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We analyze a model economy with many agents, each with a differ-
ent productivity level. Agents divide their time between two activi-
ties: producing goods with the production-related knowledge they
already have and interacting with others in search of new, productivity-
increasing ideas. These choices jointly determine the economy’s cur-
rent production level and its rate of learning and real growth. We
construct the balanced growth path for this economy. We also study
the allocation chosen by an idealized planner who takes into account
and internalizes the external benefits of search. Finally, we provide three
examples of alternative learning technologies and show that the prop-
erties of equilibrium allocations are quite sensitive to two of these var-
iations.
I. Introduction

The rate of a person’s learning at any task depends on two distinct
forces: the effort he applies and the environment in which the learning
takes place. In a general equilibrium analysis, both these forces must be
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represented by agents in the same economy, so a study of their effects
must be an analysis of the social interactions of a group of people whose
individual knowledge levels differ. Much of existing growth theory, whether
“exogenous” or “endogenous,” ignores this distinction between effort
and environment and so has nothing to say about how such social in-
teractions might shape long-run growth and income distribution.
In this paper we analyze a new model of endogenous growth, driven

by sustained improvements in individual knowledge. Agents in this econ-
omy divide their time between two activities: producing goods with the
production-related knowledge they already have and interacting with
others in search of new, productivity-increasing ideas. These choices
jointly determine the economy’s current production level and its rate of
learning and real growth. In order to focus on what is new in our anal-
ysis, we keep the production technology in the economy very simple:
Each person produces at a rate that is the product of his personal pro-
ductivity level and the fraction of time that he chooses to spend pro-
ducing goods. There are no factors of production other than labor
and there are no complementarities between workers. There are no mar-
kets, no prices, and no public or private property other than individ-
uals’ knowledge—their human capital.
The learning technology involves random meetings: Each person

meets others at a rate that depends on the fraction of time he spends
in search. For us, a meeting means simply an observation of someone
else’s productivity. If that productivity is higher than his own, he adopts
it in place of the productivity he came in with. Everyone’s productivity
level is simply the maximum of the productivities of all the people he
has ever met. To ensure that the growth generated by this process can
be sustained, we add an assumption to the effect that the stock of good
ideas waiting to be discovered is inexhaustible.
The state of the economy is completely described by the distribution

of productivity levels. An individual’s time allocation decisions will de-
pend on this distribution because the productivity levels of others de-
termine his own chances of improving his productivity through search.
Individuals’ time allocation decisions in turn determine learning rates
and thus the evolution of the productivity distribution. One of the two
equilibrium conditions of the model is the Bellman equation for the
time allocation problem of a single atomistic agent who takes the pro-
ductivity distribution as given. The second condition is a law of motion
for the productivity distribution, given the policy functions of individ-
ual agents.
These two equations take the form of partial differential equations,

with time and productivity levels as the two independent variables. We
motivate these two equations in the next section. Then we focus on a
particular solution of these equations, a balanced growth path, along
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which production grows at a constant rate and the distribution of rel-
ative productivities remains constant. In Section III, we discuss the
properties of this balanced growth path and develop an algorithm to
calculate it, given parameters that describe the production and search
technologies. For a benchmark version of the model, we calculate the
growth rate on a balanced path and plot the density of the distribution
of relative productivities, the policy function relating a person’s search
effort to his current productivity level, and the Lorenz curves describ-
ing the distribution of earnings flows and present values. We illustrate
the effects of given changes in parameters, for example, that a fatter
right tail of the initial productivity distribution leads to higher individ-
ual search effort and higher long-run growth.
There is an evident external effect in this decentralized equilibrium.

The private return to knowledge acquisition motivates individual deci-
sions that generate sustained productivity growth, but an individual agent
does not take into account the fact that increases in his own knowledge
enrich the learning environment for the people around him. The so-
cial return to search exceeds the private return, raising the possibility
that taxes or subsidies can equate private and social returns and im-
prove both growth rates and welfare. In Section IV, we formulate a plan-
ning problem in which the planner directs the time allocations of each
of the continuum of individual agents in the economy. One of the con-
tributions of this paper is to show how this problem can be broken into
individual Bellman equations in which the value function for each per-
son is his marginal social value under an optimal plan. We study the im-
plied balanced growth path and compare the implied policy function and
distribution of relative productivities to those implied by the decentral-
ized problem studied in Section III. In Section V, we consider the im-
plementation of the planning solution through the use of a Pigovian sys-
tem of taxes and subsidies.
All of the analysis in Sections II–V is based on a single, specific model

of the search/learning process. It turns out that the algorithm we de-
velop for this model is quite easily adapted to the analysis of a wide
variety of other learning technologies. In Section VI, we make use of
this fact and explore three alternative learning technologies. The first
variation we consider is one in which agents learn from an outside idea
source as well as from others in the economy. One might describe this
as a combination of “innovation” and “imitation,” but we will show that
the asymptotic behavior of the productivity distribution in the modified
model is observationally equivalent to that in our simpler, benchmark
model. Next we consider a substantively more interesting model in
which there are limits to learning in the sense that recipients of ideas
can learn from donors only if their knowledge levels are not too differ-
ent. Finally, we explore an alternative assumption regarding the symme-
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try of meetings, that is, who can learn what from whom depending on
who initiated a meeting. It turns out that the properties of equilibrium
allocations are quite sensitive to these last two variations, which is to
say that different assumptions on technology diffusion that cannot be
tested by direct observation may have very different implications for
the behavior of observables.1 For example, with limits to learning, un-
productive individuals no longer exert more search effort than produc-
tive ones, and search effort is now a nonmonotonic function of pro-
ductivity.
Relation to literature.—The distinctive feature of this paper and the

focus of our analysis is the simultaneous determination of individual
behavior and the evolution of the agents’ learning environment. We know
of just two papers that share this feature. Perla and Tonetti ð2014, in this
issueÞ analyze an endogenous growthmodel similar to ours. They assume
Pareto-distributed knowledge and compatible assumptions on technol-
ogy and derive explicit formulas describing growth behavior. We will re-
turn to their illuminating example below, when our own model is on
the table. The other paper is Jovanovic and MacDonald’s ð1990, 1994Þ
analysis of technological change in a competitive industry, which involves
the same kind of simultaneous determination of behavior and the en-
vironment that ours uses. Theirs is not a growth model, however, and its
mathematical structure is very different from ours.2

More generally, our paper builds on a vast literature on endogenous
growth. The early models of Arrow ð1962Þ and Shell ð1966Þ emphasized
external effects very similar to those we analyze here. The learning-by-
doing models of Arrow ð1962Þ and Stokey ð1988Þ describe economies
that move up a preexisting list of possible goods, ordered by quality. The
successful production of each new good creates the knowledge that
makes possible the production of the next one on the “ladder.” Both
teachers and learners are agents in the same economy, but the knowl-
edge they create is a pure public good, a nonrival good in the sense of
Romer ð1990Þ. No one has an incentive to invest in knowledge creation,
but no one needs to for creation to take place. In Romer’s study and
related work by Grossman and Helpman ð1991Þ and others, people al-
locate time to innovation or imitation, viewed as activities that take time
1 Age-earnings ðor experience-earningsÞ profiles are one such observable. For instance,
Lagakos et al. ð2012Þ document that the wage increase associated with increasing worker
experience is lower for poorer countries, which is consistent with there being greater lim-
its to learning in these countries. Similarly, Comin, Dmitriev, and Rossi-Hansberg ð2011Þ
argue that technologies diffuse slowly, not only across but also within countries. And dif-
fusion is particularly uneven in developing countries, with rural areas experiencing the
lowest penetration ðWorld Bank 2008Þ.

2 In their environment, less productive agents always exert more search effort ðsee prop-
osition 5 in Jovanovic and MacDonald ½1994�Þ. This is the case in our benchmark model, but
not for the alternative learning technologies explored in Sec. VI.
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away from production, but for this to occur they must be rewarded with
a monopoly right to the use of the knowledge they produce. The knowl-
edge itself is immediately available to everyone.
All these papers capture aspects of behavior that we think is impor-

tant in economic life, but the abstraction of “common knowledge”
places a severe limitation on the kinds of interactions that we can ana-
lyze. Intellectual property plays a role, but in most sectors a very modest
one. Yet people do allocate time specifically toward knowledge creation.
Here we go to the opposite pole from common to private knowledge,
knowledge that is in the head of some individual person, a part of his
“human capital.” As in Jovanovic and Rob ð1989Þ, new knowledge is
“produced” from meetings of individuals whose knowledge differs. Our
technical starting point is taken from Kortum ð1997Þ and Eaton and
Kortum ð1999Þ, who treat the distribution of individual knowledge hold-
ings as a state variable and model meetings as Poisson arrivals of new
ideas from this distribution. The mathematics is closely related to papers
by Gabaix ð1999Þ, Luttmer ð2007, 2012Þ, Rossi-Hansberg and Wright
ð2007Þ, and others that study the evolution of distributions with Pareto
tails.3 Luttmer ð2012Þ, in particular, suggests an elegant alternative to
our assumption that the stock of ideas is never exhausted ðor that
there is innovation in the form of draws from an outside idea source as
in Sec. VI.AÞ, namely, that individual productivities are subject to small
Brownian noise. He shows that the interplay of such randomness and
diffusion leads to a balanced growth path, much as in the present paper.
In Lucas ð2009Þ, these dynamics lead to a model of on-the-job learn-

ing that is capable of generating sustained growth in a closed economy
in which younger workers benefit from and build on the knowledge
obtained from older workers. König, Lorenz, and Zilibotti ð2012Þ add
a choice between “imitation” and “innovation” to a similar environment.4

But in these models, search and learning are simply by-products of pro-
ducing. Agents do not have to choose between producing and learn-
ing. In the present paper we add such a choice, following the classic
papers on on-the-job learning of Ben-Porath ð1967Þ, Heckman ð1976Þ,
and Rosen ð1976Þ. The control problem we introduce is modeled closely
on this work ðthough we do not here introduce a cohort structureÞ in
the sense that agents must choose between these two activities. Themath-
3 A different approach to a set of questions similar to those in our paper is pursued
by Fogli and Veldkamp ð2011Þ, who model the diffusion of knowledge among individuals
in a network. Finally, see also Bental and Peled ð1996Þ.

4 In their framework, the stochastic process of learning depends on the choice between
imitation and innovation. But both activities are costless, and so this choice is a static maxi-
mization problem. It is therefore very different from our time allocation problem, in partic-
ular because it does not give rise to a simultaneous equations problem like the one studied
here.
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ematical formulation we use is a Bellman equation that is familiar from
the job search literature.
It is worth noting that with the decentralized vision of knowledge

we have adopted, there is always an incentive to seek more knowledge.
In much existing endogenous growth theory, in contrast, knowledge is
“nonrival” in the sense that it can be costlessly replicated and used by
any number of people simultaneously.5 As first noted by Romer ð1990Þ,
an immediate implication of nonrivalry is that under perfect competi-
tion, no one would invest in knowledge creation. In our setup, in con-
trast, knowledge is partially rival: it is “rival” in the short run because
people who want to access better knowledge must exert effort and have
the good luck to run into the right people; but knowledge is “nonrival”
in the long run in the sense that it is in no way diminished when it
spreads from one person to another.6 Agents exert positive search effort
even under perfect competition because the search friction precludes
the immediate diffusion of existing knowledge. This seems to us a step
toward descriptive realism. ðOf course, to say that the private return to
search is positive is not to say that it equals the social return.Þ
II. A Model Economy

There is a constant population of infinitely lived agents of measure
one. We identify each person at each date as a realization of a draw
~z from a productivity distribution, described by its cumulative distribu-
tion function ðcdf Þ

F ðz; tÞ5 Prf~z ≤ z at date tg;

or equivalently by its density function f ðz, tÞ. This function f ð� , tÞ fully
describes the state of the economy at t.
Every person has one unit of labor per year. He allocates his time

between a fraction 1 2 sðz, tÞ devoted to goods production and sðz,tÞ de-
voted to improving his production-related knowledge. His goods pro-
duction is

½12 sðz; tÞ�z: ð1Þ
5 See, e.g., Romer ð1990Þ, Grossman and Helpman ð1991Þ, and Aghion and Howitt ð1992Þ.
Also see the survey by Jones ð2005Þ and references therein.

6 Using a somewhat different terminology, we may say that knowledge is “embodied”
in individual people in the short run but “disembodied” in the long run because it out-
lives any one individual. Romer ð1990Þ noted that knowledge that is tied to a specific per-
son ðhuman capitalÞ is necessarily rival because that person cannot be in more than one
place at the same time. Elsewhere, Romer also listed as an attribute of a purely nonrival
good that it can be costlessly replicated. In our setup, in contrast, replication requires costly
search effort.
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Per capita production in the economy is

Y ðtÞ5 E`

0

½12 sðz; tÞ�z f ðz; tÞdz: ð2Þ

Individual preferences are

V ðz; tÞ5 Et

�E`

t

e2rðt2tÞ½12 sð~zðtÞ; tÞ�~zðtÞdtj~zðtÞ5 z
�
: ð3Þ

We model the evolution of the distribution f ðz, tÞ as a process of in-
dividuals meeting others from the same economy, comparing ideas, im-
proving their own productivity. The details of this meeting and learn-
ing process are as follows.7 A person z allocating the fraction sðz, tÞ to
learning observes the productivity z0 of one other person with probabil-
ity a½sðz; tÞ�D over an interval ðt ; t 1 DÞ, where a is a given function. He
compares his own productivity level z with the productivity z0 of the per-
son he meets and leaves the meeting with the best of the two produc-
tivities, maxðz; z0Þ. ðThese meetings are not assumed to be symmetric:
z learns from and perhaps imitates z0 but z0 does not learn from z, and
in fact, he may not be searching himself at all.Þ
We assume that everyone in the economy behaves in this way, though

the search effort sðz, tÞ varies over time and across individuals at a point
in time. If one thinks of Fðz, tÞ as the fraction of people with productiv-
ity below z at date t, this behavior results in a law of motion for F as
follows:

F ðz; t 1 DÞ5 Prfproductivity below z at t and

no higher productivity found in ðt ; t 1 DÞg

5 Ez

0

f ðy; tÞPrfno higher productivity than z

found in ðt; t 1 DÞjygdy

5 Ez

0

f ðy; tÞ½12 aðsðy; tÞÞD1 aðsðy; tÞÞF ðz; tÞD�dy

5 F ðz; tÞ2 D½12 F ðz; tÞ�Ez

0

aðsðy; tÞÞf ðy; tÞdy:
7 The process assumed here is an adaptation of ideas in Kortum ð1997Þ, Eaton and Kor-
tum ð1999Þ, Alvarez, Buera, and Lucas ð2008Þ, and Lucas ð2009Þ.
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Then

F ðz; t 1 DÞ2 F ðz; tÞ
D

52½12 F ðz; tÞ�Ez

0

aðsðy; tÞÞf ðy; tÞdy;

and letting D→ 0 gives

yF ðz; tÞ
yt

5 2½12 F ðz; tÞ�Ez

0

aðsðy; tÞÞf ðy; tÞdy: ð4Þ

Differentiating with respect to z, we obtain

yf ðz; tÞ
yt

5 2aðsðz; tÞÞf ðz; tÞE`

z

f ðy; tÞdy

1 f ðz; tÞEz

0

aðsðy; tÞÞf ðy; tÞdy:
ð5Þ

Equation ð5Þ can also be motivated by considering the evolution of
the density at z directly, as follows. Some agents who have productivity z
will adopt a high productivity y ≥ z and so there will be an outflow of
these agents. Other agents who have productivity y ≤ z will adopt pro-
ductivity z and there will be an inflow of these agents. Hence we can
write

yf ðz; tÞ
yt

5
yf ðz; tÞ

yt

����
out

1
yf ðz; tÞ

yt

����
in

:

Consider first the outflow. The f ðz, tÞ agents at z have meetings at the
rate aðsðz; tÞÞf ðz; tÞ. A fraction 12 F ðz; tÞ5 ∫

`

z f ðy; tÞdy of these draws
satisfy y > z and these agents leave z. Hence

yf ðz; tÞ
yt

����
out

52aðsðz; tÞÞf ðz; tÞE`

z

f ðy; tÞdy:

Next, consider the inflow. Agents with productivity y ≤ z have meetings
at the rate aðsðy; tÞÞf ðy; tÞ. Each of these meetings yields a draw z with
probability f ðz, tÞ. Hence

yf ðz; tÞ
yt

����
in

5 f ðz; tÞEz

0

aðsðy; tÞÞf ðy; tÞdy:

Combining, we obtain ð5Þ. This type of equation is known in physics as
a Boltzmann equation.
Now consider the behavior of a single agent with current productivity

z , acting in an environment characterized by a given density path f ðz,tÞ,
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all z, t ≥ 0. The agent wants to choose a policy sðz, tÞ so as to maximize
the discounted, expected value of his earnings stream, expression ð3Þ.
The Bellman equation for this problem is

rV ðz; tÞ5 max
s∈½0;1�

�
ð12 sÞz 1 yV ðz; tÞ

yt

1 aðsÞE`

z

½V ðy; tÞ2 V ðz; tÞ� f ðy; tÞdy
�
:

ð6Þ

The system ð5Þ and ð6Þ is an instance of what Lasry and Lions ð2007Þ
have called a “mean-field game.” We summarize our discussion of the
economy as follows.
Definition. An equilibrium, given the initial distribution f ðz, 0Þ, is a

triple ð f, s,V Þ of functions on R2
1 such that ðiÞ given s, f satisfies ð5Þ for

all ðz, tÞ; ðiiÞ given f, V satisfies ð6Þ; and ðiiiÞ sðz, tÞ attains themaximum for
all ðz,tÞ.
As is well known, there do not exist anything like general existence

and uniqueness theorems for systems of partial differential equations,
and we do not attempt to prove these properties here. Furthermore, a
complete analysis of this economy would require the ability to calculate
solutions for all initial distributions. This would be an economically use-
ful project to carry out, but we limit ourselves in this paper to the analy-
sis of a set of particular solutions on which the growth rate and the dis-
tribution of relative productivities are both constant over time.
Definition. A balanced growth path ðBGPÞ is a number g and a triple

of functions ðf; j; vÞ on R1 such that

f ðz; tÞ5 e2gtfðze2gtÞ; ð7Þ

V ðz; tÞ5 egtvðze2gtÞ; ð8Þ
and

sðz; tÞ5 jðze2gtÞ ð9Þ

for all ðz, tÞ, and ð f, s, V Þ is an equilibrium with the initial condition
f ðz; 0Þ5 fðzÞ.
Intuitively, a BGP is simply a path for the distribution function along

which all productivity quantiles grow at the same rate g. That is, on a
BGP the productivity cdf satisfies F ðz; tÞ5 Fðze2gtÞ, and therefore, the
qth quantile, zqðtÞ, satisfies FðzqðtÞe2gtÞ5 q or

zqðtÞ5 egtF21ðqÞ:



10 journal of political economy
Another way of describing a BGP is that the productivity distribution
evolves as a “traveling wave” with stable shape.8 That the value and pol-
icy functions take the forms in ð8Þ and ð9Þ is then immediately implied.
The analysis of balanced growth is facilitated by restating ð5Þ and

ð6Þ in terms of relative productivities x 5 ze2gt . From ð7Þ, we have

yf ðz; tÞ
yt

5 2ge2gtfðze2gtÞ2 e2gtf0ðze2gtÞgze2gt ;

which from ð5Þ and ð9Þ implies

2fðxÞg2 f0ðxÞgx 5 fðxÞEx

0

aðjðyÞÞfðyÞdy

2 aðjðxÞÞfðxÞE`

x

fðyÞdy:
ð10Þ

The Bellman equation ð6Þ becomes

ðr2 gÞvðxÞ1 v 0ðxÞgx

5 max
j∈½0;1�

�
ð12 jÞx 1 aðjÞE`

x

½vðyÞ2 vðxÞ�fðyÞdy
�
:

ð11Þ

Total production on a BGP is

Y ðtÞ5 egtE`

0

½12 jðxÞ�xfðxÞdx;

provided that the integral converges. Hence total production grows at
the rate g.
If all agents in this economy had the same productivity level �z, say,

then no one would have any motive to search and everyone would sim-
ply produce �z forever. Such a trivial equilibrium could be called a BGP
with g5 0, but our interest is in BGPs with g > 0. To ensure that this is
a possibility, we will need to add more structure. For this purpose, we add
the following assumption.
Assumption 1. The initial productivity distribution, Fðz, 0Þ, has a

Pareto tail. That is, there are k, v > 0 such that

lim
z→`

12 F ðz; 0Þ
z21=v

5 k:
8 This is the terminology used by Luttmer ð2012Þ and König et al. ð2012Þ to describe
the fact that on a BGP the distribution of the logarithm of productivity ~z 5 logz satisfies
~F ð~z; tÞ5 ~Fð~z 2 gtÞ.
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This condition is sufficient to ensure that sustained growth at some
rate g > 0 is possible, as we show in the following lemma. We discuss its
interpretation momentarily.
Lemma 1. Under assumption 1, there exists a nondegenerate BGP

with growth rate

g5 vE`

0

aðjðyÞÞfðyÞdy: ð12Þ
Proof. Fðz, tÞ satisfies ð4Þ. Along a BGP, F ðz; tÞ5 Fðze2gtÞ, and there-
fore,

2gF0ðxÞx 5 2½12 FðxÞ�Ex

0

aðjðyÞÞfðyÞdy: ð13Þ

Under assumption 1,

lim
x→`

½12 FðxÞ�=x21=v 5 k

and

lim
x→`

F0ðxÞ=½ð1=vÞx21=v21�5 k:

Therefore, for large x, ð13Þ is

2g
1
v
kx21=v 5 2kx21=vE`

0

aðjðyÞÞfðyÞdy:

Rearranging yields ð12Þ. QED
The interpretation of assumption 1 is that the stock of good ideas

waiting to be discovered is inexhaustible. Taken literally, it means that all
knowledge already exists at time 0. Because some readers may struggle
with this literal interpretation, in Section VI.A, we work out an alterna-
tive interpretation that we argue is observationally equivalent: knowl-
edge at time 0 is bounded but new knowledge arrives at arbitrarily low
frequency. These “innovations” ensure that growth remains positive. In
that section we also describe an alternative approach for introducing
innovation proposed by Luttmer ð2012Þ.
Finally, we make some assumptions on the primitives of our model. We

assume that the learning technology function a : ½0; 1�→ R1 satisfies

aðsÞ ≥ 0; a 0ðsÞ > 0; a 00ðsÞ < 0; all s;

and

að1Þ > 0; a 0ð1Þ > 0; lim
s→0

a 0ðsÞ5 `: ð14Þ



12 journal of political economy
The discount rate r satisfies

r ≥ vað1Þ: ð15Þ
This will ensure that the preferences in ð3Þ are well defined.
III. Calculation and Analysis of Balanced Growth Paths

In this section we describe the algorithm we use to calculate BGPs—
functions ðf; j; vÞ and a number g satisfying ð10Þ, ð11Þ, and ð12Þ—given
a specified function a, values for the parameters r and v, and a value

k 5 lim
z→`

½12 F ðz; 0Þ�=z21=v

for the tail of the initial productivity distribution.
We begin an iteration with initial guesses ðf0; g0Þ for ðf; gÞ. Then for

n 5 0, 1, 2, . . . , we follow two steps.
Step 1. Given ðfn; gnÞ, use ð11Þ to calculate vn and jn.

Step 2. Given jn, solve ð10Þ and ð12Þ jointly to generate a new guess

ðfn11; gn11Þ.
When these steps are completed, ðfn11; gn11Þ and ðvn; jnÞ have been

calculated. When ðfn11; gn11Þ is close enough to ðfn; gnÞ, we call ðfn;
gn; vn; jnÞ a BGP equilibrium. Steps 1 and 2 themselves involve iterative
procedures, which we describe in turn.
For step 1, consider the Bellman equation ð11Þ. Define the function

SðxÞ5 E`

x

½vðyÞ2 vðxÞ�fðyÞdy:

Then the first-order condition for j is

SðxÞa 0ðjÞ ≥ x with equality if j < 1: ð16Þ

Under our assumptions on a, this condition can be solved for a
unique jðxÞ ∈ ð0; 1� that satisfies j0ðxÞ < 0 as long as jðxÞ < 1. There will
be a unique value x̂ that satisfies

a 0ð1Þ5 x̂
Sðx̂Þ :

Agents with relative productivities x above x̂ will divide their time be-
tween producing and searching; agents at or below x̂ will be searching
full-time. For x ≤ x̂,vðxÞ is constant at vðx̂Þ, and thus SðxÞ is constant at
Sðx̂Þ. The value function v will satisfy vðxÞ > 0, v 0ðxÞ ≥ 0, limx→` vðxÞ5 ,̀
and
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lim
x→0

v 0ðxÞ5 0: ð17Þ

The last condition motivates a boundary condition for the integro-
differential equation ð11Þ. All these conclusions hold for any density f
and g > 0.
The computation of ðvn; jnÞ given ðfn; gnÞ follows itself an iterative

procedure. We begin an iteration with an initial guess v0
n for vn.

9 Then for
j 5 0, 1, 2, . . . , we follow two steps.
Step 1a. Given v j

n ðxÞ, compute Sj
nðxÞ from ð3Þ and j j

nðxÞ from ð16Þ.

Step 1b. Given j j

nðxÞ, solve ð11Þ together with the boundary condi-
tion ð17Þ for v j11

n ðxÞ. To carry out these calculations, we applied a finite
difference method on a grid ðx1, x 2, . . . , xIÞ of I values. Details are
provided in Appendix B, Section A.
When v j11

n and v j
n are sufficiently close, we set ðvn; jnÞ5 ðv j

n; j
j
nÞ. This

completes step 1.
For step 2, we express ð10Þ as

2fðxÞg2 f0ðxÞgx 5 fðxÞwðxÞ2 aðjðxÞÞfðxÞ½12 FðxÞ�; ð18Þ

where w and F are defined by

wðxÞ5 Ex

0

aðjðyÞÞfðyÞdy and FðxÞ5 Ex

0

fðyÞdy:

Then

w0ðxÞ5 aðjðxÞÞfðxÞ; ð19Þ

F0ðxÞ5 fðxÞ: ð20Þ
We further have

lim
x→`

fðxÞ=½ð1=vÞx21=v21�5 k;

lim
x→`

½12 FðxÞ�=x21=v 5 k:

Finally, equation ð12Þ can be written as limx→` wðxÞ5 g=v. The com-
putation of ðfn11; gn11Þ given ðvn; jnÞ again follows an iterative proce-
dure. We begin an iteration with an initial guess g0

n11 for gn11. Then for
j 5 0, 1, 2, . . . , we follow two steps.
9 We use v0
nðxÞ5 x=ðr2 gnÞ.
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Step 2a. Given g
j
n11 and jn, solve for functions f j

n11ðxÞ, F j
n11ðxÞ, and

w j
n11ðxÞ by solving the system of ordinary differential equations ð18Þ–ð20Þ

on a grid ðx1, x 2, . . . , xIÞ of I values with boundary conditions

f
j
n11ðxI Þ5

k
v
x2ð1=vÞ21
I ;

F
j
n11ðxI Þ5 12 kx21=v

I ;

w j
n11ðxI Þ5

g
j
n11

v
:

We again use a finite difference method with details provided in Ap-
pendix B, Section C.

Step 2b. Given f

j
n11, g

j
n11, and jn, update

g
j11
n11 5 yvE`

0

aðjnðxÞÞf j
n11ðxÞdx 1 ð12 yÞg j

n11;

where y ∈ ð0; 1� is a relaxation parameter.
When g

j11
n11 and g

j
n11 are sufficiently close, we set ðfn; gnÞ5 ðf j

n; g
j
nÞ.

This completes step 2. For the initial guess we use a growth rate g0 5
að1Þ and a Frechet distribution with parameters k and v, F0ðxÞ5
expð2kx21=vÞ.10 For the function a we used

aðsÞ5 a0sh; h ∈ ð0; 1Þ:
The computational procedure is outlined in more detail in Appendix B.
The mathematics of each of the steps just described, the solution to

a Bellman equation, the solution to an ordinary differential equation
with given boundary conditions, and the solution to a fixed-point prob-
lem in the growth parameter g are all well understood. We have not
been able to establish the existence or uniqueness of a BGP with g > 0,
but the algorithm we have described calculates solutions to a high de-
gree of accuracy for the Frechet productivity distribution that we use as
an initial guess and a variety of reasonable parameter values.
Figures 1–4 report the results of one simulation of this model and

provide some information on the sensitivity of the policy function to
changes in parameters. Figure 5 provides some typical sample paths to
illustrate the kind of changes over time an individual’s choices and
earnings will exhibit along the BGP we have computed. The figures are
intended to illustrate the qualitative properties of the model, and the
calibration of parameters will depend on the application and available
data. But there is a good deal of closely related research that uses time
series on aggregate growth rates and cross-section data on individual
10 A Frechet distribution has a Pareto tail: limx→` ½12 expð2kx21=vÞ�=x21=v 5 k ðusing
L’Hopital’s ruleÞ.



FIG. 1.—Optimal time allocation, jðxÞ, for v5 0:5 and v5 0:8

FIG. 2.—Productivity density for v5 0:5



FIG. 3.—Income and value Lorenz curves for v5 0:5

FIG. 4.—Optimal time allocation, for various h values



FIG. 5.—Two sample paths
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agents to estimate parameters related to our parameters v and h, and it
will be useful to describe how the numbers we use are related to this
evidence.
The growth rate of per capita GDP in the United States and other

OECD countries has fluctuated around 2 percent at least since World
War II. This fact supports the application of models that have a BGP
equilibrium and suggest the value g5 :02. The parameter v has inter-
pretations both as a tail parameter and as a log variance parameter.
Thinking of agents in the model as individual workers as we have done
suggests using the variance of log earnings to estimate v. Lucas ð2009Þ,
using a model with constant search effort, finds v5 0:5 to be consis-
tent with US census earnings data. Luttmer ð2007Þ, Gabaix ð2009Þ, and
others who identify agents ðin our senseÞ with firms estimate v5 1
ðZipf ’s lawÞ as a good tail parameter based on the size distribution of
firms. Eaton and Kortum ð2002Þ associate costs of any specific good
with an entire country and obtain estimates of v less than one, using
international relative prices. Here we use the value v5 0:5; results
for v5 0:8 are also shown in figure 1. Then given a choice of v and
a value for the parameter h, we can choose the constant a0 so that
∫
`

0 aðjðyÞÞfðyÞdy 5 :02=v, that is, ð12Þ is satisfied.
None of the studies cited above provides evidence on h, which mea-

sures the elasticity of search intensity with respect to the time spent
searching. To obtain information on h, we need evidence on the tech-
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nology of on-the-job human capital accumulation, such as that used by
Ben-Porath ð1967Þ, Heckman ð1976Þ, Rosen ð1976Þ, and Hause ð1980Þ.11
Rosen ð1976Þ used a parameter similar to our h. He assigned the value
h5 0:5, in part to get a functional form that was easy to work with. We
used h5 0:3. Perla and Tonetti ð2014Þ use a model similar to ours in
which aðsÞ is linear in s, so that workers work full-time above a produc-
tivity threshold and search full-time otherwise. Our model approaches
this situation as h5 1, although the Perla and Tonetti model is not a
special case of ours. See figure 4 for experiments at h values 0.3, 0.6,
and 0.9.
Figure 1 plots the equilibrium time allocation function, jðxÞ, against

relative productivity levels, x, for the two v values 0.5 and 0.8. The units
on the productivity axis are arbitrary ðthey are governed by the free pa-
rameter kÞ. We normalized productivity by dividing by median produc-
tivity for each value of v. A higher v value ðhigher variance, fatter tailÞ
induces a higher return to search. At either v value the least productive
people search full-time; the most productive work almost full-time.
Figure 2 plots the productivity density for v5 0:5, superimposed on a

plot of a Pareto density with tail parameter 1=v5 2. The two curves co-
incide for large productivity levels. Again, units are relative to the me-
dian value under the equilibrium density.
Figure 3 plots two equilibrium Lorenz curves for the same case v5 0:5.

The curve furthest from the diagonal ðthe one with the most inequalityÞ
plots the fraction of current production ½12 jðxÞ�x attributed to work-
ers with productivity less than x. This is the standard income flow Lo-
renz curve. The other curve, the one with less inequality, plots the
fraction of total discounted expected earnings vðxÞ accounted for by
people with current productivity less than x. Here vðxÞ is the value
function calculated in our algorithm. This value Lorenz curve takes into
account the effects of mobility along with the effect of current produc-
tivity. In dynamic problems such as the one we study, it will be more
informative to examine present value rather than flow Lorenz curves.
Figure 4 plots the time allocation functions for three h values with v

set at 0.5. The h5 0:3 curve coincides with the v5 0:5 curve in figure 1.
Figure 5 shows various aspects of two randomly generated sample

paths. Agents in our model are infinitely lived. A particular productiv-
ity sample path will never decrease—knowledge in our model is never
lost—but on a BGP, relative productivities x will wander forever with
11 Ben-Porath and Rosen suggested that any particular human capital path could be
interpreted as a property of an occupation, in which case one could view a person’s time
allocation choices as implied by an initial, one-time occupational choice. This appealing
interpretation is open to us as well, as long as the path is interpreted as a productivity-
contingent stochastic process.
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long-run averages described by the cdf FðxÞ. This means, for example,
that every sample path will be in the interval ½0; x̂� for a fraction of time
Fðx̂Þ, where x̂ is the productivity level ðdefined below eq. ½16�Þ below
which it is not worthwhile to work. It will return to ½0; x̂� infinitely of-
ten. ðWe can make the same statement about any x value, but x̂ is cho-
sen here for a reason.Þ We can get a good sense of an individual sample
path by thinking of each return to ½0; x̂� as a death or retirement, where
the departing worker is replaced by a new potential worker who begins
with some productivity x 0 ≤ x̂. Like a school child, this entrant starts
with some work-relevant knowledge and can begin to acquire more right
away, but it may be some time before his knowledge level has a market
value. In the same way, some older workers, even very knowledgeable
ones, will find that the market value of their accumulated knowledge
has fallen to zero, not because they forget what they once knew but be-
cause the number of others who know more has grown.
IV. An Optimally Planned Economy

Neither the equilibrium conditions ð5Þ and ð6Þ for the decentralized
economy nor their BGP counterparts describe an economically efficient
allocation. Each agent allocates his time to maximize his own present
value but assigns no value to the benefits that increasing his knowledge
will have for others. Yet we are studying an economy in which learning
from others is the sole engine of technological change.
In this section, we ask how a hypothetical, beneficent planner would

allocate resources. In our model economy, such a planner’s instruments
are the time allocations of agents at different productivity levels, and his
objective is to maximize the expected value, discounted at r, of total
production. The state variable for this problem is the density fðz, tÞ: a
point in an infinite-dimensional space. We denote the value function,
which maps a space of densities into R1, by W. The problem is then to
choose a function s: R2

1 → ½0; 1� to solve

W ½ f ð�; tÞ�5 max
sð�;�Þ E

`

t

e2rðt2tÞE`

0

½12 sðz; tÞ�z f ðz; tÞdzdt ð21Þ

subject to the law of motion for f :

yf ðz; tÞ
yt

5 2aðsðz; tÞÞf ðz; tÞE`

z

f ðy; tÞdy

1 f ðz; tÞEz

0

aðsðy; tÞÞf ðy; tÞdy
ð22Þ

and with fð� , tÞ given.
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One of the contributions of this paper is to show how such a dynamic
programming problem, in which the state variable is a distribution, can
be brought into a manageable form. Because our strategy also works
for more general formulations of dynamic programming problems than
ð21Þ–ð22Þ, we first present our result for the more general case. Con-
sider the problem of choosing a function s: R2

1 → R to solve

W ½ f ð�; tÞ�5 max
sð�;�Þ E

`

t

e2rðt2tÞ
�EH ðz; sðz; tÞÞf ðz; tÞdz

�
dt ð23Þ

subject to the law of motion for f :

yf ðz; tÞ
yt

5 T ½ f ð�; tÞ; sð�; tÞ�ðzÞ; t ≥ t ; ð24Þ

and with fð� , tÞ given.
The problem ð21Þ–ð22Þ is the special case with objective function and

transition dynamics

H ðz; sÞ5 ð12 sÞz;

T ½ f ; s�ðzÞ52aðsðzÞÞf ðzÞE`

z

f ðyÞdy

1 f ðzÞEz

0

aðsðyÞÞf ðyÞdy:

ð25Þ

Instead of attempting to solve the planner’s Bellman equation di-
rectly, we will use it to derive a much simpler equation for the marginal
social value of a type z individual, which we denote by wðz, tÞ. This mar-
ginal value is more formally defined in Appendix A, but the idea is as
follows. First, define by ~wðz; f Þ the marginal value of one type z individ-
ual if the distribution is any function f :

~wðz; f Þ; dW ½ f �
df ðzÞ :

Here d=df ðzÞ is the “functional derivative” of the planner’s objective with
respect to f at point z, the analogue of the partial derivative yW ðfÞ=yfi
for the case in which z is discrete and hence the distribution f takes
values in Rn. See Appendix A, Section A, for a rigorous definition of
such a derivative. Note that the function ~wðz; f Þ is defined over the
entire state space, the space of all possible density functions f.
Now we define wðz, tÞ as the marginal value along the optimal trajectory

of the distribution, f ðz, tÞ:
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wðz; tÞ; ~wðz; f ðz; tÞÞ;
thereby reducing the planner’s problem from an infinite-dimensional to
a two-dimensional problem.
Proposition 1. Consider the problem ð23Þ–ð24Þ. Define the mar-

ginal social value of a type z individual as

wðz; tÞ5 dW ½ f ð�; tÞ�
df ðz; tÞ :

This marginal value and the optimal policy function s*ðz; tÞ satisfy the
Bellman equation and first-order condition:

rwðz; tÞ5H ðz; s*ðz; tÞÞ1 ywðz; tÞ
yt

1
d

df ðz; tÞ Ewðy; tÞT ½ f ð�; tÞ; s*ð�; tÞ�ðyÞdy;
ð26Þ

05
y
ys
H ðz; s*ðz; tÞÞf ðz; tÞ
1
d

dsðz; tÞ Ewðy; tÞT ½ f ð�; tÞ; s*ð�; tÞ�ðyÞdy:
ð27Þ

Corollary 1. Consider the problem ð21Þ–ð22Þ. The marginal social

value of a type z individual, wðz, tÞ, satisfies the Bellman equation

rwðz; tÞ5 max
s∈ ½0;1�

�
ð12 sÞz 1 ywðz; tÞ

yt

1 aðsÞE`

z

½wðy; tÞ2 wðz; tÞ� f ðy; tÞdy
�

2 Ez

0

aðsðy; tÞÞ½wðy; tÞ2 wðz; tÞ� f ðy; tÞdy:

ð28Þ
This result is intuitive. It states that the flow value rwðz; tÞ contrib-
uted by one type z individual is a sum of three terms. The first term is
simply the output produced by this individual. The second term is the
expected value from improvements in type z’s future productivity to
some y > z. We refer to this term as the “internal benefit from search”:
It takes the same form here as in the problem of an individual stated in
ð6Þ, with private continuation values replaced by the planner’s “social”
values. Finally, the third term is the expected value from improvements
in the productivity of other types y < z to z in case they should meet z. It
is only in this term, which we refer to as the “external benefit from
search,” that the planning problem differs from the individual optimi-
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zation problem in the decentralized equilibrium. That is, individuals
internalize the benefit from search to themselves, but not the benefit to
others.
The planner’s optimal choice of search intensity satisfies

z 5 a0ðsðz; tÞÞE`

z

½wðy; tÞ2 wðz; tÞ� f ðy; tÞdy: ð29Þ

The planner trades off costs and benefits from changing individual
search intensities, sðz, tÞ. Increasing sðz, tÞ has three effects. First, pro-
duction decreases by z. Second, the outflow of people at z increases by
a0ðsðz; tÞÞ, corresponding to a loss

2a0ðsðz; tÞÞwðz; tÞE`

z

f ðy; tÞdy:

Third, the inflow of people into y > z increases by a0ðsðz; tÞÞ. This cor-
responds to a gain

a0ðsðz; tÞÞE`

z

wðy; tÞf ðy; tÞdy:

Note that the integral on the right-hand side of ð29Þ is taken only over
y ≥ z. The reason is that from ð22Þ, changing sðz, tÞ has no direct effect
on the distribution at y < z, which depends only on the search inten-
sities, sðy, tÞ, of those individuals with productivities y < z.
As in the decentralized allocation, the Bellman equation here for the

marginal value wðz, tÞ ð28Þ and the law of motion for the distribution
ð22Þ constitute a system of two integro-differential equations that com-
pletely summarize the necessary conditions for a solution to the plan-
ning problem.
A BGP for the planning problem is defined in the same way as in the

decentralized equilibrium:

f ðz; tÞ5 e2gtfðze2gtÞ; wðz; tÞ5 egtqðze2gtÞ:
Again, restating ð22Þ and ð28Þ in terms of relative productivities x 5 ze2gt ,
we obtain a BGP Bellman equation

ðr2 gÞqðxÞ1 q0ðxÞgx 5 max
j∈½0;1�

�
ð12 jÞx

1 aðjÞE`

x

½qðyÞ2 qðxÞ�fðyÞdy
�

2 Ex

0

a½ςðyÞ�½qðyÞ2 qðxÞ�fðyÞdy

ð30Þ
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and an equation for the BGP distribution, ð10Þ. It is important to note
that while the equation for the distribution is the same as in the de-
centralized equilibrium, the planner will generally choose a different
time allocation, ςðxÞ, and hence different arrival rates, aðςðxÞÞ, implying
a different BGP distribution. Here and below we use the notation ςðxÞ
for the planner’s policy function to distinguish it from the policy func-
tion jðxÞ chosen by individual agents. Finally, the parameter g is given
by ð12Þ evaluated using the planner’s time allocation, ςðxÞ.
Figure 6 compares the time allocation, ςðxÞ, chosen by the planner

with the outcome of the decentralized equilibrium. Not surprisingly, the
planner assigns a higher fraction of time spent searching to all in-
dividuals so as to internalize the external benefit from search discussed
above. This implies a higher growth rate g in the planning problem vis-
à-vis the decentralized economy.
Figures 7 and 8 compare the Lorenz curves for flow income and the

present value of future income in the decentralized equilibrium and
planning problem. An immediate implication of more time allocated
toward search is a higher degree of income inequality in the planning
problem. This effect is, however, much more muted if we instead mea-
FIG. 6.—Optimal time allocation, jðxÞ, in decentralized equilibrium and ςðxÞ in the
lanning problem.
p



FIG. 7.—Income Lorenz curves and growth rate, g, in decentralized equilibrium and
the planning problem.
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sure inequality by the value Lorenz curve, which takes into account mo-
bility in the productivity distribution.
V. Tax Implementation of the Optimal Allocation

In this section we propose and illustrate a Pigovian tax structure that
implements the optimal allocation by aligning the private and social
returns to search. In this model a flat tax on income will be neutral: it
will have identical effects on both sides of the first-order condition ð16Þ.
We use such a tax to finance a productivity-related subsidy tðz; tÞ to
offset the opportunity cost z of search time s. The flat tax t0 satisfies the
government budget constraint

E`

0

tðz; tÞsðz; tÞzf ðz; tÞdz 5 t0E`

0

½12 sðz; tÞ�z f ðz; tÞdz:

Under this tax structure, the individual Bellman equation becomes

rV ðz; tÞ5 max
s∈½0;1�

�
ð12 t0Þð12 sÞz 1 tðz; tÞzs 1 yV ðz; tÞ

yt

1 aðsÞE`

z

½V ðy; tÞ2 V ðz; tÞ� f ðy; tÞdy
�
:



FIG. 8.—Present value Lorenz curves and growth rate, g, in decentralized equilibrium
and the planning problem.
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The law of motion for the distribution ð5Þ and the expression for ag-
gregate output ð2Þ are unchanged.

Let vnðxÞ ðn for “net”Þ be the present value of an individual’s earn-
ings, net of subsidies and taxes, and replace the equation defining the
value function on a BGP ð8Þ by

V ðz; tÞ5 ð12 t0Þegt vnðze2gtÞ:
In addition, tðz; tÞ5 ð12 t0Þtðze2gtÞ. This function vnðxÞ satisfies

ðr2 gÞvnðxÞ1 v0
nðxÞgx 5 max

j∈½0;1�

�
ð12 jÞx 1 tðxÞxj

1 aðjÞE`

x

½vnðyÞ2 vnðxÞ�fðyÞdy
�
;

where both the density f and the growth rate g are taken from the
planning problem.
As before, we let

SnðxÞ5 E`

x

½vnðyÞ2 vnðxÞ�fðyÞdy:
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The first-order condition is

½12 tðxÞ�x ≤ a0ðjÞSnðxÞ with equality if j < 1:

The agent takes tðxÞ as given and chooses jðxÞ.
The planner wants to choose the subsidy rate tðxÞ so that individuals

choose jðxÞ5 ςðxÞ, the time allocation that the planner has already
decided on. This choice is then

½12 tðxÞ�x 5 a0ðςðxÞÞSnðxÞ ð31Þ
provided that ςðxÞ < 1. At the highest value �x at which ςðxÞ5 1, tð�xÞ is the
rate at which the agent is indifferent between working a small amount
and not working at all. For x > �x, the equality in ð31Þ gives the subsidy
rate that maintains indifference as productivity decreases from �x. Of
course, any higher subsidy rate in the nonproducing range would have
the same effect.
The Bellman equation under the tax policy just described is

ðr2 gÞvnðxÞ1 v0
nðxÞgx 5 x 2 ςðxÞa0ðςðxÞÞSnðxÞ

1 aðςðxÞÞE`

x

½vnðyÞ2 vnðxÞ�fðyÞdy:

With the function aðjÞ5 a0j
h that we use,

aðjÞ2 ja0ðjÞ5 a0j
h 2 jha0j

h21 5 ð12 hÞaðjÞ;
and so

ðr2 gÞvnðxÞ1 v0
nðxÞgx

5 x 1 ð12 hÞaðςðxÞÞE`

x

½vnðyÞ2 vnðxÞ�fðyÞdy
ð32Þ

on ð�x; `Þ. On ½0; �x�, vnðxÞ5 vnð�xÞ.
Given ςðxÞ and g from the planning problem, ð32Þ can be solved for

vnðxÞ and SnðxÞ, applying the algorithm used earlier. The tax rate tðxÞ can
then be computed using ð31Þ. Figure 9 plots the two policy functions
jðxÞ and ςðxÞ and the subsidy rate tðxÞ. On the interval A on the figure,
agents choose j5 1 in both the decentralized and planned cases, so no
tax is needed to encourage more search. On the interval B, the planner
wants everyone to search full-time, so tðxÞ is chosen to induce agents to
prefer this to doing any production. The agents with the lowest pro-
ductivity on the interval B choose to work in the decentralized economy,
but the planned allocation implemented by the tax improves their re-
turn from search enough that no additional tax incentive is needed. On
the interval C, the planner wants to increase everyone’s search: com-



FIG. 9.—Pigovian implementation of the optimal allocation
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pare jðxÞ to ςðxÞ. The opportunity cost of search increases without limit
as x → `. This requires that tðxÞ be an increasing function on C.
In the example shown in figure 9, the only agents with positive earn-

ings are those on the interval C. All of them pay the flat tax t0 on earn-
ings and receive offsetting subsidies designed to encourage search.
These subsidy rates increase with earnings, making the tax system as a
whole regressive. It is worth emphasizing that this is a feature of a tax
system that has the single purpose of encouraging productivity innova-
tion. Considerations of distorting taxes and distribution, central to
much of tax analysis, have simply been set aside.
VI. Alternative Learning Technologies

All of the analysis so far has been carried out under the learning technol-
ogy described in Section II. Even under the limits of a one-dimensional
model of knowledge, however, there are many other models of learning
that might be considered. It turns out that the algorithm we describe
in Section III is not difficult to adapt to some alternatives. Ultimately,
which of these and other alternatives are substantively interesting will
depend on the evidence we are trying to understand. In this section, we
simply illustrate some theoretical possibilities with three examples.
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A. Exogenous Knowledge Shocks

In our analysis of the benchmark model, we postulated that all pro-
ductivity levels that anyone would ever attain were already represented
by some individual alive at date t 5 0. This we expressed as the restric-
tion that the initial productivity density has a Pareto tail with tail pa-
rameter 1=v ðassumption 1Þ. Although this assumption led us to asymp-
totic behavior in good agreement with the sustained growth we observe,
some feel this must be for the wrong reasons, that we are denying the
possibility of innovation or discovery. In this subsection we offer a
seemingly different learning technology, one that admits ideas that are
genuinely “new,” and show that the asymptotic behavior of the resulting
productivity distribution is observationally equivalent to the benchmark
model we described in Section II.
To present the argument at its simplest, we consider only the special

case of a constant arrival rate a. In this case, the cdf in a closed economy
evolves according to

yF ðz; tÞ
yt

52a½12 F ðz; tÞ�F ðz; tÞ;

which is the special case of ð4Þ with constant a. Under the assumption
maintained in our benchmark model that F ðz, 0Þ has a Pareto tail with
tail parameter 1=v, the growth rate on a BGP will be g5 av and the
density function of relative productivities will be

lim
t→`

F ðxegt; tÞ5 1
11 kx21=v

:

This is the constant-a version of our benchmark model. ðSee App. C for
this and other essential details.Þ
Now let us add a second source of ideas—we could call them undis-

covered ideas—in the form of a cdf GðzÞ. Assume that people access this
second idea source at a constant rate b. The evolution of F is now de-
scribed by12

yF ðz; tÞ
yt

52a½12 F ðz; tÞ�F ðz; tÞ2 b½12 GðzÞ�F ðz; tÞ: ð33Þ

As in the case in which b5 0, the solution to ð33Þ can be written out on
sight, and its asymptotic behavior is straightforward to analyze ðagain
see App. CÞ.
This modification offers several possibilities. If neither Fðz, 0Þ nor GðzÞ

has a Pareto tail, there is no growth in the long run and for any g > 0
12 Alvarez et al. ð2008, last equation on p. 9Þ derive the same law of motion but for cost,
z21=v, rather than productivity, z.
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lim
t→`

F ðxegt; tÞ5 1;

meaning that all individuals have productivity less than xegt , for all x > 0.
This is a possibility that we ruled out by assumption in Section II.
A second possibility is that F ðz , 0Þ has a fatter tail than GðzÞ, in which

case the process converges to a BGP with growth rate g5 av and the
asymptotic distribution satisfies

lim
t→`

F ðxegt; tÞ5 1
11 kx21=v

;

where, as before, 1=v is the tail parameter of Fðz, 0Þ and k is a posi-
tive constant. In this case the external idea source becomes irrelevant
as t → ` and asymptotic behavior is the same as in the benchmark case
in which b5 0.
A third possibility arises in the reverse case in which GðzÞ has a fat-

ter tail than Fðz, 0Þ. With the tail parameter of GðzÞ denoted by 1=y, the
process converges to a BGP with growth rate g5 ay and the asymptotic
distribution satisfies

lim
t→`

F ðxegt; tÞ5 1
11 ðb=aÞmx21=y

;

where m > 0. Note that this case also allows for the possibility that
the initial distribution of knowledge is bounded above by some finite
number.
For completeness we add the case in which GðzÞ and F ðz, 0Þ have the

common tail parameter 1=v and the process converges to a BGP with
growth rate g5 av and the asymptotic distribution satisfies

lim
t→`

F ðxegt; tÞ5 1
11 ½k 1 ðb=aÞm�x21=v

:

The identity of asymptotic behavior in the last three cases is what we
mean by observational equivalence. Note too that in all three cases it is
the matching parameter a that combines with a tail parameter to de-
termine the long-run growth rate. If there were no diffusion, a5 0, the
asymptotic growth rate would be zero. Finally, note that there is no
condition on the frequency at which innovations arrive, b, except that
it is positive. That is, “innovations” can be very rare without impairing
long-term growth. This is true even if the initial knowledge distribution
F ðz, 0Þ is bounded above. Furthermore, the frequency at which innova-
tions arrive, b, does not affect the growth rate, g. In this sense, diffusion
rather than innovation is the engine for growth in this economy.



30 journal of political economy
Luttmer ð2012Þ provides another approach for introducing innova-
tion into a framework like ours: instead of adding an external source of
ideas, he adds randomness in the form of small Brownian shocks to the
evolution of each individual’s productivity. These shocks continuously
expand the range of productivities represented along an equilibrium
path, even when the economy starts from a bounded initial productiv-
ity distribution.13 In Luttmer’s model, the Brownian productivity shocks
generate a Pareto tail for the productivity distribution ðas in the papers
by Gabaix ½1999� and Luttmer ½2007�Þ while diffusion keeps the distri-
bution from fanning out too much. These two forces interact in just the
right way to generate long-run growth. The fat-tailed productivity dis-
tribution becomes an implication of the theory rather than an imposed
axiom as in our paper.
B. Limits to Learning

In the theory we have considered so far, a person’s current productivity
level determines his ability to produce goods but has no effect on his
ability to acquire new knowledge. The outcome of a search by agent z
who meets an agent y > z is y, regardless of the value of his own pro-
ductivity z. But it is easy to think of potential knowledge transfers that
cannot be carried out if the “recipient’s” knowledge level is too dif-
ferent from that of the “donor.” To explore this possibility, we make use
of an appropriate “kernel” to modify the law of motion for the distri-
bution ð5Þ. Assume, for example, that if an agent at z meets another
agent at y, he can adopt y with probability kðy=zÞ; with probability 12
kðy=zÞ he cannot do this and retains his previous productivity z. Then
the law of motion for the distribution becomes14
13 To be precise, Luttmer ð2012Þ assumes that, even in the absence of a meeting, an
individual’s productivity evolves as a geometric Brownian motion d logzðtÞ5 mdZ ðtÞ. The
following extension of ð33Þ then describes the evolution of F :

yF ðz ; tÞ
yt

5 2aF ðz ; tÞ½12 F ðz; tÞ�1 m2

2

�
z
yF ðz; tÞ

yz
1 z2

y2F ðz ; tÞ
yz2

�
:

This is eq. ð10Þ in Luttmer’s paper ðhis analysis is in terms of the distribution of log z rather
than zÞ. Luttmer further shows that the long-run growth rate that is attained from a
bounded initial distribution equals g5 m

ffiffiffiffiffiffi
2a

p
, a formula that illustrates nicely the interplay

between innovation, m, and diffusion, a.
14 Or in terms of the cdf, analogous to ð4Þ,

yF ðz ; tÞ
yt

5 2Ez

0

aðsðy; tÞÞf ðy; tÞE`

z

f ðv; tÞkðv=yÞdvdy:
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yf ðz; tÞ
yt

5 f ðz; tÞEz

0

aðsðy; tÞÞf ðy; tÞkðz=yÞdy

2 aðsðz; tÞÞf ðz; tÞE`

z

f ðy; tÞkðy=zÞdy:

We find it convenient to work with the functional form

k
�
y
z

	
5 d1 ð12 dÞ

�
y
z

	2k

; ð34Þ

where k > 0 is the rate at which learning probabilities fall off as knowl-
edge differences increase and d ∈ ð0; 1�. We can think of this kernel as
reflecting an ordering in the learning process or some limits to intel-
lectual range.15 An equivalent interpretation of this kernel is that meet-
ing probabilities depend on the distance between different productivity
types, so that each person has a higher chance of meeting those with a
knowledge level close to his own. In this interpretation, the parameter k
captures the degree of socioeconomic segregation or stratification in a
society.
To illustrate the range of possibilities of our framework, we addi-

tionally assume that individuals have logarithmic utility functions rather
than linear ones as in the theory considered so far ðany other concave
utility function can also be incorporatedÞ. The Bellman equation of an
individual is then

rV ðz; tÞ5 max
s∈½0;1�

�
log½ð12 sÞz�1 yV ðz; tÞ

yt

1 aðsÞE`

z

½V ðy; tÞ2 V ðz; tÞ�kðy=zÞf ðy; tÞdy
�
:

We can derive the following expressions for the law of motion for the
distribution along a BGP:

2fðxÞg2 f0ðxÞgx 5 fðxÞEx

0

aðjðyÞÞfðyÞkðx=yÞdy

2 aðjðxÞÞfðxÞE`

x

fðyÞkðy=xÞdy:
15 Jovanovic and Nyarko ð1996Þ suggested the following rationale for such limits to
learning: different productivity types, z, correspond to different activities and human
capital is partially specific to a given activity. When an agent switches to a new activity, he
loses some of this human capital, and more so the more different the new activity is.
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Using an analogous argument as in lemma 1, the growth rate of the
economy is

g5 vdE`

0

aðjðyÞÞfðyÞdy: ð35Þ

Analogously, the corresponding Bellman equation is

ðr2 gÞvðxÞ1 v0ðxÞgx 5 max
j∈½0;1�

�
log½ð12 jÞx�

1 aðjÞE`

x

½vðyÞ2 vðxÞ�kðy=xÞfðyÞdy
�
:

The combination of limits to learning and diminishing marginal
utility changes individuals’ search behavior dramatically relative to our
benchmark model. Figure 10 plots the optimal time allocation, jðxÞ, for
various values of the parameter measuring the limits to learning, k. With
higher k, both low- and high-productivity types are discouraged from
search, resulting in search intensity being a hump-shaped function of
current productivity. The reason for this is that the benefit from search

SðxÞ5 E`

x

½vðyÞ2 vðxÞ�fðyÞkðy=xÞdy

is no longer very high for low-productivity types. Because low-
productivity types also have a low probability of benefiting from a
meeting with a high-productivity type, their expected payoff from search
is low and their search effort is discouraged. The growth rate of the
economy, g, also declines as the limits to learning, k, increase. As can be
seen in figure 10, all productivity types allocate less time toward search.
Because the growth rate of the economy is an average of individual
search intensities, this depresses growth.
To obtain information on our parameter k, our theory suggests study-

ing the speed of on-the-job human capital accumulation and the de-
gree of social mobility in a society. With regard to the former, Lagakos
et al. ð2012Þ examine experience-earnings profiles across countries and
document that the wage increase associated with increasing worker ex-
perience is lower for poorer countries. This is consistent with there
being greater limits to learning in these countries. With regard to the
latter, evidence on both intra- and intergenerational mobility is infor-
mative, even though our theory does not distinguish between the two.
In Section III, we have already cited some studies on on-the-job hu-
man capital accumulation and the slope of earnings profiles. There
are also many studies examining the correlation in lifetime income be-



FIG. 10.—Optimal time allocation, jðxÞ, for various k values
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tween parents and children ðe.g., Solon 1992Þ or intergenerational tran-
sition probabilities between different income quantiles ðe.g., Zimmer-
man 1992Þ.16
C. Symmetric Meetings

Another feature of the learning technology applied in Sections I–V is the
fact that meetings between two agents z and y are completely asymmet-
ric. Agents could upgrade their knowledge only through active search
while the other party to the meeting gains nothing and can well be
unaware that he is being met.
Depending on the specific application, this may not be the best as-

sumption. For example, Arrow ð1969, 33Þ argues that “the diffusion of
an innovation ½is� a process formally akin to the spread of an infectious
disease.” This description of meetings has a symmetric component: a
person can get “infected” even when he did not actively search for the
“disease.” The model can easily be extended to encompass the case in
16 See Becker and Tomes ð1979Þ, Benabou ð2002Þ, and Benhabib, Bisin, and Zhu ð2011Þ
for alternative theories of the relationship between inequality and the degree of in-
tragenerational mobility.
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which meetings are symmetric, as we now show. To capture symmetric
meetings, we assume that even if y initiated the meeting, z can learn
from y with probability b. Therefore, b parameterizes how strong pas-
sive spillovers are: b5 0 corresponds to our benchmark model; b5 1
is the case of perfectly symmetric meetings. Under this assumption, we
obtain the new law of motion

yf ðz; tÞ
yt

52f ðz; tÞE`

z

½aðsðz; tÞÞ1 baðsðy; tÞÞ� f ðy; tÞdy

1 f ðz; tÞEz

0

½aðsðytÞÞ1 baðsðz; tÞÞ� f ðy; tÞdy:

The main difference from the asymmetric law of motion ð5Þ is that here
the search intensities sðz, tÞ and sðy, tÞ enter in a symmetric fashion.
Agents at z now have opportunities to upgrade their productivities even
if another agent y initiated the meeting. These opportunities arrive at
rate aðsðz; tÞÞ1 baðsðy; tÞÞ rather than just aðsðz; tÞÞ. The Bellman equa-
tion now becomes

rV ðz; tÞ5 max
s∈½0;1�

�
ð12 sÞz 1 yV ðz; tÞ

yt

1 E`

z

½aðsÞ1 baðsðy; tÞÞ�½V ðy; tÞ2 V ðz; tÞ� f ðy; tÞdy
�
:

The corresponding equations along a BGP are found as above. Figures 11
and 12 report the optimal time allocation and productivity density for
various values of the parameter measuring the amount of passive spill-
overs, b. The more knowledge that can be acquired without actively
searching, the lower agents’ incentive to search. Since the economywide
growth rate is still an average of individual search intensities, this “free
riding” implies that the growth rate is actually lower the higher spill-
overs b are. At the same time, a higher b implies that the BGP distribution
places more mass on high-productivity types ðfig. 12Þ. Figures 13–15
compare the decentralized equilibrium just described to the allocation
chosen by a social planner when meetings are symmetric.
The time allocation chosen by the social planner now differs dra-

matically from that in the decentralized equilibrium. The planner makes
the most productive agents search full-time, the high opportunity cost
notwithstanding. He views them as even more valuable as “teachers,”
reaching out to meet less productive agents, increasing the probability
that less productive agents will learn from them. After such an unpro-
ductive agent becomes productive, he searches full-time for a while, but
as his relative productivity declines ðas in panel b of fig. 5Þ, he resumes



FIG. 11.—Optimal time allocation, jðxÞ, for various b values

FIG. 12.—Productivity densities for various b values



FIG. 13.—Optimal time allocation with symmetric meetings

FIG. 14.—Income Lorenz curves, symmetric meetings



FIG. 15.—Value Lorenz curves, symmetric meetings
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working. While period-by-period income is more unequally distributed
under the planner’s time ðfig. 14Þ, this is no longer true for the present
value of income. The Lorenz curves in figure 15 cross, meaning that in
parts of the distribution the decentralized equilibrium features too little
mobility relative to the planning problem.
VII. Conclusion

We have proposed and studied a new model of economic growth in
which individuals differ only in their current productivity, and the state
of the economy is fully described by the probability distribution of pro-
ductivities. The necessary conditions for equilibrium in the model take
the form of a Bellman equation describing individual decisions on the
way to allocate time between producing and searching for new ideas
and a law of motion for the economywide productivity distribution. With
the right kind of initial conditions, these forces can interact to generate
sustained growth. We show that among these possibilities is a balanced
growth path, characterized by a constant growth rate and a stable Lorenz
curve describing relative incomes. We provide an algorithm for calcu-
lating solutions along this path.
This solution is the outcome of a decentralized system in which each

agent acts in his own interest. But the new knowledge obtained by any
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one agent benefits others by enriching their intellectual environment
and raising the return to their own search activities. We then formulate
the problem of a hypothetical planner who can allocate people’s time
so as to internalize this external effect. We show how the decentralized
algorithm can be adapted to compute the planning solution as well and
compare it to the decentralized solution. We then consider tax struc-
tures that implement an optimal solution. Finally, we provide three ex-
amples of alternative learning technologies and show that the properties
of equilibrium allocations are quite sensitive to these variations.
All of this is carried out in a starkly simple context in order to reveal

the economic forces involved and the nature of their interactions and to
build up our experience with a novel and potentially useful mathemat-
ical structure. But we also believe that the external effects we study here
are centrally important to the understanding of economic growth and
would like to view our analysis as a step toward a realistically quantitative
picture of the dynamics of production and distribution.17
Appendix A

Proof of Proposition 1

A. Mathematical Preliminaries

The value function of the planner W ½ f ð� , tÞ� is a functional, that is, a map from a
space of functions to the real numbers, or, informally, a “function of a function.”
The planner chooses a function f ðz,tÞ to maximize this functional, which is the
prototypical problem in the calculus of variations. The concept of a functional
derivative is helpful in solving this problem.

Definition. The functional derivative of W with respect to f at point y is

dW ½ f �
df ðyÞ ; lim

ε→0

W ½ f ðzÞ1 εdðz 2 yÞ�2W ½ f ðzÞ�
ε

5
d
dε

W ½ f ðzÞ1 εdðz 2 yÞ�jε50;

ðA1Þ

where dð�Þ is the Dirac delta function.

The functional derivative is the natural generalization of the partial derivative.
Thus, consider the case in which z is discrete and takes on n possible values, z ∈
fz1, . . . , zng. The corresponding distribution function is then simply a vector
f ∈ Rn and the planner’s value function is an ordinary function of n variables,
W : Rn → R. The partial derivative in this case is defined as

yW ðfÞ
yfi

; lim
ε→0

W ð f1; : : : ; fi 1 ε; : : : ; fnÞ2W ð f1; : : : ; fi ; : : : ; fnÞ
ε

: ðA2Þ
17 In this regard, see also Choi ð2011Þ.
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If we denote by dðiÞ ∈ Rn the vector that has elements diðiÞ5 1 and dið jÞ5 0 for
all i ≠ j, then ðA2Þ can be written as

yW ðfÞ
yfi

; lim
ε→0

W ðf 1 εdðiÞÞ2W ðfÞ
ε

5
d
dε

W ðf 1 εdðiÞÞjε50:

It can be seen that the functional derivative in ðA1Þ is defined in the exact same
way.
B. Proof of Proposition 1

The problem ð23Þ–ð24Þ can be written recursively:

rW ½ f �5 max
s EH ðz; sÞf ðzÞdz 1 E dW ½ f �

df ðyÞ T ½ f ; s�ðyÞdy: ðA3Þ

The first-order condition is

05
d

dsðzÞ EH ðz; sÞf ðzÞdz 1 d

dsðzÞ E dW ½ f �
df ðyÞ T ½ f ; s�ðyÞdy

5
y
ys
H ðz; sðzÞÞf ðzÞ1 d

dsðzÞ E dW ½ f �
df ðyÞ T ½ f ; s�ðyÞdy:

ðA4Þ

This gives rise to some policy function s*ðzÞ5 S ½ f �ðzÞ so that ðA3Þ is

rW ½ f �5 EH ðz; s*ðzÞÞf ðzÞdz 1 E dW ½ f �
df ðyÞ T ½ f ; s*�ðyÞdy:

Differentiating with respect to fðzÞ gives

r
dW ½ f �
df ðzÞ 5H ðz; s*ðzÞÞ1 d

df ðzÞ E dW ½ f �
df ðyÞ T ½ f ; s*�ðyÞdy

5H ðz; s*ðzÞÞ1 E d2W ½ f �
df ðzÞdf ðyÞT ½ f ; s*�ðyÞdy

1 E dW ½ f �
df ðyÞ

d

df ðzÞT ½ f ; s*�ðyÞdy:

Here we have appealed to a version of the envelope theorem: differentiation
with respect to f involves differentiating with respect to s* 5 S ½ f � and then ap-
plying the chain rule. But the first-order condition ðA4Þ implies that the deriv-
ative with respect to s* is zero. To proceed, note that since d2W ½ f �=df ðzÞdf ðyÞ
is the generalization of a cross-partial derivative from the case in which z is dis-
crete to the case in which z is continuous, we have that

d2W ½ f �
df ðzÞdf ðyÞ 5

d2W ½ f �
df ðyÞdf ðzÞ :
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Defining ~wðz; f Þ5 dW ½ f �=df ðzÞ, we have

r~wðz; f Þ5H ðz; s*ðzÞÞ1 E d~wðz; f Þ
df ðyÞ T ½ f ; s*�ðyÞdy

1 E~wðy; f Þ d

df ðzÞT ½ f ; s*�ðyÞdy:
ðA5Þ

In turn, defining

wðz; tÞ5 ~wðz; f ð�; tÞÞ5 dW ½ f ð�; tÞ�
df ðz; tÞ ;

we have

ywðz; tÞ
yt

5 E d~wðz; f ð�; tÞÞ
df ðy; tÞ T ½ f ð�; tÞ; s*ð�; tÞ�ðyÞdy:

Therefore, evaluating ðA5Þ along the optimal trajectory fð� , tÞ and further using
that

Ewðy; tÞ d

df ðz; tÞT ½ f ð�; tÞ; s*ð�; tÞ�ðyÞdy

5
d

df ðz; tÞ Ewðy; tÞT ½ f ð�; tÞ; s*ð�; tÞ�ðyÞdy

implies ð26Þ. Similarly, evaluation of ðA4Þ along the optimal trajectory implies
ð27Þ. QED
C. Proof of Corollary 1

The problem ð21Þ–ð22Þ is the special case of ð23Þ–ð24Þ with H and T as in ð25Þ.
The transition dynamics can be written as

T ½ f ; s�ðzÞ5 f ðzÞEAðsðzÞ; sðyÞÞf ðyÞdy;
where

AðsðzÞ; sðyÞÞ5 2aðsðzÞÞ; y > z
aðsðyÞÞ; y < z:

�

Consider the last term in ð26Þ. We have that

EwðyÞT ½ f ; s�ðyÞdy 5 EEf ðyÞwðyÞAðsðyÞ; sðxÞÞf ðxÞdxdy: ðA6Þ

This is a quadratic form in f . Differentiating with respect to f gives
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d

df ðzÞ EwðyÞT ½ f ; s�ðyÞdy 5 Ef ðyÞwðyÞAðsðyÞ; sðzÞÞdy
1 wðzÞEAðsðzÞ; sðyÞÞf ðyÞdy

5 aðsðzÞÞE`

z

½wðyÞ2 wðzÞ� f ðyÞdy

2 Ez

0

aðsðyÞÞ½wðyÞ2 wðzÞ� f ðyÞdy:

Further, using H ðz; sÞ5 ð12 sÞz and evaluating at f ð�; tÞ and s*ð�; tÞ, ð26Þ is

rwðz; tÞ5 ½12 s*ðz; tÞ�z 1 ywðz; tÞ
yt

1 aðs*ðz; tÞÞE`

z

½wðy; tÞ2 wðz; tÞ� f ðy; tÞdy

2 Ez

0

aðs*ðy; tÞÞ½wðy; tÞ2 wðz; tÞ� f ðy; tÞdy:

ðA7Þ

Next consider the second term in ð27Þ: ∫wðyÞT ½ f ; s�ðyÞdy is still given by ðA6Þ.
Therefore,

d

dsðzÞ EwðyÞT ½ f ; s�ðyÞdy 5 d
dε EEf ðyÞwðyÞAðsðyÞ1 εdðy 2 zÞ;

sðxÞ1 εdðx 2 zÞÞf ðxÞdxdyjε50

5 EEf ðyÞwðyÞA1ðsðyÞ; sðxÞÞdðy 2 zÞf ðxÞdxdy

1 EEf ðyÞwðyÞA2ðsðyÞ; sðxÞÞdðx 2 zÞf ðxÞdxdy

5 Ef ðzÞwðzÞA1ðsðzÞ; sðxÞÞf ðxÞdx

1 Ef ðyÞwðyÞA2ðsðyÞ; sðzÞÞf ðzÞdy

5 a0ðsðzÞÞf ðzÞE`

z

½wðyÞ2 wðzÞ� f ðyÞdy;

where A1 and A2 denote the derivatives of AðsðyÞ, sðzÞÞ with respect to its first and
second arguments. Using this, ð27Þ can be written as
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z 5 a0ðs*ðz; tÞÞE`

z

½wðy; tÞ2 wðz; tÞ� f ðy; tÞdy: ðA8Þ

Finally, ðA7Þ and ðA8Þ can be summarized as ð28Þ. QED

Appendix B

Computation

A. Step 1: Solution to Bellman Equation—Decentralized Equilibrium

The BGP Bellman equation ð11Þ can be rewritten as

ðr2 gÞvðxÞ5 ½12 jðxÞ�x 2 gxv 0ðxÞ1 a½jðxÞ�SðxÞ;
where SðxÞ is defined as

SðxÞ; E`

x

½vðyÞ2 vðxÞ�fðyÞdy

5 E`

x

vðyÞfðyÞdy 2 vðxÞ½12 FðxÞ�

and FðxÞ5 ∫
x

0fðyÞdy, that is, the cdf corresponding to f. The optimal choice jðxÞ
is defined implicitly by the first-order condition ð16Þ. We further have a bound-
ary condition ð17Þ.

We solve these equations using a finite difference method that approximates
the function vðxÞ on a finite grid, x ∈ fx1, . . . , xIg. We use the notation vi 5 vðxiÞ,
i 5 1, . . . , I.18 We approximate the derivative of v using a backward difference

v0ðxiÞ ≈ vi 2 vi21

hi
;

where hi is the distance between grid points xi and xi21. The boundary condition
ð17Þ then implies

05 v 0ðx1Þ ≈ v1 2 v0
h1

⇒ v0 5 v1: ðB1Þ

Similarly, we approximate SðxÞ by

Si 5 SðxiÞ ≈ o
I

l5i

vlfl hl 2 við12 FiÞ: ðB2Þ

Further, denote by ji 5 jðxiÞ and ai 5 a½jðxiÞ� the optimal time allocation and
search intensity.

We proceed in an iterative fashion: we guess v0
i and then, for j 5 0, 1, 2, . . . ,

form v j11
i as follows. Form S j

i as in ðB2Þ, and obtain j
j
i and a

j
i from the first-order

condition ð16Þ. Write the Bellman equation as
18 A useful reference is Candler ð1999Þ.
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ðr2 gÞv j11
i 5 ð12 j j

i Þxi 2 gxi
v j11
i 2 v j11

i21

hi

1 a j
i

�
o
I

l5i

v j11
l fl hl 2 v j11

i ð12 FiÞ
�
; i 5 1; : : : ; I :

ðB3Þ

Given v j and hence j j and a j , and using the boundary condition v j11
0 5 v j11

1 ,
ðB3Þ is a system of I equations in I unknowns, ðv j11

1 ; : : : ; v j11
I Þ, that can easily be

solved for the updated value function, v j11. Using matrix notation

Aj v j11 5 b j ; b j
i 5 ð12 jiÞxi ; Aj 5 B j 2 C j ;

where19

B j 5

r2 g1 a
j
1 ð12 F1Þ 0 0 � � � 0

2
gx2

h2
r2 g1 a j

2ð12 F2Þ 0 � � � 0

1
gx2

h2

⋮ ⋮ ��� ��� ⋮

0 � � � � � � 2
gxI
hI

r2 g1 a j
I ð12 FI Þ

1
gxI
hI

2
666666666666666664

3
777777777777777775

;

Cj 5

a1f1h1 a1f2h2 a1f3h3 � � � a1fI hI

0 a2f2h2 a2f3h3 � � � a2fI hI

⋮ 0 ��� ��� ⋮

⋮ ⋮ ��� ��� aI21fI hI

0 0 � � � 0 aIfI hI

2
666666664

3
777777775
:

Solve the system of equations and iterate until v j11 is close to v j.
B. Step 1: Solution to the Bellman Equation—Planning Problem

The Bellman equation for the planning problem ð30Þ can be written as

ðr2 gÞqðxÞ1 q0ðxÞgx 5 ½12 jðxÞ�x 1 a½jðxÞ�SðxÞ1 Q ðxÞ;
19 This follows from rearranging the Bellman equation as

�
r2 g1 a j

i ð12 FiÞ1 gxi
hi

�
v j11
i 2

gxi
hi

v j11
i21 2 a j

i o
I

l5i

hlfl v
j11
l 5 ð12 j j

i Þxi

and then rewriting it in matrix notation.
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where

SðxÞ; E`

x

½qðyÞ2 qðxÞ�fðyÞdy

5 E`

x

qðyÞfðyÞdy 2 qðxÞ½12 FðxÞ�;

Q ðxÞ; 2Ex

0

a½jðyÞ�½qðyÞ2 qðxÞ�fðyÞdy

5 2Ex

0

a½jðyÞ�qðyÞfðyÞdy 1 qðxÞwðxÞ;

wðxÞ; Ex

0

a½jðyÞ�fðyÞdy;

and the optimal choice jðxÞ is defined implicitly by the first-order condition

x ≥ a0½jðxÞ�SðxÞ: ðB4Þ

We use the same finite difference approximation as above, that is, approximate
qðxÞ on a finite grid x ∈ fx1, . . . , xIg. We again approximate the functions SðxÞ,
jðxÞ, and a½jðxÞ� as in ðB2Þ, and the functions QðxÞ and wðxÞ as

Qi 5 Q ðxiÞ ≈ 2o
i

l51

alqlfl hl 1 qiwi ;

wi 5 wðxiÞ ≈ o
i

l51

alfl hl :

ðB5Þ

We again impose the boundary condition

05 q0ðx1Þ ≈ q1 2 q0

h1
⇒ q1 5 q0:

We again proceed in an iterative fashion: we guess q0
i and then, for j5 0, 1, 2, . . . ,

form q
j11
i as follows. Form S j

i and Q j
i as in ðB2Þ and ðB5Þ, and obtain s j

i and a
j
i

from the first-order condition ðB4Þ. Write the Bellman equation as

ðr2 gÞq j11
i 5 ð12 j j

i Þxi 2 gxi
q

j11
i 2 q

j11
i21

hi

1 a j
i

�
o
I

l5i

q j11
l fl hl 2 q j11

i ð12 FiÞ
�

2 o
i

l51

a j
l q

j11
l fl hl 1 q j11

i w j
i :

ðB6Þ
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Given q j and hence a j and j j , this is again a system of I equations in I unknowns
ðq j11

1 ; : : : ; q j11
I Þ that we can solve for the value function at the next iteration

q j11. We again write ðB6Þ in matrix notation as

Ajq j11 5 b j ; b j
i 5 ð12 jiÞxi ; A j 5 B j 2 C j 1 D j ;

where20

B j 5 ðr2 gÞI

1

a
j
1ð12 F1Þ2 w j

1 0 0 � � � 0

2
gx2

h2

a j
2ð12 F2Þ2 w j

2 1
gx2

h 2

0 � � � 0

⋮ ⋮ ��� ��� ⋮

0 � � � � � � 2
gxI
hI

a j
I ð12 FI Þ2 w j

I 1
gxI
hI

2
6666664

3
7777775
;

Cj 5

a1f1h1 a1f2h2 a1f3h3 � � � a1fI hI

0 a2f2h2 a2f3h3 � � � a2fI hI

⋮ 0 ��� ��� ⋮
⋮ ⋮ ��� ��� aI21fI hI

0 0 � � � 0 aIfI hI

2
66664

3
77775;

D j 5

a1f1h1 0 � � � � � � 0
a1f1h1 a2f2h2 0 � � � 0
a1f1h1 a2f2h2 a3f3h3 ��� ⋮

⋮ ⋮ ��� ��� 0
a1f1h1 a2f2h2 � � � aI21fI21hI21 aIfI hI

2
66664

3
77775:

Solve the system of equations and iterate until q j11 is close to q j .
C. Step 2: Distribution Function

This section briefly describes the finite difference method used to compute the
functions f j

n11ðxÞ, F j
n11ðxÞ, and w j

n11ðxÞ in step 2a of the algorithm described in
Section III. For notational simplicity, we suppress the dependence of these
20 This follows from rearranging the Bellman equation as

�
r2 g1 a j

i ð12 FiÞ2 w j
i 1

gxi
hi

�
q j11

i 2
gxi
hi

q
j11
i21

2 a j
i o

I

l5i

flq
j11
l hl 1 o

i

l51

a j
l q

j11
l fl hl 5 ð12 j j

i Þxi

and then rewriting it in matrix notation.
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functions on n ðthe main iterationÞ. We approximate these functions on a finite
grid ðx1, . . . , xIÞ of I values. We approximate the derivatives in ð18Þ–ð20Þ by

ðf jÞ0ðxiÞ ≈ f
j
i 2 f

j
i21

hi
;

ðF jÞ0ðxiÞ ≈ F j
i 2 F

j
i21

hi
;

ðw jÞ0ðxiÞ ≈ w j
i 2 w j

i21

hi

;

so the finite difference approximation to ð18Þ–ð19Þ is

2 f j
i g2 g

f
j
i 2 f

j
i21

hi
xi 5 f j

i w
j
i 2 aðjiÞf j

i ð12 F j
i Þ;

w j
i 2 w j

i21

hi

5 aðjiÞf j
i ;

F j
i 2 F

j
i21

hi

5 f j
i ;

with boundary conditions

f j
I 5

k
v
x2ð1=vÞ21
I ; F j

I 5 12 kx21=v
I ; w j

I 5
g j
n

v
:

This is a simple terminal value problem, which we solve by running the system
backward from xI.

Appendix C

Derivations for Section VI.A: Exogenous Knowledge Shocks

Lemma 1. The solution to ð33Þ satisfies
1

F ðz; tÞ 5 efa1b½12GðzÞ�gt
�

1
F ðz; 0Þ 2

a

a1 b½12 GðzÞ�
�

1
a

a1 b½12 GðzÞ� :
ðC1Þ

Proof. Let wðtÞ 5 Fðz, tÞ and u 5 1 2 GðzÞ. Then ð33Þ is
ywðtÞ
yt

5 2awðtÞ½12 wðtÞ�2 buwðtÞ:

Let vðtÞ5 1=wðtÞ. Then
yvðtÞ
yt

5 2
1
w2

yw
yt

5
1

wðtÞ2 fawðtÞ½12 wðtÞ�1 buwðtÞg

5 vðtÞfa½12 wðtÞ�1 bug5 a½vðtÞ2 1�1 buvðtÞ
5 ða1 buÞvðtÞ2 a:
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The solution is21

vðtÞ5 e ða1buÞt
�
v0 2

a

a1 bu

	
1

a

a1 bu
:

Using the definitions of vðtÞ, wðtÞ, and u, we obtain ðC1Þ. QED
In Section VI.A, we ask whether the distribution in ðC1Þ converges to a BGP.

The answer to this question depends on the properties of the initial productivity
distribution, Fðz, 0Þ, and the external source distribution, GðzÞ. There are four
cases:

i. Neither Fðz, 0Þ nor GðzÞ has a Pareto tail; that is, for all y > 0,

lim
z→`

12 F ðz; 0Þ
z21=y

5 lim
z→`

12 GðzÞ
z21=y

5 0:

ii. The distribution Fðz, 0Þ has a fatter tail than GðzÞ; that is, there exist v > 0,
k > 0 such that

lim
z→`

12 F ðz; 0Þ
z21=v

5 k but lim
z→`

12 GðzÞ
z21=v

5 0:

iii. The distribution GðzÞ has a fatter tail than Fðz, 0Þ; that is, there exist y > 0,
m > 0 such that

lim
z→`

12 GðzÞ
z21=y

5 m but lim
z→`

12 F ðz; 0Þ
z21=y

5 0:

iv. Both Fðz, 0Þ and GðzÞ have equally fat tails; that is, there exist v > 0, k > 0,
m > 0 such that

lim
z→`

12 F ðz; 0Þ
z21=v

5 k and lim
z→`

12 GðzÞ
z21=v

5 m:

Proposition 2. The asymptotic behavior of the process described by ð33Þ
depends on the properties of the initial productivity distribution Fðz, 0Þ and the
external source of ideas, GðzÞ. In particular:

i. There is no growth in the long run and

lim
t→`

F ðxegt; tÞ5 1 ðC2Þ

for all x > 0 and g > 0. That is, the limiting distribution is degenerate and is
concentrated at x 5 0.
21 Let us verify the solution:

yvðtÞ
yt

5 ða1 buÞe ða1buÞt
�
v0 2

a

a1 bu

	

5 ða1 buÞ
�
vðtÞ2 a

a1 bu

�

5 ða1 buÞvðtÞ2 a:
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ii. The process converges to a BGP with growth rate g5 av and the as-
ymptotic distribution satisfies

lim
t→`

F ðxegt; tÞ5 1
11 kx21=v

: ðC3Þ

iii. The process converges to a BGP with growth rate g5 ay and the as-
ymptotic distribution satisfies

lim
t→`

F ðxegt; tÞ5 1
11 ðb=aÞmx21=y

: ðC4Þ

iv. The process converges to a BGP with growth rate g5 av and the as-
ymptotic distribution satisfies

lim
t→`

F ðxegt; tÞ5 1
11 ½k 1 ðb=aÞm�x21=v

: ðC5Þ

Proof. Consider the limit limt→` F ðxegt; tÞ for some positive g that is yet to be
determined. We have

lim
t→`

1
F ðxegt; tÞ 5 lim

t→`
efa1b½12GðxexpðgtÞÞ�gt

�
1

F ðxegt ; 0Þ 2
a

a1 b½12 GðxegtÞ�
�

1
a

a1 b½12 GðxegtÞ� :

Using that z 5 xegt and hence t 5 logðz=xÞ=g, we have that

efa1b½12GðxexpðgtÞÞ�gt 5

�
z
x

	a=g1ðb=gÞ½12GðzÞ�

when z 5 xegt . Therefore,

lim
t→`

1
F ðxegt; tÞ 5 lim

z→`

�
z
x

	a=g1ðb=gÞ½12GðzÞ�� 1
F ðz; 0Þ 2

a

a1 b½12 GðzÞ�
�

1
a

a1 b½12 GðzÞ�

5 lim
z→`

�
z
x

	a=g� 1
F ðz; 0Þ 2

a

a1 b½12 GðzÞ�
�
1 1

5 lim
z→`

�
z
x

	a=g
a½12 F ðz; 0Þ�1 b½12 GðzÞ�
F ðz; 0Þfa1 b½12 GðzÞ�g 1 1

5 lim
z→`

�
z
x

	a=g

f12 F ðz; 0Þ1 ðb=aÞ½12 GðzÞ�g1 1

5 x2a=g lim
z→`

12 F ðz; 0Þ1 ðb=aÞ½12 GðzÞ�
z2a=g

1 1:

ðC6Þ

We can now go through cases i–iv to further characterize this limit:
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i. For any g > 0,

lim
z→`

12 F ðz; 0Þ1 ðb=aÞ½12 GðzÞ�
z2a=g

5 0:

Therefore, the growth rate is zero and from the last line in ðC6Þ, we
obtain ðC2Þ.

ii. Let g5 av. Then

lim
z→`

12 F ðz; 0Þ1 ðb=aÞ½12 GðzÞ�
z2a=g

5 k:

Therefore, the growth rate is g5 av and from the last line in ðC6Þ, we
obtain ðC3Þ.

iii. Let g5 ay. Then

lim
z→`

12 F ðz; 0Þ1 ðb=aÞ½12 GðzÞ�
z2a=g

5 ðb=aÞm:

Therefore, the growth rate is g5 ay and from the last line in ðC6Þ, we
obtain ðC4Þ.

iv. Let g5 av. Then

lim
z→`

12 F ðz; 0Þ1 ðb=aÞ½12 GðzÞ�
z2a=g

5 k 1 ðb=aÞm:

Therefore, the growth rate is g5 av and from the last line in ðC6Þ, we
obtain ðC5Þ.
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