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ABSTRACT

Electrons in materials undergo numerous complex interactions among themselves, the ex-

ternal fields, as well as the constituent atomic lattice. The strength of such many-body

interactions depends on various factors such as the electronic configuration of the host ma-

terial, the presence of doping and defects, spins of carrier and lattice elements, etc. In the

thermodynamic limit, these interactions are often treated as bosons that interact with the

electrons in the system and manifest as side bands (replicas or satellites) in the electronic

band structure seeping spectral weight and renormalizing the band structure obtained from

purely electronic calculations.

In ab-initio calculations, when the strength of such electron-boson interaction is weak, it

is not only justified to neglect these interactions completely but also pragmatic for reasons

ranging from tractability to associated computational cost. This is because the effect of

electron-boson interaction is minute compared to the electronic energy scale of the prob-

lem. However, in many systems, especially organic semiconducting materials, the bosonic

vibrations (stretching modes) of the molecule are strongly coupled with the electron. Fur-

thermore, the bosonic energy scale is comparable to the electronic energy scale in these

problems. Hence, neglecting the effect of electron-boson interactions in electronic spectra in

such systems is myopic at best and catastrophic at worst.

In the context of a single electron two orbital Holstein system coupled to dispersionless

bosons, we develop a general method to correct single-particle Green’s function and electronic

spectral function using an integral power series correction (iPSC) scheme. We then outline

the derivations of various flavors of cumulant approximation through the iPSC scheme and

explain the assumptions and approximations behind them. Finally, we compute and compare

iPSC spectral function with cumulant and exact diagonalized spectral functions and elucidate

three regimes of this problem - two that cumulant explains and one where cumulant fails.

We find that the exact and the iPSC spectral functions match within spectral broadening

xiii



across all three regimes.

In order to scale our method to large systems, we then develop an ODE-based Power

series correction(dPSC) formalism that goes beyond the cumulant approximation. We im-

plement it to a 1D Holstein chain for a wide range of coupling strengths in a scalable and

inexpensive fashion at both zero and finite temperatures. We show that this first differential

formalism of the power series is qualitatively and quantitatively in excellent agreement with

exact diagonalization results on the 1D Holstein chain with dispersive bosons for a large

range of electron-boson coupling strength. We also investigate carrier mass growth rate and

carrier energy displacement across a wide range of coupling strengths. We also present a

faster second differential formalism which is very much similar to self-consistent cumulant

formalism. We show the regime where this method is applicable and where it diverges.

Finally, we present a heuristic argument that predicts most of the rich satellite structure

without explicit calculation.
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CHAPTER 1

OVERVIEW: WHY ARE WE DOING WHAT WE ARE DOING

From the advent of the telegraph in the 1830s to the smartphones on everyone’s hands today,

moving electrons reliably from one point to another is a theme that has constantly driven and

defined our modern world for the past 200 years. We first learned to communicate through

telegraphy over long distances by moving electrons across the Atlantic. Then we learned

to make it carry and disperse energy in filament bulbs (1879) and light our world at night.

After vacuum tubes were invented (1904), we even learned to hold and process information

by manipulating the flow of electrons. Many such adventures in taming the electron inside

different materials and making it move on demand gave rise to the quantum revolution, the

electronic age, and finally the current information age. So, have we understood all that is to

be understood about moving electrons? The answer is far from a resounding ‘Yes’. Given

the variety of materials, the astronomical numbers of moving components (electrons, nuclei,

defects, and external fields), and the interactions these moving components have amongst

each other, understanding electronic motion, its energy-carrying limits and its reliability in

doing so in any material is a Herculean task. So, we need to temper down our ambition and

ask a little more specific questions.

1.1 The Quantum Many-Body Problem.

Given that moving electrons (or holes) from one part to another part of some material (say

circuitry of a device ) is at the heart of most electronic devices, our goal at the end of the day

is to understand the effect the entire universe on this target electron (or hole) in question.

For now, we will be satisfied with the entire universe being composed of a perfect lattice of

this host material. Furthermore, we can construct a better framework for this problem by

dividing this question into three sub-questions:
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• What is the effect of electrons on electrons?

• What is the effect of everything else on everything else

• What is the effect of everything else on electrons?

Since this is a quantum mechanical problem and knowing the eigen-spectrum (wave functions

and energy) of the total Hamiltonian is the first (and the most complicated) step in knowing

every property of the carrier, we begin our journey by sketching a total Hamiltonian in terms

of the three questions asked above.

Htot “ Hel´el ` Heth´eth ` Hel´eth (1.1)

Here, the first term on the right Hel´el captures the effect of electrons-electrons interactions

(carrier-carrier interaction in general). The second term Heth´eth captures the effect of

everything else (eth) on everything else. And finally, the last term Hel´eth captures the

effect of electron (el) interacting with everything else (eth) and vice versa.

We understand how two electrons interact with each other. And therefore we assume

for the sake of this thesis the electron-electron interaction problem, although a many-body

problem of enormous complexity, is solvable. This is a reasonable thing to do because of

the machinery built by the ab-initio community to solve this class of problems. There are

methods ranging from simple tight-binding model-like theories to density functional theory

to wave function-based methods that have been tried and tested to solve this electronic

problem successfully on many classes of materials.

1.2 System’s response = Collective Modes

But even after assuming that this electron-electron problem is solvable, we are left with a

seemingly impossible task. We have chosen to sweep the complexity of the entire system
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modulo the electrons by calling them "everything else". But given the number of moving

parts, the variety of ways they can move, and the variety of materials, solving in detail to

understand this effect on the carrier seems Sisyphean even with the aid of the most powerful

computers. Therefore, rather than taking this detail-oriented approach which is impossible

anyway, we take a different route by redefining what "everything else" means in our problem.

Since the interactions in these quantum systems are probabilistic anyway, it doesn’t make

sense to account for the detail of every single interaction of the lattice elements with the

electrons. We want to study only those effects which happen in a statistically significant

amount. The first of such effects one encounters when building a many-body electronic

system from scratch is the plasmon in the jellium Hamiltonian. Jellium, simply put, is a gas

of electrons kept in a box with an equal uniform positive charge smeared in the backdrop

so that the box as a whole remains electrically neutral. Here, the oscillation of plasma (the

electron gas) can be bosonized and looked at as a collective motion of the system. The target

electron, in this case, interacts with this quantized collective mode- termed plasmon (1) and,

behaves differently than a free electron depending on how strong the coupling between the

plasmon and the electron is.

Similarly, in crystals where the nuclei are bound to the lattice site with a "spring-like"

harmonic force, the motion of electron through the crystal can cause the nuclei to start

vibrating as a response to the attractive force between the negative charge of electron and

the positive charge of nuclei. These bosonic vibrations termed phonons in turn modify the

ambient environment of the electron usually making it harder to drive the electron through

the system. In extreme cases, they can even localize the electron completely, screen its

long-range effects and transmute it into a phonon-electron hybrid particle called ‘polaron’.

Another example where phonon plays a crucial role is in superconductivity where the dy-

namics of two electrons separated by large distances (10-100 nm) are strongly correlated

through the vibrations of the ambient lattice. These electron pairs, termed Cooper pairs,
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are at the heart of the BCS theory of superconductivity.

In crystals of quantum magnets (atoms or molecules with non-zero spin angular momen-

tum), the passage of electron can cause oscillations of these quantum magnets about their

lattice sites. These oscillations conspire with each other to form another type of long-ranged

collective mode called a magnon- the elementary spin wave. These bosonic spin waves have

been shown to interact with and shorten the lifetime of charge carriers in the material as

well as produce novel features in the band structure (2; 3).

1.3 (Why) Are Collective Modes Important?

It has been established through experiments that electrons (or holes) in a solid suffer dy-

namical scattering from aforementioned collective modes (e.g. phonons, magnons, and

plasmons)(4; 2; 5). These scattering processes have been shown to renormalize the car-

rier(electron or hole) particle’s energy, effective mass, and lifetime transmuting this particle

into a quasiparticle. An analogy of this is presented in figure 1.1. Another hallmark of

carrier-boson coupling is the presence of satellite shake-offs in the electronic spectra(6).

These satellites drain spectral weight from the quasiparticle and somewhat resemble the

quasiparticle band structure. Hence they are also termed replica bands.

However, these collective modes are often overlooked in the ab-initio modeling of ma-

terials. And in many cases, there are good reasons for it. Oftentimes, the electronic part

of the problem takes the front seat in governing macroscopic material properties. These

bosonic collective excitations of the system merely result in small corrections to the carrier

properties.

Hence, they take a back seat regardless of their origin (plasma oscillation, spin waves,

molecular stretching, etc). In such systems, it is not only justifiable but also pragmatic to

take into account only the electronic part of the problem in modeling and predicting material

properties such as the effective mass of the carrier, energy levels, lifetimes, etc. This is
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Figure 1.1: Electron perturbs the lattice while moving through it. The lattice interacts back
by dressing the electron with boson cloud, turning it into a quasi-electron and changing its
properties.

because of the associated overhead cost of incorporating bosonic degrees of freedom which are

extremely expensive but ultimately insignificant in the actual system and predictions thereof.

For this reason, the development of efficient and accurate methods to handle electronic

problems has been a topic of great interest for more than half a century. This has led to

the development of myriads of methods from families of Density functional-based methods

(7; 8) to families of Green’s function-based methods such as GW (9; 10) that have proven

their worth in computing the charged electronic excitation spectra and predicting properties

across a wide variety of materials.

Although at very weak coupling the quasiparticle renormalization due to the collective

modes is negligible, with stronger coupling a proportional renormalization of the quasipar-

ticle occurs. Hence forgetting about the collective mode outside of the very weak coupling

limit can lead to erroneous electronic band structure and incorrect predictions of material

properties. To handle the weak carrier-boson coupling limit when the bosonic corrections
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to the carrier are small, non-self-consistent post-processing methods called cumulant expan-

sions (11; 12; 13; 14) have been developed that wrap around GW methods and produce

bosonic satellites at roughly the right energy. In recent years, this has proven successful in

incorporating plasmonic as well as phonon effects in the electronic band structure. However,

cumulant methods are ad hoc by construction and it has been shown that attempts to in-

corporate higher order corrections or introduce self-consistency in cumulant-based methods

result in divergence or artifacts (15; 16) of the correction function. On the other hand, going

the route of Monte Carlo approach (17) or any basis-dependent method like exact diagonal-

ization (18), coherent basis expansion (19), although stable, is extremely expensive and thus

unscalable to large systems.

There are physical systems where the coupling is not small. As an example, in photo-

emission spectra of strontium titanate, this coupling manifests as a significant shift in quasi-

particle energy, a significant decrease in lifetime and intensity of quasiparticle features, strong

shake-off features, as well as a strong carrier mass enhancement (20; 21; 22; 23; 24). Strong

electron-phonon coupling is also visible in electronic spectra in metallic cuprates (25; 26)

and the metal-insulator transition in undoped cuprates (27), and other correlated metals,

for example, FeSe{SrT iO3 epitaxial layers (28).

Recent advances in organic (polymeric) semiconductors such as poly(3-hexylthiophene)

(P3HT) (29; 30; 31) show that, in these long-chain systems with vibrational modes (stretch-

ing) encompassing huge numbers of sites, bosonic effects on the carrier are significant for

two reasons. Firstly, these bosonic stretching modes themselves are highly energetic in na-

ture with energies ( 0.2 eV in P3HT) comparable to electronic energy scale ( 0.6 - 1 eV

in P3HT). Secondly, these modes are strongly coupled to the electronic degrees of freedom

(32). This has also been observed in proteins (33; 34; 35) where the electronic degrees of

freedom and the collective modes are intimately intertwined. Strong electron phonon cou-

pling is also observed in correlated metals such as cuprates (26; 27; 36), the iron pnictide
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high-temperature superconductors (37; 38), the colossal magneto-resistance manganites, and

nickelates (39; 40; 41).

At extreme values of coupling constant, strong electron-boson coupling can completely

self-trap (25) and localize electrons creating polaronic states. This severely modifies carrier

mobility in the material, and is of particular interest in material design for photovoltaics and

electronics (42; 43; 44). Sometimes such large electron-phonon coupling conspires with strong

correlation physics to produce metal-to-insulator or metal-to-bad metal phase transitions.

In calculations, the interaction strengths between collective excitations and particles are

modeled as tunable electron-boson coupling parameters. In experiments, this coupling tun-

ability is achieved by introducing doping and defects (22; 45). This fine control over doping

has allowed for the advent of plasmonic devices (46; 47; 43) where plasmons (plasma os-

cillations) and their coupling to the carrier is leveraged for tasks ranging from sensing to

energy capture and harvest. Another recent advent is the field of phonovoltaics (48; 49)

where the carriers excited after gulping modulated phonon quanta are collected and used for

energy generation. At extreme values of carrier-boson coupling, the carrier becomes strongly

self-trapped and localized creating polaronic states with properties very different than free

carriers(50; 4).

Finally, in the presence of multiple boson species, there can be competition between

their effect on the carrier which creates novel phase crossovers in materials (50). A proper

understanding and quantification of the effects of collective modes on charge carriers is

vital in understanding and designing novel materials with useful engineering applications.

Therefore focusing solely on the electronic problem in these systems is myopic at best and

catastrophic at worst because of the strong modulation of carrier’s energy levels, mobility,

masses, and lifetimes by bosons.
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Figure 1.2: What is the best way to kill the fly? A) Cannon? B) Fly Swatter?

1.4 Goal of This Thesis

The work presented in this thesis is based on the two papers we have written (51; 52) and

talks we have given during the March meetings 2021, 2022, and 2023. We hope that by

now we have convinced the reader that often times the collective modes strongly modify the

electronic properties inside a material. Regardless of the origin of these modes, they follow

Bose-Einstein statistics and hence can be treated as baths of bosons. Our goal, in general, is

to include the effect of these bosons in the electronic spectra. One can always use a cannon

to kill a fly. But is it necessary? Or can we just use a fly swatter instead? Given the speed

and storage of modern supercomputers, a mindless approach (the cannon) to this is to throw

the problem into a supercomputer, let it simulate the system in time, and wait for the result.

But there are drawbacks to this approach. This is an inherently slow and really expensive

calculation because of the sheer number of particles (electrons and bosons) and therefore

dynamical equations involved in the system. Furthermore, this is a very opaque calculation

with no intuition and insight gained as to what is happening in the system unless the one

running the calculation is also the one who wrote the entire algorithm. And even then, it

is not immediately clear which physics (electronic, bosonic, or interaction) is dominant in

the system. And after days of calculation, it might turn out that bosons just do not play a
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significant role in the system in question.

Our approach will be different in the sense that we will take two separate physics(spectra)

- the non-interacting electronic and the bosonic. We will consider that the best starting

picture is the non-interacting electronic physics. Then we will self-consistently sprinkle

the bosonic physics (the fly) over the electronic physics (electronic spectra) through power

series machinery (the fly swatter) that we construct. This is a much more transparent way

of solving this many-body problem as we can literally compare the properties of a final

interacting electronic system to the non-interacting electronic system and gauge the effect

of bosons firsthand.

At extreme coupling between electrons and bosons, our approach obviously breaks down.

This is because we have started with an assumption that the appropriate starting picture is

the non-interacting electronic physics which no longer remains true. In such cases, one often

resorts to using a different formalism altogether. This is a case we will not discuss in this

thesis. But we hypothesize that a similar power series-based treatment is possible where we

correct the bosonic physics by self-consistently sprinkling the electronic physics.
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CHAPTER 2

THE 1D HOLSTEIN CHAIN

2.1 The Holstein Chain

Consider a single (or many independent electrons) hopping around in a one-dimensional chain

of N vibrating atomic sites with inter-site distance ‘a’. The vibration of the sites (vibrons

or phonons) are bosonic in nature and are coupled to the electron. Thus the electron can be

thought of as being submerged in a bath of bosonic vibration at the site where it is located.

We take this chain and glue together the ends to construct a periodic (Born-von Karman)

system in order to have correspondence with perfectly crystalline systems. In this thesis, we

are especially interested in the case of N “ 2 - the Holstein dimer and the limit of N Ñ 8

case - the 1D Holstein chain.

Figure 2.1: Holstein chain to Holstein Ring transformation through the use of periodic(Born-
von Karman) Boundary condition
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2.2 Why Holstein Hamiltonian?

2.2.1 1D Holstein Hamiltonian- a Perfect Proving Ground

Given that this Hamiltonian has a clear electronic part and a clear bosonic part both of

which are clear, simple, and exactly solvable, and a complicated electron-boson interaction

part which is creating the mixing of states, the 1D Holstein Hamiltonian provides a perfect

proving ground to construct, test and benchmark approximation schemes. Furthermore,

once in second quantized form, all of the details of the origin of electronic as well as bosonic

degrees of freedom neatly get absorbed into the energy scales associated with the problem.

Therefore, the general problem then becomes agnostic of the details of the electronic and

the bosonic physics in the system allowing us to construct a method general enough to take

into account electron-boson physics for technically any type of boson- be it plasmon, phonon,

vibron, magnon, etc. What matters then is the energy scales associated with each of the three

pieces and we can smoothly tune this Holstein system from regimes where the electron-boson

interaction is negligibly small to regimes where it is the dominant physics. This allows us to

systematically test the foundational assumptions we have made to construct our machinery

and pin-point regimes where our method is exact to regimes where our method breaks down.

Another reason why Holstein Hamiltonian is a perfect candidate is that we can system-

atically access the exact energies of the interacting system through an exact diagonalization

procedure in a finite boson basis even though there is no exact analytical solution. Doing

so not only helps validate our method but also gives us a sense of how resource efficient and

fast our method is compared to this standard technique.

2.2.2 1D Holstein Hamiltonian in Real Systems

As discussed in the previous chapter, the 1D Holstein chain is the model Hamiltonian to

study organic semiconductors such as poly(3-hexylthiophene) (P3HT) and proteins (32). In
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these long chained systems with vibrational modes (molecular stretching) encompassing a

huge number of sites, the bosonic modes themselves are highly energetic ( 0.2 eV in P3HT)

and almost comparable to the carrier’s energy scales( 0.6 - 1 eV in P3HT). On top of this,

there is also a strong coupling between the carrier and the bosonic modes. Because of these

two reasons, a proper accounting of the effect of electron-boson interaction on the overall

physics of the interacting system must be done. Therefore, this whole study is more than

an exercise in method building and the results shown in this thesis are a stepping stone to

modeling and understanding the physics in these real systems.

2.3 Quick Primer on Second Quantization:

In order to motivate further discussion, we quickly introduce the concept of second quan-

tization. This section is meant to serve only as a refresher to the main idea necessary for

us in the later section and is not intended to be a substantial resource to understand sec-

ond quantization. We direct the reader to references that treat this topic more thoroughly

(53; 54; 55).

The main reason why the second quantization technique was introduced is because of

the inability of the first quantization formalism to change particle number. Furthermore, in

the second quantization, the detailed mechanism of the problem also gets packaged nicely

into the energy scales of the problem, and therefore, many problems which differ in details

of their mechanism in the first quantization boil down to the same class of problem. This

is especially true in our case where we intend to create a method that is agnostic of the

individual fermionic and bosonic mechanisms in the system. With this in mind, we introduce

the creation and annihilation operators (ladder operators) which respectively create and

destroy particles in a system by mapping between Hilbert spaces (H) of different particle
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numberspN,N ´ 1q.

ĉ
:

i : HpN ´ 1q Ñ HpNq

ĉi : HpNq Ñ HpN ´ 1q

(2.1)

Here, ĉ:

i creates a particle at some site ’i’ thereby mapping the pN ´ 1q particle Hilbert

space HpN ´ 1q to a N particle Hilbert space HpN ´ 1q. Similarly, ĉi destroys a particle

at some site ’i’ thereby mapping the N particle Hilbert space HpNq to a pN ´ 1q particle

Hilbert space HpN ´1q. For our purposes, we use ĉ:{ĉ for fermion ladder operators and b̂:{b̂

for boson ladder operators. The main difference between these fermionic and bosonic ladder

operators is their commutation relation due to the symmetry constraints on their respective

many-body wave-functions under particle exchange - i.e fermion many-body wave-functions

are anti-symmetric and boson many-body wave-functions are symmetric under two particle

exchange. For example, in site basis where i and j represent ith and jth atomic sites the

non-zero fermion anti-commutation relation and the non-zero boson commutation relation

are as follows:

tĉi, ĉ
:

ju “ ĉiĉ
:

j ` ĉ
:

j ĉi “ δi,j Anti-commutation relation for fermions

rb̂i, b̂
:

js “ b̂ib̂
:

j ´ b̂
:

j b̂i “ δi,j Commutation relation for bosons
(2.2)

All other fermion anti-commutation relations are zero and similarly, all other boson com-

mutation relations are zero. Finally, we review the conversion of first-quantized operators

to second-quantized operators in many-body Hamiltonians. Mainly, we are concerned with

the conversion of first quantized single particle and local two-particle operators but exten-

sion to higher order operators follows naturally. Then any operator (Ô) that is a sum of

operators acting only on the coordinates of a single fermion (or boson) is called a single

particle operator. A good example of this is the total kinetic energy operator in the many-

body Hamiltonian which just is the sum of the individual kinetic energy operators of the

constituent fermions and bosons. An operator (V̂) that is a sum of operators acting on the
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coordinates of two different particles is called a local two-particle operator. The term "local"

here means that the action of this operator depends only on the coordinates involved and

not on any other hidden third coordinate. A good example of this type of operator is the

total Coulomb potential energy which is a sum of two-particle Coulomb potential energies

in the system.

Ô “

N
ÿ

m“0

Ôpx⃗mq Single Particle Operator

V̂ “

N
ÿ

m,n“0
m‰n

V̂ px⃗m, x⃗nq Local two particle Operator
(2.3)

Suppose we have some appropriate and complete single particle basis set tϕi Ñ |iyu8
i“1. Here

the word "appropriate" signifies the ease of use in practical implementation - i.e. a basis

set that diagonalizes some repeating single-particle motif of the system. But in theory, any

complete basis set works. Then, using this basis set, these operators in equation 2.3 can be

expressed in second quantization as:

Ô “

N
ÿ

m“0

Ôpx⃗mq “

8
ÿ

i,j

xi| Ô |jy ĉ:

i ĉj

where, xi| Ô |jy “ Oij “

ż

ϕ˚
i px⃗qÔpx⃗qϕjpx⃗q dx⃗

V̂ “

N
ÿ

m,n“0
m‰n

V̂ px⃗m, x⃗nq “

8
ÿ

i,j,k,l

xi, j| V̂ |k, ly ĉ:

i ĉ
:

j ĉk ĉl

where, xi, j| V̂ |k, ly “ Vijkl “

żż

ϕ˚
i px⃗qϕ˚

j py⃗q V̂ px⃗, y⃗qϕkpx⃗qϕlpy⃗q dx⃗dy⃗

(2.4)

Similar transformations hold true for bosonic single and two-particle operators.
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2.4 Derivation of 1D Holstein Hamiltonian - First Quantization

2.4.1 The Electronic Hamiltonian: Tight Binding Model

We start our discussion with a single ionic site single electron system - a basic model of a

mono-electronic atom (Hydrogen atom). Given that the electronic mass(m) is much smaller

than the nuclear mass(M), we assume that in this otherwise blank universe with a single

Hydrogen atom, the nucleus due to its heaviness is static (or it moves at a time scale much

slower) compared to the electron. Thus, the Hamiltonian for this simple system consists of

the kinetic energy (T ) term of the electron at position vector pr⃗q from the nucleus and a

coulomb potential energy(U) term due to the attractive interaction between the nucleus and

the electron. We furthermore assume that we have solved for the eigenvectors (atomic wave

functions
∣∣∣ψpnq

E

) and the eigenvalues (atomic energy levels ϵn) of this system.

Hat “ T ` Upr̂q “
p̂2

2m
` Upr̂q

Hat

∣∣∣ψpnq
E

“ ϵn |ψny @n P Z
(2.5)

So far, nothing interesting has happened in this universe. So with the knowledge of the

atomic energy levels and atomic wave functions, we go forward to a universe where we have a

lattice ring of N such identical Hydrogen nuclei with lattice constant a with a single electron

free to hop around as shown in figure 2.1. We will still assume that these atomic sites

are static (Born-Oppenheimer Approximation) due to the fact that M " m. This chain’s

Hamiltonian (Hc) now was N separate electron-nucleus potential energy terms because of

the N different nuclei. We can also nucleus-nucleus Coulomb interaction terms. But since

we have physically pinned the nuclei into the underlying lattice, such terms will only add a
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constant to the Hamiltonian and thus will be ignored for the current discussion.

Hc “ T `

N
ÿ

i“1

Uipr̂q “
p̂2

2m
`

N
ÿ

i“1

Uipr̂q (2.6)

We now want to construct the ground state of this problem. Armed with the intuition that

in the limit of a Ñ 8, where each nucleus is infinitely far away from any other nucleus,

the electron has to pick one nucleus and localize around it to form an "atom" with the

Hamiltonian given by 2.5, we postulate that we can construct a ground state wave function

(
∣∣Ψg

D

) with energy eigenvalue Eo for this system using a linear combination of atomic ground

state orbitals (
∣∣∣ψpoq

i

E

” |iy) for each atom i. This is the famous Linear Combination of

Atomic Orbitals (LCAO) method (56).

∣∣Ψg
D

“

N
ÿ

i“1

ai |iy

Hc
∣∣Ψg

D

“ Eo
∣∣Ψg

D

(2.7)

Here, ai are coefficients to be determined and we don’t know Eo yet. But we know that

if
∣∣Ψg

D

indeed is the ground state, it should have the lowest possible energy eigenvalue.

Variationally, this means that, given any general state |Φy of this system,

Eo ď
xΦ|Hc |Φy

xΦ|Φy
with equality only when |Φy “

∣∣Ψg
D

i.e. Eo
@

Ψg
ˇ

ˇΨg
D

“
@

Ψg
∣∣Hc

∣∣Ψg
D

Eo

”

N
ÿ

i,j

a˚
i aj xi|jy

ı

“

”

N
ÿ

i,j

a˚
i aj xi|Hc |jy

ı

(2.8)

We get the last expression above by substituting
∣∣Ψg

D

from equation 2.7 into 2.8. Finally,
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after some redefinition we get the following equation.

xi|jy ” Sij and xi|Hc |jy ” H
ij
c ,we get:

Eo

N
ÿ

i,j

a˚
i ajSij “

N
ÿ

i,j

a˚
i ajH

ij
c

(2.9)

The overlap integral Sij with Sii “ 1 accounts for the fact that the individual atomic orbitals

centered around nuclei i and j might not be perfectly orthogonal to each other and could

have regions of overlap which are especially relevant for nearby nuclei as in the limit of small

lattice constant a. Since we are looking for al and a˚
l that minimize Eo, we proceed by

setting the partial derivative of Eo with respect to these coefficients as zero.

B

Ba˚
l

”

Eo

N
ÿ

i,j

a˚
i ajSij

ı

“
B

Ba˚
l

”

N
ÿ

i,j

a˚
i ajH

ij
c

ı

@l

�
�
�
�7
0

BEo

Ba˚
l

”

Eo

N
ÿ

i,j

a˚
i ajSij

ı

` Eo

”

N
ÿ

i,j�
�
�
�7
δil

Ba˚
i

Ba˚
l

ajSij

ı

“

N
ÿ

i,j�
�
�
�7
δil

Ba˚
i

Ba˚
l

ajH
ij
c

6 Eo

N
ÿ

j

ajSlj “

N
ÿ

j

ajH
lj
c

i.e EoSa⃗ “ Ha⃗

(2.10)

The last equation in 2.10 is a generalized eigenvalue equation. Here S and H are the

overlap matrix and the Hamiltonian matrix in the basis of single particle ground states and

a⃗ is the coefficient vector in LCAO ground state equation 2.7. Since xl|jy “ xj|ly˚, S just

like H is a Hermitian matrix. Furthermore, the diagonal elements of S are ones, and the

off-diagonal elements Slj get vanishingly small for larger |l ´ j| because of the increasing

distance between lth and jth nucleus. This allows us to make the nearest neighbor (or n-

nearest neighbor approximation if necessary) where we say that the non-diagonal(l ‰ j)
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overlap integral Slj is non zero and small ( η ! 1) only if j “ l ˘ 1.

Slj “ xl|ky

“ δl,j ` ηrδl,j`1 ` δl,j´1s where η ! 1

(2.11)

Similarly, we can also make a similar approximation to the Hamiltonian matrix and say

that potential energy operator from other sites can only make the electron hop between the

nearest neighbor (or n-nearest neighbor if needed) sites with hopping energy ‘´t’.

H
lj
c “ xl|Hc |jy “ xl| T ` Ujpr̂q |jy ` xl|

N
ÿ

i‰j

Uipr̂q |jy

“ ϵo �
��*

Slj
xl|jy ` xl|

N
ÿ

i‰j

Uipr̂q |jy

Case 1: j “ l

H ll
c “ ϵo �

�>
1

Sll ` xl|
N
ÿ

i‰j

Uipr̂q |ly “ ϵo ` Vd

Case 2: j ‰ l

H
lj
c “ ϵo Slj ` xl|

N
ÿ

i‰j

Uipr̂q |jy

“ ϵoηrδl,j`1 ` δl,j´1s ´ trδl,j`1 ` δl,j´1s

“ r´t̃ ` ϵoηsrδl,j`1 ` δl,j´1s

(2.12)

Here, Vd in case 1 is called the ‘direct term’ the hopping of an electron back to the same

site due to the potential energy gain from all other sites and the term with prefactor of

‘´t̃’ in case 2 is called the ’exchange term’ and it describes the hopping of electron to the

nearest neighbor site due to potential energy gain from all other sites. Replacing the overlap

matrix elements and the Hamiltonian matrix elements from 2.11 and 2.12 in the generalized

eigenvalue equation 2.10 and making some small parameter arguments, we can find a good
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approximation for Eo without having to solve the full eigenvalue equation.

EoSllal ` Eo

N
ÿ

j‰l

Sljaj “ H ll
c al `

N
ÿ

j‰l

H
lj
c aj

i.e EoSllal “ H ll
c al `

N
ÿ

j‰l

pH
lj
c ´ EoqSljaj

Eo al “ rϵo ` Vdsal ` r´t̃ ` pϵo ´ Eoqηs rδl,j`1 ` δl,j´1saj

Assuming, n ! 1 such that pϵo ´ Eoqη « ∆ ! 1

Eo al “ rϵo ` Vdsal ` r´t̃ ` ∆s rδl,j`1 ` δl,j´1saj

Redefining, ϵo ` Vd ” εo and ´t̃ ` ∆ “ ´t, we get,

Eo al “ εoal ´ trδl,j`1 ` δl,j´1saj

Eo al “

”

εoδlj ´ trδl,j`1 ` δl,j´1s

ı

aj

i.e Eo a⃗ “ HTB a⃗
“

Regular Eigenvalue Equation
‰

where, H
lj
TB “

”

εoδlj ´ trδl,j`1 ` δl,j´1s

ı

(2.13)

We have now successfully written our generalized eigenvalue equation 2.10 into a regular

eigenvalue equation and in the process converted the chain Hamiltonian Hc into an effective

tight-binding Hamiltonian HTB that takes into account the approximations of the overlap

matrix as well as nearest neighbor interaction.

2.4.2 The Bosonic Hamiltonian: The Harmonic Chain

Although most many body electronic calculations traditionally are done either with com-

pletely static nuclei (the frozen nuclei approximation) or at least at a limit where the nuclei
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are so massive that their motion happens in a time scale orders of magnitude slower than

the lighter electron. This is the famous Born-Oppenheimer approximation (57). For most

practical applications in systems with phonons, this is a fairly adequate treatment. How-

ever, in this thesis, we will treat nuclear motion more generally by not making any order

of magnitude arguments. Although in most crystalline systems, this is a definite overkill

and will result in minimal improvement of the calculated electronic spectral function, for

molecular systems, this is not the case. Vibrational modes of the molecules often play a

central role in their electronic structure and spectra. These modes can split electronic levels

and often manifest new replicas of pure electronic levels thereby draining spectral weight

(probability of an electron being at that energy level) as well as significantly shifting and

distorting the purely electronic energy levels. A semi-classical example of this is the increase

in resistance of conductors when temperature steadily rises. The electron can no longer

flow freely in the wire because of the obstruction caused by atoms in the lattice starting

to vibrate faster around their lattice sites. In quantum many-body language, this is often

called the "dressing" of the particle (electron or hole) with the boson(vibron in this case)

and this dressing effectively turns the particle into a quasiparticle with larger effective mass

and slower dynamics.

Therefore, in order to model the vibrating nuclei, we start our discussion with the quan-

tum harmonic oscillator. Let us imagine a single nucleus of mass M in 1 dimension tied to its

lattice location with some harmonic potential Û . The Hamiltonian for this simple quantum

spring-mass problem with spring constant ‘k’ (and ℏ “ 1 )is ;

Hb “ T ` U “
p̂2

2M
`

1

2
kx̂2

“
p̂2

2M
`

1

2
mω2o x̂

2 where, ωo “

c

k

M

(2.14)

Since both terms in this Hamiltonian are quadratic, we have some hope of factorizing this
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Hamiltonian. Let’s define the factors as follows;

b̂: “

c

Mωo
2

´

x̂ ´
i

Mωo
p̂
¯

b̂ “

c

Mωo
2

´

x̂ `
i

Mωo
p̂
¯

(2.15)

These factors can always be recombined to get representation in terms of the position and

momenta operators- hatx and p̂ respectively for the nucleus.

x̂ “
1

?
2Mωo

pb̂: ` b̂q

p̂ “
1

?
2Mωo

pb̂: ´ b̂q

(2.16)

If we multiply these two possible from equation (2.15) we get the following;

b̂:b̂ “

”

c

Mωo
2

px̂ ´
i

Mωo
p̂q

ı”

c

Mωo
2

px̂ `
i

Mωo
p̂q

ı

“
1

ωo

” 1

2M
p̂2 `

1

2
Mω2o x̂

2
ı

´
i

2
rx̂p̂ ´ p̂x̂s

“
1

ωo
Hb ´

i

2
rx̂p̂ ´ p̂x̂s

(2.17)

The factorization is close but not exact. We get a cross term rx̂p̂ ´ p̂x̂s. Imagine we have a

boson wave packet |ψy. The first term in this cross term when applied to this wave function

measures the momenta of this wave packet followed by a measurement of position. The

second term in this cross term, in the same case, measures the position of this wave packet

followed by a measurement of momenta. This cross-term quantifies the difference between

these two switched orders of operations. This term is often referred to as the commutator

of the two operators (here x̂ and p̂).

This difference in the classical case is actually zero because we have an infinite and

independent resolution of the position and momenta of any particle. So classically, this is

an exactly factorizable problem. However, in the quantum realm, because of the position-
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moment quantum uncertainty principle, this cross-term does not vanish. This is one of the

fundamental postulates of quantum mechanics.

rx̂p̂ ´ p̂x̂s ” rx̂, p̂s “ i

Substituting this postulate in (2.17), we get;

Hb “ ωo

”

b̂:b̂ `
1

2

ı

(2.18)

We can solve this Schrodinger’s equation exactly and know the exact wave functions and

energies. We will quote the standard result for eigen wave functions and associated eigen

energies below.

|ny ” Ψnpxq “
1

?
2nn!

´α

π

¯
1
4
.Hnpαxq . e´

pαxq2

2 where, α “ mωo

En “

´

n `
1

2

¯

ωo

Hnpxq “ p´1q
n ex

2 dn

dxn
e´x2 (Hermite Polynomials)

(2.19)

The eigen energy levels, associated wave functions, as well as the probabilistic position of

this single nucleus in this harmonic potential, can be visualized as shown in figure 2.2. The

state ketn is interesting in that any state |ny contains 1 quantum of energy more than state

|ny. The operators in (2.15) are called ladder operators because they add or take away one

quantum of energy from any eigen state ketn thus effectively raising it to |n ` 1y or lowering

it to |n ´ 1y.

b̂: |ny “
?
n ` 1 |n ` 1y

b̂ |ny “
?
n |n ´ 1y

b̂:b̂ |ny “ n |ny (number operator)

(2.20)

The number operator n̂ ” b̂:b̂ counts the number of quanta of ωo in any given wave function
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|ny without altering the wave function. Here, ‘n=0’ is the lowest eigen energy and it corre-

sponds to a state with zero bosons although it has finite energy. The state with ‘n “ 1’ is

the single boson state with energy ℏωo over the ‘n “ 0’ state. In our analysis, we already

subtract the n “ 0 energy from our Hamiltonian and set ‘ℏ “ 1’. Therefore, state ‘n “ 0’ in

this new picture has zero energy, and any nth state corresponding to n bosons in the system

has ‘nωo’ quanta of energy.

Figure 2.2: Eigen energies, eigen wave functions as well as probabilistic nuclear position for
a single nucleus in a 1D harmonic trap. Here, n is the index of increasing eigen energy.

We now have an effective language to describe the quantized nuclear vibrations. Let’s

now go to a problem with ‘N’ different sites. Rather than talking about what each nucleus

is doing, we can take about the problem in terms of the number ‘n1
i of vibration quanta ωo

at any given site ‘i’ and the vibrational wave function of that site |niy. We can also let the

vibrational quanta travel from site ‘i’ to its nearest neighbor with some hopping energy ‘td’.

This now boils down to the tight binding problem discussed previously with the on-site boson

creation energy ωo and hopping energy td. We can do the entire tight binding calculation
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with LCAO approximation as shown in equation (2.7) in subsection 2.4.1.

H
lj
b “

”

nlωoδlj ` tdrδl,j`1 ` δl,j´1s

ı

(2.21)

2.5 The Electron Boson Interaction, The Holstein Paradox and

The Molecular Crystal

This piece is the most subtle part of this Hamiltonian that is also at the heart of why this

problem is of physical relevance. Suppose we are at a single atom limit with a single electron

and a single positively charged site - a hydrogen atom.

We make a claim that an electron responds to the motion of the nucleus and the system’s

total energy changes. Say the energy change due to this interaction is ‘Γ’. let X̂ be the

position operator of the nucleus.

Claim:

Hint
?
“ ΓX̂ “

Γ
?
2Mωo

pb̂: ` b̂q “ gpb̂: ` b̂q

where, g ”
Γ

?
2Mωo

(2.22)

Say the nucleus is vibrating left(negative) and right(positive) of its equilibrium. If what

we claim is true, then the interaction decreases the system’s overall energy by g when the

nucleus moves left and increases the system’s overall energy by g when the nucleus moves

right as shown in 2.3. But this does not make sense because for a single hydrogen atom

sitting in an empty 1D universe, the nucleus going left or right should be equivalent. So we

end up with a paradox which I call the "Holstein paradox". A more correct interpretation

of this kind of interaction warrants a more complicated structure of the nucleus. The nucleus

should be more negative on one side and more positive on the other side for its motion to

make any difference for the electron cloud. In other words, the ‘nucleus’ isn’t really a nucleus

24



Figure 2.3: A naive interpretation of electron-boson interaction with Hydrogen-like intact
nucleus and an electron cloud leads to a paradox in Holstein model

but rather an elongated polar ion with a net charge of `e. Doing so will lead to a decrease

in the system’s energy when the partially negatively charged part (δ´) of the polar ion is

pushed out of the electron cloud during ‘nuclear’ oscillation and an increase in the system’s

energy when the partially positively charged part δ` part is pushed out of the electron cloud

as shown in figure 2.4.

Figure 2.4: Correct way to interpret electron boson interaction in the Holstein model requires
a polar ion as the nucleus.
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2.5.1 The Molecular Crystal

We now scale this system with a polar nucleus up to get a chain of polar molecules sitting

on some uniform lattice as shown in figure 2.5piq. These molecules can vibrate about their

respective lattice sites as shown in figure 2.5piiq. The interaction of electron with nuclear

vibration is on-site -i.e. happens only at the site where the electron currently resides. There-

fore, the vibration of sites without electron does not matter regardless of how many sites

are vibrating. Hence for this N-site chain, our electron-boson Hamiltonian has the following

Figure 2.5: A model of 1D molecular crystal with the polar nucleus and a single electron.
(i) crystal with no vibrations. (ii) crystal with vibrating sites.

form;

Hint “ Γ
N
ÿ

i“1

Ni.X̂i “
Γ

?
2Mωo

N
ÿ

i“1

Nipb̂
:

i ` b̂iq “ g
N
ÿ

i“1

Nipb̂
:

i ` b̂iq

where, Ni “

$

’

’

&

’

’

%

1 if electron is in site ‘i’

0 if electron is not in site ‘i’

(2.23)
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Here we have packaged the parameters of the original problem and defined the interaction

energy g.

2.6 1D Holstein Hamiltonian in Second Quantization:

Although the first quantized language is useful in understanding the mechanism of the pro-

cess, oftentimes it obfuscates the understanding of the process because of its complicated

form. Therefore, in this section, we will translate the pieces of Holstein Hamiltonian derived

in the first-quantized language into the second-quantized language. We will use the second

quantized Hamiltonian (as well as language) for the rest of the thesis.

2.6.1 Electronic Hamiltonian in Second Quantization

We can now convert the effective tight-binding Hamiltonian from equation 2.13 into a second

quantized form using the second-quantization rule for single particle operators described in

equation 2.4. Since we have not specified that our chain is finite, the sum here runs to 8

and not to N -the number of sites in our chain.

HTB “

N
ÿ

ij

HTB
ij ĉ

:

i ĉj “ εo

N
ÿ

i

ĉ
:

i ĉi ´ t
N
ÿ

i

rĉ
:

i`1ĉi ` ĉ
:

i´1ĉis (2.24)

The first term here (with prefactor εo) is called the on-site energy because it accounts for

the electron hopping from a site back to the same site. The second term (with prefactor ´t)

is called the hopping energy because it accounts for the electron hopping from a site i to its

neighboring sites i ˘ 1.
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2.6.2 Bosonic Hamiltonian in Second Quantization

Since the nuclear vibrations also boiled down to a tight binding form, the bosonic Hamilto-

nian for a Holstein chain with N sites is;

Hb “

N
ÿ

ij

Hb
ij b̂

:

i b̂j “ ωo

N
ÿ

i

b̂
:

i b̂i ` td

N
ÿ

i

rb
:

i`1b̂i ` b̂
:

i´1b̂is (2.25)

The term ‘td’ is commonly referred to as the boson dispersion. It quantifies the hopping

of vibration from one site to another. Although most calculations in literature are done in

td “ 0 limit explicitly, we add this to our Hamiltonian to make the problem more general.

2.6.3 Electron-Boson Hamiltonian in Second Quantization

The interaction Hamiltonian from equation (2.23) for the most part is already in the second-

quantized language. The tern Ni counts the electron at any given site ’i’. Analogous to the

bosonic case shown in equation 2.20, we can define a number operator for the electron as

well in terms of ĉ:

i{ĉi - the electron creation and annihilation operators for site ‘i’.

N̂i “ ĉ
:

i ĉi Electron number operator

Using this relation, the interaction Hamiltonian can be written in a second quantized lan-

guage.

Hint “ g
N
ÿ

i“1

ĉ
:

i ĉipb̂
:

i ` b̂iq (2.26)

Putting together all three pieces- the electronic, the bosonic, and the interaction, we
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finally get our general Holstein Hamiltonian.

H “ Hel ` Hb ` Hint where,

Hel “ εo

N
ÿ

i

ĉ
:

i ĉi ´ t
N
ÿ

i

rĉ
:

i`1ĉi ` ĉ
:

i´1ĉis

Hb “ ωo

N
ÿ

i

b̂
:

i b̂i ` td

N
ÿ

i

rb
:

i`1b̂i ` b̂
:

i´1b̂is

Hint “ g
N
ÿ

i“1

ĉ
:

i ĉipb̂
:

i ` b̂iq

(2.27)

2.7 From a general many-body Hamiltonian to 1D Holstein chain

In this section, we start with a 1-dimensional general many-body Hamiltonian and approx-

imate it to a 1D Holstein chain. Consider a 1-dimensional chain of Ne electrons and Ni

number of atomic sites (ions). The many-body Hamiltonian can be written in terms of

position and momenta operators of the electrons and the ions as follows;

Htot “ Hel ` Hion ` Hel´ion where,

Hel “

Ne
ÿ

i

” p̂2i
2m

`
1

2

Ne
ÿ

j:j‰i

V p|r̂i ´ r̂j |q

ı

Hion “

Ni
ÿ

I

” P̂ 2
i

2M
`

1

2

Ni
ÿ

J :J‰I

V p|R̂i ´ R̂j |q

ı

Hel´ion “

Ne
ÿ

i

Ni
ÿ

I

V p|R̂I ´ r̂i|q

(2.28)

The purely electronic part Hel of the Hamiltonian consists of the kinetic energy of the

electron (first term) as well as the coulomb interaction between two different electrons (hence

j : j ‰ i). The coulomb interaction term only depends on the distances between the two

charges in question (hence the absolute value of the position operator) and also has a factor

of 1{2 upfront so as not to double count the interaction as both indices i and j are running
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from 1 to Ne. The ionic part Hion is very similar to the electronic part in that it consists

of the kinetic energy of the vibrating ions in the lattice as well as the coulomb interaction

between these ions. The major difference then comes from the fact that the mass of an

electron is much less than that of the ion (m ă M) which is the foundational argument for

the Born-Oppenheimer approximation.

Finally, the electron-ion interaction piece consists of coulomb interaction between the

positively charged ions and the negatively charged electrons at positions RI and ri respec-

tively. So far, this Hamiltonian, although in 1D, is very general. We can transform this into

a Holstein problem with the following three simplifications:

1. Assume that the electrons are independent.

2. Linearize Hel´ion.

3. Assume ions and electrons interact when they are at or less than a unit cell away.

The first simplification is fairly straightforward. All we do there is we assume that

V p|r̂i ´ r̂j |q “ 0 which results in, Hel “

Ne
ÿ

i

p̂2i
2m

(2.29)

This simplification results in a massive simplification of the whole system by decoupling the

eigenvectors (wave functions) in the space of electronic degrees of freedom. All this means

is that the electrons don’t see each other as their dynamics evolve in time. At first glance,

although this approximation looks drastic, there are numerous many-body methods such as

Density functional theory (58) and variational tight-binding models (59) which successfully

treat the effect of electrons on one another at mean-field level and beyond. Thus, we trudge

forward with this approximation keeping in mind the fact that a more sophisticated treatment

of electron-electron interaction is always possible.

The second simplification would not be necessary if the ions were pinned to the lattice. In

this case, this term would only result in a constant ionic potential submerging the electron.
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However, in real systems, ions oscillate around their equilibrium position (lattice sites). For

our purposes, we suppose that any given ion R⃗I is undergoing a simple harmonic oscillation

with displacement X⃗I which allows us to linearize Hel´ion about the equilibrium point R⃗poq

I .

Although this problem is in 1 dimension, we use vector notations here to denote that the

displacement vector X⃗I is changing in magnitude and direction (sign) around the equilibrium

position i.e R⃗I “ R⃗
p0q

I ` X⃗I . We replace this in coulomb interaction potential in Hel´ion,

Taylor expand it and linearize.

V p|R⃗I ´ r⃗i|q “ V p|R⃗
p0q

I ` X⃗I ´ r⃗i|q

“ V p|R⃗
p0q

I ´ r⃗i|q ` X⃗I .∇⃗V p|R⃗
p0q

I ´ r⃗i|q ` Op|X⃗I |
2
q

« V p|R⃗
p0q

I ´ r⃗i|q ` X⃗I .∇⃗V p|R⃗
p0q

I ´ r⃗i|q

(2.30)

The very first term in this expansion is the potential landscape of the frozen(static) lattice

interacting with the electron at ri. We can combine this with the equation (2.29) which

gives us a sum of Ne basic electronic tight binding Hamiltonians- one for each independent

electron in this problem.

HTB “

Ne
ÿ

i

p̂2i
2m

`

Ne
ÿ

i

Ni
ÿ

I

V p|R⃗
p0q

I ´ r⃗i|q

“

Ne
ÿ

i

” p̂2i
2m

`

Ni
ÿ

I

V p|R⃗
p0q

I ´ r⃗i|q
ı

“

Ne
ÿ

i

Hi
TB

(2.31)

The ionic Hamiltonian is already in the form we have discussed before in section 2.4.2.

In fact, we actually have a more general version of the problem where the nearest neighbor

ions interact with each other in the second quantized formalism in the preceding section.

We now direct our attention to the linear term in equation (2.30). The term ∇⃗V p|R⃗
p0q

I ´

r⃗i|q is nothing but Coulomb force between the ion at the equilibrium position R⃗
p0q

I and an
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electron at location r⃗i. At any given moment, the electron in question is in some unit cell

around the Kth ion at equilibrium position R⃗p0q

K . We can define the position of this electron

inside this unit cell ‘K’ centered around the equilibrium ion position as r⃗0i - i.e r⃗i “ R⃗
p0q

K ` r⃗0i .

Putting this information back in the potential, we get;

∇⃗V p|R⃗
p0q

I ´ r⃗i|q “ ∇⃗V p|pR⃗
p0q

I ´ R⃗
p0q

K q ´ r⃗0i |q

9
1

|pR⃗
p0q

I ´ R⃗
p0q

K q ´ r⃗0i |2

(2.32)

By the nature of Coulomb interaction, this quantity is significant only when pR⃗
p0q

I ´ R⃗
p0q

K q

goes to zero i.e the electron ’i’ is actually in the unit cell centered at R⃗p0q

I . We will therefore

use our third approximation and say that interaction between an electron and a nucleus more

than a unit cell away is zero a nucleus less than or equal to a unit cell is some constant Γ.

With this the linear term in the Hel´ion becomes;

Hel´ion “

Ne
ÿ

i

Ni
ÿ

I

X⃗I .∇⃗V p|R⃗
p0q

I ´ r⃗i|q

«

Ne
ÿ

i

Ni
ÿ

I

X⃗I .Γ.N̂
i
I

“ Γ

Ni
ÿ

I

”

Ne
ÿ

i

N̂ i
I

ı

.X⃗I

“ Γ

Ni
ÿ

I

”

N̂I .X⃗I

where,N i
I “

$

’

’

&

’

’

%

1 if electron ‘i’ is in Unit cell around R⃗p0q

I

0 if not.

(2.33)

Here N i
I is the number operator for ith independent electron and NI is the total electron

number operator that checks how many electrons are present at site I. With this, our
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problem has boiled down to a form very similar to what we described in section 2.5 and in

(2.27).

Although we had to make approximations to the real many-body problem in order to get

the Holstein Hamiltonian, this Hamiltonian still carries the bare minimum components that

have a complexity similar to the real problem as well as practical relevance in polar molecules.

Given we have clean descriptions of electronic and bosonic physics where the first-quantized

parameters have been appropriately packaged, Holstein Hamiltonian provides us a suitable

playground to build methods to understand and account for electron-boson interactions in

many body systems.

2.8 Summary:

In this section, we derived the Holstein Hamiltonian from the first principles and elucidated

the necessary underlying approximations in the three main components of this Hamiltonian.

Furthermore, we discussed the Holstein paradox and developed the idea of a polar ion nucleus.

We then described this system in the second-quantized language. Finally, we took the real

many-body Hamiltonian and through a series of well-justified arguments boiled it down to

the Holstein problem.
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CHAPTER 3

MATHEMATICAL DETOUR: GREEN’S FUNCTION,

SELF-ENERGY AND OTHER QUANTITIES OF INTEREST

3.1 An Introductory Problem: Goldfish in an Aquarium

Imagine a five-second memory having goldfish in an aquarium. This goldfish really likes

jumping through two hoops that we have put in this aquarium- a red one and a blue one as

shown in figure 3.1. So we assign some probability of this goldfish interacting with each of

these hoops.

Figure 3.1: Goldfish in an aquarium (top left). Diagrammatic representation of probabilities
is presented on the top right. The bottom panel shows the definition of self-energy

Suppose we wanted to know what is the probability of this goldfish going from one end

of the aquarium marked ’start’ to another end of the aquarium marked ’stop’. If there were
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no hoops, the goldfish simply swims from one end to another end. But the presence of hoops

complicates the motion of the goldfish. Since it lacks memory, it can interact with the hoops

in any combination for as many times as it likes. But at any given moment in time, while

interacting with the hoops, it can either go through the red hoop or the blue hoop once.

Going through any one of these two hoops once is the most basic or irreducible interaction

of goldfish. We can package this information about the irreducible together and construct

an effective interaction probability for any given moment in time as shown in figure 3.1. We

call this packaged interaction the ‘self-energy’ of this goldfish.

With the diagrammatic representation and the self-energy shown in figure 3.1, we can

begin to write(draw) the first few cases for this goldfish’s motion as shown in figure 3.2.

Figure 3.2: First few cases of goldfish motion

We now notice that the actual motion of the goldfish is nothing but a series expansion

in the self-energy. Hence, we can write this more compactly as shown in figure 3.3. This is

a self-consistent equation because the left and the right side both have the same quantity P

- the actual probability of goldfish going from start to stop.

In the quantum case, the story is analogous. The only major difference is that we do

not talk about the probability but rather the probability amplitude - the Green’s function.

This is because the fundamental quantity for a particle’s location in space-time in quantum
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Figure 3.3: Dyson’s equation for goldfish’s dynamics as it goes from start to stop. Σ here
represents the self-energy.

mechanics is not the probability but rather the wave function.

3.2 The Electron Green’s Function

The electron Green’s function is the tool at hand to study the effect of interaction on the

propagation of electron from one state to another. States here could be the actual spatiotem-

poral location in the bulk or energy-momenta states. In fact, we can use any appropriate

single particle basis say ki, kf to define the addition or removal of particles.

´iGpkf , tf ; ki, tiq “Probability amplitude for finding a particle in state kf at time tf

if a particle in state ki was added to this system at time ti

In either case, the electron Green’s function contains all possible interactions that the electron

could undergo while propagating from one state to another. Knowledge of the electron

Green’s function, therefore, provides all the knowledge about the possible interactions in

and the energy levels of the material. For a non-interacting system, once we know the

dispersion relation, writing the electron Green’s function or the bare Green’s function(Go) is
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trivial. States are long-lived due to the infinite lifetime because of no interaction. Hence, the

spectrum is just a series of delta functions at the energy eigenvalues(εk) of the Hamiltonian.

However, once the interactions are switched on, there is an exchange of energy and momenta

between states, the clumping of particles and holes to form quasi-particles, and the onset of

long-range modes due to the response of the system. The interacting Green’s function(G)

therefore is no longer simple. However, if we know the kinds of irreducible interactions that

the electron can undergo and we package it together and call it the self-energy Σpk, ωq, then

we can write the Green’s function using Dyson’s equation in frequency(ω) space analogous

to figure 3.3.

Gpk, ωq “ Gopk, ωq ` Gopk, ωqΣpk, ωqGopk, ωq ` GoΣGoΣGo ` ....

“ Gopk, ωq ` Gopk, ωqΣpk, ωq
`

Go ` GoΣGo ` ....
˘

“ Gopk, ωq ` Gopk, ωqΣpk, ωqGpk, ωq

6 Gpk, ωq “
1

Gopk, ωq´1 ´ Σpk, ωq

(3.1)

Of course, there are different conventions on writing the Green’s function and various inter-

pretations of the result. The time-ordered(TO) Green’s function chooses to have time run

in the positive direction for particles (electrons) and the negative direction for holes. This is

because in this convention, the unperturbed system with a quiet fermi surface is the ground

state. The Fermi surface pEnergy “ µq is considered to be zero of the energy scale (the

Fermi vacuum). Any new particle added is added above this fermi surface -at a positive

energy state. Any hole added (particle removed) is removed from below the fermi surface -

from a negative energy state. Because the two objects- particles and holes have positive and

negative energies respectively, their propagation in time is also considered to be in either a

positive or negative direction to make sure that the energy-time uncertainty principle can
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be equivalently defined in both cases.

Hence the Green’s function is defined piece-wise, once for particles and once for holes.

Because of this reason, the same Green’s function cannot smoothly vary from a particle to a

hole state and vice versa due to the difference in functional structure for particles (ϵk ą µ)

and holes (ϵk ă µ). If |0y is the unperturbed system with fermi level’s energy at µ, and Θ is

the Heaviside step function, for particle Green’s function, we first add a particle above the

fermi level at time t1, let the system evolve, remove this particle at time t and compare this

new system to the original Fermi vacuum |Ψoy. For hole Green’s function, we first remove

an electron from below the fermi level at time t, let the system evolve, add back this electron

at time t1, and compare this new system to the original Fermi vacuum |Ψoy.

With c
:

k{ck the particle ladder operators, time-ordered Green’s function is defined as

follows.

GTO
pk, t; k1, t1q “ ´i x|Ψo|Ttckptq, c

:

k1pt
1
qu |Ψoy (3.2)

Here Ttu is the time ordering operator which orders the ladder operators differently for

particles and holes.

TtApt1q, Bpt2qqu “

$

’

’

&

’

’

%

Apt1qBpt2q if t1 ą t2

´Bpt2qApt1q if t2 ą t1

(3.3)

If the system is non-interacting, the added particle or hole of energy εk1 and momenta k1

does not change its energy or momenta during the system’s evolution in time. Hence, the

non-interacting Green’s function is;

GTO
0 pk, t; k1, t1q “ ´i xΨo|Ttckptq, c

:

kpt1qu |Ψoy δk,k1

“ ´ie´ϵk1pt´t1qδk,k1

”

Θpt ´ t1qΘpϵk1 ´ µq ´ Θpt1 ´ tqΘpµ ´ ϵk1q

ı

(3.4)
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Given the binomial term with step functions in this expression, clearly, there are two branches

of this Green’s function - one for holes with pt1 ă tq and the other for particles with pt1 ą tq.

A different convention for constructing Green’s function is the retarded time (RT) Green’s

function in which time runs forward for both electrons and holes. Here the energy eigenvalues

εk are with respect to the actual vacuum with zero particles. This actual vacuum is also

called the Fock vacuum. Hence, there is no real need to make a distinction between electrons

and holes. The retarded-time interacting and non-interacting Green’s function is defined as;

GRT
pk, t; k1, t1q “ ´i x0|Ttckptq, c

:

k1pt
1
qu |0y

GRT
o pk, t; k1, t1q “ ´ie´εkpt´t1qδk,k1Θpt ´ t1q

(3.5)

As discussed above, this Green’s function has a single branch. It is worth discussing

the differences between these two formalisms of Green’s function. The time-ordered Green’s

function starts from a large complicated system and defines the unperturbed system as zero.

And because it counts excitations below and above the fermi energy, it is a good tool to have

in order to talk about excitations that are localized around the fermi energy. This is because

if we started counting from an actual vacuum, for a reasonably complex system with a large

number of core electrons, we will have to count up to a very high number of states just

to define the Fermi level. This becomes extremely tedious very fast and is not an efficient

way to represent higher excitations. However, if we are talking about deeper excitations or

systems with fewer electrons, to begin with, the Retarded time formalism gives a complete

picture of excitations without having to separate them into two classes and make electrons

and holes interact with each other separately.

Since our system is a single electron system, it is better (easier) to talk about the exci-

tations of the system as adding that electron to a vacuum rather than start with a Fermi

level at a single electron and talk about removing it. Therefore, we will use retarded-time

Green’s function for the rest of this thesis.
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3.3 The Non-Interacting Boson Green’s Function

Here too we will use the retarded time formalism. Unlike electrons, there can be many bosons

in a given momenta state q⃗. Furthermore, the boson energy is independent of the direction

of boson momenta ωq “ fp|q⃗|q. We can think of this as the vibration of an atomic site in an

isotropic having the same effect on the system’s energy regardless of the direction in which

it vibrates. So the addition (or removal) of bosons of momenta `q or ´q will have the same

effect on the overall system’s energy. This idea is better encapsulated by the quantity Aq

which removes a quantum of boson with energy ωq from the system as A´q which adds a

quantum of boson with energy ωq to the system. Therefore, the boson Green’s function is

defined as;

Dpq, tq “ ´iθptq x0| rAqptq, A´qs |0y

“ ´iθptq x0|AqptqA´q ` A´qAqptq |0y where,

Aqptq “ bqptq ` b
:
´qptq

(3.6)

For non-interacting bosons, the Aq operator and the Green’s function becomes;

Aqptq “ bqe
´iωqt ` b

:
´qe

iωqt

Dopq, tq “ ´iθptqre´iωqt ´ eiωq ts

(3.7)

3.4 The Electron-Boson interaction and Feynman diagrams

Using the non-interacting electron and boson Green’s function, we will build our very first

approximation of the interaction. Feynman diagrams are helpful tools to visualize these

interactions. So we will briefly discuss the relevant ideas on Feynman diagrams and refer the

reader to more formal resources on the topic.

We already built a primitive version of the Feynman diagram technique for the goldfish

in figure 3.1 and 3.3. It was easy there because the interactions themselves (the hoops) were

static and did not change the fish’s state in any way. However, the microscopic reality of
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electron-boson interaction is complicated because the electrons do change momenta when ab-

sorbing or emitting bosons. Therefore, there are some extra rules two of which are especially

important for us. Firstly, each interaction vertex contributes a factor of ´ig (the coupling).

Figure 3.4: On left, Feynman Diagram dictionary for the Holstein problem. On the right
are two relevant diagram rules for our approach.

This basically quantifies how often such interactions take place in the probability amplitude

expansions. Furthermore, momenta are conserved at the vertices. Since all Green’s functions

have a direction arrow (in time), we assume that to be the direction of momenta flow. We

then enforce the condition that the sum of incoming momenta to a vertex is equal to the

sum of outgoing momenta from that vertex.

The second rule is regarding the conservation of particle number between the starting

configuration and the end configuration. The number of electrons and bosons should be

the same between the start and the end configuration. These numbers can however change

as the system is evolving between these two times. Any newly created particle gets a new

momenta variable and the equations are summed over the possible intermediate values of

this new momenta variable. Both of these rules are summarized in figure 3.4.

There are other rules that are more technical and relevant for numerical applications such
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as the conservation of energy variables. For these rules, we refer the reader to (60; 53; 54).

3.5 The Electron self-energy

Now, we will construct a very crude self-energy by making the non-interacting electrons

and non-interacting bosons interact at the vertex. Although it sounds counter-intuitive, all

we are saying is that these electrons and bosons only communicate instantaneously at the

vertex, change momenta and go out of the vertex as non-interacting electrons and bosons

again. This approximation simplifies the calculation by giving a clear framework to start the

approximation. The first-order interaction is the simplest interaction between an electron

and a boson at two points in time. This is shown in figure 3.5 A.

Figure 3.5: A. First order electron-boson interaction diagram. B. First order self-energy
from diagram A.

The self-energy governing the process above (or any higher order process) is the part

of diagram between the very first and the very last vertex . But we only care about the

irreducible self-energy- those self-energy diagrams which cannot be constructed out of a

combination of lower order self-energy diagrams. The first order self-energy for electron

incoming at momenta ‘k’ Σpk, tq and is shown in figure 3.5 B. All we need to do is average

over the possible boson momenta. This means that boson of any momenta can be excited
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by this electron and this boson interacts back with the electron. Assuming the first vertex

occurs at the time elapsed between the two vertices is t, we can write the expression for first

order self-energy.

iΣpk, tq ” p´igq
2 1

N

N
ÿ

q“0

Gopk ´ q, tqDopq, tq

6 ´iΣpk, tq “
g2

N

ÿ

q

Gopk ´ q, tqDopq, tq

(3.8)

Here, the factor of 1{N comes from the average over the boson momenta.

3.6 The Spectral Function

In our work, the photo-emission spectral function Apm,n;ωq evaluated on the frequency axis

is defined as;

Apk, ωq “
1

π
|ImGpk, ωq|

This absolute valued definition of spectral function differs from the traditional definition and

is necessary in numerical application because of the finiteness of the time axis. We explain

this further in this section. The retarded time bare electron Green’s function in frequency

space is defined as;

Gopk, ωq “ lim
ηÑ0`

1

ω ´ εk ` iη

“ P
” 1

ω ´ εk

ı

´ iπδpω ´ εkq

(3.9)

Here, P represents the principal value of the function it is acting on. We see that the imag-

inary part of this Gopk, ωq has the poles at the energy eigenvalues εk of the non-interacting

part of Hamiltonian. From this, the traditional definition of the spectral function emerges;

Aopk, ωq “ ´
1

π
ImpGopk, ωq (3.10)
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Assuming a smooth transition from non-interacting to interacting system, we can extend

this expression’s validity to define interacting system’s spectral function;

Apk, ωq “ ´
1

π
ImpGpk, ωq (3.11)

In the context of Dirac Delta function we often use the following relationship:

lim
ηÑ0`

1

x ˘ iη
“ lim

ηÑ0`

x

x2 ` η2
¯ lim

ηÑ0`
iπ

η

πpx2 ` η2q

“ P
”1

x

ı

¯ iπδpxq

(3.12)

The delta function in the imaginary part originates from the limit-definition (Sokhotski-

Plemelj Theorem or Kramers Kronig Relations) of the function in the line right above it

and hence is an idealization when it comes to numerical implementation. This is because

in numerical implementation, explicitly demanding that η must go to zero only from the

positive side of the number line (since we demand η Ñ 0`) for a continuous function (bare

electron green’s function) is notoriously difficult. On top of this, the negative side then

requires a sign flip in the definition of the delta function. Now, we no longer have a unified

definition of the delta function but rather a piece-wise definition. This is still manageable

when we have a single delta function i.e. bare electron Green’s function in any one half of

the real line. But when we use the bare electron Green’s function to compute actual Green’s

function in the symmetric time domain and convert it back to the frequency domain, we

now notice that we need to enforce this piece-wise definition of Green’s function at every

given frequency point. Furthermore, since there is a cutoff (tmax) in time, this manifests

as oscillations in the frequency space in the order of t´1
max. We are now at an impasse. We

need a large tmax (ideally tmax Ñ 8) to properly capture the Green’s function decay. But

tmax needs to be some large finite value for numerical implementation which manifests as

violent small energy oscillation. In order to bypass this and reproduce the correct answer for
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non-interacting as well as interacting fermionic systems, we can redefine the limit-definition

of the function with an absolute value as follows;

lim
ηÑ0

1

x ˘ iη
“ lim

ηÑ0

x

x2 ` η2
¯ lim

ηÑ0
iπ

ˇ

ˇ

ˇ

η

πpx2 ` η2q

ˇ

ˇ

ˇ

“ P
”1

x

ı

¯ iπδpxq

(3.13)

Doing so, we now get a consistent single definition of the delta function on both sides of the

number line. This manifests in our definition of the spectral function.

Apk, ωq “
1

π
|Gpk, ωq| (3.14)

(a) Traditional definition from equation (3.10) (b) Absolute value definition from equation (3.14)

Figure 3.6: Two Definitions of Spectral Function for g “ 1, ε˘ “ ¯3 and ωo “ 6

3.7 Migdal’s Theorem and Cumulant Expansion

In the context of the Holstein problem, when the bosonic energy scale ωo is much smaller than

the electronic energy scale ∆, the interaction between the electron and the boson does not

cause severe modification of electronic energy because the boson does not have enough kick

to change the electronic energy. Hence, taking only the first-order self-energy and computing
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the interacting Green’s function gives a good enough description of the electronic properties.

This is called the Migdal’s theorem(61).

A better approximation to Migdal’s approach is the cumulant approximation where we

assume that the non-interacting electron Green’s function maps to the interacting Green’s

function through some exponential correction (62; 11).

Gpk, tq “ Gopk, tqeCpk,tq (3.15)

This ansatz is used in the Dyson’s equation along with the first-order self-energy to compute

the correction Cpk, tq. This correction is put back in equation (3.15) and the interacting

Green’s function is computed. We will discuss the varieties of cumulant expansions in a

later section in detail. But we would like to show the diagrammatic differences between the

Migdal’s approach and the cumulant approximation. Upto 2 vertex diagrams (order g2), the

Figure 3.7: Electron interacting with two different bosons (red and green). Cumulant ex-
pansion produces more diagrams in the 2nd order compared to Migdal’s approximation.

cumulant expansion and the Migdal’s approximation produce the same diagrams as shown
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in figure 3.7. However, at 4 vertices and more, cumulant produces novel diagrams (rainbow

and overlap) along with the diagrams produced by Migdal’s approximation. Hence, cumulant

expansion provides a better approximation of the electronic Green’s function from the same

first-order self-energy as compared to Migdal’s approximation.

3.8 Summary:

In this section, we discussed the main mathematical objects we use in this thesis. The

Green’s function, the electronic self-energy as well as the spectral function were intuitively

discussed along with their equations. We also sketched the basic rules for the Feynman

diagram and finally discussed the Migdal’s approximation as well as cumulant expansion in

terms of diagrams. Cumulant expansion as well as its varieties will be looked at again in

more detail in the later chapters.
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CHAPTER 4

DERIVATION AND BENCH-MARKING OF INTEGRAL

POWER SERIES FORMALISM IN HOLSTEIN DIMER

4.1 The Holstein Dimer

Holstein dimer is a quantum volleyball match between two vibrating nuclei with a single

electron. The quintessential example of this type of system is the dihydrogen cation (H`
2 )

which occurs in hydrogen clouds (H I region) in space when atomic hydrogen is ionized by

cosmic rays forcing it to share an electron with unionized atomic hydrogen.

Dihydrogen cation historically was one of the earliest models to have been investigated in

the early days of the quantum revolution (1927) once quantum mechanics had successfully

proved itself in the solution of energy levels of Hydrogen atom (63). However, because of

the complexity of this problem, it was studied in clamped/frozen nuclei approximation (an

early predecessor of the Born-Oppenheimer approximation). This approximation, by pinning

the nuclei to their location, completely stops nuclear vibrations, which in real systems, are

coupled to the electronic degree of freedom and thus affect the electron’s dynamics. This

becomes especially relevant when the coupling constant between the electronic and nuclear

vibrational degree of freedom is large and when we are in the limit of a large number of

vibrations per unit time when we can effectively treat these vibrations as baths of bosons -

’vibrons’ in molecules and phonons in crystals.

The Holstein dimer is a perfect system to build the power series approximation scheme

and test it because of its simplicity as well as clear identification of different energy scales

of the problem. Furthermore, there is no known exact analytical solution but the exact

numerical solution can be constructed using the exact diagonalization technique. Apart

from this, the approximation methods previously used either give incorrect boson satellites

(GW) or are ad hoc and unsystematic and incorrect at strong coupling (cumulant).
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Figure 4.1: Dihydrogen Cation: An example of Holstein Dimer

In this chapter, we start by discussing the dimer’s Hamiltonian and the three energy

scales of this problem. We will then derive power series approximation in the context of

the Holstein dimer and highlight two distinct parts of this correction. This will be followed

by a derivation of various flavors of cumulant formalism through power series. Through

this exercise, we will exactly point out what part of this problem is being ignored by these

cumulant expansions. Finally, we will benchmark our method as well as GW and cumulant

against Exact diagonalization and identify the three regimes of this problem.

4.2 Holstein Dimer’s Hamiltonian

Imagine a system of two identical sites with an electron hopping between these two sites.

Let c:

i{ci be the electron creation and annihilation operators for these two sites labeled by

‘i’ (i “ 1, 2q. let ϵo be the on-site energy for the electron when it is at any one of these two

sites. The on-site energy is the same for both sites because they are identical. Let ´t be

the hopping energy for the electron when it hops from one site to another. The real space

49



electronic Hamiltonian is;

Hel “ ϵopc
:
1c1 ` c

:
2c2q`p´tqpc

:
1c2 ` c

:
2c1q (4.1)

For the bosonic part of this problem, let us assume that each site can vibrate on its

own without any effect on the other site. Therefore there are two distinct bosons (vibrons)

in this problem - one for the vibration of each site. Let b:i{bi be the vibron associated

with the vibration of site i. Since both sites are identical to each other, the boson energy

(commonly called boson frequency) for both of these vibrons is equal. Let this boson energy

be ωo. The boson dispersion is the measure of boson-boson interaction. Since the vibration

of each site is independent of the other, the bosons are also dispersionless. We will explore

a more complicated case with boson dispersion in a later chapter. The real space bosonic

Hamiltonian is;

Hbos “ ωopb
:
1b1 ` b

:
2b2q (4.2)

Finally, let g be the electron-boson coupling constant that couples the electron at site ‘i’ to

the vibration creation and annihilation at site ‘i’. The real space electron-boson interaction

Hamiltonian is;

He´bos “ gpc
:
1c1qpb

:
1 ` b1q ` gpc

:
2c2qpb

:
2 ` b2q (4.3)

The real space Hamiltonian for this problem is the sum of the above three pieces.

H “ Hel ` Hbos ` Hel´bos (4.4)

We can transform this Hamiltonian from real space to orbital space (momenta space for crys-

tals) by constructing bonding and antibonding combination of real-space ladder operators
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Figure 4.2: Combining atomic orbitals to form bonding(`) and anti-bonding(´) orbitals.
The bonding orbital is the lower energy state among the two.

for the electron and the bosons (12).

c˘ “
c1 ˘ c2

?
2

and b˘ “
b1 ˘ b2

?
2

(4.5)

Here, the fermionic ladder operators are c`{c
:
` and c´{c

:
´ for bonding and anti-bonding or-

bitals respectively. The bosonic ladder operators for p˘) bosons are b˘{b
:
˘. In this bonding-

antibonding basis, the dimer Hamiltonian transforms to the following:

H “ Ho ` H` ` H´ where,

Ho “
ÿ

i“˘

ε˘c
:

ici where, ε˘ “ ϵ0 ¯ t

H` “ ωob
:
`b` `

g
?
2

pc
:
`c` ` c

:
´c´qpb

:
` ` b`q

H´ “ ωob
:
´b´ `

g
?
2

pc
:
`c´ ` c

:
´c`qpb

:
´ ` b´q

(4.6)

The system in this representation has two orbitals - bonding/anti-bonding with respective

energies ε`{ε´ such that their difference is ∆. This system is in baths of two dispersionless
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boson species p˘q. The bosons are quantized packets of energy ωo that the electron can

interact with. Interaction of electron with p´q bosons causes the electron’s inter-orbital

transition. The p`q boson does not cause any electronic transition upon interaction.

The electron-boson interaction strength is controlled by the coupling constant g. The

factor of
?
2 dividing g is a result of normalization for there being two sites and not really

the part of interaction strength. The Hamiltonian for this problem is separable into three

distinct pieces. Ho is the non-interacting part of the Hamiltonian. H` has p`q bosons

and doesn’t cause inter-orbital transitions. H´ has p´q bosons and governs inter-orbital

transitions. We will show that the coupling of electron to (˘) bosons becomes crucial when

∆ « ωo. Vibronic couplings in this regime can cause inter-band transitions and severely

renormalize the energy levels in the molecule (64; 65; 66).

4.3 Green’s function and self-energy for Zero Temperature

Holstein Dimer

The retarded-time(RT) formalism is better suited to handle problem with interacting elec-

trons and holes because it treats both of them on equal footing as particles (11). Since there

is a single electron in this problem, the ground state, therefore, is an absolute vacuum (fock

vacuum). The excited state describes of addition of bosons or/and an electron to this vac-

uum. For the Holstein problem (4.6) with fock vacuum |0y as the ground state and { , }/[ , ]

as the anti-commutator/commutator, The electron Green’s function Gpn, tq for each orbital

‘n’ and the boson Green’s function DpN, tq for each boson species ‘N’ in RT formalism is;

Gpn “ ˘, tq “ ´iθptqx0|tcnptq, c
:
nu|0y

Dpn “ ˘, tq “ ´iθptqx0|rbnptq, b
:
ns|0y

(4.7)
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For the non-interacting electron boson system, the story is quite simple. The electronic and

the bosonic parts of the problem do not talk to each other. The non-interacting Hamiltonian

is, therefore, (4.6) in the limit g “ 0. The Green’s function defined in this limit for the

electron as well as the two distinct boson species are called the bare Green’s function or the

non-interacting Green’s function. For non-interacting electrons and dispersionless bosons

with energy ωo, the bare electron green’s function Go and a bare boson green’s function D

are,

Gop˘, tq “ ´iθptqe´iε˘t

Dp˘, tq “ ´iθptqe´iωot
(4.8)

At zero coupling (g “ 0), the energy eigenvalues ε˘ of (4.6) are real and the states

have infinite lifetime owing to the lack of interaction between the orbitals. However, upon

switching on the boson-mediated interaction (g ‰ 0) between orbitals, the exchange of energy

and momenta between states through boson exchange causes the clumping of electrons and

holes to form quasiparticles. Because of time-translational invariance, we can package this

interaction information together and call it the self-energy.

´iΣptq “ g2
ÿ

N,n“˘

DpN, tqGpn, tq “ g2
ÿ

n“˘

´iΣpn, tq (4.9)

Each orbital’s self-energy Σpn, tq is complex-valued, unlike the bare energy. This gives rise

to spectral peak broadening - an indication of a finite quasiparticle lifetime. A properly

constructed self-energy also incorporates boson-mediated inter-orbital transitions, produces

satellite peaks at the correct boson frequencies, and redistributes the spectral weight from the

quasiparticle to the satellites. For the very first interacting system approximation, we replace

the interacting Green’s function in this self-energy with their non-interacting counterparts

(4.8).
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4.4 Derivation of Integral Power Series Formalism

4.4.1 The Power Series Ansatz

In order to derive the power series correction, we first assume that the non-interacting

electron’s Green’s function (Go) for any orbital m can be adiabatically mapped to the inter-

acting Green’s function (G) for that orbital smoothly using a general power series(P) in the

electron-boson coupling constant g2 in the time domain. Mathematically, this means:

Gpm, tq “ Gopm, tqPpm, tq where,

Ppm, tq “ 1 ` g2C1pm, tq ` g4C2pm, tq ` g6C3pm, tq ` ...

(4.10)

This is the Power series Ansatz. We assume no relationship between the functions appearing

at different orders of g2. The power series by construction is unity when ‘g1 “ 0. Hence,

power series guarantees adiabaticity in the limit of g Ñ 0. However, we also need smooth

deformation in time. Here, we use the retarded Green’s function formalism starting at t “ 0

and in this formalism, the particle always travels forward in time. Without loss of generality,

we, therefore, switch on the interaction as well as the particle’s evolution at t “ 0. For smooth

forward evolution in time, we must also enforce smooth forward temporal mapping from non-

interacting to interacting system. For this reason, we enforce the following condition;

Cipm, t “ 0q “ 0 @i [temporal adiabaticity condition]

ñ Gpn, t “ 0q “ 1

(4.11)

Now, the system truly starts at the non-interacting limit and smoothly deforms to interacting

system with coupling constant g2 as time evolves.
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4.4.2 Temporal Contraction Relation

For the bare mth orbital electron Green’s function, has the temporal fragmentation relation

that,

iGopm, t ´ toq “
1

t ´ to

ż 8

´8

dt1piGopm, t ´ t1qqpiGopm, t1 ´ toqq (4.12)

This just means that the actual bare Green’s function is the average of all possible time-

fractured bare Green’s function. Let us assume that the same relation also holds true for

the actual (measured) Green’s function in that it must also be the average of all possible

time-fracturing. i.e,

iGpm, t ´ toq “
1

t ´ to

ż 8

´8

dt1piGpm, t ´ t1qqpiGpm, t1 ´ toqq (4.13)

If we replace the power series ansatz on both sides in this relation, we get;

iGopm, t ´ toqPpm, t ´ toq “
1

t ´ to

ż 8

´8

dt1piGopm, t ´ t1qqpiGopm, t1 ´ toqq.

“

Ppm, t ´ t1qPpm, t1 ´ to
‰

(4.14)

The simplest relation that one could think of to make all three equations above to be true

would be if;

Ppm, t ´ toq “ Ppm, t ´ t1qPpm, t1 ´ toq @ to ă t1 ă t (4.15)

Although this contraction property of the power series corrections seems quite trivial, imple-

menting this contraction property in actual calculations is absolutely essential because this

gives rise to the bosonic crossing diagrams in the diagrammatic series expansion. Without

such contraction, the core-hole cumulant expression cannot be derived from the power series

machinery. This contraction relation isn’t valid between power series pieces for different
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orbitals.

4.4.3 Power Series Corrected self-energy

As the particle (electron or hole) evolves in time, it undergoes interaction with the p˘q

bosons. The irreducible part of this interaction between the particle and the boson is pack-

aged in self-energy as described in the previous chapter. The overall evolution of the elec-

tron’s Green’s function is given by the Dyson’s equation - repeated application of this self-

energy on the particle Green’s function. The particle is evolving in time as it interacts with

the boson, there is a piece of particle’s Green’s function wedged inside the self-energy. Since

we are correcting the overall Green’s function, we must also correct this piece of Green’s

function inside the self-energy. Furthermore, in order to make sure that the interacting

Green’s function given by Dyson’s equation smoothly transforms to non-interacting Green’s

function in the limit of g Ñ 0, the self-energy also gets a factor of g2 in front of it. In the

language of the Feynman diagram, this factor is colloquially called ‘the vertex’ and encodes

the probability amplitude of the occurrence of interaction between the particle and the bo-

son. In the context of Holstein dimer, If Gpm, tq and Gopm, tq are the particle’s interacting

and non-interacting Green’s functions when it is in the mth orbital and DpN, tq is the N th

boson’s Green’s function (N=˘), the self-energy can be written as;

´iΣptq “ g2
ÿ

m“˘
N“˘

Gpm, tqDpN, tq

“ g2
ÿ

m“˘
N“˘

Gopm, tqPpm, tqDpN, tq

“ g2
ÿ

m“˘

´iΣpm, tqPpm, tq

(4.16)

This is the power series corrected self-energy. Here, we have replaced the particle’s interacting

Green’s function with the power series ansatz from (4.10) in the second step. This is followed

56



by a regrouping of terms and the definition of mth orbital’s self-energy Σpm, tq.

4.4.4 The Dyson’s equation with Power Series Correction

The next step is to replace both power series corrected particle’s Green’s function(4.10) and

power series corrected (4.16) into Dyson’s equation in the time domain. Without loss of

generality, we take the initial time ti as 0 and the final time tf as t.

Gpm, tf ´ tiq “ Gopm, tf ´ tiq `

ż tf

ti

dt2

ż tf

ti

dt1Gpm, t1 ´ tiqΣpt2 ´ t1qGopm, tf ´ t2q

6 Gpm, tq “ Gopm, tq `

ż t

0
dt2

ż t

0
dt1Gpm, t1qΣpt2 ´ t1qGopm, t ´ t2q

Gopm, tqPpm, tq “ Gopm, tq `

ż t

0
dt2

ż t

0
dt1Gopm, t1qPpm, t1qΣpt2 ´ t1qGopm, t ´ t2q

(4.17)

We now expand the non-interacting Green’s function and use the following composition rule

for the non-interacting Green’s function to simplify the above expression.

Gopm, t1qGopm, t ´ t2q “ p´ie´iεmt1qΘpt1q p´ie´iεmpt´t2q
qΘpt ´ t2q

“ p´ie´iεmt
qΘptq p´ie´iεmpt1´t2q

qΘpt2 ´ t1q

“ Gopm, tq p´ieiεmpt2´t1q
qΘpt2 ´ t1q

(4.18)

Here we used the time-ordering enforced by the Heaviside functions in the non-interacting

retarded electron Green’s function outside and inside the self-energy in the rightmost integral

of (4.17). The Green’s function inside the self-energy enforces t1 ď t2 and the Green’s

functions outside enforce 0 ď t1 and t2 ď t. Hence the total time ordering is 0 ď t2 ď t1 ď t.

Once this relation is established, we can now generate appropriate Heaviside functions that

satisfy the time-ordering and set the limits for the integral. Replacing equation (4.18) in the
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last term of (4.17) and canceling the factor of Gopm, tq on both sides, we get;

Ppm, tq “ 1 ` p´iq

ż t

0
dt2

ż t2

0
dt1e

iεmpt2´t1qΣpt2 ´ t1qPpm, t1q

Finally, we replace the power series corrected self-energy (4.16) in the equation above and

redefine t2 ´ t1 “ τ .

Ppm, tq “ 1 ` p´ig2q
ÿ

n“˘

ż t

0
dt2

ż t2

0
dτeiεmτΣpn, τqPpn, τqPpm, t2 ´ τq

This expression can be further simplified by using the temporal contraction relation (4.15)

when n “ m. The final expression is;

Ppm, tq “ 1 ` p´ig2q

ż t

0
dt2

ż t2

0
dτeiεmτΣpm, τqPpm, t2q`

p´ig2q
ÿ

n‰m

ż t

0
dt2

ż t2

0
dτeiεmτΣpn, τqPpn, τqPpm, t2 ´ τq (4.19)

This is the integral power series correction equation. The initial condition here is Ppm, t “

0q “ 1 which is a consequence of the assumption that Green’s function smoothly evolves

forward in time in response to turning the interaction on at t “ 0 as described in subsection

4.4.1.

4.4.5 Recursive Relation for Power Series

Since we are asserting that the perturbative expansion holds true, we can compare terms of

the same order in the coupling constant g2 on both sides. This immediately yields a recursive

relation between the corrections with the starting correction being 1. Hence, we now are able

to compute corrections to any order given that the series converges fast enough. A necessary

condition for this is that the contribution of the higher-order terms must be smaller and
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limiting to zero than the lower-order terms or else the sum diverges. We can write the

recursive relation more explicitly. For the xth correction term;

Cxpm, tq “ p´iq

ż t

0
dt2

ż t2

0
dτeiεmτΣopm, τqCx´1pm, t2q`

p´iq
ÿ

n‰m

x
ÿ

y“0

ż t

0
dt2

ż t2

0
eiεmτΣopn, τqCypn, τqCx´1´ypm, t2 ´ τq (4.20)

The initial condition for these equations is Cxpm, t “ 0q “ 1 for all orbital m.

4.4.6 Two distinct families of correction within Power Series:

The final power series equation (4.19) is composed of two distinct types of correction terms -

the self correctionpPSCq and the inter-orbital correction pPICq. This distinction arises from

the enforcement of temporal contraction relation to compress power series pieces between the

same orbital when m “ n and not doing so when n ‰ m in (4.19). This is also observed in the

recursive formalism (4.20) between the first and the second integral term on the right-hand

side.

Ppm, tq “ 1 ` PSCpm, tq ` PICpm, tq where,

PSCpm, tq “ p´ig2q

ż t

0
dt2

ż t2

0
dt1e

iεmτΣpm, τqPpm, t2q

PICpm, tq “ p´ig2q
ÿ

n‰m

ż t

0
dt2

ż t2

0
dt1e

iεmτΣpn, τqPpn, τqPpm, t2 ´ τq

Ppm, t “ 0q “ 1 @m (Initial condition)

(4.21)

The self-correction term incorporates the effects of p`q bosons which makes the electron

hop from an orbital to the vibrational states originating from the same orbital. The inter-

orbital correction term incorporates the effects of p´q bosons which when absorbed make the
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electron jump from orbital m to the vibrational states originating from a different orbital n.

Without making this distinction through the use of temporal contraction relation, we can

only generate 2{3rd of the interactions associated with self-hopping. This will be discussed

in detail in a later section where we explore the diagrammatic interpretation of the Power

series.

4.5 Derivation of Cumulant formalisms from Power Series

4.5.1 Simplest case: Instantaneous scattering by a static external potential

Consider a single (or isolated) band system with the band’s bare energy ε. If we subject

such a system to a static external potential V with particle-potential coupling parameter g2,

we know that there is a rigid shift in the band’s energy by g2V such that ε Ñ ε ` V in the

limit of g2 Ñ 1. We can explicitly show this result by using our formalism. With the bare

and the corrected Green’s function as defined in (4.8) and (4.10), our self-energy is given by;

Σptq “ g2V δptq “ g2ΣoptqPptq

Since we have a single band, our equation (4.21) boils down to the self-correction term. We

can write the correction equation as;

Pptq “ 1 `p´ig2q

t
ż

0

dt1

t1
ż

0

dτeiετΣopτqPpt1q

“ 1 `p´ig2V q

t
ż

0

dt1Ppt1q
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If we start the recursion with C0 “ 1, we find that C1 “ ´iV t, C2 “ p´iV tq2{2! and so on.

In general,

Cnptq “ ´iV

t
ż

0

dt1Cn´1ptq “
p´iV tqn

n!

Pptq “ 1 `

8
ÿ

n“1

g2nCnptq “ 1 `

8
ÿ

j“1

p´ig2V tqn

n!

“ e´ig2V t

6 Gptq “ GoptqPptq “ ´ie´ipε`g2V qtθptq

We now have retrieved the right shift solution for not just g2 “ 1 but also for all possible

values of g2. We notice that the energy changes smoothly from bare energy when we tune

the coupling parameter g2 starting from 0.

4.5.2 The Core hole Cumulant from Power Series

Now we consider a single band of electrons of bare energy εo in a bath of dispersionless bosons

(vibrons) of frequency ωo. Although in real systems, dispersion of bosons is inevitable, the

advantage of keeping them dispersionless is that this model is exactly solvable (62; 12). In

fact, the solution to this problem is termed the core-hole cumulant which lies at the heart of

all other cumulant approximations.

If we define the electron and boson creation/annihilation operators as c:{c and b:{b

respectively the Hamiltonian for the problem is as follows;

H “ εoc
:c ` ωob

:b ` gpb: ` bqpc:c ´ 1q (4.22)

This is a more physical problem if one considers a well-separated band of electron that is far

away from other valence bands and far below the Fermi level. Such bands model the core
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electron/hole states which are isolated and do not interact strongly with other bands and can

be qualitatively mapped to x-ray photo-emission data. The bosons in such multi-electronic

systems could be plasmons (collective oscillation of valence electrons) without damping. This

problem serves as a good physical model to elucidate the coupling of core states with these

plasmons when such levels are probed using x-ray photo-emission techniques. The energetic

electron that leaves the system in such experiments leaves behind a hole and the electron

cloud responds to the imbalance of Coulomb forces by undergoing quantized long-range

plasma oscillations at multiples of ωo which here is the plasma(boson) frequency.

Figure 4.3: Electron spectral function for a core electron problem coupled to a boson bath
as a function of coupling strength g using integral power series and exact diagonalization
show exact agreement. Here, ϵo “ 0 and ωo “ 2

We first show that power series can indeed solve this problem numerically at all g. In

panel A. of figure 4.3, we show a self-consistent integral power series solution, as well as

the exact diagonalization result with 100 bosons for g “ 2. Both these results are in exact

agreement. In panels B. and C., we show power series results and exact diagonalization

results respectively for a wide range of coupling constant. Here too, we see exact agreement

between the two methods.

We will now show the analytical derivation of core-hole cumulant result using integral
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power series formalism. The bare Green’s function with bare energy εo and the corrected

Green’s functions are defined as (4.8)] and (4.10). Here too, we suppress the momenta

variable. The self-energy for this case with power series corrected internal Green’s function

is;

´iΣptq “ g2Gptq.Doptq “ g2.GoptqPptq.Doptq

“ g2
“

´ e´ipεk´ωoqtθptq
‰

Pptq

“ ´ig2ΣoptqPptq

(4.23)

Since there is a single band, we only have a self-correction term in equation (4.21).

Pptq “ 1 ` p´iqg2
t

ż

0

dt1

t1
ż

0

dτeiεkτΣopτqPpt1q

“ 1 ` p´igq
2

t
ż

0

dt1

t1
ż

0

dτeiωoτPpt1q

“ 1 ` p´igq
2

t
ż

0

dt1Ppt1q

”eiωot1 ´ 1

iωo

ı

We now insert Power series ansatz on both sides and compare terms of the same order in g2

in the equation above.

1 ` g2C1ptq ` g4C2ptq `... “ 1 ` g2p´i2q

t
ż

0

dt1
“

1 ` g2C1pt1q ` g4C2pt1q `...
‰

”eiωot1 ´ 1

iωo

ı

6 Cnptq “ p´i2q

t
ż

0

dt1Cn´1pt1q

”eiωot1 ´ 1

iωo

ı

(4.24)
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We can then start with C0 “ 1 to generate the higher order corrections.

C1pk, tq “ ´

t
ż

0

dτ 1.
”eiωoτ ´ 1

iωo

ı

“

”eiωot ´ iωot ´ 1

ω2o

ı

ùñ dC1pk, tq “

”eiωot ´ 1

´iωo

ı

dt

Using this relation in the original equation 4.24 to get;

Cnptq “

t
ż

0

dt1Cn´1ptq dC1pk, tq “
C1pk, tqn

n!

6 Ppk, tq “ eg
2C1pk,tq and,

Gpk, tq “ Gopk, tqeg
2C1pk,tq

(4.25)

This is the exact result for the core hole problem with a dispersionless boson with an added

advantage of a smoothly tunable coupling parameter g.

Figure 4.4: Spectral function for a core hole. Notice how the satellites are on the other side
as compared to the electron problem shown in figure 4.3. Here, εo “ ´3 units, ωo “ 2 units,
and g2 “ 1, the power series corrected Green’s function approaches the cumulant corrected
Green’s function computed on the same time-grid with increasing order of correction.
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With added iterations of the self-consistent cycle of power series, our corrected Green’s

function gets closer to the exact answer given by cumulant ansatz found in (62). The number

of cycles required to converge is inversely related to the proximity of boson frequency to

quasiparticle energy. We see in the above figure 4.4 that as we increase the number of self-

consistent iterations from 23 to 25, the power series smoothly deforms to exactly capture the

cumulant spectra. No change is observed with added iterations once the converged solution

is reached.

4.5.3 The Retarded-Time Cumulant from Power Series

In the original formalism of time-ordered cumulant applied to GW band structure, (12; 67),

since electrons and holes are described by different branches of a piece-wise Green’s function,

there is no interaction between an electron state (above Fermi level) and a hole state (below

Fermi level). Some fraction of the inter-band effect between holes alone and between electrons

alone is accounted for by this method. Later, Kas et al. (11) extended the method and

showed that by using a retarded time cumulant formalism, some fraction of inter-band effects

between all states can be accounted for. But a clear justification of just how much inter-band

effect is accounted for by the method is missing. Furthermore, the idea of systematically

improving the method is also absent in both formalisms.

Our method can successfully recreate the expressions of retarded cumulant by improving

the assumptions on interaction. Rather than doing this derivation in a crystalline setup with

multiple bands, we will do this in a Holstein dimer because of two reasons- the simplicity of

the system and a clear Hamiltonian. But the idea still carries over and we will discuss this

in the later chapters. We will also make this Holstein dimer Hamiltonian more elaborate

by artificially assuming that the electron-boson coupling constant is different for different

boson species - i.e, g˘ respectively in H˘. This assumption effectively converts the Holstein

system to Frohlich-type Hamiltonian thus allowing us to extend our method to a larger class
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of electron-boson coupling problems. Converting this back to the Holstein system is a matter

of setting g` “ g´. This artificially constructed Frohlich-type Hamiltonian in orbital space

is then;

H “ Ho ` H` ` H´ where,

Ho “
ÿ

i“˘

ε˘c
:

ici where, ε˘ “ ϵ0 ¯ t

H` “ ωob
:
`b` `

g`
?
2

pc
:
`c` ` c

:
´c´qpb

:
` ` b`q

H´ “ ωob
:
´b´ `

g´
?
2

pc
:
`c´ ` c

:
´c`qpb

:
´ ` b´q

(4.26)

If we treat the corrections as being explicitly independent of the orbital (orbital index

m “ ˘), then we can reproduce the retarded cumulant. This assumption physically means

that the orbital energy gap(∆) is small and thus orbitals bands are almost equal to each

other everywhere such that εm « εn for all m ‰ n. In this limit of t Ñ 0, the retarded

cumulant ansatz approached the true correction. Physically, this means that the hopping

energy required for the electron to hop from one to another site is almost zero because the

sites are extremely close to each other. If these conditions are not true, then the retarded

cumulant ansatz generates the inter-band interactions only partially.

For dispersion-less boson of frequency ωo and two orbitals with bare energies ε`(lower)

and ε´(upper), if the above assumptions about explicit orbital independence of corrections

hold true, we can compute the correction series exactly. The orbital self energies with power

series corrected internal green’s function in retarded time formalism are:

Σp`, tq “
g2`
2

ÿ

n“˘

Gopn, tqPpn, tqDp`, tq

Σp´, tq “
g2´
2

ÿ

n“˘

Gopn, tqPpn, tqDp´, tq

(4.27)

Here, Σp˘, tq captures the effect of p˘q bosons respectively and hence contains the respective
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boson’s Green’s function Dp˘, tq. We now define a dummy constant g such that g` Ñ g`{g

and g´ Ñ g´{g and expand our power series correction in terms of g2 rather than g2˘.

We will set g “ 1 at the very end. Thus far, the total self-energy without making any

approximation of orbital independence is;

Σptq “ Σp`, tq ` Σp´, tq

“ g2
” g2`
2g2

ÿ

n“˘

Gopn, tqPpn, tq.Dp`, tq `
g2´
2g2

ÿ

n“˘

Gopn, tq.Ppn, tqDp´, tq
ı (4.28)

Given our assumptions hold true, let Pptq be the (explicit orbital independent) correction

to the bare Green’s function Go. The total self-energy Σptq for such a system given orbital

self energies Σpm, tq is;

´iΣptq “ ´iΣp`, tq ` ´iΣp´, tq

“ g2
” g2`
2g2

ÿ

n“˘

Gopn, tqDp`, tq `
g2´
2g2

ÿ

n“˘

Gopn, tqDp´, tq
ı

Pptq

“ g2
” g2`

2g2
p´iΣop`, tqq `

g2´
2g2

p´iΣop´, tqq

ı

Pptq

“ ´i g2ΣoptqPptq

(4.29)

The power series correction comes out of the summation in 4.29 as compared to 4.28

because of this approximation. This is equivalent to saying that for the electron in any

orbital m, the correction due to the nth orbital’s presence is equal to the correction due

to mth orbital which indeed is true if the orbitals are so close that they almost completely

overlap or if the boson energy scale (ωo) is really large compared to the orbital energy

difference (‘t’).

The power series correction for the for the electron in nth orbital after using the contrac-
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tion relation [4.15] is ;

Pptq “ 1 ´ ig2
t

ż

0

dt1

t1
ż

0

dτeiεnτΣopτqPpt1q

(4.30)

If we solve the above equation for the lower energy orbital n “ p`q with exponential ansatz,

we get;

Pptq “ 1 ` p´igq
2

t
ż

0

dt1Ppt1q

”e´iωot1 ´ 1

´iωo
`
e´iω̃ot1 ´ 1

´iω̃o

ı

“ eg
2C1ptq with,

C1pk, tq “
g2`
g2

´e´iωot ` iωot ´ 1

ω2o

¯

`
g2´
g2

´e´iω̃ot ` iω̃ot ´ 1

ω̃2o

¯

where, ω̃o “ ωo ` pε´ ´ ε`q “ ωo ` ∆

(4.31)

We can equivalently get the power series correction expression for n “ p´q orbital.

Pptq “ eg
2C1ptq

C1pk, tq “
g2`
g2

´e´iωot ` iωot ´ 1

ω2o

¯

`
g2´
g2

´e´isωot ` isωot ´ 1

sω2o

¯

where, sωo “ ωo ´ pε´ ´ ε`q “ ωo ´ ∆

(4.32)

4.5.4 The Core-hole Cumulant for Holstein Dimer

In this section, we will sketch the derivation of Core-hole cumulant for Dimer and higher

systems in retarded time formalism. In Principle, this cumulant is equivalent to a time-

ordered cumulant where the particle and hole levels (here antibonding and bonding levels)

are treated by separate branches of Green’s function. Hence there is no cross-talk between the

two levels i.e. no intra-orbital corrections. In retarded time formalism of Green’s function,

all this means is that the p´q bosons’ effect and therefore terms with Dp´, tq in dimer’s self-
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energy (4.27) are neglected. The only correction the orbitals get is therefore the inter-orbital

corrections due to p`q bosons. The end result is that;

Ppn, tq “ eg
2C1ptq

C1pn, tq “
g2`
g2

´e´iωot ` iωot ´ 1

ω2o

¯

(4.33)

4.6 Summary:

In this chapter, we started with a general Holstein dimer explaining its real and momenta

space Hamiltonian. We then defined the Green’s functions of the particles involved as well

as the construction of self-energy. We then established the power series ansatz and derived

the Power series correction equation highlighting the core principle of self-consistency in-

herited through the Dyson’s equation. Two distinct types of correction terms associated

with two different types of bosons were discovered - the self-correction and the inter-orbital

correction. We then derived the core-hole and the retarded time cumulant correction by

making particular approximations to the power series. In the next chapter, we will explore

the numerical results for spectral function from core-hole as well as the retarded-time cu-

mulant and explain their advantages as well as drawbacks. Furthermore, we will investigate

the performance of full power series formalism (4.21) on producing the spectral function for

the Holstein dimer and benchmark it against the spectral function found through the exact

diagonalization technique.
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CHAPTER 5

UNDERSTANDING AND GOING BEYOND THE CUMULANT

APPROXIMATION: BENCH-MARKING POWER SERIES

So far, we have a power series machinery that in principle computes the interacting system’s

electron Green’s function from the non-interacting system’s Green’s function. And it has

performed fairly well analytically in the limiting cases of core-hole and retarded time cu-

mulant. However, our end goal is to produce a method that works not only in the limiting

cases but is easy to implement, inexpensive and reliable. In this chapter, we will outline the

numerical implementation of Power series correction. We will then take a detour to inves-

tigate the two flavors of cumulant approximations numerically highlighting their technical

differences. We will then come back to the numerical implementation of full power series

correction formalism (4.21) to produce electron Green’s function and spectral function for

the interacting system and benchmark it against exact diagonalization result in a finite yet

high boson number basis.

5.1 Visualizing the Holstein Dimer : A semi classical

interpretation

In order to visualize what the dimer is actually doing, let us look closely to what the bosons

actually are in this system. For the electronic orbital, we previously assumed a linear com-

bination of s-like orbitals as shown in figure 4.2. For simplicity, we will limit our discussion

to a 1 dimensional vibrations of the system. Here, we assume that each nucleus is a simple

1D harmonic oscillator independent of the oscillation of another nucleus. We can think of

this as the nucleus bound to it’s equilibrium position with a ‘quantum’ spring.
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5.1.1 The p˘q bosons- quantum mechanics to semi-classical interpretation

Moving on to the dimer, we now have two separate harmonic traps where two nuclei ‘A’ and

‘B’ are trapped respectively. However, we assume that each of these nuclei is only affected by

their individual trap. Doing so, we can formulate the bonding and antibonding combination

of boson. The bonding combination of wave functions corresponds to p`q bosons and the

antibonding combination corresponds to the p´q bosons.

Figure 5.1: Two nuclei in two harmonic traps. The figure on left show the nuclear wave
functions for ‘n “ 0’ and ‘n “ 1’ states. The mid and the right panels show the probabilistic
nuclear position while setting on p`q and p´q bosons respectively. A semi-classical interpre-
tation of this position probability with two nuclei ‘A’ and ‘B’ is also provided in the inlay.

We have shown a semi-classical interpretation of the nuclear motion associated with each

of the p`q and p´q boson for zero and single boson cases in figure 5.1. The index n here quan-

tifies how many bosons of a given type is present in the system. At ‘n “ 0’ mode, although

the wave functions for both (˘) bosons have a finite width due to quantum mechanical effect.

However, semi-classically, we can think of the two nuclei as sitting essentially still on average
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at the center of the trap - the lattice site. Moreover, there is not much qualitative difference

between the two wave functions either and they both have same constant energy. Hence, we

can subtract the constant zero boson energy from the Hamiltonian just as previously done.

The nuclei on average move apart while setting up a single quanta of p`q boson and move

towards each other while setting up a single quanta of p´q boson. A similar analysis can be

done for multi-boson case although we will produce a lot more combination of orbitals. We

show the probability density for nuclear position as well as a semi-classical interpretation of

what the nuclei are doing when 0 and 1 quanta of (˘) bosons are set up in figure 5.1.

5.1.2 Putting together Electronic and Bosonic Physics

Suppose the motion of the nucleus distorts the electron cloud (the orbital) around it. This is

not too loose of an assumption in this case because of the fact that there is a single electron

in the problem and it is attracted to the two nuclei. We also suppose that this distortion

is adiabatic on the pure electronic orbitals with frozen nuclei in that the general of the

orbitals don’t change much other than stretching or compressing to accommodate for the

nuclear motion -the p˘q bosons. We can combine this semi classical picture of boson with

the electronic bonding/anti-bonding orbital from 4.2 to get a zoo of orbitals and visualize

the problem better as shown in figure 5.2. In this picture the p`q boson separates the two

nuclei and hence if the electron in in any one of the two lobes (blue or red), it will more

likely stay in that lobe. Hence, there is only an overall adiabatic distortion of the orbital

shape but bonding orbital remains bonding and anti-bonding orbital remains anti-bonding.

In case of p´q boson, since the orbitals are squished together as shown in the semi classical

picture 5.2, the electron can hop between the lobes which can result in orbital rearrangement

where bonding/anti-bonding orbital could transmute into anti-bonding/bonding orbital. Of

course this is just a semi-classical view of what is happening and holds true only when the

separation between the nuclei is large. For nuclei that are extremely close to each other, full
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Figure 5.2: Zero (n=0) or a single (n=1) quanta of p˘q boson combined with the electronic
orbital. The bosons correspond to specific motions of the nuclei(black orbs).

quantum mechanical calculation is desired. For now, we revisit the full dimer problem and

look at the electron-boson physics in action in a very semi-classical way.

5.1.3 Visualizing the Electron-Boson Coupling

In the figure 5.3 (A.), we first start with an electron in one of the pure electronic states with

energy ε`. So far, the nuclei are static and thus the system is boson-less. Suppose we pump

this system with a single quanta of p`q boson of boson frequency ωo. This is equivalent to

the two nuclei rapidly separating. The question we now ask is what state will this hybrid

electron-boson system be in.

As discussed before, the electronic state doesn’t change after interaction with p`q boson

because the electron close to a nuclei remain close to it even after the two nuclei move apart.

However, the coupling with the boson drags and distorts the electron cloud and increases
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Figure 5.3: (A.) The effect of electron interacting with a single p`q boson in semi classical
picture. (B.) A three (-) boson process in an electron starting in state ε` in ladder analogy.

it’s energy from original pure electronic state energy ε` to pε` `ωoq. Hence, the total state

of the electron-boson system changes from a purely electronic to a hybrid electron-boson

state without the qualitative nature of the orbital doesn’t change. If this new hybrid state

interacts with a second quanta of p`q boson, the system moves to pε` ` 2ωoq. The electron

cloud might distort further but the qualitative nature of it (bonding versus antibonding)

doesn’t change. The same story also holds true for the ε´ state.

We can therefore visualize these excited states (vibrational states) of the pure electronic

states p˘q after absorbing n quanta of p`q bosons as ladders with lowest rung at ε˘ and each

higher nth rung at pε˘ ` nωoq. As seen in figures 5.3 and 5.4(B.), the ε´ ladder (red) starts

at an energy above the ε` ladder(blue). The electron moves up a rung without jumping

between the ladders when it gets a kick from a single quanta of p`q boson. Successive kicks

move the electron to higher rungs one rung at a time as shown in figure 5.3 (B.).

The interaction of an electron with a p´q boson is slightly more complicated compared to

74



p`q boson. This is because absorbing a single quanta of p´q bosons will change the electronic

state from bonding to antibonding or vice versa as shown in figure 5.4(A.). By this reasoning,

if an electron is starts out at a parent bonding (ε`) state, absorption of even number (m)

of p´q bosons will bring the electron back to a hybrid electron-boson state formed from the

parent state and m quanta of p´q bosons. The final state will have the energy pε` `mωoq.

However, absorption of an odd number(n) quanta of p´q bosons will take the electron to a

hybrid state formed by anti-bonding electronic state and n boson quanta. This final state

will have the energy ε´ ` nωo. Thus the electron jumps back and forth between the energy

ladders as it climbs each successive rung giving rise to a more complicated dynamics as shown

in figure 5.4(B.).

Figure 5.4: (A.) The effect of electron interacting with a single p´q boson in semi classical
picture. (B.) Ladder visualization of the electron hopping in a three (-) boson process for an
electron starting in state ε`.

Of course in quantum mechanical probabilistic reality, the strength of the electron-boson

interaction g controls how often the electron interacts with a p`q boson when it encounters
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one. A larger g means more interaction and thus a larger probability of an electron jumping

a rung after the interaction. At the limit of g Ñ 0, the electron is not affected by the boson

anymore and it sits at the bottom of the rung for eternity. Furthermore, we have shown a

very static picture of a much more intricate dynamical process. In reality, there are infinite

numbers of bosons present in the system and the electron can absorb any number of quanta

of p˘q bosons in any order. The final electronic states thus need to be computed self con-

sistently. However, the above semi-classical picture and the analogy hold true qualitatively

and are useful in predicting or explaining the spectral features without having to resolve to

a fully self-consistent calculation for every given set of parameters.

5.2 Retarded-time and time-ordered cumulant formalisms

In this section, we will discuss the cumulant approximations in more detail. In particular,

we will talk about the physical approximations that each cumulant flavor makes internally.

We will then explain these approximations in terms of the semi-classical picture we have

constructed. Finally, test both of these cumulant-based approximations numerically for a

wide range of boson frequencies.

5.2.1 Core-hole like or time-ordered cumulant formalism

The core-hole-like or time-ordered cumulant which is a straightforward generalization of

core-hole cumulant formalism only has the self-correction term owing to the absence of

p´q boson physics in the problem. Hence, an electron at each parent level only goes to

those hybrid electron-boson levels originating from this parent level. Hence, there is no

hopping from a ladder to another and the picture is exactly as figure 5.3. In the numerical

simulation, we, therefore, expect to get replicas of the boson-less parent level at integers of

boson frequency for electron starting at any of the two levels. There is also a renormalization

of the pure electronic parent state energy as well as the intensity. The energy renormalization
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Figure 5.5: A) Spectral function from Core-hole cumulant treatment of Holstein dimer and
B) Natural logarithm of figure A. Here, ε˘ “ ¯3, ωo P r10, 0q, and g “

?
2

is simply because the electron transforms from a particle into a quasiparticle due to bosonic

‘clothing’. The intensity (or spectral weight) renormalization is for probabilistic reasons.

The interacting electron unlike its non-interactive version can be in one of many states

originating from a single parent state. The intensity of any energy signifies the probability

of the electron being in that energy. Hence, spectral weight flows from the pure electronic

parent state to new hybrid states. The magnitude of spectral weight drainage from the

parent state is inversely proportional to the magnitude of ωo and directly proportional to

the value of coupling constant g.

5.2.2 Retarded time cumulant formalism

For the retarded time cumulant, in addition to the p`q boson’s effect an approximate in-

teraction between the p´q boson and the electron is taken. We begin with the power series

correction term for each orbital ˘.

Pp˘, tq “ 1 ` PSCp˘, tq ` PICp˘, tq (5.1)

In this formalism, the first term is the same on both the bonding orbital’s correction(4.31)
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and the antibonding orbital’s correction (4.32). This makes sense because this self-correction

term (PSC) captures the core-hole-like excitation due to p`q bosons which produce satellite

features at multiples of boson frequency ωo. It is simply an upward hopping within a ladder

by ωo regardless of where the electron is in the energy ladder.

i.e. PSCp`, tq “ PSCp´, tq (5.2)

The effect of p´q is approximated in the sense that the method internally is assuming the

electron hop due to (-) boson from ε` to pε´ ` ωoq as being equal to the electron hop from

ε´ to pε` ` ωoq while calculating the PIC term for ` orbital according to equation (4.21).

PICp`, tq “ p´ig2q

ż t

0
dt2

ż t2

0
dt1e

iε`τΣp´, τqPp´, τqPp`, t2 ´ τq (Full equation)

Assume PICp´, τq « PICp`, τq

7 PSCp´, τq “ PSCp`, τq From equation (5.2)

6 1 ` PSCp´, τq ` PICp´, τq « 1 ` PSCp´, τq ` PICp´, τq

ñ Pp´, τq « Pp`, τq

Making this approximation we get,

6 PICp`, tq « p´ig2q

ż t

0
dt2

ż t2

0
dt1e

iε`τΣp´, τqPp���
`

´, τqPp`, t2 ´ τq

« p´ig2q

ż t

0
dt2

ż t2

0
dt1e

iε`τΣp´, τqPp`, t2q Using relation (4.15)

(5.3)

Using this form of inter-orbital correction instead of the actual equation (4.21) gives us the

RC cumulant for bonding orbital (4.31). Exactly same recipe for the antibonding orbital

produces (4.32). From this we get two boson frequencies that combine the orbital energy

gap(∆) as well as the natural boson frequency (ωo) to approximately capture the inter-orbital
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corrections respectively in bonding and anti-bonding electronic levels: ω̃o “ |∆ ` ωo| and

ωo “ |∆ ´ ωo|.

Figure 5.6: In retarded time cumulant, two very different electronic transitions are approx-
imated as being equal. This is valid only when electronic energy scale (∆) is much smaller
than boson frequency (ωo).

However, the difference in these two new frequencies ω̃o vs ωo) in these two corrections,

leads us into a contradiction as shown in figure 5.6. These two distinct electronic transitions

become equal only when |ωo´∆| Ñ 8. There, either the boson frequency is so large that for

the electron which has gulped a boson quanta and made a transition, the electronic energy

gap (∆) becomes irrelevant in this physics. Or, the electronic scale is so large compared to the

boson frequency and associated transition that the inter-orbital coupling effect is negligibly

small. Most of the physics is then governed by (+) boson’s physics - the self-correction.

Hence, this description works well only when ωo " ∆ here shown in figure 5.7B. However,

in this regime, both vibrational state signature shake-offs due to (+) and (-) bosons are

small. So, the non-interacting system picture becomes an easier working representation of

the system anyways.
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Figure 5.7: Spectral functions from core hole vs retarded time cumulant for A.ωo ! ∆ and
B. ωo ą ∆. The lower spectra are for the bonding orbital and the upper spectra are for the
anti-bonding orbitals. The first shake-off due to (-) boson is marked with a green vertical
arrow.

In regime ωo ! ∆, we see a close match-up of the core-hole as well as the RC result

because self-correction physics is the dominant effect. However, we also see extremely small

signatures of inter-orbital coupling in both bonding and anti-bonding electronic orbitals as

labeled with green arrows in figure 5.7A. Some approximate mixing of effects where the

electron interacts with a (-) followed by many (+) bosons is also visible as shake-offs at ωo of

the first inter-orbital shake-off. A close look at the intensity of these satellites through the

use of a logarithmic scale reveals something more problematic about RC cumulant. Faint

artifacts (faux orbitals) are visible when ωo ď ∆ as seen in figure 5.9B. These artifacts appear

as a faux quasiparticle below the bonding level when ωo ă ∆ and are the result of the second

term (ω0) in the antibonding power series correction (4.32). This is a tell-tale sign of this

approximation treating (+) bosons as a cause of net upward hop (which is true) and (-)

bosons as a cause of net downward hop (which is not true). There is another insidious issue

with ωo - when ωo and ∆ become equal, perfect cancellation occurs which makes ωo zero.

A naive numerical implementation of this retarded cumulant flavor (4.32) therefore diverges

as ωo Ñ 0. However, since this is a ‘0{0’ form, the use of the L’hospital rule twice in the
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Figure 5.8: A. Spectral function at ωo “ ∆ for Core hole vs RC cumulant. B. Spectral
function for a wide range of boson frequency from RC cumulant for ε˘ ¯ 3 and g “

?
2.

divergent second term of (4.32) gets rid of this divergence. This is because the numerator

containing the exponential goes to zero much faster than the quadratic denominator.

lim
ωoÑ0

´e´isωot ` isωot ´ 1

sω2o

¯

“ lim
ωoÑ0

p´itq2

2
e´iωot

The inclusion of this exception is central to the numerical implementation of retarded-time

cumulant formalism. However, even after this, the RC cumulant is unable to resolve the

shape of the antibonding level when ωo « ∆ as seen in figure 5.8. The antibonding orbital

is represented as an averaged lump of the zero boson parent electronic orbital and all of its

higher order orbital offsprings.

5.3 Comparison between Power Series, Exact Diagonalization and

Cumulant Expansion

In comparison to any cumulant flavor, we can of course do a better job (here ‘better’ means

assumption-free) of computing the Holstein dimer’s spectral function by using the general

power series correction. However, does ‘better’ also mean a better agreement with the actual
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Figure 5.9: Natural log of retarded time cumulant corrected spectral function for Holstein
dimer at a wide range of frequency (5.8B.) shows the artifacts (faux quasiparticle states)
below the bonding energy quasiparticle at small boson frequency. Furthermore, RC cumulant
cannot properly resolve the antibonding level or its higher order shake-offs when ∆ « ωo “ 6.

solution? In this section, we show the spectral function produced using full power series

correction and core-hole cumulant correction against exact diagonalization with 50 bosons

per site. In figure 5.10, we compare the natural logarithm of the spectral function generated

from the three methods for a wide range of boson frequency ωo P r10, 0.1s for a strong

coupling constant of g “
?
2. The natural logarithm is used here to deduce the finer features

which would otherwise get lost in the color scheme. We observe that power series correction

is in excellent agreement with the exact diagonalization for the entire frequency range. The

small discrepancies between the two in intensity (color) are of the order of e´3 « 0.05 units

or smaller. The cumulant however works only when there is a clear separation between the

bosonic energy scale (ωo) and the electronic energy scale (∆ “ ε´ ´ ε`).

Based on the comparison of energy scales , we can separate the figure 5.10 into three

distinct regimes.
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Figure 5.10: Natural log of spectral function from a) core-hole cumulant, b) exact diagonal-
ization, and c) power series for ε˘ “ ¯3 (horizontal white dotted lines) and ωo between 10
and 0.1. Blue vertical lines separate the three distinct regions. Unlike core-hole cumulant,
Power Series is in excellent agreement with the exact diagonalization at all three regions.

83



5.4 Three Regimes of this Problem

Regime I: ∆ ! ωo

The first regime is the weak coupling regime of ωo"∆ - here ωoą8. Here, both p˘q plasmon

satellites are far away from the quasiparticle and therefore their effect on the quasiparticle

energy and weight is negligible. This is most prominently seen from the negligible change

in quasiparticle energies from the non-interacting energies ε˘. Here, the core-hole cumulant

adequately captures all the exact spectral features correctly.

Regime II: ∆ « ωo

The second regime has ωo « ∆ - here 8 ą ωo ą 1.5. A huge shift of spectral weight occurs

from bonding to the anti-bonding orbital effectively splitting the anti-bonding orbital into

two (between ωo of 4 and 7). The shake-off replicas of this split level also come in pairs

as seen in the exact spectra in figure 5.11. These are captured exactly by the power series

but not by core hole cumulant because it lacks proper accounting of inter-band interaction.

Furthermore, as shown in figure 5.7 and 5.9, the retarded time-cumulant cannot resolve the

antibonding orbital in this regime.

Regime III: ∆ " ωo

The third regime is when ωo ! ∆ - here ωo ă 1.5. Here the bosonic events are extremely

localized around the non-interacting energy and (+) bosons dominate the process. Therefore,

inter-band correction is vanishingly small and the solution is dominated by self-correction i.e.

core-hole-like cumulant. We observe this in all three spectral functions although both exact

and power series solutions become computationally expensive- the former due to large boson

number necessary and the latter due to large convergence order. RC cumulant is correct for

the most part but it has extra small intensity features because of the treatment of (-) bosons
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Figure 5.11: Spectral function for Holstein dimer at regime II with ε˘ “ ¯3,∆ “ ωo “ 6
and g “

?
2 computed from three different methods. Power Series captures the splitting of

antibonding orbital but core hole cumulant cannot produce this feature.

as backward hop and the (+) boson as forward hop.

5.5 Numerical Implementation of Power Series Formalism

Rather than talking about Power Series implementation for Holstein dimer, we will talk

about applying Power series correction in a general two-band structure framework as shown

in figure 5.12. The boson-mediated excitation of the electron in the valence band can cause

it to do one of four things as shown in the figure 5.12. For events labeled paq and pcq, there

is no change in electron’s momenta, and for events of type paq and pbq, there is no hopping

between different bands. The event paq takes into account the effect of p`q bosons in the

context of Holstein dimer and this is always accounted for in the general power series as

well as all the cumulant approximations. Power series as it stands, cannot handle events

of type pdq- the inter-band non-vertical transitions where both electron momentum as well

as the electron band index change. But power series, through PIC term can handle pbq in

theory and pcq in theory and in implementation. We will discuss this issue at the end of this
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Figure 5.12: Schematic of different kinds of boson mediated losses in excitation spectra of
material. a) Self transitions, b) Inter-orbital transition, c) Inter-band vertical transition, and
d) Inter-band non-vertical transition between conduction and valence band (CB and VB).
These losses show up as shake-off features in the charged excitation spectra.

chapter.

If the boson energy scale ωo is much larger than the band gap, then classically, the

dominant boson-mediated transition will be between bands and not within different orbitals

(k-points) in the same band. In this case, the self-correction alone is a good approximation

of the total same-band transitions and the IC piece is then used to capture the inter-band

transitions.

On the other hand, if ωo is much smaller than the band gap, then classically, the boson

simply doesn’t have enough energy to cause inter-band transitions of electrons. The IC

piece is then used to capture the transitions within the same band but between different

orbitals(k-points). The self-correction piece will capture transition within the same band

and same k vector.

Interesting physics takes place when ωo « band-gap. Now, both inter-band and inter-

orbital transitions within the same band become equally relevant. In such cases, a more
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Figure 5.13: Model two band system and its density of states

complex calculation is required in which we don’t make any distinctions between the bands

but rather treat everything in terms of orbitals. The calculation then becomes cumbersome

even using this approach since we cannot make any classical assumptions like before.

Once relevant approximation between the inter-band and the inter-orbital transition is

selected, using the fermion propagator and the boson propagator, we can then compute the

power series corrected band or orbital self-energy for a given band or orbital and construct the

total self-energy. Doing this incorporates the boson-mediated electronic inter-band/orbital

transitions in the system through the PIC piece of the Power Series.

Coming back to the implementation, Suppose we treat the electronic part of the Hamil-

tonian at some DFT or GW level to get an appropriate electronic band structure ϵpn, kq.

Depending on the density of charge carriers (n), the effective mass of charge carriers (m˚),

the charge associated with the charge carrier (Q), and the permittivity of free space (ϵo),

we can also calculate the bare plasma frequency(ωo) - the energy quanta associated with a
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Figure 5.14: Sketch of a) Self-transition, b) Inter-orbital transition, and c) Inter-band tran-
sition in model band shown in figure 5.13. Figures a) and b) constitute transition within the
same band.

single plasmon process.

ωo “

c

nQ

m˚ϵo

Given the band gaps from the purely electronic band structure and omegao and using the

decision chart 5.15, suppose we come to the conclusion that the relevant transitions are

vertical transitions only i.e events of type paq and pcq. We then proceed by looking at each

vertical slice of the electronic band structure as shown in figure 5.16 and treating them

as ’orbitals’ in (4.21). We construct relevant non-interacting electron Green’s function for

electron in these orbitals as well as non-interacting Boson (in this case plasmon) Green’s

function. Using these two objects, we then construct the ’orbital’ electron self-energy. We

then replace all of these in the Power series machinery we constructed in the previous chapter.

Starting with Ppn, tq “ 1 for all ‘orbital’, we iterative compute a better approximation of

power series on the left-hand side of equation (4.21) by replacing the previous iteration’s

power series on the right-hand side of this equation. We do so until the solution stops

changing i.e. the difference between the power series computed in the xth and px ´ 1qth

iteration is less than some small chosen quantity δ. Of course, one needs to be careful

about not letting valence bands correct other valence bands in multi-electron systems. But
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Figure 5.15: Left: Decision chart to decide between inter-orbital and inter-band vertical
transition and the flow chart of our method

this can be done by modifying the summation in the inter-orbital correction term for the

valence bands. This will effectively stop double occupancy processes where another electron

from a lower valence band might jump into a higher valence band that is already filled. A

schematic of implementation is presented in figure 5.17. For Holstein dimer, n “ ˘ and ωo

is the phonon frequency. We now implement this to a simple case of silicon spectra. We first

perform a Density functional theory calculation for the electronic band structure of silicon.

We compute the theoretical value of plasma frequency in silicon which approximately is 16.9

eV. We then construct dispersionless plasmon propagators with this energy. Given that we

are in a large boson frequency limit, we choose to account for vertical transition as shown

in figure 5.16. We compute the power series correction as well as the cumulant correction
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Figure 5.16: Implementation of vertical transition Power Series in the multi-band system.
Step 1. We generate an appropriate electronic band structure. Step 2. We segment the band
structure into a sequence of short flat band structures. Step 3. We only look at one vertical
slice (here yellow box) at a time.

with g “ 1 and compare that with the DFT spectra along with a replica of the band

structure drawn plasma frequency away from the electronic band structure. The cumulant

result looks almost like the DFT + replica result. However, the power series as shown in

figure 5.18 produces drastically different results as compared to cumulant. It produces novel

features in the band gap, splits the electronic band structures at multiple places as well as

spreads the boson replica satellites over a wider range.

The point here is not that the Power series is producing the correct result. We still don’t

know what the appropriate value of ‘g’ is. The point we make here is that given the same

initial input, the enforcement of self-consistency in Green’s function through power series

produces a drastically different compared to the non-self-consistent cumulant approxima-

tions.

5.6 Summary

In this chapter, through a semi-classical interpretation of Holstein dimer we explained two

flavors of cumulant visually as well as through rigorous numerical implementations high-

lighting what approximations they make internally, when are they useful, and when they

90



Figure 5.17: Numerical Implementation of Integral Power Series Formalism. δ is a chosen
small parameter that governs the self-consistency criteria.

Figure 5.18: Vertical transitions in Silicon. Power series produces drastically different results
than cumulant for the same parameters.

become incorrect. Then a full power series calculation was done and bench-marked against

exact diagonalization for a wide range of boson frequencies. This led us to three regimes of

the problem - two where cumulant works and one where cumulant fails. However, the power

series is in excellent agreement with the exact diagonalization result. Finally, we developed

91



a recipe for the application of power series to improve band structures of actual material

systems and showed that power series, by enforcing self-consistency criteria, produces a

drastically different spectrum compared to cumulant.
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CHAPTER 6

DERIVATION OF SINGLE AND DOUBLE DIFFERENTIAL

POWER SERIES FORMALISM AND IMPLEMENTATION IN

HOLSTEIN CHAIN

6.1 Why develop a new formalism?

In this chapter, we will extend the power series method we developed on a dimer to a Holstein

chain. Computing the power series correction on Dimer through the integral formalism

was a relatively straightforward calculation because we were only solving for two correction

functions - Pp`, tq and Pp´, tq. The whole calculation can be described as a series of

computing and checking steps with a starting guess of P “ 1 for both orbitals as shown

in figure 6.1. Now let us imagine a scenario where we have more than one orbital- say N

Figure 6.1: Schematic of Integral Power Series Formalism in Holstein dimer.Pnp˘, tq is the
power series computed at nth compute step.

orbitals and we want to compute the power series correction for each orbital. Firstly, there

are N different power series functions to be computed. This gives rise to N different coupled

integral equations one for each orbital’s power series Ppn, tq. Because of this coupling, at

strong coupling or small boson frequency, we need a very high resolution in the time grid for
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the error in each power series to be small. Otherwise, the power series values diverge quickly

and the calculation never completes.

Say our time grid has M time steps each of which is appropriately small and starts from

0 going up to some time ‘t’. Since we are calculating power series for the entire time length

r0, ts at any given computing step, we need to store pN ˆMq values at any given computing

step and (2 ˆ N ˆ M) values at any given checking step (we need to compare the previous

iteration as well as current iteration power series for convergence) in the working memory.

This is still not as big a hurdle given modern computers.

Finally, we also encounter cases where the computed power series corrections do not

converge but rather a cycle with different periodicity as shown in the figure 6.2. Naively

following through the compute-check algorithm with only the current and the solution of

the previous iteration will not be able to detect this if the solution family has a period of

2. Hence, we often need to store every single iteration and check if the solution produced

at the current iteration matches any other past solution. If a match is detected, all of the

solutions in that cycle can be averaged and fed as a new guess to the power series machinery.

Needless to say, this is really expensive because:

• The time grid should be very fine.

• We need to store correction built at every iteration.

• We need to check the currently produced power series with every power series produced

in each previous iteration.

• Using the averaged power series does not guarantee convergence. We simply might

jump to a different family of oscillating solutions.

Due to these reasons, we developed the differential formalism of power series which is

much more efficient, robust, and fast.
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Figure 6.2: During the integral scheme, the solution produced at iteration k -Pk may repeat
after cycling through many iterations.

6.2 The Holstein Chain

For ease of discussion, we present again the second quantized Hamiltonian for the N site Hol-

stein chain with a single electron. Let ‘a’ be the lattice spacing between any two connected

sites. There are three separate parts of the Hamiltonian - the purely electronic (He), the

purely bosonic (Hbos), and the electron-boson interaction (He´bos). The electronic Hamilto-

nian is of the tight binding form with ϵo being the on-site energy and ´t being the hopping

energy. Previously, we assumed a constant boson frequency(ωo) for the boson associated

with each site. But this time, rather than making all the bosons independent of each other,

we assume a bare boson frequency of ωo nearest neighbor interaction between them with

strength td. This means that vibration from a site k can travel to its nearest neighbor site

pk ˘ 1q and vice versa. This gives rise to an overall boson dispersion and the boson energy

spectra resemble an optic phonon spectrum. With ă i, j ą representing that the interaction

is between the nearest neighbor sites and c:

i{ci and b:i{bi- the electron and the boson ladder

operators at any site ‘i’ respectively, the real space Holstein Hamiltonian for N site chain
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can be written as;

Htotal “ He ` Hbos ` He´bos

He “ ϵo

N
ÿ

i“1

c
:

ici ` p´tq
ÿ

ăi,ją

pc
:

icj ` c
:

jciq

Hbos “ ωo

N
ÿ

i“1

b
:

ibi ` ptdq
ÿ

ăi,ją

pb
:

ibj ` b
:

jbiq

He´bos “ g
N
ÿ

i“1

pbi ` b
:

i qc
:

ici

(6.1)

We can Fourier transform this Hamiltonian into momenta space where the purely electronic

and the purely bosonic Hamiltonians are exactly diagonalizable. The hopping between elec-

tronic states of different momenta is handled by electron-boson coupling. The momenta

space Holstein Hamiltonian for the N site chain is as follows.

Htotal “ He ` Hbos ` He´bos

He “
ÿ

k

εkc
:

kck εk “ ϵo ´ 2t cospkaq

Hbos “
ÿ

q

ωqb
:
qbq ωq “ ωo ` 2td cospqaq

He´bos “
g

?
N

ÿ

k

ÿ

q

c
:

k`qckpb
:
q ` b´qq

(6.2)

Hopping of electron in real space gives a non-trivial momenta-dependent electronic band

structure εk. But since momenta space electronic Hamiltonian is purely diagonal, the single

electron in the system sits at the lowest energy state εo. Similarly, because of the boson-

boson interaction, there are N different momenta-dependent boson frequencies ωq. Because

there are N different sites in real space, there are N different values of electron and boson

momenta ranging from π{pNa.q to π{pN.aq excluding one of these two endpoints. The purely

electronic and the purely bosonic band structures are shown in figure 6.3.

The electron-boson term takes an electron of momenta ‘k’ and kicks it with a boson of
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Figure 6.3: The purely electronic (left) and the purely bosonic band structure(right) for 70
site Holstein chain. Both X-axes are in units of 1{N.a with N = 70.

moments ‘q’ to make it an electron of momenta ‘k+q’ as shown in figure 6.4. This makes

the electron hop around in the momenta space band structure and in this process, the non-

interacting band structure renormalizes into an interacting band structure. Although at first

glance it might seem like the electron boson coupling constant decreases in the momenta space

with an increasing number of sites in the chain because of the divisor
?
N , this is not the

case. The number of interaction terms also increases proportionally with large N and hence

the factor of
?
N appears just as a normalization to accommodate for this increase. Given

the non-interacting electronic and bosonic band structures εk and ωq and the electron-boson

coupling constant g, our goal is to find the interacting electronic band structure.

6.2.1 Green’s function, Self Energy and the Dyson’s equation

As discussed in (11; 6; 51; 15; 52) we will use the retarded Green’s function formalism. The

quantity of interest is the finite temperature (T) electron and the boson green’s functions (G

and D respectively)for a single electron system with the thermal trace over states with zero

electron but unrestricted boson number. At zero temperature, the only state that survives

in this trace is the electron-boson Fock vacuum |0y. We will denote this thermal average by
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Figure 6.4: The electron-boson coupling term allows electron to hop around in momenta
space through interaction with bosons.

angle brackets with inverse temperature β in the subscript (‘x y1
β) (53).

Gpk, tq “ ´iθptq
Trre´βHtckptq, c

:

kus

Trpe´βHq

“ ´iθptqxtckptq, c
:

kuyβ

Dpq, tq “ ´iθptqxrAqptq, A´qsyβ where,

Aqptq “ pbqe
´iωqt ` b

:
´qe

iωqtq

(6.3)

The non-interacting (g=0) electron and the boson Green’s function for a single electron

system with finite temperature(T) and the Bose occupation factor NT
q are defined as follows
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(53):

Gopk, tq “ ´iθptqe´iεkt

Dopq, tq “ ´iθptq
“

pNT
q ` 1qe´iωq|t|

` NT
q e

iωq|t|‰

NT
q “

1

peωq{kbT ´ 1q

(6.4)

The first term in Do with prefactor pNT
q ` 1q model stokes scattering processes which are

possible at any temperature while the second term with prefactor NT
q model anti-stokes

processes which are possible only at finite temperature (68). The spectral function Apk, ωq,

which is the quantity measured in experiments is defined following our previous convention

(51) as,

Apk, ωq “
1

π
|ImGpk, ωq| (6.5)

At zero coupling (q=0), there is no electron-phonon interaction in the system and hence

the electronic state has an infinite lifetime with energy εk. However, once the interaction is

turned on, the electron-phonon coupling can kick the electron out of its current state into

any other state energetically available in the momenta space. Furthermore, depending on the

coupling strength, a proportional correction to the pure electronic state’s energy and lifetime

occurs. This transmutes the infinitely long-lived electron/holes into quasi electron/holes with

a finite lifetime. In this method, we assume that the non-interacting electron Green’s function

(Go) smoothly transforms to the interacting Green’s function (G) through a general power

series Pk of the coupling constant squared (g
2

N ).

Gpk, tq “ Gopk, tq
8
ÿ

n“0

`g2

N

˘n
Cnpk, tq “ Gopk, tqPkptq (6.6)

In this expansion, C0 “ 1 and all other Cn‰0 are assumed to be independent functions that

vanish at t “ 0. Similar to the dimer problem, for a given momentum k, the associated
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power series correction inherits the temporal contraction relation from the interacting and

non-interacting Green’s function.

Pkpt2 ´ t1q “ Pkpt2 ´ tqPkpt ´ t1q ; t1 ď t ď t2 (6.7)

This relation is valid only for power series pieces of the same momenta and is essential in

producing the cumulant diagrams. All the information about the possible interactions that

can change the energy as well as shorten the lifetime of pure electronic states is packaged to-

gether in electron self-energy. This electron self-energy also has an electron Green’s function

inside it by definition and hence it too gets a power series correction piece as shown below.

With the Green’s functions (4.7),the first order self energy Σpk, tq is defined as;

´iΣpk, tq “
g2

N

ÿ

q

Dopq, tqGpk ´ q, tq

“
g2

N

ÿ

q

Dopq, tqGopk ´ q, tqPk´qptq

“ ´i
g2

N

ÿ

q

Σk,qptqPk´qptq

(6.8)

The Dyson’s equation governs the evolution of the electron green’s function by repeated

application of self-energy to itself.

Gpk, ωq “ Gopk, ωq ` Gopk, ωqΣpk, ωqGpk, ωq (6.9)

6.3 Defining the coupling strength

There are three energy scales in this problem - the electronic, the bosonic, and the coupling

scale. The electronic energy is captured by the bandwidth (2tel). The bosonic energy scale is

captured by the average boson energy (geometric average of extreme ωq in (6.2) to capture
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boson dispersion). And the coupling scale is captured by the coupling constant ‘g’. The

coupling strength (λ) captures how big the coupling scale is compared to electronic and

the bosonic scales and is the metric of importance for electron-boson interaction in such

systems(69; 17).

λ “
Coupling scale
electronic scale

ˆ
Coupling scale
bosonic scale

“
g

2tel
ˆ

g
b

ω̃2 ´ p2t2dq

(6.10)

6.4 Integral Power Series Formalism for the chain

In this section, we briefly outline the general power series method and direct the reader’s

attention to previous chapter 4 for more details on the derivation of the power series integral

equation as well as chapter 5 for discussion on the drawbacks of popular methods. Following

the same logic as chapter 4, we derive the integral power series equation (6.11) for this

problem. The self-correction term PSC
k incorporates the correction due to the q “ 0 bosons

that do not cause an electronic state change after electron-boson interaction. The effect of

these bosons is like that of bosons in the core-hole problem where diminishing replicas of the

electronic peak are produced at the boson frequency. The inter-orbital correction term P IC
k

incorporates the correction due to all other q ‰ 0 bosons which change the electronic state

during the interaction.

Pkptq “ 1 ` PSC
k ptq `

ÿ

q‰0

P IC
k pq, tq

PSC
k ptq “ ´i

g2

N

t
ż

0

dt2

t2
ż

0

dτeiεkτΣk,q“0pτqPkpt2q

P IC
k pq, tq “ ´i

g2

N

t
ż

0

dt2

t2
ż

0

dτeiεkτΣk,qpτqPk´qpτqPkpt2 ´ τq

(6.11)
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6.5 First Differential Formalism of Power Series

The first differential formalism of power series correction is obtained by applying the funda-

mental theorem of calculus to (6.11).

dPkptq

dt
“

´

´ig2

N

¯

„

t
ż

0

dτeiεkτΣk,q“0pτq

ȷ

Pkptq `

´

´ig2

N

¯

ÿ

q‰0

t
ż

0

dτeiεkτΣk,qpτqPk´qpτqPkpt ´ τq

Pkpt “0q “ 1 (Initial condition)

(6.12)

Figure 6.5: Unlike the integral formalism where the correction for the entire time range is
guessed, single differential formalism builds the correction time-step by time-step.

The initial condition above is set by letting t “ 0 in the definition of Power series

correction (6.6). This is consistent with our assumption that the mapping of Go to G is

adiabatic and smooth. The integro-differential equation thus obtained is called a continuous

delay differential equation because the value of the correction function at a time-instant

depends on its past values - here the Pkpt ´ τq at the end of (6.12). This term Pkpt ´ τq

linking the past value of itself to the equation governing its present value is called a memory
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kernel.

So far, the equations (6.11) and (6.12) are formally equivalent. But, (6.12) provides the

advantage of computing Pk for each time step gradually (method of step) by recycling its

previous values for the delayed coupling rather than having to optimize for an appropriate

value of Pk for the entire time domain at once. We cannot reduce this equation further

without severe approximations to the delay term. Assuming that the delay term Pkpt ´ τq

is splittable into Pkptq{Pkpτq using relation (6.7), we can further simplify the power series

into a second differentiable formalism which is much closer in spirit with the self-consistent

cumulant formalism (15). But due to the severity of this approximation, this second-order

formalism is marred with sudden onset of divergence in the correction function.

6.6 Second Differential Formalism of Power Series

We can make one more approximation to the (6.12) by inserting the temporal contraction

property (6.7) to simplify the delay term Pkpt´ τq as Pkptq{Pkpτq in equation (6.12). This

simplification allows for the use of the fundamental theorem of calculus again to generate a

second differential formalism of power series correction. Inspired by the cumulant approx-

imation where the cumulant correction derivative is zero at t “ 0, we get a second initial

condition where the power series derivative is zero at t “ 0 .

dPkptq

dt
“

´

´ig2

N

¯

„

t
ż

0

dτeiεkτΣk,q“0pτqPkptq `
ÿ

q‰0

t
ż

0

dτeiεkτΣk,qpτqPk´qpτq
Pkptq

Pkpτq

ȷ

1

Pkptq

dPkptq

dt
“

´

´ig2

N

¯

„

t
ż

0

dτeiεkτΣk,q“0pτq

ȷ

`

´

´ig2

N

¯

ÿ

q‰0

t
ż

0

dτeiεkτΣk,qpτq
Pk´qpτq

Pkpτq

d

dt
lnrPkptqs “

´

´ig2

N

¯

„

t
ż

0

dτeiεkτΣk,q“0pτq

ȷ

`

´

´ig2

N

¯

ÿ

q‰0

t
ż

0

dτeiεkτΣk,qpτq
Pk´qpτq

Pkpτq
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Applying fundamental theorem of calculus, we get:

d2

dt2
lnrPkptqs “

´

´ig2

N

¯

ÿ

@q

eiεktΣk,qptq
Pk´qptq

Pkptq

The initial conditions are;

Pkpt “ 0q “ 1 and,
dPkptq

dt

ˇ

ˇ

ˇ

ˇ

t“0
“ 0

(6.13)

We can abridge this further by setting the correction to be cumulant-like i.e Pkptq “ eCkptq.

d2Ckptq

dt2
“

´

´ig2

N

¯

ÿ

@q

eiεktΣk,qptq eCk´qptq´Ckptq

The initial conditions transform to,

Ckpt “ 0q “ 0 and,
dCkptq

dt

ˇ

ˇ

ˇ

ˇ

t“0
“ 0

(6.14)

The expressions (6.13), (6.14) are closer in spirit to the expression derived by (15) in

their theory of self-consistent cumulants in that in both expressions, the delay term has

been severely modified by assuming that the temporal contraction relation (6.7) can be

inverted. However, during numerical implementation, both (6.13) and (6.14) as well as the

self-consistent cumulant formalism (15) are susceptible to sudden onset of divergence in

solution. This is because of the correction term on the right- Pkptq inversely relating to

the second derivative of its own logarithm on the left in equation (6.13). Therefore a slight

increase in the correction term from its equilibrium value amplifies its second derivative and

the correction soon diverges. This is seen as we take smaller and smaller grid sizes because

the divergence also gets pushed further in time.
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6.7 Numerical results on Holstein Dimer

In this section, we revisit the dimer problem and produce the spectral function for the

Holstein dimer using the aforementioned two methods. Here, we use ε˘ “ ¯3 which gives

an orbital energy gap of ∆ “ 6. The real space coupling constant is set to
?
2 which in

momenta space gives a normalized coupling constant of 1. The boson frequency is taken to

be ωo P r10, 0q. So far there is no boson dispersion in this problem.

Firstly, we show the natural logarithm of the electron spectral function constructed

through the first differential method against the exact diagonalization result. We have al-

Figure 6.6: Natural log of electron spectral function produced from A)First differential
formalism and B)Exact diagonalization for ∆ “ 6, g “

?
2 and ωo P r10, 0q. The blue

vertical lines separate the three regimes of the problem.

ready shown in chapter 5 that the integral formalism produces excellent results that match

the exact diagonalization result in all three regimes. Because the first differential formalism

is formally equivalent to the integral formalism it too is in excellent agreement with the exact

diagonalization in all three regimes of this problem.

The second differential formalism, however, is not formally equivalent to the integral

power series formalism and internally makes a drastic approximation to simplify and localize

the memory kernel Pkpt´ τq in time. At first glance, the approximation produces the severe
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Figure 6.7: Natural log of electron spectral function produced from A)Second differential
formalism and B)Retarded time cumulant for ∆ “ 6, g “

?
2 and ωo P r10, 0q. The blue

vertical lines separate the three regimes of the problem.

antibonding orbital splitting in regime II (ω0 « ∆) of this problem 5.4. Although this the

splitting structure does not exactly match the exact diagonalization, there is a qualitative

match. Furthermore, the replicas of this splitting are also split. However, in regime I,

where ωo " ∆, we see extra features which closely resemble the extra features produced by

the retarded time cumulant. In regime III, where ωo ! ∆, the overall shape of the actual

quasiparticle orbitals resemble the exact result very well. However, the logarithm of the

spectral function shows the faux orbitals in the second differential formalism just like in the

retarded time cumulant.

The advantage of using second differential formalism of course is in speed since there

are no integrals involved. It is orders of magnitude faster than both integral and the first

differential formalism. At first glance, this formalism is a better version of retarded time

cumulant in that it doesn’t diverge when ωo « ∆ but rather produces the dimer’s antibonding

splitting that looks good qualitatively but fails quantitatively as shown in figure 6.8. This

is because although the split is present, the second differential formalism still puts most of

the spectral weight at the center of the splitting. As we will see in the later chapter, the

second differential formalism will diverge when ωo « ∆ when scaled up to compute spectral
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Figure 6.8: First and second differential formalism at strongest antibonding orbital splitting.
The second differential formalism splits the antibonding orbital but still assigns most of the
spectral weight at the center of the split (Frequency =3).

function on a Holstein chain.

6.8 Summary:

In this chapter, we derived the first and the second differential formalism of Power series

correction. The first differential formalism is formally equivalent to the integral power series

and thus produces results that are in excellent agreement with the exact diagonalization.

The second differential formalism although captures the strong antibonding orbital splitting

(Regime II), it still assigns most of the spectral weight to the parent level. Thus it is only

qualitatively true in regime II. At regimes I and III, the second differential formalism is

equivalent to retarded time cumulant formalism. In the next chapter, we will implement

the first and second differential formalism to the Holstein chain at the thermodynamic limit

at zero temperature and discuss the effect of the coupling constant. We will then show the

first differential formalism result for finite temperature and discuss the effect of temperature.

Finally, we will construct a heuristic argument to explain the structures observed.
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CHAPTER 7

ZERO AND FINITE TEMPERATURE ELECTRON SPECTRAL

FUNCTION FOR HOLSTEIN CHAIN

In this chapter, we compute the electron Green’s function for a single electron N site Holstein

chain in 1 dimension using the first differential formalism of the Power series. Although in

principle, a one-dimensional Holstein chain can only have lattice vibrations in acoustic mode,

we assume an optic phonon-like boson band structure by including a boson dispersion. The

first reason for this is that this shows that the method is valid for a wide class of bosons and

not just for a simple dispersionless boson. The second reason is of practical nature - other

existing methods in literature also assume a similar boson band structure and we compare

our method against other existing methods.

We show that, at zero temperature, compared to cumulant the power series spectral

function shows a richer satellite structure. We then discuss the effect of coupling strength

on carrier properties. We also show the validation of power series against literature as well

as exact diagonalization. We then investigate the effect of extreme coupling in the electronic

band structure and translate this result to effects in the quasiparticle. We then move on to

the numerical calculation of finite temperature spectral function and elucidate the effect of

temperature in this system.

Building intuition from the exercise above, we then construct a Heuristic argument that

explains the features in the interacting electron spectra with simple static arguments. We

will show that this intuition is built by collecting relevant exponential terms from the power

series equations. We also briefly discuss the divergence in second differential formalism with

a numerical example and point out when can we use this method.
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7.1 Electron Spectral Function at Zero Temperature

In this problem, unlike the case of the dimer, we have a momenta varying initial electronic

band structure εk and a momenta varying boson band structure ωq. Therefore, rather than

discussing our results in terms of the coupling constant g, we will discuss our results in terms

of the coupling strength - ‘λ’ as defined in 6.10. Doing so, we effectively combine the three

scales of the problem into a single parameter making it easier to compare across cases. We

use the first differential formalism to compute the electronic Green’s and spectral functions.

Figure 7.1: Electron spectral function at weak coupling strength

At weak coupling (λ “ 0.05), the non-interacting sinusoidal electronic band fractures

roughly at bare phonon energy ω̃o from the band bottom separating the head from the two

arms on each side as seen in figure 7.1(left). As the coupling strength increases, the fracture

becomes more prominent growing in thickness and extent. The spectral weight from the

fractured region folds over towards the center creating a satellite structure over the head.

Although at zero temperature, the head remains sharp and pristine in terms of spectral

weight spread, there is an onset of bloating of the fractured arms which broadens the arms

making it less intense. This can be observed in figure 7.1(right). Although faint, we also
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observe the onset of second-order fracturing of the arms at an approximate Energy value of

ω “ 0. These two boson events, as we will see in the later sections, are the single boson

processes originating from the newly minted single boson event satellite structure.

Figure 7.2: Electron spectral function at intermediate coupling strength

As we increase the coupling strength further, we observe a clear elongation of the ends of

the head along the first satellite peak. We also observe the inward folding of the lower ends

of the fractured arms along this satellite structure. Because the intensity of the single boson

satellite structure now is significant, previously described single boson events originating

from this structure also intensify. The satellite structure develops crosses due to the merging

of these structures originating from the two sides of k “ 0.

Although very faint, we also observe a further fracturing of the fractured arm around the

energy of ω “ 1 which is a two-boson event originating from the head of the fermion band.

There is a significant and drastic bloating of the fractured arms but the fractured head still

remains pristine. A clear difference in the intensity of the arms can be seen between the

λ “ 0.5 and λ “ 0.75 cases. All this can be observed in the figure 7.2.

At strong and extreme coupling, counter-intuitively, most of the structure in the first
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Figure 7.3: Electron spectral function at strong coupling strength

satellite structure (crosses and folds) vanishes away leaving only a strong cusp-like structure

that somewhat resembles the head of the band. The fractured arms become wide and dim.

We also see higher-order satellite structures above k “ 0. Although a stretch, the head of

the band still remains pristine. These effects can be observed in figure 7.3.

7.1.1 Richer Structure in the Satellites

Due to boson-mediated electronic excitations spectral weight diffuses from the fermion band

to form faint satellites above the head with intricate crossing structures due to the non-

interacting fermion band folding along fracture at the single boson excitation level on both

sides as seen in figure 7.4.

The cumulant expansion, in the end, is the very first-order approximation of the power

series (51; 52). Hence, it is only able to produce an averaged structure, unlike the full Power

series. Therefore, it is not surprising that cumulant only puts an averaged lump to represent

a satellite with much richer structures and spread. Furthermore, the extent of the lower

head is also severely restricted by the cumulant and the intensity of the fractured arms is
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Figure 7.4: The head and the first satellite structure as produced by power series and
cumulant expansion for λ “ 0.5, ϵo “ 0, tel “ 1, ω̃ “ 1 and td “ 0.2. The curvature and the
extent of the head are very different for the two approximations. The power series satellite
also shows a richer structure with multiple crossings and variations in spectral weight as
compared to the cumulant.

also significantly lower in cumulant corrected band structure.

7.1.2 Effect of coupling strength on carrier properties

The coupling to the boson also significantly affects the electronic band’s curvature as well as

the location of the band bottom. As seen in figure 7.8, stronger electron-boson coupling (λ)

proportionally flattens and pushes the fractured head of the electronic band away from the
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Figure 7.5: Effective carrier mass (top) shows initially grows rapidly but quickly becomes
linear with coupling strength λ. The ground state carrier energy (band bottom) also gets
displaced linearly to lower energy as a function (λ). The rates of change of both properties
depend on boson dispersion(td).

non-interacting parabolic fermionic band. The carrier’s effective mass is given by the inverse

of the band curvature. This effective mass initially grows rapidly but quickly becomes linear

with growing coupling strength λ. The head of the band which gives the carrier’s ground state

energy linearly increases with the coupling strength. That being said, there are differences

in the effective mass growth rate as well as the band displacement rate depending on the

boson dispersion ‘td’ as seen in figure 7.5. A larger carrier effective mass and a smaller carrier
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energy displacement is observed for smaller |ωq“0| mode in (6.2) because of the single boson

excitation level (and thus band splitting) being closer to the non-interacting band bottom.

7.2 Validation of Power Series correction

In order to validate our results, we rely upon exact diagonalization results in the same

system. The problem with exact diagonalization is its steeply rising cost with each new site

and/or each additional boson in the system. This is because of the quadratic dependence

of the Hamiltonian matrix on both these factors. Hence, we perform exact diagonalization

on 8 site Holstein chain on a finite boson basis. The convergence of features is estimated

by increasing the number of bosons. For intermediate coupling of λ “ 0.5 and 3 bosons

for each momenta value q, the majority of the features converge and the differences remain

only in the smaller features. As seen in figure 7.6, the power series captures the overall

Figure 7.6: (A)Power series (line) closely matches most of the exact diagonalization features
(solid) for 8 site Holstein chain at λ “ 0.5. (B)Cumulant matches the exact diagonalization
only near k “ 0.

shape of the spectra as well as most of the larger details of the exact diagonalization. This

is especially true of the head of the spectra where the power series almost matched exact

diagonalization. Here, the power series performs this calculation within a few minutes while
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the exact diagonalization takes numerous hours to complete. In contrast, the cumulant only

captures the features well at small momenta (i.e. around k “ 0). Cumulant spectacularly

fails to capture the features at large momenta and represents the spectral features as broad

averaged lumps (example k “ π{2 and k “ π in figure 7.6). Furthermore, the cumulant also

fails to capture the curvature at the bottom of the band (features at the negative frequency).

We can of course ask if this 8-site Holstein model with 3 bosons suffers from some finite

size effect and if the power series only works for small systems. Now, we present power

series results bench-marked against two other methods from the literature. These methods

are variational Hilbert space Monte Carlo method (17) and self-consistent cumulant expan-

sion (15). The variational Monte Carlo method suffers from scaling issues just like exact

Figure 7.7: Power Series spectra are in excellent agreement with variational Hilbert space
Monte Carlo method. Self-consistent cumulant also produces similar results but suffers from
artifacts like blooms and negative spectral weights. Here,λ “ 0.5, td “ 4, and te “ ωo “ 1

diagonalization. This is because with a larger number of sites, the electron and boson mo-

menta grids become finer making the calculation extremely expensive. The self-consistent

cumulant which is closer in spirit to second differential formalism suffers from the sudden

onset of divergent in the correction function whenever ωq ă ∆ is true. Because of this,

the correction scheme is truncated before the divergence occurs. This premature truncation

leads to artifacts such as blooms and flares and negative spectral weight.

The First differential formalism of power series doesn’t suffer from any such drawbacks,
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is scalable to incorporate a large number of sites and technically has an infinite number of

bosons because of the self-consistency criteria.

7.3 Electron spectral function at extreme coupling strengths

With increasing coupling strength, the system adiabatically moves to a region where Migdal’s

theorem (61; 12) becomes invalid. This is because by approximating the self-energy with only

the very first irreducible self-energy diagram, we neglect many higher-order irreducible dia-

grams onward of the second order. These diagrams at higher coupling have a non-negligible

contribution to particle dynamics. Hence, because of their absence, the spectral function

computed with the first-order self-energy is deficient with missing features, incorrect fea-

ture sizes, and incorrect separations between features. This also is the reason why exact

diagonalization is not feasible in this regime because an extremely high number of bosons is

necessary for the validity of the calculated spectra.

Nevertheless, using power series correction with first order self-energy we can assess

general features and trends the actual spectra should follow at extreme coupling (λ “ 1´1.5)

for zero or finite temperature as shown in figure 7.8. It is surprising that at extreme values of

coupling, rather than being more intricate, the satellite structure coagulates and simplifies

to look more like a ‘replica’ of the fermion band’s head. Apart from this, there is a significant

damping of the fractured arms and a significant increase in the spectral weight of this replica,

and a flattening of the band head. Of course, these results must be taken with a grain of

salt because of the aforementioned reasons regarding the validity of Migdal’s approximation.

But this exercise proves that the differential power series method is inherently stable even at

extreme values of coupling. Therefore given a more exhaustive set of self-energy diagrams,

power series machinery can always produce a better electron spectral function.
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7.4 Electron Green’s Function at Finite Temperature

Figure 7.8: Electron spectral function evolution as a function of temperature(T). Here the
temperature is in the units of bare boson frequency.

For finite temperature, the main advantage of our method is that the onus of carrying

the thermal information lies on the non-interacting Green’s functions rather than the power

series machinery. Hence, the computation speed and resources required to calculate the

finite temperature interacting Green’s function remain more-or-less same as that in zero

temperature interacting Green’s function. This is far from the case of Monte Carlo methods

(70; 17) or exact diagonalization because of the thermal trace over infinitely many states in

(4.7) due to finite temperature. Here we present the interacting Green’s function for finite

temperature (T “ 0.5ω̃) at different coupling regimes for N=50 site Holstein chain as shown
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in the second row of figure 7.8.

The main effect of temperature is to broaden and stretch the overall band structure on

both sides of the fracture because of the onset of finite temperature anti-stokes scattering

processes. As shown in figure 7.8, at a very high temperature of 2ωo, there remains no

coherent structure in the band structure and hence the distinction between the main band

structure and the satellites becomes meaningless given the thickness of the structures.

7.5 Some notes on Second Differential Formalism:

Figure 7.9: Comparison of electron spectral function generated from three different methods.
All figures are drawn with the same color scheme.

With regards to the second differential formalism, we show the application on a system

with ωo “ 5 and the electronic bandwidth of 4 (ε0 “ ´2 and επ “ 2). In this case, the

vibrational levels all occur outside the electronic band. Here, in figure 7.9, we show the

numerical result from the first differential, second differential, and the retarded cumulant

formalism for a 50-site Holstein chain. The first differential formalism takes about 20 minutes

to complete. The second differential formalism takes about 3 minutes to complete and the

retarded cumulant takes around 20 seconds to complete this calculation.

The cumulant formalism produces a significantly different result with strong boson sig-

natures around the edges of the band structure at k « π. However, the first differential and
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the second differential formalism results look qualitatively very similar with broader bosonic

satellite features.

Although fast, the second differential formalism diverges whenever the boson frequency

ωq is smaller than the width of the electronic band structure (∆ “ max|εk´εk1 |). This is the

case of strong antibonding-like splitting of some non-interacting electronic energy. Whenever

this happens, the temporal contraction relation can no longer be inverted reliably which is

at the heart of derivation of second differential formalism (6.13).

Pkpt ´ τq ‰
Pkptq

Pkpτq
(7.1)

Figure 7.10: Divergence in Power series correction in 4 site Holstein model when ωo ă ∆
happens.

This happens because the power series term rapidly starts to oscillate in magnitude

to account for a stark change in the electronic spectra when splitting happens. At some
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point, both the real and the imaginary parts of the power series drop in magnitude to near

zero. This makes the power series fraction above (7.1) undefined. At this point, the second

derivative on the left-hand side diverges in equation (6.13) and the calculation stops. We

show the power series corrections for 4 site Holstein model with ϵo “ 0, te “ 1.5, ωo “ 1

and g “ 1 in figure 7.10. The green arrows show the moment when both real and imaginary

parts of the power series at k “ ˘π{2 drop rapidly to zero. This then causes the power series

piece at k “ π to also rapidly drop to zero. After this, the calculation terminates because of

the inability of computers to handle a ‘0/0’ function.

7.6 Heuristic Argument for the origin of structures

In the context of first differential formalism, we now ask ourselves an ill-defined question -

can we predict the features in the interacting system’s electronic spectra without actually

doing the dynamic temporal correction through the use of power series? In the content

of figure 7.11, we ask ourselves the following question. what is the effect of the presence

of spectral structures at ‘B’ and ‘C’ on the spectral structure at A in the non-interacting

electronic band structure?

The answer to this can be found using the following steps:

1. Draw the non-interacting band structure and label points ‘A’, ‘B’, and ‘C’.

2. Draw the boson band structure centered over points ‘B’ and ‘C’ at ωq“0 distance from

these points.

3. Draw a vertical line going through ‘A’ and find its intersection with the previously

drawn boson bands. Put spectral weight from ‘A’ at these intersections with a larger

share going to the closer intersection.

More formally, we claim that we can predict most of the locations where spectral weight

from any non-interacting εk flows towards as well as identify regions where novel structures
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Figure 7.11: Three steps to discern effects of spectral structures at ‘B’ and ‘C’ on a spectral
structure at ‘A’.

(fractures, crosses in satellite structures) occur by simply collecting the complex exponential

terms from (6.5) and (4.7).

Structures over εk «
ÿ

q

p´ie´iεktq
“

eiεkte´ipεk´q`ωk´qqt‰

The first term p´ie´iεktq is just the non-interacting band structure at momenta k. The

second term here represents the erasure some of spectral weight from the non-interacting

band at k. The third term e´ipεk´q`ωk´qqt represents the effect of the rest of the band

structure at momenta k where the aforementioned erased spectral weight flows to. This

term is equivalent to drawing a boson band structure centered at every point on the non-

interacting band at a distance ωq“0 away as shown in figure 7.11. If we uniformly sample

the non-interacting(NI) electronic band structure and follow the recipe above, we see that

the spectral weights from a single boson event originating from the non-interacting band

coagulates to form a front shown in 7.12. At zero temperature, the electronic band structure

is pristine below this front and heavily modified above this front. The electronic band

fractures and folds along the creases formed by this coagulated front in our calculation.

Single boson events originating from this front create the rich structure of the satellite as

discussed in 7.1.1.
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Figure 7.12: (On left)The spectral weight from non-interacting (NI) target point TNI flows to
TA and TB as described in 7.11. (On right) The Boson band structure drawn over a uniform
sampling of a non-interacting electronic band reveals the coagulated front of spectral weights
from a single boson process from the NI band. The NI band fractures and bends around this
coagulated front. Single boson process from this front forms the crossing satellite structures.

7.7 Summary:

In this chapter, we numerically studied the two power series methods. We found that the

first differential formalism produces excellent agreement with exact diagonalization as well as

other existing methods in the literature. The second differential formalism only works when

the boson energy scale is much larger than the electronic energy scale. We also developed

a heuristic argument that explains most of the features in the electronic spectra without

having to do the actual calculation.
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CHAPTER 8

CONCLUSION AND OUTLOOK

By now, we hope we have convinced the reader of the importance of self-consistency in

Green’s function calculation. We started with the Dyson’s equation and through the aid

of a power series function we enforced self-consistency in the Green’s function calculation.

This was done by making sure that the Green’s function inside the self-energy was also

corrected through this power series. Doing so, in Holstein Dimer, we revealed the three

regimes of the problem. Based on this, we can sketch out a phase diagram along with

the applicability regimes of cumulant. Cumulants can only be used when there is a clear

Figure 8.1: A sketch of the phase diagram of Holstein dimer

separation of electronic and bosonic energy scales in the problem. In the middle, of this
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phase diagram, the electron boson coupling significantly alters the electronic spectra and

cumulants spectacularly fail to capture this. However, the power series works in all regimes

without any approximation.

With regards to the cost associated with the Power series, of course, it is more expensive

than Cumulant. For the cumulant, the implementation time is almost instantaneous (in

seconds for large systems). Each cycle of the integral power series is almost as expensive as

the cumulant. Hence for Holstein dimer, the calculation takes about a couple of minutes. At

the thermodynamic limit of large number of sites, the differential power series can produce

spectral functions with an implementation time of roughly 20 minutes for 100 sites. And

this is independent of the value of the coupling constant. Given that exact diagonalization

is impossible at this limit without the aid of a supercomputer and there too one faces severe

scaling limitations due to the requirement of large boson numbers at large g, tens of minutes

is a very reasonable time. Furthermore, power series results are in excellent agreement when

compared to literature as well as exact diagonalization in a smaller number of sites.

Given all of these benefits, this method, in our opinion, is ripe enough to be imple-

mented in real systems. We of course showed a preliminary implementation on silicon. But

performance in GW for crystals as well as in molecular spectroscopy is a topic worthy of

future investigation. In problems with multiple boson species (say plasmons and phonons),

this method allows for the inclusion of both bosons’ physics without needing to know the

microscopic details of the problem.

Of course, this method has to break at some very high value of g. This is the limit where

the problem is boson dominant and the fermionic quasiparticle picture completely breaks

down. In such problems where bosonic physics is dominant, we could turn this method

upside down and ask what is the effect of the presence of fermion or other minor bosons on

boson spectra. Given the current surge of interest in polariton physics, this is another path

worthy of exploration.
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A final direction we would like to point out is to use power series as a Machine Learning

example generator in model systems in order to learn what these interaction operators are

doing in such problems. Given the performance and flexibility in parameter choice, a large

number of examples can easily be generated using this technique and the interaction opera-

tor’s effect can effectively be learned for various values of parameter. Once this is done, this

Machine learned operator can be set free on band structures obtained from purely electronic

calculations in order to capture the bosonic effects in an even faster way regardless of the

band structure complexity.
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