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ABSTRACT
The concept of a “community” as a form of organization for natural biological systems is both 
widespread and widely accepted within the ecological and biological sciences. Communities 
have been defined as groups of organisms that interact in ways that denote interdependence 
between individuals and taxa (e.g. as defined by “food webs”) but they have also been defined 
as groups of co-occurring organisms that are assumed to interact by virtue of their shared 
spatiotemporal existence. The latter definition has been debated and challenged in the 
literature, with mounting evidence for co-occurrence being more indicative of coincident 
ecological niches in space and time rather than being evidence of ecological interaction or 
dependency. Using a dataset of 460 Costa Rican bird species divided into breeding and non- 
breeding season datasets, we empirically demonstrate the ways in which co-occurrence can 
create illusory communities based on similar occupied ecological niches and similar patterns of 
co-occurrence at different times of year. We discuss the importance of discerning coincidental 
co-occurrence from true ecological interactions that would manifest a true community, and 
further address the importance of differentiating communities of co-occurrence from commu-
nities of demonstrable ecological interaction. While co-occurrence is a necessary aspect of 
interspecific interactions, we discuss and demonstrate here that such co-occurrence does not 
make a community, nor should explicit patterns of co-occurrence be seen as evidence for 
evolutionarily important ecological interactions.
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1. Introduction

Community ecology is a relatively recent branch of eco-
logical inquiry that has been both shaped and plagued by 
semantic inconsistencies [1,2] related to the complexity of 
its underlying processes (reviewed in McIntosh [3]). The 
susceptibility of the focal unit of community ecology, the 
ecological community, to inconsistent usage is an apt 
example of how imprecise definitions can influence the 
trajectory of a field. Ecological communities are typically 
characterized as groups of organisms that coexist in time 
and space. While this definition is succinct, it is also con-
tentious, as the exact qualifications for coexistence are 
debatable and subject to variation across spatial scales [1].

Communities are typically defined as independent 
co-occurrences among multiple species in a given geo-
graphic space [4–6], but are also often defined as 
integrated, interacting groupings of species [7]. In 
a research context, the former is best represented by 

communities or ecological networks inferred from co- 
occurrence data [8,9], and the latter by specific studies 
on interactions between individual organisms.

The degree of intersection between spatiotemporal 
definitions of community and species co-occurrence 
hinges on ecological interactions, with proponents 
suggesting that co-occurrence can be used to predict 
ecological interactions, or at least act as a proxy for 
ecological interactions [10,11]. Critics, however, argue 
that co-occurrence is a purely random phenomenon; in 
other words the possibility of interaction fostered by 
co-occurrence is not necessarily related to the prob-
ability of interaction among co-occurring species 
[9,12]. Despite the lack of consensus, co-occurrence is 
still considered an important metric, especially at local 
scales for within-clade studies, and at large phyloge-
netic or spatial scales for determining community 
assembly [6,8,13–15].
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Well-studied examples of species’ co-occurrence 
exist with evidence for extreme levels of interaction 
between co-occurring taxa, whether via commensal or 
amensal interactions. These co-occurring taxa exist in 
tightly-knit, spatiotemporally-consistent communities, 
with coterminous or nearly coterminous home ranges 
at the local level, as is found in Neotropical mixed- 
species bird flocks [16,17]. However, even these tightly- 
knit flocks, which can operate as “meta-organisms” 
within their environments, experience faunal turnover 
both spatially (e.g. different faunal components in 
spanning geographic regions [16,18]) and temporally 
(e.g. individual replacement, microhabitat selection, 
and seasonal contributions from migrants [19]). 
Interactions between individual species and analysis 
of the effects of life histories on these interactions 
can be examined on a local scale within these flocks; 
however, community assembly and turnover is not 
necessarily influenced by these dynamics. Therefore, 
while co-occurrence and local (i.e. within community) 
interactions do exist, what constitutes a true, mani-
fested “community” appears debatable and highly 
dependent on the spatiotemporal context of the 
group of organisms in question. This emphasis on 
spatial co-occurrence as a metric for determining com-
munity composition is one reason why the “disintegra-
tion” of classic communities has been proposed, as co- 
occurrence does not imply closely aligned community 
dynamics [1].

To understand how patterns of co-occurrence may 
inform community dynamics and shifts through space 
and time, we performed multiple clustering analyses 
for the Costa Rican bird community, which is both well- 
sampled and well-studied. Specifically, we used these 
clusters to analyze patterns of community cohesion, or 
how little communities change through time, and we 
quantified niche stability throughout the annual cycle 
by assessing these co-occurrence patterns derived 
from ecological niche models. We created two parallel 
pipelines for these data, one taking biogeographic 
restrictions on distribution into account, and another 
model looking at “neutral” dynamics of ecological 
niche diversification without presumed geographic 
barriers to determine community turnover [13]. These 
methods allow for a rigorous evaluation of co- 
occurrence for a large, well-documented avifauna 
throughout the year to demonstrate whether true 
community cohesion exists at coarse scales.

2. Methods

2.1. Terminology

To clarify discordant terminology, we unambiguously 
define a community as a set of spatiotemporally co- 
occurring species that exhibit cohesion with regard to 
species composition throughout the year. This 

definition, which deviates from traditional usage, cap-
tures the assumption that direct or indirect interaction 
is a fundamental feature of communities, an assump-
tion that is both implied [1] and explicit [2] in the 
literature. We refer to those sets of organisms that 
may exhibit spatiotemporal co-occurrence but not 
necessarily cohesion as ensembles, a term rarely used 
in the literature [2] and that is therefore unlikely to 
confer field-specific biases. Stroud et. al [2] treat the 
original definition of ensemble proposed in Fauth et. al 
[20] as redundant with that of community and assem-
blage. However, we believe the advantages of co- 
opting a term already in the community ecology lex-
icon (and a term that is so rarely used as to have only 
negligible existing connotations) outweigh the detri-
ments of potential redundancy. We avoid the term 
assemblage due to its phylogenetic connotations.

2.2. Analytical tools

We used R versions 1.3.959 and 4.0.4 [21] as well as 
QGIS versions 3.10.6 and 3.18 [22]. We used the 
R packages data.table [23], gridextra [24], tidyverse 
[25], and viridis [26] for general data manipulation. 
General image manipulation was performed with 
Inkscape [27] and ImageMagick [28]. We used species 
distribution models (SDMs) from a previous manu-
script in this project [29]; we also provide an overview 
of the data processing pipeline here.

2.3. Study area

We chose Costa Rica as our study area because of its 
relatively small size (c. 51100 km2), its topographically 
diverse landscape (with Caribbean and Pacific low-
lands and central cordilleras reaching 3819 masl), and 
its well-documented avifauna [29], which has gener-
ated a large volume of distributional data accessible 
via the community science data repository eBird 
[30,31]. Furthermore, the phenomenon of elevational 
migration among resident Costa Rican species is well- 
documented in the literature, providing ample context 
for analyzing community cohesion throughout the 
annual cycle [32].

2.4. Data cleaning

We used a previous dataset of all eBird observations 
from Costa Rica and Panama (downloaded from ver-
sion ebd_relAug-2019) that was used to model species 
in those areas [29]. Data from eBird are classified using 
the eBird/Clements checklist to the birds of the world, 
with the data download corresponding to a 2019 edi-
tion of the list [33] and information in this manuscript 
reflecting a more recent taxonomic update [34]. This 
dataset removed checklists that were >10 km in dis-
tance and >500 minutes in duration to avoid 
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spatiotemporal biases in effort. eBird checklists were 
filtered by month, creating a dataset of June observa-
tions and a dataset of December observations. This 
allowed us to compare patterns of species’ co- 
occurrence and account for latitudinal migrant turn-
over in the Costa Rican avifauna during the Northern 
Hemisphere summer and winter, which correspond to 
the Neotropical rainy season (June), and dry season 
(December), respectively. We spatially thinned the 
data to minimize pseudoreplication by removing 
points within 1 km (i.e. the distance of a single grid 
cell) of other points for each species, and then remov-
ing species with fewer than 10 observations, the mini-
mum number of points required for our modeling 
pipeline [35].

2.5. Species distribution models

Using the same dataset, we created two parallel sets of 
SDMs for both a northern temperate summer dataset 
(June) and a northern temperate winter dataset 
(December). These datasets utilized all available eBird 
points with the exception of two artificial absences of 
points within 10 km of Montes del Oca, NE of San José 
(San José Province) and the Costa Rica Bird 
Observatories’ Madre Selva Station (San José and 
Cartago Provinces); these absences were holdovers 
from previous research with this dataset [29]. June 
and December were selected as these are the months 
of the opposite solstices and the months during which 
communities are relatively “stable”, with little overturn 
in species composition from latitudinal and elevational 
migration. Occurrence points for each species were 
correlated with 9 environmental datalayers with 
a grid cell size (i.e. resolution) of 1 km2 (Table 1, for 
methods, see [29,36]). Ecological niche models were 
created using minimum volume ellipsoids (MVEs) 
trained on the entire cloud of data points [36,37]. 
These ellipsoids are sometimes characterized as having 
the center of the ellipsoid represent the most suitable 

habitats available given the data presented [36–39], 
although further research has shown the center of 
the ellipsoid does not necessarily reflect that species’ 
niche centroid [39,40]. To remove environmental out-
liers that could represent genuine vagrants or misiden-
tifications, minimum-volume ellipsoids used a 75% 
data inclusion threshold for conversion to binary spe-
cies’ distribution models, as this threshold was found 
to be most accurate within the region for predicting 
species occurrence en masse compared to other 
thresholds [29]. In this study, we restricted these eco-
logical niche models (ENMs) to the boundaries of Costa 
Rica, with the resulting SDMs predicting the areas in 
which species could be found within the same bound-
aries. Thus, models were created using the whole of 
the Costa Rica-Panama region (a unique, biogeo-
graphic area where many taxa are endemic or repre-
sented by endemic subspecies), and subsequently 
restricted to our primary study region of Costa Rica. 
We focused this study on Costa Rica specifically as this 
is where a majority of the data used to train the models 
were collected, and because this is an area where the 
local avifauna is more well-known.

2.6. Presence-absence matrix creation

In general, ENMs fail to exclude suitable but inaccessi-
ble habitat where specific taxa do not occur. To 
account for “neutral” dynamics and those informed 
by biogeographic barriers, we generated two sets of 
models: one unconstrained, including the entire coun-
try of Costa Rica, and one constrained to biogeo-
graphic regions within Costa Rica (Ms, sensu Soberón 
and Peterson [41]) [42,43]. Because our SDMs were 
constructed using presence-only data and therefore 
did not require pseudo-absences or confirmed 
absences for training, we fitted biogeographic regions 
post hoc. We used the R packages raster [44], rgdal [45], 
rgeos [46], and sf [47] to create a secondary set of 
distribution rasters clipped to two biogeographic 

Table 1. Environmental variables used to create ecological niche models and their derived species distribution models.
Model Layer Description Source

Thornthwaite aridity index Index pertaining to the “degree of water deficit below water need.” Title & Bemmels 2018
Continentality The difference in average temperature between the warmest and coldest months. Title & Bemmels 2018
embergerQ Emberger’s pluviothermic quotient, a layer that discerns between Mediterranean climates. Title & Bemmels 2018
Maximum coldest 

temperature
The maximum temperature during the coldest month. Title & Bemmels 2018

Minimum warmest 
temperature

The minimum temperature during the warmest month. Title & Bemmels 2018

PET driest quarter The average potential evapotranspiration (PET) during the driest quarter. Title & Bemmels 2018
PET wettest quarter The average potential evapotranspiration (PET) during the wettest quarter. Title & Bemmels 2018
Avg, Max, NDVI NASA Earth Data, MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid V006 

tiles, 2000–2019
urs.earthdata.nasa.gov

Avg. Min, NDVI NASA Earth Data, MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid V006 
tiles, 2000–2019

urs.earthdata.nasa.gov

66 M. F. VELDE ET AL.



regions: the Pacific and Caribbean slopes of Costa Rica, 
divided approximately along the crest of the central 
highlands. We completed the remaining steps both for 
SDMs limited to individual biogeographic regions, and 
for “neutral” models that lacked any biogeographic 
restrictions.

For both June and December, we overlaid occur-
rence points onto the two biogeographic regions and 
clipped the output distribution rasters to these regions 
using the aforementioned R packages and dismo [48], 
creating biogeographically restricted range estima-
tions. We then fit a hexagonal sampling array over 
the study area with 372 hexagonal cells with distances 
between centroids of c. 13.6 km (based on centroid 
coordinates) to create a presence-absence matrix 
(PAM) with a reduced resolution to facilitate down-
stream clustering analyses and to account for minor 
spatial uncertainties between birds that occur in the 
same geographic area. This hexagonal grid possessed 
cells of c. 164.8 km2. We opted for a hexagonal grid 
because they efficiently cover spatial areas and have 
been used in other studies utilizing eBird data [49]. We 
extracted hexagonal array species coverage using 
velox [50], and constructed sliding windows of distribu-
tion grid cell coverage for inclusion in the derived 
presence-absence matrix based on the number of 
SDM grid cells within each hexagonal PAM array cell. 
Hexagons were considered to include any SDM grid 
cells for which the centroids fell within the hexagon. As 
these geometries and sizes do not match up exactly, 
even when scaled, the number of SDM grid cells per 
hexagon varied greatly. To convert from the high- 
resolution SDM grid cells to the lower-resolution hex-
agonal grid, we counted a hexagon as “present” for the 
species if 70% of SDM grid cells were “present” when 
a hexagon overlapped with 10 or fewer SDM grid cells, 
but we changed this ratio to 50% presence when the 
number of overlapping SDM grid cells was between 11 
and 40, and 30% presence if more than 40 SDM grid 
cells overlapped with a hexagonal array cell (maximum 
number of SDM cells per array is c. 645).

2.7. Ecostructure

To understand broad spatial patterns of occurrence, 
we passed biogeographically restricted data and “neu-
tral” data through the program ecostructure [51]. This 
program is similar to the algorithm structure, which is 
designed for the analysis of genetic data; ecostructure 
applies algorithms usually used for single-nucleotide 
polymorphisms (SNPs) to presence-absence matrices 
of species occurrence across geographic space [51–53]. 
Thus, the output of ecostructure is a representative of 
the relative “motif” contribution to each individual 
geographic cell, where each motif is a community of 
co-occurring taxa. We used a custom loop code to 
apply the same conditions to each biogeographic or 

“neutral” scenario, running each model with tolerance 
of 0.1 for 10 iterations, with the number of clusters 
K varying between 2 and 14. We used basemap data 
from rnaturalearth [54] to plot these data within the 
spatial extent of Costa Rica.

2.8. Co-occurrence analyses & niche similarity

We adapted code from Cooper [55] to examine cluster-
ing within the dataset, using aforementioned packages 
as well as ape [56,57] to visualize and work with clus-
ters and cluster dendrograms. We determined the opti-
mal K-value for K-means cluster numbers using gap- 
statistic analysis with the factoextra command 
“fviz_nbclust” [58]. We passed biogeographically 
trained and “neutral” data separately through 
a pipeline that determined cluster assignments for 
each species based on this optimal K-value, using the 
R function kmeans [21]. We visualized cluster assign-
ments using the hierarchical, bottom-up unweighted 
pair group method with arithmetic mean (UPGMA) 
method in R using hclust [21,59], but did not use this 
clustering method for downstream analyses.

To explore community stability between June and 
December, species lists with kmeans cluster assign-
ments needed to contain only year-round residents 
of Costa Rica. We excluded migrants at this stage 
because migrants are only present at one time 
of year, and perturbations or cohesive movements by 
resident species in response to migrants should be 
visible even without their direct inclusion. Seasonally 
biased occurrence records (e.g. too few records during 
a certain season) were also cause for exclusion, and are 
likely attributable to unequal year-round observer 
effort in the region (Table S1 [29]). We cross- 
compared clusters between June and December to 
determine how each species’ cluster assignment chan-
ged across seasons. Given that the ideal number of 
clusters differed between seasons, we categorized 
clusters as stable (>66% of taxa co-occurring within 
a cluster in both seasons), split (33–66% of taxa co- 
occurring between different seasons), or diffuse (no 
more than 33% of taxa co-occurring between seasons). 
These cross-comparisons excluded migratory taxa, and 
only included species present all year round within 
Costa Rica. We also visually inspected the stacked 
SDMs (i.e. richness maps for each cluster) for each 
season to observe spatial patterns.

We calculated niche similarity metrics for all species 
between June and December. We used the R package 
dismo [48,60] to compute Schoener’s D, a metric com-
paring similarity in geographic distribution, from the 
continuous outputs of the ENMs to determine the 
similarity between summer and winter niches for 
each species. Using this metric, we examined the dis-
tribution of seasonal niche differentiation for each 
species, and compared species distributions across 
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clusters. We randomized Schoener’s D by comparing 
random species’ models from summer and winter to 
determine whether the observed distribution of 
D statistics differed significantly from a random expec-
tation. D statistics were also compared to the differ-
ence in the number of points between June and 
December to explore the relationship between 
observed niche differentiation and seasonal bias in 
observation records.

To account for the role of migrant taxa in shaping 
regional patterns of community assembly and niche 
stability, we subsetted our data into: 1) taxonomic 
clades that contain migrant taxa during some portion 
of the year, and 2) 500 randomly subsampled groups 
equal in size to the migrant species group (n = 162, 
Table S2). The migrant and random subsamples were 
compared using the same niche equivalency (i.e. niche 
similarity) techniques described above, and were 
binned into the same categories as mentioned above 
(stable, split, or diffuse) or into an unknown category 
for groups with <5 taxa. We performed Fisher’s Exact 
Tests using the R function fisher.test [21] to determine 
whether the behavior of clusters with migrants differed 
from random subsets of the data, or from the distribu-
tion of the entire dataset.

3. Results

We obtained a list of 719 regularly occurring spe-
cies in Costa Rica (Table S1). We manually omitted 
some migratory taxa (specifically, those that may 
not be fully removed via other cleaning steps) and 
taxa that are not considered “landbirds” (e.g. 
Magnificent Frigatebird (Fregata magnificens); n =  
142). We then omitted taxa that had insufficient 
sampling during one time of year (either due to 

migratory habit or lack of observations; n = 117) 
including nine resident and one migrant taxa due 
to databasing errors related to annotating taxa for 
exclusion. We therefore resulted in a list of 460 
species in our overall co-occurrence dataset with 
162 species in our migratory subset (i.e. latitudinal 
migrants and their close relatives). Species richness 
(α diversity) and species’ average range size (β 
diversity) were higher in the December dataset 
than the June dataset, and these values were also 
higher for the Pacific Slope than for the Atlantic 
Slope (Figures 1,2).

3.1. Biogeographically-constrained data

Our gap-analysis established 13 clusters for the 
December dataset and 16 for the June dataset. We 
found that 4 clusters were stable between time peri-
ods, 2 split into different groups, and 10 clusters were 
diffuse. Stable clusters were found in the Atlantic 
Lowlands, the southern Pacific Lowlands, the northern 
Pacific Lowlands, and the high elevations of the 
Talamanca Cordillera. Split and diffuse groups were 
much more geographically widespread, and often 
expanded from more conserved areas in June to 
more widespread areas in December or vice versa 
(e.g. one cluster found in the foothills in summer was 
widespread in the foothills and lowlands during the 
winter). Comparing the distribution of niche similarity 
between cluster categories via Wilcoxon rank sum tests 
did not yield any significant results (smallest p = 0.13, 
stable vs. diffuse), suggesting that there is no signifi-
cant difference in seasonal ecological similarity 
between groups of differing cohesiveness through 
the annual cycle. For biogeographically-constrained 

1
396
497

Figure 1. Species richness (i.e. gross number of species predicted to occur) during June (left) and December (right) in Costa Rica. 
Legend displays values for no taxa, the summer maximum, and the winter maximum. Includes all taxa, including those removed 
from cluster analyses.
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models, the distribution of D statistics were signifi-
cantly higher, thus denoting more niche similarity, 
than randomly generated D values.

3.2. Neutral models

Gap-analyses on neutral datasets (i.e. no training 
areas constraining SDMs) recovered 11 distinct 
clusters for December and 18 distinct clusters for 
June. For neutral models, we found 3 stable clus-
ters (though 2 would be considered split if viewed 
from winter into summer instead of summer into 
winter), 3 split clusters, and 12 diffuse clusters. 
Two stable clusters corresponded to groups of 
birds found in the northwestern Pacific lowlands 
and the third was localized in the higher eleva-
tions of Costa Rica’s cordilleras, being more geo-
graphically localized in June than in December. 
Two split clusters were widespread across the 
country showing little pattern, but the third illu-
strated a shift from highlands to highlands plus 
adjacent lowlands in December. Notably, compar-
isons of D statistic distributions (i.e. niche similar-
ity) were more significant when examining cluster 
categories of neutral communities than for shifts 
within the constrained models. All comparisons 
had p � 0.05 (highest p = 0.05 for stable vs. 
split clusters), in the cases of stable vs. diffuse 
(Wilcoxon rank sum test, W = 653, p = 0.04), split 
vs. diffuse (W = 582, p << 0.05), and stable vs. split 
(W = 354, p = 0.05). The mean similarity of commu-
nities across the annual cycle (shown here with 
±95% CI) was lowest (i.e. niches were more differ-
ent between seasons) for diffuse communities (D  
= 0.865 ± 0.014) followed by stable communities 

(D = 0.888 ± 0.017) and lastly split communities 
(D = 0.908 ± 0.017). For random iterations of neu-
tral models, the distribution of D statistics were 
significantly higher, thus denoting more similarity, 
than randomly generated D values.

3.3. Geographic structuring

Analyses with the R package ecostructure found 
motifs corresponding to clades identified in the 
aforementioned clustering analyses. As we 
increased the number of groups (K), ecostructure 
first identified community splits corresponding to 
the Pacific and Atlantic slopes of Costa Rica, with 
the second major split (i.e. K = 3) involving the cen-
tral highlands. With increasing K, more precise eco-
logical regions within Costa Rica were identified as 
distinct groups. We limited ecostructure analyses to 
K = 14, in part because of the processing time 
required to run the models, and in part because 
fine-scale ecostructure models do not partition 
space in the same way as hierarchical clustering 
does (in ecostructure, each individual site can be 
assigned to multiple biogeographic motifs). For the 
higher values of K, we recovered many recognized 
biogeographic areas within the landscape, for exam-
ple the marshlands of northern Costa Rica where 
the Nicaraguan Grackle (Quiscalus nicaraguensis) 
occurs, and elevational stratification between high-
land and foothill bird communities, both in eastern 
and western Costa Rica (Figure 3). Group demarca-
tion differed between summer and winter, with 
different distributions for clusters in all geographic 
regions varying by season (though lower-order clas-
sifications, such as K = 2, were more similar than 

0
0.47
0.71

Figure 2. Beta diversity (i.e. average range size per cell) for birds in Costa Rica in June (left) and December (right). Legend displays 
values for no taxa, the summer maximum, and the winter maximum. Includes all taxa, including those removed from cluster 
analyses.
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higher order classifications). Biogeographic breaks 
were apparent but not consistent when comparing 
outputs between seasons and for different levels of 
K, reflecting variable amounts of overlap amongst 
species and between seasons.

3.4. Niche comparisons & migrant subsetting

Niche similarity across seasons showed similar patterns 
for both neutral and biogeographically trained models. 
The least conserved niches year-round belonged to 
taxa in the lowlands (e.g. the Chestnut-colored 
Woodpecker (Celeus castaneus), D = 0.645) and some 
foothill and montane taxa (e.g. the Azure-hooded Jay 

(Cyanolyca cucullata), D = 0.706), while the most similar 
niches year-round belonged to widespread taxa (e.g. 
the Rufous-collared Sparrow (Zonotrichia capensis), D  
= 0.937) and taxa that specialize in particular habitats 
(e.g. the Ruddy-capped Nightingale-Thrush (Catharus 
frantzii), D = 0.938). Subsetting biogeographically- 
constrained data into groups of residents and migrants 
did not change the overall results, with non- 
randomized D statistics being more similar than ran-
domized statistics for niche similarity (t = −32.06, df =  
627.11, p <<< 0.05). Comparisons of both stable and 
split communities were not significantly different from 
each other, but both approached the threshold for 
significance when compared with diffuse communities 

Figure 3. Plots from ecostructure showing results for June (left) and December (right) with K values of 2 (top), 7 (middle), and 13 
(bottom). Note that the plots become structured in a similar fashion and display patterns reminiscent of the richness and beta 
diversity plots, indicating common patterns of distribution structuring the geographic motifs.
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(p = 0.07 and p = 0.06, respectively). We found that the 
assignment of migrants to different groups was no 
different than assignments given to random subsets 
of the data (Fisher’s Exact Test, p = 0.53).

4. Discussion

Species distributions of the Costa Rican avifauna illus-
trate how communities can randomly emerge from 
spatial coincidence given similar ecological or physio-
logical requirements. In Costa Rica, this manifests in 
areas like the Talamanca Highlands, where the taxa 
with northern and southern biogeographic origins 
overlap locally, and whose populations and close rela-
tives overlap in few, if any, other geographic localities 
in the region. Even when birds apparently show close 
ecological associations (e.g. recognizing and respond-
ing to each other in mixed-species flocks), the occur-
rence of one species does not necessarily predicate the 
occurrence of any other member of that association 
[16,17,19,61]. This observation aligns with studies of 
species distributions in past glacial cycles, where spe-
cies could co-occur and be part of the same commu-
nity in historical climates, but occur in geographically 
disparate regions today [62]. Indeed, many dynamics 
of community co-occurrence could be equally attribu-
table to coincidental convergence of ecological and 
physiological needs over direct relationships or any 
form of community cohesion or interaction [9].

Explanations for patterns of co-occurrence are inex-
tricably tied to the multitude of niche concepts 
intended to explain species distributions (reviewed in 
Sales et al. [63]). The diversity of overlapping niche 
concepts fall along axes of biotic to abiotic predictors 
(e.g. Elton [64] vs Grinnell [65]), individual- to species- 
or population-level possession of the niche itself (e.g. 
Chase and Leibold [66] vs. Soberón and Peterson [41]), 
and the extent to which the environment either shapes 
or is shaped by the niche (e.g. MacArthur and Levins 
[67] vs. Hutchinson [68]). Concepts such as these can 
be juxtaposed with neutral models of species assem-
bly, which posit that existing species distributions and 
patterns of co-occurrence are the product of random 
processes through time, such as ecological drift, spe-
ciation, and dispersal capacity [69,70]. However, these 
influences appear to vary with regards to changing 
spatial scales, suggesting that we may be falsely 
dichotomizing an underlying scale-dependent conti-
nuum of niche-to-neutral drivers of species distribu-
tion [71]. Within the Costa Rican avifauna, it is clear that 
some species are linked to specific Grinnellian (i.e. 
“habitat”) niches, such as the páramo, but that the 
overall regional community lacks cohesion and does 
not maintain co-occurrence (i.e. community cohesion) 
throughout the year.

In many instances where we see direct interaction 
between at least two species within a community, as is 

the case in Interspecific Social Dominance Mimicry 
(ISDM), the beneficial community trait (in this case 
mimicry) and the species that possesses it are not 
necessarily restricted to regions of geographic co- 
occurrence. In North America, the Pileated 
Woodpecker (Dryocopus pileatus), widely regarded as 
a mimic of the now extinct Ivory-billed Woodpecker 
(Campephilus principalis), has a distribution that 
extends far beyond where Campephilus ever occurred, 
suggesting that the factors driving this association 
were not necessary for the survival of D. pileatus in 
communities where it occurred in the absence of 
Campephilus [72]. Likewise, other widespread mimics, 
like Hairy and Downy Woodpeckers (Dryobates 
[Leuconotopicus] villosus and Dryobates pubescens, 
respectively), show differential responses to different 
ecological factors, confirming that ecological require-
ments for taxa are unlinked from real community inter-
actions [73].

For the most part, we find stable community com-
position in regionally unique habitats that differ from 
the surrounding geographic matrix, such as the mon-
tane highlands or the northern Caribbean lowlands 
(Figure 3). These regions host many species restricted 
to their respective habitats and environments, such 
that a cohesive “community” can be inferred from 
shared patterns of co-occurrence that are more than 
likely coincidental. For example, we recover Red-tailed 
Hawk (Buteo jamaicensis) and Buffy-crowned Wood- 
Partridge (Dendrortyx leucophrys) in the same stable 
community within the biogeographically-constrained 
data. Our analyses show these taxa are largely found in 
similar areas of Costa Rica; however, in a continental 
context, it is clear these taxa are not part of 
a community, as B. jamaicensis is a widespread North 
American taxon that becomes increasingly montane as 
one moves south, and D. leucophrys is exclusively mon-
tane in southern North America [74]. Microhabitat 
selection could further serve to separate taxa such as 
these, especially in areas where foraging habitats and 
cover selection differ. Therefore, although co- 
occurrence enables potential community interaction, 
it is probable that the community association recov-
ered here is the result of similar realized niches at the 
local level and not the result of a holistic, regional 
community dynamic [75]. It is therefore plausible that 
many widespread taxa, such as B. jamaicensis, never 
truly belong to any given community of species, but 
rather that they are able to exploit ecological niches 
that overlap with a variety of different species’ pools 
and reside within a species’ geographically accessible 
niche space [41].

The existence of stable and diffuse communities 
within our Costa Rican dataset, and the fact that the 
proportions of these communities in a biologically 
relevant subset of our data are indiscernible from ran-
dom subsets of the data, illustrate the danger in 
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treating co-occurring organisms as a community. 
While ecological interactions do exist and are extre-
mely important for species at the local (e.g. individual 
or population) level, these interactions are somewhat 
mutable, such that even the classic mixed-species 
flocks of the Neotropical lowlands are perhaps better 
considered a character of specific taxonomic groups 
rather than stable and defined communities that exist 
across a broad swath of territory. The role of ecology in 
bolstering the illusion of community cohesion is rein-
forced by the significance of ecological niche differ-
ences within the neutral dataset, but not within the 
biogeographically-constrained dataset. Neutral mod-
els, which allowed species to occupy all suitable habi-
tats, recovered significant differences between 
communities, likely because species with similar ecol-
ogies were allowed to co-occur more broadly across 
the study region. Constrained models, which sepa-
rated ecologically similar, but geographically isolated 
taxa (e.g. the Blue-tailed Emerald (Chlorostilbon melli-
sugus) and the Garden Emerald (C. assimilis)), lacked 
the differences in niche similarity between different 
classifications of community. Neutral theory, wherein 
species can colonize and move freely about a matrix, 
may therefore be more informative in certain contexts 
for differentiating communities assembled only 
through overlapping ecological niches at coarse scales 
[69].

Regardless of the use of biogeographic training 
areas, we do find strong evidence for an “ecoregion” 
view of Costa Rica. Our partitions of Costa Rican com-
munities between biogeographic community motifs 
reflects the patterns shown in existing ecoregion 
assessments [76]. These partitions, often based on 
unique habitats and the specific flora and fauna that 
comprise them, are a perfect example of biogeo-
graphic restrictions compounding co-occurrence 
among taxa that are already potentially co-occurring 
only as a result of “neutral” processes. Within these 
communities, additional compounding factors exist, 
such as metabolism, disease, and temperature, that 
may be restricting species from truly exploring or colo-
nizing their entire accessible ecological matrix [77]. 
Such “communities” are perhaps best seen as con-
glomerations of species honing in on similar ecological 
niches and therefore evolving in tandem, rather than 
taxa that are reliant on each other as part of a holistic 
community.

While this study did not incorporate phylogenetics 
to examine how community composition changes 
across space in time, a parallel study could be done 
to understand how phylogenetic niche conservatism 
fits into community stability and turnover. According 
to patterns of niche conservatism, closely-related spe-
cies share niche-related traits and therefore are more 
likely to occupy the same niche. If communities experi-
ence high turnover in space and time, they can more 

easily maintain their patterns of niche conservatism by 
reducing the consistent competition that closely- 
related species face when confronted with similar 
niches [78]. Phylogenetic analyses of the communities 
that have been examined in this paper could further 
contribute to our understanding of the effects of phy-
logenetic niche conservatism on community assembly 
and stability.

This study supports the “disintegration of the 
ecological community,” wherein macroecological 
studies cannot (and should not) incorporate interac-
tion into their inferences or conclusions [1]. Studies 
of community dynamics with spatial components 
warrant rigorous bases for the incorporation of spe-
cific interaction information, or need to acknowl-
edge the uncertainty associated with biotic 
variables such as NDVI [9,79]. We concur that the 
idea of cohesive communities as interacting units is 
incorrect at coarse spatial scales or at the level of 
most species’ distributions, and that macroecologi-
cal examinations of community should consider 
more strongly the importance of coincidental ecolo-
gical niches in driving patterns of co-occurrence. 
Future research will hopefully expand upon the gen-
eral framework presented here, and continue to 
identify the ways in which species co-occurrence 
manifests through time.

5. Conclusion

It is often easy (and, for macroecological studies, 
practical) to consider co-occurring species as 
a “community” for understanding patterns of rich-
ness and for identifying potential ecological interac-
tions. However, it is important to understand that 
every species within a community may be operating 
under its own unique and independent biogeo-
graphic histories, and that communities may simply 
be a human construct to understand coincidental 
spatiotemporal co-occurrence. Using our case study 
of the Costa Rican avifauna, we empirically demon-
strate that apparent community cohesion drawn 
from co-occurrence can also be explained by ecolo-
gical niche similarity between non-interacting taxa, 
a pattern that is even more prominent when viewed 
through a neutral biogeographic lens. Our study 
underscores the importance of classical ecological 
studies within co-occurring taxa to truly understand 
which taxa possess ecological interactions of the 
magnitude classically associated with ecological 
communities.
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