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Abstract

Interacting with nature is beneficial. Even brief exposures to natural

environments or viewing sets of natural scene images can restore attention and

memory (Berman et al., 2008). Despite the known benefits of nature, it remains

unclear what aspects of viewing nature scenes lead to these improvements. While

previous studies focus on the distinction between natural images and non-natural

(urban) images, very few examine the connection between distinct properties of

natural images and their cognitive benefits. One idea is that natural scenes are more

fluently processed, making them less memorable, which in turn contributes to their

benefits. A potential confound is that nature scenes may be more confusable than

urban scenes, leading to their lower memorability scores predicted by the ResMem

Neural Network (Needall & Bainbridge, 2021). The goal of this thesis was to test the

hypothesis that image set similarity drives differences in memorability.

To test this hypothesis, the present study calculated image statistics and

image semantic labels into vectors and determined the Euclidean and cosine distances

between pairs of natural and urban images. While the low-level visual features in

natural and urban images differ, importantly, there were no significant differences in

the average distances of every image pair. However, the semantic similarity analysis

showed mixed results. The significant differences in semantic similarity were shown in

both direction under different types of label coding techniques. This finding suggests

the relationship between image similarity and memorability is more complex than a

simple positive or negative relationship. In the future, studies can focus on the

processing fluency and memorability of natural images to uncover the mechanism

behind their restorative effect.
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Naturalness and Memorability: A Study of Image Similarities and

Memorability in Natural and Urban Images

Introduction

The diminishing interactions with nature are depriving individuals of the

myriad cognitive benefits that natural scenes have to offer. Since the mid-20th

century, the number of people living in urbanized cities has doubled worldwide

(United Nations, 2014). With convenient access to robust infrastructure and diverse

entertainment, metropolitan residents are becoming increasingly bounded within

cities and disconnected from nature. However, the benefits of connecting with nature

are non-negligible. Numerous studies have shown that neighborhoods with high

exposure to green space are associated with better health outcomes, such as fewer

cardio-metabolic conditions (Karden et al., 2015), and reduced criminal activities

(Schertz et al., 2015). Individuals connected to nature also experience various

cognitive benefits. Even brief exposure to the natural environment or viewing

pictures of natural scenes has beneficial effects on attention, memory, and mood

(Berman et al., 2008; Berman et al., 2012). With all the benefits of nature, the

distinct properties of natural environments have become a topic that attracts

significant attention from researchers.

The beneficial effects of nature are explained by three dominant theories:

biophilia, stress reduction, and attention restoration (Capaldi et al., 2015). The

Biophilia hypothesis refers to human beings’ evolutionary preferences toward nature

(Kellert & Wilson, 1993). The stress reduction theory (Ulrich et al., 1991)

emphasizes that unthreatening natural environments are evolutionarily preferable,

which generate stress-reduction psychophysiological responses. The attention

restoration theory (Kaplan & Kaplan, 1989), from the cognitive perspective,
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distinguishes between two types of attention: directed attention and involuntary

attention. In natural settings, directed attention is minimized because interacting

with nature is not cognitively demanding. In urban settings, however, both

involuntary and directed attention are significantly invoked to perform tasks such as

avoiding traffic (directed) and hearing noises (involuntary). Compared to urban

settings, natural environments enable directed attention to replenish and restore. In

Berman et al.’s study (2008), participants who took a long walk in a park showed

significant improvement in the performance of the backward digit span task, which

requires directed attention and short-term memory. Participants who viewed a set of

natural scene images also showed significant improvement in the Attention Network

Test (ANT), demonstrating that interacting with nature and seeing natural images

have restorative effects on attention (Berman et al., 2008).

What is intriguing about these findings is that if viewing natural images as an

isolated visual input also leads to cognitive benefits, the properties of natural images

might be inherently different from non-natural images, and these distinct properties

may be related to their cognitive benefits. Since the last century, statistical modeling

has been used to obtain mathematical representations of image patterns for analytical

purposes. Through statistical modeling, one notable property of natural images is

their invariance to scale, meaning that the low-level characteristics of the image

remain relatively consistent when zooming in and out of a scene (Ruderman, 1994).

This finding shows that natural images embody specific properties that non-natural or

artificial images do not have, which implies some associations between their distinct

characteristics and the cognitive benefits of viewing natural images. In addition,

low-level image statistics contain more information than people previously expected.

Torralba and Oliva’s study found that natural scene categories (mountain, beach,
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forest, etc.) and the presence of natural objects in a scene can be predicted directly

based on some low-level visual features like spectra of natural images and scale of

scenes (Torralba & Oliva, 2003). Their finding also supports the hypothesis that the

low-level features between natural and non-natural images are inherently different.

However, one cannot make an arbitrary conclusion that the distinct statistical

regularities of natural images are related to their beneficial cognitive effects for several

reasons. First, the definition of natural images was not uniform in earlier research.

Some studies defined them as "outdoor images of nature," while others provided a

narrower definition, such as "wooded environments in springtime" (Ruderman, 1994;

Srivastava et al., 2013). Second, the purposes of these image statistics studies were

mostly to classify image scenes and recognize objects. Previous findings from image

statistics studies only support the first half of the argument that the image visual

properties are different between natural and non-natural images. The connection

between image visual features and their cognitive effects has not been established.

To extend our understanding of natural images, recent studies have found that

both low-level and high-level features can predict the perceived naturalness of images.

In Berman et al.’s study (2014), researchers used spatial multidimensional scaling

(MDS) as well as participants’ subjective ratings to classify images based on

similarity without prior assumptions. Both ratings show a consistent perception of

what is considered to be natural images, which eliminates the inconsistent definition

of natural images. Then, an image classifier was built based on ten low-level features

of the images to predict the perceived naturalness. The findings suggest that first,

naturalness can be quantified either implicitly using a multidimensional scaling

analysis or explicitly with perceived naturalness ratings. The ambiguity in

classification is minimal; second, four low-level visual features: density of contrast
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changes, density of straight lines, average color saturation, and average hue diversity

are significant predictors when determining whether an image is a natural or urban

image (Berman et al., 2014), suggesting these four low-level features are significantly

different between natural and urban images.

The perceived naturalness can also be predicted by high-level semantic

features of images. To further extend the research on perceived naturalness, Hyam’s

study (2017) found that the perceived naturalness can be predicted by the Google

Vision API, an automatic image label detection algorithm, suggesting that the

auto-generated labels also reflect the semantic information that corresponds to the

perceived naturalness of images. Moreover, Kotabe et al.’s study has shown that even

when only presenting the low-level features of natural images (e.g., edges), the

high-level semantic features like ’naturalness’ and ’disorder’ can be preserved. When

only presenting the color visual feature, the naturalness rating of the low-level image

significantly correlates with the naturalness rating of the original images (Kotabe et

al., 2016). This finding challenges the traditional assumption that high-level

semantics are perceived after integrating low-level visual features. It also supports

the notion that the perceived naturalness of an image is embedded in both low-level

visual features and high-level semantic features, making natural images inherently

different from urban images in both dimensions.

In addition to perceived naturalness, the perceived similarities between images

are embedded in the low-level features as well. In Neumann and Gegenfurtner’s study

(2006), researchers investigated three low-level feature representations: chromaticity

histogram (the color distribution of an image), luminance histogram (average

luminance level of pixels in each color), and Fourier index (representing orientation

and high-frequency contrasts). The luminance histogram and Fourier index used
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Euclidean distance norm to calculate the distance between two images. The distance

between two chromaticity histograms was calculated by the sum of the minimum of

the corresponding color bin frequency. To measure the judgment of perceived

similarity, they used the two-alternative forced-choice (2AFC) design. In the

experiment, three images were presented: the query image at the top with two test

images below, and participants selected which test image was more similar to the

query image. The probability of choosing an image given a query image is defined as

the perceived similarity between these two images. The correlations between the

distances in low-level feature representations and the human-judged similarities were

used to determine the relationship between low-level visual features and perceived

similarity. The results indicated that human judgments were best predicted with the

chromaticity histogram. The luminance and Fourier histograms both contribute to

the similarity judgments, and the percentage of agreement increases considerably if

the luminance and Fourier information are combined with the chromaticity index

(Neumann & Gegenfurtner, 2006).

While previous studies have provided a clear definition of natural images and

the information embedded in their low-level and high-level features, the question of

whether these features lead to beneficial cognitive effects remains unanswered. A

recent study approaches this question by proposing that the distinct image properties

evoke positive associations that lead to beneficial cognitive effects. Specifically, the

study focuses on the role of low-level visual features in automatic responses to nature

and urban images (Menzel & Reese, 2021). In the study, the Implicit Association

Test (IAT) is applied to test the automatic responses to original and low-level nature

and urban images in three dimensions: valence (good, bad), mood (positive,

negative), and stress vs. restoration. The results indicate that original natural images
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are associated with automatic positive responses across all three dimensions, and

original urban images are associated with automatic negative responses. However,

when presenting images with the spatial information deleted but certain image

properties retained (i.e., phase-scrambled images), neither natural nor urban images

are strongly associated with positive responses; no significant difference was found

except in the mood dimension with a small effect size (Menzel & Reese, 2021). This

finding indicates that images without spatial information seem to have little effect on

associations with positive effects like mood and stress restoration. High-level visual

processing of images appears necessary for its associated cognitive benefits.

However, Menzel and Reese’s study does not resolve the question about image

features and cognitive effects for mainly two reasons. First, the experiment uses

phase-scrambled images that mainly preserve color information, while other visual

features like edges are altered. It is worth noting that the density of edges is also a

significant predictor of perceived naturalness, and the natural component in the

image may be destroyed when altering the edges feature. Second, the Implicit

Association Test is controversial in terms of its validity, and previous studies have

shown that using IAT to test unconventional classifications might not be reliable

overall (Greenwald et al., 2005). When the spatial information is removed, the

classification of natural and urban images becomes an unconventional task within the

scope of IAT. None of the target categories (phase-scrambled images in this case)

have any pre-existing bias with the attribute because of the lack of spatial

information, so the application of IAT is not ideal for validating the automatic

responses in low-level feature images.

The present study aims to extend the literature on the connection between

natural images’ distinct properties and their cognitive benefits. Given the differential
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memorability scores of natural and urban images predicted by the ResMem Neural

Network (Rim, et al., 2023), the present study focuses on whether the image

similarity is an influential factor for images’ memorability. Specifically, the hypothesis

of the present study proposes is that natural images share similar image properties

(low-level) and semantic concepts (high-level), making them perceived more similar

so as less memorable than urban images. To compare the perceived similarities, the

present study transforms every image into vectors in both low-level and high-level

dimensions. In the analysis of low-level visual features, images are transformed into

twelve dimensional vectors based on corresponding visual features. In the analysis of

high-level semantic features, semantic labels and corresponding confidence scores are

generated by the Google Vision API label detection algorithm, which has also been

used in Hyam’s study (2017). The semantic labels are transformed into

300-dimensional vectors based on the pre-trained Word2Vec model. Then, the study

calculates the Euclidean and cosine distances between each pairwise images and

compares the distance matrix of natural images with that of urban images. A smaller

average pairwise distance indicates the image set is more similar within the image

category, and a larger average distance means the image set is less similar and more

diverse.

The present study contributes to the previous literature of natural images and

cognitive effects by proposing a possible confound that nature scenes are more similar

as a set, which may cause them to be less remembered as suggested by previous study

(Rim, et al., 2023). The difference in perceived similarity between natural and urban

images is a variable that previous studies neglected. In addition, the present study

provides clear directions for future research to extend the present literature in several

aspects. Perceived similarity is closely related to processing fluency (Hiatt & Trafton,
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2013), and processing fluency has been shown to exert strong influences on affective

judgment and familiarity (Westerman et al., 2015). If natural images as a set is

perceived similar, natural images are potentially processed more fluently, which in

turn suggests the instinctive preferences toward natural images. The present study

also narrows the gap between image properties and cognitive benefits in a way that if

natural images are perceived similarly, they may require less cognitive resources to be

perceived and are able to replenish the memory and attention, which is known as the

restorative effect. Visual attention is a strong predictor of image memorability and

visual attention is related to the low-level visual features of images (Mancas & Le

Meur, 2013). If natural images require less attention, they may also be less

memorable due to the insufficient allocation of visual attention.

Empirical Analysis 1: Low-level Visual Features

The first part of the analyses focuses on the perceived similarities of natural

images and urban images in low-level visual features. Low-level visual features refer

to the basic properties of an image that humans perceive without further processing.

There are three main types of low-level visual features: color-based features,

texture-based features, and shape-based features (Bo & Yi, 2014). In this section, the

study uses the dataset from Kotabe et al.’s study (2016), which contains twelve

low-level features as well as the perceived naturalness rating of every image. The

whole image set is divided into two equal-sized subsets: natural image set and urban

image set by naturalness ratings, and every image is transformed into a

twelve-dimensional vector based on twelve low-level visual features. The distances

between every pair of images within the category are calculated, and the distance

matrices are compared between natural images and urban images.
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Method

Materials

The present study acquired the primary dataset from Kotabe et al. (2016)

study and aims to take a supplementary approach to extend the previous finding.

The dataset is publicly available on the website of the Environmental Neuroscience

Lab of the University of Chicago. The dataset includes 1030 natural and urban

images from the Scene UNderstanding (SUN) image database

(http://vision.princeton.edu/projects/2010/SUN/; Xiao et al., 2010) with a uniform

size (1200 * 900) in .jpg format. Twelve low-level visual features of these 1030 images

are included in the dataset as well. The low-level features include six color-based

features: average hue density (Hue; the degree to which a stimulus can be described

as similar to or different from stimuli that are described as red, green, or blue),

standard deviation of hue (SDhue; average standard deviation of hue across all of an

image’s pixels), average saturation (Sat; the degree of dominance of hue mixed in the

color), standard deviation of saturation (SDsat; average standard deviation of

saturation across all of an image’s pixels), average brightness (Lum; average

brightness across all image pixels), standard deviation of brightness (SDbright;

average brightness across all image pixels), and six spatial-based features: entropy

(Entropy; the average “information content of the image), straight edge density

(SED: number of pixels on straight edges), non-straight edge density (NSED; number

of pixels on non-straight edges), density of edges (ED; sum of straight and

non-straight edges), vertical reflectional asymmetry (LRSymm; how well the left and

right halves of the scene image mirror each other), and horizontal reflectional

symmetry (UDSymm: how well the up and down halves of the scene image mirror

each other). The color-based features are calculated based on the hue (saturation,

brightness) of every pixel in an image, and the average hue (saturation, brightness)
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across all image pixels, and the standard deviation of hue (saturation, brightness) is

calculated as color-based low-level features. Entropy is defined as the corresponding

states of intensity level that individual pixels can adapt, which shows an image’s

average information content. The edges of images are extracted by the Canny edge

detection algorithm (Klette & Zamperoni, 1996), and the gradient-based connected

component algorithm is used to detect straight and non-straight edges (For detailed

definitions of the low-level visual features, please refer to Berman et al., (2014) study,

p. 11-15 and Kotabe et al., (2017) study).

The ranges and the variances of twelve low-level visual features are not

uniform. Table 1 lists the distributions and the variances of the twelve low-level

features. The vertical reflectional asymmetry (LRSymm) and horizontal reflectional

asymmetry (UDSymm) have significantly smaller magnitudes, and Entropy has a

different scale than the other variables. Due to the unequal variances among low-level

features, the present study calculates the distance matrices on the original data as

well as on data after normalization to achieve uniform variances. Table 2 lists the

descriptive data of low-level features after scaling. Also, 6 of the 1030 images have

missing values in some low-level features, and they are discarded when obtaining

descriptive data as well as in later analyses.

Hue Sat Lum sdHue sdSat sdBright Entropy LRSymm UDSymm SED NSED ED

Var. 0.01 0.02 0.01 0.01 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00

Min. 0.06 0.02 0.14 0.00 0.04 0.05 5.59 0.00 0.00 0.00 0.00 0.04

1st Qu. 0.26 0.20 0.48 0.17 0.14 0.21 7.24 0.01 0.00 0.03 0.05 0.10

Median 0.33 0.29 0.54 0.22 0.19 0.25 7.49 0.01 0.01 0.05 0.08 0.12

Mean 0.34 0.30 0.54 0.21 0.19 0.25 7.39 0.01 0.01 0.06 0.08 0.12

3rd Qu. 0.42 0.38 0.60 0.26 0.23 0.29 7.66 0.01 0.01 0.08 0.11 0.14

Max. 0.77 0.95 0.96 0.46 0.43 0.42 7.96 0.02 0.02 0.21 0.19 0.20

Table 1. Descriptive data of low-level features before normalization
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Hue Sat Lum sdHue sdSat sdBright Entropy LRSymm UDSymm SED NSED ED

Var. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Min. -2.41 -2.10 -4.05 -2.83 -2.35 -3.56 -4.62 -2.23 -1.89 -1.79 -2.18 -2.89

1st Qu. -0.67 -0.75 -0.58 -0.53 -0.76 -0.61 -0.40 -0.77 -0.73 -0.76 -0.78 -0.69

Median -0.09 -0.13 0.01 0.08 0.03 0.08 0.25 -0.07 -0.18 -0.20 0.06 -0.05

Mean 0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 -0.00 0.00

3rd Qu. 0.65 0.59 0.61 0.63 0.67 0.64 0.68 0.71 0.57 0.62 0.69 0.66

Max. 3.63 4.77 4.16 3.27 3.76 2.95 1.45 3.13 3.80 4.84 2.87 3.02
Table 2. Descriptive data of low-level features after normalization

The perceived naturalness ratings of images are human ratings collected from

Berman et al.’s study (2014), experiment 3. The procedure for collecting the perceived

naturalness ratings involved showing participants a single image at a time and having

them rate it on a scale of 1 to 7 for how natural they considered the image to be. A

’1’ indicated that the participants considered the image to be very manmade, and ’7’

indicated that participants considered the image to be very natural. A ’4’ indicated

that the image was not judged to be either natural or manmade (Berman et al.,

2014). The average perceived naturalness rating of all images is 4.265, and the

median rating is 4.750. The present study uses the median of perceived naturalness

ratings instead of the mean to divide natural and urban images because having two

equal-sized image sets is more desirable in the analyses. If the numbers of images in

two image sets are different, the numbers of pairwise distances in each image set will

be different, which could potentially introduce more biases to the analyses.

Procedure

All images, except for six with missing values, are transformed into

twelve-dimensional vectors, representing twelve low-level visual features of images.

Then, Principal Component Analysis (PCA) is applied to reduce the dimensionality

of the image vectors and visualize them in a two-dimensional plot. The two most

significant components that account for the most variances are the x and y axes of
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the graph. While the principal component analysis plots the distribution, it does not

quantify the similarity between images. After visualizing the distribution, the

distances of every pair of images within the natural and urban image sets are

calculated. Each natural and urban image set contains 512 images and 130,816

observations of Euclidean and cosine distances (512*511/2 = 130,816). The present

study uses both Euclidean and cosine distance norms to calculate the similarity

between images to avoid biases in distance norms. The distributions of both distance

matrices are plotted to compare the perceived similarity between natural and urban

images.

Results

As the principal component analysis suggests in Figure 1, the distributions of

nature images (red dots) and urban images (green dots) are relatively separated.

Urban images are centered in the lower left of the figure, whereas natural images are

centered at the central-right side of the figure. The low-level feature that explains the

most variance is non-straight edge density (NSED), which accounts for 31.6% of the

total variation in the dataset. This result matches Berman et al.’s (2014) study, which

found that non-straight edge density is the most significant predictor when

determining whether an image is a natural or urban image. In addition, the

distribution of urban images is visually more clustered, whereas the distribution of

natural images is more scattered with outliers.
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Figure 1. Principal Component Analysis (PCA) of low-level features

However, the principal component analysis does not quantify the distances in

low-level visual features between natural images and urban images. Thus, the present

study further calculates the Euclidean and cosine distances between every two images

in the natural and urban image sets to determine whether natural images share

similar low-level visual features. Figure 2a shows the Euclidean distance norms before

using standardized low-level visual features. As Figure 2a indicates, both

distributions of natural and urban images skew to the right, meaning that most

images within the category are closer to each other, while a few images are more

distinct. The distributions are largely overlapped, but urban images have a smaller

mean Euclidean distance (urban mean = 0.494) than natural images (nature mean =

0.606), and the differences in mean are significant in a two-sample t-test (t = 88.627,

df = 261680, p-value < 0.001). After standardizing the twelve low-level features to

uniform variances, however, the differences in mean between natural and urban
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images are no longer significant (Figure 2b, t = -0.64146, df = 264693, p-value =

0.5212). In addition, the distributions of Euclidean distances of natural and urban

images are largely overlapping, indicating that the Euclidean distance matrix in

natural and urban images is not significantly different from each other. The same

results also hold true when applying the cosine distance norm instead. In Figure 3a,

the mean pairwise cosine distance for the urban image set is greater than that of the

natural image set, and the difference is significant (t = 110.62, df = 250526, p-value

< 0.001). After scaling, the difference in cosine distance norms is no longer significant

either (Figure 3b, t = 0.016878, df = 264697, p-value = 0.9865). The non-significant

result does not support our hypothesis that natural images are similar to each other

in terms of low-level visual features, and the significant difference in average distance

on unscaled low-level features data is potentially due to the unequal variances within

the data and the large sample size.

Figure 2a. Histogram of Euclidean distances

of natural and urban images on unscaled

low-level features

Figure 2b. Histogram of Euclidean distances

of natural and urban images on scaled

low-level features
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Figure 3a. Histogram of cosine distances of

natural and urban images on unscaled

low-level features

Figure 3b. Histogram of cosine distances of

natural and urban images on scaled low-level

features

Empirical Analysis 2: High-level Semantic Features

Empirical Analysis 2 focuses on the perceived similarities of images in

high-level semantic features. High-level visual features refer to the information that

the human brain processes after perceiving visual stimuli. Visual memory, object

identification, and face recognition are several components of high-level visual

processing. The present experiment focuses on the semantic information of images.

To obtain semantic information of images, the present study applies the label

detection algorithm from Google Vision API to the same image set as the low-level

feature analysis to generate the semantic information for every image. Labels for each

image are transformed into 300-dimensional vectors using the pre-trained word

embedding model Word2Vec (Church, 2017), with a few exceptions if the word is not

included in the pre-trained model. The corresponding confidence score for every

semantic label is applied as the weight, and every image is represented by the average

of weighted vectors. Similar to Empirical Analysis 1, the distances of every pair of
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images within the natural and urban image set are calculated to compare the

differences in perceived similarity. A small distance indicates high similarity and vice

versa. However, only cosine distance is applied as the distance norm in this part of

the analysis. Euclidean distance, on the other hand, is not a desirable choice in

high-dimensional calculation due to the lack of variances in the distance norm.

Methods

Materials

The present experiment applies the label detection algorithm from Google

Vision API on Google Cloud Platform to collect the semantic information of all valid

images from Empirical Analysis 1. When given an image as input, the label detection

algorithm provides a list of labels of the semantic theme that the algorithm detected

with a confidence score above 50%. The default number of labels per image is 10, but

fewer labels are possible if there are not enough labels passing the 50% confidence

score threshold. Across all 1024 images, the label detection algorithm generates

10,236 labels. Figure 4 shows an example output from the Google Vision API label

detection algorithm.

Figure 4. An example output from the Google Vision API label detection algorithm

There are three reasons why the present study uses the label detection
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algorithm by Google Vision API instead of other object recognition algorithms: 1.

The object identification algorithm focuses on the objects in an image and only

provides the most likely results. In comparison, the label detection algorithm provides

a list of all possible labels of the semantic theme with confidence scores, which better

matches the semantic information when humans perceive an image. 2. After a few

testing trials, the present study finds that the object recognition algorithm does not

provide meaningful results when presented with an image without a prominent

object, so it is not applicable to many wide-angle natural images. 3. A previous

study used the label detection algorithm on Google Vision API to extract semantic

information from natural and urban images and studied the correlation between

semantic information and perceived naturalness (Hyam, 2017). In that study, the

researcher defined the Calculated Semantic Naturalness (CSN) score as the ratio of

natural labels among the total number of labels minus the ratio of urban labels

among the total labels, and the CSN correlates with perceived naturalness ratings at

a significant level. This study provided critical support to justify the application of

Google Vision API by demonstrating its capability to represent the perceived

naturalness of images. Thus, the credibility of using the label detection algorithm on

Google Vision API to study image semantic information has been established.

Besides Google Vision API, the present study also uses a pre-trained

Word2Vec model to transform semantic labels into vectors. The Word2Vec model

(Church, 2017) is trained on part of the Google News dataset, which contains over 3

million words and phrases. The output of the Word2Vec model is a 300-dimensional

vector. The present study adopts a pre-trained word embedding model instead of

training a model based on the semantic labels generated because the present study

aims to map the visual processing when humans perceive an image and reflect the
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semantic information of that image. A word embedding model trained on billions of

words would better match the retrieval process when humans search for a semantic

label associated with an image. In addition, Word2Vec better fits the need of the

present research question compared to other language processing models like BERT,

which is more ideal for sentence transformation. The BERT model assigns different

weights to words depending on their position within a sentence. The labels generated

by the label detection algorithm are individual words and phrases. Taking all labels

of an image and transforming them into vectors using sentence transformation rules

would potentially bias the results because the labels may not construct a semantically

meaningful sentence. Therefore, using Word2Vec to transform every label and take

the weighted average of vectors would be a better choice for the present experiment.

To the best knowledge of the author of this paper, using the combination of

Google Vision API with the pre-trained Word2Vec model is compatible with the

purpose of the present paper. The workflow is such that the Google Vision API

extracts the semantic information from images, and the pre-trained Word2Vec model

transforms semantic labels into vectors and compares semantic similarities with high

validity (Church, 2017). Although the credibility of this workflow has yet to be

established by existing literature, there are a few advantages of using Word2Vec in

comparison with other word embedding models (e.g., TFIDF, word frequency vectors,

BERT) due to its large training size and validity in comparing word similarity.

Procedure

The steps to calculate the pairwise cosine distance within natural and urban

image sets are as follows. To obtain the semantic labels, the present experiment

passes all images with perceived naturalness ratings from empirical analysis 1 to the

label detection algorithm. Then, all labels are transformed into 300-dimensional
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vectors through the pre-trained Word2Vec model. The corresponding confidence

score associated with the labels is applied as the weight, and the weighted average of

vectors of all labels associated with an image is used to represent the image. For

instance, when applying the confidence score as the weight, a label with a 90%

confidence score is weighted as 0.9 when calculating the average of all labels. Similar

to the methodology in low-level feature analysis, semantic feature analysis also

calculates the distance matrices of natural and urban images. Since the image vectors

have 300 dimensions, the semantic feature analysis uses cosine distance as the

primary distance metric because of the lack of variances introduced by the Euclidean

distance norm when applied to high-dimensional vectors.

Results

The Google Vision API label detection algorithm provides valid outputs for all

1024 images from empirical analysis 1 with no missing values. In total, 10236 labels

are included. Most, except for 2 images, have 10 semantic labels (one image with 9

labels, one image with 6 labels) because the Vision API only reports labels with over

50% confidence score. Among all the labels, the Vision API provides 341 unique

labels. After dividing the image dataset into natural and urban image sets by the

median naturalness rating, the natural image set shares 200 unique labels, whereas

the urban image set shares 242 unique labels. All labels that appear over 100 times

are shown in Figure 5. The most frequent label across all images is "sky," with 795 of

1024 images containing this label. Among the 19 labels with over 100 occurrences, 13

of the 19 labels are natural labels (sky, plant, landscape, etc.), and only 6 of the 19

labels are urban labels (window, house, building, etc.). The disproportion of natural

labels among the most frequent labels indicates that natural concepts are prevalent in

the image dataset, suggesting that natural images potentially share more similar

concepts than urban images.
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Figure 5. Label frequency count, showing labels that appear in over 100 images

To understand whether natural images share more similar semantic concepts

than urban images, the present study calculates the cosine semantic similarity

between images based on the labels of each image. The cosine similarity score ranges

from 0 to 1, and a score close to 1 means high similarity and small distance between

two images. The distribution of semantic similarity scores for natural and urban

image sets are shown in Figures 6a and 6b. In both figures, the distributions of

semantic similarity scores are slightly skewed to the left, and the average similarity

score for natural images is 0.7093. In comparison, the average similarity score for

urban images is 0.7286. The difference in average semantic similarity between natural

and urban images is significant (t = -58.71, p-value < 0.001), meaning that the

average semantic similarity in natural images is smaller. However, the significance in

the difference in mean is potentially due to the large number of samples in each

sample (n=262,144). When the sample size is large, a small difference in mean would

lead to a statistically significant difference. To alleviate that bias, the average

similarity score of each image to all other images within the set is also used to

compare the difference in semantic similarity in a smaller sample size. In figure 7,
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both the distributions of nature and urban images are left-skewed, whereas the

distribution of nature images reaches the peak value at a smaller similarity score than

that of urban images. The difference in semantic similarity score is also significant (n

= 512, t = -5.401, p < 0.001), suggesting that urban images share similar semantic

meaning to each other more than that of natural images, which does not support the

original hypothesis.

Figure 6a. distribution of pairwise cosine

similarity score of natural image set

Figure 6b. distribution pairwise cosine

similarity score of urban image set

Figure 7a. distribution of average cosine

similarity score of each natural image

comparing to other natural images

Figure 7b. distribution of average cosine

similarity score of each natural image

comparing to other natural images

In addition, the present study applies an alternative way of applying the

confidence score of the semantic labels. Instead of using the confidence score as

weights for the vectors from the Word2Vec model, the present study applies the

confidence score as a threshold to filter the semantic labels. In this case, the semantic
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representations of images are simplified, and the similarities between images are

expected to decrease because of fewer overlapping semantic concepts. The present

study chooses a 90% threshold to filter the labels, aiming to get a simplified but

accurate semantic representation of the images. The pairwise cosine similarity scores

are calculated in the same way as described above. As shown in figure 8 and 9, the

similarity score distribution for the natural image set is separated into two clusters,

with one cluster having relatively low similarity scores and the other having high

similarity scores. This pattern is less obvious in the distribution for the urban image

set, where most of the similarity scores are in the upper range. The difference in

mean is significant (t = -92.83, p-value < 0.001), and the natural image set has a

smaller similarity score on average. When looking at the distributions of the average

similarity score per image, the urban image set has a larger number of images with

high similarity scores. The difference is also statistically significant (t = -7.84, p-value

< 0.001).

Figure 8a. distribution of pairwise cosine

similarity score of natural image set when

applying 90% confidence score threshold

Figure 8b. distribution of pairwise cosine

similarity score of urban image set when

applying 90% confidence score threshold
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Figure 9a. distribution of average cosine

similarity score of each natural image

comparing to other natural images when

applying 90% confidence score threshold

Figure 9b. distribution of average cosine

similarity score of each urban image

comparing to other urban images when

applying 90% confidence score threshold

To validate the result, the present study also applied a modified One Hot

Encoding technique instead of the pre-trained Word2Vec model to transform images

into vectors. Specifically, the images are transformed into 341-dimensional vectors

because there are 341 unique labels. Labels that match the images are marked as 1 in

the corresponding position, and all other elements are marked as 0 in the vector.

Instead of only one element among the 341 elements being coded as 1, this modified

One Hot Encoding technique codes more than one element as 1 in the vector, as the

number of elements matches the number of labels for each image. The pairwise cosine

similarity scores are calculated for each image set as well.

As shown in the figure 10 and 11, the distributions of all similarity scores and

the average similarity score per image for the natural image set and urban image set

are similar. The difference in mean is significant when applying the large sample size

(t= -11.61, p-value <0.001), but no longer significant when comparing the average

similarity score per image (t = -1.08, p-value = 0.28), where the sample size is much

smaller.
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Figure 10a. distribution of pairwise cosine

similarity score of natural image set when

applying modified One Hot Encoding

Figure 10b. distribution of pairwise cosine

similarity score of urban image set when

applying modified One Hot Encoding

Figure 11a. distribution of average cosine

similarity score of each natural image when

applying modified One Hot Encoding

Figure 11b. distribution of average cosine

similarity score of each urban image when

applying modified One Hot Encoding

Besides that, the present study also coded the image vectors by semantic

labels that have over a 90% confidence score to represent the images instead of using

all semantic labels. As shown in the figure 12 and 13, the similarity score

distributions are similar for natural and urban image sets. However, it is noteworthy

that the natural image set has fewer entries with a 0 similarity score and more entries

with a 1 similarity score than the urban image set. The 0 similarity score might be

due to sparse vectors that only a few elements are non-zero values and the

orthogonality between vectors, whereas the similarity score of 1 indicates more

overlapping semantic labels in the natural image set, meaning the vector
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representations are exactly the same. The difference in similarity score is significant

(t=59.43, p-value <0.001), and the natural image set has a smaller mean similarity

score than the urban image set. The average similarity score per image is also

statistically significant (t=-5.033, p-value<0.001).

Figure 12a. distribution of pairwise cosine

similarity score of natural image set when

applying modified One Hot Encoding with

90% threshold

Figure 12b. distribution of pairwise cosine

similarity score of urban image set when

applying modified One Hot Encoding with

90% threshold

Figure 13a. distribution of average cosine

similarity score of each natural image when

applying modified One Hot Encoding with

90% threshold

Figure 13b. distribution of average cosine

similarity score of each urban image when

applying modified One Hot Encoding with

90% threshold

To further analyze the differences, the present study also divides the image set

into six subsets based on their naturalness ratings. As Figure 6b shows, the

distributions of all image sets are different. The numbers of images are not evenly
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distributed across the naturalness ratings. As shown in the figure, most of the images

are either in the low naturalness rating group (naturalness rating between 1-2, n =

324) or high naturalness rating group (naturalness rating between 6 to 7, n = 430),

whereas only 270 images are in the other groups. Thus, when applying the semantic

similarity to each individual image subset and aligning the y-axis in the same figure,

only group 1 and group 6 show meaningful results because of the unevenly

distributed numbers of images per group.

Table 3: Naturalness Rating
Counts

Naturalness Rating Count

1-2 324

2-3 81

3-4 57

4-5 58

5-6 74

6-7 430

As the figure 14 shows, when applying a 90% confidence score threshold to

filter the semantic labels per image, the similarity score distribution in the high

naturalness rating group is separated into two clusters as well. Both the mean

similarity scores for the low naturalness rating group (group 1, mean = 0.662) and

the high naturalness rating group (group 6, mean = 0.564) are lower when compared

to the undivided urban and natural image sets under the same coding mechanism.

This result is aligned with our expectation because a narrower subgroup of images

should be more similar to each other than a larger group. However, in the high

naturalness rating group, some images are divergent from the other natural images,
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driving the semantic similarity of natural images lower.

Figure 14. distribution of pairwise cosine similarity score of per image group

Discussion

To summarize, in the low-level feature analysis, the average pairwise distance

in the natural image set is significantly smaller than that of the urban image set

under both Euclidean and cosine distance norms before normalizing the variances.

After normalizing the low-level features to equal variances, the distributions of

pairwise distances overlap, and the difference in mean is no longer significant.

Although the distinct properties of natural images contribute to a significant

difference in average distances before normalizing the features, the significance might

be attributed to unequal variances emphasizing some features rather than others

when calculating the distance. However, it is not reasonable to neglect any visual

features because all visual features contribute to an image collectively. Therefore, the

findings fail to provide solid support for the assumption that natural images share
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more similar low-level visual features than urban images.

For high-level semantic information, the hypothesis of the present study is

that the natural image set shares a higher pairwise semantic similarity score (smaller

distance) on average than the urban image set. If the hypothesis is correct, then the

natural image set should have a significantly larger similarity score than the urban

image set across all coding mechanisms. In the preliminary label frequency count, the

number of unique labels generated from the natural image set is less than the number

from the urban image set. Among the 19 labels that appear in at least 100 images, 13

of them are classified as natural, suggesting that natural images might share a

narrower range of semantic concepts with more overlapping semantic words.

However, the semantic similarity analysis shows mixed results. When using all

semantic labels weighted by confidence scores to represent the images, the average

semantic similarity of the natural image set is significantly smaller than that of the

urban image set. After downsampling the sample size by calculating the average

similarity score per image, the significant difference in mean persists. When using

semantic labels with over 90% confidence score to represent the images, the average

similarity score of the natural image set remains significantly smaller. When further

dividing the images into specific subsets, the distribution of the high naturalness

rating set is separated into two clusters, with one cluster sharing relatively low

similarity and the other sharing high similarity. The separated clusters suggest that

the significant difference in similarity might be driven by a small set of natural

images that are more divergent from each other, but further analysis is needed to

understand how they are divergent.

On the other hand, contradicting results are found when applying modified
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One Hot Encoding techniques to represent the images instead of the Word2Vec

model. When using all the labels to calculate similarity scores, the difference in

average similarity score per image is not significant. However, when only using labels

with over 90% confidence scores, the average similarity score for the natural image set

is significantly greater than that of the urban image set, both before and after

calculating the average score per image. It is also noteworthy that the natural image

set has fewer entries with a 0 similarity score and more entries with a 1 similarity

score, which is compatible with the label frequency count result, indicating that

labels from natural images are overlapping.

Overall, the present study does not provide strong evidence for the original

hypothesis that natural images share similar low-level visual features and semantic

concepts compared to urban images. While some results are aligned with our initial

hypothesis, they do not hold up after normalization or under different coding

techniques. The findings suggest that the relationship between memorability and

similarity is likely more complex than a simple positive or negative correlation. Image

memorability depends on a variety of factors that range from object atypicality

(Bainbridge et al., 2013) to emotional valence(Khosla et al., 2015), and it is difficult

to determine memorability from any single factor. A prior study focused on the

relationship between image memorability and typicality and found that typicality

cannot determine image memorability in some cases (Kramer et al., 2023). The study

found that more memorable images tend to be more prototypical of their concepts in

their representation, arguing against a general primacy of atypicality in memorability.

However, when examining the relationship between memorability and object space

typicality at the category level, the study found that certain object categories, such

as containers and electronic devices, showed negative relationships, while other
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categories like animals and body parts demonstrated positive relationships. Across all

categories, the distribution of memorability-typicality relationships did not differ

significantly from 0. This finding aligns with the results from the present study,

suggesting that image memorability might be too complex to be explained by a

simple positive or negative correlation of an individual factor. Another study has

shown that even large sets of reasonably selected semantic attributes leave around

30% of unexplainable variance in predicting memorability of face images (Bainbridge

et al., 2013). In the future, studies could focus on the intersectionality between two

or more image properties (i.e., typicality-emotional valence) to unfold their

relationship with memorability.

To further explore the variations and distinct properties of natural images,

there are a few improvements that can be made to the present study. Firstly, the

study only analyzed 1030 natural and urban images with perceived naturalness

ratings, which is relatively small in the scope of computer vision research. However,

the study’s focus is different from computer vision research on image classification and

categorization, as it aims to understand the perceived similarity of natural and urban

images, which heavily relies on human perception. This is also why the study used

human-rated perceived naturalness ratings instead of automatic classification ratings

by algorithms, although algorithmic ratings would provide a larger sample size.

Secondly, the study is bounded by unknown algorithmic biases as it applies

the Google Vision API and Word2Vec in high-level feature analysis. Although a

previous study has shown the correlation between the perceived naturalness of images

and their auto-generated semantic labels, it is unknown whether the Google Vision

API provides accurate representations of semantic information in an image. A more

accurate way to obtain semantic information from images is through human
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experiments, but this would come at a higher cost compared to using automatic

classification tools. Another model used in the study is the Word2Vec model trained

on the Google news dataset. The study assumes that the pre-trained Word2Vec

model can map human language processing due to its large training sample from the

Google news database, but this is a bold assumption. The study finds that some

image labels generated by the Google Vision API are not included in the pre-trained

Word2Vec model, such as "Stalactite" and "Thatching." To resolve this, the study

simply discards these words since they account for less than 3% of the total labels,

but the impact on the semantic representation is unknown.

Furthermore, the results from the study are influenced by the models and

methodologies being applied. To the best of the author’s knowledge, two alternative

models can be applied to re-examine the results. The first is DeepLabv3 (Chen et al.,

2017), which is trained on the Cityscapes Dataset and employs atrous convolution to

capture multi-scale context. DeepLabv3 is able to extract semantic features from the

scene and generates semantic labels with the proportion of the object in the image,

allowing for a better indicator to assign weights when transforming labels to vectors.

However, the limitation of DeepLabv3 is that it is trained on street view images, and

only twenty output labels are included. The present study did not choose the

DeepLabv3 model due to its limited output categories, but proportion scores

associated with labels would be desirable when doing label transformation.

The second model is a fine-grained deep ranking model that predicts image

similarity with high accuracy. While the model is able to predict image similarity

with high accuracy, the features used in the deep learning networks are not visible to

users, and users cannot specify whether the two images are similar in low-level visual

features or semantic features or both. However, the deep ranking model is a good
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source to validate the image similarity results from the present study. In the future,

researchers can employ these different label detection models, as well as human

subject experiments, to strengthen the analysis of the present study.

Conclusion

The present study aimed to investigate whether natural images share more

similar low-level visual features and high-level semantic concepts than urban images.

The hypothesis was that natural images, being less memorable than urban images,

would be more similar as a set. To test this hypothesis, the study transformed images

into vectors based on low-level visual features and high-level semantic features,

respectively. The study then calculated the Euclidean and cosine distance between

every image pair in the low-level feature analysis and applied only cosine distance in

the semantic similarity analysis. However, the study failed to provide strong evidence

to support the hypothesis that natural images are more similar than urban images in

either low-level or high-level dimensions. In the future, researchers could extend these

findings by studying the intersectionality between multiple image properties to better

understand their relationship with image memorability and cognitive benefits.
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