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Abstract: Adjuvants are a critical component of vaccines. Adjuvants typically target receptors
that activate innate immune signaling pathways. Historically, adjuvant development has been
laborious and slow, but has begun to accelerate over the past decade. Current adjuvant development
consists of screening for an activating molecule, formulating lead molecules with an antigen, and
testing this combination in an animal model. There are very few adjuvants approved for use in
vaccines, however, as new candidates often fail due to poor clinical efficacy, intolerable side effects,
or formulation limitations. Here, we consider new approaches using tools from engineering to
improve next-generation adjuvant discovery and development. These approaches will create new
immunological outcomes that will be evaluated with novel diagnostic tools. Potential improved
immunological outcomes include reduced vaccine reactogenicity, tunable adaptive responses, and
enhanced adjuvant delivery. Evaluations of these outcomes can leverage computational approaches
to interpret “big data” obtained from experimentation. Applying engineering concepts and solutions
will provide alternative perspectives, further accelerating the field of adjuvant discovery.

Keywords: vaccine; adjuvant; adjuvant discovery; immunomodulator; systems vaccinology

1. Introduction to Adjuvants

Vaccines are considered one of the world’s greatest public health innovations [1,2].
The first vaccines used whole pathogens, which contain many endogenous molecules that
activate the immune system. Modern vaccines are less frequently whole pathogens, but
instead merely contain or encode for antigens, important pathogenic components. These
modern subunit and nucleoside-modified mRNA vaccines no longer contain as many
endogenous activating components. Instead, they often employ adjuvants: molecules
added to the vaccine that stimulate the immune system [3]. Adjuvants work though a com-
plex interplay of innate sensors. Generally, adjuvants use pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to signal through
important innate immune pathways such as the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) pathway or the interferon regulatory factors (IRF) pathway.
The first adjuvant, alum, has been used clinically since the 1920s with great success [4].
Only in the past 20 years, however, has adjuvant discovery expanded substantially beyond
alum, using new tools and knowledge about the immune system. To date, fewer than
10 adjuvants have been used in commercial vaccines [3,5,6]. Our goal is to provide some
perspective on the future discovery of next-generation adjuvants. These are ideas and
viewpoints, and if we are overzealous at points, it is due to our passion on the topic and not
overconfidence in our own authority. We wrote this intending to provide fresh perspective
and with the hope of engaging in conversation with others on the topic.
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2. Traditional Adjuvant Development

Adjuvant discovery is a labor-intensive endeavor [7]. The traditional adjuvant dis-
covery pipeline begins by identifying a target pattern recognition receptor (PRR), such
as TLR7/8 [8,9]. High-throughput screening is used to assay thousands, sometimes mil-
lions, of molecules for their potential to agonize the target receptor. After many rounds
of iterative screening, top “hits” of activity are identified as lead compounds. These lead
compounds may be modified as per structure activity relationships for optimization. Final
lead compounds are formulated with an antigen in a vaccine before rigorous testing. Right-
fully so, adjuvants and vaccines have stringent safety requirements [3]. Thus, significant
murine and non-human primate in vivo experiments are necessary before human clinical
trials can begin. The challenge is that despite many successful adjuvant development
methods, it remains difficult to elicit a desired immunological phenotype while predicting
reactogenicity and tolerability in humans [10].

3. Engineering New Outcomes

We propose the next generation of adjuvants will require a new discovery pipeline,
focused on screening for the end outcome: immunological activity. With many immune
pathways and agonists identified, adjuvant development can now focus on identifying a
phenotypic response to an adjuvant. Here, we discuss which aspects of adjuvanticity may
be most important to engineer.

3.1. Target Identification and Signal Engineering

Adjuvants will benefit from selectively modifying signaling pathways to elicit desired
immune outcomes. Instead of designing more potent receptor agonists, we believe more
diverse results may be generated by “drugging” other aspects of the innate immune
response. Apart from PRRs, other cellular signaling pathways, such as metabolism and
proliferation, have been linked to immune outcomes. Innate pathway activation results
in fate-specifying cytokines which control helper T-cell polarization. Adjuvants impact
this elicited cytokine milieu, and tuning this process gives researchers greater control over
adaptive responses. Cytokines are also, in part, responsible for vaccine reactogenicity.
Optimizing for the reduction of cytokines associated with excess inflammation could
alleviate adverse side effects, improving the likelihood of clinical translation. We believe
modifying traditionally targeted pathways, and exploring new pathways, can address all
these innate related signaling problems.

3.1.1. Alternative Pathways for Adjuvanticity

Adjuvant targets should continue to expand beyond ligands for traditionally tar-
geted Toll-like receptors (TLRs). In the past decade, research efforts have discovered new
pattern recognition receptors, such as the cytosolic sensor STING. Cyclic dinucleotides,
such as cGAMP, have been identified as STING ligands and are attractive adjuvant
candidates [11,12]. Additionally, the NLRP3 inflammasome responds to broad disrup-
tions in homeostasis, and serves to recognize a variety of PAMPs and DAMPs [13]. Besides
PRRs, other signaling pathways impact innate immune activation and could be exploited
for future adjuvant development (Figure 1a). Cell death pathways in the form of apoptosis,
pyroptosis, and necroptosis may result in increased cross-presentation by activated neigh-
boring cells [14,15]. Metabolic and epigenetic pathways are altered in trained immunity,
a newly emerging concept where innate immune cells exhibit “memory” via heightened
activation upon re-exposure to even heterologous pathogens [16]. These pathways repre-
sent a vast pool for novel adjuvants, as many activators of these pathways are currently
being discovered.
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Figure 1. Engineering new immunological outcomes with adjuvants. Comparison of traditional ad-
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PRRs. Cell death releases DAMPs, metabolic alteration improves cell sensitivity, and epigenetic 
modifications reprogram cells towards a trained immunity phenotype. (b) T-cell polarization shifted 

Figure 1. Engineering new immunological outcomes with adjuvants. Comparison of traditional
adjuvants to next-generation adjuvants. (a) Next-generation adjuvants target pathways other than
just PRRs. Cell death releases DAMPs, metabolic alteration improves cell sensitivity, and epigenetic
modifications reprogram cells towards a trained immunity phenotype. (b) T-cell polarization shifted
from cytokine classification to transcription factor classification. Next-gen adjuvants may create new
immunophenotypes. (c) Traditional adjuvants elicit large amounts of inflammatory cytokines, while
next-gen adjuvants reduce reactogenicity and improve adaptive responses.
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3.1.2. TH Polarization: Going beyond TH1, TH2, and TH17

Adjuvants influence the adaptive immune response through their activation of innate
immunity. Innate immune cells secrete fate-specifying cytokines which, traditionally, are
considered the driver of polarizing helper CD4+ T cells towards a certain effector state (TH1,
TH2, etc.) [17]. Adjuvants can control T-cell polarization by inducing specific cytokines, but
currently approved adjuvants are still limited in this capability. Some adjuvants, such as
CpG 1018 (a TLR9 agonist), are potent TH1 inducers, whereas others, such as alum, are
strong TH2 inducers [18,19]. TH1 CD4+ cells promote cell-mediated immune responses
by secreting IFN-γ, TNF-α, and IL-2 [20]. TH2 CD4+ cells promote antibody responses
by secreting IL-4, IL-5, and IL-13. TH1 responses are typically desired for prophylactic
vaccines, but ideally, vaccines and immunotherapies could be uniquely tailored to the
application. For example, applications outside of infectious disease could benefit from
alternative TH polarization. TH17 cells, characterized by the production of IL-17, are
implicated in protection against extracellular bacteria, and are critical in host responses to
infection by Klebsiella, Pseudomonas, Salmonella, and Bordetella [21]. TH17 cells may increase
protection against tuberculosis via neutrophil recruitment and inflammation mediation [22].
The extent of TH17 polarization is important, however, as excess TH17 responses can also
worsen TB pathologies [23]. Thus, fine control over TH polarization is needed, not simply
general shifts from one bias towards another bias. Fine control over TH polarization is
challenging. Current adjuvant development is focused on the initiation of signaling events
through receptor–ligand interactions, with downstream effects such as TH polarization
left as an afterthought. Next-generation adjuvant discovery could change this paradigm,
focusing on end immunophenotypes such as TH polarization.

With expanded understanding of the helper T-cell compartment, the conventional
nomenclature for TH polarization may be limiting [24]. TH polarization traditionally relies
on the profile of secreted cytokines from helper T cells. What started as a two-part TH1/TH2
model expanded with the discovery of TH17 cells in the mid-2000s [25,26]. Additionally,
CD4+ T cells that serve in unique roles, such as regulatory T-cells (Tregs) and follicular
helper T-cells (TFH), further complicate TH classification [27,28]. Finally, many other TH
subtypes have been proposed in recent years, including TH9, TH22, and THGM [29–31].
The number of potentially expressed cytokines makes the current classification system
impractical. Instead, we suggest, for adjuvant purposes, classifying TH polarization by the
five master transcription factors, T-bet, GATA-3, RORγT, Bcl-6, and FoxP3 (Figure 1b) [17].
Expression of these transcription factors was once thought to be mutually exclusive, but
recent studies show that co-expression of transcription factors is possible [32,33]. We
envision classifying TH polarization as a location in a multidimensional space with levels of
transcription factor as the axis variables. Such a classification could either apply to the total
helper T-cell response as an “average” phenotype, or it could also apply to individual helper
T-cells. New vaccine outcomes could be sought by applying adjuvants which polarize TH
responses across different locations in this multidimensional space.

3.1.3. Reducing Reactogenicity of Adjuvants

Reactogenicity is a major challenge in the approval of many new adjuvants [6]. Adjuvants
must provide enough stimulation to provide protection, while avoiding excess activation
resulting in adverse side effects. The inability to control this balance limits the number
of clinically approved adjuvants and leads to the withdrawal of certain vaccines. Adjuvant
associated local and systemic inflammation leads to side effects such as injection site pain, fever,
and headache [10]. Inflammation can be tracked by measuring the pro-inflammatory cytokines,
IL-6 and TNF-α, for 1–24 h after injection [34]. These cytokines have been extensively studied
and their role in inflammation is well explained in these reviews [35–38]. Severe reactogenicity
damages not only patient health at the individual level, but also public vaccine perception at
the population level. Minimizing vaccine reactogenicity while maintaining efficacy should be
a priority for next-generation adjuvants.
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As such, determining reactogenicity information early in the adjuvant discovery
process is critical, to ensure that lead compounds are identified quickly and screened for
toxicity or inflammation-related side effects. Reactogenicity can limit mRNA vaccine doses
as some mRNA and lipid nanoparticles induce excess inflammation [39]. Currently, mRNA
vaccine reactogenicity is addressed via nucleoside-modified mRNA. It remains unknown,
however, how lipid nanoparticles activate innate immunity. Many hypotheses have been
suggested, from direct sensing of particles to indirect sensing of particle-induced cellular
damage [40]. Identifying such innate immune mechanisms is critical to identify effective
adjuvants with reduced reactogenicity. With knowledge of the appropriate signaling targets,
adjuvants could be screened for reduction of pro-inflammatory cytokines in combination
with conventional lipid nanoparticle mRNA vaccine systems for applications such as
COVID-19 and Lyme disease [41,42]. Other recently approved vaccines include saponins as
adjuvants [43,44]. These plant-derived small molecules provide potent immunostimulatory
effects, but also cause a high degree of toxicity [45]. This limits the effective dose of these
adjuvants. Additionally, sourcing saponins is extremely difficult, though advances in its
biosynthesis have been made [46]. Even with newer vaccine technologies, the need for
potent, yet tolerable adjuvants remains.

Our group has been working to decouple inflammation from adjuvanticity using im-
munomodulators [47,48]. These immunomodulators are molecules which, in combination
with known PRR agonists in a vaccine, decrease systemic proinflammatory cytokines and
increase antigen-specific antibodies (Figure 1c). This effect applies across multiple PRR
agonists and antigens, as the immunomodulators target intermediate signaling molecules
downstream of receptor binding. Immunomodulators and other molecules which alter
pattern-recognition-receptor signaling might be used to reduce reactogenicity in next-
generation vaccines.

3.2. Formulation and Targeted Delivery

Next-generation adjuvants are often formulated to enhance delivery and efficacy.
Early approved adjuvants did not target cells of interest, mostly using suspensions and
heterogenous formulations. However, recently approved adjuvants often cannot rely on
these methods. Adjuvant systems, such as GlaxoSmithKline’s AS series, contain many
components formulated into nanostructures [49]. Another example is NovaVax’s Matrix-M
adjuvant, in which immunostimulatory saponins are formulated with phospholipids and
cholesterol [50,51]. As adjuvants become more complex, we argue that formulation should
be considered earlier in development and discovery. Expanding the diversity of adjuvants
necessitates trafficking to a variety of subcellular locations to aid receptor binding. Target
receptors may be on the outer membrane, endosomes, or cytosol. Formulations can traffic
adjuvants to these locations. For example, cationic lipid nanoparticles aid endosomal
escape, greatly enhancing STING adjuvant activity, as this innate receptor is located in the
cytosol [52]. Nanoparticle size is an important and simple factor to control. For example,
10–100 nm particles are the most efficient in lymphatic drainage, allowing facile diffusion
to key secondary lymph organs [53,54]. Inside of this size range, particles of 50 nm are key
in inflammasome activation as they aid in endosomal escape [55]. Alternatively, larger,
micron-sized particles show reduced cellular uptake, limiting efficacy [56].

Formulations can also include external targeting ligands to aid delivery to the desired
cell types. While adjuvant receptors are expressed primarily by immune cell types, by-
stander cells are sometimes affected by adjuvants. For example, arterial smooth muscle
cells express TLR4. Activation of these cells promotes proinflammatory phenotypes that are
linked to atherosclerotic lesions [57]. Thus, off-target effects on bystander cells should be
limited. Not only do targeting ligands decrease side effects, but they also increase efficacy.
This strategy is used to target obvious cell types, such as dendritic cells with DEC-205
and DC-SIGN, but we postulate that more niche cell types could benefit from targeted
delivery [58–60]. Lymphatic endothelial cells, stromal cells that are implicated in long-term
antigen storage, could be targeted via the VEGFR3 receptor [61,62]. First responder cells,
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dendritic cells that excel at phagocytosis of microstructures, could be targeted via the
DAP12 and PRG2 receptors [63,64]. With increasing knowledge about innate immunity, we
anticipate that formulation will play an increasing role in directing adjuvant responses.

4. Engineering New Evaluation Methods

With a greater number of approaches to discovery, an improved diagnostic framework
is needed to evaluate new adjuvants. As the adage goes, “You get what you screen for”.
Over time, traditional screens have not changed much, relying on laborious in vitro assays
and synthetic modifications before preclinical studies in mice and non-human primates.
This process of adjuvant discovery has been cited as one of the slowest processes in
medicine [7]. If we want to achieve new outcomes, we must consider changing “what
we screen for”. Currently, translational results take years to obtain. Here, we showcase
alternative frameworks to evaluate adjuvants for early correlates of vaccine efficacy. These
frameworks can potentially accelerate evaluation and reduce costs of adjuvant discovery.
New computational approaches will aid in early stage screening, while rethought animal
models will aid in preclinical trials.

4.1. Computational and “Big Data” Approaches

Technological and computational advances of the past few decades allow for restruc-
turing of adjuvant discovery. Vaccine and adjuvant design is not limited to the simplistic
“guess-and-check” empirical methods of the past. Instead, newer assays can provide mas-
sive amounts of data, assisting researchers with mechanistic understanding and efficacy
evaluation [65]. Next-generation sequencing and other omics approaches allow for system
level data collection. Machine learning and computational power enable in silico binding
simulations [66]. High-content imaging and processing yield hidden patterns and features.
Combined, these computational approaches can be implemented at all stages of adjuvant
design—altering the workflow of adjuvant development.

4.1.1. Systems Vaccinology

In the age of “big data”, we believe adjuvant discovery will benefit from a systems
vaccinology approach that integrates large amounts of information. Compared to 20 years
ago, immunological assays generate results with vastly improved speed and sensitivity.
This allows researchers to collect data from numerous different experiments instead of
relying on singular indications such as antibody titers. Systems vaccinology looks to
consolidate information from high-throughput assays on cytokines, proteins, metabolites,
gene expression, and other screens to obtain a comprehensive understanding on how
an adjuvant affects a vaccine (Figure 2). A multidimensional approach consolidates use-
ful data across in vitro and in vivo experiments to aggregate a snapshot of innate and
humoral responses.

Recently, researchers have used a systems vaccinology approach with great success.
For instance, the transcription factor CREB1 was shown to be a critical element for HIV-1
vaccines through a series of UMAP depictions of transcription-factor genes [67]. The Sampa
lab used UMAP to leverage complex cytokine and transcriptomic datasets in a refined
model of CREB-1 mediated HIV vaccine efficacy. At an organism level, the Chevrier lab
tracks antiviral genes and tissue-resident memory T cells across most major organs after
poxvirus vaccination [68]. Researchers can apply the mechanistic and toxicology insights
from organ-specific readouts towards new adjuvants. At the population level, Dr. Ofer Levy
applied a systems approach through a precision vaccines program. This program profiles
vaccine-induced responses from different population groups, especially the young and the
elderly, working towards effective personalized vaccines [65]. In the context of adjuvant
development, incorporating data from children and elderly populations (either through
PMBC donors or aged mice) into traditional high-throughput screens would allow for
adjuvants that can affect specific population groups differently. Recently, this methodology
was used to identify that a carbohydrate fatty acid monosulphate oil-in-water adjuvant
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enhances immunogenicity in aged mice [69]. A systems vaccinology approach has also
been used to investigate predictors of antibody response across multiple vaccines [70]. As
adjuvant and vaccine discovery continues to evolve, researchers should use the plethora
of immunological data that we can obtain to increase our understanding of the whole
response to a vaccine and adjuvant.
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4.1.2. In Silico and Machine Learning

Computational simulations of biological phenomenon, known as in silico experimen-
tation, can improve the speed and accuracy of adjuvant discovery. Machine learning, an
artificial intelligence methodology that builds algorithmic models to make probabilistic
predictions, is often paired with in silico experimentation. Both of these techniques have
found utility across chemistry, material science, and immunology [71–73]. For example,
in silico protein modeling efforts identified small molecule antagonists that served as ad-
juvants to Mycobacterium tuberculosis and Plasmodium yoelii subunit vaccines in vivo [66].
Antagonizing CCR4 improved the immune response by reducing the inhibitory activity
of regulatory T cells. This approach used molecular docking and homology modeling,
traditional approaches that are commonplace in the drug discovery field [74]. More re-
cently, researchers have implemented black-box optimization on in silico and in vitro
screens. Black-box optimization is a machine learning technique wherein the models and
constraints of a dataset are largely unknown. In drug discovery, the algorithms in this
technique might take inputs such as small molecule structure and experimental results to
output key predictive properties of successful drugs. Three common black-box algorithms
include Bayesian optimization, reinforcement learning, and active learning, summarized in
a review by Terayama et al. [75].

While finding expanded use in other fields, machine learning has yet to be applied
at scale in adjuvant discovery (Figure 3). Our lab, however, recently applied Bayesian
optimization, a Gaussian process regression that predicts expected properties, to high-
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throughput screening of adjuvants. For this screen, we used wet lab experiments to
iteratively feed into a machine learning latent space. In our estimation, using this in vitro/in
silico machine learning cycle reduced the experimental time and financial cost needed to
perform the screen by tenfold (Figure 3A). This methodology of combining in silico libraries
and machine learning algorithms allows for greater throughput of experimentation.Pharmaceutics 2023, 15, x FOR PEER REVIEW 9 of 18 
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Machine learning in the adjuvant discovery space could also increase the number of
successful compounds that pass major transition points in the discovery pipeline. Many
in silico screens have failed to replicate computational results upon in vitro validation.
Similarly, many compounds have failed to translate from murine models to non-human
primates [76,77]. These are large challenges that machine learning may be able to help “de-
risk”. Using multidimensional systems vaccine information and meta-analyses, machine
learning could identify correlations between hit compounds that would not otherwise be
apparent, yielding higher quality and number of compound hits. (Figure 3B). Additionally,
machine learning algorithms could search already established datasets, such as those with
drugs that did not pass clinical trials, to repurpose them for alternate uses such as adjuvants
(Figure 3C). As the field of adjuvant discovery continues to develop, greater collaboration
with machine learning groups can help provide new methods of understanding data and
improving outcomes. In our limited experience, one can conceive of machine learning
not as a replacement for current methods, but as an accelerant. As computers can be a
“bicycle for the mind”, we suggest that adjuvant developers consider machine learning as
a research assistant that can cut out the labor of screening and provide further clarity on
projects where large-scale correlation is helpful.

4.1.3. High-Content Imaging

High-content imaging allows for the visualization and quantification of therapeutic in-
teractions in cell populations using multiparameter algorithms and fluorescent labeling [78].
High-content imaging has primarily been used in other drug discovery applications, but
these techniques can be applied towards adjuvant discovery. Imaging has historically been
limited by spatiotemporal restrictions and practicality. Recently, however, improvements
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in the technology now allows for improved visualization of three parameters: temporal
dynamics, spatial organization, and intracellular interactions (Figure 4). By visualizing
temporal dynamics, high-content imaging was used to develop an algorithm to screen for
six parameters of hepatoxicity. This technique predicted high-risk drugs that potentially
induce liver injury [79]. Similar algorithms could help screen adjuvants for adverse ef-
fects as the mechanisms of toxicity are not fully understood [10]. For monitoring spatial
organization, researchers currently use multi-cellular models to recapitulate tissue repair,
observe tumor growth, and quantify therapeutic interactions in 3D [80]. Reid et al. used
high-content imaging to develop an algorithm to track changes in GFP expression levels for
individual z-stack planes of a multicellular tumor spheroid in real time [80]. In the context
of adjuvants, this will aid in studies using organoids to study immune phenomena such as
germinal center reactions. We discuss organoids more in depth in the following section.
Finally, highlighting the potential for monitoring intracellular effects, recent studies identi-
fied R788 disodium as an activator of the NF-κB pathway. The gradual entry of Rel-B into
the nucleus after treatment with R788 was measured in a direct application of high-content
imaging for adjuvant discovery. Meanwhile, this same technique was used to measure the
inhibition of NF-κB via treatment with dehydrocostus lactone [81]. Studies using alterna-
tive delivery systems can visualize and measure cellular irregularity, antigen distribution,
and cell activation [82–85]. As it relates to adjuvant discovery, high-content image analysis
improves the optimization of screening compounds by predicting mechanisms of action,
adverse effects, and improving accuracy. Using this technique, researchers can develop
various assays to visualize the biodistribution and cytotoxicity of potential adjuvants in 3D
multi-cellular models.
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Figure 4. High-content imaging allows for more precise spatiotemporal understanding of how the
adjuvant affects the immune system. Example incorporationg temportal, spatial, and intracellular
interactions to understand NF-κB dynamics: Macrophage cytokine secretion dictates the signaling
range and duration. Time lapse fluorescence images show coculture experiments, which imitate
tissue infection. A single macrophage harboring p65-GFP was stimulated with LPS (10 ng/mL;
green cell in the inset), which released TNF to activate NF-κB in the receiving population of cells
(bottom chamber). Yellow arrow heads indicate examples of activated cells in each microscopy image,
indicated by translocation of p65-GFP into the nucleus. The color bar on the right shows the activation
rate of the receiving cells at increasing distances from the singular stimulated macrophage. Adapted
with permission from Ref. [86]. 2022, Son, M. et al.



Pharmaceutics 2023, 15, 1687 10 of 17

4.2. Rethinking Animal Models

Animal models have been the foundation of vaccine immunogenicity studies for
centuries, yet there is a concerning lack of translation between preclinical animal work
and clinical human results [87]. Mice are the most common animal model due to their
cheap cost, easy husbandry, and human-like immune systems. However, while similar, the
mouse immune system is not identical to humans. Mice express a variety of different PRRs
compared to humans [88]. In mice, TLR8 responds differently than the human counterpart,
though the two receptors are highly conserved [89]. The addition of human TLR8 into
transgenic mice provides a better model for studying inflammation [90,91]. Similarly,
mice lack the human TLR10, but transgenic mice expressing the receptor serve as a model
to understand the negative regulation of TLR signaling [92]. Even among commonly
held receptors, expression patterns on cell types varies between species. For example,
TLR9 is found primarily on macrophages and myeloid dendritic cells in mice, but found
primarily on B cells and plasmacytoid dendritic cells in humans [93]. These are examples
of differences of a singular class of receptors on innate immune cells.

Humanized mice are attractive, yet complex options to solve the difference between
species [94]. NOD/SCID/IL2rγnull (NSG) mice are the most common immunodeficient
mice for humanization efforts [95]. These mice can be reconstituted with human hematopoi-
etic stem cells to attempt to recreate the human immune system. Still, antigen-presenting
cells produce widely different MHCs across species [96]. While efforts to make NSG-
HLA-transgenic mice exist, it is infeasible to fully recreate all the intricacies of the human
system [97]. Non-human primates provide an alternative model, but at a steep economic
and ethical cost. Instead, actual human systems, such as organoids, provide better engi-
neering solutions for clinical relevance.

When attempting to replicate human physiology, primary cells and organoids are
perhaps the closest available choice. Recent studies have successfully performed high-
throughput screens on primary human peripheral blood mononuclear cells (PBMCs) [98,99].
PBMCs are non-trivial to source, but recent miniaturization of assays allows for a larger
number of experiments to be performed for the same number of cells [100]. Using pri-
mary cells, however, enhances assay variability and is particularly sensitive to effects of
donors [98]. Donor effects can be mitigated through increased sample size. Primary cells
can provide some cellular interactions during standard tissue culture, but these co-cultures
do not provide three-dimensional structural elements. Proper cellular organization is
important in lymphoid structures, especially in germinal centers. Germinal centers are
microstructures formed during an adaptive immune response, resulting in the creation
of high-affinity antibodies [101]. Adjuvants can heavily influence the germinal center
reaction, especially in enhancing follicular dendritic cell antigen deposition [102]. As an
alternative to in vivo experiments, human organoids allow for the study of organized
tissues, such as germinal centers, ex vivo. Organoids are made of human cells that organize
three-dimensionally and are a useful tool for mid-throughput experimentation [103]. While
the use of organoids in immunoengineering has risen in the past years, the application
of these systems towards adjuvant research has been minimally explored and should be
further adopted [104–106].

5. Engineering New Applications

Adjuvants have other applications apart from prophylactic vaccines against infectious
disease. Cancer vaccines often employ adjuvants, but the desired immune response is
different from infectious disease vaccines. Cancer treatments require increased cellular-
mediated immunity in the form of tumor-infiltrating CD8+ T cells, as opposed to humoral
immunity in the form of neutralizing antibodies. Thus, cancer vaccines, especially therapeu-
tic cancer vaccines, need potent adjuvants to induce an appropriate innate cell phenotype
in suppressive environments. Early trials to modulate the suppressed signaling environ-
ment focused on GM-CSF production, while recent attempts have shifted to modulating a
broader repertoire of cytokines [107]. For example, AS15, a liposomal adjuvant including
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QS-21, MPLA, and CpG7909, promoted better cellular responses against the melanoma
tumor-specific antigen MAGE-A3. In the clinical trial, this improved immune response was
likely attributed to the increase in IFN-γ and IL-12 secreting dendritic cells [108]. We envi-
sion that future adjuvants will be developed with more control over innate cell activation
to better match unique disease states.

Adjuvants do not have to be restricted to PRR agonists, but instead should include
all molecules that “help” the immune system. In cancer, adjuvants might directly inhibit
cancer cells, restoring immune function. Due to the vital role of cell death, proliferation, and
growth in cancer, we believe researchers should screen for adjuvants that affect cell cycle
checkpoints. Adjuvants such as cisplatin target tumor suppressor proteins that regulate
cell cycle proteins, such as cyclins and cyclin-dependent kinases, thus causing cell cycle
transition delays. Cyclin-dependent kinases (CDK) normally exist in an inactive state, but
once activated, they form complexes with cyclins to signal cells to transition from one cell
cycle phase to the next. Adjuvants that target cell cycles have been previously used in
clinical trials for breast cancer. The use of these adjuvants paired with standard endocrine
therapies showed substantially increased survival in patients.

Additionally, adjuvant drug discovery showed therapeutic potential when targeting
cell senescence [109]. Senescence is when cells no longer proliferate due to DNA damage,
remaining in the G0 resting state. Current tumor therapies induce the generation of
senescent cells. Senolytics and senostatics, drugs that kill senescent cells or inhibit senescent
paracrine signaling to other cells, have been identified as a potential second-line adjuvant
therapy for current cancer treatments that cause DNA damage [110–112]. Recent high-
throughput screens identified several senolytic compounds. ABT263, a novel senolytic
drug, is anti-apoptotic and kills senescent cancer cells regardless of how senescence was
caused. This compound was shown to inhibit cancer recurrence and substantially decrease
metastasis [113,114]. Guccini et al. eliminated senescent cancer cells using senolytic BCL-2
inhibitors to prevent tumor cell metastasis [115]. Although the specificity and sensitivity
of senolytics and senostatics still need further studying, we believe screening senolytics
and senostatics as potential adjuvants allows for increased specificity for targeting different
cell types when pairing with first senescent inducing therapies. The use of senolytics as
adjuvants could potentially improve long-term survival of cancer patients.

Evaluating cancer vaccine adjuvants is complicated by their extensive use in com-
bination therapies [116,117]. The most common combination immunotherapies employ
checkpoint inhibitors, initially approved in 2011, to increase T cell activity. After preclinical
animal studies, novel treatments are often added to FDA-approved treatments to create the
combination therapy. While combination therapies often outperform monotherapies, it is
hard to determine which treatments are responsible for the outcomes. Further complicating
matters, cancer vaccines often fail to translate from preclinical mouse data to human clinical
trials [118,119]. As discussed in the previous section, improving the evaluation of cancer
vaccines and immunotherapies is critical. Mathematical methods have been suggested
to model cytokine production in vaccine and checkpoint inhibitor combination therapies.
Further development of these tools will aid in adjuvant development for cancer vaccines
and other applications.

6. Conclusions

After decades of continuous progress, adjuvant research is expanding in many new,
exciting directions. So far, adjuvant discovery has led to the approval of fewer than 10 adju-
vants used in vaccine products. In the coming years, we believe engineering approaches
will be integral to the discovery and development of a library of new adjuvants. By incor-
porating iterative design, phenotypic-driven high-throughput screens, and expertise from a
wider range of scientists and engineers, we will obtain adjuvants that can more potently and
specifically influence innate and adaptive immunity. As fundamental knowledge of innate
immunology increases, we gain insight into how best to approach and design vaccines.
With this knowledge, we can target novel pathways and modify existing signaling events.



Pharmaceutics 2023, 15, 1687 12 of 17

These approaches give researchers control over innate immune activation, allowing new
adjuvants to develop improved outcomes, such as unique T-cell polarization and decreased
vaccine reactogenicity. New adjuvants can be tailored to be used in specific population
groups or for pandemic situations. Evaluating these outcomes of adjuvanticity, however,
is no trivial task. Once again, engineering strategies provide improved diagnostics to aid
in evaluation. With information-dense assays, computational tools including machine
learning enable a systems-level approach to vaccinology. Combined with improvements in
animal models, these approaches aid clinical translation of promising adjuvants by reduc-
ing time and costs of high-throughput screens, increasing the efficiency and quality of lead
compounds, and understanding the mechanistic drivers of new adjuvants. With a greater
ability to control the immune system, new adjuvants will be useful in nonprophylactic
contexts. Future adjuvants can find new applications in combating immunosuppressive
cancer environments and resistant infectious diseases. The next generation of adjuvant
design is full of potential.
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