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Abstract
Stochastic multiplicative dynamics characterize many complex natural phenomena such as selection and mutation in evolving 
populations, and the generation and distribution of wealth within social systems. Population heterogeneity in stochastic growth rates 
has been shown to be the critical driver of wealth inequality over long time scales. However, we still lack a general statistical theory 
that systematically explains the origins of these heterogeneities resulting from the dynamical adaptation of agents to their 
environment. In this paper, we derive population growth parameters resulting from the general interaction between agents and their 
environment, conditional on subjective signals each agent perceives. We show that average wealth-growth rates converge, under 
specific conditions, to their maximal value as the mutual information between the agent’s signal and the environment, and that 
sequential Bayesian inference is the optimal strategy for reaching this maximum. It follows that when all agents access the same 
statistical environment, the learning process attenuates growth rate disparities, reducing the long-term effects of heterogeneity on 
inequality. Our approach shows how the formal properties of information underlie general growth dynamics across social and 
biological phenomena, including cooperation and the effects of education and learning on life history choices.
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Significance

Current approaches for studying wealth dynamics and inequality lack a foundational theory to derive growth rates from social behav
ior in unknown environments. Devising effective interventions to manage economic growth rates, financial instability, and popula
tion inequality remains therefore difficult. Here, we propose a general approach to this problem based on agent decision-making in 
noisy environments, using concepts of information and learning. We show that expanding learning reduces resource inequality over 
time, as more agents are able to tap opportunities in their environment. This perspective connects wealth dynamics to important be
havioral and social phenomena such as the environmental determinants of learning and development, the influence of socioeconom
ic stratification and segregation, and information sharing, cooperation and resilience in the face of uncertainty.

Introduction
Growth and inequality are fundamental general properties of bio

logical and social complex adaptive systems (1). They are essential 

in human societies, where growth determines aggregate prosper

ity, and heterogeneity of growth across individuals has implica

tions for opportunity and equity (2). Recently, richer data have 

enabled new approaches toward studying growth and inequality 

through the statistical dynamics of populations based on the be

havior of forward-thinking agents. For example, we now have gen

eral answers connecting growth and redistribution models to 

specific standing levels of inequality (3–5). However, there remain 

general questions about how societies can promote long-term 

growth while controlling or mitigating inequality, and more 

broadly how agent behavior influences aggregate growth.
To address these questions, researchers have sought to better 

understand the non-linear dynamics of wealth distributions 
through quantitative modeling. These approaches include the 
generation and redistribution of incomes and costs among agents 
within model societies (6–9), and the derivation of long-term 
steady-state wealth distributions (3–5, 10, 11). In much of this 
work, agents representing individuals or households (often with 
life cycles) grow or lose wealth through a multiplicative (geomet
ric) stochastic process. This modeling choice is well supported 
empirically and introduces a number of key parameters as an 
agent’s resources (or wealth), r, evolve exponentially with mean 
growth rate (over time), γ, fluctuate with standard deviation 
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(volatility), σ (3, 12, 13), and vary across individuals of a population 
with standard deviation σγ (14, 15). These parameters describe the 
statistical dynamics of wealth in heterogeneous populations and 
the emergence of inequality across various timescales.

The statistics of heterogeneous growth rates are particularly 
important, as they are the predominant drivers of inequality 
over long times (14). In such contexts, agents with higher average 
growth rates amass more relative wealth, reducing social mobility 
across populations. This phenomenon has been well known to 
economists, who have studied its emergence in models of elastic 
agent decision-making for goods exchanges (16–18), and its aggre
gate impacts via heterogeneous growth resulting from firm innov
ation (19) and natural resource abundance (20). Despite the 
impact of heterogeneity in stochastic growth systems, as observed 
both in models and in empirical data, we still lack a theoretical ex
planation for the origins of growth rates and volatilities compat
ible with stochastic geometric growth models. Specifically, we 
need a set of general principles and resulting statistical mechan
ics of agent decisions in stochastic environments to explain how 
differences in agent behavior result in heterogeneous growth. 
Such a theory would enable further study into not just how opti
mal agent decisions contribute to inequality in time but also 
across levels of social organization (21).

Recent developments in cognitive and ecological sciences can 
provide some valuable insights into the stochastic dynamics of 
agent behavior (22). Researchers using noisy decision-making mod
els to explore child and adolescent development have recently re
thought the process of human learning in terms of acquiring 
information through (active and passive) interactions with a know
able, but stochastic external environment (23–25). Similarly, ecolo
gists have formulated natural selection, the process through which 
a genotype optimally leverages its environment’s structure to 
maximize population growth (fitness), as a (Bayesian) optimization 
process (26–30). These approaches describe (individual or collect
ive) agent optimal choices as the result of information they obtain 
in a noisy, but knowable environment, with information dynamics 
that are fundamentally Bayesian. This connection between opti
mal intertemporal decisions, information, and fitness (growth) 
was previously explored as a mathematical formalism to optimize 
betting and portfolio investment returns (31, 32). However, its ap
plications to human behavior and population dynamics suggest 
that it serves a suitable basis for the general statistical mechanics 
of wealth growth and inequality (30).

Here we unify these approaches to develop a statistical dynam
ics of growth and inequality in a population of strategic agents, 
where the growth rates result from investing and learning in a sto
chastic environment.

In this approach, heterogeneous agents invest in sequential, 
stochastic environmental events based on signals they perceive 
as they go, and grow their wealth based on the quality of their pre
dicted allocations. By exploring this mechanism of (optimal) 
information-driven growth in the context of population dynamics, 
we obtain a better understanding of how wealth growth and dis
parities originate from differences in agent knowledge and adap
tive behavior. More broadly, this work adds a new dimension to 
the study of wealth inequality that more fundamentally links in
equalities between wealth, growth, and agents’ subjective charac
teristics, such as their present knowledge, their singular 
life-course experience, and the quality of their knowable environ
ment, e.g. in terms of its opportunities expressed as statistical 
rates of return on investments.

Our approach treats both resources and information as dynam
ically coupled quantities. To model information dynamics, we 

show that learning in the joint space of environmental states 
and agents’ signals is developed optimally in terms of Bayesian in
ference, translating a maximization of the predictability of envir
onmental states into that of resource allocations and growth.

We finish by exploring the general consequences of learning a 
shared environment on the statistics of information and resour
ces, and discuss the consequences for the role of general educa
tion and training on population dynamics and its potential to 
reverse long-term wealth inequality (14).

Theory and modeling of information-based 
growth
We start by deriving a general theory of growth rates in terms of 
informational quantities. Here, information means an agent’s 
predictive knowledge of event probabilities in a noisy environ
ment. Agents seek to maximize the growth of their resources 
over time by investing in a set of possible events in their environ
ment using their individual knowledge. Agent’s knowledge is sub
jective, as it is formed by the agent’s own experience, model of the 
world, and expectations (“beliefs”), which are assumed here not to 
be shared or compared with other agents. The agent’s beliefs are 
adjusted by observing environmental outcomes in time through 
an iterative process of (Bayesian) learning. After developing the 
general framework, we illustrate these dynamics using a multi
nomial model of discrete environmental states and choice, for 
which we derive closed-form expressions for the average resource 
growth rate and volatility in terms of information-theoretic quan
tities. We will then identify the general circumstance when this 
learning process dynamically attenuates inequality in resource 
growth rates across populations.

Growth from information
We consider a population of i = 1, …, N agents, each with initial re
sources ri that can be (re)invested into the set of outcomes of their 
environment to generate returns. The agents have access to a pri
vate signal s ∈ S, which they use as a predictor to invest resources 
in events e ∈ E generated by their environment. The set of signals 
and events are described by the joint probability distribution, 
P(E, S), with marginals P(E) and P(S).

At every time step, each agent observes its own signal s and al
locates resources r on events following a vector B(E|s), such that 
􏽐

e B(e|s) = 1, e ∈ E. As the event e is revealed, the agent is awarded 
returns, we, for the fraction of resources invested in the correct out
come, B(e|s)ri. After n steps, the agent’s total resources (wealth) are

rn = ri

􏽙n

j=1

B(ej|sj)wej = ri

􏽙

s,e

􏼂
B(e|s)we]

Ws,e , (1) 

where Ws,e is the number of occurrences (“wins”) of s, e. By the law 
of large numbers, Ws,e/n → P(s, e) as n → ∞. It follows that the aver
age growth rate of resources over large n steps is

γi ≡
1
n

log
rn

ri
≈
􏽘

e,s

P(s, e) log [B(e|s)we]. (2) 

Kelly showed that the maximal growth rate as n → ∞, obtained by 
maximizing Eq. (2) with relation to B(E|S), results in an allocation 
mirroring the conditional probability, B(E|S) = P(E|S). This max
imum growth rate is the mutual information, γmax = I(E, S) when 
the odds are “fair,” we = 1/P(e) (31).

Typical agents do not start out with perfect knowledge. In this 
case, agents must invest resources using their best estimate for 
the conditional probability, X(E|S) ≠ P(E|S). Then, their resource 
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growth rate will be lower than the maximum. This can still be 
written in terms of informational quantities as the Kelly growth 
rate (SM 1),

γ = I(E; S) − Es(DKL[P(E|s)‖X(E|s)]), (3) 

where Es is an expectation value over the states of the signal, and 
DKL[P(E|s)‖X(E|s)] =

􏽐
e P(e|s) log (P(e|s)/X(e|s)) ≥ 0 is the Kullback– 

Leibler divergence, expressing how similar the two distributions 
in its inputs are. This general result shows that agents with better 
information will experience greater resource growth rates, as long 
as they invest optimally (33). These compounding dynamics are il
lustrated in Fig. 1. We also see that this setup allows us to consider 
agents with different knowledge, corresponding to skill hetero
geneity within a population. We will discuss other general issues 
of innovation and structural position as we introduce learning in 
populations below.

We note that, in reality, people may be in debt typically leading 
to a negative additive component of their growth rate due to inter
est payments. We do not consider this situation here, except to 
point out that if such a component is constant it does not affect 
our analysis. If, however, the loan rate can be reduced via better 
information, it will add another dimension to the optimization 
of the overall growth rate.

We will now illustrate these general results using a specific, 
stationary multinomial model. While the theory is developed for 
general environmental dynamics, its limitation to a stationary en
vironment will allow us to derive quantities of mean growth rate 
and volatility, familiar to geometric Brownian motion (GBM) in 
closed-form and establish the parallels to most wealth-growth 
models. This model will allow us to then illustrate and simulate 
the population dynamics of growth and inequality among agents 
with heterogeneous information. Later, we will also show how 
agents can improve their information optimally over time through 
a process of iterative Bayesian learning.

Multinomial choice model
Consider the space of signals S and environmental states E of 
equal size l, with outcomes s, e ∈ 1, …, l and degenerate multi
nomial conditional probability

P(e|s) = f (p, l) =
p if s = e,
1−p
l−1 if s ≠ e,

􏼨

(4) 

where 0 < p < 1 is the binomial probability of guessing the correct 
environmental outcome. For simplicity, we assumed that the 
probability of a correct guess is independent of l. The distribution 
has uniform marginals, P(e) = 1/l and P(s) = 1/l, for all signals and 
events, such that P(s|e) = P(e|s) via Bayes’ rule.

With these choices, we can derive expressions for the relevant 
informational quantities in closed-form. The mutual information 
between an agent’s signals and environmental outcomes is then 
I(E; S) = log l + plog p + (1 − p)log ((1 − p)/(l − 1)) (Appendix Eq. 4). As 
the simplest illustration, for a binary choice, l = 2, the first term 
gives 1 bit of entropy of the environment and the remaining terms 
give the conditional entropy, expressing how well an agent could 
know the environment given their signal. In the limit p → 1, the 
signal gives agents perfect knowledge of P(E).

So far we considered that the agent has perfect knowledge of 
the joint distribution of the signals and the environment. When 
this is not the case, we can write a parametric expression of the 
agent’s ignorance in terms of an estimated binomial probability 
x ≠ p. The agent’s likelihood model of the conditional probability 
is then X(e|s) = f (x, l ). The divergence term of Eq. 3 becomes the di
vergence between f (p, l ) and f (x, l ) averaged over all signals, 
Es[DKL] = plog (p/x) + (1 − p)log ((1 − p)/(1 − x)). Subtracting the mu
tual information by this term yields the agent’s actual growth 
rate under imperfect information as (supplementary material, 
Appendix B)

γ = log l + p log x + (1 − p) log
1 − x
l − 1

. (5) 

This expression is plotted in Fig. 2A as a function of x for various 
l values and fixed p. We see that increasing the size of the event 
space, l, reduces the probability of any individual outcome, in
creasing the payouts and the Kelly growth rate. The maximal 
growth rate is obtained when Ee [DKL] → 0, when x → p. 
Conversely, γ → 0 when p → 1/l, indicating the signal and the envir
onment have become statistically independent.

Treating γ as the expected resource growth rate, the volatility is 
calculated as the second moment of the growth process. The vola
tility squared (variance) is given as (Appendix C)

σ2 = p(1 − p) log2 x(l − 1)
1 − x

. (6) 

This expression is shown in Fig. 2C. The volatility vanishes in the 
limit x → 1/l, corresponding to when agents invest indiscriminately 

A B

Fig. 1. General dynamics of learning and growth: agents obtain resources from their environment based on the quality of their information. A) At each 
time step, (a) the agent’s private channel (memory, senses) outputs a signal s ∈ S with probability P(s). (b) The agent observes the state s and (c) consults 
their belief for the conditional outcome probability of the environment, X(E|s). (d) The agent makes proportional resource allocations on all possible 
outcomes B(E|s). (f and e). The true event e ∈ E is revealed from the environment with probability P(e), and (g) the agent receives a payout proportional to 
the marginal probability of e. B) In a population simulation, N agents independently sample private signals and invest in events sampled from the same 
environment.
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with equal probability in all possible event types. A larger l increases 
the magnitude of the growth rate, but also the volatility. The vola
tility is highest when p → 1/2 and the environment is most uncer
tain. In any case, the agents feel surest of the outcomes when 
x → 0 or x → 1.

Kelly’s formulation describes the average growth rate of resources 
over a large number of discrete investments (31). To derive a growth 
process in time, we average over ω bets per unit time, such that 
Δt = 1/ω is the interval of time between investment periods. Returns 
at time t + Δt are then the mean of all investment returns earned in 
the time interval [t, t + Δt]. In the limit ω → ∞, as the agent makes con
tinuous allocations, rn → r(t) and γ describe the average growth rate. 
We consider t ≈ 10−2year (i.e. 1% a year) so that our simulated results 
are comparable to previous work based on yearly growth rates of the 
order of a few percent. Volatility is reduced σt = σn/

��
ω
√

as fluctuations 
are averaged out in each time step (supplementary material 10).

Fig. 2C demonstrates the two investment regimes for each value 
of γ, where the growth rate maps to either high or low volatility de
pending on the value of x. Investments with x > p, which we describe 
as aggressive, overestimate the dependence between the signal and 
environment. Under this condition, agents invest relatively more 
on diagonal outcomes and experience large gains or losses resulting 
in higher volatility. With x < p, which we denote conservative, agents 
underestimate p and distribute their wealth more equally across 
all outcomes, resulting in less volatility. Agents can also experience 

γ = 0 at two values of x: In the trivial limit, as x → 1/l, signals and 
agent investments become statistically independent. The other triv
ial case can be solved for numerically when γ = 0.

With given x independent of time, the dynamics reduce to the 
well-known behavior of GBM with drift. Fig. 2B shows the dynam
ics of a population of agents with homogeneous (non-time de
pendent) parameters evolved using a Monte-Carlo simulation. In 
this particular situation, mean population resources grow with 
〈r(t)〉 = (1/N)

􏽐
i ri(t) = exp [γt], in agreement with (12).

We also demonstrate that the time-averaged growth rate of re
sources converges to the Kelly growth rate over many allocations. 
Fig. 2D shows the asymptotic convergence of the normalized differ
ence of averaged growth rate for individual agents ΔG = (γ − G)/γ → 0, 
where G = (1/t)ln(r(t)/r(0)) (dark) and population-averaged growth 
rate 〈G〉 = (1/N)

􏽐
i Gi (light).

We have thus far considered x as a static variable and explored 
the dynamics of resources when x ≠ p in a stationary environ
ment. To converge to maximal growth rates, however, it is neces
sary that agents can estimate the correct event properties, given 
their signals, a situation to which we now turn.

Dynamical growth rates from Bayesian inference
Realistic agent trajectories are dynamical, reflecting investment 
allocations that are history-dependent and result from the 

A B

C D

Fig. 2. Example of parameters and dynamics for wealth growth without learning. The growth rate and volatility are computed analytically for a discrete 
multinomial environment, reproducing the limit of GBM dynamics. A) For p = 0.7, the growth rate maximizes at x = 0.7, decreases as x diverges from p, and 
scales with l. The parameter l = 2 provides a realistic range of average growth rates. B) Monte-Carlo simulations with N = 388 homogeneous agents, all 
with γ(x) = 0.03 and r0 = 1. The 95% confidence interval is plotted, as are the overlapping expected mean, predicted by γ = 0.03, and the population 
sample mean. Inset: The resource histogram is fit to a log-normal distribution of the same growth and volatility parameters. C) Volatility is minimized 
at x = 1/l and increases monotonically in either direction. Volatility increases more rapidly at higher values of l. D) Over time, Δγ → 0 as agents’ growth 
rates approach the Kelly growth rate. The average agent converges to within 15% the expected mean at t ≈ 80.
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cumulative knowledge of each agent’s past experience (12, 34). 
Agents must then improve their information about the environ
ment by updating their model of the conditional relationship of 
S|E with each observation. In the absence of other random proc
esses, this learning task is optimally achieved in terms of sequen
tial Bayesian inference (35, 36):

Xn(e|s) = AP(sn|en)X(en) = Πn
i=1

P(si|ei)
P(si)

􏼔 􏼕

X(e), (7) 

where the normalization A = ( ∫ denP(sn|en)X(en))−1. We also take 
the prior probability, X(e1) = X(e), because we are assuming that 
the environment is stationary or at least slowly changing relative 
to agents’ learning rates.

Then, Bayesian inference converges X(E|S) → P(E|S), decreasing 
the information divergence over long times. Through interactions 
with the environment, the agent optimally gathers information 
(30) as well as resources as demonstrated in Fig. 3A. Specifically, 
by minimizing the information divergence, learning agents maxi
mize their resource growth over the long term.

This formalism allows us to start considering general aspects 
of innovation in heterogeneous populations, including issues of 
competitive advantage and structural positions in terms of 
agents’ initial knowledge, models of the environment, and embed
ding within socioeconomic networks. Regardless of any of these 
elaborations, any learning model aspiring to optimal prediction 
must be Bayesian, as it is the single best way to incorporate ob
served data towards making predictions of future states of the en
vironment (37) and maximizing long-term growth.

There is growing interest in incorporating learning agents in 
economics and other social sciences towards formulating models 
of more realistic “rational expectations” in intertemporal opti
mization problems (38). At present, however, most of these ap
proaches adopt simplified learning models, for example, based 
on least-squares minimization (38), which at best apply in particu
lar cases, such as for Gaussian likelihoods. Consequently, we see a 
wide range of interesting opportunities in the social sciences for 
the adoption of more explicitly Bayesian frameworks, as has be
come increasingly common in psychology (39).

In the following subsection, we describe a parametric Bayesian 
inference scheme applied to the multinomial model via a Dirichlet 
prescription of conjugate priors (40), before we return to the gen
eral case to discuss issues of inequality in the light of learning.

Bayesian dynamical growth in the multinomial model
To illustrate these learning dynamics, we now return to the multi
nomial model of choice. We define the agent’s likelihood function 
of a sample of the signal, s|e, as a categorical distribution with par
ameter vector β = {β1, . . . , βl} ∈ Rl, with each vector corresponding 
to an event and each component, βe

s, corresponding to a signal, 
event pair. The probability mass function is given by 
P(s|e) =

􏽑
s (βe

s)
s, with normalization 

􏽐
s βe

s = 1. The conjugate prior 
distribution of E is given by a Dirichlet with hyperprior vector 
α ∈ Rl, and distribution P(e) = αe/A, where magnitude A =

􏽐l
e αe/l. 

This scheme is illustrated in Fig. 3B.
We set αe = 1 for all e so that our prior is uniform, for simplicity. 

We ensure the off-diagonal degenerate condition by setting βe
s = pe 

for s = e, and for off-diagonal events, e ≠ s, βe
s = (1 − pe)/(l − 1), satis

fying Appendix Eq. 2. The binomial parameter describing the en
vironment is then given by the average along the diagonal

p =
1
l

􏽘l

s

βe
s, s = e. (8) 

An agent with imperfect information will have estimates for the pa

rameters, α̃ ≠ α and β̃ ≠ β, and posterior, X(E|S, β̃, α̃) ≠ P(E|S, β, α). 
With each observation, the agent must update X(E|S) via 
(Appendix E)

X(e|s) ∝
m(−e)

(−s)/ωk + β̃e
s

M(−s)/ωk + 1
(n(−e) + α̃e), (9) 

where m(−e)
(−s) and n(−e) are the total numbers of samples e, s and e ex

cluding the current, and M(−s) =
􏽐

e m(−e)
(−s) is the number of samples of 

s excluding the current. We also introduce an inference time, k, as a 
free parameter that weighs the evidence versus the prior, with units 
time/update such that t/k is unit-less. In the limit k → ∞, the agent 
does not update their prior with new evidence. In the opposite limit, 
k → 0, the agent ignores the prior and considers only the most recent 
evidence, and this becomes a maximum likelihood model.

During the inference process, the agent will break the degener
acy of their posterior as they infer each βe

s individually. This is in
consequential though, as x(t) can still be computed similarly to 
Eq. 8 at any time. The degeneracy of P(E|S) permits us to reduce 
the dynamics of X(E|S) to that of the diagonal probability x(t), 
such that (Appendix F)

x(t) =
pt/kl + x0

1 + t/kl
, (10) 

where x0 is the agent’s initial binomial probability parameter. This 
equation illustrates the core results of this approach, as the dy
namics of the information of the agent’s posterior determine the 
average dynamics of the growth rate via the functional, γ[x(t)]. 
Over many observations, the agent optimizes their guess, driving 
X → P, minimizing their information divergence as DKL(P||X ) → 0. 
The agent thus maximizes the average growth rate for their signal 
over time with a power law −1 in terms of the dimensionless infer
ence parameter λ ≡ t/kl, at larger times λ ≪ 1. As previously men
tioned, though, agents who have maximized information are 
still subject to the volatility of sample fluctuations. For the re
mainder of this paper, we will study the effects of this learning 
process on the population dynamics of growth rates and wealth.

Population effects of information dynamics
Having defined the dynamics of information and resources for sin
gle agents, we can now explore the general dynamics of growth 
rate statistics in a heterogeneous population and its implications 
for long-term inequality. Mean growth rates can vary because of a 

A B

Fig. 3. Schematic illustration of the learning process. A) In addition to 
earning resources, the agent obtains information with each investment in 
the environment. B) Notation for the latent Dirichlet inference process. 
The agent is assigned prior parameters α, β, corresponding to their belief 
for the distributions of E and S, which are updated based on event counts 
M, n respectively.
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number of different factors. Particularly, agents have different ini
tial conditions of knowledge, they experience different environ
mental stochastic histories, and they may have different models 
of the world in terms of their likelihood functions. We will now ex
plore these sources of information heterogeneity and show that 
with a shared statistical signal, a population can reverse the (dom
inant) effects of heterogeneity on growth and inequality (14).

We write the population variance of growth rates generally in 
terms of information-theoretic quantities, where Ii ≡ I(E; Si) and 
Di ≡ Esi

(DKL[P(E|si)‖X(E|si)]). The population variance is given as 
(Appendix G)

VarN[γi] = VarN[Ii] + VarN[Di] − 2CovarN
􏼂
IiDi]. (11) 

The first term is independent of any agent’s imperfect knowledge 
or learning process and depends only on their model (likelihood) 
of the environment, given the agents’ signals.

The second term expresses variance in the prior and different 
learning trajectories across agents. This term vanishes as agents 
learn their environment fully. It follows that these two sources 
of variance vanish only if every agent has the same model in a 
shared environment with the same statistics, and after every 
agent has had time to learn their environment.

These two terms also express formal distinctions between 
the familiar Keynesian formulation of intrinsic uncertainty 
versus risk in socioeconomic behavior. Agents cannot know 
a priori what type of uncertainty they are facing and must 
learn as best as they can from their experience. A misspecifi
cation of the agents’ model of the world, via an incorrect like
lihood function, will result in irreducible uncertainty and a 
lower growth rate than possible. In terms of communications 
theory, this situation effectively uses the environmental ex
perience suboptimally, by picking a signal that does not 
maximize the channel capacity, as the largest possible mu
tual information between the agents’ signal and events in 
the world (32). On the other hand, risk in the sense of prob
abilistic events with a known distribution can be reduced 
(and better assessed) via the Bayesian inference process 
which builds the correct risk model within a family of func
tions, by learning its parameters.

The third term is less familiar and arises in populations where 
the magnitude of the agents’ information co-varies with agents’ di
vergence from the environment. This may happen in reality when 
different (likelihood) models of the world co-exist in a population 
of agents, and when, in addition, less experienced agents with 
shorter learning histories adopt preferentially some of these mod
els. For example, a younger generation may have a better model 
of the world but less experience, creating a negative covariance. 
Or a positive covariance may be generated if learners with a better 
model are encouraged to learn faster, and others discouraged, cre
ating a kind of cumulative advantage in terms of better information 
and faster learning. Such situations may provide principled model
ing strategies to better understand the success of a posteriori excep
tionally successful individuals, and identify situations of 
competitive advantage in access to information and learning.

Population effects in the multinomial model
We now illustrate how the inference dynamics happen in the con
text of the multinomial model. We focus on agents with identical
ly distributed signals, i.e. with the same likelihood function and a 
shared environment, expressed by the second term in Eq. 11. 
Thus, we (implicitly) take VarN[Ii] = 0, thereby also eliminating 
the third term. This situation models a homogeneous population 
in terms of models of the world, such as for individuals of the 
same species in a common habitat, or workers in the same indus
try, with similar training. We will return to the more general case 
and discuss future opportunities in the discussion at the end of 
the paper.

For a population of agents independently sampling a shared 
multinomial environment, the initial variance in growth rates is 
given by the variance in the initial binomial parameter, σ2

x. The dy
namics of the variance in binomial parameter for a population of 
size N is (SM 22)

VarN[xi(t)] ≡ 〈[xi(t) − 〈x(t)〉]2〉 =
σ2

x

(1 + t/kl)2 , (12) 

where 〈x(t)〉 = (1/N)
􏽐

i xi(t). Assuming a population of entirely con
servative (or aggressive) agents, such that all growth rates map to 

A B

Fig. 4. Monte-Carlo simulations of a population undergoing wealth dynamics and Bayesian learning with parameters of mean growth rate, ̅γ = 0.04, and 
standard deviation, σγ = 0.641γ̅. A) The simulated and theoretical means of x converge to p, thus maximizing growth rates. The parametric variance, σ2

x , 
(dashed) follows the theoretical prediction (solid). The linear behavior log–log plot demonstrates the power law behavior of σ2

x . B) The mean resources of 
three population types are plotted with a shaded region providing 95% confidence interval bounds for single agent trajectories. Heterogeneity broadens 
the range of possible wealth values while learning increases mean growth while narrowing the shaded region relative to no inference. Agent learning 
slows the increase in the Gini coefficient introduced by heterogeneity and reduces the coefficient of variation.

6 | PNAS Nexus, 2023, Vol. 2, No. 4

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/4/pgad093/7083303 by U

niversity of C
hicago Library user on 21 April 2023

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad093#supplementary-data


a unique binomial parameter, we can approximate the variance in 

growth rates, σ2
γ (t) = 〈(γ[xi(t)] − γ[〈x(t)〉])2〉, by Taylor expanding the 

second moment of the resource distribution. The approximation 
carried out in SM 38 shows that the growth rate variance de
creases asymptotically in polynomial t−2 time (41). Fig. 4A demon
strates that in a population of agents sampled from a Gaussian 
distribution of growth rates and resources learning their environ
ment, Δp,x = p − x(t) → 0 as t → ∞, and individual binomial parame
ters converge to the optimal value. At the population level, there is 
an agreement between the empirical population mean and theor
etical mean trajectory, calculated by evolving 〈x(t)〉 using Eq. 10. 
Similarly, the empirical population variance in x matches the the
oretical power law prediction given by Eq. 12.

These results show that learning a shared, stationary environ
ment reduces growth rate variance on the same time scale as the 
dynamical effects introduced by growth rate variance (14). This 
shows that fast learning (sufficiently low k) equalizes information 
access and is a suitable mechanism for reversing the long-term ef
fects of heterogeneous growth on inequality.

We demonstrate these features of the dynamics by compar
ing the statistics of resources across Monte Carlo simulated 
populations. We first use homogeneous initial conditions, 
then heterogeneous initial conditions with and without infer
ence. To measure the increase in inequality, we track the Gini 
coefficient, denoted Gini, which varies between zero—for uni
formly distributed resources—and 1, for maximally unequal 
wealth distributions (For a lognormal distribution, such as in 
the GBM model, Gini(t) ≈ Erf[σ2

r (t)].) Additionally, we measure 
the relative increase in standard variation to the mean of re
sources via the coefficient of variation, cv = σr/〈r〉. More on this 
analysis is given in Ref. (14).

The resource time evolution shown in Fig. 4B demonstrates that 
growth rate heterogeneity dramatically broadens the wealth distri
bution, in agreement with (14). Accordingly, heterogeneity in
creases Gini and cv as compared to a homogeneous population. 
The introduction of learning increases the average growth rate in 
a heterogeneous population, as demonstrated by the higher 
mean wealth, while reducing the variance in resources. The former 
slows the rapid increase Gini, while the combination of both reduces 
cv to levels comparable to the homogeneous trajectory, confirming 
that learning reverses the effects of heterogeneity on inequality.

While this simplified model does not capture the nuanced ef
fects of educational systems or skill heterogeneities implied in 
real societies, the connection between convergent learning in a 
population and growth is general and provides a sound theoretical 
basis for the observed benefit of education on national growth, hu
man capital, and inequality reduction (42–44).

Conclusion
In this paper, we developed a statistical dynamical theory for the 
origin of resource growth rates in populations of learning agents 
experiencing a shared stochastic environment. We showed that 
an agent’s growth rate is, in the limit of many decisions, the quan
tity of mutual information between their signal and the environ
ment and that learning through Bayesian inference provides a 
natural and necessary (optimal) mechanism for increasing 
agents’ growth rates, managing volatility, and reducing growth 
disparities across populations over time. We demonstrated that 
in the particular static case (without learning), this framework re- 
produces GBM models widely used in wealth dynamics and in
equality studies and provides models for their parameters. 

When agents can learn, their parameters become optimal over 
time and acquire formal interpretations in terms of information.

The present treatment answers an important open question on 
how to mechanistically control variances in growth rates across a 
society while maximizing learning and growth and generally en
riches the typical modeling schema of wealth dynamics by incorp
orating agents’ subjective choices in a structured, stochastic but 
knowable environment. This work also adds to the foundations 
necessary for incorporating formal models of information and 
strategic subjective agent behavior in statistical mechanics, help
ing bridge a gap between physics and computer science, and bio
logical and social sciences.

There are a number of interesting developments that this the
oretical framework suggests for modeling more realistic, particu
lar situations. First, learning is never quite uniform across 
populations or time, varying across the life course, with some 
agents being able to dedicate more time and effort to it than 
others. This issue can be modeled by making inference rates dy
namic and heterogeneous, for example, through coupling to 
agents’ socioeconomic status (SES) or age. Importantly, lower 
SES has been shown to be correlated with the presence of stressors 
that inhibit the cognitive ability of people to learn (45–47), while 
higher SES correlates with better educational outcomes (48–50). 
Coupling learning rates with SES would alter the population’s 
learning trajectory and potentially attenuate its effectiveness in 
reducing information and wealth inequality. Moreover, our ana
lysis has assumed that each agent samples identically distributed 
signals. In reality, people across different structural positions in 
social networks, for example, associate with place, gender, or 
race/ethnicity, typically have differential access to signals (oppor
tunities), with implications for what they can learn and for result
ing social equity. Along with different signals, different agents 
may have different models of the world, which are naturally in
corporated in the scheme developed here by different likelihood 
functions in Bayesian learning. We have shown in general how 
such heterogeneities among agents will result in inequalities in 
their growth rates, but many interesting situations remain to be 
explored in the future. Finally, real societies also feature interac
tions between agents and planners that redistribute wealth, eco
nomic rents, and heterogeneous frictions that further shape 
wealth dynamics. The work developed here emphasizes the im
portance of understanding these policy choices and socioeconom
ic phenomena through the lens of how they affect specific wealth 
dynamical parameters, namely initial wealth statistics versus 
growth, including average growth rates and volatilities across 
populations. Future studies of the origins of inequality and social 
equity should consider these structural complexities from the 
general point of view of access to information and learning, and 
the specific analytical tools that they introduce.

Second, from the point of view of maximizing future resources, 
there are familiar trade-offs between learning and investing. 
These can be modeled in terms of the inference process divided 
into passive experiential learning, resembling the “learning by 
doing” featured above, and, additionally, emulating formal, insti
tutional education wherein agents sacrifice short-term wages to 
more rapidly acquire information. These considerations define 
agent trade-offs between actively exploring and passively exploit
ing the environment, an important research topic in both experi
mental neuroscience and machine learning (51, 52). Furthermore, 
while information is a non-rival quantity that can be made avail
able to a society with minimal cost of sharing or degradation from 
use, the generation and dissemination of information through 
teaching is a costly process that can produce additional non- 
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trivial dynamics. Agents must also consider the cost and benefits 
of seeking education in non-stationary environments, where the 
value of information may fluctuate or decay over time. 
Expressing the social costs of education through mechanisms of 
finite learning resources could help explore trade-offs in investing 
in human capital over various timescales of learning and environ
mental evolution (53, 54) and help determine when they are worth 
it—for individual agents and societies—in intertemporal settings.

Third, tracking individual agent dynamics under constraints of 
finite (varying) lifespans can help determine the effects of gener
ational wealth transfers on inequality, and provide insight into life- 
course strategies (55) and issues of valuing (and discounting) the 
future. Thus, an extended framework can help us explore the 
scope of education under the discounting of delayed resources 
by longevity and lived volatility (56); including the implications of 
costs and expected earnings with or without an education over 
time. Lastly, agents in this model experience the same environ
ment and learn the same information, whereas actual communi
ties specialize in different, complementary skills that may 
minimize knowledge redundancy. These information complemen
tarities and exchanges are known commonly in the social and eco
logical sciences in terms of the division of labor and knowledge 
(57). How agents decide which information to learn and what pro
fession to choose based on their environments begets different 
growth rates across a population, altering emerging inequality 
and influencing how social groups cooperate or compete across 
community or institutional social levels (58). Cooperation among 
agents with synergistic information in a stochastic environment 
has been shown to produce non-linear additive effects on aggre
gate information (59), suggesting that cooperative agents would 
experience larger growth rates when coordinated, compared to 
the sum of agents acting independently (60, 61). Studying this con
nection between social behavior and growth from the point of view 
of information and learning will provide insights into the circum
stances when cooperative and altruistic behavior becomes favored 
both via sharing resources and information.
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