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ABSTRACT

Increasing power grid challenges due to rapid decarbonization and pressure for reduced car-

bon emissions and power cost compel data centers to operate with capacity varying in periods

of hours or days, perhaps on a dynamic basis in concert with the use of renewable generation.

With data centers exceeding 10% of load in many grids, the implied capacity variation may

approach 50%. For today’s computing, variable resource capacity is problematic, causing

severe loss in throughput and corresponding resource efficiency.

Our approach is to create intelligent resource management for variable capacity resources.

Traditional resource managers were built with the assumption of constant capacity, schedul-

ing jobs that fail when capacity decreases, causing abrupt job failures and wasted resources.

To understand scheduling performance under variable capacity, we define three key dimen-

sions of variation that lead to performance loss. We use cloud and HPC production workloads

and explore the multi-dimensional capacity change space, characterizing scheduler perfor-

mance in resource efficiency, job failures, and waiting time. Moreover, to improve perfor-

mance, we consider scheduling techniques to cope with capacity loss. We propose intelligent

termination policies to minimize job failures and wasted resource efficiency. Then, we take

a broader view to prepare for capacity variation altogether. We consider two dimensions of

uncertainty in capacity and workload, exploring the corresponding information space that

reduces uncertainty. We propose new scheduling techniques that exploit the information to

prevent job failures and increase resource efficiency.

We evaluate traditional schedulers under varying resource capacities and using a diverse

set of workloads, including one HPC and three cloud workloads. Results show that capacity

variation can decrease goodput by up to 60%, incurring 15-40% job failures. Amongst

variability dimensions, the results show that dynamic range, structures, and change frequency

are all important; each in some cases producing 10 - 40% goodput losses. Drill down with

Google cloud workloads shows that variable capacity can cause serious problems, including

xi



up to 70% goodput loss, 20% job failures, and 15X increase in job wait time. Careful study

of performance versus variability shows that avoiding major harm, such as goodput loss,

requires a variation limit of <10% dynamic range. This prevents the cloud from significant

temporal load shifting to reduce carbon emissions or power costs.

We designed and compared the performance of intelligent termination policies to cope

with capacity loss considering a variety of workloads and variation traces. Our experimental

results demonstrate that these new scheduling techniques achieve significant performance im-

provements under resource variability, with 10 - 66% goodput increase and 1.6 - 3x job failure

reduction. Using job attributes and progress to minimize wasted computation produces 44%

goodput increase on average and close to full reduction on job failures. Realistic examples

show that with scheduling techniques, a typical data center can achieve benefits of up to

15% carbon emission reduction and 14% power cost savings by exploiting resource capacity

variations. Then, we take a broader view and design new scheduling schemes that seek to

prepare for variation with Google cloud workloads which represents a hard case. These new

schedulers exploit a variety of potential information about workload and capacity variation

to reduce uncertainty, increasing goodput by up to 180%, decreasing job failure rate by 5 -

15X, and job waiting time by 1.4 - 4X. Within the information space, runtime classification

is critical. Exploiting this information, the LongShort algorithm can drastically improve the

ability to support variation in capacity from <10 to 50% while maintaining performance.

These results demonstrate the promising benefits of new scheduling schemes for capacity

variations but require future validation with complex workload constraints.

While capacity variation poses serious challenges to conventional resource managers, our

intelligent resource management shows significant improvement, eliminating the variation

penalty and demonstrating promising benefits of future variable capacity data centers.
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CHAPTER 1

INTRODUCTION

1.1 The Cloud, Growth, and Ensuing Challenges

1.1.1 Rise of Cloud Computing

Cloud computing offers a platform for delivering elastic services over the Internet for a large

number of users and with the use of hardware and software, thereby enabling scalability

and resource-sharing. It offers many advantages over building out and managing a private

infrastructure with instant use anytime anywhere, low upfront costs, and pay-as-you-go pric-

ing. Since the incorporation of Salesforce and VMware in 1999 and the commercialization of

Amazon EC2 in 2006[10], emerging cloud computing has become one of the most compelling

paradigms and evolved to offer many branches of services, such as Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). Large IT enterprises

in play are dominating the cloud markets. Four companies own 67% of the world’s $130 bil-

lion cloud market, and each has 60 or more data center locations. Overall, the eight largest

providers control more than 80% of the market[3].

The explosion of data and data-driven workloads, such as big data analytics and query

processing, has fast-tracked the growth of cloud capacity. With the increasing demand for

machine learning applications and IoT services, this rapid growth has accelerated. With the

global pandemic pushing companies to reshape their IT and application strategies radically

by shifting to cloud services, this further prospers the growth of cloud computing. In addition

to remote work, digital events such as video conferencing and streaming services create huge

demand for cloud-based services. Infrastructure and platform cloud services grew 36% to

$44 billion in the first quarter of 2022[22].

To meet the rapid growth of demand in cloud computing, IT companies strive to both

increase the number of data centers all over the world and expand the size of data centers,
1



(a) Cloud revenue grows at 34% per year, and the
top 3 providers account for 65% of total share[11]

(b) Number of hyperscale data
centers projected to exceed 1,000
within three years[20]

Figure 1.1: Explosions of Internet-scale applications with the rapid growth of demand during
the global pandemic has accelerated the expansion of cloud data centers

building hyperscale data centers which are significantly larger than traditional enterprise data

centers in scale and performance. With a current pipeline of 314 new data centers under

construction, the number of hyperscale data centers will exceed 1,000 in three years’ time,

and total capacity will double within less than four years[19, 12]. IDC projects worldwide

spending on cloud infrastructure to have a CAGR of 12% till 2026, accounting for 67.9% of

total infrastructure spend of compute and storage[13].

1.1.2 Data Centers as Large Power Consumers

The power requirements for cloud data centers have been growing rapidly (25-30%/year).

It is no exaggeration to say that power is an important concern for large-scale cloud data

centers.

The scale of cloud computing infrastructure, and its rapid growth reflects rapid com-

mercial growth. Along with revenue growth, hyperscale cloud provider’s corollary growth

in power consumption rises from 10TWh in 2010 6.5x to 65 TWh per year in 2018 [97].

Based on a compound annual growth rate of 30%, [97] projects a potential rise to over 100
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TWh/year in just the next few years. This growth can be seen in increasing numbers of

data centers all over the world, which are causing increased power grid buildouts around the

world. Within the data centers, sophisticated power management systems optimize how the

power is used, according to metrics such as power usage effectiveness (PUE) [40]. Increasing

the challenge of warehouse-scale computer design is the trend of increasing server power

density[116]. Overall, hyperscale cloud data centers have become the fastest-growing con-

sumer of electric power in many parts of the world. But worse than the cloud, power limits

are constraining the scale of the world’s largest supercomputers [47] and already define data-

center size. With the largest supercomputers approaching 50MW, datacenter complexes with

multiple 40MW buildings, and aggregate loads of in excess of 200MW, with sites planned

for 1GW, these are large power consumers indeed [38].

1.1.3 Cloud Growth, Damage, and Ensuing Limits

These power limits translate directly into limits on the amount of cloud computing that

can be delivered. Compounding this, applications of computing drawn from every corner of

commerce, society, science, and government [47, 152] are proliferating. The global cloud com-

puting market is expanding at a rapid speed, with a projection to grow from $480.04 billion

in 2022 to $1,712.44 billion by 2029, at a CAGR of 19.9%[4]. This growth, combined with

climate concerns, has brought increasing attention to the cloud’s power consumption and

its environmental impact [85, 97, 72, 63]. Data centers consume 196 to 400 terawatt-hours

(TWh) in 2020[1] and are forecast to reach 20.9% of projected electricity demand in Figure

1.2[84]. With the projected growth of energy consumption and expansion of hyperscale data

centers, cloud computing already accounts for 2-4% of global greenhouse gas emissions with

high growth rates[16].

Concerned about climate, governments around the world have adopted policies to re-

duce carbon emissions, increasing pressure to minimize data center power consumption and
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Figure 1.2: ICT energy forecast[84]

encouraging the use of renewable generation. For example, European Union goals include

dramatic reduction of carbon emissions for the entire economy – 40% by 2030 and zero

net by 2050[45]. In the United States, large states have adopted similar zero net carbon

emissions goals for electric energy (California 2045) and for the entire economy (New York

2045) [98, 110, 105]. At the same time, wholesale electricity prices are skyrocketing in many

countries, resulting in tripling in many markets in 2021-2022. This signals the continued en-

ergy crisis and large uncertainties of electricity forecast going forward[7], posing even more

significant challenges to carbon reduction goals and power cost budgets of entities. These

societal targets pose significant challenges for rapid hyperscale cloud growth (e.g. Amazon,

Microsoft, Google, etc.) that is being accelerated further by exploding popularity of machine

learning [79, 131]. In several areas of the United States, data centers already account for

over 5% of the power load [120], and hyperscale power consumption growth is estimated at

20 to 40% CAGR. Several cloud computing providers have responded with aggressive goals

to reduce carbon emissions – notably CEO’s Satya Nadella of Microsoft, and Sundar Pichai

of Google, and even Jeff Bezos of Amazon[33, 31, 32], but there is much work to be done in

the face of rapid growth of the cloud.

Due to the significant amount of power footprint, cloud data centers now are facing

serious power constraints that limit their long-term growth. With the expansion of hyperscale
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data centers outrunning local utility grids, many countries and regions have to halt future

constructions and projects simply because the local grid cannot keep up. Various locations,

such as London, Ireland, and Singapore, are facing the same challenge that their electricity

grids are at capacity and are having difficulties in building new infrastructures because of

grid stability[21, 9].

1.2 The Opportunities of Variable Resource Capacity

These power limits make dynamic power management for cost, cooling, sharing, or simply

to be a good citizen in a fluctuating or stressed power grid a source of variable capacity for

data centers.

1.2.1 Carbon Reduction

Concern about the carbon footprint has led to significant public scrutiny from organizations

such as Greenpeace [75], and a drive by many cloud providers to offset their carbon footprint

(become carbon neutral), with Google, Facebook, Microsoft leading the charge in that area

and recently Amazon agreeing to that as a long-term goal. In late 2018, Google raised the bar,

adopting a goal beyond offsetting, matching its power consumption on an hourly basis, 24x7

over the entire year, with renewable energy in the same power grid[72]. The combination

of the goals of extremely high energy use efficiency and reducing carbon footprint data

centers lead to careful but aggressive large-scale power management. Recent studies suggest

a growing trend of power management and sharing over large scheduling domains[122, 91,

149], and these large-scale power management creates dynamic power constraints as variable

resource capacity, shown in Figure 1.3 (left).
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Figure 1.3: Dynamic Carbon Content in Power Market and Volatile Grid Renewable Gen-
eration (right) give rise to variable power [72] – and thereby variable capacity for scheduler
domains [122]. A collection of these domains/zones can be within a single data center or
span several buildings at a single site.

1.2.2 Grid Decarbonization and Renewable Generation

With ambitious goals to de-carbonize electric power generation in much of the world, power

companies and grids have turned heavily to renewable sources such as solar and wind [76,

113]. The volatility of these resources, meaning their power is sometimes available and

sometimes not, depends on the weather conditions and time of day. Because of this property,

these resources are often characterized by a capacity factor such as 0.33 – the fraction of the

nominal maximum generation that they provide over a full year.

Beyond this the challenge, renewables can be thought of as statistically available genera-

tors, so their power cannot be dispatched to be available when the grid loads need it – rather

it just “is” available when the the wind is blowing or the sun is shining. The correlation and

non-dispatchability of wind and solar generation result in diminishing benefits, “grid effec-

tive capacity factor” that diminishes with each additional unit of renewables added to the

grid. This phenomena is well-documented and reflects a major challenge to high renewable

fraction grids[144]. In fact, all of the high renewable fraction (RPS) grids are experiencing

major challenges in these areas – at renewable fractions of 30-45%. So the drive to higher

RPS is a significant challenge.

A critical solution is adaptive loads, which adjust their demand rapidly to match the

6



Figure 1.4: A case study to compare a 20 MW data center (placed at bus 2) to large-scale
storage in a 47 bus Southern California Edison (SCE) distribution network as a function of
data center flexibility[143].

available supply [67]. Such loads will be a staple of the future grid, because of their cost-

effectiveness relative to energy storage. Dynamic power management of hyperscale data

centers is an important potential adaptive load.

Existing studies show that a 20MW data center needs to provide 20% flexibility to be as

effective as a 0.5MWh energy storage, and as much as 50% to be equivalent to 0.67MWh stor-

age in terms of regulating and stabilizing the grid, shown in Figure 1.4[143]. This represents

a sizable amount of variation range imposed on the data center.

Ambitious research has proposed new models of data center operation that synergize use

and load with the grid, where ZCCloud represents a radical approach to operate with 100%

dynamic range using zero-carbon power and low price [151, 55], or with the availability of

local renewables [71, 80, 62] . These approaches all suggest that future data centers will

have variable capacity, determined by external factors such as the general (grid-wide) or

local (on-site) availability of renewable generated power.

1.2.3 Power Cost Saving

Even if carbon footprint is not compelling for all data center sites, power cost is always a

concern. Global experience across dozens of major power grids has shown that increased re-

newable fractions (20%, 30%, 40%, etc.) produce growing swings in power pricing [144]. And,
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Figure 1.5: Today’s data centers assume resource capacity as a fixed quantity. Emerging
approaches to exploit grid renewable energy and reduce carbon emissions give rise to variable
power.

when renewable generation coincides, supply can exceed demand, producing negative pricing

and power curtailment (waste) in massive quantities [78, 76, 44, 55], leading to abundant

opportunities to optimize data center power cost. This is a broad and perhaps unavoidable

trend due to compounded uncertainties in forecasting these volatile generators and loads.

Therefore, in addition to carbon footprint reduction, the goal to reduce power costs with

fluctuating prices leads to complex local optimization and planning, driving variable capacity

in data centers.

These varied scenarios suggest clusters, availability zones, scheduling domains, even entire

data centers will have variable capacity, driven by external factors such as power allocation,

market prices, or even general (grid-wide) or local (on-site) availability of renewable en-

ergy. This is the core motivation for the variable capacity resource scheduling problem. As

shown in Figure 1.5, and external factor such as varying power creates variation in capabil-

ity/capacity and the resource manager must effectively manage this varying capacity as it

changes over time as in Figure 1.6a.

8



1.2.4 Power Capacity Constraint

In addition to benefits such as power cost savings, cloud data centers now are facing a

major challenge of not being able to build new data centers and reaching a hard stop of the

rapid growth brought out by power grids and governments. Ireland has recently imposed

a de-facto moratorium on new data center construction as they have placed an unbearable

strain on the power grid[9]. Major cloud enterprises, such as Microsoft and Google have

to find alternative solutions as Ireland’s grid operator has halted new constructions due to

power constraints[17]. Likewise, Dominion Energy, the primary utility provider which serves

close to 70 data centers as a global hub, can no longer guarantee the power demand due to

overloaded transmission[5].

The reason behind the power constraint is data centers are viewed as large, steady power

consumers. With the resilience and SLA requirements for cloud data centers, their power

supply requires to be 24×7 available, posing severe stress to the grid during times of peak

demand or in the event of failures. To account for peak use and guarantee power stability,

regulators and grids need to conservatively plan for power capacity. One critical solution for

data centers to address the problem is dynamically adjusting their power demand to meet

power grids’ needs. Large, flexible data center loads could not only reduce the stress on the

grid but also become a great asset in stabilizing the grid and consuming excess power supply.

A group of studies has proposed peak shaving strategies for data centers to reduce demand

during power grids’ peak demand[35, 143]. These approaches demonstrate the feasibility of

data center load shifting to stabilize the power grid. More promising, ERCOT has initiated

Large Flexible Load Task Force (LFLTF) to allow large flexible loads, ranging from 20 -

75MW, such as crypto miners, into the grid connections as dispatchable loads[15]. These

loads are introduced as a form of controllable resources, responding to the grid’s demand

and curtailment in a short time, adaptively adjusting their own power demand. ERCOT

anticipates as much as 17GW of such large, flexible loads will interconnect with the grid by
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(a) Hourly Capacity (b) Total Capacity

Figure 1.6: Resource capacity variation for a datacenter with a fixed per-hour carbon budget
(left). As the power grid’s generation mix varies, the data center’s capacity varies. The
resulting capacity is 10% greater for a fixed carbon budget (right). Example from the
Germany electricity market on 13.03.2020[70].

2026[6], projecting a substantial existence in the future grid. These efforts demonstrate the

opportunities for data centers to overcome the power capacity limits and continue to grow

by offering flexibility to the power grid in times of stress, which manifests to the data centers

as variable capacity.

1.2.5 Motivating Example

One promising reason for variable capacity data centers is to exploit the fluctuations in

the power grid to reduce electricity costs and carbon footprint of data centers. Modern

power grids include a complex mix of generators – wind, solar, hydro, as well as fossil-

fuel and even nuclear. As load varies through the day or over the week, the power grid

dynamically dispatches generators in an ever-changing mix to meet the current demand.

While generally preference is given to renewables through economic dispatch because they

have low incremental generation costs, they are not always available in sufficient quantity

so carbon-emitting generators are used. This problem is much harder than most markets

because power is what economists call a perishable resource – generation much be matched

instantaneously with the load.
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Figure 1.7: Monthly average quantity of resource capacity under variation for a datacenter
with a fixed per-hour carbon budget in 2021 - 2022. As the power grid’s generation mix varies,
the data center’s capacity varies, producing total capacity different across seasons and grids.
The yearly opportunity is 1.6% - 19.8% greater for a fixed carbon budget. Example from
MISO, ERCOT, and CAISO power grids over Aug 2021 - July 2022.

The net effect is that carbon-emissions content of power in most power grids varies widely

with time. One example is illustrated in Figure 1.6a, where a fixed carbon emission budget

for each hour, combined with the dynamic variation of power grid carbon content produces

large variations in data center power available. The resulting variable power ranges from

16 to 42MW, compared to a constant power of 28MW. Not only does the level of power

varies widely, but the carbon-emissions-based purchases also exploit this variation to buy a

significantly larger quantity of power at the same level of carbon emissions. In Figure 1.6b,

more than 10% capacity increase is observed over a 24-hour period. The example illustrates

that following the carbon-emission content of the power market alone can produce resource

capacities ranging from 40% to 105% within a single 24-hour period.

Now we expand the budget of fixed carbon emission to more grids and over one year,

Figure 1.7 shows the average resource capacity achieved over the month of three major

U.S. grids - MISO, ERCOT, and CAISO over the last year. The resulting total capacity

of resource variations varies across months, seasons, and grids, but overall demonstrates a

significantly larger quantity of power compared to a fixed capacity purchase with the same
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amount of carbon emissions. Across three grids, capacity increases of 1.6% to 19.8% are

observed over a one-year period, with an increase reaching as much as 56% over a one-month

period. These examples show the great opportunities for adapting variable resource capacity

and enlarging shifting capabilities in data centers. And as renewable generation increases,

the carbon content in power grids will continue to exhibit increasingly larger differences,

creating even greater benefits. Similarly, such resource capacity variation can arise from

the dynamic power pricing of power markets, production quantity of local renewables, or

intercluster power management that dynamically re-adjusts the power quantity available to

each cluster.

1.3 Problem: Variable Capacity and Computing Productivity

However, variable resource capacity poses new scheduling challenges to the data center.

Extensive research on job scheduling and resource management generally focuses on problems

where the quantity of resources is fixed or constant. Changing resource capacity is a challenge

for job schedulers and resource managers because of the uncertainty about future resource

capacity. On one hand, this means that even if job runtime is known at start time, the
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resources may not be available long enough to complete it. On the other hand, resources can

increase rapidly, challenging the availability of workload to utilize them. Figure 1 portrays

new data center scheduling and resource management paradigm where resource capacity

varies over time, controlled by external factors such as the grid’s carbon content, market

power price, and inter-cluster power management.

To motivate the challenges of scheduling for variable capacity resources, consider Figure

1.8a, goodput (useful resource efficiency) achieved by a state-of-the-art scheduler, using one

of the most widely used cloud workloads, comparing variable capacity with fixed capacity

over 5 distinct clusters. The results show a large goodput decrease for all 5 clusters (var-

ied workloads). Compared to traditional fixed capacity, the variation in capacity incurs a

goodput degradation of 60 - 70%. The variation in this example is derived from typical

power market variations as shown in Figure 1.6a1. Beyond goodput degradation, other neg-

ative effects include sharp increases in job failure rates, ranging from 50% to 70%, and large

increases in job waiting times by up to 15x (see Figure 1.8b).

Walking through these simple illustrations, we see that there are certainly great oppor-

tunities to exploit carbon footprint and electricity cost benefits while maintaining or even

increasing total available resources in data centers. However, such variations may induce sig-

nificant negative impacts on the schedulers, and such impacts limit and prevent data centers

from dynamically acquiring power and shaping the computation load accordingly. Therefore,

characterization of the performance and effectively maintaining system performance under

capacity variation is the key for the data center to enable or enlarge its shifting and load

fluctuations capabilities to exploit power grid fluctuations.

In summary, the end of Dennard Scaling and the rapid growth of large-scale data centers

advocate variable resource capacity to exploit carbon and cost benefits. Our approach is

in line with these data center commitments and policy efforts to reduce carbon and power

1. This cluster’s capacity varied by random walk with stepsize 0.15 and dynamic range of 0.6.
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impact.

1.4 Problem Summary

We briefly describe the thesis problem in this section. Section 4.1 explains the problem

in-depth with a detailed discussion.

As loads of cloud data centers grow to gigawatts, they have become dynamic entities,

interacting with the power grid to optimize power cost, carbon emissions, grid stability, and

computation. Such dynamism produces variable resource capacity, controlled by external

factors. However, traditional data center resource managers have focused on time-invariant

resource capacity and can suffer significant performance loss subject to such variability, lim-

iting acceptable dynamic range. To enable larger benefits, new cloud needs new resource

management techniques that can tolerate greater dynamic range of capacity variation, while

maintaining good performance. We aim at creating intelligent resource management for vari-

able resource capacity data centers to eliminate the variation penalty and exploit variation

benefits.

1.5 Thesis Statement

We propose a new class of scheduling techniques that are robust in the presence of resource

capacity variability. These techniques, exploiting the information space of uncertainty, can

deliver high data center resource efficiency in variable capacity data centers for commercial

public cloud workloads.

• Variable capacity data centers experience dynamic resource capacity, driven by

external factors such as power allocation, power market prices, general (grid-wide) or

local (on-site) availability of renewable energy, and intercluster power management.
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These data centers experience multiple dimensions that shape resource variations, in-

cluding variability structures, change frequency, and dynamic range.

• Information Space of Uncertainty explores dimensions of uncertainty including

job runtime and resource capacity that lead to performance loss and includes varying

amounts of information to help schedulers prepare for uncertainty.

• Scheduling techniques include intelligent termination policies to cope with capacity

loss and variation-aware scheduling algorithms, effectively exploiting varying amounts

of information about job runtime and resource capacity, to plan for capacity variations,

with the goal of high data center utilization and no loss of QoS, increasing data center

shifting capabilities.

1.6 Thesis Project

In this thesis, we propose intelligent resource management which exploits information of

uncertainty for variable capacity resources to enable larger carbon emission and power cost

benefits.

We define the scheduling problem of variable resource capacity and the multi-dimensional

space of capacity variations. We define the space of variations with several key dimensions,

dynamic range, variability structure, and change frequency. These correspond to a range of

examples in the natural world (carbon content, power price, data center cooling, and more)

that give rise to variation. We give examples covering a wide range of realistic scenarios

and illustrate how varied and challenging they are. To study how well existing high-quality

resource managers fare, we build a trace-driven job scheduling simulator and use four real

large-scale workload traces, both cloud and HPC, covering a diverse range of synthetic and

real variation traces. We explore the multi-dimensional capacity change space and charac-

terize scheduler performance in resource efficiency, job failures, and waiting time under these

15



challenging scenarios. To drill down on the variation range of cloud data centers, we evaluate

scheduler performance using Google cloud workloads varying workload mixes and structures

with both synthetic and real variation traces.

To improve performance and cope with capacity loss, we propose intelligent termination

policies that selectively terminate jobs to minimize goodput loss. We evaluate and compare

these policies with foresight covering the whole problem space and with a case study to

characterize improvements. Beyond coping with capacity loss, we identify two dimensions

of uncertainty in capacity and workloads. We explore the information space, which reveals

amounts of information about these dimensions, to reduce uncertainty and propose new

scheduling schemes exploiting the information to prepare for capacity changes by optimizing

job placements. We compare the performance of new scheduling schemes using Google cloud

workloads with varying workload features and variation traces to demonstrate the generality

of scheduling improvements.

1.7 Contribution and Thesis Organization

In this thesis project is a deeper understanding of the opportunities and challenges to make

variable capacity resources useful. Specifically that the introduction of variation in capacity

raises myriad problems in the effective use of data center resources. If useful coupling

with external environments (eg. power grid, carbon emissions, power markets) is to be

achieved, data centers must solve the problem of achieving high compute efficiency with

variable resource capacity.

This problem’s nature is dependent both on workload structure as well as the nature of

variation. Variational studies show that realistic combinations face significant difficulties.

Exploration of a variety of termination policies as well as planning for change in capacity

show promising benefits, but the properties of today’s cloud workloads present a difficult

challenge. We characterize how they limit any scheduling solutions, and thereby limit fea-
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sible variation. Any greater solution will require changes in both workload and resource

management systems. Specific contributions of the thesis include:

• Formal definition of the variable-capacity scheduling problem for data centers. This

includes identifying the key dimensions of variation, and systematically characterizing

their performance impact on current schedulers. This characterization covers mul-

tiple cloud and HPC workloads, and dimensions such as variation structure, range,

frequency, as well as the impact of foresight.

• Empirical studies using real supercomputer center HPC workload traces and typical

data center heterogeneity shows that capacity variation can significantly decrease good-

put (15 - 60% with avg. 30%). Beyond such efficiency, job quality is also degraded,

incurring job terminations (15 - 40% with avg. 25%). These studies show that several

variability dimensions have the greatest negative impact – dynamic range, variability

structure, and change frequency. Each of these dimensions could independently reduce

goodput by 10 - 40%, with even greater losses in combination.

• Drill down on real cloud data centers with a range of workload traces and various cluster

sizes reveals a dominant mode of VM usage with a large fraction of long or continuous

running jobs, presenting an obstacle to resource flexibility. This property and inter-task

dependencies further degrade performance, producing unacceptable goodput losses of

30-40%, and unconscionable job termination rate of 26%. These factors combine to

produce a 60X increase in average waiting time. These impacts limit tolerable capacity

variation to <10%, strictly limiting potential variation benefits.

• Scheduling techniques to cope with capacity loss by selectively terminating jobs using

job attributes and progress to minimize wasted computation and improve resource

efficiency. Evaluation of a range of workloads and variation ranges show that they

are effective in mitigating performance degradation upon capacity loss, reducing job
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failure rate by 2 - 5X, and enabling large increases in goodput by 44% on average.

• The framework of uncertainty in variable capacity data centers. This includes two

dimensions of uncertainty in capacity and workloads which lead to performance loss,

corresponding information space to reduce uncertainty, and new scheduling schemes

which prepare for capacity changes by exploiting information to optimize job place-

ments. This framework targets cloud data centers considering their workload proper-

ties.

• Experiments using real cloud workload traces show that with information, schedulers

achieve significant improvements, increasing goodput (by 180%), decreasing job ter-

mination rate (by 5 - 15X), and job wait time (by 1.4 - 4X). Among information, job

runtime classification is critical and enables scheduling algorithm to effectively achieves

large load flexibility from <10% to 50% while maintaining performance.

The remainder of the thesis is organized as follows. Chapter 2 gives a brief background on

recent advances in power grid decarbonizations, data center growth, resource management,

and cloud workloads. In Chapter 3, we discuss the related research literature. In Chapter

4, we present the key research problem and our scheduling approach. Chapter 5 describes

the scheduling performance under capacity variations with detailed multi-dimensional eval-

uation. In Chapter 6, we explain the two dimensions of uncertainty and the corresponding

information space to reduce uncertainty. In Chapter 7, we describe our scheduling algo-

rithms exploiting the information of uncertainty and evaluate their effectiveness. Finally, we

summarize the thesis results and outline multiple future research directions in Chapter 8.
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CHAPTER 2

BACKGROUND

2.1 Power Grids and Decarbonization

Growing concerns about carbon emissions and their long-term impacts on climate change

have created a worldwide consensus on the transformation of power generation. Power grid

decarbonization is one of the most fundamental pillars of the global effort to mitigate climate

impacts. Globally, 30% carbon emissions have been contributed by coal-fired generation in

2018 and electricity has played an important role in achieving a carbon-neutral energy system

by reducing carbon emissions.

Governments around the world have adopted policies to reduce carbon emissions, in

particular a major promotion of renewable energy generation. For example, European Union

goals include dramatic reductions of carbon emissions for the entire economy – 40% by 2030

and zero net by 2050 [45]. In the United States, large states have adopted similar zero net

carbon emissions goals for electric energy (California 2045) and for the entire economy (New

York 2045) [98, 110, 105]. These societal targets suggest that power grids need to project

rapid growth in renewable electricity generation in response to these pledges and the goals

of the Paris climate agreement[18].

In response to the actions from numerous governments to encourage the deployments

and uses of renewable generation such as welfare, carbon taxes, and credits, the portion

of renewable energy in the power grids has significantly boosted over the past years. The

world’s renewable energy power generation capacity has increased from 4,204 TWh in 2010

to 8,427 TWh in 2022, more than doubled. Wind and solar account for the major growth in

renewable generation. In the US, together solar and wind comprised 5.2% of overall power

generation in 2014. With an increase of 20 GW of the solar capacity forecast, EIA expects

solar power to account for nearly half of new U.S. electric generating capacity in 2022[23].
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EIA forecasts that wind and solar will provide 14% of U.S. electricity generation this year

and 16% in 2023[14]. California has been a leader in setting Renewable Portfolio Standards

(RPS), and requirements for power generation mix, reaching a 20% renewable mix in 2010.

In September 2015, California adopted an RPS goal of 50% renewable by 2030. It surpassed

RPS goals in 2020 with 34.5% of the state’s electricity served by renewable sources such as

solar and wind and a total of 59% came from renewable and zero-carbon sources in 2020.

Other states across the midwest (included in the MISO power grid) have adopted a range of

standards ranging from 25% (2015) in Illinois, 25-31% (2025) in Minnesota, and 55% (2017)

in Vermont. Other large states include 50% by 2030 in New York, and 10GW by 2025 in

Texas.

However, new challenges arose from the variability and uncertainty of renewable energy

for electric grid operators which must continuously match variable supply with constantly

changing demand. Unlike traditional generators such as fuel-based power plants whose elec-

tricity output is controllable, renewable generations often depend on variable factors that

cannot be controlled. For example, wind and solar generation depend on sunlight and wind

speed and such generation may come in bulk amounts or none at all. In the events of

oversupply or congestion, the power grid market will reduce generation output, where plant

generation is scaled back, through 1. economic curtailment, where price excess renewable

electricity with zero or even negative prices, creating additional wastage from economic cur-

tailment, 2. self-scheduled cuts, where reduce production from bids, 3. exceptional dispatch,

when the ISO orders generators to turn down output. Such excess renewable capacity can

be significant. For example, in 2015, the California ISO was forced to curtail more than

187,000 total megawatt-hours (MWh) of solar and wind generation. In 2022, that number

rose to more than 1,504,000 MWh[2]. The total amount of curtailment has increased 8X

from 2015 to 2022, suggesting that the challenges of variability and uncertainty drastically

grow as power grids’ decarbonization progresses to incorporate increased renewable genera-
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tion such as wind and solar. Comparable waste and similar patterns of increase exist in other

ISO’s such as Eastern Region Coordinating District of Texas (ERCOT) and Mid-continent

Independent System Operator (MISO), and many European countries such as Denmark,

Germany, Ireland, and Italy.

These curtailment and uneconomic dispatch can be termed as stranded power. Various

studies have focused on characterization of these stranded power in quantity and temporal

structure[52, 54, 151, 88]. These works not only identify the significant quantity of stranded

power in the grids now, but also observe a persistent phenomenon in future grids. These

are the earliest studies that explore and characterize the dynamic variations (seasonal and

time-of-day patterns) and the opportunities of stranded power in power grid decarbonization.

2.2 Rapid growth of Datacenter Power Load

Information and computing technologies (ICT) produced carbon emissions ( 8% of electric

power in 2016) are growing most rapidly, and are projected to reach 13% by 2027 [64, 74].

Supercomputers and data centers are major elements of this consumption. With Dennard

scaling long over [127, 46] power levels are growing rapidly: 15-petaflop systems exceeded 10

MW [106, 118] in 2017. Japan’s newly announced 415 petaflop system exceeds 28 MW [49],

and planned US DOE Exascale systems are expected to exceed 35 MW in 2021 [36, 107].

Centers often operate under power “caps”, effective carbon footprint limits [41], or forced

power reductions [89].

The rapid growth of cloud computing has produced a huge computing infrastructure with

correspondingly large revenue – expanding at a rate of 20% per year to an estimated revenue

of $331 billion in 2022[29]. Along with revenue growth, for hyperscale cloud provider’s

corollary growth in power consumption, rising from 10TWh in 2010 6.5x to 65 TWh in 2018

[97]. This article projects a potential rise to over 100 TWh in just the next few years. This

rapid growth is manifest in increasing numbers of data centers all over the world, but also
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in sophisticated power management systems that optimize how the power is used to deliver

the most cloud computing by optimizing metrics such as power-use efficiency (PUE) [40].

Increasing the challenge of warehouse-scale computer design is the trend of increasing server

power density[116]. These cloud data centers and supercomputers at extreme scales inspire

radical approaches to scale data centers [134, 96, 53]. Overall, hyperscale cloud data centers

have become the fastest-growing consumer of electric power in many parts of the world.

This large and growing power consumption produces several important problems. First,

direct power cost, as well as implied costs in cooling and facilities is a growing problem.

Second, the growing power use has significant associated environmental impacts [103, 104, 73]

including growing carbon emissions.

Concern about the carbon footprint has led to significant public scrutiny from organiza-

tions such as Greenpeace [75], and a drive by many cloud providers to offset their carbon

footprint (become carbon neutral), with Google, Facebook, Microsoft leading the charge in

that area and recently Amazon agreeing to that as a long-term goal. In late 2018, Google

raised the bar, adopting a goal beyond offsetting and adopting a goal of matching its power

consumption on an hourly basis, 7x24 over the entire year, with renewable energy in the

same power grid[72]. The combination of the goals of extreme, high energy use efficiency

and reducing carbon footprint data centers lead to careful but aggressive large-scale power

management. Recent studies suggest a growing trend of power management and sharing

over large scheduling domains[122, 91, 149], and these large-scale power management creates

dynamic power constraints as variable resource capacity.

2.3 Batch and HPC Resource Management

Resource management and job scheduling monitors and control resource usage, mapping

jobs onto a set of machines, optimizing metrics such as makespan, job wait time, goodput,

and resource utilization. While existing data centers deal with a great variety of workloads,
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such as streaming and interactive jobs, batch workloads are an important workload. Many

scientific computing resources serve large-scale computation as batch requests[37].

For example, the mainstream HPC cluster schedulers adopt the traditional batch job

scheduler model and manage a long single queue. Users submit requests of job size in terms

of a fixed amount of resources and job runtime estimates, generally overestimated, and the

scheduler decides when and where to run the job request given the job waiting queue, cur-

rent running workloads, and system availability based on different heuristics and policies.

Common system-centric and job-centric optimization metrics include system utilization or

throughput, job stretch, and job turnaround time. Slurm, Moab/Torque, and Cobalt are

well-known and widely used[154, 133], offering high scalability and fault-tolerance in HPC

environments. For example, Cobalt[133] is an open-source, component-based resource man-

agement package used on IBM Blue Gene systems. It uses utility function to prioritize jobs,

which is similar to the popular policy scheduling mechanism from the Maui scheduler[83].

Its flexibility allows for easy modification and customization.

Conventional job scheduling algorithms include First Come First Serve (FCFS)[126],

Shortest Job First (SJF)[77], Round-Robin (RR)[115], Min-Min[82], and Max-Min[43]. These

heuristics aim at various goals, such as maximizing throughput, minimizing job stretch or

response time, or maximizing fairness, and many studies have proposed hybrid algorithms

to combine them[69, 66]. The most widely used scheduling policy is First Come First Serve

(FCFS) which serves the job requests in order of their arrival time, which guarantees not

only fast decision but also fairness[112]. Backfilling strategy, such as EASY backfilling, is

widely adopted in addition to simple FCFS to enhance system utilization. Backfilling allows

subsequent jobs in the queue to be moved and scheduled ahead if and only if they do not

delay the existing requests[102].

A wide range of studies can be proposed to further improve various aspects of the data

centers, such as increasing resource utilization, providing better support for heterogeneous
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clusters, and special customization for hybrid workloads. A group of work focus on predicting

the runtime of jobs than user runtime estimates to improve scheduling decisions[138, 128].

2.4 Cloud Resource Management

Modern cloud data centers are continually expanding their computing resources to meet

growing needs for e-commerce, web search, social networking, enterprise IT, and big data

analytics. With the enormous growth of services and as the complexity of applications

multiply, cloud computing is widely-used across application domains and scenarios. Cloud

computing allows data center infrastructure to be leased profitably to third parties and thus

enable a pool of computing resources shared between applications and services that are

accessed over the Internet[117]. Its growth has accelerated over the past years as it offers

layers of abstraction to application designers and users without the careful maintenance and

design of underlying infrastructure and resource management.

Cloud data centers, which are the providers of cloud services to cloud users, manage

and allocate resources subject to performance guarantees, formally defined as Service-Level-

Agreements (SLAs). Unlike traditional private clusters or supercomputers, cloud providers

deploy virtualization software on physical machines for a couple of reasons. First, virtual-

ization provides cloud data centers the flexibility to allocate arbitrary fractions of resources

on physical machines on the fly to users. That is, a number of Virtual Machines (VMs)

allocated on the same machines are isolated from each other and may run different operating

systems, platforms, and applications. Therefore, virtualization provides flexibility, guaran-

tees resource isolation to avoid contention and security problems, and reduces overhead for

cloud data centers.

As cloud data centers serve requests for a wide range of applications and offer various

features and services, they are exposed to a wide variety of workloads from both internal

services and external customers. The first-party workloads comprise internal jobs for data
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analytics, machine learning training, infrastructure management, and first-party services

such as communication, gaming, and video streaming offered to third-party users. The

third-party workloads contain various kinds of cloud services, such as Infrastructure as a

Service (IaaS) and Platform as a Service (PaaS) VMs, and even Software as a Service (SaaS)

which cloud providers have very limited visibility into third-party uses[57].

These create both significant challenges and opportunities in terms of resource manage-

ment and job scheduling in cloud data centers. On one hand, cloud resource managers need

to carefully consider the complex variety and variability of a wide range of workloads and

their resource requirements but also the SLA with which cloud providers have to comply. On

the other hand, cloud data centers have other resource management objectives such as fault

tolerance, load balance, and resource efficiency maximization for increased revenue. Some

may consider energy use minimization in the new paradigm of green computing.

Quality-of-Service (QoS) of applications is one of the fundamental performance measures

that cloud data centers are striving to improve performance to guarantee compliance with

user requirements in the delivery of cloud resources. Some workloads, such as streaming

services and user interactive applications, require fast allocation and low response time,

whereas some batch workloads, such as big data analytics, may tolerate longer wait times.

Therefore, as many of the users interpret their QoS as latency and response time, cloud

data centers consider various infrastructures and techniques for maintaining an acceptable

level of QoS while maximizing their revenue. For example, to prevent scenarios like overload

where mandatory resource demands exceed the capacity of the cluster and jobs’ SLA may

not be satisfied, admission control mechanisms are generally implemented to handle these

cases[148]. They direct the jobs whose SLA requirements can be satisfied in the current

system to the job scheduling queue, waiting for the job scheduler to allocate resources and

place. To control and guarantee low latency and response time of cloud workloads, cloud

data centers generally introduce admission controls using quota systems or priority classes
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to resource managers to guarantee the incoming workloads can be served within their SLA

requirements[137, 8].

In addition, while traditional schedulers dedicate resources to jobs based on their requests,

cloud computing systems generally use oversubscription to exploit the low utilization for

better resource efficiency and greater revenue. That is, allocating a resource to multiple

jobs, and depending on their statistical multiplexing to enable them to co-exist and achieve

the expected performance[58, 122]. It is the fundamental mechanism that enables cloud

data centers to substantially improve efficiency by over-committing resources multiple times.

This approach achieves much greater loading of computing hardware – and thus greater

efficiencies or revenues. Oversubscription exploits the fact that many jobs exhibit low average

resource utilization – far less than requested[57, 141, 95]. Oversubscription schedulers can

improve system throughput and resource utilization, as well as low latency for production

jobs through statistical multiplexing of workloads. Of course, the level of oversubscription

has to be carefully designed and tuned in case of unexpected spikes in usage[57]. These

designs include but are not limited to complex characterization and prediction of resource

utilization, cluster deployment size, server maintenance, and appropriate allocation size.

2.5 Workloads

While existing data centers deal with a great variety of workloads, such as streaming, inter-

active jobs, and more complex variants of workflows with dependent jobs, batch-scheduled

workloads are an important workload. In commercial data centers and production envi-

ronment, batch analytical computations and data processing are important growing loads

[59, 57], consuming 65% to 90% of computing resources. For scientific applications, proces-

sors and memory resources are scheduled as dedicated, allowing fine performance control,

and extreme scalability.

On one hand, HPC workloads are composed of applications with large-scale scientific

26



computation, such as Nuclear Physics, Astrophysics, and Climate Research. In HPC envi-

ronments, users submit jobs with a fixed amount of resource requirements and job runtime

estimates. These properties enforce an upper limit on a valid job’s allocated computation

resources and runtime, beyond which the job will be terminated. Because of the large paral-

lelism these jobs exhibit, the runtime limit is generally constrained to less than 24 hours[121].

On the other hand, to provide high flexibility, availability, and scalability, cloud providers

provision VMs for customers to run applications and maintain these resources in a running

state to guarantee fast response and instant availability upon requests. To support a wide

range of applications and also to maximize revenue by users’ requested resources, cloud data

centers support a large amount of continuously running jobs, coming from applications such

as streaming services and VMs that are unnoticed and unterminated for a significant period,

often termed as zombie VMs[86]. These long or continuously running jobs contribute to a

significant portion of allocated resources in cloud data centers[137, 100].

One of the most widely used and publicly available industry cloud traces is the large-

scale Google cluster workload trace, whose newest version is released in 2019 and contains

historical information of eight Google Borg cells for the whole month of May 2019[137].

As pointed out in the studies, the Borg cluster trace exhibits an extremely heavy-tailed

distribution where the top 1% of jobs consume over 99% of resources. That is, while a large

fraction of jobs is short in runtime, a small number of the long-running jobs comprise most

of the computation. This finding of heavy-tailed property is further supported by Borg 2011

data[119] and other large-scale batch workloads with different degrees of skewness[58].

While this general property of cloud workloads may give rise to specific flexibility to

variable capacity data centers as many short jobs are more robust to variations as most of

them can finish before the next capacity change arrives, but brings out challenges to the

scheduler as it has to carefully determine placements for long-running jobs to avoid frequent

disruptions from variations.
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CHAPTER 3

RELATED WORK

Past research has explored the problem of resource management from different perspectives

and optimization goals. Resource management in traditional data centers has looked at

optimized simple heuristics and techniques like job preemptions to improve metrics like job

wait time or deliver required Service-Level Objectives (SLOs). Some other resource manage-

ment explores the space of energy consumption to either reduce brown energy consumption

or maximize system performance under a power cap. Also, other studies optimize resource

management with load changes like demand response by deferring or shuffling workloads.

We study resource management for both HPC and cloud scenarios responding to capacity

changes that could arise from clusters, data centers, and site power management [122] or

power grid dynamics [151, 87, 55].

3.1 Resource Management and Scheduling with Unreliable

Resources

The broad literature on resource management typically assumes fixed resources [141, 140].

For example, some schedulers manage both data center placement (long-running processes)

[141], and some consider latency-sensitive jobs [139, 140]. Others implement notions of prior-

ity [48, 125]. The general goal for these resource managers is to maximize system throughput

(goodput) while maintaining quality. In addition, a great variety of resource management

techniques have been proposed and adopted, including backfill[102], overcommitment[60,

141], and job preemption [48, 140]. A body of research studies has dealt with the addition

and removal of resources or resource capacities varying with time. Some studies[151] con-

sider the special case where the resource capacity during each time period is either fully

available or wholly off. In the case of unpredictable failures of resources, many studies ex-
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plored scheduling policies to assure secure grid job execution with unreliable resources. [129]

considers risk-resilient strategies, preemptive, replication, and delay-tolerant, to provide se-

curity assurance under different risky conditions. [130] constructs statistical models to assess

the reliability of resources based on prior performance and behavior and proposes algorithms

that employ estimated reliability ratings of worker nodes for efficient task allocation. [155]

proposes information models for unreliable resources, produced by high priority foreground

load, by providing statistical information to allow users to cope with availability changes of

volatile cloud resources. While these studies provide an invaluable backdrop and may be

considered orthogonal to our scheduler study of capacity variations, we are not aware of any

online scheduler studies exploring the management of highly variable resource capacity.

3.2 Large-scale Power Management and Power Capping

Production data centers have long adapted large-scale power management including power

oversubscription and power capping at multiple levels of the power, hierarchy to improve

power efficiency. Systems like Facebook’s Dynamo[149] and IBM’s CapMaestro[91] have fo-

cused on measuring and budgeting power at server or rack level. Dynamo[149] dynamically

monitors power across the entire power hierarchy and makes coordinated control decisions

that ensure safety and are performance-aware. CapMaestro[91] adapts global priority-aware

power capping that accounts for power capacity at each level of the power distribution hi-

erarchy and exploits server-level power capping. Flex[156] leverages workload properties to

optimize rack-level placement for power while ensuring safety and quickly reduces the power

draw by shutting down and power capping racks while respecting the workloads’ require-

ments. Google recently published systems that do power management and shifting at a

multi-megawatt scale, creating dynamic power constraints for schedulers[122]. It enables

larger power-sharing domains, across tens of MW of equipment that improves power fungi-

bility and reduces power stranding. Together with cluster schedulers that assign tasks with
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different priorities to any node, it adapts a power capping service that is generator and job

priority aware. These studies do not model schedulers, and interestingly suggest that many

scheduling domains give better overall throughput – encouraging variable capacity models

for scheduling. In academic studies, [61] optimizes power management and load scheduling in

geo-distributed cloud data centers to minimize time-average eco-aware power cost while still

ensuring Quality-of-Experience of user requests. It applies Lyapunov optimization theory to

design an online control algorithm that decides the amount of power supply and scheduling

plan for each data center. It views power supply quantity as controllable and exploited to op-

timize for other goals such as power cost and carbon footprint. We view power and resource

capacity as uncontrolled change due to external factors such as power markets, renewable

generation, and intercluster management.

Another body of research focuses directly on adapting data center power consumption

to meet a power limit (power cap or emergency demand reduction). Power capping is of-

ten framed as – known, fixed caps – with variation in application behavior, and managing

performance of a set of applications to stay within the caps [65, 109, 90]. Some work learns

from previous power profiles or smart configuration selection to enable better resource man-

agement under power caps[142, 68]. [142] uses power profiles and job logs to estimate job

power behavior and makes job allocation decisions by checking a window of jobs to make

scheduling decisions to stay under the power budget while maximizing resource utilization.

Such design is able to maintain less than 1% relative degradation when the power cap is set

to 83% of the maximum. Of course, if excess resources are powered, switching idle servers

off is a good idea, but not so simple. For example, [111] tries load concentration and dy-

namically turns on nodes to efficiently handle the load and off idle nodes to save energy.

Results show that this method can reduce the total power consumption by as much as 86%

while keeping performance degradation below 20%. Some explore algorithms like DVFS

to enable fine-grained power control and tuning[147]. Other possibilities fall closer to our
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study, deferring workloads[132] or exploiting energy storage [94, 34]. [132] incentives tenants

to defer batch workloads subject to quality-of-service requirements to enable Emergency

Demand Response. These studies typically exploit profiles of computation, power use, and

even power markets. [94] dynamically deals with power mismatch through intelligent uti-

lization of energy buffers and improves both energy efficiency by 40% and renewable energy

utilization by 81%. However, these power constraints are normally fixed over a long period

of time. On the other hand, we are interested in a scenario of constant variation, not just a

catastrophic (and rare) emergency. Also, they require profiles about job speedup and energy

usage to enable fine-grained power usage optimization. In contrast, our framing assumes a

dynamic, uncontrolled change in power (resource capacity), due to external factors such as

power markets, renewable generation, or perhaps the demand in the next data center build-

ing (unrelated applications or customers perhaps). We study a purer form of the problem,

seeking to understand how to do resource management if capacity is reduced for any reason,

not just the availability of power.

3.3 Renewable Energy and Optimizing for Green Power Use

One approach explores local management of workload and variable on-site renewable gener-

ation to reduce carbon emissions. These studies consider resource scheduling optimization of

criteria such as green-power fraction, workload performance subject to cost, and grid power

cost[71, 80, 42] in a system where there is a predictable, local source of renewable power

(i.e. solar). GreenPar[80] proposes a scheduler in data centers partially powered by on-site

generations of renewable energy. GreenPar increases the resource allocations to improve per-

formance when green energy is available and reduces allocations to conserve brown energy

subject to performance Service-Level-Agreement when renewable generation is insufficient.

It utilizes information about job speedup, estimates of job runtime, and predictions of green

energy production for intelligent allocation policy. [42] dynamically adapts the resource set
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to the actual workload through shutdown policies to reduce brown energy consumption with

local photovoltaic panels while considering various impacts, such as the cost of shutdown

and wake-up (in terms of time and energy) and electric, thermal constraints imposed on the

whole infrastructure. These scenarios are closely related to our study, but in many cases

consider highly predictable, periodic generators such as solar photovoltaics. While useful

local studies, our focus includes the properties of modern power grids in terms of both re-

newable mix, renewable mix as a function of time of day, week, and year. Our study assumes

externally controlled variable capacity from complex power market carbon factors (genera-

tion, load, power markets) without any presumption of predictability and can be extended

to general cases from other resources. The dynamics of pricing and power availability are

much more complex in these environments [101, 28], which means dealing with more general

variation increases the difficulty. [54, 52] characterizes the quantity and temporal structure

of stranded power (curtailment and uneconomic dispatch) in the grids, highlighting the com-

plex power availability and great combined opportunities for variable capacity data centers

as power grids incorporate increased renewable generation.

3.4 Coupling Resource Management with Power Grids

A great variety of studies focuses on coupling resource management with power grids to

exploit fluctuations and programs for power cost reduction and carbon footprint reduction.

[92] considers data centers as dynamic loads and studies DC-grid coupling models to explore

the impact on grid dispatch, power costs, and carbon emissions. Studies of various coupling

approaches demonstrate that delegating load flexibility to the grid shows great grid benefits

but creates rapid DC capacity variation and suggests a large dynamic range of as much as

0.6: [0.4, 1.0]. This study is in line with our study which aims to support a large dynamic

range for data centers under resource capacity variations driven by external factors. Zero

Carbon Cloud[151, 153] posits the creation of volatile data centers powered by stranded power
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(wasted or negative-priced renewable power) zero-carbon footprint. These data centers can

be operated without a power carbon footprint, and zero or low-priced power. Coupling with

a traditional data center, ZCCloud system can reduce job wait times by more than 50%.

The studies view data centers as wholly on or off subject to the intermittent availability

of stranded power, which is due to a complex combination of variable generation, markets,

etc. On the other hand, we explore variation in capacity less extreme, and structurally

smoother, a much easier and more flexible resource management problem – but still unsolved.

Other works explore the potential benefits of data center demand response by exploiting the

flexibility of resource management[132, 157, 150]. [157] propose a strategy for a data center

to provide regulation service reserves while providing Quality-of-Service guarantees of the

jobs running in the data center. The proposed QoSG policy coordinates separate groups

of servers to run different types of jobs. [150] reduce the peak power and demand charge

of data centers by using partial execution. The study forms a workload scheduling partial

execution problem subject to stringent SLAs on response quality into an integer problem

and provides an optimal algorithm. These grid demand-response examples are related – but

deal with rare circumstances (e.g. 4 hours a year). Our formulation of the variable capacity

problem admits a rich, general externally imposed variation. It can vary at many time scales,

with correlation or dependence across sites, and focuses on typical performance, but could

perhaps include rare events.

3.5 Managing Resource Revocation

Several systems have done volatile resource management – early work on workstations and

PC’s in desktop grids [93, 51] to achieve high throughput on sequential jobs in the face of

high rates of individual resource “failure” (revocation), and later work designed to exploit

Amazon’s Spot Instances[27] and Google Preemptible VM’s[30]. There are a number of

other scenarios where variable capacity is of interest for resource management. For example,
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a dependent cloud (a meta-cloud that forms its resource pool from spare resources of oth-

ers) typically experiences frequent capacity change. Users of Amazon’s Spot Instances[27]

and Google Preemptible VM’s[30] face a related volatile resource utilization problem – how

to make effective use of such resources. Other possible causes include partition software

upgrades, compartmentalized security, etc. These systems employed statistical characteri-

zation [145, 146] to select appropriate resources, and preventative checkpointing to decrease

application “failures” (preserve state across revocations) that have matured into commer-

cial extensions which encapsulate the latency-insensitive, throughput model [26, 81]. These

systems do not focus on which jobs to slow or terminate (in fact they generally don’t have

control over this). Further, most of these systems assume they can control available capacity

(assuming cloud elasticity), and dynamically allocate and release resources based on avail-

ability to meet demand. However, all of these approaches do not address focus on parallel

jobs, nor do solve the heart of the classical resource management problem – maximizing

the utility of the given set of resources. Most of these systems are application-oriented,

and deal with collections of single-node jobs. The capacity variation problem is large-scale

resource-oriented, and formulated for a job scheduler managing a workload with complex

mixes of co-run, run-before, and other kinds of task dependencies in the face of a rich set of

service-level objectives (SLOs).
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CHAPTER 4

PROBLEM AND APPROACH

In this chapter, we present the problem and our approach to understanding and improving

scheduling performance under variable resource capacity. We formally define the variable

resource capacity in the data center and show the challenges posed by job scheduling. We

present three fundamental scheduling problems that arise in the face of variable resources. To

understand and address these problems, we propose our scheduling approach and introduce

three key components of our approach, understanding and characterizing the negative im-

pact, methods to cope with capacity loss to mitigate negative impact, identifying the sources

of impact and the resulting information space, and scheduling algorithms that consider vari-

ous amount of information to prepare for capacity variation. The performance improvement

and broad generality of our scheduling approaches demonstrate significant performance im-

provements in variable capacity data centers, enabling much larger shifting and power use

fluctuation capabilities in data centers.

4.1 Problems

In this section, we formally define the data center with variable resource capacity and describe

the challenges that may prevent the data center from effectively exploiting variable capacity

and two key scheduling problems.

4.1.1 Scheduling Problem Definition of Variable Capacity

In a data center or cluster, let M denote the number of total machines, where each machine m

has r(m) resources. A traditional scheduler schedules a set of jobs J on M machines while

optimizing one or various objectives. Each job j ∈ J has submission time s(j), resource

requirement r(j), and execution time t(j). The data centers need to decide jmt, which is the
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decision variable of running job j on machine m at time t. In systems, such placements are

subject to each machine’s resource constraint and the total resource capacity constraint:

∀t ∈ T,∀m ∈ M,
∑
j∈J

jmt × r(j) ≤ r(m)

subject to

umt = 1 ⇐⇒ ∃j ∈ J s.t. jmt = 1∑
m∈M

umt × r(m) ≤ R(t)

(4.1)

where the first constraint represents the individual resource constraint (CPU, memory) on

each machine. The second constraint guarantees the total active number of machines within

the data center capacity, where umt indicates whether a machine is active or not. In fact,

in traditional data centers, the latter is implicitly fulfilled if the scheduler satisfies the first

constraint. One of the most common optimization goals is to maximize the useful resource

utilization (goodput) of the system. The resource utilization represents the percentage of

compute resources allocated normalized by the entire resource capacity in the system over

timespan T . It can be expressed as below:

max

∑
t∈T

∑
m∈M

∑
j∈J jmt × r(j)∑

m∈M r(m) ∗ T
(4.2)

Based on the knowledge that current capacity will continue as M is constant, these schedulers

make decisions that commit resources into the future. Because they have been designed to

maximize goodput, they strive to fill as much of this capacity as possible with the information

on job resource requirements and unknown or estimated job runtime.

However, in a data center with resource capacity variations, the available resource capac-

ity is a function of time t, denoted as R(t) where R(t) ≤ M . Hence, all job placements are
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now subject to a time-varying resource capacity constraint at each time slot t:

∀t ∈ T,∀m ∈ M,
∑
j∈J

jmt × r(j) ≤ r(m)

subject to

umt = 1 ⇐⇒ ∃j ∈ J s.t. jmt = 1∑
m∈M

umt × r(m) ≤ R(t)

∀t ∈ T,R(t) ≤ M

(4.3)

This constraint ensures that the total number of machines that have any amount of active

running jobs does not exceed the current resource capacity R(t).

4.1.2 Challenges of Job Scheduling

When resource capacity varies, even if the average capacity does not change, significant losses

in system goodput (useful resource utilization based on total available resources) can result.

In Figure 4.3, we present the resulting system goodput under dynamic capacity, even when

a state-of-the-art scheduler [56] is used! As the dynamic range of variation increases from

0 to 0.6 (around an average capacity of 0.7), goodput decreases by 30%. Results are shown

for capacity variability with random walk structure with stepsize of one-fourth the dynamic

range.

What accounts for this degradation in goodput? Traditional schedulers assume a constant

resource capacity of R(t) = M . Based on the assumption that current capacity will continue,

these schedulers make decisions that commit resources into the future. Because they have

been designed to maximize goodput, they strive to fill as much of this capacity as possible,

shown in Figure 4.2a. However, the quantity of compute resources available R(t) in variable

capacity data centers can vary significantly and on short time scales compared to job runtime.
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Figure 4.1: Scheduler goodput for a variable capacity data center; increased dynamic range
degrades goodput.
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Figure 4.2: Job Scheduling in A Fixed Capacity Data Center vs. in A Variable Capacity
Data Center

On one hand, if resource capacity decreases, expressed as R(t) < R(t − 1), the schedule

reflects an overestimate, and the resource capacity constraint in Equation 4.3 can be violated.

This results in that jobs in the queue may have to wait longer before resources become

available. Further, some running jobs may be terminated due to insufficient capacity to

release the machine in order to enforce the time-varying resource capacity constraint (see gray

in Figure 4.2b, showing the wasted computation and unfinished work in different patterns).

Terminated jobs are put back into the queue, incurring further delays. They run from their

beginning when rescheduled, so their runtime before termination is wasted. On the other

hand, if resource capacity increases, the scheduler suddenly gains capacity, but may not

make good use of it, as recent decisions could not take into account the greater capacity now
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available, and may have misplaced jobs (see green in Figure 4.2b).

In this new world, key open research questions include:

• How do current schedulers respond to capacity variation?

– What is the problem space of capacity variation? and how each contributes to

scheduler performance?

– What are the critical uncertainties in scheduling for variable capacity?

– What are the dimensions of uncertainties and how do they affect scheduler per-

formance?

• Can scheduler performance be improved in these challenging situations?

– How to cope with adversity, when uncertainty resolves in a bad way. For example,

when capacity drops precipitously. And what are the limits of adversity that can

be tolerated with dramatic performance loss?

– Can schedulers plan for uncertainty? and thereby improve performance?

– What information might be available to reduce uncertainty? And how can it be

exploited effectively?

The first question aims to understand the operation space of current schedulers under

resource variability situations. Within this question covering the whole space of capacity

variation, we can drill down on the problem space and explore how each dimension con-

tributes to performance impact. With a general understanding of variable resource capacity,

we also want to characterize the real variation examples and abstract them into generic prob-

lems. Finally, the last key questions focus on potential techniques to reduce performance

degradation if there is any and thus expand the operation space for schedulers in order to

enlarge variation benefits. So, answering our question depends on studying schedulers on

variable capacity with various real production workloads and a range of resource variation
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Figure 4.3: How capacity variation affects scheduler goodput is a key to reducing carbon
emissions in our scheme.

scenarios and evaluation of scheduling algorithms. We present this question graphically in

Figure 4.3.

4.2 Scheduling Approach

To address these problems, we present our scheduling approach to understanding the oper-

ation space of schedulers covering the problem space and improving the operation space by

scheduling techniques in the face of capacity variations.

4.2.1 Characterizing Scheduling Performance

As variable resource capacity creates new scheduling challenges for data centers, we draw

out the problem space of scheduling in variable capacity data centers by defining three key

dimensions. Then we aim to understand the impact on scheduling performance within the

problem space and resulting operation space. As conventional schedulers assume resource

capacity is known and fixed going forward, capacity variations create uncertainty about

capacity quantity. Therefore, whether a scheduler can effectively align job placements under

resource variations remains an open question.

To characterize the challenge to conventional schedulers, we study and evaluate workloads
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Figure 4.4: A variety of publicly available workloads and the corresponding scheduling space
we explore to understand scheduling performance in the face of variable resource capacity.

and schedulers in the face of variable capacity under various scenarios and environments to

cover a broad problem space. We carefully pick a variety of publicly available workloads.

Figure 4.4 shows all the workloads we consider: ALCF/Mira, Azure, Borg V2, and Borg

TNG workloads. These workloads are well-known exemplars of their respective environ-

ments and each of them corresponds to HPC, VM(cloud), and containerized cluster(cloud)

workloads. To correspond to these workloads and their data center setting, we pick two dis-

tinct scheduling models, whose critical difference is whether the schedulers consider compute

and memory capacity separately and if dedicated resources or oversubscription is practiced.

For each workload combined with the corresponding scheduling model, we use a system

model that varies the resource capacity available to the scheduler and evaluate performance.

Constant resource is a simple model; variable resources can have many different dimen-

sions of variation. We consider the space of resource variations to be three-dimensional, as

shown in Figure 4.5:

• Dynamic range: minimum to maximum capacity

• Variability Structure: random uniform, random walk
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(a) Space of Resource Vari-
ability

(b) Modeled dimensions of capacity variation. Il-
lustrated on a time-sequence of datacenter capac-
ity from Figure 1.6a.

Figure 4.5: Space of resource variability (left) and dimensions illustrated on a variable ca-
pacity example (right).

• Change Frequency: frequency of capacity variation

These three dimensions represent the whole space of resource variability, illustrated in

Figure 4.5a. The dynamic range captures the distance over which resource capacity varies

– from a low to high watermark and back. It is the most foundational element of resource

capacity change. Variability structure reflects how capacity is constrained to change from

one time period to the next. Such constraints often reflect the realities of physical systems -

inductance, momentum, inertia, and more – that prevent large instantaneous change. Change

frequency reflects our choice to model time discretely – capacity varies only at time period

boundaries – so change frequency reflects the size of those periods. In a real system, periods

could be defined by external structures (power markets), data center physicals (cooling and

power-sharing control systems), or other factors.

These dimensions are designed to cover a broad range of resource capacity variation

scenarios, produced by various external factors. By defining the key dimensions of resource

variability, we construct a generic multi-dimension space of resource variability.

Using these workloads and schedulers, covering a broad range of data centers and work-

loads we execute a set of scheduler experiments that explore this multi-dimensional capacity
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variation space, characterizing scheduler performance. In effect, each experiment explores

scheduler performance when actual resource capacity diverges from the scheduler’s simple

fixed estimate of stable resources. Our goal is to understand the capabilities or the operation

space of state-of-the-art schedulers, where they can maintain robust performance and where

they cannot. In addition to realistic workloads and scheduling models varying environments

and use cases, to further drill down on understanding the operation space of conventional

schedulers, we drill down on cloud workloads with a more complex and complete view. We

consider Borg TNG workloads, the newly released Google cloud trace, which provides richer

details and enables a focused study on various workload properties, such as job dependencies

and runtime distribution. The whole space of workloads is depicted in Figure 4.4. By varying

the workload properties, orthogonal to variable capacity, we explore the operation space and

workload-specific limitations of traditional schedulers in the space of capacity variations.

We further collect a variety of real variation traces arising from various sources. We are

to understand the dynamic variation behaviors and characteristics of data center capacity in

real-world scenarios. Therefore, we characterize these traces and abstract them into generic

problems, defined by three key dimensions. In addition, we evaluate the scheduling impact

using these real variation traces, validating the results from synthetic traces. The broad and

general characterization of scheduling performance impact under resource capacity variation

lay the foundation for understanding the limits of future data centers to fully exploit carbon

and power cost benefits. A detailed description of understanding capacity variation is in

Chapter 5.

4.2.2 Coping with Capacity loss and Preparing for Capacity Variation

We propose various scheduling techniques to improve scheduling performance in the face of

resource capacity variations. We consider two-prolonged approaches to address the schedul-

ing challenges, coping with capacity loss and preparing for capacity variation.
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First, as capacity varies over time, significant job failures can incur during capacity

decreases resulting from the scheduler’s incorrect assumptions about capacity, resulting in

wasted computation and goodput loss. We characterize job failure rate in the problem space

of variable capacity varying workloads and variation traces. Furthermore, to mitigate the

negative impact of capacity decrease, we consider intelligent termination policies to cope

with capacity loss. Intelligent termination policies, considering job features and progress,

selectively terminate jobs to minimize wasted computation and improve resource efficiency.

We evaluate and compare the intelligent termination policies to understand their effectiveness

in improving performance and improved operation space upon capacity loss over a range of

workloads and variation ranges. In addition, we consider using foresight of capacity variation,

which is partial oracle information, to reduce uncertainty and enable the scheduler to cope

with capacity loss. We evaluate workloads and variations varying the length of foresight to

understand the usefulness of incremental foresight information. A detailed description of the

scheduling approach to coping with capacity loss is in Chapter 6.

To take a broader view, we consider strategies to prepare for capacity variation, which

proactively prepare for capacity increase and plan for capacity loss. As an extension of

variation foresight, we present the dimensions of uncertainty that contribute to performance

loss, job runtime, and capacity variation, and the information space of these two dimensions

that may help reduce schedulers’ uncertainty. We propose scheduling algorithms that exploit

the information space to optimize job placement decisions to minimize wasted computation

and maximize resource efficiency. We focus on workloads that may represent a challenging

case for intelligent termination policies to demonstrate the additional improvements from

the broader view of preparing for capacity variation. We empirically evaluate and compare

these scheduling algorithms varying workload properties and variation ranges to demonstrate

improved operation space and shifting flexibility. A detailed description of the scheduling

approach to preparing for capacity variation is in Chapter 7.
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4.3 Summary

This chapter explains the rise of variable resource capacity in data centers and lists a few fun-

damental scheduling problems. We then briefly explain our proposed scheduling approach.

The approach contains two key components in addressing the scheduling problems: under-

standing the performance impact and problem space of capacity variation, identifying the

sources of uncertainty and their information, and scheduling algorithms that exploit infor-

mation to improve performance. The details of these two components are discussed in the

following chapters.
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CHAPTER 5

UNDERSTANDING CAPACITY VARIATION

In this chapter, we study the behavior of current schedulers under variable capacity to un-

derstand how such variation affects performance in data centers. This study provides the

foundation, providing an understanding of the key dimensions of capacity variation that

cause negative impact and the operation space of conventional schedulers. This systematic

evaluation identifies the sources of uncertainty and corresponding information that schedul-

ing algorithms need to exploit in the face of variable resource capacity. In Section 5.1, we

first discuss the workloads, metrics, and schedulers we consider for a comprehensive study.

Section 5.2 evaluates the whole space of capacity variations with various workloads and

scheduling models to understand the individual and compound impact of variation dimen-

sions. We further drill down on Borg TNG trace, the most recent and widely-used cloud

workloads, looking into the space of workload characteristics to understand the operation

space and specific limitations of cloud workloads in the face of capacity variation in Section

5.3. Section 5.4 includes the realistic scenarios that give rise to variable capacity and how

to interpret these variations. Finally, Section 5.5 summarizes the chapter.

5.1 Methodology

We describe the dimensions of capacity variation, workloads, job schedulers, systems, and

metrics used in experiments.

5.1.1 Dimensions of Capacity Variation

We consider three dimensions of variation, maintaining the average resource capacity con-

stant in all cases. These dimensions, dynamic range, structure, and change frequency are

illustrated in Figure 4.5b. We define them below.
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Dynamic Range defines the distance between maximum and minimum capacity. We con-

sider variation ranges of 0 (constant), 0.2, 0.4, and 0.6 as a fraction of maximum datacenter

capacity. To normalize average capacity at 0.7, this produces dynamic ranges and intervals:

0: [0.7], 0.2: [0.6, 0.8], 0.4: [0.5, 0.9], and 0.6: [0.4, 1.0].

Structure defines how much the capacity can change between adjacent time periods. Ran-

dom Uniform: Resource capacity in the next interval can be anywhere in the dynamic range

and is drawn from a uniform distribution U([lbound, ubound]), appropriate because power

prices can be highly volatile. Or, Random Walk: Resource capacity in the next interval

can change only by a maximum of stepsize, modeling some continuity from one interval to

the next. Except where explicitly noted, we use stepsize of one-fourth of the dynamic range.

Change Frequency (Temporal Granularity) defines the frequency of resource capacity

changes. Between changes, the capacity is constant. We vary the change frequency from

0.25 per hour (every 240 minutes) to 4 per hour (every 15 minutes).

5.1.2 Job Scheduling

The resource manager selects a job from the queue and, based on complex priority, selects the

resources to run it on. A critical difference in approaches is whether the schedulers consider

compute and memory capacity separately and if dedicated resources or oversubscription is

practiced.

5.1.3 Workloads

We considered a variety of publicly available workloads (key statistics in Table 5.1). We

picked the ALCF/Mira trace as the exemplar of large-scale HPC workloads as well as Azure

and Borg V2 as node-sharing cloud workloads. Azure and Borg traces were chosen as the

richest exemplars of data center cluster workloads. In addition to Borg V2 traces, we also
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consider the Borg TNG workloads (became available in 2020) as the newly released traces

provide richer details, more total quantity, and slightly changing distribution.

HPC workload We use a production trace from ALCF/Mira with a full range of jobs

runtimes and parallelism[37]. Notably, some jobs exhibit parallelism as high as 49,152 nodes.

The trace includes 6,571 jobs with scheduling events - job submission with requested runtime,

nodes count, and timestamps of submission, start, and completion. Basic statistics are

illustrated in Figure 5.1a (left). The x-axis is the job parallelism in log scale, the y-axis is

the job runtime in hours, and the size of the markers represent the number of jobs sharing

the same statistics. Job count is dominated by small to medium size and runtime. These

characteristics are typical of both data center and high-performance workloads [119, 24].

Studies use a one-month subset as indicated in Table 5.2.

Cloud workload We use the Microsoft Azure trace which includes VM submission, start

and completion time, requested virtual cores and memory, and actual CPU utilization in

5-minute intervals[57]. As shown in Figure 5.1a (right), runlength of VMs also ranges from

5 minutes to more than 24 hours (summarized at 24 hours in the plot). The largest VMs

are only 16 cores. Studies use a one-day subset to approximately match the number of jobs

in the ALCF/Mira trace as indicated in Table 5.2. The Borg V2 trace contains job start

times, end times, requested CPU and memory, and actual CPU and memory usage in 5-

minute intervals. The job runlengths vary from a few seconds to much longer than 24 hours

(summarized at 24 hours in the plot), with parallelism up to 0.5 GCU. Compared to Azure,

the Borg trace has more small and short jobs, as well as a significant load from long-running

jobs (see Figure 5.1a (right)).

Similar to the Borg V2 trace, Borg TNG workload traces include information about

eight different Borg cells for the month of May 2019. In addition, it introduces the job

dependencies information. As shown in Figure 5.1b, the runtime of jobs ranges from a few
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seconds to much longer than 24 hours, with parallelism up to 0.5 GCU. The percentage of

job dependencies in the workloads ranges from ∼0.1% to 12% across Borg cells. Since the

number of jobs is massive, we focus on a single day from 5 borg cells, which include a total

of ∼ 1.5 million submissions.

Workload Mira Azure [57] Borg V2 [119]
Classification HPC Cloud (VM) Cluster
Number of jobs 78,795 2, 013,767 47,351,173
Length (days) 365 30 29
Job runtime Avg, StDev (hrs) 1.7 & 3.0 51.8 & 169 1.84 & 21
Job parallelism Avg, StDev 1,975 & 4,100 nodes 2.6 & 2.4 cores 0.03 & 0.03 NCU1

Job memory Avg, StDev 31 & 65 TB 6 & 10 GB 0.03 & 0.02
(Normalized)2

Year of Trace 2014 2017 2011

Table 5.1: Key Statistics for Widely Used Public Workload Traces

5.1.4 Job Scheduling

The resource manager selects a job from the queue and, based on complex priority, selects

the resources to run it on. One critical difference in scheduling approaches is whether they

consider compute and memory capacity separately and whether dedicated resources or over-

1. The resource unit is rescaled by the largest GCU(Google Compute Unit) capacity of the machines in
the traces

2. RAM measured in bytes, rescaled by maximum machine memory size in the traces

Workload Mira’ Azure’ Borg’
Number of Jobs 6,571 442,784 204,749
Trace Length (days) 30 7 1
Job (Avg, StDev)

Runtime (hrs) 1.8 & 2.9 3.6 & 8.8 0.6, 3
Parallelism 1,705 & 2.6 & 0.03 &

2,890 nodes 2.4 cores 0.02
Memory 27 & 46 TB 6 & 11 GB 0.02 & 0.02

Table 5.2: Key Trace Statistics for Workload Used in Simulation
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subscription is practiced.

Dedicated Resource Scheduling This model schedules (dedicates) the requested quan-

tity of nodes, CPUs, and memory to the job. From the initiation time to completion/termination,

these resources cannot be used by other jobs. Resource capacity reductions affect the number

of CPUs (or nodes) available. For scientific applications, processor and memory resources

are scheduled as dedicated, allowing fine performance control, and extreme scalability. We

study a high-quality, mature commercial production HPC scheduler, Cobalt [56, 114] us-

ing HPC production workloads. Cobalt uses utility functions to calculate dynamic priority

scores for each job. Then, it selects resources to run the highest-priority jobs. For the cloud,

we use an FCFS policy on the same dedicated resource model to create the most comparable

results. The FCFS policy is widely observed to give good results with the low-parallelism

these commercial workloads exhibit and is widely-used[48, 139, 108, 83]. This model is also

compatible with other types of batch execution, so to create the most comparable results,

we use the dedicated resource model consistently for all of our studies.

Jobs are delay-tolerant, so the primary metric, goodput, depends on system throughput of

jobs that complete successfully (are not terminated). Terminated (failed) jobs are re-queued

to be scheduled again. In the cloud (dedicated) model, both CPU and memory limits are

enforced.

Oversubscription Scheduling Among current cloud scheduling models, oversubscription

scheduling is widely-adopted to increase system utilization. In this scheduling model, we

continue to enforce the CPU and memory limits separately, and oversubscribe the CPU.

The idea is to achieve higher resource utilization via statistical multiplexing, exploiting the

gap between resource requests, max use, and typical use.

The Borg V2 trace defines the ratio of workload to resources, so we use it unchanged. The

Azure trace does not define this ratio so we analyzed the trace and chose an oversubscription
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(a) ALCF (left), Azure (middle), and Borg V2 (right) Workload (b) Borg TNG workload

Figure 5.1: Job parallelism and runtime in the workloads

of 125% of CPU resources (25% more virtual cores than physical cores), based on the job’s

95th-percentile virtual core utilization instead of the requested amount.3 This choice matches

the CPU utilization reported for the Borg TNG traces. In the oversubscription model, jobs

can be slowed down when resource capacity shrinks (lower CPU capacity) by the ratio of

actual CPU usage to available capacity. Resource capacity reductions decrease the cores

available; for the cloud workload, memory capacity is not a limiting factor. Jobs that are

slowed down can catch up by claiming surplus CPU capacity in future 5-minute intervals

based on actual CPU utilization from the trace.

5.1.5 Systems

HPC System The modeled resources are the Mira system, a 10-petaflops IBM Blue

Gene/Q system, deployed at the Argonne Leadership Computing Facility, and at its in-

auguration, the world’s 3rd fastest supercomputer. Mira contains 49,152 nodes (786,432

cores) and 760 TB memory [99].

3. This information may not be available in general, but this assumption produces an optimistic estimate.
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Cloud System We use an Azure cloud cluster with 1,250 nodes (20,000 cores) and 160

TB of memory. This system is a close match in scale to the Mira system. We also model a

Borg cluster with 630 nodes (336 GCU - Google-Compute-Unit) and 300 normalized bytes

of memory. This system is sized to match the sampled Borg V2 trace used (Table 5.2). For

Borg TNG workloads, we model a Borg cluster with 476 nodes (250 GCU - Google-Compute-

Unit) and 300 normalized bytes of memory. This system is sized to match the sampled Borg

V2 trace used (Table 2) at 90% resource utilization in a traditional data center operating at

a fixed 70% of total capacity. This level of headroom and the actual resource utilization level

in cloud data centers are validated by a series of studies of enterprise datacenters[137, 57].

For oversubscription, we use the same cloud traces and scale down the hardware to main-

tain a similar system load. Scaling for both average CPU utilization and the oversubscription

rate produces an Azure cloud cluster with 200 nodes (3,200 cores) and 26 TB of memory.

We also model a Borg V2 cluster with 630 nodes (336 GCU - Google-Compute-Unit) and

300 normalized bytes of memory. This system is sized to match the sampled Borg V2 trace

used (Table 5.2).

5.1.6 Metrics

We use three metrics to quantify scheduler performance, Quality of Service (QoS), and user

experience.

• Goodput measures the ability of the scheduler to utilize resources to complete jobs. We

compute goodput as the ratio of node hours used by successfully completed jobs to the

total available node hours. Losses include unscheduled resources and job runs that fail

(terminate before completion).

• SLO Miss Rate measures the fraction of jobs that experience SLO violations. In the

dedicated resource model, Job Failure Rate captures the fraction of job runs that fail to

complete successfully. Compared to constant resource capacity, where this fraction is
52



Figure 5.2: HPC (Dedicated) Scheduler performance varying dynamic range and varying
stepsize for the random walk.

close to zero, the failure rate quantifies the disruptions from resource variability. In the

oversubscription model, Slowdown Rate measures the fraction of jobs that experience a

later completion time to the baseline. It quantifies the impact of both oversubscription

and resource variability.

• Job Waiting Time represents the average interval between job arrival time in the queue

and job start time (of its successful completion) and demonstrates measurement of user

experience in job execution.

5.2 Dimensions of Capacity

We evaluate scheduler performance under varying resource capacities to understand how

well they can manage variation and when it causes goodput loss. We explore variability

dimensions of dynamic range, structure, and change frequency to understand how specific

features of variable capacity affect performance. The worst of which, one might choose to

avoid or perhaps engineer mitigation.
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5.2.1 Dynamic Range

First, let’s consider resource capacity variation with different dynamic ranges. In Figure

5.2, the patterned bar at the left is the scheduler performance (goodput) with the same

average capacity but no capacity variation – the baseline. The groups of bars left to right

reflect increasing dynamic range, all under random walk structure. Across the clusters, we

vary random walk stepsize. The first and third bars have fixed stepsizes of 0.05 and 0.2

respectively. The center bar uses a stepsize scaled as one-fourth of the dynamic range.

As the dynamic range increases, the goodput declines for all stepsizes; with increased

variability, scheduling performance degrades. By the time we reach the largest range, 0.6:

[0.4,1.0], the goodput has declined by 25-45%. The largest dynamic range and largest step-

sizes produce the worst performance. This performance loss is due to a dramatic increase in

job failures which we will examine in greater detail later.

5.2.2 Variability Structure

We consider two variability structures, random walk and random uniform. In Figure 5.3,

let’s first look at the random walk case (blue), comparing it to no variation (patterned).

Stepsizes are one-fourth of the dynamic range, and these HPC (dedicated) results were also

presented in Figure 5.2. With increasing dynamic range, scheduler performance (goodput)

degrades in both dedicated resource schedulers. Next, we compare random uniform (yellow

in Figure 5.3). The dedicated resource schedulers experience goodput degradation as much

as 35% worse (for a total degradation of 55%). This is because random uniform allows large

jumps in capacity, disrupting the job schedule with terminations or wasted resources. For

the dedicated scheduling models, we conclude variation structure can be as important as the

dynamic range in degrading scheduler performance.

In Figure 5.4, we consider oversubscription. Both cloud workloads (oversubscription)

exhibit little degradation for random walk. We believe this is because the safety margin
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(a) HPC (Dedicated Resource)

(b) Azure (Dedicated Resource) (c) Borg (Dedicated Resource)

Figure 5.3: Scheduling performance with random walk and random uniform resource vari-
ability structure, varying dynamic range.

provided by statistical multiplexing allows much of the dynamic capacity change to be ab-

sorbed with little negative impact on goodput. More importantly, the oversubscription model

adopts job slowdowns under capacity variations which can be viewed as a mitigation strategy

than abrupt job terminations. The implications and impacts of job slowdowns need further

study and validation. Random uniform also sees little goodput degradation. For Azure

workload, in both random walk and random uniform cases, there is a significant goodput

increase for large dynamic range cases (0.8:[0.3, 1.1]), whereas other dynamic ranges exhibit

little goodput difference. It is because the 0.8 dynamic range allows large swings in capacity,

producing time intervals with higher oversubscription levels during capacity decreases with

job slowdowns. Moreover, random uniform shows even higher goodput because its structure
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(a) Azure (oversubscription) (b) Borg V2 (oversubscription)

Figure 5.4: Scheduling performance with random walk and random uniform resource vari-
ability structures, varying dynamic range.

Figure 5.5: Goodput versus change frequency (dynamic range 0.6: [0.4, 1.0]).

produces more volatile capacity changes between time intervals. For the Borg workload, a

similar trend is observed but less in quantity due to its lower CPU utilization.

For cloud scheduling, we conclude that oversubscription scheduling is robust with various

variation structures within a moderate dynamic range.

5.2.3 Change Frequency

Change frequency is another dimension of capacity variation, so we start with a low rate (0.25

changes/hour), and increase to a high rate (4 changes/hour). Note that all prior experiments

used a change frequency of 1 change/hour. We focus on a dynamic range of 0.6: [0.4, 1.0]
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(a) HPC (Dedicated Resource)

(b) Azure (Dedicated Resource) (c) Borg (Dedicated Resource)

Figure 5.6: Goodput versus change frequency, varying dynamic range and structure of ca-
pacity variation.

with stepsize of 0.15 first. In Figure 5.5, a significant goodput drop is observed across all

structures and workloads as frequency increases. For HPC workload, goodput has fallen by

as much as 50%. For Azure workload, higher change frequencies cause clear degradation in

goodput (up to 30% overall, but 15% attributable to frequency); Borg V2 exhibits clear,

but lesser degradation. These commercial workloads are less sensitive to resource variation

because of their lower parallelism.

We combine change frequency with the other parameters (dynamic range and structure),

putting it all together in Figure 5.6. With a very low change frequency of 0.25 changes/hour,

performance approaches the fixed capacity case. The negative impact of increasing change

frequency on goodput remains but is less extreme across all dynamic ranges. For HPC
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(a) Azure (Oversubscription) (b) Google (Oversubscription)

Figure 5.7: Goodput versus change frequency, varying dynamic range and structure of ca-
pacity variation.

(dedicated), as change frequency increases, there is a significant scheduler degradation for

each increase, so that at 2 changes/hour, goodput has fallen by as much as 50%. For Azure

(dedicated), higher change frequencies cause clear degradation in goodput (up to 30% overall,

but 15% attributable to frequency); Borg V2 exhibits clear, but lesser degradation. These

cloud (dedicated) workloads are less sensitive to resource variation because of their lower

parallelism.

Both cloud workloads (oversubscription) have a different experience (see Figure 5.7).

Goodput is close to the fixed resource case for all scenarios and shows no sensitivity to

change frequency and dynamic range. Despite the overall stable performance varying all

dimensions, we still see small variations of goodput between change frequency produced by

more frequent, disruptive changes of resource capacity. While oversubscription scheduling

design can absorb most of these disruptions, intelligent design and close monitoring are still

recommended to avoid negative impacts. In general, beyond lower parallelism, the flexibility

of statistical multiplexing provides greater tolerance of capacity variation.

Overall, the results suggest that for dedicated resource schedulers it would be productive

to limit the change frequency of capacity variance as much as possible.
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5.2.4 Summary

The thorough study of conventional schedulers on real HPC and cloud workloads shows that

resource capacity variation can have a large impact on goodput, reducing it by up to 60%.

Goodput in HPC (dedicated) and both cloud (dedicated) resource models are particularly

sensitive to dynamic range, structure (and stepsize), and change frequency. In these systems,

change frequencies of less than 0.25/hour (one per four hours) are desirable. In contrast, we

find that cloud’s oversubscription scheduling model is remarkably robust to capacity change –

in almost all dimensions. While with a large dynamic range, goodput performance increases

significantly, this may be an illusory benefit. It’s likely that capacity troughs are eating

into the safety margin that allows oversubscription without disrupting SLOs. But overall,

cloud systems can tolerate wide dynamic ranges, up to 0.8 (80%) of full data center capacity

without reduced performance. This is promising indeed for the variable capacity approach

but requires further validation.

5.3 Cloud Workload Drill Down

In the previous section, results show that under the dedicated scheduling model, both cloud

workloads experience much less degradation compared to HPC workloads. Moreover, perfor-

mance is remarkably robust with the oversubscription scheduling model. With these positive

results, we carefully revisit the impact of variable capacity on cloud workloads. These evalua-

tions represent a simpler view of the cloud workloads as the utilization in Borg V2 workloads

is maintained at a lower level, even more so under the oversubscription model. In addition,

state-of-art cloud workloads exhibit a dominant mode of VM usage, where long or continu-

ous running jobs contribute to a large fraction of total core hours, presenting a challenge to

resource flexibility. Other factors including inter-task dependencies, job wait time measure-

ments, and cross-cluster diversity are not yet taken into account as these are key properties

and important SLA metrics in cloud services.

59



G
oo

dp
ut

0%

25%

50%

75%

100%

a b c f g

Fixed Capacity Range 0.2 Range 0.4 Range 0.6

Figure 5.8: System Performance of Google’s (Cloud) Borg TNG workloads using Dedicated
Scheduling Model across 5 Borg Cells Varying Dynamic Range

To further drill down on if and how cloud workloads are negatively impacted under

capacity variations and whether new scheduling techniques are necessary to improve cloud

shifting capability, we revisit the scheduling problem of cloud workloads under variations, fo-

cusing on workload properties and key metrics to evaluate impacts. We use the Google Borg

TNG trace released in 2020, which is the most recent large-scale cloud trace, with the dedi-

cated resource scheduling model. It contains richer details, such as inter-task dependencies,

and workloads covering eight Borg cells with diverse distributions and characteristics across

cells, capturing the realistic complexity of cloud scheduling. Furthermore, it demonstrates

a significant increase in allocated resources compared with Borg V2 workloads, reflecting a

state-of-the-art utilization level in cloud data centers.

5.3.1 Variation Ranges

We start by revisiting the performance evaluation under varying resource capacity dynamic

ranges and stepsizes of each step of the random walk correspondingly with Borg TNG work-

loads. In Figure 5.8, the leftmost blue bars in each cluster are the scheduler performance

(goodput) with no capacity variation – the baseline. Then each group of bars left to right

reflects increasing dynamic range, all under random walk with the same pattern with step-

size scaled as one-fourth of the dynamic range. All cases have the same total capacity. As
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Figure 5.9: System performance Varying Variation Ranges

the dynamic range increases, the goodput degrades significantly, with approximately 40%

further by each increase. This performance loss proves that in present-day cloud data cen-

ters, variable resource capacity still poses significant challenges to the scheduler, and such

performance degradation grows drastically as the range of variations increases.

Moreover, we further drill down on the whole spectrum of variation ranges from 0 to 0.6

in small steps on Borg cell b in Figure 5.9. As the range of capacity increases, goodput shows

a gradual drop, and the goodput curve becomes flattered towards larger variation ranges.

Goodput demonstrates a heavy tail trend, with the first 5% variation range contributing

to 15% goodput loss. Further drilling down to separate the total goodput into short jobs

(in lighter red) and long jobs (in darker red), the total short jobs’ goodput results remain

stable while the goodput contributed by long jobs drastically decreases as the dynamic range
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Figure 5.10: System Performance of Traditional Scheduler of Independent Workloads and
Same Workloads with Job Dependencies

increases. Job waiting time significantly increases with larger variations, and the first 5%

variations incur 3X increase. The job failure rate also linearly increases, doubling every 0.1

step increase in variation range. Looking at long and short jobs, failure rate increases of long

jobs over dynamic ranges notably outrun that of short jobs, demonstrating challenges on

long-running jobs under variation. These results demonstrate why adapting data center load

is hard for cloud providers. As major performance damages arise from the first 10% range

of variation, even the smallest amount of variation can pose large scheduling challenges on

cloud workloads, with serious goodput loss and user experience degradation.

5.3.2 Job Dependencies

As some cloud workloads have more complex structures than independent jobs, suggesting

that at least a fraction of parallelism or job dependencies should be expected from distributed

computing models such as MapReduce, Spark, and SQL. For example, among 8 Google Borg

cells, the percentage of jobs with dependencies is widely different, from 0.1% to 12%. Other

studies show jobs with dependencies compose 48.92% of batch jobs and 20% of all jobs in

production clusters[135]. Job dependencies can further impact the scheduler’s ability to
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maintain system performance in the face of variable capacity. Scheduling delays in jobs

that are on the critical path of workflows may result in limiting the scheduler’s flexibility in

scheduling waiting jobs and maximizing goodput. Moreover, terminations of these jobs may

cause cascading job failures and further delays.

We compare performance on the same sampled workloads with and without job depen-

dencies to evaluate the impact of workload structure. Figure 5.10a shows goodput varying

dynamic ranges on the same workloads subject to job dependency constraints. Results show

that while for some cells, the performance difference is not obvious, some cells exhibit further

degradation in goodput from 10-15% when job dependencies are introduced into scheduling

constraints. Figure 5.10b shows the job waiting time in bars (left y-axis) and job failure

rates (right y-axis) in lines of workloads without and with job dependencies. It demon-

strates that job failure rates of workloads with job dependencies under range 0.6 are similar

to base workloads. However, job waiting time increases by 4 - 22%, due to the fact that the

scheduler has decreased flexibility in scheduling existing job requests in the queue and job

terminations may further delay-dependent job scheduling.

5.3.3 Workload Mixes

As discussed in Section 2.5, workloads across Borg cells are dominated by long jobs on core

hours, with long jobs contributing to roughly 80% of total computation, following a Pareto

distribution. Therefore, to understand what types of workload mixes can be supported well

by the scheduler in the face of variation, we manually vary the core-hour fraction of long jobs

in the workload mixes from 10% to 100% while keeping the total amount of computation

constant. We measured the long job fraction in Google BorgTNG traces at 80%.

Figure 5.11 shows the performance results varying the fraction of long jobs on the x-axis.

As we increase the long job fraction in the workloads, the goodput significantly decreases

by more than 2X. The job failure rate increases as the long job fraction goes from 10% to
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(a) Goodput

(b) Job failure rate (c) Job waiting times

Figure 5.11: System Performance of Traditional Scheduler Varying Workload Mixes of Long
and Short Job Fraction (Note: Google workload long job fraction indicated by the red box)

90%, reflecting the trend that long jobs are more prone to capacity changes. On the other

hand, when there are mostly short jobs with 10-30% core-hours of long jobs, the workloads

experience less degradation, due to a much smaller amount of job failures. For job waiting

time in Figure 5.11c, the fixed capacity results show a continuous decrease. It is due to the

decrease in the absolute number of total jobs as we hold the total computation constant while

increasing the fraction of long jobs. A similar decrease in job waiting time is observed in the

variable capacity results as the long job fraction increases. However, in the variable capacity

scenario, as the long jobs become dominant in the total computation ( > 60% fraction),

frequent job failures, reflected in Figure 5.11b, cause the jobs repeatedly being terminated

and re-queued, and thus, drastically increases the job waiting time. These results suggest
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that while a workload with mainly short jobs may tolerate capacity variations, general cloud

workloads with a heavy-tailed distribution are not well-supported by traditional schedulers.

5.3.4 Drilldown Takeaways

Drilling down on real cloud workloads shows a dominant mode of VM usage. A substantial

portion of long-running jobs, together with inter-task dependencies, present serious chal-

lenges to resource flexibility. These cloud-native workload characteristics produce severe

goodput losses of 30-40%, job termination rate of 26%, and 60X increase in average waiting

time under resource capacity variation, showing unacceptable performance degradation to

the cloud data centers. These harms limit the acceptable dynamic range to <10%, con-

straining potential variation benefits. To enable larger variation benefits, new cloud needs

new resource management techniques that can tolerate a greater dynamic range of capacity

variation, while maintaining good performance.

5.4 Real Variation Scenarios

In the prior studies, we used synthetic variation, modeled on real variation, to systematically

study the impacts of variation on scheduler performance and data center goodput. Here we

use sources of variation from the real world directly, exploring how strategies such as price

and carbon optimization based on varying power grid properties might implicate realistic

variation properties and how they relate to synthetic traces we have extensively studied.

Specifically, we focus on power prices, average carbon emissions/unit power, and stranded

power. Optimization over these time-varying quantities is used to create variable resource

capacity and derive variable resource traces from them. These traces are then used to

evaluate scheduling systems. For each of these sources, we produce a set of sample traces

with a duration of one year and a variety of temporal resolutions (5 minutes to hourly).

These exemplar capacity traces are generated based on several simple policies, e.g. constant
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Figure 5.12: Power price ($/MWh) (left) and resulting resource capacity for a 200-megawatt
data center (right), using a constant cost purchase approach. Exemplar 24-hour day from
MISO January 9, 2018, CIN.Markland grid node.

(hourly) carbon budget.

5.4.1 Variation from Price

In order to manage a supply cost (e.g. power), a common strategy is to constrain expen-

ditures to a constant rate for an operating period. For example, in a fixed-capacity data

center, the total power cost budget Budgettotal over a time period T is determined by

Budgettotal =
∑

t∈T Pt · Capacity, where Pt is the power cost per unit capacity at time T .

In a variable capacity data center with a constant price budget, the price budget Budgett

at each time t is Budgettotal
T . The capacity at time t is Capacityt =

Budgett
Pt

. In data cen-

ters or many types of machinery, this couples dynamic market price to resource capacity

as illustrated in Figure 5.12, showing capacity variation of 5-fold [0.2, 1.0] or more. As the

power prices can be volatile and spiky within minutes, variations produced by prices are

similar to a random uniform during volatile price periods, dropping from 180MW to 52MW

within a time interval. During these times, variation can be large over time periods as short

as 5-minutes, and with very low (even negative) prices variable capacity may be limited by

physical capacity.
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(a) Carbon-emissions rate (mT/MWh) of one day per
month from Aug 2019 - Jul 2020

(b) Resulting one-day resource capacity
variation

Figure 5.13: Carbon-emission rate (left) and resulting resource capacity at Constant Carbon
purchase approach in the German power grid(December 2019, right).

5.4.2 Variation from Carbon Emissions

Concern is increasing about climate change, and thereby associated carbon emissions with

power consumption. We derive capacity variation traces from power grids’ historical car-

bon emissions to reflect the exploration of carbon opportunities. Carbon budgets must be

managed against power grids with large fluctuations in carbon content. A basic strategy is

a constant carbon budget for each time period. Similar to the constant power cost budget,

the constant carbon budget approach keeps the carbon emission budget fixed at each time

period. Figure 5.13a shows examples of carbon-emission rates in the German power grid for

one examplar day per month from Aug 2019 - Jul 2020. As the grid has a high wind power

penetration, the carbon emission rates follow a random walk structure of gradual changes.

A resulting resource capacity variation at constant carbon purchase in Figure 5.13b shows a

random walk of capacity variation, with a dynamic range [0.65, 1.05], comparable to a syn-

thetic trace with a medium dynamic range of 0.4: [0.5, 0.9]. The step size varies from 0.01

to 0.2, where the former represents a much smaller change and the latter more challenging,

representing the largest stepsize we evaluate, compared to a 0.1 stepsize from the synthetic

traces of the same dynamic range.
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Moreover, carbon emissions often vary not only daily, but also with patterns that differ

by month of the year. For example, Figure 5.14a shows the resulting resource capacity of

one exemplar day from three major power grids in the U.S. - CAISO, MISO, and ERCOT

across four seasons in a year. Figure 5.14b depicts the yearly statistics of variable resource

capacity. The lower and upper whiskers show the min and max resource capacity, and the

lower and upper bound of the box shows the 75th, 25th-%tile. The midline of the box

represents the median. It demonstrates that resource capacity varies over days and seasons

and is widely distinct across the grids due to the renewable mix and weather. For example,

CAISO, with a high solar power penetration, experiences rapid increases in generation during

sunrise and rapid loss during sunset. This pattern of variable renewable generation produces

capacity variation with a dynamic range of [0.4, 1.0], comparable with the largest range of

synthetic traces. Throughout the rest of the day, the capacity is observed with a rather

stable quantity, representing a simpler case than synthetic variations. MISO, which has

wind-dominant renewable generation, exhibits variations with random walks. Its dynamic

ranges are as large as [0.6, 1.0] but mostly within [0.65, 0.78], representing a scenario with

smaller and simpler variations. ERCOT, with a mix of both solar and wind generation,

demonstrates a structure and dynamic ranges which fall between CAISO and MISO.

Overall, across the grids, spring seasons provide more capacity opportunities, presenting

larger quantities of total capacity, and summer seasons demonstrate less capacity also less

variation (≤ 0.1), reflecting a combination effect from high demand and low renewable gener-

ation. Over one year period, a constant carbon approach produces up to 3% additional total

capacity while achieving 9% carbon emission reductions, showing promising carbon benefits.

Note that workload SLOs such as “catchup by end of the day” can have difficult interactions

with the shape of variation curves.
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Figure 5.14: Statistics of grids’ historical carbon emission rate, variable capacity produced
by constant carbon budget, and examplar variation traces (MW)

5.4.3 Variation from Stranded Power

A different approach to lower carbon emissions is stranded renewable power [55, 151], where

excess renewable energy (power with zero-marginal carbon) can be used to power data centers

intermittently. This excess case may be important for combatting climate [151, 152], and

produces a nearly binary on-off resource capacity (Figure 5.15, ERCOT), while operating at

zero carbon emissions, which can be viewed as an extremely volatile random walk of range

1.0: [0, 1.0] with stepsize 1.0. The graphs illustrate 15-minute intervals (high frequency of

variation) and reflect variation over a week-long period. The power availability variation is

day-to-day, week-to-week, and also by the season of the year.

5.4.4 Scheduling Experiments on Real Variation Traces

To validate our results of synthetic variation traces, we now look at the system performance

using real variation traces, produced by the constant carbon approach from three major

power grids in the U.S., shown earlier in Figure 5.14, to demonstrate the generality of

scheduler performance under variable capacity. For each power grid, we focus on displaying
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Figure 5.16: System Performance (Goodput) of Traditional Scheduler with Real Variation
Traces, Comparing with Synthetic Random Walk of Range 0.2, 0.4, and 0.6

a representative single day, whose standard deviation of capacity variation is the 90%-tile

value, for each season, reflecting the future grid with more fluctuations.

Figure 5.16 shows the goodput results of a variable capacity data center (same size as used

with synthetic traces), following the variation of the examplar days across seasons and power

grids, comparing with using synthetic traces of random walk (range 0.2, 0.4, and 0.6) in the

leftmost cluster of bars. It shows the same level of goodput degradation as in Figure 5.10a

due to capacity changes. Corresponding to the grid-level variation properties discussed in

Section 5.4.2, goodput results under real variations show better performance than synthetic
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traces with the same dynamic range by dealing with simpler, easier scenarios. For example,

CAISO experiences more goodput degradation because its variation exhibits a large dynamic

range. However, its performance still outperforms goodput from a synthetic random walk

with 0.6: [0.4, 1.0] as the overall variation and stepsize are smaller, representing a simpler

view. MISO and ERCOT, with random walks and smaller dynamic ranges, experience even

less degradation.

For seasons like summer and winter where fewer opportunities are available due to high

demand, the goodput is comparable with a walk with a range of 0.4. For spring and fall

with more carbon emission fluctuations, the performance under realistic traces shows less

degradation, around and even higher than results of range 0.2, because the variation curves

are smoother and contain larger total quantities of resource capacity. These results reflect

the opportunities from fluctuating renewables in the grids and variation benefits vary widely

across seasons and grids. Overall, these real variation traces can be mapped to synthetic

traces by varying three key dimensions of the problem space. In often cases, with the nature

of renewables and hourly changing generation mixes, the real variation traces exhibit a

smoother case of the variation space - a random walk structure with a 1hr change frequency

with a 0.2-0.5 range with small step sizes.

Along with the performance validation, these results demonstrate that real variation

traces from a constant carbon approach are a specific representation, maybe a simpler ver-

sion, of the synthetic traces, which cover all the scenarios varying three key dimensions.

Future power grids, as they drive to higher RPS goals, will experience increased volatility

in power capacity due to high renewable fractions. We pick days whose standard deviation

of capacity variation is 90%-tile for the season to project future grids with larger volatility.

Although these results exhibit a simpler representation of the synthetic traces, a holistic view

to take future power fluctuations into account using synthetic traces demonstrates realistic,

challenging projections.
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5.5 Summary

In this chapter, we presented our approach to understanding the performance impact under

resource capacity variation. We defined the variation problem and three key dimensions of

variation, dynamic range, structure, and frequency. Empirical evaluation of a diverse range

of workloads, both cloud and HPC, shows that scheduling performance significantly degrades

under capacity variation, with goodput loss of 15 - 60% and 30% on average. All dimensions

of variations contribute to goodput loss, and each independently decreases goodput by 10 -

40%, suggesting careful control over these factors.

We further drill down on Google’s cloud workloads with a range of clusters and sizes.

Our study shows that cloud workloads have a dominant mode of VM usage, with a large

fraction of long-running jobs and inter-task dependencies. These properties further degrade

performance, incurring goodput losses of 30 - 40%, and job termination rate of 26%. These

factors combine to produce a 60X increase in average waiting time. The negative impacts

limit tolerable variation to <10% of the total load. These results all suggest that to en-

able larger benefits arising from dynamic capacities, such as carbon footprint and operating

expenses, new data centers need new resource management techniques that can tolerate a

greater dynamic range of capacity variation while maintaining good performance.

We show examples and empirical traces of sources that lead to resource capacity vari-

ation: power prices, carbon emission, and stranded power. We demonstrate that with key

dimensions, these distinct scenarios can be characterized, abstracting it as a generic prob-

lem. Scheduling studies with real variation traces from carbon emissions further validate

that these sources exhibit similar dynamic ranges and represent a specific, simpler case of

the broad range of synthetic traces within the same range. Thus, they can be umbrellaed

under the broader, systematic study of the whole problem space. As future grids trail to

high-renewable power systems with accelerated decarbonization goals, more challenging cases

in synthetic studies may represent a realistic projection to capture the increased volatility.
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CHAPTER 6

COPING WITH CAPACITY LOSS

Results in Chapter 5 show that resource capacity variation can degrade scheduler perfor-

mance (lower goodput). A key impact is increased job failures that arise when the scheduler

assumes stable capacity, but capacity drops. Therefore, capacity decreases can cause a large

number of job failures, resulting in wasted resource efficiency and damaged job experiences.

We first characterize the resulting job failures from capacity loss. Then to cope with capacity

loss, we propose and evaluate intelligent termination policies to minimize job failures and

mitigate wasted work by selectively terminating jobs in Section 6.1, illustrated in Figure 6.1.

Section 6.2 evaluates the effectiveness of using capacity foresight information to improve

performance by varying the length of foresight. We conduct a case study of a hypothetical

carbon-emission-aware datacenter in Germany to demonstrate the carbon, cost, and capacity

benefits from variable capacity in Section 6.3. Finally, Section 6.4 summarizes the chapter.

6.1 Intelligent Termination Policy

We look at job failure rates of both HPC and cloud workloads varying dynamic range and

variability structure to characterize the impact of capacity loss. Figure 6.2 shows that job
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Figure 6.1: Coping with Capacity Loss Through Intelligent Termination Policies in A Vari-
able Capacity Data Center
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Figure 6.2: Job failure rate with resource capacity variation, varying dynamic range and
variability structure.

failure rates increase with the dynamic range and structure of resource capacity variation.1

For HPC workload, the scheduler experiences 15% job failures with dynamic range [0.6,

0.8] and this rate rises to 30% for [0.4, 1.0] (random walk). For Random Uniform the

rate is even worse, growing from 19% to 37%. Such high failure rates not only account

for significant goodput losses, but they also produce a poor experience for applications. For

Azure workload, the trend is similar, but the magnitude of degradation is much less, peaking

at 6.7% for random walk and 16.5% for random uniform. For Borg V2 result, the failure

rates are lower still, due to lower resource use.

When capacity decreases below the scheduled workload, jobs must be terminated (fail)

until the total resources in use match the current capacity level. Because high job failure

rates incur a large quantity of wasted computation, we explore how to best choose the jobs

to be terminated with the goal of minimizing job failures and maximizing goodput and job

experience considering job features and progress.

We consider three policies:

• Random: Select a node randomly, terminate the associated job, and free its resources.

• Least Wasted Work (LWW): Select the job whose termination wastes least work (small-

1. Here the job to be terminated is chosen randomly.
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(a) Goodput (b) Job Failure Rate

Figure 6.3: Scheduling performance for various termination policies (random walk, dynamic
range [0.4, 1.0], step size 0.05)

est nodes × (t − start time), where t is the current time) and free its resources. This

policy exploits the information of current progress (elapsed time) for each job, which

is known and recorded in the system, to minimize wasted computation.

• Least Fraction Done (LFD): Terminate the job which is least fraction completed (min-

imum (t−start time)
runtimej

, where t is the current time) and free its resources. This policy

requires knowledge about job total runtime, in addition to elapsed runtime, to assess

each job’s progress to completion.

For each policy, we repeat the process of terminating jobs until the desired (lower) re-

source level is reached. For the HPC workloads, we use the requested runtime to compute

LFD; for the commercial workloads we use the trace information for actual job length. How-

ever, in production, this information is not generally available. We compare the termination

policies, using scheduler performance metrics of goodput and failure rate. In particular, we

would like to improve scheduler performance under resource capacity variation, and further

understand which of these termination policies work best.

We begin with a dynamic range of [0.4,1.0], as our experiments in Section 5.2.1 show

significant scheduler performance degradation under these conditions. Both of our new poli-

cies, LWW and LFD perform much better than Random, increasing goodput and reducing
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(a) HPC

(b) Azure (c) Borg

Figure 6.4: Goodput versus termination policy, varying dynamic ranges and structures

failure rate as shown in Figure 6.3. This experiment uses random walk with stepsize 0.05.

The goodput shows 26% and 31% increases respectively, compared to Random. And the

improvement in job failures is dramatic, improving by 2 to 3-fold. This is remarkable, given

there is no advance warning. The improved result is comparable with goodput with stable

capacity (80%). This result shows the promise of intelligent resource management to tolerate

resource capacity variation.

Broadly, Figure 6.4 presents goodput results for a variety of dynamic ranges and variabil-

ity structures. The results show that intelligent termination policies make a big difference.

For HPC both intelligent termination algorithms improve performance, but the best perfor-

mance is achieved with LWW (rightmost, gray). The goodput achieved by LWW approaches

the stable resource capacity and is an average of 44% improvement over Random. For Azure
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(a) HPC

(b) Azure (c) Borg

Figure 6.5: Job failure rate versus termination policy, varying dynamic ranges and structures

and Borg V2 workloads, the algorithm preference is similar, with LWW producing the highest

goodput, but with smaller benefits.

Looking deeper, we observe how failure rates increase with dynamic range (leftmost,

blue), and the dramatic reduction achieved by intelligent termination policies (see Figure

6.5). Job failures are reduced in all cases, and by as much as 3-4 fold. Interestingly, for all

workloads, LFD reduces job terminations more, but LWW produces better goodput. This

matches intuition as LWW terminates short and small jobs – and more of them, but wastes

less work in general. On the other hand, LFD normalizes out job size and run length by

calculating the fraction done. The Azure effects are smaller than HPC, and the Borg V2

effects are smaller still. Later, we examine the resulting fairness effects.
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(a) HPC

(b) Azure (c) Borg

Figure 6.6: Job terminations sorted by runtime. Workload distribution as reference. (Ran-
dom walk, dynamic range 0.6:[0.4,1.0])

Intelligent Policies and Fairness Any intelligent policy can potentially affect different

types of jobs in the workload differently. To examine this question, we plot the job ter-

mination distributions in Figure 6.6 with the overall workload distribution at the left of

each graph for reference. Each bar represents one policy and the resulting job terminations

distribution (by job length (runtime)).

All of the termination policies, including random, have a greater impact on longer and

larger size jobs whose greater extent gives them a greater chance to interact with the temporal

nature of capacity variation. Both LWW and LFD reflect these effects but recall that LWW

has both higher termination rates and higher goodput. LWW achieves greater fairness by
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Figure 6.7: Goodput versus advance warning (random walk, dynamic range 0.6: [0.4, 1.0]).

runtime and size compared to LFD for all three of the dedicated workloads. Interestingly,

in the Borg V2 workload, random is slightly fairer than both of the intelligent algorithms.

6.2 Foresight

With variable resource capacity, some forms of variation may be predictable or controllable

– at a cost. We explore how well schedulers can exploit foresight of resource variability,

adapting to an irregular resource projection. We give the scheduler foresight (a window of

visibility) of zero (baseline) to 24 hours (longest job duration). The scheduler only makes

commitments as long as the longest job, so 24 hours gives full knowledge. To fully exploit

the oracle capacity information, we further exploit full information of job runtime so that

the scheduler can fully align job placement with known capacity within the foresight window

to avoid job failures. We first start with an example of dynamic range 0.6: [0.4,1.0] and the

structure is random walk with stepsize of 0.15. In Figure 6.7, for all workloads, three to six

hours of foresight is required to eliminate the variation penalty, but longer foresight has no

further improvement (thus not shown).

Putting it all together, we vary parameters of dynamic range, structure, and warning time,

presenting the results in Figure 6.8. For HPC and random walk, there are strong benefits

for increased advanced warning and pronounced benefits with larger dynamic ranges. For
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(a) HPC

(b) Azure (c) Borg

Figure 6.8: Goodput versus warning time (foresight), varying dynamic range and structure.

Azure, smaller benefits accrue for both random walk and random uniform. There are only

small benefits for Borg V2.

Next, we consider the impact of foresight on job failure rates (see Figure 6.9). In the

HPC model and commercial workload models, the failure rate grows with the dynamic range.

For all, increased advance warning reduces failure rates dramatically, though the failure rate

starts much higher for HPC, and is lower for Azure, and Borg V2. Six hours are clearly

enough to eliminate nearly all of the job failures.

6.3 Case Study: A German Datacenter

To illustrate the impact of carbon-based power acquisition and scheduling performance in

a real-world scenario, we consider a hypothetical 40-megawatt data center operating in the
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(a) HPC

(b) Azure (c) Borg

Figure 6.9: Job failure rate versus warning time (foresight), varying dynamic range and
structure.

German Power Market[70]. Because the power market varies every day and has a strong

seasonal structure, we pick a set of exemplar days from the 12 most recent months (Sept

2019 - August 2020). When using constant carbon emissions per hour, they have power

variation as shown in Figure 6.10. These twelve days have 24-hour capacity increases from

6% to 16% with an average of 11%.

We use the same HPC Mira workload, the corresponding system, and Cobalt HPC sched-

uler because evaluation results from Chapter 5 show that HPC workload can be more vul-

nerable to resource capacity changes than commercial workloads. We compare a traditional

operating mode (fixed power), constant carbon emissions (carbon-emissions-aware), and then

add foresight and then the scheduler enhancements, graphing goodput in Figure 6.11. Each

cluster of bars depicts the results for a single exemplar day. Shifting from fixed to Carbon-
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Figure 6.10: 24-hour resource capacity variation by Carbon-Emission-Aware approach for
acquiring power of an exemplar day per month

Figure 6.11: Goodput for 12 exemplar days, comparing fixed and carbon-aware power con-
sumption, various schedulers, Mira trace, and simulation.

Emission-Aware(CEA) power acquisition produces a large drop in goodput as large at 24%

on some days and 12% on average. Finally, we consider an alternate approach, modeling the

use of advanced power market information, we give the scheduler 3 hours of foresight. This

is a little optimistic, as power markets can be unpredictable. Next, we consider using the

scheduler improvements identified (without foresight) in Section 6.1. Both LFD and LWW

are productive, but LWW eliminates essentially all of this degradation. In fact, CEA+LWW

is not only 11% better overall, but it also outperforms fixed on every one of the 12 days.

Note that CEA+LWW actually exceeds the 100% line for the fixed power acquisition in two

days! (this is correct, and reflects exploiting the headroom, which is the additional surge

capacity in the data centers)
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(a) Goodput (b) Carbon emissions

Figure 6.12: Performance and Carbon emissions of a model German Datacenter

Figure 6.13: Resulting power cost of a model German Datacenter

Most data centers have power and cooling headroom2 and hardware overprovisioning

is increasingly popular [124, 123]. However, the quantity is of course limited. To assess

these limits on performance and carbon emissions, we show the average goodput for our

12 exemplar days versus capacity headroom (see Figure 6.12). As data center headroom

decreases, the potential benefit declines at 20%, it is effectively disappeared. However,

CEA is still worthwhile, as carbon emissions are significantly reduced (by about 8-10%) at

the same goodput, or by 15% with a 3% loss in goodput. Projects such as Zero-carbon

Cloud and other lightweight and free-cooled datacenter projects have shown that this type

of “headroom” can be often constructed for a fraction of the proportionate cost [152, 25].

2. Headroom is the ability to temporarily exceed these limits safely and can also exploit thermal inertia.
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Finally, we calculated datacenter power cost, using hourly prices. The impact of the CEA

power acquisition on total power cost is significant, with reductions that parallel carbon

emission reductions reaching as large as 14%.

6.4 Summary

The study of traditional schedulers on real HPC and cloud workloads shows that capacity loss

from variation can incur a large number of job terminations, imposing job failure rate from

15-37% on HPC workload and 1-16% on cloud workloads. To cope with capacity loss, we

propose intelligent termination policies to reduce job failures and restore resource efficiency.

Results show that they are effective in mitigating the impact of capacity loss from variation,

increasing goodput by 10 - 66% and reducing job failures by 1.6 - 3X.

In addition, foresight information is powerful as it alone can drastically improve perfor-

mance. Six hours of foresight can eliminate nearly all job failures, demonstrating promising

opportunities to exploit information.

A case study of a German data center demonstrates the benefits of up to 15% carbon

emission reduction and 14% power cost savings by effectively exploiting capacity variations

while maintaining goodput.
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CHAPTER 7

A BROADER VIEW: PREPARING FOR CAPACITY

VARIATION

While Chapter 6 has shown promising results of intelligent termination policies, dealing with

capacity loss can only minimize the job failures and wasted computation upon a capacity

decrease in a reactive fashion and thus has a limit on how much it can mitigate. For exam-

ple, in an extreme case where a data center is fully occupied with jobs of identical size, the

opportunities to mitigate the negative impact in the event of capacity loss are very limited.

Therefore, in this chapter, we take a broader view to consider strategies for preparing for

capacity variation. That is, proactively preparing for capacity increase and planning for

capacity decrease, shown in Figure 7.1. As evaluation in Section 6.2 demonstrates the pow-

erful improvements of partial oracle information, we further explore information to improve

performance. We present the dimensions of uncertainty that contribute to performance loss

in the face of resource capacity variation and the information space of these two dimensions

that may help reduce such uncertainty for the schedulers in Section 7.1. We propose schedul-

ing algorithms that exploit such information to optimize job placement decisions preparing

for capacity variation in Section 7.2. We empirically evaluate these scheduling algorithms

using Borg TNG cloud workloads varying workload properties in Section 7.3 and summarize

in Section 7.4
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Figure 7.1: Preparing for Capacity Variation Through Scheduling Schemes in A Variable
Capacity Data Center
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Figure 7.2: Variable capacity challenges scheduler’s ability to achieve low waiting time

7.1 Uncertainty and Information Space

Compared with a traditional data center, the mismatch between resource capacity assump-

tions and actual variations, coupled with uncertainties of job runtimes, has limited job

schedulers’ capability to properly place jobs onto machines that will continue to be available

until jobs’ successful completion based on job run-length. To illustrate, the drill down of

Google cloud workloads shows that the goodput significantly degrades due to abrupt job

terminations. Figure 7.2 exhibits a significant increase in job failure rates, from 0%(fixed)

to > 20%, causing a large increase in job waiting time as jobs get re-queued and delayed.

Therefore, properties together can limit the types of workloads and structures that can

be supported. Section 6.2 shows that with good job run length information and perfect

capacity prediction, the scheduler can schedule jobs to avoid termination. To understand

the effectiveness of information, we systematically organize the scheduler’s information space

based on two dimensions of uncertainty, job runtime, and resource capacity, and vary the

amount of it. Conventional schedulers in fixed capacity systems fall outside this space, as

indicated in Table 7.1. We explore the information space of workloads and resource capacity

that can reduce the degree of uncertainty experienced by the scheduler. To explore the space,

we look at them individually from no additional information to perfect knowledge.
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Resource Capacity
Fixed Variable

- Unknown Bounded Range Oracle/Prediction

Job Runtime
None X X X
Coarse, All jobs - X X
Exact, All jobs - X X X

Table 7.1: Source of Uncertainty and Information Space in Variable Capacity Data Center

7.1.1 Workload Information

We first look at workload information, as the runtime property of workloads impact scheduler

performance in the face of variation. For example, longer-running jobs inherently experience

more capacity changes and more potential decreases as they stay longer in the system. In

addition, longer-running jobs account for a large amount of total computation and failures

cause more wasted computation. These reasons make longer jobs more susceptible to capacity

variation and shorter jobs more flexible in job placements. To identify this difference of jobs

in the information space, we vary the amount of job runtime information to None, Job

Runtime Classification, and Exact Job Runtime.

None Many cloud schedulers assume only job resource requirements, but no run duration

information (and not duration limits) at scheduling [137, 50].

Job Runtime Classification Studies have shown cloud workloads have highly skewed

runtimes. Simple partial information might consist of a classification, where each job is

labeled {long, short} relative to a runtime threshold t. While knowing or predicting the

exact runtime of jobs may be hard, many studies have demonstrated that given the skewness

of cloud workloads, such simple classification is accurate[158, 39]. This provides runtime

approximations of all jobs. Such classification allows the schedulers to separate the jobs into

two bins based on the runtime and thus enables schedulers to make placement decisions to

protect long-running jobs from frequent interruptions due to capacity changes.
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Exact Job Runtime This represents the oracle information of all job runtimes. This

oracle allows us to explore how well a scheduler could do, fully armed with certain job

information. Exact job runtime enables the schedulers to assess risks for jobs based on

runtime and make informed placement decisions. Various studies have demonstrated that

by using exact or accurate job runtime information, a scheduler can significantly improve

resource utilization and reduce job wait time under various scheduling algorithms, such as

schedulers with Backfilling, Short-Job-First, and Gang. In practice, such information is not

available for cloud workloads and is not even available in batch-scheduled supercomputers.

7.1.2 Capacity Information

Variable capacity data center gives rise to the uncertainty of resource capacity. In a tradi-

tional data center, a scheduler knows the perfect information of resource capacity into the

infinite horizon, which is the fixed data center capacity. In contrast, in a variable capacity

data center, the scheduler does not know what capacity will be available in 1 hour, 3 hours,

or 10 hours into the future. With capacity variation, the scheduler must act in the face of

uncertainty, sometimes making the wrong assumptions and causing future misalignment of

workload and resources. Therefore, we consider three types of resource capacity information

that might be available to reduce uncertainty and its impact – None, Bounded Range, and

Foresight.

None As a baseline, we consider a data center whose capacity is dynamically managed

to optimize power cost or carbon content. In this case, no information is available to the

scheduler for future capacity, so the schedulers must manage the risk of capacity decreases.

Bounded Range This illustrates the additional information on resource capacity where

the lower and upper bound of the variation are known. If the dynamic range of variation is

known, the scheduler can assess where the current capacity lies in the variation space and
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estimate if the capacity is likely to increase or decrease in the future intervals to be more

aggressive or conservation and change placement strategies accordingly to either capture

more opportunities or avoid job failures. The scheduler would also have information on the

number of machines that are always available despite capacity changes based on the lower

bound.

Foresight Near-term capacity decreases can cause significant harm, and increases can be

difficult to exploit. We consider a model where precise future capacity is known for some

horizon – 0, 1, 2, .. up to 24 hours – into the future. The shorter periods could be achieved

with a time series predictor and the latter corresponds to a power-grid day-ahead plan.

Since foresight, unlike scheduling algorithms, is a limited horizon of future variation, it can

be combined with any scheduling scheme to further improve performance by varying the

length of foresight.

With foresight, the scheduler can further optimize the placements for all jobs that have

runtime shorter than the horizon to eliminate job terminations and maximize goodput. That

is, with the visibility of the variation curve within a window, the scheduler is able to pack

the resources with short jobs within the curve as tight as possible to maximize goodput and

minimize job wait time without terminations. If the foresight is longer than the runtime of

any jobs, it is equivalent to full knowledge as jobs can be scheduled to avoid unknown future

capacity decrease. However, if it is short, the job scheduler may still schedule jobs more

than the resource capacity available in the future. And for jobs that have longer runtime,

since the scheduler does not have information beyond the horizon, it needs to fall back to

the existing strategy.
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Resource Capacity
Fixed Variable
Oracle Unknown Bounded Range Oracle

Job
Runtime

None Conventional Random
Coarse, All jobs | LongShort
Exact, All jobs | JobSize-Order TwoMode Oracle

Table 7.2: Information Space and Corresponding Scheduling Algorithms Exploiting Infor-
mation to Prepare for Capacity Variation

7.2 Scheduling Algorithms

To minimize job failures and improve resource efficiency, we consider scheduling algorithms

to prepare for capacity variation. That is, scheduling algorithms to make informed place-

ment decisions to not only avoid terminations during future capacity decreases as much as

possible but also account for potential capacity increases to maximize utilization. We pro-

pose scheduling algorithms that exploit the information space of job runtime and variable

capacity, demonstrated in Table 7.2.

Baseline It has no additional information on workloads or variable capacity, representing

a class of traditional scheduling schemes that are variation oblivious. It uses a first-come-

first-serve (FCFS) scheduling policy and applies a first-fit placement policy to all jobs. For

a job Jobi, the algorithm places it onto the first machine Mk which both has availability

Ak = True and unused resource capacity Rk−
∑

j∈J RRj ·Pjk ≥ RRi It is widely observed to

give good results with low parallelism and is widely used. Upon resource capacity decreases,

as some running jobs may have to be terminated (fail) due to capacity changes, the scheduler

randomly selects a machine Mr, terminates the associated jobs {j ∈ J |Pjr = 1}, and

relinquish its resources. It repeats the process until the desired (lower) resource level is

reached,
∑

m∈M Am = Ct. The terminated jobs will be put back into the waiting queue to

be rescheduled and all intermediate computation will be lost.
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LongShort We consider a scheme where a scheduler exploits the information of job run-

time classification to reduce job terminations of long jobs. LongShort uses the job runtime

classification information to separate jobs into two groups: long and short jobs. To match

these, it then separates the resources into two groups, where one group of resources is sta-

ble and another group represents the resources that may be periodically unavailable due to

variations. LongShort makes placement decisions for jobs within its group of resources to

reduce long-running job terminations from capacity decreases. If a scheduler knows a job Ji

is long, as its runtime exceeds the time threshold t, which means the job is more likely to be

terminated as it encounters more capacity volatility due to its runtime, the scheduler places

the long-running job in the stable group of resources Mk ∈ Mstable by first-fit policy where

Mk is always available and satisfies the resource constraint. Otherwise, if the job is short

that it is more likely to finish before the next capacity fluctuation, the scheduler places it in

the other group Munstable by a reversed first-fit policy to improve resource utilization.

JobSize-Order This algorithm further improves resource utilization by grouping jobs with

similar runtime and placing them on the same machines by exploiting exact job runtime

information. Moreover, it exploits job runtime to further avoid terminations and minimize

wasted work of both long and short jobs by placing longer jobs on safer machines. It orders

the jobs waiting to be scheduled based on job runtime in descending order and reversely

orders the resources based on the likelihood to be unavailable in the future. Based on such

order, the scheduler starts scheduling jobs in a Longest Job First fashion and places the jobs

on machines, in descending order of availability, by a first-fit placement policy. Therefore,

the longer jobs in the queue, even in the short job group, will be placed earlier and on

machines with higher availability to further reduce job terminations and wasted goodput.

By prioritizing job runtime in scheduling, the algorithm improves resource utilization.
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TwoMode By knowing the dynamic range of capacity variation and estimating if the

capacity will likely increase or decrease, the scheduler makes the decision to switch between

two modes: optimistic in scheduling to capture resource opportunities or pessimistic to

reduce job terminations using job runtime information. If the scheduler discovers that the

current capacity is relatively low in the space and will likely increase in the future, it will

order jobs based on runtime in descending order, onto machines starting from which have

the highest availability, similar to the JobSize-Order algorithm. Otherwise, if the scheduler

knows the current capacity is higher than average and may encounter a capacity decrease,

to avoid job terminations, it starts scheduling from the shortest jobs, as a Shortest-Job-First

policy, on these servers starting from which have the lowest availability (ascending order

on availability). Such optimistic scheduling aims to minimize potential computation waste

while capturing resource capacity before it is gone as short jobs may successfully complete

before the resources are made unavailable.

7.2.1 Other Techniques

Migration One technique that is widely adapted in previous work in the face of adaptive

loads and data center failures to mitigate performance degradation is migration capabil-

ity. As one may suggest using such a common mitigation strategy to solve the scheduling

problem under variable capacity, we consider enabling migration capability in a data cen-

ter to minimize potential job terminations. We use migration as an optimal strategy for

coping with capacity loss (in Chapter 6) to compare with scheduling algorithms preparing

for capacity variations. While it adapts the same job scheduling mechanism, upon resource

capacity decreases, running jobs will be immediately migrated from resources to be unavail-

able to available ones to avoid terminations if there are enough free resources. Once running

jobs are completely migrated or available resources are completely filled, it will terminate

all running jobs that no longer fit into currently available servers, ordering based on least
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Figure 7.3: System performance (Goodput, Job Failure Rate, Job Waiting Time) of schedul-
ing schemes without foresight

wasted computation, and then continue with scheduling arriving jobs. To understand the

effectiveness and limitation of this technique, it does not consider the migration overhead

and therefore eliminates the potential impact from suboptimal job placements by the sched-

uler (fragmentation, runtime alignment, etc.). Thus, this migration technique can be viewed

as a job-centric, ideal version of Least Wasted Work (an intelligent termination policy from

Chapter 6 to cope with capacity loss).

7.3 Evaluation

We combine the foresight information with scheduling schemes to quantify the improvements

a scheduler can achieve with different amounts of information and scheduling schemes that

exploit it. Figure 7.3 shows the goodput, job failure rate, and job waiting time on the y-

axis comparing four scheduling schemes, varying amounts of information with the largest

variation range of 0.6.

7.3.1 Information Space

In the case of 0hr foresight, all scheduling approaches with additional information improve

performance significantly compared to Base. Base with Migration capability demonstrates

the best achievable performance improvement from a traditional scheduler, achieving 80%
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of fixed capacity goodput. However, Base with Migration does not plan for uncertainty and

strives to fill as much resource capacity as possible, causing job terminations in addition to

migrations due to capacity overestimation. It reflects up to 10% job failure rates with 4%

migrations rate, with 3X job waiting time compared to fixed capacity, as a result. LongShort

algorithm, which uses the least amount of additional information – job runtime classification,

shows 5X job failure reductions as it effectively reduces most terminations and rescheduling

from long-running jobs, resulting in 3X goodput increase and 2.4X job waiting time reduction

compared to the Base. JobSize-Order algorithm further improves LongShort by exploiting

exact job runtime to improve reliability and maximize goodput based on exact runtime

ordering, showing 5% incremental goodput increase on top of LongShort results. However,

as both LongShort and JobSize-Order prioritize long jobs over short jobs in scheduling to

maximize goodput, the job waiting time improvements are limited by both long-running job

placements and short job terminations, showing ∼ 3X compared to fixed capacity. Finally,

TwoMode knows not only the exact job runtime but also the dynamic range of variation.

As it switches between pessimistic and optimistic scheduling, it changes scheduling priority

between long and short jobs and does not limit the placement of long jobs. Therefore, it

exhibits the best results in goodput and job waiting time, with 2.6X reductions compared

to Base, demonstrating the improvements achieved by obtaining additional information.

7.3.2 Capacity Foresight

Now we combine these scheduling algorithms with the additional amount of capacity fore-

sight, varying from 0hr to 24hrs, to understand the incremental benefits in Figure 7.4. The

Base scheduler, despite increasing capacity foresight, cannot effectively exploit to align jobs

with capacity as it has no job runtime information. Conservatively scheduling all jobs on

capacity lower bound within the foresight window causes large resource waste, producing no

improvements. Similar to the Base, Random with Migration has no job runtime information
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Figure 7.4: System performance (Goodput, Job Failure Rate, Job Waiting Time) of schedul-
ing schemes, coupled with foresight of 0 (None), 6, 24 hours

and thus cannot eliminate job terminations and migrations with foresight. As migration may

incur additional overhead and constraints, these results demonstrate that simply enabling

migration capability on a traditional scheduler or providing capacity foresight does not solve

the problem of variable capacity. Long-Short uses capacity foresight to plan for capacity

changes by prioritizing placements on safe resources based on the future and further reduces

job failure rate by 3X. However, only knowing the classification of job runtimes limits its

ability to fully align jobs with variations because it can only assume each job to be the

maximum possible runtime of its classification for scheduling. Therefore, it does not gain

additional benefits in goodput and job waiting time due to rough estimation and conservative

scheduling. On the other hand, JobSize-Order is able to fully exploit foresight information
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to optimize placements according to exact job runtime. Such improvement is observed as

the length of foresight increases, and with 24hr foresight, it achieves 90% of fixed capacity

goodput performance, ∼ 0% failures with 24hr foresight, 1.4X job waiting time compared to

fixed capacity is because some long-running jobs have to wait longer for stable resources to

be free. Finally, with full knowledge of job runtime, dynamic range, and capacity foresight,

TwoMode achieves 90% of fixed capacity goodput performance, 0.09% job failures, and a

comparable job waiting time. It demonstrates the performance achievable with complete

information in two dimensions of uncertainty despite a large range of variation. Overall, it is

clear that even 24-hour foresight is less helpful in general than more intelligent scheduling.

In summary, with additional information on job runtime and resource capacity, all

scheduling algorithms effectively improve scheduling performance, restoring most of the

degradation under a large dynamic range of variation. Foresight (oracle) of resource capacity

can be useful but only if it can be coupled with additional job runtime information to allow

the scheduler to exploit. If the scheduler is full-armed with information within the space, it

achieves the best goodput with no performance degradation. On the other hand, runtime

classification is critical information to improve scheduling. Exploiting only this information,

LongShort algorithm effectively obtains 95% of the full scheduling improvements.

7.3.3 Variation Range

To understand whether scheduling improvements can enable more shifting ability in cloud

data centers, now we expand the performance evaluation of scheduling schemes from the

largest variation range to the whole spectrum from 0 to 0.6 in small steps of 0.02. Figure

7.5 displays the performance of LongShort, which requires the least amount of additional

information while achieving 95% of full improvements, and TwoMode with 24hr foresight,

which exploits full knowledge and demonstrates the best performance across the board,

comparing with Random as the baseline. The goodput drastically decreases as the range of
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Figure 7.5: System performance (Goodput, Job Failure Rate, Job Waiting Time) of Schedul-
ing Schemes Varying Variation Ranges

variation increases in the baseline. The degradation of goodput and acceptable variations are

summarized in Table 7.3. Such degradation in performance suggests a very limited range of

6%, as the first 5% capacity variation contributes to 15% goodput loss and job failures double

every 0.1 step increase of variation range. However, two scheduling schemes significantly

improve performance across the full range, showing more than 2X improvements. Both

scheduling schemes effectively maintain goodput, showing support for variation in capacity

up to 50% with 7% goodput losses. Job failure rates of both schemes are controlled below

5%, and TwoMode + 24hr foresight shows nearly 0%. Job waiting time is maintained

under 300 seconds for < range 0.3 (43% variation) and under 100 seconds for < range

0.2 (29% variation), demonstrating the ability of both schemes to maintain SLOs while
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Goodput Acceptable Variation
Tolerable Degradation Base (Random) LongShort TwoMode + 24hr foresight

5% 0% 1% 1%
7% 0% 49% 51%
10% 0% 60% 60%
12% 3% 63% 66%
15% 6% 69% 74%
17% 6% 74% 83%
20% 9% 83% 91%

Table 7.3: Tolerable degradation of goodput performance and the corresponding range of
acceptable variation

drastically increasing shifting capabilities. Table 7.3 further shows that under the same

tolerable degradation, LongShort achieves > 90% acceptable variation of TwoMode with

24hr foresight.

While TwoMode + 24hour Foresight represents the ideal performance with the most

amount of information, the results of LongShort demonstrate the promising improvements

achievable by a scheduling scheme with a small amount of critical information - job runtime

classification. With scheduling schemes that exploit additional information, schedulers can

effectively support cloud workloads under a 3 - 5X larger range of variation, demonstrating

the achievable shifting ability of cloud data centers with scheduling efforts. Surprisingly,

foresight (even 24-hr) is less helpful in general than more intelligent scheduling. As promising

as these improvements are, one caveat for adopting variation-aware scheduling schemes in a

variable capacity cloud data center is to consider job-level catch-up or latency constraints or

priorities. We used a simple workload model assuming all jobs are delay-tolerant with the

same priority. We discuss future directions tackling workload constraints and complexity in

Section 8.2.2.
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7.4 Summary

Variable resource capacity poses significant challenges to traditional schedulers as variation

causes a large number of terminations, degrading goodput and increasing job waiting time.

While techniques to cope with capacity loss are effective, cloud workloads represent a harder

case. Uncertainties of workloads and variation together can limit the types of workloads and

structures that can be supported. Therefore, to further improve performance, we propose the

framework of uncertainty for cloud workloads. This includes two dimensions of uncertainty

- capacity and job runtime, corresponding information space to reduce uncertainty, and new

scheduling schemes which prepare for capacity changes by exploiting information to optimize

job placements.

Experiments using Borg TNG cloud workloads show that these scheduling schemes can

effectively improve performance, increasing goodput by up to 180%, decreasing job termi-

nation rate by 5 - 15X, and decreasing job waiting time by 1.4 - 4X, demonstrating the

importance of information in preparing for capacity variation. Capacity foresight requires

coupling with job runtime information and is less helpful in general than more intelligent

scheduling. Among the information, job runtime classification is critical. Exploiting this

information alone, LongShort scheduling algorithm achieves >90% full benefits and signifi-

cantly improves tolerable variation range from <10% to 50% while maintaining performance.

These results demonstrate the promising benefits of exploiting the information space under

capacity variations but require validation on workloads with complex constraints and prior-

ities.
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CHAPTER 8

SUMMARY AND FUTURE DIRECTIONS

8.1 Summary

This thesis presents intelligent resource management for variable capacity data centers to

eliminate variation penalties and enlarge variation benefits.

Variable resource capacity arises from the increasing pressure of reducing carbon emis-

sions and power costs in data centers. For today’s computing, variable resource capacity is

problematic, causing severe loss in throughput and corresponding resource efficiency. To ef-

fectively achieve external benefits, data centers must support variable resource capacity while

maintaining high compute efficiency. To evaluate and characterize the performance impact

of capacity variation, we define the variable resource capacity problem, including three key

dimensions of variation, dynamic range, structure, and change frequency, and characterizing

scheduling impact. The empirical study of real cloud and HPC workloads shows that capac-

ity variation can significantly degrade goodput by 15 - 60%, causing 15 - 40% job failures.

These studies show that all variation dimensions have negative impacts, and each could inde-

pendently reduce goodput by 10 - 40%, with even greater losses in combination. A drill down

on production Borg TNG workloads reveals a dominant mode of VM usage. Coupling with

other workload properties, such as inter-task dependencies, performance further decreases,

producing goodput losses of 30 - 40% and up to 26% job failures. These harms strictly limit

the cloud’s shifting flexibility to < 10%. These results all suggest future data center requires

new resource management techniques that can tolerate greater dynamic range of capacity

variation, while maintaining good performance.

To improve performance, we consider intelligent termination policies to cope with capac-

ity loss by selectively terminating jobs to reduce failures and minimize wasted computation.

Evaluation of a range of real workloads and variations show significant improvements on
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HPC workloads, reducing job failures by 2 - 5x and increasing goodput by 44% on average.

While cloud workloads represent a hard case with low parallelism and complex workload

properties, we take a broader view to proposing scheduling techniques preparing for capacity

variation altogether. We consider two dimensions of uncertainty in resource capacity and

workload which contribute to performance degradation, exploring the information space to

reduce uncertainty. Scheduling algorithms that exploit the information to minimize job

failures and increase resource efficiency achieve significant improvements. Experiments show

that algorithms increase the goodput by 130%, decreasing job termination rate by 10X and

job waiting time by 2X. Capacity foresight is less helpful in general than more intelligent

scheduling and requires coupling with job runtime information to be useful. On the other

hand, job runtime classification is critical information. Exploiting it alone can effectively

enable up to 50% load flexibility while maintaining performance (7% goodput degradation).

These results demonstrate great opportunities for new scheduling techniques under capacity

variations but require validation on workloads with complex constraints and priorities.

8.2 Future work

We outline a few promising research directions for future exploration in variable capacity

data centers based on our study and findings.

8.2.1 Different Types of Prediction/Foresight

Our intelligent resource management explores the information space of resource capacity and

job runtime to reduce uncertainty exposed to the scheduler. The results demonstrate the

effectiveness of exploiting information and the promising opportunities to use prediction or

foresight to reduce scheduling uncertainty. While our study only exact capacity forecasts

with a finite horizon, predictions can and often in many cases take many other forms, which

might not be as perfect and straightforward.
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What other forms of prediction/information are also useful? This requires a careful

search for realistic examples of predictions. One interesting direction is to look into the time-

series prediction models, which may offer bounds and probability of variations in the future.

Another realistic scenario is to consider either conventional forecasts, such as day-ahead

forecasts from power grids, or weather forecasts considering local renewables. Evaluating

these different forms of information can demonstrate other interesting opportunities provided

by realistic information.

How accurate do these predictions need to be and how does it impact the scheduling per-

formance? We consider a horizon with perfect knowledge to demonstrate the scheduler

capability with full-armed capacity information. In many cases, such capacity information

can be predicted, but with a margin. For example, consider fuzzy predictions, such as some

percentage of inaccuracy or capacity information with some margins. First, to characterize

the impact of fuzziness, we can conduct sensitivity tests on the scheduling performance. Us-

ing a range of workloads and variation scenarios, we start by injecting inaccurate predictions

into the foresight information provided to the scheduler, varying the amount of inaccuracy,

false categorizations - false-positive/false-negative in capacity increase, and the degree of

inaccuracy in the total information. Similarly, for capacity prediction with some margins,

evaluations can include varying the amount of margin to the scheduler. Finally, after iden-

tifying which part of the fuzziness in the problem space impacts the scheduling’s ability to

reduce uncertainty and cope with variation, we propose new scheduling techniques that can

either reason about when the predictions seem to be inaccurate or make decisions with a

safety margin to prepare for incorrect capacity information.

8.2.2 Flexible or Optional Workload

While our studies show that workloads can be significantly impacted by capacity variation

due to a high job failure rate, we use a simple workload model assuming all jobs can be
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dropped and rerun. In reality, many cloud data centers consider classes or categories. For

example, Borg considers several classes of jobs, and each is associated with different priori-

ties in scheduling and running. Azure considers categories of jobs to be delay-tolerant and

delay-sensitive. These groups show a more complex separation of workloads and can sig-

nificantly impact our scheduling choices as some workloads are more important or sensitive

to potential job terminations and need to be prevented. We first start by understanding

and characterizing how much the delay-sensitive workloads a scheduler can support under

capacity variation by varying the fraction of delay-sensitive jobs in the workload mixes. We

increase the delay-sensitive fraction in small steps and see if and where performance drops.

Furthermore, to understand if our proposed scheduling techniques can well support different

mixes while maintaining performance, we evaluate and compare the new scheduling schemes

with varying delay-sensitive job fractions. These performance results can provide insights

into a realistic mix of delay-tolerant and delay-sensitive workloads and provide an under-

standing for cloud providers to incentivize or offer mechanisms for users to provide more

flexibility.

8.2.3 Multi-datacenter Integration

Our intelligent resource management demonstrates the feasibility of variable capacity data

centers and promising carbon and power cost benefits. The success of intelligent resource

management encourages ongoing research on the continuous enhancement of resource man-

agement approaches to support more challenging scenarios and to further improve system

performance. We believe that multi-data center coordination with flexible load shifting is a

promising next step for scheduling research in variable capacity data centers.

The multi-datacenter integration is a natural enhancement to the current single data

center study. What are the relationships of resource variability across data centers? and does

that affect the scheduler’s operation spaces? For multi-data center scenarios, the difference
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is that one data center can shift workloads elsewhere besides termination or slowdown while

facing resource deficit. Therefore, understanding the performance of load shifting enabled

multi-datacenters under resource variability is important.

There are two important aspects in multi-data center scenarios: the relationship between

data centers’ variability patterns, and the amount of workload a data center can shift at

any time. For example, the capacity variations between two data centers, depending on

the locations, time, and sources of variation, can be independent, correlated, and counter-

varying. Ideally, a counter-varying relationship represents the best possible results and may

achieve close to fixed capacity results because workload can always be shifted to free resources

in other data centers. On the other hand, correlated variability will degrade performance

more because other data centers will likely experience resource decreases when the data

center faces a resource deficit.

How should the shiftable load be constrained? and how do these constraints impact opera-

tion spaces or performance in various scenarios? For the impact of shiftable loads, defining

a fraction of the total workloads as shiftable load and varying the fraction from small to large

may show increasing performance. As more shiftable loads allow more flexibility in schedul-

ing, it is important to understand how would load shifting decisions impact performance.

For example, coupling with intelligent resource management may minimize the amount of

load that needs to be shifted while achieving benefits. Another key question would be, how

would intelligent resource management in multi-datacenter scenarios be different from the

single data center?

This extension leads to a more flexible and coordinated view as many cloud providers

support regional management and shifting. To perform a solid study with a deep under-

standing of the scheduling performance within the space, a multi-datacenter simulator with

a global scheduler and coordination capability is necessary.
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8.2.4 Grid Interaction

Our study of intelligent resource management which enables large dynamic variation while

maintaining performance gives the data center more flexibility to dynamically shift loads

and thus provides more opportunities for data centers to interact with the grids. Demand

response programs as an emerging research area gain attention from datacenter to reduce

electricity bills. These programs all serve as ways for data centers to interact and help stabi-

lize the grids in exchange for monetary benefits. While data centers may choose to actively

participate in markets as ancillary service markets and regulation services, it is very challeng-

ing due to their complexity and impact on performance. On the other hand, a large group

of works explores data centers participating in voluntary programs to individually manage

data center load through the use of pricing signals because of their flexibility. However, these

programs either have little benefits to incentivize data centers or the load requirements are

ad-hoc and arbitrary.

Data Center Flexibility What flexibility a data center should provide to the grid? The

ideal strategy for a data center is to provide as much of its tolerable range without compro-

mising performance as possible to maximize the benefits received from the grid. First, the

data center needs to evaluate the trade-off between potential degradation of system perfor-

mance if any, and the cost and carbon benefits from the larger variation range. It requires

comprehensive characterization of performance across the variation ranges covering all pos-

sible scenarios and constraints and accurate predictions of future data center load. Another

interesting direction is, considering if the grids can provide information on variations in re-

turn to help data centers prepare for load shifting, data centers can exploit such information

to further optimize resource management strategies and explore what information might be

useful.

105



Grid Coordination How do the grids make use of and coordinate across entities with

different flexibility? Existing research studies have shown that grid coordination benefits

individual data centers to reduce operational carbon emissions and reduce grid disruptions

through a cooperative scheme. Unlike the existing demand response programs that occur

only occasionally, we enable new and prominent data center flexibility exposed to the grid

through intelligent resource management. With these variation ranges, an interesting direc-

tion for grid optimization is to consider how to utilize and coordinate such flexibility, as they

may be different in time scale and absolute ranges and how should the grid price them or

incentivize the data centers to provide an accurate and large dynamic range.

8.2.5 Headroom Analysis and Seasonal Optimization

Our experiments show that in a variable capacity data center, it is important and beneficial

to have a nontrivial amount of headroom capacity. This capacity gives intelligent resource

managers the ability not only to "catch up" jobs waiting in queue for better performance

but also to effectively exploit the capacity opportunities during low-cost or low-carbon time

in power grids. While having as much as possible headroom is important for performance,

more complex problems associated with cost, quantity, and location are not as simple.

How much headroom capacity is useful and cost-wise beneficial? The ultimate goal of the

data center with or without headroom capacity is to maximize goodput per TCO, where TCO

can be roughly viewed as two separate components, CapEx (capital expenses) and OpEx

(operational expenses). Therefore, to consider the cost associated with headroom capacity,

one has to consider the CapEx, such as building cost, landfill, additional maintenance, etc. In

addition, the data center also has to consider the electricity and the carbon associated with

headroom. Our results demonstrate significant improvement and promising opportunities

with enough headroom. Considering the associated cost and resulting benefits, data centers

can weigh these two components and explore the incremental benefits of adding each unit of
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headroom.

Where should the headroom capacity be placed and how to coordinate the use of headroom

capacity? In addition, to justify the need and the amount of headroom to be placed on-site,

multi-regional data centers can further optimize the benefits by a global view of the headroom

capacity and its placement. Power grids have distinct profiles of renewable generations,

supply and demand, and price structures, and the large difference over both long and short

periods of time give rise to headroom optimization by its placement. For example, CAISO

has a large fraction of solar power which means the daily carbon emission and power prices

vary with the daylight patterns. Therefore, the long-term operational cost and maybe even

capital cost can be widely-different across regions or power grids. In addition, the ability to

productively utilize the headroom capacity and the associated incremental benefits can also

differ across data centers, depending not only on the data center load but also on the global

resource managers. In summary, a global operator needs to carefully take into consideration

and orchestrate these dimensions to maximize the effectiveness of headroom capacity and

data center revenue.
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