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Abstract
Diagnostic testingmay represent a key component in response to an ongoing epidemic,
especially if coupled with containment measures, such as mandatory self-isolation,
aimed to prevent infectious individuals from furthering onward transmission while
allowing non-infected individuals to go about their lives. However, by its own nature
as an imperfect binary classifier, testing can produce false negative or false positive
results. Both types of misclassification are problematic: while the former may exac-
erbate the spread of disease, the latter may result in unnecessary isolation mandates
and socioeconomic burden. As clearly shown by the COVID-19 pandemic, achieving
adequate protection for both people and society is a crucial, yet highly challeng-
ing task that needs to be addressed in managing large-scale epidemic transmission.
To explore the trade-offs imposed by diagnostic testing and mandatory isolation
as tools for epidemic containment, here we present an extension of the classical
Susceptible-Infected-Recovered model that accounts for an additional stratification
of the population based on the results of diagnostic testing. We show that, under suit-
able epidemiological conditions, a careful assessment of testing and isolation protocols
can contribute to epidemic containment, even in the presence of false negative/positive
results. Also, using amulti-criterial framework,we identify simple, yet Pareto-efficient
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testing and isolation scenarios that can minimize case count, isolation time, or seek a
trade-off solution for these often contrasting epidemic management objectives.

Keywords Compartmental model · Misdiagnosis · Reproduction number · Pareto
efficiency

Mathematics Subject Classification 37N25 · 92D30

1 Introduction

With more than 6.9 million confirmed deaths globally, as of April 2023 (World Health
Organization 2023), the COVID-19 pandemic ranks as one of the deadliest in history
(Piret and Boivin 2021). It has quickly proved to be one of the most socioeconomically
devastating too, with ubiquitous social impacts (Saladino et al. 2020) and long-lasting
implications for many economic sectors (Nicola et al. 2020). These effects are inten-
sified by the tight interconnectedness of our globalized world, on one hand, and may
further contribute to exacerbating rapid patterns of change in the human-Earth sys-
tem, on the other (Folke et al. 2021). For a large share of the general population, the
COVID-19 pandemic has also represented a crash course in epidemiology (Cobey
2020), and created widespread public interest in infectious disease dynamics and epi-
demic control practice. In particular, it exposed a general audience, in many cases
for the first time, to a reflection on the threats posed by emerging and re-emerging
diseases (Morens and Fauci 2020), as well as on the complex trade-offs inherent to
public health policy (Reed and Gonzalez 2020; Norheim et al. 2021).

Among the difficult positions that governments have been forced to take since the
beginning of the COVID-19 pandemic, perhaps none has been more consequential
than managing to strike a balance between controlling the spread of the SARS-CoV-2
virus within an initially fully naive population and allowing a basic level of socioeco-
nomic activity. Prior to the development and widespread availability of vaccines (Li
et al. 2020), public health interventions were essentially non-pharmaceutical (Ferretti
et al. 2020; Flaxman et al. 2020; Hsiang et al. 2020; Kucharski et al. 2020; Lai et al.
2020; Brauner et al. 2021), including both population-wide measures, ranging from
social distancing mandates to mobility restrictions and even general lockdowns, and
individual prescriptions, like isolation of infected individuals and quarantine for their
close contacts. Clearly, the latter family of measures may be less socioeconomically
costly than the former, but key to its implementation is the availability of testing tools
to effectively identify infection cases. For the COVID-19 pandemic, diagnostic molec-
ular testing was rapidly made possible by the prompt publication of the SARS-CoV-2
genome just weeks into the pandemic; later on, the development of antigen-based
lateral flow assays allowed a massive ramping up of surveillance testing (Mercer and
Salit 2021; Mina and Andersen 2021). Large-scale application of rapid antigen test-
ing, coupled with contact restrictions, has proved to be highly effective at reducing
the prevalence of disease (Pavelka et al. 2021).
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Because of its importance for transmission containment, testing has been included
inmany leadingmodeling efforts to describe the dynamics of the COVID-19 pandemic
(as well as of previous epidemics; see Lipsitch et al. 2003, for a notable precedent
concerning the 2002–2004 SARS outbreak) in different spatiotemporal settings (Krae-
mer et al. 2020; Kucharski et al. 2020; Gatto et al. 2020; Giordano et al. 2020). Some
studies have explicitly looked into testing (typically, in association with mandatory
isolation of infected individuals) as a tool to possibly control the pandemic (Hellewell
et al. 2020; Pettengill andMcAdam 2020; Choi and Shim 2021;Wells et al. 2021; Baik
et al. 2022), especially after the first national lockdowns started to be lifted (Aleta et al.
2020; Bertuzzo et al. 2020; Di Domenico et al. 2020; Bosetti et al. 2021; Mari et al.
2021; Wang et al. 2022). However, most modeling studies did not explicitly consider
that, like all binary classifiers, testing is prone to two types of errors: false negatives
(i.e., negative test results in the presence of disease, related to type-II errors in statis-
tics), by which undiagnosed infected individuals are allowed to freely circulate in the
community, thereby furthering the spread of disease; and false positives (i.e., positive
test results in the absence of disease, related to type-I errors), by which non-infected
individuals are isolated from the community, thereby unnecessarily increasing the
socioeconomic burden of disease.

In this work, we aim to explore the implications of imperfect testing for the dynam-
ics of an infectious disease spreading in awell-mixed population.A few studies already
exist that account for the epidemiological and societal consequences of imperfect test-
ing (Gray et al. 2020; Kasy and Teytelboym 2020; Sasikumar and Varma 2021; Baik
et al. 2022; Gharouni et al. 2022), in some cases focusing on false negatives only
(Bergstrom et al. 2020; Grassly et al. 2020; Bhattacharyya et al. 2021; Thompson and
Wattam 2021; Bhaduri et al. 2022)—which may be an understandable choice given
the potential implications of undiagnosed infected individuals as disease spreaders.
However, the essentially multi-criterial nature (Ehrgott 2005) of the problem posed
by imperfect testing seems to be still under-explored. Specifically, here we use a
simple compartmental model to discuss quantitatively the trade-offs that unavoid-
ably emerge while trying to simultaneously minimize the health-related burden of
disease, as measured for instance by case count, and the socioeconomic burden asso-
ciated with control measures, as measured for instance by the time spent in isolation
by individuals who have been diagnosed as infected through testing. Multi-criterial
analysis has already been proposed as an effective means to evaluate the pros and
cons of socioeconomically costly control measures (e.g., national lockdowns, school
closures) that are sometimes adopted in large-scale transmission settings, like the
COVID-19 pandemic (Kochańczyk and Lipniacki 2021; Lasaulce et al. 2021;Wulkow
et al. 2021).

The paper is organized as follows. The structure of themodel is presented in Sect. 2.
In Sect. 3, we evaluate the effective reproduction number of the model subject to
controls and discuss under what conditions testing and isolation alone can actually
be used to contain an epidemic, even in the presence of false positives/negatives.
Some numerical results are presented in Sect. 4, where we also use the concept of
Pareto-efficiency to identify efficient testing and isolation scenarios from a multi-
criterial perspective. Finally, the epidemiological and socioeconomic implications of
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our analysis are discussed in Sect. 5, together with some limitations and possible
extensions of our work.

2 A SIRModel with Testing and Isolation

A simple, yet effective way to analyze how testing and isolation of individuals identi-
fied as infected can affect the dynamics of a directly transmitted infectious disease is
using as a starting point a standard SIR model, in which the population is divided into
the compartments of susceptible (S), infected (I ), and recovered (R) people (Ander-
son and May 1992). We assume that susceptible individuals become infected and
infectious upon contact with an infectious individual, and that clearance of infec-
tion results in recovery and permanent (or at least long-lasting) immunity from
reinfection. On top of this standard set of hypotheses, we introduce the following
assumptions:

• infected individuals develop clinical, yet possibly non-specific manifestations of
the disease;

• an individual’s infection status can be assessed through suitable diagnostic tools,
but testing is imperfect, i.e., it can produce false negative or false positive results
in at least a fraction of cases;

• a positive test result causes the recipient to be identified as infected and
consequently isolated from the general community;

• isolation ends after a certain amount of time, provided that the isolated individual
also tests negative for the pathogen; and

• individuals released from isolation are no longer subject to testing (i.e., they may
have received a so-called immunity passport).

An important corollary to the second assumption above is that testing introduces
a further stratification in the population, besides the traditional compartmental-
ization based on the actual infection status, according to which individuals are
assigned to an epidemiological compartment (say, X ∈ {S, I , R}). Specifically, as
far as testing is concerned, individuals may fall within one of these three cate-
gories: those who have never tested positive, Xn ; those who have tested positive
and are currently isolated, X p; and those who have been released from isolation, Xc.
Because of imperfect testing, this latter test-based stratification only partially cor-
responds to the former infection-based compartmentalization; the two stratifications
would in fact coincide only in the presence of continuous, universal, perfect test-
ing. A similar, double-stratified approach has been recently proposed by Gharouni
et al. (2022) to study the efficacy of testing and isolation as means of epidemic
control.

Taken together, the assumptions outlined above translate into the following set
of ordinary differential equations (ODEs) describing the dynamics of the abundance
(number) of individuals in each of the epidemiological/testing compartments:
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Fig. 1 Schematic representation of model (1)

Ṡn = −(λ + εαFP)Sn

Ṡp = εαFPSn − θαTNSp

Ṡc = θαTNSp − λSc

İn = λSn − (γ + καTP)In

İ p = καTP In − (γ + θαFN)Ip

İc = λSc + θαFN Ip − γ Ic

Ṙn = γ In − εαFPRn

Ṙp = γ Ip + εαFPRn − θαTNRp

Ṙc = γ Ic + θαTNRp ,

(1)

with

λ = β
In + Ic

Sn + Sc + In + Ic + Rn + Rc
(2)

being the force of infection, described as frequency-dependent. This choice stems
from the assumption of a constant contact rate, resulting in an infection rate that
depends upon the prevalence (i.e., the frequency) of infectious individuals within the
population (Anderson and May 1992). Vital dynamics (birth and death processes) and
containment measures other than testing and isolation (e.g., transmission reduction
via social distancing and/or adoption of personal protective equipment) are neglected
in Eqs. (1) and (2) for the sake of minimality. A schematic representation of the model
is shown in Fig. 1.

In themodel,β and γ are the transmission and recovery rates (the only two epidemi-
ological parameters of the standard SIR model; note that we assume that isolation is
completely effective at preventing transmission and that recovery rates are independent
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of the “testing history” of an individual—both of which clearly represent simplifica-
tions of the problem at hand), ε and κ are the testing rates for non-infected (susceptible
and recovered) and infected individuals, θ is the isolation release rate, which can be
thought of as the inverse of the average duration of the isolation order, αTP is the true
positive rate (the probability that the test correctly identifies an infected individual,
also known as sensitivity), αFN = 1 − αTP is the false negative rate (the probability
that the test classifies an infected individual as non-infected), αTN is the true negative
rate (the probability that the test correctly identifies a non-infected individual, also
known as specificity), and αFP = 1 − αTN is the false positive rate (the probability
that the test classifies a non-infected individual as infected).

Regarding testing, we typically expect ε ≤ κ because of the assumption of infected
individuals developing clinical, yet possibly non-specific symptoms of the disease,
which could warrant the execution of diagnostic testing; on the other hand, non-
infected individuals could still be involved in routine screening, which will occur, in
all likelihood, at a lower rate. Introducing such a distinction between testing rates
requires neither knowing the infection status of an individual in advance nor defining
the testing rates as independent decision variables. Rather, it allows describing in a
simple, yet general way the different average probability per unit of time that individ-
uals in different epidemiological compartments may undergo testing based, e.g., on
their different likelihood to develop possibly revealing symptoms. For this reason, it
has already been widely used in the literature: for instance, the models described in
Bertuzzo et al. (2020), Grassly et al. (2020), Gray et al. (2020), Choi and Shim (2021),
Mari et al. (2021), Thompson and Wattam (2021), Baik et al. (2022), Gharouni et al.
(2022), and Wang et al. (2022) all contemplate some variations of the hypothesis that
different testing rates apply to infected vs. non-infected individuals. By contrast, the
assumption ε = κ is typically done when focusing on generalized mass testing as a
means of community screening (see, e.g., Bosetti et al. 2021; Pavelka et al. 2021; Baik
et al. 2022; Zhang and Britton 2022) and can obviously be accommodated within our
general model as a particular case.

Another key aspect of testing is that αTP and αTN are typically not independent
of each other. To simply show this, let the test results for non-infected and infected
individuals be drawn from two continuous probability distributions fu(x) and fv(x),
respectively, with x representing the variable that is assessed by the test (Fig. 2a). A
good test is one for which the overlap of the two distributions is minimal. No matter
how good a test is, though, some overlap will practically be unavoidable, and setting
a cut-off threshold to separate negative results from positive results will always cause
some instances to be misclassified. Indeed, how to optimally select a cut-off is one of
the burning questions in the literature on diagnostic testing (e.g., López-Ratón et al.
2014). Specifically, a higher threshold will yield more true negatives (TNs) and fewer
false positives (FPs), but also fewer true positives (TPs) and more false negatives
(FNs)—and vice versa. Mathematically, if we define αTN = TN/(TN + FP) and
αTP = TP/(TP + FN), then for a given cut-off x∗ we get

αTN(x∗) = Fu(x
∗)

αTP(x
∗) = 1 − Fv(x

∗) ,
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Fig. 2 Relationship between false positives and false negatives in test results. a Hypothetical probability
density functions (pdfs) of testing results for non-infected (top) and infected (bottom) individuals. Both
pdfs are assumed to be normal ( fu(x) = N (0, 1), fv(x) = N (4, 1); x is expressed in arbitrary test units).
b Functional relationship between αTN and αTP (eqn. (3)). The solid curve is obtained with the parameters
used in panel a (a = 4, b = 1) for different values of the cut-off threshold (the black dot corresponds to
the cut-off x∗ = 2.2). The dashed and dotted curves are obtained with a = 2, b = 1 and a = 4, b = 2,
respectively

where Fu(x) and Fv(x) are the cumulative distribution functions of fu(x) and fv(x),
respectively. Hence,

αTN(αTP) = Fu
[
F−1

v (1 − αTP)
]

,

or, equivalently,

αTP(αTN) = 1 − Fv

[
F−1
u (αTN)

]
.

For the sake of concreteness, let fu(x) and fv(x) be two normal distributions with
assignedmeans (μu andμv) and standard deviations (σu and σv), i.e., fu = N (μu, σu)

and fv = N (μv, σv). With straightforward algebraic manipulations, we get

αTN(αTP) = 
[a − b
−1(αTP)] , (3)

where a = (μv−μu)/σu , b = σv/σu , and
(x) is the cumulative distribution function
of the standard normal distributionN (0, 1). The functional relationship between αTP
and αTN is shown in Fig. 2b for different choices of the parameters a and b.

3 Basic and Effective Reproduction Numbers

To assess the long-term transmission potential of the pathogen, it is useful to evaluate
two key epidemiological indexes, namely the basic reproduction number,R0, and the
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effective reproduction number,Rt (Anderson andMay 1992; Brauer 2008). These two
quantities can be intuitively understood as the average number of secondary infections
produced by one infected individual in a completely susceptible population in the
absence of controls (including testing and isolation of individuals following a positive
test result, R0) or in a population with prior exposure to the pathogen and/or in the
presence of controls (Rt ).

3.1 Basic Reproduction Number

If no containment measures are in place (which, for the problem at hand, means that
testing and isolation are not enforced), model (1) reduces to the standard SIR model
with frequency-dependent transmission and no vital dynamics, for which R0 = β/γ

(Anderson and May 1992).

3.2 Effective Reproduction Number

The evaluation ofRt requires following a specific trajectory in the state space diverg-
ing from a given equilibrium condition.We assume that, between the initial time t = t0
and some later time t = tτ , when the enforcement of containment measures begins, the
pathogen is left free to invade uncontrolled (and possibly unnoticed) a community that
is, at least initially, fully susceptible (and obviously untested). We thus start from an
impulsive perturbation of the disease-free equilibrium x0 = [N , 0, 0, 0, 0, 0, 0, 0, 0]T ,
where N is the total population abundance and the superscript T denotes matrix trans-
position. In this time interval, any changes inRt are to be ascribed solely to changes in
the state variables—most prominently, the progressive erosion of the susceptible com-
partment as a result of the unfolding outbreak. After t = tτ , when control measures
begin to be applied, the temporal evolution of Rt reflects both the further changes of
the state variables in response to epidemic dynamics and the impact of controls.

Following Diekmann et al. (2010), the evaluation of reproduction numbers from
compartmental epidemiological models requires, first, isolating the infected subsys-
tem, defined as the set of equations that describe the production of new infections and
the state changes of infected individuals. For model (1) with no testing (ε = κ = 0),
the infected subsystem simply corresponds to the equation describing the dynamics
of infected individuals in the community, In , whose linearization gives

∂( İn)

∂ In
= ∂(λSn)

∂ In
− γ = β

Sn(t)[Sn(t) + Rn(t)]
N 2 − γ .

An outbreak will keep on unfolding only if ∂( İn)/∂ In > 0, corresponding to the
condition

Rt = β

γ

Sn(t)[Sn(t) + Rn(t)]
N 2 > 1 ,
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with Rt being the effective reproduction number evaluated over t0 ≤ t < tτ . Note
thatRt ≡ R0 in a neighborhood of x0 (fully susceptible population), i.e., prior to the
start of the epidemic.

As a result of the implementation of testing at t = tτ , the infected system becomes
three-dimensional, now including the infectedwho never tested positive, In , those who
have been correctly identified through testing and are currently subject to isolation, Ip,
and those who have been released from isolation before clearing the infection, Ic. The
dynamics of the infectious subsystem are described by the reduced-order, time-varying
Jacobian

J∗(t) =
⎡
⎣

βSn(t)F(t) − (γ + καTP) 0 βSn(t)F(t)
καTP −(γ + θαFN) 0

βSc(t)F(t) θαFN βSc(t)F(t) − γ

⎤
⎦ ,

with

F(t) = Sn(t) + Sc(t) + Rn(t) + Rc(t)

[Sn(t) + Sc(t) + In(t) + Ic(t) + Rn(t) + Rc(t)]2 .

To evaluateRt , we apply a next-generation matrix (NGM) approach (Diekmann et al.
1990; Van den Driessche and Watmough 2002) and decompose J∗(t) into a time-
varying transmission matrix

T(t) = βF(t)

⎡
⎣
Sn(t) 0 Sn(t)
0 0 0

Sc(t) 0 Sc(t)

⎤
⎦

and a transition matrix

� =
⎡
⎣

−(γ + καTP) 0 0
καTP −(γ + θαFN) 0
0 θαFN −γ

⎤
⎦ ,

so that J∗(t) = T(t) + �. The time-varying NGM can then be found as

K(t) = −T(t)�−1 =

= −βF(t)

⎡
⎣
Sn(t) 0 Sn(t)
0 0 0

Sc(t) 0 Sc(t)

⎤
⎦

⎡
⎢⎣

− 1
γ+καTP

0 0

− καTP
(γ+καTP)(γ+θαFN)

− 1
γ+θαFN

0

− καTPθαFN
γ (γ+καTP)(γ+θαFN)

− θαFN
γ (γ+θαFN)

− 1
γ

⎤
⎥⎦ =

= β

γ
F(t)

⎡
⎢⎣

γ (γ+θαFN)+καTPθαFN
(γ+καTP)(γ+θαFN)

Sn(t)
θαFN

γ+θαFN
Sn(t) Sn(t)

0 0 0
γ (γ+θαFN)+καTPθαFN

(γ+καTP)(γ+θαFN)
Sc(t)

θαFN
γ+θαFN

Sc(t) Sc(t)

⎤
⎥⎦ .

Interestingly, the elements of the NGM lend themselves to a rather intuitive epidemi-
ological interpretation, as they represent the contributions of a cohort of infected
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individuals (in the three isolation-related stages, columns) to a new generation of
infections (in the three isolation-related stages, rows). Specifically, susceptible indi-
viduals (who either have never tested positive, first row, or have been released from
isolation, third row) can be infected upon contact with infected individuals who: (first
column) have not tested positive yet or tested positive and were released from isolation
before recovering after a false-negative test result; (second column) are isolated but
get released before recovering after a false-negative test result; or (third column) are
in the community after being released from a prior isolation mandate. The effective
reproduction number is the spectral radius of the NGM, i.e.,

Rt = β

γ
F(t)

Sn(t)[γ (γ + θαFN) + καTPθαFN] + Sc(t)(γ + καTP)(γ + θαFN)

(γ + καTP)(γ + θαFN)
(4)

for t ≥ tτ . From this expression, it is immediate to see that, in the absence of testing
(specifically, with κ = 0, resulting in Sc(t) = Ic(t) = Rc(t) = 0), the effective
reproduction number just derived reduces to the expression found for t0 ≤ t < tτ .

The testing effort that is necessary to asymptotically halt the spread of the pathogen
(obviously, with R0 > 1) can be evaluated from eqn. (4) by calculating the values of
the control parameters (in this case, for instance, the infected testing rate κ) for which
the condition Rt < 1 is verified for some t . To make the analytical computation
easier, we can introduce the simplifying hypothesis that controls are in place from the
very beginning of an outbreak (t0 ≡ tτ ). In this case, in a neighborhood of x0 (fully
susceptible and untested population), the effective reproduction number reduces to
the so-called control reproduction number (Anderson and May 1992; Brauer 2008),
which for the problem at hand reads

RC = β

γ

γ (γ + θαFN) + καTPθαFN

(γ + καTP)(γ + θαFN)
.

To prevent the long-term circulation of the pathogen through testing and isolation,
the condition RC < 1 must be met. We preliminary note that, for large values of κ ,
RC tends asymptotically to (β/γ )(θαFN)/(γ + θαFN), which is larger than one if
R0 > R∗

0 = 1 + γ /(θαFN). In this case, testing and isolation cannot but fail as the
sole means of controlling the outbreak, and other complementary measures must be
implemented. Otherwise, for 1 < R0 < R∗

0, testing and isolation can be used to halt
disease transmission, provided that testing effort is strong enough, namely if

κ >
γ

(
β
γ

− 1
)

(γ + θαFN)

αTP

[
γ −

(
β
γ

− 1
)

θαFN

] .

Wenote that the right-hand side of the above inequality decreases for decreasing values
of αFN and increasing values of αTP. In other words, while imperfect testing can curb
the spread of disease (under suitable R0 conditions), better testing can reduce the
effort needed to accomplish the goal.
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4 Numerical Results

Similarly to the evaluation of the effective reproduction number, simulating model (1)
also requires a two-step algorithm. In step 1, the model is run with no control measures
(i.e., with κ = ε = 0) over the timespan t0 = 0 ≤ t < tτ , with initial conditions
Sn(0) = N − I0, In(0) = I0, and all other state variables set to zero. In step 2, the
model is run including testing and isolation (κ > 0, ε > 0) over the timespan t ≥ tτ
and initial conditions taken from the final state of the simulation performed in the first
step.

4.1 Numerical Simulation of theModel

A numerical simulation of model (1) is shown in Fig. 3. The pathogen initially spreads
uncontrolled, with a basic reproduction number R0 = 3 (see the figure caption for
the full list of parameters), leading to an exponential growth of infections. We assume
that testing and isolation begin to be enforced when the total number of new infections
exceeds a threshold of 100 cases per 100,000 population in the previous seven days. In
this example, controls are introduced at day tτ = 24, resulting in a ≈ 60% drop in the
effective reproduction number (a). The control effort simulated here is not sufficient
to bring Rt below the critical unit threshold, though, and the epidemic keeps on
spreading, albeit more slowly than in a no-control scenario. As a result, ≈ 13% of
the population is projected to contract the disease over a time window of tω = 90
days starting immediately after the introduction of controls, which still represents a
≈ 69% reduction of the total number of cases expected without controls. Note that
case reduction does not entirely correspond to case avoidance: some infections may be
delayed rather than prevented, as the epidemic curve is flattened but still increasing. At
the peak of the outbreak, ≈ 0.7% of the population is infected each day (compared to
≈ 6% without controls), while ≈ 0.5% enters isolation daily (a). The total prevalence
of infection reaches a peak value of ≈ 4.6% of the population, with more than 50% of
the active cases being subject to isolation throughout the period in which controls are
in place (b). Infection prevalence in the community attains a peak value of ≈ 2.1%,
while reaching ≈ 40% among isolated individuals (c). The latter figure suggests that,
even at the height of the outbreak, more than half of the isolated individuals are in fact
non-infected (because they either have received a false-positive result or are waiting
to be released after recovery). Indeed, at peak, ≈ 7% of the population is subject to
an isolation mandate, but only ≈ 2.5% is actually infected (d). Isolated individuals
account for≈ 2.9% of the total person-time in the time interval between tτ and tτ + tω
(corresponding to Ntω person-days), with superfluously isolated individuals (non-
infected people subject to isolation) corresponding to ≈ 64% of this figure (i.e.,
≈ 1.9% of total person-time). Note that the total/superfluous isolation person-time
is evaluated as the area below the blue/yellow curve in Fig. 3d between t = tτ and
t = tτ + tω.
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Fig. 3 Numerical simulation of model (1). a Total number of new daily cases and isolation mandates,
expressed as a percentage of the total population (left axis), and effective reproduction number (right axis).
b Total infection prevalence and breakdown by sub-population (infected individuals in the community or
isolated), expressed as a percentage of the total population. c Infection prevalence in the community (left
axis) and among isolated individuals (right axis); the latter can be evaluated only after the introduction of
controls. d Total prevalence of isolated individuals and breakdown by actual infection status, expressed as
a percentage of the total population. Parameter values: N = 106, β = 0.429 day−1, γ = 1/7 day−1 (so
that R0 = β/γ = 3), κ = 1/3 day−1, ε = 1/60 day−1, θ = 1/10 day−1, αTP = 0.85, a = 2.681,
b = 1 (so that, using eqn. 3, αTN = 0.95). The simulation has been initialized at time t0 = 0 with a seed of
I0 = 1 infected individual. Testing and isolation are enforced when the total number of new infections in
the previous seven days exceeds a threshold of 100 cases per 100,000 population, which occurs at tτ = 24
days in this simulation (the gray shaded area in each panel thus corresponds to the period of uncontrolled
disease transmission). Note that the time series of the isolation-related quantities start from positive values
at t = tτ because all the influxes to the isolated compartments are finite and positive from the beginning of
testing owing to the previous uncontrolled spread of the pathogen (Color figure online)

4.2 Evaluating Testing and Isolation as Containment Tools

The results shown in Fig. 3 clearly suggest the importance of a careful evaluation of
testing and isolation protocols. It could be argued, in fact, that too little testing may
do nothing to curb transmission; however, too much imperfect testing (namely, with
inadequate specificity) may represent an additional socioeconomic threat to a popu-
lation already burdened by an ongoing epidemic. These insights can be quantitatively
corroborated by performing a sensitivity analysis of the model results with respect
to variations of the parameters related to testing and isolation, as shown in Fig. 4for
two different values ofR0. Specifically, we focus on two key performance indicators
evaluated over a finite period of time after the implementation of controls:
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Fig. 4 Sensitivity analysis of model (1) with respect to variations of testing and isolation parameters. a–b
Effect of different test sensitivity levels on case count (relative to total population size, a) and isolation
person-time (relative to total person-time, b); a timespan of tω = 90 days after the start of containment
measures has been considered to evaluate both indicators. c–h As in (a–b), for different average duration
of the isolation order (c–d), testing rates for infected individuals (e–f), and testing rates for non-infected
individuals (g–h). Parameters and other details as in Fig. 3, except for the scenario withR0 = 6, which has
been obtained by doubling the transmission rate β used in the base case R0 = 3 (Color figure online)

• health-related burden, evaluated as case count, and
• socioeconomic burden, evaluated as person-time spent in isolation.

In the presence of an aggressive pathogen (higher R0), higher values of test sen-
sitivity (i.e., associated with diagnostic tools with better ability to correctly identify
infected individuals) are linked tomonotonically declining case count (a); however, the
case-count decline remainsmarginal up to a high sensitivity level (αTP > 0.99).With a
less aggressive pathogen (lowerR0), instead, the relationship between test sensitivity
and case count is monotonically decreasing only up to αTP ≈ 0.98, after which case
count increases, reaching a (small) local maximum before eventually declining again
as αTP approaches one. The relationship between sensitivity and isolation person-time
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is not trivial either (b): for an aggressive pathogen, it is monotonically increasing; for
a milder one, a local minimum is projected to occur for αTP ≈ 0.90. These complex
outcomes may be imputed to the link between sensitivity and specificity: as the former
increases, the latter decreases, leading to larger fractions of non-infected individuals
being isolated and, as a consequence, to higher values of the force of infection in the
community. A longer duration of the isolation period determines a monotonic decline
of case count (c), as a result of reduced risk of allowing back into the community indi-
viduals who are still infectious; however, the case-count decline is negligible with an
aggressive pathogen. In this case, longer isolation is associated with a marked increase
of isolation person-time, while a small decline of isolation person-time is observed for
longer isolation in the presence of a milder pathogen (d). Increasing testing rates for
infected individuals may lead to a strong decrease in case count, especially for amilder
pathogen (e). On the other hand, the relationship between the testing rate and isolation
person-time is nontrivial, peaking at intermediate values in both of the consideredR0
scenarios (f). Higher rates of testing for non-infected individuals may lead to differ-
ent outcomes in terms of case count depending on the value of R0 (g): with a more
aggressive pathogen, the frequency of testing does not basically influence the case
count; with a less aggressive one, more frequent testing leads to a higher case count.
The latter, quite unexpected result mainly stems from the nonlinearity of the force of
infection (for high values of ε, the misclassification of relatively many non-infected
individuals determines a reduction in the number of susceptible and recovered individ-
uals in the community—hence a reduction in the denominator of Eq. (2) and, in turn,
an increase in the force of infection, yielding a higher case count) and the assumption
that individuals released from isolation are no longer subject to testing (for high values
of ε, relativelymany susceptible individuals would falsely test positive, only to be later
released in the community where they can get infected and contribute to the spread
of disease without being subject to further scrutiny). Finally, higher testing rates for
non-infected individuals lead to increasing shares of person-time spent in isolation
(h).

4.3 Efficient Testing and Isolation Scenarios

One interesting result emerging from Fig. 4 is the existence of trade-offs between the
two selected key epidemiological indicators, namely case count and isolation person-
time. If we set these two quantities as the objective functions to be simultaneously
minimized while managing an epidemic outbreak, we can apply tools from multi-
criterial analysis (Ehrgott 2005) to identify scenarios that efficiently reduce both the
health-related and the socioeconomic burden of disease.

Figure 5 shows the two-dimensional Pareto fronts (in the plane of the objective
functions) and the corresponding Pareto-efficient solutions (in two different planar
projections of the four-dimensional parameter space explored in the sensitivity analy-
sis) for this optimization problem evaluated over the same parameter ranges explored
in Fig. 4. As a reminder, given a multi-objective decision problem, the Pareto front
is the set of all non-dominated solutions, which in turn are defined as those alterna-
tives that cannot be perturbed without resulting in a worsening of at least one of the
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Fig. 5 Pareto-efficient scenarios for epidemic control. a Pareto front obtained for various combinations of
test sensitivity, isolation duration, and testing frequency for infected and non-infected individuals, assuming
R0 = 3. b–c Two possible projections of the four-dimensional set of Pareto-efficient solutions. d–f As in a–
c, assumingR0 = 6. Testing and isolation scenarios have been obtained via Latin hypercube sampling (106

samples) of the parameter space explored in Fig. 4. The pointsmarked asA andB correspond to the solutions
withminimumormaximumcase counts among the explored alternatives, respectively,whileC represents the
solution that is closest to the ideal point, where the two objectives are independentlyminimized. Unspecified
parameters and other simulation details as in Fig. 3

objectives. The Pareto front obtained for R0 = 3 (a) shows that it is possible to limit
total infections below 0.5% of total population size while keeping isolation person-
time below 0.5% of total person-time (e.g., solutions between B and C), specifically
with a testing and isolation scenario characterized by intermediate-to-high sensitivity
(αTP > 0.87), relatively short duration of isolation (5 < 1/θ < 9 days, centered
around the assumed average recovery period of 1/γ = 7 days), almost daily testing of
infected (that is, symptomatic, in our framework) individuals (κ ≈ 0.99 days−1), and
essentially no testing for the non-infected (ε ≈ 10−3 days−1, b–c). Achieving even
lower case counts (e.g., solutions between A and C in panel a) would lead to sensibly
higher isolation person-time (up to ≈ 15% of total person-time), and would be asso-
ciated with higher testing sensitivity (αTP → 1) and longer isolation duration (e.g.,
≈ 15 days, b), with only minor quantitative differences in terms of testing rates (c).
The Pareto front obtained forR0 = 6 (d) shows instead that, for instance, achieving a
case count below 1% of total population size with isolation person-time below 1% of
total person-time (solutions around C, which are the closest to the ideal point, a typ-
ically non-admissible solution in which each objective is independently optimized)
would require high sensitivity (αTP > 0.99), a duration of isolation mandates that
slightly exceeds the average recovery time (1/θ ≈ 10 days), almost daily testing for
infected (i.e., symptomatic) individuals (κ → 1 days−1), and essentially no testing
for the non-infected (ε → 10−3 days−1, e–f).
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5 Discussion

In this paper, we have addressed the opportunities and challenges posed by testing,
complemented by mandatory isolation for individuals classified as infected, as a tool
for limiting the transmission of an infectious disease. Epidemic management may
in general require seeking trade-off solutions to try and balance the reduction of
the health-related burden of disease, on the one hand, and negative socioeconomic
impact, on the other (Lasaulce et al. 2021; Ash et al. 2022). This is especially true
in the presence of an emerging pathogen (Morens and Fauci 2020), for which vac-
cines or specific medical treatment may not be readily available, and which must
thus be primarily contrasted with various non-pharmaceutical interventions—which,
in some cases, may even include general lockdowns, as shown by the responses set-up
by governments around the world to contrast the COVID-19 pandemic (Hale et al.
2021). The extraordinary socioeconomic cost of such society-wide measures makes
individually-focused solutions, like surveillance testing coupled with mandatory iso-
lation for infected people, clearly appealing. Testing, however, is by its own nature
imperfect: when it lets infected individuals go undiagnosed (false negatives), it con-
tributes to further the spread of disease; when it misdiagnoses non-infected individuals
as infected (false positives), it produces an unnecessary socioeconomic burden (Gray
et al. 2020).

To analyze the trade-offs specifically imposed by testing andmandatory isolation on
the containment of an epidemic outbreak, we have extended the classic SIR model, in
which the population is subdivided into homogeneous epidemiological groups (sus-
ceptible, infected, and recovered people), to account for an additional stratification
based on the outcomes of testing (people who never tested positive, tested positive
and are currently isolated, tested negative after isolation). Using thismodel, we showed
that diagnostic testing and mandatory isolation can represent effective tools for epi-
demic containment, at least ifR0 values are not too high. This result, in turn, suggests
that these tools might work best when coupledwith other containment measures aimed
at reducing pathogen transmission. We also showed that testing and isolation remain
effective even in the presence of false negative and false positive results, with the
somehow expected corollary that more accurate testing reduces the effort required
to curb transmission. By using case count and isolation person-time as key perfor-
mance indicators, we explored the epidemiological and socioeconomic impacts of a
wide range of testing and isolation scenarios. In some cases, we found nontrivial links
between the testing parameters and the selected indicators, in a way echoing previ-
ous research reporting non-monotonic relationships between, e.g., testing rates and
the effectiveness of testing and isolation as epidemic control tools (see, for instance,
Gharouni et al. 2022; Zhang and Britton 2022).

Concerning the identification of efficient testing and isolation scenarios from a
multi-criterial perspective, we found that the combination of frequent, high-sensitivity
testing of infected (i.e., symptomatic, in our model) individuals and mandatory isola-
tion lasting slightly longer than the average recovery time from infection may strike a
reasonable balance between the health-related and the socioeconomic burden of dis-
ease. However, we remark that suggesting a specific solution goes beyond the scope
of our modeling approach, as an informed decision-maker should instead be entrusted
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with the task of peaking among (ideally, Pareto-efficient) alternative solutions (Ehrgott
2005). It is also to be noted that the testing and isolation scenarios identified as Pareto-
efficient in our analysis may depend upon modeling assumptions about the dynamics
of disease transmission (e.g., frequency- vs. density-dependent force of infection), the
implementation details of testing (e.g., whether testing capacity is limited, or whether
contact tracing is enforced; see, for instance, Grassly et al. 2020; Baik et al. 2022;
Zhang and Britton 2022), the possible behavioral responses of the population (e.g.,
whether individuals self-reduce their potential exposure as a result of perceived infec-
tion risk, or whether they fully comply with isolation orders; see, for example, Betsch
et al. 2021; Bevan et al. 2021), and/or the choice of indicators used to weigh pros
and cons of testing and isolation (e.g., avoided cases and/or superfluous isolation
person-time, just to mention small, yet significant variations of the objective functions
considered here).

Some of the alternative assumptions just exemplified are studied in Appendix S1
(Supplementary Information). To summarize themain results of the sensitivity analysis
reported there, we can say that the findings presented in this work seem to be robust
to a switch from frequency- to density-dependent contacts (Figure S1; note, however,
that this result may depend upon the parameterization of the model), quite heavily
influenced by some features of testing (namely, by strong limitations to the capacity
of the testing infrastructure, Figure S2a–b) but not so much by others (such as the
implementation of contact tracing, Figure S2c–d; note, however, that this results might
be linked to the simplistic structure of theSIRmodel), and also remarkably impacted by
individuals’ behavior (in particular, by the self-avoidance of exposure-prone activities,
Figure S2e–f, and the unwillingness to comply with testing policies, Figure S2g–
h). Perhaps unsurprisingly, among the alternative model formulations explored in
Appendix S1, those showing the strongest deviations from the results presented here
entail profound modifications to the formulation of the force of infection (like in the
case of changes in the behavior of the population) or to the structure of the testing
system (like in the case of a limited testing capacity)—two cornerstones of model (1).

In addition to considering some of the alternative hypotheses mentioned above, our
model could be usefully extended in several other directions:

• it could be made more disease-specific, namely by modifying the standard SIR
model to better describe the peculiarities of the transmission cycle of a given
pathogen, e.g., following the modeling approach already proposed by Baik et al.
(2022) for COVID-19. As an example, the SIRmodel has been extended to include
exposed (infected but not yet infectious) individuals, as well as pre-symptomatic
and asymptomatic infectious individuals, in order to more closely describe the
transmission routes of the SARS-CoV-2 virus (Gatto et al. 2020). Such extension
would also allow considering the relationship between viral dynamics and test
accuracy, namely by accounting for different sensitivity and specificity values for
individuals in different epidemiological compartments, as discussed by Mercer
and Salit (2021) for COVID-19. Potential applications are not just limited to the
SARS-CoV-2 pandemic, though, as testing for other infectious agents may induce
trade-offs that are not unlike the ones we have discussed here. This is the case, for
instance, of tuberculosis: on the one hand, identifyingmissed cases is of paramount
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importance to prevent further spread; on the other, false positivesmay lead to heavy
consequences for single individuals (unneeded treatment), families (income loss),
and society as a whole (ineffective resource allocation and disease surveillance;
Houben et al. 2019);

• it could be extended to account for the simultaneous use of a mix of testing tools,
instead of just one as implicitly assumed here. During a large-scale epidemic,
in fact, different tests may be developed and commercialized, in particular for
point-of-care or self-diagnosis use. Such tests can have widely ranging overall
performances: as an example, a review of commercial lateral flow devices for
detectingSARS-CoV-2 found38–99%sensitivity and 92–100%specificity ranges
(Mistry et al. 2021; note that these figures should be interpreted with caution
because the gold-standard test based on reverse transcriptase polymerase chain
reaction used to assess the performance of lateral flow devices is not perfect per
se, as shown, e.g., by Kucirka et al. 2020). While we maintain that a negative
relationship between true negative and true positive rates will be found at the
population level even with a mix of different tests, relaxing eqn. (3) might still
have nontrivial epidemiological and socioeconomic implications;

• it could accommodate time-varying testing and isolation protocols, following the
observation that the enforcement of these tools may vary during the course of
a large-scale epidemic (Brauner et al. 2021). In this case, optimal control the-
ory could be used to design adaptive testing and isolation policies (Lenhart and
Workman 2007);

• it could be extended to include other measures for epidemic containment, in addi-
tion to testing and isolation, in order to discuss possible trade-offs emerging from
the simultaneous applications of multiple controls, as typically done in more real-
istic settings (Flaxman et al. 2020; Hsiang et al. 2020; Choi and Shim 2021; Mari
et al. 2021);

• it could account for a larger set of epidemiological and socioeconomic indica-
tors. While the metrics considered here or the alternative ones introduced in
Appendix S1 (avoided cases and superfluous isolation person-time, Figures S3
and S4) could be evaluated using the basic formulation of model (1), an effective
description of others (e.g., hospitalizations or deaths, life-years lost or health-
adjusted life years, superfluous quarantines, avoided business or school closure,
gross domestic product loss) might require amodel with amore complicated struc-
ture (for instance, with more epidemiological compartments, and/or including an
age-based or socioeconomic stratification). Expanding the range of the indicators
considered in our multi-criterial analysis could remarkably improve its realism,
and allow us to better meet the complexity of actual epidemic management and the
challenges associated with a thorough evaluation of themulti-dimensional impacts
of an epidemic (Chen et al. 2021; Igoe et al. 2023).

We believe that, despite its simplicity (or, perhaps, because of it), our approach
allows us to effectively address the intrinsically multi-criterial nature of decision-
making in public health. We emphasize that our results should not be seen as a
justification for healthcare rationing (i.e., finding the best allocation of possibly insuf-
ficient healthcare resources, another theme that has widely been discussed since the
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beginning of the COVID-19 pandemic, see Emanuel et al. 2020; White and Lo 2020),
rather as a call for careful assessment and efficient design of epidemic contain-
ment measures that explicitly acknowledge the unavoidable conflicts emerging when
multiple objectives are involved, especially in the presence of imperfect control tools.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-023-01172-1.
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