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ABSTRACT 

 

The nervous system underlies sensation and behavioral response, linking perception to 

action across diverse animal systems. Within a given species, a multitude of nested recurrent 

loops transform incoming sensory input into ecologically appropriate motor patterns. A key 

structure of interest is the mammalian neocortex, because neocortex is intimately associated with 

sophisticated, flexible response selection. Mammalian neocortex is characterized by stereotyped 

anatomical organization, suggesting the possibility of generic algorithms for processing 

information across sensory modalities and species. Ultimately, understanding information 

processing in the neocortex is paramount for progress in human technology, medicine, and 

philosophy. 

Connectivity is the substrate for spiking activity in neocortex. The relationship between 

connectivity and emergent activity is sometimes assumed to be straightforward, but in fact, given 

the state of current knowledge, knowing connectivity is not sufficient for predicting coordinated 

population responses. The complexity and diversity of synaptic mechanisms defy simple 

interpretations. 

Therefore, it is crucial to map population activity itself, and begin to delineate the reliable 

organizing principles that characterize the flow of activity through neocortical populations. 

Activity mapping is the key to eventual progress in understanding computation itself. In this 

thesis, I investigate whether activity mapping is practical under typical experimental constraints, 

and explore what activity mapping can tell us about the organization of neuronal firing. Building 

on those results, I then discover a surprising but intuitive relationship between a distributed 

connectivity scheme and higher-order correlations in population dynamics.  
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CHAPTER 1 

ON THE COLLECTIVE SYNAPTIC DYNAMICS OF NEOCORTICAL POPULATIONS 

 

INTRODUCTION 

In its entirety, the nervous system needs to generate bodily responses and movement on 

the basis of sensory inputs and internal state. The brain is an interconnected system characterized 

by complexity at multiple scales. Its circuitry processes information via nested, recurrent networks, 

with a given subnetwork containing a multiplicity of input and output neurons routing ongoing 

activity. Computation is presumed to be implemented through relationships between input and 

output activity. Therefore, understanding how activity propagates through local network is a 

crucial prerequisite for progress in understanding neocortical information processing. 

Neurons do not transmit activity faithfully like telephone relays. Individual synaptic 

connections are weak, and collective responses are difficult to predict even when connection 

patterns are known a priori. But populations of neurons do respond with surprising regularities. In 

fact, responses in local neocortex are selective and organized even in the absence of input activity. 

Activity in isolated tissue is surprisingly similar to evoked activity in vitro1 and in vivo2. These 

population firing patterns are a crucial area of study, because they are the substrate through which 

inputs shape output firing. Local neocortical populations are an important bridge between cellular- 

and systems-level function. 

 

 

                                                           
1 MacLean et al., “Internal Dynamics Determine the Cortical Response to Thalamic Stimulation.” 
2 Luczak, Barthó, and Harris, “Spontaneous Events Outline the Realm of Possible Sensory Responses in 

Neocortical Populations.” 
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FOUNDATIONAL INVESTIGATIONS OF POPULATION RESPONSES 

In 1972, Phillip W. Anderson laid the foundation for complex-systems science when he 

described emergent properties for the first time in a publication titled More is Different. At the 

time, Anderson was employed at Bell Laboratories and Cambridge University. He had already 

revolutionized condensed matter physics in a handful of ways, but he had yet to be awarded his 

Nobel prize. He argued that large systems of interacting elements can respond very differently as 

a collective than would the constituent elements in isolation. Out of spontaneous interactions, 

through broken symmetry, quantitative differences can turn into qualitative differences. The 

discovery of emergent phenomena needed “no new knowledge of fundamental laws”. In fact, they 

“would have been extremely difficult to derive synthetically from those laws” governing lower-

level components3. 

Collections of neurons can interact in ways that are difficult to predict from observations 

of single cells or connections. For sixty-five years, since Donald Hebb published his theory of cell 

assemblies4, evidence has accumulated as to whether and how selective groups of neurons 

cooperate to process information. Some of the most important work in this area to date was 

undertaken by a small number of under-appreciated investigators, beginning their careers at the 

time Anderson published More is Different. 

In the late 1960s, George Gerstein and Donald Perkel had been investigating pairwise 

timing regularities in multi-unit recordings5. In mapping pairwise cross-correlations over many 

stimulus presentations, Gerstein and Perkel noticed the presence of reliable lagged timing 

relationships at multiple time-scales. They were attempting to link those timing patterns to 

                                                           
3 Anderson, “More Is Different.” 
4 Hebb, The Organization of Behavior. 
5 Gerstein and Perkel, “Simultaneously Recorded Trains of Action Potentials.” 
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underlying connection patterns6. Using simulations and intuition, they argued that some of these 

timing relationships were informative about underlying connectivity, whereas others reflected 

statistical features of the stimulus itself. Of the connectivity-driven correlation structure, Gerstein 

and Perkel argued that some features were likely to reflect monosynaptic excitatory connections, 

while others were more likely to arise from shared common input and polysynaptic relationships. 

Contemporarily, Bruce Knight worked to interpret single-neuron recordings in the context of 

encoding within larger populations7, working to extend rate-code frameworks in light of new 

understanding about population responses. Ultimately, these early efforts to map network 

responses were limited by the recording technology available, which could not provide high-

density sampling of interconnected populations. Too prescient for popular success at the time, their 

work deserves wider recognition in the neuroscience community. 

These pioneers of population neuroscience laid the foundation for our contemporary 

understanding, including this thesis work. Technological progress is opening new avenues to 

expand on the research programs laid out decades ago, which sound utterly modern today: 

 

The basic problems requiring investigation are those of identifying…functional 

groups [of neurons] and of characterizing their activity in terms of information 

processing or production of behavior…Because functional grouping implies some 

degree of temporal organization in the activities of the constituent neurons, it 

follows that experimental evidence of the existence of such groups may be 

furnished by quantitative characterizations of the mutual temporal relationships in 

the electrical activity of the involved neurons. The further understanding of the 

operating principles of neuronal groups, once identified, is crucially dependent on 

detailed knowledge of the underlying circuitry. 

                                                           
6 Perkel, Gerstein, and Moore, “Neuronal Spike Trains and Stochastic Point Processes”; Gerstein and 

Perkel, “Mutual Temporal Relationships among Neuronal Spike Trains”; Perkel et al., “Nerve-Impulse 

Patterns.” 
7 Knight, “Dynamics of Encoding in a Population of Neurons”; Knight, “The Relationship between the 

Firing Rate of a Single Neuron and the Level of Activity in a Population of Neurons Experimental 

Evidence for Resonant Enhancement in the Population Response.” 
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Detailed description of functional connectivity is only partially furnished by 

classical neuroanatomical techniques, or by a combination of electrophysiological 

signal tracing and such newer methods as fluorescent dye injection and scanning 

electron microscopy. The approach described in this paper is intended as an adjunct 

to these more familiar methods; it can yield functional “circuit diagrams” of the 

connections among the observed neorons…These techniques, statistical in nature, 

must be imbedded in an appropriate experimental design in order to allow 

inferences of biological significance to be drawn8. 

 

To complement the data that was available, these investigations combined network 

simulations with experimental data, a practice that bridged traditional disciplinary frameworks. 

Gunter Palm theorized about Hebbian assemblies9, yet also supervised an oft-cited experiment to 

estimate the number of neurons and connections in the human brain10. While designing 

simulations, the Palm laboratory had realized that elementary data on connections per cubic 

millimeter were not available—in this way simulations helped interpret experiments, and 

experiments improved the realism of simulations, in an iterative process of mutual benefit that 

continues to the present day. 

Throughout the 1980s and 90s, these investigators continued to make progress in 

understanding the structure of population responses. Simulations continued to play a key role in 

interpreting their data11. With Ad Aertson, Gerstein worked to improve methods for inferring 

underlying connectivity from simultaneous recordings12. In addition to pairwise timing 

relationships, they discovered the presence of higher-order response patterns in their data13, 

                                                           
8 Gerstein and Perkel, “Mutual Temporal Relationships among Neuronal Spike Trains.” 
9 Palm, “On the Storage Capacity of an Associative Memory with Randomly Distributed Storage 

Elements”; Palm, “From Neural Dynamics to Cell Assemblies.” 
10 Schüz and Palm, “Density of Neurons and Synapses in the Cerebral Cortex of the Mouse.” 
11 Aertsen, Erb, and Palm, “Dynamics of Functional Coupling in the Cerebral Cortex.” 
12 Aertsen and Gerstein, “Evaluation of Neuronal Connectivity.” 
13 Gerstein and Aertsen, “Representation of Cooperative Firing Activity among Simultaneously Recorded 

Neurons.” 
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meaning that neuronal interactions could not be fully understood at the pairwise levels, but also 

entailed coordinated timing across distributed synaptic connections. Gerstein, Aertson and Palm 

noticed that patterns of effective connectivity were dynamic, progressively changing after stimulus 

onset14, and coordinated multi-neuron responses were found to contain patterns of unexpected 

synchrony15. 

 

SPIKING DYNAMICS IN ACTIVE NETWORKS 

Networks of neocortical neurons exhibit irregular dynamics16, with high variability in inter-

spike intervals compared to their mean17. Although it can be useful to understand the consequences 

of random input timing18, the irregular firing observed in vivo is difficult to achieve with random 

inputs; rather, irregular firing is consistent with temporally coordinated presynaptic inputs19. 

Intracellular membrane recordings in vivo reveal non-stationary frequency content at timescales 

relevant for synaptic integration20. Because timing impacts postsynaptic integration (e.g. 

determining whether output neurons efficaciously recruit their targets), it is important to 

                                                           
14 Aertsen et al., “Dynamics of Neuronal Firing Correlation”; Aertsen and Gerstein, “Dynamic Aspects of 

Neuronal Cooperativity.” 
15 Lindsey et al., “Repeated Patterns of Distributed Synchrony in Neuronal Assemblies.” 
16 Brunel, “Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons”; 

Destexhe, Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo.” 
17 Calvin and Stevens, “Synaptic Noise and Other Sources of Randomness in Motoneuron Interspike 

Intervals”; Mainen and Sejnowski, “Reliability of Spike Timing in Neocortical Neurons”; Reich et al., 

“Response Variability and Timing Precision of Neuronal Spike Trains in Vivo”; Stein, Gossen, and Jones, 

“Neuronal Variability.” 
18 Fourcaud-Trocmé et al., “How Spike Generation Mechanisms Determine the Neuronal Response to 

Fluctuating Inputs”; Burkitt, “A Review of the Integrate-and-Fire Neuron Model”; Vilela and Lindner, 

“Comparative Study of Different Integrate-and-Fire Neurons.” 
19 Softky and Koch, “The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal 

Integration of Random EPSPs”; Stevens and Zador, “Input Synchrony and the Irregular Firing of Cortical 

Neurons.” 
20 Azouz and Gray, “Cellular Mechanisms Contributing to Response Variability of Cortical Neurons in 

Vivo.” 
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characterize these non-random dynamical features on a single-trial basis and link them to their 

underlying synaptic mechanisms. 

During ongoing activity, neurons are known to operate in a state of elevated conductance, 

with a depolarized average membrane potential21. Input currents from inhibitory and excitatory 

neurons are related by a stable ratio in their magnitudes22. Approximate balance in input 

contributions from excitatory and inhibitory neurons supports criticality23, linked to 

responsiveness  and dynamic range24. Balanced inputs with non-stationary magnitudes can support 

diverse correlation timescales25, consistent with correlation dynamics observed in vivo. 

Fluctuations caused by synaptic input occur at multiple timescales, with synchronous excitatory 

bombardment especially efficacious generating an action potential26. Synchronous excitation is 

particularly effective when it occurs in a brief window preceding onset of inhibition27. 

Neurons do not fire independently; they influence one another causally and exhibit 

correlated timing. Of course, high average correlations have the potential to limit computation by 

reducing the entropy of cortical dynamics28. Pathological levels of correlation manifest as epilepsy 

and debilitating conditions of hyper-excitability. At the other extreme, completely uncorrelated 

                                                           
21 Destexhe et al., “Fluctuating Synaptic Conductances Recreate in Vivo-like Activity in Neocortical 

Neurons.” 
22 Shu, Hasenstaub, and McCormick, “Turning on and off Recurrent Balanced Cortical Activity”; Haider 

et al., “Neocortical Network Activity in Vivo Is Generated through a Dynamic Balance of Excitation and 

Inhibition”; Denève and Machens, “Efficient Codes and Balanced Networks.” 
23 Poil et al., “Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced 

Excitation/Inhibition in Neuronal Networks.” 
24 Shew et al., “Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at 

Criticality.” 
25 Litwin-Kumar et al., “Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains.” 
26 Azouz and Gray, “Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical 

Neurons In Vivo.” 
27 Wehr and Zador, “Balanced Inhibition Underlies Tuning and Sharpens Spike Timing in Auditory 

Cortex.” 
28 Montani et al., “The Role of Correlations in Direction and Contrast Coding in the Primary Visual 

Cortex.” 
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population responses (for all timescales of measurement) would imply a total absence of causal 

synaptic interactions. Information processing as a cortical system would be impossible in a 

population of completely independent neurons. Though sparse, pairwise and higher-order 

correlations are necessary hallmarks of sparse, causal synaptic interactions—and thereby, 

information processing. 

The neuroscience community is seeing resurging interest in multi-neuron correlations29. 

Efforts have been made to distinguish correlations induced by stimulus-features from correlations 

induced by internal variability30, following a theme laid out by Gerstein and Perkel31. The issue of 

relative orientation between these two sources of correlation is central to interpreting single neuron 

firing rates, with respect to their impact on an ideal decoder32. 

Among possible approaches to quantifying multi-neuron timing relationships, 

simultaneous spike-count correlations have received the most attention (e.g. 33). In virtuoso work 

that combined in vivo imaging with in vitro whole-cell recordings, simultaneous correlations were 

verified to be revealing of likely underlying connectivity34. This was the central argument made 

by George Gerstein and Donald Perkel in 1972.  

                                                           
29 Josić et al., “Stimulus-Dependent Correlations and Population Codes”; Renart et al., “The 

Asynchronous State in Cortical Circuits”; Ecker et al., “Decorrelated Neuronal Firing in Cortical 

Microcircuits”; Middleton et al., “Neural Correlation Is Stimulus Modulated by Feedforward Inhibitory 

Circuitry”; Cohen and Kohn, “Measuring and Interpreting Neuronal Correlations.” 
30 Averbeck, Latham, and Pouget, “Neural Correlations, Population Coding and Computation”; 

Rothschild, Nelken, and Mizrahi, “Functional Organization and Population Dynamics in the Mouse 

Primary Auditory Cortex.” 
31 Gerstein and Perkel, “Simultaneously Recorded Trains of Action Potentials.” 
32 Sederberg, Palmer, and MacLean, “Decoding Thalamic Afferent Input Using Microcircuit Spiking 

Activity”; Luczak, Barthó, and Harris, “Spontaneous Events Outline the Realm of Possible Sensory 

Responses in Neocortical Populations.” 
33 de la Rocha et al., “Correlation between Neural Spike Trains Increases with Firing Rate.” 
34 Ko et al., “Functional Specificity of Local Synaptic Connections in Neocortical Networks.” 
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Even with high-quality empirical evidence, the modern neuroscience community remains 

cautious of arguments that patterns of synaptic connectivity impact population dynamics. Caution 

is appropriate, because there are many details left to understand about relationships between 

connectivity and dynamics. But the basic premise that dynamics arise from the propagation of 

activity through the synaptic network should not be seen as speculative35. This is one reason 

Gerstein et al. deserve to be more widely read. 

 

CONNECTION RULES IN LOCAL SYNAPTIC NETWORKS 

In contrast to our lack of progress in understanding typical patterns of activity, tremendous 

progress has been made understanding connection rules at the scale of area-specific cortical 

maps36. Here, as an example of progress, I discuss some recent consensus findings based on 

investigation of primary motor cortex (M1), which has become an important model system for 

characterizing cortical connectivity37. 

Based largely on work from the laboratory of Gordon Shepherd Jr, a classification scheme 

linking cell-type identity with projection targets is emerging. These findings have emphasized 

three major excitatory subclasses: Intertelencephalic neurons (IT) project to ipsi- and contralateral 

cortical targets. Pyramidal tract neurons (PT) send projections to subcortical targets and feature 

branching axons to thalamic nuclei, possibly as efference copies38. These PT neurons participate 

in higher-order thalamic loops and are characterized by Class 1 glutamatergic connections and 

                                                           
35 Salinas and Sejnowski, “Correlated Neuronal Activity and the Flow of Neural Information”; 

Ohiorhenuan et al., “Sparse Coding and High-Order Correlations in Fine-Scale Cortical Networks.” 
36 Lefort et al., “The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary 

Somatosensory Cortex.” 
37 Harris and Shepherd, “The Neocortical Circuit.” 
38 Guillery and Sherman, “Branched Thalamic Afferents.” 
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tufted dendrites. Corticothalamic neurons (CT) reside in layer 6 and are associated with gain 

control and gating. CT neurons are perhaps clumsily named, since they are merely a subclass of 

all thalamus-projecting cells: the CT population does not include those L5B neurons with 

branching axons. In motor cortex, CT neurons receive a major projection from frontal areas, which 

tempts speculation about volitional modulation of gain. 

  M1 receives thalamic input from posterior thalamus nuclei (PO) including POm and 

VA/VL, sources of predominantly-sensory versus predominantly-motor related input activity. 

Axons from PO predominantly target L2/3 and L5a, while axons from VA/VL additionally target 

L5B and L639. Interestingly, corticothalamic neurons in L6 project to VL, but they do not seem to 

target the VL cells with direct projections to M1. Similarly, those VL projections do not seem to 

directly target corticothalamic neurons in L640. Branching axons from M1 pyramidal tract outputs 

target PO. 

Important progress has also been made in understanding connectivity at the microcircuit 

level. The self-similar laminar organization of neocortex suggests the presence of repeated 

modular information processing circuits41. Indeed, regularities of connection direction have been 

found across layers, with L4 -> L2/3 -> L5 connections suggesting orderly flows of activity. 

Anatomical columns have been proposed as the long-sought generic cortical microcircuit42, but it 

is still unclear whether these proposals imply that columnar connectivity is the appropriate 

fundamental-unit for understanding cortical activity. For example, activity propagates without 

                                                           
39 Hooks et al., “Organization of Cortical and Thalamic Input to Pyramidal Neurons in Mouse Motor 

Cortex.” 
40 Yamawaki and Shepherd, “Synaptic Circuit Organization of Motor Corticothalamic Neurons.” 
41 Mountcastle, “Modality and Topographic Properties of Single Neurons of Cat’s Somatic Sensory 

Cortex.” 
42 Douglas and Martin, “Neuronal Circuits of the Neocortex”; Bastos et al., “Canonical Microcircuits for 

Predictive Coding.” 
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regard for columnar orientation in dissected cortical tissue43, single-whisker stimulation evokes 

distributed activity across multiple differently tuned barrel columns44, and tuning properties can 

be mixed between near neighbors45. Columnar architecture may reflect developmental constraints 

and cell lineage rules for connectivity46 without necessarily being a fundamental constituent of 

cortical activity47.   

A major breakthrough in understanding synaptic microcircuits resulted from studies 

performing multiple whole-cell recordings to test the presence and strength of synaptic 

connections between random pairs48. For L5 pyramidal neurons in juvenile rats, connection 

probabilities were as high as 0.2 for close neighbors, falling to 0.1 at radii of 0.15 mm, and 0.05 at 

radii of 0.3 mm49. Bidirectional connections were more abundant than expected in random 

networks, as were clustered neighborhoods50. However, the consequences of these connection 

patterns for active networks are not well understood. 

Even though synaptic connections are relatively dense in local populations, population 

responses are sparse and selective51. It is difficult to predict emergent activity patterns even when 

synaptic connectivity is known. Synaptic connection patterns without the context of recent activity 

can elicit misleading predictions about the flow of activity, for example by leading to false 

                                                           
43 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse 

Primary Auditory and Somatosensory Microcircuitry.” 
44 Ferezou, Bolea, and Petersen, “Visualizing the Cortical Representation of Whisker Touch.” 
45 Kaschube, “Neural Maps versus Salt-and-Pepper Organization in Visual Cortex”; Bonin et al., “Local 

Diversity and Fine-Scale Organization of Receptive Fields in Mouse Visual Cortex.” 
46 Li et al., “Clonally Related Visual Cortical Neurons Show Similar Stimulus Feature Selectivity.” 
47 Horton and Adams, “The Cortical Column.” 
48 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits”; Perin, 

Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups.” 
49 Perin, Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups.” 
50 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
51 Barth and Poulet, “Experimental Evidence for Sparse Firing in the Neocortex.” 
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expectations of disinhibition52. Ongoing activity plays a crucial role in shaping firing in the 

synaptic network. 

In Chapter 3, I describe a clustering motif underlying reliably coordinated recruitment. 

Activity preferentially occurs at synaptic locations characterized by this feature in random models, 

and recruitment maps based on experimental recordings activity are enriched in the same directed 

clustering motif. These results succeed in mapping a synaptic connection motif onto its likely 

consequences for propagating activity. This connection motif tends to synchronize its inputs, so 

that their coordinated effect preferentially elicits postsynaptic action potentials. These results 

represent progress in predicting propagating activity on the basis of underlying connection 

patterns. 

 

STUDYING CONNECTIVITY AND DYNAMICS TOGETHER 

Neocortical activity is patterned by local connectivity 

 Connection probabilities are highest among near neighbors in the neocortex. It is likely that 

the numerous local connections around a given neuron do more than merely relay afferent activity 

to output neurons. Dissociated model systems have proven to be a fruitful method for studying 

local connections, encompassing neighbor interactions while facilitating the kind of experimental 

access that is impossible or much more difficult to achieve in vivo. These preparations divorce 

local connectivity from non-local influences including feedback modulation from distant cortical 

areas, and they enable complete experimental control over the neuromodulatory milieu. The 

                                                           
52 Fisher et al., “A Modeling Framework for Deriving the Structural and Functional Architecture of a 

Short-Term Memory Microcircuit.” 
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dynamics arising in these simplified systems are informative of in vivo function, because they 

illuminate structured responses arising from local synaptic interactions. 

Progress in understanding local network dynamics has been driven by the advent of large 

dense population recordings, particularly two-photon imaging in acute tissue and dense multi-

electrode recordings of cultured populations. These experimental preparations have enabled the 

large sample sizes and high signal-to-noise-ratios necessary for monitoring population responses. 

Even more critically, both preparations isolated neocortical networks from ongoing inputs and 

neuromodulation. Acute slices of sensory cortex become spontaneously active in the presence of 

oxygen and artificial cerebrospinal fluid53. Like evoked responses, spontaneous events are 

selective in their activation of the local population with event-specific tuning in a subset of the 

population. Non-event-turned neurons accounted for the majority of active cells, which were 

scattered heterogeneously among inactive cells54. These dynamics disappeared when synaptic 

transmission is blocked pharmacologically55. 

In cultured populations as well as acute slices, passive recordings reveal a clear transition 

from occasional isolated spikes to self-sustaining, patterned activity56. These ignition events arise 

from a small number of sites, thought to reflect features of their connection to the rest of the 

neuronal network57. Ignition dynamics give rise to spontaneous activity—activity intrinsic to 

neocortex, patterned by local connectivity. 

 In healthy slices 450 um in width, thalamically evoked activity encompasses a highly 

                                                           
53 Ivanov and Zilberter, “Critical State of Energy Metabolism in Brain Slices.” 
54 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse 

Primary Auditory and Somatosensory Microcircuitry.” 
55 Cossart, Aronov, and Yuste, “Attractor Dynamics of Network UP States in the Neocortex.” 
56 Beggs and Plenz, “Neuronal Avalanches in Neocortical Circuits.” 
57 Orlandi et al., “Noise Focusing and the Emergence of Coherent Activity in Neuronal Cultures.” 
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similar subset of the population compared to spontaneous activity. Even in the absence of external 

input, the local cortical network imposes structure on responses in space and time. In fact, when 

thalamic connections are entirely cut, the active population of cortical neurons still recapitulates 

both intact spontaneous activity and thalamically evoked activity58. Thus, patterned firing observed 

in the ex vivo system is known to reflect propagation of activity through local neocortical 

connectivity. In vivo, auditory input was observed to elicit firing vectors that occupied a subspace 

of firing vectors explored during spontaneous activity59. These sources of evidence suggest that 

the role of inputs is to bias local response patterns, influencing propagating activity and impacting 

the timing and rate of output neuron activity. The organization of spontaneous activity reveals 

building blocks for network activity in vivo. 

 

Mapping multi-neuron patterns 

To someday understand how inputs control local network activity to shape output firing, it 

is crucial to study the organization of propagating activity. Activity is known to contain sequential 

structure at multiple timescales60, and sequence identity seems to causally impact behavioral 

choices61. There is ongoing debate about the relationship between different timescales, but it is 

                                                           
58 MacLean et al., “Internal Dynamics Determine the Cortical Response to Thalamic Stimulation.” 
59 Luczak, Barthó, and Harris, “Spontaneous Events Outline the Realm of Possible Sensory Responses in 

Neocortical Populations.” 
60 Luczak et al., “Sequential Structure of Neocortical Spontaneous Activity in Vivo”; Ito et al., 

“Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical 

Network Model.” 
61 Harvey, Coen, and Tank, “Choice-Specific Sequences in Parietal Cortex during a Virtual-Navigation 

Decision Task.” 
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likely that both non-linear dendritic processing62 and propagating activity63 can map sequential 

firing patterns onto output firing (or silence). 

Another approach which is gaining traction is to map pairwise timing relationships, to 

generate functional circuit diagrams64. As activity-mapping becomes more popular, specialized 

inference approaches are being newly developed and refined65. These functional maps are a natural 

abstraction for studying propagating activity, but ground truth underlying connectivity is usually 

not available experimentally. In Chapter 2, I investigate the hypothesis that functional relationships 

can reveal sites of likely synaptic connectivity, with special attention to feasible experimental 

conditions. Functional connectivity has also been shown to reorganize during neuromodulation66, 

opening new avenues to understanding modulatory function. This promises to be a growth area for 

the neuroscience community. 

Correlations are known to be non-stationary in time and span multiple timescales. Thus, 

timescales inherent to computing correlation levels (width of the Gaussian convolution, binning 

of data) influence the interpretability of measurements. In Chapter 2, I argue that reliable timing 

                                                           
62 Hawkins and Ahmad, “Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in 

Neocortex.” 
63 Laje and Buonomano, “Robust Timing and Motor Patterns by Taming Chaos in Recurrent Neural 

Networks.” 
64 Ito et al., “Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking 
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relationships are most informative of underlying connectivity when they are measured at 

timescales similar to those governing synaptic integration. 

 

The importance of simulation 

The key to progress in understanding multi-neuron patterning is close interaction between 

experiment and simulation. Experimental methods are becoming ever more incisive, more 

powerful to support or invalidate hypotheses about function. Computational models, because they 

are constructed based on controlled design choices, identify gaps in our understanding and point 

the way for new experiments. Simulations of cortical networks offer omniscient knowledge of a 

schematized system, providing access to the numerous distributed synaptic bombardments making 

up simulated activity. In Chapter 3, this access is used to map the flow of spikes through simulated 

networks. These results make a testable prediction about patterns of propagating activity in vivo.  

Network simulations are continually evolving, in tension between simplicity and realism. 

Importantly, real neurons are sensitive to coordinated presynaptic inputs67. Non-linear integrative 

features of neurons are important for producing realistic dynamics. Synchrony plays an important 

role in shaping population responses by impacting postsynaptic integration. In this work, model 

neurons are leaky-integrators with the addition of conductance-based connections. For a 

postsynaptic neuron, input currents scale their effect on postsynaptic voltage based on their 

reversal potentials. As a result, all else being equal, synchronous inputs sum more effectively than 

temporally separated inputs. The leaky aspect of membrane potential rules also contributes 
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sensitivity to input synchrony. Sensitivity to coincident inputs are an important feature of model 

design underlying the findings in the third section. 

 

PARALLEL PERSPECTIVES IN MACHINE LEARNING 

Theories of computation by neurons have always been hard to test in practice. Machine 

learning, a sister discipline to neuroscience, operates in a complementary paradigm by 

emphasizing practical analysis of data. The roots of machine learning drew inspiration from 

neuroscience, and the two fields have been fruitfully cross-pollinating ever since. Modern artificial 

neural networks are revolutionizing the human world. These models are distinct from simulations 

of spiking neurons, and are certain to be less powerful computationally. But they are also tractable, 

and their record-breaking performances speak for themselves. Just as investigators of mice should 

also learn from cat studies, and tree shrews, and ravens, there are valuable comparative insights to 

be gained from progress in artificial neural networks.  

The brain still wildly outstrips any man-made intelligence, and machine learning has much 

still to learn from neuroscience. Early artificial neurons reflected efforts to understand stimulus 

integration in neocortex. Those first binary neuron models summated a scaled vector and compared 

it to a threshold for output activity, with inhibitory input operating as a veto68. These artificial 

neurons could be assembled into collections that operated as logic gates. By corollary, these units 

could in principle implement general computers. The Perceptron model introduced independently 

weighted inputs and graded inhibition69. Networks of perceptrons were more flexible than 

McCulloch-Pitt neurons, free to tune their function by changing individual weights. Connection 
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topologies defining causal interactions among perceptrons were simple, by comparison to the 

arcane topologies and large numbers of units needed for McCulloch-Pitt networks. Perceptrons 

were arranged into three layers with feedforward connection between adjacent layers. These 

networks were trained with backpropagation70. Three-layer artificial networks can perform 

arbitrarily flexible functions, at least if they are allowed an unconstrained number of nodes per 

layer71. The difference between uniform weighting versus heterogeneous weighting had major 

consequences for the design of network topology. 

Artificial neural networks with more than three layers were speculated to potentially 

outperform their three-layer cousins, given equal training data. However, backpropagation was not 

feasible for training deep networks, with each layer adding additional nonlinearities to the error 

signal. After decades of declining interest in artificial networks, increases in computational 

resources suddenly yielded explosive progress in deep learning72. It was even shown that a 

Hebbian procedure could be used to pre-train these networks73. Standardized connection 

topologies were introduced, further increasing performance and efficiency of implementation74. 

Deep feedforward networks are now regularly breaking records in computer vision. 

Still, mammalian nervous systems routinely accomplish feats that elude human designed 

algorithms. Artificial neurons typically do not integrate inputs over multiple time-steps, and lack 

recurrent connections. As a result, these systems may not be as appropriate for processing dynamic 
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stimuli. Yet natural vision, control of movement, auditory scene analysis—typical ethological 

problems need to be sensitive to input structure at multiple temporal scales. 

Recurrent networks are potentially a more powerful network design for information 

processing. Intriguingly, recurrent networks can be trained with Hebbian rules to implement auto-

encoding75. Hopfield networks have become a computational model for associative memory 

capacity76, since they can converge to stable attractor states and also cycle through dynamic 

attractor patterns. 

Newer recurrent network models bear less resemblance to populations of neurons, with 

bypasses and signal switching gates77. These cutting edge designs are accomplishing amazing 

performance, changing the state-of-the-art in natural language processing 78 including machine 

translation79, captioning images80, and even deploying sequential foveal attention to process 

images81. 

Artificial recurrent networks raise exciting opportunities for interplay between machine 

learning and computational neuroscience82. Exchanges between machine learning and 

computational neuroscience are beneficial for both fields. Hallmarks of neocortical activity like 

dynamic correlations and higher-order patterning are a potential source of new progress in artificial 

recurrent networks. How do cortical networks balance information about the past with information 
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76 Palm and Sommer, “Information Capacity in Recurrent McCulloch–Pitts Networks with Sparsely 

Coded Memory States.” 
77 Graves, “Generating Sequences With Recurrent Neural Networks.” 
78 Graves and Jaitly, “Towards End-To-End Speech Recognition with Recurrent Neural Networks.” 
79 Sutskever, Vinyals, and Le, “Sequence to Sequence Learning with Neural Networks.” 
80 Mao et al., “Explain Images with Multimodal Recurrent Neural Networks.” 
81 Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention.” 
82 Graves, “Adaptive Computation Time for Recurrent Neural Networks.” 



19 
  
 

about the present with predictions about the future83? How is activity in recurrent networks 

decoded downstream84? What design features orchestrate routing through synaptic networks? 

Neuroscience can make a very practical impact on human technology if we can understand how 

the neural code is manifest through synaptic interactions. 

 

SUMMARY 

The brain is a complex system with a multitude of components. In this way, it is a 

fundamentally different scientific frontier than other historical research areas. Understanding the 

nervous system requires diverse interdisciplinary perspectives and levels of abstraction. One 

important scale for future research is to understand patterned firing in local populations. 

Distributed interactions for information processing have been best studied in machine learning, 

but artificial neural units are radically simple compared to the computational power and response 

complexity of a single neuron. Neighboring neurons coordinate their firing in complex beyond-

pairwise fashion, the study of which requires dual attention to cellular-level electrophysiology and 

circuit-level functional networks. 

Active synaptic networks are characterized by patterned activity, the emergent result of 

myriad complex interactions. These interactions are weak and selective, and they are coordinated 

in ways that are not well understand. The intricate flow of activity through synaptic networks 

results in information processing, and ultimately gives rise to outward behavior. In this work I 

investigate topological features of activity patterns using top-down mapping approaches and 
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simulations of naturalistic networks. Understanding the synaptic dynamics of active circuits is 

essential for progress in neuroscience.  
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CHAPTER 2 

Multineuronal activity patterns identify selective synaptic connections 

under realistic experimental constraints 

 
 

This work was previously published: Chambers B & MacLean JN (2015). Multineuronal activity patterns 

identify selective synaptic connections under realistic experimental constraints. Journal of 

neurophysiology, 114(3), 1837-1849. 

 

 

ABSTRACT 

Structured multineuronal activity patterns within local neocortical circuitry are strongly linked to 

sensory input, motor output, and behavioral choice. These reliable patterns of pairwise lagged 

firing are the consequence of connectivity since they are not present in rate-matched but 

unconnected Poisson nulls. It is important to relate multineuronal patterns to their synaptic 

underpinnings, but it is unclear how effectively statistical dependencies in spiking between 

neurons identify causal synaptic connections. To assess the feasibility of mapping function onto 

structure we used a network model that showed a diversity of multineuronal activity patterns and 

replicated experimental constraints on data acquisition. Using an iterative Bayesian inference 

algorithm, we detected a select subset of monosynaptic connections substantially more precisely 

than correlation-based inference, a common alternative approach. We found that precise inference 

of synaptic connections improved with increasing numbers of diverse multineuronal activity 

patterns in contrast to increased observations of a single pattern. Surprisingly, neuronal spiking 

was most effective and precise at revealing causal synaptic connectivity when the lags considered 

by the iterative Bayesian algorithm encompassed the timescale of synaptic conductance and 

integration (~10ms), rather than synaptic transmission time (~2ms), highlighting the importance 

of synaptic integration in driving postsynaptic spiking. Lastly, strong synaptic connections were 



31 
  
 

detected preferentially, underscoring their special importance in cortical computation. Even after 

simulating experimental constraints, top down approaches to cortical connectivity—from function 

to structure—identify synaptic connections underlying multineuronal activity. These select 

connections are closely tied to cortical processing. 

 

INTRODUCTION 

Synaptic connections are fundamental to neocortical computation. They are responsible for 

instantiating and constraining the multineuronal activity patterns that underlie sensation and 

behavior1. If we are to understand information processing, it is crucial to map cortical activity at 

the level of neurons and their synaptic relationships. For example, paired patch clamp recordings 

during quiescence have revealed dense connectivity in local excitatory networks2. Yet circuit 

spiking activity is sparse and diverse, in ways that are not easily predicted from connection patterns 

alone3.  Functional connectivity maps are an important bridge between static connectivity and 

dynamic information processing.  

It is challenging to link activity to underlying connectivity. A large number of presynaptic 

inputs contribute to the high conductance, depolarized state of postsynaptic neurons during circuit 

                                                           
1 Harvey, Coen, and Tank, “Choice-Specific Sequences in Parietal Cortex during a Virtual-Navigation Decision Task”; 
O’Connor et al., “Neural Coding during Active Somatosensation Revealed Using Illusory Touch.” 
2 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits”; Neske, Patrick, and 
Connors, “Contributions of Diverse Excitatory and Inhibitory Neurons to Recurrent Network Activity in Cerebral 
Cortex.” 
3 Barth and Poulet, “Experimental Evidence for Sparse Firing in the Neocortex.” 
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activity4, limiting the influence of any one synaptic connection 5. The large number of spikes which 

comprise a multineuronal activity pattern and the impossibility of monitoring all neurons in 

neocortex mean that correlations in spiking between neurons are not necessarily indicative of a 

monosynaptic connection6. Nevertheless, correlation has been shown to indicate an enhanced 

likelihood that neurons are synaptically connected7. A select fraction of pairwise spike timing 

relationships are highly reliable8 and do not arise by chance. These strong statistical dependencies 

may be particularly informative of the underlying synaptic connections that produce them. 

To establish whether multineuronal activity patterns can be used in a practical way to 

identify causal synaptic connections, we applied a modified iterative Bayesian algorithm for 

inferring synaptic connectivity from population activity9. To evaluate its performance and inform 

experimental design, we built a neuronal network model comprised of leaky integrate-and-fire 

units with conductance-based synapses and heterogeneous weights. Model activity was poised 

near criticality and spiking was sparse, irregular and asynchronous. Beyond what is expected by 

chance, we found that model population activity includes reliable lagged timing relationships as a 

result of its interconnectivity, and we demonstrate that the iterative Bayesian inference method 

                                                           
4 Brunel, “Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons”; Destexhe, 
Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo”; MacLean et al., “Internal 
Dynamics Determine the Cortical Response to Thalamic Stimulation”; Watson, MacLean, and Yuste, “UP States 
Protect Ongoing Cortical Activity from Thalamic Inputs”; Kumar et al., “The High-Conductance State of Cortical 
Networks”; Neske, Patrick, and Connors, “Contributions of Diverse Excitatory and Inhibitory Neurons to Recurrent 
Network Activity in Cerebral Cortex.” 
5 Teramae, Tsubo, and Fukai, “Optimal Spike-Based Communication in Excitable Networks with Strong-Sparse and 
Weak-Dense Links”; Chicharro and Panzeri, “Algorithms of Causal Inference for the Analysis of Effective 
Connectivity among Brain Regions.” 
6 Gerstein and Perkel, “Simultaneously Recorded Trains of Action Potentials.” 
7 Ko et al., “Functional Specificity of Local Synaptic Connections in Neocortical Networks.” 
8 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and 
Somatosensory Microcircuitry.” 
9 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology 
of Neuronal Avalanches.” 
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reveals this structure, relating patterned activity to underlying connectivity. Inference improved in 

the presence of diverse activity—a hallmark of multineuronal patterns in local cortical networks10. 

The requirement that a neuron generally must integrate more than one input to achieve threshold11 

resulted in inference being most effective when the algorithm considered delays that closely 

matched the time constant of an excitatory synaptic conductance. Finally, the strongest 

connections were preferentially detected, consistent with their increased likelihood of driving a 

postsynaptic action potential.  

Despite the fact that there are many impinging synaptic inputs, it is the subset providing 

drive necessary for the next spike in the pattern that are salient using this method. With temporally 

proximal pre- and postsynaptic action potentials, these are also the connections that have the 

capacity to undergo spike-timing dependent plasticity. Because these connections underlie 

propagating activity, we propose that they are particularly meaningful in the context of their 

multineuronal patterns, closely tied to cortical processing and learning.  

 

MATERIALS AND METHODS 

 

Simulated cortical networks with random connection topology 

Network simulations were implemented in Python using the Brian Brain Simulator12. The 

model was modified from the integrate-and-fire COBA model13. In conductance-based models, 

                                                           
10 Harvey, Coen, and Tank, “Choice-Specific Sequences in Parietal Cortex during a Virtual-Navigation Decision 
Task”; Sadovsky and MacLean, “Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of Microcircuit 
Activity.” 
11 Magee, “Dendritic Integration of Excitatory Synaptic Input.” 
12 Goodman and Brette, “The Brian Simulator.” 
13 Vogels and Abbott, “Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons”; Brette et 
al., “Simulation of Networks of Spiking Neurons.” 
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Figure 2-1.   Conductance-based integrate and fire network with cell-type dependent 

connectivity. 

 

(A) Synaptic weights were drawn from a lognormal distribution, with i-e conductances scaled 

150% relative to other connections. Excitatory connections to other excitatory cells were most 

numerous and were isolated as the focus of this study. 

(B) Two populations of integrate-and-fire units with conductance-based synapses, excitatory 

(black) and inhibitory (grey), were connected sparsely and randomly. Connection probabilities 

were determined by source and target identity (e.g. individual inhibitory projections to excitatory 

cells existed with probability pie = 0.25). 

(C) A single simulation epoch of model network activity showing both excitatory and inhibitory 

spiking. The network was activated via input units firing Poisson spikes at 15 Hz, connected 

randomly to the excitatory population. After 50 ms, input activity was silenced and network 

activity progressed in isolation. During this period, activity was recorded from the excitatory 

population. 
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 the depolarizing extent of synaptic bombardments changes with respect to inhibitory and 

excitatory reversal potentials14. Units in the model were divided into two groups—excitatory cells 

(e) and inhibitory cells (i). Synaptic weights were drawn from a lognormal distribution (Fig. 1A). 

Inhibitory connections, which constituted twenty percent of the total population, were scaled to be 

fifty percent stronger than excitatory connections in the mean. A small tonic excitatory drive gt to 

all units helped stabilize sparse spiking. Excitatory and inhibitory conductances ge and gi were 

modeled as decaying exponentials triggered by presynaptic spiking: 

 

   

   

 

Membrane potential dynamics were defined as follows, where v is voltage across the 

membrane: 

 

  

 

Excitatory reversal potential Ee was 0 mV, as was Et. Inhibitory reversal potential Ei was -

90 mV. Reversal potential for leak current Eleak was -65 mV. Firing threshold was -48 mV, and 

post-spike reset was -70 mV. In addition to after spike hyperpolarization induced by the reset 

                                                           
14 Cavallari, Panzeri, and Mazzoni, “Comparison of the Dynamics of Neural Interactions between Current-Based and 
Conductance-Based Integrate-and-Fire Recurrent Networks.” 
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potential, a 1 ms absolute refractory period was imposed on model neurons. Leak conductance 

gleak was fixed at 0.20 mS. Tonic depolarizing conductance gt was equal in magnitude to the leak 

conductance. 

Collective spiking generated spike-driven conductances that dwarfed the leak conductance, 

in keeping with definitions of high-conductance state15. Membrane time constant τm was 20 ms; 

excitatory synaptic time constant τe was 10 ms; and inhibitory synaptic time constant τi was 5 ms. 

Excitatory connectivity was topologically random with pee = 0.2, in correspondence with 

measurements of dense local excitatory connectivity from L4 in the mouse C2 barrel16. Other 

connection probabilities were chosen to produce overall sparse excitatory spiking and fast 

promiscuous inhibitory spiking. The probability of an i unit impinging on an e unit Pie was 0.25; 

pii was 0.3; pei was 0.35 (Fig. 1B). 

 

Simulation protocol 

The model network was stimulated using a pool of fifty input units. Each made uniformly 

weighted connections onto any excitatory cell with probability 1/10 (magnitude 3/5 leak 

conductance each). To begin a simulation trial, Poisson units spiked over these input connections 

at 15 Hz (50 ms duration). Network activity was not recorded during the input period.  In the 

recording epoch, input units were silenced, allowing the network to fire according to its internal 

dynamics (100 ms duration) (Fig. 1C). After 100 ms, activity was silenced and a new trial was 

initiated. 

                                                           
15 Destexhe, Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo.” 
16 Lefort et al., “The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory 
Cortex.” 
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The set of connections from input pool to excitatory neurons defined an input topology. 

After one hundred simulated recordings the input topology was randomly regenerated, stimulating 

the network using a new random pool of network neurons. After ten input patterns the simulation 

was terminated, for a total recording time of 100 s.  

Finally, replicating experimental constraints, we occluded the majority of the neuronal 

network and down-sampled the remaining spiking activity. Except where otherwise specified, 

forty percent of excitatory cells were visible and used for inference. 

 

Cross-validation of activity differences in relation to input context 

Activity vectors of length N were constructed from segments of recorded activity such that 

entry Ni was the total number of spikes by neuron i. Distances between activity vectors were 

computed using the L1 norm and normalized to mean total firing between the two vectors, 

quantifying the extent their activity differed as a fraction of total activity. This procedure was 

repeated across five 100 s simulation trials, each divided into 10 s epochs with shared input 

projections. Each epoch was subdivided into non-overlapping 5 s segments. Thus, there were 50 

same-input comparisons total. Between-input comparisons were matched in number to same-input 

comparisons by random selection without replacement. 

 

Reducing the number of possible connection schemes 

In a network with N nodes where connections can take on m states, the number of possible 

connection schemes (network topologies) is mN, a collection too large to consider exhaustively. To 

simplify the problem, we assume directed pairs fall into two  
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Figure 2-2.   Iterative Bayesian inference for heuristically mapping reliable lagged firing. 

 

(A) Inference step for a single observation. Top left. Pick one putative postsynaptic cell and frame 

(time bin). Consider the active neurons from the previous frame, each of which might have helped 

recruit the postsynaptic neuron to fire. Bottom left. Look up beliefs about connectivity between 

putative pre- and postsynaptic cells. Middle. Consider every binary feedforward connection 

topology on this subset of neurons. Compute their respective posterior probabilities using a 

likelihood model and Bayes rule. Right. Sum over the posterior distribution to obtain new evidence 

for the existence of individual connections. 

(B) Integrate new evidence with old belief as a weighted sum. In this example, the postsynaptic 

reference neuron was active, and beliefs about possible presynaptic connectivity increase. 

(C) Suppose the postsynaptic reference neuron was quiescent, resulting in decrementing beliefs 

about connectivity from putative presynaptics. Since quiescence is more common than activity in 

these recordings, Δ* < Δ. An asymmetric learning rate prevents decrements from rapidly 

outstripping increments.       
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categories, connected or not connected (m=2). Additionally, during each Bayesian update step 

(Fig. 2A), only recently active nodes are considered. The number of active nodes in a particular 

frame (Nactive) is small in practice because of sparse spiking and fast framerates. Depending on 

computational resources, a cutoff can be imposed on observations where Nactive is large; we 

discarded observations where Nactive > 12. With these simplifications a tractable number of 

possibilities are considered at each update step, despite lacking a polynomial-time algorithm for 

computing the distribution of posterior probabilities over potential topologies17. 

 

Inference of synaptic connectivity 

The matrix W will be a repository for the developing beliefs about synaptic connectivity. 

At a given iteration, heuristic evidence for the existence of a connection e from potential 

presynaptic neuron (k) to reference neuron (post) can be found at entry We := Wk,post. Before the 

first observation, entries in W are initialized to a small uniform value. In this work we selected 0.1 

for initial meanfield belief. 

At observation j, choose a random frame t and a random reference neuron post. Let Xpost
t 

describe whether the postsynaptic reference is active or quiescent in that frame. Call the set of 

neurons firing during the previous frame Pre, potential presynaptic partners to post. Let an 

observation (Oj) be the conjunction of reference postsynaptic and recently active presynaptic 

neurons: 

 

                                                           
17 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology 
of Neuronal Avalanches.” 
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Consider a vector of ones and zeros representing the connections from Pre to post (Ni) 

describing the ith possible binary connection scheme between Pre and post. In this simplified 

framework where synapses can only take two states, zeros represent absent connections and ones 

represent existing connections. 

 

 

 

 Our objective will be obtaining posterior probability P(Ni|Oj) over all possible binary 

topologies Ni connecting Pre to post. To that end we define expressions for prior and likelihood 

using W. Assuming independence among connections for tractability, we compute the prior 

probability of a given possible topology Ni  as 

 

    

 

For the likelihood expression, we define a simple forward model linking binary topology 

to postsynaptic activity. We imagine an idealized synaptic connection as transmitting a presynaptic 

spike to postsynaptic partners with probability α. We have used α = 0.8 in this work. In cases of a 

postsynaptic spike, we model the forward interaction simply as 
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Similarly, in the complementary case of postsynaptic quiescence: 

 

  

 

It is important that α be less than 1, so that presynaptic collaboration is recognized in the 

likelihood computation. This simple model clearly underestimates the potential for collective and 

nonlinear presynaptic effects. Its corresponding virtue is that it requires very few parameters be fit 

to data. 

From prior and likelihood, the posterior probability P(Ni|Oj) is obtained using Bayes rule: 

 

 

 

The marginal P(Oj) is computed as a sum over all binary connection schemes. New 

evidence w’e for individual connection e is obtained by summing across the posterior distribution: 
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This evidence is integrated into W as a weighted sum (Fig. 2B). Only the subset of edges 

considered in the Bayesian step are updated (the edges in Ni). The result of linear combination over 

the course of multiple observations is exponential smoothing on accumulated evidence. 

 

  

 

Because firing patterns are sparse, to prevent runaway decrementing towards zero in W, 

the learning rate Δ takes different values for postsynaptic activity versus quiescence (Fig. 2C). In 

this work we used Δactive = 0.2 and Δquiet = 0.05. Because of the asymmetric learning rate, 

postsynaptic quiescence is a weak source of evidence compared to postsynaptic activity—in 

correspondence with biological intuitions. Over the course of many repetitions of the inference 

step, we drew pairs (t, post) without replacement until each visible neuron was sampled for all t > 

1. 

 

Evaluating performance 

Precision was defined as the fraction of true positives to inferred connections (TP / TP + 

FP). Sensitivity was defined as the fraction of true positives to total connections (TP / TP + FN). 

The first measure quantifies detection accuracy, while the second quantifies extent of coverage. 

There is a tradeoff between these two factors, varying with choice of threshold on the belief matrix. 

High thresholds yield high precision but low sensitivity; low thresholds yield low precision but 

high sensitivity. 

An alternative way to quantify the precision-sensitivity tradeoff is to use receiver operating 

characteristic (ROC) curves, but ROC curves are not a natural metric in this specific context of 

1' (1 )j j
e e eW w W    
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synaptic detection18. Specifically, since complete coverage of true positives is out of reach given 

current experimental methodologies, a large portion of the curve tends to fall on the main diagonal. 

As a result, measures of area under the curve systematically devalue inferred topologies that do 

not identify synapses over the entire range of functional weights, even if they perform optimally 

over a restricted range of thresholds. Area under the ROC curve also fails to differentiate between 

false-positive and false-negative errors, which have very different consequences for interpreting 

inferred connectivity19. Precision and sensitivity lessen this quantification problem and are 

additionally appealing because they are intuitive measures of detection performance. 

We computed chance-level performance by counting the total number of actual synaptic 

connections in a category of interest (e.g. falling below a cutoff weight) normalized by the number 

possible (the set of all directed pairs in the sample population). 

 

Preprocessing for correlation-type activity maps 

 For correlation-based inference, simulated spiking was first convolved with a Gaussian 

function using standard deviation equal to 10 ms. 

 

Error motifs 

Detection errors were analyzed for systematic features. To quantify the prevalence of errors 

arising from common inputs, we isolated false positives and counted the frequency with which 

they shared some hidden third input. We compared that error distribution to the frequency with 

which randomly selected pairs shared hidden inputs.  

                                                           
18 Lobo, Jiménez-Valverde, and Real, “AUC.” 
19 Ibid. 
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 Accurate identification of connection direction is important for understanding large-scale 

features of activity flow (although it is less important for paired patch clamp experiments where 

pair identity matters more than direction of interaction, which can be recovered from EPSPs 

instead). We quantified misdirection errors by isolating spuriously inferred pre- and postsynaptic 

cells and counting the frequency of genuine connection from reference post- to presynaptic. We 

compared the resulting distribution to randomly chosen directed pairs. 

 Finally, we hypothesized that slow framerates might lead to spurious connections spanning 

multiple synapses. We isolated just the strongest ten percent of synaptic connections and computed 

the frequency that misidentified pre- and postsynaptic cells were connected by a chain (path) of 

strong connections no more than 4 cells long (3 edges or fewer). These limits served to constrain 

the otherwise dense connectivity, where otherwise any two neurons would be connected by a short 

arbitrary path. 

 

RESULTS 

Conductance-based network model with heterogeneous synaptic weights 

  A network model was developed to measure the performance, i.e. benchmark activity 

maps to excitatory synaptic connections (see Methods). For the model we drew synaptic 

conductances from a lognormal distribution in order to ensure that connections were weak on 

average, with a small number of strong connections (Fig. 1A), matching experimental reports20. 

Heterogeneity in synaptic efficacy has important consequences for information transmission21. 

                                                           
20 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits”; Perin, Berger, and 
Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups.” 
21 Teramae, Tsubo, and Fukai, “Optimal Spike-Based Communication in Excitable Networks with Strong-Sparse and 
Weak-Dense Links.” 
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Although local neocortical connectivity is highly non-random22, we used random 

connectivity in our model (Fig. 1B). A random network design is appropriate for benchmarking 

because it is more challenging to reconstruct from activity than more realistic clustered 

topologies23, avoiding biases that inflate apparent performance.  

Network activity was initiated from a small Poisson spiking external input pool. Each input 

unit projected randomly and independently into the excitatory population. By periodically 

randomizing the small number of input projections, we sought to achieve a diversity of activity 

within each network model, similar to spontaneous neocortical data24 and activity in visual cortex 

driven by viewing natural scences25. Except where noted, model network activity was only 

recorded for inference after cessation of activity in the input population (Fig. 1C). At the end of 

the recording period we reset the model and began a new trial.  

Simulated spike dynamics were asynchronous and irregular26. Asynchrony was measured 

with spike-rate correlations, by convolving spike times with a Guassian kernel of width σ = 3 ms. 

Among excitatory neurons in the recording period, mean correlation coefficient was 0.001927. 

Irregularity was measured with interspike-intervals, which were observed to have mean squared-

coefficient of variation of 0.81, consistent with other reports of irregular activity28. Excitatory 

                                                           
22 Perin, Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups”; Watts and 
Thomson, “Excitatory and Inhibitory Connections Show Selectivity in the Neocortex”; Song et al., “Highly 
Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
23 Kobayashi and Kitano, “Impact of Network Topology on Inference of Synaptic Connectivity from Multi-Neuronal 
Spike Data Simulated by a Large-Scale Cortical Network Model.” 
24 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry”; Sadovsky and MacLean, “Mouse Visual Neocortex Supports Multiple 
Stereotyped Patterns of Microcircuit Activity”; Luczak, Barthó, and Harris, “Spontaneous Events Outline the Realm 
of Possible Sensory Responses in Neocortical Populations.” 
25 Miller et al., “Visual Stimuli Recruit Intrinsically Generated Cortical Ensembles.” 
26 Brunel, “Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons.” 
27 Kumar et al., “The High-Conductance State of Cortical Networks.” 
28 Kumar, Rotter, and Aertsen, “Spiking Activity Propagation in Neuronal Networks.” 
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spiking activity was also characterized by a branching parameter of 0.99 (for 10 ms bins), 

indicating near-critical dynamics29. Firing rates in the excitatory population during the recording 

period were 1.33 +/- 3.15 Hz (mean +/- std) consistent with findings in awake behaving mice30. 

According to these criteria, simulated spike dynamics were similar to in vivo recordings. 

 

Iterative Bayesian inference to map synaptic recruitment 

We compared activity in cortical circuits to the structure of their underlying connectivity. 

Functional weights summarize the frequency of recurring firing patterns, producing a map of 

circuit activity. In particular, we employed an iterative Bayesian inference method (modified from 

31) which requires few parameters and relatively few epochs of population activity as a result of 

its simple dynamical model (see Methods). In iterative Bayesian inference, information about 

firing patterns is accumulated by considering small portions of the entire recording, stitched 

together over the course of many observations. Bayes Rule is used to parse accumulating beliefs 

about conditional relationships across multiple iterations (Fig. 2, see methods). A single frame lag-

window was used throughout this work when computing functional relationships. 

The algorithm is outlined as follows: in a single observation, choose a random frame t and 

choose a (putative) postsynaptic neuron post. Consider the set of neurons Pre firing during frame 

t-1. These cells are candidates for having driven post to fire. Thus, an observation contains 

evidence about these potential presynaptic partners. Broadly, if post is spiking, there is new 

evidence for connectivity from Pre to post. Conversely, if post is silent, the observation is evidence 

                                                           
29 Beggs and Plenz, “Neuronal Avalanches in Neocortical Circuits”; Haldeman and Beggs, “Critical Branching 
Captures Activity in Living Neural Networks and Maximizes the Number of Metastable States.” 
30 Crochet et al., “Synaptic Mechanisms Underlying Sparse Coding of Active Touch.” 
31 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology 
of Neuronal Avalanches.” 
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for a lack of connectivity from Pre to post. Silence is only weakly informative of lack of 

connectivity, because synaptic connections are weak in isolation. New evidence is integrated into 

the prior after each iteration step, gradually updating an overall summary of functional 

relationships. 

 

Defining recruitment 

Far from recruiting neurons nonspecifically, cortical activity flow at the level of the 

microcircuit is sparse and precise32. Isolating activity within a single input context (trials with the 

same input projection topology), 36±0.98% of model neurons were never active; but with the 

inclusion of many input contexts over the entire simulation, only 14.5% of model neurons were 

inactive, recapitulating experimental data33. Naturally, unresponsive neurons, which do not 

participate in propagating circuit activity, do not give rise to functional relationships. 

Throughout, lagged firing describes any pair of cells active within one frame of each other, 

regardless of their connectedness. We defined active synaptic connections as those connecting 

pairs where the presynaptic neuron was active at least once. Surprisingly, many active synaptic 

connections never resulted in action potential generation in the postsynaptic model neuron. As a 

result, despite the fact that a synaptic connection was active and produced a subthreshold 

depolarization, such pre post pairs were not a route for propagating activity (which manifests as a 

multineuronal activity pattern). Synaptic connections which resulted in an action potential in both 

the pre- and postsynaptic model neurons were defined as recruiting synaptic connections (Fig. 

                                                           
32 Kruskal, Li, and MacLean, “Circuit Reactivation Dynamically Regulates Synaptic Plasticity in Neocortex”; 
Dombeck, Graziano, and Tank, “Functional Clustering of Neurons in Motor Cortex Determined by Cellular 
Resolution Imaging in Awake Behaving Mice.” 
33 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry.” 
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3A). Specifically, if a presynaptic partner was active in the lag window preceding postsynaptic 

firing at least once, the connection was defined as contributing to recruitment. Of course, these 

functional categorizations depend on the specific multineuronal activity pattern (see below) and 

choice of the lag window that was considered by the algorithm (see below).   

 

 

Figure 2-3.   Quantifying recruitment and respecting experimental constraints. 

 

(A) Relative to a postsynaptic reference, recruiting presynaptic neurons are those active at least 

once during an integration window preceding postsynaptic spiking. 

(B) Excitatory cells were sampled randomly for recording, with the majority of neurons hidden 

(60% of excitatory cells hidden), introducing the challenge of hidden statistical structure. Node 

diameters proportional to their weighted in-degrees (sum absolute value of afferent weights). 

(C) Activity subsampled into 5 ms bins and categorized using a single-frame integration window, 

Recruiting presynaptic cells (green) and other active presynaptic cells (blue) were annotated 

relative to a postsynaptic reference cell (orange, bottom row). The majority of lagged activity 

involves cells that are not presynaptic (gray) to the reference. 

(D) Activity was also subsampled into 10 ms and 25 ms bins. 

 

 

 

Simulating experimental conditions 
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Even with dense uniform sampling within a large field of view34, connected neurons reside 

above, below, and outside the imaged field. Unobserved activity can lead to ambiguity in the 

reconstruction of synaptic connectivity from spiking because of misleading statistical 

dependencies35, particularly in resolving true synaptic connections versus unconnected neurons 

with shared inputs36. To benchmark the iterative Bayesian algorithm while acknowledging 

experimental constraints, we occluded 60% of excitatory cells within the network model (except 

where otherwise noted) (Fig. 3B). Further, we down-sampled modeled network activity in time, 

since even the fastest optics and indicator dyes are slower than an action potential (Fig. 3C). The 

consequences of estimating spike times from Ca2+ signals have been investigated explicitly in a 

previous study37. 

 

Poisson null populations verify significance of timing relationships 

Whenever many neurons are simultaneously active, spurious apparent structure will exist 

because of chance coincident spike timing. To confirm the presence of genuine pairwise timing in 

model activity, we created populations of rate-matched Poisson units. A Poisson population can 

establish chance frequency of activity patterns because it lacks any internal causal interactions38. 

Each Poisson unit was paired to a corresponding neuron in the model. Poisson rates were 

individually determined from the number of spikes their model counterparts fired during the 

                                                           
34 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
35 Chicharro and Panzeri, “Algorithms of Causal Inference for the Analysis of Effective Connectivity among Brain 
Regions.” 
36 Nykamp, “A Mathematical Framework for Inferring Connectivity in Probabilistic Neuronal Networks”; Nykamp, 
“Pinpointing Connectivity despite Hidden Nodes within Stimulus-Driven Networks.” 
37 Lütcke et al., “Inference of Neuronal Network Spike Dynamics and Topology from Calcium Imaging Data.” 
38 Roxin, Hakim, and Brunel, “The Statistics of Repeating Patterns of Cortical Activity Can Be Reproduced by a 
Model Network of Stochastic Binary Neurons.” 
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sampling period, on a trial-by-trial basis. Thus, the null population recapitulated firing rate 

structure and chance interactions without mimicking precise interrelationships in timing. 

We applied Iterative Bayesian inference to the connected network activity and the 

independent Poisson activity sampled over 100 s with 5 ms lag windows. Inferred connectivity 

matrices from matched Poisson activity were impoverished in total weight (model: 0.17±0.10; 

Poisson: 0.058±0.074; mean ± standard deviation of individual edge weights). These differences 

were significant (p = 1.1 x 10-7, random subset of 100 non-zero edges, Wilcoxon rank-sum) (Fig. 

4A). Strong weights reflect reliable spiking relationships between neurons, and they were present 

in the randomly connected model but not in the Poisson matched null population. These results 

support the hypothesis that causal connectivity gives rise to reliable functional relationships 

beyond what is expected by chance. Functional relationships computed with iterative Bayesian 

inference for an ex vivo dataset collected from mouse somatosensory cortex echoed the simulated-

network weight distribution, with a small number of particularly reliable relationships forming an 

extensive tail (Fig. 4B). 

 

Using timing relationships to predict synaptic connectivity 

Applying a threshold to the matrix of functional relationships involved a tradeoff between 

false positives (Type 1 errors) and false negatives (Type II errors) (FPs and FNs respectively). To 

dissociate these error types, we assessed performance using two metrics: precision (TP / TP + FP) 

and sensitivity (TP / TP + FN). First, we considered hypothetical conditions where the excitatory 

population was fully sampled at 100 Hz. As threshold increased, predictions of connectivity 

became more precise but less sensitive, capturing a smaller fraction of total connections. This 

tradeoff became particularly visible after isolating synaptic pairs that fired in 
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Figure 2-4.   Cortical activity includes reliable pairwise timing relationships. 

 

(A) Cumulative distribution of inferred connection strengths for connected model (black) versus 

Poisson rate matched (grey) populations. Firing rates for each Poisson units were matched on a 

trial-by-trial basis to each model neuron. Inset. The corresponding probability distribution 

function, in zoom. Top percentile of non-zero functional weights (dashed). 

(B) Comparison to imaging data. Inferred functional weights for activity recorded in mouse 

somatosensory neocortex. 

 

succession: where presynaptic recruited postsynaptic partner to threshold at least once (recruiting 

connections). Applying a top 1%-level threshold informed by Poisson null comparisons, the bulk 

of chance-level timing relationships were excluded, prioritizing true positives and avoiding false 

positives. 

Correlation is a simple alternative for computing functional relationships, and it has been 

shown to be informative about synaptic connectivity39. In fact, when the goal is to maximize the 

number of detected connections in a low-precision regime, correlation outperforms iterative 

Bayesian inference. For intermediate scenarios, correlation and iterative Bayesian inference 

perform comparably. However, when the goal is to identify true positives with minimal ambiguity, 

                                                           
39 Cossell et al., “Functional Organization of Excitatory Synaptic Strength in Primary Visual Cortex.” 
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iterative Bayesian inference substantially outperforms correlation (in a high-precision regime) 

(Figure 5A). Because precision comes at the cost of limited sensitivity, these approaches cannot 

replace anatomical methods for revealing entire connectomes. Instead, they have the potential to 

find small active subnetworks of synaptic connections. Inferred iterative Bayesian weights are 

highly informative of connection probability (Fig. 5B). We find a linear relationship between 

threshold and precision up to a saturation at perfect performance (r2 = 0.98). This relationship 

between functional weights and the likelihood of a synaptic connection held true regardless of 

inference method (correlation alone,  r2 = 0.89). 

 

 

Figure 2-5.   Relationship of inferred weighs to monosynaptic connectivity. 

 

(A) Left. Sensitivity (TP / TP + FN) versus precision (TP / TP + FP) for two activity maps: iterative 

Bayesian inference (black) and correlation (grey). Right. Iterative Bayesian inference substantially 

outperforms correlation in a narrow high-precision regime. Thresholded performance (asterisk). 

Chance performance reflects the likelihood of identifying a recruiting synapse from a directed pair 

selected at random. Recruiting connections are a smaller target than synaptic connections at large. 

 (B) Threshold on functional weight versus resulting precision, for iterative Bayesian inference 

(black) versus correlation (grey). Functional weights reflect probability of connectedness. 
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Influence of external input on inference 

For evaluating inferred connectivity, we focused on recordings of sustained recurrent 

activity, after cessation of external Poisson input. To complement those findings, we also 

quantified performance for simulated activity during the input period, in the presence of ongoing 

external drive. For this comparison, 10 s samples of activity were recorded under conditions where 

three hundred excitatory neurons were visible. In the absence of external drive, precision reached 

62 +/- 3.5% (mean +/- std) and sensitivity reached 0.47 +/- 0.025%. During external drive under 

the same conditions, precision reached 60 +/- 8.3% and sensitivity reached 0.37 +/- 0.065%. 

Between the two conditions, precision did not differ significantly (Wilcoxon rank-sum, p=0.84, 

n=5) but sensitivity was higher in the absence of external inputs (Wilcoxon rank-sum, p=0.032, 

n=5). 

 

Diversity of activity between different input contexts 

 Primary sensory cortices exhibit diverse multineuronal activity patterns40. Spatially 

diverse input projections were used to recapitulate these experimental findings. Distinct input 

projections activated overlapping populations of model neurons (Fig. 6A). However, common 

neurons were recruited by different presynaptic neighbors and recruited different postsynaptic 

neighbors in turn, consistent with experimental data41. Thus, pairwise relationships differed even 

where single neuron activity was similar. Single neurons were commonly active after many input 

contexts, but single recruiting connections were more often unique (Fig. 6B). Cross- 

                                                           
40 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry”; Sadovsky and MacLean, “Mouse Visual Neocortex Supports Multiple 
Stereotyped Patterns of Microcircuit Activity.” 
41 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry.” 
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Figure 2-6.   Activity flow in different input contexts. 

 

(A) Patterns of excitatory recruitment in single trials after input A (blue connections) and after 

input B (green connections). Rarely, pairwise recruitment reccurred across both trials (orange 

connections). Hidden excitatory and inhibitory neurons not shown. Rows indicate cell identity. 

Although pairwise recruitment was largely unique between trials, many single neurons were active 

in both trials (middle rows, orange bar). 

(B) Single neurons are commonly active at least once in every input context. In contrast, pairwise 

recruitment relationships tended to occur in just one or a few input contexts. 

(C) Cross-validation verifies that activity across different input contexts genuinely differs, 

quantified with L1 distance (city-block distance) for activity vectors within the same input context 

versus between different input contexts. 

 

validation confirmed that 5 s periods of activity differed substantially more between than within 

input contexts, in terms of active frames per neuron (Fig. 6C) (p = 3.25 x 10-9, n = 50, Wilcoxon 

rank-sum). 
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Figure 2-7.   Mapping diverse activity. 

 

(A) Presynaptic recruitment frequency for a reference postsynaptic neuron after distinct inputs. 

Within a single context, the majority of presynaptic neurons never recruit the postsynaptic 

reference. Edge weight proportional to frequency of recruitment. 

(B) Input diversity and recording time increases the fraction of presynaptic neurons involved in 

postsynaptic recruitment.  

(C) A single comparison in the second cross-validation procedure: overlap in detected synapses 

within shared input contexts (top, middle) and between different input contexts (bottom). Green 

lines indicate true positives.  

(D) Pooling over comparisons, cross-validation verified that different-context overlap in true 

positives is small, whereas same-context overlap is large. By identifying regularities in 

recruitment, iterative Bayesian activity maps were linked to the structure of their inputs. 

(E) Simulated data was subsampled to establish the role of diversity, for inference while 

controlling for sample duration. In each case the data analyzed totaled 10 s of recording time. The 

number of contexts was the divisor. For inference in the recording period, after inputs were 

silenced, precision (TP / TP+FP) increases with increasing numbers of diverse inputs.   
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Distinct patterns of recruitment detected after different inputs 

On the pairwise level, recruitment patterns varied from one input pattern to another (Fig. 

7A). As a consequence, with increasing numbers of distinct input projections and recording time, 

increasing numbers of recruitment relationships manifested (Fig. 7B). After a single input context, 

8.0±0.21% of connections were involved in recruitment. Across all input contexts, the number of 

recruiting connections climbed to 24%. Diverse activity exposed additional patterns of activity 

flow.  

To verify that distinct inputs gave rise to different patterns of detection, we performed a 

second cross-validation procedure. Spiking activity was initiated from two distinct populations of  

input units, input context A and input context B. For each context, simulated activity was divided 

into two halves, each of which was analyzed separately using iterative Bayesian inference, yielding 

four functional topologies. Identities of detected synapses were compared within and across 

contexts (Fig. 7C). Despite variability between individual inference trials, similar detections 

recurred within same-context activity. Functional relationships were shared between dissimilar 

contexts less often. Detected synapses were significantly more similar for activity generated from 

a common input context than for activity between input contexts (p = 5.1 x 10-5, n = 30, Wilcoxon 

rank-sum; Fig. 7D). During the period of sustained activity after cessation of inputs, population 

activity differed depending on input history. These differentiated patterns of spiking gave rise to 

distinct functional relationships. 

To control for the effect of sample duration on inference, we fixed the total amount of time 

considered by the algorithm to 10 s of activity regardless of the number of different contexts (Fig. 

7E). When only one context was analyzed the single context was chosen randomly for each 
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Figure 2-8.   Detection depends on definition of recruitment window. 

 

(A) Excitatory conductances in the model compared to three definitions of recruitment window. 

Synaptic interactions appear sparse for short interaction windows and dense for large lag windows. 

(B) Sensitivity improved fastest and most extensively when synaptic interactions were mapped 

with 10 ms recruitment windows (5 ms, blue; 10 ms, purple; 25 ms, red). 

(C) Precision improved fastest for 5 ms recruitment windows, while 10 ms windowing resulted in 

slower increases and a modestly higher plateau (5ms, blue; 10ms, purple; 25ms, red). 

(D) Conditioned on false positive detection, the probability of spanning a chain of strong synapses 

became increasingly likely as recruitment window increased. Spanning errors accounted for the 

majority of false positives for all recruitment window definitions. Asterisks indicate p < 0.001.       
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repetition. As we increased the number of contexts considered by the algorithm, while always 

keeping 10s of data fixed, we randomly choose the input contexts to be analyzed. After controlling 

the amount of data analyzed by the algorithm (10s) inference of underlying connections was 

substantially better when diverse activity patterns were analyzed. In practice this meant, for 

example, that 2.5s of data from 4 contexts (2.5s * 4 contexts) was more effective than 10s of data 

from one context for the inference of connections. 

 

Enhanced performance at the timecourse of excitatory synapses 

Generally, faster framerates can be obtained at the cost of smaller population sample sizes. 

This provides flexibility to select temporal resolution best suited to the detection of causal  

connections. We considered three potential recruitment windows: 25 ms, 10 ms, and 5 ms (Fig. 

8A). Using HOPS scanning ex vivo with single-frame recruitment windows, these frame durations 

correspond to approximately 300, 75 and 30 neurons scanned, respectively42. To investigate how 

choice of single-frame lag window impacts inference without the confound of changing sample 

size, we obscured 60% of the 1000 excitatory model cells in each trial. We found that both 

sensitivity and precision were maximal when a 10 ms recruitment window was used in the 

inference algorithm. At 10 ms, precision was 63±5.6% (median ± interquartile range) and 

sensitivity to recruiting synapses was 1.9±0.20%, which was significantly better than 5 ms 

(precision 57±1.6%: p = 0.011; sensitivity 1.6±0.24%: p = 0.026; Wilcoxon rank-sum, n = 7) and 

25 ms (precision 45±0.19%: p = 5.8 x 10-4; sensitivity 1.1±0.20%: p = 0.0023; Wilcoxon rank-

sum, n = 7). Although 25 ms resolution still permitted recovery of monosynaptic connectivity well 

                                                           
42 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
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above chance levels, performance at 5 ms was significantly better than for 25 ms lags (precision: 

p = 5.8 x 10-4; sensitivity: p = 0.0041; n = 7, Wilcoxon rank-sum). 

 For all three sampling rates, best performance was obtained by repeatedly presenting the 

100 s of simulated recordings to the inference algorithm. In all cases, sensitivity improved 

gradually, steadily encompassing increasing numbers of monosynaptic connections (Fig. 8B). 

Reiteration led to particularly extensive improvement in precision at the slowest framerates, with 

25 ms lag window analyses improving an additional five percentage points in precision after 5 ms 

and 10 ms lag window inferences had stabilized (Fig. 8C). In contrast, those faster framerates 

stabilized early in precision after ten to twenty iterations, with modest subsequent decline for 5 ms 

lag windows in conjunction with more extensive sensitivity. 

  

Error sources and interaction with choice of recruitment window 

Next, we characterized likely sources of error and their interaction with temporal 

resolution. For each connectivity pattern, random pairs of model neurons were used to establish 

chance occurrences, independent of errors in predicting synaptic connectivity. If candidate motifs 

occurred more frequently at sites of false positives than between random pairs, they were 

associated with errors in inference. 

Shared input between two neurons can induce spurious correlations that appear to indicate 

causal connectivity when none is present43. Surprisingly, when synaptic connections were falsely 

inferred, we did not find elevated numbers of shared hidden inputs. At least under these conditions 

using iterative Bayesian inference, common hidden inputs did not make significant contribution to 

                                                           
43 Gerstein, Perkel, and Subramanian, “Identification of Functionally Related Neural Assemblies”; Keshri et al., “A 
Shotgun Sampling Solution for the Common Input Problem in Neural Connectivity Inference.” 
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false positive detection errors, even at slow framerates (5 ms: p = 0.976, n = 567; 10 ms: p = 0.989, 

n = 653; 25 ms: p = 0.776, n = 910; FPs versus random, two-way Kolmogorov-Smirnov). 

An issue of concern is whether slow framerates lead to errors resolving connection 

direction. We evaluated whether the direction of a true synaptic connection was frequently 

opposite that of an inferred synaptic connection. At baseline, randomly selected directed pairs were 

connected twenty percent of the time (as can be predicted from their underlying connection 

probability). The probability of directionality errors was no different from that of finding a 

connection between two randomly selected neurons. At the slowest framerates, we did observe a 

possible weak association between direction errors and sampling rate (5 ms: p = 0.883, n = 7 trials; 

10 ms: p = 0.129, n = 7; 25 ms: p = 0.129, n = 7; FPs versus random, two-way Kolmogorov-

Smirnov). Nevertheless, these results suggest that slow sampling need not confound measurement 

of flow direction. 

The majority of errors falsely attributed monosynaptic connectivity where there was 

actually strong polysynaptic connectivity (5 ms: p = 5.8 x 10-4, n = 7, Wilcoxon rank-sum; 10 ms: 

p = 5.8 x 10-4, n = 7, Wilcoxon rank-sum; 25 ms: p = 5.8 x 10-4, n = 7, Wilcoxon rank-sum; Fig. 

8D). As sampling rate decreased, an increasing fraction of errors arose from functional 

relationships spanning polysynaptic chains. Note that random cells were more likely to be 

connected in chains at slower framerates simply because longer recruitment windows (temporal 

scale) defined more presynaptic cells as participating in recruitment, increasing the density of 

inferred networks. 
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Strong synapses are prominent in functional relationships 

Synaptic weights were drawn from a lognormal distribution, matching experimental 

findings44. Strong connections from the long tail of the weight distribution occurred only 

infrequently. Thus, at chance-level they would be expected to participate in functional 

relationships only rarely. 

In actuality, the effects of strong synapses were particularly detectable from patterned 

network activity. The distribution of detected synapses was shifted toward higher connection 

strength values compared to the underlying distribution used to assign synaptic conductances (Fig. 

9A). The probability of identifying a recruiting connection was positively correlated with 

 

 

Figure 2-9.   Strong connections are prominent in recruitment.  

 

(A) Distribution of underlying excitatory synaptic conductances compared to synaptic 

conductances of detected connections. 

(B) Precision of inferred connections increases with synaptic strength. Defining chance 

performance based on all excitatory synaptic connections (black). Defining chance performance 

more realistically, based on the subset of excitatory connections involved in recruitment (grey). 

                                                           
44 Perin, Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups”; Song et al., “Highly 
Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
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connection strength (r = 0.68, p = 0.0001; Pearson correlation). Furthermore, as stronger 

subpopulations of structural connections were isolated, precision relative to chance rose 

dramatically (Fig. 9B). 

 

DISCUSSION 

The relationship between connectivity and patterned sequential firing is complex. An 

average synaptic connection causes only small postsynaptic depolarization, particularly when 

membrane conductance is high during synaptic bombardments45. As a result, it is difficult to 

predict sequential firing from synaptic weights alone. To circumvent this complexity, it is 

necessary to map synaptic activity in emergent contexts generated by ongoing activity. 

However, misleading coincidences in spike timing have the potential to confound inference 

of causal synaptic connectivity46. We used Poisson populations, lacking interconnectivity, to 

establish how frequently lagged firing which would be interpreted by our inference approach to be 

indicative of a connection appear by chance. We found that the null, which matched rate statistics, 

did not reproduce the same lagged firing relationships found in network activity. Connected 

populations gave rise to strong and reliable pairwise timing relationships where Poisson firing did 

not. By applying a threshold to inferred weights, we were able to exclude many spurious 

relationships. 

                                                           
45 Teramae, Tsubo, and Fukai, “Optimal Spike-Based Communication in Excitable Networks with Strong-Sparse and 
Weak-Dense Links”; Chicharro and Panzeri, “Algorithms of Causal Inference for the Analysis of Effective 
Connectivity among Brain Regions”; Kumar et al., “The High-Conductance State of Cortical Networks”; Destexhe, 
Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo”; Troyer and Miller, “Physiological 
Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell.” 
46 Roxin, Hakim, and Brunel, “The Statistics of Repeating Patterns of Cortical Activity Can Be Reproduced by a 
Model Network of Stochastic Binary Neurons.” 
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The modified iterative Bayesian inference algorithm applied here results in sparse 

connectivity matrices that relate synaptic connectivity to a small number of particularly precise 

timing relationships. These inferred connections map routes of activity through the synaptic 

network. By isolating only the most precise pairwise timing relationships, iterative Bayesian 

inference identifies a small number of synaptic connections with higher precision than can be 

achieved using correlation-based inference, a common alternative approach (e,g. 47). For 

applications requiring high sensitivity but only modest precision, correlation or other inference 

approaches may be more appropriate; but for accurate inference of a synaptic connection with very 

few Type I errors, iterative Bayes should be the algorithm of choice.  

A constellation of methods for inferring connectivity from imaged activity is emerging, 

reflecting a growing consensus that bridging function and structure is a crucial long-term goal in 

neuroscience (e.g. 48). This study complements related work by emphasizing performance under 

the conditions of realistic optical experiments—constrained recording durations and restricted 

sampling49. We purposefully designed our simulations to pose substantial challenges to inference, 

including weak conductance-based synapses, random connectivity, occlusion of 60% of the 

neurons in the network, and limited recording times. We included these challenges in order to 

mimic experimental constraints. 

For network simulations, input units made random connections onto the recorded 

population. To mimic diverse inputs, their random projections were periodically redrawn. Thus, 

                                                           
47 Cossell et al., “Functional Organization of Excitatory Synaptic Strength in Primary Visual Cortex.” 
48 Mishchencko, Vogelstein, and Paninski, “A Bayesian Approach for Inferring Neuronal Connectivity from Calcium 
Fluorescent Imaging Data”; Stetter et al., “Model-Free Reconstruction of Excitatory Neuronal Connectivity from 
Calcium Imaging Signals”; Gerhard et al., “Successful Reconstruction of a Physiological Circuit with Known 
Connectivity from Spiking Activity Alone.” 
49 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
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between different contexts, inputs were matched in average temporal structure but differed in their 

vectors of projection weights. The result was a diversity of model network spike patterns, echoing 

our experimental observations50. Differences in recruitment manifested even though inputs were 

completely silent during the recording period, when network activity evolved in isolation. These 

results demonstrate a simple way that recent history impacts network activity, with context 

dependent recruitment situated to play an important role in neuronal computation51. 

Because each input context gave rise to new patterns of activity, detection of synaptic 

connections improved after diverse inputs. The importance of diverse activity suggests that 

mapping be carried out using statistical rich sensory stimuli such as natural movies. Spontaneous 

activity is also a good source of diverse activity, having been demonstrated to broadly traverse 

network activity patterns52. Independent driving stimulations are likely to generate even higher 

sensitivity53, at the cost of potentially non-naturalistic patterns of emergent activity in the cortical 

network. We found that inference was somewhat more sensitive during the recording period, when 

external inputs were silent, than in the presence of external Poisson spiking. This difference may 

arise from the addition of common hidden inputs. 

Interaction times between neurons are not dominated by fast synaptic delays, so that 

millisecond resolution is not necessary for resolving monosynaptic connectivity. We found it better 

to use a 10 ms lag window than a 5 ms lag window, measuring functional relationships which 

closely mirrored the timecourse of excitatory synaptic conductances in our model. Using HOPS 

                                                           
50 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry”; Sadovsky and MacLean, “Mouse Visual Neocortex Supports Multiple 
Stereotyped Patterns of Microcircuit Activity.” 
51 Buonomano and Maass, “State-Dependent Computations”; Kumar, Rotter, and Aertsen, “Spiking Activity 
Propagation in Neuronal Networks.” 
52 Luczak et al., “Sequential Structure of Neocortical Spontaneous Activity in Vivo”; MacLean et al., “Internal 
Dynamics Determine the Cortical Response to Thalamic Stimulation.” 
53 Van Bussel, Kriener, and Timme, “Inferring Synaptic Connectivity from Spatio-Temporal Spike Patterns.” 
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scanning54 a 10 ms frame duration corresponds to approximately 75 neurons imaged. Note that 

equal or better precision could be obtained by considering lags spanning multiple 5 ms frames, 

rather than a single 10 ms frame. But in practice, the doubled scan-rate would necessitate more 

than halving the imaged population size. At slower framerates, reliable timing relationships were 

still predictive of monosynaptic connectivity. However, they also increasingly corresponded to 

misidentification of a single connection where in fact there was a chain of strong connections—a 

spanning error. Regardless of temporal resolution, polysynaptic spanning errors may help explain 

why random networks are harder to reconstruct than clustered architectures55. In clustered 

networks, strong chains are more likely to be crisscrossed with additional connections, resulting 

in neighbors-of-neighbors arrangements56. These results suggest designing experiments with fast 

population scan rates if the aim is to infer causal monosynaptic connectivity from activity. This 

consideration must be balanced with the need to sufficiently sample the network numerically, in 

order to see enough spiking relationships to detect statistical dependencies57. The membrane time 

constant is also relevant to the interval within which integration can occur, and slow metabotropic 

conductances may extend integration time even farther in real cortical neurons. 

Strong cortical connections are a desirable experimental target because of their proposed 

roles in information processing58. However, they are rare in the population of all connections. 

                                                           
54 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
55 Kobayashi and Kitano, “Impact of Network Topology on Inference of Synaptic Connectivity from Multi-Neuronal 
Spike Data Simulated by a Large-Scale Cortical Network Model.” 
56 Perin, Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups.” 
57 Gururangan, Sadovsky, and MacLean, “Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals 
Generalized Features Common to Three Areas of Sensory Cortex.” 
58 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits”; Litwin-Kumar et al., 
“Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains”; Teramae, Tsubo, and Fukai, 
“Optimal Spike-Based Communication in Excitable Networks with Strong-Sparse and Weak-Dense Links”; 
Gururangan, Sadovsky, and MacLean, “Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals 
Generalized Features Common to Three Areas of Sensory Cortex.” 
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Consistent with their importance, we have shown that in patterned spiking the strongest synapses 

are particularly salient and detectable: 10- to 100-fold more so than predicted by chance detection 

levels. These results suggest combining imaging and inference with paired-patch experiments to 

study the role of strong synapses in local circuit dynamics, enabling higher success rates in 

searching for strongly connected pairs.  

Our findings highlight a feature of structure-function relationships that is discussed 

surprisingly little: in realistic activity, a synaptic connection need not imply the existence of 

sequential firing. That is, in a given recording, a synaptic connection may contribute to 

depolarizing its target without ever preceding a postsynaptic action potential. Similarly, a single 

connection may function as a route for propagating activity in one network context, but not in 

another59. These different functional roles have important consequences for activation of 

projection neurons. Relatedly, propagating activity establishes the connections that can be 

potentiated through Hebbian mechanisms, because of proximal pre- and postsynaptic spiking. Yet 

for arbitrary input and network history, the problem of predicting routes of propagation from the 

collective interaction of many synapses is exceedingly hard. Activity-mapping approaches 

sidestep this daunting problem by isolating specific synaptic connections underlying multineuronal 

firing, potentially linking specific synaptic connections to computation in the neocortex. 

 

                                                           
59 Fisher et al., “A Modeling Framework for Deriving the Structural and Functional Architecture of a Short-Term 
Memory Microcircuit.” 
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CHAPTER 3 

 

Higher-order synaptic interactions 

coordinate dynamics in recurrent networks 

 

 
This work is currently under peer review: Chambers B & MacLean JN (2016). Higher-order synaptic 

interactions coordinate dynamics in recurrent networks. PLoS Computational Biology, submitted March 

30, 2016. 

 
 

ABSTRACT 

Linking synaptic connectivity to dynamics is key to understanding information processing 

in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, 

necessitating that links between connectivity and dynamics be evaluated at the network level. Here 

we map propagating activity in large neuronal ensembles from mouse neocortex and compare it 

with a recurrent network model, where connectivity can be precisely measured and manipulated. 

We find that a dynamical feature dominates statistical descriptions of propagating activity for both 

neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input 

neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs 

during ongoing activity to effectively generate postsynaptic spiking.  As a result, paradoxically, 

fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent 

networks.  Interplay between higher-order synaptic connectivity and the integrative properties of 

neurons constrains the structure of network dynamics and shapes the routing of information in 

neocortex.  
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AUTHOR SUMMARY 

Active networks of neurons exhibit beyond-pairwise dynamical features. In this work, we 

identify a canonical higher-order correlation in network dynamics and trace its emergence to 

synaptic integration. We find that temporally coordinated firing preferentially occurs at sites of 

fan-in triangles—a synaptic motif which coordinates presynaptic timing, leading to greater 

likelihood of postsynaptic spiking.  The influence of fan-in clustering leads to the surprising 

emergence of non-random routing of spiking in random synaptic networks. When synaptic weights 

are made artificially stronger in simulation, so that cooperative input is less crucial, dynamics are 

no longer dominated by fan-in triangles but instead more closely reflect the random synaptic 

network. Thus, the emergence of fan-in clustering in maps of synaptic recruitment is a collective 

property of individually weak connections in neuronal networks. Because higher-order 

interactions are necessary to shape the timing of presynaptic inputs, activity does not propagate 

uniformly through the synaptic network. Like water finding the deepest channels as it flows 

downhill, spiking activity follows the path of least resistance and is routed through triplet motifs 

of connectivity. These results argue that clustered fan-in triangles are a canonical network motif 

and mechanism for spike routing in local neocortical circuitry. 

 

INTRODUCTION 

Understanding any complex system requires a mechanistic account of how dynamics arise 

from underlying architecture. Patterns of connections shape dynamics in diverse settings ranging 
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from electric power grids to gene transcription networks1. It is critical to establish how synaptic 

connectivity orchestrates the dynamics of propagating activity in neocortical circuitry, since 

dynamics are closely tied to cortical computation.  For example, trial-to-trial differences in 

network dynamics2 can be used to decode sensory inputs and behavioral choice3.  It is particularly 

important to understand the transformation from connectivity to activity within local populations 

of neurons since this is the scale at which the majority of connections arise. Locally, neocortical 

neurons are highly interconnected, and their connectivity schemes are characterized by the 

prevalence of specific motifs4. At the level of local populations, functional coordination has been 

demonstrated in diverse ways, e.g. on the basis of active neurons5 and their correlation patterns6. 

Yet predicting population responses on the basis of pairwise connections alone has proven to be 

difficult.  

Establishing a mechanistic link between connectivity and dynamics in neocortical networks 

is intricate and non-trivial because individual neurons themselves are complex computational 

                                                           
1 Womelsdorf et al., “Dynamic Circuit Motifs Underlying Rhythmic Gain Control, Gating and Integration”; Motter et 
al., “Spontaneous Synchrony in Power-Grid Networks”; Rohden et al., “Self-Organized Synchronization in 
Decentralized Power Grids”; Shen-Orr et al., “Network Motifs in the Transcriptional Regulation Network of 
Escherichia Coli”; Barzel and Barabási, “Universality in Network Dynamics.” 
2 Luczak, McNaughton, and Harris, “Packet-Based Communication in the Cortex”; Luczak, Barthó, and Harris, 
“Spontaneous Events Outline the Realm of Possible Sensory Responses in Neocortical Populations”; Sadtler et al., 
“Neural Constraints on Learning”; Sadovsky and MacLean, “Mouse Visual Neocortex Supports Multiple 
Stereotyped Patterns of Microcircuit Activity.” 
3 Harvey, Coen, and Tank, “Choice-Specific Sequences in Parietal Cortex during a Virtual-Navigation Decision Task”; 
Sederberg, Palmer, and MacLean, “Decoding Thalamic Afferent Input Using Microcircuit Spiking Activity.” 
4 Song et al., “Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
5 MacLean et al., “Internal Dynamics Determine the Cortical Response to Thalamic Stimulation”; Sadovsky and 
MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and 
Somatosensory Microcircuitry.” 
6 Rothschild, Nelken, and Mizrahi, “Functional Organization and Population Dynamics in the Mouse Primary 
Auditory Cortex.” 
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units7.  Fundamentally, neurons are state dependent non-linear integrators of synaptic input8. When 

neurons in neocortex process information, they are generally subjected to numerous synaptic 

inputs which activate diverse receptors, and concomitant gating of voltage-dependent channels9. 

In consequence, neocortical neurons tend to operate in a high-conductance state, which lessens the 

impact of any one synaptic input10. Because inputs are weak individually, collective synaptic 

bombardments are necessary to depolarize a neuron to threshold for action potential generation. 

As a result, it is difficult to predict the flow of activity through a synaptic network based solely on 

knowledge of single connections, without the context of ongoing activity in the entirety of the 

system. 

Network models are an important tool for linking synaptic connectivity to dynamics in 

neocortex because they enable precise measurement and manipulation of simulated connectivity. 

In this work, we generate networks comprised of leaky integrate-and-fire model neurons with 

naturalistic dynamics that mimic recordings from superficial neocortical layers. Despite random 

synaptic topology in the model network, we find that small-world topological organization 

emerges in maps of propagating activity. This paradoxical divergence of dynamics from synaptic 

                                                           
7 Behabadi and Mel, “Mechanisms Underlying Subunit Independence in Pyramidal Neuron Dendrites”; Cazé, 
Humphries, and Gutkin, “Passive Dendrites Enable Single Neurons to Compute Linearly Non-Separable Functions”; 
Jahnke, Timme, and Memmesheimer, “Guiding Synchrony through Random Networks”; Shai et al., “Physiology of 
Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex”; Xu et al., “Nonlinear Dendritic Integration of Sensory 
and Motor Input during an Active Sensing Task.” 
8 Destexhe, Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo”; Gasparini and 
Magee, “State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons”; Tran-Van-Minh et al., 
“Contribution of Sublinear and Supralinear Dendritic Integration to Neuronal Computations.” 
9 Azouz and Gray, “Cellular Mechanisms Contributing to Response Variability of Cortical Neurons in Vivo”; Paré and 
Lang, “Calcium Electrogenesis in Neocortical Pyramidal Neurons in Vivo”; Sherman, “The Function of Metabotropic 
Glutamate Receptors in Thalamus and Cortex.” 
10 Destexhe, Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo”; Haider, Häusser, 
and Carandini, “Inhibition Dominates Sensory Responses in the Awake Cortex.” 



76 
  
 

connectivity is not explained by coactivity alone. Rather, among active connected pairs, 

recruitment preferentially occurs in a selective subset. 

In the model, activity is preferentially routed through clustered fan-in triangles, despite 

their statistical scarcity. Because they result in coordinated presynaptic timing, fan-in triangle 

motifs are particularly effective for spike generation. By comparison, among neurons converging 

on a common target but lacking presynaptic interconnectivity, presynaptic timing is less 

synchronous on average, and postsynaptic recruitment is less likely. Moreover, when we decrease 

the need for cooperative presynaptic action, by doubling synaptic weights in network models, the 

fan-in triangle motif becomes significantly less prevalent. We evaluate the prediction of our model 

using high speed two-photon imaging of emergent network activity ex vivo, in somatosensory 

cortex.  We verify that propagating activity in real neuronal networks has small-world 

characteristics and elevated clustering, Decomposing this clustering, we discover that neocortical 

circuitry also manifests propagating activity that is dominated by the fan-in triangle motif. These 

results suggest a mechanistic account for the widespread findings of clustered activity in neuronal 

populations11. We suggest that clustered fan-in triangles are a canonical building block for reliable 

cortical dynamics. 

 

RESULTS 

Representing activity and connectivity with directed graphs 

                                                           
11 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology 
of Neuronal Avalanches”; Orlandi et al., “Noise Focusing and the Emergence of Coherent Activity in Neuronal 
Cultures”; Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary 
Auditory and Somatosensory Microcircuitry”; Shimono and Beggs, “Functional Clusters, Hubs, and Communities in 
the Cortical Microconnectome”; Nigam et al., “Rich-Club Organization in Effective Connectivity among Cortical 
Neurons.” 
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Multineuronal dynamics are the computational substrate for sensation and behavior, 

implemented by synaptic architectures. Propagating multineuronal activity arises from three main 

sources: the underlying connectivity itself, recent network history, and the non-linear integrative 

properties of individual neurons. Here, multineuronal activity was modeled using conductance-

based leaky integrate-and-fire neurons, stimulated with brief periods of Poisson input and recorded 

during self-sustained firing (Fig 1a). Model neurons were connected with heterogeneous synaptic 

weights drawn from a heavy-tailed distribution, in a random arrangement  
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Figure 3-1.   Emergent functional networks are 

structured despite random synaptic connectivity. 

 

(a) Integrate-and-fire neurons with conductance-based 

synapses were connected randomly according to source 

and target class (200 inhibitory and 1000 excitatory 

cells). Activity was initiated with 50 ms of independent 

Poisson inputs. 

(b) Box plots of the fold change over random for the 

small world score, shortest path length score, and 

clustering coefficient score in the synaptic network and 

the functional network. 

 (c) Box plots of the fold change over random for the 

small world score, shortest path length score, and 

clustering coefficient score in the active subnetwork and 

the recruitment network.   

 

 

 

(Erdős-Rényi; pee=0.2). Simulated dynamics were 

asynchronous, irregular, and sparse, with critical 

branching (see Methods). 

A synaptic network was constructed for each 

simulation, consisting of excitatory model neurons and 

their synaptic connectivity.  For each structural iteration 

of the model we generated three distinct maps of activity 

(and in two of the cases, multiplex connectivity and 

activity): a functional network, the active subnetwork, 

and a recruitment network (Fig 2). Edges in the functional network summarized network dynamics 

and represented frequency of lagged firing between every pair of nodes (with maximum interspike 

interval T = 25 ms; see Methods).  The active subnetwork was a subgraph of the synaptic network 

and consisted of model neurons active at least once and all their interconnections (regardless of 
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lagged firing relationships). Finally, the recruitment network was a subgraph of the functional 

network defined by its intersection with the synaptic network, to map the routing of activity 

through synaptic interactions. In this way, non-zero edges in the recruitment network linked 

synaptically connected nodes that also spiked sequentially in the interval T at least once. For T = 

25 ms, 10.9 ± 3.52 excitatory presynaptic input spikes immediately preceded each postsynaptic 

spike (mean±std). 

Surprisingly, although underlying synaptic connectivity was Erdős-Rényi (i.e. random), 

functional activity networks were small world (Fig 1b)12. To judge the small world character of 

these networks, global clustering coefficient and characteristic path were normalized by their 

respective abundances in density-matched Erdős-Rényi networks and combined as a quotient13. 

Comparison with density-matches was important given that sparseness itself results in enhanced 

smallworldness14. 

Functional networks were marked by significantly increased small world scores (functional 

network: 2.8±0.23; synaptic network: 1.0±0.035; n=5, p=0.0079, Wilcoxon rank-sum) resulting 

from increased clustering (function: 2.8±0.23; synaptic network : 1.0±0.035, n=5, p=0.0079), with 

characteristic path lengths similar to random-matches (function: 1.0±6.4x10-4;  synaptic network: 

0.99±0.033; n=5, p=0.69). The lag interval T was chosen to encompass 

                                                           
12 Watts and Strogatz, “Collective Dynamics of ‘small-World’networks.” 
13 Humphries and Gurney, “Network ‘small-World-Ness.’” 
14 Hlinka, Hartman, and Paluš, “Small-World Topology of Functional Connectivity in Randomly Connected 
Dynamical Systems.” 
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Figure 3-2.   Glossary of network definitons. 

 

important network timescales for synaptic plasticity and integration15. We also generated 

functional networks using intervals of 10 and 50 ms, which showed that the emergence of non-

random features does not depend strongly on choice of T (functional network for T=10ms: small 

world ratio 3.2±0.24, n=5, p=0.0079; functional network for T=50ms: small word ratio 2.6±0.22, 

n=5, p=0.0079). 

                                                           
15 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under Realistic 
Experimental Constraints”; Kruskal, Li, and MacLean, “Circuit Reactivation Dynamically Regulates Synaptic Plasticity 
in Neocortex.” 
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Given modest sampling conditions (e.g. binning near timescales of synaptic integration), 

functional relationships can indicate locations of probable synaptic recruitment16.  However, a 

subset of edges in functional networks are 'false positives'—they reflect polysynaptic relationships 

and other combined statistical dependencies rather than monosynaptic connectivity and 

recruitment17. To determine whether these measurement artifacts were responsible for the 

statistical differences between function and synaptic networks, we turned to recruitment networks. 

Pruned of false positives, recruitment networks were significantly more small world than 

functional networks constructed from the same activity (4.6±0.87; n=5, p=0.0079), with even 

shorter characteristic paths (recruitment: 0.65±0.072, n=5, p=0.0079 compared to function, 

Wilcoxon rank-sum) and a similar elevation in clustering (recruitment: 3.0±0.26; n=5, p=0.22). 

Thus, emergent statistical structure in the functional networks reflected coordinated timing among 

multiple synaptically connected neurons. 

 

Preferential routes for propagating activity 

As demonstrated by non-random recruitment, i.e. clustering in the recruitment network, 

activity did not propagate homogeneously through the random topology. However, it remained a 

possibility that the seemingly non-random routing of activity was simply the byproduct of shared 

activity, without being selective on the basis of connectivity. As a control, the active subnetwork 

establishes the role of interactions among neurons with elevated firing rates (including pairs of 

neurons which never recruited one another within the interval T). Compared to functional 

networks, the corresponding active subnetwork exhibited reduced small world ratio (active 

                                                           
16 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under Realistic 
Experimental Constraints.” 
17 Ibid.; Gerstein, Perkel, and Subramanian, “Identification of Functionally Related Neural Assemblies.” 
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network: 2.2±0.26, n=5, p=0.0159) and reduced clustering (1.3±0.041, p=0.0079), despite 

somewhat shorter characteristic paths (0.60±0.055, n=5, p=0.0079). 

If directed connections that never fired sequentially were pruned from the active 

subnetwork, it would attain the same binary topology as the recruitment network. Comparing the 

active network with the recruitment network, global clustering ratio was significantly increased 

(from 1.3±0.041 to 3.0±0.26, n=5, p=0.0079, Wilcoxon rank-sum). Thus, the select connections 

which were directly involved in propagation of spiking activity were more clustered than activated 

connections as a whole (Fig 1c). 

We next evaluated whether neuronal pairs that never fired sequentially differed from those 

that did. Comparisons were performed between in-degree matched samples.  Connected neurons 

that never fired in succession shared significantly fewer neighbors than those that did fire 

sequentially at least once (n=500 pairs, p=3.1 x 10-17, Wilcoxon rank-sum). In the model, activity 

was selectively routed through interconnected neighborhoods. 

 

Deconstructing patterns of directed clustering 

Connectivity within a triplet is the simplest way two nodes can share a common neighbor 

and be clustered. However, this measure fails to account for the direction of connection. Since 

direction is crucial in synaptic communication, we turned to a formulation which differentiates 

directed triangle motifs18. From the perspective of a reference postsynaptic neuron, clustered 

neighbors can be arranged into four kinds of three-edge triangle motifs: fan-in, fan-out, 

middleman, and cycle arrangements (Figure 3a). Taken in isolation, fan-in, middle-node, and cycle 

triangles are isomorphic to one another through rotation, i.e. dependent on labeling the reference 

                                                           
18 Fagiolo, “Clustering in Complex Directed Networks.” 
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node (which is necessary to compute local clustering). Measures of undirected clustering can be 

decomposed fractionally into these four components. Because the underlying model synaptic 

connectivity was random, none of the four triangle motifs were more prevalent than the others, 

and each contributed equally to synaptic clustering (Figure 3b). By contrast, in  

recruitment networks, fan-in triangle motifs were highly overrepresented (Figure 3c). The 

overrepresentation of fan-in triangle motif was also present in the functional network: for example, 

iterative Bayesian inference19 was sensitive to asymmetric directed clustering in model activity 

(fan-in: 0.38±0.052, fan-out: 0.29±0.032, middleman: 0.19±0.016, cycle: 0.15±0.0076; mean±std, 

threshold at the 95th percentile). 

 

 

 

Figure 3-3.   Clustered fan-in triangle motifs dominate recruitment networks. 

 

(a) Scheme for factoring transitive clustering into constituent directed patterns. 

(b) Boxplots of the prevalence of the directed patterns in the randomly connected synaptic network. 

(c) Boxplots of the prevalence of the directed patterns in the recruitment network. 

(d) Boxplots of the prevalence of directed patterns in nulls generated from rate-matched Poisson 

populations without synaptic interactions analyzed with iterative Bayesian inference,  

 

 

                                                           
19 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under Realistic 
Experimental Constraints.” 
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To understand whether these higher order asymmetric features emerge from chance 

correlations tied to firing rates, we generated Poisson populations that were rate-matched on a 

neuron-by-neuron and trial-by-trial basis. This resulted in an inhomogeneous distribution of firing 

rates across all trails.  Our Poisson null populations had identical expected spike counts as model 

activity in each 100ms bin but no synaptic interactions and no causal propagation of activity. 

Undirected clustering was significantly lower in iterative Bayesian maps of uncoupled Poisson 

rate-matched activity compared to connected network models (Poisson rate-match:  

 

 

Figure 3-4.   Fan-in triangle motifs are not simply the result of firing rate.  

 

(a) Median firing rate across all fan-out clustering thresholds (middle quartiles shaded). 

(b) Probability distribution of firing rates for fan out triangle motif. Firing rate distributions for 

subpopulations thresholded to exclude the bottom 10% (mustard), 50% (light green), and 90% (dark green) 

of fan-out clustered model neurons. 

(c) median firing rate across all fan-in clustering thresholds (middle quartiles shaded). 

(d) Probability distribution of firing rates for fan in triangle motif. Reference cells with high fan-in 

clustering had lower firing rates than the population as a whole: bottom10% (light blue), 50% (blue), and 

90% (purple) of fan-in clustered model neurons.  
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0.0052±3.6x10-4; simulated activity: 0.024±0.013; Wilcoxon rank-sum p=0.036; n=3), and the fan-

in triangle motif was not elevated relative to other clustering patterns (Figure 2d). The Poisson 

populations demonstrated that elevated fan-in triangle motifs do not result trivially from the 

analysis procedure but instead are the result of synaptic interactions between neurons.   

Interestingly, we found that model neurons with high fan-out clustering were characterized by 

elevated firing rates (Figure 3a,b), but model neurons which comprised the fan-in triangle motif 

actually contracted towards low firing rates (Figure 3c,d). Fan-in triangles were more abundant in 

propagating activity than would be expected from their frequency in the synaptic network or 

component firing rates alone. Like undirected clustering the emergence of fan-in clustering in 

maps of propagating activity was robust to choice of T. Fan-in clustering was highly elevated in 

recruitment maps for T=10 ms (undirected: 0.0068±0.0007; fan-in 0.011±0.0017; fan-out: 

0.0028±0.0001; middle-node: 0.0068±0.0007; cycle: 0.0052±0.0004; mean±std for 5 simulations) 

and T=50 ms  (undirected: 0.019±0.0015; fan-in 0.027±0.0027; fan-out: 0.0077±0.0003; middle-

node: 0.019±0.0013; cycle: 0.015±0.0007 ; mean±std for 5 simulations). Because of the different 

levels of sparseness in the numbers of connections these values should not be compared across 

values of T. Instead these analyses demonstrate that the over-representation of fan-in triangles is 

robust across a number of time scales.  

 

Activity at fan-in triangle motifs is temporally organized 

To investigate the mechanism for overrepresentation of fan-in triangles in recruitment 

networks, we measured spike timing at their locations. The signature of fan-in triangle motifs is 

convergence from interconnected presynaptic neurons, a motif that could potentially facilitate 

cooperative summation of synaptic inputs. Consistent with this postulate, presynaptic neurons in 
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fan-in triangle motifs were marked by increased probability of firing in the 10 ms prior to 

postsynaptic spiking (Figure 5a, 5b). 

We next compared differences in presynaptic timing relationships at loci of fan-in triangle 

motifs compared to loci of simple convergence, to assess the role of presynaptic interconnectivity. 

For this analysis, random samples were obtained from epochs of coincident firing: 50 ms windows 

where every neuron in a triplet was active, centered on a spike in the postsynaptic reference neuron. 

To avoid confounds from juxtaposing multiple motifs, neuron triplets with any additional 

connections, including recurrent loops, were excluded for this specific analysis alone. As a result 

only fan-in triangles with exactly three interconnections were analyzed in this case. We found fan-

in presynaptic neurons were stereotypically ordered in a manner consistent with the direction of 

their interconnection, resulting in an asymmetric 

 

 

 

 

 

Figure 3-5.   Coordinated timing among 

model neurons in fan-in triangle motifs.  

 

(a,b) Probability distribution of spiking 

within fan-in triangle motifs. Postsynaptic 

spiking at t=0 (tall mark, center of mass; 

short mark, peak). 

(c) Probability versus difference in 

presynaptic timing t2 – t1 during coincident 

epochs. 

(d) Rate of observing coincident firing [50 

ms] in fan-in triangle motifs 
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distribution of intervals between their firing (Figure 5c). In addition to the temporal structure 

imposed by this asymmetry, mean absolute timing difference between presynaptic neurons in 

clustered fan-in motifs was modestly but significantly more temporally precise than were neurons 

in simple convergence motifs (13.5±10.2 ms compared to 14.9±10.7 ms; Wilcoxon rank-sum on 

mean-absolute timing difference, p=0.0035, n=1000 samples). 

Moreover, we found that coincidence in fan-in triangle motifs occurred nearly twice as 

frequently as in motifs of simple convergence (1.9 ± 0.17 times more frequent, mean ± std; 

Wilcoxon rank-sum, p=0.0079, n=5 model datasets). Accounting for expected frequency of the two 

connection patterns in the underlying synaptic network, coincident activity is far more common at 

sites of fan-in triangles than at sites of simple convergence (linear regression: slope 3.0, y-intercept 

0.00075, n=5 simulations, r2=0.91, p=0.011) (Figure 5d). 

Increasing clustering among active inputs with depolarization  

 We postulated that clustering is efficacious for synaptic integration and examined whether 

the prevalence of clustering was predictive of postsynaptic membrane potentials.  Pooling over all 

neurons and time bins, we binned the distribution of membrane voltages into segments that 

contained equal numbers of samples (Figure 6a). On average, because the model was active in the 

analyzed simulations, membrane voltages were depolarized from the resting equilibrium potential 

of -65 mV (median: -60.2 mV; lower quartile: -63.6 mV; upper quartile: -56.8 mV).  To test our 

hypothesis, we generated functional networks that related recent presynaptic activity (within a 25 

ms interval) to postsynaptic voltage (Figure 6b; see Methods), yielding one network for each 

division of the voltage distribution (Figure 6c). These networks can be viewed as reverse 

correlograms conditioned on postsynaptic voltage, and differed in the statistics of their topologies 

across different voltage regimes. At more negative membrane 
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Figure 3-6.   The 

prevalence of fan-in 

triangle motifs 

increased with post-

synaptic voltage. 

 

(a) Distribution of 

postsynaptic voltage. 

Shading corresponds 

to 

(b) and (c) and contain 

the same number of 

samples per voltage 

bin. (b) Postsynaptic 

voltage was mapped 

in relation to 

presynaptic spiking. 

(c) One example 

weighted directed 

topology for each 

division of the voltage 

distribution. 

(d) Ratio versus 

voltage (clustering 

coefficient: blue, 

characteristic path: 

gray, shading reflects 

one standard 

deviation). 

(e) Small world ratio 

versus voltage 

(shading reflects one 

standard deviation). 
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potentials, the active neurons which connected to the postsynaptic reference neuron (and accounted 

for its recent excitatory synaptic drive) were only modestly more clustered than random 

sparseness-matched controls. As the postsynaptic neuron depolarized, the presynaptic nodes 

driving that depolarization became increasingly clustered, peaking at the threshold for firing 

(Figure 6d). Characteristic paths were similar to random graphs at all subthreshold voltages. As a 

result of elevated clustering during membrane depolarization, small world ratios peaked at the 

most depolarized voltages corresponding to threshold for action potential generation. These data 

support the hypothesis that activity among clustered presynaptic neurons is particularly effective 

for recruiting the postsynaptic neuron to spike. 

 

Emergence of higher-order features depends on mean synaptic weight 

 The statistical incongruence of function and synaptic connectivity indicates that spiking 

activity does not flow in an egalitarian fashion through the synaptic network. Instead, patterns of 

local clustering influence and direct where propagating activity occurs most frequently. That is, 

patterns of activity are shaped by higher-order patterns in synaptic connectivity and not just 

pairwise couplings. To further explore the dependence of activity flow on higher order synaptic 

connections we evaluated postsynaptic recruitment in a network model with a modest increase in 

mean synaptic strength. Synaptic connections were twice as strong on average compared to the 

network models used throughout the remainder of this study but remained too weak to drive 

spiking alone (Figure 7a). The two network designs did not differ in connection density. After 

synaptic weights were doubled, functional networks became more similar in topology to synaptic 

networks (small world ratio decreased; Wilcoxon rank-sum, p=0.0079, n=5) (Figure 7b). 
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Figure 3-7.   Increased synaptic weights reduced higher-order functional coordination. (a) 

Distribution of model synaptic weights (excitatory-excitatory: green, excitatory-inhibitory: blue, 

inhibitory-excitatory: orange, inhibitory-inhibitory: gray). Top: naturalistic model. Bottom: 

double-strength model. Inset in both cases shows zoom to better illustrate heavy tail. (b) Box plot 

of clustering coefficient in the two models. 2X indicated double-strength synaptic connections. 

(c) Box plot of small worldness in the two models. 2X indicated double-strength synaptic 

connections. (d) Comparison of mean directed clustering with each model iteration on either 

side. Each class of directed clustering is labeled in the plot.  

 

 

The double-strength models were less clustered (Figure 7c) (Wilcoxon rank-sum, p=0.0079, n=5), 

and exhibited longer average path lengths (Wilcoxon rank-sum, p=0.0079, n=5). Directed 

clustering was compared across the two families of models. Recruitment networks were analyzed 

with binary edges to control for their distinct mean synaptic weights. In addition to their decreased 

overall clustering, the fan-in triangle motif was significantly rarer in double-strength recruitment 

networks (Figure 7d) (from 0.030±0.0051 to 0.022±0.0025, p=0.030, n=6), while the fan-out 

triangle motif showed a small but significant increase in abundance (from 0.0040±2.0x10-4 to 

0.0046±3.2x10-4, p=0.0043, n=6). Stronger presynaptic inputs reduced the need for extensive 

postsynaptic integration, allowing individual presynaptic cells to have a more independent impact 

on their postsynaptic partners. As a result, statistics of propagating activity were more faithful to 

underlying pairwise connections in the models with increased synaptic strength. 
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Fan-in triangles characterize neocortical circuit dynamics 

In model simulations, fan-in triangle motifs were abundant in maps of function and recruitment. 

We next evaluated whether the preponderance of fan-in triangle motifs would be robust to 

additional complexity in single-neurons and their connections. Unlike the simple model neurons 

that we used for simulation, real neurons are complex elements20 and the connections between 

them are structured21. If clustered fan-in triangle motifs are a general feature of high-conductance 

nodes in a complex system, where coordinated inputs drive integration, the fan-in triangle will be 

overabundant in experimental dynamics. This postulate would be falsified if all directed clustering 

motifs were equally common in functional networks. To investigate, we analyzed high speed 

imaging data (20 Hz) of spontaneous circuit activity collected ex vivo in mouse somatosensory 

cortex (Figure 8a) (following 22). We generated functional networks from the imaged experimental 

data using an iterative Bayesian approach which is robust to relatively small numbers of 

observations (33). We then measured the prevalence of fan-in motifs in the functional topology 

(Figure 8b). Importantly, iterative Bayesian inference was not biased toward detection of fan-in 

triangle motifs, as demonstrated with rate-matched Poisson spiking (see Figure 3d). 

                                                           
20 Behabadi and Mel, “Mechanisms Underlying Subunit Independence in Pyramidal Neuron Dendrites.” 
21 Perin, Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups”; Song et al., “Highly 
Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
22 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
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Figure 3-8.   Clustering in experimentally recorded emergent cortical circuit activity was 

characterized by the fan-in triangle motif. 

 

(a) Two photon image of Ca2+ indicator dye in a slice of mouse somatosensory cortex. 

(b) Example z-scored fluorescent traces among functionally related neurons identified as 

members in a fan-in triangle motif. 

(c) Relative abundance of both fan-in (blue) and fan-out (green) clustering relative to density-

matched random graphs as a function of inclusion threshold on inferred connections. Shading 

reflects one standard deviation based on bootstrap resampling for a 30% false positives rate 

(n=100). 

(d) Top 5% of functional edges (light grey) and corresponding neurons (green) collected from 

the same field of view as a. Grey neurons were also active but were not connected with edges 

exceeding the cut-off. Three example fan-in triangles are illustrated with directed edges (blue 

arrows) and blue shading (motif specific neurons). Circle indicates reference neuron in each 

triangle.  

(e) Separate functional analysis of triplet motifs using cross-correlation. For each triplet, the 

product of the z-scored presynaptic traces were compared to the postsynaptic trace. Fan-in 

triangle motifs were characterized by higher levels of coordination than motifs of simple 

convergence. 
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Though imperfect indicators, functional weights probabilistically identify the likelihood of true 

monosynaptic excitatory connectivity23. As a result, expected error rate for inferred connections 

can be adjusted with a sliding threshold on functional weight. Stricter thresholds yield a more 

accurate approximation of the underlying recruitment network at the cost of restricted sampling. 

Using inferred recruitment networks, beginning at the top quartile of inferred weights, directed 

clustering was computed in five-percentile increments. Confidence intervals were obtained using 

bootstrap resampling under the assumption of a 30% false-positive rate. As confidence of synaptic 

connectivity increased, the fan-in triangle motif became increasingly abundant and fan-out 

triangles less so (Figure 8c). Differences between the two motifs were significant (threshold at 95th 

percentile, p=4.8x10-34, n=100 bootstrap resampled functional networks, Wilcoxon ranksum). 

We next measured whether strong functionally coupled neurons were more spatially 

proximal than random pairs. We defined strong functional connections as those exceeding a 95% 

threshold on non-zero weights since previous work has indicated that these particular functional 

connections are more likely to reflect a causal synaptic connection. We found that the median 

pairwise distance separating strong functionally connected cells was 249 µm, whereas randomly 

chosen pairs of neurons were separated by a median 263 µm (Wilcoxon-ranksum p=0.0336, 

nfunctional = 638, nrandom = 10000). We then measured triplets of neurons with functional connections 

that form triangles to determine whether these neurons were more spatially proximal to one another 

than randomly chosen triplets of neurons. To investigate, proximity was quantified as the perimeter 

around the triangle formed by vertices at the spatial location of each neuron. Neurons in functional 

triangles with mutual connectivity and at least three functional connections were inscribed by 

                                                           
23 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under Realistic 
Experimental Constraints.” 
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perimeters of median length 807 µm, compared to median perimeter of 823 µm for randomly 

selected triplets that were unconstrained by direction and number of edges (Wilcoxon rank-sum 

p=0.0097, ntriangles = 2556, nrandom=10,000). Interestingly, triplets of neurons connected into 

arrangements of either simple divergence or simple convergence (i.e. neurons in wedges, lacking 

interconnectedness between the common neighbors), were even more distant, inscribed by a 

perimeter of median 839 µm (Wilcoxon rank-sum, ntriangles = 2556, nwedges = 14,882). Thus, 

clustered triplets (triangles) tended to be arranged significantly more locally than simple 

convergent or simple divergent triplets (wedges).  

 We then compared measures of clustering between the model, which was comprised of 

random connections and the experimental data which almost certainly contained structured 

connectivity (Song, Perin) to evaluate how the measure of fan in and fan-out triangles depend on 

the underlying structural topology. To do so we used a measure of clustering propensity24 which 

allowed us to make comparisons of networks which have very different connection densities. 

Clustering propensity (1-ΔCfan-in and 1-ΔCfan-out) results in a normalized value where 1 is extreme 

clustering as seen in lattices, and 0 indicates no clustering above that expected in Erdős-Rényi 

random networks. For the model, fan-in clustering was scored at 0.18 ± 0.019; and for the 

experimental data, fan-in clustering was scored at 0.20 ± 2.0x10-4 (Wilcoxon ranksum p=1.74x10-

4, nmodel = 5 simulations; ndata = 100 bootstrap samples). Thus, fan-in clustering was modestly but 

significantly more abundant in maps of propagating activity based on experimental recordings. We 

note that we compared thresholded graphs at the 80%-level (i.e. top 20% of non-zero edges) for 

this measure because the experimentally derived functional networks were not well-matched by 

regular lattices below this density. 

                                                           
24 Muldoon, Bridgeford, and Bassett, “Small-World Propensity and Weighted Brain Networks.” 



95 
  
 

 Finally, we measured timing relationships among imaged active neurons. Reliable timing 

relationships were measured independent of other functional analyses, using cross-correlations on 

the normalized fluorescence traces (Methods). Presynaptic coactivity was assessed as the product 

of the two z-scored presynaptic traces and compared to postsynaptic fluorescence as a 

straightforward cross correlation. The resulting average cross-correlogram for fan-in triangles was 

stronger and more asymmetric than those measured from simple-convergence motifs (Figure 8d). 

Thus, presynaptic activity in fan-in triangles was more predictive of postsynaptic firing 

than presynaptic activity in motifs of simple convergence. These results are consistent with fan-in 

triangles supporting coincident input and favoring reliable propagation of activity. Results from 

the model indicated that the fan-in triangle motif temporally coordinates presynaptic inputs, 

rendering them more capable of driving recipient neurons to threshold. Supporting our prediction 

of its fundamental importance for reliable recruitment, in acutely dissected neocortical tissue with 

more complex patterns of connectivity and intrinsic neuronal properties, we find a robust elevation 

of the same directed motif. 

 

DISCUSSION 

Using a model composed of random connections among leaky integrate-and-fire neurons 

with conductance-based synapses, we found that maps of propagating activity were structured and 

non-random. Small-world patterning in the dynamics emerged because a specific higher-order 

connection pattern was particularly effective for postsynaptic integration: convergence of synaptic 

input from connected neighbors. The synaptic connection between neighbors favored coincident 

timing of inputs onto their targets. This coincident activation led to efficient postsynaptic 

integration. As a consequence, clustering among active presynaptic cells tracked depolarization of 
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model postsynaptic neurons. Thus, activity was preferentially routed through fan-in triangle 

motifs.  

In experimental recordings of emergent activity in hundreds of neurons ex vivo, after 

mapping inferred recruitment patterns (33), we found that fan-in triangles were even more 

dramatically overrepresented than in the model. These results are contextualized by increasing 

recognition of non-random functional structure in networks of neurons: Rich club structure has 

been reported ex vivo and in vivo25. Clustered26, small world functional networks27, and nucleation 

of dynamics28 have also been observed in neuronal cultures. Since cultured populations differ from 

neocortex in the details of their topological makeup, these findings across model systems further 

suggest that clustering in general and the fan-in triangle motif in particular may be a canonical 

feature of propagating activity among interconnected neurons. Despite differences in details of 

connectivity and neuronal intrinsic properties, dynamics are constrained by the requirement for 

coincident summation of individually weak inputs. Constraining dynamics beyond pairwise 

relationships can be helpful for cortical computation. Theoretical work has shown that non-

uniform features of connection topology impact information transfer29, and higher-order 

correlations were particularly impactful in low spike-rate regimes30. These complementary results 

from complex networks, statistical physics and network biology suggest that, by shaping feasible 

dynamics, the fan-in triangle motif could enhance information transfer from inputs to outputs.  

                                                           
25 Nigam et al., “Rich-Club Organization in Effective Connectivity among Cortical Neurons.” 
26 Shimono and Beggs, “Functional Clusters, Hubs, and Communities in the Cortical Microconnectome.” 
27 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology 
of Neuronal Avalanches.” 
28 Orlandi et al., “Noise Focusing and the Emergence of Coherent Activity in Neuronal Cultures.” 
29 Timme et al., “High-Degree Neurons Feed Cortical Computations.” 
30 Zylberberg and Shea-Brown, “Input Nonlinearities Can Shape beyond-Pairwise Correlations and Improve 
Information Transmission by Neural Populations.” 
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We hypothesize that local circuits are organized around fan-in triangle motifs, promoting 

cooperative patterns of firing and stabilizing31 the propagation of activity despite individually 

unreliable neurons. This canonical mechanism provides the coordination necessary to propagate 

signal despite weak synaptic connections. Indeed, reliable sequential firing was associated with 

number of fan-in triangles even after controlling for overall in-degree. Although clustering among 

fan-in triangles has not been tested directly until now, paired patch clamp recordings have shown 

that local neocortical circuitry is characterized structurally by abundant triplet motifs32. Our data 

and modeling suggest a functional consequence for a subset of these synaptic motifs: connected 

presynaptic neurons help establish coordinated timing among convergent inputs, leading to 

cooperative summation at the postsynaptic membrane. Such cooperativity has been shown to be 

one potential mechanism capable of generating spike trains that are consistent with experimental 

observations in vivo33.  

While there are certainly explicit developmental rules that govern neuron to neuron 

connectivity, our results suggest that higher-order connectivity need not require specification a 

priori. It could emerge autonomously if fan-in triangle motifs within a random network were 

stabilized and magnified during network development, e.g. by pruning non-recruiting connections 

through activity-dependent plasticity. Thus, higher-order synaptic motifs that are particularly 

effective for postsynaptic recruitment could potentially self-organize34.  

                                                           
31 Angulo, Liu, and Slotine, “Network Motifs Emerge from Interconnections That Favour Stability.” 
32 Perin, Berger, and Markram, “A Synaptic Organizing Principle for Cortical Neuronal Groups”; Song et al., “Highly 
Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits.” 
33 Softky and Koch, “The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of 
Random EPSPs.” 
34 Miner and Triesch, “Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-Random 
Features of Cortical Synaptic Wiring.” 
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These results do not indicate a complete schism between synaptic connectivity and 

dynamics—one clearly depends on the other. However, their relationship is complicated by the 

integrative properties of single neurons. Synaptic integration constrains feasible dynamics, and 

distributed synaptic motifs route the propagation of activity. These interactions are a source of 

higher-order dynamical structure. The routing of information is coordinated by higher-order 

synaptic patterns and the context of ongoing activity because the routing of spikes is determined 

by relative timing and collective interactions.  

 

MATERIALS AND METHODS 

Local cortical population model 

 Simulations were implemented using the Brian Brain Simulator35. Model populations 

consisted of 1000 excitatory neurons, 200 inhibitory neurons and 50 Poisson input units. 

Connection probabilities depended on source and target identity. For example, inhibitory-

excitatory connections occurred with probability 0.25 (Pee = 0.2, Pei = 0.35, Pie = 0.25, Pii = 0.3).  

 Conductance based synaptic weights were drawn from a heavy-tailed distribution and 

assigned randomly36. Weights were drawn randomly from a lognormal distribution with mu = -

0.64 and sigma = 0.51. These parameters are the mean and standard deviation of the corresponding 

normal curve. The resulting lognormal ensemble has expected mean of 0.60 and variance of 0.11, 

in multiples of the leak conductance. Connections from inhibitory to excitatory cells were scaled 

by a further 50% to simulate efficacious somatic contacts.  A small tonic excitatory drive gt was 

                                                           
35 Goodman and Brette, “The Brian Simulator.” 
36 Lefort et al., “The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory 
Cortex”; Teramae, Tsubo, and Fukai, “Optimal Spike-Based Communication in Excitable Networks with Strong-
Sparse and Weak-Dense Links.” 
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supplied to all units to help stabilize sparse spiking. Synaptic bombardments induced exponentially 

shaped membrane conductances with leaky-integrate-and-fire summation. Conductance-based 

synapses are important for recapitulating synaptic integration in the high-conductance state37. We 

used sparse and randomly connected networks in which we did not impose any synaptic 

organization beyond cell-type dependent connection probabilities. 

 Trials began with 50 ms of activity in the input pool at 15 Hz, exciting the network via 

random input projections. After input units were silenced, the recording period began, and activity 

flowed through the network for 100 ms.  Input units projecting to excitatory cells randomly and 

independently with probability 0.1. Every 100 trials (an epoch), new random projections were 

drawn from the input pool to the excitatory population, simulating a diversity of activity. 

Participation during a single input epoch totaled 64±0.98% of neurons (mean ± std), growing to 

encompass 85.5% of neurons when all sets of input projections were considered (i.e. over all 

epochs). 

Excitatory reversal potential Ee was 0 mV, as was Et. Inhibitory reversal potential Ei was -

90 mV. Reversal potential for leak current Eleak was -65 mV. Firing threshold was -48 mV, and 

post-spike reset was -70 mV. In addition to after spike hyperpolarization induced by the reset 

potential, a 1 ms absolute refractory period was imposed on model neurons. Leak conductance 

gleak was fixed at 0.20 mS. Tonic depolarizing conductance gt was equal in magnitude to the leak 

conductance. Membrane time constant τm was 20 ms; excitatory synaptic time constant τe was 10 

ms; and inhibitory synaptic time constant τi was 5 ms. Additional description can be found in38.  

                                                           
37 Destexhe, Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo”; Kumar et al., “The 
High-Conductance State of Cortical Networks.” 
38 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections 
under Realistic Experimental Constraints.” 
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Quantification of simulated dynamics 

Spiking dynamics were compared to in vivo activity according to the following criteria: 

asynchrony39 was measured with spike-rate correlations, by convolving spike times with a 

Guassian kernel of width σ = 3 ms. Among excitatory neurons in the recording period, mean 

correlation coefficient was 0.001940. This asynchrony emerged in the presence of heterogeneous 

connection strengths, raising the possibility of combining stable propagation with rich internal 

dynamics41. Irregularity was measured with interspike-intervals, which were observed to have 

mean squared-coefficient of variation of 0.81, consistent with other reports of irregular activity42. 

To measure inter-spike intervals, model activity was stimulated with Poisson firing for 50 ms, then 

allowed to evolve for 950 ms in isolation. This procedure was repeated 100 times. Excitatory 

spiking activity was characterized by a median branching coefficient of 1.00 (for 10 ms bins), 

indicating near-critical dynamics43. Firing rates in the excitatory population during the recording 

period were 1.33 ± 3.15 Hz (mean ± std) consistent with findings in awake behaving mice44. 

Collective spiking generated spike-driven conductances that dwarfed the leak conductance, in 

keeping with definitions of high-conductance state45. 

 

                                                           
39 Brunel, “Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons.” 
40 Kumar et al., “The High-Conductance State of Cortical Networks.” 
41 Teramae, Tsubo, and Fukai, “Optimal Spike-Based Communication in Excitable Networks with Strong-Sparse and 
Weak-Dense Links”; Ostojic, “Two Types of Asynchronous Activity in Networks of Excitatory and Inhibitory Spiking 
Neurons.” 
42 Kumar, Rotter, and Aertsen, “Spiking Activity Propagation in Neuronal Networks.” 
43 Beggs and Plenz, “Neuronal Avalanches in Neocortical Circuits”; Haldeman and Beggs, “Critical 
Branching Captures Activity in Living Neural Networks and Maximizes the Number of Metastable 
States”; Millman et al., “Self-Organized Criticality Occurs in Non-Conservative Neuronal Networks 
during Up States”; Chialvo, “Emergent Complex Neural Dynamics.” 
44 Crochet et al., “Synaptic Mechanisms Underlying Sparse Coding of Active Touch.” 
45 Destexhe, Rudolph, and Paré, “The High-Conductance State of Neocortical Neurons in Vivo.” 
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Network construction 

Call the directed network of synaptic connections among excitatory neurons Esyn and the 

population of excitatory cells Ve. Construct the directed graph of synaptic connections:    

  

To map functional relationships using lagged firing, define recent activity for neuron i at time t as 

firing at least once in the 25 ms preceding t. 

  

  

 More formally, we can define random variable Si representing the activity of neuron i such 

that 

 

  

In that case, 

  

 

The recruitment network encompassed synaptically connected neurons manifesting lagged 

patterns: 
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Iterative Bayesian networks were measured with a heuristic optimization procedure, described 

further below and in 46, following 47. 

 

Global network statistics 

Since shortest path measurements assume a cost matrix, edge weights were first inverted 

so strong connections were cheap and zero-weighted connections were infinitely costly. Shortest 

paths between all pairs were computed using Dijkstra’s algorithm. Mean path length was compared 

to sparseness-matched Erdős-Rényi graphs analyzed in the same way. Local clustering coefficients 

were computed using the neighbors of neighbors formulation48 and aggregated as the mean over 

all neurons. Sparseness-matched Erdős-Rényi graphs were analyzed in the same fashion. 

Clustering score was the ratio of the actual mean to sparseness-matched null mean. Small-world 

topologies can be quantified as a ratio of ratios, clustering elevation divided by mean path length 

reduction49. 

 

Transitive clustering and directed clustering 

                                                           
46 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections 
under Realistic Experimental Constraints.” 
47 Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World 
Topology of Neuronal Avalanches.” 
48 Watts and Strogatz, “Collective Dynamics of ‘small-World’networks.” 
49 Humphries and Gurney, “Network ‘small-World-Ness.’” 

( , )recruitment e omniscientG V E
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Clustering was also investigated using a related definition, the number of connected 

undirected triangles as a fraction of all possible undirected triangles (transitivity formulation). 

Directed clustering was computed in the same way, using directed triangles instead of undirected50. 

To compare clustering between data and model networks, across connection densities that 

were very different, we followed the small-world propensity approach51. In that work, clustering 

levels ΔC are normalized as the fractional distance between density-matched lattice and random 

graphs. We termed this measure clustering propensity, expressing it as 1 – ΔC so that 1 signified 

extreme clustering and 0 signified no clustering beyond that expected at random. We made a 

straightforward extension to this approach to account for directed clustering, simply substituting 

directed triangle counts for undirected triangle counts, with appropriate normalizations52. 

Quantifications based on clustering propensity recapitulated our findings quantifying clustering as 

fractional abundance over random expectation. 

 

Mapping presynaptic ensemble in relation to postsynaptic voltage 

 For the set of voltage bins with lower bounds a and upper bounds b, construct one network 

for each bin k, where edge (i, j)k is  quantifying the probability model neuron j will have 

postsynaptic potential Mj between ak and bk conditioned on presynaptic model neuron i being 

recently active. Recently active was defined as firing within 25 ms relative to postsynaptic voltage 

measurement. A final condition was imposed: that connected pairs also share a synaptic 

connection, a convenience of measurement unique to simulated networks. 

( , )k e kG V E   

                                                           
50 Fagiolo, “Clustering in Complex Directed Networks.” 
51 Muldoon, Bridgeford, and Bassett, “Small-World Propensity and Weighted Brain Networks.” 
52 Fagiolo, “Clustering in Complex Directed Networks.” 
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Scaled synaptic topologies 

 Functional topologies were measured for simulations having typical synaptic weight 

distributions (n=5) and for simulations where random draws from the synaptic weight distributions 

were scaled to double strength (n=6). Ratios for global clustering, characteristic path, and 

smallworldness were quantified following53, as above, on the two sets of weighted, symmetrized 

topologies. Directed clustering was measured following54. The directed clustering measurements 

were conducted on binary topologies to control for potential differences stemming from their 

different underlying mean synaptic weights. 

 

Preparation of Ca2+-dye loaded slices 

All procedures were performed in accordance with and approved by the Institutional 

Animal Care and Use Committee at the University of Chicago. One juvenile mouse (postnatal day 

14, of strain C57BL/6) was anesthetized by intraperitoneal injection of ketamine-xylazine and 

rapidly decapitated. The brain was dissected and placed in oxygenated, ice-cold artificial 

cerebrospinal fluid (Cut-ACSF; contents contain the following in mM: 3 KCl, 26 NaHCO3, 1 

NaH2PO4, 0.5 CaCl2, 3.5 MgSO4 25 dextrose, and 123 sucrose). The brain was then sliced 

coronally using a vibratome (VT1000S; Leica) into 450 m thick slices. These slices encompassed 

the mouse whisker somatosensory cortex. Slices were then transferred into 35°C oxygenated 

                                                           
53 Humphries and Gurney, “Network ‘small-World-Ness.’” 
54 Fagiolo, “Clustering in Complex Directed Networks.” 
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incubation fluid (Incu-ACSF; contents contain the following, in mM: 123 NaCl, 3 KCl, 26 

NaHCO3, 1 NaH2PO4, 2 CaCl2, 6 MgSO4, 25 dextrose) for 30 min. Bulk loading of Ca2+ dye 

was then performed, via transfer of slices into a Petri dish containing ∼2 ml of Incu-ACSF and an 

aliquot of 50 μg Fura-2AM (Product code, Invitrogen, location) dissolved in 13 μl DMSO and 2 

μl of Pluronic F-127 (Code, Invitrogen, location) (following 55). 

 

Ca2+-imaging procedure 

Throughout the duration of imaging, slices were continuously perfused with a standard 

ACSF solution (contents contain the following, in mM: 123 NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4, 

2 CaCl2, 2 MgSO4, and 25 dextrose, which was continuously aerated with 95% O2, 5% CO2). 

Visualization of Fura-2AM loaded neurons was performed via serial 5 min recordings, collected 

using the HOPS scanning technique (a suite of software and custom microscopy setup developed 

in-house, see 56). This method allowed us to monitor action potential generation within individual 

neurons, by detecting contours of loaded cells from a raster image, then computing an efficient 

traveling salesman tour over those cell bodies. Our dwell time parameter was fixed at a value of 

16 samples/cell/frame. Population framerate was 20 Hz, resulting in ~450 neurons sampled once 

every ~50 ms. Changes in emitted fluorescence were analyzed with a threshold-crossing approach. 

First, a signal-to-noise cutoff was implemented by measuring the ratio of the 99th percentile divided 

by the mean for the fluorescence trace of each cell. Cells exceeding 1.55 by this metric were 

retained for further analysis. Of the 444 sampled neurons, 189 exceeded our strict criterion on 

signal-to-noise (see Methods). Among these cells with clean fluorescent signals, instances of 

                                                           
55 Sadovsky and MacLean, “Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of 
Microcircuit Activity.” 
56 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
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elevated firing were identified from excursions in the signal exceeding two-sigma, with inflection 

points more precisely identified by following these excursions backwards to the bin of their most 

recent median-crossing. The resulting binary vector identified high-probability periods of spiking 

activity across the imaged population57. 

 

Inferring connectivity 

Recurring timing relationships can be used to identify likely synaptic connections between 

individual pairs, particularly lagged firing near the timescale of synaptic integration. We used an 

iterative Bayesian inference algorithm to parse these lagged firing patterns58. The inference 

algorithm was initialized five times, and final weights were pooled as an average. The combined 

network was thresholded to isolate its strongest relationships. With increasing threshold, functional 

relationships became more precise in indicating true monosynaptic connectivity, and also more 

confidently overabundant in the fan-in triangle motif. 

To understand the impact of mistaken inferences from a different perspective, independent 

of relationships between functional weight and true connectivity, bootstrap resampling was used 

to estimate how errors in inferred connectivity affected estimates of directed clustering measures. 

For an error rate of 30% estimated from simulated experimental constraints59, differences in 

directed clustering were significant even after redacting possible false positives (100 bootstrap-

resampled topologies; Figure 8c,e). 

                                                           
57 Sadovsky and MacLean, “Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory 
and Somatosensory Microcircuitry”; Runfeldt, Sadovsky, and MacLean, “Acetylcholine Functionally Reorganizes 
Neocortical Microcircuits.” 
58 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under Realistic 
Experimental Constraints”; Pajevic and Plenz, “Efficient Network Reconstruction from Dynamical Cascades 
Identifies Small-World Topology of Neuronal Avalanches.” 
59 Chambers and MacLean, “Multineuronal Activity Patterns Identify Selective Synaptic Connections under Realistic 
Experimental Constraints.” 
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In a typical simulated network, the density of the recruitment network was 0.049, meaning 

only about one quarter of synaptic connections were a site of propagating activity. Since only those 

pairs are visible in patterns of lagged firing, the density of recruiting connections was shown for 

an additional definition of optimal performance (one potentially more appropriate for models with 

sparse firing). 

 

Validating inferred relationships with cross-correlation 

 Average cross-correlations were computed over a two-second sliding window using z-

scored fluorescence traces. The first signal was computed as the product of two putative 

presynaptic fluorescence traces, as a simple score of their activity and/or coactivity. The second 

signal was the postsynaptic fluorescence trace. Their raw cross-correlation measures the timing 

offsets between putative presynaptic activity and postsynaptic firing. The functional relationships 

used to define fan-in triangle motifs versus simple convergence motifs inferred using iterative 

Bayesian inference, on the basis of single-frame lagged activity, measured in 50 ms bins. 
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CHAPTER 4 

 

General Discussion 
 

 

The network paradigm is a source of growing interest in the neuroscience community. The 

key to progress in this area is attention to relationships between the biophysics of individual 

neurons and emergent routing patterns between them. It is being increasingly recognized that 

higher-order interactions in synaptic networks are particularly important. These changing priorities 

are reflected by review pieces in high-profile settings1. Chiefly, these articles are outlining 

challenges and open questions. The results presented in these chapters go beyond these calls to 

action, furthering our understanding of how synaptic connectivity gives rise to dynamic firing 

patterns in isolated neocortical tissue. Chiefly, predicting population responses is difficult because 

individual synaptic connections are weak while postsynaptic integration is non-linear and state-

dependent.  

One important area for future work is the relationship between short term plasticity and 

dynamic patterns of functional connectivity. Short-term plasticity imbues synaptic responses with 

history-dependent efficacies. Glutamatergic connections tend to fall into multiple classes: Class 

1A connections with proximal connections, short-term depression, and all-or-none responses, 

Class 1B connections with short-term depression and graded responses, and Class 2 connections 

                                                           
1 Roudi, Dunn, and Hertz, “Multi-Neuronal Activity and Functional Connectivity in Cell Assemblies”; Benson, 
Gleich, and Leskovec, “Higher-Order Organization of Complex Networks”; Shiffrin, “Drawing Causal Inference 
from Big Data”; Hawrylycz et al., “Inferring Cortical Function in the Mouse Visual System through Large-Scale 
Systems Neuroscience.” 
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characterized by distal dendritic targets and short-term facilitation2. Similar issues apply to 

inhibitory neurons3. It is crucial to characterize the distribution of these varying 

electrophysiological properties in typical cortical populations. In time, it may be possible to predict 

activity directly on the basis of these diverse, complex lower-level features. 

In the meantime, activity mapping is the only tractable method for understanding the 

consequences of these myriad synaptic mechanisms. Because the brain is complex at multiple 

scales, it must be investigated at multiple levels of abstraction. Bridging explanations about 

synaptic mechanisms to their emergent consequences for activity can only be accomplished by 

studying active populations. Recordings of population activity are caused by numerous diverse 

interactions, including history-dependent synaptic effects, but the product of those interactions can 

be surprisingly tractable. An activity-mapping approach can circumvent the need to explicitly 

deduce response-patterns from their many complex lower-level features. 

Should we care about patterns of population responses that evolve over tens of 

milliseconds? We must, because temporal features at these timescales are impactful for 

postsynaptic integration. The activity of cortical output neurons, such as those controlling 

movement through spinal interneurons, is sensitive to temporal features of activity upstream. 

 

ACTIVITY PATTERNS IDENTIFY SELECTIVE SYNAPTIC CONNECTIONS 

In Chapter 2, I advanced a methodology for investigating spatiotemporal structure arising 

in local cortical populations. I focused on recurring lagged firing between pairs of neurons. At the 

                                                           
2 Pasquale and Sherman, “Synaptic Properties of Corticocortical Connections between the Primary and 
Secondary Visual Cortical Areas in the Mouse”; Covic and Sherman, “Synaptic Properties of Connections 
between the Primary and Secondary Auditory Cortices in Mice.” 
3 Gupta, Wang, and Markram, “Organizing Principles for a Diversity of GABAergic Interneurons and Synapses 
in the Neocortex.” 
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time that work was begun, it was unknown whether lagged-correlations in activity across pairs of 

neurons could offer a window into synaptic interactions. In particular, it was feared that sequential 

firing could give the misleading appearance of synaptic connectivity. In large population 

recordings, even random firing could give rise to apparent structure, especially for short 

experimental durations. More optimistically, synaptic connectivity has long been thought to 

impose lagged correlation structure on pairs of connected neurons4. 

I tested the concern that high-firing rates in a large population might reveal only pseudo-

structure rather than genuine synaptic interactions. Neurons in a naturalistic simulation were 

matched to independent Poisson units; the only difference between these two models was the 

presence versus absence of synaptic connections. For each trial, firing rate was measured in the 

simulated neurons. Each Poisson trial was then generated so that Poisson units attained the same 

distribution of expected firing rates. Thus, rates were matched over the entire 100 s of simulated 

recording, as well as within each 100 ms trial. This comparison was likely overly conservative, 

since individual trial firing rates are almost certainly modulated in part by interconnectivity and 

causal influences. Pairwise lagged-correlations between the Poisson units were significantly 

weaker and sparser than their counterparts in the simulated dataset. Even after accounting for 

current limits on experimental duration, measurements of correlation structure reflect causal 

synaptic interactions. 

A second crucial question for interpreting these functional maps: are individual functional 

relationships indicative of likely synaptic connectivity? Measurements of correlation-structure 

were thresholded to isolate only the strongest relationships. Functional networks were constructed 

with edge-weights capturing pairwise measurements. Direct correspondences between functional 

                                                           
4 Gerstein and Perkel, “Simultaneously Recorded Trains of Action Potentials.” 
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relationships and underlying connections were abundant. Stronger functional relationships were 

more likely to reveal genuine monosynaptic connectivity, rather than some multi-synaptic 

statistical relationship or chance coupling. Among the synaptic connections revealed through 

activity mapping with iterative Bayesian inference, strong synaptic connections were 

disproportionately discovered compared to weaker connections. Strong connections are likely 

most salient because they can impact postsynaptic integration more independently, where weaker 

synaptic connections may rely relatively more on distributed coordination, resulting in mutual 

dependencies not accounted for in the forward model. 

False positives certainly remain among the true positive inferred synaptic connections. 

High correlations can exist in the absence of underlying connectivity, where instead of direct 

connection, multi-synaptic patterns or input timing gave rise to the measured statistical regularity. 

For example, divergence is thought to impose misleading common-input correlations5. Therefore, 

inferred synaptic networks must be interpreted cautiously. One day, wide field in vivo recordings 

will be frozen and processed for electron microscopy—but 1 mm3 volumes are wildly beyond 

technical feasibility for the time being. As a tractable complement to anatomical mapping, 

probabilistic connection mapping is an extremely valuable tool. 

Following up on the observation that diverse activity increased the number of detected 

synaptic connections, I investigated patterns of activity following different input conditions. Inputs 

were not active during the mapping epoch, but they established initial conditions for the network. 

Even without considering time, activity vectors differed from one set of random inputs to another. 

Yet more so than activity vectors alone, the location of pairs cooperating in strong functional 

                                                           
5 Moore et al., “Statistical Signs of Synaptic Interaction in Neurons”; Perkel et al., “Nerve-Impulse Patterns”; 
Kulkarni and Paninski, “Common-Input Models for Multiple Neural Spike-Train Data”; Stevenson et al., 
“Inferring Functional Connections between Neurons.” 
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relationships differed across input conditions. For a given presynaptic neuron, different subsets of 

its presynaptic field were active across inputs, and to different degrees. Decoder neurons are 

sensitive to reliable coordination, so dynamic functional relationships would seem to be both 

informative and salient from the perspective of downstream targets. 

Input context modulated functional connectivity, reorganizing patterns of cooperativity in 

the network. Pairs of neurons have been known to exhibit dynamic correlations of this type for 

several decades6. It is now feasible to extend those findings to larger populations of interacting 

neurons. In addition to changes in input stimulation, neuromodulatory tone7 and changes in 

arousal8 can also reorganize network responses. Therefore, it may be fruitful to analyze long 

recordings after segmenting based on context. 

 

HIGHER-ORDER INTERACTIONS COORDINATE RECURRENT DYNAMICS 

Using activity mapping as a bridge between emergent responses and underlying synaptic 

mechanisms, it is important to determine how distributed connections give rise to patterns of 

activity. Are there patterns of connections and cell identities that function collectively as modules? 

Functional motifs have the potential to simplify the problem of predicting activity patterns, the 

presumptive substrate for neocortical computation. Motif counting approaches to understanding 

complex networks have proven useful for understanding interactions among transcription factors9, 

a system similarly characterized by context dependence and non-linearity. Interaction motifs 

among transcription factors can predict the temporal course of transcript expression, including 

                                                           
6 Aertsen et al., “Dynamics of Neuronal Firing Correlation”; Aertsen and Gerstein, “Dynamic Aspects of 
Neuronal Cooperativity.” 
7 Runfeldt, Sadovsky, and MacLean, “Acetylcholine Functionally Reorganizes Neocortical Microcircuits.” 
8 Ecker et al., “State Dependence of Noise Correlations in Macaque Primary Visual Cortex.” 
9 Milo et al., “Network Motifs.” 
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non-monotonic changes in expression10. Of course, structure-function relationships based on gene 

regulatory networks should not be interpreted to apply directly to neocortical populations, to the 

collective mechanisms of synaptic integration. 

Neuroscientists have often focused on the functional motif of convergence. This definition 

is usually agnostic to the presence of connections between the presynaptic sources. In Chapter 3, 

I argued that shared connections among presynaptic neurons converging on a common target 

generate different dynamics than in the absence of shared connections. Additional connections act 

to coordinate collective firing, increasing the likelihood of postsynaptic recruitment. 

Since shared connections increase the probability of postsynaptic recruitment, t may be 

instructive to investigate whether presynaptic neurons involved in convergence also share 

connections among themselves. Trans-synaptic retrograde methods such as rabies pseudo-virus11 

would be well-suited to addressing clustering in the presynaptic field. 

This thesis emphasized local connection patterns, within interconnected populations at 1 

mm3 scales. By virtue of distance-dependent connectivity rules, these scales are likely to exhibit 

the highest levels of multi-neuron coordination. But long-range connections are still subject to 

constraints on synaptic integration, and long-range inputs are likely to be more effective when they 

share clustered connections upstream. Neocortical areas known to be anatomically connected 

exhibit dynamic coupling and uncoupling12 in the form of varying coherence 13. These phenomena 

are likely to reflect the success versus failure of long-range inputs to recruit their non-local 

                                                           
10 Kaplan et al., “The Incoherent Feed-Forward Loop Can Generate Non-Monotonic Input Functions for 
Genes.” 
11 Wall et al., “Monosynaptic Circuit Tracing in Vivo through Cre-Dependent Targeting and Complementation 
of Modified Rabies Virus”; Callaway and Luo, “Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies 
Viruses.” 
12 Gregoriou et al., “High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention”; 
Battaglia et al., “Dynamic Effective Connectivity of Inter-Areal Brain Circuits.” 
13 Ioannides, “Dynamic Functional Connectivity.” 
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neighbors. Activation of clustered long-range projection neurons is likely to be more efficacious 

than non-clustered projection neurons, so that the same individual connection could participate in 

coherent versus incoherent activity with respect to its long-range target. 

Because clustered fan-in triangles are characterized by coordinated activity and low firing 

rates, they meet exactly the criteria useful for a reader/decoder neuron downstream. The relative 

synchronization across the fan-in cluster is salient from the perspective of the postsynaptic 

membrane; moreover, the stability of the timing relationships among fan-in clustered neurons 

could potentially be exploited by active processing in dendritic arbors to increase the reliability of 

decoding. I found that reference neurons characterized by high fan-in clustering also tended to 

have low firing rates, requiring coordinated activity across the clustered neighborhood for their 

recruitment. Because they fire so sparsely and reliably reflect activity upstream, these neurons are 

likely to be very informative from an information theoretic perspective. 

 

INTERCONNECTED NEURONS ARE A COMPLEX SYSTEM 

One reason neocortical computation has been intractable is that patterns of firing are hard 

to predict from connectivity alone—especially incomplete connectivity. Firing patterns emerge 

from numerous interactions among individually weak synaptic connections and depend further on 

myriad context-dependent cellular responses. Traditional investigations have attempted to manage 

this complexity by studying single connections while the rest of the network is quiet—but firing 

is qualitatively different during naturalistic modes of operation. Single cells and single connections 

are not the appropriate level of abstraction for understanding how cellular populations implement 

computation and behavior. 
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Rather than try to predict firing from the bottom-up, I took the approach of mapping 

propagation from the top down—in an active network. This is the layer of abstraction appropriate 

for understanding cortical computation: reliable relationships between input activity and output 

firing, separated in time by the propagation of activity through numerous intermediaries. 

Sampling activity near the temporal resolution of synaptic integration provided me with a 

different kind of dataset—one with rich information about relative timing. Patterns of lagged firing 

times were abundant in recorded data relative to chance—out of the unpredictable complexity of 

synaptic interactions, organized activity emerged. After mapping stereotyped sequential firing 

between pairs of neurons, activity in the neuronal population could be seen as a functional network 

whose nodes were neurons and whose edge weights quantified frequent lagged firing. This 

functional network is informative of the underlying synaptic network. 

But patterns of propagating activity are not identical copies of synaptic networks. In 

particular, traffic on the synaptic network can be selective and context dependent. This is an 

important issue for interpreting experimental data, be they connectomic reconstructions or 

population recordings. To understand how connectivity and traffic patterns differ, it is necessary 

to know ground-truth features of synaptic interactions. This omniscient perspective is best 

achieved through network simulation.  

Simulated synaptic networks were completely random, yet emergent statistical structure 

was found in traffic patterns. In particular, maps of propagating activity were characterized by 

small-world characteristics14. This result echoed other reports of small-world functional structure15 

i.e. elevated neighbor-of-neighbor interactions (global clustering coefficient) and short mean path 

                                                           
14 Watts and Strogatz, “Collective Dynamics of ‘small-World’networks.” 
15 Pajevic and Plenz, “The Organization of Strong Links in Complex Networks”; Achard et al., “A Resilient, Low-
Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs.” 
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lengths. I trace this small-world structure to a dominant underlying interaction at the mechanistic 

level of synaptic integration: clustered fan-in triangles16 (Figure 2A). Despite occurring only at 

chance levels in the synaptic network (Figure 2B), fan-in triangles were abundant in patterns of 

traffic (Figure 2C). Selective, asymmetric elevation of this motif within propagating activity 

reflects higher-than-pairwise synaptic interactions. 

I show that fan-in clustering was associated with emergent coordination of firing times 

(Figure 3A), supplying strong coincident input (Figure 3B), leading to effective postsynaptic 

integration (Figure 3C). Compared to other connection schemes, clustered fan-in triangles actively 

synchronize input timing. This synchronous input benefits from a non-linear increase in efficacy 

because of the biophysics of individual neurons. I discuss how fan-in clustered networks could 

self-organize by stabilizing local features of a less structured (or even random) developing synaptic 

network. 

I went on to measure directed clustering in empirically recorded populations (Figure 4A), 

using the experimental approach described previously. Fan-in clustering was strongly over-

represented in these patterns of firing (Figure 4B,4C,4D). Neurons in fan-in triangles tended to be 

more temporally coordinated than neurons in simple-convergence (those lacking neighbor-

connectivity) (Figure 4E). It is important to note that neocortical networks are known to be highly 

non-random15,16, underscoring the generality of fan-in clustering for active networks of neurons. 

I have suggested that clustered fan-in triangles are a generic neocortical primitive for implementing 

reliable mapping of inputs onto outputs20. 

The synaptic networks linking neurons in the mammalian neocortex are the epitome of a 

complex system, but they do differ from some well-studied networks in an important way: their 

                                                           
16 Fagiolo, “Clustering in Complex Directed Networks.” 
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nodes are complex information processing units themselves with rich internal workings and state-

dependent properties. Thus, results for e.g. electrical circuits of resistors will usually not generalize 

to neuronal systems. Effectively utilizing network analyses in neuroscience benefits from 

recognizing that nodes are non-linear integrators of input, sensitive to synchrony and recent 

history.  

A second counter-intuitive feature of cortical networks is that synaptic integration is often 

slow compared to synaptic transmission. Most (excitatory) neocortical neurons fire sparsely, 

requiring either sustained or coordinated input to become active. Neurons typically integrate inputs 

from the last 3 – 25 ms, depending on the neurotransmitter milieu. Yet traversing local connections 

is very fast, requiring ~1 ms for neurotransmitter release and passive diffusion across the synaptic 

cleft, plus ~0.5 ms of electrical conduction time in the axon, to traverse the 1 mm field of view 

described in the experiments above. As a result, interpretations based on traversing edges without 

accounting for active processing at constituent nodes should be regarded cautiously. 

On the relationship between synaptic networks and the structured propagating activity that 

flows through them: The presence of a single connection can have myriad consequences for spike 

transmission, depending on the context of other recent activity and other patterns of connections. 

Out of these many intricate components, organized firing patterns emerge.  

 

FUTURE DIRECTIONS 

 

Feedforward models of propagating activity 

Regularities in connectivity across layers and between cortical areas define hierarchies 

and recurrent loops of synaptic influence. These features underlie definitions of input and output 
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neurons and describe features at the scale of millimeters to centimeters. They have proven 

insufficient for predicting structured activity at the 50 um – 1 mm scale, the scale of the biophysics 

governing synaptic recruitment, because synaptic interactions are sparse, weak and variable 

individually 17. Understanding the choreography of synaptic recruitment is necessary for 

identifying the mapping functions linking input activity, internal state, and output activity. 

Neocortical computation is implemented through these mapping functions. My PhD work has 

focused on isolated cortical networks, investigating their patterned dynamics in the absence of 

structured external input. How are these intrinsic network responses modulated and controlled by 

input activity? 

Synfire chains have inspired thinking on this question 18, but they organize unrealistic 

levels of synchronized activity and millisecond temporal precision not reproduced in experimental 

data. Given their biological implausibility, synfire chains are not a realistic model for propagating 

activity in cortical networks. Synfire chains are also not realistic in their connection topologies, 

connected via feedforward connections only. Updated models known as Feed-Forward Networks 

(FFNs) are the subject of ongoing study 19. Like synfire chains, FFNs can produce unrealistically 

high levels of synchrony, even from asynchronous input 20. In an in vitro model of propagating 

activity, trained into the network using electrical stimulation, rate-coded inputs were transformed 

into synchrony-coded outputs 21. It is unknown whether these response features characterize in 

vivo activity. Problems of excessive synchronization can be lessened by the presence of membrane 

                                                           
17 Softky and Koch, “The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of 
Random EPSPs.” 
18 Abeles, Corticonics. 
19 Diesmann, Gewaltig, and Aertsen, “Stable Propagation of Synchronous Spiking in Cortical Neural 
Networks.” 
20 Litvak et al., “On the Transmission of Rate Code in Long Feedforward Networks with Excitatory–Inhibitory 
Balance.” 
21 Reyes, “Synchrony-Dependent Propagation of Firing Rate in Iteratively Constructed Networks in Vitro.” 
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fluctuations 22, illustrating how function in active networks can be fundamentally different than 

for quiescent networks.  Ultimately, low firing rates and asynchronous background can support 

dual propagation of rate and synchrony 23.  

Altering the synaptic structure of these feedforward networks has consequential impacts 

for their resulting dynamics. For example, strength of connections are intimately related to stability 

of rate, synchrony, or both dynamic features in propagating activity 24.  Strength of connectivity 

also impacts asynchronous dynamics 25, which may underlie its different consequences for 

propagating activity. Similarly, it is natural to expect that connection topology will have major 

consequences for propagation of activity. Recurrent connectivity can be viewed as embedded with 

feedforward networks, providing a bridge from FFNs to the work in this thesis. Study of FFNs has 

provided a set of analytical tools for quantifying temporal features in cascades of activity. 

However, this approach has underemphasized the importance of connection patterns. In future 

work, I aim to extend these tools to study how non-random connection patterns impact the 

dynamics of propagating activity in recurrent networks. 

 

Population dynamics in non-random network topologies 

Understanding how heterogeneous connectivity features affect the propagation of activity 

is an important future direction for computational neuroscience. I am approaching this problem 

through simulation, with the goal of generating diverse balanced networks with naturalistic 

                                                           
22 Rossum, Turrigiano, and Nelson, “Fast Propagation of Firing Rates through Layered Networks of Noisy 
Neurons”; Vogels and Abbott, “Signal Propagation and Logic Gating in Networks of Integrate-and-Fire 
Neurons”; Moldakarimov, Bazhenov, and Sejnowski, “Feedback Stabilizes Propagation of Synchronous 
Spiking in Cortical Neural Networks.” 
23 Kumar, Rotter, and Aertsen, “Conditions for Propagating Synchronous Spiking and Asynchronous Firing 
Rates in a Cortical Network Model.” 
24 Kumar, Rotter, and Aertsen, “Spiking Activity Propagation in Neuronal Networks.” 
25 Ostojic, “Two Types of Asynchronous Activity in Networks of Excitatory and Inhibitory Spiking Neurons.” 
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dynamics. By comparing topological features across this family of models, I hope to characterize 

constraints on connectivity necessary for asynchronous irregular firing. 

This problem has remained unsolved because the technical challenges involved in 

designing network models with multiple degrees of freedom are significant. Automatic generation 

of network models remains difficult, with most successful naturalistic models being tuned 

laboriously and artfully by computational researchers. This approach has led to important progress, 

but it is slow. More significantly, comparisons between models with different parameters are 

difficult to interpret in isolation. To contextualize differences in feasible parameters across models, 

I aim to generate a large ensemble of feasible network architectures consistent with experimental 

evidence about network connection density and synaptic strength. 

Framing simulation design as an optimization problem is attractive because it offers an 

empirical judgment for unconstrained design choices, rather than relying solely on scientific 

intuition. Other design choices are simpler, guided by the statistics of available data. For the 

difficult choices, stochastic optimization offers an efficient search strategy for relating design 

parameters to emergent dynamics. Unlike traditional optimization methods, gradients are not 

explicitly calculated, so objective functions need not be differentiable. This is advantageous for 

working with complex neuron models, where there is no closed-form analytical solution to predict 

their collective dynamics26. Indeed, that is the very reason why simulation is necessary for these 

problems. This approach has previously been applied successfully to single-neuron models with 

multiple compartments27. 

                                                           
26 Baptista et al., “Chaotic, Informational and Synchronous Behaviour of Multiplex Networks.” 
27 Vanier and Bower, “A Comparative Survey of Automated Parameter-Search Methods for Compartmental 
Neural Models.” 
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Over uncertain parameters, a traditional method for evaluating design choices was the 

sensitivity test. For small numbers of parameters, small perturbations could sometimes be 

conducted in every degree of freedom. Models with higher dimensionality are not amenable to this 

brute force methodology. An alternative approach to sensitivity testing has been to explore the 

effect of small perturbations along directions defined by eigenvectors28. However, for parameter 

landscapes with strong non-linear interdependencies, this approach may only be informative about 

extremely local regions, before the assumption of linearity leads to large errors in predicted 

outcomes. Stochastic optimization approaches offer a more comprehensive analysis of sensitivity, 

combining breadth-wise sampling over the entirety of parameter with depth-wise local searches, 

parallelized over multiple agents. 

Multiple powerful stochastic optimization approaches are being actively investigated, and 

new insights are being gained for choosing among them. For discrete optimization problems, e.g. 

where design parameters are limited to integers, evolutionary algorithms excel29. Evolutionary 

algorithms encode parameter values in string-form, for a population of putative models. At each 

generation, putative models replicate with mutation and sexual selection, and only the best 

performing designs survive to the next generation. Evolutionary algorithms were inspired by 

biology, and they are a remarkable example of how computation in nature can inspire human 

engineering.  

                                                           
28 Fisher et al., “A Modeling Framework for Deriving the Structural and Functional Architecture of a Short-
Term Memory Microcircuit.” 
29 Deb et al., “A Fast and Elitist Multiobjective Genetic Algorithm.” 
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Figure 4-1.   Optimization with stochastic Firefly search. 

 

(a) Activity is simulated for a population of initial models, and scored based on dynamical realism. 

The population competes for influence. A new generation of models are generated with increasing 

bias towards good performers from the previous generation. 

(b) Performance of the modified Firefly algorithm on a benchmark problem. A population of units 

with x and y parameters search a multi-dimensional objective space defined by the Rosenbrock 

function. The global optimum is successfully found, and high-scoring regions of parameter space 

are better explored than low-scoring regions. 

 

Other stochastic optimization algorithms also tend to be based loosely on natural 

phenomena. In simulated annealing, parameter space is seeded randomly and subsequent thermal 

fluctuations modulate local search radius30. Particle swarm optimization operates similarly, with a 

velocity vector added to each putative model design31. On each generation, particles adjust their 

velocity towards the most successful model design. Particle swarm can outperform evolutionary 

algorithms in terms of convergence speed, but they are best suited for continuous optimization 

problems. Building on particle swarm approach, the firefly algorithm imagines that a given particle 

                                                           
30 Hwang, “Simulated Annealing.” 
31 Bonyadi and Michalewicz, “Particle Swarm Optimization for Single Objective Continuous Space Problems”; 
Elhossini, Areibi, and Dony, “Strength Pareto Particle Swarm Optimization and Hybrid EA-PSO for Multi-
Objective Optimization.” 
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is attracted not just to the single best design, but to all successful designs in its sightline32. The 

firefly algorithm is not a good model for real firefly mating behavior, but it is an excellent 

abstraction for high performance optimization, and firefly searches can outperform particle 

swarm33.  

 

Timescales of information processing 

Appropriate choice of spatial and temporal granularity in neuroscience can differ from one 

scientific question to another. Then what is the appropriate temporal scale to analyze causation in 

populations of neurons? This is an important question, because fast sampling has a cost. 

Experimental realities impose constrained choices like the trade-off between large sample sizes 

and high temporal resolution34. Discussions about appropriate temporal resolution are also relevant 

for designing indicators of spiking activity, because fast onset of fluorescent response can be in 

conflict with large changes in signal magnitude, as for the genetically encoded Ca2+-indicators 

GCaMP6f and GCaMP6s35. 

First intuition might suggest that synaptic delays dominate the statistics of propagating 

activity. In some dynamic regimes and model systems, including hyperactive cultures, epilepsy 

models, and the synfire chain framework, delays between synaptically connected neurons do tend 

to be dominated by the biophysics of vesicle fusion and transmitter diffusion. However, wakeful 

activity in vivo is sparse, asynchronous, and irregular, and inter-spike intervals are highly variable. 

Delays between synaptically connected neurons are much longer on average than the 1-2 ms 

                                                           
32 Fister et al., “A Comprehensive Review of Firefly Algorithms.” 
33 Yang, “Firefly Algorithms for Multimodal Optimization.” 
34 Sadovsky et al., “Heuristically Optimal Path Scanning for High-Speed Multiphoton Circuit Imaging.” 
35 Chen et al., “Ultrasensitive Fluorescent Proteins for Imaging Neuronal Activity.” 
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required for synaptic function. Computation in single neurons maps input patterns and recent 

history onto output spiking, and sparse firing is necessary for informative spike trains. Populations 

dominated by synaptic delays are too much like transmission wires, and synaptic weights that are 

unrealistically strong underestimate the importance of synaptic integration. This is an important 

issue for designing realistic network models. On the other hand, rate codes integrating spike-counts 

over 100 - 1000 ms are far too slow to meet the single-trial computational needs of cortical circuits. 

These integration times are also precluded by the leaky membrane of real cortical neurons. 

The most powerful timescale for understanding network computation is set by the 

timescale of synaptic integration. Integration in neurons tends to operate at timescales between 3 

and 20 ms, depending on conductance state and presynaptic firing rate, as well as probable 

interactions with neuromodulatory tone, modulatory glutamatergic inputs, and ion channel 

expression profile. That is not to say that membrane time constants necessarily dominate the 

distribution of lags between connected neurons, either: timing interrelationships emerge through 

the interplay of membrane dynamics with impinging currents. Causal influences will operate over 

different timescales for neurons communicating via metabotropic glutamate receptors than for 

neurons communicating via ionotropic glutamate. Of course, during normal function, these 

multiple receptor-systems are active as a collective. Choice of sampling frequency should follow 

the interplay between currents of interest and the biophysics of the neuronal membrane.  These are 

the considerations that need to inform experimental design, when temporal resolution is a factor 

of interest. For the case of information processing with synaptic networks, it is important that 

researchers attend to these timescales, recognizing that they are central to neuronal targets 

downstream. 
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