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ABSTRACT 
 

The study of plasticity in the intrinsic properties (IPs) of neurons is unveiling mechanisms 

beyond synaptic plasticity that relate network activity and learning. Prior results in zebra finches 

establish a relationship between the IPs of forebrain neurons and learned song. Within the 

premotor nucleus HVC, the IPs of HVC basal-ganglia-projecting neurons (HVCX) are 

developmentally regulated and differ across birds in a way that is related to their learned songs. 

 In my PhD project I investigated the role of song learning in regulating HVCX IPs. I used a 

counterbalanced design to raise siblings or unrelated birds to sing natural or modified songs. I 

patched onto HVCX neurons in slice and evaluated their firing properties in relation to the bird's 

song. I found that various features of HVCX IPs, and their variation, were related to the songs the 

birds sang.          

 Examining the relation between IPs and learned song allowed me to delve deeper into the 

relation between HVCX and song features. I discovered a correlation between timing features of 

song and the rebound excitation of HVCX: neurons from birds who sang longer songs with long 

harmonic stacks had a combination of IPs that reflected stronger rebound excitation. This 

demonstrates an explicit link between neuronal IPs and features of learned behavior. Given that 

harmonic stacks are spectrally unchanging over their duration, this result also suggests a 

mechanism underlying HVCX neurons’ documented ability to integrate over long periods of time.

 To explore the possible mechanisms quantitatively, I used my results, along with 

established work, to develop a Hodgkin-Huxley-based network model of HVC that related in vitro 

IPs with in vivo bursting properties during singing. I conceptualized HVCX as interval encoders 

that detect sequences by summing rebound depolarization triggered by the removal of 

inhibition with monosynaptic excitatory events that occur later in time. In the network, 
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HVCX are connected in a nested fashion to encode increasingly complex sequences. This 

model serves as a hypothesis linking neuronal IPs to network structure and behavior.    

 In the course of these studies, I performed a number of experiments focused on bringing 

viral tools to the experimental toolbelt in the Margoliash lab (viral tracing, calcium imaging, and 

activity dependent fluorescent labeling), and replicated work showing internal temporal structure 

within zebra finch song. Altogether, my work focused on linking fundamental neural mechanisms 

of information processing to network structure, and learned behavior, and hypothesized how they 

might relate to temporal integration. My work accentuates the importance of including neuronal 

IPs when developing realistic network-level descriptions of neural circuits.
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CHAPTER 1 

INTRODUCTION 
 
 

Fundamental properties of information processing in neurons 
 

In 1894, Santiago Ramon y Cajal told the Royal Society of London that “the ability of neurons to 

grow in an adult and their power to make new connections can explain learning”. His work, 

summarized by Heinrich Waldeyer-Hartz as the ‘neuron doctrine’ provided the fundamental 

infrastructure that blossomed into the field of neuroscience. Through his detailed drawings and 

descriptions of neuron morphology, Cajal discovered that neurons are discrete cells that make 

connections with each other to form elaborate networks. He hypothesized that information was 

exchanged through gaps between neurons, called synapses (Higgins and George, 2013).  

Cajal was right to pay close attention to neurons’ morphology, and to their connections. 

Synapses are critical for information processing in neural networks and express an expansive 

diversity of structure and function. Neurons communicate with each other across synapses via 

transmission of molecules called neurotransmitters. At each synapse, specialized post-synaptic 

receptors for neurotransmitters open transmembrane channels in the receiving neuron that allow 

the flow of ions towards electrochemical equilibrium. This is the main method of communication 

between neurons. However, connectivity is only part of the story of information processing in 

neurons (chemical transmission). This thesis aims to explore how non-synaptic mechanisms 

contribute to how individual neurons, and therefor networks, process information.  

Neurons spend most of their energy maintaining a precise concentration for different ions 

(Cl-, Na+, Ca+2, K+), thereby regulating the electrochemical gradients that define the direction in 

which each ion flows across the cell membrane. The differences in ionic concentrations result in 
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neuronal membranes that are electrically charged. A neuron’s steady-state voltage, or resting 

potential, is roughly 70 millivolts negative relative to the outside. In this configuration, neurons 

behave as entropy-fighting machines, working to maintain their resting membrane potential. This 

might seem like a Sisyphean task, but this maintenance is the underpinning of neurons’ essential 

function, which orchestrates behavior: the timing, the shape of, and the numbers and temporal 

structure of emitted action potentials. 

Neurons ‘spike’, sending electrical impulses propagating throughout their cell bodies, causing 

a unidirectional wave of depolarization down their axon at speeds upwards of 150 meters per 

second. This is an action potential; a behavior which is only possible because of the electrochemical 

gradient and specialized voltage-gated proteins. The first experiments that quantitatively described 

and modeled the action potential were done by Alan Hodgkin and Andrew Huxley (1952), who 

recorded from an unmyelinated axon from the giant squid. They developed a series of differential 

equations that defined a dynamical system whose output replicated that of the squid axon. Their 

model included voltage-gated parameters for sodium+ and potassium+ channels with their 

corresponding reversal potentials. That biophysical model provided the first mechanistic 

explanation of the ‘all-in-one’ behavior of the action potential. This work defined a second 

foundational pillar for neuroscience: intrinsic functional properties, and signal processing within 

neurons. And just as there is great diversity in synaptic morphology and function, a world of 

complexity in ion channel types and properties has since been unveiled.  

 

Synapses, neurons, and networks 
 

As Cajal hypothesized, synaptic connections provide a mechanism for learning. Synapses 

provide capacity for information storage and are the entry point for information into neural 

networks. Through Hebbian plasticity, increasing its strength (Hebb, 1949; Caporale and Dan, 
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2008), a particular synapse can encode the occurrence of specific events that correlate together. 

Therefore, a subset of synapses within a circuit can encode specific movements or sensations. For 

example, in context-fear-conditioned mice, activating synapses specific to one context can trigger 

a fear response in a previously unpaired environment, while inactivating those same synapses can 

prevent a conditioned fear response (Liu and Tonegawa, 2014). Another experiment elegantly 

showed that specific inactivation of auditory synapses in the amygdala prevented a previously 

associated fear response to a tone (Nabavi et al.., 2014). Crucially, in these experiments, it was the 

specificity and subtlety of the manipulations that highlighted how powerful synaptic plasticity is. 

Synapses are stable over long periods of time yet remain flexible enough to accommodate the 

everchanging environment. This kind of investigation of synaptic communication has provided 

clarity about the brain correlates of learning and memory. Undoubtedly, synaptic plasticity is a 

fundamental mechanism. 

But what are the mechanisms within a neuron to process the post-synaptic signals? These 

processes depend on the biophysical properties of the cellular membrane. The phospholipid bilayer 

of a cell behaves as a parallel-plate capacitor, prohibiting the flow of charges across it and storing 

charges on either side of the membrane. This introduces a capacitive component to all electrical 

events within a neuron, which then affect the time course of voltage changes within it. Additionally, 

membranes have embedded proteins that serve important roles for the maintenance and function 

of cells, many of which are transmembrane proteins that allow the flow of water, ions, and smaller 

molecules across the membrane. These transmembrane channels introduce a conductive 

component to the membrane (1/resistance). With Ohm’s law (V=IR) we can describe the electrical 

changes within a neuron that result from synaptic currents. From the time constant (𝜏 = RC), we 

also understand that the time course of those changes is dependent on the resistive component of 

the membrane (membrane resistance = MR), and the capacitive component (membrane capacitance 
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= MC). This is a straightforward example of the second fundamental aspect of signal processing in 

neurons, one highlighted by Hodgkin and Huxley’s work: intrinsic functional properties.  

The principal function of a neuron (communication with other neurons) hinges on the 

action potential. Spikes are sudden and transient waves of depolarization that initiate near the cell 

body at the axon initial segment and travel towards the extremities of the axon. Axons can 

terminate locally and distally to form synapses with other neurons. At these terminal points exist 

axon boutons that house the neurotransmitter releasing machinery that forms the presynaptic side 

of a synapse. Now, consider that a single human pyramidal neuron can form tens of thousands of 

synapses and that any single postsynaptic event is relatively small. In the postsynaptic neuron, an 

individual synaptic event dissipates with time and is unlikely to trigger an action potential. This 

means that the coincidence of multiple inputs is necessary to produce sufficient stimulation to 

trigger an action potential. Critically, this raises the question of threshold: How much is enough? 

This is a question of functional properties and is related to the membrane channels that underlie 

the action potential.  

In the simplest description of the action potential, voltage-gated Na+ channels cause the 

initial depolarizing phase of the action potential, while voltage-gated K+ channels with slower 

kinetics cause the repolarization phase (Figure 1.1). Voltage-gated channels change configuration 

(open) at fixed voltages determined by their protein structure and occur in a probabilistic manner, 

not in all-or-non fashion. Because protein thresholds are somewhat fixed, the spike threshold at 

the neuronal scale depends on the number and density of channels. This gives rise to a source of 

variability in neuronal functional properties because different neurons can express different 

amounts and densities of ion channels. Ion channel expression and membrane properties are 

referred to as intrinsic properties (IPs) and determine the intrinsic excitability of a neuron. 

Differences in ion channel expression affect how sensitive a neuron is to inputs, and the form of its 
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response. As such, a neuron’s excitability is a product of the expression of its ion channels; its 

intrinsic excitability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Na+ in K+ out

Figure 1.1. The action potential (modeled using Hodgkin-Huxley formulation). The downward 
blue arrow and associated dashed line points to the moment where the voltage crosses spike 
threshold and gated sodium channels open to allow sodium ions to flow, which depolarize the 
neuron. The upward arrow and associated dashed line point to moment where voltage gated 
potassium channels are maximally open (and voltage gated sodium channels are inactivated) and 
allow for potassium to flow and repolarize (or hyperpolarize) the neuron.  
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Intrinsic Plasticity 
 

As it pertains to neuronal plasticity and learning, much of intrinsic excitability remains 

relatively underappreciated compared to synaptic plasticity. However, even within individual 

dendrites, activity-dependent plasticity affects dendritic computation and signal propagation to the 

soma (Sjostrom et al.., 2008; O’Hare et al.., 2022). At the soma and action initial segment, 

excitability affects whole-neuron bursting properties, giving rise to diverse neuronal behaviors 

ranging from fast-spiking interneurons to phasic onset encoding neurons.  

Consider the following examples: Specialized 'OFF' ganglion cells in the retina rely on 

hyperpolarization activated cyclic nucleotide (HCN) channels, and an inhibitory response to light, 

to encode loss of signal (Margolis and Detwiler, 2007; Mitra and Miller, 2007). In cerebellar Purkinje 

cells, the regulation of the calcium-dependent potassium channel (SK) is associated with eye-blink 

conditioning, and its knock-out leads to mice with motor learning deficiencies (Grasselli, et al.., 

2019; Titley et al.., 2020). Importantly, IPs also contribute to global features like resting membrane 

potential and can give rise to neurons that express patterned activity, as with rhythmic oscillators 

(Prinz et al.., 2004). In the lobster stomatogastric ganglion, intrinsic plasticity contributes to circuit 

output and stability (Marder and Prinz, 2002).  

From here, it becomes clear that to understand a network we must understand the firing 

properties of its individual neurons and model them, as well as their connections. These properties 

of a neuron’s excitability, or intrinsic properties (IPs), are a manifestation of the collage of ion 

channels expressed by the neuron and can be modeled mathematically as Hodgkin and Huxley did 

(Prinz et al.., 2004; Daou et al.., 2013; Daou and Margoliash, 2020). Experience–dependent changes 

of intrinsic excitability have been observed in many systems (Mitra and Miller, 2007; Marder and 
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Prinz, 2002; Ross et al.., 2017, 2019), but how to integrate these findings into models of complex 

learning and memory is still being discussed (Daou and Margoliash, 2020; Titley et al., 2017).  

Ion channel expression is a major factor of intrinsic excitability in neurons. Depending on which 

channels, and their relative proportions, neurons can have very different responses to identical 

stimuli. Below, I present two examples of ion channels that have markedly different properties and 

effects on neuronal excitability. These examples should emphasize a useful analogy: That each kind 

of ion channel in a cell is itself a ‘knob’ that can be tweaked to alter signal processing, and that none 

of them exist independently of the other. Each neuron behaves as a dynamical system that 

incorporates all the ion channels (and their dynamics) that it expresses. 

The first example is the small conductance calcium-dependent potassium channel (SK). SK 

channels allow the passage of potassium cations across the membrane but only in the presence of 

calcium ions. Calcium is typically only present in high intracellular concentration during potent 

activation, making it an effective proxy signal for activation within the neuron. This means that SK 

channels only open during moments of strong depolarization. When they do open, they allow 

potassium to flow towards its equilibrium potential, resulting in potassium ions leaving the neuron 

and hyperpolarizing it. In this way, the SK channel is a knob that decreases excitability. As neurons 

spike, calcium floods the cell opening potassium channels and driving the membrane potential 

away from spiking threshold. This means that two otherwise identical neurons that receive the 

same suprathreshold inputs would produce outputs that are inversely related to their respective SK 

channel maximal conductance.   

The second example is the hyperpolarization activated cyclic nucleotide (HCN) channel. Like 

the SK channel, HCN channels open under specific conditions. Contrastingly, HCN channels open 

when the membrane is strongly hyperpolarized, then they permit the flow of multiple cations (K+, 

Na+). The resulting effect is a depolarizing current that is conditional on strong inhibition or 
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hyperpolarization. Thus, HCN channels act to counteract inhibition, preventing the neuron from 

becoming strongly hyperpolarized. HCN channels are sensitive to temperature and are modulated 

by secondary messengers like calcium and cyclic nucleotides. 

Ion channels and their properties can be incorporated into a mathematical Hodgkin-Huxley 

(HH) model of neurons, which can then be used to illustrate their effects. Below, I show two model 

neurons who received an identical input (square pulse of 50 pA). Neuron 1 has twice the SK 

conductance of neuron 2, which results in neuron 1 expressing a lower evoked firing frequency 

(Figure 1.2). In two other neurons injected with a hyperpolarizing input (square pulse of -20 pA), 

we can see the effect of the HCN channel (Figure 1.2). Neuron 4 has a modest HCN conductance, 

while neuron 3 has none. Neuron 4 initially hyperpolarizes to the current injection, then the HCN 

channels begin to open and provide an opposing depolarizing current that manifests as a ramp-up 

in the membrane voltage (voltage sag). This is referred to as the ‘sag’ current, or Ih. Additionally, 

neuron 4, also has a more depolarized resting membrane potential because HCN channels have a 

probability to open at this neuron’s resting potential, and therefore provide a continuous 

depolarizing current. 

From these examples, we can appreciate that ion channel expression directly impacts the input-

output relationship of neurons. If neurons change their ion channel expression, they change their 

signal processing. And just as changes in synaptic strength represent a method of information 

encoding, plasticity in intrinsic excitability is a powerful cellular mechanism underlying learning 

and memory. In reality, however, it is impossible to separate the two (synaptic and intrinsic) 

contributions within a brain in action, yet both are critical and influence one another. 
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Figure 1.2. Ion channel conductances affect neuron firing properties. Example traces from four 
Hodgkin-Huxley model neurons to different applied currents (top two panels). Columns are associated 
with the corresponding trace in the top row: neurons 1 and 2 received the depolarizing current shown on 
the top left panel. Neurons 3 and 4, received the hyperpolarizing current shown on the top right panel. 
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Birdsong as a model system 
 

In order to investigate how neuronal IPs contribute to learning, network structure, and 

behavior, I leveraged vocal production in songbirds. I focused on the stereotyped song of the male 

zebra finch (Taeniopygia guttata). In zebra finches, song is a critical part of courtship behavior and 

reproduction. Females judge individual males, form lifelong mating pairs, and raise offspring 

together. Learning to produce a species typical, ‘good’ song, is arguably the most impactful part of 

an individual male zebra finch’s life as it relates to their reproductive success (Riebel, 2009). 

Zebra finch song consists of multiple spectrally distinct units, or ‘syllables’, separated by gaps. 

Each individual sings one song, a series of one or more “motifs” (e.g., two motifs: ‘A B C D    A B C 

D’), with each motif comprising the same sequence of syllables. In adulthood, the syntactical and 

temporal structure of the motif varies very little (Mello, 2014). Under typical developmental 

conditions, male juveniles form a memory of their tutor’s song and undergo a period of practice 

after which they produce a copy of that song. The juvenile’s song copy is characteristically very 

similar to the tutor’s but varies in the degree of similarity. Song copies can include slight spectral 

differences within a syllable, omissions of entire syllables or inclusions of novel ones. In adulthood, 

the song becomes crystalized such that birds sing highly reliable renditions of their motif, which is 

repeated several times during a bout of singing (Tchernichovski et al., 2001). This process leads to 

individualized behavior that is exceptionally regular (Figure 1.3).  

The developmental trajectory of male zebra finches is well characterized (Mello, 2014; 

Tchernichovski et al., 2001), which facilitates experimental manipulations of the song learning 

process. Young juveniles can form auditory memories of a tutor’s song as early as 20 days after 

hatching (Adret and Margoliash, 2012; George et al., 1995), and then proceed through a period of 

vocal exploration that requires auditory feedback (Lombardino and Nottebohm, 2000). 

Importantly, this learning process is modulated by social context (Bolhuis et al., 2001; Farine et al., 
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2015) and is individualized such that different juveniles implement different learning strategies (Liu 

et al., 2004). Some focus on improving all syllables in a motif simultaneously while others work on 

perfecting individual syllables at a time, then their order. While spectral features of song are very 

salient to young practicing males, zebra finch song has temporal structure that is highly stereotyped 

and regulated. In fact, zebra finch song is so temporally stereotyped that it is difficult to separate 

elements of timing (neural coding that represents arbitrary time) and motor control in premotor 

brain areas: The two are inextricably linked. Occasional variation in singing patterns of individual 

finches is particularly valuable to address such questions (Yu and Margoliash, 1996; Dave and 

Margoliash 2000). Other species, like Bengalese finches, whose songs have more temporal and 

syntactical variability are more likely to be useful to address questions about motor and temporal 

neural representations of song. Bengalese finch present technical limitations as compared to zebra 

finches, however. 

These aspects of zebra finch development and behavior provide a useful model system with 

many advantages and increase the potential to provide clear answers about how learning is 

represented in the brain. Specifically, we can ask questions about how cellular level mechanisms of 

plasticity are involved in the production and learning of complex behaviors that require regulation 

at multiple timescales. Additionally, this point highlights another general interest of this thesis: 

how neural circuits overcome challenges of timing and integration of feedback over long periods of 

time (hundreds of milliseconds). While rapid dynamics are often highlighted in descriptions of 

complex behavior, holding static positions is equally an important part of behavior. 
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Three song renditions from the same bird: 

Figure 1.3. Zebra finch song is highly stereotyped. Three song motifs from the same bird.  
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The Song System: motor and basal ganglia pathways 
 

Unlike the mammalian cortex, with its columnar cortical structure, the bird brain is made up 

of densely interconnected nuclei. These nuclei express similar connectivity to mammalian cortex 

(Vates et al., 1997; Doupe et al., 2005), and in songbirds, a specialized set of brain areas underlie the 

production and acquisition of song. Those nuclei involved in song production and song learning 

(and which may also contribute to song perception) are colloquially referred to as the “song 

system”. There are two major forebrain pathways within the song system. One pathway is a motor 

pathway that descends from the forebrain to the brainstem (and associated ascending pathways 

from the brainstem). A second pathway is a cortico-basal ganglia-thalamo-cortical pathway, called 

the anterior forebrain pathway (AFP) (Figure 1.4).  

Both the motor pathway and the AFP are largely interconnected and overlap in a forebrain 

nucleus called HVC (proper name). HVC is analogous to premotor cortex in mammals and is critical 

for learning and production of stereotyped song. HVC contains neurons that project to one of three 

targets. HVCRA neurons project to the robust nucleus of the arcopallium (RA), HVCX project to the 

song system component of the basal ganglia, area X, and HVCAv neurons project to the auditory 

nucleus avalanche (Av) that is important for song learning (Ikeda et al., 2020). A small number of 

neurons have been found to have axons that project to both RA and area X, but the evidence on 

whether that is a permanent state is unclear (Benezra et al., 2018). Additionally, HVCAv neurons are 

small in number (less than 5% of all HVC neurons). Thus, the vast majority of neurons in HVC can 

be categorized into one of three classes: Exclusively RA projectors (HVCRA), exclusively basal 

ganglia projectors (HVCX), or inhibitory interneurons (HVCint). Roughly 50% of all HVC neurons 

are HVCRA. 

Nucleus RA is analogous to primary motor cortex in mammals, and its projection to the 

hypoglossal nucleus (nXIIts) and midbrain and thalamic structures is functionally equivalent to 
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motor cortex layer V neurons with descending projections. Activity in RA coordinates (and drives) 

syringeal muscle contractions. In the song system, RA is the most direct link between a neural code 

of an individual bird’s song and movements in the syrinx (the vocal organ of birds). Activity in RA 

is highly regular, with neurons firing at high frequencies at baseline and bursting strongly during 

singing and their bursts are time-locked with muscles activity in the syrinx with a motor delay 

(Doupe and Konishi, 1991).  

Area X is the basal ganglia component of the song system and is necessary for song learning 

and plasticity. Lesions of area X in juveniles prevent tutor song copying, while the same lesions in 

adults prevent song deterioration that typically results from deafening (Scharff and Nottebohm, 

1991). Importantly, Area X is involved in the assessment of feedback, error correction, and juvenile 

vocal exploration (Ölveczky et al., 2005). Likewise, other nuclei in the AFP have similar effects on 

song. For example, lesioning the forebrain nucleus LMAN in adults leads to decreased spectral 

variability of adult song. From classic experiments like these, the AFP has been thought to ‘inject’ 

variability into the motor system. Behavioral variability, especially during early learning, is useful 

in optimizing motor strategies and finding motor solutions to produce desired outputs (Doupe and 

Konishi, 1991; Ölveczky et al., 2005). In that view, the AFP facilitates exploration of the motor space 

and adjusts based on feedback to slowly ‘nudge’ the motor system into generating the precise motor 

commands that produce a bird’s unique song. Without the AFP, the motor system is rigid and 

inflexible, rendering song learning impossible. The AFP is functionally and structurally like the 

basal ganglia-thalamo-cortico loops seen in the mammalian brain (Vates et al., 1997; Xiao and 

Roberts, 2021), which are also intimately involved in learning, and depend on error signals from the 

dopaminergic system to error correct (see general discussion in Chapter 6).  

With its projections to both pathways (motor and AFP), HVC plays a key role in the neural 

orchestration of song. Consequently, HVC’s privileged position makes it a convenient nucleus in 
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which to investigate questions of motor control, feedback integration, and maintenance of 

temporal precision.  

 

 

 

 

HVC Network Properties 
 

HVC projection neurons burst sparsely during singing with exquisite temporal precision. We 

have known for some time that HVC neurons’ bursts are time-locked to the motif and can occur 

multiple times within it (Margoliash, 1983; Lewicki, 1996; Hahnloser et al., 2002). However, in the 

early descriptions of HVC temporal properties, the identity of neurons, and consequently 

Figure 1.4. Diagram of the song system nuclei. Sensory pathways drawn in red, the anterior 
forebrain pathway (AFP) in yellow, and the motor pathway in green. Nuclei are not drawn to scale. 
Taken from Fetterman, 2020. 
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differences between projection classes, was not known. In 2002, Hahnloser et al. were the first to 

record extracellularly from antidromically identified HVC neurons in singing birds. They reported 

that HVCRA neurons burst once per motif, while HVCX can burst multiple times (some up to 6 times 

during a motif). This distinction in burst number between HVCRA and HVCX allowed for the 

attribution of previous results to specific cell classes. In Lewicki 1996, for example, neurons 

recorded during song playback that showed characteristic hyperpolarization to syllable sequences 

were likely HVCX neurons. Similarly, in Margoliash 1983, the sequence sensitive neurons with large 

integration times are likely HVCX neurons as well. Furthermore, in Mooney 2000, sharp electrode 

recordings from anesthetized, head-fixed birds showed markedly different subthreshold properties 

of HVCX and HVCRA neurons. One such difference is the fact that at song onset HVCRA become 

depolarized for the duration of the bout of singing, while HVCX become hyperpolarized. For both 

neuron classes, the bursts occur on top of these subthreshold changes. This means that the network 

environments in which the neurons integrate inputs and produce spikes are different and suggests 

the same may be true of their underlying circuits and (or) cellular properties (further discussed in 

Chapter 2). From these observations of bursting properties during singing and song playback 

experiments, emerged several models of HVC that included neuron classes with distinct functional 

properties yet similar temporal specificity (Lewicki, 1995, 1996; Mooney 2005; Long et al., 2010; 

Amador et al., 2013).  

The HVCRA population should have a clear correspondence to behavior because they project 

directly to motor nucleus RA and drive activity in the muscles with a motor delay of 20 to 30 ms. 

However, as mentioned earlier in this document, the lack of temporal variability in zebra finch song 

makes it difficult to differentiate aspects of temporal coding and motor coding in HVC. Despite 

that, several experiments have tried to distinguish between the two. In 2008, Long and Fee cooled 

down HVC and found that the song slowed proportionally to cooling. They concluded that HVCRA 
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neurons, with their sparse firing, represented a time code. It goes beyond the more cautious 

interpretation that these cooling results demonstrate that timing (not time) is represented in HVC 

and has been challenged by subsequent cooling experiments (Hamaguchi et al., 2016). The Long 

and Fee, 2008, interpretation was consistent with the conclusions from Hahnloser et al.., 2002, that 

viewed HVCRA sparse coding as absence of a clear correspondence between burst times and spectral 

features of song.  Of course, at a surface level, a time code is consistent with their results, but they 

do not conclusively prove that HVC activity is randomly distributed and carries no motor 

information.  

Additional work from Lynch et al.., 2016, furthered the interpretation and constructed a model 

of HVC that represents arbitrary time. In their paper, Lynch et al. reported that, collectively, all 

neuron bursts continuously tiled the duration of the song. Their model, canonically referred to as 

the ‘clock model’, describes HVCRA neurons as falling dominos in a unidirectional chain of activity, 

or synfire chain (Herman et al., 1995), that provide continuous coverage of the motif: Each burst 

represents a timepoint in the motif. Critically, in Lynch 2016, while the cellular identity of each 

neuron was confirmed with substantial experimental effort, all the bursts from both HVCRA and 

HVCX were combined for purposes of analysis. The majority of bursts (arising from any neuron) in 

the continuous representation came from HVCX neurons whose bursts were treated independently. 

This analysis is more difficult to reconcile for two reasons. First, chronic ablation of HVCX neurons 

did not directly impact song production (Scharff et al., 2000). In the photo-excitotoxicity 

approached used there, however, some HVCX survived in each animal, and singing was assessed 

only days after the experimental manipulation. Second, HVCX neurons that burst multiple times in 

a motif contribute to multiple timepoints in the chain. While the statistical mode of burst number 

of HVCX is one, roughly half of HVCX burst two or more times per motif (Lynch et al., 2016; 

Kozhevnikov and Fee, 2007). This second point is not addressed in Lynch 2016 whatsoever, and no 



18 
 

mechanism is proposed to disambiguate bursts downstream in Area X. Moreover, HVCX and HVCRA 

are distinct classes, with different firing properties and distinct microcircuits within HVC (Mooney, 

2000; Mooney and Prather, 2005; Daou et al., 2013). They clearly play different roles in HVC network 

function during development and in relation to behavior (Aranov 2008) and presumably do so in 

the adult. I will address these points further in Chapter 3, where I propose a network model that 

aims to remedy these issues and consolidate existing observations of HVC network structure and 

function as well as the differences in IPs of HVC neuron classes. 

 

Intrinsic Properties of HVC neurons 
 

Decoding the cellular mechanisms involved in storing and processing information in neural 

networks is a key component of understanding learning and memory phenomena. Beyond well-

studied synaptic plasticity mechanisms, non-synaptic changes to neuronal excitability are 

implicated in engram formation, network function, and behavior. While many examples of 

experience-dependent changes to intrinsic excitability are documented, there has not yet been a 

description of a complex learned behavior that captures fundamental cellular and network 

mechanisms at different scales to produce a model in which intrinsic and synaptic properties fit 

together cohesively.  

Peculiarly, HVCX and HVCRA have very different intrinsic properties (Figure 1.5, an example 

trace from an HVCX and an HVCRA). In vitro, HVCRA are transiently activated, firing few spikes at 

the onset of stimulation (strongly adapting), followed by stable depolarized plateaus (top panel in 

Figure 1.5). They tend to have small capacitances, high spiking thresholds, and very little 

hyperpolarization activated current (Ih), resulting in little to no voltage sag when hyperpolarized 

(insert of top panel in Figure 1.5) (Daou et al., 2013). For such small cells, they require remarkably 

large amounts of injected current to elicit spiking (100-500 pA). 
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Contrastingly, in vitro, HVCX fire continuously to depolarizing current injection, have modest 

spike adaptation and large capacitances (Daou et al., 2013; Ross et al., 2017). Interestingly, HVCX 

express significant Ih and voltage sag (inset of middle panel in Figure 1.5). In fact, most HVCX 

express rebound depolarization when released from hyperpolarization (post inhibitory rebound 

excitation) (Daou et al., 2013). Rebound excitation refers to additional depolarization beyond the 

resting membrane potential after the removal of inhibition or hyperpolarization. In many HVCX, 

the rebound depolarization is strong enough to trigger spikes (rebound spikes). HVCX require 

modest amounts of injected current to elicit spiking (50-100 pA). In these ways, HVCX are opposite 

to HVCRA. In the general discussion (Chapter 6), I discuss how these differences could be suggestive 

of their roles within the HVC network. 

Recent work showed that HVCX IPs are developmentally regulated and differ among individual 

adult animals. HVCX ion channel expression is affected by early experience and song exposure, and 

in adulthood HVCX IPs are plastic and sensitive to auditory feedback (Daou and Margoliash, 2020; 

Ross et al., 2017; Ross et al.l 2019). In young males, HVCX IPs of neurons within the same bird are 

different from each other (high variability). By post hatch day 90 (early adulthood), neurons have 

converged on a common set of IPs within an individual male bird (no work has been done in females 

to determine whether this is solely a property of male HVC). Critically, the differences in adult 

HVCX IPs across individuals are related to song differences. This suggests that HVCX intrinsic 

excitability is tied to specific features of song and to birdsong learning. Birds who sing nearly 

identical songs (often siblings) have very similar HVCX IPs. Birds who sing different songs have 

HVCX whose IPs differ by how different the songs are (Daou and Margoliash, 2020). In Daou and 

Margoliash, 2020, IPs were quantified by fitting HH, conductance-based, models to recorded traces 

from HVCX neurons and extracting the conductance values from the model fits. The model was 

adopted from Daou, 2013, and included pharmacologically confirmed ionic currents: voltage 
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activated sodium (INa), voltage activated potassium (IK), ISK, Ih, and low voltage activated calcium 

(ICa-T). The modeled conductance value estimates were cast into a multidimension ‘conductance 

space’ where all neurons were represented. In that conductance space, all neurons from a bird 

represent a volume with a centroid. The distance between the centroids of any two birds was related 

to the differences between their songs. These results emphasized individual variability, which is an 

ethologically relevant and experimentally useful feature of birdsong learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. HVC projection neurons have distinct IPs. A whole-cell intracellular 
recording from an HVCRA (blue) and an HVCX (green) who received the same injected 
current (black trace in bottom panel). Inserts for each neuron show a zoomed in view of 
the voltage response to the hyperpolarized portion of the current injection and illustrate 
the amount of post-inhibitory voltage depolarization above baseline (dashed lines). For 
the HVCX a noticeable amount of post-inhibitory rebound depolarization is shown (red 
arrow). 
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Fundamental units of song 
 

The song of adult zebra finches has structure that spans multiple timescales. This is most 

evident in the canonical motif because it is repeated multiple times in a bout of singing. In a larger 

timescale, finches sing multiple bouts back-to-back, often separated by gaps of multiple seconds, 

which Graham Fetterman (Fetterman, 2022) named “phrases”. What is less clear, however, is how 

to define within-motif structure. Although we do not yet understand how neural dynamics underlie 

song, the evidence to date indicates that syllables fit the requisites of a discrete behavioral unit. 

Birds take breaths in the gaps between syllables, often in the larger gaps in sound production (> 

10ms). Work describing the peripheral movements (syringeal and respiratory) that a bird makes to 

produce song also segregates the song into distinct vocal “gestures”, that may subdivide syllables 

but never cross syllable boundaries. Some juveniles approach song learning by practicing and 

perfecting one syllable at a time. Birds sometimes drop portions of song, almost always, one (most 

commonly) or more complete syllables at the end of the motif are dropped. In playback 

experiments, loud white noise (an aversive stimulus) has been used to disrupt song production. In 

those cases, the motif was interrupted after completing a given syllable (i.e., during the gaps 

between syllables) and never in the middle of a syllable. That is, birds tended to finish a syllable if 

they had already started it. These points support a perspective of organization of neural dynamics 

that is centered around syllables. Thus, it is highly pertinent that we do not know what the neural 

representation of a syllable is (particularly in HVC). And furthermore, how are intra-syllabic 

elements represented in such a temporally stereotyped behavior? I discuss this further in Chapter 

4, where I describe temporal structure that spans the entire motif. 
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Syllable combination selectivity 
 

HVC projection neurons burst at precise moments during singing (Hahnloser et al.., 2002). This 

can also be further investigated in anesthetized or sleeping birds by playing back the birds own 

song (BOS) (Amador et al., 2013; Fetterman, 2022). The same time-locking phenomenon occurs in 

the non-singing preparations. However, if the BOS spectral or temporal features are modified, the 

selectivity of the bursts decreases substantially (Margoliash, 1986; Amador et al., 2013; Fetterman, 

2022). HVCX neurons are selective to the sequence of syllables (Margoliash and Fortune, 1992), 

similar to how Margoliash, 1983, reported that the neurons were sensitive to the gaps between 

whistles of the white-crowned sparrow. These two results describe important features of HVCX 

neurons’ functional properties: long integration times and “combination selectivity”. Combination 

selectivity refers to the selective encoding of specifically timed and ordered events. In zebra finch 

HVC, some neurons burst only after the bird sings (or hears) a sequence of syllables which can span 

a period of hundreds of milliseconds. White-crowned sparrow putative HVCX neurons could detect 

a sequence of whistles even when the gaps reached 300 ms (Margoliash, 1983).  

Extracellular single unit recordings in HVC of lightly anesthetized zebra finches share the long 

integration times seen in white-crowned sparrows. Units that responded to syllables ‘B-C’, for 

example, could still detect the sequence even if the gap was increased. The response waned as the 

gap duration increased but was sustained up to nearly 100 ms in some neurons (Fortune and 

Margoliash, 1992). 

Lewicki, 1996, made in vivo sharp electrode recordings in the HVC of anesthetized zebra 

finches. Using this approach, he described how two-syllable selective HVC neurons were 

hyperpolarized by playback of the first syllable and depolarized by the second syllable. If played 

back in the correct sequence (one that matched the BOS), and with the correct relative timing, the 

sequence produced a burst in the selective neuron. Playing the depolarizing syllable twice, or 
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altering the relative timing of the two syllables, did not reproduce a stereotyped response in the 

neuron (instead producing unreliable and often subthreshold activity).  Lewicki’s 1995 and 1996 

papers address the mechanisms of sequence selectivity and suggest that inhibition is a critical 

component. In Lewicki’s model of syllable selectivity, the magnitude of the inhibition caused by the 

first syllable predicted the amount of excitation and strength of bursting produced by the second 

syllable. In his 1996 paper, Lewicki addressed the model proposed in Margoliash, 1983, which 

suggested that the release from inhibition could generate a rebound that could then interact with 

depolarization from the second syllable. Thus, the earliest systematic extracellular and intracellular 

studies of HVC responses to song playback converged on the same basic model for burst timing 

regulation. 

 

Goals of this thesis 
 

In my thesis work, I was driven by two curiosities. One is general to neurobiology and signal 

processing, and another that is grounded in a neuroethological perspective. The first, is an interest 

in the fundamental rules that underlie information storage and processing in biological systems. 

The second is a specific curiosity about the inner workings of the song system, and specifically, in 

the function of a group of neurons in the premotor nucleus HVC that project to the basal ganglia 

(HVCX). These two general questions drove the organization and design of my experiments, such 

that results that inform either provide clarity to both. All experimental chapters hereafter should 

be interpreted through the lens of both questions. 

The interest in the fundamental rules of information processing in neurons stems from a desire 

to understand things well enough to reproduce them. As it relates to neuroscience, it is not 

sufficient (and hopefully not necessary!) to know every connection in a brain to understand its 

function; we also need to understand the basic rules of computation within neurons and across 
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synapses. Ideally, we would understand neural computations at such a fundamental level that we 

could run simulations of biological networks that are indistinguishable from the real things. This 

perspective underlies my approach to tie together features of intrinsic properties in single neurons 

to network properties and ultimately to behavior. I believe that to do this, we must leverage 

different experimental techniques (and modeling) to produce comprehensive models of individual 

biological networks. In Chapter 5, I discuss future directions that stem from my work and address 

this goal of modeling individualized behavior by using multiple experimental modalities and 

network modeling in the same animal. 
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CHAPTER 2 
 

TEMPORAL FEATURES OF SONG CORRELATE WITH HVCX 
REBOUND EXCITABILITY 

 

Introduction 
 

The contributions of ion channel expression to cellular properties, and therefore signal 

processing within neurons, are relatively well understood. Yet, there is a substantial lack of 

understanding as to how to extend our intuition of phenomena at the level of intrinsic properties 

to how they influence network properties and whole organism behaviors. This is of course true (if 

to a lesser extent) of the much more intensively studied synaptic connectivity and synaptic 

plasticity mechanisms, and it is not surprising that embracing multiple levels of analysis makes it 

difficult to construct a comprehensive model that links ion channels to behavior. This is a daunting 

task especially in systems of networks with complex internal and external feedforward and feedback 

interactions among multiple classes of neurons, so progress has been greater in studies of smaller 

networks. The work on intrinsic neuronal properties regulating rhythmicity of small networks 

within the stomatogastric ganglion of the spiny lobster is a standout example (Marder and Prinz, 

2002). 

Another approach has worked in the backward direction by identifying aberrant behaviors 

or pathologies and looking for associated neural structure. There too, we find links with neuronal 

excitability (Pilarski et al., 2011; Oginsky et al., 2016). Despite important progress in both 

approaches, no specific example has been described that lays out a direct path from features of 

intrinsic properties to complex learned behavior: one where every aspect of the neural activity, 

network architecture, and behavior are modeled.  



26 
 

An important step forward in this research was recently reported when Daou and 

Margoliash, 2020, reported on the characteristics of IPs of HVCX neurons of male zebra finches. The 

study demonstrated that HVCX neurons express considerable uniformity of IPs within individual 

animals. Neurons from the same bird show similar spike waveform morphology and evoked firing 

patterns that are different from neurons of other birds. To understand these results from the 

perspective of HVCX ion currents, a subset of neurons were quantified by fitting Hodgkin-Huxley 

models to recorded intracellular traces of HVCX neurons responding to depolarizing and 

hyperpolarizing current injections. This provided a model estimate of the maximal conductances 

of five channels (Na, K, Ca-T, SK, HCN) for each neuron. HVCX neurons of the same bird clustered 

tightly within the N-dimensional conductance space (where N was the number of modeled 

conductances) and defined a volume with a centroid. The centroid volume for any given bird 

occupied a small volume of the total volume defined by all birds. The distance between any two 

birds’ centroids was strongly related to the differences between the two birds’ songs, generally. 

Furthermore, the data indicate that the IPs of HVCX are maintained dynamically, for example the 

IP homogeneity rapidly degraded upon exposure during singing to disruptive delayed auditory 

feedback, slowly changed with age, and was not present in relatively old juvenile birds still learning 

to sing (Daou and Margoliash, 2020). This result represents the novel and exciting possibility of 

linking individual behavior to individual expression of IPs in a complex system involved in learned 

vocal production. A central reason for this success is likely to be related to the highly stereotyped 

songs that individual zebra finches sing. This predicts that such IP homogeneity maybe observed 

in other species in more stereotyped regimes of singing – a prediction that has yet to be tested. 

Focusing on zebra finches, one limitation of the analysis from Daou and Margoliash, 2020, 

is that they used a measure of song similarity which condensed all spectral and temporal features 

of song into a single percent similarity score (Tchernichovski et al., 2001). Thus, the question 
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remains whether there are specific relations between features of song and different features of IPs. 

How do the IPs of the HVCX population in a given bird reflect a network level solution to learning 

of that bird’s particular song? Furthermore, Daou and Margoliash, 2020, did not track parentage for 

any birds, except the 4 adult and single juvenile sibling pairs of birds, which leaves unresolved 

questions about the potential role of heredity in HVCX IP expression. To explore these questions, I 

recapitulated the results from Daou and Margoliash, 2020, while bringing the song learning 

experience under experimental control and extending the relationship of HVCX IPs to features of 

song. 

 

Timing is critical 
 

As mentioned in earlier chapters, HVC neurons are highly sensitive to temporal structure 

of song during playback experiments, and the timing of their in vivo bursts is locked to moments 

in the motif. HVCX neurons show this exquisite precision in their burst times and yet they integrate 

inputs over hundreds of milliseconds. At the same time, the behavior itself is highly precise across 

motif renditions, and requires tight control and coordinate of syringeal muscles and air sac 

pressure. It is thus unsurprising that the premotor nucleus that plays a role in the production of 

song is equally precise in its neural activity. Despite that, we do not know what HVC bursts encode 

(though models of motor or time coding have been proposed, see introductory chapter). In 

summary, tight temporal control is essential for singing behavior in zebra finches (as in humans), 

and HVC network properties reflect it but the connection is unclear. 

We see another form of this trope of tight regulation in the expression of IPs of HVCX 

neurons. And just as we don’t fully understand the network properties of HVC, we don’t know how 

HVCX IPs relate to behavior explicitly. Daou and Margoliash, 2020, showed that differences in HVCX 

IPs comparing pairs of birds are related to a summary measure of song similarity (comparing the 
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pairs of songs). This does not identify whether specific acoustic features of song are related to 

specific features of HVCX IPs. Motivated by the long integration time that HVCX express, the 

regulation of the related HVCX IPs via juvenile learning (Chapter 2) and adult maintenance (Daou 

and Margoliash, 2020), and the potential that these IPs are related to long, continuous vocal 

elements of motifs (harmonic stacks), I investigated the sub-motif structure and correlations of 

spectral and/or temporal features of song with specific HVCX IPs. To this end, I evaluated the 

hypothesis that specific IPs are related to specific song features by manipulating the tutoring 

experience of birds to introduce controlled changes in song features. The results indicate an explicit 

link between rebound excitability and temporal features of song (duration and continuous 

harmonic vocalization), but not others (amplitude modulation, entropy, pitch). 

 

Investigating plasticity of IPs in vitro 
 

In the course of these studies, I also discovered that the IPs of HVCx in my recordings are 

quite sensitive to the amount of stimulation a cell receives.  As described below, I modified my 

analyses (and protocols) to reduce that variation as a source of noise in these Chapter 2 

experiments. Given this perspective, I also investigated these unanticipated effects of HVCX 

intrinsic plasticity by presenting them with somatic stimulation protocols previously shown to 

induce changes in intrinsic excitability in slices (Paz et al., 2009; Gill and Hansel, 2020). 

 

Methods 
 

Animals and housing 
 

All procedures were performed in accordance with all relevant ethical regulations for animal 

testing and research and approved by the University of Chicago Institutional Animal Care and Use 
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Committee (IACUC). Zebra finches were obtained from the Margoliash lab breeding colony and 

housed on a 14:10 h light/dark cycle. Food and water were provided ad libitum. All birds used for 

electrophysiological experiments were adults older than 90 days. 

Natural and instrumental song learning 
 
 I used three different breeding designs that had varying degrees of control over the tutoring 

experience (Figure 2.1). All birds who reached adulthood and produced a stereotyped song were 

included in electrophysiological experiments. 

In the first design, zebra finches were raised by their parents in individual cages where they 

could hear birds from other breeding cages as well as nearby flight aviaries. Birds were housed with 

their siblings and parents until post hatch day 80, at which point they were moved to a flight aviary. 

Adult male zebra finches whose parentage was known were collected from the general colony and 

used for experiments. 

In the second, zebra finches were bred in sound attenuation chambers with their parents 

and siblings only. The father was removed when hatchlings reached 15-20 days of age and housed 

separately. At 40-45 days of age, juvenile males were identified by their chest and cheek plumage 

and separated to another sound attenuation chamber for live tutoring. Live tutoring involved the 

introduction of an unrelated adult male into the sound chamber of a song-naïve juvenile. Tutor and 

tutee were housed together until the tutee reached 90 days of age.  

Finally, the third design used instrumental tutoring in the absence of other birds (Figure 

2.2, picture of a juvenile bird using the setup). I used triggered playback of pre-recorded song 

through a speaker positioned behind the string and controlled by the software Sound Analysis Pro 

(SAP) (Tchernichovski et al., 2001). Sound files used for instrumental song learning contained one, 

three-motif, bout of either naturally occurring song, or a manipulated song. For the manipulated 

song, I selected a long harmonic stack from a bird that sang a very long song (and had the longest 
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stack in my dataset). I maintained the overall temporal structure of the original song in the 

manipulated version by using a method for finding rhythm in song (Norton and Scharff, 2016; and 

replicated in Chapter 4). 
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Figure 2.1. Diagram of experimental designs. Shows the three experimental designs used to 
control the tutoring experience and generate birds for electrophysiological experiments. 
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Figure 2.2. A juvenile listening to song playback. Picture of a male 
juvenile zebra finch interacting with the instrumental song learning setup. 
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Song analysis and segmentation 
 

A representative motif for each bird was chosen from song bouts that occurred in the days 

prior to slice electrophysiology experiments. All analyses were performed on the representative 

motif. Sub-motif elements, such as syllables, were hand labeled using Audacity or SAP 

(http://soundanalysispro.com/manual). Syllable segmentation was verified in a semi-automated 

way using Chipper (https://github.com/asearfos/chipper), using the normalized amplitude signal 

and taking the 95th percentile of amplitude as the threshold to define onsets and offsets. Harmonic 

stack durations were verified algorithmically with custom code that relied on Resin 

(https://github.com/margoliashlab/resin), a python library that was based on SAP. I used Resin to 

quantify amplitude and frequency modulation (FM) of songs, which were then used to identify 

moments of high amplitude and low FM. As defined by SAP, FM is the angular component of 

squared time and frequency derivatives. To identify harmonic stacks, the FM signal (ranging from 

0 to 1) was smoothed (running average with a 5-value window) and an arbitrary threshold was set 

at 0.2 FM, where 0 is a perfectly straight line in the spectrogram (Figure 2.3). 
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Figure 2.3. Automatic detection of harmonic stacks. A spectrogram of a zebra finch song (top panel) and the 
extracted signals for amplitude (red), frequency modulation (blue), and predicted location of harmonic stacks 
(black). 
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Slice preparation 
 

Birds were anesthetized with isoflurane, checked for loss of peripheral reflex with a foot 

pinch and then decapitated. A razorblade was used to block the brain through the skull behind the 

eyes (front) and at the cerebellum (back). The blocked brain with skull still attached was placed in 

ice-cold (slushy consistency) sucrose-ACSF (225 mM sucrose, 2 MgSO4, 2 CaCl2, 1.25 NaH2PO4, 26 

NaHCO3, and 10 glucose, 3 KCl, ph: 7.2-7.3) while the rest of the brain was removed. One could 

quickly remove the brain by cutting through the bone on the sides and of the blocked skull and 

lifting off the top layer. Horizontal slices (200-300 uM) were cut from both hemispheres using a 

Vibratome 1000 and moved to incubate in a warm (32-34 °C) NMDG-ACSF (93 NMDG, 2.5 KCl, 1.2 

NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, 5 sodium ascorbate, 2 thiourea, 3 sodium pyruvate, 

10 MgSO4.7H2O, 0.5 CaCl2.2H2O ) for 10-15 minutes before being moved to another incubation 

chamber containing standard recording ACSF (124 NaCl, 2.5 KCl, 1.2 NaH2PO4, 24 NaHCO3, 5 

HEPES, 12.5 glucose, 2 MgSO4.7H2O, 2 CaCl2.2H2O). All ACSF solutions were bubbled continuously 

with 95% O2 5% CO2. Slices were left to incubate for at least additional 30 minutes before being 

moved to the recording chamber. 

 

Whole-cell recordings 
 

Recordings were conducted at moderately elevated temperatures of 28-32 °C, controlled 

with an inline heater (Warner Instrument). Recordings were made using a Multiclamp 700B and 

digitized with a Digidata 1550B at 50 kHz (axon instruments), using a 10 kHz low-pass Bessel filter. 

HVC was first identified under wide-field illumination as a dark region in the horizontal slice at 4x 

magnification (Figure 2.4) then by the presence of the characteristic electrophysiological responses 

of the two main classes of projection neurons in HVC (verified with retrograde labeling). Data 

collection was controlled using pClamp 10.4 (Molecular devices). Recordings were made with fire 
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polished glass pipettes (4-8 MΩ) and visually guided using a camera (Olympus Oly-150IR, or 

Hamamatsu Orca Fusion C15440). Pipettes were filled with 100mM K-gluconate, 5mM MgCL2, 

10mM EGTA, 2mM NA2-ATP, 0.3mM Na3-GTP, 40mM HEPES (pH: 7.2-7.3, osmolarity 290-300 

mosM).  

A giga-Ohm seal was formed before break-in for all cells, and a period of 1-2 minutes was 

given before presentation of experimental protocols. Series resistance, membrane resistance, and 

time constant were calculated from a -10 mV step in voltage clamp. Series resistance was calculated 

as Rs= V/Ipeak, membrane resistance was calculated as RM= ∆V/Isteady state, 𝜏 was calculated by fitting 

a polynomial (Python’s numpy-polyfit function) to the current trace and finding the time where 

the current reached 63% of its steady-state value.  Capacitance was measured as CM = tau/RM. The 

median series resistance of cells was 22 MΩ with a standard deviation of 13.39, 73% of cells had RS 

< 30 MΩ).  

Cells were then held to -70 mV in current clamp and presented with depolarizing and 

hyperpolarizing square current injections of varying amplitudes (-120 to -60 pA hyperpolarizing, 

100 to 50 pA depolarizing, 300 ms duration). A holding current to bring cells to -70 mV was chosen 

because this is the in vitro resting potential of HVCX observed at break-in in a large population of 

HVCX previously reported (N=370 neurons, break-in potential –70.49±2.3 mV, Daou and 

Margoliash, 2020). This also provide a common voltage reference point from which to analyze the 

neuronal responses. Firing frequency was calculated as the number of spikes divided by the time 

between the first and the last spikes. Sag ratio was calculated as the ratio between the most 

hyperpolarized voltage during the hyperpolarizing current injection (illustrated later in this chapter 

in Figure 2.13 as a black triangle) and the voltage before release of hyperpolarization (a black square 

in Figure 2.13). In 20 cells from 4 birds (3, 3, 5, and 9 cells respectively), I performed voltage clamp 
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experiments to produce I/V plots, stepping voltage from -100 mV to -60mV, with step sizes of 10 or 

5 mV.  

For a set of neurons (N=33), I presented a protocol of somatic stimulation at 10Hz (10 pulses 

over the course of 1 second). The protocol was modified for each neuron so that every pulse 

produced 2-3 spikes. Additionally, in a subset (N=10) of those neurons, I collected evoked currents 

at different voltage steps (-100 mV to -60 mV in 10 mV steps) and produced current-voltage (I/V) 

curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. A brain slice containing HVC. HVC can be seen as a 
darker myelinated region within the slice. 
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Inclusion and analysis criteria 
 

All cells that fired consistent trains of spikes (no depolarization block), with spikes passing 

0 mV were recorded and included in analysis. Features of cells that significantly varied with RS were 

not considered for analysis (e.g., spike amplitude, or peak of the first spike. Examples shown in 

Figure 2.5). 

 

Retrograde labeling 
 

While the firing patterns of HVC neurons were characteristic and helped to identify the 

different classes, as an independent confirmation we also retrogradely labeled HVC neurons in 

several birds. Birds were anesthetized with isoflurane and head-fixed using a stereotaxic frame. 

Bilateral craniotomies over Area X, or Nucleus RA were made using predetermined coordinates 

(relative to Y Sinus with head angle of 18°. Area X: 1.5-2 latera, 3.5 rostral, 3.5 deep, RA: 2.3-2.4 lateral, 

1-1.1 caudal, 1.5-1.9 deep). Three birds were bilaterally injected with retrograde tracer 

(tetramethylrhodamine dextran from invitrogren, 10-20 nL) using a Nanoject 2.0 or Nanoject 3.0. 

Similarly, in one bird we injected a self-complementary AAV carrying a GFP construct (sc-AAV9-

GFP, UNC Vector core, 300-350 nL at 5nL/s) into Area X, and tetramethylrhodamine into RA. A 7–

10-day period was allotted for transport, or viral expression, before slice experiments. Retrogradely 

labeled cells within HVC were identified with epifluorescence during slice experiments and used to 

confirm the identification of HVC using wide-field illumination. 

 

Data Processing and Analysis 
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 Data files were exported from PClamp as axon binary files (.abf), which included multiple 

sweeps of a square wave current injection protocol (Figure 1.4, black trace in the bottom panel). 

Each sweep consisted of a small hyperpolarizing step (-20 pA), a 300 ms depolarizing step of varying 

magnitudes (50 to 100 pA), and a 300 ms hyperpolarizing step of varying magnitudes (-60 to -120 

pA). Files were opened using python code (PyABF, written by Scott W Harden: 

https://github.com/swharden/pyABF), and the raw traces were extracted and saved in Bark format 

(https://github.com/margoliashlab/bark). Features of the raw data were extracted and analyzed 

using custom python code written by me. 

 

Results 
 

Each tutoring paradigm produced birds with varying degrees of success. The second and 

third design, which controlled the tutoring experience, were particularly low yielding, and required 

3 years to produce the numbers of birds that are included in this thesis. Removing the father at 

PHD 15-25 often resulted in the ejection of the juveniles by the mother. Design 1 (home cage raised 

and tutored) produced 18 birds, design 2 (controlled but live tutored) produced 12 birds, and design 

3 (instrumental song learning) produced 8 birds. None of the results in the first two sections that 

follow were related to the tutoring paradigm used and birds from all three tutoring paradigms were 

collapsed together for purposes of analysis. 

Regarding the electrophysiological recordings, I analyzed features of the raw voltage traces 

(spike amplitude, firing frequency, voltage sag, etc.) and found that several of them (spike 

amplitude and spike width) varied significantly with the series resistance of the recording. Series 

resistance (also called access resistance) is a physical property of the recording itself and relates to 

the access of the tip of the pipette with the intracellular medium. Hence, I limited my analysis to 

those features of the IPs that were not strongly affected by the recording conditions (Figure 2.5).  
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Within-individual uniformity of IPs 
 

In order to evaluate whether my data showed the same pattern of organization reported in 

Daou and Margoliash, 2020, I grouped neurons by bird and evaluated the variance of IPs within 

each bird. If neurons recorded from the same bird are more similar to each other (centered on the 

same mean), then the variance of IPs among cells from the same bird should be lower in my dataset 

than a dataset that has no relationship (randomly shuffled data).  

Holding the numbers of cells per bird constant, neurons were randomly reassigned, thus 

generating 1,000 shuffled data sets. I then compared the average within-bird variance of the real 

Figure 2.5. Features of recordings covary with series resistance. Distributions of features (voltage sag, 
membrane resistance, firing frequency, and peak of the first spike) and their relationships to series 
resistance. Each point represents a recording from one neuron. 
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and bootstrapped data for firing frequency, sag ratio, and membrane resistance (features that varied 

minimally with series resistance, see Methods) and evaluated where the real data fell within the 

bootstrapped distribution. This showed that the real neurons were significantly less variable within 

birds for firing frequency (p=0.002) and sag ratio (p=0.012) but not for membrane resistance 

(p=0.269) or holding current (p=0.102) (Figure 2.6). Thus, neurons from the same bird shared more 

similar firing frequency and sag currents than neurons from other birds. 

 

 

 

 

Figure 2.6. Within-bird similarity of intrinsic properties. Real (red dashed line) and bootstrapped (light blue) 
within-bird variance for firing frequency, sag ratio, membrane resistance, and holding current. The 95% 
confidence intervals are shown as black dashed lines. 
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IP expression is determined by song learning 
 

To evaluate the relative contribution of heredity and song learning to the IPs of the neurons 

I examined the effects of features of songs and parentage on the measured IP values.  To this end, I 

used mixed effects linear models (MixedLM) to examine the interactions between sag ratio, firing 

frequency, motif duration, the duration of the longest harmonic stack, and family as an indicator 

variable assuming random effect. I ran two MixedLMs (153 neurons, 4 neurons per bird on average, 

38 birds, 13 families): one using evoked firing frequency (100 pA) as the dependent variable, and 

another using the sag ratio (-100 pA) as the dependent variable. All values were normalized before 

being run through the model. Only the duration of the longest harmonic stack was significantly 

correlated with sag ratio (p = 0.018) and firing frequency (p=0.008) (Tables 1 and 2). It is important 

to note, that to date I have not estimated statistical power for the mixed linear model. Nonetheless, 

the result points to the contribution of temporal song features to IPs of HVCX. 
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Table 1. Mixed Linear Model Regression Results for sag ratio. MLM results regressing sag ratio on the 
duration of the motif, the duration of the longest harmonic stack, and family identity. 

Table 2. Mixed Linear Model Regression Results for firing frequency. MLM results regressing firing 
frequency on the duration of the motif, the duration of the longest harmonic stack, and family identity. 
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Plasticity of intrinsic excitability in vitro 
 

During most of my recordings of HVCX neurons, I observed a decrease in the evoked firing 

frequency over time. This was most noticeable in the period 5-10 minutes after the initial recording. 

To mitigate this possible confound, I restricted analysis to the first 11 traces for each cell that focused 

on IPs (for all analyses throughout this thesis), which correspond to the most stable part of the 

recordings and usually the first 5 minutes of stimulation (e.g., Figure 2.7, green neuron). Beyond 5 

minutes of continuous stimulation, the rate of evoked spike loss increased for some cells (Figure 

2.7, yellow neuron). This may relate to features of activity-dependent plasticity, or it could be 

artifactual and related to tissue health, or have elements of both. 

To evaluate the potential role of activity-dependent plasticity in these changes, in a smaller 

subset of neurons (N=33), I recorded responses to a 10 Hz stimulation protocol to investigate 

whether the decrease in excitability was activity dependent. I noticed that using a stimulation 

protocol of 10 Hz for 1 second followed by a 1 second gap (example trace shown in Figure 2.8) caused 

a hyperpolarization in the neurons and a decrease in evoked spikes. This effect was quantifiable 

after 2 minutes of stimulation, after which neurons often fired 2-3 fewer evoked spikes to a 100 pA, 

300 ms square pulse (Figure 2.9). 
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Figure 2.7. Time and activity dependent loss of evoked firing. Evoked firing frequency of 
HVCX neurons from all birds (blue dots) over the course of their recordings. One cell shows 
consistent evoked firing frequency over a period of 5 minutes (green), while another shows a 
rapid decrease in firing frequency after 5 minutes (yellow). 
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Figure 2.8. Somatic stimulation protocol. An example voltage trace from an HVCX 
during one second of 10 Hz stimulation. 
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The stimulation induced hyperpolarization of the resting membrane potential occurred as 

quickly as one trial (1 second) and can be seen in the first few trials (Figure 2.10). Note that many 

pulses produce one fewer spike after each subsequent trial. A zoomed in view of the resting 

membrane potential (RMP) for one example neuron (black box, Figure 2.10) shows a 

hyperpolarization of 1-2 mV after each trial (Figure 2.11). Figure 2.12 shows a summary plot for the 

first 15 ms of the first 6 trials for 33 neurons (black dots) and the average membrane voltage of all 

neurons at each trial (blue line). The average pre-trial RMP was -70.83 mV, which hyperpolarized 

to -72.7 mV, and -74.1 mV for the second and sixth trial respectively. Additionally, qualitatively, the 

after-hyperpolarization of each spike train seemed to have become steeper when comparing the 

first trial to the last trial. Figure 2.13 illustrates the first (blue) and last (red) traces for three example 

neurons. 

Figure 2.9. Stimulation decreases evoked firing frequency. Changes in HVCX firing frequency (blue) 
and membrane resistance (green) after two minutes of 10 Hz somatic stimulation. 
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Figure 2.10. Example traces from a stimulated neuron. The first (blue), second (orange), and third (green) 
trials from one neuron during the somatic stimulation protocol. Black box focuses on the resting membrane 
potential of each trace (see Figure 2.10). 

Figure 2.11. Stimulation induced hyperpolarization. A zoomed in view of the first three stimulation 
traces from within the black box in Figure 2.9.  
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Figure 2.12. Summary of rapid resting membrane potential hyperpolarization. Resting 
membrane potential measured before the first stimulation pulse for the first 6 trials for 33 
HVCX (black points) and the average resting membrane potential for all HVCX at each trial 
(blue line). 

Figure 2.13. Post-stimulation changes in afterhyperpolarization. The first (blue) and last (red) trials 
of the stimulation protocol for three neurons. 
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Lastly, I wanted to investigate the currents that were underlying the changes in excitability that 

occurred after stimulation. To do so, I recorded currents in voltage clamp, and presented a 

protocol that stepped from resting (-70 mV) to -100, -90, -80, and -60 mV, before and after 5 

minutes of stimulation. Stimulation caused a slight increase in the evoked inward current at -100 

mV. At -60 mV, there was an increase in the evoked outward current. This increase was 

completely absent in many cells prior to being stimulated (Figure 2.14). This stimulation-

dependent outward current, as well as the prior mentioned hyperpolarization (Figure 2.12), points 

to a shift in some potassium conductance. 

 

 

 

 

Figure 2.14. Post-stimulation changes in I/V relationship. The average evoked currents for 10 mV 
voltage steps (from -100 to -60 mV) for 10 HVCX neurons before (blue) and 5 minutes after (orange) somatic 
stimulation (error bars represent the standard error of the mean). 
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HVCX IPs are learned and related to temporal features of song. 
 

I performed whole-cell recordings in horizontal HVC slices (195 neurons from 38 birds) and 

assessed the intrinsic excitability and passive membrane properties of the neurons recorded via 

somatic depolarizing and hyperpolarizing current injections. HVC was identified as a dark 

myelinated region under brightfield illumination and confirmed with retrograde labeling using GFP 

or rhodamine (n=4 animals, 8 slices, see Methods). This definition of HVC was also independently 

verified by the presence of canonical firing patterns of HVC projection neurons (see below).  

HVCX and HVCRA were distinguished by their characteristic firing properties, as previously 

reported (Daou et al., 2013; Daou and Margoliash, 2020; Ross et al., 2017 and 2019; Mooney and 

Prather, 2005; Mooney, 2000). HVCRA neurons showed robust spike adaptation to my standard set 

of applied depolarizing currents (100 – 150 pA square pulses, 10 pA steps, 300ms), firing few spikes 

at the stimulus onset riding atop a large, depolarized plateau (20 mV or more). HVCX (n = 154) had 

distinct firing properties that included continuous (tonic) firing (Figure 2.15, dotted line) with 

smooth spike after-hyperpolarization, modest spike adaptation, voltage sag (note the difference 

between the black triangle and black square in Figure 2.15) and post-inhibitory rebound 

depolarization to negative applied currents (Figure 1.5, red arrow; Figure 2.15, black dashed box). 

The membrane capacitances of the HVCX were larger than for HVCRA (p < 1-15) (Figure 2.16) (Ross et 

al., 2017), whereas there were no differences in the membrane resistance between the two classes 

(p = 0.21). Finally, only the HVCX showed post-inhibitory rebound. 
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Figure 2.15. HVCX IPs evaluated from the raw data. An HVCX’s evoked response to a depolarizing 
(100 pA) current injection (top, darker green trace) and a hyperpolarizing (-100 pA) current injection 
(bottom, lighter green trace). Dotted black line represents the time from the first to the last spike in 
the evoked train. Black triangle represents the most hyperpolarized point while black square 
represents the point immediately before the release of inhibition. Black dashed box denotes post-
inhibitory rebound depolarization and its associated rebound spike. 

Figure 2.16. HVCRA and HVCX are distinguishable by their membrane capacitance. Distributions of 
membrane capacitance (left panel) and Membrane resistance (right panel) for HVCX (light green) and 
HVCRA (dark green). 
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Over the course of these experiments, I deployed three experimental designs (described 

earlier in the methods of this chapter) as the structure of the data set emerged. In the first design, 

birds were raised by their parents in individual cages but in acoustic contact with birds in the other 

cages and in a flight aviary in the same room. This resulted in (14 birds) from which I obtained 

electrophysiological data. Siblings raised under such conditions tended to show only small 

variations in song copying (less than we had hoped for), confounding my ability to relate differences 

in IPs with differences in songs. In the second design, birds were raised in sound isolation chambers 

with their parents until post hatch day 15, at which point I removed the father. Once juveniles were 

identified as having male plumage, they were placed in a separate sound isolation box with an adult 

male tutor. Over the course of these experiments, a relation between features of song timing and 

HVCX IPs emerged. Thus, I pursued a third design with stronger control over the structure of the 

tutor songs that the birds heard. Female–raised males (at 32-40 DPH) were transferred to a sound 

isolation chamber arranged so that pulling a string provided instrumental access to hearing song 

playback (Tchernichovski et al., 2001). The songs these birds heard were chosen to explore the 

relation of IPs and features of syllable timing.  

First, I explored a relationship between rebound excitation and features of the entire motif. 

For the spectral analyses, I extracted features from sound analysis pro (SAP) and investigated their 

relationship to the average firing frequency and sag ratio of the neurons recorded from birds from 

the first and second design (no modified songs). A number of SAP features correlated with firing 

frequency and sag ratio, including pitch, frequency modulation, and goodness of pitch. Amplitude, 

amplitude modulation, and entropy were not correlated (Figure 2.17).  
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Notably, all features of song that showed a correlation with electrophysiological features are 

explained by the amount of harmonic stack vocalizations within the motif. Harmonic stacks are 

continuous spectrally invariant vocalizations. They have low frequency modulation and high 

goodness of pitch. This means that songs that include many harmonic stacks have lower average 

FM for the motif, and their longest harmonic stack is on average longer.  

Harmonic stacks also have low pitch relative to other syllable types, which results from 

biophysical constraints on peripheral song production mechanisms. We confirmed this 

independently by examining the pitch of harmonic stacks and other syllable types in a randomly 

chosen set of birds (N = 9) from the first two designs (Figure 2.18). Thus, if HVCX firing properties 

Figure 2.17. Correlations of spectral song features with HVCX IPS. Features of song extracted from SAP and plotted 
against the mean firing frequency and sag ratios of all neurons from each bird (blue points). 
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are correlated with temporal features of harmonic stacks (a property presumptively encoded in the 

forebrain), by the biophysical constraints they would also be correlated with song pitch. If, however, 

HVCX firing properties were encoding song pitch directly, they should not be correlated with 

temporal features of harmonic stacks.From this point, I focused the analysis of temporal features 

of HVCX IPs on harmonic stacks, the duration of the song motif, number of syllables, the duration 

of the longest syllables, and the longest duration harmonic stack in the motif of each bird (blue 

shaded regions, Figure 2.19). The duration of the longest harmonic stack varied over approximately 

5–fold (40 ms to 200 ms).  

 

 

 

 

 

Figure 2.18. Harmonic stacks have lower pitches than other syllable types. Average pitch (or fundamental 
frequency) of non-harmonic syllables and harmonic stacks for 9 randomly chosen birds’ songs.  
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Figure 2.19. Harmonic stacks reflect temporal structure. Example spectrograms from two different songs, one 
short (top panel) and one long (bottom panel) with their respective longest harmonic stacks denoted (blue 
shaded regions). 
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The mean sag ratio and firing frequency of the HVCX from each bird were positively 

correlated with the duration of the longest harmonic stack (Pearson’s R: 0.59 and 0.2, p values: 

0.0003 and 0.02; Figure 2.20) as well as the remainder of the motif (total motif duration – longest 

stack) (Pearson’s R: 0.38, p value: 0.03, Figure 2.20). Average HVCX membrane capacitance was 

inversely correlated with the duration of the longest harmonic stack of each bird (Pearson’s R: -

0.50, p value: 0.004, Figure 2.20). I also tested whether a relationship between sag ratio, firing 

frequency, and stack duration was present in the 18 birds with song data from our lab’s previous 

study (Daou and Margoliash, 2020) by looking at the modeled ionic conductances associated with 

firing frequency and sag (1/gSK and gH, respectively). There was a positive relationship between 

mean gH/gSK of each bird and the longest harmonic stack in those data as well, though it did not 

reach statistical significance with a linear regression (Pearson’s R: 0.42, p value: 0.08, Figure 2.21). 

One bird from those data however, had a harmonic stack of 11 ms (unusually short), and may be an 

outlier. Excluding that bird, the fit of the linear regression improves (Pearson’s R: 0.59 , p value: 

0.012). The results suggest the possibility that the duration of the longest stack was also correlated 

with the duration of the remainder of the motif. I confirmed this result for the 38 songs in my 

dataset (Pearson’s R: 0.77, p < 2-7), and further confirmed the result in a dataset of 52 songs from 

other labs (people.bu.edu/timothyg/song_website/index.html), which included zebra finch songs 

provided by Frederic Theunissen, Luke Remage-Healy, Kathy Nordeen, Ofer Tchernichoski, Sarah 

Bottjer, and Elizabeth Regan (Pearson’s R = 0.58, p < 9-6, Figure 2.22). Thus, zebra finches with 

longer songs tend to have longer harmonic stacks. Additionally, I found a tendency for the longest 

harmonic stack to appear near the end of the motif, with 78% of songs having their longest 

harmonic stack in the second half of the motif, and 55% of songs having the longest harmonic stack 

in the last third of the motif.   
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Figure 2.20. Features of rebound excitation relate to temporal song features. Scatter plots of mean 
analyzed parameters for all HVCX for each bird, plotted against temporal features of song (error bars are 
standard error of the mean). 
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I then leveraged the zebra finch’s ability for song learning to gain control over the songs the 

birds sang as adults. To do this I used a combination of live tutored birds (second design) and the 

instrumental learning protocol (third design) that allowed me to manipulate the songs used for 

tutoring (Figure 2.23). With this approach, I generated two groups of birds who sang nearly 

identical songs, except one group’s song includes an additional long harmonic stack as their last 

syllable (~100 ms) (song B, Figure 2.23). My aim here was to limit potential effects of spectral 

differences on intrinsic excitability. I found that HVCX neurons from birds who sang the unmodified 

song, which had a short harmonic stack and short overall duration had lower sag ratios and firing 

frequency (Figure 2.23, C, p values: 0.001 and 0.0001 respectively) when compared to those from 

birds who sang the modified song. Additionally, I find that though the membrane capacitance 

Figure 2.21. Revisiting data from Daou and Margoliash, 2020. Average conductance values for HCN 
channels and SK channels (plotted as gH divided by gSK) from modeled neurons from Daou and 
Margoliash, 2020, regressed on the duration of the longest harmonic stack of the corresponding 
birds’ songs. 
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trended towards smaller values for cells from the modified song group, it was not statistically 

significant (Figure 2.23, C, p = 0.08).  

 

 

 

 

 

Figure 2.22. Duration of song motif and longest harmonic stacks covary. Correlation between the duration of 
the longest harmonic stack and the remainder of the motif duration (motif minus longest stack) for two groups 
of songs: songs from my own work (green) and 52 songs from other labs (yellow). 
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Figure 2.23. Instrumental tutoring with modified songs changes HVCX IPS. A: Diagram of tutoring 
paradigm, depicting a juvenile who can pull on a string to get song playback (see methods in this chapter). 
Birds were tutored with either Song A or Song B (not both). B: Spectrograms of example motif from one 
bird from each group. C: Distributions (kernel density estimations) for all HVCX, grouped by song type, for 
evoked firing frequency, sag ratio, and membrane capacitance. 
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I also collected voltage-clamp data from four birds (20 neurons) to further evaluate the 

relationship between voltage sag and temporal features of song. Birds who sang longer songs had 

HVCX with larger inward currents at hyperpolarized potentials (Figure 2.24). Two of the four birds, 

L174 and L176, sang songs A and B respectively (Fig. 2.23, B). L176’s average inward currents were 

consistently greater than L174’s across all membrane potentials below -70 mV.  Two other birds, 

L89 (longest stack of 91 ms) and L148 (longest stack of 66ms) had greater inward current 

magnitudes. Notably, L148 who has the greatest evoked inward currents, has a total motif duration 

of 910 ms, while L89 has a motif duration of 738 ms. L176 came from the instrumental tutoring 

design in which birds heard playback of a short song with an added stack, and as a result, has the 

longest harmonic stack of the four birds (97 ms) but a short total motif duration (512 ms). 

 

 

Figure 2.24. Evoked inward currents relate to song duration. Current/voltage curve for HVCX from 4 birds, 
two of which sang the unmodified and modified songs from Figure 2.21: L174 (orange) and L176 (blue), 
respectively).  



62 
 

 
 In two birds (one neuron each) I blocked Ih with ZD7288 and produced current/voltage 

curves. I subtracted the remaining currents after Ih blockade from baseline to reveal the 

contribution of the HCN channel.  In Figure 2.25 I plot the Ih currents at various voltages for 

those two neurons, and show that the neuron from bird L176, who sang the modified song with a 

long harmonic, had larger Ih. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Song A 

Song B 

Figure 2.25. verified HCN currents for one cell from two birds. Current values shown are the baseline 
values with ZD7288 subtracted. The remaining HCN Current/voltage curve for one HVCX from two birds 
that sang the unmodified and modified songs from Figure 2.21: L174 (red) and L176 (blue), respectively).  
Each box and whisker plot represents every trial presented to the neuron. Diamonds represent trials with 
more than two standard deviations from the mean. 
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Discussion 
 

Reflections on Daou and Margoliash, 2020 
 

In my initial planning of these analyses, I anticipated taking a similar approach to Daou and 

Margoliash, 2020, and evaluate IPs based on modeled maximal ion channel conductances. This 

entails first fitting models to raw voltage traces by manually varying ionic conductance values in 

the model (gNa in equation 2, for example) until the model fits the real data and makes correct 

predictions of non-fitted traces. My preliminary analysis and exploration of my hand-fitted models, 

however, revealed that many local solutions were easy to find, but achieving a global minimum, 

‘good’, predictive fit was more challenging. Additionally, many parameters such as capacitance and 

time-step in the model significantly changed the output. This is not surprising, as capacitance has 

a measurable effect on neuron electrophysiology, and as such, HH models should capture that as 

well. I found that because I had recorded capacitance values in my dataset, I did not necessarily 

need to hold capacitance constant in the model. This realization emphasized the utility of the 

modeling approach, which in my perspective, is to be used as a tool to bring the real IPs into a space 

where they can be quantified and represented: Meaning that the modeled conductances are a 

reflection of the state of the model (and its non-varying parameters) and not absolute biological 

values. This evokes caution when interpreting the modeled neurons and their differences within 

the conductance space. Below I provide two examples of this from my own journey of discovery and 

interpretation of Daou and Margoliash, 2020. 

The first example is related to the interpretation of the results from their juvenile data. In 

their data, the within-bird similarity of HVCX IPs seen in adults is absent in juvenile birds. All HVCX 

modeled conductances from juvenile birds, instead, take up a common area in conductance space 

and show high within-bird variability. Compared to the adult space, however, the total juvenile 

conductance volume only takes up a fraction of the volume. From this, the interpretation that arose 
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suggested that over the course of development, juvenile HVCX IPs clustered and migrated beyond 

the limits of the juvenile conductance space to some common, song learning depended, solution. 

This interpretation is valid given the approach, yet I believe that a different interpretation evaded 

observation as a result of the constraints of the HH model. Another paper by Ross et al., 2017, 

reported on IPs of multiple classes of HVC neurons at various developmental timepoints. Ross et 

al. used a similar modeling approach but also reported on features of the IPs evaluated directly from 

the voltage traces. These raw features included estimates for the membrane capacitance and 

membrane resistance. The membrane capacitance of HVCX from juveniles during early learning 

(DPH ~50) was double that of their adult counterpart (after DPH 90). Now, consider the effect that 

capacitance has on the magnitude of modeled conductances in the HH model: As capacitance 

increases, larger ionic currents are necessary to produce an equivalent voltage response, meaning 

that for a model neuron with a 100 pF capacitance to have the same spike amplitude as a 50 pF 

neuron, it would need approximately twice the number of voltage gated sodium channels (max gNa 

in the model). Taking this into account, it is difficult to analyze the juvenile data in the same 

conductance space as the adult data, and instead suggests that if the capacitance had also varied in 

the model that the juvenile space would not be as restricted. 

The second is related to a control experiment done in Daou and Margoliash, 2020, in which 

all synaptic activity was blocked to better estimate IPs without contamination from network 

activity. The observed evoked responses to injected currents in the synaptic blocking condition 

were more excitable when compared to the intact recordings. This increase in excitability was 

manifested in the model as a decrease in the SK channel conductance, which as I described above, 

has an inverse relationship with neuronal excitability. In this case, the SK conductance was unlikely 

to have changed. Thusly, they interpreted that blocking synaptic activity reduced tonic inhibition 

onto the neurons and resulted in the only solution the model could reflect, which was a lowering 
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of the SK currents. This is a plausible interpretation. Yet, a similar increase in excitability would be 

expected if there had been an increase in membrane resistance (Ohm’s Law), which would result 

in a greater depolarized voltage. Such an increase in membrane resistance is expected from closing 

ligand gated channels at synapses, and as a such, the increase in excitability is ambiguous: The 

effects of membrane resistance and decreased inhibition on the cell cannot be separated.  

These examples encapsulate the limitations of modeling generally (not specifically those of 

Daou and Margoliash, 2020) and the reasons I shifted away from a pure modeling approach to one 

that focused on the raw features of the electrophysiology with modeling as additional explorative 

tool. Hence, in this thesis, I limit my use of HH modeling to simulations of specific hypotheses of 

network architecture, and all other data chapters that address IPs focus on the raw data.  

Following this approach, my bootstrap analysis above (firing frequency and sag ratio) 

supports the finding of within-bird IP uniformity of the HVCX population (Daou and Margoliash, 

2020). Furthermore, I wanted to address a possible concern that the within-bird IP similarity arose 

from features of the recordings on the day of the experiment. I evaluated this hypothesis by doing 

the same bootstrapping procedure on the holding current for each neuron. The holding current is 

the current injected to hold a neuron at –70 mV, which is related to the quality of the seal and 

break-in, as well as ion channels open at rest. The real within-bird variance of holding current fell 

within the 95% confident interval of the bootstrapped distribution. This suggests that recording 

quality, as reflected by holding current, does not explain uniformity of IPs within birds. Lastly, the 

mixed effect linear regression models also support the view that song learning plays a strong role 

in IP expression and that, at least in my data with my analysis, parentage does not have a statistically 

significant effect on firing frequency and sag ratio of HVCX.  
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Activity dependent changes to excitability in vitro 
 

The slow decrease of evoked firing frequency in my recordings was a concern over most of 

the data collection process, one that I tried to mitigate by limiting the analysis to the early portions 

of each whole-cell recording. This arose from conversations with Dan Margoliash and Arij Daou, 

who raised that such rapid rundown of spiking likely represented problems with the quality of the 

recordings. Given the experiments and data in this chapter, it seems more likely (but it could be 

related to both) that there is some effect of stimulation on ion channel conductances in the neuron 

and not recording quality (likely K+ channels, given the hyperpolarization and appearance of an 

outward current at -70 mV). Whether such an effect is a result of the intracellular pipette solution 

lacking some critical molecule (like cyclic AMP), or whether it’s a broader feature of HVC or bird 

neurons in general, remains to be explored.  

If the observed decrease in excitability is indeed a biological phenomenon, however, it begs 

the question: what is its function? In vivo, when zebra finches sing, the HVCX neurons 

hyperpolarize (below -90 mV) and fire sparsely. HVC sparse firing during singing is a canonical 

feature of the nucleus and even outside of singing HVC projection neurons are not tonically active. 

It is curious that after stimulation there seems to be a slight increase in evoked inward currents in 

HVCX at -100 mV. One possibility is that this plasticity mechanism works to maintain sparse firing, 

while preserving rebound excitation in HVCX neurons. This could be a useful feature during 

development, when the network is plastic and overexcitation may be more common. In this 

speculative view, activity-dependent intrinsic plasticity in HVCX could prevent runaway oscillations 

in a nucleus with strong internal dynamics, which would not be a concern shared by the HVCRA 

portion of the network because of the remarkably high spike thresholds. 

 



67 
 

HVCX IPs are learned and related to temporal features song. 
 

The differences in IPs between neuron classes in HVC are stark. Those differences are likely 

reflective of their functional properties in the network. HVCRA are transient in their spiking and 

have high thresholds: features that make them well-suited for onset encoding and precise burst 

timing. In vivo, HVCRA become significantly depolarized when the bird starts to sing, which 

facilitates bursting by bringing their RMP closer to their action potential thresholds. 

We can learn from the intuition gained from this interpretation of the HVCRA IPs, as they 

likely facilitate their in vivo function (since we don’t yet know for certain). A similar perspective 

arises for HVCX and raises a question about the role of the hyperpolarization seen in HVCX in vivo 

when birds sing. This question was the initial motivation behind my focus on the rebound 

excitation of the HVCX. The in vivo hyperpolarization, together with their ability to fire post-

inhibitory rebound spikes, means that at least some component of their bursts during singing 

involves rebound excitation. Additionally, one of the curiosities that drives my thesis work is the 

mystery of the function of HVCX neurons in the song system.  

Because HVC has often been associated with timing (sometimes analogized to the 

conductor of song), and there is vigorous discussion of whether HVC projection neurons encode 

muscle gestures or time itself, focusing on temporal features of song seemed important. Identifying 

which aspects of time varying spectral features to analyze was a challenge. Because of that, the non-

varying vocalizations made up harmonic frequencies caught my attention. In the gesture trajectory 

extrema model (GTE) of HVC (Amador et al., 2013), harmonic stacks contain no GTEs and therefore 

no muscle transitions. This means that the longest harmonic stacks represent the longest period 

without a new motor command, or without any spectral point of reference, and as such would 

constitute a significant challenge in temporal integration. To summarize this point in a simpler 

way: How does HVC know how long a harmonic stack should be, and when it needs to end? 
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Considering that in my dataset the longest harmonic stacks were upwards of 200ms, this is not a 

trivial task for the network, or individual HVCX. 

I found that the rebound excitability of HVCX neurons was related to the total duration of 

the motif and the duration of the longest harmonic stack. In general, the longer the song, the more 

moments of low frequency modulation, and the more rebound excitation observed in HVCX 

neurons. The correlations themselves are not perfect (they have a fair amount of noise). The region 

of short song duration (and short harmonic stacks) had particularly high variance for sag ratio and 

firing frequency, but as song durations increased there were fewer birds with low amounts of sag 

ratios or low firing frequencies. One possible explanation for this is that longer songs are limiting 

the IPs of HVCX, while shorter songs are not as constraining. Strong evidence of the validity of this 

correlation was the increased rebound excitability of HVCX from the 5 birds who learned a modified 

song (100 ms) compared to birds who sang an nearly identical song. Interestingly, the original stack 

included in the tutor song was 220 ms in duration, yet every bird shortened it to ~100 ms, an effect 

that merits further investigation through in vivo electrophysiological recordings in juvenile birds 

as they learn the modified song. 
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CHAPTER 3 

MODELING HVCX NEURONS NETWORK PROPERTIES 
 

Introduction: A coordinated orchestra keeps time 
 

Spike rebound excitation is a mechanism that integrates intrinsic properties of a neuron 

with network properties (the timing of release from inhibition). My results from Chapter 2 

motivated a modeling effort to construct a network model of HVC that utilizes rebound excitation 

to capture the in vivo properties of HVCX. The model assumes that HVCX neurons integrate 

subthreshold activity over long intervals (> 100ms) while also being sensitive to sequences of song 

elements, giving rise to syllable–sequence dependent sparse bursting that has been observed in vivo 

for presumptive HVCX neurons (see section on sequence selectivity of the introductory chapter). I 

hypothesize that Ih and rebound excitation are the intrinsic components of the mechanism that 

gives rise to sequence selectivity. 

I conceptualized HVCX as coincidence detectors of any two events, which define an interval 

(interval encoders). As also independently hypothesized by Margoliash in 1983, the first event 

depends on inhibition, and the second on excitation. In this view, an HVCX neuron encodes the 

occurrence of two events: the first event is a release from inhibition which releases Ih as a 

depolarizing current (manifested as recovery from rebound in vitro), and the second is an excitatory 

synaptic event. Each HVCX would have an integration window defined by the magnitude of rebound 

excitation, which we can visualize by looking at its rebound area (blue shaded region, Figure 3.1). 

The resulting curve determines a window in time when the first event and a second subthreshold 

excitatory one (green trace to the right of downward green arrow, Figure 3.1) can sum. If the events 

are sufficiently distant in time no suprathreshold spike occurs but if the events occur in close 
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temporal proximity, then they sum to produce an action potential (Figure 3.1, left and right panels, 

respectively). In this framework, neurons with different rebound excitability can have wide or 

narrow integration windows (Figure 3.2, example traces from two neurons in the left panel). We 

can investigate this integration window in vitro by varying the delay between release from 

hyperpolarizing current injection and subsequent small depolarizing current injection to generate 

a distribution of delays which produce action potentials (Figure 3.2, right panel). 

 

 

Figure 3.1. HVCX can function as coincidence detectors in vitro. Traces from a neuron that received a 
hyperpolarizing current followed by a small depolarizing current at various delays. Purple shows the 
moment where voltage passes above the pre-inhibition baseline. Green arrow shows the moment of 
depolarizing current injection. Left panel shows an example subthreshold response to both events 
(responses colored in the same way as the arrows). Right panel shows a suprathreshold response to a 
shorter delay. 
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Modeling methods and results 
 

I constructed a network where each cell is modeled as a Hodgkin-Huxley neuron with 

intrinsic and in vitro bursting properties representative of major HVC cell classes (HVCRA, HVCint, 

HVCX). I used the HH model (Equations 1 and 2), where each ion current for each class of neurons 

was pharmacologically confirmed (Daou et al., 2013; Daou & Margoliash 2020). Additional 

differential equations for excitatory and inhibitory synapses were included to link HH modeled 

neurons in the model (AMPA, NMDA, GABAA) (Park et al., 2014). HVCX were modeled with modest 

values gh (12 nS / 100 pF) and gSK (7 nS / 100 pF), while HVCRA had high gSK (15 nS / 50 pF) to reflect 

their high spike threshold. HVCint had modest gh (3 nS) and either modest (orange trace, Figure 3.3, 

2 nS ) or low gSK (yellow trace, Figure 3.3, 1 nS). Tonic interneurons (orange) varied in capacitance 

from 30 pF to 80 pF to add variance in spike timing, while phasic inter neurons (yellow) had a 

capacitance of 10 pF. An initial pass helped determine values of gH and synaptic strength that 

Figure 3.2. Rebound excitation shifts the range of integration. Traces from two HVCX neurons that received 
the same protocol depicted in Figure 3.1. The blue neuron elicited low sag and rebound, while the red one 
elicited large sag and rebound. The right panel shows the distributions of delays that produced at least one 
spike for both neurons. 
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produced coincidence detection in the model (in the same way as recorded neurons do in Figure 

3.2). 

In the model, HVCX behave as interval detectors, and have two distinct responses to the 

onset and offset of said intervals. Below I describe how the first response, and underlying 

mechanism, relies on a tri-synaptic connection from an HVCRA to an HVCX, while the second 

(offset) response is a simple monosynaptic excitatory event. The tri-synaptic connection is 

implemented by connecting HVCRA to a population of tonically active interneurons, connecting the 

first population of interneurons to a second population of interneurons, and connecting the second 

population of interneurons to HVCX (Figure 3.3). The tonically active interneurons increase their 

firing rate at song onset. Using this basic structure described above, the model can produce a 

repolarization window (beginning at release of inhibition, purple arrow, Figure 3.3) whose shape, 

timing, and magnitude are related to the Ih current (blue shaded region and green bracket, Figure 

3.3). The description in Figure 3.3 is foundational for the model and is built upon in later figures. 

 One constraint on network architecture was to implement different sub-threshold changes 

that occur during singing: depolarization for HVCRA, and hyperpolarization for HVCX. This was 

achieved by connecting every HVCX to the population of tonically active GABAergic interneurons 

(orange tonic interneuron population, Figure 3.3). This increases the interneuron firing rate at song 

onset, hyperpolarizing the HVCX. I coded the increased background firing of the tonic interneurons 

as an increased square depolarizing current that spanned the modeled-motif duration. Similarly, 

an increase in input current was given to HVCRA to simulate the depolarization seen at song onset. 

Importantly, these constraints serve not only satisfy the in vivo network conditions during singing, 

but also define the mechanism of coincidence detection within HVCX which I describe below. The 

input current into this tonic interneuron included stochastic noise to make the traces less 
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deterministic and appear biological. Only the tonic interneuron included noise, however, because 

the additional noise also increased computational time. 

The circuitry described so far represents the base components that reproduce the 

fundamental network environment in which HVCX neurons burst. The tonic firing interneuron 

(orange neuron, Figure 3.3) causes the necessary hyperpolarization of the HVCX neuron, the phasic 

interneuron (yellow trace, Figure 3.3) then causes a gap in that hyperpolarization, which is a critical 

component of the rebound excitation mechanism: the two interneuron classes form a tri-synaptic 

connection from an HVCRA (in this case) and the HVCX and define the detection of first event of an 

interval. In the case of Figure 3.3, the first event is the spike of the HVCRA. Using this basic structure, 

the model can produce a repolarization window (beginning at release of inhibition, purple arrow, 

Figure 3.3) whose shape, timing, and magnitude are related to the Ih current (blue shaded region 

and green bracket, Figure 3.3). The description in Figure 3.3 is foundational for the model and is 

built upon in later figures. 

 

𝑑𝑉

𝑑𝑡
 =  

(−𝐼𝑁𝑎−𝐼𝐾 − 𝐼𝐶𝑎−𝐿 − 𝐼𝐶𝑎−𝑇 − 𝐼𝑆𝐾 − 𝐼ℎ − 𝐼𝐴 − 𝐼𝐿 + 𝐼𝑖𝑛𝑗(𝑡) )

𝐶𝑚
 

 
Equation 1. Hodgkin-Huxley single compartment neuron, adapted from Daou et al. 2013. Currents included: 

Voltage gated sodium (INa), Voltage gated potassium (IK), L-type calcium channel (ICa-L), low threshold 
activated T type calcium channel (ICa-T), small conductance calcium dependent potassium channel (ISK), 

hyperpolarization activated cyclic nucleotide channel (Ih), A-type potassium channel (IA), a leak current (IL) 
and any additional injected current provided, typically to model experimental current injections (Iinj). 

 
𝐼𝑁𝑎 = 𝑔𝑁𝑎𝑚3

∞(𝑉)ℎ(𝑉 − 𝑉𝑁𝑎) 
 

Equation 2. Example of ionic current equation for voltage gated sodium channel. The equation includes 
terms for maximal channel conductance (gNa), activation parameter (m), neuron voltage (V), inactivation 

parameter (h), and the driving force as the neuron voltage (V) minus the reversal potential of the ion (VNa) 
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Equations 3-5. Example of the set of equations used to model ligand gated ion channels. Within the model, 
the equations used included AMPA, NMDA, and GABAA and all depend on the pre-synaptic voltage. Tmax 
represents the total maximum transmission which is related to the presynaptic voltage (Vpre) and the voltage 
for synaptic release (VT). The current provided by the receptor (IAMPA) depends on the maximal conductance 
(gAMPA) how much release there is at the synapse (SAMPA) and the driving force, modeled as the neuron’s 
voltage minus the reversal potential of the channel (V-VAMPA). The amount of synaptic transmission is 
determnined by T. Additional constants can be found along with the code on the Margoliash lab github page.  

 

𝑑sAMPA

dt
= arAMPAሾTሿ(1 − sAMPA) − adAMPAsAMPA 

𝐼AMPA = gAMPAsAMPA(V − VAMPA) 
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Given these constraints, I first investigated model architectures where bursts from a 

backbone of HVCRA initiate a process generating bursts in HVCX through tri-synaptic inhibitory 

connections, as described in Figure 3.3, and can be incorporated into a larger network comprising 

multiple neurons (Figure 3.4, left side). A tri-synaptic inhibitory connection exists between an 

HVCRA (RA1) and the tonic interneuron synapsing onto an HVCX (X1). Then, another RA projector 

that bursts later in time (RA2) also connects to X1 via an excitatory synapse. This basic module 

produces a release from inhibition at one timepoint (RA1) followed by excitation at another 

Figure 3.3. The fundamental circuit module of my Hodgkin-Huxley network model. Illustration of the 
model’s synaptic architecture (every trace arises from a Hodgkin-Huxley model): Synaptic connections 
progress unidirectionally from bottom to top. The first event is a spike within an HVCRA neuron (black, 
bottom panel), which forms an excitatory synapse (blue arrow) onto a first interneuron population 
(yellow).  The yellow interneuron forms an inhibitory connection (yellow, square arrowhead) onto a 
second interneuron (orange). The orange interneuron forms an inhibitory synapse with the HVCX 
neuron (green, top panel). This synaptic organization gives rise to a momentary release from inhibition 
(blue shaded region) in the HVCX neuron starting at the time of the spike in the HVCRA neuron (black 
trace, and purple arrow in top trace). Within this window of time where the neuron is relatively more 
depolarized (green bracket and arrow) additional inputs can more easily give rise to one or a burst of 
spikes. 

HVCX 

INTT 

INTP 

HVCRA 
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timepoint (RA2) resulting in X1 spiking only if RA1 is followed by RA2 at a certain delay. The 

duration and shape of the permissive window created by the gap in inhibition is determined in part 

by the magnitude of Ih and the return of inhibition (HVCX model trace in top panel of Figure 3.3). 

A module consists of one tri-synaptic inhibitory connection and a monosynaptic excitatory 

connection onto the same HVCX. These can originate from HVCRA neurons, but also from other 

HVCX neurons wired as described above (Figure 3.4, solid black box). This results in a series of 

HVCX with nested dependencies that encode increasingly longer intervals with sequence specificity. 

For example, neuron 4 in Figure 3.4, encodes intervals 1, 2, and 3 (also shown as the pink interval 

numbered 4 within the solid black box in Figure 3.4). Finally, I chose timepoints that create intervals 

within a two-syllable segment of song and wired them in the modular fashion described here and 

is depicted in the right half of figure 3.4. The resulting network’s behavior includes a neuron which 

only spikes after the correct sequence of song associated HVCRA bursts, with their appropriate 

timing. Figure 3.5 shows three such HVCX neurons (green traces) and their corresponding-colored 

intervals from Figure 3.4. The behavior of these three neurons relies on post-inhibitory rebound. 
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Figure 3.4. A network model uses intrinsic rebound excitation to detect sequences. Using the basic module 
from figure 3.3, I wire a backbone sequence of excitatory neurons (black) that burst at relative time points 
chosen from a bird’s song (spectrogram in the top right, with vertical lines that mark timepoints in song). 
Intervals defined by timing differences in backbone bursts are depicted by colored rectangles. A three internal 
section of the model is shown on the left (solid black box). A simplified view of this is shown in the dashed box 
on the right.  

1 2 
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Figure 3.5. Example traces of sequence selective model neurons. Modeled traces from neurons in network 
depicted in Figure 3.4, which participate in the representation of intervals 1 (teal), 2 (green) and 3 (purple). 
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Predictions of the model 
 

The architecture of the model was developed with a view of the firing properties of HVC neurons, 

both in vitro and in vivo, and with a goal to embracing the integration properties of HVCX neurons 

to implement interval detection. Because the behavior of the model arises from these many 

constraints, it is important to point out which aspects arise directly from model fitting, and which 

are unanticipated ways in which the model fits existing data and makes predictions.  

 Only the coincidence detection, dependence on rebound excitation and song-induced 

hyperpolarization of HVCX were used to constrain the model. As long as the modeled HVCX 

encoded an onset and offset utilizing the mechanism described above, it was considered successful. 

Additional structure, like the nested dependencies, arose from evaluations of this basic mechanism. 

This then leaves the unexpected ways in which the model fits existing data. 

 For one, the nested structure meant that neurons that encode long intervals would inherit 

variations in timing from previous neurons, and therefore suggests that neurons that are selective 

to long song intervals would tolerate more temporal variation and integrate further out in time. 

This behavior was seen in Margoliash 1983, Lewicki 1995 and 1996, and Margoliash and Fortune, 

1992. For example, consecutive whistles of white crowned sparrows could still be detected by HVC 

neurons as the gap between them increased (though decreasing in detectability) (Margoliash, 1893). 

This prediction could be tested with song playback experiments where the gap between two 

syllables is increased until neurons sensitive to their playback no longer detect the sequence. My 

model predicts that birds with longer songs should be able to detect sequences with longer gaps.  

Second, as I elaborate on in the general discussion, the modular structure of the model 

means that each neuron can encode multiple intervals, which can give rise to burst structure in the 
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network activity that relates limits in the inter-burst intervals to temporal features of song (i.e., the 

duration of the motif, or longest harmonic stacks). 

Related to this second point, my model only shows single bursting neurons and hence the 

interneuron populations within it behave as perfectly tonic (with one gap) or perfectly phasic. In 

vivo, no interneuron behaves this way. Yet if each HVCX encodes multiple non-overlapping 

intervals, then you could get interneuron bursting that is in vivo-like, with multiple gaps and bursts 

within a single interneuron. From this, the model predicts that the gaps in interneuron bursting 

are related to the interval durations encoded by HVCX and relate to temporal features of song. This 

hypothesis is testable with existing datasets and remains to be addressed. 

Finally, the model I present in Figure 3.4 (with only single bursting neurons) predicts that 

neurons that encode long intervals are far less common than short interval encoding neurons. This 

is actually inconsistent with experimental data which shows that many (most) HVCX neurons are 

sensitive to large portions of song, and the most common number of bursts of HVCX neurons is 

one, which in my model would predict to be short. I address this point in the general discussion, 

where I describe how multiple bursts are incorporated into the model. 

 

 

Discussion 
 

The model behaves as designed, and so it is not surprising that it succeeds in producing 

neurons that encode sequences (that was one constraint). Yet, the model does this while also 

reproducing many of the known network properties of HVCX, which adds to its biological 

plausibility. Even so, modeling approaches like this one include assumptions and shortcuts to 

approximate biology, and as such only serve to generate hypotheses to then test experimentally. 

One possible outcome of the modeling approach could have been a failure to reproduce the 

coincidence detection behavior with rebound excitation. In that case, I would have pursued a 
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different mechanism and it would have separated this chapter from Chapter 2, ideologically. 

Instead, the model links the IPs result from Chapter 2 and acts as a hypothesis, predicting a tri-

synaptic connection between neurons who burst early in a syllable with neurons who burst later or 

in the next syllable. In Chapter 5, I describe experiments that would provide the necessary 

behavioral snapshot within HVC network architecture to test this prediction. 

Next, I would like to address two caveats in my model. First, the generation of the song 

induced network environment, i.e., the hyperpolarization of HVCX, and depolarization of HVCRA 

and HVCint: I found that the network architecture of the model could support a less artificial 

mechanism for generating these subthreshold environments by connecting preceding HVCRA 

neurons to the HVCint tonic population, such that each HVCRA burst would cause depolarization in 

the interneurons and thus a hyperpolarization of the HVCX. This, however, required 3 additional 

differential equations per modeled HVCRA and added approximately 20 hours per simulation. To 

minimize the runtime, I used the shorthand described above and simply modeled a square pulse of 

depolarization onto the HVCRA and tonic interneuron populations which defined song onset. 

Second, for a similar reason, I only ran portions of the network at a time, which constituted 

the basic module. Meaning, once a part of the simulation that ended at an HVCX modeled neuron, 

I would stop the simulation and run the next portion using the spike times of the previous section 

as input times. This approach saved hundreds of computation hours, which would be required to 

run the network of 44 neurons (~440 differential equations, with added stochastic noise, which are 

solved simultaneously at each timepoint). Below, in the general discussion chapter, I describe 

additional HVC burst structure replicated by the model which was unexpected and not a result of 

specifically restricting the underlying mechanism. 

Finally, I would like to simply list all that the model accomplishes: it incorporates IPs (and 

their uniformity within HVC), utilizes HVCX rebound excitation, achieves long integration times, 
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replicates the network subthreshold conditions, achieves sequence selectivity, and explains how 

the longest harmonic stack in a song can be related to rebound excitation in HVCX (because width 

of integration windows are related to Ih). 
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CHAPTER 4 

REPLICATION OF SONGBIRD METRONOMICS 
 
 

Introduction 
 

Coordinated behaviors require precise temporal representation and prediction across 

multiple systems and organisms. This challenge closely interacts with ideas of rhythm and 

entrainment, which are crucial for all social behaviors. While feedback is well understood to be 

necessary for assessment error and behavioral adjustment behaviors, we can also appreciate that 

errors can rely on prediction. This reliance on feedback, which is often delayed in time, and its 

integration on a moment-by-moment basis, raises an interesting challenge for neural circuits that 

are involved in social behaviors, especially those that include vocal production. Song production 

and perception of songbirds provides a convenient model system to study how neural circuits 

overcome such challenges to produce highly precise coordinated behaviors, as with call duetting 

and song-call interactions. Importantly, previous results suggest that internal temporal structure 

in these behaviors exists and may provide insight into potential solutions to self-motor-output 

coordination with sensory feedback, and with the behavior of other individuals.  

Replication is a critical, yet often underappreciated part of doing science. When we 

consolidate knowledge to produce models of systems and test assumptions, we incorporate work 

other than our own and find ourselves first validating methods and results. These efforts regularly 

go unreported or unappreciated. I found myself in such a position when interpreting and discussing 

possible implications of prior work from the study of birdsong.  

The focus of this chapter is to replicate the findings from Norton and Scharff, 2016 (Guess 

and Test, or GAT method). Their results showed that the isochronous pulse rate (in Hertz) that 
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best matched syllable onset times of a particular male zebra finch’s song varied across individual 

songs. Importantly, the generated ‘best’ pulse rate’s additional pulses (pulse times that occur 

outside syllable onsets used to determine the best pulse rate) aligned with other salient moments 

in song. This result caught my interest as internal structure in song has strong implications for 

precise motor-control in neural circuits and in vocal coordination during social interactions. 

Temporal structure that spans the entire motif could represent global features of song and tie 

together results about the uniformity of intrinsic neuronal excitability in HVC (Daou and 

Margoliash, 2020). 

Here, I reproduce findings showing adherence to an isochronous pulse in male zebra finch 

song and expand on the discussion of the results. Additionally, I describe results showing structure 

in features of duration within song of male zebra finches.  

 

 

Methods 
 
 Syllable onset times were used to define timepoints of interest, which the algorithm then 

matched by creating isochronous pulse rates (timepoints spaced equally in time) and finding the 

rate that minimized the root mean squared error (RMSE). The total range of rates tested was 

between 1 and 100 Hz, separated by 0.01 Hz (9900 total possible pulse rates). 

 A random array of numbers whose range extended up to the maximum timepoint of the 

onsets provided (last syllable onset) was then generated. Any array that included fewer numbers 

than the number of true syllable onsets was discarded. Each remaining pulse rate was then phase 

shifted by 1 ms until the pulses were 270 degrees out of phase and then the RMSE was calculated 

for each (a maximum of 819,100 possible combinations). The RMSE value was multiplied by the 

pulse rate to punish high pulse rates with a higher likelihood of finding matches. The code for this 
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can be found in the Margoliash Lab Github page (GAT replication). These methods were adapted 

from, and intend to duplicate, the descriptions in Norton and Scharff, 2016. 

 

Replication 
 

The output of the algorithm returns a single pulse rate for which some but not all of its 

pulse times fit the syllable onset times with the smallest RMSE. An example of this for one song is 

shown in figure 4.1, where the red pulses show the syllable onset times, the blue pulses show the 

timepoints provided by the algorithm, and the black pulses underneath represent all of the pulses 

for the best pulse rate, in this case 9.83 Hz. Qualitatively, some of these extra pulses happen to fall 

at spectral transition points of the song (black dashed lines). The RMSE values by pulse rate and 

phase shift are shown in figure 4.2. These are the fundamental outputs reported in Norton and 

Scharff, 2016. 

 

Discussion 
 
Scientific works that aim to replicate go underreported, and yet we all rely on them in our own 

work to validate or push forward new thinking. I as well as others in the Margoliash lab found 

ourselves in such a position when discussing the results from Norton and Scharff, 2016. For example, 

Andrew Savoy expressed interest in the internal rhythm of song and how its perception may 

contribute to female choice. Together with Savoy, I ventured to replicate the ‘metronomics’ method 

described in Norton and Scharff, 2016, with nothing more than their descriptions in their methods. 

For my own work, I think this methodology may have provided additional insight, given that I also 

found internal structure within the motif (i.e., long songs tended to have long stacks). Future 

analyses using GAT may identify additional intervals (beyond the longest stack) within song that 
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relate to rebound excitation of HVCX. Ultimately, I did not finish pursuing my interests using the 

GAT tool but others in the Margoliash lab may. 

 

 

 

 

 

Figure 4.1. Replication of the guess and test method (GAT). An example spectrogram from which onset 
timepoints (red lines) were used to run the GAT algorithm. The resulting best pulse times are shown in blue, 
and the rest of the pulses are shown in black as tick marks below the spectrogram. Dotted lines are additional 
pulse times which qualitatively corresponded to spectral transitions in the song. 
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Figure 4.2. Root mean squared error summary plots for one song. All pulse rates searched by the GAT 
method (top panel) as well as phase shifts in degrees (bottom panel) with their corresponding RMSEs. The 
best solution (least RMSE) in marked by a red circle (top panel). 
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CHAPTER 5 

SEEING SONG AND OTHER FUTURE DIRECTIONS 
 
 

Introduction 

Central to neuroscience is the pursuit of a rich understanding of the brain at many levels of 

analysis and time scales, then combine them into a comprehensive model of structure, function, 

and behavior. This pursuit has greatly benefited from focusing on model organisms that champion 

profound natural abilities. Zebra finches learn their song during a sensorimotor critical period 

requiring practice and error correction that results in highly stereotyped song renditions (vary by 

less than 5% in timing and spectral similarity) made up of sequential syllables, which provides a 

convenient model behavior to study. In the end of my graduate studies, I proposed and began work 

on constructing a network model that will tie cellular functional properties and network structure 

directly to individualized behavior. The novelty of my proposal was the aim to label syllable-specific 

neurons in HVC for multiple syllables during singing. In addition, I would perform extracellular 

recordings in vivo to characterize network activity, and patch in vitro to characterize membrane 

properties and connectivity between labeled neurons.      

 To label multiple populations of neurons with temporal resolution of terns of milliseconds, 

I proposed to use the neural activity reporter CaMPARI2. CaMPARI2 fluoresces green at baseline 

and in the presence of UV light and high levels of calcium (proxy for activation) photoconverts to 

red. The activity dependent conversion can last weeks, and allows for selecting which moments of 

behavior to label with concomitant illumination with UV light. Thus, the red-green ratio of labeled 

neurons is a readout of activation, e.g., a neuron that fires 100 UV-illuminated bursts should have 

twice the red:green ratio of a neuron that received only 50 UV paired bursts. 
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Methods 

I tested these ideas in neurons in brain slices where I observed gradual increases in 

red:green ratios with successive combined stimulations with current and UV light. I was not 

successful in photoconverting neurons in vivo in sleeping birds during acute experiments. During 

those experiments, I played birds’ song (BOS) to them while driving UV illumination in HVC via an 

optic cannula with a diffuser tip and simultaneously recording extracellularly from HVC (Figure 

5.1). 

 

 

 

 

 

 

 

 

Results 

One major component of this proposal was the use of viral tools. In the latter portion of my 

PhD, I piloted experiments using viruses to express eGFP for tracing (Figure 5.2, left panel), 

Figure 5.1. Setup for CaMPARI2 photoconversion during song playback. On the left is a 
picture of the setup without a bird attached, and on the right one of a sleeping bird 
during an experiment. 
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GCaMP6f for calcium imaging, and the activity reporter CaMPARI2 (mentioned here). I was able to 

get good expression of CaMPARI2 within nucleus HVC after waiting 4-6 weeks (Figure 5.2, right 

panel). I then patched a small number of green fluorescing cells in-vitro and stimulated them to 

fire bursts that coincided with UV light to partly convert them to red (one example in Figure 5.3). 

The photoconvertion I observed in slice was gradual and related to the number of stimulations. 

    

 

 

 

 

 

 

 

 

Though I was unable to achieve in vivo CaMPARI2 photoconversion, in the process of 

performing experiments in a sleeping bird, I noticed interesting structure in the local field potential 

(LFP) which predicted the occurrence of successful BOS responses in HVC. I saw this structure in 

the same bird in two separate experiments and used the observation to limit UV illumination only 

to trials where BOS response was expected (three or more large slow deflections in the unfiltered 

Figure 5.2. Examples of viral expression. A picture of HVC neurons expressing eGFP (green, left 
panel), and another of HVC neurons expressing CaMPARI2 (greyscale, right panel). 
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extracellular traces). I did this by manually unplugging the cable that delivered the TTL pulse to 

the LED driver while watching the LFP to predict trials. Out of the 25 trials where the LED was 

active, only 2 failed. 

 

 

 

 

 

 

 

 

 

 

Discussion 

Studying how songbirds produce songs has provided significant insights into how 

specialized brain areas produce precisely stereotyped behavior that remains stable over a lifetime. 

However, analyses of the relationship of networks of neurons to behavior in the song system have 

Figure 5.3. In vitro CaMPARI2 photoconversion. Red and green signal from one neuron expressing 
CaMPARI2 before (left column) and after (right column) 2 minutes of electrical and UV light stimulation 
in vitro. 
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largely focused on characterizing circuit structure averaged across many individuals or over entire 

songs. While valuable, such data can miss the contributions of individual variability on network 

structure. I believe that the birdsong community, especially those who study singing in zebra 

finches, are now at a point where enough is known about the overall architecture of the song system 

to focus primarily on behaviorally relevant microcircuits. For example, experiments that leverage 

calcium imaging to identify circuit motifs for different syllables, activity dependent labeling, or 

optogenetic approaches, are likely to provide the next great strides in this system. Many of the 

current outstanding questions in the study of motor control in zebra finches require a shift toward 

studying sub-circuitry at behaviorally relevant timescales. Which neurons within HVC receive 

inputs from thalamic nucleus Uva? How does activity propagate through HVCRA neurons during 

syllable transitions and how do they interact with HVCX neurons that participate in the same or 

different syllables? These are the kinds of questions that a tool like CaMPARI2 helps address. 

Particularly relevant to this thesis, are experiments that can address the network model proposed 

in Chapter 3. Currently, the proposed connections between classes of neurons have been shown to 

exist (Monney and Prather, 2005), but that alone is insufficient evidence in the support of my 

coincidence detection model. To test the existence of the network architecture from Chapter 3, we 

would need to first label neurons at two timepoints during singing and then look for the specific 

proposed microcircuit in this context. Specifically, whether neurons who burst earlier in song tend 

to form disynaptic inhibitory connections with HVCX neurons who burst later in song, while HVCX 

neurons tend to receive monosynaptic excitatory connections from neurons who burst at the same 

time during song. Using CaMPARI2 to label specific neural ensembles, would provide the tool 

required to test this specific hypothesis.  
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CHAPTER 6 

GENERAL DISCUSSION 
 
 

The first sets of experiments to describe short-term (Stevens and Wang, 1995) and long-

term plasticity (Bliss and Collingridge, 1993) at synapses were done in brain slices (facilitation and 

depression). In the same way, the fundamental mechanisms of intrinsic plasticity, i.e., plasticity of 

functional properties that exclude synapses, have been investigated in vitro (Daoudal and Debanne, 

2003; Zhang and Linden, 2003. Much of the insight gained from in vitro work arises from 

manipulations and experiences during behavior. More recent reports have started to probe intrinsic 

plasticity in vivo (Mahon and Charpier, 2012) and are providing a more comprehensive view of 

neuronal function that incorporates plasticity at synapses, dendrites, and the whole neuron: a 

neuron centric view (Titley et al.., 2017). 

Neuronal excitability is plastic within a large range of properties and is modulated by an 

equally diverse set of molecular pathways. Thus, when attempting to model the role for a particular 

cell-type within a network, as well as its fundamental IPs, one also needs to understand the 

parameters in which the IPs are plastic. We can appreciate this view from an example from the 

basolateral amygdala in rats, where positive and aversive stimuli were associated with an increase 

and decrease in intrinsic excitability of pyramidal neurons respectively (Motanis, et al.., 2014). This 

kind of relationship reflects the specific organization of the basolateral amygdala (BLA), such that 

relative firing probabilities of pyramidal neurons encode the valence of a stimulus. We can, 

however, imagine different rules of plasticity in which the inverse relationship exists. For example, 

what if instead of BLA pyramidal neurons changing their excitability, it was the interneurons? 

Would the relationship be inverted in them such that the interneurons decreased their excitability 
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to encode positive stimuli? From these questions we can see that the internal rules governing how 

excitability changes are also important when modeling the role of a neuron in the larger context of 

networks and behavior. 

 

A conductor is not a metronome 
 

The central focus of my graduate studies has been on the fundamental cellular mechanisms 

that underlie learning, memory, and information processing in neural networks. A practical 

implication of this is that if we were to construct a realistic simulation of a brain, it is insufficient 

to model the circuit map (or connectome). We also need to simulate the synaptic rules and firing 

properties within the network. The physiological rules of brain function extend beyond the 

twentieth century’s ideas of synaptic transmission and structural connections. Since the time of 

Cajal, neuroscience has tended to focus largely on learning mechanisms at the level of synapses. 

Yet, neural communication depends fundamentally on the joint behavior of proteins and other 

electrophysiological properties of cellular membranes. Collectively, network architecture, synapse 

diversity, and intrinsic properties give rise to behavior and cognition, and thus deserve equal 

appreciation and scrutiny from neuroscientists. One implication from the importance of intrinsic 

properties is their effect on spike timing, which is a critical element of all complex behavior. 

 

Summary and Interpretation of results 
 
 I replicated results showing that properties of intrinsic excitability (IPs) of a subclass of 

neurons (HVCX) in premotor nucleus of zebra finches are more similar within an individual animal 

than across animals. The IPs of HVCX are related to the song of an individual bird. I then expanded 

on this relationship and showed that temporal and not spectral features of song are linked to 
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rebound excitability of HVCX. Interestingly, when I chose preliminary song features to investigate, 

I happened to choose continuous spectrally unchanging vocalizations with harmonic components. 

I chose these because they were the only parts of song without spectral points of reference over 

long periods of time. Yet, almost certainly, none of the neurons that I recorded from were involved 

in encoding of the harmonic stacks. These harmonic stacks later turned out to reflect global features 

of song timing. This raises a question, and a hint, about the structure that governs uniformity of 

IPs: Why do all HVCX have similar IPs? On its own, it is an unexpected result, but the IP uniformity 

also predicts a common constraint on the network, independent of challenges that may arise from 

individual syllable differences within the song.       

 One potential global constraint (one that affects all neurons in HVC) that relates to 

harmonic stacks, is the challenge of temporal integration. Taking the perspective that events that 

occur far apart in time are more difficult to integrate than those that occur closer together, we can 

then interpret my results to mean that rebound excitation may be involved in temporal integration. 

This perspective also helps explain another of my results which demonstrates a link between the 

duration of the longest harmonic stack with the duration of the rest of the song, suggesting that 

there is internal structure within the motif. This agrees with the previous results showing 

metronomic structure in the motif (Norton and Scharff, 2016). Pursuing this idea, I modeled what 

would happen to spike timing in a case where IPs were randomly distributed across a population 

that received identical inputs. I then did the same for a population of neurons with uniform IPs 

(Figure 6.1). The result showed that holding all else constant, uniform IPs provide precision of spike 

timing in a population of neurons. Varying the range of possible IPs of a group of neurons by 45% 

increased the ambiguity in spike time of the population to a 100 ms window (red line, Figure 6.1). 
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Figure 6.1. Uniformity of intrinsic properties promotes precision in population spike timing. Model 
neurons receiving identical stimuli (top panel), produce different number of spikes with varying spike 
times. The middle panel shows an example voltage trace for one such neuron. The bottom panel shows all 
spike times from 500 neurons per row, where each row is increasing the variance of five conductance (gh, 
gNa, gSK, gK, gCa-T) values in the Hodgkin-Huxley model among all neurons by 5% per row. 
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My results provide a framework within the song system for the well-established idea that 

the premotor projection to the basal ganglia conveys useful information for assessing errors. VTA 

and HVC inputs converge in the basal ganglia and are critical for song learning and for regulation 

based on feedback. However, the birdsong literature does not yet have wide agreement on a 

hypothesis about the information conveyed through the premotor-basal-ganglia projection, or how 

it is useful for learning. Here I used my results to construct such a framework. My model acts as a 

hypothesis, providing a biologically plausible mechanism to address HVCX neurons' well-

documented ability to integrate over long periods of time while maintaining selectivity to the 

sequence of inputs, while also incorporating results of IP uniformity and rebound excitation. 

 We know that HVC projection neuron bursts are precisely time-locked to behavior and are 

sensitive to relative timing changes of the bird’s own song (BOS). In white-crowned sparrows, HVC 

neurons (likely HVCX, though it was not known at the time) selectively burst when a sequence of 

syllables is played back to an anesthetized bird. This ability for the neurons to detect the sequence 

wanes as the gap between syllables is increased but does not become abolished until the gap 

duration is in the hundreds of milliseconds. Similarly, in Zebra finches, HVCX detect specific 

sequences of BOS playback. Some neurons respond to specific syllables in isolation, others require 

multiple syllables, while many only burst to long portions of BOS (Margoliash and Fortune, 1992; 

Lewicki and Konishi, 1995 and 1996).       

Experiments in vivo shed some light into the mechanisms underlying this selectivity. Sharp 

electrode recordings showed that the selective response expresses itself intracellularly as a 

hyperpolarization caused by the first segment followed by a depolarization to the second segment 

(Lewicki and Konishi, 1995 and 1996). Importantly, when zebra finches sing, HVCRA neurons 

become depolarized, bringing their membrane voltage closer to their relatively high threshold. 

HVCX on the other hand become strongly hyperpolarized, opening HCN channels, which provide 
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the strong inward current that gives rise to rebound excitation. This dichotomy points to their 

functional differences and highlights my central premise: synaptic properties and neuronal intrinsic 

properties are inextricable and work together to give rise to functional diversity in neural networks. 

 My results suggest that post-hyperpolarization rebound excitation in HVCX neurons is a key 

mechanism that converts past inhibition into excitation with a delay, which when released can be 

summed with future excitatory events. This process promotes strong selectivity and precise 

bursting, as initial events could not accidentally lead to suprathreshold spikes because the neuron 

is strongly inhibited from song onset. Thus, the window of opportunity for integration of two events 

is defined by a neuron’s intrinsic properties, directly tying HVCX IPs to timing.   

 Downstream of HVC, basal ganglia neurons receive differently timed inputs and use them 

to regulate behavior with exceptional temporal precision. Consider that relative timing of such 

inputs carries useful information about the timing of song events, and that my results suggest that 

neuronal IPs affect integration and spike times. In this view, if a nucleus arrives at a global solution 

for IPs, then differences in EPSP-timing downstream can be interpreted without added ambiguity 

from the presynaptic neurons’ excitability. This realization caused a shift in my thinking away from 

interpreting syllables as discrete song units, and towards thinking about arbitrary intervals defined 

by relative timing of events. Many song intervals can then be nested to span the entire song. 

Intervals of similar durations could be encoded by any neuron in the network with the appropriate 

IPs. And because different songs have different temporal constraints, different birds would need to 

express different IPs. This provides a new interpretation of the results from Daou and Margoliash, 

which showed song related clustering of HVC IPs in zebra finches, and ties in findings about global 

temporal structure in zebra finch song (Norton and Scharff, 2016) (see Chapter 4). This argument 

in turn provides an explanation for why the longest stack was correlated with rebound excitation 

despite it being highly improbable that the neurons I sampled were associated with that specific 
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syllable. Additionally, the shape of the window of opportunity that results from inhibition release 

has a shape that permits small differences in timing to produce burst differences (number of spikes 

in a burst). This would result in a neuron whose bursts provide information about the occurrence 

of the ‘correct’ event sequence, but also the relative timing of the events.     

 The modular structure of the model allows for multiple intervals to be encoded by the same 

neuron, so long as the intervals do not overlap, and the interval durations are similar. This captures 

a key feature of HVCX neurons: Many neurons fire multiple bursts in a single motif.  Once a network 

has a solution for detecting intervals of specific durations, why not reuse them? If one combines 

this rhetorical question with my results (as well as others’) that show that song has internal 

temporal structure, then many intervals of the same duration may exist within the song, which 

provides a framework for multiple bursts within my network model. Figure 6.2 illustrates how this 

would be manifested in the network described in Chapter 3. 

These rules, along with some simple optimization (maximizing total song coverage, and 

minimizing number of neurons), can reproduce newly discovered structure, expressed as parallel 

burst sequences (Figure 6.3), in reanalyzed data from singing birds (Fetterman 2022). The 

underlying mechanism in the model demands that HVCX bursts from the same neuron are treated 

as non-independent events. To illustrate how the parallel burst structure arises from the model 

architecture, I coded an algorithm with a few simple rules to generate pseudo spike times (only 

numbers, not HH neurons). In this simpler toy model, series of numbers corresponding to 

subthreshold event timepoints were generated and sorted from least to greatest (e.g., 1, 4, 16, 30, 33, 

40, 51, 304). Then, numbers were broken into pairs that defined the start and stop of an interval. 

This approach is computationally simple and guarantees that none of the intervals are overlapping. 

A sequence with 8 numbers would then correspond to a 4 interval ‘neuron’, where each interval has 

a start (release from inhibition) and stop (burst). I then repeated this process one hundred 
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thousand times and generated a dataset where each row represented a neuron and included n 

number of intervals (one half of the numbers in the sequence). At this point I introduced two 

constraints. The first aimed at capturing the uniformity of HVCX IPs. I do this by requiring that all 

bursts within a neuron encompass intervals of similar lengths (no greater than a 20% variance of 

the interval durations). The second constraint was a theoretical one. There are many sets of my fake 

neurons that cover multiple intervals but do so with large gaps between them. I believe this is 

inefficient, and unlikely to be a solution in biological systems. Therefore, limited my analysis to the 

neurons with arrangements of intervals that minimized gaps between them and maximized 

coverage of the entire range of numbers: encoding the maximal number of intervals with the fewest 

neurons. 

The resulting arrangement of neurons and bursts (only the offset of the interval, as required 

by my coincidence model, Figure 6.2) reflects parallel burst sequences. This structure excludes 

neurons who burst once (HVCX or HVCRA) but illustrates how the underlying mechanism gives rise 

to structure as described in Fetterman, 2022. 
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Figure 6.2. Modular network structure supports multiple bursts. Diagram showing how the basic, single 
burst, module from Chapter 3 can be organized to produce multiple bursts in the same neuron. 
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Figure 6.3. Multi-bursting model neurons produce parallel burst sequences. Illustration of simulated 
(fake), but principled, intervals (green) and burst times (black) where each row represents a four-burst 
neuron. Each neuron was constructed by a simple algorithm that minimizes overlaps between intervals 
and uses few neurons. 
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For my model to hold true, bursts (intervals) would need to be disambiguated at some later 

point. This could happen in the basal ganglia through specificity of synaptic structure and VTA 

inputs. A problem does arise from my model, however: If each HVCX neuron’s burst provides 

information about an interval only at the end, then information about errors that occurred early on 

would arrive in the basal ganglia with a delay. Critically, this feature of my model actually provides 

the first explanation for why VTA signals that arise from song errors arrive in the basal ganglia with 

a substantial delay (Gadagkar et al.., 2016) and predicts that the VTA delay varies by bird and relates 

to temporal features of song. If both HVCX and VTA neurons report to the basal ganglia with a 

delay, then moment by moment song information is preserved and there is no problem with 

temporal assignment. Alternative models of HVC must address and compensate for this VTA-basal-

ganglia delay.           

 Lastly, I wanted to address problems with the interpretation of my results and provide 

possible explanation. First, why does song playback produce responses in vivo as described in 

Lewiki & Konishi, 1996, where one syllable causes inhibition and another excitation? As I briefly 

addressed this in Chapter 3, my model assumes a ‘hard-coded’ constant signal for song onset, which 

acts as a shorthand to reproduce the in-vivo network environment. Instead, if every HVCRA in the 

backbone produces a burst in the ‘tonic’ interneurons it can explain how isolated syllables produce 

strong hyperpolarization and provides a source for the song-induced hyperpolarization of the HVCX 

population, which is currently not understood. Secondly, why do I find a weak correlation in the 

data from Daou & Margoliash 2020? I think this is likely due to a smaller number of birds (18 birds 

compared to 38), but also to the underestimation of the HCN conductance, which is temperature 

dependent (the recordings from the prior study were done at cooler temperatures).  Finally, these 

findings support my central assertion that intrinsic neuronal properties are a fundamental 
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component of network function and studying them provides useful insight that must be fully 

incorporated into models of neural networks. 

 

Reflections on Neuroethology 
 

It is easy for neuroscientists to undervalue studying specialized behaviors because they are 

often more challenging to generalize and seldom come from readily available model organisms, like 

the mouse (though the mouse has more to offer than this view suggests). This perspective (or lack 

thereof) was one I shared early in my graduate studies and made systems like the retina enticing, 

with its beautiful, layered structure, and accessible ganglion cells which perform complex 

computations without the need of the whole animal. Yet, I had missed something essential, which 

most neuroscientists appreciate: no nervous system exists without influence of the evolutionary 

history of the whole organism. Later, I learned from the neuroethological perspective that acute 

focus on the strangest and most unique behaviors can give insight into fundamental systems as 

they are pushed to the limits of optimization. 
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