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Abstract

The conformational dynamics of proteins is rarely used in methodologies used to predict the

impact of genetic mutations due to the paucity of three-dimensional protein structures as

compared to the vast number of available sequences. Until now a three-dimensional (3D)

structure has been required to predict the conformational dynamics of a protein. We intro-

duce an approach that estimates the conformational dynamics of a protein, without relying

on structural information. This de novo approach utilizes coevolving residues identified from

a multiple sequence alignment (MSA) using Potts models. These coevolving residues are

used as contacts in a Gaussian network model (GNM) to obtain protein dynamics. B-factors

calculated using sequence-based GNM (Seq-GNM) are in agreement with crystallographic

B-factors as well as theoretical B-factors from the original GNM that utilizes the 3D structure.

Moreover, we demonstrate the ability of the calculated B-factors from the Seq-GNM

approach to discriminate genomic variants according to their phenotypes for a wide range of

proteins. These results suggest that protein dynamics can be approximated based on

sequence information alone, making it possible to assess the phenotypes of nSNVs in

cases where a 3D structure is unknown. We hope this work will promote the use of dynamics

information in genetic disease prediction at scale by circumventing the need for 3D

structures.

Author summary

Proteins are dynamic machines that undergo atomic fluctuations, side chain rotations,

and collective domain movements that are required for biological function. There is,

therefore, a need for quantitative metrics that capture the dynamic fluctuations per posi-

tion to understand the critical role of protein dynamics in shaping biological functions. A

limiting factor in incorporating structural dynamics information in the classification of

non-synonymous single nucleotide variants (nSNVs) is the limited number of known 3D

structures compared to the vast number of available sequences. We have developed a new

sequence-based GNM method, termed Seq-GNM, which uses co-evolving amino acid

positions based on the multiple sequence alignment of a given query sequence to estimate
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the thermal motions of C-alpha atoms. In this paper, we have demonstrated that the pre-

dicted thermal motions using Seq-GNM are in reasonable agreement with experimental

B-factors as well as B-factors computed using 3D crystal structures. We also provide evi-

dence that B-factors predicted by Seq-GNM are capable of distinguishing between dis-

ease-associated and neutral nSNVs.

Introduction

A 3D structure is still required to computationally obtain protein dynamics, drastically limit-

ing the extent to which conformational dynamics can be incorporated into genomic analysis.

The reason for this is that there are exponentially more sequences than experimental struc-

tures. Currently, UniProtKB contains more than 100 million sequence entries, whereas the

PDB reports the number of known 3D structures to be around 140,000 [1]. Furthermore, the

number of known sequences is increasing at an exponential rate, compared to the much slower

addition of new experimental PDB structures. This is due to the advent of high-throughput

genomic sequencing, which is providing an unprecedented amount of data for genomic analy-

sis. The vast amount of sequence data has driven the rapid classification of novel genetic varia-

tions through genome-wide association studies [2,3]. A large catalogue of non-synonymous

single nucleotide variants (nSNVs) occurs in coding regions that can severely impact protein

function, potentially leading to disease [4]. There are many in silico methods developed using

evolutionary methodologies such as positional conservation and phylogeny and those that

combine evolutionary approaches with biochemical and structural properties to diagnose neu-

tral and disease associated nSNVs [5–11]. However, the accuracy of the majority of these in sil-
ico prediction methods is significantly lower for predicting the impact of nSNVs at highly

evolving sites [12–16]. Protein dynamics can also be used to elucidate the functional impact of

nSNVs and mechanisms of disease [5,17]. Our previous studies have evinced that a site-spe-

cific conformational dynamics analysis is capable of diagnosing nSNVs irrespective of evolu-

tionary conservation [5,18,19] and recently has been incorporated as an additional feature for

in silico prediction tools [20]. However, only a small fraction of the catalogued nSNVs in the

coding regions (i.e. missense variants) have 3D experimental structures, [20], impeding broad

application of protein dynamics in in silico tool predictions.

Coevolution, on the other hand, has become a valuable tool for its ability to predict struc-

tural contacts of 3D structures, particularly using global information through Potts models

[21–27]. Coevolving residues are inferred from a multiple sequence alignment (MSA) of a

given protein family, whereby if two given amino acids exhibit concordant patterns of evolu-

tion throughout the MSA then they are assumed to be in close spatial proximity in the folded

3D structure. This evolutionary principle can be leveraged so that sequence information can

be used to describe protein topology, making de novo structure prediction possible [24,27]. It

has been reported that only one correct contact for every 12 residues in a protein is necessary

for accurate topology-level modeling [28]. In addition to structure prediction, coevolution

analysis has also been used to identify critical interactions between protein complexes [22]

important functional sites [24] and allosteric response [29]. The use of coevolution for struc-

ture prediction is largely possible for two reasons. First, the amount of sequence data for differ-

ent protein families is sufficient to be leveraged by this technique to make predictions. Second,

the methods for inferring coevolving residues from an MSA are becoming increasingly robust

[30–34].

Inferring evolutionary couplings from an MSA are based on two primary approaches cate-

gorized as local [35–37] and global approaches [37–39]. The global approaches detangle direct
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evolutionary couplings from indirect couplings which enables them to capture spatial contacts

[40]. Regardless of the method, the accuracy of detecting coevolving residues that correspond

to structural contacts is fundamentally limited by the number of sequence homologs in the

MSA. While most of the current methods use only the sequence homologs of the protein fam-

ily belonging to target sequence, integrating multiple orthology protein families (i.e. families

that share similar phylogeny and retain similar functions) was used to increase the number of

homologs to produce a more accurate statistical inference [41]. RaptorX, leverages this joint

family methodology; it uses an ultra-deep neural network combining coevolution information

with sequence conservation information to infer 3D contacts and has produced higher accu-

racy than other methods [42–44].

In this paper, we will demonstrate the efficacy of our novel sequence-based GNM approach,

called Seq-GNM, to estimate the dynamics profile of a protein with no a priori knowledge of

its 3D structure. This de novo approach based on a Gaussian network model (GNM) enables

the prediction of the magnitude of mean-square fluctuations of residues, which are propor-

tional to the B-factors determined by X-ray crystallography experiments. However, instead of

using a cutoff distance to determine 3D contacts as does the original structure-based GNM, we

use coevolving residues (evolutionary couplings) in our model. We show that the theoretical

predictions from our Seq-GNM are in reasonable agreement with experimental crystallo-

graphic B-factors as well as the values obtained from the structure GNM models that use spa-

tial contacts. We also extend this analysis to determine the capacity of our model to assess the

functional impact of nSNVs. We will demonstrate that the dynamics predicted by Seq-GNM

can adequately classify disease and benign nSNVs across the proteome.

Results

B-factor correlations: Sequence, structure, and experimental

We considered a high-resolution protein (2.25 Å) that is involved in amino acid catabolism,

acyl-CoA dehydrogenase (1JQI), as an example case to examine the B-factor profiles and pre-

dicted contact maps using Seq-GNM. Coevolution analysis using direct coupling analysis

(DCA) has been shown to recapitulate accurate structural contact maps for a wide range of

proteins [21,23,24,27,31,45]. As expected, the contact maps of Seq-GNM and structural GNM

are similar (Fig 1). In a comparison of their B-factor profiles, both Seq-GNM and structural

GNM exhibit good agreement with observed B-factors, capturing flexible and rigid positions.

Using evolutionary coupling (EC) values obtained from RaptorX, the correlation between the

Seq-GNM and observed B-factors is 0.77, whereas the correlation between the structural GNM

and observed B-factors is 0.57 (Fig 1A). Similarly, using EC values obtained by EVcouplings

produced a correlation of 0.60 between the Seq-GNM and observed B-factors (Fig 1B). The

scores obtained from EVcouplings are still reasonable, yet relatively lower correlations com-

pared to those obtained by the RaptorX. This is likely due to the relatively noisy contact map

predictions by EVcouplings compared to the more reliable contact maps produced by RaptorX

(we think this is due to their inclusion of multiple orthology protein families) [42].

The Seq-GNM produces a correlation with crystallographic B-factors of 0.60, which is

within the same range as those produced by the GNM from structure of 0.57. Moreover, theo-

retical B-factor profiles obtained from both methods were able to identify the catalytic sites on

all of the proteins.

As a further test of the efficacy of the Seq-GNM, we superimposed the predicted B-factors

onto the structures of three diverse proteins– 5’(3’)-deoxyribonucleotidase (2JAO), acyl pro-

tein thioesterase (1FJ2), and NADH-cytochrome b(5) reductase (1UMK)–to visually contrast

the predicted B-factors with that of experiment. Fig 2 shows each protein color-coded
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according to their B-factor profile on a spectrum of blue–white–red, where blue represents the

lowest B-factors (less mobility) and red represents the highest B-factors (more mobility). The

left panel shows the experimental B-factors for each protein, while the right panel shows the

theoretical values predicted by the Seq-GNM. We investigated whether secondary structure

was a factor in how the B-factors were distributed across the protein, and if certain secondary

structure domains would exhibit less agreement with experiment. In this context, the proteins

were selected so that they had a variety of secondary structure components–2JAO contains pri-

marily alpha helices, 1UMK is mainly composed of beta-sheets, and 1F2J is a combination of

alpha helices and beta-sheets. For 2JAO, the exterior helices that are flexible (red) in the

observed structure are all reproduced in the predicted structure. The one highly rigid (blue)

helix in the observed structure was more flexible in the predicted structure but was still in

overall agreement. There is a surprising amount of similarity between the observed and pre-

dicted structure of 1F2J, considering that it contains both alpha-helix and beta-sheet elements.

Similarly, 1UMK showed good agreement, except for some miniscule differences. This gives

further evidence that the magnitudes of residue fluctuations predicted by the Seq-GNM model

is representative of the crystallographic B-factor profiles for many proteins.

In order to compare predicted B-factors with crystallographic B-factors, we extracted a sub-

set of 39 structures that had a resolution better than 2.0Å to obtain more realistic crystallo-

graphic B-factors (unreliable B-factors are common for many PDB structures) [18,46]. The

same cutoff of 2.0Å was used in an earlier study to compare GNM predicted B-factors with

Fig 1. B-factors plots. A plot of theoretical B-factors as calculated by Seq-GNM (blue), the original GNM obtained from structure

(orange), and observed experimental B-factors (black) for acyl-CoA dehydrogenase (PDB id: 1JQI) along with predicted contact

maps by Seq-GNM (using a threshold score, shown as blue) and the contact map of the structure (using 10Å cut-off distance) (a)

The Seq-GNM with values obtained from RaptorX produces a correlation of 0.56 with experiment, and 0.77 with the GNM

obtained from structure. Moreover, the contact maps reveal that the predicted contacts between the Seq-GNM and structural GNM

approaches are remarkably similar. (b) The Seq-GNM that uses values obtained from EVcouplings produces a correlation of 0.60

with experiment, and 0.68 with the GNM obtained from structure. The B-factor obtained by applying GNM to the experimental

structure yields a correlation of 0.57. The contact map captures the dominant contacts with noise coming from poorly predicted

EVcouplings scores.

https://doi.org/10.1371/journal.pcbi.1006626.g001
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those determined by crystallography [47]. For all 39 structures, the Seq-GNM (using EC values

from RaptorX) and structure GNM were used to estimate their B-factors, which were then

compared with the observed B-factors by calculating the correlation for each protein. The

mean correlation coefficient for the Seq-GNM was 0.53 while the mean correlation coefficient

for the structure GNM was 0.58. The correlation of 0.58 for structural GNM of our smaller

data set is consistent with the findings of Kundu et al. where 113 high-resolution structures

(resolution <2.0 Å) were used and, the mean correlation coefficient with observed B-factors

was 0.59 [47].

As shown in Fig 3A, boxplot distributions reveal that correlations are not significantly dif-

ferent between the sequence and structure GNM (p = 0.055 in a student t-test). The structure

GNM appears to perform only slightly better than the Seq-GNM. Fig 3B shows the same distri-

bution separated into 10 individual bins of size 0.1. The overall shapes of the two distributions

are similar, except for the exaggerated relative lower second peak of the Seq-GNM at 0.4. It

should also be noted that for these cases where Seq-GNM had low correlations, the EC thresh-

old could be tuned to yield much higher correlations. If this were done on a case-by-case basis,

the overall correlation distributions would be even more similar. Thus, the EC threshold may

be used as a tuning parameter to enhance the correlation coefficient for purposes of model

optimization.

Interestingly, for the cases where predicted B-factors by Seq-GNM yielded significantly bet-

ter correlations with the experimental B-factors than those obtained by GNM from structures,

we observed that biological units of these proteins are assigned as oligomeric forms. While pre-

dicted B-factors obtained using Seq-GNM does not retain this information, it successfully pre-

dicts the experimentally low B-factor values of interface positions as shown for protein 5’(3’)-

deoxyribonucleotidase (2JAO) and protein aldehyde Dehydrogenase 7A1 (2J6L) in Fig 4. It is

indeed shown in earlier work of direct contact analysis that co-evolution can identify positions

of protein interfaces and protein-protein interaction partners and successfully reconstruct pro-

tein complexes and interaction network [23,30,48]. Thus, it is not surprising to see that it yields

good correlations with the experimental B-factors. Conversely, predicted B-factors from struc-

ture can only improve when the oligomeric structure is used for the GNM analysis.

Even when using high-resolution X-ray structures, there is still some uncertainty about the

realistic nature of crystallographic B-factors. For this reason, we thought a more plausible way

to determine the efficacy of the Seq-GNM was to compare it directly with the structure GNM.

The structure GNM is a robust method to describe thermal fluctuations in a protein, and in

many cases, it performs as good or better than the ANM or MD [47,49]. We systematically

evaluated the performance of the Seq-GNM and structure GNM for the entire set of 139 struc-

tures and obtained the correlation coefficients for each protein (Fig 5).

The average correlation of B-factors between the Seq-GNM and structure GNM model is

0.63 when using EC contacts from RaptorX and 0.43 when using contacts from EVcouplings.

As seen in Fig 5A, the distribution of correlation coefficients increases until 0.8, and then sub-

sequently decreases. Interestingly, there are still an appreciable number of sequences yielding

high correlations from 0.8 to 1.0. A distinguishing feature of the distribution is the pronounced

peak in the bin from 0.7 to 0.8, indicating that significant fraction of our data set yields high

correlations between 0.7 and 0.8. This is evidence that the Seq-GNM is efficiently capturing

protein dynamics and supports the theory that ECs can be used as a substitute to 3D structure

contacts in the GNM and still produce reliable dynamics profiles. The results of Seq-GNM

based on contacts predicted by RaptorX usually yields B-factors that are closer to experimental

B-factors as it uses structural information in its neural networks leading to better EC values

and correlations with structure [44].
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Fig 2. Color-coded ribbon diagrams using experimental and theoretical B-factors obtained by Seq-GNM. The observed crystallographic B-factors (left) and the

predicted B-factors from the Seq-GNM superimposed on the structure. The three proteins selected–2JAO, 1F2J, and 1UMK–are high-resolution structures better than

2.0 Å. The B-factors are color-coded according to their B-factor profile on a spectrum of blue–white–red where blue represents the lowest B-factors (less mobility) and

red represents the highest B-factors (more mobility). The B-factor scores are converted to a percentile rank so that they can be compared across different proteins. Each

protein is also rotated 180˚ so that both sides can be visualized and compared. Moreover, the proteins are selected so that they have a variety of secondary structure

components–2JAO contains primarily alpha helices, 1UMK is mainly composed of beta-sheets, and 1F2J is a combination of alpha helices and beta-sheets.

https://doi.org/10.1371/journal.pcbi.1006626.g002
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Assessing nSNV phenotypes using the Seq-GNM

Crystallographic B-factors have previously been used to assess the impact of nSNVs on protein

function [18,50–54]. A study [51] found that mutations on lysozyme that impaired function

exhibited lower than average temperature factors, suggesting that rigid sites on the protein are

more susceptible to destabilizing nSNVs than flexible sites [55]. Another study revealed a rela-

tionship between crystallographic B-factors and the impact of nSNVs on protein function [56].

A commonly used tool to diagnose neutral and disease associated nSNVs, PolyPhen-2, uses

evolutionary information, structural information, and crystallographic B-factors in its predic-

tion model [49]. These studies indicate that crystallographic B-factors can be used to predict

the tolerance of a given residue to an nSNV (i.e., whether or not the occurrence of an nSNV

would impact function).

We investigated whether B-factors predicted by the Seq-GNM were indicative of biological

phenotype for nSNVs in the human population. A total of 738 nSNVs were mapped to the 139

enzymes, where 436 are disease-associated and 302 are neutral. S1 Table shows the number of

disease and neutral nSNVs that occur on each protein. The Seq-GNM (using EC contacts from

RaptorX and EVcouplings) was computed systematically for all 139 enzymes to obtain their

dynamics profiles. The theoretical B-factors scores were converted into a percentile rank so

that the values could be compared across different proteins.

We initially looked at two human enzymes, human lysozyme (PDB: 1C7P) and human

cytochrome reductase (PDB: 1UMK). They were chosen because they were short proteins that

each contain a disease and neutral nSNV. Human lysozyme is a glycoside hydrolase that func-

tions in the immune system by causing damage to cell walls of bacteria. Human cytochrome

b5 reductase is involved in many oxidation/reduction reactions including converting methe-

moglobin to hemoglobin [55].

Each structure is color-coded according to its theoretical B-factor profile on a spectrum of

blue–white–red. Sites that exhibit high mobility (flexible) are red, and sites that have low

mobility (rigid) are blue. Regions that are characterized by low mobility are usually important

Fig 3. Comparison of B-factors obtained by GNM and Seq-GNM with experimental B-factors. (a) Boxplot showing the correlation of

predicted B-factors by the Seq-GNM with experimentally observed B-factors (blue) in comparison to that of the GNM obtained from

structure (orange) for a subset of 39 structures with resolution better than 2.0 Å. (b) A distribution plot of the same correlations binned

into 10 bins with sizes of 0.1. A student t-test reveals no significant difference between the two distributions (p = 0.055) indicating that

the Seq-GNM is producing competitive results compared to the original GNM from structure. The mean correlation of the Seq-GNM is

0.53 while that of the GNM from structure is 0.58.

https://doi.org/10.1371/journal.pcbi.1006626.g003
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for maintaining stability and function, thus a mutation could act to destabilize the protein and

impair its function. Fig 6A show the disease mutation I56T occurring on a rigid site with a B-

factor of 0.0075. The neutral mutation T70N has a B-factor of 0.96 indicating that it is a highly

mobile site. Both I56T and T70N occur on loop regions. Although loops are generally more

flexible, three alpha-helical domains encompass the loop containing I56T, which implies that

it may be involved in interactions that contribute to stabilizing the functional conformation.

Thus, the I56T mutation may disrupt these critical interactions and impair the enzymatic func-

tion. In the case of cytochrome reductase (Fig 6B), the disease mutation R57Q is also on a rigid

site with a B-factor of 0.14. Instead of being located near the core, R57Q is highly exposed pro-

truding outwardly from a beta-barrel. However, since beta-barrels often harbor functional res-

idues, the R57Q mutation may disrupt certain interactions critical for modulating function.

The neutral mutation T116S is located on a loop and has a B-factor of 0.96, indicating that is it

Fig 4. Comparison of B-factors obtained from experiments, Seq-GNM, GNM from monomeric structure, and GNM from oligomeric structure. B-factors are

shown on the respective structures for (a) 5’(3’)-deoxyribonucleotidase (2JAO) and (b) Aldehyde Dehydrogenase 7A1 (2J6L). (a) The correlation of Seq-GNM to

experimental B-factors is 0.83 while correlation of GNM B-factors obtained from monomer to experimental B-factors is 0.63. When dimer a is used for GNM analysis

the correlation of GNM B-factors obtained from monomer to experimental B-factors increased to 0.72. (b) The correlation of Seq-GNM to experimental B-factors is

0.61 while correlation of GNM B-factors obtained from monomer to experimental B-factors is 0.37. When a tetramer is used for GNM analysis the correlation of

GNM B-factors obtained from monomer to experimental B-factors increase to 0.76. The change in correlation for GNM between monomer and oligomer clearly

shows the drawback for dependence on the crystal structure of biounits. However, Seq-GNM captures the interface B-factors correctly.

https://doi.org/10.1371/journal.pcbi.1006626.g004
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has a high mobility. In our earlier proteome wide study of over 100 human protein structures,

we have shown that sites that are highly flexible (e.g., loop regions, or superficial sites) are typi-

cally more robust to mutations. Conversely, rigid sites are more susceptible to mutations that

may disrupt function [18,19]. For these two cases, the B-factors produced by Seq-GNM suc-

cessfully distinguished between the disease and neutral nSNVs, without using the 3D

structures.

These findings prompted us to analyze the proteome-wide set of 139 enzymes to determine

if the B-factors were indicative of phenotype for all 436 disease and 302 neutral nSNVs. The

raw B-factor values were converted into a percentile rank (%B-factor) and then binned into 5

bins of size 0.2. We computed the observed-to-expected ratio of B-factors, where the expected

values were based on the B-factor distribution of all 51,618 sites across all 139 proteins, and the

Fig 5. Distribution of correlation coefficients. The distribution of correlation coefficients between B-factors from Seq-GNM

and GNM from structure. (a) The average correlation coefficient is 0.63 with RaptorX EC values. (b) The average correlation

coefficient is 0.43 by using EVcouplings EC values.

https://doi.org/10.1371/journal.pcbi.1006626.g005

Fig 6. Comparison of theoretical B-factors on disease versus neutral mutant sites. A ribbon diagram for two human enzymes, human lysozyme (a)

and cytochrome reductase (b) colored according to their predicted B-factors by the Seq-GNM. Red indicates high mobility sites, and blue indicates low

mobility sites. Each protein contains two known nSNVs. I56T and R57Q are disease-associated, and they occur on low mobility (rigid) sites.

Conversely, the neutral nSNVs T116S and T70N occur on high mobility sites.

https://doi.org/10.1371/journal.pcbi.1006626.g006
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observed values were based on the B-factors of the 436 disease sites. The same process was

done for the 302 neutral nSNVs. Under the null hypothesis that predicted B-factor of the dis-

ease associated nSNVs yields similar distribution of all the positions gathered from 139 enzyme

sequences, the ratio of expected and observed sites harboring disease mutations for each %B-

factor bin should be close to 1, which would imply that B-factor does not distinguish sites that

are prone to disease. This is the null hypothesis that disease sites are distributed uniformly

between sites with low and high mobility. However, the null hypothesis was rejected for the

436 disease nSNVs (p<0.001). Fig 7 shows the observed-to-expected ratio plot of disease and

neutral nSNVs, which indicates that disease nSNVs are overabundant at low %B-factor sites

(<0.4) and under abundant at high %B-factor sites. Conversely, neutral nSNVs are overabun-

dant at high %B-factor sites (>0.6) and under abundant at low %B-factor sites. This evidence

suggests that the occurrence of an nSNV on a site with a low B-factor is likely damaging based

on the position irrelative of the substitution. This is in agreement with our previous proteome-

wide study showing that substitutions at rigid sites are more often associated with diseases

[18]. Conversely, an nSNV on a high B-factor site is usually benign. Low B-factors usually sig-

nify a residue that is crucial for modulating functional motions (e.g., a hinge). Thus, mutations

on these sites can severely impact function. High B-factor sites are more flexible (e.g., loops)

and more robust to mutations. Fig 7 suggest that it is possible to use the predicted B-factors to

discriminate between disease and neutral nSNVs using co-evolution obtained from only multi-

ple sequence alignment. Moreover, it can be used as an additional feature for in silico predic-

tions [12].

Predictive models were created using logistic regression as the classification algorithm, 80%

of the data was used for training and 20% for testing for 10 randomized sets. Models were eval-

uated based on ROC curves and their respective area under curve (AUC), the best perfor-

mance is labeled as AUC_max and average performance as AUC. Theoretical B-factors

obtained by Seq-GNM, experimental B-factors, and evolutionary parameters were used as pre-

dictive variables for training and testing (Fig 8). Seq-GNM and experimental B-factors have

similar performance (maximum AUC of best 0.76 and 0.75, respectively), with Seq-GNM

Fig 7. Observed to expected ratio plots for disease and neutral nSNVs. The relationship of observed-to-expected numbers between 436 disease

nSNVs (red) and 302 neutral nSNVs (blue) from 139 human enzymes. The %B-factor scores derived from the Seq-GNM are binned into 5 bins of

size 0.2.

https://doi.org/10.1371/journal.pcbi.1006626.g007
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overshadowing experimental B-factors on average (AUC of 0.69 and 0.60, respectively). The

~0.70 AUC of B-factors obtained from Seq-GNM is impressive, as it has been shown that

majority of state-of-art methods also yields similar AUC in independent tests [5,13]. More-

over, incorporation of Seq-GNM as an additional feature with evolutionary parameters

resulted in higher prediction performance. While the AUC scores obtained using the evolu-

tionary features for classification gives 0.76, this is increased to 0.81 after including the B-fac-

tors of Seq-GNM (Fig 8C and 8D). This result also demonstrates the efficacy of Seq-GNM in

disease prediction as a complementary metric to other metrics used as features in classifiers.

We also compared the performance of Seq-GNM with common in silico prediction tools

like Polymorphism Phenotyping v2 (PolyPhen-2), and Sorting Intolerant from Tolerant

(SIFT) [6,58]. The accuracy, sensitivity, and selectivity of disease predictions for nSNVs with

experimental B-factors, B-factors from SIFT, PolyPhen-2, evolutionary parameters, and Seq-

GNM are tabulated in Table 1. The accuracy of Seq-GNM using both EC values from

Fig 8. ROC curves for disease prediction performance comparing Seq-GNM, experimental B-factors and evolutionary parameters.

ROC curves are plotted using 10 randomly selected training and testing data sets using 80%, and 20% of the data, respectively. (a) ROC

curve of Seq-GNM. (b) ROC curve of experimental B-factors. (c) ROC curve of evolutionary parameters, where primate, mammal, and

vertebrate fitch rates using Fitch Algorithm [57]; and Entropy2 are used as features for training. (d) ROC curve of evolutionary parameters

used in (c) with the addition of Seq-GNM.

https://doi.org/10.1371/journal.pcbi.1006626.g008
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EVcouplings and RaptorX is ~0.70. This accuracy is similar to using experimental B-factors

for prediction (0.69) and also very close to prediction with evolutionary parameters (0.75), sug-

gesting that Seq-GNM allows us to incorporate protein dynamics in nSNV predictions when

the 3D experimental structures are not available. Moreover, accuracy of Seq-GNM approach is

greater than SIFT (0.65) and PolyPhen-2 (0.64). Interestingly, Seq-GNM obtained by EVcou-

plings and RaptorX yields similar accuracies indicating that evolutionary couplings without

the inclusion of structure could be utilized to predict B-factors to include as a feature to in sil-
ico prediction tools. Seq-GNM sensitivity (~0.90) surpasses other methods (0.80 for SIFT, 0.63

for PolyPhen-2, and 0.85 for evolutionary parameters), but it has a shortcoming in selectivity

(~0.36) as other methods reach higher (~0.59). Conversely, training Seq-GNM combined with

evolutionary parameters enhances the selectivity (0.66) to its highest value compared to others.

Seq-GNM with evolutionary parameters predicted disease related nSNVs with accuracy 0.78

and sensitivity of 0.84, reaching beyond predictions of other metrics solely. These results sug-

gest the incorporation of Seq-GNM with other prediction metrics can augment accuracy, sen-

sitivity, and selectivity of prediction.

Prediction accuracy of Seq-GNM is further tested using 323 nSNVs (187 disease-associated,

136 neutral) of 22 proteins where their 3D experimental structures are not available (S2 Table).

We used the trained classifier model of Seq-GNM B-factors for this test. While the B-factors

obtained solely from Seq-GNM are used, it reached an accuracy, sensitivity, and selectivity of

0.82, 0.82, 0.83, respectively. This result further suggests that Seq-GNM allows us to incorpo-

rate protein dynamics as additional feature in in silico prediction tools without a known 3D

structure.

Discussion

While we and others [5,19,59–63] have shown that the integration of conformational dynamics

into genomic analysis will help next generation of approaches to predict the impact of novel

missense mutations on the human proteome, the inherent limitations in the availability of 3D

structures compared to the vast number of sequences must be addressed. This begs the ques-

tion: how can protein dynamics be used in genome-wide analysis to predict functional impacts

of nSNVs? There is, therefore, a need to be able to obtain protein dynamics by leveraging only

sequence information, without a priori knowledge of a 3D structure. For this reason, we have

developed this novel method to estimate the dynamics profile of a protein by using only a

sequence as input. The method uses the coevolution of amino acids through multiple sequence

(which tend to be spatially close in the 3D tertiary structure) and a simple Gaussian network

model (GNM) to obtain dynamics. The original GNM based on the 3D structure is well-

known for its ability to describe residue dynamics profiles due to thermal motions in proteins

(i.e., B-factors). We showed that our sequence-based GNM model is able to adequately

Table 1. The disease prediction data showing the accuracy, sensitivity, and the selectivity of Seq-GNM compared with experimental B-factors, SIFT, PolyPhen-2

and evolutionary parameters.

Classifier Feature and Methods Accuracy Sensitivity Selectivity

Experimental B-factors 0.69 0.88 0.35

SIFT 0.65 0.70 0.56

PolyPhen-2 0.64 0.63 0.64

Seq-GNM B-factors (EVcouplings) 0.70 0.89 0.37

Seq-GNM B-factors (RaptorX) 0.71 0.91 0.35

Evolutionary parameters 0.75 0.85 0.58

Seq-GNM (EVcouplings) with evolutionary parameters 0.78 0.84 0.66

https://doi.org/10.1371/journal.pcbi.1006626.t001
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reproduce the mean-square fluctuations (B-factors) calculated by the original GNM, particu-

larly outperforms for the cases where biological functional state is oligomeric. Our estimates of

B-factors for a proteome-wide set of proteins exhibited good correlation with the structure

GNM. Moreover, our estimated B-factors were in reasonable agreement with crystallographic

B-factors for many cases. To address the issue of how protein dynamics can determine the

impact of nSNVs across the genome where there are no known 3D structures, we tested the

ability of our predicted dynamics from the Seq-GNM to assess nSNV phenotypes. A plot of the

observed-to-expected ratio of the predicted B-factors revealed distributions of disease and neu-

tral nSNVs that are similar to those in a previous protein dynamics analysis work [18]. The

predicted B-factors using the Seq-GNM was able to discriminate between disease and neutral

nSNVs with an accuracy of 0.70 and incorporating the Seq-GNM predicted B-factors with evo-

lutionary parameters increased overall accuracy to 0.78. This analysis demonstrates that the

Seq-GNM makes it possible to obtain estimates of dynamics without using a 3D structure,

which will allow for the integration of conformational dynamics into large-scale analysis of

genomic variants.

Methods

Dataset

A curated set of 139 structures was selected for several reasons. First, they have high query cov-

erage (>80%) and sequence identity (>80%) as found from a BLAST search, and the struc-

tures had already been modeled using the Modeller software package [64] to account for any

missing residues. Second, genetic variants were previously mapped onto these structures, such

that the positions containing known nSNVs were already determined, enabling us to easily

compare our results using sequence coevolution with the genetic variation data. A total of 738

genetic variants were obtained from the HumVar database [58], which was comprised of 436

disease and 302 neutral nSNVs. Finally, the structures were either monomers or the single-

chain unit of a multimer with<600 residues, allowing for tractable calculations of residue

coevolution using the RaptorX web server [42,44], and EVfold (EVcouplings) [21]. A table

summarizing the dataset is presented in S1 Table.

Obtaining coevolved residues

The amino acid sequence from each of the 139 structures was used as input for the evolution-

ary coupling (EC) analysis. The choice of taking the amino acid sequence from the structure

was done so that the predicted EC contacts could be compared directly to the experimentally

observed structure contacts as verification that the model was producing realistic contact

maps. Moreover, the theoretical B-factors predicted by our sequence-based model could be

directly compared to the experimental B-factors for each protein. If the structure was

unknown, however, sequence databases (e.g. UniProt, PFAM, etc.) could be used. The PDB

sequences were given to the RaptorX web server [42,43], which computed the relative proba-

bility of each residue pair i, j of being in 3D contact based on their coevolution strength. The

sequences were also used to generate MSAs using phmmer [65]. Using MSAs, DI values are

calculated by EVcouplings. In order to ensure consistency between different proteins of vary-

ing lengths, we converted the raw scores into percentile ranks. We then used a threshold value,

taking only the top scoring evolutionary couplings (i.e., the strongest couplings are more likely

to be in spatial contact). An optimized threshold value was systematically evaluated and is dis-

cussed in the Methods.
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Sequence-based GNM model (Seq-GNM)

The Gaussian network model (GNM) is an isotropic approach based on the contact topology of a

crystal protein structure to obtain the equilibrium fluctuations of residues due to thermal motion.

It uses a specified cutoff distance to define interacting pairs that are connected by springs with a

single-parameter harmonic potential. In this structure-based GNM, the interacting residue pairs

within the cutoff range are represented as contacts in the Kirchhoff (connectivity matrix).

In the proposed sequence-based GNM (Seq-GNM) approach we will instead use coevolving

residue pairs (evolutionary couplings) as contacts in the Kirchhoff. In this way, the 3D structure

is no longer a prerequisite to form a GNM. To construct the Kirchhoff, a threshold is defined

where any evolutionary coupling scores above that threshold are sufficiently coupled such that

they are spatially close in 3D structure. If a given evolutionary coupling pair meets the threshold

criteria, it is assigned a value in the Kirchhoff for non-bonded contacts of –1 multiplied by its

evolutionary coupling score (i.e., –1×ECscore). This will permit that the strength of each connec-

tion will attenuate proportionally to the evolutionary coupling strength. The Kirchhoff can be

decomposed into the individual contributions from the bonded contacts representing the chain

connectivity (Rouse chain) and that from the non-bonded contacts [56]. In the Seq-GNM the

contribution of non-bonded contacts to the Kirchhoff is constructed according to

Gnb
ij ¼

� 1� ECscore; i 6¼ j evolutionary coupling

0; i 6¼ j no coupling

�
P

i;i6¼jGij; i ¼ j

ð1Þ

8
>><

>>:

For the local chain connectivity (Rouse chain), we don’t take into account evolutionary cou-

plings, and matrix was constructed such that every residue pair i, i ± 1 to i, i ± 3 is in contact as

Gcc
ij ¼

� 1; i 6¼ j and
PL

ijk¼1;2;3
i; i� k

0; i 6¼ j else

�
P

i;i6¼jGij; i ¼ j

ð2Þ

8
>><

>>:

Then the overall Kirchhoff is the combination of the two contributions Γij ¼ Γ
cc
ij þ Γ

nb
ij .

The vibrational dynamics due to thermal fluctuations can then be evaluated in the same way as

the original GNM by inverting the Kirchhoff matrix. The magnitude of mean-square fluctua-

tions is then written in terms of the inverse Kirchhoff as

hðDRiÞ
2
i ffi ½Γ � 1�ii ð3Þ

This is proportional to the Debye-Waller temperature factors or B-factors, which describe

the attenuation of X-ray scattering due to the thermal motions of atoms (Bi = 8π2h(ΔRi)
2i/3).

Here there is no single-parameter force constant as in the GNM obtained from structure [52],

and the pair-wise interactions are simply the strength of the evolutionary couplings as given by

their ranked scores. The theoretical predictions of our Seq-GNM can be compared to the pre-

dictions of the original GNM obtained from structure as well as observed crystallographic B-

factors. A general workflow of our method is presented as a flow diagram in Fig 9.

Optimizing threshold value for EC scores

To ensure consistency when analyzing different proteins with varying lengths, we converted

the raw scores of evolutionary couplings (EC) into a percentile rank. We computed the Seq-

GNM for all 139 structures using a constant threshold percentile rank EC value to assign
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contacts and measured the correlation between the B-factors predicted by our Seq-GNM to

the GNM obtained from structure. We used only the top percentile EC scores predicted by

RaptorX and EVcouplings as predicted contacts, because only certain fraction of high EC

scores are true native contacts in 3D structure, largely due to noisy artifacts in the MSA such

Fig 9. Flowchart of Seq-GNM method for nSNV predictions. A workflow of our method to use predicted

evolutionary couplings to determine protein dynamics and assess the functional impact of nSNVs. The initial input is

an amino acid sequence, which is used to obtain MSA. Using MSA evolutionary coupling pairs are predicted through

RaptorX and EVcouplings. The high scored evolutionary coupling pairs are assigned as contacts in our Seq-GNM to

compute the dynamics profile of each protein. The dynamic profiles obtained from Seq-GNM can give insight into the

functional impact of nSNVs. This was done for a curated set of 139 structures.

https://doi.org/10.1371/journal.pcbi.1006626.g009
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as the transitivity of correlations and phylogeny. To determine the optimal threshold value, we

tested a range of threshold values from 0.92 to 0.99. A threshold value�0.92 yields superfluous

contacts leading to a noisy contact map, and thus, a lower overall correlation (Fig 10). Con-

versely, a threshold value�0.99 gives a deficient number of contacts, which yields an exces-

sively sparse contact map and a lower overall correlation. As Fig 10 shows, a threshold value of

0.98 produced the best overall correlation with the GNM from structure and, thus, was taken

to be the optimal threshold value used in the analysis.

Supporting information

S1 Table. List of 139 proteins used in this study. Proteins used to compute theoretical B-fac-

tors based on Seq-GNM and GNM obtained from structure. B-factor correlation values

Fig 10. Comparison of theoretical B-factors. Boxplots comparing the correlations of predicted B-factors by our Seq-

GNM for (a) RaptorX and (b) EVcouplings with that of the structural GNM for all 139 structures using a constant

threshold for EC contacts. The GNM analysis is conducted 8 times using a constant threshold (between 0.92 and 0.99)

each time. The best average correlations are produced when the constant threshold value of 0.98 is used.

https://doi.org/10.1371/journal.pcbi.1006626.g010
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between GNM obtained from structure to experimental (Str GNM-Expt), Seq-GNM to experi-

mental (Seq GNM-Expt), and Seq-GNM to GNM obtained from structure (Seq GNM-Str

GNM) are given for two methods (RaptorX, EVfold (EVcouplings)).

(XLSX)

S2 Table. List of proteins without a known structure with disease related nSNVs used for

prediction. Seq-GNM predictions by using a set of 323 nSNVs without a known 3D structure

from 22 proteins. The protein identifiers, residue numbers, amino acid substitutions Seq-

GNM scores, Seq-GNM predictions, and ground truth are provided.

(XLSX)
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