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Abstract 

 The current study utilized a rarely used statistical tool in anesthetic research, Hurst 

analysis, to a group of participants who received propofol administration. Our results suggest 

that the visual imagery pathway, involving visual attention, primary and secondary visual cortex, 

is the primary target for propofol modulation during sedation. The moving window approach 

revealed qualitative differences in the brain activity within a single scanning session, which has 

not been reported in the literature. Together, our findings add to the emerging literature on the 

dissociation between mental imagery abilities and consciousness and provide evidence for visual 

imagery processing in behaviorally unresponsive participants. 
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The Effects of Propofol on Hurst Exponent During Rest and Narrative Listening 

Studying reduced levels of consciousness can unveil the pharmaceutical mechanisms of 

sedative drugs and elucidate brain functioning under various states. However, despite existing 

efforts, much remains unclear about the sedated brain, particularly the neural processes that 

occur during the waning of consciousness (Hudetz, 2012; Kandeepan et al., 2020). As such, the 

present study applied Hurst analysis, a statistical tool rarely used in anesthetic research, to 

analyze functional magnetic resonance imaging (fMRI) data from sedated participants and 

explore the selective modulation of the brain by propofol (Hurst, 1951; Kardan et al., 2020). Our 

aim is to conduct an in-depth examination of the impact of propofol on the Hurst exponent (H) in 

the brain across time and space, with the ultimate goal of providing a unique perspective to 

understand the effects of propofol and contributing to the growing body of knowledge on 

sedative drugs and brain functioning. 

Hurst analysis is a statistical tool that has shown promise in evaluating the fractalness of 

time series data (i.e., how similar does a signal look at different timescales). It has been 

successfully applied in various modalities, including fMRI, electroencephalography (EEG), and 

functional near-infrared spectroscopy (fNIRS; Ciuciu et al., 2012; Kardan et al., 2020; Zhuang et 

al., 2022), but largely overlooked in the research of brain functioning under anesthesia. To date, 

Varley et al. (2020) was the only study that employed Hurst analysis to analyze neuroimaging 

data from sedated participants. They found that H was generally higher, indicating a reduction in 

overall brain activity, during sedation compared to wakefulness.  

The framework of Hurst analysis is built upon the concept of fractal, which refers to the 

mathematical object that displays scale invariance (Churchill et al., 2014; Kardan et al., 2020; 

Stier et al., 2021). A higher Hurst exponent, H, denotes greater structural self-similarity at 
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different levels of magnification or across different timescales (see Figure 1). In psychology, H 

has been associated with many cognitive and affective processes, such as learning, task 

difficulty, and psychopathology (Churchill et al., 2016; Kardan et al., 2020; Stier et al., 2021; 

Wei et al., 2013). Multiple studies have suggested that H is a computationally efficient index for 

assessing cognitive resource allocation. A decreased regional H typically represents more mental 

effort, or more cognitive resources allocated to the corresponding brain region (Churchill et al., 

2016; Kardan et al., 2020; Stier et al., 2021). Individuals generally exhibit lower H values during 

tasks as compared to the resting state (He, 2011; Kardan et al., 2020). Novel and complex tasks 

can induce a further decrease in regional H values as people exert more efforts to learn and 

integrate the rules and suppress irrelevant information. A higher H has been found to separate 

good task-learners from mediocre ones potentially because the former has developed helpful 

task-related memories and effective cognitive strategies to make the same task less resource-

consuming (Churchill et al., 2016; Kardan et al., 2020). 

Figure 1 

Example Hurst time series 
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Note. H close to 1 would have smoother looking temporal fluctuations (top) while H close to 0.5 

looks like random noise (bottom). The top signal can be described as more fractal, or, more self-

similar than the bottom signal. 

The critical state theory was proposed to account for the relationship between H and 

cognitive processes. In physics, a critical state is a state of a system that is poised at a phase 

transition point and ready to undergo a sudden and large-scale reorganization in response to 

environmental changes (Cocchi et al., 2017). In the brain, the critical state allows optimal 

information transmission and adaptability by maximizing the potential information exchange 

between different brain systems (Cocchi et al., 2017). In other words, the brain at criticality is 

readily transformable to any task-relevant states depending on external demands. Researchers 

have suggested that H could serve as a real-time index of how close the brain is to a critical state, 
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with higher H (close to 1) values indicating greater proximity to the critical state (Cocchi et al., 

2017; Kardan et al., 2020; Stier et al., 2021). As the task demand increases, the information 

exchange between relevant brain regions is strengthened to adapt to the task. Consequently, the 

cognitive resource allocation becomes less flexible, and the brain moves away from the critical 

state, leading to a decreased H (Cocchi et al., 2017; Kardan et al., 2020).  

Given the fruitful results generated by Hurst analysis in other domains of psychology and 

neuroscience, this method deserves further attention in the realm of anesthesia research for at 

least three reasons. First, it is capable of uncovering hidden patterns in neuroimaging data that 

may have been missed by other techniques. For instance, previous studies investigating neural 

activity during sleep have reported a decrease of H during later stages of sleep, potentially 

indicating an increase of brain activity. (Acharya et al., 2005; Song et al., 2007; Sriraam et al., 

2014). Specifically, Song et al. (2007) identified a periodic inverted U-shape fluctuation of H in 

which H peaked during slow wave sleep and dropped as participants moved to the rapid eye 

movement (REM) sleep stage. In contrast, current models of propofol-induced sedation typically 

assume a linear degradation of cognitive functions (Davis et al, 2007; Gross et al., 2019). Given 

the evidence of partially shared neural mechanisms underlying sleep and sedation, Hurst analysis 

applied to the sedated brain may complement our knowledge in terms of the temporal trend of 

sedative effects (Franks & Wisden, 2021; Hall et al., 2014). Second, H, as a transdiagnostic and 

trans-state index for cognitive resource allocation, facilitates cross-state comparisons (e.g., 

sedation and sleep). Such comparisons help illuminate the shared neural mechanisms underlying 

seemingly distinct cognitive processes, which could lead to the development of more effective 

pharmaceutical interventions and psychological treatments. Finally, rather than treating each 

scanning session as a single, uniform event, Hurst analysis allows for the selection of different 
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window sizes and the iteration through partially overlapping windows, making it possible to 

capture subtle temporal dynamics within a single scanning session. While other tools, such as 

functional connectivity analysis, may also be used for this purpose, they are still in their early 

stages and provide only "coarse-grained approximations" (Bassett et al., 2018). Hurst analysis, as 

deeply rooted in the literature of criticality, comes with a well-developed mathematical toolset 

which offers robust models for precise quantification of such micro temporal fractals (Stier et al., 

2021). This is particularly insightful in the research of anesthetics because the sedative agent 

takes effect gradually. Moreover, participants may be asked to verbally respond to questions 

before the scanning session begins (Naci et al., 2018; Kandeepan et al., 2020). The process of 

returning to the baseline also takes time and might vary depending on the sedation level. Thus, 

by delineating detailed temporal patterns, Hurst analysis provides a more refined and nuanced 

picture of the interactions between the brain and the agent (Stier et al., 2021). 

Despite the limited application of Hurst analysis in current anesthetic research, what can 

we learn about propofol and the sedated brain from existing literature? Propofol is a widely used 

short-acting anesthetic agent. Following administration, it is quickly metabolized by the liver 

into inactive, water-soluble compounds, which are then eliminated by the kidneys, allowing 

subjects to be promptly woken after discontinuation (Tobias & Leder, 2011). Its rapid onset, 

rapid recovery time, and absence of active metabolites make it a popular choice for both 

procedural sedation and neuroscience research. Prior research has demonstrated that propofol can 

cause substantial impairments to cognitive abilities such as speech comprehension, verbal 

communication, and memory, and lead to a prolonged response time to both auditory and visual 

stimuli (Davis et al., 2007; Kandeepan et al., 2020; Kim et al., 2004; Veselis et al., 1992). These 

impairments are often associated with detectable activity changes in the relevant brain regions. 
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For instance, Davis et al. (2007) observed greater inferior frontal and posterior temporal blood-

oxygen-level-dependent (BOLD) responses to ambiguous sentences compared to clear sentences 

when the participants were fully conscious. The additional activity vanished during propofol-

induced sedation, which may reflect deficits in complex verbal comprehension. Likewise, voice-

specific and word-specific activations in the temporal lobe were found to be abolished during 

propofol-induced sedation and scrambled words elicited more activations bilaterally than normal 

words. Although the primary and association auditory cortex remained responsive to auditory 

stimuli, the non-specificity suggests a loss of higher-level semantic processing (Plourde et al., 

2006). Dueck et al. (2005) also reported dose-dependent impairments in auditory information 

processing after propofol administration. Although the superior temporal gyrus continued to 

actively process basic acoustic information even at the highest dose, activation in higher-order 

processing areas such as the precentral gyrus, inferior frontal gyrus, and insula were immediately 

inhibited following propofol administration. 

Neuroimaging studies on the visual system are relatively scarce in anesthetics research, 

potentially due to challenges in keeping participants’ eyes open during deep sedation. 

Nevertheless, available research on propofol and similar sedatives shows that the effects on the 

visual system are comparable to those observed in the auditory system. During sedation, 

activities in higher-order association cortices tend to be attenuated, resulting in a sluggish 

response to visual stimuli and partial amnesia for complex visual scenes (Hudetz, 2012; Kim et 

al., 2004; Veselis et al., 1992). Visual-evoked potentials (VEP) show lower amplitude, lower 

frequency, and slower waves with low doses of propofol, and exhibit burst suppression with high 

doses (Aggarwal et al., 2019; Hamaguchi et al., 2005). In addition, cross-modal interactions 

diminish during propofol-induced sedation, likely because of deactivation in the association 
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cortices of sensory systems. Boveroux et al. (2010) identified a negative correlation between 

thalamocortical activity and cortical activity in frontoparietal networks during sedation. 

Specifically, sensory processing in visual and auditory networks were preserved at 

thalamocortical level but the resulting information was inhibited from being transmitted and 

synthesized in the frontal areas. Taken together, these findings suggest that the frontoparietal 

cortex is the major target of propofol. Higher-order cognitive networks located around this area 

are less engaged in sensory stimulus processing during propofol-induced sedation, whereas 

primary sensory cortices remain at least partially responsive, even at the deepest sedative level 

(Davis et al., 2007; Hudetz, 2012; Kandeepan et al., 2020; Plourde et al., 2006).  

In the present study, our dataset includes two conditions, narrative listening and resting, 

and four sedation levels (awake, mild sedation, deep sedation, and recovery). We started by 

comparing whole-brain H across conditions and sedation levels, where whole-brain H was the 

average of all regional H values across the brain. Next, we conducted partial least squares (PLS) 

analysis to identify the latent variable that captures the unique effect of propofol. We then 

examined the significant brain nodes for the latent variable and evaluated the spatial correlation 

between the latent variable and Neurosynth terms. To identify the brain networks with the most 

significant brain loadings, we applied the brain mask developed by Shen et al. (2013). Finally, 

we employed a smaller window size and a moving window approach to delineate the fine-

grained temporal dynamics of H within each scanning session. By taking these steps, we were 

able to identify an inverted-U shape relationship between whole-brain H and sedation level in the 

narrative listening condition. We also found evidence for the occurrence of unconscious mental 

imagery processes during later stages of sedation. Surprisingly, our analyses did not reveal any 

modulation of auditory areas by propofol, contradictory to some previous studies. 
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Method 

Dataset 

 We conducted secondary analyses of data sourced from Openneuro.org, which is 

accessible via the link (https://openneuro.org/datasets/ds003171/versions/2.0.1) and has been 

used in previous studies (Chamberlain & Rosenberg, 2022; Kandeepan et al. 2020; Naci et al. 

2018). The fMRI data were collected while participants were at rest and while the same 

participants were listening to a 5:12-minute audio excerpt from the movie "Taken" at four 

different levels of propofol-induced sedation. 

Participants 

 The study was conducted at Western University and was granted ethical approval by the 

Health Sciences Research Ethics Board and Psychology Research Ethics Board of Western 

University (REB #104755). A total of 17 subjects (4 women; mean age: 24 years, SD = 5) were 

recruited for the study. All participants were right-handed, native English speakers, and had no 

history of neurological disorders. Recruitment was done through printed advertisements on the 

university campus and through word of mouth. Volunteers completed a magnetic resonance 

imaging (MRI) and propofol safety screening and provided written informed consent to confirm 

that they understood study risks and had no contraindications for MRI or sedation. Participants 

were paid for their participation (Kandeepan et al., 2020). 

Task Protocol 

FMRI scans were collected from the 17 participants in four distinct states of 

consciousness: awake, mild sedation, deep sedation, and recovery. During each sedation level, 

narrative listening and resting-state scans were obtained (5 min and 8 min, respectively). For 
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each sedation level, the narrative listening scans always preceded resting scans once the sedation 

level was determined (See Figure 2). During the 5-min narrative listening scan, participants 

listened to an audio excerpt from the movie “Taken” with their eyes closed. The audio story was 

selected due to its emotional evocation and high arousal levels (Kandeepan et al., 2020). 

Specifically, the clip portrays a teenage girl being kidnapped while speaking to her father on the 

phone (Naci et al., 2018). During the subsequent 8-min resting scan, participants were instructed 

to relax with their eyes closed without falling asleep. 

Propofol Administration 

According to Kandeepan et al. (2020), participants received intravenous propofol before 

the fMRI scanning session. A 20 G intravenous cannula was inserted into the dorsum of the non-

dominant hand prior to entering the scanner, and the propofol infusion system was connected to 

the cannula. An effect-site/plasma steering algorithm was used with the computer-controlled 

infusion pump to achieve stepwise increments in the sedative effect of propofol. The infusion 

pump was adjusted to reach the desired level of sedation, based on targeted concentrations of 

propofol predicted by the TIVATrainer pharmacokinetic simulation program. The estimated 

mean effect-site and plasma propofol concentrations were 2.48 (1.82–3.14) μg/ml and 2.68 

(1.92–3.44) μg/ml, respectively, with a mean total mass of propofol administered of 486.58 

(373.30–599.86) mg. 

Sedation Assessment 

  The assessment of sedation level was based on the Ramsay level, which classifies a 

person’s level of sedation on a scale from 1 (severe agitation) to 6 (deep coma). Two 

anesthesiologists and one anesthesia nurse independently evaluated each participant's Ramsay 
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level by communicating with them inside the fMRI scanner room before data acquisition. 

Scanning began only after an agreement was reached among the three assessors on the 

participant's wakefulness/sedation level. 

The awake session involved no administration of propofol, and participants were fully 

awake, alert, and communicating appropriately. For the mild sedation session, propofol infusion 

began with a target effect-site concentration of 0.6 μg/ml, and participants were assessed for 

sedation level. Once they became calmer and less responsive to verbal communication, they 

were classified as a Ramsey level 3 and considered mildly sedated. Subsequently, the mild 

scanning session was performed. During the deep sedation session, the target effect-site 

concentration was increased incrementally until participants reached a Ramsey level 5, at which 

they were deeply sedated and no longer responsive to verbal commands. Propofol infusion was 

then discontinued, and participants reached a Ramsey level 2 approximately 11 minutes later 

during the recovery session, characterized by clear and quick responses to verbal commands. For 

further details on the propofol administration procedures, please refer to Naci et al. (2018) and 

Kandeepan et al. (2020). 

Figure 2 

Task Procedures 

Note. This is an illustration of task procedures as implemented in the data collection process. 
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Participants went through awake, mild sedation, deep sedation, and recovery in a sequential 

order, with narrative listening scans always preceding resting-state scans. 

FMRI Data Acquisition 

The participants were provided with noise-canceling headphones during the MRI scan 

and the volume was adjusted to their comfort level (Naci et al., 2018). The MRI data were 

obtained using a 3-Tesla Siemens Tim Trio scanner with a 32-channel coil. The functional 

images were acquired with the following parameters – voxel size: 3×3×3 mm3, inter-slice gap: 

25%, time repetition (TR): 2,000 ms, time echo (TE): 30 ms, matrix size: 64×64, and flip angle 

(FA): 75°. The narrative scans and resting-state scans were collected with 155 and 256 volumes, 

respectively. Anatomical images were obtained with a T1-weighted 3D MPRAGE 

(Magnetization Prepared - Rapid Gradient Echo) sequence, using a 32-channel coil, with a voxel 

size of 1×1×1 mm3, a TE of 4.25 ms, a matrix size of 240×256×192, and an FA of 9°. 

FMRI Preprocessing 

 The fMRI data preprocessing pipeline utilized in this study was identical to the one 

described in Chamberlain & Rosenberg (2022) study. The data were preprocessed using Analysis 

of Functional NeuroImage (AFNI), and initial preprocessing steps included excluding the first 

three volumes, followed by despiking and head motion correction. Next, functional images were 

aligned with the skull-stripped anatomical image using linear transformation, then with the 

Montreal Neurological Institute atlas through nonlinear warping. To account for potential 

confounding variables, covariates such as the 24-parameter head motion model (6 motion 

parameters, 6 temporal derivatives, and their squares), subject-specific eroded white matter and 

ventricle masks, and the whole brain's mean signal were regressed from the data. Volumes in 
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which more than 10% of voxels were outliers, and volumes for which the Euclidean norm of the 

head motion parameter derivatives exceeded 0.25, were censored from the time series. Scans for 

which more than 50% of frames were censored for head motion were excluded from analyses. 

The BOLD signal time courses were averaged within regions of interest (ROI) using a 268-node 

whole-brain parcellation (Shen et al., 2013). Out of the 17 participants, 16 for awake, 15 for mild 

sedation, 11 for deep sedation, and 17 for recovery passed the motion exclusion for resting-state 

scans. For narrative-listening scans, 16 for awake, 15 for mild sedation, 11 for deep sedation, and 

15 for recovery passed the motion exclusion. A total of 116 data files went into data analysis, 

containing partially overlapping participants. 

Hurst Analysis 

In the present study, two methods were employed for calculating H: detrended fluctuation 

analysis (DFA) and wavelet leader-based multifractal analysis (WLBMFA). Most of the analyses 

focused on H calculated with DFA, as it is generally recommended over wavelet approaches 

(Galaska et al., 2008; Oświȩcimka et al., 2006; Zorick & Mandelkern, 2013). Although some 

evidence suggests that different methods for calculating H may generate comparable results 

(Kantelhardt et al., 2002), DFA has several advantages. For instance, it is known to be robust 

against noises and non-stationarity in the data, such as low-frequency drifts or high-frequency 

noise (Lee et al., 2002; López et al., 2021; Peng et al., 1995). In time series analysis, stationarity 

refers to the property of a stochastic process in which the statistical signatures (e.g., mean, 

variance, autocorrelation) of the process remain constant over time (Rhif et al., 2019). However, 

biological, physiological, and neuroimaging data are usually irregular and non-stationary (Lee et 

al., 2002; Peng et al., 1995). Whereas wavelet approaches typically handle non-stationarity by 

decomposing a time series into multiple frequency bands with different scales, DFA has been 
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found to be intrinsically robust against noises, such as missing data, random spikes, and varying 

standard deviations and correlations (Chen et al., 2002; Churchill et al., 2014; López et al., 2021; 

Robin et al., 2013). The simplicity of DFA calculation, combined with its natural robustness 

against non-stationarity, makes it computationally efficient (Churchill et al., 2014; Robin et al., 

2013).  

Moreover, wavelet approaches require the choice of several parameters (e.g., the wavelet 

basis function, block size, moment order range), adding a flavor of subjectivity in the results. 

Due to the lack of a clear consensus on the optimal parameter selection, variability can be 

introduced into the estimation of the multifractal properties (Rhif et al., 2019; Zorick & 

Mandelkern, 2013). Particularly in our case where the narrative listening session consisted of 

only about 150 volumes, decomposing the time series into multiple scales and blocks carries a 

heightened risk of overfitting and potentially insufficient data. Besides, DFA results can be 

easily interpreted in terms of the scaling properties of the time series data, such as the presence 

of long-range correlations or the degree of persistence. The singularity spectrum produced by the 

wavelet approaches provides a statistical description of the multifractal properties of the signal, 

but it may not be readily interpretable in terms of the underlying physical or biological 

mechanisms that generate the data. Hence, we relied mainly on DFA-based H in the current 

study and used WLBMFA as a means of validating DFA results. 

Detrended Fluctuation Analysis 

 For each of the 268 shen-defined ROIs, in DFA, the time series x(t) (1 ≤ t ≤ T) was 

transformed into an unbounded random walk by calculating the centered cumulative sum: 
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𝑋𝑋(𝑡𝑡) = �(𝑥𝑥(𝑖𝑖) − �̅�𝑥)
𝑡𝑡

𝑡𝑡=1

 

( 1 ) 

 Then, the detrended time series was partitioned into N non-overlapping windows of 

identical length n, where the product of n and N is less than or equal to the total number of time 

points in the data (T). To ensure minimal impact from confounding factors, we excluded any 

low-frequency confounds below 0.01 Hz and high-frequency confounds above 0.1 Hz, limiting 

the maximum n equal to 50 and the minimum to 5.  For each window, a least squares linear 

regression Y(t) was fitted. By varying the window size n, the root mean square (RMS) fluctuation 

of the regression errors across all time series was computed as: 

𝐹𝐹(𝑛𝑛) = �∑ (𝑋𝑋(𝑡𝑡) − 𝑌𝑌(𝑡𝑡))2𝑡𝑡
𝑡𝑡=1

𝑁𝑁
 

( 2 ) 

 Finally, H was obtained by determining the slope of a linear regression of the logarithm 

of the window size, log(n), plotted against the logarithm of the fluctuation function, log(F(n)). 

 DFA is a “mono-fractal” analysis where a single exponent H is sufficient to fully describe 

the scaling relationship between local fluctuations and window size (Stier et al., 2021). 

Nonetheless, in real-world data, H may vary depending on the window size due to the presence 

of different scaling regimes or trends in the data that are not accounted for by the detrending 

process in DFA (Churchill et al., 2016; Stier et al., 2021). Also, for some individuals, their brain 

activity may not conform to a mono-fractal, linear relationship. As a result, it is crucial to 

evaluate the goodness of fit for the DFA regression line in order to identify any potential 



17 
 

confounding factors. To assess the goodness of fit, we utilized the coefficient of determination, 

R2, calculated as: 

𝑅𝑅2 = 1 −
∑�𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹(𝑛𝑛)) − 𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹(𝑛𝑛))� �

2

∑�𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹(𝑛𝑛)) − 𝑙𝑙𝑙𝑙𝑙𝑙(𝐹𝐹(𝑛𝑛))��������������2
 

( 3 ) 

 Out of the 116 data files included in the DFA analysis, 14 had a mean R2 lower than 0.9, 

indicating non-optimal goodness of fit (see Supplementary Figure 1 for the distribution of R2). 

To ensure the quality of our analysis, we removed these 14 files, which amounted to 12.07% of 

the total data. Therefore, all subsequent analyses involving DFA-based H values were based on 

the remaining 102 files. 

Wavelet Leader-Based Multifractal Analysis 

 In the present study, the estimation of H using the WLBMFA approach was based on the 

methodology presented by Wendt et al. (2007). To ensure consistency with the original study, we 

retained all parameters, including vanishing moments, block size function, and mother wavelet. 

Briefly, given a time series x(t) of length T, we first performed the discrete wavelet 

transformation (DWT) using Daubechies 6 as the mother-wavelet. The DWT decomposes the 

signal into multiple scales, each represented by an array of wavelet coefficients. Next, we 

computed the wavelet leaders for each scale s, defined as the maximum absolute wavelet 

coefficients within N non-overlapping blocks of size n. The wavelet leaders provide an efficient 

way to estimate the scaling behavior of the time series, as they are less sensitive to small-scale 

fluctuations than the wavelet coefficients. We estimated the structure function S(q, s) of the 

wavelet leaders at each scale s and for different orders of moments q, and then computed the 
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singularity spectrum f(α) using a Legendre transformation of the structure function, where α 

represents the local Hölder exponent characterizing the rate of change of the signal on different 

scales. Finally, we calculated the first-order log-cumulant C1 by setting α to 1 and taking the 

derivative:  

𝐻𝐻 = 𝐶𝐶1 = 𝑓𝑓′(1) 

( 4 ) 

 In essence, by setting the local Hölder exponent to 1, the rate of change of the function is 

required to be globally bounded by a constant, which approximates the process of a mono-fractal 

analysis. As such, C1 is a useful indicator of the average scaling properties of the signal across all 

time scales and serves as an equivalent to DFA-based H while taking account of multifractal 

properties. For a more comprehensive understanding of the statistical methods employed, we 

refer the reader to Wendt et al. (2007). 

Partial Least Squares 

 PLS analysis was applied to identify the latent variable that represents the impact of 

propofol across four sedation levels. PLS is a multivariate data analysis technique that involves 

decomposing the covariance matrix between two mean-centered datasets. In the context of task-

based mean-centered PLS, the observations in X are sorted according to the N experimental 

conditions, while Y is a dummy-coded matrix that represents the experimental groups or 

conditions (Krishnan et al., 2010). In our analysis, X represented the n×268 subject-by-

parcellation matrix of H, and Y represented the n×4 subject-by-sedation-level matrix. By virtue 

of being mean-centered, the covariance matrix X’Y was subjected to singular value 

decomposition as: 
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𝑋𝑋′𝑌𝑌 = 𝑈𝑈𝑈𝑈𝑈𝑈′ 

( 5 ) 

where U is the 268×4 matrix of left singular vectors (brain loadings), V is the 4×4 matrix of right 

singular vectors (propofol loadings), and S is the 4 by 1 diagonal matrix of singular value. The ith 

column of U and V represent the loadings of the ith latent variable. The proportion of crossblock 

covariance explained by the ith latent variables is calculated as the ratio of the squared ith singular 

value to the sum of all squared singular values. To assess the statistical significance of the PLS 

models, 10,000 permutations of the rows of the Hurst matrix X were performed, and the observed 

crossblock covariance was compared to permuted crossblock covariances. The stability of the 

left and right singular vectors was evaluated by 10,000 bootstrap resampling of both X and Y 

matrices. The bootstrap ratios were estimated by dividing the empirical loading by the bootstrap 

variance and were distributed normally under the null hypothesis. Only brain parcellations with 

an absolute bootstrap ratio higher than 3 were considered statistically significant. 

Spatial Null Model 

To accurately evaluate the statistical significance of the correlation between the latent 

variable representing propofol effects and Neurosynth terms, we employed spatial auto-

correlation-preserving permutation tests known as “spin tests.” The use of spin tests is necessary 

since traditional permutation tests that do not consider spatial autocorrelation can lead to an 

inflated rate of false positives (Burt et al., 2020). To generate null brain maps with preserved 

spatial autocorrelation, we utilized the BrainSMASH python package 

(https://brainsmash.readthedocs.io/en/latest/). BrainSMASH produces SA-preserving random 

maps that have variograms similar to the input brain map. Variograms are functions of spatial 
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distance d and measure the variance between all pairs of points that are a particular distance d 

apart. In our analysis, we used the Euclidean distance between the centroids of brain parcels. 

Results 

 Briefly, this study conducted a secondary analysis of fMRI data collected from 17 healthy 

participants while listening to an audio excerpt from the movie “Taken” and while they were at 

rest at four different levels of propofol-induced sedation. The participants underwent awake, 

mild sedation, deep sedation, and recovery in a sequential order, with the narrative listening scan 

always preceding the resting-state scan. After preprocessing and head motion control, the fMRI 

data were parcellated into 268 predefined brain nodes (Shen et al., 2013). H was then computed 

for each brain node using both DFA and WLBMFA. Subsequent analyses were based on DFA 

results with a minimum R2 of 0.9. The unique effect of propofol was quantified using PLS with 

10,000 permutations and the stability was assessed with 10,000 bootstrap resampling of both X 

and Y matrices. 

Whole-Brain Hurst - DFA 

 The whole-brain H, defined as the mean H across 268 brain nodes, was analyzed using 

mixed effect models with random intercepts. As depicted in Figure 3, the models revealed no 

significant main effect for either sedation level (F(3, 87) = 0.38, p = .771) or narrative listening 

(F(1, 88) = 2.77, p = .100). However, a significant interaction effect was observed (F(3, 82) = 

3.82, p = .013). The quadratic relationship between sedation level and whole-brain H was 

contingent upon the experimental condition and only detected in the narrative listening condition 

(t(82) = 2.75, p = .007; Figure 4).  

Figure 3 
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Whole-brain Hurst main effects of sedation level and narrative listening – DFA 

Note. Left: there was no significant main effect for sedation level (F(3, 87) = 0.38, p = .771). 

Right: There was not significant main effect for narrative listening either (F(1, 88) = 2.77, p 

= .100) 

Figure 4 

Whole-brain Hurst interaction effects – DFA 
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Note:  In the resting condition (left), there were no significant interaction effects observed, 

whereas in the narrative listening condition (right), there was an increase in H from the awake to 

mild sedation level, followed by a peak at mild sedation, and a gradual return to baseline. 

Whole-Brain Hurst - Wavelet 

 In addition to DFA, we also applied WLBMFA to assess the multifractal nature of the 

BOLD signal. This was done because the R2 values obtained from DFA were not consistently 

high (> 0.9), which suggests that multifractal processes may be at play (see Supplementary 

Figure 1). Unsurprisingly, whole-brain H from WLBMFA and DFA had a strong positive 

correlation (r(93) = .72, p < .001) while WLBMFA-based H (SD = 0.125) showed greater 

variance than DFA-based H (SD = 0.083, p = .004). The instability of WLBMFA-based H is 
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supported by abundant statistical evidence indicating that wavelet approaches tend to yield 

greater overall variability compared to DFA (Kantelhardt et al., 2002; Oświȩcimka et al., 2006; 

Zorick & Mandelkern, 2013). A linear regression was fitted to predict WLBMFA-based whole-

brain H from DFA-based whole-brain H. A significant regression equation was found with an 

intercept of 0.018 and a coefficient of 1.073, F(1, 93) = 98.25, p < .001,  R2 = .514. Our results 

replicated findings in previous studies applying both DFA and wavelet approaches (Churchill et 

al., 2014) and demonstrated that 1) H calculated from DFA and wavelet approaches are closely 

related; 2) wavelet approaches exhibit a higher degree of variability, and in our sample, produced 

a greater number of extremely high H values; and 3) the regression equation for predicting 

wavelet-based H from DFA-based H often yields coefficients greater than 1.  

Figure 5 

Linear regression between DFA-based and WLBMFA-based whole-brain H 
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Note. The results revealed a significant regression equation with an intercept of 0.018 and a 

coefficient of 1.073 (F(1, 93) = 98.25, p < .001, R2 = .514), indicating that whole-brain H from 

WLBMFA can be reliably estimated using DFA-based measures. 

In accordance with the high correlation, the WLBMFA approach yielded comparable 

results in mixed effect models. Specifically, there were no main effects observed for either 

sedation level (F(3, 91) = 0.84, p = .478) or narrative listening (F(1, 94) = 1.91, p = .171; see 

Figure 6). A similar interaction effect was identified (F(3, 79) = 3.66, p = .016), suggesting a 

potential quadratic (t(78)= 2.09, p = .040) or cubic (t(80) = -2.09, p = .040) relationship between 

sedation level and whole-brain H only in the narrative listening condition (see Figure 7).  

These results provided evidence that the mono-fractal relationship assumed in the DFA 

analysis was sufficient to capture participants’ brain activity. This finding, along with the 

advantages of DFA described in Methods, supported our decision to move on with DFA results. 

Figure 6 

Whole-brain Hurst main effects of sedation level and narrative listening – wavelet 
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Note. Left: there was no significant main effect for sedation level (F(3, 91) = 0.84, p = .478). 

Right: there was no significant main effect for narrative listening (F(1, 94) = 1.91, p = .171).  

Figure 7 

Whole-brain Hurst interaction effects – wavelet 
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Note. The results obtained from the wavelet approach were consistent with those generated from 

DFA. A slight deviation in the pattern was observed in the recovery level. It is possible that 

during the recovery phase, the brain activity of participants is less amenable to a mono-fractal 

analysis. Nevertheless, the difference was not statistically significant. 

The Latent Variable of Propofol 

 We used PLS to find the latent variable representing the effect of propofol. However, in 

the rest condition, we failed to find any significant latent variable (p = 0.139, crossblock 

covariance = 54.698%; see Supplementary Figure 2). It is possible that the effect of propofol 

during the resting state, as measured by H, is too subtle to be discerned, or may necessitate a 

larger sample size to detect.  
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In contrast, in the narrative listening condition, PLS analysis identified a single 

statistically significant latent variable representing the effect of propofol (p < 0.001, crossblock 

covariance = 79.316%; see Figure 8). To assess the stability of the results, we set the threshold 

for stability as absolute bootstrap ratios > 3 (which is akin to a Z-score confidence interval of 

95%), and only brain areas with a statistically stable loading were considered significant and 

selected for brain plotting. All stable nodes displayed a positive loading. The right panel in 

Figure 8 displays the actual H values for these stable brain nodes. The observed correlation 

between the latent variable and sedation level, as well as the actual H values for the significant 

brain nodes, showed a consistent pattern: H increased from awake to mild, peaked at mild 

sedation, and then gradually returned to the baseline (awake). In addition, we used all scanning 

sessions in a single PLS model (i.e., including 2 conditions and 4 sedation levels), and the results 

were consistent with our previous findings from the separate analyses (see Supplementary Figure 

3). 

Figure 8  

Latent variable of propofol during narrative listening 
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Note.  The left panel displays a single significant latent variable explaining approximately 79% 

of the crossblock covariance. An inverted U-shaped Hurst-Propofol gradient can be detected 

where the H value reached its peak during mild sedation. The bar plot presented in the right 

panel illustrates the average H values for the stable brain nodes (bootstrap ratio > 3) in the PLS 

model for narrative listening, which aligns with the trend observed on the left. 

 In our analyses of the spatial pattern of the significant brain nodes, we found that the 

major nodes with the highest brain loadings were clustered within the bilateral occipitoparietal 

cortices, including the primary and secondary visual cortex, and extended to motor areas in the 

parietal cortex, such as the premotor cortex and primary motor cortex. The most affected areas 

further projected to parts of the bilateral posterior cingulate cortex, left frontal cortex, and 

subcortical structures, such as the corpus callosum and thalamus. All the stable brain loadings 

were positive, meaning that these brain nodes operated in the same direction of the inverted U-

shape we observed in the whole-brain H section. 

Figure 9 
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Brain plotting of stable brain nodes in PLS 

 

Note.  This figure portrays the spatial distribution of the significant brain nodes superimposed on 

a brain template. The left panel corresponds to the left hemisphere, and the right panel 

corresponds to the right hemisphere. Brain plotting unveiled the bilateral occipitoparietal area 

and right premotor cortex as the brain regions with the highest brain loadings. This pattern of 

brain activity is reminiscent of the well-documented dorsal attention pathway, which is 

frequently implicated in visuospatial processing and attentional control. 

Intuitively, the spatial pattern matches the well-documented dorsal visual attention 

pathway. To quantitively evaluate the pattern, we employed two approaches. First, we examined 

similarities between the latent variable of propofol and probabilistic meta-analysis maps from 

Neurosynth. Neurosynth aggregates data from over 14,000 published neuroimaging studies and 

enables the generation of brain maps that represent the regions most consistently associated with 
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specific psychological concepts or tasks, making it a reliable tool for neural-based classification. 

We used a previously defined subset of 123 terms (e.g., “attention”, “response inhibition”, 

“navigation”) which was restricted to the overlap between Neurosynth terms and Cognitive Atlas 

terms (Hansen et al., 2020; Stier et al., 2021). Each term’s association map was correlated with 

the latent variable of propofol, and significance was assessed via a spatial null model (see 

Methods). Only two terms survived family-wise error rate correction and one of them, 

unsurprisingly, was visual attention (see Figure 10).  

Visual attention was found to be positively correlated with the propofol gradient whereas 

stress was found to have a negative correlation with the propofol gradient. The original 

association maps of the two significant terms can be found in Supplementary Figure 4. Second, 

we applied the 8-network mask to filter the significant brain nodes. This mask was developed by 

Shen et al. (2013) along with the 268-parcellation and includes the default mode network, 

frontoparietal network, medial frontal network, motor network, subcortical-cerebellar network, 

visual association network, and primary and secondary visual network. While neither the one-

way analysis of variance (ANOVA; F(7, 51) = 1.58, p = .162) nor hypergeometric tests (p = .373 

- .749) showed a significant difference across networks, the networks that involve visual 

attention and motor movement, such as the frontoparietal, secondary visual, and motor network, 

still ranked among the top affected networks, which is consistent with the Neurosynth analysis 

(see Figure 9). 

Figure 10 

Significance of Neurosynth terms via spatial null model 
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Note.  The left panel illustrates the results of 10,000 parametric spatial permutation tests, with 

non-significant terms shown in grey (Benjamini-Hochberg correction, α = 0.01). The terms are 

ranked by the magnitude of their correlations. In contrast, the right panel highlights the two 

significant Neurosynth terms: visual attention displayed a positive correlation with the latent 

variable of propofol, while stress exhibited a negative correlation. It is important to note that 

these Neurosynth maps only show which regions are commonly reported alongside a given term, 

and do not indicate the sign of the association (i.e., whether the psychological term is associated 

with functional activation or deactivation). 

Figure 11 

Network masking for narrative listening 
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Note.  Interestingly, the number of significant nodes and the mean absolute brain loadings in 

each network yielded different rankings, which implied that the most extensively involved 

networks may not be the most rigorously involved ones. While ANOVA did not reach statistical 

significance, this finding may still provide valuable information regarding to the most relevant 

brain networks involved in sedation. 

The Moving Window Approach 

 The moving window approach is particularly productive in anesthetic research because of 

the nuanced temporal gradients for different drugs to take effect (Eagleman et al., 2019; Won et 

al., 2019). This approach is most frequently applied in the analysis of physiological data (e.g., 

EEG, heart rate) to obtain a smoother trend over time (Eagleman et al., 2019; Maksimow et al., 

2014; Tarvainen et al., 2012; Won et al., 2019). There are fewer studies taking moving windows 
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in neuroimaging data (Amico et al., 2014; Luppi et al., 2019) and none of them applied Hurst 

analysis. It is worth noting that DFA has been found to highly reliable in dealing with shorter 

signals, which is well-suited for moving window analysis of neuroimaging data (Oświȩcimka et 

al., 2006). Therefore, applying DFA to moving windows appears to be in a vacuum with 

brimming potential. 

In the present study, we applied Hurst analysis to every 60 TR as a moving window in 

each scanning session to obtain H values across time. That is, each window was defined as a 

consecutive sequence of 60 TRs, with the first window ranging from the 1st to the 60th TR, the 

second window ranging from the 2nd to the 61st TR, and so on. As the narrative listening 

condition contained only about 150 volumes, we selected the first 90 windows across all 

scanning sessions, representing the 1st to 150th TR, to ensure data comparability and avoid 

missing data. Next, we performed t-tests between the whole-brain H of each individual window 

with that of the first window to obtain whole-brain H fluctuations across time using the first 

window as an anchor point. This revealed statistically significant deviations in H over the course 

of each scan. The H value fluctuations are shown in Figure 12.  

Overall, whole-brain H values rose immediately after the start of the scanning session, 

regardless of the participant’s sedation level or exposure to the narrative. This finding supported 

our hypothesis that external stimuli, such as verbal communication, still had an impact on 

participants early in the scanning session. To quantify the magnitude of H fluctuations, we 

plotted the t- and p-values in iterative t-tests against window number in Figure 13. Notably, 

participants in the narrative listening condition appeared to be more susceptible to the effects of 

propofol. In the resting condition during deep sedation, the p-value never fell below the 

significance threshold, indicating that the waning of external stimuli did not significantly 
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influence participants. Conversely, for the narrative listening condition, the p-value for awake, 

mild, and deep sedation displayed a clear pattern where it dropped below the significance 

threshold in roughly 20 TRs (40 seconds) and remained below this threshold in a relatively stable 

manner. Interestingly, the first time at which these p-values dropped below the significance 

threshold increased monotonically, from 9th window while awake, 10th window during mild 

sedation, 21st window during deep sedation, to 50th window during recovery. 

Figure 12 

Temporal dynamics of H values across all scanning sessions 
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Deep 
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Figure 13 

Temporal dynamics of t- and p-values in iterative t-tests across all scanning sessions 

 Narrative Listening Rest 
Awake 
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Deep 
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Note. The blue line represents t-values while the red line represents p-values. The black 

horizontal line is p = .05. 

 Another line of evidence supporting the significant distinction between brain activities 

early and late in the same scanning session was obtained from the spatial correlation of brain 

loadings. For this analysis, we selected the mild and deep sedation sessions in the narrative 

listening condition because 1) the latent variable of propofol was only significant in the narrative 

listening condition; 2) the p-value was most stable under the significance threshold after 20 TRs 
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for these two sessions; 3) they had a lower risk of introducing confounds due to the unknown, 

noisy effects of recovery. We selected every 10 windows in Figure 12 and 13 as the window of 

windows, so that the first new window consisted of the 1st to 10th window in the previous 

procedure. We then conducted iterative PLS analyses on the 268 brain nodes in 81 newly created 

windows, in order to identify a latent variable between each new window and the first new 

window. The temporal trend of the PLS model’s p-value is presented in Figure 14, which 

perfectly corresponds to the pattern in Figure 13. After 10 TRs for the mild sedation session and 

20 TRs for the deep sedation session, the PLS model achieved statistical significance and 

remained below the threshold throughout the rest of the session. We then extracted the brain 

loadings of each PLS model and estimated their correlations with the brain loadings in the first 

PLS model (i.e., 1st new window against 2nd new window). The significance of each correlation 

was again assessed using a spatial null model with 10,000 permutations. The results are 

summarized in Figure 15. Although there seemed to be a delay in the change of spatial activation 

patterns, these results nevertheless indicated that after approximately 50 new windows (around 

110 TRs, or 3.5 min), the spatial pattern of brain activation was no longer significantly 

associated with the pattern in the beginning of the scanning session. In conclusion, the results 

from brain-wise t-tests, PLS significance across time, and the fluctuations in brain loadings all 

provide evidence that brain activity in the beginning of a scanning session is qualitatively 

different from that later into the scanning session. At the extreme, it is even possible to say that 

the brain activity at two time points during a single scanning session may be unrelated. 

Figure 14 

Temporal dynamics of p-values in iterative PLS 
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Note. The p-values for the PLS model sharply declined from the onset of the scanning session. 

Specifically, after 10 TRs for the mild sedation session and 20 TRs for the deep sedation session, 

the PLS model achieved statistical significance and remained below the threshold throughout the 

rest of the session. 

Figure 15 

Temporal dynamics of spatial correlations of brain activation patterns 
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Note. The brain loadings of the first PLS model were correlated with those of each individual 

model using Spearman's rank correlation. The p-value was assessed using the spatial null model 

with 10,000 permutations. Although not identical to the previous two figures, this figure 

demonstrated that the spatial pattern of activation underwent significant changes after 

approximately the 50th window. 

Having confirmed the existence of temporal dynamics of H within a single scanning 

session, we proceeded to perform a PLS analysis on specific aggregated windows at the 

beginning (“early”: 1st – 6th window for mild sedation and 1st – 20th window for deep sedation in 

Figure 13) and in the middle (“late”: 41st – 46th window for mild sedation and 41st – 60th window 

for deep sedation in Figure 13) of the scanning session. As depicted in Figure 16, both PLS 

models revealed a single latent variable representing the time course of the scanning session (p < 

0.001, cross-block covariance = 100% for both). While the areas around the bilateral 

occipitoparietal cortex remained significantly related to the latent variable, temporal areas, which 
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were absent from the whole narrative listening model, were somewhat involved (see also 

Supplementary Figure 5). No Neurosynth terms survived family-wise error rate correction. 

One-tailed hypergeometric tests were used to test for significant differences in the count 

of significant nodes in each network. Benjamini/Hochberg correction was employed to account 

for multiple comparisons. The results revealed that in the mild sedation session, the subcortical-

cerebellar network showed a statistically significant greater count of significant brain nodes (p 

< .001), followed by the motor network (p = .040), compared to other networks. In the deep 

sedation session, the subcortical-cerebellar network also had more significant brain nodes than 

other networks (p = 0.007, see Figure 17). 

One-way ANOVA detected a significant inter-network brain loading difference in the 

early versus late model in only mild (F(7, 99) = 3.492, p = .002) but not deep (F(7, 63) = 1.74, p 

= .115) sedation session of the narrative listening condition. Post-hoc Tukey's Honestly 

Significant Difference (HSD) tests, which automatically adjust for multiple comparisons, 

revealed that the mean absolute brain loading of the frontoparietal network was significantly 

higher than that of the subcortical-cerebellar (p = .048) and the default mode network (p = .012) 

during mild sedation. The medial frontal network also had higher loadings than the default mode 

network (p = .030). All the windows were taken from the narrative listening condition. 

Our intriguing findings suggest that the subcortical-cerebellar network was broadly but 

only superficially modulated by propofol within a relatively short time window (within 2 min). 

This modulation may have occurred as a peripheral effect of altered activities in other brain 

regions. In contrast, the frontal areas, including the frontoparietal and medial frontal network, 

had a higher average brain loading for each significant brain node at least during mild sedation. 

This differential effect of propofol on the frontal and subcortical-cerebellar networks may be a 
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result of the highly specialized functional localization and targeted modulation by propofol in the 

frontal areas. These results further emphasize the modulation of higher-order cognitive functions 

by propofol, as the targeted frontal networks are commonly associated with attention, working 

memory, and cognitive control (Marek & Dosenbach, 2022; Markett et al., 2013). 

Figure 16 

Early versus late window PLS and brain plotting 
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Note. The upper section of this figure presents the PLS results for the comparison between early 

and late stages in both mild and deep sedation sessions during the narrative listening condition. 

The results were significant, with a single latent variable representing the time course. The lower 

section displays the significant brain nodes with stable brain loadings. Interestingly, the most 

affected brain areas also appear to be centered in the occipitoparietal cortex, but with additional 

temporal nodes identified in the early vs. late models. 

Figure 17 

Network masking for early versus late models 
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Note. This figure provides an overview of the number of nodes and the average absolute brain 

loadings for both the mild and deep sedation sessions in each of the eight networks. The 

subcortical-cerebellar network was found to have the highest number of significant brain nodes, 

while the frontoparietal network had significantly higher mean brain loadings in the mild 

sedation session compared to the other networks. Notably, although not reflected in statistics, we 

saw a surge in the mean brain loadings in the default mode network from mild to deep sedation. 

Discussion 

 We discuss our findings from the four following aspects of our results: 1) the inverted U-

shape of whole-brain H; 2) the differential effect of propofol on H between resting state and 

narrative listening; 3) the lack of involvement of auditory cortices; 4) the involvement of visual 

attention in absence of visual stimuli and the mental imagery hypothesis. 

Inverted U-Shape of Whole-Brain H 

It was unexpected that a main effect of narrative listening was no observed, contrary to 

the well-documented literature on task/rest, sleep/wakefulness, and stress, where a more relaxed 

state is typically associated with higher H values (Acharya et al., 2005; Churchill et al., 2016; 

He, 2011; Wei et al., 2013). Theoretical framework of criticality also supports this directionality, 

as cognitive resource allocation is expected to be less stringent during rest, when the brain is in 

closer proximity to the critical state. Although DFA results were consistent with these 

predictions, the wavelet approach generated a reversed pattern. Since both comparisons were 

nonsignificant, we should avoid overinterpreting null results and treat them as random noise. 

One possible explanation concerns the interleaved design in which there was no break between 

scanning sessions. Previous research utilizing Hurst analysis has shown that brain dynamics 
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measured by H may take up to 15 minutes to normalize, depending on the cognitive load of the 

task (Barnes et al., 2009). It is plausible that the baseline H for the resting state condition was 

somewhat contaminated by residual effects of narrative listening, and rather than reflecting a true 

resting state, H values during resting state may represent a normalization process from any carry-

over effects. 

In the narrative listening condition, our findings indicated that H followed an inverted U-

shaped curve where H was higher during sedation than wakefulness but peaked during mild 

sedation rather than deep sedation. If we interpret deep sedation as a state resembling later stages 

of sleep, our findings are in line with previous studies investigating H during sleep, which have 

shown that later sleep stages could be characterized by lower H (Acharya et al., 2005; Song et 

al., 2007). Multiple lines of evidence in our results point to propofol’s modulation of executive 

functions (e.g., attention, cognitive control) as a possible explanation – 1) the spatial pattern of 

significant brain nodes in the narrative listening condition represented a visual attention pathway 

as validated using Neurosynth terms; 2) components of the dorsal visual attention pathway are 

qualitatively involved in the inter-session model in a funnel-like top-down manner, with the 

frontoparietal and subcortical-cerebellar network appearing to be the most rigorously and the 

most extensively affected network, respectively; and 3) when taking a closer look at the nuanced 

temporal gradient within each scanning session, the same pattern for the subcortical-cerebellar 

and frontoparietal network became quantitatively justified. According to Shen et al. (2013)’s 8-

network mask, the frontoparietal network is comprised of the dorsolateral prefrontal cortex 

(DLPFC), the posterior parietal cortex (PPC), and adjacent areas, all of which have been 

consistently associated with cognitive control (Motzkin et al., 2014; Vincent et al., 2008; Wang 

et al., 2010). The cerebellar-subcortical-cortical system has also been implicated in the 
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modulation of a variety of complex cognitive functions, including executive control, adaptive 

learning, and attention (Clark et al., 2021; Brissenden & Somers, 2019). An elevated cognitive 

activity, as indicated by the reduction of H during deep sedation, might be attributed to loosened 

frontal control over the brain and the consequent emergence of anticorrelated, unsupervised, 

and/or spontaneous processes. These findings provide evidence against the linear progression 

model of sedation. Anesthetic agents may have a graded effect on specific brain areas or 

cognitive tasks, but globally, our findings do not support the simplistic assumption of linear 

deactivation across time (Adapa et al., 2014).  

Differential Effect of Propofol on H Between Resting State and Narrative Listening 

 Regardless of data quality concerns, another takeaway from this study is that participants 

appeared to be less affected by propofol during resting state compared to narrative listening. Our 

PLS analysis did not yield significant results for the resting state condition and, importantly, the 

within-session time courses in Figure 13 also showed less variation for the resting state, 

especially during mild and deep sedation. The latter observation could not be simply explained 

by data contamination because we would expect to see more, rather than less, variation if the 

waning of residual effects from narrative listening presented in addition to the standard 

normalization process. The differential effect of propofol between resting state and narrative 

listening may be explained by revisiting the concept of H as an index for the proximity to the 

critical state. Propofol, as a sedative, acts to modulate brain activity towards a state of rest and 

induce a return to the critical state. During narrative listening, participants direct their attention to 

the movie excerpt and dedicate cognitive resources in relevant brain areas for thorough 

comprehension of the script. This can lead to a drift away from the critical state, which is 

characterized by massive flexibility. Conversely, during the resting state, the cognitive control 
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system does not experience a high demand for directing attention and processing incoming 

information, and thus the brain should be inherently closer to the critical state. We believe that 

the baseline difference in the proximity to the critical state, although not reflected as a significant 

main effect, nonetheless explains the lower observed variance during the resting state. 

Lack of Involvement in Auditory Cortices 

 Surprisingly, we found limited evidence for the involvement of auditory cortices, which 

is frequently reported in the literature (Dueck et al., 2005; Plourde et al., 2006). The primary and 

secondary auditory cortex, as well as the auditory association cortex, showed minimal 

association with the temporal gradient of H during sedated narrative listening, nor did 

Wernicke’s area exhibit any relevance. Although the within-session analysis revealed some 

involvement of temporal areas, their absolute brain loadings were relatively low. Therefore, our 

results demonstrate that the effects of propofol on auditory cortices were at best small and 

transient, if not non-existent, as measured by the H. 

 One possible way to explain this divergence between previous research and the current 

findings concerns the statistical properties of H. Hurst analysis provides exquisite temporal 

resolution at the cost of losing spatial details. In both DFA and WLBMFA, each brain node is 

treated as a single, independent unit for analysis. Although we used the spatial null model to 

compensate for the loss, H still retains very little information about the inter-region connectivity. 

However, many studies have attributed the loss of consciousness during sedation to the 

breakdown of effective cortical connectivity instead of the functional deactivation in specific 

areas (Chamberlain & Rosenberg, 2022; Ferrarelli et al., 2010; Hudetz & Imas, 2007; White & 

Alkire, 2003). For example, Liu et al. (2012) demonstrated that the inferior frontal gyrus 

remained functionally connected to a wide range of frontoparietal and temporal neural 
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organizations regardless of propofol administration, suggesting a retained high-order processing 

network for verbal comprehension and memory. The change lay in the disconnection of frontal 

areas from the primary auditory cortex during deep sedation, leading to a lack of information 

integration rather than information collection. Thus, we recommend future research to explore 

ways for integrating temporal dynamics with spatial connectivity. 

Involvement of Visual Attention in Absence of Visual Stimuli – Mental Imagery Hypothesis 

 Equally surprising was the pronounced engagement of the visual systems during sedated 

narrative listening, despite the absence of visual stimuli. In the PLS model, significant brain 

nodes were predominantly clustered around the occipitoparietal areas and motor areas. Spatial 

correlation with Neurosynth terms also revealed the visual attention pathway as a significant 

spatial pattern. In conjunction with subsequent network masking and within-session analyses, we 

saw a fairly complete picture of visual processing, with significant nodes from both lower-end 

structures (e.g., the primary and secondary visual cortex) and integrative organisms (e.g., 

DLPFC, the visual association cortex, precuneus).  

 One question that remains is why participants exhibited visual activation without actual 

visual stimuli. We propose the mental imagery hypothesis as a potential explanation. Mental 

imagery refers to the ability to visualize objects outside of one’s line of sight (Kosslyn et al., 

2001). Traditionally, mental imagery has been conceptualized as a process that requires 

voluntary control to sustain selective attention and execute complex cognitive tasks such as 

language comprehension (Monti et al., 2010). Most classic mental imagery studies also require 

the participant to be conscious and behaviorally responsive regardless of the task (Ganis et al., 

2004; Kosslyn et al., 1999). Can mental imagery be generated unconsciously? In a review by 

Pearson et al. (2015), that question was left open. More recently, researchers have begun to 
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report some success in dissociating behavioral responsiveness and mental imagery abilities. 

Particularly relevant to our discussion is the study by Huang et al. (2018), in which they found 

fMRI signatures of mental imagery in one participant who received propofol administration and 

were behaviorally unresponsive. In that study, participants were asked to perform three mental 

imagery tasks: tennis, navigation, and hand squeeze, along with a motor response task – real 

hand squeeze. The task instructions were also presented verbally using a computer software. One 

out of five participants in that study displayed robust fMRI signatures of mental imagery in 

tennis and hand squeeze after loss of responsiveness. Although this study had limitations in 

terms of their sample size and percentage of significant results (only 1/5), they nevertheless 

provided preliminary evidence for the disassociation between mental imagery and consciousness, 

which echoes with our results. The inverted-U shape pattern found in the current study may even 

suggest that the mental imagery process is more active during deep sedation than mild sedation, 

potentially because of loosened cognitive control in frontal areas. 

 Moving to visual mental imagery (VMI) in particular, the prevailing models propose that 

the early visual cortices (V1-V3) are most responsible for generating VMI (Kosslyn et al., 2001; 

Pearson et al., 2015). According to this model, the basic elements of VMI, such as spatial and 

sensory representations, are naturally synthesized at lower levels of the brain, making early 

processing networks essential for the generation of VMI. However, a series of double 

dissociation lesion studies have challenged this claim (Bartolomeo, 2008; Moro et al., 2008). 

Subsequent studies and reviews have continued to find that, compared to early visual processing 

areas, higher-order structures, particularly the frontoparietal cortex, are more crucial for VMI 

(Bartolomeo et al., 2020; Liu et al., 2021). A meta-analysis of 46 fMRI studies on VMI 

concluded that only the frontoparietal network and a well-delimited region in the left fusiform 
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gyrus are consistently involved in VMI (Spagna et al., 2021). We do not intend to solve the 

debate here as it is outside of the scope of this study, but it seems plausible to us that both 

“early” and “late” structures in the visual processing system can be somewhat involved during 

VMI. No matter which model we adopt, the fact that we are seeing a complete visual processing 

pathway from primary visual areas to frontal areas suggests that the modulation of VMI abilities 

by propofol at least partially accounts for the fluctuation of H observed across different sedation 

levels during narrative listening. From this perspective, the lack of sensory sources for mental 

imagery could also possibly explain the null results in the resting state condition. Even within a 

shorter time range as in moving window analyses, the frontoparietal network still seemed to be 

the target of propofol modulation. As environmental stimuli gradually waned, propofol tended to 

put this important “late” VMI structure into rest. 

Limitations 

 While the findings of this study contribute to the understanding of the neural correlates of 

sedation, several limitations must be acknowledged. First, our sample size of 17 participants is 

relatively small, with each of the eight scanning session having only about 12-15 participants 

after controlling for motion and R2. A larger sample size would be beneficial for future research. 

Second, as mentioned before, Hurst analysis does not account for the spatial connectivity 

between brain nodes. Hence, our results may not be accurate in reflecting inter-region 

information communications. Finally, the moving window approach may be susceptible to 

unquantifiable confounding variables embedded in the movie content. Although we found a 

relatively smooth trend within each session, we are unable to rule out the possibility that H 

fluctuations at certain time points might be caused externally by some particularly evocative 

episodes in the movie. In light of the limitations of this study, we recommend future 
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investigations with larger sample sizes to confirm the present findings and to enhance the 

generalizability of the results. Additionally, further studies could use experimental materials with 

different levels of emotional valence and arousal and utilize other neuroimaging analysis 

techniques that incorporate both temporal and spatial analyses to provide a more comprehensive 

understanding of the changes in brain dynamics induced by propofol.  

Conclusion 

In conclusion, our study investigated the temporal dynamics of Hurst exponent during 

propofol-induced sedation during narrative listening and resting state. Our findings suggest that 

brain activity during propofol-induced sedation does not follow a linear deactivation model, but 

rather a inverted U-shaped pattern during narrative listening. Surprisingly, we found little 

evidence for the involvement of auditory areas, while visual systems were highly engaged in 

absence of visual stimuli, which may be explained by visual mental imagery. Our use of the 

moving window approach allowed for a more fine-grained analysis of the temporal dynamics of 

brain activity. This approach also confirmed that the effects of pre-scanning stimulations can 

persist for up to 20 TRs. Furthermore, results from the moving window approach also 

highlighted the dynamic changes of specific brain networks, including the frontoparietal and 

subcortical-cerebellar networks, during a single scanning session. Overall, our study introduces 

Hurst analysis as a new statistical tool for analyzing neuroimaging data in the context of 

anesthetic research and provides a within-between session framework for future investigations of 

sedative agents.  
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Appendix 

Supplementary Figure 1 

R-squared distribution for DFA-based H 

 

Note. The distribution of the R2 values obtained from the DFA analysis is presented in this 

figure. Overall, the goodness of fit is quite high, with the majority of values having a mean R2 

exceeding 0.9. These findings further validate our choice to utilize DFA results for subsequent 

analyses. 
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Supplementary Figure 2 

PLS results for the resting state condition 

 

Note. Although the trend of H in the rest condition exhibited an opposite pattern compared to the 

narrative listening condition, caution should be exercised in interpreting these non-significant 

findings, particularly given the relatively small sample size. Over-interpretation of non-

significant results can lead to erroneous conclusions and detract from the rigor of the study. 
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Supplementary Figure 3 

PLS results with eight scanning sessions 
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Note.  (a) The PLS results containing all eight scanning sessions (2 condition × 4 sedation levels) 

revealed one single latent variable (p < 0.001, crossblock covariance = 64.619%); (b) The 

plotting of significantly stable brain nodes in this PLS model revealed a pattern that closely 

resembled the separate narrative listening model, with a majority of significant brain nodes 

clustering around the occipitoparietal cortex and motor areas. 
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Supplementary Figure 4 

Neurosynth template for visual attention and stress 

 

Note. This figure depicts the original association map for visual attention and stress. Notably, the 

visual attention map exhibits significant overlap with the spatial pattern generated from our PLS 

model, particularly in the bilateral occipitoparietal areas. Conversely, the stress map reveals 

activations in the temporal areas which were largely insignificant in our model after ruling out 

unstable brain loadings. 
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Supplementary Figure 5 

Left brain maps for early versus late models

 

Note. This figure is a supplement to the bottom panel of Figure 12 and displays the left 

hemisphere in the PLS models for the early and late scanning session periods in both mild and 

deep sedation conditions. 

 

 

 

 

 

 

 


