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ABSTRACT

Accelerator-driven light sources, such as electron storage rings (SRs) and free-electron lasers

(FELs), are valuable instruments of scientific discovery thanks to their unparalleled ability

to produce extremely bright beams of X-ray light. In this thesis, we will discuss the imple-

mentation of the storage ring X-ray FEL oscillator (SRXFELO). The SRXFELO has the

potential to combine the strengths of the SR and FEL, thereby surpassing the performance

of both in terms of average photon brightness and coherence. Our analysis will be based

on a mix of theory and simulation. We begin by discussing the foundational physics of SRs

and FELs. We then zoom in on the theoretical basis of the transverse gradient undula-

tor (TGU) as a method to mitigate the SR energy spread deficiency. Next, we construct

a custom simulation framework in order to model the SRXFELO from start to end. We

use this framework to simulate a hypothetical SRXFELO design based on realistic machine

parameters, and report on projected performance and implementation strategies. Finally,

we examine challenges associated with the X-ray cavity, such as beam alignment and optical

phase purity, in the context of the Cavity-based X-ray FEL (CBXFEL) experiment located

at SLAC.
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CHAPTER 1

INTRODUCTION

The free-electron laser (FEL) was first invented and experimentally demonstrated by John

Madey and collaborators at Stanford University in the 1970s [1, 2]. In the FEL, a relativistic

electron bunch radiates coherently while following an approximately sinusoidal trajectory

under the influence of an alternating periodic array of magnetic dipoles, also known as the

undulator. The emitted radiation wavelength λ1 is given by

λ1
λu

=
1 +K2/2

2γ2r
(1.1)

where λu is the undulator period, K ≡ eB0/mcku is the undulator parameter, and γr is the

Lorentz factor of the electron bunch1. Eq. (1.1) demonstrates that the FEL can in principle

radiate at any wavelength, as long as an electron bunch of sufficient brightness2 can be

produced at the requisite γr. Indeed, the very first FELs were operational in the infrared

(IR) through visible wavelengths. Their continuous tunability, either by altering γr or K,

made them a useful complement to conventional lasers since the latter tends to be limited

by the discrete transition energies of their atomic gain media.

Even in the early years, there exists at least two different configurations of the FEL

(Fig. 1.1). The linear, high gain configuration relies on self-amplified spontaneous emission

(SASE) in which resonant energy exchange takes place between the high-current electron

bunch and the co-propagating spontaneous emission radiation field over a long undulator

system. The oscillator configuration, on the other hand, eschews high current and long

magnets in favor of enclosing a shorter undulator within a low-loss optical cavity. The high

reflectivity mirrors of the cavity entraps a recirculating photon pulse that gets progressively

1. We will discuss these parameters in deeper detail in Chapter 2.

2. The concept of brightness will be made precise later.
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Figure 1.1: Schematic of a FEL oscillator (top) and SASE FEL (bottom). Figure reproduced
from [3].

amplified turn by turn by consecutive electron bunches.

The periodic nature of the FEL oscillator makes a natural pairing with the electron

storage ring (SR) as its electron provider. When combined, the storage ring FEL oscillator

(SRFELO) behaves like a coupled oscillator system. Successfully implementations of the SR-

FELO have reached wavelengths as small as the middle UV regime (∼ 200 nm) [4]. Progress

into higher photon energies was hampered by the lack of high reflectivity mirrors at those

wavelengths.

The SASE FEL suffers from no such restriction. As early as the 1990s and 2000s, SASE

FELs have broken into the extreme UV and soft X-ray regime, for instance at the FLASH

facility in Hamburg [5]. The domain of hard X-rays was subsequently conquered by the

Linear Coherent Light Source (LCLS) at SLAC in 2009 [6]. This ushered in a new era of

productive science—the angstrom-scale X-ray regime is home to a vast array of atomic and

molecular physics, ready to be probed by the ultrabright, ultrashort photon pulses generated

by these X-ray SASE FELs. These devices continue to be hugely successful today, with new

facilities coming online all around the world [7–9].

2



In recent years, interest has been reignited in the SRFELO for X-ray energies, the so-

called storage ring X-ray FEL oscillator (SRXFELO) due to significant technological ad-

vancements available to the optical cavity [10–13]. Most crucially, highly reflective Bragg

crystals, such as diamond or silicon, in conjunction with compound refractive lens (CRL)

technology has rendered the X-ray optical cavity a physical possibility.

The SRXFELO, if realised, offers two immediate advantages over the SASE FEL—

improvements to user capacity and longitudinal coherence. The first benefit is apparent.

The SRXFELO could potentially be run parallel alongside many other user stations in a

storage ring, in contrast to the singular output of a linear SASE FEL. The improvement

to longitudinal coherence comes from the use of narrow bandwidth Bragg crystals as cavity

reflectors. A diamond mirror in the C337 configuration, for instance, has a reflectivity band-

width of ∼ 20meV at the resonant photon energy of 14.4 keV, corresponding to a relative

bandwidth of order 10−6 to 10−7. In comparison, the bandwidth of an X-ray SASE FEL at a

comparable energy is around a thousand times larger, with substantial shot-to-shot variation

due to the stochastic nature of SASE [3].

The SRXFELO represents a paradigm shift in X-ray generation, rather than a mere

incremental improvement. In the long term, the SRXFELO could serve as a testbed for

advanced laser technologies, such as frequency stabilized mode locking [14], or high-gain

harmonic generation (HGHG) in conjunction with a SASE FEL. These techniques could

unlock the potential to reach even higher photon energies (tens to hundreds of keV) and

brightness [3].

Key challenges

With all of that being said, the SRXFELO still faces substantial implementation challenges.

The goal of this thesis is to address some of these challenges, and hopefully pave the way

toward the physical realization of the SRXFELO. We will summarize the key points below,

3



while delving deeper into each topic in the subsequent chapters.

1. Electron brightness. Traditionally, the electron brightness of SRs are insufficient to

drive a FEL in the X-ray regime. With the advent of the fourth generation of SRs

(4GSRs), however, significant progress has been made. The equilibrium transverse

emittance3 in 4GSRs can be as small as tens of picometer-radians, matching the re-

quired mode size for a diffraction-limited X-ray beam. However, energy spread in the

longitudinal domain remains one order of magnitude too large. The energy spread

deficiency can be bridged by the transverse gradient undulator (TGU) [15, 16]. We

will examine this concept in detail in Chapter 3.

2. Ring-FEL coupling. The SRXFELO behaves as a coupled oscillator system, which

exhibits complex and chaotic behavior [17, 18]. Furthermore, the FEL amplification

process can lead to substantial degradation of electron beam brightness, potentially

spoiling the beam for other users [19, 20]. We will examine the beam degradation

process and discuss mitigation measures in Chapter 5.

3. Cavity stability and optical quality. The Cavity-based X-ray FEL (CBXFEL) experi-

ment, based at SLAC, aims to construct the world’s first proof-of-concept X-ray cavity

[21]. This project will test the limits of current technology, particularly in the areas

of mirror/beam stabilization and optical phase purity. In order to establish crucial

tolerances and requirements for the CBXFEL project, we will examine X-ray cavity

performance under a variety of non-ideal circumstances using numerical analysis. Nat-

ually, these simulation results are also relevant to SRXFELO. All of this will be covered

in Chapter 6.

In the process of addressing these challenges, we will introduce a hypothetical design

(Fig. 1.2) for the SRXFELO based on machine parameters realistic for current technology.

3. To be defined in Chapter 2

4



Figure 1.2: Schematic of a storage ring XFELO driven by a TGU. In the following chapters,
we will delve into the details of each principal component—TGU, storage ring, and optical
cavity.

The storage ring design is based on the PETRA-IV upgrade project [22], whereas the cavity

design is inspired by previous works [11, 12]. In order to model this design, we will also

detail the construction of a start-to-end simulation framework, which forms the numerical

backbone of this thesis project.

Thesis organization

This thesis consists of five main chapters, excluding the Introduction and Conclusion. Chap-

ter 2 begins with an introduction to the physics of relativistic electron and X-ray beams.

We will discuss the core working principles of a low gain FEL, with a focus on deriving the

gain equation. This is followed by a cursory overview of electron storage ring physics, with

an emphasis on radiation damping and equilibrium.

Chapter 3 builds upon the previous chapter and delves into the physics of the TGU in

the low gain approximation. Chapter 4 then turns our attention to the simulation aspects

of the study, with the goal of elucidating key numerical modeling principles behind each

component of the start-to-end simulation framework.

Chapter 5 discusses the design and modeling of a hypothetical SRXFELO, building upon

the theoretical and numerical foundation laid in the previous chapters. We will also exam-

5



ine some challenges related to ring-FEL coupling. Chapter 6 then turns our focus to the

CBXFEL experiment, with a particular emphasis on XFELO performance under non-ideal

optical cavity conditions. The results of this chapter ties our hypothetical SRXFELO design

to actual experiment, and represents the first step toward the physical realization of the

SRXFELO concept.

6



CHAPTER 2

THEORY FUNDAMENTALS

This chapter lays the theoretical foundation for the rest of the thesis. We will begin with

introductory beam physics concepts, followed individual sections focusing on low gain FEL

physics and storage ring dynamics.

2.1 Introductory concepts

To set the stage, we introduce here the basic terminology used to describe X-ray and rela-

tivistic electron beams.

2.1.1 Electron beam

The total energy U of an electron is given by

U = γmec
2, (2.1)

where me is the electron mass, c is the speed of light, and γ is the relativistic Lorentz factor.

Since mec
2 is constant, we will frequently use γ as a proxy variable for electron energy in

this text. In a high energy accelerator, it is not uncommon for U to reach the single GeVs

scale, with γ ranging from 103 to 104. An additional relationship between γ and the electron

velocity is

γ = (1− β⃗
2
)−1/2 (2.2)

where β⃗ ≡ v⃗/c is the normalized electron velocity. For a 5GeV electron with γ ≈ 104, the

absolute magnitude of β⃗ differs from unity by ∼ 10−9. Thus in most of this text, we will

approximate1
∣∣∣β⃗∣∣∣ ≈ 1 or equivalently |v⃗| ≈ c.

1. Care must be taken in using this approximation. Usually, this only applies to the absolute magnitude
of β⃗ appearing in prefactors. We will not perform a similar approximation for the individual components

7



Figure 2.1: Sketch depicting the particle coordinate system in a circular accelerator. The
coordinates are defined in reference to the nominal trajectory (gray curved arrow) and the
reference particle (gray circle with dashed outline). An actual particle (black circle) has
transverse position x⃗ and longitudinal position s relative to the transverse plane (gray par-
allelogram) located at the reference particle. The coordinate axes x, y, z are labelled in sans
serif typeface. Longitudinal position may also be measured relative to a fixed position in the
accelerator (not pictured).

The electron has six total degrees of freedom—three in position and three in momentum.

To set up a coordinate system, we define its origin to be a reference particle following exactly

the design trajectory of the accelerator (Fig. 2.1). Relative to this particle, we use (x, y) to

denote the horizontal and vertical position coordinates transverse to the direction of motion.

The longitudinal coordinate can be defined either in absolute terms: distance z measured

from a fixed location along the accelerator, or in relative terms: distance s measured from

the reference particle. Later on, we will also introduce pondermotive phase θ, defined relative

to the radiation wavefront, as an alternate longitudinal coordinate in FEL physics.

Following accelerator physics convention, we use (x′, y′) to denote the transverse momen-

tum coordinates, given by

x′ ≡ dx

dz
=

1

vz

dx

dt
(2.3)

βx, βy, βz when discussing FEL physics. The slight difference of βz from unity plays a crucial role in FEL
amplification. We will discuss this in detail later.

8



and similarly for y′. Here vz is the longitudinal speed of the electron. The coordinates (x′, y′)

describe the slope of the electron momentum vector relative to the design trajectory. In lieu

of a longitudinal momentum coordinate, we will use γ to represent electron energy. Hence,

the complete 6D representation of an electron is given by (x, x′, y, y′, s, γ).

When dealing with a group of electrons (a.k.a. bunch or distribution), it is common to

describe the bunch using its first- and second-order statistical moments. The first-order

moment, or mean, is calculated in the usual sense. For instance, in a bunch with Ne total

electrons, the mean horizontal position

⟨x⟩ ≡ 1

Ne

∑
j

xj , (2.4)

where xj is the position of the jth electron. One can find the centroid of the electron

distribution by calculating all six first-order moments. It is common practice to subtract the

centroid when calculating the second-order moments. Then, we can simply define

〈
x2
〉
=

1

Ne

∑
j

x2j (2.5)

and similarly for the other five coordinates. This is also known as the root-mean-square

(RMS) size, and commonly denoted by σ with the appropriate subscript. It is also useful

calculate cross-correlation, for example

〈
xx′
〉
=

1

Ne

∑
j

xjx
′
j . (2.6)

In particular, dispersion is related to the correlation between transverse position and energy.

This will be relevant when we discuss TGU physics in Chapter 3.

We use geometric emittance to measure the notion of phase space area described by a

position coordinate and its corresponding momentum. For instance, the horizontal emittance

9



εx of an electron distribution is given by

εx ≡
√

σ2xσ
2
x′ − σ2

xx′ . (2.7)

This quantifies the phase space area occupied by the electron distribution within the x-x′

domain. It is important to distinguish this ensemble definition of geometric emittance from

an alternate definition based on single particle trajectory. The latter definiton, which we

shall denote with ϵ, is given by

ϵx = γx2 + 2αxx′ + βx′2, (2.8)

where β, α, γ are the Courant-Snyder (or Twiss) parameters, also known as envelope func-

tions2. In contrast to εx, the latter emittance ϵx measures the phase space area encircled

by the elliptical phase space trajectory traced out by a single particle. For the rest of this

thesis, we will primarily use the former distributional sense of emittance, i.e. εx. The Twiss

parameters are frequently used to parameterize an electron bunch, and are related to the

second-order beam moments as follows:

βx =
σ2x
εx

, (2.9)

αx = −σxx′

εx
, (2.10)

γx =
σ2x′

εx
. (2.11)

A similar set of Twiss variables can be defined for the vertical and longitudinal directions.

2. The unfortunate conventional choice to use β, γ conflicts with symbols for normalized velocity and
Lorentz factor respectively. While the distinction is usually clear from context, we will add clarifications
where necessary.

10



To round out the discussion of emittance, we shall also introduce normalized emittance

εx,n = βzγεx ≈ γεx. (2.12)

Normalized emittance is a conserved quantity in a linear system (i.e. deflection and focusing),

whereas geometric emittance changes as the bunch is accelerated. It is therefore an important

metric during the initial stages of an accelerating system. However, it will not be as relevant

in a storage ring, where electron energy is largely kept constant.

2.1.2 X-ray beam

Since the output of an X-ray FEL is extremely collimated, it is useful to describe the radiation

beam in the paraxial approximation. We start with the EM wave equation in a vacuum:

(
1

c2
∂2

∂t2
− ∂2

∂z2
− ∂2

∂x2

)
E⃗(x⃗, z, t) = 0. (2.13)

We adopt a similar coordinate system as that of the electron bunch, meaning that the

radiation beam is propagating in the z direction with x⃗ ≡ (x, y) representing the horizontal

and vertical axes respectively in the transverse plane. We can isolate the time-dependent

component of field by substituting E⃗(x, z, t) = E⃗ω(x⃗, z)e
−iωt, where ω is the radiation

angular frequency. Then the wave equation becomes

(
k2 +

∂2

∂z2
+

∂2

∂x⃗2

)
E⃗ω(x⃗, z) = 0, (2.14)

11



where k ≡ ω/c is the radiation wavenumber. Let us also introduce the angular Fourier

transform (FT), namely

E⃗ω(ϕ⃗) =
1

λ2

∫
dx⃗ e−ikϕ⃗·x⃗E⃗ω(x⃗), (2.15)

E⃗ω(x⃗) =

∫
dϕ⃗ eikϕ⃗·x⃗E⃗ω(ϕ⃗), (2.16)

Note that we omitted the longitudinal coordinate z for brevity. Turning our attention back

to Eq. (2.14), we can take the angular FT to obtain

[
k2(1− ϕ⃗

2
) +

∂2

∂z2

]
E⃗ω(ϕ⃗, z) = 0. (2.17)

This second-order linear differential equation has the solution E⃗ω(ϕ⃗, z) = eikz
√

1−ϕ⃗2

E⃗(ϕ⃗, 0)

for waves propagating in the +z direction. Here E⃗ω(ϕ⃗, 0) is the initial field at z = 0. We

apply the paraxial approximation, i.e. ϕ⃗
2 ≪ 1, so that

√
1− ϕ⃗

2 ≈ 1− ϕ⃗
2
/2 and

E⃗ω(ϕ⃗, z) = eikz(1−ϕ⃗
2
)/2E⃗ω(ϕ⃗, 0), (2.18)

In other words, vacuum propagation of a paraxial wave over distance s is given by the simple

multiplication of phase factor e−iksϕ⃗
2
/2 in the angular representation. This is a very useful

result that we will revisit when we discuss the Fourier optics cavity code.

In a similar vein, it can be shown that the action of a lens on the paraxial wave is the

multiplication of a phase factor in the spatial representation. More precisely, for a lens with

focal length f , refractive index n, thickness ℓ and pupil function p(x⃗), the phase factor is

given by

E⃗ω(x⃗, z + ℓ) = p(x⃗)eiknℓe−ikx⃗
2/(2f)E⃗ω(x⃗, z). (2.19)

For our purposes, we typically apply the thin lens approximation ℓ≪ 1 and a constant pupil
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function p = 1, whence the first and second factors reduce to unity.

To round out the discussion of basic optical beam concepts, we shall introduce the Gaus-

sian beam. In its most general form,

E⃗ω(r, z) =
E⃗0e

ikz√
1 + iz(σr′/σr)

exp

(
− r2

4σ2r (1 + iz(σr′/σr))

)
, (2.20)

where r is the radial position coordinate, E⃗0 is a constant magnitude, and σr, σr′ are the

RMS beam size and divergence at the waist respectively. Note that z is defined with respect

to the location of the beam waist. The Gaussian beam carries special significance because it

is the fundamental transverse EM mode in an optical cavity (also referred to as the TEM00

mode).

At the beam waist z = 0, the field reduces to

E⃗ω(r, 0) = E⃗0 exp

(
− r2

4σ2r

)
, (2.21)

with the corresponding angular representation

E⃗ω(ϕ, 0) = E⃗0

(
− ϕ2

4σ2
r′

)
, (2.22)

where ϕ is the radial angular coordinate. Notice the factor of 4 in the exponent denominator—

this is because σr, σr′ are measured with respect to beam intensity, which is proportional to∣∣∣E⃗2
∣∣∣. It is also useful to define the Rayleigh length

ZR = σr/σr′ . (2.23)

The Rayleigh length represents the distance over which the beam diverges to
√
2 times its

previous size, with a corresponding 1/e2 drop in axial intensity. We can then express the
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RMS beam size as a function of longitudinal distance:

σr(z) = σr

√
1 +

(
z

ZR

)2

. (2.24)

The Gaussian beam grows larger in spatial dimensions as it converges and then diverges

around its waist.

2.1.3 Brightness function

Brightness is an important figure of merit for the light source community. In the most

abstract sense, it measures the density of particles (photons or electrons) per six-dimensional

phase space area.

In the context of electrons, we measure brightness as particle number density per unit

momentum and position. Up to this point, we have been treating the electron bunch as a

collection of point particles. However, we may also take the Eulerian approach by defining

a phase space distribution function F (x, x′, y, y′, z, γ), with the property that

Ne =

∫
dxdx′dydy′dzdγ F (x, x′, y, y′, z, γ), (2.25)

where Ne is the total number of electrons. When integrated over a finite extent in phase

space, F gives the electron number density within that region. Therefore F is also the

electron brightness function.

For the photon beam, brightness is defined as photon flux per unit area, solid angle, and

frequency bandwidth at the light source:

B =
dNph

dx⃗dϕ⃗dωdt
, (2.26)

where Nph is the total number of photons. There is a further distinction between peak
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brightness, which is calculated over the time duration of a single radiation pulse, and average

brightness, which includes the repetition rate of said pulse.

For a given EM field E, we can more formally define a brightness function associated

with the Wigner transform3 of the radiation field E [3, 23]:

B(x⃗, ϕ⃗) =

∫
dy⃗E∗(x⃗+ y⃗/2)E(x⃗− y⃗/2)eiky⃗·ϕ⃗, (2.27)

=

∫
dξ⃗ E∗(ϕ⃗+ ξ⃗/2)E(ϕ⃗− ξ⃗/2)e−ikξ⃗·x⃗. (2.28)

The brightness function B defined4 in this form acts as the conceptual counterpart to the

electron distribution function F , in that for phase space areas larger than λ/2, fully inte-

grating over B yields the photon number5.

The brightness function of a Gaussian beam is given by

B(x⃗, ϕ⃗, z) = B0 exp

(
−(x− zϕ)2

2σ2r
− ϕ2

2σ2
r′

)
(2.29)

where B0 is the on-axis brightness at the source origin.

2.2 Free-electron laser (FEL) physics

In this section, we will examine fundamental concepts in free-electron laser operation. In

particular, we will focus on deriving FEL gain in the low gain approximation (to be defined

later) with the goal of understanding the operating principle behind the XFELO, as well as

laying the theoretical foundation for the subsequent chapter on TGU physics.

Comprehensive treatments of FEL physics can be found in many textbooks and review

3. This is a close relative to the Wigner quasiprobability distribution function in quantum mechanics.

4. For broadband/incoherent fields, we use the time-averaged integrand ⟨E(x⃗− y⃗/2)E∗(x⃗+ y⃗/2)⟩ in-
stead.

5. For areas smaller than λ/2, B is not guaranteed to be positive. This is due to the quantum mechanical
nature of light. For more details of this brightness function definition, we refer readers to [3, 23].
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articles. See, for instance [3, 24, 25], for topics not covered in this thesis. The author would

especially like to credit [3] for the following discussion.

2.2.1 Undulator radiation

The goal of this subsection is to arrive at an expression for the spontaneous emission radi-

ation field due to an electron traversing the undulator. Along the way, we will derive some

key parameters of undulator radiation, including its fundamental wavelength and spectral

characteristics. We shall begin by deriving the radiation field due to a moving point charge

under the paraxial approximation.

Paraxial radiation field due to moving point charge

In the presence of charge density ρ(x⃗, z, t) and current density J⃗(x⃗, z, t), the EM wave

equation Eq. (2.13) acquires a driving term:

(
1

c2
∂2

∂t2
− ∂2

∂z2
− ∂2

∂x⃗2

)
E⃗(x⃗, z, t) = − 1

ϵ0c2

(
c2∇ρ+

∂J⃗

∂t

)
, (2.30)

where ϵ0 is the vacuum permittivity and c is the speed of light. Like before, we can isolate the

time-dependent component by defining E⃗(x⃗, z, t) = E⃗ω(x⃗, z)e
−iωt and taking the temporal

FT on both sides to obtain

(
k2 − ∂2

∂z2
− ∂2

∂x⃗2

)
E⃗ω(x⃗, z) = −

1

2πϵ0c2

∫
dt eiωt

(
c2∇ρ+

∂J⃗

∂t

)
. (2.31)

Let us define the envelope function Ẽω(x⃗, z) ≡ E⃗ω(x⃗, z)e
ikz. As its name implies, the

envelope function encompasses the maximum extent of the wave oscillations and changes

slowly over the length scale of wavelength λ. The factor of eikz represents the rapid wave

oscillations within this slow-varying envelope. This allows us to drop second and higher
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order derivatives in z of the envelope function Ẽω, i.e.

∂2

∂z2

(
Ẽωe

ikz
)
≈
(
2ik

∂

∂z
− k2

)
Ẽωe

ikz. (2.32)

Substituting this result into Eq. (2.31) yields

(
∂

∂z
− i

2k

∂2

∂x⃗2

)
Ẽω(x⃗, z) = −

i

4πϵ0c2k

∫
dt eik(ct−z)

(
c2∇ρ+

∂J⃗

∂t

)
. (2.33)

We perform the angular FT on both sides and switch the derivatives on the right hand side

using integration by parts:

(
∂

∂z
− ik

2
ϕ⃗
2
)
Ẽω(ϕ⃗, z) = −

1

4πϵ0cλ2

∫
dtdx⃗ eik(ct−z−ϕ⃗·x⃗)

(
J⃗ − cρϕ⃗

)
. (2.34)

For a moving electron, the charge density ρ = −eδ(z − zj)δ(x⃗ − x⃗j), where δ is the delta

function and the subscript j denotes the coordinates of the jth electron. The current density

J⃗ = cρβ⃗j , where β⃗j is the normalized particle velocity. It is convenient for the dt integration

in Eq. (2.34) to switch the dependence of z and t coordinates. Let tj(z) denote the particle

time coordinate at position z, such that δ(z − zj) = δ(t − tj)/
∣∣dz/dtj ∣∣ ≈ δ(t − tj)/c.

Substituting the expressions into Eq. (2.34) yields

(
∂

∂z
− ik

2
ϕ⃗
2
)
Ẽω(ϕ⃗, z) =

e(β⃗j − ϕ⃗)

4πϵ0cλ2
exp

(
ik[ctj(z)− z − ϕ⃗ · x⃗j(z)]

)
(2.35)

This first-order differential equation has the integral solution

Ẽω(ϕ⃗, z) =

∫ z

−∞
ds

e(β⃗j(s)− ϕ⃗)

4πϵ0cλ2
exp

(
ik

[
ctj(s)− s− ϕ⃗ · x⃗j(s) + ϕ⃗

2 (s− z)

2

])
. (2.36)

This is the radiation field due to a relativistic electron moving along the longitudinal axis

(βz ≈ c) with transverse velocity β⃗j(z) and trajectory described by x⃗j(z), tj(z). In the next
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part, we shall derive the trajectory of this particle in the presence of the undulator.

Electron trajectory in an undulator

The magnetic field of an ideal planar undulator can be approximated by

B⃗(x, y, z) = −(B0 cosh(kuy) sin(kuz))ŷ − (B0 sinh(kuy) cos kuz)x̂ (2.37)

where B0 is the peak magnetic field strength, and ku is the undulator wavenumber. We

also define λu ≡ 2π/ku as the undulator wavelength/period, and Nu, Lu as the number of

undulator periods and overall length of the undulator respectively. Using the Lorentz force

law, the velocity of an electron travelling along the nominal central axis is

βx =
K

γ
cos(kuz), (2.38)

where the undulator parameter

K ≡ eB0

mcku
≈ 0.934λu [cm]B0 [T]. (2.39)

Thus K can be regarded as a measure of the undulator strength, and also the magnitude

of deflection in the electron trajectory. Undulators typically operate under K ≲ 1, where

the electron path lies within the 1/γ opening cone of the emitted radiation, in contrast with

wigglers (K ≳ 1).

Returning to the electron velocity, the longitudinal velocity βz is reduced from the max-

imum value
∣∣∣β⃗∣∣∣ due to the horizontal deflection βx:

βz =

√
1− 1

γ2
− β2x ≈ 1− 1 +K2/2

2γ2
− K2

4γ2
cos(2kuz), (2.40)
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where we assumed βx ≪ 1. The first two terms describe the average longitudinal velocity β̄z

of the electron reference frame, about which the electron oscillates in a figure-eight pattern

associated with the last term.

Recall that Eq. (2.36) expresses the longitudinal coordinate using the particle time coor-

dinate tj(z). This can be obtained from integration of Eq. (2.40) via

tj(z) =

∫ z

0
dz′

dt

dz′
=

∫ z

0
dz′

1

cβz(z′)

=
z

c

(
1 +

1 +K2/2

2γ2

)
+

K2

8ckuγ2
sin(2kuz) + tj(0). (2.41)

Having derived the electron trajectory and velocity, we will use Eq. (2.36) to derive the

undulator field.

Paraxial undulator radiation field (on-axis approximation)

From Eq. (2.36), the x̂ component of the radiation field is,

Ẽω,x(ϕ⃗, z) =
∫ z

−∞
ds

e(βx(s)− ϕx)

4πϵ0cλ2
exp

(
ik

[
ctj(s)− s− ϕ⃗ · x⃗j(s) + ϕ⃗

2 (s− z)

2

])
, (2.42)

where in the numerator of the prefactor,

βx(s)− ϕx =
K

γ
cos(kus)− ϕx. (2.43)

We shall make the argument to drop the ϕx term which arises from the charge density ρ.

The undulator radiation cone has an opening angle of ϕ ≲ 1
γ
√
Nu

about the central axis.

(We will justify this later.) Assuming K ∼ 1 and Nu ≫ 1, the first term βx(s) dominates in
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our region of interest. Thus we obtain

Ẽω,x(ϕ⃗) =

∫ Lu

0
ds

eK cos(kus)

4πϵ0γcλ2
exp

(
ik(ctj(s)− s)

)
× exp

(
−ikϕ⃗ · x⃗j(s) + ikϕ⃗

2 (s− Lu)

2

)
. (2.44)

Notice that we updated the bounds of the integral to encompass the full length of the

undulator Lu. We turn our attention to

exp
(
ik(ctj(s)− s)

)
= exp

(
ik

[
s
1 +K2/2

2γ2
+

K2

8kuγ2
sin(2kus) + ctj(0)

])
. (2.45)

The middle term in the exponent can be expanded using the Jacobi-Anger identity

eix sin θ =
∞∑

n=−∞
Jn(x)e

inθ, (2.46)

where Jn is the nth Bessel function of the first kind. Whence

cos(kus) exp
(
ik(ctj(s)− s)

)
=

eikctj(0)

2

∞∑
n=−∞

Jn

(
kK2

8kuγ2

)
(eikus + e−ikus)

× exp

(
iks

1 +K2/2

2γ2
+ 2inkus

)
, (2.47)

where we wrote cos(kus) in exponential form. The exponentials within the summation take

the form ∑
n

exp

(
ikus

[
k

ku

1 +K2/2

2γ2
+ 2n± 1

])
(2.48)

Over the domain of the ds integral in Eq. (2.44), the periodic exponential term above will

average to zero unless the exponent is zero (or very small). Peak power will occur when the
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exponent is zero, at frequencies associated with

λh =
λu
h

1 +K2/2

2γ2
for h = 2n± 1. (2.49)

where we define λh ≡ λ1/h to be the hth harmonic of the fundamental wavelength λ1.

Eq. (2.49) is an important result that not only yields the fundamental frequency of the

radiation field in terms of the electron and undulator parameters, but also implies that on-

axis undulator radiation consists only of odd harmonics of λ1. (In the off-axis case, it can

be shown that the undulator field consists of all odd and even harmonics.)

By considering slight deviations from λh, we can also deduce the bandwidth of the fre-

quency peaks. We will discuss this shortly. For a given frequency k close to harmonic hk1, let

us define the scaled frequency difference (detuning) ∆ν ≡ (k−hk1)/k1 and scaled frequency

ν ≡ k/k1 = h +∆ν. We now rewrite Eq. (2.44) in terms of ν,∆ν and including everything

we have derived so far.

Ẽν,x(ϕ⃗) =
∑
h odd

eK[JJ ]h
8πϵ0γcλ2

eicνk1tj(0)
∫ Lu

0
ds eikus∆νe−ik(ϕ⃗·x⃗j(s)−ϕ⃗

2
(s−Lu)/2), (2.50)

where the Bessel functions are abbreviated as

[JJ ]h = (−1)(h−1)/2
(
J(h−1)/2

(
hK2

4 + 2K2

)
− J(h+1)/2

(
hK2

4 + 2K2

))
. (2.51)

The argument of the Bessel functions have been simplified using Eq. (2.49). We also employed

the identity J−n(x) = (−1)nJn(x) so that the summation of h is only over the positive odd

integers.

We can determine the angular and spectral bandwidth by considering the radiation re-

sulting from a perfectly on-axis electron with trajectory x⃗j(z) = 0. Then the ds integral
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Figure 2.2: Plot of undulator radiation spectral amplitude as function of detuning πNu∆ν.
The radiation amplitude is proportional to the sinc2 function, which has a characteristic
width of π. This implies that undulator radiation has a characteristic frequency bandwidth
of σ∆ν ∼ 1/Nu.

Eq. (2.50) takes the form

∫ Lu

0
ds eiAs =

eiALu − 1

iA
= Lue

iALu/2 sinc(ALu/2), (2.52)

where sinc(x) ≡ sin(x)/x and the coefficient

ALu

2
=

Lu

2
(ku∆ν + kϕ2/2) (2.53)

= πNu

(
∆ν +

hγ2ϕ2

1 +K2/2

)
. (2.54)

In other words, the spectral and angular profile of the radiation field is described by the

sinc function:

E ∝ sinc
[
πNu

(
∆ν +

hγ2ϕ2

1 +K2/2

)]
. (2.55)

Figure 2.2 shows the undulator radiation spectral amplitude. The characteristic width of
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the central peak of sinc(x) is π, meaning in the frequency space the radiation field has the

RMS width

σ∆ν ∼
1

Nu
⇒ ∆ω

ωh
=

1

hNu
, (2.56)

and in the angular space,

σϕ ∼
1

γ

√
1 +K2/2

hNu
. (2.57)

This angular width is consistent with our assumption of the narrow cone opening angle

earlier.

Undulator radiation from arbitrary non-ideal electron

Let us define the “perfect” electron as having zero deviation from nominal energy, timing, and

transverse trajectory. Relative energy deviation is η ≡ (γ − γr)/γr where γr is the nominal

energy. Then the perfect electron has ηj = 0, tj = 0, x⃗j = 0 and x⃗′j = 0. Using Eq. (2.44),

the fundamental harmonic of the undulator radiation field from this perfect electron is

E0(ν, ϕ⃗) =
eK[JJ ]

8πϵ0γrcλ2

∫ Lu

0
eikus∆ν−ikϕ⃗2

(s−Lu)/2. (2.58)

The subscript 0 denotes the perfect electron. We moved the relative frequency ν into the

argument to highlight the frequency-angular dependence of E . What about some arbitrary

electron j with non-zero ηj , tj and trajectory x⃗j , x⃗
′
j? We shall derive the resultant radiation

field using heuristic arguments.

Position. Imagine a test electron with zero ηj , tj and x⃗′j , but non-zero x⃗. Consequently,

this test electron is equivalent to the perfect electron with transverse trajectory displaced by

a constant vector x⃗. Clearly, the radiation field is also displaced by x⃗. As discussed in the

previous section, position displacement is equivalent to multiplication by the phase factor

e−ikϕ⃗·x⃗ in angular space.

23



Time. Now take a test electron with non-zero tj relative to the perfect electron. Temporal

displacement is equivalent to multiplication by eiωtj = eicktj in the frequency domain.

Energy. Consider a test electron with non-zero energy deviation ηj = ∆γ/γr. The

resulting change in fundamental frequency ∆ω1 can be derived from partial differentiation

of Eq. (2.49):
∆ω1
ω1

= 2
∆γ

γr
= 2ηj . (2.59)

In other words, an energy deviation of ηj is equivalent to a relative frequency shift of 2ηj .

Angle. Similar to the energy argument, an angular displacement x⃗′j in the electron

trajectory is equivalent to an angular shift in ϕ⃗ by the same amount.

Putting everything together, for an electron with arbitrary ηj , tj , x⃗j , x⃗
′
j , the undulator

field is

Ej(ν, ϕ⃗) = exp
(
ik(ctj − ϕ⃗ · x⃗j)

)
E0(ν − 2ηj , ϕ⃗− x⃗′j) (2.60)

with E0 provided in Eq. (2.58). In an electron bunch with Ne electrons, we can either adopt

the Lagrangian treatment (electrons as point particles) or the Eulerian treatment (electron

bunch as a distribution). In the former, the resulting field is a summation

E(ν, ϕ⃗) =
Ne∑
j

exp
(
ik(ctj − ϕ⃗ · x⃗j)

)
E0(ν − 2ηj , ϕ⃗− x⃗′j). (2.61)

Whereas in the Eulerian/phase space distribution representation, we have

E(ν, ϕ⃗) =
∫

dηdtdy⃗dy⃗′ f(η, t, y⃗, y⃗′) exp
(
ik(ct− ϕ⃗ · y⃗)

)
E0(ν − 2η, ϕ⃗− y⃗′). (2.62)

where f is the particle phase space distribution function with

Ne =

∫
dηdtdy⃗dy⃗′ f(η, t, y⃗, y⃗′). (2.63)
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(To avoid confusion: y⃗, y⃗′ are spatial and angular integration variables, and not referring

explicitly to the vertical dimension.)

2.2.2 FEL particle and field equations

The goal of this subsection is to arrive at the system of differential equations that govern the

FEL interaction between the radiation field and the electron bunch. These equations form

the theoretical foundation of most FEL simulation codes, such as GENESIS or ginger.

But before we begin, it is useful to distinguish between the two longitudinal length scales

in this problem: the length of the electron/radiation pulse, and the length of the undulator.

The former describes the size of the problem domain, whereas the latter describes the time

evolution of the system. To measure time evolution, we shall use distance along undulator

z as the most natural choice, with initial value z = 0 and final value z = Lu. Thus we will

frequently make the substitution dt→ (1/c) dz when deriving the equations of motion.

As for the problem domain, we have already discussed the particle time coordinate tj(z)

in Eq. (2.41). However due to the periodic nature of the radiation field, it will be useful to

define a phase coordinate θj relative to the radiation wavefronts. This is also known as the

FEL ponderomotive phase. We will elaborate on the relationship between θj and tj below.

FEL pendulum equations

The system of equations that govern the longitudinal evolution of the electrons is also known

as the FEL pendulum equations, for their mathematical resemblence to the equations that

describe the physical pendulum.

The rate of particle energy change can be derived from the Lorentz force law and the

definition of work:
dU

dt
= F⃗ · v⃗ = −ecE⃗ · β⃗ (2.64)
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where U = γmc2 is the electron energy, E⃗ is the co-propagating radiation field, and β⃗

describes the electron velocity. Let us treat the radiation field as horizontally polarized,

whence
dγ

dz
= −eKEx

γm2c
cos(kuz), (2.65)

where we substituted Eq. (2.38) for the electron velocity and switched from t → z. Next,

we give Ex the same treatment as before, writing it in terms of the slow-varying envelope

function Eν ≡ Exe
−ikz and time harmonic components:

Ex =

∫
dν Eνe

iν(k1z−ω1t)−i∆νkuz + c.c. (2.66)

We represent frequency in relative terms with ν,∆ν as before, with k1, ω1 corresponding to

the fundamental harmonic. The abbreviation c.c. refers to the complex conjugate. Inserting

this definition into Eq. (2.65) and following the same steps leading up to Eq. (2.50) yields

one of the longitudinal equations of motion:

dη

dz
=
∑
h odd

eK[JJ ]h
2γ2rmc2

∫
dν Eνe

iνθ + c.c. (2.67)

in terms of relative energy η ≡ (γ − γr)/γr. In the exponent of eiνθ, we switched to the

ponderomotive phase θ, which we shall discuss next.

From Eqs. (2.65) and (2.66), we find the term

cos(kuz)e
iν(k1z−ω1t) ∼ exp((±ku + k1)z − ω1t) (2.68)

which results from multiplying the cosine particle velocity term against with the plane wave

representation of the radiation field. We extract resulting phase term

θ = (ku + k1)z − ω1t, (2.69)
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where t is the particle time coordinate discussed in Eq. (2.41) with two modifications6. The

first change is to average out the fast-moving particle oscillation proportional to sin(2kuz),

and the second is to include vz deviations due to transverse particle velocity v⃗⊥. With these

changes, we find

θ = (ku + k1)z − k1z

(
1 +

1 +K2/2

2γ2
+

1

2

(
x⃗′2 + k2βx⃗

2
))

(2.70)

= kuz − k1z

(
1 +K2/2

2γ2r
(1− 2η) +

1

2

(
x⃗′2 + k2βx⃗

2
))

(2.71)

where kβ describes the transverse betatron motion of the electrons (more on that later). In

the second step we expanded 1/2γ2 ≈ (1− 2η)/2γ2r for small η. Then,

dθ

dz
= 2kuη −

k1
2

(
x⃗′2 + k2βx⃗

2
)
. (2.72)

Notice the relationship
dη

dz
∼ sin θ and

dθ

dz
∼ η. (2.73)

These are mathematically analogous to the equations of a physical pendulum. Figure 2.3

depicts particle evolution in longitudinal phase space. The dashed lines represent the phase

space separatrix imposed by the radiation field. Since the vertical axis measures energy, the

up-down movement of the electrons represent energy exchange with the radiation field—up

implies radiation energy loss, down implies radiation energy gain. Over time, the electrons

are observed to follow phase space trajectories described by level sets of the system Hamil-

tonian.

Let us assume an initial electron bunch with a Gaussian distribution in energy and

uniform in phase. If the mean relative bunch energy η0 = 0 (measured against resonant

γr of the radiation field), we observe that there can be no net exchange with the field—by

6. The reason for choosing +ku is elaborated on in [3].
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Figure 2.3: Longitudinal phase space evoluition according to the FEL pendulum equations.
The radiation field defines the separatrix ∝ ±

√
E0 cos(θ/2), depicted in black dashed lines,

about which the particle distribution orbits. From top left to bottom right, the plots show
different stages of FEL interaction, namely (A) the beginning, (B) slight energy modulation,
(C) maximum microbunching and peak gain, (D) onset of saturation.

symmetry, just as many electrons will gain energy from the field as those which lose energy

to it. In order to achieve net gain, η0 has to be slightly positive. In this case, the phase

space trajectories carry more electrons downward than upward (during the initial stage).

This observation implies that gain is maximized when there is a slight detuning between

the resonant γr and the mean bunch energy γ0 such that γ0 − γr > 0. We will determine

the ideal detuning amount when we derive the 1D gain formula later.

In the transverse domain, the electrons behave as a separate Hamiltonian system, with
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the transverse equations of motion given by

dx⃗

dz
= x⃗′ and

dx⃗′

dz
= F (x⃗, x⃗′), (2.74)

where F is the external forcing term. Driving forces in the transverse domain arises pre-

dominantly due to magnetostatic fields, such as the undulator and external magnets. The

focusing due to the undulator is known as natural focusing, with an associated length scale

(focal length) of

βnat ∼
√
2γ

Kku
. (2.75)

This typically exceeds the undulator length Lu in the X-ray regime, thus allowing natural

focusing to be ignored in analytical approximations. Forcing from external magnets may be

written similar to a multipole expansion

F (x⃗) = a+ bx⃗+ cx⃗2 + dx⃗3 + . . . , (2.76)

associated with (from lowest order) dipoles, quadrupoles, sextupoles, and octupoles. There

may also be additional cross terms due to skew quadrupoles and solenoids. Unless otherwise

stated, in the following discussion we will assume that only the quadrupole focusing term is

present, with an associated strength kβ such that F (x⃗) = −k2βx⃗.

Field evolution equation

The field evolution equation follows from the driven Maxwell equation described in Eq. (2.33).

Substituting the right hand side for the electron source term yields

(
∂

∂x
− i

2k

∂2

∂x⃗2

)
Ẽν = −eK[JJ ]h

4ϵ0γrλ1

∑
j

e−iνθjδ(x⃗− x⃗j). (2.77)
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Field evolution is thus governed principally by particle phase θj and transverse position

overlap dictated by δ(x⃗− x⃗j).

Equations (2.67), (2.72), (2.74), and (2.77) form the complete particle and field equations

for the FEL. They are apt to be solved numerically and thus form the basis of most modern

FEL codes. In general, it is non-trivial to solve these equations by hand, but there are

various approximation methods7 to determine key quantities of interest. In the next section,

we shall explore one such technique with the goal of estimating FEL gain.

2.2.3 Perturbative analysis for low gain

We define FEL gain as

G =
U(Lu)− U(0)

U(0)
(2.78)

where U(z) ≡ |E(z)|2 denotes total radiation energy at position z along the undulator. The

radiation field E is governed by Eq. (2.77), which in turn depends on the evolution of the

particle beam. In the following discussion, we will restrict the problem to the 1D longitudinal

domain, before generalizing to 3D afterwards. We can make the problem tractable by taking

the following assumptions:

1. Instead of treating the electrons as discrete particles, we approximate the electron

bunch as a distribution function F (θ, η, z). Furthermore, we separate this function into

a smooth background F̄ (η, z) with no θ dependence, and the perturbation δF (θ, η, z)

which arises due to microbunching. In other words, we have F = F̄ + δF . This forms

the basis of the perturbative approach.

2. Next, we narrow our focus to the small signal, low gain regime where G ≪ 1. The

small signal regime applies after the initial start-up phase (where the radiation consists

mostly of spontaneous emission) but before saturation sets in. This restriction permits

7. See, for instance, Chapters 4 and 5 in [3].
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us to drop higher-order terms in E when calculating gain, as well as narrow in on

the frequency range near resonance. Note that in high gain (G ≪ 1) and “mid gain”

(G ∼ 1) cases, the omitted higher-order terms will contribute significantly to the gain

calculation, which falls outside the range of validity of this method. It is also important

to note that this calculation does not conserve total energy, since energy is a second-

order quantity in E. Thus, the result will not be applicable to the saturation phase,

where energy-conserving methods are important.

3. (3D case) In the transverse domain, we adopt the simplifying assumption that the

electron trajectory is linear with no transverse focusing (including natural focusing

and external magnets). In other words,

x⃗(z) = x⃗0 + p⃗(Lu/2− z), p⃗(0) = p⃗0, (2.79)

where (x⃗0, p⃗0) are the electron positions and momenta at the midpoint of the undulator

z = Lu/2. As discussed previously, natural focusing (Eq. (2.75)) is typically negligible

in the X-ray regime. The exclusion of external focusing magnets is also justified in the

low gain regime, where the shorter undulator length precludes the need for focusing

in the middle of the undulator. Finally, we will also ignore TGU-induced transverse

focusing when we examine TGU gain. The justification for that will be provided in

the TGU section.

Solving for 1D gain equation

With the stage set, let us examine the evolution equation for F . According to conservative

Hamiltonian dynamics, the evolution of F should satisfy the conservation of phase space
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area along particle trajectories (Liouville’s theorem), meaning

0 =
∂F

∂z
+

dθ

dz

∂F

∂θ
+

dη

dz

∂F

∂η
. (2.80)

This is also known as the continuity equation. Let us also introduce the longitudinal Fourier

transform

Fν =
1

2π

∫
dθ F (θ)e−iνθ. (2.81)

Inserting 1D versions of Eqs. (2.67), (2.72) into Eq. (2.80) and writing F = F̄ + δF yields

0 =
∂F̄

∂z
+

(
∂

∂z
+ 2kuη

∂

∂θ

)
δF + χ

(∫
dνEνe

iνθ + c.c.

)
∂

∂η

(
F̄ + δF

)
. (2.82)

where χ represents the prefactor in Eq. (2.67). We also restrict ourselves to the fundamental

harmonic h = 1. There are two distinct length scales to this equation: one that varies slowly

over many radiation wavelengths, and one that changes rapidly at the scale of λ. We expect

the associated terms to vanish separately. Thus, for F̄ , we find

∂F̄

∂z
= −χ

∫
dν

(
Eνe

iνθ ∂Fν
∂η

+ c.c.

)
. (2.83)

On the scale of the radiation wavelength, we find

(
∂

∂z
+ 2iνkuη

)
Fν = −χEν

∂F̄

∂η
(2.84)

where we applied the longitudinal FT as defined in Eq. (2.81) to the δF terms. Finally, from

Eq. (2.77) we can derive the radiation evolution equation

(
∂

∂z
+ i∆νku

)
Eν = −κ

∫
dη Fν (2.85)
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where κh is the prefactor in Eq. (2.77). To proceed, let us write Eqs. (2.84) and (2.85) in

the integral form. For a generic equation

(
∂

∂z
+ iA

)
f = B(z), (2.86)

we have

f(z) = e−iAz
(
f(0) +

∫ z

0
ds e−iAsB(s)

)
(2.87)

which follows from applying the chain rule to ∂
∂z

(
eiAzf

)
. Here, f(0) stands for the initial

value of f . Applying this to Eqs. (2.84) and (2.85) yields

Eν(z) = e−i∆νkuz
(
Eν(0)− κ

∫ z

0
ds

∫
dη ei(∆ν−2νη)kusFν(0)

+χκ

∫ z

0
ds ei(∆ν−2νη)kus

∫ s

0
ds′ e2iνkuηs

′
Eν(s

′)
∂F̄

∂η

)
. (2.88)

We can attribute physical significance to the three terms in the above equation. The first

term, associated with the initial value of Eν , represents the seed radiation pulse. The second

term, driven entirely by Fν , represents the spontaneous undulator radiation emitted by the

electron bunch. Finally, the third term captures the interaction between the radiation field

and the electron bunch, and thus represents the coherent output of the FEL amplification

process. In other words, Eν(z) = ESeed + ESR + ECoh.

To solve for gain, we disregard the spontaneous term ESR and consider only the ampli-

fication of the seed ESeed + ECoh. Next, under the low gain assumption we approximate

Eν(s
′) ∼ Eν(0) in the ds′ integral in ECoh. We also define the initial electron energy

distribution

F̄ (η) =
1√
2πση

exp

(
−(η − η0)

2

2σ2η

)
(2.89)

with mean energy η0 and standard deviation ση. This allows us to evaluate Eq. (2.88) and
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Figure 2.4: Left: Plot of 1D normalized gain G/G0 vs. frequency detuning δ ≡ πNu∆ν,
for different normalized energy spreads σ̃η ≡ 2πNuση. With σ̃η = 0, peak gain is attained
at a slightly positive value of detuning, δ ≈ 1.3, with an associated gain bandwidth of ∼ π.
By Eq. (2.49), this corresponds to ση ∼ 1/2Nu. With increasing σ̃η, maximum gain is
increasingly suppressed. Right: Plot of the 1D normalized gain versus σ̃η for δ = 1.3. Notice
the rapid falloff of gain with increasing energy spread.

insert into Eq. (2.78) to obtain

G = 2χκNekuL
3
u

∫ Lu/2

−Lu/2
dz ds (z − s) sin(δ(z − s)) exp

(
−2(σ̃η(z − s))2

)
, (2.90)

where we defined the normalized frequency detuning δ and energy spread σ̃η as

δ = 2πNu(η0 −∆ν/2), (2.91)

σ̃η = 2πNuση. (2.92)

Figure 2.4 shows normalized G plotted against δ and σ̃η. We can make several key

observations. First, peak gain does not occur at zero detuning, but rather at a slightly

positive value of δ ≈ 1.3. This is consistent with our understanding of the FEL pendulum

equations. If the average electron energy starts at η = 0, by symmetry the same number of

electrons will gain energy from the field as those that lose energy to the field. It is only with
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a slightly positive mean η that the net energy exchange favors the radiation field.

Second, we note that the width of the main peak scales as ∆δ ∼ π. Using Eq. (2.91),

this translates to a frequency bandwidth of

σν ≡
σω
ω
∼ 1

Nu
(2.93)

for the fundamental harmonic. It is no coincidence that this is precisely the undulator

radiation bandwidth, since in the linear low gain approximation the spontaneous undulator

emission term ∼ eiku∆νz plays a significant role in the amplification term ECoh.

Finally, from the exponent in Eq. (2.90), we observe that G is exponentially suppressed

by energy spread due to the −σ̃2η term (right panel of Fig. 2.4). By visual inspection of the

plot, we note that the effective gain bandwidth is σ̃η ≪ 1 or ση ≪ 1/Nu. This explains

the strict energy spread requirement for the XFELO, where typical values of 1/Nu ∼ 10−3.

Compare this to the typical ση ∼ 10−3 in a storage ring, and we begin to see the need for

the TGU in the X-ray regime.

Extension to 3D

Since the longitudinal and transverse dynamics are decoupled, the derivation of 3D gain

largely follows the same steps as the 1D analysis. The continuity equation for F now reads

0 =
∂F

∂z
+

dθ

dz

∂F

∂θ
+

dη

dz

∂F

∂η
+

dx⃗

dz

∂F

∂x⃗
+

dp⃗

dz

∂F

∂p⃗
. (2.94)

As before, the evolution of transverse position and momentum coordinates (x⃗, p⃗) can be

obtained directly from the equations of motion Eq. (2.74). Next, we determine the evolution

equations for F and Eν in full 3D, followed by calculating G using the seed ESeed and

coherent amplification ECoh terms of the radiation field8. The final result for the fundamental

8. The full details of the calculation are presented in Chapter 5.4 of [3].
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harmonic is

G =
Neκχ

2πλ2Pin

∫
dϕ⃗dϕ⃗

′E
ν,ϕ⃗

(0)E∗
ν,ϕ⃗

′(0)

∫
dx⃗ eikx⃗·(ϕ⃗−ϕ⃗

′
)

×
∫

dη dp⃗Uν(η, ϕ⃗− p⃗)U∗ν (η, ϕ⃗
′ − p⃗)

∂F̄ (0)

∂η
. (2.95)

Here, Pin represents the initial beam power. The radiation field is given in the angular-

frequency representation E
ν,ϕ⃗

(z) with the subscripts corresponding to the respective coordi-

nate. We also introduced the undulator radiation field

Uν(η, x⃗(z), ϕ⃗− p⃗) =

∫ Lu/2

−Lu/2
dz exp

[
−ikϕ⃗ · x⃗(z)− ikz(ϕ⃗− p⃗)2/2 + ikuz(2νη −∆ν)

]
,

(2.96)

where x⃗(z) represents the electron trajectory. Notice the direct connection of Eq. (2.96)

to the result Eq. (2.50) in our discussion of undulator radiation. Substituting the electron

trajectories under the no-focusing assumption (Eq. (2.79)) into Eq. (2.96) results in the

Uν(η, ϕ⃗− p⃗) factors in the gain integral.

We can also rewrite the gain equation Eq. (2.95) in terms of the radiation brightness

functions, as defined in Eq. (2.28). In this form, the gain equation is also known as the gain

convolution theorem [3, 26]:

G =
Neκχ

λ2

∫
dηdx⃗dϕ⃗dx⃗dy⃗BE(y⃗, ϕ⃗)BU (η, x⃗− y⃗, ϕ⃗− p⃗) ∂

∂η F̄ (η, x⃗, p⃗)∫
dϕ⃗dy⃗BE(y⃗, ϕ⃗)

(2.97)

Here, BE is the brightness of the seed radiation field E
ν,ϕ⃗

(0), BU is the brightness of the

undulator radiation field Uν , and F̄ describes the electron beam distribution. Thus, under

the small signal no-focusing assumption, gain is essentially the convolution of the radiation

and electron brightness distributions. This result will be essential to our analysis of TGU

gain later on.

Let us consider the scenario where the initial seed radiation and electron beams are both
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Gaussian, i.e.

F̄ =
1

(2π)5/2σησxσyσpxσpy
exp

(
− η2

2ση
− x2

2σ2x
− y2

2σ2y
− p2x

2σ2px
−

p2y

2σ2py

)
(2.98)

BE =
1

(2π)2σrxσryσϕxσϕy
exp

(
− r2x
2σ2rx

−
r2y

2σ2ry
− ϕ2x

2σ2ϕx
−

ϕ2y

2σ2ϕy

)
, (2.99)

where σx, σy, σpx, σpy represent the RMS electron transverse sizes in positions and momenta

respectively. Similarly σrxσry, σϕx, σϕy give the RMS spot sizes in position and angle for the

seed radiation beam. Substituting these definitions into Eq. (2.97) yields

G = 2χκNekuL
3
u

∫ 1/2

−1/2
dz ds

i(z − s)√
DxDy

exp
[
−2iδ(z − s)− 2σ̃2η(z − s)2

]
, (2.100)

with the diffraction factors Dx,y defined as

Dx,y = Σ2
x,y + sz L2

uΣ
2
ϕx,y − iLu(z − s)

[
1

4k1
+ k1Σ

2
ϕx,yΣ

2
x,y

]
, (2.101)

Σ2
x,y = σ2x,y + σ2rx,ry, (2.102)

Σ2
ϕx,y = σ2px,y + σ2ϕx,y. (2.103)

The presence of Dx,y in the denominator in Eq. (2.100) acts to dilute gain when diffraction

effects are large. Maximum gain is achieved when there is tight overlap between the radiation

and electron beams (βx,y = ZRx,Ry). Notice that Eq. (2.100) reduces correctly to Eq. (2.90)

when we take the 1D limit Σϕx,y → 0 and Lu/kΣ
2
x,y ≪ 1. The impact of frequency detuning

δ and energy spread σ̃η remains the same as the 1D case.

Thus with Eq. (2.100), we have arrived at a practical low gain formula that can be

optimized based on beam parameters. The derivation of the TGU low gain formula in

Chapter 3 will build upon this analysis, with appropriate modifications made to reflect the

impact of the TGU on longitudinal FEL dynamics.
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Figure 2.5: Schematic of a two-mirror optical cavity for the XFELO. The cavity consists of
two Bragg crystals C1, C2 and a glancing incident angle lens f . The waist W of the cavity
is located in the middle of the undulator (blue). The total round trip length is Lcav.

2.2.4 X-ray FEL oscillator (XFELO)

The concept of a FEL oscillator (an undulator enclosed within an optical cavity) was con-

ceived and demonstrated not long after the invention of the FEL itself. The term oscillator

is adopted from conventional laser terminology, referring to the recirculating radiation pulse

trapped within the cavity. Typical characteristics of the oscillator include low gain and

high cavity quality factor Q, which in turn implies narrow frequency bandwidth and low

outcoupling power. This is in contrast to the amplifier which is a high gain, high loss device.

In the modern day, FEL oscillators are common and well understood in the IR, optical

and UV regimes [18, 24, 27]. It remains a significant challenge to build a robust optical

cavity in the X-ray regime. However, with recent advances in technology, the practical

implementation of an X-ray FEL oscillator (XFELO) is within reach [12].

Power evolution and frequency narrowing

The simplest cavity configuration for the XFELO consists of two mirrors and a single lens

(Fig. 2.5) which trap a recirculating X-ray pulse such that it encounters a fresh electron

bunch in the undulator with each round trip (bunch separation Tbunch = cavity round trip
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time Tcavity). Let Pn represent radiation pulse power on the nth pass, and Ps represent

spontaneous radiation power. Then, we obtain the recursion relation

Pn = (1− L)(1 +G)Pn−1 + Ps (2.104)

where L > 0 is the net cavity round trip loss (in terms of power) and G is the small signal

FEL gain. In other words, the radiation during each pass consists of the radiation pulse

from the previous pass amplified (1 + G) times by seeding the FEL interaction within the

undulator and losing (1−L) times traversing the cavity, as well as the spontaneous undulator

radiation emitted during the most recent pass. In order for lasing to occur, it is necessary

that

(1− L)(1 +G) > 1. (2.105)

Losses in the cavity result from intentional design factors, such as Bragg filtering and outcou-

pling, as well as imperfections such as crystal absorption. For L,G≪ 1, the lasing condition

can be approximated as G− L > 0. Solving the recursion relation Eq. (2.104) yields

Pn =
[(1− L)(1 +G)]n − 1

(1− L)(1 +G)− 1
P0 (2.106)

where P0 represents the starting radiation power (typically provided by spontaneous radia-

tion Ps). Thus we observe an exponential increase in power with increasing turn number n.

It is important to note that this analysis is only valid during the small signal exponential

gain phase of the laser. During the initial startup and final saturation phases, gain G is not

constant and has a complicated dependance on the electron and X-ray beams.

This exponential gain in power is matched by bandwidth narrowing in frequency space,

another hallmark of the lasing process. The narrowing occurs due to two mechanisms:

1. Bragg filtering. Mirrors in an X-ray cavity rely on Bragg diffraction to achieve high
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Figure 2.6: Left: Plot of crystal reflectivity amplitude |R|2 vs. photon energy E − E0 and
angle ϕ. Here, E0 = ℏω0 ≈ 14.4 keV is the Bragg resonant energy. Right: Lineouts of |R|2
taken at ϕ = 0 and E−E0 = 0 respectively. Notice the narrow bandwidths of σE ∼ 10meV
(relative bandwidth σrefl ∼ 10−6) and σϕ ∼ 5µrad.

reflectivity. The corresponding reflectivity curves R(ω, ϕ) are sharply peaked in fre-

quency and angular space (Fig. 2.6), acting effectively as a narrow bandpass filter on

the incident radiation. Over multiple mirror reflections and many cavity turns, the

repeated multiplication by R causes the beam to narrow in frequency and angular

space.

2. Gain narrowing. We expect to observe frequency narrowing in the XFELO even in

the absence of Bragg filtering. This is because of the finite FEL gain bandwidth as

described by Eq. (2.93). Frequencies at the center of the gain curve will be preferentially

amplified over those in the wings. Over many turns, we expect the relative radiation

bandwidth to decrease as (
∆ω

ω

)
n
∼ 1

Nu
√
n
. (2.107)

This narrowing stops when the pulse becomes Fourier-limited longitudinally. In the

temporal domain, one can think of the frequency narrowing as the increase in coherence

length by ∼ Nuλ per turn until it encompasses the entire pulse.
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In the X-ray regime, we expect Bragg filtering to dominate since the effective cavity

bandwidth σrefl ∼ 10−6 is many orders of magnitude less than the gain bandwidth 1/Nu ∼

10−3. The reader might wonder if the more stringent crystal bandwidth has an impact on

the electron energy spread requirement. This will not be the case as the FEL amplification

process in the undulator occurs independently of the crystal filtering in the optical cavity.

In a metaphorical sense, FEL amplification acts as a “rising tide that lifts” all frequencies

in the range ∼ 1/Nu. It is only in the optical cavity that frequencies outside of the much

narrower σrefl are filtered.

One last note before moving on: although both the effective cavity bandwidth and gain

bandwidth also have angular dependance, they are not significant sources of angular nar-

rowing in the XFELO. Rather, the primary determining factors of the transverse mode size

are the cavity geometry and focal lengths. We will discuss this later when we examine the

transverse design of the cavity.

Start-up and saturation

The exponential power growth discussed in the previous section does not apply during the

very earliest and latest stages of the XFELO. During the initial start-up phase, radiation

power is dominated by spontaneous emission within the 1/Nu ∼ 10−3 bandwidth. Let us split

this emission bandwidth into two regions: (a) those existing within the crystal bandwidth

σrefl, and (b) those existing outside σrefl.

The vast majority of the spontaneous emission belongs to the region B and is therefore

filtered by the crystal. Round trip loss for this region is very large, L ∼ 1, and gain is

almost nil. On the other hand, for the small range of frequencies in region A, loss is minimal

L = 1−|R|2 ∼ 0 and gain is close to the theoretical value (as set by the gain function). Over

many turns, the initially small signal in region A is exponentially amplified and dominates

over region B. At this stage, the exponential gain regime discussed in the previous section
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sets in.

The exponential gain phase eventually gives way to saturation, when the radiation pulse

energy peaks and gain falls back towards zero. This is because the FEL amplification process

comes at a cost to electron energy spread. The amount of energy spread growth is given by9

∆ση ∝ −2
∫ η1

η0

dη
∂S(ω, η)

∂ω
(2.108)

where (η0, η1) represent the initial and final average bunch energies, and S(ω, η) ∝ |E|2 is the

on-axis power spectrum of the undulator emission from Eq. (2.55). In other words, energy

spread growth ∆ση is proportional to total field energy |E|2. As the radiation field grows in

power, each interaction with the electron bunch results in increasing disruption to its energy

spread. This reduces the FEL gain for the next turn. Eventually, the falling gain is overtaken

by cavity loss such that the lasing condition Eq. (2.105) is no longer fulfilled. At this point,

the XFELO has reached saturation.

In the short term post-saturation phase, radiation power falls exponentially as a result

of unmitigated cavity loss. In the long term, the fate of the radiation field is determined by

the electron source. We will re-examine this topic when we discuss ring-FEL dynamics.

Transverse design

The transverse design of the XFELO cavity is analogous to that of conventional optical

cavities. For now, let us restrict our discussion to a single transverse dimension. Under the

ABCD ray transfer matrix convention, the transverse position x and angle ϕ of a ray can

be expressed as a vector r⃗ =

x

ϕ

. Diffraction and focusing can then be written as matrix

9. This is also known as Madey’s first theorem [1].
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operations

D(ℓ) =

1 ℓ

0 1

, F (f) =

 1 0

−1/f 0

, (2.109)

where ℓ is the drift length and f is the focal length under the thin lens approximation. The

round-trip matrix for the 2-mirror cavity (Fig. 2.5) would be

M2mirr = D(Lcav/2)F (f)D(Lcav/2) (2.110)

where Lcav is the total round-trip length. In general, an optical cavity is stable if |TrM | <

2, where M is the periodic round-trip matrix. For the 2-mirror cavity, this reduces to

f > Lcav/4 for f > 0 and Lcav > 0.

We can also determine the size of the stable Gaussian mode supported in the cavity. Let

us define the second-order beam moment matrix

Σ =

 σ2r σ2rϕ

σ2ϕr σ2ϕ

 (2.111)

where σr, σϕ are the RMS beam size and angular divergence respectively, and σ2rϕ, σ
2
ϕr are

the covariance terms. Then the stable mode has to satisfy

Σfinal = MΣinitialM
T (2.112)

where Σfinal,Σinitial denote the initial and final beam states after one cavity round trip,

and superscript T denotes matrix transpose. For the 2-mirror cavity, this reduces to the

relationship

ZR =

√
Lcavf −

L2
cav
4

(2.113)

where ZR ≡ σr/σϕ is the Rayleigh range of the stable mode. Thus for a given target ZR
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Figure 2.7: Schematic of a four-mirror optical cavity in the bowtie configuration, consisting
of four Bragg mirrors C1 through C4 and two lenses with identical focal lengths f . The
first waist W1 is located on the long straight section with the undulator (blue), whereas the
second waist W2 is located on the short straight section between C2 and C3. Total round
trip length is Lcav = 2ℓ1 + 2ℓ2.

(for instance, to maximize overlap with electron betatron function), Eq. (2.112) allows us to

choose appropriate f and Lcav to support that mode.

A significant drawback of the 2-mirror cavity is that it does not allow for on-the-fly

frequency tunability without significantly altering the round-trip length. The 4-mirror bowtie

cavity (Fig. 2.7) offers a solution. The resonant frequency can be tuned by adjusting the

angle of incidence on all four mirrors, while simultaneously keeping the path length constant

by translating the two mirrors on the shorter straight section. There are two waist locations,

at the midpoint of the long (waist W1) and short (waist W2) straight sections respectively.

The undulator midpoint matches W1 and the lenses are positioned symmetrically about W1.

Let us calculate the stability condition and stable modes of this cavity. The round-trip

matrix is given by

M4mirr = D(ℓ1)F (f)D(2ℓ2)F (f)D(ℓ1) (2.114)

where ℓ1, ℓ2 indicate the distances from W1 to the first lens, and the first lens to W2 re-

spectively. Both lenses are assumed to have the same focal length f . Enforcing the stability
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condition |TrM4mirr| < 2 results in

0 <

(
ℓ1
f
− 1

)(
ℓ2
f
− 1

)
< 1 (2.115)

for f > 0. The stable mode can be calculated from Eq. (2.112) to obtain

ZR1 =

√
ℓ1 − f

ℓ2 − f
(f(ℓ1 + ℓ2)− ℓ1ℓ2), ZR2 =

ℓ2 − f

ℓ1 − f
ZR1. (2.116)

where ZR1, ZR2 are the stable Rayleigh ranges at waists 1 and 2 respectively. Note that

solutions to Eq. (2.116) are not unique. In Section 5.1, we will return to these formulas

when we design the oscillator cavity.

2.3 Storage ring physics

In this section, we will introduce basic accelerator physics concepts relevant to the operation

of the storage ring driven XFELO. In particular, we will place emphasis on transverse storage

ring damping dynamics and equilibrium emittance.

A more comprehensive treatment of storage ring and accelerator physics is available in

many textbooks, including [28–30]. The author would like to credit [29, 30] for the following

discussion.

2.3.1 Linear betatron motion

Transfer matrix and tune

The linear ABCD ray transfer matrix analysis used in our discussion of the XFELO is also

useful in accelerator physics. A direct analog can be made between particle trajectories (x⃗, p⃗)

and optical ray vectors (r⃗, ϕ⃗). In general, for any linear element or sequence of elements in
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an accelerator, we can define the transfer matrix as

M =

cosϕ+ α sinϕ β sinϕ

−γ sinϕ cosϕ− α sinϕ

 (2.117)

where β, α, γ are the Courant-Snyder parameters introduced in the beginning of this chapter.

The phase advance ϕ is defined as

ϕ ≡
∫ L

0

ds

β(s)
. (2.118)

The integral is performed over the entire length L of the section of interest. Consequently,

the phase advance for one complete turn in a storage ring is given by

ν ≡ 1

2π

∮
ds

β(s)
(2.119)

over the entire ring. This is also known as the tune. Qualitatively, ν describes how many

oscillations of β occurs over the ring, and is not necessarily a whole number. In fact, it is

advantageous for ring stability that the decimal part of the tune, also known as the fractional

tune, be close to an irrational fraction.

Eq. (2.117) allows us to track the motion of electron trajectories provided starting pa-

rameters β, α, γ and the pre-calculated phase advance ϕ (or equivalently tune ν for the entire

ring). To illustrate, let us use the classic example of the FODO cell, consisting of a focusing

dipole and a defocusing dipole with identical focal lengths f and a fixed separation distance

L. If we start our analysis in the middle of the focusing dipole, we can write the transfer
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matrix as

MFODO =

 1 0

− 1
2f 1


1 L

0 1


1 0

1
f 1


1 L

0 1


 1 0

− 1
2f 1

 (2.120)

=

 1− L2

2f2
2L
(
1 + L

2f

)
− L

2f

(
1− L

2f

)
1− L2

2f2

. (2.121)

The stability condition |TrMFODO| < 2 then requires that 0 < L < 2f , for f > 0. Using

Eq. (2.117), we can identify the phase advance

ϕ = cos−1
(
1− L2

2f2

)
, (2.122)

and

β =
2L(1 + sin(ϕ/2))

sinϕ
, α = 0. (2.123)

It follows that the phase advance over n identical FODO cells is nϕ, and a ring consisting

of N copies of this FODO cell would have ν = Nϕ/2π.

Dispersion and momentum compaction

The preceding discussion assumed that all electrons have the nominal design momentum

p0. In reality, the electron bunch consists of particles distributed around p0 with relative

momentum deviations η ≡ (p − p0)/p0. (In an electron storage ring where vz ≈ c, η is

equivalently defined as the relative energy deviation (γ − γ0)/γ0 where γ0 is the nominal

Lorentz factor.) The response of a transverse magnetic element can be dependant on η.

For instance, in the bending dipole, higher momentum particles are deflected less than their

lower momentum counterparts.

This behavior is characterized by the dispersion function D. We decompose the transverse
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particle trajectory x(s) into two parts:

x(s) = xβ(s) +D(s)η (2.124)

where xβ is the design betatron trajectory in the absence of off-momentum particles. Dis-

persion D(s) effectively acts as an additional linear component of the particle trajectory.

We can derive a transfer matrix for D, similar to Eq. (2.117). Let us define the dispersion

vector (D,D′, 1). Then the dispersion transfer matrix is given by

M =


M11 M12 M13

M21 M22 M23

0 0 1

 (2.125)

where the upper 2x2 square matrix consisting of M11,M12,M21,M22 is identical to Eq. (2.117)

and

M13 = D(1− cosϕ− α sinϕ)−D′β sinϕ, (2.126)

M23 = Dγ sinϕ+D′(1− cosϕ+ α sinϕ). (2.127)

The entries M13 and M23 characterize orbit deviations due to momentum deviation η. For

instance, for a bending dipole under the small angle approximation,

Mdip =


1 L Lθ

2

0 1 θ

0 0 1

 (2.128)

where L, θ are the dipole length and bending angle respectively.

From Eq. (2.124), we observe that non-zero dispersion has a detrimental impact on beam
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size and hence beam brightness:

σ2x = σ2x,β +D2σ2η (2.129)

where σx,β =
√
βεx is the RMS spot size due to betatron motion alone. Much effort is

devoted to eradicating dispersion in the straight sections of a ring, where undulators, RF

cavities, injection/extraction segments and other important devices are located.

The elimination of dispersion is equivalent to M13 = M23 = 0. A lattice with this

property is known as an achromat. The simplest example of an achromatic system is the

double bend achromat (DBA), consisting of two bending dipoles sandwiching a dispersion-

matching section. This allows the two ends of the DBA to have zero dispersion straight

sections. Since then, more sophisticated systems with up to 7 bends, also known as multi-

bend achromats (MBAs), have been demonstrated [31]. It can be said that the proliferation

of MBAs is one of the key contributors to the rise of the 4th generation storage ring.

We round out the discussion of momentum deviation by introducing the momentum

compaction factor αc. This is defined as

αc ≡
1

C

dC

dη
=

1

C

∮
D(s)

ρ
ds (2.130)

where C, ρ are the ring circumference and radius of curvature respectively. Effectively, αc

relates the relative longitudinal path difference ∆C/C to momentum deviation η:

∆C

C
= αcη. (2.131)

It is the counterpart to dispersion D in the longitudinal domain.
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Figure 2.8: Sketch of the 6D beam transport matrix M with non-zero entries labelled. The
diagonal 2x2 entries (blue dashed) represent horizontal, vertical, and longitudinal dynamics
respectively. Transverse skew terms are given in the off-diagonal 2x2 squares (red). The
dispersion terms correspond to entries M16,M26 (green). Finally, the entry M56 (magenta)
holds special significance as the momentum compaction factor αc.

6D transport matrix

As discussed in the introduction to this chapter, the complete description of particle state in

the 6D phase space is given by A⃗ ≡ (x, x′, y, y′, s, η), where s denotes longitudinal distance

relative to the reference particle. The linear transport of state vector A⃗ is given by

Ai =
∑
j

MijAj , (2.132)

where Mij are the entries of the 6D linear transport matrix (Fig. 2.8). The 2x2 blocks formed

by index pairs (1, 2) and (3, 4) are the horizontal and vertical transport matrices respectively,

as defined in Eq. (2.117). The 2x2 matrix for the (5, 6) pair describes synchrotron motion.

In particular, notice that M56 = αc.

The entries M16,M26 correspond to the dispersion terms Eqs. (2.126) and (2.127). Dis-

persion is not present in the vertical direction in a flat ring, i.e. M36 = M46 = 0. However,
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the effect of dispersion can make its way into vertical emittance via the linear coupling terms

M13,M23,M14,M24. Intentional linear coupling can be introduced with elements such as

skew quadrupoles and solenoids.

Particle tracking in a storage ring can be greatly simplified provided we can specify

M from design parameters such as the Courant-Snyder parameters, tunes, dispersion and

momentum compaction. This is the basis of the ILMATRIX propagation element in the particle

tracking code elegant, which we will revisit in the Simulations chapter.

2.3.2 Radiation damping and equilibrium

As electrons traverse the bending sections of the storage ring, they emit spontaneous radia-

tion. The rate of power loss is given by

Pγ =
cCγ

2π

U4

ρ2
, (2.133)

where U is the electron energy and ρ is the local radius of curvature. The constant Cγ is

defined as

Cγ =
4π

3

re
(mc2)3

= 8.85× 10−5m/(GeV)3. (2.134)

To find total energy loss per turn, we integrate around the ring to obtain

U0 =
CγU

4

2π

∮
ds

ρ(s)2
. (2.135)

Longitudinal damping

Eq. (2.135) gives the total energy loss of a reference particle with energy γ = γ0. Since off-

energy particles follow a slightly different trajectory due to dispersion, their rate of energy
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loss will be slightly different. Let us evaluate the energy loss

Urad =

∮
Pγ dt =

1

c

∮
Pγ

(
1 +

Dη

ρ

)
ds. (2.136)

The sensitivity of Urad to particle energy E is then given by

dUrad
dE

=
U0

E0

(
2 +

1

cU0

∮ [
DPγ

(
1

ρ
+

2

B

dB

dx

)
ds

]
E0

)
(2.137)

where B is the magnetic field strength and the subscript E0 denotes the evaluating the

derivative at E = E0. The second term with the integral is also known as the damping

partition D. Let us define the radiation integrals

I2 =

∮
ds

ρ2
, (2.138)

I4 =

∮
D

ρ

(
1

ρ2
+

2

Bρ

dB

dx

)
ds. (2.139)

These are standard integrals commonly used by the storage ring community, and can be

readily calculated for a given machine lattice. Then Eq. (2.137) can be rewritten as

dUrad
dE

=
U0

E0
(2 +D) , D = I4/I2. (2.140)

Typical values of D are positive but substantially less than unity. Thus, Eq. (2.140) implies

that higher energy particles radiate more than the reference particle, while lower energy

particles radiate less. Over many turns, the result is a gradual reduction in energy spread.

The damping rate αs can be calculated from the rate of energy loss. The result is

αs =
1

2T0

dUrad
dE

=
U0

2T0E0
(2 +D), (2.141)
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where T is the ring period and the subscript 0 denotes values for the reference particle. This

corresponds to a damping time constant

τs =
1

αs
=

2T0E0

U0(2 +D)
. (2.142)

Typical values of τs for a large storage ring are on the order of tens to hundreds of millisec-

onds.

Vertical damping

For the following discussion, let us assume that the electron is following a betatron orbit

parametrized by

y = Ay cosϕ, y′ = −
Ay

β
sinϕ, A2

y = y2 + (βy′)2, (2.143)

where Ay, ϕ are the amplitude and phase of the betatron oscillation respectively.

Recall that spontaneous emission from a relativistic electron is focused in a narrow cone

with opening angle ∼ 1/γ in the forward direction. Therefore let us approximate that

the resulting momentum change δp⃗ from one spontaneous emission event is parallel to the

instantaneous electron momentum p⃗. To first order, the betatron orbit of the electron

remains unaffected.

The electron recuperates the lost momentum in the RF cavities, where the accelerating

force is parallel to the design orbit. In general, the recovered momentum is not parallel to

δp⃗, and results in a change in the slope of the orbit trajectory. The change in slope y′ is

given by

δy′ = −y′ δp
p

= −y′(δη). (2.144)
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Then the average change in betatron amplitude Ay is

〈
δAy

〉
= −

〈
(βy′)2

〉
Ay

U0

E0
. (2.145)

Since betatron motion is sinusoidal, we find
〈
(βy′)2

〉
= A2

y/2. Then

δAy

Ay
= − U0

2E0
(2.146)

This is associated with the damping rate and time constants

αy = − U0

2T0E0
, τy = −2T0E0

U0
. (2.147)

Notice that vertical damping occurs at half the rate of longitudinal damping for a reference

electron (D = 0).

Horizontal damping

Horizontal damping follows the same principle as vertical damping but with two compli-

cating factors. The first complication is dispersion. When an electron loses energy δη, its

instantaneous position does not change. From Eq. (2.124),

0 = δx = δxβ +D(δη). (2.148)

Thus the betatron orbit xβ changes by amount δxβ = −D(δη) to compensate. Similarly,

the orbit slope x′β changes by δx′β = −D′(δη).

The second complication arises due to the fact that the electron traverses a longer path

length during the outward swing of its betatron orbit than during its inward swing. Therefore

a different amount of energy is lost during the two halves of the oscillation. This effect is

small but non-negligible. To account for this, we let Pγ(xβ) be a function of the betatron
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orbit.

The subsequent calculation of the horizontal damping rate and time constants follows

largely the same steps as vertical damping, with the aforementioned modifications. For a

detailed account, we refer readers to [30]. The end result is

αx = − U0

2T0E0
(1−D), τx = − 2T0E0

U0(1−D)
. (2.149)

Damping partition numbers

Let us define the damping partition numbers

Jx = 1−D, Jy = 1, Js = 2 +D. (2.150)

which allows us to write αi = Jiα0 for i ∈ {x, y, s} and α0 = −U0/(2T0E0). Notice that the

damping partition numbers sum to a constant

∑
i

Ji = 4. (2.151)

This is also known as Robinson’s theorem and holds for any configuration of the magnetic

lattice, as long as it is independent of electron motion [32]. In the restricted case where the

design orbit lies on a perfectly flat horizontal plane with fields symmetric with respect to

that plane, we also obtain Jx+Js = 3. This would not be true if there is any sort of vertical

dependance in the magnetic lattice.

Quantum excitation and equilibrium

Our discussion of radiation damping so far has not dealt with the fact that spontaneous

emission is a discrete random process due to the particle nature of light. Each time an

electron emits a photon, it experiences a momentary disturbance to its orbit. The occurarnce
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of emission events is governed by the Poisson distribution, and the sum effect of all the

disturbances obey the random walk.

Let u be the induced change in energy due to one photon emission event. The evolution

of synchrotron motion amplitude As is then given by

d
〈
A2
s

〉
dt

= −2
〈
A2
s

〉
τs

+Nu2, (2.152)

where N is the rate of photon emission. The first term follows from our previous discussion

of longitudinal damping. Setting the LHS to zero yields the steady state solution
〈
A2
s

〉
=

1
2Nu2τs, or

σ2E ≡
〈
A2
s

〉
2

=
1

4
Nu2τs. (2.153)

In reality, photon emission does not take place at a single energy u, nor at a fixed rate N .

The number of emitted photons n(u) is a function of energy:

n(u) =
Pγ

u2c
F

(
u

uc

)
(2.154)

where uc = 3ℏcγ3/2ρ is the characteristic photon energy. The function F is an algebraic

function

F (ξ) =
9
√
3

8π

∫ ∞
ξ

K5/3(ξ
′) dξ′, (2.155)

where K5/3 is the modified Bessel function. Knowing this, we can calculate the total rate of

photon emission

N =

∫ ∞
0

n(u) du =
15
√
3

8

Pγ
uc

. (2.156)

In addition, 〈
u2
〉
u
=

1

N

∫ ∞
0

u2n(u) du =
11

27
u2c . (2.157)

Note that ⟨·⟩u indicates averaging over energy, rather than the ring circumference. It is still
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necessary to average N ⟨u⟩2u over the ring, yielding

GE ≡
〈
N
〈
u2
〉
u

〉
=

55

24
√
3

〈
ucPγ

〉
. (2.158)

Substituting the above into Eq. (2.153) and performing some algebraic manipulation yields

σ2η =
55

32
√
3

ℏ
mc

γ2

Js

〈
1/ρ3

〉〈
1/ρ2

〉 . (2.159)

For an isomagnetic ring (ρ constant), we can further simplify to

ση = (0.62× 10−6)
γ√
Jsρ[m]

. (2.160)

Plugging in numbers for PETRA-IV [22] yields ση ∼ 0.4 × 10−3. Note that this is smaller

than the actual anticipated value (0.7 to 0.9× 10−3) but in the correct ballpark.

We can follow the same line of argument to derive the equilibrium horizontal emittance

εx,0 =
1

4
τxGx, (2.161)

where Gx ≡ d
〈
A2
x

〉/
dt is the average change in betatron amplitude. The calculation of Gx

is more complicated than GE and depends on the dispersion functions D and D′. This is

because any spontaneous emission u results in an aforementioned change in betatron orbit

(δxβ , δx
′
β). For more details, refer to [30]. We will quote the final result

εx,0 =
55

32
√
3

ℏ
mc

γ2

Jx

〈
H/|ρ|3

〉
〈
1/ρ2

〉 . (2.162)

The H-function is given by

H =
1

βx

(
D2 + (βxD

′ − 1

2
β′xD)2

)
. (2.163)
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The equilibrium horizontal emittance εx,0 is also known as the natural emittance. By mini-

mizing dispersion and thus the average H-function, modern storage rings are able to achieve

extremely small values of natural emittance.

Finally, in the vertical direction, quantum excitation has a very small and negligible

effect. Recall that the spontaneous emission has an opening angle ∼ 1/γ. Thus the emission

of a photon would deflect the electron transversely on the order of δy′ ∼ 1/γ. The resulting

growth in betatron amplitude
〈
A2
y

〉
is proportional to 1/γ2, a very small number indeed. It

can be shown that the equilibrium vertical emittance εy,0 is 1/γ2 times smaller than εx,0.

For most purposes, we will assume εy,0 ∼ 0. In actual operation, the beam is not per-

mitted to damp vertically to εy,0. Any amount of intentional or unintentional transverse

coupling will share the betatron orbit disruptions between the horizontal and vertical di-

rections, causing the substantially larger εx,0 to dominate. Therefore in an actual machine,

equilibrium vertical emittance effectively depends on εx,0 only. Let us define the coupling

factor kc ≡ εy/εx. Then at equilibrium,

εx =
εx,0
1 + kc

, εy =
kcεx,0
1 + kc

. (2.164)

Usually, we have kc ≪ 1. However in ultralow emittance rings, such as PETRA-IV, it can

be advantageous to let kc ∼ 0.1 or higher to reduce intrabeam scattering and increase beam

lifetime.
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CHAPTER 3

TRANSVERSE GRADIENT UNDULATOR (TGU)

The concept of the transverse gradient undulator (TGU) was first introduced in the 1970s,

not long after the advent of the free-electron laser [15]. Its original purpose was to combat the

impact of electron energy spread on FEL gain in a storage ring, albeit at much lower electron

energies. Since then, the field of accelerator-driven light sources has grown dramatically,

most notably expanding into the X-ray regime. The TGU is once again being studied for its

potential application to large energy spread electron sources, e.g. storage rings and plasma

wakefield accelerators [33, 34].

In this chapter, we will study the physics of the TGU in the low-gain regime. We begin

with the basic principles of the TGU and demonstrate how it modifies the FEL resonance

condition, as well as define several important parameters and assumptions. Then, we dive

into the derivation of the full 3D gain formula, starting from the gain convolution theorem

Eq. (2.97). Finally, we end with discussion about the implications of the gain formula. At

every stage, we will compare the results with that of the regular planar FEL, in order to

highlight their differences and similarities.

3.1 Basic principles

Recall from Eq. (2.49) the FEL resonance condition, which we shall reproduce here for the

fundamental harmonic h = 1:

λ1 = λu
1 +K2/2

2γ2
. (3.1)

To achieve FEL amplification, the frequency spread has to be narrower than the FEL gain

bandwidth 1/Nu ∼ 10−3 (see Eq. (2.93)). This is in turn determined by electron energy

spread ση. Hence, for a fixed K and λu, we require ση ≪ 1/Nu. However, from Eq. (2.160)

we observe that the minimum energy spread feasibly achievable in a high-energy storage ring
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Figure 3.1: Cross-section of a transverse gradient undulator (TGU) aligned vertically. Di-
rection of electron motion is in z. The magnetic field gradient grows stronger along the
positive y-axis due to the canted undulator poles (exaggerated for visibility). If electron
bunch (center oval) is dispersed appropriately so that higher energy electrons (red; top half)
experience higher field strength while lower energy electrons (blue; bottom half) experience
less, then FEL gain can be greatly improved even for large electron energy spreads.

is around 10−4, with actual implementation coming closer to ση ∼ 10−3.

The energy spread requirement can be significantly relaxed if we are able to vary K in

the numerator so as to cancel the spread in γ in the denominator. The TGU accomplishes

this using a two-step method (Figure 3.1). First, by slightly canting the pole faces along the

y-axis, the on-axis field strength becomes an approximately linear function of y:

K(y) ≈ K0(1 + αy), (3.2)

where α is the TGU gradient parameter. Notice that unlike the typically horizontally aligned

planar undulator, we choose deliberately to align the TGU vertically due to the smaller

vertical emittance in a storage ring (Eq. (2.164)). This reason will become clearer once we

derive the TGU gain function.

Second, we deliberately introduce dispersion (Eq. (2.124)) in the vertical direction such

that

yj = Dηj + yβj , (3.3)
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where D is the dispersion parameter, ηj is the relative energy deviation, and yβj is the

original betatron trajectory of the electron. For each electron j, we would like equation (3.1)

to be individually satisfied:

λ1 = λu
1 +K2

0(1 + αyj)
2/2

2γ20(1 + ηj)2
. (3.4)

Inserting equation (3.3) into the above yields

λ1 ≈ λu
1 +K2

0/2

2γ20

[
1 +

K2
0α(Dηj + yβj)

1 +K2
0/2

− 2ηj

]
, (3.5)

for ηj ≪ 1 and αyj ≪ 1. We can eliminate ηj and effectively remove the influence of energy

spread by choosing

αD =
2 +K2

0

K2
0

, (3.6)

and assuming yβj ≪ Dηj . The latter assumption implies that for the overall electron

ensemble, the correlated electron beam size in y should be dominated by dispersion, i.e.

⟨yβ2j⟩ ≡ σ2y ≪ D2σ2η. We quantify this by introducing the dimensionless TGU parameter

Γ ≡
Dση
σy

. (3.7)

The previous argument is then equivalent to Γ ≫ 1. For Γ ∼ 1 or less, the TGU benefit is

greatly diminished. We will see that Γ plays a pivotal role in TGU gain.
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TGU-induced transverse focusing

The magnetic gradient in the TGU also excites additional transverse betatron oscillations [35].

The associated focusing strength can be shown to be

kTGU =

√
1 +K2

0/2

Dγ
. (3.8)

In the X-ray regime, this is typically very weak. To demonstrate, let us compare this with

natural undulator focusing knat = K0ku/
√
2γ (Eq. (2.75)). The resulting ratio is

kTGU
knat

=
α

ku

√
K2
0

2 +K2
0

(3.9)

where we used the TGU resonance condition Eq. (3.6). For K0 ∼ 1, the ratio is of order

α/ku ∼ 0.1 in our parameter range. Since natural focusing is already considered negligible in

the X-ray regime, we will also neglect TGU-induced focusing in the following discussion. This

is especially important for a key assumption of the gain convolution formula (Eq. (2.79)).

3.2 Low gain perturbative analysis

The derivation of TGU gain formula follows closely the analysis in Section 2.2.3, with two

key differences. Firstly, we make the substitution

y → y −Dη (3.10)

in the particle position coordinate to account for the added TGU dispersion. Secondly, in

accordance with Eq. (3.5), the TGU magnetic gradient modifies the FEL resonance condition:

ku
k1
≈

1 +K2
0/2

2γ20

[
1 +

K2
0αy

1 +K2
0/2
− 2η

]
, (3.11)
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where ku, k1 are the wavenumbers of the undulator and the fundamental radiation harmonic

respectively. This change is carried forward into the evolution equation of the FEL pondero-

motive phase θ:
dθ

dz
= 2kuη − kuTαy −

k1
2

(
p⃗2 + k2βx⃗

2
)
, (3.12)

where Tα ≡ K2
0α/(1 +K2

0/2) incorporates the TGU magnetic gradient, (x⃗, p⃗) are the par-

ticle position and momentum coordinates, and kβ represents the external focusing terms.

Compared to Eq. (2.72), the first and third terms remain the same. Since we are ignoring

TGU-induced transverse focusing effects, we leave the third term unchanged, as well as the

evolution equations for x⃗ and p⃗ (Eq. (2.74)). For our purposes the TGU is only important

for longitudinal FEL dynamics.

With all of that in mind, let us begin from the gain convolution result Eq. (2.97), restated

here as

G =
G0

8πNuL2
uλ

2
1

∫
dηdx⃗dy⃗dϕ⃗dp⃗BE(y⃗, ϕ⃗)BU (η, x⃗− y⃗, ϕ⃗− p⃗)

∂

∂η
F (η, x⃗, p⃗). (3.13)

Here BE is the seed radiation brightness, BU is the brightness of the spontaneous radiation,

F is phase space distribution of the initial electron beam, and Lu is the undulator length.

The prefactor G0 is defined as

G0 = (4π)2γ0
I

IA

K2
0 [JJ ]

2

(1 +K2
0/2)

2
N3
uλ

2
1, (3.14)

where I is the electron peak current, IA = 4πϵ0mc3/e ≈ 17 kA is the Alfvén current with ϵ0

being the vacuum permittivity, and the Bessel function factor [JJ ] is defined in Eq. (2.51).

Let us reiterate that Eq. (3.13) is derived under the assumption that the electrons undergo no

transverse focusing in the undulator, i.e. kβ → 0. This includes natural undulator focusing,

external focusing quadrupoles and TGU-induced focusing.

The spontaneous undulator brightness BU can be obtained from the Wigner transform
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of the undulator radiation field U . The latter is given by

U(η, x⃗(z), ϕ⃗− p⃗; z) =

∫ Lu/2

−Lu/2
dz exp

[
−ikϕ⃗ · x⃗(z)− ikz(ϕ⃗− p⃗)2/2

+ikuz(2νη − Tαx⃗(z)−∆ν)] . (3.15)

Notice the similarity to Eq. (2.96). The only difference comes from the Tαx(z) term. The

electron trajectory is the same as that given in Eq. (2.79) and is restated here:

x⃗(z) = x⃗− p⃗ (Lu/2− z) (3.16)

Note that on right hand side (x⃗, p⃗) represent the transverse coordinates of the electron at

the midpoint of the TGU, i.e. z = Lu/2. We choose to evaluate the gain integral at the

midpoint because it is the location of the waists of the electron and X-ray beams.

From now on, we will restrict our discussion to the vertical TGU axis. The horizontal

dimension can be easily obtained by setting Γ → 0 or referring to Eq. (2.100). At the

undulator midpoint, the brightness of the Gaussian seed X-ray pulse can be easily expressed

as

BE(y, ϕy) =
1

2πσryσϕy
exp

(
− y2

2σ2ry
−

ϕ2y

2σ2ϕy

)
, (3.17)

where σry, σϕy are the RMS X-ray beam size and divergence measured at z = Lu/2. Simi-

larly, we approximate the initial electron distribution as Gaussian:

F (η, y, py) =
1

(2π)3/2σyσησpy
exp

[
−(y −Dη)2

2σ2y
− η2

2σ2η
− p2

2σ2py

]
. (3.18)

Here ση is the relative energy spread, and σy, σpy are the electron beam size and divergence

respectively. Notice the dispersion modification in the exponent.

Inserting Eqs. (3.17), (3.18), and the Wigner transform of Eq. (3.15) into the gain con-

volution formula (3.13) allows us to obtain an analytical formula for G. The calculation
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involves several steps of Gaussian integration, with more details in the Appendix. The final

result is

G =
G0

4π

∫ 1/2

−1/2
dz ds

i(z − s)√
DxDy

exp

[
− 2iδ(z − s)−

2σ̃2η(z − s)2

1 + Γ2

−

(
Γ

1 + Γ2
σ̃η

β̃y

)2
(z2 − s2)2

2

dy
Dy

]
. (3.19)

Following the convention established in Section 2.2.3, the gain formula is expressed in terms

of the following dimensionless parameters

δ = πNu(ω − ω1)/ω1, (3.20)

σ̃η = 2πNuση, (3.21)

β̃y = βy/Lu. (3.22)

We also introduced the diffraction factors

Dx,y = Σ2
x,y + sz L2

uΣ
2
ϕx,y − iLu(z − s)

[
1

4k1
+ k1Σ

2
ϕx,yΣ

2
x,y

]
, (3.23)

dy = Σ2
y + sz L2

uσ
2
ϕy − iLu(z − s)

[
1

4k1
+ k1σ

2
ϕyΣ

2
y

]
, (3.24)

with

Σ2
y = σ2y + σ2ry +D2σ2η, (3.25)

Σ2
x = σ2x + σ2rx, (3.26)

Σ2
ϕx,y = σ2px,y + σ2ϕx,y. (3.27)

Here, σx,y, σpx,py are the electron beam sizes and divergences in x, y respectively, while

σrx,ry, σϕx,ϕy are the analogous quantities for the seed X-ray beam.
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In the limit Γ → 0, the gain formula (3.19) reduces correctly to its counterpart for a

traditional planar undulator. As in the planar undulator case, the factor DxDy represents

the dilution of gain due to 3D diffraction effects. In the exponential, the first term −2iδ(z−s)

represents the effect of frequency detuning and similarly remains unchanged from its non-

TGU counterpart.

The impact of the TGU is most evident in the second term −2σ̃2η(z − s)2/(1 + Γ2).

Without the TGU (Γ = 0), this term results in the exponential suppression of gain due

to energy spread. The TGU parameter Γ acts in the denominator to mitigate this effect.

The third and final term in the exponential in Eq. (3.19) limits gain when a large electron

divergence outweighs the required y-γ correlation for ideal TGU cancellation. This means

that gain does not increases monotonically with Γ, but rather, reaches a maximum and then

falls off.

While not appearing directly in the gain formula, the electron transverse emittances εx,y

play an important role due to their influence on σx,y and σpx,py and thus the diffraction

dilution factors Dx,y. In particular, having a small emittance εy along the TGU axis can

potentially greatly increase gain. Herein lies the advantage of driving the TGU with a storage

ring—due to the unique nature of radiation damping in a ring (see 2.3.2), the equilibrium

natural emittance εx,0 ≡ εx+εy is a conserved quantity with the vertical emittance εy being

typically orders of magnitude smaller than its horizontal counterpart. Moreover, by using

coupling lattice elements such as skew quadrupoles, we can fine-tune this emittance ratio kc

(Eq. (2.164)). We will see in the TGU optimization section that by choosing kc ≪ 1, we can

potentially increase gain by an order of magnitude. Even modest values of kc, such as 1/6

used for PETRA-IV [22], present significant gain improvement (up to 2x).
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CHAPTER 4

SIMULATION TECHNIQUES

In this study, we rely heavily on numerical simulation in order to model the performance of

SRXFELO. It is therefore crucial to establish a proper background on common simulation

techniques. The first three sections of this chapter discuss individually the three principle

components of the the SRXFELO, namely the optical cavity, the FEL and the electron

storage ring. Then, we round out the chapter by looking at a custom start-to-end simulation

framework specifically developed for this study.

4.1 Optical cavity code

A complete representation of the radiation field is given by E(x, t; z), where x ≡ (x, y)

are the transverse coordinates, t is the longitudinal coordinate (along the photon pulse),

and z represents longitudinal position along the beamline. In code, the field is stored as

a complex 3D array E(nt, ny, nx) where each n is the index along the subscript coordinate.

The longitudinal coordinate z is omitted for memory reasons. Instead, the field is edited in

place as it propagates along the cavity.

The cavity code is developed based on the principles of Fourier optics. At various points

in the cavity, it is required to perform the Fourier transform. Here, we make use of the well-

established Fast Fourier Transform (FFT) algorithm, available in python under the package

numpy.fft. The FFT can be performed along 1, 2 or all 3 coordinates (or axes) at one time,

E(nt, ny, nx)
FFT←→ E(nω, nϕy, nϕx). (4.1)

Here, angular frequency ω and transverse angles ϕy, ϕx are the Fourier companions to t, y,

and x respectively. We are not free to choose the grid resolutions for ω, ϕy and ϕx (the

“angular coordinates”) independently of t, y and x (the “spatial coordinates”). Instead, they
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are constrained via the Fourier transform as follows. For the t-ω pair, the grid step sizes

dt, dω and maximum ranges tmax, ωmax are related by

dt =
2π

ωmax
, dω =

2π

tmax
, (4.2)

tmax =
2π

dω
, ωmax =

2π

dt
. (4.3)

These relationships are deliberately written in a circular fashion to emphasize the trade-offs

faced by an user when choosing grid resolutions. A small step size dt results in a large

frequency window ωmax, implying lower frequency resolution given a fixed number of grid

points. If the user desires extra fine resolution in both t and ω, then the price must be paid

in computational resources.

In the transverse domain, we have corresponding relationships for x-ϕx, namely

dx =
λ

ϕx,max
, dϕx =

λ

xmax
, (4.4)

xmax =
λ

dϕx
, ϕx,max =

λ

dx
, (4.5)

and similarly for y-ϕy. Here, physics constraints typically occur in the form of (a) minimum

RMS beam size at the cavity waists, as well as (b) angular bandwidth of the Bragg reflectors.

For completeness sake, we will also define the total number of grid points (i.e. length of

the array) as

Nt ≡ tmax/dt+ 1 (4.6)

and so on for the other dimensions. (The additional 1 comes from including the end values

of the simulation range.) In practice, since N needs to be an integer, one usually specifies N

and along with either the simulation range or step size.

Having discussed the radiation field, we now turn our attention to the physics of the X-

ray cavity. Figure 2.7 shows the layout of a generic 4-mirror X-ray cavity. As the radiation
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field traverses the cavity, it encounters (a) diffraction and focusing, (b) Bragg reflection,

(c) possible optical imperfections, and finally (d) possible outcoupling. In the following

subsections, we will discuss the modeling of each phenomena in turn.

Diffraction and Focusing

The subsequent discussion is based on the paraxial approximation established in Section 2.1.2.

To recap, vacuum propagation of the radiation field is equivalent to multiplication by a com-

plex phase factor in the angular domain (Eq. (2.18)). That is, given the angular representa-

tion of the radiation field E(ϕ, ω; z0) at some longitudinal position z0, the field becomes

E(ϕ, ω; z1) = exp

(
−ik

2
ϕ2(z1 − z0)

)
E(ϕ, ω; z0) (4.7)

at the second position z1. In code, this means that we (a) first perform FFT if the field array

is not already in angular representation, then (b) multiply by the appropriate phase factor

for each position (ϕx, ϕy) in the angular grid. The latter step is described by the pseudocode:

def diffraction( field, z :)

for ny, phi_y in enumerate(phi_y_grid):

for nx, phi_x in enumerate(phi_x_grid):

prefactor = cexp( -I * k * z * (phi_x**2 + phi_y**2) / 2 )

field[ny, nx] = field[ny, nx] * prefactor

(In a 3D beam, it is additionally necessary to repeat this for every time/frequency step.) In

python, it is good practice to avoid for loops since they scale poorly in computation time.

Instead, we recommend using vectorized operations (via numpy.ndarray).

Thin lens focusing in the paraxial regime involves a similar process as diffraction. Given

the spatial representation of the radiation field Ebef(x, t; z) immediately before the lens, the
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field after focusing becomes

Eaft(x, t; z) = exp

(
−ik

2

[
x2/fx + y2/fy

])
Ebef(x, t; z) (4.8)

where fx, fy are the focal lengths in x and y respectively. In pseudocode:

def focusing( field, fx, fy ):

for ny, y_pos in enumerate(y_grid):

for nx, x_pos in enumerate(x_grid):

prefactor = cexp( -I * k * (x_pos**2/fx + y_pos**2/fy) / 2 )

field[ny, nx] = field[ny, nx] * prefactor

Once again, we can avoid unfavorable computation time increase in python by avoiding the

for loop construction in favor of vectorized multiplication.

Let us demonstrate basic beam propagation within the 4-mirror cavity depicted in Fig-

ure 2.7. Let us designate the side lengths L1, L2 as the waist-to-lens distance before and after

the first lens. Both lenses are assumed to have the identical focal length F in both transverse

directions. Beginning in the first waist, the cavity beamline looks like

diffraction( field, L1 )

FFT_to_spatial( field )

focusing( field, F, F )

FFT_to_angular( field )

diffraction( field, 2*L2 )

FFT_to_spatial( field )

focusing( field, F, F )

FFT_to_angular( field )

diffraction( field, L1 )
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This assumes that the field starts in the angular representation. Notably missing from the

model are the Bragg mirrors which not only reflects the beam, but also filters it in frequency

and angle. We will discuss this next.

Reflection and Outcoupling

The most basic operation of a mirror is flipping the image about the reflection axis:

E(x, y, t; z) −→ E(−x, y, t; z) (4.9)

E(ϕx, ϕy, ω; z) −→ E(−ϕx, ϕy, ω; z) (4.10)

assuming that x is the reflection axis. In code, we reverse the order of the field array along

the corresponding axis.

Bragg mirrors also have a bandwidth filtering effect in both angle and frequency domains.

The Bragg reflectivity coefficient R can be calculated numerically given the reflection and

crystal plane geometries, as well as material properties of the crystal. For modeling purposes,

R(ω, ϕx) can be considered a complex-valued function of frequency ω and angle ϕx along

the reflection axis. The absolute magnitude |R|2 gives the relative intensity of the reflected

beam versus the incident. Figure 2.6 shows an example of R plotted versus frequency ω and

angle ϕx. In the numerical model, R is represented as a 2D “mask” of complex values. The

reflected field is obtained via

Erefl(ϕx, ϕy, ω; z) = R(ω,−ϕx)E(−ϕx, ϕy, ω; z). (4.11)

The reflectivity array R must be provided with the same transverse resolution as the radiation

field. We then multiply R onto E in the same fashion as the diffraction method, while also

remembering to flip the array along the reflection axis.

The simplest method to outcouple the radiation beam from the cavity is to rely on mirror
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transmission. In a 4-mirror cavity, the first mirror (laying along the undulator axis) is thinner

than the other three so as to allow for increased transmission. As before, we can define a

transmission coefficient T (ω, ϕx) for each of the mirrors. In order to obtain the transmitted

field, we simply multiply the two:

Etrs(ϕx, ϕy, ω; z) = T (ω, ϕx)E(ϕx, ϕy, ω; z). (4.12)

Optical misalignment

By the translation property of the Fourier transform,

E(ϕ+∆ϕ) = F [exp (ikx ·∆ϕ)E(x)], (4.13)

where F denotes the Fourier transform. We observe that a displacement of ∆ϕ in the angular

domain corresponds to multiplication by a linear phase factor exp (ikx ·∆ϕ) in the spatial

domain. This is useful in modeling optical misalignments in the cavity.

Let there be a mirror misalignment of δ degrees clockwise relative to the vertical axis. By

the law of reflection, the photon trajectory will be deflected by 2δ degrees from the nominal

axis, i.e. E(ϕx)→ Eerr(ϕx + 2δ). By the translation property, we have

Eerr(x) = exp (2ikδx)E(x) (4.14)

where E(x) is the field on the ideal trajectory without misalignment.

The translation property is useful not only for angular displacements, but also for the

reverse — introducing a linear phase factor in angle will result in a corresponding translation

in the spatial domain. We also use the same principle to simulate temporal delays (e.g. due

to electron timing jitter) by including the phase factor in the frequency domain.

Note that when we displace the beam in this fashion, new information is not being
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“created” or “destroyed” at the window boundaries. Rather, due to the periodicity assumption

of the Fourier transform, any field values being overwritten on one end of the array due to

the translation simply wraps back around the other side. The operation conserves total

energy, but care must be taken to avoid unphysical scenarios — especially if the field is not

exponentially diminishing or periodic at the simulation boundaries. This usually does not

pose a problem in our studies.

Phase front error

Phase front errors apply to the transverse profile of the beam and thus have a detrimental

effect on transverse coherence. One physical source of phase error is surface roughness on the

optical components. Another common source is mirror strain due to the mounting system

and temperature fluctuations. These imperfections vary transversely across the face of the

mirror/lens, and manifest as a phase error term φ(x) where

Eerr(x) = exp (iφ(x))E(x). (4.15)

Phase error is typically quoted either as a fraction of the fundamental wavelength, e.g.

φrms = λ/30, or in units of distance ∆h ≡ φ/k, e.g. ∆hrms = 0.2Å. The latter notation

tends to be used in discussing surface roughness, although appropriate factors have to be

included to account for the reflection geometry.

There are three main sources of phase error data in our studies. See Figure 4.1 for

examples of each. The first method is rocking curve imaging (RCI). Here, the Bragg crystal is

“rocked” from side-to-side relative to an incident test beam, effectively scanning its reflectivity

as a function of angle along the reflection axis. The crystal is then displaced slightly in the

orthogonal direction, and the scanning is repeated. Thus, phase error information derived

from RCI is effectively 1D — without an appropriate way to calibrate adjacent scans in
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Figure 4.1: 2D amplitudes of crystal phase error from (A) rocking-curve imaging and (B)
synthetic generation. Error amplitude is expressed as a fraction of the fundamental wave-
length λ. Notice the vertical striation in the RCI data resulting from the single dimension
scan.

phase, we can only do crude adjustments such as aligning the sample means or start/end

points. Nevertheless, these RCI scans contain valuable noise spectrum information on the

phase error. In a pinch, we can also use the RCI dataset to simulate beam distortion in 1D

(as long as there is no x-y correlation in the optical lattice).

Using the noise spectra from RCI measurement, we can artificially generate a phase error

map in 2D. This is the second source of phase error data. Advantages of this method include

being able to enforce desired statistical properties (such as RMS or min-max values), and

the easy availability of data.

Finally, the speckle method provides full 2D phase error measurement up to a resolution

of ∼ λ/100. We refer the reader to [36] for details of the speckle measurement technique. It

is the most accurate of the three methods, and is the primary source of experimental phase

error data.

Summary

The cavity code relies on the principles of Fourier optics. Every physical operation on the field

can be thought of as the multiplication of an appropriate phase factor in the correct Fourier
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Operation Domain Key parameter Phase factor

Diffraction (drift) Angular Distance s exp
(
−ikϕ2s/2

)
Focusing (lens) Spatial Focal length f exp

(
−ikx2/(2f)

)
Bragg reflection Angular Reflectivity R(ω, ϕx) R(ω,−ϕx)
Outcoupling Angular Transmission T (ω, ϕx) T (ω, ϕx)

Mirror misalignment Spatial Misalignment ∆ϕ exp(2ikx∆ϕ)

Spatial displacement Angular Displacement ∆x exp(2ikϕ∆x)

Phase front error Spatial Error profile φ(x, y) exp(iφ(x, y))

Table 4.1: Summary table of phase operations in Fourier optics. Domain indicates the
appropriate Fourier representation for the field.

space. Table 4.1 summarizes all the operations discussed previously. A cavity beamline can

then be thought of as a sequence of these operations set up in a loop. See Figure 4.2 for a

flowchart representing the 4-mirror bowtie cavity.

4.2 FEL codes

In this study, we use GENESIS [37] and ginger [38], two popular FEL codes within the

accelerator community. These codes rely on a common set of simulation principles, which

we shall briefly introduce below. Additionally, we will also outline the steps taken to modify

version 2 of GENESIS to include TGU physics1.

Longitudinal model

In the longitudinal direction, the electron and radiation beams are divided into “slices”.

For the radiation beam, this is no different than discretizing the t dimension. For the

electron beam however, each slice contains its own microcosm of particles which do not

interact directly with any other electron slice. Each electron slice is considered adjacent to

1. The newest version of GENESIS (version 4) as of time of writing has added TGU functionality, rendering
the modification unnecessary. It works based on largely the same principles as that described in the main
text.
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Figure 4.2: Flowchart depicting the simulation process for a four-mirror cavity. The color of
each box represents approriate Fourier domain: spatial (purple) or angular (green). Dashed
outline represents optional step. The Err operation may include misalignments and/or phase
errors. Each round trip begins and ends at the undulator, with optional GENESIS simulaton
or drift operation to bridge the gap to the next iteration.

a corresponding radiation slice, as they would be in a physical FEL.

After an amount of time, the radiation field is expected to slip ahead of the electron

beam longitudinally. The total slippage distance across the entire undulator is given by

zslip = Nuλ1. (4.16)

The slippage process accounts for the development of longitudinal coherence. Therefore, it

is crucial (especially for high-gain cases) that the slice width ∆t is much smaller than zslip/c.

This allows for the appropriate discretization of the slippage process.
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Transverse model

Within each longtudinal slice, there are different approaches to modeling the transverse

physics. GENESIS, a full 3D code, takes a particle-in-cell (PIC) approach. Each particle is

represented by its 6D coordinates and exist within the 2D rectangular grid of the radiation

field. The motion of the particles are tracked according to the FEL equations (Section 2.2.2),

with field terms being interpolated at the location of each particle. Similarly, the radiation

field evolves according to Eq. (2.77) with each electron being treated as point particle.

Numerical integration of transverse particle motion is handled by solving the transverse

Hamiltonian, whereas longitudinal motion is integrated using the 4th order Runge-Kutta

method. The evolution of the radiation field uses the finite difference alternating-direction

implicit (ADI) method. The ADI method is particularly fast and stable given the parabolic

form of the wave equation Eq. (2.77).

The code ginger takes a 2.5D pseudo-spectral approach. The transverse field is decom-

posed into axisymmetric TEM modes, truncated to a finite order. Thus the field is effec-

tively stored as eigenmode coefficients. The evolution of these eigenmodes are calculated

beforehand by solving the homogeneous form of the wave equation Eq. (2.77), followed by

projecting the source term (electrons) onto these eigenmodes. In this manner, the continuous

PDE problem is recast as a linear algebra problem.

The pseudo-spectral approach takes advantage of the fact that the transverse FEL mode

is typically highly symmetric (usually Gaussian). Very few eigenmodes are necessary to ade-

quately describe the field, therefore greatly reducing computational overhead. Furthermore,

since the eigenmodes are continuous functions, the field itself can be represented continuously

and is not subjected to the usual drawbacks of discretization (e.g. aliasing).

However, the pseudo-spectral method can struggle if the field is not particularly sym-

metric. For instance, the radiation field is dominated by asymmetric spontaneous emission

during the FEL start up phase. One must either greatly increase number of eigenmodes in the
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simulation, thereby eroding the aforementioned computational gains, or risk not accurately

representing the radiation field. In particular, 2.5D codes like ginger use only azimuthally

symmetric modes and generate a well-known discrepancy versus GENESIS during the initial

start-up phase [39]. This becomes less of a problem once the FEL amplification process takes

hold and the Gaussian mode becomes dominant.

Finally, an honorable mention must be given to the 1D model. In this case, the field

is reduced to a single point and the electrons are represented only by their longitudinal

coordinates (γ, θ). The 1D model can be considered as a limit of the 3D finite difference

model as Nx, Ny → 1. Its main advantages include algorithmic simplicity and computational

speed. For this reason, it is a useful tool for ballpark calculations and benchmarking purposes,

prior to setting up a full 3D run.

TGU modification

By default, version 2 of GENESIS used in this study does not include a transverse linear term

in the undulator field. As previously discussed in Eq. (3.2), the canted polefaces of the TGU

introduces a transverse linear dependance in undulator strength

aw(x) = aw,0(1 + αx) (4.17)

where we assume x is the TGU axis. We use aw ≡ K/
√
2 here to denote undulator strength

in accordance with the notation used in GENESIS. The corresponding modification must be

made to the faw2 function in the magfield.f source file. More specifically,

faw2 = awz(i)*awz(i)*(1.d0

+ 2.d0*atgu*xt + atgu*atgu*xt*xt

+ xkx*xt*xt + xky*yt*yt )

The middle line of code is our addition. We introduced the variable atgu defined by α/ku.
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(The factor of 1/ku comes from GENESIS coordinate normalization.) Notice that the TGU

parameter multiples into the horizontal coordinate xt, contrary to our desired orientation.

This is because of the implicit assumption in GENESIS that the undulator is horizontally

oriented. It is therefore also necessary to rotate the electron bunch externally before and

after each GENESIS run.

Another external operation applied to the electron bunch before/after GENESIS is the

addition and removal of dispersion. Using Eq. (3.6), we can calculate the requisite amount

of dispersion to introduce to the electron bunch beam via an external script.

4.3 Storage ring code

To model the storage ring, we used the popular particle tracking code elegant developed

by M. Borland [40]. The code elegant tracks each particle in 6-dimensional phase space

(x, x′, y, y′, s, δ), where (x, y) represent the transverse particle positions, (x′, y′) the transverse

particle momenta, and (s, δ) the longitudinal particle distance and momentum deviation

respectively. The storage ring is described via an input description file (“lattice file”) that

breaks down the machine into distinct, specialized elements.

The exact composition of the lattice file is determined by the breadth and depth of

the simulation. Our model of the ring is composed of three main elements: (a) one-turn

periodic transport (ILMATRIX element), (b) synchrotron radiation (SREFFECTS), and (c) RF

acceleration (RFCA element). We will give a brief description of each below.

The ILMATRIX element stands for Individualized Linear Matrix for fast symplectic track-

ing. It is based on the transport matrix representation previously discussed in Section 2.3.1.

To summarize, for a given phase plane such as x-x′, we can write the generic one-turn
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transport matrix as

Mx =

cos 2πνx + αx sin 2πνx βx sin 2πνx

−γx sin 2πνx cos 2πνx − αx sin 2πνx

 (4.18)

where αx, βx, γx are the Twiss parameters and νx is the tune. Similar matrices My,Ms

exist for the y-y′ and s-δ planes. These set of three matrices, along with the appropriate

cross-terms (dispersion, momentum compaction, transverse coupling), dictate the nominal

trajectory of the particle orbit.

For any given particle, the individualized matrix is calculated from M by performing a

Taylor expansion on the tune ν. In general, the tune of each particle is dependent on its

momentum offset δ and betatron amplitude A. The sensitivity of this dependence is specified

by the user via the magnitude of the partials ∂ν/∂δ , ∂ν/∂A . Finally, the individualized ma-

trix is multiplied into the particle coordinates, after accounting for the momentum-dependent

closed orbit.

The SREFFECTS element takes a “lump sum” approach to tracking the synchrotron damp-

ing within the ring. Instead of modeling each radiative element, the bunch is damped ac-

cording to the user-specified damping parameters, such as the partition numbers Jx,Jy,Js,

the damping times τx, τy, τs, as well as equilibrium energy spread ση and natural emittance

εx,0. The SREFFECTS element then models exponential damping based on these parameters.

See Section 2.3.2 for specific discussion of the damping dynamics.

The net energy loss through synchrotron radiation is topped up each turn via the RFCA

element, which models the RF acceleration system to the first order. Key parameters include

the peak voltage, cavity frequency, and the acceleration phase.
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Particle file compatibility with GENESIS

Although both elegant and GENESIS rely on 6D particle tracking, the discrete slice repre-

sentation of the particle bunch in GENESIS makes it difficult for seamless compatibility with

elegant. There are two main challenges.

First, the longitudinal particle coordinates used in GENESIS are (θ, γ), i.e. FEL pondero-

motive phase and particle energy respectively, in comparison to (s, δ) in elegant. While it

would be relatively straightfoward to translate between γ ↔ δ, the longitudinal coordinate

is less clear. The phase θ is measured with respect to the particular slice resided by the

particle, while s is calculated relative to the nominal path taken by the reference particle.

One can in theory approximate s based on θ and the relative position of the slice within the

bunch, but it is unclear how to account for the periodic boundary conditions imposed by the

FEL slice without significantly altering the FEL code.

The second problem is the relative size of the longitudinal simulation windows within

elegant and GENESIS. In elegant, there is no explicit simulation window width per se—

instead the rough size of the “window” is simply set by several multiples of the specified

RMS bunch length σz. In GENESIS, due to the coexistence of the discretized radiation field,

it is necessary to explicitly define the simulation window width twidth. Comparing the two

values, it is often the case that the full bunch length ∼ 6σz in elegant is substantially larger

than a feasible twidth for fast simulation. Put in a different way, the necessary longitudinal

resolution ∆t, set by the slippage length and frequency window, is far too small compared

to the 6σz window—which comes at a significant cost to computation time.

We use a different approach to resolve the particle file compatibility issue. Instead of

exchanging the particle file between the two programs directly, we exchange the first- and

second-order moments of the bunch (i.e. mean and standard deviations). After each GENESIS

run, we measure and record the beam moments of the electron bunch. Then, we input these

parameters into the bunched_beam method in elegant. This method generates a random
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Gaussian beam with the specified moments for subsequent tracking. After one iteration of

elegant, the resulting beam moments are recorded again, and a corresponding GENESIS

particle file is generated via Gaussian sampling for the next step.

There are two additional benefits to the moment-tracking method. First, it allows for easy

concurrent tracking of multiple electron bunches. In most of our studies, there are multiple

electron bunches within the ring interacting sequentially with one single X-ray pulse. In lieu

of storing and manipulating multiple particle files, we simply store the beams moments in an

array and update/retrieve the appropriate row during each iteration. The second benefit is

the possibility to run GENESIS in single-slice mode. Single-slice simulation is much faster than

running with full time-dependence and is often used in initial exploration studies. Clearly,

with the lack of a full longitudinal dimension, single-slice mode is incompatible with elegant.

However, by simply exchanging tranverse beam moments and establishing a realistic bunch

length within elegant, one can side-step this limitation.

4.4 Start-to-end framework

With all the critical components of the simulation framework explored in the preceding

sections, we now turn our attention to the overall simulation pipeline (Fig. 4.3). The sim-

ulation pipeline can be broken down into four parts, namely (a) overall run management,

(b) TGU-FEL simulation, (c) storage ring propagation, and (d) X-ray cavity propagation.

Components (b), (c) and (d) are implemented as described in their respective sections.

Run management is handled by a wrapper program. The user first provides a parameter

input file, similar to that of GENESIS or elegant. Then, the user sets up a tracking routine

using functions provided in the run manager library. There are several tracking options

available, including (a) photon-only cavity propagation, (b) single-pass GENESIS run for gain

calculation, and (c) full multipass SRXFELO simulation with both GENESIS and elegant.

In photon-only cavity propagation, the run manager calls upon the cavity code pyopt
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Figure 4.3: Flowchart of start-to-end simulation framework. Blue lines indicate electron sim-
ulation pathway, while orange lines indicate X-ray pathway. Dashed line indicates optional
step. The run manager serves as a wrapper program that coordinates the tracking run. FEL
simulation is handled by modified GENESIS version 2, while storage ring particle tracking is
handled by elegant. Broken lines between GENESIS and elegant indicate that the electron
file is not preserved between iterations. X-ray cavity simulation is handled by an in-house
Fourier optics code pyopt. The X-ray file is preserved throughout.

to propagate the field file through a user-specified cavity. Both the run manager and pyopt

come with custom reporting capabilities, including spatial and angular beam moments, 2D

beam spot, and frequency spectrum. In the single-pass GENESIS use case, the run manager

generates an initial electron particle file and optionally a photon field file (for seeded start).

Then, it calls upon GENESIS to perform the FEL simulation, and reports on the results

afterwards. In the TGU-FEL case, the run manager also performs two important calculations

pre- and post-run, namely introducing the correct TGU dispersion to the particle file, and

rotating the particle and field files for compatibility with GENESIS.

The multipass tracking mode is the most complicated and comprehensive use case. It
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makes use of all of the aforementioned functionality. Starting with the appropriate parti-

cle/field files, the run manager iteratively (a) calls GENESIS to handle the TGU-FEL sim-

ulation step, and (b) calls elegant and pyopt to handle the storage ring orbit and cavity

propagation steps respectively. In between steps (a) and (b) are various pre- and post-

processing calculations to ensure compatibility and enable statistics tracking. This includes

particle/field manipulation (e.g. dispersion, rotation), particle file re-generation (for com-

patibility between elegant and GENESIS), and multi-bunch statistics tracking.

While the aforementioned simulation cases are the most commonly used, the object-

oriented nature of run manager library provides plenty of flexibility for the user to define

their own tracking mode. Furthermore, it is relatively easy to extend or modify the physics

model to accomodate future studies. For instance, should a detailed study of a specific cavity

outcoupling method be desired, one can readily modify pyopt to do so. The inclusion of

optical phase front errors and misalignments is an example of this extension.
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CHAPTER 5

DESIGN STUDY OF A STORAGE RING XFELO

The design of a storage ring XFELO (Fig. 1.2) can be understood to be made up of three

separate systems: (a) the electron storage ring, (b) the TGU, and (c) the optical cavity.

In the preceding chapters, we examined the core physics of each of the three components

independently. Now, we will put it all together in order to study the design, performance,

and implementation challenges of the storage ring XFELO.

We will begin by discussing some of the choices made in choosing the parameters for

the study. Much attention has been paid in particular to the TGU parameter optimization

process. Following that, we will examine the projected performance of the chosen parameter

set, obtained using the simulation framework detailed in the previous chapter. Finally, we

will end the chapter with some discussion on ring-FEL coupling strategies for the XFELO.

5.1 Design parameters

Storage ring and optical cavity

The storage ring parameters chosen for this study are based on the PETRA-IV electron

synchrotron located in Hamburg, Germany [22]. Refer to Table 5.1. PETRA-IV is an

upgrade of the existing ring PETRA-III, which brings the light source into the 4th generation.

Its target to provide ultralow electron emittance makes it a prime candidate to be the storage

ring driver for the XFELO. While existing PETRA-IV plans do not include an XFELO, we

nevertheless feel that it would serve as an instructive starting point for the growing number

of 4th generation storage rings coming online in the near future.

That being said, we do make slight adjustments to the parameters in order to favor

XFELO performance. Most notably, the emittance coupling factor has been reduced to

1/6, and the peak current of the electron bunch has been increased from 10A to 33A with
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Parameter Symbol [unit] Value

Electron energy Ebeam 5.96 GeV

Storage ring circumference Lring 2333.87 m

Relativistic gamma γr 1.167× 104

Bunch charge (lasing) Qb 4 nC

Bunch charge (non-lasing) 1 nC

Number of lasing bunches 16
Peak current (lasing) Ipk 31.89 A

Relative energy spread ση 0.1%
Natural emittance εx,0 19 pm rad

Emittance ratio kc 0.167
Emittance damping time (y) τy 22 ms

Betatron functions at TGU midpoint βx, βy 8.2 m, 4.5 m

Table 5.1: Table of storage ring parameters used for the SRXFELO design study. These
values are largely based on PETRA-IV [22].

a corresponding cost to bunch length. Both of these choices are theoretically achievable

by PETRA-IV and will effectively increase TGU gain. In an actual implementation, we

envision various operating modes for the storage ring, one of which would be the “XFELO

mode” specially tuned for the FEL in question.

The X-ray cavity is based on the 4-mirror bowtie design, previously discussed in Section

2.2.4. Refer to Figure 5.1 and Table 5.2 for the design layout and parameters. Based on the

target 14.4 keV photon energy and using the C337 crystal configuration, the nominal angle

of incidence on each mirror is calculated to be θinc = 9.2477 deg. The cavity dimensions are

then designed around θinc, a TGU undulator measuring Lu = 30m, and a feasible footprint

for the storage ring facility. The final cavity has a footprint of 70m by 11.87m, with a

round trip distance of Lcav = 145.87m (Tcav = 486.56 ns). Note that we specifically chose

Lcav = Lring/16 to have a whole number divisor with the storage ring circumference Lring.

We should also like to note that this cavity design is just one of many possible configurations,

and the ideal cavity layout should be determined on a case-by-case basis for each facility.
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Parameter Symbol Value

Photon energy ℏω1 14.4125 keV
Angle of reflection θinc 9.2477 deg
Round trip length Lcav 145.867 m
Round trip time Tcav 486.560 ns
Length 1 L1 12 m
Length 2 L2 8 m
Length 3 L3 37.433 m
Length 4 L4 0.5 m
Cavity length (footprint) D 70 m
Cavity width (footprint) W 11.87 m
Focal length f 20.70 m
Rayleigh lengths at W1 ZRx1,Ry1 8.2 m
Rayleigh lengths at W2 ZRx2,Ry2 32.82 m

Table 5.2: Table of cavity parameters used for the SRXFELO design study. Refer to Fig-
ure 5.1 for physical layout.

In addition to cavity dimensions, we also need to determine focal lengths and Rayleigh

distances of the stable Gaussian mode. The latter is primarily chosen based on TGU op-

timization (discussed in the next section). Near optimal TGU performance was achieved

with a round beam mode of ZRx1 = ZRy1 = 8.2m. Having equal Rayleigh lengths in

both dimensions means that the focal length f is also the same in both directions. Using

Eq. (2.116), we calculated that f = 20.70m and at waist 2 (outside of the undulator) we

find ZRx2 = ZRy2 = 32.82m. The choice of f falls within values achievable by off-the-shelf

beryllium compound refractive lenses (CRLs).

Finally, the four mirrors are diamond Bragg crystals in the C337 configuration. The first

crystal C1, located after the TGU, is thinner at 88 microns for outcoupling. The three other

crystals have thicknesses of 1000 microns. The net round trip power loss without additional

errors is ∼ 15%.
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Figure 5.1: Schematic of the 4-mirror bowtie cavity used for the SRXFELO design study.
Dimensions and parameters are listed in Table 5.2.

TGU parameter optimization

We wish to determine the optimal set of beam parameters (for both electron and photon)

that would maximize TGU gain. In this sense, the TGU gain equation Eq. (3.19) can be

regarded as an optimization problem. Let us work with the following nine degrees of freedom:

electron betatron functions (2), X-ray Rayleigh lengths (2), electron transverse emittances

(2), energy spread (1), FEL frequency detuning (1), and TGU parameter (1). The remaining

parameters are considered fixed a priori and are drawn from Table 5.1.

We tested a number of different optimization algorithms on this problem, including gra-

dient descent, simulated annealing and simple hill climber. We found that the objective

function, i.e. the gain integral, had in all cases a clear global optimum and a simple convex

shape. Provided reasonable starting parameters, all algorithms were able to converge rela-

tively quickly (on the order of minutes) and reliably. In the end, we chose the simple hill

climber method for its algorithmic simplicity.

The first parameter of interest is the TGU parameter Γ. Figure 5.2 shows TGU gain

as a function of Γ, with the optimum value at Γopt = 13.3 and max gain Gth = 0.42 from
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Figure 5.2: Plot of gain G versus TGU parameter Γ depicting results from numerical in-
tegration (black, dashed) and time-independent GENESIS simulation (red, solid). Error bars
indicate 2 standard deviations of the shot-to-shot variation. Simulation results consistently
overperform when compared to theory, likely due to the magnitude of gain G ∼ O(1) sur-
passing the low-gain assumption of the analytical formula. Nevertheless, both models are
consistent on the location of the gain optimum at Γ = 13.3.

numerical integration and Gsim = 0.48 from GENESIS simulation. The systematic overshoot

from GENESIS simulation is a result of the magnitude of gain G ∼ O(1) exceeding the low-

gain assumption used to derive Eq. (3.19). In such cases, nonlinear interaction terms further

boost its value in such a way that the gain increase ∝ G2
th for G < 1. Nevertheless, the

primary quantity of interest Γopt remains consistent between simulation and theory. The

shape of the curve is also consistent with our qualitative analysis of the TGU gain formula.

There is a dramatic rise in gain at low Γ as the TGU kicks in, followed by gradual drop-off

at values above Γopt due to diffraction effects.

We can convert Γopt into the more practical values of dispersion D and magnetic gradient

α using Eqs. (3.6) and (3.7). Figure 5.3 shows the optimization plots of these two parameters,

with Dopt = 6.2 cm and αopt = 0.045mm−1. The maxima are rather broad, affording

flexibility to account for experimental limitations and/or imperfections. For example, if

we nominally define an “acceptable” gain value as falling within 10% of the maximum, the

89



Figure 5.3: Plot of gain G versus electron beam dispersion D (red, solid) and TGU magnetic
gradient α (blue, dashed) derived from numerical integration of the 3D gain formula. These
parameters are derived from the TGU parameter Γ by Eqs. (3.6) and (3.7). Optimal gain is
attained at Dopt = 6.2 cm and αopt = 0.045mm−1 for the chosen machine parameters.

allowable ranges of D varies between 5 - 7.5 cm and α between 0.035 - 0.055mm−1.

Note that although the optimal gradient αopt = 0.045mm−1 may be considered large

from an engineering standpoint, it still lays within the realm where the linear theory is

appropriate. From the discussion around Eq. (3.5), we require that αyj ≪ 1 for each

individual electron, which in the ensemble sense translates to ασy ≪ 1, where σy is the RMS

electron beam size in y. This is amply satisfied in our case.

Next, we explore the effect of transverse emittances on TGU gain (Fig. 5.4). In a storage

ring, the natural emittance εx,0 is determined by the magnetic lattice and radiation damping,

with the individual emittances εx, εy being set by tuning kc. We observe that TGU gain

always increases as εx,0 is reduced, with the lower bound ultimately set by storage ring

constraints. This is because lower εx,0 is associated with smaller RMS beam sizes, which in

turn reduces the magnitude of the diffraction factors Dx,Dy in the denominator of Eq. (3.19).

Perhaps more notably, we observe greater benefit to TGU gain in minimizing εy over εx.
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Figure 5.4: Contour plot of gain as a function of transverse emittances εx, εy. White dashed
lines represent levels of constant natural emittance εx,0 ≡ εx + εy. For fixed εx,0, reducing
the emittance ratio kc ≡ εy/εx (hence reducing εy) results in significant gain improvement.
Hence it would be advantageous for the TGU to minimize kc for given εx,0.

For instance, a change of 1 pm rad in εy can have the same impact on TGU gain as a change

of 5 to 10 pm rad in εx. Thus, for a fixed εx,0, we should aim to minimize kc to maximally

reap the benefits of the TGU.

Figure 5.5 shows the gain optimization plots with respect to βx, βy and ZRx, ZRy. In the

horizontal axis, the optimal value lies along the βx = ZRx line. This agrees with planar FEL

theory, which predicts that gain is maximized when the radiation mode size matches that

of the electron beam [3]. On the other hand, the TGU gain contour is highly asymmetric in

the vertical dimension due to TGU dispersion. (To clarify, βy reflects the nominal betatron

function before the introduction of dispersion.)

During storage ring operation, the beta functions βx,y can be constrained by lattice

stability requirements. Using once again the 10% gain dropoff threshold, we observe that βy
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Figure 5.5: Contour plots of gain vs electron and photon beam parameters in x (right) and
y (left). In the x-direction, peak gain is located along the βx = ZRx line (black, dashed)
as predicted by traditional FEL theory. In the y-direction, the contours are much more
asymmetric due to the dispersion introduced by the TGU. In both directions, there are
generous margins for potential tuning while still maintaining respectable gain.

and βx accept values up to 10m and 23m respectively. These ranges encompass the nominal

figures for PETRA-IV insertion devices, with a generous margin for additional tuning if

necessary.

The Rayleigh ranges ZRx, ZRy are similarly constrained in reality, both by practical

optical cavity design as well as user requirements. Fortunately, there is also a great deal of

tunablility in these parameters. In the horizontal dimension, the optimal ZRx is always equal

to βx, but a deviation of up to ±10m still lays within the “acceptable” range. In the vertical

dimension, the allowance for sub-optimality is even larger, laying anywhere between 12m and

50m. Lastly, one special note should be made for the round-beam case (ZRx = ZRy), which

the chosen case in our study. With this constraint imposed, we observed approximately 10%

dropoff from the optimal gain, making it feasible as an actual use case.

In summary, Table 5.3 lists some possible operation points for a TGU-enabled XFELO

based on PETRA-IV parameters. Aside from the optimal case, we include a weak dispersion
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Parameter Symbol [unit] Set A Set B Set C

Gain (theory) Gth 0.29 0.36 0.42
Gain (sim) Gsim 0.34 0.36 0.48
TGU parameter Γ 5 12 13.3
Betatron function in x βx [m] 6.0 6.2 8.2
Betatron function in y βy [m] 8.4 14.1 4.5
Rayleigh length in x ZRx [m] 6.0 14.1 8.2
Rayleigh length in y ZRy [m] 14.8 14.1 47.5
Freq. detuning δ 4.495 2.715 2.722
Dispersion D [cm] 3.2 6.5 6.2
TGU gradient α [1/m] 85 42 45

Table 5.3: Table of optimized TGU parameter sets. From left to right, the parameter
sets represent (A) capped dispersion, (B) round beam constraint, and (C) unconstrained
optimum. The final chosen set for the SRXFELO study was based on Set C.

scenario (when dispersion needs to be controlled), and an optimized round-beam case (when

the X-ray beam needs to have a symmetric profile). In all cases we find more than sufficient

gain to drive a low-gain oscillator.

For our numerical study, we used the optimal TGU case with the modification ZRx =

ZRy = 8.2m. The reason we did not use the optimized round beam case is largely due

to ease of comparison with the optimal TGU case. Despite not optimizing for the round

beam, our test parameters returned gain values very close to the optimized case—thanks to

the weak sensitivity of TGU gain with respect to ZRy as discussed previously. All in all,

we observed a great deal of flexibility when choosing beam parameters for the TGU, which

allows these parameters to be dictated by the other parts of the overall machine design.

5.2 Projected performance

Using the numerical framework in Section 4.4 and the previously discussed study parameters,

we performed multi-pass, time-dependent simulation studies of the proposed SRXFELO. We

report on the results in this section.
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Figure 5.6: Plot of XFELO pulse power vs. turn number from numerical simulation. Max-
imum power of 15MW is achieved at turn 95. The inset shows the frequency spectrum at
peak power. The spectrum has a full-width half-maximum (FWHM) of 2meV corresponding
to a relative bandwidth of 1.4× 10−7.

The macrotemporal evolution of XFELO pulse power is shown in Figure 5.6. Peak

intracavity power of 15MW was achieved at turn 95 after initial onset. With 15% thin-

mirror outcoupling, this corresponds to 2.25MW of usable power. At peak power, the

photon bandwidth has a full-width half-maximum (FWHM) of approximately 2meV (relative

bandwidth of 1.4× 10−7).

Contrary to previous studies [41], we observed multiple peaks within the overall photon

bandwidth, rather than a single one. We attribute this difference to the length of the electron

bunch (or simulation window in the case of constant bunch current). In previous studies,

a relatively short bunch with σt ≲ 2 ps was used. This is, however, less feasible in practice

where IBS and Touschek lifetime considerations in the storage ring limit realistic values of

RMS bunch length to 20 to 50 ps for the desired peak currents.

In order to conserve simulation time and memory, we chose a 20 ps simulation window

with a constant current profile. On average, we observed ∼ 4 peaks within the FWHM

bandwidth. For longer electron bunch lengths, we predict that more peaks would arise
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within the same overall bandwidth, with the width of each peak set by the Fourier limit.

In order to verify this, we ran a number of additional numerical experiments of low-gain

oscillators, both with and without the TGU. We found empirically that the total FWHM

bandwidth in saturation has a lower bound between five to ten times smaller than the crystal

bandwidth σω. For electron bunch lengths shorter than ∼ 5/σω, the output has one single

spectral peak as a result of the Fourier limit. On the other hand, longer bunches can result

in multiple spectral modes within the overall bandwidth of σω/5. Currently, we do not

have a rigorous theory to indicate if this limit is fundamental or to what extent it may be

changed—this would be an area deserving of further study.

In the bowtie cavity, we observed maximum TGU gain of approximately GTGU = 0.3,

after accounting cavity losses and intentional outcoupling. This includes losses due to ab-

sorption and transmission at all four Bragg crystals. All optical components are otherwise

assumed to be free of imperfections. In the next chapter, we will examine the impact of

optical imperfections, such as misalignments and phase errors, on cavity performance. With

a net round trip gain of 0.3, there is a healthy margin for these additional losses.

Figure 5.7 shows the beam profile at peak power, imaged at waist 1. We measure RMS

beam sizes of σx = 14µm and σy = 12µm. While the nominal beam is intended to be round

(σx = σy), the slight asymmmetry is attributed to the angular filtering of the Bragg crystal,

which only takes place in the horizontal plane of the cavity. The narrow angular bandwidth

imposed by the crystals results in a corresponding increase in the beam size in x.

In the electron beam, we observed an almost four-fold increase in vertical emittance εy

from 2.7 pm rad to 10 pm rad at saturation (Figure 5.8). This is a natural consequence of the

FEL amplification process, as discussed in Section 2.2.4. Recall from Eq. (2.108) that the

X-ray beam induces energy spread gain in the eletron bunch in a regular planar FEL. This

induced energy spread is translated into vertical emittance growth due to TGU dispersion.

Thus, as the X-ray beam grows exponentially in power, vertical emittance εy becomes
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Figure 5.7: Simulated X-ray beamspot at peak power. The root-mean-square (RMS) beam
sizes are σx = 14µm and σy = 12µm. The slight asymmetry, despite the symmetric cavity,
is due to the Bragg crystal filtering acting only in the horizontal plane.

increasingly degraded by the strong radiation field. This in turn reduces TGU gain. Even-

tually, emittance growth is so severe that net round trip gain falls below zero. At this point,

saturation is reached and the X-ray power begins to decline. The emittance growth continues

but at a decreasing rate corresponding to the falling X-ray power, until it eventually levels

out. This marks the end of one single XFELO pulse.

Over a much longer timescale, εy will slowly damp down due to synchrotron emission

along the ring. This is discussed in detail in Section 2.3.2. Once it is reduced to a sufficiently

low value (not necessarily the equilibrium value) the entire process can begin anew for the

next macropulse. In the following section, we will discuss this process in greater detail, and

examine some implementation challenges associated with ring-FEL coupling.

5.3 Ring-FEL coupling and other challenges

The X-ray cavity and storage ring constitute a coupled oscillator system. The physics of the

storage ring FEL has been previously studied in the UV/IR regimes [17, 19, 20]. Though the
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Figure 5.8: Plot depicts the degradation of electron emittance εy (red) due to FEL power
(gray dashed) within a single oscillator pulse. Initially, the low emittance εy enables a large
positive gain (blue), which in turn exponentially amplifies the X-ray power (dashed gray;
vertical log scale not shown). The increasing X-ray power degrades εy due to the TGU-FEL
interaction. Near saturation, emittance εy has increased so much that gain falls below zero,
leading to the exponential decay of the X-ray pulse.

energies involved here are greater, much of the theory, especially relating to the ring-FEL

interaction, remains relevant in the X-ray regime. For the sake of the following discussion,

we provide here a short summary of the most salient points adapted from [19, 20].

In a storage ring FEL, there exists a tension between the electrons circulating in the ring

and the photons circulating in the cavity. Namely, as photon intensity increases, the electron

bunch suffers increasing degradation of its energy spread. This in turn leads to the reduction

of FEL gain, and eventually, the saturation and decline of laser power. The addition of the

TGU modifies this interaction in one important aspect—electron beam degradation takes

place in the TGU-axis transverse space (y in our case), rather than longitudinally. This is

because of the dispersive sections before and after the undulator, which effectively translates

the energy spread growth generated by the FEL into excess emittance in the ring.

Hence, the macrotemporal dynamics of the TGU-enabled storage ring FEL can be de-
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scribed by the following linearized equations:

dU

dt
= U

g − L

θ
+ Us, (5.1)

d(εy)

dt
= − 2

τy
(εy − εy,0) + ∆U , (5.2)

g = g0 exp
(
−k(εy − εy,0)

)
[1 + F (t)] . (5.3)

Here, U is the FEL intensity, g, L, θ are the gain, loss and transit time for each turn respec-

tively, Us is the intensity of the spontaneous emission, εy,0 is the equilibrium y emittance,

τy is the characteristic emittance damping time, ∆U is the increase in emittance due to laser

intensity, g0 is the maximum gain at equilibrium emittance, and F (t) represents an optional

external gain modulation imposed on the system.

Figure 5.8 depicts the evolution of these three parameters over a single FEL pulse. At

first, the photon intensity is dominated by spontaneous emission, which quickly gets over-

taken by FEL amplification as the equilibrium emittance εy,0 enables the maximum theoret-

ical TGU gain g0. The exponential rise in photon intensity results in increasing degradation

of εy, which causes g to suffer. Finally, at saturation, g falls below single turn loss L (such

that g − L ≤ 0), which marks the start of the exponential decay of the photon pulse. This

whole process takes place over hundreds of oscillator turns, with a characteristic rise time

on the order of microseconds. On the much longer timescale, the electron bunch damps in

εy as it circulates within the storage ring (typically over tens to hundreds of milliseconds).

This process is explained in Section 2.3.2.

Thus, the ring-FEL system behaves like a coupled oscillator with two drastically different

timescales. On the one hand, the laser is characterized by its rise time τ0 ∼ 10−6 s. On

the other hand, emittance damping is set by τy ∼ 10−2 s. Using Eqs. (5.1)–(5.3), we can
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determine the natural period of the system to be

TR = 2π

√
τ0τy
2

. (5.4)

The system is extremely sensitive to initial conditions, displaying chaotic and noisy be-

haviour close to this natural resonance [17, 18]. A more stable alternative can be achieved

by modulating the gain periodically in the FEL so as to effectively “turn on” and then “turn

off” the XFELO. Thus, the laser can operate in a pulsed fashion with greater stability. The

duty cycle of the modulation is given by: (a) “off” state for several τy damping times (tens

to hundreds of milliseconds), then (b) “on” state for several τ0 laser rise times (tens of mi-

croseconds) until saturation. The laser switches itself off due to emittance degradation at

saturation.

Gain modulation can be achieved by essentially disrupting the temporal and/or spatial

overlap between the electron bunch and the photon pulse, thus suppressing the FEL inter-

action. For our proposed parameters, a temporal displacement of ∼ 20 to 50 fs between

consecutive bunches is sufficient to “switch off” the XFELO. This can be done by detuning

the storage ring RF system to the order of tens of Hz. This method has been experimentally

tested, albeit on a smaller scale, at the Duke storage ring FEL [18]. Other potential gain

modulation methods include transversely displacing the electron trajectory in the undulator

(e.g. with a kicker) or manipulating the X-ray cavity length/geometry, although to per-

form the latter at the required millisecond time scale without compromising cavity stability

remains an open area of research.

One additional note must be made about the ring-FEL coupling strategy. Since the stor-

age ring circumference is typically many times the length of the X-ray cavity, it is necessary

to have multiple electron bunches spaced around the ring with temporal separation matching

the cavity round-trip time. In the numerical study, we had a ring-cavity circumference ratio

of 16, meaning that we had 16 of these “XFELO bunches”. This is a fraction of the hundreds,
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Figure 5.9: Proposed bunch train structure for ring-FEL coupling. Each vertical line rep-
resents one bunch, with its height proportional to peak current Ipk and thus TGU gain by
Eq. (3.14). Tall red bunches are the designated “XFELO bunches” with Ipk exceeding the
lasing threshold set by single-turn cavity loss. The temporal gap between XFELO bunches
Tbunch is equal to the X-ray round-trip time Tcavity. The non-XFELO bunches (black) lay
below the lasing threshold and only experience spontaneous undulator radiation. Thus they
are able to avoid substantial emittance degradation from the XFELO lasing process.

if not thousands, of simultaneously circulating bunches present in a modern storage ring.

As discussed previously, the XFELO lasing process leads to significant emittance degra-

dation due to the elevated laser intensity. We would like to isolate this detrimental effect

to only the XFELO bunches while leaving the non-XFELO bunches relatively unperturbed.

The problem of selecting for the XFELO bunches is non-trivial [16].

One commonly proposed technique is to situate the XFELO on a bypass with fast trans-

verse kickers, which periodically kick the XFELO bunches into the oscillator. This is not

feasible when the closely spaced electron bunches are only separated by gaps on the order of

single to tens of nanoseconds. Even if the rise/fall time of the kicker fits within the bunch

separation, its repetition rate is not fast enough to support the oscillator [42].

Our current proposal is to utilize bunch charge stacking (Fig. 5.9). Under this scheme,

the XFELO bunches, spaced at the appropriate periodic interval, are intentionally injected

with multiple times the nominal bunch charge, while adjacent RF buckets are left empty to

compensate for the beam loading effect. This technique has precedence in the APS-U, where

it is employed to mitigate ion instabilities [43].

Since TGU gain is linearly proportional to peak current in the low gain approximation,

the XFELO bunches will experience proportionally more gain than the non-XFELO ones.
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Then, it suffices to set the single turn loss within the cavity (for instance, using outcoupling

methods) to be higher than the gain experienced by non-XFELO bunches, but lower than

that of the XFELO bunches. Thus only the latter will experience exponential growth and the

subsequent emittance degradation due to the intense laser field near saturation. The non-

XFELO bunches will only undergo spontaneous undulator radiation, which will not cause

substantial emittance increase.

In our numerical study, we chose the non-XFELO bunches to have a total charge of

Qb = 1nC, with a corresponding peak current of Ipk = 10A, whereas the stacked XFELO

bunches have Qb = 4nC and Ipk = 32A, after accounting for bunch lengthening due to

intra-beam scattering (IBS) and ring impedance. Single turn loss is set to approximately

0.15 via thin mirror outcoupling.
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CHAPTER 6

CAVITY-BASED X-RAY FEL (CBXFEL) EXPERIMENT

The Cavity-based X-ray FEL (CBXFEL) project aims to provide the world’s first experimen-

tal demonstration of an X-ray FEL cavity. It is a collaboration between Argonne National

Laboratory (ANL), SLAC National Accelerator Laboratory, and Super Photon ring-8 GeV

(SPring-8) of Japan. The experimental setup is physically located at the Linear Coherent

Light Source (LCLS) facility at SLAC [21].

The experiment will enclose the first seven undulators of the LCLS within a 4-mirror

rectangular cavity (Fig. 6.1). The 4-mirror optical cavity will utilize diamond Bragg reflectors

in the C400 geometry with 45 degree angle of reflection, along with two beryllium CRLs for

focusing. The goal of the experiment is to observe second pass gain—that is, having the

photon pulse generated from spontaneous emission in the first pass make a full round trip

in the cavity and be amplified by the second, trailing electron bunch.

The electron bunches are supplied by the LCLS normal conducting linac with 120Hz RF

repetition rate. Alone, the RF cavities are too slow to keep up with the ∼ 220 ns cavity round

trip time. Instead the CBXFEL experiment will rely on two bunch generation, wherein twin

lasers in the LCLS photoinjector system will fire with the desired temporal separation to

generate two consecutive electron bunches. The two bunches will then be accelerated in

separate RF buckets.

There will be two principal modes of operation in this experiment — the low gain XFELO

mode, and the high gain X-ray regenerative amplifier (XRAFEL) mode. The primary dif-

ference between the two modes are the electron peak current and bunch length. Table 6.1

lists some key parameters of the experiment.

In the context of this thesis, the CBXFEL experiment serves as a key demonstration of

the operational viability of the XFELO. Although the electron driver in this case is a linac,

many of the challenges associated with the X-ray optical cavity remain the same. In the
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Figure 6.1: Layout of the Cavity-based X-ray FEL (CBXFEL) experiment. The four-mirror
rectangular cavity encloses the first seven undulators of the LCLS (blue rectangle).

Parameter Value

Electron energy 10.3 GeV
Peak current (XFELO, XRAFEL) 0.333, 3 kA
Bunch length (XFELO, XRAFEL) 300, 50 fs
Photon energy 9831 eV
Undulator period 2.6 cm
Number of periods 7 × 130
Undulator parameter 2.44
Cavity length 65.3 m

Table 6.1: Table of key CBXFEL experiment parameters.

following sections, we will examine two of these issues—cavity alignment and phase front

errors—in the context of the CBXFEL experiment, while keeping in mind that much of the

discussion is also relevant for storage ring XFELO.

6.1 Simulation model

Figure 6.2 shows a flowchart of the simulation model used in this study. The FEL portion

of the code is handled by GENESIS while the cavity propagation is done using a precursor to

pyopt (operating on identical physics principles). There are two main types of simulation

runs. The first is a two-pass 3D run in order to determine the projected photon count within

the diamond crystal bandwidth. From this data, we are able to calculate the two-pass gain,

a key metric for the experiment. We are also able to study the projected impact of various
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Figure 6.2: Flowchart depicting the simulation process of the CBXFEL experiment. The
two primary run modes are two-pass (orange) and ring down (blue). For the ring down runs,
one may optionally use a Gaussian seed (dashed outline) instead of GENESIS output. The
cavity simulation step is similar to that depicted in Fig. 4.2.

cavity misalignments.

The second mode is the ringdown study, where the X-ray beam is allowed to circulate the

cavity for a large number of passes (usually 10-25) without FEL amplification. By tracking

the pulse power over each turn, we are able to determine the round trip loss and cavity

quality factor. We are also able to track the transverse beam spot and RMS sizes. This

allows us to investigate the impact of phase front imperfections.

6.2 Cavity alignment

Peak FEL gain occurs when there is maximal overlap between the co-propagating electron

and X-ray beam within the undulator. This overlap can be disrupted due to unintentional

misalignments in the longitudinal and transverse domains.

Longitudinal misalignments

In the longitudinal domain, the electron bunch may arrive too early/late, or at the wrong

energy. This is primarily determined upstream by the two bunch generation laser system.

Any slight mistiming in the setup can translate into significant energy differences, due to the

position of the bunch relative to the RF accelerating potential.

Figure 6.3 shows the simulated second-pass photon count versus second-bunch temporal

and energy displacements. In the temporal domain, the XFELO nominal bunch length is
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Figure 6.3: Plot of second-pass photon count reduction versus temporal (left) and energy
(right) misalignments. Each data point represents a single two-pass simulation with fixed
seed to eliminate the impact of shot noise.

300 fs. We observe that a delay of less than ∼ 30 fs, or 10 percent of the bunch length, will

lead to negligible gain dropoff. In the high gain XRAFEL mode, we foresee a much more

stringent timing requirement for negligible gain dropoff, due to the shorter nominal bunch

length of 50 fs. However, in XRAFEL mode the estimated peak gain is G ∼ 100, meaning that

even a 50 percent overlap would likely provide detectable second-pass amplification, which

would fulfill the experimental goal. Thus, we determined that an overall timing tolerance of

25 to 30 fs would satisfy both XFELO and XRAFEL test acases.

In the energy domain, the energy difference between the two bunches should ideally be

less than half the undulator bandwidth, i.e. less than 1/2Nu ∼ 5× 10−4. This is consistent

with simulation result, which indicates that a gap of ∆γ ≲ 1 or ∆γ/γ ≲ 5×10−5 would lead

to negligible impact on second-pass gain. Also notice that peak photon count is achieved

slight above the nominal electron energy, which is consistent with our understanding of peak

gain at positive detuning (Sec. 2.2.3).
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Transverse misalignments

One important source of transverse cavity misalignment comes from the cavity mirrors. Let

us assume that the four mirrors are misaligned by θm1, θm2, θm3, θm4 radians respectively.

The resulting displacement of the photon beam, relative to the nominal axis, is a linear

combination of these misalignments:

∆x = c1θm1 + c2θm2 + c3θm3 + c4θm4, (6.1)

∆ϕ = f1θm1 + f2θm2 + f3θm3 + f4θm4, (6.2)

where coefficients ci, fi are calculated from cavity drift distances and focal lengths using

the ABCD ray transfer matrix. For the CBXFEL cavity, we have c1 = c2 = 22m and

c3 = c4 = 33m, as well as f1 = f2 = −2.6 and f3 = f4 = 2.

Let us then assume that the θi are independent and identically distributed1 with zero

mean and standard deviation σm. The RMS angular and position deviations are given by

σx = σm

√
c21 + c22 + c33 + c24, (6.3)

σϕ = σm

√
f21 + f22 + f23 + f24 . (6.4)

The values for the CBXFEL cavity are σx = 56σmm and σϕ = 4.6σm. In other words, if we

are able to determine tolerance values for σx, σϕ, the above equations allow us to work out

the corresponding tolerance on mirror angular stability σm.

Transverse displacement error reduces FEL gain. For given electron beam size σx and

radiation mode size σr, the reduction in FEL power for a relative displacement of ∆x can

1. Note that there is no a priori justification for this assumption—in fact, environmental factors such as
temperature and seismic movement may cause the errors to be correlated in some fashion. Nevertheless, the
present assumption of independence provides a reference point for further analysis. It is important to keep
correlated errors in mind when considering the “worst case” misalignment scenarios.
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Figure 6.4: Plot of second-pass photon count versus transverse misalignment ∆x (left) and
∆ϕ (right). Data points show data from n = 20 two-pass simulations, with error bars
indicating RMS variation due to shot noise. The red plots show theoretical relationship
given by Eq. (6.5). At large misalignments, the data deviates from the theoretical value and
trends towards the two-pass spontaneous emission background (black dashed).

be estimated by

P = P0 exp

(
− (∆x)2

2(σ2r + σ2x)

)
(6.5)

where P0 is the initial power without misalignment. An equivalent expression exists for

angular overlap between σx′ and σϕ.

Figure 6.4 shows the second pass photon count (directly proportional to power) as a

function of transverse displacements ∆x and ∆ϕ. The data was obtained from n = 20

two-pass simulation runs. For comparison, Eq. (6.5) is shown in red. Initially, the power

dropoff follow the theoretical relationship. However, for large displacements, the numerical

result asymptotically approaches the base level of ∼ 1.1 × 105 photons—the spontaneous

emission background (black dashed line). We observe negligible impact on performance for

displacements ∆x ≲ 8µm and ∆ϕ ≲ 0.2µrad. Taking the more stringent result for angular

overlap, this leads to the conclusion σm ≲ 50 nrad.

In order to verify that this limit is sufficient, we ran 60 independent instances of the two-
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Figure 6.5: Histogram of second-pass photon count from n = 60 two-pass simulations us-
ing randomly sampled mirror misalignments with σm = 50 nrad. There is no observable
difference from ideal conditions.

pass gain simulation with mirror errors randomly distributed according to σm ∼ 50 nrad.

Figure 6.5 shows a histogram of the second pass photon count. At this level, there is no

observable difference from the ideal case.

6.3 Phase front error

Phase error in diamond crystals arises due to irregularities in the Bragg reflection planes.

This can occur on the crystal surface in the form of surface roughness, or within the crystal

interior due to mechanical strain. When an initially coherent beam reflects off the crystal,

the crystal imperfections introduce a transversely-dependent phase factor into the beam

wavefront, per Eq. (4.15), thereby spoiling the transverse coherence of the beam.

In CRLs, one additional source of phase error comes from its material composition. Beryl-

lium is the dominant element used for CRL construction due to its low atomic number and

very low absorption of X-rays. In the manufacturing process, the elemental Be is contami-

nated by oxide formation, resulting in beryllium oxide BeO. The level of BeO impurity, when

combined with the grain size and anisotropy properties determined by the manufacturing

108



technique, is the primary source of phase error in CRLs [44].

Error measurement and quantification

As discussed in Section 4.1, we relied on a multitude of sources for phase front error data,

including rocking curve imaging, speckle tracking, and artificial generation. Each error profile

is subject to data preprocessing, where it is segmented into the appropriate window size and

formatted into a 2D array of effective phase shifts φ(x, y).

Given an error profile, we wish to measure its “quality”. In fact, there are several useful

metrics. The first is the RMS phase variation σφ after subtracting the zeroth and first order

terms2. The remaining phase terms are the residuals from fitting the data to a best-fit plane.

The RMS variation of these residuals gives an idea of the level of phase fluctuations in each

data set.

The RMS phase variation σφ can also be converted into an effective height variation σh.

Based on the 90 degree reflection geometry of the CBXFEL cavity, we can show that for a

given height deviation ∆h, the resulting phase error is

∆ϕ(x, y) =
2 sin θ∆h(x, y)

λ
(6.6)

where θ = 45 degrees. Whereas σφ is dimensionless and vary between 0 and 2π, σh has

units of distance and can intuitively be compared to λ. For this reason, RMS phase error is

frequently quoted in units of λ, e.g. σh ∼ λ/100.

The final metric adopted in this study is the Strehl ratio. Given a surface with error

2. The zeroth order error represents a constant phase shift to the entire wavefront, which corresponds
to an effective path length difference. Similarly, the first order (linear) error introduces an overall angular
misalignment. Both errors are accounted for during the cavity alignment process.
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profile φ(x, y), the Strehl ratio S is calculated from

S =
∣∣∣〈eikφ〉∣∣∣2, (6.7)

where ⟨ · ⟩ indicates taking the average over the 2D surface. Values of S range between zero

and unity, with the latter representing an error-free optical element.

Figure 6.6 demonstrates the crystal data preprocessing using example data sets taken

RCI and speckle measurements. We segment the large crystal surface (millimeter-scale) into

smaller grid squares corresponding to the simulation window size. Then, we calculate S for

each grid square in order to estimate its quality. The regions selected for simulation are then

cropped and formatted for the cavity code. Alternatively, we can also perform a window

scan over the data set in order to find the best/worst regions for study. Rather than relying

on a fixed grid, this method is able to objectively locate the region with the highest/lowest

S at the cost of more computation time.

In the case of the simulated error profiles, we are obviously able to specify the desired

quality level and data fidelity beforehand, obviating the need for much preprocessing. Nev-

ertheless, it is important that the error spectrum of the generated profile be as close to the

real measurements as possible. Figure 6.7 shows a comparison of the noise spectral profiles.

We were able to verify similarity down to the feature size of the beam spot (∼ 20µm).

Simulation results

For each simulation run, we select a set of four mirror phase error profiles (two in the case of

CRLs) from the measured or simulated data. Each profile covers a 500x500 micron transverse

area. We did not always choose regions with the highest S or lowest σh, since we wished to

explore a wide range of values. Due to the limited amount of measurement data at the time

of the study, it is possible for two regions to be selected from the same test crystal, although
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test regions are never allowed to overlap. If the data set is smaller than 500x500 microns, as

is the case for the RCI dataset, we pad it with zeros evenly along all four sides.

Figure 6.8 (left) shows the beam spots after 25 ring down passes for four different sets

of crystal error profiles: (a) perfect crystal, (b) speckle, (c) RCI, and (d) synthetic. By

partial coincidence, they are also ordered from best to worst by RMS phase error. The best

dataset came from speckle tracking partly due to the precision of the technique—capable of

detecting phase errors down to ∼ λ/100—and partly due to a change in crystal providence.

The RMS phase error for each crystal ranged between λ/100 to λ/80. Within this range,

we observe minimal deterioration of the transverse beam profile even after 25 passes. The

average round trip loss is also close to perfect. At the other extreme, the “worst” dataset

was artifically generated to have RMS phase errors ranging between λ/10 to λ/5. At this

level, there is noticeable negative impact on the beam profile as well as round trip loss.

Figure 6.8 (right) shows the ring down results with CRL error profiles. The error profile

is taken from speckle measurement data of physical lenses. We ranked the lenses by RMS

phase error within the central 110µm region, corresponding to approximately 6σ of the X-ray

beam spot. Then, we selected the best and worst error profiles for simulation. The results

show that phase error in the CRLs have a much smaller, albeit non-negligible, impact on

the transverse beam profile.

Interestingly, phase error poses much less problems for high gain XRAFEL operation.

Figure 6.9 shows the ring down results for different levels of outcoupling up to 90%. Notice

the considerable improvement in transverse coherence as the outcoupling level is increased.

In the high gain regime, the transverse beam profile is primarily shaped by powerful gain

guiding effects rather than the cavity [3]. Furthermore, the high level of outcoupling means

that the recirculating beam makes up only a small fraction of the total beam power, thus

greatly suppressing the impact of any phase irregularities.

In summary, our simulation results demonstrate that an acceptable level of phase error is

111



≲ λ/50 for low gain XFELO operation. While this threshold is partially subjective, it serves

as a useful benchmark for crystal/lens selection. More importantly, this study also provides

a handy simulation pipeline for benchmarking experimental results during commissioning

and operation.
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Figure 6.6: Sample of crystal phase error profiles showing window selection process. Top:
A grid is applied to the overall crystal data set (right) according to the simulation window
size. We then calculate Strehl ratio S for each region (left) in order to select the appropriate
regions for further study. Bottom: Instead of applying a fixed grid, we can also perform a
moving window scan for minimal/maximal S. This is useful for narrowing down the most
error-free regions for the actual experiment.
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Figure 6.7: Noise spectral power for artificial (magenta) versus measured (blue) phase error
data. We observe similar profiles down to at least k ∼ 0.3µm−1, corresponding to the RMS
spot size ∼ 20µm.

Figure 6.8: Beam spot comparison for ring down simulation with phase error data. Each
beam spot was recorded after 25 passes in the cavity, along with round trip (RT) power loss
figures. From these simulation results, an acceptable level of phase error was deemed to be
≲ λ/50 (per element) for XFELO operation.
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Figure 6.9: Beam spot comparison with different levels of outcoupling for XRAFEL. Beam
spot measured after 25 passes in the cavity. At high levels (∼ 90%) of outcoupling, the
transverse mode is primarily shaped by FEL gain guiding rather than the cavity mirrors.
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CHAPTER 7

CONCLUSION

In this thesis, we examined the theory, simulation, and implementation of a TGU-enabled

storage ring X-ray FEL oscillator. Following an introduction to FEL and storage ring physics

in Chapter 2, we discussed TGU physics in the low gain approximation and derived the 3D

gain equation in Chapter 3. The gain equation Eq. (3.19) permits us to optimize beam

parameters for a given TGU design.

In Chapter 4, we discussed the process of constructing an entire start-to-end simulation

model for the SRXFELO concept. The model folds in the theory from the previous chapters

and allows us to obtain projected performance for a arbitrary set of beam and machine

parameters. We examine one such case in Chapter 5 and report on performance figures.

Most notably, we go into detail about potential challenges facing the ring-FEL coupling

implementation.

Finally, in Chapter 6, we reported on optical cavity simulations for the CBXFEL collab-

oration. The experiment serves as a testbed for future XFELO cavity designs, and much

of the results remain relevant for future machines. We focused on issues relating to beam

alignment and optical phase front purity, and derived practical engineering tolerances using

simulation.

The results of this study demonstrate that the TGU-enabled SRXFELO can be a feasible

inclusion for modern storage rings, and thus is deserving of further study. There remains

undoubtedly many other challenges which we do not have time to discuss in this thesis.

However, we hope that the mathematical and numerical framework derived for this study

will serve as a useful starting point for modeling future SRXFELO designs in a wide range

of practical circumstances.
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Future work

In the short term, there are a number of problems that could be interesting to study. First,

as mentioned in the performance results in Chapter 5, the SRXFELO exhibits multiple

frequency modes within the overall crystal bandwidth. We hypothesized that this could be

due to the longer electron bunch length corresponding to narrower Fourier-limited modes.

It would be useful to derive a more mathematically rigorous explanation in this regard.

In previous studies of SRFELOs [17, 18, 20], it was observed that continuous-wave (CW)

operation of the oscillator is also possible under the correct circumstances. In our hypothet-

ical test case, we were unable to find a feasible CW mode of operation. However, it may

be worth exploring whether such CW designs may exist under a different set of machine

parameters.

As of the time of writing, the CBXFEL experiment will be up and running in 1-2 years.

The actual measurements from this experiment will serve as a useful benchmark of our

analytical and numerical models. There is also the possibility to extend the cavity module

of the framework—for instance, on-the-fly generation of the crystal bandwidth based on

input parameters (currently performed with an external program), as well as introducing

new optical componentry such as diffraction gratings and X-ray beam position monitors.

Finally, as a longer term project, it is worthwhile to consider consolidating the FEL

and cavity portions of the numerical model. This could lead to large improvements in

computational efficiency, since the radiation file (the primary bottleneck) will no longer be

written and read from disk every turn. It would be a significant undertaking that would

streamline the simulation process for future XFELO projects.
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APPENDIX A

DERIVATION OF 3D TGU GAIN

We start from Eq. (3.13). For future convenience, we perform a change of variables ϕ⃗−p⃗→ ϕ⃗

and x⃗− y⃗ → x⃗. We also use integration by parts to switch the derivative, thus obtaining

G = − G0

8πNuL2
uλ

2
1

∫
dηdx⃗dy⃗dϕ⃗dp⃗BE(y⃗, ϕ⃗+ p⃗)

× ∂

∂η
BU (η, x⃗, ϕ⃗, p⃗, y⃗)F (η, x⃗+ y⃗, p⃗). (A.1)

Since the two transverse dimensions are decoupled, we drop the vector notation and focus on

the TGU dimension y. (The x case can be easily obtained later by setting Γ→ 0). At this

point, note that x, y will refer to spatial integration variables instead of the usual transverse

dimensions. The Gaussian X-ray seed is given by

BE(y, ϕ+ p) =
1

2πσrσϕ
exp

[
− y2

2σ2r
− (ϕ+ p)2

2σ2ϕ

]
. (A.2)

Here, σr, σϕ refers to the RMS X-ray beam size and divergence in y respectively. The electron

distribution is given by

F (η, x+ y, p) =
1

(2π)3/2σyσησp
exp

[
−(x+ y −Dη)2

2σ2y
− η2

2σ2η
− p2

2σ2p

]
. (A.3)

Here, σy, σp refers to the RMS electron beam size and divergence in y respectively, and ση

refers to the normalized energy spread where η ≡ (γ − γ0)/γ0. As discussed in the main

text, the spontaneous undulator brightness can be obtained from the Wigner transform of
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Eq. (3.15):

BU (η, x, ϕ, p, y) =

∫ L/2

−L/2
dzds exp

[
iku∆ν(z − s)− 2ikuη(z − s)

+ikuTα

{
(x+ y)(z − s) +

p

2
(z2 − s2)

}]
×
∫

dξ exp

[
−ikxξ + ik

2

(
(ϕ+ ξ/2)2z − (ϕ− ξ/2)2s

)]
, (A.4)

where ∆ν ≡ (ω − ω1)/ω1 is the frequency detuning from the fundamental harmonic. We

evaluate the Wigner integral to get

BU (η, x, ϕ, p, y) =

∫ L/2

−L/2
dzds

√
8πi

k(z − s)
exp

[
iku∆ν(z − s)− 2ikuη(z − s)

+ikuTα

{
(x+ y)(z − s) +

p

2
(z2 − s2)

}
− 2ik

z − s
x2 − 2iksz

z − s
ϕ2 +

2ik(z + s)

z − s
xϕ

]
. (A.5)

Note that
∂BU

∂η
= −2iku(z − s)BU . (A.6)

We then substitute Eqs. (A.2) through (A.6) into the gain convolution formula, and perform

Gaussian integration in each variable. Generically, the Gaussian integral takes the form

∫
dx exp

(
−Ax2 +Bx

)
=

√
π

A
exp

(
B2

4A

)
. (A.7)

In each case, we will use coefficients A,B with the appropriate subscripts (e.g. Ax, Bx for
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the dx integral) to denote the result. For brevity, we will define the following parameters:

Σ2
y = σ2y + σ2r +D2σ2η, (A.8)

Σ2
yr = σ2y + σ2r , (A.9)

Σ2
yη = σ2y +D2σ2η, (A.10)

Σ2
ϕ = σ2p + σ2ϕ. (A.11)

We will also use short-hand notation for the following recurring terms:

[
. . . σ2ϕ

]
= (z − s) + 4ikszσ2ϕ, (A.12)[

. . .Σ2
ϕ

]
= (z − s) + 4ikszΣ2

ϕ, (A.13)

[BD] = (z − s)[1 + 4k2Σ2
yrΣ

2
ϕ] + 4ik[Σ2

yr + szΣ2
ϕ], (A.14)

[BD]y = (z − s)[1 + 4k2Σ2
yΣ

2
ϕ] + 4ik[Σ2

y + szΣ2
ϕ], (A.15)

[BD]σr = (z − s)[1 + 4k2σ2rΣ
2
ϕ] + 4ik[σ2r + szΣ2

ϕ], (A.16)

[BD]σϕ = (z − s)[1 + 4k2Σ2
yσ

2
ϕ] + 4ik[Σ2

y + szσ2ϕ]. (A.17)

We will perform a total of five Gaussian integrals, followed by consolidating and simplifying

the prefactor and the terms in the exponential. The steps are listed in order below.

The dϕ integral

The integral takes the form

∫
dϕ exp

[
−ϕ2

(
1

2σ2ϕ
+

2iksz

z − s

)
+ ϕ

(
− p

σ2ϕ
+

2ik(z + s)x

z − s

)]
, (A.18)
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whence we can consolidate the terms

Aϕ =
1

2σ2ϕ
+

2iksz

z − s
=

[. . . σ2ϕ]

2(z − s)σ2ϕ
, (A.19)

Bϕ =
2ik(z + s)xσ2ϕ − p(z − s)

σ2ϕ(z − s)
, (A.20)

B2
ϕ

4Aϕ
= p2

z − s

2σ2ϕ[. . . σ
2
ϕ]
− px

2ik(z + s)

[. . . σ2ϕ]
− x2

2k2(z + s)2σ2ϕ

(z − s)[. . . σ2ϕ]
. (A.21)

From the form of Eq. (A.7), we note that Aϕ will feature in the prefactor of the final result,

whereas the B2
ϕ/4Aϕ term will carry into subsequent integrations. This is repeated for the

subsequent integration steps.

The dy integral

We have

∫
dy exp

[
−y2

(
1

2σ2r
+

1

2σ2y

)
+ y

(
−x−Dη

σ2y
+ ikuTα(z − s)

)]
, (A.22)

whence

Ay =
σ2y + σ2r

2σ2yσ
2
r

=
Σ2
yr

2σ2yσ
2
r
, (A.23)

By =
ikuTα(z − s)σ2y − x+Dη

σ2y
, (A.24)

B2
y

4Ay
= x2

σ2r
2σ2yΣ

2
yr
− xη

Dσ2r
σ2yΣ

2
yr

+ η2
D2σ2r
2σ2yΣ

2
yr
− x

ikuTα(z − s)σ2r
Σ2
yr

+η
iDkuTα(z − s)σ2r

Σ2
yr

−
[
kuTα(z − s)σrσy

]2
2Σ2

yr
. (A.25)
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The dp integral

Including terms from the dϕ integral, we get

∫
dp exp

[
−p2

(
1

2σ2ϕ
+

1

2σ2p
− z − s

2σ2ϕ[. . . σ
2
ϕ]

)
+ p

(
ikuTα(z

2 − s2)

2
− 2ik(z + s)x

[. . . σ2ϕ]

)]
,

(A.26)

whence

Ap =
(z − s) + 4ikszΣ2

ϕ

2σ2p[. . . σ
2
ϕ]

=
[. . .Σ2

ϕ]

2σ2p[. . . σ
2
ϕ]
, (A.27)

Bp =
ikuTα(z

2 − s2)[. . . σ2ϕ]− 4ik(z + s)x

2[. . . σ2ϕ]
, (A.28)

B2
p

4Ap
= −x2

2k2(z + s)σ2p

[. . .Σ2
ϕ][. . . σ

2
ϕ]

+ x
kkuTα(z + s)(z2 − s2)σ2p

[. . .Σ2
ϕ]

−
[kuTασp(z

2 − s2)]2[. . . σ2ϕ]

8[. . .Σ2
ϕ]

. (A.29)

The dx integral

The previous three integrations all contribute terms to this integral:

∫
dx exp

[
−x2

(
1

2σ2y
+

2ik

z − s
+

2k2(z + s)2σ2ϕ

(z − s)[. . . σ2ϕ]
− σ2r

2σ2yΣ
2
yr

+
2k2(z + s)2σ2p

[. . .Σ2
ϕ][. . . σ

2
ϕ]

)

+x

(
Dη

σ2y
+ ikuTα(z − s)− Dησ2r

σ2yΣ
2
yr
− ikuTα(z − s)σ2r

Σ2
yr

+
kkuTα(z + s)(z2 − s2)σ2p

[. . .Σ2
ϕ]

)]
, (A.30)
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whence

Ax =
(z − s)[1 + 4k2Σ2

yrΣ
2
ϕ] + 4ik[Σ2

yr + szΣ2
ϕ]

2Σ2
yr[. . .Σ

2
ϕ]

=
[BD]

2Σ2
yr[. . .Σ

2
ϕ]
, (A.31)

Bx =
(ikuTα(z − s)σ2y +Dη)[. . .Σ2

ϕ] + kkuTα(z + s)(z2 − s2)σ2pΣ
2
yr

Σ2
yr[. . .Σ

2
ϕ]

, (A.32)

B2
x

4Ax
= η2

D2[. . .Σ2
ϕ]

2Σ2
yr[BD]

+ η
iDkuTα(z − s)σ2y [. . .Σ

2
ϕ] +DkkuTα(z − s)(z + s)2σ2pΣ

2
yr

Σ2
yr[BD]

+k2uT
2
α(z − s)2

k2(z + s)4σ4pΣ
4
yr + 2ik[. . .Σ2

ϕ](z + s)2σ2pσ
2
yΣ

2
yr − [. . .Σ2

ϕ]σ
4
y

2Σ2
yr[BD][. . .Σ2

ϕ]
. (A.33)

The dη integral

We have

∫
dη exp

[
− η2

(
D2

2σ2y
+

1

2σ2η
− D2σ2r

2σ2yΣ
2
yr
−

D2[. . .Σ2
ϕ]

2Σ2
yr[BD]

)
+ η

(
− 2iku(z − s)

+
iDkuTα(z − s)σ2r

Σ2
yr

+ iDkuTα(z − s)
σ2y [. . .Σ

2
ϕ]− ik(z + s)2σ2pΣ

2
yr

Σ2
yr[BD]

)]
,(A.34)

whence

Aη =
[BD]y

2σ2η[BD]
, (A.35)

Bη = −
2iku(z − s)[BD]− iDkuTα(z − s)

{
[BD]σr − ik(z + s)2σ2p

}
[BD]

, (A.36)

B2
η

4Aη
= −

2[BD]k2u(z − s)2σ2η
[BD]y

+
2Dk2uTα(z − s)2σ2η

{
[BD]σr − ik(z + s)2σ2p

}
[BD]y

−
(kuTα(z − s)Dση)

2
{
[BD]σr − ik(z + s)2σ2p

}
2[BD]y[BD]

. (A.37)
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Consolidating the prefactor

The prefactor coming out of all the Gaussian integrals is

π5/2√
ApAϕAyAxAη

=
(2π)5/2σϕσpσyσrση(z − s)

[BD]y
. (A.38)

Combining this with the gain convolution integral prefactor gives the final prefactor, after

also accounting for the non-TGU x dimension.

Simplifying the exponential

Consolidating all the surviving terms in the exponential results in the following exponent:

iku∆ν(z − s)︸ ︷︷ ︸
a

−k2uT 2
α(z − s)2

{
σ2r1σ

2
x1

2Σ2
yr︸ ︷︷ ︸
b

+
σ2p1(z + s)2[. . . σ2ϕ1

]

8[. . .Σϕ1 ]︸ ︷︷ ︸
c

−

[
k(z + s)2σ2p1Σ

2
yr + iσ2x1 [. . .Σ

2
ϕ1
]
]2

2Σ2
yr[BD][. . .Σ2

ϕ1
]︸ ︷︷ ︸

d

+
D2σ2η

[
[BD]σr1 − ik(z + s)2σ2p1

]2
2[BD]y[BD]︸ ︷︷ ︸

e

}

−
2[BD]k2u(z − s)2σ2η

[BD]y︸ ︷︷ ︸
f

+
2Dk2uTα(z − s)2σ2η

[
[BD]σr1 − ik(z + s)2σ2p1

]
[BD]y︸ ︷︷ ︸

g

, (A.39)

where we labelled each term with lowercase letters for easy reference. Expand term d to get

d = −
k2(z + s)4σ4pΣ

2
yr

2[BD][. . .Σ2
ϕ]︸ ︷︷ ︸

h

−
ik(z + s)2σ2pσ

2
y

[BD]︸ ︷︷ ︸
i

+
[. . .Σ2

ϕ]σ
4
y

2Σ2
yr[BD]︸ ︷︷ ︸
j

. (A.40)
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Expand term e to get

e =
D2σ2η[BD]2σr
2[BD]y[BD]︸ ︷︷ ︸

k

−
ikD2σ2η(z + s)2σ2p[BD]σr

[BD]y[BD]︸ ︷︷ ︸
l

−
k2D2σ2η(z + s)4σ4p

2[BD]y[BD]︸ ︷︷ ︸
m

. (A.41)

Combine the terms c, h and m to get

c+ h+m =
σ2p(z + s)2[BD]σϕ

8[BD]y
. (A.42)

Next, combine the following terms:

i+ l = −
ik(z + s)2σ2pΣ

2
yη

[BD]y
, b+ j + k =

[BD]σrΣ
2
yη

2[BD]y
. (A.43)

Consolidate all the terms so far to obtain

−iku∆ν(z − s)− k2uT
2
α(z − s)2

{
Σ2
yη[BD]σr
2[BD]y︸ ︷︷ ︸

p

+
σ2p(z + s)2[BD]σϕ

8[BD]y︸ ︷︷ ︸
q

−
ik(z + s)2σ2pΣ

2
yη

[BD]y︸ ︷︷ ︸
r

}

−
2[BD]k2u(z − s)2σ2η

[BD]y︸ ︷︷ ︸
s

+
2Dk2uTα(z − s)2[BD]σrσ

2
η

[BD]y︸ ︷︷ ︸
t

−
2iDkk2uTα(z

2 − s2)2σ2ησ
2
p

[BD]y︸ ︷︷ ︸
u

. (A.44)

Combine terms q, r, and u together, and terms p, s, and t together. This results in

−iku∆ν(z − s)− k2u(z − s)2

2

{
4σ2η[BD]− [BD]σr(T

2
αΣ

2
yη − 4TαDσ2η)

[BD]y

}

−
k2uσ

2
p(z

2 − s2)2Tα

8

{
Tα[BD]σϕ + 8ik(TαΣ

2
yη − 2Dσ2η)

[BD]y

}
(A.45)

Now impose the dispersion-gradient relationship:

αD =
2 +K2

0

K2
0

D2σ2η

Σ2
yη

, ⇒ Tα =
2Dσ2η

Σ2
yη

. (A.46)
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Plugging that in, we obtain

−iku∆ν(z − s)−
2k2u(z − s)2σ2yσ

2
η

Σ2
yη

−
k2uσ

2
p(z

2 − s2)2D2σ4η

2Σ4
yη

[BD]σϕ
[BD]y

. (A.47)

At this point, we substitute in the definitions Eq. (3.20) through Eq. (3.27) to arrive at the

the 3D gain formula Eq. (3.19).
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