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To my wife Jenchi



Student: “Why is it called endoscopy?”

Ngô: “Because it’s painful?”
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ABSTRACT

In this thesis, we thoroughly study the multiplicative Hitchin fibration, which is the group

analogue of the usual Hitchin fibration by replacing the Lie algebra with a reductive

monoid. As an application, we use it to prove the standard endoscopic fundamental

lemma for adjoint groups. Although similar to its Lie algebra counterpart in many ways,

the multiplicative Hitchin fibration has a lot more new features and is much more compli-

cated. There are three main highlights in this thesis: the geometrization of endoscopic

transfer, including the construction of endoscopic monoids; a local model of singular-

ity that connects with representations of the dual group; a generalized support theorem

which not only is the key to prove fundamental lemma but also reveals some potential

new phenomenon that is not explained by endoscopy.

viii



CHAPTER 1

INTRODUCTION

The goal of this paper is to establish a solid foundation for the multiplicative version of

Hitchin-type fibrations in the case of the adjoint action of a reductive group. We will call

it the multiplicative Hitchin fibration, or mH-fibration for short. As an application, we use

it to prove the standard endoscopic fundamental lemma for the adjoint groups. In fact,

we are able to provide a direct proof of the endoscopic transfer for the spherical Hecke

algebra of an adjoint group. The following result is Theorem 2.6.11.

Theorem 1.0.1. Let 𝑘 = 𝔽𝑞 be a finite field with 𝑞 element and characteristic𝑝,𝒪 = 𝑘[[𝜋]]

the ring of power series of one variable over 𝑘 and 𝐹 = 𝑘((𝜋)) its field of fractions. Let

𝐺 = 𝐺ad be a reductive group scheme of adjoint type over 𝒪 whose Coxeter number is less

than 𝑝/2. Let (𝜅,𝜗𝜅) be an elliptic endoscopic datum of𝐺 over𝒪 and𝐻 the corresponding

endoscopic group. Then we have equality in orbital integrals

𝑞−𝑑(𝑎)/2𝐎𝜅
𝑎(𝑓𝜆, d𝑡) = 𝑞−𝑑𝐻(𝑎𝐻)/2 𝐒𝐎𝑎𝐻

⎛
⎝
∑
𝑖
𝑓𝜆𝐻,𝑖
𝐻 , d𝑡⎞

⎠
,

where 𝑎 and 𝑎𝐻 are matching strongly regular semisimple conjugacy classes in 𝐺(𝐹) and

𝐻(𝐹) respectively, 𝑑 and 𝑑𝐻 are the respective discriminant valuations on 𝐺 and 𝐻, 𝑓𝜆

is the IC-function associated with an irreducible ̌𝐺-representation 𝑉𝜆 of highest weight 𝜆,

and ∑𝑖𝑓
𝜆𝐻,𝑖
𝐻 is the corresponding sum of IC-functions of 𝐻 obtained by restricting 𝑉𝜆 to

�̌�.

Although the proof of Theorem 1.0.1 may be viewed as the multiplicative analogue of

the proof in Lie algebra case in [Ngô10], it has a lot of new features absent in the latter case

and potentially leads to a much larger field for future exploration. Therefore the current

paper serves more as a proof of concept for future development than an alternative tool

to solve the same problem.
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To this end, in this introduction we will try to give an overview of this paper with

an emphasis on the big picture, new features and potential development points. The

geometry of mH-fibrations is incredibly rich and beautiful and has profound connection

with representation theory, therefore it is important to give enough spotlight to all the

key features in this introduction so that the reader can have a grasp of what is to come.

However, to keep the introduction concise and clear enough, we will also try to avoid

using too many notations when we can due to the technical complexity in this subject.

Unfortunately, this means it is best that the reader has at least some vague sense of how

Hitchin fibration works in the context of endoscopy. To compensate that, we will include

a bullet point list at the beginning of § 1.3 of the things discussed up to that point.

1.1 On Hitchin-type Fibrations

One of the motivations behind introducing Hitchin fibration to arithmetic problems like

fundamental lemma is that global objects tend to behave much better than local ones,

even if they are less computationally accessible at times. Therefore it would be beneficial

to understand the general principles on those Hitchin-type global constructions. We will

use mH-fibrations as the primary example for this section.

1.1.1 There has been many attempts to prove the fundamental lemma for Lie algebras in

the past focusing on the local picture. Over Archimedean local fields Shelstad was able to

prove the general statement directly at group level, see [She79]. Over non-Archimedean

fields, however, the problem seems much harder, and most proofs before [Ngô10] were

on one specific group at a time. The reader can see the introduction of [Ngô10] for a full

historical picture.

One of the most successful general results on the local front is perhaps the condi-

tional proof for unramified conjugacy classes by Goresky, Kottwitz and MacPherson in

[GKM04]. Although quite an impressive framework in itself, it also shows the limitation

2



of local geometric method. For one, as Ngô already pointed out in [Ngô10], it depends on

a purity conjecture of the cohomology of related affine Springer fibers, which is only par-

tially known due to affine Springer fibers usually being highly singular. Another serious

obstacle pointed out by [Ngô10] is that it crucially depends on the conjugacy class being

unramified so that there is a large torus acting on the affine Springer fibers.

1.1.2 Roughly speaking, the local geometric method is based on the fact that orbital

integrals may be interpreted as certain kind of point-counting on related affine Springer

fibers, which in turn reduce to some cohomological statement using a variant of Grothen-

dieck-Lefschetz trace formula. The affine Springer fiber in question, can be roughly un-

derstood as certain subset of maps from a formal disc 𝑋𝑣 = Spec𝒪 to the quotient stack

[𝔤/𝐺], together with some other naturally attached data. To move from the local picture

to the global one one only needs to replace the formal disc by a smooth projective curve

𝑋. Because 𝔤 is affine and 𝑋 is projective, one needs to add some auxiliary twist, other-

wise the global object we end up getting will be trivial. In Lie algebra case, such twisting

is provided by the natural 𝔾m-action on 𝔤 viewed as a vector space.

Without going further into the global geometry, we must first ask what is the analogue

for the above setup in the group (i.e., multiplicative) case. Clearly we are now interested

in the quotient stack [𝐺/𝐺] (where 𝐺 acts on itself by adjoint action) in place of [𝔤/𝐺],

but we also need a natural twisting similar to the 𝔾m-action on 𝔤. However, there does

not appear to be any natural symmetry we can use that also commutes with the adjoint

action. If 𝐺 = GL𝑛, for example, we have the scaling action of 𝔾m by viewing 𝐺 as a

subspace of Mat𝑛, and for a group 𝐺 with a non-trivial central torus 𝑍0, we might use the

action of 𝑍0, viewed as a product of 𝔾m’s. But first, these actions do not look very natural

(one can replace 𝑍0 by a subtorus for example), and second, if 𝐺 is semisimple then we

seem truly at a loss. There is also a third difficulty that even for 𝐺 = GL1 = 𝔾m, if we

twist 𝐺 by a 𝔾m-torsor, we will just get the same 𝔾m-torsor which will have no global
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sections unless the torsor is trivial. Comparing to the Lie algebra case when 𝔤 = 𝔸1: by

twisting we obtain the line bundle associated with the 𝔾m-torsor which does have a lot

of sections provided the degree is large enough.

1.1.3 The answer to our first obstacle above turns out to be quite profound. Since we

cannot guarantee that 𝐺 contains a central torus, we can certainly add one to it by aug-

menting the group. The question is of course what torus to add. Moreover, the third

difficulty above shows we need to add some “boundaries” to 𝐺, similar to embedding 𝔾m

into 𝔸1 so that we do get a lot of global sections. We may rephrase this question in the

following way: in Lie algebra case, we use a line bundle to twist 𝔤, so we are really just

studying rational maps from 𝑋 to [𝔤/𝐺] with a systematic constraint on the poles. There-

fore in group case, we are really trying to find a systematic way to control the poles of

rational maps from 𝑋 to [𝐺/𝐺]. This turns out to be the thought behind some prototype

of mH-fibrations in the field of mathematical physics (see, for example, [HM02]), as well

as its first appearance in arithmetic setting in [FN11].

Temporarily going back to the local setting, we can see that the effect of the 𝔾m-

twisting in the Lie algebra case is that we are not really considering the characteristic

function on 𝔤(𝒪), but rather those on scaled sets 𝜋−𝑑𝔤(𝒪) ⊂ 𝔤(𝐹) for arbitrary 𝑑 ≥

0. This corresponds to the fact that the spherical Hecke algebra of 𝔤 is generated by

translations and scalings of the characteristic function on 𝔤(𝒪), and they do not look

very differently from the latter. In group case, however, things get complicated because

the analogue would be the Cartan decomposition and characteristic functions on double

cosets 𝐺(𝒪)𝜋𝜆𝐺(𝒪), and they certainly do not look alike. Therefore, we need to add

“cocharacter-valued poles” to match the Cartan double cosets in the local setting.

1.1.4 So far all look just like a purely technical nuisance, at least if one follows the

formulation in [FN11]. However, the method in [FN11] does not generalize well, and we

can only elaborate later since the correct way to add those poles is far from being just a
4



technical tool. This is where reductive monoids enter the picture.

A primary example of reductive monoid is𝑛×𝑛matricesMat𝑛 viewed as a multiplica-

tive monoid. The group GL𝑛 embeds in Mat𝑛 as an open subset and is its group of units.

Therefore Mat𝑛−GL𝑛 is the “boundary” we could add to GL𝑛, and by considering the

mapping stack from 𝑋 to [Mat𝑛 /GL𝑛×𝔾m], we may form our first mH-fibration using

monoids. In general, we would want to consider the maps from 𝑋 to stack [𝔐/𝐺×𝑍𝔐]

where 𝔐 is a very flat (see Definition 2.3.10) reductive monoid whose unit group 𝔐× has

derived subgroup isomorphic to 𝐺sc (the simply-connected cover of the derived group of

𝐺), and 𝑍𝔐 is the center of 𝔐×.

Such amonoid𝔐 comes with an abelianizationmap (introduced by Vinberg in [Vin95])

𝔐 → 𝔄𝔐 by taking the invariant quotient by 𝐺sc × 𝐺sc-multiplication on the left and

right. Roughly speaking 𝔐 and 𝔄𝔐 are in bijective correspondence to each other, with

𝔄𝔐 keeping track of what kind of boundary (i.e., cocharacters or Cartan double cosets)

we want to add, and 𝔐 being the actual space itself to replace 𝔤. It turns out there is a

universal object Env(𝐺sc) among those 𝔐 for each semisimple type, called the universal

semigroup or Vinberg monoid of 𝐺sc. For Env(𝐺sc), the boundary or cocharacters added

is the set of all fundamental coweights.

In some early development of mH-fibrations after [FN11], most notably [Bou15,Bou17,

Chi19], themonoid is fixed as Env(𝐺sc), while in [FN11] itself the correspondingmonoid is

so-called 𝐿-monoid where only one fixed (but arbitrarily chosen) cocharacter 𝜆 is allowed.

Neither turns out to be the completely correct formulation.

1.1.5 Utilizing Env(𝐺sc) and the associated mH-fibration, J. Chi in [Chi19] was able to

prove some very good local results for 𝐺 including the dimension formula for the rel-

evant multiplicative affine Springer fibers. However, once one attempts to connect mH-

fibrations of 𝐺 to those of 𝐻, things quickly fall apart if one sticks with Env(𝐺sc) and

Env(𝐻sc).
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In Lie algebra case, assuming 𝐻 is a subgroup of 𝐺, then we have the natural map

[𝔥/𝐻] → [𝔤/𝐺], and since both 𝔥 and 𝔤 are reductive Lie algebras, the general results

for Hitchin fibrations can be applied to both sides. In general, there is still a natural map

from 𝔠𝐻 = 𝔥⫽𝐻 to 𝔠𝐺 = 𝔤⫽𝐺, and it is all we need for establishing the endoscopic transfer.

In group case, however, there is usually no way to embed Env(𝐻sc) into Env(𝐺sc)

as a closed submonoid even if 𝐻 is a subgroup of 𝐺, and more generally ℭEnv(𝐻sc) =

Env(𝐻sc)⫽𝐻 will not map to ℭEnv(𝐺sc) = Env(𝐺sc)⫽𝐺 either. Using the general theory of

reductive monoids, one can still produce some monoid 𝔐′
𝐻 for 𝐻 such that 𝔐′

𝐻⫽𝐻 does

map to ℭEnv(𝐺sc), and if 𝐻 is a subgroup of 𝐺, 𝔐′
𝐻 would just be the closure of the group

𝐻′ ⊂ 𝔐× where 𝐻′ has the same semisimple type as 𝐻. However, such monoid 𝔐′
𝐻 in

general would not be a very flat monoid, so our general theory of mH-fibrations could not

be applied to such.

This, of course, is not a coincidence, and (in the author’s opinion) is where the story

becomes really interesting. The picture is better understood once we move to the dual

group side, and the solution to this difficulty will manifest itself once we do so. We also

note that if any other Hitchin-type fibration is to be developed, the same analysis on the

dual side should also be indispensable. We will discuss the story about dual groups in the

next section, and close this one with a few comments on some potential generalizations.

1.1.6 The most obvious generalization is perhaps the twisted conjugation of 𝐺 on it-

self, which corresponds to the theory of twisted endoscopy (see [KS99]). In fact, one of

the motivations behind the current paper is to prove the twisted-weighted fundamental

lemma using mH-fibrations. Significant work has been done by the author at the time of

writing and will probably be published in a future paper.

In [SV17], Sakellaridis and Venkatesh established a unified framework for the relative

trace formula using spherical varieties. In the group case, 𝐺 is viewed as a𝐺×𝐺-spherical

variety, and Env(𝐺sc) is a horospherical contraction of 𝐺sc as a spherical variety and also

6



the spectrum of the Cox ring of the wonderful compactification of 𝐺ad (one may consult

[Tim11] for terminologies). Another possible way to generalize the current paper is to

consider the Hitchin-type fibration derived from the spectrum of the Cox ring of some

other wonderful varieties.

1.2 Dual Groups and Geometric Transfer Map

The fundamental lemma is usually stated as an equality between the evaluation of orbital

integrals at one hyper special function. Since the function is already given, all we need is

to figure out how to match conjugacy classes. As we already pointed out in the previous

section, in proving the fundamental lemma using global method, we are more or less

directly proving the transfer for spherical Hecke algebras. In Lie algebra case, it is not

very different from using just one function, but in group case one function is not enough,

and the endoscopic transfer has to incorporate both the matching of conjugacy classes

and the matching of functions. In the group case the latter has close connection to the

representations of the dual groups thanks to geometric Satake isomorphism.

1.2.1 Recall that the construction of mH-fibration involves choosing a monoid 𝔐, which

in turn corresponds to choosing what kind of Cartan double coset that can appear. To

make the discussion more precise, we replace Cartan double cosets with their image 𝖦𝗋𝜆𝐺

in affine Grassmannian 𝖦𝗋𝐺, in other words, the affine Schubert cells. In choosing 𝔐,

or equivalently the 𝜆’s, we are encoding the geometry of 𝖦𝗋𝜆𝐺, a local object, into mH-

fibration, a global one. It is not entirely accurate: in the end we are in fact encoding the

geometry of the closure 𝖦𝗋≤𝜆
𝐺 of 𝖦𝗋𝜆𝐺, i.e., the affine Schubert varieties, into mH-fibrations.

The precise statement is Theorem 6.10.2, called the local model of singularities. It is es-

sentially conjectured in [FN11, Conjecture 4.1], and Bouthier in [Bou17] gives the first

proof with some additional technical constraint using an ad hoc method. Bouthier’s re-

sult, as it turns out, will be too weak for proving fundamental lemma due to the technical
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constraint therein being too strict. In this paper we will give a more natural proof with

less constraint using deformation theory that partially solves the problem (e.g., when 𝐺

is adjoint). It seems our proof can be easily further optimized to fully solve the issue but

nevertheless we have not fully worked out the details at the time of writing.

Because mH-fibration will naturally encode 𝖦𝗋≤𝜆
𝐺 instead of 𝖦𝗋𝜆𝐺 (one can still take an

open substack so that the fibration really encodes 𝖦𝗋𝜆𝐺, but the resulting fibration is not

proper, making it harder to study cohomologically), it is also natural to consider the IC-

functions 𝑓𝜆 instead of the characteristic functions of the double cosets. To recall, the

intersection complex IC𝜆 on 𝖦𝗋≤𝜆
𝐺 induces a function on its 𝑘-points by Grothendieck’s

function-sheaf dictionary, whose pull back to 𝐺(𝐹) is the IC-function 𝑓𝜆. All the IC-

functions form an alternative basis of the spherical Hecke algebra to the characteristic

functions. On the other hand, by geometric Satake isomorphism, each IC𝜆 corresponds

to an irreducible representation 𝑉𝜆 of ̌𝐺 of highest weight 𝜆. Since �̌� is a subgroup of ̌𝐺,

the matching between functions in endoscopic transfer is easy to guess: the function 𝑓𝜆

should be matched with the sum of IC-functions 𝑓𝜆𝐻,𝑖
𝐻 of 𝐻, where 𝜆𝐻,𝑖 are the highest

weights (allowing repetitions) of �̌� obtained from restriction 𝑉𝜆 to �̌�.

1.2.2 This connection with the restriction functor from ̌𝐺 to �̌� turns out to be the clue

to solve the difficulty left near the end of previous section. Something we have avoided

talking about to this point is that the abelianization 𝔄𝔐 does not just record the 𝜆’s, but

also record their “multiplicities”, in other words, it records a multiset of cocharacters.

Note that it is different from the notion of “degree” or equivalently at how many points

on the curve does 𝜆 appear (e.g., the repeating number 𝑑 in [FN11]), because 𝔄𝔐 is an

absolute object and has nothing to do with the curve𝑋. Rather, this “multiplicity” simply

corresponds to the multiplicity of an irreducible representation in a given representation.

It is very nice because an irreducible ̌𝐺-representation is unlikely to stay irreducible when

restricted to �̌�, and the irreducible �̌�-representations in the decomposition will also have
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multiplicities in general. Therefore we will not lose multiplicities when utilizing monoids.

The upshot is that for any given monoid 𝔐 of 𝐺, there will be a canonically associated

monoid𝔐𝐻 (see Definition 2.5.15) of𝐻 that after some natural manipulations will induce

the correct transfer map that simultaneously take care of both the matching of conjugacy

classes and of functions.

1.2.3 Finding the correct monoid, however, is not the end of the story. In earlier papers

such as [Bou17,Chi19], there is another variant of mH-fibrations, called the restricted mH-

fibrations. The idea is instead of using the full monoid, we simply fix a number of points

on the curve 𝑋, and at each such point 𝑥 there is also a fixed cocharacter 𝜆𝑥 attached,

avoiding the whole monoid business. In Lie algebra setting, it is akin to instead of using

a line bundle 𝒪(𝐷) to twist the Lie algebra 𝔤 (so that poles can appear as any divisor

linearly equivalent to 𝐷), we fix the divisor 𝐷 and only allow poles to appear at 𝐷 up to

designated degrees.

This, of course, is not the right way to solve fundamental lemma in Lie algebra case,

and neither in the group case. Although it has the clear advantage of seeing how 𝜆 and

𝜆𝐻,𝑖’s are related to each other when both 𝐺 and 𝐻 are split, it quickly becomes a mess

when they are not. More importantly, the naive transfer maps between restricted mH-

fibrations obtained using this formulation does not seem to exhaust the entire endoscopic

locus but only part of it. The seemingly correct way, analogous to the Lie algebra case, is

then to use the monoid 𝔐, and pick a 𝑍𝔐-torsor ℒ of large “degree” (whatever it means),

and so on. What is shocking, however, is that even this method is not correct in the group

case.

The reason is very simple: the monoids 𝔐 and 𝔐𝐻 have different centers. It can

already be seen in groups themselves: 𝐻 has less roots than 𝐺, so naturally its center

is larger. At monoid level, because we need to take care of the restriction functor Res ̌𝐺
�̌�,

every 𝜆𝐻,𝑖 in the decomposition will contribute to the rank of the center 𝑍𝔐,𝐻 of 𝔐𝐻,
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making it much, much larger than 𝑍𝔐. Moreover, there is no map from 𝑍𝔐,𝐻 to 𝑍𝔐

whatsoever, just like the center of 𝐻, which, although embeds into 𝐺, does not map to

the center of 𝐺.

Fortunately, the solution to this problem is also very simple: one simply takes the

preimage (which in fact will be well-defined) of 𝑍𝔐 in 𝔐𝐻, denoted by 𝑍𝜅
𝔐. Still, 𝑍𝜅

𝔐 is

also much larger than 𝑍𝔐, but we at least will have a map

[ℭ𝔐,𝐻/𝑍𝜅
𝔐] → [ℭ𝔐/𝑍𝔐], (1.2.1)

compatible with the map between classifying stacks 𝔹𝑍𝜅
𝔐 → 𝔹𝑍𝔐. This is analogue to

the map [𝔠𝐻/𝔾m] → [𝔠𝐺/𝔾m] in Lie algebra case, which further maps down to 𝔹𝔾m.

Choosing a line bundle 𝒪(𝐷) is the same as taking the fiber over 𝒪(𝐷) ∈ 𝔹𝔾m(𝑋), and

such choice is possible because on both 𝐺-side and 𝐻-side we use 𝔾m. In group case, we

cannot afford to fix any torsor because 𝑍𝜅
𝔐 and 𝑍𝔐 are different, and all we can do is to

use the whole map (1.2.1). It turns out to be the correct answer. In Lie algebra case, it

is analogue to using the entire moduli of effective divisors instead of only using divisors

linearly equivalent to 𝐷. Of course, one has to throw away some components of small

degrees so that we have enough ampleness for geometric arguments, but that is more of

a technical issue.

1.2.4 The geometric transfer map in the group case is absolutely beautiful to look at.

To illustrate the point, we briefly discuss how it ties in with some features in the local

geometry and combine them with representation theory in a neat package.

In Lie algebra case, even though affine Springer fibers are highly singular, they still

has a lot of symmetries. Such symmetry can be described using the so-called regular

centralizer, first introduced in [DG02] and later extensively studied in [Ngô10]. In partic-

ular, there is an open dense subset (the regular locus) on which the symmetry group acts

simply transitively. This is one of the key ingredients in Ngô’s support theorem, which
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is used to prove fundamental lemma.

In group case, however, the story is more complicated. In [Chi19], Chi described the

irreducible components of multiplicative affine Springer fibers for groups in the case of

unramified conjugacy classes. He found that there are in general more than one open or-

bit of the symmetry group, and the union of those orbits is not dense in the multiplicative

affine Springer fiber. This makes basic questions like describing irreducible components

much harder, and one of the highlights of [Chi19] is to use global method to prove local

results like the dimension formula of multiplicative affine Springer fibers (contrary to

the case where the dimension formula of the usual affine Springer fiber is proved purely

locally). Because of the existence of the irregular components, it seems very hard to de-

termine the number of them, and similar phenomenon also appears in the study of affine

Deligne-Lusztig varieties (see [Chi19, § 3.9] for a more detailed discussion).

This phenomenon may be originally perceived as an issue, but now it appears to be

more of a feature rather than a bug. Indeed, fortunately Chi was able to describe the

irreducible components for unramified conjugacy classes, and it has close connection

with the Mirković-Vilonen (MV) cycles. For an unramified class 𝛾, one can associate a 𝑊-

orbit of cocharacters 𝜈𝛾 called the Newton point of 𝛾, and for convenience we regard it

as a dominant cocharacter. One necessary condition for the multiplicative affine Springer

fiber associated with 𝛾 and highest coweight 𝜆 to be non-empty is 𝜈𝛾 ≤ 𝜆, in other words,

𝜈𝛾 appears as a weight in the highest weight ̌𝐺-representation 𝑉𝜆. Chi showed that the

number of irreducible components modulo the symmetry group is exactly 𝑚𝜆𝜈𝛾 , the

weight multiplicity of 𝜈𝛾 in 𝑉𝜆. The presence of MV-cycles in Chi’s proof suggests that

not only do the numbers line up with weight multiplicities, but those components actually

are the weight vectors. This is indeed the case because it turns out one can describe the

Galois action (the same as some twisted Frobenius action since the conjugacy class is

unramified) on those components, and it can be identified with twisted Frobenius action

on 𝑉𝜆 induced by 𝐿-action.
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With this input in mind, let us now look at the geometric transfer map. In Lie algebra

case, the geometric transfer map is a closed embedding (see [Ngô10, § 6.3]), but in group

case, it is only a finite map (and far from being flat). The phenomenon we want to describe

can already be observed at the local level so we will substitute 𝑋 with a formal disc𝑋𝑣 for

convenience. Recall that over the formal disc, there is the pole determined by a dominant

cocharacter 𝜆, and the unramified conjugacy class supplies us with its Newton point 𝜈𝛾.

Together they are described as a point 𝑎 in the multiplicative Hitchin base (mH-base).

The geometric transfer map is induced by a canonical monoid (depending on the starting

monoid for 𝐺) for 𝐻, and since the transfer map is finite, there will be finitely many

points 𝑎𝐻,𝑖 in the mH-base for 𝐻 lying over the given point 𝑎 (we assume that 𝑎 does lie

in the image of transfer map from 𝐻). We also know that 𝑉𝜆 decomposes into a bunch of

irreducible �̌�-representations 𝑉′
𝜆𝐻,𝑖

. The set of 𝑎𝐻,𝑖’s that maps to 𝑎 is in bijection with

those 𝑉𝜆𝐻,𝑖 in which 𝜈𝛾 appears as a weight. Moreover, the weight multiplicity of 𝜈𝛾 in 𝑉𝜆

is of course the sum of the multiplicities of 𝜈𝛾 in each 𝑉′
𝜆𝐻,𝑖

. This fact plays very nicely

with both the connection with the dual group through geometric Satake isomorphism and

our proof of the support theorem for mH-fibrations (see § 9.9), which we will summarize

in the next section.

1.3 Support Theorem and Beyond

The proof of Theorem 1.0.1 follows the same general strategy in [Ngô10]. We have already

discussed several difficulties and features unique to the group case, and we summarize

them below:

• We use reductive monoids as replacement for Lie algebras, and the central group of

the monoid as replacement for 𝔾m-action.

• We cannot stick to one “universal” monoid for a group𝐺, instead, we have to develop

our theory for all very flat monoids.
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• For each chosen monoid𝔐 for𝐺, and each endoscopic group𝐻, there is a canonical

associated monoid 𝔐𝐻. It is essentially induced by the restriction functor Res ̌𝐺
�̌� of

representations.

• Unlike in Lie algebra case where a 𝔾m-torsor (or line bundle) is fixed, in group case

we cannot fix any torsor of the center 𝑍𝔐. Instead, we should consider the whole

moduli of 𝑍𝔐-torsors.

• The geometric transfer map has very deep connection with the dual group through

geometric Satake isomorphism, which also helps taking care of the matching of

(sum of) IC-functions.

• The choice of monoid corresponds to which IC-function we want to consider.

• It also relates to the perceived issue where there are irregular components in the

multiplicative affine Springer fibers.

1.3.1 Ngô’s support theorem in [Ngô10] has three main ingredients outside of the geo-

metric transfer map already established: a Picard stack acting on the Hitchin total space

induced by regular centralizer, a codimension estimate of the so-called 𝛿-strata, and a

description of the irreducible components of Hitchin fibers using so-called product for-

mula.

The action of the Picard stackmakes the Hitchin fibration into aweak abelian fibration,

so that the cohomology of Hitchin fibers can be described using the Tate module of the

Picard stack and is a free module in some sense. Such freeness result allows us to provide

an “upper bound” on the set of supports of the perverse summands appearing in the

decomposition theorem of [BBD82]. Such upper bound is essentially a vastly optimized

Goresky-MacPherson inequality in this special case (see [Ngô10, § 7.3]).

The codimension estimate of 𝛿-strata is proved using a codimension formula for the

root valuation strata studied in [GKM09]. It further improves the upper bound, so that
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only certain kind of 𝛿-strata can appear as supports, and the description of irreducible

components then implies that the only possible support is the unique largest one, hence

completely pinning down the supports.

1.3.2 In group case, we also have the three ingredients. First, the regular centralizer can

be defined in a similar way, albeit with more technical efforts, so that there is a Picard

action. Second, the codimension of 𝛿-strata is done by a parallel argument, in which

we need to study the multiplicative analogue of root valuation strata in a way similar to

[GKM09].

Finally, we need to describe the irreducible components of mH-fibers using product

formula (which does exist for mH-fibrations). As we noted, since locally there is no such

description for multiplicative affine Springer fibers (only a conjectural one), it is also

impossible to derive the description for mH-fibers using product formula. Fortunately, it

is not too bad. Upon analyzing the codimension estimate of 𝛿-strata in more details, we

found that in the end we only need to know the irreducible components of multiplicative

affine Springer fibers in the unramified case, which we do know about. Combining it with

an inductive argument, we are able to prove Theorem 1.0.1.

1.3.3 We would like to point out that the reason why we are unable to prove Theo-

rem 1.0.1 for general groups is only temporary. There are two main issues that we expect

to be patchable but have not been completely worked out.

The first reason is already mentioned in the previous section, namely the local model

of singularity Theorem 6.10.2 is still not strong enough to cover all the cases we want.

However, it is likely more due to expediency than the difficulty of the issue. The argument

for Theorem 6.10.2 as written has some obvious optimization to be done and we expect

a more elaborate argument will solve the remaining issue. See Remark 6.10.15.

The second reason is that we have not studied transfer factor itself in this paper in

any capacity. In [Ngô10] such problem is avoided because it has been already studied in
14



[Kot99], and can be conveniently skipped over if one uses the Kostant section. In group

case, there does not seem to be any corresponding study, and in many cases one can

get away with using the section constructed by Steinberg, but if the group contains a

semisimple factor of type 𝐴2𝑛 and is not split, then such section does not exist. In the

case of adjoint group and elliptic endoscopy, however, such deficiency will not cause any

essential problem seemingly due to coincidence.

Although transfer factor itself is extremely complicated, we do not expect the second

issue to be too bad either. Because in the end, we most likely only need to study the

transfer factor for the twisted quasi-split form of SL3 in order to solve our problem, which

may be doable by direct computations.

1.3.4 Even though mH-fibration already showed its usefulness in proving fundamental

lemma, at least in the adjoint case, we expect it leads to an even bigger field to explore,

and it is motivated by the result of our support theorem.

Unlike the Lie algebra case, we are unable to completely determine the set of supports,

but only an upper bound, in other words, a set of potential supports. These potential

supports have a very interesting property: given a “degree” in appropriate sense (similar

to deg(𝐷) in Lie algebra case) and consider the mH-fibration with given degree, then

potential support in it either come from endoscopy (in which case they do appear as

supports), or it looks like the embedding of the mH-fibration of a smaller degree, thus

forming an inductive structure on the potential supports.

Although it would be nice to determine whether those potential, inductive supports

appear as actual support or not, it is more exciting to think about its implication in a

bigger picture. We will avoid talking about anything too concrete since the author does

not really understand the phenomenon well, but at least we would like to predict that

there is a limit version of mH-fibrations. It will be similar to the relationship between

Beilinson-Drinfeld affine Grassmannians of various degrees and the Ran Grassmannian
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over the Ran space. So we may call this conjectural object Ran-mH-fibration. This object

should be able to geometrize the entire trace formula, while mH-fibration is the truncated

version. We also expect such object will be an object of interest for the so-called Beyond

Endoscopy program.

1.4 Structure of This Paper

Here is a summary of the content in each chapter. Many chapters are arranged very much

like the way in [Ngô10] not only because the logical structure therein is well-organized,

but it is also more convenient to compare with Lie algebra case.

In Chapter 2 we introduce some basic notations and setups in the absolute setting. We

will review some standard facts about reductive monoids and its invariant theory under

the adjoint action. The highlight of this chapter is the construction of the endoscopic

monoid and the transfer map at invariant-theoretic level. We will also give a formal state-

ment of the fundamental lemma at the end.

Chapter 3 studies the multiplicative valuation strata. It is a purely technical tool for

this paper and is mostly self-contained and can be read by itself. Chapter 5 is also aux-

iliary. It collects many global constructions needed for our discussions, including the

moduli of boundary divisors and a construction of global affine Schubert schemes using

reductive monoids. The latter is somewhat interesting by itself as by using monoids we

are able to define affine Schubert schemes without referring to affine Grassmannians.

Chapter 4 and Chapter 6 are more or less parallel to each other, except the latter has a

lot more content. Chapter 4 reviews constructions and properties of multiplicative affine

Springer fibers for groups. Chapter 6 studies the constructions of mH-fibrations and its

basic properties. Most of these two chapters are very similar to what is done in the Lie

algebra case, with two most notable new additions: the connections with MV-cycles in the

local setting, and the local model of singularities in the global setting. We also further
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discuss how the transfer map works in those settings.

In Chapter 7 and Chapter 8, we discuss various useful stratifications on the mH-base

and study cohomologies based on those stratifications. We will statement the (conjec-

tural) geometric stabilization theorem, of which we will be able to prove a weaker version.

There are two particularly new features: one is the notion of inductive strata, which will

be important in our support theorem; the other is a new kind of Hecke-type stack, from

which we can upgrade the traditional product formula over a point into a family. The lat-

ter will be particularly useful when we study the top ordinary cohomologies, as studying

them beyond just the rank of stalks will be necessary.

Chapter 9 contains the proof of the support theorem. The proof itself is surprisingly

close to the case of Lie algebra with perhaps the only important new ingredient being

the local model of singularity proved in Chapter 6. However, due to mH-fibers having

more complicated description of irreducible components, the implication of the support

theorem differs from the Lie algebra case, and this is where inductive strata and the

connection with MV-cycles come into play.

In Chapter 10, we review the point-counting framework done by the last chapter of

[Ngô10], and extend it slightly to make it more convenient. After that we will be able to

prove the fundamental lemma for adjoint groups.

Finally, in Chapter 11, we will discuss projects that are currently under construction

based on this paper, as well as promising future projects.

17



CHAPTER 2

REDUCTIVE MONOIDS AND INVARIANT THEORY

We start by reviewing some facts about the invariant theories of the adjoint action of a

reductive group 𝐺 on the simply-connected cover 𝐺sc of its derived subgroup and on a

very flat reductive monoid 𝔐 associated with 𝐺sc. The new results in this chapter are

mostly contained in § 2.5, where the canonical endoscopic monoid 𝔐𝐻 associated with

any given monoid 𝔐 and endoscopic group 𝐻 is defined. The endoscopic monoid plays

a key role throughout this paper. Proofs are mostly omitted for well-known facts but

references will be given when possible.

2.1 Quasi-split Forms

2.1.1 Let 𝑘 be a finite field with 𝑞 elements. Let 𝑘 be a fixed algebraic closure of 𝑘. Let

𝐆 be a split connected reductive group defined over 𝑘 of rank 𝑛𝐺 and semisimple rank

𝑟. We assume 𝑝 = char(𝑘) is larger than twice the Coxeter number of 𝐆. We fix once

and for all a split maximal 𝑘-torus 𝐓 of 𝐆 and a Borel subgroup 𝐁 containing 𝐓. Let 𝐔

be the unipotent radical of 𝐁. Let (𝕏,Φ, �̌�, Φ̌) be the root datum associated with (𝐆,𝐓),

and Δ = {𝛼1,… ,𝛼𝑟} (resp. Φ+) the set of simple (resp. positive) roots determined by 𝐁,

and let Δ̌ = {�̌�1,… , �̌�𝑟} (resp. Φ̌+) their duals. Let 𝕏+ (resp. �̌�+) be the set of dominant

characters (resp. cocharacters). Let 𝐖 = 𝑊(𝐆,𝐓) be the Weyl group, and let 𝑤0 ∈ 𝐖 be

the longest element with respect to 𝐁.

2.1.2 Let 𝐆der be the derived subgroup of 𝐆, and let 𝐆sc (resp. 𝐆ad) be the universal

cover (resp. adjoint quotient) of 𝐆der. We also use 𝐻sc (resp. 𝐻ad) to denote the preimage

(resp. image) of any subset 𝐻 ⊂ 𝐆 in 𝐆sc (resp. 𝐆ad). Let {𝜛1,… ,𝜛𝑟} be the set of fun-

damental weights of 𝐆sc, and (𝜌𝑖, 𝑉𝜛𝑖) be the corresponding Weyl module with highest

weight 𝜛𝑖. Let {�̌�1,… , �̌�𝑟} be the set of fundamental coweights. Let 𝜌 (resp. ̌𝜌) be the
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half-sum of all positive roots (resp. coroots).

2.1.3 We fix a 𝑘-pinning spl = (𝐓,𝐁,𝐱+ ≔ {𝐔𝛼}𝛼∈Δ) of 𝐆, where 𝐔𝛼 ∶ 𝔾a → 𝐆 is a one-

parameter unipotent group associated with simple root 𝛼. The associated groups 𝐆der,

𝐆sc and 𝐆ad all come with pinnings induced by (𝐓,𝐁, 𝐱+). Using this 𝑘-pinning, we may

identify the group Out(𝐆) of outer automorphisms of 𝐺 with a subgroup of Aut𝑘(𝐆).

This is a discrete group, possibly infinite. Given any 𝑘-scheme 𝑋, we can consider étale

Out(𝐆)-torsors over 𝑋.

2.1.4 Given such a Out(𝐆)-torsor 𝜗𝐺, we may obtain a quasi-split twisted form

𝐺 = 𝐆×Out(𝐆) 𝜗𝐺

of 𝐆 on 𝑋. This is a reductive group scheme over 𝑋 together with a pinning spl =

(𝑇,𝐵,𝑥+) relative to 𝑋. The torsor 𝜗𝐺 also induces a Out(𝐆ad) = Out(𝐆sc)-torsor, still

denoted by 𝜗𝐺. It induces quasi-split forms 𝐺ad and 𝐺sc over 𝑋. The Weyl group 𝐖

induces a Weyl group scheme 𝑊 over 𝑋, which is an étale group scheme.

2.1.5 If we fix a geometric point 𝑥 ∈ 𝑋, then any étale Out(𝐆)-torsor can be given by a

continuous homomorphism

𝜗•
𝐺 ∶ 𝜋1(𝑋,𝑥) ⟶ Out(𝐆).

In this way the group 𝐺 comes with a canonical geometric point 𝑥𝐺 over 𝑥, and we use

(𝐺,𝑥𝐺) for this pointed twisted form.
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2.2 Invariant Theory of the Group

2.2.1 The group 𝐆 acts on 𝐆sc by adjoint action. Let 𝜒∶ 𝐆sc → 𝐆sc⫽Ad(𝐆) be the GIT-

quotient map.

Theorem 2.2.2 ([Ste65]). The inclusion 𝐓sc ↪ 𝐆sc induces an isomorphism

𝐂 ≔ 𝐓sc⫽𝐖
∼
⟶ 𝐆sc⫽Ad(𝐆sc) = 𝐆sc⫽Ad(𝐆).

In addition, both schemes are isomorphic to affine space 𝔸𝑟 whose coordinates are given

by the traces 𝜒𝑖 of the fundamental representations (𝜌𝑖, 𝑉𝜛𝑖) of 𝐆sc.

Definition 2.2.3. A 𝐆-orbit Ad(𝐆)(𝛾) (𝛾 ∈ 𝐆sc) is called regular if its stabilizer has

minimal dimension among all stabilizes. It is called semisimple if it contains an element

in 𝐓sc. It is called regular semisimple if it is both regular and semisimple. The union of

regular (resp. semisimple, resp. regular semisimple) orbits is denoted by 𝐆sc
reg (resp. 𝐆sc

ss,

resp. 𝐆sc
rs).

2.2.4 The regular locus 𝐆sc
reg is open and the restriction of 𝜒 to 𝐆sc

reg is smooth and

surjective. The semisimple locus is dense but not open in 𝐆sc. Their intersection 𝐆sc
rs ,

however, remains open dense in 𝐆sc, and its image in 𝐂 is denoted by 𝐂rs. Consider the

discriminant function on 𝐓:

Disc ≔ ∏
𝛼∈Φ

(1 − 𝑒𝛼).

This function is 𝐖-invariant, hence descends to a function on 𝐂, still denoted by Disc. It

defines an effective principal divisor 𝐃 on 𝐂, called the discriminant divisor. In fact, 𝐃 is

a reduced divisor, so it makes sense to talk about its singular locus 𝐃sing.

Proposition 2.2.5 ([Ste65]). The regular semisimple locus 𝐂rs is equal to the complement
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of the divisor𝐃 and thus is an open subset of 𝐂. Moreover, it is exactly the locus over which

the fiber of 𝜒 consists of a single 𝐆-orbit.

2.2.6 Steinberg quasi-section The quotient map 𝜒 admits many sections, just like in

the Lie algebra case. The difference is that the section we want to use lacks an explicit

formula, unlike for example the Kostant section for Lie algebras. Instead, what Steinberg

explicitly constructed is a quasi-section. A morphism 𝑓 in a category is called a quasi-

section to morphism 𝑔 if 𝑓 ∘ 𝑔 is an automorphism (not necessarily identity).

Definition 2.2.7. Fix our choice of simple roots Δ earlier. A Coxeter datum is a pair (𝜉, ̇𝑆),

where

(1) 𝜉∶ {1,… ,𝑟} → Δ is a bijection (i.e. a total ordering on the set of simple roots),

(2) ̇𝑆 is a set of representatives ̇𝑠𝛼 in 𝐍 = N𝐆(𝐓) of simple reflections determined by

Δ.

ACoxeter element (after fixing a set of simple reflections) of𝐖 is one that can be written as

𝑤 = 𝑤𝜉 = 𝑠𝜉(1)⋯𝑠𝜉(𝑟) for some 𝜉. Denote by Cox(𝐖,Δ) the set of all Coxeter elements

of 𝐖.

Fix a Coxeter datum (𝜉, ̇𝑆). Let 𝛽𝑗 = 𝜉(𝑗) be the simple root corresponding to 𝑠𝜉(𝑗).

Recall we have one-parameter groups 𝐔𝛼 in the pinning spl, such that Ad𝑡(𝐔𝛼(𝑥)) =

𝐔𝛼(𝛼(𝑡)𝑥) for all 𝑡 ∈ 𝐓 and 𝑥 ∈ 𝔾a. Let

𝜖(𝜉, ̇𝑆) ∶ 𝐂 ≅ 𝔸𝑟 ⟶ 𝐆sc

(𝑥1,… ,𝑥𝑟) ⟼
𝑟
∏
𝑗=1

𝐔𝛽𝑗(𝑥𝑗) ̇𝑠𝜉(𝑗),

where the product on the right-hand side is considered taken in the specified order. This

is the Steinberg quasi-section associated with Coxeter datum (𝜉, ̇𝑆). We also call the image

Im 𝜖(𝜉, ̇𝑆) a Steinberg cross-section. We summarize the results in the following theorem.
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Theorem 2.2.8 ([Ste65]). For each pair (𝜉, ̇𝑆), the map 𝜖(𝜉, ̇𝑆) is a quasi-section of 𝜒. More-

over, Im 𝜖(𝜉, ̇𝑆) is contained in the regular locus, and has transversal intersection with each

regular orbit.

Once spl is fixed, the construction of Steinberg quasi-section relies on two choices: a

total ordering of the simple roots, and representatives of simple reflections. The influence

of the choices is summarized below.

Proposition 2.2.9 ([Ste65, Lemma 7.5 and Proposition 7.8]). For any Coxeter data (𝜉, ̇𝑆)

and (𝜉′, ̇𝑆′),

(1) if 𝜉 = 𝜉′, then there exists 𝑡, 𝑡′ ∈ 𝐓 such that Im 𝜖(𝜉, ̇𝑠′) = 𝑡′ Im 𝜖(𝜉, ̇𝑆) = 𝑡 Im 𝜖(𝜉, ̇𝑆)𝑡−1.

(2) if ̇𝑆 = ̇𝑆′, then for any 𝑥,𝑥′ ∈ 𝔸𝑟 such that 𝑥𝜉(𝑗) = 𝑥′
𝜉′(𝑗) for 1 ≤ 𝑗 ≤ 𝑟, 𝜖(𝜉, ̇𝑆)(𝑥)

and 𝜖(𝜉
′, ̇𝑆)(𝑥′) are 𝐆-conjugate. In fact, such conjugation can be made functorially

for any 𝑘-algebra 𝑅. In other words, the transporter from 𝜖(𝜉, ̇𝑆)(𝐂) to 𝜖(𝜉
′, ̇𝑆)(𝐂) is

a trivial torsor under the centralizer group scheme over 𝜖(𝜉, ̇𝑆)(𝐂).

2.2.10 Regular centralizer The universal centralizer group scheme 𝐈 → 𝐆sc restricts

to a smooth group scheme over the regular locus 𝐈reg → 𝐆sc
reg. Since generically the

centralizer is a torus, 𝐈reg → 𝐆sc
reg is a commutative group scheme. Therefore one can

utilize the descent argument in [Ngô10, Lemme 2.1.1] to obtain the following result.

Proposition 2.2.11. There is a unique smooth commutative group scheme 𝐉 → 𝐂 with a

𝐆-equivariant isomorphism

𝜒∗𝐉|𝐆sc
reg

∼
⟶ 𝐈reg,

which can be extended to a homomorphism 𝜒∗𝐉 → 𝐈.

Definition 2.2.12. The group scheme 𝐉 → 𝐂 is called the regular centralizer.
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There is another description of 𝐉 using the cameral cover 𝜋∶ 𝐓sc → 𝐂, similar to the

Lie algebra case as in [DG02] and [Ngô10]. Consider the trivial family of torus 𝑝2 ∶ 𝐓 ×

𝐓sc → 𝐓sc (𝑝2 means the second projection), and we have Weil restriction

Π𝐆 ≔ 𝜋∗(𝐓 × 𝐓sc),

on which 𝐖 acts diagonally. Since 𝜋 is finite flat, Π𝐆 is representable. Moreover, since

𝐓× 𝐓sc is smooth, so is Π𝐺. Over 𝐂rs, 𝜋 is Galois étale with Galois group 𝐖, hence Πrs
𝐆

is a torus. Since char(𝑘) does not divide the order of 𝐖, we have a smooth group scheme

𝐉1 over 𝐂

𝐉1 ≔ Π𝐖
𝐆 .

Let 𝐉0 ⊂ 𝐉1 be the open subgroup scheme of fiberwise neutral component.

Similar to [Ngô10, Définition 2.4.5], we consider this subfunctor 𝐉′ of 𝐉1: for a 𝐂-

scheme 𝑆, 𝐉′(𝑆) consists of points

𝑓∶ 𝑆×𝐂 𝐓sc → 𝐓

such that for every geometric point 𝑥 ∈ 𝑆 ×𝐂 𝐓sc, if 𝑠𝛼(𝑥) = 𝑥 for a root 𝛼, then

𝛼(𝑓(𝑥)) ≠ −1. Notice that on 𝐓sc, the condition 𝑠𝛼(𝑥) = 𝑥 is the same as 𝑥 ∈ ker𝛼.

Lemma 2.2.13. The subfunctor 𝐉′ is representable by an open subgroup scheme of 𝐉1

containing 𝐉0.

Proof. The proof is entirely parallel to [Ngô10, Lemme 2.4.6]. Indeed, it suffices to prove

this claim after finite flat base change to 𝐓sc.

On𝐓sc, the discriminant divisor is the union (withmultiplicities) of subgroups ker𝛼 ⊂

𝐓sc for all roots𝛼 ∈ Φ. By adjunction, we havemap 𝐉1×𝐂𝐓sc → 𝐓×𝐓sc, whose restriction
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to ker𝛼 factors through fixed-point subgroup 𝐓𝑠𝛼 × ker𝛼. Therefore we have map

𝐉1 ×𝐂 ker𝛼
𝛼
⟶ {±1}.

The inverse image of −1 is an open and closed subset of 𝐉1 ×𝐂 ker𝛼, hence a Cartier

divisor on 𝐉1×𝐂𝐓sc. The subfunctor 𝐉′×𝐂𝐓sc is the complement of these Cartier divisors,

hence an open subgroup scheme. In addition, 𝐉′ contains 𝐉0. ∎

Proposition 2.2.14. There exists a canonical open embedding of group schemes 𝐉 → 𝐉1

that identifies 𝐉 with subgroup scheme 𝐉′.

Proof. The claim about open embedding is proved in [Chi19, Proposition 2.3.2]. In fact,

the argument in loc. cit. shows that if𝐆 = 𝐆sc, then 𝐉 → 𝐉1 is an isomorphism. Moreover,

since on 𝐓sc, ker𝛼 and 𝐓sc,𝑠𝛼 coincide for any root 𝛼, we also see that 𝐉′ = 𝐉1.

In general, we have a canonical map 𝐉sc → 𝐉 and 𝐉 is generated by the image of 𝐉sc and

𝐙𝐆. On the other hand, the map 𝐓sc → 𝐓 induces canonical map 𝐉sc,1 → 𝐉1 compatible

with the map 𝐉sc → 𝐉. By definition of 𝐉′ we also have a third map 𝐉sc,′ → 𝐉′. This means

that the image of 𝐉sc,1 is contained in 𝐉′. Since on 𝐙𝐆 all roots are trivial, we know that

the image of 𝐉 is contained in 𝐉′.

It remains to show that 𝐉 → 𝐉′ is an isomorphism. Then we can repeat the “codi-

mension 2” argument of [Chi19, Proposition 2.3.2] (see also [Ngô10, Proposition 2.4.7])

to reduce the problem to the case where 𝐆 = SL2, GL2, or PGL2. The direct calculation is

omitted. ∎

Remark 2.2.15. The proof we present here is subtly different from [Ngô10, Proposi-

tion 2.4.7], where there is a surjection 𝜋0(𝐙𝐆) → 𝜋0(𝐉𝔤) = 𝐉𝔤/𝐉0𝔤 (here 𝐉𝔤 stands for

the regular centralizer for the Lie algebra of 𝐆). It is not so in group case. For exam-

ple, suppose 𝐆 is simple of type 𝐺2. Then 𝐆 = 𝐆ad = 𝐆sc. Let 𝑥 ∈ 𝐓 be such that

C𝐆(𝑥)0 ≅ SL3. Let 𝑢 ∈ 𝑈3 ≔ 𝐔 ∩ SL3 be a regular unipotent element in SL3. Assum-

ing char(𝑘) is large enough, then C𝐆(𝑥𝑢) contains CSL3(𝑢) = 𝑍SL3 × C𝑈3(𝑢) with finite
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index. So C𝐆(𝑥𝑢) is disconnected but 𝐙𝐆 is trivial.

2.2.16 Let𝐺 be a quasi-split form of𝐆 over 𝑘-scheme𝑋, induced by anOut(𝐆)-torsor𝜗𝐺.

We can twist almost every construction in the invariant theory of 𝐆 by 𝜗𝐺 and obtain a

twisted form over 𝑋. First we still have adjoint action of 𝐺 on 𝐺sc, with invariant quotient

𝜒∶ 𝐺sc → ℭ = 𝐺sc⫽Ad(𝐺). We also have the natural isomorphism

𝑇⫽𝑊
∼
⟶ 𝐺sc⫽Ad(𝐺).

The discriminant is invariant under Out(𝐆), so we have a divisor 𝔇 ⊂ ℭ relative to 𝑋.

The open loci of regular and regular semisimple orbits are stable under Out(𝐆), and so

we still have the twisted form of regular centralizer 𝔍 → ℭ over 𝑋, as well as its Galois

construction 𝔍1.

2.2.17 An important difference here compared to Lie algebra case is that Steinberg quasi-

section does not necessarily exist, since it may not be stable under Out(𝐆). Nevertheless,

one may obtain a weaker result as follows. The Steinberg quasi-sections depends on a

choice of representatives of simple reflections in 𝐆sc. Using the pinning spl, one can

make such a choice that is stable under Out(𝐆). Indeed, the root vectors in 𝐱+ can each

be extended to a unique 𝔰𝔩2-triple, hence an opposite pinning with root vectors denoted

by 𝐱−. For each simple root 𝛼𝑖 ∈ Δ (under 𝐁), we let

̇𝑠𝑖 = 𝐔𝛼𝑖(1)𝐔−𝛼𝑖(−1)𝐔𝛼𝑖(1),

where 𝐔𝛼𝑖 (resp. 𝐔−𝛼𝑖) are the one-parameter unipotent subgroups determined by 𝐱+

(resp. 𝐱−).

The Steinberg quasi-section also depends on a choice of ordering on Δ. When 𝐆sc

does not contain any simple factor of type 𝐴2𝑚, any two simple roots conjugate under
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Out(𝐆) are not linked in the Dynkin diagram. Therefore by grouping together Out(𝐆)

orbit when making the ordering, we can make such Steinberg quasi-section equivariant

under Out(𝐆). Thus a section to 𝜒 always exists as long as 𝐆sc does not have any simple

factor of type 𝐴2𝑚.

In fact, we have a slightly stronger result: let 𝐆′ be the direct factor of 𝐆sc consisting

of all its simple factors of types 𝐴2𝑚 (for various𝑚), which is preserved by Out(𝐆). Then

a Steinberg quasi-section exists for 𝐺sc as long as the twist 𝐺′ of 𝐆′ is split.

In the remaining cases (i.e., 𝐺′ is a non-trivial outer twist), we cannot hope to con-

struct a section whose image lies in the regular locus. Rather, we have a weaker result by

Steinberg, which is still very helpful later.

Theorem 2.2.18 ([Ste65, Theorem 9.8]). Let 𝐺 be a quasi-split semisimple and simply-

connected group over a perfect field 𝐾, then 𝐺(𝐾) → ℭ(𝐾) is surjective.

The statement in loc. cit. requires 𝐾 to be perfect, but the proof in fact works for

arbitrary field provided that char(𝐾) is not too small for 𝐺 (e.g., larger than twice the

Coxeter number of 𝐺). If 𝐾 is perfect, then the result refines to that 𝐺ss(𝐾) → ℭ(𝐾) is

surjective. We will postpone the details until Theorem 2.4.24 since we need to extend the

above result to reductive monoids.

2.3 Review of Very Flat Reductive Monoids

The Lie algebra of 𝐆 carries a natural 𝔾m-action from its vector space structure, which is

useful in global constructions. The group 𝐆sc, however, has no such symmetry built in.

Therefore, we must embed 𝐆sc into a 𝐆-space where a similar “scaling” is possible. The

quintessential example of this is the embedding of SL𝑛 into Mat𝑛. In general, we use the

theory of very flat reductive monoids.

26



2.3.1 An algebraic semigroup over 𝑘 is just a 𝑘-scheme of finite type 𝑀 together with

a multiplication morphism 𝑚∶ 𝑀 × 𝑀 → 𝑀, such that the usual commutative diagram

of associativity holds. If there exists a multiplicative identity 𝑒∶ Spec𝑘 → 𝑀, then 𝑀 is

an algebraic monoid over 𝑘. We will only consider monoids that are affine, integral and

normal as schemes. If the subgroup 𝑀× of invertible elements of 𝑀 is a reductive group,

then we call 𝑀 a reductive monoid. In this case, we denote the derived subgroup of 𝑀×

by 𝑀der, and call it the derived subgroup of 𝑀.

Example 2.3.2. A (normal) toric variety 𝑀 is a reductive monoid, whose unit group 𝑀×

is the torus acting on it, and whose derived subgroup is the trivial group. The variety

Mat𝑛 with matrix multiplication is also a reductive monoid, whose unit group is GL𝑛 and

derived subgroup is SL𝑛.

The category of normal reductive monoids is classified by Renner (see e.g., [Ren05])

with the help of their unit groups. It is well known that over an algebraically closed field

𝐾, the category of normal affine toric varieties 𝐴 of a fixed torus 𝑇 is equivalent to that of

strictly convex and saturated cones 𝒞 ⊂ �̌�(𝑇). If 𝑇 ⊂ 𝐺 is a maximal torus in a reductive

group over 𝐾 with Weyl group 𝑊, and suppose 𝒞 is stable under 𝑊-action, then the 𝑊-

action extends over 𝐴. Renner’s classification theorem states that reductive monoids 𝑀

with unit group 𝐺 is classified by such cones 𝒞. More precisely, we have the following

result.

Theorem 2.3.3 ([Ren05, Theorems 5.2 and 5.4]). Let 𝐺 be a reductive group over an alge-

braically closed field with maximal torus 𝑇 and Weyl group 𝑊 = 𝑊(𝐺,𝑇).

(1) Let 𝑇 ⊂ 𝐴 be a normal affine toric variety such that the 𝑊-action on 𝑇 extends over

𝐴. Then there exists a normal monoid 𝑀 with unit group 𝐺 such that 𝑇 is isomorphic

to 𝐴.

(2) Let 𝑀 be any normal reductive monoid with unit group 𝐺, then the submonoid 𝑇 is

normal.
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(3) If 𝑀1 and 𝑀2 are such that we have a commutative diagram of monoids

𝑇1 𝑇1 𝐺1

𝑇2 𝑇2 𝐺2

Then this diagram extends to a unique homomorphism 𝑀1 → 𝑀2. Moreover, if the

vertical arrows are isomorphisms, then 𝑀1 ≅ 𝑀2.

Remark 2.3.4. The result is proved over an algebraically closed field, but it is not hard to

see that if 𝐺 is split over a perfect field 𝑘, 𝑇 is a split maximal torus, and all the maps

in the commutative diagram are defined over 𝑘, then 𝑀1 → 𝑀2 is also defined over 𝑘 by

looking at Gal(𝑘/𝑘)-action. The existence of 𝑀 given 𝐺 and 𝐴 is proved using 𝑘-rational

representations which are well-defined since 𝐺 is split. See loc. cit. for details.

2.3.5 We first give an explicit description of a very important monoid𝐌with𝐌der ≃ 𝐆sc.

Consider the group

𝐆+ ≔ (𝐓sc ×𝐆sc)/𝐙sc,

where the center 𝐙sc of 𝐆sc acts on 𝐓sc ×𝐆sc anti-diagonally. There is a maximal torus

𝐓+ = (𝐓sc×𝐓sc)/𝐙sc in 𝐆+, and we denote 𝐙+ = 𝐙𝐆+ ≅ 𝐓sc. The character lattice of 𝐓+

is identified as

𝕏(𝐓+) = {(𝜆,𝜇) ∈ 𝕏(𝐓sc) × 𝕏(𝐓sc) | 𝜆 − 𝜇 ∈ 𝕏(𝐓ad)},

and its cocharacter lattice is identified as

�̌�(𝐓+) = {(�̌�, �̌�) ∈ �̌�(𝐓ad) × �̌�(𝐓ad) | �̌� + �̌� ∈ �̌�(𝐓sc)}.

28



So we have characters (𝛼, 0) (𝛼 ∈ Φ) of 𝐓+ which are also one-dimensional representa-

tions of 𝐆+. On the other hand, any 𝑘-rational representation 𝜌 of highest weight 𝜆 of

𝐆sc extends to 𝐆+ by the formula

𝜌+(𝑧,𝑔) = 𝜆(𝑧)𝜌(𝑔),

which is easily seen well-defined. Consider the representation of 𝐆+

𝜌⋆ ≔
𝑟

⨁
𝑖=1

(𝛼𝑖, 0) ⊕
𝑟

⨁
𝑖=1

𝜌𝑖+.

We take the normalization of the closure of 𝐆+ in 𝜌⋆, and denote it by Env(𝐆sc). This is

the universal monoid associated with 𝐆sc, constructed by Vinberg in characteristic 0 and

Rittatore in all characteristics.

2.3.6 Given any reductive monoid𝐌with derived subgroup𝐆sc, we have a action of𝐆 by

multiplication on the left, and another one by inverse-multiplication on the right. These

two (left) actions commute, hence combine to a 𝐆×𝐆-action on 𝐌. The GIT quotient

𝛼𝐌 ∶ 𝐌 ⟶ 𝐀𝐌 ≔ 𝐌⫽(𝐆sc ×𝐆sc)

is called the abelianization of 𝐌, in the sense that it is the largest quotient monoid of 𝐌

that is commutative.

Theorem 2.3.7 ([Vin95,Rit01]). Let 𝐙𝐌 be the center of 𝐌×, 𝐙𝐌,0 its neutral component,

and 𝐙0 = 𝐙𝐌,0 ∩𝐆sc, then we have that

(1) 𝐀𝐌 is a normal commutative monoid with unit group 𝛼𝐌(𝐙𝐌) ≃ 𝐙𝐌,0/𝐙0,

(2) 𝛼−1
𝐌 (1) = 𝐆 and 𝛼−1

𝐌 (𝛼𝐌(𝐙𝐌,0)) = 𝐆+,

(3) 𝛼𝐌(𝐙𝐌,0) = 𝐀𝐌, and 𝐀𝐌 ≃ 𝐙𝐌,0/𝐙0, where 𝐙𝐌,0 denotes the Zariski closure of
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𝐙𝐌,0 in 𝐌.

2.3.8 Given a homomorphism of two reductive monoids 𝜙∶ 𝐌′ → 𝐌, by the universal

property of GIT quotient it induces a homomorphism 𝜙𝐀 ∶ 𝐀𝐌′ → 𝐀𝐌 that fits into the

commutative square

𝐌′ 𝐌

𝐀𝐌′ 𝐀𝐌

𝜙

𝛼𝐌′ 𝛼𝐌
𝜙𝐀

. (2.3.1)

Definition 2.3.9. The homomorphism𝜙∶ 𝐌′ → 𝐌 is called excellent if (2.3.1) is Cartesian.

Definition 2.3.10. A reductive monoid 𝐌 is called very flat if 𝛼𝐌 ∶ 𝐌 → 𝐀𝐌 is flat with

integral fibers. Let ℱℳ(𝐆sc) be the category in which:

(1) objects are very flat reductive monoids 𝐌 with 𝐌der ≅ 𝐆sc,

(2) morphisms from 𝐌′ to 𝐌 are excellent homomorphisms 𝜙∶ 𝐌′ → 𝐌.

Let ℱℳ0(𝐆sc) be the full subcategory of ℱℳ(𝐆sc) whose objects are very flat monoids

with element 0 (one such that 0𝑥 = 𝑥0 = 0 for all 𝑥 ∈ 𝐌).

Theorem 2.3.11 ([Vin95,Rit01]). If 𝐌 ∈ ℱℳ(𝐆sc), then

Homℱℳ(𝐆sc)(𝐌,Env(𝐆sc)) ≠ ∅,

and is a singleton if 𝐌 ∈ ℱℳ0(𝐆sc). In other words, Env(𝐆sc) is a versal (resp. universal)

object in ℱℳ(𝐆sc) (resp. ℱℳ0(𝐆sc)).

Remark 2.3.12. Theorem 2.3.11 implies that a homomorphism 𝐌 → Env(𝐆sc) will induce

a homomorphism 𝜙𝐙𝐌 ∶ 𝐙𝐌 → 𝐓sc whose restriction on 𝐙sc is the identity. In case that

𝐌 = Env(𝐆sc), 𝜙𝐙𝐌 = id𝐓sc .
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2.3.13 The abelianization of the universal monoid Env(𝐆sc) is an affine space of dimen-

sion 𝑟, whose coordinate functions can be exactly given by 𝑒(𝛼,0) where 𝛼 ∈ Δ are simple

roots. In the language of toric varieties, 𝐀Env(𝐆sc) is the 𝐓ad-toric variety associated with

cone generated by fundamental coweights �̌�𝑖 ∈ �̌�(𝐓ad).

If 𝐀 is any affine normal toric variety, and 𝜙∶ 𝐀 → 𝐀Env(𝐆sc) is a homomorphism

of algebraic monoids, then the pullback of Env(𝐆sc) through 𝜙 gives an object 𝐌 ∈

ℱℳ(𝐆sc) with abelianization 𝐀𝐌 = 𝐀, and by Theorem 2.3.11, every 𝐌 ∈ ℱℳ(𝐆sc)

arises in this way.

An important class of monoids consists of those corresponding to the map 𝔸1 →

𝐀Env(𝐆sc) given by a dominant cocharacter �̌� ∈ �̌�(𝐓ad). We will denote such monoid by

𝐌(�̌�). More generally, wemay also consider themonoid formed using a tuple of dominant

cocharacters �̌� = (�̌�1,… , �̌�𝑚) (allowing repetitions), or equivalently, a multiplicative map

𝔸𝑚 → 𝐀Env(𝐆sc). We shall denote this monoid by 𝐌(�̌�).

More generally, if �̌� is a tuple of dominant cocharacters in �̌�(𝐓), it induces a tuple �̌�ad

of dominant cocharacters in �̌�(𝐓ad). The induced map 𝔸𝑚 → 𝐀Env(𝐺sc) also produces a

monoid, still denoted by 𝐌(�̌�).

Example 2.3.14. When 𝐆sc = SL𝑛 and 𝐌 = Mat𝑛, the abelianization map is the determi-

nant, and the excellent map 𝐌 → Env(SL𝑛) is the pullback of

𝐀𝐌 ≅ 𝔸1 ⟶ 𝐀Env(SL𝑛) ≅ 𝔸𝑛−1

corresponding to cocharacter �̌�𝑛−1, and the map𝜙𝐙𝐌 is the cocharacter �̌�1+2�̌�2+⋯+

(𝑛− 1)�̌�𝑛−1 = 𝑛�̌�𝑛−1. In other words, Mat𝑛 = 𝐌(�̌�𝑛−1).

2.3.15 It is sometimes convenient to define a numerical boundary divisor 𝐁𝐌 on 𝐂𝐌 as

the complement of 𝐂×
𝐌 ≔ 𝐀×

𝐌 × 𝐂, with reduced scheme structure. It is a Weil divisor

and when 𝐂𝐌 is factorial, it is an effective Cartier divisor. In this paper we will mostly be
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interested in those𝐌 such that𝐀𝐌 is isomorphic to an affine space 𝔸𝑚, in which case 𝐁𝐌

is cut out by the product of the 𝑚 coordinate functions, hence principal. Note that 𝐁𝐌

is in general not the pullback of 𝐁Env(𝐆sc), but they have the same underlying topological

space.

2.3.16 The abelianization map admits a section as follows: for 𝐌 = Env(𝐆sc), let 𝐓ad →

𝐓+ be the map 𝑡 ↦ (𝑡, 𝑡−1). It is well-defined and extends to a map 𝛿𝐌 ∶ 𝐀𝐌 → 𝐌,

which is in fact a section of 𝛼𝑀. For general monoid in ℱℳ(𝐆sc), the formula is 𝑧 ↦

(𝑧,𝜙𝐙𝐌(𝑧)−1).

2.3.17 Let 𝐓𝐌 be the maximal torus of 𝐌× containing 𝐓sc, and 𝐓𝐌 its closure in 𝐌. It is

a normal affine toric variety under 𝐓𝐌, and when 𝐌 = Env(𝐆sc), its character cone 𝒞∗
𝐓𝐌

and cocharacter cone 𝒞𝐓𝐌
have the following description:

𝒞∗
𝐓𝐌

= {(𝜆,𝜇) ∈ 𝕏(𝐓+) | 𝜆 ≥ 𝑤(𝜇),𝑤 ∈ 𝐖}

= ℕ({(𝛼, 0) | 𝛼 ∈ Δ}∪ {(𝜛𝑖,𝑤(𝜛𝑖)) | 1 ≤ 𝑖 ≤ 𝑟 and 𝑤 ∈ 𝐖}) ,

𝒞𝐓𝐌
= {(�̌�, �̌�) ∈ �̌�(𝐓+) | �̌� ∈ �̌�(𝐓ad)+ and �̌� ≥ −𝑤(𝜇),𝑤 ∈ 𝐖}.

It is known that 𝐓𝐌 is Cohen-Macaulay.

2.4 Invariant Theory of Reductive Monoids

2.4.1 Let 𝐌 ∈ ℱℳ(𝐆sc) be any monoid. We have the adjoint action of 𝐆sc on 𝐌. It can

be viewed as the restriction of the 𝐆sc × 𝐆sc-action to the diagonal embedding of 𝐆sc.

The center 𝐙sc acts trivially, so the action factors through 𝐆ad, hence lifts to a 𝐆-action

on 𝐌. The GIT quotient space 𝐌⫽Ad(𝐆) maps to 𝐀𝐌. We also have the cameral cover

𝜋𝐌 ∶ 𝐓𝐌 → 𝐓𝐌⫽𝐖.

On the other hand, the fundamental representation 𝜌𝑖 extends to Env(𝐆sc) by its
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definition, still denoted by 𝜌𝑖+. Therefore, the character function 𝜒𝑖+ makes sense for

arbitrary 𝐌 ∈ ℱℳ(𝐆sc) after realizing it as a pullback of Env(𝐆sc). Thus, we have a map

𝐌 → 𝐀𝐌 ×𝐂, which factors through the GIT quotient map 𝜒𝐌 ∶ 𝐌 → 𝐂𝐌 ≔ 𝐌⫽Ad(𝐆).

Theorem 2.4.2. The maps 𝐓𝐌 → 𝐌 → 𝐀𝐌 ×𝐂 induce canonical isomorphisms

𝐓𝐌⫽𝐖 ≃ 𝐂𝐌 ≃ 𝐀𝐌 ×𝐂.

In fact, the first isomorphism holds for any (not necessarily very flat) monoid with 𝐌der ≅

𝐆sc.

Proof. The first isomorphism is proved in [Ren88], but the reader can also find it in

[Ren05] for a more modern reference. We do not know where the second isomorphism

was first proved, but it was at least proved in [Bou15]. However, the reader should also

see [BC18,Chi19] since [Bou15] contains some error unrelated to the current theorem. ∎

Corollary 2.4.3. The cameral cover 𝜋𝐌 is a Cohen-Macaulay morphism, i.e., it is flat and

has Cohen-Macaulay fibers.

Proof. Since being a Cohen-Macaulay morphism is stable under base change, it suffices

to prove the claim for 𝐌 = Env(𝐆sc), in which case 𝐂𝐌 is regular. Since 𝐓𝐌 is Cohen-

Macaulay, and 𝜋𝐌 is finite, it is a flat morphism. Then it is a general result that flat

morphism between locally Noetherian schemes with a Cohen-Macaulay source must be

Cohen-Macaulay. See [Sta22, Tag 0C0X]. ∎

Proposition 2.4.4. Given a Steinberg quasi-section 𝜖(𝜉, ̇𝑆) of the group 𝐆sc, the map

𝜖(𝜉,
̇𝑆)

𝐌 ∶ 𝐀𝐌 ×𝐂 ⟶ 𝐌

(𝑎,𝑥) ⟼ 𝛿𝐌(𝑎)𝜖(𝜉, ̇𝑆)(𝑥)

defines a quasi-section of 𝜒𝐌 whose image lies in the regular locus 𝐌reg.
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2.4.5 The Weyl group 𝐖 acts on 𝐓𝐌. Similar to the group case, a 𝐆-orbit in 𝐌 is called

regular if the stabilizer achieves minimal dimension, semisimple if it contains an element

in 𝐓, and regular semisimple if it’s both regular and semisimple.

2.4.6 The regular semisimple locus 𝐌rs is open and smooth, and can be characterized

by a discriminant function extending Disc from the group case. Indeed, we only need to

define it for 𝐌 = Env(𝐆sc) and pullback it to general 𝐌. For 𝐌 = Env(𝐆sc), let

Disc+ ≔ 𝑒(2𝜌,0) ∏
𝛼∈Φ

(1 − 𝑒(0,𝛼)).

This function extends to 𝐓𝐌 and is 𝐖-Invariant, hence descends to a function on 𝐂𝐌. It

is called the extended discriminant function, and defines an effective divisor 𝐃𝐌 ⊂ 𝐂𝐌.

The complement of 𝐃𝐌 is the regular semisimple locus 𝐂rs
𝐌, whose preimage under 𝜒𝐌

is 𝐌rs.

Lemma 2.4.7. The divisor 𝐃𝐌 intersects 𝐂𝐌 −𝐂×
𝐌 properly. In other words, the codimen-

sion of 𝐃×
𝐌 ≔ 𝐃𝐌 ∩ (𝐂𝐌 − 𝐂×

𝐌) in 𝐂𝐌 is at least 2. In particular, set-theoretically 𝐃𝐌 is

the closure of 𝐃×
𝐌.

Proof. The proof is essentially in [Chi19, Lemma 2.4.2] and we reproduce it here. Without

loss of generality, we may assume that 𝐌 has 0 (since we can always find a very flat

reductive monoid with 0 containing 𝐌 by enlarging the cocharacter cone). When 𝐌 =

Env(𝐆sc), consider the idempotent 𝑒∅,Δ (see § 2.4.15). It is known that 𝑒∅,Δ is regular

semisimple. Its image in 𝐀𝐌 is 0 which is contained in every irreducible component of

𝐀𝐌 − 𝐀×
𝐌. Using the universal property of Env(𝐆sc), we see that for any 𝐌 the regular

semisimple locus is dense in every irreducible component of 𝐀𝐌 −𝐀×
𝐌 and we are done.

∎

Lemma 2.4.8. The divisor 𝐃𝐌 is a reduced divisor.
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Proof. Since 𝐃𝐌 is a principal divisor in a Cohen-Macaulay scheme, it is itself Cohen-

Macaulay. By the previous lemma we only need to prove that it is reduced over the invert-

ible locus𝐃×
𝐌. But then we can further reduce the divisor in 𝐓𝐌 cut out by (1−𝑒(0,𝛼))(1−

𝑒(0,−𝛼)) for a single root 𝛼, and it reduces to groups with derived subgroup SL2. Then

we can directly compute. The argument is parallel to for example [Ngô10, Lemme 1.10.1].

We leave the details to the reader. ∎

2.4.9 Contrary to the Lie algebra case, there are in general more than one open orbits in

the fibers of 𝜒𝐌, in other words, the fibers of 𝜒reg
𝐌 ∶ 𝐌reg → 𝐂𝐌 are no longer homoge-

neous 𝐆-spaces.

2.4.10 We would like to define the regular centralizer group scheme 𝐉𝐌 → 𝐂𝐌 similarly

to the group case, but the original descent argument needs some adaptation, due to the

fact that a fiber of 𝜒𝐌 may contain multiple regular orbits.

The key observation used by [Chi19] is that the numerical boundary divisor𝐁𝐌 and the

discriminant divisor 𝐃𝐌 intersect properly. The descent argument works over 𝐌×∪𝐌rs

which is an open subset whose complement has codimension at least 2. We leave the

details to [Chi19].

Proposition 2.4.11. There is a unique smooth commutative group scheme 𝐉𝐌 → 𝐂𝐌 with

a 𝐆-equivariant isomorphism

𝜒∗
𝐌𝐉𝐌|𝐌reg

∼
⟶ 𝐈reg𝐌 ,

which can be extended to a homomorphism 𝜒∗
𝐌𝐉𝐌 → 𝐈𝐌.

There is also a description of the regular centralizer using cameral cover 𝜋𝐌 ∶ 𝐓𝐌 →

𝐂𝐌. As in the group case, let

Π𝐌 = 𝜋𝐌∗(𝐓 × 𝐓𝐌),
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and

𝐉1𝐌 = Π𝐖
𝐌 .

Similarly, we have subfunctor 𝐉′𝐌: for a 𝐂𝐌-scheme 𝑆, 𝐉′𝐌(𝑆) consists of points

𝑓∶ 𝑆×𝐂𝐌 𝐓𝐌 → 𝐓

such that for every geometric point 𝑥 ∈ 𝑆 ×𝐂𝐌 𝐓𝐌, if 𝑠𝛼(𝑥) = 𝑥 for a root 𝛼, then

𝛼(𝑓(𝑥)) ≠ −1. With the same proof as in the group case, this is an open subgroup

scheme of 𝐉1𝐌 containing the fiberwise neutral component 𝐉0𝐌.

Proposition 2.4.12. There is a canonical open embedding

𝐉𝐌 ⟶ 𝐉1𝐌

that identifies 𝐉𝐌 with 𝐉′𝐌.

Proof. The open embedding claim is proved in [Chi19, Proposition 2.4.7]. We even have

𝐉𝐌 = 𝐉1𝐌 = 𝐉′𝐌 if𝐆 = 𝐆sc. The point is that the complement of 𝐂×
𝐌∪𝐂rs

𝐌 has codimension

2, thus we only need to prove the claim over this open locus, but then it is a consequence

of the group case and regular semisimple case, either of which is easy. ∎

Corollary 2.4.13. The map [𝐌reg/Ad(𝐆)] → 𝐂𝐌 is a finite union of 𝐉-gerbes.

2.4.14 Big-cell locus There is an open subset 𝐌∘ ⊂ 𝐌 containing 𝐌reg that has signif-

icant representation-theoretic meaning. We will call it the big-cell locus. We will define it

for Env(𝐆sc), and for general 𝐌 ∈ ℱℳ(𝐆sc) one simply takes the preimage under any

morphism 𝐌 → Env(𝐆sc) in the same category.
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For Env(𝐆sc), the big-cell locus is the set

Env(𝐆sc)∘ = {𝑥 ∈ Env(𝐆sc) | 𝜌𝑖+(𝑥) ≠ 0, 1 ≤ 𝑖 ≤ 𝑟}. (2.4.1)

This is readily seen an open locus and can be shown to contain the regular locus. The

central torus 𝐙+ acts on Env(𝐆sc)∘, in fact freely, and the quotient is isomorphic to

the wonderful compactification 𝐆ad of 𝐆ad (c.f., [Bou15, Proposition 2.2]). Therefore,

Env(𝐆sc)∘ is smooth. Roughly speaking, Env(𝐆sc)∘ may be viewed as the affine cone

associated with projective variety 𝐆ad “without the vertex”, while Env(𝐆sc) is the entire

affine cone.

2.4.15 There is another description of the big-cell locus using the idempotents. Idempo-

tents are very important in studying reductive monoids because they represent𝐌××𝐌×-

orbits in 𝐌. For Env(𝐆sc)∘, idempotents allows a more conceptually pleasing description

while (2.4.1), although concise, is not very revealing.

Definition 2.4.16. A pair (𝐼, 𝐽) of subsets of Δ is called essential if no connected compo-

nents of Δ− 𝐽 in the Dynkin diagram is entirely contained in 𝐼

Pairs (𝐼, 𝐽) of subsets of Δ can be partially ordered by inclusion condition. There is

a finite lattice (in the sense of a partial ordering, not of abelian groups) of idempotents

𝑒𝐼,𝐽 ∈ Env(𝐆sc) labeled by essential pairs (𝐼, 𝐽). The 𝐆+ ×𝐆+-orbits in Env(𝐆sc) are in

bijection with 𝑒𝐼,𝐽 in an order-preserving way. In other words, 𝐆+𝑒𝐼,𝐽𝐆+ is contained in

the closure of 𝐆+𝑒𝐼′,𝐽′𝐆+ if and only if 𝐼 ⊂ 𝐼′ and 𝐽 ⊂ 𝐽′. Similarly, the 𝐓ad-orbits in

𝐀Env(𝐆sc) is in bijection with idempotents 𝑒𝐼 for 𝐼 ⊂ Δ, and readers can easily figure out

what they are. We have that 𝛼Env(𝐆sc)(𝑒𝐼,𝐽) = 𝑒𝐼. In particular, 𝑒Δ,Δ = 1 and 𝑒∅,∅ = 0.

The big-cell locus is the union

Env(𝐆sc)∘ = ⋃
𝐼⊂Δ

𝐆+𝑒𝐼,Δ𝐆+.
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Then it is readily seen that Env(𝐆sc)∘ is smooth because the restriction of 𝛼Env(𝐆sc) is

flat with smooth fibers (homogeneous spaces of of 𝐆sc ×𝐆sc), and the base 𝐀Env(𝐆sc) is

itself smooth.

2.4.17 More properties of the idempotents 𝑒𝐼,𝐽 are described by Vinberg in [Vin95] and

we recall it here for future reference.

For any subset 𝐼 ⊂ Δ, let 𝐏𝐼 ⊂ 𝐆sc be the standard parabolic subgroup containing

𝐁sc corresponding to 𝐼, and 𝐏−
𝐼 its opposite. Let 𝐔𝐼 (resp. 𝐔−

𝐼 ) the unipotent radical of

𝐏𝐼 (resp. 𝐏−
𝐼 ), and 𝐋𝐼 = 𝐏𝐼 ∩ 𝐏−

𝐼 the standard Levi subgroup. Let pr𝐼 (resp. pr−𝐼 ) the

projection from 𝐏𝐼 (resp. 𝐏−
𝐼 ) to 𝐋𝐼. Let 𝐏𝐼+, 𝐔𝐼+, 𝐋𝐼+, etc. be the same constructions in

𝐆+.

For each 𝐼, 𝐽 ⊂ Δ, define 𝐼𝑐 to be the set Δ− 𝐼, 𝐼∘ to be the interior of 𝐼, that is, those

in 𝐼 that is not joint with 𝐼𝑐 by an edge in the Dynkin diagram, and Σ𝐼,𝐽 = (𝐼 ∩ 𝐽∘) ∪ 𝐽𝑐.

Let 𝐷𝐼 be the abelian monoid in 𝕏(𝐓sc) generated by 𝐼, and 𝐶𝐽 the one generated by such

𝜛𝑗 that 𝛼𝑗 ∈ 𝐽. Using identification 𝕏(𝐓+) ⊂ 𝕏(𝐙+) × 𝕏(𝐓sc) = 𝕏(𝐓sc) × 𝕏(𝐓sc), we let

𝐹𝐼,𝐽 = {(𝜆1, 𝜆2) ∈ 𝕏(𝐓+) ∣ 𝜆1 −𝜆2 ∈ 𝐷𝐼, 𝜆2 ∈ 𝐶𝐽},

𝐓𝐼,𝐽 = {𝑡 ∈ 𝐓+ ∣ 𝜆(𝑡) = 1 for all 𝜆 ∈ 𝐹𝐼,𝐽}.

The stabilizer of 𝑒𝐼,𝐽 in 𝐆+ ×𝐆+ for an essential pair (𝐼, 𝐽) is the subgroups of 𝐏Σ𝐼,𝐽+ ×

𝐏−
Σ𝐼,𝐽+ consisting of elements (𝑔,𝑔−) such that

prΣ𝐼,𝐽+(𝑔) ≡ pr−Σ𝐼,𝐽+(𝑔−) mod 𝐋der
𝐽𝑐 𝐓𝐼,𝐽.

The idempotent 𝑒𝐼,𝐽 itself is characterized by

(𝛼𝑖, 0)(𝑒𝐼,𝐽) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

1 𝛼𝑖 ∈ 𝐼

0 𝛼𝑖 ∉ 𝐼
,
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(𝜛𝑗,𝜛𝑗)(𝑒𝐼,𝐽) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

1 𝛼𝑗 ∈ 𝐽

0 𝛼𝑗 ∉ 𝐽
,

(𝜛𝑗,𝑤(𝜛𝑗))(𝑒𝐼,𝐽) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

1 𝛼𝑗 ∈ 𝐽,𝜛𝑗 −𝑤(𝜛𝑗) ∈ 𝐷𝐼∩𝐽∘

0 otherwise
.

2.4.18 Central equivariance The central diagonalizable group 𝐙𝐌 acts on 𝐌 by transla-

tion. This action commutes with the adjoint action of 𝐆, hence descends to an action on

𝐂𝐌, making 𝜒𝐌 a 𝐙𝐌-equivariant map. The 𝐙𝐌-action on 𝐂𝐌 has a simple description

as follows: on 𝐀𝐌 it is simply the translation by torus 𝛼𝐌(𝐙𝐌) = 𝐙𝐌/𝐙sc, while on 𝐂 it

is the translation action given by weights 𝜛𝑖 ∘ 𝜙𝐙𝐌 if we use the coordinates 𝜒𝑖+ on 𝐂

(recall that 𝜙𝐙𝐌 is the map 𝐙𝐌 → 𝐓sc induced by a choice of morphism 𝐌 → Env(𝐆sc) in

ℱℳ(𝐆sc)). This action can be lifted to an action of 𝐙𝐌 on 𝐉𝐌 compatible with the group

scheme structure by looking at the construction of 𝐉𝐌.

On the other hand, any choice of a Steinberg quasi-section is far from being 𝐙𝐌-

equivariant. However, one can rectify this with some technical modification. This modi-

fication first appears in [Bou15] and later used by [Chi19]. However, the proof in [Bou15]

contains an elementary but serious mistake, so we include a corrected proof here. None

of the results in [Chi19] is affected by this error.

Proposition 2.4.19. For each Coxeter datum (𝜉, ̇𝑆), one can define an action 𝜏(𝜉, ̇𝑆)
𝐌 of 𝐙𝐌

on 𝐌 such that

𝜖(𝜉,
̇𝑆)

𝐌 ∘ 𝜏𝐂𝐌(𝑧𝑐) = 𝜏(𝜉, ̇𝑆)
𝐌 (𝑧) ∘ 𝜖(𝜉,

̇𝑆)
𝐌 ,

where 𝜏𝐂𝐌 is the natural action of 𝐙𝐌 on 𝐂𝐌, and 𝑐 = |𝐙sc|. Moreover, for a fixed 𝑧,

𝜏(𝜉, ̇𝑆)
𝐌 (𝑧) is a composition of translation by 𝑧𝑐 and conjugation by an element in 𝐓sc de-

termined by a homomorphism 𝐙𝐌 → 𝐓sc independent of 𝑧.
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Proof. We re-label {𝜛𝑖} in such a way that 𝜛𝑗 is the weight corresponding to root 𝛽𝑗 =

𝛼𝜉(𝑗). To simplify notations, for 𝑧 ∈ 𝐙𝐌, we will denote 𝜙𝐙𝐌(𝑧) simply by 𝑧𝑇.

Let (𝑎,𝑥) ∈ 𝜒𝐌(𝐌×) ⊂ 𝐂𝐌. Fix a𝜛𝑖 (1 ≤ 𝑖 ≤ 𝑟), and a weight vector 0 ≠ 𝑣 ∈ 𝑉𝜛𝑖[𝜇],

where 𝜇 ≤ 𝜛𝑖 is a weight of 𝜌𝑖 such that 𝜇 = ∑𝑟
𝑗=1𝑚𝑗𝜛𝑗. We have that (to simplify

notations we omit 𝜌𝑖+ in the computations)

[𝜖(𝜉, ̇𝑆)(𝑥)] (𝑣) = ⎛
⎝

𝑟
∏
𝑗=1

𝑈𝛽𝑗(𝑥𝑗) ̇𝑠𝜉(𝑗)⎞
⎠
(𝑣)

= ∑
𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

𝑥𝑘𝑙+𝑚𝑙
𝑙

⎞
⎠
𝑣𝑘,

where 𝑘 = (𝑘1,… ,𝑘𝑟) is a multi-index, 𝑣𝑘 is some vector, independent of any 𝑥𝑗, of

weight

𝜇𝑘 ≔ 𝜇+ 0𝑘,

and

0𝑘 ≔
𝑟
∑
𝑑=1

∑
1≤𝑙1<⋯<𝑙𝑑≤𝑟

⎡
⎣
𝑘𝑙𝑑

𝑑−1
∏
𝑒=1

(−⟨𝛽𝑙𝑒+1 , 𝛽
∨
𝑙𝑒⟩)𝛽𝑙1⎤

⎦
.

Note that (𝑘1,… ,𝑘𝑟) ↦ 0𝑘 is a group isomorphism from ℤ𝑟 to root lattice ℤΦ.

Thus we have that

[𝜖(𝜉,
̇𝑆)

𝐌 (𝑎,𝑥)] (𝑣) = 𝛿𝐌(𝑎) [𝜖(𝜉, ̇𝑆)(𝑥)] (𝑣)

= (𝑧𝑎, 𝑧−1
𝑎,𝑇) ∑

𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

𝑥𝑘𝑙+𝑚𝑙
𝑙

⎞
⎠
𝑣𝑘

= 𝜛𝑖(𝑧𝑎,𝑇) ∑
𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

𝑥𝑘𝑙+𝑚𝑙
𝑙

⎞
⎠
𝜇𝑘(𝑧𝑎,𝑇)−1𝑣𝑘,
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where 𝑧𝑎 ∈ 𝐙𝐌 is some element that 𝛼𝐌(𝑧𝑎) = 𝑎; and that

[𝜖(𝜉,
̇𝑆)

𝐌 (𝜏𝐂𝐌(𝑧)(𝑎,𝑥))] (𝑣) = (𝑧𝑧𝑎, (𝑧𝑇𝑧𝑎,𝑇)−1)𝜖(𝜉, ̇𝑆)(𝜛𝑗(𝑧𝑇)𝑥𝑗)(𝑣)

= 𝜛𝑖(𝑧𝑇𝑧𝑎,𝑇) ∑
𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

(𝜛𝑙(𝑧𝑇)𝑥1)𝑘𝑙+𝑚𝑙⎞
⎠
𝜇𝑘(𝑧𝑇𝑧𝑎,𝑇)−1𝑣𝑘, (2.4.2)

for any 𝑧 ∈ 𝐙𝐌.

On the other hand, for 𝑡 ∈ 𝐓sc,

[Ad𝑡 (𝜖
(𝜉, ̇𝑆)
𝐌 (𝑎,𝑥))] (𝑣) = 𝑡[𝜖(𝜉,

̇𝑆)
𝐌 (𝑎,𝑥)] 𝑡−1(𝑣)

= 𝜛𝑖(𝑧𝑎,𝑇)𝜇(𝑡)−1 ∑
𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

𝑥𝑘𝑙+𝑚𝑙
𝑙

⎞
⎠
𝜇𝑘(𝑡𝑧−1

𝑎,𝑇)𝑣𝑘

= 𝜛𝑖(𝑧𝑎,𝑇) ∑
𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

𝑥𝑘𝑙+𝑚𝑙
𝑙

⎞
⎠
0𝑘(𝑡)𝜇𝑘(𝑧𝑎,𝑇)−1𝑣𝑘. (2.4.3)

Consider commutative diagram

𝐙𝐌 𝔾𝑟
m 𝐓sc

𝛽•(𝐓sc) 𝐓sc

𝜛•

∼

0(•)

𝛽•
𝑧↦𝑧𝑐 , (2.4.4)

where 𝛽• is the map

𝑡 ↦ (𝛽1(𝑡),… ,𝛽𝑟(𝑡)),

𝜛• is the map

𝑧 ↦ (𝜛1(𝑧𝑇),… ,𝜛𝑟(𝑧𝑇)),
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and 0(•) is the one

𝑡 ↦ (0(1,0,…,0)(𝑡),… ,0(0,…,1,…,0)(𝑡),… ,0(0,…,0,1)(𝑡)).

Denote by 𝜓 the map 𝐙𝐌 → 𝐓sc from the upper-left to the lower-right in (2.4.4), then we

have that 𝜛•(𝑧𝑐) = 0(•)(𝜓(𝑧)).

Now For 𝑧 ∈ 𝐙𝐌, define 𝜏(𝜉, ̇𝑆)
𝐌 (𝑧) to be the composition of translation by (𝑧𝑐, 1) and

conjugation by 𝜓(𝑧)𝑧−𝑐
𝑇 , in other words, for (𝑡, 𝑔) ∈ 𝐌×,

𝜏(𝜉, ̇𝑆)
𝐌 (𝑧)∶ (𝑡, 𝑔) ↦ (𝑧𝑐𝑡,Ad𝜓(𝑧)𝑧−𝑐

𝑇
(𝑔)).

Then one sees from (2.4.2) and (2.4.3) that

[𝜏(𝜉, ̇𝑆)
𝐌 (𝑧)(𝜖(𝜉,

̇𝑆)
𝐌 (𝑎,𝑥))] (𝑣)

= (𝑧𝑐, 1)𝜛𝑖(𝑧𝑎,𝑇) ∑
𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

𝑥𝑘𝑙+𝑚𝑙
𝑙

⎞
⎠
0𝑘(𝜓(𝑧)𝑧−𝑐

𝑇 )𝜇𝑘(𝑧𝑎,𝑇)−1𝑣𝑘

= 𝜛𝑖(𝑧𝑐
𝑇𝑧𝑎,𝑇) ∑

𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

𝑥𝑘𝑙+𝑚𝑙
𝑙

⎞
⎠
0𝑘(𝜓(𝑧)𝑧−𝑐

𝑇 )𝜇𝑘(𝑧𝑎,𝑇)−1𝑣𝑘

= 𝜛𝑖(𝑧𝑐
𝑇𝑧𝑎,𝑇) ∑

𝑘𝑗≥−𝑚𝑗
1≤𝑗≤𝑟

⎛
⎝

𝑟
∏
𝑙=1

(𝜛𝑙(𝑧𝑇)𝑐𝑥𝑙)𝑘𝑙+𝑚𝑙⎞
⎠
𝜇𝑘(𝑧𝑐

𝑇𝑧𝑎,𝑇)
−1𝑣𝑘

= [𝜖(𝜉,
̇𝑆)

𝐌 (𝜏𝐂𝐌(𝑧𝑐)(𝑎,𝑥))] (𝑣).

Finally, clearly the images of𝜏(𝜉, ̇𝑆)
𝐌 (𝑧)(𝜖(𝜉,

̇𝑆)
𝐌 (𝑎,𝑥)) and 𝜖(𝜉,

̇𝑆)
𝐌 (𝜏(𝜉, ̇𝑆)

𝐂𝐌
(𝑧𝑐)(𝑎,𝑥)) un-

der 𝛼𝐌 are the same, being 𝛼𝐌(𝑧𝑐, 1)𝑎.

Therefore, since 𝑣, 𝜇, and 𝜛𝑖 are arbitrary, we know that 𝜏(𝜉, ̇𝑆)
𝐌 (𝑧) ∘ 𝜖(𝜉,

̇𝑆)
𝐌 = 𝜖(𝜉,

̇𝑆)
𝐌 ∘

𝜏𝐂𝐌(𝑧𝑐) when restricted to 𝜒𝐌(𝐌×). Since 𝜒𝐌(𝐌×) is dense in 𝐂𝐌, we are done. ∎
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2.4.20 The GIT quotient map 𝜒𝐌 induces map

𝜒𝐌 ∶ [𝐌/𝐆] ⟶ 𝐂𝐌,

which is 𝐙𝐌-equivariant. We have the further induced map

[𝜒𝐌]∶ [𝐌/(𝐆× 𝐙𝐌)] ⟶ [𝐂𝐌/𝐙𝐌].

Choose a Coxeter datum (𝜉, ̇𝑆), the quasi-section 𝜖(𝜉,
̇𝑆)

𝐌 induces a quasi-section of 𝜒𝐌, but

not of [𝜒𝐌] unless 𝑐 = |𝐙sc| = 1.

To fix this, recall we have 𝜓∶ 𝐙𝐌 → 𝐓sc in the proof of Proposition 2.4.19, also viewed

as a morphism into 𝐓 by abuse of notations. Let

Ψ∶ 𝐙𝐌 ⟶ 𝐓

𝑧 ⟼ 𝜓(𝑧𝑇)𝑧−𝑐
𝑇 .

We define stack [𝐌/(𝐆× 𝐙𝐌)][𝑐] using pullback Cartesian diagram

[𝐌/(𝐆× 𝐙𝐌)][𝑐] [𝐌/(𝐆× 𝐙𝐌)]

𝔹𝐙𝐌 𝔹𝐙𝐌
𝜇↦𝜇⊗𝑐

,

and similarly for [𝐂𝐌/𝐙𝐌][𝑐]. By Proposition 2.4.19, we obtain a quasi-section

[𝜖(𝜉,
̇𝑆)

𝐌 ]
[𝑐]

∶ [𝐂𝐌/𝐙𝐌][𝑐] ⟶ [𝐌/(Ψ× id)(𝐙𝐌))][𝑐],

which, by composition, induces quasi-section

[𝜖(𝜉,
̇𝑆)

𝐌 ]
[𝑐]

∶ [𝐂𝐌/𝐙𝐌][𝑐] ⟶ [𝐌/(𝐆× 𝐙𝐌)][𝑐].
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Finally, note that the images of all these quasi-sections lie inside the regular locus (that

is, the images of 𝐌reg in the respective quotient stacks).

2.4.21 The Out(𝐆sc) action on 𝐆sc induces an action on Env(𝐆sc), hence we have a

quasi-split universal monoid Env(𝐺sc) on 𝑋. The actions of Out(𝐆sc) on maximal toric

variety 𝐓Env(𝐆sc) and onWeyl group𝐖 can be combined into an action of𝐖⋊Out(𝐆sc) on

𝐓Env(𝐆sc) and a compatible action of Out(𝐆sc) on 𝐂Env(𝐆sc). Let 𝔗Env(𝐺sc) and ℭEnv(𝐺sc)

be the respective induced twisted forms. After twisting by 𝜗𝐺, we obtain invariant map

𝜒Env(𝐺sc) ∶ Env(𝐺sc) ⟶ ℭEnv(𝐺sc),

and the quotient space is naturally isomorphic to 𝔗Env(𝐺sc)⫽𝑊. The regular centralizer

𝔍Env(𝐺sc) is also well-defined over 𝑋, and so is its Galois description 𝔍1Env(𝐺sc).

The Steinberg quasi-section, however, is not necessarily defined unless 𝐺sc either has

no simple factor of type 𝐴2𝑚, or all its such factors are split. The various choices are

carefully made in constructing the quasi-section as in the group case. On the other hand,

if such conditions are satisfied and a Steinberg quasi-section 𝜖(𝜉,
̇𝑆)

Env(𝐺sc) is defined, then

the equivariant version [𝜖(𝜉,
̇𝑆)

Env(𝐺sc)][𝑐] can also be defined since the relevant construction

are Out(𝐆)-equivariant.

2.4.22 If𝐌 ∈ ℱℳ(𝐆sc) is a very flat monoid such that the Out(𝐆)-action on𝐆sc extends

over 𝐀𝐌 compatible with map 𝐀𝐌 → 𝐀Env(𝐆sc), then we have twisted forms 𝔐 (resp. 𝔗𝔐,

resp. ℭ𝔐, etc.) of 𝐌 (resp. 𝐓𝐌, resp. 𝐂𝐌, etc.) over 𝑋. More generally, if 𝐌 is such that

𝐀𝐌 is stable under the monodromy determined by 𝜗•
𝐺 (but need not necessarily be stable

under Out(𝐆)), then we also have the pointed twisted form 𝔐. We also have non-pointed

version by using appropriate étale coverings of 𝑋 instead. The category of such monoids

is denoted by ℱℳ(𝐺sc), and ℱℳ0(𝐺sc) the full subcategory of monoids with 0.
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2.4.23 In case𝐺sc has a non-split factor whose type is a product of types𝐴2𝑚 for various

𝑚, we want to show the following result extending Steinberg’s:

Theorem 2.4.24. Let𝔐 ∈ ℱℳ(𝐺sc) for a quasi-split group𝐺 over𝑋 = Spec𝐾 of some field

𝐾whose characteristic is larger than twice the Coxeter number of𝐺. Then𝔐(𝐾) → ℭ𝔐(𝐾)

is surjective.

Proof. Since𝔐 is the fiber product of 𝔄𝔐 with Env(𝐺sc) over 𝔄Env(𝐺sc), it suffices to prove

the result for 𝔐 = Env(𝐺sc). The result of Steinberg is the same as setting 𝔐 = 𝐺sc.

Moreover, it suffices to assume 𝐆sc consists solely of types 𝐴2𝑚. Our proof is a modified

version of Steinberg’s proof.

Indeed, we start with simple group 𝐆 = SL2𝑚+1. We label the simple roots (and

fundamental weights, etc.) from one end of Dynkin diagram to the other end, so that the

middle two simple roots are 𝛼𝑚 and 𝛼𝑚+1. Let 𝛼 = 𝛼𝑚 + 𝛼𝑚+1. One can verify that

the set

Δ′ = {𝛼1,… ,𝛼𝑚−1, 𝛼,𝛼𝑚+2,… ,𝛼2𝑚}

generates a root subsystem of type𝐴2𝑚−1, and it induces a subgroup𝐆′ ⊂ 𝐆 isomorphic

to SL2𝑚 which is stable under Out(𝐆). This also identifies Out(𝐆) with Out(𝐆′) using the

pinning spl. The fundamental representations (𝜌𝑖, 𝑉𝑖) of𝐆 are just 𝑖-th exterior products

of the standard representation of 𝐆, and simple linear algebra shows that the restriction

of (𝜌𝑖, 𝑉𝑖) to𝐆′ decomposes into two irreducible representations, one with highest weight

𝜛𝑖, and the other with highest weight which we shall denote by 𝜛′
𝑖 ∈ 𝕏(𝐓). The weight

𝜛′
𝑖 is a weight in 𝑉𝑖, and the difference 𝜛𝑖 −𝜛′

𝑖 is a linear combination of simple roots

of 𝐆 with coefficients in ℕ.

Consider map

𝜖″ ∶ 𝔸2𝑚−1 ⟶ 𝐆′ ⊂ 𝐆
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𝑥 = (𝑥1,… ,𝑥𝑚−1, 𝑥𝛼, 𝑥𝑚+2,… ,𝑥2𝑚)

⟼ 𝐔𝛼(𝑥𝛼) ̇𝑠𝛼
𝑚−1
∏
𝑖=1

(𝐔𝑖(𝑥𝑖) ̇𝑠𝑖𝐔2𝑚−𝑖+1(𝑥2𝑚−𝑖+1) ̇𝑠2𝑚−𝑖+1),

where the representatives of reflections ̇𝑠𝑖 and ̇𝑠𝛼 = ̇𝑠𝑚+1 ̇𝑠𝑚 ̇𝑠𝑚+1 are so chosen that

they are stable under Out(𝐆). Steinberg shows that it is a closed embedding, and for

fixed 1 ≤ 𝑖 ≤ 2𝑚 and a weight 𝜇 in 𝑉𝑖, the trace of 𝜋𝜇𝜌𝑖(𝜖″(𝑥))𝜋𝜇 is zero unless 𝜇 = 𝜛𝑖

or 𝜇 = 𝜛′
𝑖, where 𝜋𝜇 ∶ 𝑉𝑖 → 𝑉𝑖 is the projection to the weight space of weight 𝜇, in which

cases the weight multiplicities are both 1. Furthermore, letting 𝑥0 = 𝑥2𝑚+1 = 1, we have

Tr(𝜋𝜛𝑖𝜌𝑖(𝜖″(𝑥))𝜋𝜛𝑖) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

𝑥𝑖 𝑖 ≠ 𝑚− 1,𝑚

𝑥𝛼 otherwise

Tr(𝜋𝜛′
𝑖
𝜌𝑖(𝜖″(𝑥))𝜋𝜛′

𝑖
) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

𝑥𝑖−1 1 ≤ 𝑖 ≤ 𝑚

𝑥𝑖+1 𝑚+1 ≤ 𝑖 ≤ 2𝑚

The abelianization 𝐀𝐌 is isomorphic to 𝔸2𝑚 with coordinates given by simple roots.

The subtorus 𝐀×
𝐌 is identified with 𝐓ad. The section 𝛿𝐌 of abelianization map is induced

by the anti-diagonal map

𝐓ad ⟶ 𝐓+

𝑎 ⟼ (𝑎,𝑎−1)

Now let ̃𝜖″ ∶ 𝐀𝐌 ×𝔸2𝑚−1 → 𝐌 be the product 𝛿𝐌𝜖″. The image of 𝛿𝐌 lies in 𝐓+, thus

preserves each weight spaces in 𝑉𝑖, so 𝜋𝜇𝜌𝑖( ̃𝜖″(𝑎,𝑥))𝜋𝜇 is still zero unless 𝜇 = 𝜛𝑖 or
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𝜛′
𝑖, and

Tr(𝜋𝜛𝑖𝜌𝑖( ̃𝜖″(𝑎,𝑥))𝜋𝜛𝑖) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

𝑥𝑖 𝑖 ≠ 𝑚− 1,𝑚

𝑥𝛼 otherwise

Tr(𝜋𝜛′
𝑖
𝜌𝑖( ̃𝜖″(𝑎,𝑥))𝜋𝜛′

𝑖
) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

𝑥𝑖−1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 1 ≤ 𝑖 ≤ 𝑚

𝑥𝑖+1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 𝑚+1 ≤ 𝑖 ≤ 2𝑚

where 𝑐𝑖𝑗 is such that 𝜛𝑖 −𝜛′
𝑖 = ∑𝑗 𝑐𝑖𝑗𝛼𝑗. Summarizing this part, we have that

𝜒𝑖( ̃𝜖″(𝑎,𝑥)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

𝑥𝑖 +𝑥𝑖−1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 1 ≤ 𝑖 ≤ 𝑚−1

𝑥𝑖 +𝑥𝑖+1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 𝑚+2 ≤ 𝑖 ≤ 2𝑚

𝑥𝛼 +𝑥𝑚−1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 𝑖 = 𝑚

𝑥𝛼 +𝑥𝑚+2
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 𝑖 = 𝑚+ 1

On the other hand, consider another map

𝜖‴ ∶ 𝔸2𝑚−1 ×𝔾m ⟶ 𝐆

(𝑥, 𝑡) ⟼ 𝑢𝑚𝑢𝑚+1𝐔𝛼(𝑥𝛼) ̇𝑠𝛼�̌�(𝑡)
𝑚−1
∏
𝑖=1

(𝐔𝑖(𝑥𝑖) ̇𝑠𝑖𝐔2𝑚−𝑖+1(𝑥2𝑚−𝑖+1) ̇𝑠2𝑚−𝑖+1),

where 1 ≠ 𝑢𝑚 ∈ 𝐔𝑚(𝐾) and 1 ≠ 𝑢𝑚+1 ∈ 𝐔𝑚+1(𝐾) are two arbitrarily chosen elements.

Steinberg shows that this map is also a closed embedding. He also shows that if the

commutator [𝑢𝑚+1, 𝑢𝑚] is𝐔𝛼(1), 𝜋𝜇𝜌𝑖(𝜖″(𝑥))𝜋𝜇 has trace 0 unless 𝜇 = 𝜛𝑖 or 𝜇 = 𝜛′
𝑖,
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as well as

Tr(𝜋𝜛𝑖𝜌𝑖(𝜖‴(𝑥, 𝑡))𝜋𝜛𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

𝑥𝑖 𝑖 ≠ 𝑚− 1,𝑚

𝑡𝑥𝛼 𝑖 = 𝑚

𝑡𝑥𝛼 + 𝑡 𝑖 = 𝑚+1

Tr(𝜋𝜛′
𝑖
𝜌𝑖(𝜖‴(𝑥, 𝑡))𝜋𝜛′

𝑖
) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

𝑥𝑖−1 1 ≤ 𝑖 ≤ 𝑚

𝑥𝑖+1 𝑚+1 ≤ 𝑖 ≤ 2𝑚

Let ̃𝜖‴ = 𝛿𝐌𝜖‴, then we similarly have

Tr(𝜋𝜛𝑖𝜌𝑖( ̃𝜖″(𝑎,𝑥, 𝑡))𝜋𝜛𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

𝑡𝑥𝑖 𝑖 ≠ 𝑚− 1,𝑚

𝑡𝑥𝛼 𝑖 = 𝑚

𝑡𝑥𝛼 + 𝑡 𝑖 = 𝑚+1

Tr(𝜋𝜛′
𝑖
𝜌𝑖( ̃𝜖″(𝑎,𝑥, 𝑡))𝜋𝜛′

𝑖
) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

𝑥𝑖−1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 1 ≤ 𝑖 ≤ 𝑚

𝑥𝑖+1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 𝑚+1 ≤ 𝑖 ≤ 2𝑚

hence

𝜒𝑖( ̃𝜖‴(𝑎,𝑥, 𝑡)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

𝑡𝑥𝑖 +𝑥𝑖−1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 1 ≤ 𝑖 ≤ 𝑚−1

𝑡𝑥𝑖 +𝑥𝑖+1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 𝑚+2 ≤ 𝑖 ≤ 2𝑚

𝑡𝑥𝛼 +𝑥𝑚−1
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 𝑖 = 𝑚

𝑡𝑥𝛼 + 𝑡+𝑥𝑚+2
2𝑚
∏
𝑗=1

𝑎𝑐𝑖𝑗
𝑗 𝑖 = 𝑚+ 1

Let ̃𝜖′ be the disjoint union of ̃𝜖″ and ̃𝜖‴, then it is not hard to see that ̃𝜖′ is a
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bijection on points valued in 𝐾-fields between 𝐀𝐌 ×(𝔸2𝑚−1 ∪(𝔸2𝑚−1 ×𝔾m)) and 𝐂𝐌.

Moreover, since [𝑢𝑚, 𝑢𝑚+1] ∈ 𝐔𝛼, 𝑢𝑚+1𝑢𝑚𝐔𝛼 is stable under Out(𝐆). This means

that the image of 𝜖‴ is stable under Out(𝐆). Thus there is an induced action of Out(𝐆)

on𝐀𝐌×(𝔸2𝑚−1∪(𝔸2𝑚−1×𝔾m))making 𝜒𝐌∘ ̃𝜖′ anOut(𝐆)-equivariant map. Therefore

̃𝜖′ also induces bijection on 𝐾-rational points after any Out(𝐆)-twisting.

If 𝐆 is a product of groups SL2𝑚+1 for various 𝑚 (allowing repetitions), then we

simply take the direct product of ̃𝜖′ of each simple factor in such way that if 𝑚1 = 𝑚2,

then 𝑢𝑚1 = 𝑢𝑚2 and 𝑢𝑚1+1 = 𝑢𝑚2+1. In this way the image of ̃𝜖′ will be stable under

Out(𝐆). Hence we are done. ∎

2.5 Endoscopic Groups and Endoscopic Monoids

What follows until when we start considering monoids is extracted from [Ngô10, 1.8–1.9]

and we omit the proofs. Given the pinning spl = (𝐓,𝐁, 𝐱+), there is a pinning (�̌�, �̌�, ̌𝐱+)

on the dual group �̌�. Let 𝜅 ∈ �̌�, and �̌� be the connected centralizer of 𝜅 in �̌�. Then �̌�

has a maximal torus �̌� and a Borel subgroup 𝐁�̌� = �̌�∩ �̌�. Taking the dual root datum of

�̌� determined by (�̌�, 𝐁�̌�), one obtains a split 𝑘-group 𝐇. Note that Out(𝐆) = Out(�̌�) and

similarly for 𝐇 and �̌�.

2.5.1 The centralizer (�̌�⋊Out(𝐆))𝜅 of 𝜅 in �̌�⋊Out(𝐆) fits into a short exact sequence

1 ⟶ �̌� ⟶ (�̌�⋊Out(𝐆))𝜅 ⟶ 𝜋0(𝜅) ⟶ 1,

where 𝜋0(𝜅) is the component group of (�̌� ⋊Out(𝐆))𝜅. Because Out(𝐆) is discrete, the

projection �̌� ⋊Out(𝐆) → Out(𝐆) induces a canonical map

𝐨𝐆(𝜅)∶ 𝜋0(𝜅) ⟶ Out(𝐆).
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The action of (�̌� ⋊ Out(𝐆))𝜅 on its normal subgroup �̌� gives a homomorphism into

Aut(�̌�), which further maps into Out(�̌�). Hence we have another canonical map

𝐨𝐇(𝜅)∶ 𝜋0(𝜅) ⟶ Out(𝐇).

Definition 2.5.2. Let 𝐺 be a reductive group on 𝑋 given by a Out(𝐆)-torsor 𝜗𝐺. An endo-

scopic datum (𝜅,𝜗𝜅) of 𝐺 is a pair where 𝜅 ∈ �̌�, and 𝜗𝜅 is a 𝜋0(𝜅)-torsor such that the

Out(𝐆)-torsor induced by it through 𝐨𝐆(𝜅) is isomorphic to 𝜗𝐺. The endoscopic group

𝐻 associated with (𝜅,𝜗𝜅) is the twisted form of 𝐇 induced by Out(𝐇)-torsor 𝜗𝐻, itself

induced by 𝜗𝜅 through 𝐨𝐇(𝜅).

2.5.3 There is also a pointed variant using representations of 𝜋1(𝑋,𝑥) after fixing a

geometric point 𝑥 ∈ 𝑋.

Definition 2.5.4. A pointed endoscopic datum of (𝐺,𝑥𝐺) is a pair (𝜅,𝜗•
𝜅), where 𝜅 ∈ �̌�

and 𝜗•
𝜅 is a continuous homomorphism 𝜋1(𝑋,𝑥) → 𝜋0(𝜅) lying over 𝜗•

𝐺. The pointed

endoscopic group (𝐻,𝑥𝐻) is the pointed twisted form induced by 𝜗•
𝜅 through 𝐨𝐇(𝜅).

Through 𝐨𝐆(𝜅) and 𝐨𝐇(𝜅) respectively, we can define actions of 𝐖 ⋊ 𝜋0(𝜅) and

𝐖𝐇 ⋊𝜋0(𝜅) on 𝐓. The following lemma is crucial to settling the compatibility questions

regarding these two constructions.

Lemma 2.5.5 ([Ngô10, Lemme 1.9.1]). There is a canonical homomorphism

𝐖𝐇 ⋊𝜋0(𝜅) ⟶ 𝐖⋊𝜋0(𝜅)

whose restriction to 𝐖𝐇 is the inclusion 𝐖𝐇 ⊂ 𝐖, and induces identity on quotient group

𝜋0(𝜅). Moreover, such homomorphism is compatible with the actions of the two groups

on 𝐓.
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Remark 2.5.6. Note that on contrary the 𝜋0(𝜅)-actions on 𝐓 induced respectively by

𝐨𝐆(𝜅) and 𝐨𝐇(𝜅) are not compatible in general.

2.5.7 Let 𝐌 ∈ ℱℳ(𝐆sc) be a very flat monoid with maximal toric variety 𝐓𝐌. Then the

root datum of 𝐇 induces a group 𝐇𝐌 with maximal torus 𝐓𝐌 and 𝐇sc
𝐌 = 𝐇sc. According

to Theorem 2.3.3 (also see Remark 2.3.4), the diagram

𝐓𝐌 ⊃ 𝐓𝐌 ⊂ 𝐇𝐌

defines up to isomorphism a unique monoid 𝐌′
𝐇 with unit group 𝐇𝐌. However, 𝐌′

𝐇 is

usually not very flat, and 𝐇der
𝐌 is not necessarily simply-connected. Therefore we need

to find a very flat monoid in ℱℳ(𝐇sc) that remedies this problem. We shall see much

later that it has to do with the fact that an irreducible representation of �̌� is no longer

irreducible when restricted to �̌� but decomposes into a direct sum of irreducible ones.

The correct monoid for 𝐇 is exactly guided by this decomposition.

2.5.8 Suppose 𝐀𝐌 is isomorphic to an affine space whose cone is freely generated by

cocharacters 𝜃1,… ,𝜃𝑚. In general, we may pick a minimal set of generators (necessarily

unique since the cone is strictly convex). We have morphism 𝐀𝐌 → 𝐀Env(𝐆sc) so for

simplicity we may also treat 𝜃𝑖 as elements in �̌�(𝐓ad)+. The elements in the cone of 𝐓𝐌

are then of the form

(𝑐1𝜃1,… , 𝑐𝑚𝜃𝑚, 𝜇)

where 𝑐𝑖 ∈ ℕ, 𝜇 ≤ −𝑤0(∑𝑚
𝑖=1 𝑐𝑖𝜃𝑖) is a weight in the irreducible representation of �̌�sc

with highest weight −𝑤0(∑𝑚
𝑖=1 𝑐𝑖𝜃𝑖) ∈ �̌�(𝐓ad).

Let �̌�′ be the preimage of �̌� in �̌�sc. Suppose the highest weight representation𝑉−𝑤0(𝜃𝑖)
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of �̌�sc and weight −𝑤0(𝜃𝑖) decomposes as

𝑉−𝑤0(𝜃𝑖) =
𝑒𝑖
⨁
𝑗=1

𝑉′
−𝑤𝐇,0(𝜆𝑖𝑗)

into irreducible �̌�′-representations with highest weights −𝑤𝐇,0(𝜆𝑖𝑗) ∈ �̌�(𝐓ad), where

𝑤𝐇,0 is the longest element of 𝐖𝐇 corresponding to 𝐁𝐇. Note that 𝐖𝐇 acts on �̌�(𝐓ad)

through inclusion 𝐖𝐇 ⊂ 𝐖. Let 𝐌𝐇 ∈ ℱℳ0(𝐇sc) be monoid whose abelianization is

the affine space with cone freely generated by 𝜆𝑖𝑗. The cone of the maximal toric variety

𝐓𝐌,𝐇 consists of elements of the following form:

(𝑎𝑖𝑗𝜆𝑖𝑗, 𝜇)

where 𝜇 ≤𝐇 −𝑤𝐇,0(∑𝑖,𝑗 𝑎𝑖𝑗𝜆𝑖𝑗) is a weight in the irreducible representation of �̌�sc of

highest weight −𝑤𝐇,0(∑𝑖,𝑗 𝑎𝑖𝑗𝜆𝑖𝑗).

We now construct a 𝐖𝐇-equivariant homomorphism

�̃�𝐇 ∶ 𝐓𝐌,𝐇 ⟶ 𝐓𝐌,

and as a consequence we will obtain by Remark 2.3.4 a homomorphism of monoids𝐌𝐇 →

𝐌′
𝐇. Indeed, the weight (𝑎𝑖𝑗𝜆𝑖𝑗, 𝜇) can be uniquely written as

⎛
⎝
𝑎𝑖𝑗𝜆𝑖𝑗,−𝑤𝐇,0(∑

𝑖,𝑗
𝑎𝑖𝑗𝜆𝑖𝑗) − ∑

𝛼∈Δ𝐇

ℎ𝛼𝛼⎞
⎠
.

We send this element to

⎛
⎝

𝑒1
∑
𝑗=1

𝑎1𝑗𝜃1,… ,
𝑒𝑚
∑
𝑗=1

𝑎𝑚𝑗𝜃𝑚,−𝑤𝐇,0(∑
𝑖,𝑗

𝑎𝑖𝑗𝜆𝑖𝑗) − ∑
𝛼∈Δ𝐇

ℎ𝛼𝛼⎞
⎠
.

One may check that it is indeed a 𝐖𝐇-equivariant homomorphism. Since for each 𝑖 the
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weight spaces in 𝑉′
−𝑤𝐇,0(𝜆𝑖𝑗) (1 ≤ 𝑗 ≤ 𝑒𝑖) account for all weight spaces in 𝑉−𝑤0(𝜃𝑖), we

see that 𝐓𝐌,𝐇 → 𝐓𝐌 is surjective with connected fibers.

2.5.9 We have 𝐖𝐇-homomorphisms

𝐓𝐌,𝐇 ⟶ 𝐓𝐌 ⟶ 𝐓ad ⟶ 𝐓𝐇ad .

It implies that the diagonalizable group (but not necessarily a torus)

𝐙𝜅
𝐌 ≔ �̃�−1

𝐇 (𝐙𝐌)

is contained in the center of 𝐌𝐇. As a result, the map

[𝐓𝐌,𝐇/𝐙𝜅
𝐌] ⟶ [𝐓𝐌/𝐙𝐌]

is generically an isomorphism. In fact, we can improve it to the following statement:

Lemma 2.5.10. Let 𝒪 = 𝑘[[𝜋]] and 𝐹 = 𝑘((𝜋)). Then the map

𝐓𝐌,𝐇(𝒪) ∩ 𝐓𝐌,𝐇(𝐹) ⟶ 𝐓𝐌(𝒪) ∩ 𝐓𝐌(𝐹)

is surjective. Moreover, suppose 𝑡 ∈ 𝐓𝐌,𝐇/𝐙𝜅
𝐌(𝐹) extends to a point 𝑡𝒪 ∈ [𝐓𝐌/𝐙𝐌](𝒪),

then there exists at least one and finitely many ways to extend 𝑡 to a point in [𝐓𝐌,𝐇/𝐙𝜅
𝐌](𝒪)

lying over 𝑡𝒪.

Proof. The first claim follows from the fact that the cone of 𝐓𝐌,𝐇 maps surjectively onto

the cone of 𝐓𝐌 (because for any fixed 1 ≤ 𝑖 ≤ 𝑚, the weight spaces in 𝑉′
−𝑤𝐇,0(𝜆𝑖𝑗)

(1 ≤ 𝑗 ≤ 𝑒𝑖) account for all weight spaces in 𝑉−𝑤0(𝜃𝑖)).

For the second claim, since 𝒪 has algebraically closed residue field, 𝐙𝐌-torsors over

𝒪 are trivial, so wer can lift 𝑡𝒪 to a point 𝑡′𝒪 ∈ 𝐓𝐌(𝒪)∩𝐓𝐌(𝐹). Using the first claim just
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proved, let ̃𝑡 be the lift of 𝑡′𝒪 in 𝐓𝐌,𝐇(𝒪) ∩ 𝐓𝐌,𝐇(𝐹), then its image in [𝐓𝐌,𝐇/𝐙𝜅
𝐌](𝒪) is

the desired extension of 𝑡.

Since 𝐙𝜅
𝐌-torsors over 𝒪 are also trivial, the isomorphism class of any lift of 𝑡𝒪 is

uniquely determined by the lifting of cocharacter (𝑐𝑖𝜃𝑖, 𝜇) to (𝑎𝑖𝑗𝜆𝑖𝑗, 𝜇′). For a fixed 𝑡′,

𝑐𝑖 and 𝜇 are fixed, so the set of possible 𝑎𝑖𝑗 is a finite set, and 𝜇′ is uniquely determined

by 𝜇. This proves finiteness of possible liftings. ∎

2.5.11 As another comment, let 𝑎𝑖𝑗 = #(𝐖𝐇 ⋅ (−𝑤𝐇,0(𝜆𝑖𝑗))) > 0 and 𝑐𝑖 = ∑𝑒𝑖
𝑗=1 𝑎𝑖𝑗,

then we have

0 ≤𝐇 −𝑤𝐇,0(∑
𝑖𝑗

𝑎𝑖𝑗𝜆𝑖𝑗) ∈ �̌�(𝐓ad),

Thus the projection of 𝐙𝜅
𝐌 to each 𝔸1 corresponding to 𝜆𝑖𝑗 is dominant. This shows that

the subgroup 𝐙𝜅
𝐌 is still quite big compared to 𝐙𝐌,𝐇.

Lemma 2.5.12. The map �̃�𝐇 induces maps of abelianizations of 𝐌𝐇, 𝐌′
𝐇 and 𝐌:

𝐀𝐌,𝐇 ⟶ 𝐀′
𝐌,𝐇 ⟶ 𝐀𝐌.

The preimage of invertible locus 𝐀×
𝐌 in 𝐀𝐌,𝐇 is precisely 𝐀×

𝐌,𝐇.

Proof. The first map is induced by the universal property of taking invariant-theoretic

𝐇sc ×𝐇sc-quotient. The second one can be seen as follows: the ring of regular functions

𝑘[𝐀′
𝐌,𝐇] is generated by characters in 𝑘[𝐓𝐌] perpendicular to coroots in 𝐇, while 𝑘[𝐀𝐌]

is one generated by characters perpendicular to coroots in 𝐆, and Φ̌𝐇 ⊂ Φ̌.

The composition map 𝐀𝐌,𝐇 → 𝐀𝐌 can be described at cocharacter level by

(𝑎𝑖𝑗𝜆𝑖𝑗) ⟼ ⎛
⎝

𝑒𝑖
∑
𝑗=1

𝑎𝑖𝑗𝜃𝑖⎞
⎠
.

So it is readily seen that the preimage of 𝐀×
𝐌 is 𝐀×

𝐌,𝐇. ∎
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2.5.13 Suppose 𝜋0(𝜅) acts on 𝐀𝐌 compatibly with its action on 𝐀Env(𝐆sc) induced by

𝐨𝐆. Then by uniqueness of minimal set of generators, it has to permute the basis 𝜃𝑖.

Thus 𝐖⋊𝜋0(𝜅) acts on 𝐓𝐌 by combining the actions of 𝐖 and 𝜋0(𝜅). We also have an

action of 𝐖𝐇 ⋊𝜋0(𝜅) on 𝐓𝐌 induced by the canonical map in Lemma 2.5.5.

Lemma 2.5.14. There is a canonical action of 𝐖𝐇 ⋊ 𝜋0(𝜅) on 𝐓𝐌,𝐇 making �̃�𝐇 a 𝐖𝐇 ⋊

𝜋0(𝜅)-equivariant map.

Proof. To avoid confusion, we write𝐖⋊𝜋0(𝜅) as𝐖⋊𝐆𝜋0(𝜅) and𝐖𝐇⋊𝜋0(𝜅) as𝐖𝐇⋊𝐇

𝜋0(𝜅). It suffices to prove compatibility on subgroup 1 ⋊𝐇 𝜋0(𝜅). Let 𝜎 ∈ 1⋊𝐇 𝜋0(𝜅)

be an element.

The action of 𝜎 on 𝐓 through 𝐖 ⋊𝐆 𝜋0(𝜅) is compatible with its natural action on

𝐓𝐇sc through 𝐖𝐇 ⋊ Out(𝐇). In particular, 𝑤𝐇,0 is fixed by 𝜎. We claim that the action

of 𝜎 on �̌�(𝐓ad) through 𝐖 ⋊𝐆 𝜋0(𝜅) preserves subset {𝜆𝑖𝑗}. Indeed, we already know

it maps each weight space in the direct sum of 𝑉−𝑤0(𝜃𝑖) into another weight space, as

well as each irreducible �̌�′-representation (viewed as a �̌�sc-representation) therein into

another one. We also know that since 1⋊𝐇𝜋0(𝜅) stabilizes the set of simple coroots in𝐇,

it must map a �̌�′-highest weight to another one. Therefore the set of �̌�′-highest weights

𝜆𝑖𝑗 is preserved by 𝜎 hence 1⋊𝐇 𝜋0(𝜅).

This way we obtain an action of 1 ⋊𝐇 𝜋0(𝜅) on the abelianization 𝐀𝐌,𝐇 that is com-

patible with its natural action on 𝐀Env(𝐇sc). It is also compatible with the induced action

of 1 ⋊𝐇 𝜋0(𝜅) on 𝐀𝐌: indeed, since 𝐖 acts trivially on the abelianization, the action of

𝐖𝐇 ⋊ 𝜋0(𝜅) factors through the quotient group 𝜋0(𝜅), but the map 𝐖𝐇 ⋊𝐇 𝜋0(𝜅) →

𝐖⋊𝐆 𝜋0(𝜅) induces identity on the quotient group 𝜋0(𝜅). Then the result follows from

the definition of map �̃�𝐇. ∎

Combining Lemma 2.5.14 with the action of Out(𝐇) on Env(𝐇sc), we obtains a canon-

ical action of 1 ⋊𝐇 𝜋0(𝜅) on 𝐌𝐇. If we are given a 𝜋0(𝜅)-torsor 𝜗𝜅 on 𝑋, we have an
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1⋊𝐇 𝜋0(𝜅)-equivariant map of induced twisted forms

𝔐𝐻 ⟶ Env(𝐻sc),

where the right-hand side is induced by 𝐨𝐇. However, there is no action of Out(𝐇) on

𝐓𝐌,𝐇 or 𝐌𝐇.

Definition 2.5.15. Themonoid𝔐𝐻 is called the endoscopicmonoid associatedwithmonoid

𝔐 and endoscopic group 𝐻.

The group 𝜋0(𝜅) acts canonically on 𝐙𝜅
𝐌 and 𝐙𝐌,𝐇 because 𝐖𝐇 and 𝐖 always act

trivially on central tori, and the map in Lemma 2.5.5 induces identity on quotient group

𝜋0(𝜅). The map 𝐙𝜅
𝐌 → 𝐙𝐌 is 𝜋0(𝜅)-equivariant.

2.5.16 We have a commutative diagram of invariant quotients

𝐓𝐌,𝐇⫽𝐖𝐇 𝐌𝐇⫽Ad(𝐇)

𝐓𝐌⫽𝐖 𝐓𝐌/𝐖𝐇 𝐌′
𝐇⫽Ad(𝐇)

∼

∼

Thus we have a canonical map

𝜈𝐇 ∶ 𝐂𝐌,𝐇 ≔ 𝐌𝐇⫽Ad(𝐇) ⟶ 𝐂𝐌. (2.5.1)

Since the preimage of 𝐀×
𝐌 in 𝐀𝐌,𝐇 is 𝐀×

𝐌,𝐇, we have 𝜈−1
𝐇 (𝐂×

𝐌) = 𝐂×
𝐌,𝐇. We also have the

big-cell locus 𝐂∘
𝐌, and 𝐂𝐆‐∘

𝐌,𝐇 its preimage. We necessarily have 𝐂𝐆‐∘
𝐌,𝐇 ⊂ 𝐂∘

𝐌,𝐇 from the

definition. For convenience, we let 𝐂′
𝐌,𝐇 be the quotient 𝐓𝐌⫽𝐖𝐇.

Lemma 2.5.17. The restriction of maps

[𝐂𝐌,𝐇/𝐙𝜅
𝐌] ⟶ [𝐂′

𝐌,𝐇/𝐙𝜅
𝐌] ⟶ [𝐂𝐌/𝐙𝐌].
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to [𝐂×,rs
𝐌 /𝐙𝐌] are étale, and the first one is even an isomorphism over this subset. More-

over, let𝒪 = 𝑘[[𝜋]] and 𝐹 = 𝑘((𝜋)), and suppose 𝑎𝐇 ∈ [𝐂×
𝐌,𝐇/𝐙𝜅

𝐌](𝐹) extends to a point

𝑎 ∈ [𝐂𝐌/𝐙𝐌](𝒪), then there exists at least one and finitely many ways to extend 𝑎𝐇 to a

point in [𝐂𝐌,𝐇/𝐙𝜅
𝐌](𝒪) lying over 𝑎.

Proof. The first claim is clear from definition; the second is proved using Lemma 2.5.10.

Indeed, since𝐓𝐌,𝐇 → 𝐂𝐌,𝐇 is finite, wemay lift𝑎𝐇 to a point 𝑡𝐇 ∈ [𝐓𝐌/𝐙𝐌](𝐹𝑙) for some

finite tamely ramified extension 𝐹𝑙 of 𝐹, and there are only finitely many non-isomorphic

ways to do so if we require that 𝐹𝑙 is chosen to be as small as possible.

Since 𝐓𝐌 → 𝐂𝐌 is also finite, the image of 𝑡𝐇 in [𝐓𝐌/𝐙𝐌] extends to a unique 𝒪′
𝑙-

point 𝑡 lying over 𝑎 by valuative criteria for properness, where 𝒪′
𝑙 is a finite extension of

𝒪𝑙. By our assumption on char(𝑘) relative to 𝐆, any 𝐙𝐌-torsor over 𝐹𝑙 is trivializable over

a tamely ramified extension, so 𝒪′
𝑙 can be chosen to be tamely ramified over 𝒪𝑙, hence

over 𝒪. Thus we may replace 𝒪𝑙 with 𝒪′
𝑙 and then 𝑡𝐇 extends to a point in [𝐓𝐌/𝐙𝐌](𝒪𝑙).

Lemma 2.5.10 shows that there is at least one and at most finitely many ways to extend

𝑡𝐇 to an 𝒪𝑙-point in [𝐓𝐌,𝐇/𝐙𝜅
𝐌]. The image of such extension in [𝐂𝐌,𝐇/𝐙𝜅

𝐌] is an 𝒪𝑙-

point over 𝑎 extending 𝑎𝐇. But it is also an 𝐹-point, thus it must be an𝒪-point. Moreover,

any extension of 𝑎𝐇 to an 𝒪-point can be obtained in this way: indeed, any such 𝒪-point

lifts to some 𝒪𝑙-point in [𝐓𝐌,𝐇/𝐙𝜅
𝐌] (using the fact that 𝐙𝜅

𝐌-torsors over 𝒪 are trivial and

valuative criteria for finite map of varieties 𝐓𝐌,𝐇 → 𝐂𝐌,𝐇).

Therefore, the set of extensions of 𝑎𝐇 to 𝒪-points is necessarily finite because each

step above yields finitely many possibilities and every possible such extension of 𝑎𝐇 can

be obtained in this way. ∎

2.5.18 Let 𝐂𝐆‐rs
𝐌,𝐇 be the preimage of 𝐂rs

𝐌 under 𝜈𝐇. Recall the defining equations of

discriminant divisors:

Disc+ = 𝑒(2𝜌,0) ∏
𝛼∈Φ

(1 − 𝑒(0,𝛼))
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Disc𝐇,+ = 𝑒(2𝜌𝐇,0) ∏
𝛼∈Φ𝐇

(1 − 𝑒(0,𝛼))

and note that Φ𝐇 ⊂ Φ and Φ𝐇,+ ⊂ Φ+. Over the invertible locus, Disc+/Disc𝐇,+ is a

regular function, hence 𝜈𝐇(𝐃×
𝐌,𝐇) ⊂ 𝐃×

𝐌. Since 𝐃×
𝐌,𝐇 is dense in 𝐃𝐌,𝐇, we see that

𝜈𝐇(𝐃𝐌,𝐇) ⊂ 𝐃𝐌 and as a result

𝐂𝐆‐rs
𝐌,𝐇 ⊂ 𝐂rs

𝐌,𝐇.

We claim that the formula

(𝑟𝐆
𝐇 )2 ≔ 𝑒(2𝜌−2𝜌𝐇,0) ∏

𝛼∈Φ−Φ𝐇

(1 − 𝑒(0,𝛼))

defines a 𝐖𝐇-invariant function on 𝐓𝐌,𝐇. Indeed, we only need to show for any 1-

parameter homomorphism 𝔾m → 𝐓𝐌,𝐇 such that it extends to a homomorphism of

monoids 𝔸1 → 𝐓𝐌,𝐇, the rational function (𝑟𝐆
𝐇 )2 restricts to a function on 𝔸1, or equiv-

alently, it has non-negative valuation as a function on 𝔾m, which is implied by the fact

that 𝜈𝐇(𝐃𝐌,𝐇) ⊂ 𝐃𝐌. As a consequence, we have a principal divisor 2𝐑𝐆
𝐇 on 𝐂𝐌,𝐇 such

that

𝜈∗
𝐇𝐃𝐌 = 𝐃𝐌,𝐇 + 2𝐑𝐆

𝐇.

Moreover, over the invertible locus, 2𝐑𝐆
𝐇, as a divisor, is clearly twice of some reduced

divisor 𝐷. Since 𝐂𝐌,𝐇 is an affine space, hence in particular integral and factorial, the

closure of 𝐷 in 𝐂𝐌,𝐇 with the reduced subscheme structure is a principal divisor 𝐷, and

we have 2𝐷 = 2𝐑𝐆
𝐇. Therefore we define divisor 𝐑𝐆

𝐇 as 𝐷.

2.5.19 We have regular centralizer 𝐉𝐌,𝐇 of the adjoint 𝐇-action on 𝐌𝐇 as well as the

group scheme 𝐉1𝐌,𝐇 on 𝐂𝐌,𝐇 using Galois description of regular centralizer. Similar to
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Lie algebra case, we have the following results.

Lemma 2.5.20. There is a canonical commutative diagram over 𝐂𝐌,𝐇

𝜈∗
𝐇𝐉𝐌 𝐉𝐌,𝐇

𝜈∗
𝐇𝐉1𝐌 𝐉1𝐌,𝐇

such that all arrows are isomorphisms over 𝐂𝐆‐rs
𝐌,𝐇.

Proof. We have canonical homomorphism by adjunction

𝜈∗
𝐇𝜋𝐌∗𝐓 ⟶ 𝜋𝐌,𝐇∗�̃�∗

𝐇𝐓.

Taking invariant under either 𝐖 or 𝐖𝐇, we have

𝜈∗
𝐇𝐉1𝐌 = 𝜈∗

𝐇(𝜋𝐌∗𝐓)𝐖 ⟶ 𝜈∗
𝐇(𝜋𝐌∗𝐓)𝐖𝐇 ⟶ (𝜋𝐌,𝐇∗�̃�∗

𝐇𝐓)𝐖𝐇 = 𝐉1𝐌,𝐇.

This map is clearly an isomorphism over the 𝐆-regular semisimple locus (which is con-

tained in 𝐇-regular semisimple locus). Using the identification of 𝐉𝐌 with 𝐉′𝐌, we see that

if the condition defining 𝐉′𝐌 is satisfied, then the analogous condition for 𝐉′𝐌,𝐇 is also

satisfied since Φ𝐇 ⊂ Φ. Therefore the map 𝜈∗
𝐇𝐉𝐌 → 𝐉1𝐌,𝐇 factors through 𝐉𝐌,𝐇 and we

are done. ∎

2.5.21 To establish the transfer between regular semisimple orbit of 𝐺 and 𝐺-regular

semisimple orbit in 𝐻, we need to construct a canonical map

𝜈𝐻 ∶ ℭ𝔐,𝐻 ⟶ ℭ𝔐.

Through 𝐨𝐆, we have twisted form 𝔗𝔐 of 𝐓𝐌, and the canonical action of 1 ⋊𝐇 𝜋0(𝜅)

induces twisted form 𝔗𝔐,𝐻 of 𝐓𝐌,𝐇. However, �̃�𝐇 is not 𝜋0(𝜅)-equivariant since the
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image of 1⋊𝐇𝜋0(𝜅) is not 1⋊𝐆𝜋0(𝜅), therefore there is no natural map between𝔗𝔐 and

𝔗𝔐,𝐻. Nevertheless, we still have the canonical map 𝜈𝐻 because the action of𝐖𝐇⋊𝜋0(𝜅)

on 𝐂𝐌,𝐇 factors through quotient 𝜋0(𝜅) and same is true for 𝐖⋊𝜋0(𝜅) acting on 𝐂𝐌.

Similarly, we have relation between twisted discriminant divisors

𝜈∗
𝐻𝔇𝔐 = 𝔇𝔐,𝐻 + 2ℜ𝐺

𝐻,

where ℜ𝐺
𝐻 is a reduced principal divisor on ℭ𝔐,𝐻. The natural map between abelianiza-

tions also have natural twisted form

𝜈𝐻 ∶ 𝔄𝔐,𝐻 ⟶ 𝔄𝔐.

For the same reason, the central diagonalizable group 𝐙𝜅
𝐌 has twisted form 𝑍𝜅

𝔐 and it

maps naturally to 𝔄×
𝔐,𝐻 and surjectively onto 𝑍𝔐.

2.5.22 Finally, we want to establish a canonical map 𝜈𝐻 ∶ 𝔍𝔐 → 𝔍𝔐,𝐻 as follows: regard-

ing 𝜗𝜅 as a finite étale map 𝜗𝜅 ∶ 𝑋𝜅 → 𝑋, we have a finite flat map

𝜋𝜅 ∶ 𝑋𝜅 ×𝑋 𝔗𝔐 ≃ 𝑋𝜅 ×𝐓𝐌 ⟶ ℭ𝔐

such that over any geometric point 𝑣 ∈ 𝑋 it is generically a 𝐖⋊𝜋0(𝜅)-torsor. Then we

may alternatively describe 𝔍1𝔐 as the fixed-point scheme

𝔍1𝔐 = 𝜋𝜅∗(𝑋𝜅 ×𝐓𝐌 ×𝐓)𝐖⋊𝜋0(𝜅),

and 𝔍𝔐 can be identified with the subfunctor whose 𝑆-points for a ℭ𝔐-scheme 𝑆 consists

of maps

𝑓∶ 𝑆×ℭ𝔐 (𝑋𝜅 ×𝐓𝐌) ⟶ 𝐓
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such that for any geometric point 𝑥 ∈ 𝑆×ℭ𝔐 (𝑋𝜅 ×𝐓𝐌), if 𝑠𝛼(𝑥) = 𝑥 for a root 𝛼, then

𝛼(𝑓(𝑥)) ≠ −1. We also have

𝔍1𝔐,𝐻 = 𝜋𝜅∗(𝑋𝜅 ×𝐓𝐌,𝐇 ×𝐓)𝐖𝐇⋊𝜋0(𝜅),

and a similar description for 𝔍𝔐,𝐻 using roots 𝛼 ∈ Φ𝐇. Using commutative diagram

𝑋𝜅 ×𝐓𝐌,𝐇 𝑋𝜅 ×𝐓𝐌

ℭ𝔐,𝐻 ℭ𝔐

id×�̃�𝐇

𝜈𝐻

and the same argument in Lemma 2.5.20, we have:

Lemma 2.5.23. There is a canonical commutative diagram over ℭ𝔐,𝐻

𝜈∗
𝐻𝔍𝔐 𝔍𝔐,𝐻

𝜈∗
𝐻𝔍1𝔐 𝔍1𝔐,𝐻

such that all arrows are isomorphisms over ℭ𝐺‐rs
𝔐,𝐻.

2.5.24 Finally, we have induced maps of quotient stacks

[ℭ𝔐,𝐻/𝑍𝜅
𝔐] ⟶ [ℭ′

𝔐,𝐻/𝑍𝔐] ⟶ [ℭ𝔐/𝑍𝔐],

where the first map is generically an isomorphism over the invertible locus. The discrim-

inant divisor, the regular centralizer, etc. all descend to this quotient. However, even if

one has a Steinberg quasi-section over ℭ𝔐,𝐻, it may not descend to [ℭ𝔐,𝐻/𝑍𝜅
𝔐].

2.5.25 Let 𝐒 ⊂ 𝐓 be a subtorus, then the centralizer 𝐋 of 𝐒 in 𝐆 is a Levi-type subgroup

containingmaximal torus 𝐓. Using the pinning spl, its dual �̌� can be identified with a Levi-
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type subgroup in �̌�. Choosing a sufficiently general element 𝛾 in the center of �̌�, we can

realize �̌� as the centralizer of 𝛾 in �̌�. Therefore similar to endoscopic group 𝐇, we have

for any monoid 𝐌 ∈ ℱℳ(𝐆sc) a canonical associated monoid 𝐌𝐋 ∈ ℱℳ(𝐋sc) using the

same construction. We also have the non-flat monoid 𝐌′
𝐋, and canonical homomorphism

of reductive monoids

𝐌𝐋 ⟶ 𝐌′
𝐋 ⟶ 𝐌,

where the second arrow is induced by inclusion 𝐋 ⊂ 𝐆 (which is not necessarily present

in endoscopic groups). Let 𝐂𝐌,𝐋 (resp. 𝐂′
𝐌,𝐋) be the GIT quotient of 𝐌𝐋 (resp. 𝐌′

𝐋) by 𝐋,

and let 𝐙𝐋
𝐌 be the preimage of 𝐙𝐌 in 𝐌𝐋, then we have canonical maps

[𝐂𝐌,𝐋/𝐙𝐋
𝐌] ⟶ [𝐂′

𝐌,𝐋/𝐙𝐌] ⟶ [𝐂𝐌/𝐙𝐌],

where the second map is finite and the first map is generically an isomorphism, and

Lemma 2.5.17 holds (after replacing 𝐇 by 𝐋 and 𝐙𝜅
𝐌 by 𝐙𝐋

𝐌).

Let �̃� be the centralizer of 𝐒 in 𝐆⋊ Out(𝐆), then its neutral component is 𝐋, and its

quotient group of connected component𝜋0(�̃�) is a subgroup ofOut(𝐆). Similarly wemay

replace Out(𝐆) by a subgroup Θ therein, so that 𝜋0(�̃�) ⊂ Θ. Suppose 𝐺 is a quasi-split

form over 𝑋 induced by a Θ-torsor 𝜗∶ 𝑋𝜗 → 𝑋, and 𝔐 is a very flat monoid in ℱℳ(𝐺sc).

The GIT quotient 𝔐⫽Ad(𝐺) may be identified with the invariant quotient of 𝐓𝐌×𝑋𝑋𝜗 by

𝐖⋊Θ. Suppose that 𝜗 is induced by a 𝜋0(�̃�)-torsor, then we have induced maps similar

to endoscopic case

[ℭ𝔐,𝐿/𝑍𝐿
𝔐] ⟶ [ℭ′

𝔐,𝐿/𝑍𝔐] ⟶ [ℭ𝔐/𝑍𝔐].
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2.6 Fundamental Lemma for Spherical Hecke Algebras

Now we give the statement of fundamental lemmas for spherical Hecke algebras. Most co-

homological statements used for describing 𝜅-orbital integrals are extracted from [Ngô10,

§§ 1.5–1.7] for reader’s convenience and are kept brief. Readers should refer to loc. cit.

for proofs or references.

2.6.1 Let 𝐹𝑣 = 𝑘((𝜋𝑣)) be the field of Laurent series over 𝑘 and 𝒪𝑣 = 𝑘[[𝜋𝑣]] its ring of

integers. Let 𝐺 be a quasi-split twist of 𝐆, and 𝛾 ∈ 𝐺(𝐹𝑣) be a semisimple element. Since

the derived subgroup of 𝐺 is not necessarily simply-connected, the centralizer 𝐼𝛾 of 𝛾

in 𝐺 may not be a torus even if 𝛾 is regular semisimple (regular means that 𝐼𝛾 achieves

minimal dimension). For example, the diagonal matrix with entries 1 and −1 in PGL2 is

one such element. However, the collection of those 𝛾 whose centralizer is a torus is still

dense in 𝐺 and those elements are usually referred to as strongly regular semisimple. So

we will assume 𝛾 is strongly regular semisimple.

We still have natural map 𝑇⫽𝑊 → 𝐺⫽𝐺, and the cameral cover 𝑇 → 𝑇⫽𝑊 is a 𝑊-torsor

over any strongly regular semisimple element. Conversely, any point in 𝑇 at which the

map 𝑇 → 𝑇⫽𝑊 is étale is clearly strongly regular semisimple. Therefore the strongly

regular semisimple locus is open in 𝐺, and its image in 𝐺⫽𝐺 is also open. In addition, the

map 𝑇⫽𝑊 → 𝐺⫽𝐺 is an isomorphism on strongly regular semisimple locus. We denote

the resulting variety by ℭsrs
𝐺 , and let 𝑎 ∈ ℭsrs

𝐺 (𝐹𝑣) be the image of 𝛾.

If 𝛾′ ∈ 𝐺(𝐹𝑣) is another 𝐹𝑣-point over 𝑎, then there exists some 𝑔 ∈ 𝐺(𝐹𝑣) such that

𝛾′ = 𝑔𝛾𝑔−1. Therefore for any𝜎 ∈ Γ𝑣 = Gal(𝐹𝑣/𝐹𝑣), we have 𝑔𝜎(𝑔)−1 ∈ 𝐼𝛾(𝐹𝑣), hence

a cohomology class

inv(𝛾,𝛾′) ∈ H1(𝐹𝑣, 𝐼𝛾),

which depends only on the 𝐺(𝐹𝑣)-conjugacy class of 𝛾′ but not on 𝑔. Its image in
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H1(𝐹𝑣, 𝐺) is trivial, and in this way we have a bijection between the kernel of the map

H1(𝐹𝑣, 𝐼𝛾) ⟶ H1(𝐹𝑣, 𝐺),

and the set of 𝐹-conjugacy classes inside the 𝐹𝑣-conjugacy class of 𝛾.

2.6.2 The quasi-split twist 𝐺 over 𝐹𝑣 corresponds to a Out(𝐆)-torsor over 𝐹𝑣, which

can be identified with a Galois representation 𝜗•
𝐺 ∶ Γ𝑣 → Out(𝐆) after fixing a separable

closure 𝐹s
𝑣 of 𝐹𝑣. By Tate-Nakayama duality, we have

H1(𝐹𝑣, 𝐺)∗ ≃ 𝜋0((𝐙�̌�)𝜗
•
𝐺(Γ𝑣)),

where the left-hand side is the Pontryagin dual of H1(𝐹𝑣, 𝐺).

Choose a geometric point 𝑥𝑎 ∈ 𝐓(𝐹s
𝑣) over 𝑎, then it corresponds to a lifting of 𝜗•

𝐺 to

a homomorphism

𝜋•
𝑎 ∶ Γ𝑣 ⟶ 𝐖⋊Out(𝐆).

Although 𝐺 is not an object in ℱℳ(𝐺sc), the regular centralizer 𝔍𝑎 can still be defined

for strongly regular semisimple elements and its Galois description still hold using the

same proof because 𝑇srs → ℭsrs
𝐺 is étale. Thus we have isomorphisms over 𝐹𝑣

𝐼𝛾 ≃ 𝔍𝑎 ≃ Spec𝐹s
𝑣 ∧Γ𝑣,𝜋•

𝑎 𝐓.

Using Tate-Nakayama duality again, we have

H1(𝐹𝑣, 𝔍𝑎)∗ ≃ 𝜋0(�̌�𝜋•
𝑎(Γ𝑣)).

Note that here the isomorphism depends on the choice of 𝑥𝑎. The inclusion 𝜄∶ �̌� → �̌�
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is Γ𝑣-equivariant up to conjugacy in the following sense: for any 𝑡 ∈ �̌� and any 𝜎 ∈ Γ𝑣,

we always have that 𝜗•
𝐺(𝜎)(𝜄(𝑡)) and 𝜄(𝜋•

𝑎(𝜎)(𝑡)) are �̌�-conjugate. Therefore we have

an induced map

𝜋0((𝐙�̌�)𝜗
•
𝐺(Γ𝑣)) ⟶ 𝜋0(�̌�𝜋•

𝑎(Γ𝑣)),

whose Pontryagin dual is the map H1(𝐹𝑣, 𝐼𝛾) ⟶ H1(𝐹𝑣, 𝐺).

2.6.3 We fix a Haar measure d𝑔𝑣 on 𝐺(𝐹𝑣) such that 𝐺(𝒪𝑣) has volume 1, as well as a

non-zero Haar measure d𝑡𝑣 on 𝔍𝑎(𝐹𝑣). Using isomorphism 𝐼𝛾 ≃ 𝔍𝑎 for 𝛾 ∈ 𝐺(𝐹𝑣) lying

over 𝑎, we have an induced Haar measure on 𝐼𝛾(𝐹𝑣).

With the above choices, and any locally constant and compactly supported function

𝑓 on 𝐺(𝐹𝑣), we may define orbital integral

𝐎𝛾(𝑓, d𝑡𝑣) = ∫
𝐼𝛾(𝐹𝑣)\𝐺(𝐹𝑣)

𝑓(𝑔−1
𝑣 𝛾𝑔𝑣)

d𝑔𝑣
d𝑡𝑣

.

Definition 2.6.4. Let 𝜅 ∈ �̌�𝜋•
𝑎(Γ𝑣). Then we define the 𝜅-orbital integral of 𝑎 as the sum

𝐎𝜅
𝑎(𝑓, d𝑡𝑣) = ∑

𝛾′
⟨inv(𝛾,𝛾′), 𝜅⟩𝐎𝛾(𝑓, d𝑡𝑣),

where 𝛾′ ranges over all 𝐺(𝐹𝑣)-conjugacy classes over 𝑎, and 𝛾 is a fixed choice. When

𝜅 = 1, we denote 𝐎𝜅
𝑎 by 𝐒𝐎𝑎, called the stable orbital integral.

Note that 𝜅-orbital integral is sensitive to the choice of base point 𝛾 if 𝜅 ≠ 1, while

the stable orbital integral is not. Both also depend on a choice of the geometric point 𝑥𝑎.
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2.6.5 Let (𝜅,𝜗𝜅) be an endoscopic datum of 𝐺 and 𝐻 is the endoscopic group. The

canonical homomorphism in Lemma 2.5.5 induces map

𝜗𝜅 ×𝐓srs⫽𝐖𝐇 ⋊𝜋0(𝜅) ⟶ 𝜗𝜅 ×𝐓srs⫽𝐖⋊𝜋0(𝜅),

where the right-hand side is exactly ℭsrs
𝐺 , and we denote left-hand side by ℭ𝐺‐srs

𝐻 , called

the strongly 𝐺-regular semisimple locus. It is easy to see that it is an open subset of

ℭsrs
𝐻 . Note that since we only consider the strongly regular semisimple locus, both GIT

quotients can be identified with the stack quotient as the actions are free. We say a

conjugacy class 𝑎 ∈ ℭsrs
𝐺 (𝐹𝑣) and 𝑎𝐻 ∈ ℭ𝐺‐srs

𝐻 (𝐹𝑣) match each other if 𝑎 is the image of

𝑎𝐻. In this case, we have a canonical isomorphism 𝔍𝑎 ≃ 𝔍𝐻,𝑎𝐻 .

Since 𝜅-orbital integrals depend on the choice of geometric points 𝑥𝑎 and 𝑥𝑎𝐻 , we

shall choose the same point in 𝐓 for both. It also depends on the choice of base point 𝛾

over 𝑎 (we do not need to worry about 𝑎𝐻, for which we will only consider stable orbital

integrals), which we shall choose as follows in the special case when a Steinberg quasi-

section exists for 𝐺sc: let 𝐺1 be a fixed 𝑧-extension of 𝐺, then 𝐺1 ∈ ℱℳ(𝐺sc). Since

a Steinberg quasi-section exists for 𝐺sc, it also exists for 𝐺1 and we fix one once and

for all if there are multiple. The map 𝐺1(𝐹𝑣) → 𝐺(𝐹𝑣) is surjective because 𝐺1 is a 𝑧-

extension, so 𝛾 ∈ 𝐺(𝐹𝑣) is chosen to be the image of any element in 𝐺1(𝐹𝑣) lying over

𝑎 that is contained in the image of the Steinberg quasi-section. Clearly, such choice is

well-defined and does not depend on the choice of 𝑧-extension itself.

2.6.6 Now we make a digression and discuss the IC-functions. For split group 𝐆, we may

consider its affine Grassmannian defined as 𝖦𝗋𝐆 = 𝕃𝐆/𝕃+𝐆 (see § 4.1 for details), whose

𝑘-points is the quotient set 𝐆(𝐹𝑣)/𝐆(𝒪𝑣). It is an ind-projective ind-scheme over 𝑘. The
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arc group 𝕃+𝐆 acts naturally on𝖦𝗋𝐆, and its orbits are given by the Cartan decomposition

𝐆(𝐹𝑣) = ∐
[𝜆]

𝐆(𝒪𝑣)𝜋𝜆
𝑣𝐆(𝒪𝑣),

where [𝜆] ranges over the 𝐖-orbits in �̌�(𝐓), and we represent each 𝐖-orbit [𝜆] by the

unique 𝐁-dominant coweight within, denoted by 𝜆. The orbits, denoted by 𝖦𝗋𝜆𝐆 for each

𝜆, form a stratification of 𝖦𝗋𝐆 such that 𝖦𝗋𝜇𝐆 is contained in the closure of 𝖦𝗋𝜆𝐆 if and

only if 𝜆−𝜇 is an ℕ-combination of simple coroots (denoted by 𝜇 ≤ 𝜆). Let 𝖦𝗋≤𝜆
𝐆 be such

closure.

We may consider the standard intersection complex IC𝜆 with ℚℓ-coefficients (ℓ is co-

prime to 𝑝) on each 𝖦𝗋≤𝜆
𝐆 . By geometric Satake isomorphism, these complexes are exactly

the simple objects in the category of 𝕃+𝐆-equivariant constructible perverse sheaves on

𝖦𝗋𝐆, and the latter is equivalent to the Tannakian category of finite dimensional represen-

tations of �̌�. Under such equivalence, IC𝜆 corresponds to the irreducible representation

of �̌� of highest weight 𝜆.

On the other hand, by Grothendieck’s sheaf-function dictionary, each IC𝜆 induces a

function 𝑓𝜆 on the set of 𝑘-points of 𝖦𝗋𝐆, hence also a 𝐆(𝒪𝑣)-bi-invariant function on

𝐆(𝐹𝑣), still denoted by 𝑓𝜆. By induction, we can easily see that the collection of 𝑓𝜆 form

a different basis of the spherical algebra other than the characteristic functions on each

𝐆(𝒪𝑣)𝜋𝜆
𝑣𝐆(𝒪𝑣). In other words, we have

ℋ𝐆,0 = ⨁
𝜆

ℚℓ ⋅ 𝑓𝜆,

where ℋ𝐆,0 denotes the spherical Hecke algebra of 𝐆, i.e., 𝐆(𝒪𝑣)-bi-invariant locally

constant and compactly supported functions on 𝐆(𝐹𝑣).

Note that each function 𝑓𝜆 makes sense as a function on 𝐆ad(𝐹𝑣) as well because the

natural map 𝐆 → 𝐆ad maps each double coset 𝐆(𝒪𝑣)𝜋𝜆
𝑣𝐆(𝒪𝑣) to 𝐆ad(𝒪𝑣)𝜋

𝜆ad
𝑣 𝐆ad(𝒪𝑣)

(𝜆ad is the image of 𝜆 in �̌�(𝐓ad)), and 𝑓𝜆 is constant on those double cosets.
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2.6.7 When𝐺 is a quasi-split twist of𝐆 over𝒪𝑣, the action of Γ𝑣 on �̌�(𝑇) factors through

Gal(𝑘/𝑘). Let 𝜎𝑣 ∈ Gal(𝑘/𝑘) be the geometric Frobenius element and also choose a

lifting to Γ𝑣. In this case, IC𝜆 may not be defined on 𝖦𝗋𝐺 over 𝑘, but the direct sum

⨁𝜇∈Gal(𝑘/𝑘)⋅𝜆 IC𝜇 descends to 𝖦𝗋𝐺 over 𝑘, hence it induces a function on 𝐺(𝐹𝑣), which

we will denote by

∑
𝜇∈Gal(𝑘/𝑘)⋅𝜆

𝑓𝜇.

These functions generate ℋ𝐺,0 over ℚℓ.

Now given a 𝐹𝑣-rational dominant cocharacter 𝜆 of 𝐺, let 𝑉𝜆 be the corresponding

̌𝐺-representation. It extends to a representation of ̌𝐺⋊Γ𝑣, whose restriction to �̌� decom-

poses into a bunch of irreducible ones, denoted by 𝑉′
𝜆𝐻,𝑖

(1 ≤ 𝑖 ≤ 𝑒 for some 𝑒). Let [𝜆𝐻,𝑖]

be the 𝐖𝐇-orbit of 𝜆𝐻,𝑖, then the Galois group Γ𝑣 acts on the set of all [𝜆𝐻,𝑖]. Therefore

the function

𝑒
∑
𝑖=1

𝑓𝜆𝐻,𝑖
𝐻

makes sense as an element of ℋ𝐻,0. Note that any function above makes sense as a

function on 𝐺ad(𝐹𝑣) (resp. 𝐻ad(𝐹𝑣)) for the same reason as in the split case.

2.6.8 Now we are ready to state the fundamental lemma.

Conjecture 2.6.9. We have equality

𝐎𝜅
𝑎(𝑓𝜆, d𝑡𝑣) = Δ(𝛾𝐻, 𝛾) 𝐒𝐎𝑎𝐻

⎛
⎝

𝑒
∑
𝑖=1

𝑓𝜆𝐻,𝑖
𝐻 , d𝑡𝑣⎞

⎠
,

where Δ(𝛾𝐻, 𝛾) is a number (transfer factor) depending only on the 𝐹𝑣-conjugacy classes

of 𝛾 and 𝛾𝐻.

Remark 2.6.10. (1) Conjecture 2.6.9 is not an actual conjecture by itself since it has
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been proved by a combination of a series of reduction works most notably by Wald-

spurger (especially [Wal97,Wal08]) and Kottwitz ([Kot99]), and the proof in Lie al-

gebra case by Ngô ([Ngô10]).

(2) However, it has not been proved directly at group level, so it remains a conjecture

for the purpose of this paper.

(3) The transfer factor is defined by Langlands and Shelstad in [LS87] and is extremely

complicated, so we do not attempt to give the definition here.

We are able to prove the above conjecture in the following special case, except that we

have not checked that the “transfer factor” obtained in this article is the same as the one

defined by [LS87].

Theorem 2.6.11. Suppose 𝐺 = 𝐺ad and (𝜅,𝜗𝜅) is elliptic, then we have

𝑞−𝑑(𝑎)/2𝐎𝜅
𝑎(𝑓𝜆, d𝑡𝑣) = 𝑞−𝑑𝐻(𝑎𝐻)/2 𝐒𝐎𝑎𝐻

⎛
⎝

𝑒
∑
𝑖=1

𝑓𝜆𝐻,𝑖
𝐻 , d𝑡𝑣⎞

⎠
,

where 𝑑 and 𝑑𝐻 are the 𝐹𝑣-valuations of the (non-extended) discriminant functions (see

§ 2.2) of 𝐺 and 𝐻 respectively.

The theorem will be proved in § 10.5 using multiplicative Hitchin fibrations (mH-

fibrations), where we will also note what remains to be done in order to extend the result

to arbitrary groups.

2.6.12 It will be convenient to make some preliminary reductions so that our statement

of fundamental lemma plays better with reductive monoids. First of all, observing the

definition of 𝐎𝛾, we see that there is no need to treat the group 𝐺 doing the action and

the 𝐺-space 𝐺 as the same object. Indeed, let 𝛾ad be the image of 𝛾 in 𝐺ad(𝐹𝑣) and 𝑓ad

be a function on 𝐺ad(𝐹𝑣), then we can define 𝐎𝛾ad,𝐺 as follows:

𝐎𝛾ad,𝐺(𝑓ad, d𝑡𝑣) = ∫
𝐼𝛾(𝐹𝑣)\𝐺(𝐹𝑣)

𝑓(𝑔−1
𝑣 𝛾ad𝑔𝑣)

d𝑔𝑣
d𝑡𝑣

.
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The important thing to note is that 𝑔𝑣 still ranges over 𝐺(𝐹𝑣), not 𝐺ad(𝐹𝑣). Since 𝖦𝗋𝐺 →

𝖦𝗋𝐺ad induces homeomorphism on each geometric connected component of 𝖦𝗋𝐺, pull-

back of IC-functions on 𝐺ad(𝐹𝑣) will be a (potentially infinite) sum of IC-functions on

𝖦𝗋𝐺 with disjoint supports, by function-sheaf dictionary (and that 𝐺-torsors over 𝒪𝑣 are

necessarily trivial since 𝑘 is finite and 𝐺 is connected).

Let 𝐹𝑣 = 𝐹𝑣⊗̂𝑘𝑘 and 𝒪𝑣 its ring of integers. Then 𝐺 is split over 𝒪𝑣. We shall see

later (c.f. Proposition 4.1.7) that for a given Cartan double coset 𝐺ad(𝒪𝑣)𝜋𝜆ad𝐺ad(𝒪𝑣) in

𝐺ad(𝐹𝑣) that has non-trivial intersection with Ad𝐺(𝛾ad) , there is a unique 𝜆 in the preim-

age of 𝜆ad such that 𝐺(𝒪𝑣)𝜋𝜆𝐺(𝒪𝑣) and Ad𝐺(𝛾) has non-trivial intersection. Moreover,

if 𝛾ad is the image of 𝛾 and 𝜆ad is 𝐹𝑣-rational, then so is 𝜆. This shows that

𝐎𝛾ad,𝐺(𝑓
𝜆ad
ad , d𝑡𝑣) = 𝐎𝛾(𝑓𝜆, d𝑡𝑣),

and similarly for any sum of IC-functions in a Galois orbit.

2.6.13 The modified 𝜅-orbital will be defined as

𝐎𝜅
𝑎,ad(𝑓ad, d𝑡𝑣) = ∑

𝛾′
⟨inv(𝛾,𝛾′), 𝜅⟩𝐎𝛾ad,𝐺(𝑓ad, d𝑡𝑣),

so we may reduce the fundamental lemma to the following equality:

𝐎𝜅
𝑎,ad(𝑓

𝜆ad
ad , d𝑡𝑣) = Δ(𝛾𝐻, 𝛾) 𝐒𝐎𝑎𝐻,ad⎛

⎝

𝑒
∑
𝑖=1

𝑓𝜆𝐻,𝑖,ad
𝐻ad , d𝑡𝑣⎞

⎠
.

If𝐺1 → 𝐺ad is any central extension, and if there exists some 𝛾1 ∈ 𝐺1(𝐹𝑣) lying over 𝛾ad,

then we may replace 𝛾ad by 𝛾1 and 𝑓𝜆ad
ad by its pullback to 𝐺1(𝐹𝑣), and obtain a similar

equality.

As a special case, if 𝐺1 = 𝔐× for some reductive monoid 𝔐 ∈ ℱℳ(𝐺sc), it makes

sense to talk about orbital integrals of invertible 𝐹𝑣-points of 𝔐 whose image in 𝐺ad is
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𝛾ad. In fact, we do not have to only consider those elements lying over 𝛾ad, because the

definition makes sense for any elements in 𝔐×,rs(𝐹𝑣).

Finally, to simplify notations, since we only care about the evaluation of orbital inte-

grals at IC-functions, not as distributions on the group, we will freely switch between 𝐎𝛾

and 𝐎𝛾ad,𝐺 and so on.
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CHAPTER 3

MULTIPLICATIVE VALUATION STRATA

In this section we study the valuation strata in the multiplicative setting analogous to

those in [GKM09] in the Lie algebra setting. The main result of this section is a codimen-

sion formula for the valuation strata, which will later become a key ingredient for the

application of support theorem to multiplicative Hitchin fibrations.

3.1 Arc Spaces of Tori and Congruent Subgroups

3.1.1 Let 𝐹 = 𝑘((𝜋)) and 𝒪 = 𝑘[[𝜋]] be the rings of Laurent series and power series

over 𝑘 respectively. Let val𝐹 be the normalized valuation on 𝐹 such that val𝐹(𝜋) = 1. Let

𝐹∞ be the maximal tamely ramified extension of 𝐹 inside a fixed algebraic closure 𝐹. For

each 𝑙 ≥ 1 not divisible by 𝑝, we choose𝜋1/𝑙 ∈ 𝐹∞ and a primitive root of unity𝜁𝑙 in such

a compatible way that (𝜋1/(𝑙𝑚))𝑚 = 𝜋1/𝑙 and 𝜁𝑚
𝑙𝑚 = 𝜁𝑙. This way one obtains a unique

element 𝜏∞ ∈ Gal(𝐹∞/𝐹) such that 𝜏∞(𝜋1/𝑙) = 𝜁𝑙𝜋1/𝑙. Clearly 𝜏∞ is a topological

generator of Gal(𝐹∞/𝐹). Let 𝐹𝑙 = 𝐹[𝜋1/𝑙] and 𝜏𝑙 be the image of 𝜏∞ in Gal(𝐹𝑙/𝐹).

3.1.2 For 𝑚 ∈ ℕ, we let 𝒥𝑚 = 𝑘[𝜋]/(𝜋𝑚+1) be the ring of 𝑚-jets over 𝑘. For a scheme

𝑋 over 𝐹, let 𝕃𝑋 be the loop space of 𝑋. In other words, for any 𝑘-algebra 𝑅, 𝕃𝑋(𝑅) =

𝑋(𝑅 ⊗𝑘 𝐹). If 𝑋 is defined over 𝒪, let 𝕃+𝑚𝑋 be the 𝑚-jet space of 𝑋 so that 𝕃+𝑚𝑋(𝑅) =

𝑋(𝑅 ⊗𝑘 𝒥𝑚), and 𝕃+𝑋 ≔ lim←−𝕃+𝑚𝑋 be the arc space of 𝑋. If 𝑋 is a 𝑘-scheme, we let

𝕃𝑋 ≔ 𝕃𝑋𝐹, 𝕃+𝑚𝑋 ≔ 𝕃+𝑚𝑋𝒪, and 𝕃+𝑋 ≔ 𝕃+𝑋𝒪.

3.1.3 Let 𝑇 be a torus over 𝑘 and 𝔥 its Lie algebra. Let 𝑇𝑛 be the congruent subgroup

𝑇𝑛 ≔ ker(𝕃+𝑇 → 𝕃+𝑛𝑇) .
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Since we are primarily interested in the topological properties, we use 𝑇𝑛 for both this

group scheme and its 𝑘-points.

We have canonical isomorphisms

𝑇(𝒪) ≃ 𝑇(𝑘) × 𝑇0,

𝑇𝑛/𝑇𝑛+1 ≃ ker [𝑇(𝒥𝑛+1) → 𝑇(𝒥𝑛)] ,

hence

𝑇𝑛/𝑇𝑛+1 ≃ {𝜙 ∈ Hom𝑘‐Alg(𝑘[𝑇],𝒥𝑛+1)) | 𝜙(𝜆) ≡ 1 mod 𝜋𝑛+1,∀𝜆 ∈ 𝕏(𝑇)}.

Therefore for any 𝜙 ∈ 𝑇𝑛/𝑇𝑛+1 and 𝜆 ∈ 𝕏(𝑇), 𝜙(𝜆) = 1 + 𝑎(𝜆)𝜋𝑛+2, where 𝑎 ∈

Homℤ(𝕏(𝑇), 𝑘) ≃ 𝔥. Thus 𝑇𝑛/𝑇𝑛+1 ≃ 𝔥 for all 𝑛 ≥ 0, such that for any 𝜆 ∈ 𝕏(𝑇), 𝜆(𝑡) −

1 ≡ d𝜆(𝑡)𝜋𝑛+1 mod 𝜋𝑛+2 for all 𝑡 ∈ 𝑇𝑛 and its image 𝑡 ∈ 𝔥 under this isomorphism.

3.1.4 Let 𝑙 ∈ ℤ+ be coprime to 𝑝, and suppose 𝐴 is a cyclic group of order 𝑙 acting on

𝕃+𝑇 compatible with filtrations 𝑇𝑛 and canonical map 𝑇 → 𝕃+𝑇. Note then 𝑇𝑛/𝑇𝑛+1 ≃ 𝔥

is a 𝑘-linear representation of𝐴. The following lemma is necessary when we later consider

some twisted forms of 𝑇(𝒪).

Lemma 3.1.5. The induced maps on fixed points 𝑇𝐴
𝑛 → (𝑇𝑛/𝑇𝑛+1)𝐴 and 𝑇(𝒪)𝐴 → 𝑇(𝑘)𝐴

are surjective.

Proof. The claim about 𝑇(𝒪) → 𝑇(𝑘) is trivial as the projection splits. View 𝑇𝑛/𝑇𝑛+1 as

𝑘-vector space 𝔥. Let 𝜎 ∈ 𝐴 be a generator. Since 𝑙 is invertible in 𝑘, we know the 𝑘-linear

map

𝑇𝑛/𝑇𝑛+1 ⟶ (𝑇𝑛/𝑇𝑛+1)𝐴

𝑥 ⟼ Nm𝜎(𝑥) ≔ 𝑥+𝜎(𝑥) +⋯+𝜎𝑙−1(𝑥)
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is surjective. Lift 𝑥 to 𝑇𝑛, denoted by 𝑡, then Nm𝜎(𝑡) ≔ 𝑡𝜎(𝑡)⋯𝜎𝑙−1(𝑡) is 𝐴-invariant

and maps to Nm𝜎(𝑥). ∎

3.2 Root Valuation Functions and Filtrations

3.2.1 Let 𝑡 ∈ 𝑇(𝐹∞), and 𝜆 ∈ 𝕏(𝑇). Define

𝑟𝑡(𝜆) = val𝐹(1 − 𝜆(𝑡)).

Then if 𝑡 ∈ 𝑇(𝒪∞), 𝑟𝑡(𝜆+𝜇) ≥ min{𝑟𝑡(𝜆), 𝑟𝑡(𝜇)} and reaches equality if 𝑟𝑡(𝜆) ≠ 𝑟𝑡(𝜇).

Note that 𝑟𝑡 can take ∞ as value.

Using the fixed system of uniformizers 𝜋1/𝑙, we can decompose 𝑇(𝐹∞) as

𝑇(𝐹∞) ≅ 𝑇(𝒪∞) × �̌�(𝑇)ℤ(𝑝) ↪ 𝑇(𝒪∞) × �̌�(𝑇)ℚ.

Then one can uniquely write 𝑡 ∈ 𝑇(𝐹∞) as a product 𝑡0𝜋𝜆/𝑙 for some 𝑡0 ∈ 𝑇(𝒪∞),

𝜆 ∈ �̌�(𝑇), and positive integer 𝑙 coprime to 𝑝.

3.2.2 Now suppose 𝐺 is a connected reductive group over 𝑘 and 𝑇 is a maximal torus

of 𝐺. Let 𝑡 ∈ 𝑇(𝐹∞), then 𝑟𝑡 induces a function on Φ by restriction, still denoted by

𝑟𝑡, called the root valuation function induced by 𝑡. We can also define the discriminant

valuation of 𝑡 by

𝑑(𝑡) = ∑
𝛼∈Φ

𝑟𝑡(𝛼) ∈ ℚ∪ {∞},

which is finite if and only if 𝑡 is regular semisimple. Note that 𝑑(𝑡) is none other than

the 𝐹-valuation of the discriminant Disc(𝑡) introduced in § 2.2.

Write 𝑡 = 𝑡0𝜋𝜆/𝑙, then the rational cocharacter 𝜆ad/𝑙 ∈ �̌�(𝑇ad)ℚ can be recovered

from 𝑟𝑡 as follows. Observe that 𝑟𝑡(𝛼) = 𝑟𝑡(−𝛼) if and only if ⟨𝛼, 𝜆⟩ = 0, and otherwise
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{𝑟𝑡(𝛼), 𝑟𝑡(−𝛼)} = {0, 𝑠} for some 𝑠 < 0. Define a new function

𝑟−
𝑡 (𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

𝑟𝑡(𝛼) 𝑟𝑡(𝛼) < 0,

0 𝑟𝑡(𝛼) = 𝑟𝑡(−𝛼),

−𝑟𝑡(−𝛼) 𝑟𝑡(−𝛼) < 0.

Then 𝑟−
𝑡 extends to a homomorphism𝕏(𝑇)ad,ℚ → ℚ. Since any set of simple roots form a

basis of 𝕏(𝑇)ad,ℚ, this extension to a homomorphism is unique. Thus 𝜆ad/𝑙 is recovered

from 𝑟−
𝑡 . As a result, let 𝜆 be the image of 𝜆 in �̌�(𝐺/𝐺der), then the pairs (𝑟𝑡, 𝜆/𝑙) and

(𝑟𝑡, 𝜆/𝑙) carry the same amount of information about 𝑡.

For later convenience, we also define a modified form 𝑟⋆
𝑡 of 𝑟𝑡 by

𝑟⋆
𝑡 (𝛼) = min{𝑟𝑡(𝛼), 𝑟𝑡(−𝛼)}.

Note that one can recover 𝑟𝑡 from 𝑟⋆
𝑡 and 𝑟−

𝑡 . In fact, we can define 𝑟− and 𝑟⋆ for any

function 𝑟 on Φ such that either 0 ≤ 𝑟(𝛼) = 𝑟(−𝛼) ≤ ∞ or {𝑟(𝛼), 𝑟(−𝛼)} = {0, 𝑠} for

some 𝑠 < 0.

3.2.3 To study the pair (𝑟𝑡, 𝜆/𝑙) incurred by 𝑡 ∈ 𝑇(𝐹∞) in general, we first study those

𝑡 ∈ 𝑇(𝒪), in which case 𝑟𝑡 takes values in ℕ ∪ {∞} and 𝜆-part is trivial. For any root

system Φ and any functions 𝑟∶ Φ → ℕ∪ {∞}, we may define filtration (of subsets) of Φ

Φ𝑛(𝑟) ≔ {𝛼 ∈ Φ | 𝑟(𝛼) ≥ 𝑛},

where 𝑛 ∈ ℕ∪{∞}, and we will simply use Φ𝑛 if the function 𝑟 is clear from the context.

Clearly this filtration stabilizes after finite steps and

⋂
0≤𝑛<∞

Φ𝑛 = Φ∞.
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To study this filtration for those 𝑟 = 𝑟𝑡, we first record two theorems concerning root

subsystems of Φ.

Theorem 3.2.4 (Slodowy’s criterion). A root subsystem Φ′ of Φ comes from a Levi-type

subgroup if and only if Φ′ is ℚ-closed in Φ, in other words, ℚΦ′ ∩Φ = Φ′.

Theorem 3.2.5 (Deriziotis’ criterion). A root subsystem Φ′ of Φ comes from a pseudo-Levi-

type subgroup (i.e. the connected centralizer of a semisimple element of 𝐺) if and only if

after conjugation by 𝑊, Φ′ has a basis which is a proper subset of the simple affine roots

of Φ, in other words, simple roots together with negative of the highest root.

Lemma 3.2.6. Let 𝑡 ∈ 𝑇0, then Φ𝑛(𝑟𝑡) is ℚ-closed.

Proof. Clearly Φ𝑛 is ℤ-closed for each 𝑛. Following the proof in [GKM09, 14.1.1], if 𝛼 ∈ Φ

is aℚ-combination of roots in Φ𝑛, then 𝑑𝛼 ∈ ℤΦ𝑛 for some 𝑑 coprime to 𝑝 (here only the

fact that Φ𝑛 is ℤ-closed is needed). Thus 𝑟𝑡(𝑑𝛼) ≥ 𝑛. But since 𝑡 ∈ 𝑇0 and 𝑑 is coprime

to 𝑝, we must have 𝑟𝑡(𝛼) ≥ 𝑛 as well, hence the lemma. ∎

The following corollary is not used in subsequent parts of this paper, but highlights

the subtle difference between the multiplicative and additive cases (cf. [GKM09, 3.4.1]).

Corollary 3.2.7. There is a Zariski-dense open subset of 𝑇(𝑘) such that the conclusion in

Lemma 3.2.6 holds for its preimage in 𝑇(𝒪).

Proof. The collection of possible 𝑑 (chosen to be as small as possible each time) appearing

in the proof of Lemma 3.2.6 is a finite set 𝑆. Let 𝑈 ⊂ 𝑇(𝑘) be the complement of those

𝑡 ∈ 𝑇(𝑘) such that 1 ≠ 𝛼(𝑡) ∈ 𝜇𝑑 (𝜇𝑑 is the set of 𝑑-th roots of unity) for some 𝛼 ∈ Φ

and some 𝑑 ∈ 𝑆. Then its clear that the same proof goes through for elements in the

preimage of 𝑈. ∎

Remark 3.2.8. It is not true even in characteristic 0 that Lemma 3.2.6 holds for all 𝑡 ∈

𝑇(𝒪). For example, suppose 𝐺 is of type 𝐵2 or 𝐶2, and let 𝑡 be an element such that
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𝛼(𝑡) = −1+𝜋 for both positive short root 𝛼, then Φ1 for 𝑟𝑡 is exactly the set of all long

roots, which is not ℚ-closed.

Proposition 3.2.9. Let 𝑡 ∈ 𝑇(𝒪). Then Φ1(𝑟𝑡) is a root subsystem of pseudo-Levi type, and

Φ𝑛 is ℚ-closed in Φ1 for all 𝑛 ≥ 1.

Proof. Write 𝑡 = 𝑥𝑡0, where 𝑥 ∈ 𝑇(𝑘) and 𝑡0 ∈ 𝑇0. Then

Φ1(𝑟𝑡) = {𝛼 ∈ Φ | 𝛼(𝑥) = 1},

which is the same as the roots of the connected centralizer of 𝑥 in 𝐺, hence the first

claim.

For the second claim, note that for 𝑛 ≥ 1, we have that

Φ𝑛(𝑟𝑡) = Φ𝑛(𝑟𝑡0) ∩ Φ1(𝑟𝑡) ⊂ Φ𝑛(𝑟𝑡0).

Since Φ𝑛(𝑟𝑡0) is ℚ-closed in Φ by Lemma 3.2.6, we have that

Φ𝑛(𝑟𝑡) ⊂ ℚΦ𝑛(𝑟𝑡) ∩ Φ1(𝑟𝑡)

⊂ ℚΦ𝑛(𝑟𝑡0) ∩ Φ1(𝑟𝑡)

= ℚΦ𝑛(𝑟𝑡0) ∩ [Φ∩Φ1(𝑟𝑡)]

= [ℚΦ𝑛(𝑟𝑡0) ∩ Φ] ∩ Φ1(𝑟𝑡)

= Φ𝑛(𝑟𝑡0) ∩ Φ1(𝑟𝑡)

= Φ𝑛(𝑟𝑡).

Therefore every inclusion is an equality, and in particular Φ𝑛(𝑟𝑡) = ℚΦ𝑛(𝑟𝑡) ∩ Φ1(𝑟𝑡),

as claimed. ∎
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3.2.10 Let 𝑀 ⊂ 𝐺 be a connected reductive subgroup of Levi type containing 𝑇, and

Φ𝑀 ⊂ Φ be its root subsystem. Then Φ𝑀 is ℚ-closed by Slodowy’s criterion.

Lemma 3.2.11. For any 0 ≤ 𝑛 < ∞, we can find 𝑡𝑛 ∈ 𝑇𝑛 such that

𝑟𝑡𝑛(𝛼) =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

𝑛+ 1 𝛼 ∈ Φ ⧵ Φ𝑀,

∞ 𝛼 ∈ Φ𝑀.

Proof. Let𝑍𝑀 be the connected center of𝑀. Let𝑋 ∈ 𝔷𝑀 ≔ Lie(𝑍𝑀) ≃ (𝑍𝑀)𝑛/(𝑍𝑀)𝑛+1 be

an element that𝛼(𝑋) ≠ 0 for all𝛼 ∈ Φ⧵Φ𝑀. This𝑋 exists since 𝔷𝑀 is exactly the intersec-

tion of kernels of𝛼 ∈ Φ𝑀 and no other root vanishes identically on 𝔷𝑀 (cf. [GKM09, 14.2]).

Lift 𝑋 to 𝑡𝑛 ∈ (𝑍𝑀)𝑛, and we are done. ∎

Lemma 3.2.12. Suppose we have a function 𝑟∶ Φ → ℤ+∪{∞} and the associated filtration

Φ𝑛. If Φ𝑛 is a ℚ-closed root subsystem in Φ for each 1 ≤ 𝑛 ≤ ∞, then we can find 𝑡 ∈ 𝑇0

such that 𝑟𝑡 = 𝑟.

Proof. For each (finite) 𝑖 ≥ 0, let 𝑀𝑖+1 be the Levi type subgroup with root system Φ𝑖+𝑖,

and let 𝑡𝑖 be as in Lemma 3.2.11 for pair 𝑀𝑖+2 ⊂ 𝑀𝑖+1 and 𝑛 = 𝑖. Then

𝑟𝑡𝑖(𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

something ≥ 𝑖+ 1 𝛼 ∈ Φ ⧵ Φ𝑖+1,

𝑖 + 1 𝛼 ∈ Φ𝑖+1 ⧵ Φ𝑖+2,

∞ 𝛼 ∈ Φ𝑖+2.

Thus for a fixed 𝑖 ≥ 0, and 𝛼 ∈ Φ𝑖+1 ⧵ Φ𝑖+2, we have that

𝑟𝑡𝑗(𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

something ≥ 𝑗+ 1 𝑗 > 𝑖,

𝑗 + 1 𝑗 = 𝑖,

∞ 𝑗 < 𝑖.
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Let 𝑡 = ∏∞
𝑖=0 𝑡𝑖, which necessarily converges as 𝑡𝑖 ∈ 𝑇𝑖. Since for 𝛼 ∈ Φ𝑖+1⧵Φ𝑖+2, 𝑟𝑡𝑗(𝛼)

reaches unique minimum at 𝑗 = 𝑖, we have that 𝑟𝑡(𝛼) = 𝑟𝑡𝑖(𝛼) = 𝑖 + 1, and for 𝛼 ∈ Φ∞,

it’s clear that 𝑟𝑡(𝛼) = ∞, as desired. ∎

Theorem 3.2.13. Suppose we have a function 𝑟∶ Φ → ℕ∪{∞} and the associated filtration

Φ𝑛. Then 𝑟 = 𝑟𝑡 for some 𝑡 ∈ 𝑇(𝒪) if and only if Φ1 ⊂ Φ is a root subsystem of pseudo-Levi

type and Φ𝑛 is a ℚ-closed subsystem in Φ1 for each 1 ≤ 𝑛 ≤ ∞. Moreover, 𝑡 ∈ 𝑇(𝒪) is

such that 𝑟𝑡 = 𝑟 if and only if we can write 𝑡 = 𝑥∏∞
𝑛=0 𝑡𝑛 where 𝑥 ∈ 𝑇(𝑘) and 𝑡𝑛 ∈ 𝑇𝑛

are such that Φ1 is the set of roots taking trivial value on 𝑥, and

𝑟𝑡𝑛(𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

something ≥ 𝑛+ 1 𝛼 ∈ Φ1 ⧵ Φ𝑛+1,

𝑛 + 1 𝛼 ∈ Φ𝑛+1 ⧵ Φ𝑛+2,

∞ 𝛼 ∈ Φ𝑛+2.

(3.2.1)

Proof. For the first claim, the “only if” part is proved in Proposition 3.2.9. Now for the

“if” part. Let 𝑥 ∈ 𝑇(𝑘) be such that Φ1 is the root system of its connected centralizer

𝑀, which is a connected reductive group with maximal torus 𝑇. Apply Lemma 3.2.12 to

𝑀 and restricted function 𝑟|Φ1 , then one can find 𝑡0 ∈ 𝑇0 such that 𝑟𝑡0|Φ1 = 𝑟|Φ1 . This

means that 𝑡 = 𝑥𝑡0 is the desired element.

For the second claim, the only nontrivial part is the “only if” part. The existence of

𝑥 is also clear, so we may replace 𝑡 by 𝑥−1𝑡 and 𝐺 by the connected centralizer of 𝑥,

and in turn we may assume 𝑡 is already in 𝑇0. Let 𝑀𝑛 be the Levi-type subgroup of 𝐺

corresponding to Φ𝑛, 𝑍𝑀𝑛 its connected centralizer, and 𝔷𝑀𝑛 = Lie𝑍𝑀𝑛 . Let 𝑋0 be the

image of 𝑡 in 𝔥, then 𝛼(𝑋0) = 0 for all 𝛼 ∈ Φ2, so we can lift it to 𝑡0 ∈ 𝑍𝑀2,0 (again,

the subscript 0 here means the congruent subgroup, not neutral component), then 𝑡0

satisfies (3.2.1). Moreover, let Φ′
𝑛 = Φ𝑛(𝑟𝑡𝑡−1

0
), then we have that Φ′

2 = Φ, Φ′
𝑛 ⊃ Φ𝑛 for

all 𝑛, and Φ′
𝑛 ⧵Φ′

𝑛+1 ⊃ Φ𝑛 ⧵Φ𝑛+1 for 𝑛 ≥ 2. Doing the same argument for 𝑡𝑡−1
0 but with

every index increased by 1, we have some 𝑡1 ∈ 𝑇1 satisfying (3.2.1) (a priori only for Φ′
𝑛,
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but as Φ′
𝑛 ⧵Φ′

𝑛+1 ⊃ Φ𝑛 ⧵Φ𝑛+1, same is true for Φ𝑛). Continuing this process, we see that

the infinite product

𝑡
∞
∏
𝑛=0

𝑡−1
𝑛

converges to some 𝒪-point 𝑧 in the center of 𝐺. Absorb 𝑧 into 𝑡0 and we are done. ∎

3.2.14 Next we consider 𝑡 ∈ 𝑇(𝐹). Then 𝑡 = 𝑡0𝜋𝜆 for some 𝑡0 ∈ 𝑇(𝒪) and 𝜆 ∈ �̌�(𝑇). We

form the functions 𝑟−
𝑡 and 𝑟⋆

𝑡 as in § 3.2. In this case, let Φ𝑛 ≔ Φ𝑛(𝑟⋆
𝑡 ) for 0 ≤ 𝑛 ≤ ∞,

then we have filtration

Φ ⊃ Φ0 ⊃ ⋯ ⊃ Φ𝑛 ⊃ ⋯ ⊃ Φ∞ ⊃ ∅.

Since Φ0 is the set of roots that vanish on 𝜆, it is in particular ℚ-closed in Φ, and thus is

a root subsystem of Levi type. Then for each 0 ≤ 𝑛 ≤ ∞, it is clear that

Φ𝑛 = Φ0 ∩Φ𝑛(𝑟𝑡0). (3.2.2)

So Φ1 is a root subsystem of pseudo-Levi type in Φ0, and for each 1 ≤ 𝑛 ≤ ∞, Φ𝑛 is

ℚ-closed in Φ1. To summarize it, we have

Φ
Levi
⊃ Φ0

pseudo-Levi
⊃ Φ1

Levi
⊃ Φ1≤𝑛≤∞. (3.2.3)

On the other hand, given a function 𝑟∶ Φ → ℤ∪ {∞}, a necessary condition for 𝑟 to

be equal to some 𝑟𝑡 is that 𝑟− and 𝑟⋆ as in § 3.2 are well-defined. Suppose 𝑟 is such a

function.

Theorem 3.2.15. There exists 𝑡 ∈ 𝑇(𝐹) such that 𝑟 = 𝑟𝑡 if and only if 𝑟− extends to a

homomorphism 𝕏(𝑇) → ℤ, and the filtration Φ𝑛 satisfies (3.2.3).
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Proof. The “only if” part is proved by discussions above and in § 3.2. We now prove

the “if” part. Let 𝜆 ∈ �̌�(𝑇) be one of extensions of 𝑟− (which is not unique unless 𝐺

is semisimple). By Theorem 3.2.13, we can find 𝑡0 ∈ 𝑇(𝒪) such that (3.2.2) holds. Let

𝑡 = 𝜋𝜆𝑡0 and we are done. ∎

3.2.16 As discussed before, we have associated pair (𝜆𝑡, 𝑟𝑡) for any 𝑡 ∈ 𝑇(𝐹) where

𝜆𝑡 ∈ �̌�(𝐺/𝐺der). Let 𝑆1
𝐺 be the set of all pairs (𝜆, 𝑟) where 𝜆 ∈ �̌�(𝐺/𝐺der) and 𝑟∶ Φ →

ℚ∪ {∞}. Then we have a partition of 𝑇(𝐹) by

𝑇(𝐹) = ∐
(𝜆,𝑟)∈𝑆1

𝐺

𝑇(𝐹)(𝜆,𝑟),

where 𝑇(𝐹)(𝜆,𝑟) is the set of all 𝑡 ∈ 𝑇(𝐹) such that (𝜆𝑡, 𝑟𝑡) = (𝜆,𝑟). Then by Theo-

rem 3.2.15, 𝑇(𝐹)(𝜆,𝑟) is nonempty if and only if the following conditions are satisfied:

(1) 𝑟 takes values in ℤ∪ {∞};

(2) 𝑟− and 𝑟⋆ are defined;

(3) 𝑟− extends to (necessarily unique) 𝜆ad ∈ �̌�(𝑇ad) such that

(𝜆, 𝜆ad) ∈ �̌�(𝐺/𝐺der) × �̌�(𝑇ad)

lies in the image of �̌�(𝑇);

(4) the filtration Φ𝑛(𝑟⋆) satisfies (3.2.3).

For convenience, we will call 𝜆 (resp. 𝜆ad) the central (resp. adjoint) component of 𝜆.

3.2.17 We now study 𝑇(𝐹∞) in general. Let 𝑡 ∈ 𝑇(𝐹∞), then 𝑡 ∈ 𝑇(𝐹𝑙) for some 𝑙. We

know that the image of 𝜏∞ in cyclic group Gal(𝐹𝑙/𝐹) is a generator. Suppose there is

some 𝑤 ∈ 𝑊 with order 𝑙. Then we know that 𝑟𝑡 takes values in ℤ/𝑙 ∪ {∞}, and we are

81



mostly interested in the case when 𝜏∞𝑤(𝑡) = 𝑡 (note that the Galois action commutes

with the Weyl group action). To that end we define

𝑇𝑤(𝐹) ≔ {𝑡 ∈ 𝑇(𝐹𝑙) | 𝜏∞𝑤(𝑡) = 𝑡}.

Then we immediately have that if 𝑡 = 𝑡′𝜋𝜆𝑡/𝑙, then 𝜆𝑡 is fixed by 𝑤, and 𝑡′ ∈ 𝑇(𝒪𝑙) is

such that

𝜏∞𝑤(𝑡′)𝜁𝜆𝑡
𝑙 = 𝑡′.

Let 𝑇𝐹𝑙,𝑛 (𝑛 ∈ ℕ) be the congruent subgroup of 𝑇(𝒪𝑙) with 𝐹 replaced by 𝐹𝑙, then we can

write canonically 𝑡′ = 𝑥𝑡0 for 𝑥 ∈ 𝑇(𝑘) and 𝑡0 ∈ 𝑇𝐹𝑙,0. Since 𝜁𝑙 ∈ 𝑘, we must have

𝜏∞𝑤(𝑡0) = 𝑡0 and (1 −𝑤)(𝑥) = 𝜁𝜆𝑡
𝑙 . (3.2.4)

An immediate observation is that 𝜆𝑡/𝑙 ∈ �̌�(𝐺/𝐺der).

As in the 𝐹-rational case, we can define 𝑟−
𝑡 and 𝑟⋆

𝑡 , as well as filtration

Φ𝑛 = Φ𝑛(𝑟⋆
𝑡 ) ≔ {𝛼 ∈ Φ | 𝑟⋆

𝑡 (𝛼) ≥ 𝑛
𝑙 }, (0 ≤ 𝑛 ≤ ∞).

By the same argument with 𝐹 replaced by 𝐹𝑙, we know that Φ𝑛 satisfies (3.2.2). We

also have that 𝑟−
𝑡 and 𝜆𝑡,ad/𝑙 mutually determines each other. Therefore 𝑡 induces pair

(𝜆𝑡/𝑙, 𝑟𝑡) where the first component is an integral cocharacter of 𝐺/𝐺der.

3.2.18 To fully characterize what pairs (𝜆/𝑙, 𝑟) arises in this way, again we first assume

𝜆𝑡 = 0, in other words, 𝑡 ∈ 𝑇(𝒪𝑙). In fact, it is better to start with 𝑡 ∈ 𝑇𝐹𝑙,0, in which

case Φ = Φ0 = Φ1.

Given 𝑡 ∈ 𝑇𝐹𝑙,0, by Theorem 3.2.13, wemay write 𝑡 as the infinite product of 𝑡𝑛 ∈ 𝑇𝐹𝑙,𝑛
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such that

𝑟𝑡𝑛(𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

something ≥ 𝑛+1
𝑙 𝛼 ∈ Φ1 ⧵ Φ𝑛+1,

𝑛+1
𝑙 𝛼 ∈ Φ𝑛+1 ⧵ Φ𝑛+2,

∞ 𝛼 ∈ Φ𝑛+2.

(3.2.5)

Using the same notations in the proof of Theorem 3.2.13, since 𝜏∞𝑤(𝑡) = 𝑡, 𝜏∞𝑤 pre-

serves each Φ𝑛, and we see that 𝑋0 ∈ 𝔷𝜏∞𝑤
𝑀2 (here the action of 𝜏∞ on 𝔥, when viewed as

quotient 𝑇𝑛/𝑇𝑛+1, is multiplication by 𝜁𝑛+1
𝑙 , and the action of 𝑤 is the usual one). By

Lemma 3.1.5, we can require the lift 𝑡0 to be contained in 𝑍𝜏∞𝑤
𝑀2,0 , hence 𝑡𝑡−1

0 is also fixed

by 𝜏∞𝑤. Inductively doing so in the construction of each 𝑡𝑛, we can make each 𝑡𝑛 fixed

by 𝜏∞𝑤.

Definition 3.2.19. Suppose 𝑤 ∈ 𝑊 is of order 𝑙 and acting on a 𝑘-vector space 𝑉. For any

integer 𝑖, define 𝑉(𝑤, 𝑖) ⊂ 𝑉 to be the maximal subspace where 𝑤 acts as 𝜁−𝑖
𝑙 .

Lemma 3.2.20. Suppose we have a function 𝑟∶ Φ → ℤ+/𝑙∪{∞} and the associated filtra-

tion Φ𝑛. Then we may find 𝑡 ∈ 𝑇𝑤,0 ≔ 𝑇𝑤(𝒪)∩𝑇𝐹𝑙,0 such that 𝑟𝑡 = 𝑟 if and only if Φ𝑛 is

ℚ-closed in Φ for all 1 ≤ 𝑛 ≤ ∞, and the set

⎧⎪⎪
⎨⎪⎪
⎩
𝑋𝑛 ∈ 𝔥(𝑤,𝑛+ 1)

|||||||

𝛼(𝑋𝑛) = 0,∀𝛼 ∈ Φ𝑛+2,

𝛼(𝑋𝑛) ≠ 0,∀𝛼 ∈ Φ𝑛+1 ⧵ Φ𝑛+2

⎫⎪⎪
⎬⎪⎪
⎭

(3.2.6)

is nonempty for all 0 ≤ 𝑛 < ∞.

Proof. For the “only if” direction, simply choose𝑋𝑛 to be the image of 𝑡𝑛 in the discussion

above. For the “if” direction, by Lemma 3.1.5, we can lift𝑋𝑛 to 𝑡𝑛 ∈ 𝑇𝑤,𝑛 ≔ 𝑇𝑤(𝒪)∩𝑇𝐹𝑙,𝑛,

and then 𝑡 = ∏∞
𝑛=0 𝑡𝑛 would be as desired. ∎

Remark 3.2.21. Note that the condition (3.2.6) being nonempty for all 𝑛 automatically

implies that each Φ𝑛 (hence also 𝑟) is preserved by 𝑤, hence also by 𝜏∞𝑤.
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Corollary 3.2.22. Suppose we have a function 𝑟∶ Φ → ℕ/𝑙 ∪ {∞} and the associated

filtration Φ𝑛. Then we may find 𝑡 ∈ 𝑇𝑤(𝒪) such that 𝑟𝑡 = 𝑟 if and only if the following

conditions are satisfied

(1) Φ1 ⊂ Φ is a root subsystem of pseudo-Levi type with corresponding reductive sub-

group 𝐻, such that the set

{𝑥 ∈ 𝑇(𝑘)𝑤 | 𝐻 is the connected centralizer of 𝑥}

is nonempty (in particular Φ1 is preserved by 𝑤);

(2) Φ𝑛 is ℚ-closed in Φ1 for all 1 ≤ 𝑛 ≤ ∞;

(3) the set (3.2.6) is nonempty for all 0 ≤ 𝑛 < ∞.

3.2.23 Now we consider general pairs (𝜆/𝑙, 𝑟), where 𝜆/𝑙 is an (integral) element of

�̌�(𝐺/𝐺der), and 𝑟∶ Φ → ℚ ∪ {∞}. In other words, (𝜆/𝑙, 𝑟) ∈ 𝑆1
𝐺. Similar to 𝐹-rational

case, we stratify 𝑇𝑤(𝐹) by such pairs, denoted by 𝑇𝑤(𝐹)(𝜆/𝑙,𝑟).

From discussions in previous subsections, we see that 𝑇𝑤(𝐹)(𝜆/𝑙,𝑟) is nonempty if

and only if the following conditions are satisfied:

(1) 𝑟 takes values in ℤ/𝑙 ∪ {∞};

(2) 𝑟− and 𝑟⋆ are defined, and 𝑟− extends to an element 𝜆ad/𝑙 ∈ �̌�(𝑇ad)𝑤/𝑙, such that

𝜆 and 𝜆ad are the central and adjoint components of some 𝜆 ∈ �̌�(𝑇) respectively;

(3) let 𝑀𝜆 be the Levi-type subgroup of 𝐺 determined by 𝜆 (or equivalently, Φ0), then

Φ1 is of pseudo-Levi type in Φ0 corresponding to subgroup 𝐻 < 𝑀𝜆, such that the

set

{𝑥 ∈ (1−𝑤)−1(𝜁𝜆
𝑙 ) | 𝐻 is the connected centralizer of 𝑥 in 𝑀𝜆} (3.2.7)
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is nonempty;

(4) Φ𝑛 is ℚ-closed in Φ1 for all 1 ≤ 𝑛 ≤ ∞, and the set (3.2.6) is nonempty for all

0 ≤ 𝑛 < ∞.

Note that these conditions automatically imply that the filtration Φ𝑛 is preserved by 𝑤.

Moreover, given 𝑡 ∈ 𝑇𝑤(𝐹), we have that 𝑡 ∈ 𝑇𝑤(𝐹)(𝜆/𝑙,𝑟), if and only if we can write

𝑡 = 𝜋𝜆/𝑙𝑥
∞
∏
𝑛=0

𝑡𝑛,

where 𝑥 is as in (3.2.7), and 𝑡𝑛 ∈ 𝑇𝐹𝑙,𝑛 is fixed by 𝜏∞𝑤 such that 𝑟𝑡𝑛 satisfies (3.2.5) for

all 0 ≤ 𝑛 < ∞.

3.3 Cylinders in Reductive Monoids

3.3.1 We briefly review some facts about the arc spaces of an smooth affine scheme 𝑋

over𝒪. Since𝑋 is𝒪-smooth, every jet scheme of𝑋 is smooth over 𝑘, and each consecutive

map 𝕃+𝑛+1𝑋 → 𝕃+𝑛𝑋 is an affine space bundle of relative dimension dim𝒪𝑋.

Definition 3.3.2. A subset 𝑍 of 𝕃+𝑋 is called 𝑛-admissible or an 𝑛-cylinder if it is the

preimage of a constructible subset of 𝕃+𝑛𝑋 for some 𝑛 ≥ 0. A cylinder is called open

(resp. closed, locally-closed) if it’s the preimage of some open (resp. closed, locally closed)

subset of 𝕃+𝑛𝑋.

Definition 3.3.3. Let 𝑍 ⊂ 𝕃+𝑋 be an 𝑛-cylinder. Then the codimension of 𝑍 in 𝕃+𝑋 is

defined as the codimension of 𝑍𝑚 in 𝕃+𝑚𝑋 for any (and every) 𝑚 ≥ 𝑛.

Definition 3.3.4. Suppose 𝑌 is a locally-closed 𝑛-cylinder of 𝕃+𝑋. Then we call 𝑌 non-

singular if for any (and every)𝑚 ≥ 𝑛 the reduced subscheme𝑌𝑚 ∈ 𝕃+𝑚𝑋 is non-singular.

We call a map 𝑔∶ 𝑌 → 𝑍 of any locally-closed 𝑛-cylinders smooth if 𝑔𝑚 is smooth for all

𝑚 ≥ 𝑛.
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3.3.5 Recall the universal monoid 𝔐 = Env(𝐺) for a semisimple and simply-connected

group 𝐺, and the closure 𝔗 of the extended maximal torus 𝑇+. We know 𝑘[𝔗] is spanned

by a saturated, strictly convex cone 𝒞∗
𝔗 ⊂ 𝕏(𝑇+), whose dual 𝒞𝔗 ⊂ �̌�(𝑇+) determines a

stratification of non-degenerate arcs

𝔗(𝒪) ∩ 𝑇+(𝐹) = ∐
𝜆∈𝒞𝔗

𝕃+𝔗𝜆(𝑘),

where 𝕃+𝔗𝜆 = 𝜋𝜆𝕃+𝑇+. Note that 𝕃+𝔗𝜆 is isomorphic to 𝕃+𝑇+ as an abstract 𝑘-scheme.

For 𝑤 ∈ 𝑊 be of order 𝑙 and 𝜆 fixed by 𝑤, we also have the 𝑤-twisted form of 𝕃+𝔗𝜆

defined in an obvious way:

𝔗𝜆/𝑙
𝑤 ≔ (Res𝒪𝑙/𝒪𝜋𝜆/𝑙𝑇+,𝒪𝑙)

𝜏∞𝑤
,

and the 𝑘-points of 𝕃+𝔗𝜆/𝑙
𝑤 are simply those 𝑡 ∈ 𝜋𝜆/𝑙𝑇+(𝒪𝑙) that are fixed by 𝜏∞𝑤.

Since 𝑙 is coprime to char(𝑘), the scheme 𝔗𝜆/𝑙
𝑤 is 𝒪-smooth, hence notions like cylinders

and their codimensions make sense for its arc space.

It is clear that any non-empty stratum 𝑇+,𝑤(𝐹)(𝜆/𝑙,𝑟) as in § 3.2 is entirely contained

in a unique 𝕃+𝔗𝜆/𝑙
𝑤 (𝑘) if 𝜆 is contained in the cone 𝒞𝔗. In such case, we denote the

stratum by

𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) ≔ 𝑇+,𝑤(𝐹)(𝜆/𝑙,𝑟).

3.3.6 Choose a geometric point 𝑥+ ∈ 𝑇+(𝐹𝑠)rs lying over some 𝑎 ∈ ℭ𝔐(𝒪), then it

induces a homomorphism

𝜌𝑎 ∶ Γ𝐹 = Gal(𝐹𝑠/𝐹) ⟶ 𝑊,
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the conjugacy class of whose image depends only on 𝑎. Since 𝑎 is tamely ramified (by

our assumption on char(𝑘)), one sees that the image 𝑊𝑎 is cyclic and generated by the

image of 𝜏∞, denoted by 𝑤𝑎. Define the ramification index 𝑐 of 𝑥+ or 𝑎 to be

𝑐(𝑥+) = 𝑐(𝑎) ≔ dim𝑇+ − dim𝑇𝑤𝑎
+ .

It is in fact equal to the difference rk𝐹((𝐺𝑥+)0) − rk𝐹((𝐺𝑥+)0), where rk𝐹 means the 𝐹-

split rank of 𝐹-torus (𝐺𝑥+)0. So 𝑐(𝛾) can be defined for arbitrary reductive group 𝐺 and

𝛾 ∈ 𝐺(𝐹)rs.

Recall we have extended discriminant function Disc+ ∈ 𝑘[ℭ𝔐]. The extended dis-

criminant valuation of 𝑎 is defined by 𝑑+(𝑎) ≔ val𝐹(Disc+(𝑎)). We define the local

𝛿-invariant of 𝑎 to be

𝛿(𝑎) ≔ 𝑑+(𝑎) − 𝑐(𝑎)
2 ,

which is in fact necessarily in ℕ (due to the fact that it is the dimension of certain multi-

plicative affine Springer fiber, see Theorem 4.2.1).

3.3.7 Let us clarify some relations between Levi subgroups and pseudo-Levi subgroups

in an arbitrary connected reductive group 𝐺 containing maximal torus 𝑇. Suppose 𝑀1 is

a pseudo-Levi subgroup containing 𝑇 with root subsystem Φ1, and let Φ′ be its ℚ-closure

in Φ, which gives a Levi subgroup 𝑀 of 𝐺 containing 𝑀1. Let 𝑍(𝑀1) be the center of

𝑀1, and 𝑍(𝑀1)0 the neutral component. Then the centralizer of 𝑍(𝑀1)0 in 𝐺 is 𝑀. Let

𝑥 ∈ 𝑍(𝑀1) be such that the connected centralizer is exactly 𝑀1 and 𝑡 ∈ 𝑍(𝑀1)0. Then

𝛼(𝑥𝑡) ≠ 1 for all 𝛼 ∉ Φ1 if 𝑡 is general enough. This means that the closure of the set

{𝑥 ∈ 𝑇 | (𝐺𝑥)0 = 𝑀1}
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in 𝑇 is the union of some connected components of 𝑍(𝑀1). In particular, it has the same

dimension as 𝑍(𝑀1). We denote the set of such components by 𝜋∘
0 (𝑍(𝑀1)).

Proposition 3.3.8. Suppose 𝑟 takes values in ℕ and 𝑇+(𝒪)𝑟 ≠ ∅. Let 𝑀𝑛 be the (pseudo-

)Levi subgroup of 𝐺+ determined by Φ𝑛(𝑟) and 𝔷𝑛 = Lie(𝑍(𝑀𝑛)). Then we have the

following:

(1) The closure of 𝑇+(𝒪)𝑟 in 𝕃+𝑇+ is the union of some connected components of the

subgroup

{𝑡+ ∈ 𝑇+(𝒪) | 𝑟𝑡+(𝛼) ≥ 𝑟(𝛼)}. (3.3.1)

(2) 𝑇+(𝒪)𝑟 is non-singular and 𝜋0(𝑇+(𝒪)𝑟) is in bijection with 𝜋∘
0 (𝑍(𝑀1)).

(3) The codimension of 𝑇+(𝒪)𝑟 in 𝕃+𝑇+ is

∞
∑
𝑛=0

𝑛dim𝑘(𝔷𝑛+1/𝔷𝑛) =
∞
∑
𝑛=1

dim𝑘(𝔥+/𝔷𝑛).

Proof. Let 𝑋 be the set in (3.3.1), which is easily seen a subgroup hence non-singular.

Clearly 𝑋 is closed in 𝕃+𝑇+ and contains 𝑇+(𝒪)𝑟 as an open subset. So 𝑇+(𝒪)𝑟 is also

non-singular.

Similar to the proof of Theorem 3.2.13, let 𝑀𝑛 be the connected reductive subgroups

of𝐺+ given by Φ𝑛(𝑟), and 𝔷𝑛 ⊂ 𝔥+ be the Lie algebra of the center of𝑀𝑛. Let 𝑆1 = 𝑍(𝑀1)

and 𝑆𝑛 ⊂ 𝑍(𝑀𝑛)𝑛−2 ⊂ 𝕃+𝑍(𝑀𝑛)0 be the lift of 𝔷𝑛 for 𝑛 ≥ 2. Then 𝑆𝑛 = {1} if 𝑛 > 𝑟(𝛼)

for all 𝛼. Then its clear by the factorization in Theorem 3.2.13 that the multiplication

map

𝜙∶
∞
∏
𝑛=1

𝑆𝑛 → 𝑋 (3.3.2)

is surjective. Therefore 𝜋0(𝑋) is bounded by 𝜋0(𝑍(𝑀1)). We also have a projection 𝑋 →
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𝑍(𝑀1), which implies the bijection 𝜋0(𝑋) ≅ 𝜋0(𝑍(𝑀1)). The bijection 𝜋0(𝑇+(𝒪)𝑟) ≅

𝜋∘
0 (𝑍(𝑀1)) is then clear as the projection of 𝜙−1(𝑇+(𝒪)𝑟) in 𝑆𝑛 (𝑛 ≥ 2) is dense.

To prove the codimension formula, note that codim𝕃+𝑇+(𝑇+(𝒪)𝑟) = codim𝕃+𝑇+(𝑋).

So we only need to show the formula for 𝑋, which is easily deduced from (3.3.2). ∎

Corollary 3.3.9. Fix𝑤 ∈ 𝑊with ord(𝑤) = 𝑙. Suppose𝑟 takes values inℕ/𝑙 and𝑇+,𝑤(𝒪)𝑟 ≠

∅. Let𝑀𝑛 be the (pseudo-)Levi subgroup of𝐺+ determined byΦ𝑛(𝑟) and 𝔷𝑛 = Lie(𝑍(𝑀𝑛)).

Then we have the following:

(1) The closure of 𝑇+,𝑤(𝒪)𝑟 in 𝕃+𝑇+,𝑤 is the union of some connected components of

the subgroup

{𝑡+ ∈ 𝑇+,𝑤(𝒪) | 𝑟𝑡+(𝛼) ≥ 𝑟(𝛼)}.

(2) 𝑇+,𝑤(𝒪)𝑟 is non-singular and 𝜋0(𝑇+,𝑤(𝒪)𝑟) is in bijection with 𝜋∘
0 (𝑍(𝑀1)𝑤), the

latter defined as the preimage of 𝜋∘
0 (𝑍(𝑀1)) in 𝜋0(𝑍(𝑀1)𝑤).

(3) The codimension of 𝑇+,𝑤(𝒪)𝑟 in 𝕃+𝑇+,𝑤 is

∞
∑
𝑛=0

dim𝑘(𝔥+/𝔷𝑛+1)(𝑤,𝑛).

Proof. The first and second claim is a result of (3.2.4) and Proposition 3.3.8. The last

claim is deduced from Corollary 3.2.22 and Proposition 3.3.8, and the fact that the action

of 𝑤 on any 𝑘-vector space is semisimple due to our assumption on char(𝑘). ∎

Corollary 3.3.10. Fix 𝑤 ∈ 𝑊 with ord(𝑤) = 𝑙. Suppose 𝑟 takes values in ℤ/𝑙 and

𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) ≠ ∅. Let 𝑀𝑛 be the (pseudo-)Levi subgroup of 𝐺+ determined by Φ𝑛(𝑟⋆)

and 𝔷𝑛 = Lie(𝑍(𝑀𝑛)). Then we have the following:

(1) The closure of 𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) in 𝕃+𝔗𝜆/𝑙
𝑤 is the union of some connected components
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of

{𝑡+ ∈ 𝕃+𝔗𝜆/𝑙
𝑤 (𝑘) | 𝑟𝑡+(𝛼) ≥ 𝑟(𝛼)},

which is itself a union of torsors over a subgroup scheme of 𝕃+𝑇+,𝑤.

(2) 𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) is non-singular and𝜋0(𝔗𝑤(𝒪)(𝜆/𝑙,𝑟)) is in bijectionwith𝜋∘
0 (𝑍(𝑀1)𝑤),

the latter defined as the preimage of 𝜋∘
0 (𝑍(𝑀1)) in 𝜋0(𝑍(𝑀1)𝑤).

(3) The codimension of 𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) in 𝕃+𝔗𝜆/𝑙
𝑤 is

∞
∑
𝑛=0

dim𝑘(𝔥+/𝔷𝑛+1)(𝑤,𝑛),

Proof. This is a straightforward result of the discussion at the end of § 3.2, (3.2.4) and

Corollary 3.3.9 (the same proof applies). ∎

3.3.11 Recall we have the set 𝑆1
𝐺 of pairs (𝜆, 𝑟) where 𝜆 ∈ �̌�(𝐺/𝐺der) and 𝑟∶ Φ →

ℚ ∪ {∞} for any connected reductive group 𝐺. The Weyl group 𝑊 acts on 𝑊 × 𝑆1
𝐺 by

conjugation on the first factor and the action on (𝜆, 𝑟) is the most obvious one:

𝑤(𝜆,𝑟) = (𝜆,𝑤𝑟 ≔ 𝛼 ↦ 𝑟(𝑤−1𝛼)).

Let 𝒮𝐺 = 𝑊\(𝑊×𝑆1
𝐺), whose elements will be denoted by [𝑤,𝜆/𝑙, 𝑟] (where 𝑙 = ord(𝑤),

and 𝜆/𝑙 is integral). In case where the group is 𝐺+, we will simply use 𝒮 = 𝒮𝐺+ . Let

𝒮rs𝐺 ⊂ 𝒮𝐺 be the subsets where 𝑟 takes finite values. Clearly, if 𝑡 ∈ 𝑇𝑤(𝐹)(𝜆/𝑙,𝑟), then

𝑢(𝑡) ∈ 𝑇𝑢𝑤𝑢−1(𝐹)(𝜆/𝑙,𝑢𝑟) for any 𝑢 ∈ 𝑊. This justifies the following definition.

Definition 3.3.12. For 𝑠 ∈ 𝒮, define ℭ𝔐(𝒪)𝑠 be the image of 𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) in ℭ𝔐(𝒪) for

any (and every) representative (𝑤,𝜆/𝑙, 𝑟) of 𝑠.

Lemma 3.3.13. The set of 𝑘-points of 𝕃♭ℭ ≔ 𝕃+ℭ𝔐 −𝕃+𝔅𝔐 −𝕃+𝔇𝔐 is the disjoint union
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of strata ℭ(𝒪)𝑠 for all 𝑠 ∈ 𝒮rs, where 𝔅𝔐 (resp. 𝔇𝔐) is the numerical boundary divisor

(resp. discriminant divisor) as in §§ 2.3 and 2.4.

Proof. Straightforward; c.f. [GKM09, 7.3]. ∎

3.3.14 Consider 𝒪𝑙-morphism

𝜒𝜆/𝑙 ∶ 𝑇+,𝒪𝑙 ⟶ ℭ𝔐,𝒪𝑙

𝑥 ⟼ 𝜒𝔐(𝜋𝜆/𝑙𝑥),

which induces 𝒪-morphism

𝜒(𝑤,𝜆/𝑙) ∶ (𝜋𝜆/𝑙𝑇+,𝒪𝑙)
𝜏∞𝑤

⟶ ℭ𝔐,𝒪.

This further induces map 𝕃+𝔗𝜆/𝑙
𝑤 → 𝕃+ℭ𝔐, which is precisely the restriction of 𝕃+𝜒𝔐

to 𝕃+𝔗𝜆/𝑙
𝑤 . Fix any 𝑥 ∈ 𝕃+𝔗𝜆/𝑙

𝑤 (𝑘), let 𝑎 = 𝜒(𝑥) ∈ 𝕃+ℭ𝔐(𝑘), then 𝜒𝔐 induces 𝜏∞𝑤-

equivariant isomorphism of 𝐹𝑙-tangent spaces

(d𝜒𝔐,𝐹𝑙)𝑥 ∶ T𝑥(𝜋𝜆/𝑙𝑇+,𝐹𝑙) ⟶ T𝑎 ℭ𝔐,𝐹𝑙 ≃ ℭ𝔐,𝐹𝑙 ,

which restricts to an injection of 𝒪𝑙-modules

(d𝜒𝔐,𝐹𝑙)𝑥 ∶ 𝔥𝒪𝑙 ⟶ ℭ𝔐,𝒪𝑙 ,

Taking 𝜏∞𝑤-invariants, we have 𝒪-linear injection

(d𝜒𝑤)𝑥 ∶ 𝑄𝑥 ≔ 𝔥𝜏∞𝑤
𝒪𝑙

⟶ ℭ𝔐,𝒪.

Choosing an 𝒪-basis on both sides, then (d𝜒𝑤)𝑥 is represented by a matrix in GL2𝑟(𝒪).

Changing uniformizer 𝜋1/𝑙 or the 𝒪-bases doesn’t change the valuation of the determi-
91



nant of the matrix, so val𝐹 det(d𝜒𝑤)𝑥 is well-defined for 𝑥.

Proposition 3.3.15. Suppose 𝑥 ∈ 𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) is generically regular semisimple, then

val𝐹 det(d𝜒𝑤)𝑥 =
𝑟
∑
𝑖=1

⟨𝛼𝑖, 𝜆/𝑙⟩ +
𝑑+(𝑎) + 𝑐(𝑎)

2

=
𝑟
∑
𝑖=1

⟨𝛼𝑖, 𝜆/𝑙⟩ + 𝛿(𝑎) + 𝑐(𝑎).

Proof. The proof is completely parallel to the argument in [GKM09], but the technical

counterparts will occupy several pages. We extend (d𝜒𝑤)𝑥 to 𝒪𝑙:

id𝐹𝑙 ⊗ (d𝜒𝑤)𝑥 ∶ 𝒪𝑙 ⊗𝒪 𝑄𝑥 ⟶ ℭ𝒪𝑙 ,

which is the restriction of map

(d𝜒𝔐,𝐹𝑙)𝑥 ∶ 𝔥𝒪𝑙 ⟶ ℭ𝒪𝑙

to submodule 𝒪𝑙 ⊗𝒪 𝑄𝑥. Therefore

val𝐹 det(d𝜒𝑤)𝑥 = val𝐹 det(d𝜒𝔐,𝐹𝑙)𝑥 + 1
𝑙 dim𝑘

𝔥𝒪𝑙

𝒪𝑙 ⊗𝒪 𝑄𝑥
.

So we reduce to the 𝑤 = 1 case (replacing 𝒪 with 𝒪𝑙 and val𝐹 with val𝐹𝑙) and the claim

that

dim𝑘
𝔥𝒪𝑙

𝒪𝑙 ⊗𝒪 𝑄𝑥
= 𝑙𝑐(𝑎)

2 . (3.3.3)

The equation (3.3.3) is proved using the same argument in [Bez96]. By definition,

𝑐(𝑎) is the dimension of the largest subspace of 𝔥 (over 𝑘) that doesn’t contain a trivial
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representation of 𝑤. On the other hand, we have

𝑄𝑥 = ⎡
⎣

𝑙−1
⨁
𝑖=0

𝔥(𝑖)𝜋𝑖/𝑙⎤
⎦
⊗𝑘 𝒪,

where 𝔥(𝑖) is the eigenspace of 𝑤 in 𝔥 with eigenvalue 𝜁−𝑖
𝑙 . Therefore we can describe

the quotient space as follows:

𝔥𝒪𝑙

𝒪𝑙 ⊗𝒪 𝑄𝑥
≃

𝑙−1
⨁
𝑖=0

⎡
⎣

𝑙−1
⨁

𝑗=𝑖+1
𝔥(𝑗)⎤

⎦
,

which implies (3.3.3).

The argument for 𝑤 = 1 (and 𝑙 = 1) case is a slight generalization of the argument

in [Ste74, pp. 125–127]. For completeness, we include a detailed argument here. Without

loss of generality, we may assume 𝜆ad is anti-dominant. Let Δ𝜆 be the simple roots van-

ishing on 𝜆, Φ𝜆 the induced root subsystem, and 𝑊𝜆 ⊂ 𝑊 the subgroup generated by the

reflections corresponding to roots in Δ𝜆. It’s harmless to assume that Δ𝜆 contains first 𝑠

simple roots.

Choose generator basis (in the given order)

{𝑒(𝛼1,0),… , 𝑒(𝛼𝑛,0), 𝑒(𝜛1,𝜛1),… ,… , 𝑒(𝜛𝑛,𝜛𝑛)}

of 𝑘[𝑇+], and

{𝑒(𝛼1,0),… , 𝑒(𝛼𝑛,0), 𝜒1,+,… ,𝜒𝑟,+}

of 𝑘[ℭ𝔐], where 𝜒𝑖,+(𝑧, 𝑡) = 𝜛𝑖(𝑧)𝜒𝑖(𝑡). Let 𝑒𝑖 = d𝑒(𝛼𝑖,0), 𝑓𝑖 = 𝑒−(𝜛𝑖,𝜛𝑖)d𝑒(𝜛𝑖,𝜛𝑖), and

𝑔𝑖 = d𝜒𝑖,+. We need to compute the valuation of linear map

d(𝜒𝜆)𝑥 ∶ 𝒪𝑒1 ∧⋯∧ 𝑒𝑟 ∧𝑔1 ∧⋯∧𝑔𝑛 ⟶ 𝒪𝑒1 ∧⋯∧ 𝑒𝑟 ∧𝑓1 ∧⋯∧𝑓𝑟,
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identified with 𝐴 ∈ Mat1(𝒪) ≃ 𝒪. We claim that 𝐴 is 𝑊𝜆-skew symmetric, in other words,

𝑤(𝐴) = det(𝑤)𝐴 for all 𝑤 ∈ 𝑊𝜆. Indeed, fix any 𝑤 ∈ 𝑊𝜆, and suppose that

𝑤(𝜛𝑖) =
𝑟
∑
𝑖=1

𝑛𝑖𝑗𝜛𝑗,

then

𝑤(𝑓𝑖) = 𝑒−(𝜛𝑖,𝑤(𝜛𝑖))d𝑒(𝜛𝑖,𝑤(𝜛𝑖))

= 𝑒(𝑤(𝜛𝑖)−𝜛𝑖,0)𝑒−(𝑤(𝜛𝑖),𝑤(𝜛𝑖))d[𝑒(𝑤(𝜛𝑖)−𝜛𝑖,0)𝑒(𝑤(𝜛𝑖),𝑤(𝜛𝑖))]

= ⎛
⎝

𝑟
∏
𝑗=1

𝑒−(𝑛𝑖𝑗𝜛𝑗,𝑛𝑖𝑗𝜛𝑗)⎞
⎠
d⎛
⎝

𝑟
∏
𝑗=1

𝑒(𝑛𝑖𝑗𝜛𝑗,𝑛𝑖𝑗𝜛𝑗)⎞
⎠

+ terms involving at least one 𝑒𝑗

=
𝑟
∑
𝑗=1

𝑛𝑖𝑗𝑓𝑗 + terms involving at least one 𝑒𝑗.

Therefore since 𝑒𝑖 and 𝑔𝑖 are fixed by 𝑤,

𝑤(𝐴𝑒1 ∧⋯∧ 𝑒𝑟 ∧𝑓1 ∧⋯∧𝑓𝑟) = 𝑤(𝐴)𝑒1 ∧⋯∧ 𝑒𝑟 ∧𝑤(𝑓1) ∧⋯∧𝑤(𝑓𝑟)

= 𝑤(𝐴)det(𝑛𝑖𝑗)𝑒1 ∧⋯∧ 𝑒𝑟 ∧𝑓1 ∧⋯∧𝑓𝑟

= 𝑤(𝐴)det(𝑤)𝑒1 ∧⋯∧ 𝑒𝑟 ∧𝑓1 ∧⋯∧𝑓𝑟.

This means that 𝑤(𝐴) = det(𝑤)−1𝐴 = det(𝑤)𝐴 as claimed.

Let Ω𝑖 (resp. Ω𝜈) be the set of weights in the Weyl module of 𝐺 of highest weight 𝜛𝑖

(resp. any dominant 𝜈), and 𝑚𝑖,𝜇 the multiplicity of 𝜇 ∈ Ω𝑖. We can expand 𝑔𝑖 into linear

combinations of 𝑒𝑗 and 𝑓𝑗 as follows:

𝑔𝑖 = 𝜋⟨(𝜛𝑖,𝜛𝑖),𝜆⟩d𝑒(𝜛𝑖,𝜛𝑖) + ∑
𝜛𝑖≠𝜇∈Ω𝑖

𝑚𝑖,𝜇𝜋⟨(𝜛𝑖,𝜇),𝜆⟩d𝑒(𝜛𝑖,𝜇)

= 𝜋⟨(𝜛𝑖,𝜛𝑖),𝜆⟩𝑒(𝜛𝑖,𝜛𝑖)𝑓𝑖 + ∑
𝜛𝑖≠𝜇∈Ω𝑖

𝑚𝑖,𝜇𝜋⟨(𝜛𝑖,𝜇),𝜆⟩𝑒(𝜛𝑖,𝜇)𝑒−(𝜇,𝜇)d𝑒(𝜇,𝜇)
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+ terms involving at least one 𝑒𝑗

= 𝜋⟨(𝜛𝑖,𝜛𝑖),𝜆⟩𝑒(𝜛𝑖,𝜛𝑖)𝑓𝑖 + ∑
𝜛𝑖≠𝜇∈Ω𝑖

⎡
⎣
𝑚𝑖,𝜇𝜋⟨(𝜛𝑖,𝜇),𝜆⟩𝑒(𝜛𝑖,𝜇)

𝑟
∑
𝑗=1

𝑛𝜇,𝑗𝑓𝑗⎤
⎦

+ terms involving at least one 𝑒𝑗.

This implies that

𝐵 ≔
𝑟
∏
𝑖=1

𝜋−⟨𝛼𝑖,𝜆⟩𝐴 = 𝜋⟨(𝜌,𝜌),𝜆⟩𝑒(𝜌,𝜌) + ∑
𝜇∈Ω𝜌

𝐶𝜇𝜋⟨(𝜌,𝜇),𝜆⟩𝑒(𝜌,𝜇)

for some integers 𝐶𝜇. As 𝐵 is 𝑊𝜆-skew symmetric (because 𝐴 is), we have that

𝐵 = ∑
𝑤∈𝑊𝜆

det(𝑤)𝜋⟨(𝜌,𝑤(𝜌)),𝜆⟩𝑒(𝜌,𝑤(𝜌))

+ ∑
𝜇∈Ω𝜌

Δ𝜆-dominant

𝐶𝜇⎛
⎝

∑
𝑤∈𝑊𝜆

det(𝑤)𝜋⟨(𝜌,𝑤(𝜇)),𝜆⟩𝑒(𝜌,𝑤(𝜇))⎞
⎠

= 𝜋⟨(𝜌,𝜌),𝜆⟩ ∑
𝑤∈𝑊𝜆

det(𝑤)𝑒(𝜌,𝑤(𝜌))

+ ∑
𝜇∈Ω𝜌

Δ𝜆-dominant

𝐶𝜇𝜋⟨(𝜌,𝜇),𝜆⟩⎛
⎝

∑
𝑤∈𝑊𝜆

det(𝑤)𝑒(𝜌,𝑤(𝜇))⎞
⎠
.

Observe that if 𝜇 is not strictly Δ𝜆-dominant, then the summation

∑
𝑤∈𝑊𝜆

det(𝑤)𝜋⟨(𝜌,𝑤(𝜇)),𝜆⟩𝑒(𝜌,𝑤(𝜇))

equals 0 because its summands cancel pairwise.

We then claim that for strictly Δ𝜆-dominant 𝜇, ⟨(𝜌,𝜇), 𝜆⟩ reaches minimum if and

only if 𝜇 = 𝜌. Indeed, suppose

𝜇 = 𝜌−
𝑠
∑
𝑖=1

𝑝𝑖𝛼𝑖 −
𝑟
∑

𝑖=𝑠+1
𝑝𝑖𝛼𝑖 = 𝜌+

𝑟
∑
𝑖=1

𝑞𝑖𝜛𝑖
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for some 𝑝𝑖 ∈ ℕ and 𝑞𝑖 ∈ ℤ. If 𝑝𝑖 > 0 for any 𝑖 > 𝑠, we are done since 𝜆ad is anti-

dominant and ⟨𝛼𝑖, 𝜆ad⟩ < 0 if 𝑖 > 𝑠. Now suppose 𝑝𝑖 = 0 for all 𝑖 > 𝑠. Since 𝜇 is strictly

Δ𝜆-dominant and ⟨𝜌, �̌�𝑖⟩ = 1, we must have 𝑞𝑖 ≥ 0 for 1 ≤ 𝑖 ≤ 𝑠. Let ̌𝜌𝜆 be the half-sum

of the positive coroots in Φ𝜆. Then we have

⟨𝜌 − 𝜇, ̌𝜌𝜆⟩ =
𝑠
∑
𝑖=1

𝑝𝑖 ≥ 0,

but on the other hand

⟨𝜌 − 𝜇, ̌𝜌𝜆⟩ = −
𝑠
∑
𝑖=1

⟨𝜛𝑖, ̌𝜌𝜆⟩𝑞𝑖 ≤ 0,

which means 𝑝𝑖 = 𝑞𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑠 and 𝜇 = 𝜌. Hence the claim.

For strictly Δ𝜆-dominant 𝜇, a well-known fact due to Weyl gives that

∑
𝑤∈𝑊𝜆

det(𝑤)𝑒(𝜌,𝑤(𝜇)) = 𝑒(𝜌,𝜇) ∏
𝛼∈Φ+

𝜆

(1 − 𝑒−(0,𝛼)) .

Thus, we have that

val𝐹(𝐵) = val𝐹 ⎡
⎣
𝜋⟨(𝜌,𝜌),𝜆⟩ ∑

𝑤∈𝑊𝜆

det(𝑤)𝑒(𝜌,𝑤(𝜌))

+ ∑
𝜇∈Ω𝜌

strictly Δ𝜆-dominant

𝐶𝜇𝜋⟨(𝜌,𝜇),𝜆⟩⎛
⎝

∑
𝑤∈𝑊𝜆

det(𝑤)𝑒(𝜌,𝑤(𝜇))⎞
⎠

⎤⎥⎥⎥⎥
⎦

= val𝐹
⎛⎜⎜⎜
⎝

∏
𝛼∈Φ+

𝜆

(1 − 𝑒−(0,𝛼))⎞⎟⎟⎟
⎠
+ val𝐹

⎡⎢⎢⎢⎢
⎣

𝜋⟨(𝜌,𝜌),𝜆⟩ + ∑
𝜇∈Ω𝜌

strictly Δ𝜆-dominant

𝜋⟨(𝜌,𝜇),𝜆⟩
⎤⎥⎥⎥⎥
⎦

= val𝐹
⎛⎜⎜⎜
⎝

∏
𝛼∈Φ+

𝜆

(1 − 𝑒−(0,𝛼))⎞⎟⎟⎟
⎠
+ ⟨(𝜌,𝜌), 𝜆⟩

= 𝑑+(𝑎)
2 .
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So

val𝐹(𝐴) =
𝑟
∑
𝑖=1

⟨𝛼𝑖, 𝜆⟩ +
𝑑+(𝑎)

2 ,

as desired. This concludes the proof. ∎

Corollary 3.3.16. Let 𝑀 be an arbitrary very flat reductive monoid associated with 𝐺 such

that its abelianization is an affine space 𝔄𝑀 = 𝔸𝑚 with coordinates 𝑒𝛼
′
1 ,… , 𝑒𝛼

′
𝑚 . Let

𝔗𝑀 be the maximal toric variety in 𝑀. Let 𝑥 ∈ 𝔗𝑀,𝑤(𝒪)(𝜆/𝑙,𝑟) be generically regular

semisimple whose image is 𝑎 ∈ ℭ𝑀(𝒪). Then

val𝐹 det(d𝜒𝑀,𝑤)𝑥 = 𝑏(𝑎) + 𝑑+(𝑎) + 𝑐(𝑎)
2 (3.3.4)

= 𝑏(𝑎) + 𝛿(𝑎) + 𝑐(𝑎),

where 𝑏(𝑎) is the boundary valuation ∑𝑚
𝑖=1⟨𝛼

′
𝑖, 𝜆/𝑙⟩.

Proof. Note that the notion of 𝑑+(𝑎) makes sense as it is the valuation of the pullback of

the discriminant function (from the universal monoid to 𝑀), and that the notion of 𝑐(𝑎)

also makes sense because it only depends on 𝑤.

The character lattice of the maximal torus in 𝑀 is freely spanned by the pullbacks of

functions 𝑒𝛼
′
𝑖 from 𝔄𝑀, and 𝑒(𝜛𝑖,𝜛𝑖) from the toric variety of the universal monoid. The

proof then proceeds essentially the same in the proposition above; notably the computa-

tion for 𝐵 is repeated word-by-word. ∎

3.4 Codimension Formula of Valuation Strata

We can now use (3.3.4) to derive a codimension formula for the valuation strata for arbi-

trary very flat reductive monoid 𝑀 of 𝐺 whose abelianization is an affine space.
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Lemma 3.4.1. Let 𝑓∶ 𝔾𝑟
m,𝒪 → 𝔸𝑟

𝒪 be an 𝒪-morphism, viewed as an 𝑟-vector of rational

functions in 𝑟 variables and 𝒪-coefficients. Let 𝑥 ∈ 𝔾𝑟
m(𝒪) such that 𝑑 = val det𝐷𝑥𝑓 is

finite. Then for any 𝑚 > 𝑑, we have that

𝑓(𝑥+𝜋𝑚) = 𝑓(𝑥) +𝐷𝑥𝑓(𝜋𝑚),

where 𝜋𝑚 means 𝜋𝑚 times the 𝒪-tangent space at 𝑥.

Proof. This is just a tiny modification of the claim in [GKM09, Lemma 10.3.1], but since

they did not provide a general statement, we include the adaptation here.

We may regard 𝔾𝑟
m(𝒪) as a subset of 𝔸𝑟(𝒪) and identify the 𝒪-tangent space at 𝑥

with 𝑟-copies of 𝒪, denoted by 𝐿. Take the Taylor expansion of 𝑓 at 𝑥 over 𝒪, whose

linear terms gives the matrix 𝐴 = 𝐷𝑥𝑓. Since 𝑚 > 𝑑, we have 𝑚 ≥ 1, so in turn we have

for any ℎ ∈ 𝜋𝑚𝐿,

𝑓(𝑥+ℎ) ≡ 𝑓(𝑥) + (𝐷𝑥𝑓)(ℎ) mod 𝜋2𝑚𝐿.

The proof then proceeds as in [GKM09, Lemma 10.3.1]. ∎

Lemma 3.4.2. The valuation strata ℭ𝑀(𝒪)[𝑤,𝜆/𝑙,𝑟] are cylinders.

Proof. It is clear from the fact that 𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) are cylinders, Corollary 3.3.16, and

Lemma 3.4.1 (applied to 𝜋𝜆𝑇𝑀(𝒪) ≅ 𝑇𝑀(𝒪) → ℭ𝑀(𝒪)). ∎

Theorem 3.4.3. The codimension of ℭ𝑀(𝒪)[𝑤,𝜆/𝑙,𝑟] in ℭ𝑀(𝒪) is given by

𝑏+ 𝑑+ + 𝑐
2 + 𝑒 = 𝑏+ 𝛿+ 𝑐+ 𝑒,

where 𝑏, 𝑑+, 𝑐, 𝛿 are as in Corollary 3.3.16 (necessarily constant over ℭ𝑀(𝒪)[𝑤,𝜆/𝑙,𝑟]),

and 𝑒 is the codimension of 𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) in 𝕃+𝔗𝜆/𝑙
𝑤 .
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Proof. Let 𝑈 = 𝔗𝑤(𝒪)(𝜆/𝑙,𝑟) and 𝑉 = ℭ𝑀(𝒪)[𝑤,𝜆/𝑙,𝑟]. Since they are both cylinders, we

may pass to some jet space modulo 𝜋𝑁 for some big 𝑁, after which 𝑈 becomes smooth

and 𝑉 is constructible, hence the notion of codimension makes sense for 𝑉. Since 𝑈 is

smooth (Corollary 3.3.10) and the original 𝒪-map from 𝑈 to 𝑉 have constant valuation

(Corollary 3.3.16), we may find an open dense subset of 𝑉 modulo 𝜋𝑁 over which 𝑈 → 𝑉

is smooth of relative dimension 𝑏+𝛿+𝑐. Then the claim follows from standard dimension

counting (c.f. [GKM09, § 5]). ∎

Remark 3.4.4. In [GKM09], they proved much more properties about valuation strata,

such as its non-singularity and the smoothness of the map between the strata in 𝔥 and

those in 𝔥⫽𝑊. However, we are temporarily satisfied with just the codimension formula

and will leave the rest for a future paper.
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CHAPTER 4

MULTIPLICATIVE AFFINE SPRINGER FIBERS

In this section we review the multiplicative affine Springer fibers also known as Kottwitz-

Viehmann varieties (KV-varieties). We will use these two names interchangeably. Analo-

gous to the Lie algebra case, the point-count of these schemes over 𝑘 encode information

of orbital integrals of 𝐺. The main reference we use for this section is [Chi19]. Other

important references include [MV07] and [KV12].

In this chapter, we consider 𝒪𝑣 = 𝑘𝑣[[𝜋]], and 𝐹𝑣 = 𝑘𝑣((𝜋)) for a finite exten-

sion 𝑘𝑣/𝑘. Let 𝑋𝑣 = Spec𝒪𝑣 be the corresponding formal disc, and 𝑋•
𝑣 = Spec𝐹𝑣

the punctured disc. Let 𝑣 be the closed point of 𝑋𝑣, and 𝜂𝑣 the generic point. Let

�̆�𝑣 = Spec𝒪𝑣⊗̂𝑘𝑘 then we have isomorphism

�̆�𝑣 = ∐
𝑣∶ 𝑘𝑣→𝑘

�̆�𝑣,

where 𝑣 ranges over all 𝑘-field embeddings of 𝑘𝑣 into 𝑘, and �̆�𝑣 ≅ Spec𝑘[[𝜋]]. If we

choose a geometric point 𝜂𝑣 on �̆�𝑣 over its generic point 𝜂𝑣, then we have short exact

sequence

1 ⟶ 𝐼𝑣 ⟶ Γ𝑣 ⟶ Gal(𝑘/𝑣(𝑘𝑣)) ⟶ 1,

where Γ𝑣 = 𝜋1(𝜂𝑣, 𝜂𝑣) is the Galois group of 𝐹𝑣, and 𝐼𝑣 = 𝜋1(�̆�𝑣, 𝜂𝑣) is the inertia group.

We shall use �̆�𝑣 and ̆𝐹𝑣 to denote the ring of functions on �̆�𝑣 and �̆�•
𝑣, respectively.

We retain notations from Chapter 2 and let 𝐺 be a quasi-split reductive group over 𝒪𝑣

associated with a Out(𝐆)-torsor 𝜗𝐺 on 𝑋𝑣 and similarly a pointed version 𝜗•
𝐺 if we fix

a geometric point 𝑣 of 𝑋𝑣. Equivalently, if we fix a geometric generic point 𝜂𝑣, we have

a homomorphism 𝜗•
𝐺 ∶ Γ𝑣 → Out(𝐆) which factors through Gal(𝑘/𝑣(𝑘𝑣)), because 𝜗𝐺 is

always trivial over �̆�𝑣.
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4.1 Definition and Generalities

Let 𝜆 ∈ �̌�(𝑇)+ be a dominant 𝐹𝑣-rational cocharacter. We denote by 𝖢𝜆
𝐺 the double coset

𝐺(𝒪𝑣)𝜋𝜆𝐺(𝒪𝑣) in Cartan decomposition of 𝐺(𝐹𝑣). We also denote by 𝖢≤𝜆
𝐺 the union of

all 𝖢𝜇
𝐺 such that 𝜇 ≤ 𝜆 (i.e., 𝜆−𝜇 ∈ ℕΔ̌). Let 𝛾 ∈ 𝐺(𝐹𝑣) be a regular semisimple element.

We are interested in the sets

M𝜆
𝐺(𝛾) ≔ {𝑔 ∈ 𝐺(𝐹𝑣)/𝐺(𝒪𝑣) |Ad−1

𝑔 (𝛾) ∈ 𝖢𝜆
𝐺},

M≤𝜆
𝐺 (𝛾) ≔ {𝑔 ∈ 𝐺(𝐹𝑣)/𝐺(𝒪𝑣) |Ad−1

𝑔 (𝛾) ∈ 𝖢≤𝜆
𝐺 },

(4.1.1)

on which we will later impose structures of 𝑘-varieties.

In order to best establish the connection to reductive monoids, it is best to generalize

the definition (4.1.1) as follows. Let 𝐺ab = 𝐺/𝐺der, then the homomorphism 𝑇 → 𝐺ab ×

𝑇ad is étale. We have the induced monomorphism of lattices �̌�(𝑇) → �̌�(𝐺ab) × �̌�(𝑇ad)

with finite index, and the same holds at 𝐹𝑣-rational level. Denote the image of 𝜆 under

this map by (𝜆ab, 𝜆ad). It is clear that for any 𝛾 ∈ 𝐺(𝐹𝑣), the condition 𝛾 ∈ 𝖢𝜆
𝐺 is the

same as 𝛾ad ∈ 𝖢𝜆ad
𝐺ad and 𝛾ab ∈ 𝜋𝜆ab𝐺ab(𝒪𝑣). Therefore if we define, for 𝜆 ∈ �̌�(𝑇ad) and

𝛾 ∈ 𝐺ad(𝐹𝑣),

M𝜆
𝐺(𝛾) ≔ {𝑔 ∈ 𝐺(𝐹𝑣)/𝐺(𝒪𝑣) |Ad−1

𝑔 (𝛾) ∈ 𝖢𝜆
𝐺ad},

M≤𝜆
𝐺 (𝛾) ≔ {𝑔 ∈ 𝐺(𝐹𝑣)/𝐺(𝒪𝑣) |Ad−1

𝑔 (𝛾) ∈ 𝖢≤𝜆
𝐺ad},

(4.1.2)

then the sets in (4.1.1), if non-empty, are respectively isomorphic to the sets in (4.1.2). By

replacing 𝑋𝑣 with �̆�𝑣, we have analogously defined sets, which we will call the 𝑘-points

of the corresponding sets, and they are exactly the set of 𝑘-points of the corresponding

schemes once we define them.

4.1.1 Cartan Decomposition Let 𝔐 ∈ ℱℳ(𝐺sc). Recall we have abelianization 𝔄𝔐 and

its subtorus 𝔄×
𝔐. We call an 𝐹𝑣-cocharacter 𝜆 ∈ �̌�(𝔄×

𝔐) dominant if it is contained in the
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cocharacter cone 𝒞(𝔄𝔐) or equivalently, 𝜋𝜆 ∈ 𝔄𝔐(𝒪𝑣). For each dominant 𝜆, we define

a reductive monoid 𝒪𝑣-scheme 𝔐𝜆 by the pullback diagram

𝔐𝜆 𝔐×𝔄×
𝔐

Spec𝒪𝑣 𝔄𝔐

(𝑥,𝑧)↦𝛼𝔐(𝑥)𝑧
𝜋𝜆

,

and by replacing 𝔐 with the big-cell locus 𝔐∘, we obtain an open subscheme 𝔐∘𝜆 of 𝔐𝜆.

Remark 4.1.2. Note the difference in notation compared to [Chi19]: if 𝐺 = 𝐺sc and 𝔐 =

Env(𝐺), then our 𝔐𝜆 is the same as Vin−𝑤0(𝜆)
𝐺 (not Vin𝜆𝐺) in [Chi19]. The reason is that

in [Chi19], they only consider the universal monoid, and taking the involution by −𝑤0

saves a lot of notations later on. Here more general framework is considered where there

is no natural involution by −𝑤0 on 𝒞(𝔄𝔐).

Recall for 𝔐 ∈ ℱℳ(𝐺sc), we can choose an excellent morphism 𝔐 → Env(𝐺sc) so

that we have induced map �̌�(𝔄×
𝔐) → �̌�(𝑇ad). Let 𝜆ad be the image of 𝜆 ∈ �̌�(𝔄×

𝔐) under

this map. Using the same argument in [Chi19, Lemma 2.5.1], we can show the following

results.

Lemma 4.1.3. We have a disjoint union of 𝔐×(𝒪𝑣)-stable subsets

𝔐(𝒪𝑣) ∩𝔐×(𝐹𝑣) = ⋃
𝜆∈𝒞(𝔄𝔐)

𝔐𝜆(𝒪𝑣).

Moreover, let 𝑔 ∈ 𝔐×(𝐹𝑣), then 𝑔 ∈ 𝔐𝜆(𝒪𝑣) (resp. 𝔐∘𝜆(𝒪𝑣)) if and only if 𝛼𝔐(𝑔) ∈

𝜋𝜆𝔄×
𝔐(𝒪𝑣), and the image of 𝑔 in 𝐺ad(𝐹𝑣) belongs to 𝖢≤−𝑤0(𝜆ad)

𝐺ad (resp. 𝖢−𝑤0(𝜆ad)
𝐺ad ).

4.1.4 Hodge-Newton decomposition and Kottwitz map For 𝛾 ∈ 𝐺(𝐹𝑣), one can define

a dominant element 𝜈𝛾 ∈ �̌�(𝑇)ℚ, called the Newton point of 𝛾, that captures the 𝐹𝑣-

valuations (called the slopes) of eigenvalues of 𝛾 in 𝐺-representations. See, for example,

[KV12, § 2]. In [Kot97], Kottwitz defines (after fixing an algebraic closure 𝐹𝑣 → 𝐹𝑣, or
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equivalently, a geometric point 𝜂𝑣 over 𝜂𝑣) a canonical group homomorphism

𝜅𝐺 ∶ 𝐺(𝐹𝑣) ⟶ 𝕏(𝑍( ̌𝐺)𝐼𝑣)𝜎𝑣 ,

where 𝐼𝑣 is the inertia group of 𝐹𝑣. Here our group is unramified, so it simplifies to a

homomorphism

𝜅𝐺 ∶ 𝐺(𝐹𝑣) ⟶ (�̌�(𝑇)/ℤΦ̌)𝐹𝑣 = 𝜋1(𝐺)𝐹𝑣 .

This is the Kottwitz map. One can also see [KV12, § 3.1] for a description in this simplified

situation.

Let 𝑝𝐺 be the natural quotient �̌�(𝑇) → 𝜋1(𝐺). The following observation is crucial.

Lemma 4.1.5. Let 𝛾 ∈ 𝐺ad(𝐹𝑣) and 𝜆 ∈ �̌�𝐹𝑣(𝑇
ad). Suppose 𝜅𝐺(𝛾) = 𝑝𝐺(𝜆) . Then there

exists an element 𝛾𝜆 ∈ Env(𝐺sc)×(𝐹𝑣) such that

(1) the image of 𝛾𝜆 in 𝐺ad(𝐹𝑣) is 𝛾

(2) 𝛼Env(𝐺sc)(𝛾𝜆) ∈ 𝜋−𝑤0(𝜆)𝔄×
Env(𝐺sc)(𝒪𝑣).

Proof. This is basically [Chi19, Lemma 3.1.5], except for the fact that residue field 𝑘𝑣 is

no longer algebraically closed (or 𝐺 no longer split). The key in Chi’s proof is the surjec-

tivity of map 𝐆+(𝐹𝑣) → 𝐆ad(𝐹𝑣). After twisting, it is still true that 𝐺+(𝐹𝑣) → 𝐺ad(𝐹𝑣)

is surjective, because the kernel is the unramified torus 𝑇sc and the Frobenius acts by

permuting a basis of 𝕏(𝑇sc), in other words, 𝑇sc is an induced torus, thus H1(𝐹𝑣, 𝑇) = 0.

The remaining part of the proof then proceeds easily. ∎

4.1.6 Non-emptiness The first question is when the sets (4.1.1) and (4.1.2) are non-

empty. It is settled in the proposition below.

Proposition 4.1.7 ([Chi19, Proposition 3.1.6]). Suppose 𝛾 ∈ 𝐺(𝐹𝑣) (resp. 𝐺ad(𝐹𝑣)) is reg-

ular semisimple and 𝜆 ∈ �̌�(𝑇)𝐹𝑣 (resp. �̌�(𝑇ad)𝐹𝑣), then the followings are equivalent:
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(1) The set of 𝑘-points in M𝜆
𝐺(𝛾) is non-empty;

(2) The set of 𝑘-points in M≤𝜆
𝐺 (𝛾) is non-empty;

(3) 𝜅𝐺(𝛾) = 𝑝𝐺(𝜆), and 𝜈𝛾 ≤ℚ 𝜆, the latter meaning 𝜆 − 𝜈𝛾 is a non-negative ℚ-

combination of positive roots;

(4) 𝜅𝐺(𝛾) = 𝑝𝐺(𝜆), and 𝜒Env(𝐺sc)(𝛾𝜆) ∈ ℭEnv(𝐺sc)(𝒪𝑣), where 𝛾𝜆 is as defined in

Lemma 4.1.5.

4.1.8 Local affine Grassmannian The affine Grassmannian 𝖦𝗋𝐺 is the functor sending

a 𝑘-scheme 𝑆 to the set of pairs (𝐸,𝜙) where 𝐸 is a 𝐺-torsor on 𝑋𝑣,𝑆 = 𝑋𝑣×̂𝑆 and 𝜙 is a

trivialization of 𝐸 over 𝑋•
𝑣,𝑆 = 𝑋•

𝑣×̂𝑆. Here 𝑋𝑣,𝑆 is the completion of 𝑋𝑣 ×𝑘 𝑆 at 𝑣×𝑘 𝑆,

and 𝑋•
𝑣,𝑆 is the (open) complement of {𝑣} ×𝑘 𝑆. A priori, 𝑋𝑣,𝑆 is only a formal scheme,

not a scheme, but in this simple case it is easy to see it is representable by a scheme.

It is well-known that 𝖦𝗋𝐺 is represented by an ind-projective ind-scheme of ind-finite-

type over 𝑘. If we fix a 𝑘-embedding 𝑘𝑣 → 𝑘, we have an analogous definition of affine

Grassmannian 𝖦𝗋𝐺,𝑣 over 𝑘. We have the isomorphism

𝖦𝗋𝐺 ×𝑘 𝑘 ≃ ∏
𝑣∶ 𝑘𝑣→𝑘

𝖦𝗋𝐺,𝑣.

Since 𝐺 has connected fibers, we may also regard 𝖦𝗋𝐺 as the quotient sheaf 𝕃𝐺/𝕃+𝐺,

where 𝕃+𝐺 is the arc space functor of 𝐺 sending 𝑆 to the set 𝐺(𝑋𝑣,𝑆), and 𝕃𝐺 is the

loop space functor sending 𝑆 to 𝐺(𝑋•
𝑣,𝑆). See, for example, [Zhu17]. See also Chapter 5,

where we will review a global construction of affine Grassmannians such that the fibers

are products of the local version here.

Remark 4.1.9. The construction and representability of affine Grassmannian𝖦𝗋𝐺 requires

only 𝐺 to be a smooth affine group scheme, not necessarily reductive. The arc space and

loop space functors both make sense for any 𝑘-scheme, and in some sense behave “well
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enough” for normal varieties.

4.1.10 Algebraic structures We now impose algebraic structures on (4.1.1) promised

at the beginning. Following [Chi19], we introduce two approaches to this, one of which

relates to reductive monoids.

We regard the Cartan double coset 𝖢𝜆
𝐺 as a sub-presheaf 𝕃+𝐺𝜋𝜆𝕃+𝐺 ⊂ 𝕃𝐺. We define

a sheaf ℳ𝜆
𝐺,𝑣(𝛾) over 𝑘 to be the sheaf associated with presheaf

Spec𝑅 ⟼ {𝑔 ∈ 𝖦𝗋𝐺(𝑅) | 𝑔−1𝛾𝑔 ∈ 𝖢𝜆
𝐺(𝑅)},

which has an ind-scheme structure. The algebraic structure on M𝜆
𝐺,𝑣(𝛾) is then the re-

duced ind-subscheme structure induced by ℳ𝜆
𝐺,𝑣(𝛾). Similarly, we have an algebraic

structure on M≤𝜆
𝐺,𝑣(𝛾).

Another approach to the algebraic structure on M𝜆
𝐺(𝛾) is to use reductive monoids.

Let 𝔐 ∈ ℱℳ(𝐺sc) and 𝛾𝔐 ∈ 𝔐×(𝐹𝑣)rs such that 𝑎 = 𝜒𝔐(𝛾𝔐) ∈ ℭ𝔐(𝒪𝑣).

Definition 4.1.11. We make multiple closely related definitions:

(1) Themultiplicative affine Springer fiber ℳ𝐺,𝑣(𝛾𝔐) associated with 𝛾𝔐 is the functor

that associates to 𝑘-scheme 𝑆 the isomorphism classes of pairs (ℎ, 𝜄) where ℎ is an

𝑋𝑣,𝑆-point of [𝔐/Ad(𝐺)] over 𝑎:

𝑋𝑣,𝑆 [𝔐/Ad(𝐺)]

𝑋𝑣 ℭ𝔐

ℎ

𝜒𝔐

𝑎

,

and 𝜄 is an isomorphism between the restriction of ℎ to 𝑋•
𝑣,𝑆 and the 𝑋•

𝑣,𝑆-point of

[𝔐/Ad(𝐺)] induced by 𝛾𝔐.

(2) The (open) subfunctors ℳ∘
𝐺,𝑣(𝛾𝔐) (resp. ℳreg

𝐺,𝑣(𝛾𝔐)) is defined similarly by replac-

ing 𝔐 with 𝔐∘ (resp. 𝔐reg).
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(3) For 𝑎 ∈ ℭ𝔐(𝒪𝑣) ∩ ℭ×
𝔐(𝐹𝑣), we denote by ℳ𝐺,𝑣(𝑎) (resp. ℳ𝐺,𝑣(𝑎), etc.) a fixed

choice ofℳ𝐺,𝑣(𝛾𝔐) (resp.ℳ𝐺,𝑣(𝛾𝔐), etc.) where𝜒𝔐(𝛾𝔐) = 𝑎 (which always exists

thanks to Theorem 2.4.24). The dependence on such choice will be emphasized if

not clear from context.

(4) When the group 𝐺 is clear from context, we drop it from subscripts.

Let 𝛾 ∈ 𝐺ad(𝐹𝑣)rs and 𝜆 ∈ 𝒞(𝔄𝔐) a dominant 𝐹𝑣-cocharacter. Recall we have 𝜆ad ∈

�̌�(𝑇ad)+. Suppose M𝜆ad
𝐺,𝑣(𝛾) is nonempty, then by Proposition 4.1.7, we have the element

𝛾𝜆 ∈ Env(𝐺sc)×(𝐹𝑣)rs defined by Lemma 4.1.5. We may lift 𝛾𝜆 to an element in 𝔐×(𝐹𝑣),

still denoted by 𝛾𝜆. Let 𝑎 = 𝜒𝔐(𝛾𝜆), then it is easy to see that

M≤𝜆𝑇
𝐺,𝑣 (𝛾) ≅ ℳ𝐺,𝑣(𝑎)red and M𝜆𝑇

𝐺,𝑣(𝛾) ≅ ℳ𝐺,𝑣(𝑎)∘,red. (4.1.3)

Conversely, for any 𝑎 ∈ ℭ𝔐(𝒪𝑣) ∩ ℭ×
𝔐(𝐹𝑣)rs whose image in 𝔄Env(𝐺sc) is contained

in 𝜋−𝑤0(𝜆ad)𝑇ad(𝒪𝑣). Suppose 𝛾𝔐 maps to 𝑎 under 𝜒𝔐 (such element always exists by

Theorem 2.4.24). Suppose 𝛾 ∈ 𝐺ad(𝐹𝑣) is the image of 𝛾𝔐 in 𝐺ad(𝐹𝑣), then (4.1.3) still

holds. Note that a 𝑘-point may not exist for such functors.

4.1.12 Like affine Grassmannian, we may define everything by replacing 𝑋𝑣 with �̆�𝑣,

denoted by subscript 𝑣, e.g. M𝜆
𝐺,𝑣(𝛾), and so on. If we base change M𝜆

𝐺,𝑣(𝛾) to 𝑘, we

obtain isomorphism

M𝜆
𝐺,𝑣(𝛾) ×𝑘 𝑘 ≃ ∏

𝑣∶ 𝑘𝑣→𝑘
M𝜆

𝐺,𝑣(𝛾),

and similarly for ℳ𝐺,𝑣(𝑎), and so on.

4.1.13 Let ℒ be a 𝑍𝔐-torsor over 𝒪𝑣. Since 𝒪𝑣 has finite residue field and 𝑍𝔐 is a torus,

ℒ is necessarily a trivial torsor. Therefore 𝔐 is isomorphic to 𝔐ℒ. By replacing 𝔐 with

𝔐ℒ, we may also define ℳ𝐺,𝑣(𝑎) for 𝑎 ∈ ℭ𝔐,ℒ(𝒪𝑣) ∩ ℭ×,rs
𝔐,ℒ(𝐹𝑣), still depending on a
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choice of a lift of 𝑎 to 𝔐×
ℒ (𝐹𝑣). If ℒ has a 𝑐-th root (𝑐 being the order of 𝐙sc) and all

simple factors of 𝐺 of types 𝐴2𝑚 are split, then a Steinberg quasi-section exists, and we

use it to define ℳ𝐺,𝑣(𝑎).

4.2 Dimension Formula

In the following few sections we consider some geometric properties of multiplicative

affine Springer fibers, and thus it’s harmless to base change to 𝑘 for our discussion.

Suppose we have a non-empty (as a sheaf) multiplicative affine Springer fiberℳ𝜆
𝐺,𝑣(𝛾),

then 𝛾𝜆 as in Lemma 4.1.5 exists, and let 𝑎 = 𝜒Env(𝐺)(𝛾𝜆). Recall the invariants 𝑑(𝛾)

from § 3.2 and 𝑐(𝑎) = 𝑐(𝛾), 𝑑+(𝑎), and 𝛿(𝑎) from § 3.3. Sometimes we want to empha-

size the dependence on 𝑣 and denote these invariants as 𝑐𝑣(𝑎), 𝛿𝑣(𝑎), etc.

Theorem 4.2.1 ([Chi19, Theorem 1.2.1]). The functors ℳ𝜆,red
𝐺,𝑣 (𝛾) and ℳ≤𝜆,red

𝐺,𝑣 (𝛾) are

represented by an equi-dimensional 𝑘-scheme locally of finite type, with dimension

dimℳ𝜆
𝐺,𝑣(𝛾) = dimℳ≤𝜆

𝐺,𝑣(𝛾) = ⟨𝜌,𝜆⟩ + 𝑑𝑣(𝛾) − 𝑐𝑣(𝛾)
2

= 𝑑𝑣+(𝑎) − 𝑐𝑣(𝑎)
2

= 𝛿𝑣(𝑎).

4.3 Symmetry and Irreducible Components

Given 𝑎 ∈ ℭ𝔐(𝒪𝑣) ∩ ℭ×
𝔐(𝐹𝑣)rs, one can pullback the regular centralizer group scheme

𝔍𝔐 to 𝑎, viewed as an 𝒪𝑣-scheme denoted by 𝔍𝑎. Define the local Picard functor as the

affine Grassmannian

𝒫𝑣(𝑎) ≔ 𝖦𝗋𝔍𝑎 .
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This group functor naturally acts on ℳ𝑣(𝑎) as follows: any 𝑆-point of ℳ𝑣(𝑎) is a tuple

(𝐸,𝜙, 𝜄) where 𝐸 is a 𝐺-bundle on 𝑋𝑣,𝑆, 𝜙 is a 𝐺-equivariant map 𝐸 → 𝔐, and 𝜄 is an

isomorphism (𝐸0, 𝛾𝔐) → (𝐸,𝜙) over the punctured disc 𝑋•
𝑣,𝑆, where 𝐸0 is the trivial 𝐺-

torsor. On the other hand, a point of 𝒫𝑣(𝑎) is a 𝔍𝑎-torsor 𝐸𝔍 on 𝑋𝑣,𝑆 with a trivialization

𝜏 over𝑋•
𝑣,𝑆. It sends (𝐸,𝜙, 𝜄) to the following tuple (𝐸′,𝜙′, 𝜄′): the pair (𝐸′,𝜙′) is defined

as

𝜙′ ∶ 𝐸′ ≔ 𝐸×𝔍𝑎
𝜙,𝔐 𝐸𝔍 ⟶ 𝔐,

where 𝔍𝑎 acts on the fibers of 𝜙 through canonical map 𝜒∗
𝔐𝔍𝔐 → 𝐼𝔐. The trivialization

𝜏 induces an isomorphism

𝐸|𝑋•
𝑣,𝑆

⟶ 𝐸′|𝑋•
𝑣,𝑆

,

whose composition with 𝜄 is 𝜄′.

4.3.1 The sharp contrast to the Lie algebra case is that, unlike the former situation, the

open𝒫𝑎-orbits inℳ(𝑎) is in general not a𝒫𝑎-torsor, but a union of them. Even worse, the

union of all open orbits is not dense inℳ(𝑎), meaning there are some irreducible compo-

nents of ℳ(𝑎) that are stratified into infinitely many orbits. Fortunately, the free action

of a lattice quotient of 𝒫𝑎 is still present, in other words, ℳ(𝑎) still possesses a very

large symmetry group. More or less equivalently, the action of 𝒫𝑎 on the set Irr(ℳ(𝑎))

of irreducible components is still quite nice, and it actually has strong connection with

the representations of complex dual group ̌𝐺ℂ as we shall see below.

4.3.2 We may also base change to 𝑘, then we have

𝒫𝑣(𝑎) ×𝑘 𝑘 ≃ ∏
𝑣∶ 𝑘𝑣→𝑘

𝒫𝑣(𝑎).
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The action of 𝒫𝑣(𝑎) on ℳ(𝑎) is compatible with each direct factor. So starting from this

point we will base change everything to 𝑘 and consider ℳ𝑣(𝑎) for a fixed 𝑣 (equivalently,

we replace 𝑋𝑣 with �̆�𝑣.

4.3.3 Suppose 𝛾 ∈ 𝐺( ̆𝐹𝑣) is such that the Newton point 𝜈 = 𝜈𝛾 is an integral cochar-

acter in �̌�(𝑇). We may consider more generally 𝛾 ∈ 𝐺ad( ̆𝐹𝑣). This happens when 𝛾 is

unramified, but not exclusively. Let 𝑚𝜆𝜈 be the weight multiplicity of the weight space 𝜈

in the irreducible representation of ̌𝐺ℂ with highest weight 𝜆. If 𝜈 ∈ 𝑊𝜆, then 𝑚𝜆𝜈 = 1.

When 𝜆 is a central cocharacter, in other words, ⟨𝛼, 𝜆⟩ = 0 for all 𝛼 ∈ Φ, or equivalently,

𝜆ad = 0, and ℳ𝜆
𝐺(𝛾) ≠ ∅, then we always have 𝜈 = 𝜆 and so 𝑚𝜆𝜈 = 1.

Using (4.1.3), the condition of 𝜆 being central corresponds to that 𝑎 is contained in

ℭ×
𝔐 (i.e. has no intersection with the numerical boundary divisor). The condition 𝛾 being

unramified corresponds to 𝑐(𝑎) = 0, because recall that 𝑐(𝑎) is the difference between

the absolute rank and ̆𝐹𝑣-split rank of the centralizer of 𝛾𝜆 (which is a torus).

Definition 4.3.4. With the notations above, we call 𝑎 ∈ ℭ𝔐(𝒪𝑣) ∩ ℭ×
𝔐(𝐹𝑣)rs unramified

if 𝑐𝑣(𝑎) = 0 for one (equivalently, all) 𝑣, and invertible if it is contained in ℭ×
𝔐(𝒪𝑣).

Theorem 4.3.5 ([Chi19, Corollaries 3.5.3 and 3.8.2]). Suppose either 𝑎 ∈ ℭ𝔐(�̆�𝑣) ∩

ℭ×
𝔐( ̆𝐹𝑣) is either unramified or invertible, then the number of irreducible components

in ℳ𝑣(𝑎) modulo the action of 𝒫𝑣(𝑎) is 𝑚𝜆𝜈. Moreover, when 𝑎 is invertible, there is a

unique open dense 𝒫𝑣(𝑎)-orbit in ℳ𝑣(𝑎) being the regular locus ℳ𝑣(𝑎)reg.

Corollary 4.3.6 ([Chi19, corollary 3.8.3]). Suppose 𝑎 is invertible and 𝑑+(𝑎) ≤ 1, then

ℳ𝑣(𝑎) = ℳ𝑣(𝑎)reg and is itself a 𝒫𝑣(𝑎)-torsor.

The weight multiplicity 𝑚𝜆𝜈 in Theorem 4.3.5 is obtained by connecting ℳ𝑣(𝑎) with

MV-cycles, which we will elaborate in § 4.5.
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4.4 Néron Models and Connected Components

Following [Ngô10] and [Chi19], we have a more precise description of the 𝒫𝑣(𝑎) using

Néron models. By definition, the Néron model of 𝔍𝑎 is a unique (up to a unique isomor-

phism) smooth group scheme 𝔍♭𝑎 over �̆�𝑣 together with a homomorphism 𝔍𝑎 → 𝔍♭𝑎 that

is an isomorphism over the generic point and satisfies the following universal property:

for any smooth group scheme 𝐽 over �̆�𝑣 with an ̆𝐹𝑣-isomorphism 𝐽 ̆𝐹𝑣
→ 𝔍♭𝑎, ̆𝐹𝑣

, there

is a canonical lift to an �̆�𝑣-homomorphism 𝐽 → 𝔍♭𝑎. Néron model necessarily exists for

smooth commutative �̆�𝑣-group schemes, and can be explicitly constructed using cameral

covers.

4.4.1 Recall we have the cameral cover 𝜋𝔐 ∶ 𝔗𝔐 → ℭ𝔐. The group scheme 𝔍𝔐 is canon-

ically isomorphic to an open subgroup of the fixed point scheme

𝔍1𝔐 = (𝜋𝔐∗(𝑇×𝔗𝔐))𝑊 .

The scheme 𝔍𝑎 is the pullback of 𝔍𝔐 via 𝑎. Let local cameral cover 𝜋𝑎 ∶ �̃�𝑎 → �̆�𝑣 be the

pullback of 𝜋𝔐 through 𝑎. Then by proper base change, one can also define 𝔍𝑎 and 𝔍1𝑎

using the same construction applied to 𝜋𝑎.

The cameral cover 𝜋𝔐 is flat with a Cohen-Macaulay source and a regular target. Thus

�̃�𝑎 is Cohen-Macaulay as well. Since 𝑎 is generically regular semisimple, �̃�•
𝑎 is regular

being a 𝑊-étale cover of �̆�•
𝑣. So �̃�𝑎 is a reduced scheme. Since �̃�𝑎 is one-dimensional,

its normalization �̃�♭
𝑎 is regular. The Néron model can be shown to be the group scheme

𝔍♭𝑎 = 𝜋♭
𝑎∗(𝑇× �̃�♭

𝑎)𝑊,

where 𝜋♭
𝑎 is the natural map �̃�♭

𝑎 → �̆�𝑣. The same proof in [Ngô10, 3.8.2] applies to the

case here.
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Lemma 4.4.2. We have formula

𝛿𝑣(𝑎) = dim𝒫𝑣(𝑎) = dim𝑘(𝔱�̆�𝑣
⊗�̆�𝑣

(�̃�♭
𝑎/�̃�𝑎))𝑊,

where �̃�𝑎 (resp. �̃�♭
𝑎) is the ring of functions of �̃�𝑎 (resp. �̃�♭

𝑎).

Proof. This is essentially [Ngô10, Corollaire 3.8.3] and [Chi19, Corollary 3.3.4]. The key

is that 𝔍𝑎 and 𝔍♭𝑎 are smooth so we only need to compute the dimension of the tangent

space at the identity of 𝒫𝑣, and then it is clear from the Galois descriptions of 𝔍𝑎 and

𝔍♭𝑎. ∎

4.4.3 The morphism 𝔍𝑎 → 𝔍♭𝑎 induces morphism of group ind-schemes

𝑝𝑣 ∶ 𝒫𝑣(𝑎) ⟶ 𝒫♭
𝑣(𝑎) ≔ 𝖦𝗋𝔍♭𝑎 .

With exact same proof, we have:

Lemma 4.4.4 ([Ngô10, Lemme 3.8.1]). The group 𝒫♭
𝑣(𝑎) is homeomorphic to a finitely

generated free abelian group (viewed as a discrete 𝑘-scheme). The map 𝑝𝑣 is surjective,

and its kernel ℛ𝑣(𝑎) is an affine group scheme of finite type over 𝑘.

Corollary 4.4.5. The dimension of ℛ𝑣(𝑎) is exactly the local 𝛿-invariant 𝛿𝑣(𝑎).

4.4.6 Since 𝜋0(𝒫𝑣(𝑎))red is a finitely generated abelian group and ℛ𝑣(𝑎) is affine of

finite type, 𝜋0(𝒫♭
𝑣(𝑎)) must be homeomorphic to the largest free quotient of 𝜋0(𝒫𝑣(𝑎)).

Call this lattice Λ𝑎. Since Λ𝑎 is free, we can choose a lifting of it to 𝒫𝑣(𝑎) to define an

action of Λ𝑎 on ℳ𝑣(𝑎).

Proposition 4.4.7. The action of Λ𝑎 on ℳred
𝑣 (𝑎) is free, and the quotient ℳred

𝑣 (𝑎)/Λ𝑎 is

a projective 𝑘-scheme.
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Proof. This is essentially [Chi19, Theorem 3.6.2], in which the freeness is proved for an

explicitly constructed lifting Λ𝑎 → ℳ𝑣(𝑎), and the ℳred
𝑣 (𝑎)/Λ𝑎 is shown to be a proper

algebraic space. So we only need to slightly strengthen these statements.

First, the lifting of Λ𝑎 can be arbitrary, because using the result of the said theorem,

the stabilizer of any point in ℳ𝑣(𝑎) is a subgroup of Λ𝑎 of finite type, hence trivial

because Λ𝑎 is a lattice.

Moreover, the quotient space ℳred
𝑣 (𝑎)/Λ𝑎 is a scheme because one can pick a large

enough quasi-compact open subscheme 𝑈 ⊂ ℳ𝑣(𝑎) such that ℳred
𝑣 (𝑎)/Λ𝑎 is the quo-

tient of a finite étale equivalence relation 𝑅 satisfying this condition: for any 𝑥 ∈ 𝑈,

its equivalence class as a subset of 𝑈 is contained in an affine open subset. Therefore

ℳred
𝑣 (𝑎)/Λ𝑎 = 𝑈/𝑅 is a scheme. ∎

Corollary 4.4.8. The stabilizers of the 𝒫red
𝑣 (𝑎)-action are affine and contained in ℛ𝑣(𝑎).

4.4.9 Following [Ngô10, § 3.9], we give a precise description of connected components

of 𝒫𝑣(𝑎). Recall we have open subscheme 𝔍0𝑎 ⊂ 𝔍𝑎 of fiberwise neutral component. The

quotient 𝔍𝑎/𝔍0𝑎 is supported over the closed point of �̆�𝑣, with fiber

𝜋0(𝔍𝑎) = 𝔍𝑎(�̆�𝑣)/𝔍0𝑎(�̆�𝑣).

We have exact sequence

1 ⟶ 𝜋0(𝔍𝑎) ⟶ 𝔍𝑎( ̆𝐹𝑣)/𝔍0𝑎(�̆�𝑣) ⟶ 𝔍𝑎( ̆𝐹𝑣)/𝔍𝑎(�̆�𝑣) ⟶ 1.

Since 𝑘 is algebraically closed, this is the same as exact sequence

1 ⟶ 𝜋0(𝔍𝑎) ⟶ 𝒫0
𝑣(𝑎)(𝑘) ⟶ 𝒫𝑣(𝑎)(𝑘) ⟶ 1,

where 𝒫0
𝑣(𝑎) = 𝖦𝗋𝔍0𝑎 . In other words, the morphism 𝒫0

𝑣(𝑎) → 𝒫𝑣(𝑎) is surjective. Thus
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we have exact sequence

𝜋0(𝔍𝑎) ⟶ 𝜋0(𝒫0
𝑣(𝑎)) ⟶ 𝜋0(𝒫𝑣(𝑎)) ⟶ 1. (4.4.1)

For any finitely generated abelian group Λ, we let Λ∗ be its ℚℓ-Cartier dual

Λ∗ = Specℚℓ[Λ],

and conversely, for any diagonalizable group𝐴 overℚℓ, we let𝐴∗ = 𝕏(𝐴) be its character

group.

Now we fix a trivialization of 𝜗𝐺 over �̆�𝑣, which identifies𝐺with𝐆 together with asso-

ciated pinnings. Over �̆�•
𝑣, the cameral cover is a 𝐖-étale cover. If we fix a geometric point

in �̃�𝑎 over the geometric generic point 𝜂𝑣 ∈ �̆�𝑣, we have a homomorphism 𝜋•
𝑎 ∶ 𝐼𝑣 → 𝐖

(recall that 𝐼𝑣 is the inertia group of 𝐹𝑣).

Proposition 4.4.10. After fixing a geometric point of �̃�𝑎 lying over 𝜂𝑣 as above, we have

canonical isomorphisms of diagonalizable groups

𝜋0(𝒫0
𝑣)

∗ ≃ �̌�𝜋•
𝑎(𝐼𝑣),

𝜋0(𝒫𝑣)∗ ≃ �̌�(𝜋•
𝑎(𝐼𝑣)),

where �̌�(𝜋•
𝑎(𝐼𝑣)) is a subgroup of �̌�𝜋•

𝑎(𝐼𝑣) consisting of elements 𝜅 such that 𝜋•
𝑎(𝐼𝑣) is

contained in the Weyl group 𝐖𝐇 of the neutral component �̌� of the centralizer of 𝜅 in �̌�.

The proof is essentially the same as [Ngô10, Proposition 3.9.2], but since the replace-

ment of Lie algebras by reductive monoids is not completely parallel (e.g. one always

considers monoids associated with 𝐺sc instead of with 𝐺), we sketch a proof here. First

we have a lemma concerning 𝒫♭,0
𝑣 (𝑎) associated with the neutral component of Néron

model 𝔍♭,0𝑎 .
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Lemma 4.4.11 ([Ngô10, Lemme 3.9.3]). The homomorphism 𝒫0
𝑣(𝑎) → 𝒫♭,0

𝑣 (𝑎) induces an

isomorphism

𝜋0(𝒫0
𝑣(𝑎)) ⟶ 𝔍𝑎( ̆𝐹𝑣)/𝔍

♭,0
𝑎 (�̆�𝑣).

Proof. Both 𝔍0𝑎 and 𝔍♭,0𝑎 have connected fibers, thus following the exact same steps for

obtaining (4.4.1), we have exact sequence

1 = 𝜋0(𝔍
♭,0
𝑎 ) ⟶ 𝜋0(𝒫0

𝑣(𝑎)) ⟶ 𝜋0(𝒫
♭,0
𝑣 (𝑎)) = 𝔍𝑎( ̆𝐹𝑣)/𝔍

♭,0
𝑎 (�̆�𝑣) ⟶ 1

as desired. ∎

Lemma 4.4.12. We have isomorphism

𝔍𝑎( ̆𝐹𝑣)/𝔍
♭,0
𝑎 (�̆�𝑣) ≃ �̌�(𝐓)𝜋•

𝑎(𝐼𝑣).

Proof. This is [Ngô10, Lemme 3.9.4] and is a special case of [Kot85, Lemma 2.2]. It only

uses certain properties of the functor 𝐴 ↦ 𝐴( ̆𝐹𝑣)/𝐴♭,0(�̆�𝑣) on the category of ̆𝐹𝑣-tori,

as well as the fact that 𝔍𝑎| ̆𝐹𝑣
is an ̆𝐹𝑣-torus. ∎

Proof of Proposition 4.4.10. By duality we have �̌�(𝐓)𝜋•
𝑎(𝐼𝑣) = 𝕏(�̌�)𝜋•

𝑎(𝐼𝑣), so by combining

the two lemmas above, we obtain

𝜋0(𝒫0
𝑣(𝑎)) ≃ �̌�(𝐓)𝜋•

𝑎(𝐼𝑣),

and by taking Cartier dual we have

𝜋0(𝒫0
𝑣(𝑎))

∗ ≃ �̌�𝜋•
𝑎(𝐼𝑣).

This is the first claim.

114



For the second claim, we use 𝑧-extensions. We have exact sequence of reductive group

schemes

1 ⟶ 𝐺 ⟶ 𝐺1 ⟶ 𝐶 ⟶ 1,

where 𝐺1 has connected center. It is obtained from its split counterparts twisted by an

Out(𝐆)-torsor. We also have exact sequence of tori

1 ⟶ 𝑇 ⟶ 𝑇1 ⟶ 𝐶 ⟶ 1

and its split counterpart. Both 𝐺 and 𝐺1 act on 𝔐 ∈ ℱℳ(𝐺sc) and they are compatible.

In fact, we have ℭ𝔐 = 𝔐⫽Ad(𝐺) ≃ 𝔐⫽Ad(𝐺1). Let 𝔍1 → ℭ be the regular centralizer

scheme associated with 𝐺1-action, then it has connected fibers since 𝐺1 has connected

center. We also have exact sequence

1 ⟶ 𝔍 ⟶ 𝔍1 ⟶ 𝐶 ⟶ 1,

and the fiber over 𝑎

1 ⟶ 𝔍𝑎 ⟶ 𝔍1,𝑎 ⟶ 𝐶𝑎 ⟶ 1.

Since 𝔍𝑎 → 𝔍1,𝑎 is proper, 𝔍𝑎(�̆�𝑣 = 𝔍𝑎( ̆𝐹𝑣) ∩ 𝔍1,𝑎(�̆�𝑣. This implies that the map

𝔍𝑎( ̆𝐹𝑣)/𝔍𝑎(�̆�𝑣) ⟶ 𝔍1,𝑎( ̆𝐹𝑣)/𝔍1,𝑎(�̆�𝑣)

is injective. Since 𝐶𝑎( ̆𝐹𝑣)/𝐶𝑎(�̆�𝑣) is a finitely generated free abelian group, the neutral

components in 𝒫𝑣(𝑎) and 𝒫𝑣,1(𝑎) are homeomorphic. Thus 𝜋0(𝒫𝑣(𝑎)) → 𝜋0(𝒫𝑣,1(𝑎)

is injective. This means that 𝜋0(𝒫𝑣(𝑎)) can be identified with the image of 𝜋0(𝒫0
𝑣(𝑎))

in 𝜋0(𝒫𝑣,1(𝑎)).
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Using the same argument as in the first claim, we have

𝜋0(𝒫0
𝑣(𝑎)) ≃ �̌�(𝐓)𝜋•

𝑎(𝐼𝑣),

𝜋0(𝒫𝑣,1(𝑎)) ≃ �̌�(𝐓1)𝜋•
𝑎(𝐼𝑣),

since 𝔍1,𝑎 has connected fibers. Thus 𝜋0(𝒫𝑣(𝑎))∗ may be identified with the image of

homomorphism

�̌�𝜋•
𝑎(𝐼𝑣)

1 ⟶ �̌�𝜋•
𝑎(𝐼𝑣).

Let 𝜅1 ∈ �̌�𝜋•
𝑎(𝐼𝑣)

1 with image 𝜅 ∈ �̌�. Since �̌�1 has a simply-connected derived subgroup,

the centralizer �̌�1 of 𝜅1 (a semisimple element) in �̌�1 is connected, and its image in �̌� is

�̌�. Thus 𝜋•
𝑎(𝐼𝑣) is contained in 𝐖𝐇. ∎

4.5 Connection with MV-cycles

In this section we study the special case of unramified conjugacy classes. In this case,

[Chi19] established a bijection between the irreducible components of ℳ𝐺,𝑣(𝑎) modulo

𝒫𝑣(𝑎)-action and that of certain Mirković-Vilonen (MV) cycles. Here we slightly expand

their result to include Frobenius actions.

4.5.1 First, let us consider the case where 𝐺 = 𝐆 is split, and 𝛾 ∈ 𝐓( ̆𝐹𝑣)rs. Let 𝜆 be

a dominant cocharacter of 𝐓, and suppose 𝛾𝜆 ∈ 𝐌 as in Lemma 4.1.5 exists for some

𝐌 ∈ ℱℳ(𝐆sc). Since 𝛾 ∈ 𝐓, we have 𝛾𝜆 ∈ 𝐓𝐌. Let 𝑎 = 𝜒𝔐(𝛾𝜆) and suppose it lies

in 𝐂𝐌(�̆�𝑣). Then the ̆𝐹𝑣-torus 𝐉𝑎, ̆𝐹𝑣
is canonically isomorphic to the maximal torus

𝐓 ̆𝐹𝑣
itself. Thus its Néron model is just 𝐓�̆�𝑣

. Recall we have the lattice Λ𝑎 being the

largest free quotient of 𝜋0(𝒫𝑣(𝑎))red. In this case Λ𝑎 is isomorphic to �̌�(𝐓), which, after

choosing a uniformizer of ̆𝐹𝑣, can be regarded as a subgroup of 𝒫𝑣(𝑎).
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4.5.2 Following [Chi19, § 3.5.1], let

Y𝜆𝐆,𝑣(𝛾) = {𝑢 ∈ 𝕃𝑣𝐔/𝕃+𝑣𝐔 |Ad−1
𝑢 (𝛾) ∈ 𝖢𝜆

𝐆},

and Ỹ𝜆𝐆,𝑣(𝛾) be its preimage in 𝕃𝑣𝐔, both with reduced ind-scheme structure. Let 𝑆𝜇,𝑣

be the semi-infinite orbit

𝑆𝜇,𝑣 = 𝕃𝑣𝑈𝜋𝜇𝕃+𝑣𝐺/𝕃+𝑣𝐺 ⊂ 𝖦𝗋𝐺,𝑣

for any 𝜇 ∈ �̌�(𝑇). Then we have commutative diagram

Ỹ𝜆𝐆,𝑣(𝛾) 𝖢𝜆
𝐆,𝑣 ∩𝕃𝑣𝐔𝛾

Y𝜆𝐆,𝑣(𝛾) 𝑆𝜈𝛾,𝑣 ∩𝖦𝗋𝜆𝐆,𝑣

�̌�(𝐓) × Y𝜆𝐆,𝑣(𝛾) [𝕃+𝑣𝐆\𝖦𝗋𝜆𝐆,𝑣]

ℳ𝜆
𝐆,𝑣(𝛾)

𝑢↦Ad−1
𝑢 (𝛾)

/𝕃+
𝑣𝐔 /𝕃+

𝑣𝐔

(𝜇,𝑢)↦𝜋𝜇𝑢
𝑔↦Ad−1

𝑔 (𝛾)

. (4.5.1)

In this diagram, the arrows marked with “/𝕃+𝑣𝑈” are 𝕃+𝑣𝑈-torsors, and the top horizontal

arrow, after taking quotient by a sufficiently small congruent subgroup of 𝕃+𝑣𝑈, is a

“homotopy equivalence” in the following sense:

Definition 4.5.3. Let 𝑌1, 𝑌2 be 𝑘-schemes of finite type. We say 𝑌1 and 𝑌2 are 𝔸-homotopy

equivalent if they can be connected by a chain of diagrams between 𝑘-schemes

𝑌 ⟵ �̃� ⟶ 𝑌′,

where the arrows are locally trivial fibration of affine spaces. In this case, we denote
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𝑌1 ↭ 𝑌2.

We continue describing (4.5.1). The lower-left vertical arrow is a bijection on 𝑘-points

and induces a stratification compatible with the ind-scheme topology on ℳ𝜆
𝐆,𝑣(𝛾) in-

duced by that on 𝖦𝗋𝐆,𝑣. So the closure of Y𝜆𝐆,𝑣(𝛾) in ℳ𝜆
𝐆,𝑣(𝛾) is a fundamental domain

of the free �̌�(𝐓)-action, and the irreducible components of [ℳ𝐆,𝑣(𝑎)/𝒫𝑣(𝑎)] are identi-

fied with those of Y𝜆𝐆,𝑣(𝛾).

4.5.4 Now we move to general 𝐺 obtained by outer twist 𝜗𝐺 of 𝐆. Let 𝔐 ∈ ℱℳ(𝐺sc)

and let 𝑎 ∈ ℭ♡
𝔐(𝒪𝑣) be generically regular semisimple and unramified. Base change to

𝑘, then as before we have isomorphism

ℳ𝐺,𝑣(𝑎)𝑘 ≃ ∏
𝑣∶ 𝑘𝑣→𝑘

ℳ𝐺,𝑣(𝑎),

where 𝑣 ranges over 𝑘-embeddings of 𝑘𝑣 into 𝑘. In particular, we have bijection of geo-

metric irreducible components:

Irr[ℳ𝐺,𝑣(𝑎)𝑘] ≃ ∏
𝑣∶ 𝑘𝑣→𝑘

Irr[ℳ𝐺,𝑣(𝑎)].

The Frobenius 𝜎𝑘 ∈ Gal(𝑘/𝑘) acts on the 𝑘-points on the left-hand side and it induces an

𝜎𝑘-action on the right-hand side, sending a 𝑘-point in the 𝑣-factor to one in the 𝜎𝑘(𝑣)-

factor. For convenience, let 𝜎𝑣 = 𝜎[𝑘𝑣∶𝑘]
𝑘 be the Frobenius of 𝑘/𝑘𝑣, then 𝜎𝑣 acts on each

factor ℳ𝐺,𝑣(𝑎).

If we let ℳ′
𝐺,𝑣(𝑎) be the 𝑘𝑣-functor analogously defined as ℳ𝐺,𝑣(𝑎) except we treat

𝒪𝑣-points of [𝔐/𝐺] with trivialization over 𝐹𝑣 as 𝑘𝑣-points of ℳ′
𝐺,𝑣(𝑎) rather than 𝑘-

points, then ℳ𝐺,𝑣(𝑎) is just the Weil restriction of ℳ′
𝐺,𝑣(𝑎) from 𝑘𝑣 to 𝑘, and each

ℳ𝐺,𝑣(𝑎) is the base change of ℳ′
𝐺,𝑣(𝑎) via 𝑣∶ 𝑘𝑣 → 𝑘. Therefore, it is clear that the 𝜎𝑘-

action on Irr[ℳ𝐺,𝑣(𝑎)] is completely determined by the𝜎𝑣-action on any one ofℳ𝐺,𝑣(𝑎).
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Consequentially, without loss of generality we may assume 𝑘𝑣 = 𝑘.

4.5.5 Now we assume 𝑘𝑣 = 𝑘. Recall that the definition of ℳ𝐺,𝑣(𝑎) depends on a choice

of 𝛾𝑎 ∈ 𝔐(𝐹𝑣) lying over 𝑎, which necessarily exists by Theorem 2.4.24. Since 𝑎 is

unramified, over each �̆�𝑣 it can be lifted to a point 𝛾𝑣 ∈ 𝔗𝔐(�̆�𝑣). Let ℎ𝑣 ∈ 𝐺sc( ̆𝐹𝑣)

such that ℎ𝑣𝛾𝑎ℎ−1
𝑣 = 𝛾𝑣 (necessarily exists by Steinberg’s theorem on torsors over ̆𝐹𝑣).

Then

�̇�𝛾𝑣 = ℎ𝑣𝜎𝑣(ℎ𝑣)−1 ∈ N𝐺(𝑇)( ̆𝐹𝑣)

because 𝑎 is generically regular semisimple, and we let 𝑤𝛾𝑣 be the image of �̇�𝛾𝑣 in

𝑊( ̆𝐹𝑣) ≅ 𝐖. The element 𝑤𝛾𝑣 depends only on 𝛾𝑣 but not on ℎ𝑣. Then 𝛾𝑣 is fixed

by 𝜎′
𝑣 = 𝑤𝛾𝑣 ⋊ 𝜎𝑣, and ℳ𝐺,𝑣(𝑎) may be regarded as a 𝑘𝑣-structure on the 𝑘-scheme

ℳ≤𝜆
𝐺,𝑣(𝛾) with Frobenius 𝜎′

𝑣, where 𝛾 is the image of 𝛾𝑣 in 𝐺ad. For convenience, we let

�̇�′
𝑣 = �̇�𝛾𝑣 ⋊𝜎𝑣.

4.5.6 Over 𝑘 we fix an isomorphism 𝐺 ≅ 𝐆 that identifies their pinnings. Then 𝛾𝑣 ∈ 𝐓𝐌.

Let

𝐁′ = 𝜎′
𝑣(𝐁)

be another Borel containing 𝐓 and 𝐔′ its unipotent radical. Then we may obtain functors

Ỹ𝜆,′𝐆,𝑣(𝛾), Y
𝜆,′
𝐆,𝑣(𝛾), and so on by replacing 𝐔 with 𝐔′, and ℳ𝜆

𝐆,𝑣(𝛾) is a �̌�(𝐓)-tiling of

Y𝜆,′𝐆,𝑣(𝛾) as well.

Since �̇�′
𝑣 preserves �̌�(𝐓), it acts on the stack [ℳ𝜆

𝐆,𝑣(𝛾)/�̌�(𝐓)], which induces an

𝜎′
𝑣-action on the irreducible components of [ℳ𝜆

𝐆,𝑣(𝛾)/�̌�(𝐓)]. Similarly, the natural �̇�′
𝑣-
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action on 𝕃𝑣𝐆 induces an isomorphism 𝕃𝑣𝐔 → 𝕃𝑣𝐔′, which descends to an isomorphism

�̇�𝑣 ∶ Y𝜆𝐆,𝑣(𝛾)𝕃
+
𝑣𝐆/𝕃+𝑣𝐆

∼
⟶ Y𝜆,′𝐆,𝑣(𝛾)𝕃

+
𝑣𝐆/𝕃+𝑣𝐆.

Therefore, 𝜎′
𝑣 induces a bijection

𝜎′
𝑣 ∶ Irr(Y𝜆𝐆,𝑣(𝛾))

∼
⟶ Irr(Y𝜆,′𝐆,𝑣(𝛾)),

compatible with the action of 𝜎′
𝑣 on the irreducible components of [ℳ𝜆

𝐆,𝑣(𝛾)/�̌�(𝐓)].

4.5.7 On the other hand, (4.5.1) establishes a bijection

Irr(Y𝜆𝐆,𝑣(𝛾)) ≃ Irr(𝑆𝜈𝛾,𝑣 ∩𝖦𝗋𝜆𝐆,𝑣),

hence an isomorphism

ℚ
⊕ Irr(Y𝜆𝐆,𝑣(𝛾))
ℓ ≃ ℚ

Irr(𝑆𝜈𝛾,𝑣∩𝖦𝗋𝜆𝐆,𝑣)
ℓ .

According the theory of geometric Satake isomorphism (see [MV07] or [Zhu17] for exam-

ple), up to a Tate twist the right-hand side is canonically isomorphic to the cohomology

group H•
c(𝑆𝜈𝛾,𝑣, IC

𝜆), were IC𝜆 is the intersection complex on 𝖦𝗋≤𝜆
𝐆 . We also have a direct

sum decomposition

RT𝐁 ∶ H•
c(𝖦𝗋𝐆,𝑣, IC𝜆)

∼
⟶ ⨁

𝜇∈�̌�
H•
c(𝑆𝜇,𝑣, IC𝜆).

It is known in [MV07,Zhu17] that H•
c(𝑆𝜇,𝑣, IC𝜆) is concentrated on degree ⟨2𝜌,𝜇⟩. Simi-

larly, by replacing 𝐔 with 𝐔′, we have identification

ℚ
⊕ Irr(Y𝜆,′𝐆,𝑣(𝛾))
ℓ ≃ ℚ

Irr(𝑆′
𝜈𝛾,𝑣∩𝖦𝗋𝜆𝐆,𝑣)

ℓ ,
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and another decomposition

RT𝐁′ ∶ H•
c(𝖦𝗋𝐆,𝑣, IC𝜆)

∼
⟶ ⨁

𝜇∈�̌�
H•
c(𝑆′

𝜇,𝑣, IC
𝜆).

Here H•
c(𝑆′

𝜇,𝑣, IC
𝜆) is concentrated on degree ⟨2𝜌′, 𝜇⟩, where 𝜌′ is the analogue of 𝜌 by

replacing 𝐔 with 𝐔′. As a result, 𝜎′
𝑣 induces isomorphism

𝜎′
𝑣 ∶ H•

c(𝑆𝜈𝛾,𝑣, IC
𝜆)

∼
⟶ H•

c(𝑆′
𝜈𝛾,𝑣, IC

𝜆). (4.5.2)

4.5.8 The lift �̇�′
𝑣 ∈ 𝐆 ⋊ 𝜎𝑣 of 𝜎′

𝑣 naturally acts on 𝖦𝗋𝐆,𝑣, and by Lemme d’homotopie

([LN08, Lemme 3.2.3]) it is the same action as 𝜎𝑣 because 𝐆 is connected. We then have

commutative diagram

H•
c(𝖦𝗋𝐆,𝑣, IC𝜆) H•

c(𝑆𝜈𝛾,𝑣, IC
𝜆)

H•
c(𝖦𝗋𝐆,𝑣, IC𝜆) H•

c(𝑆′
𝜈𝛾,𝑣, IC

𝜆)

pr𝜈𝛾∘RT𝐁

�̇�′
𝑣=𝜎𝑣 𝜎′

𝑣
pr′𝜈𝛾∘RT𝐁′

where pr𝜈𝛾 is the projection to the direct summand given by H•
c(𝑆𝜈𝛾 , IC𝜆) and similarly

for pr′𝜈𝛾 . As a result, we have inclusion of 𝜎′
𝑣-modules as direct summand

ℚ
⊕ Irr([ℳ≤𝜆

𝐆,𝑣(𝛾)/�̌�(𝐓)])
ℓ ⊂ H0

c(𝖦𝗋𝐆,𝑣, IC𝜆).

4.5.9 Again by geometric Satake isomorphism, the cohomology group H•
c(𝖦𝗋𝐆,𝑣, IC𝜆) is

identified with the irreducible �̌�-representation 𝑉𝜆 with highest weight 𝜆 through Tan-

nakian formalism, and the map RT𝐁 gives the weight decomposition with respect to �̌�. It

can be easily upgraded to a representation of �̌� ⋊ ⟨𝜎𝑣⟩.

However, it is important to note that this isomorphism depends on the choice of Borel

𝐁 in 𝐆. To avoid confusion, we let the group given by Tannakian formalism by �̃�, and RT𝐁
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and RT𝐁′ gives two different Borels �̃� and �̃�′ in �̃� respectively. Then we may find some

�̃� ∈ N�̃�(�̌�) whose image in 𝐖 is 𝑤𝛾𝑣 , such that �̃�(�̃�) = �̃�′, and the �̃�′-highest weight in

H•
c(𝖦𝗋𝐆,𝑣, IC𝜆) is no longer 𝜆 but 𝑤𝛾𝑣(𝜆). Fix an isomorphism 𝜄𝐁 ∶ �̌� → �̃� mapping �̌� to

�̃�, and let 𝜄𝐁′ = Ad�̃� ∘𝜄𝐁, then we have isomorphisms

𝜄∗𝐁 ∶ H•
c(𝖦𝗋𝐆,𝑣, IC𝜆)

∼
⟶ 𝑉𝜆,

𝜄∗𝐁′ ∶ H•
c(𝖦𝗋𝐆,𝑣, IC𝜆)

∼
⟶ 𝑉𝜆.

4.5.10 The Tannakian formalism ensures an action of �̃� on H•
c(𝖦𝗋𝐆,𝑣, IC𝜆), such that

under the maps RT𝐁 and RT𝐁′ respectively, it identifies subspaces

�̃�∶ H•
c(𝑆𝜇,𝑣, IC𝜆)

∼
⟶ H•

c(𝑆′
�̌�(𝜇),𝑣, IC

𝜆).

Composing with the action of 𝜎𝑣, we have induced map

�̃�′
𝑣 ≔ �̃�⋊𝜎𝑣 ∶ H•

c(𝑆𝜇,𝑣, IC𝜆)
∼
⟶ H•

c(𝑆′
�̃�⋊𝜎𝑣(𝜇),𝑣, IC

𝜆).

This map depends on the choice of representative �̃� in general, which we will fix one.

Thus we have induced map

�̃�′
𝑣 ∶ H0

c(𝑆𝜈𝛾,𝑣, IC
𝜆)

∼
⟶ H0

c(𝑆′
𝜈𝛾,𝑣, IC

𝜆),

which is the same as the action (4.5.2). In other words, we have commutative diagram of

maps

H•
c(𝑆𝜈𝛾,𝑣, IC

𝜆) H•
c(𝖦𝗋𝐆,𝑣, IC𝜆) 𝑉𝜆[𝜈𝛾]

H•
c(𝑆′

𝜈𝛾,𝑣, IC
𝜆) H•

c(𝖦𝗋𝐆,𝑣, IC𝜆) 𝑉𝜆[𝜈𝛾]

𝜎′
𝑣

pr𝜈𝛾∘RT𝐁 𝜄∗𝐁 [𝜈𝛾]

�̇�′
𝑣=𝜎𝑣 �̃�′

𝑣
pr′𝜈𝛾∘RT𝐁′ 𝜄∗𝐁′[𝜈𝛾]
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where 𝑉𝜆[𝜈𝛾] means the 𝜈𝛾-weight subspace. As a result, we have isomorphism of 𝜎′
𝑣-

modules

ℚ
⊕ Irr([ℳ≤𝜆

𝐆,𝑣(𝛾)/�̌�(𝐓)])
ℓ ≃ 𝑉𝜆[𝜈𝛾], (4.5.3)

where 𝜎′
𝑣 acts on the right-hand side through �̃�′

𝑣.

4.5.11 Finally, we consider endoscopic groups. Let 𝑎 ∈ [ℭ𝔐/𝑍𝔐](𝒪𝑣) be a point in the

image of [ℭ𝔐,𝐻/𝑍𝜅
𝔐] for some endoscopic group 𝐻 given by endoscopic datum (𝜅,𝜗𝜅).

Suppose 𝑎 is unramified and 𝛾𝑣 ∈ [𝐓𝐌/𝐙𝐌](𝒪𝑣) lies over 𝑎. As above let 𝛾 be the image

of 𝛾𝑣 in 𝐆ad, and let the Newton point of 𝛾 be 𝜈𝛾. We also assume that 𝑎 maps to a point

in 𝜋−𝑤0(𝜆)𝐓ad(𝒪𝑣) ⊂ 𝐀Env(𝐆sc)(𝒪𝑣).

Let �̌�′ be the preimage of �̌� in �̌�sc, and 𝜆𝐻,1,… ,𝜆𝐻,𝑚 be the �̌�′ highest weights (al-

lowing repetitions) such that we have decomposition into irreducible �̌�′-representations

Res�̌��̌�′ 𝑉−𝑤0(𝜆) =
𝑚
⨁
𝑖=1

𝑉′
−𝑤𝐇,0(𝜆𝐻,𝑖).

By the proof of Lemma 2.5.10, there are only finitely many lifts of 𝛾𝑣 to [𝐓𝐌,𝐇/𝐙𝜅
𝐌](𝒪𝑣),

one for each 𝜆𝐻,𝑖 such that 𝑉′
−𝑤𝐇,0(𝜆𝐻,𝑖)[𝜈𝛾] ≠ 0. Denote those lifts by 𝛾𝐻,𝑣,1,… ,𝛾𝐻,𝑣,𝑒

where 0 < 𝑒 ≤ 𝑚. The canonical map

𝐖𝐇 ⋊𝜋0(𝜅) ⟶ 𝐖⋊𝜋0(𝜅)

as in Lemma 2.5.5 identifies (the image of)𝜎′
𝑣 determined by 𝛾𝑣 with those determined by

each 𝛾𝐻,𝑣,𝑖, and in particular𝑤𝛾𝑣 ∈ 𝐖𝐇. Pick a lift �̃� of𝑤𝛾𝑣 ∈ 𝐖𝐇 in N�̌�′(�̌�) ⊂ N�̌�sc(�̌�),

then we have decomposition of 𝜎′
𝑣-modules

𝑉−𝑤0(𝜆)[𝜈𝛾] =
𝑚
⨁
𝑖=1

𝑉′
−𝑤𝐇,0(𝜆𝐻,𝑖)[𝜈𝛾],

123



where 𝜎′
𝑣 acts on the right-hand side through �̃�′

𝑣. Therefore using (4.5.3), we have the

following result:

Proposition 4.5.12. With the assumptions above, we have a canonical isomorphism of

Frobenius modules

ℚ⊕ Irr(ℳ𝐺,𝑣(𝑎))/𝒫𝑣(𝑎)
ℓ ≃

𝑒
⨁
𝑖=1

ℚ⊕ Irr(ℳ𝐻,𝑣(𝑎𝐻,𝑖))/𝒫𝐻,𝑣(𝑎𝐻,𝑖)
ℓ ,

where 𝑎𝐻,𝑖 is the image of 𝛾𝐻,𝑣,𝑖.

4.6 Matching Orbits

In this section, we demonstrate how to translate the matching of orbits and functions in

the group setting into the language of monoids.

4.6.1 We keep the notations in § 2.6. In particular, our endoscopic datumwill be pointed.

Now given matching elements 𝛾 ∈ 𝐺(𝐹𝑣) and 𝛾𝐻 ∈ 𝐻(𝐹𝑣) and matching functions

𝑓𝜆 and ∑𝑖𝑓
𝜆𝐻,𝑖
𝐻 , we may assume 𝛾𝜆 ∈ Env(𝐺sc) as in Lemma 4.1.5 exists (otherwise

both sides of fundamental lemma will be zero because the relevant multiplicative affine

Springer fibers for both 𝐺 and 𝐻 will be empty). Since 𝜆 is 𝐹𝑣-rational, we may lift 𝛾𝜆

to some element int 𝔐(𝒪𝑣) where 𝔐 ∈ ℱℳ(𝐺sc) is a monoid such that 𝜆 is one of the

generators of the cone of 𝔄𝔐. Let 𝔐𝐻 be the endoscopic monoid.

4.6.2 Recall we have the fixed geometric point𝑥𝑎 ∈ 𝐓which, together with the base point

of endoscopic datum, gives a geometric point 𝑥•
𝑎 lying over 𝛾, and similarly 𝑥•

𝑎𝐻 for 𝛾𝐻.

Recall also that we choose 𝑥•
𝑎𝐻 = 𝑥•

𝑎. For any 𝜎 in Galois group Γ𝑣 = Gal(𝐹s
𝑣/𝐹𝑣), there

exists some element 𝑤𝜎 ∈ 𝐖 ⋊ 𝜋0(𝜅) such that 𝜎(𝑥•
𝑎) = 𝑤𝜎(𝑥•

𝑎), and 𝑎 is the image

of 𝑎𝐻 means that 𝑤𝜎 is actually contained in 𝐖𝐇 ⋊ 𝜋0(𝜅). This means that the point

𝑎𝔐 = 𝜒𝔐(𝛾𝜆) ∈ ℭ×,rs
𝔐 (𝐹𝑣) must come from an element in ℭ′

𝔐,𝐻 = 𝑇𝔐⫽𝑊𝐻(𝐹𝑣) because
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the monodromy groups are insensitive to central extensions. Since we are considering

regular semisimple locus, we may replace GIT quotients by𝑊 or𝑊𝐻 with stack quotients,

so we have

[𝑇𝐺‐rs
𝔐,𝐻/𝑊𝐻 ×𝑍𝜅

𝔐]
∼
⟶ [𝑇rs

𝔐 /𝑊𝐻 ×𝑍𝔐] ≃ [(𝑇rs
𝔐 ⫽𝑊𝐻)/𝑍𝔐]

by definition of 𝑍𝔐. Therefore the image of 𝑎𝔐 on the right-hand side may be identified

a unique 𝐹𝑣-point on the left-hand side, denoted by 𝑎𝔐,𝐻. The torus 𝑇 does not embed

into 𝐻 in a canonical way, but 𝑍𝐺 still does. It is straightforward to see that the image of

𝑎𝐻 in 𝑇ad⫽𝑊𝐻 is the same as that of 𝑎𝔐 hence also 𝑎𝔐,𝐻. Taking further quotient, then

the image of 𝑎𝔐,𝐻 in 𝐻ad⫽𝐻 is the same as that of 𝑎𝐻. By the comments at the end of

§ 2.6, it makes sense to talk about orbital integrals of 𝑎𝔐 and 𝑎𝔐,𝐻 respectively.

4.6.3 Finally, each 𝜆𝐻,𝑖 is not necessarily 𝐹𝑣-rational, but must be 𝐹𝑣-rational, and the

extensions of 𝑎𝔐,𝐻 to 𝒪𝑣-points of [ℭ𝔐,𝐻/𝑍𝜅
𝔐] are in bijection with 𝜆𝐻,𝑖 by our con-

struction of 𝔐𝐻.
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CHAPTER 5

GLOBAL CONSTRUCTIONS

In this section, we make several useful global constructions. The most important con-

struction is the moduli of boundary divisors, which is an indispensable tool for describ-

ing multiplicative Hitchin fibrations. Technically, the moduli of boundary divisors in this

chapter is slightly different from what we will use for future chapters: here we mostly

formulate them as a space due to its relative simplicity in language, but in practice we

need a modified version where the moduli is a Deligne-Mumford stack instead of a space.

Such difference can be seen as early as in § 5.3, where we provide a somewhat novel

definition of global affine Schubert schemes.

5.1 Boundary Divisors

Before we can discuss multiplicative Hitchin fibrations, we must introduce moduli spaces

of divisors in a certain generalized sense. We mainly follow [BNS16, § 3] for this purpose,

but generalize it to non-split tori. Due to the technicality of this section and for conve-

nience of the readers, we would like to make all relevant statements in split setting first

and then prove the parallel results in general setting. The proofs are for the most part

the same as in [BNS16], with some changes.

Let 𝐴 be a split torus over 𝑘, and 𝔄 is an affine normal toric variety of torus 𝐴, viewed

also as a commutative monoid with 𝔄× = 𝐴. Such toric variety is determined by a satu-

rated, strictly convex cone 𝒞 ⊂ �̌�(𝐴), and 𝜆 ∈ 𝒞 if and only if 𝜆∶ 𝔾m → 𝐴 extends to a

monoidal homomorphism from 𝔸1 to 𝔄. The ring of functions 𝑘[𝔄] ⊂ 𝑘[𝐴] is spanned

by the function determined by characters in the dual cone

𝒞∗ = {𝛼 ∈ 𝕏(𝐴) | ⟨𝛼, 𝜆⟩ ≥ 0,∀𝜆 ∈ 𝒞}.
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5.1.1 Let 𝑋 be a smooth, geometrically connected, projective curve over 𝑘. We have

𝑘-mapping stack

ℬ1+
𝑋 ≔ Hom𝑋/𝑘(𝑋, [𝔄/𝐴]).

For a 𝑘-scheme 𝑆, an 𝑆-point of ℬ1+
𝑋 consists of a pair (𝐸,𝜙) where 𝐸 is an 𝐴-torsor

over 𝑋×𝑆 and 𝜙 is a section of the induced toric bundle 𝔄ℒ over 𝑋×𝑆. We are interested

in the open substack ℬ1
𝑋 ⊂ ℬ1+

𝑋 where for any geometric point 𝑠 ∈ 𝑆 the image of the

generic point of 𝑋×{𝑠} under 𝜙 is contained in 𝐴𝐸 ⊂ 𝔄𝐸. When the monoid is not clear

from the context, we will use ℬ1
𝑋,𝔄, etc. to emphasize the monoid. The 𝑘-points of ℬ1

𝑋

can be conveniently described by so-called 𝒞-valued divisors.

Definition 5.1.2. Given a smooth curve𝑋 over 𝑘, a𝒞-valued divisor or a boundary divisor

is a formal sum

𝜆𝑋 = ∑
𝑥∈|𝑋|

𝜆𝑥𝑥,

where 𝑥 ranges over the closed points of 𝑋, and 𝜆𝑥 ∈ 𝒞 is non-zero for only finitely

many 𝑥.

Remark 5.1.3. We use the name boundary divisor because it records the intersection type

of the curve with the boundary of the unit group inside the monoid. The dependence of

this notion on cone 𝒞 won’t cause any confusion since the cone is usually clear from the

context.

5.1.4 Let (𝐸,𝜙) ∈ ℬ1
𝑋(𝑘). At some 𝑥 ∈ |𝑋| such that 𝜙(𝑥) is not contained in 𝐴, we can

choose a local trivialization of 𝐸 over the formal disk �̂�𝑥 ≅ Spec𝒪𝑥 (since the residue

field 𝑘𝑥 is finite). After choosing a local uniformizer 𝜋𝑥, we denote 𝒪𝑥 = 𝑘𝑥[[𝜋𝑥]] and
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𝐹𝑥 = 𝑘𝑥((𝜋𝑥)). Then 𝜙(�̂�𝑥) is a point in

𝐴(𝐹𝑥) ∩ 𝔄(𝒪𝑥) = ∐
𝜆∈𝒞

𝜋𝜆
𝑥𝐴(𝒪𝑥).

This way we obtain a cocharacter 𝜆𝑥 ∈ 𝒞, and it does not depend on the trivialization of

𝐸. Thus we have an associated boundary divisor on 𝑋. It is not hard to see the following

using Beauville-Laszlo’s gluing theorem.

Lemma 5.1.5 ([BNS16, Lemma 3.4]). The above construction induces a canonical bijection

between ℬ1
𝑋(𝑘) and boundary divisors on 𝑋.

Example 5.1.6. When 𝐴 = 𝔾m and 𝔄 = 𝔸1, the space ℬ1
𝑋 is simply the moduli space of

all effective divisors on 𝑋.

5.1.7 Similar to usual divisors on a curve, we would like to have a notion of degree to

stratify space ℬ1
𝑋 into more accessible objects. Given a boundary divisor 𝜆𝑋, we can

define its degree to be the following element in 𝒞:

deg(𝜆𝑋) ≔ ∑
𝑥∈|𝑋|

[𝑘𝑥 ∶ 𝑘]𝜆𝑥.

This straightforward definition by itself is too coarse, so we have the following definition

in [BNS16].

Definition 5.1.8. A multiset in 𝒞 is an element 𝜇 of the free abelian monoid generated by

𝒞− {0}

𝜇 = ∑
𝜆∈𝒞

𝜇(𝜆)𝑒𝜆 ∈ ⨁
𝜆∈𝒞−{0}

ℕ𝑒𝜆,

where 𝜇(0) = 0 by convention. The degree of multiset 𝜇 is defined as

deg(𝜇) ≔ ∑
𝜆∈𝒞

𝜇(𝜆)𝜆 ∈ 𝒞.
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There is an natural partial order on the set of multisets by refinement: we say 𝜇 refines

𝜇′ or 𝜇 ⊢ 𝜇′ if the difference 𝜇 − 𝜇′, viewed as an element of the free abelian group

generated by 𝒞−{0}, can be written as a sum of elements of the form 𝑒𝜆1 +𝑒𝜆2 −𝑒𝜆1+𝜆2 .

Clearly, refinement does not have an effect on degree.

Definition 5.1.9. A multiset 𝜇 is called primitive if there is no strict refinement in the

sense that 𝜇′ ⊢ 𝜇 and 𝜇′ ≠ 𝜇. Equivalently, 𝜇 is primitive if 𝜇(𝜆) = 0 unless 𝜆 is

primitive in 𝒞 (i.e., 𝜆 is not the sum of two non-zero elements in 𝒞).

We can associate to a boundary divisor 𝜆𝑋 a multiset

𝜆𝑋 = ⨁
𝜆∈𝒞

⎛
⎝

∑
𝜆𝑥=𝜆

[𝑘𝑥 ∶ 𝑘]⎞
⎠
𝑒𝜆,

and one sees that deg(𝜆𝑋) = deg(𝜆𝑋). We have the following results.

Proposition 5.1.10 ([BNS16, Proposition 3.5]). There exists a unique stratification of ℬ1
𝑋

indexed by multisets:

ℬ1
𝑋 = ∐

𝜇
ℬ1𝜇,

such that

(1) ℬ1𝜇(𝑘) consists of those boundary divisors whose associated multiset is 𝜇.

(2) ℬ1𝜇 is isomorphic to the multiplicity-free locus of the (necessarily finite) direct product

𝑋𝜇 ≔ ∏
𝜆∈𝒞−{0}

𝑋𝜇(𝜆),

where𝑋𝜇(𝜆) is the𝜇(𝜆)-th symmetric power of𝑋. Here (𝐷𝜆)𝜆 ∈ 𝑋𝜇 beingmultiplicity-

free means that the total divisor ∑𝜆𝐷𝜆 is a multiplicity-free divisor (not just 𝐷𝜆 in-

dividually).
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(3) ℬ1
𝜇′ lies in the closure of ℬ1𝜇 if and only if 𝜇 ⊢ 𝜇′.

Corollary 5.1.11 ([BNS16, Corollary 3.6]). We have the following description of connected

and irreducible components of ℬ1
𝑋:

(1) Each connected component of ℬ1
𝑋 contains a unique closed stratum of the form ℬ1

𝑒𝜆

for some 𝜆 ∈ 𝒞. Consequently, there is a canonical bijection 𝜋0(ℬ1
𝑋) ≃ 𝒞, and ℬ1𝜇

lies in the connected component ℬ1,𝜆
𝑋 associated with 𝜆 if and only if deg(𝜇) = 𝜆.

(2) Each irreducible component of ℬ1
𝑋 is the closure of a stratum ℬ1𝜇 where 𝜇 is a prim-

itive multiset.

For a primitive multiset 𝜇, let 𝜆1,… ,𝜆𝑚 be the coweights such that 𝜇(𝜆𝑖) ≠ 0, then

the isomorphism in Proposition 5.1.10 (2) can be extended to a morphism

𝑚
∏
𝑖=1

𝑋𝜇(𝜆𝑖) ⟶ ℬ1𝜇. (5.1.1)

Corollary 5.1.12 ([BNS16, Corollary 3.7]). The disjoint union of morphisms (5.1.1) for

which 𝜇 ranges over all primitive multisets is both a normalization and a resolution of

singularity of ℬ1
𝑋. In particular, it is a finite map.

5.1.13 Given 𝔄 with associated cone 𝒞, there are two constructions to associate a “stan-

dard” monoid to 𝔄. First, let 𝜆1,… ,𝜆𝑚 be the primitive elements of 𝒞, which each gives

a monoidal homomorphism 𝔸1 → 𝔄. The multiplication map then defines a homomor-

phism

�̃� ≔ 𝔸𝑚 ⟶ 𝔄.

On the other hand, let 𝛽1,… ,𝛽𝑚 be a set of generators of the dual cone 𝒞∗ as an ℕ-

monoid, and let 𝒞 be the ℕ-dual of the free abelian monoid generated by 𝛽𝑖, then we have
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injective map of cones 𝒞 ↪ 𝒞 and a homomorphism of monoids

𝔄 ⟶ 𝔄 ≔ Spec𝑘[𝑒𝛽1 ,… , 𝑒𝛽𝑚] = 𝔸𝑚.

Note that �̃� is canonical since 𝒞 is strictly convex, while 𝔄 depends on the choice of

generators 𝛽𝑖.

Both ℬ1
𝑋,�̃� and ℬ1

𝑋,𝔄 are clearly smooth. By Corollary 5.1.12, the induced morphism

ℬ1
𝑋,�̃� → ℬ1

𝑋,𝔄 is a finite resolution of singularity, and by Proposition 5.1.10, the morphism

ℬ1
𝑋,𝔄 → ℬ1

𝑋,𝔄 is a closed embedding.

5.1.14 Now we deal with the case where the torus is not necessarily split or constant.

Let 𝐴 be a torus defined over 𝑋, and 𝔄 an étale-locally trivial 𝐴-toric 𝑋-scheme with affine

and normal fibers. Then the stacks ℬ1+
𝑋 and ℬ1

𝑋 still make sense, and we are primarily

interested in ℬ1
𝑋.

Let �̌�(𝐴) be the étale sheaf of cocharacters defined as the internal hom-functor in the

category of abelian sheaves

�̌�(𝐴) ≔ Hom𝑋(𝔾m, 𝐴).

The toric scheme 𝔄 is then defined by a sheaf of saturated strictly convex cones𝒞 ⊂ �̌�(𝐴).

Let 𝑥 ∈ |𝑋| be any closed point, the decomposition of 𝐴(𝐹𝑥) ∩ 𝔄(𝒪𝑥) into 𝐴(𝒪𝑥)-

cosets has become

𝐴(𝐹𝑥) ∩ 𝔄(𝒪𝑥) = ∐
𝜆∈𝒞(𝒪𝑥)

𝜋𝜆
𝑥𝐴(𝒪𝑥),

where the cone 𝒞(𝒪𝑥) sits inside the cocharacter lattice of the maximal 𝒪𝑥-split torus

of 𝐴𝒪𝑥 , which is the same as the lattice �̌�(𝐴𝑘𝑥), because the automorphism group of a

split torus is discrete. Therefore, 𝒞(𝒪𝑥) can be canonically identified with the fixed point
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of any Frobenius element 𝜎𝑥 ∈ Gal(𝑘𝑥/𝑘) in the cone 𝒞(𝒪𝑥 ⊗𝑘𝑥 𝑘𝑥). For this reason,

we denote 𝒞(𝒪𝑥) by 𝒞𝑥. Thus we have a generalized definition of boundary divisor as

follows:

Definition 5.1.15. Given a smooth curve 𝑋 over 𝑘 and toric scheme 𝔄 over 𝑋, a boundary

divisor is a formal sum

𝜆𝑋 = ∑
𝑥∈|𝑋|

𝜆𝑥𝑥,

where 𝜆𝑥 ∈ 𝒞𝑥 is non-zero for only finitely many 𝑥.

This way any 𝑘-point of ℬ1
𝑋 naturally induces a boundary divisor, and it induces a bi-

jection between the two sets because the Beauville-Laszlo gluing construction still works

(see the proof of [BNS16, Lemma 3.4]).

5.1.16 Note that the sheaf �̌�(𝐴) can be represented by a countable union of finite étale

covers of 𝑋, and the cone 𝒞 a subscheme consisting of some connected components

therein. There is a canonical component in 𝒞 corresponding to the zero cocharacter, still

denoted by 0. The relative symmetric power 𝒞𝑚/𝑋 ≔ Sym𝑚
𝑋 𝒞 is easily seen smooth by

looking étale-locally over 𝑋. We also have the addition map by definition:

+∶ 𝒞𝑚/𝑋 ⟶ 𝒞.

Since 𝒞 is a disjoint union of smooth projective curves, its scheme of connected compo-

nents 𝜋0(𝒞) is an étale scheme over 𝑘 locally of finite type. For 𝜆 ∈ 𝜋0(𝒞) a closed point

and 𝒞𝜆 the corresponding component in 𝒞, we let 𝑘𝜆 = H0(𝒞𝜆,𝒪𝒞), then 𝜆 = Spec𝑘𝜆.

5.1.17 A multiset 𝜇 is defined as an element in the free abelian monoid generated by

the closed points in 𝜋0(𝒞) − {0}. The partial order by refinement is as follows: for
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0 ≠ 𝜇 = ∑𝜆∈𝜋0(𝒞) 𝜇(𝜆)𝜆 (again 𝜇(0) = 0 by convention), we have

+∶ ∏
𝜆
𝒞𝜆
𝜇(𝜆)/𝑋 ⟶ 𝒞,

in which the direct product is taken over 𝑋, and the image in 𝜋0(𝒞) is a finite subset.

Any point 𝜇′ in such image is called a degree of 𝜇, regarded itself as a multiset. Note that

there may be multiple possible degrees in this sense.

If 𝜇 = 𝜇1 + 𝜇2, and 𝜇′
2 is a degree of 𝜇2, then 𝜇′ = 𝜇1 + 𝜇′

2 is again a multiset. In

this case 𝜇 can be seen as a refinement of 𝜇′. More generally, a multiset 𝜇 is said to be a

refinement of 𝜇′ or 𝜇 ⊢ 𝜇′ if 𝜇′ can be obtained from 𝜇 after finite steps of taking degrees

of its summands. The notion of degree is less useful compared to the case of constant 𝔄,

since they no longer correspond bijectively to connected components of ℬ1
𝑋.

5.1.18 Given a boundary divisor 𝜆𝑋, we may define an induced multiset 𝜆𝑋 as follows:

let 𝑥1,… ,𝑥𝑚 be the mutually distinct points of 𝑋 such that 𝜆𝑥𝑖 ≠ 0. Since 𝜆𝑥𝑖 can be

identified with a point in 𝒞(𝑘𝑥𝑖), it is contained in a unique component 𝜆𝑖 ∈ 𝜋0(𝒞). Let

𝑑𝑖 = [𝑘𝑥𝑖 ∶ 𝑘] be the degree of point 𝑥𝑖 over 𝑘. Then 𝜆𝑋 is just the formal sum

𝜆𝑋 ≔
𝑚
∑
𝑖=1

𝑑𝑖𝜆𝑖.

5.1.19 Now we are ready to prove various properties of ℬ1
𝑋 parallel to the split case.

Definition 5.1.20. The toric scheme 𝔄 with torus 𝐴 is called of standard type if it is

defined as

𝐴 = 𝑝∗(𝔾m ×𝑋′) ⊂ 𝔄 = 𝑝∗(𝔸1 ×𝑋′)

where 𝑝∶ 𝑋′ → 𝑋 is a finite étale cover.
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Lemma 5.1.21. The functor ℬ1
𝑋 is representable by a countable disjoint union of projective

varieties over 𝑘 if 𝔄 is of standard type.

Proof. Any 𝐴-torsor 𝐸 over 𝑋× 𝑆 for any 𝑘-scheme 𝑆 can be obtained as 𝑝∗𝐸′ for some

𝔾m-torsor on 𝑋′ ×𝑆 as follows: take étale cover 𝑈 → 𝑋×𝑆 so that 𝐸 is trivial on 𝑈. The

descent datum is given by an isomorphism of 𝐴-torsors 𝜎∶ 𝑝∗
1 𝐸 → 𝑝∗

2 𝐸 (𝑝𝑖 is the 𝑖-th

projection map 𝑈×𝑋×𝑆 𝑈 → 𝑈) satisfying cocycle condition. This 𝜎 may be regarded as

a point in 𝐴(𝑈 ×𝑋×𝑆 𝑈) since 𝐴 is commutative. Let 𝑈′ = 𝑈 ×𝑋 𝑋′, then by definition

𝐴(𝑈×𝑋×𝑆𝑈) = 𝔾m(𝑈′×𝑋′×𝑆𝑈′), so that𝜎 lifts to a𝔾m-cocycle on the cover𝑈′ → 𝑋′×𝑆.

This means that the morphism of algebraic stacks

𝑝∗ ∶ Bun𝔾m/𝑋′ ⟶ Bun𝐴/𝑋

is essentially surjective. Again because 𝐴 is commutative, the automorphism group of 𝐸

is 𝐴(𝑋 × 𝑆) = 𝔾m(𝑋′ × 𝑆). Thus 𝑝∗ is a fully faithful map of the stacks. Therefore 𝑝∗

is an equivalence of algebraic stacks.

The stack ℬ1
𝑋,𝔄 classifies pairs (𝐸,𝜙) where 𝐸 ∈ Bun𝐴/𝑋 and 𝜙 is a section of 𝐸×𝐴𝔄.

Let 𝐸′ ∈ Bun𝔾m/𝑋′ be such that 𝑝∗𝐸′ = 𝐸, then 𝜙 ∈ 𝐸×𝐴 𝔄(𝑋) = 𝐸′ ×𝔾m 𝔸1(𝑋′). This

means that 𝑝∗ ∶ ℬ1
𝑋′,𝔸1 → ℬ1

𝑋,𝔄 is also an equivalence. It is well-known that ℬ1
𝑋′,𝔸1 is

representable by a countable union of projective schemes (being symmetric powers of

𝑋′), hence so is ℬ1
𝑋,𝔄. ∎

Lemma 5.1.22. Suppose we have closed embedding 𝔄 ⊂ 𝔄′ of toric schemes associated

with closed embedding of tori 𝐴 ⊂ 𝐴′ over 𝑋, and suppose further that both ℬ1
𝑋,𝔄 and

ℬ1
𝑋,𝔄′ are representable by separated schemes locally of finite type, then the induced map

ℬ1
𝑋,𝔄 → ℬ1

𝑋,𝔄′ is a closed embedding.

Proof. We show this by showing that it is a proper monomorphism of functors, which

is equivalent to the map being a closed embedding for schemes. For injectivity, given

(𝐸′,𝜙′) ∈ ℬ1
𝑋,𝔄′(𝑆) and two liftings to ℬ1

𝑋,𝔄(𝑆) which may be identified with two 𝐴-
134



torsors 𝐸1, 𝐸2 ⊂ 𝐸′ with a rational section 𝜙 = 𝜙′. Since over an open dense subset of

𝑋 × 𝑆, 𝜙 gives a trivialization of both 𝐸1 and 𝐸2, they must coincide over all 𝑋 × 𝑆 by

taking scheme-theoretic closure in 𝐸′. This means (𝐸1,𝜙) = (𝐸2,𝜙) ∈ ℬ1
𝑋,𝔄(𝑆).

For properness, as both spaces are separated schemes and locally of finite type over

𝑘, we only need to show the existence part of valuative criterion. Let 𝑅 be a discrete

valuation ring and 𝐹 its fraction field. Let (𝐸′,𝜙′) ∈ ℬ1
𝑋,𝔄′(𝑅) with 𝐹-lifting (𝐸𝐹,𝜙𝐹) ∈

ℬ1
𝑋,𝔄(𝐹). Let 𝑈 ⊂ 𝑋𝑅 be the open subset such that the image of 𝜙′ is contained in 𝐸′,

then 𝑋𝑅 − 𝑈 ∪ 𝑋𝐹 has codimension at least 2. The torsor 𝐸′ is trivialized by 𝜙′ over

𝑈, hence we may glue 𝐸𝐹 with the trivial 𝐴-torsor over 𝑈 to obtain a lift of (𝐸′,𝜙′) over

𝑈 ∪ 𝑋𝐹. Since 𝐴 and 𝑋𝑅 are both normal and 𝑋𝑅 − 𝑈 ∪ 𝑋𝐹 has codimension at least

2, we may extend it into a pair (𝐸,𝜙) ∈ ℬ1
𝑋,𝔄(𝑅) using Hartogs’ theorem. This proves

properness and we are done. ∎

Proposition 5.1.23. The functor ℬ1
𝑋 is representable by a countable disjoint union of pro-

jective schemes over 𝑘. Moreover, every ℬ1
𝑋,𝔄 can be embedded into ℬ1

𝑋,𝔄𝑃
as a closed

subscheme for some 𝔄𝑃 of standard type.

Proof. We deduce the general case from the case of standard type. Consider the sheaf

of characters 𝕏(𝐴) = Hom𝑋(𝐴,𝔾m) and the dual cone 𝒞∗ ⊂ 𝕏(𝐴), both of which can

be represented by a countable disjoint union of étale covers of 𝑋. Take a finite set 𝑃 ⊂

𝜋0(𝒞∗), viewed as a subsheaf of 𝒞∗, such that 𝑃 generates 𝒞∗ as a sheaf of monoids.

Consider the constant sheaf ℕ (resp. ℤ) on 𝑃, whose pushforward to 𝑋 may be seen as

the sheaf of free abelian monoid (resp. group) generated by 𝑃, denoted by 𝒞∗
𝑃 (resp. 𝕏𝑃).

Then we have surjective sheaf maps 𝒞∗
𝑃 → 𝒞∗ and 𝕏𝑃 → 𝕏(𝐴).

The monoid 𝔄 is given by the relative spectrum

Spec𝒪𝑋
(⨁

𝛼
(𝑝𝛼∗𝒪𝛼)∨),

where 𝛼 ranges over connected components of 𝒞∗, 𝑝𝛼 ∶ 𝛼 → 𝑋 is the natural map, and
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superscript ∨ is the dual as 𝒪𝑋-modules. The 𝒪𝑋-algebra structure on the direct sum

can be easily seen étale-locally. The torus 𝐴 is similarly defined by replacing 𝒞∗ with

𝕏(𝐴). We let 𝔄𝑃 (resp. 𝐴𝑃) be the monoid defined by the same construction, with 𝒞∗

replaced by 𝒞∗
𝑃 (resp. 𝕏𝑃), then we have closed embeddings 𝔄 → 𝔄𝑃 and 𝐴 → 𝐴𝑃. We

also know that 𝔄𝑃 is of standard type.

We have maps of stacks

[𝔄/𝐴] ⟶ [𝔄𝑃/𝐴] ⟶ [𝔄𝑃/𝐴𝑃]

which induces morphisms of 𝑘-mapping stacks

ℬ1+
𝑋,𝔄 ⟶ ℬ1+

⋆ ≔ Hom𝑋/𝑘(𝑋, [𝔄𝑃/𝐴]) ⟶ ℬ1+
𝑋,𝔄𝑃

.

The map ℬ1+
⋆ → Bun𝐴 is representable: indeed, since the fiber over an 𝑆-point 𝐸𝑆 ∈

Bun𝐴(𝑆) is the hom-functor Hom𝑋×𝑆/𝑆(𝑋 × 𝑆,𝐸𝑆 ×𝐴 𝔄𝑃), which is representable by an

𝑆-scheme due to the fact that 𝐸𝑆×𝐴𝔄𝑃 is a vector bundle (see [Gro63, 7.7.8, 7.7.9]). Since

Bun𝐴 is an algebraic stack, this means that ℬ1+
⋆ is also an algebraic stack.

Now we restrict to ℬ1
𝑋,𝔄 → ℬ1

⋆ where ℬ1
⋆ ⊂ ℬ1+

⋆ is defined similarly by requiring the

section 𝜙 in the pair (𝐸,𝜙) to be generically contained in 𝐸×𝐴 𝐴𝑃. Since 𝐴 acts on both

𝐴 and 𝐴𝑃 freely, we see that both functors have no non-trivial automorphisms, hence

are equivalent to sheaves. In fact, ℬ1
⋆ → ℬ1

𝑋,𝔄𝑃
is just the pullback of homomorphism

of Picard stacks Bun𝐴 → Bun𝐴𝑃 , which is a morphism representable by schemes because

𝐴 is a subtorus of 𝐴𝑃. Since ℬ1
𝑋,𝔄𝑃

is a scheme by Lemma 5.1.21, so is ℬ1
⋆. In fact, ℬ1

⋆

must be a countable disjoint union of quasi-projective varieties.

Since 𝔄 ⊂ 𝔄𝑃, ℬ1
𝑋,𝔄 is a subsheaf of (not necessarily projective) scheme ℬ1

⋆. Let

(𝐸,𝜙) ∈ ℬ1
⋆(ℬ1

⋆) be the universal pair given by the identity map of ℬ1
⋆. Let (ℬ1

⋆)′ be
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defined by Cartesian diagram

(ℬ1
⋆)′ 𝐸×𝐴 𝔄

ℬ1
⋆ 𝐸×𝐴 𝔄𝑃

𝜙′

𝜙

,

then (ℬ1
⋆)′ is a closed subscheme of ℬ1

⋆. The inclusion ℬ1
𝑋,𝔄 → ℬ1

⋆ factors through

(ℬ1
⋆)′ and (ℬ1

⋆)′ clearly coincides with ℬ1
𝑋,𝔄 as subsheaves. This means that ℬ1

𝑋,𝔄 is

representable by a countable disjoint union of quasi-projective schemes.

Finally, as ℬ1
𝑋,𝔄 is representable by a scheme locally of finite type over 𝑘, ℬ1

𝑋,𝔄 is a

closed subscheme of ℬ1
𝑋,𝔄𝑃

by Lemma 5.1.22 and we are done. ∎

Corollary 5.1.24. Suppose we have homomorphism 𝔄 ⊂ 𝔄′ of toric schemes associated

with homomorphism of tori 𝐴 ⊂ 𝐴′ over 𝑋, such that the induced map of cones 𝒞𝔄 → 𝒞𝔄′

is a closed embedding, then the induced map ℬ1
𝑋,𝔄 → ℬ1

𝑋,𝔄′ is a closed embedding.

Proof. As both spaces are representable by schemes locally of finite type over 𝑘, it suffices

to show the map is a monomorphism and proper. With exactly same argument as in

Lemma 5.1.22, we can show that ℬ1
𝑋,𝔄 → ℬ1

𝑋,𝔄′ is proper using valuative criterion. So we

only need to show injectivity as functors. We first do some reductions.

The cone 𝒞𝔄 generates a subsheaf of lattices in �̌�(𝐴), giving a subtorus 𝐴1 ⊂ 𝐴. The

cone 𝒞𝔄 ⊂ �̌�(𝐴1) corresponds to an 𝐴1-toric scheme 𝔄1 which also embeds as a closed

subscheme in 𝔄. The quotient lattice corresponds to the quotient torus 𝐴/𝐴1, and the

image of the cone 𝒞𝔄 = 𝒞𝔄1 is 0. Thus we have a Cartesian diagram

𝔄1 𝔄

{1} 𝐴/𝐴1

,

137



which induces a Cartesian diagram of moduli spaces

ℬ1
𝑋,𝔄1

ℬ1
𝑋,𝔄

{𝑏} ℬ1
𝑋,𝐴/𝐴1

,

where 𝑏 is the 𝑘-point of ℬ1
𝑋,𝐴/𝐴1 corresponding to the trivial 𝐴/𝐴1-bundle equipped

with the natural trivialization. But since ℬ1
𝑋,𝐴/𝐴1 is obviously equivalent to a 𝑘-point, the

map ℬ1
𝑋,𝔄1

→ ℬ1
𝑋,𝔄 is an isomorphism.

This way we reduce to the case where the rank of cone 𝒞𝔄 (resp. 𝒞𝔄′) equals lattice

�̌�(𝐴) (resp. �̌�(𝐴′)). This means that 𝐴 → 𝐴′ has finite kernel 𝑍. Suppose (𝐸1,𝜙1) and

(𝐸2,𝜙2) in ℬ1
𝑋,𝔄(𝑆) are both liftings of (𝐸′,𝜙′) ∈ ℬ1

𝑋,𝔄′(𝑆), then there is an 𝑍-torsor 𝐸𝑍

such that 𝐸1×𝑍 𝐸𝑍 ≅ 𝐸2. Let 𝑈 ⊂ 𝑋×𝑆 be the open dense subset such that the image of

𝜙′ is contained in 𝐸′, then over 𝑈 the quotient 𝜙1/𝜙2 gives a trivialization of 𝐸𝑍 over 𝑈.

Since 𝑍 is finite, the scheme-theoretic closure of image of 𝜙1/𝜙2 in 𝐸𝑍 is an isomorphic

copy of 𝑋×𝑆. Hence 𝐸𝑍 is trivial and we are done. ∎

Proposition 5.1.25. There exists a unique stratification of ℬ1
𝑋 indexed by multisets:

ℬ1
𝑋 = ∐

𝜇
ℬ1𝜇,

such that

(1) ℬ1𝜇(𝑘) consists of those boundary divisors whose associated multiset is 𝜇.

(2) ℬ1𝜇 is isomorphic to the multiplicity-free locus of the (necessarily finite) direct product

𝑋𝜇 ≔ ∏
𝜆∈𝜋0(𝒞)

𝒞𝜆
𝜇(𝜆),

where (𝐷𝜆)𝜆 ∈ 𝑋𝜇 being multiplicity-free means that the total divisor ∑𝜆𝐷𝜆 is a

multiplicity-free divisor on 𝑋 after pushing forward to 𝑋.
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(3) ℬ1
𝜇′ lies in the closure of ℬ1𝜇 if and only if 𝜇 ⊢ 𝜇′.

Proof. First, in the case of a simple multiset 𝜇 = 𝜆 ∈ 𝜋0(𝒞) − {0}, we show ℬ1𝜇 ≃ 𝒞𝜆.

In the case 𝔄 = 𝑝∗𝔸1, where 𝑝∶ 𝒞𝜆 → 𝑋 is the natural map, the result is given by the

proof of Lemma 5.1.21. In general case, the inclusion 𝒞𝜆 → 𝒞 gives an embedding of

cones corresponding to morphism of toric schemes 𝑝∗𝔸1 → 𝔄 (with homomorphism of

tori 𝑝∗𝔾m → 𝐴). Then we apply Corollary 5.1.24 and we are done for the case of a simple

multiset. Let

𝜃𝜆 ∶ 𝒞𝜆 ⟶ ℬ1𝜇

be the isomorphism.

Themonoidal structure on𝔄 induces amonoidal structure onℬ1
𝑋: given 𝜃1 = (𝐸1,𝜙1)

and 𝜃2 = (𝐸2,𝜙2) in ℬ1
𝑋, the product 𝜃1 ⊗ 𝜃2 is the pair (𝐸1 ×𝐴 𝐸2,𝜙1 ⊗𝜙2), and this

monoidal structure is clearly commutative. Given a multiset 𝜇, we can define a map

𝜄𝜇 ∶ 𝑋𝜇 = ∏
𝜆∈𝜋0(𝒞)

𝒞𝜆
𝜇(𝜆) ⟶ ℬ1

𝑋 (5.1.2)

∏
𝜆
(𝑥𝜆

1 ,… ,𝑥𝜆
𝜇(𝜆)) ⟼ ⨂

𝜆
[𝜃𝜆(𝑥𝜆

1) ⊗⋯⊗𝜃𝜆(𝑥𝜆
𝜇(𝜆))].

Note that the ordering of the product has no effect on the resulting map so it is well-

defined. Themap (5.1.2) is proper because the source is a projective variety and the target

is a separated scheme. Let ℬ1𝜇 be the image of 𝜄𝜇, which is a reduced closed subscheme

of ℬ1
𝑋 because the map is proper and the source is reduced. Let 𝑋∘𝜇 be the multiplicity-

free locus designated by part (2), then by checking the boundary divisors at 𝑘-point level

we can see that 𝜄−1𝜇 (𝜄𝜇(𝑋𝜇)) = 𝑋𝜇 hence it has open image in ℬ1𝜇, denoted by ℬ1𝜇. In

fact, one may check that ℬ1𝜇 −ℬ1𝜇 is just the union of the images of 𝜄𝜇′ such that 𝜇 ⊢ 𝜇′.

This stratification exhausts ℬ1
𝑋 by checking on 𝑘-points which is straightforward because

ℬ1
𝑋(𝑘) is in bijection with the set of 𝑘-valued boundary divisors.
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It remains to prove that the restriction of 𝜄𝜇 to𝑋∘𝜇 is an isomorphism. For this purpose

we embed ℬ1
𝑋 into ℬ1

𝑋,𝔄𝑃
for some 𝔄𝑃 of standard type. In the latter case, the map

𝑋∘𝜇 → ℬ1
𝜇,𝔄𝑃

is an isomorphism by direct computation. Therefore we have a section

ℬ1𝜇 → 𝑋∘𝜇 to 𝜄𝜇 by composing with embedding ℬ1
𝑋 → ℬ1

𝑋,𝔄𝑃
. Since 𝑋∘𝜇 is integral and 𝜄𝜇

is a bijection on 𝑘-points, it has to be an isomorphism. ∎

Corollary 5.1.26. (1) Each connected component ofℬ1
𝑋 contains a (not necessarily unique)

closed stratum ℬ1𝜇 where 𝜇 = 𝜆 is a simple multiset. In particular, there is an equiv-

alence relation ∼ on the set of closed points of 𝜋0(𝒞) such that 𝜋0(ℬ1
𝑋) (as a set)

is in canonical bijection with 𝜋0(𝒞)/ ∼. Each ℬ1𝜇 lies in the connected component

corresponding to [𝜆] if and only if there is some 𝜆′ ∼ 𝜆 such that 𝜆′ is a degree of 𝜇.

(2) Irreducible components of ℬ1
𝑋 are the closures of strata ℬ1𝜇 where 𝜇 are primitive

multisets, i.e. 𝜇(𝜆) ≠ 0 only if 𝜆 cannot be further refined.

Proof. For the first part, the minimal elements of the partial order ⊢ are the simple ones,

and the closure of ℬ1𝜇 contains and only contains those ℬ1
𝜆 where 𝜆 is a degree of 𝜇.

For the second part, the maximal elements of the partial order ⊢ are the ones that

cannot be refined any further, and those multisets are exactly the ones described by the

statement. ∎

Corollary 5.1.27. For each primitive multiset 𝜇, the map 𝜄𝜇 gives a normalization which

is also a resolution of singularity of ℬ1𝜇.

Proof. The map 𝜄𝜇 is birational and finite by Proposition 5.1.25, thus must be a normal-

ization map. Since the source 𝑋𝜇 is smooth, it is also a resolution of singularity. ∎

5.2 Global Affine Grassmannian

The reference of this section is [Zhu17], especially Lecture III therein, where proofs or

reference to them can be found.
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5.2.1 Let 𝐺 be a reductive group over smooth curve 𝑋 induced by Out(𝐆)-torsor 𝜗𝐺. For

any positive integer𝑑, wemay define the so-called Beilinson-Drinfeld affine Grassmannian

over 𝑋𝑑 = Sym𝑑𝑋 as the follows: any 𝑆-point 𝐷 ∈ 𝑋𝑑(𝑆) may be interpreted as a finite

flat 𝑆-family of divisors of degree 𝑑 in 𝑋. The Beilinson-Drinfeld affine Grassmannian

𝖦𝗋𝐺,𝑑 sends 𝑆 to the groupoid

⎧⎪⎪
⎨⎪⎪
⎩
(𝐷,𝐸,𝜙)

||||||||

𝐷 ∈ 𝑋𝑑(𝑆), 𝐸 ∈ Bun𝐺(𝑆)

𝜙∶ 𝐸|𝑋×𝑆−𝐷
∼
→ 𝐸0|𝑋×𝑆−𝐷 is a trivialization

⎫⎪⎪
⎬⎪⎪
⎭
.

This is known to be an ind-scheme of ind-finite-type over 𝑋𝑑. Since 𝐺 is reductive, it is

also ind-projective. Similarly, we have the 𝑋𝑑-family of jet groups and arc groups defined

as follows: for 𝐷 ∈ 𝑋𝑑(𝑆), let 𝐼𝐷 be the ideal in 𝒪𝑋×𝑆 defining divisor 𝐷, then we have

infinitesimal neighborhoods 𝐷𝑛 defined by 𝐼𝑛𝐷 as well as the formal completion �̂�𝐷 of

𝑋×𝑆 at 𝐷. Then the jet groups and arc group are defined as

𝕃+𝑋𝑑,𝑛𝐺(𝑆) = {(𝐷,𝑔) | 𝐷 ∈ 𝑋𝑑(𝑆),𝑔 ∈ 𝐺(𝐷𝑛)},

𝕃+𝑋𝑑
𝐺(𝑆) = {(𝐷,𝑔) | 𝐷 ∈ 𝑋𝑑(𝑆),𝑔 ∈ 𝐺(�̂�𝐷)}.

They are known to be representable by an affine scheme over 𝑋𝑑, and the jet groups are

of finite type. In addition, using the fact that 𝐺 is smooth over 𝑋 and the infinitesimal

lifting criterion, we see that the jet group schemes are smooth over 𝑋𝑑, while the arc

group is formally smooth over 𝑋𝑑.

5.2.2 The definition of loop groups is trickier. First, one can show that the formal scheme

�̂�𝐷 is ind-affine relative to 𝑆. Without loss of generality let 𝑆 be affine. Taking its ring

𝑅𝐷 of global functions and let �̂�′
𝐷 = Spec𝑅𝐷, then there is a canonical map �̂�𝐷 → �̂�′

𝐷

through which the map �̂�𝐷 → 𝑋×𝑆 uniquely factors. Therefore it makes sense to define
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scheme �̂�∘
𝐷 = �̂�′

𝐷 −𝐷. Then the loop group is defined as

𝕃𝑋𝑑𝐺(𝑆) = {(𝐷,𝑔) | 𝐷 ∈ 𝑋𝑑(𝑆),𝑔 ∈ 𝐺(�̂�∘
𝐷)}.

This functor is represented by an ind-scheme over 𝑋𝑑 and we have natural isomorphism

of 𝑘-spaces

𝖦𝗋𝐺,𝑑 ≃ [𝕃𝑋𝑑𝐺/𝕃+𝑋𝑑
𝐺].

5.2.3 If we have curves 𝑋𝜆 parametrized by 𝜆 in a finite set Λ and a tuple of positive

integers 𝑑 = (𝑑𝜆)𝜆∈Λ, then we can let 𝑋 = ∐𝜆𝑋𝜆 and we will have natural map

𝑋Λ
𝑑 ≔ ∏

𝜆
𝑋𝜆
𝑑𝜆

⟶ 𝑋|𝑑|,

where |𝑑| = ∑𝜆 𝑑𝜆. Therefore we also have the affine Grassmannian, arc group, etc. over

𝑋Λ
𝑑 .

5.2.4 The map 𝐺 → 𝐺ad compatible with the fixed pinning spl induces a homomorphism

�̌�(𝑇) → �̌�(𝑇ad) as well as the dominant cones therein. The dominant cone �̌�(𝑇ad)+ is

locally freely generated by the fundamental coweights, hence it corresponds to a𝑇ad-toric

scheme 𝔄ad of standard type over 𝑋. Viewing �̌�(𝑇ad) as a countable étale cover of 𝑋,

then there is a canonical union of connected components 𝒞�̌� ⊂ �̌�(𝑇ad)+ corresponding

to the set of all fundamental coweights. By Lemma 5.1.21, the monoid 𝔄ad is then the

pushforward

𝔄ad = 𝑝�̌�
∗ 𝔸1,
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where 𝑝�̌� ∶ 𝒞�̌� → 𝑋 is the natural map. The moduli of �̌�(𝑇ad)+-valued boundary divi-

sors ℬ1
𝑋,𝔄ad can thus be identified with union of symmetric powers

ℬ1
𝑋,𝔄ad =

∞
∐
𝑑=0

𝒞�̌�
𝑑 ,

on which we have the affine Grassmannian, arc group, etc. (using either 𝐺 or 𝐺ad, or any

group for that matter) all well-defined. The dominant cone �̌�(𝑇)+ for 𝑇 is not necessarily

strictly convex, but any saturated strictly convex subcone 𝒞 ⊂ �̌�(𝑇)+ determines a 𝑇-

toric scheme 𝔄, and the homomorphism of cones 𝒞 → �̌�(𝑇ad)+ induces a proper map of

boundary moduli

ℬ1
𝑋,𝔄 ⟶ ℬ1

𝑋,𝔄ad ,

and thus one may pullback the affine Grassmannian, arc group, etc. from ℬ1
𝑋,𝔄ad . There-

fore such notions make sense for ℬ1
𝑋,𝔄 even if it is not a union of symmetric powers of

curves (or even smooth).

5.3 Global Affine Schubert Scheme

Just like the Beilinson-Drinfeld affine Grassmannian is “affine Grassmannians in a family”,

we also have the corresponding family of affine Schubert schemes.

Usually, the affine Schubert varieties are defined as certain subschemes of affine

Grassmannian. However, things get tricky when multiple points are involved due to the

complication caused by the torsions in the fundamental group of 𝐺 (or equivalently, in

𝜋0(Bun𝐺)). See for example, [Var04, Definition 2.10] when the group is split. The defini-

tion given in loc. cit. is in fact slightly incorrect (further showing its trickiness).

Here we give a definition of affine Schubert scheme using reductive monoids. This

method allows us to directly define affine Schubert schemes without referring to affine
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Grassmannian at all, and is very straightforward.

5.3.1 Let 𝔐 = Env(𝐺sc), and we have the Deligne-Mumford stack of boundary divisors

ℬ𝑋 defined as an open substack

ℬ𝑋 ⊂ Hom𝑋(𝑋, [𝔄𝔐/𝑍𝔐]).

This is not a space simply because 𝑍𝔐 → 𝔄×
𝔐 has a finite kernel, but it won’t complicate

matters too much.

Given 𝑏 = (ℒ, 𝜃) ∈ ℬ𝑋(𝑆), where ℒ is a 𝑍𝔐-torsor over 𝑋 × 𝑆 and 𝜃 is a section of

𝔄𝔐,ℒ that is generically contained in 𝔄×
𝔐,ℒ over every geometric point 𝑠 ∈ 𝑆. We have

Cartesian diagram
𝔐𝑏 𝔐ℒ

𝑋×𝑆 𝔄𝔐,ℒ
𝜃

Recall that the numerical boundary divisor 𝔄𝔐 −𝔄×
𝔐 is a principal divisor cut out by the

product of all simple roots

ΠΔ ≔
𝑟
∏
𝑖=1

𝑒𝛼𝑖 ,

which is well-defined since ΠΔ is fixed by Out(𝐆sc). The pullback 𝜃∗ΠΔ defines a Cartier

divisor 𝔅𝑏 on 𝑋. Let �̂�𝔅𝑏 be the formal completion of 𝑋× 𝑆 at 𝔅𝑏. Let 𝕃+𝑏𝐺sc be the arc

group defined using divisor 𝔅𝑏, and similarly 𝕃+𝑏𝔐𝑏 the arc space of 𝔐𝑏. Then we have

arc spaces over ℬ𝑋:

𝕃+ℬ𝑋𝐺
sc(𝑆) ≔ {(𝑏,𝑔) | 𝑏 ∈ ℬ𝑋(𝑆),𝑔 ∈ 𝐺sc(�̂�𝔅𝑏)},

𝕃+ℬ𝑋(𝔐/𝔄𝔐)(𝑆) ≔ {(𝑏,𝑥) | 𝑏 ∈ ℬ𝑋(𝑆),𝑥 ∈ 𝔐𝑏(�̂�𝔅𝑏)}.

The arc group 𝕃+ℬ𝑋𝐺
sc acts on 𝕃+ℬ𝑋(𝔐/𝔄𝔐) freely both on the left and on the right by
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translation. If 𝑏 is a 𝑘-point, with corresponding boundary divisor ∑𝑣∈𝑋(𝑘) 𝜆𝑣𝑣, then

the set-theoretic fiber 𝕃+𝑏𝔐𝑏(𝑘) over 𝑏 is isomorphic to the product

∏
𝑣∈𝑋(𝑘)

[ ∑
𝜇∈�̌�(𝑇ad

𝑣 )+
𝜇≤−𝑤0(𝜆𝑣)

𝐺sc(�̆�𝑣)𝜋
(𝜆𝑣,𝜇)
𝑣 𝐺sc(�̆�𝑣)].

The global affine Schubert scheme of the adjoint group𝐺ad is defined as the fpqc quotient

𝖦𝗋≤−𝑤0(ℬ𝑋)
𝐺ad ≔ 𝕃+ℬ𝑋(𝔐/𝔄𝔐)/𝕃+ℬ𝑋𝐺

sc.

Then it is straightforward to see that its fiber at 𝑏 ∈ ℬ𝑋(𝑘) is canonically isomorphic to

∏
𝑣∈𝑋(𝑘)

𝖦𝗋≤−𝑤0(𝜆𝑣)
𝐺ad

𝑣
(𝑘).

5.3.2 By replacing 𝔐 with the big-cell locus 𝔐∘, we obtain a generalized notion of affine

Schubert cells. More precisely, we define

𝖦𝗋−𝑤0(ℬ𝑋)
𝐺ad = 𝕃+ℬ𝑋(𝔐

∘/𝔄𝔐)/𝕃+ℬ𝑋𝐺
sc

whose fiber at 𝑏 ∈ ℬ𝑋(𝑘) is canonically isomorphic to product

∏
𝑣∈𝑋(𝑘)

𝖦𝗋−𝑤0(𝜆𝑣)
𝐺ad

𝑣
(𝑘).

5.3.3 We may also construct a canonical map of functors

𝖦𝗋≤−𝑤0(ℬ𝑋)
𝐺ad ⟶ 𝖦𝗋𝐺ad,ℬ𝑋 .
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First, it is easy to see that the Beilinson-Drinfeld affine Grassmannian of 𝐺ad over ℬ𝑋

defined in the previous section is the same as the functor sending 𝑆 to the groupoid of

tuples (𝑏, 𝐸,𝜙) where 𝑏 ∈ ℬ𝑋(𝑆), 𝐸 is a 𝐺ad-bundle over 𝑋×𝑆, and 𝜙 is a trivialization

of 𝐸 over 𝑋×𝑆−𝔅𝑏.

Now let (𝑏,𝑥) ∈ 𝕃+ℬ𝑋(𝔐/𝔄𝔐)(𝑆) is an 𝑆-point. Similar to affine Grassmannian case,

the formal scheme �̂�𝔅𝑏 uniquely factors through an 𝑆-ind-affine scheme �̂�′
𝔅𝑏

. Let punc-

tured disc �̂�∘
𝔅𝑏

= �̂�′
𝔅𝑏

−𝔅𝑏. Over the �̂�∘
𝔅𝑏

, the arc in 𝔐𝑏 is a loop point of (𝐺+)ℒ, which

induces a loop point in 𝐺ad
ℒ . Since ℒ is a 𝑍𝔐-torsor, the induced 𝐺ad-torsor 𝐺ad

ℒ is canon-

ically trivial. Thus we have a loop point in 𝐺ad. Using this loop point, we may glue the

trivial 𝐺ad-torsor on 𝑋 × 𝑆 − 𝔅𝑏 with the trivial 𝐺ad-torsor on �̂�′
𝔅𝑏

and obtain a 𝐺ad-

torsor 𝐸ad on 𝑋×𝑆, together with a tautological trivialization on 𝑋×𝑆−𝔅𝑏. This gives

a morphism

𝕃+ℬ𝑋(𝔐/𝔄𝔐) ⟶ 𝖦𝗋𝐺ad,ℬ𝑋 .

This morphism is invariant under 𝕃+ℬ𝑋𝐺
sc-action, hence we have a well-defined map

𝖦𝗋≤−𝑤0(ℬ𝑋)
𝐺ad ⟶ 𝖦𝗋𝐺ad,ℬ𝑋 .

The details will play out exactly same as in the situation of the “usual” affine Grassman-

nian, so we leave it to the reader.

5.3.4 For group 𝐺 itself, as in the affine Grassmannian case, we may use the map 𝐺 →

𝐺ad to produce global affine Schubert schemes “of 𝐺”, although it has little content since

it is just multiple copies of the objects in 𝐺ad case. We may also change monoid to an
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arbitrary 𝔐 ∈ ℱℳ(𝐺sc), and use the Cartesian diagram

𝔐 Env(𝐺sc)

𝔄𝔐 𝔄Env(𝐺sc)

to pullback and obtain the global affine Schubert scheme relative to the divisor stack

associated with [𝔄𝔐/𝑍𝔐]. If 𝔄𝔐 is of standard type, then it is the same as replacing

Env(𝐺sc) by 𝔐 in our previous construction. The detail is left to the reader.

5.3.5 An immediate benefit of our definition is the following

Lemma 5.3.6. Let 𝔐 ∈ ℱℳ(𝐺sc). The map

𝕃+ℬ𝑋(𝔐/𝔄𝔐) ⟶ 𝖦𝗋≤−𝑤0(ℬ𝑋)
𝐺ad

is formally smooth.

Proof. Indeed, because the arc group 𝕃+ℬ𝑋𝐺
sc is formally smooth and its action by right

translation on 𝕃+ℬ𝑋(𝔐/𝔄𝔐) is free. ∎

Remark 5.3.7. (1) If the reader compares the definition in [Var04] with the one we give

here, one can see the reason why the traditional definition gets so complicated:

when we define the universal monoid Env(𝐺sc) (c.f., § 2.3), we are not only using

the representations of 𝐺sc, but also the abelianization space 𝔄Env(𝐺sc) ≅ 𝔸𝑟; on

the other hand, the traditional definition only utilizes the representation part, thus

certain “integral” condition is lost and has to be rebuilt using ad hoc formulations.

(2) The family of affine Schubert variety here is not parametrized by a space rather a

Deligne-Mumford stack instead. One may view it as a slight downside, but the inclu-

sion of automorphism groups is precisely why it naturally resolves the complication

caused by 𝑍sc-twisting.
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5.3.8 Let 𝑈 be a 𝑘-scheme and 𝑈 → ℬ𝑋 be a map, then we have induced family of affine

Schubert varieties over 𝑈, and we denote it by 𝖦𝗋≤−𝑤0(𝜆𝑈)
𝐺ad . The support of boundary

divisors 𝜆𝑈 parametrized by 𝑈 can be viewed as a purely codimension 1 subscheme of

𝑈× 𝑋. The union of some connected components of such subscheme can be seen as a

𝑈-flat family of boundary subdivisors of 𝜆𝑈. Call this subdivisor 𝜆′
𝑈, then since the arc

scheme construction is local, we may also define a 𝑈-family of affine Schubert schemes

𝖦𝗋≤−𝑤0(𝜆′
𝑈)

𝐺ad ⟶ 𝑈, (5.3.1)

whose fiber at 𝑢 ∈ 𝑈 is just the direct factor of 𝖦𝗋≤−𝑤0(𝜆𝑈,𝑢)
𝐺ad supported on 𝜆′

𝑈. So we

have natural projections fitting into commutative diagram

𝕃+𝜆𝑈
(𝔐/𝔄𝔐) 𝕃+𝜆′

𝑈
(𝔐/𝔄𝔐)

𝖦𝗋≤−𝑤0(𝜆𝑈)
𝐺ad 𝖦𝗋≤−𝑤0(𝜆′

𝑈)
𝐺ad

where the vertical maps are formally smooth.

Definition 5.3.9. The map (5.3.1) is called the partial affine Schubert scheme supported

on 𝜆′
𝑈.

5.4 Perverse Sheaves

The important aspect about the global affine Grassmannian is the category of equivariant

perverse sheaves on it. In the single-point case, i.e., the “usual” affine Grassmannian case,

it is well-known that it is equivalent to the Tannakian category of the dual group over ℚℓ

through geometric Satake equivalence. The affine Schubert varieties characterize all the

simple objects in the that category corresponding to irreducible representations. The

results are similar in the case of Beilinson-Drinfeld affine Grassmannians, and we briefly
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review it. See [Zhu17] (especially its §§ 4 and 5) for example for details.

5.4.1 First of all, it is more convenient to start with de-symmetrized version of Beilinson-

Drinfeld affine Grassmannians. In other words, instead of symmetric power 𝑋𝑑, we con-

sider direct product𝑋𝑑 and𝖦𝗋𝐺,𝑋𝑑 on it. The factorization property of Beilinson-Drinfeld

affine Grassmannian states that over the multiplicity-free locus (𝑋𝑑)∘, we have canonical

isomorphism

𝖦𝗋𝐺,𝑋𝑑 ×𝑋𝑑 (𝑋𝑑)∘ ≃ ⎛
⎝

𝑑
∏
𝑖=1

𝖦𝗋𝐺⎞
⎠
×𝑋𝑑 (𝑋𝑑)∘.

We also have the 𝑑-fold convolution affine Grassmannian

𝖦𝗋×̃𝑑
𝐺 ≔ 𝖦𝗋𝐺×̃⋯×̃𝖦𝗋𝐺

whose 𝑆-points consist of tuples

(𝑥1,… ,𝑥𝑑; 𝐸1,… ,𝐸𝑑,𝜙1,… ,𝜙𝑑),

where 𝑥𝑖 ∈ 𝑋(𝑆), 𝐸𝑖 ∈ Bun𝐺(𝑆), and

𝜙𝑖 ∶ 𝐸𝑖|𝑋×𝑆−𝑥𝑖
∼
⟶ 𝐸𝑖−1|𝑋×𝑆−𝑥𝑖

is an isomorphism. Here again 𝐸0 denotes the trivial 𝐺-torsor. We have the convolution

map

𝑚𝑑 ∶ 𝖦𝗋×̃𝑑
𝐺 ⟶ 𝖦𝗋𝐺,𝑋𝑑

(𝑥𝑖, 𝐸𝑖,𝜙𝑖) ⟼ (𝑥1,… ,𝑥𝑑, 𝐸𝑑,𝜙1 ∘⋯∘𝜙𝑑),
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which is also known to be an isomorphism over (𝑋𝑑)∘. We may factor 𝑚𝑑 into smaller

steps

𝖦𝗋×̃𝑑
𝐺 ⟶ 𝖦𝗋𝐺,𝑋2×̃𝖦𝗋×̃(𝑑−2)

𝐺 ⟶ ⋯ ⟶ 𝖦𝗋𝐺,𝑋𝑑−1×̃𝖦𝗋𝐺 ⟶ 𝖦𝗋𝐺,𝑋𝑑 .

Over any point (𝑥𝑖) ∈ 𝑋𝑑, each step above is stratified semi-small in the sense of [MV07,

p. 14] (to see this, one only need to combine factorization property and the well-known

fact that over a single point 𝑥, the convolution map 𝖦𝗋𝐺,𝑥×̃𝖦𝗋𝐺,𝑥 → 𝖦𝗋𝐺,𝑥 is stratified

semi-small). Over the whole base 𝑋𝑑, each step above is in fact small because it is an

isomorphism over an open dense subset (𝑋𝑑)∘, hence making the inequality in the defi-

nition of semi-smallness strict.

5.4.2 Let 𝐹𝑖 (1 ≤ 𝑖 ≤ 𝑑) be a 𝕃+𝐺-equivariant perverse sheaf on 𝖦𝗋𝐺. Then there is the

notion of twisted external product 𝐹1⊠̃⋯⊠̃𝐹𝑑 on 𝖦𝗋×̃𝑑
𝐺 whose restriction to

𝖦𝗋×̃𝑑
𝐺 ×𝑋𝑑 (𝑋𝑑)∘ ≃ ⎛

⎝

𝑑
∏
𝑖=1

𝖦𝗋𝐺⎞
⎠
×𝑋𝑑 (𝑋𝑑)∘

may be identified with external product 𝐹1 ⊠⋯⊠𝐹𝑑. The classical result is that

𝑚𝑑!(𝐹1⊠̃⋯⊠̃𝐹𝑑) = 𝑚𝑑∗(𝐹1⊠̃⋯⊠̃𝐹𝑑) = 𝑗!∗(𝐹1 ⊠⋯⊠𝐹𝑑|(𝑋𝑑)∘)

where 𝑗 is the inclusion 𝖦𝗋×̃𝑑
𝐺 ×𝑋𝑑 (𝑋𝑑)∘ → 𝖦𝗋×̃𝑑

𝐺 . Suppose that 𝐹1⊠̃⋯⊠̃𝐹𝑑 is fiberwise

perverse over 𝑋𝑑, then we know that 𝑗!∗(𝐹1 ⊠⋯⊠𝐹𝑑|(𝑋𝑑)∘) is fiberwise perverse over

𝑋𝑑.

5.4.3 The scheme 𝖦𝗋𝐺 is locally trivial fibration over𝑋, and so we also have locally trivial

fibration of various affine Schubert varieties which can also be defined using reductive

monoids in § 5.3. Suppose 𝐹𝑖 is the intersection sheaf corresponding to such a locally

trivial fibration of affine Schubert varieties, then 𝐹1⊠̃⋯⊠̃𝐹𝑑 is fiberwise perverse over
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𝑋𝑑 because 𝖦𝗋×̃𝑑
𝐺 is locally trivial over 𝑋𝑑. Thus we have that 𝑗!∗(𝐹1 ⊠⋯⊠𝐹𝑑|(𝑋𝑑)∘) is

fiberwise perverse over 𝑋𝑑. Using the Cartesian diagram

𝖦𝗋𝐺,𝑋𝑑 𝖦𝗋𝐺,𝑑

𝑋𝑑 𝑋𝑑

𝑞𝑑

we have that the sheaf

𝑞𝑑∗𝑗!∗(𝐹1 ⊠⋯⊠𝐹𝑑|(𝑋𝑑)∘)
𝔖𝑑 = 𝑗!∗ [(𝑞𝑑|(𝑋𝑑)∘)∗(𝐹1 ⊠⋯⊠𝐹𝑑|(𝑋𝑑)∘)]

𝔖𝑑

is fiberwise perverse over 𝑋𝑑, where 𝔖𝑑 is the symmetric group of 𝑑 elements, and the

inclusion 𝑋∘
𝑑 → 𝑋𝑑 is still denoted by 𝑗. Thus we have the following result:

Proposition 5.4.4. Let 𝔐 ∈ ℱℳ(𝐺sc). Then the sheaf

IC
𝖦𝗋≤−𝑤0(ℬ𝑋)

𝐺ad

is fiberwise 𝕃+ℬ𝑋𝐺
ad-equivariant and perverse over ℬ𝑋.

Proof. If 𝔄𝔐 is of standard type (i.e., is isomorphic to a vector bundle over 𝑋), the result

follows directly from the discussion above and the description of ℬ𝑋 as an étale gerbe

over a disjoint union of direct products of symmetric powers of smooth curves. The fact

that ℬ𝑋 has étale automorphism groups has no impact on perversity.

If 𝔄𝔐 is not of standard type, then we still have a finite birational cover of ℬ𝑋 such

that each irreducible component is cover by an étale gerbe over a direct product of sym-

metric power of smooth curves. Therefore we still have the same result, since for a finite

birational map 𝑓∶ 𝒳 → 𝒴 of Deligne-Mumford stacks locally of finite type, we have that

𝑓∗IC𝒳 = IC𝒴. ∎
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CHAPTER 6

MULTIPLICATIVE HITCHIN FIBRATIONS

In this section, we study the global construction known as the multiplicative Hitchin fi-

brations (mH-fibrations), also known as Hitchin-Frenkel-Ngo fibrations in some literature.

There has been some earlier study of mH-fibrations in algebraic setting mostly focusing

on split groups in, for example, [FN11], [Bou17], and [Chi19, § 4]. The mH-fibrations in

those papers come with several variants and will be unified in a single, much generalized

framework in this chapter. In fact, we will see starting from § 6.11 that such generaliza-

tion is crucial in studying fundamental lemma and likely in geometrizing trace formulae

in general.

Another important result of this chapter is a local model of singularity in § 6.10. Such

result was predicted in [FN11] and a weaker version was proved in [Bou17] with a rather

ad hoc argument. We will provide a more conceptual proof using deformation theory

with a stronger statement.

The remaining part of this chapter is fashioned in a similar way as in [Ngô10, § 4].

The proofs will mostly be similar with some modifications.

6.1 Constructions

Compared to the well-known Hitchin fibration for the Lie algebras, the multiplicative ver-

sion comes with more flavors, since in essence it is a two-stage fibration, much like the

two-stage invariant map𝔐 → ℭ𝔐 → 𝔄𝔐 for reductive monoid𝔐. Each of these variations

has its technical advantages and weaknesses, but they do not differ in a very essential way.

Although a “versal” construction clearly exists in concept, it has never been thoroughly

written down in literature. Here we give such a construction using moduli of boundary

divisors.
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6.1.1 The construction of the usual Hitchin fibration starts with (smooth, geometrically

connected, projective) curve 𝑋 with genus 𝑔𝑋 and reductive group 𝐺 over 𝑋 given by a

Out(𝐆)-torsor 𝜗𝐺. The scaling action of 𝔾m on 𝔤 = Lie(𝐺) commutes with the adjoint

action of 𝐺 hence induces an action on 𝔠 = 𝔤⫽Ad(𝐺). We then have maps

[𝔤/Ad(𝐺) ×𝔾m] ⟶ [𝔠/𝔾m] ⟶ 𝔹𝔾m.

Let 𝑝∶ 𝑋 → Spec𝑘, then the image of these maps under endofunctor 𝑝∗𝑝∗ on the big

étale site of Spec𝑘 produces morphisms of 𝑘-mapping stacks

Hom(𝑋, [𝔤/Ad(𝐺) ×𝔾m]) ⟶ Hom(𝑋, [𝔠/𝔾m]) ⟶ 𝒫ic𝑋. (6.1.1)

Fix any 𝑘-point in 𝒫ic𝑋, i.e. a line bundle ℒ on 𝑋, the fiber of (6.1.1) over ℒ is then the

Hitchin fibration ℳHit
ℒ → 𝒜Hit

ℒ .

6.1.2 In Frenkel-Ngô’s original paper [FN11], there is a primitive definition ofmH-fibration

with a hint towards the general one. It is later carried out and studied in various later

papers (e.g. [Bou15,Bou17,Chi19]). It uses reductive monoids as an analogue of Lie alge-

bra 𝔤, and the translation action of the central torus of the monoid as the analogue of the

𝔾m-action on 𝔤.

Let 𝔐 be a reductive monoid in ℱℳ(𝐺sc) with abelianization 𝔄𝔐. The translation

action of central torus 𝑍𝔐 on 𝔐 induces maps

[𝔐/𝐺×𝑍𝔐] ⟶ [ℭ𝔐/𝑍𝔐] ⟶ [𝔄𝔐/𝑍𝔐] ⟶ 𝔹𝑍𝔐,

153



which further induce maps of mapping stacks over 𝑘

Hom(𝑋, [𝔐/𝐺×𝑍𝔐]) Hom(𝑋, [ℭ𝔐/𝑍𝔐]) Hom(𝑋, [𝔄𝔐/𝑍𝔐]) Bun𝑍𝔐

ℳ+
𝑋 𝒜+

𝑋 ℬ+
𝑋

ℬ1+
𝑋,𝔄𝔐

Bun𝔄×
𝔐

≔ ≔ ≔

(6.1.2)

For all practical purposes, we would only consider the open subscheme ℬ𝑋 ⊂ ℬ+
𝑋 being

the preimage of the moduli ℬ1
𝑋,𝔄𝔐

of boundary divisors. Let ℎ𝑋 be the map ℳ𝑋 → 𝒜𝑋.

Note that ℬ𝑋 → ℬ1
𝑋,𝔄𝔐

is always a 𝑍sc-gerbe over its image, hence a Deligne-Mumford

stack, proper and locally of finite type.

Definition 6.1.3. The map ℎ𝑋 ∶ ℳ𝑋 → 𝒜𝑋 is called the (universal) multiplicative Hitchin

fibration associated with monoid 𝔐. We will use mH-fibration for short and omit the

monoid if it is clear from the context. The stack ℳ𝑋 is called the mH-total stack and 𝒜𝑋

is called the mH-base. The stack ℬ𝑋 is (still) called the moduli of boundary divisors. If 𝑆

is a 𝑘-scheme, then an 𝑆-point of ℳ𝑋 is called an mHiggs-bundle on 𝑆.

6.1.4 Let 𝔐′ → 𝔐 be a morphism in ℱℳ(𝐺sc), that is, an excellent map of reductive

monoids. Then recall we have the following Cartesian diagram

[𝔐′/𝐺×𝑍𝔐′] [ℭ𝔐′/𝑍𝔐′] [𝔄𝔐′/𝑍𝔐′]

[𝔐/𝐺×𝑍𝔐] [ℭ𝔐/𝑍𝔐] [𝔄𝔐/𝑍𝔐]

,

which induces Cartesian diagram of mH-fibrations

ℳ′
𝑋 𝒜′

𝑋 ℬ′
𝑋

ℳ𝑋 𝒜𝑋 ℬ𝑋

. (6.1.3)
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Therefore, studying mH-fibrations in general can largely be reduced to studying the mH-

fibration associated with the universal monoid Env(𝐺sc) using (6.1.3).

As another generalization, we may replace 𝑍𝔐 by a smooth group 𝑍 of multiplicative

type together with a finite unramified homomorphism 𝑍 → 𝑍𝔐. The resulting mapping

stacks are obtained by pulling back the ones above via map Bun𝑍 → Bun𝑍𝔐 , and so it

largely reduce to study the homomorphism of commutative group stacks Bun𝑍 → Bun𝑍𝔐 ,

which is not so hard.

6.1.5 The map 𝒜𝑋 → ℬ𝑋 is easy to describe using the isomorphism ℭ𝔐 ≃ 𝔄𝔐 × ℭ.

Over boundary divisor 𝜆𝑋 ∈ ℬ𝑋(𝑘) induced by 𝑍𝔐-torsor ℒ, the fiber is the vector space

H0(𝑋,ℭℒ), where ℭℒ = ℭ×𝑍𝔐 ℒ. When 𝔐 = Env(𝐺sc), ℒ is a 𝑇sc-torsor. Let 𝜛 ∈ 𝕏(𝑇sc)

be a connected component consisting of fundamental weights, then ℒ induces a line

bundle on 𝜛 denoted by 𝜛(ℒ), such that

ℭℒ ≅ ⨁
𝜛

𝑝𝜛∗𝜛(ℒ),

where 𝑝𝜛 ∶ 𝜛 → 𝑋 is the natural map. Let 𝑑𝜛 be the degree of 𝜛 over 𝑋, thus we see

that if deg𝜛(ℒ) > 𝑑𝜛(2𝑔𝑋 − 2) for all 𝜛, then ℭℒ has no higher cohomology and

dim𝑘H0(𝑋,ℭℒ) = ∑
𝜛

deg𝜛(ℒ) − 𝑟𝑔𝑋 +𝑟.

Therefore 𝒜𝑋 → ℬ𝑋 is a vector bundle (of varying rank) for all but finitely many con-

nected components of ℬ𝑋. For general monoid 𝔐 ∈ ℱℳ(𝐺sc), one may use (6.1.3) to

draw the same conclusion, or alternatively use the following fact: the 𝑍𝔐-torsor ℒ in-

duces a 𝑇sc-torsor using any excellent morphism 𝔐 → Env(𝐺sc), thus the line bundles

𝜛(ℒ) still make sense and so on.
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6.1.6 Let us see the constructionmore explicitly in some special cases. First, we consider

the case where the group is split and the abelianization 𝔄𝔐 is of standard type. Suppose

𝔄𝔐 is is an affine space with coordinates given by characters 𝑒𝜃1 ,… , 𝑒𝜃𝑚 . Let ℒ be a

𝑍𝔐-torsor such that 𝜃𝑖(ℒ) has degree larger than 2𝑔𝑋 − 2 for all 1 ≤ 𝑖 ≤ 𝑚. Recall 𝔐

corresponds to a homomorphism 𝜙𝔐 ∶ 𝑍𝔐 → 𝑇, which induces a 𝑇-torsor ℒ𝑇 from ℒ.

Assume that 𝜛𝑖(ℒ𝑇) also has degree larger than 2𝑔𝑋 − 2 for all 1 ≤ 𝑖 ≤ 𝑟. Denote the

fiber of (6.1.2) over ℒ by

ℎ+
ℒ ∶ ℳ+

ℒ ⟶ 𝒜+
ℒ .

Here 𝒜+
ℒ is the vector space

ℬ+
ℒ ⊕𝒞ℒ ≔

𝑚
⨁
𝑖=1

H0(𝑋,𝜃𝑖(ℒ)) ⊕
𝑟

⨁
𝑖=1

H0(𝑋,𝜛𝑖(ℒ𝑇)),

where ℬ+
ℒ is the first 𝑚 summands. The subspace ℬℒ is the open locus where all 𝑚

sections to 𝜃𝑖(ℒ) is non-zero. The fibration ℎℒ over ℬℒ is the closest analogue to the Lie

algebra case.

6.1.7 Next, as another special case, let us explain here the connection between our cur-

rent construction and the one in [FN11]. We consider the case where 𝐺 = 𝐺sc and is split.

Let ℳ𝑑 to be the classifying stack of tuples (𝐷,𝐸,𝜙) where 𝐷 ∈ 𝑋𝑑, 𝐸 ∈ Bun𝐺, and

𝜙∶ 𝐸|𝑋−𝐷 → 𝐸|𝑋−𝐷 is an automorphism of 𝐺-torsor over 𝑋−𝐷. For any point 𝑥 ∈ 𝐷,

we have a well-defined relative position 𝜆𝑥 = Inv𝑥(𝜙) ∈ �̌�(𝑇)+ by choosing any trivial-

ization of 𝐸 over the formal disk �̂�𝑥. Since the relative position can be arbitrarily large,

ℳ𝑑 must be of infinite type. To obtain a finite-type object, one has to put a restraint on

relative positions. The simplest way is to fix a dominant cocharacter 𝜆 ∈ �̌�(𝑇)+, and let

ℳ𝑑,𝜆 to be the (closed) substack of tuples (𝐷,𝐸,𝜙) such that 𝜆𝑥 ≤ 𝑑𝑥𝜆 for all 𝑥 ∈ 𝐷,

where 𝑑𝑥 is the multiplicity of 𝑥 in 𝐷.
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The mH-fibration with total stack ℳ𝑑,𝜆 is then constructed as follows: fix a tuple

(𝐷,𝐸,𝜙), and recall that ℭ = 𝐺⫽Ad(𝐺) is an affine 𝑟-space whose coordinates are given

by the traces of the 𝑟 fundamental representations of 𝐺. Taking the traces 𝜒𝑖 of 𝜙, the

restraint on relative positionsmeans that the 𝜒𝑖(𝜙)will have poles bounded by the divisor

⟨𝜛𝑖, 𝜆⟩𝐷. This means that there is a map

ℎ𝑑,𝜆 ∶ ℳ𝑑,𝜆 ⟶ 𝒜𝑑,𝜆,

where 𝒜𝑑,𝜆 is the line bundle over 𝑋𝑑 whose fiber over 𝐷 is ⨁𝑟
𝑖=1H

0(𝑋,𝒪𝑋(⟨𝜛𝑖, 𝜆⟩𝐷)).

Let 𝛼𝑑,𝜆 be the map ℳ𝑑,𝜆 → 𝑋𝑑 and ℎ𝐷 ∶ ℳ𝐷 → 𝒜𝐷 to be the fiber over 𝐷 ∈ 𝑋𝑑. After

[Chi19], we call ℎ𝐷 the restricted mH-fibrations.

6.1.8 More generally (still assuming 𝐺 = 𝐺sc and split), let 𝜆 = (𝜆1,… ,𝜆𝑚) be a

tuple of dominant cocharacters (allowing repetitions). Fix a tuple of positive integers

𝑑 = (𝑑1,… ,𝑑𝑚) and let

𝑋𝑑 ≔ 𝑋𝑑1 ×⋯×𝑋𝑑𝑚 .

The sum 𝑑 = |𝑑| ≔ 𝑑1 +⋯+𝑑𝑚 is called the total degree of 𝑑. For 𝐷 ∈ 𝑋𝑑, we define

𝐷 to be the sum of divisors |𝐷| ≔ 𝐷1 + … + 𝐷𝑚, so that 𝑑 = deg𝐷. We also define

�̌�(𝑇)+-valued divisor on 𝑋

𝜆𝐷 = 𝜆 ⋅ 𝐷 ≔
𝑚
∑
𝑖=1

𝜆𝑖 ⋅ 𝐷𝑖.

Let ℳ𝑑 be the classifying stack of tuples (𝐷,𝐸,𝜙) where 𝐷 ∈ 𝑋𝑑, 𝐸 ∈ Bun𝐺, and

𝜙∶ 𝐸|𝑋−𝐷 → 𝐸|𝑋−𝐷 is an automorphism of 𝐺-torsor. We also define ℳ𝑑,𝜆 to be the

closed substack such that Inv(𝜙) ≤ 𝜆𝐷. We can also define the mH-fibration by taking
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the trace of 𝜙

ℎ𝑑,𝜆 ∶ ℳ𝑑,𝜆 ⟶ 𝒜𝑑,𝜆,

where𝒜𝑑,𝜆 is the vector bundle over𝑋𝑑 whose fiber over𝐷 is⨁𝑟
𝑖=1H

0(𝑋,𝒪𝑋(⟨𝜛𝑖, 𝜆𝐷⟩)).

Again, let 𝛼𝑑,𝜆 be the map ℳ𝑑,𝜆 → 𝑋𝑑, and the restricted mH-fibration ℎ𝐷 to be the fiber

of ℎ𝑑,𝜆 over 𝐷.

6.1.9 Consider 𝔐 = 𝔐(𝜆) as in § 2.3.13 where each 𝜆𝑖 ∈ �̌�(𝑇)+ for 1 ≤ 𝑖 ≤ 𝑚. Then

the maximal torus in 𝔐 is 𝔾𝑚
m ×𝑇 and 𝑍𝔐 = 𝔾𝑚

m maps to 𝑇 via 𝜆. In this case, the maps

(6.1.2) can be extended into a commutative diagram

ℳ𝑑,𝜆 𝒜𝑑,𝜆 𝑋𝑑

ℳ𝑋 𝒜𝑋 ℬ𝑋 (𝒫ic𝑋)𝑚
𝐷𝑖↦(𝒪(𝐷𝑖),𝜎𝐷𝑖))

, (6.1.4)

where 𝜎𝐷𝑖 is the canonical section of 𝒪(𝐷𝑖). Here the stack ℬ𝑋 classifies 𝑚-tuples pairs

(ℒ𝑖, 𝑠𝑖) where ℒ𝑖 is a line bundle and 𝑠𝑖 a non-zero section therein, and 𝑋𝑑 embeds as an

open and closed subspace of pairs with deg(ℒ𝑖) = 𝑑𝑖. The squares in (6.1.4) are easily

shown to be Cartesian. If we fix for each 𝑖 a line bundle ℒ𝑖 ∈ 𝒫ic(𝑋) with degree 𝑑𝑖, they

assemble into a 𝑍𝔐-bundle ℒ by taking direct product, then we have pullback diagram

ℳℒ 𝒜ℒ ℬℒ

ℳ𝑑,𝜆 𝒜𝑑,𝜆 𝑋𝑑

,

with non-empty fibers being 𝔾𝑚
m -torsors. When 𝜆 = 𝜆 is a single cocharacter and degree

𝑑 is fixed, we recover the construction in [FN11]. This is the case where the monoid is a

so-called 𝐿-monoid.
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6.2 Symmetry of mH-fibrations

The 𝑍𝔐-action on ℭ𝔐 lifts to an action on 𝔍𝔐 and is compatible with the group scheme

structure, therefore we have group scheme

[𝔍𝔐/𝑍𝔐] ⟶ [ℭ𝔐/𝑍𝔐],

which further induces a group scheme

𝔍𝑋 → 𝑋×𝒜𝑋

through pulling back along the evaluation map 𝑋×𝒜𝑋 → [ℭ𝔐/𝑍𝔐]. We define relative

Picard stack

𝑝𝑋 ∶ 𝒫𝑋 ≔ 𝒫ic(𝔍𝑋/𝑋×𝒜𝑋/𝒜𝑋) ⟶ 𝒜𝑋

classifying 𝔍𝑋-torsors over 𝑋 relative to 𝒜𝑋. This is a relative algebraic stack over 𝒜𝑋.

It has a natural group stack structure because 𝔍𝑋 is commutative, and naturally acts on

ℳ𝑋 relative to 𝒜𝑋 induced by the canonical homomorphism 𝜒∗
𝔐𝔍 → 𝐼.

Proposition 6.2.1. The relative Picard stack 𝑝𝑋 ∶ 𝒫𝑋 → 𝒜𝑋 of 𝔍𝑋-torsors is smooth.

Proof. This is because the obstruction space of deforming 𝔍𝑋-torsors is H2(𝑋,Lie(𝔍𝑋)) =

0 since 𝑋 is a curve (see [Ngô10, Proposition 4.3.5] and [Chi19, Proposition 4.2.2]). ∎

We denote the pullback of 𝔍𝑋 (resp. 𝒫𝑋) to 𝒜𝑑,𝜆 by 𝔍𝑑,𝜆 (resp. 𝒫𝑑,𝜆) and that to 𝒜ℒ

by 𝔍ℒ (resp. 𝒫ℒ). Similarly, for any point 𝑎 ∈ 𝒜𝑋, we use 𝒫𝑎 to denote the fiber over 𝑎.

6.2.2 Similar to the local situation, we can consider the open subset ℳreg
𝑋 (resp. ℳ∘

𝑋) of

ℳ𝑋 consisting of tuples (ℒ, 𝐸,𝜙) such that the image of the Higgs field 𝜙 is contained

in [𝔐reg
ℒ /Ad(𝐺)] (resp. [𝔐∘

ℒ/Ad(𝐺)]). According to Corollary 2.4.13, we have:
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Proposition 6.2.3. The action of 𝑝𝑋 ∶ 𝒫𝑋 → 𝒜𝑋 on ℎreg
𝑋 ∶ ℳreg

𝑋 → 𝒜𝑋 has trivial stabiliz-

ers.

6.3 Cameral Curves

Definition 6.3.1. The universal cameral curve �̃�∶ �̃� → 𝑋×𝒜𝑋 is the pullback of cameral

cover

[𝜋]∶ [𝔗𝔐/𝑍𝔐] ⟶ [ℭ𝔐/𝑍𝔐]

to 𝑋×𝒜𝑋 via the evaluation map.

Definition 6.3.2. The universal discriminant divisor 𝔇𝑋 is the pullback of [𝔇𝔐/𝑍𝔐] to

𝑋×𝒜𝑋 via the evaluation map. If the numerical boundary divisor 𝔅𝔐 makes sense for

the monoid, we define ℬ𝑋 also by pullback.

Fix 𝑎 ∈ 𝒜𝑋(𝑆), we have the cameral curve 𝜋𝑎 ∶ �̃�𝑎 → 𝑋 × 𝑆 that is the fiber of

�̃�∶ �̃� → 𝑋 × 𝒜𝑋 over 𝑎. We also have the discriminant divisor 𝔇𝑎 and the numerical

boundary divisor 𝔅𝑎 by looking at the fibers of 𝔇𝑋 and 𝔅𝑋 over 𝑎, respectively. Note that

despite the name, 𝔇𝑎 may not be a (proper) divisor.

Definition 6.3.3. Let reduced locus 𝒜♡
𝑋 ⊂ 𝒜𝑋 be the open locus such that 𝔇𝑎 is either

empty or an effective divisor.

Lemma 6.3.4. Let 𝑎 ∈ 𝒜♡
𝑋(𝑘) and let 𝑏 be its boundary divisor such that at each 𝑣 ∈ 𝑋(𝑘)

it gives a dominant cocharacter 𝜆𝑣. Then

deg(𝔇𝑎) = ∑
𝑣∈𝑋(𝑘)

⟨2𝜌, 𝜆𝑣⟩.

Proof. It suffices to prove for 𝔐 = Env(𝐺sc). The extended discriminant function is a

map ℭ𝔐 → 𝔸1. It is 𝑍𝔐-equivariant if we let 𝑍𝔐 act on 𝔸1 by character 2𝜌. Let ℒ be the
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𝑍𝔐-torsor under 𝑏, then we have induced map

ℭ𝔐,ℒ ⟶ 𝒪(𝔇𝔐,ℒ) ≔ 𝒪⎛⎜⎜
⎝

∑
𝑣∈𝑋(𝑘)

⟨2𝜌, 𝜆𝑣⟩⎞⎟⎟
⎠
,

whose preimage of the zero section of 𝒪(𝔇𝔐,ℒ) is the discriminant divisor. The point 𝑎

is a map �̆� → ℭ𝔐,ℒ, and so its composition with the map above is a section of 𝒪(𝔇𝔐,ℒ)

whose zero divisor is exactly 𝔇𝑎. ∎

Lemma 6.3.5. For 𝑎 ∈ 𝒜♡
𝑋(𝑘), the curve �̃�𝑎 is reduced.

Proof. Since cameral cover is a Cohen-Macaulay morphism, �̃�𝑎 is Cohen-Macaulay. Since

𝑋𝑎 is generically reduced being a finite flat cover over 𝑋, it must be reduced. ∎

6.3.6 Using the Galois description of regular centralizer 𝔍𝔐, we can reach a similar de-

scription of 𝔍𝑋 using cameral cover �̃�. Indeed, for any 𝑎 ∈ 𝒜𝑋(𝑘), we have monomor-

phism of sheaf of commutative groups

𝔍𝑎 ⟶ 𝔍1𝑎 = 𝜋𝑎,∗(�̃�𝑎 ×�̆� 𝑇)𝑊

with a finite cokernel of finite support relative to 𝑎. Sometimes it is convenient to base-

change so that 𝐺 (and 𝑇, etc.) becomes split. After [Ngô10, § 4.5.2], let 𝜗∶ 𝑋𝜗 → �̆� be

a finite Galois étale cover with 𝑋𝜗 being connected and over which 𝜗𝐺 becomes a trivial

Out(𝐆)-torsor. Let Θ𝜗 be the Galois group. For any 𝑎 ∈ 𝒜𝑋(𝑘) whose image in Bun𝑍𝔐 is

ℒ, we have Cartesian diagram

�̃�𝜗,𝑎 𝑋𝜗 ×�̆� 𝔗𝔐,ℒ

�̆� ℭ𝔐,ℒ

𝜋𝜗,𝑎

𝑎

.
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Then we may describe 𝔍1𝑎 as

𝔍1𝑎 = 𝜋𝜗,𝑎,∗(�̃�𝜗,𝑎 ×𝐓)𝐖⋊Θ𝜗 .

Similarly, we have a global Néron model 𝔍♭𝑎, and its Galois description

𝔍♭𝑎 = 𝜋♭
𝑎,∗(�̃�♭

𝑎 ×�̆� 𝑇)𝑊 = 𝜋♭
𝜗,𝑎,∗(�̃�♭

𝜗,𝑎 ×𝐓)𝐖⋊Θ𝜗 , (6.3.1)

where �̃�♭
𝑎 (resp. �̃�♭

𝜗,𝑎) is the normalization of �̃�𝑎 (resp. �̃�𝜗,𝑎).

6.3.7 Connected cameral curves Using �̃�𝜗,𝑎 we can prove a connectivity result using

the same method as in [Ngô10, § 4.6]. First we record a theorem.

Theorem 6.3.8 ([Deb96, Théorème 1.4]). Let 𝑀 be an irreducible variety,

𝑚∶ 𝑀 → ℙ = ℙ𝑛1 ×⋯×ℙ𝑛𝑟

is a morphism from 𝑀 into a product of several projective spaces. Let 𝐻𝑖 ⊂ ℙ𝑛𝑖 be a fixed

linear subspace. Suppose for any subset 𝐼 ⊂ {1,… ,𝑟}, we have

dim(𝑝𝐼(𝑚(𝑀))) > ∑
𝑖∈𝐼

codimℙ𝑛𝑖(𝐻𝑖),

where 𝑝𝐼 is the natural projection with multi-index 𝐼. Suppose in addition there is an open

subset 𝑉 ⊂ ℙ containing the product 𝐻 = 𝐻1 × ⋯ × 𝐻𝑟, and 𝑚−1(𝑉) is proper over 𝑉.

Then 𝑚−1(𝐻) is connected.

Definition 6.3.9. For any integer 𝑁 ≥ 0, a 𝑍𝔐-torsor ℒ is called very (𝐺,𝑁)-ample if

deg𝜛(ℒ) > 2𝑑𝜛(𝑔𝑋 − 1) + 2+𝑁

for every connected component 𝜛 of fundamental weights of 𝐺sc. If 𝑁 = 0, we simply
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call ℒ very 𝐺-ample. A point 𝑎 ∈ 𝒜𝑋(𝑘) or a boundary divisor 𝑏 ∈ ℬ𝑋(𝑘) is very (𝐺,𝑁)-

ample (resp. very 𝐺-ample) if its associated bundle ℒ is. Let 𝒜≫ ⊂ 𝒜𝑋 and ℬ≫ ⊂ ℬ𝑋

be the respective loci of very 𝐺-ample points, and 𝒜≫𝑁, ℬ≫𝑁 be the respective very

(𝐺,𝑁)-ample loci.

Remark 6.3.10. It is clear that ℬ≫ is both open and closed in ℬ𝑋. In some situation, a

weaker condition on ampleness can be used, i.e., one that requires deg𝜛(ℒ) > 2𝑑𝜛(𝑔𝑋−

1) instead. We may call those points 𝐺-ample but since obtaining a sharp numerical

bound is not important, we will stick to very 𝐺-ampleness to save notations. Finally, note

that if 𝜗∶ 𝑋𝜗 → 𝑋 is a finite étale cover, then if ℒ is 𝐺-ample or very 𝐺-ample, so is 𝜗∗ℒ.

Proposition 6.3.11. If 𝑎 ∈ 𝒜♡
𝑋(𝑘) is very 𝐺-ample, then both �̃�𝑎 and �̃�𝜗,𝑎 are reduced

and connected.

Proof. Reducedness is already proved in Lemma 6.3.5. For connectedness, it suffices to

prove for �̃�𝜗,𝑎 hence we may replace �̆� with 𝑋𝜗 and assume that 𝐺 is split. Let 𝑏 ∈ ℬ𝑋

and ℒ ∈ Bun𝑍𝔐 be the image of 𝑎. Consider the pullback diagram

𝔗𝑏 𝔗𝔐,ℒ

ℭ𝑏 ℭ𝔐,ℒ

�̆� 𝔄𝔐,ℒ

𝜋𝑏

𝑏

such that 𝑎 is a section �̆� → ℭ𝑏. We claim that 𝔗𝑏 is an irreducible variety.

Indeed, because 𝑏 lies generically inside the open part 𝔄×
𝔐,ℒ, there is an open dense

subset 𝑈 ⊂ �̆� such that the fibers of 𝔗𝑏 → �̆� are 𝑇sc-torsors. This means that 𝔗𝑏×�̆�𝑈 is

irreducible, hence so is its closure in 𝔗𝑏. The complement 𝑈′ of the closure of 𝔗𝑏 ×�̆� 𝑈

is open, hence its image is open in �̆� by flatness. We know 𝑈′ must be empty, since

otherwise its image in �̆� would have non-trivial intersection with 𝑈, which is impossible
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by the definition of 𝑈′. Therefore 𝔗𝑏 is irreducible. Similar to cameral curves, since

𝑎 ∈ 𝒜♡
𝑋, 𝔗𝑏 is Cohen-Macaulay and generically reduced, hence reduced. Thus 𝔗𝑏 is an

irreducible variety.

We can now apply Theorem 6.3.8 where 𝑀 = 𝔗𝑏. Since 𝐺 is split, ℭ𝑏 is a direct sum of

line bundles 𝜛𝑖(ℒ) for 1 ≤ 𝑖 ≤ 𝑟. Compactify 𝜛𝑖(ℒ) into a projective line bundle 𝜛𝑖(ℒ),

whose total space is a projective surface over 𝑘. Let 𝑍𝑖 = 𝜛𝑖(ℒ) −𝜛𝑖(ℒ) be the infinity

divisor. Since by assumption deg𝜛𝑖(ℒ) > 2𝑔𝑋, the line bundle 𝒪(1) on 𝜛𝑖(ℒ) is very

ample, hence induces a closed embedding

𝜛𝑖(ℒ) ⟶ ℙ𝑛𝑖 .

Let 𝑉 ⊂ ℙ = ∏𝑟
𝑖=1 ℙ

𝑛𝑖 be the open subset

ℙ−
𝑟
⋃
𝑖=1

⎛
⎝
𝑍𝑖 × ∏

𝑗≠𝑖
𝜛𝑗(ℒ)⎞

⎠
,

then ∏𝑟
𝑖=1𝜛𝑖(ℒ) is a closed subscheme of 𝑉. Since ℭ𝑏 ⊂ ∏𝑟

𝑖=1𝜛𝑖(ℒ) is a closed sub-

scheme, it is a closed subscheme of 𝑉. Therefore 𝑚∶ 𝑀 → 𝑉 is proper since 𝜋𝑏 is finite.

The 𝑖-th component of 𝑎 is a section 𝑎𝑖 ∈ H0(𝑋,𝜛𝑖(ℒ)). Since

(𝑎𝑖, 1) ∈ H0(ℙ𝑛𝑖 ,𝒪(1)) = H0(𝑋,𝜛𝑖(ℒ)) ⊕H0(𝑋,𝒪𝑋),

it determines a hyperplane𝐻𝑖 ⊂ ℙ𝑛𝑖 that has no intersection with 𝑍𝑖. Thus𝐻 = ∏𝑟
𝑖=1𝐻𝑖

is contained in 𝑉.

It is easy to see that for every 𝐼 ⊂ {1,… ,𝑟}, 𝑝𝐼(𝑚(𝑀)) = 𝑝𝐼(ℭ𝑏) has dimension |𝐼|+1

(being the dimension of the direct sum of line bundles 𝜛𝑖(ℒ) for 𝑖 ∈ 𝐼), thus

dim(𝑝𝐼(𝑚(𝑀))) > ∑
𝑖∈𝐼

codimℙ𝑛𝑖(𝐻𝑖) = |𝐼|.
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By Theorem 6.3.8 we are done as �̃�𝑎 = 𝑚−1(𝐻). ∎

6.3.12 Smooth cameral curves We consider open subset𝒜♢
𝑋 of𝒜𝑋 consisting of points

𝑎 such that 𝑎(𝑋) intersects with the discriminant divisor transversally. We also consider

another open subset 𝒜♯
𝑋 ⊂ 𝒜♢

𝑋 of points with the additional condition that 𝑎(𝑋) does

not intersect with 𝔇𝑋 and ℭ𝑋−ℭ×
𝑋 simultaneously. Clearly both 𝒜♢

𝑋 and 𝒜♯
𝑋 is a subset

of 𝒜♡
𝑋.

Proposition 6.3.13. Suppose 𝑏 ∈ ℬ𝑋(𝑘) is very 𝐺-ample, then 𝒜♯
𝑏 is non-empty. As a

result, both 𝒜♢
𝑏 and 𝒜♡

𝑏 are also non-empty.

Proof. The proof is completely parallel to that of [Ngô10, Proposition 4.7.1]. First we show

that the discriminant divisor 𝔇𝑏 ⊂ ℭ𝑏 is reduced. Indeed, as 𝑏 lies generically (over 𝑋)

inside 𝔄×
𝔐,ℒ, there is an open dense subset 𝑈 of 𝑋 over which 𝔇𝑏 is reduced. Similar

to the proof of reducedness of cameral curves, we see that 𝔇𝑏 is Cohen-Macaulay and

generically reduced, hence reduced.

Next we show that for any 𝑥 ∈ �̆�(𝑘) with ideal 𝔪𝑥 ⊂ 𝒪�̆�, the map

H0(𝑋𝑘, ℭ𝑏) ⟶ ℭ𝑏 ⊗𝒪𝑋𝑘
𝒪𝑋𝑘

/𝔪2
𝑥 (6.3.2)

is surjective. Indeed, let 𝜗∶ 𝑋𝜗 → �̆� be a connected finite Galois cover of �̆� with Galois

group Θ. Then 𝜗∗ℭ𝑏 is isomorphic to a direct sum of line bundles

𝜗∗ℭ𝑏 =
𝑟

⨁
𝑖=1

𝜛𝑖(𝜗∗ℒ).

Since ℭ𝑏 is a direct summand of 𝜗∗𝜗∗ℭ𝑏 being theΘ-fixed subbundle, it suffices to prove

the surjectivity of map

H0(𝑋𝜗, 𝜗∗ℭ𝑏) ⟶ 𝜗∗ℭ𝑏 ⊗𝒪�̆�
𝒪�̆�/𝔪2

𝑥,
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and in turn it suffices to prove surjectivity after replacing 𝜗∗ℭ𝑏 by each 𝜛𝑖(𝜗∗ℒ). The

numerical assumption on 𝜛(ℒ) ensures that 𝜛𝑖(𝜗∗ℒ) has degree greater than 2𝑔𝑋𝜗 ,

hence the claim is implied by Riemann-Roch theorem.

Now since 𝔇𝑏 is reduced, it has an open dense smooth locus 𝔇♢
𝑏 = 𝔇𝑏 −𝔇sing

𝑏 such

that 𝔇sing
𝑏 has codimension 2 in ℭ𝑏. Let 𝔇♯

𝑏 = 𝔇♢
𝑏 − (ℭ𝑏 − ℭ×

𝑏 ), then 𝔇𝑏 − 𝔇♯
𝑏 still has

codimension at most 2 in ℭ𝑏 since 𝔇𝑏∩(ℭ𝑏−ℭ×
𝑏 ) is so. Let 𝑍1 ⊂ 𝔇♯

𝑏×𝒜𝑏 consisting of

pairs (𝑐,𝑎) such that 𝑎(𝑋) passes 𝑐, and has intersection multiplicity with 𝔇𝑏 at least 2

at 𝑐. Fix any 𝑐, then the subset of 𝑎 ∈ 𝒜𝑏 such that (𝑐,𝑎) ∈ 𝑍1 has codimension at least

2𝑟 in 𝒜𝑏 by the surjectivity of (6.3.2). Hence

dim𝑍1 ≤ dim𝒜𝑏 − 2𝑟+ dim𝔇𝑏 = dim𝒜𝑏 −𝑟− 1 ≤ dim𝒜𝑏 − 1.

Thus the image of 𝑍1 in 𝒜𝑏 has codimension at least 1. Similarly, consider the subset

𝑍2 ⊂ (𝔇𝑏 −𝔇♯
𝑏) ×𝒜𝑏 of pairs (𝑐,𝑎) such that 𝑎(𝑋) passes 𝑐. Then we also have that

dim𝑍2 ≤ dim𝒜𝑏 − 1.

Therefore 𝒜𝑏 −𝑍1 ∪𝑍2 ⊂ 𝒜♯
𝑏 is dense in 𝒜𝑏 as desired. ∎

Proposition 6.3.14. Let 𝑎 ∈ 𝒜♢
𝑋(𝑘), then �̃�𝑎 is smooth.

Wemake some preparations before attempting to prove Proposition 6.3.14. Recall that

in the absolute setting, 𝐃𝐌 is defined by the extended discriminant function

Disc+ = 𝑒(2𝜌,0) ∏
𝛼∈Φ

(1 − 𝑒(0,𝛼)).

For each positive root 𝛼, we define a rational function

Disc𝛼 = (1− 𝑒(0,𝛼))(1 − 𝑒(0,−𝛼))
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on 𝐓𝐌, which is a regular function on 𝐓𝐌. Let 𝐃𝛼 be the scheme-theoretic closure of the

vanishing locus of Disc𝛼 in 𝐓𝐌.

Lemma 6.3.15. Let 𝑎 ∈ 𝐂𝐌 be a geometric point contained in the smooth locus 𝐃sm
𝐌 of the

discriminant divisor. Suppose in addition 𝑎 is invertible, i.e., contained in 𝐂×
𝐌 and 𝑡 ∈ 𝐓𝐌

is a preimage of 𝑎. Then there is a unique root 𝛼 ∈ Φ+ such that Disc𝛼(𝑡) = 0 and

Disc𝛽(𝑡) ≠ 0 for 𝛽 ≠ 𝛼.

Proof. Since 𝑎 is invertible, the condition 𝑎 ∈ 𝐃sm
𝐌 is not affected by changing monoid.

Thus it suffices to prove in the case 𝐌 = Env(𝐆sc).

Let 𝑎 = Spec𝑘(𝑎) and𝒪(𝑎) = 𝑘(𝑎)[[𝜋]] be the ring of formal series with coefficients

in 𝑘(𝑎). Since 𝐂𝐌 is smooth, 𝑎 ∈ 𝐃sm
𝐌 ∩𝐂×

𝐌 implies that we can find a map

̃𝑎∶ Spec𝒪(𝑎) ⟶ 𝐂×
𝐌

whose special point is 𝑎, and ̃𝑎 intersects with 𝐃𝐌 transversally. This means that the

𝒪(𝑎)-valuation of 𝐃𝐌 at ̃𝑎 is 1. By dimension formula of multiplicative affine Springer

fibers, this forces the ramification index 𝑐( ̃𝑎) = 1 (observe that the local dimension

formula still hold if we replace 𝑘 by any algebraically closed field containing 𝑘). This

implies that ̃𝑎 lifts to a point ̃𝑡 ∈ 𝐓𝐌(𝑘(𝑎)[[𝜋1/2]]) specializing to 𝑡.

The 𝒪(𝑎)-valuation of 1 − 𝑒(0,𝛼) at ̃𝑡 is contained in ℕ/2 for all 𝛼 ∈ Φ. Since the

valuation of 1−𝑒(0,𝛼) equal to that of 1−𝑒(0,−𝛼) (as ̃𝑎 is invertible), we have our result. ∎

Lemma 6.3.16. Suppose 𝑎 ∈ 𝐃sm
𝐌 ∩𝐂×

𝐌 and 𝑡 ∈ 𝐓𝐌 a lift of 𝑎. Let 𝐖𝐋𝛼 be the Weyl group

of the Levi subgroup 𝐋𝛼 generated by root 𝛼, where 𝛼 is the unique positive root such that

Disc𝛼(𝑡) = 0. Then the natural map

𝐂𝛼 ≔ 𝐓𝐌⫽𝐖𝐋𝛼 ⟶ 𝐂𝐌

is étale over 𝑎.
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Proof. It suffices to prove that it is étale at the image of 𝑡 in 𝐂𝛼. Since the derived sub-

group of 𝐆+ is simply-connected, the same is true for 𝐋𝛼, hence 𝐓𝐌⫽𝐖𝐋𝛼 is smooth

(treating 𝐆+ as a very flat reductive monoid containing 𝐋der
𝛼 ). Then similar to the differ-

ential calculation done at the end of Chapter 3, we see that the map𝐂𝛼 → 𝐂𝐌 is smooth at

the image of 𝑡, because the determinant of the differential is given by a non-zero scaling

of the product of Disc𝛽 for 𝛽 ≠ 𝛼. Done. ∎

Corollary 6.3.17. Suppose 𝑡 ∈ 𝐓𝐌 is such that there exists a small enough étale (or formal)

neighborhood 𝑡 ∈ 𝑈 with non-empty intersection with at most one 𝐃𝛼, then the map

𝐂𝛼 ⟶ 𝐂𝐌

is étale at the image of 𝑡.

Proof. By Lemma 6.3.16, the map is étale on 𝑈 outside of the intersection of numerical

boundary divisor and discriminant divisor, which have codimension at least 2. Since the

map given is finite, we are done since the branching locus has to have codimension 1. ∎

Proof of Proposition 6.3.14. The statement is local so we may look at the formal disc �̆�𝑣

at a point 𝑣 ∈ �̆� and the cameral cover over it. Let𝒪 = 𝑘[[𝜋]] and 𝐹 = 𝑘((𝜋)). Since𝐺 is

necessarily split over �̆�𝑣, we may assume without loss of generality that 𝐺 = 𝐆× Spec𝒪

and 𝔐 = 𝐌× Spec𝒪 where 𝐌 = Env(𝐆sc). Suppose the image of 𝑎 in the abelianization

𝐀 is contained in 𝜋𝜆𝐓ad(𝒪).

Suppose 𝑎 intersects with 𝐃𝐌 transversally. Let 𝑈 be a small enough étale neighbor-

hood of the special point of 𝑎. Then we can find a root 𝛼 determined by Lemma 6.3.15,

and by Corollary 6.3.17, the map 𝐂𝛼 → 𝐂𝐌 is étale over 𝑈. Thus we may lift 𝑎 to a point

𝑎′ ∈ 𝐂𝛼(𝒪),

and we only need to show that the preimage �̃�𝑎′ of 𝑎′ in 𝐓𝐌 is smooth.
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Let 𝒪2 = 𝑘[[𝜋1/2]], 𝐹2 = 𝑘((𝜋1/2)), and 𝛾 ∈ 𝐓𝐌(𝒪2) ∩ 𝐓𝐌(𝐹2) be a point lifting 𝑎′.

Let 𝜈𝛾 be the (dominant) Newton point of 𝛾. Let 𝛾0𝐓𝐌(𝑘) be the special point of 𝛾, 𝛾1 ∈

𝐓𝐌(𝐹2) be the generic point. After 𝐖-conjugation, we may assume 𝛾 ∈ 𝜋(𝜆,𝜈𝛾)𝐓𝐌(𝒪2)

(and 𝛼 may change to another root). The special point of 𝛾 is fixed by the reflection 𝑠𝛼

corresponding to 𝛼, so 𝛼(𝛾) ∈ 𝒪×
2 and ⟨𝛼,𝜈𝛾⟩ = 0. Using the formula

1 = 𝑑+(𝑎) = ⟨2𝜌,𝜆 − 𝜈𝛾⟩ + ∑
⟨𝛼,𝜈𝛾⟩=0

val𝐹(1 − 𝛼(𝛾))

= ⟨2𝜌,−𝑤0(𝜆) − 𝜈𝛾⟩ + ∑
⟨𝛼,𝜈𝛾⟩=0

val𝐹(1 − 𝛼(𝛾)),

we see that there are two possibilities:

(1) 𝜈𝛾 = −𝑤0(𝜆), and for any 𝛽 with ⟨𝛽,𝜈𝛾⟩ = 0, 1−𝛽(𝛾) has non-zero valuation 1/2

if and only if 𝛽 = 𝛼, or

(2) 𝜈𝛾 = −𝑤0(𝜆) − 1/2�̌�𝑖 for some simple coroot �̌�𝑖, and val𝐹(1 − 𝛽(𝛾)) = 0 for any

root 𝛽 with ⟨𝛽,𝜈𝛾⟩ = 0

The second possibility is easy to deal with: consider fundamental weight 𝜛𝑖 and let

𝜇 = (−𝑤0(𝜛𝑖),−𝜛𝑖) ∈ 𝑘[𝐓𝐌].

Then ⟨𝜇, (𝜆,𝜈𝛾)⟩ = 1/2 and so we have a morphism

𝜇∶ 𝐓𝐌 ⟶ 𝔸1

such that the composition with 𝛾 factors through a point Spec𝒪2 → 𝔸1 sending the

coordinate of 𝔸1 into 𝜋1/2𝒪×
2 . Since we have the factorization

Spec𝒪2 ⟶ �̃�𝑎′ ⟶ 𝔸1,
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we see that the ring of regular functions of �̃�𝑎′ is a subring of𝒪2 that contains an element

in 𝜋1/2𝒪×
2 , hence must be the whole ring 𝒪2, and thus �̃�𝑎′ is smooth.

Now we deal with the first possibility. If 𝜇 ∈ 𝕏(𝐓𝐌) ∩ 𝑘[𝐓𝐌] is any character such

that ⟨𝜇, �̌�⟩ = 1, then the map

𝐓𝐌 ⟶ Spec𝑘[𝑒𝜇, 𝑒𝜇−𝛼] ≅ 𝔸2

is 𝐖𝐋𝛼 equivariant, hence induces commutative diagram

𝐓𝐌 𝔸2

𝐂𝛼 𝐂″ ≔ 𝔸2⫽𝐖𝐋𝛼 ≅ 𝔸2

Let 𝑎″ be the image of 𝑎′ in 𝐂″(𝒪), and �̃�𝑎″ the corresponding SL2-cameral cover. Then

we have commutative diagram
�̃�𝑎′ �̃�𝑎″

𝑎′ 𝑎″

(6.3.3)

If 𝜆 ≠ 0, since �̌� is perpendicular to −𝑤0(𝜆) ≠ 0 which is dominant, it is not the

highest coroot. By looking up the table of root systems, one can always find a fundamental

weight 𝜛 such that ⟨𝜛, �̌�⟩ = 1. Then the character 𝜇 = (−𝑤0(𝜛),−𝜛+𝛼) ∈ 𝑘[𝐓𝐌] is

such that

⟨𝜇, (𝜆,𝜈𝛾)⟩ = 0 and ⟨𝜇, �̌�⟩ = 1.

By direct computation, we see that �̃�𝑎″ in (6.3.3) is isomorphic to Spec𝒪2, hence smooth.

Then the map of 1-dimensional schemes �̃�𝑎′ → �̃�𝑎″ is generically an isomorphism and

finite, thus must be an isomorphism. This shows that �̃�𝑎′ is smooth. If 𝜆 = 𝜈𝛾 = 0, then

find an arbitrary weight 𝜛 with ⟨𝜛, �̌�⟩ = 1 and the dominant weight 𝜛+ in 𝐖-orbit of
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𝜛. Let 𝜇 = (𝜛+,𝜛) and we are done by repeating the calculation above. ∎

Corollary 6.3.18. Let𝑋𝜗 → �̆� be a connected Galois étale coveringmaking𝐺 split. Suppose

𝑎 ∈ 𝐀♢
𝑋 is very 𝐺-ample, then �̃�𝜗,𝑎 is smooth and irreducible.

Proof. We know �̃�𝑎 is smooth, hence so is �̃�𝜗,𝑎. It is also connected by Proposition 6.3.11,

thus irreducible. ∎

Contrary to Lie algebra case (see [Ngô10, Lemme 4.7.3]), the converse to Proposi-

tion 6.3.14 is not true in general. For example, suppose 𝐆 is of type 𝐵3, and let

(𝜆,𝜈𝛾) = (2�̌�2 + 2�̌�3 + �̌�3, 2�̌�2 + 2�̌�3),

𝜇 = (−𝑤0(𝜛1),−𝜛1 +𝛼1) = (𝜛1,−𝜛1 +𝛼1),

𝛼 = 𝛼1,

where the labeling on the Dynkin diagram is the “usual one”, i.e., the vertex labeled with

1 is not directly joint with the one labeled with 3, and 𝛼3 is the short simple root. Then

⟨𝜇, (𝜆,𝜈𝛾)⟩ = 0, 𝛼 is the only positive root perpendicular to 𝜈𝛾, and ⟨𝜇, �̌�⟩ = 1. Thus

by carefully choosing an element 𝑡 ∈ 𝐓+(𝒪2) with val𝐹(1 − 𝛼(𝑡)) = 1/2, we can find

𝑎 ∈ 𝐂𝐌(𝒪) such that 𝛾 = 𝜋(𝜆,𝜈𝛾)𝑡 lies over 𝑎, 𝑑+(𝑎) = 3, and �̃�𝑎 is smooth because

in this case 𝑎′ as in the Proposition 6.3.14 exists and �̃�𝑎″ hence �̃�𝑎′ is smooth by direct

computation. Since we do not use this in the remaining part of this paper, we leave the

verification to the reader (c.f. Chapter 3 on how to find such 𝑡). Nevertheless, it is still

easy to prove a partial converse as follows.

Lemma 6.3.19. If �̃�𝑎 is smooth for some 𝑎 ∈ 𝒜♡
𝑋(𝑘), then for any points 𝑣 ∈ �̆�, 𝑎(𝑣) is

contained in 𝐃𝛼 for at most one 𝛼.

Proof. If �̃�𝑎 is smooth, then the local monodromy group 𝜋•
𝑎(𝐼𝑣) is cyclic. But if 𝑎(𝑣)

is contained in two different 𝐃𝛼, then the local monodromy group would contain two

different involutions. A contradiction. ∎
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6.4 Global Néron Model and 𝛿-Invariant

Similar to the local case, we have seen in (6.3.1) that we have for any 𝑎 ∈ 𝒜♡
𝑋(𝑘) a

Néron model 𝔍♭𝑎 of 𝔍𝑎 described using normalization of cameral curves. Another way

of describing the global Néron model is to use Beauville-Laszlo-type gluing theorem: let

𝑈 = �̆� − 𝔇𝑎, then for any closed point 𝑣 ∈ 𝔇𝑎, we have a local Néron model over the

formal disc �̆�𝑣 of the torus 𝔍𝑎|�̆�•
𝑣
over the punctured disc. Gluing the local Néron models

with the torus 𝔍𝑎|𝑈, we obtain a group scheme 𝔍♭𝑎 which is precisely the global Néron

model.

Consider the Picard stack 𝒫♭
𝑎 of 𝔍♭𝑎-torsors. We have a natural homomorphism of

Picard stacks 𝒫𝑎 → 𝒫♭
𝑎. We will see that 𝒫♭

𝑎 is an abelian stack in the following sense:

Definition 6.4.1 ([Ngô10, Définition 4.7.6]). A 𝑘-abelian stack is the quotient of a 𝑘-abelian

variety by the trivial action of a diagonalizable group.

Proposition 6.4.2. (1) The homomorphism 𝒫𝑎(𝑘) → 𝒫♭
𝑎(𝑘) is essentially surjective.

(2) The neutral component (𝒫♭
𝑎)0 of 𝒫♭

𝑎 is an abelian stack.

(3) The kernel ℛ𝑎 of 𝒫𝑎 → 𝒫♭
𝑎 is representable by the product of some affine algebraic

groups of finite type ℛ𝑣(𝑎) appearing in Lemma 4.4.4 for finitely many 𝑣 ∈ �̆�.

Proof. For the first claim, consider short exact sequence

1 ⟶ 𝔍𝑎 ⟶ 𝔍♭𝑎 ⟶ 𝔍♭𝑎/𝔍𝑎 ⟶ 1,

and the induced cohomological exact sequence

H0(�̆�, 𝔍♭𝑎/𝔍𝑎) ⟶ H1(�̆�, 𝔍𝑎) ⟶ H1(�̆�, 𝔍♭𝑎) ⟶ H1(�̆�, 𝔍♭𝑎/𝔍𝑎) = 0,

where the last term vanishes because the sheaf 𝔍♭𝑎/𝔍𝑎 is supported on finite subset �̆�−𝑈.

The first claim then follows.
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For the second claim, recall the Galois description (6.3.1) of 𝔍♭𝑎, and let �̃�♭
𝑎 be the stack

of torsors under group ̃𝔍♭𝑎 ≔ 𝜋♭
𝜗,𝑎,∗(�̃�♭

𝜗,𝑎 × 𝐓). We know that the neutral component of

�̃�♭
𝑎 is an abelian stack, because it is just the product of 𝑛-copies (𝑛 being the rank of

𝐺) of the usual Picard stack 𝒫ic(�̃�♭
𝜗,𝑎) of line bundles on curve �̃�♭

𝜗,𝑎. The averaging

homomorphism

̃𝔍♭𝑎 ⟶ 𝔍♭𝑎

𝑡 ⟼ ∏
𝑤∈𝐖⋊Θ𝜗

𝑤(𝑡)

induces homomorphism �̃�♭
𝑎 → 𝒫♭

𝑎 whose composition with the natural map 𝒫♭
𝑎 → �̃�♭

𝑎 is

an isogeny of 𝒫♭
𝑎 to itself, as long as char(𝑘) does not divide the order of 𝐖⋊Θ𝜗. This

proves the second claim.

The third claim follows from a Beauville-Laszlo-type gluing theorem. Indeed, by def-

inition, the kernel ℛ𝑎 consists of pairs of a 𝔍𝑎-torsor together with a trivialization of its

induced 𝔍♭𝑎-torsor. The local ℛ𝑣(𝑎), on the other hand, consists of pairs of 𝔍𝑎|�̆�𝑣
-torsors

together with a trivialization of its induced 𝔍♭𝑎|�̆�𝑣
-torsor, which also gives a trivialization

of the said 𝔍𝑎|�̆�𝑣
-torsor over punctured disc �̆�•

𝑣. Therefore by the formal gluing theorem,

the map of 𝑘-functors

∏
𝑣∈�̆�−𝑈

ℛ𝑣(𝑎) ⟶ ℛ𝑎 (6.4.1)

obtained from gluing with the trivial torsor over 𝑈 is an isomorphism. Hence the claim.

∎

Definition 6.4.3. Given 𝑎 ∈ 𝒜♡
𝑋(𝑘), the 𝛿-invariant associated with 𝑎 is defined as

𝛿𝑎 = dimℛ𝑎.
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In view of isomorphism (6.4.1), we have that

𝛿𝑎 = ∑
𝑣∈�̆�−𝑈

𝛿𝑣(𝑎).

Corollary 6.4.4. For 𝑎 ∈ 𝒜♡
𝑋(𝑘), we have formula

𝛿𝑎 = dimH0(�̆�, 𝔱 ⊗𝒪�̆�
(𝜋♭

𝑎,∗𝒪�̃�♭
𝑎
/𝜋𝑎,∗𝒪�̃�𝑎))

𝑊

Proof. This is the result of the formula above and Lemma 4.4.2. ∎

6.4.5 Rigidification of Picard stack Fix a point ∞ ∈ 𝑋(𝑘), and consider open set 𝒜∞
𝑋 ⊂

𝒜♡
𝑋,𝑘 consisting of points 𝑎 such that 𝑎(∞) is contained in ℭrs

𝔐. If ∞ is defined over a

field extension 𝑘′/𝑘, then so is 𝒜∞
𝑋 .

We may rigidify 𝒫𝑋 over 𝒜∞
𝑋 as follows: let 𝒫∞

𝑋 be the classifying stack over 𝒜∞
𝑋 of

𝔍𝑎-torsors together with a trivialization at point ∞. Then by [Ngô10, Proposition 4.5.7],

𝒫∞
𝑋 → 𝒜∞

𝑋 is representable by a smooth group scheme locally of finite type over 𝒜∞
𝑋 ,

and the forgetful morphism 𝒫∞
𝑋 → 𝒫𝑋 induces a canonical isomorphism

[𝒫∞
𝑋 /𝔍𝑋,∞] ⟶ 𝒫♡

𝑋 ,

where 𝔍𝑋,∞ is the group scheme over 𝒜∞
𝑋 being the fiber of 𝔍𝑋 at point ∞.

For 𝑎 ∈ 𝒜∞
𝑋 (𝑘), let 𝑃𝑎,0 be the neutral component of 𝒫∞

𝑎 . Chevalley structure theo-

rem implies that there is a canonical short exact sequence

1 ⟶ 𝑅𝑎 ⟶ 𝑃𝑎,0 ⟶ 𝐴𝑎 ⟶ 1,

where 𝑅𝑎 is a smooth and connected affine algebraic group over 𝑘, and 𝐴𝑎 is an abelian

variety. Since 𝑅𝑎 is smooth and connected, the map 𝑅𝑎 → 𝒫♭
𝑎 is trivial. So the map

𝑃𝑎,0 → 𝒫♭
𝑎 factors through 𝐴𝑎 and is surjective. If 𝒫♭

𝑎 has finite automorphism groups
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(cf. § 6.6), then

dim𝐴𝑎 = dim𝒫♭
𝑎 = dim𝒫𝑎 −𝛿𝑎.

In this situation, we call 𝛿𝑎 the dimension of the affine part of𝒫𝑎. Note that such notion is

only well-defined if the automorphism group is finite, otherwise since the automorphism

group here is also affine, it introduces ambiguity in such “dimension of affine part”.

6.5 Component Group

In this section, we study the fiberwise component group𝜋0(𝒫𝑋) defined as an étale sheaf

on 𝒜𝑋.

6.5.1 For a point 𝑎 ∈ 𝒜∞
𝑋 (𝑘), let 𝑈 ⊂ �̆� be the maximal open subset over which the

cameral cover is étale. In particular, ∞ ∈ 𝑈. Recall we have a pointed version of the

group 𝐺 after we fixing the point ∞, given by a continuous homomorphism

𝜗•
𝐺 ∶ 𝜋1(𝑋,∞) ⟶ Out(𝐆).

If we also fix a point ∞̃ ∈ �̃�𝑎(𝑘) lying over ∞, we can lift 𝜗•
𝐺 into a commutative diagram

𝜋1(𝑈,∞) 𝐖⋊Out(𝐆)

𝜋1(�̆�,∞) Out(𝐆)

𝜋•
̃𝑎

𝜗•
𝐺

, (6.5.1)

in which ̃𝑎 = (𝑎, ∞̃). Let 𝑊 ̃𝑎 be the image of 𝜋•
̃𝑎 in 𝐖 ⋊ Out(𝐆), and 𝐼 ̃𝑎 the image of

the kernel of 𝜋1(𝑈,∞) → 𝜋1(�̆�,∞) under 𝜋•
̃𝑎. By commutativity of the diagram we have

that 𝐼 ̃𝑎 ⊂ 𝐖.
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6.5.2 Recall that we may fix a connected Galois cover 𝑋𝜗 → �̆� with Galois group Θ𝜗 over

which the Out(𝐆)-torsor 𝜗𝐺 becomes trivial. Choosing a point ∞𝜗 lying over ∞, we have

the pointed variant (𝑋𝜗,∞𝜗), and we may identify Θ𝜗 with the quotient of 𝜋1(�̆�,∞) by

𝜋1(𝑋𝜗,∞𝜗). By assumption of𝑋𝜗, the map 𝜗•
𝐺 ∶ 𝜋1(�̆�,∞) → Out(𝐆) factors throughΘ𝜗.

The normalization �̃�♭
𝜗,𝑎 of cameral curve �̃�𝜗,𝑎 maps to �̆�, and it is an étale 𝐖⋊Θ𝜗-cover

over 𝑈. By replacing (�̃�𝑎, ∞̃) with (�̃�𝜗,𝑎, ∞̃𝜗), we may lift 𝜗•
𝐺 to

𝜋•
̃𝑎𝜗
∶ 𝜋1(𝑈,∞) ⟶ 𝐖⋊Θ,

where Θ is the image of 𝜗•
𝐺 in Out(𝐆). Thus we have inclusion

𝑊 ̃𝑎 ⊂ 𝐖⋊Θ. (6.5.2)

Let 𝔍0𝑎 ⊂ 𝔍𝑎 be the open subgroup such that over any point 𝑥 ∈ �̆� the fiber of 𝔍0𝑎 is

the neutral component of the fiber of 𝔍𝑎. We have an induced homomorphism of Picard

stacks 𝒫′
𝑎 → 𝒫𝑎.

Lemma 6.5.3 ([Ngô10, Lemme 4.10.2]). The homomorphism 𝒫′
𝑎 → 𝒫𝑎 is surjective with

finite kernel. The same is true for induced homomorphism 𝜋0(𝒫′
𝑎) → 𝜋0(𝒫𝑎).

Proof. Since 𝑎 is generically (over �̆�) regular semisimple, the sheaf 𝜋0(𝔍𝑎) = 𝔍𝑎/𝔍0𝑎 has

finite support on �̆�. The short exact sequence

1 ⟶ 𝔍0𝑎 ⟶ 𝔍𝑎 ⟶ 𝜋0(𝔍𝑎) ⟶ 1

induces cohomological long exact sequence

H0(�̆�,𝜋0(𝔍𝑎)) ⟶ H1(�̆�, 𝔍0𝑎) ⟶ H1(�̆�, 𝔍𝑎) ⟶ H1(�̆�,𝜋0(𝔍𝑎)) = 0. (6.5.3)

Therefore 𝒫′
𝑎 → 𝒫𝑎 is surjective with kernel being the image of H0(�̆�,𝜋0(𝔍𝑎)), which is
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necessarily finite. The induced map 𝜋0(𝒫′
𝑎) → 𝜋0(𝒫𝑎) is then also surjective. ∎

6.5.4 Once we fix a point ∞ ∈ 𝑋(𝑘), there is a nice description of the Cartier dual of the

diagonalizable groups 𝜋0(𝒫′
𝑎) and 𝜋0(𝒫𝑎). Let

𝜋0(𝒫𝑎)∗ = Spec(ℚℓ[𝜋0(𝒫𝑎)]),

𝜋0(𝒫′
𝑎)∗ = Spec(ℚℓ[𝜋0(𝒫′

𝑎)]),

then the surjectivity of𝜋0(𝒫′
𝑎) → 𝜋0(𝒫𝑎) induces closed embedding𝜋0(𝒫𝑎)∗ ⊂ 𝜋0(𝒫′

𝑎)∗.

Proposition 6.5.5. For any ̃𝑎 = (𝑎, ∞̃), we have canonical isomorphisms of diagonalizable

groups

𝜋0(𝒫′
𝑎)∗ ≃ �̌�𝑊 ̃𝑎 ,

𝜋0(𝒫𝑎)∗ ≃ �̌�(𝐼 ̃𝑎,𝑊 ̃𝑎),

where �̌�(𝐼 ̃𝑎,𝑊 ̃𝑎) ⊂ �̌�𝑊 ̃𝑎 is the subgroup of elements 𝜅 such that 𝐼 ̃𝑎 ⊂ 𝐖𝐇 where 𝐖𝐇 is

the Weyl group of the neutral component �̌� of the centralizer of 𝜅 in �̌�.

Proof. First, similar to the local case in Lemma 4.4.12, we have a canonical isomorphism

�̌�(𝐓)𝑊 ̃𝑎 ⟶ 𝜋0(𝒫′
𝑎),

see [Ngô06, Lemme 6.6 and Corollaire 6.7] and [Kot85, Lemma 2.2]. Therefore the first

isomorphism follows by taking Cartier dual.

Let 𝑈 ⊂ �̆� be the regular semisimple locus of 𝑎. Using (6.5.3), we obtain exact se-

quence

H0(�̆�,𝜋0(𝔍𝑎)) ⟶ 𝜋0(𝒫′
𝑎) ⟶ 𝜋0(𝒫𝑎) ⟶ 0.
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We may decompose H0(�̆�,𝜋0(𝔍𝑎)) as

H0(�̆�,𝜋0(𝔍𝑎)) = ⨁
𝑣∈�̃�−𝑈

𝜋0(𝔍𝑎,𝑣),

where 𝔍𝑎,𝑣 is the fiber of 𝔍𝑎 at closed point 𝑣. Recall we also have local Picard groups

𝒫𝑣(𝑎𝑣) (resp. 𝒫0
𝑣(𝑎𝑣)) associated with 𝔍𝑎𝑣 (resp. 𝔍0𝑎𝑣) induced by 𝑎. Note here 𝔍𝑎𝑣 is used

to denote the restriction of 𝔍𝑎 to the formal disc �̆�𝑣 (contrary to 𝔍𝑎,𝑣 which is the special

fiber). We then have exact sequence

𝜋0(𝔍𝑎,𝑣) ⟶ 𝜋0(𝒫0
𝑣(𝑎𝑣)) ⟶ 𝜋0(𝒫𝑣(𝑎𝑣)) ⟶ 0,

compatible with the forgetful maps 𝒫𝑣(𝑎𝑣) → 𝒫𝑎 and 𝒫0
𝑣(𝑎𝑣) → 𝒫′

𝑎. Taking Cartier

dual, we have commutative diagram

0 𝜋0(𝒫𝑎)∗ 𝜋0(𝒫0
𝑎)∗ ⨁𝑣∈�̆�−𝑈𝜋0(𝔍𝑎,𝑣)∗

0 ⨁𝑣∈�̆�−𝑈𝜋0(𝒫𝑣(𝑎𝑣))∗ ⨁𝑣∈�̆�−𝑈𝜋0(𝒫0
𝑣(𝑎𝑣))∗ ⨁𝑣∈�̆�−𝑈𝜋0(𝔍𝑎,𝑣)∗

Thus 𝜋0(𝒫𝑎)∗ is such subgroup of 𝜋0(𝒫′
𝑎)∗ that its local restriction is contained in

𝜋0(𝒫𝑣(𝑎𝑣)), which is described in Proposition 4.4.10. Since the group 𝐼 ̃𝑎 is generated by

the inertia groups at each 𝑣, such requirement is the same as that 𝐼 ̃𝑎 is contained in 𝐖𝐇

as desired since each inertia group is so. ∎

Corollary 6.5.6. 𝜋0(𝒫𝑎) is finite if and only if �̌�𝑊 ̃𝑎 (and equivalently 𝐓𝑊 ̃𝑎) is.

Definition 6.5.7. The anisotropic locus 𝒜♮
𝑋 ⊂ 𝒜♡

𝑋 is the subset consisting of 𝑎 such that

𝜋0(𝒫𝑎) is finite.

It is not immediately obvious that 𝒜♮
𝑋 is an open subset of 𝒜♡

𝑋, or it is non-empty,

but we shall see in § 7.2.7 that both are true under mild assumptions.
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6.6 Automorphism Group

Let (ℒ, 𝐸,𝜙) ∈ ℳ♡
𝑋(𝑘) with image 𝑎 ∈ 𝒜♡

𝑋, 𝑏 ∈ ℬ𝑋, and ℒ ∈ Bun𝑍𝔐 . Obviously, we have

maps of automorphism groups

Aut(ℒ, 𝐸,𝜙) ⟶ Aut(𝑎) ⟶ Aut(𝑏) ⟶ Aut𝑍𝔐(ℒ).

We already know that Aut(𝑏) is finite and described using the kernel of map 𝑍𝔐 → 𝔄×
𝔐.

So the image of Aut(ℒ, 𝐸,𝜙) in Aut𝑍𝔐(ℒ) is finite, and we only need to describe

Aut(𝐸,𝜙) = ker [Aut(ℒ, 𝐸,𝜙) → Aut𝑍𝔐(ℒ)] ,

in other words, when the automorphism on ℒ is identity.

Recall the universal centralizer 𝐼𝔐 → 𝔐, whose fiber over 𝑥 ∈ 𝔐 is the centralizer

𝐺𝑥 ⊂ 𝐺 of 𝑥 in 𝐺. Since 𝐼𝔐 → 𝔐 is Ad(𝐺)×𝑍𝔐-equivariant, it descends to [𝔐/𝐺×𝑍𝔐].

The pair (𝐸,𝜙) is a map �̆� → [𝔐ℒ/𝐺], and let 𝐼(𝐸,𝜙) be the pullback of 𝐼𝔐 along this map.

It is easy to see that the sheaf of automorphisms of (𝐸,𝜙) is representable by 𝐼(𝐸,𝜙). The

group 𝐼(𝐸,𝜙) is not flat in general, but according to [BLR90], there exists a unique group

scheme 𝐼sm(𝐸,𝜙) smooth over �̆� such that for any �̆�-scheme 𝑆 smooth over �̆�, we have

Hom�̆�(𝑆, 𝐼(𝐸,𝜙)) = Hom�̆�(𝑆, 𝐼sm(𝐸,𝜙)).

The tautological map 𝐼sm(𝐸,𝜙) → 𝐼(𝐸,𝜙) is an isomorphism over open subset 𝑈 = �̆� − 𝔇𝑎.

Since 𝔍𝑎 is smooth, the canonical map 𝔍𝑎 → 𝐼(𝐸,𝜙) induces canonical map 𝔍𝑎 → 𝐼sm(𝐸,𝜙).

We also have map

𝐼sm(𝐸,𝜙) ⟶ 𝔍♭𝑎

by universal property of Néron models. Both 𝔍𝑎 → 𝐼sm(𝐸,𝜙) and 𝐼sm(𝐸,𝜙) ⟶ 𝔍♭𝑎 are isomor-
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phisms over 𝑈. At any point 𝑣 ∈ �̆� −𝑈, we have inclusions

𝔍𝑎(�̆�𝑣) ⊂ 𝐼sm(𝐸,𝜙)(�̆�𝑣) ⊂ 𝔍♭𝑎(�̆�𝑣).

Using Beauville-Laszlo-type formal gluing theorem, we see that for any étale cover 𝑆 → �̆�,

the maps of sets (in the category of �̆�-schemes)

𝔍𝑎(𝑆) ⟶ 𝐼sm(𝐸,𝜙)(𝑆) ⟶ 𝔍♭𝑎(𝑆)

are both injective. This implies that we have inclusions

H0(�̆�, 𝔍𝑎) ⊂ Aut(𝐸,𝜙) = H0(�̆�, 𝐼(𝐸,𝜙)) = H0(�̆�, 𝐼sm(𝐸,𝜙)) ⊂ H0(�̆�, 𝔍♭𝑎).

Using the Galois description of Néron model (6.3.1), we have that H0(�̆�, 𝔍♭𝑎) ⊂ 𝐓𝑊 ̃𝑎 after

fixing ̃𝑎 = (𝑎, ∞̃) over 𝑎: indeed, let Θ be the image of 𝜗•
𝐺 in Out(𝐆), then we have

𝑊 ̃𝑎 ⊂ 𝐖⋊Θ by (6.5.2). Thus we proved the analogue to [Ngô10, Corollaire 4.11.3]:

Proposition 6.6.1. Fix ̃𝑎 = (𝑎, ∞̃) over 𝑎 ∈ 𝒜♡
𝑋(𝑘), and any (ℒ, 𝐸,𝜙) ∈ ℳ♡

𝑋(𝑘) lying over

𝑎, the automorphism group Aut(𝐸,𝜙) (after fixing ℒ) can be canonically identified with a

subgroup of 𝐓𝑊 ̃𝑎 .

If char(𝑘) does not divide the order of 𝐖 ⋊ Θ, then 𝐓𝑊 ̃𝑎 is unramified if it is finite.

Therefore, we have:

Corollary 6.6.2. Assuming char(𝑘) does not divide the order of 𝐖⋊Θ, then ℳ♮
𝑎 and 𝒫♮

𝑎

are Deligne-Mumford stacks.

Proof. Over 𝑎 ∈ 𝒜♮
𝑋(𝑘), �̌�𝑊 ̃𝑎 , hence also 𝐓𝑊 ̃𝑎 , is finite. This implies that Aut(𝐸,𝜙) is

finite for (ℒ, 𝐸,𝜙) lying over 𝑎. Since the image of Aut(ℒ, 𝐸,𝜙) in Aut𝑍𝔐(ℒ) is finite,

the group Aut(ℒ, 𝐸,𝜙) is itself finite and the claim for ℳ♮
𝑎 follows. The claim for 𝒫♮

𝑎

also follows since the automorphism groups (after fixing ℒ) are just H0(�̆�, 𝔍𝑎) which is a
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subgroup of 𝐓𝑊 ̃𝑎 . ∎

In fact, for 𝒫♡
𝑋 we have a stronger result.

Proposition 6.6.3. Assuming char(𝑘) does not divide the order of 𝐖 ⋊ Θ, then for any

𝑎 ∈ 𝒜∞
≫(𝑘), we have

H0(�̆�, 𝔍1𝑎) = 𝐓𝐖⋊Θ,

H0(�̆�, 𝔍𝑎) = 𝐙Θ
𝐆.

In particular, if 𝑍𝐺 does not contain a split torus over �̆� then 𝒫𝑎 is a Deligne-Mumford

stack.

Proof. The curve �̃�𝜗,𝑎 is connected by Proposition 6.3.11. Then we have H0(�̆�, 𝔍1𝑎) =

𝐓𝐖⋊Θ, and H0(�̆�, 𝔍𝑎) is a subgroup therein. If char(𝑘) does not divide the order of𝐖⋊Θ

and 𝑍𝐺 does not contain a split torus, they are both étale 𝑘-groups, so 𝒫𝑎 in this case is

a Deligne-Mumford stack.

The description of H0(�̆�, 𝔍𝑎) is proved using the identification 𝔍𝑎 = 𝔍′𝑎 in Proposi-

tion 2.4.12. Since 𝑎(�̆�) intersects with every irreducible component of discriminant divi-

sor 𝔇𝔐, the definition of 𝔍′𝑎 implies that it is the subgroup of 𝐓𝐖⋊Θ with elements lying

in the kernel of every root, which is exactly 𝐙Θ
𝐆. ∎

6.7 Tate Module

Suppose the center of 𝐺 does not contain a split torus over �̆�. Then over very 𝐺-ample

locusℬ≫, 𝒫♡
≫ is a Deligne-Mumford stack. In this section, we fix a connected component

𝒰 of 𝒜♡
≫.

The Picard stack 𝒫≫ = 𝒫𝑋|𝒰 is smooth over 𝒰, and let 𝒫≫,0 be the open substack of

fiberwise neutral component. Let 𝑔∶ 𝒫≫,0 → 𝒰 be the natural map. Let 𝑑 be the relative
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dimension of 𝑔. Consider the sheaf of Tate modules

Tℚℓ
(𝒫≫,0) = H2𝑑−1(𝑔!ℚℓ).

Over open subset𝒰∞ = 𝒜∞
𝑋 ∩𝒰, we may rigidify𝒫≫,0 as the quotient of smooth relative

group schemes 𝑃0 by 𝑃−1. Thus we have short exact sequence

1 ⟶ 𝑃−1 ⟶ 𝑃0 ⟶ 𝒫≫,0 ⟶ 1,

and the induced short exact sequence of Tate modules (over ℚℓ)

1 ⟶ Tℚℓ
(𝑃−1) ⟶ Tℚℓ

(𝑃0) ⟶ Tℚℓ
(𝒫≫,0) ⟶ 1.

For any 𝑎 ∈ 𝒰∞, the Chevalley exact sequence

1 ⟶ 𝑅𝑎 ⟶ 𝒫∞
𝑎 ⟶ 𝐴𝑎 ⟶ 1

also induces an exact sequence of Tate modules

1 ⟶ Tℚℓ
(𝑅𝑎) ⟶ Tℚℓ

(𝑃0) ⟶ Tℚℓ
(𝐴𝑎) ⟶ 1.

Since 𝑃−1 is affine, the morphism Tℚℓ
(𝑃0) → Tℚℓ

(𝐴𝑎) factors through Tℚℓ
(𝒫𝑎,0) (since

Tℚℓ
(𝔍∞𝑎 ) and Tℚℓ

(𝐴𝑎) have incompatible Frobenius weights over any sufficiently large

extension 𝑘′/𝑘 in 𝑘). Therefore we have an exact sequence

1 ⟶ Tℚℓ
(𝑅𝑎)/Tℚℓ

(𝔍∞𝑎 ) ⟶ Tℚℓ
(𝒫𝑎,0) ⟶ Tℚℓ

(𝐴𝑎) ⟶ 1. (6.7.1)

It does not depend on the choice of rigidification, as if 𝒫≫ = [𝑃′
0/𝑃

′
−1] is another rigid-

ification, one may form a third rigidification 𝑃″
0 = 𝑃0 ×𝒫≫ 𝑃′

0 over the two and identify
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exact sequences (6.7.1) in all three cases. Since we only consider ℚℓ-coefficients, an

isogeny of smooth commutative Deligne-Mumford group stacks induces isomorphism of

corresponding Tate modules. Thus we have canonical isomorphism

Tℚℓ
(𝑅𝑎)/Tℚℓ

(𝑃−1) ≃ Tℚℓ
(ℛ𝑎).

Thuswemay call Tℚℓ
(ℛ𝑎) (resp. Tℚℓ

(𝐴𝑎)) the affine part (resp. abelian part ) of Tℚℓ
(𝒫𝑎).

Proposition 6.7.1. Over 𝒰, there exists an alternating bilinear form

𝜓∶ Tℚℓ
(𝒫≫) × Tℚℓ

(𝒫≫) ⟶ ℚℓ(−1)

such that at any 𝑎 ∈ 𝒰, the fiber 𝜓𝑎 is identically zero on the affine part Tℚℓ
(ℛ𝑎), and

non-degenerate on the abelian part Tℚℓ
(𝐴𝑎).

Proof. The proof is identical to [Ngô10, § 4.12]. The two key ingredients are one, the

homomorphism in the Galois description of 𝔍𝑋

𝔍𝑋 ⟶ 𝜋𝜗,∗(�̃�𝜗 ×𝐓),

and two, the Weil pairing theory, which is a general theory for any flat and proper family

of reduced and connected curves. It is applied to the family of curves �̃�𝜗, which we have

shown to have reduced and connected fibers over 𝒰 in Proposition 6.3.11. ∎

6.8 Dimensions

Let ℒ ∈ Bun𝑍𝔐(𝑘) be a very 𝐺-ample 𝑍𝔐-torsor. As before, let 𝜗∶ 𝑋𝜗 → �̆� be a connected

finite Galois étale cover of �̆� with Galois group Θ and making 𝐺 split. We also assume

that char(𝑘) does not divide the order 𝑑𝜗 of Θ. Then ℭ𝑏 is a direct summand of 𝜗∗ℭ𝑏

being the Θ-invariant subspace. We know 𝑔𝑋𝜗 −1 = 𝑑𝜗(𝑔𝑋−1). So if ℒ is very 𝐺-ample,
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then for any fundamental weight 𝜛𝑖 we have

deg𝜛𝑖(𝜗∗ℒ) > 2𝑔𝑋𝜗 − 2.

So by Riemann-Roch theorem, we have for any 𝑏 ∈ ℬ𝑋(𝑘) lying over ℒ,

dim𝑘H0(𝑋𝜗, 𝜗∗ℭ𝑏) =
𝑟
∑
𝑖=1

deg𝜛𝑖(𝜗∗ℒ) − 𝑟(𝑔𝑋𝜗 − 1),

and the first cohomology term vanishes. This means that ℭ𝑏 has no first cohomology

term either. Taking Θ-invariant, and note that ℭ𝑏 is the Θ-trivial isotypic subbundle in

𝜗∗𝜗∗ℭ𝑏 which as a Θ-vector bundle is 𝑟-copies of regular ones (i.e., the one whose fibers

are regular Θ-representations). Therefore if the boundary divisor of 𝑏 can be written as

∑𝑣∈𝑋(𝑘) 𝜆𝑣 ⋅ 𝑣, we have

dim𝒜𝑏 = ∑
𝑣∈𝑋(𝑘)

⟨𝜌, 𝜆𝑣⟩ − 𝑟(𝑔𝑋 − 1). (6.8.1)

Note that due toOut(𝐆)-twisting the sum∑𝑣 𝜆𝑣 does not make sense, but its pairing with

𝜌 does since 𝜌 is fixed by Out(𝐆). For convenience, we denote this pairing by ⟨𝜌, 𝜆𝑏⟩.

In case ℒ is not very 𝐺-ample, we still have estimate by Riemann-Roch theorem:

dim𝒜𝑏 ≤ ⟨𝜌,𝜆𝑏⟩ + 𝑟, (6.8.2)

where the equality is reached only if ℒ is trivial or 𝑔𝑋 = 0, and if neither is true we may

improve it to

dim𝒜𝑏 ≤ ⟨𝜌,𝜆𝑏⟩.

6.8.1 Suppose𝔐 ∈ ℱℳ0(𝐺sc) such that 𝜗∗𝔐 ≅ 𝐌×𝑋𝜗 for some𝐌 ∈ ℱℳ0(𝐆sc). Then

at each geometric point 𝑣 ∈ 𝑋(𝑘) we may identify 𝔐 with 𝐌. If 𝐀𝐌 ≅ 𝔸𝑚 is a standard
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monoid with coordinates 𝑒𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑚), and suppose at each 𝑣 ∈ 𝑋(𝑘), we have

𝜆𝑣 =
𝑚
∑
𝑖=1

𝑐𝑣,𝑖𝜃𝑖,

then the local dimension of ℬ𝑋 at 𝑏 is simply

deg(𝑏) ≔ dim𝑏ℬ𝑋 = ∑
𝑣∈𝑋(𝑘)

𝑚
∑
𝑖=1

𝑐𝑣,𝑖,

which is locally constant. Combining with (6.8.1), we have the dimension formula when

𝑎 is very 𝐺-ample:

dim𝑎𝒜𝑋 = deg(𝑏) + ⟨𝜌,𝜆𝑏⟩ − 𝑟(𝑔𝑋 − 1). (6.8.3)

We also have dimension estimate in general regardless of ampleness

dim𝑎𝒜𝑋 ≤ deg(𝑏) + ⟨𝜌,𝜆𝑏⟩ + 𝑟.

In the case where 𝐀𝐌 is not an affine space, we can replace moduli ℬ1
𝑋 of boundary

divisors by its normalization given by Proposition 5.1.25, and reduce the case to (6.8.3).

Since we do not need this result, we leave it to the reader.

6.8.2 Let𝔗∘
𝔐 = 𝔗𝔐∩𝔐∘ and let ℭ∘

𝔐 be the image of𝔗∘
𝔐. It is an open subset of ℭ𝔐 since

the cameral cover is flat, and its complement has codimension at least 2 in ℭ𝔐, because

it contains both ℭrs
𝔐 and ℭ×

𝔐. The torus 𝑇sc acts freely on the fibers of 𝔗∘
𝔐 → 𝔄𝔐 and has

open orbits. This implies that we have a description of relative tangent and cotangent

bundles

T𝔗∘
𝔐/𝔄𝔐 ≅ 𝔱sc ×𝑋 𝔗∘

𝔐,

Ω𝔗∘
𝔐/𝔄𝔐 ≅ (𝔱sc)∗ ×𝑋 𝔗∘

𝔐.
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This description is𝑊-equivariant because𝑇sc is commutative. Sinceℭ∘
𝔐 is the𝑊-invariant

quotient of 𝔗∘
𝔐, same is true for the total space of their tangent bundles, in other words,

T𝔗∘
𝔐/𝔄𝔐⫽𝑊

∼
⟶ Tℭ∘

𝔐/𝔄𝔐 .

It implies that

(𝜋𝔐∗Ω𝔗∘
𝔐/𝔄𝔐)𝑊 = Ωℭ∘

𝔐/𝔄𝔐 .

Since Ωℭ𝔐/𝔄𝔐 = ℭ∗ ×𝑋 ℭ𝔐, we have that

𝜋𝔐∗((𝔱sc)∗ ×𝑋 𝔗∘
𝔐)𝑊 = ℭ∗ ×𝑋 ℭ∘

𝔐.

The Killing form on 𝔤sc identifies 𝔱sc with its dual as 𝑊-spaces. In addition, ℭ𝔐−ℭ∘
𝔐 has

codimension 2, thus we have over ℭ𝔐

𝜋𝔐∗(𝔱sc ×𝑋 𝔗𝔐)𝑊 = ℭ∗ ×𝑋 ℭ𝔐.

Let ℒ ∈ Bun𝑍𝔐 , since 𝑊 commutes with 𝑍𝔐, the same argument also applies to ℒ-twisted

cameral cover 𝜋𝔐,ℒ ∶ 𝔗𝔐,ℒ → ℭ𝔐,ℒ. Since 𝔱 = 𝔷𝐺 ×𝑋 𝔱sc, we have

𝜋𝔐,ℒ,∗(𝔱 ×𝑋 𝔗𝔐,ℒ)𝑊 = 𝔷𝐺 ×𝑋 ℭ∗
ℒ ×𝑋 ℭ𝔐,ℒ.

Proposition 6.8.3. For any 𝑎 ∈ 𝒜𝑋(𝑘) with associated 𝑍𝔐-torsor ℒ, we have canonical

isomorphism

Lie(𝔍𝑎) = Lie(𝔍1𝑎) ≃ 𝔷𝐺 ×ℭ∗
ℒ .
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Proof. The cameral cover is flat and finite. Using Cartesian diagram

�̃�𝑎 𝔗𝔐,ℒ

𝑋 ℭ𝔐,ℒ

𝜋𝑎 𝜋𝔐,ℒ

𝑎

and the Galois description of 𝔍1𝑎, we have the result by proper base change for coherent

sheaves. ∎

Corollary 6.8.4. For any 𝑎 ∈ 𝒜♡
𝑋(𝑘), we have

dim(𝒫𝑎) = ∑
𝑣∈𝑋(𝑘)

⟨𝜌, 𝜆𝑣⟩ + 𝑛𝑔𝑋 −𝑛,

where 𝑛 is the rank of 𝐺.

Proof. Since

dim(𝒫𝑎) = dim𝑘(H
1(�̆�,Lie(𝔍𝑎))) − dim𝑘(H

0(�̆�,Lie(𝔍𝑎))),

we have the desired equation using Riemann-Roch theorem. ∎

6.9 Product Formula

Let 𝑎 ∈ 𝒜♡
𝑋(𝑘) and 𝑏 (resp. ℒ) its image in ℬ𝑋 (resp. Bun𝑍𝔐). Let 𝑈𝑎 = �̆�−𝔇𝑎. For each

𝑘-point 𝑣 ∈ �̆�−𝑈𝑎, we have the local multiplicative affine Springer fiber ℳ𝑣(𝑎), defined

by a choice of 𝛾𝑣 ∈ 𝔐×
ℒ ( ̆𝐹𝑣) lying over 𝑎.

Let �̃�𝜗,𝑎 = �̃�𝜗,𝑎 ×�̆� 𝑈𝑎. Since 𝑈𝑎 is an affine curve over an algebraically closed field,

so is �̃�𝜗,𝑎. Therefore

H2(𝑈𝑎,𝜋𝜗,𝑎,∗(�̃�𝜗,𝑎 ×𝐓)) = H2(�̃�𝜗,𝑎, 𝐓) = 0.
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Since the map

𝜋𝜗,𝑎,∗(�̃�𝜗,𝑎 ×𝐓) ⟶ 𝔍1𝑈𝑎 = 𝜋𝜗,𝑎,∗(�̃�𝜗,𝑎 ×𝐓)𝐖⋊Θ𝜗

𝑡 ⟼ ∏
𝑤∈𝐖⋊Θ𝜗

𝑤(𝑡)

is surjective, a standard argument using long exact sequence shows that H2(𝑈𝑎, 𝔍1𝑈𝑎) = 0.

Since 𝔍1𝑈𝑎 = 𝔍𝑈𝑎 , we then have

H2(𝑈𝑎, 𝔍𝑈𝑎) = 0.

The restriction of [𝔐ℒ/𝐺] → ℭℒ to 𝑈𝑎 is a 𝔍𝑈𝑎-gerbe, and it is trivial by vanishing of

cohomology above. Choose a trivialization, that is, a 𝐺-torsor 𝐸𝑈𝑎 over 𝑈𝑎, and a 𝐺-

equivariant map 𝜙𝑈𝑎 ∶ 𝐸𝑈𝑎 → 𝔐ℒ.

Over punctured disk �̆�•
𝑣, the preimage of the chosen point 𝛾𝑣 under 𝜙𝑈𝑎|�̆�•

𝑣
is a

𝔍𝑋|�̆�•
𝑣
-torsor, which is trivial because the residue field of ̆𝐹𝑣 is algebraically closed and

𝔍𝑋|�̆�•
𝑣
is a torus. This implies that we may choose a trivialization 𝜖•𝑣 of 𝔍𝑋|�̆�•

𝑣
so that its

neutral point is sent to 𝛾𝑣 under 𝜙𝑈𝑎|�̆�•
𝑣
.

Fix a 𝑘-algebra 𝑅 and an 𝑅-point 𝑔𝑣 ∈ ℳ𝑣(𝑎)(𝑅). This gives a 𝐺-torsor 𝐸𝑣 over �̆�𝑣,𝑅,

a 𝐺-equivariant map 𝜙𝑣 ∶ 𝐸𝑣 → 𝔐ℒ, and a commutative diagram over �̆�•
𝑣,𝑅

𝐸𝑣 𝔐ℒ

𝐸0 𝔐ℒ

𝜙𝑣

∼
𝛾𝑣

.

Gluing 𝐸𝑣 and 𝐸𝑈𝑎 using 𝜖•𝑣, we obtain a point (𝐸,𝜙) ∈ ℳ𝑎(𝑅). Therefore we have a

morphism defined over 𝑘

∏
𝑣∈�̆�−𝑈𝑎

ℳ𝑣(𝑎) ⟶ ℳ𝑎.
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Similarly, by gluing with trivial torsor over 𝑈𝑎, we have

∏
𝑣∈�̆�−𝑈𝑎

𝒫𝑣(𝑎) ⟶ 𝒫𝑎. (6.9.1)

The induced morphism

∏
𝑣∈�̆�−𝑈𝑎

ℳ𝑣(𝑎) ×𝒫𝑎 ⟶ ℳ𝑎

is ∏𝑣∈�̆�−𝑈𝑎
𝒫𝑣(𝑎)-invariant (acting diagonally), hence we have a morphism

∏
𝑣∈�̆�−𝑈𝑎

ℳ𝑣(𝑎) ×
∏𝑣∈�̆�−𝑈𝑎 𝒫𝑣(𝑎) 𝒫𝑎 ⟶ ℳ𝑎 (6.9.2)

and its reduced version

∏
𝑣∈�̆�−𝑈𝑎

ℳred
𝑣 (𝑎) ×∏𝑣∈�̆�−𝑈𝑎 𝒫red

𝑣 (𝑎) 𝒫𝑎 ⟶ ℳ𝑎. (6.9.3)

It is a equivalence of groupoids over geometric points, and from its construction, we see

that if a Steinberg quasi-section can be defined over all𝑋, then these maps can be defined

over 𝑘.

We shall see in Proposition 8.1.2 that ℎ𝑋 is proper when restricted to anisotropic

locus. Therefore, following the same proof in [Ngô10, Proposition 4.15.1], we have

Proposition 6.9.1 (Product Formula). For any 𝑎 ∈ 𝒜♮
𝑋(𝑘), the left-hand side of (6.9.3) is a

proper Deligne-Mumford stack, and (6.9.3) is a universal homeomorphism. If a Steinberg

quasi-section is defined over all 𝑋, then (6.9.3) also induces an equivalence on 𝑘′-rational

points for any field extension 𝑘′/𝑘.

Corollary 6.9.2. For any 𝑎 ∈ 𝒜♮
𝑋(𝑘), ℳ𝑎 is homeomorphic to a projective 𝑘-scheme, and

dimℳ𝑎 = dim𝒫𝑎.
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Proof. It follows from the product formula, (6.4.1), Theorem 4.2.1 and Proposition 4.4.7.

∎

Another consequence of (6.9.3) is the following:

Proposition 6.9.3. For any 𝑎 ∈ 𝒜♡
𝑋(𝑘), the fiber ℳ𝑎 is non-empty. In fact, ℳreg

𝑎 is non-

empty.

Remark 6.9.4. Proposition 6.9.1 is a stronger version of [Chi19, Theorem 4.2.10], since

the existence of global Steinberg quasi-section is no longer required. On the other hand,

that 𝑎 being a 𝑘-point is important in the construction of map (6.9.3), so this method

only works over a point 𝑎. Later we will construct this map as a family in § 8.5.

6.9.5 There is another version of product formula which is also useful. Following [Ngô06],

for any closed point 𝑣 ∈ 𝑋, we may consider the stack ℳ𝑎,𝑣 classifying pairs (𝐸𝑣,𝜙𝑣)

where 𝐸𝑣 is a 𝐺-torsor over the formal disk 𝑋𝑣 and 𝜙𝑣 is a 𝐺-equivariant map 𝐸𝑣 → 𝔐ℒ.

In other words, it is a sort of stacky version of multiplicative affine Springer fiber. We also

let 𝒫𝑎,𝑣 be the classifying stack of 𝔍𝑎-torsors over 𝑋𝑣. The multiplicative affine Springer

fiber ℳ𝑣(𝑎) naturally maps to ℳ𝑎,𝑣 by forgetting the trivialization part. On the other

hand, ℳ𝑎 also maps to ℳ𝑎,𝑣 by restricting to 𝑋𝑣. Similarly, we may define ℳ𝑎,𝑣 and

𝒫𝑎,𝑣 for any closed points 𝑣 ∈ �̆�. Therefore we have a commutative diagram

∏𝑣∈�̆�−𝑈𝑎
ℳ𝑣(𝑎) ℳ𝑎

∏𝑣∈�̆�−𝑈𝑎
ℳ𝑎,𝑣
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where the horizontal arrow is defined over 𝑘 while the two diagonal ones are defined over

𝑘. So we have induced maps of 2-categorical quotients

∏𝑣∈�̆�−𝑈𝑎
[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)] [ℳ𝑎/𝒫𝑎]

∏𝑣∈�̆�−𝑈𝑎
[ℳ𝑎,𝑣/𝒫𝑎,𝑣]

and all three maps are equivalences of groupoids after taking 𝑘-points. The map (6.9.1) is

always defined over 𝑘, hence so are the diagonalmaps above. It implies that the horizontal

map is defined over 𝑘, and induces an equivalence of 𝑘′-points for any 𝑘′/𝑘 regardless

whether (6.9.3) is defined over 𝑘 or not. We summarize it in the following proposition.

Proposition 6.9.6. We have a natural map of 2-stacks over 𝑘

∏
𝑣∈𝑋−𝑈𝑎

[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)] ⟶ [ℳ𝑎/𝒫𝑎]

that induces equivalence on 𝑘′-points for any field extension 𝑘′/𝑘.

6.10 Local Model of Singularities

Unlike in the Lie algebra case, the total space ℳ𝑋 of mH-fibration is no longer smooth.

Instead, it admits a stratification induced by affine Schubert cells, which in turn trans-

lates to representations via geometric Satake equivalence. Therefore, the existence of

singularities is in fact a feature of mH-fibrations.

The main result of this section was essentially first conjectured in [FN11] (see Conjec-

ture 4.1 of loc. cit.), and a weaker version was first proved in [Bou17]. Readers can find

a more streamlined proof in [Chi19], due to Zhiwei Yun. However, these previous results

would turn out to be too weak for studying endoscopy. The main reason behind is prob-

ably due to that the core argument in literature is ad hoc in nature, and in particular it
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does not try to establish a tangent-obstruction theory for deformations of mHiggs pairs,

contrary to what is done in the Lie algebra case (see [Ngô10, § 4.14]). In this section,

by establishing such tangent-obstruction theory, we are able to prove a much stronger

result.

6.10.1 Let ℎ𝑋 ∶ ℳ𝑋 → 𝒜𝑋 be the universal mH-fibration of a monoid 𝔐 ∈ ℱℳ(𝐺sc).

Recall that in 5.3.8 we defined global affine Schubert schemes on ℬ𝑋:

𝖦𝗋≤−𝑤0(ℬ𝑋) = 𝖦𝗋≤−𝑤0(ℬ𝑋)
𝐺ad ⟶ ℬ𝑋.

The ℬ𝑋-family of arc groups 𝕃+ℬ𝑋𝐺 around boundary divisors acts on 𝖦𝗋≤−𝑤0(ℬ𝑋) by left

multiplication, and locally over ℬ𝑋 this action factors through some jet group 𝕃+ℬ𝑋,𝑁𝐺

for sufficiently large 𝑁. So we have evaluation map

ev𝑁 ∶ ℳ𝑋 ⟶ [𝕃+ℬ𝑋,𝑁𝐺\𝖦𝗋≤−𝑤0(ℬ𝑋)],

which factors through

ev∶ ℳ𝑋 ⟶ [𝕃+ℬ𝑋𝐺\𝖦𝗋≤−𝑤0(ℬ𝑋)].

The following is a big improvement of [Bou17] (see also [Chi19]).

Theorem 6.10.2. Let 𝑚 = (ℒ, 𝐸,𝜙) ∈ ℳ♡
𝑋(𝑘) be a point and let 𝑎 = ℎ𝑋(𝑚) ∈ 𝒜𝑋(𝑘) be

its image. If

H1(�̆�, (Lie(𝐼sm(𝐸,𝜙))/𝔷𝐺)
∗) = 0,

then ev𝑁 (resp. ev) is smooth (resp. formally smooth) at 𝑚. In particular, it is true when

ℒ is very (𝐺,𝛿𝑎)-ample,
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The proof consists of several steps and will occupy the rest of this section.

6.10.3 We start with some generalities concerning deformations. Consider variety 𝑀

over 𝑘 with a smooth group 𝐺 acting on it. Consider the quotient

𝜒∶ 𝑀 ⟶ [𝑀/𝐺].

We have distinguished triangle of cotangent complexes

𝜒∗𝐿[𝑀/𝐺] ⟶ 𝐿𝑀 ⟶ 𝐿𝑀/[𝑀/𝐺]
+1
⟶ .

Since 𝜒 is a 𝐺-torsor, we have 𝐿𝑀/[𝑀/𝐺] ≃ 𝒪𝑀 ⊗ 𝔤∗[0], and 𝐿𝑀 is 𝐺-equivariant. De-

scending to [𝑀/𝐺], we get

𝐿[𝑀/𝐺] ⟶ 𝐿𝑀/𝐺 ⟶ 𝑀×𝐺 𝔤∗[0]
+1
⟶ .

Let𝑋 be a 𝑘-scheme of finite type and𝑚 ≔ (𝐸,𝜙) be an𝑋-point of [𝑀/𝐺], then 𝐋𝑚∗𝐿[𝑀/𝐺]

is isomorphic to the cone of the map of complexes

(𝐋𝜙∗𝐿𝐸×𝐺𝑀 ⟶ Ad(𝐸)∗[0])[−1].

Let 𝒯• = 𝐑Hom𝑋(𝐋𝑚∗𝐿[𝑀/𝐺],𝒪𝑋), then it is isomorphic to the cone of map

Ad(𝐸)[0] ⟶ 𝐑Hom𝑋(𝐋𝜙∗𝐿𝐸×𝐺𝑀,𝒪𝑋). (6.10.1)

Since 𝐿𝑀 is supported on degrees (−∞,0], so is 𝐋𝜙∗𝐿𝐸×𝐺𝑀. Since Hom𝑋(−,𝒪𝑋) is left

exact, we see that 𝐑Hom𝑋(𝐋𝜙∗𝐿𝐸×𝐺𝑀,𝒪𝑋) is supported on [0,+∞). Therefore we have
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that 𝒯• is isomorphic to the complex

Ad(𝐸)[1] ⟶ 𝐑Hom𝑋(𝐋𝜙∗𝐿𝐸×𝐺𝑀,𝒪𝑋),

where the arrow is just the map (of coherent sheaves) Ad(𝐸) ⟶ Hom𝑋(𝐋𝜙∗𝐿𝐸×𝐺𝑀,𝒪𝑋)

induced by (6.10.1), which can also be seen as the derivative of the𝐺-action. In particular,

𝒯• is supported on degrees [−1,+∞).

Similar to the Lie algebra case, the deformation of𝑚 inmapping stackHom(𝑋, [𝑀/𝐺])

is controlled by 𝒯•, such that the obstruction space is the hypercohomology group

H1(𝑋,𝒯•), the tangent space is H0(𝑋,𝒯•) and the infinitesimal automorphism group

is H−1(𝑋,𝒯•).

Nowwe compute these cohomology groups using Čech cohomology when𝑋 is a curve.

We shall assume that the generic points of𝑋 are sent to the smooth locus of [𝑀/𝐺] under

𝑚, in which case each quasi-coherent sheaf H𝑖(𝒯•) is supported on finitely many points

on 𝑋 if 𝑖 ≥ 1.

6.10.4 Let 𝒳 = {𝑋𝑖}𝑖∈𝐼 be a finite Zariski open affine covering of 𝑋. The forgetful

functor from the category of sheaves of 𝒪𝑋-modules to presheaves of 𝒪𝑋-modules is left

exact, whose right-derived functors ℋ𝑞 are given by (ℱ is any sheaf of 𝒪𝑋-modules):

ℋ𝑞(ℱ)∶ 𝑈 ⊂ 𝑋 ⟼ H𝑞(𝑈,ℱ).

For any finite subset {𝑖0, 𝑖1,⋯ , 𝑖𝑝} of 𝐼, we let

𝑋𝑖0,…,𝑖𝑝 = 𝑋𝑖0 ∩⋯∩𝑋𝑖𝑝 .

194



Then for each 𝑞 ≥ 0 we have Čech double complex ̌𝐶•(𝒳,ℋ𝑞(𝒯•))

⋮ ⋮ ⋮

0 ∏𝑖𝑗𝑘H𝑞(𝑋𝑖𝑗𝑘,𝒯−1) ∏𝑖𝑗𝑘H𝑞(𝑋𝑖𝑗𝑘,𝒯0) ∏𝑖𝑗𝑘H𝑞(𝑋𝑖𝑗𝑘,𝒯1) ⋯

0 ∏𝑖𝑗H𝑞(𝑋𝑖𝑗,𝒯−1) ∏𝑖𝑗H𝑞(𝑋𝑖𝑗,𝒯0) ∏𝑖𝑗H𝑞(𝑋𝑖𝑗,𝒯1) ⋯

0 ∏𝑖H𝑞(𝑋𝑖,𝒯−1) ∏𝑖H𝑞(𝑋𝑖,𝒯0) ∏𝑖H𝑞(𝑋𝑖,𝒯1) ⋯

0 0 0

The general theory of Čech cohomologies [Sta22, Tag 01FP] shows that there is a spectral

sequence

𝐸𝑝,𝑞
2 = H𝑝(Tot( ̌𝐶•(𝒳,ℋ𝑞(𝒯•)))) ⟹ H𝑝+𝑞(𝑋,𝒯•),

where Tot means taking the total complex associated with a double complex. Since

𝑋𝑖0,…,𝑥𝑝 is affine for any 𝑝 and any 𝑖0,… , 𝑖𝑝, and 𝒯𝑖 is quasi-coherent for any 𝑖, we

know that the above double complex vanishes completely for all 𝑞 > 0. Thus the above

spectral sequence degenerates at 𝐸2-page, and so we have

H𝑝(𝑋,𝒯•) ≃ H𝑝(Tot( ̌𝐶•(𝒳,ℋ0(𝒯•)))).

Now we use the spectral sequence of double complexes to compute

H𝑝(Tot( ̌𝐶•(𝒳,ℋ0(𝒯•)))).
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The 0-th page is

⋯ ⋯ ⋯

0 ∏𝑖𝑗𝑘H0(𝑋𝑖𝑗𝑘,𝒯−1) ∏𝑖𝑗𝑘H0(𝑋𝑖𝑗𝑘,𝒯0) ∏𝑖𝑗𝑘H0(𝑋𝑖𝑗𝑘,𝒯1) ⋯

0 ∏𝑖𝑗H0(𝑋𝑖𝑗,𝒯−1) ∏𝑖𝑗H0(𝑋𝑖𝑗,𝒯0) ∏𝑖𝑗H0(𝑋𝑖𝑗,𝒯1) ⋯

0 ∏𝑖H0(𝑋𝑖,𝒯−1) ∏𝑖H0(𝑋𝑖,𝒯0) ∏𝑖H0(𝑋𝑖,𝒯1) ⋯

Since all 𝑋𝑖0,…,𝑖𝑝 are affine, we may directly compute the 1-st page to be

⋮ ⋮ ⋮

∏𝑖𝑗𝑘H0(𝑋𝑖𝑗𝑘,H−1(𝒯•)) ∏𝑖𝑗𝑘H0(𝑋𝑖𝑗𝑘,H0(𝒯•)) ∏𝑖𝑗𝑘H0(𝑋𝑖𝑗𝑘,H1(𝒯•))

∏𝑖𝑗H0(𝑋𝑖𝑗,H−1(𝒯•)) ∏𝑖𝑗H0(𝑋𝑖𝑗,H0(𝒯•)) ∏𝑖𝑗H0(𝑋𝑖𝑗,H1(𝒯•))

∏𝑖H0(𝑋𝑖,H−1(𝒯•)) ∏𝑖H0(𝑋𝑖,H0(𝒯•)) ∏𝑖H0(𝑋𝑖,H1(𝒯•))

0 0 0

Observe that the 𝑗-th column above is exactly the Čech complex of quasi-coherent sheaf

H𝑗(𝒯•) with respect to covering 𝒳, so its cohomologies are just H𝑖(𝑋,H𝑗(𝒯•)). Since

𝑋 is a curve, H𝑖(𝑋,H𝑗(𝒯•)) = 0 for all 𝑖 ≥ 2, and since for any 𝑗 ≥ 1 the sheaf H𝑗(𝒯•)

is supported over finitely many points, we also have H1(H𝑗(𝒯•)) = 0 for 𝑗 ≥ 1. Thus,
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the 2-nd page has only two non-zero rows:

H1(𝑋,H−1(𝒯•)) H1(𝑋,H0(𝒯•)) 0 0 ⋯

H0(𝑋,H−1(𝒯•)) H0(𝑋,H0(𝒯•)) H0(𝑋,H1(𝒯•)) H0(𝑋,H2(𝒯)) ⋯

and all differentials on all pages hereafter are zero, because the vertical component of

any arrow will go upwards at least two rows. Thus the spectral sequence degenerates at

the second page, and we have canonical isomorphisms

H𝑖(𝑋,𝒯•) ≃ H0(𝑋,H𝑖(𝒯•)), 𝑖 = −1 or 𝑖 ≥ 2,

as well as exact sequences

0 ⟶ H1(𝑋,H−1(𝒯•)) ⟶ H0(𝑋,𝒯•) ⟶ H0(𝑋,H0(𝒯•)) ⟶ 0,

0 ⟶ H1(𝑋,H0(𝒯•)) ⟶ H1(𝑋,𝒯•) ⟶ H0(𝑋,H1(𝒯•)) ⟶ 0.

Note that everything still holds in the relative setting where 𝑀 is defined over a scheme

𝑆 and 𝐺 is smooth over 𝑆, and 𝑋 is an 𝑆-curve.

6.10.5 Wemay replace𝑋with a formal disc𝑋𝑣 at a point 𝑣 ∈ 𝑋. In this caseH1(𝑋𝑣,ℱ) =

0 for any quasi-coherent sheaf ℱ. Let 𝒯•
𝑣 be the analogue of 𝒯• on 𝑋𝑣, then we have for

all 𝑖 ≥ −1

H𝑖(𝑋𝑣,𝒯•
𝑣 ) ≃ H0(𝑋𝑣,H𝑖(𝒯•

𝑣 )).
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Let 𝜄∶ 𝑋𝑣 → 𝑋 be the natural map, then it is flat and the (non-derived) functor 𝜄∗ is exact.

Thus we have 𝒯•
𝑣 ≃ 𝜄∗𝒯•, and the natural map

H𝑖(𝒯•) ⊗𝒪𝑋 𝒪𝑣 ⟶ H𝑖(𝒯•
𝑣 )

is an isomorphism of 𝒪𝑣-modules. In particular, when 𝑖 ≥ 1, since H𝑖(𝒯•) is finitely

supported, we have injective map

H0(𝑋,H𝑖(𝒯•)) ⟶ ∏
𝑣

H0(𝑋𝑣,H𝑖(𝒯•
𝑣 )),

where 𝑣 ranges over the points 𝑣 ∈ 𝑋 such that 𝑚(𝑣) is singular in [𝑀/𝐺]. Note that

when 𝑖 = 1, the right-hand side is precisely the obstruction space of deforming the

∏𝑣𝑋𝑣-arc in [𝑀/𝐺] induced by 𝑚, in other words, the local obstruction space.

6.10.6 We now look at the obstruction space H1(𝑋,𝒯•). We have seen above that the

quotient H0(𝑋,H1(𝒯•)) is precisely the space of local obstructions. As a result, if we

can show that

H1(𝑋,H0(𝒯•)) = 0,

we will be able to prove that the global obstruction to deforming 𝑚 is completely deter-

mined by its local obstructions. More explicitly, consider two-step complex

𝒯≤0 ∶ Ad(𝐸) ⟶ Hom𝑋(𝜙∗Ω1
𝐸×𝐺𝑀,𝒪𝑋),

then we want to show that

H1(𝑋, coker(𝒯≤0)) = 0. (6.10.2)
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This statement is a generalization of the one for additive Hitchin fibrations where𝑀 = 𝔤𝐷.

In that case, 𝑀 is smooth, so there is no local obstruction, and if 𝐷 is sufficiently ample,

the global obstructions also vanish using Serre duality (see [Ngô10, § 4.14]). Our goal

then is to find a similar duality statement to prove (6.10.2) in multiplicative case.

6.10.7 For 𝔐 ∈ ℱℳ(𝐺sc), recall we have the big-cell locus 𝔐∘ ⊂ 𝔐 such that the re-

striction of abelianizationmap𝛼∘
𝔐 ∶ 𝔐∘ → 𝔄𝔐 is smooth, and its fibers are homogeneous

spaces under 𝐺sc×𝐺sc. The action of 𝐺sc×𝐺sc induces injection map of vector bundles

on 𝔐∘:

Ω1
𝔐∘/𝔄𝔐

⟶ (𝔤sc)∗ × (𝔤sc)∗,

and its (surjective) dual map

𝔤sc × 𝔤sc ⟶ T𝔐∘/𝔄𝔐 .

Choosing a non-degenerate 𝐺sc-invariant symmetric bilinear form 𝑞 on 𝔤sc, we may iden-

tify 𝔤sc with its dual. We fix the anti-diagonal form (𝑞,−𝑞) on 𝔤sc × 𝔤sc and use this

form to identify 𝔤sc × 𝔤sc with its dual. Note that under such identification, the diagonal

subspace

Δ∶ 𝔤sc ⟶ 𝔤sc × 𝔤sc

and the quotient 𝔤sc × 𝔤sc/Δ(𝔤sc) are 𝐺sc-equivariant duals. In other words, we have a

short exact sequence that is 𝐺sc-equivariantly self-dual:

0 ⟶ 𝔤sc
Δ
⟶ 𝔤sc × 𝔤sc ⟶ 𝔤sc × 𝔤sc/Δ(𝔤sc) ⟶ 0.

The following result is inspired by [Bri09, Example 2.5]:
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Lemma 6.10.8. With the choice of (𝑞,−𝑞), we have a 𝐺sc-equivariantly self-dual short

exact sequence

0 ⟶ Ω1
𝔐∘/𝔄𝔐

⟶ 𝔤sc × 𝔤sc ⟶ T𝔐∘/𝔄𝔐 ⟶ 0.

Proof. It suffices to consider 𝔐 = Env(𝐺sc) by universal property and show that the

fibers of

ker(𝔤sc × 𝔤sc ⟶ T𝔐∘/𝔄𝔐)

are maximal (𝑞,−𝑞)-isotropic subspaces of 𝔤sc×𝔤sc. Since 𝑍𝔐 commutes with 𝐺sc×𝐺sc-

action, it suffices to prove the statement for 𝑔𝑒𝐼,Δℎ, where 𝑔,ℎ ∈ 𝐺sc, and 𝑒𝐼,Δ are

the system of idempotents associated with subsets of simple roots 𝐼 ⊂ Δ (c.f. § 2.4.15).

Moreover, since (𝑞,−𝑞) is 𝐺sc ×𝐺sc-invariant, it suffices to prove the statement for 𝑒𝐼,Δ.

Indeed, Let 𝑃𝐼 (resp. 𝑃−
𝐼 ) be the standard parabolic subgroup of 𝐺sc containing 𝐵

(resp. 𝐵−), 𝑈𝐼 (resp. 𝑈−
𝐼 ) be its unipotent radical, and 𝐿𝐼 be the Levi factor containing 𝑇sc,

then the stabilizer of 𝑒𝐼,Δ in 𝐺sc×𝐺sc is the semidirect product (𝑈𝐼×𝑈−
𝐼 )⋊Δ(𝐿𝐼), where

Δ(𝐿𝐼) is the diagonal embedding of 𝐿𝐼 in𝐺sc×𝐺sc. One then verify by direct computation

that 𝔲𝐼 ⊕ 𝔲−𝐼 ⊕Δ(𝔩𝐼) is (𝑞,−𝑞)-isotropic and has half the dimension of 𝔤sc × 𝔤sc. ∎

6.10.9 The monoid 𝔐 is usually not smooth, but since it is normal and 𝔐 − 𝔐∘ has

codimension at least 2, we still have identification by Hartogs’ theorem (here 𝜄 is the

inclusion map 𝔐∘ → 𝔐):

𝜄∗(𝔤sc × 𝔤sc) = 𝔤sc × 𝔤sc,
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because locally over the curve 𝑋, 𝔤sc × 𝔤sc is a trivial vector bundle. By functoriality, we

have maps

Ω1
𝔐/𝔄𝔐

⟶ 𝜄∗Ω1
𝔐∘/𝔄𝔐

⟶ 𝔤sc × 𝔤sc ⟶ T𝔐/𝔄𝔐 ,

where we already identified 𝔤sc × 𝔤sc with its dual using (𝑞,−𝑞). Since 𝔐 is normal, and

T𝔐/𝔄𝔐 is reflexive, it may be identified with 𝜄∗ T𝔐∘/𝔄𝔐 . Now since 𝑍𝔐 commutes with

𝐺sc ×𝐺sc, everything descends to quotient

[𝔐/𝑍𝔐] ⟶ [𝔄𝔐/𝑍𝔐].

To simplify notations, we denote [𝔐] = [𝔐/𝑍𝔐] and [𝔄𝔐] = [𝔄𝔐/𝑍𝔐]. So we have

Ω1
[𝔐]/[𝔄𝔐] ⟶ 𝜄∗Ω1

[𝔐∘]/[𝔄𝔐] ⟶ 𝔤sc × 𝔤sc ⟶ T[𝔐]/[𝔄𝔐] .

Let 𝑚 = (ℒ, 𝐸,𝜙) ∈ ℳ𝑋(𝑘)♡ be an mHiggs bundle, viewed as an �̆�-point of the stack

[𝔐/𝐺 × 𝑍𝔐], and let 𝜆 ∈ [𝔄𝔐](�̆�) be its boundary divisor. Then (6.10.2) translates to

the following statement:

H1(�̆�, coker[Ad(𝐸)
DAd
⟶ (𝜙∗Ω1

𝐸×𝐺[𝔐]/[𝔄𝔐])
∗]) = 0,

where superscript ∗ means taking 𝒪�̆�-dual. Since the image of DAd stays the same if we

replace Ad(𝐸) by Ad(𝐸)sc, we are reduced to prove that

H1(�̆�, coker[Ad(𝐸)sc
DAd
⟶ (𝜙∗Ω1

𝐸×𝐺[𝔐]/[𝔄𝔐])
∗]) = 0,

6.10.10 On the other hand, since 𝜄∗ is left-exact, we have exact sequence

𝜄∗Ω1
𝔐∘/𝔄𝔐

⟶ 𝔤sc × 𝔤sc ⟶ 𝜄∗ T𝔐∘/𝔄𝔐 ≃ T𝔐/𝔄𝔐 ,
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which induces exact sequence

𝜙∗𝜄∗Ω1
𝐸×𝐺[𝔐∘]/[𝔄𝔐] ⟶ Ad(𝐸)sc ×Ad(𝐸)sc ⟶ 𝜙∗ T𝐸×𝐺[𝔐]/[𝔄𝔐] .

Taking 𝒪�̆�-dual and using bilinear form (𝑞,−𝑞), we have exact sequence

(𝜙∗ T𝐸×𝐺[𝔐]/[𝔄𝔐])
∗ ⟶ Ad(𝐸)sc ×Ad(𝐸)sc ⟶ (𝜙∗𝜄∗Ω1

𝐸×𝐺[𝔐∘]/[𝔄𝔐])
∗

Since �̆� is a curve, both (𝜙∗ T𝐸×𝐺[𝔐]/[𝔄𝔐])
∗ and (𝜙∗𝜄∗Ω1

𝐸×𝐺[𝔐∘]/[𝔄𝔐])
∗ are locally

free, so the above sequence is also exact on the left. Let 𝐾 ⊂ (𝜙∗𝜄∗Ω1
𝐸×𝐺[𝔐∘]/[𝔄𝔐])

∗ be

the cokernel of the first map, then it is again locally free. This implies that for any 𝑣 ∈ �̆�,

the fiber map

(𝜙∗ T𝐸×𝐺[𝔐]/[𝔄𝔐])
∗
𝑣 ⟶ (Ad(𝐸)sc ×Ad(𝐸)sc)𝑣

is injective. As a consequence, since generically over �̆� the fiber of (𝜙∗ T𝐸×𝐺[𝔐]/[𝔄𝔐]) is

a maximal (𝑞,−𝑞)-isotropic subspace of Ad(𝐸)sc ×Ad(𝐸)sc, the same must be true over

all �̆�. Thus it shows that the short exact sequence

0 ⟶ (𝜙∗ T𝐸×𝐺[𝔐]/[𝔄𝔐])
∗ ⟶ Ad(𝐸)sc ×Ad(𝐸)sc ⟶ 𝐾 ⟶ 0

is self-dual. Moreover, since the adjoint action of 𝐺sc is simply the restriction of the

𝐺sc ×𝐺sc-action to the diagonal, we see that its derivative DAd factors through 𝐾. Since

we have inclusions of locally free sheaves on �̆�

𝐾 ⊂ (𝜙∗𝜄∗Ω1
𝐸×𝐺[𝔐∘]/[𝔄𝔐])

∗ ⊂ (𝜙∗Ω1
𝐸×𝐺[𝔐]/[𝔄𝔐])

∗,
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to prove (6.10.2) it suffices to prove that

H1(�̆�, coker(Ad(𝐸)sc → 𝐾)) = 0.

Now consider the following self-dual diagram of locally free sheaves on �̆�:

Ad(𝐸)sc

0 (𝜙∗ T𝐸×𝐺[𝔐]/[𝔄𝔐])
∗ Ad(𝐸)sc ×Ad(𝐸)sc 𝐾 0

Ad(𝐸)sc ×Ad(𝐸)sc/Δ(Ad(𝐸)sc)

Δ DAd

The 𝒪�̆�-dual of coker(DAd) is identified with the kernel of the lower-left map. But that

kernel is none other than the kernel of DAd, which is simply Lie(𝐼sm(𝐸,𝜙))/𝔷𝐺 (c.f. § 6.6). So

we reduce (6.10.2) to

H1(�̆�, (Lie(𝐼sm(𝐸,𝜙))/𝔷𝐺)
∗) = 0. (6.10.3)

The canonical inclusion map 𝐼sm(𝐸,𝜙) → 𝔍♭𝑎 into the Néron model induces inclusion

Lie(𝐼sm(𝐸,𝜙))/𝔷𝐺 ⟶ Lie(𝔍♭𝑎)/𝔷𝐺,

hence we may also further reduce to

H1(�̆�, (Lie(𝔍♭𝑎)/𝔷𝐺)∗) = 0.

6.10.11 LetOb(ℒ, 𝐸,𝜙) be the obstruction space of deforming (ℒ, 𝐸,𝜙) relative to bound-

ary divisor 𝜆, and for any 𝑣 ∈ �̆�, let Ob𝑣(ℒ, 𝐸,𝜙) be the obstruction space of deforming

the �̆�𝑣-arc induced by (ℒ, 𝐸,𝜙). We have the following global-local principle for the ob-

structions:
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Proposition 6.10.12. If (6.10.3) holds, then we have canonical injective map

Ob(ℒ, 𝐸,𝜙) ⟶ ∏
𝑣

Ob𝑣(ℒ, 𝐸,𝜙),

where 𝑣 ranges over the points in �̆� that is sent to the singular locus of [𝔐/𝐺 × 𝑍𝔐]. In

particular, it is true when ℒ is very (𝐺,𝛿𝑎)-ample.

Proof. We only need to prove the second statement. By Proposition 6.8.3, we know that

Lie(𝔍𝑎)/𝔷𝐺 ≃ ℭ∗
ℒ .

The results then follow from the fact that 𝛿𝑎 is the length of Lie(𝔍♭𝑎)/Lie(𝔍𝑎) and the

definition of ℒ being very (𝐺,𝛿𝑎)-ample. ∎

6.10.13 Next we turn to tangent spaces. As we have seen above, the tangent space of

ℳ𝑋 at (ℒ, 𝐸,𝜙) relative to ℬ𝑋 fits in the short exact sequence

0 ⟶ H1(�̆�,ker(DAd)) ⟶ T(ℒ,𝐸,𝜙)(ℳ𝑋/ℬ𝑋) ⟶ H0(�̆�, coker(DAd)) ⟶ 0.

Restricting to a formal disc �̆�𝑣 → 𝑋, and choosing a trivialization of ℒ over �̆�𝑣, we have

commutative diagram

0 H1(�̆�,ker(DAd)) T(ℒ,𝐸,𝜙)(ℳ𝑋/ℬ𝑋) H0(�̆�, coker(DAd)) 0

0 T(𝐸𝑣,𝜙𝑣)(𝕃
+
𝑣 [𝔐/𝐺]/𝕃+𝑣𝔄𝔐) H0(�̆�𝑣, coker(DAd)) 0∼

Since coker(DAd) is unaffected by the center of 𝐺, we may replace 𝐺 by 𝐺ad ×𝐺ad, and

since 𝔤ad ≃ 𝔤sc, we have natural map

coker(DAd) ⟶ 𝑄 ≔ coker(Ad(𝐸)sc ×Ad(𝐸)sc → (𝜙∗Ω1
𝐸×𝐺[𝔐]/[𝔄𝔐])

∗).
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Since themap on the right-hand side above is generically surjective,𝑄 is finitely generated

and torsion, and so

H0(𝑋,𝑄) ≃ ∏
𝑣

H0(�̆�𝑣,𝑄),

where 𝑣 ranges over the points in �̆� that are sent to the singular locus of [𝔐/𝐺 × 𝑍𝔐].

Moreover, one easily sees that the torsion-free quotient of the kernel of coker(DAd) → 𝑄

is (Lie(𝐼sm(𝐸,𝜙))/𝔷𝐺)
∗. Thus when ℒ is very (𝐺,𝛿𝑎)-ample, we have surjective map

H0(�̆�, coker(DAd)) ⟶ ∏
𝑣

H0(�̆�𝑣,𝑄),

because H1(�̆�, (Lie(𝔍♭𝑎)/𝔷𝐺)∗) = 0. It induces surjective map

T(ℒ,𝐸,𝜙)(ℳ𝑋/ℬ𝑋) ⟶ ∏
𝑣

T(𝐸𝑣,𝜙𝑣)(𝕃
+
𝑣 [𝔐/𝐺sc ×𝐺sc]/𝕃+𝑣𝔄𝔐). (6.10.4)

6.10.14 Now we are ready to prove Theorem 6.10.2.

Proof. Given a small extension of Artinian 𝑘-algebras 𝑅 → 𝑅′ = 𝑅/𝐼 with residue fields 𝑘

and an 𝑚𝑅′ ∈ ℳ𝑋(𝑅′) specializing to 𝑚, let 𝑚𝑅′ be its image in

[𝕃+ℬ𝑋𝐺\𝖦𝗋≤−𝑤0(ℬ𝑋)].

Suppose𝑚𝑅 is an 𝑅-lifting of𝑚𝑅′ , then the local obstruction of deforming𝑚𝑅′ vanishes.

By Proposition 6.10.12, the global obstruction of deforming 𝑚𝑅′ also vanishes. Here we

use the fact that since 𝐺sc is smooth, the map [𝔐/Ad(𝐺sc)] → [𝔐/𝐺sc×𝐺sc] is smooth,

hence so is the map between induced arc-stacks. Then, by surjectivity of map (6.10.4),

there is a lifting of 𝑚𝑅′ to 𝑅 lying over 𝑚𝑅, thus we have the desired theorem. ∎

Remark 6.10.15. Note that Theorem 6.10.2 can still be vastly improved due to its conclu-

sion being unnecessarily strong. Indeed, since we only care about the model of singular-
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ity, if the boundary divisor is supported at point 𝑣 while the discriminant divisor is not,

then there is no need to include the local affine Schubert variety at 𝑣 in the target of the

map ev since at 𝑣 the mHiggs-field automatically lands in the big cell, which has no singu-

larity. Thus by allowing such 𝑣 to move the cohomological condition in Theorem 6.10.2

can be weakened.

6.11 The Case of Endoscopic Groups

Let (𝜅,𝜗𝜅) be an endoscopic datum of 𝐺 on 𝑋, and 𝐻 is the endoscopic group. By § 2.5,

there is a canonical monoid 𝔐𝐻 ∈ ℱℳ(𝐻sc) associated with 𝔐 and a canonical map

𝜈𝐻 ∶ ℭ𝔐,𝐻 → ℭ𝔐. Let 𝑍𝔐,𝐻 ⊂ 𝔐×
𝐻 be the center, and we have mH-fibration

ℎ𝐻,𝑋 ∶ ℳ𝐻,𝑋 ⟶ 𝒜𝐻,𝑋

associated with 𝔐𝐻. However, there is no direct relation between ℎ𝑋 and ℎ𝐻,𝑋, because

𝑍𝔐,𝐻 does not map into 𝑍𝔐. Instead, we need to replace 𝑍𝔐,𝐻 with the preimage 𝑍𝜅
𝔐 of

𝑍𝔐. Let

ℎ𝜅
𝐻,𝑋 ∶ ℳ𝜅

𝐻,𝑋 ⟶ 𝒜𝜅
𝐻,𝑋

be the pullback of ℎ𝐻,𝑋 through Bun𝑍𝜅
𝔐

→ Bun𝑍𝔐,𝐻 . Let ℬ𝜅
𝐻,𝑋 be the same pullback of

ℬ𝐻,𝑋. Every result in this chapter about ℎ𝐻,𝑋 applies to ℎ𝜅
𝐻,𝑋 due to it being defined via

pullback from Bun𝑍𝔐,𝐻 .

The canonical map 𝜈𝐻 ∶ ℭ𝔐,𝐻 → ℭ𝔐 induces commutative diagram

[ℭ𝔐,𝐻/𝑍𝜅
𝔐] [ℭ𝔐/𝑍𝔐]

[𝔄𝔐,𝐻/𝑍𝜅
𝔐] [𝔄𝔐/𝑍𝔐]
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hence further induces diagram

𝜈𝒜 ∶ 𝒜𝜅
𝐻,𝑋 𝒜𝑋

𝜈ℬ ∶ ℬ𝜅
𝐻,𝑋 ℬ𝑋

The following lemma can be easily deduced from Zariski’s Main Theorem.

Lemma 6.11.1 ([Ngô06, Lemme 7.3]). Let 𝑆 be a normal integral and separated 𝑘-scheme.

Let 𝑣∶ �̃� → 𝑉 be a finitemorphism of 𝑆-schemes andℎ∶ 𝑆 → 𝑉 a section of𝑉 → 𝑆. Suppose

there is an open dense subset 𝑆′ ⊂ 𝑆 over which ℎ lifts to a section ℎ′ ∶ 𝑆′ → �̃�×𝑆𝑆′. Then

ℎ′ extends uniquely to 𝑆 such that 𝑣 ∘ ℎ′ = ℎ.

Proposition 6.11.2. The map

𝜈♡
𝒜 ∶ 𝒜𝜅,𝐺‐♡

𝐻,𝑋 ⟶ 𝒜♡
𝑋

is finite.

Proof. The 𝜋0(𝜅)-torsor 𝜗𝜅 ∶ 𝑋𝜅 → 𝑋 induces commutative diagram

𝐓𝐌,𝐇 ×𝑋𝜅 𝐓𝐌 ×𝑋𝜅 𝐓𝐌 ×𝑋𝜅

ℭ𝔐,𝐻 ℭ′
𝔐,𝐻 ℭ𝔐

where the left and middle vertical maps are obtained by taking 𝐖𝐇 ⋊ 𝜋0(𝜅)-quotient,

and the right one is by taking 𝐖⋊𝜋0(𝜅)-quotient, and the two groups are connected by

Lemma 2.5.5.

Let 𝑎 ∈ 𝒜♡
𝑋(𝑘), and let 𝑈𝑎 ⊂ �̆� be the open subset whose image under 𝑎 is contained

in [ℭ×,rs
𝔐 /𝑍𝔐]. We also fix a geometric point ∞ ∈ 𝑈𝑎(𝑘). Over 𝑈𝑎, the vertical maps

in the above commutative diagram are respective torsors of groups 𝐖𝐇 ⋊ 𝜋0(𝜅) and
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𝐖⋊𝜋0(𝜅). Then the restriction of 𝑎 to 𝑈𝑎 lifts to a section 𝑈𝑎 → [ℭ′
𝔐,𝐻/𝑍𝔐] ×𝑋 𝑈𝑎 if

and only if the image of the monodromy

𝜗•
𝑎 ∶ 𝜋1(𝑈𝑎,∞) ⟶ 𝐖⋊𝜋0(𝜅)

is conjugate to subgroup 𝐖𝐇 ⋊𝜋0(𝜅). Since the number of such subgroups is finite, so

is the number of such liftings. Also over 𝑈𝑎, the map [ℭ𝔐,𝐻/𝑍𝜅
𝔐] → [ℭ′

𝔐,𝐻/𝑍𝔐] is an

isomorphism. At each 𝑣 ∈ �̆� − 𝑈𝑎, there are only finitely many ways to extend a �̆�•
𝑣-

point of [ℭ𝔐,𝐻/𝑍𝜅
𝔐] to a �̆�𝑣-point lying over a fixed �̆�𝑣-point in [ℭ′

𝔐,𝐻/𝑍𝔐], according

to Lemma 2.5.17 (note that over �̆�𝑣 the monoid 𝔐 is necessarily split). Thus 𝜈♡
𝒜 is quasi-

finite.

We then show that 𝜈♡
𝒜 is proper using valuative criteria. Let 𝑅 be a discrete valuation

ring and 𝑆 = Spec𝑅. Let 𝜂 ∈ 𝑆 be the generic point. Now let 𝑎 be an 𝑆-point instead of a

𝑘-point of 𝒜♡
𝑋, and 𝑈𝑎 ⊂ 𝑋×𝑆 is defined as above. Since 𝑈𝑎 is normal and integral and

the map

[ℭ×,𝐺‐rs
𝔐,𝐻 /𝑍𝜅

𝔐] ⟶ [ℭ×,rs
𝔐 /𝑍𝔐]

is finite (because 𝑇𝔐,𝐻/𝑍𝜅
𝔐 → 𝑇𝔐/𝑍𝔐 is an isomorphism), a lifting of 𝑎|𝑈𝑎 over 𝑈𝑎 ×𝑆 𝜂

can be extended to a lifting over 𝑈𝑎 by Lemma 6.11.1. Then since the complement of

𝑈𝑎∪(𝑋×𝜂) has codimension 2 in normal scheme 𝑋×𝑆, any 𝑍𝜅
𝔐-torsor on 𝑈𝑎∪(𝑋×𝜂)

can be uniquely extended over 𝑋×𝑆, and since ℭ𝔐,𝐻 is affine over 𝑋×𝑆, we can uniquely

lift 𝑎 over 𝑋×𝑆. This proves properness. ∎

6.11.3 Suppose 𝑏 ∈ ℬ≫(𝑘) induces a boundary divisor written as

𝜆𝑏 = ∑
𝑣∈𝑋(𝑘)

𝜆𝑣 ⋅ 𝑣.
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Similarly 𝑏𝐻 ∈ ℬ𝜅
𝐻,≫(𝑘) induces very 𝐻-ample boundary divisor

𝜆𝐻,𝑏𝐻 = ∑
𝑣∈𝑋(𝑘)

𝜆𝐻,𝑣 ⋅ 𝑣.

Suppose 𝑏 is the image of 𝑏𝐻. For each 𝑣 ∈ 𝑋(𝑘), −𝑤𝐻,0(𝜆𝐻,𝑣) is one of the �̌�sc
𝑣 -highest

weights appearing in the decomposition of irreducible ̌𝐺sc
𝑣 -representation with highest

weight −𝑤0(𝜆𝑣) into irreducible �̌�sc
𝑣 -representations. Let

𝑟𝐺
𝐻(𝑏𝐻) = ⟨𝜌, 𝜆𝑏⟩ − ⟨𝜌𝐻, 𝜆𝐻,𝑏𝐻⟩.

This way we obtain a locally constant function

𝑟𝐺
𝐻 ∶ ℬ𝜅

𝐻,𝑋 ⟶ ℕ

and we use the same notation for its pullback to 𝒜𝜅
𝐻,𝑋, ℳ𝜅

𝐻,𝑋, etc.

By (6.8.1), we have

dim𝒜𝑏 − dim𝒜𝜅
𝐻,𝑏𝐻

= 𝑟𝐺
𝐻(𝑏𝐻) − (𝑟− 𝑟𝐻)(𝑔𝑋 − 1), (6.11.1)

where 𝑟𝐻 is the semisimple rank of 𝐻. So the image of 𝒜𝜅,𝐺‐♡
𝐻,𝑏𝐻

in 𝒜♡
𝑏 is a closed sub-

scheme of codimension 𝑟𝐺
𝐻(𝑏𝐻)−(𝑟−𝑟𝐻)(𝑔𝑋−1). In case 𝑏𝐻 is not very 𝐻-ample (but

𝑏 is still very 𝐺-ample), we still have inequality according to (6.8.2):

dim𝒜𝑏 − dim𝒜𝜅
𝐻,𝑏𝐻

≥ 𝑟𝐺
𝐻(𝑏𝐻) − 𝑟(𝑔𝑋 − 1) − 𝑟𝐻. (6.11.2)

Replacing endoscopic groups by Levi subgroups, then 6.11.2 implies the following:

Corollary 6.11.4. Suppose 𝑍𝐺 contains no split torus. The codimension of the complement

𝒜𝑏 −𝒜♮
𝑏 of the anisotropic locus in 𝒜𝑏 goes to ∞ as ⟨𝜌, 𝜆𝑏⟩ → ∞.
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6.11.5 Suppose 𝔐 ∈ ℱℳ0(𝐺sc) and 𝔄𝔐 is of standard type. If ℒ𝜅 is a 𝑍𝜅
𝔐-torsor, then

it induces a 𝑍𝔐,𝐻-torsor ℒ𝐻. We say ℒ𝜅 is very 𝐻-ample if ℒ𝐻 is. It also induces a 𝑍𝔐-

torsor which we denote by ℒ. However, even if ℒ is very 𝐺-ample, it is not immediately

clear that ℒ𝜅 is very 𝐻-ample, making a precise dimension formula a little tricky. For

the time being we settle at providing a precise formula with some assumptions and an

estimate in general.

The assumption is as follows: suppose that the vector bundle 𝔄𝔐,𝐻,ℒ′
𝜅 has trivial first

cohomology for all ℒ′
𝜅 in the connected component of Bun𝑍𝜅

𝔐
containing ℒ𝜅, then the

map

ℬ𝜅
𝐻,𝑋 ⟶ Bun𝑍𝜅

𝔐

is surjective over that component with relative dimension deg(𝑏). As a result, we have

dim𝑏𝐻 ℬ𝜅
𝐻,𝑋 = deg(𝑏) + (rk𝑍𝜅

𝔐 − rk𝑍𝔐,𝐻)(𝑔𝑋 − 1).

Assuming very 𝐻-ampleness as well, then 𝒜𝜅
𝐻,𝑋 → ℬ𝜅

𝐻,𝑋 is surjective, and we have by

(6.8.1)

dim𝑎𝐻 𝒜𝜅
𝐻,𝑋 = deg(𝑏) + (rk𝑍𝜅

𝔐 − rk𝑍𝔐,𝐻)(𝑔𝑋 − 1) + ⟨𝜌𝐻, 𝜆𝐻,𝑏𝐻⟩ − 𝑟𝐻(𝑔𝑋 − 1),

where we recall that deg(𝑏) = dim𝑏ℬ𝑋 by definition. Since 𝑍𝜅
𝔐 is none other than the

preimage of 𝑍𝔐, we have

rk(𝑍𝔐,𝐻) − rk(𝑍𝜅
𝔐) = 𝑟− 𝑟𝐻.
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Thus we obtain

dim𝑎𝐻 𝒜𝜅
𝐻,𝑋 = deg(𝑏) + ⟨𝜌𝐻, 𝜆𝐻,𝑏𝐻⟩ − 𝑟(𝑔𝑋 − 1).

If 𝑎 ∈ 𝒜𝑋(𝑘) is the image of 𝑎𝐻 and is very 𝐺-ample, then

dim𝑎𝒜𝑋 − dim𝑎𝐻 𝒜𝜅
𝐻,𝑋 = 𝑟𝐺

𝐻(𝑎𝐻). (6.11.3)

Similarly, if the cohomological assumptions on ℒ𝜅 and 𝑎𝐻 are not true, we still have

estimate

dim𝑎𝒜𝑋 − dim𝑎𝐻 𝒜𝜅
𝐻,𝑋 ≥ 𝑟𝐺

𝐻(𝑎𝐻) − 𝑟𝑔𝑋. (6.11.4)

6.11.6 Due to the rather unsatisfactory estimate we temporarily settled with, we want to

emphasize a special case where we do get a precise formula: when 𝑟 = 𝑟𝐻. In this case,

𝑍𝜅
𝔐 and 𝑍𝔐,𝐻 have the same rank. This means that the map ℬ𝜅

𝐻,𝑋 → ℬ𝐻,𝑋 is open and

finite, hence so is the map ℬ𝜅
𝐻,𝑋 → ℬ𝑋. Moreover, suppose 𝑏𝐻 ∈ ℬ𝜅

𝐻,𝑋 is very 𝐻-ample,

then since we have tangent map

ℭ𝔐,𝐻,𝑏𝐻 ≃ T𝑎𝐻 ℭ𝔐,𝐻,𝑏𝐻 ⟶ T𝑎 ℭ𝔐,𝑏 ≃ ℭ𝔐,𝑏,

which is an injective map between vector bundles of rank 𝑟 = 𝑟𝐻, we automatically have

H1(�̆�, ℭ𝔐,𝑏) = 0,

so that (6.8.1) still holds for 𝑏. Therefore in this case we have the following:

Proposition 6.11.7. Let 𝑎𝐻 ∈ 𝒜𝜅
𝐻,𝑋 and 𝑎 = 𝜈𝒜(𝑎𝐻). If 𝑟 = 𝑟𝐻 and 𝑎𝐻 is very 𝐻-ample,

then (6.11.3) holds.
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Remark 6.11.8. We expect the technical difficulty in estimating dim𝑎𝐻 𝒜𝜅
𝐻,𝑋 is not very

essential and can be solved with more in-depth utilization of deformation theory. In

fact, in view of Proposition 6.8.3 and Theorem 6.10.2, we expect that it will be the same

problem mentioned in Remark 6.10.15 and can be solved simultaneously.

6.11.9 Although the mH-fibrations of 𝐺 and 𝐻 do not have direct connection, there is

a canonical map between their Picard stacks. Let 𝑎𝐻 ∈ 𝒜𝜅,𝐺‐♡
𝐻,𝑋 (𝑘) and its image is 𝑎 ∈

𝒜♡
𝑋(𝑘). Recall that the map 𝜈𝐻 ∶ ℭ𝔐,𝐻 → ℭ𝔐 induces a homomorphism 𝜈∗

𝐻𝔍𝔐 → 𝔍𝔐,𝐻,

therefore we have a homomorphism of commutative group schemes 𝔍𝑎 → 𝔍𝐻,𝑎𝐻 over �̆�.

Since 𝑎 ∈ 𝒜♡
𝑋, this is generically an isomorphism hence also injective. Therefore we have

a surjective map

𝒫𝑎 ⟶ 𝒫𝐻,𝑎𝐻 .

Its kernel is affine group H0(�̆�, 𝔍𝐻,𝑎𝐻/𝔍𝑎), which we denote by ℛ𝐺
𝐻,𝑎𝐻 . Using Corol-

lary 6.8.4, we have

dimℛ𝐺
𝐻,𝑎𝐻 = 𝑟𝐺

𝐻(𝑎𝐻).

In particular, it is independent of 𝑎𝐻. Let 𝔍♭𝐻,𝑎𝐻 be the Néron model of 𝔍𝐻,𝑎𝐻 , then the

composition 𝔍𝑎 → 𝔍♭𝐻,𝑎𝐻 is generically an isomorphism, so it is also the Néron model of

𝔍𝑎. Thus we have exact sequence

1 ⟶ ℛ𝐺
𝐻,𝑎𝐻 ⟶ ℛ𝑎 ⟶ ℛ𝐻,𝑎𝐻 ⟶ 1,

where ℛ𝑎 = ker(𝒫𝑎 → 𝒫♭
𝑎) and ℛ𝐻,𝑎𝐻 = ker(𝒫𝐻,𝑎𝐻 → 𝒫♭

𝐻,𝑎𝐻), and so

𝛿𝑎 −𝛿𝐻,𝑎𝐻 = 𝑟𝐺
𝐻(𝑎𝐻), (6.11.5)
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where 𝛿𝑎 = dimℛ𝑎 and 𝛿𝐻,𝑎𝐻 = dimℛ𝐻,𝑎𝐻 .

Remark 6.11.10. Comparing (6.11.1) with (6.11.5), it looks like so-called 𝛿-regularity (the

inequalities in Proposition 7.4.5, see also § 9.1) is violated. However, it is not a contra-

diction, but merely shows that the dependence of 𝑁 on 𝛿 in Proposition 7.4.5 cannot be

eliminated. On the other hand, according to (6.11.3), there is no such “violation” over the

whole𝒜♡
𝑋 (not fixing 𝑏) provided certain cohomological conditions are satisfied (although

it is not always so).

6.11.11 Similar to the technical difficulty in estimating the dimension of 𝒜𝜅
𝐻,𝑋, the local

model of singularity Theorem 6.10.2 also has some restriction due to possibly insufficient

ampleness. For example, suppose 𝑎𝐻 is very (𝐻,𝛿𝐻,𝑎𝐻)-ample, then Theorem 6.10.2

holds for any mHiggs-field over 𝑎𝐻, due to that

H1(�̆�, (Lie(𝔍♭𝐻,𝑎𝐻)/𝔷𝐻)∗) = 0.

However, the (sufficient) condition for 𝑎 is

H1(�̆�, (Lie(𝔍♭𝑎)/𝔷𝐺)∗) = 0,

which may not be true because 𝔷𝐻 may have larger rank than 𝔷𝐺. Obviously this difficulty

vanishes when 𝑟 = 𝑟𝐻 so that 𝔷𝐻 and 𝔷𝐺 are canonically isomorphic (both embeds into

𝔗). Thus we have the following result:

Proposition 6.11.12. Let 𝑎𝐻 ∈ 𝒜𝜅
𝐻,𝑋 and 𝑎 = 𝜈𝒜(𝑎𝐻). If 𝑟 = 𝑟𝐻 and 𝑎𝐻 is very

(𝐻,𝛿𝐻,𝑎𝐻)-ample, then Theorem 6.10.2 holds for both 𝑎 and 𝑎𝐻.

Remark 6.11.13. We expect this restriction requiring 𝑟 = 𝑟𝐻 is merely technical and can

be resolved due to reasons laid out in Remarks 6.10.15 and 6.11.8.
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CHAPTER 7

STRATIFICATIONS

In this chapter we study two important stratifications on the Hitchin base 𝒜𝑋 in the

same fashion as in [Ngô10, § 5]. One of them is associated with 𝛿-invariants 𝛿𝑎, which is

loosely speaking the dimension of the “affine part” of 𝒫𝑎. The other is associated with

𝜋0(𝒫𝑎), which is essentially the global counterpart of the group of endoscopic characters

𝜅. The endoscopic monoid continues to play a key role here, and the study of 𝛿-strata will

be more refined compared to the Lie algebra counterpart due to the effect of boundary

divisors. The final section introduces inductive strata, which will become important in

stating the support theorem in § 9.9. The outline of a lot of the proofs will be similar to

those in [Ngô10] (if they are counterparts), but there can be some small and occasional

technical challenges.

7.1 Simultaneous Normalization of Cameral Curves

7.1.1 The existence of aforementioned stratifications depends on a constructibility re-

sult of certain subsets of 𝒜♡
𝑋, whose proof relies on the theory of simultaneous normal-

ization of a family of curves.

Definition 7.1.2. Let 𝑓∶ 𝑌 → 𝑆 be a flat and proper map with reduced 1-dimensional

fibers. A simultaneous normalization of 𝑌 → 𝑆 (or just 𝑌 if base 𝑆 is clear from the

context) is a proper birational map 𝜉∶ 𝑌♭ → 𝑌 such that

(1) There exists open subset 𝑈 ⊂ 𝑌 over which 𝜉 is an isomorphism and 𝑓(𝑈) = 𝑆.

(2) The composition 𝑓♭ = 𝑓 ∘ 𝜉∶ 𝑌♭ → 𝑆 is smooth and proper.

Lemma 7.1.3 ([Ngô10, Proposition 5.1.2]). Let 𝜉∶ 𝑌♭ → 𝑌 be a simultaneous normalization

of 𝑓∶ 𝑌 → 𝑆, then
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(1) 𝑓∗(𝜉∗𝒪𝑌♭/𝒪𝑌) is a locally free 𝒪𝑆-sheaf of finite type.

(2) There is a locally constant étale sheaf 𝜋0(𝑌♭) on 𝑆 whose fiber at a geometric point

𝑠 ∈ 𝑆 is the set of connected components of 𝑌♭
𝑠 .

Consider (pseudo-)functor𝒜♭
𝑋 whose 𝑆-points are triples (𝑎, �̃�♭

𝑎, 𝜉)where𝑎 ∈ 𝒜♡
𝑋(𝑆),

�̃�♭
𝑎 is a smooth and proper 𝑆-family of curves together with a map �̃�♭

𝑎 → 𝑋×𝑆 on which

𝑊 acts, and 𝜉∶ �̃�♭
𝑎 → �̃�𝑎 is a 𝑊-equivariant simultaneous normalization. The forget-

ful functor 𝒜♭
𝑋 → 𝒜♡

𝑋 induces a bijection on 𝑘-points, because for any 𝑎 ∈ 𝒜♡
𝑋(𝑘) the

normalization of �̃�𝑎 is unique.

The functor 𝒜♭
𝑋 has another description. Recall that for 𝑎 ∈ 𝒜♡

𝑋(𝑆), its image ℒ ∈

Bun𝑍𝔐(𝑆) corresponds to a 𝑍𝔐 torsor ℒ on 𝑋 × 𝑆, which induces map 𝜋ℒ ∶ 𝔗𝔐,ℒ →

ℭ𝔐,ℒ. Let 𝒜♭′
𝑋 be the functor of triples (ℒ, �̃�♭

𝑎, 𝛾) where ℒ ∈ Bun𝑍𝔐(𝑆), �̃�♭
𝑎 is a smooth

and proper family of curves over 𝑆 with a finite flat map 𝜋♭
𝑎 ∶ �̃�♭

𝑎 → 𝑋 × 𝑆 on which 𝑊

acts, and 𝛾∶ �̃�♭
𝑎 → 𝔗𝔐,ℒ is a 𝑊-equivariant map. In addition, for any geometric point

𝑠 ∈ 𝑆 the map 𝜋♭
𝑎,𝑠 is generically a 𝑊-torsor, and the preimage of 𝔗rs

ℒ,𝑠 is dense in �̃�♭
𝑎,𝑠.

Given (𝑎, �̃�♭
𝑎, 𝜉) ∈ 𝒜♭

𝑋(𝑆), one may define 𝛾 as the composition of 𝜉 and the embedding

�̃�𝑎 → 𝔗𝔐,ℒ. Thus we have a natural map 𝒜♭
𝑋 → 𝒜♭′

𝑋 .

Lemma 7.1.4. The natural map 𝒜♭
𝑋 → 𝒜♭′

𝑋 is an isomorphism.

Proof. It suffices to define the inverse map. Let (ℒ, �̃�♭
𝑎, 𝛾) ∈ 𝒜♭′

𝑋 (𝑆), then we claim

𝜋♭
𝑎∗(𝒪�̃�♭

𝑎
)𝑊 = 𝒪𝑋×𝑆.

Indeed, the left-hand side is a finite 𝒪𝑋×𝑆-algebra containing 𝒪𝑋×𝑆 and over any geomet-

ric point 𝑠 ∈ 𝑆 they are generically isomorphic on 𝑋×{𝑠}. Since 𝑋 is normal, it must be

an isomorphism.

Since𝛾 is𝑊-equivariant, it induces amap𝑎∶ 𝑋×𝑆 → ℭ𝔐,ℒ by taking𝑊-GIT-quotients.

Let �̃�𝑎 be the corresponding cameral curve, then 𝛾 factors through �̃�𝑎 → 𝔗𝔐,ℒ hence
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induces map

𝜉∶ �̃�♭
𝑎 ⟶ �̃�𝑎.

Clearly over any geometric point 𝑠 ∈ 𝑆, 𝜉𝑠 is a normalization map. Thus we obtain a point

(𝑎, �̃�♭
𝑎, 𝜉) ∈ 𝒜♭

𝑋(𝑆). One can verify it is the inverse map as desired. ∎

Consider (𝑎, �̃�♭
𝑎, 𝜉) ∈ 𝒜♭

𝑋(𝑘), its automorphism group is a subgroup of Γ(�̆�,𝑍sc),

so in general it cannot be representable by a scheme. However, the étale group 𝑍sc is

the only “obstruction” of 𝒜♭
𝑋 being a sheaf. Therefore, it is reasonable to expect that

it is a scheme relative to ℬ𝑋. In any case, ℬ𝑋 is still a Deligne-Mumford stack, even a

Hom𝑋(𝑋,𝑍sc)-gerbe, thus most topological and representability result about schemes

and sheaves still apply.

Unfortunately, it is not straightforward to prove the representability result we want,

but it is enough for our purpose to prove the following slightly weaker result.

Proposition 7.1.5. There exists two ℬ𝑋-schemes (𝒜♭
𝑋)red → ℬ𝑋 and 𝒜⋆

𝑋 → ℬ𝑋 such that

we have fully faithful inclusions

(𝒜♭
𝑋)red ⊂ 𝒜♭

𝑋 ⊂ 𝒜⋆
𝑋,

where the first inclusion induces bijection on 𝑘-points, and the second is topologically a

closed embedding.

Proof. We first consider functor ℋ whose 𝑆-points are the isomorphism classes of the

following data: a smooth and projective 𝑆-curve �̃�♭
𝑎 together with a map �̃�♭

𝑎 → 𝑋×𝑆 on

which 𝑊 acts, such that over any geometric point 𝑠 ∈ 𝑆 it is generically a 𝑊-torsor.

Suppose for the moment that ℋ is representable by a quasi-projective 𝑘-scheme,

216



then we have a universal family of smooth and proper curves

�̃�♭
ℋ ⟶ ℋ

together with a 𝑊-equivariant map �̃�♭
ℋ → 𝑋×ℋ.

This induces a 𝔗𝔐-bundle 𝔗𝔐,ℋ over �̃�♭
ℋ × Bun𝑍𝔐 , and the fibers of forgetful map

𝒜♭
𝑋 → ℋ × Bun𝑍𝔐 is just the 𝑊-fixed point of the sections of 𝔗𝔐,ℋ over the curve

�̃�♭
ℋ. Using the representation-theoretic description of Env(𝐆sc), we know that we may

embed 𝔗𝔐 into a vector bundle 𝔙 with 𝑊-action as a closed subbundle. Moreover, 𝔙 can

be so chosen that it maps to 𝔄𝔐 compatible with 𝔗𝔐 → 𝔄𝔐 and the 𝑊-action. One can

pull it back to get a 𝑊-vector bundle 𝔙ℋ.

We define a functor𝒜⋆
𝑋 same as𝒜♭′

𝑋 except that 𝛾 is a𝑊-equivariant map to 𝔙 instead

of 𝔗𝔐. By the definition of 𝔙, the map 𝒜⋆
𝑋 → Bun𝑍𝔐 factors through ℬ𝑋, and it is clear

that 𝒜⋆
𝑋 is a sheaf relative to ℬ𝑋. It is also clear that 𝒜⋆

𝑋 is the 𝑊-fixed points of an open

subset of a vector bundle on ℋ× Bun𝑍𝔐 , hence it is representable by Deligne-Mumford

stack which is also a ℬ𝑋-scheme. Moreover, it contains 𝒜♭
𝑋 as a fully faithful subfunctor.

Consider Cartesian diagram
�̃�′ 𝔗ℋ

�̃�♭
𝒜⋆

𝑋
𝔙ℋ

𝛾

where �̃�♭
𝒜⋆

𝑋
is the universal curve on 𝒜⋆

𝑋 and the bottom horizontal map is the universal

map 𝛾 over 𝒜⋆
𝑋. The vertical maps in the above square are closed embeddings. Since

�̃�𝒜⋆
𝑋
→ 𝒜⋆

𝑋 is proper, the image of �̃�′ in 𝒜⋆
𝑋 is closed. By upper-semicontinuity of fiber

dimensions for proper maps, the locus in 𝒜⋆
𝑋 where the fiber in �̃�′ has dimension 1 is

also a closed subset. Let (𝒜♭
𝑋)red be the reduced substack of this closed subset.

We want to show that �̃�′ → �̃�♭
𝒜⋆

𝑋
is an isomorphism over (𝒜♭

𝑋)red. We already know

that their fibers have the same dimension and are proper and reduced (in fact regular),
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but �̃�♭
𝑎 is not necessarily irreducible. Nevertheless, since 𝛾 is 𝑊-equivariant and since

𝜋♭
𝑎 is generically a 𝑊-torsor, once a fiber of �̃�′ contains one irreducible component of

�̃�♭
𝑎, it has to contain all of them. This means that (𝒜♭

𝑋)red is a subfunctor of 𝒜♭
𝑋. It

is also clear that (𝒜♭
𝑋)red has the same 𝑘-points as 𝒜♭

𝑋. Thus it remains to prove that

ℋ is representable a quasi-projective 𝑘-scheme. We leave it to a separate proposition

below. ∎

Proposition 7.1.6. The moduli functor ℋ as in Proposition 7.1.5 is representable by a

quasi-projective 𝑘-scheme.

Proof. As commented in [Ngô10, § 5.2], the proof is similar to the representability of

Hurwitz schemes. We include a proof for completeness, as it is not in loc. cit.

Let 𝑆 be a 𝑘-scheme and let 𝑓∶ �̃�♭
𝑎 → 𝑋 × 𝑆 be an 𝑆-point of ℋ. For simplicity we

denote �̃�♭
𝑎 by 𝑌 and 𝑋× 𝑆 by 𝑋𝑆. The relative cotangent complex Ω𝑌/𝑋𝑆 is the coherent

sheaf Ω𝑌/𝑆/𝑓∗Ω𝑋𝑆/𝑆 since 𝑌 and 𝑋𝑆 are smooth curves over 𝑆 and 𝑓 is finite flat. It is

a coherent sheaf of finite length, whose induced divisor on 𝑌 is the ramification divisor

𝐷𝑌 of 𝑓. Since 𝐷𝑌 is stable under 𝑊, it descends to a divisor 𝐵𝑌 on 𝑋𝑆, finite and flat

over 𝑆. Therefore we obtain a map

𝑓𝐵 ∶ ℋ ⟶ 𝐻𝑋 ≔ ∐
𝑛

Hilb𝑛𝑋

𝑌 ⟼ 𝐵𝑌.

It then suffices to show that the map 𝑓𝐵 is representable and étale, and we shall use the

same criteria in [Ful69, Theorem 6.5], which is a slightly modified version of a result due

to Grothendieck reported in [Mur95]. Explicitly, we need to show the followings:

(1) ℋ is an fpqc sheaf over 𝐻𝑋.

(2) ℋ commutes with filtered inductive limit of rings over 𝐻𝑋.
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(3) If 𝐴 is a complete Noetherian local ring over 𝐻𝑋 and 𝔪 ⊂ 𝐴 is the maximal ideal,

then

ℋ(𝐴) ⟶ lim←−
𝑖

ℋ(𝐴/𝔪𝑖)

is bijective. In other words, formal deformation of 𝑓𝐵 over 𝐻𝑋 can be uniquely

promoted to a local deformation.

(4) If 𝑅 is an Artinian ring over 𝐻𝑋 and 𝐼 ⊂ 𝑅 is a nilpotent ideal, then ℋ(𝑅) →

ℋ(𝑅/𝐼) is bijective. In other words, 𝑓𝐵 is formally étale.

(5) 𝑓𝐵 satisfies the uniqueness part of valuative criteria for all complete discrete valu-

ation rings.

Property (1) is immediate from definition.

Property (2): let 𝐴𝑖 be a filtered inductive system of rings over 𝐻𝑋, and 𝐴 is the limit

of 𝐴𝑖. Then 𝑌𝐴𝑖 → Spec𝐴𝑖 is finitely presented, quasi-compact and quasi-separated.

Moreover, 𝐻𝑋 is locally quasi-compact and quasi-separated. By [Gro66, Théorèm 8.8.2],

the natural map

lim−→
𝑖

ℋ(𝐴𝑖) ⟶ ℋ(𝐴)

is bijective.

Properties (3): is due to the fact that formal deformation of projective curves can

always be uniquely algebraicized ([Gro61, Théorèm 5.4.1]).

Properties (4) is proved using deformation theory. Let 𝑅′ = 𝑅/𝐼 and 𝑓′ ∶ 𝑌′ → 𝑋𝑅′ .

Without loss of generality, we may assume that 𝑅 is a small extension of 𝑅′. Let 𝑓0 be

the fiber of 𝑓′ over the residue field 𝑘𝑅 of 𝑅′. The obstruction of flatly deforming map
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𝑓′ (without regarding 𝑊-action) lies in the group

Ext2𝒪𝑌′(Ω𝑌′/𝑋𝑅′ , 𝐼)

which vanishes by Serre duality. Therefore all flat deformations of 𝑓′ to 𝑅 is a torsor

under vector space

T𝐼 ≔ Ext1𝒪𝑌′(Ω𝑌′/𝑋𝑅′ , 𝐼)

≅ Ext1𝒪𝑌′(Ω𝑌′/𝑋𝑅′ ,𝒪𝑌′) ⊗ 𝐼.

The group 𝑊𝑋 = Γ(𝑋,𝑊) acts canonically on the set of deformations by composition, in

other words,𝑤 ∈ 𝑊𝑋 sends a deformation 𝜄∶ 𝑌′ → 𝑌 to 𝜄∘𝑤−1. The tangent space T𝐼 also

admits a canonical 𝑊𝑋-action, thus the set of formations induces a class in H1(𝑊𝑋,T𝐼).

Since char(𝑘) does not divide the order of 𝐖, the last cohomology group is trivial, being

a vector space annihilated by the order of 𝑊𝑋. Thus we identify the set of deformations

with T𝐼 as 𝑊𝑋-sets. Let 𝑓 ∈ T𝑊𝑋
𝐼 be a 𝑊𝑋-invariant deformation, the obstruction of

extending 𝑊𝑋-action to 𝑓 lies in the group

H2(𝑊𝑋,Aut𝑓′(𝑓)) = H2(𝑊𝑋,Aut𝑓0(𝑓0[𝜖]) ⊗ 𝐼),

where 𝑓0[𝜖] is the trivial extension of 𝑓0 to 𝑘𝑅[𝜖]/𝜖2. This obstruction group also van-

ishes since it takes value in a vector space.

These construction can also be done locally over 𝑋, hence we see that the set of de-

forming 𝑓′ together with 𝑊-action is identified with the subspace of T𝑊𝑋
𝐼 such that over

any open subset 𝑈 ⊂ 𝑋, it is also fixed by Γ(𝑈,𝑊). Since 𝑓′ is finite flat, we have by

adjunction

T𝐼 ≅ Ext1𝒪𝑋𝑅′
(Ω𝑊

𝑌′/𝑋𝑅′ ,𝒪𝑌′) ⊗ 𝐼,
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hence the deformation of 𝑌′ with 𝑊-action can be identified with vector space

Ext1𝒪𝑋𝑅′
(Ω𝑊

𝑌′/𝑋𝑅′ ,𝒪𝑋𝑅′) ⊗ 𝐼.

On the other hand, it is well-known that the deformation of 𝐵𝑌′ in 𝐻𝑋 by 𝐼 is identified

with

Hom𝒪𝑋𝑅′ (𝐽,𝒪𝐵𝑌′) ⊗ 𝐼 ≃ Ext1𝒪𝑋𝑅′
(𝒪𝐵𝑌′ ,𝒪𝐵𝑌′) ⊗ 𝐼,

where 𝐽 ⊂ 𝒪𝑋𝑅′ is the ideal of 𝐵𝑌′ . Therefore it boils down to showing that the derivative

D𝑓0(𝑓𝐵)∶ Ext1𝒪𝑋𝑅′
(Ω𝑊

𝑌′/𝑋𝑅′ ,𝒪𝑋𝑅′) ⟶ Ext1𝒪𝑋𝑅′
(𝒪𝐵𝑌′ ,𝒪𝐵𝑌′)

induced by tensoring the source by (Ω𝑊
𝑌′)∨ is an isomorphism, but this is simply the

definition of 𝐵𝑌′ combined with Serre duality, hence we are done.

Property (5) is straightforward: if 𝐴 is a complete discrete valuation ring and 𝐹 its

function field and 𝑌 ∈ ℋ(𝐴), then since 𝑌 is smooth over 𝐴 its ring of functions can be

characterized as the integral closure of𝒪𝑋𝐴 in𝒪𝑌𝐹 . Therefore𝑌 is completely determined

by its fiber over 𝐹. This finishes the proof. ∎

7.2 Stratification by Monodromy

7.2.1 Using themoduli stack𝒜♭
𝑋, wemay now study the stratifications on𝒜♡

𝑋. Similar to

[Ngô10, § 5], it is more convenient to study an étale cover of 𝒜𝑋 since it will simplify the

description of𝜋0(𝒫𝑋) and the resulting stratifications. Recall that after fixing∞ ∈ 𝑋(𝑘),

we have the open subset 𝒜∞
𝑋 ⊂ 𝒜𝑋 consisting of points 𝑎 such that the cameral cover

�̃�𝑎 is étale over∞. If∞ ∈ 𝑋(𝑘), then𝒜∞
𝑋 has a natural 𝑘-structure. Consider the functor

�̃�𝑋 whose 𝑆-points are pairs (𝑎, ∞̃) where 𝑎 ∈ 𝒜∞
𝑋 (𝑆) and ∞̃ ∈ �̃�𝑎(𝑆) lying over ∞𝑆. It
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is clear that �̃�𝑋 is an étale subset of 𝒜𝑋, and has a 𝑘-structure if ∞ ∈ 𝑋(𝑘).

We have the natural map 𝒜∞
𝑋 → ℬ𝑋, and the point ∞ defines a locally trivial fiber

bundle ℭ∞ over ℬ𝑋 whose fiber at (ℒ, 𝜃) is the fiber of ℭℒ at ∞ (recall that ℭ is the GIT

quotient 𝐺sc⫽Ad(𝐺)). In addition, 𝜃 ∈ Γ(𝑋,𝔄𝔐,ℒ) induces a cameral cover 𝔗(ℒ,𝜃) of ℭℒ,

which further induces cameral cover 𝔗∞
𝔐 → ℭ∞. Consider Cartesian diagram

�̃�𝑋 𝔗∞
𝔐

𝒜∞
𝑋 ℭ∞

𝔐

Lemma 7.2.2. Over the very 𝐺-ample locus ℬ≫, �̃�≫ → ℬ≫ is smooth and induces bijec-

tion on irreducible components.

Proof. We already know 𝒜𝑋 is a vector bundle when restricted to ℬ≫, and �̃�≫ is étale

over 𝒜≫, hence the smoothness result. Also by very 𝐺-ampleness, the bottom arrow in

the above Cartesian diagram is a surjective map of vector bundles. This means that the

top horizontal map has connected fibers. Since the abelianization map 𝔗𝔐 → 𝔄𝔐 has

irreducible fibers over the invertible locus, 𝔗∞
𝔐 is irreducible, and so is the preimage of

any irreducible component of ℬ≫. ∎

Now we define �̃�♭
≫ = 𝒜♭

𝑋×𝒜𝑋 �̃�≫. The map �̃�♭
≫ → �̃�≫ is a bijection on 𝑘-points.

With the help of the reduced substack (𝒜♭
𝑋)red, the image of any connected components

of (�̃�♭
≫)𝑘 in (�̃�≫)𝑘 is a constructible subset relative to ℬ≫,𝑘.

Over any geometric connected component of ℬ≫, one may decompose this construc-

tible subset into a finite union of locally closed subsets. Let �̃�1 be one of such locally

closed subsets and �̃�♭
1 be its preimage in (�̃�♭)𝑘. By Zariski Main Theorem, there exists

an open dense subset of �̃�1 over which the map (�̃�♭
1)

red → �̃�1 is finite radical. Using
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Noetherian induction, we may refine those 𝒜1 into a locally closed stratification

(�̃�≫)𝑘 = ∐
𝜓∈Ψ

�̃�𝜓, (7.2.1)

such that themap (�̃�♭
𝜓)red → �̃�𝜓 is finite radical. Wemay further refine the stratification

so that the closure of any �̃�𝜓 is a finite union of strata. Hence we have a partial order on

Ψ such that𝜓 ≤ 𝜓′ if �̃�𝜓 is contained in the closure of �̃�𝜓′ . Since �̃�≫ → ℬ≫ is smooth

and a bijection of irreducible components, over each geometric irreducible component 𝐵

of ℬ𝑋 there is a maximal element 𝜓𝐵 ∈ Ψ.

7.2.3 Recall 𝐺 comes from an Out(𝐆)-torsor 𝜗𝐺 on 𝑋, and when we fix a point ∞, we

may lift it to a pointed version 𝜗•
𝐺, and Θ = Θ𝜗 is the image of 𝜋1(�̆�,∞) in Out(𝐆) under

𝜗•
𝐺. By assumption, Θ is finite and its order is not divided by char(𝑘).

Let ̃𝑎 = (𝑎, ∞̃) ∈ �̃�𝑋(𝑘). Recall the commutative diagram (6.5.1) which we reproduce

here:

𝜋1(𝑈,∞) 𝐖⋊Out(𝐆)

𝜋1(�̆�,∞) Out(𝐆)

𝜋•
̃𝑎

𝜗•
𝐺

. (7.2.2)

In this diagram 𝑈 = �̆� − 𝔇𝑎. Let 𝑊 ̃𝑎 be the image of 𝜋•
̃𝑎 and 𝐼 ̃𝑎 the image of the kernel

of 𝜋1(𝑈,∞) → 𝜋1(�̆�,∞) under 𝜋•
̃𝑎. By construction, 𝑊 ̃𝑎 is contained in 𝐖⋊Θ, and 𝐼 ̃𝑎

is a normal subgroup of 𝑊 ̃𝑎 and contained in 𝑊 ̃𝑎 ∩𝐖.

An alternative approach to the above setup is as follows. Let 𝑋𝜗 → �̆� be a connected

finite Galois étale cover with Galois group Θ′ together with a point ∞𝜗 lying over ∞ such

that 𝜗𝐺 becomes trivial on 𝑋𝜗. Such requirement is the same as saying 𝜗•
𝐺 ∶ 𝜋1(�̆�,∞) →

Out(𝐆) factors through Θ′, thus we may replace 𝑋𝜗 by a quotient cover so that Θ′ = Θ.

Let

�̃�𝜗,𝑎 = �̃�𝑎 ×�̆� 𝑋𝜗,
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then𝐖⋊Θ acts on �̃�𝜗,𝑎 as well as its normalization �̃�♭
𝜗,𝑎. Let𝐶 ̃𝑎 ⊂ �̃�♭

𝜗,𝑎 be the connected

component containing ∞̃𝜗 = (∞̃,∞𝜗). Let 𝑊 ̃𝑎 be the subgroup of 𝐖⋊Θ mapping 𝐶 ̃𝑎 to

itself, and 𝐼 ̃𝑎 ⊂ 𝑊 ̃𝑎 is the subgroup generated by elements with at least one fixed point

in 𝐶 ̃𝑎.

Since 𝑈 is the maximal subset of �̆� over which the cover �̃�𝜗,𝑎 → �̆� is a 𝐖⋊Θ-torsor,

𝑊 ̃𝑎 is exactly the image of 𝜋1(𝑈,∞) in 𝐖 ⋊ Θ. For any closed point ̃𝑣 ∈ �̃�♭
𝜗,𝑎 with

image 𝑣 ∈ �̆�, the elements in 𝐼 ̃𝑎 fixing ̃𝑣 generates local inertia group of �̃�𝜗,𝑎, ̃𝑣 over �̆�𝑣.

Since 𝐼 ̃𝑎 is by definition generated by these elements, by a version of Riemann Existence

Theorem (see e.g., [Gro71, Exposé XIII, Corollaire 2.12]), 𝐼 ̃𝑎 is exactly the kernel of map

𝜋1(𝑈,∞) → 𝜋1(�̆�,∞). Finally, since 𝐶 ̃𝑎 maps onto 𝑋𝜗 and since Θ acts freely on 𝑋𝜗,

the projection of 𝐼 ̃𝑎 to Θ is trivial. Therefore, 𝐼 ̃𝑎 = 𝑊 ̃𝑎 ∩ 𝐖. Thus we established the

equivalence of two formulations of pairs (𝐼 ̃𝑎,𝑊 ̃𝑎) associated with ̃𝑎 (and 𝜗•
𝐺, which is

independent of ̃𝑎).

Proposition 7.2.4. The map ̃𝑎 ↦ (𝐼 ̃𝑎,𝑊 ̃𝑎) is constant on every stratum �̃�𝜓 in (7.2.1). As

a result, we have a well defined map on the set of strata Ψ

𝜓 ⟼ (𝐼𝜓,𝑊𝜓).

Proof. We have that (�̃�♭
𝜓)red → �̃�𝜓 is a finite radical morphism. Over (�̃�♭

𝜓)red, the

normalizations of individual cameral curves form a smooth family �̃�♭
𝜓 → �̃�♭

𝜓. In fact,

using the cover 𝑋𝜗, we also have the smooth proper family

�̃�♭
𝜗,𝜓 ⟶ �̃�♭

𝜓

on which 𝐖 ⋊ Θ acts, as well as a section ∞̃𝜗. Using Lemma 7.1.3, we have a locally

constant sheaf 𝜋0(�̃�♭
𝜗,𝜓/�̃�♭

𝜓) whose fibers are the connected components of the fibers

of �̃�♭
𝜗,𝜓, and 𝐖 ⋊ Θ acts transitively on the fibers. The existence of section ∞̃𝜗 means

that 𝜋0(�̃�♭
𝜗,𝜓/�̃�♭

𝜓) is constant. This means that the collection of 𝐶 ̃𝑎 forms a smooth and
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proper family over �̃�♭
𝜓 with connected fibers. Since 𝐖 ⋊ Θ is discrete, we see that 𝑊 ̃𝑎

and 𝐼 ̃𝑎 are constant. ∎

Definition 7.2.5. We define a partial order on the set of pairs (𝐼𝜓,𝑊𝜓) where 𝑊𝜓 is a

subgroup of 𝐖 ⋊ Θ and 𝐼𝜓 ⊂ 𝑊𝜓 is a normal subgroup contained in 𝐖: (𝐼𝜓,𝑊𝜓) ≤

(𝐼′𝜓,𝑊′
𝜓) if 𝑊𝜓 ⊂ 𝑊′

𝜓 and 𝐼𝜓 ⊂ 𝐼′𝜓.

Lemma 7.2.6. The map 𝜓 ↦ (𝐼𝜓,𝑊𝜓) is an increasing map on Ψ.

Proof. Let 𝑆 = Spec𝑅 be the spectrum of a complete discrete valuation ring, with generic

point 𝜂 = Spec𝐾 and special point 𝑠 = Spec𝑘(𝑠), with 𝑘(𝑠) being algebraically closed.

Let ̃𝑎∶ 𝑆 → �̃� be a morphism sending 𝑠 to �̃�𝜓 and 𝜂 to �̃�𝜓′ . We want to show that

(𝐼𝜓,𝑊𝜓) ≤ (𝐼𝜓′ ,𝑊𝜓′).

Since finite étale coverings can only be trivially deformed locally, we have canonical

cospecialization maps 𝜋1(𝑈𝑠,∞𝑠) → 𝜋1(𝑈𝜂,∞𝜂) and 𝜋1(�̆�𝑠,∞𝑠) → 𝜋1(�̆�𝜂,∞𝜂) com-

patible with diagram (7.2.2). Then the result follows from the definition. ∎

7.2.7 Using Lemma 7.2.6, if (𝐼−,𝑊−) is a pair where 𝑊− is a subgroup of 𝐖 ⋊ Θ and

𝐼− ⊂ 𝑊− is a normal subgroup also contained in 𝐖, then the union of such �̃�𝜓 that

(𝐼𝜓,𝑊𝜓) ≤ (𝐼−,𝑊−) is a closed subset of �̃�𝜓, and the union �̃�(𝐼−,𝑊−) of those strata

satisfying (𝐼𝜓,𝑊𝜓) = (𝐼−,𝑊−) is a open subset of that closed subset. Thus we have a

locally closed stratification

(�̃�𝑋)𝑘 = ∐
(𝐼−,𝑊−)

�̃�(𝐼−,𝑊−).

In particular, the union of those strata such that 𝐓𝑊𝜓 is finite is an open subset of �̃�𝑋.

By Proposition 6.5.5, we see that 𝒜♮
𝑋 is an open subset of 𝒜♡

𝑋. The stratifications on �̃�𝑋

naturally induce stratifications on �̃�♮
𝑋 = 𝒜♮

𝑋 ×𝒜𝑋 �̃�𝑋

Lemma 7.2.8. Let 𝐵 ⊂ ℬ≫ be an irreducible component, and 𝜓𝐵 be the maximal element
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in Ψ corresponding to 𝐵. Then

(𝐼𝜓𝐵 ,𝑊𝜓𝐵) = (𝐖,𝐖⋊Θ).

In fact, for any 𝑏 ∈ ℬ≫(𝑘), we can find ̃𝑎 lying over 𝑏 such that (𝐼 ̃𝑎,𝑊 ̃𝑎) = (𝐖,𝐖⋊Θ).

Proof. For any 𝑏 ∈ ℬ≫(𝑘), we know 𝒜♢
𝑏 is non-empty by Proposition 6.3.13. Let ̃𝑎 ∈

�̃�♢
≫(𝑘) be a point lying over 𝑏. Then we know �̃�𝜗,𝑎 is smooth and irreducible, therefore

𝑊 ̃𝑎 = 𝐖 ⋊ Θ. We also know that �̃�𝜗,𝑎 intersects with 𝐃𝛼 for every positive root 𝛼.

Therefore 𝐼 ̃𝑎 is a normal subgroup of 𝐖 containing every reflection, thus must be 𝐖

itself. ∎

7.3 The Sheaf 𝜋0(𝒫𝑋)

We have already seen the descriptions of 𝜋0(𝒫 ̃𝑎) and 𝜋0(𝒫′
̃𝑎) for individual ̃𝑎 ∈ �̃�♡

𝑋(𝑘)

in Proposition 6.5.5. Here we want to describe the restriction of sheaves 𝜋0(𝒫𝑋) and

𝜋0(𝒫′
𝑋) to each stratum �̃�(𝐼−,𝑊−).

Proposition 7.3.1. There exists canonical surjections of sheaves over �̃�𝑋

�̌�(𝐓) ⟶ 𝜋0(𝒫′
𝑋) ⟶ 𝜋0(𝒫𝑋)

such that the fiber at any ̃𝑎 ∈ �̃�𝑋(𝑘) are the surjections given in Proposition 6.5.5.

Proof. The section ∞̃ of the cameral curve over �̃�𝑋 gives a fixed �̃�𝑋-family of pinnings

of 𝐺 at ∞. Hence using the Galois description of 𝔍𝑋, we may identify the fiber of 𝔍𝑋 over

{∞}×�̃�𝑋 with 𝐓×�̃�𝑋. Such identification uniquely extends to the formal disc �̆�∞×�̃�𝑋,

because �̌�(𝐓) is discrete. For each 𝜇 ∈ �̌� ≃ 𝖦𝗋red𝐓 , we have an induced local 𝔍�̆�∞
-torsor 𝐸𝜇

over �̃�𝑋. Gluing with the trivial 𝔍𝑋-torsor over the complement of {∞}× �̃�𝑋, we obtain

a well-defined map �̌�(𝐓) → 𝜋0(𝒫𝑋). The same argument works for 𝒫′
𝑋 as well since at
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∞, the fibers of 𝔍𝑋 and 𝔍0𝑋 are the same. The surjectivity can be checked at stalk level

using Proposition 6.5.5. ∎

For any étale open subset 𝑈 → �̃�𝑋, the stratifications of �̃�𝑋 induce stratifications

of 𝑈. In particular we have strata 𝑈(𝐼−,𝑊−) for pairs (𝐼−,𝑊−). For a given pair (𝐼1,𝑊1),

we say that 𝑈 is of type (𝐼1,𝑊1) if 𝑈𝐼1,𝑊1 is the unique non-empty closed stratum in 𝑈.

Clearly, étale open subsets of this kind form a base of the small étale site of �̃�𝑋. This

base allows us to define étale sheaves Π and Π′ as follows: for 𝑈1 of type (𝐼1,𝑊1), let

Γ(𝑈1, Π′) = (�̌�𝑊1)∗ = �̌�(𝐓)𝑊1 ,

Γ(𝑈1, Π) = �̌�(𝐼1,𝑊1)∗,

where �̌�(𝐼1,𝑊1) is as in Proposition 6.5.5. Suppose 𝑈2 is an étale open subset of 𝑈1 of

type (𝐼2,𝑊2), since 𝑈(𝐼1,𝑊1) is the unique non-empty closed stratum in 𝑈1, we see that

(𝐼1,𝑊1) ≤ (𝐼2,𝑊2).

The following lemma is straightforward.

Lemma 7.3.2 ([Ngô10, Lemme 5.5.3]). If (𝐼1,𝑊1) ≤ (𝐼2,𝑊2), then �̌�(𝐼2,𝑊2) ⊂ �̌�(𝐼1,𝑊1).

Thus we have canonical restriction maps by dualization

Γ(𝑈1, Π′) ⟶ Γ(𝑈2, Π′),

Γ(𝑈1, Π) ⟶ Γ(𝑈2, Π).

Thus the sheaves Π and Π′ are defined, and we immediately have the following by Propo-

sition 6.5.5 and Proposition 7.3.1.
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Corollary 7.3.3. We have canonical isomorphisms of sheaves over �̃�𝑋

𝜋0(𝒫′
𝑋) ≃ Π′,

𝜋0(𝒫𝑋) ≃ Π.

7.4 Stratification by 𝛿-invariant

Recall that for any 𝑎 ∈ 𝒜♡
𝑋(𝑘) we have a global 𝛿-invariant 𝛿𝑎 by Definition 6.4.3.

Lemma 7.4.1. The function

�̃�𝑋(𝑘) ⟶ ℕ

𝑎 ⟼ 𝛿𝑎

is constant on every stratum �̃�𝜓 (𝜓 ∈ Ψ).

Proof. Base change to 𝑆 = (�̃�♭
𝜓)red, then the cameral curve 𝜋𝜓 ∶ �̃�𝜓 → �̆� × 𝑆 admits

a simultaneous normalization 𝜉∶ �̃�♭
𝜓 → �̃�𝜓. Let 𝑝𝑆 be the projection �̆� × 𝑆 → 𝑆. By

Lemma 7.1.3, the sheaf 𝐹 = 𝜋𝜓,∗(𝜉∗𝒪�̃�♭
𝜓
/𝒪�̃�𝜓) is a coherent sheaf with 𝑊-action such

that 𝑝𝑆,∗𝐹 is a locally free𝒪𝑆-sheaf of finite type. Since char(𝑘) does not divide the order

of 𝐖, the same is true for

(𝐹 ⊗𝒪�̆�×𝑆
𝔱)𝑊.

Therefore the result follows from Corollary 6.4.4. ∎

Recall also that we have a rigidification of 𝒫𝑋 over 𝒜∞
𝑋 hence also over �̃�𝑋 in 6.4.5.

Combined with the following lemma, we see that 𝛿-invariant is upper semi-continuous.

Lemma 7.4.2 ([Ngô10, Lemme 5.6.3]). Let 𝑃 → 𝑆 is a smooth commutative group scheme

of finite type. The function 𝑠 ↦ 𝜏𝑠 sending a geometric point 𝑠 ∈ 𝑆 to the dimension of the
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abelian part of 𝑃𝑠 is lower semi-continuous. Equivalently, the function 𝑠 ↦ 𝛿𝑠 sending 𝑠 to

the dimension of the affine part of 𝑃𝑠 is upper semi-continuous.

Corollary 7.4.3. For any 𝛿 ∈ ℕ, let �̃�𝛿 (resp. �̃�≥𝛿, resp. �̃�≤𝛿) be the union of all strata

�̃�𝜓 such that 𝛿𝜓 = 𝛿 (resp. 𝛿𝜓 ≥ 𝛿, resp. 𝛿𝜓 ≤ 𝛿). Then it is a locally closed (resp. closed,

resp. open) subset of �̃�𝑋. In particular, we have a stratification by 𝛿-invariant

�̃� = ∐
𝛿∈ℕ

�̃�𝛿.

The stratification by 𝛿-invariant induces a stratification on �̃�♮
𝑋, such that for any ̃𝑎 ∈

�̃�♮
𝛿(𝑘), the dimension of the affine part of 𝒫𝑎 is 𝛿. It is also clear from Corollary 6.4.4

that 𝛿-invariant is independent of the choice of points ∞ and ∞̃, thus the stratification

by 𝛿-invariant descends to a stratification on 𝒜♡
𝑋:

𝒜♡
𝑋 = ∐

𝛿∈ℕ
𝒜𝛿.

7.4.4 The important result about 𝛿-strata is its codimension in 𝒜𝑋. We wish to prove

that the codimension of 𝒜𝛿 is at least 𝛿 for all 𝛿. However, there is currently no clear

indication on how to do so. Instead, we use the local-global argument in [Ngô10, § 5.7]

to prove a weaker result that is likely sufficient for most practical purposes. The proof

in loc. cit. uses so-called root valuation strata studied in [GKM09]. Its multiplicative

counterpart has been studied in Chapter 3 (albeit less thoroughly).

Proposition 7.4.5. For any 𝛿 ∈ ℕ, there exists an integer 𝑁 depending on 𝐺 and 𝛿 such

that if 𝑏 ∈ ℬ𝑋(𝑘) is very (𝐺,𝑁)-ample, then we have

codim𝒜𝑏 𝒜𝑏,𝛿 ≥ 𝛿.

In particular, for every irreducible component 𝐴 ⊂ 𝒜♡
𝑋 that is very (𝐺,𝑁)-ample, we have
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codim𝐴𝐴𝛿 ≥ 𝛿.

Proof. The 𝛿 = 0 case is trivial. Suppose 𝛿 > 0 and let 𝛿• be a partition of 𝛿 by positive

integers

𝛿 = 𝛿1 +⋯+𝛿𝑛.

Consider subset𝑍𝛿• ⊂ 𝒜♡
𝑏×𝑋𝑛 consisting of tuples (𝑎;𝑥1,… ,𝑥𝑛) such that𝑎 ∈ 𝒜♡

𝑏 (𝑘),

𝑥𝑖 ∈ 𝑋(𝑘) such that 𝛿𝑥𝑖(𝑎) = 𝛿𝑖. Refine𝑍𝛿• into a disjoint union of subsets𝑍[𝑤•,𝜆•/𝑙•,𝑟•]

consisting of points (𝑎;𝑥1,… ,𝑥𝑛) such that the image of 𝑎 in ℭ𝔐,𝑏(𝒪𝑥𝑖) lies in the

stratum ℭ𝔐,𝑏(𝒪𝑥𝑖)[𝑤𝑖,𝜆𝑖/𝑙𝑖,𝑟𝑖]. Note that 𝐺 is split over 𝒪𝑥𝑖 so the valuation strata make

sense. Also note that 𝜆𝑖/𝑙𝑖 is actually fixed since 𝑏 is. Suppose this stratum is an 𝑁𝑖-

admissible cylinder. Let 𝑁′ = 𝑁1 +⋯+𝑁𝑛 and suppose 𝑏 is very (𝐺,𝑁′)-ample. Then

the linear map

𝒜ℒ ⟶
𝑛
∏
𝑖=1

ℭ𝔐,𝑏(𝒪𝑥𝑖/𝜋
𝑁𝑖
𝑥𝑖 𝒪𝑥𝑖)

is surjective. Using a modified proof of Theorem 3.4.3 by fixing the boundary divisor, we

see that the codimension of 𝑍[𝑤•,𝜆•/𝑙•,𝑟•] in 𝒜𝑏 ×𝑋𝑛 is

𝑛
∑
𝑖=1

(𝛿𝑖 + 𝑐𝑖 + 𝑒𝑖).

Here there is no 𝑏𝑖-term because the boundary divisor 𝑏 is fixed. At 𝑥𝑖, if 𝜆𝑖/𝑙𝑖 = 0, then

since 𝛿𝑖 ≠ 0, we must have either 𝑐𝑖 > 0 or 𝑒𝑖 > 0. If 𝜆𝑖/𝑙𝑖 ≠ 0, then 𝑥𝑖 has to be one of

the finite points in the support of 𝑏, so it cannot move freely in 𝑋. Thus the codimension

of 𝑍[𝑤•,𝜆•/𝑙•,𝑟•] in 𝒜𝑏 ×𝑋𝑛 is always at least

𝑛
∑
𝑖=1

(𝛿𝑖 + 1) = 𝛿+𝑛,
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hence its image in𝒜𝑏 is at least 𝛿. Let𝑁 be the supremumof all𝑁′ for various𝑍[𝑤•,𝜆•/𝑙•,𝑟•]

(there are only finitely many for a fixed 𝛿) and we are done. ∎

7.4.6 Let 𝐴 ⊂ 𝒜𝑋 be an irreducible component. If 𝐴 is very 𝐺-ample, then its image in

ℬ𝑋 is an irreducible component 𝐵 of ℬ𝑋. The normalization of 𝐵 is isomorphic to certain

direct product of symmetric power of curves and there is a open dense subset 𝐵∘ ⊂ 𝐵 of

“multiplicity-free” locus (c.f., Proposition 5.1.25).

Corollary 7.4.7. Suppose we have a fixed 𝐺, 𝔐 and 𝛿 ∈ ℕ. Let 𝑁 = 𝑁(𝛿) be as in

Proposition 7.4.5. Then for every irreducible component 𝑍 ⊂ 𝒜𝑋,𝛿 that is contained in

very (𝐺,𝑁)-ample locus, the equality codim𝒜𝑋 𝑍 = 𝛿 is achieved if and only if one of the

following conditions is met

(1) 𝛿 = 0,

(2) 𝛿 > 0, and there exists a geometric point 𝑎 ∈ 𝑍 lying over a point 𝑏 ∈ 𝐵∘ such that

at every 𝑣 ∈ 𝑋(𝑘), one of the followings must be true:

(a) 𝜆𝑣 = 0 and 𝑐𝑣 + 𝑒𝑣 = 1, or

(b) 𝜆𝑣 ≠ 0 and 𝑐𝑣 = 𝑒𝑣 = 0.

Proof. Straightforward from the proof of Proposition 7.4.5. ∎

7.4.8 The numerical conditions in Corollary 7.4.7 implies that when 𝛿 > 0 is not too

large, in view of product formula (6.9.3), only those multiplicative affine Springer fibers

of sufficiently simple types can occur at a general point of 𝑍, which we summarize below.

In case there is no boundary divisor at 𝑣, i.e., 𝜆𝑣 = 0, we have two possibilities. The

first possibility is 𝑐𝑣 = 1 and 𝑒𝑣 = 0. In this case the ramification happens in an Levi

subgroup generated by a single pair of roots and no other root has any contribution to

𝛿, and we must have 𝑑𝑣+(𝑎) = 1 and 𝛿𝑣(𝑎) = 0. The second possibility is 𝑐𝑣 = 0 and

𝑒𝑣 = 1. It implies that 𝑎 is unramified at 𝑣 and the contribution to 𝛿 still only comes
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from a single pair of roots, so we must have 𝑑𝑣+(𝑎) = 2 and 𝛿𝑣(𝑎) = 1. In both cases

the local computations can be reduced to the case when 𝐺 = SL2, and we shall revisit it

later in this paper.

On the other hand, when 𝜆𝑣 ≠ 0, then 𝑎 must be unramified at 𝑣, and suppose 𝜇𝑣 is

the local Newton point of 𝑎 at 𝑣 and 𝜇𝑣 is chosen to be dominant, then since 𝑐𝑣 = 𝑒𝑣 = 0,

we have

𝛿𝑣(𝑎) = ⟨𝜌,𝜆𝑣,ad −𝜇𝑣,ad⟩ (7.4.1)

= ⟨𝜌,−𝑤0(𝜆𝑣,ad) − 𝜇𝑣,ad⟩,

To summarize, the equality in Proposition 7.4.5 is achieved if and only if the following

conditions are met:

(1) A general point 𝑎 ∈ 𝐴𝛿 has multiplicity-free boundary divisor;

(2) If the boundary divisor 𝜆𝑏 and the discriminant divisor 𝔇𝑎 collide at some point

𝑣 ∈ 𝑋(𝑘), then 𝑎 is 𝜈-regular semisimple (Definition 7.4.9) at 𝑣.

For convenience, we make two more definitions.

Definition 7.4.9. We say 𝑎 is 𝜈-regular semisimple, or regular semisimple relative to its

Newton point at 𝑣 if it is unramified at 𝑣 and (7.4.1) holds.

Definition 7.4.10. An irreducible locally-closed subset in 𝒜♡
𝑋 is called 𝛿-critical if its

codimension in𝒜𝑋 equals its minimal 𝛿-invariant. We denote the union of those 𝛿-strata

that are 𝛿-critical by 𝒜=
𝛿 .

7.5 Inductive Strata

In the Lie algebra case, the stratification associated with 𝛿-invariant is one of the key in-

gredient in the proof of Ngô’s support theorem for Hitchin fibrations. Roughly speaking,
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those strata 𝒜𝛿 with codimension exactly 𝛿 are the only strata that “matter”. Further-

more, in the Lie algebra case, only the 𝛿 = 0 stratum ends up being relevant.

However, it is not so in the multiplicative setting due to the presence of boundary

divisors. The counterpart of boundary divisor (or the 𝑍𝔐-torsor) in Lie algebra case is

a very ample line bundle on 𝑋. The difference is that such twisting has no impact on

𝛿-invariant for Lie algebras, while the boundary divisor does in multiplicative case.

In the previous section, we have already computed the codimension of 𝒜𝛿 using local

valuation strata, under the assumption that 𝛿 is not too large compared to the ampleness

of the boundary divisor. It turns out that certain irreducible components in strata 𝒜𝛿

with codimension 𝛿 can be identified with mH-fibrations of “smaller degrees”. This way

we obtains an inductive system of mH-fibrations.

7.5.1 We use split group 𝐆 = 𝐆sc and base change to 𝑘 to illustrate the idea. Let 𝜆 ∈

�̌�(𝐓)+ be a dominant cocharacter and 𝑑 > 0 an integer. Then we may have a moduli

space of boundary divisors �̆�𝑑, viewed as the system of divisors ∑𝑣∈𝑋(𝑘) 𝑑𝑣𝜆 ⋅ 𝑣 such

that∑𝑣∈𝑋(𝑘) 𝑑𝑣 = 𝑑. We have finite 𝔖𝑑-cover �̆�𝑑 → �̆�𝑑, where 𝔖𝑑 is the symmetric group

of 𝑑 elements. The fiber product 𝒜𝑑,𝜆 ×�̆�𝑑
�̆�𝑑 → �̆�𝑑 is a vector bundle whose fiber at

𝐷 = (𝑣1,… ,𝑣𝑑) ∈ �̆�𝑑 is section space

𝑟
⨁
𝑗=1

H0(�̆�,𝒪�̆�(⟨𝜛𝑗, 𝜆⟩𝐷)),

viewed as a vector space.

For each 1 ≤ 𝑖 ≤ 𝑑, let 𝜇𝑖 ∈ �̌�(𝐓)+ be another dominant cocharacter smaller than

𝜆, i.e., 𝜆 − 𝜇𝑖 is an ℕ-combination of simple coroots. Then for each 1 ≤ 𝑗 ≤ 𝑟 we have

natural inclusion of divisors on �̆�:

𝐷𝜇,𝑗 ≔
𝑑
∑
𝑖=1

⟨𝜛𝑗, 𝜇𝑖⟩ ⋅ 𝑣𝑖 ⊂ ⟨𝜛𝑗, 𝜆⟩𝐷.
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This induces an inclusion of vector bundles

𝒜′ ⊂ 𝒜𝑑,𝜆 ×�̆�𝑑
�̆�𝑑,

where 𝒜′ → �̆�𝑑 is the vector bundle whose fiber over 𝐷 is

𝑟
⨁
𝑗=1

H0(�̆�,𝒪�̆�(𝐷𝜇,𝑗)).

Since �̆�𝑑 → �̆�𝑑 is finite, the image of 𝒜′ in 𝒜𝑑,𝜆 is closed, and this is a 𝛿-critical stratum

in 𝒜𝑑,𝜆 if ∑𝑖 𝜇𝑖 ⋅ 𝑣𝑖 is very 𝐺-ample.

7.5.2 Now we formulate for arbitrary quasi-split group 𝐺. Let 𝔐 ∈ ℱℳ0(𝐺sc) be a

monoid with 0 and let 𝐵 be an irreducible component of the very𝐺-ample locusℬ≫ ⊂ ℬ𝑋.

There is a unique open subset 𝐵∘ being themultiplicity-free locus. See Proposition 5.1.25.

A point 𝑏 ∈ 𝐵∘(𝑘) may be written as a tuple (ℒ, 𝜆𝑏) where ℒ ∈ Bun𝑍𝔐 , and

𝜆𝑏 =
𝑑
∑
𝑖=1

𝜆𝑖 ⋅ 𝑣𝑖

for some closed points 𝑣𝑖 ∈ �̆�(𝑘) and dominant cocharacters 𝜆𝑖 ∈ �̌�(𝑇ad
𝑣𝑖

)+. The points

𝑣𝑖 are pairwise distinct for any 𝑖, and if we identify𝔐 with its split model𝐌 at 𝑣𝑖, then 𝜆𝑖

must be one of the minimal generators of the cone of 𝐀𝐌 because 𝑏 is multiplicity-free.

Let 𝜇𝑖 ∈ �̌�(𝑇ad
𝑣𝑖

)+ be a dominant cocharacter with 𝜇𝑖 ≤ 𝜆𝑖.

Let 𝜗∶ 𝑋𝜗 → �̆� be a connected finite étale cover over which 𝐺 becomes split. Let ℒ𝜗

be the pullback of ℒ to 𝑋𝜗. For each fundamental weight 𝜛𝑗 on 𝑋𝜗, the divisor

𝐷𝑗 ≔ ∑
𝑖
⟨𝜛𝑗, 𝜆𝑖 −𝜇𝑖⟩ ⋅ 𝜗∗𝑣𝑖

234



defines an inclusion of line bundles

𝜛𝑗(ℒ𝜗)(−𝐷𝑗) ⊂ 𝜛𝑗(ℒ𝜗),

and the inclusion of direct sums

𝑟
⨁
𝑗=1

𝜛𝑗(ℒ𝜗)(−𝐷𝑗) ⊂
𝑟

⨁
𝑗=1

𝜛𝑗(ℒ𝜗)

descends to an inclusion of vector bundles on �̆�

ℭ″
ℒ ⊂ ℭℒ.

Suppose each 𝜛𝑗(ℒ𝜗)(−𝐷𝑗) is still very ample over 𝑋𝜗, then the section space

𝒜″
𝑏 = H0(�̆�, ℭ″

ℒ)

is a linear subspace of 𝒜𝑏 with codimension 𝛿 = ∑𝑖⟨𝜌, 𝜆𝑖 −𝜇𝑖⟩, and in which a general

point has 𝛿-invariant exactly 𝛿.

Let 𝑏 ∈ 𝑈∘ vary while keeping 𝜇𝑖 locally constant, and let 𝒜′ be the resulting union.

Then it is not hard to see that 𝒜′ is a locally-trivial fibration over 𝑈∘ whose geometric

fiber 𝒜′
𝑏 at 𝑏 is a union of spaces looking like 𝒜″

𝑏 (in fact, it’s just the union of 𝒜″
𝑏 and

all its conjugates under monodromy). By construction it is 𝛿-critical and defined over 𝑘

since it is stable under monodromy of 𝑈∘.

Definition 7.5.3. The closure of 𝒜′ in 𝒜𝑋 is called an inductive stratum. We denote the

union of all inductive strata with given 𝛿 by 𝒜≡
≥𝛿, and its intersection with 𝒜𝛿 by 𝒜≡

𝛿 .

7.5.4 We want to point out that the key difference between being 𝛿-critical and being

inductive, assuming enough 𝐺-ampleness. Let 𝑎 be a general point in an inductive stra-
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tum, then at any 𝑣 ∈ 𝑋(𝑘) such that the boundary divisor is 0, one must have either

𝑑𝑣+(𝑎) = 0, or 𝑑𝑣+(𝑎) = 1 and 𝛿𝑣(𝑎) = 0. On the other hand, if 𝑎 is a general point

of a 𝛿-critical stratum, there is a third possibility where 𝑑𝑣+(𝑎) = 2 and 𝛿𝑣(𝑎) = 1.

Therefore we have strict inclusion

{inductive strata} ⊊ {𝛿-critical strata}.

Proposition 7.5.5. For any 𝛿 ∈ ℕ and 𝑁 = 𝑁(𝛿) as in Proposition 7.4.5, let 𝐴′ ⊂ 𝒜≫𝑁

be an irreducible 𝛿-critical stratum. Then we can find an inductive stratum 𝐴 such that

(1) 𝐴′ ⊂ 𝐴, and

(2) For a general point 𝑎′ ∈ 𝐴′
𝑏 with multiplicity-free boundary divisor 𝑏, we may find

and a general point 𝑎 ∈ 𝐴𝑏, such that if we let

𝛿″ = ∑
𝑣∉supp(𝑏)

𝛿𝑣(𝑎′),

then 𝛿𝑎′ = 𝛿𝑎 +𝛿″.

Proof. The proof is similar to that of Proposition 6.3.13. With the assumption on 𝐺-

ampleness, we may simply deform locally near every point 𝑣 ∈ 𝔇𝑎′ − supp(𝑏) so that �̆�

intersects with 𝔇𝔐 transversally near those points. ∎
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CHAPTER 8

COHOMOLOGIES

In this chapter we study the general properties of cohomologies over the anisotropic lo-

cus. The first two sections contain results similar to those in [Ngô10, §§ 6.1–6.3]. The

main difference is, however, that the global transfer map will no longer be a closed em-

bedding in general but only a finite map. Such difference is not merely technical but is

completely explained by representations of the dual groups.

We will give a statement of geometric stabilization which we will prove a weaker ver-

sion of due to current technical constraint, but we do not doubt that it will not be hard

to remove most of the constraint.

The last part of this chapter studies top ordinary cohomologies, which is much more

complicated than the Lie algebra case. To this end, we will introduce a new type of Hecke

stack which allows us to upgrade the product formula in § 6.9 into a family.

8.1 Properness over Anisotropic Locus

So far we have studied the properties of individual Hitchin fibersℳ𝑎 as well as the Picard

stack 𝒫𝑋 → 𝒜𝑋. In this section we turn to the total space ℳ𝑋 of mH-fibration. The first

result is its finiteness properties.

Proposition 8.1.1. The stack ℳ𝑋 is locally of finite type, and ℎ♮
𝑋 ∶ ℳ♮

𝑋 → 𝒜♮
𝑋 over aniso-

tropic locus is a relative Deligne-Mumford stack of finite type. The same is true for 𝒫𝑋.

Proof. The natural map ℳ𝑋 → Bun𝐺×Bun𝑍𝔐 is of finite type because the fibers are

sections of a fixed étale-locally trivial fiber bundle with affine fibers. Since𝑋 is projective,

such section space must be of finite type. Since Bun𝐺×Bun𝑍𝔐 is locally of finite type,

so is ℳ𝑋.
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For the second claim, it suffices to prove for 𝔐 = Env(𝐺sc). The case when 𝐺 is split

is proved by [Chi19, Proposition 4.3.3]. Although the statement in loc. cit. is about mH-

fibration over a fixed 𝑍𝔐-torsor ℒ, the role of ℒ is inconsequential since our claim is about

relative finiteness of map ℎ♮
𝑋.

When 𝐺 is non-split, let 𝜗∶ 𝑋𝜗 → 𝑋 be a connected finite Galois étale cover over which

𝐺 becomes split, and Θ be the Galois group. Then we have a map by pullback

𝜗∗ ∶ ℳ𝑋 ⟶ ℳ𝑋𝜗 ,

the latter being the total space of mH-fibration associated with split monoid 𝜗∗𝔐. Since

𝜗 is étale, 𝐺 → 𝐺𝜗 ≔ 𝜗∗𝜗∗𝐺 is a closed embedding of reductive group schemes over

𝑋, hence 𝐺𝜗/𝐺 is affine over 𝑋. It is straightforward to see that a 𝐺-bundle may be

identified with a 𝐺𝜗-bundle 𝐸 together with a section of associated bundle 𝐸×𝐺𝜗 𝐺𝜗/𝐺.

Since 𝐺𝜗/𝐺 is affine over 𝑋 and 𝑋 is projective, the section space is of finite type (being

a closed subscheme of the section scheme of a vector bundle), hence the map

Bun𝐺/𝑋 ⟶ Bun𝐺/𝑋𝜗

is of finite type. This implies that ℳ𝑋 → ℳ𝑋𝜗 is of finite type. The proof for 𝒫𝑋 is the

same hence we are done. ∎

Proposition 8.1.2. The map ℎ♮
𝑋 ∶ ℳ♮

𝑋 → 𝒜♮
𝑋 is proper.

Proof. Since the map is a morphism of Deligne-Mumford stacks and is of finite type,

we use valuative criteria as in [CL10, §§ 8–9] and [Chi19, Proposition 4.3.6]. Let 𝑅 be a

discrete valuation ring and 𝐾 its fractional field.

For the existence part of valuative criteria, it is harmless to assume that the residue

field 𝑘𝑅 of 𝑅 is algebraically closed, because we are allowed to take finite extensions of

𝑅. Let (𝐸,𝜙) ∈ ℳ♡
𝑋(𝐾) over 𝑎 ∈ 𝒜♡

𝑋(𝑅). Let ℒ be the 𝑍𝔐-torsor corresponding to 𝑎. Let

238



𝑅(𝑋) be the local ring of the generic point of the special fiber of 𝑋 × Spec𝑅 and 𝐾(𝑋)

its fractional field. Similar notation is used for any algebraic extension 𝐾′/𝐾 and 𝑅′/𝑅

where 𝑅′ is the integral closure of 𝑅 in 𝐾′.

Since 𝑎 ∈ 𝒜♡
𝑋, the restriction of 𝑎 to 𝑅′(𝑋) has image contained in 𝔐rs

ℒ , thus 𝔍𝑎

is a torus when restricted to 𝑅(𝑋). Since [𝔐rs/𝐺] → ℭ𝔐 is a gerbe bounded by 𝔍, any

trivialization of this gerbe over 𝑘𝑅(𝑋) (necessarily exists as 𝑘𝑅 is algebraically closed)

gives a trivial 𝐺-torsor 𝐸0 together with a 𝐺-equivariant map 𝜙0 ∶ 𝐸0 → 𝔐ℒ over 𝑘𝑅(𝑋).

Since𝔐rs → ℭ𝔐 is smooth, we can extend (𝐸0,𝜙0) to a pair (𝐸1,𝜙1) over 𝑅(𝑋) by formal

lifting property of smoothness, where 𝐸1 is a trivial 𝐺-torsor over 𝑅(𝑋).

The transporter between 𝜙 and 𝜙1 over 𝐾(𝑋) is a 𝔍𝑎-torsor, which can be trivialized

after passing to a finite extension 𝐾′/𝐾. This means that (𝐸,𝜙) and (𝐸1,𝜙1) can be

glued into a pair (𝐸′,𝜙′) over an open subset of 𝑋 × Spec𝑅′ whose complement has

codimension at least 2. Since any 𝐺-torsor can be extended over a subset of codimension

at least 2, and since 𝔐ℒ is affine over 𝑋× Spec𝑅′, the pair (𝐸′,𝜙′) extends to a point in

ℳ𝑋(𝑅′) lying over 𝑎. This proves the existence part of valuative criteria.

Now for the uniqueness part. Suppose (𝐸,𝜙), (𝐸′,𝜙′) ∈ ℳ♮
𝑋(𝑅) be such that their

restriction to 𝐾 are isomorphic. Let 𝜄𝐾 be such isomorphism, then using codimension-2

argument again it suffices to extend 𝜄𝐾 to 𝑅′(𝑋) for some finite extension 𝑅′/𝑅, because

𝐾∩ 𝑅′ = 𝑅. Hence it is still harmless to assume 𝑘𝑅 is algebraically closed. Therefore 𝐸

and 𝐸′ are both trivial over 𝑅(𝑋).

Moreover, as in the existence part, wemay pass to a finite extension𝐾′/𝐾 and carefully

choose trivializations so that both 𝜙 and 𝜙′ map the neutral point of 𝐸𝐾′(𝑋) ≅ 𝐸′
𝐾′(𝑋) to

some 𝛾 ∈ 𝔐rs
ℒ (𝐾′(𝑋)). This means that 𝜄𝐾′(𝑋) may be represented by some element in

𝐺𝛾(𝐾′(𝑋)). Since (𝐸,𝜙) and (𝐸′,𝜙′) are contained in the anisotropic locus, the central-

izer 𝐺𝛾 is an anisotropic torus over 𝑅′(𝑋). Since 𝑅′(𝑋) is a discrete valuation ring with

fractional field 𝐾′(𝑋), we have 𝐺𝛾(𝑅′(𝑋)) = 𝐺𝛾(𝐾′(𝑋)) and we are done. ∎
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8.2 𝜅-decomposition and Endoscopic Transfer

Let ℎ̃♮
𝑋 ∶ ℳ̃♮

𝑋 → �̃�♮
𝑋 and ̃𝑝♮

𝑋 ∶ �̃�♮
𝑋 → �̃�♮

𝑋 be the restriction ofmH-fibrationℎ𝑋 ∶ ℳ𝑋 → 𝒜𝑋

and Picard stack 𝑝𝑋 ∶ 𝒫𝑋 → 𝒜𝑋 to �̃�♮
𝑋 respectively. We know that both ℎ̃♮

𝑋 and ̃𝑝♮
𝑋

are morphisms of Deligne-Mumford stacks with ℎ̃♮
𝑋 being proper and ̃𝑝♮

𝑋 being smooth.

Let 𝒬 ≔ ICℳ̃♮
𝑋
be the intersection complex on ℳ̃♮

𝑋, then we know that ℎ̃♮
𝑋,∗𝒬 is a pure

complex, hence non-canonically decomposes into a direct sum of shifted perverse sheaves

ℎ̃♮
𝑋,∗𝒬 ≅ ⨁

𝑛∈ℤ

𝔭H𝑛(ℎ̃♮
𝑋,∗𝒬)[−𝑛],

where 𝔭H𝑛(ℎ̃♮
𝑋,∗𝒬) is a perverse sheaf of weight 𝑛 over �̃�♮

𝑋.

8.2.1 The action of �̃�♮
𝑋 on ℳ̃♮

𝑋 relative to �̃�♮
𝑋 induces an action on ℎ̃♮

𝑋,∗𝒬. According to

Lemme d’homotopie [LN08, Lemme 3.2.3], this action factors through 𝜋0(�̃�
♮
𝑋) (although

the statement in loc. cit. is about schemes and constant sheaf, its proof applies to Deligne-

Mumford stacks and equivariant complexes). Over �̃�♮
𝑋, we have by Proposition 7.3.1 a

canonical epimorphism

�̌�(𝐓) × �̃�♮
𝑋 ⟶ 𝜋0(�̃�

♮
𝑋),

so we have an inflated action of �̌�(𝐓) on ℎ̃♮
𝑋,∗𝒬. For any 𝜅 ∈ �̌�, we define 𝔭H𝑛(ℎ̃♮

𝑋,∗𝒬)𝜅

to be the 𝜅-isotypic subspace of 𝔭H𝑛(ℎ̃♮
𝑋,∗𝒬), where 𝜅 is regarded as a character �̌�(𝐓) →

ℚ×
ℓ . Therefore we have a (necessarily finite) decomposition

𝔭H𝑛(ℎ̃♮
𝑋,∗𝒬) = ⨁

𝜅∈�̌�

𝔭H𝑛(ℎ̃♮
𝑋,∗𝒬)𝜅.

When 𝜅 = 1, we write 𝔭H𝑛(ℎ̃♮
𝑋,∗𝒬)st instead of 𝔭H𝑛(ℎ̃♮

𝑋,∗𝒬)1.

Recall we have the stratification (7.2.1) over 𝐺-very ample locus induced by simulta-
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neous normalization of cameral curves

�̃�≫ = ∐
𝜓∈Ψ

�̃�𝜓.

Let �̃�♮
≫ = �̃�≫ ∩ �̃�♮

𝑋. By Lemmas 7.2.6 and 7.3.2, the union of all 𝜓 such that 𝜅 ∈

�̌�(𝐼𝜓,𝑊𝜓) for a fixed 𝜅 is a closed subset of �̃�♮
≫. Call this subset �̃�♮

𝜅.

Proposition 8.2.2. The support of 𝔭H𝑛(ℎ̃♮
≫∗𝒬)𝜅 is contained in �̃�♮

𝜅.

Proof. This is a direct consequence of the definition of 𝔭H𝑛(ℎ̃♮
≫∗𝒬)𝜅 and Corollary 7.3.3.

∎

8.2.3 Now we turn to endoscopic side. Let (𝜅,𝜗•
𝜅) is a pointed endoscopic datum with

endoscopic group 𝐻 over �̆�. Let 𝜗𝜅 ∶ 𝑋𝜅 → �̆� be the corresponding 𝜋0(𝜅)-torsor. Recall

we have finite map

𝜈♡
𝒜 ∶ 𝒜𝜅,𝐺‐♡

𝐻,𝑋 ⟶ 𝒜♡
𝑋,

by Proposition 6.11.2.

The pointed endoscopic datum is given by a continuous homomorphism 𝜋1(�̆�,∞) →

𝜋0(𝜅). There is a natural point ∞𝜗𝜅 lying over ∞. Given 𝑎 ∈ 𝒜∞
𝑋 (𝑘), let

�̃�𝜗𝜅,𝑎 = �̃�𝑎 ×�̆� 𝑋𝜅.

Choosing a point ∞̃ ∈ �̃�𝑎 is the same as choosing a point ∞̃𝜗𝜅 = (∞̃,∞𝜗𝜅), and let

(𝑎, ∞̃𝜗𝜅) ∈ �̃�≫. Suppose 𝑎𝐻 ∈ 𝒜𝜅
𝐻,𝑋(𝑘) and 𝜈𝒜(𝑎𝐻) = 𝑎, then we have a finite map

�̃�𝜗𝜅,𝑎𝐻 → �̃�𝜗𝜅,𝑎 by construction, and if 𝑎 ∈ 𝒜♡
𝑋, it birationally identifies �̃�𝜗𝜅,𝑎𝐻 with the

union of some irreducible components of �̃�𝜗𝜅,𝑎. Thus we have a finite map

�̃�𝒜 ∶ �̃�𝜅
𝐻,𝑋 ⟶ �̃�𝑋,
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and it is defined over 𝑘 if (𝜗𝜅, 𝜅) is.

Remark 8.2.4. Unlike Lie algebra case, �̃�𝒜 is in general not a closed embedding. This

roughly corresponds to the fact that an irreducible representation of �̌�sc is usually not

irreducible when restricted to �̌�sc. The number of points in a fiber can, roughly speaking,

be determined by looking at how many irreducible �̌�sc-subrepresentations has the same

�̌�sc-weight in the said �̌�sc-representation. See the proof of Lemma 2.5.10 for details,

which already contains this hint.

Proposition 8.2.5. Over the 𝐺-very ample locus, the subset �̃�𝜅 ⊂ �̃�≫ is the disjoint union

of various closed subsets �̃�𝒜(�̃�𝜅
𝐻), where 𝐻 is the endoscopic group corresponding to a

continuous homomorphism 𝜗•
𝜅 ∶ 𝜋1(�̆�,∞) → 𝜋0(𝜅).

Proof. Given a geometric point ̃𝑎 = (𝑎, ∞̃) ∈ �̃�𝑋(𝑘), recall we have diagram (6.5.1) which

we reproduce here:

𝜋1(𝑈,∞) 𝐖⋊Out(𝐆)

𝜋1(�̆�,∞) Out(𝐆)

𝜋•
̃𝑎

𝜗•
𝐺

Here 𝑈 = �̆� − 𝔇𝑎. Let 𝑊 ̃𝑎 be the image of 𝜋•
̃𝑎 in 𝐖 ⋊ Out(𝐆) and 𝐼 ̃𝑎 the image of the

kernel of 𝜋1(𝑈,∞) → 𝜋1(�̆�,𝑥).

If ̃𝑎 ∈ �̃�𝜅, then 𝑊 ̃𝑎 ⊂ (𝐖 ⋊ Out(𝐆))𝜅 and 𝐼 ̃𝑎 ⊂ 𝐖𝐇. Here we canonically identify

(𝐖 ⋊ Out(𝐆))𝜅 with 𝐖𝐇 ⋊ 𝜋0(𝜅) by [Ngô06, Lemme 10.1]. Then 𝜋•
̃𝑎 induces a unique

homomorphism

𝜗•
𝜅 ∶ 𝜋1(�̆�,∞) ⟶ 𝜋0(𝜅),

and let 𝐻 be the corresponding endoscopic group. Let 𝐶𝜅
̃𝑎 ⊂ �̃�𝜗𝜅,𝑎 be the union of irre-

ducible components in the 𝐖𝐇 ⋊𝜋0(𝜅)-orbit of the unique component containing ∞̃𝜗𝜅 ,

then 𝐖𝐇 ⋊𝜋0(𝜅) acts transitively on fibers of 𝐶𝜅
̃𝑎 → �̆�. This means that ̃𝑎 comes from a

map �̆� → [ℭ′
𝔐,𝐻/𝑍𝔐] (recall that over �̆�, ℭ′

𝔐,𝐻 = (𝐓𝐌×𝑋𝜅)/(𝐖𝐇⋊𝜋0(𝜅)) by definition).
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The map

[ℭ𝔐,𝐻/𝑍𝜅
𝔐] ⟶ [ℭ′

𝔐,𝐻/𝑍𝔐]

is an isomorphism over the intersection of invertible and 𝐺-regular semisimple loci. The

point ̃𝑎, viewed as a map �̆� → [ℭ𝔐/𝑍𝔐] that is generically contained in the invertible and

regular semisimple locus, can then be lifted to a rational map from �̆� to [ℭ𝔐,𝐻/𝑍𝜅
𝔐]. By

Lemma 2.5.17, it can be extended to a morphism �̆� → [ℭ𝔐,𝐻/𝑍𝜅
𝔐]. This shows that every

̃𝑎 ∈ �̃�𝜅(𝑘) comes from some (not necessarily unique) ̃𝑎𝐻 ∈ �̃�𝜅
𝐻,𝑋(𝑘). The argument

also shows that 𝜗•
𝜅 hence 𝐻 is uniquely determined by ̃𝑎.

Conversely, let 𝐻 be an endoscopic group given by a homomorphism 𝜗•
𝜅 and ̃𝑎𝐻 ∈

�̃�𝜅
𝐻(𝑘). Then the 𝐻-cameral cover �̃�𝑎𝐻 → �̆� is étale over 𝑈. Let 𝑈𝐻 ⊂ �̆� be the largest

subset over which this 𝐻-cameral cover is étale, then 𝑈 ⊂ 𝑈𝐻. So the homomorphism

𝜋•
̃𝑎𝐻
∶ 𝜋1(𝑈𝐻,∞) ⟶ 𝐖𝐇 ⋊Out(𝐇)

induces homomorphism

𝜋𝜅,•
̃𝑎𝐻
∶ 𝜋1(𝑈,∞) ⟶ 𝐖𝐇 ⋊𝜋0(𝜅)

lying over 𝜗•
𝜅. Let ̃𝑎 ∈ �̃�≫ be the image of ̃𝑎𝐻, then 𝜋•

̃𝑎 is the composition of map 𝜋𝜅,•
̃𝑎𝐻

with canonical map 𝐖𝐇⋊𝜋0(𝜅) → 𝐖⋊Out(𝐆). Therefore we have 𝑊 ̃𝑎 ⊂ (𝐖⋊Out(𝐆))𝜅

and 𝐼 ̃𝑎 ⊂ 𝐖𝐇, and so ̃𝑎 ∈ �̃�𝜅(𝑘). ∎

8.2.6 Similar to 𝜅-strata, one can describe the compliment �̃� − �̃�♮ using proper Levi

subgroups of 𝐆 containing 𝐓. Suppose ̃𝑎 ∈ (�̃�− �̃�♮)(𝑘), then 𝐓𝑊 ̃𝑎 is not finite, hence

contains a subtorus 𝐒. Let 𝐋 be the centralizer of 𝐒 in 𝐆, then 𝑊 ̃𝑎 is contained in the

centralizer of 𝐒 in 𝐖⋊ Out(𝐆), and 𝐼 ̃𝑎 is contained in 𝐖𝐋. Let �̃� be the centralizer of 𝐒
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in 𝐆⋊Out(𝐆) as in § 2.5.25. Therefore there are induced maps

𝜋1(�̆�,∞) ⟶ 𝑊 ̃𝑎/𝐼 ̃𝑎 ⟶ 𝜋0(�̃�) ⟶ Out(𝐆).

Let 𝒜𝐿
𝑋 be the mH-base corresponding to [ℭ𝐿

𝔐/𝑍𝐿
𝔐], then the above maps imply that ̃𝑎

comes from a point in �̃�𝐿
𝑋, similar to endoscopic case.

Let 𝑎𝐿 ∈ 𝒜𝐿
𝑋(𝑘) be a point over 𝑎 ∈ 𝒜𝑋(𝑘), with respective boundary divisor 𝜆𝐿 and

𝜆. Suppose 𝑁 > 0 is such that ⟨𝜌, 𝜆⟩ − ⟨𝜌𝐿, 𝜆𝐿⟩ > 𝑁 for all proper Levi subgroups 𝐿 and

all possible 𝜆𝐿 over 𝜆. It is clear by representation-theoretic construction of 𝔐𝐿 that 𝑁

depends only on the connected component of ℬ𝑋 containing 𝜆. Combining with (6.11.4)

(the same argument works for Levi subgroups), we have the following result:

Proposition 8.2.7. Suppose the center of 𝐺 does not contain a split torus. Let 𝐵 ⊂ ℬ≫ be

an irreducible component and 𝐴 ⊂ �̃�𝑋 be the preimage of 𝐵. Then the codimension of

𝐴−𝐴♮ is at least 𝑁−𝑟𝑔𝑋 where 𝑁 is as in the paragraph above.

Remark 8.2.8. It is not hard to see that if 𝜆 is a non-zero dominant cocharacter in any

non-trivial direct factor of 𝐺ad, then by replacing 𝜆 with its multiples, one can always

find a component 𝐴 ⊂ 𝒜𝑋 such that the codimension of 𝐴 − 𝐴♮ is larger than a given

number.

8.3 Geometric Stabilization

In [Ngô10, Théorèmes 6.4.1, 6.4.2], Ngô established the geometric stabilization theorem

for the usual Hitchin fibrations. It is essentially the geometric side of the stabilization

process of the trace formula for anisotropic Lie algebras over function fields, and one

can deduce from it the endoscopic fundamental lemma for Lie algebras. Our goal for

multiplicative Hitchin fibration is the same, however, it is technically more complicated.
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8.3.1 In the Lie algebra case, the total stack of Hitchin fibration is smooth, and we are

considering the constant sheaf on that stack. This corresponds to the fact that at local

places 𝑣, the functions we are considering are the characteristic functions on 𝜋𝑑𝔤(𝒪𝑣)

for some integer 𝑑 ≤ 0.

In the multiplicative case, however, we are considering the basic functions in the

spherical Hecke algebra, which corresponds to the fact that we have a local model of sin-

gularity Theorem 6.10.2. Ideally, we would like the theorem to be true over all ℳ♡
≫, but

it seems so far some tighter cohomological constraint must be assumed. We also noted

in Remark 6.10.15 that the constraint as written in Theorem 6.10.2 can be foreseeably

loosened, but probably not to the extent that the whole ℳ♡
≫ can be covered.

On the other hand, we do not believe this cohomological constraint is a purely tech-

nical nuisance either. In fact, we predict that there is a “limit version” of mH-fibrations,

and the cohomological constraint is there because mH-fibrations are “truncations” of the

limit. We will be discussing this later in more detail, so we do not expand here.

8.3.2 Another issue is the dimension estimate of the endoscopic strata. We already noted

in § 6.11 that such estimation is not very straightforward if the semisimple rank of 𝐻 is

not the same as that of 𝐺, due to potential insufficiency in appropriate ampleness. We

also noted in Remark 6.11.8 that it seems to be a different aspect of the same problem

as the issue with local model of singularity, so at least it does not add to our difficulty.

One can also see for example § 9.9.5 that in some situations one can deduce the desired

dimension estimate if local model of singularity is established.

8.3.3 Due to the reasons discussed above, in this paper we only attempt to prove a

weaker version of the geometric stabilization theorem.

Theorem 8.3.4 (Weak geometric stabilization for adjoint groups). Suppose 𝐺 = 𝐺ad. Let

𝒰 ⊂ �̃�♮
𝜅 be an open subset over which the local model of singularity Theorem 6.10.2 holds
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for all the endoscopic groups appearing in 𝒰. Then there exists an isomorphism between

graded shifted perverse sheaves over 𝒰

⨁
𝑛

𝔭H𝑛(ℎ̃♮
𝑋,∗𝒬)𝜅 ≅ ⨁

𝑛
⨁

(𝜅,𝜗•
𝜅,𝜉)

�̃�♮
𝜉,∗

𝔭H𝑛(ℎ̃𝜅,♮
𝐻𝜉,𝑋,∗𝒬𝜅

𝐻𝜉
)st,

where (𝜅,𝜗•
𝜅,𝜉) ranges over all pointed endoscopic data for a fixed 𝜅, 𝐻𝜉 is the correspond-

ing endoscopic group, �̃�𝜉 is the endoscopic transfer map �̃�𝒜 corresponding to𝐻𝜉, and𝒬𝜅
𝐻𝜉

is the intersection complex of ℳ̃𝜅,♮
𝐻𝜉,𝑋.

Since �̃�𝜉 for different 𝜉 have disjoint image, we see that Theorem 8.3.4 is a conse-

quence of the following statement:

Theorem 8.3.5. With the assumptions in Theorem 8.3.4, suppose (𝜅,𝜗•
𝜅,𝜉) is defined over 𝑘,

then there exists a 𝑘-isomorphism of semisimplifications of graded shifted perverse sheaves

over 𝒰

(⨁
𝑛

𝔭H𝑛(ℎ̃♮
𝑋,∗𝒬)𝜅)|�̃�♮

𝜉(�̃�
𝜅,♮
𝐻𝜉,𝑋

) ≅ �̃�♮
𝜉,∗⨁

𝑛
𝔭H𝑛(ℎ̃𝜅,♮

𝐻𝜉,𝑋,∗𝒬𝜅
𝐻𝜉

)st.

These two results will be proved in Chapter 10 after a complicated back-and-forth

between global and local arguments, similar to what is done in [Ngô10, § 8].

Conjecture 8.3.6 (Strong geometric stabilization). Theorems 8.3.4 and 8.3.5 hold over the

entire very 𝐺-ample anisotropic locus �̃�♮
≫ for all 𝐺 and 𝐻.

8.4 Top Ordinary Cohomology

In this section we study the top ordinary cohomology of ℎ̃♮
𝑋,∗𝒬. We hope to give a

description similar to that in [Ngô10, § 6.5] which can be used in tandem with so-called

support theorem.
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8.4.1 First we consider a general map𝑓∶ 𝑋 → 𝑌 of 𝑘-varieties (ormore generally Deligne-

Mumford stacks locally of finite types over 𝑘) of relative dimension 𝑑. The complex 𝑓!ℚℓ

will have cohomological amplitude [0, 2𝑑]. The stalk of the sheaf of top cohomology

𝐑2𝑑𝑓!ℚℓ at geometric point𝑦 ∈ 𝑌 is aℚℓ-vector space with a canonical basis in bijection

with irreducible components of fiber 𝑋𝑦. If 𝑋 is smooth, then the constant sheaf ℚℓ is a

pure complex, and so is 𝑓!ℚℓ if in addition 𝑓 is proper.

On the other hand, if 𝑓 is proper but 𝑋 is not smooth, then 𝑓∗ℚℓ = 𝑓!ℚℓ is not

necessarily pure, and one needs to replace ℚℓ with intersection complex IC𝑋 in order to

restore purity. However, in general 𝑓∗IC𝑋 may have larger cohomological amplitude than

2𝑑.

Unlike Lie algebra case, the total space of mH-fibration is not smooth in general; rather

we have a local model of singularity established in Theorem 6.10.2. Therefore in order

to give a nice description of the top ordinary cohomology, we need to establish cohomo-

logical amplitude of ℎ̃♮
𝑋,∗𝒬.

8.4.2 The question is local in �̃�♮
𝑋, and by proper base change, we may fix 𝑏 ∈ ℬ𝑋(𝑘)

and restrict to �̃�♮
𝑏. Recall by Theorem 6.10.2, we have an open dense subset 𝒰 ⊂ �̃�♮

𝑏

such that ℳ ≔ ℎ̃♮,−1
𝑋 (𝒰) admits a local model of singularity given by affine Schubert

varieties. Here the boundary divisor 𝑏 is fixed, so the local model is just a finite direct

product

𝖰 ≔
𝑚
∏
𝑖=1

[𝕃+𝑣𝑖,𝑁𝐺\𝖦𝗋≤−𝑤0(𝜆𝑖)
𝑣𝑖

],

where 𝑣𝑖 ∈ 𝑋(𝑘) are distinct points and 𝑁 is a sufficiently large integer depending on 𝑏.

Let ev𝑁 ∶ ℳ → 𝖰 be the evaluation map as in Theorem 6.10.2, but to save notations we

will simply call it ev instead (and it is not the same as the ev in Theorem 6.10.2). Let 𝑒 be

the relative dimension of ev.
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By Theorem 6.10.2 and Proposition 5.4.4, we know that

𝒬|ℳ = ev∗ℱ[𝑒](𝑒/2)

for some equivariant perverse sheaf ℱ on 𝖰. We also know that IC𝖰 is the unique direct

summand of ℱ supported on the entire 𝖰, and if 𝑏 is multiplicity-free in the sense of

Proposition 5.1.25, then ℱ is exactly IC𝖰.

The well-known fact from the theory of geometric Satake isomorphism is that sim-

ple equivariant perverse sheaves on 𝖰 of weight 0 are none other than the intersection

complexes of substacks

𝖰′ ≔
𝑚
∏
𝑖=1

[𝕃+𝑣𝑖,𝑁𝐺\𝖦𝗋≤−𝑤0(𝜆′
𝑖)

𝑣𝑖
]

for some 𝜆′
𝑖 ≤ 𝜆𝑖. Let 𝜆𝑏 = ∑𝑚

𝑖=1 𝜆𝑖 ⋅ 𝑣𝑖 and 𝜆′
𝑏 = ∑𝑚

𝑖=1 𝜆
′
𝑖 ⋅ 𝑣𝑖, by smoothness of ev, we

can compute the codimension of ℳ′ = ev−1(𝖰′):

2𝛿′ ≔ codimℳ(ℳ′) = codim𝖰(𝖰′) =
𝑚
∑
𝑖=1

⟨2𝜌, 𝜆𝑖 −𝜆′
𝑖⟩ = deg ⟨2𝜌, 𝜆𝑏 −𝜆′

𝑏⟩,

and that of 𝒰′ = ℎ̃♮
𝑋(ℳ′) by Riemann-Roch theorem,

codim𝒰(𝒰′)) ≤
𝑚
∑
𝑖=1

⟨𝜌, 𝜆𝑖 −𝜆′
𝑖⟩ =

1
2 codimℳ(ev−1(𝖰′)) = 𝛿′.

The last inequality is similar to the computations of 𝛿-critical and inductive strata in

§§ 7.4 and 7.5, so we do not repeat here. Using dimension formula Theorem 4.2.1 and

product formula Proposition 6.9.1, we see that the restriction of ℎ̃♮
𝑋 to ℳ′ is of relative

dimension at most 𝑑− 𝛿′, where 𝑑 = dimℳ− dim𝒰.

Since all the𝖰′ for different 𝜆′
𝑏 ≤ 𝜆𝑏 induces a stratification of𝖰 by smooth substacks,

the construction of intermediate extension functor implies that the support of H𝑖(IC𝖰)
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is contained in the union of those 𝖰′ with dimension at most −𝑖, and the equality is

achieved if and only if −𝑖 = dim𝖰. This implies that ICℳ = ev∗IC𝖰[𝑒](𝑒/2) has its

𝑖-th cohomology supported on those ℳ′ with dimension at most −𝑖, and the equality is

achieved if and only if −𝑖 = dimℳ. In other words, if ℳ′ is contained in the support of

H𝑖(ICℳ), then 2𝛿′ ≥ 𝑖+ dimℳ, with equality achieved if and only if 𝛿′ = 0. This shows

that ℎ̃♮
𝑋,∗(H𝑖(ICℳ)) is supported on cohomological degrees

[−dimℳ,−dimℳ+ 2𝑑],

and with the upper bound achieved if and only if 𝑖 = −dimℳ. A standard argument

using spectral sequence then shows that ℎ̃♮
𝑋,∗(ICℳ) has cohomological degree bounded

above by−dimℳ+2𝑑, and the stalk of its top cohomology at any geometric point 𝑎 ∈ 𝒰

has a basis in bijection with the irreducible components of ℳ𝑎.

The same argument can be applied to ICℳ′ = ev∗IC𝖰′[𝑒](𝑒/2), and if codim𝒰(𝒰′)

is exactly 𝛿′, then we may have additional contribution to the top cohomology. Using

geometric Satake isomorphism, the appearance of IC𝖰′ has a representation-theoretic

explanation, i.e., the branching rule in the decomposition of (symmetric) tensor products

of irreducible ̌𝐺sc-representations. So such additional contribution to top cohomology is

also relatively easy to compute. Thus far we have shown that

Proposition 8.4.3. Let 𝒰 ⊂ �̃�♮
𝑋 be any irreducible open substack over which there is a

local model of singularity as in Theorem 6.10.2, and ℳ = ℎ̃−1
𝑋 (𝒰). Then the complex

ℎ̃♮
𝑋,∗(𝒬)|𝒰 is supported on cohomological degrees

[−dimℳ,−dimℳ+ 2𝑑],

where 𝑑 = dimℳ − dim𝒰. In addition, if ̃𝑎 ∈ 𝒰 lies over a multiplicity-free boundary

divisor in the sense of Proposition 5.1.25, then H−dimℳ+2𝑑(ℎ̃♮
𝑋,∗𝒬) ̃𝑎 has a canonical

basis being the irreducible components of ℳ ̃𝑎.
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8.4.4 For simplicity, we retain the notations in Proposition 8.4.3. We let 𝑝∶ 𝒫 → 𝒰 be

the pullback of 𝒫𝑋 → 𝒜𝑋 to 𝒰, and let ℎ be the restriction of ℎ̃𝑋 to 𝒰. We still use 𝒬 to

denote ICℳ = ICℳ̃♮
𝑋
|ℳ and it should not cause any confusion.

According to Lemme d’homotopie [LN08, Lemme 3.2.3], the action of𝒫 onℎ∗𝒬 factors

through sheaf of finite abelian groups𝜋0(𝒫), and so does the action on𝐑−dimℳ+2𝑑ℎ∗𝒬.

Let ̃𝑎 ∈ 𝒰(𝑘) be a point lying over a multiplicity-free boundary divisor 𝜆𝑏 = ∑𝑚
𝑖=1 𝜆𝑖𝑣𝑖.

Being multiplicity-free means that at each point 𝑣𝑖, 𝜆𝑖 is a cocharacter in the set of

minimal generators of the cone of 𝔄𝔐 at 𝑣𝑖. By Proposition 8.4.3, the 𝒫 ̃𝑎-action on

(𝐑−dimℳ+2𝑑ℎ∗𝒬) ̃𝑎 is just the action induced by the 𝜋0(𝒫 ̃𝑎)-action on the set of ir-

reducible components of ℳ ̃𝑎.

Using product formula Propositions 6.9.1 and 6.9.6, we see that (𝐑−dimℳ+2𝑑ℎ∗𝒬)st, ̃𝑎

has a canonical basis in bijection with the (necessarily finite) direct product

∏
𝑣∈𝑋(𝑘)

Irr[ℳ𝑣( ̃𝑎)/𝒫𝑣( ̃𝑎)].

If 𝑎 is unramified at point 𝑣𝑖, then its Newton point 𝜈𝑖 is integral, and we know

# Irr[ℳ𝑣𝑖( ̃𝑎)/𝒫𝑣𝑖( ̃𝑎)] = 𝑚−𝑤0(𝜆𝑖)𝜈𝑖

according to Theorem 4.3.5. For the same reason, when 𝑣 ≠ 𝑣𝑖 for any 𝑖, the regular

locus ℳ𝑣( ̃𝑎)reg is dense in ℳ𝑣( ̃𝑎) and is a 𝒫𝑣( ̃𝑎)-torsor. So in this case

# Irr[ℳ𝑣( ̃𝑎)/𝒫𝑣( ̃𝑎)] = 1.

Suppose ̃𝑎 is very (𝐺,𝑁)-ample for some𝑁 = 𝑁(𝛿 ̃𝑎) as in § 7.4. This ensures that the

𝛿-stratum in 𝒰 containing ̃𝑎 has codimension at least 𝛿 ̃𝑎 in 𝒰. Furthermore, assume ̃𝑎

is contained in a 𝛿-critical stratum and is a general enough point therein. Then we know

by Corollary 7.4.7 that ̃𝑎 is unramified at each 𝑣𝑖 and its Newton point 𝜈𝑖 at 𝑣𝑖 is integral.
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Thus we have the following:

Proposition 8.4.5. Let ̃𝑎 ∈ 𝒰(𝑘) be such that it is unramified at every 𝑣𝑖. Then the stalk

(𝐑−dimℳ+2𝑑ℎ∗𝒬)st, ̃𝑎 is a ℚℓ-vector space of rank ∑𝑖𝑚−𝑤0(𝜆𝑖)𝜈𝑖 . In particular, it is

true for ̃𝑎 that is very (𝐺,𝑁(𝛿 ̃𝑎))-ample and is a general enough point of a 𝛿-critical

stratum.

8.4.6 Suppose we have a 𝜅-stratum 𝒰(𝜅,𝜗•
𝜅,𝜉) ⊂ 𝒰 corresponding to endoscopic datum

(𝜅,𝜗•
𝜅,𝜉) and endoscopic group 𝐻. Let 𝒰𝜅

𝐻 be the preimage of 𝒰(𝜅,𝜗•
𝜅,𝜉) in �̃�𝜅

𝐻,𝑋. Note

that 𝒰𝜅
𝐻 may still have multiple irreducible components of various dimensions even if

𝒰(𝜅,𝜗•
𝜅,𝜉) is irreducible.

Suppose that𝒰𝜅
𝐻 is very𝐻-ample, then 𝛿 ̃𝑎𝐻 = 0 for any general ̃𝑎𝐻 in each irreducible

component of 𝒰𝜅
𝐻. Let 𝒮𝐻 ⊂ 𝒰𝜅

𝐻 be an irreducible component and let 𝒮 be its image in

𝒰(𝜅,𝜗•
𝜅,𝜉). By upper-semicontinuity, the 𝛿-invariant achieves minimal value over an open

dense subset of 𝒮, and let 𝛿𝒮 be this value.

If codim𝒰(𝒮) = 𝛿𝒮, then by definition 𝒮 is 𝛿-critical. In fact, we know that the im-

age of any 𝛿-critical stratum in 𝒮𝐻 is also 𝛿-critical in 𝒰, because the difference 𝛿 − 𝛿𝐻

is constant throughout 𝒮 by (6.11.5). For any 𝛿′ > 0, if we further assume that 𝒮𝐻 is

very (𝐻,𝑁(𝛿′))-ample (note that 𝑁(𝛿′) here depends on both 𝐻 and 𝛿′), then by Propo-

sition 7.4.5 applied to 𝒮𝐻, we have that

codim𝒰(𝒮∩𝒰𝛿𝒮+𝛿′) ≥ 𝛿𝒮 +𝛿′.

8.4.7 Suppose now ̃𝑎𝐻 is a general 𝑘-point of a 𝛿-critical stratum 𝒮𝐻,𝛿′ in 𝒮𝐻, and sup-

pose it is very (𝐻,𝑁(𝛿′))-ample. Let

𝜆𝐻,𝑏𝐻 =
𝑚
∑
𝑖=1

𝜆𝐻,𝑖 ⋅ 𝑣𝑖
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be the boundary divisor of ̃𝑎𝐻. Let ̃𝑎 be the image of ̃𝑎𝐻 in 𝒮, then it is also a general

point in a 𝛿-critical stratum in 𝒰. Let

𝜆𝑏 =
𝑚
∑
𝑖=1

𝜆𝑖 ⋅ 𝑣𝑖

be the boundary divisor of ̃𝑎.

There is no guarantee that ̃𝑎 is very (𝐺,𝑁(𝛿 ̃𝑎))-ample even assuming 𝒮 is 𝛿-critical, so

we cannot directly apply Corollary 7.4.7 to ̃𝑎. Nevertheless, we may apply it to ̃𝑎𝐻 since

we assume ̃𝑎𝐻 is (𝐻,𝑁(𝛿′))-very ample, and it implies that ̃𝑎𝐻 is unramified at every 𝑣𝑖.

Since the local ramification index 𝑐𝑣𝑖( ̃𝑎) (resp. 𝑐𝐻,𝑣𝑖( ̃𝑎𝐻)) depends only on the generic

fiber of the regular centralizer 𝔍 ̃𝑎 (resp. 𝔍𝐻, ̃𝑎𝐻), and we know generically 𝔍 ̃𝑎 and 𝔍𝐻, ̃𝑎𝐻 are

canonically isomorphic, we have

𝑐𝑣𝑖( ̃𝑎) = 𝑐𝐻,𝑣𝑖( ̃𝑎𝐻) = 0.

In other words, ̃𝑎 must be unramified at every 𝑣𝑖. Using the same argument as Proposi-

tion 8.4.5, and replace the stable constituent by 𝜅-isotypic constituent, we reach a similar

description.

Proposition 8.4.8. Suppose ̃𝑎𝐻 is a general point of a 𝛿-critical stratum in �̃�𝜅,♮
𝐻,𝑋 and

is very (𝐻,𝑁(𝛿𝐻, ̃𝑎𝐻))-ample. Let ̃𝑎 ∈ 𝒰 be the image of ̃𝑎𝐻. Suppose the local model

of singularity as in Theorem 6.10.2 exists in a neighborhood of ̃𝑎, and suppose ̃𝑎 has

multiplicity-free boundary divisor. Then (𝐑−dimℳ+2𝑑ℎ∗𝒬)𝜅, ̃𝑎 has rank ∑𝑖𝑚−𝑤0(𝜆𝑖)𝜈𝑖 .

Since at each 𝑣𝑖 the Newton point 𝜈𝑖 depends only on the generic point of ̃𝑎, and

similarly for the Newton point 𝜈𝐻,𝑖 of ̃𝑎𝐻, we have that 𝜈𝑖 = 𝜈𝐻,𝑖 viewed as rational

cocharacters of 𝑇ad( ̆𝐹𝑣𝑖). If ̃𝑎 is multiplicity-free, then so is ̃𝑎𝐻 by construction of 𝔐𝐻.

Using Proposition 8.4.5 and suppose local model of singularity exists near ̃𝑎𝐻 too, then

252



we have

dimℚℓ
(𝐑−dim ̃𝑎𝐻 ℳ𝐻+2𝑑𝐻ℎ𝐻,∗𝒬𝐻)st, ̃𝑎𝐻 =

𝑚
∑
𝑖=1

𝑚−𝑤𝐻,0(𝜆𝐻,𝑖)𝜈𝑖 ,

where dim ̃𝑎𝐻 ℳ𝐻 is the dimension of the component of ℳ̃𝜅
𝐻,𝑋 containing ̃𝑎𝐻, and 𝑑𝐻 is

the relative dimension of mH-fibration at ̃𝑎𝐻.

8.4.9 Choose compatible identifications 𝐺 ≅ 𝐆 and 𝐻 ≅ 𝐇 at 𝑣𝑖 and let �̌�′ ⊂ �̌�sc be the

preimage of �̌�. Recall that −𝑤𝐇,0(𝜆𝐇,𝑖) is an �̌�′-highest weight in the decomposition of

the irreducible �̌�sc-representation with highest weight −𝑤0(𝜆𝑖), and we must have

𝜈𝑖 ≤𝐇 −𝑤𝐇,0(𝜆𝐇,𝑖).

With this restriction in mind, if the set of ̃𝑎𝐻 is non-empty for a fixed ̃𝑎, then among

those ̃𝑎𝐻 mapping to a fixed ̃𝑎, they all restrict to the same map ̃𝑎∘
𝐻 from �̆� − supp(𝑏)

to [ℭ𝔐,𝐻/𝑍𝜅
𝔐]. The set of ways to extend ̃𝑎∘

𝐻 over 𝑣𝑖 is in natural bijection with the

set of irreducible �̌�′-representations contained in the �̌�-representation of highest weight

−𝑤0(𝜆𝑖), same as in the proof of Lemma 2.5.17 (see also Proposition 6.11.2). Do the

same for each 𝑣𝑖 one by one, we reach equality

dimℚℓ
(𝐑−dimℳ+2𝑑ℎ∗𝒬)𝜅, ̃𝑎 = ∑

̃𝑎𝐻↦ ̃𝑎
dimℚℓ

(𝐑−dim ̃𝑎𝐻 ℳ𝐻+2𝑑𝐻ℎ𝐻,∗𝒬𝐻)st, ̃𝑎𝐻 .

If furthermore we assume that a Steinberg quasi-section exists for 𝔐, then using product

formulae Propositions 6.9.1 and 6.9.6 and Proposition 4.5.12, and suppose both 𝑎 and 𝑎𝐻

are defined over some finite extension 𝑘′/𝑘 inside 𝑘, we even have canonical isomorphism

of Gal(𝑘/𝑘′)-modules induced by the restriction functor Res�̌��̌�′ :

(𝐑−dimℳ+2𝑑ℎ∗𝒬)𝜅, ̃𝑎 ≃ ⨁
̃𝑎𝐻↦ ̃𝑎

(𝐑−dim ̃𝑎𝐻 ℳ𝐻+2𝑑𝐻ℎ𝐻,∗𝒬𝐻)st, ̃𝑎𝐻 . (8.4.1)
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Remark 8.4.10. (1) (8.4.1) can be viewed as a sort of primal form of Theorem 8.3.4;

(2) On 𝐺-side, we need Proposition 6.9.1 to hold over 𝑘′ in order to maintain compati-

ble 𝜅-twisting on both sides of the product formula; on the other hand, the stable

constituent does not have 𝜅-twisting, so we may simply use Proposition 6.9.6 on

𝐻-side, which always holds over 𝑘′.

(3) In fact, there is no need to assume that ̃𝑎 has multiplicity-free boundary divisor

in (8.4.1) due to the representation-theoretic interpretation of 𝒬 and 𝒬𝐻 (see the

discussion preceding Proposition 8.4.3). However, we do not explicitly state it here

because the notations would become too involved and it does not provide anything

more interesting.

8.4.11 Up until now in this section we made a lot of assumptions. For reader’s conve-

nience we summarize the essential ones below:

(1) For both 𝐺 and 𝐻, we require the existence of respective local model of singularity

as in Theorem 6.10.2 (only its conclusion, not the cohomological conditions therein),

so that we have a representation-theoretic description of 𝒬 and 𝒬𝐻 respectively.

(2) For stable constituent of the cohomology, some ampleness condition on the bound-

ary divisor depending only on the group and 𝛿-invariant (the curve 𝑋 is always

fixed).

(3) For 𝜅-constituent, only ampleness condition on 𝐻-side is required, not for 𝐺, al-

though we still require 𝛿-criticality on the 𝐺-side.

(4) For a particularly clean formula for the rank of top cohomology, we want the bound-

ary divisor to be multiplicity-free in the sense of Proposition 5.1.25.

(5) For (8.4.1), no multiplicity-free condition is required.

254



8.4.12 So far our description of the top cohomology 𝐑−dimℳ+2𝑑ℎ∗𝒬 is at the stalk

level. Due the jump in ranks, there does not appear to be an easy description of the top

cohomology as a sheaf even just for the stable constituent. The reader can compare to

the Lie algebra case where the stable top cohomology is just the constant sheaf of rank 1

over the Hitchin base (see [Ngô10, Proposition 6.5.1]).

Nevertheless, it is still possible to describe (𝐑−dimℳ+2𝑑ℎ∗𝒬)st over each 𝛿-critical

stratum. Over the open dense subset 𝒰0 ⊂ 𝒰 where 𝛿 = 0, since ℳ is a 𝒫-torsor,

(𝐑−dimℳ+2𝑑ℎ∗𝒬)st is isomorphic to constant sheaf ℚℓ up to a Tate twist. In fact, we

can do much better than this.

Lemma 8.4.13. With the setup in Proposition 8.4.5, let 𝒰′ ⊂ 𝒰 be the open dense locus

where either the discriminant divisor and the boundary divisor do not collide or 𝛿 = 0.

Then (𝐑−dimℳ+2𝑑ℎ∗𝒬)st is isomorphic to the constant sheaf ℚℓ up to Tate twist.

Proof. By Corollary 4.3.6, we have that for any ̃𝑎 ∈ 𝒰′, ℳreg
̃𝑎 is dense in ℳ ̃𝑎 and is a

𝒫 ̃𝑎-torsor. Étale-locally we may trivialize this torsor hence have an open embedding 𝒫 →

ℳ. This embedding identifies 𝐑−dimℳ+2𝑑ℎ∗𝒬 with 𝐑2𝑑𝑝!ℚℓ compatible with 𝜋0(𝒫)-

actions up to Tate twist. If we only consider the stable constituent, then this description

is compatible over the intersections of étale neighborhoods, so we have the desired result.

∎

Note that 𝒰′ already contains multiple 𝛿-critical loci: there is 𝒰0, but there can also

be other strata with 𝛿 > 0, and their associated local 𝛿-invariants is described in § 7.4.8.

8.4.14 Now we move on to a 𝛿-critical stratum outside 𝒰′. Suppose now 𝒱 ⊂ 𝒰 is an

irreducible locally-closed subset where the discriminant divisor and the boundary divisor

intersects at exactly one point (set-theoretically), and 𝒱 is 𝛿-critical. Let ̃𝑎 ∈ 𝒱(𝑘) be a

general point, and 𝑣 ∈ 𝑋(𝑘) is the unique point where the discriminant and boundary

divisors intersect. When ̃𝑎 moves in 𝒱, 𝑣 moves in 𝑋, hence it may be seen as a family of
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divisors in 𝑋×𝒱 over 𝒱. Then ̃𝑎 is unramified at 𝑣 (because 𝒱 is 𝛿-critical) with local

Newton point 𝜈, and (𝐑−dimℳ+2𝑑ℎ∗𝒬)st has rank given by weight multiplicity

𝑚𝒱 ≔ 𝑚𝜆𝑣𝜈.

Let 𝛿𝒱 = 𝛿 ̃𝑎 be the minimum of 𝛿 on 𝒱. Since 𝒱 is irreducible, we know that the sheaf

(𝐑−dimℳ+2𝑑ℎ∗𝒬)st has to have constant rank when restricted to 𝒱𝛿𝒱 . Let 𝒱′ ⊂ 𝒱 be

an open subset containing 𝒱𝛿𝒱 where (𝐑−dimℳ+2𝑑ℎ∗𝒬)st has constant rank 𝑚𝒱. If

we choose locally over 𝒱′ a pinning of 𝐺 over the formal disc around 𝑣, this is equivalent

to saying that the Newton point at 𝑣 does not change.

We would like to show that (𝐑−dimℳ+2𝑑ℎ∗𝒬)st|𝒱′ is a local system with rank 𝑚𝒱,

and since one can always extend a local system over any subset of codimension 2, it

suffices to only consider the subset of 𝒱′ such that we either have 𝛿 = 𝛿𝒱 or 𝛿 =

𝛿𝒱 + 1. In such case, we may assume that 𝑎 is 𝜈-regular semisimple at 𝑣, because the

collection of points not satisfying this condition has codimension at least 2 (see the proof

of Proposition 7.4.5) hence can be safely deleted. In particular, the multiplicative affine

Springer fiber at 𝑣 is a locally constant fibration over 𝒱′.

If we look at product formula (6.9.3), it is easy to believe that the jump in number of

irreducible components (modulo 𝜋0(𝒫)-action) is purely a local phenomenon and only

comes from the multiplicative affine Springer fiber at 𝑣, and we know the multiplicative

affine Springer fiber at 𝑣 is locally constant over𝒱′. The problem is, however, the product

formula we have been using so far only works over one point ̃𝑎 ∈ 𝒱′(𝑘). Therefore

we must find another way to extract local geometry from global geometry, and ideally

only at 𝑣, not every point in the discriminant divisor. This is achieved using a new kind

of Hecke-type stack which we formulate in the next section, and afterwards we shall

continue describing top cohomology using those Hecke stacks.

256



8.5 mH-Hecke Stacks

Given mH-fibration ℎ𝑋 ∶ ℳ𝑋 → 𝒜𝑋, let ℋ𝑋 be the stack whose 𝑆-points are tuples

(ℒ, 𝐸1,𝜙1, 𝐸2,𝜙2,𝜓) where ℒ ∈ Bun𝑍𝔐(𝑆), (ℒ, 𝐸𝑖,𝜙𝑖) ∈ ℳ𝑋(𝑆) are two points map-

ping to the same point in 𝒜𝑋(𝑆) whose boundary divisor is denoted by 𝜆𝑏, and 𝜓 is an

isomorphism

𝜓∶ (𝐸1,𝜙1)|𝑋×𝑆−𝜆𝑏
∼
⟶ (𝐸2,𝜙2)|𝑋×𝑆−𝜆𝑏 .

Note that since 𝑋 is separated, the mHiggs field 𝜙2 (or 𝜙1, but not both) is determined by

other data in the tuple, but we still want to keep both 𝜙1 and 𝜙2 to make the definition

more symmetric. By its definition ℋ𝑋 fits into the following diagram where the maps are

the obvious ones:
ℋ𝑋

ℳ𝑋 ×𝒜𝑋 ℳ𝑋

ℳ𝑋 ℳ𝑋

𝒜𝑋

⃖⃗ℎ⃖ℎ⃖ ⃖ℎ⃗

pr1 pr2

ℎ𝑋 ℎ𝑋

Definition 8.5.1. The stackℋ𝑋 is called themH-Hecke stack associated with mH-fibration

ℎ𝑋 ∶ ℳ𝑋 → 𝒜𝑋.

Similarly, let ℋBun𝐺 be the stack classifying tuples (𝑏, 𝐸1, 𝐸2,𝜓), where 𝑏 ∈ ℬ𝑋, and
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(𝐸1, 𝐸2,𝜓) is as in ℋ𝑋, then ℋ𝑋 fits into the larger diagram

ℋ𝑋

ℳ𝑋 ×𝒜𝑋 ℳ𝑋

ℳ𝑋 ℳ𝑋

𝒜𝑋

⃖⃗ℎ⃖ℎ⃖ ⃖ℎ⃗

pr1 pr2

ℎ𝑋 ℎ𝑋

⟶

ℋBun𝐺

ℬ𝑋 × Bun𝐺×Bun𝐺

ℬ𝑋 × Bun𝐺 ℬ𝑋 × Bun𝐺

ℬ𝑋

⃖⃗𝑏⃖⃖𝑏 ⃖⃗𝑏

id×pr1 id×pr2

(8.5.1)

It is clear that ⃖⃖𝑏 (resp. ⃖⃗𝑏) is a locally trivial fibration of affine Grassmannians of 𝐺 relative

to ℬ𝑋, and that

ℋ𝑋 ⟶ ℋBun𝐺 ×ℬ𝑋×Bun𝐺 ℳ𝑋

induced by ⃖ℎ⃖ and ⃖⃖𝑏 (resp. ⃖ℎ⃗ and ⃖⃗𝑏) is a closed embedding of ℳ𝑋-functors. Therefore

ℋ𝑋 is an ind-algebraic stack of ind-finite type that is ind-proper over ℳ𝑋.

Lemma 8.5.2. Let (ℒ, 𝐸,𝜙) ∈ ℳ♡
𝑋(𝑘) and let 𝑎 ∈ 𝒜♡

𝑋 be its image and 𝜆𝑏 the associated

boundary divisor. Then the fiber of⃖ℎ⃖ (resp. ⃖ℎ⃗) is isomorphic to the product of multiplicative

affine Springer fibers at the support of 𝜆𝑏

ℳ𝜆𝑏(𝑎) ≔ ∏
𝑣∈𝜆𝑏

ℳ𝑣(𝑎). (8.5.2)

Proof. The statements for ⃖ℎ⃖ and for ⃖ℎ⃗ are the same so it suffices to prove for ⃖ℎ⃗. Given

(ℒ, 𝐸,𝜙), since 𝑘 is algebraically closed, we may choose and fix an isomorphism around

the formal disc �̆�𝜆𝑏 around the support of 𝜆𝑏:

𝜏∶ (ℒ, 𝐸,𝜙) ⟶ (ℒ0, 𝐸0, 𝛾𝑎,𝜆𝑏)
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where ℒ0 (resp. 𝐸0) is the trivial 𝑍𝔐-torsor (resp. 𝐺-torsor), and 𝛾𝑎,𝜆𝑏 ∈ 𝔐(�̆�𝜆𝑏) such

that 𝜒𝔐(𝛾𝑎,𝜆𝑏) = 𝑎(�̆�𝜆𝑏).

For any 𝑘-scheme 𝑆, we have map

⃖ℎ⃗−1(ℒ, 𝐸,𝜙)(𝑆) ⟶ ℳ𝜆𝑏(𝑎)

(ℒ, 𝐸1,𝜙1,𝜓) ⟼ (ℒ|�̆�𝜆𝑏
, 𝐸1|�̂�𝜆𝑏

,𝜙1|�̆�𝜆𝑏
, 𝛽),

where 𝛽 is the composition of maps

𝛽∶ (ℒ, 𝐸1,𝜙1)|�̆�•
𝜆𝑏

𝜓
⟶ (ℒ, 𝐸,𝜙)|�̆�•

𝜆𝑏

𝜏
⟶ (ℒ0, 𝐸0, 𝛾𝑎)|�̆�•

𝜆𝑏
,

and �̆�•
𝜆𝑏

is the punctured disc. The map 𝛽 is clearly injective: if (ℒ, 𝐸1,𝜙1,𝜓) and

(ℒ, 𝐸′
1,𝜙

′
1,𝜓

′) have isomorphic image under 𝛽, they are isomorphic over both �̆� × 𝑆 −

𝜆𝑏 and �̆�𝜆𝑏 , together with their gluing data. It implies they are isomorphic tuples in

⃖ℎ⃗−1(ℒ, 𝐸,𝜙)(𝑆). On the other hand, 𝛽 is also surjective, because any point in ℳ𝜆𝑏(𝑎)

can be glued with (ℒ, 𝐸,𝜙)|�̆�×𝑆−𝜆𝑏
to obtain a point in ⃖ℎ⃗−1(ℒ, 𝐸,𝜙). This finishes the

proof. ∎

8.5.3 There are some useful variants of mH-Hecke stacks. First of all, the mH-base can

be replaced by any algebraic 𝒜𝑋-stack 𝒰 → 𝒜𝑋 and ℳ𝑋 by its pullback to 𝒰. Secondly,

the boundary divisor 𝜆𝑏 can be replaced by any finite flat family 𝜆′
𝒰 of Cartier divisors

in 𝑋 × 𝒰 over 𝒰, so that the rational map 𝜓 in the definition is now an isomorphism

outside 𝜆′
𝒰. Let ℋ′

𝒰 be the corresponding Hecke stack, together with maps ⃖ℎ⃖′
𝒰, ⃖ℎ⃗′

𝒰, etc.

Definition 8.5.4. Given a tuple (ℎ𝑋,𝒰, 𝜆′
𝒰) as above, we call ℋ′

𝒰 the generalized mH-

Hecke stack associated with (ℎ𝑋,𝒰, 𝜆′
𝒰).

Remark 8.5.5. Note that in the case of (usual) mH-Hecke stack, the Cartier divisor can

be chosen to be the numerical boundary divisor 𝔅Env(𝐺sc) (because the actual boundary

divisor is not really a Cartier divisor on 𝑋).
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The representability of ℋ′
𝒰 can be seen using a similar diagram as (8.5.1), with ℬ𝑋

replaced with appropriate Hilbert scheme of 𝑋.

Example 8.5.6. If 𝑈 → ℬ𝑋 is any map of algebraic stacks, we can let 𝒰 be the preimage

of 𝑈. As for the divisor family, suppose that over 𝑈 the boundary divisor 𝜆𝑈, viewed as

a finite flat 𝑈-scheme, has multiple connected components, and we denote one of which

by 𝜆′
𝑈, in other words, 𝜆′

𝑈 is a finite flat family of boundary subdivisors of 𝜆𝑈. We call

the resulting Hecke stack ℋ′
𝑈 the partial mH-Hecke stack associated with (ℎ𝑋,𝑈, 𝜆′

𝑈).

Example 8.5.7. We can let 𝒰 = 𝒜♡
𝑋 and 𝜆′

𝒰 be the discriminant divisor. In this case we

denote the resulting Hecke stack by ℋ𝔇𝔐 , and call it the 𝔇-Hecke stack.

If 𝜆″
𝒰 → 𝜆′

𝒰 is a 𝒰-morphism of divisor families, then we have natural maps ℋ″
𝒰 →

ℋ′
𝒰. Using the same argument as in Lemma 8.5.2, we have the following result:

Lemma 8.5.8. Let (ℒ, 𝐸,𝜙) ∈ ℳ♡
𝑋|𝒰(𝑘) and 𝑎 ∈ 𝒰 be its image, and 𝜆′

𝑎 the associated

Cartier divisor induced by 𝜆′
𝒰. The fiber of ⃖ℎ⃖′

𝒰 (resp. ⃖ℎ⃗′
𝒰) over (ℒ, 𝐸,𝜙) is isomorphic to

ℳ𝜆′
𝑎 ≔ ∏

𝑣∈𝜆′
𝑎

ℳ𝑣(𝑎).

Moreover, if 𝜆″
𝒰 → 𝜆′

𝒰 are two divisor families, then this isomorphism is compatible with

the natural map (⃖ℎ⃖″
𝒰)−1(ℒ, 𝐸,𝜙) → (⃖ℎ⃖′

𝒰)−1(ℒ, 𝐸,𝜙) and the map induced by (𝐸,𝜙):

ℳ𝜆″
𝑎 ⟶ ℳ𝜆′

𝑎 ,

and similarly for the ⃖ℎ⃗ side.

8.5.9 The symmetry of mH-Hecke stacks can be described using regular centralizer just

like mH-fibrations. The action of Picard stack 𝒫𝑋 can be pulled back to ℳ𝑋 to give an

action of ℳ𝑋 ×𝒜𝑋 𝒫𝑋 on ℳ𝑋 ×𝒜𝑋 ℳ𝑋, relative to the first projection to ℳ𝑋. This can
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also be achieved by pulling back regular centralizer 𝔍𝑋 → 𝑋×𝒜𝑋 to 𝑋×ℳ𝑋, and form

the relative Picard stack over ℳ𝑋.

Suppose for now 𝔐 = Env(𝐺sc), then over ℬ𝑋 there is a finite flat family of Cartier

divisors in 𝑋, namely the numerical boundary divisor induced by 𝔅𝔐. Since the regular

centralizer is affine smooth, we may use the same construction as in § 5.2, and define the

relative affine Grassmannian

𝒫ℬ𝑋 ≔ 𝖦𝗋𝔍𝑋,ℬ𝑋 ⟶ 𝒜𝑋

whose fiber at 𝑎 ∈ 𝒜𝑋 is exactly the product of local Picard group

𝒫ℬ𝑋,𝑎 = ∏
𝑣∈𝔅𝑎

𝒫𝑣(𝑎).

If 𝔐 ≠ Env(𝐺sc), we may simply pull back the construction for Env(𝐺sc). The same

construction can be done for any monoid 𝔐 such that 𝔄𝔐 is of standard type, and it

agrees with the pullback of the construction for Env(𝐺sc) (even though 𝔅𝔐 in general is

not the pullback of 𝔅Env(𝐺sc)).

We have the forgetful map 𝒫ℬ𝑋 → 𝒫𝑋 by forgetting the trivialization of 𝔍𝔐-torsor over

𝑋 − 𝔅𝔐, so 𝒫ℬ𝑋 naturally acts on ℳ𝑋. We claim that 𝒫ℬ𝑋 , after pulling back to ℳ𝑋,

acts on ⃖ℎ⃖∶ ℋ𝑋 → ℳ𝑋, making ⃖⃗ℎ a 𝒫ℬ𝑋-equivariant map, and similarly for ⃖ℎ⃗. Indeed,

suppose we have tuple (ℒ, 𝐸1,𝜙1, 𝐸2,𝜙2,𝜓) ∈ ℋ𝑋(𝑆) and (𝐸𝔍, 𝜏) ∈ 𝒫ℬ𝑋(𝑆) where 𝐸𝔍 is

a 𝔍𝔐-torsor over 𝑋 × 𝑆 and 𝜏 is a trivialization of 𝐸𝔍 outside 𝔅𝔐. The action 𝐸𝔍 on ℳ𝑋

sends (ℒ, 𝐸2,𝜙2) to

𝜙′
2 ∶ 𝐸′

2 ≔ 𝐸2 ×𝔍𝔐
𝜙2,𝔐ℒ

𝐸𝔍 ⟶ 𝔐ℒ,

where the action of 𝔍𝔐 on 𝜙2 is induced by the canonical map 𝜒∗
𝔐𝔍𝔐 → 𝐼𝔐. The trivial-
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ization 𝜏 induces isomorphism

(𝐸2,𝜙2)|𝑋×𝑆−𝔅𝔐
∼
⟶ (𝐸′

2,𝜙
′
2)|𝑋×𝑆−𝔅𝔐 ,

whose composition with 𝜓 gives

𝜓′ ∶ (𝐸1,𝜙1)|𝑋×𝑆−𝔅𝔐
∼
⟶ (𝐸′

2,𝜙
′
2)|𝑋×𝑆−𝔅𝔐 .

This defines the 𝒫ℬ𝑋-action and clearly it makes ⃖⃗ℎ equivariant. The argument for ⃖ℎ⃗ is

the same.

The story for generalized mH-Hecke stacks ℋ′
𝒰 associated with tuple (ℎ𝑋,𝒰, 𝜆′

𝒰) is

also the same, except one replaces 𝔅𝔐 by 𝜆′
𝒰. For future convenience we denote the local

Picard group in this case by 𝒫𝜆′
𝒰

in place of 𝒫ℬ𝑋 . We leave other details to the reader.

Lemma 8.5.10. Let (ℒ, 𝐸,𝜙) ∈ ℳ♮
𝑋(𝑘) and 𝑎 ∈ 𝒜♮

𝑋(𝑘) be its image. The action of 𝒫ℬ𝑋

on ℋ𝑋 induces a bijection between sets of irreducible components modulo symmetry on

the fibers

#(Irr(ℋ(ℒ,𝐸,𝜙))/𝒫ℬ𝑋,(ℒ,𝐸,𝜙)(𝑘))
∼
⟶ #(Irr(ℳ𝑎)/𝒫𝑎(𝑘)).

Proof. The map ℋ(ℒ,𝐸,𝜙) → ℳ𝑎 factors through the space (8.5.2) in Lemma 8.5.2 using

a gluing argument similar to that in product formula: indeed, at 𝑣 ∉ 𝜆𝑏, (𝐸,𝜙) together

with a fixed local trivialization determines a distinguished point in ℳ𝑣(𝑎). It then in-

duces maps

[ℋ(ℒ,𝐸,𝜙)/𝒫ℬ𝑋,(ℒ,𝐸,𝜙)]
∼
⟶ ∏

𝑣∈𝜆𝑏

[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)] ⟶ [ℳ𝑎/𝒫𝑎],
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which factors through

∏
𝑣∈𝔇𝑎

[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)].

Note that when 𝑣 ∉ 𝔇𝑎, the stack [ℳ𝑣(𝑎)/𝒫𝑣(𝑎)] is just a 𝑘-point. According to The-

orem 4.3.5, if 𝑣 ∈ 𝑋 does not support the boundary divisor, then ℳreg
𝑣 (𝑎) is dense in

ℳ𝑣(𝑎) and is a 𝒫𝑣(𝑎)-torsor. Combining these facts we obtain the lemma. ∎

8.5.11 Simultaneous product formula We may replace the mH-Hecke stack by 𝔇-Hecke

stack ℋ𝔇𝔐 , and obtain a family of maps

ℋ𝔇 ×𝒫𝔇 𝒫♡
𝑋 ℳ♡

𝑋 ×𝒜♡
𝑋
ℳ♡

𝑋

ℳ♡
𝑋

⃖⃖Π⃖𝔇

⃖ℎ⃖𝔇∘pr1
pr1

where ⃖⃖Π⃖𝔇 is the map

((ℒ, 𝐸1,𝜙1, 𝐸2,𝜙2,𝜓),𝑝 ∈ 𝒫♡
𝑋) ⟼ (ℒ, 𝐸1,𝜙1, 𝑝 ⋅ (𝐸2,𝜙2)).

Over any (ℒ, 𝐸,𝜙) whose image is 𝑎 ∈ 𝒜♡
𝑋(𝑘), the fiber of ⃖⃖Π⃖𝔇 is clearly isomorphic to

the (non-reduced) product formula (6.9.2), so its reduced version is isomorphic to (6.9.3).

If (ℒ, 𝐸,𝜙) ∈ ℳreg
𝑋 (𝑘), since 𝒫𝑋 acts on ℳreg

𝑋 freely, ℳreg
𝑋 is smooth over 𝒜𝑋, then we

may locally around 𝑎 choose a section 𝒜𝑋 → ℳreg
𝑋 , and pull back ⃖⃖Π⃖𝔇. If a Steinberg

quasi-section exists, we may even do this over the entire 𝒜♡
𝑋. This way we obtain a

simultaneous product formula. There is a symmetric construction for ⃖ℎ⃗𝔇 as well.

Remark 8.5.12. (1) Although fiberwise ⃖⃖Π⃖𝔇 is a universal homeomorphism at least over

ℳ♮
𝑋, it is far from being an isomorphism.

(2) When there is no Steinberg quasi-section, the construction of ⃖⃖Π⃖𝔇 does not supersede
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the construction of (6.9.3), because we need to use the latter to show that ℳ𝑎 is

non-empty first so that (ℒ, 𝐸,𝜙) lying over 𝑎 exists.

(3) Unlike (6.9.3), which may only be defined over 𝑘 (e.g., when there is no Steinberg

quasi-sections), ⃖⃖Π⃖𝔇 is always defined over 𝑘. However, this still does not upgrade

(6.9.3) to a 𝑘-morphism, unless we already know ℳ𝑎 contains a 𝑘-point.

8.5.13 The construction of map ⃖⃖Π⃖𝔇 (and ⃖⃖⃗Π𝔇) works for any generalized mH-Hecke stack

ℋ′
𝒰, so we have morphism of stacks

ℋ′
𝒰 ×

𝒫𝜆′𝒰 𝒫𝒰 ℳ𝒰 ×𝒰 ℳ𝒰

ℳ𝒰

⃖⃖Π⃖′
𝒰

⃖ℎ⃖′
𝒰∘pr1

pr1

The quotient of ℋ′
𝒰 by 𝒫𝜆′

𝒰
is an ind-algebraic stack of ind-finite type over ℳ𝒰 whose

geometric fibers are proper algebraic stacks of finite type. In fact, since the reduced geo-

metric fibers of ⃖ℎ⃖′
𝒰 are schemes locally of finite type, we can, locally over ℳ𝒰, find some

affine open subset of ℋ′
𝒰 that maps surjectively onto the quotient [(ℋ′

𝒰)red/𝒫red
𝜆′
𝒰
]. For

example, since ℋ′
𝒰 embeds into a locally constant affine Grassmannian over ℳ𝒰, we can

take a sufficiently large truncation in the affine Grassmannian and take the preimage in

ℋ′
𝒰. Hence the stack

(ℋ′
𝒰)red ×

𝒫red
𝜆′𝒰 𝒫𝒰 (8.5.3)

is algebraic over ℳ𝒰, locally of finite type (it is not necessarily of finite type because

𝜋0(𝒫𝒰) may be infinite). When 𝒰 → 𝒜𝑋 has its image contained in 𝒜♮
𝑋, then (8.5.3) is a

Deligne-Mumford stack of finite type over 𝒰.
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8.5.14 We return to the situation at the end of § 8.4 and continue describing the sheaf

(𝐑−dimℳ+2𝑑ℎ∗𝒬)st. Over 𝒱′, choose the divisor family to be 𝑣 (note that 𝑣 can vary in

𝑋 over𝒱′), and consider the generalizedmH-Hecke stackℋ𝑣 associatedwith (ℎ𝑋,𝒱′, 𝑣).

This is a partial mH-Hecke stack with boundary subdivisor 𝜆𝑣. Recall the Newton point

𝜈 at 𝑣 is locally constant on 𝒱′, and the local 𝛿-invariant is exactly ⟨𝜌, 𝜆𝑣 −𝜈⟩, which is

constant on 𝒱′.

Since we want to prove that the stable top cohomology is a local system on𝒱′, we may

replace 𝒱′ by any strict Henselian neighborhood therein. Since ℳreg
𝒱′ is smooth over 𝒱′

and 𝒱′ is strictly Henselian, we have a section 𝜏 of 𝒱′ in ℳ𝒱′ . Such section induces a

tuple (ℒ, 𝐸,𝜙) ∈ ℳ𝒱′(𝒱′). We may trivialize 𝐸 at 𝑣 over 𝒱′, and by smoothness lift it

to the formal disc �̆�𝑣 around 𝑣. Using the same argument as in Lemma 8.5.2 (and the

fact that 𝐺-torsors over �̆�𝑣 is always trivial), we have that

𝜏∗ℋ𝑣 ≅ 𝒱′ ×ℳ𝑣(𝑎0),

where 𝑎0 is the unique closed point in 𝒱′. Since by assumption 𝑣 is the only point

supporting both boundary and discriminant divisors, ℳreg
𝑣′ (𝑎) is dense in ℳ𝑣′(𝑎) for

any 𝑎 ∈ 𝒱′ and 𝑣′ ≠ 𝑣. Since the image of 𝜙 is contained in 𝔐reg
ℒ outside 𝑣, the 𝒫𝒱′-

equivariant map

𝜏∗ (ℋ𝑣 ×𝒫𝑣 𝒫𝒱′) ⟶ 𝜏∗ (ℳ𝒱′ ×𝒱′ ℳ𝒱′) ≅ ℳ𝒱′

has fiberwise dense image over 𝒱′. This shows that (𝐑−dimℳ+2𝑑ℎ∗𝒬)st|𝒱′ is local

system of rank 𝑚𝜆𝑣𝜈 over 𝒱′. The whole argument clearly generalizes to more points

than 𝑣. Thus we have the following result:

Proposition 8.5.15. Suppose locally-closed substack 𝒱 ⊂ �̃�♮
𝑋 is such that:

(1) the local model of singularity as in Theorem 6.10.2 exists,
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(2) the boundary divisor is locally constant,

(3) for any 𝑎 ∈ 𝒱, 𝑎 is unramified at all points supporting the boundary divisor

(4) if locally over 𝒱 we write boundary divisor as 𝜆𝑏 = ∑𝑚
𝑖=1 𝜆𝑖 ⋅ 𝑣𝑖, where 𝑣𝑖 varies in

𝑋, then the Newton point 𝜈𝑖 at 𝑣𝑖 locally constant over 𝒱.

Then (𝐑−dimℳ+2𝑑ℎ∗𝒬)st|𝒱 is a local system. If moreover the boundary divisor stays

multiplicity-free in the sense of Proposition 5.1.25, then this local system has rank

𝑚
∏
𝑖=1

𝑚𝜆𝑖𝜈𝑖 .

The same argument for Proposition 8.5.15 can be applied to 𝜅-isotypic constituent as

well.

Proposition 8.5.16. For a fixed 𝜅, suppose locally-closed substack 𝒱 ⊂ �̃�♮
𝜅 satisfies all

the conditions in Proposition 8.5.15, then (𝐑−dimℳ+2𝑑ℎ∗𝒬)𝜅|𝒱 is a local system. If

moreover the boundary divisor stays multiplicity-free in the sense of Proposition 5.1.25,

then this local system has rank

𝑚
∏
𝑖=1

𝑚𝜆𝑖𝜈𝑖 ,

where the notations are as in Proposition 8.5.15.
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CHAPTER 9

SUPPORT THEOREM

In this section we prove a slightly generalized version of the Support Theorem in [Ngô10,

§ 7.2]. Themethod here follows the outline in [Ngô10, § 7.3–7.7], with somemodifications.

We then apply our abstract support theorem to mH-fibrations. One key input for

this application is the local model of singularity (Theorem 6.10.2), which will provide us

with the bound on cohomological amplitude that is only assumed in the abstract support

theorem.

9.1 Abelian Fibrations

Let 𝑓∶ 𝑀 → 𝑆 be a proper map of varieties over a finite field 𝑘. Let 𝑔∶ 𝑃 → 𝑆 be a smooth

commutative group scheme over 𝑆. Suppose 𝑃 acts on 𝑀 relative to 𝑆 and the stabilizers

are affine. Let 𝑃0 ⊂ 𝑃 be the open group subscheme such that for any geometric point

𝑠 ∈ 𝑆, 𝑃0
𝑠 is the neutral component of𝑃𝑠. We then have the canonical short exact sequence

of Chevalley

1 ⟶ 𝑅𝑠 ⟶ 𝑃0
𝑠 ⟶ 𝐴𝑠 ⟶ 1,

where 𝑅𝑠 is connected and affine and 𝐴𝑠 is an abelian variety. It induces a decomposition

of Tate modules

0 ⟶ Tℚℓ
(𝑅𝑠) ⟶ Tℚℓ

(𝑃0
𝑠 ) ⟶ Tℚℓ

(𝐴𝑠) ⟶ 0

We have an ℕ-valued function 𝛿(𝑠) = dim𝑅𝑠 defined for the topological points of

𝑆, which is necessarily upper-semicontinuous (see [Ngô10, § 5.6.2]). Suppose 𝛿 is con-
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structible, then it induces a locally closed stratification

𝑆 = ∐
𝛿∈ℕ

𝑆𝛿,

so that if 𝑠 ∈ 𝑆𝛿, then 𝛿(𝑠) = 𝛿.

Definition 9.1.1. We call (𝑓,𝑔) a weak abelian fibration if the following conditions are

satisfied:

(1) 𝑓 and 𝑔 have the same relative dimension 𝑑.

(2) For any geometric point 𝑠 ∈ 𝑆 and any 𝑚 ∈ 𝑀, it stabilizer in 𝑃𝑠 is affine.

(3) The Tate module Tℚℓ
(𝑃0) is polarizable. In other words, there exists étale locally

over 𝑆 an alternating bilinear form on Tℚℓ
(𝑃0), such that for any 𝑠 its restriction

to Tℚℓ
(𝑅𝑠) is zero and it induces a perfect pairing of Tℚℓ

(𝐴𝑠) with itself.

Definition 9.1.2. We call (𝑓,𝑔) a 𝛿-regular abelian fibration if it is a weak abelian fibration,

and for any 𝛿 ∈ ℕ, we have codim𝑆(𝑆𝛿) ≥ 𝛿. (If 𝑆𝛿 = ∅, then the codimension is ∞ by

convention.) Equivalently, we have for any irreducible closed subset 𝑍 ⊂ 𝑆, codim𝑆(𝑍) ≥

𝛿𝑍 where 𝛿𝑍 is the minimum of 𝛿 on 𝑍.

Remark 9.1.3. Note that both Definitions 9.1.1 and 9.1.2make sense if we replace schemes

with Deligne-Mumford stacks.

9.2 Goresky-MacPherson Inequality

Let (𝑓,𝑔) be a weak abelian fibration. Let ℱ ∈ Db
c(𝑀,ℚℓ) be a self-dual complex hence

of pure weight 0, so 𝑓∗ℱ ∈ Db
c(𝑆,ℚℓ) is also of pure weight 0 since 𝑓 is proper. Thus

we have (non-canonical) decomposition of Frobenius modules by [BBD82]:

𝑓∗ℱ ≅ ⨁
𝑛∈ℤ

𝔭H𝑛(𝑓∗ℱ)[−𝑛]. (9.2.1)
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Given an irreducible closed subset 𝑍 of 𝑆, let occ(𝑍) ⊂ ℤ be the set of numbers 𝑛 such

that 𝑍 appears in the set of supports supp 𝔭H𝑛(𝑓∗ℱ). By Poincaré duality, occ(𝑍) is

symmetric about 0. Suppose 𝑁 is the largest number such that H𝑁(𝑓∗ℱ) ≠ 0. Suppose

𝑍 ≠ ∅ and let 0 ≤ 𝑛 ∈ occ(𝑍). Then there exists an open subset𝑈 ⊂ 𝑆 such that𝑈∩𝑍 ≠

∅, and a local system 𝐿 on 𝑈∩𝑍, such that 𝑖∗𝐿[dim𝑍] (𝑖 being the map 𝑈∩𝑍 ↪ 𝑍) is

a direct summand of 𝔭H𝑛(𝑓∗ℱ)|𝑈, hence also a direct summand of 𝑓∗ℱ[𝑛]. Taking the

usual cohomology, one has that 𝑖∗𝐿 is a direct summand of H𝑛−dim𝑍(𝑓∗ℱ). Therefore

𝑛− dim𝑍 ≤ 𝑁. Since 𝑛 ≥ 0, we obtain the Goresky-MacPherson inequality:

codim𝑆(𝑍) ≤ dim𝑆+𝑁−𝑛 ≤ dim𝑆+𝑁.

In particular, if 𝑁 ≤ −dim𝑀+2𝑑 = −dim𝑆+𝑑, then codim𝑆(𝑍) ≤ 𝑑. Suppose further

we have that 𝑛 can be so chosen that 𝑛 ≥ (𝑑−𝛿𝑍), then we have an improved inequality

codim𝑆(𝑍) ≤ 𝛿𝑍. If equality holds (e.g., it happens when (𝑓,𝑔) is 𝛿-regular), all the

inequalities just mentioned are equalities, and in particular 𝑁 = −dim𝑀+ 2𝑑, and the

restriction of 𝔭H𝑛−dim𝑍(𝑓∗ℱ) to 𝑈 ∩ 𝑍 is a direct summand of the top cohomology

𝐑−dim𝑀+2𝑑𝑓∗ℱ.

9.3 Action by Cap Product

Let (𝑓,𝑔) be a weak abelian fibration. Following [LO08a,LO08b], we have the derived cate-

gory D([𝑀/𝑃],ℚℓ) of quotient stack [𝑀/𝑃], which we also define to be the 𝑃-equivariant

derived category D𝑃(𝑀,ℚℓ) on 𝑀 by pulling back through map 𝑞∶ 𝑀 → [𝑀/𝑃]. We

also have the full subcategories of various boundedness and constructibility conditions1.

Note that if a complex is 𝑃-equivariant, then it is also 𝑃0 equivariant. For the rest of this

section we are going to replace 𝑃 with 𝑃0 so that 𝑃 is fiberwise connected.

1. In [LO08a, LO08b], they have two variants of subcategories for each boundedness condition, but the
distinction is not very important here.
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Following [Ngô10, § 7.4], we define complex in Db
c(𝑆,ℚℓ)

Λ𝑃 = 𝑔!ℚℓ[2𝑑](𝑑),

which is concentrated in non-positive degrees and whose degree −1 cohomology is the

sheaf Tℚℓ
(𝑃) such that at any geometric point 𝑠 ∈ 𝑆 its stalk is the Tate module Tℚℓ

(𝑃𝑠).

We have in fact canonical isomorphisms in Db
c(𝑆,ℚℓ)

Λ𝑃 ≃ ⨁
𝑖≥0

H−𝑖(Λ𝑃)[𝑖] ≃ ⨁
𝑖≥0

∧𝑖 Tℚℓ
(𝑃)[𝑖], (9.3.1)

making it a graded algebra.

9.3.1 More generally, suppose ℱ ∈ Db
c(𝑀,ℚℓ) is 𝑃-equivariant, in other words, ℱ ≃

𝑞∗ℱ for some ℱ in Db
c([𝑀/𝑃],ℚℓ). Then the action morphism

𝑎∶ 𝑃×𝑆 𝑀 ⟶ 𝑀

is smooth and of relative dimension 𝑑. Therefore we have by adjunction a morphism of

complexes

𝑎!𝑎∗ℱ[2𝑑](𝑑) ⟶ ℱ.

Further pushing forward using 𝑓!, we obtain the morphism

(𝑔 ×𝑆 𝑓)!𝑎∗ℱ[2𝑑](𝑑) ⟶ 𝑓!ℱ.
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On the other hand, using the Cartesian diagram

𝑃×𝑆 𝑀 𝑀

𝑀 [𝑀/𝑃]

𝑎

𝑝2 𝑞
𝑞

,

we see that

𝑎∗ℱ ≃ 𝑎∗𝑞∗ℱ ≃ 𝑝∗
2 𝑞∗ℱ ≃ ℚℓ ⊠ℱ. (9.3.2)

So by Künneth formula, we have a morphism of cap products

Λ𝑃 ⊗𝑓!ℱ ⟶ 𝑓!ℱ. (9.3.3)

9.3.2 Now let ℱ ∈ Db
c(𝑀,ℚℓ) be a 𝑃-equivariant complex of pure weight 0. Since 𝑓 is

proper, we have 𝑓!ℱ ≃ 𝑓∗ℱ and its also pure of weight 0. For each 𝑛 ∈ ℤ we have a

canonical isomorphism of Frobenius modules

𝔭H𝑛(𝑓∗ℱ) ≃ ⨁
𝛼∈Σ

𝐾𝑛
𝛼 , (9.3.4)

where Σ is the index set of supports of the perverse cohomologies of 𝑓∗ℱ. For 𝛼 ∈ Σ,

we denote by 𝑍𝛼 corresponding the irreducible closed subset in 𝑆𝑘 and 𝐾𝑛
𝛼 the perverse

summand supported on 𝑍𝛼. Since ℱ is bounded and 𝑓 is of finite type, Σ is necessarily

finite.

By (9.3.1) and (9.3.3), we have a morphism

Tℚℓ
(𝑃) ⊗ 𝑓!ℱ ⟶ 𝑓!ℱ[−1].
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Composing with perverse truncation 𝔭𝜏≤𝑛(𝑓!ℱ) → 𝑓!ℱ, we have the induced map

Tℚℓ
(𝑃) ⊗ 𝔭𝜏≤𝑛(𝑓!ℱ) ⟶ 𝑓!ℱ[−1].

Applying functor 𝔭H𝑛, we have

𝔭H𝑛 (Tℚℓ
(𝑃) ⊗ 𝔭𝜏≤𝑛(𝑓!ℱ)) ⟶ 𝔭H𝑛−1(𝑓!ℱ).

Since tensoring with Tℚℓ
(𝑃) is perverse right-exact, we know that

Tℚℓ
(𝑃) ⊗ 𝔭𝜏≤𝑛−1(𝑓!ℱ) ∈ 𝔭D≤𝑛−1

c (𝑆,ℚℓ),

hence by tensoring with Tℚℓ
(𝑃) and then taking the 𝑛-th perverse cohomology, the exact

triangle

𝔭𝜏≤𝑛−1(𝑓!ℱ) ⟶ 𝔭𝜏≤𝑛(𝑓!ℱ) ⟶ 𝔭H𝑛(𝑓!ℱ)[−𝑛]
+1
⟶

induces an isomorphism

𝔭H𝑛 (Tℚℓ
(𝑃) ⊗ 𝔭𝜏≤𝑛(𝑓!ℱ))

∼
⟶ 𝔭H0 (Tℚℓ

(𝑃) ⊗ 𝔭H𝑛(𝑓!ℱ)) .

From this we have a map

𝔭H0 (Tℚℓ
(𝑃) ⊗ 𝔭H𝑛(𝑓!ℱ)) ⟶ 𝔭H𝑛−1(𝑓!ℱ).

Since Tℚℓ
(𝑃) ⊗ 𝔭H𝑛(𝑓!ℱ) ∈ 𝔭D≤0

c (𝑆,ℚℓ), it projects to its 0-th perverse cohomology,

hence we have a canonical map

Tℚℓ
(𝑃) ⊗ 𝔭H𝑛(𝑓!ℱ) ⟶ 𝔭H𝑛−1(𝑓!ℱ).
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The canonical decomposition (9.3.4) gives map

⨁
𝛼∈Σ

Tℚℓ
(𝑃) ⊗𝐾𝑛

𝛼 ⟶ ⨁
𝛼∈Σ

𝐾𝑛−1
𝛼 ,

and in particular a canonical map

Tℚℓ
(𝑃) ⊗𝐾𝑛

𝛼 ⟶ 𝐾𝑛−1
𝛼 (9.3.5)

for each 𝛼 ∈ Σ and 𝑛.

9.4 Statement of Freeness

Following [Ngô10, §§ 7.4.8–7.4.9], for each 𝛼 ∈ Σ, we may find a dense open subset 𝑉𝛼,

such that 𝐾𝑛
𝛼 can be expressed as 𝒦𝑛

𝛼[dim𝑉𝛼] for some local system 𝒦𝑛
𝛼 of weight 𝑛 on

𝑉𝛼. One can also so choose 𝑉𝛼 that there is a finite radical base change 𝑉′
𝛼 → 𝑉𝛼 over

which the Chevalley exact sequence exists:

1 ⟶ 𝑅𝛼 ⟶ 𝑃|𝑉′
𝛼 ⟶ 𝐴𝛼 ⟶ 1,

where 𝑅𝛼 is a smooth, fiberwise connected affine group scheme over 𝑉′
𝛼, and 𝐴𝛼 is an

abelian scheme over 𝑉′
𝛼. It then induces short exact sequence of sheaves

0 ⟶ Tℚℓ
(𝑅𝛼) ⟶ Tℚℓ

(𝑃|𝑉′
𝛼) ⟶ Tℚℓ

(𝐴𝛼) ⟶ 0,

which can be seen as a sequence of sheaves on 𝑉𝛼 since 𝑉′
𝛼 → 𝑉𝛼 is a universal home-

omorphism, and Tℚℓ
(𝑃|𝑉′

𝛼) is identified with Tℚℓ
(𝑃|𝑉𝛼). One may further shrink 𝑉𝛼 so

that Tℚℓ
(𝑅𝛼) is a local system of weight −2 (coming from the multiplicative part) and

Tℚℓ
(𝐴𝛼) is a local system of weight −1. Here the weight means the weight of 𝜎𝑘/𝑘′ for

some finite extension 𝑘′/𝑘 over which 𝑍𝛼 is defined. Finally, one shrinks 𝑉𝛼 further so
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that 𝑉𝛼 ∩𝑍𝛼′ = ∅ unless 𝑍𝛼 ⊂ 𝑍𝛼′ .

Now we choose an open subset 𝑈𝛼 ⊂ 𝑆𝑘 such that 𝑖𝛼 ∶ 𝑉𝛼 ↪ 𝑈𝛼 is a closed embed-

ding. Over 𝑈𝛼, (9.3.5) becomes

Tℚℓ
(𝑃) ⊗ 𝑖𝛼∗𝒦𝑛

𝛼[dim𝑉𝛼] ⟶ 𝑖𝛼∗𝒦𝑛−1
𝛼 [dim𝑉𝛼].

The projection formula gives

Tℚℓ
(𝑃) ⊗ 𝑖𝛼∗𝒦𝑛

𝛼 ≃ 𝑖𝛼∗ (𝑖∗𝛼 Tℚℓ
(𝑃) ⊗𝒦𝑛

𝛼) .

Since 𝑖𝛼 is closed embedding, 𝑖∗𝛼𝑖𝛼∗ ≃ id, hence we obtain canonical map over 𝑉𝛼

Tℚℓ
(𝑃|𝑉′

𝛼) ⊗𝒦𝑛
𝛼 ⟶ 𝒦𝑛−1

𝛼 .

Because 𝒦𝑛
𝛼 is of weight 𝑛 and 𝒦𝑛−1

𝛼 is of weight 𝑛−1, the action of Tℚℓ
(𝑃|𝑉′

𝛼) factors

through Tℚℓ
(𝐴𝛼) since the affine part has weight−2. Therefore we have a gradedmodule

structure on 𝒦𝛼 = ⨁𝑛𝒦𝑛
𝛼[−𝑛] over graded algebra Λ𝐴𝛼

Λ𝐴𝛼 ⊗𝒦𝛼 ⟶ 𝒦𝛼.

We are going to prove the following result:

Proposition 9.4.1. Suppose (𝑓,𝑔) is a weak abelian fibration and ℱ ∈ Db
c(𝑀,ℚℓ) is a

self-dual 𝑃-equivariant complex. Then for any geometric point 𝑢𝛼 ∈ 𝑉𝛼, the stalk 𝒦𝛼,𝑢𝛼

is a free Λ𝐴𝛼,𝑢𝛼-module.

Proof. It will be proved in §§ 9.5–9.7. ∎

Remark 9.4.2. According to [Ngô10, Lemme 7.4.11], the freeness statement is indepen-

dent of the geometric point 𝑢𝛼. In other words, if the freeness holds as stated at just

one point 𝑢𝛼, then it holds for any point, and in addition one can find some graded local
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system 𝐸 (i.e., a direct sum of shifted local systems) on 𝑉𝛼 such that 𝒦𝛼 ≅ Λ𝐴𝛼 ⊗ 𝐸 as

graded Λ𝐴𝛼-modules.

9.5 Freeness over a Point

We first prove a generalized version of [Ngô10, Proposition 7.5.1], which will serve as the

base case for the inductive argument later on.

Lemma 9.5.1. Let 𝑀 be a projective variety over algebraically closed field 𝑘 with an action

of an abelian variety 𝐴 over 𝑘. Suppose all stabilizers are finite. Then

⨁
𝑛

H𝑛
c (𝑀,ℱ)[−𝑛]

is a free graded Λ𝐴-module for any 𝐴-equivariant complex ℱ ∈ Db
c(𝑀,ℚℓ).

Proof. Denote by 𝑓 (resp. 𝑓) the map 𝑀 → Spec𝑘 (resp. [𝑀/𝐴] → Spec𝑘). Consider

quotient map 𝑞∶ 𝑀 → [𝑀/𝐴]. By definition, ℱ ≃ 𝑞∗ℱ for some ℱ ∈ Db
c([𝑀/𝐴],ℚℓ).

Here

The map 𝑞 is smooth and projective, and following [Ngô10, Proposition 7.5.1], we have

a non-canonical isomorphism

𝑞∗ℚℓ ≅ ⨁
𝑛

H𝑛
c (𝐴,ℚℓ)[−𝑛], (9.5.1)

where the right-hand side is viewed as constant sheaves on [𝑀/𝐴]. Since [𝑀/𝐴] is a

Deligne-Mumford stack, the cap product action constructed in 9.3, although not stated

explicitly, can also be applied to 𝑆 = [𝑀/𝐴]with 𝑃 = 𝐴×𝑆. Therefore both sides of (9.5.1)

carry actions of Λ𝐴 over [𝑀/𝐴]. We then claim that we can choose the isomorphism to

be compatible with the respective Λ𝐴-actions. Indeed, any choice of the isomorphism
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(9.5.1) allows us to define a morphism in Db
c([𝑀/𝐴],ℚℓ)

ℚℓ ⟶ 𝑞∗ℚℓ[2𝑑](𝑑).

Applying tensor product, we have morphism

Λ𝐴 ⟶ Λ𝐴 ⊗𝑞∗ℚℓ[2𝑑](𝑑).

The composition map with cap product Λ𝐴 ⟶ 𝑞∗ℚℓ[2𝑑](𝑑) induces isomorphism on

cohomology groups because isomorphism can be checked stalkwise, and fibers of 𝑞 are

just trivial 𝐴-torsors (since 𝑘 is algebraically closed). This proves the claim by shifting

and twisting back by [−2𝑑](−𝑑).

Now by projection formula,

𝑞∗ℱ ≃ 𝑞∗𝑞∗ℱ ≃ 𝑞∗ℚℓ ⊗ℱ ≅ (⨁
𝑛

H𝑛
c (𝐴,ℚℓ)[−𝑛])⊗ℱ,

with the last isomorphism compatible with Λ𝐴-action. Using projection formula again,

we see that

𝑓∗ℱ ≅ (⨁
𝑛

H𝑛
c (𝐴,ℚℓ)[−𝑛])⊗𝑓∗ℱ

as complexes with Λ𝐴-action. One can then compute the cohomologies of 𝑓∗ℱ using the

total complex of the tensor product, and because of H𝑛
c (𝐴,ℚℓ)[−𝑛] is a direct sum of

complexes with only one non-trivial term placed at different degrees, we have that

⨁
𝑛

H𝑛
c (𝑀,ℱ)[−𝑛] ≅ Λ𝐴[−2𝑑](−𝑑) ⊗ (⨁

𝑛
H𝑛
c ([𝑀/𝐴],ℱ)[−𝑛]) .

This finishes the proof. ∎

Let 𝑃 be a smooth connected commutative group scheme over a finite field 𝑘. Since 𝑘 is
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perfect, Chevalley’s exact sequence is defined over 𝑘, and let 𝐴 be the abelian quotient of

𝑃 in that sequence. By [Ngô10, Proposition 7.5.3], there is a quasi-lifting homomorphism

𝑎∶ 𝐴 → 𝑃 such that the composition with 𝑃 → 𝐴 is the endomorphism of multiplication

by some positive integer 𝑁 on 𝐴. This quasi-lifting induces a canonical section of Tate

modules

𝑁−1 Tℚℓ
(𝑎)∶ Tℚℓ

(𝐴) ⟶ Tℚℓ
(𝑃)

that is compatible with Galois action.

Corollary 9.5.2. Let 𝑀 be a projective variety over algebraically closed field 𝑘 with an

action of smooth connected commutative group scheme 𝑃 over 𝑘. Suppose all stabilizers

are affine and 𝑃 is defined over a finite field, so there is quasi-lifting 𝑎∶ 𝐴 → 𝑃. Then

⨁
𝑛

H𝑛
c (𝑀,ℱ)[−𝑛]

is a free graded Λ𝐴-module for any 𝑃-equivariant complex ℱ ∈ Db
c(𝑀,ℚℓ), where the

Λ𝐴-action is defined using the canonical section 𝑁−1 Tℚℓ
(𝑎).

Proof. Using the quasi-lifting 𝑎, we have an action of 𝐴 on 𝑀 with finite stabilizers. If ℱ

is 𝑃-equivariant, then it is also 𝐴-equivariant since 𝑀 → [𝑀/𝑃] factors through [𝑀/𝐴].

Then the claim follows from Lemma 9.5.1 and scaling by 𝑁−1. ∎

9.6 A Degenerate Spectral Sequence

Nowwemove from one-point base to strict Henselian bases. The setup and argument here

are completely parallel to those in [Ngô10, § 7.6], only with constant sheaf ℚℓ replaced

by ℱ. Let 𝑆 be a strict Henselian scheme over 𝑘 with closed 𝑘-point 𝑠. Let 𝜖∶ 𝑆 → Spec𝑘

be the structure morphism. Retain scheme 𝑓∶ 𝑀 → 𝑆 with an action of group scheme
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𝑔∶ 𝑃 → 𝑆 as before. Then 𝜖∗Λ𝑃 is identified with stalk Λ𝑃,𝑠, and we have by adjunction

𝜖∗Λ𝑃,𝑠 ⟶ Λ𝑃.

Let ℱ be a 𝑃-equivariant complex on 𝑀. Then the restriction of cap product (9.3.3) gives

map

𝜖∗Λ𝑃,𝑠 ⊠𝑓!ℱ ⟶ 𝑓!ℱ,

which defines an action of graded algebra Λ𝑃,𝑠 on 𝑓!ℱ (to simplify notation, we now drop

𝜖∗ and treat Λ𝑃,𝑠 as a constant sheaf on 𝑆). In particular, we have map

Tℚℓ
(𝑃𝑠) ⊠ 𝑓!ℱ ⟶ 𝑓!ℱ[−1].

Since external tensor product is perverse 𝑡-exact, we have induced map

Tℚℓ
(𝑃𝑠) ⊠ 𝔭𝜏≤𝑛(𝑓!ℱ) ⟶ 𝔭𝜏≤𝑛(𝑓!ℱ[−1]) = 𝔭𝜏≤𝑛−1(𝑓!ℱ)[−1],

hence also a map

Tℚℓ
(𝑃𝑠) ⊠ 𝔭H𝑛(𝑓!ℱ) ⟶ 𝔭H𝑛−1(𝑓!ℱ).

This map is compatible with the map constructed in 9.3 restricted to Tℚℓ
(𝑃𝑠) as they are

both canonical. Therefore we obtain a graded Λ𝑃,𝑠-module structure on

𝔭H•(𝑓!ℱ) = ⨁
𝑛

𝔭H𝑛(𝑓!ℱ)[−𝑛].

The canonical decomposition by supports (9.3.4) and properties of external tensor

product allows us to express the Tℚℓ
(𝑃𝑠) action by a matrix indexed by (𝛼,𝛼′) ∈ Σ× Σ,
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with entries in

Tℚℓ
(𝑃𝑠)∗ ⊗Hom(𝐾𝑛

𝛼 , 𝐾𝑛−1
𝛼′ ),

where Tℚℓ
(𝑃𝑠)∗ means the ℚℓ-dual vector space. In this case, if 𝛼 ≠ 𝛼′, then we have

Hom(𝐾𝑛
𝛼 , 𝐾𝑛−1

𝛼′ ) = 0, so we know the matrix is diagonal.

Again use the fact that tensoring with Λ𝑃,𝑠 commutes with 𝔭𝜏≤𝑛, we have an in-

creasing filtration 𝔭𝜏≤𝑛(𝑓!ℱ) of 𝑓!ℱ compatible with Λ𝑃,𝑠-actions. This gives a spectral

sequence, also compatible with Λ𝑃,𝑠-actions,

𝐸𝑚,𝑛
2 = H𝑚(𝔭H𝑛(𝑓!ℱ)𝑠) ⇒ H𝑚+𝑛

c (𝑀𝑠,ℱ|𝑀𝑠). (9.6.1)

Since 𝑓!ℱ is bounded, (9.6.1) is convergent. This implies that we have a decreasing filtra-

tion 𝐹𝑚H•
c(𝑀𝑠,ℱ|𝑀𝑠) of direct sum

H•
c(𝑀𝑠,ℱ|𝑀𝑠) = ⨁

𝑛
H𝑛
c (𝑀𝑠,ℱ|𝑀𝑠)[−𝑛],

such that

𝐹𝑚H•
c(𝑀𝑠,ℱ|𝑀𝑠)/𝐹

𝑚+1H•
c(𝑀𝑠,ℱ|𝑀𝑠) = ⨁

𝑛
𝐸𝑚,𝑛
∞ [−𝑚−𝑛].

The action of Λ𝑃,𝑠 is compatible with the filtration 𝐹𝑚, hence induces an action on the

associated graded ℚℓ-vector space

⨁
𝑚,𝑛

𝐸𝑚,𝑛
∞ [−𝑚−𝑛].

This action is the same as the Λ𝑃,𝑠-action induced from the 𝐸2-page, which in turn comes

from the action on 𝔭H•(𝑓!ℱ).

Now we assume (𝑓,𝑔) is the strict Henselization at 𝑠 of a weak abelian fibration andℱ
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is self-dual. Then the non-canonical decomposition (9.2.1) exists on 𝑆 (as perverse coho-

mologies commute with étale base change). So the spectral sequence (9.6.1) degenerates

at 𝐸2-page and 𝐸𝑚,𝑛
∞ = 𝐸𝑚,𝑛

2 .

9.7 Freeness by Induction

We can now finish the proof of Proposition 9.4.1 using the same inductive argument in

[Ngô10, § 7.7]. The proof is by induction on dimension of 𝑍𝛼. Let 𝛼0 ∈ Σ be the unique

maximal element so that 𝑍𝛼0 = 𝑆𝑘. Let 𝑉𝛼0 be an open subset of 𝑆 as in 9.4, then
𝔭H𝑛(𝑓∗ℱ) is a local system 𝒦𝑛

𝛼0[dim𝑆] when restricted to 𝑉𝛼0 . As in 9.4, we have a

short exact sequence of Tate modules on 𝑉𝛼0

0 ⟶ Tℚℓ
(𝑅𝛼0) ⟶ Tℚℓ

(𝑃|𝑉𝛼0
) ⟶ Tℚℓ

(𝐴𝛼0) ⟶ 0.

The action of Tℚℓ
(𝑃|𝑉𝛼0

) factors through Tℚℓ
(𝐴𝛼0) because of weights. By [Ngô10,

Lemme 7.4.11] (cf. Remark 9.4.2), we may choose a geometric point 𝑢𝛼0 ∈ 𝑉𝛼0 , defined

over a finite field, so that we can use Corollary 9.5.2 to deduce that H•(𝑀𝑢𝛼0
,ℱ|𝑀𝑢𝛼0

)

is a free Λ𝐴𝛼0,𝑢𝛼0
-module. The spectral sequence (9.6.1) is especially simple in this case

and only consists of terms 𝒦𝑛
𝛼0,𝑢𝛼0

[−𝑛 + dim𝑆] for 𝑛 ∈ ℤ. In other words, we have a

(non-canonical) isomorphism of Λ𝐴𝛼0,𝑢𝛼0
-modules

H•(𝑀𝑢𝛼0
,ℱ|𝑀𝑢𝛼0

) ≅ ⨁
𝑛

𝒦𝑛
𝛼0,𝑢𝛼0

[−𝑛+ dim𝑆].

So we proved Proposition 9.4.1 in the base case.

Next, let 𝛼 ∈ Σ and suppose Proposition 9.4.1 is proved for all 𝛼′ ∈ Σ such that

𝑍𝛼 ⊂ 𝑍𝛼′ . Let 𝑢𝛼 ∈ 𝑉𝛼 be a geometric point defined over a finite field, and 𝑆𝛼 be the

280



strict Henselization of 𝑆 at 𝑢𝛼. As in 9.6, we have actions

Tℚℓ
(𝑃𝑢𝛼) ⊠ 𝔭H𝑛(𝑓∗ℱ)|𝑆𝛼 ⟶ 𝔭H𝑛−1(𝑓∗ℱ)|𝑆𝛼 .

These actions can be represented by a diagonal matrix using decomposition over supports

Σ. This means that we have a canonical isomorphism of graded Λ𝑃,𝑢𝛼-modules

⨁
𝑛

𝔭H𝑛(𝑓∗ℱ)|𝑆𝛼[−𝑛] ≃ ⨁
𝛼,𝑛

𝐾𝑛
𝛼[−𝑛].

Using a quasi-lifting 𝐴𝑢𝛼 → 𝑃𝑢𝛼 , one has induces Λ𝐴,𝑢𝛼-module structure that is com-

patible with Galois action and, when restricted to 𝑉𝛼, is the same as the Λ𝐴,𝑢𝛼-module

structure on 𝒦𝛼 defined in 9.4 using factorization.

Using inductive hypothesis and the fact that Tℚℓ
(𝑃) is polarizable (one of the axioms

for weak abelian fibrations), we have the following result [Ngô10, Proposition 7.7.4]:

Proposition 9.7.1. With notation above, we have that for any 𝑚 ∈ ℤ,

⨁
𝑛

H𝑚(𝐾𝑛
𝛼′,𝑢𝛼

)[−𝑛]

is a free graded Λ𝐴,𝑢𝛼-module.

Proof. We have by inductive hypothesis and [Ngô10, Lemme 7.4.11] an isomorphism of

Λ𝐴𝛼′ -modules on 𝑉𝛼′

𝒦𝛼′ ≅ Λ𝐴𝛼′ ⊗𝐸𝛼′

for some graded local system 𝐸𝛼′ on 𝑉𝛼′ . Restricting to 𝑉𝛼′ ∩ 𝑆𝛼 and pick a geometric

point 𝑦𝛼′ over the generic point 𝑦𝛼′ of 𝑉𝛼′ ∩ 𝑆𝛼. Using polarizability assumption, we

can show that the specialization map Tℚℓ
(𝐴𝑢𝛼) → Tℚℓ

(𝐴𝑦𝛼′) is injective, hence a direct

summand as Gal(𝑦𝛼′/𝑦𝛼′)-representations. So the stalk Λ𝐴,𝑦𝛼′ is a free Λ𝐴,𝑢𝛼-module,
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hence so is 𝒦𝛼′,𝑦𝛼′ . Using [Ngô10, Lemme 7.4.11] again, we have that

𝒦𝛼′|𝑉𝛼′∩𝑆𝛼 ≅ Λ𝐴,𝑢𝛼 ⊠𝐸′
𝛼′

as Λ𝐴,𝑢𝛼-modules for some graded local system 𝐸′
𝛼′ . Taking intermediate extension and

then stalk at 𝑢𝛼, and since these operations commute with external tensor product, we

have that 𝐾𝛼′,𝑢𝛼 is the external tensor product of Λ𝐴,𝑢𝛼 with another complex, hence

the same is true for its 𝑚-th cohomology groups. ∎

We can now finish the inductive proof using a key property of ℚℓ-algebra Λ𝐴,𝑢𝛼 : its

projective modules are also injective. The spectral sequence (9.6.1) degenerates at 𝐸2-

page, and we have a decreasing filtration of

𝐻 ≔ ⨁
𝑛

H𝑛(𝑀𝑢𝛼 ,ℱ|𝑀𝑢𝛼)[−𝑛]

whose 𝑚-th graded part is

⨁
𝑛

H𝑚(𝔭H𝑛(𝑓∗ℱ)𝑢𝛼)[−𝑚−𝑛] = H𝑚(⨁
𝑛

𝔭H𝑛(𝑓∗ℱ)𝑢𝛼[−𝑛])[−𝑚],

all compatible with Λ𝐴,𝑢𝛼-action. It can be further decomposed using supports into

H𝑚⎛
⎝
⨁
𝛼′,𝑛

𝐾𝑛
𝛼′,𝑢𝛼

[−𝑛]⎞
⎠
[−𝑚]

as Λ𝐴,𝑢𝛼-modules. If 𝛼′ ≠ 𝛼, then 𝐾𝑛
𝛼′,𝑢𝛼

≠ 0 only if 𝑍𝛼′ ⊃ 𝑍𝛼, and if 𝛼′ = 𝛼,

H𝑚(𝐾𝑛
𝛼,𝑢𝛼) ≠ 0 only if 𝑚 = −dim𝑍𝛼. Let 𝐻″ = 𝐹−dim𝑍𝛼𝐻 and 𝐻′ be the preimage of

H−dim𝑍𝛼 ⎛
⎝

⨁
𝛼′≠𝛼,𝑛

𝐾𝑛
𝛼′,𝑢𝛼

[−𝑛]⎞
⎠
[dim𝑍𝛼]
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in 𝐻″. Then we have a filtration

𝐻′ ⊂ 𝐻″ ⊂ 𝐻,

in which 𝐻 is a free Λ𝐴,𝑢𝛼-module by Corollary 9.5.2, and so is 𝐻′ and 𝐻/𝐻″ by induc-

tive hypothesis. Then since 𝐻 and 𝐻/𝐻″ are free, so is 𝐻″ because Λ𝐴,𝑢𝛼 is local (by

Kaplansky’s theorem, which applies to non-commutative rings). Consider exact sequence

0 ⟶ 𝐻′ ⟶ 𝐻″ ⟶ 𝐻″/𝐻′ ⟶ 0.

As 𝐻′ is free hence also injective (using the special property of exterior algebra Λ𝐴,𝑢𝛼),

the sequence splits. So 𝐻″/𝐻′ = 𝒦𝛼,𝑢𝛼 is projective hence free. This finishes the proof

of Proposition 9.4.1.

9.8 Statement of Support Theorem

Now we are ready to state and prove the main theorem of this chapter. The common

assumptions in this section are as follows:

(1) Let 𝑆 be a Deligne-Mumford stack of finite type over 𝑘.

(2) Let 𝑓∶ 𝑀 → 𝑆 be a proper morphism of Deligne-Mumford stacks of relative dimen-

sion 𝑑 together with an action of a smooth commutative Deligne-Mumford group

stack 𝑔∶ 𝑃 → 𝑆, such that (𝑓,𝑔) is a weak abelian fibration (see Remark 9.1.3).

(3) The geometric fibers of 𝑓 are homeomorphic to projective varieties.

(4) Let ℱ ∈ Db
c(𝑀,ℚℓ) be a self-dual 𝑃-equivariant complex, such that 𝑓∗ℱ has coho-

mological degrees bounded above by −dim𝑀+2𝑑.

Theorem 9.8.1. With the assumptions above, if 𝐾 is a geometrically simple summand in

the decomposition of some 𝔭H𝑛(𝑓∗ℱ) with support 𝑍. Let 𝛿𝑍 be the minimal value of 𝛿
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on 𝑍, then we have

codim𝑆(𝑍) ≤ 𝛿𝑍.

Moreover, if the equality holds, then there exists an open subset 𝑈 ⊂ 𝑆𝑘 such that 𝑈∩𝑍 ≠

∅, and a local system 𝐿 on𝑈∩𝑍 such that 𝑖∗𝐿 (where 𝑖 is the closed embedding𝑈∩𝑍 → 𝑈)

is a direct summand of the top cohomology 𝐑−dim𝑀+2𝑑𝑓∗ℱ restricted to 𝑈.

Proof. Although𝑓 and𝑔 are notmorphism of schemes, the argument for Proposition 9.4.1

still applies. More precisely, everything except Lemma 9.5.1 works verbatim for gen-

eral Deligne-Mumford stacks, and Lemma 9.5.1 only potentially breaks because a priori

[𝑀𝑠/𝑃𝑠] for a geometric point 𝑠 ∈ 𝑆 can be a 2-stack instead of an algebraic stack. How-

ever, since we also assume that 𝑀𝑠 is homeomorphic to a projective scheme (and 𝑃𝑠 is

always homeomorphic to a smooth group scheme), the argument in Lemma 9.5.1 still

works.

By Proposition 9.4.1, 𝐾|𝑈∩𝑍 is a direct summand of a free (Λ𝑃)|𝑈∩𝑍-module, whose

top cohomology is denoted by 𝐿. Moreover, the intermediate extension of 𝐿 to 𝑍 is also

a simple perverse summand of 𝑓∗ℱ. Then the argument in § 9.2 proves both claims of

the theorem. ∎

Corollary 9.8.2. If in Theorem 9.8.1 (𝑓,𝑔) is also 𝛿-regular, then the equality codim𝑆(𝑍) =

𝛿𝑍 holds.

Proof. Clear since the definition of 𝛿-regularity gives the inequality in the opposite direc-

tion. ∎

9.8.3 Let 𝜋0(𝑃) be a sheaf of finite abelian groups over 𝑆 such that for any geometric

point 𝑠 ∈ 𝑆 its stalk is the group of connected components 𝜋0(𝑃𝑠). Suppose 𝜋0(𝑃) is

a quotient of some constant sheaf 𝐗 where 𝐗 is a finite abelian group. Since ℱ is 𝑃-

equivariant, 𝑃 canonically acts on ℱ by (9.3.2). The induced action of 𝑃 on 𝔭H•(𝑓∗ℱ)
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factors through 𝜋0(𝑃) by Lemme d’homotopie [LN08, Lemme 3.2.3], hence 𝐗 acts on
𝔭H𝑛(𝑓∗ℱ) for each 𝑛. Let 𝔭H𝑛(𝑓∗ℱ)𝜅 be the 𝜅-isotypic direct summand for any charac-

ter𝜅∶ 𝐗 → ℚ×
ℓ . Similarly we have𝜅-isotypic summand of ordinary cohomologyH𝑛(𝑓∗ℱ)𝜅.

By [LN08, Lemme 3.2.5], there exists an integer 𝑁 > 0 and a decomposition

𝑓∗ℱ = ⨁
𝜅∈𝐗∗

(𝑓∗ℱ)𝜅,

such that for any 𝛼 ∈ 𝐗, the restriction of (𝛼−𝜅(𝛼)id)𝑁 on (𝑓∗ℱ)𝜅 is zero, and we have

𝔭H𝑛(𝑓∗ℱ)𝜅 = 𝔭H𝑛((𝑓∗ℱ)𝜅),

H𝑛(𝑓∗ℱ)𝜅 = H𝑛((𝑓∗ℱ)𝜅).

Proposition 9.8.4. Theorem 9.8.1 and Corollary 9.8.2 hold if we replace 𝔭H𝑛(𝑓∗ℱ) by

𝔭H𝑛(𝑓∗ℱ)𝜅 and H−dim𝑀+2𝑑(𝑓∗ℱ) by H−dim𝑀+2𝑑(𝑓∗ℱ)𝜅.

Proof. Apply the same proof to (𝑓∗ℱ)𝜅. ∎

9.9 Application to mH-fibrations

In this section, we apply Theorem 9.8.1 tomH-fibrationℎ𝑋 ∶ ℳ𝑋 → 𝒜𝑋, ormore precisely

a subset of the map ℎ̃♮
𝑋 ∶ ℳ̃♮

𝑋 → �̃�♮
𝑋. There is an action of Picard stack ̃𝑝♮

𝑋 ∶ �̃�♮
𝑋 → �̃�♮

𝑋

on ℎ̃♮
𝑋, and both are relative Deligne-Mumford stacks of finite type by Proposition 8.1.1.

By Proposition 8.1.2, ℎ̃♮
𝑋 is also proper. If we restrict to 𝐺-very ample locus �̃�♮

≫, by

Proposition 6.7.1, the Tate modules of �̃�♮
≫ are polarizable. Therefore (ℎ̃♮

≫, ̃𝑝♮
≫) is a

weak abelian fibration.

In general, (ℎ̃♮
≫, ̃𝑝♮

≫) is not 𝛿-regular, but we can still find an open subset over which

the fibration is 𝛿-regular. This subset is dense in �̃�♮
≫ because over 𝐺-very ample locus

the 𝛿 = 0 stratum is dense by Proposition 6.3.13. According to Proposition 7.4.5, for

any fixed 𝛿 ∈ ℕ, all but finitely many irreducible components of �̃�♮
𝛿 is contained in this
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𝛿-regular locus.

Let �̃�† ⊂ �̃�♮
≫ be the largest open subset satisfying the following conditions:

(1) The restriction of (ℎ𝑋, 𝑝𝑋) is 𝛿-regular;

(2) The local model of singularity as in Theorem 6.10.2 holds.

Let 𝒬 be the intersection complex of ℳ̃†. Then by Proposition 8.4.3, we have that over

any connected component𝒰 of �̃�†, the cohomological degrees of ℎ̃†
∗𝒬 is bounded above

by −dimℳ𝒰 +2𝑑, where ℳ𝒰 is the preimage of 𝒰 in ℳ̃†, and 𝑑 is the relative dimen-

sion of ℎ̃† over 𝒰. Finally, the fibers of ℎ̃† are homeomorphic to projective varieties by

Corollary 6.9.2.

Definition 9.9.1. A closed subset 𝑍 ⊂ �̃�† is said to be inductive if there exists an open

subset𝒰 ⊂ �̃�† such that𝒰∩𝑍 ≠ ∅ has multiplicity-free boundary divisors in the sense

of Proposition 5.1.25, and for any 𝑎 ∈ (𝒰∩𝑍)(𝑘) and any 𝑣 ∈ 𝑋(𝑘), one of the following

cases is true

(1) The boundary divisor is 0 at 𝑣, and the discriminant valuation 𝑑𝑣+(𝑎) ≤ 1, or

(2) 𝑎 is both unramified and 𝜈-regular semisimple at 𝑣.

9.9.2 We are now able to prove one of the main results of this paper:

Theorem 9.9.3 (Support Theorem). Let 𝐾 be a simple perverse summand of 𝔭H•(ℎ̃†
∗𝒬)st,

and 𝑍 is the support of 𝐾, then 𝑍 is inductive. In particular, 𝑍 must be 𝛿-critical.

Proof. Applying Corollary 9.8.2 to (ℎ̃†, ̃𝑝†), we see that 𝑍 must be the closure of a 𝛿-

critical stratum. So by the description of 𝛿-critical strata Corollary 7.4.7, we only need to

show the following: if 𝑍′ ⊂ �̃�† is an irreducible 𝛿-critical closed subset but not inductive,

then 𝑍′ cannot be the support of any simple perverse summand 𝐾.
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Indeed, using Proposition 7.5.5 (and the discussions before it), we may find a closed

subset 𝑍 ⊂ �̃�† containing 𝑍′ such that both the boundary divisor and all the local New-

ton points stays locally constant, and 𝑍 is inductive. We may even assume that in Defi-

nition 9.9.1 for 𝑍 we also have 𝒰∩𝑍′ ≠ ∅. By Proposition 8.5.15, the top cohomology

of (ℎ̃†
∗𝒬)st is a local system 𝐿 on 𝒰. However, if 𝑍′ supports a perverse summand,

then 𝐿 contains a direct summand supported on proper closed subset 𝒰∩𝑍′, which is

impossible. This finishes the proof. ∎

9.9.4 The case of 𝜅-constituent is more complicated. The most notable issue is that a

priori an endoscopic stratum may not be contained in �̃�†, hence we cannot use Propo-

sition 7.4.5 to deduce 𝛿-regularity. Nevertheless, we do not need to prove 𝛿-regularity in

an open neighborhood around the endoscopic strata, but only need to show 𝛿-regularity

within those strata. This can be achieved with the help of (6.11.5).

Since we are not confined to �̃�†, we consider a larger open subset �̃�‡ defined similar

to �̃�† but with 𝛿-regularity condition removed. Let (𝜅,𝜗•
𝜅,𝜉) be an endoscopic datum

with endoscopic group 𝐻 = 𝐻𝜉. There is a canonical finite map

�̃�𝒜 ∶ �̃�𝜅
𝐻,𝑋 ⟶ �̃�𝑋.

By (6.11.5), the difference 𝑟𝐺
𝐻 = 𝛿 − 𝛿𝐻 is locally constant on �̃�𝜅

𝐻,𝑋. We would like to

restrict to the locus �̃�𝜅,†
𝐻 , which is, analogous to �̃�†, defined to be the open subset of

�̃�𝜅,♮
𝐻,𝑋 that satisfies ampleness condition for Proposition 7.4.5 and has a local model of

singularity as in Theorem 6.10.2. Therefore (ℎ̃𝜅,†
𝐻 , ̃𝑝𝜅,†

𝐻 ) is 𝛿𝐻-regular.

For any irreducible component 𝒰𝐻 of �̃�𝜅,†
𝐻 , let 𝒰 = �̃�𝒜(𝒰𝐻) and 𝑟𝒰 ∈ ℕ be the

value of 𝑟𝐺
𝐻 on 𝒰𝐻. If we can show that

codim�̃�𝑋
(𝒰) = 𝑟𝒰,
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then for any 𝛿 ≥ 𝑟𝒰, we will have

codim�̃�𝑋
(𝒰𝛿) = 𝑟𝒰 + codim�̃�𝐻,𝑋

(𝒰𝐻,𝛿−𝑟𝒰) ≥ 𝑟𝒰 + (𝛿− 𝑟𝒰) = 𝛿.

In other words, 𝛿-regularity holds for those 𝛿-strata with non-trivial intersection with 𝒰

as long as it holds for the generic stratum of 𝒰.

9.9.5 Due to the insufficiency in ampleness, direct estimate of the codimension of 𝒰

seems difficult. See § 6.8, but see also Remark 6.11.8. Moreover, we also need Theo-

rem 6.10.2 to hold, which depends on some cohomological condition that is essentially

the same problem as the dimension estimate.

On the other hand, if we assume Theorem 6.10.2 holds, although dimension estimate

looks like a condition needed to apply Theorem 9.8.1, which will then be used to prove

Theorem 8.3.4, the logic can actually be partially reversed, and the codimension estimate

will be a conclusion instead of a condition, which we now explain. This does not solve

the issue itself, but does allow us to make the statement of Theorem 8.3.4 cleaner by not

including another technical condition.

Irrespective of 𝛿-regularity, the freeness statement Proposition 9.4.1 still holds. For

any 𝑎𝐻 ∈ 𝒰𝐻 mapping to 𝑎 ∈ 𝒰, there is a canonical map of the Picard stacks

𝒫𝑎 ⟶ 𝒫𝐻,𝑎𝐻 ,

which identifies their Néron models

𝒫♭
𝑎 ≃ 𝒫♭

𝐻,𝑎𝐻 .

This identifies the abelian part of the Tate modules

Λ𝐴𝑎,𝑎 ≃ Λ𝐴𝐻,𝑎𝐻 ,𝑎𝐻 .
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Let 𝒬𝜅
𝐻 be the intersection complex on ℳ̃𝜅,†

𝐻 , then we may apply Theorem 9.8.1 to

(ℎ̃𝜅,†
𝐻 , ̃𝑝𝜅,†

𝐻 ), so generically over 𝒰𝐻, the sheaf 𝔭H•(ℎ̃𝜅,†
𝐻,∗𝒬𝜅

𝐻)st is isomorphic to a free

Tℚℓ
(𝒫𝐻)-module of rank 1. In particular, using Grothendieck-Lefschetz trace formula, it

is not hard to count 𝑘′-points on fibersℳ𝐻,𝑎𝐻 (modulo Picard action and weighted by the

sheaf 𝒬𝜅
𝐻 to be precise) for any finite extension 𝑘′/𝑘 and a general point 𝑎𝐻 ∈ 𝒰𝐻(𝑘).

On the other hand, 𝒬-weighted point-counting on ℳ𝑎 is not hard either if we only

consider a general enough point 𝑎 ∈ 𝒰(𝑘): indeed, due to how transfer map �̃�𝒜 is

induced by the absolute transfer map 𝜈𝐇 in (2.5.1), we shall see later that it boils down to

counting points on some very simple multiplicative affine Springer fibers. Therefore by

Chebotarev’s density theorem, suppose for any sufficiently general point 𝑎 ∈ 𝒰(𝑘) and

any sufficiently large finite extension 𝑘′/𝑘 we have equality in Frobenius trace

Tr(𝜎𝑘′ ,H•(ℳ𝑎,𝒬)𝜅) = ∑
𝑎𝐻↦𝑎

Tr(𝜎𝑘′ ,H•(ℳ𝜅
𝐻,𝑎𝐻 ,𝒬

𝜅
𝐻)st), (9.9.1)

then we have generically over 𝒰

(ℎ̃‡
∗𝒬)𝜅 ≅ (ℎ̃𝜅,†

𝐻,∗𝒬𝜅
𝐻)st (9.9.2)

up to semisimplification with respect to Frobenius action.

Let 𝒰0 ⊂ 𝒰 be the open locus where the above equality holds, and let 𝒜 be the

irreducible component of �̃�‡ containing 𝒰. Let 𝑑 be the dimension of ℳ𝑎, and 𝑟′ be the

codimension of 𝒰 in �̃�𝑋. Then ℳ𝐻,𝑎𝐻 has dimension 𝑑− 𝑟𝒰. By (9.9.2), we know that

the perverse amplitude of (ℎ̃‡
∗𝒬)𝜅 on 𝒰0 is from −𝑑+𝑟𝒰 to 𝑑−𝑟𝒰, which translate to

ordinary cohomological degrees from −dim𝒰−𝑑+𝑟𝒰 to −dim𝒰+𝑑−𝑟𝒰 over 𝒰0 as

it is geometrically a graded local system on 𝒰0. Note that

−dim𝒰+𝑑−𝑟𝒰 = −dim𝒜+𝑑− (𝑟𝒰 −𝑟′) ≤ −dim𝒜+𝑑,
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the last inequality is due to the improved Goresky-MacPherson inequality in the discus-

sion of § 9.2. However, −dim𝒜+𝑑 is the top ordinary cohomological degree of (ℎ̃‡
∗𝒬)𝑎

given by irreducible components ofℳ𝑎, and we know that each 𝜅-isotypic summand does

contribute non-trivially to the top ordinary cohomologies. Thus it forces the inequality

above to be an equality and so 𝑟𝒰 = 𝑟′. Thus we have the following theorem.

Theorem 9.9.6. Let 𝔭H•(ℎ̃‡
∗𝒬)𝜅 be the 𝜅-isotypic summand in 𝔭H•(ℎ̃‡

∗𝒬) and 𝐾 is a

geometrically simple perverse summand in 𝔭H•(ℎ̃‡
∗𝒬)𝜅. Let 𝑍 be the support of 𝐾. Then

there exists a pointed endoscopic datum (𝜅,𝜗•
𝜅) with endoscopic group 𝐻 such that 𝑍 is

contained in �̃�𝒜(�̃�𝜅
𝐻,𝑋), where �̃�𝒜 ∶ �̃�𝜅

𝐻,𝑋 → �̃�𝑋 is the finite endoscopic transfer map.

Moreover, if we can find an open subset 𝒰 ⊂ �̃�‡ such that 𝒰∩𝑍 ≠ ∅ and �̃�−1
𝒜 (𝒰) ⊂

�̃�†,𝜅
𝐻 , and for any 𝑎 ∈ (𝒰∩𝑍)(𝑘), the equality (9.9.1) holds for any sufficiently large finite

extension 𝑘′/𝑘, then we have that �̃�−1
𝒜 (𝑍) equals the union of closed subsets that appear

as the potential support of 𝔭H•(ℎ̃𝜅,†
𝐻,∗𝒬𝜅

𝐻)st given by Theorem 9.9.3.

Proof. The assumptions of the theorem and the discussions above ensures 𝛿-regularity

on 𝑍. Replacing Proposition 8.5.15 by Proposition 8.5.16, the same argument for Theo-

rem 9.9.3 then applies. ∎
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CHAPTER 10

COUNTING POINTS

In this chapter we review general facts about counting 𝑘-points on 𝑘-groupoids. We will

then connect point counting on multiplicative affine Springer fibers with both its coho-

mology and the orbital integrals. Similarly, we will also apply the general results to mH-

fibrations. Most of the results are slight generalization of those in [Ngô10, § 8] with some

small improvements. Combined with the results in § 9.9, we will be able to prove both

Theorem 8.3.4 and Theorem 2.6.11.

10.1 Generalities on Counting Points

We first review some general facts about counting points following [Ngô10, § 8.1]. In

this paper, we need more general coefficients than constant sheaf ℚℓ, and because there

has been some significant development on the algebro-geometric tools used for these

purposes, we will base our discussions on those frameworks as well.

10.1.1 First we let 𝑓∶ 𝒳 → Spec𝑘 be a 𝑘-variety, or more generally an algebraic stack of

finite type over 𝑘, and ℱ ∈ Db
c(𝒳,ℚℓ) a bounded constructible lisse-étale complex on

𝒳 with coefficients in ℚℓ. Then for any 𝑘-point 𝑥 ∈ 𝒳(𝑘) and a fixed geometric point

𝑥 = Spec𝑘 over 𝑥, we have a continuous representation of Gal(𝑘/𝑘) on stalk ℱ𝑥. Let

Frobenius element 𝜎𝑘 ∈ Gal(𝑘/𝑘) be the one defined by taking 𝑞 = 𝑝𝑚-th root, where 𝑞

is the cardinality of 𝑘, then we may define trace function as

Trℱ ∶ 𝒳(𝑘) ⟶ ℚℓ

𝑥 ⟼ ∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎𝑘,H𝑖(ℱ𝑥)).

If the complex ℱ is not bounded, then the above construction still makes sense, except

that the trace function now takes values only as infinite series, but one can impose con-
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vergence condition if so desired. For our purposes, we are mostly interested in Deligne-

Mumford stacks of finite types, therefore boundedness condition is preserved by any

six-functor operation, so we do not worry about potential issues caused by unbounded-

ness.

A classical result is Grothendieck-Lefschetz trace formula, which states that

#ℱ𝒳(𝑘) ≔ ∑
𝑥∈𝒳(𝑘)

Trℱ(𝑥) = Tr𝑓!ℱ . (10.1.1)

This is a special case of the relative version of the formula

#ℱ𝒳(𝑘) = #𝑓!ℱ𝒴(𝑘) (10.1.2)

for a morphism 𝑓∶ 𝒳 → 𝒴 between 𝑘-schemes of finite types.

A perhaps more common form of (10.1.1) is the following: if 𝑘 has 𝑞 = 𝑝𝑚 elements,

let 𝜎 be the 𝑚-fold iteration of the absolute Frobenius on 𝒳, then 𝜎 is defined over 𝑘. It

is a (non-trivial) fact that there is a functorial isomorphism 𝜄∶ ℱ ≃ 𝜎∗ℱ for any ℱ, see

[Sta22, Tag 03SL]. The morphism 𝜎 is finite, hence proper, so we have adjunction map

ℱ ⟶ 𝜎∗𝜎∗ℱ ≃ 𝜎!𝜎∗ℱ.

Pushing forward using 𝑓!, we see that 𝜎 induces a map on cohomological groups

𝜎⊗𝑘 𝑘∶ H𝑖
c(𝒳𝑘,ℱ) ⟶ H𝑖

c(𝒳𝑘,𝜎
∗ℱ) ≃ H𝑖

c(𝒳𝑘,ℱ),

where the second isomorphism is defined using the canonical identification 𝜄 above. It

turns out that this map is the same map induced by 𝜎𝑘-action on 𝑓!ℱ, and so we have

#ℱ𝒳(𝑘) = ∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎⊗𝑘 id𝑘, H
𝑖
c(𝒳𝑘,ℱ)). (10.1.3)
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Remark 10.1.2. The notions of the plethora of Frobenii are sometimes confusing, espe-

cially for the so-called “geometric Frobenius”. The Frobenius 𝜎⊗𝑘 𝑘 is called geometric

Frobenius in some literature, while a different construction, also bearing the name of

geometric Frobenius, is the map id𝒳 ⊗𝑘 𝜎𝑘. The latter is the one we used to define Trℱ,

and both induce the same action on 𝑘-points and cohomologies. Since we only care about

point-counting and cohomological actions, we shall not distinguish the two and simply

use 𝜎 in the remaining sections.

10.1.3 In [Beh93], Behrend generalizes (10.1.2) to the case where𝒳 is a smooth Deligne-

Mumford stack of finite type over 𝑘, and ℱ is the constant sheaf. In the stack case, the

ℱ-weighted point counting is defined as

#ℱ𝒳(𝑘) ≔ ∑
𝑥∈𝒳(𝑘)/∼

Trℱ(𝑥)
#Aut𝒳(𝑥)(𝑘),

where 𝑥 ranges over isomorphism classes of 𝒳(𝑘). Note that since Aut𝑥 is a 𝑘-group

scheme of finite type and 𝑘 is a finite field, the above definitionmakes sense even for Artin

stacks. The result is further expanded to smooth Artin stacks and arbitrary complexes

in [Beh03], assuming certain technical boundedness or convergence condition is met.

In [LO08a,LO08b], Laszlo andOlsson developed six-functor formalism for Artin stacks,

and the smoothness assumption in Behrend’s results is removed under these frameworks

by Sun in [Sun12] because of the newly-available duality. As noted by Sun in [Sun12],

an important difference between [Beh03] and [Sun12] is that the former uses arithmetic

Frobenius and ordinary cohomology (probably due to lack of duality results at the time),

while in the latter the geometric version is used. Because in [Sun12] the author consid-

ers a very general setup, some complicated “stratifiablility” condition and a convergence

condition are used. However, for our purposes, we only consider bounded complexes on

Deligne-Mumford stacks, so those conditions are automatically met. Therefore, to sum-

marize, for any morphism 𝑓∶ 𝒳 → 𝒴 of Deligne-Mumford stacks of finite types over 𝑘
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and any ℱ ∈ Db
c(𝒳,ℚℓ), the trace formula (10.1.2) always holds.

10.1.4 In [LN08, Appendice A.3] and [Ngô10, § 8.1], an equivariant version of (10.1.3)

is developed with specific applications to affine Springer fibers and Hitchin fibrations

in mind. Here we reformulate those results using the general trace formula (10.1.2) for

Deligne-Mumford stacks.

Suppose ℳ is a Deligne-Mumford stack of finite type over 𝑘 together with an action

of a commutative Deligne-Mumford group stack 𝒫 of finite type over 𝑘. The groupoids

ℳ(𝑘) and 𝒫(𝑘) carry natural actions of geometric Frobenius 𝜎, and the 2-categorical

quotient 𝒳(𝑘) is the 2-category where:

(1) the objects are the objects 𝑚 ∈ ℳ(𝑘);

(2) the 1-morphisms 𝑚 → 𝑚′ are pairs (𝑝,𝑓) where 𝑝 ∈ 𝒫(𝑘) and 𝑓 is an element in

Homℳ(𝑘)(𝑝(𝑚),𝑚′);

(3) the 2-morphisms (𝑝,𝑓) ⇒ (𝑝′, 𝑓′) is an element 𝑗 ∈ Hom𝒫(𝑘)(𝑝,𝑝
′) such that the

composition of 𝑗∶ 𝑝(𝑚) → 𝑝′(𝑚) with 𝑓′ ∶ 𝑝′(𝑚) → 𝑚′ is equal to 𝑓∶ 𝑝(𝑚) →

𝑚′.

According to [Ngô06, Lemme 4.7], such 2-category is equivalent to a groupoid if and only

if for any 𝑚 ∈ ℳ(𝑘), the homomorphism induced by 𝒫 action

Aut𝒫(𝑘)(1𝒫) ⟶ Autℳ(𝑘)(𝑚)

is injective. In view of product formula Proposition 6.9.6, this condition is always met for

the anisotropic part of mH-fibrations. When this condition is met, then a 1-morphism

(𝑝,𝑓) has only the trivial 2-automorphism, thus 𝒳(𝑘) is equivalent to the groupoid

where:

(1) the objects are the objects 𝑚 ∈ ℳ(𝑘);
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(2) the morphisms 𝑚 → 𝑚′ are isomorphism classes of pairs (𝑝,𝑓).

In this case, we omit 𝑓 and simply write a morphism as 𝑝∶ 𝑚 → 𝑚′, or equivalently we

have canonical isomorphism 𝑝(𝑚) ≃ 𝑚′.

We will now always assume that𝒳(𝑘) is equivalent to a groupoid. The category𝒳(𝑘)

of fixed points under the action of 𝜎 is as follows:

(1) the objects are triples (𝑚,𝑝,𝑓) such that 𝑓∶ 𝜎(𝑚) → 𝑝(𝑚) is an isomorphism;

(2) a morphism ℎ∶ (𝑚,𝑝,𝑓) → (𝑚′, 𝑝′, 𝑓′) is a pair (ℎ,𝜙) where ℎ ∈ 𝒫(𝑘) and

𝜙∶ ℎ𝑚 → 𝑚′ is an isomorphism, such that 𝜎(ℎ)𝑝ℎ−1 = 𝑝′ and 𝜎(𝜙)∶ 𝜎(ℎ𝑚) →

𝜎(𝑚′) is equal to the map 𝑓′−1 ∘ (𝑝′𝜙) ∘ (𝜎(ℎ)𝑓);

(3) the sets of 2-morphisms are guaranteed either empty or singletons by assumption,

making this category a groupoid.

Remark 10.1.5. If we use 𝑓 to identify 𝜎(𝑚) and 𝑝(𝑚) and similarly for 𝑓′, then the last

condition on (ℎ,𝜙) can be simplified to 𝜎(𝜙) = 𝑝′(𝜙). If 𝑝 = 𝑝′, then the conditions

further simplify to ℎ ∈ 𝒫(𝑘)/∼ and 𝜎(𝜙) = 𝑝(𝜙). In this case, 𝜙 and 𝜙′ are equivalent

if 𝜙′ = 𝛼𝜙 for some 𝛼 ∈ Aut𝒫(1𝒫).

Since 𝒳(𝑘) has only finitely many isomorphism classes, and each object has only

finitely many automorphisms, if 𝜏 is a ℚℓ-valued function on the set of isomorphism

classes 𝒳(𝑘)/∼, the following sum makes sense

#𝜏𝒳(𝑘) = ∑
𝑥∈𝒳(𝑘)/∼

𝜏(𝑥)
#Aut𝒳(𝑘)(𝑥).

10.1.6 Let 𝑥 = (𝑚,𝑝) ∈ 𝒳(𝑘) as above, then the 𝜎-conjugacy class of 𝑝 is determined

by the isomorphism class of 𝑥. Let 𝑃 be the coarse space of 𝒫, then 𝑃 is a commutative

group scheme, and we have isomorphism between geometric connected components

𝜋0(𝒫) ≃ 𝜋0(𝑃).
295



According to Lang’s theorem, the 𝜎-conjugacy classes of 𝑃(𝑘) can be identified with

𝑃𝜎 ≃ H1(𝑘,𝑃) ≃ H1(𝑘,𝜋0(𝑃)).

This shows that 𝒫𝜎 ≃ H1(𝑘,𝜋0(𝒫)) as well, the former denoting the 𝜎-conjugacy classes

of the objects in 𝒫(𝑘). Therefore, given 𝑥 ∈ 𝒳(𝑘), we define cl(𝑥) be the corresponding

𝜎-conjugacy class of 𝜋0(𝒫) also viewed as an element in H1(𝑘,𝜋0(𝒫)). The class cl(𝑥)

depends only on the isomorphism class of 𝑥. For any 𝜎-invariant character 𝜅∶ 𝜋0(𝒫) →

ℚ×
ℓ , we have a pairing

⟨cl(𝑥), 𝜅⟩ = 𝜅(cl(𝑥)) ∈ ℚ×
ℓ .

For any ℚℓ-valued function 𝜏 on 𝒳(𝑘)/∼, we define (𝜏,𝜅)-weighted point counting

#𝜏𝒳(𝑘)𝜅 = ∑
𝑥∈𝒳(𝑘)/∼

⟨cl(𝑥), 𝜅⟩𝜏(𝑥)
#Aut𝒳(𝑘)(𝑥) .

10.1.7 Let ℱ now be 𝒫-equivariant, that is, we are supplied with a fixed isomorphism

𝜓∶ 𝑎∗ℱ ≃ ℚℓ⊠ℱ on 𝒫×ℳ, where 𝑎 is the action map 𝒫×ℳ → ℳ, and usual cocycle

and identity axioms of equivariance is met for 𝜙. In this way, the objects of 𝒫(𝑘) acts on

the sheaf ℱ|ℳ𝑘
, hence also on any cohomology groups.

According to Lemme d’homotopie [LN08, Lemme 3.2.3], the induced action onH•
c(ℳ𝑘,ℱ)

factors through 𝜋0(𝒫). Note that the statement in loc. cit. is about perverse cohomolo-

gies, but the proof still works for ordinary cohomologies since the main ingredients in

the proof being smooth base change and exactness of pullback functor still hold, and by

duality it works for cohomology with compact support. The group 𝒫 does not need to be

smooth because we always have 𝒫red to be smooth. Thus, if 𝜅 is a 𝜎-invariant character

of 𝜋0(𝒫), then 𝜎 acts on the 𝜅-isotypic subspace H•
c(ℳ,ℱ)𝜅.

Finally, by equivariance, the trace function Trℱ descends to a function on groupoid
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𝒳(𝑘), still denoted by Trℱ, as follows: for any pair (𝑚,𝑝) such that 𝜎(𝑚) ≃ 𝑝(𝑚), the

equivariance structure 𝜓 identifies the stalk of ℱ at 𝑚 with that at 𝜎(𝑚), hence defining

an action of 𝜎 on that stalk, and we can take the trace. Now we have the following variant

of Grothendieck-Lefschetz trace formula, which is a generalization of [LN08, Proposi-

tion A.3.1] (see also [Ngô10, Proposition 8.1.6]).

Proposition 10.1.8. Let ℳ be a Deligne-Mumford stack of finite type over 𝑘 with an ac-

tion of a commutative Deligne-Mumford group stack 𝒫 of finite type over 𝑘, and suppose

𝒳(𝑘) = [ℳ(𝑘)/𝒫(𝑘)] is equivalent to a groupoid. Let ℱ be a bounded constructible

𝒫-equivariant complex. Then for any 𝜎-invariant character 𝜅∶ 𝜋0(𝒫) → ℚ×
ℓ we have

equality

#𝒫0(𝑘)#ℱ𝒳(𝑘)𝜅 = ∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎,H𝑖
c(ℳ,ℱ)𝜅),

where 𝒫0 is the neutral component of 𝒫.

Proof. Using Fourier transform on finite group 𝜋0(𝒫), we have that

∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎,H𝑖
c(ℳ,ℱ)𝜅) = 1

#𝜋0(𝒫) ∑
𝑝∈𝜋0(𝒫)

𝜅(𝑝)Tr(𝑝−1 ∘𝜎,H𝑖
c(ℳ,ℱ)).

Note that if a character 𝜒 is not 𝜎-invariant, then its isotypic space has no contribution

to the right-hand side, which is then equal to

1
#𝜋0(𝒫)𝜎

∑
𝑝∈𝜋0(𝒫)𝜎

𝜅(𝑝)Tr( ̇𝑝−1 ∘𝜎,H𝑖
c(ℳ,ℱ)), (10.1.4)

where ̇𝑝 is any choice of representative of 𝜎-conjugacy class 𝑝 in 𝜋0(𝒫).

In the proof of [LN08, Proposition A.3.1], another variant of (10.1.3) by Deligne and

Lusztig is used (see [DL76]). The idea is that if we assume that ℳ is a quasi-projective

scheme, then 𝑝−1 ∘ 𝜎 is the Frobenius map of another 𝑘-model of ℳ𝑘. Here ℳ is a

Deligne-Mumford stack, but we can still descend ℳ𝑘 to a 𝑘-model such that ̇𝑝−1 ∘ 𝜎 is
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the induced Frobenius. Then using (10.1.3) for Deligne-Mumford stacks, (10.1.4) is equal

to

1
#𝜋0(𝒫)𝜎

∑
𝑝∈𝜋0(𝒫)𝜎

∑
𝑚∈ℳ(𝑘)/∼
𝜎(𝑚)= ̇𝑝(𝑚)

𝜅(𝑝)Trℱ(𝑚)

#{𝜙 ∈ Autℳ(𝑘)(𝑚) | 𝜎(𝜙) = ̇𝑝(𝜙)}
.

Let 𝑃 be the coarse space of 𝒫. According to Remark 10.1.5, we have

#𝑃(𝑘)#{𝜙 ∈ Autℳ(𝑘)(𝑚) | 𝜎(𝜙) = ̇𝑝(𝜙)} = #Aut𝒫(1𝒫)(𝑘)#Aut𝒳(𝑘)(𝑚, ̇𝑝).

Note that 𝜋0(𝒫)𝜎 and 𝜋0(𝒫)𝜎 = 𝜋0(𝒫)(𝑘) have the same cardinality, and 𝑃(𝑘) →

𝜋0(𝒫)(𝑘) is surjective by Lang’s theorem. So we obtain

∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎,H𝑖
c(ℳ,ℱ)𝜅) = #𝒫0(𝑘) ∑

𝑝∈𝜋0(𝒫)𝜎
∑

𝑚∈ℳ(𝑘)/∼
𝜎(𝑚)= ̇𝑝(𝑚)

𝜅(𝑝)Trℱ(𝑚)
#Aut𝒳(𝑘)(𝑚, ̇𝑝).

Finally, note that the set of pairs (𝑚, ̇𝑝) in the summations above is in bijection with the

isomorphism classes in 𝒳(𝑘) by definition, thus we reach the desired equality

∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎,H𝑖
c(ℳ,ℱ)𝜅) = #𝒫0(𝑘) ∑

(𝑚,𝑝)∈𝒳(𝑘)/∼

𝜅(𝑝)Trℱ(𝑚)
#Aut𝒳(𝑘)(𝑚,𝑝).

This finishes the proof. ∎

10.1.9 So far we only considered the case where ℳ and 𝒫 are of finite types, but to

apply our results to multiplicative affine Springer fibers, we need another variant for

locally finite type cases. Here we no longer need to consider Deligne-Mumford stacks but

only schemes. Let 𝑀 be a 𝑘-scheme with an action of a commutative 𝑘-group scheme 𝑃,

both locally of finite types. We assume they satisfies the following assumptions:

(1) The 𝑘-points of the group of connected components 𝜋0(𝑃) is a finitely generated
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abelian group.

(2) The stabilizer of any geometric point of 𝑀 in 𝑃 is of finite type over 𝑘

(3) We can find a torsion-free discrete subgroup Λ ⊂ 𝑃 such that both 𝑃/Λ and 𝑀/Λ

are of finite types.

Note that in the above conditions since stabilizers of points in 𝑀 are of finite type, the

action of Λ on𝑀 is necessarily free. Note also that such Λ always exists if we only require

𝑃/Λ to be of finite type. Indeed, letΛ0 be the largest free quotient of 𝑃red
𝑘 , then the kernel

𝑃ft = ker(𝑃red
𝑘 ⟶ Λ0)

is of finite type. Since Λ0 is free, we may pick an arbitrary lifting 𝛾∶ Λ0 → 𝑃𝑘, which is

necessarily defined over some finite extension 𝑘′/𝑘.

Since 𝑃ft is of finite type, the group 𝑃ft(𝑘′) is finite. This means that when 𝑁 is

divisible by #𝑃ft(𝑘′), the restriction of 𝛾 to Λ = 𝑁Λ0 is 𝜎-equivariant hence defined

over 𝑘, and 𝑃/Λ is clearly of finite type. The condition that 𝑀/Λ is finite type is clearly

independent of the choice of Λ, so the third condition above is equivalent to saying 𝑀/Λ

is of finite type for any specific choice of Λ.

From now on, since we only care about counting points, we will use 𝑀 and 𝑃 to denote

the respective sets of their 𝑘-points. Because the points of 𝑀 and 𝑃 have no automor-

phisms, this notation will not cause any confusion.

10.1.10 Consider quotient stack 𝒳 = [𝑀/𝑃], whose groupoid of 𝑘-points is as follows:

(1) the objects are pairs (𝑚,𝑝) where 𝑚 ∈ 𝑀 and 𝑝 ∈ 𝑃 such that 𝑝(𝑚) = 𝜎(𝑚);

(2) the morphisms (𝑚,𝑝) → (𝑚′, 𝑝′) are ℎ ∈ 𝑃 such that ℎ𝑚 = 𝑚′ and 𝑝′ =

𝜎(ℎ)𝑝ℎ−1.
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Given 𝑥 = (𝑚,𝑝) ∈ 𝒳(𝑘), the 𝜎-conjugacy class cl(𝑥) of 𝑝 depends only on the isomor-

phism class of 𝑥. Since 𝑝(𝑚) = 𝜎(𝑚) and 𝑚 is defined over some finite extension 𝑘′/𝑘,

the class cl(𝑥) is necessarily torsion, hence it lies in the torsion subgroup of 𝑃𝜎, which

is identified with H1(𝑘,𝑃). By [Ngô10, Lemme 8.1.12], any character 𝜅 of H1(𝑘,𝑃) can be

extended to a torsion character �̃� of 𝑃𝜎.

Since we have equivalence of quotient stacks

𝒳 = [𝑀/𝑃] = [(𝑀/Λ)/(𝑃/Λ)],

we know that 𝒳(𝑘) has only finitely many isomorphism classes, and the automorphism

group of each object is also finite. Therefore for any character 𝜅∶ H1(𝑘,𝑃) → ℚ×
ℓ , and

any ℚℓ-valued function 𝜏 on the isomorphism classes of 𝒳(𝑘), we may consider sum

#𝜏𝒳(𝑘)𝜅 = ∑
𝑥∈𝒳(𝑘)/∼

⟨cl(𝑥), 𝜅⟩𝜏(𝑥)
#Aut𝒳(𝑘)(𝑥) .

Let �̃� be an extension of 𝜅 to 𝑃(𝑘)𝜎, which inflates to a𝜎-invariant character of 𝑃. Since �̃�

has finite order, we can choose Λ so that the restriction of �̃� to Λ is trivial. So �̃� descends

to a character of 𝑃/Λ, and if Λ′ ⊂ Λ is a 𝜎-stable sublattice of finite index, �̃� induces a

character of 𝑃/Λ′ too.

Let ℱ be a bounded locally constructible complex on 𝑀 that is 𝑃-equivariant, and still

denote by ℱ its descent to 𝑀/Λ. As before, Trℱ descends to a function on 𝒳(𝑘), also

denoted by Trℱ. Let H•
c(𝑀/Λ,ℱ)�̃� be the �̃�-isotypic direct summand of H•

c(𝑀/Λ,ℱ). The

following is a generalization of [Ngô10, Proposition 8.1.13].

Proposition 10.1.11. We have the following equality

#𝑃0(𝑘)#ℱ𝒳(𝑘)𝜅 = ∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎,H𝑖
c(𝑀/Λ,ℱ)�̃�).

Moreover, if Λ′ ⊂ Λ is a 𝜎-stable sublattice of finite index, then we have for each 𝑖 a
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canonical isomorphism

H𝑖
c(𝑀/Λ,ℱ)�̃�

∼
⟶ H𝑖

c(𝑀/Λ′,ℱ)�̃�.

Proof. Since Λ is free, we have 𝑃0 ≃ (𝑃/Λ)0. Then the first formula is a consequence

of Proposition 10.1.8. If we replace 𝑘 by a finite extension 𝑘′ of degree 𝑒, then for any

𝑥′ ∈ 𝒳(𝑘′) we have a 𝜎𝑒-conjugacy class in 𝑃. Since 𝜅, Λ, etc. are 𝜎-invariant, they are

also 𝜎𝑒-invariant, so we also have

#𝑃0(𝑘′) #ℱ𝒳(𝑘′)𝜅 = ∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎𝑒, H𝑖
c(𝑀/Λ,ℱ)�̃�).

Since 𝑒 is arbitrary, it means that the map

⨁
𝑖
(−1)𝑖H𝑖

c(𝑀/Λ,ℱ)�̃� ⟶ ⨁
𝑖
(−1)𝑖H𝑖

c(𝑀/Λ′,ℱ)�̃�

is an isomorphism of 𝜎-modules which also respects grading 𝑖. So we have the second

claim. ∎

Corollary 10.1.12. Let𝒳 = [𝑀/𝑃] (resp.𝒳′ = [𝑀′/𝑃′]) and 𝜅∶ 𝑃 → ℚ×
ℓ (resp. 𝜅′ ∶ 𝑃′ →

ℚ×
ℓ ) be a𝜎-invariant character of finite order. Letℱ (resp.ℱ′) be a 𝑃-equivariant (resp. 𝑃′-

equivariant) bounded locally constructible complex on 𝑀 (resp. 𝑀′). Suppose there exists

some 𝑁 such that for all 𝑒 > 𝑁 and 𝑘′/𝑘 a finite extension of degree 𝑒 we always have

#𝑃0(𝑘′) #ℱ𝒳(𝑘′)𝜅 = #𝑃′
0(𝑘

′) #ℱ′ 𝒳′(𝑘′)𝜅′ ,

then we have

#𝑃0(𝑘)#ℱ𝒳(𝑘)𝜅 = #𝑃′
0(𝑘)#ℱ′ 𝒳′(𝑘)𝜅′ .

Proof. After choosing appropriate lattices Λ ⊂ 𝑃 and Λ′ ⊂ 𝑃′, the assumptions imply
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that H•
c(𝑀/Λ),ℱ)�̃� and H•

c(𝑀′/Λ′),ℱ′)�̃�′ are isomorphic 𝜎-modules up to semisimpli-

fication. Taking the traces of 𝜎 and we get the result. ∎

10.2 Counting Points on Multiplicative Affine Springer Fibers

In this section, we apply the general results from the previous section to multiplicative

affine Springer fibers. We use the notations from Chapter 4 which we now review. Let

𝑋𝑣 = Spec𝒪𝑣 be the formal disc around a closed point 𝑣 ∈ |𝑋|, and 𝑋•
𝑣 = Spec𝐹𝑣 is

the punctured disc. Let 𝜋 be a fixed choice of uniformizer in 𝒪𝑣. Let �̆�𝑣 = Spec �̆�𝑣

where �̆�𝑣 = 𝒪𝑣⊗̂𝑘𝑘 and similarly �̆�•
𝑣 = Spec ̆𝐹𝑣. For any embedding 𝑣∶ 𝑘𝑣 → 𝑘, we let

�̆�𝑣 = Spec �̆�𝑣 be the component of �̆�𝑣 containing 𝑣. If 𝑘𝑣 = 𝑘, then �̆�𝑣 = �̆�𝑣.

10.2.1 Let𝑎 ∈ ℭ𝔐(𝒪𝑣)∩ℭ×
𝔐(𝐹𝑣)rs, then there exists some𝛾𝔐 ∈ 𝔐×(𝐹𝑣)with𝜒𝔐(𝛾𝔐) =

𝑎 by Theorem 2.4.24. We have multiplicative affine Springer fiber ℳ𝑣(𝑎) defined using

𝛾𝔐, whose set of 𝑘-points is

{𝑔 ∈ 𝐺(𝐹𝑣)/𝐺(𝒪𝑣) |Ad−1
𝑔 (𝛾ad) ∈ 𝐺ad(𝒪𝑣)𝜋𝜆𝑣𝐺ad(𝒪𝑣)},

where 𝛾ad is the image of 𝜆𝔐 in 𝐺ad, and 𝜆𝑣 is the boundary divisor of 𝑎, which may also

be viewed as an 𝐹𝑣-rational dominant cocharacter in �̌�(𝑇ad) through map

𝔄𝔐 → 𝔄Env(𝐺sc).

We denote the Newton point of 𝛾ad by 𝜈𝑣. Since we only care about point-counting, we will

replace ℳ𝑣(𝑎) with its reduced subfunctor and still use notation ℳ𝑣(𝑎) for simplicity.

We know that the reduced functor ℳ𝑣(𝑎) is represented by a 𝑘-scheme locally of finite

type.
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10.2.2 Following [Ngô10], let 𝔍𝑎 be the regular centralizer at 𝑎, and 𝔍′𝑎 be a smooth

group scheme over 𝑋𝑣 with connected fibers and a homomorphism 𝔍′𝑎 → 𝔍𝑎 such that its

restriction to 𝑋•
𝑣 is an isomorphism. Note that 𝔍′𝑎 is necessarily commutative.

Consider reduced commutative group scheme over 𝑘

𝒫′
𝑣(𝑎)red ≔ 𝖦𝗋red𝔍′𝑎

= (𝕃𝔍′𝑎/𝕃+𝔍′𝑎)red.

The second equality above is due to the fact that 𝔍′𝑎 has connected special fiber. This is

a group scheme locally of finite type over 𝑘, and we use 𝒫′
𝑣(𝑎) for simplicity. Similarly,

we have 𝒫𝑣(𝑎) for 𝔍𝑎, and we have homomorphism

𝒫𝑣(𝑎)′ ⟶ 𝒫𝑣(𝑎).

The action of 𝒫𝑣(𝑎) on ℳ𝑣(𝑎) induces an action of 𝒫′
𝑣(𝑎) on ℳ𝑣(𝑎). By Proposi-

tion 4.4.7, this action satisfies conditions laid out in the beginning of § 10.1.9, and so

we may express different 𝜅-weighted point-countings using trace formula on cohomolo-

gies. As in § 10.1.9, we also use ℳ𝑣(𝑎), 𝒫𝑣(𝑎), etc. to denote their respective sets of

𝑘-points.

10.2.3 We now try to connect point-countings on stack 𝒳′ = [ℳ𝑣(𝑎)/𝒫′
𝑣(𝑎)] with local

orbital integrals. First, the following lemma relates the 𝜅 in orbital integrals with 𝜅 in

§ 10.1:

Lemma 10.2.4 ([Ngô10, Lemme 8.2.4]). Assuming 𝔍′𝑎 has connected special fiber, then we

have canonical isomorphism

H1(𝐹𝑣, 𝔍𝑎) ≃ H1(𝑘,𝒫′
𝑣(𝑎)).

By this lemma, any character 𝜅∶ H1(𝐹𝑣, 𝔍𝑎) → ℚ×
ℓ induces a character ofH1(𝑘,𝒫′

𝑣(𝑎))
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and vice versa, and we still use 𝜅 to denote the character of the latter. Let 𝒫′
𝑣(𝑎)𝜎 be the

group of 𝜎-conjugacy classes of 𝒫′
𝑣(𝑎), and H1(𝑘,𝒫′

𝑣(𝑎)) is the subgroup of torsion ele-

ments (due to continuity requirement). Given 𝑥 = (𝑚,𝑝) ∈ 𝒳′(𝑘), we have associated

class given by the 𝜎-conjugacy class of 𝑝:

cl(𝑥) ∈ H1(𝑘,𝒫′
𝑣(𝑎)) ≃ H1(𝐹𝑣, 𝔍𝑎).

The element 𝛾𝔐 is regular (as an 𝐹𝑣-point), so we have canonical isomorphism 𝔍𝑎|𝐹𝑣 ≃

𝐼𝛾𝔐 ⊂ 𝐺. If a section of 𝜒𝔐 exists (e.g., when a Steinberg quasi-section exists), then 𝛾𝔐

can be chosen to be in 𝔐(𝒪𝑣)reg, and in this case we have 𝔍𝑎 ≃ 𝐼𝛾𝔐 . In either case, cl(𝑥)

may also be regarded as an element of H1(𝐹𝑣, 𝐼𝛾𝔐).

If 𝑔 ∈ 𝐺( ̆𝐹𝑣) is a representative of 𝑚 and 𝑗 ∈ 𝐼𝛾𝔐(𝐹𝑣) is a representative of 𝑝, then

𝑝(𝑚) = 𝜎(𝑚) implies that 𝜎(𝑔)−1𝑗𝑔 ∈ 𝐺(�̆�𝑣), hence 𝑗 is 𝜎-conjugate to 1 in 𝐺( ̆𝐹𝑣).

This shows that the image of cl(𝑥) inH1(𝐹𝑣, 𝐺) is trivial. Note that here we are dependent

on a choice of 𝛾𝔐, otherwise we cannot relate H1(𝐹𝑣, 𝔍𝑎) with H1(𝐹𝑣, 𝐺).

We let 𝖦𝗋≤𝜆𝑣 be the affine Schubert variety of the adjoint group 𝐺ad. The map of

groupoids

ℳ𝑣(𝑎)(𝑘) ⟶ [𝕃+𝐺ad\𝖦𝗋≤𝜆𝑣](𝑘)

is 𝜎-equivariant and 𝒫′
𝑣(𝑎)(𝑘)-invariant, so any function 𝜏 on the set of isomorphism

classes of

[𝕃+𝐺ad\𝖦𝗋≤𝜆𝑣](𝑘)

induces a function on 𝒳′(𝑘) by pullback. Note that since 𝐺 has connected fibers, the
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said isomorphism classes are in bijection with double cosets

𝐺(𝒪𝑣)𝜋𝜇𝐺(𝒪𝑣)

where 𝜇 ∈ �̌�(𝑇ad) is an 𝐹𝑣-rational dominant cocharacter with 𝜇 ≤ 𝜆𝑣. In particular, the

function 𝜏 can be the trace function Trℱ where ℱ is bounded and constructible 𝕃+𝐺ad-

equivariant complex on 𝖦𝗋≤𝜆𝑣 .

Proposition 10.2.5. Assuming 𝔍′𝑎 has connected special fiber, and let 𝜅 be a character of

H1(𝐹𝑣, 𝔍𝑎). Then for any function 𝜏 on [𝕃+𝐺ad\𝖦𝗋≤𝜆𝑣](𝑘), we have equality

#𝜏𝒳′(𝑘)𝜅 = vol(𝔍′𝑎(𝒪𝑣), d𝑡𝑣)𝐎𝜅
𝑎(𝜏, d𝑡𝑣),

where d𝑡𝑣 is any Haar measure on 𝔍𝑎(𝐹𝑣).

Proof. For any 𝑥 ∈ 𝒳′(𝑘), the class cl(𝑥) can be identified with an element in the kernel

of the map

H1(𝐹𝑣, 𝐼𝛾𝔐) ⟶ H1(𝐹𝑣, 𝐺).

So we can decompose 𝒳′(𝑘) into disjoint full subcategories

𝒳′(𝑘) = ∐
𝜉

𝒳′
𝜉(𝑘),

where 𝜉 ranges over the said kernel above, and𝒳′(𝑘)𝜉 consists of objects 𝑥with cl(𝑥) =

𝜉.

For a fixed class 𝜉, we pick a representative 𝑗𝜉 ∈ 𝐼𝛾𝔐( ̆𝐹𝑣). Let 𝑥 = (𝑚,𝑝) ∈ 𝒳′
𝜉(𝑘),

then we can find ℎ ∈ 𝒫′
𝑣(𝑎) such that 𝜎(ℎ)𝑝ℎ−1 = 𝑗𝜉. Replacing (𝑚,𝑝) with an isomor-

phic object (ℎ𝑚,𝑗𝜉), we may always assume 𝑝 = 𝑗𝜉. In other words, wemay restrict to an

equivalent full subcategory of 𝒳′
𝜉(𝑘) consisting of objects (𝑚, 𝑗𝜉), and the morphisms
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from (𝑚, 𝑗𝜉) to (𝑚′, 𝑗𝜉) are elements in ℎ ∈ 𝒫′
𝑣(𝑎)(𝑘) such that ℎ𝑚 = 𝑚′. Since 𝔍′𝑎 has

connected fibers, we have

𝒫′
𝑣(𝑎)(𝑘) = 𝔍𝑎(𝐹𝑣)/𝔍′𝑎(𝒪𝑣) ≃ 𝐼𝛾𝔐(𝐹𝑣)/𝔍′𝑎(𝒪𝑣).

For an object (𝑚, 𝑗𝜉), pick a representative 𝑔 ∈ 𝐺( ̆𝐹𝑣), then 𝑗𝜉(𝑚) = 𝜎(𝑚) implies

that 𝜎(𝑔)−1𝑗𝜉𝑔 ∈ 𝐺(�̆�𝑣). Thus we may pick 𝑔 so that we actually have 𝜎(𝑔)−1𝑗𝜉𝑔 = 1,

and if 𝑔 and 𝑔′ are two such choices, we must have 𝑔′ = 𝑔𝑔0 for some 𝑔0 ∈ 𝐺(𝒪𝑣). So

an object (𝑚, 𝑗𝜉) determines a unique element in quotient set 𝐺( ̆𝐹𝑣)/𝐺(𝒪𝑣). Thus, the

category 𝒳′
𝜉(𝑘) is equivalent to the following category 𝑂𝜉:

(1) the objects are elements𝑔 ∈ 𝐺( ̆𝐹𝑣)/𝐺(𝒪𝑣), such that𝜎(𝑔)−1𝑗𝜉𝑔 = 1 andAd−1
𝑔 (𝛾𝔐)

is contained in 𝔐(�̆�𝑣);

(2) a morphism 𝑔 → 𝑔1 is an element ℎ ∈ 𝒫𝑣(𝑎)(𝑘) such that ℎ𝑔 = 𝑔1, where the

action of 𝒫′
𝑣(𝑎)(𝑘) is induced by the isomorphism 𝔍𝑎 ≃ 𝐼𝛾𝔐 over 𝑋•

𝑣.

Choose 𝑔𝜉 ∈ 𝐺( ̆𝐹𝑣) such that 𝜎(𝑔𝜉)−1𝑗𝜉𝑔𝜉 = 1, and let

𝛾𝜉 = Ad−1
𝑔𝜉 (𝛾𝔐),

then we necessarily have 𝛾𝜉 ∈ 𝔐×(𝐹𝑣). One can verify that the 𝐺(𝐹𝑣)-conjugacy class

of 𝛾𝜉 does not depend on the choice of either 𝑗𝜉 or 𝑔𝜉, but only on the cohomology class

𝜉 ∈ H1(𝐹𝑣, 𝐼𝛾𝔐) (hence also implicitly depends on the choice of 𝛾𝔐).

Let 𝑔′ = 𝑔−1
𝜉 𝑔, then 𝑂𝜉 is equivalent to the following category 𝑂′

𝜉: the objects are

𝑔′ ∈ 𝐺(𝐹𝑣)/𝐺(𝒪𝑣), such that Ad−1
𝑔′ (𝛾𝜉) ∈ 𝔐(𝒪𝑣), and a morphism 𝑔′ → 𝑔′

1 is an

element ℎ ∈ 𝒫′
𝑣(𝑎)(𝑘) such that ℎ𝑔′ = 𝑔′

1. Here the action of 𝒫′
𝑣(𝑎)(𝑘) is induced by

the isomorphism 𝔍𝑎 ≃ 𝐼𝛾𝜉 over 𝑋•
𝑣.
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Therefore, the isomorphism classes of 𝒳′
𝜉(𝑘) are in bijection with double cosets

𝑔′ ∈ 𝐼𝛾𝜉(𝐹𝑣)\𝐺(𝐹𝑣)/𝐺(𝒪𝑣)

such that Ad−1
𝑔′ (𝛾𝜉) ∈ 𝔐(𝒪𝑣), and automorphism group of 𝑔′ is

(𝐼𝛾𝜉(𝐹𝑣) ∩ 𝑔′𝐺(𝒪𝑣)(𝑔′)−1)/𝔍′𝑎(𝒪𝑣).

As a result, for any Haar measure d𝑡𝑣 on 𝔍𝑎(𝐹𝑣) ≃ 𝐼𝛾𝜉(𝐹𝑣) and any ℚℓ-valued function

𝜏 on 𝒳′
𝜉(𝑘), we have

#𝜏𝒳′
𝜉(𝑘) = ∑

𝑔′

𝜏(𝑔′) vol(𝔍′𝑎(𝒪𝑣), d𝑡𝑣)
vol(𝐼𝛾𝜉(𝐹𝑣) ∩ 𝑔′𝐺(𝒪𝑣)(𝑔′)−1)

,

where 𝑔′ ranges over the double cosets above. This implies that

#𝜏𝒳′
𝜉(𝑘) = vol(𝔍′𝑎(𝒪𝑣), d𝑡𝑣)𝐎𝛾𝜉(𝜏, d𝑡𝑣).

Summing over all classes 𝜉, we have our result. ∎

In general, 𝔍𝑎 may have disconnected special fiber, and recall we have open sub-

group 𝔍0𝑎 of fiberwise neutral component. We will connect the point-counting of 𝒳(𝑘) =

[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)](𝑘) with that of 𝒳0(𝑘) = [ℳ𝑣(𝑎)/𝒫0
𝑣(𝑎)](𝑘), where 𝒫0

𝑣(𝑎) is the (re-

duced) affine Grassmannian of 𝔍0𝑎 (not to be confused with the neutral component of

𝒫𝑣(𝑎), which we denote by 𝒫𝑣(𝑎)0).

We have homomorphism

H1(𝐹𝑣, 𝔍𝑎) ≃ H1(𝑘,𝒫0
𝑣(𝑎)) ⟶ H1(𝑘,𝒫𝑣(𝑎)),

so a character 𝜅 of H1(𝑘,𝒫𝑣(𝑎)) induces a character of H1(𝐹𝑣, 𝔍𝑎), still denoted by 𝜅.

307



Proposition 10.2.6. Let 𝜏 be a function on [𝕃+𝐺ad\𝖦𝗋≤𝜆𝑣](𝑘). If we have a character

𝜅∶ H1(𝐹𝑣, 𝔍𝑎) → ℚ×
ℓ that is induced by a character ofH1(𝑘,𝒫𝑣(𝑎)), then we have equality

#𝜏𝒳(𝑘)𝜅 = vol(𝔍0𝑎(𝒪𝑣), d𝑡𝑣)𝐎𝜅
𝑎(𝜏, d𝑡𝑣),

where d𝑡𝑣 is any Haarmeasure on 𝔍𝑎(𝐹𝑣). If𝜅 is not induced by a character ofH1(𝑘,𝒫𝑣(𝑎)),

then

𝐎𝜅
𝑎(𝜏, d𝑡𝑣) = 0.

Proof. We already know by Proposition 10.2.5 that

#𝜏𝒳0(𝑘)𝜅 = vol(𝔍0𝑎(𝒪𝑣), d𝑡𝑣)𝐎𝜅
𝑎(𝜏, d𝑡𝑣),

if 𝜅 is a character of H1(𝑘,𝒫0
𝑣(𝑎)). So we need to prove that if 𝜅 is induced by a character

of H1(𝑘,𝒫𝑣(𝑎)), we have

#𝜏𝒳0(𝑘)𝜅 = #𝜏𝒳(𝑘)𝜅,

and #𝜏𝒳0(𝑘)𝜅 = 0 otherwise.

Let Π ≔ 𝜋0(𝔍𝑎,𝑣) be the kernel of 𝒫0
𝑣(𝑎) → 𝒫𝑣(𝑎). It is the group of connected

components of the special fiber of 𝔍𝑎. For each isomorphism class in 𝒳(𝑘), we fix a

representative 𝑥 = (𝑚,𝑝).

We consider a full subcategory 𝒳0(𝑘)𝑥 of 𝒳0(𝑘) consisting of objects lying over 𝑥

for each representative 𝑥. If 𝑥 and 𝑥′ are representatives of two isomorphism classes

in 𝒳(𝑘), then no object in 𝒳0(𝑘)𝑥 is isomorphic to any object in 𝒳0(𝑘)𝑥′ . On the

other hand, since 𝒫0
𝑣(𝑎) → 𝒫𝑣(𝑎) is surjective, any object in 𝒳0(𝑘) is isomorphic to an

object of 𝒳0(𝑘)𝑥 for some 𝑥. Thus we may replace 𝒳0(𝑘) with disjoint union of full
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subcategories

∐
𝑥

𝒳0(𝑘)𝑥.

For a given 𝑥 = (𝑚,𝑝), the category 𝒳0(𝑘)𝑥 is described as follows:

(1) the objects are (𝑚,𝑝0) such that 𝑝0 maps to 𝑝 (in particular, 𝒳0(𝑘)𝑥 is non-

empty);

(2) the morphism from (𝑚,𝑝0) to (𝑚,𝑝′
0) is a element ℎ ∈ 𝒫0

𝑣(𝔍𝑎) with ℎ𝑚 = 𝑚 and

𝜎(ℎ)𝑝0ℎ−1 = 𝑝′
0.

In particular, if we fix 𝑥0 = (𝑚,𝑝0) ∈ 𝒳0(𝑘)𝑥, then any (𝑚,𝑝′
0) may be written as

(𝑚,𝑝0𝑝′) for some 𝑝′ ∈ Π, and the automorphism of (𝑚,𝑝0) is the group

𝐻0 = {ℎ ∈ 𝒫0
𝑣(𝑎) | ℎ𝑚 = 𝑚,𝜎(ℎ)ℎ−1 ∈ Π}.

Therefore 𝒳0(𝑘)𝑥 is equivalent the categorical quotient [Π/𝐻0], where 𝐻0 acts on Π

through map

𝛼∶ 𝐻0 ⟶ Π

ℎ ⟼ 𝜎(ℎ)ℎ−1.

The isomorphism classes are represented by the coker(𝛼), and automorphism groups are

isomorphic to ker(𝛼). It also implies that 𝐻0 is finite.

Let 𝜅 be a character of H1(𝑘,𝒫0
𝑣(𝑎)), the latter is identified with the torsion part of

𝒫0
𝑣(𝑎)𝜎. We still denote the restriction toΠ𝜎 orΠ by 𝜅. The restriction of 𝜅 to𝛼(𝐻0) ∈ Π

is trivial by definition, so it induces a character on coker(𝛼), again still denoted by 𝜅. The

restriction of function 𝜏 to 𝒳0(𝑘)𝑥 is constant with value 𝜏(𝑥). So we have equality of
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summations

∑
𝑥′∈𝒳0(𝑘)𝑥/∼

⟨cl(𝑥′)𝜏(𝑥′), 𝜅⟩
#Aut𝒳0(𝑥′) = ⟨cl(𝑥0), 𝜅⟩𝜏(𝑥) ∑

𝑧∈coker(𝛼)

⟨𝑧,𝜅⟩
#ker(𝛼).

If 𝜅 is not induced by a character of H1(𝑘,𝒫𝑣(𝑎)), that is, non-trivial on Π, then the

right-hand side is 0. Summing over 𝑥, we have in this case

#𝜏𝒳0(𝑘)𝜅 = 0.

If 𝜅 is trivial on Π, then the same summation above is equal to

⟨cl(𝑥0), 𝜅⟩𝜏(𝑥)# coker(𝛼)
#ker(𝛼) = ⟨cl(𝑥0), 𝜅⟩𝜏(𝑥) #Π

#𝐻0
.

If ℎ0 ∈ 𝐻0 and let ℎ be its image in 𝒫𝑣(𝑎), then ℎ ∈ 𝒫𝑣(𝑎)(𝑘), and we have short exact

sequence

1 ⟶ Π ⟶ 𝐻0 ⟶ Aut𝒳(𝑘)(𝑥) ⟶ 1.

As a result, we have #𝐻0 = #Π#Aut𝒳(𝑘)(𝑥), and summing over 𝑥 of the sums above

we have

#𝜏𝒳(𝑘)𝜅 = #𝜏𝒳0(𝑘)𝜅.

This finishes the proof. ∎

Finally, using the connection between point-counting on𝒳(𝑘) and Frobenius trace on

cohomologies, we can give a cohomological interpretation of orbital integrals. According

to Proposition 4.4.7 and § 10.1.9, wemay find a𝜎-stable torsion-free subgroupΛ ⊂ 𝒫0
𝑣(𝑎)

such thatΛ acts freely onℳ𝑣(𝑎), and both𝒫0
𝑣(𝑎)/Λ andℳ𝑣(𝑎) are of finite types over 𝑘.
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Moreover, ℳ𝑣(𝑎)/Λ is proper, so its cohomologies with compact support is canonically

isomorphic to ordinary cohomologies. Since the kernel of 𝒫0
𝑣(𝑎) → 𝒫𝑣(𝑎) is of finite

type, Λ maps isomorphically to its image in 𝒫𝑣(𝑎), so we may also treat Λ as a subgroup

of 𝒫𝑣(𝑎).

Corollary 10.2.7. Let ℱ be a bounded constructible 𝕃+𝐺ad-equivariant complex on 𝖦𝗋≤𝜆𝑣

and 𝜅 be a character of H1(𝐹𝑣, 𝔍𝑎). Let 𝔍♭,0𝑎 be the open subgroup scheme of the Néron

model of 𝔍𝑎 of fiberwise neutral components. Then for any Λ as above, we have

∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎,H𝑖([ℳ𝑣(𝑎)/Λ],ℱ)) = vol(𝔍♭,0𝑎 , d𝑡𝑣)𝐎𝜅
𝑎(Trℱ, d𝑡𝑣).

Proof. Apply Proposition 10.1.11 and Proposition 10.2.5, to 𝔍0𝑎, we have

∑
𝑖∈ℤ

(−1)𝑖 Tr(𝜎,H𝑖([ℳ𝑣(𝑎)/Λ],ℱ)) = #𝒫0
𝑣(𝑎)0(𝑘) vol(𝔍0𝑎, d𝑡𝑣)𝐎𝜅

𝑎(Trℱ, d𝑡𝑣),

where 𝒫0
𝑣(𝑎)0 is the neutral component of 𝒫0

𝑣(𝑎). The injective map 𝔍0𝑎 → 𝔍♭,0𝑎 induces

short exact sequence

1 ⟶ 𝔍♭,0𝑎 (�̆�𝑣)/𝔍0𝑎(�̆�𝑣) ⟶ 𝒫0
𝑣(𝑎) ⟶ 𝒫♭,0

𝑣 (𝑎) ⟶ 1.

The group 𝒫♭,0
𝑣 (𝑎) is discrete, so the 𝑘-point of the neutral component 𝒫0

𝑣(𝑎)0 can be

identified with 𝔍♭,0𝑎 (�̆�𝑣)/𝔍0𝑎(�̆�𝑣), compatible with 𝜎-action. Since both 𝔍♭,0𝑎 and 𝔍0𝑎 have

connected fibers, we have

𝒫0
𝑣(𝑎)0(𝑘) ≃ 𝔍♭,0𝑎 (𝒪𝑣)/𝔍0𝑎(𝒪𝑣).

This implies that

#𝒫0
𝑣(𝑎)0(𝑘) vol(𝔍0𝑎(𝒪𝑣), d𝑡𝑣) = vol(𝔍♭,0𝑎 (𝒪𝑣), d𝑡𝑣)
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for any Haar measure on 𝔍𝑎(𝐹𝑣). Combining it with the equality above, we have our

result. ∎

10.3 Counting Points on mH-fibrations

In this section, we fix 𝑎 ∈ 𝒜♮
𝑋(𝑘) and consider point-counting problems onℳ𝑎. Let 𝔍′𝑎 →

𝔍𝑎 be a morphism of smooth commutative groups schemes on 𝑋 that is an isomorphism

over 𝑈 = 𝑋 − 𝔇𝑎. Suppose 𝔍′𝑎 has connected fibers. For example, we may let 𝔍′𝑎 = 𝔍0𝑎.

Let 𝒫′
𝑎 be the Picard stack classifying 𝔍′𝑎-torsors on 𝑋, then the 𝒫𝑎-action on ℳ𝑎 induces

an action of 𝒫′
𝑎. Unlike [Ngô10], we do not need to choose such 𝔍′𝑎 that 𝒫′

𝑎 is a scheme,

because in Proposition 10.1.8 we allow 𝒫 to be a Deligne-Mumford stack.

10.3.1 By Proposition 6.9.6, we have Gal(𝑘/𝑘)-equivariant equivalence of groupoids

[ℳ𝑎/𝒫𝑎] = ∏
𝑣∈|𝑋−𝑈|

[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)],

and similarly if we replace 𝒫𝑎 (resp. 𝒫𝑣(𝑎)) by 𝒫′
𝑎 (resp. 𝒫′

𝑣(𝑎)). In particular, we have

equivalence of groupoids of 𝑘-points

[ℳ𝑎/𝒫′
𝑎](𝑘) = ∏

𝑣∈|𝑋−𝑈|
[ℳ𝑣(𝑎)/𝒫′

𝑣(𝑎)](𝑘).

A constructible complex or a function on the left-hand side is called factorizable if it

is an exterior tensor of the same on the right-hand side. In this case, we write ℱ =

⊠𝑣∈|𝑋−𝑈|ℱ𝑣 or 𝜏 = ⊠𝑣∈|𝑋−𝑈|𝜏𝑣 respectively.

Since 𝑎 is anisotropic, the group 𝜋0(𝒫𝑎) is finite with 𝜎-action. For any 𝑣 ∈ |𝑋−𝑈|,

the map 𝒫′
𝑣(𝑎) → 𝒫′

𝑎 induces map of connected components

𝜋0(𝒫′
𝑣(𝑎)) ⟶ 𝜋0(𝒫′

𝑎).
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Any 𝜎-invariant character

𝜅∶ 𝜋0(𝒫𝑎)𝜎 ⟶ ℚ×
ℓ

induces characters on 𝜋0(𝒫′
𝑎) and 𝜋0(𝒫′

𝑣(𝑎)). On the other hand, if a Steinberg quasi-

section exists for 𝜒𝔐 and 𝑥 ∈ [ℳ𝑎/𝒫𝑎](𝑘) corresponds to a tuple of points 𝑥𝑣 ∈

[ℳ𝑣(𝑎)/𝒫′
𝑣(𝑎)](𝑘), then we have

⟨cl(𝑥), 𝜅⟩ = ∏
𝑣∈|𝑋−𝑈|

⟨cl(𝑥𝑣), 𝜅⟩.

Here we implicitly assume that each ℳ𝑣(𝑎) is defined using the section induced by the

same Steinberg quasi-section. Note that if 𝜅 = 1, the above equality still holds even if

Steinberg quasi-section does not exist. Thus we have the following result:

Proposition 10.3.2. Suppose a Steinberg quasi-section exists for𝜒𝔐, then for any𝜎-invariant

character 𝜅 of 𝜋0(𝒫𝑎) and any ℚℓ-valued factorizable function 𝜏 on [ℳ𝑎/𝒫′
𝑎](𝑘), we

have

#𝜏[ℳ𝑎/𝒫′
𝑎](𝑘)𝜅 = ∏

𝑣∈|𝑋−𝑈|
#𝜏𝑣[ℳ𝑣(𝑎)/𝒫′

𝑣(𝑎)](𝑘)𝜅.

If 𝜅 = 1, the same equality holds even if Steinberg quasi-section does not exist.

Corollary 10.3.3. For any 𝜎-invariant character 𝜅 of 𝜋0(𝒫𝑎), and ℱ a bounded, con-

structible and factorizable 𝒫𝑎-equivariant complex on ℳ𝑎, suppose either a Steinberg

quasi-section exists or 𝜅 = 1, we have

∑
𝑛∈ℤ

(−1)𝑛 Tr(𝜎,H𝑛(ℳ𝑎,𝑘,ℱ)𝜅) = #(𝒫′
𝑎)0(𝑘) ∏

𝑣∈|𝑋−𝑈|
#ℱ𝑣[ℳ𝑣(𝑎)/𝒫′

𝑣(𝑎)](𝑘)𝜅.

Proof. This follows from Propositions 10.1.8 and 10.3.2 and that ℳ𝑎 is proper by Propo-

sition 8.1.2. ∎
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10.3.4 Finally, we express #𝜏[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)](𝑘)𝜅 as orbital integrals. For that purpose,

we choose at each point 𝑣 ∈ |𝑋−𝑈|:

(1) a trivialization of the 𝑍𝔐-torsor ℒ on the formal disc 𝑋𝑣;

(2) a Haar measure d𝑡𝑣 on 𝔍𝑎(𝐹𝑣).

In this way we have equality by Proposition 10.2.5:

#𝜏[ℳ𝑣(𝑎)/𝒫′
𝑣(𝑎)](𝑘)𝜅 = vol(𝔍′𝑎(𝒪𝑣), d𝑡𝑣)𝐎𝜅

𝑎,𝑣(𝜏𝑣, d𝑡𝑣).

Therefore if either a Steinberg quasi-section exists or 𝜅 = 1, we have

∑
𝑛∈ℤ

(−1)𝑛 Tr(𝜎,H𝑛(ℳ𝑎,𝑘,ℱ)𝜅) = #(𝒫′
𝑎)0(𝑘) ∏

𝑣∈|𝑋−𝑈|
vol(𝔍′𝑎(𝒪𝑣), d𝑡𝑣)𝐎𝜅

𝑎,𝑣(Trℱ𝑣 , d𝑡𝑣).

10.4 Stabilization over �̃�𝜅,†
𝐻

Now we go back to the situation in § 9.9 and prove Theorem 8.3.4 over the locus �̃�𝜅,†
𝐻 .

More precisely, let 𝒰 ⊂ �̃�‡ be the largest open subset over which �̃�−1
𝒜 (𝒰) ⊂ �̃�𝜅,†

𝐻 , then

we are going to prove Theorem 8.3.5 over 𝒰.

10.4.1 Indeed, by Theorem 9.9.3, the set of supports of 𝔭H•(ℎ̃𝜅,†
𝐻,∗𝒬𝜅

𝐻)st only contains

inductive subsets in �̃�𝜅,†
𝐻 . Pick a point 𝑎 ∈ �̃�𝒜(�̃�𝜅,†

𝐻 ) ∩𝒰(𝑘) and without loss of gen-

erality we may assume it is defined over 𝑘 and so is the endoscopic datum (otherwise

we can base change to some 𝑘′ and replace 𝑘 by 𝑘′). Make 𝑎 general enough so that any

𝑎𝐻 ∈ �̃�−1
𝒜 (𝑎) has 𝛿𝐻,𝑎𝐻 = 0. It is possible by our assumptions on 𝒰.

Recall on ℭ𝔐,𝐻 we have equality of principal divisors

𝜈∗
𝐻𝔇𝔐 = 𝔇𝔐,𝐻 + 2ℜ𝐺

𝐻,
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where both𝔇𝔐,𝐻 andℜ𝐺
𝐻 are reduced divisors. Similar to Proposition 6.3.13, wemay find

𝑎 so that every 𝑎𝐻 intersects with 𝔇𝔐,𝐻 +ℜ𝐺
𝐻 transversally and 𝑎∗

𝐻(𝔇𝔐,𝐻 +ℜ𝐺
𝐻) does

not collide with the boundary divisor. Let 𝒰′ be the open dense subset of 𝒰 consisting

of such 𝑎. Without loss of generality, we may also assume𝒰′ to be irreducible by looking

at each irreducible component.

For any 𝑎 ∈ �̃�𝒜(�̃�𝜅,†
𝐻 ) ∩𝒰′ and 𝑣 ∈ 𝑋(𝑘) such that the boundary divisor is not 0 at

𝑣, since 𝛿𝑣(𝑎) = 0, the local Newton point equals the boundary divisor at 𝑣. This implies

that there is a unique point 𝑎𝐻 mapping to 𝑎 (see the proof of Proposition 6.11.2). In

other words, the map

�̃�−1
𝒜 (𝒰′) ⟶ 𝒰′

is a closed embedding. Moreover, if we letℳ′ = ℎ̃−1
𝑋 (𝒰′) (and with𝒰′ being irreducible),

the intersection complex 𝒬|ℳ′ is isomorphic to ℚℓ[dimℳ′](dimℳ′/2), and similarly

for the 𝐻-side.

The natural homomorphism 𝔍𝑎 → 𝔍𝐻,𝑎𝐻 induces homomorphism 𝒫𝑎 → 𝒫𝐻,𝑎𝐻 and

similarly the local analogues 𝒫𝑣(𝑎) → 𝒫𝐻,𝑣(𝑎𝐻). So we have an action of 𝒫𝑣(𝑎) on

ℳ𝐻,𝑣(𝑎𝐻) too.

Lemma 10.4.2. With the assumptions above, for any closed point 𝑣 ∈ |𝑋|, we have equality

#ℚℓ
[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)](𝑘)𝜅 = 𝑞deg(𝑣)𝑟𝐺

𝐻,𝑣(𝑎𝐻) #ℚℓ
[ℳ𝐻,𝑣(𝑎𝐻)/𝒫𝑣(𝑎)](𝑘)st,

where deg(𝑣) is the degree of 𝑣 over 𝑘 and 𝑟𝐺
𝐻,𝑣(𝑎𝐻) is the degree of𝑎∗

𝐻ℜ𝐺
𝐻 at 𝑣. Moreover,

it is a non-zero rational number.

Proof. The proof is the same as [Ngô10, Lemme 8.5.7] so we only give a sketch and some

other necessary input from the group case. If we let 𝑣 is a geometric point lying over 𝑣,

then we have three possibilities:
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(1) 𝑑𝐻,𝑣+(𝑎𝐻) = 𝑑𝑣+(𝑎) = 𝑟𝐺
𝐻,𝑣(𝑎𝐻) = 0, or

(2) 𝑑𝐻,𝑣+(𝑎𝐻) = 𝑑𝑣+(𝑎) = 1 and 𝑟𝐺
𝐻,𝑣(𝑎𝐻) = 0, or

(3) 𝑑𝐻,𝑣+(𝑎𝐻) = 0, 𝑑𝑣+(𝑎) = 2, and 𝑟𝐺
𝐻,𝑣(𝑎𝐻) = 1.

In the last two cases the boundary divisor vanishes at 𝑣. The first two cases works verba-

tim as in the Lie algebra case. In the third case, one also reduces to groups of semisimple

rank 1, and can easily show that geometrically ℳ𝑣(𝑎) is a union of infinite chain of ℙ1

as in the case of [Ngô10, § 8.3]. One can also deduce the computation from the Lie al-

gebra case and the fact that Env(SL2) ≅ Mat2 ≅ 𝔤𝔩2 compatible with GL2-conjugation.

After that, since we also assumed existence of a Steinberg quasi-section, the remaining

computations for Lie algebras also carry through. This finishes the proof. ∎

10.4.3 Let deg(𝑎∗
𝐻ℜ𝐺

𝐻) be the sum of deg(𝑣)𝑟𝐺
𝐻,𝑣(𝑎𝐻). By Lemma 6.3.4 and Corol-

lary 6.8.4 and (6.11.5), we have equalities

deg(𝑎∗
𝐻ℜ𝐺

𝐻) = 𝑟𝐺
𝐻(𝑎𝐻) = dim𝒫𝑎 − dim𝒫𝐻,𝑎𝐻 = dimℳ𝑎 − dimℳ𝐻,𝑎𝐻 ,

and this number does not depend on 𝑎 or 𝑎𝐻. Using Corollary 10.3.3, we have

∑
𝑛∈ℤ

(−1)𝑛 Tr(𝜎,H𝑛(ℳ𝑎,𝑘,𝒬)𝜅)

= 𝑞−dimℳ′/2 #(𝒫𝑎)0(𝑘) ∏
𝑣∈|𝑋−𝑈|

#ℚℓ
[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)](𝑘)𝜅,

and similarly (with 𝒫𝑎-action instead of 𝒫𝐻,𝑎𝐻-action on ℳ𝐻,𝑎𝐻)

∑
𝑛∈ℤ

(−1)𝑛 Tr(𝜎,H𝑛(ℳ𝐻,𝑎𝐻,𝑘,𝒬
𝜅
𝐻)st)

= 𝑞−dimℳ𝜅,′
𝐻 /2 #(𝒫𝑎)0(𝑘) ∏

𝑣∈|𝑋−𝑈|
#ℚℓ

[ℳ𝐻,𝑣(𝑎𝐻)/𝒫𝑣(𝑎)](𝑘).
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Combining with Lemma 10.4.2, we see that

∑
𝑛∈ℤ

(−1)𝑛 Tr(𝜎,H𝑛(ℳ𝑎,𝑘,𝒬)𝜅)

= 𝑞(dimℳ𝜅,′
𝐻 −dimℳ′)/2+𝑟𝐺

𝐻(𝑎𝐻) ∑
𝑛∈ℤ

(−1)𝑛 Tr(𝜎,H𝑛(ℳ𝐻,𝑎𝐻,𝑘,𝒬
𝜅
𝐻)st).

Since (dimℳ𝜅,′
𝐻 − dimℳ′)/2 + 𝑟𝐺

𝐻(𝑎𝐻) depends only on 𝒰′ not on 𝑎𝐻, we see that the

local systems 𝔭H•(ℎ̃‡
∗𝒬)𝜅|𝒰′ and �̃�𝒜,∗(𝔭H•(ℎ̃†

𝐻,∗𝒬𝜅
𝐻)st)|𝒰′ are isomorphic up to a Tate

twist and semisimplification with respect to𝜎. However, we also know that both are local

systems of pure weight 0, therefore the Tate twist must be trivial, in other words, we must

have

(dimℳ𝜅,′
𝐻 − dimℳ′)/2 + 𝑟𝐺

𝐻(𝑎𝐻) = 0,

and so

∑
𝑛∈ℤ

(−1)𝑛 Tr(𝜎,H𝑛(ℳ𝑎,𝑘,𝒬)𝜅) = ∑
𝑛∈ℤ

(−1)𝑛 Tr(𝜎,H𝑛(ℳ𝐻,𝑎𝐻,𝑘,𝒬
𝜅
𝐻)st).

We also deduce that

dim𝒰− dim �̃�𝒜(�̃�𝜅,†
𝐻 ) ∩𝒰 = 𝑟𝐺

𝐻(𝑎𝐻).

It is the same process preceding Theorem 9.9.6, and it is simpler here because the com-

putation is more refined.

10.4.4 As the result of previous discussion, we may apply Theorem 9.9.6 to 𝒰 and it

implies that the set of supports of 𝔭H•(ℎ̃‡
∗𝒬)𝜅 only contains 𝛿-critical subsets whose

preimages in �̃�𝜅,†
𝐻 are inductive. For convenience, if 𝑍 ⊂ �̃�𝒜(�̃�𝜅,†

𝐻 )∩𝒰 is an irreducible

closed 𝛿-critical subset whose preimage in �̃�𝜅,†
𝐻 is inductive, then we call such subset
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relevant.

Suppose 𝐾𝑍 ⊂ 𝔭H•(ℎ̃‡
∗𝒬)𝜅 is the largest direct summand with support 𝑍, then by

the proof of Theorem 9.9.6, we may find an open subset 𝑍′ ⊂ 𝑍 such that 𝐾𝑍|𝑍′ is a local

system. Shrinking 𝑍′ if necessary, we may also assume that the abelian part of the Tate

module Λ𝐴,𝑍 is also a local system and 𝐾𝑍 is a free graded Λ𝐴,𝑍-module generated by

the top degree.

Similarly, if 𝐾𝐻,𝑍 ⊂ �̃�𝒜,∗(𝔭H•(ℎ̃†
𝐻,∗𝒬𝜅

𝐻)st) is the largest direct summand with sup-

port 𝑍, then further shrinking 𝑍′ if necessary, we may also assume 𝐾𝐻,𝑍|𝑍′ is a free

graded Λ𝐻,𝐴𝐻-module generated be the top cohomology. Moreover, the natural maps

𝒫𝑎 → 𝒫𝐻,𝑎𝐻 induces natural isomorphism �̃�∗
𝒜Λ𝐴,𝑍 ≃ Λ𝐻,𝐴𝐻,�̃�−1

𝒜 (𝑍) over �̃�−1
𝒜 (𝑍′).

By (8.4.1), the top cohomologies of 𝔭H•(ℎ̃‡
∗𝒬)𝜅 and �̃�𝒜,∗(𝔭H•(ℎ̃†

𝐻,∗𝒬𝜅
𝐻)st), at stalk

level, are isomorphic as 𝜎-modules, which means that they are isomorphic as local sys-

tems after taking semisimplification with respect to 𝜎. We also know that both 𝐾𝑍 and

𝐾𝐻,𝑍 are geometrically semisimple for any 𝑍. Therefore we can deduce Theorem 8.3.5

hence also Theorem 8.3.4 over 𝒰 using inductive argument below.

Indeed, there is a partial order on all relevant subsets 𝑍 by inclusion. The unique

maximal element is just 𝑍0 = �̃�𝒜(�̃�𝜅,†
𝐻 ) ∩ 𝒰. We have already established that the

𝜎-semisimplifications 𝐾ss
𝑍0 and 𝐾ss

𝐻,𝑍0 are isomorphic over some open subset 𝑍′
0 ⊂ 𝑍0.

Although the functor of intermediate extension is not exact in general, it is still exact on

geometrically semisimple local systems. Therefore 𝐾ss
𝑍0 and 𝐾ss

𝐻,𝑍0 are isomorphic. Over

a sufficiently small open subset 𝑍′ in an arbitrary 𝑍, 𝔭H•(ℎ̃‡
∗𝒬)𝜅 decomposes into 𝐾𝑍|𝑍′

and 𝐾𝑊|𝑍′ for all relevant 𝑊 containing 𝑍, and similarly for �̃�𝒜,∗(𝔭H•(ℎ̃†
𝐻,∗𝒬𝜅

𝐻)st). By

inductive hypothesis, all 𝐾ss
𝑊 and 𝐾ss

𝐻,𝑊 are isomorphic, and in particular it is true for

their top cohomologies. This implies that the top cohomologies of 𝐾𝑍|ss𝑍′ and 𝐾𝐻,𝑍|ss𝑍′ are

also isomorphic. Since 𝐾𝑍|𝑍′ is generated by its top cohomology over Λ𝐴,𝑍, and similarly

for 𝐾𝐻,𝑍|𝑍′ , we see that 𝐾𝑍|ss𝑍′ and 𝐾𝐻,𝑍|ss𝑍′ are isomorphic, hence so are 𝐾ss
𝑍 and 𝐾ss

𝐻,𝑍.

This finishes the proof of Theorem 8.3.5 over 𝒰.
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10.5 Fundamental Lemma for Adjoint Groups

In this section we are going to prove the fundamental lemma for adjoint groups 𝐺 = 𝐺ad

and its elliptic endoscopic groups 𝐻.

10.5.1 Let 𝑋𝑣 = Spec𝒪𝑣 where 𝒪𝑣 = 𝑘[[𝜋𝑣]] and 𝑋•
𝑣 = Spec𝐹𝑣 where 𝐹𝑣 = 𝑘((𝜋𝑣)).

Let 𝐺𝑣 be a reductive group scheme over 𝑋𝑣 obtained by a Out(𝐆)-torsor 𝜗𝐺,𝑣. Let

(𝜅,𝜗𝜅,𝑣) be an endoscopic datum with endoscopic group 𝐻𝑣. Assume 𝐺𝑣 is of adjoint

type, then it has no center, and since 𝐻𝑣 is elliptic, in this case it is necessarily true that

𝐻𝑣 has the same semisimple rank as 𝐺𝑣, in other words, 𝑟 = 𝑟𝐻𝑣 .

Since 𝐺𝑣 is of adjoint type, then all its simple factors of types 𝐴2𝑚 form a direct

factor 𝐺′
𝑣 of 𝐺𝑣. In this case, since 𝐻𝑣 has the same semisimple rank as 𝐺𝑣, by looking at

the Dynkin diagrams, we conclude that 𝐻𝑣 also contains 𝐺′
𝑣 as direct factors. Therefore,

upon replacing 𝐺𝑣 and 𝐻𝑣 with 𝐺𝑣/𝐺′
𝑣 and 𝐻𝑣/𝐺′

𝑣 respectively, we may assume it has

no simple factor of type 𝐴2𝑚. As a result, we may assume that a Steinberg quasi-section

exists for 𝐺𝑣.

10.5.2 We need an approximation result for multiplicative affine Springer fibers, which

is valid for all 𝐺𝑣 (not just adjoint groups).

Proposition 10.5.3. Suppose a Steinberg quasi-section exists for 𝐺𝑣 (not necessarily of

adjoint type) over 𝑘. Then for a fixed 𝑎 ∈ ℭ𝔐(𝒪𝑣) ∩ ℭ×,rs
𝔐 (𝐹𝑣), there exists some in-

teger 𝑁 such that for any 𝑎′ ∈ ℭ𝔐(𝒪𝑣) with 𝑎 ≡ 𝑎′ mod 𝜋𝑁
𝑣 , we have isomorphisms

ℳ𝑣(𝑎) ≅ ℳ𝑣(𝑎′) and𝒫𝑣(𝑎) ≅ 𝒫𝑣(𝑎′) compatible with the action of𝒫𝑣(𝑎) (resp.𝒫𝑣(𝑎′))

on ℳ𝑣(𝑎) (resp. ℳ𝑣(𝑎′)). For arbitrary group 𝐺𝑣 potentially without a Steinberg quasi-

section over 𝑘, the same holds after base change to 𝑘.

Proof. Clearly we only need to prove for 𝔐 = Env(𝐺sc). The case after base changing to

𝑘 is proved in [Chi19, Theorem 5.1.1], whose proof is an adaptation of the argument for
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[Ngô10, Proposition 3.5.1]. The key is that if 𝛾 ∈ 𝔐(𝒪𝑣) is the point given by the section

induced by a Steinberg quasi-section, then one may find some point 𝑔 ∈ 𝐺sc(𝒪𝑣) (the

proof in loc. cit. uses the group 𝔐× but 𝐺sc also works) such that 𝑔 ≡ 1 mod 𝜋𝑁
𝑣 and

that if we replace 𝛾 by 𝑔−1𝛾𝑔, then the resulting multiplicative affine Springer fiber (of

invariant 𝑎) will be isomorphic to that of 𝑎′, together with local Picard action. This part

of the proof works rationally over 𝑘 as long as a Steinberg quasi-section is defined over

𝑘. After taking the image of 𝑔 in 𝐺(𝒪𝑣) we obtain the desired result. ∎

Although we cannot guarantee the existence of Steinberg quasi-section for 𝐻𝑣, it does

not matter for our purposes because we only care about stable orbital integrals of 𝐻𝑣.

Indeed, since we still have the same approximation result over 𝑘, and the stable orbital

integral depends only on the geometric conjugacy class over 𝐹𝑣, we will obtain the same

stable orbital integral from both 𝑎𝐻 and 𝑎′
𝐻.

10.5.4 Pick a smooth projective and geometrically connected curve 𝑋 over 𝑘 together

with two distinct 𝑘-points 𝑣 and ∞ and a 𝜋0(𝜅)-torsor 𝜗𝜅 with a trivialization at ∞

(in other words, a 𝜋0(𝜅)-torsor 𝜗•
𝜅 pointed over ∞), such that we have an isomorphism

between the completion of 𝑋 at 𝑣 and 𝑋𝑣 above and an isomorphism 𝜗𝜅|𝑋𝑣 ≅ 𝜗𝜅,𝑣. Let

𝐺 = 𝐺ad and 𝐻 be the corresponding twists of 𝐆 = 𝐆ad and 𝐇 respectively, then 𝐺|𝑋𝑣 is

isomorphic to 𝐺𝑣 and similarly for 𝐻𝑣.

Pick any monoid 𝔐 ∈ ℱℳ0(𝐺sc) such that 𝔄𝔐 is of standard type and let 𝔐𝐻 be

the corresponding endoscopic monoid. Let 𝑎𝑣 ∈ ℭ𝔐(𝒪𝑣) ∩ ℭ×,rs
𝔐 (𝐹𝑣), viewed as a point

in [ℭ𝔐/𝑍𝔐](𝒪𝑣) and suppose 𝑎𝐻,𝑣,1,… ,𝑎𝐻,𝑣,𝑒 be all the liftings to [ℭ𝔐,𝐻/𝑍𝜅
𝔐](𝒪𝑣).

Then we can always find 𝑍𝜅
𝔐-torsors ℒ𝜅

1 ,… ,ℒ𝜅
𝑒 and sections 𝑎𝐻,𝑖 ∈ ℭ𝔐,𝐻,ℒ𝜅

𝑖
such that

over 𝒪𝑣 they induce 𝑎𝐻,𝑣,𝑖, and they all induce the same 𝑍𝔐-torsor ℒ. By adding more

cocharacters at points other than 𝑣, we can ensure each ℒ𝜅
𝑖 is very (𝐻,𝑁)-ample for

arbitrarily large 𝑁. If the added cocharacters are the same for every ℒ𝜅
𝑖 , then we also

make sure that they still induce the same 𝑍𝔐-torsor ℒ. Moreover, ℒ can also be made
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very (𝐺,𝑁)-ample for arbitrarily large 𝑁. Let 𝑐 = |𝐙sc|, then we can also ensure that ℒ is

a 𝑐-th power.

To summarize, we may make the following choices:

(1) A very (𝐺,𝑁)-ample irreducible component of ℬ𝑋 such that any (and every) 𝑍𝔐-

torsor in its image in Bun𝑍𝔐 is a 𝑐-th power. Here 𝑁 is as in Proposition 10.5.3. Its

preimage in 𝒜𝑋 is simply denoted by 𝒜. In particular, a Steinberg quasi-section

exists over 𝒜.

(2) There exists some 𝑎 ∈ 𝒜(𝑘) contained in 𝜈𝒜(𝒜𝜅
𝐻,𝑋), such that its restriction to𝑋𝑣

gives 𝑎𝑣, and its preimage 𝜈−1
𝒜 (𝑎) consists entirely of very (𝐻,𝑁)-ample points.

(3) For any 𝑎𝐻,𝑖 ∈ 𝜈−1
𝒜 (𝑎), 𝑎𝐻(𝑋) intersects with divisor 𝔇𝔐,𝐻 + ℜ𝐺

𝐻 transversally

outside of 𝑣, and the boundary divisor and 𝔇𝔐,𝐻 + ℜ𝐺
𝐻 does not collide outside

𝑣. In addition, 𝑎𝐻,𝑖 is very (𝐻,𝛿𝑎𝐻,𝑖)-ample and very (𝐻,𝑁(𝛿𝑎𝐻,𝑖))-ample , where

𝑁(𝛿𝑎𝐻,𝑖) is as required in Proposition 7.4.5.

Replace 𝒜 by an open dense subset such that its preimage 𝒜𝐻 ≔ 𝜈−1
𝒜 (𝒜) is en-

tirely 𝐻-ample enough in the sense as listed above. By Theorem 6.10.2, local model of

singularity exists for 𝐻 over 𝒜𝐻. This is due to the fact that

H0(�̆�, (Lie(𝔍♭𝐻,𝑎𝐻)/𝔷𝐻)∗) = 0

for all 𝑎𝐻 ∈ 𝒜𝐻. Because 𝐻 is semisimple we have 𝔷𝐻 = 0, and since we have isomor-

phism of Néron models 𝔍♭𝑎 ≃ 𝔍♭𝐻,𝑎𝐻 for any 𝑎𝐻 mapping to 𝑎, local model of singularity

holds for 𝐺 over𝒜 as well. By Corollary 6.11.4, we may assume that the anisotropic locus

is not empty and its complement has codimension larger than 𝛿𝑎𝐻,𝑖 for every 𝑖 above.

Replace 𝒜 and 𝒜𝐻 by their respective anisotropic loci.

10.5.5 Let ℎ∶ ℳ → 𝒜 and ℎ𝐻 ∶ ℳ𝐻 → 𝒜𝐻 be the associated mH-fibrations of 𝐺 and 𝐻

respectively, and we have étale open subset �̃� → 𝒜 and �̃�𝐻 → 𝒜𝐻. Now over �̃� and
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�̃�𝐻 = �̃�−1
𝒜 (�̃�) we have already proved stabilization theorem in § 10.4. Let 𝑍 ⊂ 𝜈𝒜(𝒜𝐻)

be the locally closed subset such that for all 𝑎′ ∈ 𝑍(𝑘) we have 𝑎′ has the same image

as 𝑎 in [ℭ𝔐/𝑍𝔐](𝒪𝑣/𝜋𝑁
𝑣 ), and in addition all 𝑎′

𝐻 ∈ 𝜈−1
𝒜 (𝑎′), 𝑎′

𝐻(�̆�) intersects with

𝔇𝔐,𝐻+ℜ𝐺
𝐻 transversally outside of 𝑣. Then we automatically have a bijection 𝜈−1

𝒜 (𝑎′) ≅

𝜈−1
𝒜 (𝑎) such that 𝑎′

𝐻,𝑖 has the same image in [ℭ𝔐,𝐻/𝑍𝜅
𝔐](𝒪𝑣/𝜋𝑁

𝑣 ) as 𝑎𝐻,𝑖.

Let �̃� be the preimage of 𝑍 in �̃�. The endoscopic datum is pointed at∞, meaning at∞

the group𝐺 is split. Clearly there exists an integer𝑚 such that for all field extension 𝑘′/𝑘

of degrees at least 𝑚, the set 𝐓rs
𝐌(𝑘′) is non-empty. As a result, by slightly increasing am-

pleness if necessary, we have �̃�(𝑘′) ≠ ∅. Let ̃𝑎′ ∈ �̃�(𝑘′) and �̃�−1
𝒜 (𝑎′) = { ̃𝑎′

𝐻,1,… , ̃𝑎′
𝐻,𝑒}.

Let 𝑎′ (resp. 𝑎′
𝐻,𝑖) be the image of ̃𝑎′ in 𝑍 (resp. 𝜈−1

𝒜 (𝑍)). Then by Proposition 10.5.3, the

multiplicative affine Springer fiber of 𝑎′ at 𝑣 is 𝑘′-isomorphic to that of 𝑎 (viewed as a

𝑘′-point) at 𝑣, together with local Picard actions. Similar result also holds for each 𝑎′
𝐻,𝑖

and 𝑎𝐻,𝑖 except only over 𝑘, but such deficiency does not affect stable point-counting.

10.5.6 Since𝒬 can be described using local model of singularity, its induced function on

[ℳ𝑎/𝒫𝑎](𝑘) is clearly factorizable into local factors, but not in a uniqueway since the Tate

twists can be adjusted among local factors. Here for convenience we use the convention

that at any geometric point 𝑣′ ∈ 𝑋− {𝑣}, the generic fiber of 𝒬𝑣′ is isomorphic to ℚℓ,

and at 𝑣 over 𝑣 the generic fiber of 𝒬𝑣 is isomorphic to ℚℓ[dimℳ](dimℳ/2). This

completely determines the factorization.

Using stabilization theorem over �̃�𝐻 and Corollary 10.3.3, we have

#(𝒫𝑎′)0(𝑘′) ∏
𝑣′∈|(𝑋−𝑈)𝑘′|

#𝒬𝑣′[ℳ𝑣′(𝑎′)/𝒫𝑣′(𝑎′)](𝑘′)𝜅

= #(𝒫𝑎′)0(𝑘′)
𝑒
∑
𝑖=1

∏
𝑣′∈|(𝑋−𝑈)𝑘′|

#𝒬𝜅
𝐻,𝑣′

[ℳ𝐻,𝑣′(𝑎′
𝐻,𝑖)/𝒫𝑣′(𝑎′)](𝑘′)

= #(𝒫𝑎′)0(𝑘′)⎛
⎝

𝑒
∑
𝑖=1

#𝒬𝜅
𝐻,𝑣

[ℳ𝐻,𝑣(𝑎′
𝐻,𝑖)/𝒫𝑣(𝑎′)](𝑘′)⎞

⎠
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∏
𝑣≠𝑣′∈|(𝑋−𝑈)𝑘′|

#𝒬𝜅
𝐻,𝑣′

[ℳ𝐻,𝑣′(𝑎′
𝐻,𝑖)/𝒫𝑣′(𝑎′)](𝑘′),

where the last equality is due to our assumption on 𝑎′
𝐻,𝑖 at places other than 𝑣. Note that

here each individual term in the summation may not make sense but their sum does.

Apply Lemma 10.4.2 to points other than 𝑣 and cancel out the (necessarily non-zero)

terms in the above equality, we have

#𝒬𝑣[ℳ𝑣(𝑎′)/𝒫𝑣(𝑎′)](𝑘′)𝜅 =
𝑒
∑
𝑖=1

(𝑞′)−𝑟𝐺
𝐻(𝑎′

𝐻,𝑖)+𝑟𝐺
𝐻,𝑣(𝑎

′
𝐻,𝑖) #𝒬𝜅

𝐻,𝑣
[ℳ𝐻,𝑣(𝑎′

𝐻,𝑖)/𝒫𝑣(𝑎′)](𝑘′),

where 𝑞′ = |𝑘′|. It is true for all 𝑘′/𝑘 of degrees greater than or equal to 𝑚, so the

following is true over 𝑘:

#𝒬𝑣[ℳ𝑣(𝑎)/𝒫𝑣(𝑎)](𝑘)𝜅 =
𝑒
∑
𝑖=1

𝑞−𝑟𝐺
𝐻(𝑎𝐻,𝑖)+𝑟𝐺

𝐻,𝑣(𝑎𝐻,𝑖) #𝒬𝜅
𝐻,𝑣

[ℳ𝐻,𝑣(𝑎𝐻,𝑖)/𝒫𝑣(𝑎)](𝑘).

By Proposition 10.2.6, the left-hand side is equal to

vol(𝔍0𝑎(𝒪𝑣), d𝑡𝑣)𝐎𝜅
𝑎(Tr𝒬𝑣 , d𝑡𝑣)

for some Haar measure d𝑡𝑣 on 𝔍𝑎(𝐹𝑣). By our assumptions, the function Tr𝒬𝑣 is none

other than the IC-function 𝑓𝜆𝑣 induced by the intersection complex on 𝖦𝗋≤𝜆𝑣
𝐺,𝑣 and scaled

by 𝑞−dimℳ/2+⟨𝜌,𝜆𝑣⟩. Similar results holds on the 𝐻-side. Therefore combining these,

and noting that (dimℳ−dim𝑎𝐻 ℳ𝐻)/2 = 𝑟𝐺
𝐻(𝑎𝐻), we reach equality of orbital integrals

𝑞⟨𝜌,𝜆𝑣⟩𝐎𝜅
𝑎(𝑓𝜆𝑣 , d𝑡𝑣) =

𝑒
∑
𝑖=1

𝑞𝑟𝐺
𝐻,𝑣(𝑎𝐻,𝑖)+⟨𝜌𝐻,𝜆𝐻,𝑣,𝑖⟩ 𝐒𝐎𝑎𝐻,𝑖(𝑓

𝜆𝐻,𝑣,𝑖
𝐻 , d𝑡𝑣),

where again, each individual term on the right-hand side may not make sense but their

sum does.
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10.5.7 Now we translate back to the group setting. Given 𝛾 ∈ 𝐺(𝐹𝑣), 𝛾𝐻 ∈ 𝐻(𝐹𝑣)

and 𝜆 as in Theorem 2.6.11, we may find 𝔐 and 𝑎𝔐 ∈ [ℭ𝔐/𝑍𝔐](𝒪𝑣) and 𝑎𝔐,𝐻 ∈

[ℭ𝔐,𝐻/𝑍𝜅
𝔐](𝐹𝑣) using the process in § 4.6. Choose our 𝑎𝐻,𝑖 so that over 𝐹𝑣 is isomor-

phic to 𝑎𝔐,𝐻 and we have the corresponding 𝑎. To avoid confusion, we denote the stable

conjugacy class of 𝛾 (denoted by 𝑎 in Theorem 2.6.11) by 𝑎𝐺 and similarly 𝑎𝐻 for 𝛾𝐻 (it

would not cause confusion since the global objects 𝑎𝐻,𝑖 are additionally indexed by 𝑖).

Note that we have equality

𝑟𝐺
𝐻,𝑣(𝑎𝐻,𝑖) + ⟨𝜌𝐻, 𝜆𝐻,𝑣,𝑖⟩ − ⟨𝜌, 𝜆𝑣⟩ = 𝑑(𝑎𝐺)/2 − 𝑑𝐻(𝑎𝐻)/2,

where 𝑑 and 𝑑𝐻 are the (non-extended) discriminant valuation of 𝐺 and 𝐻 respectively.

Thus, we finally reach the equality of orbital integrals for groups 𝐺 and 𝐻 over 𝒪𝑣:

𝑞−𝑑(𝑎𝐺)/2𝐎𝜅
𝑎𝐺(𝑓

𝜆, d𝑡𝑣) = 𝑞−𝑑𝐻(𝑎𝐻)/2 𝐒𝐎𝑎𝐻
⎛
⎝

𝑒
∑
𝑖=1

𝑓𝜆𝐻,𝑖
𝐻 , d𝑡𝑣⎞

⎠
.

This finishes the proof of Theorem 2.6.11.

10.5.8 Reverse the local argument and global argument in § 10.4, we now proved Theo-

rem 8.3.5 hence also Theorem 8.3.4.

10.5.9 When the condition of Theorem 2.6.11 is not satisfies, the proof fails, but not in a

very serious way. First, when 𝐻 is not large enough, i.e. 𝑟𝐻 < 𝑟, we essentially only need

to strengthen Theorem 6.10.2 which we already noted as doable in Remark 6.10.15 but we

have not completely worked out the details. Secondly, if a Steinberg quasi-section does

not exists, it boils down to a more detailed analysis of the effect of 𝜅-twisting. In other

words, we need to understand the definition of transfer factor better. To the author’s

knowledge, it is not really done in any significant capacity yet, therefore opens the door

for a future project.
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CHAPTER 11

COMMENTS ON FUTURE DEVELOPMENT

We close this paper by commenting on what project is being or can be done at the time

of writing, as well as some guesses of what looks relevant and promising. In particular,

we would like to propose a conjectural strengthened statement of our support theorem

for mH-fibrations.

11.1 More on Endoscopy

The originalmotivation behind the current paper is to prove the yet open twisted-weighted

fundamental lemma. At the time of writing, the author is aware of some ongoing effort to

prove that result using the traditional Lie algebramethod. So far the fundamental lemmas

for both standard and twisted endoscopy are proved, essentially by [Ngô10] combined

with a series of works by Waldspurger, and the non-twisted weighted case is known for

split groups by [CL10,CL12]. Therefore the effort would be extending the latter proof to

non-split cases.

11.1.1 Although the Lie algebra route does look promising, we believe the group method

provides some unique advantage. For one, it would allow us to provide a unified geo-

metric framework for proving similar results in general. The fundamental lemma for Lie

algebra being useful is partially due to its connection to the group case, which is done by

analytic method. Moreover, the twisted fundamental lemma itself does not seem to have

a Lie algebra version. Instead, people have to combine Waldspurger’s “non-standard” fun-

damental lemma and the standard one to deduce the twisted case. This means that by

using groups directly, we could understand the twisted cases even better.

The twisted analogue of mH-fibration is currently under construction and a substan-

tial amount of work has been done and we plan to release them in a future paper. The
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weighted cases involve studying stability condition for mH-fibrations and twisted mH-

fibrations, and the project is still at an early stage.

11.1.2 There is a persistent theme in group theory over local fields, namely the state-

ment involving groups (in other words, the statement we “care more about”) is usually

a lot messier than the analogue for Lie algebras, frequently caused by isogenies. One of

the main reasons for this, in the author’s opinion, is that such statements usually try to

avoid using categories with automorphisms as much as possible. However, it is clear that

sometimes notions like stacks and gerbes can really help to conceptualize statements.

One small example of this principle is our construction of global Schubert schemes in

§ 5.3 where some stackiness is allowed and a much cleaner definition can be given com-

pared to those in the literature.

The more important example, however, would be the transfer factors. The original

definition of transfer factor is extremely complicated, and the transfer factor for Lie al-

gebras, though considerably simpler, is still quite involved. Luckily, due to the existence

of Kostant section, the natural gerbe under regular centralizer can be trivialized and the

transfer factor at those sections can be explicitly computed. In group case, the gerbe un-

der the regular centralizer is not necessarily trivial since a Steinberg quasi-section may

not exist. We believe this gerbe has close connection with the definition of transfer fac-

tors and by understanding this gerbe better we may achieve a conceptual definition of

the transfer factors.

11.2 Inductive Support and Beyond Endoscopy

The support theorems we are able to prove for mH-fibrations are not entirely satisfactory,

because it only provides an upper bound of supports. In an astonishing paper [MS18],

the authors proved a sort of support theorem in a very general setting, from which they

were able to deduce Ngô’s original support theorem. It is possible that their method can
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be adapted to deduce our support theorem as well, but the problem is their result would

not be any stronger even if that is the case, because the result in loc. cit. is also an upper

bound, and that upper bound, without further input, is weaker than ours.

Largely speaking, all kinds of support theorems known so far boil down to some kind

of dimension counting, and dimension is related to weights and duality in cohomologies.

Therefore it seems these methods are inherently unable to deal with anything related to

connected components, unless those components happen to have symmetry under some

finite group (as in endoscopy). The extra components in mH-fibrations, however, do not

look like they come from a group but rather some sort of correspondence. In § 8.5, we de-

fined a new sort of Hecke stack, but we never really studied the correspondence generated

by that stack. A preliminary dimension counting shows that those Hecke stacks are in

general not graph-like in the sense of [Yun11] and they contain some exotic components

that are closely related to the inductive strata. Unfortunately, we are currently unable to

deduce anything concrete about the correspondence given by those exotic components,

but we do suspect they play a role in determining the precise supports.

11.2.1 For simplicity, we will give a conjecture about the supports in a very special case.

The reader should be able to easily infer what the conjecture would look like in the general

case if proper combinatorial notations are taken care of.

Let 𝐺 = 𝐺sc is split and 𝜆 is the unique dominant short coroot. In this case, 𝑉𝜆 is

the unique quasi-minuscule representation of ̌𝐺 in which the weights are the ones in the

𝑊-orbit of 𝜆 and 0. The multiplicity 𝑚𝜆,0 is equal to the number of simple short coroots.

Let ℎ∶ ℳ → 𝒜 be the restricted mH-fibration with boundary divisor 𝐷 ⋅ 𝜆, where

𝐷 = 𝑥1 + ⋯ + 𝑥𝑑 is a multiplicity-free effective divisor of degree 𝑑 ≫ 0 on 𝑋. Let

𝐷′ = 𝑥2 + ⋯ + 𝑥𝑑, and ℎ′ ∶ ℳ′ → 𝒜′ be the restricted mH-fibration with boundary

divisor 𝐷′ ⋅ 𝜆. Then we have linear embedding 𝜄∶ 𝒜′ → 𝒜 of codimension ⟨𝜌, 𝜆⟩, and

the image is an maximal element among the inductive subsets of 𝒜. For a general point
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𝑎 ∈ 𝒜(𝑘), the mH-fiber ℳ𝑎 is a torsor under 𝒫𝑎, while for a general point 𝑎′ ∈ 𝜄(𝒜′),

ℳ𝑎′ has exactly𝑚𝜆,0 irreducible componentsmodulo𝒫𝑎′ . There is an open dense subset

in𝒜 over which the top ordinary cohomology ofℳ, after taking the stable constituent, is

isomorphic toℚℓ, and similarly over 𝜄(𝒜′) it is generically isomorphic to a local system of

rank𝑚𝜆,0. Similarly, let𝐷𝑒 be a subdivisor of𝐷 by taking away 𝑒-points, and 𝜄𝑒 ∶ 𝒜𝑒 → 𝒜

be the obvious analogue of 𝜄.

Conjecture 11.2.2. Let 𝐾𝑒 be the perverse summand supported on 𝜄𝑒(𝒜𝑒) in the stable

constituent of the cohomology (ℎ∗ICℳ)st. Then the contribution of 𝐾𝑒 to the top ordinary

cohomology over an open dense subset of 𝜄(𝒜𝑒) is a local system of rank (𝑚𝜆,0 − 1)𝑒.

11.2.3 The significance, as pointed out to the author by Ngô, is that the support seems

sensitive to the boundary divisor, and the smaller the inductive subset is, the bigger the

multiplicity in their contribution. In some sense it seems to align pretty well with the

general gist of so-called Beyond Endoscopy program.

On the other hand, we do not believe mH-fibration is the right tool to tackle prob-

lems in Beyond Endoscopy. Rather, we speculate that there is a limit version, which we

temporarily call the Ran-mH-fibrations, that might be more relevant. Essentially, mH-

fibrations are a bunch of fibrations over a base moduli whose components are basically

symmetric powers of curves. However, this means that at points outside of divisors we

are still using the standard special function being the characteristic function on 𝐺(𝒪),

which seems completely contrary to the setting of Beyond Endoscopy. Therefore, it is

only right if we do not treat those symmetric powers of curves as a disjoint union, but

integrate them in a meaningful way. This leads to the notion of Ran space and the Ran-

mH-fibration should be the analogue of mH-fibration defined over an appropriate Ran

space.

We should caution readers that this part is highly speculative. Nevertheless, even

if it is completely unrelated to Beyond Endoscopy, we still think the notion of Ran-mH-

328



fibration will be very worth exploring by itself.

11.2.4 Another more concrete and accessible goal “beyond endoscopy” is perhaps the

Hitchin-type fibrations in general, namely we simply consider the mapping stack related

to a group 𝐺 acting on a space 𝑀. There has been some on going joint effort by B. Mor-

rissey and B. C. Ngô on this front with some encouraging results. A less general but more

arithmetically inspired case would be geometrization of relative trace formulae. After

the unifying framework proposed in [SV17], it would be very interesting to see how mul-

tiplicative Hitchin-type fibrations can be used to tackle fundamental lemmas in those

settings.
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