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Abstract
We consider the general problem of matching rheological models to experi-
ments. We introduce the concept of identifiability of models from a given set
of experiments. To illustrate this in detail, we study two rheology models, the
grade-two and Oldroyd 3-parameter models, and consider two hypothetical
rheometers to see if the coefficients of the rheology models are identifiable
from experimental measurements or not. For the Oldroyd models, we show
that the coefficients can be estimated from experiments from the two rheo-
meters. But for the grade-two model, it is not possible to distinguish the two
nonNewtonian parameters, only their sum can be estimated, and thus the grade-
two model is not identifiable by the two hypothetical rheometers. However,
our results imply that a different rheometer may be able to do that.

Keywords: rheology, rheometers, identifiability

There are many models for non-Newtonian fluids, as highlighted by the so-called Rheology
Drugstore of Joseph (2013). Similarly, there are many types of rheometers (Lodge et al 1991,
Gallot et al 2013, Nyström et al 2017) designed to measure the properties of different fluids.
Our goal here is to consider a small subset of each and ask the question: to what extent do the
rheometers distinguish coefficients in different models?

The next objective is to turn this question around, and ask what coefficients in differ-
ent models best match experimental data, and ultimately, which model bests fits the exper-
iments (Robert et al 1985). However, the prerequisite for such a study is the requirement that
given rheometers can distinguish the different parameters, a property that we can describe as
identifiability.

To begin this study, we consider two different rheology models: the grade-two model
(Girault and Scott 2001) and the Oldroyd models (Girault and Scott 2018). We chose these
models in part because of the Tanner (1982), Girault and Scott (2021a, 2021b)duality prop-
erty for these models. There are of course many other models that are used for rheology.
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One simple but popular one is the power-law model. This has been extensively studied
(Saramito 2016).

We begin by considering geometries and flow profiles that provide exact solutions for these
models, for two reasons. First of all, they give test problems for computer simulation codes.
But more importantly, they allow a clear view of what a given rheometer will distinguish
in a given model, or not. More realistic rheometer designs are considered in Pollock and
Scott (2022b).

We describe two hypothetical rheometers related to the exact solutions for the two models,
both of which involve two parameters in addition to viscosity. We will show that the Oldroyd
model is identifiable with these two rheometers but the grade-two model is not. On the other
hand, recent computational evidence (Pollock and Scott 2022b) indicates that the grade-two
model is identifiable by a contraction rheometer (Nyström et al 2017).

The state of rheology model theory has advanced recently with the advent of rigorous math-
ematical analyses of some models (Cioranescu et al 2016). This includes both the establish-
ment of a foundational theory for the system of partial differential equations and associated
boundary conditions, as well as numerical methods for solving the equations. Despite recent
advances in these directions (Pollock and Scott 2022a, 2022c), much still needs to be done
to clarify important properties of popular models. A review of Bird et al (1987) indicates the
breadth of models that would need to be considered.

We limit our purview to steady flows. Determining rheological properties from time-
dependent flows is likely much more complicated.

1. Rheology modeling challenge

The challenge of rheology modeling is to match apples and oranges. Let us say that the apples
are the models, of which there are many (Joseph 2013), and they have many parameters.
The oranges are rheological measurements, done by devices called rheometers, essentially
machines that do experiments to determine quantities such as a force as a function of flow
rate.

Experimental quantities and concepts include

• normal-stress difference (Lodge et al 1991),
• excess pressure drop (Nyström et al 2017)
• extensional viscosity (Petrie 2006),
• apparent viscosity (Tanveer et al 2006),
• shear thinning/thickening (dilatant),
• rheopectic versus thixotropic (time dependent).

How do we match them to models? A quote by Pearson in Petrie (2006) sums up the chal-
lenge this way:

‘… if you want to predict flow in all circumstances, you need a REoS [a rhe-
ological equation of state or constitutive equation], nothing less. Rheometric
functions can be useful in classification and categorization, involving qualitat-
ive statements, and can provide engineering approximations in particular flow
fields, but they cannot be inserted in CFD packages.’

In a very simple case, we can consider a particular model (e.g. Oldroyd) and ask how we
can determine its parameters x from the measurements y of a given rheometer, or multiple
rheometers. What computational simulations of rheometers produce is y= f(x). But we want
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to determine an inverse function x= g(y). To do so, we need to know if the given rheometer
can distinguish the parameters x of themodel. That is, for different values of x, do you get some
different data y? If not, then there could be multiple x for a single y, and so g is not a function.
We will see that, for example, measurements from a shear-flow rheometer will be identical,
independent of the key parameter of the grade-two model. Thus it may not be possible to find
a function g just using that one rheometer.

The parameters of a model cannot be reliably determined from a single experiment, or
even a number of experiments matching the number of parameters. Rather, a larger set of
experiments are used to determine parameters. For example, this can be done by varying the
flow rate, and thus the Reynolds number, e.g. by simply increasing the flow rate as a function
of time and measuring the resulting experimentally determined data. The flow rate can be
stabilized at different times to insure steady flow is established at each successive Reynolds
number.

2. Rheology models

All models of steady flow have the basic equation

u ·∇u+∇p=∇·T, (2.1)

where T is the extra (or deviatoric) stress. The models only differ depending on how the stress
is related to the velocity u. In the case of a Newtonian fluid

T= νA ,

where ν is the kinematic viscosity (Landau and Lifshitz 1959) and A=∇u+(∇u)t. Thus,
when ∇·u= 0, it follows that ∇·T= ν∆u, and we obtain the well known Navier–Stokes
equations for Newtonian flow,

−ν∆u+u ·∇u+∇p= f (2.2)

where f is a possible body force. Table 1 gives the kinematic viscosity ν for various fluids at
various temperatures. One feature indicated by the table is that gases increase in viscosity as
temperature is increased, whereas liquids decrease in viscosity as temperature is increased.
The unit chosen (stokes) makes it natural to measure lengths in centimeters and fluid speeds
in centimeters per second. For many rheometers, these are natural units.

Typically, nonhomogeneous boundary conditions are imposed: u= g on ∂Ω, the bounding
surface of the volume Ω.

2.1. Viscosity definition

The dynamic (or absolute) viscosity µ is defined typically as the ratio of stress σ and strain
rate:

µ
∂v
∂x

= σ. (2.3)

Stress is defined as the force per unit area across an infinitesimal surface. Force has units
ML/T2, so stress has units M/(LT2). Therefore the units in (2.3) are consistent. But v and x
are vector quantities, so in general µ would have to be a tensor of order (or arity) 4 in general
(Nunan andKeller 1984). For Newtonian fluids, this tensor reduces to a scalar times the identity
tensor.
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Table 1. Kinematic viscosity coefficients in stokes (cm2 s−1) for various fluids (Kestin
et al 1978, Gokdogan et al 2015).

Fluid Kinematic viscosity Conditions

Castor oil 2.41 T=40 C= 104 F
Air 0.100 T=−40 C=−40 F
Air 0.170 T= 40 C= 104 F
Water 0.010 T= 20 C= 68 F
Water 0.006 T= 45 C= 113 F
Mercury 0.001 T= 20 C= 68 F

The units of µ are mass divided by length×time, and the units of mass density ρ are mass
divided by length cubed. Thus the units of µ/ρ are

M/(LT)
M/L3

=
L2

T

which are the units for diffusion.
The kinematic viscosity ν is simply µ/ρ. Table 1 gives the kinematic viscosity for various

fluids under various conditions.

2.2. Apparent viscosity

Apparent viscosity is typically defined as (2.3) without significant elaboration. In Nijenhuis
et al (2007), more complicated notions are explored. But there are various ways to generate v
and the resultingσ will often have several components. So a precise experimental or computa-
tional framework is necessary to make a clear definition. Here we will give two such examples.
We will see that the ultimate relationship is tensorial, so it is not so clear how to define a scalar
value for ‘viscosity.’ Indeed, we seem to be lacking a good term to explain the principal effect
of rheology beyond Newtonian viscosity. One way is simply to define the apparent viscosity
νa as

νa(v) =
∥T∥
∥∇v∥

(2.4)

for some norm on matrices, where T is the observed stress related to the flow velocity v. The
same fluid could produce different values of apparent viscosity in different flow geometries,
however.

2.3. Thin/thick-ening

If we use the definition (2.4) for apparent viscosity, then we can say that the fluid is thinning
if

νa(tv)< νa(v)

when t> 1. When this holds for the expression (2.4) involving a norm, then any other notion
thinning would also apply. But (2.4) may be too strong to catch subtle behaviors.

Thickening would involve the reverse inequality:

νa(tv)> νa(v)
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when t> 1. Often, the terminology suggests a particular flow regime such as shear, which we
will study. But we will also consider a flow problem involving pure extension, in which ∇v
has quite different structure.

3. Oldroyd models

The simplest subset of the Oldroyd models involves three parameters, the fluid kinematic vis-
cosity ν and two rheological parameters λ1 and µ1. This subset lacks any explicit dissipation
mechanism, and Renardy (1985) suggested one way to incorporate one. Another approach
was explored in Girault and Scott (2018) that has a strong theoretical base and provides an
algorithm for approximation.

A three parameter subset of the eight parameter model of Oldroyd (1958) for the extra stress
takes the form

T+λ1(u ·∇T+R◦T+T◦Rt)−µ1(E◦T+T◦E) = 2νE,

where the five parameters λ2, µ2, µ0, ν0, and ν1 in Oldroyd (1958) are set to zero, and

R= 1
2 (∇ut−∇u) and E= 1

2 (∇u+∇ut).

We have used the notation T◦U to mean tensor multiplication, which is in this case the same
as matrix multiplication. Note that Et = E, Rt =−R, R+E=∇ut, and R−E=−∇u.

We can write the full model in the steady case as

u ·∇u+∇p=∇·T+ f in Ω, ∇·u= 0 in Ω, u= g on ∂Ω, (3.5)

T+λ1(u ·∇T+R◦T+T◦Rt)−µ1(E◦T+T◦E) = 2νE in Ω. (3.6)

The general case (3.6) can thus be written similarly as

T+λ1(u ·∇T− (∇u)◦T−T◦(∇ut))+ (λ1 −µ1)(E◦T+T◦E) = 2νE.

(3.7)

When λ1 = µ1 = λ, (3.6) is known as the upper-convected Maxwellian model (Tanner 1982,
Renardy 1985):

T+λ1(u ·∇T− (∇u)◦T−T◦(∇ut)) = 2νE.

When λ1 =−µ1 = λ, (3.6) is known as the lower-convected Maxwellian model. There are
physical reasons to assume that λ1 > 0, but we will allow λ1 < 0 as well. The case λ1 = µ1 = 0
corresponds to the incompressible Navier–Stokes equations.

The difficulty with this set of Oldroyd-type models is that there is no explicit dissipation
(Girault and Scott 2018) in the basic equation (2.1).

3.1. Extensional flow

For a given constant speedU, extensional flow u(x,y) = U(x,−y)t, depicted in figure 1, exhib-
its a constraint for theOldroydmodels. This flow is evidently incompressible, andwewill show
that there is a corresponding solution with constant T, so that ∇·T= 0. We have

E=∇u= U

(
1 0
0 −1

)
, R= 0. (3.8)

Thus

u ·∇u= Eu= U2

(
x
y

)
=
U2

2
∇
(
x2 + y2

)
,
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Figure 1. Extensional flow in a two-dimensional channel.

so we can take

p(x,y) =
U2

2

(
x2 + y2

)
(3.9)

and solve

−β∆u+u ·∇u+∇p= 0 inΩ, (3.10)

for any β.

3.2. Extensional stress for 3 parameter Oldroyd

If we take

u(x,y) = U(x,−y)t,

then (3.6) (for constant T) simplifies to

T−µ1(E◦T+T◦E) = 2νE. (3.11)

Suppose that

T=

(
a b
b c

)
,

for unknown constants a, b, c. Then

E◦T+T◦E= U

(
a b
−b −c

)
+U

(
a −b
b −c

)
= 2U

(
a 0
0 −c

)
.

From (3.8) and (3.11), we conclude that(
a b
b c

)
− 2µ1U

(
a 0
0 −c

)
= 2νU

(
1 0
0 −1

)
.

Thus b= 0 and

a=
2νU

1− 2µ1U
, c=− 2νU

1+ 2µ1U
. (3.12)

We can simplify this using the expressions

1
1− x

= 1+
x

1− x
,

1
1+ x

= 1− x
1+ x

, (3.13)

with x= 2µ1U. Thus there is a solution with constant T given by

T= 2νU

(
1

1−2µ1U
0

0 − 1
1+2µ1U

)

= 2νU

(
1 0
0 −1

)
+ 4νµ1U

2

(
1

1−2µ1U
0

0 1
1+2µ1U

)
(3.14)

6



Fluid Dyn. Res. 55 (2023) 015501 L R Scott

for extensional flow u(x,y) = U(x,−y)t. The first part of the stress T is the Newtonian stress

TN = 2νU

(
1 0
0 −1

)
and the second part we can think of as the Oldroydian part:

TO = 4νµ1U
2

(
1

1−2µ1U
0

0 1
1+2µ1U

)
.

There is a well known singularity (Owens and Phillips 2002) for flow at speed

U= 1/2|µ1|. (3.15)

For µ1 > 0, the coefficient a becomes singular for this value of U, and if µ1 were negative, the
coefficient c in (3.12) would be the one to indicate a singularity, instead of a. The limitation U
on µ1 can be viewed as a defect, but it can also be viewed as just a feature of the model. That
is, it says that there is a limit on the size of |µ1| related to the range of appropriate flow speeds
being modeled.

By considering extensional flow for the Oldroyd model, we have learned that

• the parameter µ1 can be very small and yet have a big effect, and
• the Oldroyd stress in extension does not depend directly on λ1.

3.3. Extensional rheometer

We can imagine an extensional rheometer where we measure the normal stress on the outlet
of the channel ˆ 1

0
ntTn(L,y)− p(L,y)dy, (3.16)

where n= (1,0)t and L indicates the end of the channel. Physically, we could put a membrane
over the outlet and measure its deformation, at least for small deformations. The integral of
the normal stress gives the force on the membrane.

If we are mainly interested in how (3.16) differs from Newtonian flow, this simplifies to be

4νU2µ1

1− 2µ1U
, (3.17)

since the pressure is the same for Newtonian flow. Thus the Oldroyd fluid can be shear-
thickening or shear-thinning depending on the sign of µ1.

3.4. Computing coefficients from data

The force F measured in the extensional flow rheometer, that is the Newtonian component
together with the non-Newtonian force in (3.17), is

F(U) = 2νU+U2

(
4νµ1

1− 2µ1U
− cp

)
, (3.18)

where (3.9) implies that

cp = U−2
ˆ 1

0
p(L,y)dy=

ˆ 1

0
(L2 + y2)dy. (3.19)
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We claim that plotting (3.18) as a function of U allows identification of ν and µ1, although it
would give no information on λ1. We will demonstrate this as follows.

We can measure the slope s(U) = F ′(U) from the plot of (3.18) as a function of U to get

s(U) = 2ν+ 4U

(
2νµ1

1− 2µ1U
− cp

)
+U2

(
8νµ2

1

(1− 2µ1U)2

)
. (3.20)

We have 2ν = limU→0 s(U) = s(0). In particular, this shows that the extensional rheometer can
measure the viscosity. Moreover,

s(U)/s(0) = 1+
4µ1U

1− 2µ1U
− 4Ucp/s(0)+

(2µ1U)2

(1− 2µ1U)2

= 1+ 2f(2µ1U)− 4Ucp/s(0)+ f(2µ1U)
2,

(3.21)

where

f(x) = x/(1− x). (3.22)

Differentiating (3.21) with respect to U, we find

s ′(U)/s(0) =−4cp/s(0)+ 4µ1f
′(2µ1U)

(
1+ f(2µ1U)

)
.

Thus

s ′(0)/s(0) =−4cp/s(0)+ 4µ1f
′(0) =−4cp/s(0)+ 4µ1, (3.23)

so that cp/s(0) = µ1 − 1
4 s

′(0)/s(0). Therefore

s(U)/s(0) = 1− 2U
(
µ1 − 1

4 s
′(0)/s(0)

)
+ 2f(2µ1U)+ f(2µ1U)

2,

s ′(U)/s(0)− s ′(0)/s(0) = 4µ1

(
− 1+ f ′(x)

(
1+ f(x)

))
,x= 2µ1U. (3.24)

But

g(x) = f ′(x)
(
1+ f(x)

)
− 1=

1
(1− x)2

1
1− x

− 1

=
1

(1− x)3
− 1=

3x− 3x2 + x3

(1− x)3
. (3.25)

Thus

s ′(U)/s(0)− s ′(0)/s(0) = 4µ1g(2µ1U) = 4µ1g(x), x= 2µ1U. (3.26)

Moreover,

g ′(x) =
(
(1− x)−3 − 1

) ′
= 3(1− x)−4 > 0, 0⩽ x< 1, (3.27)

so g is monotonically increasing. From (3.26)

U
(
s ′(U)− s ′(0)

)
s(0)

= 4µ1Ug(2µ1U) = 2xg(x), x= 2µ1U. (3.28)

Since g is monotonically increasing, the function ϕ defined by

ϕ(x) = 2xg(x)

is also monotonically increasing for 0⩽ x< 1. Thus we can write

µ1 =
1
2U

ϕ−1

(
U
(
s ′(U)− s ′(0)

)
s(0)

)
. (3.29)
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Figure 2. Plot of xg(x) = 1
2ϕ(x) where g is defined in (3.25).

Note that solving ϕ(x) = d can easily be done via Newton’s method. Both the slope and its
derivative can be obtained reliably from the data via the Savitsky–Golay algorithm (Scott and
Scott 1989). The value of µ1 can thus be reliably estimated by averaging (3.29) over a suitable
range of U values. A plot of 1

2ϕ is in figure 2.
To get a more precise understanding of the behavior of µ1 on the data, we can also write

xg(x) = x
3x− 3x2 + x3

(1− x)3
= x2q(x), where q(x) =

3− 3x+ x2

(1− x)3
.

Then

q ′(x) =
(−3+ 2x)(1− x)3 + 3

(
3− 3x+ x2

)
(1− x)2

(1− x)6

=
(−3+ 2x)(1− x)+ 3

(
3− 3x+ x2

)
(1− x)4

=
(−3+ 5x− 2x2)+

(
9− 9x+ 3x2

)
(1− x)4

=
6− 4x+ x2

(1− x)4
=

2+(x− 2)2

(1− x)4
⩾ 3(1− x)−4, 0⩽ x< 1.

(3.30)

Therefore, q is strictly increasing for 0⩽ x< 1. For U small, we have

f(x) = xg(x) = x2q(x) =
U
(
s ′(U)− s ′(0)

)
s(0)

≈ U2 s
′ ′(0)
s(0)

, (3.31)

so that

q(0)x2 = 3x2 ≈ U2 s
′′(0)
s(0)

,

9
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Figure 3. Shear flow in a two-dimensional channel. the upper channel wall is moving.

and hence

x≈ U

√
s ′ ′(0)
3s(0)

=⇒ µ1 ≈

√
s ′ ′(0)
12s(0)

. (3.32)

We do not need to differentiate the slope of the data twice to compute µ1 via the formula (3.29).
Inverting the function ϕ can be done numerically to high accuracy via Newton’s method,
without relying on any smoothness of the data.

3.5. Shear flow

We consider two-dimensional flow in a channel Ω= [−L,L]× [0,1]. Couette, or shear, flow,
has u= U(y,0)t and p constant if T is constant as shown in figure 3. Now we consider (3.7).
We have

∇u=

(
0 U
0 0

)
, E=

1
2

(
0 U
U 0

)
, R=

1
2

(
0 −U
U 0

)
,

Rt =
1
2

(
0 U
−U 0

)
, (3.33)

and suppose that

T=

(
a b
b c

)
.

Then

E◦T+T◦E=
U
2

(
b c
a b

)
+
U
2

(
b a
c b

)
= U

(
b 1

2 (a+ c)
1
2 (a+ c) b

)
.

Similarly,

R◦T+T◦Rt =
U
2

(
−b −c
a b

)
+
U
2

(
−b a
−c b

)
= U

(
−b 1

2 (a− c)
1
2 (a− c) b

)
.

Therefore

T+λ1
(
R◦T+T◦Rt

)
−µ1(E◦T+T◦E)

=

(
a−U(λ1 +µ1)b b+ 1

2U
(
λ1(a− c)−µ1(a+ c)

)
b+ 1

2U
(
λ1(a− c)−µ1(a+ c)

)
c+U(λ1 −µ1)b

)
.

(3.34)

Therefore the equation

T−λ1
(
(∇u)◦T+T◦(∇u)t

)
= 2νE= ν

(
0 U
U 0

)
10
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reduces to

a= (λ1 +µ1)bU, c=−(λ1 −µ1)bU, a− c= 2λ1bU, a+ c= 2µ1bU,

so that

νU= b+ 1
2λ1(a− c)U− 1

2µ1(a+ c)U

= b
(
1+(U)2(λ2

1 −µ2
1 )
)
.

(3.35)

Therefore

b=
νU

1+(U)2(λ2
1 −µ2

1 )
.

Thus

a= (λ1 +µ1)bU=
ν(λ1 +µ1)U2

1+U2(λ2
1 −µ2

1 )
, c=

−ν(λ1 −µ1)U2

1+U2(λ2
1 −µ2

1 )
,

and so

T=
ν

1+U2(λ2
1 −µ2

1 )

(
(λ1 +µ1)U2 U

U −(λ1 −µ1)U2

)
. (3.36)

Let us define the stress TN for Newtonian shear flow by

TN = νU

(
0 1
1 0

)
, (3.37)

and we can denote the Oldroyd stress (3.36) by TO. Then

TO =
1

1+U2(λ2
1 −µ2

1 )
TN +

νU2

1+U2(λ2
1 −µ2

1 )

(
λ1 +µ1 0

0 −λ1 +µ1

)
.(3.38)

3.6. Shear rheometer

We can imagine a rheometer based on shear flow, as follows. We have a rotating belt at the
top of the channel enforcing the velocity U(1,0). If we did not constrain the bottom of the
channel, the whole apparatus would move to the right. So we measure the force required to
keep it in place. This force must be balanced by the fluid shear stress

ˆ L

−L
ntTOt(x,0)dx. (3.39)

Here, n= (0,−1) is the outward normal to the bottom of the channel, and t= (1,0) is tangent
to the bottom. But(

λ1 +µ1 0
0 −λ1 +µ1

)(
1
0

)
=

(
λ1 +µ1

0

)
(3.40)

so that

nt
(
λ1 +µ1 0

0 −λ1 +µ1

)
t= 0. (3.41)

Thus the force measured for an Oldroyd fluid is the same as that measured for a Newtonian
fluid, multiplied by

1
1+U2(λ2

1 −µ2
1 )

.
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Plotting

f(U) =
2νU

1+U2(λ2
1 −µ2

1 )

as a function ofU would allow identification of both ν and λ2
1 −µ2

1 , but it would not determine
λ1 and µ1 separately. But if we combine this with the results of the extensional rheometer, we
can recover λ1, although the sign would be ambiguous. In particular,

f(U)+U2λ2
1 f(U) = U2µ2

1 f(U)+ 2νU.

Thus

λ2
1 =

U2µ2
1 f(U)+ 2νU− f(U)

U2f(U)
= µ2

1 +
2νU− f(U)
U2f(U)

.

Note that for small U,

f(U)≈ 2νU
(
1−U2(λ2

1 −µ2
1 )+

(
U2(λ2

1 −µ2
1 )
)2

+O(U6)
)
,

so that

2νU− f(U)
U2f(U)

≈ 2νU3(λ2
1 −µ2

1 )+ 2νU5(λ2
1 −µ2

1 )
2 +O(U7)

2νU3 +O(U5)

≈ λ2
1 −µ2

1 +
U2(λ2

1 −µ2
1 )

2 +O(U4)

1+O(U2)

(3.42)

remains bounded as U→ 0.

3.7. Oldroyd rheometer conclusions

We have shown that a shear-flow rheometer can be used to determine both ν and the combin-
ation λ2

1 −µ2
1 , whereas the extensional-flow rheometer can be used to determine both ν and

µ1, but not λ1. Combining measurements from these two rheometers allows the determination
of all three coefficients, and it includes a cross check on the viscosity parameter ν.

4. Grade-two fluid model

The grade-twomodel of Ericksen and Rivlin (1997), Girault and Scott (1999) can be expressed
as a single equation. The stress tensor for the grade-two fluid model satisfies

T= νA+α1
∆

∆t
A+α2A2 ,

where A= (∇u)+ (∇u)t = 2E and the material derivative and the lower-convected Oldroy-
dian derivative are given by

D
Dt

f :=
(
∂

∂t
+u ·∇

)
f,

∆

∆t
f :=

D
Dt

f+ f(∇u)+ (∇u)tf , (4.43)

for any tensor-valued function f. For the steady-state, grade-two fluid model, the stress tensor
simplifies to

T= νA+α1
(
u ·∇A+A◦(∇u)+ (∇u)t◦A

)
+α2A◦A, (4.44)

12
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where the operator ◦ is just matrix multiplication, but it has been made explicit to simplify
interpretation. Thus the equations of steady fluid motion (2.1) can be written

−ν∆u+u ·∇u+∇p=∇·TG, ∇·u= 0 in Ω, u= g on ∂Ω. (4.45)

Here

TG = T− νA= α1
(
u ·∇A+A◦(∇u)+ (∇u)t◦A

)
+α2A◦A

= α1
(
u ·∇A−A◦(∇u)t− (∇u)◦A

)
+(α1 +α2)A◦A.

(4.46)

4.1. Extensional flow

We saw in section 3.2 that extensional flow, given by

u(x,y) = U(x,−y)t and p(x,y) =
U2

2

(
x2 + y2

)
,

is a solution of the Navier–Stokes equations (3.10) in the domain depicted in figure 1. Thus
we also have a solution of the grade-two model in that domain provided that

α1
(
u ·∇A+A◦(∇u)+ (∇u)t◦A

)
+α2A◦A (4.47)

is constant. Since ∇u is symmetric in this case, we have

A= 2∇u= 2U

(
1 0
0 −1

)
,

and thus u ·∇A= 0 and

2A∇u= 2
(
∇utAt

)t
= 2∇utA= A2 = 4U2

(
1 0
0 1

)
= 4U2I,

where I is the identity matrix. Thus the expression in (4.47) is constant. Then

T= νA+α1
(
A◦(∇u)+ (∇u)t◦A

)
+α2A◦A

= 2νU

(
1 0
0 −1

)
+ 4(α1 +α2)U

2

(
1 0
0 1

)
.

(4.48)

4.2. Extensional flow rheometer

The extensional flow rheometer would report a difference from Newtonian flow for the normal
stress at the outlet given by

TG = 4(α1 +α2)U
2.

Thus the grade-two fluid can be shear-thickening or shear-thinning depending on the sign of
α1 +α2.

The force measured will be a combination of ν and α1 +α2, namely

2νU+U2
(
4(α1 +α2)− cp

)
,

where cp is defined in (3.19). By plotting the measured force againstU, it is possible to determ-
ine both ν and α1 +α2.

13
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4.3. Shear flow: grade two

We saw in section 3.5 that u= U(y,0)t and p is constant if T is constant. We have

∇u=

(
0 U
0 0

)
, A=

(
0 U
U 0

)
, A◦A=

(
U2 0
0 U2

)
,

A◦∇u=∇ut◦A=

(
0 0
0 U2

)
.

Thus (4.44) implies that

T= νU

(
0 1
1 0

)
+ 2α1U

2

(
0 0
0 1

)
+α2U

2

(
1 0
0 1

)
. (4.49)

Here we have T= TN +TG where

TN = νU

(
0 1
1 0

)
, TG = 2α1U

2

(
0 0
0 1

)
+α2U

2

(
1 0
0 1

)
.

4.4. Shear flow rheometer

The shear-flow rheometer described in section 3.6 for the grade-two model will measure the
same quantity as in (3.39) but with TO replaced byTG = T−TN. And like the Oldroyd model,
nTGt= 0, so the simple shear rheometer will give the same result as for a Newtonian fluid,
independent of the parameters αi. Thus a pure shear-flow rheometer will report ν and a pure
extensional flow rheometer will report a combination of ν and α1 +α2. Combining the two
rheometers, we can determine α1 +α2, but it does not seem possible to determine α1 and α2

separately with these two geometries alone.

4.5. Grade-two rheometer conclusions

We have seen that the simple shear-flow rheometer described here does not distinguish the
coefficients α1 and α2 in the grade-two model, despite the fact that the induced stress differ-
ence TG is quite complex in shear. If we take the definition (2.4) for apparent shear, then the
grade-two model is shear thinning when α2 is sufficiently negative, and otherwise it is shear
thickening (assuming α1 > 0 in both cases).

5. Tanner duality

Tanner (1982) realized that there is a duality between the grade-two model (Girault and Scott
2001) and the Oldroyd models Girault and Scott (2018). This duality has been studied more
recently from a mathematical perspective (Girault and Scott 2021a, 2021b). More precisely,
Tanner observed that the solutions of grade-two were asymptotically the same as those for
Oldroyd, with the parameters related by

α1 =−νλ1, α1 +α2 = νµ1. (5.50)

For clarity, let us write TO for the total Oldroyd stress, and TG for the total grade-two stress.
We also write TN for the Newtonian stress. With the parameters related by (5.50), we expect
that as |λ1|+ |µ1| → 0,

TO −TG =O(λ2
1 +µ2

1 ) =O(α2
1 +α2

2 ), (5.51)
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for fixed flow rateU and viscosity ν. Since we have computed stresses for thesemodels in shear
and extensional flow, we can compare them to test the range of validity of Tanner duality.

5.1. Extensional stresses

For extensional flow (section 3.1), the Newtonian stress TN and Oldroyd stress TO are given
in (3.14):

TN = 2νU

(
1 0
0 −1

)
, TO = TN + 4νµ1U

2

(
1

1−2µ1U
0

0 1
1+2µ1U

)
. (5.52)

Thus TO −TN =O(µ1). By contrast, the grade-two stress TG is given in (4.48) as

TG = TN + 4(α1 +α2)U
2

(
1 0
0 1

)
= TN + 4νµ1U

2

(
1 0
0 1

)
, (5.53)

where we have invoked (5.50). Thus we see that TG −TN =O(µ1). But more importantly, we
can use (3.13) to show that

TO −TG = 4νµ1U
2

((
1

1−2µ1U
0

0 1
1+2µ1U

)
−
(
1 0
0 1

))

= 8νµ2
1U

3

(
1

1−2µ1U
0

0 −1
1+2µ1U

)
=O(µ2

1 ),

(5.54)

in agreement with Tanner duality. On the other hand, TO and TG diverge rapidly as U→
1/2|µ1| in accordance with (3.15). Note that TG displays no singularity in this limit.

5.2. Shear stresses

For shear flow (section 3.5), the Newtonian stressTN andOldroyd stressTO are given in (3.38):

TN = νU

(
0 1
1 0

)
,

TO =
1

1+U2(λ2
1 −µ2

1 )
TN +

νU2

1+U2(λ2
1 −µ2

1 )

(
λ1 +µ1 0

0 −λ1 +µ1

)
.

(5.55)

Therefore (
1+U2(λ2

1 −µ2
1 )
)
TO = TN + νU2λ1

(
1 0
0 −1

)
+ νU2µ1

(
1 0
0 1

)
.

By contrast, the grade-two stress TG is given in (4.49) as

TG = TN + 2α1U
2

(
0 0
0 1

)
+α2U

2

(
1 0
0 1

)
= TN +U2

(
α2 0
0 2α1 +α2

)
= TN −α1U

2

(
1 0
0 −1

)
+(α1 +α2)U

2

(
1 0
0 1

)
.

(5.56)

Therefore invoking (5.50), we see that(
1+U2(λ2

1 −µ2
1 )
)
TO = TG. (5.57)
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Thus

TO −TG = U2(λ2
1 −µ2

1 )T
O, (5.58)

again confirming Tanner duality.

5.3. Model complementarity

Tanner duality allows us to pick models appropriately that match certain experiments. Let us
re-examine shear flow and postulate a rheometer that measures the normal force on the top
and bottom of the domain. Such a theoretical rheometer shares some features with the Lodge
rheometer (Lodge et al 1991).

Let us simplify to the case where µ1 = α1 +α2 = 0. The Newtonian stress contributes noth-
ing to the normal force, and the pressure is constant in shear flow, so the normal force is pro-
portional to λ1 for the Oldroydmodel and−α1 for the grade-twomodel, where the constants of
proportionality have the same sign.We can imagine two complementarymaterials A andB, one
that pushes out on the channel walls and one that pulls in, as the fluids are sheared. Both types
of materials are known in solid mechanics, so one cannot say a priori either is unrealistic. Then
picking the Oldroyd model for material A might require λ1 < 0, which has several drawbacks
from a modeling perspective. Correspondingly, picking the grade-two model for material B
would require α1 < 0, with its own set of drawbacks. However, picking the Oldroyd model for
material B would have λ1 > 0 due to Tanner duality, so it would be the preferred model for
simulation. Similarly, picking the grade-two model for material A would have α1 > 0 due to
Tanner duality, so it would be the preferred model for simulation.

6. Real rheometers

There is a variety of actual rheometers that are employed to make measurements. Here we
describe just a few.

6.1. Contraction rheometers

A rheometer that emphasizes extensional flow is based on a contraction nozzle (Nyström et al
2017). Fluid is forced through the contraction either by pressure or a rod. The flow domain is
defined by

Ω=
{
(x,y,z)

∣∣ b⩽ z⩽ t, x2 + y2 ⩽ f
(
x2 + y2

)}
for a given function f.

Since the two theoretical rheometers fail to detect α1 for the grade-two fluid, a natural ques-
tion is whether or not a contraction rheometer can do so. Since the extensional flow rheometer
detects α1 +α2, a natural approach is the consider the special case α1 +α2 = 0, for which
the grade-two model simplifies (Girault and Scott 1999, 2001). Similarly, it makes sense to
consider a two-dimensional contraction as a first step, again simplifying the grade-two model.
Such a geometry is considered in Pollock and Scott (2022b).

6.2. Counter-rotating cylinders

One common type of rheometer is based on counter-rotating concentric cylinders, essentially
the original experiment of Couette (Gallot et al 2013). What is measured is the torque on one
cylinder induced by the other cylinder. For example, the outer cylinder is rotated at a fixed
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speed and the torque on the inner cylinder required to keep it stationary is recorded. This
measures quantities similar to our pure shear rheometer, so we do not pursue this further here.

6.3. X-plate rheometers

There are two different, but related rheometers that involve a plate below and either (a) a
cone above or (b) a parallel plate above. For example, the lower plate could be fixed and the
upper structure rotated. Thus one obtains the cone-and-plate rheometer (Markovitz et al 1955,
Ellenberger and Fortuin 1985) and the parallel-plate rheometer (Yamamoto 1958, Ellenberger
and Fortuin 1985). In both cases, the geometry and (steady) flow have radial symmetry.

6.4. Hole-pressure difference rheometer

Lodge (1996) constructed a device to measure normal stress differences. The flow in a two-
dimensional version of this device has been proposed as a test problem (Lodge et al 1991).
Such approaches have been used effectively in rheological measurements in food technology
(Padmanabhan and Bhattacharya 1993).

6.5. Journal bearing flow

In Robert et al (1985), two-dimensional computational simulations of journal bearings were
used to evaluate six different rheological models.

7. Thick or thin

We summarize here the results of the exact solutions for both rheological models. Our objective
is help assess whether models are thinning or thickening in different contexts. There are two
issues to consider. First of all, does the stress change with changing flow rate or strain rate in
a substantial way? If it does, does a particular rheometer report that change? We have noted
the shortcoming of the shear rheometer for grade-two fluids. But we can see that it is not due
to a lack of change of the stress itself.

Since the stress is a symmetric tensor, in two dimensions any stress can be written in terms
of three basis vectors:

I =

(
1 0
0 1

)
, J =

(
1 0
0 −1

)
, K =

(
0 1
1 0

)
. (7.59)

In general, we can write(
α β
β γ

)
= 1

2 (α+ γ)I + 1
2 (α− γ)J +βK. (7.60)

Suppose we choose the norm in (2.4) to be the Frobenius norm

∥(aij)∥F =
√∑

ij

a2
ij .

This is the norm associated with the inner-product(
(aij),(bij)

)
F
=
∑
ij

aijbij.

17



Fluid Dyn. Res. 55 (2023) 015501 L R Scott

In this inner-product, I, J , and K are all orthogonal and have Frobenius norm equal to
√
2.

Thus

∥aI + bJ + cK∥F =
√

2
(
a2 + b2 + c2

)
. (7.61)

Now let us use the representation (7.60) to describe our previous calculations of stresses in
different flow regimes.

7.1. Oldroyd extensional flow

We first need to resolve the matrix on the right in (3.14). Using (7.60), we have(
1

1−2µ1U
0

0 1
1+2µ1U

)
=

1
2

(
1

1− 2µ1U
+

1
1+ 2µ1U

)
I

+
1
2

(
1

1− 2µ1U
− 1

1+ 2µ1U

)
J

=
1

1− (2µ1U)2
(
I + 2µ1UJ

)
.

(7.62)

Therefore

TN = 2νUJ , T= TN +
4νµ1U2

1− (2µ1U)2
(
I + 2µ1UJ

)
.

Thus

∥T∥2
F =

(
2νU+

8νµ2
1U

3

1− (2µ1U)2

)2

+

(
4νµ1U2

1− (2µ1U)2

)2

= (2νU)2
(
1+

4µ2
1U

2

1− (2µ1U)2

)2

+(2νU)2
(

2µ1U
1− (2µ1U)2

)2

= (2νU)2
(

1
1− (2µ1U)2

)2

+(2νU)2
(

2µ1U
1− (2µ1U)2

)2

=
(2νU)2(

1− (2µ1U)2
)2 (1+(2µ1U)

2
)
.

(7.63)

The strain (3.8) for extensional flow is proportional to U, so the apparent viscosity (2.4) tends
to infinity as U→ 1/2|µ1|, and this would be described as extensional thickening.

7.2. Oldroyd shear flow

From (3.38), we find

TN = νUK, T=
1

1+U2(λ2
1 −µ2

1 )

(
TN + νU2

(
λ1J +µ1I

))
.

If λ1 = µ1, this simplifies to

T= TN + νU2λ1
(
J + I

)
.

In this special case,

∥T∥2
F = (νU)2

(
1+ 2U2λ2

1

)
,
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and asymptotically as U→∞,

∥T∥F ≈ νU(1+
√
2Uλ1).

In the general case,

∥T∥2
F = (νU)2

1+U2
(
λ2
1 +µ2

1 )(
1+U2(λ2

1 −µ2
1 )
)2 = ν 2 U−2 +

(
λ2
1 +µ2

1 )(
U−2 +(λ2

1 −µ2
1 )
)2 .

If λ1 ̸=±µ1, then

∥T∥F → ν

√
λ2
1 +µ2

1

|λ2
1 −µ2

1 |
.

as U→∞. This would qualify as shear thinning, since (3.33) implies that the Frobenius norm
of the strain is proportional to U.

7.3. Grade-two extensional flow

From (4.48), we find

TN = 2νUJ , T= TN + 4(α1 +α2)U
2I.

Thus

∥T∥2
F = (2νU)2 + 16(α1 +α2)

2U4.

Since the strain (3.8) for extensional flow is proportional to U, the apparent viscosity (2.4)
grows monotonically as U increases, and this would be described as extensional thickening.

7.4. Grade-two shear flow

From (4.49), we find

TN = νUK, T= TN +U2(α1(I −J )+α2I
)
= TN +U2((α1 +α2)I −α1J

)
.

Thus

∥T∥2
F = (νU)2 +(α1 +α2)

2U4 +α2
1U

4.

Again, the strain (3.8) for shear flow is proportional toU, so the apparent viscosity (2.4) grows
monotonically as U increases, and this would be described as shear thickening.

7.5. Other metrics

A norm is blunt instrument, but we saw in section 7.2 that it can identify shear thinning. But
there may be a finer tool to analyze the impact of stress. The expression σn is the force on the
plane perpendicular to the unit vector n due to the stress σ. Then ntσn is the force due to σ
in the direction n, that is, against the surface represented by the plane. It t is another direction,
then ttσn is the force due to σ in the direction t. One direction of interest would be a direction
tangent to the plane.

In the two-dimensional case, we can use the decomposition (7.60) for stresses and take t to
be orthogonal to n and consider the force magnitudes

ntσn, ttσn.

These represent the ‘observables’ for σ. Note that for symmetric σ, ttσn= ntσt.
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To quantify this, let us assume that

n= (cosθ,sinθ), t= (−sinθ,cosθ).

Then we have

ntIn= 1, ttIn= 0,

ntJ n= cos2 θ− sin2 θ = cos2θ, ttJ n=−2cosθ sinθ =−sin2θ.

ntKn= 2cosθ sinθ = sin2θ, ttKn= cos2 θ− sin2 θ = cos2θ.

Therefore (
nt(aI + bJ + cK)n
tt(aI + bJ + cK)n

)
=

(
a
0

)
+

(
cos2θ sin2θ
−sin2θ cos2θ

)(
b
c

)
. (7.64)

We recognize the matrix in (7.64) as a rotation by −2θ.
As a first application, let us apply this methodology to Newtonian fluids. For shear flow,

TN = νUK, and for extensional flow, TN = 2νUJ . Thus(
ntTNn
ttTNn

)
=

(
cos2θ sin2θ
−sin2θ cos2θ

)(
2νU
0

)
(extensional flow)(

ntTNn
ttTNn

)
=

(
cos2θ sin2θ
−sin2θ cos2θ

)(
0
νU

)
(shear flow).

(7.65)

For example, if we take θ= 0 (meaning the plane is perpendicular to the x-axis), then the
normal force on this plane would be proportional to 2νU in extensional flow (with the shear
stress zero), whereas the tangential force on this plane would be proportional to νU in shear
flow (with the normal stress zero).

As another application, we apply this methodology to grade-two shear flow. Then(
ntTn
ttTn

)
=

(
U2(α1 +α2)

0

)
+

(
cos2θ sin2θ
−sin2θ cos2θ

)(
−U2α1

νU

)
. (7.66)

For θ= 0, the normal force on the plane perpendicular to the x-axis is proportional to U2α2.
This could be measured with a net held initially in this plane, the deformation of the net being
proportional to the force. Together with the measurement of α1 +α2 via the extensional flow
rheometer, α1 can then be determined.

8. Conclusions

We have studied the grade-two and Oldroyd 3-parameter models, and we computed solutions
relevant to two hypothetical rheometers to see if the coefficients of the rheology models are
identifiable from experimental measurements or not. For the Oldroyd models, we showed that
the coefficients can be estimated from experiments from the two rheometers. But for the grade-
twomodel, it was not possible to distinguish the two nonNewtonian parameters, only their sum
can be estimated.
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