantile-quantile plots for ξi by observables
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Notes: Quantile-quantile plots shown for (a) graduates and non-graduates (b) born before 1969 and born

after 1969. The graphs show the quantiles of ξi indicated on the x-axis against the quantiles of ξi indicated

on the y-axis.
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Figure 2.33: Heterogeneity in consumption responses controlling for education

(a) 10th percentile (b) 25th percentile

(c) Median (d) Mean

(e) 75th percentile (f) 90th percentile

Notes: See the notes to Figure 2.4. We report average derivatives in a regression that includes a full
set of interactions with a binary higher education indicator. Here we report the results by percentiles of
heterogeneity ξi in consumption. 148
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