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Abstract

Next-generation sequencing (NGS) has transformed molecular biology and contributed to

many seminal insights into genomic regulation and function. Apart from whole-genome

sequencing, an NGS workflow involves alignment of the sequencing reads to the genome of

study, after which the resulting alignments can be used for downstream analyses. However,

alignment is complicated by the repetitive sequences; many reads align to more than one

genomic locus, with 15–30% of the genome not being uniquely mappable by short-read

NGS. This problem is typically addressed by discarding reads that do not uniquely map to

the genome, but this practice can lead to systematic distortion of the data. Previous studies

that developed methods for handling ambiguously mapped reads were often of limited appli-

cability or were computationally intensive, hindering their broader usage. In this work, we

present SmartMap: an algorithm that augments industry-standard aligners to enable usage

of ambiguously mapped reads by assigning weights to each alignment with Bayesian analy-

sis of the read distribution and alignment quality. SmartMap is computationally efficient,

utilizing far fewer weighting iterations than previously thought necessary to process align-

ments and, as such, analyzing more than a billion alignments of NGS reads in approximately

one hour on a desktop PC. By applying SmartMap to peak-type NGS data, including

MNase-seq, ChIP-seq, and ATAC-seq in three organisms, we can increase read depth by

up to 53% and increase the mapped proportion of the genome by up to 18% compared to

analyses utilizing only uniquely mapped reads. We further show that SmartMap enables the

analysis of more than 140,000 repetitive elements that could not be analyzed by traditional

ChIP-seq workflows, and we utilize this method to gain insight into the epigenetic regulation

of different classes of repetitive elements. These data emphasize both the dangers of dis-

carding ambiguously mapped reads and their power for driving biological discovery.
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Author summary

Next-generation sequencing allows researchers to efficiently determine the sequences of

hundreds of millions of short DNA fragments from an experiment. Many experiments

use next-generation sequencing to count nucleic acid molecules in a population by

sequencing small fragments of them and assigning them to different genomic features. To

find the origins of those fragments, the corresponding sequences are aligned to the

genome; these alignments can then be used in downstream analyses. However, this align-

ment process is complicated by the fact that the genome has many highly similar and

repetitive sequences, making it difficult or impossible to unambiguously assign some

sequences to a single genomic location. The common “solution” to this problem is to dis-

card those sequencing reads that do not align to a single site; however, this can lead to sig-

nificant biases and will hide an important part of the genome. To address this problem,

we have developed SmartMap, which serves to process and appropriately weight the align-

ments of reads that map to more than one genomic location. This enables us to examine

many genomic regions that were previously “invisible” to analysis and helps us draw new

insights into the regulation and function of repetitive elements of the genome.

Introduction

The impact of next-generation sequencing (NGS) on molecular biology can hardly be over-

stated. In a typical short-read NGS workflow, DNA fragments from an experiment are loaded

onto a sequencer, which reports the sequence of 40-200bp of one end or both ends of each

fragment (in single-end or paired-end sequencing, respectively) [1]. These reads/read pairs

can then be aligned to the genome by one of several alignment tools, and the set of alignments

can be used to compute the number of reads aligned to any given genomic locus. This

genome-wide read depth dataset can then be used in downstream workflows.

Even beyond applications for whole genome sequencing, many critical methods have lever-

aged NGS to enable truly genome-wide biological studies. RNA sequencing (RNA-seq) has

enabled quantification of gene expression [2] as well as the discovery and characterization of

new elements of the transcriptome, such as enhancer RNAs [3–6] and chromatin-associated

RNAs [7,8]. Chromatin immunoprecipitation coupled to NGS (ChIP-seq) has similarly

become a mainstay of molecular biology, with many of the seminal works in the field relying

upon this technique [9–17]. Other common techniques, including ATAC-seq [18], Hi-C [19],

CUT&RUN [20], and TAB-seq [21], similarly rely on NGS and associated workflows to pro-

vide important insights into genomic regulation.

Crucially, these workflows all rely upon alignment of each read to its corresponding geno-

mic location. However, this can be problematic when analyzing non-unique or repetitive

regions of the genome, particularly given the short window of a 40-200bp sequencing read.

Indeed, some estimates suggest that a majority of the human genome is comprised by repeti-

tive elements [22–24]. Accordingly, between 15–30% of the human genome is not uniquely

mappable by single-end sequencing with typical read lengths [25,26], and the genomes of

other model organisms, such as M. musculus or D. melanogaster, present similar challenges

[26]. Paired-end sequencing can partially improve genome mappability, but of the regions that

are not uniquely mappable by single-end sequencing, 70–85% will not be resolved by paired-

end sequencing [26].

Many NGS pipelines address this ambiguity by masking repetitive regions to prevent align-

ment of reads to more than one genomic locus or by filtering only for reads that align
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script, and the SmartMap program. The

SmartMapPrep software is used to streamline the

alignment, filtering, and processing of reads to

enable their use in the SmartMap software. The

SmartMapRNAPrep software is used to do the

same, except for strand-specific applications. The

SmartMap software is used to conduct the iterative

Bayesian reweighting algorithm described above

and yields a gzipped BEDGRAPH file of the genome

coverage of map weights. In addition, these tools

are all available through Bioconda at http://

bioconda.github.io/recipes/smartmap/README.

html. Detailed instructions for installation and use

are available at https://shah-rohan.github.io/

SmartMap. All ICeChIP-seq and MNase-seq data

are available at GEO under accession numbers

GSE60378 and GSE103543. All RNA-seq and

ATAC-seq data are available at https://www.

encodeproject.org/ from the ENCODE Project

under experiment accession numbers

ENCSR000AEL and ENCSR483RKN, respectively.

The simulated data and analysis workflow for both

simulated and biological data are available on

Zenodo at https://zenodo.org/record/4586639, with

detailed instructions provided both in that Zenodo

repository and on Github at https://shah-rohan.

github.io/SmartMap/analysis.html. Simulated

FASTQ files can be found on Zenodo at https://

zenodo.org/record/4584103.
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unambiguously to the genome (hereafter referred to as unireads) [27]. This includes groups

such as the ENCODE Consortium, whose ChIP-seq pipeline filters for uniquely mapped reads

by default [28]. Indeed, in several of our past studies, we ourselves have utilized filters to

exclude ambiguously mapping reads [29–31]. However, filtering out reads that map to multi-

ple loci (hereafter referred to as multireads) sacrifices the ability to critically examine many

repetitive regions of the genome, which have important roles in gene regulation [27]. Further,

by definition, discarding reads reduces read depth, which makes quantitative comparisons

more challenging by increasing error or the necessary sequencing depth. [27]. Given the many

problems with ignoring or discarding repetitive regions or ambiguous alignments, it is critical

to develop and utilize methods to appropriately analyze multireads.

To date, several studies have attempted to develop methods and algorithms to resolve multi-

read alignments for a variety of applications. Some have targeted their analysis methods

towards RNA-seq and quantifying transcripts [2,32,33]; indeed, in recent years, there has been

a sharp increase in the tools available for quantification of pre-defined genomic features in

RNA-seq [34]. Others have developed tools designed for ChIP-seq or DNA-seq more broadly

[35–39].

Despite the wide array of tools that have been previously developed for this problem, there

are still several outstanding problems. First, several of the previously published tools (particu-

larly for RNA-seq) focus on quantification of a distinct set of genomic features rather than gen-

erating truly genome-wide coverage maps [2,32–34,37,38], rending them inappropriate for

ChIP-seq or other unbiased/de novo NGS analyses. Even amongst these remaining tools for

“peak type” ChIP-seq or similar analyses, several of these tools focusing on comparison to

external datasets for peak calling [37,38], leaving even fewer analysis methods for a single data-

set without an exogenous reference. Second, while many existing methods use alignment

weighting algorithms to allocate multiread depth, there is disagreement as to the degree to

which iterative reweighting is required to properly weight the multireads without over-refining

the weights; some employ no iterative reweighting at all [2,39], whereas others use up to 200

reweighting cycles [35]. In addition, most of the above methods do not consider the alignment

quality when resolving read ambiguity or does so in a computationally intensive manner that

would likely scale poorly with the number of reads commonly obtained from modern NGS

platforms [36]. Further, these tools often focused on single-end sequencing and do not make

use of the intervening length information in paired-end sequencing, limiting the scope of their

applicability [35]. Finally, many of these tools do not accommodate strand-specific analyses

genome-wide, limiting their application to strand-independent experiments [35–38].

In this work, we seek to resolve some of these issues. We describe SmartMap: an algorithm

that uses iterative Bayesian reweighting of ambiguous mappings, with assessment of alignment

quality as a factor in assigning weights to each mapping. We find that SmartMap markedly

increases the number of reads that can be analyzed and thereby improves counting statistics

and read depth recovery at repetitive loci. This algorithm and software implementation is com-

patible with both paired-end and single-end sequencing, and can be used for both strand-inde-

pendent and strand-specific methods employing NGS backends to generate genome-wide

read depth datasets.

Results

Development and validation of a Bayesian multiread allocation algorithm

We initially developed our SmartMap algorithm and software for application in ChIP-seq

using a set of internally calibrated ChIP-seq (ICeChIP-seq) datasets. These datasets were previ-

ously generated by our lab and, with one exception, were previously published as components
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of past studies [29,30]. We chose to use ICeChIP-seq datasets because the included internal

standards allow for computation of antibody specificity and for normalization to calculate the

histone modification density (HMD), or the absolute proportion of nucleosomes at a given

genomic locus bearing the targeted histone modification. These additional factors which we

can compute using ICeChIP-seq datasets afford us additional points of quantitative compari-

son to assess differences between uniread and SmartMap analyses. However, this tool is not

designed solely (or even primarily) for use with ICeChIP-seq datasets; the SmartMap algo-

rithm does not make special use of the internal standards. Rather, this software is designed to

be usable for NGS workflows more broadly.

The workflows for uniread analyses (typical of ChIP-seq) and our SmartMap analysis are

shown in Fig 1A. For both analyses, the immunoprecipitation (IP) and MNase-seq Input

sequences are aligned to the appropriate reference genome and are filtered to select for prop-

erly mapped reads in a proper pair. At that point, the two methods diverge. In the uniread

analysis, which represents our published analysis pipeline for ICeChIP-seq data [29–31], any

reads that don’t align uniquely are discarded, and the remainder are used to compute genome-

wide read depth in the IP and Input, fold-change, and (if internal standards are present)

HMD.

In the SmartMap analysis, however, rather than discarding ambiguously mapped reads, we

instead feed our alignments into our iterative Bayesian reweighting algorithm, outlined in Fig

1B. Our algorithm, like other alignment weighting algorithms [2,35,36,39], is motivated by the

assumption that regions with more alignments are more likely to be the true source of an mul-

tiread than those with fewer alignments. In addition, like BM-Map [36], SmartMap utilizes

both paired-end sequencing information and alignment quality in making these assessments.

Accordingly, our tool first assigns each alignment a weight proportional to its alignment qual-

ity, computed from the alignment software output. We then iteratively reassign weights to

each alignment of each read; alignments with higher alignment quality and more overlapping

alignments are assigned higher weights, and those alignments with lower quality and fewer

overlapping alignments are assigned lower weights (Fig 1B). After the specified number of

reweighting cycles, the resulting weights are used to compute the read depth for the IP and the

Input genome-wide, which can then be used to compute fold-change or, if applicable, HMD in

a similar manner as the uniread analysis. For computational efficiency, we use binary-indexed

(Fenwick) trees to store genomic coordinates and associated alignment weights, much like the

previously described CSEM [35]. Our implementation of these binary-indexed trees is modi-

fied to enable use of paired-end sequencing reads and, if needed, operate in a strand-specific

manner.

To test this method, we created a set of simulated 50bp paired-end sequencing reads from a

defined set of randomly selected genomic loci (the “true origin” loci) and used the simulated

dataset to conduct uniread and SmartMap analyses (Fig 2A). The read simulation tool pro-

duces reads with “sequencing” error and also includes coverage at off-target loci to better rep-

resent the noise and off-target capture inherent in a biological experiment. Notably, the

simulation enabled us to obtain the true distribution of reads (the Gold Standard), allowing us

to compute the error associated with each analysis method (Fig 2A). This is particularly impor-

tant because we wish to avoid over-refining the multiread weights with our inferential analysis;

accordingly, the Gold Standard dataset allows us to evaluate the accuracy of reweighting.

We were particularly interested in the ability of SmartMap to recover read depth at regions

of differing mappability. To investigate this relationship, we used the UMAP50 score as a mea-

sure of read mappability. The UMAP50 score for a given genomic coordinate is computed as

the proportion of the 50mers covering the genomic coordinate of interest that are unique in

the set of all 50mers from the genome [25]. For example, if the sequences of two of the fifty

PLOS COMPUTATIONAL BIOLOGY Bayesian resolution of ambiguously mapped reads

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008926 April 19, 2021 4 / 41

https://doi.org/10.1371/journal.pcbi.1008926


50mers containing the genomic coordinate of interest were non-unique across the genome of

study, then the UMAP50 score would be 48/50, or 0.96. As such, a genomic coordinate with a

UMAP50 score closer to 1 is uniquely identified by a greater proportion of the 50mers

Fig 1. Summary of the SmartMap analysis workflow and algorithm. (A) Flowchart outlining the workflow for traditional

ChIP-seq (or ICeChIP-seq) analysis [29–31] utilizing only unireads (left, green) vs. the workflow for SmartMap analysis

utilizing multireads with an iterative Bayesian reweighting algorithm (right, blue). (B) Schematic showing the Bayesian

reweighting algorithm utilized in the SmartMap analysis. Each mapping associated with a read is assigned a weight such

that the weight is greater for those mappings associated with loci of greater map weight density. For more detailed

description of the algorithm, see Methods.

https://doi.org/10.1371/journal.pcbi.1008926.g001
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spanning it than is a coordinate with a lower UMAP50 score, and a higher UMAP50 score can

thus be interpreted as a more easily mappable region. Many of the true origin loci had low

mappability scores (S1A Fig), with the distribution of mappability scores being similar to that

of the human genome at large (S1B Fig), making this dataset useful for validating the Smart-

Map algorithm.

The first step of our analysis was to align the simulated 50bp paired-end reads to the

genome. We used Bowtie2 [40] with a maximum of 51 alignments reported per read and

Fig 2. Characteristics of validation dataset. (A) Schematic outlining the workflow to validate and optimize SmartMap. A set of six million randomly

selected 200bp loci were used to simulate paired end reads. The true read depth distribution was then compared to both uniread and SmartMap

analyses, with each analysis conducted in both “scored” and “unscored” modes, per Methods. (B, C) Number of (B) alignments or (C) reads vs. number

of alignments per read for the validation datasets. (D) Mean absolute error of read depth at true origin loci in SmartMap scored mode vs. number of

reweighting iterations (E) Genome browser view showing the read depth in the (top) uniread, (center) SmartMap (0 iterations), and (bottom)

SmartMap (1 iteration) datasets of an example locus.

https://doi.org/10.1371/journal.pcbi.1008926.g002
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charted the distributions of the number of alignments per read (Fig 2B and 2C). Notably, we

observed that there were many reads that did not uniquely align to the genome; approximately

17.1% of the simulated reads mapped to more than one locus (Fig 2B and 2C and Table 1).

Our first goal was to determine the optimal number of iterations to use for our SmartMap

analyses. To test this, we computed the mean absolute error of SmartMap read depth at the

true origin loci with varying numbers of reweighting cycles, as compared to the Gold Standard

read depth. Surprisingly, we found that the lowest error occurred after only one reweighting

cycle (Fig 2D), with genome browser views showing refinement of peak structure (Fig 2E),

which is particularly important given the importance that has been placed on peak breadth

Table 1. Alignment statistics for the datasets used in this study.

Multireads

Sample Genome Assay Cell Line Unireads Analyzable Unanalyzable % Increase

Simulated, 50bp hg38 Simulation – 245,079,644 34,136,124 7,661,326 13.93%

Simulated, -k 101 hg38 Simulation – 244,391,815 35,520,969� 6,973,053� 14.53%

Simulated, 100bp hg38 Simulation – 123,730,306 16,769,189 2,802,056 13.55%

AR7 Input Rep. 1 mm10� MNAse-seq mESC E14 311,090,692 85,018,787 15,184,872 27.33%

H3K4me3 Rep. 1 mm10� ChIP-seq mESC E14 119,014,494 19,662,529 5,603,383 16.52%

Input Rep. 2 mm10� ChIP-seq mESC E14 304,127,899 83,629,528 17,160,012 27.50%

H3K4me3 Rep. 2 mm10� ChIP-seq mESC E14 91,518,104 14,549,072 4,657,032 15.90%

AR8 Input dm3† MNAse-seq S2 18,678,956 7,117,520 977,776 38.10%

H3K27me3 dm3† ChIP-seq S2 8,855,114 3,249,005 389,227 36.69%

AR9 Input mm10† MNAse-seq mESC E14 488,503,092 131,960,514 26,577,525 27.01%

H3K4me3 mm10† ChIP-seq mESC E14 169,335,369 32,089,449 7,918,756 18.95%

H3K9me3 mm10† ChIP-seq mESC E14 136,008,760 73,118,061 13,012,319 53.76%

H3K27me3 mm10† ChIP-seq mESC E14 155,322,021 43,508,387 9,267,806 28.01%

AR16 Input hg38‡ MNAse-seq K562 285,996,344 56,595,547 12,902,707 19.79%

H3K4me1 hg38‡ ChIP-seq K562 92,422,802 16,475,108 2,434,216 17.83%

H3K4me2 hg38‡ ChIP-seq K562 70,987,452 12,931,282 2,558,979 18.22%

H3K4me3 hg38‡ ChIP-seq K562 40,483,145 5,488,996 803,892 13.56%

AR17 Input hg38‡ MNAse-seq K562 256,373,920 48,634,887 11,216,500 18.97%

H3K9me3 hg38‡ ChIP-seq K562 193,011,406 40,618,196 10,337,413 21.04%

H3K27me3 hg38‡ ChIP-seq K562 173,915,939 32,770,085 7,107,199 18.84%

ENCODE Snyder Rep. 1 hg38 ATAC-seq K562 32,995,935 6,484,894 299,834 19.65%

Snyder Rep. 2 hg38 ATAC-seq K562 24,414,870 4,210,386 149,154 17.25%

Gingeras Rep. 1 hg38§ RNA-seq K562 60,184,580 20,651,064 29,231 34.31%

Gingeras Rep. 2 hg38§ RNA-seq K562 63,238,387 13,087,755 14,070 20.70%

For all datasets, Unireads refers to the number of reads with one alignment.

For all except the “Simulated, -k 101” dataset, Analyzable Multireads refers to reads with between 2–50 alignments; Unanalyzable Multireads refers to reads with 51

reported alignments, the limit for reported alignments per read.

For the “Simulated, -k 101” dataset, Analyzable Multireads refers to reads with 2–100 alignments, and Unanalyzable Multireads refers to reads with 101 reported

alignments.

% Increase: Increase in the number of analyzable reads with SmartMap analysis, computed as the number of Analyzable Multireads as a percentage of the number of

Unireads.

Genome includes ICeChIP barcodes:

� Series 1.
† Series 2.
‡ Series 3.
§ Genome includes ENCODE ERCC standards.

https://doi.org/10.1371/journal.pcbi.1008926.t001
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[41]. This stands in stark contrast with previous works, which have used up to 200 iterations of

reweighting [35]. Our analysis here, however, shows that may be suboptimal, suggesting that

applying Bayesian alignment reweighting more than once may over-refine the data.

We wanted to explore whether these increases in mean absolute error were systematic or

driven by random “overshoot” of weight at each locus. In the former case, we might expect to

see that the true origin loci would either show systematic increases or decreases in read weight

with greater numbers of reweighting cycles. In the latter case, we would expect that the changes

to each weight might increase or decrease by too much in the initial iteration, which would

present as random, relatively unbiased errors.

To distinguish between these two possibilities, we conducted two analyses. First, we com-

puted mean error of weights at the true origin loci (S2A Fig) rather than the mean absolute

error (Fig 2D). If there was a systematic erroneous increase or decrease in the average read

depth of each locus, then we would observe a corresponding increase or decrease in mean

error with more iterations, respectively. However, what we instead observe is that the mean

error is relatively stable from iterations 2–8 (S2A Fig), suggesting that the marked increase in

mean absolute error with increasing iterations is not primarily caused by systematic erroneous

increases or decreases in locus weight depth. Put differently, it does not appear that the true

loci are incorrectly and systematically “pulling in” or “pushing out” read depth with each

reweighting cycle.

Second, we explored the possibility that the reweighting “overshoots” the weight adjustment

for reads at random. If this was the case, then we would expect that the errors would increase

relatively randomly, with both positive and negative errors. Indeed, this is what we observe in

our analysis of mean error by iteration (S2A Fig). In addition, we would predict slowing the

rate of weight adjustment with each cycle would decrease the amount of overshoot and thereby

lead to a lesser increase in error. To test this, we introduced a tunable reweighting rate parame-

ter such that the weights could be changed less with each reweighting iteration. When applying

a reweighting rate of 0.25 (wherein the weights only change by 25% as much in normal Smart-

Map analysis), we found that the mean absolute error was markedly more stable after one iter-

ation (S2B Fig). Indeed, after two cycles of standard SmartMap, the mean absolute error

exceeds that of the dataset with no reweighting (Fig 2D); by contrast, with eight cycles of

SmartMap with a reweighting rate of 0.25, the mean absolute error is considerably below that

of the iteration 0 dataset and comparable to the minimum mean absolute error after one itera-

tion (S2B Fig). This suggests that the increase in error with increasing iterations observed with

standard SmartMap may be due to “overshoot” of reweighting, which compounds in magni-

tude with further reweighting. Interestingly, we found that the mean absolute error with one

iteration of standard SmartMap analysis was on par with (and even slightly lower than) that of

the slow-reweighting dataset (Figs 2D and S2B), suggesting that this potential overshoot error

may not be too detrimental after only one iteration of reweighting. By command line switch,

these two algorithms are both available in the SmartMap software.

After determining the optimal number of reweighting cycles, we then compared the Smart-

Map and uniread analyses of our simulated datasets (Fig 2A). To determine the relative impact

of using alignment quality for multiread analysis, we ran SmartMap in both scored and

unscored modes. All the SmartMap analyses had greater read depth (and were closer to the

Gold Standard dataset) at true origin loci than the corresponding uniread analyses (Fig 3A).

Interestingly, the increases in read depth were not uniform across the entire set of loci; indeed,

approximately 70% of the true origin loci saw no excess read depth, defined as the difference

between SmartMap and uniread read depths (Fig 3B). This is similarly observed in the QQ

plot comparing uniread and SmartMap analyses; a shoulder is seen at low uniread depth, with

the plot converging onto a slope of unity at higher read depths (Figs 3C and S2C), suggesting
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that the gains in read depth were primarily at regions of low uniread depth. While SmartMap

does not fully recover the read depth of the Gold Standard at the low end of the QQ plot, the

shoulder is nonetheless much less prominent than with the uniread analysis (S2D Fig),

Fig 3. SmartMap and uniread analyses of the validation dataset. Iteration 0 and iteration 1 refer to SmartMap analysis with 0 and 1 iterations of reweighting,

respectively. Scored and unscored refer to whether alignment score was considered in analysis, per Methods. Dashed lines are presented for readability of overlapping

curves rather than discontinuities in data throughout this figure. (A) Quantile plot of read depth at the true origin loci, with Gold Standard dataset and analysis

conducted in (left) scored mode or (right) unscored mode. (B) Quantile plot of excess read depth in SmartMap datasets relative to corresponding uniread dataset at true

origin loci in (left) scored mode and (right) unscored mode. (C) QQ plot of read depth at true origin loci in the SmartMap (1 iteration) scored dataset vs. uniread scored

dataset. Color scale represents percentile of each point, from 1st to 99th percentiles. (D-E) Median (D) read depth or (E) excess read depth vs. mappability score

(UMAP50) [25] of the true origin loci. (F-G) Average read depth (F) at true origin loci and (G) outside true origin loci. (H) Mean absolute error of read depth at true

origin loci for each dataset, with Gold Standard as the reference point. (I) Mean proportion of alignments intersecting with the true read of origin for each weight after

SmartMap with no reweighting (green) and one iteration of reweighting (red) in scored mode. Dashed line represents line with slope of unity. (J) Mean weighted

overlap proportion score between alignments intersecting the true read of origin and the true read locus for each weight after SmartMap with no reweighting (green)

and one iteration of reweighting (red) in scored mode. Weighted overlap proportion score is meant to represent the proportion of a read’s weight that maps to the

correct location due to a particular alignment and is computed as a weighted geometric mean of the proportion of the alignment covered by the true read and the

proportion of the true read covered by the alignment.

https://doi.org/10.1371/journal.pcbi.1008926.g003
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indicating considerably greater depth recovery. Consistent with that observation, the uniread

analyses and the SmartMap analyses both performed well at highly mappable regions, with

read depths approximately at the level of the Gold Standard (Fig 3D). However, at regions of

lower mappability, the SmartMap analyses recovered a markedly greater proportion of the

read depth than did the uniread analyses (Fig 3D and 3E). As expected from prior analyses

(Fig 2D), the SmartMap analyses with one iteration of reweighting recovered greater read

depth than those with no reweighting (Fig 3D and 3E). Importantly, though they performed

similarly at regions of lower mappability, the SmartMap scored analyses recovered greater

read depth than their unscored counterparts at regions with moderate mappability scores (Fig

3D and 3E).

Genome-wide, SmartMap analyses had lower on-target read depth than the Gold Standard

dataset but were still able to recover greater depth at the on-target loci than corresponding uni-

read analyses (Fig 3F). Similarly, the SmartMap analyses had marginally higher off-target read

depth than the Gold Standard and uniread datasets (Fig 3G); however, the increased off-target

depth relative to uniread datasets can be explained by the overall lower read depth in the uni-

read datasets (S3A Fig). Consistent with the notion that improved priors enhance Bayesian

predictions, the unscored SmartMap analyses had lower on-target and higher off-target read

depth than the corresponding scored analyses (Fig 3F and 3G), and the no-iteration SmartMap

analyses had similarly lower on-target and higher off-target read depth than their one-iteration

counterparts.

As another metric to evaluate each analysis, we conducted MACS2 peak calling on each

dataset and assessed the degree to which they overlap. The SmartMap analyses had similar

(albeit slightly higher) base pair coverage with called peaks relative to the Gold Standard data-

set and considerably higher coverage on called peaks than the uniread analyses (S3B Fig), con-

sistent with the genome-browser views that suggest a similar pattern of peak boundary

sharpening (S1 Fig). As a measure of sensitivity, we computed the proportion of the Gold Stan-

dard peaks that were covered by SmartMap or uniread peaks (S3C Fig). Conversely, to mea-

sure specificity, we computed the proportion of SmartMap or uniread peaks that were covered

by Gold Standard peaks (S3D Fig). As expected, there was considerably lower coverage by the

uniread datasets than the SmartMap datasets, and the one-iteration SmartMap analyses had

very slightly lower coverage over the Gold Standard peaks than the no-iteration analyses (S3C

Fig). However, the one-iteration analyses were better-covered by Gold Standard peaks than

were their no-iteration counterparts (S3D Fig). Together, these data suggest that SmartMap

analyses with one iteration of reweighting have a marked increase in specificity relative to the

no-iteration analyses at the expense of a slight decrease in sensitivity.

We then evaluated the overall mean absolute error of read depth at the true origin loci rela-

tive to Gold Standard. The uniread analyses had the highest average mean absolute error, with

all SmartMap analyses outperforming all uniread analyses (Fig 3H). The scored SmartMap

analyses also all had lower error than did the unscored analyses, and the one-iteration Smart-

Map analyses slightly outperformed the no-iteration analyses (Fig 3H). The error in all datasets

tended to primarily be concentrated at regions of lower mappability (S3E Fig). Interestingly,

though SmartMap with one iteration had lower mean absolute error overall, the no-iteration

modality had slightly lower mean absolute error at true origin loci of lower read depth (Figs

3H and S3F). The reason for this difference is not clear; across all read depth classes, the one-

iteration analyses had slightly less negative mean error, suggesting that there wasn’t a large-

scale difference in over- or underweighting after iteration as a function of read depth (S3G

Fig). With that said, we feel it is important to contextualize these results; these differences

between the no-iteration and one-iteration analyses are small in magnitude and are compara-

tively dwarfed by the differences between SmartMap and uniread analyses (Figs 3H and S3E–
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S3G). Accordingly, though there may be small differences between the no-iteration and one-

iteration SmartMap analyses, the one-iteration analyses still performed better in aggregate,

and both of these scored SmartMap analyses consistently outperformed their unscored or uni-

read counterparts.

The above analyses all focused on validating SmartMap from the perspective of the total

read depth across a set of genomic intervals. However, given that we had a Gold Standard data-

set listing the true positions of each read, we also wished to evaluate whether our reweighting

method could improve the estimated of the probability that an alignment was properly

mapped–and, by proxy, improve the MAPQ score estimate for each alignment. Without

reweighting, the probability of correct alignment ranged from 0–0.67 and 1, with no align-

ments with correct alignment probability between 0.67 and 1. One iteration of SmartMap

reweighting expanded the spectrum of possible alignment weights to the full range of 0–1.

Without reweighting, the weight of alignments did not correlate well with the proportion of

alignment intersecting the true genomic position, with many large deviations seen from linear-

ity (Fig 3I). By contrast, though one iteration of reweighting still showed some deviations from

linearity by this analysis, the weight of alignments more closely concorded with the proportion

of the alignments intersecting the true read origin (Fig 3I). This suggests that by this measure,

SmartMap reweighting improved the estimates of the probability that the alignment intersects

with the true genomic position of the corresponding read. Similarly, we compared the

weighted proportion of overlap between the true read positions and any intersecting align-

ments as a function of alignment weight. This is meant to represent the proportion of a read’s

weight that is mapped to the correct location due to a given alignment and incorporates both

the confidence of the alignment selection (i.e. the weight) and the overlap of the alignment

with the true origin of the read. In both the no-reweighting and one iteration analyses, the

overlap proportion score was closely linearly related to the alignment weight, though the

reweighted analysis showed a slightly smoother curve with fewer marked deviations from lin-

earity (Fig 3J). This is roughly expected, as the overlap proportion score is itself a function of

weight; however, this analysis is comforting insofar as it shows that the SmartMap reweighting

does not markedly inflate or deflate the expected weight contribution of a given alignment to a

proper intersection with the true origin. Similarly, we find that the unweighted overlap pro-

portion of alignments with the true origin of the read is roughly constant near one for both the

no-iteration and one-iteration datasets, though again, the one-iteration SmartMap analysis

reduces the deviations from this level (S3H Fig). These analyses suggested that in addition to

improving measurement of read depths in aggregate, the SmartMap reweighting procedure

can also improve the estimates of correct alignment for individual reads and alignments.

The biological ChIP-seq and MNase-seq datasets presented in the remainder of this work

used 50bp read lengths or shorter, which is why we used 50bp read lengths for our simulated

dataset. However, in recent years, 100bp read lengths have become commonplace, and indeed,

the ENCODE datasets we present later in this work employed paired-end 100bp NGS. As

such, we examined the degree to which SmartMap can improve recovery of sequencing depth

with longer reads by conducting a similar analysis as the above with a similarly simulated data-

set employing 100bp paired-end reads. For facile comparison to the other figures and analyses

in this work, we have continued to use the UMAP50 score as our mappability score. This

choice is in spite of the fact that UMAP50 measures mappability by 50mers rather than

100mers and will thus underestimate mappability by 100bp reads. Because we are using this

metric, regions with lower mappability scores will often be more easily mapped than the score

would indicate, blunting differences between SmartMap and uniread analyses. As such, our

analyses using the UMAP50 score will offer a very conservative view at the impact of Smart-

Map analysis on read depth recovery and error.
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Despite this conservative choice of mappability score, we still see that SmartMap analysis

improves sequencing depth recovery nearly as well with 100bp reads as it does with 50bp

reads. The simulated dataset with 50bp reads shows a 13.9% increase in analyzable reads due

to the high number of multireads (2B and Fig 2C and Table 1); the simulation with 100bp

reads shows a 13.6% increase in analyzable reads and a similar proportion of multireads (S4A

and S4B Fig and Table 1). Along the same lines, the two simulations increase read depth over

similar proportions of the genome (Table 2). Over the true origin loci, much like the 50bp sim-

ulation, the 100bp simulated dataset shows an increase in read depth on quantile plots (S4C

Fig) under SmartMap analysis, with this increase in read depth primarily occurring at regions

of low UMAP50 mappability score (S4D Fig), conservative though this measurement of mapp-

ability is. Much like the 50bp simulated datasets, the increases in read depth under SmartMap

Table 2. Analysis of reads across genomic windows.

Regions with reads in:

Sample Genome Assay Regions Uniread SmartMap % Reg. Inc. % Inc. Reg.

Simulated 50bp hg38 Simulation 15,498,848 10,486,482 11,994,872 28.74% 14.38%

Simulated, -k 101 hg38 Simulation 15,498,848 10,463,337 12,012,046 29.07% 14.80%

Simulated 100bp hg38 Simulation 15,498,848 9,956,521 11,475,027 32.77% 15.25%

AR7 Input Rep. 1 mm10� MNAse-seq 13,654,309 12,129,867 13,243,873 33.49% 9.18%

H3K4me3 Rep. 1 mm10� ChIP-seq 13,654,309 11,329,858 12,999,672 27.21% 14.74%

Input Rep. 2 mm10� ChIP-seq 13,654,309 12,115,174 13,242,243 31.96% 9.30%

H3K4me3 Rep. 2 mm10� ChIP-seq 13,654,309 10,952,182 12,750,113 27.25% 16.42%

AR8 Input dm3† MNAse-seq 698,569 617,424 681,457 17.92% 10.37%

H3K27me3 dm3† ChIP-seq 698,569 612,050 680,193 17.39% 11.13%

AR9 Input mm10† MNAse-seq 13,654,309 12,214,070 13,245,567 35.60% 8.45%

H3K4me3 mm10† ChIP-seq 13,654,309 11,775,058 13,208,421 30.83% 12.17%

H3K9me3 mm10† ChIP-seq 13,654,309 12,027,438 13,245,567 32.11% 10.04%

H3K27me3 mm10† ChIP-seq 13,654,309 12,012,091 13,237,339 31.99% 10.20%

AR16 Input hg38‡ MNAse-seq 15,498,848 13,879,635 14,629,457 34.59% 5.40%

H3K4me1 hg38‡ ChIP-seq 15,498,848 13,310,801 14,423,602 31.07% 8.36%

H3K4me2 hg38‡ ChIP-seq 15,498,848 13,298,178 14,443,778 30.56% 8.61%

H3K4me3 hg38‡ ChIP-seq 15,498,848 10,338,102 12,270,858 25.24% 18.70%

AR17 Input hg38‡ MNAse-seq 15,498,848 13,896,029 14,634,051 34.56% 5.31%

H3K9me3 hg38‡ ChIP-seq 15,498,848 13,856,547 14,626,552 34.14% 5.56%

H3K27me3 hg38‡ ChIP-seq 15,498,848 13,803,814 14,618,351 33.66% 5.90%

ENCODE Snyder Rep. 1 hg38 ATAC-seq 15,498,848 10,389,635 11,970,867 28.34% 15.22%

Snyder Rep. 2 hg38 ATAC-seq 15,498,848 9,772,547 11,251,766 21.53% 15.14%

Gingeras Rep. 1 hg38§ RNA-seq 41,929 21,755 25,711 22.85% 18.18%

Gingeras Rep. 2 hg38§ RNA-seq 41,929 12,399 14,485 11.96% 16.82%

For all except the ENCODE RNA-seq datasets, analysis is conducted on 200bp genomic windows. For ENCODE RNA-seq datasets, analysis is conducted on distinct

Refseq genes.

% Reg. Inc.: Percent of the total regions in the SmartMap dataset with increased read depth relative to the Uniread dataset.

% Inc. Reg.: Percent increase in the number of regions with reads in the SmartMap dataset relative to the Uniread dataset.

Genome includes ICeChIP barcodes:

� Series 1.
† Series 2.
‡ Series 3.
§ Genome includes ENCODE ERCC standards.

https://doi.org/10.1371/journal.pcbi.1008926.t002
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analysis are primarily seen at regions of low mappability and low uniread read depths; QQ

plots comparing the uniread analysis with the SmartMap or Gold Standard show a shoulder at

low uniread depths, with the plot converging onto a slope of unity at higher uniread depths

(S4E and S4F Fig). It should be noted that, as with the 50bp simulated dataset (S2D Fig), the

SmartMap dataset still fails to fully recover read depth as compared to Gold Standard with

100bp reads (S4G Fig). Nonetheless, the SmartMap analysis still shows considerably lower

mean absolute error than does the uniread analysis at true origin loci (S4H Fig), with this

decrease in error being particularly prominent at regions with lower UMAP50 mappability

scores (S4I Fig). In total, these analyses suggest that even for datasets employing 100bp paired-

end sequencing reads, multiread analysis still has nearly undiminished importance and that

SmartMap can still markedly improve read depth recovery while decreasing overall error.

The above analyses all restricted Bowtie2 to report a maximum of 51 alignments for compu-

tational efficiency. Subsequently, only those reads aligning to fewer than 51 alignments were

used for SmartMap analysis. However, this practice excluded more than 7 million reads

(Table 1), likely including reads that map to the most highly repetitive regions of the genome.

Notably, this is a restriction on alignment itself, not SmartMap; there’s no reason that Smart-

Map would inherently be unable to handle greater numbers of alignment. Nonetheless, to eval-

uate the impact of this restriction on the SmartMap datasets, we reanalyzed our simulated

50bp read length dataset with a maximum of 101 alignments per read (hereafter, the k101 data-

set) and compared it to the previous analysis (the k51 dataset). To our surprise, the two analy-

ses were highly similar despite the near-doubling in the maximum-alignments threshold in the

former dataset. The increase in the number of analyzable reads was nearly identical between

the two analyses (S5A and S5B Fig and Table 1), with similar increases in depth over genomic

windows (Table 2). At the true origin loci, the SmartMap read depths in both the k51 and k101

datasets were very similar at the level of read depth (S5C and S5D Fig). Mean absolute error

relative to the Gold Standard was actually very slightly lower in the k51 dataset, though they

were quite similar in magnitude compared to the uniread dataset (S5E and S5F Fig). Even spe-

cifically examining repetitive elements, read depth was very similar between the k51 and k101

SmartMap analyses at all repeats (S5G Fig), LINEs (S5H Fig), SINEs (S5I Fig), and Alu ele-

ments (S5J Fig), closely approximating the Gold Standard read depth in both cases. Accord-

ingly, though there is still a large proportion of reads that mapped to still greater numbers of

loci, we find that at the range we have tested, the SmartMap analyses are robust to differences

in maximum-alignments reporting thresholds and that there is little practical difference

between restricting datasets to a maximum of 51 or 101 alignments per read besides the addi-

tional time and storage space needed for the latter.

To be sure, the reweighting used for SmartMap is not without concerns. In particular, one

of the potential problems for SmartMap is the existence of high-signal regions, which can

show falsely high read depth in NGS experiments due to sequencing or alignment error [42]. If

there are regions of falsely high weight, then those regions could be skewed by the SmartMap

reweighting algorithm to report even greater weights, thus exacerbating these artifactually

high signals. To assess the degree to which these regions represent an issue for SmartMap, we

computed the number of genomic windows with more than 60, 70, 80, or 90 reads in our sim-

ulated datasets (Table 3). We used these benchmarks as rough thresholds for defining high-sig-

nal regions because the Gold Standard dataset had a maximum read depth across a genomic

window of approximately 83 reads. Notably, the Gold Standard did not require sequencing or

mapping and should thus not be susceptible to these high-signal artifacts. Unfortunately, one

iteration of SmartMap reweighting did increase the proportion of high-signal regions consid-

erably; there were fewer than 600 genomic windows with an average depth of more than 70 in

the Gold Standard, Iteration 0, and Uniread datasets, compared to more than 10,000 in the
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SmartMap dataset with one reweighting cycle. It’s important to note that these regions repre-

sent a very small proportion of the genome; only 0.066% of the genomic windows had more

than 70 reads on average, and even fewer had more than 80 or 90 reads (Table 3), leaving con-

siderably more than 99.9% of the genome as not having abnormally high-signal attributable to

SmartMap. In contrast, almost 15% of the genome is hidden from uniread analysis (Table 2).

Nonetheless, we feel it is fair to say that the reweighting algorithm used for SmartMap will

increase the weights of multiread alignments at high signal regions, which can exacerbate arti-

factually high read depths.

Even so, on the whole, these analyses suggest that SmartMap recovers read depth at a large

set of loci that would otherwise be missed by the uniread analyses and that of the SmartMap

analyses, one iteration of reweighting with use of alignment scores largely outperforms the

other modalities. Accordingly, for the remainder of this work, we use SmartMap analysis with

one iteration in scored mode as our default SmartMap method.

Utilizing SmartMap on MNase-seq and ChIP-seq datasets

Having validated our method on the simulated dataset, we turned to the biological samples.

We deployed a total of 21 datasets derived from three different organisms for our analysis

(Table 1). Of these datasets, six were control ICeChIP Inputs, generated by MNase-seq [29,30],

11 were ICeChIP-seq IP datasets, two were ATAC-seq datasets, and two were RNA-seq data-

sets. After alignment, the samples showed a 13–50% increase in the number of usable reads for

SmartMap analysis relative to uniread (S6 and S7 Figs and Table 1).

To evaluate the impact of our algorithm on the ICeChIP-seq datasets, we first conducted

SmartMap and uniread analysis on each of the Input datasets and computed the average read

depth on 200bp genomic windows. As with the simulated dataset, the SmartMap analyses of

the Inputs had increased read depth relative to the uniread datasets (Figs 4A and S8A), with

markedly greater depth in the SmartMap analysis at windows of lower mappability (Figs 4B

and S8B). Similarly, this excess read depth was not distributed across all reads, but rather, was

concentrated onto 17–35% of windows (Figs 4C and S8C and Table 2), primarily at regions of

lower mappability (Figs 4D and S8D). The QQ plots of the SmartMap vs. the uniread read

depths showed a shoulder at low uniread depth (Figs 4E and S8E), again suggesting that the

increase in read depth from the SmartMap analysis is primarily at loci where the uniread anal-

ysis performs poorly. This difference in the distributions of read depths further comments on

the importance of analyzing multireads.

With our Input datasets, we could also examine the reproducibility of the MNase-seq exper-

iments under uniread and SmartMap analyses. There were three biological replicates of Input

in mESC E14 cells (AR7 Replicate 1, AR7 Replicate 2, and AR9), and two biological replicates

Table 3. Analysis of high-depth regions under SmartMap analysis.

Number of genomic windows with: Percent of genomic windows with:

Dataset >60 rds. >70 rds. >80 rds. >90 rds. >60 rds. >70 rds. >80 rds. >90 rds.

Gold Std. 34,468 463 1 0 0.22 0.0030 6.5 x 10−6 0

Iteration 0 26,969 571 85 36 0.17 0.0037 5.5 x 10−4 2.3 x 10−4

Iteration 1 44,185 10,193 6,337 4,296 0.29 0.066 0.041 0.028

Uniread 24,344 321 1 0 0.16 0.0021 6.5 x 10−6 0

Number of genomic windows refers to the number of 200bp genomic windows for each dataset with an average depth or average weight greater than that indicated in

each column. Percent of genomic windows refers to the number of genomic windows as a percentage of the total number of 200bp genomic windows in hg38

(15,498,848). The median read depth was 10.5 and the mean read depth was 16.1 in the Gold Standard dataset.

https://doi.org/10.1371/journal.pcbi.1008926.t003
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of Input in K562 cells (AR16 and AR17). For all loci with nonzero read depth, we computed

the depth normalized log ratios of reads in a pairwise manner for biological replicates, shown

as quantile plots in Fig 4F. These plots are highly similar under SmartMap and uniread analy-

ses across all pairwise comparisons (Fig 4F). Accordingly, the average magnitudes of these

ratios are similar between the two analyses–and indeed, are slightly lower in the SmartMap

datasets (Fig 4G). This suggests that the two modalities show highly similar estimates of repro-

ducibility of data between biological replicates of MNase-seq.

Having examined the Input datasets, we then used the ICeChIP-seq datasets to compute

histone modification densities (HMD) across 200bp genomic windows with both uniread and

SmartMap analyses. Interestingly, we noted that the mean HMD was quite similar between the

SmartMap and uniread datasets across a broad range of mappability scores (Figs 5A and S9A).

However, the median HMD of those same datasets were divergent, with the SmartMap analy-

ses having considerably higher median HMD across bins of low mappability than the uniread

analyses (Figs 5B and S9B).

The difference between mean and median HMD may be attributable to the fact that HMD

is a scaled-version of fold-change of IP over Input. We attribute the median HMD divergence

to sparser distribution of read depth in the uniread dataset at lower mappability scores (Fig

4B). As such, there are fewer regions with nonzero read depth in both the IP and Input. The

result of this mismatch in read distribution is that more regions have an apparent HMD of

zero under uniread analysis. That the mean HMDs are similar between the two analyses sug-

gests that the ratios of the total read depths in IP over Input are similar between SmartMap

and uniread analyses. Together, these data suggest that the SmartMap analyses preserve the

overall HMD across a wide range of mappability scores while also enabling measurement of

HMD at a broader range of loci than do uniread analyses.

One of the major benefits of using ICeChIP-seq data is the ability to measure antibody spec-

ificity [29–31]. In ICeChIP, internal standards bearing a variety of different histone modifica-

tions can be simultaneously spiked into an experiment, and the relative pulldown efficiency of

each modification can be quantified as a proportion of the target to measure the off-target

binding of the antibody. We wished to determine whether the SmartMap analyses would yield

similar specificity estimates as did the uniread analyses. First, we found that the ratio of the

reads from the on-target nucleosome in the IP over the Input was highly similar between the

uniread and SmartMap analyses (Table 4). Moreover, the scatterplots of specificity (Figs 5C

and S10A) and logarithm of specificity (Figs 5D and S10B) under each modality show slopes

close to unity and high coefficients of determination. This further shows that the specificity

measurements in SmartMap and uniread analyses are highly similar in both an absolute (Figs

5C and S10A) and a relative (Figs 5D and S10B) sense.

Extending the utility of SmartMap to ATAC-seq and RNA-seq

We also found that SmartMap could be applied to ATAC-seq data to obtain more global mea-

surements of chromatin accessibility. To demonstrate this, we used two replicates of K562

ATAC-seq data, originally generated by the Snyder Lab as part of the ENCODE Consortium

[15]. As with the ICeChIP-seq datasets, we found that SmartMap analysis could utilize 17–20%

Fig 4. SmartMap and uniread analyses of ICeChIP-seq input depth. All analyses conducted on 200bp genomic windows for the Inputs defined in Table 2.

(A) Quantile plot of read depth for SmartMap and uniread analyses. (B) Median read depth vs. mappability score (UMAP50) for SmartMap and uniread

analyses. (C) Quantile plot of excess read depth in SmartMap relative to uniread analysis. (D) Median excess read depth vs. mappability score (UMAP50). (E)

QQ plot of read depth in SmartMap vs. uniread analysis. Color scale represents percentile of each point, from 1st to 99th percentiles. Dashed line represents line

with slope of unity. (F) Quantile plots of depth-normalized log ratio of read depths of biological input replicates under SmartMap and uniread analysis. Graph

breaks are present on both the upper and lower ends of the graphs. (G) Mean absolute depth-normalized log ratio for the comparisons presented in panel F.

https://doi.org/10.1371/journal.pcbi.1008926.g004
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more reads than uniread analysis (Table 1); this increased read depth was primarily concen-

trated at 20–30% of the genome (S11A–S11C Fig and Table 2), particularly those loci with low

mappability scores (S11D–S11F Fig). SmartMap and uniread analyses also showed similar lev-

els of reproducibility between the two isogenic replicates, though SmartMap showed slightly

lower reproducibility between the two datasets than did the uniread analysis (S11G and S11H

Fig). These data suggest that SmartMap is also useful for ATAC-seq data and can reveal acces-

sible regions of the genome at poorly mappable loci that would have been missed by uniread

analysis alone.

In addition to the MNase-seq, ChIP-seq, and ATAC-seq datasets, we also sought to apply

our SmartMap analysis to RNA-seq experiments. Specifically, we analyzed two replicates of

Fig 5. ICeChIP-seq histone modification density in SmartMap and uniread analyses. All analyses conducted on 200bp tiled genomic windows. (A-B) (A) Mean or

(B) Median HMD vs. mappability score (UMAP50) for SmartMap and uniread analyses. (C-D) Scatterplots of (C) specificity or (D) log specificity for uniread vs.

SmartMap analyses. Specificity is measured as the enrichment of each on- or off-target internal standard nucleosome as a percentage of on-target enrichment.

https://doi.org/10.1371/journal.pcbi.1008926.g005
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K562 bulk RNA-seq data, originally generated by the Gingeras Lab as part of the ENCODE

Consortium [15]. Our SmartMap RNA-seq analyses showed that for each replicate, relative to

uniread analysis, there was a 20–35% increase in usable reads (Table 1) concentrated into a

minority of distinct Refseq genes (S12A–S12C Fig and Table 2). The reproducibility of the two

datasets was also similar between the SmartMap and uniread analyses, though as with the

ATAC-seq data, the SmartMap analysis showed marginally lower reproducibility between the

two RNA-seq experiments than did the uniread analysis (S12D and S12E Fig). With that said,

these differences in read depth are relatively minor in magnitude, especially when normalized

to differences in read depth in the SmartMap and uniread analyses. Given the other concerns

with using this particular multiread allocation algorithm in gapped reads or spliced transcripts

(as noted in the Discussion), it is likely that SmartMap is not optimally configured for use in

RNA-seq analysis.

SmartMap drives new biological insights about repetitive DNA elements

With this method, we sought to better explore the role of histone modifications at repetitive

regions. Traditionally, the epigenetic profile of repetitive elements is viewed in light of the

“genome defense” hypothesis, which suggests that regulation of repetitive elements (and par-

ticularly transposable elements) serves to silence the elements and thereby prevent transposi-

tion [43]. Consequently, much previous work on this topic has primarily pointed towards

repetitive elements being enriched with heterochromatin-associated modifications such as

H3K9me2 [44], H3K9me3 [9,43,45–47], and H3K27me3 [43,45,48]. In recent years, some

studies have described a role for canonically activating histone modifications at a subset of

repetitive elements [49–54]. Indeed, this body of work has suggested that some long inter-

spersed nuclear elements (LINEs) can bear marks such as the transcriptionally activating

H3K4me3 modification, particularly early in development [51–53]. Similarly, other work has

suggested that a class of mammalian-wide interspersed repeats (MIRs) may be transcription-

ally active and play a role in enhancer regulation [54]. Much of this work, however, has relied

upon uncalibrated ChIP with antibodies of uncertain specificity, both of which can result in

Table 4. Analysis of ICeChIP Calibrant Barcodes.

On-target IP/Input Ratio: Specificity Plot:

Sample Series Barcodes Uniread SmartMap Species Slope R2

AR7 H3K4me3 Rep. 1 Ser. 1 11 19.88 20.05 1 – –

H3K4me3 Rep. 2 Ser. 1 11 18.95 18.99 1 – –

AR8 H3K27me3 Ser. 2 100 0.877 0.879 1 – –

AR9 H3K4me3 Ser. 2 100 27.7 28.3 7 1.051 0.9984

H3K9me3 Ser. 2 100 1.34 1.26 7 1.012 0.9972

H3K27me3 Ser. 2 100 0.678 0.677 7 1.022 0.9995

AR16 H3K4me1 Ser. 3 136 4.34 4.84 17 1.005 0.9967

H3K4me2 Ser. 3 136 3.98 3.75 17 1.004 0.9992

H3K4me3 Ser. 3 136 32.4 31.1 17 1.009 0.9987

AR17 H3K9me3 Ser. 3 136 2.45 2.23 17 1.005 0.9996

H3K27me3 Ser. 3 136 1.82 1.73 17 1.002 0.9998

Barcodes: the number of unique DNA barcode sequences in the ICeChIP calibrant series.

Species: the number of distinct modified nucleosomes marked by the barcodes, including the target modification and, if there is more than one species, the off-target

modifications.

Specificity plot: summary of the specificity plots shown in Figs 5C and S9A.

https://doi.org/10.1371/journal.pcbi.1008926.t004
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data distortion and biologically incorrect conclusions [30]. Further, the ChIP-seq and RNA-

seq studies have used a variety of different methods of aligning and filtering for reads to reach

their conclusions, none of which used a method similar to our Bayesian SmartMap analysis,

which may further affect the interpretations of the experiments. As such, we sought to use our

calibrated and highly specific ICeChIP-seq datasets in conjunction with SmartMap to gain

new insights into the epigenetic landscape of repetitive elements and to examine the degree to

which uniread analysis yields an incomplete view of the data.

To accomplish this, we examined the histone modification landscape at the promoters of all

repetitive elements, LINEs, short interspersed nuclear elements (SINEs), and Simple Repeats.

K-means clustering analysis on all repetitive elements revealed four classes of promoters, each

with a different histone modification profile: Cluster 1, enriched for H3K27me3 and

H3K9me3; Cluster 2, enriched for H3K4me1 and H3K4me2; Cluster 3, enriched for H3K4me2

and H3K4me3; and Cluster 4, which is relatively depleted of histone modifications (Fig 6A).

These clusters are roughly reminiscent of the functional classifications of the ENCODE hidden

Markov model, where Clusters 1, 2, and 3 correspond to silenced promoters, enhancers, and

active promoters, respectively [55]. Interestingly, in all but Cluster 4, a greater proportion of

nucleosomes is enriched with H3K27me3 than H3K9me3, despite the previous emphasis on

the latter in repetitive element silencing [9,43,45–47], emphasizing the importance of calibra-

tion in ChIP-seq studies for comparing different modifications [29,30]. Similar histone modifi-

cation profiles are seen for the LINEs (S13A Fig), SINEs (S13B Fig), and Simple Repeats (S13C

Fig). Across all these classes, Cluster 3 had the highest ATAC-seq signal (S13D–S13G Fig),

consistent with the presence of histone modifications associated with transcription and acces-

sible chromatin [10,13,56].

Importantly, SmartMap analysis enabled us to more accurately measure HMD and assign

clusters than did unriead analysis. Overall, there were 142,392 promoters with nonzero HMD

in the SmartMap analysis that displayed no measurable HMD within 200bp of the TSS across

all five histone modifications in the uniread dataset; similarly little HMD was detected within

1kb of the same in the uniread dataset (S14 Fig). This increase in HMD was substantial; most

such sites had meaningful levels of histone modifications (Fig 6B). A small subset was primar-

ily H3K4me2/me3 predominant; a larger subset had high levels of H3K4me1/me2, and the

remainder were primarily characterized by H3K27me3 and H3K9me3 (Fig 6B). These repre-

sent promoters that would have been misclassified as histone-modification-depleted under

uniread analysis; it is only through proper allocation of multireads that we can measure their

HMDs and assign them to the appropriate cluster of repeat elements.

The distribution of repetitive elements across these clusters revealed interesting patterns.

The distribution of the repeat classes or families across the clusters are presented in Table 5 for

all repeats, Table 6 for LINEs, and Table 7 for SINEs, and summarized in Fig 6C. Notably,

amongst SINEs, MIRs were enriched in Cluster 3 (Fig 6C), consistent with previous descrip-

tions of a class of transcriptionally active MIRs [54]. In addition, Cluster 3 was enriched for

Simple Repeats across all repeat promoters, consistent with descriptions of Simple Repeats in

and around protein coding genes in the literature [57]. Interestingly, Cluster 3 was enriched

for the L2 subtype of LINEs, despite previous work primarily focusing on the role of H3K4me3

at L1 elements [52], representing a novel prediction of transcriptional activity of this family.

To this end, using SmartMap analysis of the RNA-seq data, we found that the Cluster 3 LINEs

had greater transcriptional activity than did the other clusters (Fig 6D), confirming the tran-

scriptional activity suggested by the presence of H3K4me3. Collectively, these data demon-

strate the risk in only focusing on unireads–namely, the risk of missing important classes of

genomic features–and highlights the role of multiread analysis of both DNA and RNA in driv-

ing new biological discovery.
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Fig 6. Assessment of histone modifications at promoters of repetitive DNA elements. (A) Mean histone modification densities (HMDs) about promoters for classes

of all repetitive elements, as defined by k-means clustering. Corresponding analyses of LINE, SINE, and Simple Repeat elements in S13 Fig. (B) Heatmap of repeat

promoters with newly measurable HMD in SmartMap analysis, sorted on first principal component of repetitive elements. (C) Proportion of each cluster comprised by

each repeat class or family for all repeats (left), LINE elements (center), and SINE elements (right). All significance tests performed as post-hoc Bonferroni-corrected

pairwise 2x2 chi-square tests. (D) Quantile boxplots of average normalized RNA-seq read depth across LINE elements for each LINE cluster. Solid line with marker

represents 90th percentile; dashed line with marker represents 95th percentile. Significance test shows difference in median by Bonferroni-corrected pairwise Mood’s

median tests. Significance markers: �p<0.01, ��p<10−5, ���p<10−10.

https://doi.org/10.1371/journal.pcbi.1008926.g006
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Discussion

In this work, we have described a method to markedly increase sequencing depth genome-wide

by analyzing ambiguously mapped reads rather than discarding them. This is of particular

importance given that a significant portion of commonly studied genomes are not uniquely

mappable by single-end or paired-end sequencing [25,26]. This difficulty arises in no small part

due to the repetitiveness of the genome [22], but despite their difficulty to map, repetitive ele-

ments play critical roles in genomic regulation and function [27]. It is common discard these

multireads entirely, despite these reads representing up to 30% of the sequencing depth. Works

that do utilize multireads often simply select an alignment at random. We demonstrate that our

SmartMap algorithm can better map reads to the repetitive portion of the genome, facilitating

better understanding their functions. Importantly, we find that the usage of alignment quality

scores and paired-end sequencing can markedly increase the accuracy of imputed alignments.

Just by incorporating multireads with 2–50 alignments, we were able to increase the read

depth of our samples by 13–53% (Fig 7A and Table 1). This increase in read depth was not sim-

ply distributed across the entire genome, which is critical for the usefulness of this method. If

the multireads were distributed uniformly, it would only modestly decrease error by slightly

increasing read depth at all loci [29]. However, that is not the case; rather, the multireads are

concentrated in a minority of the genome (Fig 7B and Table 2), bringing regions of lower

mappability to read depths comparable with highly mappable loci (Fig 4A). The multiread sam-

ples have a 5–20% increase over unireads in the number of loci with nonzero read depth (Fig

7C and Table 2), representing a sizable proportion of the genome that is completely ignored by

uniread analysis and can be recovered only by utilizing ambiguously mapped reads.

Our method requires no particular experimental modifications or additional controls for

analysis of multireads and can be applied post hoc to existing datasets. As such, SmartMap can

be used to leverage the existing compendium of NGS datasets more accurately. Though we pri-

marily used ICeChIP-seq data to demonstrate and explore the capabilities of SmartMap, this

tool is not solely designed for ICeChIP and does not require the internal standards used

therein. Indeed, SmartMap is designed to be a general tool for a broad range of next-genera-

tion sequencing experiments, including ChIP-seq, MNase-seq, and ATAC-seq, as we showed

Table 5. Clustering of Repetitive Elements.

Repeat Class Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

DNA 240,787 28,465 763 232,324 502,339

LINE 754,991 78,670 2,133 734,556 1,570,350

LTR 393,797 39,911 707 319,769 754,184

Simple Repeat 357,734 50,395 7,555 287,900 703,584

SINE 818,624 119,404 5,478 908,873 1,852,379

Other 61,336 10,461 2,038 62,635 136,470

Total 2,627,269 327,306 18,674 2,546,057 5,519,306

https://doi.org/10.1371/journal.pcbi.1008926.t005

Table 6. Clustering of LINE Elements.

LINE Family Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

L1 463,275 46,376 828 490,788 1,001,267

L2 233,599 32,236 1,289 207,410 474,534

Other 43,993 6,221 146 44,189 94,549

Total 740,867 84,833 2,263 742,387 1,570,350

https://doi.org/10.1371/journal.pcbi.1008926.t006
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in this work. In addition, though we have used paired-end sequencing here, there is little rea-

son to believe this method could not be used for a single-end sequencing experiment. In prin-

ciple, an algorithm using the principles of SmartMap can be applied to any NGS experiment,

past or future, that involves alignment to a genome.

Previously published methods have utilized a variety of techniques to allocate multireads;

however, our analysis suggests that many of these methods may be problematic. One heuristic

assumes that multireads and unireads have similar genomic distributions and, accordingly,

assigned multireads weights in proportion with uniread depth [2,58]. Our data, by contrast,

shows that multireads instead concentrate into a minority of loci (Table 2) and particularly

those with low uniread depth (Figs 3C and S2C and S2D). This suggests that the unireads and

multireads have different genomic distributions, violating the critical assumption underlying

proportional allocation of multireads. Another method of resolving multireads is to select one

alignment at random for each read [39,43]. The expected value of the read distribution under

this procedure converges to that of SmartMap without reweighting, which we found to have

higher error than SmartMap with a Bayesian reweighting cycle (Figs 2D and 3H and Table 8).

Indeed, explicit comparison to an instance of random read comparison revealed even higher

error as compared to both un-reweighted SmartMap and the SmartMap analysis with

reweighting (Table 8).

SmartMap is also computationally efficient as compared to the most similar previous algo-

rithms and software for the assignment of multireads. This is due in part to the low number of

reweighting iterations our algorithm uses, which decreases the computational burden of the

software. In addition, the Fenwick tree data structure used with our method allows for more

efficient processing of reads by accessing and updating of genomic weights. Previous imple-

mentations of a scored-alignment reweighting algorithm, as done by BM-Map, have required

more than five hours to process approximately seven million aligned reads after alignment in

previous studies [36]. Unfortunately, we were not able to fully measure the time requirements

for BM-Map for ourselves; implementing both CSEM [35] and BM-Map [36] proved challeng-

ing, as described in the Methods. However, using our simulated dataset (with 50bp reads),

including more than 740 million alignments from more than 275 million reads, even just read-

ing the alignments with BM-Map on our hardware took more than 6 hours after alignment

(Table 8). By contrast, our algorithm can completely process that same aligned dataset in less

than 2.5 hours, representing more than 100-fold less CPU time than the alignment itself

(Table 8). As such, the low CPU-time requirements of SmartMap drastically increases our abil-

ity to use this algorithm on data from modern NGS experiments, particularly given the ever-

increasing depth and decreasing cost of sequencing [59]. Though it is, admittedly, faster to

solely process unireads than to conduct SmartMap (Table 8), the added time is not egregiously

high; on our system, the full benchmarking (including alignment) required roughly eight

more hours of wall time in the SmartMap analysis than in the uniread analysis.

This SmartMap method is, however, not without its limitations. Primary amongst these

limitations is that rather than yielding a list of alignments, the SmartMap software either

Table 7. Clustering of SINE Elements.

SINE Family Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

Alu 520,927 72,223 2,880 590,748 520,927

MIR 319,283 38,836 2,587 241,855 319,283

FLAM 17,988 3,069 148 18,782 17,988

Other 11,943 1,634 61 9,415 11,943

Total 870,141 115,762 5,676 860,800 870,141

https://doi.org/10.1371/journal.pcbi.1008926.t007
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outputs the read depth at each base pair genome-wide or a list of alignments with associated

weights. While this is useful for any analysis that utilizes the read depth at a given position, this

makes it difficult to use downstream methods or tools that primarily utilize the full list of align-

ments using off-the-shelf tools. In particular, this makes it challenging to compute gene

expression in RNA-seq per common methods such as FPKM, which uses the number of reads

overlapping a transcript as a measure of expression rather than the read depth per base pair.

This is partially alleviated by the fact that SmartMap provides the option to write lists of align-

ments with their corresponding weights, but even so, incorporating these weights into existing

downstream analyses, pipelines, and software may remain challenging.

In addition, the SmartMap method also may face challenges with any alignments with sig-

nificant gaps relative to the alignment templates, such as those created by RNA splicing (or Hi-

C experiments). Because our reweighting algorithm assigns weights based on the average read

depth across an alignment, an alignment spanning a splice junction in RNA-seq may be

unfairly assigned a lower weight due to decreased read depth in the intron. As such, highly

spliced genes may be given a lower read depth than a similarly expressed gene with fewer

introns. This could be partially accommodated by weighting with the total read depth over an

alignment rather than the average read depth over the same, but this method would potentially

unfairly increase weight of longer alignments, which could pose another challenge.

In addition, from a computational perspective, the SmartMap method is memory intensive.

This is in large part due to the data structure used for storing genome-wide weight data.

Because this tool is designed to be compatible with reweighting of paired-end reads and

obtaining the total weight across a paired-end read, the data structure needs to efficiently con-

duct both range update and range query operations. Accordingly, for the strand-independent

method, we have used a dual binary-indexed tree data structure; for strand-specific analysis,

Fig 7. Analysis of increased usable read depth. This figure graphically represents the data in Tables 1 and 2. (A) The

percent increase in the number of reads usable in SmartMap analysis (reads with 1–50 alignments) relative to uniread

analysis (reads with 1 alignment). (B) Percentage of the total number of regions with an increase in read depth in the

SmartMap dataset relative to the uniread dataset. For all datasets except the ENCODE RNA-seq datasets, the list of

regions analyzed is the set of 200bp genomic windows across the relevant genome (hg38, mm10, or dm3). For the

ENCODE RNA-seq dataset, the list of regions analyzed is the set of distinct Refseq genes. (C) Percent increase in the

number of regions with nonzero read depth in the SmartMap dataset relative to the uniread dataset. Regions are

defined as per panel B.

https://doi.org/10.1371/journal.pcbi.1008926.g007

Table 8. Benchmarking SmartMap software.

Pre-algorithm alignment and processing Read allocation algorithm

Read Alignment Processing Alignments Reading alignments

Algorithm CPU Time Wall Time CPU Time Proc. File Size CPU Time Max. Memory Algorithm Time Avg. MAE

SmartMap 317:30:25 6:39:46 1:34:29 59 GB 0:16:49 53 GB 0:42:38 4.04

BM-Map 317:30:25 6:39:46 N/A 820 GB 6:25:09 146 GB ERROR –

Iteration 0 317:30:25 6:39:46 1:34:29 59 GB 0:16:10 53 GB 0:35:16 4.12

Random 317:30:25 6:39:46 2:15:12 15 GB 0:03:58 39 GB 0:15:46 5.48

Uniread 36:08:04 0:45:34 0:17:07 13 GB 0:03:19 39 GB 0:14:43 6.50

Benchmarking conducted on computer with Ubuntu 20.04.1 LTS with 224 GB of RAM and dual Intel Xeon CPU E5-2690 v3 @ 2.60GHz processors, running on one

thread except the read alignment, which used 48 threads. All times are represented in hours:minutes:seconds.

Alignment conditions are identical for all but Uniread. Parsing reads is typically conducted in parallel with alignment. File size represents the size of the required file

after read parsing needed for the algorithm in question. Reading alignments is part of each algorithm and is included in the Algorithm Total Time.

Average Mean Absolute Error (Avg. MAE) is computed against the gold standard on the set of true origin loci. These benchmarking analyses were conducted separately

with separate alignments from the analyses in Fig 3, and the avg. MAEs vary slightly in magnitude from those presented in Fig 3.

https://doi.org/10.1371/journal.pcbi.1008926.t008
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we use a dual binary-indexed tree structure for each strand, for a total of four binary-indexed

trees. For this reason, for our simulated dataset, the SmartMap analysis required almost 60 GB of

memory. In principle, a lower-memory method could be developed that would only use one

binary-indexed tree per strand, but this would require iteration over each base position of each

alignment and would thereby dramatically decrease time-efficiency. However, it’s important to

note that BM-Map, the only other tested software that was even able to successfully read the align-

ments, required almost 150 GB to read that same set of alignments into memory (Table 8). In

practice, with the decreasing costs of memory and the increasing availability of computational

servers and clusters for a wide variety of bioinformatic tools and analyses, the memory require-

ments are likely workable for many users, particularly because of the low CPU time required.

Finally, even the best SmartMap analysis can only be as good as the alignment itself. In this

work, we have largely restricted our Bowtie2 alignments to report a maximum of 51 align-

ments, with the exception of the analysis with a maximum of 101 alignments. This was con-

ducted for feasibility; as the maximum number of reported alignments increases, so too does

the computational overhead needed for alignment of the reads by Bowtie2. However, this does

place an inherent limitation on our ability to look at the most repetitive regions of the genome,

which can be found at hundreds of loci throughout the genome and can thus pose a significant

challenge to alignment and multiread analysis. Granted, raising this threshold to a maximum

of 101 alignments per reads had practically no impact on the analysis on the human genome

(S5 Fig and Tables 1 and 2), but nonetheless, there were still nearly seven million reads that

aligned to the maximum of 101 loci, representing a significant number of reads with even

more potential alignments. Further, some genomes have even greater repetitiveness than does

the human genome; for example, repetitive elements comprise roughly 85% of the maize

genome [60], making alignment all the more challenging and raising the number of plausible

alignment sites for each read. It is important to note that this is not a limitation that is inherent

to SmartMap, but rather, to alignment itself. If the end user was able to generate an alignment

with an arbitrarily high maximum number of reportable alignments, there is no reason that

SmartMap should fail; it is not inherently capped at a maximum number of alignments per

read. It should be remembered that SmartMap will not be able to “fix” an alignment with too

few alignments per read. Accordingly, it may be necessary to tune the maximum number of

alignments per read to appropriately analyze data originating from some genomes despite the

added computational load for alignment.

Despite these limitations, we were nonetheless able to demonstrate the usefulness of our

SmartMap tool to process reads from a variety of NGS workflows (e.g. MNase-seq, ChIP-seq,

ATAC-seq, and RNA-seq) and to investigate biological questions–in this case, the epigenetic

regulation of repetitive elements. Just as importantly, we demonstrated the risk of using only

unireads–namely, that biologically relevant regions will be hidden from analysis because the

multireads have been discarded. Given the critical role that repetitive regions play in biological

regulation [27], being able to analyze these regions is crucial to gaining a more complete

understanding of genomic structure and function. Accordingly, we hope this method will help

enable researchers to use their sequencing data more completely and thereby gain more useful

information from their experiments.

Methods

Sequencing data sources

MNase-seq and ICeChIP-seq data. The ICeChIP-seq datasets analyzed in this work, with

the exception of AR17 H3K27me3 IP, were sourced from previously published ICeChIP-seq

datasets [29,30]. The FASTQ files for datasets AR7, AR8, and AR9 can be obtained from GEO
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Accession Number GSE60378. The FASTQ files for datasets AR16 and AR17 can be obtained

from GEO Accession Number GSE103543. The Inputs for each ICeChIP experiment are gen-

erated by MNase-seq.

The AR17 H3K27me3 ICeChIP-seq was conducted at the same time as the AR17 H3K9me3

ICeChIP-seq experiment using the same AR17 Input, but was not published previously [30]. It

was generated by ICeChIP-seq as previously described [30] using an anti-H3K27me3 antibody

(Cell Signaling Technologies, Product Number 9733, Lot 8). This dataset has been made avail-

able as a newly added series at GSE103543.

RNA-seq data. RNA-seq data was obtained from the ENCODE Project [61] from experi-

ment ENCSR000AEL. The FASTQ files for Isogenic Replicate 1 was obtained from the dataset

for library ENCLB053ZZZ (FASTQ accession numbers: ENCFF001RFF, ENCFF001RFE). The

FASTQ files for Isogenic Replicate 2 was obtained from the dataset for library ENCLB054ZZZ

(FASTQ accession numbers: ENCFF001RFD, ENCFF001RFC).

ATAC-seq data. ATAC-seq data was obtained from the ENCODE Project [61] from

experiment ENCSR483RKN. The FASTQ files for Isogenic Replicate 1 was obtained from the

dataset for library ENCLB918NXF (FASTQ accession numbers: ENCFF391BFJ,

ENCFF186CQZ). The FASTQ files for Isogenic Replicate 2 was obtained from the dataset for

library ENCLB758GEG (FASTQ accession numbers: ENCFF440UAD, ENCFF350ZZR).

Mappability scores. The mappability score chosen was the UMAP50 score, which repre-

sents the proportion of 50bp kmers overlying a given point that are unique in the genome [25].

The approximate UMAP50 score of the dm3 genome was computed by computing all 50-mers

in the genome and determining those that are unique; the genome coverage of the unique

50-mers was then determined to compute approximate UMAP50 score of the genome.

Simulated dataset. The simulated dataset was generated as followed. First, 6 million loci

of length 200bp in the genome were randomly selected and designated as the target loci. Paired-

end Illumina sequencing reads were then simulated using NEAT-genReads [62] using the list of

target loci as the target file and the following settings: 50bp read length, 30-fold target coverage,

default off-target coverage, and insert size 175bp average and 10bp standard deviation. The out-

put list of true read locations was then used to compute a Gold Standard genome coverage Bed-

Graph using BEDTools genomecov [63]. The average Gold Standard read depth of the target

loci was then computed as described below, and the target loci with nonzero Gold Standard

read depth were designated as the “true origin” loci and used for downstream analysis.

To generate the simulated dataset with 100bp read length, the same procedure was used on

the same set of 6 million loci, with the NEAT-genReads tool being set to output 100bp reads

rather than 50bp reads. Unless otherwise specified, this work uses “simulated dataset” or simi-

lar to refer to the simulated dataset with 50bp reads.

Computing average value of BEDGRAPH at target loci

Because the BEDTools map software does not compute base-pair-wise averages of BED-

GRAPH signals, the following procedure was used to compute read depth at a list of target

loci. Overlapping loci were merged using BEDTools merge, and the resultant list of loci were

partitioned into 1bp windows using BEDTools makewindows. The BEDGRAPH was then

mapped onto the windows using BEDTools map, and the mapped windows were then mapped

with the mean function onto the original list of target loci using BEDTools map.

Mappability estimation and binning

The mappability of a list of loci was computed by computing the average value of the UMAP50

bedgraph for the relevant genome at those loci using the method described above. To compute
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the number of regions per UMAP50 score, the loci were binned by average UMAP50 score in

bins of width 0.01. The number of loci at each bin were then computed to determine the

approximate distribution of UMAP50 score across the selected loci.

MACS2 peak calling

Peak calling was conducted on the simulated datasets using MACS2 [64] with the bdgpeakcall

function with the relevant BEDGRAPH file and default settings.

Alignment and read filtering and processing

FASTQ files for ICeChIP-seq or the simulated dataset were aligned using Bowtie2 [40] due to

its common usage in the field and due to its ability to report alignment scores for each mate

for each alignment reported as opposed to for just the best alignment. Bowtie2 alignment was

run on the paired-end sequencing samples with the following settings: end-to-end alignment,

very-fast preset settings, no discordant alignments, no mixed alignments, report up to 51 align-

ments, insert size minimum 100bp, insert size maximum 250bp. In the case of the analysis

with up to 101 alignments (the k101 dataset), the above settings were used with up to 101 align-

ments reported per read. The genomes used for alignment were as follows: AR7, mm10 with

ICeChIP barcodes series 1; AR8, dm3 with ICeChIP barcodes series 1; AR9, mm10 with ICe-

ChIP barcodes series 2; AR16 and AR17, hg38 with ICeChIP barcodes series 3; simulated data-

sets, hg38.

FASTQ files for RNA-seq were aligned using Hisat2 [65] for the same reasons as the choice

to use Bowtie2. Hisat2 alignment was run on the paired-end sequencing samples with the fol-

lowing settings: no discordant alignments, no mixed alignments, report up to 51 alignments.

The genome used for alignment was hg38 with the ENCODE ERCC standards.

FASTQ files for ATAC-seq were aligned using Bowtie2 [40] on the paired-end sequencing

samples with the following settings: no discordant alignments, no mixed alignments, report up

to 51 alignments, insert size maximum 2000bp.

Alignments were then filtered to select for reads that are paired, mapped in a proper pair,

and mate on the reverse strand, corresponding to SAM flags of 99, 163, 355, and 419. For non-

strand-specific applications, the selected SAM file records were then extracted into a file con-

taining the following fields: chromosome, start position, stop position, read ID, read alignment

score (field labeled “AS:i:”), mate alignment score (field labeled “YS:i:”). For strand-specific

applications, the selected SAM file records were extracted into a file containing the following

fields: chromosome, start position, stop position, read ID, strand, read alignment score (field

labeled “AS:i:”), mate alignment score (field labeled “YS:i:”). The reads were then split into sep-

arate BED files based on the number of alignments per read. For downstream uniread analyses,

only the reads with 1 alignment were used; for downstream SmartMap analyses, reads with

1–50 alignments were used except for the k101 dataset, in which case reads with 1–100 align-

ments were used.

The file with 51 alignments per read (or that with 101 alignments per read for the k101 anal-

ysis) was not used for downstream analyses to prevent confounding by reads with fewer

reported than possible reads.

Uniread and SmartMap analysis of genome coverage

For the uniread analysis, our SmartMap software was used with only the file containing reads

with only 1 alignment per read. For the SmartMap analysis, our SmartMap software was used

with the files containing reads with fewer than 51 alignments per read.
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The SmartMap software uses a set of dual Binary Indexed Trees to store map counts and

weights across the genome and uses an iterative Bayesian reweighting algorithm to assign

weights to each of the different alignments. These steps are outlined below. Unless otherwise

specified, all analyses are conducted with 1 iteration in scored mode. For the strand-specific

analyses, there is a separate set of dual Binary Indexed Trees for each strand.

Storage of map counts in the genome. To facilitate efficient summation and updating of

map counts and weights across the genome, each chromosome is stored as a pair of Binary

Indexed Trees (BIT), also known as Fenwick Trees. The BIT is a data structure that is efficient

for computing prefix sums of an ordered dataset from the beginning of the dataset to the given

index. Because we used a 1-based coordinate system for the genome, the datasets to which we

refer as being represented by a BIT should be assumed to be 1-based datasets unless otherwise

specified.

For a dataset of length L, the BIT is represented by L+1 nodes, which are stored in an array.

To increment a dataset represented by a BIT T at index i by the value v, the following algorithm

is used. Let T[i] represent the ith node of T. Let lsb(i) represent the lowest significant bit in the

binary representation of i. Then:

T½i� ¼ T½i� þ v ð1Þ

i ¼ iþ lsbðiÞ ð2Þ

If the new value of i� L+1, Eqs 1 and 2 are iterated until i> L+1. For brevity, we will refer

to this operation to increment the BIT T representing the 1-based dataset by v in the value i as

BITUpdate(T, i, v).
To compute the prefix sum of the dataset at index i (i.e. the sum of all values with indices

[1, i] of a 1-based dataset), the following algorithm is used, using the above definitions of T[i]
and lsb(i). Let the prefix sum be represented by sum, where sum = 0 at the beginning of the

algorithm. Then:

sum ¼ sumþ T½i� ð3Þ

i ¼ i � lsbðiÞ ð4Þ

If the new value of i> 0, Eqs 3–4 are iterated until i� 0. For brevity, we will refer to this

operation to obtain the prefix sum of the T at value i as BITSum(T, i).
To understand how we here use BITs to efficiently store values across the genome and effi-

ciently sum the values across loci, consider the following.

Consider a dataset C represented by BITs T1 and T2. If the values of C for indices in range

[l, r) are incremented by v, then let the resulting dataset be represented by C’. Let ΔPointSum
(C, i) = PointSum(C’, i)–PointSum(C, i).

The prefix sum of the resulting dataset C’ at index i, represented by PointSum(C’, i), is

changed in one of three ways:

Case 1: i< l. In this case, the increment on range [l, r) will not change PointSum(C’, i). As

such:

DPointSumðC; iÞ ¼ 0 ð5Þ

Case 2: l� i< r. In this case:

PointSumðC 0; iÞ ¼ PointSumðC; l � 1Þ þ v � ði � ðl � 1ÞÞ
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However, per Eq 5, ΔPointSum(C, l-1) = 0. As such:

DPointSumðC; iÞ ¼ v � i � v � ðl � 1Þ ð6Þ

Case 3: i� r. In this case, the increment on range [l, r) will not change the values of C past

index r-1. Accordingly:

PointSumðC 0; iÞ ¼ PointSumðC; iÞ þ ðPointSumðC0; rÞ � PointSumðC; rÞÞ

DPointSumðC 0; iÞ ¼ DPointSumðC; rÞ

However, per Eq 6, ΔPointSum(C, r) = v�r–v�(l-1). As such

DPointSumðC; iÞ ¼ ðvþ ð� vÞÞ � i � ðv � ðl � 1Þ � v � rÞ ð7Þ

These three cases will provide the basis for our use of BITs to store and efficiently sum val-

ues across the genome. Each chromosome C in the genome is stored as a pair of BITs, to which

we shall here refer as T1 and T2. Let L represent the length of the chromosome. Accordingly,

T1 and T2 have L+1 nodes.

To increment the value associated with the base pairs in the range [l, r) by an increment

value v, the following procedure is used.

BITUpdateðT1; l; vÞ

BITUpdateðT1; r; � vÞ ð8Þ

BITUpdateðT2; l; v � lÞ

BITUpdateðT2; r; � v � rÞ

The value associated with base pair i is then BITSum(T1, i).
To obtain the prefix sum of the chromosome dataset C at base pair index i, represented by

PointSum(C, i), the following equation is used.

PointSumðC; iÞ ¼ BITSumðT1; iÞ � i � BITSumðT2; iÞ ð9Þ

The sum of the values associated with each base pair in the range [l, r) = [l, r-1] on chromo-

some C, represented by LocusSum(C, l, r), can thus be described by:

LocusSumðC; l; rÞ ¼ PointSumðC; r � 1Þ � PointSumðC; l � 1Þ ð10Þ

This dual-BIT data structure allows for efficient handling of data with respect to time com-

plexity. The BITUpdate and BITSum steps occur with time complexity O(log L), and the

updates to ranges (Eq 8) and range summations (Eq 10) use four BITUpdates and four BIT-
Sums, respectively. As such, both range updates and range queries occur with time complexity

O(log L).

Iterative Bayesian reweighting of mapped reads. To assess and appropriately weight

reads mapped to different portions of the genome, we implemented a Bayesian approach

which iteratively reweights the mappings associated with each read. For each read, we assign

to each associated map a weight representative of the prior probability that the map is the ori-

gin of the associated read. We then iteratively use the distribution of the assigned maps and

their weights (the prior probabilities) to determine the posterior probability for each map
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being the true origin of the associated read and assign that as the weight for that map, which

then becomes the prior probability for the next iteration.

Let the set of all sequencing reads be represented as R, with an individual sequencing read

being represented as ri. Then R = {ri . . . rn}, where n represents the total number of sequencing

reads obtained for the dataset in question.

Each read ri is associated with a true genomic origin locus li and a set of genomic align-

ments Mi = {mi,1 . . . mi,k}, where each mi,j represents a reported alignment of ri and k repre-

sents the total number of alignments reported for ri such that k< kmax, the maximum number

of possible reported alignments. Each reported alignment mi,j is associated with an alignment

score si,j, a weight wi,j, and an alignment genomic locus gi,j. We will define the set of all align-

ment scores associated with read ri as Si = {si,1 . . . si,k}, with the set of all alignment weights

associated with read ri being represented as Wi = {wi,1 . . . wi,k}, and with the set of all alignment

loci associated with read ri being defined as Gi = {gi,1 . . . gi,k}.
For this algorithm, we assume that for each alignment mi associated with a given read ri,

one of the associated alignment loci gi,j is the true origin locus li. Then each weight wi,j is

defined as the probability wi,j = Pr(gi,j = li), or the probability that the alignment associated

with the weight wi,j is equal to the true origin locus.

The set of all true genomic origin loci li will be defined as L = {l1. . .ln}. The set of all align-

ment scores, weights, and loci associated with every read in R will be defined as S = {S1 . . . Sn},
W = {W1 . . . Wn}, and G = {G1 . . . Gn}.

These variables will define our analysis. Our observed variables are the set of alignment

scores S and the set of alignment loci G. Our latent variable is the true genomic origin distribu-

tion L. We will be modeling to generate the set of alignment weights W with the goal of esti-

mating the true read origin distribution L as the expected value of the set of reported

alignments G with the set of weights W being treated as the probability distribution of G upon

which the expected value is computed.

When conducting analyses in “scored mode,” we wish to consider the quality of each align-

ment. To do this, for each alignment gi,j of each read ri, we will transform the associated align-

ment score si,j into a pseudo-MAPQ score zi,j as per Bowtie2 computation of MAPQ for

unireads. Let the minimum alignment score for reported alignments in Bowtie2 be repre-

sented as smin = -0.6–0.6�(2�read length). Then:

Zi;j ¼

42;
si;j

smin

2 ½0; 0:2�

40;
si;j

smin

2 ð0:2; 0:3�

24;
si;j

smin

2 ð0:3; 0:4�

23;
si;j

smin

2 ð0:4; 0:5�

8;
si;j
smin

2 ð0:5; 0:6�

3;
si;j
smin

2 ð0:6; 0:7�

0;
si;j
smin

2 ð0:7; 1�

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ
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From this pseudo-MAPQ score, when conducting analyses in scored mode, we can com-

pute the alignment quality qi,j as the probability that the alignment is aligned to the correct

genomic locus from the definition of MAPQ as:

qi;j ¼ 1 � 10� zi;j=10 ð12Þ

If the analysis is being run in unscored mode, each alignment quality qi,j is set to 1.

The set of alignment qualities associated with each read ri will be defined as Qi = {qi,1 . . . qi,

k}. We will define our initial weights wi,j by setting our initial prior probabilities Pr(gi,j = li) to

be proportional to the alignment quality qi,j. Because we assume that for each read ri, one of

the associated gi,j = li, then for each read ri, we set the associated alignment weights wi,j as:

wi;j ¼
qi;j

P
q2Qi

q
ð13Þ

In scored mode, it is possible for the sum of the alignment qualities in Qi for a given read ri
to be equal to zero; if this is the case, the read is discarded. Similarly, any alignments with

alignment with a weight of zero are discarded. For all remaining reads and alignments, each

weight wi,j is added to the appropriate chromosome dataset at the associated alignment locus

gi,j. Those reads with k = 1 are then removed from the list of reads over which to iterate because

the weight off the associated alignment is fixed at w = 1.

When the initial assignment of prior probabilities as weights and addition of weights to the

genome dataset is complete, then for each read ri, the new weights can be computed as the pos-

terior probabilities of Pr(gi,j = li | total distribution of reads). First, we will represent the length

of an alignment locus gi,j as |gi,j|. Let cb be the sum of all weights associated with all alignments

containing the genomic coordinate b. Then, we define Ci,j as the average weight across the

genomic coordinates of each alignment gi,j by the equation:

Ci;j ¼
1

jgi;jj

P
b2gi;j

cb ð14Þ

Our algorithm assumes that the probability Pr(gi,j = li | total distribution of reads) is propor-

tional to Ci,j and proportional to the alignment quality qi,j. Based on this assumption, we define

our likelihood function Fi,j as the ratio of the average quality-weighted weight across the align-

ment locus to the weight of the alignment itself:

Fi;j ¼
Ci;jqi;j

wi;j
ð15Þ

By Bayes’ theorem, we then state that our posterior probability is proportional to the likeli-

hood and to the prior probability of a given event. To accommodate for slow fitting, we will

define r as the learning rate such that if r = 0, the weight will not change at all, and if r = 1, the

new weight will be defined as per Bayes’ theorem. When r = 1, then, we thus set our new

weight w0i,j as our posterior probability Pr(gi,j = li | total distribution of reads) by the equation:

w0i;j ¼
wi;jFi;j

Pk
j¼1

wi;jFi;j

¼
Ci;jqi;j

Pk
j¼1

Ci;jqi;j

ð16Þ
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If r is not equal to 1 (i.e. if fitting is conducted more slowly or faster), then per the above

definition of the learning rate:

w0i;j ¼
Ci;jqi;j

Pk
j¼1

Ci;jqi;j

� wi;j

 !

r þ wi;j ¼
rCi;jqi;j

Pk
j¼1

Ci;jqi;j

þ 1 � rð Þwi;j ð17Þ

Per this definition, when fitting is disabled (i.e. when r = 0), the new weight is not changed;

when the fitting rate is set to r = 1, then Eq 17 is equal to Eq 16. Slower fitting can be achieved

by setting 0< r< 1. The new weights are updated at the appropriate corresponding genomic

loci, and the posterior weight w0i,j is treated as the prior weight wi,j for the next iteration. This

process defined by Eqs 15–17 is conducted iteratively for the specified number of iterations.

After the specified number of iterations are complete, the output file is written by writing

the prefix sum of the BIT T1 for each chromosome at each position. If desired, the set of reads

with corresponding weights are also written.

Histone modification density and specificity computation

Because the ICeChIP-seq datasets have internal nucleosome standards bearing the targeted

nucleosome modifications with uniquely identifying DNA “barcodes”, we were able to cali-

brate our ChIP-seq results to yield the histone modification density (HMD), or the proportion

of nucleosomes bearing the modification of interest. HMD for each dataset was computed as

follows.

The average value of the BEDGRAPH for each of the calibrant barcodes was computed as

above, and these values were grouped by the nucleosome modification associated with the bar-

code and summed, as previously described [29,30] for both the IP and the Input datasets. The

ratio of the summed values for the targeted modification in IP over the same in Input was des-

ignated as the target enrichment Et.

The HMD at each genomic locus was then computed as follows, where IP and Input repre-

sent the value of the IP and the Input at that genomic locus:

HMD %ð Þ ¼
IP

Et � Input
� 100% ð18Þ

To generate genome-wide HMD BEDGRAPH files, the IP and corresponding Input

genome coverage BEDGRAPH files outputted by the SmartMap software were merged with

BEDTools unionbedg, and the HMD computation in (18) was used to compute HMD. Any

region with an Input value of zero was set to an HMD of zero.

To compute the specificity, for those ICeChIP-seq datasets with calibrants bearing more

than one modification with uniquely identifying DNA barcodes (AR9, AR16, and AR17), the

enrichment of every species (Ei) was computed analogously to the Et, and the specificity (as

percent of target enrichment) was computed as:

Specificity %targetð Þ ¼
Ei

Et
� 100% ð19Þ

Alignment overlap analysis

To assess for overlap of alignments, we conducted SmartMap on the simulated dataset with

the read weight output setting activated. Using bedtools intersect, we then identified align-

ments that intersected with the true read origin in the Gold Standard dataset. From this, by

weight, we were able to compute three metrics. First, we computed the number of alignments

by weight that were present in the intersected dataset as a proportion of the total number of
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alignments by weight. Second, we computed the alignment weighted overlap proportion score,

a measure of the proportion of a read’s overall weight that overlaps with a given true origin of

the read due to a given alignment. This is computed as the product of the weight of the align-

ment with the geometric mean of the proportion of overlap between the true read locus and

the alignment locus. Finally, we computed the unweighted overlap proportion score, which is

computed as the geometric mean of the proportion of overlap between the true read locus and

the alignment locus.

Repetitive element analysis

Repetitive elements for hg38 were obtained from the HOMER list of repeats [66]. The pro-

moter was defined as the most upstream portion of the annotated repeat. This dataset was

used for analyzing all repeats; for analyzing LINE elements, SINE elements, or Simple Repeats,

the corresponding subset of the repeats was used.

The HMD profiles in Figs 6A and S10 were generated by computing the average HMD

(from SmartMap analysis of AR16 and AR17) in 50bp windows from -1000bp to +1000bp rela-

tive to the promoter, with HMDs above 100% being set to 100% (because an HMD above

100% is definitionally impossible), and corresponding windows were averaged together to

yield the average HMD profile for each set of elements.

To conduct clustering, first, the average HMD of the region -100bp to +100bp relative to

each promoter in the relevant dataset was computed using the SmartMap analysis of AR16

and AR17, with HMDs above 100% being set to 100%. The data was then transformed to

orthonormal basis by principal component analysis in R with scaling and centering. The

resultant coordinate matrix used for k-means clustering, starting with 2 clusters and increasing

the number of clusters until the decrease in total within-cluster sum of squares became

markedly diminished; for each dataset (all repeats, LINE elements, SINE elements, and Simple

Repeats), this occurred with 5 or more clusters and, accordingly, 4 clusters were used for each

dataset.

RNA-seq analysis was conducted as follows. The average value of the RNA-seq SmartMap

BEDGRAPH datasets were found across each LINE element. These values were then normal-

ized to the SmartMap read count for each replicate (as average reads per million reads ana-

lyzed) and averaged to yield the average normalized read depth for each LINE element. These

were then grouped by cluster and used to generate the quantile boxplots.

Heatmap generation. Heatmaps of regions with nonzero HMD only in SmartMap analy-

ses were generated as follows. The average HMD of the region -100bp to +100bp relative to

each promoter was computed using both the uniread and SmartMap analyses of AR16 and

AR17, with HMDs above 100% being set to 100%. Principal component analysis was con-

ducted on the set of SmartMap HMDs in R with scaling and centering. Promoters with HMDs

of zero in all of the uniread analyses and at least one nonzero SmartMap HMD were then

selected and sorted by the first principal component. There were 142,392 such promoters.

HMD profiles were then generated for each of the selected promoters as described above in

50bp windows from -1000bp to +1000bp relative to the promoter, but were not averaged

together on corresponding windows. A field was added to the beginning of each row contain-

ing the value 100 as a calibration point for threshold adjustment.

The list of HMD profiles sorted on the first principal component was then imported into

ImageJ as a Text Image. The height of the image was scaled down to 500pts with bilinear inter-

polation, and the thresholds were set from 0–100. The resultant image was exported as a PNG

file, which was then opened in Photoshop in Indexed Color mode. The color table was then

adjusted such that the lowest value was set to white and the highest value was set to the
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appropriate color. The leftmost point of the image (corresponding to the added field with the

calibration point value of 100) was then removed from the image to generate the final

heatmap.

Genome browser visualization

Genome browser visualization was conducted using Integrative Genomics Viewer (IGV) [67].

Comparison to other methods

Comparison to CSEM. Comparison was attempted against the CSEM software for multi-

read allocation [35] by only using the first read mate of our ICeChIP samples. However, the

CSEM software returned a segmentation fault within the first minute of runtime, rendering

comparison difficult.

Comparison to BM-Map. Comparison was attempted against the BM-Map software for

multiread reweighting [36] by aligning the simulated read dataset with Bowtie2 per the settings

used for SmartMap, followed by use of the BM-Map software with seven threads, the maxi-

mum permitted by the software. The first step of BM-Map (reading the alignments into mem-

ory) proceeded uneventfully, using one thread. However, shortly after the second step of

BM-Map began, the software returned an error and exited without returning an output. This

was observed with existing binaries and with compilation of the software from source. As

such, we were unable to compare results from BM-Map to SmartMap.

Comparison to iteration 0 and random alignments. The simulated dataset was aligned

with Bowtie2 per the settings used for SmartMap. The reads were then parsed to yield a single

extended BED file as per SmartMapPrep. For the Random Alignment selection analysis only,

the reads were then split into separate files based on the number of alignments per read, and

the random_read_selection.R script from the SmartMap-analysis GitHub repository was used

to randomly select one alignment per read. These datasets were then used in the SmartMap

software with the score set to -60.6. For the iteration 0 dataset, the number of reweighting

cycles was set to zero; for the Random Alignments analysis, the number of reweighting cycles

was set to one.

Comparison to Uniread. The simulated dataset was aligned with Bowtie2 per the settings

used for SmartMap, with the modification that no value was specified for the option -k. Uni-

reads were then parsed from the output SAM file by selecting for reads with MAPQ scores of:

3, 8, 23, 24, 40, 42; these are the MAPQ scores that are assigned to unireads by Bowtie2 [40].

Reads were then parsed as per SmartMapPrep into a single extended BED file. This file was

then used for SmartMap with one iteration, a minimum score of -60.6 and a maximum of one

alignment per read.

Statistical analyses

Statistical analysis for Fig 6C was conducted first with chi-square analysis on full contingency

table and with post-hoc tests on collapse contingency tables as follows. For each of the datasets

in Fig 6C, chi-square test for goodness-of-fit was conducted on the corresponding contingency

table presented in Tables 4–6. The p-value for each of these tests was p<2.2x10-16 and, accord-

ingly, post-hoc tests were conducted. The post-hoc tests consisted of collapsing each contin-

gency table into a set of 2x2 contingency tables with the cluster of interest and family/type of

interest compared to all other clusters and/or all other families within the contingency table.

Chi-square goodness-of-fit tests were then conducted on each of these 2x2 contingency tables,

and the p-values were Bonferroni corrected to adjust for the number of tests. These adjusted
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p-values for each 2x2 contingency table test were used to label the graphs in Fig 6C as follows:
�p<0.01, ��p<10−5, ���p<10−10.

Statistical analysis on Fig 6D was conducted to compare median average normalized RNA-

seq depth by cluster. Because the difference between cluster 3 and all of the other clusters

appeared to be the most biologically meaningful, only pairwise comparisons were conducted

between cluster 3 and the other clusters to limit the number of statistical comparisons and,

accordingly, the degree of Bonferroni correction needed. Mood’s median tests were solely con-

ducted as pairwise comparisons between cluster 3 and each of the other clusters with Bonfer-

roni correction to p values with n = 3 for Bonferroni correction. The adjusted p-values for

each of these comparisons was p<10−10 and was marked appropriately on the graph.

Supporting information

S1 Fig. Mappability of sampled loci and human genome. (A) Number of regions from the

true origin loci vs. average mappability (UMAP50) score of the loci. (B) Density of UMAP50

scores of 200bp windows across the human genome (hg38).

(TIF)

S2 Fig. Characteristics of SmartMap with increasing iterations. (A) Mean error of read

depth at true origin loci in SmartMap scored mode vs. number of reweighting iterations. (B)

Mean absolute error of read depth at true origin loci in SmartMap scored mode with a

reweighting rate of 0.25 vs. number of reweighting iterations. (C, D) QQ plots of read depth in

Gold Standard dataset vs. (C) uniread or (D) SmartMap (1 iteration) scored datasets. Color

scale represents percentile of each point, from 1st to 99th percentiles. Dashed line represents

line with slope of unity.

(TIF)

S3 Fig. Validation and comparison of multiple mapping analysis. (A) Average read depth of

each dataset genome-wide. (B) Base pairs covered by MACS2 called peaks for each dataset. (C)

Percentage of MACS2 peaks in the Gold Standard dataset intersecting with MACS2 peaks in

each other analysis, as percentage of base pairs covered. (D) Percentage of MACS2 peaks in

each analysis intersecting with MACS2 peaks in the Gold Standard dataset, as percentage of

base pairs covered. (E) Average mean absolute error vs. mappability score (UMAP50) of each

dataset. Dashed lines are presented for readability of overlapping curves rather than disconti-

nuities in data. (F) Mean absolute error of read depth at true origin loci for each dataset, with

Gold Standard as the reference point, stratified by average Gold Standard read depth at true

origin locus. (G) Mean error of read depth at true origin loci for each dataset, with Gold Stan-

dard as the reference point, stratified by average Gold Standard read depth at true origin locus.

(H) Mean unweighted overlap proportion between alignment and true read origin as a func-

tion of alignment weight for the no-iteration (green) and one-iteration (red) scored SmartMap

analyses. Overlap proportion is computed as a geometric mean of the proportion of the align-

ment and of the true read origin that overlaps with the other.

(TIF)

S4 Fig. SmartMap and uniread analyses of the 100bp read length validation dataset. (A, B)

Number of (A) alignments or (B) reads vs. number of alignments per read. (C) Quantile plot

of read depth at the true origin loci. (D) Median read depth vs. mappability score (UMAP50)

of the true origin loci. (E-G) QQ plot of read depth at true origin loci in the (E) SmartMap vs.

uniread, (F) Gold Standard vs. uniread, and (G) Gold Standard vs. SmartMap scored datasets.

Color scale represents percentile of each point, from 1st to 99th percentiles. (H) Mean absolute

error of read depth at true origin loci for each dataset, with Gold Standard as the reference
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point. (I) Average mean absolute error vs. mappability score (UMAP50) of each dataset.

(TIF)

S5 Fig. Characteristics of the -k 101 SmartMap dataset. (A, B) Number of (A) alignments or

(B) reads vs. number of alignments per read. (C) Quantile plot of read depth at the true origin

loci. Dashed lines are presented for readability of overlapping curves rather than discontinui-

ties in data. (D) Median read depth vs. mappability score (UMAP50) of the true origin loci.

(E) Mean absolute error of read depth at true origin loci for each dataset, with Gold Standard

as the reference point. (F) Average mean absolute error vs. mappability score (UMAP50) of

each dataset. (G-J) Average read depth across the bodies of (G) all repetitive elements, (H)

LINEs, (I) SINEs, and (J) Alu elements.

(TIF)

S6 Fig. Alignments per ICeChIP-seq dataset. Number of alignments vs. alignments per read

for each ICeChIP-seq dataset analyzed.

(TIF)

S7 Fig. Reads per ICeChIP-seq dataset. Number of reads vs. alignments per read for each

ICeChP-seq dataset analyzed.

(TIF)

S8 Fig. SmartMap and uniread analysis of AR8 input. All analyses conducted on 200bp tiled

genomic windows. (A) Quantile plot of read depth for SmartMap and uniread analyses. (B)

Median read depth vs. mappability score (UMAP50) for SmartMap and uniread analyses. (C)

Quantile plot of excess read depth in SmartMap relative to uniread analysis. (D) Median excess

read depth vs. mappability score (UMAP50). (E) QQ plot of read depth in SmartMap vs. uni-

read analysis. Color scale represents percentile of each point, from 1st to 99th percentiles.

Dashed line represents line with slope of unity.

(TIF)

S9 Fig. SmartMap and uniread analyses of AR7, AR8, and AR9 HMDs. (A) Mean or (B)

Median HMD vs. mappability score (UMAP50) for SmartMap and uniread analyses. Red line

represents SmartMap analysis; blue line represents uniread analysis.

(TIF)

S10 Fig. Specificity scatterplots for AR9. Scatterplots of (A) specificity or (B) log specificity

for uniread vs. SmartMap analyses. Targets of pulldowns are H3K4me3 (left), H3K9me3 (cen-

tre), and H3K27me3 (right). Specificity is measured as the enrichment of each on- or off-target

internal standard nucleosome as a percentage of on-target enrichment.

(TIF)

S11 Fig. SmartMap analysis of ENCODE ATAC-seq datasets. (A-B) Quantile plot of read

depth at genomic windows in SmartMap and uniread analyses for (A) Replicate 1 or (B) Repli-

cate 2. (C) Quantile plot of excess read depth in SmartMap datasets relative to corresponding

uniread dataset for Replicates 1 and 2. (D-E) Median read depth vs. mappability score

(UMAP50) in SmartMap and uniread analyses for (D) Replicate 1 or (E) Replicate 2. (F)

Median excess read depth vs. mappability score (UMAP50). (G) Quantile plot of depth-nor-

malized log ratio of read depth in Replicate 1 over Replicate 2, for SmartMap and uniread anal-

yses. Graph breaks are present at both ends of the graph. (H) Mean absolute depth-normalized

log ratio of the analyses shown in panel G.

(TIF)
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S12 Fig. SmartMap analysis of ENCODE RNA-seq datasets. (A-B) Quantile plot of read

depth at distinct Refseq genes in SmartMap and uniread analyses for (A) Replicate 1 or (B)

Replicate 2. (C) Quantile plot of excess read depth in SmartMap datasets relative to corre-

sponding uniread dataset for Replicates 1 and 2. (D) Quantile plot of depth-normalized dis-

tinct Refseq gene log ratio of read depth in Replicate 1 over Replicate 2, for SmartMap and

uniread analyses. Pseudocount of 10−7 was added to each gene due to the high number of

genes with zero read depth. Graph breaks are present at both ends of the graph. (E) Mean

absolute depth-normalized log ratio of the analyses shown in panel D.

(TIF)

S13 Fig. Histone modification and ATAC-seq profiles on subset clusters. (A-C) HMDs of

modifications about promoters of (A) LINEs, (B) SINEs, or (C) simple repeats separated by k-

means clustering conducted on the appropriate set of repetitive elements. (D-G) Total ATAC-

seq read depth across both replicates about promoters of (D) all repeats, (E) LINEs, (F) SINEs,

or (G) simple repeats.

(TIF)

S14 Fig. Heatmaps of repeat promoters under uniread analysis. Heatmap of repeat promot-

ers with measurable nonzero HMD only in SmartMap analysis, sorted on first principal com-

ponent of repetitive elements.

(TIF)
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