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ABSTRACT

Stochastic optimization algorithms have become indispensable in modern machine learning.

The developments of theories and algorithms of modern optimization also requires the ap-

plication of tools from different methematical branches, such as algebraic and differential

geometry. In this dissertation, we answer several problems in stochastic optimization by

a wide range of tools. We disprove the noncommutative arithmetic and geometric mean

inequality using results from noncommutative polynomial optimization. We propose new,

simpler and efficient models and algorithms for optimization over Grassmannian and flag

manifolds. We study the problem of statistical inference in gradient-free optimization and

contextual bandit optimization, and prove central limit theorems to construct confidence

intervals. We present several versions of the Grothendieck inequality over the skew field of

quaternions.
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CHAPTER 1

INTRODUCTION

This dissertation consists of six chapters. In Chapter 2, we study the noncommutative arith-

metic and geometric mean inequality. An unresolved foundational question in stochastic

optimization is the difference between with-replacement sampling and without-replacement

sampling — does the latter have superior convergence rate compared to the former? A

groundbreaking result of Recht and Ré reduces the problem to a noncommutative analogue

of the arithmetic-geometric mean inequality where n positive numbers are replaced by n pos-

itive definite matrices. If this inequality holds for all n, then without-replacement sampling

(also known as random reshuffling) indeed outperforms with-replacement sampling in some

important optimization problems. The conjectured Recht–Ré inequality has so far only been

established for n = 2 and a special case of n = 3. We will show that the Recht–Ré conjecture

is false for general n. Our approach relies on the noncommutative Positivstellensatz, which

allows us to reduce the conjectured inequality to a semidefinite program and the validity of

the conjecture to certain bounds for the optimum values, which we show are false as soon as

n = 5.

In Chapter 3, we study Riemannian optimization algorithms on Grassmannian manifolds.

There are two widely used models for the Grassmannian Gr(k, n), as the set of equivalence

classes of orthogonal matrices O(n)/
(
O(k)×O(n− k)

)
, and as the set of trace-k projection

matrices {P ∈ Rn×n : P> = P = P 2, tr(P ) = k}. The former, standard in manifold op-

timization, has the downside of relying on equivalence classes but working with orthogonal

matrices is generally good numerical practice. The latter, widely adopted in coding theory

and probability, uses actual matrices (as opposed to equivalence classes) but working with

projection matrices is numerically unstable. We present an alternative that has both advan-

tages and suffers from neither of the disadvantages; by representing k-dimensional subspaces

1



as symmetric orthogonal matrices of trace 2k − n, we obtain

Gr(k, n) ∼= {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n}.

As with the other two models, we show that differential geometric objects and operations

— tangent vector, metric, normal vector, exponential map, geodesic, parallel transport,

gradient, Hessian, etc — have closed-form analytic expressions that are computable with

standard numerical linear algebra. In the proposed model, these expressions are considerably

simpler, a result of representing Gr(k, n) as a linear section of a compact matrix Lie group

O(n), and can be computed with at most one qr decomposition and one exponential of

a special skew-symmetric matrix that takes only O
(
nk(n − k)

)
time. In particular, we

completely avoid eigen- and singular value decompositions in our steepest descent, conjugate

gradient, quasi-Newton, and Newton methods for the Grassmannian. Another important

feature of these algorithms, particularly evident in steepest descent and Newton method, is

that they exhibit clear signs of numerical stability; various measures of errors consistently

reduce to the order of machine precision throughout extensive numerical experiments.

In Chapter 4, we study the geometry of flag manifolds under different embeddings into

a product of Grassmannians. We show that differential geometric objects and operations

— tangent vector, metric, normal vector, exponential map, geodesic, parallel transport,

gradient, Hessian, etc — have closed-form analytic expressions that are computable with

standard numerical linear algebra. Furthermore, we are able to derive a coordinate mini-

mization method in the flag manifold that performs well compared to other gradient descent

methods.

In Chapter 5, we investigates the problem of online statistical inference of model param-

eters in stochastic optimization problems via the Kiefer-Wolfowitz algorithm with random

search directions. We first present the asymptotic distribution for the Polyak-Ruppert-

averaging type Kiefer-Wolfowitz (AKW) estimators, whose asymptotic covariance matrices

2



depend on the distribution of search directions and the function-value query complexity. The

distributional result reflects the trade-off between statistical efficiency and function query

complexity. We further analyze the choice of random search directions to minimize certain

summary statistics of the asymptotic covariance matrix. Based on the asymptotic distri-

bution, we conduct online statistical inference by providing two construction procedures of

valid confidence intervals.

In Chapter 6, we study the online statistical inference of model parameters in a con-

textual bandit framework of sequential decision-making. With the fast development of big

data, it has been easier than before to learn the optimal decision rule by updating the de-

cision rule recursively and making online decisions. We propose a general framework for

online and adaptive data collection environment that can update decision rules via weighted

stochastic gradient descent. We allow different weighting schemes of the stochastic gradient

and establish the asymptotic normality of the parameter estimator. Our proposed estima-

tor significantly improves the asymptotic efficiency over the previous averaged stochastic

gradient descent approach via inverse probability weights. We also conduct an optimality

analysis on the weights in a linear regression setting. We provide a Bahadur representation

of the proposed estimator and show that the remainder term in the Bahadur representation

entails a slower convergence rate compared to classical stochastic gradient descent due to

the adaptive data collection.

In Chapter 7, we present several versions of the Grothendieck inequality over the skew

field of quaternions: The first one is the standard Grothendieck inequality for rectangular ma-

trices, and two additional inequalities for self-adjoint matrices, as introduced by the first and

the last authors in a recent paper. We give several results on “conic Grothendieck inequality”:

as Nesterov π/2-Theorem, which corresponds to the cones of positive semidefinite matrices;

the Goemans–Williamson inequality, which corresponds to the cones of weighted Laplacians;

the diagonally dominant matrices. The most challenging technical part is the proof of the

3



analog of Haagerup result that the inverse of the hypergeometric function x2F1(1
2 ,

1
2 ; `;x2)

has first positive Taylor coefficient and all other Taylor coefficients are nonpositive.

4



CHAPTER 2

RECHT–RÉ NONCOMMUTATIVE

ARITHMETIC-GEOMETRIC MEAN CONJECTURE IS FALSE

This is a joint work with Lek-Heng Lim.

2.1 Introduction

The breathtaking reach of deep learning, permeating every area of science and technology, has

led to an outsize role for randomized optimization algorithms. It is probably fair to say that in

the absence of randomized algorithms, deep learning would not have achieved its spectacular

level of success. Fitting an exceedingly high-dimensional model with an exceedingly large

training set would have been prohibitively expensive without some form of random sampling,

which in addition provides other crucial benefits such as saddle-point avoidance [70, 112]. As

such, in machine learning computations, stochastic variants of gradient descent [25, 113, 150],

alternating projections [187], coordinate descent [153], and other algorithms have largely

overtaken their classical deterministic counterparts in relevance and utility.

There are numerous random sampling strategies but the most fundamental question,

before all other considerations, is deciding between sampling with replacement or sampling

without replacement. In the vast majority of randomized algorithms, a random sample is se-

lected or a random action is performed with replacement from a pool, making the randomness

in each iteration independent and thus easier (often much easier) to analyze. However, when

it comes to practical realizations of these algorithms, one invariably samples without replace-

ment, since they are easier (often much easier) to implement. Take the ubiquitous stochastic

gradient descent for example, many if not most implementations would pass through each

item exactly once in a random order — this is sampling without replacement, also called ran-

dom reshuffling. Likewise, in implementations of randomized coordinate descent, coordinates

5



are usually just chosen in a random order — again sampling without replacement.

Apart from its ease of implementation, there are other reasons for favoring without-

replacement sampling. Empirical evidence [24, 16, 202] suggests that in stochastic gradient

descent, without-replacement sampling regularly outperforms with-replacement sampling.

Theoretical results also point towards without-replacement sampling: Under standard con-

vexity assumptions, the convergence rate of a without-replacement sampling algorithm typ-

ically beats a with-replacement sampling one by a factor of O(n−1) [174, 149, 88].

Recht and Ré [165] proposed a matrix theoretic approach to compare the efficacy of

with- and without-replacement sampling methods. Since nearly every common optimization

algorithm, deterministic or randomized, works with a linear or quadratic approximation of

the objective function locally, it suffices to examine the two sampling strategies on linear

or quadratic functions to understand their local convergence behaviors. In this case, the

iteration reduces to matrix multiplication and both sampling procedures are linearly conver-

gent (often called “exponentially convergent” in machine learning). The question of which

is better then reduces to comparing their linear convergence rates. In this context, Recht

and Ré showed that without-replacement sampling outperforms with-replacement sampling

provided the following noncommutative version of the arithmetic-geometric mean inequality

holds.

Conjecture 2.1.1 ([165]). Let n be a positive integer, A1, . . . , An be symmetric positive

semidefinite matrices, and ‖ · ‖ be the spectral norm. Then for any m ≤ n,

1

nm

∥∥∥∥ ∑
1≤j1,...,jm≤n

Aj1 · · ·Ajm

∥∥∥∥ ≥ (n−m)!

n!

∥∥∥∥ ∑
1≤j1,...,jm≤n,
j1,...,jm distinct

Aj1 · · ·Ajm

∥∥∥∥. (2.1)

While one may also ask if (2.1) holds for other norms, the most natural and basic choice

is the spectral norm, i.e., the operator 2-norm. Unless specified otherwise, ‖ · ‖ will always

denote the spectral norm in this article.
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To give an inkling of how (2.1) arises, consider the Kaczmarz algorithm [187] where we

attempt to solve an overdetermined linear system Cx = b, C ∈ Rp×d, p > d, with ith row

vector1 c>i where ci ∈ Rd. For k = 1, 2, . . . , the (k + 1)th iterate is formed with a randomly

chosen i and

x(k+1) = x(k) +
bi − 〈ci, x(k)〉
‖ci‖2

ci.

The kth error e(k) = x(k) − x∗ is then

e(k+1) =

(
I −

cic
>
i

‖ci‖2

)
e(k) =: Pcie

(k),

where Pc ∈ Rd×d, the orthogonal projector onto span{c}⊥, is clearly symmetric positive

semidefinite. A careful analysis would show that the relative efficacy of with- and without-

replacement sampling depends on a multitude of inequalities like ‖A4 + B4 + AB2A +

BA2B‖ ≥ 2‖AB2A+BA2B‖, which are difficult to analyze on a case-by-case basis. Never-

theless, more general heuristics would lead to (2.1) — if it holds, then without-replacement

sampling is expected to outperform with-replacement sampling. In fact, the gap can be sig-

nificant — for random Wishart matrices, the ratio between the two sides of (2.1) increases

exponentially with m [165].

To date, extensive numerical simulations have produced no counterexample. Conjec-

ture 2.1.1 has been rigorously established only in very special cases, notably for (m,n) =

(2, 2) [165] and (m,n) = (3, 3k) [207].

Our contributions: We show how to transform Conjecture 2.1.1 into a form where the

noncommutative Positivstellensatz applies, which implies in particular that for any specific

values of m and n, the conjecture can be checked via two semidefinite programs. This allows

us to show in Section 2.3 that the conjecture is false as soon as m = n = 5. We also establish

1. We adopt standard convention that any vector x ∈ Rd is a column vector; a row vector will always be
denoted x>.
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in Section 2.2 that the conjecture holds for m = 2 and 3 with arbitrary n by extending the

approach in [207]. While the conjectured inequality (2.1) is clearly sharp (as we may choose

all Ai’s to be equal) whenever it is true, we show in Section 2.5 that the m = 2 case may

nonetheless be improved in a different sense, and we do likewise for m = 3 in Section 2.2.

The m = 4 case remains open but our noncommutative Positivstellensatz approach permits

us to at least check that it holds for n = 4 and 5 in Section 2.3.

Over the next two sections, we will transform Recht and Ré’s Conjecture 2.1.1 into a

“Loewner form” (Conjecture 2.2.2), a “sum-of-squares form” (Conjecture 2.3.2), and finally a

“semidefinite program form” (Conjecture 2.3.3). All four conjectures are equivalent but the

correctness of the last one for any m,n can be readily checked as a semidefinite program.

After the main results of this work are published [130], a concrete counter-example for

n = 5 is constructed in [53].

2.2 Recht–Ré inequality for m = 2 and 3

Our goal here is to establish (2.1) for a pair and a triple of matrices. In so doing, we take

Conjecture 2.1.1 a step closer to a form where noncommutative Positivstellensatz applies.

There is independent value in establishing these two special cases given that the classical

noncommutative arithmetic-geometric-harmonic mean inequality [18] is only known for a pair

of matrices but nonetheless attracted a lot of interests from linear algebraists. These special

cases also have implications on randomized algorithms — take the Kaczmarz algorithm for

example, the fact that Conjecture 2.1.1 holds for m = 2 and 3 implies that if we randomly

choose two or three distinct samples, perform the iterations, and sample again, then this

“replacing after every two or three samples” strategy will converge faster than a “replacing

after every sample” strategy.

We begin by providing some context for the inequality (2.1). The usual arithmetic-
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geometric mean inequality for n nonnegative real numbers a1, . . . , an, i.e.,

(a1 + · · ·+ an)/n ≥ (a1 · · · an)1/n,

is a special case of Maclaurin’s inequality [96]. If we define

sm :=
1(n
m

) ∑
1≤j1<···<jm≤n

aj1 · · · ajm ,

then s1 ≥
√
s2 ≥ · · · ≥ n

√
sn. So s1 ≥ m

√
sm gives us

1

nm
(a1 + · · ·+ an)m ≥ (n−m)!

n!

∑
1≤j1,...,jm≤n,
j1,...,jm distinct

aj1 · · · ajm ,

which is just (2.1) for 1-by-1 positive semidefinite matrices.

For real symmetric or complex Hermitian matrices A,B, the Loewner order is defined by

A � B iff A−B is positive semidefinite. The Maclaurin’s inequality has several noncommu-

tative extensions but we regard the following as the starting point for all noncommutative

arithmetic-geometric mean inequalities.

Proposition 2.2.1. For any unitarily invariant norm ‖ · ‖ and Hermitian matrices A,B,

‖AB +BA‖ ≤ ‖A2 +B2‖ and 2‖AB +BA‖ ≤ ‖(A+B)2‖.

Proof. Since −A2−B2 � AB+BA � A2+B2, by Lemma 2.1 in [21], the desired inequalities

hold for any unitarily invariant norm.

The result was extended to compact operators on a separable Hilbert space and strength-

ened to 2‖A∗B‖ ≤ ‖A∗A + B∗B‖ in [19], with yet other extensions in [21, 20]. In [165],

Conjecture 2.1.1 was also formulated as an extension of Proposition 2.2.1, with the second

inequality corresponding to the m = n = 2 case.

9



Straightforward counterexamples for n = 3 show that we cannot simply drop the norm in

(2.1) and replace the inequality ≥ with the Loewner order �. Nevertheless Conjecture 2.1.1

may be written as two Loewner inequalities, as demonstrated by [207].

Conjecture 2.2.2 (Loewner form). Let A1, . . . , An be symmetric positive semidefinite and

A1 + · · ·+ An � nI. Then for any m ≤ n,

− n!

(n−m)!
I �

∑
1≤j1,...,jm≤n,
j1,...,jm distinct

Aj1 · · ·Ajm �
n!

(n−m)!
I. (2.2)

We prefer this equivalent formulation (2.2) as the original formulation (2.1) hides an

asymmetry — note that there is an upper bound and a lower bound in (2.2) and there is no

reason to expect that they should have the same magnitude. In fact, as we will see in the

later sections, the best upper and lower bounds have different magnitudes in every case that

we examined.

We will next prove Conjecture 2.1.1 in its equivalent form Conjecture 2.2.2 for m = 2 and

3. Our proofs rely on techniques introduced by [207] in his proof for the case m = 3, n = 3k,

but our two additional contributions are that (i) we will obtain better lower bounds (deferred

to Section 2.5), and (ii) our proof will work for arbitrary n (not necessarily a multiple of 3).

Theorem 2.2.3 (Recht–Ré for m = 2). Let A1, . . . , An be symmetric positive semidefinite

and A1 + · · ·+ An � nI. Then

− n(n− 1)I �
∑
i6=j

AiAj � n(n− 1)I. (2.3)
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Proof. The right inequality in (2.3) follows from

(n− 1)
∑
i,j

AiAj − n
∑
i6=j

AiAj = (n− 1)
∑
i

A2
i −

∑
i 6=j

AiAj

=
∑
i<j

(Ai − Aj)2 � 0,

and so ∑
i 6=j

AiAj �
n− 1

n

∑
i,j

AiAj � n(n− 1)I.

For the left inequality in (2.3), expand (
∑
iAi)

2 � 0 to get

∑
i

A2
i � −

∑
i 6=j

AiAj .

Let B := nI −
∑
iAi � 0 and Bi := Ai + 1

nB � 0. So
∑
iBi = nI. Then

−n
∑
i 6=j

AiAj = −(n− 1)
∑
i6=j

AiAj −
∑
i6=j

AiAj

� (n− 1)
∑
i

A2
i −

∑
i6=j

AiAj

=
∑
i<j

(Ai − Aj)2 =
∑
i<j

(Bi −Bj)2

= (n− 1)
∑
i

B2
i −

∑
i6=j

BiBj

= n
∑
i

B2
i −

(∑
i

Bi

)2

= n
∑
i

B2
i − n

2I.

Therefore

−
∑
i 6=j

AiAj − (n− 1)nI �
∑
i

B2
i − n

2I =
∑
i

(B2
i − nBi).
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The eigenvalues of Bi fall between 0 and n, so the eigenvalues of B2
i −nBi are all nonpositive,

i.e., B2
i − nBi � 0. Hence −

∑
i6=j AiAj − (n− 1)nI � 0.

The right inequality of (2.3) is clearly sharp. In Section 2.5, we will prove a stronger

result, improving the constant in the left inequality of (2.3) to n(n− 1)/4.

Following [207], we write Ei1,...,ik for expectation or average over all indices 1 ≤ i1, . . . , ik

≤ n, and Ẽi1,...,ik for that over distinct indices 1 ≤ i1, . . . , ik ≤ n.

Theorem 2.2.4 (Recht–Ré for m = 3). Let A1, . . . , An be symmetric positive semidefinite

and A1 + · · ·+ An � nI. Then

− I � Ẽi,j,kAiAjAk � I. (2.4)

Proof. Let A,B,C be positive semidefinite. Then ABC +CBA � ABA+CBC. If B � C,

then ABA � ACA.

We start with the right inequality of (2.4),

Ẽi,j,kAiAjAk =
1

2
Ẽi,j,k(AiAjAk + AkAjAi)

� 1

2
Ẽi,j,k(AiAjAi + AkAjAk)

= Ẽi,j,kAiAjAi.

Fix a positive integer l < n whose value we decide later, and deduce from last inequality

that

Ẽi,j,kAiAjAk � Ẽi,j,k
[(

1− 1

l

)
AiAjAk +

1

l
AiAjAi

]
=

1

l2(n− l)
Ẽi1,...,in

[
(Ai1 + · · ·+ Ail)

· (Ail+1
+ · · ·+ Ain)(Ai1 + · · ·+ Ail)

]
.
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Since Ail+1
+ · · ·+ Ain � nI − (Ai1 + · · ·+ Ail),

Ẽi,j,kAiAjAk �
1

l2(n− l)
Ẽi1,...,il

[
(Ai1 + · · ·+ Ail)

·
(
nI − (Ai1 + · · ·+ Ail)

)
(Ai1 + · · ·+ Ail)

]
.

Consider the function f(x) = x2(n−x). Let the line y = cx+d be tangent to f at x = l.

We require that c ≥ 0 and f(x) ≤ cx+ d for 0 ≤ x ≤ n. Elementary calculation shows that

such a line exists as long as 1/2 ≤ l/n ≤ 2/3. Let A = Ai1 + · · · + Ail . As cA + dI and

A(nI −A)A are simultaneous diagonalizable, each eigenvalue of cA+ dI −A(nI −A)A can

be obtained by applying the function g(x) = cx+d−x2(n−x) to an eigenvalue of A. Hence

Ẽi,j,kAiAjAk �
1

l2(n− l)
Ẽi1,...,il

[
c(Ai1 + · · ·+ Ail) + dI

]
� cl + d

l2(n− l)
I,

where the first inequality follows from the fact that it holds for each eigenvalue. Note that if

we choose A1 = · · · = An = I, all inequalities above as well as the right inequality of (2.4)

hold with equality. So as long as 1/2 ≤ l/n ≤ 2/3, l, c, d will give us

1

l2(n− l)
(cl + d) = 1

and thus the right inequality of (2.4).

For the left inequality of (2.4), we start by noting

(A1 + · · ·+ An−1)An(A1 + · · ·+ An−1) � 0.
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Taking expectation, we have −(n− 2)Ẽi,j,kAiAjAk � Ẽi,j,kAiAjAi and thus

−Ẽi,j,kAiAjAk = −n− 2

n− 1
Ẽi,j,kAiAjAk −

1

n− 1
Ẽi,j,kAiAjAk

� 1

n− 1
Ẽi,j,k(AiAjAi − AiAjAk)

� 1

2(n− 1)
Ẽi,j,k

[
(Ai − Aj)Ak(Ai − Aj)

]
.

As in the proof of Theorem 2.2.3, set B := nI −
∑
iAi � 0 and Bi := Ai + 1

nB � 0. Then

−Ẽi,j,kAiAjAk �
1

2(n− 1)
Ẽi,j,k

[
(Bi −Bj)Bk(Bi −Bj)

]
=

1

n− 1
Ẽi,j,kBiBjBi −

1

n− 1
Ẽi,j,kBiBjBk.

Let Xi := Bi(nI −Bi)Bi and Yi := (nI −Bi)Bi(nI −Bi). Routine calculations give

ẼiXi = (n− 1)Ẽi,j,kBiBjBi,

ẼiYi = (n− 1)Ẽi,j,kBiBjBi + (n− 1)(n− 2)Ẽi,j,kBiBjBk,

which allows us to express Ẽi,j,kBiBjBi and Ẽi,j,kBiBjBk in terms of ẼiXi and ẼiYi. Then

−Ẽi,j,kAiAjAk �
1

n− 1
Ẽi,j,kBiBjBi −

1

n− 1
Ẽi,j,kBiBjBk

=
1

(n− 1)2(n− 2)
Ẽi[(n− 1)Xi − Yi]

=
n

(n− 1)2(n− 2)
Ẽi[−Bi(Bi − nI)(Bi − I)].

As −x(x− n)(x− 1) ≤ (n− 1)2x/4 for 0 ≤ x ≤ n,

−Ẽi,j,kAiAjAk �
n

4(n− 2)
ẼiBi =

n

4(n− 2)
I.
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When n ≥ 3, we have n
4(n−2)

≤ 1.

Our proof in fact shows that the constant in the left inequality of (2.4) can be improved

to n
4(n−2)

. Nevertheless, we will see in the next section (Table 2.1) that this is not sharp.

2.3 Noncommutative Positivstellensatz

In the seminal paper [101], Helton proved an astounding result: Every positive polynomial

in noncommutative variables can be written as a sum of squares of polynomials. The corre-

sponding statement for usual polynomials, i.e., in commutative variables, is well-known to

be false and is the subject of Hilbert’s 17th Problem. Subsequent developments ultimately

led to a noncommutative version of the Positivstellensatz for semialgebraic sets. We refer

interested readers to [159] for an overview of this topic.

Stating noncommutative Positivstellensatz will require that we introduce some terminolo-

gies. Let X1, . . . , Xn be n noncommutative variables, i.e., XiXj 6= XjXi whenever i 6= j. A

monomial of degree d or a word of length d is an expression of the form Xi1 · · ·Xid . The

monomials span a real infinite-dimensional vector space R〈X1, . . . , Xn〉, called the space

of noncommutative polynomials. For any d ∈ N, the finite-dimensional subspace of non-

commutative polynomials of degree ≤ d will be denoted R〈X1, . . . , Xn〉d. The transpose

of f ∈ R〈X1, . . . , Xn〉 is denoted f> and is defined on monomials by reversing the order

of variables (Xi1 · · ·Xid)
> = Xid · · ·Xi1 and extended linearly to all of R〈X1, . . . , Xn〉. If

f> = f , then f is called symmetric.

The bottom line is that noncommutative polynomials may be evaluated on square matri-

ces of the same dimensions, i.e., they define matrix-valued functions of matrix variables. For

our purpose, if A1, . . . , An are real symmetric matrices, then f(A1, . . . , An) is also a matrix,

but it may not be a symmetric matrix unless f is a symmetric polynomial.

Let L = {`1, . . . , `k} ⊆ R〈X1, . . . , Xn〉1 be a set of k linear polynomials, i.e., d = 1. We

15



will refer to `1, . . . , `k as linear constraints and

BL := {(A1, . . . , An) | `1(A1, . . . , An) � 0, . . . , `k(A1, . . . , An) � 0}

as the feasible set. Note that elements of BL are n tuples of symmetric matrices. We say

that BL is bounded if there exists r > 0 such that all (A1, . . . , An) ∈ BL satisfy ‖A1‖ ≤

r, . . . , ‖An‖ ≤ r. Let d ∈ N. We write

Σd(L) :=

{ k∑
i=1

pi∑
j=1

f>ij `ifij

∣∣∣∣ fij ∈ R〈X1, . . . , Xn〉d, k, p1, . . . , pk ∈ N
}

for the set of noncommutative sum-of-squares generated by L. The following theorem is a

simplified version of the noncommutative Positivstellensatz, i.e., Theorem 1.1 in [102], that

will be enough for our purpose.

Theorem 2.3.1 (Noncommutative Positivstellensatz). Let f be a symmetric polynomial

with deg(f) ≤ 2d+ 1 and the feasible set BL be bounded with nonempty interior. Then

f(A1, . . . , An) � 0 for all (A1, . . . , An) ∈ BL

if and only if f ∈ Σd(L).

Readers familiar with the commutative Positivstellsatz [134] would see that the noncom-

mutative version is, surprisingly, much simpler and neater.

To avoid notational clutter, we introduce the shorthand

∑
ji 6=jk

:=
∑

1≤j1,...,jm≤n,
j1,...,jm distinct

for sum over distinct indices. Applying Theorem 2.3.1 with linear constraints X1 � 0, . . . ,

Xn � 0, X1 + · · ·+Xn � nI, Conjecture 2.2.2 becomes the following.
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Conjecture 2.3.2 (Sum-of-squares form). Let m ≤ n ∈ N and d = bm/2c. For the linear

constraints `1 = X1, . . . , `n = Xn, `n+1 = n−X1 − · · · −Xn, let

λ1 = argmin

{
λ ∈ R

∣∣∣∣ λ− ∑
ji 6=jk

Xj1 · · ·Xjm ∈ Σd(L)

}
,

λ2 = argmin

{
λ ∈ R

∣∣∣∣ λ+
∑
ji 6=jk

Xj1 · · ·Xjm ∈ Σd(L)

}
.

Then both λ1 and λ2 ≤ n!/(n−m)!.

In polynomial optimization [134], the commutative Positivstellsatz is used to transform a

constrained optimization problem into a sum-of-squares problem that can in turn be trans-

formed into a semidefinite programming (SDP) problem. This also applies to noncommuta-

tive polynomial optimization problems, i.e., we may further transform Conjecture 2.3.2 into

an SDP form.

The vector space R〈X1, . . . , Xn〉d has dimension q := 1 + n + n2 + · · · + nd and a basis

comprising all q monomials of degree ≤ d. We will assemble all basis elements into a q-tuple

of monomials that we denote by β. With respect to this basis, any f ∈ R〈X1, . . . , Xn〉d may

be represented uniquely as f = β>u for some u ∈ Rq. Therefore a noncommutative square

may be expressed as

p∑
j=1

f>j `fj =

p∑
j=1

u>j β`β
>uj = tr

[
β`β>

( p∑
j=1

uju
>
j

)]

by simply writing fj = β>uj , uj ∈ Rq, j = 1, . . . , p. Since a symmetric matrix Y is positive

semidefinite if and only if it can be written as Y =
∑p
j=1 uju

>
j , we obtain the following one-
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to-one correspondence between noncommutative squares and positive semidefinite matrices:

p∑
j=1

f>j `fj ∈ R〈X1, . . . , Xn〉2d+1, fj ∈ R〈X1, . . . , Xn〉d~w�
p∑
j=1

uju
>
j ∈ R

q×q, uj ∈ Rq.

With this correspondence, the two minimization problems in Conjecture 2.3.2 become two

SDPs.

Conjecture 2.3.3 (Semidefinite program form). Let m ≤ n ∈ N and d = bm/2c. Let β

be a monomial basis of R〈X1, . . . , Xn〉d and let Xn+1 = n −X1 − · · · −Xn. Let λ1 be the

minimum value of the SDP:

minimize λ

subject to λ−
∑
ji 6=jk

Xj1 · · ·Xjm =
n+1∑
i=1

tr(βXiβ
>Yi),

Y1 � 0, . . . , Yn+1 � 0;

(2.5)

and λ2 be that of the SDP:

minimize λ

subject to λ+
∑
ji 6=jk

Xj1 · · ·Xjm =
n+1∑
i=1

tr(βXiβ
>Yi),

Y1 � 0, . . . , Yn+1 � 0.

(2.6)

Then both λ1 and λ2 ≤ n!/(n−m)!.

Note that the minimization is over the scalar variable λ and the matrix variables Y1, . . . ,

Yn+1; the equality constraint equating two noncommutative polynomials is simply saying

that the coefficients on both sides are equal, i.e., for each monomial, we get a linear constraint

involving λ, Y1, . . . , Yn+1 — the Xi’s play no role other than to serve as placeholders for these
18



λ1 λ2 n!/(n−m)!

m = 2, n = 2 2.0000 0.5000 2
m = 2, n = 3 6.0000 1.5000 6
m = 2, n = 4 12.0000 3.0000 12
m = 2, n = 5 20.0000 5.0000 20
m = 3, n = 3 6.0000 3.4113 6
m = 3, n = 4 24.0000 8.5367 24
m = 3, n = 5 60.0000 17.3611 60
m = 4, n = 4 24.0000 22.4746 24
m = 4, n = 5 120.0000 80.2349 120
m = 5, n = 5 120.0000 144.6488 120

Table 2.1: Results from SDPs.

linear constraints. We may express (2.5) and (2.6) as SDPs in standard form with a single

matrix variable Y := diag(λ, Y1, . . . , Yn+1), see (2.7) for example.

Readers acquainted with (commutative) polynomial optimization [134] would be familiar

with the above discussions. In fact, the only difference between the commutative and non-

commutative cases is that
∑d
i=0 n

i, the size of a noncommutative monomial basis, is much

larger than
(d+n
d

)
, the size of a commutative monomial basis.

For any fixed values of m and n, Conjecture 2.3.3 is in a form that can be checked

by standard SDP solvers. The dimension of the SDP grows exponentially with m, and

without access to significant computing resources, only small values of m,n are within reach.

Fortuitously, m = n = 5 already yields the required violation 144.6488 � 120, showing that

Conjecture 2.3.3 and thus Conjecture 2.1.1 is false in general. We tabulate our results for

m ≤ n ≤ 5 in Table 2.1.

The fact that the SDP in (2.6) for m = n = 5 has a minimum λ2 > 144 > 120 = 5! shows

that there are uncountably many instances with A1 � 0, A2 � 0, A3 � 0, A4 � 0, A5 � 0,

and A1 + A2 + A3 + A4 + A5 � 5I such that the matrix

∑
σ∈S5

Aσ(1)Aσ(2)Aσ(3)Aσ(4)Aσ(5)
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has an eigenvalue that is less than −144 < −120 = −5!. Here Sn is the symmetric group on

n elements. We emphasize that neither (2.6) nor its dual would give us five such matrices

explicitly, although the dual does provide another way to verify our result, as we will see in

Section 2.4.

Indeed, the beauty of the noncommutative Positivstellensatz approach is that it allows

us to show that Conjecture 2.1.1 is false for m = n = 5 without actually having to produce

five positive semidefinite matrices A1, . . . , A5 that violates the inequality (2.1). It would

be difficult to find A1, . . . , A5 explicitly as one does not even know the smallest dimensions

required for these matrices to give a counterexample to (2.1). Our approach essentially

circumvents the issue by replacing them with noncommutative variables X1, . . . , X5 — the

reader may have observed that the dimensions of the matrices A1, . . . , A5 did not make an

appearance anywhere in this article.

2.4 Verification via Farkas

We take a closer look at the m = n = 5 case that provided a refutation to the Recht–Ré

conjecture. In this case, the basis β has 1 + 5 + 52 = 31 monomials; the SDP in (2.6) has

1 + 5 + 52 + 53 + 54 + 55 = 3906 linear constraints, 312 × 6 + 1 = 5767 variables, and takes

the form:
minimize tr(C0Y )

subject to tr(CiY ) = bi, i = 1, . . . , 3906,

Y = diag(λ, Y1, . . . , Y6) � 0.

(2.7)

Here C0, C1, . . . , C3906 ∈ S187
++ , b ∈ R3096, λ is a scalar variable, and Y1, . . . , Y6 are 31-by-31

symmetric matrix variables. To put (2.7) into standard form, the block diagonal structure

of Y may be further encoded as linear constraints requiring that off-diagonal blocks be zero.

The output of our program gives a minimizer of the form Y ∗ = diag(λ∗, Y ∗1 , . . . , Y
∗
6 ) ∈ S187

++
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with

λ∗ = 144.6488, Y ∗1 , . . . , Y
∗
6 ∈ S

31
++. (2.8)

The actual numerical entries of the matrices appearing in (2.7) and (2.8) are omitted due to

space constraints; but they can be found in the output of our program.

The values in (2.8) are of course approximate because of the inherent errors in numerical

computations. In our opinion, the gap between the computed 144.6488 and the conjectured

120 is large enough to override any concerns of a mistaken conclusion resulting from numerical

errors. Nevertheless, to put to rest any lingering doubts, we will directly show that the

conjectured value λ = 120 is infeasible by producing a Farkas certificate. Consider the

feasibility problem:

minimize 0

subject to tr(CiY ) = bi, i = 1, . . . , 3906,

tr(C0Y ) = 120,

Y � 0,

(2.9)

with C0, C1, . . . , C3906 ∈ S187
++ and b ∈ R3096 as in (2.7). Note that C0 = e1e

>
1 is the matrix

with one in the (1, 1)th entry and zero everywhere else. So (2.9) is the feasibility problem

of the optimization problem (2.7) with the additional linear constraint y11 = 120 and where

we have disregarded the block diagonal constraints2 on Y . The dual of (2.9) is

maximize 120y0 + b>y

subject to y0C0 + y1C1 + · · ·+ y3906C3906 � 0.

Our program produces a Farkas certificate y ∈ R3096 with 120y0 + b>y ≈ 47.3 > 0, implying

that (2.9) is infeasible. While this is a consequence of Farkas Lemma for SDP [133], all we

2. If (2.9) is already infeasible, then adding these block diagonal constraints just makes it even more
infeasible.
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need is the following trivial version.

Lemma 2.4.1. Let m,n ∈ N. Let C0, C1, . . . , Cm ∈ Sn and b ∈ Rm+1. If there exists a

y ∈ Rm+1 with

y0C0 + · · ·+ ymCm � 0, b>y > 0,

then there does not exist a Y ∈ Sn with

tr(C0Y ) = b0, . . . , tr(CmY ) = bm, Y � 0.

Proof. If such a Y exists, then

0 ≥ tr
(
(y0C0 + · · ·+ ymCm)Y

)
= y0b0 + · · ·+ ymbm > 0,

a contradiction.

Hence a matrix of the form

Y = diag(120, Y1, . . . , Y6) ∈ S187

is infeasible for (2.7), providing another refutation of Conjecture 2.3.3 and thus Conjec-

ture 2.1.1. In particular, showing that λ = 120 is infeasible for (2.7) does not require any

of the values computed in (2.8). Of course, aside from being the conjectured value of λ2,

there is nothing special about λ = 120 — for any λ < 144.6488, we may similarly compute

a Farkas certificate y to show that such a value of λ is infeasible for (2.7).

We conclude with a few words on the computational costs of the SDPs in this and the last

section. Our resulting dense linear system for m = n = 5 requires 3906× 5767 ≈ 22 million

floating point storage. Using a personal computer with an Intel Core i7-9700k processor and

16GB of RAM, our SeDuMi [188] program in Matlab takes 150 seconds. For m = n = 6,
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storage alone would have taken 26 billion floating numbers, beyond our modest computing

resources.

2.5 Improving the Recht–Ré inequality

An unexpected benefit of the noncommutative Positivstellensatz approach is that it leads to

better bounds for the m = 2 and 3 cases that we know are true. Observe that the values for

λ2 in Table 2.1 for m = 2 are exactly smaller than the values for n!/(n−m)! by a factor of

1/4. This suggests that the Recht–Ré inequality (2.3) for m = 2 in Theorem 2.2.3 may be

improved to

−1

4
n(n− 1)I �

∑
i6=j

AiAj � n(n− 1)I.

Table 2.1 only shows this for n = 2, 3, 4, 5 but in this section, we will give a proof for arbitrary

n ≥ 2. Although our proof below does not depend on the SDP formulation in (2.6), the

correct coefficients in (2.11) for arbitrary n would have been impossible to guess without

solving (2.6) for m = 2 and some small values of n.

So far we have not explored the symmetry evident in our formulations of the Recht–Ré

inequality: In Conjecture 2.2.2, the matrix expression

λI ±
∑
ji 6=jk

Aj1 · · ·Ajm

and the constraints A1 � 0, . . . , An � 0, A1 + · · ·+An � nI are clearly invariant under any

permutation σ ∈ Sn. In Conjecture 2.3.3, the noncommutative sum-of-squares

λ±
∑
ji 6=jk

Xj1 · · ·Xjm =
n+1∑
i=1

tr(βXiβ
>Yi), (2.10)

where Xn+1 = n−X1−· · ·−Xn, is also invariant under Sn and so we may average over all

permutations to get a symmetrized sum-of-squares. For commutative polynomials, results
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from classical invariant theory are often used to take advantage of symmetry [81]. We will

see next that such symmetry may also be exploited for noncommutative polynomials.

Consider the case m = 2, n = 3. The monomial basis of R〈X1, X2, X3〉1 is β =

(1, X1, X2, X3). The symmetry imposes linear constraints on the matrix variables in (2.6),

requiring them to take the following forms:

Y1 =



a b c c

b d e e

c e f g

c e g f


, Y2 =



a c b c

c f e g

b e d e

c g e f


,

Y3 =



a c c b

c f g e

c g f e

b e e d


, Y4 =



x y y y

y z w w

y w z w

y w w z


.

These symmetries allow us to drastically reduce the degree of freedom in our SDP: For any

m = 2, n ≥ 2, the matrices Y1, . . . , Yn are always determined by precisely 11 variables that

we label a, b, c, d, e, f, g, x, y, z, w. We computed their values explicitly for n = 2, 3, 4. For

n = 2,

Y1 =


5
4 −3

4
1
4

−3
4

1
2 0

1
4 0 1

2

 , Y3 =


1
4 −1

4 −1
4

−1
4

1
2 0

−1
4 0 1

2

 ,
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and Y2 can be determined from Y1. For n = 3,

Y1 =



5
2 −1 0 0

−1 4
9

1
9

1
9

0 1
9

4
9

1
9

0 1
9

1
2

4
9


, Y4 =



1
2 −1

3 −1
3 −1

3

−1
3

4
9

1
9

1
9

−1
3

1
9

4
9

1
9

−1
3

1
9

1
2

4
9


,

and Y2, Y3 can be determined from Y1. For n = 4,

Y1 =



15
4 −9

8 −1
8 −1

8 −1
8

−9
8

3
8

1
8

1
8

1
8

−1
8

1
8

3
8

1
8

1
8

−1
8

1
8

1
8

3
8

1
8

−1
8

1
8

1
8

1
8

3
8


, Y5 =



3
4 −3

8 −3
8 −3

8 −3
8

−3
8

3
8

1
8

1
8

1
8

−3
8

1
8

3
8

1
8

1
8

−3
8

1
8

1
8

3
8

1
8

−3
8

1
8

1
8

1
8

3
8


,

and Y2, Y3, Y4 can be determined from Y1. The rational numbers above are all chosen by

observing the floating numbers output of the SDP (2.6).

The values of the matrices Yi’s for n = 2, 3, 4 allow us to guess that the variables

a, b, c, d, e, f, g, x, y, z, w are:

a =
5(n− 1)

4
, b = −3(n− 1)

2n
, c =

3− n
2n

,

d = f = z =
2(n− 1)

n2
, e = g = w =

n− 2

n2
,

x =
n− 1

4
, y = −n− 1

2n
.

(2.11)

The proof of our next theorem will ascertain that these choices are indeed correct — they

yield the sum-of-squares decomposition in (2.10) for m = 2.

Theorem 2.5.1 (Better Recht–Ré for m = 2). Let A1, . . . , An be positive semidefinite
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matrices. If A1 + · · ·+ An � nI, then

−1

4
n(n− 1)I �

∑
i6=j

AiAj � n(n− 1)I.

Proof. The upper bound has already been established in Theorem 2.2.3. It remains to

establish the lower bound. We start from the following readily verifiable inequalities

1

2n(n− 1)
(Aj − Ak)Ai(Aj − Ak) � 0, (2.12)

5(n− 1)

4

(
I − 6

5n
Ai +

2(3− n)

5n(n− 1)

∑
j 6=i

Aj

)
Ai

(
I − 6

5n
Ai +

2(3− n)

5n(n− 1)

∑
j 6=i

Aj

)
� 0 (2.13)

n− 1

5n2

(
Ai +

2n− 1

n− 1

∑
j 6=i

Aj

)
Ai

(
Ai +

2n− 1

n− 1

∑
j 6=i

Aj

)
� 0 (2.14)

1

2n2
(Aj − Ak)

(
n−

∑
i

Ai

)
(Aj − Ak) � 0, (2.15)

n− 1

4

(
I − 2

n

∑
i

Ai

)(
n−

∑
i

Ai

)(
I − 2

n

∑
i

Ai

)
� 0. (2.16)

Sum (2.12) over all distinct i, j, k; sum (2.13) over all i; sum (2.14) over all i; sum (2.15)

over all distinct j, k; add all results to (2.16). The final inequality is our required lower

bound.

For n = m = 2, the new lower bound is sharp. Take

A1 =

3
2 0

0 0

 , A2 =

 1
6

√
2

3√
2

3
4
3

 ,
then ‖A1 + A2‖ = 2 and the smallest eigenvalue of A1A2 + A2A1 is −1/2. We conjecture

that this bound is sharp for all m = 2, n ≥ 2.

The method in this section also extends to higher m. For example, we may impose

symmetry constraints for m = n = 3 and see if the Y1, Y2, Y3, Y4 obtained have rational
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values, and if so write down a sums-of-squares proof by factoring the Yi’s.

2.6 Conclusion and open problems

We conclude our article with a discussion of some open problems and why we think the

Recht–Ré conjecture, while false as it is currently stated, only needs to be refined.

An immediate open question is whether the conjecture is true for m = 4: Table 2.1 shows

that it holds for (m,n) = (4, 4) and (4, 5); we suspect that it is true for all n ≥ 4.

As we pointed out after Conjecture 2.2.2, the Recht–Ré inequality as stated in (2.1)

conceals an asymmetry — it actually contains two inequalities, as shown in (2.2). What we

have seen is that the lower bound is never attained in any of the cases we have examined.

For m = 2 and 3, the lower bound is too large, and we improved it in Theorem 2.5.1 and the

proof of Theorem 2.2.4 respectively. For m = 5, the lower bound is too small, which is why

the Recht–Ré inequality is false. A natural follow-up question is then: “What is the correct

lower bound?” On the other hand, we conjecture that the remaining half of the Recht–Ré

inequality, i.e., the upper bound in (2.2), holds true for all m ≤ n ∈ N.

[60] has another conjecture similar to Conjecture 2.1.1 but where the norms appear after

the summation.

Conjecture 2.6.1 ([60]). Let A1, . . . , An be positive semidefinite matrices. Then

1

nm

∑
1≤j1,...,jm≤n

‖Aj1 · · ·Ajm‖ ≥
(n−m)!

n!

∑
1≤j1,...,jm≤n,
j1,...,jm distinct

‖Aj1 · · ·Ajm‖.

For m = 2 and 3, the conjecture has been proved for any unitarily invariant norm [109].

It is not clear to us if the noncommutative Positivstellensatz might perhaps also shed light

on Conjecture 2.6.1.

Lastly, if our intention is to analyze the relative efficacies of with-replacement and
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without-replacement sampling strategies in randomized algorithms, then it is more perti-

nent to study these inequalities for random matrices, i.e., we do not just assume that the

indices are random variables but also the entries of the matrices. For example, if we want to

analyze the Kaczmarz algorithm, then we ought to take expectation not only with respect to

all permutations but also with respect to how we generate the entries of the matrices. This

would provide a more realistic platform for comparing different sampling strategies.
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CHAPTER 3

SIMPLER GRASSMANNIAN OPTIMIZATION

This is a joint work with Lek-Heng Lim and Ke Ye.

3.1 Introduction

As a manifold, the Grassmannian Gr(k, n) is just the set of k-planes in n-space with its usual

differential structure; this is an abstract description that cannot be employed in algorithms

and applications. In order to optimize functions f : Gr(k, n) → R using currently available

technology, one needs to put a coordinate system on Gr(k, n). The best known way, as

discovered by Edelman, Arias, and Smith in their classic work [65], is to realize Gr(k, n)

as a matrix manifold [3], where every point on Gr(k, n) is represented by a matrix or an

equivalence class of matrices and from which one may derive closed-form analytic expres-

sions for other differential geometric objects (e.g., tangent, metric, geodesic) and differential

geometric operations (e.g., exponential map, parallel transport) that in turn provide the

necessary ingredients (e.g., Riemannian gradient and Hessian, conjugate direction, Newton

step) for optimization algorithms. The biggest advantage afforded by the approach in [65]

is that a judiciously chosen system of extrinsic matrix coordinates for points on Gr(k, n) al-

lows all aforementioned objects, operations, and algorithms to be computed solely in terms

of standard numerical linear algebra, which provides a ready supply of stable and accu-

rate algorithms [86] with high-quality software implementations [9]. In particular, one does

not need to solve any differential equations numerically when doing optimization on matrix

manifolds à la [65].
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3.1.1 Existing models

There are two well-known models for Gr(k, n) supplying such matrix coordinates — one uses

orthogonal matrices and the other projection matrices. In optimization, the by-now standard

model (see, for example, [59, 111, 145, 173, 198]) is the one introduced in [65], namely,

Gr(k, n) ∼= O(n)/
(
O(k)×O(n− k)

) ∼= V(k, n)/O(k), (3.1)

where V(k, n) := {V ∈ Rn×k : V >V = I} ∼= O(n)/O(n − k) is the Stiefel manifold. In

this homogeneous space model, which is also widely used in areas other than optimization

[11, 14, 84, 95, 143, 144, 209], a point V ∈ Gr(k, n), i.e., a k-dimensional subspace V ⊆ Rn,

is represented by its orthonormal basis, written as columns of a matrix V = [v1, . . . , vk] ∈

V(k, n). Since any two orthonormal bases V1, V2 ∈ V(k, n) of V must be related by V1 = V2Q

for some Q ∈ O(k), such a representation is not unique and so this model requires that we

represent V not as a single n×k orthonormal matrix but as a whole equivalence class [V ] :=

{V Q ∈ V(k, n) : Q ∈ O(k)} of orthonormal bases of V. A brief word about our notations:

Throughout this article, we adopt the convention that a vector space V ∈ Gr(k, n) will be

typeset in blackboard bold, with the corresponding letter in normal typeface V ∈ V(k, n)

denoting an (ordered) orthonormal basis. Equivalence classes will be denoted in double

brackets, so [V ] = V. Diffeomorphism of two smooth manifolds will be denoted by ∼=.

It is straightforward to represent a point V ∈ Gr(k, n) by an actual matrix as opposed to

an equivalence class of matrices. Since any subspace V has a unique orthogonal projection

matrix PV, this gives us an alternative model for the Grassmannian that is also widely used

(notably in linear programming [181, 208] but also many other areas [46, 31, 49, 66, 142, 157]):

Gr(k, n) ∼= {P ∈ Rn×n : P> = P = P 2, tr(P ) = k}. (3.2)

Note that rank(P ) = tr(P ) = dim(V) for orthogonal projection matrices. The reader is
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reminded that an orthogonal projection matrix is not an orthogonal matrix — the ‘orthogo-

nal’ describes the projection, not the matrix. To avoid confusion, we drop ‘orthogonal’ from

future descriptions — all projection matrices in our article will be orthogonal projection

matrices.

As demonstrated in [100], it is also possible to derive closed-form analytic expressions for

various differential geometric objects and present various optimization algorithms in terms

of the matrix coordinates in (3.2). Nevertheless, the problem with the model (3.2) is that

algorithms based on projection matrices are almost always numerically unstable, especially

in comparison with algorithms based on orthogonal matrices. This is likely the reason

why there are no numerical experiments in [100]. Roughly speaking an orthogonal matrix

preserves (Euclidean) norms and therefore rounding errors do not get magnified through

a sequence of orthogonal transformations [55, Section 3.4.4] and consequently algorithms

based on orthogonal matrices tend to be numerically stable (details are more subtle, see

[199, pp. 124–166] and [104]). Projection matrices not only do not preserve norms but are

singular and give notoriously unstable algorithms — possibly the best known illustration of

numerical instability [192, 197] is one that contrasts Gram–Schmidt, which uses projection

matrices, with Householder qr, which uses orthogonal matrices.1 In fact, the proper way to

compute projections is to do so via a sequence of orthogonal matrices [185, pp. 260–261], as

a straightforward computation is numerically unstable [47, pp. 849–851].

The alternative (3.1) is currently universally adopted for optimization over a Grassman-

nian. One issue with the model (3.1) is that a point on Gr(k, n) is not a single matrix

but an equivalence class of uncountably many matrices. Equivalence classes are tricky to

implement in numerical algorithms and standard algorithms in numerical linear algebra [9]

do not work with equivalence classes of matrices. Given a function f : Gr(k, n) → R to be

1. For example, computing the qr decomposition of a Hilbert matrix A = [1/(i + j − 1)]15i,j=1, we get
‖Q∗Q − I‖ ≈ 8.0 × 100 with Gram–Schmidt, 1.7 × 100 with modified Gram–Schmidt, 2.4 × 10−15 with
Householder qr.
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optimized, any optimization algorithm [59, 65, 111, 145, 173, 198] that rely on the model

(3.1) side steps the issue by lifting f to an O(k)-invariant function f̃ : V(k, n) → R, i.e.,

where f̃(V Q) = f̃(V ) for all Q ∈ O(k). This incurs additional costs in two ways: : (a)

whenever a point V ∈ Gr(k, n) needs to be lifted to a point V ∈ V(k, n), this incurs the cost

of finding an orthonormal basis V for V; (b) whenever one needs to check equality of points

im(V1)
?
= im(V2), this incurs the cost of one matrix product V >1 V2 and its norm.2 These

additional costs cannot be avoided in the model (3.1) as we represent a linear subspace by an

equivalence class. For comparison, (a) and (b) are immaterial when points are represented

as actual matrices, like in model (3.2) or our proposed model. Moreover it is impossible to

continuously choose such ‘Stiefel coordinates’ V ∈ V(k, n) for every point V ∈ Gr(k, n), as

we will discuss in Section 3.7.5. A second and more serious issue with the model (3.1) is that

its associated optimization algorithms in [65] are still significantly less stable than those for

our proposed model. As we will see in Section 3.8, and for reasons explained therein, loss-of-

orthogonality remains very much a problem when we use (3.1) to represent a Grassmannian.

This is likely the reason why the numerical experiments in [65] had used extended precision

arithmetic.

We would like to mention a noncompact analogue of (3.1) that is popular in combinatorics

[2, 73, 80, 119, 135]:

Gr(k, n) ∼= Rn×kk /GL(k), (3.3)

where Rn×kk
:= {A ∈ Rn×k : rank(A) = k} and GL(k) := {X ∈ Rk×k : det(X) 6= 0}. It

has also been shown [3] that one may obtain closed-form analytic expressions for differential

geometric quantities with the model (3.3) and so in principle one may use it for optimization

purposes. Nevertheless, from the perspective of numerical algorithms, the model (3.3) suffers

from the same problem as (3.2) — by working with rank-k matrices, i.e., whose condition

2. Note that im(V1) = im(V2) is equivalent to V1V >1 = V2V
>
2 , which is equivalent to ‖V >1 V2‖ = k as

‖V1V >1 − V2V >2 ‖2 = 2k2 − 2‖V >1 V2‖2.
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number can be arbitrarily large, algorithms based on (3.3) are inherently numerically unsta-

ble. In fact, since the model (3.3) also represents points as equivalence classes, it has both

shortcomings of (3.1) and (3.2) but neither of their good features. The natural redress of

imposing orthogonal constraints on (3.3) to get a well-conditioned representative for each

equivalence class would just lead one back to the model (3.1).

Looking beyond optimization, we stress that each of the aforementioned models has its

own (sometimes unique) strengths. For example, (3.3) is the only model we know in which

one may naturally define the positive Grassmannian [73], an important construction in combi-

natorics [119] and physics [80]. The model (3.2) is indispensable in probability and statistics

as probability measures [142, Section 3.9] and probability densities [46, Section 2.3.2] on

Gr(k, n) are invariably expressed in terms of projection matrices.

3.1.2 Proposed model

We propose to use a model for the Grassmannian that combines the best features, suffers

from none of the defects of the aforementioned models, and, somewhat surprisingly, is also

simpler:

Gr(k, n) ∼= {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n}. (3.4)

This model, which represents k-dimensional subspace as a symmetric orthogonal matrix of

trace 2k − n, is known but obscure. It was mentioned in passing in [17, p. 305] and was

used in [116] to derive geodesics for the oriented Grassmannian, a different but related man-

ifold. Note that (3.4) merely provides an expression for points, our main contribution is

to derive expressions for other differential geometric objects and operations, as well as the

corresponding optimization algorithms, thereby fully realizing (3.4) as a model for optimiza-

tion. A summary of these objects, operations, and algorithms is given in Table 3.1. From a

differential geometric perspective, Sections 3.2–3.5 may be regarded as an investigation into

the embedded geometry of Gr(k, n) as a submanifold of O(n).
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objects/operations results
point Proposition 3.2.1
change-of-coordinates Proposition 3.2.2, 3.2.3, 3.2.4, 3.2.5
tangent vector Proposition 3.3.1, 3.3.2, Corollary 3.3.3
metric Proposition 3.3.4, 3.3.5
normal vector Proposition 3.3.6, Corollary 3.3.7
curve Proposition 3.4.2
geodesic Theorem 3.4.3, Proposition 3.4.5
geodesic distance Corollary 3.4.6
exponential map Corollary 3.4.4
logarithmic map Corollary 3.4.7
parallel transport Proposition 3.4.8
gradient Proposition 3.5.1, Corollary 3.5.3
Hessian Proposition 3.5.2
retraction and vector transport Proposition 3.6.4, 3.6.5, 3.6.6
steepest descent Algorithm 1, 2
Newton method Algorithm 3
conjugate gradient Algorithm 4
quasi-Newton Algorithm 5

Table 3.1: Guide to results.

The two key advantages of the model (3.4) in computations are that: (i) we represent

points on Gr(k, n) as actual matrices, not equivalence classes; (ii) we work only with orthog-

onal matrices and in numerical stable ways.

Numerical stability is an important feature of the algorithms for model (3.4); as we will

see in Section 3.8, the errors and gradients in our steepest descent and Newton algorithms

consistently reduce to the order of machine precision. Moreover, another bonus with (3.4)

is that the expressions and algorithms in Table 3.1 are considerably simpler compared to

those in [3, 65, 100]. We will not need to solve quadratic eigenvalue problems, nor compute

exp/cos/sin/sinc of nonnormal matrices, nor even evd or svd except in cases when they can

be trivially obtained. Aside from standard matrix arithmetic, our optimization algorithms

require just two operations. In fact all differential geometric objects and operations can be

computed with at most a qr decomposition and an exponentiation of a skew-symmetric
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matrix,

exp

( 0 B

−B> 0

), B ∈ Rk×(n−k). (3.5)

The problem of computing matrix exponential has been thoroughly studied and there

is a plethora of algorithms [106, 147], certainly more so than other transcendental matrix

functions like cosine, sine, or sinc [106]. For normal matrices, matrix exponentiation is a well-

conditioned problem — the numerical issues described in [147] only occur with nonnormal

matrices. For us,
[

0 B
−B> 0

]
is skew-symmetric and thus normal; in fact its exponential will

always be an orthogonal matrix.

There are other algorithmic advantages afforded by (3.4) that are difficult to explain

without context and will be discussed alongside the algorithms in Section 3.7 and numerical

results in Section 3.8. In particular, our algorithms will work with what we call “effective

gradients,” “effective Newton steps,” “effective conjugate directions,” etc — these are all

matrices of size k× (n− k) like the matrix B in (3.5), i.e., they have the intrinsic dimension

of Gr(k, n). With this we would also like to add a note of caution. One cannot infer an

accurate estimate of computational complexity based on a simple dimension count of the

models in Table 3.2. There are many differential geometric objects and operations involved

in an algorithm, such as those in Table 3.1, and not just points. The matrices arising in

actual computations are highly structured and the computational cost depends heavily on

the specific problem.

3.1.3 Nomenclatures and notations

For easy reference, we will introduce names for the models (3.1)–(3.4) based on the type of

matrices used as coordinates for points.

We note that there are actually two homogeneous space models for Gr(k, n) in (3.1), one

as a quotient of O(n) and the other as a quotient of V(k, n). While they are used somewhat
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name model
orthogonal model O(n)/

(
O(k)×O(n− k)

)
Stiefel model V(k, n)/O(k)

full-rank model Rn×kk /GL(k)

projection model {P ∈ Rn×n : P> = P = P 2, tr(P ) = k}
involution model {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n}

Table 3.2: Matrix manifold models for the Grassmannian Gr(k, n).

interchangeably in [65], we distinguish them in Table 3.2 as their change-of-coordinates maps

to the involution model are different (see Section 3.2).

The name involution model is warranted for (3.4) because for any Q ∈ Rn×n, any two of

the following conditions clearly imply the third:

Q>Q = I, Q> = Q, Q2 = I.

Thus a symmetric orthogonal matrix may also be viewed as a symmetric involution or an

orthogonal involution matrix. We will need the eigendecomposition of a matrix in the involu-

tion model for all of our subsequent calculations; for easy reference we state this as a lemma.

Such an eigendecomposition is trivial to compute, requiring only a single qr decomposition

(of the matrix 1
2(I +Q); see Lemma 3.7.1).

Lemma 3.1.1. Let k = 1, . . . , n and Q ∈ Rn×n be such that

Q>Q = I, Q> = Q, tr(Q) = 2k − n.

36



Then Q has an eigenvalue decomposition

Q = V Ik,n−kV
> = [y1, . . . , yk, z1, . . . , zn−k]



1

. . .

1

−1

. . .

−1





y>1
...

y>k

z>1
...

z>n−k


,

where V ∈ O(n) and Ik,n−k := diag(Ik,−In−k) = diag(1, . . . , 1,−1, . . . ,−1).

Proof. Existence of an eigendecomposition follows from the symmetry of Q. A symmetric

involution has all eigenvalues ±1 and the multiplicity of 1 must be k since tr(Q) = 2k−n.

Henceforth, for a matrix Q in the involution model, we write

YQ := [y1, . . . , yk] ∈ V(k, n), ZQ := [z1, . . . , zn−k] ∈ V(n− k, n),

VQ = [YQ, ZQ] = V ∈ O(n)

(3.6)

for its matrix of 1-eigenvectors, its matrix of −1-eigenvectors, and its matrix of all eigenvec-

tors respectively. While these matrices are not unique, the 1-eigenspace and −1-eigenspace

im(YQ) = span{y1, . . . , yk} ∈ Gr(k, n), im(ZQ) = span{z1, . . . , zn−k} ∈ Gr(n− k, n)

are uniquely determined by Q.

3.2 Points and change-of-coordinates

We begin by exhibiting a diffeomorphism to justify the involution model, showing that as

smooth manifolds, Gr(k, n) and {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n} are the same.

37



In the next section, we will show that if we equip the latter with appropriate Riemannian

metrics, then as Riemannian manifolds, they are also the same, i.e., the diffeomorphism is

an isometry. The practically minded may simply take this as establishing a system of matrix

coordinates for points on Gr(k, n).

Proposition 3.2.1 (Points). Let k = 1, . . . , n. Then the map

ϕ : Gr(k, n)→ {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n},

ϕ(W) = PW − PW⊥ ,
(3.7)

is a diffeomorphism with ϕ−1(Q) = im(YQ) where YQ ∈ V(k, n) is as in (3.6). Here PW

denotes the orthogonal projection matrix to the subspace W.

Proof. One can check that Q = PW−PW⊥ is symmetric, orthogonal, and has trace 2k−n. So

the map ϕ is well-defined. If we write ψ(Q) = im(YQ), then ϕ(ψ(Q)) = Q and ψ(ϕ(W)) = W,

so ψ = ϕ−1. To see that ϕ is smooth, we may choose any local coordinates, say, represent

W ∈ Gr(k, n) in terms of any orthonormal basis W = [w1, . . . , wk] ∈ V(k, n) and observe

that

ϕ(W) = 2WW> − I,

which is smooth. With a linear change-of-coordinates, we may assume that

W =

Ik
0

 .
The differential (dϕ)W is given by the (clearly invertible) linear map

(dϕ)W


 0

X


 = 2


Ik

0

[0 X>
]

+

 0

X

[Ik 0

] = 2

 0 X>

X 0
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for all X ∈ R(n−k)×k. So ϕ is a diffeomorphism.

Since the manifolds in Table 3.2 are all diffeomorphic to Gr(k, n), they are diffeomorphic

to each other. Our next results are not intended to establish that they are diffeomorphic

but to construct these diffeomorphisms and their inverses explicitly, so that we may switch

to and from the other systems of coordinates easily.

In the next proposition, [V ] =
{
V
[
Q1 0
0 Q2

]
: Q1 ∈ O(k), Q2 ∈ O(n − k)

}
denotes

equivalence class in O(n)/
(
O(k)×O(n− k)

)
.

Proposition 3.2.2 (Change-of-coordinates I). Let k = 1, . . . , n. Then

ϕ1 : O(n)/
(
O(k)×O(n− k)

)
→ {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n},

ϕ1([V ]) = V >Ik,n−kV

is a diffeomorphism with ϕ−1
1 (Q) = [VQ] with VQ ∈ O(n) as in (3.6).

Proof. Note that Q = V1Ik,n−kV
>
1 = V2Ik,n−kV

>
2 iff

V2 = V1

Q1 0

0 Q2


for some (Q1, Q2) ∈ O(k)×O(n−k) iff [V1] = [V2]. Hence both ϕ1 and ϕ−1

1 are well-defined

and are inverses of each other. Observe that ϕ1 is induced from the map

ϕ̃1 : O(n)→ {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n}, ϕ̃1(V ) = V >Ik,n−kV,

which is a surjective submersion. The proof that ϕ−1
1 is well-defined shows that the fibers

of ϕ̃1 are exactly the O(k) × O(n − k)-orbits in O(n). Hence ϕ1, as the composition of ϕ̃1

and the quotient map O(n)→ O(n)/
(
O(k)×O(n− k)

)
, is a diffeomorphism.
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The next result explains the resemblance between the projection and involution models —

each is a scaled and translated copy of the other. The scaling and translation are judiciously

chosen so that orthogonal projections become symmetric involutions, and this seemingly

innocuous difference will have a significant impact on the numerical stability of Grassmannian

optimization algorithms.

Proposition 3.2.3 (Change-of-coordinates II). Let k = 1, . . . , n. Then

ϕ2 : {P ∈ Rn×n : P> = P = P 2, tr(P ) = k} → {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n},

ϕ2(P ) = 2P − I

is a diffeomorphism with ϕ−1
2 (Q) = 1

2(I +Q).

Proof. Note that 2P − I = P −P⊥ where P⊥ is the projection onto the orthogonal comple-

ment of im(P ), so both ϕ2 and ϕ−1
2 are well-defined. They are clearly diffeomorphisms and

are inverses to each other.

In the next proposition, [Y ] = {Y Q : Q ∈ O(k)} denotes a equivalence class in V(k, n)/

O(k).

Proposition 3.2.4 (Change-of-coordinates III). Let k = 1, . . . , n. Then

ϕ3 : V(k, n)/O(k)→ {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n},

ϕ3([Y ]) = 2Y Y > − I

is a diffeomorphism with ϕ−1
3 (Q) = [YQ] with YQ ∈ V(k, n) as in (3.6).

Proof. Given [Y ] ∈ V(k, n)/O(k), the matrix Y Y > is the projection matrix onto the k-

dimensional subspace im(Y ) ∈ Gr(k, n). Hence ϕ3 is a well-defined map by Proposition 3.2.3.

To show that its inverse is given by ψ3(Q) = [YQ], observe that any Y ∈ V(k, n) can be

40



extended to a full orthogonal matrix V := [Y, Y ⊥] ∈ O(n) and we have

V >Y =

Ik
0

 , Q = 2Y Y > − I = V

2Ik 0

0 0

V > − I = V Ik,n−kV
>.

This implies that ψ3 ◦ ϕ3([Y ]) = [YQ] = [Y ]. That ϕ3 is a diffeomorphism follows from the

same argument in the proof of Proposition 3.2.1.

In the next proposition, [A] = {AX : X ∈ GL(k)} denotes equivalence class in Rn×kk /

GL(k). Also, we write A = YARA for the qr factorization of A ∈ Rn×kk , i.e., YA ∈ V(k, n)

and RA ∈ Rk×k is upper triangular.

Proposition 3.2.5 (Change-of-coordinates IV). Let k = 1, . . . , n. Then

ϕ4 : Rn×kk /GL(k)→ {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n},

ϕ4([A]) = 2YAY
>
A − I

is a diffeomorphism with ϕ−1
4 (Q) = [YQ] with YQ is as in (3.6).

Proof. First observe that V(k, n) ⊆ Rn×kk and the inclusion map V(k, n) ↪→ Rn×kk induces a

diffeomorphism V(k, n)/O(k) ∼= Rn×kk /GL(k) — if we identify them, then ϕ−1
4 becomes ϕ−1

3

in Proposition 3.2.4 and is thus a diffeomorphism. It follows that ϕ4 is a diffeomorphism.

That the maps are inverses to each other follows from the same argument in the proof of

Proposition 3.2.4.

The maps ϕ, ϕ1, ϕ2, ϕ3, ϕ4 allow one to transform an optimization problem formulated

in terms of abstract k-dimensional subspaces or in terms of one of the first four models in

Table 3.2 into a mathematically (but not computationally) equivalent problem in terms of

the involution model. Note that these are change-of-coordinate maps for points — they

are good for translating expressions that involve only points on Gr(k, n). In particular, one
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cannot simply apply these maps to the analytic expressions for other differential geometric

objects and operations in [3, 65, 100] and obtain corresponding expressions for the involution

model. Deriving these requires considerable effort and would take up the next three sections.

Henceforth we will identify the Grassmannian with the involution model:

Gr(k, n) := {Q ∈ O(n) : Q> = Q, tr(Q) = 2k − n},

i.e., in the rest of our article, points on Gr(k, n) are symmetric orthogonal matrices of trace

2k − n. With this, the well-known isomorphism

Gr(k, n) ∼= Gr(n− k, n), (3.8)

which we will need later, is simply given by the map Q 7→ −Q.

3.3 Metric, tangents, and normals

The simple observation in Lemma 3.1.1 implies that a neighborhood of any point Q ∈

Gr(k, n) is just like a neighborhood of the special point Ik,n−k = diag(Ik,−In−k) ∈ Gr(k, n).

Consequently, objects like tangent spaces and curves at Q can be determined by simply

determining them at Ik,n−k. Although Gr(k, n) is not a Lie group, the involution model,

which models it as a linear section of O(n), allows certain characteristics of a Lie group to

be retained. Here Ik,n−k has a role similar to that of the identity element in a Lie group.

We will provide three different expressions for vectors in the tangent space TQ Gr(k, n) at

a point Q ∈ Gr(k, n): an implicit form (3.9) as traceless symmetric matrices that anticom-

mutes with Q and two explicit forms (3.10), (3.11) parameterized by k × (n − k) matrices.

Recall from Lemma 3.1.1 that any Q ∈ Gr(k, n) has an eigendecomposition of the form

Q = V Ik,n−kV
> for some V ∈ O(n).
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Proposition 3.3.1 (Tangent space I). Let Q ∈ Gr(k, n) with eigendecomposition Q =

V Ik,n−kV
>. The tangent space of Gr(k, n) at Q is given by

TQ Gr(k, n) =
[
X ∈ Rn×n : X> = X, XQ+QX = 0, tr(X) = 0

]
(3.9)

=

V
 0 B

B> 0

V > ∈ Rn×n : B ∈ Rk×(n−k)

 (3.10)

=

QV
 0 B

−B> 0

V > ∈ Rn×n : B ∈ Rk×(n−k)

 . (3.11)

Proof. By definition, a curve γ in Gr(k, n) passing through Q satisfies

γ(t)> − γ(t) = 0, γ(t)>γ(t) = In, tr(γ(t)) = 2k − n, t ∈ (−ε, ε),

together with the initial condition γ(0) = Q. Differentiating these equations at t = 0, we get

γ̇(0)> − γ̇(0) = 0, γ̇(0)>Q+Q>γ̇(0) = 0, tr(γ̇(0)) = 0,

from which (3.9) follows. Now take X ∈ TQ Gr(k, n). By (3.9), V >XV Ik,n−k = V >(XQ)V

is skew-symmetric and V >XV is symmetric. Partition

V >XV =

 A B

B> C

 , A ∈ Rk×k, B ∈ Rk×(n−k), C ∈ R(n−k)×(n−k).

Note that A and C are symmetric matrices since X is. So if

V >XV Ik,n−k =

 A B

B> C


I 0

0 −I

 =

 A −B

B> −C


is skew-symmetric, then we must have A = 0 and C = 0 and we obtain (3.10). Since
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Q = V Ik,n−kV
> and Q = Q>, (3.11) follows from (3.10) by writing V = QV Ik,n−k.

The implicit form in (3.9) is inconvenient in algorithms. Of the two explicit forms (3.10)

and (3.11), the description in (3.10) is evidently more economical, involving only V , as

opposed to both Q and V as in (3.11). Henceforth, (3.10) will be our preferred choice and

we will assume that a tangent vector at Q ∈ Gr(k, n) always takes the form

X = V

 0 B

B> 0

V >, (3.12)

for some B ∈ Rk×(n−k). This description appears to depend on the eigenbasis V , which is

not unique, as Q has many repeated eigenvalues. The next proposition, which relates two

representations of the same tangent vector with respect to two different V ’s, guarantees that

the tangent space obtained will nonetheless be the same regardless of the choice of V .

Proposition 3.3.2 (Tangent vectors). If V1Ik,n−kV
>
1 = Q = V2Ik,n−kV

>
2 , then any X ∈

TQ Gr(k, n) can be written as

X = V2

 0 B

B> 0

V >2 = V1

 0 Q1BQ
>
2

Q2B
>Q>1 0

V >1 ,

for some Q1 ∈ O(k) and Q2 ∈ O(n− k) such that

V2 = V1

Q1 0

0 Q2

 . (3.13)

Proof. This is a consequence of the fact that V1Ik,n−kV
>
1 = Q = V2Ik,n−kV

>
2 iff there exist

Q1 ∈ O(k) and Q2 ∈ O(n− k) such that (3.13) holds.

Another consequence of using (3.10) is that the tangent space at any point Q is a copy

44



of the tangent space at Ik,n−k, conjugated by any eigenbasis V of Q; by Proposition 3.3.2,

this is independent of the choice of V .

Corollary 3.3.3 (Tangent space II). The tangent space at Ik,n−k is

TIk,n−k Gr(k, n) =


 0 B

B> 0

 : B ∈ Rk×(n−k)

 .
For any Q ∈ Gr(k, n) with eigendecomposition Q = V Ik,n−kV

>,

TQ Gr(k, n) = V
(
TIk,n−k Gr(k, n)

)
V >.

With the tangent spaces characterized, we may now define an inner product 〈·, ·〉Q on

each TQ Gr(k, n) that varies smoothly over all Q ∈ Gr(k, n), i.e., a Riemannian metric.

With the involution model, Gr(k, n) is a submanifold of O(n) and there is a natural choice,

namely, the Riemannian metric inherited from that on O(n).

Proposition 3.3.4 (Riemannian metric). Let Q ∈ Gr(k, n) with Q = V Ik,n−kV
> and

X = V

 0 B

B> 0

V >, Y = V

 0 C

C> 0

V > ∈ TQ Gr(k, n).

Then

〈X, Y 〉Q := tr(XY ) = 2 tr(B>C) (3.14)

defines a Riemannian metric. The corresponding Riemannian norm is

‖X‖Q :=
√
〈X,X〉Q = ‖X‖Fro =

√
2‖B‖Fro. (3.15)

The Riemannian metric in (3.14) is induced by the unique (up to a positive constant
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multiple) bi-invariant Riemannian metric on O(n):

gQ(X, Y ) := tr(X>Y ), Q ∈ O(n), X, Y ∈ TQ O(n).

Here bi-invariance may be taken to mean

gV1QV >2
(V1XV

>
2 , V1Y V

>
2 ) = gQ(X, Y )

for all Q, V1, V2 ∈ O(n) and X, Y ∈ TQ O(n).

There are also natural Riemannian metrics [3, 65, 100] on the other four models in

Table 3.2 but they differ from each other by a constant. As such, it is not possible for us

to choose our metric (3.14) so that the diffeomorphisms in Propositions 3.2.2–3.2.5 are all

isometry but we do have the next best thing.

Proposition 3.3.5 (Isometry). All models in Table 3.2 are, up to a constant factor, iso-

metric as Riemannian manifolds.

Proof. We verify that the diffeomorphism ϕ1 in Proposition 3.2.2 gives an isometry between

the orthogonal model and the involution model up a constant factor of 8. A tangent vector

[65, Equation 2.30] at a point [V ] ∈ O(n)/
(
O(k)×O(n− k)

)
takes the form

V

 0 B

−B> 0

 ∈ T[V ] O(n)/
(
O(k)×O(n− k)

)
, B ∈ Rk×(n−k);

and the Riemannian metric [65, Equation 2.31] on O(n)/
(
O(k)×O(n− k)

)
is given by

g[V ]

(
V

 0 B1

−B>1 0

 , V
 0 B2

−B>2 0

) = tr(B>1 B2).
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At In, the differential can be computed by

(dϕ1)[In]

(
In

 0 B

−B> 0

) = 2Ik,n−k

 0 B

−B> 0

 = 2

 0 B

B> 0

 .
Since both g and 〈·, ·〉 are invariant under left multiplication by O(n), we have

〈
(dϕ1)[V ]

(
V

 0 B1

−B>1 0

), (dϕ1)[V ]

(
V

 0 B2

−B>2 0

)〉
ϕ1([V ])

= 8 tr(B>1 B2).

The proofs for ϕ2, ϕ3, ϕ4 are similar and thus omitted.

As the above proof shows, the diffeomorphism ϕ1 may be easily made an isometry of the

orthogonal and involution models by simply changing our metric in (3.14) to “〈X, Y 〉Q :=

1
8 tr(XY ).” Had we wanted to make ϕ2 into an isometry of the projection and involution

models, we would have to choose “〈X, Y 〉Q := 1
2 tr(XY )” instead. We see no reason to favor

any single existing model and we stick to our choice of metric in (3.14).

In the involution model, Gr(k, n) ⊆ O(n) as a smoothly embedded submanifold and every

point Q ∈ Gr(k, n) has a normal space NQ Gr(k, n). We will next determine the expressions

for normal vectors.

Proposition 3.3.6 (Normal space). Let Q ∈ Gr(k, n) with Q = V Ik,n−kV
>. The normal

space of Gr(k, n) at Q is given by

NQ Gr(k, n) =

[
V

Λ1 0

0 Λ2

V > ∈ Rn×n :
Λ1 ∈ Rk×k, Λ2 ∈ R(n−k)×(n−k)

Λ>1 = −Λ1, Λ>2 = −Λ2

]
.

Proof. The tangent space of a point Q ∈ O(n) is given by

TQ O(n) = {QΛ ∈ Rn×n : Λ> = −Λ}.
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A tangent vector QΛ ∈ TQ O(n) is normal to Gr(k, n) at Q iff

0 = 〈X,QΛ〉Q = tr(X>QΛ),

for all X ∈ TQ Gr(k, n). By (3.12), X = V
[

0 B
B> 0

]
V > where Q = V Ik,n−kV

>. Thus

tr

V >ΛV

 0 −B

B> 0


 = 0 (3.16)

for all B ∈ Rk×(n−k). Since (3.16) must hold for all B ∈ Rk×(n−k), we must have

Λ = V

Λ1 0

0 Λ2

V >, (3.17)

for some skew-symmetric matrices Λ1 ∈ Rk×k, Λ2 ∈ R(n−k)×(n−k), and therefore,

QΛ = V Ik,n−kV
>Λ = V

Λ1 0

0 −Λ2

V >.
Conversely, any Λ of the form in (3.17) must satisfy (3.16).

Propositions 3.3.1 and 3.3.6 allow us to explicitly decompose the tangent space of O(n)

at a point Q ∈ Gr(k, n) into

TQ O(n) = TQ Gr(k, n)⊕ NQ Gr(k, n),

QΛ = QV

 0 B

−B> 0

V > + V

Λ1 0

0 Λ2

V >.
For later purposes, it will be useful to give explicit expressions for the two projection maps.
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Corollary 3.3.7 (Projection maps). Let Q ∈ Gr(k, n) with Q = V Ik,n−kV
> and

projTQ : TQ O(n)→ TQ Gr(k, n), projNQ : TQ O(n)→ NQ Gr(k, n)

be the projection maps onto the tangent and normal spaces of Gr(k, n) respectively. Then

projTQ(QΛ) =
1

2
(QΛ− ΛQ) =

1

2
V (S + S>)V >,

projNQ(QΛ) =
1

2
(QΛ + ΛQ) =

1

2
V (S − S>)V >,

(3.18)

for any decomposition QΛ = V SV >, where S ∈ Rn×n and Ik,n−kS is skew-symmetric.

Proof. We see from Propositions 3.3.1 and 3.3.6 that the maps are well defined, i.e., 1
2(QΛ−

ΛQ) ∈ TQ Gr(k, n) and 1
2(QΛ + ΛQ) ∈ NQ Gr(k, n), and the images are orthogonal as

〈QΛ− ΛQ,QΛ + ΛQ〉Q = 0.

The alternative expressions follow from taking S = Ik,n−kV
>ΛV .

3.4 Exponential map, geodesic, and parallel transport

An explicit and easily computable formula for a geodesic curve is indispensable in most

Riemannian optimization algorithms. By Lemma 3.1.1, any Q ∈ Gr(k, n) can be eigende-

composed as V Ik,n−kV > for some V ∈ O(n). So a curve γ in Gr(k, n) takes the form

γ(t) = V (t)Ik,n−kV (t)>, (3.19)

with V (t) a curve in O(n) that can in turn be written as

V (t) = V exp(Λ(t)), (3.20)
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where Λ(t) is a curve in the space of n× n skew-symmetric matrices, Λ(0) = 0, and V (0) =

V . We will show in Proposition 3.4.2 that in the involution model the curve Λ(t) takes a

particularly simple form. We first prove a useful lemma using the cs decomposition [82, 184].

Lemma 3.4.1. Let Λ ∈ Rn×n be skew-symmetric. Then there exist B ∈ Rk×(n−k) and two

skew-symmetric matrices Λ1 ∈ Rk×k, Λ2 ∈ R(n−k)×(n−k) such that

exp(Λ) = exp

( 0 B

−B> 0

) exp

(Λ1 0

0 Λ2

). (3.21)

Proof. By (3.8), we may assume k ≤ n/2. Let the cs decomposition of Q := exp(Λ) ∈ O(n)

be

Q =

U 0

0 V




cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 In−2k


W 0

0 Z


>

, (3.22)

where U,W ∈ O(k), V, Z ∈ O(n − k), Θ = diag(θ1, . . . , θk) with θi ∈ [0, 2π], i = 1, . . . , k.

Next we will show that we may always choose U,W, V, Z to have determinant one, i.e.,

U,W ∈ SO(k), V, Z ∈ SO(n− k). To see this, note that

det(Q) = det(exp(Λ)) = 1, det


cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 In−2k

 = 1,

and so we must have det(U) det(W ) det(V ) det(Z) = 1. If det(U) = det(W ) = det(V ) =

det(Z) = 1, then we are done. If either two of them, or all four of them have determinant −1,

let Îj := diag(1, . . . ,−1, . . . , 1), i.e., the identity matrix with its jth diagonal entry replaced

by −1, then inserting Î1 and Îk+1 in (3.22) allows us to change the signs of the determinants
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at will. For example, if det(U) = det(Z) = −1, det(W ) = det(V ) = 1, then

Q =

U 0

0 V

 Î1Î1


cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 In−2k

 Îk+1Îk+1

W 0

0 Z


>

=

U ′ 0

0 V ′




cos Θ′ sin Θ′ 0

− sin Θ′ cos Θ′ 0

0 0 In−2k


W ′ 0

0 Z ′


>

and the new matrices U ′, V ′,W ′, Z ′ now satisfy det(U ′) = det(V ′) = det(W ′) = det(Z ′) = 1.

It is easy to check that in all cases, we may assume that U,W ∈ SO(k), V, Z ∈ SO(n − k)

without loss of generality. Now

U 0

0 V




cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 In−2k



= exp

(U 0

0 V




0 Θ 0

−Θ 0 0

0 0 0


U 0

0 V


>)U 0

0 V



= exp

( 0 B

−B> 0

)
U 0

0 V

 ,
where B := U [Θ, 0]V > ∈ Rk×(n−k) with 0 ∈ Rk×(n−2k). As UW> ∈ SO(k) and V Z> ∈

SO(n−k), we can find skew symmetric matrices Λ1,Λ2 with exp(Λ1) = UW> and exp(Λ2) =

V Z> as required.

Proposition 3.4.2 (Curve). Let Q ∈ Gr(k, n) with eigendecomposition Q = V Ik,n−kV
>.
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Then a curve γ(t) in Gr(k, n) through Q may be expressed as

γ(t) = V exp


 0 B(t)

−B(t)> 0


 Ik,n−k exp


 0 −B(t)

B(t)> 0


V > (3.23)

for some curve B(t) in Rk×(n−k) through the zero matrix.

Proof. By (3.19) and (3.20), we have

γ(t) = V exp
(
Λ(t)

)
Ik,n−k exp

(
−Λ(t)

)
V >.

By Lemma 3.4.1, we may write

exp
(
Λ(t)

)
= exp


 0 B(t)

−B(t)> 0


 exp


Λ1(t) 0

0 Λ2(t)


 ,

which gives the desired parametrization in (3.23).

Proposition 3.4.2 yields another way to obtain the expression for tangent vectors in (3.12).

Differentiating the curve in (3.23) at t = 0, we get

γ̇(0) = V


 0 −2Ḃ(0)

−2Ḃ(0)> 0


V > ∈ TQ Gr(k, n).

Choosing B(t) to be any curve in Rk×(n−k) with B(0) = 0 and Ḃ(0) = −B/2, we obtain

(3.12).

The key ingredient in most manifold optimization algorithms is the geodesic at a point

in a direction. In [65], the discussion regarding geodesics on the Grassmannian is brief:

Essentially, it says that because a geodesic on the Stiefel manifold V(k, n) takes the form

Q exp(tΛ), a geodesic on the Grassmannian V(k, n)/O(k) takes the form [Q exp(tΛ)]. It
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is hard to be more specific when one uses the Stiefel model. On the other hand, when we

use the involution model, the expression (3.25) in the next theorem describes a geodesic

precisely, and any point on γ can be evaluated with a single qr decomposition (to obtain

V , see Section 3.7.1) and a single matrix exponentiation (the two exponents are transposes

of each other).

Theorem 3.4.3 (Geodesics I). Let Q ∈ Gr(k, n) and X ∈ TQ Gr(k, n) with

Q = V Ik,n−kV
>, X = V

 0 B

B> 0

V >. (3.24)

The geodesic γ emanating from Q in the direction X is given by

γ(t) = V exp

 t

2

 0 −B

B> 0


 Ik,n−k exp

 t

2

 0 B

−B> 0


V >. (3.25)

The differential equation for γ is

γ(t)>γ̈(t)− γ̈(t)>γ(t) = 0, γ(0) = Q, γ̇(0) = X. (3.26)

Proof. By Proposition 3.4.2, any curve through Q must take the form

γ(t) = V exp


 0 B(t)

−B(t)> 0


 Ik,n−k exp


 0 −B(t)

B(t)> 0


V >,

where B(0) = 0. Since γ is in the direction X, we have that γ̇(0) = X, and thus Ḃ(0) =

−B/2. It remains to employ the fact that as a geodesic, γ is a critical curve of the length

functional

L(γ) :=

∫ 1

0
‖γ̇(t)‖γ(t) dt
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where the Riemannian norm is as in (3.15). Let ε > 0. Consider a variation of γ(t) with

respect to a C1-curve C(t) in Rk×(n−k):

γε(t) = V exp


 0 B(t) + εC(t)

−B(t)> − εC(t)> 0


 Ik,n−k

exp


 0 −B(t)− εC(t)

B(t)> + εC(t)> 0


V >.

We require C(0) = C(1) = 0 so that γε is a variation of γ with fixed end points. The tangent

vector of γε at time t is given by

V exp


 0 B(t) + εC(t)

−B(t)> − εC(t)> 0



−2

 0 Ḃ(t) + εĊ(t)

Ḃ(t) + εĊ(t)> 0




exp


 0 −B(t)− εC(t)

B(t)> + εC(t)> 0


V >

and so ‖γ̇ε(t)‖γ(t) = 2
√

2‖Ḃ(t) + εĊ(t)‖Fro where ‖ · ‖Fro denotes Frobenius norm. Hence,

0 =
d

dε
L
(
γε(t)

)∣∣∣
ε=0

= 2
√

2

∫ 1

0

tr
(
Ḃ(t)>Ċ(t)

)
‖Ḃ(t)‖Fro

dt.

As γ(t) is a geodesic, ‖γ̇(t)‖γ(t) and thus ‖Ḃ(t)‖Fro must be a constant K > 0. Therefore,

we have

0 =
1

K

∫ 1

0
tr
(
Ḃ(t)>Ċ(t)

)
dt = − 1

K

∫ 1

0
tr
(
B̈(t)>C(t)

)
dt,
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implying that B̈(t) = 0 and thus B(t) = tḂ(0) = −tB/2. Lastly, since

γ̇(t) = V exp


 0 B(t)

−B(t)> 0



−2

 0 Ḃ(t)

Ḃ(t)> 0


 exp


 0 −B(t)

B(t)> 0


V >,

γ̈(t) = V exp


 0 B(t)

−B(t)> 0



−4

Ḃ(t)Ḃ(t)> 0

0 −Ḃ(t)>Ḃ(t)

− 2

 0 B̈(t)

B̈(t)> 0




(3.27)

exp


 0 −B(t)

B(t)> 0


V >, (3.28)

and the differential equation for a geodesic curve γ is

projTγ(t)(γ̈) = 0, γ(0) = Q, γ̇(0) = X,

we obtain (3.26) from the expression for tangent projection in (3.18).

Theorem 3.4.3 also gives the exponential map of X.

Corollary 3.4.4 (Exponential map). Let Q ∈ Gr(k, n) and X ∈ TQ Gr(k, n) be as in (3.24).

Then

expQ(X) := γ(1) = V exp

1

2

 0 −B

B> 0


 Ik,n−k exp

1

2

 0 B

−B> 0


V >. (3.29)

The length of the geodesic segment from γ(0) = 0 to γ(1) = expQ(X) is

L(γ) = ‖X‖Fro =
√

2‖B‖Fro. (3.30)

The Grassmannian is geodesically complete and so any two points can be joined by a
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length-minimizing geodesic. In the next proposition, we will derive an explicit expression

for such a geodesic in the involution model. By (3.8), there will be no loss of generality in

assuming that k ≤ n/2 in the following — if k > n/2, then we just replace k by n− k.

Proposition 3.4.5 (Geodesics II). Let k ≤ n/2. Let Q0, Q1 ∈ Gr(k, n) with eigendecompo-

sitions Q0 = V0Ik,n−kV
>
0 and Q1 = V1Ik,n−kV

>
1 . Let the cs decomposition of V >0 V1 ∈ O(n)

be

V >0 V1 =

U 0

0 V




cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 In−2k


W 0

0 Z


>

(3.31)

where U,W ∈ O(k), V, Z ∈ O(n − k), Θ = diag(θ1, . . . , θk) ∈ Rk×k. Then the geodesic γ

connecting Q0 to Q1 is

γ(t) = V0 exp

 t

2

 0 −B

B> 0


 Ik,n−k exp

 t

2

 0 B

−B> 0


V >0 ,

where B = −2U [Θ, 0]V > ∈ Rk×(n−k) with 0 ∈ Rk×(n−2k).

Proof. By Theorem 3.4.3, γ is a geodesic curve emanating from γ(0) = V0Ik,n−kV
>
0 = Q0.

It remains to verify that

γ(1) = V0 exp

1

2

 0 −B

B> 0


 Ik,n−k exp

1

2

 0 B

−B> 0


V >0 = Q1,
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when B = −2U [Θ, 0]V >. Substituting the expression for B,

γ(1) = V0

U 0

0 V

 exp




0 Θ 0

−Θ 0 0

0 0 0


 Ik,n−k exp




0 −Θ 0

Θ 0 0

0 0 0



U> 0

0 V >

V >0

= V0

U 0

0 V




cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 In−2k

 Ik,n−k


cos Θ − sin Θ 0

sin Θ cos Θ 0

0 0 In−k


U> 0

0 V >

V >0

= V0

U 0

0 V




cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 In−2k


W> 0

0 Z>

 Ik,n−k
W 0

0 Z




cos Θ − sin Θ 0

sin Θ cos Θ 0

0 0 In−k


U> 0

0 V >

V >0

where the last equality holds because we have

Ik,n−k =

W> 0

0 Z>

 Ik,n−k
W 0

0 Z


whenever W ∈ O(k) and Z ∈ O(n− k). By (3.31), the last expression of γ(1) equals

V0(V >0 V1)Ik,n−k(V >0 V1)>V >0 = V1Ik,n−kV
>
1 = Q1.

The geodesic expression in Proposition 3.4.5 requires a cs decomposition [82, 184] and
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is more expensive to evaluate than the one in Theorem 3.4.3. Nevertheless, we do not need

Proposition 3.4.5 for our optimization algorithms in Section 3.7, although its next corollary

could be useful if one wants to design proximal gradient methods in the involution model.

Corollary 3.4.6 (Geodesic distance). The geodesic distance between Q0, Q1 ∈ Gr(k, n) is

given by

d(Q0, Q1) = 2
√

2
(∑k

i=1
σi(B)2

)1/2
= 2
√

2
(∑k

i=1
θi

)1/2
(3.32)

where B ∈ Rk×(n−k) and Θ ∈ Rk×k are as in Proposition 3.4.5.

Proof. By (3.30), L(γ) =
√

2‖B‖Fro = 2
√

2‖Θ‖Fro with B = −2U [Θ, 0]V > as in Proposi-

tion 3.4.5.

The last expression in (3.32) differs from the expression in [65, Section 4.3] by a factor

of 2
√

2, which is exactly what we expect since the metrics in the involution and orthogonal

models differ by a factor of (2
√

2)2 = 8, as we saw in the proof of Proposition 3.3.5.

The notion of a logarithmic map is somewhat less standard and we remind readers of its

definition. Given a Riemannian manifoldM and a point x ∈M , there exists some r > 0 such

that the exponential map expx : Br(0)→M is a diffeomorphism on the ball Br(0) ⊆ TxM

of radius r centered at the origin [58, Theorem 3.7]. The logarithm map, sometimes called

the inverse exponential map, is then defined on the diffeomorphic image expx
(
Br(0)

)
⊆ M

by

logx : expx
(
Br(0)

)
→ TxM, logx(v) := exp−1

x (v)

for all v ∈ expx
(
Br(0)

)
. The largest r so that expx is a diffeomorphism on Br(0) is the

injectivity radius at x and its infimum over all x ∈M is the injectivity radius of M .

Corollary 3.4.7 (Logarithmic map). Let Q0, Q1 ∈ Gr(k, n) be such that d(Q0, Q1) <
√

2π.

Let V0, V1 ∈ O(n), and B ∈ Rk×(n−k) be as in Proposition 3.4.5. The logarithmic map at
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Q0 of Q1 is

logQ0
(Q1) = V0

 0 −B

B> 0

V >0 .

Proof. The injectivity radius of Gr(k, n) is well known to be π/2 [200]. Write Br(0) =

{X ∈ TQ0
Gr(k, n) : ‖X‖Q < r} and Bdr (Q0) = {Q ∈ Gr(k, n) : d(Q0, Q) < r}. By

Corollaries 3.4.4 and 3.4.6,

expQ0

(
Bπ/2(0)

)
= Bd√

2π
(Q0).

By Corollary 3.4.4 and Proposition 3.4.5, logQ0
: B√2π(Q0) → Gr(k, n) has the required

expression.

We end this section with the expression for the parallel transport of a vector Y along a

geodesic γ at a point Q in the direction X. This will be an essential ingredient for conjugate

gradient and Newton methods in the involution model (see Algorithms 3 and 4).

Proposition 3.4.8 (Parallel transport). Let Q ∈ Gr(k, n) and X, Y ∈ TQ Gr(k, n) with

Q = V Ik,n−kV
>, X = V

 0 B

B> 0

V >, Y = V

 0 C

C> 0

V >,
where V ∈ O(n) and B,C ∈ Rk×(n−k). Let γ be a geodesic curve emanating from Q in the

direction X. Then the parallel transport of Y along γ is

Y (t) = V exp

 t

2

 0 −B

B> 0



 0 C

C> 0

 exp

 t

2

 0 B

−B> 0


V >. (3.33)

Proof. Let γ be parametrized as in (3.25). A vector field Y (t) that is parallel along γ(t)
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may, by (3.12), be written in the form

Y (t) = V exp

 t

2

 0 −B

B> 0



 0 C(t)

C(t)> 0

 exp

 t

2

 0 B

−B> 0


V >

for some curve C(t) in Rk×(n−k) with C(0) = C. Differentiating Y (t) gives

Ẏ (t) = V exp

(
t

2

 0 −B

B> 0

)
−1

2

(
BC(t)> + C(t)B>

)
Ċ(t)

Ċ(t)> 1
2

(
B>C(t) + C(t)>B

)


exp

(
t

2

 0 B

−B> 0

)V >.
Since Y (t) is parallel along γ(t), we must have

projTγ(t)

(
Ẏ (t)

)
= 0,

which implies that Ċ(t) = 0 and thus C(t) = C(0) = C, giving us (3.33).

A word about our notation for parallel transport, or rather, the lack of one. Note that

Y (t) depends on γ and to indicate this dependence, we may write Yγ(t). Other common

notations include τtY [99], P γt Y [115], γts(Y ) [126] (s = 0 for us) but there is no single

standard notation.

3.5 Gradient and Hessian

We now derive expressions for the Riemannian gradient and Hessian of a C2 function f :

Gr(k, n) → R in the involution model with (3.10) for tangent vectors. As a reminder, this
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means:
Gr(k, n) = {Q ∈ Rn×n : Q>Q = I, Q> = Q, tr(Q) = 2k − n},

TQ Gr(k, n) =
[
V

 0 B

B> 0

V > ∈ Rn×n : B ∈ Rk×(n−k)
]
,

(3.34)

where Q = V Ik,n−kV
>.

The Riemannian gradient ∇f at Q is a tangent vector ∇f(Q) ∈ TQ Gr(k, n) and, de-

pending on context, the Riemannian Hessian at Q is a bilinear map:

∇2f(Q) : TQ Gr(k, n)× TQ Gr(k, n)→ R.

Proposition 3.5.1 (Riemannian gradient I). Let f : Gr(k, n) → R be a C1 function. For

any Q ∈ Gr(k, n), write

fQ :=

[
∂f

∂qij
(Q)

]n
i,j=1

∈ Rn×n. (3.35)

Then

∇f(Q) =
1

4

[
fQ + f>Q −Q(fQ + f>Q )Q

]
. (3.36)

Proof. The projection of QX ∈ TQRn×n to TQ O(n) is Q(X − X>)/2. Therefore the

projection of fQ ∈ TQRn×n to TQ O(n) is (fQ − Qf>QQ)/2. Composing this with the

projection of TQ O(n) to TQ Gr(k, n) given in (3.18), we get

∇f(Q) = projTQ

(fQ −Qf>QQ
2

)
=

1

4

(
fQ + f>Q −QfQQ−Qf

>
QQ
)

as required.

Proposition 3.5.2 (Riemannian Hessian I). Let f : Gr(k, n) → R be C2. For any Q =
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V Ik,n−kV
> ∈ Gr(k, n), let fQ be as in (3.35) and

fQQ(X) :=

[ n∑
i,j=1

( ∂2f

∂qij∂qkl
(Q)
)
xij

]n
k,l=1

, fQQ(X, Y ) :=
n∑

i,j,k,l=1

( ∂2f

∂qij∂qkl
(Q)
)
xijykl.

As a bilinear map, the Hessian of f at Q is given by

∇2f(Q)(X, Y ) = fQQ(X, Y )− 1

2
tr
(
f>QQ(XY + Y X)

)
(3.37)

for any X, Y ∈ TQ Gr(k, n).

Proof. Let γ be a geodesic curve emanating from Q in the direction X ∈ TQ Gr(k, n).

Then the Hessian can be computed as

∇2f(Q)(X,X) =
d2

dt2
f
(
γ(t)

)∣∣∣∣
t=0

=
d

dt
tr
(
f>γ(t)γ̇(t)

)∣∣∣∣
t=0

= fQQ(X) + tr
(
f>Q γ̈(0)

)
.

Since γ(t) is given by (3.25),

γ̈(0) = V

−BB> 0

0 B>B

V > = −Qγ̇(0)2

and so

∇2f(Q)(X,X) = fQQ(X)− tr(f>QQX
2).

To obtain ∇2f(Q) as a bilinear map, we simply polarize the quadratic form above:

∇2f(Q)(X, Y ) =
1

2

[
∇2f(Q)(X + Y,X + Y )−∇2f(Q)(X,X)−∇2f(Q)(Y, Y )

]
=

1

2

[
fQQ(X + Y )− fQQ(X)− fQQ(Y )− tr

(
f>QQ(XY + Y X)

)]
= fQQ(X, Y )− 1

2
tr
(
f>QQ(XY + Y X)

)
.
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Our optimization algorithms require that we parameterize our tangent space as in (3.34)

and we need to express ∇f(Q) in such a form. This can be easily accomplished. Let

Eij ∈ Rk×(n−k) be the matrix whose (i, j) entry is zero and other entries are one. Let

Xij := V

 0 Eij

E>ij 0

V > ∈ TQ Gr(k, n). (3.38)

Then BQ := {Xij : i = 1, . . . , k, j = 1, . . . , n − k} is an orthogonal (but not orthonormal

since Riemannian norm ‖Xij‖Q = 1/
√

2) basis of TQ Gr(k, n).

Corollary 3.5.3 (Riemannian gradient II). Let f , Q, fQ be as in Propositions 3.5.1. If we

partition

V >(fQ + f>Q )V =

 A B

B> C

 , (3.39)

where A ∈ Rk×k, B ∈ Rk×(n−k), C ∈ R(n−k)×(n−k), then

∇f(Q) =
1

2
V

 0 B

B> 0

V >. (3.40)

Proof. By (3.39), we may rewrite (3.36) as

∇f(Q) =
1

4

V
 A B

B> C

V > − V
 A −B

−B> C

V >
 =

1

2
V

 0 B

B> 0

V >.
In our optimization algorithms, (3.39) is how we actually compute Riemannian gradients.

Note that in the basis BQ, the gradient of f is essentially given by the matrix B/2 ∈

Rk×(n−k). So in algorithms that rely only on Riemannian gradients, we just need the top

right block B, but the other blocks A and C would appear implicitly in the Riemannian

Hessians.
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We may order the basis BQ lexicographically (note that Xij ’s are indexed by two indices),

then the bilinear form ∇2f(Q) has the matrix representation

HQ :=



∇2f(Q)(X11, X11) ∇2f(Q)(X11, X12) . . . ∇2f(Q)(X11, Xk,n−k)

∇2f(Q)(X12, X11) ∇2f(Q)(X12, X12) . . . ∇2f(Q)(X12, Xk,n−k)

...
... . . . ...

∇2f(Q)(Xk,n−k, X11) ∇2f(Q)(Xk,n−k, X12) . . . ∇2f(Q)(Xk,n−k, Xk,n−k)


.

(3.41)

In practice, the evaluation of HQ may be simplified; we will discuss this in Section 3.7.3. To

summarize, in the lexicographically ordered basis BQ,

[
∇f(Q)

]
BQ =

1

2
vec(B) ∈ Rk(n−k),

[
∇2f(Q)

]
BQ = HQ ∈ Rk(n−k)×k(n−k),

and the Newton step S ∈ Rk×(n−k) is given by the linear system

HQ vec(S) = −1

2
vec(B). (3.42)

3.6 Retraction map and vector transport

Up till this point, everything that we have discussed is authentic Riemannian geometry,

even though we have used extrinsic coordinates to obtain expressions in terms of matrices

and matrix operations. This section is a departure, we will discuss two notions created for

sole use in manifold optimization: retraction maps [6, 180] and vector transports [4]. They

are relaxations of exponential maps and parallel transports respectively and are intended

to be pragmatic substitutes in situations where these Riemannian operations are either too

difficult to compute (e.g., requiring the exponential of a nonnormal matrix) or unavailable in

closed form (e.g., parallel transport on a Stiefel manifold). While the involution model does

not suffer from either of these problems, retraction algorithms could still serve as a good
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option for initializing Riemannian optimization algorithms.

As these definitions are not found in the Riemannian geometry literature, we state a

version of [4, Definitions 4.1.1 and 8.1.1] below for easy reference.

Definition 3.6.1. A map R : TM → M , (x, v) 7→ Rx(v) is a retraction map if it satisfies

the following two conditions:

• Rx(0) = x for all x ∈M ;

• dRx(0) : TxM → TxM is the identity map for all x ∈M .

A map T : TM ⊕ TM → TM associated to a retraction map R is a vector transport if it

satisfies the following three conditions:

• T (x, v, w) =
(
Rx(v), Tx,v(w)

)
for all x ∈M and v, w ∈ TxM ;

• Tx,0(w) = w for all x ∈M and w ∈ TxM ;

• Tx,v(a1w1+a2w2) = a1Tx,v(w1)+a2Tx,v(w2) for all a1, a2 ∈ R, x ∈M , and v, w1, w2 ∈

TxM .

Here TM ⊕ TM is a direct sum of vector bundles and each element is parametrized

by a point x ∈ M and two tangent vectors v, w ∈ TxM . The condition (3.6.1) says that

the vector transport T is compatible with its retraction map R, and also defines the map

Tx,v : TxM → TxM . Note that v is the direction to move in while w is the vector to be

transported.

For the purpose of optimization, we just need R and T to be well-defined on a neigh-

bourhood of M ∼= {(x, 0) ∈ TM} ⊆ TM and M ∼= {(x, 0, 0) ∈ TM ⊕ TM} ⊆ TM ⊕ TM

respectively. If R and T are C1 maps, then various optimization algorithms relying on R

and T can be shown to converge [4], possibly under the additional assumption that M has

nonnegative [50] or bounded sectional curvature [190]. In particular, these results apply in
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our case since being a compact symmetric space, Gr(k, n) has both nonnegative and bounded

sectional curvature [36, 212].

Example 3.6.2 (Projection as retraction). For a manifold M embedded in Euclidean space

Rn or Rm×n, we may regard tangent vectors in TxM to be of the form x + v. In this case

an example of a retraction map is given by the projection of tangent vectors onto M ,

Rx(v) = argminy∈M ‖x+ v − y‖,

where ‖ · ‖ is either the 2- or Frobenius norm. By [5, Lemma 3.1], the map Rx is well-defined

for small v and is a retraction.

We will give three retraction maps for Gr(k, n) that are readily computable in the in-

volution model with evd, block qr, and Cayley transform respectively. The latter two are

inspired by similar maps defined for the projection model in [100] although our motivations

are somewhat different.

We begin by showing how one may compute the projection argmin
{
‖A − Q‖Fro : Q ∈

Gr(k, n)
}
for an arbitrary matrix A ∈ Rn×n in the involution model, a result that may be

of independent interest.

Lemma 3.6.3. Let A ∈ Rn×n and

A+ A>

2
= V DV > (3.43)

be an eigendecomposition with V ∈ O(n) and D = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn. Then

Q = V Ik,n−kV
> is a minimizer of

min
{
‖A−Q‖Fro : Q>Q = I, Q> = Q, tr(Q) = 2k − n

}
.

Proof. Since Q is symmetric, ‖A−Q‖2Fro = ‖(A+A>)/2−Q‖2Fro +‖(A−A>)/2‖2Fro, a best
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approximation to A is also a best approximation to (A+A>)/2. By (3.43), ‖(A+A>)/2−

Q‖Fro = ‖D−V >QV ‖Fro and so for a best approximation V >QV must be a diagonal matrix.

Since the eigenvalues δ1, . . . , δn of a symmetric orthogonal Q must be ±1 and tr(Q) = 2k−n,

the multiplicities of +1 and −1 are k and n− k respectively. By assumption, λ1 ≥ · · · ≥ λn,

so

min
δ1+···+δn=2k−n

(λ1 − δ1)2 + · · ·+ (λn − δn)2

is attained when δ1 = · · · = δk = +1 and δk+1 = · · · = δn = −1. Hence V >QV =

diag(δ1, . . . , δn) = Ik,n−k as required.

It is clear from the proof, which is a variation of standard arguments [106, Section 8.1],

that a minimizer is not unique if and only if λk = λk+1, i.e., the kth and (k+1)th eigenvalues

of (A + A>)/2 coincide. Since any Q ∈ Gr(k, n) by definition has λk = +1 6= −1 = λk+1,

the projection is always unique in a small enough neighborhood of Q in Rn×n.

In the following, let E : Rn×n → O(n) be the map that takes any A ∈ Rn×n to an

orthogonal matrix of eigenvectors of (A+ A>)/2.

Proposition 3.6.4 (Retraction I). Let Q ∈ Gr(k, n) and X, Y ∈ TQ Gr(k, n) with

Q = V Ik,n−kV
>, X = V

 0 B

B> 0

V >, Y = V

 0 C

C> 0

V >, (3.44)

where V ∈ O(n) and B,C ∈ Rk×(n−k). Then

REQ(X) = V E
( I B

B> −I

)Ik,n−kE(
 I B

B> −I

)>V >
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defines a retraction and

T EQ(X, Y ) = V E
( I B

B> −I

)
 0 C

C> 0

 E(
 I B

B> −I

)>V >

defines a vector transport.

Proof. It follows from Lemma 3.6.3 that REQ defines a projection. The properties in Defini-

tion 3.6.1 are routine to verify.

The retraction map above requires an evd, which is relatively expensive. Furthermore,

the eigenvector map E is generally discontinuous [121], which can present a problem. One

alternative would be to approximate the map E with a qr decomposition — one should think

of this as the first step of Francis’s qr algorithm for evd. In fact, we will not even require a

full qr decomposition, a 2× 2 block qr decomposition suffices. Let Q : Rn×n → O(n) be a

map that takes a matrix A to its orthogonal factor in a 2× 2 block qr decomposition, i.e.,

A = Q(A)

R1 R2

0 R3

 , R1 ∈ Rk×k, R2 ∈ Rk×(n−k), R3 ∈ R(n−k)×(n−k).

Note that Q(A) is an orthogonal matrix but the second factor just needs to be block upper

triangular, i.e., R1 and R3 are not required to be upper triangular matrices. We could

compute Q(A) with, say, the first k steps of Householder qr applied to A.

Proposition 3.6.5 (Retraction II). Let Q ∈ Gr(k, n) and X, Y ∈ TQ Gr(k, n) be as in

(3.44). If Q is well-defined and differentiable near Ik,n−k and Q(Ik,n−k) = I, then

RQQ(X) = VQ
(

1

2

 I B

B> −I

)Ik,n−kQ(1

2

 I B

B> −I

)>V >
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defines a retraction and

TQQ (X, Y ) = VQ
(

1

2

 I B

B> −I

)
 0 C

C> 0

Q(1

2

 I B

B> −I

)>V >

defines a vector transport.

Proof. Only property (3.6.1) in Definition 3.6.1 is not immediate and requires checking. Let

the following be a block qr decomposition:

1

2

 I tB

tB> −I

 =

Q1(t) Q2(t)

Q3(t) Q4(t)


R1(t) R2(t)

0 R3(t)

 = Q(t)R(t), (3.45)

with Q(t) ∈ O(n). Since Q(t)Q(t)> = 1 and Q(0) = I, Q′(0) is skew-symmetric and

d

dt
Q(t)Ik,n−kQ(t)>

∣∣∣∣
t=0

=

Q′1(0) +Q′1(0)> −Q′2(0) +Q′3(0)>

Q′3(0)−Q′2(0)> −Q′4(0)−Q′4(0)>

 =

 0 2Q′3(0)>

2Q′3(0) 0

 .
Comparing the (1, 1) and (2, 1) entries in (3.45), we get

Q1(t)R1(t) = I, Q3(t)R1(t) = tB>/2.

Hence Q3(t) = tB>Q1(t)/2, Q′3(0) = B>Q1(0)/2 = B>/2, and we get

d

dt
Q(t)Ik,n−kQ(t)>

∣∣∣∣
t=0

=

 0 B

B> 0

 ,
as required.

If we use a first-order Padé approximation exp(X) ≈ (I + X)(I −X)−1 for the matrix

exponential terms in the exponential map (3.29) and parallel transport (3.33), we obtain
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another retraction map and vector transport. This Padé approximation is the well-known

Cayley transform C, which takes a skew-symmetric matrix to an orthogonal matrix and vice

versa:

C : Λ2(Rn)→ O(n), Λ→ (I + Λ)(I − Λ)−1.

Proposition 3.6.6 (Retraction III). Let Q ∈ Gr(k, n) and X, Y ∈ TQ Gr(k, n) be as in

(3.44). Then

RCQ(X) = V C
(

1

4

 0 −B

B> 0

)Ik,n−kC(1

4

 0 −B

B> 0

)>V >

defines a retraction and

T CQ(X, Y ) = V C
(

1

4

 0 −B

B> 0

)
 0 C

C> 0

 C(1

4

 0 −B

B> 0

)>V >

defines a vector transport.

Proof. Again, only property (3.6.1) in Definition 3.6.1 is not immediate and requires check-

ing. But this is routine we omit the details.

Another alternative that avoids computing an evd and takes advantage of the skew-

symmetry involves the so-called Strang splitting [186]. Observe that a matrix in the exponent

of (3.49) may be written as a unique linear combination

 0 B

−B> 0

 =
k∑
i=1

n−k∑
j=1

αij

 0 Eij

−E>ij 0


where αij ∈ R and Eij is the matrix whose (i, j) entry is one and other entries are zero.
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Since

exp

(
θ

 0 Eij

−E>ij 0

) =

I + (cos θ − 1)Eii (sin θ)Eij

−(sin θ)Eji I + (cos θ − 1)Ejj

 =: Gi,j+k(θ)

is a Givens rotation in the ith and (j + k)th plane of θ radians [86, p. 240], we may approx-

imate the required matrix exponential as a sequence of Givens rotation

S
( 0 B

−B> 0

) := G1,1+k

(1
2α11

)
G1,2+k

(1
2α12

)
· · ·Gk,n−1

(1
2αk,n−k−1

)
Gk,n

(
αk,n−k

)

Gk,n−1

(1
2αk,n−k−1

)
· · ·G1,2+k

(1
2α12

)
G1,1+k

(1
2α11

)
≈ exp

( 0 B

−B> 0

). (3.46)

This is called the Strang splitting [186], which approximates the matrix exponential up to

first order, thereby giving us a retraction and a vector transport:

Proposition 3.6.7 (Retraction IV). Let Q ∈ Gr(k, n) and X, Y ∈ TQ Gr(k, n) be as in

(3.44). Then

RSQ(X) = V S
(

1

2

 0 −B

B> 0

)Ik,n−kS(1

2

 0 −B

B> 0

)>V >

defines a retraction and

TSQ(X, Y ) = V S
(

1

2

 0 −B

B> 0

)
 0 C

C> 0

S(1

2

 0 −B

B> 0

)>V >

defines a vector transport.

An efficient way to compute the exponential map is the same as an efficient retraction

map. In fact, numerical algorithms for matrix exponential is often contructed by using a
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local retraction. If there is a retraction map RI which approximates the matrix exponential

locally, then we can compute the matrix exponential up to arbitrary precision by the scaling

and squaring method [105]:

eA = lim
n→∞

(
RI(A/n)

)n
.

The retraction based on Cayley transform in Proposition 3.6.6 is a special case of the Padé

approximation method in [32]. Conversely, the Strang splitting in Proposition 3.6.7 can

be used to compute the matrix exponential and take time at most 12nk(n − k). In fact,

computing the product in (3.46) is equivalent to computing a sequence of 2k(n − k) − 1

Givens rotations, which takes time 12nk(n − k) − 6n. For comparison, directly evaluating

(3.49) via an svd of B would have taken time 4k(n− k)2 + 22k3 + 2n3 (first two summands

for svd [86, p. 493], last summand for two matrix-matrix products).

3.7 Algorithms

We will now discuss optimization algorithms for minimizing a function f : Gr(k, n) →

R in the involution model. In principle, this is equivalent to a quadratically constrained

optimization problem in n2 variables [qij ]
n
i,j=1 = Q ∈ Rn×n:

minimize f(Q)

subject to Q>Q = I, Q> = Q, tr(Q) = 2k − n.
(3.47)

Nevertheless, if one attempts to minimize any of the objective functions f in Section 3.8

by treating (3.47) as a general nonlinear constrained optimization problem using, say, the

Matlab Optimization Toolbox, every available method — interior point, trust region, se-

quential quadratic programming, active set — will fail without even finding a feasible point,

never mind a minimizer. The Riemannian geometric objects and operations of the last few

sections are essential to solving (3.47).
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We will distinguish between two types of optimization algorithms. The retraction al-

gorithms, as its name implies, will be based on various retractions and vector transports

discussed in Section 3.6. The Riemannian algorithms, on the other hand, are built upon

true Riemannian geodesics and parallel transports discussed in Section 3.4. Both types of

algorithms will rely on the materials on points in Section 3.2, tangent vectors and metric in

Section 3.3, and Riemannian gradients and Hessians in Section 3.5.

For both types of algorithms, the involution model offers one significant advantage over

other existing models. In the involution model, explicit parallel transport and exponential

map can be avoided. Instead of ∇f(Q) and expQ(X), it suffices to work with the matrices

G,B ∈ Rk×(n−k) that we will call effective gradient and effective step respectively, and do-

ing so leads to extraordinarily simple and straightforward expressions in our algorithms. We

will highlight this simplicity at appropriate junctures in Sections 3.7.2 and 3.7.3. Aside from

simplicity, a more important consequence is that all key computations in our algorithms are

performed at the intrinsic dimension of Gr(k, n). Our steepest descent direction, conjugate

direction, Barzilai–Borwein step, Newton step, quasi-Newton step, etc, would all be repre-

sented as k(n − k)-dimensional objects. This is a feature not found in the algorithms of

[3, 65, 100].

3.7.1 Initialization, eigendecomposition, and exponentiation

We begin by addressing three issues that we will frequently encounter in our optimization

algorithms.

First observe that it is trivial to generate a point Q ∈ Gr(k, n) in the involution model:

Take any orthogonal matrix V ∈ O(n), generated by say a qr decomposition of a random

n × n matrix. Then we always have Q := V Ik,n−kV
> ∈ Gr(k, n). We may easily generate

as many random feasible initial points for our algorithms as we desire or simply take Ik,n−k

as our initial point.
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The inverse operation of obtaining a V ∈ O(n) from a given Q ∈ Gr(k, n) so that

Q = V Ik,n−kV
> seems more expensive as it appears to require an evd. In fact, by the

following observation, the cost is the same — a single qr decomposition.

Lemma 3.7.1. Let Q ∈ Rn×n with Q>Q = I, Q> = Q, tr(Q) = 2k − n. If

1

2
(I +Q) = V

R1 R2

0 0

 , V ∈ O(n), R1 ∈ Rk×k, R2 ∈ Rk×(n−k), (3.48)

is a qr decomposition, then Q = V Ik,n−kV
>.

Proof. Recall from (3.6) that for such a Q, we may write V = [Y, Z] where Y ∈ V(k, n)

and Z ∈ V(n− k, n) are a +1-eigenbasis and a −1-eigenbasis of Q respectively. By Proposi-

tion 3.2.3, 1
2(I +Q) is the projection matrix onto the +1-eigenspace im(Y ) = im

(1
2(I +Q)

)
,

i.e., Y is an orthonormal column basis for 1
2(I +Q) and is therefore given by its condensed

qr decomposition. As for Z, note that any orthonormal basis for im(Y )⊥ would serve the

role, i.e., Z can be obtained from the full qr decomposition. In summary,

1

2
(I +Q) = Y

R1

0

 =

[
Y Z

]R1 R2

0 0

 .
As a sanity check, note that

1

2
(I +Q) = Y Y > =

[
Y Z

]Ik 0

0 0


Y
Z

 = V

Ik 0

0 0

V >,
and therefore

Q = V

Ik 0

0 −In−k

V > = V Ik,n−kV
>.
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Our expressions for tangent vector, exponential map, geodesic, parallel transport, re-

traction, etc, at a point Q ∈ Gr(k, n) all involve its matrix of eigenvectors V ∈ O(n). So

Lemma 3.7.1 plays an important role in our algorithms. In practice, numerical stability

considerations in the presence of rounding errors [55, Section 3.5.2] require that we perform

our qr decomposition with column pivoting so that (3.48) becomes

1

2
(I +Q) = V

R1 R2

0 0

Π>

where Π is a permutation matrix. This does not affect our proof above; in particular, note

that we have no need for R1 nor R2 nor Π in any of our algorithms.

The most expensive step in our Riemannian algorithms is the evaluation

B 7→ exp

( 0 B

−B> 0

) (3.49)

for B ∈ Rk×(n−k). General algorithms for computing matrix exponential [106, 147] do not

exploit structures aside from normality. There are specialized algorithms that take advantage

of skew-symmetry [32] or both skew-symmetry and sparsity [54] or the fact (3.49) may be

regarded as the exponential map of a Lie algebra to a Lie group [34], but all of them require

O(n3) cost. In [65], the exponential is computed via an svd of B.

3.7.2 Retraction algorithms

In manifold optimization algorithms, an iterate is a point on a manifold and a search direction

is a tangent vector at that point. Retraction algorithms rely on the retraction map RQ for

updating iterates and vector transport TQ for updating search directions. Our interest in

retraction algorithms is primarily to use them to initialize the Riemannian algorithms in the
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next section, and as such we limit ourselves to the least expensive ones.

A retraction-based steepest descent avoids even vector transport and takes the simple

form

Qi+1 = RQi
(
−αi∇f(Qi)

)
,

an analogue of the usual xi+1 = xi − αi∇f(xi) in Euclidean space. As for our choice of

retraction map, again computational costs dictate that we exclude the projection REQ in

Proposition 3.6.4 since it requires an evd, and limit ourselves to the qr retraction RQQ or

Cayley retraction RCQ in Propositions 3.6.5 and 3.6.6 respectively. We present the latter in

Algorithm 1 as an example.

We select our step size αi using the well-known Barzilai–Borwein formula [15] but any

line search procedure may be used instead. Recall that over Euclidean space, there are two

choices for the Barzilai–Borwein step size:

αi =
s>i−1si−1

(gi − gi−1)>si−1
, αi =

(gi − gi−1)>si−1

(gi − gi−1)>(gi − gi−1)
, (3.50)

where si−1 := xi − xi−1. On a manifold M , the gradient gi−1 ∈ Txi−1M would have to

be first parallel transported to TxiM and the step si−1 would need to be replaced by a

tangent vector in Txi−1M so that the exponential map expxi−1(si−1) = xi. Upon applying

this procedure, we obtain

αi =
tr(S>i−1Si−1)

tr
(
(Gi −Gi−1)>Si)

) , αi =
tr
(
(Gi −Gi−1)>Si−1

)
tr
(
(Gi −Gi−1)>(Gi −Gi−1)

) . (3.51)

In other words, it is as if we have naively replaced the gi and si in (3.50) by the effective

gradient Gi and the effective step Si. But (3.51) is indeed the correct Riemannian expres-

sions for Barzilai–Borwein step size in the involution model — the parallel transport and

exponential map have already been taken into account when we derive (3.51). This is an

example of the extraordinary simplicity of the involution model that we mentioned earlier
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and will see again in Section 3.7.3.

Algorithm 1 Steepest descent with Cayley retraction

1: Initialize Q0 = V0Ik,n−kV
>
0 ∈ Gr(k, n).

2: for i = 0, 1, . . . do
3: compute effective gradient Gi at Qi . entries ∗ not needed

V >i (fQi + f>Qi)Vi =

[
∗ 2Gi

2G>i ∗

]
;

4: if i = 0 then
5: initialize S0 = −G0, α0 = 1;
6: else
7: compute Barzilai–Borwein step . or get αi from line search

αi = tr
(
(Gi −Gi−1)>Si−1

)
/ tr
(
(Gi −Gi−1)>(Gi −Gi−1)

)
;

Si = −αiGi;

8: end if
9: perform Cayley transform

Ci =

[
I Si/4

−S>i /4 I

] [
I −Si/4

S>i /4 I

]−1

;

10: update eigenbasis . effective vector transport

Vi+1 = ViCi;

11: update iterate
Qi+1 = Vi+1Ik,n−kV

>
i+1;

12: end for

Of the two expressions for αi in (3.51), we chose the one on the right because our effective

gradient Gi, which is computed directly, is expected to be slightly more accurate than our

effective step size Si, which is computed from Gi. Other more sophisticated retraction

algorithms [4] can be readily created for the involution model using the explicit expressions

derived in Section 3.6.
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3.7.3 Riemannian algorithms

Riemannian algorithms, called “geometric algorithms” in [65], are true geometric analogues

of those on Euclidean spaces — straight lines are replaced by geodesic curves, displacements

by parallel transports, inner products by Riemannian metrics, gradients and Hessians by

their Riemannian counterparts. Every operation in a Riemannian algorithm is intrinsic:

iterates stay on the manifold, conjugate and search directions stay in tangent spaces, and

there are no geometrically meaningless operations like adding a point to a tangent vector or

subtracting tangent vectors from two different tangent spaces.

The involution model, like other models in [3, 65, 100], supplies a system of extrinsic

coordinates that allow geometric objects and operations to be computed with standard

numerical linear algebra but it offers a big advantage, namely, one can work entirely with

the effective gradients and effective steps. For example, it looks as if parallel transport is

missing from our Algorithms 2–5, but that is only because the expressions in the involution

model can be simplified to an extent that gives such an illusion. Our parallel transport is

effectively contained in the step where we update the eigenbasis Vi to Vi+1.

We begin with steepest descent in Algorithm 2, the simplest of our four Riemannian

algorithms. As in the case of Algorithm 1, we will use Barzilai–Borwein step size but any

line search procedure may be used to produce αi. In this case, any conceivable line search

procedure would have required us to search over a geodesic curve and thus having to evaluate

matrix exponential multiple times, using the Barzilai–Borwein step size circumvents this

problem entirely.

Unlike its retraction-based counterpart in Algorithm 1, here the iterates descent along

geodesic curves. Algorithm 1 may in fact be viewed as an approximation of Algorithm 2

where the matrix exponential in Step 9 is replaced with its first-order Padé approximation,

i.e., a Cayley transform.

Newton method, shown in Algorithm 3, is straightforward with the computation of New-
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Algorithm 2 Steepest descent

1: Initialize Q0 = V0Ik,n−kV
>
0 ∈ Gr(k, n).

2: for i = 0, 1, . . . do
3: compute effective gradient Gi at Qi . entries ∗ not needed

V >i (fQi + f>Qi)Vi =

[
∗ 2Gi

2G>i ∗

]
;

4: if i = 0 then
5: initialize S0 = −G0, α0 = 1;
6: else
7: compute Barzilai–Borwein step . or get αi from line search

αi = tr
(
(Gi −Gi−1)>Si−1

)
/ tr
(
(Gi −Gi−1)>(Gi −Gi−1)

)
;

Si = −αiGi;

8: end if
9: update eigenbasis . effective parallel transport

Vi+1 = Vi exp

([
0 −Si/2

S>i /2 0

])
;

10: update iterate
Qi+1 = Vi+1Ik,n−kV

>
i+1;

11: end for
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ton step as in (3.42). In practice, instead of a direct evaluation of HQ ∈ Rk(n−k)×k(n−k)

as in (3.41), we determine HQ in a manner similar to Corollary 3.5.3. When regarded as a

linear map HQ : TQ Gr(k, n)→ TQ Gr(k, n), its value on a basis vector Xij in (3.38) is

HQ(Xij) =
1

4
V

 0 Bij + AEij − EijC

(Bij + AEij − EijC)> 0

V >, (3.52)

where A,C are as in (3.39) and Bij is given by

V >
(
fQQ(Xij) + fQQ(Xij)

>)V =

 ∗ Bij

B>ij ∗

 ,
for all i = 1, . . . , k, j = 1, . . . , n − k. Note that these computations can be performed

completely in parallel — with k(n− k) cores, entries of HQ can be evaluated all at once.

Algorithm 3 Newton’s method

1: Initialize Q0 = V0Ik,n−kV
>
0 ∈ Gr(k, n).

2: for i = 0, 1, . . . do
3: compute effiective gradient Gi at Qi

V >i (fQi + f>Qi)Vi =

[
Ai 2Gi

2G>i Ci

]
;

4: generate Hessian matrix HQ by (3.41) or (3.52);
5: solve for effective Newton step Si

HQ vec(Si) = − vec(Gi);

6: update eigenbasis . effective parallel transport

Vi+1 = Vi exp

([
0 Si/2

−S>i /2 0

])
;

7: update iterate
Qi+1 = Vi+1Ik,n−kV

>
i+1;

8: end for
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Our conjugate gradient uses the Polak–Ribière formula [160] for conjugate step size; it is

straightforward to replace that with the formulas of Dai–Yuan [51], Fletcher–Reeves [76], or

Hestenes–Stiefel [103]. For easy reference:

βpr
i = tr

(
G>i+1(Gi+1 −Gi)

)
/ tr(G>i Gi),

βhs
i = − tr

(
G>i+1(Gi+1 −Gi)

)
/ tr
(
P>i (Gi+1 −Gi)

)
,

βfr
i = tr(G>i+1Gi+1)/ tr(G>i Gi),

βdy
i = − tr(G>i+1Gi+1)/ tr

(
P>i (Gi+1 −Gi)

)
.

(3.53)

It may appear from these formulas that we are subtracting tangent vectors from tangent

spaces at different points but this is an illusion. The effective gradients Gi and Gi+1 are

defined by the Riemannian gradients∇f(Qi) ∈ TQi Gr(k, n) and∇f(Qi+1) ∈ TQi+1
Gr(k, n)

as in (3.40) but they are not Riemannian gradients themselves. The formulas in (3.53) have

in fact already accounted for the requisite parallel transports. This is another instance of the

simplicity afforded by the involution model that we saw earlier in our Barzilai–Borwein step

size (3.51) — our formulas in (3.53) are no different from the standard formulas for Euclidean

space in [51, 76, 103, 160]. Contrast these with the formulas in [65, Equations 2.80 and 2.81],

where the parallel transport operator τ makes an explicit appearance and cannot be avoided.

Our quasi-Newton method, given in Algorithm 5, uses l-bfgs updates with two loops

recursion [158]. Observe that a minor feature of Algorithms 1, 2, 4, 5 is that they do not

require vectorization of matrices; everything can be computed in terms of matrix-matrix

products, allowing for Strassen-style fast algorithms. While it is straightforward to replace

the l-bfgs updates with full bfgs, dfp, sr1, or Broyden class updates, doing so will require

that we vectorize matrices like in Algorithm 3.
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Algorithm 4 Conjugate gradient

1: Initialize Q0 = V0Ik,n−kV
>
0 ∈ Gr(k, n).

2: Compute effective gradient G0 at Q0 . entries ∗ not needed

V >0 (fQ0
+ f>Q0

)V0 =

[
∗ 2G0

2G>0 ∗

]
;

3: initialize P0 = S0 = −G0, α0 = 1;
4: for i = 0, 1, . . . do
5: compute αi from line search of direction Pi and set

Si = αiPi;

6: update eigenbasis . effective parallel transport

Vi+1 = Vi exp

([
0 −Si/2

S>i /2 0

])
;

7: update iterate
Qi+1 = Vi+1Ik,n−kV

>
i+1;

8: compute effective gradient Gi+1 at Qi+1 . entries ∗ not needed

V >i+1(fX(Qi+1) + fX(Qi+1)>)Vi+1 =

[
∗ 2Gi+1

2G>i+1 ∗

]
;

9: compute Polak–Ribière conjugate step size

βi = tr
(
(Gi+1 −Gi)>Gi+1

)
/ tr(G>i Gi);

10: update conjugate direction

Pi+1 = −Gi+1 + βiPi;

11: end for
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Algorithm 5 Quasi-Newton with l-bfgs updates

1: Initialize Q0 = V0Ik,n−kV
>
0 ∈ Gr(k, n).

2: for i = 0, 1, . . . do
3: Compute effective gradient Gi at Qi . entries ∗ not needed

V >i
(
fX(Qi) + fX(Qi)

>)Vi =

[
∗ 2Gi

2G>i ∗

]
;

4: if i = 0 then
5: initialize S0 = −G0;
6: else
7: set Yi−1 = Gi −Gi−1 and P = Gi; . P is temporary variable for loop
8: for j = i− 1, . . . ,max(0, i−m) do
9: αj = tr(S>j P )/ tr(Y >j Sj);
10: P = P − αjYj ;
11: end for
12: set Z = tr(Y >i−1Si−1)/ tr(Y >i−1Yi−1)P ; . Z is temporary variable for loop
13: for j = max(0, i−m), . . . , i− 1 do
14: βj = tr(Y >j Z)/ tr(Y >j Sj);
15: Z = Z + (αj − βj)Sj ;
16: end for
17: set effective quasi-Newton step Si = −Z;
18: end if
19: update eigenbasis . effective parallel transport

Vi+1 = Vi exp

([
0 −Si/2

S>i /2 0

])
;

20: update iterate
Qi+1 = Vi+1Ik,n−kV

>
i+1;

21: end for
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3.7.4 Exponential-free algorithms

In our algorithms, an exponential matrix U := exp
([ 0 B
−B> 0

])
is always3 applied as a con-

jugation of some symmetric matrix X ∈ Rn×n:

X 7→ UXU> or X 7→ U>XU. (3.54)

In other words, the Givens rotations in (3.46) are applied in the form of Jacobi rotations [86,

p. 477]. For a symmetric X, a Jacobi rotation X 7→ Gij(θ)XGij(θ)
> takes the same number

(as opposed to twice the number) of floating point operations as a Givens rotation applied

on the left, X 7→ Gij(θ)X, or on the right, X 7→ XGij(θ). Thus with Strang splitting the

operations in (3.54) take time 12nk(n− k). To keep our algorithms simple, we did not take

advantage of this observation.

In principle, one may avoid any actual computation of matrix exponential by simply

storing the k(n − k) Givens rotations in (3.46) without actually forming the product, and

apply them as Jacobi rotations whenever necessary. The storage of Gij(θ) requires just a

single floating point number θ and two indices but one would need to figure out how to

update these k(n− k) Givens rotations from one iteration to the next. We leave this as an

open problem for interested readers.

3.7.5 Drawbacks of quotient models

This section, which may again be safely skipped, discusses the pitfalls of modeling a manifold

as a homogeneous space of matrices. In our context, this would be the orthogonal, Stiefel,

and full-rank models:

Gr(k, n) ∼= O(n)/
(
O(n− k)×O(k)

) ∼= V(k, n)/O(k) ∼= Rn×kk /GL(k). (3.55)

3. See steps 3, 10 in Algorithm 2; steps 3, 7 in Algorithm 3; steps 7, 8 in Algorithm 4; steps 3, 20 in
Algorithm 5.
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Such homogeneous space models take the form of a quotient B = E/G where B is the

manifold we want to optimize over, E is some other manifold on which we have optimization

algorithms, and G is some Lie group. The quotient map π : E → B, x 7→ [x] defines a

principal bundle. The idea of Riemannian optimization algorithms for such models is to

lift every point on B up to the total space E so that optimization algorithms on E can be

applied. In Section 3.1, we only mentioned the computational costs that come with lifting a

point [x] ∈ B to x ∈ E and with checking equality of points [x1] = [x2] given x1, x2. Here

we focus on a more serious mathematical difficulty.

Since our goal is optimization, we cannot simply lift points on B to E in arbitrary ways.

Ideally, whatever method of lifting should at least be continuous, i.e., nearby points in B are

lifted to nearby points in E. In fact if we need first or second derivatives for the purpose of

optimization, then the lifting has to be differentiable to first or second order, as we will see

below. In differential geometric lingo, finding a lifting j is called finding a global section and

it is impossible for any of the models in (3.55). Take the Stiefel model for illustration, the

quotient map π : V(k, n) → V(k, n)/O(k), Y 7→ [Y ], defines Gr(k, n) as an O(k)-principal

bundle. This is not a trivial bundle, which is equivalent to π not admitting a global section

[108]. The consequence is that there is no global ‘Stiefel coordinates’ for Gr(k, n), i.e., we

cannot represent all points of Gr(k, n) by points of V(k, n) in a continuous manner.

We will use the Stiefel model as an illustration of the above discussion. Let f : V(k, n)/

O(k) → R be a differentiable objective function and let π : V(k, n) → V(k, n)/O(k) be the

quotient map, which is always smooth. A lifting is a right inverse j : V(k, n)/O(k)→ V(k, n)

to π, i.e., π ◦ j([Y ]) = [Y ] for any [Y ] ∈ V(k, n)/O(k). Note that such a map j is not unique.

In order to use standard numerical linear algebra, we have to work with actual matrices in

V(k, n) as opposed to equivalence classes of matrices in V(k, n)/O(k), so we need a way

to assign to any equivalence class in V(k, n)/O(k) a matrix in V(k, n) that represents that

equivalence class — any such assignment gives us a lifting.
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Upon selecting a lifting j, we may then transform the problem of optimzing f : V(k, n)/

O(k)→ R to optimizing f ◦π : j(V(k, n)/O(k))→ R. Note that j(V(k, n)/O(k)) ⊆ V(k, n)

is a set of actual matrices. The issue is that in order to have gradients and Hessians we also

need f ◦π to be a differentiable function — this is only possible if its domain j(V(k, n)/O(k))

is a differential manifold. But as we saw, we cannot even choose j to be continous, so

j(V(k, n)/O(k)) is not even a topological manifold. In the involution and projection models,

we do not face these issues as a point in Gr(k, n) is already represented by a matrix.

3.8 Numerical experiments

We will describe three sets of numerical experiments, testing Algorithms 1–5 on three dif-

ferent objective functions, the first two are chosen because their true solutions can be in-

dependently determined in closed-form, allowing us to ascertain that our algorithms have

converged to the global optimizer. All our codes are open source and publicly available at:

https://github.com/laizehua/Simpler-Grassmannians

The goal of these numerical experiments is to compare our algorithms for the involution

model in Section 3.7 with the corresponding algorithms for the Stiefel model in [65]. Al-

gorithm 5, although implemented in our codes, is omitted from our comparisons as quasi-

Newton methods are not found in [65].

3.8.1 Quadratic function

The standard test function for Grassmannian optimization is the quadratic form in [65,

Section 4.4] which, in the Stiefel model, takes the form tr(Y >FY ) for a symmetric F ∈ Rn×n

and Y ∈ V(k, n). By Proposition 3.2.4, we write Q = 2Y Y > − I, then tr(Y >FY ) =(
tr(FQ) + tr(F )

)
/2. Therefore, in the involution model, this optimization problem takes an
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even simpler form

f(Q) = tr(FQ) (3.56)

for Q ∈ Gr(k, n). What was originally quadratic in the Stiefel model becomes linear in the

involution model. The minimizer of f ,

Q∗ := argmin
{

tr(FQ) : Q>Q = I, Q> = Q, tr(Q) = 2k − n
}
,

is given by Q∗ = ΠV Ik,n−kV
>Π> where

Π =


1

. . .

1

 and
F + F>

2
= V DV >

is an eigendecomposition with eigenbasis V ∈ O(n) and eigenvalues D := diag(λ1, . . . , λn)

in descending order. This follows from essentially the same argument4 used in the proof of

Lemma 3.6.3 and the corresponding minimum is f(Q∗) = −λ1− · · · − λk + λk+1 + · · ·+ λn.

For the function f(Q) = tr(FQ), the effective gradient Gi ∈ Rk×(n−k) in Algorithms 2,

4, 5 at the point Qi = ViIk,n−kV
>
i ∈ Gr(k, n) is given by

V >i FVi =

 A Gi

G>i C

 .
The matrices A ∈ Rk×k and C ∈ R(n−k)×(n−k) are not needed for Algorithms 2, 4, 5

but they are required in Algorithm 3. Indeed, the effective Newton step Si ∈ Rk×(n−k) in

4. Recall also that for any real numbers a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn, and any permutation π, one always
have that a1bn + a2bn−1 + · · ·+ anb1 ≤ a1bπ(1) + a2bπ(2) + · · ·+ anbπ(n) ≤ a1b1 + a2b2 + · · ·+ anbn.
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Algorithm 3 is obtained by solving the Sylvester equation

ASi − SiC = 2Gi.

To see this, note that by Proposition 3.5.2, for any B ∈ Rk×(n−k),

∇2f(Qi)

(
Vi

 0 B

B> 0

V >i , Vi
 0 Si

S>i 0

V >i )

= −1

2
tr

( A Gi

G>i C


XS>i + SiB

> 0

0 −B>Si − S>i B

)

= − tr
(
B>(ASi − SiC)

)
,

and to obtain the effective Newton step (3.42), we simply set the last term to be equal to

−2 tr(B>Gi).

Figure 3.1: Convergence of algorithms in the Stiefel and involution models.

Figure 3.1 compares the convergence behaviors of the algorithms in [65] for the Stiefel
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model and our Algorithms 2, 3, 4 in the involution model: steepest descent with line search

(gd) and with Barzilai–Borwein step size (bb), conjugate gradient (cg), and Newton’s

method (nt) for k = 6, n = 16. We denote the ith iterate in the Stiefel and involution

models by Yi and Qi respectively — note that Yi is a 16 × 6 matrix with orthonormal

columns whereas Qi is a 16 × 16 symmetric orthogonal matrix. All algorithms are fed the

same initial point obtained from 20 iterations of Algorithm 1. The matrix F is generated

randomly with standard normal entries. We use the Armijo conditions for linesearch in gd

and cg; but as in the Euclidean case, bb and nt are used as is without linesearch. Since

we have the true global minimizer in closed form, denoted by Y∗ and Q∗ in the respective

model, the error is given by geodesic distance to the true solution. For convenience we

compute ‖YiY >i − Y∗Y
>
∗ ‖Fro and ‖Qi−Q∗‖Fro, which are constant multiples of the chordal

distance [203, Table 2] (also called projection F-norm [65, p. 337]) and are equivalent, in

the sense of metrics, to the geodesic distance. Since we use a log scale, the vertical axes of

the two graphs in Figure 3.1 are effectively both geodesic distance and, in particular, their

values may be compared. The conclusion is clear: While Algorithms 2 (bb) and 3 (nt)

in the involution model attain a level of accuracy on the order of machine precision, the

corresponding algorithms in the Stiefel model do not. The reason is numerical stability, as

we will see next.

Figure 3.2 shows the loss of orthogonality for various algorithms in the Stiefel and in-

volution models, measured respectively by ‖Y >i Yi − I‖Fro and ‖Q2
i − I‖Fro. In the Stiefel

model, the deviation from orthogonality ‖Y >i Yi − I‖Fro grows exponentially. In the worst

case, the gd iterates Yi, which of course ought to be of rank k = 6, actually converged to

a rank-one matrix. In the involution model, the deviation from orthogonality ‖Q2
i − I‖Fro

remains below 10−13 for all algorithms — the loss-of-orthogonality is barely noticeable.

A closer inspection of the algorithms for nt [65, p. 325] and cg [65, p. 327] in the Stiefel

model reveals why: A point Yi and the gradient Gi at that point are highly dependent on
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Figure 3.2: Loss of orthogonality in the Stiefel and involution models.

each other — an ε-deviation from orthogonality in Yi results in an ε-error in Gi that in

turn becomes a 2ε-deviation from orthogonality in Yi+1, i.e., one loses orthogonality at an

exponential rate. We may of course reorthogonalize Yi at every iteration in the Stiefel model

to artificially enforce the orthonormality of its columns but this incurs additional cost and

turns a Riemannian algorithm into a retraction algorithm, as reorthogonalization of Yi is

effectively a qr retraction.

Contrast this with the involution model: In Algorithms 3 (nt) and 4 (cg), the point Qi

and the effective gradient Gi are both computed directly from the eigenbasis Vi, which is

updated to Vi+1 by an orthogonal matrix, or a sequence of Givens rotations if one uses Strang

splitting as in (3.46). This introduces a small (constant order) deviation from orthogonality

each step. Consequently, the deviation from orthogonality at worst grows linearly.
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3.8.2 Grassmann Procrustes problem

Let k,m, n ∈ N with k ≤ n. Let A ∈ Rm×n and B ∈ Rm×k. The minimization problem

min
Q>Q=I

‖AQ−B‖Fro,

is called the Stiefel Procrustes problem [65, Section 3.5.2] and the special case k = n is the

usual orthogonal Procrustes problem [86, Section 6.4.1]. Respectively, these are

min
Q∈V(k,n)

‖AQ−B‖Fro and min
Q∈O(n)

‖AQ−B‖Fro.

One might perhaps wonder if there is also a Grassmann Procrustes problem

min
Q∈Gr(k,n)

‖AQ−B‖Fro. (3.57)

In fact, with the involution model for Gr(k, n), the problem (3.57) makes perfect sense, with

the requirement that k = n. The same argument in the proof of Lemma 3.6.3 shows that

the minimizer Q∗ of (3.57) is given by Q∗ = V Ik,n−kV
> where

A>B +B>A
2

= V DV >

is an eigendecomposition with eigenbasis V ∈ O(n) and eigenvalues D := diag(λ1, . . . , λn)

in descending order. The convergence and loss-of-orthogonality behaviors for this problem

are very similar to those in Section 3.8.1 and provides further confirmation for the earlier

numerical results. The plots from solving (3.57) for arbitrary A,B using any of Algorithms 2–

5 are generated in our codes but as they are nearly identical to Figures 3.1 and 3.2 we omit

them here.
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3.8.3 Fréchet mean and Karcher mean

Let Q1, . . . , Qm ∈ Gr(k, n) and consider the sum-of-square-distances minimization problem:

min
Q∈Gr(k,n)

m∑
j=1

d2(Qj , Q), (3.58)

where d is the geodesic distance in (3.32). The global minimizer of this problem is called

the Fréchet mean and a local minimizer is called a Karcher mean [118]. For the case m = 2,

a Fréchet mean is the midpoint, i.e., t = 1/2, of the geodesic connecting Q1 and Q2 given

by the closed-form expression in Proposition 3.4.5. The objective function f in (3.58) is

differentiable almost everywhere5 with its Riemannian gradient [117] given by

∇f(Q) = 2
m∑
j=1

logQ(Qj),

where the logarithmic map is as in Corollary 3.4.7. To the best of our knowledge, there is no

simple expression for ∇2f(Q) and as such we exclude Newton method from consideration

below.

We will set k = 6, n = 16, and m = 3. Unlike the problems in Sections 3.8.1 and 3.8.2,

the problem in (3.58) does not have a closed-form solution when m > 2. Consequently we

quantify convergence behavior in Figure 3.3 by the rate gradient goes to zero. The deviation

from orthogonality is quantified as in Section 3.8.1 and shown in Figure 3.4. The instability

of the algorithms in the Stiefel model is considerably more pronounced here — both gd and

cg failed to converge to a stationary point as we see in Figure 3.3. The cause, as revealed

by Figure 3.4, is a severe loss-of-orthogonality that we will elaborate below.

The expression for geodesic distance d(Y, Y ′) between two points Y, Y ′ in the Stiefel

model (see [3, Section 3.8] or [203, Equation 7]) is predicated on the crucial assumption that

5. f is nondifferentiable only when Q falls on the cut locus of Qi for some i but the union of all cut loci
of Q1, . . . , Qm has codimension ≥ 1.
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Figure 3.3: Convergence of algorithms in the Stiefel and involution models.

each of these matrices has orthonormal columns. As a result, a moderate deviation from

orthonormality in an iterate Y leads to vastly inaccurate values in the objective function

value f(Y ), which is a sum of m geodesic distances squared. This is reflected in the graphs

on the left of Figure 3.3 for the gd and cg algorithms, whose step sizes come from line

search and depend on these function values. Using the bb step size, which does not depend

on objective function values, avoids the issue. But for gd and cg, the reliance on inaccurate

function values leads to further loss-of-orthogonality, and when the columns of an iterate

Y are far from orthonormal, plugging Y into the expression for gradient simply yields a

nonsensical result, at times even giving an ascent direction in a minimization problem.

For all three algorithms in the involution model, the deviation from orthogonality in the

iterates is kept at a negligible level of under 10−13 over the course of 100 iterations.
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Figure 3.4: Loss of orthogonality in the Stiefel and involution models.
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CHAPTER 4

SIMPLER FLAG OPTIMIZATION

This is a joint work with Lek-Heng Lim and Ke Ye.

4.1 Introduction

Let d ≤ n be positive integers and let (n1, . . . , nd) be a sequence integers such that 0 <

n1 < · · · < nd < n. We denote by Flag(n1, . . . , nd;Rn) the set of all flags in Rn of type

(n1, . . . , nd):

Flag(n1, . . . , nd;n) :=
{
{Vk}dk=1 : Vk ( Vk+1 ( Rn, dimVk = nk, k = 1, . . . , d− 1

}
.

The set Flag(n1, . . . , nd;n) is in fact a homogeneous space, variety, and manifold [107].

When d = 1, it is also called the Grassmannian manifold. If ni = i for 1 ≤ i ≤ d and

d = n− 1, it is called the complete flag manifold.

In Riemannian optimization, we are interested in differential geometric objects and opera-

tions — tangent vector, metric, normal vector, exponential map, geodesic, parallel transport,

gradient, Hessian, etc. And if those objects have closed-form analytic expressions that are

computable with standard numerical linear algebra, then it is straightforward to design op-

timization algorithms on a manifold. For a same manifold, there can be multiple ways to

represent it using different frameworks and different models can leads to difference in effi-

ciency or accuracy of optimization algorithms. In [204], a quotient model for flag manifold

is propose. In this work we intend to give a different embedding model that is simpler and

more efficient for certain kinds of problems.

A key difficulty of optimization on flag manifolds is that there is no explicit formula for

computing parallel transport or logarithm (or equivalently, the geodesic between two given

points) [141, 213, 30, 156]. It implies that the Karcher mean problem on flag manifold is
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difficult to solve because the standard algorithm for Karcher mean problem requires the

computation of logarithm. On the other hand, the extrinsic mean problem requires the

computation of projection, i.e., finding the nearest point in a manifold. The projection

problem can be easily solved for Stiefel manifolds and Grassmannian manifolds [65, 131],

but there is no explicit formular for flag manifolds as far as we know. We provide an efficient

algorithm for solving the projection problem, thus also solving the extrinsic mean problem.

4.2 Preliminaries

4.2.1 Some useful functions

We recall the Peano–Baker series associated to a matrix function Φ : [a, b] → Rn×n. To

define the Peano–Baker series, we first recursively define a sequence {Mk(t)}∞k=0 of matrix

functions

M0(t) = In,

Mk(t) = In +

∫ t

a
Φ(s)Mk−1(s)ds, k ∈ N.

We have the following:

Theorem 4.2.1. [29, Section 3, Theorem 1] The sequence {Mk(t)}∞k=0 converges to a matrix

function M(t) uniformly on [a, b], which solves the differential equation

d

dt
X(t) = Φ(t)X(t), X(a) = In.

In particular, given any column vector u ∈ Rn, M(t)u solves the differential equation

d

dt
x(t) = Φ(t)x(t), x(a) = u.
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The limit matrix function M(t) in Theorem 4.2.1 is defined to be the Peano–Baker series

associated to Φ(t).

4.2.2 Vectorization of a matrix

Letm,n be positive integers and let A[a1, . . . , an] be a matrix of sizem×n where a1, . . . , an ∈

Rm are column vectors of A. We define the vectorization of A to be the column vector

vec(A) :=


a1

...

an

 ∈ Rmn.

We recall that using vectorizations of matrices, we can express the matrix-matrix product

in terms of matrix-vector product. Namely, for A ∈ Rm×n and B ∈ Rn×l, we have

vec(AB) = (Il ⊗ A) vec(B) = (B> ⊗ Im) vec(A). (4.1)

Moreover, for any positive integers m,n, there exists a permutation matrix K(m,n) ∈

Rmn×mn, called the commutation matrix such that

K(m,n) vec(A) = vec(A>), A ∈ Rm×n. (4.2)
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4.3 Sub-Riemannian geometry of flag manifolds with classical

embeddings

According to [204, Proposition 3.2], Flag(n1, . . . , nd;n) can be naturally embedded into a

product of Grassmann manifolds via

ι : Flag(n1, . . . , nd;n) ↪→ Gr(n1, n)×Gr(n2 − n1, n) · · · ×Gr(nd − nd−1, n)

({Vk}dk=1) 7→ (W1,W2, . . . ,Wd). (4.3)

Here W1 = V1 and Wk is the orthogonal complement of Vk−1 in Vk, k = 2, . . . , d. For

simplicity, we denote

m1 := n1, md+1 := n− nd, mk := nk − nk−1, k = 2, . . . , d (4.4)

so that ι is an embedding of Flag(n1, . . . , nd;n) into
∏d
k=1 Gr(mk, n).

4.3.1 An embedding of a flag manifold into a matrix manifold

Using the involution model described in the last section, we can embed each Gr(mk, n) into

O(n) and hence we can write Wk in (4.3) as VkImk,n−mkV
>
k for some Vk ∈ O(n). We

denote by τ the induced embedding of
∏d
k=1 Gr(mk, n) into O(n)d. In the following, we will

explicitly characterize the image τ ◦ ι (Flag(n1, . . . , nd;n)) in O(n)d.

Proposition 4.3.1 (embedding). The image of the embedding

ε : Flag(n1, . . . , nd;n)
ι
↪−→

d∏
k=1

Gr(mk, n)
τ
↪−→ O(n)d (4.5)
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is given by

ε (Flag(n1, . . . , nd;n)) = {(Q1, . . . , Qd) ∈ O(n)d : tr(Qk) = 2mk − n,Q>k = Qk

(In +Qk)(In +Qk+1) = 0, k = 1, . . . , d}. (4.6)

In particular, we have

ε (Flag(n1, . . . , nd;n)) =
{(
V J1V

>, . . . , V JdV
>
)

: V ∈ O(n)
}
, (4.7)

where Jk = diag(−Im1 , · · · ,−Imk−1 , Imk ,−Imk+1 , · · · ,−Imd ,−Imd+1) is obtained by per-

muting diagonal blocks of Imk,n−mk .

Proof. We must have ε({Rnk}
d
k=1) = (Q1, . . . , Qd) ∈ (O(n) ∩ Sn) with rankQk = 2mk − n.

Moreover, since Wk is perpendicular to Wk+1, we must have PWk
◦ PWk+1

= 0 where PU

is the orthogonal projection from Rn onto a subspace U. Now by [131, Proposition 2.3],

we have PWk
= 1

2(In + Qk) which proves (4.6). To see (4.7), we notice that the relation

(In+Qk)(In+Qk+1) = 0 implies that QkQk+1 = Qk+1Qk and hence there exists V0 ∈ O(n)

diagonalizing Qk’s simultaneously, i.e., Qk = V0DkV
>
0 where Dk is a diagonal matrix with

mk −1’s and (n − mk) 1’s along its diagonal. The restriction (In + Qk)(In + Qk+1) = 0

forces Dk = σ>Jkσ for some permutation matrix σ and hence V := σV0 gives us the desired

expression of ε({Rnk}
d
k=1) in (4.7).

In fact, (4.7) is a special case of the general fact [79, page 384] that G/P is an adjoint

orbit of G if P is a parabolic subgroup of a semi-simple Lie group G. In our case, we have

G = O(n) and P = O(m1)×· · ·×O(md+1) so that G/P ' Flag(n1, . . . , nd;n) is the adjoint

orbit of (J1, . . . , Jd) ∈ O(n)d.

Due to Proposition 4.3.1, in the sequel we abuse the notation by using Flag(n1, . . . , nd;n)

to denote ε (Flag(n1, . . . , nd;n)). Accordingly, an element in Flag(n1, . . . , nd;n) is written
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as a d-tuple

(V J1V
>, . . . , V JdV

>) = V (J1, . . . , Jd)V
>

for some V ∈ O(n), where m1 = n1 and mk = nk − nk−1 for k = 2, . . . , d.

4.3.2 Tangent space, Riemannian metric and normal space

We first consider the tangent space of Flag(n1, . . . , nd;n) at a point V (J1, . . . , Jd)V
>. To do

this, we take a curve V (t) on O(n) such that V (0) = V . It is clear that Λ := V (0)>V̇ (0) ∈

so(n) and hence the tangent vector determined by the curve V (t)(J1, . . . , Jd)V (t)> is simply

V̇ (0)(J1, . . . , Jd)V (0)> + V (0)(J1, . . . , Jd)V̇ (0)>

which can be further written as

V (0) (Λ(J1, . . . , Jd)− (J1, . . . , Jd)Λ)V (0)>.

We partition Λ as Λ = (Λ(p, q))d+1
p,q=1 where Λ(p, q) is a mp×mq matrix such that Λ(q, p) =

−Λ(p, q)>. This implies that

ΛJk − JkΛ = −2



0 · · · 0 Λ(k, 1)> 0 · · · 0

... . . . ...
...

... . . . ...

0 · · · 0 Λ(k, k − 1)> 0 · · · 0

Λ(k, 1) · · · Λ(k, k − 1) 0 Λ(k, k + 1) · · · Λ(k, d+ 1)

0 · · · 0 Λ(k, k + 1)> 0 · · · 0

... . . . ...
...

... . . . ...

0 · · · 0 Λ(k, d+ 1)> 0 · · · 0



.

(4.8)

100



We notice that there is a natural identification
∏

1≤j<k≤d+1R
mj×mk ' so(n) and hence we

have an injective map

ψ :
∏

1≤j<k≤d+1

Rmj×mk ' so(n) ↪→
d∏
j=1

Sn, ψ((Ajk)1≤j<k≤d+1) =
1

2
(AJ − JA),

where J = (J1, . . . , Jd) and A ∈ so(n) is the skew-symmetric matrix uniquely determined

by (Ajk)1≤j<k≤d+1. The above calculations can be summarized as the following

Proposition 4.3.2. Given a point f := V (J1, . . . , Jd)V
> ∈ Flag(n1, . . . , nd;n), the tangent

space of Flag(n1, . . . , nd;n) at f is

Tf Flag(n1, . . . , nd;n) = V
{
ψ((Ajk)1≤j<k≤d+1) : Ajk ∈ Rmj×mk , 1 ≤ j < k ≤ d+ 1

}
V >.

In other words, Tf Flag(n1, . . . , nd;n) consists of vectors V (X1, . . . , Xd)V
> ∈

∏d
j=1 Sn sat-

isfying

Xk(k, l) = −Xl(k, l), Xk(p, q) = 0, Xk(k, k) = 0, (4.9)

for all 1 ≤ k, l ≤ d, 1 ≤ p, q ≤ d + 1, and p, q, l 6= k. Here for each 1 ≤ s, t ≤ d + 1,

Xk(s, t) ∈ Rms×mt denotes the (s, t)-th block of Xk ∈ Sn when we partition Xk with respect

to n = m1 + · · ·+md +md+1.

Due to Proposition 4.3.2, we are able to parametrize a curve on Flag(n1, . . . , nd;n) easily.

Corollary 4.3.3 (curves). If c : (−ε, ε)→ Flag(n1, . . . , nd;n) is a differentiable curve such

that c(0) = V (J1, . . . , Jd)V
>, then there exists a differentiable curve Λ : (−ε, ε) → so(n)

such that Λ(k, k)(t) ≡ 0, k = 1, . . . , d+ 1 and

c(t) = V exp(Λ(t))(J1, . . . , Jd) exp(−Λ(t))V >,

where Λ(t) = (Λ(j, k))
d+1,d+1
j,k=1 is the partition of Λ(t) with respect to n = m1 + · · ·+md+1.
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As a submanifold of
∏d
k=1 Gr(mk, n) (or equivalently,

∏d
k=1O(n)), Flag(n1, . . . , nd;n)

is equipped with an induced Riemannian metric:

〈V (X1, . . . , Xd)V
>, V (Y1, . . . , Yd)V

>〉f :=
d∑

k=1

tr(XkYk), (4.10)

where f = V (J1, . . . , Jd)V
> is a point in Flag(n1, . . . , nd;n), and V (X1, . . . , Xd)V

> and

V (Y1, . . . , Yd)V
> are tangent vectors of Flag(n1, . . . , nd;n) at f. More explicitly, we can

write

〈V (X1, . . . , Xd)V
>, V (Y1, . . . , Yd)V

>〉f

= 2
d∑

k=1

∑
l<k<m

tr(Xk(l, k)Yk(k, l) +Xk(m, k)Yk(k,m)). (4.11)

We remark that summands in the formula (4.11) are not evenly counted. For example, if

d = 2, then 〈V (X1, X2)V >, V (Y1, Y2)V >〉f is

2(tr(X1(2, 1)Y1(1, 2)) + tr(X1(3, 1)Y1(1, 3)) + tr(X2(1, 2)Y2(2, 1)) + tr(X2(3, 2)Y2(2, 3))),

(4.12)

in which there is a repeated term tr(X2(1, 2)Y2(2, 1)) = tr(X1(2, 1)Y1(1, 2)).

For each Q ∈ O(n), we have TQO(n) = Qso(n) and hence for each (Q1, . . . , Qd) ∈∏d
k=1O(n), we obtain

T(Q1,...,Qd)

 d∏
k=1

O(n)

 =
d⊕

k=1

Qkso(n).

To calculate the normal space of Flag(n1, . . . , nd;n) in
∏d
k=1O(n) at f = V (J1, . . . , Jd)V

>,

we need to determine Y1, . . . , Yd ∈ so(n) such that Y := (V J1V
>Y1, . . . , V JdV

>Yd) is per-

pendicular to Tf Flag(n1, . . . , nd;n), i.e., 〈X, Y 〉f,O(n) = 0 for all X ∈ Tf Flag(n1, . . . , nd;n).
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Here the inner product 〈·, ·〉
f,
∏d
k=1O(n)

is the canonical Riemannian metric on
∏d
k=1O(n)

at the point f, which induces (4.10). We notice that for X = V (X1, . . . , Xd)V
>,

V XkV
> = (V JkV

>)V JkXkV
>, k = 1, . . . , d,

which implies that

〈X, Y 〉
f,
∏d
k=1O(n)

=
d∑

k=1

tr((V JkXkV
>)>Yk)

=
d∑

k=1

tr((V XkJkV
>)Yk)

=
d∑

k=1

tr((XkJk)V >YkV )

Since 〈X, Y 〉
f,
∏d
k=1O(n)

= 0 holds for any X ∈ Tf Flag(n1, . . . , nd;n), we can equivalently

write this condition as

d∑
k=1

tr((XkJk)Zk) = 0, (X1, . . . , Xd) ∈ Tf0 Flag(n1, . . . , nd;n),

where f0 = (J1, . . . , Jd) ∈ Flag(n1, . . . , nd;n) and Zk = V >YkV, k = 1, . . . , d. If we fix a pair

(k, l) such that 1 ≤ k ≤ d, 1 ≤ l ≤ d+ 1, k 6= l and set Xm(p, q) = 0 for

(m, p, q) 6∈ {(k, k, l), (k, l, k), (l, k, l), (l, l, k)} ,
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then since XkJmk,n−mk is skew-symmetric, we have

0 = 〈X, Y 〉
f,
∏d
k=1O(n)

= tr(Xk(k, l)Zk(l, k))− tr(Xk(k, l)>Zk(k, l))− tr(Xl(k, l)
>Zl(k, l)) + tr(Xl(k, l)Zl(l, k))

= tr(Xk(k, l)(Zk(l, k))− Zl(l, k)))− tr(Xk(k, l)>(−Zk(k, l)) + Zl(k, l)))

= tr(Xk(k, l)(Zk(l, k))− Zl(l, k))) + tr(Xk(k, l)>(Zk(k, l))− Zl(k, l))

= 2 tr(Xk(k, l)(Zk(l, k)− Zl(l, k))).

Therefore, we may derive the following characterization of Nf Flag(n1, . . . , nd;n):

Proposition 4.3.4. At a point f := V (J1, . . . , Jd)V
> ∈ Flag(n1, . . . , nd;Rn), the normal

space Nf Flag(n1, . . . , nd;n) consists of vectors

(V J1Z1V
>, . . . , V JdZdV

>)

where Z1, . . . , Zd ∈ so(n) satisfy the relations

• Zk(k, l)− Zl(k, l) = 0 for all 1 ≤ k 6= l ≤ d.

• Zk(k, d+ 1) = 0, Zk(d+ 1, k) = 0 for all 1 ≤ k ≤ d.

In particular, we have a decomposition

Nf Flag(n1, . . . , nd;n) = Nf

 d∏
k=1

Gr(mk, n)

⊕N0
f (4.13)

104



where Nf

(∏d
k=1 Gr(mk, n)

)
:=
∏d
k=1NV Jmk,n−mkV >

Gr(mk, n) and

N0
f := {(V Jm1,n−m1Z1V

>, . . . , V Jmd,n−mdZdV
>) : Zk ∈ so(n), Zk(k, l)− Zl(k, l) = 0,

Zk(k, k) = 0, Zk(p, q) = 0, Zk(k, d+ 1) = 0, Zk(d+ 1, k) = 0,

1 ≤ k, l ≤ d, 1 ≤ p, q ≤ d+ 1, p, q 6= k}. (4.14)

We recall that Flag(n1, . . . , nd;n) can also be embedded into
∏d
k=1 Gr(nk, n) as a Rie-

mannian submanifold. Hence we may also characterize the normal space with respect to this

embedding.

Corollary 4.3.5. The normal space of Flag(n1, . . . , nd;n) in
∏d
k=1 Gr(mk, n) at a point f

is N0
f .

Proposition 4.3.6. Projections from Tf
(∏d

k=1O(n)
)
onto Tf Flag(n1, . . . , nd;n) and

Nf Flag(n1, . . . , nd;n) are respectively given by

projTf : Tf

 d∏
k=1

O(n)

→ Tf Flag(n1, . . . , nd;n)

V (J1Λ1, . . . , JdΛd)V
> 7→ V (X1, . . . , Xd)V

>. (4.15)

and

projNf : Tf

 d∏
k=1

O(n)

→ Nf Flag(n1, . . . , nd;n)

V (J1Λ1, . . . , JdΛd)V
> 7→ V (Z1, . . . , Zd)V

> (4.16)

where for each k = 1, . . . , d, Xk ∈ Sn (resp. Zk ∈ Rn×n) is partitioned as (Xk(p, q))d+1
p,q=1
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(resp. (Zk(p, q))d+1
p,q=1) with respect to n = m1 + · · ·+md+1 and

Xk(p, q) =



1
2(Λk(k, q)− Λq(k, q)), if p = k 6= q ≤ d

Λk(k, d+ 1), if p = k, q = d+ 1

−1
2(Λk(p, k)− Λp(p, k)), if q = k 6= p ≤ d

−Λk(d+ 1, q), if q = k, p = d+ 1

0, otherwise.

Zk(p, q) =



1
2(Λk(k, q) + Λq(k, q)), if p = k 6= q ≤ d

0, if p = k, q = d+ 1

−1
2(Λk(p, k) + Λp(p, k)), if q = k 6= p ≤ d

0, if q = k, p = d+ 1

Λk(p, q), otherwise.

Before we proceed, we work out the case for d = 2 to exhibit our calculations above. In

this case, our flag manifold is Flag(n1, n2;n) and hence m1 = n1,m2 = n2−n1,m3 = n−n2.

A point f in Flag(n1, n2;n) is written as

V (J1, J2)V > = V



Im1 0 0

0 −Im2 0

0 0 −Im3

 ,

−Im1 0 0

0 Im2 0

0 0 −Im3


V >, V ∈ O(n).

A tangent vector of Flag(n1, n2;n) at f is of the form

V




0 A B

A> 0 0

B> 0 0

 ,


0 −A 0

−A> 0 C

0 C> 0


V >, A ∈ Rm1×m2 , B ∈ Rm1×m3 , C ∈ Rm2×m3 .
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The normal space of Flag(n1, n2;n) as a submanifold of O(n)×O(n) at

f consists of vectors

V



X Y 0

Y > Z W

0 −W> U

 ,


R Y S

Y > T 0

−S> 0 K


V >,

where X,R ∈ so(m1), Z, T ∈ so(m2), U,K ∈ so(m3), Y ∈ Rm1×m2 ,W ∈ Rm2×m3 , S ∈

Rm1×m3 .

A tangent vector ξ of O(n)×O(n) at f can be written as

ξ := V



A B C

B> D E

C> −E> F

 ,


X Y Z

Y > W S

−Z> S> T


V >,

where A,X ∈ so(m1), D,W ∈ so(m2), F, T ∈ so(m3), B, Y ∈ Rm1×m2 , C, Z ∈ Rm1×m3 ,

E, S ∈ Rm2×m3 . The projection of ξ onto Tf Flag(n1, n2;n) is

projTf (ξ) = V




0 B−Y
2 C

B>−Y >
2 0 0

C> 0 0

 ,


0 −B−Y2 0

−B
>−Y >

2 0 S

0 S> 0


V >

and its projection onto Nf Flag(n1, n2;n) is

projNf (ξ) = V




A B+Y
2 0

B>+Y >
2 D E

0 −E> F

 ,


X B+Y
2 Z

B>+Y >
2 W 0

−Z> 0 T


V >

The normal space N0
f of Flag(n1, n2;n) as a submanifold of Gr(m1, n) × Gr(m2, n) at f
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consists of vectors

V




0 Y 0

Y > 0 0

0 0 0

 ,


0 Y 0

Y > 0 0

0 0 0


V >, Y ∈ Rm1×m2 .

We also recall that the tangent space Tf(Gr(m1, n)×Gr(m2, n)) consists of vectors

V




0 A B

A> 0 0

B> 0 0

 ,


0 D 0

D> 0 C

0 C> 0


V >,

where V ∈ O(n), A,D ∈ Rm1×m2 , B ∈ Rm1×m3 , C ∈ Rm2×m3 . The following identities can

be directly verified by the above computations.

Tf (O(n)×O(n)) = Tf Flag(n1, n2;n)
⊕

Nf Flag(n1, n2;n),

Tf(Gr(m1, n)×Gr(m2, n)) = Tf Flag(n1, n2;n)
⊕

N0
f .

4.3.3 Geodesics

Recall that we may parametrize a curve c(t) on Flag(n1, . . . , nd;n) as

c(t) = V (t)(J1, . . . , Jd)V
>(t),

where V (t) is a curve in O(n). By differentiating the equation V (t)>V (t) = In, we obtain

V̇ (t)>V (t) + V (t)>V̇ (t) = 0,
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from which we may write V̇ (t) as

V̇ (t) = V (t)Λ(t),

for some Λ(t) ∈ so(n). According to Proposition 4.3.2, we may further partition Λ(t) as

Λ(t) = (Λjk)
d+1,d+1
j,k=1

with respect to n = m1 + · · · + md+1 and Λkk(t) ≡ 0, k = 1, . . . , d + 1. Hence the second

derivative of c(t) is

c̈(t) = V (t) (∆1(t), . . . ,∆d(t))V (t)>

where

∆k(t) = (Λ̇(t)Jk − Jk ˙Λ(t)) + (Λ2(t)Jk + JkΛ2(t)) + (−2Λ(t)JkΛ(t)) , k = 1, . . . , d. (4.17)

We may rewrite c̈(t) as

c̈(t) = T1(t) + T2(t)− 2T3(t)

where Tj(t) is the j-summand of V (t) (∆1(t), . . . ,∆d(t))V (t)> with respect to the decom-

position of ∆k(t) given in (4.17). More precisely,

T1(t) = V (t)(Λ̇(t)J1 − J1Λ̇(t), . . . , Λ̇(t)Jd − JdΛ̇(t))V (t)>, (4.18)

T2(t) = V (t)(Λ2(t)J1 + J1Λ2(t), . . . ,Λ2(t)Jd + JdΛ
2(t))V (t)>, (4.19)

T3(t) = V (t)(Λ(t)J1Λ(t), . . . ,Λ(t)JdΛ(t))V (t)>. (4.20)

We recall that the geodesic equation on Flag(n1, . . . , nd;n) is given by

projTc(t)(c̈(t)) = 0.
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Therefore, to determine the geodesic equation explicitly, we need to compute the projections

of T1(t), T2(t), T3(t) to Tc(t) Flag(n1, . . . , nd;n) respectively. From Proposition 4.3.2, T1(t)

already lies in the tangent space Tc(t) Flag(n1, . . . , nd;n). Hence it is sufficient to determine

the projections of T2(t) and T3(t).

Lemma 4.3.7. Let c(t), T2(t) be as above. The projection of projT
c(t)

(T2(t)) is zero.

Proof. We first compute Λ2(t)Jk + JkΛ2(t) for each k = 1, . . . , d. To do this, we partition

Λ2(t) (resp. Jk) as (Γp,q(t)) (resp. (Jk(p, q))) with respect to the partition n = m1 + · · · +

md+1 and we recall that

Jk(p, q) =


(2δpk − 1)Imp , if q = p,

0, otherwise.

Here δpk is the Kronecker delta function. Since Λ(t) is skew-symmetric, Λ2(t) is symmetric.

We have Γq,p = Γ>p,q. Now the (p, q)-th block of Λ2(t)Jk is

m+1∑
l=1

Γp,lJk(l, q) = Γp,qJk(q, q) = (2δqk − 1)Γp,q

and the (p, q)-th block of JkΛ2(t) = (Λ2(t)Jk)> is (2δpk − 1)Γp,q. This implies that the

(p, q)-th block of Λ2(t)Jk + JkΛ2(t) is

(2δqk − 1)Γp,q + (2δpk − 1)Γp,q = (−2)(1− δpk − δqk)Γp,q.

In particular, if either q 6= p = k or p 6= q = k, we obtain that the (p, q)-th block of

Λ2(t)Jk + JkΛ2(t) is zero and this implies that projT
c(t)

(T2(t)) = 0.

Lemma 4.3.8. Let c(t), T3(t) be as before. The projection projT
c(t)

(T3(t)) is

V (t)(X1, . . . , Xd)V (t)>
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where for each 1 ≤ k ≤ d, Xk is a symmetric matrix whose (p, q)-th block vanishes for any

(p, q) except (k, d+ 1) and (d+ 1, k). Moreover if we partition Λ(t) as

Λ(t) =

 Λ0(t) Λ1(t)

−Λ1(t)> 0

 ,
where Λ0(t) ∈ so(n−md+1) and Λ1(t) ∈ R(n−md+1)×m1 we have


X1(1, d+ 1)

...

Xd(d, d+ 1)

 = −Λ0(t)Λ1(t).

Proof. It is sufficient to compute Xk := Λ(t)JkΛ(t) for each k = 1, . . . , d. We again partition

Λ(t) as (Λ(p, q)(t))dp,q=1 with respect to n = m1 + · · · + md+1. The (p, q)-th block of

Λ(t)JkΛ(t) is

d+1∑
l,s=1

Λ(p, l)(t)Jk(l, s)Λ(s, q)(t) =
d+1∑
l=1

Λ(p, l)(t)Jk(l, l)Λ(l, q)(t)

=
d+1∑
l=1

(2δkl − 1)Λ(p, l)(t)Λ(l, q)(t). (4.21)

In particular, for 1 ≤ q 6= k ≤ d, the (k, q)-th block of Λ(t)JkΛ(t) is

d+1∑
l=1

(2δkl − 1)Λ(k, l)(t)Λ(l, q)(t),

while the (k, q)-th block of Λ(t)JqΛ(t) is

d+1∑
l=1

(2δql − 1)Λ(k, l)(t)Λ(l, q)(t).
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Using Proposition 4.3.6, we may conclude that the (k, q)-th block ofXk is zero if 1 ≤ k, q ≤ d.

If we take q = d+ 1 and p = k in (4.21), then the (k, d+ 1)-th block of Xk is

Xk(k, d+ 1) = −
∑

1≤l 6=k≤d
Λ(k, l)(t)Λ(l, d+ 1)(t).

We observe that Xk(k, d+ 1) is the k-th block of the product

−



0 Λ(1, 2)(t) . . . Λ(1, d− 1)(t) Λ(1, d)(t)

Λ(2, 1)(t) 0 . . . Λ(2, d− 1)(t) Λ(2, d)(t)

...
... . . . ...

...

Λ(d− 1, 1)(t) Λ(d− 1, 2)(t) . . . 0 Λ(d− 1, d)(t)

Λ(d, 1)(t) Λ(d, 2)(t) . . . Λ(d, d− 1)(t) 0





Λ(1, d+ 1)(t)

Λ(2, d+ 1)(t)

...

Λ(d− 1, d+ 1)(t)

Λ(d, d+ 1)(t)


,

which can be written in a compact form −Λ0(t)Λ1(t).

By assembling Lemmas 4.3.7 and 4.3.8, we can easily derive the geodesic equation on a

flag manifold, from which we can even obtain an explicit formula for the geodesic curve. In

fact, we have the following:

Proposition 4.3.9 (geodesics). Let c(t) be a curve on Flag(n1, . . . , nd;n). We parametrize

c(t) as

c(t) = V (t)(J1, . . . , Jd)V (t)>,

where V (t) is a curve in O(n). We have the following:

1. There exists a unique Λ(t) ∈ so(n) such that V̇ (t) = V (t)Λ(t).

2. If we partition Λ(t) as Λ(t) = (Λ(p, q)(t))
d+1,d+1
p,q=1 ∈ so(n) with respect to n = m1 +

· · ·+md+1, then Λ(p, p)(t) ≡ 0, p = 1, . . . , d+ 1.
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3. c(t) is a geodesic curve if and only if

Λ̇0(t) = 0, Λ̇1(t) = Λ0(t)Λ1(t). (4.22)

where Λ0(t) := (Λ(p, q)(t))
d,d
p,q=1 and Λ1(t) := (Λ(d+ 1, q)(t))dq=1.

4. The solution to (4.22) is

Λ0(t) = Λ0(0), Λ1(t) = exp(tΛ0(0))Λ1(0).

Hence a geodesic curve c(t) is

c(t) = V (t)(J1, . . . , Jd)V
>(t),

where V (t) is a curve in O(n) written as

V (t) = V (0) exp

t
 2X0 X1

−X>1 0



exp(−tX0) 0

0 Imd+1

 (4.23)

for some X0 ∈ so(n−md+1) satisfying X0(k, k) = 0, k = 1, . . . , d and X1 ∈

R(n−md+1)×md+1.

Proof. (1)–(3) and the first half of (4) are obvious from our earlier discussions, hence it is

only left to prove the second part of (4). To that end, we notice that V (t) must satisfy the

equation

V̇ (t) = V (t)

 X0 exp(tX0)X1

−X>1 exp(−tX0) 0

 (4.24)
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and  X0 exp(tX0)X1

−X>1 exp(−tX0) 0


=

exp(tX0) 0

0 Imd+1


 X0 X1

−X>1 0


exp(−tX0) 0

0 Imd+1

 .

If we set W (t) = V (t)

exp(tX0) 0

0 Imd+1

, then (4.24) becomes

Ẇ (t) = W (t)

 2X0 X1

−X>1 0


whose solution is simply

W (t) = W (0) exp

t
 2X0 X1

−X>1 0


 = V (0) exp

t
 2X0 X1

−X>1 0


 .

Hence we obtain that

V (t) = V (0) exp

t
 2X0 X1

−X>1 0



exp(−tX0) 0

0 Imd+1

 .

We remark that if d = 1, then X0 = 0 in (4.23) and a geodesic curve on Gr(n1, n) passing
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through V J1V
> is

c(t) = V exp

t
 0 X1

−X>1 0


 In1,n−n1

−t
 0 X1

−X>1 0


V >,

which coincides with the formula derived in [131].

We again work out the case d = 2 to illustrate the proof of Proposition 4.3.9. To this

end, we write

Λ(t) =


0 A(t) B(t)

−A>(t) 0 C(t)

−B>(t) −C>(t) 0

 , A(t) ∈ Rm1×m2 , B(t) ∈ Rm1×m3 , C(t) ∈ Rm2×m3

and suppose that the curve

c(t) = V (t)(J1, J2)V (t)>, V̇ (t) = V (t)Λ(t), V (t) ∈ O(n)

is a curve passing through (J1, J2) with the direction

(Λ(0)J1 − J1Λ(0),Λ(0)J2 − J2Λ(0))

= −2




0 A(0) B(0)

A(0)> 0 0

B>(0) 0 0

 ,


0 −A(0) 0

−A>(0) 0 C(0)

0 C>(0) 0


 .

We write c̈(t) = V (t) (∆1(t),∆2(t))V (t)> where

∆k(t) = (Λ̇(t)Jk − Jk ˙Λ(t)) + (Λ2(t)Jk + JkΛ2(t)) + (−2Λ(t)JkΛ(t)) .
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It is sufficient to compute the projection of Λ(t)JkΛ(t) onto Tc(t) Flag(n1, n2;n), which is

Λ(t)J1Λ(t)

=




∗ B(t)C(t)> −A(t)C(t)

C(t)B(t)> ∗ ∗

−C(t)>A(t)> ∗ ∗

 ,


∗ B(t)C(t)> ∗

C(t)B(t)> ∗ A(t)>B(t)

∗ B(t)>A(t) ∗


 ,

where ∗ denotes those irrelevant blocks. Eventually, we obtain

projTc(t)(ċ(t)) = −2(


0 Ȧ(t) Ḃ(t)− A(t)C(t)

Ȧ(t)> 0 0

Ḃ(t)> − C(t)>A(t)> 0 0

 ,


0 −Ȧ(t) 0

−Ȧ>(t) 0 Ċ(t) + A(t)>B(t)

0 Ċ(t)> +B(t)>A(t) 0

).

Hence the geodesic equation for Flag(n1, n2;n) is

Ȧ(t) = 0, Ḃ(t)− A(t)C(t) = 0, Ċ(t) + A(t)>B(t) = 0,

which can be rewritten in a more compact form:

Ȧ = 0,

Ḃ(t)

Ċ(t)

 =

 0 A(t)

−A>(t) 0


B(t)

C(t)

 . (4.25)

The solution to (4.25) is

A(t) = A(0),

B(t)

C(t)

 = exp

t
 0 A(0)

−A>(0) 0



B(0)

C(0)

 .
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4.4 Sub-Riemannian geometry of flag manifolds with modified

embeddings

In this section, we discuss the embedded geometry of flag manifolds with respect to a

modified version of the embedding (4.3). Namely, we define

ι̃ : Flag(n1, . . . , nd;n) ↪→ Gr(n1, n)×Gr(n2 − n1, n)× · · ·

×Gr(nd − nd−1, n)×Gr(n− nd, n)

({Vk}dk=1) 7→ (W1,W2, . . . ,Wd,Wd+1), (4.26)

Here Wk is the orthogonal complement of Vk−1 in Vk for 2 ≤ k ≤ d, W1 = Rn1 and

Wd+1 is the orthogonal complement of Vd in Rn. We observe that

ι̃({Vk}dk=1) = (ι({Vk}dk=1),Wd+1).

In other words, ι̃ is simply an extension of ι by tautologically adding the orthogonal comple-

ment of Vd. Since ι is already an embedding, we may easily conclude that ι̃ is also an em-

bedding. Adopting the convention (4.4), ι̃ embeds Flag(n1, . . . , nd;n) into
∏d+1
j=1 Gr(mj , n).

Moreover, by Proposition 4.3.1 we have the following:

Proposition 4.4.1 (embedding). The image of the embedding

ε̃ : Flag(n1, . . . , nd;n)
ι̃
↪−→

d+1∏
j=1

Gr(mj , n)
τ̃
↪−→ O(n)d+1 (4.27)
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is given by

ε̃ (Flag(n1, . . . , nd;n)) = {(Q1, . . . , Qd+1) ∈
d+1∏
j=1

O(n) : tr(Qj) = 2mj − n,Q>j = Qj

(In +Qj)(In +Qj+1) = 0, j = 1, . . . , d+ 1}. (4.28)

In particular, we also have

ε̃ (Flag(n1, . . . , nd;n)) =
{
V (J1, . . . , Jd+1)V > : V ∈ O(n)

}
, (4.29)

where Jk = diag(−Im1 , · · · ,−Imk−1 , Imk ,−Imk+1 , · · · ,−Imd+1) is obtained by permuting

diagonal blocks of Imk,n−mk , k = 1, . . . , d+ 1 and

V (J1, . . . , Jd+1)V > :=
(
V J1V

>, . . . , V Jd+1V
>
)
.

Similarly to Proposition 4.3.2 and Corollary 4.3.3, we also have:

Proposition 4.4.2. Given a point f̃ := V (J1, . . . , Jd+1)V >, the tangent space of the flag

manifold T
f̃
Flag(n1, . . . , nd;n) consists of vectors V (X1, . . . , Xd+1)V > ∈

∏d+1
j=1 Sn satisfy-

ing

Xk(k, l) = −Xl(k, l), Xk(p, q) = 0, Xk(k, k) = 0, 1 ≤ k, l, p, q ≤ d+ 1 and p, q, l 6= k.

(4.30)

Here Xk(s, t) ∈ Rms×mt is the (s, t)-th block of Xk ∈ Sn when we partition Xk with respect

to n =
∑d+1
j=1 mj. Moreover, a curve c(t) passing through c(0) = V (J1, . . . , Jd+1)V > on

Flag(n1, . . . , nd;n) can be locally parametrized as

c(t) = V exp(Λ(t))(J1, . . . , Jd+1) exp(−Λ(t))V >.
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For some differentiable curve Λ : (−ε, ε)→ so(n) such that Λ(k, k)(t) ≡ 0.

If d = 2, then a tangent vector of Flag(n1, n2;n) at f̃ can be written as

V




0 A B

A> 0 0

B> 0 0

 ,


0 −A 0

−A> 0 C

0 C> 0

 ,


0 0 −B

0 0 −C

−B> −C> 0


V >,

where A ∈ Rm1×m2 , B ∈ Rm1×m3 , C ∈ Rm2×m3 .

4.4.1 Induced Riemannian metric, normal space and projections

As a submanifold of
∏d+1
j=1 O(n), Flag(n1, . . . , nd;n) is equipped with a naturally induced

Riemannian metric:

〈V (X1, . . . , Xd+1)V >, V (Y1, . . . , Yd+1)V >〉̃
f

:=
d+1∑
j=1

tr(XjYj) (4.31)

= 2
d+1∑
k=1

∑
l<k<m

tr(Xk(l, k)Yk(k, l) +Xk(m, k)Yk(k,m)).

Unlike (4.10) in which some summands are weighted differently, all summands in the new

metric (4.31) are evenly weighted. For instance, if we take d = 2 then 〈V (X1, X2, X3)V >,

V (Y1, Y2, Y3)V >〉̃
f
is simply

4 (tr(X1(2, 1)Y1(1, 2)) + tr(X1(3, 1)Y1(1, 3)) + tr(X2(3, 2)Y2(2, 3))) . (4.32)

The distinction between (4.31) and (4.10) can be easily observed by comparing (4.32) with

(4.12).
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We notice that the tangent space of
∏d+1
j=1 O(n) at f̃ = V (J1, . . . , Jd+1)V > is

T
f̃

d+1∏
j=1

O(n)

 =
d+1⊕
j=1

(
V JjV

>so(n)
)

=
d+1⊕
j=1

(
V Jjso(n)V >

)
.

Proposition 4.4.3. At a point f̃ := V (J1, . . . , Jd+1)V > ∈ Flag(n1, . . . , nd;Rn), the normal

space N
f̃
Flag(n1, . . . , nd;n) consists of vectors

V (J1Z1, . . . , Jd+1Zd+1)V >

where Z1, . . . , Zd ∈ so(n) satisfy the relation

Zk(k, l)− Zl(k, l) = 0, for all 1 ≤ k 6= l ≤ d+ 1.

In particular, we have a decomposition

N
f̃
Flag(n1, . . . , nd;n) = N

f̃

d+1∏
k=1

Gr(mk, n)

⊕N0
f̃
, (4.33)

where N
f̃

(∏d+1
k=1 Gr(mk, n)

)
=
⊕d+1

k=1NV Jmk,n−mkV >
Gr(mk, n) and

N0
f̃

= {V (Jm1,n−m1Z1, . . . , Jmd+1,n−md+1Zd+1)V > : Zk ∈ so(n), Zk(k, l)− Zl(k, l) = 0,

Zk(k, k) = 0, Zk(p, q) = 0, 1 ≤ k, l, p, q ≤ d+ 1, p, q 6= k}. (4.34)

Proposition 4.4.4. ] Projections from T
f̃

(∏d+1
k=1O(n)

)
onto T

f̃
Flag(n1, . . . , nd;n) and
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N
f̃
Flag(n1, . . . , nd;n) are respectively given by

projT
f̃

: T
f̃

d+1∏
k=1

O(n)

→ T
f̃
Flag(n1, . . . , nd;n)

V (J1Λ1, . . . , Jd+1Λd+1)V > 7→ V (X1, . . . , Xd+1)V >, (4.35)

and

projN
f̃

: T
f̃

d+1∏
k=1

O(n)

→ N
f̃
Flag(n1, . . . , nd;n)

V (J1Λ1, . . . , Jd+1Λd+1)V > 7→ V (Z1, . . . , Zd+1)V >, (4.36)

where for each k = 1, . . . , d, Xk ∈ Sn (resp. Zk ∈ Rn×n) is partitioned as (Xk(p, q))d+1
p,q=1

(resp. (Zk(p, q))d+1
p,q=1) with respect to n = m1 + · · ·+md+1 and

Xk(p, q) =



1
2(Λk(k, q)− Λq(k, q)), if p = k 6= q

−1
2(Λk(p, k)− Λp(p, k)), if q = k 6= p

0, otherwise.

Zk(p, q) =



1
2(Λk(k, q) + Λq(k, q)), if p = k 6= q

−1
2(Λk(p, k) + Λp(p, k)), if q = k 6= p

Λk(p, q), otherwise.

As an illustrative example, we take a tangent vector ξ of O(n) × O(n) × O(n) at some
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point f = V (J1, J2, J3)V >, which can be written as

ξ := V



A B C

B> D E

C> −E> F

 ,


X Y Z

Y > W S

−Z> S> T

 ,


L M N

−M> P Q

N> Q> R


V >,

where A,X,L ∈ so(m1), D,W,P ∈ so(m2), F, T,R ∈ so(m3), B, Y,M ∈ Rm1×m2 ,

C,Z,N ∈ Rm1×m3 , E, S,Q ∈ Rm2×m3 . The projection of ξ to T
f̃
Flag(n1, n2;n) is

projT
f̃

(ξ) = V (


0 B−Y

2
C−N

2

B>−Y >
2 0 0

C>−N>
2 0 0

 ,


0 −B−Y2 0

−B
>−Y >

2 0 S−Q
2

0 S>−Q>
2 0

 ,


0 0 −C−N2

0 0 −S−Q2

−C
>−N>

2 −S
>−Q>

2 0

)V >

and its projection to Nf Flag(n1, n2;n) is

projNf (ξ) = V (


A B+Y

2
C+N

2

B>+Y >
2 D E

C>+N>
2 −E> F

 ,


X B+Y
2 Z

B>+Y >
2 W S+Q

2

−Z> S>+Q>
2 T

 ,


L M C+N
2

−M> P S+Q
2

C>+N>
2

S>+Q>
2 T

)V >
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4.4.2 Geodesics

Assume that c(t) is a curve in Flag(n1, . . . , nd;n), then according to Proposition 4.4.2 we

may parametrize c(t) as

c(t) = V (t)(J1, . . . , Jd+1)V (t)> (4.37)

for some differentiable curve V (t) in O(n). Moreover, we have V̇ (t) = V (t)Λ(t) where Λ(t)

is a curve in so(n) partitioned as Λ(t) = (Λ(p, q))d+1
p,q=1 with respect to m1 + · · ·+md+1 = n

and and Λ(k, k)(t) ≡ 0, k = 1, . . . , d+ 1. This implies that we have

c̈(t) = T1(t) + T2(t)− 2T3(t),

where Tj(t)’s are respectively given by

T1(t) = V (t)(Λ̇(t)J1 − J1
˙Λ(t), . . . , Λ̇(t)Jd+1 − Jd+1

˙Λ(t))V >(t), (4.38)

T2(t) = V (t)(Λ2(t)J1 + J1Λ2(t), . . . ,Λ2(t)Jd+1 + Jd+1Λ2(t))V >(t), (4.39)

T3(t) = V (t)(Λ(t)J1Λ(t), . . . ,Λ(t)Jd+1Λ(t))V >(t). (4.40)

By similar calculations in proofs of Lemmas 4.3.7 and 4.3.8, we may easily obtain the fol-

lowing characterizations of projT
c(t)

(Tj(t)), j = 1, 2, 3.

Lemma 4.4.5. Let c(t),Λ(t), T1(t), T2(t), T3(t) be as above. We have

1. T1(t) ∈ Tc(t) Flag(n1, . . . , nd;n).

2. projT
c(t)

(T2(t)) = 0.

3. projT
c(t)

(T3(t)) = 0.

Proposition 4.4.6. Let c(t) be a curve on Flag(n1, . . . , nd;n) parametrized as

c(t) = V (t)(J1, . . . , Jd+1)V (t)>
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for some differentiable curve V (t) in O(n). Let Λ(t) be the curve in so(n) such that V̇ (t) =

V (t)Λ(t), where Λ(t) is a curve in so(n) partitioned as Λ(t) = (Λ(p, q))d+1
p,q=1 with respect to

m1 + · · ·+md+1 = n and and Λ(k, k)(t) ≡ 0, k = 1, . . . , d+ 1. Then c(t) is a geodesic curve

if and only if V (t) = V (0) exp(tΛ(0)).

Proof. Since c(t) is a geodesic if and only if projc(t)(c̈(t)) ≡ 0, Lemma 4.4.5 implies that c(t)

is a geodesic curve if and only if

Λ̇(t)Jk − Jk ˙Λ(t) = 0, k = 1, . . . , d+ 1.

By (4.8), we may conclude that c(t) is a geodesic if and only if Λ̇(t) ≡ 0, i.e., Λ(t) = Λ(0).

This implies that V (t) is determined by the equation V̇ (t) = V (t)Λ(0), from which we may

conclude that V (t) = V (0) exp(tΛ(0)).

4.5 The comparison of Riemannian metrics on flag manifolds

The goal of this section is to discuss relations among three Riemannian metrics on a flag

manifold Flag(n1, . . . , nd;n). We recall that the two metrics discussed in this paper are

respectively induced by the embedding ε : Flag(n1, . . . , nd;n) ↪→
∏d
k=1O(n) given in (4.5)

and ε̃ : Flag(n1, . . . , nd;n) ↪→
∏d+1
k=1O(n) given in (4.27). For notational simplicity, we

denote the two induced metrics by ge and g̃e, respectively. Yet there is another metric

induced from the homogeneous space structure of Flag(n1, . . . , nd;n), which is discussed

thoroughly in [204]. We denote this quotient metric by gq.

Proposition 4.5.1. The Riemaannian metrics g̃e and gq coincide. Moreover, g̃e and ge

coincide with gq when d = 1, in which case Flag(n1, . . . , nd;n) is simply the Grassmann

manifold Gr(n1;n).

We will see in Proposition 4.5.2 that both ge and g̃e = gq can be constructed by a uniform
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method. To begin with, we notice that in general, any smooth map

ϕ :
(
Rn×n

)d → Rn×n

induces an embedding κϕ :
(
Rn×n

)d → (
Rn×n

)d+1 defined by

κϕ(A1, . . . , Ad) = (A1, . . . , Ad, ϕ(A1, . . . , Ad)), Aj ∈ Rn×n, j = 1, . . . , d.

Hence we have another embedding κϕ ◦ ε of Flag(n1, . . . , nd;n) into O(n)d+1 ⊆
(
Rn×n

)d+1,

which induces a metric gϕ on Flag(n1, . . . , nd;n) from the Euclidean metric on
(
Rn×n

)d+1.

Proposition 4.5.2. We have the following:

• gϕ = ge if and only if ϕ is a constant map on ε(Flag(n1, . . . , nd;n)). In particular,

gϕ = ge if ϕ is a constant map.

• There exists ϕ such that gϕ = g̃e.

Proof. The “if" part of the first statement can be verified by a straightforward calcula-

tion. For the “only if" part, we notice that gϕ = ge implies that the differential map

d(Q1,...,Qd)ϕ must be zero on T(Q1,...,Qd)ε(Flag(n1, . . . , nd;n)) at any (Q1, . . . , Qd). Since

ε(Flag(n1, . . . , nd;n)) is connected and ϕ is continuous, we may conclude that ϕ is a con-

stant map on ε(Flag(n1, . . . , nd;n)).

For the second statement, we notice that C := ε(Flag(n1, . . . , nd;n)) is a compact subset

of X :=
(
Rn×n

)d and we can define

ψ : C → O(n) ⊆ Rn×n, ψ(Q1, . . . , Qd) = Qd+1,

where (Qd+1 + In)/2 is the projection matrix of
(⊕d

j=1 im(Qj + In)
)⊥

. We denote by

pij the projection map from Rn×n onto its (i, j)-th entry, 1 ≤ i, j ≤ n. It is clear that
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pij ◦ ψ : C → R is a smooth function. The compactness of C in X implies that pij ◦ ψ has

a smooth extension ϕij : X → R. Indeed, we can first extend the function pij ◦ ψ smoothly

to an open neighbourhood of C and then further extend it smoothly to the whole X by a

smooth partition of unity. Now we have a smooth map

ϕ := (ϕij) :
(
Rn×n

)d → Rn×n

which extends ψ and hence we have gϕ = g̃e.

4.6 A coordinate minimization method for optimization on flag

manifolds

Given a strictly increasing sequence n1 < · · · < nd, we define

m1 := n1, md+1 := n− nd, mj := nj − nj−1, j = 2, . . . , d+ 1.

We recall from (4.26) that a flag {Vk}dk=1 ∈ Flag(n1, . . . , nd;n) can be regarded as {Wj}d+1
j=1

via the modified embedding ι̃ : Flag(n1, . . . , nd;n) ↪→
∏d+1
j=1 Gr(mj , n), where Wj is the

orthogonal complement of Vj−1 in Vj , 2 ≤ j ≤ d+ 1, W1 = V1 and Vd+1 = Rn. Therefore,

an optimization problem on Flag(n1, . . . , nd;n) has the following form:

min f(W1, . . . ,Wd+1)

s.t. Wj ∈ Gr(mj , n), 1 ≤ j ≤ d+ 1 (4.41)

Wj ⊥Wl, 1 ≤ j < l ≤ d+ 1

Here f is a function on Flag(n1, . . . , nd;n). We propose Algorithm 6, an alternating type

algorithm to solve the problem (4.41).
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Algorithm 6 Coordinate minimization method for optimization on flag manifolds
Input A differentiable function f on Flag(n1, . . . , nd;n)
Output A critical point of f
Initialization Choose an initial point (W1, . . . ,Wd+1) ∈

∏d+1
j=1 Gr(mj , n)

1: while not converge do
2: set (s, t) = (1, 2)
3: for 1 ≤ s < t ≤ d+ 1 do
4: Solve the following sub-problem for (Xs,Xt) ∈ Gr(ms, n)×Gr(mt, n):

min f(W1, . . . ,Ws−1,Xs,Ws+1, . . . ,Wt−1,Xt,Wt+1, . . .Wd+1)

s.t. Xs ⊥ Xt (4.42)
Xs ⊥Wj , 1 ≤ j 6= s ≤ d+ 1

Xt ⊥Wj , 1 ≤ j 6= t ≤ d+ 1

5: Update (Ws,Wt) by the solution (Xs,Xt) to (4.42).
6: Update (s, t) by (s+ 1, t) if s+ 1 < t and by (s, t+ 1) otherwise
7: end for
8: end while

We remark that the sub-problem (4.42) in Algorithm 6 is an optimization problem on a

Grassmann manifold. Indeed, we notice that Wj in (4.42) is fixed whenever j 6= s, t. This

implies

Xs ⊕ Xt =

⊕
j 6=s,t

Wj

⊥

is a fixed (ms+mt)-dimensional subspace of Rn. So the submanifold given by fixedWj , j 6=

s, t and Xs ⊕ Xt is isomorphic to Gr(ms,ms + mt). This submanifold is actually a totally-

geodesic manifold, which is clear from the geodesic formulas of flag and Grassmann manifolds.

Thus the objective function

f(W1, . . . ,Ws−1,Xs,Ws+1, . . . ,Wt−1,Xt,Wt+1, . . .Wd+1)

can be recognized as a function on the submanifold Gr(ms,ms+mt). Furthermore, at a given

point, there are d(d + 1)/2 such submanifolds indexed by 1 ≤ s < t ≤ d + 1. The tangent

spaces of those submanifolds are orthogonal to each other and span the whole tangent space.
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Algorithm 6 is a generalization of coordinate minimization algorithm in Euclidean space.

4.6.1 Projection to flag manifolds

Given d + 1 subspaces U1, . . . ,Ud+1 of some ambient space RN . The separation problem

can be mathematically formulated as the following optimization problem on a flag manifold:

min F (W) :=
d+1∑
j=1

‖τj(Uj)− τj(Wj)‖2F

s.t. Wj ∈ Gr(mj , n), 1 ≤ j ≤ d+ 1 (4.43)

Wj ⊥Wl, 1 ≤ j < l ≤ d+ 1

Here mj = dimUj , 1 ≤ j ≤ d+ 1, n =
∑d+1
j=1 mj and τj is the embedding of Gr(mj , n) into

O(n) ∩ Sn defined by

τj(W) = V


−Ip 0 0

0 Imj 0

0 0 −Iq

V >

where p =
∑j−1
l=1 ml, q =

∑d+1
l=j+1ml and V = [v1, . . . , vn] = [V1, . . . , Vd+1] ∈ O(n) such

that [vp+1, . . . , vq−1] = Vj , span{vp+1, . . . , vq−1} = Wj .

Equivalently, this is the projection to flag manifold:

min F ({Vk}dk=1) := ‖ε̃({Vk}dk=1)− A‖F

s.t. {Vk}dk=1 ∈ Flag(n1, . . . , nd;n) (4.44)

where ε̃ is the embedding given in Prop. 4.4.1 and A ∈ O(n)d+1, or more generally, A ∈

M(n)d+1.

Although Problem 4.43 is a natural problem in Riemannian optimization, there is no

explicit solution as far as we know. However, the coordinate minimization subproblem of
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it is essentially the projection to Grassmannian manifold, which has explicit solution. As

a result, Algorithm 6 can be used to compute Problem 4.43 efficiently. The projection

problem is very important in Riemannian optimization. For example, the extrinsic sample

mean problem [22] for flag manifolds under modified embedding can be solved efficiently.

Lemma 4.6.1. Consider the maximization of linear function f(Q) = 〈A,Q〉 on the Grass-

mann manifold,

max 〈A,Q〉

s.t. Q ∈ Gr(k, n)

The gradient of f(Q) is given by

∇f(Q) =
1

4
(A+ A> −QAQ−QA>Q).

Let (A+ A>)/2 = UΛU> be an eigendecomposition of (A+ A>)/2 such that Λ =

diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn. Then Q∗ = UIk,n−kU
> is a maximizer of f(Q). Further-

more,

2‖Λ‖(f(Q∗)− f(Q)) ≥ ‖∇f(Q)‖2.

Proof. The formula for gradient is given in [131, Proposition 5.1]. The original problem is

equivalent to

max 〈Λ, Q〉

s.t. Q ∈ Gr(k, n)

and we need to prove Q = Ik,n−k is a maximizer. Using gradient formula, we can simplify
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the first order condition ∇f(Q∗) = 0 to

Q∗Λ = ΛQ∗.

So Q∗, A can be simultaneously diagonalized, and we can assume Q∗ is diagonalized. The

original problem is equivalent to

min
δ1+···+δn=2k−n,δi=±1

λ1δ1 + · · ·+ λnδn.

It is clear that δ1 = · · · = δk = 1, δk+1 = · · · = δn = −1 is a maximizer. So Q∗ = Ik,n−k is

a maximizer. Now consider the last inequality. The term ‖∇f(Q)‖2, f(Q∗) − f(Q) can be

simplified

‖∇f(Q)‖2 =
1

4
〈Λ−QΛQ,Λ−QΛQ〉

=
1

2

n∑
i=1

λ2
i −

1

2
tr(ΛQΛQ)

=
1

2
tr(ΛQ∗ΛQ∗)− 1

2
tr(ΛQΛQ),

f(Q∗)− f(Q) = 〈Λ, Q∗〉 − 〈Λ, Q〉.

For any c > 2‖Λ‖, we have

c(f(Q∗)− f(Q))− ‖∇f(Q)‖2 = c〈Λ, Q∗〉 − c〈Λ, Q〉 − tr(ΛQ∗ΛQ∗)/2 + tr(ΛQΛQ)/2

= g(Q∗)− g(Q),

where g(Q) = c〈Λ, Q〉 − tr(ΛQΛQ)/2. Assume Q∗∗ is a maximizer of g(Q). The first order
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condition of g(Q) is

Q∗∗ΛQ∗∗ΛQ∗∗ − cQ∗∗ΛQ∗∗ − ΛQ∗∗Λ + cΛ = 0,

which is equivalent to

(Q∗∗Λ− ΛQ∗∗)(Q∗∗Λ + ΛQ∗∗ − cI) = 0.

By definition c > 2‖Λ‖ ≥ ‖Q∗∗Λ + ΛQ∗∗‖, so Q∗∗Λ + ΛQ∗∗ − cI is invertible and Q∗∗Λ =

ΛQ∗∗. So Q∗∗,Λ can be simultaneously diagonalized. We can assume Q∗∗ is diagonalized.

So

g(Q∗∗) =
n∑
i=1

(2‖Λ‖λiδi −
1

2
λ2
i ),

where δi is the diagonal of Q∗∗. Again, Q∗ is a maximizer of g(Q). So we have proved that

g(Q∗) ≥ g(Q), i.e.,

c(f(Q∗)− f(Q))− ‖∇f(Q)‖2 ≥ 0.

Because c is any number larger than 2‖Λ‖, it also holds for c = 2‖Λ‖ and the proof is

finished.

Proposition 4.6.2. If we apply Algorithm 6 to solve the problem (4.43), then for each

1 ≤ s < t ≤ d+ 1, the sub-problem has the form

min ‖A1 −WIms,mtW
>‖2F + ‖A2 +WIms,mtW

>‖2F (4.45)

s.t. W ∈ O(ms +mt)

where A1, A2 ∈ O(ms + mt) ∩ Sms+mt are some fixed matrices. Moreover, the sub-problem

has an explicit solution W∗ which is given by the SVD of A1 − A2 = W∗ΣW>∗ .

We denote the change of the value of F at this step by ∆s,t. By previous discussion, the
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full gradient ∇F can be partition into d(d+1)/2 block components, such that one of the block

∇s,tF corresponds to the subproblem. Then

‖τs(Us)− τt(Ut)‖|∆s,t| ≥ ‖∇s,tF‖2.

Proof. Given 1 ≤ s < t ≤ d+ 1, the sub-step in (4.43) is

min ‖τs(Us)− τs(Ws)‖2F + ‖τt(Ut)− τt(Wt)‖2F

s.t. (Ws,Wt) ∈ Gr(ms,ms +mt)×Gr(mt,ms +mt)

Ws ⊥Wt

In particular, Ws ⊕Wt =
(⊕

j 6=s,tWj

)⊥
is a fixed (ms + mt)-dimensional vector space

represented by Vs,t := [Vs, Vt]. We construct the matrix V ⊥ whose columns form an or-

thonormal basis of
(⊕

j 6=s,tWj

)⊥
. The choice of Ws,Wt can be further specified by an

orthogonal matrix W ∈ O(ms + mt) so that Vs,tW = [Ws,Wt] where Ws,Wt span Ws,Wt

respectively. As a result, the images of Ws,Wt can be written as

τs(Ws) = Vs,tWIms,mtW
>V >s,t+V

⊥(V ⊥)>, τt(Wt) = −Vs,tWIms,mtW
>V >s,t+V

⊥(V ⊥)>.

(4.45) follows easily by taking A1 = V >s,tτs(Us)Vs,t, A2 = V >s,tτt(Ut)Vs,t.

Next we observe that the objective function in (4.45) can further be re-written as

‖A1‖2F + ‖A2‖2F + 2(ms +mt)− 2〈A1,WIms,mtW
>〉+ 2〈A2,WIms,mtW

>〉

=‖A1‖2F + ‖A2‖2F + 2(ms +mt) + 2〈A2 − A1,WIms,mtW
>〉.
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Therefore, the problem (4.45) is equivalent to

min 〈A2 − A1,WIms,mtW
>〉 (4.46)

s.t. W ∈ O(ms +mt)

By Lemma 4.6.1, we may conclude that a solution to (4.46) is W∗, which can be obtained

by the SVD of A1 − A2. Furthermore, we have

‖∇s,tF‖2 ≤ ‖A2 − A1‖|∆s,t| ≤ ‖τs(Us)− τt(Ut)‖|∆s,t|.

Theorem 4.6.3. Consider a randomized version of Algorithm 6 for problem (4.43). At each

step, choose (si, ti) uniformly from all possible (s, t). Let Wi be the point at step i. Then

every cluster point of Wi is a stationary point almost surely. (Because flag manifolds are

compact, cluster point exists.)

Proof. If ‖τs(Us)− τt(Ut)‖ = 0 for all s, t, then the function is trivial and there is nothing to

prove. Otherwise, there is a set A ⊆ {(s, t) | 1 ≤ s < t ≤ d+1} such that ‖τs(Us)−τt(Ut)‖ 6=

0 if and only if (s, t) ∈ A. At each step i, assume argmax(s,t)∈A ‖∇s,tF (Wi)‖ is achieved for

(s∗, t∗). If (si, ti) = (s∗, t∗), then

F (Wi)− F (Wi+1) ≥
‖∇s∗,t∗F (Wi)‖2

‖τs∗(Us∗)− τt∗(Ut∗)‖

≥
max ‖∇s,tF (Wi)‖2

max ‖τs(Us)− τt(Ut)‖

≥ C‖∇F (Wi)‖2,

where C is a constant independent of Wi. If (si, ti) 6= (s∗, t∗), at least we have F (Wi) −

F (Wi+1) ≥ 0. So

EF (Wi)− EF (Wi+1) ≥ 2C

n(n− 1)
‖∇F (Wi)‖2.
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Summing from i = 0 to ∞, and take expectation, we have

E[F (W0)− lim
i→∞

F (Wi)] ≥ C ′E
∞∑
i=0

‖∇F (Wi)‖2.

So with probability 1,
∑∞
i=0 ‖∇F (Wi)‖2 exists and ‖∇F (Wi)‖ converges to 0. Any cluster

point must be a stationary point.

The coordiante minimization method works best for this special choice of f(V ) because

the optimization sub-problem has explicit solution and can be solved sufficiently. For more

general problems, it might not be the case.

4.7 Numerical experiments

In this section, we consider the function

f(V ) =
d∑

k=1

tr(V >k AkVk),

where Ai is randomly generated symmetric matrix, Vi is the submatrix of V with index

1 ≤ i ≤ n, nk−1 < j ≤ nk, i.e., the basis of Wk. This function is clearly a function on the

flag manifolds Flag(n1, . . . , nd;n).

We choose Flag(5, 5; 200) and test five methods: (i) gradient descent method under

classical embedding metric; (ii) gradient descent method under modified embedding met-

ric; (iii) gradient descent method using the quotient model proposed in Algorithm 1 in

[204]; (iv) coordinate minimization method under modified metric (Algorithm 1). We define

κ = ‖A1‖ + ‖A2‖ + ‖A3‖ and record the convergence of ‖∇f(V )‖/κ. Figure 4.1 shows

the convergence rate averaged over 10 simulations. We also record the running time to hit

‖∇f(V )‖/κ ≤ 10−5, averaged over 10 simulations, as shown in Table 4.1.

Method (ii) is equivalent to (iii), and their convergence rate and running time are similar.
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(i) Classic Descent 23.915s
(ii) Modified Descent 20.581s
(iii) Quotient Descent 27.216s
(iv) Coordinate Minimization 0.911s

Table 4.1: Running time to hit ‖∇f(V )‖/κ ≤ 10−5 of different methods.

In Figure 4.1, their convergence trajectories almost coincide. All three descent method has

comparable performance, while the coordinate minimization outperforms them significantly.

Figure 4.1: Convergence behavior of different descent methods.

135



CHAPTER 5

ONLINE STATISTICAL INFERENCE FOR STOCHASTIC

OPTIMIZATION VIA KIEFER-WOLFOWITZ METHODS

This is a joint work with He Li, Yichen Zhang, and Xi Chen.

5.1 Introduction

Stochastic optimization algorithms, introduced by [168, 123], have been widely used in sta-

tistical estimation, especially for large-scale datasets and online learning where the sample

arrives sequentially (e.g., web search queries, transactional data). The Robbins-Monro al-

gorithm [168], often known as the stochastic gradient descent, is perhaps the most popular

algorithm in stochastic optimization and has found a wide range of applications in statistics

and machine learning. Nevertheless, in many modern applications, the gradient information

is not available. For example, the objective function may be embedded in a black box and

the user can only access the noisy objective value for a given input. In such cases, the

Kiefer-Wolfowitz algorithm [123] becomes a natural choice as it is completely free of gradi-

ent computation. Despite being equipped with an evident computational advantage to avoid

gradient measurements, the Kiefer-Wolfowitz algorithm has been historically out of practice

as compared to the Robbins-Monro counterpart. Nonetheless, heralded by the big data era,

there has been a restoration of the interest of gradient-free optimization in a wide range of

applications in recent years [48, 155]. We briefly highlight a few of them to motivate our

paper.

• In some bandit problems, one may only have black-box access to individual objective

values but not to their gradients [75, 175]. Other examples include graphical models

and variational inference problems, where the objective is defined variationally [195],

and the explicit differentiation can be difficult.
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• In some scenarios, the computation of gradient information is possible but very ex-

pensive. For example, in the online sensor selection problem [114], evaluating the

stochastic gradient requires the inverse of matrices, which generates O(d3) computa-

tion cost per iteration, where d is the number of sensors in the network. In addition,

the storage for gradient calculation also requires an O(d3) memory, which could be

practically infeasible.

• In some statistical problems such as quantile regression and its variants [127], the

objective function is not differentiable. Extending the gradient definition to nonsmooth

functions is generally nontrivial, and techniques of defining sets of local differential

characteristics suffer from the incompleteness of chain rule in complex problems [154].

This paper aims to study the asymptotic properties of the Kiefer-Wolfowitz stochastic

optimization and conduct online statistical inference. In particular, we consider the problem,

θ? = argmin F (θ), where F (θ) := EPζ [f(θ; ζ)] =

∫
f(θ; ζ)dPζ , (5.1)

where f(θ; ζ) is a convex individual loss function for a data point ζ, F (θ) is the population

loss function, and θ? is the true underlying parameter of a fixed dimension d. Let θ0 denote

any given initial point. Given a sequentially arriving online sample {ζn}, the [168] algorithm

(RM), also known as the stochastic gradient descent (SGD), iteratively updates,

(RM) θ
(RM)
n = θ

(RM)
n−1 − ηng(θn−1; ζn), (5.2)

where {ηn} is a positive non-increasing step-size sequence, and g(θ; ζ) denotes the stochastic

gradient, i.e., g(θ; ζ) = ∇f(θ; ζ). In the scenarios that direct gradient measurements are

inaccessible to practitioners, the [123] algorithm (KW) becomes the natural choice, as

(KW) θ
(KW)
n = θ

(KW)
n−1 − ηnĝ(θn−1; ζn), (5.3)
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where ĝ(θn−1; ζn) is an estimator of g(θn−1; ζn). Under the univariate framework (d = 1),

[123] considered the finite-difference approximation

ĝ(θn−1; ζn) =
f(θn−1 + hn; ζn)− f(θn−1; ζn)

hn
, (5.4)

where hn is be a positive deterministic sequence that goes to zero. [23] later extended the

algorithm to the multivariate case and proved its almost sure convergence. This pioneering

work extended in various directions of statistics and control theory (see, e.g., [67, 69, 91,

170, 42, 161, 182, 38, 183, 92, 57, 146, 28]). In the optimization literature, the Kiefer-

Wolfowitz (KW) algorithm is often referred to as the gradient-free stochastic optimization, or

zeroth-order SGD [7, 8, 110, 83, 61, 175, 155, 196, among others].

For the (RM) algorithm in (5.2), [172] and [162] characterize the limiting distribution and

statistical efficiency of the averaged iterate θ(RM)
n = 1

n

∑n
i=1 θ

(RM)
i by

√
n
(
θ

(RM)
n − θ?

)
=⇒ N

(
0, H−1SH−1

)
, (5.5)

where H = ∇2F (θ?) is the Hessian matrix at θ = θ?, and S = E[∇f(θ?; ζ)∇f(θ?; ζ)>] is the

covariance matrix of the stochastic gradient at θ = θ?. Under a well-specified model, this

asymptotic covariance matrix matches the inverse Fisher information and the averaged (RM)

estimator is asymptotically efficient. Based on the limiting distribution result (5.5), there

are many recent research efforts devoted to statistical inference for (RM). A brief survey is

conducted at the end of the introduction.

For the (KW) scheme, we can similarly construct the averaged Kiefer-Wolfowitz (AKW)

estimator

(AKW) θ
(KW)
n = 1

n

n∑
i=1

θ
(KW)
i . (5.6)

As compared to well-established asymptotic properties of (RM), study of the asymptotics

of (AKW) is limited, particularly with a random sampling direction in multivariate (KW). In
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this paper, we study the (KW) algorithm (5.3) with random search directions {vi}ni=1
i.i.d.∼ Pv,

i.e., at each iteration i = 1, 2, . . . , n, a random direction vi is sampled independently from

Pv, and the (KW) gradient

ĝhn,vn(θn−1; ζn) =
f(θn−1 + hnvn; ζn)− f(θn−1; ζn)

hn
vn. (5.7)

Compared to the (RM) scheme, (KW) introduces additional randomness into the stochastic

gradient estimator through {vn}. Indeed, as one can see from our main result in Theorem

5.3.10, (AKW) is no longer statistically efficient and its asymptotic covariance structure de-

pends on the distribution Pv. It opens the room for the investigation on the impact of Pv

(see Section 5.3.1 for details). We further extend the estimator to utilize multiple function-

value queries per step and establish an online statistical inference framework. We summarize

our main results and contributions as follows,

• First, we quantify the asymptotic covariance structure of (AKW) in Theorem 5.3.10.

Since the asymptotic distribution depends on the choice of the direction variable v, we

provide an introductory analysis on the asymptotic performance for different choices

of random directions for constructing (AKW) estimators (see Section 5.3.1).

• The efficiency loss of (AKW) is due to the information constraint as one evaluates only

two function values at each iteration. We analyze the (AKW) estimators in which mul-

tiple function queries can be assessed at each iteration, and show that the asymptotic

covariance matrix decreases as the number of function queries m + 1 increases (see

Section 5.3.3). Moreover, (AKW) achieves asymptotic statistical efficiency as m → ∞.

We further show that when v is sampled without replacement from Pv with a discrete

uniform distribution of any orthonormal basis, (AKW) achieves asymptotic statistical

efficiency with d+ 1 function queries per iteration.
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• Based on the asymptotic distribution, we propose two online statistical inference pro-

cedures. The first one is using a plug-in estimator of the asymptotic covariance matrix,

which separately estimates the Hessian matrix and Gram matrix of the (KW) gradients

(with additional function-value queries, see Theorem 5.4.4). The second procedure is

to characterize the distribution of intermediate (KW) iterates as a stochastic process

and construct an asymptotically pivotal statistic by normalizing the (AKW) estimator,

without directly estimating the covariance matrix. This inference procedure is inspired

by the “random scaling” method proposed in [136] that considers the online inference

for the (RM) scheme. These two procedures have their advantages and disadvantages:

the plug-in approach leads to better empirical performance but requires additional

function-value queries to estimate the Hessian matrix, while the other one is more

efficient in both computation and storage, though its finite-sample performance is in-

ferior in practice when the dimension is large. A practitioner may choose the approach

suitable to her computational resources and requirement of the inference accuracy.

Lastly, we provide a brief literature survey on the recent works for statistical inference for

the (RM)-type SGD algorithms. [43] developed a batch-means estimator of the limiting

covariance matrix H−1SH−1 in (5.5), which only uses the stochastic gradient information

(i.e., without estimating any Hessian matrices). [210] further extended the batch-means

method in [43] to a fully online covariance estimator. [136] extended the results in [162] to a

functional central limit theorem and utilize it to propose a novel online inference procedure

that allows for efficient implementation. [71] presented a perturbation-based resampling

procedure for inference. [189] proposed a tree-structured inference scheme, which splits the

SGD into several threads to construct confidence intervals. [139] introduced a moment-

adjusted method and its corresponding inference procedure. [191] considered the implicit

SGD, and investigate the statistical inference problem under the variant. [62] studied the

stochastic optimization problem with constraints and investigate its optimality properties.
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[35] proposed a class of generalized regularized dual averaging (RDA) algorithms and make

uncertainty quantification possible for online `1-penalized problems. [177] developed an

online estimation procedure for high-dimensional statistical inference. [40] studied statistical

inference of online decision-making problems via SGD in a contextual bandit setting.

5.1.1 Notation

We write vectors in boldface letters (e.g., θ and v) and scalers in lightface letters (e.g., η).

For any positive integer n, we use [n] as a shorthand for the discrete set {1, 2, · · · , n}. Let

{ek}dk=1 be the standard basis in Rd with the k-th coordinate as 1 and the other coordinates

as 0. Denote Id as the identity matrix in Rd×d. Let ‖ · ‖ denote the standard Euclidean

norm for vectors and the spectral norm for matrices. We use Ak` and An,k` to denote the

(k, `)-th element of matrices A,An ∈ Rd×d, respectively, for all k, ` ∈ [d]. Furthermore, we

denote by diag(v) a matrix in Rd×d whose main diagonal is the same as the vector v and

off-diagonal elements are zero, for some vector v ∈ Rd. With a slight abuse of notation, for a

matrix M ∈ Rd×d, we also let diag(M) denote a Rd×d diagonal matrix with same diagonal

elements as matrix M . We use the standard Loewner order notation A � 0 if a matrix

A is positive semi-definite. We use θ(RM) and θ(KW) to denote the iterates generated by the

(RM) scheme and the (KW) scheme, respectively. We use θ̂(ERM) for the offline empirical risk

minimizer, i.e., θ̂(ERM) = argminθ
1
n

∑n
i=1 f(θ; ζi). As we focus on the (KW) scheme in this

paper, we sometimes omit the superscript (KW) in the estimator to make room for the other

notations. In derivations of the (KW) estimator, we denote the finite difference of f(·) as,

∆h,vf(θ; ζ) = f(θ + hv; ζ)− f(θ; ζ), (5.8)
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for some spacing parameter h ∈ R+ and search vector v ∈ Rd. We use En to denote the

conditional expectation with respect to the natural filtration, i.e.,

En[θn+1] := E[θn+1|Fn], Fn := σ{θk, ζk|k ≤ n}.

We use the O(·) notation to hide universal constants independent of the sample size n.

The remainder of the paper is organized as follows. In Section 5.2, we describe the Kiefer-

Wolfowitz algorithm with random search directions along with three illustrative examples

of the classical regression problems. We also provide a technical lemma to characterize the

limiting behavior of the (KW) gradient, which leads to the distributional constraint of the

random direction vector. In Section 5.3, we first introduce the technical assumptions before

we present the finite-sample rate of convergence of the (KW) estimator. We further provide

the asymptotic distribution of the (AKW) estimator, accompanied by discussions on the sta-

tistical (in)efficiency. We highlight a comparison of the choices of the direction distributions

in Section 5.3.1, and further extend the theoretical analysis to multi-query settings of the

(KW) algorithm in Section 5.3.3. Based on the established asymptotic distribution results,

we propose two types of online statistical inference procedures in Section 5.4. A functional

extension of the distributional analysis of (KW) as a stochastic process is also provided. Nu-

merical experiments in Section 5.5 lend empirical support to our theory. Further discussions

are provided in Section 5.6.

5.2 Kiefer-Wolfowitz algorithm

In this section, we introduce the general form of the Kiefer-Wolfowitz (KW) gradient estimator

and the corresponding iterative algorithm θn = θn−1−ηnĝ(θn−1; ζn). In the seminal work by

[23], the (KW) gradient estimator ĝ(θn−1; ζn) is constructed by approximating the stochastic

gradient g(θn−1; ζn) using the canonical basis of Rd, {e1, e2, . . . , ed}, as search directions. In
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particular, given any θ ∈ Rd and ζ ∼ Pζ , the k-th coordinate of the (KW) gradient estimator

(
ĝh,e(θ; ζ)

)
k =

f(θ + hek; ζ)− f(θ; ζ)

h
, for k = 1, 2, . . . , d, (5.9)

where h is a spacing parameter for approximation. At each iteration, (5.9) queries d + 1

function values from d fixed directions {ek}dk=1. To reduce the query complexity, a random

difference becomes a natural choice. [128] introduced a random version of the (KW) algorithm

using a sequence of random unit vectors that are independent and uniformly distributed on

the unit sphere or unit cube. [182] also provided a random direction version of the (KW)

algorithm, named as the simultaneous perturbation stochastic approximation (SPSA) algo-

rithm and later extended to several variants [38, 183, 98]. These random direction methods

can reduce the bias in gradient estimates as compared to their non-random counterparts.

In the following, we write the (KW) algorithm with general random search directions, as in

(5.7),

θn = θn−1 − ηnĝhn,vn(θn−1; ζn),

where ĝh,v(θ; ζ) :=
1

h
∆h,vf(θ; ζ)v =

f(θ + hv; ζ)− f(θ; ζ)

h
v. (5.10)

Here {vn} is sampled from an underlying distribution Pv satisfying certain conditions (see

Assumption 5.3.5 in Section 5.3). At each iteration n, the algorithm samples a direction

vector vn independently from Pv, and makes two solitary function-value queries, f(θn−1; ζn)

and f(θn−1 + hnvn; ζn). We refer to the (KW) gradient estimator ĝhn,vn(θn−1, ζn) in (5.10)

as a two-query finite-difference approximation of the stochastic gradient. If one is allowed

to make additional function-value queries, an averaging of the function values from multiple

directions generates a multi-query stochastic gradient estimator with reduced variance. In

particular, at each iteration n, the practitioner makes m+ 1 queries {f(θn−1; ζn), f(θn−1 +

hnv
(j)
n ; ζn)}1≤j≤m via m random directions

{
v

(j)
n
}
sampled from Pv. If Pv is a finite dis-
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tribution, practitioners may choose to sample with or without replacement. In summary, an

(m+ 1)-query (KW) algorithm constructs a stochastic gradient estimator

g
(m)
n (θn−1; ζn) =

1

m

m∑
j=1

ĝ
hn,v

(j)
n

(θn−1; ζn) =
1

mhn

m∑
j=1

∆
hn,v

(j)
n
f(θn−1; ζn)v

(j)
n , (5.11)

at each iteration n, and updates θn = θn−1−ηng
(m)
n (θn−1; ζn). Here we restrict the procedure

to sampling from the same distribution Pv independently across different iterations. We

use θ(m)
n to denote the final (KW) estimator using the above (m + 1)-query finite-difference

approximation.

We now provide some illustrative examples of the two-query (KW) estimator ĝhn,vn in

(5.10) used in popular statistical models, and we will refer to these examples throughout the

paper. A multi-query extension of the examples can be constructed accordingly.

Example 5.2.1 (Linear Regression). Consider a linear regression model yi = x>i θ
?+εi where

{ζi = (xi, yi), i = 1, 2, . . . , n} is an i.i.d. sample of ζ = (x, y) and the noise εi ∼ N (0, σ2).

We use a quadratic loss function f(θ; ζ) = (y − x>θ)2. Therefore, the stochastic gradient

∇f(θ; ζ) =
(
x>θ − y

)
x, and the (KW) gradient estimator ĝh,v(θ; {x, y}) in (5.10) becomes

ĝh,v(θ; {x, y}) =
1

h

[(
y − x>(θ + hv)

)2 − (y − x>θ)2] v = vv>
(
x>θ − y

)
x+ h(x>v)2v.

Example 5.2.2 (Logistic Regression). Consider a logistic regression model with a binary

response yi ∈ {−1, 1} generated by Pr(yi|xi) =
(

1 + exp
(
−yix>i θ

?
))−1

. The individ-

ual loss function f(θ; ζ) = log
(

1 + exp(−yx>θ)
)
. The stochastic gradient ∇f(θ; ζ) =

−yx
(

1 + exp(yx>θ)
)−1

, and the (KW) gradient estimator ĝh,v(θ; {x, y}) in (5.10) becomes

ĝh,v(θ; {x, y}) =
v

h

[
log
(
1 + exp(−yx>(θ + hv))

)
− log

(
1 + exp(−yx>θ)

)]
=

−yvv>x
1 + exp(yx>θ)

+
y2(x>v)2 exp(yx>θ)hv

2(1 + exp(yx>θ))2
+ O(h2), as h→ 0+,
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under some regularity conditions on θ and the distribution of x.

Example 5.2.3 (Quantile Regression). Consider a quantile regression model yi = x>i θ
?+ εi

where {ζi = (xi, yi), i = 1, 2, . . . , n} is an i.i.d. sample of ζ = (x, y) and the noise satisfies

Pr(εi ≤ 0|xi) = τ . The individual loss f(θ; ζ) = ρτ (y − x>θ), where ρτ (z) = z(τ − 1{z<0}).

Although ρτ is non-differentiable, the (KW) gradient estimator ĝh,v is well-defined and takes

the following form,

ĝh,v(θ; {x, y}) =
v

h

[
ρτ
(
y − x>(θ + hv)

)
− ρτ

(
y − x>θ

)]
=vv>x

(
τ − 1{y−x>θ<0}

)
, for 0 < h <

∣∣∣∣∣y − x>θx>v

∣∣∣∣∣ .
We note that for the (RM) scheme with differentiable loss functions, the stochastic gra-

dient is an unbiased estimator of the population gradient under very mild assumption, i.e.,

Eζg(θ; ζ) = ∇F (θ). In contrast, the (KW) gradient estimator is no longer an unbiased esti-

mator of ∇F (θ). In the following lemma, we precisely quantifies the bias incurred by the

(KW) gradient estimator.

Lemma 5.2.4. We assume that the population loss function F (·) is twice continuously dif-

ferentiable and Lf -smooth, i.e., ∇2F (θ) � Lf Id for any θ ∈ Rd. Given any fixed parameter

θ ∈ Rd, suppose the random direction vector v is independent from ζ, we have

∥∥E ĝh,v(θ; ζ)−∇F (θ)
∥∥ ≤ ∥∥∥E(vv> − Id)∇F (θ)

∥∥∥+
h

2
LfE‖v‖3,

where the expectation in E ĝh,v(θ; ζ) takes over both the randomness in v and ζ.

Proof. In all the proofs, we will assume, without loss of generality, F (·) achieves its minimum
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at θ? = 0 and F (0) = 0. We now introduce some notations as follows,

ξn = ∇F (θn−1)− En−1(
1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn),

γn = En−1
1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn −

1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn,

εn =
1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn −

1

hn
[f(θn−1 + hnvn; ζn)− f(θn−1; ζn)]vn.

By definition, Eζ ĝh,v(θ; ζ) = 1
h∆h,vF (θ)v = 1

h [F (θ + hv)− F (θ)] v. For the first in-

equality, we have

∥∥E ĝh,v(θ; ζ)−∇F (θ)
∥∥ =

∥∥∥∥E 1

h
[F (θ + hv)− F (θ)] v −∇F (θ)

∥∥∥∥
=

∥∥∥∥E vv>∇F (θ) +
1

2
hE vv>∇2F (θh,v)v −∇F (θ)

∥∥∥∥
=

1

2
h
∥∥∥E vv>∇2F (θh,v)v

∥∥∥
≤ 1

2
hLfE‖v‖3, (5.12)

where in the third equality we use the Taylor expansion of F (θ), and θh,v comes from the

remainder term of the Taylor expansion.

To reduce the bias in the (KW) gradient, Lemma 5.2.4 indicates that one should choose the

random direction vn that satisfies the distributional constraint E[vnv
>
n ] = Id (see Assumption

5.3.5 in Section 5.3). We will further conduct a comprehensive analysis in Section 5.3.1 on

different choices of distributions Pv satisfying the condition E[vnv
>
n ] = Id. Despite the

existence of the bias, as the spacing parameter hn → 0, the bias convergences to zero

asymptotically.
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5.3 Theoretical results

We first introduce some regularity assumptions on the population loss F (θ) and the individual

loss f(θ; ζ).

Assumption 5.3.1. The population loss function F (θ) is twice continuously differentiable.

Moreover, there exists Lf > λ > 0, such that, λId � ∇2F (θ) � Lf Id for any θ ∈ Rd.

Assumption 5.3.2. The population loss function F (θ) is twice continuously differentiable,

convex and Lf -smooth. In addition, there exists δ1 > 0 such that for all θ in the δ1-ball

centered at θ?, the Hessian matrix ∇2F (θ) is positive-definite.

Assumption 5.3.3. Assume E [∇f(θ; ζn)] = ∇F (θ) for any θ ∈ Rd. Moreover, for some

0 < δ ≤ 2, there exists M > 0 such that

E‖∇f(θ; ζn)−∇F (θ)‖2+δ ≤M
(
‖θ − θ?‖2+δ + 1

)
.

Assumption 5.3.4. There are constants Lh, Lp > 0 such that for any θ, y ∈ Rd,

E
∥∥∥∇2f(θ; ζn)−∇2f(y; ζn)

∥∥∥2
≤ Lh‖θ − y‖2, E

∥∥∥[∇2f(θ?; ζn)]2 −H2
∥∥∥ ≤ Lp,

where H is the Hessian matrix of the population loss function F (·), i.e., H = ∇2F (θ?).

Assumption 5.3.5. We adopt i.i.d. random direction vectors {vn} from some common

distribution v ∼ Pv such that E[vv>] = Id. Moreover, assume that the (6 + 3δ)-th moment

of v is bounded.

We discuss the above assumptions and compare them with the standard conditions in the

literature of (RM)-type SGD inference. Assumption 5.3.1 requires the population loss func-

tion F (·) to be λ-strongly convex and Lf -smooth, which is a convenient assumption widely

used in the existing literature of statistical inference on stochastic optimization [162, 43]. It
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is possible to replace this assumption with Assumption 5.3.2 that only assumes local strong

convexity in the neighborhood of the true parameter θ? [189, 62]. This weaker condition is

satisfied in the setting of logistic regression (Example 5.2.2). Assumption 5.3.3 introduces

the unbiasedness condition on the stochastic gradient ∇f(θ; ζ) when the individual loss func-

tion f(θ; ζ) is smooth. The (2 + δ)-th moment condition is the classical Lyapunov condition

used in the derivation of asymptotic normality. Relaxation to this assumption can be made

to handle nonsmooth loss functions f(θ; ζ), such as the quantile regression as described in

Example 5.2.3. The statements in Assumption 5.3.4 introduce the Lipschitz continuity con-

dition and the concentration condition on the Hessian matrix. Assumption 5.3.5 guarantees

that the (KW) gradient ĝh,v(θ; ζ) is an asymptotically unbiased estimator of ∇F (θ) when the

spacing parameter hn decreases to 0, as suggested by Lemma 5.2.4. The moment condition

of v in Assumption 5.3.5 is imposed for technical simplicity and could be possibly weakened.

We provide several examples of Pv in Section 5.3.1.

Before we derive the asymptotic distribution for (AKW), we first provide a finite sample

error bound for the final (KW) iterate θn:

Proposition 5.3.6. consist Assume Assumptions 5.3.2, 5.3.3, and 5.3.5 hold. Set the step

size as ηn = η0n
−α for some constant η0 > 0 and α ∈

(
1
2 , 1
)
and the spacing parameter as

hn = h0n
−γ for some constant h0 > 0, and γ ∈

(
1
2 , 1
)
. The (KW) iterate θn converges to θ?

almost surely.

Furthermore, assume Assumptions 5.3.1 holds. For sufficiently large n, we have for

0 < δ ≤ 2,

E‖θn − θ?‖2+δ ≤ Cn−α(2+δ)/2, (5.13)

where the constant C depends on d, λ, Lf , α, γ, η0, h0.

Remark 5.3.7. The parameter dependency in Proposition 5.3.6 could be given explicitly as
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follows,

E‖θn − θ∗‖2 ≤ exp
(
CM1η0/(2α− 1) + CM2/(2β − 1)− Cλη0n

1−α/(1− α)
)
‖θ0‖2

+M3

(
exp

(
−Cλη0n

1−α/(1− α)
)

+
η0n
−α

λ

)
+
M3

M1
exp

(
CM1η0/(2α− 1) + CM2/(2β − 1)− Cλη0n

1−α/(1− α)
)
,

where the constant C above is a universal constant that does not depend on any constant or

parameter in the assumptions. The other terms M1,M2,M3 above are given below,

M1 = C
(
L2
fE‖v‖

4 +M
2

2+δE‖v‖4 + L2
f

)
,

M2 = CL2
fE‖v‖

3,

M3 = C
(
E‖v‖3 +

(
h2
nL

2
fE‖v‖

6 +M
2

2+δE‖v‖4(h2
n‖v‖2 + 1)

))
.

Before we prove Proposition 5.3.6. It is helpful to give the following lemma, due to [10].

We include the proof here.

Lemma 5.3.8 ([10]). Let {Xn} be a martingale difference sequence in Rd, in other words,

E[Xn|Xn−1] = 0. For any 1 ≤ p ≤ 2 and any norm ‖ · ‖ on Rd, there exists a constant C

such that

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≤ C

n∑
i=1

E [‖Xi‖p|Xi−1] .

Proof. We would like to show that there exists a constant C (which depends on d and p)

such that for any a, b ∈ Rd,

1

2

(
‖a+ b‖p2 + ‖a− b‖p2

)
≤ ‖a‖p2 + C‖b‖p2,
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where ‖ · ‖2 is the 2-norm. To see this, in the one dimensional case, this is equivalent to

1

2
(|1 + x|p + |1− x|p) ≤ 1 + C|x|p.

At x = 1, the left hand side is differentiable and its first derivative is 0, so there exists a

constant C such that the inequality holds in a neighborhood of x = 1. At x → ±∞, the

inequality also holds with some constant C. So it is easy to find a constant C such that the

inequality holds for all x. The proof for the d-dimensional case is the same.

Using the above inequality, we have

En−1

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

2

= En−1

∥∥∥∥∥
n−1∑
i=1

Xi +Xn

∥∥∥∥∥
p

2

≤ 2

∥∥∥∥∥
n−1∑
i=1

Xi

∥∥∥∥∥
p

2

+ 2CEn−1‖Xn‖
p
2 − En−1

∥∥∥∥∥
n−1∑
i=1

Xi −Xn

∥∥∥∥∥
p

2

.

On the other hand,

En−1

∥∥∥∥∥
n−1∑
i=1

Xi −Xn

∥∥∥∥∥
p

2

≥

∥∥∥∥∥
n−1∑
i=1

Xi − En−1Xn

∥∥∥∥∥
p

2

=

∥∥∥∥∥
n−1∑
i=1

Xi

∥∥∥∥∥
p

2

.

So

En−1

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

2

≤

∥∥∥∥∥
n−1∑
i=1

Xi

∥∥∥∥∥
p

2

+ 2CEn−1‖Xn‖
p
2.

By induction, we then have

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

2

≤ 2C
n∑
i=1

E
[
‖Xi‖

p
2|Xi−1

]
.

For any general norm, there exists a constant C such that

1

C
‖X‖ ≤ ‖X‖2 ≤ C‖X‖.
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So the same result holds for any norm.

Now we return to the proof of both Proposition 5.3.6 and Remark 5.3.7.

Proof. We first assume Assumptions 5.3.2, 5.3.3, and 5.3.5 and give some bounds on ξn, γn,

εn. By definition, En−1γn = En−1εn = 0. From (5.12),

‖ξn‖ ≤
1

2
hnLfE‖v‖3. (5.14)

We can bound γn by the following

E‖γn‖2 ≤ E
∥∥∥∥ 1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn

∥∥∥∥2

≤ E‖〈∇F (θn−1), vn〉vn‖2 +
1

4
h2
nL

2
fE‖v‖

6

≤ L2
fE‖v‖

4E‖θn−1‖2 +
1

4
h2
nL

2
fE‖v‖

6. (5.15)

We also have the following fact for ε.

En−1

[
‖εn‖2|vn

]
= En−1

∥∥∥∥∥ 1

hn

∫ hn

0
〈∇F (θn−1 + svn)−∇f(θn−1 + svn; ζn), vn〉vnds

∥∥∥∥∥
2 ∣∣∣∣vn


≤ ‖vn‖4En−1

[
1

hn

∫ hn

0
‖∇F (θn−1 + svn)−∇f(θn−1 + svn; ζn)‖2 ds

∣∣vn]

≤ M
2

2+δ ‖vn‖4
1

hn

∫ hn

0
(‖θn−1 + svn‖2 + 1)ds

≤ M
2

2+δ ‖vn‖4(‖θn−1‖2 + h2
n‖vn‖2 + 1), (5.16)

where in the second inequality, we use Assumption 5.3.3.
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Now decompose the update step as follows,

θn = θn−1 − ηn
1

hn
[f(θn−1 + hnvn; ζn)− f(θn−1; ζn)]

= θn−1 − ηn∇F (θn−1) + ηn(ξn + γn + εn).

We can derive that,

‖θn‖2 ≤‖θn−1‖2 − 2ηn〈∇F (θn−1), θn−1〉+ 2ηn〈ξn + γn + εn, θn−1〉

+ η2
n‖ξn + γn + εn −∇F (θn−1)‖2. (5.17)

For the first part in the RHS of (5.17), using Lemma B.1 in [189], we have

〈θ,∇F (θ)〉 ≥ ρ‖θ‖min {‖θ‖, δ1} . (5.18)

for some ρ > 0. For other parts in (5.17), we can bound them as

|ηnEn−1〈ξn + γn + εn, θn−1〉|

= ηn |En−1〈ξn, θn−1〉|

≤ 1

2
ηnhnLf‖θn−1‖E‖v‖3

≤ CL2
fE‖v‖

3h2
n‖θn−1‖2 + CE‖v‖3η2

n, (5.19)

En−1‖ξn + γn + εn −∇F (θn−1)‖2

≤ 4‖ξn‖2 + 4‖γn‖2 + 4‖εn‖2 + 4‖∇F (θn−1)‖2

≤ h2
nL

2
fE(‖v‖3)2 + 4L2

fE‖v‖
4‖θn−1‖2 + h2

nL
2
fE‖v‖

6

+ 4M
2

2+δE‖vn‖4(‖θn−1‖2 + h2
n‖vn‖2 + 1) + 4L2

f‖θn−1‖2

:= M1‖θn−1‖2 +M2 (5.20)
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where we use Cauchy-Schwarz inequality in (5.19), (5.20) and

M1 = C
(
L2
fE‖v‖

4 +M
2

2+δE‖v‖4 + L2
f

)
,

M2 = C
(
h2
nL

2
fE‖v‖

6 +M
2

2+δE‖v‖4(h2
n‖v‖2 + 1)

)
.

Combining all estimates, we have

En−1‖θn‖2 ≤
(

1 + Cη2
n + Ch2

n

)
‖θn−1‖2 − 2ηnρ‖θn−1‖min {‖θn−1‖, δ1}+ Cη2

n.

This is exactly the recursion considered in Part 1 and 2 of the proof of Theorem 2 in [162],

and we can yield that θn converges almost surely to 0.

Now assume Assumption 5.3.1, we have a stronger estimate,

〈∇F (θn−1), θn−1〉 ≥ F (θn−1) +
λ

2
‖θn−1‖2 ≥ λ‖θn−1‖2.

So combining all inequalities, we have

En−1‖θn‖2 ≤
[
1− 2ληn +M1η

2
n +M3h

2
n

]
‖θn−1‖2 +M4η

2
n, (5.21)

where M3,M4 is defined by M3 = CL2
fE‖v‖

3, M4 = C(E‖v‖3 + M2). Following the proof

of Theorem 1 of [148], we can apply the recursion and get

E‖θn‖2 ≤
n∏
k=1

[
1− 2ληk +M1η

2
k + CM3h

2
k

]
‖θ0‖2

+M4

n∑
k=1

n∏
i=k+1

[
1− 2ληi +M1η

2
k +M3h

2
k

]
η2
k.
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We can then bound the first term on the RHS,

n∏
k=1

[
1− 2ληk +M1η

2
k +M3h

2
k

]
≤ exp

(
−2λ

n∑
k=1

ηk

)
exp

(
M1

n∑
k=1

η2
k

)
exp

(
M3

n∑
k=1

h2
k

)
,

as well as the second term on the RHS

n∑
k=1

n∏
i=k+1

[
1− 2ληi +M1η

2
k +M3h

2
k

]
η2
k

≤ exp

−λ n∑
k=m+1

ηk

 n∑
k=1

η2
k +

ηm
λ

+
1

M1
exp

(
M1

n0∑
k=1

η2
k

)
exp

(
M3

n0∑
k=1

h2
k

)
exp

(
−λ

n∑
k=1

ηk

)
,

where we denote by n0 = inf{k ∈ N, 1 − 2ληk + M1η
2
k + M3h

2
k ≤ 1 − ληk} and m is any

integer in {1, . . . , n}. Choose m = n/2 and bound n0 by n. Notice that
∑n
k=1 η

2
k converge.

So we can get

E‖θn‖2 ≤ exp
(
CM1η0/(2α− 1) + CM3/(2β − 1)− Cλη0n

1−α/(1− α)
)
‖θ0‖2

+M4

(
exp

(
−Cλη0n

1−α/(1− α)
)

+
η0n
−α

λ

)
+
M4

M1
exp

(
CM1η0/(2α− 1) + CM3/(2β − 1)− Cλη0n

1−α/(1− α)
)
.

Only the term M4η0n
−α/λ decreases at the order of O(n−α) while all the other terms

decrease much faster.

Notice that all C’s in the above inequality are universal constants which do not depend

on any parameters in the assumptions. This proves Remark 5.3.7.

From now on, we will absorb all parameters (other than n) into C to make the asymptotic

analysis more clear. By martingale convergence theorem, ‖θn‖ converges almost surely.

Because its second moment converges to 0, it must converge to 0 almost surely.
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We now show that,

E‖θn − θ?‖2+δ ≤ Cn−α(2+δ)/2.

By same arguments as in (5.14), (5.15), (5.16), we can get

‖ξn‖2+δ ≤ Ch2+δ
n ,

En−1‖γn‖2+δ ≤ ‖θn−1‖2+δ + Ch2+δ
n ,

En−1

[
‖εn‖2+δ

]
≤ C(‖θn−1‖2+δ + 1).

By similar arguments as in Lemma 5.3.8, there exists constants C such that for any a, b,

‖a+ b‖2+δ ≤ ‖a‖2+δ + (2 + δ)〈a, b〉‖a‖δ + C‖a‖δ‖b‖2 + C‖b‖2+δ.

So we have the bound

En−1‖θn‖2+δ ≤ ‖θn−1‖2+δ + ηn(2 + δ)En−1〈θn−1,−∇F (θn−1) + ξn + γn + εn〉‖θn−1‖δ

+ Cη2
n‖θn−1‖δEn−1‖ − ∇F (θn−1) + ξn + γn + εn‖2

+ Cη2+δ
n En−1‖ − ∇F (θn−1) + ξn + γn + εn‖2+δ

≤ (1− (2 + δ)ληn)‖θn−1‖2+δ + Cηnhn‖θn−1‖1+δ

+ Cη2
n(‖θn−1‖2 + 1)‖θn−1‖δ + Cη2+δ

n (‖θn−1‖2+δ + 1).

If 0 < δ ≤ 1, by previous bound E‖θn‖2 ≤ Cn−α, we can get E‖θn‖1+δ ≤ Cn−α(1+δ)/2 and

E‖θn‖δ ≤ Cn−αδ/2 by Hölder’s inequality. So we can further get

E‖θn‖2+δ ≤ (1− Cn−α + Cn−2α)E‖θn−1‖2+δ + Cn−(2+δ)α/2,
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which implies E‖θn‖2+δ ≤ Cn−(2+δ)α/2 as in the above proof after (5.21).

Now the case for 0 < δ ≤ 1 is proved. We can then use induction. If E‖θn‖2+δ ≤

Cn−(2+δ)α/2 for all δ ≤ n, then we can use the same method to prove the same inequality

holds for δ ∈ (n, n+ 1]. Thus the inequality holds for all δ.

A similar error bound is given by [61] in terms of the function values for δ = 0. We

generalize the result to the (2 + δ)-moment error bound on the parameter θ, where δ ∈

(0, 2] is assumed in Assumption 5.3.3 for the purpose of derivation of asymptotic normality.

Proposition 5.3.6 suggests that the asymptotic rate of the (KW) estimator matches the best

convergence rate of the (RM) estimator [148] when the spacing parameter hn = h0n
−γ is a

decreasing sequence with γ ∈ (1
2 , 1).

Recall that to characterize the asymptotic behavior of (RM) iterates, we denote by S,

the Gram matrix of ∇f(θ; ζ) at the true parameter θ?, i.e., S := E
[
∇f(θ?; ζ)∇f(θ?; ζ)>

]
.

Analogously, we define the limiting Gram matrix of the (KW) gradient estimator ĝh,v at θ? as

h → 0 to be Q. The following lemma proves that the limiting Gram matrix takes the form

of Q = E
[
vv>Svv>

]
, and it quantifies the distance between ĝh,v(θ?; ζ)ĝh,v(θ

?; ζ)> and Q,

as the spacing parameter h→ 0.

Lemma 5.3.9. Under Assumptions 5.3.2, 5.3.3, 5.3.4, and 5.3.5, we have

∥∥∥E[ĝh,v(θ?; ζ)ĝh,v(θ
?; ζ)>

]
−Q

∥∥∥ ≤ Ch(1 + h2), Q = E
[
vv>Svv>

]
.

where S = E
[
∇f(θ?; ζ)∇f(θ?; ζ)>

]
is defined in Assumption 5.3.3.

Proof. By Assumption 5.3.3, we know that

E‖∇f(θ; ζ)−∇F (θ)‖2+δ ≤M(‖θ‖2+δ + d2+δ).
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Therefore, the following holds for some constant C > 0,

E‖∇f(θ; ζ)−∇F (θ)‖2 ≤ C(‖θ‖2 + d2). (5.22)

In particular,

E‖∇f(0; ζ)−∇F (0)‖2 ≤ C. (5.23)

From Assumption 5.3.4, we can get the following estimate for the Hessian matrix ∇2f(θ; ζ),

E‖∇2f(θ; ζ)‖2 ≤ 2E‖∇2f(0; ζ)‖2 + 2E
∥∥∥∇2f(θ; ζ)−∇2f(0; ζ)

∥∥∥2

≤ C(1 + ‖θ‖2).

Using the above observation, we find that

E‖∇f(θ; ζ)−∇F (θ)−∇f(0; ζ) +∇F (0)‖2

≤ C‖θ‖2 + 2E‖∇f(θ; ζ)−∇f(0; ζ))‖2

= C‖θ‖2 + 2E
∥∥∥∥∫ 1

0
∇2f(sθ; ζ)θds

∥∥∥∥2

≤ C‖θ‖2 + 2E
∫ 1

0
‖∇2f(sθ; ζ)θ‖2ds

≤ C‖θ‖2(1 +

∫ 1

0
E‖∇2f(sθ; ζ)‖2ds)

≤ C‖θ‖2(1 + ‖θ‖2). (5.24)

Define the function Σ(θ1, θ2) by

Σ(θ1, θ2) := E(∇f(θ1; ζ)−∇F (θ1))(∇f(θ2; ζ)−∇F (θ2))>.
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Then combining inequalities (5.22), (5.23), (5.24), we have

‖Σ(θ1, θ2)− S‖ ≤ E‖(∇f(θ1; ζ)−∇F (θ1))(∇f(θ2; ζ)−∇F (θ2))>

− (∇f(0; ζ)−∇F (0))(∇f(0; ζ)−∇F (0))>‖

≤ E‖∇f(θ1; ζ)−∇F (θ1)‖‖∇f(θ2; ζ)−∇F (θ2)−∇f(0; ζ) +∇F (0)‖

+ E‖∇f(θ1; ζ)−∇F (θ2)−∇f(0; ζ) +∇F (0)‖‖∇f(0; ζ)−∇F (0)‖

≤ C(d+ ‖θ1‖)‖θ2‖(1 + ‖θ2‖) + C‖θ1‖(1 + ‖θ1‖). (5.25)

Notice that

Eζ ĝh,v(θ; ζ)ĝh,v(θ; ζ)> − (
1

h
∆h,vF (θ)v)(

1

h
∆h,vF (θ)v)>

= Eζ(ĝh,v(θ; ζ)− 1

h
∆h,vF (θ)v)(ĝh,v(θ; ζ)− 1

h
∆h,vF (θ)v)>

=
1

h2
Eζv(f(θ + hv; ζ)− f(θ; ζ)− F (θ + hv) + F (θ))2v>

=
1

h2
Eζvv>

[ ∫ h

0

∫ h

0
(∇F (θ + s1v)−∇f(θ + s1v; ζ))

(∇F (θ + s2v)−∇f(θ + s2v; ζ))> ds1ds2

∣∣∣∣]vv>
=

1

h2
Eζvv>

∫ h

0

∫ h

0
Σ(θ + s1v, θ + s2v)ds1ds2vv

>.

We can use (5.25) and derive that

‖Eζ ĝh,v(θ; ζ)ĝh,v(θ; ζ)> − (
1

h
∆h,vF (θ)v)(

1

h
∆h,vF (θ)v)> − vv>Svv>‖

≤ C‖v‖4(‖θ‖+ h‖v‖)(1 + ‖θ‖+ h‖v‖)(d+ ‖θ‖+ h‖v‖).
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Now we have

‖Eĝh,v(θ; ζ)ĝh,v(θ; ζ)> − E(
1

h
∆h,vF (θ)v)(

1

h
∆h,vF (θ)v)> − Evv>Svv>‖

≤ CE‖v‖4(‖θ‖+ h‖v‖)(1 + ‖θ‖+ h‖v‖)(d+ ‖θ‖+ h‖v‖). (5.26)

By the same argument,

‖E(
1

h
∆h,vF (θ)v)(

1

h
∆h,vF (θ)v)>‖

≤ 1

h2
E
∥∥∥∥vv>[ ∫ h

0

∫ h

0
(∇F (θ + s1v)) (∇F (θ + s2v))> ds1ds2

∣∣∣∣]vv>∥∥∥∥
≤ CE‖v‖4(‖θ‖2 + h2‖v‖2).

So we finally get

‖Eĝh,v(θ; ζ)ĝh,v(θ; ζ)> − Evv>Svv>‖

≤ CE‖v‖4(‖θ‖+ h‖v‖)(1 + ‖θ‖+ h‖v‖)(d+ ‖θ‖+ h‖v‖).

for some constant C > 0.

With Lemma 5.3.9 in place, we state our first main result that characterizes the limiting

distribution of the averaged (AKW) iterates defined in (5.1).

Theorem 5.3.10. Let Assumptions 5.3.2, 5.3.3, 5.3.4, and 5.3.5 hold. Set the step size

as ηn = η0n
−α for some constant η0 > 0 and α ∈

(
1
2 , 1
)
, and the spacing parameter as

hn = h0n
−γ for some constant h0 > 0, and γ ∈

(
1
2 , 1
)
. The averaged (KW) estimator θn

satisfies,

√
n
(
θn − θ?

)
=⇒ N

(
0, H−1QH−1

)
, as n→∞, (5.27)
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where H = ∇2F (θ?) is the population Hessian matrix and Q = E
[
vv>Svv>

]
is defined in

Lemma 5.3.9. Here =⇒ represents the convergence in distribution.

Proof. We follow the proof in [162]. The update step is

θn = θn−1 − ηn∇F (θn−1) + ηn(ξn + γn + εn)

= (Id − ηnH)θn−1 + ηn(Hθn−1 −∇F (θn−1) + ξn + γn + εn).

We only need to prove the following three conditions. First,

∞∑
i=1

1√
i
E‖Hθi−1 −∇F (θi−1) + ξi‖, (5.28)

is bounded almost surely. Furthermore, we have

E‖γi + εi‖2, (5.29)

is bounded almost surely, and when t→∞, the following convergence in probability,

1√
n

n∑
i=1

(γi + εi) =⇒ N (0, Q). (5.30)

Condition (5.28) is used in Part 4 of the proof of Theorem 2 in [162]. This implies the

error term introduced by the KW estimator is negligible. Conditions (5.29) and (5.30) are

used in Part 1 of the proof of Theorem 1 in [162]. They are used to establish the central

limit theorem under linear approximation. It is easy to check that as long as those three

conditions are proved, the rest of the proof works without change.

Assumption 5.3.4 implies that

‖∇2F (θ)−∇2F (y)‖2 ≤ Lg‖θ − y‖2.
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By Taylor expansion, we can further derive the bound

‖Hθi−1 −∇F (θi−1)‖ ≤ C‖θi−1‖2.

Combining the previous inequality with inequality (5.14), we know that

E‖Hθi−1 −∇F (θi−1) + ξi‖ ≤ C(‖θi−1‖2 + h2
i ),

which indicates that

∞∑
i=1

1√
i
E‖Hθi−1 −∇F (θi−1) + ξi‖ ≤ C

∞∑
i=1

1√
i
(‖θi−1‖2 + h2

i )

≤ C + C
∞∑
i=1

1√
i
‖θi−1‖2 <∞.

The last step comes from Part 4 of the proof of Theorem 2 in [162].

Because γi converges to 0 almost surely and εi has bounded variance. So condition (5.29)

holds. To prove condition (5.30), it suffices to verify that,

1√
n

n∑
i=1

εi =⇒ N (0, Q).

By martingale central limit theorem [64, Theorem 8.2.8], we only need to verify two condi-

tions,

1

n

n∑
i=1

Ei−1[εiε
>
i ]→ Q, (5.31)

1

n

n∑
i=1

E
[
‖εi‖21‖εi‖>a

√
n

]
→ 0, (5.32)

in probability for all a > 0.
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Notice that (5.26) is equivalent to the following inequality,

‖En−1εnε
>
n − Evv>Svv>‖ ≤ C(‖θn−1‖+ hn)(1 + ‖θn−1‖3 + h3

n). (5.33)

Thus En−1[εnε
>
n ] converges almost surely to Q and condition (5.31) holds.

Now consider the quantity in (5.32), by Proposition 5.3.6,

Ei−1

[
‖εi‖21‖εi‖>a

√
n

]
≤
[
Ei−1

[
‖εi‖2+δ

]] 2
2+δ
[
Ei−1

[
1‖εi‖>a

√
n

]] δ
2+δ

.

Note that

Ei−1

[
1‖εi‖>a

√
n

]
= Pi−1

(
‖εi‖ > a

√
n|θi−1

)
≤ 1

a
√
n
Ei−1‖εi‖.

Therefore, it can be bounded by

Ei−1

[
‖εi‖21‖εi‖>a

√
n

]
≤ C

(
1

a
√
n

) δ
2+δ (

1 + ‖θi−1‖2+δ
) 2

2+δ
(1 + ‖θi−1‖)

δ
2+δ ,

from which we can obtain that

E[‖εi‖21‖εi‖>a
√
n] ≤ C

(
1

a
√
n

) δ
2+δ

. (5.34)

We find that condition (5.32) holds when n goes to infinity:

1

n

n∑
i=1

E
[
‖εi‖21‖εi‖>a

√
n

]
≤ C

(
1

a
√
n

) δ
2+δ
→ 0.

Therefore, we conclude the result.

We now compare the asymptotic covariance matrix of θn with that of the (RM) coun-
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terpart in (5.5) 1. As one can see, the asymptotic covariance matrix of (AKW) estimator θn

exhibits a similar sandwich form as the covariance matrix of (RM), but strictly dominates

the latter, regardless of the choice of random direction vectors {v1, v2, . . . , vn}. In fact, it is

easy to check that

H−1QH−1 −H−1SH−1 = H−1Ev
[
(vv> − Id)S(vv> − Id)

]
H−1 � 0, (5.35)

which suggests the (AKW) estimator suffers an inevitable loss of efficiency compared to the

θ̂(RM). In Section 5.3.3, we analyze (AKW) with multiple function-value queries at each

iteration. With the price of additional per-iteration computational complexity, one is able

to improve the statistical efficiency of (AKW) and achieve the optimal asymptotic variance

H−1SH−1.

Remark 5.3.11. To complete the distributional analysis on (KW) iterates, we also provide

the asymptotic distribution of the n-th iterate θ(KW)
n of (5.3) without averaging. Assume the

Hessian matrix has decomposition H = PΛP>, where P is an orthogonal matrix and Λ is a

diagonal matrix. Using the proof in [68], we establish the following asymptotic distribution

for θ(KW)
n ,

nα/2(θ
(KW)
n − θ?) =⇒ N (0,Σ), (5.36)

where each (k, `)-th entry of the covariance matrix Σ is,

Σk` = η0
(
P>QP

)
kl

(
Λkk + Λ``

)−1
, 1 ≤ k, ` ≤ d.

Here η0 > 0 and α ∈ (1
2 , 1) are specified in the step size ηn = η0n

−α. As α < 1, the

1. Note that the asymptotic covariance H−1SH−1 in (5.5) is “optimal” in the sense that it matches
the asymptotic covariance for the empirical risk minimizer θ̂(ERM) without online computation and gradient
information constraint.
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n-th iterate θ(KW)
n without averaging converges at a slower rate n−α/2 than that of (AKW) in

Theorem 5.3.10.

5.3.1 Examples: choices of direction distribution

By Theorem 5.3.10, the asymptotic covariance matrix of (AKW) estimator, H−1QH−1, de-

pends on the distribution of search direction Pv via Q = E[vv>Svv>]. In this section, we

compare the asymptotic covariance matrices of the (AKW) estimator when the random di-

rections {vi}ni=1 are sampled from different Pv’s. Several popular choices of Pv are listed as

follows,

(G) Gaussian: v ∼ N (0, I).

(S) Spherical: v is sampled from the uniform distribution on the sphere ‖v‖2 = d.

(I) Uniform in the canonical basis: v is sampled from
{√

de1,
√
de2, . . . ,

√
ded
}
with equal

probability, where {e1, e2, . . . , ed} is the canonical basis of Rd.

It is easy to verify that the above three classical choices of Pv satisfy Assumption 5.3.5,

among which (G) and (S) are continuous distributions, while (I) is a discrete distribution. In

particular, (I) is a discrete uniform distribution with equal probability among the d vectors

of the standard basis of Euclidean space Rn, which can be generalized in the following two

forms.

(U) Uniform in an arbitrary orthonormal basis U : vi is sampled uniformly from {
√
du1,

√
du2, . . . ,

√
dud}, where {u1, u2, . . . , ud} is an arbitrary orthonormal basis of Rd, i.e.,

the matrix U = (u1, u2, . . . , ud) is a d × d orthonormal matrix such that UU> =

U>U = I.

(P) Non-uniform in the canonical basis with probability (p1, p2, . . . , pd): v =
√

1/pk ek with

probability pk > 0, for k ∈ [d] and
∑d
k=1 pk = 1.
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The following proposition provides expressions of the matrix Q for the above five choices

of Pv.

Proposition 5.3.12. Under the assumptions in Theorem 5.3.10, for above examples of Pv,

we have

(G) Gaussian: Q(G) = (2S + tr(S)Id).

(S) Spherical: Q(S) = d
d+2 (2S + tr(S)Id).

(I) Uniform in the canonical basis: Q(I) = d diag(S).

(U) Uniform in an arbitrary orthonormal basis U : Q(U) = dU diag(U>SU)U>.

(P) Non-uniform in a natural coordinate basis: Q(P) = diag(S11/p1, S22/p2, . . . , Sdd/pd).

Proof. For Q(G), let z ∼ N (0, Id), and we now calculate Ezz>Szz>. The (i, i)-th entry is

E
∑
j,k

zizjSjkzkzi =
∑
j 6=i

Sjj + 3Sii = 2Sii + tr(S).

For i 6= j, the (i, j)th entry is

E
∑
k,l

zizkSklzlzj = 2Sij .

So Ezz>Szz> = 2S + tr(S)Id.

For Q(S), let v be sampled from the uniform distribution on the sphere ‖v‖ = d. The

Gaussian vector z can be decomposed into independent radius part and spherical part,

E[zz>] = E

[
‖z‖2 z

‖z‖
z>

‖z‖

]
= Evv>,

E[zz>Szz>] = E

[
‖z‖4 z

‖z‖
z>

‖z‖
S
z

‖z‖
z>

‖z‖

]
=
d+ 2

d
Evv>Svv>.
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Now we have

Evv> = Id, Evv>Svv> =
d

d+ 2
(2S + tr(S)Id).

For Q(U), let u obey the uniform distribution on {
√
de1, . . . ,

√
ded}. By direct calculation,

we have

Euu>Suu> =
d∑
j=1

1

d
· d2Sjj = d diag(S).

The final two cases for Q(U), Q(P) can also be verified by direct calculation.

From Proposition 5.3.12, one can see that any of the above choices of Pv leads to a

Q(·) that strictly dominates S. Take S = Id as an example, we have Q(G) = (d + 2)Id

and Q(S) = Q(I) = Q(U) = dId and Q(P) = diag(p−1
1 , p−1

2 , . . . , p−1
d ) � Id where p1 + p2 +

· · · + pd = 1. Note that Q(G) � Q(S) regardless of the dimension d and Gram matrix

S. Intuitively, when the direction v is generated by Gaussian (G), it can be decomposed

into two independent random variables: the radical part ‖v‖ and the spherical part v/‖v‖.

The spherical part v/‖v‖ follows the same distribution as the uniform distribution on the

sphere with radius d (which is identical to (S)). The extra randomness in the radical part

‖v‖2 ∼ χ2(d) leads to a larger magnitude of Q compared to that of (S). Therefore the (AKW)

estimator with Gaussian directions (G) is always inferior to that with spherical directions

(S), asymptotically. However, for the other candidates, they are not directly comparable,

and the optimal choice of Pv depends on the optimality criterion, and Gram matrix S.

As a simple illustration, we consider S = diag(1, r0) for some r0 > 0. We have

(S) Spherical: Q(S) = diag
(
r0+3

2 , 3r0+1
2

)
.

(I) Uniform in a natural coordinate basis: Q(I) = diag(2, 2r0).

166



(U) Uniform in an arbitrary orthonormal basis U : when U = (cosω, sinω;− sinω, cosω)

and ω = 0, we have Q(U) = Q(I) = diag(2, 2r0); when ω = π/4, we have Q(U) =

diag(1 + r0, 1 + r0).

(P) Non-uniform in a natural coordinate basis: diag
(

1
p1
, r0

1−p1

)
, p1 ∈ (0, 1).

From the above we can see that, the choices of the distribution of direction vectors Pv

depends on the optimality-criteria on comparing the covariance matrices. Specifically in the

above example, if one seeks to minimize

• the trace of covariance matrix, we have

tr(Q(S)) = tr(Q(I)) = tr(Q(U)) = 2 + 2r0, tr(Q(P)) =
1

p1
+

r0
1− p1

,

and the optimal distribution that minimizes the trace depends on the value of p1.

• the determinant of covariance matrix, we have

det(Q(S)) =
3r2

0 + 10r0 + 3

4
, det(Q(I)) = 4r0,

det(Q(U)) =
− cos(4ω)(r0 − 1)2 + r2

0 + 6r0 + 1

2
, det(Q(P)) =

r0
p1(1− p1)

.

By a simple derivation, we have det(Q(S)) ≥ det(Q(U)) ≥ det(Q(I)) and det(Q(P)) ≥

det(Q(I)).

• the operator norm of covariance matrix, i.e., the largest eigenvalue, we have

λmax(Q(S)) =
r0 + 3

2
, λmax(Q(I)) = 2,

λmax(Q(P)) = max

{
1

p1
,

r0
1− p1

}
, λmax(Q(U)) = r0 + 1 + (1− r0) |cos(2ω)| .

The smallest operator norm for Q(P) is given by p1 = 1
1+r0

. When r0 ≤ 1, and 0 ≤ ω ≤
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Figure 5.1: Comparison of Q matrices under different direction distributions Pv when S =
diag(1, 1/2).

π/6, we have λmax(Q(I)) ≥ λmax(Q(U)) ≥ λmax(Q(S)) ≥ λmax(Q(P)). When r0 ≥ 1,

and 0 ≤ ω ≤ π/6, we have λmax(Q(P)) ≥ λmax(Q(S)) ≥ λmax(Q(U)) ≥ λmax(Q(I)).

For other choices of ω, we can obtain a comparison analogously.

In general, it is natural to use Loewner order to compare two positive semi-definite matrix

A,B ∈ Rd×d, i.e., A � B if x>Ax ≥ x>Bx for any x ∈ Rd. It is equivalent to say, for

any positive constant c > 0, the ellipsoid {x ∈ Rd : x>Ax ≤ c} contains the ellipsoid

{x ∈ Rd : x>Bx ≤ c}. To better illustrate the result, we consider the 2-dimensional case

where S = diag(1, 1/2) and plot the ellipse {x ∈ R2 : x>Q(·)x = 2}. In Figure 5.1, we

compare Q(S), Q(I) (as a special case of Q(U) with θ = 0), Q(U) with θ = π
6 , and Q

(P) with

p1 = 1
1+r0

= 2
3 . As can be inferred from the plot, none of the ellipsoids contain any other

ellipsoids.

As shown in this illustrative example, there is no unique optimal direction distribution,

and a practitioner might choose a search direction based on her favorable optimality criterion.

Lastly, in the following Remark 5.3.13, we show that, if the optimality criterion degener-
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ates to one dimension, one may utilize the non-uniform distribution (P) to obtain a smaller

limiting variance. In particular, consider the application where we are only interested in the

first coordinate of θ?, in which cases the optimality criterion of the limiting variance is on

θ?1. We will show that the (AKW) estimator with the non-uniform distribution (P) achieves

the Cramér-Rao lower bound.

Remark 5.3.13. Assume the population loss function F (·) has Hessian H = Id. Consider-

ing a non-uniform sampling (P) from {ek}dk=1 for the direction distribution Pv. We choose

v = ek with probability pk for k = 1, 2, . . . , d, where p1 = 1− p for some constant p ∈ (0, 1]

and pk = p/(d− 1) for k 6= 1. Define i.i.d. random variables kn where kn = 1 with probabil-

ity 1 − p and kn = 2, . . . , d uniformly with probability p/(d − 1). The gradient estimator is

defined by,

ĝ(θn−1; ζn) =
f(θn−1 + hnekn ; ζn)− f(θn−1; ζn)

hnpn
ekn ,

where pn = 1 − p if kn = 1, pn = p/(d − 1) for kn > 1. By the same argument as

Proposition 5.3.12, the variance for θn in the direction e1 is,

nVar
(
e>1 (θn − θ?)

)
=

S11

1− p
.

As p → 0, we approximately obtain the optimal variance given by Cramér-Rao lower bound

in the direction e1. However, in order to approach the optimal variance in the direction e1,

we increase the magnitude of variance in all other directions, where the variance in other

directions is given by nVar
(
e>k (θn − θ?)

)
= (d− 1)Skk/p for k = 2, . . . , d.

5.3.2 Asymptotic behavior of (AKW) estimator for nonsmooth loss functions

The theoretical analysis of the asymptotic distribution of the (AKW) estimator remains valid

with a weaken assumption, which is a natural fit to some nonsmooth loss functions F (θ)
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including the quantile regression in Example 5.2.3.

Assumption 5.3.14. Assume there exists C > 0 such that E
[
ĝh,v(θ

?; ζ)ĝh,v(θ
?; ζ)>

]
=

Q+ ∆h for some matrix Q ∈ Rd×d and ‖∆h‖ ≤ Ch.

Theorem 5.3.15. Let Assumption 5.3.2, 5.3.3, 5.3.5, and 5.3.14 hold. Under the step size

and spacing parameter conditions specified in Theorem 5.3.10, the averaged estimator θn

satisfies,

√
n
(
θn − θ?

)
=⇒ N

(
0, H−1QH−1

)
, as n→∞. (5.37)

Proof. Under Assumption 5.3.2 and 5.3.14, the conclusions in Lemma 5.2.4 and Lemma 5.3.9

naturally hold. The rest of the proof follows from the proof in Proposition 5.3.6 and Theo-

rem 5.3.10.

To further illustrate the result, consider the setting of regression with non-smooth loss

function. Suppose that the data consists of ζn = (xn, y), n = 1, 2, . . . , and the loss function

is

f(θ; ζn) = ρ(yn − x>n θ).

We require the following regularity conditions.

Assumption 5.3.16. • Assume that ρ(u) is a convex function with a subgradient ψ(u).

There exists constant C such that |ψ(u)| ≤ C(|u|+ 1).

• Let εn = yn−x>n θ?. Assume {(xn, εn), n = 1, 2, . . . } are i.i.d., x have finite second mo-

ments and nondegenerate covariance matrices. Furthermore, ε and x are independent,

S = E[ψ2(ε)xx>] is positive definite. Define Q = E[vv>Svv>].

• Assume the probability density function p(x) of ε is in C3 and its derivatives up to

third order are all integrable.
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• Define φ(u) = E[ψ(u + ε)]. Assume φ(0) = 0, uφ(u) > 0 for any u 6= 0. Assume φ(u)

is differentiable and φ′(0) > σ > 0 uniformly for all x. Let H = E[φ′(0)xx>].

• Assume that φ′(u) is Lipschitz at u = 0. That is, there exist constants C > 0 and

δ > 0 such that |φ′(u)− φ′(0)| ≤ C|u| for |u| ≤ δ.

Those conditions are similar to those in [72], except that we make stronger assumption

on the noise ε to ensure the (KW) method is stable. A direct computation can show that,

under Assumption 5.3.2 and 5.3.16, all assumptions in Theorem 5.3.15 holds. So we have

√
n
(
θ

(RM)
n − θ?

)
=⇒ N

(
0, H−1SH−1

)
, as n→∞,

and
√
n
(
θ

(KW)
n − θ?

)
=⇒ N

(
0, H−1QH−1

)
, as n→∞,

in probability. We only verify Assumption 5.3.14 to indicate the difference between (RM) and

(KW) estimators. The verification of the rest are the same for the two estimators. Notice that

E
[
ĝh,v(θ

?; ζ)ĝh,v(θ
?; ζ)>

]
= E

vv>

h2

[
ρ
(
y − x>(θ? + hv)

)
− ρ
(
y − x>θ?

)]2
= E

vv>

h2

[
ρ
(
ε− hx>v

)
− ρ
(
ε)
]2
.

Define the function D(h) := Evv>
[
ρ
(
ε− hx>v

)
− ρ
(
ε)
]2
. By the assumptions on the prob-

ability density function of ε, it is easy to see that D(h) is also in C3 (using integration by

parts). Furthermore, direct computation shows that

D(0) = 0, D′(0) = 0, D′′(0) = E[ψ2(ε)vv>xx>vv>] = 2Q.

Hence E
[
ĝh,v(θ

?; ζ)ĝh,v(θ
?; ζ)>

]
= D(h)/h2 = Q+O(h).
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5.3.3 Multi-query extension and statistical efficiency

We now consider the (AKW) estimator using (m+ 1) function queries θ(m)
n in (5.11),

θ
(m)
n =

1

n

n∑
i=1

θ
(m)
i , where θ(m)

i = θ
(m)
i−1−ηig

(m)
n (θi−1; ζi) = θ

(m)
i−1−

ηi
m

m∑
j=1

ĝ
hi,v

(j)
i

(θi−1; ζi).

Here we first consider using the same sampling distribution acrossm queries and n iterations.

In other words, v(j)
i is sampled i.i.d. from Pv for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

Analogous to Theorem 5.3.10, we present the asymptotic distribution of the multi-query

(AKW),

Theorem 5.3.17. Under the assumptions in Theorem 5.3.10, the (m + 1)-query (AKW)

estimator has the following asymptotic distribution, as n→∞,

√
n
(
θ

(m)
n − θ?

)
=⇒ N

(
0, H−1QmH

−1
)
, where Qm =

1

m
Q+

m− 1

m
S.

Proof. The convergence result can be obtained as in the two function evaluation case. The

only difference is the following calculation:

E

(
1

m

m∑
i=1

viv
>
i

)
S

(
1

m

m∑
i=1

viv
>
i

)
=

1

m
Evv>Svv> +

m− 1

m
S,

which implies the desired result.

Theorem 5.3.17 illustrates a trade-off effect between the statistical efficiency and compu-

tational efficiency. When m = 1 and only two queries of function evaluations are available,

Theorem 5.3.17 reduces to Theorem 5.3.10, and Qm = Q. Conversely, as m → ∞, we have

Qm → S. Therefore, the asymptotic covariance of (m + 1)-query (AKW) estimator θ(m)
n

approaches the optimal covariance H−1SH−1 as m approaches infinite. Nevertheless, the

algorithm requires m function-value queries at each iteration, which significantly increases
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the computation complexity.

For a finite m, a slight revision of the sampling scheme of the direction vectors provides a

remedy to achieve a smaller and indeed optimal asymptotic covariance matrix. Particularly

at the i-th iteration, one may sample m direction vectors {v(j)
i }j=1,2,...,m from a discrete dis-

tribution (such as (I) and (U)) without replacement. In such settings, the direction vectors{
v

(1)
i , v

(2)
i , . . . , v

(m)
i

}
are no longer independent but they have the same marginal distri-

bution. The asymptotic distribution of the multi-query (KW) algorithm sampling without

replacement is provided in the following theorem of its asymptotic distribution.

Theorem 5.3.18. Under the assumptions in Theorem 5.3.10, and the direction vectors in

all iterations
{
Ṽi
}n
i=1 are i.i.d. from Pv such that Ṽi =

(
v

(1)
i , v

(2)
i , . . . , v

(m)
i

)
follows discrete

sampling scheme in (I) and (U) WithOut Replacement (WOR), the (m + 1)-query (AKW)

estimator, referred to as θ(m,WOR)
n , has the following asymptotic distribution, as n→∞,

√
n
(
θ

(m,WOR)
n − θ?

)
=⇒ N

(
0, H−1Q

(WOR)
m H−1

)
,

where Q(WOR)
m =

(d−m)
m(d−1)

Q+
d(m−1)
m(d−1)

S.

Proof. It is clear that Qm = S for m = d. We need to compute the quantity

Qm =
d2

m2
E
( m∑
i=1

viv
>
i

)
S

( m∑
i=1

viv
>
i

)
,

which can be simplifies to

Qm =
d2

m2
E
( m∑
i=1

viv
>
i Sviv

>
i

)
+
d2

m2
E
(∑
i 6=j

viv
>
i Svjv

>
j

)
.

By symmetry, it equals to

Qm =
d2

m
Ev1v

>
1 Sv1v

>
1 +

d2(m− 1)

m
Ev1v

>
1 Sv2v

>
2 .
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We know Ev1v
>
1 Sv1v

>
1 = 1

d2
Q and Qd = S. So we can solve for Ev1v

>
1 Sv2v

>
2 and get

Ev1v
>
1 Sv2v

>
2 =

1

d(d− 1)
(
1

d
Q− diag(S)).

Therefore,

Qm =
1

m
Q+

d(m− 1)

m(d− 1)
(
1

d
Q− diagS)

=
d−m
m(d− 1)

Q+
d(m− 1)

m(d− 1)
S.

By comparing the asymptotic covariance matrices in Theorems 5.3.17 and 5.3.18, Q(WOR)
m

for sampling without replacement case is strictly smaller than Qm in Theorems 5.3.17 when

we consider multi-query evaluation (m ≥ 2). Moreover, when m = d, it is easy to see that

Q
(WOR)
m = S. Therefore, the (d+1)-query (AKW) estimator θ(m,WOR)

n achieves the same limiting

covariance as that of the averaged (RM) estimator. Furthermore, when the model is well-

specified, the limiting covariance matrix H−1SH−1 = H−1 achieves the Cramér-Rao lower

bound. This result indicates that the (d + 1)-query (AKW) estimator θn is asymptotically

efficient [193].

Remark 5.3.19. Though the above (WOR) construction is reserved for (I) and (U), there is

a corresponding (WOR) scheme for the spherical direction (S). One may use
√
dv1, . . . ,

√
dvm

to construct the (m + 1)-query estimator, and V = (v1, . . . , vm) is sampled from the Stiefel

manifold using the unique invariant measure, where the Stiefel manifold Vm,d consists of all

m-frames in d-dimensional vector space, i.e.,

Vm,d := {V ∈ Rd×m|V >V = I}.

The proof of Theorem 5.3.18 can be used without modification to prove the asymptotic dis-

tribution for the (AKW) estimator under the (S+WOR) scheme.
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5.4 Online statistical inference

In the previous section, we provide the asymptotic distribution for the (AKW) estimator. For

the purpose of conducting statistical inference of θ?, we need a consistent estimator of the

limiting covariance H−1QH−1 in (5.27). A direct way is to construct a pair of consistent

estimators Ĥ and Q̂ of H and Q, respectively, and estimate the asymptotic covariance

by the plug-in estimator Ĥ−1Q̂Ĥ−1. Offline construction of those estimators is generally

straightforward. However, as the (KW) scheme typically applies to sequential data, it is

ideal to estimate the asymptotic covariance in an online fashion without storing the data.

Therefore, one cannot simply replace the true parameter θ? by its estimate θn in Q and H in

an online setting, since we can no longer access the data stream {ζi}ni=1 after the estimator

θn is obtained. To address this challenge, we first propose the following finite-difference

Hessian estimator at each iteration n:

G̃n =
d∑

k=1

d∑
`=1

G̃n,kleke
>
`

=
1

h2
n

d∑
k=1

d∑
`=1

[
∆hn,ekf(θn−1 + hne`; ζn)−∆hn,ekf(θn−1; ζn)

]
eke
>
` , (5.38)

This construction can be viewed as a multi-query (with d2 + 1 queries of function values at

each iteration) (KW) scheme with the (I) choice of the random directions. Other choices of

the search directions can be used as well. Each additional function-value query beyond the

first one provides an estimate G̃n,kl for the (k, l)-th entry of the matrix G̃n. To reduce the

computational cost in G̃n, at each iteration, the algorithm may compute a random subset of

entries of G̃n and partially inhere the remaining entries from the previous estimator G̃n−1.

For example, each entry G̃n,k` is updated with probability p ∈ (0, 1]. The procedure thus

requires O(pd2) function-value queries at each step. If we set p = O(1/d2), then the query
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complexity is reduced to O(1) per step. Since the construction of (5.38) does not guarantee

symmetry, an additional symmetrization step needs to be conducted, as

H̃n =
1

n

n∑
i=1

G̃i + G̃>i
2

. (5.39)

The next lemma quantifies the estimation error of the Hessian estimator H̃n in (5.39).

Lemma 5.4.1. Under Assumptions 5.3.1, 5.3.3, 5.3.4, and 5.3.5, we have

E‖H̃n −H‖2 ≤ C1n
−α + C2p

−1n−1. (5.40)

Before we come to the proof of the Hessian estimator (5.39) in Lemma 5.4.1, we first

introduce a naive method to estimate Hessian matrix H which we omit in the main text.

Inspired by the previous gradient estimator, we can estimate the Hessian matrix H by

the following

Ĝn =
1

mh2
n

m∑
j=1

[
∆
hnv

(j)
n
f(θn−1 + hnu

(j)
n ; ζn)−∆

hnv
(j)
n
f(θn−1; ζn)

]
u

(j)
n v

(j)>
n ,

where {u(j)
n }mj=1 and {v(j)

n }mj=1 are i.i.d. random vectors and m > 0 is a parameter (which

might be different from m in the previous section). Therefore, our naive Hessian estimator

is,

H̃n =
1

n

n∑
i=1

Ĝi + Ĝ>i
2

. (5.41)

where the (Ĝi + Ĝ>i )/2 term ensures the symmetry of H̃n. The function query complexity

is O(m) per step for this Hessian estimation.

Now we restate our Lemma 5.4.1 for the both estimators (5.41) and (5.39).
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Lemma 5.4.2. Under the assumptions in Theorem 5.3.10, we have the following result for

the Hessian estimator (5.41),

E‖H̃n −H‖2 ≤ C1n
−α + C2

(
1 +

1

m

)
n−1. (5.42)

The Hessian estimator (5.39) satisfies,

E‖H̃n −H‖2 ≤ C1n
−α + C2p

−1n−1. (5.43)

Proof. In the case of naive Hessian estimator (5.41), we decompose H̃n −H as follows,

H̃n −H

=
1

n

n∑
i=1

Ĝi + Ĝ>n
2

−H

=
1

n

n∑
i=1

Ĝi + Ĝ>i
2

−

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i


+

1

n

n∑
i=1

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

−∇2f(θi−1; ζi)


+

1

n

n∑
i=1

[
∇2f(θi−1; ζi)−∇2f(0; ζi)

]
+

1

n

n∑
i=1

(
∇2f(0; ζi)−H

)
. (5.44)
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For the first term in the decomposition (5.44),

En−1

[
‖ 1

h2
n

[
f(θn−1 + hnu+ hnv; ζn)− f(θn−1 + hnu; ζn)− f(θn−1 + hnv; ζn)

+ f(θn−1; ζn)
]
uv> − uu>∇2f(θn−1; ζn)vv>

∥∥∥2
∣∣∣∣u, v]

≤ En−1[‖ 1

h2
n
uu>

∫ hn

0

∫ hn

0
∇2f(θn−1 + s1u+ s2v; ζn)

−∇2f(θn−1; ζn)ds1ds2vv
>‖2

∣∣∣∣u, v]

≤ 1

h2
n
‖u‖2‖v‖2

∫ hn

0

∫ hn

0
En−1[‖∇2f(θn−1 + s1u+ s2v; ζn)

−∇2f(θn−1; ζn)‖2
∣∣u, v]ds1ds2

≤ C

h2
n
‖u‖2‖v‖2

∫ hn

0

∫ hn

0
‖s1u+ s2v‖2 ds1ds2 ≤ Ch2

n‖u‖2‖v‖2(‖u‖2 + ‖v‖2).

The above derivation implies that

E‖Ĝn −

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

 ‖ ≤ Ch2
n.

Therefore, we can show that

E

∥∥∥∥∥∥ 1

n

n∑
i=1

Ĝi + Ĝ>i
2

−

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θi−1; ζi)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

∥∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥ 1

n

n∑
i=1

Ĝi −
 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θi−1; ζi)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

∥∥∥∥∥∥
2

≤ C
1

n

n∑
i=1

h2
i ≤ Cn−2γ , (5.45)

where in the first inequality, we use the fact that, Ĝi and Ĝ>i has the same distribution.
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For the second term, notice that

En−1

∥∥∥∥∥∥
 1

m

m∑
j=1

uju
>
j

∇2f(θn−1; ζn)

 1

m

m∑
j=1

vjv
>
j

−∇2f(θn−1; ζn)

∥∥∥∥∥∥
2

≤ En−1

∥∥∥∥ 1

m
uiu
>
i − Id

∥∥∥∥2 ∥∥∥∇2f(θn−1; ζn)
∥∥∥2
∥∥∥∥ 1

m
vv> − Id

∥∥∥∥2

+ En−1

∥∥∥∥ 1

m
uiu
>
i − Id

∥∥∥∥2 ∥∥∥∇2f(θn−1; ζn)
∥∥∥2

+ En−1

∥∥∥∇2f(θn−1; ζn)
∥∥∥2
∥∥∥∥ 1

m
vv> − Id

∥∥∥∥2

≤ C

m

(
1 + ‖θn−1‖2

)
.

Furthermore, the second term is a sum of martingale difference sequence and we have

E‖ 1

n

n∑
i=1

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

−∇2f(θi−1; ζi)

 ‖2
=

1

n

n∑
i=1

E‖

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

−∇2f(θi−1; ζi)

 ‖2
≤ C

1

n2

n∑
i=1

1

m

(
1 + E‖θn−1‖2

)
≤ C

1

mn
. (5.46)

For the third term in (5.44), we have

E

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(θi−1; ζi)−∇2f(0; ζi)

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

E
∥∥∥∇2f(θi−1; ζi)−∇2f(0; ζi)

∥∥∥2

≤ C

n

n∑
i=1

E‖θi‖2 ≤ Cn−α. (5.47)
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For the final term, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(0; ζi)−H

∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

E
∥∥∥∇2f(0; ζi)−H

∥∥∥2

≤ C

n2

n∑
i=1

E
∥∥∥∇2f(0; ζi)

2 −H2
∥∥∥ ≤ Cn−1, (5.48)

where the second inequality is due to the fact that it is an equality in Frobenius norm.

Combine the previous estimates (5.45), (5.46), (5.47) and (5.48), our naive Hessian esti-

mator satisfies,

E
∥∥∥H̃n −H∥∥∥2

≤ Cn−α + C(1 +
1

m
)n−1.

Similarly, for the Hessian estimator (5.39), we have the following decomposition,

H̃n −H =
1

n

n∑
i=1

G̃i + G̃>i
2

−H

=
1

n

n∑
i=1

G̃i + G̃>i
2

−
Ĝi + Ĝ>i

2
+

1

n

n∑
i=1

(
Ĝi + Ĝ>i

2
−∇2f(θi−1; ζi)

)

+
1

n

n∑
i=1

[
∇2f(θi−1; ζi)−∇2f(0; ζi)

]
+

1

n

n∑
i=1

∇2f(0; ζi)−H. (5.49)

Given Ĝn, our Bernoulli sampling Hessian estimator G̃n satisfies,

E
∥∥∥G̃n − Ĝn∥∥∥2

Fro
= E

 d∑
j=1

d∑
k=1

1

p

(
Ĝ

(jk)
n B

(jk)
n − Ĝ(jk)

n

)2


=

d∑
j=1

d∑
k=1

E
(

1

p
B

(jk)
n − 1

)2 (
Ĝ

(jk)
n

)2

=
1− p
p

d∑
j=1

d∑
k=1

E
(
Ĝ

(jk)
n

)2
=

1− p
p
‖Ĝn‖2Fro,
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where the entries of Bn are i.i.d. and follow a Bernoulli distribution, B(k`)
n ∼ Bernoulli(p),

for some fixed p ∈ (0, 1). Here the second equality uses the fact that B(jk)
i are independent

from each other. Therefore,

E

∥∥∥∥∥ 1

n

n∑
i=1

G̃i − Ĝi

∥∥∥∥∥
2

≤ E

∥∥∥∥∥ 1

n

n∑
i=1

G̃i − Ĝi

∥∥∥∥∥
2

Fro

≤ C
1− p
p

n−2
n∑
i=1

E
∥∥∥Ĝi∥∥∥2

.

With 1/t
∑n
i=1 E‖Ĝi‖2 ≤ C + Cn−α, the first term in decomposition (5.49) satisfies,

E

∥∥∥∥∥ 1

n

n∑
i=1

G̃i − Ĝi

∥∥∥∥∥
2

≤ C
1− p
p

n−1. (5.50)

Other terms can be bounded similarly as in the first case:

E

∥∥∥∥∥ 1

n

n∑
i=1

Ĝi + Ĝ>i
2

−∇2f(θi−1; ζi)

∥∥∥∥∥
2

≤ Cn−2γ , (5.51)

E

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(θi−1; ζi)−∇2f(0; ζi)

∥∥∥∥∥
2

≤ Cn−α, (5.52)

E

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(0; ζi)−H

∥∥∥∥∥
2

≤ Cn−1. (5.53)

Combine inequality (5.50), (5.51), (5.52) and (5.53), we obtain the desired result for Hessian

estimator (5.39).

From Lemma 5.4.1, as n→∞, the error rate is dominated by the C1n
−α term, where α

is the parameter of the decaying step sizes.

Remark 5.4.3. In the construction of the estimator of the limiting covariance matrix

H−1QH−1, it is necessary to avoid the possible singularity of H̃n. A common practice is to

adopt a thresholding version of H̃n in (5.39). Let U Λ̃nU
> be the eigenvalue decomposition
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of H̃n, and define

Ĥn = U Λ̂nU
>, Λ̂n,kk = max

{
κ1, Λ̃n,kk

}
, k = 1, 2, . . . , d, (5.54)

for any positive constant κ1 < λ where λ is defined in Assumption 5.3.1. It is guaranteed by

construction that Ĥn is strictly positive definite and thus invertible.

On the other hand, the estimator of Gram matrix Q can be naturally constructed as

Q̂n :=
1

n

n∑
i=1

ĝhi,vi(θi−1; ζi) ĝhi,vi(θi−1; ζi)
>, (5.55)

where ĝhi,vi(θi−1; ζi) is the (KW) update in the i-th iteration obtained by (5.10). As both

Ĥn in (5.54) and Q̂n in (5.55) can be constructed sequentially without storing historical

data2, the final plug-in estimator Ĥ−1
n Q̂nĤ

−1
n can also be constructed in an online fashion.

Based on Lemma 5.4.1, we obtain the following consistency result of the covariance matrix

estimator Ĥ−1
n Q̂nĤ

−1
n .

Theorem 5.4.4. Assume Assumptions 5.3.1, 5.3.3, 5.3.4, and 5.3.5 hold for δ = 2. Set

the step size as ηn = η0n
−α for some constant η0 > 0 and α ∈

(
1
2 , 1
)
, and the spacing

parameter as hn = h0n
−γ for some constant h0 > 0, and γ ∈

(
1
2 , 1
)
. We have

E
∥∥∥Ĥ−1

n Q̂nĤ
−1
n −H−1QH−1

∥∥∥ ≤ Cn−α/2.

To prove Theorem 5.4.4, we first present the following lemma on the error rate of Q̂n.

Lemma 5.4.5. Under conditions in Theorem 5.4.4, our online Gram matrix estimate Q̂n

2. The sequence Q̂n := 1
n

∑n
i=1Qi with Qi = ĝhi,vi(θi−1; ζi) ĝhi,vi(θi−1; ζi)

> can be constructed only with
one-pass over the sequential data. In particular, we could compute Q̂n sequentially as Q̂n = 1

n ((n−1)Q̂n−1+
Qi).
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has the following convergence rate,

E‖Q̂n −Q‖ ≤ Cn−α/2.

Proof. Recall the update rule,

θn = θn−1 − ηn∇F (θn−1) + ηn(ξn + γn + εn),

and our Gram matrix estimate Q̂n is,

Q̂n =
1

n

n∑
i=1

(∇F (θi−1)− ξi − γi − εi)(∇F (θi−1)− ξi − γi − εi)>.

It can be seen that we have the following estimates,

En−1

∥∥∥∥∥ 1

n

n∑
i=1

∇F (θi−1)∇F (θi−1)>
∥∥∥∥∥ ≤ C

1

n

n∑
i=1

En−1‖θi−1‖2 ≤ Cn−α,

En−1

∥∥∥∥∥ 1

n

n∑
i=1

ξiξ
>
i

∥∥∥∥∥ ≤ C
1

n

n∑
i=1

h2
n ≤ Cn−2γ ,

En−1

∥∥∥∥∥ 1

n

n∑
i=1

γiγ
>
i

∥∥∥∥∥ ≤ C
1

n

n∑
i=1

(En−1‖θi−1‖2 + h2
n) ≤ Cn−α,

En−1

∥∥∥∥∥ 1

n

n∑
i=1

εiε
>
i

∥∥∥∥∥ ≤ C
1

n

n∑
i=1

(En−1‖θi−1‖2 + h2
n + 1) ≤ C.

The crossing terms between them can be bounded by Cauchy-Schwarz inequality. Therefore,

we can find that all terms in Q̂n except
∑n
i=1 εiε

>
i /t can be bounded by Cn−α/2. So it

suffices to prove,

E

∥∥∥∥∥ 1

n

n∑
i=1

εiε
>
i −Q

∥∥∥∥∥ ≤ Cn−α/2. (5.56)

Define a new sequence zn := εnε
>
n −En−1εnε

>
n . Then zn is a martingale difference sequence
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and we have

∥∥∥εnε>n −Q∥∥∥ ≤ ‖zn‖+
∥∥∥En−1εnε

>
n −Q

∥∥∥
≤ ‖zn‖+ C

(
‖θn−1‖+ ‖θn−1‖4 + hn + h4

n

)
,

where the last inequality leverages inequality (5.33). Now we have,

E

∥∥∥∥∥ 1

n

n∑
i=1

εiε
>
i −Q

∥∥∥∥∥ ≤ E
∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥+ CE
(
‖θn−1‖+ ‖θn−1‖4 + hn + h4

n

)
≤ E

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥+ Cn−α/2.

Thus we turn the proof of (5.56) into,

E

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥ ≤ Cn−1/2. (5.57)

By Hölder’s inequality, it can be derived that,

En−1‖zn‖2 ≤ En−1‖εn‖4 ≤ C(‖θn−1‖4 + h4
n + 1).

Combine Lemma 5.3.8 with Lemma 5.3.6, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

CE
(
‖θi−1‖4 + h4

i + 1
)
≤ Cn−1.

Therefore, condition (5.57) is satisfied through Jensen’s inequality.

We now provide a matrix perturbation inequality from [40].
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Lemma 5.4.6. If a matrix B = A+ E where A and B are invertible, we have,

∥∥∥B−1 − A−1
∥∥∥ ≤ ‖A−1‖2‖E‖ 1

1− ‖A−1E‖
.

Proof. Notice that

B−1 = (A+ E)−1 = A−1 − A−1
(
A−1 + E−1

)−1
A−1

= A−1 − A−1E
(
A−1E + I

)−1
A−1.

Therefore, the inversion error is,

‖B−1 − A−1‖ =

∥∥∥∥A−1E
(
A−1E + I

)−1
A−1

∥∥∥∥
≤ ‖A−1‖2‖E‖‖(A−1E + I)−1‖

≤ ‖A−1‖2‖E‖ 1

λmin(A−1E + I)

≤ ‖A−1‖2‖E‖ 1

1− ‖A−1E‖
,

where we use Weyl’s inequality in the last inequality.

We now come back to the main proof of Theorem 5.4.4.

Proof. For the thresholding estimator Ĥn, since ‖Ĥn − H̃n‖ ≤ ‖H̃n −H‖ by construction,

it is consistent with the rate below,

E‖Ĥn −H‖2 ≤ 2E‖H̃n −H‖2 + 2E‖Ĥn − H̃n‖2 ≤ 4E‖H̃n −H‖2 ≤ Cn−α, (5.58)

where the last inequality from Lemma 5.4.1.
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By Lemma 5.4.6, the inverse matrix error satisfies,

E‖Ĥ−1
n −H−1‖2

≤ E
[
1‖H−1(Ĥn−H)‖≤1/2

2‖Ĥn −H‖‖H−1‖2 + 1‖H−1(Ĥn−H)‖≥1/2
‖Ĥ−1

n −H−1‖
]2

≤ 8‖H−1‖4E‖Ĥn −H‖2 + 2(κ−1
1 + λ−1

min(H))2P
(
‖H−1(Ĥn −H)‖ ≥ 1

2

)
≤ 8‖H−1‖4E‖Ĥn −H‖2 +

1

2λ2
(κ−1

1 + λ−1
min(H))2E‖Ĥn −H‖2

≤ C n−α, (5.59)

where the third inequality follows from Markov’s inequality and the last one from (5.58).

We now consider our target term. With previous results (5.58), (5.59), and Lemma 5.4.5,

we can obtain that,

E
∥∥∥Ĥ−1

n Q̂nĤ
−1
n −H−1QH−1

∥∥∥
= E

∥∥∥Ĥ−1
n (Q̂n −Q)Ĥ−1

n + (H−1 + Ĥ−1
n −H−1)Q(H−1 + Ĥ−1

n −H−1)−H−1QH−1
∥∥∥

≤ E
∥∥∥Ĥ−1

n (Q̂n −Q)Ĥ−1
n

∥∥∥+ E
∥∥∥H−1Q(Ĥ−1

n −H−1)
∥∥∥+ E

∥∥∥(Ĥ−1
n −H−1)QH−1

∥∥∥
+E

∥∥∥(Ĥ−1
n −H−1)Q(Ĥ−1

n −H−1)
∥∥∥

≤ κ−2
1 E

∥∥∥Q̂n −Q∥∥∥+ 2λ−1‖Q‖E
∥∥∥Ĥ−1

n −H−1
∥∥∥+ ‖Q‖E

∥∥∥Ĥ−1
n −H−1

∥∥∥2

≤ Cn−α/2,

which completes the proof.

Theorem 5.4.4 establishes the consistency and the rate of the convergence of our proposed

covariance matrix estimator Ĥ−1
n Q̂nĤ

−1
n . Given Theorems 5.3.10 and 5.4.4, a confidence

interval of the projected true parameter w>θ? for any w ∈ Rd can be constructed via a

projection of θn and Ĥ−1
n Q̂nĤ

−1
n onto w. Specifically, for a pre-specified confidence level q

and the corresponding z-score zq/2, we can obtain an asymptotic exact confidence interval
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as n→∞,

P
{
w>θ? ∈

[
w>θn −

zq/2√
n

√
w>Ĥ−1

n Q̂nĤ
−1
n w, w>θn +

zq/2√
n

√
w>Ĥ−1

n Q̂nĤ
−1
n w

]}
→ 1− q.

5.4.1 Online inference without additional function-value queries

Despite the simplicity of the plug-in approach, the proposed estimator Ĥ−1
n Q̂nĤ

−1
n incurs

additional computational and storage cost as it requires additional function-value queries for

constructing Ĥn. It raises a natural question: is it possible to conduct inference only based

on (KW) iterates {θi}i=1,2,... without additional function-value queries?

In this section, we provide an affirmative answer to this question, and propose an al-

ternative online statistical inference procedure using the intermediate (KW) iterates only,

without requiring any additional function-value query. Intuitively, the (AKW) estimator in

(5.1) is constructed as the average of all intermediate (KW) iterates {θi}ni=1. If all iterates

were independent and identically distributed, the asymptotic covariance could have been

directly estimated by the sample covariance matrix of the iterates 1
n

∑n
i=1(θi − θ)(θi − θ)>.

Unfortunately, the (KW) iterates are far from independent and indeed highly correlated. Nev-

ertheless, the autocorrelation structure of the iterates can be carefully analyzed and utilized

to construct the estimator of H−1QH−1.

In this paper, we adopt an alternative approach to take more advantage of the autocor-

relation structure by leveraging the techniques from robust testing literature [1, 124, 136].

Such an estimator is often referred to as the Fixed Bandwidth Heteroskedasticity and Au-

tocorrelation Robust estimator (fixed-b HAR) in the econometrics literature. The fixed-b

HAR estimator is able to overcome the series correlation and heteroskedasticity in the error

terms for the OLS estimates of the linear regression (e.g. [124]). For the (RM) scheme, [136]

utilized and generalized this technique to construct an online statistical inference procedure,
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and refer to this method as the random scaling method.

In particular, we present the following theorem based on a functional extension of the

distributional analysis of the intermediate (KW) iterates {θt} as a stochastic process.

Theorem 5.4.7. For any w ∈ Rd, under the assumptions in Theorem 5.3.10, we have

√
n
w>(θn − θ?)√

w>Vnw
=⇒ W1√∫ 1

0 (Wr − rW1)2 dr
, (5.60)

where Vn = 1
n2
∑n
i=1 i

2(θi − θn)(θi − θn)>, and θi = 1
i

∑i
`=1 θ` is the average of iterates up

to the i-th iteration, and {Wt}t≥0 is the standard one-dimensional Brownian motion.

Proof. We first show that we can extend our result in Theorem 5.3.10 to the following form,

1√
n

bnrc∑
i=1

θi =⇒ Σ1/2W r, r ∈ [0, 1].

where Σ = H−1QH−1 and W r is a d-dimensional vector of independent standard Brownian

motions on [0, 1]. For any r ∈ [0, 1], we consider the following partial summation process,

Bn(r) =
1

n

bnrc∑
i=1

∆i,

where ∆i = θi− θ? = θi. Now consider the following alternative partial summation process,

B
′
n(r) =

1

n

bnrc∑
i=1

∆′i,

where

∆′i = ∆′i−1 − ηiH∆′i−1 + ηn(ξn + γn + εn), ∆′0 = ∆0 = θ0.
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From Theorem 2 in [162], we know that
√
n supr |B

′
n(r)−Bn(r)| = op(1). Now we consider

the weak convergence of B′n(r) instead. Using the decomposition below,

√
nB
′
n(r) =

1√
nbnrcηbnrc

θ0 +
1√
n

bnrc∑
i=1

H−1(ξn + γn + εn) +
1√
n

bnrc∑
i=1

w
bnrc
i (ξn + γn + εn),

where 1/
√
n
∑n
i=1 ‖wni ‖ → 0. Using the result from Lemma 5.3.6, the first and the third

terms on the RHS are op(1). Combining Theorem 4.2 from [91] and Equation (5.30), we

have

1√
n

bnrc∑
i=1

H−1(ξn + γn + εn) =⇒ Σ1/2W r.

Therefore, for any w ∈ Rd, we have

Cn(r) =
1√
n

bnrc∑
i=1

w>θi ⇒ w>(w>Σw)1/2Wr, r ∈ [0, 1].

Here Wr is the standard one dimensional Brownian motion. In addition,

w>Vnw =
1

n

n∑
i=1

[
Cn

(
i

n

)
− i

n
Cn(1)

] [
Cn

(
i

n

)
− i

n
Cn(1)

]>
.

Notice that w>(θn) = 1√
n
Cn(1), and

n
(w>θn)2

w>Vnw
⇒

W 2
1∫ 1

0 (Wr − rW1)2dr
,

using the continuous mapping theorem.

As an important special case, when w = ek for k = 1, 2, . . . , d, we have the convergence
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Quantile 90% 95% 97.5% 99%
[1] Table 1 3.875 5.323 6.747 8.613

Table 5.1: Cumulative probability table of the limiting distribution.

in each coordinate to the following pivotal limiting distribution,

√
n(θn,k − θ?k)√

Vn,kk
=⇒ W1√∫ 1

0 (Wr − rW1)2 dr
, (5.61)

For the asymptotic distribution defined on the right hand side in (5.61), we repeat the

quantiles of the distribution published by [1] in Table 5.13. Combining the asymptotic

results in (5.61) and Table 5.1, we can construct coordinate-wise confidence intervals for the

true parameter θ?. In addition, as

Vn =
1

n2

n∑
i=1

i2(θi − θn)(θi − θn)> =
1

n2

n∑
i=1

i2θiθ
>
i −

2

n2
θn

n∑
i=1

i2θ
>
i +

1

n2

n∑
i=1

i2θnθ
>
n

(5.62)

can be constructed in an online fashion via the iterative updates of the matrix
∑n
i=1 i

2θiθ
>
i

and the vector
∑n
i=1 i

2θi, the proposed online inference procedure only requires one pass

over the data.

5.4.2 Finite-difference stochastic Newton method

As a by-product and an application, the online finite-difference estimator of Hessian in (5.54)

enables us to develop the (KW) version of the stochastic Newton’s method. Existing literature

that handles the (RM) version of the stochastic Newton’s method traces back to [171]. Given

3. Since the distribution on the right hand side of (5.60) is symmetric, we only provide one-side quantiles
in the table.
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an initial point θ0, the (KW) stochastic Newton’s method has the following updating rule,

θn = θn−1 −
1

n
Ĥ−1
n−1ĝhn,vn(θn−1; ζn), (5.63)

Here Ĥ−1
n a recursive estimator of H−1. We modify the thresholding Hessian estimator Ĥn

in (5.54) as follows. Let U Λ̃nU
> be the eigenvalue decomposition of H̃n in (5.39), and define

Ĥn = U Λ̂nU
>, Λ̂n,kk = max

{
κ1,min

{
κ2, Λ̃n,kk

}}
, k = 1, 2, . . . , d, (5.64)

for some constants 0 < κ1 < λ < Lf < κ2, where λ, Lf are defined in Assumption 5.3.1.

Theorem 5.4.8. Under the assumptions in Theorem 5.3.10, the Hessian estimator Ĥn in

(5.64) converges in probability to the empirical Hessian matrix H. The stochastic Newton

estimator θn in (5.63) converges to θ? almost surely and has the following limiting distribu-

tion,

√
n (θn − θ?) =⇒ N

(
0, H−1QH−1

)
, (5.65)

for the same Q as in Theorem 5.3.10.

Theorem 5.4.8 states that the final iterate of the (KW) stochastic Newton method (5.63)

entails the same asymptotic distribution as the averaged (AKW) estimator (5.1). In contrast to

(AKW), (5.63) leverages additional Hessian information to achieve the asymptotic normality

and efficiency. Nevertheless, the numerical implementation of the (KW) stochastic Newton’s

method requires to update a Hessian estimator Ĥn in all iterations, which demands significant

additional computation unless such an estimator is yet computed and maintained along the

procedure for other purposes.
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Proof. Notice that

θn = θn−1 −
1

n
H−1
n−1∇F (θn−1) +

1

n
H
−1
n−1 (ξn + γn + εn) .

We now show that Lemma 5.3.6 holds under α = 1. Following from the same logic in

Lemma 5.3.6, we can show that there exists some universal constant n0 > 0, such that for

all n > n0, and some constants C1, C2,

En−1‖θn‖2 ≤
(

1− C1

n

)
‖θn−1‖2 + C2n

−2. (5.66)

Therefore, θn → 0 almost surely by martingale convergence theorem [168]. Now we consider

the convergence rate of θn.

Using the proof in Lemma 5.3.6, we can show that

En−1‖θn‖2 ≤ C
(
n−C1/2 + n−1

)
. (5.67)

Similarly,

En−1‖θn‖2+δ ≤ C
(
n−C1/2 + n−(1+δ)

)
. (5.68)

Now we consider the limiting distribution.

θn = θn−1 −
1

n
H−1∇F (θn−1)− 1

n

(
H−1
n−1 −H

−1
)
∇F (θn−1) +

1

n
H−1
n−1 (ξn + γn + εn)

=

(
1− 1

n

)
θn−1 −

1

n
H−1δn −

1

n

(
H−1
n−1 −H

−1
)
∇F (θn−1) +

1

n
H−1
n−1 (ξn + γn + εn) ,
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where δn = ∇F (θn−1)−Hθn−1. By induction, we can find that

θn =
1

n

n−1∑
k=0

H−1
k εk+1 +

1

n

n−1∑
k=0

H−1
k (ξk+1 + γk+1)

− 1

n
H−1

n−1∑
k=0

δk+1 −
1

n

n−1∑
k=0

(
H−1
k −H−1

)
∇F (θk).

The last three terms in the RHS above all converge to zero due to Assumption 5.3.5. Now

we only need to show that 1√
n

∑n−1
k=0 H

−1
k εk+1 converges to a normal distribution. Consider

Ek
[
H−1
k εk+1ε

>
k+1H

−1
k

]
= H−1

k Ek
[
εk+1ε

>
k+1

]
H−1
k ,

recall that in (5.33) we have shown that Ek
[
εk+1ε

>
k+1

]
converges almost surely to Q. There-

fore, by Assumption 5.3.5, Ek
[
H−1
k εk+1ε

>
k+1H

−1
k

]
converges in probability to H−1QH−1.

Obviously, we can get the tail bound similar to (5.34) and by martingale central limit

theorem [63, Theorem 2.1.9],

1√
n

n−1∑
k=0

H−1
k εk+1 =⇒ N

(
0, H−1QH−1

)
.

5.5 Numerical experiments

In this numerical section, we first investigate the empirical performance of the proposed

inference procedures and their corresponding coverage rates. We consider linear regression

and logistic regression models (Examples 5.2.1–5.2.2) where {xi, yi}ni=1 is an i.i.d. sample

with the covariate x ∼ N (0,Σ) and the response y ∈ R. The true model parameter θ? ∈ Rd is

selected uniformly from the unit sphere before the experiments. For both models, we consider

two different structures of the covariance matrices Σ: identity matrix Id and equicorrelation
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covariance matrix (Equicorr in the tables), i.e., Σk` = 0.2 for all k 6= ` and Σkk = 1. The

parameter α in the step size is specified to α = 0.501. The variance of noise ε in the linear

regression model (Example 5.2.1) is set to σ2 = 0.2.

d Σ Estimation error Average coverage rate
Parameter Plug-in Cov. Plug-in Fixed-b Oracle

Linear regression
0.0031 0.0384 0.9448 0.9464 0.9436Identity (0.0010) (0.0106) (0.1035) (0.1174) (0.1040)
0.0035 0.0342 0.9428 0.9488 0.94125

Equicorr (0.0012) (0.0092) (0.1096) (0.1195) (0.1102)
0.0135 0.1126 0.9319 0.9039 0.9288Identity (0.0023) (0.0190) (0.0594) (0.0657) (0.0616)
0.0172 0.1124 0.9194 0.9014 0.917020

Equicorr (0.0029) (0.0199) (0.0644) (0.0674) (0.0656)
0.0748 0.5707 0.9309 0.7501 0.9012Identity (0.0062) (0.0648) (0.0261) (0.0397) (0.0336)
0.0921 0.5615 0.9331 0.7435 0.9044100

Equicorr (0.0076) (0.0647) (0.0250) (0.0418) (0.0320)
Logistic regression

0.0265 0.0587 0.9432 0.9360 0.9440Identity (0.0115) (0.0434) (0.1219) (0.1685) (0.1148)
0.0299 0.0697 0.9440 0.9364 0.94645

Equicorr (0.0131) (0.0514) (0.1196) (0.1566) (0.1207)
0.0728 0.1030 0.9418 0.8956 0.9403Identity (0.0124) (0.0250) (0.0532) (0.1156) (0.0540)
0.0799 0.1213 0.9383 0.8949 0.936920

Equicorr (0.0146) (0.0359) (0.0577) (0.1106) (0.0561)
0.2440 0.5236 0.9673 0.7022 0.9082Identity (0.0211) (0.1646) (0.0193) (0.0838) (0.0295)
0.2867 0.7685 0.9608 0.6950 0.9041100

Equicorr (0.0253) (0.2933) (0.0185) (0.0728) (0.0314)

Table 5.2: Estimation errors and averaged coverage rates of the proposed algorithm with
search direction (I) and two function queries (m = 1).
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Figure 5.2: Convergence of the parameter estimation error ‖θn− θ?‖ and coverage rates v.s.
the sample size n.
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5.5.1 Estimation errors of (AKW) and the performance of inference

procedures

We set the sample size n = 105 and the parameter dimension d = 5, 20, 100. We first report

the performance of (AKW) with the search direction uniformly sampled from the natural

basis, referred to as (I) in Section 5.3.1. In Table 5.2, we present the estimation error

for the parameter θ? in the Euclidean norm and the relative error of the plug-in covariance

estimator in the spectral norm (see the first two columns), with 100 Monte-Carlo simulations,

‖θn − θ?‖
‖θ?‖

,
‖Ĥ−1

n Q̂nĤ
−1
n −H−1QH−1‖

‖H−1QH−1‖
. (5.69)

Corresponding standard errors are reported in the brackets. We compare the plug-in covari-

ance estimator (plug-in) based inference (5.39) and fixed-b HAR (fixed-b) based inference

(5.61).

Next, we set the nominal coverage probability as 95% and we project θ ∈ Rd onto w =

(1, 1, . . . , 1)>/
√
d to construct confidence intervals. In particular, we report the performance

of the confidence interval with the average coverage rate and the average length of the

intervals for (1) the plug-in covariance matrix estimator4 (5.38) and (2) the fixed-b HAR

procedure in (5.62). As an oracle benchmark, we also report the length of the confidence

interval with respect to the true covariance matrix H−1QH−1 of the plug-in approach and

the corresponding coverage rate. As shown from Table 5.2, the coverage rate of the plug-in

covariance estimator and the oracle coverage rates are very close to the desired 95% coverage,

while the fixed-b HAR approach is comparable in small dimension d = 5, 20 but has lower

coverage rates for the large dimension d = 100. The average lengths of both methods are

comparable to the lengths derived by the true limiting covariance.

4. Here we use updating probability p = 1 for the plug-in estimation. In other words, d2 + 1 queries of
function values are obtained at each iteration. In Section 5.5.2 below, we extend the comparison for different
p.

196



Then, we fix d = 20 and the identity design matrix Σ = I . We present in Figure 5.2 the

parameter estimation error ‖θn−θ?‖ and the coverage rates as the sample size n grows. Plots

(a) to (b) show the cases of linear regression and plots (c) to (d) show the cases of logistic

regression. Dashed lines in plots (b) and (d) correspond to the nominal 95% coverage. In

subplots (b) and (d) of Figure 5.2, we show the coverage rates for the plug-in and fixed-

b HAR approaches as the sample size n increases. As one can see, coverage rates of the

plug-in approach almost match the oracle case using the true asymptotic covariance matrix

H−1QH−1. For the linear regression case, the plug-in and fixed-b HAR approaches are

comparable. For the logistic regression case, the coverage rate of the fixed-b HAR inference

procedure is slightly inferior than that of the plug-in method. On the other hand, the fixed-b

HAR approach does not require additional function queries for the explicit estimation of the

Hessian matrix.

Estimator Comp. Estimation error Average coverage rate Average length
time Hessian Cov. Estimator Oracle Estimator Oracle

Identity
0.1780 0.3179 0.8965 0.9288 3.6570 3.5065Plug-in p = 1/400 4.74s (0.0115) (0.0423) (0.0696) (0.0616) (0.0195) -
0.0393 0.1503 0.9244 0.9288 3.5511 3.5065Plug-in p = 1/20 25.42s (0.0043) (0.0282) (0.0665) (0.0616) (0.0169) -
0.0271 0.1126 0.9319 0.9288 3.5337 3.5065Plug-in p = 1 510.53s (0.0021) (0.0190) (0.0594) (0.0616) (0.0164) -

- - 0.9039 0.9288 3.7424 3.5065Fixed-b 2.82s - - (0.0657) (0.0616) (0.4292) -
Equicorr

0.0381 0.4211 0.8815 0.9170 4.4547 4.2753Plug-in p = 1/400 4.78s (0.0043) (0.0421) (0.0753) (0.0656) (0.0304) -
0.0117 0.1540 0.9122 0.9170 4.3489 4.2753Plug-in p = 1/20 25.60s (0.0025) (0.0271) (0.0691) (0.0656) (0.0293) -
0.0082 0.1124 0.9194 0.9170 4.3140 4.2753Plug-in p = 1 512.07s (0.0018) (0.0199) (0.0644) (0.0656) (0.0207) -

- - 0.9014 0.9170 4.5582 4.2753Fixed-b 2.85s - - (0.0674) (0.0656) (0.5681) -

Table 5.3: Results for the linear regression model.
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Estimator Comp. Estimation error Average coverage rate Average length
time Hessian Cov. Estimator Oracle Estimator Oracle

Identity
0.1812 0.3293 0.9039 0.9403 5.0715 4.8374Plug-in p = 1/400 5.70s (0.0281) (0.0792) (0.0501) (0.0540) (0.2071) -
0.0737 0.1636 0.9330 0.9403 4.9599 4.8374Plug-in p = 1/20 32.32s (0.0114) (0.0393) (0.0593) (0.0540) (0.1833) -
0.0597 0.1030 0.9418 0.9403 4.8751 4.8374Plug-in p = 1 643.86s (0.0093) (0.0250) (0.0532) (0.0540) (0.1973) -

- - 0.8956 0.9403 5.1763 4.8374Fixed-b 3.13s - - (0.1156) (0.0540) (0.4362) -
Equicorr

0.0993 0.3620 0.8880 0.9369 5.9456 5.6356Plug-in p = 1/400 5.75s (0.0287) (0.0992) (0.0540) (0.0561) (0.1716) -
0.0356 0.1441 0.9288 0.9369 5.7766 5.6356Plug-in p = 1/20 32.53s (0.0120) (0.0440) (0.0599) (0.0561) (0.1556) -
0.0240 0.1213 0.9383 0.9369 5.6873 5.6356Plug-in p = 1 645.56s (0.0101) (0.0359) (0.0577) (0.0561) (0.1715) -

- - 0.8949 0.9369 5.7532 5.6356Fixed-b 3.17s - - (0.1106) (0.0561) (0.4064) -

Table 5.4: Results for the logistic regression model.

5.5.2 Comparison of the inference procedures

In this subsection, we provide detailed comparisons of different inference procedures. Specif-

ically, we fix dimension d = 20, and compare the performance for the plug-in and fixed-b

HAR schemes. For plug-in estimators, at each iteration, we update the Hessian estimator

Ĥn in (5.54) using (5.38) with probability p chosen from 1, d−1, d−2. The fixed-b scheme

is updated by (5.62). We report the computation time, the estimation error of the Hessian

matrix, and the average coverage rate and length of these candidates based on 100 replica-

tions. The computation time is recorded in a simulation environment running Python 3.8

with a single 10-core Apple M1 Max chip.

The simulation for linear regression and logistic regression is given below in Tables 5.3–

5.4, respectively. Corresponding standard errors are reported in the brackets. We compare

the plug-in covariance estimator (plug-in) based inference (5.54) using p = 1, 1/20, 1/400

and fixed-b HAR (fixed-b) based inference (5.62). As can be referred from the two tables,
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the fixed-b HAR approach gives the fastest execution, due to the fact that no additional

function queries are required for Hessian matrix computation. The fixed-b HAR method is

even faster than the case of p = d−2 where we update only one entry (in expectation) for

the Hessian matrix in each (KW) step. Among plug-in cases, the performance of inference

improves as p increases, and it achieves a relatively more reliable coverage for p ≥ d−1, (i.e.,

at least d entries (in expectation) receive updates for the Hessian estimator per (KW) step),

with a significant cost of the computation time. In practice, we would recommend the fixed-b

HAR method for those computation-sensitive tasks, and the plug-in method with Hessian

sampling probability p ≥ d−1 in less computation-sensitive tasks.

d Pv Estimation error Average coverage rate Average length
Parameter Plug-in Cov. Plug-in Oracle Plug-in Oracle

0.0265 0.0587 0.9432 0.9440 3.1136 3.1078
(I) (0.0115) (0.0434) (0.1219) (0.1148) (0.8648) -

0.0264 0.0599 0.9396 0.9376 3.0639 3.0625
(S) (0.0124) (0.0453) (0.1276) (0.1250) (0.8211) -

0.0312 0.0718 0.9412 0.9420 3.6304 3.6237

5

(G) (0.0139) (0.0498) (0.1193) (0.1176) (0.9770) -
0.0728 0.1030 0.9418 0.9403 4.8751 4.8374

(I) (0.0124) (0.0250) (0.0532) (0.0540) (0.6441) -
0.0711 0.1017 0.9438 0.9419 4.8414 4.8156

(S) (0.0116) (0.0246) (0.0523) (0.0524) (0.6322) -
0.0749 0.1054 0.9427 0.9423 5.0873 5.0507

20

(G) (0.0121) (0.0248) (0.0563) (0.0523) (0.6654) -
0.2440 0.5236 0.9673 0.9082 12.0661 10.3175

(I) (0.0211) (0.1646) (0.0193) (0.0295) (1.0106) -
0.2353 0.5122 0.9605 0.9145 13.1366 11.1788

(S) (0.0205) (0.1530) (0.0201) (0.0358) (1.0891) -
0.2357 0.5147 0.9614 0.9161 13.2836 11.2901

100

(G) (0.0202) (0.1531) (0.0205) (0.0380) (1.0929) -

Table 5.5: Comparison among different direction distributions Pv.

5.5.3 Choices of the search direction distribution

In this subsection, we compare the results for different directions Pv. We report the results for

the logistic regression model with the identity design matrix Σ = I in Table 5.5. Detailed
199



m; Σ Pv Estimation error Average coverage rate Average length
Parameter Plug-in Cov. Plug-in Oracle Plug-in Oracle

0.0916 0.1972 0.9547 0.9342 3.7013 3.4794
(I+WOR) (0.0103) (0.1053) (0.0225) (0.0330) (0.2970) -

0.0947 0.2004 0.9551 0.9353 3.8800 3.6383
(I+WR) (0.0106) (0.1025) (0.0215) (0.0310) (0.3053) -

0.0958 0.2134 0.9552 0.9320 3.8893 3.6352

10; Identity

(S) (0.0118) (0.1172) (0.0219) (0.0368) (0.3054) -
0.1184 0.2581 0.9404 0.9126 3.6432 3.3700

(I+WOR) (0.0122) (0.1278) (0.0252) (0.0382) (0.2240) -
0.1235 0.2828 0.9431 0.9125 3.8352 3.5234

(I+WR) (0.0145) (0.1573) (0.0266) (0.0437) (0.2498) -
0.1224 0.2753 0.9435 0.9135 3.8225 3.5165

10; Equicorr

(S) (0.0144) (0.1501) (0.0259) (0.0422) (0.2614) -
0.0261 0.0531 0.9455 0.9438 0.8978 0.8938

(I+WOR) (0.0022) (0.0135) (0.0297) (0.0305) (0.0290) -
0.0333 0.0568 0.9455 0.9441 1.4037 1.3948

(I+WR) (0.0030) (0.0196) (0.0253) (0.0262) (0.0803) -
0.0334 0.0556 0.9458 0.9439 1.4034 1.3941

100; Identity

(S) (0.0028) (0.0199) (0.0231) (0.0247) (0.0816) -
0.0328 0.0664 0.9490 0.9441 0.9056 0.8971

(I+WOR) (0.0035) (0.0199) (0.0339) (0.0356) (0.0493) -
0.0453 0.0823 0.9494 0.9444 1.4183 1.3946

(I+WR) (0.0046) (0.0322) (0.0240) (0.0270) (0.0766) -
0.0451 0.0821 0.9497 0.9449 1.4157 1.3930

100; Equicorr

(S) (0.0048) (0.0321) (0.0249) (0.0270) (0.0777) -

Table 5.6: Comparison among different sampling schemes.
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specification of (I),(S),(G) can be referred to Section 5.3.1. We consider the logistic

regression model with design matrix Σ = I, and the (AKW) estimators are computed based

on the case of two function queries (m = 1). Corresponding standard errors are reported

in the brackets. Table 5.5 suggests the (AKW) algorithms with search directions (I), (S),

(G) achieve similar performance for parameter estimation error and average coverage rates,

while the average confidence intervals of (G) are generally larger. The observations in the

numerical experiments match our Proposition 5.3.12.

5.5.4 Multi-query (AKW) estimator

We further conduct experiments for the (KW) algorithm with multiple function-value queries

(m > 1) and compare the performance of m = 10, 100 using different search directions with

sampling schemes (I+WR), (I+WOR), and (S). We note that (I+WR) and (I+WOR) refer to

the uniform sampling from natural basis with and without replacement, respectively; and

(S) refers to the uniform sampling from the sphere. We report the results of the logistic

regression model with dimension d = 100 in Table 5.6. Corresponding standard errors are

reported in the brackets.

When m = 10, the (KW) algorithm using all three sampling schemes achieves similar

performance in both estimation and inference. When m = 100, the algorithm with (I+WOR)

achieves better performance than the other two sampling schemes by constructing around

30% shorter confidence intervals on average while achieving comparable coverage rates.

We further present in Figure 5.3 the estimation error of the parameters and covariance

matrices when we increase the function-query complexity m. The numerical results matches

the magnitudes of Q with regard to different m in Theorems 5.3.17–5.3.18, which could help

practitioners choose an appropriate m to balance the accuracy and computational cost. We

report the logistic regression results with with n = 105, d = 100, and the identity design

matrix Σ = I in Figure 5.3. The x-axis is the number of function evaluations per step (i.e.,
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Figure 5.3: The parameter estimation error and the relative covariance estimation error (see
(5.69)) for multiple function-value evaluations.

m+ 1).

5.6 Conclusion and future work

In this paper, we investigate the statistical inference problem for the Kiefer-Wolfowitz sto-

chastic optimization algorithm with random search directions. We show the asymptotic

normality for the (KW)-type estimators and provide consistent estimators of the asymptotic

covariance matrix to facilitate the inference. Our theoretical analysis provides a compre-

hensive comparison on the impact of different random search directions, the number of

multi-query evaluations, and sampling schemes. Our findings are validated by numerical

experiments.

For future works, our results and estimation methods may be potentially useful to un-

derstand asymptotic behaviors of other gradient-free variants of stochastic optimization al-

gorithms, e.g. moment-adjusted stochastic gradients [139], stochastic optimization under

constraints [62], high dimensional stochastic algorithms [35, 177], and SGD in contextual

bandit settings [40].

202



CHAPTER 6

ONLINE STATISTICAL INFERENCE FOR CONTEXTUAL

BANDITS VIA STOCHASTIC GRADIENT DESCENT

This is a joint work with He Li, Yichen Zhang, and Xi Chen.

6.1 Introduction

Following the seminal work of [167], the stochastic multi-armed bandit problem has been

studied extensively in the literature, where an agent aims to make optimal decisions sequen-

tially among multiple arms and only the selected arm reveals rewards consequently. As the

agent’s choice is often influenced by additional covariates, also referred to as contexts, con-

textual bandit problems have gained renewed attention in the past decades [201, 132, etc.].

With the development of internet and data technology, contextual bandit algorithms play

an important role in sequential decision-making applications, such as online advertisement

[138], precision medicine [125], e-commence [163, 45], and public policy [120]. Such decisions

are often referred to as recommendations, treatments, interventions, and public orders, while

the rewards can be healthcare outcomes, welfare utility, revenue as well as any measure of

satisfaction of decisions.

Most contextual bandit algorithms are built with the goal of learning the best action

under different contexts. In sequential settings, it is often formulated as minimizing the ex-

pected cumulative regret that the practitioner would have received if she knows the optimal

action. While the importance of this regret minimization is undisputed, reliable uncertainty

quantification of the learned decision rule is evidently important in many featured applica-

tions. For example, in a personalized medicine application where the intervention decision is

to choose t‘’he best medical treatment to optimize some health outcome, the risk for the se-

lected treatment plays a critical and even sometimes life-threatening role in decision-making.
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Such examples call for the crucial need for a valid and reliable statistical inference procedure

accompanying the decision-making process to provide guidance on policy interventions. In-

ferential studies help not only prompt risk alerts in recommendations, but also gain scientific

knowledge of questions such as the effectiveness of medicines.

Particularly, consider a linear contextual bandit environment where the observed data

at each decision point t is a triplet ζt = (Xt, At, Yt) for all t ≥ 1, consisting of covariate

Xt, action At, and reward Yt = X>t θ
∗
At

+ εt where θ∗At ∈ R
d is unknown parameters of

interest governed by a finite set of actions A, and εt ∈ R is the noise under certain model-

ing assumptions. For illustrative simplicity, we consider a binary action space A = {0, 1}

corresponding to a duplet of underlying model parameters (θ∗0, θ
∗
1) ∈ Rd × Rd, and actions

At ∈ A are selected according to a policy At ∼ π (Xt,Ht−1) where Ht−1 denotes the tra-

jectory of observations until time t− 1. At the time t, a typical policy π prefers the action

with a higher mean reward X>t θ
∗
a for a ∈ A, while reserving a small probability to explore

a random action to avoid potential myopic short-sighted exploitation. For example, in the

widely-used ε-greedy policy,

Pr
(
At = a | Xt, θ0,t−1, θ1,t−1

)
= (1− ε)I

{
a = argmaxa∈AX

>
t θa,t−1

}
+
ε

2
, (6.1)

This procedure heavily relies on a series of estimators (θ0,t−1, θ1,t−1) on-the-fly, of the un-

derlying model parameters. Despite that a return-oriented policy would undoubtedly favor

the action with a higher reward, it is often as crucial to obtain the confidence of decisions,

i.e., conducting statistical inference for (θ∗0, θ
∗
1) in the prescribed applications. This model

of statistical inference of model parameters in decision-making problems appears recently in

literature (See e.g., 39, 205, and a brief survey in Section 6.1.1 below). A typical inferential

task provides a confidence interval of the underlying parameters (θ∗0, θ
∗
1) or significance levels

when testing hypotheses of parameters, or its margin θ∗1 − θ
∗
0.

Since the sequential decision-making problem relies on updating the estimator for every

204



t throughout the horizon, it is important to provide a computationally efficient fully-online

algorithm for both estimation and inference purposes. The existing literature of sequential

decision-making mostly focuses on the convergence rate and efficiency, while computational

efficiency and storage applicability of the estimation algorithm is often optimistically ne-

glected. As such, they often provide online decision-making procedures governed by an offline

scheme of parameter estimation. At each iteration t, an “offline” M -estimator (θ0,t, θ1,t) is

often obtained using the sample path {(X1, y1), (X1, y2), . . . , (Xt, yt)} up to time t. For ex-

ample, when using the linear estimator, the computation cost accumulates in a non-scalable

manner to at least O(T 3) over the entire horizon T .

To facilitate computationally efficient online inference, we adopt the stochastic gradient

descent (SGD) algorithms in conducting statistical inference in fully-online decision-making.

SGD, dated back to [168], has been widely used in large-scale stochastic optimization thanks

to its computational and storage efficiency. Let θ0 denote an initial estimation, the SGD

iteratively updates the parameter as follows,

θt = θt−1 − ηt∇`(θt−1; ζt), (6.2)

where ηt is a positive non-increasing sequence referred to as the step-size sequence and ∇` is

the gradient for smooth individual loss function `. For the SGD update above, under the i.i.d.

setting where ζt = (Xt, Yt), the classical result by [162] uses the average θ̄(SGD)
t = t−1∑t−1

s=0 θs

as the final estimator to accelerate the estimation. They characterize the limiting distribution

and statistical efficiency of the averaged SGD, i.e.,

√
t
(
θ̄

(SGD)
t − θ∗

)
=⇒ N

(
0, H(SGD)−1S(SGD)H(SGD)−1),

given a series of predetermined learning rates ηt = η0t
−α for η0 > and 0.5 < α < 1. Here

H(SGD) and S(SGD) are the Hessian and Gram matrix at θ = θ∗ for some population loss

205



function under i.i.d. settings. For model well-specified settings, this asymptotic covari-

ance matrix matches the inverse Fisher information matrix and thus the resulting averaged

estimator θ̄(SGD)
t is asymptotically efficient.

SGD fits well into the online decision-making scheme, as the underlying parameter (θ∗0, θ
∗
1)

is the solution to the following stochastic optimization under certain modeling assumptions,

θ∗a ∈ argmin
θ∈Rd

E
[
`
(
θ; (Xt, Yt)

)
| Xt, At = a

]
, a ∈ A, (6.3)

where the function ` ∈ Rd → R will be constructed accordingly. For example, in a linear

contextual bandit Yt = X>t θ
∗
At

+ εt with i.i.d. covariates Xt and mean-zero noise {εt}, a

natural choice of `
(
θ; (Xt, Yt)

)
=
(
yt − X>t θ

)2 is the squared loss. As the outcome Yt at

every time t is adaptively collected upon the decision of action At, only one of the
(
θ0,t, θ1,t

)
is updated. To compensate missing updates, a generalized SGD updates

θt = θt−1 − ηtwt∇`
(
θt−1; (Xt, Yt)

)
. (6.4)

with a weighting parameter wt determined by the decision policy π(Xt,Ht−1). This proce-

dure first appeared in [41] where they used the inverse probability weighting (IPW) for an

ε-greedy policy (See (IPW) below for the explicit form of the weight). As a consequence, the

weighted stochastic gradient wt∇`
(
θt−1; (Xt, Yt)

)
is proved to be an unbiased estimator of a

weighted population loss function where the weight is independent to the entire the historical

information. While the unbiasedness property of stochastic gradient and its independence

from the prior trajectory clear the technical difficulty of theoretical analysis of the asymptotic

normality of the IPW-weighted ASGD estimator, IPW increases its asymptotic variance by

a factor of 1/ε. With such a factor, the proposed algorithm leads to a highly-volatile es-

timator in practice and entails an overly wide confidence interval while making inferential

calls. Designing ameliorate decision-making algorithms to enhance the asymptotic efficiency
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of the estimator remains challenging yet important.

In this paper, we allow a general choice of the weighting parameter wt in (6.4), which

admits the IPW weights as a special case, and derive the explicit formula for the asymp-

totic distribution of the generalized-weighting ASGD algorithm, thus provides us a way to

compare different choices of wt and even optimize over wt for some simple models. Our pro-

posed estimator greatly improves the asymptotic efficiency over IPW-ASGD and achieves

comparable efficiency as if the practitioner picks one arm steadily. This estimator helps con-

struct narrow yet reliable confidence intervals for the underlying parameter of interest. The

analysis also reveals a recommendation of optimal choices of weights wt in certain policies.

To overcome the technical challenge raised in dependent weighting parameters, we propose

a new definition of the loss function, which is different from the loss function used in clas-

sical SGD literature (e.g., 44) and adaptive SGD literature [41]. We use two parameters θ

and θ′ to separate the effect of weighting parameters in SGD and that of decision-making

procedures in the local geometric landscape of the loss function.

As a separate interest, our framework allows non-smooth loss functions such as quan-

tile loss. In contrast to linear regression, quantile regression provides estimates of a range

of conditional quantiles of the reward Yt. Since contextual bandit problems often appear

in an interactive environment, the underlying reward model is more likely to differ across

the distribution of the rewards and contexts or involves outliers. Linear regression methods

estimate only the mean effects which is usually an incomplete summary of the effect of ex-

posures for certain outcomes. For example, when recommending health care interventions,

associations between health care and health outcomes can be highly different among indi-

viduals at high-, median-, and low-level utilization of health care. Quantile regression finds

ubiquitous applications in many fields such as operations management of business inventory

and risk management of financial assets [169, 13]. Therefore, it is worth exploring the use of

quantile-based objective functions in sequential decision-making problems. In this paper, we
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establish a general framework that allows certain nonsmooth objective functions including

quantile regression.

We emphasize the technical challenges and summarize the methodology contribution and

theoretical advances in the following facets.

• We study the online statistical inference of model parameters in a contextual ban-

dit framework of sequential decision-making. We adopt the existing fully-online re-

weighting algorithm for SGD but extend it in two directions: for a general choice of

weights and handling non-smooth loss functions via stochastic subgradient. An impor-

tant example is the quantile loss functions with applications in newsvendor problems

and risk management. Moreover, this example provides robustness due to the fact

that the objective function is globally Lipschitz. We establish the asymptotic nor-

mality result and characterize how the asymptotic covariance depends on the weight

choice.

• We show that SGD under ε-greedy policies with inverse probability weighting (IPW) in

[41] suffers from an unbounded asymptotic variance when the exploration rate, ε is close

to 0, i.e., the relative efficiency of adaptive models versus non-adaptive models diverges

to infinity. Our proposed algorithm features a general policy with a flexible specification

of the weights to avoid such deficiency and obtain a bounded relative efficiency. We

further provide some practical insights into the optimal weight specification.

• Beyond the asymptotic normality of the proposed estimator, we further establish an

analysis of the higher-order remainder term in its Bahadur representation. In classical

i.i.d. SGD settings, the remainder term has the rate of Op
(
t−α+1

2 + tα−1
)
. On the

contrary, under the adaptive decision-making environment, the reminder term has a

slower rate of Op
(
t−α+1

2 + t−
α
4 + tα−1

)
. This slower rate can be considered as the

effect of the discontinuous indicator function for the ε-greedy policy.
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6.1.1 Related works

Online statistical inference for model parameters in SGD The asymptotic distri-

bution of averaged stochastic gradient descent (ASGD) is first given in [172] in [162]. Since

then, there has been a rapid growth of interest recently in conducting statistical inference

for model parameters in stochastic gradient algorithms. [44] proposed two online estima-

tors (plug-in and batch-means) in constructing estimators of limiting covariance matrix of

ASGD, of which [211] extended the batch-means to overlapped batches. [72] proposed a

perturbation-based resampling procedure to conduct inference for ASGD. [189] proposed a

tree-structured inference scheme to construct confidence intervals. [136, 137] generalized

the results in [162] to a functional central limit theorem and proposed an online inference

procedure called random-scaling for smooth objectives and quantile regression, respectively.

Statistical inference in online decision-making problems [39] studied the asymp-

totic distribution of the parameters under a linear contextual bandit framework. [56, 122]

considered adaptive linear regression where the vector contexts are correlated over time.

[205, 206] conducted statistical inference for M-estimators in contextual bandit and non-

Markovian environments. [94] used multiplier bootstrap to offer uncertainty quantification

for exploration in the bandit settings. [41] conducted statistical inference under the con-

textual bandit settings via SGD. There also exists related statistical inference literature in

reinforcement learning as a well-known online decision-making setting. [164] conducted sta-

tistical inference for TD (and GTD) learning. [178] constructed the confidence interval for

policy values in Markov decision processes. [179] conducted statistical inference for con-

founded Markov decision processes. [37] developed the confidence interval for heterogeneous

Markov decision processes.
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6.1.2 Notations

We first introduce some notations in our paper. For any pair of positive integers m < n,

we use [m : n] as a shorthand for the discrete set of {m,m + 1, . . . , n}. For any vector

θ ∈ Rd, we use θ[m:n] to denote the vector consisting of the m-th to n-th coordinates of θ.

Similarly, θ[m:n],t is the corresponding subvector of θt. For a set of random variables Xn

and a corresponding set of constants an, Xn = Op(an) means that Xn/an is stochastically

bounded and Xn = op(an) means that Xn/an converges to zero in probability as n goes to

infinity. We denote
p→, and d→ as convergence in probability and convergence in distribution,

respectively.

For convenience, let ‖·‖ denote the standard Euclidean norm for vectors and the spectral

norm for matrices. We use the standard Loewner order notation Σ � 0 if a matrix Σ is

positive semi-definite. Denote Id as the identity matrix in Rd×d. For any square matrix Σ,

λmin(Σ) and λmax(Σ) represent the smallest and the largest eigenvalues, respectively. We

also introduce I(·) for the indicator function, and . is used for inequalities with omitted

constants.

The remainder of the paper is organized as follows. In Section 6.2, we consider the envi-

ronment where we collect data adaptively. We describe the weighted version SGD under this

setting and give two illustrative examples of the classical regression problems. In Section 6.4,

we first introduce the technical assumptions before we present the asymptotic distribution

for general weighted SGD under this adaptive data collection scheme, along with a compar-

ison on the statistical efficiency to the previous result proposed in [41]. We further justify

our assumptions under the two illustrative regression examples and show the asymptotic

normality for these two cases. Section 6.4.2 gives the finite-sample rate for our SGD update

under adaptive environment. We compare our result with the classical SGD rate, where the

slower rate is due to the adaptively collected data. Simulation studies and real data analyses

in Section 6.5 lend numerical support to the theoretical claims in this paper, which also
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provides hands-on guidelines to practitioners.

6.2 Problem setup

We consider a contextual bandit environment where the observed data at each decision point

t is a triplet ζt = (Xt, At, Yt) for all t ≥ 1, consisting of covariate Xt, action At, and reward

Yt. In this paper, we consider a finite action space, i.e., At ∈ A and |A| < ∞. We assume

a stochastic contextual bandit environment in which {Xt, Yt(a) : a ∈ A} i.i.d∼ P ∈ P for all

t ≥ 1. The contextual bandit environment distribution P is in a space of possible environment

distributions P. Here Yt(a) corresponds to the (heuristic) reward Yt given a fixed action a

regardless of the realized action At. Note that Yt(a) is observed for a = At only, but not

observed for any other a ∈ A, a 6= At.

We define the trajectory until time t as Ht := {Xs, As, Ys}ts=1 for t ≥ 1 and H0 := ∅.

Actions At ∈ A are selected according to some policy At ∼ π (Xt,Ht−1), which defines

action distribution. Even though the covariate reward tuples are i.i.d., the observed data

{Xt, At, Yt}t≥1 are not i.i.d., since the actions are selected using policies π (Xt,Ht−1) which

is a function of past data, Ht−1. Non-independence of observations is a key property of

adaptively collected data.

We are interested in constructing confidence regions for some unknown θ∗ ∈ Rd. Under

the finite action space where |A| <∞, we can use θ∗ as the concatenated vector of θ∗a for all

a ∈ A, where we assume that θ∗a is a conditionally maximizing value of some loss function

`(θ; ζ) for P ∈ P,

θ∗a(P) ∈ argmin
θ∈Rd

EPY |X [` (θ; ζ) | X,A = a] . (6.5)

Note that (6.5) represents an implicit modeling assumption that such an underlying θ∗a does

not depend on X for a given loss `(θ; ζ). This assumption is generally satisfied in many
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statistical applications. For example, in a classical regression setting, a natural choice for

`(θ; ζ) is as follows,

`(θ; ζt) = ρ
(
Yt −X>t θAt

)
, (6.6)

where θ ∈ Rd is the concatenated vector of θAt ∈ R
p for all possible choices of At ∈ A and

d = p|A|. Here ρ(·) is some convex loss function. Note that ` can be non-smooth as long

as ∇` exists almost surely. We illustrate several examples of popular statistical models, and

we will refer to these examples throughout the paper.

Example 6.2.1 (Linear Regression). Consider a two-arm linear contextual bandit problem

where

E[Yt | At, Xt] = X>t θ
∗
At

= (1− At)
(
X>t θ

∗
[1:p]

)
+ At

(
X>t θ

∗
[p+1:2p]

)
,

where θ∗ ∈ Rd is the concatenated vector of θ∗
[1:p]

and θ∗
[p+1:2p]

and θ∗
[1:p]

6= θ∗
[p+1:2p]

,

{Xt, Yt(a) : a ∈ A} i.i.d∼ P ∈ P for all t ≥ 1, and A = {0, 1}. The true reward Yt is generated

by E[Yt | At, Xt] + Et where {Et} are i.i.d. random error with mean zero and variance σ2.

Under the linear regression model, our loss function ` is defined as

`(θ; ζt) =
1

2
(1− At)

(
Yt −X>t θ[1:p]

)2
+

1

2
At

(
Yt −X>t θ[p+1:2p]

)2
.

Example 6.2.2 (Logistic Regression). Consider a two-arm contextual bandit problem under

the logistic model with binary rewards where At ∈ A = {0, 1}, Yt ∈ {−1, 1}, and

P(Yt | At, Xt) =
(

1 + exp
(
−(1− At)YtX>t θ∗[1:p] +−AtYtX>t θ∗[p+1:2p]

))−1
.
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We consider the entropy loss

`(θ; ζt) = (1− At) log
(

1 + exp
(
−YtX>t θ[1:p]

))
+ At log

(
1 + exp

(
−YtX>t θ[p:2p]

))
.

Example 6.2.3 (Quantile Regression). Consider a two-arm linear contextual bandit problem

where

Yt = (1− At)X>t θ∗[1:p] + AtX
>
t θ
∗
[p+1:2p] + Et,

and {Et} are i.i.d. random error such that, Pr(Et ≤ 0) = τ for some given quantile level

τ ∈ (0, 1). Consider a quantile loss such that

`(θ; ζt) = (1− At)ρτ
(
Yt −X>t θ[1:p]

)
+ Atρτ

(
Yt −X>t θ[p+1:2p]

)
,

where ρτ (u) = u(τ − I(u < 0)).

6.3 SGD with weighted stochastic gradients

Under the adaptive data collection scheme, we now consider a generalized version of the

classical SGD (6.2) with weights wt depends only on the triplet (At, Xt, θt−1), as follows,

θt = θt−1 − ηtwt∇`(θt−1; ζt). (6.7)

We consider the following three popular choices of weight wt as examples throughout the

paper.

(IPW) Inverse probability weighting: wt(At, Xt, θt−1) =
1

2 Pr(At | Xt, θt−1)
.

(sqrt-IPW) Square-root importance weights: wt(At, Xt, θt−1) =

√
1

2 Pr(At | Xt, θt−1)
.
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(vanilla) No weights applied to the SGD updates. wt(At, Xt, θt−1) = 1.

These weighting schemes are well-rooted in literature, such as (IPW) by [41] that corrects

the action distribution to some deterministic stable policy, and (sqrt-IPW)in [93] and [205].

The proposed method is not limited to the analysis of these three weights but is applied to

general weight specifications.Before we present our main result, we revisit the three afore-

mentioned motivating examples and illustrate the weighted SGD algorithm for the three

models.

Example 6.3.1 (6.2.1 continued.). Under the linear regression model, the weighted SGD

(6.7) writes as

θ[1:p],t = θ[1:p],t−1 − ηtwtXt
(
X>t θ[1:p],t−1 − Yt

)
, At = 0;

θ[p+1:2p],t = θ[p+1:2p],t−1 − ηtwtXt
(
X>t θ[p+1:2p],t−1 − Yt

)
, At = 1.

Example 6.3.2 (6.2.2 continued.). Under a logistic regression model, the weighted SGD

(6.7) writes as

θ[1:p],t = θ[1:p],t−1 + ηtwt

(
1 + exp

(
YtX

>
t θ[1:p],t−1

))−1
YtXt, At = 0;

θ[p+1:2p],t = θ[p+1:2p],t−1 + ηtwt

(
1 + exp

(
YtX

>
t θ[p+1:2p],t−1

))−1
YtXt, At = 1.

Example 6.3.3 (6.2.3 continued.). Under the quantile regression model, the weighted SGD

(6.7) writes as

θ[1:p],t = θ[1:p],t−1 + ηtwt

(
τ − I(Yt −X>t θ[1:p],t−1 < 0)

)
Xt, At = 0;

θ[p+1:2p],t = θ[p+1:2p],t−1 + ηtwt

(
τ − I(Yt −X>t θ[p+1:2p],t−1 < 0)

)
Xt, At = 1.

Given our path of {θt}t≥1, we assume the policy π (Xt,Ht−1) depend on the history
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Ht−1 only through θt−1, our estimator from the latest step, i.e., At ∼ π (Xt, θt−1). We

consider a common policy, ε-greedy, to address the exploration-and-exploitation dilemma,

where the probability of action At is defined as,

Pr(At = 0 | Xt, θt−1) = (1− ε)I
{
X>t θ[1:p],t−1 > X>t θ[p+1:2p],t−1

}
+
ε

2
, (6.8)

for some constant ε ∈ (0, 1). In practice, the ε is often set as some small constant close to

zero. Note that this setting can be relaxed to a deterministic sequence {εt} which converges

to some constant ε∞ ∈ (0, 1). Note that this may be relaxed to At ∼ π (Xt,Φt−1) for some

other statistic Φt−1 relies on the history θ0, θ1, · · · , θt−1, for example, the running average

of the {θs}t−1
s=0.

We now use the linear regression model in Example 6.2.1 with random design as a special

case of our main result that will be presented in Theorem 6.4.7 below. We specify wt as a

function of Pr(At | Xt, θt−1), i.e., wt(At, Xt, θt−1) = ϕ(Pr(At | Xt, θt−1)). The following

Theorem 6.3.4 provides a new way to further determine the optimal weighting scheme to

minimize the asymptotic variance of the average SGD estimator.

Theorem 6.3.4. In the linear regression setting in Example 6.2.1, assume that Xt ∼

N (µ, Ip), and ϕ(·) : (0, 1) 7→ R+ is continuous. The averaged SGD estimator θ̄t converges
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to θ∗ almost surely as t→∞ and

√
t(θ̄t − θ∗)

d→ N (0, H−1SH−1), where S =

S1 0

0 S2

 , H =

H1 0

0 H2

 ,
S1 = σ2

(
(1− ε

2
)ϕ2(1− ε

2
)G∗1 +

ε

2
ϕ2(

ε

2
)G∗2

)
,

S2 = σ2
(ε

2
ϕ2(

ε

2
)G∗1 + (1− ε

2
)ϕ2(1− ε

2
)G∗2

)
,

H1 = (1− ε

2
)ϕ(1− ε

2
)G∗1 +

ε

2
ϕ(
ε

2
)G∗2, H2 =

ε

2
ϕ(
ε

2
)G∗1 + (1− ε

2
)ϕ(1− ε

2
)G∗2,

G∗1 = Φ (a∗) Ip +
1√
2π
a∗e

a∗2
2 ν∗ν∗>, G∗2 = (1− Φ (a∗)) Ip −

1√
2π
a∗e

a∗2
2 ν∗ν∗>,

and ν∗ = (θ∗
[1:p]
− θ∗

[p+1:2p]
)/‖θ∗

[1:p]
− θ∗

[p+1:2p]
‖, a∗ = µ>ν∗√

1+(µ>ν∗)2
, and Φ is the cumulative

distribution function of standard normal distribution.

Theorem 6.3.4 can be considered as a special case of our main result which will be pre-

sented in 6.4. It follows directly from Remark 6.4.1 and Corollary 6.4.8. Here the definition

of ν∗ and consequently the existence of the asymptotic covariance matrix are assured by the

implicit non-degenerate model assumption such that θ∗
[1:p]
6= θ∗

[p+1:2p]
.

In light of Theorem 6.3.4, we are ready to conduct a comparison among the three popular

weighting schemes. Here we specify ϕγ(ε) = εγ as a class of power functions parameterized

by γ. This class of weights covers the following three popular weighting schemes: (IPW) as

γ = −1, (sqrt-IPW) as γ = −1/2, and (vanilla) as γ = 0, up to some constants. We can

write H−1SH−1 as follows,

H−1SH−1 = σ2

c1I + c2ν
∗ν∗> 0

0 c3I + c4ν
∗ν∗>

 , (6.9)
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where

c1 =
(1− ε

2)1+2γΦ(a) + (ε2)1+2γ(1− Φ(a))

((1− ε
2)1+γΦ(a) + (ε2)1+γ(1− Φ(a)))2

,

c2 =
(1− ε

2)1+2γ(Φ(a) + 1√
2π
ae

a2

2 ) + (ε2)1+2γ(1− Φ(a)− 1√
2π
ae

a2

2 )

((1− ε
2)1+γ(Φ(a) + 1√

2π
ae

a2
2 ) + (ε2)1+γ(1− Φ(a)− 1√

2π
ae

a2
2 ))2

− c1,

c3 =
(1− ε

2)1+2γ(1− Φ(a)) + (ε2)1+2γΦ(a)

((1− ε
2)1+γ(1− Φ(a)) + (ε2)1+γΦ(a))2

,

c4 =
(1− ε

2)1+2γ(1− Φ(a)− 1√
2π
ae

a2

2 ) + (ε2)1+2γ(Φ(a) + 1√
2π
ae

a2

2 )

((1− ε
2)1+γ(1− Φ(a)− 1√

2π
ae

a2
2 ) + (ε2)1+γ(Φ(a) + 1√

2π
ae

a2
2 ))2

− c3.

The eigenvalues of the asymptotic covariance matrix are c1, c1+c2, c3, c3+c4 in the above

equations. Since H1, H2, G1, G2 all have the form b̃I + c̃ν∗ν∗> for some constants b̃ and c̃,

they can be simultaneously diagonalized. When varying γ, the eigenvectors stay fixed and

each eigenvalue changes in the following form with some b ∈ (0, 1),

g(γ) =
(1− ε/2)1+2γb+ (ε/2)1+2γ(1− b)(
(1− ε/2)1+γb+ (ε/2)1+γ(1− b)

)2 . (6.10)

In practice, for the ε-greedy policy, the parameter ε is usually taken as some small constant.

When ε gets close to 0, it can be inferred from (6.10) that γ ≥ −1/2 leads to a finite covari-

ance matrix when ε goes to zero. This includes (vanilla) and (sqrt-IPW) but excludes

(IPW). Furthermore, the minimum of (6.10) is obtained at γ = 0 for all b ∈ (0, 1). Therefore,

under the settings in Theorem 6.3.4, (vanilla) has an asymptotic covariance matrix that is

dominated by any other asymptotic covariance matrix obtained from a power-law weighted

scheme, ϕ(ε) = εγ . The following Corollary 6.3.5 concludes the above discussion and further

extends to general weighting schemes w.

Corollary 6.3.5 (Optimal weights in linear regression). Under Assumption 6.4.2 to As-

sumption 6.4.6, the (vanilla)SGD has the optimal asymptotic covariance matrix in the
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linear regression setting, i.e., Σvnl � Σ̃, where Σvnl is the asymptotic covariance matrix of

vanilla SGD and Σ̃ is the asymptotic covariance matrix under any other weighting function

ϕ where wt(At, Xt, θt−1) = ϕ(Pr(At | Xt, θt−1)).

Proof. Consider a k-arm bandit linear regression setting. Our central limit theorem gives

the covariance of the form

Σ = H−1SH−1,

where

H = ∇2Lθ∗(θ∗) = E[w(θ∗)∇2`(θ∗)],

and

S = E[ξθ∗(θ
∗; ζ)ξθ∗(θ

∗; ζ)>] = E[(w(θ∗)2∇`(θ∗)∇`(θ∗)>].

One special property of linear regression is that

∇2`(θ∗)2 = (XtX
>
t )⊗ Ei,

where Ek is the matrix with 1 on the (k, k) entry and other entries to be 0, i means we

choose the i-th bandit, and

(∇`(θ∗))(∇`(θ∗))> = (XtX
>
t )⊗ EiEσ2.

So they differ only by a constant factor. If w is constant instead of stochastic, we denote

the corresponding H,S,Σ as Hc, Sc,Σc. We claim that Σ � Σc. Equal weight is optimal for
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linear regression. This is equivalent to

(E[w(θ∗)∇2`(θ∗)])−1(E[w(θ∗)2∇2`(θ∗)])(E[w(θ∗)∇2`(θ∗)])−1 � (E[∇2`(θ∗)])−1,

which is the same as

E[w(θ∗)2∇2`(θ∗)]− (E[w(θ∗)∇2`(θ∗)])(E[∇2`(θ∗)])−1(E[w(θ∗)∇2`(θ∗)]) � 0.

By Schur complement, this is equivalent to

E[w(θ∗)2∇2`(θ∗)] E[w(θ∗)∇2`(θ∗)]

E[w(θ∗)∇2`(θ∗)] E[∇2`(θ∗)]

 � 0.

Note that w(θ∗)2∇2`(θ∗) w(θ∗)∇2`(θ∗)

w(θ∗)∇2`(θ∗) ∇2`(θ∗)

 � 0.

Therefore, our conclusion holds.

6.4 Asymptotic normality under general models

We provide the main theoretical results in this section. To facilitate the analysis of the

asymptotic behavior of SGD update (6.7) in a general model, we define the function Lθ′(θ)

as follows,

Lθ′(θ) = EP
[
Eπ(X,θ′)

(
w(θ′;X,A)`(θ;X,A, Y ) | X

)]
, (6.11)
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where A ∼ π(X, θ′), θ′, θ ∈ Rd, and gradient weight w depending on θ′, action A and

covariate X. Note that the objective Lθ′(θ) is a function of θ with a parameter θ′ that

corresponds to the current estimate being used to select the action. Typically we use θ′ =

θt−1 at iteration t. Below we will always use the expression ∇Lθ′(θ) to represent the partial

gradient of Lθ′(θ) with respect to the variable θ, i.e.,

∇Lθ′(θ) =
∂

∂θ
Lθ′(θ) ∈ Rd, ∇2Lθ′(θ) =

∂2

∂θ2
Lθ′(θ) ∈ Rd×d.

We note that for quantile regression in Example 6.2.3, even though the individual objective

`(θ;X, Y ) is nonsmooth, the population objective Lθ′(θ) is second-order differentiable with

some smoothness conditions on the error distribution. Finally, we denote ξθ′(θ; ζ) as the

difference between the stochastic gradient and population gradient of the loss defined in

(6.11), i.e.,

ξθ′(θ; ζ) = w(θ′;X,A)∇`(θ; ζ)−∇Lθ′(θ), (6.12)

By definition, we can easily verify that w(θ′;X,A)∇`(θ; ζ) is an unbiased estimator of

∇Lθ′(θ), E[ξθ′(θ; ζ)] = 0.

In the previous work of [41], the loss function is defined with respect to some pre-

determined stable policy πstable, i.e.,

L̃(θ) = EP
[
Eπstable (`(θ;X,A, Y ) | X)

]
, (6.13)

where A ∼ πstable and πstable is a Bernoulli(1/|A|), uniformly distributed on the action space

A. To match the SGD update with the loss function L̃(·), they choose the (IPW)-weighted

SGD such that wt = πstable
π(X,θ)

. This weighting scheme corrects the sampling distribution of the

action At towards the Bernoulli distribution under the stable policy. However, this definition
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cannot be extended to a general weighting scheme and the resulting asymptotic covariance

matrix could be extremely large as we will see in the discussion after Theorem 6.4.7. Our

framework allows a broader class of weighting schemes, and our theoretical analysis relies

heavily on our definition of the loss function Lθ′(θ) in (6.11). By expressing the loss using

two different variables θ and θ′, we separate the loss `(θ; ζ) from the policy π(X, θ′) and the

weight w(θ′;X,A), as we have a focus on the local geometry of `(θ; ζ) instead of the local

geometry of π(X, θ′) and w(θ′;X,A).

In the Remark 6.4.1 below, we illustrate our definition of Lθ′(θ) and our assumptions

above using a special case where the covariate X follows a normal distribution.

Remark 6.4.1. Under the linear setting in Theorem 6.3.4. We have for any ε,

Lθ′(θ) = (θ∗ − θ)>G(θ∗ − θ) +
σ2

2

(
(1− ε

2
)ϕ(1− ε

2
) +

ε

2
ϕ(
ε

2
)
)
,

where we denote Φ(·) as the c.d.f. for standard normal distribution and

G =

(1− ε
2)ϕ(1− ε

2)G1 + ε
2ϕ(ε2)G2 0

0 (1− ε
2)ϕ(1− ε

2)G2 + ε
2ϕ(ε2)G1

 .

G1 = Φ (a) Ip +
1√
2π
ae

a2

2 ν′ν′>, G2 = (1− Φ (a)) Ip −
1√
2π
ae

a2

2 ν′ν′>,

where ν′ is the normalized margin between the two arms of θ′,

ν′ = (θ′[1:p] − θ
′
[p+1:2p])/

∥∥∥θ′[1:p] − θ
′
[p+1:2p]

∥∥∥ , and a =
µ>ν′√

1 + (µ>ν′)2
.
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6.4.1 Asymptotic normality

We first introduce some regularity assumptions on the population loss function Lθ′(θ), the

individual loss function `(θ; ζ), and the gradient weight w(θ′;X,A).

Assumption 6.4.2. There exists some constants w,w, such that 0 < w < wt < w for all

t ≥ 1.

Assumption 6.4.3. The loss function Lθ′(θ) is convex with respect to θ ∈ Rd, continuously

differentiable with respect to θ ∈ Rd, and twice continuously differentiable with respect to θ at

θ∗. Moreover, there exists some constants δ, λ > 0, such that 〈∇Lθ(θ), θ− θ∗〉 > 0, ∀θ 6= θ∗

and

〈∇Lθ(θ), θ − θ∗〉 ≥ λ‖θ − θ∗‖2, ∀ θ ∈ {θ : ‖θ − θ∗‖ ≤ δ}.

Assumption 6.4.4. The Hessian matrix ∇2Lθ′(θ) ∈ Rd×d exists for all (θ; θ′) ∈ Rd × Rd

and the Hessian matrix at (θ∗; θ∗) is positive definite, i.e., H , ∇2Lθ∗(θ∗) � 0. Moreover,

the Hessian matrix ∇2Lθ′(θ) is K-Lipschitz continuous at (θ∗, θ∗), i.e.,

∥∥∥∇2Lθ′(θ)−∇2Lθ∗(θ∗)
∥∥∥ ≤ K‖θ − θ∗‖+K‖θ′ − θ∗‖,

for all (θ, θ′) such that ‖θ − θ∗‖+ ‖θ′ − θ∗‖ ≤ 2δ.

Assumption 6.4.5. For any action A ∈ A and covariate X, we further assume,

EPY |X
(
‖∇`(θ; ζ)‖2 | X,A

)
≤ φ(X)(1 + ‖θ − θ∗‖2),

for some function φ(·) such that E[φ(X)] = κ for some constant κ > 0. We also assume the

Gram matrix of ξθ′(θ; ζ) at (θ∗; θ∗), S , E[ξθ∗(θ
∗; ζ)ξθ∗(θ

∗; ζ)>], exists.
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Assumption 6.4.6. Let ∆(X, θ) = dTV (π(X, θ), π(X, θ∗)) be the total variation distance of

π(X, θ) and π(X, θ∗). For function φ(X) defined in Assumption 6.4.5, we have

lim
θ→θ∗

EPX [∆(X, θ)φ(X)] = 0,

lim
θ→θ∗

EPY |X
[
‖∇`(θ; ζ)−∇`(θ∗; ζ)‖2 | X,A

]
= 0,

lim
θ→θ∗

EPX
[
|w(θ;X,A)− w(θ∗;X,A)|2φ(X) | A

]
= 0.

Assumption 6.4.2 is a common assumption on the weights applied to the stochastic gra-

dient, which is used in many adaptive setting literature, e.g., [39], [41], and [205]. The

convexity and continuity on the population loss L in Assumption 6.4.3 is a standard re-

quirement in classical SGD literature [162, 44, 41, 62]. We can also find similar arguments

in the SGD literature mentioned above for Assumption 6.4.3 to Assumption 6.4.5, whereas

we generalize the previous assumptions on our loss function Lθ(θ) with an extra variable

θ′. Assumption 6.4.6 further gives some regularity on the function φ(·) defined in Assump-

tion 6.4.5. Later we will further verify our assumptions on the two examples we mentioned

above, i.e., the linear regression and the quantile regression. It is noteworthy to mention

that, in Assumption 6.4.5 and Assumption 6.4.6, we only implicitly assume ∇` exists almost

surely under PY |X . Therefore, our assumption is not restricted to smooth loss function `,

it also covers many non-smooth statistical problems like quantile regression and robust re-

gression. We now state our main result that characterizes the limiting distribution of the

averaged weighted SGD iterates defined in (6.7) under general models.

Theorem 6.4.7. Under Assumption 6.4.2 to Assumption 6.4.6, the averaged SGD estimator

θ̄t converges to θ∗ almost surely when t→∞ and

√
t(θ̄t − θ∗)

d→ N (0, H−1SH−1),
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where H = ∇2Lθ∗(θ∗) and S = E[ξθ∗(θ
∗; ζ)ξθ∗(θ

∗; ζ)>].

Proof. By definition, the loss function can be written as

Lθ′(θ) = E[w(θ′;X,A′)`(θ;Y,X,A′)]

= EPX ,π(X,θ′)

{
EPY |X [w(θ′;X,A′)`(θ;Y,X,A′)] | X,A′

}
.

By Equation (6.5), θ∗ is the minimizer, i.e., θ∗ ∈ argmin
θ∈Rd

Lθ′(θ). Because L is differentiable,

We have ∇Lθ′(θ∗) = 0. Moreover, we have

‖∇Lθ(θ)−H(θ − θ∗)‖ = ‖∇Lθ(θ)−∇Lθ(θ∗)−H(θ − θ∗)‖

=

∥∥∥∥∫ 1

0

(
∇2Lθ(θ∗ + s(θ − θ∗))−H

)
(θ − θ∗)ds

∥∥∥∥
≤ K‖θ − θ∗‖2, (6.14)

for ‖θ − θ∗‖ < δ as stated in Assumption 6.4.4.

By Equation (6.12), we have w(θ′;X,A)∇`(θ; ζ) = ξθ′(θ; ζ) + ∇Lθ′(θ). Notice that we

have the following inequality,

E[‖w(θ;X,A)∇`(θ; ζ)‖2] ≤ w2E[∇`(θ; ζ)2] ≤ w2κ(1 + ‖θ − θ∗‖2).

Therefore, by the fact that E[ξθ(θ; ζ)] = 0, the two terms can be bounded by

‖∇Lθ(θ)‖2 ≤ w2κ(1 + ‖θ − θ∗‖2),

E
[
‖ξθ(θ; ζ)‖2

]
≤ w2κ(1 + ‖θ − θ∗‖2).

The above bounds can already guarantee the almost surely convergence of θt by Theorem

2 of [162]. Now we need to quantify the difference between ξθt−1(θt−1; ζ) and ξθ∗(θ∗; ζ). Using
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the coupling we defined in Equation (6.20), it can be bounded by

EP,ν‖ξθt−1(θt−1; ζ)− ξθ∗(θ∗; ζ)‖2

≤ 2‖∇Lθt−1(θt−1)−∇Lθ∗(θ∗)‖2

+ 2EP,ν
[
‖w(θt−1;Xt, At)∇`(θt−1; ζt)− w(θ∗;Xt, A

∗)∇`(θ∗;Xt, A∗, Yt)‖2
]

:= 2M1 + 2M2.

From (6.14), we have the following bound for M1,

M1 ≤ 2K2‖θt−1 − θ∗‖4 + 2‖H‖22‖θt−1 − θ∗‖2. (6.15)

Therefore, as θt−1 converges to θ∗, M1 converges to 0.

The second term has the following inequality,

M2 ≤ EPX [∆(Xt, θt−1)M3 + (1−∆(Xt, θt−1))M4] , (6.16)

where

M3 := EPY |X ,ν
[∥∥∥∥w(θt−1;Xt, At)∇`(θt−1;Xt, At, Yt)

− w(θ∗;Xt, A
∗)∇`(θ∗;Xt, A∗, Yt)

∥∥∥∥2

| Xt, At 6= A∗
]
,

M4 := EPY |X ,ν
[∥∥∥∥w(θt−1;Xt, At)∇`(θt−1;Xt, At, Yt)

− w(θ∗;Xt, A
∗)∇`(θ∗;Xt, A∗, Yt)

∥∥∥∥2

| Xt, At = A∗
]
.
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The third term M3 can be bounded as,

M3 ≤ 2w2EPY |X ,ν
[
‖∇`(θt−1;Xt, At, Yt)‖2 + ‖∇`(θ∗;Xt, A∗, Yt)‖2 | Xt, At 6= A∗

]
≤ 4w2(1 + ‖θt−1 − θ∗‖2)φ(Xt). (6.17)

Finally, we have

M4 ≤ max
A∈A

EPY |X [‖w(θt−1;Xt, A)∇`(θt−1;Xt, A, Yt)

− w(θ∗;Xt, A)∇`(θ∗;Xt, A, Yt)‖2 | Xt, A]

≤ 2 max
A∈A

EPY |X [‖w(θt−1;Xt, A)∇`(θt−1;Xt, A, Yt)

− w(θt−1;Xt, A)∇`(θ∗;Xt, A, Yt)‖2 | Xt, A]

+ 2 max
A∈A

EPY |X [‖w(θt−1;Xt, A)∇`(θ∗;Xt, A, Yt)

− w(θ∗;Xt, A)∇`(θ∗;Xt, A, Yt)‖2 | Xt, A]

≤ 2w2 max
A∈A

EPY |X
[
‖∇`(θt−1;Xt, A, Yt)−∇`(θ∗;Xt, A, Yt)‖2 | Xt, A

]
+ 2 max

A∈A
|w(θt−1;Xt, A)− w(θ∗;Xt, A)|2φ(Xt). (6.18)

Combining (6.17) and (6.18) into (6.16), we have

M2 ≤ EPX
[
∆(Xt, θt−1)4w2(1 + ‖θt−1 − θ∗‖2)φ(Xt)

]
+ EPX

[
2w2 max

A∈A
EPY |X [‖∇`(θt−1;Xt, A, Yt)−∇`(θ∗;Xt, A, Yt)‖2 | Xt, A]

]
+ EPX

[
2 max
A∈A

|w(θt−1;Xt, A)− w(θ∗;Xt, A)|2φ(Xt)

]
. (6.19)

Using Assumption 6.4.6, when θt−1 → θ∗, we have M2 converges to 0.
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We can now conclude from our above results that

lim
θt→θ∗

E‖ξθt−1(θt−1; ζ)− ξθ∗(θ∗; ζ)‖2 = 0.

Note that all three conditions in Theorem 2 of [162] are verified under our assumptions, we

can conclude that the asymptotic normality result holds in Theorem 6.4.7.

To emphasize the technical challenge in the theoretical analysis, our loss function L

in (6.11) is not defined by the stable policy as in the prior works [41]. The action At ∼

π(Xt, θt−1) and A∗ ∼ π(Xt, θ
∗) are no longer in the same probability space, and therefore

we specify a coupling between At and A∗ to compare them. A natural choice is the coupling

such that

∆(X, θ) = dTV (π(X, θ), π(X, θ∗)) =
1

2

|A|∑
i=1

|pi − qi| = P(A 6= A∗), (6.20)

where pi = Pr(A = Ai), qi = Pr(A∗ = Ai).

To further illustrate our assumptions and central limit theorem result in Theorem 6.4.7,

we validate them under two examples we mentioned above, i.e., linear regression (Exam-

ple 6.2.1) and quantile regression (Example 6.2.3). Under ε-greedy policy defined in Equa-

tion (6.8), Theorem 6.4.7 holds for these two cases. In Corollary 6.4.8 below, we demonstrate

that Assumptions 6.4.2–6.4.6 are quite natural and can be satisfied by the linear regression

example we discussed in Example 6.2.1.

Corollary 6.4.8. Consider the linear setting defined in Proposition 6.3.4, that the covariate

X has finite EPX‖X‖
4 and EPX [XX>] � 0. Further assume that the probability density

function of X, p(x), is smooth and
∫
x>θ∗

[1:p]
=x>θ∗

[p+1:2p]
x⊗x⊗xp(x)dx exists, and the function

ϕ(·) : (0, 1) 7→ R+ is continuous. Assumptions 6.4.2–6.4.6 are satisfied and Theorem 6.4.7

holds.
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Proof. Now let’s compute Lθ′(θ), under ε-greedy policy defined in (6.8),

Lθ′(θ) =
1

2
EP{Eπ(X,θ′)[ϕ(Pr(A | X, θ′ ))((1− A)(Y −X>θ[1:p])

2

+ A(Y −X>θ[p+1:2p])
2) | X]}

=
1

2
(1− ε

2
)ϕ(1− ε

2
)EPX

[
I{X>θ′[1:p] > X>θ′[p+1:2p]}

(
X>θ∗[1:p] −X

>θ[1:p]

)2
]

+
ε

4
ϕ(
ε

2
)EPX

[
I{X>θ′[1:p] > X>θ′[p+1:2p]}

(
X>θ∗[p+1:2p] −X

>θ[p+1:2p]

)2
]

+
ε

4
ϕ(
ε

2
)EPX

[
I{X>θ′[1:p] < X>θ′[p+1:2p]}

(
X>θ∗[1:p] −X

>θ[1:p]

)2
]

+
1

2
(1− ε

2
)ϕ(1− ε

2
)EPX [I{X>θ′[1:p] < X>θ′[p+1:2p]}(

X>θ∗[p+1:2p] −X
>θ[p+1:2p]

)2
]

+ σ2
[

1

2
(1− ε

2
)ϕ(1− ε

2
) +

ε

4
ϕ(
ε

2
)

]
. (6.21)

Obviously, the first part of Assumption 6.4.3 is satisfied under this form of loss function L.

Also, we can calculate the gradient of L with respect to θ as follows,

∇[1:p]Lθ′(θ) = (1− ε

2
)ϕ(1− ε

2
)EPX

[
I{X>θ′[1:p] > X>θ′[p+1:2p]}XX

>
(
θ[1:p] − θ

∗
[1:p]

)]
+
ε

2
ϕ(
ε

2
)EPX

[
I{X>θ′[1:p] < X>θ′[p+1:2p]}XX

>
(
θ[1:p] − θ

∗
[1:p]

)]
∇[p+1:2p]Lθ′(θ) =

ε

2
ϕ(
ε

2
)EPX

[
I{X>θ′[1:p] > X>θ′[p+1:2p]}XX

>
(
θ[p+1:2p] − θ

∗
[p+1:2p]

)]
+ (1− ε

2
)ϕ(1− ε

2
)EPX [I{X>θ′[1:p] < X>θ′[p+1:2p]}

XX>
(
θ[p+1:2p] − θ

∗
[p+1:2p]

)
].

Therefore, the second part of Assumption 6.4.3 is naturally satisfied since we have the fol-
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lowing,

〈∇Lθ(θ), θ − θ∗〉 ≥ min
{

(1− ε

2
)ϕ(1− ε

2
),
ε

2
ϕ(
ε

2
)
}
EPX [XX>][(

θ[1:p] − θ
∗
[1:p]

)2
+
(
θ[p+1:2p] − θ

∗
[p+1:2p]

)2
]
.

We now consider the Hessian matrix, we have

∇2Lθ′(θ) =

H1 0

0 H2

 ,
where

H1 = (1− ε

2
)ϕ(1− ε

2
)EPX

[
I{X>θ′[1:p] > X>θ′[p+1:2p]}XX

>
]

+
ε

2
ϕ(
ε

2
)EPX

[
I{X>θ′[1:p] < X>θ′[p+1:2p]}XX

>
]

H2 =
ε

2
ϕ(
ε

2
)EPX

[
I{X>θ′[1:p] > X>θ′[p+1:2p]}XX

>
]

+ (1− ε

2
)ϕ(1− ε

2
)EPX

[
I{X>θ′[1:p] < X>θ′[p+1:2p]}XX

>
]
.

Obviously, the Hessian matrix exists for all (θ, θ′) ∈ Rd × Rd, and the Hessian matrix at

(θ∗; θ∗) is positive definite since λminEPX [XX>] > 0. We now check the Lipschitz continuity

of∇2Lθ′(θ) at (θ∗, θ∗). It is a constant function with respect to θ, so we only need to consider

its Lipschitz continuity with respect to θ′.

For a smooth integrable function p(x), define the function J(θ) =
∫
I(θ>x > c)p(x)dx.

It is easy to see that

∇J(θ) =

∫
θ>x=c

p(x)xdx.
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Apply this formula to H1 and H2, we get

∂

∂θ′
[1:p]

H1 = − ∂

∂θ′
[p+1:2p]

H1 = − ∂

∂θ′
[1:p]

H2 =
∂

∂θ′
[p+1:2p]

H2 (6.22)

=
(

(1− ε

2
)p(1− ε

2
)− ε

2
p(
ε

2
)
)∫

x>θ′
[1:p]

=x>θ′
[p+1:2p]

x⊗ x⊗ xp(x)dx. (6.23)

So ∇2Lθ′(θ) is Lipschitz continuous at (θ∗, θ∗) as long as
∫
x>θ∗

[1:p]
=x>θ∗

[p+1:2p]
x⊗x⊗xp(x)dx

exists. Therefore, we verify Assumption 6.4.4.

For any A,X, we can bound

EPY |X (‖∇`(θ; ζ)‖2 | X,A) ≤ ‖X‖2σ2 + ‖XX>XX>‖‖θ − θ∗‖2.

The matrix S can be computed by

S = E[∇`(θ; ζ)∇`(θ; ζ)>] :=

S1 0

0 S2

 ,
where

S1 = (1− ε

2
)ϕ2(1− ε

2
)σ2EPX

[
I{X>θ∗[1:p] > X>θ∗[p+1:2p]}XX

>
]

+
ε

2
ϕ2(

ε

2
)σ2EPX

[
I{X>θ∗[1:p] < X>θ∗[p+1:2p]}XX

>
]
,

S2 = (1− ε

2
)ϕ2(1− ε

2
)σ2EPX

[
I{X>θ∗[1:p] < X>θ∗[p+1:2p]}XX

>
]

+
ε

2
ϕ2(

ε

2
)σ2EPX

[
I{X>θ∗[1:p] > X>θ∗[p+1:2p]}XX

>
]
.

So Assumption 6.4.5 is satisfied with φ(X) = ‖X‖2σ2 + ‖XX>‖2.

By definition

∆(X, θ) = (1− ε)
∣∣∣I(X>θ∗[1:p] > X>θ∗[p+1:2p]

)
− I
(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣ .
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Take any convergent sequence θn → θ∗. It is clear that ∆(X, θn)φ(X) converges to 0 almost

surely. Furthermore, |∆(X, θn)φ(X)| ≤ ‖X‖4 and E‖X‖4 ≤ ∞. By dominated convergence

theorem, limn→∞ E[∆(X, θn)φ(X)] = 0.

|w(θt−1;Xt, A)− w(θ∗;Xt, A)|

= |ϕ(Pr(At|Xt; θt−1))− ϕ(Pr(A|Xt; θ∗))|

= |ϕ(1− ε

2
)− ϕ(

ε

2
)|
∣∣∣I(X>θ∗[1:p] > X>θ∗[p+1:2p]

)
− I
(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣ .
Using the same argument as above, we can derive that

lim
θ→θ∗

EPX
[
|w(θ;X,A)− w(θ∗;X,A)|2φ(X) | A

]
= 0.

Finally, we have the following inequality,

EP
[
‖∇`(θ; ζ)−∇`(θ∗; ζ)‖2 | A

]
≤ EPX

∥∥∥XX>(θ − θ∗)
∥∥∥2
.

Therefore, Assumption 6.4.6 is satisfied since

lim
θ→θ∗

EP
[
‖∇`(θ; ζ)−∇`(θ∗; ζ)‖2 | A

]
= 0.

As discussed earlier, our assumption allows a much broader setting than the class of

smooth individual loss functions. Under our assumptions, the individual loss function `(θ; ζ)

can be non-smooth. We will justify this argument in the quantile regression example below.

Corollary 6.4.9. Consider the quantile regression setting defined in Example 6.2.3, assume

that

• The covariate X has finite EPX [XX>] and EPX [XX>] � 0;

• The p.d.f. of X, denoted as p(x), is smooth and
∫
x>θ∗

[1:p]
=x>θ∗

[p+1:2p]
x ⊗ x ⊗ xp(x)dx
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exists;

• The p.d.f. of E, denoted as q(x), is smooth and bounded. Also, q(0) > 0 and q′(x) is

bounded;

• Assume wt(At, Xt, θt−1) = ϕ(Pr(At | Xt, θt−1)) for some continuous function ϕ(·) :

(0, 1) 7→ R+.

Under the above conditions, the Assumption 6.4.2 to Assumption 6.4.6 are satisfied and

Theorem 6.4.7 holds.

Proof. We first define ψτ (u) as follows,

ψτ (u) = EEρτ (u+ E) =

∫ −u
−∞

(u+ x)(τ − 1)q(x)dx+

∫ ∞
−u

(u+ x)τq(x)dx.

The first and second order derivative of ψτ (u) can be computed as

ψ′τ (u) = EEρ′τ (u+ E) =

∫ −u
−∞

(τ − 1)q(x)dx+

∫ ∞
−u

τq(x)dx,

ψ′′τ (u) = −(τ − 1)q(−u) + τq(−u) = q(−u).

Because ψ′τ (0) = 0, ψ′′τ (0) = q(0) > 0, there exists δ > 0 such that for all |u| < δ,

ψ′τ (u)u ≥ 1

2
q(0)u2.
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Now let’s compute ∇Lθ′(θ), under ε-greedy policy defined in (6.8).

∇[1:p]Lθ′(θ) = (1− ε

2
)ϕ(1− ε

2
)EPX [I{X>θ′[1:p] > X>θ′[p+1:2p]}

Xψ′τ
(
X>

(
θ[1:p] − θ

∗
[1:p]

))
]

+
ε

2
ϕ(
ε

2
)EPX

[
I{X>θ′[1:p] < X>θ′[p+1:2p]}Xψ

′
τ

(
X>

(
θ[1:p] − θ

∗
[1:p]

))]
∇[p+1:2p]Lθ′(θ) =

ε

2
ϕ(
ε

2
)EPX [I{X>θ′[1:p] > X>θ′[p+1:2p]}

Xψ′τ
(
X>

(
θ[p+1:2p] − θ

∗
[p+1:2p]

))
]

+ (1− ε

2
)ϕ(1− ε

2
)EPX [I{X>θ′[1:p] < X>θ′[p+1:2p]}

Xψ′τ
(
X>

(
θ[p+1:2p] − θ

∗
[p+1:2p]

))
].

Because E[XX>] is positive definite, there exists a constant C > 0 such that E[I{‖X‖ <

C}XX>] is positive definite. For any ‖θ[1:p] − θ∗[1:p]
‖ ≤ δ/C, we have the following,

〈∇[1:p]Lθ(θ), θ[1:p] − θ
∗
[1:p]〉

≥ 1

2
q(0) min

{
(1− ε

2
)ϕ(1− ε

2
),
ε

2
ϕ(
ε

2
)
}
EPX [X>

(
θ[1:p] − θ

∗
[1:p]

)
ψ′τ
(
X>

(
θ[1:p] − θ

∗
[1:p]

))
]

≥ C ′EPX

[
I{|X>θ[1:p] −X

>θ∗[p+1:2p]| < δ}
∣∣∣X> (θ[1:p] − θ

∗
[1:p]

)∣∣∣2]
≥ C ′EPX

[
I{‖X‖ < C}XX>

] ∥∥∥θ[1:p] − θ
∗
[1:p]

∥∥∥2

≥ C ′
∥∥∥θ[1:p] − θ

∗
[1:p]

∥∥∥2
,

for some constant C ′ > 0. So the second part of Assumption 6.4.3 is satisfied.

We now consider the Hessian matrix, we have

∇2Lθ′(θ) =

H1 0

0 H2

 ,
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where

H1 = (1− ε

2
)ϕ(1− ε

2
)EPX

{
I{X>θ′[1:p] > X>θ′[p+1:2p]}XX

>p
[
X>

(
θ[1:p] − θ

∗
[1:p]

)]}
+
ε

2
ϕ(
ε

2
)EPX

{
I{X>θ′[1:p] < X>θ′[p+1:2p]}XX

>p
[
X>

(
θ[1:p] − θ

∗
[1:p]

)]}
H2 =

ε

2
ϕ(
ε

2
)EPX

{
I{X>θ′[1:p] > X>θ′[p+1:2p]}XX

>p
[
X>

(
θ[p+1:2p] − θ

∗
[p+1:2p]

)]}
+ (1− ε

2
)ϕ(1− ε

2
)EPX{I{X

>θ′[1:p] < X>θ′[p+1:2p]}

XX>p
[
X>

(
θ[p+1:2p] − θ

∗
[p+1:2p]

)]
}.

Obviously, the Hessian matrix exists for all (θ, θ′) ∈ Rd × Rd, and the Hessian matrix at

(θ∗; θ∗) is positive definite since λminEPX [XX>] > 0. We now check the Lipschitz continuity

of ∇2Lθ′(θ) at (θ∗, θ∗). Its Lipschitz continuity with respect to θ′ can be checked by the

same argument as in the linear case. It is clear differentiable with respect to θ, so it is also

Lipschitz continuous with respect to θ. Therefore, we verify Assumption 6.4.4.

For any A,X, we can bound

EPY |X (‖∇`(θ; ζ)‖2 | X,A) ≤ ‖X‖2.

The matrix S can be computed by

S = E[∇`(θ; ζ)∇`(θ; ζ)>] :=

S1 0

0 S2

 ,
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where

S1 = (1− ε

2
)ϕ2(1− ε

2
)τ(1− τ)EPX

[
I{X>θ∗[1:p] > X>θ∗[p+1:2p]}XX

>
]

+
ε

2
ϕ2(

ε

2
)τ(1− τ)EPX

[
I{X>θ∗[1:p] < X>θ∗[p+1:2p]}XX

>
]
,

S2 = (1− ε

2
)ϕ2(1− ε

2
)τ(1− τ)EPX

[
I{X>θ∗[1:p] < X>θ∗[p+1:2p]}XX

>
]

+
ε

2
ϕ2(

ε

2
)τ(1− τ)EPX

[
I{X>θ∗[1:p] > X>θ∗[p+1:2p]}XX

>
]
.

So Assumption 6.4.5 is satisfied with φ(X) = ‖X‖2.

Using the same argument as above, we can derive that

lim
θ→θ∗

EPX [∆(X, θ)φ(X)] = 0,

lim
θ→θ∗

EPX
[
|w(θ;X,A)− w(θ∗;X,A)|2φ(X) | A

]
= 0.

Finally, we have the following inequality,

EPE
(
ρ′τ (u+ E)− ρ′τ (E)

)2
= EPE (I{u+ E < 0} − I{E < 0})2

≤ Pr(|E| < |u|).

So we can bound

EP
[
‖∇`(θ; ζ)−∇`(θ∗; ζ)‖2 | A

]
≤ EPX

[
‖X‖2 Pr(|E| < |X>(θ − θ∗)|)

]
.

Again, we can use dominated convergence theorem to prove this term converges to 0 as

θ → θ∗. Therefore, Assumption 6.4.6 is satisfied.

Corollary 6.4.9 states that we can also obtain the limiting distribution for some non-

smooth loss functions like a quantile loss.
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In Corollary 6.4.8 and Corollary 6.4.9 above, we use the ε-greedy policy with fixed con-

stant ε ∈ (0, 1) throughout the whole SGD process. This policy can be relaxed to a general

εt-greedy policy, for some deterministic sequence {εt} varying with respect to time t, such

that εt ∈ (0, 1) and εt → ε∞. The asymptotic normality result also holds under this setting.

To illustrate the method, we work under the linear regression setting with assumptions in

Corollary 6.4.8. The new policy At ∼ πt is defined by

Pr(At = 0 | Xt, θt−1) = (1− εt)I{X>t θ[1:p],t−1 > X>t θ[p+1:2p],t−1}+
εt
2
,

instead of (6.8). The weight wt is again defined as some functions of Pr(At = 0 | Xt, θt−1).

Assume limt→∞ εt = ε∞, for some constant ε∞ ∈ (0, 1). Notice that εt is a deterministic

sequence, meaning it does not change with respect to X,A, Y and θ, θ′.

The definition of Lθ′(θ) should be change accordingly, i.e.,

Lt,θ′(θ) = EP
[
Eπt(X,θ′)

(
wt(θ

′;X,A)`(θ;X,A, Y ) | X
)]
,

L∞,θ′(θ) = EP
[
Eπ∞(X,θ′)

(
w∞(θ′;X,A)`(θ;X,A, Y ) | X

)]
.

Furthermore, the matrix H,S should be defined with respect to L∞.

Theorem 6.4.10. Under the εt-greedy policy we discussed above, with the same conditions

as Corollary 6.4.8, the asymptotic normality also holds for averaged SGD estimator θ̄t, i.e.,

√
t(θ̄t − θ∗)→ N(0, H−1SH−1).

Proof. We will follow the steps in the proof of Theorem 6.4.7. To simplify the notation,

we denote R(θ) as ∇L∞,θ(θ), ξt as wt(θt−1;X,A)∇`(θt−1; ζ) − ∇L∞,θt−1(θt−1), ξt(0) as

w∞(θ∗;X,A)∇`(θ∗; ζ)−∇L∞,θ∗(θ∗), and ξt(θt−1) as ξt − ξt(0).

Because εt → ε∞, εt is uniformly bounded away from 0 and 1 for sufficiently large t. So
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we still have the following inequality,

E[‖ξt‖2 | Ft−1] +R(θt−1)2 ≤ K2(1 + ‖θt−1‖2).

The only thing that remains unproved is

E[‖ξt(θt−1)‖2 | Ft−1] ≤ δ(θt),

with limθ→0 δ(θ) = 0.

Similarly, {ξt(0)} are i.i.d., and ξt(0) can be coupled with ξt so that the distance between

them can be measured in TV distance between πt and π∞.

E[‖ξt(θt−1)‖2 | Ft−1]

= E[‖wt(θt−1;X,A)∇`(θt−1; ζ)−∇L∞,θt−1(θt−1)

− w∞(θ∗;X,A∗)∇`(θ; ζ) +∇L∞,θ∗(θ∗)‖2 | θt−1]

≤ CE[‖wt(θt−1;X,A)∇`(θt−1; ζ)− w∞(θ∗;X,A∗)∇`(θ; ζ)‖2 | θt−1]

+ CE[‖∇L∞,θt−1(θt−1)−∇L∞,θ∗(θ∗)‖2 | θt−1].

The second term has been bounded by (6.15), the first term can be further decompose as

E[‖wt(θt−1;X,A)∇`(θt−1; ζ)− w∞(θ∗;X,A∗)∇`(θ∗; ζ)‖2 | θt−1]

≤ CEPX
[
∆t(Xt, θt−1)(1 + ‖θt−1 − θ∗‖2)φ(Xt)

]
+ CE

[
max
A∈A

EPY |X [‖∇`(θt−1;X,A, Y )−∇`(θ∗;X,A, Y )‖2 | X,A]

]
+ CEPX

[
max
A∈A

|wt(θt−1;Xt, A)− w∞(θ∗;Xt, A)|2(1 + ‖θt−1 − θ∗‖2)φ(Xt)

]
,

where ∆t(X, θ) = dTV (πt(X, θ), π∞(X, θ∗)). This decomposition is similar to (6.19). We
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now have

dTV (πt(X, θ), π∞(X, θ∗)) ≤ CdTV (π∞(X, θ), π∞(X, θ∗)) + C|εt − ε∞|

Similarly, we have the following upper bound as well,

|wt(θt−1;Xt, A)− w∞(θ∗;Xt, A)|

≤ C|Pr
πt

(At|Xt; θt−1)− Pr
π∞

(A|Xt; θ∗)|

≤ C|εt − ε∞|+
∣∣∣I(X>θ∗[1:p] > X>θ∗[p+1:2p]

)
− I
(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣ .
Combining these bounds above and Theorem 6.4.7, it is sufficient to guarantee the validity

of the central limit theorem result.

Also notice that, from the above proof, it is easy to see that as long as |εt − ε∞| =

O(t−α/2), we can still obtain the same result as Theorem 6.4.11.

In order to provide statistical inference for the model parameter, we need to estimate the

variance of θ̂t, H−1SH−1, as we established in Theorem 6.4.7, in a fully online fashion. A

few options have been provided from SGD inference literature, e.g., the plug-in estimator

[44, 41], the batch-means estimator [44, 211], the bootstrap estimator [72], the random

scaling estimator [136]. Among the above, the plug-in estimator is expected to achieve a

very good numerical behavior as evident from classical SGD approaches. In this paper, we

use the plug-in estimator [44] for smooth loss functions `, and leave the other methods as an

interesting future work. In adaptive settings, the online plugin estimators for S and H are

given by,

Ŝn =
1

n

n∑
t=1

w2
t∇`(θt−1; ζt)∇`(θt−1; ζt)

>, Ĥn =
1

n

n∑
t=1

wt∇2`(θt−1; ζt).
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With the plug-in estimators (Ŝt, Ĥt), an online plug-in inference procedure can be provided

by replacing S and H in the asymptotic covariance matrix in Theorem 6.4.7 to (Ŝt, Ĥt). We

defer the detailed procedure to Section 6.5.2 below.

6.4.2 Bahadur representations

In this section, we further present the Bahadur representation of our weighted SGD update

(6.7) under the adaptive data collection environment. Aside from the asymptotic normality

result in Theorem 6.4.7, the Bahadur representation characterizes the remainder term beyond

the normal approximation, which helps conduct a finer convergence analysis of the proposed

estimator. The Bahadur representation was first studied in [12] for quantile regression,

and generalized to M -estimators by [33, 97] and many others. For the SGD estimator under

classical non-adaptive settings (6.2), the Bahadur representation can be inferred by the proof

of Theorem 2 in [162] as,

√
tΣ−1/2(θ̄

(SGD)
t − θ∗) = W +Op

(
t−α+1

2 + t−
α
2 + tα−1), (6.24)

where Σ = H(SGD)−1S(SGD)H(SGD)−1, and W is the leading term as a sum of independent

variables that converges to a standard normal distribution as t→∞. The other term on the

right-hand side is a higher-order remainder term that converges faster than the leading term

W under common regularity conditions. In the following theorem, we provide the Bahadur

representation of the proposed weighted SGD (6.7) under adaptive settings.

Theorem 6.4.11. Under the conditions in Theorem 6.4.7 and ε-greedy algorithm defined in

(6.8), we further assume:

• There exists constant C1 > 0, such that
∫
x>θ[1:p]=x>θ[p+1:2p]

x⊗ x⊗ xp(x)dx ≤ C1 for

all θ;
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• Given θ, θ∗, the following inequality holds for some constant C2 > 0,

E
[∣∣∣I(X>θ∗[1:p] > X>θ∗[p+1:2p]

)
− I
(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣ (1 + ‖X‖4)
]

≤ C2‖θ − θ∗‖.

We have the following decomposition

√
tΣ−1/2(θ̄t − θ∗) =

1√
t

t−1∑
i=1

Σ
−1/2
t Qtiξθ∗(θ

∗; ζi)︸ ︷︷ ︸
W

(6.25)

+
1√
t

t−1∑
i=1

Σ−1/2Qti(ξθi−1(θi−1; ζi)− ξθ∗(θ∗; ζi))︸ ︷︷ ︸
R1

+
1√
tη0

Σ−1/2Qt0(θ0 − θ∗)︸ ︷︷ ︸
R2

+
1√
t

t−1∑
i=1

Σ−1/2Qti(Lθi(θi)−H(θi − θ∗))︸ ︷︷ ︸
R3

+
1√
t

t−1∑
i=1

(Σ−1/2 − Σ
−1/2
t )Qtiξθ∗(θ

∗; ζi)︸ ︷︷ ︸
R4

= W +R1 +R2 +R3 +R4, (6.26)

where E[W ] = 0,E[WW>] = Id, Σt = 1
t

∑t−1
i=1 Q

t
iSQ

t
i, and Q

t
i = ηi

∑t−1
j=i

∏j
k=i+1(Id−ηkH)

for t > 0. Furthermore, we have,

E‖R1‖2 . t−
α
2 , E‖R2‖2 . t−1, E‖R3‖ . t−α+1

2 , E‖R4‖2 . t2α−2.

Proof. To address the randomness in the adaptive policy At, it is necessary to define a

coupling for all categorical distributions with |A| categories simultaneously. Previously in

the proof of Theorem 6.4.7, we used the total variation distance to bound P(At 6= A∗). Here
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we need a generalized coupling defined as follows.

Consider the (|A| − 1)-simplex S = {(x1, . . . , x|A|) | xi ≥ 0,
∑
xi = 1}. It has |A|

vertices given by Vi = (0, . . . , 0, 1, 0, . . . , 0) where 1 is in the i-th coordinate. Take a

point P uniformly from S. For any categorical distribution with probability (p1, . . . , p|A|),

define K = (p1, . . . , p|A|). The probability that P lies in the sub-simplex with vertices

{V1, . . . , V̂i, . . . , V|A|, K} (Vi is deleted) is exactly pi. Thus, K gives a partition of S that has

the required categorical distribution and we can use this to define the action A. Further-

more, given two different distribution K,K ′, it is easy to see that the quantity P(A 6= A′)

is bounded by CdTV (K,K ′), where C is some positive constant which only depends on |A|.

So all previous bounds still holds up to a constant.

In conclusion, the probability space we have used for stochastic gradient descent can

be redefined using i.i.d. random variables (Xt, Yt, Pt), t ≥ 1, where Pt obeys a uniform

distribution on a (|A| − 1)-simplex. We also redefine ζt = (Xt, Yt, Pt).

We would like to note that in this proof and the proofs thereafter, with a slight abuse of

notation, we will use C to represent different positive constants.

To prove the bounds for R1, R2, R3, R4, we need some preliminary results. The bounds

in Assumption 6.4.3 and Assumption 6.4.4 actually hold globally by our assumptions. That

is,

〈∇Lθ(θ), θ − θ∗〉 ≥ λ‖θ − θ∗‖2,∥∥∥∇2Lθ′(θ)−∇2Lθ∗(θ∗)
∥∥∥ ≤ K‖θ − θ∗‖+K‖θ′ − θ∗‖,

for all θ, θ′. The second inequality comes from Assumption (a). So we can estimate

‖∇Lθt(θt)−H(θt − θ∗)‖ ≤ C‖θt − θ∗‖2. (6.27)
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We also have

E
[
‖ξθt−1(θt−1; ζt) +∇Lθt−1(θt−1)‖4 | |θt−1

]
= E

[
‖w(θt−1; ζt)∇`(θt−1; ζt)‖4 | |θt−1

]
≤ w̄4E

[
‖∇`(θt−1; ζt)‖4 | |θt−1

]
.

Therefore, for some positive constant C > 0,

E
[
‖ξθt−1(θt−1; ζt) +∇Lθt−1(θt−1)‖4 | |θt−1

]
≤ C(σ4E‖X‖4 + E‖XX>(θt−1 − θ∗)‖4)

≤ C(1 + ‖θt−1 − θ∗‖4).

The above argument implies that

E
[
‖ξθt−1(θt−1; ζt)‖4 | |θt−1

]
≤ C(1 + ‖θt−1 − θ∗‖4),

and E‖ξθ∗(θ∗; ζt)‖4 ≤ C. We also utilize the following bounds from [44],

E‖θt − θ∗‖2 ≤ Ct−α,

E‖θt − θ∗‖4 ≤ Ct−2α.

These two inequalities above are also derived as Lemma 5.12 and 5.14 in [176].

From [162], we know that ‖Qti‖ ≤ C. Moreover, ‖Σ−1/2
t Qti‖ ≤ C is guaranteed in [176].
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In the proof of Lemma 1 of [162], it can be seen that,

H−1 −Qti = H−1 − ηi
t−1∑
j=i

j∏
k=i+1

(Id − ηkH)

=
t−1∑
j=i

(ηj − ηi)
j∏

k=i+1

(Id − ηkH) +H−1
t∏

k=i+1

(Id − ηkH),

and the first term is O(iα−1). In Lemma D.2 of [44], it is proved that

∥∥∥∥∥∥
t∏

k=i+1

(Id − ηkH)

∥∥∥∥∥∥ ≤ e−C(t−i)ηt .

So we have

‖Σt − Σ‖ ≤ C

t
+
C

t

t∑
i=1

(iα−1 + e−C(t−i)ηt)

≤ Ct−1 + Ctα−1 +
e−Cηt

t(1− e−Cηt)

≤ Ct−1 + Ctα−1 + Ct−α−1

≤ Ctα−1. (6.28)

Now we proceed to the main part of the proof. Similar to (6.19), we have

E‖ξθt−1(θt−1; ζt)− ξθ∗(θ∗; ζt)‖2

≤ CE[(∆(X, θ) + max
A∈A

|w(θ;X,A)− w(θ∗;X,A)|2)(1 + ‖θ − θ∗‖2)φ(X)] + C‖θ − θ∗‖2.

We can further give the following inequality, following the steps in the proof of Theorem 6.4.7,

|w(θ;X,A)− w(θ∗;X,A)|2

≤ (w − w)2
∣∣∣I(X>θ∗[1:p] > X>θ∗[p+1:2p]

)
− I
(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣ ,
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and the same bound also holds for ∆(X, θ) with a different constant. So the whole term can

be estimated by

E[(∆(X, θ) + max
A∈A

|w(θ;X,A)− w(θ∗;X,A)|2)(1 + ‖θ − θ∗‖2)φ(X)]

≤ CE
[∣∣∣I(X>θ∗[1:p] > X>θ∗[p+1:2p]

)
− I
(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣ (1 + ‖θ − θ∗‖2)φ(X)
]

≤ C‖θ∗‖E
∣∣∣‖θ∗ − θ‖(1 + ‖θ − θ∗‖2)φ(X)

∣∣∣
≤ C‖θ∗‖E

∣∣∣‖θ∗ − θ‖(1 + ‖θ − θ∗‖2)‖
∣∣∣

≤ Ct−α/2.

Combining the results above, we obtain that

E‖ξθt−1(θt−1; ζt)− ξθ∗(θ∗; ζt)‖2 ≤ Ct−α/2. (6.29)

With all these intermediate results in hand, we can proceed to the conclusion as follows.

First of all, by inequality (6.29), we have the following bound for R1,

E‖R1‖2 ≤ Ct−1E‖
n∑
i=1

ξθi−1(θi−1; ζi)− ξθ∗(θ∗; ζi)‖2

≤ Ct−1
n∑
i=1

E‖ξθi−1(θi−1; ζi)− ξθ∗(θ∗; ζi)‖2

≤ Ct−1
n∑
i=1

i−α/2 ≤ Ct−α/2.

Also, it is easy to derive that

E‖R2‖2 ≤ Ct−1.
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Using the above intermediate result (6.27), the R3 term has the convergence rate below,

E‖R3‖ ≤ t−1/2
t−1∑
i=0

E‖∇Lθi(θi)−H(θi − θ∗)‖

≤ Ct−1/2
t−1∑
i=0

E‖θi − θ∗‖2

≤ Ct−1/2
t−1∑
i=0

i−α ≤ Ct−α+1
2 .

Finally, we can bound R4 using our result in (6.28),

E‖R4‖2 ≤
C

t

∥∥∥Σ−1/2 − Σ
−1/2
t

∥∥∥2 t−1∑
i=1

E‖ξθ∗(θ∗; ζi)‖2 ≤ Ct2α−2.

Given the Bahadur representation of θ̄t, we now emphasize the difference in the conver-

gence rate of the adaptive SGD and the classical SGD results [162, 176]. The remainder

term under adaptive settings has a rate of Op
(
t−α+1

2 + t−
α
4 + tα−1

)
, slower than that un-

der classical settings (6.24). If we minimizer the order of the rate over α ∈ (1
2 , 1), we have

that the optimal convergence rate of the remainder term is O(t−0.2) with α = 0.8.

Note that to derive the above decomposition, we require a slightly stronger condition

(condition (a) in the theorem statement). The second condition in Theorem 6.4.11 requires

a certain level of continuity of the distribution of covariate X. These extra conditions can

be easily satisfied, e.g., when X obeys a non-degenerate normal distribution. For a non-

degenerated normal variable X, Assumption (a) of Theorem 6.4.11 clear holds. Assumption

(b) can also be transformed into a (stronger) differentiability condition. Denote the left hand

side of Assumption (b) as F (θ),

F (θ) = E
[∣∣∣I(X>θ∗[1:p] > X>θ∗[p+1:2p]

)
− I
(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣ (1 + ‖X‖4)
]
.
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It is not differentiable at θ∗, but directional derivatives exist. In fact, we have for some

constants C,C

0 ≤ C ≤ ∂F (θ)

∂v

∣∣
θ=θ∗ ≤ C,

for any v orthogonal to θ∗, and the directional derivatives with respect to θ∗ is 0. Together,

they imply

C|(θ − θ∗)>θ∗| ≤ F (θ) ≤ C|(θ − θ∗)>θ∗|,

which implies Assumption (b). So Theorem 6.4.11 holds.

Now we furfther provide a lower bound on the remainding terms for a non-degenerated

normal variable X. By same argument, we can prove that

0 ≤ C ≤ ∂E [∆(X, θ)]

∂v

∣∣
θ=θ∗ ≤ C,

where ∆(X, θ) = (1 − ε)
∣∣∣I(X>θ∗[1:p]

> X>θ∗
[p+1:2p]

)
− I
(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣. So it

can be bounded by

C|(θ − θ∗)>θ∗| ≤ E [∆(X, θ)] ≤ C|(θ − θ∗)>θ∗|.

For R1, we first decompose the term ξθt−1(θt−1; ζt)− ξθ∗(θ∗; ζt) as follows

EP,ν [‖ξθt−1(θt−1; ζt)− ξθ∗(θ∗; ζt)‖2]

= EP,ν
[
‖w(θt−1;Xt, At)∇`(θt−1; ζt)− w(θ∗;Xt, A

∗)∇`(θ∗;Xt, A∗, Yt)‖2
]

− ‖∇Lθt−1(θt−1)−∇Lθ∗(θ∗)‖2

= M2 −M1,
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where M1,M2,M3,M4 has been defined in the proof of Theorem 6.4.7. From previous

estimates, M1 ≤ Ct−α. Previous decomposition can also provide lower bounds,

M2 ≥ CE[∆(Xt, θt−1)M3],

M3 ≥ CEPY |X
[
‖∇`(θt−1;Xt, At, Yt)‖2 + ‖∇`(θ∗;Xt, A∗, Yt)‖2 | Xt, At 6= A∗

]
≥ C.

Combining all inequalities together, we have

E‖ξθt−1(θt−1; ζt)− ξθ∗(θ∗; ζt)‖2 ≥ CE[∆(Xt, θt−1)].

The proof of Theorem 6.4.11 implies that Σ
−1/2
t and Qti are bounded from below for suffi-

ciently large i, t > i0. So

E‖R1‖2 =
1

t

t−1∑
i=1

‖Σ−1/2
t Qti(ξθt−1(θt−1; ζt)− ξθ∗(θ∗; ζt))‖2

≥ C

t

t−1∑
i>i0

E‖ξθt−1(θt−1; ζt)− ξθ∗(θ∗; ζt)‖2

≥ C

t

t−1∑
i>i0

E[∆(Xi, θi−1)]

≥ C

t

t−1∑
i>i0

|(θi−1 − θ∗)>θ∗|.

Theorem 6.4.11 implies that

1

t

t∑
i=1

E|(θi − θ∗)>θ∗| ≥ E|(θ̄t − θ∗)>θ∗| ≥ Ct−1/2.

Therefore, we can come to the conclusion that

E‖R1‖2 ≥ Ct−1/2.
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Even though the lower bound does not match the upper bound established in Theorem

6.4.11, it indicates a strictly slower convergence than the classical SGD setting. This slower

rate results from the reliance between the convergence of the estimator θt and that of the

policy function π(Xt, θt−1). Such a phenomenon is not limited to the ε-greedy policy, but

also expected for a wide range of different policies.

6.5 Numerical experiments

In this section, we investigate the empirical performance of the proposed estimators on nor-

mal approximation. We further construct the confidence intervals using a plug-in estimator

of the asymptotic covariance matrices and report their coverage rates. Lastly, we validate

the performance of the proposed estimator and inference procedure on a logistic regression

of a real dataset.

6.5.1 Normal approximation

We verify Theorem 6.4.7 under linear regression and quantile regression (Example 6.2.1 and

Example 6.2.3). For both examples, the true parameter θ∗ ∈ R20 and

Yt = (1− At)X>t θ∗[1:10] + AtX
>
t θ
∗
[11:20] + Et.

In the numerical experiments below, we fix the sample size as 80, 000. The covariate Xt ∼

N (0, I10) and the noise {Es}ts=1 is i.i.d. with standard deviation σ = 0.1. We use ε-greedy

policy (6.8) to select actions, and set ε = 0.02.

For the SGD update (6.7), we specify the step sizes as ηt = η · max(t, 300)−α. As

indicated in Theorem 6.4.11, we set the parameter α in the step size as α = 0.8 for both

linear regression and quantile regression. We compare three weighting schemes below, (IPW),

(sqrt-IPW), (vanilla).
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(a) (vanilla), Arm 0 (b) (vanilla), Arm 1

(c) (sqrt-IPW), Arm 0 (d) (sqrt-IPW), Arm 1

(e) (IPW), Arm 0 (f) (IPW), Arm 1

Figure 6.1: SGD on linear regression with different weights.
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(a) (vanilla), Arm 0 (b) (vanilla), Arm 1

(c) (sqrt-IPW), Arm 0 (d) (sqrt-IPW), Arm 1

(e) (IPW), Arm 0 (f) (IPW), Arm 1

Figure 6.2: SGD on quantile regression with different weights.
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We first present the results for linear regression. In Figure 6.1, we plot the empirical

distribution of
√
t(θ̄t − θ∗) using 10, 000 Monte-Carlo simulations. We also plot the density

function of a zero-mean normal distribution that matches the second-order moments. As

can be inferred from the plots, the vanilla SGD and the square-root importance weight

SGD have much smaller standard deviation compared with (IPW), this finding matches our

discussion in Section 6.3. We also conduct simulations on quantile regression with quantile

level τ = 0.75. The empirical distribution is reported in Figure 6.2.

6.5.2 Online statistical inference

In this section, we demonstrate the online plug-in inference procedure based on the limiting

distribution of our proposed estimator θ̄t in Theorem 6.4.7. As we mentioned in the previous

section, the plug-in estimator constructs a pair (Ŝn, Ĥn) to estimate (S,H) in the asymptotic

covariance matrix H−1SH−1.

Ŝn =
1

n

n∑
t=1

w2
t∇`(θt−1; ζt)∇`(θt−1; ζt)

>, Ĥn =
1

n

n∑
t=1

wt∇2`(θt−1; ζt).

Using linear regression as an example, we first establish the consistency of the plug-in esti-

mator under the following additional assumption.

Assumption 6.5.1. For any action A ∈ A and covariate X, we assume that ∇2`(θ; ζ)

exists and EPY |X
(
‖∇2`(θ; ζ)‖2 | X,A

)
is bounded by ψ(X)(1 + ‖θ− θ∗‖2) for some function

ψ(·) such that E[ψ(X)] < ∞. In addition, we have limθ→θ∗ EPX [∆(X, θ)ψ(X)] = 0 where

∆(X, θ) is defined in Assumption 6.4.5, and

lim
θ→θ∗

EPY |X
[
‖∇2`(θ; ζ)−∇2`(θ∗; ζ)‖2 | X,A

]
= 0,

lim
θ→θ∗

EPX
[
|w(θ;X,A)− w(θ∗;X,A)|2ψ(X) | A

]
= 0.
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Proposition 6.5.2. Under Assumption 6.4.2 to Assumption 6.4.6, and Assumption 6.5.1,

the plug-in estimators are consistent, i.e., Ŝn → S and Ĥn → H in probability.

Proof. Recall the definition of our estimators

Ŝn =
1

n

n∑
t=1

w2
t∇`(θt−1; ζt)∇`(θt−1; ζt)

>, Ĥn =
1

n

n∑
t=1

wt∇2`(θt−1; ζt).

In the proof of Theorem 6.4.7, the bound on M2 (Equation (6.19)) implies the following

convergence in L2,

w(θt−1;Xt, A)∇`(θt−1; ζt)→ w(θ∗;Xt, A)∇`(θ∗; ζt).

Therefore we have the following convergence of Ŝn in L1,

Ŝn −
1

n

n∑
t=1

w(θ∗;Xt, A)2∇`(θ∗; ζt)∇`(θ∗; ζt)> → 0

Notice that by Law of Large Numbers,

1

n

n∑
t=1

w(θ∗;Xt, A)2∇`(θ∗; ζt)∇`(θ∗; ζt)> → S,

in probability. Thus, combining our findings above, we can easily see that our plug-in

estimator for gram matrix Ŝn → S in probability.

Now we come to the consistency proof of Ĥn. Notice that our assumption 6.5.1 is simply

a repetition of Assumption 6.4.5 and Assumption 6.4.6 in Theorem 6.4.7 with φ replaced by

ψ and with gradient replaced by Hessian. So our proof of Theorem 6.4.7 from bound (6.16)

to bound (6.19) can be adapted here to prove the following convergence in L2,

w(θt−1;Xt, A)∇2`(θt−1; ζt)→ w(θ∗;Xt, A)∇2`(θ∗; ζt).
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Similarly, we have Ĥn → H in probability.

Under the same setting as in Section 6.5.1, we show the inference results for linear

regression in Table 6.1. Averaged coverage rate and average length of the confidence intervals

are reported for plug-in estimator and oracle estimator. We also include standard error in the

parentheses. The comparison of the three candidate weighted-SGD schemes is clearly stated.

Both (vanilla) and (sqrt-IPW) provide a valid conference interval, while (IPW) provides

a much wider confidence interval than its oracle.

Weight & Arm Sample size Plug-in Cov. Oracle Cov. Plug-in Len. Oracle Len.
2× 104 0.78 (0.14) 0.73 (0.15) 0.63 (0.03) 0.55

(vanilla), Arm 0
8× 104 0.88 (0.09) 0.86 (0.09) 0.57 (0.01) 0.55
2× 104 0.89 (0.09) 0.83 (0.12) 0.63 (0.03 ) 0.55

(vanilla), Arm 1
8× 104 0.94 (0.07) 0.93 (0.08) 0.58 (0.01) 0.55
2× 104 0.78 (0.14) 0.72 (0.15) 0.82 (0.12) 0.72

(sqrt-IPW), Arm 0
8× 104 0.88 (0.10) 0.87 (0.11) 0.74 (0.04) 0.72
2× 104 0.84 (0.12) 0.78 (0.14) 0.83 (0.13) 0.72

(sqrt-IPW), Arm 1
8× 104 0.91 (0.09) 0.90 (0.10) 0.75 (0.05) 0.72
2× 104 0.81 (0.15) 0.47 (0.32) 19.18 (34.94) 2.79

(IPW), Arm 0
8× 104 0.85 (0.14) 0.62 (0.33) 13.04 (28.04) 2.79
2× 104 0.82 (0.15) 0.51 (0.32) 16.76 (32.12) 2.79

(IPW), Arm 1
8× 104 0.86 (0.13) 0.65 (0.32) 11.47 (25.80) 2.79

Table 6.1: Inference results of linear regression with different weighting schemes.

6.5.3 Real data analysis

In this section, we apply our online estimation and inference framework to Yahoo! Today

module user click-log dataset and conduct statistical inference for model parameters. We

use the news recommendation and user response records on May 1st, 2009. On this day, we

consider the two most recommended (recommended 405, 888 times) articles, No.109510 and

No.109520 for analysis.

We follow the experiment settings in [41]. The action At is specified to be 1 when Article

No.109510 is recommended and At = 0 when Article No.109520 is recommended. The

253



original user features have six covariates, where the first five sum up to one, and the sixth is

a constant 1. In our experiments below, we keep the second to fifth covariates in the original

features as X[2:5] and specify X[1] = 1 as the intercept.

As the reward Yt is binary, we consider a logistic regression model (Example 6.2.2)

and set Yt = 1 if the user clicks on the article link and Yt = −1 if not. We use the

ε-greedy algorithm (6.8). In order to match our online decision-making process with our

offline dataset, we keep the entry if the recorded offline action matches the action given by

our online ε-greedy algorithm with two specifications of ε ∈ {0.2, 0.02}.

We now present the online statistical inference results. For our SGD update, we use the

same settings as above experiments, i.e., 300-step meltdown and α = 0.8. We compare three

weighting schemes below, vanilla SGD (6.2), square-root importance weight SGD (6.3), and

IPW SGD (6.3). Table 6.2 below gives the result for ε = 0.2 and Table 6.3 gives the result

for ε = 0.02. In both table, the vanilla SGD and the square-root importance SGD have

smaller standard errors and smaller p-values. There are also more insignificant parameters

for IPW SGD. The results of IPW SGD are worse when we decrease the value of ε, matches

our findings in Theorem 6.4.7 and discussions in Section 6.3.
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Weight & Arm Parameter Estimate S.E. 95% LB 95% UB t-value p-value
θ1 -2.56 0.04 -2.64 -2.48 -65.52 0.00
θ2 -0.26 0.08 -0.43 -0.10 -3.11 0.00
θ3 -0.48 0.07 -0.62 -0.34 -6.80 0.00
θ4 -0.23 0.06 -0.34 -0.12 -4.09 0.00

(vanilla), Arm 0

θ5 -0.90 0.07 -1.03 -0.77 -13.65 0.00
θ6 -2.55 0.05 -2.65 -2.44 -47.77 0.00
θ7 -0.24 0.08 -0.40 -0.09 -3.06 0.00
θ8 -0.45 0.07 -0.58 -0.32 -6.76 0.00
θ9 -0.41 0.11 -0.62 -0.19 -3.71 0.00

(vanilla), Arm 1

θ10 -0.91 0.07 -1.05 -0.77 -12.31 0.00
θ1 -2.52 0.05 -2.62 -2.43 -52.85 0.00
θ2 -0.30 0.11 -0.51 -0.09 -2.79 0.01
θ3 -0.49 0.09 -0.66 -0.31 -5.56 0.00
θ4 -0.28 0.07 -0.4 -0.15 -4.25 0.00

(sqrt-IPW), Arm 0

θ5 -0.80 0.09 -0.97 -0.63 -9.33 0.00
θ6 -2.51 0.05 -2.61 -2.41 -49.35 0.00
θ7 -0.28 0.08 -0.43 -0.13 -3.60 0.00
θ8 -0.45 0.06 -0.58 -0.33 -7.10 0.00
θ9 -0.42 0.11 -0.63 -0.20 -3.83 0.00

(sqrt-IPW), Arm 1

θ10 -0.81 0.07 -0.94 -0.68 -12.02 0.00
θ1 -2.64 0.10 -2.85 -2.44 -25.54 0.00
θ2 -0.28 0.19 -0.64 0.08 -1.51 0.13
θ3 -0.51 0.15 -0.80 -0.23 -3.49 0.00
θ4 -0.24 0.16 -0.55 0.07 -1.54 0.12

(IPW), Arm 0

θ5 -0.91 0.16 -1.23 -0.59 -5.64 0.00
θ6 -2.47 0.03 -2.53 -2.40 -76.6 0.00
θ7 -0.22 0.06 -0.33 -0.11 -3.83 0.00
θ8 -0.51 0.05 -0.60 -0.42 -11.08 0.00
θ9 -0.37 0.05 -0.47 -0.27 -7.40 0.00

(IPW), Arm 1

θ10 -0.88 0.05 -0.98 -0.78 -17.67 0.00

Table 6.2: Real data analysis with online statistic inference with ε = 0.2.
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Weight & Arm Parameter Estimate S.E. 95% LB 95% UB t-value p-value
θ1 -2.55 0.04 -2.63 -2.48 -68.62 0.00
θ2 -0.31 0.09 -0.47 -0.14 -3.61 0.00
θ3 -0.45 0.07 -0.6 -0.31 -6.18 0.00
θ4 -0.23 0.05 -0.33 -0.12 -4.29 0.00

(vanilla), Arm 0

θ5 -0.88 0.07 -1.01 -0.75 -13.45 0.00
θ6 -2.54 0.06 -2.66 -2.42 -41.76 0.00
θ7 -0.29 0.09 -0.45 -0.12 -3.36 0.00
θ8 -0.42 0.07 -0.57 -0.28 -5.88 0.00
θ9 -0.42 0.19 -0.79 -0.04 -2.18 0.03

(vanilla), Arm 1

θ10 -0.89 0.08 -1.04 -0.73 -11.25 0.00
θ1 -2.49 0.05 -2.58 -2.40 -54.74 0.00
θ2 -0.31 0.13 -0.57 -0.05 -2.37 0.02
θ3 -0.45 0.12 -0.68 -0.21 -3.74 0.00
θ4 -0.29 0.06 -0.41 -0.17 -4.78 0.00

(sqrt-IPW), Arm 0

θ5 -0.82 0.08 -0.98 -0.66 -9.80 0.00
θ6 -2.48 0.08 -2.64 -2.33 -31.13 0.00
θ7 -0.29 0.10 -0.50 -0.09 -2.84 0.00
θ8 -0.42 0.09 -0.60 -0.25 -4.69 0.00
θ9 -0.4 0.25 -0.90 0.09 -1.60 0.11

(sqrt-IPW), Arm 1

θ10 -0.82 0.10 -1.01 -0.63 -8.49 0.00
θ1 -2.75 0.33 -3.40 -2.11 -8.37 0.00
θ2 -0.22 0.57 -1.35 0.90 -0.39 0.70
θ3 -0.80 0.50 -1.78 0.18 -1.59 0.11
θ4 0.11 0.39 -0.65 0.87 0.28 0.78

(IPW), Arm 0

θ5 -0.90 0.51 -1.89 0.09 -1.78 0.08
θ6 -2.40 0.09 -2.57 -2.23 -27.81 0.00
θ7 -0.33 0.14 -0.60 -0.07 -2.46 0.01
θ8 -0.33 0.08 -0.48 -0.17 -4.17 0.00
θ9 -0.55 0.30 -1.14 0.05 -1.81 0.07

(IPW), Arm 1

θ10 -1.14 0.20 -1.53 -0.76 -5.81 0.00

Table 6.3: Real data analysis with online statistic inference with ε = 0.02.
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CHAPTER 7

HAAGERUP BOUND FOR QUATERNIONIC GROTHENDIECK

INEQUALITY

7.1 Introduction

We will let F = R and C and H be the fields of real, complex and the skew field of quaternions

respectively in this article. In 1953, Grothendieck proved a powerful result that he called

“the fundamental theorem in the metric theory of tensor products” [87]. His result can be

stated as follows [140]: For F ∈ {R,C} there exists a finite constant K > 0 such that for

every l,m, n ∈ N and every matrix M = (Mij) ∈ Fm×n,

max
‖xi‖=‖yj‖=1

∣∣∣∣ m∑
i=1

n∑
j=1

Mij〈xi, yj〉
∣∣∣∣ ≤ K max

|εi|=|δj |=1

∣∣∣∣ m∑
i=1

n∑
j=1

Mij ε̄iδj

∣∣∣∣ (7.1)

where the maximum on the left is take over all xi, yj ∈ Fl of unit 2-norm, and the maximum

on the right is taken over all εi, δj ∈ F of unit absolute value (i.e., εi = ±1, δj = ±1 over

R; εi = eiθi , δj = eiφj over C). The inequality (7.1) has since been christened Grothendieck

inequality and the smallest possible constant K Grothendieck’s constant. The value of

Grothendieck’s constant depends on the choice of F and we will denote it by KFG. In a

recent paper [77] two authors of this paper extended the Grothendieck inequality to sym-

metric/Hermitian matrices, which we call symmetric Grothendieck inequality and referred

as SGI. Namely, in the above inequality we can assume that M is symmetric/Hermitian and

xi = yi. Furthermore, they considered more refined versions of SGI where the vectors xi are

in d-dimensional Hilbert space as in [26].

The aim of this paper to extend the Grothendieck inequality and SGI to quaternions

H. Since quaternions is a skew field, which is noncommutative, there are many different

obstacles and problems to be solved before having the Haagerup type constant [89]. We now
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describe briefly the results we obtained. Let F = H. We first show that the inequality (7.1)

holds, where xi, yj in the quaternion Hilbert space Hl, where l ≥ m+n, and εi, δj ∈ H with

the constant KHG . Using the analogous results to Krivine [129] and Haagerup [89] we show

that KHG ≤ 1.2168. This result is achieved by establishing the most difficult technical part

of our paper. Let 2F1(a, b; c;x) be the classical hypergeometric function. Denote p`(x) =

x2F1(1
2 ,

1
2 ; `;x2) for ` ∈ N. It was shown by Haagerup that the inverse function p−1

` (x) has

first positive Taylor coefficient, while all other Taylor coefficients are nonpositive for ` = 2.

In this paper we prove Haagerup result for ` = 3. By numerical computing we validate that

the same result holds for at least ` = 4, 5, 6, for the first one hundred Taylor coefficients.

Denote by Sn(F) ⊂ Fn×n the real space of self-adjoint matrices. i.e., A∗ = A. We show

that we have two analogs of the Grothendieck inequality (7.1) on Sn(H):

max
‖xi‖=1

∣∣∣∣< n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ ≤ KHγ max

|δi|=1

∣∣∣∣< n∑
i=1

n∑
j=1

aij δ̄iδj

∣∣∣∣, (7.2)

max
‖xi‖≤1

∣∣∣∣< n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ ≤ KHΓ max

|δi|≤1

∣∣∣∣< n∑
i=1

n∑
j=1

aij δ̄iδj

∣∣∣∣.
Furthermore KHG ≤ KHΓ ≤ KHγ ≤ 64

9π − 1 ≈ 1.263537.

We now describe briefly the “conic Grothendieck inequality” for various cones in Sn(H).

Denote by Sn+(H) the cone of positive semidefinite self-adjoint quaternionic matrices. We

show that in this case (7.1) is equivalent to the inequality of the form (7.2) with the constant

32/9π, which is sharp. This is a quaternionic version of Nesterov-Rietz π/2 theorem [152, 166]

for the real numbers, and Nemirovski-Roos-Terlaky 4/π theorem for the complex numbers

[151]. We next consider the subcone of Sn+(R) of Laplacian matrices. In this case the constant

in (7.1) can be reduced to K ≤ 1.0338. This is the quaternionic version of the well-known

Goemans-Williamson inequality [85].
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7.2 Quaternions

7.2.1 Basic facts on quaternions

Recall that H can be viewed as R4. So a ∈ H is of the form a = a0 +a1i +a2j +a3k. We can

identify a with a = (a0, a1, a2, a3)>. We define the real part of a to be <a := a0, and the

conjugate of a to be ā = a∗ = a0 − a1i− a2j− a3k. The product table of i, j, k is given by

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Hence H is a noncommutative ring over R. Observe next that aā = āa = a2
0 + a2

1 + a2
2 + a2

3.

Hence |a| =
√
aā ≥ 0 and equality holds if and only if a = 0. Thus for a 6= 0 the element

|a|−1ā = ā|a|−1 is the unique inverse of a in H. So H is a skew field over the field R, where

1 is the identity element. Frobenius theorem claims that the only skew fields over R are

R,C,H. For A ∈ Fm×n we denote A∗ := Ā> ∈ Fn×m.

There exists a standard way to present quaternions similar to the complex numbers:

z + wj, where z, w ∈ C. Indeed, if z = x + yi, w = u + vi, the identity ij = k yields

z + wj = x + yi + uj + vk. Thus to multiply quaternions we have to remember that the

product of complex numbers is commutative and

z + wj = z̄ − wj, wj = jw̄. (7.3)

By representing a complex number z = x + yi as 2 × 2 real valued matrix

 x y

−y x
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we can represent C(a) as

C(a,R) =



x y u v

−y x −v u

−u v x −y

−v −u y x


, a = (z, w), z = x+ yi, w = u+ vi.

Then a → C(a,R) is an isomorphism of H and the induced 4-dimensional subalgebra

C(H,R) = {C(a,R), a ∈ H} ⊂ R4×4.

There exists yet another representation of H as a real subalgebra of 2×2 complex valued

matrices C2×2. First observe that one can view a as a = (z, w) ∈ C2. Note that ā = (z̄,−w).

(Warning: if one views (z, w) as a vector with complex entries then (z, w) = (z̄, w̄).) Let

C(a) =

 z w

−w̄ z̄

 ∈ C2×2, a = (z, w). (7.4)

Then the map a → C(a) is an isomorphism of H and the induced complex 2-dimensional

subalgebra C(H) = {C(a), a ∈ H} ⊂ C2×2. Note that A(H) ∩ R2×2 is a subalgebra

isomorphic to C. Observe that

|a|2 = detC(a), C(ā) = C(a)∗,<(a) =
1

2
tr(C(a)). (7.5)

As tr(AB) = tr(BA) we deduce that

<(ab) = <(ba) = <(ab) = <(b̄ā) = <(āb̄), a, b ∈ H. (7.6)
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7.2.2 Vector spaces

We next consider a right vector space V over H. It is a commutative group with 0 element

denoted as 0. We will denote in this section by the lower case bold letter vectors in V. For

the right vector space V the scalar vector product va satisfies the standard assumptions:

(v + w)a = va+ wa, v(a+ b) = va+ wb, v(ab) = (va)b, v1 = v.

We can define similarly the left vector space over H. In this paper, we only work with right

vector space. Linear dependence, linear independence, subspace, span of a set of vectors,

finitely generated subspaces, basis are defined as for the vector spaces over a field. Every

finitely generated vector space over H has a basis of the same cardinality, denoted by dim V.

Denote [l] = {1, . . . , l} ⊂ N. We view

Hl = {x = (x1, . . . , xl)
>, xi ∈ H, i ∈ [l]}, Hl = {x = (x1, . . . , xl), xi ∈ H, i ∈ [l]},

as right and left vector spaces over H respectively. Clearly, dimHl = dimHl = l and

ei = (δ1i, . . . , δli), i ∈ [l] is the standard basis in Hl and Hl.

When a basis is specified, for example, the standard basis in the right vector space Hl,

the expression av is meaningful and we will use it when necessary. However, the reader

should keep in mind this expression should be considered as an additional structure related

to a particular basis. Its meaning will be different if we choose a different basis.

Denote

x = (x̄1, . . . , x̄l)
>, x∗ = (x̄1, . . . , x̄l), for x = (x1, . . . , xl)

> ∈ Hl. (7.7)

Similar notations apply for x ∈ Hl. Note that x is defined with respect to the standard basis

in Hl.
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LetM = (Mij) ∈ Hm×n. Define C(M) = (C(Mij)) ∈ C(2m)×(2n) to be the block matrix

with 2×2 blocks C(Mij). Again, this embedding commutes with conjugate transpose, addi-

tion and multplication of matrices. For m = n the matrix M ∈ Hn×n is called (quaternion)

self-adjoint if M∗ = M . We denote by Sn(F) ⊂ Fn×n the real space of self-adjoint matrices:

M∗ = M . When no ambiguity arises we will drop the dependence on F.

It is helpful to introduce a convenient relabeling of the block matrix C(M) denoted as

Ĉ(M) = PmC(M)P>n , where Pm ∈ {0, 1}(2m)×(2m) is the following permutation matrix:

The matrix Pm permutes the rows 1, 2, . . . ,m + 1, . . . , 2m to 1, 3, . . . , 2m − 1, 2, 4, . . . , 2m

respectively. Then Ĉ(M) has the following block structure:

Ĉ(M) =

 Z W

−W Z̄

 , Z,W. ∈ Cm×n (7.8)

Clearly, this partition is another isomorphism ι : Hm×n → C(2m)×(2n) which is preserved

under multiplication and conjugate transpose of matrices. Note M ∈ Sn(H) if in the above

representation of Ĉ(M), where Z ∈ Sn(C) and W is skew symmetric W> = −W .

7.2.3 Inner product on quaternion vector space

Assume that V is a right vector space over H. A mapping 〈·, ·〉 : V × V → H is called an

inner product if the following conditions hold:

〈y, x〉 = 〈x, y〉,

〈xa+ yb, z〉 = ā〈x, z〉+ b̄〈y, z〉,

〈z, xa+ yb〉 = 〈z, x〉a+ 〈z, y〉b,

〈x, x〉 > 0 for x 6= 0.
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The norm is defined as ‖x‖ =
√
〈x, x〉. Let H be a right vector space of H with an inner

product. We also call H the Hilbert space over quaternions. All analysis in this paper

is essentially finite dimensional. Incooperating the completeness in our definition does not

change our result.

Lemma 7.2.1. 1. ‖xa‖ = |a|‖x‖.

2. The Cauchy-Schwarz inequality holds for quaternion vector space,

|〈x, y〉| ≤ ‖x‖‖y‖.

3. ‖ · ‖ is subadditive, i.e., satisfies the triangle inequality. Hence ‖ · ‖ is indeed a norm

on V.

Proof. 1. ‖xa‖2 = 〈xa, xa〉 = a∗〈x, x〉a = ‖x‖2|a|2.

2. Suppose that x is not a scalar multiple of y, and that neither x nor y is 0. Then x−ya

is not 0 for any a. So

‖x− ya‖2 = ‖x‖2 + ‖y‖2|a|2 − 〈x, y〉a− a∗〈x, y〉 > 0

Let a = tµ with real t and |µ| = 1 so that 〈x, y〉a = |〈x, y〉|t. Then

‖x‖2 + ‖y‖2t2 − 2|〈x, y〉|t > 0

holds for all t. So |〈x, y〉| ≤ ‖x‖‖y‖.

3. (‖x‖+ ‖y‖)2 − ‖x+ y‖2 = 2‖x‖‖y‖ − 〈x, y〉 − 〈y, x〉 ≥ 0.

Two vectors x, y are called orthogonal if 〈x, y〉 = 0. A set of vectors x1, . . . , xl ∈ V is an

orthonormal system if 〈xi, xj〉 = δij for i, j ∈ [l].
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Lemma 7.2.2. (Gram-Schmidt process) Let x1, . . . , xn be vectors in a right inner product

space V over H. Assume that x1 6= 0. Then there exists m ∈ [n] orthonormal vectors

y1, . . . , ym in the span of x1, . . . , xn with the following property. For each i ∈ [n] there exists

j(i) ∈ [i] such that x1, . . . , xi are in the span of y1, . . . , yj(i). The vectors y1, . . . , ym are

obtained by the Gram-Schmidt process.

Proof. Let y1 = x1‖x1‖−1. Suppose we defined the orthonormal vectors y1, . . . , yj such that

their span, denoted as Vj , contains the vectors x1, . . . , xi. So j(i) = j. Let

zi+1 = xi+1 −
j∑

k=1

yk〈yk, xi+1〉.

Assume first that zi+1 6= 0. A straightforward calculation shows that zi+1 is orthogonal

on yk for k ∈ [j]. Then let yj+1 = zi+1‖zi+1‖−1. Assume second that zi+1 = 0. Then

j(i+ 1) = j and we replace xi+1 by xi+2.

In what follows we need the following lemma

Lemma 7.2.3. Let x, y ∈ Hl. Then

<(〈x, y〉) = <(〈y, x〉). (7.9)

Proof. Use (7.6) and the definitions of x, y to deduce

<(〈x, y〉) = <(
l∑

i=1

xiȳi) = <(
l∑

i=1

ȳixi) = <(〈y, x〉).

Let b1, . . . , bm be an orthonormal basis in a right vector space V. Then

x =
m∑
i=1

bi〈bi, x〉, y =
m∑
i=1

bi〈bi, y〉, 〈x, y〉 =
n∑
i=1

〈x, bi〉〈bi, y〉. (7.10)
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Definition 7.2.4. Let V be a right m-dimensional vector space over H with the inner product

〈·〉. Let B = {b1, . . . , bm} be an orthonormal basis in V. For a vector v ∈ V we define

vB =
m∑
i=1

bi〈bi, v〉 =
m∑
i=1

bi〈v, bi〉.

7.2.4 Tensor products over quaternions

There is no natural way to define the tensor product space over H. So the definition below

is coordinate dependent and should not be confused with the universal construction often

used in other settings.

Given quaternion vector spaces Hm,Hn with standard basis, we define the tensor product

Hm⊗Hn as the space of Hm×n matrices and u⊗ v can be identified with uv>. On matrices

Hm ⊗Hn we define the inner product as:

〈A,B〉 = trace A∗B =

m,n∑
i,j=1

A∗ijBij , A = (Aij), B = (Bij) ∈ Hm ⊗Hn.

Therefore

〈u⊗ v, x⊗ y〉 =

m,n∑
i,j=1

v∗ju
∗
i xiyj .

Notice that

〈u, x〉〈v, y〉 =

m,n∑
i,j=1

u∗i xiv
∗
j yj .

In general, the two quantities are not the same due to noncommutativity.

Lemma 7.2.5. Let u, x ∈ Hm, v, y ∈ Hn.

1. If 〈u, x〉 ∈ R then 〈u⊗ v, x⊗ y〉 = 〈u, x〉〈v, y〉.

2. ‖u⊗ v‖ = ‖u‖‖v‖.

3. <(〈v ⊗ v, y ⊗ y〉) = |〈v, y〉|2.
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Proof. (1) If 〈u, x〉 ∈ R, then

m,n∑
i,j=1

v∗ju
∗
i xiyj =

n∑
j=1

v∗j (
m∑
i=1

u∗i xi)yj =

m,n∑
i,j=1

u∗i xiv
∗
j yj .

(2) As 〈u, u〉 ≥ 0 it follows that〈u⊗ v, u⊗ v〉 = 〈u, u〉〈v, v〉. Hence ‖u⊗ v‖ = ‖u‖‖v‖.

(3)

<(〈v ⊗ v, y ⊗ y〉) = <(

n,n∑
i,j=1

v∗j viy
∗
i yj) = <(

n∑
i=1

viy
∗
i

n∑
i=1

yiv
∗
i ) = |〈v, y〉|2.

7.2.5 Schur’s theorem for quaternions

Recall Sn(F) ⊂ Fn×n is the space of A satisfying A∗ = A. We call such matrices self-

adjoint. Assume that A = (aij) ∈ Sn(H). We associate with A the quaternion form

Q(x) := x∗Ax =
∑n
i=1

∑n
j=1 x̄iaijxj for x ∈ Hn. As (x∗Ax)∗ = x∗Ax it follows that

Q(x) is always a real number. The matrix A is called positive semidefinite if Q(x) ≥ 0 for all

x. We denote by Sn+(F) the cone of positive semidefinite self-adjoint matrices over F. It is

easy to check that Sn+(H) ∩Rn×n = Sn+(R). If Q(x) > 0 for all x 6= 0, 〈x, y〉 = x∗Ay defines

an inner product in Hn.

Denote by Un(F) ⊂ Fn×n the group of unitary matrices U∗U = UU∗ = I. The spectral

theorem of A ∈ Sn(F) claims that there exists a unitary U and a real diagonal D such that

A = UDU∗ [74]. The columns of U are the eigenvectors of A with real left eigenvalues,

which are the corresponding diagonal entries of D. Thus A ∈ Sn+(F) if and only if all

the left real eigenvalues of A are nonnegative. In that case A has a unique square root

A1/2 = UD1/2U∗ ∈ Sn+(F). Hence A = 〈xi, xj〉, where x1, . . . , xn are the columns of A1/2.

In particular, ‖x1‖ = · · · = ‖xn‖ = 1 if and only if the diagonal entries of A are 1. To get the

expression A = 〈xi, xj〉, we can also use the Cholesky decomposition. The usual algorithm

for Cholesky decomposition works for quaternions.
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Lemma 7.2.6. Assume that M ∈ Hn×n has representation Ĉ(M) ∈ C(2n)×(2n) given by

(7.8). Then

1. M ∈ Sn(H) if and only if Z ∈ Sn(C) and W is skew symmetric: W> = −W .

2. M ∈ Sn(H) if and only if M̄ ∈ Sn(H). Furthermore M ∈ Sn+(H) if and only if

M̄ ∈ Sn+(H).

3. M ∈ S+(H) if and only if Ĉ(M) ∈ S2n
+ (C).

Proof. (1) Assume that M = Z + W j, where Z,W ∈ Cn×n. Then M∗ = Z∗ −W>j. Thus

M∗ = M if and only if Z∗ = Z and −W> = W . This is equivalent to the statement that

Ĉ(M) ∈ S2n(C).

(2) As M̄ = Z̄ −W j we deduce that M is self-adjoint if and only if M̄ is self-adjoint.

Suppose that M ∈ Sn+(H). Then M = UDU∗ where U is unitary and D is a real diagonal

with nonnegative diagonal entries. Then M̄ = UDU∗ = U∗DŪ = U>DŪ . As Ū is unitary

we deduce that M̄ ∈ Sn+(H). Similarly if M̄ is positive semidefinite, then M is positive

semidefinite.

(3) Assume that M is self-adjoint. Then Ĉ(M) is positive semidefinite if and only if

x∗Zx + y∗Z̄y + 2<x∗Wy ≥ 0 for x, y ∈ Cn. Replace x, y with x,−y we deduce that the

above Hermitian form is nonnegative if and only if the form x∗Zx + y∗Z̄y − 2<x∗Wy is

nonnegative.

Assume that M = Z + W j ∈ Sn(H). Let x = z + wj ∈ Hn, where z, w ∈ Cn. A

straightforward calculation shows:

x∗Mx = (z∗ − w>j)(Z +W j)(z + wj) = z∗Zz + w>Z̄w − z∗Ww + w>W̄z

Clearly (w>W̄z)∗ = z∗W>w = −z∗Ww. As x∗Mx is a real number it follows that x∗Mx =

z∗Zz + w>Z̄w − 2<z∗Ww. Set y = w to deduce the claim.

267



For A = (aij), B = (bij) ∈ Fm×n denote by A ◦ B = (aijbij) the Schur product of two

matrices. Assume that F ∈ {R,C}. Then the Schur product of two self-adjoint matrices

is self-adjoint. Furthermore, Schur’s theorem claims that the Schur product of two positive

semidefinite matrices is positive semidefinite. Assume that F = H. Since H is not commu-

tative, the product of two quaternion self-adjoint is usually not self-adjoint. There are two

simple exceptions: either B ∈ Sn(R) or B = Ā.

Lemma 7.2.7 (The Schur product theorem for quaternions). For symmetric positive semi-

definite real matrix M and self-adjoint positive semidefinite quaternion matrix N, their

Hadamard product, defined by (M ◦ N)ij := MijNij, is self-adjoint positive semidefinite.

The matrix Lij := NijN
∗
ij = ‖Nij‖2 is also self-adjoint positive semidefinite.

Proof. M can be written as Mij = 〈ai, aj〉 where ai ∈ Rn. And N can be written as

Nij = 〈xi, xj〉 where xi ∈ Hn. By Lemma 7.2.5,

〈ai ⊗ xk, aj ⊗ xl〉 = 〈ai, aj〉〈xk, xl〉.

So both the Kronecker product and Schur product of M and N are semidefinite positive.

For the second claim, again by Lemma 7.2.5, Lij = ‖〈xi, xj〉‖2 = R(〈x̄i ⊗ xi, x̄j ⊗ xj〉).

So L is the real part of a positive semidefinite matrix and it is also positive semidefinite.

Lemma 7.2.8. Let H be a Hilbert space over quaternions. Assume that x1, . . . , xn be n unit

vectors in H. Then for each m ∈ N, there exist m unit vectors x1,m . . . , xn,m ∈ Hn such

that 〈xi,m, xj,m〉 = 〈xi, xj〉|〈xi, xj〉|2m.

Proof. Let A0 = (〈xi, xj〉). Then A0 ∈ Sn+ is a correlation matrix. Denote Am = Am−1 ◦

(A0 ◦ Ā0) for m ∈ N. Use induction and Lemma 7.2.7 to deduce that Am is a correlation

matrix. Then Am = (〈xi,m, xj,m〉). Hence 〈xi,m, xj,m〉 = 〈xi, xj〉|〈xi, xj〉|2m.
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7.2.6 The kernel trick

We now state the kernel trick for quaternion Hilbert space [194]. This technique has

been used in [78] to deduce in a unified way the Krivine-Haagerup upper bound on the

Grothendieck constant KFG for the fields of real or complex numbers F.

Lemma 7.2.9. Let H be a Hilbert space over quaternions. Assume that x1, . . . , xn, y1, . . . , yn

are 2n unit vectors in H. Suppose that g(z) is an analytic function in the unit complex disk

with Taylor series satisfying the following conditions.

g(z) =
∞∑
i=0

amz
2i, ai ∈ R,

∞∑
i=0

|am| = 1

Then there exists 2n unit vectors u1, . . . , un, v1, . . . , vn in a Hilbert space H′ such that

〈xi, yj〉g(|〈xi, yj |) = 〈ui, vj〉, i, j = 1, . . . , n. (7.11)

Proof. Let zi = xi, zn+i = yi for i ∈ [n]. Lemma 7.2.8 yields the existence of unit vectors

wi,m ∈ H2n such that 〈wi,m, wj,m〉 = 〈zi, zj〉|〈zi, zj〉|2m for each m ∈ N and i, j ∈ [2n].

Let H′ = H⊕ (⊕∞m=1H
2n) with the corresponding induced inner product. Define

ui = xi
√
|a0| ⊕ (⊕∞m=1wi,m

√
|am|),

vi = yi sgn a0

√
|a0| ⊕ (⊕∞m=1wn+i,m sgn am

√
|am|)

for i ∈ [n]. Then ui, vi are unit vectors and (7.11) holds.

269



7.2.7 Existence of the Grothendieck constant for quaternions

In this paper we view Hm×n as a left vector space over H. We introduce two norms on

Hm×n:

‖M‖∞,1,H = max{|
m,n∑
i,j

Mij ε̄iδj |, εi, δj ∈ H, |εi| = |δj | = 1, i ∈ [m], j ∈ [n]}, (7.12)

‖M‖G,H = max{|
m,n∑
i,j

Mij〈xi, yj〉|, xi, yi ∈ H, ‖xi‖ = ‖yj‖ = 1, i ∈ [m], j ∈ [n]}. (7.13)

Here H is a right Hilbert space over quaternions. If we choose H to be one dimensional,

then the maximum in the Grothendieck norm is the maximum of (∞, 1) norm. Hence we

have the inequality ‖M‖∞,1 ≤ ‖M‖G,H. Thus the problem is now the following: do we

have the reverse inequality independent on the dimensions m,n: KHG‖M‖∞,1 ≥ ‖M‖G,H?

By multiplying each δj and yj by a fixed a ∈ H, |a| = 1 from the right, for j ∈ [n], we can

replace absolute values in the definitions of the norms ‖M‖∞,1, |M‖G,H by the real part

‖M‖∞,1,H = max{<(

m,n∑
i,j

Mij ε̄iδj), εi, δj ∈ H, |εi| = |δj | = 1, i ∈ [m], j ∈ [n]}, (7.14)

‖M‖G,H = max{<(

m,n∑
i,j

Mij〈xi, yj〉), xi, yj ∈ H, ‖xi‖ = ‖yj‖, i ∈ [m], j ∈ [n]}. (7.15)

Observe next that the maximum in the characterizations above we can replace the equalities

|εi| = |δj | = ‖xi‖ = ‖yj‖ = 1 by the inequalities |εi|, |δj |, ‖xi‖, ‖yj‖ ≤ 1 [77].

Next we now are going to replace the maximum in the above characterization for

‖M‖∞,1,H with quaternions with matrices of sizes (2m) × (2n) with complex entries. We

start with the following lemma which follows by straightforward calculation:

Lemma 7.2.10. Assume that the quaternions α, ε, δ have the following matrix representa-
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tions:

α =

 a b

−b̄ ā

 , ε =

 z w

−w̄ z̄

 , δ =

 u v

−v̄ ū

 ∈ C2×2.

Then

<(αε̄δ) = <((z̄, w̄)

 a −b̄

b ā

 (u, v)>) = <((z̄, w̄)A(α)>(u, v)>).

Lemma 7.2.11. Let

M = (Mij) ∈ Hm×n, εi = (zi, wi), δj = (ui, vi) ∈ H, zi, wi, uj , vj ∈ C,

where |zi|2 + |wi|2 = |ui|2 + |vi|2 = 1, i ∈ [m], j ∈ [n]. To each quaternion Mij =

(Mij,1,Mij,2) associate the matrix C(Mij) =

 Mij,1 Mij,2

−M̄ij,2 M̄ij,1

. Let M̃ = (C(Mij)
>) ∈

C(2m)×(2n) and

e = (z̄1, w̄1, z̄2, w̄2, . . . , z̄m, w̄m)> ∈ C2m, d = (u1, v1, u2, v2, . . . , un, vn)> ∈ C2n.

Then

Re(

m,n∑
i,j

Mij ε̄iδj) = <(e>M̃d),

where εi, δj ∈ H, |εi| = |δj | = |zi|2 + |w2
i | = |uj |

2 + |vj |2 = 1, and

‖M‖1,∞,H = max{<(e>M̃d), e ∈ C2m, d ∈ C2n, |zi|2 + |w2
i | = |uj |

2 + |vj |2 = 1}. (7.16)

In particular

‖M‖1,∞,H ≤ ‖M̃‖1,∞,C ≤ 2‖M‖1,∞,H. (7.17)

Proof. Use Lemma 7.2.11 to obtain the first equality of the lemma. Clearly, the set |z|2 +
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|w|2 = 1 is a subset of |z| ≤ 1, |w| ≤ 1. Hence the characterizations (7.16) and the com-

plex norm ‖M̃‖∞,1,C yield the first inequality in (7.17). In the equality |z|2 + |w|2 = 1,

choose a particular case |z| = |w| = 1√
2
. Then |

√
2z| = |

√
2w| = 1. Hence the maximal

characterization for 2M̃ corresponding to ‖2M‖∞,1,H is not less than ‖M̃‖∞,1,C.

We now recast ‖M‖G,H in terms of the above matrix M̃ . We can first write x, y ∈ Hl as

z + wj, u+ vj, where z, w, u, v ∈ Cl. We next observe that

〈x, y〉 = 〈z + wj, u+ vj〉 = (〈z, u〉+ 〈v, w〉) + (〈z, v〉 − 〈u,w〉)j. (7.18)

Introduce the following four vectors:

f1 = (z>, w>)>, f2 = (w>,−z>)>, g1 = (u>, v>)>, g2 = (v>,−u>)> ∈ C2l.

Then

〈x, y〉 = 〈f1, g1〉+ 〈f1, g2〉j = 〈f2, g2〉 − 〈f2, g1〉j.

Note that 〈f, g〉 = f∗g is the standard inner product on C2l. Furthermore

‖f1‖ = ‖f2‖ = ‖x‖, ‖g1‖ = ‖g2‖ = ‖y‖,

The next lemma relates <(α〈x, y〉) and <(
∑2
i,j=1(A(α)>)ij〈fi, gj〉):

Lemma 7.2.12. Let α = a+ bj ∈ H and x, y ∈ Hl. Then

<(α〈x, y〉) =
1

2
<(

2∑
p,q=1

(A(α)>)pq〈fp, gq〉).

272



Proof. The above formulas yield

<(α〈x, y〉) = <(a(〈z, u〉+ 〈v, w〉)− b(〈z, v〉 − 〈u,w〉)

= <(a(〈u, z〉+ 〈w, v〉)− b(〈v, z〉 − 〈w, u〉)

= <(a〈f1, g1〉+ b〈f2, g1〉)

= <(ā〈f2, g2〉 − b̄〈f1, g2〉).

As A(α) =

 a b

−b̄ ā

 we get

<(
2∑

p,q=1

(A(α)>)pq〈fp, gq〉) = <(a〈f1, g1〉 − b̄〈f1, g2〉+ b〈f2, g1〉+ ā〈f2, g2〉).

Compare the two expressions to deduce the lemma.

The following result is an improvement of the Grothendieck’s result [87] that KCG ≤ 2KRG,

and an analog of result in [77].

Theorem 7.2.13. KHG ≤ KCG.

Proof. Let M = (Mij) ∈ Hm×n. Let M̃ ∈ C(2m)×(2n) be defined as in the proof of Lemma

7.2.11. Lemma 7.2.11 claims that ‖M̃‖∞,1,C ≤ 2‖M̃‖∞,1,H.

Assume that the entries of M̃ are M̂ij ∈ C where i ∈ [2m], j ∈ [2n]. Let x1, . . . , xm,

y1, . . . , yn ∈ H, be vectors of norm one, where H is an inner product space over quaternions.

As one has Gram-Schmidt process in H we can assume that x1, . . . , xm, y1, . . . , yn ∈ Hn+m.

Consider the Grothendieck norm ‖M‖G,H. For each xi, yj define f2i−1, f2i, g2j−1, f2j as

before the proof of Lemma 7.2.12. The proof of Lemma 7.2.12 that ‖M‖G,H is maximum
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on all f1, . . . , f2m, g1, . . . , g2n ∈ C2(n+m) of the expression

1

2
<(

m,n∑
i,j=1

2∑
p,q=1

(C(Mi,j)
>)pq〈f2(i−1)+p, g2(j−1)+q〉).

Clearly, the above maximum is not more then the maximum for 1
2‖M̃‖G,C, since the vectors

f2i−1, f2i, g2j−1, f2j are of a special form. Hence

‖M‖G,H ≤
1

2
‖M̃‖G,C ≤

KCG
2
‖M̃‖∞,1,C ≤ KCG‖M‖∞,1,H.

(The right hand side inequality follows from (7.17).)

7.2.8 Semidefinite programming for computing quaternion Grothendieck

norm

In this subsection we state the computation of ‖M‖G,H as an SDP problem on positive

semidefinite Hermitian matrices. We use the characterization (7.15). Let zi = xi, zn+j = yj

for i ∈ [m], j ∈ [n]. Denote by Gp(H) ⊂ Sp+(H) the convex set of quaternion correlation

matrices, i.e., all positive semidefinite quaternionic matrices whose diagonal entries are 1.

Assume that G = G(z1, . . . , zm+n) ∈ Gm+n(H). Let H = Ĉ(G). Then H ∈ S2(m+n)(C) is

a complex correlation matrix of the form (7.8), where Z,W ∈ Cm+n and W> = −W . Let

us denote this real subspace of complex correlation matrices by C2(m+n). Define as in [77]

A(M) =

 0 M

M∗ 0

 ∈ Sm+n(H)

Lemma 7.2.14. Assume that M ∈ Hm×n. Then

‖M‖G,H =
1

2
max{< trA(M)G,G ∈ Gm+n(H)} =

1

4
max{tr Ĉ(A(M))H,H ∈ C2(m+n)}.
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Proof. Let G = G(z1, . . . , zm+n) be defined as above. Then

trA(M)Ḡ =
m∑
i=1

n∑
j=1

Mij〈yj , xi〉+Mji〈xi, yj〉 =
m∑
i=1

n∑
j=1

Mij〈xi, yj〉+Mji〈xi, yj〉,

< trA(M)Ḡ =
m∑
i=1

n∑
j=1

<Mij〈xi, yj〉+ <Mij〈xi, yj〉 = 2<
m∑
i=1

n∑
j=1

Mij〈xi, yj〉

(To deduce the last equality we used (7.6).) Lemma 7.2.6 yields that Ḡ ∈ Sm+n
+ if and only

if Ḡ ∈ Sm+n
+ . As the diagonal entries of Ḡ are 1 we deduce that Ḡ ∈ Gm+n(H) if and only if

G ∈ Gm+n(H). Use (7.15) to deduce the first part of the characterization of ‖M‖G,H. Since

A(M), G ∈ Sm+n(H) we have

M = M1 +M2j, A(M) = A1 + A2j =

 0 M1

M∗1 0

+

 0 M2

−M>2 0

 j, G = G1 +G2j,

M1,M2 ∈ Cm×n, G1 ∈ Sm+n(C), G2 ∈ C(m+n)×(m+n), G>2 = −G2.

Hence

Ḡ = Ḡ1 −G2j, < trA(M)Ḡ = <(A1Ḡ1 + A2Ḡ2).

Observe next

Ĉ(A(M)) =

 A1 A2

−Ā2 Ā1

 , Ĉ(Ḡ) =

Ḡ1 −G2

Ḡ2 G1

 ,
tr Ĉ(A(M))Ĉ(Ḡ)) = tr(A1Ḡ1 + A2Ḡ2 + Ā2G2 + Ā1G1) = 2<(A1Ḡ1 + A2Ḡ2).

As Ḡ ∈ Gm+n(H) we deduce that Ĉ(Ḡ) ∈ C2(m+n). Vice versa, if H ∈ C2(m+n) then

H = Ĉ(Ḡ) for some Ḡ ∈ Gm+n(H). Hence G is a quaternion correlation matrix. This

proves the lemma.
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7.2.9 The sign function for quaternions

We define our sign function over F

sgn z =


z/|z| z 6= 0,

0 z = 0.

(7.19)

Denote by S3 = {a ∈ H, |a| = 1}, the 3-dimensional sphere in R4. Note that multiplication

by φa(b) = ab, and ψa(b) = ba are orientation preserving orthogonal transformation on H

for a fixed a ∈ S3 and b ∈ H. In particular φa(S3) = ψa(S3) = S3.

On S3 let dσ be the Haar measure on S3, which is invariant under the action of φa, ψb.

We now give the following generalization of Haagerup formula [90] for sgn(z) for quaternions:

Lemma 7.2.15. Let z ∈ H. Then

sgn(z) =
3

8π

∫
w∈S3

sgn(<(w̄z))wdσ(w). (7.20)

Proof. Clearly for z = 0 (7.20) trivially holds. We next assume that z = 1. Hence the left

hand side of (7.20) is 1. Let w = w0 + w1i + w2j + w3k ∈ S3. Then <(w∗) = w0 and

sgn(<(w̄)) = sgn(w0). We first observe that

∫
w∈S3

sgn(w0)wjdσ(w) = 0 for j ∈ [3].

This follows from the observation that the transformation w 7→ w̄ is Haar measure preserving

on S3. Hence

∫
w∈S3

sgn(w0)wjdσ(w) = −
∫
w∈S3

sgn(w0)wjdσ(w), j ∈ [3].
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Observe next that sgn(<(w̄))w0 = sgn(w0)w0 = |w0|. Thus we need to show that

∫
w∈S3

|w0|dσ(w) =
8π

3
.

We now introduce the spherical coordinates on R4 as follows:

w0 = cos(φ0), w1 = sin(φ0) cos(φ1), w2 = sin(φ0) sin(φ1) cos(φ2),

w3 = sin(φ0) sin(φ1) sin(φ2), dσ = sin2(φ0) sin(φ1)dφ0dφ1dφ2,

φ0, φ1 ∈ [0, π], φ2 ∈ [0, 2π].

Hence

∫
w∈S3

|w0|dσ(w) =
( ∫ π

0
| cos(φ0)| sin2(φ0)dφ0

)( ∫ π

0
sin(φ1)dφ1

)( ∫ 2π

0
dφ2
)

=
8π

3
.

Hence (7.20) holds for z = 1. For a general z 6= 0 we recall that sgn(z) = sgn(tz) for any

t > 0. Hence it is ehough to show (7.20) for z ∈ S3. That is we need to show the equality

z =
3

8π

∫
w∈S3

sgn(<(w̄z))wdσ(w), z ∈ S3

By multiplying by z̄ from the left it is sufficient to show that

1 =
3

8π

∫
w∈S3

sgn(<(w̄z))z̄wdσ(w).

Now introduce a new variable u = φz̄(w) = z̄w on S3 . Note that ū = w̄z. Since the Haar

measure on S3 is invariant under φz̄ we get that dσ(w) = dσ(u). Hence the above equality

is equivalent to (7.20) for z = 1, which was proved.
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7.2.10 Quaternion Gaussian

Recall the distribution of GRn (z) and GCn (z) given [90]. The Gaussian quaternions Hn has

the distribution

GHn (z) =
(π

2

)−2n
exp(−2‖z‖22).

The variance chosen here is totally arbitrary.

Theorem 7.2.16. Assume that u, v ∈ H are of norm one, where H is a right vector space

over H. m(z) is the Lebesgue measure in Hn, then

∫
Hn

sgn〈u, z〉 sgn〈z, v〉GHn (z)dm(z) = 〈u, v〉fH(|〈u, v〉|)

= 〈u, v〉3
2

∫ π
2

0

cos4 t√
1− |〈u, v〉|2 sin2 t

dt.

If 〈u, v〉 is real, then

∫
Hn

sgn〈z, u〉 sgn〈v, z〉GHn (z)dm(z) = 〈u, v〉fH(|〈u, v〉|)

= 〈u, v〉3
2

∫ π
2

0

cos4 t√
1− |〈u, v〉|2 sin2 t

dt.

Proof. We will prove the first formula, the proof of second formula is the same. First of all

we point out that it is sufficient to prove this formula for n = 2. Indeed since span (u, v) is at

most two dimensional, by performing Gram-Schmidt orthogonalization process we can find

an orthonormal basis in Fn such that u, v ∈ span (e1, e2). Fn can be decomposed as span

(e1, e2) and its complement. By the corresponding decomposition of the Gaussian variable,

its integration on the complement dimension is simply 1.

Recall the famous Grothendieck inequality: for any fixed real vectors u, v of norm 1, we
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have ∫
Rn

sgn〈x, u〉 sgn〈x, v〉GRn (x)dx =
2

π
arcsin〈u, v〉.

For u, v, z ∈ Hn, denote their real vector form as u, v, z ∈ R4n. Then 〈u, v〉 = <〈u, v〉

and the Grothendieck inequality becomes:

∫
Hn

sgn<〈u, z〉 sgn<〈z, v〉GHn (z)dm(z) =
2

π
arcsin<〈u, v〉.

By Lemma 7.2.15, we have

∫
Hn

sgn〈u, z〉 sgn〈z, v〉GHn (z)dm(z)

=
9

64π2

∫
w1,w2∈S3

∫
z∈Hn

sgn(<(w̄1〈u, z〉))w1 sgn(<(w̄2〈z, v〉))w2dσ(w1)dσ(w2)GHn (z)dm(z)

=
9

32π3

∫
w1,w2∈S3

arcsin(<(〈uw1, vw̄2〉))w1w2dσ(w1)dσ(w2)

(1) Assume now 〈u, v〉 = a ∈ R, then <〈uw1, vw̄2〉 = a<(w̄1w̄2) = a<(w1w2). Thus we

deduce

〈u, v〉fH(|〈u, v〉|) =
9

32π3

∫
w1,w2∈S3

arcsin(|〈u, v〉|<(w1w2))w1w2dσ(w1)dσ(w2)

=
9

32π3

∫
w1,w2∈S3

arcsin(|〈u, v〉|<(w1(w−1
1 w2))w1(w−1

1 w2)dσ(w1)dσ(w2)

=
9

16π

∫
q∈S3

arcsin(|〈u, v〉|<(q))qdσ(q)

The second equality is due to the fact that dσ(w2) is a Haar measure. The third equality is

due to the fact that the volume of S3 is equal to 2π2.

Observe that the left hand side of this equality is real. Hence

〈u, v〉fH(|〈u, v〉|) =
9

16π

∫
q∈S3

arcsin(|〈u, v〉|<(q))<(q)dσ(q).
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Now use the spherical coordinates as before to deduce that

〈u, v〉fH(|〈u, v〉|) =
9

4

∫ π

0
arcsin(|〈u, v〉| cosφ0) cosφ0 sin2 φ0dφ0

=
9

2

∫ π
2

0
arcsin(|〈u, v〉| cosφ0) cosφ0 sin2 φ0dφ0

=
9

2

∫ π
2

0
arcsin(|〈u, v〉| sin t) sin t cos2 t dt.

Finally do the integration by part to get

〈u, v〉fH(|〈u, v〉|) =
3|〈u, v〉|

2

∫ π
2

0

cos4 t√
1− |〈u, v〉|2 sin2 t

dt.

Thus

fH(|〈u, v〉|) =
3

2

∫ π
2

0

cos4 t√
1− |〈u, v〉|2 sin2 t

dt. (7.21)

(2) If 〈u, v〉 is not real, then there is a norm 1 quaternion c such that 〈uc, v〉 ∈ R.

∫
Hn

sgn〈u, z〉 sgn〈z, v〉GHn (z)dm(z)

=

∫
Hn

c sgn〈uc, z〉 sgn〈z, v〉GHn (z)dm(z)

=c
3〈cu, v〉

2

∫ π
2

0

cos4 t√
1− |〈cu, v〉|2 sin2 t

dt

=
3〈u, v〉

2

∫ π
2

0

cos4 t√
1− |〈u, v〉|2 sin2 t

dt

7.2.11 The function p(x)

Define a function over the open quaternion unit disk DH = {z ∈ H, |z| < 1} by

P (z) :=
3z

2

∫ π/2

0

cos4 t

(1− |z|2 sin2 t)1/2
dt, z ∈ DH, (7.22)
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and the function p(x) as the restriction of P to (−1, 1) ⊆ R. Note that p′(x) > 0 on (−1, 1),

p(−1) = −1 and p(1) = 1. Hence p : [−1, 1] → [−1, 1] is a strictly increasing continuous

bijection. Since [−1, 1] is compact, p is a homeomorphism of [−1, 1] onto itself. By Taylor

expansion, we get

(1− x2 sin2 t)−1/2 =
∞∑
k=0

(2k − 1)!!

(2k)!!
x2k sin2k t, |x| ≤ 1, 0 ≤ t < π/2,

and ∫ π/2

0
cos4 t sin2k t dt =

3π

2
· (2k − 1)!!

(2k + 4)!!
,

we get

p(x) =
∞∑
k=0

9π

16(k + 1)(k + 2)

[
(2k − 1)!!

(2k)!!

]2

x2k+1, x ∈ [−1, 1]. (7.23)

Let p`(x) = x2F1(1
2 ,

1
2 ; `;x2) be the function introduced in the introduction. A straightfor-

ward calculation shows that p(x) = 9π
32p3(x).

This calculation coincides with the formula [27, (3.2)], namely E4(z) = p(x). More

generally, we have E2d(z) = C2dpd+1(x), where C2d = (1/d)
(
Γ((2d + 1)/2)/Γ(d)

)2. Thus,

whenever the inverse function of p`(x) has first Taylor coefficient positive and all other

nonpositive one can improve the value of the Grothendieck constants KR
G,2(`−1)

as in [77].

Compare above p(x) with the real Haagerup function

h(x) =
∞∑
k=0

π

4(k + 1)

[
(2k − 1)!!

(2k)!!

]2

x2k+1, x ∈ [−1, 1]. (7.24)

Observe that h(x) = π
4p2(x). Note that

(x3p(x))′ =
3

2
x2h(x).
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As
[

(2k−1)!!
(2k)!!

]
< 1 It follows that

∞∑
k=0

9π

16(k + 1)(k + 2)

[
(2k − 1)!!

(2k)!!

]
<

∞∑
k=0

9π

16(k + 1)(k + 2)
=

9π

16

∞∑
k=0

(
1

k + 1
− 1

k + 2
) =

9π

16
.

Therefore the power series for p(x) (or P (z)) converge uniformly to a continuous function

on the closed quaternion unit disk D̄H. Note that p(z) is analytic in the open complex

unit disk D = {z ∈ C, |z| < 1}. Use the ratio test for the coefficients to see that the

radius of convergence of the series for p(z) is r = 1. Since the Taylor coefficients of p(z)

are nonnegative, the Vivanti-Pringsheim theorem yields that z = 1 is a singular point. As

p(−z) = −p(z) it follows that z = −1 is also singular point. As p′(0) > 0 it follows that p(z)

has an inverse analytic function in some disc D(r) = {z ∈ C, |z| < r}. So

p−1(z) =
∞∑
k=0

c2k+1z
2k+1, z ∈ C, |z| < r, 0 < r ≤ 1. (7.25)

The reason that r ≤ 1 is because 1 is the singular point of p(z). The coefficients c2k+1 are

given by the Lagrange inversion formula:

c2k+1 =
1

(2k + 1)!
lim
t→0

[
d2k

dt2k

(
t

p(t)

)2k+1]
. (7.26)

Since p′(x) > 0 for x ∈ (−1, 1) the function p−1(z) is an analytic function in some simply

connected domain containing (−1, 1).

Assume that p(z) = w. Then z = p−1(w). As p3(z) = 32
9πw it follows that z =

p−1
3 ( 32

9πw) = p−1(w). Hence the Taylor coefficients of p−1(w) and p−1
3 (w) have the same

signs.
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7.2.12 Haagerup’s method

In this subsection we will try to apply methods in [90] to show that c2k+1 < 0 for k > 0.

We first show that as in [90, Lemma 2.2] that p(z) can be extended to a continuous function

p+(z) in the closed upper half plane C+ = {z ∈ C,=(z) ≥ 0} which is analytic in the open

upper half plane C+
o = {z ∈ C,=(z) > 0}. Recall that

p(x) =
9

2

∫ π
2

0
sin t cos2 t arcsin(x sin t)dt, −1 ≤ x ≤ 1. (7.27)

The analytic function sin z is a bijection of [−π2 ,
π
2 ]× [0,∞) onto the closed upper half plane.

Let arcsin+ z : C+ → [−π2 ,
π
2 ]× [0,∞). Note that

arcsin+ x = arcsinx for − 1 ≤ x ≤ 1,

arcsin+ x =
π

2
+ i arccoshx for x ≥ 1,

arcsin+ x = −π
2

+ i arccosh(−x) for x ≤ −1.

Furthermore arcsin+ z is analytic in C+
o . Hence we can define

p+(z) =
9

2

∫ π
2

0
sin t cos2 t arcsin+(z sin t)dt. (7.28)

Lemma 7.2.17. The function p(x) given by (7.27) has an analytic extension to C+
o given
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(7.28). Furthermore p+(z) is continuous on C+. Its value for x > 1 is given by the formulas:

<(p+(x)) =
9

2
(

∫ sin t= 1
x

0
sin t cos2 t arcsin(x sin t) dt+

∫ π
2

sin t= 1
x

sin t cos2 t
π

2
dt)

=
3

2

∫ sin t= 1
x

0

x cos4 t dt√
1− x2 sin2 t

,

=(p+(x)) =
9

2

∫ π
2

sin t= 1
x

sin t cos2 t arccos(x sin t) dt

=
3

2

∫ π
2

sin t= 1
x

x cos4 t dt√
x2 sin2 t− 1

.

Similar equalities hold for x < −1. Furthermore

<(p+(x)) =
3

2

∫ π
2

0
(1− x−2 sin2 u)

3
2 du, =(p+(x))

=
3

2
(1− x−2)2

∫ π
2

0

sin4 v√
1− (1− x−2) sin2 v

dv (7.29)

Proof. The contents of the proof are exactly the same as those of Haagerup with the following

modification. First recall that (cos3 t)′ = −3 sin t cos2 t. Hence

3

∫ sin t= 1
x

0
sin t cos2 t arcsin(x sin t)dt

= − cos3 t arcsin(x sin t)|sin t=
1
x

t=0 +

∫ sin t= 1
x

0

x cos4 t dt√
1− x2 sin2 t

,

and

3

∫ π
2

sin t= 1
x

sin t cos2 t
π

2
dt = −π

2
cos3 t|

π
2

sin t= 1
x

.

These equalities show the first identity for <(p+(x)). Use the same integration by part for

the first identity for =(p+(x)).

For identities (7.29) use the same substitutions as in [90, page 205]. For the expression

<(p+(x)) use sinu = x sin t. Since in the integrant we have cos4 t = cos2 t cos2 t we need to
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multiply the integrant of Haagerup by cos2 t = 1 − sin2 t = 1 − x−2 sin2 u, which gives the

factor (1− x−2 sin2 u)
3
2 .

For the expression =(p+(x)) use the substitution sin v = cos t√
1−x−2

. Again cos2 t = (1 −

x−2) sin2 v.

Lemma 7.2.18. We have the following series expansions for x ≥ 1:

ψ1(x) = <(p+(x)) =
9π

16

(4

3
− x−2 +

∞∑
k=2

(2k − 5)!!(2k − 1)!!

22k−2(k!)2
x−2k), (7.30)

ψ2(x) = =(p+(x)) =
3π

16

∞∑
k=0

(2k − 1)!!(2k + 3)!!

22kk!(k + 2)!
(1− x−2)k+2. (7.31)

Furthermore the functions ψ1 and ψ2 strictly increase for x ≥ 1.

Proof. First, we use the following Taylor expansions:

(1− t)
3
2 = 1− 3

2
t+ 3

∞∑
k=2

(2k − 5)!!

2kk!
tk, (1− t)−

1
2 =

∞∑
k=0

(2k − 1)!!

2kk!
tk.

Second, we use the formula
∫ π

2
0 sin2n udu =

(2n−1)!!
2n+1n!

π, where (−1)!! = 1.

To show that ψ1(x) strictly increases observe that 1− x−2 sin2 u is strictly increasing for

x ≥ 1. To show that ψ2(x) striclty increases for x ≥ 1 observe that the functions (1− x−2)

and 1
1−(1−x−2) sin2 u

strictly increase for x ≥ 1.

Use (7.28) and the arguments of [90][Lemmas 2.3 and 2.4] to deduce:

Lemma 7.2.19. 1. =(p+(z)) ≥ =(p+(|z|)) for |z| ≥ 1 , =(z) ≥ 0.

2. p+(z) has no zero in C+ except z = 0.

Lemma 7.2.20. Assume that the Taylor series of p−1(x) are given by (7.25). Let α > 1.

Then for any odd positive integer n we have

cn =
2

πn

∫ α

1
=(p+(x)−n) dx+ rn(α), where |rn(α)| ≤ α

n
(=p+(α))−n.
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We now imitate the steps in the proof of Haagerup for nonpositivity of Taylor series of

h(z) for k ≥ 2. We will do that without relying on the complete elliptic integrals, only using

Lemmas 7.2.17 and 7.2.18. We first start with the following Lemma:

Lemma 7.2.21. The ratio ψ2(x)
ψ1(x)

strictly increases for x ≥ 1.

Proof. Let

ψ2(x)

ψ1(x)
=

(1− x−2)2
∫ π

2
0

sin4 v√
1−(1−x−2) sin2 v∫ π

2
0 (1− x−2 sin2 u)

3
2 du

=

(1− x−2)
1
2
∫ π

2
0

sin4 v√
1−(1−x−2) sin2 v∫ π

2
0 [(1− x−2)−1(1− x−2 sin2 u)]

3
2 du

The proof of Lemma 7.2.18 yields that the numerator of the last expression strictly increases

for x ≥ 1. Thus it is enough to show that the denominator of the last expression strictly

decreases for x ≥ 1. This would follow from the claim that

1− (1− x−2) sin2 u

1− x−2
= cos2 u+

1

x2 − 1

is strictly decreasing. This is obvious from the last expression.

Clearly

ψ1(1) = 1, ψ1(∞) =
3π

4
, ψ2(1) = 0, ψ2(∞) =∞.

Corollary 7.2.22. The complex function p+ has the following expression for x ≥ 1

θ(x) = arctan
ψ2(x)

ψ1(x)
, p+(x) = ψ1(x) + iψ2(x) = |p+(x)| eiθ(x) =

√
ψ2

1(x) + ψ2
2(x) eiθ(x).

The function θ(x) strictly increases for x ≥ 1, where θ(1) = 0 and θ(∞) = π
2 .

The above corollary is the analog of [90][Lemma 2.7].

Next we need an analog of Lemma 2.8. We first start with the following lemma .
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Lemma 7.2.23. Let χ(x) : [0, π2 ) → [1,∞) be the inverse function of θ(x). Then the

substitution x = χ(y) yields:

dχ

dy
=

ψ2
1(χ(y)) + ψ2

2(χ(y))

ψ′2(χ(y))ψ1(χ(y))− ψ′1(χ(y))ψ2(χ(y))
,

|p+(x)|−ndx = |p+(χ(y))|−n
ψ2

1(χ(y)) + ψ2
2(χ(y))

ψ′2(χ(y))ψ1(χ(y))− ψ′1(χ(y))ψ2(χ(y))
dy =(

|p+|n−2(χ(y))(ψ′2(χ(y))ψ1(χ(y))− ψ′1(χ(y))ψ2(χ(y)))
)−1

.

Proof. As y = θ(x) is strictly increasing on [1,∞) it follows that x = χ(y) is strictly increas-

ing on [0, π2 ). Clearly

dy

dx
= (arctan

ψ2(x)

ψ1(x)
)′ =

ψ′2(x)ψ1(x)− ψ′1(x)ψ2(x)

ψ2
1(x) + ψ2

2(x)
.

This equality implies straightforward the lemma.

The following proposition follows from (7.29), the numerical calculations 7.3.3 and the

last part of Lemma 7.2.18.

Proposition 7.2.24. Let ω(x) = ψ′2(x)ψ1(x)−ψ′1(x)ψ2(x). Then ω(x) strictly increases on

[0, τ ], where

τ ≈ 1.732, ω(τ) ≈ 1.360, ω(1) = ω′(τ) = 0.

Assume that ω(x)|p+(x)|m is strictly increasing on [1, α] for some m > 0. Then for each

integer k ≥ 0 the function ω(x)|p+(x)|m+k strictly increases on the interval [1, α].

Let us choose α = 5 and

θ0 = θ(5) = arctan
ψ2(5)

ψ1(5)
≈ 0.8097.

By Proposition 7.3.4, ω(x)|p+(x)|7 increases in [1, 5]. We now give an analog of [90][Lemma

2.8].
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Figure 7.1: Graph of function ω(x).

Figure 7.2: Graph of function ω(x)|p+(x)|7.
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Lemma 7.2.25. Let α = 5 and θ0 = θ(α). For a fixed n ∈ N let p = bnθ0π c. Set

Ir =
2

πn

∫ θ(x)=π
nr

θ(x)=π
n (r−1)

|p+(x)|−n| sinnθ(x)|dx

for r = 1, . . . , p. Put

I ′ =
2

πn

∫ α

θ(x)=π
np
|p+(x)|−n| sinnθ(x)|dx

Then:

1.
2

πn

∫ α

1
=(p+(x)−n)dx = −I1 + I2 − · · ·+ (−1)pIp + (−1)p+1I ′.

2. For n ≥ 9 one has p ≥ 2 and I1 > I2 > · · · > Ip > I ′.

Proof. (1 ) Observe that =(p+(x)−n) = |p+(x)|−n sin(−nθ(x)) = −|p+(x)|−n sin(nθ(x)).

Hence

∫ α

1
=(p+(x)−n)dx = −

∫ α

1
|p+(x)|−n sin(nθ(x))dx

=
πn

2
(−I1 + I2 − · · ·+ (−1)pIp + (−1)p+1I ′).

(2 ) Let x = χ(y) for y ∈ [0, θ0]. Use Lemma 7.2.23 and the definition of ω(x) in Proposition

(7.2.24) to deduce

Ir =
2

πn

∫ π
nr

π
n (r−1)

(
ω(χ(y))|p+(χ(y))|n−2)−1| sinny|dy, (7.32)

I ′ =
2

πn

∫ θ0

π
np

(
ω(χ(y))|p+(χ(y))|n−2)−1| sinny|dy.

Recall that the function ω(x)|p+(x)|7 strictly increases on [1, 5]. Use Proposition (7.2.24) to

deduce that ω(x)|p+(x)|n−2 is strictly increasing on [1, α] for n ≥ 9.
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Since | sin(ny)| is periodic with period π/n, it follows that

I1 > I2 > · · · > Ip.

Additionally,

I ′ =
2

πn

∫ θ0

π
np

(
ω(χ(y))|p+(χ(y))|n−2)−1| sinny| dy

≤ 2

πn

∫ θ0−π/n

π
n (p−1)

(
ω(χ(y))|p+(χ(y))|n−2)−1| sinny| dy

< Ip.

We now give the analog of q in [90]:

Lemma 7.2.26. Let

µ(x) =
ψ′2(x)ψ2(x) + ψ′1(x)ψ1(x)

ψ′2(x)ψ1(x)− ψ′1(x)ψ2(x)
, x ∈ (1, 2].

Then µ(x) strictly decreases on the interval (1, 1.732]. Furthermore

(log |p+(χ(y))|)′ = µ(χ(y)), y ∈ (0,
π

2
).

Proof. The claim that µ(x) strictly decreases on (1, 1.732] follows from the Proposition 7.3.5.

Clearly

log |p+(x)| = 1

2
log |p+(x)|2 =

1

2
log(ψ2

2(x) + ψ2
1(x)).
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Figure 7.3: Graph of function µ(x).

Hence

(log |p+(χ(y))|)′ =
ψ′2(χ(y))ψ2(χ(y)) + ψ′1(χ(y))ψ1(χ(y))

ψ2
2(χ(y)) + ψ2

1(χ(y))
χ′(y) = µ(χ(y)).

We now give the analog of [90][Lemma 2.9]:

Lemma 7.2.27. Let n ≥ 21. I1, I2, . . . are defined as in Lemma 7.2.25 and q = µ(τ) ≈

1.2020. Put

c = |p+(τ)|e−qθ(τ) ≈ 1.2923.

Then

1. I1 > 0.326
n2

c−n,

2. I2 < 0.033I1.

Proof. Recall that (log |p+(χ(y))|)′ = µ(χ(y)) and µ(x) is strictly decreasing on (1, 1.732].
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Hence µ(χ(y)) strictly decreasing on (0, θ(1.732)]. In particular, for y ∈ (0, θ(τ)]

µ(χ(y)) ≥ µ(χ(θ(τ))) = µ(τ) = q ≈ 1.2020.

Therefore

log |p+(χ(u))| − log |p+(χ(y))| =
∫ u

y
µ(χ(t))dt ≥ q(u− y), for 0 ≤ y ≤ u ≤ θ(τ). (7.33)

Choose u = θ(τ) to obtain

|p+(χ(y))| ≤ ceqy for y ∈ [0, θ(τ)]. (7.34)

(1 ) We first use (7.32) for r = 1:

I1 =
2

πn

∫ π
n

0

(
ω(χ(y))|p+(χ(y))|n−2)−1| sinny|dy.

Since n ≥ 21 it follows that

π

n
≤ π

21
≈ 0.1496 < θ(τ) ≈ 0.3224.

As ω(x) is increasing on the interval [1, τ ] it follows that (ω(χ(y)))−1 > ω−1(τ) on (0, πn ].

Hence

I1 >
2

ω(τ)πn

∫ π
n

0
|p+(χ(y))|2−n sinny dy.
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Apply inequality (7.34) to deduce that

I1 >
2

ω(τ)πn

∫ π
n

0
(ceqy)2−n sinny dy

=
2c2−n

ω(τ)πn2

∫ π

0
e−

(n−2)qy
n sin y dy

≥ 2c2−n

ω(τ)πn2

∫ π

0
e−qy sin y dy

=
2c2

ω(τ)πn2

1 + e−qπ

1 + q2
c−n.

Since
2c2

ω(τ)π

1 + e−qπ

1 + q2
≈ 0.32697,

this completes the proof of (1).

(2 ) We now use (7.32) for r = 2:

I2 =
2

πn

∫ 2π
n

π
n

(
ω(χ(y))|p+(χ(y))|n−2)−1| sinny|dy.

We now make a substitution y = t+ π
n in the integral formula for I2:

I2 =
2

πn

∫ π
n

0

(
ω(χ(t+

π

n
))|p+(χ(t+

π

n
))|n−2)−1 sinnt dt.

Let

Î2 =
2

πn

∫ π
n

0

(
ω(χ(t))|p+(χ(t+

π

n
))|n−2)−1 sinnt dt.

Since n ≥ 21 it follows that

2π

n
≤ 2π

21
≈ 0.2992 < θ(τ) ≈ 0.3224.

As ω(x) is strictly increasing on the interval [1, τ ], we know that (ω(χ(y)))−1 strictly de-
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creases on (0, 2π
n ]. Then one gets I2 < Î2. Next use the inequality (7.33) for y = t and

u = t+ π
n which yields

e−
(n−2)qπ

n |p+(χ(t))|−(n−2) ≥ |p+(χ(t+
π

n
))|−(n−2), t ∈ [0,

π

n
].

Hence for n ≥ 21

Î2 ≤ e−
(n−2)qπ

n I1 ≤ e−
19qπ
21 I1 < 0.033I1.

Theorem 7.2.28. c1 = 32
9π and c2k+1 < 0 for k ≥ 1.

Proof. Let k ≥ 10. Applying Lemma 7.2.20 with α = 5 and Lemma 7.2.25, we have

−c2k+1 = I1 − I2 + · · ·+ (−1)p−1Ip + (−1)pI ′ − r2k+1(5)

> I1 − I2 − r2k+1(5).

Using Lemma 7.2.27, we get

(I1 − I2) >
0.315

(2k + 1)2
1.293−(2k+1) |r2k+1(5)| ≤ 5

2k + 1
2.4−(2k+1).

Applying the aforementioned formulas to −c2k+1 > I1 − I2 − r2k+1(5), it follows that for

k ≥ 10

−c2k+1 > (I1 − I2)− r2k+1(5)

>
0.315

(2k + 1)2
1.293−(2k+1) − 5

2k + 1
2.4−(2k+1)

=
0.315

(2k + 1)2
1.293−(2k+1)

[
1− 5(2k + 1)

0.315

(
1.293

2.4

)2k+1
]

> 0.
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By directly using (7.26), we can obtain following approximations (rounded to two decimal

places).

n 1 3 5 7 9

−cn −32/9π 0.12 4.84 · 10−3 2.58 · 10−3 1.22 · 10−3

n 11 13 15 17 19

−cn 6.76 · 10−4 4.15 · 10−4 2.74 · 10−4 1.91 · 10−4 1.39 · 10−4

Since c2k+1 ≤ 0 for k ≥ 1, h1(z) = c1z − h−1(z) has nonnnegative Taylor coefficients.

The Vivanti-Pringsheim theorem states that if the radius of convergence of Taylor series of

h1(z) is r then h1(z), and hence h−1(z), has a singular point at r. As h′(t) > 0 on (0, 1),

and h(1) = 1, it follows that r ≥ 1 . Clearly h−1(t) ≤
∑N
k=0 c2k+1t

2k+1 for t ∈ (0, 1). That

is
∑N
k=1 |c2k+1|t2k+1 ≤ c1t − h−1(t) for t ∈ (0, 1). In particular

∑N
k=1 |c2k+1| ≤ c1 − 1.

Thus
∑∞
k=0 |c2k+1| ≤ 2c1 − 1.

As c1 6= 0, clearly, the function

ψ(x) :=
∞∑
k=0

|c2k+1|x2k+1 (7.35)

is a strictly increasing and continuous on [0, r). Recall that if the series (7.25) converge for

x0 ∈ R (pointwise) then r ≥ |x0|. Hence ψ(x) = +∞ for x > r. ψ(1) =
∑∞
k=0 |c2k+1| ≥

c1 = 32/(9π) > 1. Thus there exists a unique c0 ∈ (0, 1) such that ψ(c0) = 1.

Proposition 7.2.29. The following equality holds

∞∑
k=1

|c2k+1| = −
∞∑
k=1

c2k+1 = c1 − p−1(1) =
32

9π
− 1.
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Hence the equation ψ(x) = 1 has a unique solution c0 ∈ (0, 9π
32 ) given by the equation

c0 = p(2c1c0 − 1). Equivalently, let x0 be the unique solution of

p(x0) =
9π(1 + x0)

64
. (7.36)

Then

c0 =
9π(1 + x0)

64
. (7.37)

Proof. Observe that ψ(x) = 2c1x − p−1(x). Hence ψ(c0) = 1 is equivalent to p−1(c0) =

2c1c0 − 1, which implies that c0 = p(2c1c0 − 1). Set x0 = 2c1c0 − 1 and use c0 =
9π(1+x0)

64

to deduce the Proposition.

7.2.13 An upper bound on KH
G

Theorem 7.2.30. Let x0 be the unique solution of (7.36). Then

KHG ≤
64

9π(x0 + 1)
≈ 1.2168. (7.38)

The same value of an upper bound on the constant KRG,4 was calculated in [27, Table 1,

p. 81]. The authors explain that the computation results in Table 1 are “just numerical, and

do not yield a formal proof”.

Proof. Recall previous definition of P (z) and ψ(x)

P−1(z) = arg z p−1(|z|) =
∞∑
k=0

c2k+1z|z|2k.

ψ(c0) =
∞∑
k=0

|c2k+1|c2k+1
0 = 1.

Recall Lemma (7.2.9). Let g(z) =
∑∞
k=0 c2k+1c

2k+1
0 z2k. Then p−1(c0|z|) = |z|g(|z|). Given
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unit vectors x1, . . . , xm, y1, . . . yn in a quaternionic Hilbert space H, then there exist unit

vectors u1, . . . , um, v1, . . . , vn in a quaternionic Hilbert space H′ such that P−1(c0〈xi, yj〉) =

〈ui, vj〉. Let H1 be an l-dimensional subspace of H′ spanned by u1, . . . , um, v1, . . . , vn. Thus

we can assume that H1 = Hl, where l ≤ m+ n. Assume that

max
|εi|=|δj |=1

∣∣∣∣ m∑
i=1

n∑
j=1

Mij ε̄iδj

∣∣∣∣ ≤ 1.

Then ∣∣∣∣ m∑
i=1

n∑
j=1

Mij sgn〈u, z〉 sgn〈z, vj〉GHl (z)

∣∣∣∣ ≤ GHl (z), z ∈ Hl.

Integrate over the Lebesgue measure of Hl to get
∣∣∣∣∑m

i=1

∑n
j=1MijP (〈ui, vj〉)

∣∣∣∣ ≤ 1. Now

1 ≥
∣∣∣∣ m∑
i=1

n∑
j=1

MijP (〈ui, vj〉)
∣∣∣∣ =

∣∣∣∣ m∑
i=1

n∑
j=1

Mijc0〈xi, yj〉
∣∣∣∣.

Take maximum on unit vectors x1, . . . , xm, y1, . . . , yn to deduce that ‖M‖G ≤ 1/c0.

7.2.14 The function p(x) (7.23) and the constant KH
G

We claim that the function p(x) (7.23) is the function ϕR4 [77, (40)]. The proof is very similar

to part (ii) of Lemma 3.1 in [77]. Hence we have inequalities: KRG,4 ≤ KCG,2 ≤ KHG .
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7.3 Increasing properties of three functions

Recall the definiton of our functions:

ψ1(x) = <(p+(x)) =
3

2

∫ π
2

0
(1− x−2 sin2 u)

3
2 du, (7.39)

ψ2(x) = =(p+(x)) =
3

2
(1− x−2)2

∫ π
2

0

sin4 v√
1− (1− x−2) sin2 v

dv, (7.40)

ω(x) = ψ′2(x)ψ1(x)− ψ2(x)ψ′1(x), (7.41)

ψ1(1) = 1, ψ1(∞) =
3π

4
, ψ2(1) = 0, ψ2(∞) =∞ (7.42)

It is easy to show from the definitions that ψ1(x) and ψ2(x) are increasing functions on

[1,∞).We are interested in some properties of related functions on the interval [1, 5]. For

the function ψ2(x), since it is a function of y =
√

1− x−2 for x ∈ [1,∞), y ∈ [0,
√

24/5],

we can differentiate this function as many times as needed on the interval [1, 5]. However,

for the function ψ1(x), one can show that the second derivative does not exists at 1, i.e., it

value at 1 is ∞.

7.3.1 Basic properties

Set

φ1 =
3

4

(4

3
− x−2 +

∞∑
k=2

(2k − 5)!!(2k − 1)!!

22k−2(k!)2
x−2k), (7.43)

φ2 =
∞∑
k=0

(2k − 1)!!(2k + 3)!!

22kk!(k + 2)!
(1− x−2)k+2. (7.44)

Thus

ψ1 =
3π

4
φ1, ψ2(x) =

3π

16
φ2, ω =

9π2

64
ω̃, ω̃ = φ′2φ1 − φ2φ

′
1.
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Furthermore

φ′1 =
3

2

(
x−3 −

∞∑
k=2

(2k − 5)!!(2k − 1)!!

22k−2(k!)(k − 1)!
x−2k−1), (7.45)

φ′′1 =
3

2

(
− 3x−4 +

∞∑
k=2

(2k − 5)!!(2k + 1)!!

22k−2(k!)(k − 1)!
x−2k−2), (7.46)

φ′2 = 2x−3
∞∑
k=2

(2k − 1)!!(2k + 3)!!

22kk!(k + 1)!
(1− x−2)k+1, (7.47)

φ′′2 = 2x−6
∞∑
k=2

(2k − 1)!!(2k + 3)!!

22kk!(k + 1)!
(1− x−2)k(2k + 5− 3x2). (7.48)

We introduce following finite series, where m will be specified later. All those functions

are rational functions.

φ1,m(x) =
3

4

(4

3
− x−2 +

m∑
k=2

(2k − 5)!!(2k − 1)!!

22k−2(k!)2
x−2k)

299



φ̂1,m(x) =
3

4

(4

3
− x−2 + (

m−1∑
k=2

(2k − 5)!!(2k − 1)!!

22k−2(k!)2
x−2k)

+
(2m− 5)!!(2m− 1)!!

22m−2(m!)2
x−2(m−1) 1

x2 − 1

)
,

φ′1,m(x) =
3

2

(
x−6 −

m∑
k=2

(2k − 5)!!(2k − 1)!!

22k−2k!(k − 1)!
x−2k−1),

φ̄1,m(x) =
3

2

(
x−6 − (

m−1∑
k=2

(2k − 5)!!(2k − 1)!!

22k−2k!(k − 1)!
x−2k−1)

− (2m− 5)!!(2m− 1)!!

22m−2m!(m− 1)!
x−2m+1 1

x2 − 1

)
,

φ′′1,m(x) =
3

2

(
− 3x−4 +

m∑
k=2

(2k − 5)!!(2k + 1)!!

22k−2k!(k − 1)!
x−2k−2),

φ̃1,m(x) =
3

2

(
− 3x−4 +

m−1∑
k=2

(2k − 5)!!(2k + 1)!!

22k−2k!(k − 1)!
x−2k−2

+
(2m− 5)!!(2m+ 1)!!

22m−2m!(m− 1)!
x−2m 1

x2 − 1

)
.

φ2,m(x) =
m∑
k=0

(2k − 1)!!(2k + 3)!!

22kk!(k + 2)!
(1− x−2)k+2,

φ̂2,m(x) =
m−1∑
k=0

(2k − 1)!!(2k + 3)!!

22kk!(k + 2)!
(1− x−2)k+2

+
(2m− 1)!!(2m+ 3)!!

22mm!(m+ 2)!
(1− x−2)m+2x2,

φ′2,m(x) = 2x−3
m∑
k=0

(2k − 1)!!(2k + 3)!!

22kk!(k + 1)!
(1− x−2)k+1,

φ̄2,m(x) = 2x−3
m−1∑
k=0

(2k − 1)!!(2k + 3)!!

22kk!(k + 1)!
(1− x−2)k+1

+
(2m− 1)!!(2m+ 3)!!

22mm!(m+ 1)!
(1− x−2)m+1x2,

φ′′2,m(x) = 2x−6
m∑
k=0

(2k − 1)!!(2k + 3)!!

22kk!(k + 1)!
(1− x−2)k

(
2k + 5− 3x2).

We claim that we have the following inequalities:
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Proposition 7.3.1. For x > 1,

0 < φ1,m(x) < φ1(x) < φ̂1,m(x),

φ̄1,m(x) < φ′1(x) < φ′1,m(x), 0 < φ′1(x),

φ′′1,m(x) < φ′′1(x) < φ̃1,m(x),

0 < φ2,m(x) < φ2(x) < φ̂2,m(x),

0 < φ′2,m(x) < φ′2(x) < φ̄2,m(x).

When m ≥ 35, 1 ≤ x ≤ 5,

φ′′2,m(x) < φ′′2(x)

Proof. All the above inequalities are clear except the five inequalities

φ1(x) < φ̂1,m(x), φ̄1,m(x) < φ′1(x), φ′′1(x) < φ̃1,m(x),

φ2(x) < φ̂2,m(x), φ′2(x) < φ̄2,m(x).

To show the inequality φ1(x) < φ̂1,m(x), we argue as follows. First observe that coefficients

of φ1(x) is strictly decreasing for k ≥ 2. This follows from the observation that the ratio

between two terms
(2k − 3)(2k + 1)

4(k + 1)2
< 1

for k ≥ 2. Now in the infinite series of φ1(x) we replace the coefficient (2k−5)!!(2k−1)!!
22k−2(k!)2

by
(2k−m)!!(2m−1)!!

22m−2(k!)2
for k ≥ m. This will increase the value of φ1(x). The infinite sum for k ≥ m

can be summed to

(2m− 5)!!(2m− 1)!!

22m−2(m!)2
x−2m 1

1− x−2
=

(2m− 5)!!(2m− 1)!!

22m−2(m!)2
x−2(m−1) 1

x2 − 1
.

The other inequalities can be shown similarly.
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To prove certain poperties of those function, we use Mathematica. Essentially, we only

use CountRoots to calculate the number of roots of a rational function in a given interval. If

the number is 0, we can conclude that the function stays positive or negative in this interval.

CountRoots applies an exact algorithm so that we can prove our results rigorously.

To bound infinite series by finite series, we need this trivial lemma:

Lemma 7.3.2. For two real numbers a, b, if 0 ≤ a1 ≤ a ≤ a2, b1 ≤ b ≤ b2, then

min{a1b1, a2b1} ≤ ab ≤ max{a1b2, a2b2}. If furthermore b ≥ 0, then a1b1 ≤ ab ≤ a2b2.

Proof. Consider min ab, where a, b are variables that satisfy a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2.

Then this minimum is min{aibj , i, j ∈ [2]}. We now use the assumption that 0 ≤ a1. Hence

a1b1 ≤ a1b2, a2b1 ≤ a2b2. Hence ab ≥ min{a1b1, a2b1}. Similarly

max ab = max{aibj , i, j ∈ [2]} = max{a1b2, a2b2}.

Assume now that b2 ≥ b ≥ 0. Then

min{ab, a ∈ [a1, a2]} = min{a1b, a2b} = a1b,

max{ab, a ∈ [a1, a2]} = max{a1b, a2b} = a2b ≤ a2b2.

7.3.2 The function ω(x)

In this section, m = 50.

Proposition 7.3.3. Assume that τ ∈ (1, 2) is the smallest value of x ≥ 1 such that ω̃′(x) =

0. Then τ > 1.732.

Proof.

ω̃′(x) = φ′′2(x)φ1(x)− φ2(x)φ′′1(x).
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We now apply Lemma 7.3.2 as follows. First set

a1 = φ1,m(x), a = φ1(x), a2 = φ̂1,m(x), b1 = φ′′2,m(x) < φ′′2(x), x ∈ [1, 5],m = 50,

to deduce

φ′′2(x)φ1(x) ≥ min{φ′′2,m(x)φ1,m(x), φ′′2,m(x)φ̂1,m(x)}.

Second set

a1 = φ2,m(x), a = φ2(x), a2 = φ̂2,m(x), b2 = φ̃1,m(x), x ∈ [1, 5],m = 50,

to deduce

φ2(x)φ′′1(x) ≤ max{φ2,m(x)φ̃1,m(x), φ̂2,m(x)φ̃1,m(x)},

which is equivalent to

−φ2(x)φ′′1(x) ≥ min{−φ2,m(x)φ̃1,m(x),−φ̂2,m(x)φ̃1,m(x)}.

So ω̃′(x) is larger than the minimum of 2×2 = 4 functions. Using CountRoots, we found

that those 4 functions are all positive in [1, 1.732], thus τ > 1.732.

7.3.3 The function ω(x)pl+

In this section, m = 50. Recall that p+(x) can be written as

p+(x) =
√
ψ2

1(x) + ψ2
2(x) =

3π

16

√
p̃, p̃(x) = 16φ2

1 + φ2
2.
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Proposition 7.3.4. The function ω(x)pl+ increases in the interval [1, 5] for l = 7.

Proof. Note that since ω is increasing in the interval [1, τ ] we automatically have that for

all l ≥ 1 the function ω(x)pl+ increases on [1, τ ]. So now we have to verified that ω(x)pl+

increases on [1.732, 5].

Set sl(x) = ω̃(x)p̃l/2(x). Then

s′l = p̃(l−2)/2((l/2)ω̃p̃′ + ω̃′p̃
)
. (7.49)

Let

ρ = (l/2)ω̃p̃′ + ω̃′p̃ = lω̃(16φ1φ
′
1 + φ2φ

′
2) + ω̃′(16φ2

1 + φ2
2)

We need to prove ρ ≥ 0 in [τ, 5]. When x is in [1.732, 5], by CountRoots, we have φ̄1,m >

0, φ̃1,m < 0, φ′′2,m < 0. In view of Proposition 7.3.1 we deduce that

0 < φ̄1,m(x) < φ′1(x), 0 < −φ̃1,m(x) < −φ′′1(x) for x ∈ [1.732, 5].

Furthermore, Proposition 7.3.1 yields ω̃ = φ′2φ1 − φ′1φ2 ≥ φ′2,mφ1,m − φ′1,mφ̂2,m. Again,

when x in [1.732, 5], by CountRoots, φ′2,mφ1,m − φ′1,mφ̂2,m is positive. So we can bound

from below the whole term (l/2)ω̃p̃′ by l(φ′2,mφ1,m − φ′1,mφ̂2,m)(16φ1,mφ̄1,m + φ2,mφ
′
2,m).

This term is positive.

For the second term, if ω̃′ ≥ 0, we have nothing to prove. So we can assume ω̃′ < 0.

Because ω̃′ = φ′′2φ1 − φ2φ
′′
1 , and −φ2φ

′′
1 is positive, so we can assume φ′′2 is negative. Recall

that for m = 50 and x ∈ [1, 5] we have the inequality φ′′2,m(x) < φ′′2(x). Hence for x ∈

[1.732, 5] we have the inequality φ′′2.m(x) < φ′′2(x) < 0. Therefore

ω̃′(16φ2
1 + φ2

2) > (φ′′2,mφ̂1,m − φ2,mφ̃1,m)(16φ̂2
1,m + φ̂2

2,m), x ∈ [1.732, 5],m = 50.

Finally, use CountRoots to test whether l(φ′2,mφ1,m−φ′1,mφ̂2,m)(16φ1,mφ̄1,m+φ2,mφ
′
2,m) +
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(φ′′2,mφ̂1,m − φ2,mφ̃1,m)(16φ̂2
1,m + φ̂2

2,m) is positive in [1.732, 5]. The answer is yes.

7.3.4 The function µ(x)

In this section, m = 40. Recall the function

µ(x) =
ψ′2(x)ψ2(x) + ψ′1(x)ψ1(x)

ψ′2(x)ψ1(x)− ψ′1(x)ψ2(x)
.

Note that

1

4µ(x)
=

φ′2(x)φ1(x)− φ′1(x)φ2(x)

φ′2(x)φ2(x) + 16φ′1(x)φ1(x)
.

Define ν(x) as

( 1

4µ(x)

)′
=

ν(x)

(φ′2(x)φ2(x) + 16φ′1(x)φ1(x))2
,

ν(x) = (φ′2(x)φ1(x)− φ′1(x)φ2(x))′(φ′2(x)φ2(x) + 16φ′1(x)φ1(x))−

(φ′2(x)φ1(x)− φ′1(x)φ2(x))(φ′2(x)φ2(x) + 16φ′1(x)φ1(x))′.

Thus

ν = φ′′2φ
′
1(16φ2

1 + φ2
2)− φ′2φ

′′
1(16φ2

1 + φ2
2)− ω̃(16φ′21 + φ′22 ).

Proposition 7.3.5. The function ν(x) is positive in [1, 1.732], so µ(x) is decreasing in this

interval.

Proof. We have to consider two different intervals: [1.01, 1.732] and [1, 1.01].

Assume that x ∈ [1.01, 1.732]. By CountRoots, φ̄1,m(x) > 0 in [1.01, 1.732], so φ′1(x) >

φ̄1,m(x) > 0 in [1.01, 1.732]. Recall Proposition 7.3.1 and Lemma 7.3.2, for x ∈ [1.01, 1.732]
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and m = 40:

a1 = φ̄1,m(x)(16φ2
1,m(x) + φ2

2,m(x)), a = φ′1(x)(16φ2
1(x) + φ2

2(x)),

a2 = φ′1,m(x)(16φ̂2
1,m(x) + φ̂2

2,m(x)),

b1 = φ′′2,m(x), b = φ′′2(x), b2 = φ̄2,m(x).

Then we have

φ′′2φ
′
1(16φ2

1 + φ2
2) ≥ min{φ′′2,mφ̄1,m(16φ2

1,m + φ2
2,m), φ′′2,mφ

′
1,m(16φ̂2

1,m + φ̂2
2,m)}.

For the second term, −φ′2φ
′′
1(16φ2

1 + φ2
2), by Proposition 7.3.1:

a1 = φ′2,m(x)(16φ2
1,m(x) + φ2

2,m(x)), a = φ′2(x)(16φ2
1(x) + φ2

2(x)),

a2 = φ̄2,m(x)(16φ̂2
1,m(x) + φ̂2

2,m(x)),

b1 = φ′′1,m(x), b = φ′′1(x), b2 = φ̃1,m(x).

Use the inequality ab ≤ max{a1b2, a2b2} in Lemma 7.3.2 to deduce

−φ′2φ
′′
1(16φ2

1 + φ2
2) ≥ min{−φ̄2,mφ̃1,m(16φ̂2

1,m + φ̂2
2,m),−φ′2,mφ̃1,m(16φ2

1,m + φ2
2,m)}.

For the last term −ω̃(16φ′21 +φ′22 ) we proceed as follows: First recall that ω̃ > 0 for x > 1.

Use Proposition 7.3.1 and Lemma 7.3.2 to deduce ω̃2(x) < φ̄2,mφ̂1,m(x) − φ2,mφ̄1,m(x) for

x > 1. Hence

ω̃(x)(16φ′21 (x) + φ′22 (x)) < (φ̄2,mφ̂1,m(x)− φ2,mφ̄1,m(x))((φ′1,m(x))2 + (φ̄2,m(x))2)⇒

−ω̃(x)(16φ′21 (x) + φ′22 (x)) > −(φ̄2,mφ̂1,m(x)− φ2,mφ̄1,m(x))((φ′1,m(x))2 + (φ̄2,m(x))2)
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There are 2 × 2 = 4 cases, in each case, their sum is positive in [1.01, 1.732]. So ν(x) is

positive when x ∈ [1.01, 1.732].

Assume that x ∈ [1, 1.01]. For φ′1(x), we need a better lower bound than φ̄1,m(x) because

when x→ 1, φ̄1,m(x) diverges to −∞ while φ′1(x) remains finite.

Recall the definition:

φ1(x) =
4

3π
ψ1(x) =

2

π

∫ π
2

0
(1− x−2 sin2 u)

3
2 du.

Take the derivative and note that π < 22/7,

φ1(x) =
6

π
x−3

∫ π
2

0
sin2 u(1− x−2 sin2 u)

1
2 du

≥ 6

π
x−3

∫ π
2

0
sin2 u(1− sin2 u)

1
2 du

=
6

π
x−3

∫ π
2

0
sin2 u cosu du =

2

πx3
≥ 7

11x3

For the first term, Proposition 7.3.1 yields φ′′2(x) ≥ φ′′2,m(x), φ′′1(x) ≥ φ′′1,m(x).

By CountRoots, φ′′2,m(x) > 0, φ′′1,m(x) > 0. Hence

φ′′2φ
′
1(16φ2

1 + φ2
2) ≥ φ′′2,m

7

11x3
(16φ2

1,m + φ2
2,m).

For the second term, because φ1, φ2 are increasing functions, we can bound them above

by value at 1.01. So the whole term can be bounded below using Proposition 7.3.1 by

−φ̄2,mφ̃1,m(16φ̂1,m(1.01)2 + φ̂2,m(1.01)2).

For the last term, we use the same bound as for the interval [1.01, 1.732]. Finaly, the

sum of three terms is positive in [1, 1.01] using CountRoots. So ν(x) is positive when x ∈

[1, 1.01].
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7.4 Symmetric Versions of Grothendieck Inequality for

quaternions

In this section, we address the symmetric version of Grothendieck inequality for quaternions.

Note that Sn(H) is the set of n× n quaternion matrices A satisfying A∗ = A and Sn+(H) is

the set of positive semidefinite matrices A satisfying u∗Au ≥ 0 for all u ∈ Hn. There is no

natural left or right action of quaternion scalar on the space Sn(H), so we should view it as

a real vector space. Recall that on Sn(C) the inner product is given by 〈A,B〉 = trA∗B =

trAB ∈ R. Unfortunately, for A,B ∈ Sn(H), where n ≥ 2 the trAB does not to have to be

real. Since we consider Sn(H) as a real vector space, we define an inner product on Sn(F)

as < trAB = 1
2 tr(AB + BA). This definition is identical to the standard definition of the

inner product for F ∈ {R,C) and gives the right definition for quaternions.

We consider the quantities:

<
n∑
i=1

n∑
j=1

aij〈xi, xj〉, <
n∑
i=1

n∑
j=1

aij δ̄iδj .

As in Section 7.2.8 we can compute the maximum of the first term using SDP. Also, as in

[77], in this section we modify the definition of sgn z for z ∈ H:

sgn z =


z/|z| z 6= 0,

1 z = 0.

This will yield the equality | sgn z| = 1 for all z. Clearly Theorem 7.2.16 will still hold for

this definition of sgn z.
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7.4.1 Symmetric Grothendieck inequality

Denote by Sno (H) the real subspace of all quaternion self-adjoint matrices with zero diagonal.

Then A ∈ Sno (H) is of the form A = D + A0 where A0 = (aij,0) ∈ Sno (H) and D is a real

diagonal matrix. So trA = trD. Observe that

n∑
i=1

n∑
j=1

aij〈xi, xj〉 = trA+
n∑
i=1

n∑
j=1

aij,0〈xi, xj〉 if ‖xi‖ = 1.

For A ∈ Sn(H), we consider the following quantities, which are analogous to those introduced

in [77]:

‖A‖θ = max|δi|=1

∣∣∣∣<∑n
i=1

∑n
j=1 aij δ̄iδj

∣∣∣∣, ‖A‖Θ = max
|δi|≤1

∣∣∣∣< n∑
i=1

n∑
j=1

aij δ̄iδj

∣∣∣∣,
‖A‖γ = max‖xi‖=1

∣∣∣∣<∑n
i=1

∑n
j=1 aij〈xi, xj〉

∣∣∣∣, ‖A‖Γ = max
‖xi‖≤1

∣∣∣∣< n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣.

Clearly ‖A‖θ ≤ ‖A‖γ and ‖A‖Θ ≤ ‖A‖Γ. As in [77] we observe that ‖A‖θ = 0 if and only

if A is a diagonal matrix, and trA = 0. Indeed, observe that

∑
δi∈{−1,1}

n∑
i=1

n∑
j=1

aij δ̄iδj = 2n trA.

Assume that ‖A‖θ = 0. Then we obtain that trA = 0. Hence ‖A‖θ = ‖A0‖θ = 0. Observe

next that

∑
δi∈{−1,1},i≥3

n∑
i=1

n∑
j=1

aij = 2n−2(a12δ̄1δ2 + a21δ̄2δ1) = 2n−2(a12δ̄1δ2 + ā12δ̄2δ1).

Suppose that a12 6= 0. Choose δ1 = sgn a12 and δ2 = 1. Then (a12δ̄1δ2 + ā12δ̄2δ1) = 2|a12|

which is a real number. Hence the assumption that ‖A0‖θ = 0 yields that a12 = 0. Similarly

we deduce that A0 = 0. Hence ‖A‖γ = 0 if and only if A is a diagonal matrix with zero trace.
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Denote by Sn=(H) the real subspace of self-adjoint matrices A = (aij) where a11 = · · · = ann.

Then ‖A‖θ and ‖A‖γ are norms on Sn=(H).

We now claim that ‖A‖Γ is a norm on Sn(H). Clearly, ‖A‖Γ is a seminorm. Choose

δi = 1 and δj = 0 for i 6= j. Then |<
∑n
i=1

∑n
j=1 aij δ̄iδj | = |aii| = 0. Hence A = A0.

As ‖A0‖θ ≤ ‖A‖Θ = 0 we deduce that A0 = 0. Thus A = 0 and ‖ · ‖Θ is a norm. As

‖A‖Θ ≤ ‖A‖Γ it follows that ‖ · ‖Γ is a norm on Sn(H).

Let Dn ⊂ Sn+(R) be the convex subset of all positive semidefinite diagonal matrices whose

diagonal entries are in [0, 1]. As in [77] it is straightforward to show that

‖A‖Θ = max{‖DAD‖θ, D ∈ Dn}, ‖A‖Γ = max{‖DAD‖γ , D ∈ Dn}. (7.50)

Let KHγ , KHΓ the smallest possible constant, (which in principle may equal to ∞), for which

one has the inequalities

‖A‖γ ≤ KHγ ‖A‖θ, ‖A‖Γ ≤ KHΓ ‖A‖Θ. (7.51)

Theorem 7.4.1 (Symmetric Grothendieck inequality). The symmetric Grothendieck con-

stants satisfy the following relations

KHG ≤ KHΓ ≤ KHγ ≤
64

9π
− 1 ≈ 1.263537. (7.52)

Proof. The first inequality follows from the proof of Lemma 7.2.14. The second inequality

follows from the characterization (7.50). We now show the third inequality. Assume that

‖A‖θ ≤ 1:
∣∣∣∣<∑n

i=1

∑n
j=1 aij δ̄iδj

∣∣∣∣ ≤ 1 for |δi| = 1. Let x1, . . . , xn be unit vectors in a right

Hilbert space H. Hence the span of x1, . . . , xn is contained in a subspace of dimension at
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most n. Thus we shall assume that x1, . . . , xn ∈ Hn. We claim that

∣∣∣∣< n∑
i=1

n∑
j=1

aijP (〈xi, xj〉)|P (〈xi, xj〉)|2k
∣∣∣∣ ≤ 1, k + 1 ∈ N.

Let

Φ(x, z1, . . . , z2k+1) = sgn〈z1, x〉 sgn〈x, z2〉 sgn〈z3, x〉 . . . sgn〈z2k+1, x〉.

We claim that

∫
(Hn)2k+1

Φ(x, z1, . . . , z2k+1)Φ(y, z1, . . . , z2k+1)
2k+1∏
p=1

GH(zp)dm(zp)

= P (〈x, y〉)|P (〈x, y〉)|2k.

Assume first that 〈x, y〉 is a real number. Then the above equality follows by applying

Theorem 7.2.16 2k + 1 times. Observe next that for a ∈ H, |a| = 1 one has the equality

Φ(xa, z1, . . . , z2k+1) = Φ(x, z1, . . . , z2k+1)a. Hence replacing x by x sgn〈x, y〉, we deduce the

above equality.

Clearly

∣∣∣∣< n∑
i=1

n∑
j=1

aijΦ(xi, z1, . . . , z2k+1)Φ(xj , z1, . . . , z2k+1)

∣∣∣∣ ≤ 1.
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Hence

∣∣∣∣< n∑
i=1

n∑
j=1

aijP (〈xi, xj〉)|P (〈xi, xj〉)|2k
∣∣∣∣

=

∣∣∣∣< n∑
i=1

n∑
j=1

aij(

∫
(Hn)2k+1

Φ(xi, z1, . . . , z2k+1)Φ(xj , z1, . . . , z2k+1)
2k+1∏
p=1

GH(zp)dm(zp))

∣∣∣∣
≤
∫

(Hn)2k+1

∣∣∣∣< n∑
i=1

n∑
j=1

aijΦ(xi, z1, . . . , z2k+1)Φ(xj , z1, . . . , z2k+1)

∣∣∣∣ 2k+1∏
p=1

GH(zp)dm(zp)

≤ 1.

Finally

∣∣∣∣< n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ =

∣∣∣∣< n∑
i=1

n∑
j=1

aijP
−1(P (〈xi, xj〉))

∣∣∣∣
≤
∞∑
k=0

|c2k+1|
∣∣∣∣< n∑

i=1

n∑
j=1

aijP (〈xi, xj〉)|P (〈xi, xj〉)|2k
∣∣∣∣ ≤ ∞∑

k=0

|c2k+1| =
64

9π
− 1.

7.4.2 Cones of positive semidefinite matrices

Assume that A ∈ Sn(R), B ∈ Sn(H). Then trAB = trBA. Hence < trAB = trAB. For

any real positive definite matrix, the quantities considered here have a special relation:

Lemma 7.4.2. For A ∈ Sn+(R),

max
‖xi‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ = max
‖xi‖≤1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ = max
‖xi‖=1,‖yj‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, yj〉
∣∣∣∣
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where x1, . . . , xn, y1, . . . , yn ∈ Hl and

max
|δi|=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈δi, δj〉
∣∣∣∣ = max
|δi|≤1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈δi, δj〉
∣∣∣∣ = max
|δi|=1,|εj |=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈δi, εj〉
∣∣∣∣

where δ1, . . . , δn, ε1, . . . , εn ∈ H.

Proof. Observe that by definition

max
‖xi‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ ≤ max

‖xi‖≤1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ ≤ max
‖xi‖=1,‖yj‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, yj〉
∣∣∣∣.

Define the matrices X = [x1, . . . , xn], Y = [y1, . . . , yn]. Because A is real positive definite.

Then A = B2, where B = (bij) = A1/2.

〈X, Y 〉 =
n∑
i=1

n∑
j=1

aij〈xi, yj〉 =
n∑
p=1

〈
n∑
i=1

xibip,
n∑
j=1

yjbjp〉.

is an inner product of the space Hl×n. By Cauchy-Schwarz, we have

|〈X, Y 〉| ≤
√
〈X,X〉〈Y, Y 〉 ≤ max

‖xi‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣.

So

max
‖xi‖=1,‖yj‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, yj〉
∣∣∣∣ ≤ max

‖xi‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣

and the first equality holds. By taking l = 1 in the previous argument, we see that the

second equality holds.

The next theorem is a generalization of the Nesterov π/2-Theorem.

Theorem 7.4.3. Let A = (aij) ∈ Sn+(R) is a symmetric positive semidefinite matrices.
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Then

max
‖xi‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ ≤ 32

9π
max
|δi|=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈δi, δj〉
∣∣∣∣. (7.53)

where x1, . . . , xn ∈ Hl, δ1, . . . , δn ∈ H. By Lemma 7.4.2, we can change the expression on

both sides of the inequality.

Proof. Assume

max
|δi|=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈δi, δj〉
∣∣∣∣ = 1.

Then for any x1, . . . , xn ∈ Hl,

n∑
i=1

n∑
j=1

aijP (〈xi, xj〉) ≤ 1.

Consider the matrix Gij = 〈xi, xj〉. The first coefficient of P is 9π
32 . By the Schur product

theorem for quaternions,

A ◦ P (G)− A ◦ 9π

32
G � 0.

So
n∑
i=1

n∑
j=1

aijP (〈xi, xj〉) ≥
9π

32

n∑
i=1

n∑
j=1

aij〈xi, xj〉.

So the inequality holds.

The constant 9π
32 is sharp. In fact, the proof of Theorem 5.1 in [77] can be repeated with

only minor difference.

7.4.3 Cones of weighted Laplacians

For any matrix A = (aij) ∈ Sn(R) with zero diagonal and positive off-diagonal elements, we

can define LA by

LA := diag(A1)− A,
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where diag(x) denotes the diagonal matrix whose diagonal is x and 1 is the vector of all

ones. And we can define the set of all weighted Laplacians:

Ln := {LA : A ∈ Sn(R), aii = 0, aij ≥ 0 for all i, j}

= {L ∈ Sn(R) : L1 = 0, lij ≤ 0 for all i 6= j}.

We have Ln ⊆ Sn+(R).

Theorem 7.4.4. Define the quaternionic Goemans-Williamson constant:

αHGW := inf
0≤x≤1

1 + P (x)

1 + x
.

Then for all L ∈ Ln,

max
‖xi‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

lij〈xi, xj〉
∣∣∣∣ ≤ 1

αHGW
max
|δi|=1

∣∣∣∣ n∑
i=1

n∑
j=1

lij〈δi, δj〉
∣∣∣∣. (7.54)

where x1, . . . , xn ∈ Hl, δ1, . . . , δn ∈ H. The value of the constant is approximate 0.967337, so

K ≤ 1.0338. By Lemma 7.4.2, we can change the expression on both sides of the inequality.

Proof. We will show that for h ∈ H, we have

αHGW = inf
0≤x≤1

1 + P (x)

1 + x
= inf
|h|<1

1−<[P (h)]

1−<(h)
.

By definition,

inf
|h|<1

1−<[P (h)]

1−<(h)
≤ inf

0≤x≤1

1 + P (x)

1 + x
.

On the other hand, if <(h) ≥ 0, let h = x + y, x = <(h). The Taylor expansion of P (x) is
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given in formula 7.23, P (x) =
∑
i=0 b2i+1x

2i+1. b2i+1 ≥ 0 and P (1) = 1.

<[P (h)] =
∑
i=0

b2i+1x(x2 + |y|2)i ≤
∑
i=0

b2i+1x = x.

So

inf
|h|<1,<(h)≥0

1−<[P (h)]

1−<(h)
≥ 1 ≥ inf

0≤x≤1

1 + P (x)

1 + x
.

If <(h) ≤ 0, let h = −x+ y, x = −<(h). Then

1−<[P (h)] = 1 +
∑
i=0

b2i+1x(x2 + |y|2)i ≥ 1 +
∑
i=0

b2i+1x
2i+1 = 1 + P (x).

So

inf
|h|<1,<(h)≤0

1−<[P (h)]

1−<(h)
≥ inf

0≤x≤1

1 + P (x)

1 + x
.

So we have

inf
|h|<1

1−<[P (h)]

1−<(h)
≥ inf

0≤x≤1

1 + P (x)

1 + x

and the equality holds.

Let LA ∈ Ln. Assume

max
|δi|=1

∣∣∣∣ n∑
i=1

n∑
j=1

lij〈δi, δj〉
∣∣∣∣ = 1.

For any unit vectors x1, . . . , xn ∈ Hl,

∫
z∈Hl

n∑
i=1

n∑
j=1

lij sgn〈xi, z〉 sgn〈z, xj〉Gn(z)dm(z) ≤ 1.
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Because L is a real symmetric matrix, we have

∫
z∈Hl

n∑
i=1

n∑
j=1

lij sgn〈xi, z〉 sgn〈z, xj〉Gn(z)dm(z)

=
n∑
i=1

n∑
j=1

lijP (〈xi, xj〉)

=
n∑
i=1

n∑
j=1

lij<[P (〈xi, xj〉)]

=
n∑
i=1

n∑
j=1

aij(1−<[P (〈xi, xj〉)])

≥ αHGW

n∑
i=1

n∑
j=1

aij(1−<[〈xi, xj〉])

= αHGW

n∑
i=1

n∑
j=1

aij(1− 〈xi, xj〉)

= αHGW

n∑
i=1

n∑
j=1

lij〈xi, xj〉.

Hence

max
‖xi‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

lij〈xi, xj〉
∣∣∣∣ ≤ 1

αHGW
.

7.4.4 Cones of diagonally dominant matrices

As in last section, all matrices considered in this section will be real. Let Sndd := {A ∈ Sn(R) :

aii ≥
∑
i6=j |aij |} be the cone of symmetric diagonally dominant matrices. Let Sndd(R+) be

the subcone of diagonally dominant matrices with nonnegative entries.

Lemma 7.4.5. Every A ∈ Sndd has a unique decomposition A = P + L such that P ∈

Sndd(R+), L ∈ Ln and lijpij = 0 whenever i 6= j.

Proof. Let B be defined by bij = −aij if aij < 0 and i 6= j, bij = 0 otherwise. Then B has
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zero diagonal and positive off-diagonal elements and LB ∈ Ln. Let P := A − LB . Then

pij ≥ 0 and lijpij = 0 whenever i 6= j. Since aii ≥
∑
i6=j |aij | =

∑
i6=j(lij + pij), we have

pii = aii −
∑
i6=j lij ≥

∑
i6=j pij , so P ∈ Sndd. Uniqueness follows by the definition.

Clearly,

Ln ⊆ Sndd ⊆ S
n
+(R).

By definition, we expect the constant of Grothendieck inequality for Sndd lies between those

of Ln and Sn+(R). The following theorem gives a bound for the constant.

Theorem 7.4.6. Let a0 = 9π
32 be the constant given in Theorem 7.4.3 and αHGW be the

quaternionic Goemans-Williamson constant. Then for any A ∈ Sndd,

max
‖xi‖=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈xi, xj〉
∣∣∣∣ ≤ (1 +

1− a0

αHGW

)
max
|δi|=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈δi, δj〉
∣∣∣∣. (7.55)

where x1, . . . , xn ∈ Hl, δ1, . . . , δn ∈ H. The value of the constant is approximate 1.1204. By

Lemma 7.4.2, we can change the expression on both sides of the inequality.

Proof. Let A = P + L be the decomposition given by the lemma. Assume that

max
|δi|=1

∣∣∣∣ n∑
i=1

n∑
j=1

aij〈δi, δj〉
∣∣∣∣ = 1.
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We have

1 ≥
n∑
i=1

n∑
j=1

aijP (〈xi, xj〉)

=
n∑
i=1

n∑
j=1

lijP (〈xi, xj〉) +
n∑
i=1

n∑
j=1

pijP (〈xi, xj〉)

≥ αHGW

n∑
j=1

lij〈xi, xj〉+ a0

n∑
i=1

n∑
j=1

pij〈xi, xj〉

= αHGW

n∑
j=1

aij〈xi, xj〉 − (αHGW − a0)
n∑
j=1

pij〈xi, xj〉.

Since P ∈ Sndd(R+), we have

n∑
i=1

n∑
j=1

pij〈xi, xj〉 ≤
n∑
i=1

n∑
j=1

pij =
n∑
i=1

n∑
j=1

aij ≤ 1

So

αHGW

n∑
j=1

aij〈xi, xj〉 ≤ 1 + αHGW − a0

and the inequality follows.

7.5 Lower bounds for Grothendieck inequality

This section use the method in [52] to give lower bounds for Grothendieck inequality. We

first start for simplicity of the exposition with the real case. Denote by

Sn−1 = {x ∈ Rn, ‖x‖ = 1},

the n − 1 dimensional sphere. Let σ be the unique probability Haar measure on Sn−1

invariant under the orthogonal group O(n) ⊂ Rn×n. Denote by L∞(Sn−1, σ) the space of
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bounded measurable functions, with the norm

‖f‖∞ = sup
x∈Sn−1

|f(x)| := lim
p→∞

( ∫
Sn−1

|f(x)|pdσ
)1/p

,

where sup means essential support by abuse of notation. Assume that J : Sn−1 → R and

K : Sn−1 × Sn−1 → R are continous functions. We associate the following bilinear form on

L∞(S−1, σ)× L∞(S−1, σ):

B(f, g) =

∫
Sn−1

J(x)f(x)g(x)dσ(x)+∫
Sn−1×Sn−1

K(x, y)f(x)g(y)dσ(x)dσ(y).

(7.56)

We now show that we can approximate B(f, g) by matrix binear form.

Recall the well known fact that every f, g ∈ L∞(Sn−1, σ) can be approximated by a

piece-wise constant function f̃ , g̃, induced by the range of f and g. That is, for a given

ε > 0, there exist piecewise constant functions f̃ , g̃, such that ‖f − f̃‖∞, ‖g − g̃‖∞ ≤ ε.

Furthermore, the values of f̃ and g̃ can be chosen to be in f(S) and g(T ) respectively for

some measurable sets S, T ⊂ Sn−1 , with σ(S) = σ(T ) = 1. As σ(S ∩ T ) = 1 we can

asume that S = T . Thus for given f, g ∈ L∞(Sn−1, σ) there exists a measurable partition

{T1, . . . , TM} of Sn−1 to pairwise disjoint measurable sets: σ(∪Mi=1Ti) = 1, such that each

f̃ , g̃ is a constant function on each Ti.

Denote by L∞(S) the finite dimensional space of piece-wise constant functions, whose

value is fixed on each Si. We can view these piecewise function f as a vector f ∈ Rn. For

these piecewise functions we can approximate B(f, g) as a bilinear form

BN (f ,g) =
N∑
i=1

J(xi)σ(Si)figi +
N∑

i=j=1

K(xi, xj)σ(Si)σ(Sj)figj . (7.57)

Thus (7.57) is approximation to (7.56) Note that if ‖f‖∞ ≤ 1 then |fi| ≤ 1 for each i ∈ [N ].
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Moreover, assume that |f(x)| = |g(x)| = 1 a.e.. Then |fi| = |gi| = 1 for i ∈ [N ]. For more

precise statement see Lemma 7.5.1

7.5.1 The (∞, 1) and the Grothendieck norms

We now state the (∞, 1) and the Grothendieck norms for B(·, ·). LetD(kd) = {x ∈ kd, ‖x‖ ≤

1}. Denote by Φkd the space of all maps continuous maps φ : S(kd)→ D(kd). For φ, ψ ∈ Φkd

let
B(φ, ψ) =

∫
S(kd)×S(kd)

K(x, y)〈φ(y), ψ(x)〉dσ(x)dσ(y)

+

∫
S(kd)

J(x)〈φ(x), ψ(x)〉dσ(x).

(7.58)

Then for a partition SN , we let

BN (φ, ψ) =
N∑

i=j=1

K(x̃i, x̃j)σ(Si)σ(Sj)〈φ(x̃i), ψ(x̃j)〉+

N∑
i=1

J(x̃i)σ(Si)〈φ(x̃i), ψ(x̃j)〉,

(7.59)

to be an approximation of B(φ, ψ). We define the continuous analogs of the matrix norms

‖ · ‖k∞,1, ‖ · ‖
k
G,d:

‖B‖k∞,1 = sup{|B(f, g)|, f, g ∈ L∞(S(kd)), ‖f‖∞, ‖g‖∞ ≤ 1},

‖B‖kG,d = sup{|B(φ, ψ)|, φ, ψ ∈ Φkd}.
(7.60)

We need the following approximation lemma, which follows straightforward from previous

discussion:

Lemma 7.5.1. Let K(·, ·) : S(kd)×S(kd)→ k and J(·) : S(kd)→ k be continuous. Assume

that f, g ∈ L∞(S(kd)) and φ, ψ ∈ Φd are given. Then for a given ε > 0 there is a measurable
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partition SN = {S1, . . . , SN} of S(kd) such that

|B(f, g)−BN (f ,g)| ≤ ε,

|B(φ, ψ)−BN (φ, ψ)| ≤ ε.

We now show that the matrix Grothendieck constant KG,1,d applies to the kernel B:

Lemma 7.5.2. Let KkG,1,d be the Grothendieck constant over kd. Then for each B(·, ·) on

S(kd)× S(kd) the following inequality holds:

KkG,1,d‖B‖
k
∞,1 ≥ ‖B‖

k
G,d. (7.61)

Proof. Let φp, ψp ∈ Φkd, p ∈ N be a sequence of continuous maps, such that

lim
p→∞

|B(φp, ψp)| = ‖B‖kG,d.

Thus is enough to show that

KkG,1,d‖B‖
k
∞,1 ≥ |B(φp, ψp)|

for each p ∈ N. This follows from Lemma 7.5.1 and the definition of ‖B‖k∞,1.

7.5.2 The norms θ,Θ, γ,Γ

Assume that K(x, y) and J(x) are continuous hermitian and real valued functions repsec-

tively:

K(y, x) = K(x, y), x, y ∈ S(kd),

J : S(kd)→ R.

Then the corresponding form B is called a hermitian form.
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Let Ψkd be the set of continuous maps φ : S(kd) → S(kd). Define the following analogs

of the norms θ,Θ, γ,Γ for hermitian B:

‖B‖kθ = sup{|<B(f, f)|, f ∈ L∞(S(kd)), ‖f‖∞ = 1},

‖B‖kΘ = sup{|<B(f, f)|, f ∈ L∞(S(kd)), ‖f‖∞ ≤ 1},

‖B‖kγ = sup{|<B(φ, φ)|, φ ∈ Ψkd},

‖B‖kΓ = sup{|<B(φ, φ)|, φ ∈ Φkd}

(7.62)

The following analogs of Lemma 7.5.2 is proves as Lemma 7.5.2 :

Lemma 7.5.3. For each hermitian B on S(kd)× S(kd) the following inequality holds:

Kkγ,1,d‖B‖
k
θ ≥ ‖B‖

k
γ,d,

KkΓ,1,d‖B‖
k
Θ ≥ ‖B‖

k
Γ,d.

(7.63)

7.5.3 Davie’s estimate for the real case

On Sd−1 consider K(x, y) = d〈y, x〉 and J(x) = −ρ. By choosing φ(x) = ψ(x) = x for

x ∈ Sd−1 we get

‖B‖G,n ≥ |n
∫

Sd−1×Sd−1
〈y, x〉〈x, y〉dσ(x)dσ(y)− ρ|. (7.64)

As σ is invariant for the transformation x 7→ Qx for any orthogonal Q, we can assume that

x = ei = (δ1i . . . , δid)
>. Hence

∫
Sd−1
〈y, x〉〈x, y〉dσ(y) =

∫
Sd−1

y2
i dσ(y), i ∈ [n]

Add these equalites for all i ∈ [n] to deduce

∫
Sd−1
〈y, x〉〈x, y〉dσ(y) =

1

d
,
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for any x ∈ Sd−1 and

‖B‖G,d ≥ |1− ρ|.

Denote Mρ,d = ‖B‖∞,1. Then

Mρ,d = sup{d
∫
‖f‖∞,‖g‖∞≤1

〈x, y〉f(x)g(y)dσ(x)dσ(y)− ρ
∫
f(x)g(x)dσ(x)}. (7.65)

Then

KRG ≥ KRG,1,d ≥ sup
0<ρ<1

1− ρ
Mρ,d

. (7.66)

7.5.4 A lower bound for KH
G

Now we will use Sd−1 to denote the unit sphere over Hd. Now view 〈x, y〉 as an inner product

over quaternions. Again, we can use the same function K(x, y) = d〈y, x〉, J(x) = −ρ, φ(x) =

ψ(x) = x. We get

‖B‖G,d ≥ |d
∫

Sn−1×Sn−1
〈y, x〉〈x, y〉dσ(x)dσ(y)− ρ| = |1− ρ|, (7.67)

and KHG ≥ sup0<ρ<1
1−ρ
Mρ,d

. We only need to find the bounds for Mρ,n. Note that

Mρ,d = sup<{d
∫
‖f‖∞,‖g‖∞≤1

〈y, x〉f(x)g(y)dσ(x)dσ(y)− ρ
∫
f(x)g(x)dσ(x)}.
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Fix f, g ∈ B. Let h(y) =
∫
〈y, x〉f(x)dσ(x), then h(y) = 〈y, z〉λ for a scalar λ and z ∈ S.

Furthermore λ = h(z) =
∫
〈z, x〉f(x)dσ(x). Define µ =

∫
〈g(y)〈y, z〉dσ(y),

<
∫ ∫

〈y, x〉f(x)g(y)dσ(x)dσ(y)

=

∫
<(〈y, z〉λg(y))dσ(y)

=

∫
<(g(y)〈y, z〉λ)dσ(y)

= <(µλ) ≤ |λ+ µ̄|2/4.

We know that λ+ µ̄ =
∫
〈z, x〉(f(x) + ḡ(x))dσ(x). So

Mρ,d ≤ sup
‖f‖∞,‖g‖∞≤1

d

4

∣∣∣∣ ∫ 〈z, x〉(f(x) + ḡ(x))dσ(x)

∣∣∣∣2 − ρ< ∫ f(x)g(x)dσ(x)

≤ sup
‖f‖∞,‖g‖∞≤1,‖z‖=1

d

4

∣∣∣∣ ∫ 〈z, x〉(f(x) + ḡ(x))dσ(x)

∣∣∣∣2 − ρ< ∫ f(x)g(x)dσ(x)

= sup
‖f‖∞,‖g‖∞≤1

d

4

∣∣∣∣ ∫ x1(f(x) + ḡ(x))dσ(x)

∣∣∣∣2 − ρ< ∫ f(x)g(x)dσ(x).

Now use the inequality |f(x) + ḡ(x)|2 ≤ <(2 + 2f(x)g(x)) and write

ψ(x) =
√
<(1 + f(x)g(x))/2,

obtaining

Mρ,d ≤ sup
0≤ψ≤1

d

∣∣∣∣ ∫ |x1|ψ(x)dσ(x)

∣∣∣∣2 + ρ(1− 2

∫
ψ(x)2dσ(x)).

By a simple variational argument, the maximum will be attained when ψ(x) = min(1, |x1|/λ)
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for some λ ≥ 0. So

Mρ,d ≤ d

∣∣∣∣ ∫|x1|>λ |x1|dσ(x) +

∫
|x1|<λ

|x1|2/λdσ(x)

∣∣∣∣2
+ ρ(1− 2

∫
|x1|>λ

1dσ(x)− 2

∫
|x1|<λ

|x1|2/λ2dσ(x)).

When d→∞, the distribution of
√

4dx1 approaches quaternionic (4-dimensional) standard

normal, so the distribution of r =
√
d|x1| tends to 8r3e−2r2dr. We change λ to λ/

√
d in the

integral and obtain

Mρ,n ≤
∣∣∣∣ ∫√

d|x1|>λ

√
d|x1|dσ(x) +

∫
√
d|x1|<λ

d|x1|2/λdσ(x)

∣∣∣∣2
+ ρ(1− 2

∫
√
d|x1|>λ

1dσ(x)− 2

∫
√
d|x1|<λ

d|x1|2/λ2dσ(x))

→
∣∣∣∣ ∫ ∞
λ

8r4e−2r2dr +
1

λ

∫ λ

0
8r5e−2r2dr

∣∣∣∣2
+ ρ(1− 2

∫ ∞
λ

8r3e−2r2dr − 2

λ2

∫ λ

0
8r5e−2r2dr)

:= F (λ, ρ).

We can take derivative with respect to λ and find that

∂

∂λ
F (λ, ρ) = h(λ)(ρ− θ(λ)),

where h(λ) := (1 − (2λ4 + 2λ2 + 1)e−2λ2)/λ3 ≥ 0 and θ(λ) := 1
4(2 − e−2λ2(λ2 + 2) +

3λ
∫∞
λ e−2r2dr). Furthermore, θ′(λ) = 1

4(e−2λ2(4λ3 + 3λ) + 3
∫∞
λ e−2r2dr) > 0. So θ(λ) is

an increaing function with θ(0) = 0 and limλ→∞ θ(λ) = 1/2. For fixed ρ ≥ 1/2, ∂
∂λF (λ, ρ)

is nonnegative, so F (λ, ρ) ≤ limλ→∞ F (λ, ρ) ≤ ρ. For fixed ρ < 1/2, h(λ)(ρ− θ(λ)) changes

sign once as λ increasing from 0 to ∞, so F (λ, ρ) ≤ F (θ−1(ρ), ρ).

In conclusion, we have found that Mρ,d ≤ ρ if ρ ≥ 1
2 , Mρ,d ≤ F (θ−1(ρ), ρ) when ρ < 1

2 ,
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so

sup
0<ρ<1

1− ρ
Mρ,d

≥ sup
ρ

1− ρ
F (θ−1(ρ), ρ)

= sup
λ

1− θ(λ)

F (λ, θ(λ))
≈ 1.17849,

where λ ≈ 0.64056, ρ ≈ 0.295034 are computed using Mathematica numerically. So KHG ≥

1.17849.

7.5.5 Lower bounds for KH
γ and KH

Γ

The computation of KHγ and KHΓ are similar and easier than KHG . But first we need a

technical lemma.

Lemma 7.5.4. Let Un, Vn be independent random vectors uniformly distributed on Sn

sphere. Let Td = |〈Un, Vn〉|. Then the probability density function of Tn is given by

fTn(t) = 4n(2n+ 1)(1− t2)2n−1t3.

For any α > 0,

E(|〈Un, Vn〉|α) =
Γ(2n+ 2)Γ(2 + α/2)

Γ(2n+ 2 + α/2)
.

327



Proof. We identify Hn+1 = R4n+4 and introduce the following coordinates for x ∈ R4n+4:

x1 =

√
r2 − ρ2 cos(ϑ1),

x2 =

√
r2 − ρ2 sin(ϑ1) cos(ϑ2),

x3 =

√
r2 − ρ2 sin(ϑ1) sin(ϑ2) cos(ϑ3),

...

x4n−1 =

√
r2 − ρ2 sin(ϑ1) · · · sin(ϑ4n−2) cos(ϑ4n−1),

x4n =

√
r2 − ρ2 sin(ϑ1) · · · sin(ϑ4n−2) sin(ϑ4n−1),

x4n+1 = ρ cosφ1,

x4n+2 = ρ sinφ1 cosφ2,

x4n+3 = ρ sinφ1 sinφ2 cosφ3,

x4n+4 = ρ sinφ1 sinφ2 sinφ3,

where r = ‖x‖, ρ ∈ [0, r], ϑ1, . . . , ϑ4n−2, φ1, φ2 ∈ [0, π], and ϑ4n−1, φ3 ∈ [0, 2π).

The Jacobian J = ∂(x1, . . . , x4n+4)/∂(r, ϑ1, . . . , ϑ4n−1, ρ, φ1, φ2, φ3) has determinant

det J = r(r2 − ρ2)2n−1ρ3 sin4n−2(ϑ1) sin4n−3(ϑ2) · · · sin(ϑ4n−2) drdϑ1 dϑ2 · · · dϑ4n−1

sin2 φ1 sinφ2dρdφ1dφ2dφ3;

and since r = 1, we get

dσn = (1− ρ2)2n−1ρ3 sin4n−2(ϑ1) sin4n−3(ϑ2) · · · sin(ϑ4n−2) dϑ1 dϑ2 · · · dϑ4n−1

sin2 φ1 sinφ2dρdφ1dφ2dφ3.

Integrating out ϑ1, . . . , ϑ2n−1, dφ1dφ2dφ3 yields C(1 − ρ2)2n−1ρ3dρ. And the constant C

can be obtain by integral 1 = C
∫ 1
−1(1− ρ2)2n−1ρ3dρ = C

∫ 1
0 x(1− x)2n−1dx/2 = C

4n(2n+1)
.
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So

fTn(t) = 4n(2n+ 1)(1− t2)2n−1t3.

So

E(|〈Un, Vn〉|α) =

∫ 1

0
4n(2n+ 1)(1− t2)2n−1t3tαdt

=

∫ 1

0
2n(2n+ 1)(1− x)2n−1x1+α/2dx

=
2n(2n+ 1)Γ(2n)Γ(2 + α/2)

Γ(2n+ 2 + α/2)
=

Γ(2n+ 2)Γ(2 + α/2)

Γ(2n+ 2 + α/2)
.

In fact, we have the following result:

Theorem 7.5.5. KHγ ≥ 64
9π − 1, KHγ,d ≥

32Γ2(2d+1/2)
9πdΓ2(2d)

− 1, KHΓ ≥ 1.25709.

Proof. We can use the same B(f, f) defined by K(x, y) = d〈y, x〉, J(x) = −ρ. Then by the

same computation, we can get

‖B‖γ,d ≥ |1− ρ|, ‖B‖Γ,d ≥ |1− ρ|

and

‖B‖θ = sup

{∣∣∣∣<d∫
Sd−1×Sd−1

〈y, x〉f(x)f(y)dσ(x)dσ(y)− ρ
∣∣∣∣ , |f(x)| = 1

}
.

We can further bound the first term by

<
∫
Sd−1×Sd−1

〈y, x〉f(x)f(y)dσ(x)dσ(y)

= ‖
∫
Sd−1

xf(x)dσ(x)‖2

≤ ‖
∫
Sd−1

|x1|dσ(x)‖2.
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The last inequality is sharp. In fact, we can assume
∫
Sd−1 xf(x)dσ(x) = (a, 0, . . . , 0) in a

suitable basis of Hd. Then

∫
Sd−1

xf(x)dσ(x) =

∫
Sd−1

x1f(x)dσ(x) ≤
∫
Sd−1

|x1|dσ(x).

So we have

‖B‖θ ≤ max{|d|
∫
Sd−1

|x1|dσ(x)|2 − ρ|, ρ}.

When d → ∞, the distribution of r =
√
d|x1| tends to 8r3e−2r2dr. So d|

∫
Sd−1 |x1|dσ(x)|2

converges to 9π
32 and

KHγ ≥ sup
0<ρ<1

1− ρ
max{ρ, |9π32 − ρ|}

≥ 64

9π
− 1.

The lower bound matches the upper bound, so KHγ = 64
9π − 1. In fact, we can compute the

constant for finite d.

d|
∫
Sd−1

|x1|dσ(x)|2 =
9πdΓ2(2d)

16Γ2(2d+ 1/2)
,

So

KHγ,d ≥
32Γ2(2d+ 1/2)

9πdΓ2(2d)
− 1.

For the third inequality, we have

‖B‖Θ = sup

{
d

∣∣∣∣∣
∣∣∣∣∫
Sd−1

xf(x)dσ(x)

∣∣∣∣2 − ρ ∫
Sd−1

|f(x)|2dσ(x)

∣∣∣∣∣ , |f(x)| ≤ 1

}
.

If ρ
∫
Sd−1 |f(x)|2dσ(x) >

∣∣∣∫Sd−1 xf(x)dσ(x)
∣∣∣2, then

‖B‖Θ ≤ ρ

∫
Sd−1

|f(x)|2dσ(x) ≤ ρ.
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In the other case,

‖B‖Θ ≤ d

∣∣∣∣∫
Sd−1

xf(x)dσ(x)

∣∣∣∣2 − ρ∫
Sd−1

|f(x)|2dσ(x).

By choose a suitable basis, we can replace the first term by
∣∣∣∫Sd−1 x1f(x)dσ(x)

∣∣∣2. By

replacing f(x) with f(x)x̄1/|x1|, we can then consider instead

sup{d
∣∣∣∣∫
Sd−1

|x1||f(x)|dσ(x)

∣∣∣∣2 − ρ∫
Sd−1

|f(x)|2dσ(x)}.

Then we can proceed as before and get

‖B‖Θ ≤
∣∣∣∣ ∫ ∞
λ

8r4e−2r2dr +
1

λ

∫ λ

0
8r5e−2r2dr

∣∣∣∣2
− ρ(

∫ ∞
λ

8r3e−2r2dr +
1

λ2

∫ λ

0
8r5e−2r2dr)

:= G(λ, ρ).

We can take derivative with respect to λ and find that

∂

∂λ
G(λ, ρ) = h(λ)(ρ/2− θ(λ)),

where h(λ) := (1 − (2λ4 + 2λ2 + 1)e−2λ2)/λ3 ≥ 0 and θ(λ) := 1
4(2 − e−2λ2(λ2 + 2) +

3λ
∫∞
λ e−2r2dr) as before.

Furthermore, θ(λ) is an increaing function with θ(0) = 0 and limλ→∞ θ(λ) = 1/2. For

fixed ρ ≥ 1, ∂
∂λG(λ, ρ) is nonnegative, so G(λ, ρ) ≤ limλ→∞G(λ, ρ) ≤ 0. For fixed ρ < 1,

h(λ)(ρ− θ(λ)) changes sign once as λ increasing from 0 to ∞, so G(λ, ρ) ≤ F (θ−1(ρ/2), ρ).

sup
0<ρ<1

1− ρ
‖B‖Θ

≥ sup
ρ

1− ρ
max{ρ,G(θ−1(ρ/2), ρ)}

= sup
λ

1− 2θ(λ)

max{2θ(λ), G(λ, 2θ(λ))}
≈ 1.25709,
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where λ ≈ 0.473831, ρ ≈ 0.443047.
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