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ABSTRACT

The dissertation mainly focuses on the spatial imbalance of resources observed in the sharing

economy. It consists of two main chapters, with the first chapter focusing on designing poli-

cies to solve this imbalance and the second chapter focusing on evaluating the performance

of easy-to-implement policies on solving this imbalance of resources. In the third chapter,

we discuss possible extensions and other applications for the methodology we provided.

In the first chapter, we consider the problem of managing resources in shared micro-

mobility systems (bike-sharing and scooter-sharing). An important task in managing such

systems is periodic repositioning/recharging/sourcing units to avoid stockouts or excess in-

ventory at nodes with unbalanced flows. We consider a discrete-time model: each period

begins with an initial inventory at each node in the network, and then customers (demand)

materialize at the nodes. Each customer picks up a unit at the origin node and drops it

off at a randomly sampled destination node with an origin-specific probability distribution.

We model the above network inventory management problem as an infinite horizon discrete-

time discounted Markov Decision Process and prove the asymptotic optimality of a novel

mean-field approximation to the original MDP as the number of stations becomes large.

To compute an approximately optimal policy for the mean-field dynamics, we provide an

algorithm with a running time that is logarithmic in the desired optimality gap. Lastly,

we compare the performance of our mean-field-based policy to state-of-the-art heuristics via

numerical experiments, including experiments using Austin scooter-sharing data.

The second chapter considers the joint optimization of rebalancing/sourcing inventory

on a graph. We focus on the lost-sales setting with customer-induced relocations. Through

a coupling analysis, we provide worst-case performance bounds, with tight instances, for

policies commonly used in practice. We provide further insights into the performance of

these policies and discuss cost regimes where they are effective.
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CHAPTER 1

MANAGING RESOURCES FOR SHARED MICROMOBILITY:

APPROXIMATE OPTIMALITY IN LARGE-SCALE SYSTEMS

1.1 Introduction

In recent years, customer interest in shared micromobility systems (bike-sharing and scooter-

sharing) has surged, prompting these systems to expand their service regions and the number

of customers they serve. With the increase in customer demand and the number of service

stations, the problem of imbalances in inventory accumulation has become even more preva-

lent. Stemming from the uncertainty of demand and correlation in customer preferences,

rental systems which allow flexibility in where customers drop off the rented vehicles observe

excessive unit accumulation in some stations and lack of available units in others (Gossett

[2021]). Facing such a problem, the system operator has to regularly reposition units to

avoid negative externalities arising from this imbalance. In specific systems such as scooter-

sharing, the operator is also tasked with regularly recharging units (in conjunction with

repositioning decisions) to maintain the availability of units to customers. Motivated by this

issue, in the present paper we look at a discrete-time inventory management problem on

a network where the system operator uses two levers to optimize the operations (i) repo-

sitioning/recharging units across nodes of the network, and (ii) adding/removing units in

circulation to dynamically adjust the fleet size.

Making the right rebalancing decisions involves a trade-off as both rebalancing and

recharging are costly, requiring physical labor and inducing other transportation costs. Fur-

thermore, computing the optimal repositioning/recharging policy is a difficult problem as

the size of the state space of the Markov Decision Process (MDP) grows exponentially in

the number of nodes, and the curse of dimensionality limits our ability to handle large scale

instances encountered in practice. To get around this curse of dimensionality, in this paper,

we will work with an asymptotic mean-field setting to gain insights into the design of good
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inventory rebalancing/recharging policies. The mean-field model removes the stochasticity

in the problem by replacing the detailed state space where we track the inventory of each

station, which are random variables, with the empirical distribution of the inventory among

station, which is deterministic in the many-station limit.

Existing work on rebalancing policies relies on the convexity of the value function for the

MDP, which only holds under restrictive assumptions on cost parameters and other structural

assumptions such as linear rebalancing costs. While helpful in the derivation and presentation

of results, such assumptions present difficulties and limitations for implementation into real-

life applications. Furthermore, computational methods proposed in similar problems are

generally applicable for a few nodes. This paper specifically looks at large networks to

obtain asymptotically optimal policies.

We make weak assumptions on the cost parameters and allow less restrictive system

mechanics. We prove that the optimal policy for the mean-field dynamics corresponding

to the original MDP provides an asymptotically optimal policy as the number of stations

grows. We also provide an algorithm to compute a near-optimal policy for the mean-field

system whose optimality gap decreases exponentially in the computational effort.

There are several important real-life applications of the problem setting discussed. While

our results directly apply to any setting where customers rent products and control where to

return them, this paper will primarily focus on applying our results to shared micromobility

systems rapidly growing in popularity. While both scooter-sharing and bike-sharing have

been introduced to urban settings to be a sustainable complement to public transportation

systems, the differences in the characteristics of the two services provide individual challenges

in managing the resources of each system. Most notably, a scooter-sharing system requires

both regular recharging and repositioning. In contrast, a bike-sharing system requires regular

repositioning and occasional maintenance of units1. To provide a unified framework to

1. Under this split of the two micromobility systems, e-bikes share similar characteristics to scooter-
sharing systems.
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address both challenges, we present a model that provides a unified view to study the two

systems.

We organize the paper as follows: In Section 1.2, we present the model through which

we aim to capture the first-order dynamics of the problem setting we introduced.

In Section 1.3, we introduce the asymptotic scaling leading to the mean-field dynamics.

We prove that the optimal policy obtained through solving the deterministic mean-field

model is asymptotically optimal for the original problem. Next, we move on to the mean-

field model in Section 1.4, where we provide an algorithm to find a near optimal control

policy for the mean-field dynamics. We do this by solving for the optimal steady state of the

mean-field system while taking into account the minimum cost transient path to reach this

state, given an initial inventory position and a transient period duration. This necessitates

a further restatement of the mean-field problem in a compact space for technical reasons.

We prove that the optimality gap of our algorithm (compared to the optimal infinite horizon

discounted cost for the mean-field system) is exponentially decreasing with respect to the

duration of the transient period. We also briefly discuss how our results are different from,

and add to, the literature on deterministic dynamic programming. Then, in Section 1.5, we

compare the numerical performance of our algorithm with some simple heuristics and some

more sophisticated benchmarks. We evaluate the performance of our policy through both

synthetic experiments and using the Austin scooter-sharing data-set.

Lastly, in Section 1.6, we discuss extensions such as heterogeneous costs (where different

stations have different penalty and holding costs), settings with seasonal/cyclical demand

patterns, heterogeneous depletion probabilities, separately modeling damaged/missing units,

travel times, and fixed costs. Such extensions are important in the applications we consider,

and we show that our results extend to these settings.

3



1.1.1 Literature Review

Inventory rebalancing has been a primary area of research with various problems in trans-

shipment and fleet assignment. While there is a long line of important results in inventory

rebalancing, most existing results do not cover features such as reusable resources. The

context of our results is different from the following two papers which are the most simi-

lar in terms of the system dynamics they study (Benjaafar et al. [2022a], He et al. [2020])

as we work in a large-scale setting, integrate recharging and rebalancing decisions, work

with a more general cost structure which includes the fleet-sizing aspect of the problem in

addition to rebalancing, and our results readily extend to more general settings including

non-stationarity and fixed costs.

Inventory Management and Transshipment

One of our related applications is container rentals, where transshipment companies rent

containers in docks to carry their units. Van Mieghem and Rudi [2002] extend the newsvendor

problem into a multi-period, multi station setting and provides properties on the structure

of the optimal policy under certain conditions. Abouee-Mehrizi et al. [2015] prove that the

optimal policy at a station for a two station system has a threshold structure with the values

of the thresholds depending on the inventory position of the other station. An important

difference between this line of work and ours is that in the aforementioned papers, units are

consumed at stations and depart the network, whereas in our case customers move units

between stations, making the network structure play an important role.

Fleet Assignment

Another closely related line of research is on fleet assignment problems, which look at the

assignment problem of a set of units to a set of customers (based on different attributes of

customers such as destination and price). Topaloglu and Powell [2006] provide an iterative

4



value function approximation scheme for large scale problems. Adelman [2007] provides a

pricing based approach for the fleet assignment problem. The distinction between this line

of work of ours is the ”assignment” of units, wherein the fleet assignment literature, the

central planner “assigns” available units based on the destination. This is different from our

case, where the customers pick up the available units in a first-come-first-serve manner, the

system randomly moves to a new inventory position through customer movements, and we

try to “fix” this inventory position through rebalancing.

Bike-sharing

Operations of bike-sharing systems have seen increased research activity of late, specifically

relating to fleet-sizing and rebalancing problems. Benjaafar et al. [2022b] focus on the fleet-

sizing problem where they optimize over the total number of units in circulation, given a

service guarantee or revenue objective. Shu et al. [2013] look at the repositioning problem in

order to maximize customer utilization without incorporating rebalancing costs. O’Mahony

and Shmoys [2015] focus on developing repositioning heuristics for rebalancing (for a fixed

number of units). We consider operational details associated with the penalty, rebalanc-

ing, and holding costs in our work. Our approach can be viewed as joint fleet sizing and

rebalancing, which is in contrast to these papers, which focus one of the two.

Scooter-sharing

There has been a limited amount of work looking at problems faced in managing scooter-

sharing and other mobility systems. Osorio et al. [2021] provide a discrete inventory routing

model to streamline rebalancing/recharging operations and studies the performance of this

approach through numerical examples. Greening and Erera [2021] provide simulation models

for the vehicle distribution problem in scooter-sharing systems. Most works in this area focus

on providing good heuristics, which is different from our approach of developing algorithms

with theoretical guarantees.

5



Pricing

Another related line of research looks at the control of shared vehicle systems through pricing,

using fluid models to understand the performance of different policies. Bimpikis et al. [2019]

look at the effect of spatial price discrimination on platform profits. Banerjee et al. [2022]

prove a worst-case performance bound for a fluid-based policy under a steady-state objective

and prove asymptotic optimality of their policy when the number of units in circulation goes

to infinity, while the number of stations grows sublinearly in the number of units. Lastly

Balseiro et al. [2021] use a Lagrangian based methodology and focuses on hub-and-spoke

networks. These works focus on solving unit availability through pricing alone, whereas we

focus on unit availability through inventory repositioning. Furthermore, most asymptotic

convergence results (such as in Balseiro et al. [2021]) focus on an average optimality criteria,

where our result holds for a discounted problem where we optimize over both the transient

period and the steady state.

Rebalancing

A feature common to most of the works cited in the previous paragraph is that the system

operator decides to allocate units/set prices based on the origin and destination of the

customer. Many recent papers study inventory systems where the central planner does not

differentiate which customers receive units based on the destination, as in our problem. Zhao

et al. [2020] look at the characterization of the optimal policy for a two-region setting with

fixed costs. Hosseini et al. [2022] use a closed queuing network problem to construct a fluid

approximation and uses the shadow prices to make rebalancing decisions. He et al. [2020]

provide a distributionally robust optimization model under limited data and shows its solid

numerical performance for a large-scale problem. Yang et al. [2022] differ from the other

papers (including ours) where it looks at the repositioning problem through ex ante decisions,

where the central-planner makes a decision for the target inventory position every period and

rebalances after demand realization to that inventory period. The paper proves that a steady

6



state policy is optimal for an average cost objective. Lastly, Benjaafar et al. [2022a] prove

important structural properties of the value function of the proposed repositioning problem

and the associated optimal policies, as well as proposes a cutting plane based algorithm to

find policies with good performance. The work of He et al. [2020] and Benjaafar et al. [2022a]

are perhaps the most relevant to the current paper. This being said, unlike these two papers,

our work also considers the fleet sizing problem and the rebalancing problem (the number of

units in circulation is a decision variable, whereas it is assumed to be constant in the other

two papers). We believe this is an important issue to consider, especially considering real life

examples such as Citi Bike in New York, which has a varying number of units in circulation

from 7000 to 9000 (see Jay [2018]). Compared to these papers, which assume all units

returned are re-usable, our paper also integrates possible recharging decisions. Furthermore,

both papers provide results under the assumption of convexity of the value function with

respect to the inventory position, which requires an assumption on the cost parameters. In

contrast, we do not make any such assumption. Our results are, thus, applicable to broader

settings where the cost of rebalancing is high and the assumption of convexity fails. Both

papers also look at continuous approximations of the problem where they allow non-discrete

inventory at stations while not considering the additional cost incurred through rounding.

With a large number of stations, we believe the inventory at each station is not large enough

to neglect rounding-based costs and prove a bound for the rounding based costs we observe

through using the mean-field model. Lastly, we prove that our work can be extended to

settings with fixed costs for repositioning, a setting very important for the applications we

discussed.

1.1.2 Notation

We use N to denote the set of strictly positive integers, N0 to denote the set of nonnegative

integers, and R+ to denote the set of nonnegative real numbers. We use [n] to denote the

set {1, . . . , n} for n ∈ N. Pois(µ) denotes a Poisson random variable with mean µ. We use

7
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Figure 1.1: Types Network

O for the asymptotic big-O notation: f(n) = O(n) implies that ∃M > 0, n0 ∈ R+ such that

∀n ≥ no,
∣∣f(n)

∣∣ ≤Mn. Similarly, we use Ω(n) for big-Omega notation: f(n) = Ω(n) implies

that ∃M > 0, n0 ∈ R+ such that ∀n ≥ no, f(n) ≥ Mn. The expression (x)+ is shorthand

for max(x, 0). The expression L(X) denotes the law of random variable X. The expression

P [X = d] denotes the probability that X equals d. The notation f ◦ g(x) denotes function

composition f(g(x)). Bold type characters denote vector quantities. Lastly, a summary

table of the symbols used in the paper is provided in Section 1.8.

1.2 Problem Definition

The paper aims to develop near-optimal rebalancing/sourcing/recharging policies for units

distributed across a network, where customers pickup/drop-off units at nodes (stations) and

arcs represent these units’ movement through the stations. We model the problem as an

infinite horizon, discrete-time, discounted cost MDP with a discrete state and action space.

We let γ denote the discount rate, with γ < 1. We use t ∈ N to index the periods. Each

period consists of two phases.

First, we have a rebalancing/sourcing/recharging phase where the central planner

recharges units (if needed), moves units between stations, or moves units from/to a ware-

8



house, with infinite capacity, to/from the network nodes.

In the second phase, demand materializes at the network nodes, customers pick up units

subject to availability, and return them at (randomly sampled) destination nodes in either

a re-usable or a depleted state2 based on the outcome of a Bernoulli process.

The standard approach to modeling such problems includes aggregating multiple stations

at a service region as a single station to reduce the state space of the problem. To expand

on this structure and allow variations in the inventory of stations in the same region, we

consider a network structure where stations are grouped into clusters. We also assume

that all stations in the same cluster are homogeneous, meaning they have identical demand

distributions, cost parameters, and thresholds (we will expand more on these terms later)3.

Motivated by the homogeneity in these different dimensions, in the remainder of the paper

we refer to these clusters as types.

While the technical motivation behind these homogeneity assumptions becomes clear

from the mean-field formulation in Section 1.3, the managerial reasoning for this assumption

is that it allows us to focus on the flow of units between neighborhoods4. Imposing stronger

assumptions on properties of stations within a type allows us to model flow of units between

types more accurately, with less restrictive assumptions (while also being able to prove our

results). In addition, arguably, local-level inaccuracies are less costly to fix as local-level

rebalancing is cheaper than rebalancing between distant locations, which motivates us to

conduct our analysis under this assumption.

We let ê <∞ be the total number of types. We use ne to denote the number of stations

of type e, and n as the total number of stations:
∑ê
e=1 ne = n. We consider a heterogeneous

network between types where the likelihood of customers departing a type e′ station to drop

2. For ease of exposition, we assume that depletion covers all events (unit has no charge remaining, is
broken) which result in the unit being unusable without intervention by the planner. In Section 1.6, we look
at an extension of our model, which differentiates between such events.

3. In Section 1.5, we will use clustering algorithms to form these types.

4. For most practical applications, stations in the same cluster are closely located.
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their unit at a type e station is captured by weight we′,e, with 0 ≤ we′,e < ∞. Through

these weights, the probability pe′,e that a customer departing a type e′ station drops their

unit at a type e station is calculated as:

pe′,e =
newe′,e∑ê

e2=1we′,e2
ne2

.

Furthermore, we assume that all stations of a type have identical inflow probabilities so the

probability that the unit goes to a specific station i in type e is
pe′,e
ne

.

The dynamics are as follows: At the start of each period t, the central planner observes

the state, which corresponds to inventory position xt = [xte,r, x
t
e,1, · · · , x

t
e,ne ]

ê
e=1, where xte,r

denotes the number of depleted units in type e5 and xte,i denotes the number of units at

station i of type e. We label the set of all inventory positions xt as X where X = Nn+ê
0 .

Then, the planner takes an action, defined as a vector at = [ate,r, a
t
e,1, · · · , a

t
e,ne ]

ê
e=1, whose

elements define the inventory position post-rebalancing/recharging/sourcing. Specifically,

ate,r denotes the number of depleted units in type e and a
t,e
i , i ∈ [ne], denotes the inventory

position of station i of type e, after the planner’s action.

Next, customers arrive, pick up units (one unit per customer subject to availability),

and depart to their destinations. Three stochastic outcomes are realized, one arising from

the arrival process of customers, one arising from the random choice of destinations of the

customers departing stations with a unit, and lastly, one from a random Bernoulli process

on whether the dropped unit is re-usable or requires recharging. We express the number of

customers arriving to each station in period t through the vector Dt = [Dt
e,1, ..., D

t
e,ne ]

ê
e=1.

Referred to as (demand), we assume that the distribution of demand at each station of

the same type is identical with L(De) = L(Dt
e,i)∀i ∈ [ne]. Furthermore, as units are

returned, some become depleted (unusable) with probability 1 − q (we extend our model

5. The aggregation of the depleted units in each type does not imply a separate location where customers
return depleted units but assumes that the exact location customers return depleted units in a type is
redundant. We further discuss this, and other assumptions, in Section 1.2.2.
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to location heterogeneous depletion probabilities in Section 1.6). To calculate the num-

ber of units returned to each station (and the number of units returned depleted to each

type), we let Rte′,e,r denote the total inflow of depleted units to type e from type e′ and

let Rte′,e,i denote the number of units departing type e′ and returned to station i of type e

charged. Together, we call the vector of returns originating from each type e′ as trips where

Rt
e′ = [Rt

e′,1,R
t
e′,2, · · · ,R

t
e′,ê], with Rt

e′,e = [Rte′,e,r, R
t
e′,e,1, · · · , R

t
e′,e,ne

]. Rt
e′ follows a

multinomial distribution with
∑ne′
i=1 min(ate′,i, D

t
e′,i) trials and success probability (1−q)pe′,e

for Rte′,e,r and success probabilities
qpe′,e
ne

for the remaining terms Rte′,e,1, · · · , R
t
e′,e,ne

. All

travel times are assumed to be one unit so that all units are returned within the current

period. Thus, the state at time t+ 1 is given by the following equations:

xt+1
e,i = ate,i −min(ate,i, D

t
e,i) +

ê∑
e′=1

Rte′,e,i ∀i ∈ [ne], (1.2.1)

xt+1
e,r = ate,r +

ê∑
e′=1

Rte′,e,r ∀e. (1.2.2)

We assume that {De, D
t,e
i } ∈ N0 ∀i ∈ [ne], e, t, is a sequence of independent random vari-

ables with finite mean µe and finite variance. All demand distributions and transition

probabilities are assumed to be known and stationary. Furthermore, we assume that the

action for charged units is between a lower bound L = [L1, L2, · · · , Lê] and an upper

bound U = [U1, U2, · · · , U ê], and the action for depleted units is between a lower bound

Lr = [n1L
r,1, n2L

r,2, · · · , nêLr,ê] and an upper bound U r = [n1U
r,1, n2U

r,2, · · · , nêUr,ê].

That is,

0 ≤ Lr,e ≤
ate,r
ne
≤ Ur,e <∞ ∀e,

0 ≤ Le ≤ ate,i ≤ Ue <∞ ∀e, i ∈ [ne].

We denote the set of all possible actions at as A.
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As previously discussed, the planner makes multiple decisions in the first phase, where

they recharge depleted units, move units between stations, and move units between stations

and the warehouse. To simplify notation, we will embed recharging and sourcing decisions

into rebalancing decisions using dummy types. To do so, we model recharging as rebalancing

units from depleted state to charged state and sourcing as rebalancing units from the ware-

house to stations6. Specifically, we let e = 0 denote the warehouse (where n0 = 1, c0,0 = 0)

and introduce e2 = ê + e1 as an auxiliary type whose units will capture the number of de-

pleted units in type e1 (with ne = 1 ∀e > ê, ce,e = 0 ∀e > ê). Different ce1,e2 correspond to

the cost of different type of interventions taken by the planner depending on whether either

of e1, e2 is equal to 0, lies in {0, · · · , ê} or in {ê + 1, · · · , 2ê}. For example, ce,0 for e > ê

corresponds to the cost of moving a depleted unit from type e− ê to the warehouse. For the

values which these parameters can take, we will only assume that

ce1,e2 ≥
ce1,e1

2
+
ce2,e2

2
∀e1, e2.

The assumption above ensures that it costs more to move units between two different types

than within one of the two of those types. Expressly, we do not assume symmetry where ce1,e2

can have a different value than ce2,e1 . The rebalancing cost function c(xt,at), which gives

us the minimum cost to move to action at from initial inventory position xt, is expressed as

6. In the remainder of the paper, all rebalancing/sourcing/recharging actions taken by the planner will
be referred to as rebalancing for simplicity.
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follows:

c(xt,at) = min
y
e1,e2
i,j

2ê∑
e1=0

2ê∑
e2=0

ne1∑
i=1

ne2∑
j=1

ce1,e2y
e1,e2
i,j

s.t. xte,i − a
t
e,i =

2ê∑
e1=0

ne1∑
j=1

(y
e,e1
i,j − y

e1,e
j,i ) ∀e ∈ [ê], i,

xte−ê,r − a
t
e−ê,r =

2ê∑
e1=0

ne1∑
j=1

(y
e,e1
i,j − y

e1,e
j,i ) ∀e > ê, i,

y
e1,e2
i,j ≥ 0 ∀e1, e2, i, j.

While the definition of this cost function is natural, it requires us to solve for the optimal

inflow/outflow at each station. The following proposition establishes that the rebalancing

cost function can be expressed through a simpler structure composed of the distance between

action and initial inventory position at each station and a linear program solving for the

aggregate minimum cost flow of units between types. This modification reduces the number

of decision variables in the optimization program providing the rebalancing cost.

Proposition 1.2.1. For all xt,at, the rebalancing cost c(xt,at) can be alternatively ex-

pressed as:

c(xt,at) =
ê∑
e=1

ce,e
2

ne∑
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣+ min
ye1,e2

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

s.t.

ne∑
i=1

(xte,i − a
t
e,i) =

2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê],

xte,r − ate,r =
2ê∑
e1=0

(ye+ê,e1 − ye1,e+ê) ∀e ∈ [ê],

ye1,e2 ≥ 0 ∀e1, e2.

Here, we label
∑ê
e=1

ce,e
2

∑ne
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣ as the L1 component, as it evaluates the `1

distance between the vectors x,a. We let z∗ denote the optimal value of the optimization
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program in Proposition 1.2.17, and label this as the flow component, as it solves for the

minimum cost flow between types which provides the post-rebalancing action a.

Our model aims to capture both the rebalancing and fleet sizing aspects of the prob-

lem by including holding costs. Units in circulation can depreciate and lose some of their

value. To capture this, after rebalancing, a cost of ch is incurred for each unit in circulation

(i.e., excluding the units at the warehouse), for an aggregate holding cost of ch
∑ê
e=1 a

t
e,r +

ch
∑ê
e=1

∑ne
i=1 a

t
e,i. Lastly, cp is the penalty cost incurred per customer who does not find

a unit available. Letting dt = [dte,1, ..., d
t
e,ne ]

ê
e=1 be demand realization at period t, a total

penalty cost of cp
∑ê
e=1

∑ne
i=1(dte,i − ate,i)

+ is incurred for that period. We combine the

holding and penalty costs into the newsvendor cost function:

N(at) = ch

ê∑
e=1

ne∑
i=1

ate,i + ch

ê∑
e=1

ate,r + cp

ê∑
e=1

ne∑
i=1

E
[
(De − ate,i)

+
]
. (1.2.3)

The total cost at period t is the sum of the newsvendor and rebalancing cost functions.

1.2.1 Policies and the Value Function

A policy π = {πt}t∈N, where πt : Nn+ê
0 → A, is a collection of mappings (indexed by period

t) from X to A. We label the set of all policies π as Π. Given a policy π, we denote

by Vπ(xt), the discounted cost-to-go under policy π, starting with inventory position xt.

Formally:

Vπ(xt) = E{Dt+k,Rt+k}∞k=0

[ ∞∑
s=t

γs−t
(
c(xs, πs(xs)) +N(πs(xs))

)]
.

The value function is defined as

V (xt) = min
π∈Π

Vπ(xt).

7. with c(xt,at) =
∑ê

e=1
ce,e
2

∑ne

i=1

∣∣∣∣ate,i − xte,i∣∣∣∣+ z∗.
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The value function can be alternatively expressed through the fixed point of the Bellman

recursion:

V (xt) = min
at∈A

c(xt,at) +N(at) + γE{Dt,Rt}

[
V (xt+1)

]
.

For any inventory position xt and period t, an optimal policy π∗ satisfies π∗(xt) = at
∗

with

at
∗

given by

at
∗
∈ arg min

at∈A
c(xt,at) +N(at) + γE{Dt,Rt}

[
V (xt+1)

]
.

1.2.2 Relevance of Model to Micromobility Systems

In the formulation of the mathematical model, which aims to capture the first order prop-

erties of managing micromobility systems, we make several assumptions. Some of these

assumptions, such as stationarity and the homogeneity of the holding and penalty cost pa-

rameters, are for ease of exposition and are relaxed in Section 1.6. In this section, we discuss

the remaining assumptions and argue that while they were mainly motivated by tractability

concerns, they are also well-aligned with the practice of resource management in micromo-

bility systems8.

One important assumption pertains to depleted units: We aggregate the total number

of depleted units at a type instead of the exact number of depleted units at each station.

This is partially motivated by the fact that in practice, the cost of the recharging operation

does not differ for different stations of a type. For instance, in recharging operations for

scooter systems a contractor picks up a unit, takes the unit home and charges it, and brings

the unit to an indicated location before a certain deadline (see, e.g., Helling [2022]). While

the payment the contractor receives depends on multiple factors, there is no secondary

differentiation on the exact station from which the unit is picked up as all stations of the

same type are geographically close and recharging is not done on the spot but rather an

another location. In the context of our model this renders it unnecessary to keep track of

8. We relegate discussion on various other aspects of the model to Section 1.10 to keep the exposition
focused in this section.
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the exact stations of the depleted units, and allows us to instead focus on depleted units in

a type.

Second, we consider a network of stations. This is a natural representation for station-

based systems but can be at first viewed as being incompatible with free-floating systems9.

We believe that free-floating systems can also be represented through stations. First, the

feasible regions for picking up/dropping units are restricted due to city ordinances (units can

only be dropped in places that will not disturb movement). Second, as highlighted in Helling

[2022], scooter-sharing companies such as Bird have specific spots in each neighborhood

(called Bird Nests) where contractors must drop units. As a result, in these free-floating

systems, many units can only be picked up in specific locations in the morning. Then, we

can consider the close vicinity of these nests as stations and utilize our station-based analysis

for both station-based and free-floating systems.

Finally, it is assumed that there are no spillovers of demand between stations: If a

customers arrives at a station and cannot find a unit there, he/she does not move to other

stations to pickup a unit. While no empirical analysis calculating the rate of spillovers

(percentage of customers which move to other stations due to stockouts) has been done

for scooter-sharing systems, Kabra et al. [2020] has shown that for the London bike-sharing

system, “only 5.070% (±0.538%) of a stocked-out stations unserved users substitute to other

stations.”

1.3 Mean-Field Model

The model defined in Section 1.2, which we will refer to as the original model in the re-

mainder of the paper, suffers from curse of dimensionality since the size of the state space

is exponential in the number of stations. When n is large, we can more succinctly approxi-

mate the evolution of the state through mean-field dynamics where the state represents the

9. A free-floating system is one where customers can drop units in any part of a side-walk, which is in
contrast to a station-based system where customers have to drop units at docks.

16



empirical distribution of inventory across the nodes, and state transitions are deterministic.

We will first construct the mean-field model, then introduce the asymptotic scaling used,

and lastly, prove the asymptotic optimality of the mean-field optimal policy for the original

problem.

We proceed by defining the mean-field quantities analogous to the variables we intro-

duced in Section 1.2 (state, action, policies, and value functions). The mean-field empirical

representation for inventory of type e at period t is denoted by x̂te = [x̂te,r, x̂
t
e,d]
∞
d=0, where

x̂te,d denotes the proportion of type-e stations that have inventory position d at period t,

and x̂te,r denotes the scaled number of depleted units in type e at period t. The scaling for

x̂te,r is done by dividing the total number of depleted units in type e by the total number of

stations, n. The aggregate vector of inventory of all types is given by:

x̂t = [x̂te]
ê
e=1,

where components of x̂t satisfy:

x̂te,d ≥ 0 ∀e, d, (non-negativity)

∞∑
d=0

x̂te,d =
ne
n

∀e, (fraction of stations of type e equals
ne
n

)

x̂te,r ∈ R+ ∀e. (number of depleted units is non-negative)

We label the set of all feasible x̂t vectors as X̂.

Similarly, for actions, we define âte = [âte,r, â
t
e,d]
∞
d=0, where âte,d denotes the proportion of

type-e stations that have d units after rebalancing at period t, and âte,r denotes the scaled

number of depleted units in type e, post-rebalancing at period t. The aggregate vector of

action of all types is given by:

ât = [âte]
ê
e=1,
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where components of ât satisfy:

âte,d ≥ 0 ∀e, d, (non-negativity)

âte,d = 0 ∀e, d 6∈ {Le, . . . , Ue}, (threshold constraint on stations)

Ue∑
d=Le

âte,d =
ne
n

∀e, (fraction of type e stations equals
ne
n

)

âte,r ∈ [Lr,e, Ur,e]. (threshold constraint on depleted units)

We label the set of all feasible ât values as Â.

Under the mean-field model, we construct deterministic approximations for the demand

and trip processes. Given action ât for period t, the state at period t+1 under the mean-field

model is obtained through the following equations:

x̂t+1
e,d =

Ue∑
b=Le

âte,bP
[
b−min(b,De) + R̂e = d

]
∀e, d, (1.3.1)

R̂e
d
= Pois

(
q
n

ne

ê∑
e′=1

pe′,e

Ue
′∑

b=Le
′
âte′,bE

[
min(b,De′)

])
∀e, (1.3.2)

x̂t+1
e,r = âte,r + (1− q)

ê∑
e′=1

pe′,e

Ue
′∑

b=Le
′
āte′,bE

[
min(b,De′)

]
∀e. (1.3.3)

Remark 1.3.1. For the special case of q = 0, the above equations reduce to:

x̂t+1
e,d =

Ue∑
b=Le

âte,bP [b−min(b,De) = d] ∀e, d,

x̂t+1
e,r = âte,r +

ê∑
e′=1

pe′,e

Ue
′∑

b=Le
′
āte′,bE

[
min(b,De′)

]
∀e.

An important property of mean-field approximation compared to other fluid limits is that

we can use the exact demand distribution De at each type e compared to using just its mean,

which gives higher fidelity to the mean-field model. While we exactly capture the demand
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distributions, we approximate the trip processes to simplify the dynamics and model state

transitions through independent processes.

First, as trips are multinomially distributed, the total number of arrivals to each station

is binomial, which can be approximated with a Poisson distribution. While the sum of the

total number of arrivals to all stations is a constant in the original system (equal to the

total number of departures), our approximation treats the total arrivals at each station as

an independent Poisson random variable. As a result, the reason R̂e is distributed Poisson

is independent of the demand distribution but instead because Poisson is a suitable approx-

imation for the multinomial distribution. Then, to form the state transition function of this

deterministic system, given âte,b values, we first calculate the probability that stations of

type e with b units will end up with d units. As we are working with a mean-field model,

these probabilities are equal to the proportion of stations which move to d units from b units

(with type e), and multiplied with âte,b, gives us the proportion of stations which had b units

previously but will end up with d units. Repeating this process for all possible e, b, d com-

binations provides Equation 1.3.1. For depleted units, because we can aggregate the total

number of depleted units in a type, we approximate their inflows in the mean-field setting

through their expected inflows in the stochastic setting, giving us Equation 1.3.3.

Under the mean-field model, for rebalancing, we will evaluate the least amount of rebal-

ancing to move from the current inventory distribution to the target inventory distribution.

This metric is the earth mover’s distance or the 1st Wasserstein distance. For any two dis-

tributions y, z with a non-negative and discrete domain, we express the (1st) Wasserstein

distance as:

W (y, z) =
∞∑
x=0

|Fy(x)− Fz(x)|,

where F is the cumulative mass function.
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We next introduce the rebalancing cost function for the mean-field model:

ĉ(x̂t, ât) =n
ê∑
e=1

ce,e
2

∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣
+ n min

ye1,e2

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

s.t.
∞∑
b=1

b(x̂te,b − â
t
e,b) =

2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê],

x̂te,r − âte,r =
2ê∑
e1=0

(ye+ê,e1 − ye1,e+ê) ∀e ∈ [ê],

ye1,e2 ≥ 0 ∀e1, e2.

Similar to the original model formulation, we label n
∑ê
e=1

ce,e
2

∑∞
b=0

∣∣∣∣∑b
d=0(x̂te,d− â

t
e,d)

∣∣∣∣ as

the Wasserstein component, as it evaluates the Wasserstein distance between the vectors

x̂, â. We let ẑ∗ denote the optimal value of second component of the optimization program

above10, and label this as the flow component, as it solves for the minimum cost flow between

types which provides the post-rebalancing action a. The flow component is very similar to

the flow component of the original model, with the difference of using mean-field model

variables instead. As for the Wasserstein component, we prove in Section 1.11 that the L1

component in Proposition 1.2.1 can be represented through the Wasserstein component of

the mean-field model.

Next, we introduce the newsvendor cost function for the mean-field model

N̂(ât) = nch

ê∑
e=1

Ue∑
b=Le

bâte,b + nch

ê∑
e=1

âte,r + ncp

ê∑
e=1

Ue∑
b=Le

âte,bE
[
(De − b)+]. (1.3.4)

This is very similar to the newsvendor cost function of the original model, with the only

difference being that action variables of the original model are replaced with their mean-field

10. with ĉ(x̂t, ât) = n
∑ê

e=1
ce,e
2

∑∞
b=0

∣∣∣∣∑b
d=0(x̂te,d − âte,d)

∣∣∣∣+ ẑ∗.
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counterparts.

Lastly, we define a new class of policies for the mean-field model. Similar to the previous

section, we introduce π̂ = {π̂t}t∈N, where π̂t : X̂ → Â. We label the set of all policies π̂

as Π̂. Given a policy π̂, we denote by V̂π̂(x̂t), the discounted cost-to-go under policy π̂,

starting with inventory position x̂t, under the mean-field model. Formally:

V̂π̂(x̂t) =
∞∑
s=t

γs−t
(
ĉ(x̂s, π̂s(x̂s)) + N̂(π̂s(x̂s))

)
.

As in Section 1.2, the optimal value function can be defined as the minimizer of the expression

above:

V̂ (x̂t) = min
π̂∈Π̂

V̂π̂(x̂t),

or as the fixed point of the Bellman recursion:

V̂ (x̂t) = min
ât∈Â

ĉn(x̂t, ât) + N̂(ât) + γV̂ (x̂t+1).

Using the fact that the mean-field model is deterministic, an equivalent characterization can

be given in terms of the following deterministic infinite-dimensional minimization problem:

V̂ (x̂t) = min
{âs∈Â}∞s=t

∞∑
s=t

γs−t
(
ĉ(x̂s, âs) + N̂(âs)

)
.

For any inventory position x̂t and period t, the optimal policy of the mean-field model, π̂∗,

satisfies

ât
∗
∈ arg min

ât∈Â
ĉ(x̂t, ât) + N̂(ât) + γV̂ (x̂t+1).

1.3.1 Lifting the Mean-field Policy to the Stochastic Setting

Until now, we defined a separate model, referred to as the mean-field model, without con-

necting it to the original model. Our goal is to solve the mean-field model, obtain a policy,

and use it to define a policy for the original model. To do that, we need to first introduce

mappings between the two models. We first introduce g(xt), where g projects inventory

positions in X (the original stochastic model) to inventory positions in X̂ (deterministic
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mean-field model) with

gte,d(x
t) =

∑ne
i=1 I

{
xte,i = d

}
n

∀e, d,

gte,r(x
t) =

xte,r
n

∀e.

Second, per our goal of using the mean-field system to obtain feasible policies for the original

stochastic model, we also need to project the optimal actions of the mean-field model to

feasible actions for the original model. However due to the structure of Â, nâte,d, which

denotes the number of type-e stations with inventory d units after rebalancing at period t,

need not be an integer and consequently may not be a feasible action for the original model.

To address this issue we introduce āte = [āte,r, ā
t
e,d]
∞
d=0 and define Ā ⊂ Â as the subset of

mean-field action space that is both feasible for the original model and dependent on n, with:

āt = [āte]
ê
e=1 ∈ Ā ⇐⇒ āt ∈ Â; nāte,d ∈ N0 ∀e, d; nāte,r ∈ N0 ∀e.

We define function f as a mapping from Â to Ā, where, for depleted units, the function f

simply rounds nâte,r to the nearest integer value. For charged units, f maps units through

the Largest Remainder Method. Under this method, applied separately for each type e,

given a set of fractional nâte,d values, we first allocate the whole parts to each corresponding

nāte,d variable. Then, we compute the amount of units remaining to sum up to ne, and

allocate these units one by one, in the order of decreasing fractional parts11.

Consequently, the composite policy f ◦ π̂∗ gives actions in Ā. Finally, we need a function

which maps these projected actions to feasible actions for the original model. Since āt only

specifies the empirical distribution of inventory among stations, there are possibly multiple

actions at for the original stochastic system consistent with the empirical distribution. To

11. Under the Largest Remainder Method, Birkhoff [1976] proves that f(â) ∈

arg minā∈Ā
∑ê

e=1

∑Ue

b=Le

∑b
d=0

∣∣∣∣nâe,d − nāe,d∣∣∣∣+
∑ê

e=1

∣∣∣∣nâe,r − nāe,r∣∣∣∣.
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select among these actions, we adopt the natural approach of choosing the action which

minimizes the `1 distance. Specifically, we use the function h(ā) defined below to project

actions in Ā to actions in A using the `1 norm (we suppress the dependence on x for ease

of notation):

h(ā) ∈ arg min
a∈A

ê∑
e=1

ne∑
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣+
ê∑
e=1

∣∣∣∣ate,r − xte,r∣∣∣∣ (1.3.5)

s.t.

∑ne
i=1 I

{
ate,i = d

}
n

= āte,d ∀e, d,

ate,r = nāte,r ∀e.

To solve the matching/optimization problem in (1.3.5), we introduce a new ordering for

stations, where stations are ordered in their post-rebalancing inventory. We assign the

station with the highest pre-rebalancing inventory of a type e, the highest post-rebalancing

inventory of the same type e, assign the station with the second highest pre-rebalancing

inventory of a type e, the second highest post-rebalancing inventory of the same type e and

so on. We repeat this assignment for all types and, through this assignment, solve for the

minimizing action for (1.3.5) (Bobkov and Ledoux [2019], Lemma 4.1).

In summary the g, h and f functions are used to obtain a feasible policy through the

mean-field model as follows: Given an initial inventory position xt for the stochastic system,

the mean-field model observes the projected inventory position g(xt) and gives the optimal

mean-field action π̂∗ ◦ g(xt). This is projected to the original model first by discretizing via

f and then lifting to A via h as h ◦ f ◦ π̂∗ ◦ g(xt).

1.3.2 Constructing the Asymptotic Scaling

In order to construct the asymptotic scaling, we look at a sequence of systems indexed by

the number of stations n. The (n+ 1)’st system is constructed by adding to the n’th system

one additional station with type e′ (out of the possible ê distinct types), an initial inventory
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(inventory at t = 1) of m ∈ Z0 units; as well as adding k ∈ Z0 depleted units to type

e′. Other than the assumption that the number of types ê is finite, we do not make any

assumptions on how these values are generated. The parameters of the (n+1)’st system can

therefore be expressed in terms of the parameters of the n’th system as follows12:

x
1,n+1
e′,ne+1

= m,

x
1,n+1
e′,r = x

1,n
e′,r + k,

nn+1
e′ = nne′ + 1,

nn+1
e = nne ∀e 6= e′,

pn+1
e,e′ =

(nne′ + 1)we,e′∑ê
e2=1we,e2n

n+1
e2

∀e.

Under this scaling, we will see that the optimality gap of using the mean-field optimal policy

on the original model grows sub-linearly with each added station, in contrast to the total

cost under an optimal policy, which grows linearly.

Remark 1.3.2. Readers familiar with mean-field analysis will realize that the asymptotic

scaling we defined above differs from the usual convention where the initial conditions of

the sequence of systems are assumed to converge uniformly to a limiting distribution, and

this limiting distribution is used to define the mean-field dynamics. The difference is that in

our work, we will study the optimality gap in the pre-limit for the n’th system by defining

the mean-field model using the initial conditions of the n’th system itself. For example, the

fraction of stations of type e in the mean-field model used to approximate the n’th system

will be
nn
e′
n , rather than a limiting distribution P e, where P e denotes the proportion of the

number of stations of each type. In addition to proving an optimality gap which is practically

more useful, this methodology ensures that the action g(at) is feasible for the mean-field

model, allowing us to establish the O(
√
n) sub-optimality of the mean-field optimal policy

12. To make the asymptotic scaling clearer, we add n as a superscript to indicate the dependence of
parameters to n.
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(see Proposition 1.3.3). The assumption that our actions are bounded ensures that any

irregularities in the initial inventory distribution disappear after t = 1.

1.3.3 Asymptotic Optimality of the Mean-Field Policy

This section develops the asymptotic optimality result for the mean-field based policy and

some supporting lemmas. The first step to establish asymptotic optimality is to show that

our mean-field state transition functions are good approximations of the original model’s

state transition functions. To this end, we will show that given the same post-rebalancing

inventory distributions (ât = g(at)) in period t, the expected mean-field rebalancing cost

of moving from g(xt+1) (inventory distribution the system will be in period t+ 1 according

to the original model) to x̂t+1 (inventory distribution the system will be in period t + 1

according to the mean-field model), grows with at most rate O(
√
n). Essentially, as the

number of stations increases, mean-field state transitions accurately predict the expected

inventory distribution of the next period, and the rebalancing cost the planner can pay to

follow the mean-field trajectory is of order O(
√
n).

Proposition 1.3.3. For an arbitrary action at taken in the original model, let xt+1 be the

state evolution defined in (1.2.1)-(1.2.2), and let x̂t+1 be the state evolution of the mean-field

dynamics defined in (1.3.1)-(1.3.3) under the projected mean-field action g(at). Then,

E{Dt,Rt}

[
ĉ(g(xt+1), x̂t+1)

∣∣ât = g(at)
]
≤ O(

√
n) ∀at ∈ A.

Consequently, given the same initial action, the expected rebalancing cost between next pe-

riod’s inventory distribution under the original and mean-field models is of order O(
√
n).

The proof for Proposition 1.3.3 is technical and invokes the Central Limit Theorem

(CLT) for Wasserstein distances. The main challenge is that the arrival process of stations

are correlated with each other, as all station inflows depend on the multinomial distribution

based on the departures of all stations. To overcome this challenge, we prove that this
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distribution can be approximated by n independent Poisson random variables, within O(
√
n)

error. After this transformation, an application of CLT gives the desired result.

While Proposition 1.3.3 proves that the mean-field state transitions are good approxi-

mations of the original stochastic state transitions for the many station setting, this result

itself is not sufficient to establish asymptotic optimality. The primary remaining challenge

is that as we want to show that the projected mean-field policy to the original model is

asymptotically optimal, we need to show that the modifications on the policy through the

functions h, f have only a limited impact on the resultant cost. The following Theorem

establishes this and proves that the mean-field optimal policy is O(
√
n) sub-optimal in the

original stochastic setting.

Theorem 1.3.4. Let π̂∗ be an optimal policy for the mean-field model. Then, the lifted

mean-field policy h ◦ f ◦ π̂∗ ◦ g satisfies

Vh◦f◦π̂∗◦g(x
t)− V (xt) ≤ O(

√
n) ∀xt ∈X.

Consequently, the optimality gap of the composite policy h ◦ f ◦ π̂∗ ◦ g is at most O(
√
n).

The importance of Theorem 1.3.4 is better understood through Corollary 1.3.5, which

shows that the mean-field policy is asymptotically optimal. This is proven by using the fact

that N(at) is of order Ω(n), as both the holding and the expected penalty costs grow linearly

with n.

Corollary 1.3.5. For any inventory position xt ∈X,

lim
n→∞

Vh◦f◦π̂∗◦g(x
t)

V (xt)
= 1.

Thus, the mean-field model provides an asymptotically optimal policy for the original stochas-

tic model.

The upshot of Corollary 1.3.5 is that if we can solve for the optimal policy for the infinite
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horizon discounted mean-field model, then we obtain an asymptotically optimal policy for the

original stochastic model (we present the numerical results in Section 1.5). However, solving

for the optimal mean-field policy is an infinite dimensional problem and hence intractable,

and does not lend itself to iterative methods such as value or policy iteration. It turns out

that we can cast the problem of obtaining a policy with arbitrarily small optimality gap

as an optimization problem with a restricted number of decision variables, and we do so in

Section 1.4. However, before doing that, to reduce the state-space and establish an improved

performance bound for the case of q = 0, we take a further step to transform the current

mean-field model so that the state space is compact (as we have defined it so far, only the

action space is compact). We perform this transformation in the next subsection.

Remark 1.3.6. Our objective in this paper has been to obtain near optimal policies rather

than to characterize the structure of optimal policies as is done in Benjaafar et al. [2022a]

and He et al. [2020], who show that the optimal policy has a threshold-like structure, albeit

under cost assumptions which ensure convexity of the value function. We do not make such

assumptions on costs, and as a result we can handle more general cost functions, where the

resultant mean-field policy may differ from a threshold policy.

1.3.4 A Compact State Space Reformulation of the Mean-Field Model

Under the mean-field model, Â is compact, whereas X̂ is not. This is reflected in the

infinite-dimensional state-space required for X̂, where due to Poisson inflow, for any type

e, E
[
R̂e
]
> 0 implies x̂t+1

e,d > 0 ∀d. This section shows that we can aggregate inventory

variables corresponding to stations with a high number of units, reducing the state-space

significantly. This aggregation will also allow us to express the mean-field in a compact

space, which will be necessary to develop our performance bound in Section 1.4. We pro-

vide the necessary definitions in this section and provide the technical details on how these

functions/variables are obtained, as well as the mathematical intuition, in Section 1.13.

We let x̆t = [x̆te]
ê
e=1 and denote the new state space by X̆ where
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x̆te = [[x̆te,r, x̆
t
e,s, x̆

t
e,u, x̆

t
e,d]
∞
d=0]êe=1 ∈ X̆. The state transitions under this setting are:

x̆t+1
e,d =

Ue∑
b=Le

âte,bP
[
b−min(b,De) + R̂e = d

]
∀e, t, d ≤ Ue, (1.3.6)

x̆t+1
e,d = 0 ∀e, t, d > Ue, (1.3.7)

x̆t+1
e,r = âte,r + (1− q)

ê∑
e′=1

pe′,e

Ue
′∑

b=Le
′
âte′,bE

[
min(b,De′)

]
∀e, t, (1.3.8)

x̆t+1
e,s =

∞∑
d=Ue+1

d
Ue∑
b=Le

âte,bP
[
b−min(b,De) + R̂e = d

]
∀e, t, (1.3.9)

x̆t+1
e,u =

∞∑
d=Ue+1

(d− Ue)
Ue∑
b=Le

âte,bP
[
b−min(b,De) + R̂e = d

]
∀e, t. (1.3.10)

Here, Equation (1.3.6) preserves the state transitions for stations with less then or equal to

Ue units, and stations with more then Ue units are represented in Equations (1.3.9),(1.3.10),

where the total number of units at these stations are aggregated through two different func-

tions. Lastly, the state transition function for depleted units is identical to the mean-field

formulation.

As we are working with a new state-space, we have to introduce a new rebalancing cost

function. The new rebalancing cost function ĉ2(x̆t, ât) is expressed as:

ĉ2(x̆t, ât) = n
ê∑
e=1

ce,e
2
x̆te,u + n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̆te,d − â
t
e,d)

∣∣∣∣
+n min

ye1,e2

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2 (1.3.11)

s.t. x̆te,s +
Ue∑
b=1

b(x̆te,b − â
t
e,b) =

2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê],

x̆te,r − âte,r =
2ê∑
e1=0

(ye+ê,e1 − ye1,e+ê) ∀e ∈ [ê],

ye1,e2 ≥ 0 ∀e1, e2.
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In Proposition 1.13.3, we prove that working with these updated state-transition dynamics

and the updated state space does not alter the optimal action, and an equivalent representa-

tion of the mean-field model, where the state is in X̆, exists. We do this by showing that for

each type e, we can aggregate stations with more than Ue (upper threshold for type e) units.

This is because these stations have “extra” units which need to be removed, and knowing the

total number of these “extra” units at each type is sufficient to make an optimal decision.

Consequently, in the remainder of the paper, we will use X̆ as the state space of the

mean-field model. Given an initial inventory position x̆t ∈ X̆, we express the value function

through the fixed point of the Bellman recursion as

V̂ (x̆t) = min
ât∈Â

ĉ2(x̆t, ât) + N̂(ât) + γV̂ (x̆t+1), (1.3.12)

where x̆t+1 is given by Equations (1.3.6)-(1.3.10).

1.4 An Approximation Scheme for the Optimal Mean-Field

Policy

Having introduced the mean-field model, we present an approximation scheme to obtain

control policies for the mean-field model in this section. These policies provide an arbitrarily

small optimality gap for the mean-field model. At a high level, our algorithm solves for a

“good” recurrent steady-state action and a transient finite horizon policy terminating in this

steady-state. We prove that the optimality gap decays exponentially in the length of the

transient period.

1.4.1 Formulation of the Algorithm

Given an initial inventory position x̆t and a parameter T ≥ 0, our policy is specified by a

sequence of T + 1 actions where the (T + 1)’st action is repeated for all future periods. To

arrive at policy π̃ = {π̃t+k}k∈N0
(dependencies on x̆t, T are suppressed for ease of notation),
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we first solve for:

{ãt+k}Tk=0 ∈ arg min
{ât+k∈Â}Tk=0

T−1∑
k=0

γk
(
ĉ2(x̆t+k, ât+k) + N̂(ât+k)

)

+ γT ĉ2(x̆t+T , ât+T ) +
γT

1− γ

(
γĉ2(x̆t+T+1, ât+T ) + N̂(ât+T )

)
. (1.4.1)

In (1.4.1), the first summation denotes the per-period costs of the first T periods, term

γT ĉ2(x̆t+T , ât+T ) denotes the cost of moving from the initial inventory distribution of (T +

1)’st period to the repeated action, and γT

1−γ

(
γĉ2(x̆t+T+1, ât+T ) + N̂(ât+T )

)
denotes the

costs paid in the remaining periods, with the recursion obtained through the condition that

the (T + 1)’st action is repeated for all future periods (the same costs are observed each

period due to the model being deterministic).

Given the solution of the above program, π̃ is constructed as follows:

π̃t+k(x̆t+k) = ãt+k ∀k < T, x̆t+k ∈ X̆, (1.4.2)

π̃t+k(x̆t+k) = ãt+T ∀k ≥ T, x̆t+k ∈ X̆. (1.4.3)

Furthermore, the cost of policy π̃, V̂π̃(x̆t), is equal to the optimal value of the optimization

problem in (1.4.1).

Remark 1.4.1. The equivalence of V̂π̃(x̆t) to the optimal value of the optimization problem

in (1.4.1) is due to the mean-field model being deterministic where given a sequence of actions,

the inventory evolution is exactly known. When we consider the stochastic setting, the realized

inventory positions will be different than the mean-field forecast, and therefore the realized cost

of π̃ will be different from V̂π̃(x̆t). In Section 1.5, we look at a variant where we recompute

the policy at every period to solve the issue of mismatch between the true stochastic and

mean-field trajectories.

For T =∞, this policy is optimal because the model is deterministic. For finite T , such a

policy is computationally advantageous compared to other possible methods such as model
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predictive control since it is a single-shot problem unlike model predictive control, which

requires re-solving at each period (we will compare the performance of model predictive

control with our control policy in Section 1.5). It is also computationally advantageous

compared to methods such as value iteration, as it also avoids the need to approximate the

value function at all states.

Another advantage of our proposed policy is that it provides a useful way practitioners

should make rebalancing/recharging decisions. In most micromobility systems, platforms

have a general idea of the ideal initial distribution of inventory amongst different stations.

Furthermore, for a variety of (possibly unmodeled) reasons (e.g., limitations in the rebalanc-

ing/recharging capacities), such systems often observe different distributions of inventory.

Many responses to this problem are either too limited, where the planner allows the system

to drift to extreme inventory positions, or too excessive, where the planner implements exces-

sive control to move the system to its ideal position. The algorithm we propose dilutes this

excessive control over multiple periods, incorporating the repositioning done by customers

in order to avoid paying excessive rebalancing costs.

While analyzing algorithm’s performance, we separately derive a bound for a special

case of the model where q = 0. The reason why q = 0 motivates a separate analysis is

that under this assumption, the state transitions provided in Equations (1.3.6)-(1.3.10) are

affine13. Having affine state transitions provides important properties for the algorithm, such

as allowing the algorithm to be reformulated exactly as a linear program (we provide the

resultant linear program under this reformulation in Section 1.14). Furthermore, we show

that under affine state transitions, the mean-field model admits a fixed point (an inventory

position such that taking an optimal action for that inventory position results in moving

to the same position next period) and develop a better worst-case bound (for systems with

γ > 0.5). We provide the technical details on this fixed point analysis, together with the

proof of Theorem 1.4.2, in Section 1.15.

13. For q > 0, arrival rate R̂e has a non-linear dependence on â causing non-affine state transitions.
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1.4.2 Worst-Case Performance of the Control Algorithm

The following theorem is one of our main results, establishing that the optimality gap de-

creases exponentially with respect to the transient period T used to find the approximately

optimal policy for the mean-field model.

Theorem 1.4.2. The optimality gap of the policy π̃ obtained via (1.4.1)-(1.4.3) decreases

exponentially with respect to length T of the transient horizon:

V̂π̃(x̆t)− V̂ (x̆t) ≤ γ

1− γ
CγT ∀x̆t ∈ X̆,

where

C = 2
ê∑
e=1

(
ne max(c0,e, ce,0)(Ue − Le) + nmax(c0,ê+e, cê+e,0)(Ur,e − Lr,e)

)
.

Furthermore, we can derive an alternative bound for q = 0 with:

V̂π̃(x̆t)− V̂ (x̆t) ≤ CγT ∀x̆t ∈ X̆.

We provide two separate analyses for the two structurally different models to construct

these bounds. For the general case (for all q values including q = 0), we observe that any

optimal policy’s first T + 1 actions are a feasible sequence of action for the algorithm. For

the special case q = 0, we add the observation that the system admits a fixed point that the

control algorithm can reach in period T + 1. The constant C observed in both bounds is an

upper bound to two times the maximum rebalancing cost paid to move between two feasible

actions, with

C ≥2 max
x̆∈X̆,â∈Â

ĉ2(x̆, â)

s.t. x̆te,s, x̆
t
e,u = 0 ∀e,

x̆te,r ∈ [Lr,e, Ur,e] ∀e.
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The theorem states that extending the transient horizon of the algorithm results in an

exponential decrease in the upper-bound of the optimality gap of the algorithm (in the

mean-field setting). While it may not be possible to consider very long forecast horizons in

real-life settings due to limitations on forecasting capabilities for very distant periods and the

added computational cost for the algorithm (computational cost of the algorithm is linear

in the transient horizon), the result suggests that any feasible extension of this horizon is

beneficial. This benefit is even more valuable for systems with limited discounting (γ close

to 1), where the result indicates that investment in extending forecasting and computational

capabilities can positively impact profits.

Remark 1.4.3. Both bounds in Theorem 1.4.2 may seem weak for problems with γ close

to one (compared to problems with small γ), as in that case γT can be non-negligible even

for large T . However, the optimal cost also grows approximately with rate 1
1−γ so while the

optimality gap may remain significant, the ratio of the gap with the optimal cost remains

small for all discount rates.

1.5 Numerical Experiments

In this section, we look at the performance of our control policy in a stochastic environment,

and compare it with some simple heuristics as well as sophisticated approaches.

1.5.1 Description of Simulated Policies

Our numerical studies will explore seven different policies which include standard benchmark

policies, variations of our control policy, and policies based on other fluid approximations.

We provide the basic analysis of how these policies are constructed in this section. Addi-

tional discussion on how we solve these policies for our model can be found in Section 1.17.

Specifically, the policies which we consider are:

1. Resultant policy of the control algorithm we presented in Section 1.4 (which we label as
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static control). This policy is a static policy where we first use initial inventory position x0

(which the mean-field based policy observes as g(x0)) to obtain π̃. Then, at each period

t, we take action h(f(π̃t(x̆t))), regardless of how much mean-field and stochastic inventory

transitions deviate.

2. Control policy with re-solving, which was briefly mentioned in Remark 1.4.1. Under this

policy, at every period, we use xt to obtain π̃, implement the resultant optimal action for

the first period, but then re-solve the algorithm next period for the newly induced inven-

tory position xt+1. Through this policy, we address the issue of stochasticity, allowing the

algorithm to adapt to volatility in demand realization. We label this policy as re-solving

control.

3. Model predictive control (labeled MPC ). Under MPC, at every period, we solve for the

optimal initial action of the corresponding mean-field finite horizon problem with T +1 peri-

ods (T + 1 is selected as the period length to ensure consistency with the control algorithm),

with the optimal initial action given by:

ât∗ ∈ arg min
{ât+k∈Â}Tk=0

T∑
k=0

γk
(
ĉ2(x̆t+k, ât+k) + N̂(ât+k)

)
.

Then, at every period, we take the designated action (which is again mapped to the stochastic

environment through the h and f functions), move to the newly induced inventory position

next period, and re-solve for the optimal initial action. The difference between MPC and

re-solving control is in the objective function giving the initial action. Re-solving control

assumes the (T + 1)’st action is repeated indefinitely and uses the value function of the

corresponding state as the terminal cost in period T + 1.

Remark 1.5.1. The first three policies are constructed with the assistance of the mean-field

model, where we solve optimization programs based on the mean-field model, and then use the

h, f functions to map their optimal solutions to the stochastic environment. The remaining
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policies are independent of the mean-field model and will be directly based on the original

model formulation.

4. Newsvendor action policy, which solves the problem assuming that rebalancing is free.

Under this assumption, the optimal solution is decomposable over the stations and is based

on finding the optimal trade-off between holding and penalty costs. Formally, the newsvendor

action policy solves for an aN satisfying:

aN ∈ arg min
{at∈A}

N(at),

and rebalances to this action every period, regardless of the initial inventory position.

5. Hybrid no rebalancing policy, which does not rebalance units between types (unless thresh-

old constraints are violated) and only recharges depleted units while keeping them in the

same type. This policy is an enhancement of the standard no-rebalancing policy (where no

units are recharged/sourced/rebalanced) as the standard no-rebalancing policy: (i) does not

recharge units resulting in all units being depleted (for q < 1) as time progresses, (ii) does

not source units (given that the initial inventory position satisfies thresholds) so the fleet

size is equal to the initial inventory position. We enhance the performance of this policy

by allowing it to recharge depleted units each period (the recharged units are distributed

among the stations of the same type) and rebalance once in the initial period so that the

policy can select a favorable fleet-size and then rebalance if action thresholds (upper/lower

limits on the number of units a station can have post-rebalancing) are violated. To solve

for the fleet-size, we use a line-search algorithm where we compare different initial numbers

of units (assumed to be equal at every station) and use Monte-Carlo simulation to solve for

the best starting position.

6. Myopic policy, which solves for the single-period variation of the original stochastic model.
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Formally, at each period t, the myopic policy solves for an atM satisfying:

atM ∈ arg min
at∈A

c(xt,at) +N(at). (1.5.1)

While the myopic policy does not require the evaluation of costs of future periods, it requires

solving a non-linear integer program (due to the structure of N(at)) where the number of

variables increase with n. Nevertheless, we are able to reformulate (1.5.1) as a mixed-

integer program through the assistance of an interim model. We provide the details on this

reformulation in Section 1.17.

7. Large Market policy, which solves for a policy through the fluid approximation based

on the construction provided in Braverman et al. [2019]. Under this fluid approximation,

we look at a setting where both the fleet size and demand at stations tend to infinity,

which allows considering demand to be deterministic and depletion, unit drop-offs to be

exactly proportional to the respective q, pi,j values (as the resultant inventory positions are

fractional, we extend the action space A to allow for fractional action’s which we then round

when implementing the policy). Thus, under the large market approximation, the state at

period t+ 1 is given by the following equations:

xt+1
e,i = ate,i −min(ate,i, µe) +

ê∑
e′=1

ne′∑
j=1

qpe′,e
ne

min(ate′,j , µe′) ∀i ∈ [n], (1.5.2)

xt+1
e,r = ate,r + (1− q)

ê∑
e′=1

pe′,e

ne′∑
j=1

min(ate′,j , µe′) ∀e. (1.5.3)

The resultant value function can then be expressed as

VM (xt) = min
at∈A

c(xt,at)+ch

ê∑
e=1

ne∑
i=1

ate,i+ch

ê∑
e=1

ate,r+cp

ê∑
e=1

ne∑
i=1

(µe−ate,i)
+ +γVM (xt+1).

(1.5.4)

Both the large market and the mean-field models are deterministic approximations which

36



help obtain policies for the original stochastic problem. They also suffer from the same

problem where solving for the optimal policy is an infinite dimensional problem (as in the

case of the mean-field model)14. As a result, we adapt the static control algorithm to the

large market model, where we again solve a T + 1 period finite horizon problem with the

T +1’th period repeated for all periods. The reason we adapt the static control policy rather

than the resolving control policy is that the adapting the resolving control policy requires

solving a non-linear optimization problem every period (even after our reformulation), and

the number of variables linearly increase with n.

One difficulty of using a static policy for this fluid approximation is that only inventory

distributions (rather than the exact inventory position of each station) of types for future

periods can be accurately predicted as the number of stations increases. As a result, speci-

fying an exact action to a station without observing the demand realization and the initial

inventory position of that station may result in additional rebalancing costs. To minimize

rebalancing costs, we use the g and h functions where given any period s > t, and action as

(solved for at period t), we implement action h(g(as)) at period s. The g and h functions

take xs as an input and modify action as to match the order statistics of pre-rebalancing

inventory, in each type, to avoid paying additional rebalancing costs.

When evaluating the performances of these policies, as an additional benchmark, we also

compute the lower bound of the optimal cost obtained from the mean-field model. We solve

for this value by computing the cost of the static control algorithm in the mean-field model

for a large T value and then using Theorem 1.4.2.

14. The large market policy also includes piece-wise components in the state transition functions (due
to the lost-sales setting), which cause non-linearity. In Section 1.17, we show an exact reformulation to
overcome this issue.
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1.5.2 Selection of the Cost Parameters

Our goal in constructing our model was to approach various micromobility systems, differing

in terms of their type of units (scooters/bikes) and the setting these systems are used in

(major cities/smaller locations). Consequently, the selection of cost parameters to analyze

each of these systems differs. To this end, we run several experiments where we vary values

of cost parameters to understand the robustness of our policy. Nevertheless, we will calibrate

values for each cost parameter in our experiments as a starting point. We base these values

on the scooter-sharing system in Austin to match our data-driven experiment. For space

considerations, we list the values below while describing their calibration in detail in Section

1.17.3.

First, we assign the cost of rebalancing within a type to be $1 and the cost of rebalancing

units between types to be $2. We also assign the cost of recharging to be $3 (indicating that

the cost is $4 if a depleted unit is charged and dropped to the same type and $5 if the unit is

dropped to a different type). Finally, we assign a sourcing cost of $6 as sourcing is expected

to be the most expensive operation.

For the remaining values, we assign γ = 0.95, ch = 2.2, cp = 11.3, and q = 0. For space

considerations, we describe their calibration in detail in Section 1.17.3.

1.5.3 Synthetic Experiments

We first construct a series of synthetic experiments to understand better the performance of

our policy15. We let ê = 4, with ne = 20∀e. We assume that demand is distributed Poisson

in each of the four types, albeit with different mean values. We also assume an imbalanced

network between types with different pe1,e2 values. We assume that the upper threshold for

charged units is 17 units and the upper threshold for depleted units is five units per station

of the same type. We assume that lower threshold for both charged units and depleted

15. For space considerations, some supportive experiments can be found in the Section 1.17.
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units is 0. We let T = 3 for static control, resolving control, MPC, and the large market

policy. We simulate the performance of the policies through Monte-Carlo simulation, with

100 repetitions.

Impact of Penalty Cost

In our first experiment, we vary the penalty cost cp (assumed to be $11.2 previously). The

results are shown in Figure 1.2.

Figure 1.2: Impact of Penalty Cost on the Performance of Policies

Several points are worth highlighting: First, the performance of both static and resolving

control policies are approximately equal to the mean-field lower bound. In addition to

covering the fundamental trade-offs that the heuristic policies optimize, the two policies

make multi-period decisions considering the spatial distribution of inventory. For systems

with very low penalty costs, maintaining any service level is sub-optimal; hence these policies

decrease the number of units in circulation until no units remain. In contrast, for systems

with high penalty costs, the two policies observe that the initial number of units in circulation

is insufficient; hence these policies source units (instead of rebalancing units already in

39



circulation) to reach a good fleet size. As different micromobility systems require different

cost values (which are also difficult to estimate), showing a strong performance for a wide

range of settings is essential for implemented policies.

Another critical point is the varying performance of the large market policy, which is

near-optimal for some penalty cost values and performs poorly for others. This is due to

the assumption of deterministic demand that this policy uses. For example, given that the

penalty cost is low, we expect the optimal policy only to recharge a unit if the probability that

a customer will pick this unit up is close to 1. As a result, for effective policies, the number

of charged units post-rebalancing should be much less than the mean demand. However, due

to the deterministic demand assumption, this cutoff for the large market policy is equal to

the mean demand.

Similarly, for systems with high penalty costs, the optimal policy will charge a unit

even if the probability that the unit will be picked up is small. Again, this cutoff for

the large market policy equals mean demand due to the deterministic demand assumption.

Consequently, information on the variance of demand distributions at stations is necessary

to make accurate decisions, which the large market policy fails to do.

Impact of Number of Stations

In our second experiment, we vary n (assumed to be 80 previously). The results are shown

in Figure 1.3.

First, as the number of stations increases, static and resolving control policies approach

the cost of the mean-field model (while performing better than all other policies for all

network sizes). This is expected because the mean-field model better approximates the

original model as the number of stations increases. For MPC, which is based on the mean-

field formulation but uses smaller cost coefficients for the last period “steady-state” costs,

we observe that the performance is slightly worse than the static/resolving policies. This

decrease in performance of MPC is due to the selection of T , where for large T , the impact of
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Figure 1.3: Impact of Number of Stations on the Performance of Policies

the steady-state modification on the initial action is lower, and MPC takes the same actions

as resolving control. Nevertheless, the control algorithm allows us to better approximate the

infinite-horizon problem through a much smaller T value.

Remark 1.5.2. In both experiments, we observe that the static and resolving control policies

provide similar results, which is counter-intuitive as we expect the resolving policy to perform

better. In Section 1.17.5, we show that this is due to the selection of cost parameters, where

moving units to different types costs one more dollar than moving the unit within the same

type. The advantage of resolving is the ability to adapt to extreme demand realizations, which,

for the q = 0 case, corresponds to re-solving based on the distribution of depleted units among

types (possibly taking a lower action at a type if there are less depleted units to supply that

action). As the additional cost of moving units to different types is low (compared to main

cost drivers such as recharging cost and penalty cost), the resolving control policy takes almost

identical actions to the static control policy, even when the realized distribution of depleted

units differs from the mean-field expected distribution of depleted units. For systems where

the cost of moving units between types is high, we observe a more significant gap between
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static and resolving control for small n (this gap vanishes for large n as extreme demand

realizations are less common).

Remark 1.5.3. When comparing static and resolving policies, we omit an important fact

that moving to a policy with re-solving (applicable for both MPC and re-solving control) is

computationally costly (especially for systems with q > 0 as they require solving a non-linear

model) while modifying the objective function to account for steady-state costs has negligible

one-off computational cost. The former is an important decision which might not be feasible

in a real-life setting where there are many types of stations and less time to make (or modify)

decisions, while the latter is a simple modification of the policy which the experiments show

improves performance, irrespective of whether re-solving is feasible or not.

1.5.4 Austin Scooter-Sharing Data

Forming the Numerical Example

In order to better analyze the performance of our policy in a real-life setting, we conduct

a numerical experiment using Austin scooter-sharing data (City of Austin Transportation

Department [2022]). We use the Austin Shared Micromobility Vehicle Trips data-set, focus-

ing on scooter trips between September 1, 2021, and September 15, 2021. Before providing

the results, we briefly explain how we estimate model parameters such as demand, and

probability transition matrix, using the available data.

The primary step in estimating our parameters is to form the types/clusters. In the

provided dataset, the location granularity is census tracts, where we are given the starting

and ending census tract (but not the exact coordinates) of each trip. In order to form

the types, we use a 2-step approach, where in the first step, we use the weighted k-means

clustering algorithm to construct five clusters based on the longitude/latitude values of the

census tracts. After obtaining an initial solution for types/clusters, we compute the state

transition probabilities of the census tracts to each type and the state transition probabilities

42



between types. Finally, in the second step, we can re-assign census tracts to types that better

match their trip patterns through these values.

We estimate the demand distributions and the number of stations for each type using the

identification data on the census tracts belonging to that type. We use the average number

of pickups per day16 and the weighted density at each type (we use the population density

information of each census tract, weighted by the proportion of pickups corresponding to

that census tract). We let types with higher population densities have higher mean demands

(and a lower number of stations indirectly), based on Kabra et al. [2020], which establishes

the unwillingness of customers to use stations farther away.

Results

Running the experiment; we obtain that static control, re-solving control, and the mean-

field lower bound provides a cost of $2.017M (million dollars/rounded to nearest thousand

dollars), newsvendor policy provides a cost of $2.03M, MPC provides a cost of $2.044M, no

rebalancing provides a cost of $2.079M, myopic policy provides a cost of $2.178M, and the

large market policy provides a cost of $2.29M.

One major difference between the synthetic experiments and the data-driven experiment

is the disparity in the properties of types. For example, in the data-driven experiment,

the type with the highest mean demand (per station) has a mean demand of almost six

times more then the type with the lowest mean demand. Under such disparities, policies

need to account for state transitions. We see this through the poor performance of the

myopic policy, which does not include state-transition probabilities while making decisions.

In contrast, both static and re-solving control approximate these state transitions to make

accurate decisions and thus accurately model systems with very heterogeneous clusters.

Lastly, we highlight the managerial implications of the experiment we conducted. In this

16. Due to the lack of exact pickup-dropoff coordinates, we rely on the censored trip data to estimate
demand.
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experiment, we differed from the previous sections by first estimating the model’s parameters

(we took them as given while proving our theoretical results) and then running our algorithm,

highlighting its strong performance. While we introduced our method to collect census tracts

into clusters, there are many papers (such as Dai et al. [2018]) that provide algorithms

for clustering stations and predicting customer behavior. This aligns with the popularity

of exploring patterns in shared mobility data. At its core, our algorithm utilizes these

data-driven approaches to obtain effective rebalancing/recharging/sourcing policies. Our

approach is universal for all shared micromobility systems (and other systems that allow

customers the freedom to decide where to drop their units). It uses the existing patterns

in customer behavior to construct the types and then applies the algorithm to obtain the

rebalancing/recharging/sourcing policies. While our approach is primarily intended for large-

scale systems (for the accuracy of the mean-field model), our algorithm also performs well

for small network sizes, as seen in Section 1.5.3. While the realization of demand may differ

from mean-field expectations in such networks, our algorithm still considers the fundamental

trade-offs that the heuristic policies optimize and optimize the movement of inventory across

time, taking the spatial distribution of inventory into account. Such an approach is essential

for systems with balanced cost parameters, as such systems penalize both excessive and no

rebalancing/recharging.

1.6 Extensions

This section relaxes some of the assumptions made and discusses possible extensions. While

some of the assumptions we made were necessary to obtain our results, others were for

clarity of writing. Some real-life applications of our model do require specific extensions

such as heterogeneous costs across types, heterogeneous depletion probabilities, including

damaged/missing units, travel times, and/or fixed costs. This section shows that we can

extend our results to incorporate these extensions.
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1.6.1 Heterogeneous Cost Parameters

While developing the model, we assumed that the holding cost ch and penalty cost cp are

homogeneous across types. We made this assumption for clarity of exposition. However, in

many relevant applications, these costs are heterogeneous, such as in systems where demand

at certain types may have a higher priority. Different holding costs can also be assigned

depending on whether a unit is charged or depleted. We generalize our model by allow-

ing the cost parameters ch,e, ch,r,e, cp,e to take different values for different types to model

such applications. We still assume that there are finitely many types, and the analysis for

asymptotic optimality of the mean-field model and the methodology used for proving the

worst-case bound for the control algorithm remain identical.

1.6.2 Extension to Non-Stationary Settings

Our paper assumes that demand distributions, state transition probabilities, and thresholds

are stationary. We did this for clarity of presentation, and in many applications, cyclic or

seasonal demand and trip patterns are observed. One example is from modeling rush hour

traffic, where network flows in the morning rush hour differs from that in the evening rush

hour. This subsection will extend our work to a class of non-stationary problems, known

as periodic problems. To extend our approach to settings with cyclic demand patterns and

seasonality effects, we assume a season length H < ∞, where for any period t and types

e1, e2, the primitives satisfy: (i)L(Dt+H,e) = L(Dt,e), (ii) pt+He1,e2
= pte1,e2

, (iii)Lt+H =

Lt, (iv)U t+H = U t, (v)Lt+H,r = Lt,r, (vi)U t+H,r = U t,r. Here, we make the dependence

of pte1,e2
,Dt,Lt,U t,Lt,r,U t,r on t explicit to highlight the non-stationarity in the problem.

To extend our results, we first have to show that the mean-field model is asymptoti-

cally optimal. This is straightforward as the stationarity property is not used anywhere

while proving asymptotic optimality. Moreover, as we keep the type structure intact, the

assumption that ê <∞ will be sufficient to obtain asymptotic optimality.

To extend the worst-case performance bound for our control algorithm, we follow the
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standard approach of studying such periodic MDP’s, which is to define composite periods,

with each composite period consisting of H periods of one cycle. This, in turn, yields an

MDP where each composite period is i.i.d., allowing us to establish a worst-case bound for

the control algorithm. For completeness, we formalize these steps in Section 1.16 and obtain

a similar bound to the one obtained in Theorem 1.4.2 in Theorem (1.16.1).

1.6.3 Extending the Depletion Probability

One of the main goals of our paper is to integrate recharging decisions into rebalancing

decisions effectively. We considered a simple setting of depletion for clarity of writing, where

a unit is depleted after a customer induced trip with a probability of 1 − q. This section

will discuss extensions to this setting, including heterogeneous depletion probabilities and

different depletion events, and discuss the implications of not directly including battery levels

in our model.

While we assumed that depletion probability is identical for all trips, in real-life, we

would expect trips of longer distances to use more battery charge and thus have a higher

probability of depletion. To incorporate such trips in our model, we can extend our results to

an origin-destination dependent setting where an unit picked up from type e1 and dropped to

e2 is still available with probability qe1,e2 . Under this setting, the success probabilities of the

trip distributions will change, with Rt
e′,e = [Rte′,e,r, R

t
e′,e,1, · · · , R

t
e′,e,ne

] being a multinomial

distribution with
∑ne′
i=1 min(ate′,i, D

t
e′,i) trials and success probability (1−qe′,e)pe′,e for Rte′,e,r

and success probabilities
qe′,epe′,e

ne
for remaining terms. As the original trip distribution

changes, R̂e, which is the mean-field approximation of this process, will also change with

R̂e
d
= Pois

(
n

ne

ê∑
e′=1

pe′,eqe′,e

Ue
′∑

b=Le
′
âte′,bE

[
min(b,De′)

])
∀e.

While we have changed the state transition equations, our methodology for obtaining asymp-

totic optimality as well as obtaining the worst-case bounds will remain identical. This is
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because our analysis already considers origin-destination heterogeneity of trips through the

pe′,e probabilities, and extending q to the same level of detail does not effect any of the steps.

Second, in our model, we assume no differentiation between depleted units other than the

type they are physically at. As briefly mentioned in Section 1.2.2, the amount a platform pays

for recharging a depleted unit depends on multiple different factors, including the difficulty

of locating the unit, the neighborhood the unit is located in, and other factors. While our

current cost structure only captures the neighborhood component, we can extend our model

to allow for different recharging costs within the same type. To do this, we will extend the

q probability such that the depletion probability is partitioned to map to different groups of

depleted units. Specifically, in order to consider M different recharging costs within a type,

we will introduce new inventory and action variables xte,r,1, ..., x
t
e,r,M , ate,r,1, ..., a

t
e,r,M where

the probability that a unit moving to a type e ends up in the k’th depleted group is qk, with∑M
k=1 qk = q (or

∑M
k=1 qe1,e2,k = qe1,e2 in the case of heterogeneous depletion probabilities).

We can then assign a different recharging cost to each of these groups. Mathematically, given

M <∞, our results extend. The resultant mean-field state transitions for the depleted unit

groups becomes

x̂t+1
e,r,k = âte,r + (1− qk)

ê∑
e′=1

pe′,e

Ue
′∑

b=Le
′
āte′,bE

[
min(b,De′)

]
∀k ∈ {1, · · · ,M},

where we can show that splitting depleted units arriving to a type to a finite number of

subsets preserves asymptotic optimality. The methodology used for the remaining results on

the worst-case bound of the mean-field model is identical.

Lastly, we do not explicitly define battery charge level as an attribute in our model.

Instead, we consider binary charge levels, where a unit is either charged or depleted. Unlike

the previous paragraphs, our results do not readily extend to the battery charge setting. Such

a setting requires working with the multi-product (different charge levels can be thought as

different products) version of our problem, where there are different products available at
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a station and arriving customers can substitute between products based on availability17.

Nevertheless, our approach covers the important properties of battery charge for large-scale

problems. To demonstrate this, we can consider a simple setting with three charge levels

(fully charged, half charged, and zero charged), and each trip takes half of the battery life.

As a result, all fully charged units picked-up will be available next period, where all half

charge units will be depleted with usage. Letting q = 1
2 (2 being the number of trips a fully

charged unit can take), in the large-scale setting, under our model, approximately half of

the units in ongoing trips will be depleted. In the simple alternative setting, approximately

half of the units will also be depleted (assuming customers have no preference between half

charged and fully charged units). So, while our model can produce instances where specific

units may be used several times; it is more accurate in capturing the total number of units

depleted. The crucial step is to calculate the average battery consumption in trips between

types, and assign the correct qe1,e2 values (where qe1,e2 is the inverse of the expected number

of trips a scooter can take between types e1, e2 given full initial charge).

1.6.4 Damaged/Missing Units

In addition to rebalancing/sourcing/recharging units, a common task provided by micromo-

bility systems is maintenance. Some of the returned units are damaged, and these units have

to be attended by maintenance crews (as most repair operations cannot be crowd-sourced).

In our model, we do not differentiate between depleted units and damaged units for ease

of exposition. However, in real life, these are two different problems with different costs.

Nevertheless, we can extend our model and our results to include damaged units. To do

that, we will extend the state space to define a new type for damaged units (or multiple

types if the region in which the unit is damaged has a large impact on cost). Labeling this

type as type ed, we let the probability that units at a type get damaged give the inflow

17. While we can also think of different charge levels as different stations/nodes, our results would require
assuming that demand for each of the charge levels is independent, which is unrealistic as customers generally
choose the closest unit with enough charge remaining.
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probabilities. We assume that demand at this type is equal to zero to model the inability of

customers to use these units. We can then assign rebalancing costs to this type to account

for the average maintenance costs paid per unit.

A similar treatment can also be used for missing units. While we assume that every

unit picked up will be returned (which follows the real-life practice of platforms placing high

penalties to ensure customers return their units), units do end up missing due to theft and

other forms of vandalism. Similar to the above discussion, we can introduce a new type em

with the probability that units at a type are lost give the inflow probabilities for this type.

Unlike damaged units, we will let the upper threshold for this type equal 0, so no holding

costs are paid for these units and the fleet size decreases accordingly. We can then assign

rebalancing costs to this type to account for the replacement cost of each unit.

In both cases, the extension of our results is straightforward as we are only adding

dummy types to account for these particular realizations. Furthermore, in both cases, cost

parameters should be assigned such that the costs reflect the condition of the units, and

under these cost parameters an optimal action should be to remove these units18. Through

forcing this optimal action (by the selection of problem parameters), we ensure that no

decision variables are added for the control algorithm, and the computational effort required

does not increase.

1.6.5 Travel Times

One of the assumptions we made for tractability was that customers return units by the

end of the period. While this is a reasonable assumption for micromobility systems due to

platform restrictions on usage times, travel times are an integral part of the problem for

other relevant applications such as logistics and transshipment, where our results can be

useful. Through a similar formulation as in Section 1.6.4, we model travel times by adding

18. This also reflects real-life operations as indicated in City of Chicago [2019], where it is stated that
“Vendors must relocate any scooter parked outside of the pilot area, and any non-functional scooter, within
2 hours of notification by the City or a resident.”
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dummy types to the system. To highlight how dummy types are utilized, we provide the

following example setting where we assume that there are two types e1, e2 such that it takes

two periods for a unit departing from e1 to move to e2. We introduce a new dummy type

e3 such that all units going to e2 from e1 first end up in e3. We assume that e1 has no

direct outflow to e2 and the probability that the unit goes to e2 is the inflow probability of

e3. Furthermore, we assume that all units leaving e3 end up in e2. We also need to ensure

that all units entering e3 depart e3 and the platform does not rebalance any units into/out

of transit, which is possible by assigning a large upper threshold, a lower threshold equal

to zero, a large number of stations, deterministic demand with mean equal to the upper

threshold, penalty cost equal to holding cost, and high rebalancing costs to e3. Lastly, we

assume that qe1,e2 = 1, and integrate the depletion event in this route through qe3,e2 = qe1,e2 .

Using this formulation, we incorporate travel times into our problem through this formu-

lation without adding extra decision variables (as there is no decision making at the dummy

types).

1.6.6 Fixed Costs

Another assumption we made was that the total rebalancing cost incurred was linear in the

number of units repositioned/charged. In applications such as bike-sharing, where the bulk

of the repositioning cost involves visiting a station for rebalancing rather than rebalancing of

each unit, a more complex cost structure with fixed costs can be useful to better understand

system dynamics19. To this end, we add the cost term
∑ê
e=1

∑ne
i=1 cf,eI

{
xte,i 6= ate,i

}
to the

rebalancing cost function of the original model. This implies that in addition to a linear

rebalancing/recharging costs, a type dependent fixed cost of cf,e is incurred if any unit is

moved in or out of a station. To extend our analysis to this setting, we need to find an

equivalent representation of the rebalancing cost for the mean-field model. The requisite

19. We discuss the linearity assumption in more detail in Section 1.10.
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function for the rebalancing cost is given by:

ĉ(xt,at) = n
ê∑
e=1

cf,e

∞∑
b=0

1

2

∣∣∣∣x̂te,b − âte,b∣∣∣∣+ n

ê∑
e=1

ce,e
2

∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣
+ n min

ye1,e2

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2 (1.6.1)

s.t.
∞∑
b=1

b(x̂te,b − â
t
e,b) =

2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê],

x̂te,r − âte,r =
2ê∑
e1=0

(ye,e1 − ye1,e) ∀ê < e,

ye1,e2 ≥ 0 ∀e1, e2.

To see why the above is true, we first need to modify the function h (previously defined in

(1.3.5)) which, given the detailed inventory vector xt and the empirical action āt, gives the

detailed action at with marginal āt that minimizes the rebalancing cost. Under fixed costs,

the modified h function is given by:

h(ā) ∈ arg min
a∈A

ê∑
e=1

ne∑
i=1

cf,eI
{
xte,i 6= ate,i

}
+

ê∑
e=1

ne∑
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣+
ê∑
e=1

∣∣∣∣ate,r − xte,r∣∣∣∣
(1.6.2)

s.t.

∑ne
i=1 I

{
ate,i = d

}
n

= āte,d ∀e, d,

ate,r = nāte,r ∀e.

It is straightforward to observe that the total variation distance component (first term)

of (1.6.1) constitutes a lower bound on the fixed cost component (first term) of (1.6.2). To

see why the minimum fixed cost paid under (1.6.2) equals the first term of (1.6.1) (while not

affecting the linear rebalancing costs), we need to look back to the optimal coupling, which

solves the optimal transport problem in (1.3.5). Without fixed costs, we showed that given
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an initial inventory vector and a target action vector for stations of a given type, sorting

them in increasing order and then matching up the indices minimized total rebalancing cost.

This cost was given by the Wasserstein distance between the two vectors. However, the

optimal solution for minimizing the Wasserstein distance is not unique. In the presence of

fixed costs, we need to ensure that we move from the current to target inventory position by

changing inventory at as few stations as possible. To achieve this, we consider the following

coupling: Focus on stations of type e. Let keb be the smaller of nāeb and the number of type

e stations with xe,i = b. Then keb type e stations will be assigned xe,i = ae,i = b under xt

and at so that we do not pay any fixed cost for these stations. The remaining stations of

type e will be ordered in increasing order of inventory and matched with the residual action

vector as previously. Stations with identical pre- and post-rebalancing inventories do not

contribute to the linear component of the rebalancing cost, and this ordering provides the

minimum amount of fixed costs paid, giving the first term on the right-hand side of (1.6.1),

while not changing the remaining cost terms.

One last issue is that in the proof of Proposition 1.3.3, we upper bound the sub-optimality

of the mean field action by the Wasserstein distance between the stochastic inventory evolu-

tion and its mean-field evolution, and then utilize the CLT for Wasserstein distance between

empirical distribution and the true distribution. However, the new rebalancing cost we pro-

vided is not equivalent to a Wasserstein distance so we cannot directly utilize the CLT for

Wasserstein distances20. To resolve this issue, we first prove the following lemma:

Lemma 1.6.1. Fixed cost component of the mean-field rebalancing cost satisfies

ê∑
e=1

cf,e

∞∑
b=0

1

2

∣∣∣∣x̂te,b − âte,b∣∣∣∣ ≤ ê∑
e=1

cf,e

∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣ ∀x̂t ∈ X̂, ât ∈ Â.
Using this lemma, we can show that the fixed cost component can also be upper bounded

20. While not equivalent to the Wasserstein distance, the rebalancing cost under fixed costs is an earth
mover distance with d(u, v) = cr|u− v|+ cf I {u 6= v}.
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by a Wasserstein distance and follow our previous analysis of applying the CLT for Wasser-

stein distances on the upper bound, proving asymptotic optimality.

Once we prove the asymptotic optimality of the corresponding mean-field model, the

remaining results follow as the methodology used for proving the worst-case bound for the

cost of our control algorithm remains identical (including the special case of q = 0).

Impact of Adding Fixed Costs

Due to the great importance of fixed costs for some of our applications, we conduct a separate

numerical experiment where we incorporate fixed costs. We use the same setup as the other

synthetic experiments and vary the fixed cost cf (assumed to be homogeneous among all

types). We adapt all our policies and the worst-case bound, except for the large market

policy, to this setting21. The results are shown in Figure 1.4.

Figure 1.4: Impact of Adding Fixed Costs on the Performance of Policies

Through Figure 1.4, we observe that as fixed costs increase, the performance of the

21. Due to the large market policy structure, incorporating the indicator function providing the fixed costs
requires adding an excessive number of binary variables, making the mixed-integer non-linear optimization
program computationally difficult to solve.
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static control policy decreases compared to resolving-based policies. As fixed costs increase,

demand realizations have a more substantial impact on the action, as near-optimal policies

aim to change inventory in as few stations as possible (and possibly move more than necessary

units at a station for which the fixed cost is already paid). The resolving control policy can

adapt to the demand realization and thus is near-optimal for all fixed costs, whereas the

static control fails and thus performs worse for higher fixed costs. While not covered in

this figure, as the number of stations increases, extreme demand realizations become less

common and the static control policy performs well, even for systems with high fixed costs.

Remark 1.6.2. The main managerial implication is that resolving policies is more effective

for systems with high fixed costs and fewer stations. Static policies, in contrast, perform

well if the cost structure is more linear (as the dependence of action to initial inventory

decreases) or if there are many stations (as state transitions become closer to what static

policies expect).

1.7 Concluding Remarks

We considered the problem of managing resources in shared micromobility systems and de-

veloped an MDP capturing the first-order trade-offs relevant to these systems. We proved

that a policy based on a deterministic approximation to the stochastic model is asymp-

totically optimal. We provided an algorithm to solve the associated mean-field model and

proved that the optimality gap obtained by using the algorithm decreases exponentially with

respect to the transient period. Finally, we compared the performance of our algorithm with

other policies numerically.

We believe our setup can be used as a basis to direct future research into expanding

these results to a more general framework. Our work made some assumptions, such as

restricting the class of networks to cluster-based networks and assuming that demand across

stations is independent. This allowed us to use the empirical representation and consequently
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provided an important step for the asymptotic optimality result. Extending this analysis

to more general networks and networks with spillover effects across nodes would provide an

important step in expanding the applicability of results.

1.8 A Summary of Notation Used

γ : Discount rate (Section 1.2, Page 8).

ne : Number of stations at type e (Section 1.2, Page 9).

ê : Number of types (Section 1.2, Page 9).

n : Number of stations (Section 1.2, Page 9).

pe′,e : Probability that a unit moves from type e′ to type e (Section 1.2, Page 10).

xt : Number of units at each station (before rebalancing) (Section 1.2, Page 10).

at : Number of units at each station (after rebalancing) (Section 1.2, Page 10).

Dt : Demand vector (Section 1.2, Page 10).

Rt : Trips vector (Section 1.2, Page 11).

L : Vector of lower bounds for action (Section 1.2, Page 11).

U : Vector of upper bounds for action (Section 1.2, Page 11).

c : Rebalancing cost function for original model (Section 1.2,, Page 12).

ch : Holding cost (Section 1.2, Page 14).

cp : Penalty cost (Section 1.2, Page 14).

N : Newsvendor cost function for original model (Section 1.2, Page 14).

V : Value function for original model (Section 1.2, Page 14).

x̂t : Inventory vector for mean-field model (Section 1.3, Page 17).

ât : Action vector for mean-field model (Section 1.3, Page 17).

R̂e : Random variable denoting inflow to a station of type e (Section 1.3, Page 18).

ĉ : Rebalancing cost function for mean-field model (Section 1.3, Page 20).
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N̂ : Newsvendor cost function for mean-field model (Section 1.3, Page 20).

V̂ : Value function for mean-field model (Section 1.3, Page 21).

g : Function mapping X → X̂ (Section 1.3, Page 21).

āt : Rounded action vector of mean-field model (Section 1.3, Page 22).

f : Function mapping Â→ Ā (Section 1.3, Page 22).

h : Function mapping Ā→ A (Section 1.3, Page 23).

x̆t : Inventory vector for mean-field model restricted within thresholds (Section 1.3, Page 28).

ĉ2 : Modified rebalancing cost function for mean-field model (Section 1.3, Page 28).

T : Transient horizon for the control algorithm (Section 1.4, Page 29).

π̃ : Policy outputted through the control algorithm (Section 1.4, Page 30).

1.9 Proofs of Section 1.2 Results

In this section, we will prove an alternative formulation for the rebalancing function.

Proposition 1.2.1. For all xt,at, the rebalancing cost c(xt,at) can be alternatively ex-

pressed as:

c(xt,at) =
ê∑
e=1

ce,e
2

ne∑
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣+ min
ye1,e2

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

s.t.

ne∑
i=1

(xte,i − a
t
e,i) =

2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê],

xte,r − ate,r =
2ê∑
e1=0

(ye,e1 − ye1,e) ∀e > ê,

ye1,e2 ≥ 0 ∀e1, e2.
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Proof. We can express the objective function of the original rebalancing cost function as:

2ê∑
e1=0

2ê∑
e2=0

ne1∑
i=1

ne2∑
j=1

ce1,e2y
e1,e2
i,j =

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

ne1∑
i=1

ne2∑
j=1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
y
e1,e2
i,j

+
2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

ne1∑
i=1

ne2∑
j=1

ce1,e1

2
y
e1,e2
i,j

+
2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

ne1∑
i=1

ne2∑
j=1

ce2,e2

2
y
e1,e2
i,j +

2ê∑
e1=0

ne1∑
i=1

ne2∑
j=1

ce1,e1y
e1,e2
i,j

=
2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

) ne1∑
i=1

ne2∑
j=1

y
e1,e2
i,j

+
2ê∑
e1=0

ne1∑
i=1

ce1,e1

2

2ê∑
e2=0

ne2∑
j=1

y
e1,e2
i,j +

2ê∑
e2=0

ne2∑
j=1

ce2,e2

2

2ê∑
e1=0

ne1∑
i=1

y
e1,e2
i,j . (1.9.1)

Given this formulation, we aggregate the inflows and outflows to/from each station, with

ye1,e2 =

ne1∑
i=1

ne2∑
j=1

y
e1,e2
i,j ∀e1, e2,

y
e1,.
i,. =

2ê∑
e2=0

ne2∑
j=1

y
e1,e2
i,j ∀e1, i,

y
.,e2
.,j =

2ê∑
e1=0

ne1∑
i=1

y
e1,e2
i,j ∀e2, j.
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Inputting these variables to Equation (1.9.1), we obtain

2ê∑
e1=0

2ê∑
e2=0

ne1∑
i=1

ne2∑
j=1

ce1,e2y
e1,e2
i,j =

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

+
2ê∑
e1=0

ne1∑
i=1

ce1,e1

2
y
e1,.
i,. +

2ê∑
e2=0

ne2∑
j=1

ce2,e2

2
y
.,e2
.,j

=
2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

+
2ê∑
e1=0

ne1∑
i=1

ce1,e1

2

(
y
e1,.
i,. + y

.,e1

.,i

)
.

Also expressing the constraints in terms of the aggregated variables, we can rewrite the

rebalancing cost c(xt,at) as

c(xt,at) = min
2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

+
2ê∑
e1=0

ne1∑
i=1

ce1,e1

2

(
y
e1,.
i,. + y

.,e1

.,i

)
s.t. ate,i = xte,i + y

.,e

.,i − y
e,.
i,. ∀e, i,

ne∑
i=1

(xte,i − a
t
e,i) =

2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê],

xte,r − ate,r =
2ê∑
e1=0

(ye+ê,e1 − ye1,e+ê) ∀e ∈ [ê],

ye1,e2 , y
e1,.
i,. , y

.,e1

.,i ≥ 0 ∀e1, e2, i, j.

Now, we solve the problem sequentially where we fix some feasible ye1,e2 ∀e1, e2 and solve for

the optimal y
e1,.
i,. , y

.,e1

.,i ∀e1, i. As the cost coefficients of both y
e1,.
i,. , y

.,e1

.,i are identical and non-

negative, and the constraint provides y
.,e
.,i − y

e,.
i,. = k for some constant k (possibly negative)
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while both y
.,e
.,i , y

e,.
i,. are non-negative, we have that:

y
.,e
.,i ∗ y

e,.
i,. = 0 ∀e, i,

with at most one of the two terms having a strictly positive value. As a result, the optimal

solution of y
.,e
.,i , y

e,.
i,. satisfies

y
.,e
.,i + y

e,.
i,. = |xte,i − a

t
e,i| ∀e, i.

Inputting the above equation to the objective function, combined with the assumption that

ce1,e1 = 0 ∀e1 > ê, we prove the Proposition.

1.10 Additional Model Discussions

In this section, we discuss some additional aspects of how our model assumptions relate to

the practice of managing resources in micromobility systems.

One assumption which we make is on the linearity of the rebalancing cost function, where

in contrast to other cost structures such as including fixed costs, where a fixed cost is paid

if any units are moved in or out of a station (independent of the number of units moved

in/out), and considering trucking routes, we assume that the cost of rebalancing is linear

on the number of units rebalanced22. While a linear cost function is a standard modeling

assumption in rebalancing papers such as in He et al. [2020] or Benjaafar et al. [2022a], we also

believe it is consistent with practice in scooter-sharing systems and is becoming much more

standard for practice in bike-sharing systems. For scooter-sharing, as highlighted in Helling

[2022], large firms, such as Bird, crowd-source rebalancing/recharging operations by paying

freelance contractors for moving or recharging units (these contractors find and complete

these rebalancing/recharging operations through the app). The contractors are compensated

per unit with no batching, providing a justification for our linearity assumption. For bike-

22. While we do consider fixed costs in Section 1.6, there are many different ways fixed costs can be
incorporated into the rebalancing cost function which we do not discuss so we believe that the justification
of our current rebalancing cost function is important.
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sharing, while trucking based rebalancing still provides of a large portion of rebalancing

operations for some firms, crowd-sourcing based alternatives rapidly gain popularity. One

major example is the Bike Angels programs currently implemented in cities such as New

York and Chicago, where individuals are awarded points for rebalancing individual units

across stations, which can be redeemed for awards. Furthermore, trucking based rebalancing

spends significant time on the handling of individual units (withdrawing/inputting units

to docks or finding and loading/dropping units for dockless systems), which support our

linearity assumption.

Another assumption we make is that the action at each station is restricted through an

upper threshold. We believe that this assumption follows the practice for both docked and

free-floating systems. For a docked system, the total number of docks at a station provides

a natural upper threshold23. For flee-floating systems, while there is no limit on the total

number of units returned to a specific location (customers, barring some urban feasibility

constraints, are free to drop the units in locations of their choice), most platforms have a

contractual obligation to remove these “excess” units. This obligation is best indicated in

the permit provided by Los Angeles to free-floating micromobility systems, which states that

“Operators shall remove electric scooters from the public right-of-way on a daily basis” (City

of Los Angeles Department of Transportation [2018]).

1.11 An Alternative State-Space Representation

While proving the results of Section 1.3, we need the assistance of an interim model, which

looks at inventory and action as an empirical distribution, as in the mean-field model, but also

is stochastic and provides identical costs to the original model. This section introduces this

model, which we label as the distributional model. We will first define quantities analogous

to the variables we introduced in Section 1.3 (state, cost functions, policies). Then, we will

23. While docked systems also place a limit on the total number of units which can be returned to a station,
such platforms have regularly implemented services such as valet service, where an employee is placed in
high inflow stations to take excess units in order to eliminate this limit.
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prove that this model is, in fact, equivalent to the original model and use this equivalence

to prove the results of Section 1.3.

In accordance, we introduce an alternative empirical representation for inventory, where

x̄t,e = [x̄
t,e
d ]∞d=0 with X̄ ⊂ X̂ as a subset of mean-field inventory space satisfying:

x̄t = [x̄
t,e
r , x̄t,e]êe=1 ∈ X̄ ⇐⇒ x̄t ∈ x̂; nx̄

t,e
d ∈ N0 ∀e, d; nx̄

t,e
r ∈ N0 ∀e.

For action, we use āt, which we already defined in Section 1.3. We define

R̄
t
e′ = [R̄

t
e′,1, R̄

t
e′,2, · · · , R̄

t
e′,ê] where R̄

t
e′,e = [R̄te′,e,r, R̄

t
e′,e,1, · · · , R̄

t
e′,e,ne

], is a multinomial

distribution with
∑Ue

′

b=Le
′
∑∑b

k=0 nā
t
e′,k

i=
∑b−1
k=0 nā

t
e′,k+1

min(b,Dt
e′,i) trials and success proba-

bility (1− q)pe′,e for R̄te′,e,r, and success probabilities
qpe′,e
ne

for remaining terms. In order to

construct the model, we first introduce the inventory dynamics, where given action āt for

period t, we express the state at period t+ 1 through the following equations:

x̄t+1
e,d =

1

n

Ue∑
b=Le

∑b
k=0 nā

t
e,k∑

i=
∑b−1
k=0 nā

t
e,k+1

I

b−min(b,Dt
e,i) +

ê∑
e′=1

R̄te′,e,i = d

 ∀e, d,

x̄t+1
e,r =

1

n

(
nāte,r +

ê∑
e′=1

R̄te′,e,r

)
.

We use the same newsvendor and rebalancing cost functions as the mean-field model. Then,

given the alternative state and action representation and cost functions, we need to define

the class of policies for the distributional model. We denote policies for the distributional

model by π̄ = {π̄t}t∈N, where π̄t : X̄ → Ā denotes the time t policy which maps the

empirical representation of the state to the action. We label the set of all policies π̄ as Π̄.

For a policy π̄, V̄π̄(x̄t) denotes the discounted cost-to-go starting with inventory position x̄t

under the distributional model:

V̄π̄(x̄t) = E{D̄t+k
,R̄

t+k}∞k=0

[ ∞∑
s=t

γs−t
(
ĉ(x̄s, π̄s(x̄s)) + N̂(π̄s(x̄s))

)]
.
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The optimal value function for the distributional model is defined as

V̄ (x̄t) = min
π̄∈Π̄

V̄π̄(x̄t).

Similar to the previous models, we express the value function as a fixed point of the Bellman

recursion:

V̄ (x̄t) = min
āt∈Ā

ĉ(x̄t, āt) + N̂(āt) + γE{D̄t
,R̄

t}

[
V̄ (x̄t+1)

]
.

For any inventory position x̄t and period t, the optimal policy of the distributional model,

π̄∗, satisfies

āt
∗
∈ arg min

āt∈Ā
ĉ(x̄t, āt) + N̂(āt) + γE{D̄t

,R̄
t}

[
V̄ (x̄t+1)

]
.

The next proposition proves the equivalency between the original model and the distribu-

tional model.

Proposition 1.11.1. For any policy π̄ ∈ Π̄ and inventory position xt ∈X,

V̄π̄(g(xt)) = Vh◦π̄◦g(x
t).

Consequently, the distributional model is the empirical representation of the original model.

Proof. For ease of notation, we let π̄t(g(xt)) = āt, g(xt) = x̄t, h(π̄t(g(xt))) = at. Through

the definition of the h function, āt satisfies

āte,d =

∑ne
i=1 I

{
ate,i = d

}
n

∀e, d,

nāte,r = ate,r ∀e, d.

We will show that if we apply the given action of the distributional model to the original

model, we get the same cost as the distributional model and observe that the marginals x̄t+1

of the next period’s inventory position is consistent for both models. Formally, we will prove
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that the following four statements hold:

1. c(xt,at) = ĉ(x̄t, āt);

2. N(at) = N̂(āt);

3. xt+1
e,r = nx̄t+1

e,r ∀e;

4.

∑ne
i=1 I

{
xt+1
e,i =d

}
n = x̄t+1

e,d ∀e, d.

For the rebalancing cost function, we look at the two components separately. First, for the

constraints, we have

ne∑
i=1

(xte,i − a
t
e,i) = n

Ue∑
b=Le

b

(∑ne
i=1 I

{
xte,i = b

}
n

−

∑ne
i=1 I

{
ate,i = b

}
n

)

xte,r − ate,r = n

(
xte,r
n
−
ate,r
n

)
∀e > ê.

As the decision variable of the mean-field rebalancing cost function is also scaled with n, we

have that the two optimization problems are equivalent. Second, we have that

ê∑
e=1

ce,e
2

ne∑
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣− n ê∑
e=1

ce,e
2

∞∑
b=0

∣∣∣∣ b∑
d=0

(∑ne
i=1 I

{
xte,i = b

}
n

−

∑ne
i=1 I

{
ate,i = b

}
n

)∣∣∣∣
=

ê∑
e=1

ce,e
2

ne∑
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣− n ê∑
e=1

ce,e
2

∞∑
b=0

∣∣∣∣ 1n
ne∑
i=1

(
I
{
xte,i ≤ b

}
− I
{
xte,i ≤ b

})∣∣∣∣
=

ê∑
e=1

ce,e
2

( ne∑
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣− ne ∞∑
b=0

∣∣∣∣ 1

ne

ne∑
i=1

(I
{
xte,i ≤ b

}
− I
{
ate,i ≤ b

}
)

∣∣∣∣).
Under the h function, we rebalance stations by ordering them in terms of their pre-rebalancing

inventory, and we assign the highest action to the station with highest inventory, second high-

est action to the station with second highest inventory and so on. Then, we let xt
e,{i} be the

inventory of the station with i’th most units which belongs to type e before rebalancing, and

let at
e,{i} be the number of units at the station with i’th most units which belongs to type e
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after rebalancing. Consequently:

ê∑
e=1

ce,e
2

ne∑
i=1

∣∣∣∣ate,i − xte,i∣∣∣∣− n ê∑
e=1

ce,e
2

∞∑
b=0

∣∣∣∣ b∑
d=0

(∑ne
i=1 I

{
xte,i = b

}
n

−

∑ne
i=1 I

{
ate,i = b

}
n

)∣∣∣∣
=

ê∑
e=1

ce,e
2

( ne∑
i=1

∣∣∣∣ate,{i} − xte,{i}∣∣∣∣− ne ∞∑
b=0

∣∣∣∣
∑ne
i=1 I

{
xt
e,{i} ≤ b

}
ne

−

∑ne
i=1 I

{
at
e,{i} ≤ b

}
ne

∣∣∣∣).
Using Lemma 1.11.2, we establish that ∀e ∈ [ê],

ne∑
i=1

∣∣∣∣ate,{i} − xte,{i}∣∣∣∣ = ne

∞∑
b=0

∣∣∣∣
∑ne
i=1 I

{
xt
e,{i} ≤ b

}
ne

−

∑ne
i=1 I

{
at
e,{i} ≤ b

}
ne

∣∣∣∣).
Consequently, we have shown the equivalence of rebalancing costs. For the equivalence of

newsvendor costs, we show that

N(at)− N̂(āt) = ch

ê∑
e=1

ne∑
i=1

ate,i + ch

ê∑
e=1

ate,r + cp

ê∑
e=1

ne∑
i=1

E
[
(Dt

e,i − a
t
e,i)

+
]

− nch
ê∑
e=1

Ue∑
b=Le

b

∑ne
i=1 I

{
ate,i = b

}
n

− nch
ê∑
e=1

ate,r
n
− ncp

ê∑
e=1

Ue∑
b=Le

∑ne
i=1 I

{
ate,i = b

}
n

E
[
(De − b)+],

as ate,i =
∑Ue
b=Le I

{
ate,i = b

}
b,

= 0.

For the equivalence of inventory evolution of depleted units, we need to show that ∀e, Rt
e =

R̄
t
e. We have that the success probabilities for both multinomial distributions are equal. For

number of trials, we have that
ne′∑
i=1

min(ate′,i, D
t
e′,i) =

Ue
′∑

b=Le
′

ne′∑
i=1

I
{
ate′,i = b

}
min(b,Dt

e′,i)

=
Ue
′∑

b=Le
′

∑b
k=0 nā

t
e′,k∑

i=
∑b−1
k=0 nā

t
e′,k+1

min(b,Dt
e′,i)
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As a result, the inventory distributions induced for depleted units under the two trip distri-

butions are equivalent with

xt+1
e,r = ate,r +

ê∑
e′=1

Rte′,e,r

= nx̄t+1
e,r .

For the equivalence of inventory evolution of the stations, we show that∑ne
i=1 I

{
xt+1
e,i = d

}
n

=
1

n

ne∑
i=1

I

ate,i −min(ate,i, D
t
e,i) +

ê∑
e′=1

Rte′,e,i = d


=

1

n

Ue∑
b=Le

ne∑
i=1

I

b−min(b,Dt
e,i) +

ê∑
e′=1

Rte′,e,i = d

 I
{
ate,i = b

}

=
1

n

Ue∑
b=Le

∑b
k=0 nā

t
e,k∑

i=
∑b−1
k=0 nā

t
e,k+1

I

b−min(b,Dt
e,i) +

ê∑
e′=1

R̄te′,e,i = d


= x̄t+1

e,d .

Consequently, we proved all four of the statements and hence the Proposition.

Lemma 1.11.2. (Bobkov and Ledoux [2019], Theorem 2.9 and Lemma 4.2) Given two col-

lections of real numbers x1, . . . , xn and y1, . . . , yn, let F 1 and F 2 be the respective distribution

functions. Furthermore, let x∗1 ≤ x∗2 ≤ . . . ≤ x∗n correspond to x1, . . . , xn arranged in in-

creasing order and let y∗1 ≤ y∗2 ≤ . . . ≤ y∗n correspond to y1, . . . , yn arranged in increasing

order. Then: ∫ ∞
−∞

∣∣∣∣F 1(t)− F 2(t)

∣∣∣∣dt =
1

n

n∑
i=1

∣∣∣∣x∗i − y∗i ∣∣∣∣.
We further extend Proposition 1.11.1 and prove that the equivalence between the distri-

butional and original models extends to the value functions of the two models.

Corollary 1.11.3. For any inventory position xt ∈X,

V̄ (g(xt)) = V (xt).
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Proof. Starting from Proposition 1.11.1, we have

V̄π̄(g(xt)) = Vh◦π̄◦g(x
t)

V̄ (g(xt)) = min
π̄∈Π̄

Vh◦π̄◦g(x
t)

= min
π̄∈Π̄

E{Dt+k,Rt+k}∞k=0

[ ∞∑
s=t

γs−t
(
c(xs, h(π̄s(g(xs)))) +N(h(π̄s(g(xs)))

)]
,

using the proof of Proposition 1.11.1,

= min
π̄∈Π̄

E{Dt+k,R̄
t+k}∞k=0

[ ∞∑
s=t

γs−t
(
ĉ(g(xs), π̄s(g(xs))) + N̂(π̄s(g(xs)))

)]
= V̄ (g(xt)).

1.12 Proofs of Section 1.3 Results

This section focuses of the three results of Section 1.3, namely Proposition 1.3.3, Theorem

1.3.4, and Corollary 1.3.5. We prove these results by supporting Lemmas and Propositions,

which are provided after the proofs of these results.

Proposition 1.3.3. For an arbitrary action at taken in the original model, let xt+1 be the

state evolution defined in (1.2.1)-(1.2.2), and let x̂t+1 be the state evolution of the mean-field

dynamics defined in (1.3.1)-(1.3.3) under the projected mean-field action g(at). Then,

E{Dt,Rt}

[
ĉ(g(xt+1), x̂t+1)

∣∣ât = g(at)
]
≤ O(

√
n) ∀at ∈ A.

Consequently, given the same initial action, the expected rebalancing cost between next pe-

riod’s inventory distribution under the original and mean-field models is of order O(
√
n).

Proof. The Proof of Proposition 1.3.3 is lengthy. It requires several supporting lemmas and

propositions, which show important properties for our rebalancing cost functions and show

that our state transitions satisfy the conditions of the Central Limit Theorem (CLT) for

Wasserstein distances. In this proof, we will first upper-bound the rebalancing cost function
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through a Wasserstein Distance (utilizing a feasible rebalancing policy where all units are

sourced from the warehouse). Then, through this upper bound, we will evaluate the expected

rebalancing cost of moving from next period’s inventory distribution under the distributional

model (established in Appendix 1.11) to the next period’s inventory distribution under the

mean-field model (given that the actions two models take are identical). First, we will show

that the expected rebalancing cost between depleted units is of orderO(
√
n). Second, to show

the same result for charged units, we will require the assistance of another interim system,

where the total number of units departing each type are Poisson random variables. Then,

using a coupling argument, we will show that the expected rebalancing cost of rebalancing

charged units from the distributional model to this interim model is of order O(
√
n). Lastly,

we will conclude our proof by invoking CLT on the expected rebalancing cost between this

interim system and the mean-field state transitions.

We start the proof by letting āt = g(at). Then, using the proof of Proposition 1.11.1,

we can establish that

E{Dt,Rt}

[
ĉ(g(xt+1), x̂t+1)

∣∣ât = g(at)
]

= E{D̄t
,R̄

t}

[
ĉ(x̄t+1, x̂t+1)

∣∣ât = āt
]
.

Furthermore, through Lemma 1.12.1, we have:

E{Dt,R̄
t}

[
ĉ(x̄t+1, x̂t+1)

∣∣ât = āt
]

≤ nE{Dt,R̄
t}

[ ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂t+1
e,d − x̄

t+1
e,d )

∣∣∣∣
+

ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣x̂t+1
e,r − x̄t+1

e,r

∣∣∣∣∣∣ât = āt
]

(1.12.1)
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For the depleted units, we have:

nE{Dt,R̄
t}

 ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣x̂t+1
e,r − x̄t+1

e,r

∣∣∣∣∣∣ât = āt


= nE{Dt,R̄

t}

[ ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣(1− q) ê∑
e′=1

pe′,e

Ue
′∑

b=Le
′
āte′,bE

[
min(b,De′)

]

− 1

n

ê∑
e′=1

R̄te′,e,r

∣∣∣∣∣∣ât = āt
]
. (1.12.2)

We will use categorical random variables to track inflows to each station and bound the above

expression. To this end, we let {Θj,e′} be an infinite sequence of i.i.d. random variables

distributed categorically (of n+ ê possible categories), with (1−q)pe′,e for R̄te′,e,r and success

probabilities
qpe′,e
ne

. Formally,

Θj,e′ = Cat

(
(1− q)pe′,e|êe=1,

qpe′,e
ne
|êe=1|

ne
i=1

)
,

where Θj,e′ = (Θj,e′,e,r|êe=1,Θj,e′,e,i|êe=1|
ne
i=1) ∈ {0, 1}n+ê with only one component equal to

1. We can then express R̄te′,e,r as a sum of Θ values with:

R̄te′,e,r =

∑Ue
′

b=Le
′
∑∑b

k=0
nāt
e′,k

i=
∑b−1
k=0

nāt
e′,k+1

min(b,Dt
e′,i)∑

j=1

Θj,e′,e,r. ∀e′, e.
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Inputting this expression to (1.12.2), we have:

nE{Dt,R̄
t}

 ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣x̂t+1
e,r − x̄t+1

e,r

∣∣∣∣∣∣ât = āt


= nE{Dt,R̄

t}

[ ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣(1− q) ê∑
e′=1

pe′,e

Ue
′∑

b=Le
′
āte′,bE

[
min(b,De′)

]

− 1

n

ê∑
e′=1

∑Ue
′

b=Le
′
∑∑b

k=0
nāt
e,k

i=
∑b−1
k=0

nāt
e,k

+1
min(b,Dt

e′,i)∑
j=1

Θj,e′,e,r

∣∣∣∣∣∣ât = āt
]

≤
ê∑
e=1

ê∑
e′=1

Ue
′∑

b=Le
′
max(c0,ê+e, cê+e,0)E{Dt,R̄

t}

[∣∣∣∣(1− q)pe′,enāte,bE [min(b,De)]

−

∑∑b
k=0

nāt
e,k

i=
∑b−1
k=0

nāt
e,k

+1
min(b,Dt

e′,i)∑
j=1

Θj,e′,e,r

∣∣∣∣∣∣ât = āt
]
,

by Lemma 1.12.3,

≤ O(
√
n).

Inputting this bound to Equation (1.12.1),

E{Dt,R̄
t}

[
ĉ(x̄t+1, x̂t+1)

∣∣ât = āt
]

≤ O(
√
n) + nE{Dt,R̄

t}

 ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂t+1
e,d − x̄

t+1
e,d )

∣∣∣∣∣∣ât = āt

.
As a stepping stone towards bounding the above term, we introduce an interim system,

denoted as x́t, where the total number of units departing each type e′, denoted as Ý te′ ,

is an independent Poisson random variable with mean
∑Ue

′

b=Le
′ nāte′,bE

[
min(b,De′)

]
(the

independence property will later be necessary when applying CLT to the interim system).

We define x́t on the same probability space (Ω,F ,P) as x̄t through coupling their trip

69



matrices. Formally:

nE{Dt,R̄
t}

[ ê∑
e=1

max(c0,e, ce,0)
∞∑
m=0

∣∣∣∣ m∑
d=0

(x̂t+1
e,d − x̄

t+1
e,d

∣∣∣∣∣∣ât = āt
]

≤ O(
√
n) + nE

{Dt,Ŕ
t}

[ ê∑
e=1

max(c0,e, ce,0)
∞∑
m=0

∣∣∣∣ m∑
d=0

(x̂t+1
e,d − x́

t+1
e,d )

∣∣∣∣∣∣ât = āt
]

+ nE
{D̄t

,R̄
t
,Ŕ

t}

[ ê∑
e=1

max(c0,e, ce,0)
∞∑
m=0

∣∣∣∣ m∑
d=0

(x́t+1
e,d − x̄

t+1
e,d )

∣∣∣∣∣∣ât = āt
]
,

(1.12.3)

where

x́t+1
e,d =

1

n

Ue∑
b=Le

∑b
k=0 nā

t
e,k∑

i=
∑b−1
k=0 nā

t
e,k+1

I

b−min(b,Dt
e,i) +

ê∑
e′=1

Ŕte′,e,i = d

 ∀e, d,

Ŕ
t
e′ = [Ŕ

t
e′,1, Ŕ

t
e′,2, · · · , Ŕ

t
e′,ê], Ŕ

t
e′,e = [Ŕte′,e,r, Ŕ

t
e′,e,1, · · · , Ŕ

t
e′,e,ne

], {Ŕte′,e,i}|
ne
i=1 is a se-

quence of i.i.d. random variables distributed Poisson with mean

qnpe′,e
ne

∑Ue
′

b=Le
′ âte′,bE

[
min(b,De′)

]
, {Ŕte′,e,r}|

ê
e=1 is a sequence of independent random vari-

ables distributed Poisson with mean (1 − q)npe′,e
∑Ue

′

b=Le
′ âte′,bE

[
min(b,De′)

]
, and Ý te′ =∑ê

e=1

∑ne
i=1 Ŕ

t
e′,e,i +

∑ê
e=1 Ŕ

t
e′,e,r. For R̄

t
e′ , we know that for each unit

1, . . . ,
∑Ue

′

b=Le
′
∑∑b

k=0 nā
t
e′,k

i=
∑b−1
k=0 nā

t
e′,k+1

min(b,Dt
e′,i), the probability of that unit moving to i’th sta-

tion of type e charged is
qpe′,e
ne

. For Ŕ
t
e′ , conditioning on Ý te′ = C where C is a constant,

the probability of each unit 1, . . . , C moving to i’th station of type e charged is also
qpe′,e
ne

.

We build on this analysis to couple Ŕ
t
e′ and R̄

t
e′ by augmenting the probability space with

a countably infinite sequence of categorical random variables. To this end, we utilize the

categorical random variables {Θj,e′} previously introduced. Under these categorical random
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variables, the trip distributions can be expressed as:

R̄te′,e,i =

∑Ue
′

b=Le
′
∑∑b

k=0
nāt
e′,k

i=
∑b−1
k=0

nāt
e′,k+1

min(b,Dt
e′,i)∑

j=1

Θj,e′,e,i ∀e′, e, i,

Ŕte′,e,i =

Ý t
e′∑

j=1

Θj,e′,e,i ∀e′, e, i.

We will prove that the rebalancing cost of moving from x̄t to x́t is bounded by a function

of order
√
n. To do that, we introduce x̄t+0.5, which denotes the intermediate step in the

inventory evolution where demand realizes at stations but no units have been returned yet.

We define x̄t+0.5
e,d as

x̄t+0.5
e,d =

1

n

Ue∑
b=Le

∑b
k=0 nā

t
e,k∑

i=
∑b−1
k=0 nā

t
e,k+1

I
{
b−min(b,Dt

e,i) = d
}

∀e, d.

We can use this definition to express the inventory evolution at stations as

x̄t+1
e,d =

1

n

Ue∑
b=Le

∑b
k=0 nx̄

t+0.5
e,k∑

i=
∑b−1
k=0 nx̄

t+0.5
e,k +1

I


ê∑

e′=1

R̄te′,e,i = d− b

 ∀e, d,

x́t+1
e,d =

1

n

Ue∑
b=Le

∑b
k=0 nx̄

t+0.5
e,k∑

i=
∑b−1
k=0 nx̄

t+0.5
e,k +1

I


ê∑

e′=1

Ŕte′,e,i = d− b

 ∀e, d.
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Using the above equations, we have that

nE
{D̄t

,R̄
t
,Ŕ

t}

[ ê∑
e=1

max(c0,e, ce,0)
∞∑
m=0

∣∣∣∣ m∑
d=0

(x́t+1
e,d − x̄

t+1
e,d )

∣∣∣∣∣∣ât = āt
]

= E
{D̄t

,R̄
t
,Ŕ

t}

[
ê∑
e=1

max(c0,e, ce,0)
∞∑
m=0

∣∣∣∣ m∑
d=0

Ue∑
b=Le

∑b
k=0 nx̄

t+0.5
e,k∑

i=
∑b−1
k=0 nx̄

t+0.5
e,k +1

(

I


ê∑

e′=1

Ŕte′,e,i = d− b

− I


ê∑

e′=1

R̄te′,e,i = d− b


)∣∣∣∣∣∣ât = āt

]
(1.12.4)

We use a coupling argument as follows: Let dt = [dte,1, ..., d
t
e,ne ]

ê
e=1 be some realization

of demand with
∑Ue

′

b=Le
′
∑∑b

k=0 nā
t
e′,k

i=
∑b−1
k=0 nā

t
e′,k+1

min(b, dte′,i) = K1, and let ýte′ = K2 be some

realization of Ý te′ . We have that any realization of Θ1,e′ , . . . ,Θmin(K1,K2),e′ is common

for the two distributions (the first min(K1, K2) units departing move to the same sta-

tions). The difference between the resultant inventory distributions occurs through the units

min(K1, K2) + 1, . . . ,max(K1, K2), which have to go to some station, charged or depleted.

Assuming that they all go to stations with the highest rebalancing costs charged, and that

differences through the outflow at different types do not cancel, Equation (1.12.4) can be

upper bounded as
(

max(K1, K2)−min(K1, K2)
)

maxe∈[ê] max(c0,e, ce,0). Consequently,

nE
{D̄t

,R̄
t
,Ŕ

t}

[ ê∑
e=1

max(c0,e, ce,0)
∞∑
m=0

∣∣∣∣ m∑
d=0

(x́t+1
e,d − x̄

t+1
e,d )

∣∣∣∣∣∣ât = āt
]

≤
ê∑
e=1

E
{D̄t

,R̄
t
,Ŕ

t}

[∣∣∣∣ U
e′∑

b=Le
′

∑b
k=0 nā

t
e′,k∑

i=
∑b−1
k=0 nā

t
e′,k+1

min(b,Dt
e′,i)− Ý

t
e′

∣∣∣∣

≤
ê∑

e′=1

E
{D̄t

,R̄
t
,Ŕ

t}

[∣∣∣∣ U
e′∑

b=Le
′

∑b
k=0 nā

t
e′,k∑

i=
∑b−1
k=0 nā

t
e′,k+1

min(b,Dt
e′,i)−

Ue
′∑

b=Le
′
nāte′,bE

[
min(b,De′)

]∣∣∣∣
+

∣∣∣∣ U
e′∑

b=Le
′
nāte′,bE

[
min(b,De′)

]
− Ý te′

∣∣∣∣]
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≤
ê∑

e′=1

E
{D̄t

,R̄
t
,Ŕ

t}

[ Ue
′∑

b=Le
′

∣∣∣∣
∑b
k=0 nā

t
e′,k∑

i=
∑b−1
k=0 nā

t
e′,k+1

min(b,Dt
e′,i)− nā

t
e′,bE

[
min(b,De′)

]∣∣∣∣
+

Ue
′∑

b=Le
′

∣∣∣∣nāte′,bE [min(b,De′)
]
−
nāt

e′,b∑
j=1

Pois(E
[
min(b,De′)

]
)

∣∣∣∣],
by Lemma 1.12.3,

≤ O(
√
n).

Inserting this bound to Equation (1.12.3),

E{Dt,R̄
t}

[
ĉ(x̄t+1, x̂t+1)

∣∣ât = āt
]

≤ O(
√
n) + nE

{Dt,Ŕ
t}

[ ê∑
e=1

max(c0,e, ce,0)
∞∑
m=0

∣∣∣∣ m∑
d=0

(x̂t+1
e,d − x́

t+1
e,d )

∣∣∣∣∣∣ât = āt
]

= O(
√
n) + nE

{Dt,Ŕ
t}

[ ê∑
e=1

max(c0,e, ce,0)
∞∑
m=0

∣∣∣∣ U
e∑

b=Le

āte,bP
[
b−min(b,De) + R̂e ≤ m

]

− 1

n

Ue∑
b=Le

∑b
k=0 nā

t
e,k∑

i=
∑b−1
k=0 nā

t
e,k+1

I

b−min(b,Dt
e,i) +

ê∑
e′=1

Ŕte′,e,i ≤ m


∣∣∣∣]

≤ O(
√
n) +

ê∑
e=1

max(c0,e, ce,0)
Ue∑
b=Le

nE
{Dt,Ŕ

t}

[ ∞∑
m=0

∣∣∣∣āte,bP [b−min(b,De) + R̂e ≤ m
]

− 1

n

∑b
k=0 nā

t
e,k∑

i=
∑b−1
k=0 nā

t
e,k+1

I

b−min(b,Dt
e,i) +

ê∑
e′=1

Ŕte′,e,i ≤ m


∣∣∣∣]

= O(
√
n) +

ê∑
e=1

max(c0,e, ce,0)
Ue∑

b=Le,āte,b 6=0

nE
{Dt,Ŕ

t}

[ ∞∑
m=0

∣∣∣∣P [b−min(b,De) + R̂e ≤ m
]

− 1

nāte,b

∑b
k=0 nā

t
e,k∑

i=
∑b−1
k=0 nā

t
e,k+1

I
{
b−min(b,Dt

e,i) + Ze,i ≤ m
}∣∣∣∣],
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where Ze,i is a sequence of i.i.d. random variables distributed Poisson with mean∑ê
e′=1

qnpe′,e
ne

∑Ue
′

b=Le
′ âte′,bE

[
min(b,De′)

]
. Then, applying Lemma 1.12.5,

E{Dt,R̄
t}

[
ĉ(x̄t+1, x̂t+1)

∣∣ât = āt
]
≤ O(

√
n) +

ê∑
e=1

max(c0,e, ce,0)
Ue∑

b=Le,āt,ee,b 6=0

O(
√
n)

≤ O(
√
n).

Lemma 1.12.1. For any inventory position x̂t and action ât,

ĉ(xt,at) ≤ n
ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣+ n
ê∑
e=1

max(c0,ê+e, cê+e,0)|x̂te,r − âte,r|.

Proof. To show this bound, we will insert a sub-optimal solution for the mean-field rebalanc-

ing optimization problem where we will assume that all units are sourced from the warehouse.

Under this solution, ye1,e2 = 0 if both e1, e2 > 0, at most one of y0,e, ye,0 is strictly positive

∀e ∈ [2ê], |ye,0 +y0,e| = |
∑∞
b=1 b(x̂

t
e,b− â

t
e,b)| ∀e ∈ [ê], and |ye,0 +y0,e| = |x̂te,r− âte,r| ∀e > ê.

Inserting this solution, we obtain

ĉ(xt,at) ≤ n
ê∑
e=1

ce,e
2

∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣
+ n

ê∑
e=1

max(c0,e −
ce,e
2
, ce,0 −

ce,e
2

)

∣∣∣∣ ∞∑
b=1

b(x̂te,b − â
t
e,b)

∣∣∣∣
+ n

ê∑
e=1

max(c0,ê+e, cê+e,0)|x̂te,r − âte,r|.

Furthermore, through Jensen’s inequality (
∣∣E [X]− E [Y ]

∣∣ ≤ E [|X − Y |]), we have :

∣∣∣∣ ∞∑
b=1

b(x̂te,b − â
t
e,b)

∣∣∣∣ ≤ ∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣.
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As a result, we obtain

ĉ(xt,at) ≤ n
ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣+ n

ê∑
e=1

max(c0,ê+e, cê+e,0)|x̂te,r − âte,r|.

Remark 1.12.2. The value function of the mean-field model, V̂ (x̂t), is Lipschitz continuous

in x̂t with24

∣∣∣∣V̂ (x̂t,1)− V̂ (x̂t,2)

∣∣∣∣ ≤ ĉ(x̂t,1, x̂t,2) ∀x̂t,1, x̂t,2 ∈ X̂, (1.12.5)

where, by Lemma 1.12.1, ∀x̂t,1, x̂t,2 ∈ X̂,

≤ n
ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂
t,1
e,d − x̂

t,2
e,d)

∣∣∣∣+ n
ê∑
e=1

max(c0,ê+e, cê+e,0)|x̂t,1e,r − x̂t,2e,r|.

Lemma 1.12.3. Let {Zi} be a sequence of i.i.d. random variables with mean µ, variance

σ2 and let {Yi} be a sequence of i.i.d. random variables with mean λ, variance ν2 . Then

E

∣∣∣∣
∑n
j=1 Zj∑
i=1

Yi − nµλ
∣∣∣∣
 ≤√µν2 + λ2σ2

√
n.

Proof. Through Lemma 1.12.4, we know that E
[∑∑n

j=1 Zj
i=1 Yi

]
= nµλ. Then, we are

interested in the average absolute deviation of
∑∑n

j=1 Zj
i=1 Yi. For any random variable, the

average absolute deviation is always smaller then the standard deviation so we can upper

bound the average absolute deviation through the standard deviation. Then, using Lemma

24. Value function of the original model, V (xt), is also Lipschitz continuous in xt.
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1.12.4,

Var

(∑n
j=1 Zj∑
i=1

Yi

)
= E

[
n∑
i=1

Zi

]
Var(Y ) + (E [Y ])2Var

( n∑
i=1

Zi

)
,

E

∣∣∣∣
∑n
j=1 Zj∑
i=1

Yi − nµλ
∣∣∣∣
 ≤√µν2 + λ2σ2

√
n.

Lemma 1.12.4. (Ross [2010], Example 5D/5P). Let {Zi} be a sequence of i.i.d. random

variables and let {Y, Yi} be another sequence of i.i.d. random variables . Then

E


∑n
j=1 Zj∑
i=1

Yi

 = E [Y ]E

[
n∑
i=1

Zi

]
,

Var

(∑n
j=1 Zj∑
i=1

Yi

)
= E

[
n∑
i=1

Zi

]
Var(Y ) + (E [Y ])2Var

( n∑
i=1

Zi

)
.

Lemma 1.12.5. Let {M,Mi} be a sequence of i.i.d. random variables distributed Poisson

with mean λ < ∞ and {N,Ni} be a sequence of i.i.d. non-negative random variables.

Furthermore, let

Y = a+M −min(a,N),

Yi = a+Mi −min(a,Ni),

where a is a constant satisfying 0 ≤ a <∞. We let F denote the corresponding cumulative

distribution of Y and let Fn denote the empirical distribution based on Y1, . . . , Yn, n ∈ N.

Then, letting b.c denote the floor function,

lim
n→∞

√
nE
[∫ ∞
−∞

∣∣∣∣Fn(t)− F (t)

∣∣∣∣dt] ≤ a+
⌊
λe2
⌋

+ e−(bλe2c+λ+1) <∞.
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Proof. We will show that the two conditions provided in Theorem 1.12.6 hold. First,

E
[∣∣Y ∣∣2] ≤ E

[
(a+M)2

]
= λ+ (λ+ a)2

<∞.

Consequently, the first condition holds. For the second condition:∫ ∞
0

√
P
[∣∣Y ∣∣ > t

]
dt ≤

∞∑
t=0

√
P
[∣∣a+M

∣∣ > t
]

=
∞∑
t=0

√
P [M > t− a]

=
−1∑
t=−a

√
P [M > t] +

∞∑
t=0

√
P [M > t]

= a+
∞∑
t=0

√√√√ ∞∑
k=t+1

λke−λ

k!
,

we let t̄ =
⌊
λe2
⌋

and obtain,

= a+
t̄−1∑
t=0

√√√√ ∞∑
k=t+1

λke−λ

k!
+
∞∑
t=t̄

√√√√ ∞∑
k=t+1

λke−λ

k!

≤ a+ t̄+
∞∑
t=t̄

√√√√ ∞∑
k=t+1

λke−λ

k!
,

applying Lemma 1.12.7 on the factorial term,

≤ a+ t̄+
∞∑
t=t̄

√√√√ ∞∑
k=t+1

e−λ(
λ

k
)kek−1

≤ a+ t̄+
∞∑
t=t̄

√√√√ ∞∑
k=t+1

e−λe−2kek−1

= a+ t̄+ e−λ−1
∞∑
t=t̄

√√√√ ∞∑
k=t+1

e−k

= a+ t̄+
1

e
t̄
2+λ+1

2 (
√
e− 1)(

√
e− 1)

≤ a+ t̄+ e−(t̄+λ+1)

77



<∞.

As the two conditions hold, through Theorem 1.12.6,

lim
n→∞

√
nE
[∫ ∞
−∞

∣∣∣∣Fn(t)− F (t)

∣∣∣∣dt] = E
[∫ ∞
−∞

∣∣∣∣B(F (t))

∣∣∣∣dt],
by Lemma 1.12.8,

≤
∫ ∞

0

√
P
[∣∣Y ∣∣ > t

]
dt

≤ a+ t̄+ e−(t̄+λ+1)

<∞.

Theorem 1.12.6. (del Barrio et al. [1999], Theorem 2.4) Let {Y, Yi} be a sequence of i.i.d.

random variables with common distribution F , and let Fn denote the empirical distribution

based on Y1, . . . , Yn, n ∈ N where

Fn(t) =
1

n

n∑
i=1

I {Yi ≤ t} ∀t.

Then, if

∫ ∞
0

√
P
[∣∣Y ∣∣ > t

]
dt <∞,

E
[∣∣Y ∣∣2] <∞,

we have

lim
n→∞

√
nE
[∫ ∞
−∞

∣∣∣∣Fn(t)− F (t)

∣∣∣∣dt] = E
[∫ ∞
−∞

∣∣∣∣B(F (t))

∣∣∣∣dt],
where B denotes Brownian Bridge.

Lemma 1.12.7. For any k ∈ N,

k! ≥ kke−k+1.
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Proof.

ln(k!) =
k∑
i=1

ln(i)

ln(k!) ≥
∫ k

1
ln(z)dz

ln(k!) ≥ kln(k)− k + 1

k! ≥ kke−k+1.

Lemma 1.12.8. Let {Y, Yi} be a sequence of i.i.d. non-negative random variables with

common distribution F . Then:

E
[∫ ∞
−∞

∣∣∣∣B(F (t))

∣∣∣∣dt] ≤ ∫ ∞
0

√
P
[∣∣Y ∣∣ > t

]
dt,

where B denotes Brownian Bridge.

Proof.

∫ ∞
−∞

E
[∣∣∣∣B(F (t))

∣∣∣∣dt] =

∫ ∞
0

E
[∣∣∣∣B(F (t))

∣∣∣∣dt]
≤
∫ ∞

0

√
E
[
B(F (t))2

]
dt

=

∫ ∞
0

√
F (t)(1− F (t))dt

≤
∫ ∞

0

√
P
[∣∣Y ∣∣ > t

]
dt.

Theorem 1.3.4. Let π̂∗ be an optimal policy for the mean-field model. Then, the lifted

mean-field policy h ◦ f ◦ π̂∗ ◦ g satisfies

Vh◦f◦π̂∗◦g(x
t)− V (xt) ≤ O(

√
n) ∀xt ∈X.

Consequently, the optimality gap of the composite policy h ◦ f ◦ π̂∗ ◦ g is at most O(
√
n).
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Proof. Through Corollary 1.11.3 and Proposition 1.11.1, respectively,

V (xt) = V̄ (g(xt)),

Vh◦f◦π̂∗◦g(x
t) = V̄f(π̂∗)(g(xt)).

Then, summing items 1 and 2 in Proposition 1.12.9 proves the theorem.

Proposition 1.12.9. For any inventory position x̄t ∈ X̄,

1. V̄f(π̂∗)(x̄
t)− V̂ (x̄t) ≤ O(

√
n),

2. V̂ (x̄t)− V̄ (x̄t) ≤ O(
√
n).

Proof. In order to prove both statements, we will show a recursive structure where the

differences in per-period costs of both expressions can be bounded by a function of order

O(
√
n). To prove this bound, we will use Proposition 1.3.3, as well as Lemma 1.12.10,

which proves that the additional cost incurred through the discretization via the f function

is bounded. Then, through the discounted setting, we show that the total difference in costs

are also bounded with O(
√
n).

For the first statement, we have

V̄f(π̂∗)(x̄
t)− V̂ (x̄t) = ĉ(x̄t, f(π̂∗(x̄t))) + N̂(f(π̂t(x̄t))) + γE{Dt,R̄

t}

[
V̄f(π̂∗)(x̄

t+1)
]

− ĉ(x̄t, π̂∗(x̄t))− N̂(π̂∗(x̄t))− γV̂ (x̂t+1)

≤ ĉ(x̄t, π̂∗(x̄t)) + ĉ(π̂∗(x̄t), f(π̂∗(x̄t)))

+ N̂(f(π̂t,n
∗
(x̄t))) + γE{Dt,R̄

t}

[
V̄f(π̂∗)(x̄

t+1)
]

− ĉ(x̄t, π̂∗(x̄t))− N̂(π̂∗(x̄t))− γV̂ (x̂t+1),

through applying Lemma 1.12.10 on the rebalancing cost function and the newsvendor costs,

≤ O(1) + γE{Dt,R̄
t}

[
V̄f(π̂∗)(x̄

t+1)
]
− γV̂ (x̂t+1)
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= O(1) + γE{Dt,R̄
t}

[
V̄f(π̂∗)(x̄

t+1)− V̂ (x̄t+1) + V̂ (x̄t+1)
]
− γV̂ (x̂t+1),

through the Lipschitz bound given at (1.12.5),

≤ O(1) + γE{Dt,R̄
t}

[
V̄f(π̂∗)(x̄

t+1)− V̂ (x̄t+1) + ĉ(x̄t+1, x̂t+1)
]

≤ O(1) + γE{Dt,R̄
t}

[
V̄f(π̂∗)(x̄

t+1)− V̂ (x̄t+1) + ĉ(x̄t+1, x̂t+1,2)
]

+ γĉ(x̂t+1,2, x̂t+1),

where x̂t+1,2 is the mean-field evolution of the inventory position when the action taken is

f(π̂t,∗(x̂t)). Then, by applying Proposition 1.3.3 on the first term and Lemma 1.12.10 on

the second term,

V̄f(π̂∗)(x̄
t)− V̂ (x̄t) ≤ O(

√
n) + γE{Dt,R̄

t}

[
V̄f(π̂∗)(x̄

t+1)− V̂ (x̄t+1)
]
.

As the equation holds for all x̄t, we can repeat these steps for the next period with the new

realized inventory position. As Proposition 1.3.3, which is the only step where we observe an

additional cost of O(
√
n) (all three terms in Lemma 1.12.10 are bounded with the bounds

independent of γ), holds for all actions, costs of future periods are also of order O(
√
n).

Formally, Proposition 1.3.3 implies that ∃M > 0, n0 ∈ R+ such that ∀n ≥ no,

max
at∈A

E{Dt,Rt}

[
ĉ(g(xt+1), x̂t+1)

∣∣ât = g(at)
]
≤M

√
n.

Moreover, M <∞, in both Lemma 1.12.3 and Lemma 1.12.5 (which together give the sub-

optimality coefficients used in Proposition 1.3.3), coefficients of
√
n are bounded and are

independent of γ. Consequently, we can express the total cost as

V̄f(π̂∗)(x̄
t)− V̂ (x̄t) ≤ 1

1− γ
O(
√
n)

≤ O(
√
n).
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For the second statement,

V̂ (x̄t)− V̄ (x̄t) ≤ ĉ(x̄t, π̄∗(x̄t)) + N̂(π̄∗(x̄t)) + γV̂ (x̂t+1)

− ĉ(x̄t, π̄∗(x̄t))− N̂(π̄∗(x̄t))− γE{Dt,R̄
t}

[
V̄ (x̄t+1)

]
,

through the Lipschitz bound given at (1.12.5),

≤ γE{Dt,R̄
t}

[
ĉ(x̄t+1, x̂t+1) + V̂ (x̄t+1)− V̄ (x̄t+1)

]
,

by Proposition 1.3.3,

≤ O(
√
n) + γE{Dt,R̄

t}

[
V̂ (x̄t+1)− V̄ (x̄t+1)

]
,

repeating the analysis in the first statement,

≤ O(
√
n).

Lemma 1.12.10. For any action ât ∈ Â, function f satisfies

1. ĉ(ât, f(ât)) ≤ C1 <∞;

2.

∣∣∣∣N̂(ât)− N̂(f(ât))

∣∣∣∣ ≤ C2 <∞;

3. ĉ(x̂t+1,1, x̂t+1,2) ≤ C3 <∞,

where x̂t+1,1 is the mean-field evolution of the inventory position when the action taken is

f(ât
∗
), x̂t+1,2 is the mean-field evolution of the inventory position when the action taken is

ât, and C1, C2, C3 are constant values with respect to n.

Proof. Let āt
∗

denote f(ât). For the first statement, through Lemma 1.12.1:

ĉ(ât, f(ât)) ≤
ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ b∑
d=0

nâte,d −
b∑

d=0

nāt
∗
e,d

∣∣∣∣ (1.12.6)

+
ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣nâte,r − nāt∗e,r∣∣∣∣
≤

ê∑
e=1

max(c0,e, ce,0)
Ue∑
b=Le

b∑
d=0

∣∣∣∣nâte,d − nāt∗e,d∣∣∣∣ (1.12.7)

82



+
ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣nâte,r − nāt∗e,r∣∣∣∣, (1.12.8)

using the Largest Remainder Algorithm,

≤
ê∑
e=1

max(c0,e, ce,0)
Ue∑
b=Le

b∑
d=Le

1 +
ê∑
e=1

max(c0,ê+e, cê+e,0)0.5

<∞.

For the second statement:

∣∣∣∣N̂(ât)− N̂(f(ât))

∣∣∣∣ =

∣∣∣∣ch ê∑
e=1

Ue∑
b=Le

b(nâte,b − nā
t∗
e,b) +

ê∑
e=1

ch(nâte,r − nāt
∗
e,r)

+ cp

ê∑
e=1

Ue∑
b=Le

(nâte,b − nā
t∗
e,b)E

[
(De − b)+]∣∣∣∣

≤
∣∣∣∣ ê∑
e=1

Ue∑
b=Le

(bch + cpE
[
(De − b)+])(nâte,b − nāt∗e,b)∣∣∣∣

+
ê∑
e=1

ch

∣∣∣∣nâte,r − nāt∗e,r∣∣∣∣
≤

ê∑
e=1

(Uech + cpE [De])
Ue∑
b=Le

∣∣∣∣nâte,b − nāt∗e,b∣∣∣∣+
ê∑
e=1

ch

∣∣∣∣nâte,r − nāt∗e,r∣∣∣∣.
We replace max(c0,e, ce,0) with Uech+ cpE [De] and max(c0,ê+e, cê+e,0) with ch in Equation

(1.12.8). Repeating the following steps,∣∣∣∣N̂(ât)− N̂(f(ât))

∣∣∣∣ <∞.
For the third statement, through Lemma 1.12.1:

ĉ(x̂t+1,1, x̂t+1,2)

≤
ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ b∑
d=0

Ue∑
m=Le

(nāt
∗
e,m − nâte,m)P

[
m−min(m,De) + R̂e = d

]∣∣∣∣+
ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣nâte,r − nāt∗e,r + (1− q)
ê∑

e′=1

pe′,e

Ue
′∑

b=Le
′
(nâte′,b − nā

t∗
e′,b)E

[
min(b,De′)

]∣∣∣∣
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≤
ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ b∑
d=0

Ue∑
m=Le

(nāt
∗
e,m − nâte,m)P

[
m−min(m,De) + R̂e = d

]∣∣∣∣
+

ê∑
e=1

max(c0,ê+e, cê+e,0)

∣∣∣∣nâte,r − nāt∗e,r∣∣∣∣
+

ê∑
e=1

max(c0,ê+e, cê+e,0)(1− q)
ê∑

e′=1

pe′,e

Ue
′∑

b=Le
′
E
[
min(b,De′)

]∣∣∣∣nâte′,b − nāt∗e′,b∣∣∣∣
≤

ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ Ue∑
m=Le

(nāt
∗
e,m − nâte,m)P

[
m−min(m,De) + R̂e ≤ b

]∣∣∣∣
+

ê∑
e=1

max(c0,ê+e, cê+e,0)0.5 +
ê∑
e=1

max(c0,ê+e, cê+e,0)(1− q)
ê∑

e′=1

pe′,e

Ue
′∑

b=Le
′
E
[
min(b,De′)

]

≤
ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ Ue∑
m=Le

(nāt
∗
e,m − nâte,m)P

[
m−min(m,De) + R̂e > b

]∣∣∣∣
+

ê∑
e=1

max(c0,e, ce,0)
∞∑
b=0

∣∣∣∣ Ue∑
m=Le

(nāt
∗
e,m − nâte,m)

∣∣∣∣
+

ê∑
e=1

max(c0,ê+e, cê+e,0)0.5 +
ê∑
e=1

max(c0,ê+e, cê+e,0)(1− q)
ê∑

e′=1

pe′,e

Ue
′∑

b=Le
′
E
[
min(b,De′)

]
,

as
∑Ue
m=Le(nā

t∗
e,m − nâte,m) = 0, we have

≤
ê∑
e=1

max(c0,e, ce,0)
Ue∑

m=Le

∞∑
b=0

P
[
m−min(m,De) + R̂e > b

]∣∣∣∣nāt∗e,m − nâte,m∣∣∣∣
+

ê∑
e=1

max(c0,ê+e, cê+e,0)0.5 +
ê∑
e=1

max(c0,ê+e, cê+e,0)(1− q)
ê∑

e′=1

pe′,e

Ue
′∑

b=Le
′
E
[
min(b,De′)

]

≤
ê∑
e=1

max(c0,e, ce,0)
Ue∑

m=Le

E
[
m−min(m,De) + R̂e

]

+
ê∑
e=1

max(c0,ê+e, cê+e,0)0.5 +
ê∑
e=1

max(c0,ê+e, cê+e,0)(1− q)
ê∑

e′=1

pe′,e

Ue
′∑

b=Le
′
E
[
min(b,De′)

]
<∞.
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Corollary 1.3.5. For any inventory position xt ∈X,

lim
n→∞

Vh◦f◦π̂∗◦g(x
t)

V (xt)
= 1.

Thus, the mean-field model provides an asymptotically optimal policy for the original stochas-

tic model.

Proof. By Theorem 1.3.4,

Vh◦f◦π̂∗◦g(x
t)− V (xt) ≤ O(

√
n)

Vh◦f◦π̂∗◦g(x
t)

V (xt)
≤ 1 +

O(
√
n)

V (xt)
.

We have that V (xt) = Ω(n) as ∀at ∈ A, N(at) grows linearly with n. Consequently:

lim
n→∞

Vh◦f◦π̂∗◦g(x
t)

V (xt)
= 1.

1.13 Reformulating the Mean-Field Model through a Compact

State-Space

In this subsection, we will provide the necessary mathematical details in order to provide

an alternative state-space for the mean-field model in a compact set. In Section 1.3.4, we

introduced the new state space X̆. In order for this state space to be compact, x̆ has to be

finite-dimensional, closed, and bounded (Bolzano-Weitrass Theorem). As a result, we define
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the new state-space such that x̆te = {{x̆te,r, x̆te,s, x̆te,u, x̆te,d}
∞
d=0}

ê
e=1 ∈ X̆ satisfies:

x̆te,d = 0 ∀e, d > Ue,

Ue−1∑
d=0

x̆te,d ≤
ne
n

∀e,

x̆te,r ∈
[
0, Uer + (1− q)

ê∑
e′=1

pe′,e
ne′

n
E
[
min(Ue

′
, De′)

]]
∀e.

x̆te,s ∈
[
0,

∞∑
d=Ue+1

d
ne
n
P
[
Ue −min(Ue, De) + R̂e,u = d

]]
∀e.

R̂e,u
d
= Pois

(
q
n

ne

ê∑
e′=1

pe′,e
ne′

n
E
[
min(Ue

′
, De′)

])
∀e

x̆te,u ∈
[
0,

∞∑
d=Ue+1

(d− Ue)ne
n
P
[
Ue −min(Ue, De) + R̂e,u = d

]]
∀e.

Here, both x̆te,s and x̆te,u are variables indicating the excess amount of units at a type,

albeit with different weights. The upper bounds selected for all three of x̆te,s, x̆
t
e,u, x̆te,r are

not arbitrary as they correspond to the highest inventory, which they can observe through

their inventory evolution given in Equations (1.3.6)-(1.3.10). We obtain these expressions

by assuming that each station of type e has a post-rebalancing inventory of Ue units. By

implementing these upper bounds, we impose a finite bound necessary for compactness while

preserving the affine state transitions of the inventory variables.

Remark 1.13.1. The implicit assumption that we are going to make is that the mapping of

the initial inventory x̂t to this state-space is within these bounds. This assumption, however,

is not restrictive as these bounds can be replaced with a maximum function of their resultant

values through the initial inventory/the current maximum values, and all results extend.

As we are given an initial inventory position in X̂, we have to map this to an inventory

position in X̆. To understand how to construct this mapping, we provide a discussion of the

variables used. First, the variable x̆te,d has the same interpretation as x̂te,d for d ≤ Ue: the
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proportion of stations of type e and inventory position d, at time t. However, the variable

x̆t differs from x̂t as x̆te,d can only take strictly positive values if d is less than or equal

to the assigned upper threshold Ue, while the constraint on the summation for inventory

distributions of a certain type e is relaxed from being equal to ne
n to being less than or equal

to ne
n . We now explain why it suffices to only carry the state information in non-aggregate

form for d ≤ Ue. The cost ĉ incurred at time t depends on both the action ât and current

inventory x̂t. In the following lemma, we prove that the Wasserstein component of ĉ can

be decomposed into two parts, one which only depends on the pre-rebalancing state x̂t

through x̂te,d for d ≥ Ue + 1 for each e (and is independent of the action), and the second

which depends on both the state and the action but only depends on x̂t through x̂te,d for

d ≤ Ue − 1 for each e. Intuitively, the first component can be thought of as rebalancing all

stations of type e with more than Ue units to Ue, and the optimal action only depends on

the exact proportions of stations with number of units at most Ue − 1 through the second

part(for the Wasserstein component), for which we can use the alternative compact x̆t state

representation.

Lemma 1.13.2. The Wasserstein component of the rebalancing cost function of the mean-

field model, ĉ, can be partitioned into two parts as:

n
ê∑
e=1

ce,e
2

∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣
= n

ê∑
e=1

ce,e
2

∞∑
b=Ue+1

(b− Ue)x̂te,b + n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣,
Proof.

n
ê∑
e=1

ce,e
2

∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣
= n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣+ n
ê∑
e=1

ce,e
2

∞∑
b=Ue

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣
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= n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣+ n
ê∑
e=1

ce,e
2

∞∑
b=Ue

∣∣∣∣ b∑
d=0

x̂
t,e
e,d −

ne
n

∣∣∣∣
= n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣+ n
ê∑
e=1

ce,e
2

∞∑
b=Ue

∞∑
d=b+1

x̂te,d

= n
ê∑
e=1

ce,e
2

∞∑
b=Ue+1

(b− Ue)x̂te,b + n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣.
Lemma 1.13.2 tells us that we can aggregate x̂te,d for d ≥ Ue + 1 into a single variable,

which we do by letting:

x̆te,u =
∞∑

d=Ue+1

(d− Ue)x̂te,d ∀e.

As for the flow component of ĉ, we observe that the constraints already aggregate the inven-

tory variables. As a result, letting

x̆te,s =
∞∑

d=Ue+1

dx̂te,d ∀e,

the flow component of ĉ can be expressed as:

n min
ye1,e2

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

s.t. ye1,e2 ≥ 0 ∀e1, e2

x̆te,s +
Ue∑
b=1

b(x̆te,b − â
t
e,b) =

2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê]

x̆te,r − âte,r =
2ê∑
e1=0

(ye,e1 − ye1,e) ∀e > ê

We add these two components to form ĉ2(x̆t, ât), the new rebalancing cost function. Lastly,

we prove the main result of this section, where we can re-express the value function of the

mean-field model through these new inventory variables.
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Proposition 1.13.3. The value function for the mean-field model can be expressed as:

V̂ (x̂t) = min
{âs∈Â}∞s=t

∞∑
s=t

γs−t
(
ĉ2(x̆s, âs) + N̂(âs)

)
∀x̂t ∈ X̂,

where,

x̆te,d = x̂te,d ∀e, d ≤ Ue,

x̆te,d = 0 ∀e, d > Ue,

x̆te,r = x̂te,r ∀e,

x̆te,s =
∞∑

d=Ue+1

dx̂t+1
e,d ∀e,

x̆te,u =
∞∑

d=Ue+1

(d− Ue)x̂t+1
e,d ∀e,

and ∀s > t, x̆s satisfies Equations (1.3.6)-(1.3.10).

Proof. Let

x̆te,d = x̂te,d ∀e, d ≤ Ue,

x̆te,d = 0 ∀e, d > Ue,

x̆te,r = x̂te,r ∀e,

x̆te,s =
∞∑

d=Ue+1

dx̂te,d ∀e,

x̆te,u =
∞∑

d=Ue+1

(d− Ue)x̂te,d ∀e.

Under these equations, we previously showed that ĉ2(x̆t, ât) = ĉ(x̂t, ât). Furthermore,
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Equations (1.3.6)-(1.3.10) can also be expressed as:

x̆t+1
e,d = x̂t+1

e,d ∀e, t, d ≤ Ue,

x̆t+1
e,d = 0 ∀e, t, d > Ue,

x̆t+1
e,r = x̂t+1

e,r ∀e, t,

x̆t+1
e,s =

∞∑
d=Ue+1

dx̂t+1
e,d ∀e, t,

x̆t+1
e,u =

∞∑
d=Ue+1

(d− Ue)x̂t+1
e,d ∀e, t.

As a result, we have

ĉ2(x̆t+s, ât+s) = ĉ(x̂t+s, ât+s) ∀s ≥ 0,

and therefore

V̂ (x̂t) = min
{âs∈Â}∞s=t

∞∑
s=t

γs−t
(
ĉ(x̂t+s, ât+s) + N̂(âs)

)
,

= min
{âs∈Â}∞s=t

∞∑
s=t

γs−t
(
ĉ2(x̆t+s, ât+s) + N̂(âs)

)
.

1.14 Reformulating the Control Algorithm into a Linear

Program

Under the control algorithm provided in Section 1.4, we solve for

{ãt+k}Tk=0 ∈ arg min
{ât+k∈Â}Tk=0

T−1∑
k=0

γk
(
ĉ2(x̆t+k, ât+k) + N̂(ât+k)

)

+ γT ĉ2(x̆t+T , ât+T ) +
γT

1− γ

(
γĉ2(x̆t+T+1, ât+T ) + N̂(ât+T )

)
.

For q > 0, this program cannot be reformulated as a linear program as the mean of R̂e,

distributed Poisson, depends on the action taken at other stations. In this section, we
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provide the exact linear reformulation for the case q = 0 as, under this case, all picked-

up units become depleted, where under Equation (1.3.8) we observe that the next period’s

depleted units are linear in action. Nevertheless, the resultant program is not immediately

linear as ĉ2(x̆t+k, ât+k) contains absolute values. In this subsection, we will reformulate this

problem as a linear program. First, we introduce the rebalancing cost function ĉ3(ât, ât+1),

which gives the rebalancing cost in period t+ 1 as a function of the actions taken in periods

t and t+ 1 where

ĉ3(ât, ât+1) = ĉ2(x̂t+1, ât+1).

Using the ĉ3 function, we can rewrite the optimization program as

{ãt+k}Tk=0 : ∈ arg min
{ât+k∈Â}Tk=0

ĉ2(x̆t, ât) +
T−1∑
k=0

γkN̂(ât+k)

+
T∑
k=1

γk ĉ3(ât+k−1, ât+k) +
γT

1− γ

(
γĉ3(ât+T , ât+T ) + N̂(ât+T )

)
.

It is established in linear programming that a nonlinear optimization program in form of

minx|r(x)| can be expressed in form min(z≥r(x)),(z≥−r(x)) z, which is a linear program if and

only if r is a linear function. We will use this reformulation on the control algorithm, where we

introduce dummy variables (i) ŝt = {ŝte,b|
Ue−1
b=0 }

ê
e=1, (ii) ẑt+k|Tk=0 = {ẑt+ke,b |

Ue−1
b=0 }

ê
e=1|

T
k=0,

(iii) l̂
t+T

= {l̂t+T,ee,b |U
e−1

b=0 }
ê
e=1, in order to replace the absolute value expressions of the

rebalancing cost functions. Using these variables, we get the linear program:

min
{ât+k|Tk=0,ŷ

t+k|Tk=0,ŝ
t,ẑt+k|Tk=0,l̂

t+T }

ê∑
e=1

Ue−1∑
b=0

ce,e
2
ŝtb,e

+

T−1∑
k=0

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1
2
− ce2,e2

2

)
yt+k,e1,e2 +

T−1∑
k=0

ê∑
e1=0

γkchâ
t+k
e,r

+

T−1∑
k=0

ê∑
e=1

Ue∑
b=Le

ât+ke,b γ
k(chb+ cpE

[
(De − b)+

]
) +

T∑
k=1

ê∑
e=1

Ue−1∑
b=0

γk
ce,e
2
ẑt+ke,b

+

ê∑
e=1

Ue−1∑
b=0

γT+1

1− γ
ce,e
2
l̂t+Te,b +

γT+1

1− γ

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1
2
− ce2,e2

2

)
yt+T,e1,e2
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+
γT

1− γ
ch

ê∑
e=1

ât+Te,r +
ê∑
e=1

Ue∑
b=Le

ât+Te,b

γT

1− γ
(chb+ cpE

[
(De − b)+

]
),

s.t.

Ue∑
b=Le

ât+k,ee,b =
ne
n
∀e, k ∈ {0, . . . , T}, (1.14.1)

ât+ke,b ≥ 0 ∀e, k ∈ {0, . . . , T}, b, (1.14.2)

ne
n
U0 ≥ ât+ke,r ∀e, k ∈ {0, . . . , T}, (1.14.3)

ât+ke,r ≥
ne
n
L0 ∀e, k ∈ {0, . . . , T}, (1.14.4)

x̆te,s +
Ue∑
d=1

d(x̆te,d − âte,d) =
2ê∑
e1=0

(yt,e,e1 − yt,e1,e) ∀e ∈ [ê], (1.14.5)

x̆te,r − âte,r =

2ê∑
e1=0

(yt,e+ê,e1 − yt,e1,e+ê) ∀e ∈ [ê], (1.14.6)

Ue∑
d=1

d(
Ue∑
b=Le

ât+k−1
e,b P [b−min(b,De) = d]− ât+ke,d ) =

2ê∑
e1=0

(yt+k,e,e1 − yt+k,e1,e) ∀e ∈ [ê], k ∈ [T ],

(1.14.7)

ât+k−1
e,r +

ê∑
e′=1

pe′,e

Ue′∑
b=Le′

ât+k−1
e′,b E

[
min(b,De′)

]
− ât+ke,r

=

2ê∑
e1=0

(yt+k,e+ê,e1 − yt+k,e1,e+ê) ∀e ∈ [ê], k ∈ [T ], (1.14.8)

Ue∑
d=1

d(
Ue∑
b=Le

ât+Te,b P [b−min(b,De) = d]− ât+Te,d ) =
2ê∑
e1=0

(yt+T+1,e,e1 − yt+T+1,e1,e) ∀e ∈ [ê]

(1.14.9)

ê∑
e′=1

pe′,e

Ue′∑
b=Le′

ât+Te′,b E
[
min(b,De′)

]
=

2ê∑
e1=0

(yt+T+1,e+ê,e1 − yt+T+1,e1,e+ê) ∀e ∈ [ê] (1.14.10)

yt+k,e1,e2 ≥ 0 ∀e1, e2, k ∈ {0, . . . , T}, (1.14.11)

ŝte,b ≥
b∑

d=0

(x̆te,d − âte,d) ∀e, b ∈ {0, . . . , U e − 1}, (1.14.12)

ŝte,b ≥ −
b∑

d=0

(x̆te,d − âte,d) ∀e, b ∈ {0, . . . , U e − 1}, (1.14.13)

ẑt+ke,b ≥
b∑

d=0

( Ue∑
m=Le

ât+k−1
e,m P [m−min(m,De) = d]− ât+ke,d

)
∀e, k ∈ [T ], b ∈ {0, . . . , U e − 1},

(1.14.14)
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ẑt+ke,b ≥ −
b∑

d=0

( Ue∑
m=Le

ât+k−1
e,m P [m−min(m,De) = d]− ât+ke,d

)
∀e, k ∈ [T ], b ∈ {0, . . . , U e − 1},

(1.14.15)

l̂t+Te,b ≥
b∑

d=0

( Ue∑
m=Le

ât+Te,m P [m−min(m,De) = d]− ât+Te,d

)
∀e, b ∈ {0, . . . , U e − 1}, (1.14.16)

l̂t+Te,b ≥ −
b∑

d=0

( Ue∑
m=Le

ât+Te,m P [m−min(m,De) = d]− ât+Te,d

)
∀e, b ∈ {0, . . . , U e − 1}.

(1.14.17)

Here, (1.14.1), (1.14.2), (1.14.3), and (1.14.4) are the standard action constraints we impose,

(1.14.5), (1.14.6), (1.14.7), (1.14.8), (1.14.9), (1.14.10), and (1.14.11) are the flow constraints

of the rebalancing cost function, (1.14.12) and (1.14.13) are constraints on dummy variables

assigned to the Wasserstein component of the cost term ĉ2(x̆t, ât), (1.14.14) and (1.14.15)

are constraints on dummy variables assigned to the Wasserstein components of the cost term∑T
k=1 γ

k ĉ3(ât+k−1, ât+k), and (1.14.16) and (1.14.17) are constraints on dummy variables

assigned to the Wasserstein component of the cost term ĉ3(ât+T , ât+T ). In the LP formula-

tion, the terms R̂e, x̆t+ke,s , x̆
t+k
e,s for k > 0 are not included. The reason is that as q = 0, there

is no inflow of charged units to the stations and therefore the resultant number of charged

units at a station/type cannot increase through state transition.

1.15 Existence and Utilization of Fixed Points

As discussed in Section 1.4, we can use the existence of a fixed point/steady state to derive

an alternative worst-case bound for the algorithm. Formally, a fixed point is defined as:

Definition 1.15.1. x̆f is a fixed point of V̂ if at x̆f , there exists an optimal action âf

such that when action âf is taken at, say, period t, then x̆t+1 = x̆f . We label âf as the

corresponding fixed point action.

Conditions under which deterministic dynamic programs possess a fixed point have been

investigated before in the literature.
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Proposition 1.15.2 ([Flynn, 1979, Theorem 7.1.2]). The following conditions, together, are

sufficient for the existence of a fixed point for the deterministic dynamic program defined in

(1.3.12):

1. X̆ and Â are compact;

2. X̆ and Â are convex;

3. The mapping from ât → x̆t+1 is continuous, affine;

4. The per-stage cost function is convex.

While conditions 1, 2, and 4 are satisfied for all possible values of q, condition 3 is satisfied

only for q = 0. In Proposition 1.15.3, we verify that for q = 0, our system satisfies these

conditions and that a fixed point exists.

Proposition 1.15.3. The dynamic program defined in (1.3.12) satisfies the fixed point prop-

erty if q = 0.

Proof. We will prove that V̂ satisfies all four conditions stated in Proposition 1.15.2:

1. Both X̆ and Â are closed as they contain all of their boundary points. Furthermore,

both X̆ and Â are bounded. As they are both finite dimensional, they are compact.

2. For any two inventory/action positions selected, all the positions in the line segment

connecting them are feasible, so X̆ and Â are convex.

3. Under the assumption that q = 0, the state transitions in Remark 1.3.1 are affine and

hence continuous.

4. The per-stage cost function is ĉ2(x̆t, ât) + N̂(ât), where the components are defined in

Equations (1.3.11) and (1.3.4). For N̂(ât), we observe that all components are linear

in ât, hence the function is convex in ât. Furthermore, since the function |x − a| is

jointly convex in x and a, n
∑ê
e=1

ce,e
2 x̆te,u + n

∑ê
e=1

ce,e
2

∑Ue−1
b=0

∣∣∣∣∑b
d=0(x̆te,d − âte,d)

∣∣∣∣
is jointly convex in x̆t, ât. For the flow component of the rebalancing cost, through
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Lemma 1.15.4, showing that

n min
ye1,e2

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

s.t. − ye1,e2 ≤ 0 ∀e1, e2

x̆te,s +
Ue∑
b=1

b(x̆te,b − â
t
e,b) =

2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê]

x̆te,r − âte,r =
2ê∑
e1=0

(ye,e1 − ye1,e) ∀e > ê

is convex in y is sufficient (as the function always provides non-negative values). As

the ye,e1 values are linear ∀e, e1 for the objective as well as the constraints, the resul-

tant optimization problem is jointly convex in x̆t, ât (Boyd and Vandenberghe [2004],

Chapter 4.2.1). Consequently, the per-stage cost function is convex.

Lemma 1.15.4. (Boyd and Vandenberghe [2004], Chapter 3.2.5). If f(x, z) is convex in

(x, z) and C is a convex non-empty set, then the function:

g(x) = inf
z∈C

f(x, z)

is convex in x, provided g(x) > −∞∀x.

The significance of fixed points for our analysis is that they allow us to obtain an lower

bound on the value function. Since once we reach the fixed point, the optimal action returns

the state to the fixed point, the optimal cost at some inventory position x̆t can be lower

bounded by taking the optimal fixed point action indefinitely, which in turn has a simple

expression, as we state below.

Lemma 1.15.5. Assume that x̆f is a fixed point of V̂ and âf is the fixed point action.

Then:

V̂ (x̆t) ≥ 1

1− γ

(
γĉ2(x̆f , âf ) + N̂(âf )

)
− ĉ2(x̆t, âf ) ∀x̆t ∈ X̆,
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where the bound is tight if x̆t = âf .

Proof.

V̂ (x̆f ) = min
ât∈Â

ĉ2(x̆f , ât) + N̂(ât) + γV̂ (x̆t+1).

Using the definition of a fixed point,

V̂ (x̆f ) = ĉ2(x̆f , âf ) + N̂(âf ) + γV̂ (x̆f )

=
1

1− γ

(
ĉ2(x̆f , âf ) + N̂(âf )

)
V̂ (âf ) =

1

1− γ

(
γĉ2(x̆f , âf ) + N̂(âf )

)
.

Furthermore, through the Lipschitz bound provided at (1.12.5), we know that

V̂ (x̆t) ≥ V̂ (âf )− ĉ2(x̆t, âf ).

Combining the two equations, we obtain

V̂ (x̆t) ≥ 1

1− γ

(
γĉ2(x̆f , âf ) + N̂(âf )

)
− ĉ2(x̆t, âf ) ∀x̆t ∈ X̆.

One difficulty in utilizing Lemma 1.15.5 is that we do not know which inventory position

corresponds to the fixed point. Identification of the fixed point requires partially solving for

the optimal policy, which we already argued is difficult. Nevertheless, we know that there

exists at least one fixed point in X̆ if q = 0 and this information alone allows us to utilize

Lemma 1.15.5, which we do so in Proposition 1.15.9. Finally, the proof of Theorem 1.4.2,

split into two different Propositions, is presented below.

Theorem 1.4.2. The optimality gap of the policy π̃ obtained via (1.4.1)-(1.4.3) decreases

exponentially with respect to length T of the transient horizon:

V̂π̃(x̆t)− V̂ (x̆t) ≤ γ

1− γ
CγT ∀x̆t ∈ X̆,
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where

C = 2
ê∑
e=1

(
ne max(c0,e, ce,0)(Ue − Le) + nmax(c0,ê+e, cê+e,0)(Ur,e − Lr,e)

)
.

Furthermore, we can derive an alternative bound for q = 0 with:

V̂π̃(x̆t)− V̂ (x̆t) ≤ CγT ∀x̆t ∈ X̆.

Proof. The first statement is proven in Proposition 1.15.6 and the second statement is

proven in Proposition 1.15.9.

The initial step of the two proofs is identical, where we utilize the observation that the

first T actions that an optimal policy take is feasible for the control algorithm. The proofs

differ in action taken by the control algorithm in the T +1’th period. For Proposition 1.15.6,

which proves the general case, we do not know if a fixed point exists, so the control algorithm

takes the same action in period T + 1 as an optimal policy. The difference between the two

policies occurs in period T + 2, where the control algorithm repeats the same action, but the

optimal policy takes a different action. Using fundamental properties of the value function,

such as Lipschitzness and triangle inequality of the rebalancing cost function (proven in

Lemmas 1.15.7 and 1.15.8), we can bound the difference in per-period costs and then use

recursion to obtain the final bound.

For Proposition 1.15.9, which provides a bound under the additional assumption q = 0,

we take the fixed action at period T + 1. Through the definition of the fixed action, there

exists an inventory distribution for which it is optimal to take that action such that the

fixed action moves to that inventory distribution next period. Consequently, we invoke

Lipschitzness between that inventory distribution (and the ending inventory distribution at

period T ), providing the bound.

In the following proofs, we use the notation ĉ2(â1, â2) to calculate the rebalancing cost
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between two actions, for simplicity. For our analysis, ĉ2(â1, â2) is equal to ĉ2(x̆1, â2) with

x̆1
e,u = 0 ∀e,

x̆1
e,s = 0 ∀e,

x̆1
e,r = â1

e,r ∀e,

x̆1
e,d = â1

e,d ∀e, d.

Proposition 1.15.6. The optimality gap of the policy π̃ obtained via (1.4.1)-(1.4.3) de-

creases exponentially with respect to length T of the transient horizon:

V̂π̃(x̆t)− V̂ (x̆t) ≤ γ

1− γ
CγT ∀x̆t ∈ X̆,

where

C = 2
ê∑
e=1

(
ne max(c0,e, ce,0)(Ue − Le) + nmax(c0,ê+e, cê+e,0)(Ur,e − Lr,e)

)
.

Proof. We first express the optimal cost as follows:

V̂ (x̆t) = min
{ât+k∈Â}Tk=0

T∑
k=0

γk
(
ĉ2(x̆t+k, ât+k) + N̂(ât+k)

)
+ γT+1

(
ĉ2(x̆t+T+1, ât+T+1) + V̂ (ât+T+1)

)
,

and let ât
∗
, ât+1∗ , . . . denote a sequence of optimal actions for V̂ (x̆t). The first T + 1 terms

of this sequence is feasible for the program provided in (1.4.1). Without a guarantee that

this sequence of actions is optimal for the control algorithm, we have

V̂π̃(x̆t) ≤
T∑
k=0

γk
(
ĉ2(x̆t+k, ât+k

∗
)+N̂(ât+k

∗
))

)
+
γT+1

1− γ

(
ĉ2(x̆t+T+1∗ , ât+T

∗
)+N̂(ât+T

∗
)

)
.
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Subtracting the two functions, costs until the T + 2’th period cancel out, leaving,

V̂ tπ̃(x̆t)− V̂ (x̆t) ≤ γT+1

1− γ

(
ĉ2(x̆t+T+1∗ , ât+T

∗
) + N̂(ât+T

∗
)

)
− γT+1

(
ĉ2(x̆t+T+1, ât+T+1∗) + V̂ (ât+T+1∗)

)
,

applying the triangle inequality (Lemma 1.15.7) on the first term and the Lipschitz bound

provided at (1.12.5) on the last term,

≤ γT+1

1− γ

(
ĉ2(x̆t+T+1, ât+T+1∗) + ĉ2(ât+T+1∗ , ât+T

∗
) + N̂(ât+T

∗
)

)
− γT+1

(
ĉ2(x̆t+T+1, ât+T+1∗)− ĉ2(ât+T+1∗ , ât+T

∗
) + V̂ (ât+T

∗
)

)
.

(1.15.1)

Then, using the triangle inequality, we have

V̂ (ât+T
∗
) = N̂(ât+T

∗
) + γV̂ (x̆t+T+1).

Inserting this expression to Equation (1.15.1) and simplifying the terms

V̂ tπ̃(x̆t)− V̂ (x̆t) ≤ γT+12ĉ2(ât+T+1∗ , ât+T
∗
) +

γT+2

1− γ

(
ĉ2(x̆t+T+1, ât+T+1∗)

+ ĉ2(ât+T+1∗ , ât+T
∗
) + N̂(ât+T

∗
)

)
− γT+2

(
V̂ (x̆t+T+1)

)
,

= γT+12ĉ2(ât+T+1∗ , ât+T
∗
) +

γT+2

1− γ

(
ĉ2(x̆t+T+1, ât+T+1∗)

+ ĉ2(ât+T+1∗ , ât+T
∗
) + N̂(ât+T

∗
)

)
− γT+2

(
ĉ2(x̆t+T+1, ât+T+1∗) + V̂ (ât+T+1∗)

)
.

Consequently, we observe a recurrent structure where the sub-optimality gap at each period

is bounded by 2ĉ2(ât+T+1∗ , ât+T
∗
). We can then express the sub-optimality gap as

V̂ tπ̃(x̆t)− V̂ (x̆t) ≤ γT+1

1− γ
2ĉ2(ât+T+1∗ , ât+T

∗
),
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by Lemma 1.15.8,

≤ γT+1

1− γ
2

ê∑
e=1

(
ne max(c0,e, ce,0)(Ue − Le)ne

+ nmax(c0,ê+e, cê+e,0)(Ur,e − Lr,e)
)
.

Lemma 1.15.7. The ĉ2 function satisfies triangle inequality.

Proof. We want to show that ∀x̆ ∈ X̆, â, ẑ ∈ Â,

ĉ2(x̆, â) ≤ ĉ2(x̆, ẑ) + ĉ2(ẑ, ŷ).

For the Wasserstein component:

n
ê∑
e=1

ce,e
2
x̆te,u + n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̆te,d − â
t
e,d)

∣∣∣∣
= n

ê∑
e=1

ce,e
2
x̆te,u + n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̆te,d + ẑte,d − ẑ
t
e,d − â

t
e,d)

∣∣∣∣
≤ n

ê∑
e=1

ce,e
2
x̆te,u + n

ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(x̆te,d − ẑ
t
e,d)

∣∣∣∣+ n
ê∑
e=1

ce,e
2

Ue−1∑
b=0

∣∣∣∣ b∑
d=0

(ẑte,d − â
t
e,d)

∣∣∣∣.
For the flow component, let ye1,e2,1|2ê+1

e1=1|
2ê+1
e2=1 be an optimal solution of ĉ2(x̆, ẑ) and let

ye1,e2,2|2ê+1
e1=1|

2ê+1
e2=1 be an optimal solution of ĉ2(ẑ, ŷ). Then, ye1,e2,1 +ye1,e2,2|2ê+1

e1=1|
2ê+1
e2=1 satis-

fies the constraints of ĉ2(x̆, â) and gives the same flow component cost as ĉ2(x̆, ẑ)+ ĉ2(ẑ, ŷ).

With no guarantee of optimality for the flow component of ĉ2(x̆, â), we prove the lemma.

Lemma 1.15.8. For any two actions â1, â2 ∈ Â, the rebalancing cost function ĉ2 satisfies:

ĉ2(â1, â2) ≤
ê∑
e=1

(
ne max(c0,e, ce,0)(Ue − Le) + nmax(c0,ê+e, cê+e,0)(Ur,e − Lr,e)

)
.
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Proof. Through the proof of Proposition 1.13.3, we have

ĉ2(â1, â2) = ĉ(â1, â2),

by Lemma 1.12.1,

≤ n

ê∑
e=1

max(c0,e, ce,0)

(Le−1∑
b=0

∣∣∣∣ b∑
d=0

(â1
e,d − â

2
e,d)

∣∣∣∣+
Ue−1∑
b=Le

∣∣∣∣ b∑
d=0

(â1
e,d − â

2
e,d)

∣∣∣∣)

+ n
ê∑
e=1

max(c0,ê+e, cê+e,0)|â1
e,r − â2

e,r|

= n

ê∑
e=1

max(c0,e, ce,0)
Ue−1∑
b=Le

∣∣∣∣ b∑
d=0

(â1
e,d − â

2
e,d)

∣∣∣∣+ n
ê∑
e=1

max(c0,ê+e, cê+e,0)|â1
e,r − â2

e,r|

≤ n
ê∑
e=1

max(c0,e, ce,0)
Ue−1∑
b=Le

ne
n

+ n
ê∑
e=1

max(c0,ê+e, cê+e,0)(Ur,e − Lr,e)

=
ê∑
e=1

(
ne max(c0,e, ce,0)(Ue − Le) + nmax(c0,ê+e, cê+e,0)(Ur,e − Lr,e)

)
.

Proposition 1.15.9. Let q = 0. Then, the optimality gap of the policy π̃ obtained via

(1.4.1)-(1.4.3) decreases exponentially with respect to length T of the transient horizon:

V̂π̃(x̆t)− V̂ (x̆t) ≤ CγT ∀x̆t ∈ X̆,

where

C =
ê∑
e=1

(
ne max(c0,e, ce,0)(Ue − Le) + nmax(c0,ê+e, cê+e,0)(Ur,e − Lr,e)

)
.

Proof. We first express the optimal cost as follows:

V̂ (x̆t) = min
{ât+k∈Â}Tk=0

T−1∑
k=0

γk
(
ĉ2(x̆t+k, ât+k)+N̂(ât+k)

)
+γT

(
ĉ2(x̆t+T , ât+T )+V̂ (ât+T )

)
,

and let ât
∗
, ât+1∗ , . . . denote a sequence of optimal actions for V̂ (x̆t). The first T terms of

this sequence is feasible for the program provided in (1.4.1). For the T + 1’th action, we
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assign:

ât+T = âf ,

where x̆f is a fixed point of V̂ and âf is the corresponding fixed point action. As q = 0,

through Proposition 1.15.3, we can establish that such a fixed point/fixed point action pair

always exists.

Without a guarantee that this sequence of actions is optimal for the control algorithm,

we have

V̂π̃(x̆t) ≤
T−1∑
k=0

γk
(
ĉ2(x̆t+k, ât+k

∗
) + N̂(ât+k

∗
))

)
+ γT ĉ2(x̆t+T , âf )

+
γT

1− γ

(
γĉ2(x̆f , âf ) + N̂(âf )

)
.

Subtracting the two functions, costs until the T ’th period cancel out, leaving,

V̂ tπ̃(x̆t)− V̂ (x̆t) ≤ γT ĉ2(x̆t+T , âf ) +
γT

1− γ

(
γĉ2(x̆f , âf ) + N̂(âf )

)
− γT

(
ĉ2(x̆t+T , ât+T ) + V̂ (ât+T

∗
)

)
,

by Lemma 1.15.5,

= γT
(
ĉ2(x̆t+T , âf ) + V̂ (ăf )

)
− γT

(
ĉ2(x̆t+T , ât+T

∗
) + V̂ (ât+T

∗
)

)
,

applying the triangle inequality (Lemma 1.15.7) on the first term and the Lipschitz bound

provided at (1.12.5) on the last term,

≤ γT
(
ĉ2(x̆t+T , ât+T

∗
) + ĉ2(ât+T

∗
, âf ) + V̂ (ăf )

)
− γT

(
ĉ2(x̆t+T , ât+T

∗
)− ĉ2(ât+T

∗
, âf ) + V̂ (âf )

)
≤ 2γT ĉ2(ât+T

∗
, âf ),

by Lemma 1.15.8,

≤ 2γT
ê∑
e=1

(
ne max(c0,e, ce,0)(Ue − Le)ne
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+ nmax(c0,ê+e, cê+e,0)(Ur,e − Lr,e)
)
.

Remark 1.15.10. For q = 0, our approach is different from papers such as Flynn [1979],

which focus on optimal policies in the limit γ → 1. In such settings, it is possible to solve

for the fixed point, and any policy which moves to a fixed point in finite time is guaranteed

to have a finite optimality gap in the limit. In addition to covering this special case, our

policy is applicable for all discount rates. Furthermore, we do not impose the condition that

the action taken at (T + 1)st period is a fixed point action as in settings where the discount

rate is low, it may be possible to obtain a lower cost through a different action. This is also

observed when comparing the two bounds, with γ
1−γ < 1 if γ < 0.5.

1.16 Transforming Non-Stationary MDP’s through Composite

Periods

As highlighted in Subsection 1.6.2, our goal is to re-define the problem in a stationary

setting. We do this through using composite periods, where given the initial period t,

a composite period covers periods t, t + 1, . . . , t + H − 1. The intuition here is that by

modifying the action and the per-period cost function, we will only define inventory at

periods that are multiples of H, hence observing identical demand distributions and trip

probabilities in each composite period. In accordance, we introduce the composite action

âH,t = [ât, ât+1, . . . , ât+H−1] ∈ ÂH,t
, where Â

H,t
= ∪H−1

k=0 Â
t+k

. In order to re-define the

problem and only define inventory at periods which are multiples of H, we refer back to

the rebalancing cost function ĉ3(ât, ât+1), introduced in Appendix 1.14. Under the periodic

structure, for any two consecutive periods t, t+ 1:

ĉ3(ât, ât+1) = n
ê∑
e=1

ce,e
2

∞∑
d=U t,e+1

(d− U t,e)
U t,e∑
b=Lt,e

âte,bP
[
b−min(b,Dt,e) + R̂t,e = d

]
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+ n
ê∑
e=1

ce,e
2

U t+1,e−1∑
b=0

∣∣∣∣ b∑
d=0

(
U t,e∑
k=Lt,e

âte,kP
[
k −min(k,Dt,e) + R̂t,e = k

]
− ât+1

e,d )

∣∣∣∣
+ n min

ye1,e2

2ê∑
e1=0

2ê∑
e2=0,e2 6=e1

(
ce1,e2 −

ce1,e1

2
−
ce2,e2

2

)
ye1,e2

s.t.
∞∑

d=U t,e+1

d
U t,e∑
b=Lt,e

âte,bP
[
b−min(b,Dt,e) + R̂t,e = d

]

+
U t+1,e∑
d=1

d(
U t,e∑
b=Lt,e

âte,bP
[
b−min(b,Dt,e) + R̂t,e = d

]
− ât+1

e,d )

=
2ê∑
e1=0

(ye,e1 − ye1,e) ∀e ∈ [ê],

âte,r + (1− q)
ê∑

e′=1

pe′,e

U t,e
′∑

b=Lt,e
′
āte′,bE

[
min(b,Dt,e′)

]
− ât+1

e,r

=
2ê∑
e1=0

(ye,e1 − ye1,e) ∀e > ê,

ye1,e2 ≥ 0 ∀e1, e2.

We input this rebalancing cost function as well as composite actions to the mean-field model

defined in (1.3.12) to obtain:

V̂ t(x̆t) = min
âH,t∈ÂH,t

ĉ2(x̆t, ât)+
H−1∑
k=1

γk ĉ3(ât+k−1, ât+k)+
H−1∑
k=0

γkN̂ t+k(ât+k)+γH V̂ t(x̆t+H).

(1.16.1)

Consequently, V̂ t(x̆t) is a stationary deterministic dynamic program with state x̆t, action

âH,t, per-period cost ĉ2(x̆t, ât) +
∑H−1
k=1 γk ĉ3(ât+k−1, ât+k) +

∑H−1
k=0 γk

(
N̂ t+k(ât+k) +

ŷt+k(ât+k)

)
, discount rate γH , and state transitions x̆t → x̆t+H .

It is then straightforward to show that the model defined in (1.16.1) also satisfies the

conditions of Proposition 1.15.2 if q = 0. What remains is to modify the control algorithm

and the worst-case bound. Accordingly, given an initial inventory distribution x̆t and a
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parameter T ≥ 0, we now choose T + 1 composite actions such that the (T + 1)’st composite

action is repeated for all future periods. We also solve for:

{ãH,t+kH}Tk=0 ∈ arg min
{âH,t+kH∈ÂH,t}Tk=0

T−1∑
k=0

γkH
(
ĉ2(x̆t+kH , ât+kH)

+
H−1∑
r=1

γr ĉ3(ât+kH+r−1, ât+kH+r) +
H−1∑
r=0

γrN̂ t+r(ât+kH+r)

)

+ γTH ĉ2(x̆t+TH , ât+TH) +
γTH

1− γH

(
γĉ2(x̆t+TH+H , ât+TH)

+
H−1∑
r=1

γr ĉ3(ât+TH+r−1, ât+TH+r) +
H−1∑
r=0

γrN̂ t+r(ât+TH+r)

)
.

The worst-case bound can be updated as follows:

Theorem 1.16.1. The optimality gap of the policy π̃t obtained via (1.4.1)-(1.4.3) decreases

exponentially with respect to length T of the transient horizon:

V̂ t
π̃t

(x̆t)− V̂ t(x̆t) ≤ γH

1− γH
CtγTH ∀x̆t ∈ X̆t

,

where

Ct = 2
ê∑
e=1

(
ne max(c0,e, ce,0)(U t,e − Lt,e) + nmax(c0,ê+e, cê+e,0)(U t,r,e − Lt,r,e)

)
.

Furthermore, we can derive an alternative bound for q = 0 with:

V̂ t
π̃t

(x̆t)− V̂ t(x̆t) ≤ CtγTH ∀x̆t ∈ X̆t
.

The proof for the updated bound directly follows the proof of Theorem 1.4.2 and is

omitted.

Remark 1.16.2. Under the updated worst-case bound, Ct is dependent on the initial period

t. We can utilize this dependence by first solving for the t value which minimizes Ct, which

we label as t′. We can then construct the equivalent stationary representation for the value
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function at t′, and add t′ − t (H + t′ − t if t′ − t < 0) periods to the current T · H period

transient horizon so that we move to the stationary model on a desirable period. By doing

so, we can replace Ct with mintC
t which is useful for applications where the upper and lower

thresholds differ between periods.

1.17 Supplementary Material for Numerical Analysis

In this section, we provide supplementary material for Section 1.5, which include mathe-

matical formulations for certain policies we implement, additional descriptive information in

order to understand the setting we implement our policies, and additional experiments to

test our policies performance.

1.17.1 Formulating the Myopic Policy

The optimization program provided in Equation (1.5.1) provides difficulties in computation

for two main reasons: (i) it requires minimizing the function cp
∑ê
e=1

∑ne
i=1 E

[
(De − ate,i)

+
]
,

(i) the number of variables linearly increase with the number of stations. Nevertheless, using

Appendix 1.11, we are able to exactly solve for the myopic policy through a more manageable

mixed-integer reformulation. Specifically, we utilize Proposition 1.11.1 to state that ∃atM
such that given inventory position xt,

g(atM ) ∈ arg min
āt∈Ā

ĉ(g(xt), āt) + N̂(āt). (1.17.1)

Furthermore, again through Proposition 1.11.1, we also have that

h(g(atM )) ∈ arg min
at∈A

c(xt,at) +N(at).

Consequently, at each period t, given inventory xt, we solve for an optimal myopic action

through (1.17.1), which is a mixed-integer optimization problem (due to the constraints
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nāte,d ∈ N0 ∀e, d and nāte,r ∈ N0 ∀e). We then project this action to the original stochastic

problem using the h function.

1.17.2 Formulating the Large Market Policy

While formulating the large market policy, we established that the optimal policy obtained

through Equation (1.5.4) requires solving an infinite-dimensional program. Thus we adopt

the control algorithm, which only requires solving a T +1 period finite horizon problem. An-

other difficulty of solving for the large market policy is that both the objective function and

state transition equations involve piece-wise elements. In this section, we will reformulate

these expressions to more manageable quadratic equations using binary variables. Specifi-

cally, we will introduce a new binary variable zte,i ∈ {0, 1} which takes value 0 if ate,i < µe

and value 1 otherwise. To ensure this mapping, we use the Big-M method where for some

M >> maxe µe, we add the constraints:

ate,i + (1− zte,i)M ≥ µe ∀e, i,

µe ≥ ate,i − z
t
e,iM ∀e, i.

These constraints ensure that given the interval which ate,i is in, the right value for zte,i is

assigned. Then, we can re-express Equations (1.5.2), (1.5.3) as

xt+1
e,i = zte,i(a

t
e,i − µe) +

ê∑
e′=1

ne′∑
j=1

qpe′,e
ne

(
zte′,jµe′ + (1− zte′,j)a

t
e′,j

)
∀i ∈ [n],

xt+1
e,r = ate,r + (1− q)

ê∑
e′=1

pe′,e

ne′∑
j=1

(
zte′,jµe′ + (1− zte′,j)a

t
e′,j

)
∀e,

and Equation (1.5.4) as

VM (xt) = min
at∈A

c(xt,at)+ch

ê∑
e=1

ne∑
i=1

ate,i+ch

ê∑
e=1

ate,r+cp

ê∑
e=1

ne∑
i=1

(µe−ate,i)
+ +γVM (xt+1).
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1.17.3 Calibrating Cost Parameters

In this section, we describe how the cost parameters are calibrated.

First, for the rebalancing costs, we use Holyoak [2021], which indicates a price of $2 for

moving units and around $4.5 for recharging units in Austin.

For the discount rate, we set γ = 0.95. We make this selection to balance the trade-off

between discounting of future periods with the uncertainty of future demand and routing

distributions.

Next, for bike-sharing and scooter-sharing, holding cost corresponds to the cost (wear/tear,

depreciation) of having a unit in circulation. Here, we separate the damage a unit receives

from usage (included in the penalty cost calculations) from the cost unit receives from stay-

ing outside, often under unfavorable weather conditions. To calibrate the holding cost, we

start with the unit’s purchase price, 800 dollars for the Segway Ninebot ES4 Electric scooter,

one of the most common scooters used by Lime Scooter (Strobel [2021]). Based on Hayes

[2022], we assume that a scooter’s lifespan under circulation is one year, which is less than

the estimated 3-5 years for personal usage, but more than the 1-5 months estimated for

rental electric scooters. Letting one period consist of a single day, we obtain ch = 2.2.

To calibrate the penalty cost, we calculate the revenue obtained by a scooter per day,

minus the damage the scooter observes from usage per day25. First, we look at the Austin

scooter-sharing data to calculate the revenue per ride, obtaining an average of 11.32 minutes

per ride. Using the 2021 Lime pricing of 1 dollar starting price with 29 cents added per

minute, we obtain a revenue of 4.48 dollars. Based on Griswold [2018], we assume that the

average scooter does five trips per day, giving us a per-period revenue of 22.4 dollars. Finally,

we assume a 2-month lifespan for the scooter under constant usage, which, subtracting the

holding cost component, gives us
800−(2.2∗60)

60 = 11.13. Subtracting the two values, we obtain

25. Several other factors affect the penalty cost, such as fees/taxes paid on this revenue and additional
societal welfare from customers using these systems. Nevertheless, as many of these factors are subjective,
we do not include them in our calculation and separately conduct an experiment where we vary the penalty
cost.
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a rounded penalty cost of cp = 11.3.

For depletion probability q, we use Somerville [2021], which reports that the Ninebot ES4

has a battery range of 50 minutes under top speed (longer battery ranges are expected for

slower speeds). As we expect usage to be 56.6 minutes per day, we assign q = 026.

1.17.4 Impact of the Holding Cost

For this experiment, we vary the holding cost at all stations (assumed to be 2.2 previously).

The results are shown in Figure 1.5.

Figure 1.5: Impact of the Holding Cost on the Performance of Policies

We first observe that mean-field-based policies are effective at all holding cost values for

the results. These policies can effectively reduce or increase the fleet size according to the

holding cost value. One important observation is the poor effectiveness of the large market

policy for high holding costs. This is stemmed from the deterministic demand assumption,

26. In Appendix 1.17.6, we look at the performance of our policy for different q values.
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which provides the same issues as discussed in Section 1.5.3.

1.17.5 Impact of the Rebalancing Cost

This section will conduct two experiments where we change the rebalancing cost matrix.

During our experiments, we assigned a rebalancing cost of $1 for rebalancing units within

the own type, $2 for rebalancing units to other types, and $3 for rebalancing units (providing

a cost of $4 or $5 dollars depending on which type the unit is dropped) and a sourcing/with-

drawing cost of $6. In the first experiment, we will add a constant to these values. In the

second experiment, we will only change the cost of rebalancing/recharging/sourcing units to

other types.

Adding a Constant to all Rebalancing/Recharging/Sourcing costs

For this experiment, we add a constant k (the value of k varies in the x-axis) to all rebal-

ancing/recharging/sourcing costs. The results are shown in Figure 1.6.

We observe that as the rebalancing costs increase, the performance of the no rebalancing

policies improves, while the performance of the newsvendor policy deteriorates. This is as

expected, as even though the no rebalancing policy also recharges units, the newsvendor

policy requires excessive rebalancing and is more effective in systems with low rebalanc-

ing/recharging costs. Lastly, we observe that the mean-field based policies adapt to the cost

settings and provide near-optimal results.

Increasing the Cost of Rebalancing Units between types

For this experiment, we add a constant k to the cost of moving units between types. Specif-

ically, we let the cost of rebalancing a unit between types be 2 + k, recharging a unit and

dropping it to a different type be 4 + k, and the sourcing cost is 6 + k. The remaining costs

are not changed. The results are shown in Figure 1.7.
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Figure 1.6: Impact of k on the Performance of Policies

As k increases, the gap between the static and resolving control policies increases. For

n = 16 and k > 3, we see that MPC performs better then static control whereas for n = 160,

static control performs better for all k. We detail the reasons for the performance of the

static policy in Remark 1.5.2.

1.17.6 Impact of the Depletion Probability

For this experiment, we vary the depletion probability q stations (assumed to be 0 previ-

ously). Due to the long computation time of MPC and resolving control for the q > 0 case,

we reduce the discount rate γ to 0.927. Furthermore, we reduce the number of repetitions

for the above computational reasons. The results are shown in Figure 1.8.

Through Figure 1.8, we observe that the cost of all policies decreases as q increases,

which is intuitive as fewer units are depleted and require recharging. However, the main

27. By reducing γ, we can reduce the simulation horizon of each repetition
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(a) Results for n=16 (b) Results for n=160

Figure 1.7: Impact of Cross Rebalancing Cost on the Performance of Policies

observation is that as q changes, the relative performance of policies does not change. This

is especially important considering that for q > 0, both MPC and resolving control require

an excessive computational resource, as they require solving a non-standard non-linear op-

timization program each period28. Consequently, the near-optimal performance of static

control is even more critical as the difference in computational resources between static and

resolving control is much larger.

1.17.7 Impact of the Upper Threshold

For this experiment, we vary the upper threshold at all stations (assumed to be 17 previ-

ously). The results are shown in Figure 1.9.

The main observation is that we see no impact of the upper threshold on the cost of

near-optimal policies past a specific value. The reason is that these policies will not take

actions that high; hence the upper threshold restriction is redundant.

In contrast, under a low upper threshold value, both the optimal and other policies are

severely restricted in their actions. Hence we observe similar performance.

28. While static control policy also requires solving the same optimization program as resolving control,
the computation cost is one-off.
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Figure 1.8: Impact of the Depletion Probability on the Performance of Policies

1.18 Proofs of Section 1.6 Results

In this section, we prove that the fixed cost component of the mean-field rebalancing cost

can be upper bounded through a linear scaling of the Wasserstein component.

Lemma 1.6.1. Fixed cost component of the mean-field rebalancing cost satisfies

ê∑
e=1

cf,e

∞∑
b=0

1

2

∣∣∣∣x̂te,b − âte,b∣∣∣∣ ≤ ê∑
e=1

cf,e

∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣ ∀x̂t ∈ X̂, ât ∈ Â.
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Figure 1.9: Impact of the Upper Threshold on the Performance of Policies

Proof.

ê∑
e=1

cf,e

∞∑
b=0

1

2

∣∣∣∣x̂te,b − âte,b∣∣∣∣ =
ê∑
e=1

cf,e

∞∑
b=0

1

2

∣∣∣∣ b∑
d=0

x̂te,d −
b−1∑
d=0

x̂te,d −
b∑

d=0

âte,d +
b−1∑
d=0

âte,d

∣∣∣∣
≤

ê∑
e=1

cf,e

∞∑
b=0

1

2

(∣∣∣∣ b∑
d=0

x̂te,d −
b∑

d=0

âte,d

∣∣∣∣+

∣∣∣∣b−1∑
d=0

âte,d −
b−1∑
d=0

x̂te,d

∣∣∣∣)

=
ê∑
e=1

cf,e

∞∑
b=0

∣∣∣∣ b∑
d=0

(x̂te,d − â
t
e,d)

∣∣∣∣.
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CHAPTER 2

MANAGING INVENTORY IN A NETWORK:

PERFORMANCE BOUNDS FOR SIMPLE POLICIES

2.1 Introduction

Recent years have seen a rapid increase in the prevalence of vehicle sharing systems. Such

systems, which allow customers to choose where they start and end a ride, suffer from im-

balances in inventory accumulation, resulting in difficulties in managing inventory. This

problem of customers not returning reusable resources to their original pick-up locations is

prevalent in many other applications of service systems and sharing economies. Many in-

dustries address this imbalance by repositioning units (rebalancing) or sourcing units from

outside sources. Rebalancing is a significant cost driver, to the extent that in industries

such as bike-sharing, many firms report rebalancing to be the single most significant oper-

ating expense Andersen [2016]. Motivated by this, a growing number of papers look at the

rebalancing problem with customer induced relocations. Such papers’ primary objective is

to characterize optimal policies and provide methodologies to obtain near-optimal policies

under restrictive cost assumptions and small network sizes. The problem with this objective

is that it may not reflect the realities of the applications, where such assumptions do not

hold, and proposed methodologies are computationally intractable in large-scale settings.

Consequently, in practice, decision-making is done by using heuristics for which there are no

optimality guarantees available in the literature. Motivated by this gap between industry

realities and the current state of the research literature, our objective in this paper is to

evaluate and bound the performance of the most common policies used in practice.

In our paper, we consider the joint optimization of rebalancing (moving units between

stations of a system) and sourcing (moving units from/to stations to/from exterior sources)

decisions in the lost-sales setting with customer induced relocations, while allowing for cor-

relations in demand distributions of different stations. Within this framework, we analyze
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three classes of commonly implemented policies. We look at (i) fixed target policies, where

the system moves to a fixed inventory position (independent of the starting inventory posi-

tion) at each period, (ii) no action policy, which never rebalances/sources/withdraws units

and allows inventory to evolve naturally, and (iii) myopic/greedy policy, which solves for

the optimal action through neglecting continuation payoffs. We introduce a new coupling

technique to obtain worst-case performance bounds for the class of fixed target policies. We

provide further insight on cost regimes where such policies are effective. For the no action

policy, we provide a methodology to obtain a worst-case performance bound and address

cost settings where this policy performs well. We provide tight instances for the worst-case

bounds of fixed target policies and the no action policy. Lastly, we compare these policies

with the myopic/greedy policy.

Our work is inspired by the transshipment literature, which looks at simultaneously

rebalancing and sourcing units to meet demand. For the transshipment problem with two

stations, Abouee-Mehrizi et al. [2015] show that optimal policies have a threshold structure.

Chen et al. [2015] extend the proof of such results using discrete convexity. A critical

difference from this stream of work to ours is that customers consume units instead of

relocating them.

Our work is also closely related to proactive rebalancing, where the system rebalances

before observing demand, and excessive demand is lost. Here, Zhao et al. [2020] characterize

optimal policies for a setting with fixed costs and propose a tractable heuristic. Benjaafar

et al. [2022a] provide a characterization of optimal policies and also provides a cutting plane

algorithm to obtain an optimal policy under cost assumptions. Another paper in this stream,

He et al. [2020], look at a distributionally robust optimization model and shows the strong

performance of the proposed policy through numerical examples. One major difference of

our work from these is that in contrast to characterizing the optimal policy, we work on

evaluating and bounding commonly used policies in practice. Other significant differences in

our setting are that these papers assume the total number of units in circulation is fixed and
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only allow rebalancing between stations and make restrictive assumptions on the underlying

cost parameters to prove structural properties such as convexity.

2.2 Problem Definition

We model the joint rebalancing/sourcing problem as an infinite horizon, discounted, discrete-

time Markov Decision Process with a discrete state and action space. We let γ denote

the discount rate (where γ < 1) and consider a general network with n stations (nodes).

At the start of each period, the central planner observes state x = [x1, · · · , xn], which

corresponds to the number of units in each station. We assume that the initial total number

of units is bounded, with
∑n
i=1 x

(1)
i ≤ Ū < ∞. Then, the planner decides on the number

of units that will move from station i to station j and the number of units that will move

to/from the stations from/to an exterior warehouse with an infinite capacity of units. The

planner pays a linear cost of ci,j for each unit moved from station i to station j, a sourcing

cost of cs,i for each unit moved from the warehouse to station i, and a withdrawal cost

of cm,i for each unit moved from station i to the warehouse. Given these costs, we define

a rebalancing/sourcing cost function c(x,y), corresponding to the minimum cost to reach

target inventory position y = [y1, · · · , yn] from initial inventory position x = [x1, · · · , xn]

(where x,y ∈ Nn0 ). Computed through a linear program, c(x,y) is expressed as

c(x,y) = min
n∑
i=1

n∑
j=1

ci,jwi,j +
n∑
i=1

cs,isi +
n∑
i=1

cm,imi,

s.t
n∑
j=1

wj,i −
n∑
j=1

wi,j + si −mi = yi − xi ∀i,

wi,j , si,mi ≥ 0 ∀i, j,

where wi,j denotes the number of units rebalanced from station i to station j, si denotes

the number of units sourced to station i (from the warehouse), and mi denotes the number

of units withdrawn from station i (to the warehouse). We then show that the c function
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satisfies the following fundamental property (all proofs are deferred to the appendix):

Lemma 2.2.1. The c function satisfies triangle inequality.

After rebalancing/sourcing is completed and the system moves to a new inventory position

y, a holding cost (accounting for depreciation of units) of ch,i is paid per unit in station

i ∈ 1, · · · , n, corresponding to a total holding cost of
∑n
i=1 ch,iyi. Then, we move to the last

stage, where customers start arriving at stations, pick up (if a unit is available) and relocate

units (one per customer) to randomly sampled destinations. We assume customers return

their units by the end of the period. Here, we letD = [D1, · · · , Dn] denote the vector of non-

negative, discrete valued random variables with finite mean and variance, corresponding to

the number of customers arriving at each station (demand), where min(yi, Di) units depart

station i. Furthermore, a lost-sales penalty of cp,i0 is paid for each unit of excess demand in

station i, corresponding to a total penalty cost of
∑n
i=1 cp,i(Di− yi)+. We define a function

N(y) to collect the holding and penalty costs. We label it the newsvendor function because it

resembles the classic inventory order problem under uncertain demand. We formally express

N(y) as:

N(y) =
n∑
i=1

Ni(yi) =
n∑
i=1

(
ch,iyi + cp,iE

[
(Di − yi)+]).

To denote the stochasticity in the destination stations of these departing units, we introduce

the routing vector R = [R1, · · · ,Rn] with Ri = [Ri,1, · · · , Ri,n], where Ri is a multinomial

random variable with the number of trials equal to min(yi, Di) and success probabilities are

given by [pi,1, · · · , pi,n]. Here, pi,j denotes the probability that a customer who picks up

a unit from station i drops the unit to station j. Furthermore, we assume that demand

distributions and pi,j values are perfectly known and stationary with Rt d= R and Dt d= D

for all time periods t ∈ N. Most notably, we do not assume independence of demand across

stations.

Through this formulation, we capture the stochasticity in both customer arrivals and the

destination of arriving customers. As a result, the initial inventory of the next period, as a
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function of the inventory position moved to in the current period, can be expressed as:

x
(2)
i = yi −min(yi, Di) +

n∑
j=1

Rj,i ∀i.

In this paper, we only focus on stationary policies, where a stationary policy π : Nn0 → Nn0 is

a mapping from the set of non-negative inventory positions to the set of non-negative target

inventory positions. We assume that all policies satisfy:

n∑
i=1

πi(x) ≤ Ū ∀x.

Given a policy π, we denote the discounted cost-to-go, given initial inventory position x, as

Vπ(x). Formally:

Vπ(x) = E{Dt,Rt}∞t=1

[ ∞∑
t=1

γt−1
(
c(x(t), π(x(t))) +N(π(x(t)))

)]
,

where x(1) = x. The corresponding value function is defined as

V (x) = min
π
Vπ(x).

We can also define the value function in terms of the Bellman recursion as:

V (x) = min
y
c(x,y) +N(y) + γE{D,R}

[
V (x(2))

]
.

Lastly, given an initial inventory position x, an optimal policy π∗ satisfies π∗(x) = y with

y ∈ arg min c(x,y) +N(y) + F (y).

The following basic property of an optimal policy will become important in our analysis:

Lemma 2.2.2. For any inventory position x, there exists an optimal policy satisfying

π∗(π∗(x)) = π∗(x).
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2.3 Fixed Target Policies

As discussed in Section 2.1, most of the studies on inventory rebalancing focus on the struc-

tural properties of optimal policies. This paper takes a different path to gain insight into

the policies used in practice through coupling analysis. In this section, we study one of

the most common of such policies as fixed target policies, where the system selects a target

inventory position α = [α1, · · · , αn] and moves to this inventory position regardless of the

initial inventory position. Such policies are popular because, given an α, online decision

making reduces to solving the linear program of finding the cheapest way to move to α

from the current inventory position. To this end, we let Vα(x) denote the discounted cost

under target inventory position α and show that it has a closed-form expression given by

the following lemma:

Lemma 2.3.1. For any initial inventory position x,

Vα(x) = c(x,α) +
1

1− γ

(
N(α) + γE{D,R}

[
c(x(2),α)

])
.

While we used the recurrent structure of a fixed target policy to express its cost through

a closed-form solution, the resultant value does not tell us anything about its performance,

which is analogous to understanding how worse this policy is with respect to an optimal

policy. This motivates a primary result of our paper, developing a proof methodology to

bound the performance of any fixed target policy.

2.3.1 Proving a Worst-Case Bound Through Coupling

In this subsection, we are concerned with a single objective, finding a worst-case bound to

the ratio
Vα(x)
V (x)

for any α and inventory position x. The mathematical difficulty here is that

optimal policies and the fixed target policy move to different inventory positions, inducing

different inventory positions in later periods. We take the primary step to overcome this

issue in the following theorem, where we prove that we can construct this bound through a
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coupling technique that uses the structure of a fixed target policy to express the cost of the

fixed target policy at the sequence of states visited by an optimal policy. Using this technique,

we upper bound the ratio of the costs under the two policies through a maximization problem

which solves for an inventory position maximizing the ratio of modified per-period costs of

the two policies. We present the formal theorem below:

Theorem 2.3.2. For any α and inventory position x, discounted cost Vα(x) satisfies:

Vα(x)

V (x)
≤ max
z∈Xx

c(z,α) +N(α) + γCα
c(z, π∗(z)) +N(π∗(z))

,

Cα = E{D,R}
[
c(x(2,1),α)

]
,

x(2,1) denotes the random vector for the inventory position after demand and routing real-

ization when the action taken is α and Xx is expressed as

Xx = {z : ∃T, π∗ s.t P
[
x(T ) = z

]
> 0 ∨ P

[
π∗(x(T )) = z

]
> 0}.

While Theorem 2.3.2 is an essential step in bounding the performance of fixed target

policies, it presents difficulties in using it in its current form. The optimization problem

providing the bound requires evaluating an optimal policy, which provides a dilemma as

we are working with fixed target policies because of the difficulty of solving for an optimal

policy. We solve this problem through the assistance of the following proposition, which

provides an important property for this optimization problem.

Proposition 2.3.3. There ∃z∗ satisfying:

z∗ ∈ arg max
z∈Xx

c(z,α) +N(α) + γCα
c(z, π∗(z)) +N(π∗(z))

,

z∗ = π∗(z∗).

The proposition allows us to add the constraint z = π∗(z) to the optimization problem

provided in Theorem 2.3.2 without loss. Adding the constraint and using Lemma 2.2.2, we
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obtain:

Vα(x)

V (x)
≤ max
z∈Xx,z=π∗(z)

c(z,α) +N(α) + γCα
N(z)

,

relaxing the bound by dropping the optimal policy constraint, we get

Vα(x)

V (x)
≤ max
z∈Xx

c(z,α) +N(α) + γCα
N(z)

.

Given the above bound, we can derive tight cases for instances where we can compute

elements of Xx. One such instance is the following: a single station system where demand

is deterministic and equal to λ, α = λ, the initial inventory position x satisfies x > λ, γ = 0,

and cp > cm > ch.

We solve for the optimal action with these parameters, obtaining π∗(x) = x. As we

are dealing with a single station problem, all λ units departing return to the station by

the end of the period, providing Xx = {x}. Computing the numerator of the bound gives

(x− λ)cm + λch. Inputting these values to the bound, we show that it is tight with

Vα(x)

V (x)
= max
z∈Xx

c(z,α) +N(α) + γCα
N(z)

=
(x− λ)cm + λch

xch
.

In most realistic settings, however, solving for the elements of Xx is computationally in-

tractable, so we relax the constraint z ∈ Xx to obtain our final bound; providing

Vα(x)

V (x)
≤ max
z∈Nn0 ,

∑n
i=1 zi≤Ū

c(z,α) +N(α) + γCα
N(z)

. (2.3.1)

Under Equation (2.3.1), we quantify the two differences a fixed target policy has from an

optimal policy. First, the per-period costs will differ from an optimal policy under a fixed

target policy, as the actions are different. The term c(z,α) + N(α)−N(z) represents this

component, where the negative terms were canceled out in the process. Second, as discussed

previously, the system will reach different inventory positions under different policies, and

we bound the cost of the system moving to states induced by the fixed target policy rather
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than an optimal policy through γCα.

Equation (2.3.1) also implies that the difference between fixed target policies and the op-

timal policy is driven by the rebalancing/sourcing necessary for fixed target policies, which

is intuitive as fixed target policies require excessive rebalancing/sourcing. Imbalanced net-

works further exacerbate this cost difference, as excessive rebalancing/sourcing is required

to move the system back to the same inventory position each period. Consequently, fixed

target policies perform better in systems where moving units are cheap; because, in that

case, optimal policies also excessively move units to minimize newsvendor costs (we study a

policy to this end in the following subsection). However, optimal policies seldom move units

in systems with high rebalancing/sourcing costs, causing the difference in costs.

While discussing the implications of Equation (2.3.1), one important observation is that

this bound holds for all fixed target policies and consequently provides large values for inef-

fective selections of α, as these policies perform poorly. As a result, we defer the discussion

on computing values for the worst-case bound to Subsection 2.3.3 after introducing a method

for selecting α.

2.3.2 Newsvendor Policy

Whether the rebalancing/sourcing costs are low or high, the selection of α is important

for the performance of a fixed target policy. Using Lemma 2.3.1, we can solve for the cost

minimizing α through:

α∗ ∈ arg min
α

c(x,α) +
1

1− γ

(
N(α) + E{D,R}

[
c(x(2),α)

])
. (2.3.2)

Unfortunately, for most systems, solving (2.3.2) is computationally intractable. While it is

possible to simulate E{D,R}
[
c(x(2),α)

]
for a specific α, the number of simulations necessary

to accurately capture the 2n dimensional probability transition matrix from α to all possible

realizations of x(2) is computationally intractable. Building over the earlier observation that
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fixed target policies are effective when the rebalancing/sourcing costs are low, we propose

another fixed target policy aimed at such cost regimes by choosing an α satisfying (assuming

∃K s.t.
∑n
i=1Ki ≤ Ū):

K ∈ arg min
α

N(α).

Under the newsvendor policy, the system moves to K (newsvendor solution) at every period.

If the sourcing costs cs = [cs,1, · · · , cs,n] and withdrawal costs cm = [cm,1, · · · , cm,n] are

equal to 0; c(x,y) = 0 ∀x,y and this policy is optimal as Equation (2.3.1) provides

VK(x)

V (x)
≤ max

z

N(K)

N(z)
= 1.

Easy to compute, the newsvendor policy is beneficial when rebalancing/sourcing is cheap

but ill-equipped when rebalancing/sourcing is expensive. To approach such instances, we

consider another established policy, a direct opposite to the newsvendor policy, in Section

2.4.

2.3.3 Interpreting the Bound

While we proved a worst-case bound for the class of fixed target policies, the bound is hard to

interpret due to the underlying optimization program providing its value. To provide insight,

we consider a more simplified setting where all stations have identical holding and penalty

costs, cs = cs,i = cm,i ∀i (system has a homogeneous sourcing cost) and
ci,j
2 > cs ∀i, j (all

units move through sourcing). We only use a single cost parameter for rebalancing/sourcing

through these assumptions. Furthermore, we can establish that:

lim
z→∞

c(z,α) +N(α) + γCα
N(z)

=
cs
ch
.

This expression holds as when zi →∞ ∀i, c(z,α) increases with rate ncs and N(z) increases

with rate nch. For large Ū , this value provides a good approximation for the maximization
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program when sourcing costs are high. While this indicates a high magnitude for the bound

for large cs, as discussed earlier, the optimal policy does not rebalance when rebalancing/-

sourcing costs are high. Excluding extreme cases where fixed target policies do not require

rebalancing/sourcing (such as if α = x = 0), cost under a fixed target policy is linear in cs

through Lemma 2.3.1. As a result, the ratio of the two costs becomes linear in cs for large

cs, which the bound captures.

One of our main goals through this bound will be to compute lower-bounds on cost

regimes where fixed target policies can be considered, which we do so through a numerical

experiment. We further assume that α = K, n = 10, γ = 0.9, Ū = 10, 000, ch = 1, cp = 2,

pi,j = 1
n ∀i, j, and demand at each station is an i.i.d. Poisson random variable with mean

λ = 6. Given these values, we compute the bound for different cs. To do that, we first

simulate CK
cs

by simulating 10,000,000 instances of demand and routing realizations and

computing the average number of units sourced/withdrawn. Inputting CK
cs

, for each cs

value, we compute the bound and provide the results in Figure 2.1.

As seen in Figure 2.1, value of the bound is approximately equal to cs/ch for cs ≥ 2. As

cs increases, all fixed target policies will approach the cs
ch

line due to the above reasons. Most

importantly, the bound indicates that fixed target policies are near-optimal for 0 < cs < cp.

This cost regime is critical to address as it is feasible in real-life applications and where

fixed target policies are thought to be effective. We quantify this performance through this

bound, which can be helpful to practitioners who now have a better theoretical sense of

a simple heuristic’s performance (or loss of performance) in a complex problem structure.

Furthermore, while we have assumed that units only move through sourcing to simplify

the analysis, cheaper local rebalancing options are available in real-life settings. While not

demonstrated in Figure 2.1, the bound also considers such options and can show that the

newsvendor policy performs even better at such settings (as the rebalancing cost function is

only at the numerator).

To approach settings with high rebalancing/sourcing costs, we consider another estab-
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Figure 2.1: Computing the Worst-Case Bound for Newsvendor Policy

lished policy, directly opposite to the newsvendor policy, in the next section.

2.4 No Action Policy

In settings where rebalancing/sourcing is expensive, an optimal policy transitions from one

which excessively rebalances/sources units to a policy with minimal rebalancing/sourcing.

Useful in such settings, we look at the no action policy, which, as the name implies, never

moves units. Formally, letting πN denote the no action policy, πN (x) = x for any inventory

position x.

As in the previous section, our main concern will be to generalize the performance of this

policy in different cost/network settings through a worst-case bound.
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2.4.1 Proving a Worst-Case Bound

As in Section 2.3.1, we are concerned with a single goal, finding a worst-case bound to

the ratio
V
πN

(x)

V (x)
for any inventory position x. The mathematical difficulty is the same as

the no action policy reaches different inventory positions than an optimal policy. However,

our approach to resolving this difficulty is different. Instead of coupling over the inventory

trajectory of an optimal policy, we will first generate the bound by looking at an alternative

setting where rebalancing is free. Then, using our results from the previous section to

establish an optimal policy in that setting, we will prove a worst-case bound for that setting

that can be generalized. Finally, we present the theorem below:

Theorem 2.4.1. Given any initial inventory position x, the no action policy πN satisfies:

VπN (x)

V (x)
≤ N(0)

N(K)
+

1

N(K)
max

j∈{1,··· ,n}

(
Nj(

n∑
i=1

xi)−Nj(0)

)
.

p1,2=1

p2,1=0

p1,1=0 p2,2=11 2

Figure 2.2: Two Station Feedforward Network

The worst-case bound provided in Theorem 2.4.1 follows intuition as due to the lack of

rebalancing/sourcing, most units collect over time in stations with the highest net inflow

rates. The bound merely considers the worst possible scenario where the station that starts

with all the units keeps these units while also having the highest increase in the newsvendor

cost. We formalize this scenario by providing an instance where the worst-case bound is

tight. We look at the network defined in Figure 2.2 and assume that demand at both

stations is identical, holding and penalty costs are homogeneous, x1 = 0, and cs, cm = 0.
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First, through Theorem 2.4.1, we have

VπN (x)

V (x)
≤ N1(0) +N2(x2)

N(K)
.

Second, as cs, cm = 0, newsvendor policy is optimal and

V (x) =
∞∑
t=1

γt−1N(K).

Third, for VπN (x), due to the feed-forward structure of the network, all x2 units in station

2 will remain there, providing

VπN (x) =
∞∑
t=1

γt−1
(
N1(0) +N2(x2)

)
.

Taking the ratio, we show tightness with

VπN (x)

V (x)
=
N1(0) +N2(x2)

N(K)
.

2.4.2 Interpreting the Bound

Similar to the discussion for the worst-case bound of fixed target policies, the bound for the

no action policy depends on the cost parameters, albeit with different correlations. To show

this dependence, we focus on a system with n stations, identical deterministic demand of λ

at each station, and identical penalty and holding costs (with cp ≥ ch). Under this setting,

K = λ, and we can express the worst-case bound of the no action policy as:

VπN (x)

V (x)
≤
nλcp + cp(λ−

∑n
i=1 xi)

+ + ch
∑n
i=1 xi − λcp

nλch
,

letting
∑n
i=1 xi = λ (which also minimizes the above expression with respect to

∑n
i=1 xi),

=
nλcp + chλ− λcp

nλch

=
1

n
+
n− 1

n

cp
ch
. (2.4.1)

This expression follows intuition as the no action policy is effective when paying the penalty

costs to avoid moving units is cheaper. In the case where ch = cp,
1
n + n−1

n
cp
ch

= 1 as in this

case, it is optimal to not rebalance/source units. Conversely, as the penalty cost increases,
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the optimal policy transitions to a newsvendor policy and excessively rebalances/sources

units to avoid paying penalty costs, with the ratio of the costs depending on the penalty

cost.

To compute the no action policy worst-case bound in the stochastic setting, we construct

at a similar setup to above (n stations, identical penalty and holding costs) but assume∑n
i=1 xi = K and that demand at each station is an i.i.d. Poisson random variable with

mean λ. Given this setting, the realization of K depends on the values of ch, cp, and λ.

Furthermore, we can express the worst-case bound of the no action policy as:

VπN (x)

V (x)
≤
nλcp + cpE

[
(D −K)+

]
+ chK − λcp

nKch + ncpE [(D −K)+]
. (2.4.2)

We let ch = 1 and compare, for different realizations of cp, no action worst-case bound

values for the deterministic system (provided in Equation (2.4.1)) and the stochastic system

(provided in Equation (2.4.2)). We provide the results in Figure 2.3.

As seen in Figure 2.3, the bound provides significantly lower results when there is vari-

ability in demand, as in that case, the optimal policy also suffers from paying penalty costs.

The worst-case bound incorporates the effectiveness of the no action policy when the penalty

costs are low but, more importantly, includes the stochasticity of the system through the

expected penalty cost parameter in the denominator. While we expect an optimal policy to

have higher costs under higher demand variability, quantifying this is difficult, especially in

networked settings. The worst-case bound does quantify this effect and informs practitioners

of the costs faced when the system does not actively reposition units given demand uncer-

tainty. It also allows us to understand the difficulty of rebalancing/sourcing and increasing

costs a system suffers under rising variability better.
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Figure 2.3: Computing the Worst-Case Bound for the No Action Policy

2.5 Myopic Policy

We proved a worst-case performance bound for fixed target policies in Section 2.3 and a

worst-case performance bound for the no action policy in Section 2.4. In both cases, the

bounds are optimization problems dependent on system parameters and indicate that these

policies perform well in some cost regimes and poorly in others. We now show that some

standard policies can perform arbitrarily bad. To this end, we evaluate the myopic/greedy

policy, which solves the problem assuming that γ = 0. Formally, the myopic policy, for any

initial inventory position x, solves

πM (x) ∈ arg min
y
c(x,y) +N(y).
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The myopic policy is a popular benchmark in inventory management papers. Comparing

the myopic policy with the newsvendor policy, we observe that the myopic policy solves the

problem at each period, assuming that γ = 0. In contrast, the newsvendor policy solves the

problem assuming that cs, cm = 0. Even though cs, cm = 0 is a stronger assumption (as

it indirectly disregards both rebalancing costs and continuation payoffs where γ = 0 only

disregards continuation payoffs), we provide an example where the myopic policy performs

arbitrarily worse than the newsvendor policy.

For this example, we use the network given in Figure 2.2. For this example, we will relax

our previous restriction and let Ū = ∞, as our goal is to show a setting where the total

number of units in circulation under the myopic policy explodes. We further assume that

demand at both stations is deterministic with mean λ > 0 while holding and penalty costs are

homogeneous. We also assume that problem parameters satisfy: (i)
c1,2
2 =

c2,1
2 > cs = cm,

(ii) cp > 2cs > 2ch, (iii) x1 = x2 = λ.

Lemma 2.5.1. Given the above network structure, demand distribution, and cost assump-

tions,

lim
γ→1−

VπM ([λ, λ])

VK([λ, λ])
=∞.

The poor performance of the myopic policy for γ close to 1 can be generalized to other

networks and demand distributions. When penalty costs are high, holding costs are low, and

it is cheaper to move units from the warehouse rather than through stations, the myopic

policy moves units to the system to avoid penalty costs but does not withdraw units. This

causes an inflow of units at some stations with no outflow in others. Consequently, the

number of units and incurred holding costs explode (unless constrained by Ū). Policies such

as the no action policy and fixed target policies, where a constant number of units are in

circulation, do not suffer from this problem.
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2.6 Concluding Remarks

In this work, we considered an inventory rebalancing/sourcing problem and evaluated/bounded

the performance of commonly practiced policies. Thus, we took a step in bridging the gap

between the current set of papers, which focus on the characterization of near-optimal poli-

cies that can be identified only possible under restrictive assumptions, and industry practice

of using simple heuristics for which no performance guarantees were known as yet.

An important future direction of our work would be using the policies and performance

bounds we provided to construct more complex policies with theoretical guarantees. One

way to do so would be to construct hybrid policies that use fixed target policies at some

stations and the no action policy at others.

2.7 Proofs of Results

Lemma 2.2.1. The c function satisfies triangle inequality.

Proof. We want to show that ∀x,y, z,

c(x,y) ≤ c(x, z) + c(z,y).

Let w̄i,j |ni=1|
n
j=1, s̄i|

n
i=1, m̄i|ni=1 be an optimal solution of c(x, z) and let

ŵi,j |ni=1|
n
j=1, ŝi|

n
i=1, m̂i|ni=1 be an optimal solution of c(z,y). Then, w̄i,j + ŵi,j |ni=1|

n
j=1, s̄i +

ŝi|ni=1, m̄i+m̂i|ni=1 is clearly a feasible solution for c(x,y) with cost equal to c(x, z)+c(z,y).

With no guarantee that this solution is optimal for c(x,y), we prove the lemma.

Lemma 2.2.2. For any inventory position x, there exists an optimal policy satisfying

π∗(π∗(x)) = π∗(x).

Proof. We use proof by contradiction where we assume that ∃x̄ such that for all optimal
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policies,

π∗(π∗(x̄)) 6= π∗(x̄).

First, we let F (y) denote the continuation payoff with

F (y) = γE{D,R}
[
V (x(2))

]
,

to differentiate between the continuation payoffs of two actions. From the optimality of

π∗(x̄) at inventory position x̄:

c(x̄, π∗(x̄)) +N(π∗(x̄)) + F (π∗(x̄)) ≤ c(x̄, π∗(π∗(x̄))) +N(π∗(π∗(x̄))) + F (π∗(π∗(x̄))).

From the optimality of π∗(π∗(x̄)) at inventory position π∗(x̄):

c(π∗(x̄), π∗(π∗(x̄)))+N(π∗(π∗(x̄)))+F (π∗(π∗(x̄))) < c(π∗(x̄), π∗(x̄))+N(π∗(x̄))+F (π∗(x̄)).

Summing the two equations and canceling out:

c(x̄, π∗(x̄)) + c(π∗(x̄), π∗(π∗(x̄))) < c(x̄, π∗(π∗(x̄))).

Through Lemma 2.2.1, we have reached a contradiction and thus proved the given lemma.

Lemma 2.3.1. For any initial inventory position x,

Vα(x) = c(x,α) +
1

1− γ

(
N(α) + γE{D,R}

[
c(x(2),α)

])
.

Proof. We have that

Vα(x) = c(x,α) + Vα(α),

Vα(α) = N(α) + γE{D,R}
[
c(x(2),α)

]
+ γVα(α).
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Solving the equations simultaneously, we obtain:

Vα(x) = c(x,α) +
1

1− γ

(
N(α) + γE{D,R}

[
c(x(2),α)

])
.

Theorem 2.3.2. For any α and inventory position x, discounted cost Vα(x) satisfies:

Vα(x)

V (x)
≤ max
z∈Xx

c(z,α) +N(α) + γCα
c(z, π∗(z)) +N(π∗(z))

,

Cα = E{D,R}
[
c(x(2,1),α)

]
,

x(2,1) denotes the random vector for the inventory position after demand and routing real-

ization when the action taken is α and Xx is expressed as

Xx = {z : ∃T, π∗ s.t P
[
x(T ) = z

]
> 0 ∨ P

[
π∗(x(T )) = z

]
> 0}.

Proof. First, we have that

Vα(x)−V (x) = c(x,α)+N(α)+γE{D,R}
[
Vα(x(2,1))− V (x(2,2))

]
−c(x, π∗(x))−N(π∗(x)),

(2.7.1)

where x(2,1) denotes the random vector for the inventory position after demand realization

and routing when the action taken isα and x(2,2) denotes the random vector for the inventory

position after demand realization and routing when the action taken is π∗(x). Furthermore,

Vα(x(2,1)) = c(x(2,1),α) + Vα(α),

Vα(x(2,2)) = c(x(2,2),α) + Vα(α),

Vα(x(2,1)) = c(x(2,1),α)− c(x(2,2),α) + Vα(x(2,2)) (2.7.2)

For ease of notation, let E{D,R}
[
c(x(2,1),α)

]
= Cα. Inputting Equation (2.7.2) into Equa-
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tion (2.7.1), we obtain

Vα(x)− V (x) = c(x,α) +N(α) + γCα − γE{D,R}
[
c(x(2,2),α)

]
+ γE{D,R}

[
Vα(x(2,2))− V (x(2,2))

]
− c(x, π∗(x))−N(π∗(x))

≤ c(x,α) +N(α) + γCα

+ γE{D,R}
[
Vα(x(2,2))− V (x(2,2))

]
− c(x, π∗(x))−N(π∗(x)).

We can repeat the same step for the future inventory positions reached to obtain

Vα(x)− V (x) ≤ E{Dt,Rt}∞t=1

[ ∞∑
t=1

γt−1
(
c(x(t),α) +N(α)

+ γCα − c(x(t), π∗(x(t)))−N(π∗(x(t)))

)]
,

where the stochastic process x(t) is the inventory position under an optimal policy. Using

this bound, we have:

Vα(x)

V (x)
= 1 +

Vα(x)− V (x)

V (x)

≤ 1+

E{Dt,Rt}∞t=1

[∑∞
t=1 γ

t−1

(
c(x(t),α) +N(α) + γCα − c(x(t), π∗(x(t)))−N(π∗(x(t)))

)]
E{Dt,Rt}∞t=1

[∑∞
t=1 γ

t−1

(
c(x(t), π∗(x(t))) +N(π∗(x(t)))

)]
= 1 +

∑∞
k=1mk∑∞
k=1 nk

,

where:

m1 = c(x(1),α) +N(α) + γCα − c(x(1), π∗(x(1)))−N(π∗(x(1)))

mk = γk−1E{Dt,Rt}k−1
t=1

[
c(x(k),α) +N(α) + γCα − c(x(k), π∗(x(k)))−N(π∗(x(k)))

]
∀k > 1

n1 = c(x(1), π∗(x(1))) +N(π∗(x(1)))

nk = γk−1E{Dt,Rt}k−1
t=1

[
c(x(k), π∗(x(k))) +N(π∗(x(k)))

]
∀k > 1.
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Furthermore, let Xk be the set of all inventory positions that the system can be in at

period k, with non-zero probability (there exists a sequence of feasible demand and routing

probabilities where the system reaches this inventory position in period k). As both the

numerator and the denominator follow an optimal policy (we can assume they follow the

same optimal policy in the case where the optimal policy is not unique without loss), the

set of inventory positions Xk, as well as the corresponding probabilities of reaching these

inventory positions, will be identical. Then,

mk

nk
=

∑
x
(k)
1 ∈X

k P
[
x(k) = x

(k)
1

](
c(x

(k)
1 ,α) +N(α) + γCα − c(x(k)

1 , π∗(x
(k)
1 ))−N(π∗(x

(k)
1 ))

)
∑
x
(k)
1 ∈X

k P
[
x(k) = x

(k)
1

](
c(x

(k)
1 , π∗(x

(k)
1 )) +N(π∗(x

(k)
1 ))

) .

Through this construction, we can further expand all mk, nk values through assigning an

index to each inventory position x
(k)
e ∈Xk, with

mk =

|Xk|∑
e=1

mk,e,

mk,e = γk−1P
[
x(k) = x

(k)
e

](
c(x

(k)
e ,α) +N(α) + γCα − c(x

(k)
e , π∗(x(k)

e ))−N(π∗(x(k)
e ))

)
,

nk =

|Xk|∑
e=1

nk,e,

nk,e = γk−1P
[
x(k) = x

(k)
e

](
c(x

(k)
e , π∗(x(k)

e )) +N(π∗(x(k)
e ))

)
,

where |Xk| denotes the cardinality of set Xk. Then, we have:

Vα(x)

V (x)
≤ 1 +

∑∞
k=1

∑|Xk|
e=1 mk,e∑∞

k=1

∑|Xk|
e=1 nk,e

.

Letting

z∗ = max
k,e

mk,e

nk,e
,
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through the definition of a maximum,

z∗ ≥
mk,e

nk,e
∀k, e

z∗nk,e ≥ mk,e

z∗
∞∑
k=1

|Xk|∑
e=1

nk,e ≥
∞∑
k=1

|Xk|∑
e=1

mk,e

z∗ ≥
∑∞
k=1

∑|Xk|
e=1 mk,e∑∞

k=1

∑|Xk|
e=1 nk,e

.

As the probabilities and the discount rates cancel out, we can bound the ratio of the policies

through solving for an inventory position maximizing the ratio of modified per-period costs

of the policies. Consequently:

Vα(x)

V (x)
≤ 1 + max

z∈Xx

c(z,α) +N(α) + γCα − c(z, π∗(z))−N(π∗(z))

c(z, π∗(z)) +N(π∗(z))

= max
z∈Xx

c(z,α) +N(α) + γCα
c(z, π∗(z)) +N(π∗(z))

,

where

Xx = {z : ∃T, π∗ s.t P
[
x(T ) = z

]
> 0 ∨ P

[
π∗(x(T )) = z

]
> 0}.

Here, the set Xx is expanded to include the set of inventory positions for which

P
[
x(T ) = z

]
= 0 but P

[
π∗(x(T )) = z

]
> 0. The motivation for this will be clear in the

next proposition.

Before concluding the proof, we also need to establish an important property for the

set Xx and therefore the resultant maximization program. As we are working with infinite

horizon programs, T (the period which the system can move to z∗) is unbounded with T ∈ N.

However, we can show that |Xx| <∞ (all optimal policies visit some states infinitely often)

as the number of units post-rebalancing/sourcing is bounded with Ū and the total number

of units in circulation do not change through state-transitions. Letting X be the set of

all feasible inventory positions, as there are n stations and at most Ū units in circulation,
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|X| = (n+Ū+1)!

Û !(n−1)!
<∞. Furthermore, as some of these inventory positions may be unreachable

through an optimal policy, we have Xx ⊂X and consequently |Xx| <∞ . We also know that

the newsvendor and rebalancing cost functions output finite values for bounded inventory

positions/actions. Consequently, as the number of inventory positions in Xx is finite and

the costs are bounded (as the inventory positions/actions are bounded), an optimal solution

for the maximization problem always exists.

Proposition 2.3.3. There ∃z∗ satisfying:

z∗ ∈ arg max
z∈Xx

c(z,α) +N(α) + γCα
c(z, π∗(z)) +N(π∗(z))

,

z∗ = π∗(z∗).

Proof. We prove the proposition through contradiction where we assume all optimal solu-

tions z∗ of the optimization problem provided in Theorem 2.3.2 satisfy (proof of Theorem

2.3.2 establishes that an optimal solution always exists):

z∗ 6= π∗(z∗). (2.7.3)

Through the extended definition of Xx, for any inventory position z, if z ∈ Xx, ∃π∗ such

that π∗(z) ∈ Xx. As a result, for any optimal solution z∗, Equation (2.7.3) is equivalent to:

c(z∗,α) +N(α) + γCα
c(z∗, π∗(z∗)) +N(π∗(z∗))

>
c(π∗(z∗),α) +N(α) + γCα

c(π∗(z∗), π∗(π∗(z∗))) +N(π∗(π∗(z∗)))
,

by Lemma 2.2.2,

c(z∗,α) +N(α) + γCα
c(z∗, π∗(z∗)) +N(π∗(z∗))

>
c(π∗(z∗),α) +N(α) + γCα

N(π∗(z∗))
,
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by Lemma 2.2.1,

c(z∗, π∗(z∗)) + c(π∗(z∗),α) +N(α) + γCα
c(z∗, π∗(z∗)) +N(π∗(z∗))

>
c(π∗(z∗),α) +N(α) + γCα

N(π∗(z∗))
c(z∗, π∗(z∗))

c(z∗, π∗(z∗)) +N(π∗(z∗))

>

(
c(π∗(z∗),α) +N(α) + γCα

)(
1

N(π∗(z∗))
− 1

c(z∗, π∗(z∗)) +N(π∗(z∗))

)
1 >

(
c(π∗(z∗),α) +N(α) + γCα

)
1

N(π∗(z∗))

0 > c(π∗(z∗),α) +N(α) + γCα −N(π∗(z∗)),

by Lemma 2.2.1,

0 > c(z∗,α)− c(z∗, π∗(z∗)) +N(α) + γCα −N(π∗(z∗)).

This contradicts with the proof of Theorem 2.3.2, where it was clearly implied that

0 ≤ max
z∈Xx

c(z,α)− c(z, π∗(z)) +N(α) + γCα −N(π∗(z))

c(z, π∗(z)) +N(π∗(z))

0 ≤ max
z∈Xx

c(z,α)− c(z, π∗(z)) +N(α) + γCα −N(π∗(z)).

Consequently, we reached a contradiction and proved the given proposition.

Theorem 2.4.1. Given any initial inventory position x, the no action policy πN satisfies:

VπN (x)

V (x)
≤ N(0)

N(K)
+

1

N(K)
max

j∈{1,··· ,n}

(
Nj(

n∑
i=1

xi)−Nj(0)

)
.

Proof. First, we have

0 ∈ arg max
{cs,cm}

VπN (x)

V (x)
∀x,

as VπN (x) is constant in cs, cm and V (x) is clearly nondecreasing in cs, cm. This implies

that we can bound
V
πN

(x)

V (x)
assuming that cs, cm = 0, where we already established the
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optimality of the newsvendor policy. Consequently,

VπN (x)

V (x)
≤ E{Dt,Rt}∞t=1

[∑∞
t=1 γ

t−1N(x(t))∑∞
t=1 γ

t−1N(K)

]
,

where the numerator is the exact expression for VπN (x) and the denominator is the exact

expression for V (x), when cs, cm = 0. As in the proof of Theorem 2.3.2, the z value

maximizing
N(z)
N(K)

will upper-bound the above expression, providing

VπN (x)

V (x)
≤ 1

N(K)
max
z

N(z)

s.t
n∑
i=1

zi =
n∑
i=1

xi.

We then claim that N(z) is convex in z, which holds as both ch,izi and cp,iE
[
(Di − zi)+

]
is

convex in zi ∀i. Consequently, the worst-case bound is solved through a convex maximization

problem. Furthermore, we can relax the domain of the problem to allow for non-integer z

values, with

max
z∈Nn0 ,

∑n
i=1 zi=

∑n
i=1 xi

N(z) ≤ max
z∈Rn+,

∑n
i=1 zi=

∑n
i=1 xi

N(z).

As the feasible region of this maximization problem is compact, convex, and non-empty, and

N(z) is convex in z, an optimal solution is an extreme point of the feasible set. As a result,

one station has
∑n
i=1 xi units under this optimal solution and the other n− 1 stations have

0 units. Then:

VπN (x)

V (x)
≤ N(0)

N(K)
+

1

N(K)
max

j∈{1,··· ,n}

(
Nj(

n∑
i=1

xi)−Nj(0)

)
.

Lemma 2.5.1. Given the above network structure, demand distribution, and cost assump-

tions,

lim
γ→1−

VπM ([λ, λ])

VK([λ, λ])
=∞.
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Proof. We first solve for the myopic policy. To do that, we first let xi < λ for station i.

Increasing xi by 1 would change myopic cost by cs + ch − cp < 0 (as moving units through

the warehouse is cheaper than rebalancing between stations), so it is optimal to increase xi

up to λ. At xi = λ, decreasing one unit will change cost by cm + cp− ch > 0, and increasing

one unit will change cost by cs + ch > 0, so it is optimal to stay at xi. Lastly, for xi > λ,

decreasing xi by 1 would change myopic cost by cm − ch > 0, and increasing xi by 1 would

change myopic cost by cs + ch > 0 so staying at xi is optimal. As cost parameters and

demand distributions are identical for both stations (transition probabilities do not affect

the myopic policy as it is single-staged), the myopic policy is a threshold policy at both

stations where inventory is moved up to λ if below λ and unchanged if already above or

equal to λ. The resultant cost is then given by

VπM ([λ, λ]) = 2λch+γλcs+γ3λch+γ2λcs+γ24λch+ · · · = 2λch+
∞∑
t=1

γt
(
(2+ t)λch+λcs

)
.

State transitions that provide these cost values are as follows: First period, all λ units in

station 1 move to station 2, leaving 0 units in station 1 and 2λ units in station 2. Next

period, according to the myopic policy, λ units are sent to station 1 from the warehouse.

These units also move to station 2 at the end of the period leaving 0 units in station 1 and

3λ units in station 2. As a result, the number of units in station 2 increases by λ each

subsequent period.

Now, consider the newsvendor policy where we have K1 = K2 = λ (directly follows from

cp > ch and deterministic demand). The resultant cost is given by

VK([λ, λ]) = 2λch + γ2λcs + γ2λch + γ22λcs + γ22λch + · · · = 2λch +
∞∑
t=1

γt(2λch + 2λcs).

State transitions that provide these cost values are as follows: First period, all λ units in

station 1 move to station 2, leaving 0 units in station 1 and 2λ units in station 2. Next

period, λ units move to station 1 from the warehouse, and λ units move from station 2 to
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the warehouse. Then, all λ units in station 1 again move to station 2, leaving 0 units in

station 1 and 2λ units in station 2, providing the cost expression.

Taking the ratio of the costs under the two policies, we obtain:

VπM ([λ, λ])

VK([λ, λ])
=

2λch +
∑∞
t=1 γ

t
(
(2 + t)λch + λcs

)
2λch +

∑∞
t=1 γ

t(2λch + 2λcs)
.

As γ approaches 1, the above ratio explodes with limγ→1−
V
πM

([λ,λ])

VK([λ,λ])
=∞.
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CHAPTER 3

CONCLUSION AND FUTURE WORK

In this dissertation, we consider the problem of managing resources for the sharing economy.

A common feature in these applications is the imbalanced traffic pattern leading to unequal

inflow and outflow rates of units at the network nodes. Labeled as the spatial imbalance

of resources, in the first chapter, we introduced a mean-field-based policy to manage these

resources while minimizing the cost of the platform. We proved that the mean-field-based

policy is asymptotically optimal in the number of stations and also provided a near-optimal

approximation algorithm to solve the mean-field model. We then showed the strong perfor-

mance of the algorithm through a numerical experiment using Austin scooter-sharing data

and other synthetic experiments. In the second chapter, we looked at simple policies already

used in practice and evaluated their performance in managing these resources. The two

chapters provide two perspectives on the same problem: Managing resources effectively to

minimize platform costs while maintaining customer service availability.

There are important directions for extending the mathematical framework we have pro-

vided in this dissertation and new applications that can be considered through the mean-field

approach. First, we have not considered dynamic pricing as a lever to manage resources,

which ride-sharing companies use. Micromobility systems, in contrast, use mostly fixed prices

with subscription models (for bike-sharing) or fixed per-minute fees (for scooter-sharing sys-

tems). Nevertheless, we believe that dynamic pricing can be used effectively with rebal-

ancing/recharging/sourcing for effective management of resources in the sharing economy.

Furthermore, under some standard assumptions (such as assuming a finite set of admissible

prices at nodes), the mean-field model we presented in Chapter 1 is compatible with also

incorporating pricing decisions, where the central planner can charge different prices at each

node for each period. The reason for this is the flexibility of our mean-field formulation

in networks, which only requires that nodes be split into a finite group of sub-types with

identical properties and the same post-rebalancing inventory. Specifically, we previously let
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âte,d denote the proportion of type-e stations that have d units after rebalancing at period

t. To incorporate dynamic pricing, we can introduce âte,d,p, which denotes the proportion

of type-e stations that have d units after rebalancing and a price of p per unit, at period t.

Then, ∑
p∈P

âte,d,p = âte,d,

where P denotes the set of all admissible prices p1, p2, .... With |P| < ∞, our results will

extend to incorporate dynamic pricing.

Extending to dynamic pricing also offers new applications in revenue and inventory man-

agement. Specifically, we can extend to applications where customers consume inventory

(instead then repositioned as we looked at in this dissertation). While dynamic pricing in

this setting has been extensively studied, a limited number of papers look at dynamic pricing

jointly with repositioning, especially considering problem properties such as fixed replenish-

ment costs. The mean-field formulation in Chapter 1 can be beneficial in understanding

these systems.

In Chapter 2, we looked at the performance of two well-known policies, newsvendor and no

action. While we focused on bike-sharing as an application, these policies have been applied

in a wide range of applications. Extending our coupling analysis into these applications to

see how these policies perform will be an important extension of work. Furthermore, in some

settings, combining the two and constructing hybrid policies may be easy to implement and

perform strongly.

Lastly, both chapters focus on micromobility systems and bike-sharing as the primary

application. “Despite the promising role that micromobility may play in sustainable trans-

portation, most regulatory approaches have not explicitly encouraged integration into trans-

port networks” Yanocha and Allan [2021]. As a result, both chapters consider the current

structure of micromobility systems in North America, where decisions are made based on the

constraints and parameters obtained from the regulatory contract signed between the mi-

144



cromobility platform and the city transportation agency. Nevertheless, in the coming years,

many city administrations are expected to move to “Shift focus from regulating micromobil-

ity to using micromobility to fill in gaps in transportation systems and focus on integration

as a path to expanded access” ITDP [2021]. While not explicitly considered in this disserta-

tion, the mathematical framework provided in this dissertation may be utilized to integrate

micromobility systems with public transportation. One example is multi-modal transporta-

tion, where people can access public transportation through bike-sharing and scooter-sharing

systems. Specifically, we can consider a set of bike/scooter-sharing stations connected to bus

stops, configuring a network within each other. Then, the mean-field analysis presented

in Chapter 1 can be used to make decisions on both rebalancing/recharging/sourcing at

micromobility stations and capacity decisions for bus stops.
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