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Abstract 
Diabetes rates in the United States are staggering and climbing. Importantly, traditional risk factors fail to completely account for the magnitude of 
the diabetes epidemic. Environmental exposures, including urban and metropolitan transportation quality, are implicated as contributors to 
disease. Using data from the county-level Environmental Quality Index (EQI) developed for the United States, we analyzed associations 
between transportation and air quality environmental metrics with overall diabetes prevalence and control within urban/metropolitan counties 
in the United States from 2006 to 2012. Additionally, we examined effect modification by race/ethnicity through stratification based on the 
county-level proportion of minority residents. Last, we applied mixture methods to evaluate the effect of simultaneous poor transportation 
factors and worse air quality on the same outcomes. We found that increased county-level particulate matter air pollution and nitrogen 
dioxide along with reduced public transportation usage and lower walkability were all associated with increased diabetes prevalence. The 
minority proportion of the population influences some of these relationships as some of the effects of air pollution and the transportation- 
related environment are worse among counties with more minority residents. Furthermore, the transportation and air quality mixtures were 
found to be associated with increased diabetes prevalence and reduced diabetes control. These data further support the burgeoning 
evidence that poor environments amplify diabetes risk. Future cohort studies should explore the utility of environmental policies and urban 
planning as tools for improving metabolic health.
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urban planning
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Currently, an estimated 37.3 million people live with diabetes 
in the United States, and an additional 96 million adults with 
prediabetes are at high risk of developing the disease in the 
coming years [1]. Diabetes is the leading cause of adult blind-
ness, kidney failure, and nontraumatic amputations; contrib-
utes to the development of cardiovascular disease; and is a 
major cause of mortality in the United States [2, 3]. Annual 
health costs associated with diabetes are estimated to be 
$327 billion and rising [4]. Consequently, there is a desperate 
need to understand the drivers of diabetes risk and to use all 
available tools to address them, including efforts directed at 
diabetes risk factors that have been neglected both by clinical 
interventions and public policy.

It is clear that improving lifestyle factors by increasing phys-
ical activity and adhering to healthy diets decreases the likeli-
hood of developing diabetes [5]. Less appreciated is evidence 
linking environmental factors with diabetes risk, including 

exposure to diabetogenic chemicals such as air pollution 
[6-9]. Moreover, the influence of urban design on the health 
behaviors of urban residents is often overlooked as a potential 
contributing factor. Urban counties in the United States have 
some of the highest diabetes rates. Specifically, major metro-
politan regions including New York City, Chicago, Los 
Angeles, and Houston all have a diagnosed diabetes preva-
lence exceeding 20%, which is 8% higher than the national 
average [1]. Notably, urban areas are known to be regions 
with substantial air pollution, while urban planning decisions 
affect the availability and utility of various forms of transpor-
tation [10]. For multiple political and economic reasons, the 
United States struggles to promote active transportation and 
limit exposure to traffic-associated air pollution in urban 
areas [11]. Specifically, urban areas in the United States 
have been designed to favor motor vehicles as opposed 
to active transportation, such as walking, cycling, or public 
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transportation [11]. This structural car dependency is rein-
forced by urban design choices and promotes negative health 
effects such as sedentary behavior, obesity, smoking, and ex-
posure to air pollution. About 53 000 Americans die prema-
turely each year from particulate matter (PM) air pollution 
associated with roadways; indeed, on average 12 years of life 
are lost per premature death as a result of transportation- 
related air pollution [12]. Critically, the effect of traffic-related 
air pollution is disproportionately borne by those with low in-
comes and communities of color, potentially contributing to 
important health disparities experienced by these communities, 
including disproportionate rates and effects of diabetes [13].

Expanding evidence now implicates various environmental 
factors in the pathogenesis of diabetes [6-9], and our previous 
work has shown that total environments and various environ-
mental domains are associated both with diabetes prevalence 
and diabetes control in the United States [14, 15]. However, 
the precise ways in which urban design influences diabetes sta-
tus and control remain largely unknown, including sparse 
data on the effect of transportation infrastructure. To address 
this important knowledge gap, we conducted an ecological 
study to determine the associations between transportation, 
air pollution, and their mixture on diabetes prevalence and 
control in urban counties in the United States. This study fills 
data gaps regarding how discrete and mixtures of urban envir-
onmental features influence metabolic health and sheds light 
on how improved urban planning may serve to reduce the dev-
astating burden of diabetes in the United States and globally.

Materials and Methods
Study Design and Data Sources
This ecological study examined the associations between 
transportation and air pollution environmental quality, 
both individually and as a mixture, with estimates of county- 
level diabetes prevalence and control in metropolitan and ur-
ban counties in the United States. For outcome estimates, 
publicly available data were accessed through the Institute 
for Health Metrics and Evaluation (IHME) for the years 
2006 to 2012 [16]. Additionally, exposure estimates were ac-
cessed through the US Environmental Protection Agency 
(EPA) Environmental Quality Index (EQI) for the years 
2006 to 2010 [17]. The EQI is an index of cumulative envir-
onmental quality using data from air, water, land, built, and 
sociodemographic environmental domains constructed us-
ing principal components analysis. EQI data and IHME dia-
betes prevalence and control data were combined by name, 
state, and county Federal Information Processing Standards 
code after variable name differences were corrected. To 
understand the associations of transportation-related envir-
onmental quality within urban environments, analyses 
were restricted to only metropolitan (RUCC1) and nonme-
tropolitan urban counties (RUCC2) with a final analytical 
sample of 1473 US counties.

Outcomes
We used the IHME estimates of total diabetes prevalence that 
were calculated as the age-standardized proportion of individ-
uals per county with a previous diabetes diagnosis or elevated 
glycated hemoglobin A1c (HbA1c) or fasting plasma glucose 
(FPG). Diabetes control was also estimated by IHME as the 
proportion of adults with a previous diabetes diagnosis who 

currently do not have elevated FPG or HbA1c. Elevated FPG 
and HbA1c were defined as a FPG of at least 126 mg/dL or 
HbA1c of at least 6.5%, respectively.

Exposures
All exposure variables were directly extracted from publicly 
available EQI data and referenced with the EQI technical re-
port. Transportation and air quality variables were extracted 
from the individual built environment and air domains of the 
EQI; descriptions of each variable estimation can be found in 
the EQI technical report [18]. Transportation-related varia-
bles included county-level commute time, public transporta-
tion usage, and walkability. Commute time, derived from 
the 2010 census, was estimated as the average number of mi-
nutes an employed person spent commuting from home to 
work. Public transportation, estimated from the 2010 census, 
was defined as the percentage of county residents who used 
public transportation. Last, walkability scores were originally 
sourced from the EPA’s National Walkability data, and the 
EQI walkability index was calculated as a weighted rank of 
employment type and housing both overall and by block 
groups, street intersection density, and predicted commuting 
modes. Air quality exposure variables included nitrogen diox-
ide (NO2), PM less than or equal to 10 μm (PM10), and less 
than or equal to 2.5 μm (PM2.5). Air quality variables were 
gathered from the Air Quality System (AQS 2006-2010) and 
estimated from the average annual concentrations for each 
county at the county’s center point for each year from 2006 
to 2010. For positive built environment indices, including 
walkability and public transportation usage, variables were 
negatively coded so that higher values suggest poorer environ-
mental quality. We used variable data either transformed or 
not transformed based on the EQI technical report. Air quality 
variables and public transportation usage were natural log- 
transformed, while commute time and walkability score re-
mained in their untransformed format.

Covariates
County-level sociodemographic characteristics including 
average education level, household income, and unemploy-
ment rates were also extracted from the sociodemographic do-
main of the EQI and were used as covariates in the analysis. 
Additionally, to control for state-level geographical and policy 
differences, state was also included as a covariate in the ana-
lyses. Using 2010 census data, the proportion of the popula-
tion that identified as non-White for each county was 
estimated. Counties were categorized as having a high propor-
tion of minority inhabitants by dichotomizing at the median 
(>18.95%). To assess potential effect modification by propor-
tion of minority population, a cross-product term was intro-
duced into the models for each exposure. Results are 
presented both overall and stratified by high and low minority 
proportion. Last, while county level data on obesity and phys-
ical activity are available, these factors were not included in 
our primary analyses as they are likely within the causal 
pathway.

Statistical Analyses
Sociodemographic characteristics and outcome distributions 
were summarized for all 1473 counties included in the ana-
lysis. Correlation among transportation and air quality 
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indices were assessed using Spearman rank correlation coeffi-
cients. Multivariable linear regression was used to assess the 
differences in diabetes prevalence and control estimates with 
worse transportation and air-related environmental quality. 
The multivariable models were adjusted for confounders es-
tablished a priori, including education, unemployment, 
household income, and state [19]. Multicollinearity for each 
exposure variable was not detected based on variance infla-
tion factors less than 1.5. Exposure variables were modeled 
as continuous exposures as documented in the EQI technical 
report [18]. To assess potential effect modification by county- 
level minority ethnicity, a cross-product term was introduced 
into the models for each exposure with high/low county mi-
nority population proportion. Results are presented both 
overall and stratified by high and low minority proportion. 
Last, outcomes were log-transformed because of skewed dis-
tributions and regression coefficients were interpreted as per-
centage differences per unit increase in exposure using the 
following equation: (eβ – 1) × 100. As a result, the coefficients 
from the linear models can be interpreted as percentage differ-
ences in either average county-level diabetes prevalence or 
control per increase in non–log-transformed exposure varia-
bles and per 2.7-fold increase in log-transformed variables. 
Despite considering obesity and physical activity to be within 
the causal pathway for the relationship between transporta-
tion, air quality, and diabetes, these factors are major predic-
tors of diabetes risk. Consequently, we conducted a sensitivity 
analysis further adjusting both for county-level obesity and 
physical activity prevalence collected and estimated by 
IHME. The described analyses were performed using SAS 
software version 9.4 (SAS Institute Inc).

To evaluate the associations of the environmental quality 
mixture with the diabetes outcomes, quantile-based g compu-
tation (qgcomp) was used [20]. Although mixture approaches 
are typically used to evaluate chemical mixtures that drive 
health outcomes, we applied this approach to evaluate the as-
sociation of a mixture of environmental quality factors on 
continuous diabetes outcomes. For the mixture analyses the 
exposure variables were distributed by quartile. Using gener-
alized linear regression, the weights of each variable were eval-
uated along a Gaussian distribution for log-transformed 
diabetes outcomes. Specific variable weights were interpreted 
as the individual partial effect of that variable within the mix-
ture. The transportation/air quality variables for each out-
come were estimated using g-computation algorithms with 
a bootstrap of 1000 iterations. The sum of the regression co-
efficients was then applied and interpreted as the percentage 
difference in the log-transformed diabetes estimates as all indi-
ces increase by one quartile. To assess for mixture synergy, 

mixture associations were assessed both for air quality varia-
bles and transportation-related variables separately in add-
ition to a joint transportation/air quality variable mixture 
association. The qgcomp R package was used to perform 
the described quantile-based g computation analysis in R ver-
sion 3.0.2 (R Foundation for Statistical Computing).

Results
County Characteristics
After restricting our analyses to only urban and metropolitan 
US counties, 1473 counties were included in the final individ-
ual and mixture analyses. Descriptive characteristics of these 
counties are shown in Table 1. Estimated by IHME, diabetes 
prevalence was calculated as the age-standardized proportion 
of individuals per county with a previous diabetes diagnosis or 
HbA1c or FPG based on the American Diabetes Association 
diagnostic criteria [21]. Diabetes control was estimated by 
IHME as the proportion of adults with a previous diabetes 
diagnosis who currently do not have elevated FPG or HbA1c 

[15]. Among urban/metropolitan counties, the average dia-
betes prevalence was 14%, while the average prevalence of 
diabetes control was only 47%. On average, 15% of individ-
uals had a bachelor’s degree or higher, while the average per-
centage of people who were unemployed was 8%. Last, the 
median household income among these urban US counties 
was approximately $70 000. Supplementary Table S1 depicts 
the Spearman correlation coefficients between the transporta-
tion and air quality indices [22]. There were weak to moderate 
correlations between factors, with the highest association be-
tween walkability and public transportation usage at 0.46.

Air Quality and Transportation Variables
After adjustment for average county education, employment, 
household income, and state, there were significant associa-
tions between air quality and transportation both with aver-
age diabetes prevalence and control. The estimated effects 
for transportation and air quality variables on average dia-
betes prevalence in urban and metropolitan counties stratified 
by minority proportion are shown in Table 2. Worse air qual-
ity, indicated by higher NO2, PM10, and PM2.5, was associ-
ated with a 0.8%, 3.6%, and 3% higher diabetes prevalence 
per 2.7-fold increase in each exposure, respectively (P = .03; 
P < .0001; P = .03). Regarding transportation variables, 
less usage of public transportation was associated with a 
1.1% increase in diabetes prevalence per 2-fold decrease in 
public transportation usage (P < .001). Furthermore, worse 
walkability was associated with 0.4% higher diabetes preva-
lence per point decrease in walkability score (P = .004). 
Conversely, higher commute times were associated with re-
duced diabetes prevalence (P < .001).

There was statistically significant interaction between 
PM10, commute time, and walkability with high and low mi-
nority proportion within a county (see Table 2). Specifically, 
the association between PM10 increases to a 5.3% increase 
in diabetes prevalence for counties with a high minority popu-
lation (P < .001). Furthermore, the association for commute 
time remains only among counties with a low minority popu-
lation (P < .001). Last, the association for walkability on dia-
betes prevalence is consistent across both strata; however, the 
magnitude of the association is greater among counties with a 
low proportion of minority residents (P < .001).

Table 1. Characteristics of selected US counties (N = 1473)

Characteristics Mean ± SD

Prevalence of diabetes, % 13.77 ± 2.14

Prevalence of diabetes control, % 46.87 ± 2.26

Percentage of individuals with bachelor’s degree 
or higher, %

14.57 ± 5.72

Percentage of individuals who are  
unemployed, %

7.68 ± 2.50

Median household income, $ 70 212 ± 153 725

Percentage of minority residents, % 22.8 ± 16.11
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Table 2 additionally depicts the relationship between trans-
portation and air pollution exposures with county-level diabetes 
control. The highest quartiles both of NO2 and PM10 were as-
sociated with 0.5% and 1.7% lower diabetes control per 
2-fold increase, respectively (P = .003; P < .001). Additionally, 
we found for each per minute increase in commute time there 
is a 0.5% reduction in diabetes control (P = .02).

There was statistically significant interaction between 
PM10, PM2.5, public transportation usage, and walkability 
with high and low minority proportion within a county (see 
Table 2). PM10 is associated with reduced diabetes control 
only among counties with a high proportion of minority resi-
dents (P < .001). Conversely, PM2.5 is associated with reduced 
diabetes control only among counties with a low proportion 
of minority residents (P = .001). Last, reduced public trans-
portation usage and worse walkability were associated with 
reduced diabetes control among counties with a high propor-
tion of minority residents (P = .017; P = .040).

Transportation and Air Quality Mixture
The separate and joint estimates for the associations of trans-
portation and air quality mixtures both with diabetes preva-
lence and control are shown in Table 3 and Fig. 1. There 
was a statistically significant association between both the 
transportation and air quality mixtures with increased dia-
betes prevalence (P < .001; P = .003). The joint mixture of 
transportation and air quality indices is approximately equal 
to the sum of the separate mixtures, indicating no synergy be-
tween the indices. Additionally, the air quality mixture is stat-
istically significantly associated with 0.62% lower diabetes 
control (P < .001), but the transportation mixture is not. 
When combined, the total mixture is associated with reduced 
diabetes control, but this is primarily driven by the air quality 
factors. The specific mixture component weights are shown 
(Supplementary Figs. S1 and S2) [22].

Sensitivity Analysis
Following further adjustment for county-level obesity and 
physical activity prevalence, there is general conservation of 
the associations between air quality and transportation met-
rics with diabetes prevalence and control, both overall and 
by minority stratification (Supplementary Table S2) [22]. 
There is attenuation for the association between PM2.5 and 

diabetes prevalence in addition to the associations between 
public transportation and walkability with diabetes control.

Discussion
This study is one of few to evaluate the associations between 
specific transportation-related, built environment factors 
and air pollution on diabetes prevalence and control in the 
United States, and it is also the first to assess these factors as 
a mixture. Using the EQI for urban and metropolitan counties 
in the United States, we found that counties with less public 
transportation usage and less walkability had a higher preva-
lence of diabetes. We also found associations for 
NO2, PM10, and PM2.5 with higher diabetes prevalence. 
Regarding diabetes control, we found that counties with 
higher air pollution had reduced diabetes control. These asso-
ciations were heterogeneous as counties with a higher propor-
tion of minority residents generally were more affected by 
these factors than counties with a lower proportion of minor-
ity residents. Last, the mixture analysis showed that the separ-
ate cumulative exposure of both less favorable transportation 
and worse air quality mixtures were positively associated with 
increased diabetes prevalence, while the overall mixture gen-
erally reflected the sum of the individual mixtures.

Our results are supported by previous studies that have 
found associations between active transportation or walkabil-
ity with lower rates of diabetes. Specifically, a study using 
the National Health and Nutrition Examination Survey 
(NHANES) showed that active transportation was associated 
with reduced diabetes risk [23]. Furthermore, a health effect 
assessment study in the San Francisco Bay Area suggested 
that replacing short car trips with walking or cycling decreases 
the burden of diabetes [24]. Beyond the United States, studies 
conducted internationally have shown that active transporta-
tion is associated with reduced diabetes risk and improve-
ments in other cardiovascular risk factors [25-34]. In 
addition to overall diabetes risk, studies have found positive 
associations between active transportation usage and im-
proved glucose tolerance [35-38].

Collectively, the present study and the published literature 
suggest that promoting active transportation in urban areas 
has the potential to improve metabolic health and reduce dia-
betes risk. The primary mechanism for this benefit is likely 
through increased physical activity required for active trans-
portation. This is supported by studies showing that increased 
active commuting reduces sedentary time [39]. Moreover, lon-
ger driving time has been shown to be associated with higher 
odds of smoking, decreased physical activity, decreased sleep, 
obesity, and worse overall physical and mental health [40]. It is 
speculated that simply eliminating automobile trips less than 
8 km (0.6 miles) in metropolitan areas of the US Midwest 
has the potential to reduce mortality and health care costs 
[41]. Curiously, our data suggest that longer commute times 
are associated with a reduced prevalence of diabetes. We sus-
pect that our county-level analysis likely captures individuals 
with extended commute times from more affluent 
residential communities in the periphery to jobs in the urban 
core, which is supported by the stratified analyses as the asso-
ciation persists only among counties with a low proportion of 
minority-identifying residents. Further analyses are required to 
delineate the precise effect of income on transportation-related 
outcomes, particularly in regions that exhibit marked spatial 
disparities in income, housing, and jobs.

Table 3. Combined effects of domain mixtures on diabetes 
prevalence and control among urban and metropolitan counties in 
the United States (N = 1473)a,b

% change (95% CI) Combined effect of domain mixture P

Diabetes prevalence

Separate transportation 1.25 (0.29 to 2.23) .011

Separate air quality 1.52 (0.81 to 2.24) <.001

Joint mixture 2.65 (1.47 to 3.85) <.001

Diabetes control

Separate transportation −0.21 (−0.71 to 0.30) .425

Separate air quality −0.62 (−1.06 to −0.17) .007

Joint mixture −0.69 (−1.31 to −0.07) .030

aAdjusted for education, unemployment, household income, and state. 
bAssociations correspond to a simultaneous increase in all domains by one 
quartile.
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In addition to active transportation, there is evidence link-
ing traffic-related air pollution with diabetes. In support of 
our results, numerous studies have shown positive relation-
ships between PM and NO2 with fasting glucose, diabetes 
prevalence, and diabetes incidence [42-47]. It is important 
to assess the potential consequences of air pollution with other 
related factors, specifically traffic-related built environments. 
As a result, we conducted a novel mixture analysis for the as-
sociations between air pollution factors and built environment 
factors with diabetes prevalence and control both individually 
and as a full mixture. These data indicate that the mixture of 
commute time, walkability, and public transportation usage is 
positively associated with county-level diabetes prevalence, ef-
fects that are primarily driven by public transportation and 
walkability factors. Furthermore, the mixture of air pollutants 
is also strongly associated with increased diabetes prevalence. 
The mixture summing all air pollution and built environment 
factors was equal to the sum of the individual mixtures. Very 
few studies have expanded mixture approaches to non-chem-
ical exposures, and this study demonstrates that environmen-
tal quality mixtures have a significant association with 
county-level diabetes rates.

While this study contributes to our knowledge of how ur-
ban built environments affect chronic disease risk, it has sev-
eral limitations. First, the study is limited by the fact that it 
is an ecological study examining populations at the county 
level. Consequently, interpretations are limited to population- 
level effects and cannot be applied to individuals. There are 
also unmeasured individual factors that are associated with 
diabetes prevalence and built environment exposures, increas-
ing the risk of residual confounding. Such factors include 
individual anthropometrics, including body composition, as 
well as lifestyle factors such as diet and physical activity. 
Furthermore, counties are sizeable geographic units with 
large, intracounty variation in diabetes-associated risk fac-
tors. Future studies are required to interrogate these relation-
ships with greater spatial resolution. Additionally, this study 
is cross-sectional as the evaluation of the EQI from 2006 to 
2010 overlaps with the measurement of average diabetes 
prevalence from 2006 to 2012. This limitation increases the 

risk for reverse associations and lack of temporality, but in-
herent characteristics of our exposures make reverse associa-
tions unlikely.

Despite these limitations, this study addresses knowledge 
gaps pertaining to the relationships between features of urban 
environments and metabolic health. Our results show that ur-
ban and metropolitan counties with worse public transporta-
tion, walkability, and air quality have a higher prevalence of 
diabetes compared to other urban and metropolitan counties, 
especially counties with larger minority populations. As such, 
this study provides justification for future studies examining 
individual-level associations between transportation-related 
built environments and air pollution with diabetes risk using 
cohort designs. Importantly, such future studies should also 
assess temporal associations between air quality and diabetes 
outcomes, including the effect of air quality changes over time 
and across seasons. Overall, this study encourages improve-
ments in urban planning and implementation of policies that 
positively influence the built environment to address the dia-
betes pandemic. With the burgeoning prevalence of diabetes 
and other chronic health conditions in the United States, there 
is an urgent need to heed this call and build urban environ-
ments that promote human health.
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