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2.1 Quantization of the LC harmonic oscillator. By treating the flux and the in-
ductive energy as a momentum and kinetic energy, and the charge and capacitive
energy as an effective position and potential energy, the LC electronic oscillator
has the same dynamics as a classical particle in a harmonic trap. Quantization
of the conjugate variables proceeds the same way. . . . . . . . . . . . . . . . . . 7

2.2 Circuit Model of the Transmission Line. a A cartoon depiction of the trans-
mission line as a circuit element, resembling a coaxial cable with a pin and ground.
A differential slice is depicted. b “zooming in” on a slice of the transmission line,
we see an equivalent description of the transmission line as an infinite series of
lumped element resonators, responsible for modeling loss, and capacitance and
inductance, responsible for modeling the reactive component of the impedance. 8

2.3 Transmission Line Input Impedance. We can connect a load ZL to the
transmission line, shown here schematically. This allows us to interact with the
load over a long electrical distance, or we can interpret this as altering the electri-
cal properties of the transmission line itself (understood by calculating the input
impedance Zin). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Transmission Line Resonator. a The open-ended transmission line creates
boundary conditions, and therefore standing wave solutions to the transmission
line equations. The lowest eigenmode, with voltage anti-nodes, is depicted here.
b Each of these solutions can be locally approximated with an equivalent lumped-
element model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Coplanar Waveguide. a Top view of the CPW transmission line geometry.
This 2D circuit is widely used to propogate signals on chips, both in supercon-
ducting and room temperature applications. Ground planes extend out from
either side of an electrically gapped pin. The impedance is set by the leftover
length scales: the ratio of the pin length (p) and gap length (s), in addition to
the dielectric properties this circuit is printed on and the metal this is made of. b
Side view of the geometry, not to scale, showing a few electric field lines to get a
sense for the mode profile. In our sample the top Tantalum metal layer is 200nm
thick, while the Sapphire substrate layer is 450µm thick. . . . . . . . . . . . . . 13

2.6 Coplanar Waveguide Impedance. by adjusting the pin-to-gap size ratio k0 =
p

p+2s the impedance of the waveguide can be tuned (dot indicates k0 = 1
2 →

Z0 = 50Ω for our setup), or k0 held constant while the waveguide increases or
decreases in absolute size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Josephson Junction. a A depiction of the SIS Josephson junction, formed
by an Insulating tunnel barrier between two Superconducting electrodes. The
difference in the superconducting phases, ϕ, is the gauge-invariant term that
plays a physical role in the Josephson equations - determining the dynamics of
this circuit element. b The symbol of the Josephson junction as a circuit element. 14
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2.8 Transmon Qubit created through Josephson inductance. a By replacing
the linear inductance in an LC oscillator with the non-linear inductance gained
from the Josephson junction element (cross) we obtain a non-linear LC oscillator
for microwave light. b A toy example of a quantum SHO model with a transmon
nonlinear oscillator calibrated for the first transition ℏω10 = ℏωSHO = 1/

√
LC.

The negative anharmonicity: α = ℏω21 − ℏω10 of the transmon can be seen as
the change in the |2⟩ state energies. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Flux Tunable Transmon. a By breaking the single Josephson junction element
into two separate junctions, we create a new magnetic-field sensitive EJ (Φ) due
to the constraint imposed by the Aharanov-Bohm effect. The mutual inductance
between the flux-loop in the SQUID junction and the flux bias line is M. b This
sensitivity to the magnetic field flux allows us to tune the transmon transition fre-
quencies while keeping the anharmonicity values relatively stable. These plotted
values are very close to our experimental operating points. . . . . . . . . . . . . 20

2.10 Jaynes Cummings Model. a The Jaynes-Cummings model describes a model
wherein a two-level system is dipole-coupled to a harmonic single-mode system.
External interactions can be included, such as with the environment via an ex-
ternal drive (Ω) or dissipation (γ, κ) which both push dynamics away from the
closed-system description. We use engineered decay of the harmonic oscillator
component to perform measurements. Many physical systems realize this model,
here b we fabricate a qubit and capacitively couple a harmonic oscillator circuit,
producing the same physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 State Dependent Readout. We show a representation of dispersive readout
in the two-level approximation. Probing the cavity transmission in a amplitude
will produce a shift from low to high power when measuring at the qubit ground
state if the qubit becomes excited, whereas measuring at the cavity frequency is
excited will result in the cavity transmission decreasing. Measuring in the middle
minimizes information in the amplitude, but maximizes informaiton in b phase. 23

2.12 Individual Purcell Filters for Improved Qubit Performance. In previous
work each qubit lattice site was dispersively coupled to a single narrow-linewidth
single-pole readout mode, which leaves room for additional purcell filtering a by
adding an element between the resonator and the environment. We choose to
add another λ/2 resonator on each lattice site b and use the lowest eigenmode
centered at the readout frequency. The optical image c for a single transmon
lattice site using this scheme is shown. . . . . . . . . . . . . . . . . . . . . . . . 24

2.13 Simplified Model of Purcell Filter. To extract an analytic model for the
scattering amplitude S21 of the hanger measurement on our Purcell filter, an
input-output model is used to capture the dynamics of the field amplitudes within
the readout resonator and the purcell filter. . . . . . . . . . . . . . . . . . . . . 26
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2.14 Deign of Single Qubit Parameters. a Our “Single qubit”, a transmon with
linear capacitance to ground Cg and nonlinear Josephson inductance LJ lies in the
middle of a chain - which in this context includes parasitic capacitive coupling to a
readout resonator and nearest-neighbor qubits. b Initial designs and simulations
of a single qubit ( which we approximate to a Q.S.H.O. for linear analysis in
HFSS) may neglect these parasitic effects by restriction to a single site. . . . . 29

2.15 Bose Hubbard Tunneling Term - Capacitive Coupling. a We create the
tunneling term through nearest-neighbor capacitive coupling of the transmon
qubits. b The lumped element model of two qubits describing this interaction
(neglecting parasitic couplings from the readout resonator, flux lines). c We
estimate the coupling strength before fabrication reducing the model to a pair of
S.H.O.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.16 Numerical Simulation of Purcell Filter. When simulating the real-space
geometry of the coupled coplanar waveguide model, different numerical techniques
can produce different results. a Within HFSS the DrivenModal simulation run on
the input/output transmission line ports replicate the S21 experiment and refine
the mesh based on the difference in the scattering matrix. However, the narrow
readout resonator mode is not sampled well on refinement with this technique
(without guiding), leading to an asymmetry in total mesh resolution and poor
convergence. b By sampling eigenmodes of the total system we do not bias
against the real-space distribution of power from the feedline and evenly sample
both resonance structures, leading to faster convergence. . . . . . . . . . . . . . 32

2.17 Purcell Filter Design. The Purcell filter shapes the coupling to the environ-
ment, and hence the Purcell loss [1] T1 = Cq/Re(Y (ω)) for the qubit. The
designed loss rate > 1ms for the expermentally operating range < 5.5GHz for
the full circuit, and we show the loss rates for the (1) purcell and (2) readout
resonator as a reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Simplified Optical Fabrication . a After depositing Ta onto the Sapphire
substrate, we spin a thin resist layer. b By exposing the AZ1718 with an optical-
wavelength pattern from the direct writer we create a gradient between polymer-
ized resist and un-exposed resist, which is how c a difference in developer rate
is created, yielding exposed metal underneath our positive photoresist. We d
etch away this metal with HF and e remove the resist covering the rest of the
metal, leaving f only the etched Ta atop the substrate. Not depicted are detailed
cleaning steps, described in the text. . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Simplified Ebeam Layer Fabrication . aWe spin a dual-layer of MMA/PMMA
atop the processed optical layer, which we b expose using an electron-beam to
directly write the features for the qubit. c The MMA layer exposes at a lower
power threshold, allowing us to d develop the total exposed resist and create un-
dercuts. When we perform angled-deposition of Aluminum e to create junctions,
these undercuts help break the metal deposition, allowing the f liftoff to carry
the resist and extra metal off of the surface. . . . . . . . . . . . . . . . . . . . . 37
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3.3 Qubit Fabrication. We create SIS Josephson junctions using Aluminum atop
a Tantalum ground plane. a A representative SQUID loop geometry for our
sample. The top and bottom square pad features ensure galvanic electrical con-
nection between the Tantalum (light grey) and the Aluminum layers (dark grey)
respectively, both of which sit atop the sapphire substrate. The SQUID loop can
be seen as the area enclosed by the loop of metal in the middle between both
junctions. b The Al/AlOx/Al Josephson Junction is formed by evaporating Al
in a ballistic trajectory at a shallow angle into the resist pattern at two angles
- each forming one of the “fingers” above. After the first deposition an oxide
layer is grown to form the barrier, and the overlap between the layers creates the
Josephson energy EJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Sample Wirebonding and Mounting. Top The 10x20mm chip is wirebonded
with Aluminum wire, grounding accessible CPW traces to prevent radiative cou-
pling and suppress slotline modes. Wirebonds create connections from the mount
to the launcher pads, allowing exchange of microwave signals to and from the sam-
ple. Bottom The sample is enclosed in OFHC within a copper cap, sealed with a
ring of indium wire to prevent light-leakage (not seen). The surface-mount SMA
connectors mediate microwave signals from the fridge to the sample through the
circuit mount. We add a solenoid to generate a local global field seen by all qubits
in our lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Fridge Assembly. Our cryogenic wiring inside our BlueFors dilution refrigerator
is shown. Microwave compatible coax lines thermalized at 4K, 100mK, and 9mK
via fixed attenuators and twisted-pair DC lines send signals to the sample through
filters located at 4K and the mixing chamber stage. Signals from the sample are
sent through filters, circulators, and a HEMPT amplifier before reaching room
temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Wiring Diagram Schematic. Full room temperature and cyrogenic schematic
for Microwave and DC signal routing to and from our chip. Homodyne setups
probe the state of qubits in our experiment via individually coupled filtered read-
out resonators through cryogenic compatible microwave lines. Qubits are biased
through DC lines, with static DC signals on a low cutoff twisted pair line and
“fast” DC signals filtered at a higher cutoff. See [2] Supplementary Figure S1. . 47

3.7 Mixer Up / Down Conversion. Direct digital synthesis of microwave fre-
quency tones is not achievable with our hardware. We use non-linear microwave
mixers and a high-frequency microwave carrier tone (LO) to generate signals to
interact with and measure our sample. Up-conversion allows us to generate high-
frequency pulses by modulating the LO using an IF frequency. We can measure
the distortion of the LO by feeding the measured signal back into the RF port
and down-mixing close to DC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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3.8 IQ Mixers. a The IQ mixer takes two independent signals I(t), Q(t) rather than
a single IF to mix with an LO. b The internal structure of an IQ mixer can be
understood as a combination of two mixers combined with a phase offset. This
allows us to separate the IF input into an in-phase I(t) and an out-of-phase (+90)
Q(t) signal for up and down conversion processes. . . . . . . . . . . . . . . . . . 50

3.9 Simplified Qubit Readout Schematic. We use homodyne detection to probe
the state of the qubit through changes to the coupled resonator. A high frequency
tone is sent to the resonator, and the state of this resonator is measured by
detecting the relative phase and amplitude of this signal from the I and Q channels
of the downconverting IQ mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Simplified Qubit Drive Schematic. We use up-conversion with side-band
modulation generated by an AWG pulse-sequencer to drive qubits in the staggered
lattice configuration. Charge driving the qubits happens through the common
feedline, requiring frequency separation for all qubits to address each one, and
microwave hygene to ensure no combination of resonances and sidebands collide
during state preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Single-Tone Readout and Purcell Resonator Measurement. We begin
probing the sample by measuring the transmission response of photons sent
through the common feedline at the readout and filter frequencies. a,b The
diagrammatic model and optical image on-chip of the double-resonator system
implemented as capacitively coupled CPW λ/2 resonators. c,d The input-output
model for this resonator network is matched to the transmission spectrum, which
we use to extract the circuit parameters. . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Jaynes-Cummings Model Fit. For each qubit + readout resonance in our
system we perform two-tone spectroscopy extract the a readout resonance and
b qubit frequency as a function of applied flux. In each case we fit the Jaynes-
Cummings Hamiltonian to both the measured g/e qubit transition and the mea-
sured qubit ground state resonator frequency . . . . . . . . . . . . . . . . . . . . 55

4.3 Single Shot Readout. To calibrate measurements of a qubit, we de-modulate
microwave signals at the readout resonator frequency and look at the quadrature
components (I,Q) as a function of the initially prepared qubit state |g⟩, |e⟩. a
The single-shot measurements show when we prepare |e⟩, many of these states
decay to |g⟩ during the readout, whereas heating (|g⟩ → |e⟩ is not seen). b We
can use Gaussian mixture modeling to re-label the states. Using the learned dis-
tribution on successive measurements we can renormalize measured |g⟩,|e⟩ values
using a confusion matrix. c Other methods, for future work, can use information
obtained during the readout to further improve the fidelity. Here the full tra-
jectory (I(t), Q(t)) is used to label three clusters. The mean cluster trajectories
show a curve that aligns with |e⟩ but shifts back towards |g⟩, or qubit decay. . 57

4.4 Rabi Rate. We calibrate the rabi rate for the staggered lattice of qubits. Part
of the optimization for choosing the position of the staggered array frequencies
is the rabi rate, which we sample by sweeping the frequencies of all qubits and
repeating these experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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4.5 DC, RF Flux Crosstalk Matrices. Measured using the quibt frequency ωi(ϕ)
response to changing Ij and normalizing to the slope of the measured qubit. See
[2] Supplementary Figure S5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Global Solenoid Calibration. DC biasing flux lines contributes heat load at
the MXC from filtering, biasing the lattice with a global solenoid field alleviates
this load. Each qubit’s flux sensitivity to the solenoid is measured, then the
position for the solenoid is determined by minimizing the distance of the qubits
from the desired DC staggered frequency configuration. . . . . . . . . . . . . . . 63

4.7 Anharmonicity. We drive the qubit of interest into the |e⟩ state and sweep
for a response to a short rabi drive around the expected anharmonicity. Once a
signal is found we calibrate the amplitude and time of the e/f pulse and extract
the anharmonicity as the difference between the frequencies. . . . . . . . . . . . 64

4.8 Flux Pulse Calibration. We use the qubit frequency as an oscilloscope to
probe the transfer function distorting pulses between the AWG output port and
the qubit SQUID loop. By inverting the transfer function and pre-distorting the
pulse we send out of the AWG to the qubit, the signal that reaches the qubit
looks far closer to theory. Here we see a pre and post-corrected square wave sent
to Q5 using this method. The grey lines enclose a width of 1MHz, .5% of the
amplitude of the ramp. See [2] Supplementary Figure S6. . . . . . . . . . . . . 65

4.9 Nearest Neighbor Tunnel Calibration. By taking two neighboring qubits
QL, QR and a measuring the single photon swap rate geff =

√
g2 +∆2 between

them b across detuning values ∆ = ωL−ωR controlled by a flux tuning vector we
are able to extract the zero detuning ∆ = 0 bare coupling frequency g between
nearest-neighobrs on the lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 T1 vs ω . We calibrate the T1 for each qubit in the lattice, sampling along
frequency positions (here swept nearby the stagger). We show the purcell limit
for the readout scheme again (Fig. 2.17) for reference . . . . . . . . . . . . . . . 68

4.11 Landau-Zener error characterization. We accumulate error from Landau-
Zener transitions on qubits whose nearest-neighbors have population in the ex-
cited state due to our staggered configuration for readout having a detuning
δ > U , so the matrix element |gf⟩⟨ee| can contribute to the dynamics, pushing
our system outside of the intended Hilbert space. We characterize this error by
looking at neighbors, (1) pushing them to |ee⟩ in the small disorder configuration,
then (2) applying a step pulse to push them to the larger staggered configuration,
and reading out the |f⟩ state population. . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Experimental Platform. a Optical image of the cryogenic microwave circuit.
Highlighted in blue b is the one-dimensional lattice of transmon qubits which
form the strongly interacting Bose-Hubbard Hamiltonian for photon excitations.
Image from [2], Figure 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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5.2 Adiabatic tuning of Disorder. a Eigenstates in a fixed disordered lattice with
suppressed tunneling are localized excitations on each site. Adiabatic removal
of this disorder connects each of these simple states to one of the disorder-less
eigenstates on the traditional 1D chain, which can have delocalized excitations
and entanglement. b We create the eigenstate in the disordered lattice by (1)
applying local excitations to qubits, then (2) ramping the disorder down adiabat-
ically and (3) creating and measuring fluid-like states of light on the lattice. To
prepare a target eigenstate on the resonant lattice we choose the corresponding
eigenstate in the disordered lattice to prepare. Image from [2], Figure 1. . . . . 73

5.3 Single Particle Eigenstates. a In the single-particle manifold (shown numer-
ically) we apply excitations to single sites in the “sawtooth” disordered config-
uration to reach an eigenstate of choice. The highest and second-highest lattice
sites map to the lowest and second-lowest quasi-momenta disorder-less eigen-
states, producing particle-in-a-box states set by the open boundary conditions
of the lattice. b We measure the population change over the lattice during the
adiabatic ramp by diabatically ramping the lattice apart at variable values of
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ABSTRACT

Creating a desired many-body state within large quantum systems is a common desire among

several related fields, ranging from quantum information science to many-body physics and

quantum metrology. In this work we demonstrate state preparation using a low-complexity

technique by combining two common methods: step-by-step assembly and adiabatic evo-

lution, to create low-entropy quantum many-body fluids of light. These fluid-like states of

light are generated on our Bose-Hubbard chain of flux-tunable transmon qubits. By tuning

the on-site energies of each qubit we start in a disordered lattice where the eigenstates are

known and localized to single sites (qubits). We create individual excitations, then adiabati-

cally remove the disorder allowing quantum fluctuations to melt the localized photons into a

fluid. We first benchmark this lattice melting technique by building and characterizing arbi-

trary single particle-in-a-box states, then assemble multi-particle strongly correlated fluids.

Inter-site entanglement measurements indicate that the particles in the fluid delocalize, while

two-body density correlation measurements demonstrate that they also avoid one another,

revealing Friedel oscillations characteristic of a Tonks-Girardeau gas. This work opens new

possibilities for preparation of topological and otherwise exotic phases of synthetic matter.
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CHAPTER 1

INTRODUCTION

In P.W. Anderson’s “More is Different” [3], he presents a well-known argument against

reductionism stating that when given the ability to reduce everything to simple fundamental

physical laws, one is not guaranteed to be able to use those laws and replicate the world.

The emergent properties that arise at each new physical scale can defy simple extrapolation

of principles at smaller scales, and thus the study of the emergent itself become fundamental.

Understanding phenomena that arise due to the physics from many particles in interacting

materials is the heart of condensed-matter physics. Some of these are well understood, such

as the familiar first-order phase transition of boiling water, or the band-structure of electrons

giving us the transistor [4]. Even systems demonstrating macroscopic quantum phenomena,

such as the observation of superfluidity in a mixture of Helium isotopes [5] or Bose-Einstein

Condensates made of atoms suspended in a vacuum chamber [6, 7], while exotic, are captured

by descriptions at the microscopic scale due to the non-interacting or weakly-interacting

nature of their constituent components.

Our interest lies in improving our understanding in systems that are not as well under-

stood due to the strongly interacting and strongly correlated nature of their components.

These dynamics at the microscopic scale can produce rich, but poorly understood phenom-

ena at the macroscopic scale. Techniques to simplify, such as mean field theory, often fail

to produce effective models. For instance, the fractional quantum hall effect [8, 9] shows an

emergent fractionalized Hall conductance due to the collective behavior of electrons interact-

ing within the confines of the two-dimensional electron surface in the presence of an external

magnetic field. Another example of a system where strong correlations at the microscopic

scale produce flavorful behavior at the macroscopic scale are high-Tc superconductors, such

as cuprates, where interactions between electrons within the material generate macroscopic

superconductivity at higher temperatures than other materials whose superconductivity is
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governed by correlations explained by the momentum-pairing in BCS theory [10, 11].

To understand why these many-body, strongly correlated systems in the quantum regime

are difficult to build theoretical descriptions of, let us consider the tools we have available.

Directly studying the materials themselves can be difficult - establishing the relationship

between the macroscopic behavior and the microscopic dynamics in real materials requires

understanding the dynamics of these strongly correlated electrons. Direct classical computa-

tion of quantum many-body systems is exponentially expensive [12], requiring instead that

we construct a quantum computer to compete with the growth in computational complex-

ity. An alternative to building such a device (despite incredible efforts to do so) is to build

an analogous system that behaves according to the same underlying physical principles - a

quantum simulator. When building a quantum simulator, our goal is to directly implement

the physical dynamics we wish to study, then learn from them. With this method of exper-

iment we are free from the needs of replicating all properties the the real-space system and

can design a platform that is more advantageous to our experimentation.

As such, quantum simulation is a popular method for studying macroscopic quantum

many-body properties. One such platform uses ultracold atoms suspended in laser light

in an ultra-high vacuum chamber. In this implementation, the atoms are manipulated di-

rectly with light [13] to generate an ever expanding set of quantum phenomena. In this

platform the canonical critical quantum phase transition between a superfluid and a Mott

insulator state [14] was observed in a Bose-Einstein Condensate of Rubidium. Site-resolved

dynamics [15] using a grid of light, and time-resolved dynamics [16] within these quantum

gas microscopes make this platform suited for performing quantum simulation experiments,

such as bad metallic transport within the Fermi-Hubbard model [17], direct measurements

of entanglement via interference [18], or quantum scarring [19]. Another platform, trapped

ions, confine and manipulate an array of charged atoms with the coulomb force in a confining

Penning or Paul trap [20]. Using these ions one can create experiments involving Quantum
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reservoir engineering [21], phase transitions from paramagnetic to ferromagnetic order [22],

observe emergent hydrodynamics from long-range interactions [23], or extending the Ising

model interactions to hundreds of spins [24].

In this work we use another platform for quantum simulation - photons in superconduct-

ing qubits [25, 26]. Our specific circuit is a one-dimensional chain of capacitively coupled

transmon qubits. The nearest-neighbor tunneling and nonlinearity of the qubits create a

Bose-Hubbard model simulator for photons. In this context we can think of qubits as lattice

sites for microwave photon excitations which can tunnel between sites if qubits are coupled

together. We generate interacting physics for photons by mediating photon-photon collisions

through the nonlinear qubits. Other simulation platforms exist to create interactions and

topologies for systems comprised of light [27]. Superconducting circuits have proven quite

successful for quantum simulation with demonstrations of many-body localization [28, 29],

dissipative phase transitions [30], flat [31, 32] and chiral [33] lattice structures.

In our platform, and indeed all platforms, we are performing two steps when starting

these simulation experiments: Hamiltonian engineering and state preparation. So far we

have discussed the first. We must choose a physical state within a designed physical system

to study, then find a way to prepare this specific state. In the case of quantum many-body

systems, particularly systems that replicate the strongly interacting and strongly correlated

physics that motivate these experiments to begin with, these states can become quite complex

and difficult to generate.

There are broadly three common methods for initializing quantum states: step-by-step,

adiabatic, and dissipative. Step-by-step assembly by gates is common in digital quantum

simulation and was recently used in the superconducting qubit platform to generate non-

abelian exchange statistics of a surface code on a quantum processor [34]. Adiabatic state

preparation involves the manipulation of the Hamiltonian by some tunable parameter such

that the states follow the instantaneous eigenstates of the tuned Hamiltonian. This technique
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is used often in the ultracold atoms context to move from the a B.E.C. ground state to a new

known ground state [15, 35]. Dissipative state preparation [36] is quite useful in overcoming

the inherent loss systems built from photons experience through automatic repumping of

population number. In previous work we used this method to stabilize the unit-filled Mott-

insulator state on a chain of transmon qubits [37].

Here, we approach state preparation on our one-dimensional lattice of transmon qubits is

two-fold: we combine step-by-step assembly of qubit excitations with adiabatic manipulation

of tunable disorder to prepare delocalized and entangled many-body fluids of light on the

lattice. Our one-dimensional lattice of flux-tunable transmons are individually capable of

tuning their on-site energies via locally threading an external magnetic field, allowing us

to impart an arbitrary potential landscape, or disorder, to the lattice. When the detuning

is much larger than the nearest-neighbor tunneling rate, the hybridization between sites is

suppressed and the energy eigenstates of the system are localized to individual qubits. In

this phase, our system is a direct-product of the states of each qubit, allowing us to prepare

any chosen energy eigenstate by manipulating individual qubits. As we remove the disorder

adiabatically, we follow the instantaneous eigenstates of the tunable parameter, disorder,

until the disorder is removed and we arrive at the equivalent eigenstate of the disorder-less

lattice. Via the adiabatic theorem we build a map between each of the energy eigenstates of

the disorder-less Bose-Hubbard lattice and the direct-product disordered array of individual

qubits, thus we are able to prepare a chosen eigenstate in the disorder-less case.

Using this method of state preparation, we create the delocalized and entangled com-

pressible eigenstates in the disorder-less limit and examine them. With only a single particle,

the final eigenstates are indistinguishable from the non-interacting particle-in-a-box picture,

which we show for a few quasi-momenta. As our system is strongly-interacting, the pres-

ence of multiple photons allows collision and pushes our state distribution far from what we

expect from a non or weakly interacting picture with condensation. We look at the lowest
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quasi-momenta state for all compressible states below unit filling on our lattice. Additionally

we perform simultaneous readout and look at conditional probability and g(2)(x) density-

density correlation functions to probe the structure of the multi - photon states and show

the interaction term results in anti-bunching for photons on the lattice. Finally, we track

the delocalization of excitations from the localized disordered single-particle excitations to

the delocalized disorder-less lattice configuration through the global entanglement metric.

The structure of this thesis is as follows: in chapter two, we discuss the basic building

blocks of circuit QED needed to create the quantum simulator and interact with it, as well

as design and simulation discussions. Chapter three discusses the creation of the sample in

a cleanroom facility and transitions into the surrounding experimental setup at cryogenic

and room temperatures. In chapter four the sample is ready to measure and calibration

experiments to characterize the sample are discussed. Once these are completed, we move

to the next chapter where the main experimental results of the adiabatic state preparation

protocol and state characterization are presented. Finally, in chapter six, we conclude and

briefly touch on future work possible with this setup and these prepared states.
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CHAPTER 2

BUILDING BLOCKS OF CIRCUIT QUANTUM

ELECTRODYNAMICS

To perform quantum simulation using superconducting circuits, we must create such systems

from the bottom up out of circuit elements. Here we will motivate the design of the basic

transmon qubit, the SQUID, connecting a resonator dispersively for reading out the state of

the qubit, and purcell filtering. The following discussions on the building blocks in Circuit

Quantum Electrodynamics can be found in [38] and [39].

2.1 The Quantum Harmonic Oscillator

A classical lumped element LC harmonic oscillator is formed when we connect an inductor

and capacitor in parallel. Recall that the inductive energy Eind = LI2 and the capacitive

energy Ecap = CV 2. Expressing the Hamiltonian using the conjugate variable pair of charge

q on the capacitor and flux ϕ in the inductor we have:

H =
ϕ2

2L
+
q2

2C

Note that

∂H

∂ϕ
=
ϕ

L
= I = q̇

∂H

∂q
=

q

C
= V = −Lİ = −ϕ̇

So q,ϕ are conjugate variables and can be identified as generalized position and momen-

tum variables, satisfying [ϕ̂, q̂] = −iℏ

The above is also seen in the form

H = 4Ecn̂
2 +

1

2
ELϕ̂

2
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Figure 2.1: Quantization of the LC harmonic oscillator. By treating the flux and the
inductive energy as a momentum and kinetic energy, and the charge and capacitive energy as
an effective position and potential energy, the LC electronic oscillator has the same dynamics
as a classical particle in a harmonic trap. Quantization of the conjugate variables proceeds
the same way.

where Ec = e2/2C and EL = (Φ0)
2/L are the charging energy and inductive energy.

We can match the electronic Hamiltonian to the classical Hamiltonian and replace the

variables needed for second quantization:

H =
p̂

2m
+

1

2
mω2x̂2 = ℏω(a†a+

1

2
)

where ω = 1√
LC

=
√
8ELEc
ℏ . Here Ladder operators take the form:

a =
q̂√

2ℏωC
+

iϕ̂√
2ℏωL

a† =
q̂√

2ℏωC
− iϕ̂√

2ℏωL

and energy eigenstates, called Fock states, satisfy

H|n⟩ = ℏω(a†a+
1

2
)|n⟩ = ℏω(n+ 1/2)|n⟩

The energy eigenstates, or Fock states, of this system are quantized excitations - each

additional excitation adds the same amount of energy to the system as the excitation before.
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Figure 2.2: Circuit Model of the Transmission Line. a A cartoon depiction of the
transmission line as a circuit element, resembling a coaxial cable with a pin and ground.
A differential slice is depicted. b “zooming in” on a slice of the transmission line, we see
an equivalent description of the transmission line as an infinite series of lumped element
resonators, responsible for modeling loss, and capacitance and inductance, responsible for
modeling the reactive component of the impedance.

This linearity is a defining property of the harmonic oscillator.

2.2 Transmission Lines

Transmission lines allow us to propagate electromagnetic signals over distances greatly ex-

ceeding the wavelengths within that signal. In this experiment we create transmission lines

using the geometries of coaxial cables and coplanar waveguides to route microwave signals

to and from our Bose-Hubbard lattice. Modifying the geometry of transmission lines offer

the potential for microwave engineering outside the lumped-element regime as the physical

size of the device can exceed the relevant wavelengths of interest. Although in this work

we do not create distributed-element microwave devices using transmission lines such as the

SIPF [40], it is good to understand how we end up using a resonance (which can be modeled

as a single pole LC circuit as above) from a transmission line. The following discussion

mostly comes from Chapter 2 of [41].

A classical transmission line can be modeled as a continuum of differential L’s,C’s, and

R’s when we consider normalizing over space. Rl and Gl comprise the loss of the transmission

line, and are associated with conductor loss and dielectric loss respectively. For a lossless

transmission line Rl, Gl → 0, leaving only the capacitance C and inductance L to define the
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Figure 2.3: Transmission Line Input Impedance. We can connect a load ZL to the
transmission line, shown here schematically. This allows us to interact with the load over a
long electrical distance, or we can interpret this as altering the electrical properties of the
transmission line itself (understood by calculating the input impedance Zin).

impedance.

We see the impedance of a small section (Fig. 2.2) of the transmission line is

Z0 =

√
R + jωL

G+ JωC

and in the limit of no dissipation Z0 →
√
L/C. When solving the classical telegrapher’s

equations on this system one encounters the complex wave propagation coefficient: γ =√
(R + jωL)(G+ jωC). Decomposing γ = α+ jβ with α, β real, α describes the amplitude

variation and β describes the phase information of the wave. For a wave travelling on the

line the phase velocity is vp = ω/β and the wavelength is given by λ = 2π/β. With a lossless

line, R = G = α = 0 and β = ω
√
LC.

When we connect circuit components to the ends of transmission lines that load changes

the “flat” travelling wave behavior. The impedance of a transmission line of length l with a

load ZL connected to it is

Zinput = Z0

(
ZL + Z0 tanh γl

Z0 + ZL tanh γl

)

where Z0 is the characteristic impedance of the transmission line.
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2.3 Transmission Line Resonators

If we create open or closed boundary conditions on the transmission line, which has a char-

acteristic impedance and allows wave propagation of light over a distance, then our intuition

should lead us to conclude that the eigenmode solutions we find should look like standing

waves with node/anti-nodes fixed at the ends. Let’s proceed to show this is true.

From above, we know the input impedance of a transmission line with an arbitrarily

connected load ZL - restricting it to behave as either an open (ZL → ∞ or short ZL → 0)

reduces the expression to:

Zshort = Z0 tanh γl

Zopen = Z0 coth γl

In this work we solely use capacitively coupled elements - which are effectively open

boundary conditions. Both boundary conditions have two eigenmode solution types - λ/2

and λ/4 modes where λ/2 modes produce symmetric nodes / anti-nodes and λ/4 produce

modes with a node and anti-node at either end. We make use of λ/2 modes on the capacitively

coupled open boundary conditions - as the eigenmode solutions produce large electric fields

at the boundary allowing larger capacitive couplings.

The input impedance for an open boundary at λ/2 is

Zin = Z0
1 + j tan βl tanhαl

tanhαl + j tan βl

in the lossless case G = R = α = 0 this expression becomes

Zin = −jZ0 cot βl

Resonances occur when l = nλ/2, and we will have poles in the above expression when
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Figure 2.4: Transmission Line Resonator. a The open-ended transmission line creates
boundary conditions, and therefore standing wave solutions to the transmission line equa-
tions. The lowest eigenmode, with voltage anti-nodes, is depicted here. b Each of these
solutions can be locally approximated with an equivalent lumped-element model.

βl ∼ (n+ 1)π/β. At ω = ωλ2 + δω ∼ ωλ/2:

βl =
nωλ/2 + δω

ωλ/2

Assuming a small loss term we can expand the above expression:

Zin =
Z0/αl

1 + j(π∆ω/αlωλ/2)

The impedance of the lumped element parallel resonator is

ZLCR =

(
jωC +

1

jωL
+

1

R

)−1

We can expand the above about frequencies near resonance: ∆ω = ω − ωres, giving us:

ZLCR =
R

1 + 2JQ∆ω/ωres

The above form of the lumped element parallel LCR resonator impedance is quite similar

to the input impedance expression for our simplified model of the open transmission line.

We can use this similarity to map the lumped element model parameters to the transmission
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line parameters, giving us:

ωn = nωλ2

R =
Z0
αl

Cn =
π

2Z0nωλ/2

Ln =
1

ω2nCn
=

2Z0
πn2ωλ/2

The Q factor of the lumped element resonator QLCR = ωRC, so

Qn = ωλ/2RC =
β

2α

2.4 The Coplanar Waveguide

The transmission line equations above are quite general. In practice we must fabricate

circuit elements in the microwave regime by depositing and removing a thin layer (200nm)

of metal (Ta) atop a sapphire chip. This motivates the choice for the transmission line

circuit element as the Coplanar Waveguide (CPW) [41] - a compressed 2D version of a

coaxial line. A flat center pin carries the propagating signal while the metal plane on either

side, separated by the insulated gap, are grounded. Other geometries, such as a balanced

version of this design (CPS) or the microstrip can also be used to create transmission lines

in this fabricated format. A drawback of the latter design is the ground plane existing at the

edge of the dielectric, drawing the field of the mode through the lossy dielectric in contrast

to CPW architectures where the nearby ground plane constrains the field propagation and

helps isolation. Additionally using the CPW geometry we can easily vary the impedance by

varying the ratio of the pin (p) to gap (s) sizes and vary the size of the waveguide without

changing the impedance to interface with different circuit elements.

In the limit of infinite thickness for the dielectric substrate (h → ∞) The impedance of
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Figure 2.5: Coplanar Waveguide. a Top view of the CPW transmission line geometry.
This 2D circuit is widely used to propogate signals on chips, both in superconducting and
room temperature applications. Ground planes extend out from either side of an electrically
gapped pin. The impedance is set by the leftover length scales: the ratio of the pin length
(p) and gap length (s), in addition to the dielectric properties this circuit is printed on and
the metal this is made of. b Side view of the geometry, not to scale, showing a few electric
field lines to get a sense for the mode profile. In our sample the top Tantalum metal layer is
200nm thick, while the Sapphire substrate layer is 450µm thick.

the CPW transmission line can be analytically solved as:

Z0 =
30π

√
ϵeff

K(k′0)
K(k0)

where

k0 =
p

p+ 2s

k′0 =
√
1− k20

and the effective dielectric seen by the mode is

ϵeff =
ϵsub + 1

2

For a sapphire substrate with ϵr = 11.5, if we can keep the gap width twice the pin width
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Figure 2.6: Coplanar Waveguide Impedance. by adjusting the pin-to-gap size ratio
k0 = p

p+2s the impedance of the waveguide can be tuned (dot indicates k0 = 1
2 → Z0 = 50Ω

for our setup), or k0 held constant while the waveguide increases or decreases in absolute
size.

Figure 2.7: Josephson Junction. a A depiction of the SIS Josephson junction, formed
by an Insulating tunnel barrier between two Superconducting electrodes. The difference in
the superconducting phases, ϕ, is the gauge-invariant term that plays a physical role in the
Josephson equations - determining the dynamics of this circuit element. b The symbol of
the Josephson junction as a circuit element.

s = 2p then k0 = 0.5 and Z0 ≈ 50Ω. This allows continuous impedance matching while

tapering the physical size of the transmission line.

2.5 Josephson Junction

To create qubits out of microwave light, we need a circuit element that creates a strong non-

dissipative and non-linear interaction between them. This can be done using the Josephson

effect, and a simple element that does this is called the Josephson Junction (JJ) [42, 43].

The SIS Josephson Junction (Fig. 2.7) is a stack of superconducting, insulating, and
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superconducting material. The insulating segment allows tunneling of the macroscopic

wavefunction of the cooper pairs of electrons, and thus the phase term between the two

superconductors differs. The Josephson equations that govern the electrical properties of

the junction are [38]:

I(t) = Ic sin(ϕ(t))

∂ϕ(t)

∂t
=

2eV (t)

ℏ

The current and voltage (I(t), V (t)) across the junction are sensitive to the phase differ-

ence across (ϕ(t)) the junction.

If we define

Φ0 ≡ h

2e
,

Φ ≡ Φ0
ϕ

2π

then

V =
ℏ
2e

∂ϕ

∂t
=
dΦ

dt

The voltage now cleanly expresses the kinetic inductance - the energy associated with

the motion of cooper pairs across the junction.

2.5.1 Josephson Inductance

We tend to think of this circuit element as a strong non-linear inductance when composing

larger circuits and qubits using it as an element. To see this, we can use the above Josephson

equations to understand the inductive properties of the junction. Taking the derivative of

the current relation, we see:

∂I(t)

∂t
= Ic cos(ϕ(t))

2eV (t)

ℏ
=
V (t)Ic2π

Φ0
cos(ϕ(t))
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V (t) =

(
Φ0

cos(ϕ(t))2πIc

)
∂I(t)

∂t

Recall the relation between the potential energy and current for an inductor: V = L∂tI.

Using this, we define the parameterized inductance above for the Josephson junction:

L(ϕ(t)) ≡ Φ0

cos(ϕ(t))2πIc
=

Lj
cos(ϕ(t))

and we define the characteristic Josephson inductance Lj ≡ L(0) = Φ0/2πIc.

2.5.2 Josephson energy

When designing qubits the Josephson energy, the energy stored in the junction due to the

motion of the cooper pairs, is an important parameter to control. To describe the energy

within the junction, we note that the change in the internal energy of the junction must be

equal to the work done on the junction:

∆U =

∫ f

i
I(t)V (t)dt =

∫ f

i
Ic sin(ϕ(t))

Φ0

2π

∂ϕ

∂t
dt =

Φ0Ic
2π

∫ f

i
sin(ϕ)dϕ =

−Φ0Ic
2π

(
cos(ϕf )− cos(ϕi)

)
So the internal energy of the junction is

E(ϕ) ≡ −Φ0Ic
2π

cos(ϕ)

and similar to the inductive case, we define a characteristic energy EJ ≡ E(0) = Φ0Ic/2π

allowing us to write

E(ϕ) ≡ −EJ
cos(ϕ)
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Figure 2.8: Transmon Qubit created through Josephson inductance. a By replacing
the linear inductance in an LC oscillator with the non-linear inductance gained from the
Josephson junction element (cross) we obtain a non-linear LC oscillator for microwave light.
b A toy example of a quantum SHO model with a transmon nonlinear oscillator calibrated for
the first transition ℏω10 = ℏωSHO = 1/

√
LC. The negative anharmonicity: α = ℏω21−ℏω10

of the transmon can be seen as the change in the |2⟩ state energies.

2.6 Transmon

For now, let us discuss the Transmon as the anharmonic LC oscillator formed when the

linear inductor of the harmonic LC oscillator is replaced with the Josephson junction:

Htransmon = 4Ecn̂
2 − EJ cos(ϕ̂).

By keeping only the quadratic term we have again a simple harmonic oscillator:

HSHO = 4Ecn̂
2 − EJ

(
1− ϕ2/2

)
=

√
8EcEj

(
a†a+

1

2

)
To explicitly continue the series expansion, it is helpful to re-write the second quantized

operators â, â† in the n̂, ϕ̂:

ϕ̂ =
1√
2

(
8Ec
EJ

)1
4

(â+ â†)

n̂ =
−i√
2

(
Ec
8EJ

)1
4

(â− â†)

If we place these terms into the expanded Htransmon out to fourth order:
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Htransmon ≈ ℏω(â†a+
1

2
)− Ec

12
(â† + â)4

Thus, to leading order the transmon non-linearity is sensitive only to the charging energy.

If we look at the perturbed shift of the energy eigenstate levels due to the adding this quartic

term:

∆En = ⟨n|
(
−Ec
12

)
(â† + â)4|n⟩

∆En =
−Ec
12

(6n2 + 6n+ 3)

So the eigenstate energies including the quartic term for the transmon are

En = ℏω
(
n+

1

2

)
+

−Ec
12

(6n2 + 6n+ 3) =
√
8EcEj

(
n+

1

2

)
+

−Ec
12

(6n2 + 6n+ 3)

2.6.1 SQUID

The ability to generate interactions between photons is critical to making a platform for

synthetic materials out of light. However, practical experimental concerns soon arise once

we imagine actually using these elements. What happens to our experiment when we create

an array of non-linear oscillators, but there is undesired disorder in the frequency? To

add the flexibility of tuning the energy of the qubits, we add a Superconducting Quantum

Interference Device (SQUID), depicted in Fig. 2.9. The idea is to add another Josephson

junction in parallel, creating a junction term to the Hamiltonian with two degrees of freedom:

HJ = EJL cosϕL + EJR cosϕR

Through flux quantization of the loop [44] it is possible to re-express the above as
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HJ = (EJL + EJR) cosπ
Φ

Φ0
cosϕ(EJL − EJR) sinπ

Φ

Φ0
sinϕ

Defining the sum and difference of the junction energies as

EJΣ = (EJL + EJR)

d =
(EJL − EJR)

EJΣ

the asymmetric SQUID loop Hamiltonian term can be written as

HJ = −EJΣ cos

(
πΦ

Φ0

)√
1 +

(
d tan

(
π
Φ

Φ0

))2

cos (ϕ− ϕ0)

The transmon qubit lives in-between the perfect two-level system and the harmonic

oscillator as an anharmonic oscillator. It is often characterized by it’s anharmonicity α - the

degree to which the level structure deviates from an ideal harmonic oscillator: α = E21−E10.

For a perfect harmonic oscillator α = 0, and for a two-level system α → ∞. A system with

sufficient anharmonicity to push the |2⟩ state out of any accessible physics is effectively a

two-level system. For the physics we will focus on later we will show that the anharmonicities

we achieve, roughly -230 MHz, put us well into the two-level system limit.

2.7 Qubit - Resonator Coupling

One of the most important foundations of circuit QED is the qubit-resonator coupling

scheme. In general this is often presented in the context of a generic two-level system

interacting with a simple harmonic system - the canonical Jaynes-Cummings model [45]

(Fig. 2.10)

The Hamiltonian of the qubit-resonator system can be broken into the form
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Figure 2.9: Flux Tunable Transmon. a By breaking the single Josephson junction element
into two separate junctions, we create a new magnetic-field sensitive EJ (Φ) due to the
constraint imposed by the Aharanov-Bohm effect. The mutual inductance between the flux-
loop in the SQUID junction and the flux bias line isM. b This sensitivity to the magnetic field
flux allows us to tune the transmon transition frequencies while keeping the anharmonicity
values relatively stable. These plotted values are very close to our experimental operating
points.

Figure 2.10: Jaynes Cummings Model. a The Jaynes-Cummings model describes a model
wherein a two-level system is dipole-coupled to a harmonic single-mode system. External
interactions can be included, such as with the environment via an external drive (Ω) or
dissipation (γ, κ) which both push dynamics away from the closed-system description. We
use engineered decay of the harmonic oscillator component to perform measurements. Many
physical systems realize this model, here b we fabricate a qubit and capacitively couple a
harmonic oscillator circuit, producing the same physics.
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H = Hq +Hr +HI

where, taking the rotating-wave approximation with the interaction term, yields a simplified

model:

H/ℏ = ωa
σz
2

+ ωres(a
†a) + g(σ+a+ σ−a†).

In terms of our circuit model parameters, the above Hq +Hr +HI can be expressed as

(see [Appendix A [46]]):

H = 4EC n̂
2 − EJ cos(ϕ̂) + ℏωr(â†â+ 1/2) + 2eβV̂rn̂

H = 4EC n̂
2 − EJ cos(ϕ̂) + ℏωr(â†â+ 1/2) + 2eβV̂rms(a

† + a)n̂

where β = Cg/(CΣ) is the ratio of the capacitive coupling to the total capacitance and

Vrms =
√

ℏωr/2C

If we re-express the above using the transmon basis states, we obtain:

H = ℏ
∑
i

ωi|i⟩⟨i|+ ℏ
∑
i,j

gi,j |i⟩⟨j|(a+ a†)

where the mixing terms between transmon states is given by

ℏgi,j = 2βeVrms⟨i|n̂|j⟩

If we express the number operator using the transmon creation and annihilation operators

(here b, b†):

n̂ = − 1√
2

(
EJ
8EC

)1/4

(b− b†)

then
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ℏgi,j = ℏ2βeVrms⟨i|n̂j⟩ =
√
2g

(
EJ
8EC

)1/4

⟨i|(b− b†)|j⟩

where g is the coupling strength between the transmon and the resonator: g = eV0β/ℏ,

V0 =
√

ℏωr/2C. If we restrict our vision to transitions between neighboring levels: |i⟩ ↔

|i+ 1⟩, we can simplify the expression for the coupling:

ℏgi,i+1 = ℏg
(
EJ
8EC

)1/4√
2(i+ 1)

We can simplify the total Hamiltonian by keeping only terms that couple nearest-neighbors

and using the rotating wave approximation:

H = ℏ
∑
i

ωi|i⟩⟨i|+ ℏωrâ†â+ ℏ
∑
i

gi,i+1(|i⟩⟨i+ 1|â† + |i+ 1⟩⟨i|â).

Where the last term almost forms the traditional Jaynes-Cummings Hamiltonian, save

our preservation of the multi-level transmon structure (truncation would give us the TLS

we expect). We operate the qubit and resonator in the dispersive regime: g/∆ << 1, where

∆ = ωq−ωr. In this limit the interaction between the qubit and the cavity can be eliminated

with a canonical transformation (Appendix D in [46]) and if we restrict the Hilbert space to

the first excited state the effective renormalized Hamiltonian becomes

H̃ =
ℏ
2
ω̃01σ̂z + ℏω̃râ†â+ ℏχσ̂z â†â

where ω̃01 = ω01 + χ01, ω̃r = ωr − χ12/2, χ = χ01 − χ12/2

and the partial dispersive shifts

χi,j =
g2i,j

ωi, j − ωr
.

We now have an expression for understanding the dynamics between our qubit and it’s
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Figure 2.11: State Dependent Readout. We show a representation of dispersive readout
in the two-level approximation. Probing the cavity transmission in a amplitude will produce
a shift from low to high power when measuring at the qubit ground state if the qubit
becomes excited, whereas measuring at the cavity frequency is excited will result in the cavity
transmission decreasing. Measuring in the middle minimizes information in the amplitude,
but maximizes informaiton in b phase.

dispersively coupled resonator. Our main goal in doing this is to use the resonators as

probes to see the state of the qubit. In this form of the Hamiltonian we can make this

process abundantly clear - by collecting Hr +HI we have (ℏω̃r + ℏχσ̂z)â†â, so the resonator

energy changes by ℏχ based on the qubit occupation.

2.8 Readout and Purcell Filter

The dispersive measurement technique used above is a simple and effective way to measure

the state of the qubit. However, with every design choice there are consequences. In this

dispersive limit the qubit’s hybridized participation in the resonator |ψ⟩ ≈ |q⟩ + g
∆ |res⟩,

implies the leakage rate of the population |ψ|2 of the hybridized qubit out through the

readout resonator with linewidth κ should present a loss rate, or purcell rate, of

Γ = κ
g2

∆2

This loss rate presents conflicting design incentives. Either increasing the qubit-readout

coupling or decreasing the detuning (and hence increasing the χ shift) allow increased readout
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Figure 2.12: Individual Purcell Filters for Improved Qubit Performance. In previous
work each qubit lattice site was dispersively coupled to a single narrow-linewidth single-pole
readout mode, which leaves room for additional purcell filtering a by adding an element
between the resonator and the environment. We choose to add another λ/2 resonator on
each lattice site b and use the lowest eigenmode centered at the readout frequency. The
optical image c for a single transmon lattice site using this scheme is shown.

speed and fidelity, but increase this purcell loss rate.

Several solutions to this are possible. As part of our experiment we dynamically flux tune

our qubits, effectively making ∆ → ∆(t), pushing the purcell loss Γ during the experiment

down. However this solution exchanges the readout fidelity due to loss during the readout

window.

Another route to solving this is to add other circuit elements that change the impedance

and increase the qubit lifetime (Fig. 2.12a). Changing the effective decay rate out to the

environment in this way is called Purcell filtering. A simple extension on top of the common

single-pole readout resonator scheme is to add yet another single pole resonator connected

in series between the first resonator and the environment (Fig. 2.12b).

We use a single-pole purcell filter in our work (Fig. 2.12c), where both readout and

filter resonators exist as eigenmodes of capacitively coupled λ/2 coplanar waveguides. By

connecting two together in series we are able to create individual filters for each qubit readout
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system in our lattice, increasing the speed of readout, enhancing qubit protection against

loss, and suppressing crosstalk between lattice sites when driving excitations through the

common feedline.

To understand how a purcell filter of this form helps us we can model the field amplitude

a, b evolution inside the readout resonator and purcell filter [47]:

ȧ = −i∆R,Da− igb− iϵr

ḃ = −i∆F,Db− iga− κb/2

where the detunings between the readout and filter are

∆R,D = ωR − ωD

∆F,D = ωF − ωD

By looking at quasistatic solutions for the filter (ḃ = 0):

b =
−ig

κ/2 + i∆F,D
a

and plugging this result back into the expression for ȧ, we can isolate a term −κeff
2 a

where κeff is real, corresponding to the leakage of a through b as an effective environment:

κeff =
4g2

κ

1

1 + (2∆F,D/κ)
2

Note the the effective loss rate from the readout resonator depends on the drive frequency.

When we probe the resonator ωD = ωR. We can consider a photon decaying from the qubit

an effective drive at the qubit frequency: ωD = ωQ. If we compare the ratio of these two

different leakage rates κR, κQ respectively:
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Figure 2.13: Simplified Model of Purcell Filter. To extract an analytic model for the
scattering amplitude S21 of the hanger measurement on our Purcell filter, an input-output
model is used to capture the dynamics of the field amplitudes within the readout resonator
and the purcell filter.

κQ
κR

=
1 + (2(ωF − ωR)/κ)

2

1 + (2(ωF − ωQ)/κ)
2

If our design criteria for the filter linewidth is much smaller than the qubit-filter detuning,

κ << ωF −ωQ, then
κQ
κR

<< 1 - the effective loss rate for the photon in the readout resonator

at the qubit frequency is much less than the effective loss for the readout resonator photon

at the native resonator frequency.

While the above is a quick method to motivate this design, matching transmission spectra

requires a model that captures what we should expect from the scattering parameter S21

of such a system. Starting from the hanger model [48] (Fig. 2.13) with purcell and readout

mode a, b respectively,

The equations that govern the evolution of the field amplitudes for both resonators are

ȧ = −i(ωa − ωd)−
(κa + γa)

2
a− iJb+

√
κaai
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ḃ = −i(ωb − ωd)−
(γb)

2
b− iJa

The T junction [41] connecting the filter resonator to the hanger is a symmetric and

unitary circuit element that must take the form

l0 = (−1/3)li + (2/3)ri + (2/3)a0

r0 = (2/3)li +−(1/3)ri + (2/3)a0

ai = (2/3)li + (2/3)ri + (−1/3)a0

which, combined with the input-output relations for the filter mode a, we can use to

re-express the field amplitude evolution equations as

ȧ = −i(ωa − ωd)−
(κa/2 + γa)

2
a− iJb+ (

√
κa/2)li

ḃ = −i(ωb − ωd)−
(γb)

2
b− iJa

To extract a scattering amplitude S21 from the above we can look at the steady state

behavior ȧ = ḃ = 0 of the ratio of the input to output amplitudes ri/lo: resulting in

S21 = 1− κ(γb + 2i(ωb − ωd))

4J2 + (γa + 2i(ωa − ωd) + κ)(γb + 2i(ωb − ωd))

In our experiment each readout-filter system is characterized by fitting the transmission

spectra to the analytic form of S21, sometimes with an additional impedance mismatch term

added to the hanger to absorb imperfections observed in the transmission measurement.
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2.9 Design and Simulation

We want to realize a Bose-Hubbard Hamiltonian 2.9 fabricated out of a lattice of individual

transmon qubit lattice sites. Additionally, we require each lattice site to be flux-tunable and

have a purcell-filtered readout resonator. The two major microwave components we need

are the Coplanar Waveguide (CPW) and the Transmon qubit, here manufactured with a

Superconducting Quantum Interference Device (SQUID).

H/ℏ = −J
∑
⟨i,j⟩

a
†
iaj +

U

2

∑
i

ni (ni − 1) +
∑
i

(ω0 + δi)ni.

To start, we will work on creating the circuit elements needed for a single lattice site:

2.9.1 Single Qubit Design

To allow our sample the flexibility of each transmon qubit having tunable frequencies, we

print each junction as a SQUID loop. In the design phase for creating ω(ϕ), we create

all qubits symmetrically and shoot for a bandwidth of 2 GHz below the readout resonator

frequencies to allow room for different simulation experiments we wish to perform with this

sample in the future. As Ec controls the anharmonicity, we control the frequency ω(ϕ) with

Ej and the asymmetry parameter d. Fixing the upper and lower frequencies ωmin, ωmax

gives us constraints for the asymmetric parameter d and the sum EΣ. Using these, and the

RA product from prior fabricated junctions, we can back out the needed junction areas to

print Ej1, Ej2 and create upper and lower bounds on the frequencies for each tuning range.

Our optical lithography geometry for flux coupling to the SQUID loop is very similar to

our prior work [37] with a measured measured mutual inductance of 0.15pH between each

qubit’s flux line and the SQUID loop. Loss from the qubit coupling out to the flux line is

numerically simulated in HFSS using the circuit quantization black-box technique [49]. We

find the estimated purcell loss for our geometry to be ∽ ms, and is thus not a significant
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Figure 2.14: Deign of Single Qubit Parameters. a Our “Single qubit”, a transmon with
linear capacitance to ground Cg and nonlinear Josephson inductance LJ lies in the middle of
a chain - which in this context includes parasitic capacitive coupling to a readout resonator
and nearest-neighbor qubits. b Initial designs and simulations of a single qubit ( which we
approximate to a Q.S.H.O. for linear analysis in HFSS) may neglect these parasitic effects
by restriction to a single site.

factor in our system.

We also reproduced a similar junction area from the same prior work to reproduce minimal

additional coupling due to external flux noise. Performing noise spectroscopy [50] we measure

an external 1/f flux noise amplitude
√
Aϕ of 4µϕ0 for the pure dephasing rate Γϕ of the

qubit.

Our real-space design of the transmon qubit must take into account the engineering

requirements for the qubit to couple to a readout resonator, to couple to (at most) two

neighboring qubits, and to have a SQUID element tuned with a close-proximity flux bias

line. In total, four nearby circuit elements motivate a co-planar cross-geometry with four

protruding legs, commonly referred to as an “xmon” [51, 52, 53], which we show optically in

Fig. 2.14.

This cross geometry generates coupling to neighboring circuit elements via capacitive

coupling, but the self-capacitance to ground gives us our Ec term, which we have seen

controls the majority of the nonlinearity of the transmon α.

We simulate Cg, and therefore EC , using Ansys Q3D, a quasi-static Electromagnetic

field solver, with the boundary conditions of our experiment (sapphire substrate, vacuum
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Figure 2.15: Bose Hubbard Tunneling Term - Capacitive Coupling. a We create
the tunneling term through nearest-neighbor capacitive coupling of the transmon qubits.
b The lumped element model of two qubits describing this interaction (neglecting parasitic
couplings from the readout resonator, flux lines). c We estimate the coupling strength before
fabrication reducing the model to a pair of S.H.O.’s

boundary, superconducting metal and wirebonds). The adaptive mesh iteratively solves the

capacitance matrix until a threshold, usually a minimum in percent change of a designated

observable, is achieved. In this case, our CΣ = Cg + Cj ≈ 74fF , so Ec =
e2

2CΣ
≈ 238MHz

value isn’t a mission-critical value - our goal in the following experiments here is to produce

a synthetic material that satisfies the strongly interacting boson regime |α| >> |t|. By fab-

ricating identical transmons we also intend to minimize disorder in both the anharmonicity

and the tunneling rate.

2.9.2 Tunneling

The first term J
∑

⟨i,j⟩ a
†
iaj describes tunneling of excitations between neighboring lattice

sites. It is also possible to use the Josephson element to create a new tunable inductive

coupling circuit (the gmon [54]) allowing independent control over J in magnitude and sign.

Briefly, by allowing coupling through an engineered waveguide, directional coupling and

topological dynamics can be produced as well [55]. However, these require increasing the
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circuit complexity and are potential future directions to improve the flexibility of the sample.

Here we construct nearest-neighbor tunneling in a straightforward manner: neighboring

transmon qubits are capacitively coupled through their proximity. The effective overlap in

the electric field of the localized excitations for each qubit give a cross-capacitive coupling

Cc, while the transmon qubit frequency is dominated by the shunt capacitive coupling to

ground Cg and the Josephson inductance Lj . The optical image for our design is shown

in Fig. 2.15a - along with the trailing circuit elements for readout and flux tuning for both

qubits. To tune a specific coupling, in our model we aim for 10 MHz, we use the coupling

model of the linearized lumped element model of this system (Fig. 2.15c). The coupling is

equal to the splitting in frequency of the two harmonic oscillators, which simplifies further

on the assumption of both having the same L,C values:

g =
Cc√
Cg1Cg2

√
ω1ω2 =

Cc
C2
gL

Detuning between the resonators will shift the effective tunneling, a property we will

make extensive use of in the main results.

2.9.3 Readout and Purcell filter

In designing the dual-resonator readout and purcell filter system, we have a few criteria to

keep in mind. We require a purcell limit of > 100us at the readout position, and > 1ms

in the operating range of qubit frequencies. Additionally, we design the Purcell filter with

increased readout resonator speed 1/2κr ≈ 100’s ns. As all circuit elements, including the

filters, are connected to the common transmission line the center frequencies and spacing

between are set by the filter bandwidth.

The degrees of freedom we have using this model are the strength of the capacitive cou-

plings between each element: the qubit-readout Cg, readout-filter CJ , and filter-transmission
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Figure 2.16: Numerical Simulation of Purcell Filter. When simulating the real-space
geometry of the coupled coplanar waveguide model, different numerical techniques can pro-
duce different results. a Within HFSS the DrivenModal simulation run on the input/output
transmission line ports replicate the S21 experiment and refine the mesh based on the differ-
ence in the scattering matrix. However, the narrow readout resonator mode is not sampled
well on refinement with this technique (without guiding), leading to an asymmetry in total
mesh resolution and poor convergence. b By sampling eigenmodes of the total system we
do not bias against the real-space distribution of power from the feedline and evenly sample
both resonance structures, leading to faster convergence.

line Cκ capacitances. The frequencies and linewidths of the readout and purcell filter fre-

quencies are incorporated as disorder and folded into the parameter ∆rr,pf .

Our parameters roughly match the sample created in [48]. In our used sample Cg = 3fF ,

Cκ = 60fF ,and CJ = 6fF , creating a wide-bandwidth (≈ 60MHz) purcell filter. However,

rather than a directly (∆rr,pf = 0) hybridized readout mode, our used sample has fabrication

disorder (∆rr,pf ≈ 60MHz) causing the linewidth κr to decrease and the readout ring-up time

1/κr to increase to the µs scale, making frequency multiplexing for scaling up simultaneous

readout a more likely option than time-multiplexing going forward. As the vast majority of

the design criteria we need were met (purcell filter profile vs frequency, purcell linewidth,

purcell center frequencies etc.) we proceed with this sample.
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Figure 2.17: Purcell Filter Design. The Purcell filter shapes the coupling to the environ-
ment, and hence the Purcell loss [1] T1 = Cq/Re(Y (ω)) for the qubit. The designed loss rate
> 1ms for the expermentally operating range < 5.5GHz for the full circuit, and we show the
loss rates for the (1) purcell and (2) readout resonator as a reference.
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CHAPTER 3

MANUFACTURING

3.1 Fabrication

Our lithography is performed in two steps, corresponding to the two different length scales

of our design. The first “base” layer is a faster lower-resolution optical lithography process

used to fabricate larger features out of Tantalum where dimensions below 1-2µm are not

important to the physics. CPW traces, transmon shunt capacitors, and launcher pads are

features commonly fabricated at this step. The second step uses electron beam lithography

to create the Josephson elements out of Aluminum - allowing spatial resolution down to the

∼ nm scale.

3.1.1 Wafer Processing

Our fabrication process starts by processing the substrate we fabricate our sample on. The

substrate is a 450µm c-plane 4-inch Crystek sapphire wafer which we anneal at a maximum

temperature of 1500°C for two hours. These wafers are then transferred to the Pritzker

Nanofabrication Facility (PNF) at the University of Chicago where the rest of the fabrication

takes place. The wafers are cleaned using a traditional TAMI solvent step: iterating through

Toluene, Acetone, Methanol, and Isopropyl alcohol for 1.5 minutes, cycling through three

sonication settings. The wafers are cleaned again using a two step etching process: in Nano-

strip at 80°C for ten minutes and in sulfuric acid at 140°C for 10 minutes with DI rinsing

and spin-drying steps between.

3.1.2 Optical Layer

Our base metal layer is made of 200nm Tantalum [56] deposited using an AJA ATC 2200

sputterer at 800°C. To etch into the Ta after deposition we spin a protective AZ1718 resist
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Figure 3.1: Simplified Optical Fabrication . a After depositing Ta onto the Sapphire
substrate, we spin a thin resist layer. b By exposing the AZ1718 with an optical-wavelength
pattern from the direct writer we create a gradient between polymerized resist and un-
exposed resist, which is how c a difference in developer rate is created, yielding exposed
metal underneath our positive photoresist. We d etch away this metal with HF and e remove
the resist covering the rest of the metal, leaving f only the etched Ta atop the substrate.
Not depicted are detailed cleaning steps, described in the text.
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layer on top, soft bake this resist at 95°C for one minute, and optically expose our pre-defined

optical layer geometry using a Heidelberg MLA 150 into the resist layer. After exposure we

post-bake the resist at 115°C for two minutes and develop the resist for one minute in MIF

300. After rinsing in DI for one minute and spin-drying, the sample is heated in an oven to

120C for ten minutes, then an oxygen plasma asher step is run to de-crust the wafer. The

sample is then placed in HF for 19 seconds, then undergoes a DI rinse and is spin-dried.

The sample is then sonicated in NMP for 15 minutes, then transferred to a new NMP dish

and left at 80°C for four hours. After this time, the wafer is sonicated again at 40°C for two

minutes, then transferred to a fresh beaker of NMP at 50°C and sonicted for two minutes

again. The wafer is cleaned by sonicating in Acetone and IPA for 1.5 minutes respectively,

then rinsed in DI and spin-dried. The wafer is dehydrated for five minutes at 180°C. Optical

inspection is performed to benchmark fabrication results.

3.1.3 E-Beam Layer

We apply a bi-layer resist made of MMA EL11 (spun at 4000 RPM, 45 seconds) and PMMA

AZ 950 A7 (4000 RPM, 45 seconds) baking each at 180°C for five minutes and cooling the

wafer afterwards. Before exposing the resist to the e-beam, we apply a 10nm surface layer

of conducting gold using an Angstrom Nextdep thermal evaporator.

After exposing the MMA/PMMA resist layers using the Raith EBPG5000 Plus electron-

beam pattern generator, we strip the gold layer using iodine for 45 seconds, DI rinse for 1.5

minutes, and spin dry the wafer. We then develop the resist layers in a 3:1 IPA to DI solution

chilled to 6°C for one minute before quickly halting the development process by rinsing with

DI and blowing the surface of the wafer with an N2 gun.
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Figure 3.2: Simplified Ebeam Layer Fabrication . a We spin a dual-layer of
MMA/PMMA atop the processed optical layer, which we b expose using an electron-beam
to directly write the features for the qubit. c The MMA layer exposes at a lower power
threshold, allowing us to d develop the total exposed resist and create undercuts. When we
perform angled-deposition of Aluminum e to create junctions, these undercuts help break
the metal deposition, allowing the f liftoff to carry the resist and extra metal off of the
surface.
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Figure 3.3: Qubit Fabrication. We create SIS Josephson junctions using Aluminum atop a
Tantalum ground plane. a A representative SQUID loop geometry for our sample. The top
and bottom square pad features ensure galvanic electrical connection between the Tantalum
(light grey) and the Aluminum layers (dark grey) respectively, both of which sit atop the
sapphire substrate. The SQUID loop can be seen as the area enclosed by the loop of metal
in the middle between both junctions. b The Al/AlOx/Al Josephson Junction is formed
by evaporating Al in a ballistic trajectory at a shallow angle into the resist pattern at two
angles - each forming one of the “fingers” above. After the first deposition an oxide layer is
grown to form the barrier, and the overlap between the layers creates the Josephson energy
EJ .

3.1.4 Junction Evaporation

The Plassys MEB5500 angled evaporator is, as the name implies, capable of angled evapo-

ration of material on a surface. We take advantage of this to create three successive layers:

Aluminum, Aluminum Oxide, and Aluminum to create SIS Josephson Junctions (Fig. 3.3).

After the sample is loaded into the Plassys chamber we pump down for five hours, and

run an initial Titanium evaporation step to further decrease the ambient pressures - reaching

a starting chamber pressure of 7e−8Torr and loadlock pressure of 1.9e−7Torr. Before Al

deposition we use an argon ion milling step to etch the surface oxide layer on the sample.

We operate the ion milling process at 400kV, and step through three separate angles ±30, 0

milling for 25 seconds each.

With the oxide removed, the first 60nm Aluminum layer is deposited at a rate of 0.1nm/s.
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After this step, the chamber is filled with 50mBar of Oxygen to carefully create a surface

layer of Aluminum Oxide - which forms the insulating layer for the SIS junction. We have

calibrated this to take 24 minutes at 50mBar for our sample. After rotating the sample in

the chamber by 90 degrees, the last layer 150nm of Al is is deposited at a rate of 0.1nm/s.

We add an additional delay step after the last deposition before venting the Plassys, as

this is observed to increase Junction fabrication fidelity.

3.1.5 Post-Processing

Before dicing, we apply a surface coating of AZ703 resist and bake for 5 minutes to aid in

shielding the wafer during processing under the dicing saw. The wafer is then converted

into many individual samples of 10x20mm chips by physically cutting the wafer with a

fast-spinning diamond blade actively cooled with water.

Before returning to the lab - each chip is still globally coated in a protective layer of

AZ703, Aluminum, and MMA/PMMA resist layers (which ideally all help shield the chips

from damage during dicing). To Lift these layers off the chips are: placed in NMP for 4

hours, sprayed down with NMP while transferred to new NMP for two minutes and sonicated,

sprayed while transferred to an IPA beaker, sprayed while transferred to an Acetone beaker,

then sprayed while transferred to another IPA beaker, then dried with a nitrogen gun.

3.1.6 Resistance Measurements

The Josephson junction element gives our transmon qubits their anharmonicity. The critical

current density Jc = Ic/A is, via the Ambegoakar-Baratoff relation:

Ic/A = Jc =
π∆

2eRA
tanh

(
∆

2kBT

)
≈ π∆

2eRA
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where ∆ is the superconducting energy gap, R is the resistance of the gap, and T is the

temperature, and we operate in the cryogenic experimental regime kbT << ∆.

The EJ parameter is, in terms of the critical current density:

EJ
A

=
ℏJC
2e

so

EJ
A

=
ℏπ∆

(2e)2RA

Given ∆ is a constant of the Aluminum we are using, the degrees of freedom to control EJ

are the area and resistance. We do this by changing the fabrication parameters of exposure

on the resist, and change the oxidation parameters to control the thickness of the junction

to change the area and resistance respectively.

However, to have the freedom to tune the energy of our qubits we create SQUID loops

and we should characterize both junction EJ ’s - as asymmetries change the flux tuning

range of the qubit. In the circuit model these junctions are now in parallel, so measuring the

resistance between them becomes difficult if our circuit is the normal fabricated transmon.

We dedicate a portion of our chip to fabricating copies of our transmon qubits with only

the left or right junction connected to allow independent resistance probe measurements of

the EJL and EJR parameters. As our sample chip also contained witness junctions, the

experimentally used sample has witness junctions of EJ = 4.83(±0.18) GHz and EJ =

14.22(±0.15) GHz

3.2 Assembly

We inspect chips for defects under an optical microscope after transporting samples from

the nanofabrication facility back to the lab.

First, The sample then placed in a rectangular copper cap with an indium ring seal,
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comprising half of an OFHC light-tight enclosure for the 10x20mm chip sample. This copper

cap is pressed up to a multi-layer copper PCB containing the signal routing (Fig. 3.4) and

mechanically held in place with screws. The copper PCB mediates connections between the

circuit elements on the chip and the wiring in the fridge. However, connections between the

PCB and the chip must be made.

To suppress slotline modes, enforce microwave boundary conditions, connect signal traces

from the package to the chip, and ground the sample we use a manual wirebonder to connect

disparate points together with wirebonds (Fig. 3.4). Future samples will likely incorporate

air-bridge technology [57] as well. As a practical point in our optical layer the coplanar read-

out and purcell resonator bends are too sharp for wirebonding to take place, so those circuit

elements in the middle of the chip remain untouched. Once the launchers are wirebonded,

an electrical connection between the circuit elements on the chip and the traces within the

PCB are made, allowing further elements that are connected to the PCB to interface with

our fabricated sample.

We then enclose the sample with a cap and tighten it with brass screws using the second

half of the OFHC enclosure. This cap is designed to attach to an additional OFHC copper

piece with a coiled Niobium-Titanium wire to create a global solenoid magnetic field for the

sample (shown in Fig. 3.4). The PCB and enclosed sample is mounted (via an copper stick)

into a multilayered cylindrical shield. Our shielding consists of an outer layer of Mylar,

followed by two layers of Mu-metal, a superconducting lead layer, and a thin high purity

copper shim which faces the sample [58] (sample can at the bottom in Fig. 3.5).

3.3 Mounting

This can is mounted to the mixing chamber base plate of a BlueFors BF-LD400 dilution

refrigerator, where a thermally conducting path along connected OFHC from the mounting

brackets to the PCB ensures both reach 8mK with no applied load. This temperature range
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Figure 3.4: Sample Wirebonding and Mounting. Top The 10x20mm chip is wirebonded
with Aluminum wire, grounding accessible CPW traces to prevent radiative coupling and
suppress slotline modes. Wirebonds create connections from the mount to the launcher
pads, allowing exchange of microwave signals to and from the sample. Bottom The sample
is enclosed in OFHC within a copper cap, sealed with a ring of indium wire to prevent light-
leakage (not seen). The surface-mount SMA connectors mediate microwave signals from the
fridge to the sample through the circuit mount. We add a solenoid to generate a local global
field seen by all qubits in our lattice.
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Figure 3.5: Fridge Assembly. Our cryogenic wiring inside our BlueFors dilution refriger-
ator is shown. Microwave compatible coax lines thermalized at 4K, 100mK, and 9mK via
fixed attenuators and twisted-pair DC lines send signals to the sample through filters lo-
cated at 4K and the mixing chamber stage. Signals from the sample are sent through filters,
circulators, and a HEMPT amplifier before reaching room temperature.
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is important - the superconducting transition temperature of Aluminum Tc ≈ 1K, placing

a hard requirement for the Josephson junction itself to operate at T < Tc. However, at

the operating range of 4-8GHz we suffer from thermal excitations in the 100’s of mK range

- forcing the experimental condition that we operate in a regime much colder than this to

suppress thermal fluctuations from influencing microwave physics.

3.4 Wiring

As seen on the real-space image of the fridge (Fig. 3.5), fixed attenuators thermalized to

different stages of the fridge are used to attenuate the signal as it travels down from room

temperature to the sample [59]. Without any filtering, signals sent from the room temper-

ature measurement setup have a background thermal distribution set at room temperature,

300K. This high-temperature blackbody radiation swamps the power of the signal we wish

to probe the system with at the mixing chamber stage. As the signal passes through a ther-

malized attenuator, both the intended signal and the background radiation are attenuated,

with the background radiation of the thermalized attenuator at that temperature added in.

The thermal background of photons at room temperature is given by the Bose-Einstein

distribution

nBE(T, ω) =
1

e
( ℏω
kbT

) − 1

and at each stage the signal passes through a thermalized attenuator the thermal back-

ground changes:

ni(T, ω) =
ni−1(ω)

Ai
+
Ai − 1

Ai
nBE(Ti, ω).

We distribute the dissipative heat load of attenuating the signal at different stages as the

signal travels down to the sample. If we examine the wiring diagram (Fig. 3.6) and look at

the qubit drive and readout line, the attenuation is spread evenly along the 4K, 100mK, and
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mixing chamber (9mK) stages at 20dB of attenuation each. Modeling this attenuation of the

300K thermal distribution using the recursive relation above on the drive line at the center

of the readout resonator frequency distributions (6.5GHz), the residual thermal population

is ≈ 1/500 of a photon.

On all input lines to the sample we add IR filtering in the form of a strong eccosorb [60, 61]

to protect the sample from radiation at the superconducting gap.

On the flux bias line, responsible for sending both static DC currents and “fast” DC

pulses to the SQUID loop junction, we additionally have a 1.8GHz Low-pass filter, then a

Bias-Tee. We break the flux biasing into a slow frequency DC component, with aggressive

low pass filtering designed to tolerate a constant current load, and a fast frequency AC

component with higher cutoff frequency designed for a DC load of 0 Amps. The DC current

is sent through a LP filter at 1.9 MHz at the MXC, then converted to twisted pair lines

via an custom in-house SMA-dSub PCB thermalized at the MXC. These lines run up to 4K

before breaking out to another in-house PCB (thermalized to 4K) where each DC line passes

through a two-pole RCRC filter with 7 kHz cutoff frequency before continuing out to room

temperature. Each DC line is fed through another RC filter (8 Hz cutoff) with a cut ground

plane before connecting to the DC source - an analog devices AD5780 DAC controlled via

an Arduino through SPI.

On the “fast” DC side, the bias tee leads signals up through 10,1,and 20 dB of thermalized

attenuation at the MXC, still, and 4K stage respectively before reaching room temperature,

where the coax lines are wired to the M3102A 1GS/s AWG output ports on the PXI. We add

an additional attenuation at room temperature to re-scale the AC voltage (0-20dB), which

we have noticed help re-scale the noise amplitude.

The global solenoid is controlled by an external Yokogawa GS 200 supply set to constant

current mode. The wiring passes through the same twisted pair lines the AD5780 DC sources

do, but the only filtering beyond the self-inductance of the solenoid is at the RCRC filter at
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4K.

On the common feedline input and output we have eccosorb and high-frequency low-pass

filters from Minicircuits at 9.6GHz to shield the sample. On the input side there is a simple

series of 20dB filters at the MXC, still, and 4K stage before we split the input wiring for

the two different homodyne setups. On the output side past the IR filtering, we connect in

series to two 4-8GHz LNF circulators and one 4-8GHz Quinstar circulator. Our circulators

operate normally with a terminator and act as isolators. The output is fed up from the

MXC through superconducting Niobium wire to a 4-8GHz LNF HEMT, whose output is fed

to room temperature, amplified via a Minicircuits ZX60-832-N-S+ amplifier, then split and

feed to two independent homodyne setups.

3.5 Room Temperature

The room temperature dual-homodyne measurement setup that sends and receives signals

to the sample, which has taken the vast majority of the data for the experiment presented

here, has affectionately been named Gerbert.

3.5.1 Homodyne Detection

Using homodyne detection we look for the shift in amplitude and phase of a single frequency

that we monitor. A simple method to do this is digitally generating a microwave tone,

sending it down to the sample, and sampling at a similar rate to extract the amplitude

and phase shift of that signal. However, we lack the ability to directly digitally synthesize a

signal at microwave frequencies such as 6 GHz - the frequency of the readout resonator mode.

Instead, we use a Local Oscillator (LO), in our setup a SignalCore SC5511A, whose purpose

is to act as a constant high-frequency spectrally pure microwave tone. This operates at a

frequency outside of the bandwidth of our other measurement or digital signal generation

capability. We send this as input to non-linear IQ mixers which allow us to add (or subtract)
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Figure 3.6: Wiring Diagram Schematic. Full room temperature and cyrogenic schematic
for Microwave and DC signal routing to and from our chip. Homodyne setups probe the
state of qubits in our experiment via individually coupled filtered readout resonators through
cryogenic compatible microwave lines. Qubits are biased through DC lines, with static DC
signals on a low cutoff twisted pair line and “fast” DC signals filtered at a higher cutoff. See
[2] Supplementary Figure S1.
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Figure 3.7: Mixer Up / Down Conversion. Direct digital synthesis of microwave fre-
quency tones is not achievable with our hardware. We use non-linear microwave mixers and a
high-frequency microwave carrier tone (LO) to generate signals to interact with and measure
our sample. Up-conversion allows us to generate high-frequency pulses by modulating the
LO using an IF frequency. We can measure the distortion of the LO by feeding the measured
signal back into the RF port and down-mixing close to DC.

a signal from the LO - respectively up/down conversion.

3.5.2 Mixer

The basic mixer is a three-port device with a Local Oscillator (LO) port, Radio Frequency

(RF) port, and an Intermediate Frequency (IF) port. Typically the LO port is driven at an

unchanging

SLO(t) = ALO cosωLOt

To up-convert a signal for interacting with the sample, suppose to probe a readout-

resonator, we apply a tone ωIF to the IF port:
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SIF (t) = AIF cosωIF t

An ideal mixer’s output combines the signals:

SRF (t) = SLO(t)SIF (t) = ALOAIF cos (ωLOt) cos (ωIF t) =

ARF
2

cos ((ωLO + ωIF )t) + cos ((ωLO − ωIF )t)

where ARF is ALOAIF .

In this case the up-conversion process has sidebands. On either side of the LO frequency,

separated by ωIF , our signal appears. In reality, higher harmonics from the non-ideality of

the mixer are generated, producing images of the signal at n · ωIF as well.

For down-conversion, a signal close to ωLO can be sent to the RF port, and low-frequency

information will flow out on the IF port. “close” in this case implies that the bandwidth of

the ADC or measurement device can handle ωRF − ωLO.

For simplicity - we will assume the signal sent for down-conversion will be a signle fre-

quency:

SRF (t) = ARF (t) cos (ωRF t)

The LO remains the same:

SLO(t) = ALO cosωLOt

Again, the ideal mixer combines the signals as:

SIF (t) = SRFSLO = ARFALO cos (ωRF t) cos (ωLOt) =

AIF cos ((ωRF + ωRF )t) cos ((ωRF − ωRF )t)
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Figure 3.8: IQ Mixers. a The IQ mixer takes two independent signals I(t), Q(t) rather than
a single IF to mix with an LO. b The internal structure of an IQ mixer can be understood
as a combination of two mixers combined with a phase offset. This allows us to separate
the IF input into an in-phase I(t) and an out-of-phase (+90) Q(t) signal for up and down
conversion processes.

In our application ωRF and ωLO are either almost equal, or only off by 100’s MHz but

centered at either the qubit drive (plus a sideband) or the readout frequency, making the

high frequency term (ωLO + ωRF ) on the order of 10’s of GHz. Thus, the higher sidebands

are removed on encountering the high-frequency low-pass filters in our readout setup within

the homodyne chain (Fig. 3.6)

In our setup we use IQ mixers, which allow us to drive the quadrature components of

the IF port independently.

As shown in Fig. 3.8, the IQ mixer breaks the IF modulation of the LO into quadrature

components (I,Q):

SRF (t) = I(t) cos (ωLOt) +Q(t) cos (ωLOt)

An advantage of IQ mixing is the destructive interference of sidebands: Modulating the

I and Q channels at

I(t) = A cos (ωIF t)
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Figure 3.9: Simplified Qubit Readout Schematic. We use homodyne detection to probe
the state of the qubit through changes to the coupled resonator. A high frequency tone is
sent to the resonator, and the state of this resonator is measured by detecting the relative
phase and amplitude of this signal from the I and Q channels of the downconverting IQ
mixer.

Q(t) = A cos (ωIF t− π/2)

yields:

SRF (t) = A(cos (ωIF t) cos (ωLOt)− sin (ωIF t) cos (ωLOt))

SRF (t) = A cos ((ωIF + ωRF )t)

For qubit state readout, we apply the readout frequency tone to the sample and the input

LO port of the IQ mixer used for down-mixing this signal (Fig. 3.9).

The χ shift of the resonator is probed by looking for the amplitude and phase shift

of the signal measured from the time-averaged traces read out on the digitizer taking in

down-converted signals from the I and Q channels from the mixer.

In the disordered configuration of our staggered qubit array, each eigenstate is a localized

excitation on a qubit at a unique frequency. We use the up-conversion process to drive

excitations onto these individual qubits on the common feedline by choosing the sideband
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Figure 3.10: Simplified Qubit Drive Schematic. We use up-conversion with side-band
modulation generated by an AWG pulse-sequencer to drive qubits in the staggered lattice
configuration. Charge driving the qubits happens through the common feedline, requiring
frequency separation for all qubits to address each one, and microwave hygene to ensure no
combination of resonances and sidebands collide during state preparation.

frequency δsdbnd such that ωqi = δsdbnd + ωLO.

As the nonlinear mixer creates additional sidebands at ωLO±m ·δsdbnd where m = 1, 2...,

we position the qubit frequencies and choose the sideband IQ mixing frequencies to maximize

the distance between the parasitic sidebands and any other qubit transition in the lattice

when driving a transition. Again, this is necessary as we drive transitions through the

common feedline, so we require frequency separation to address individual qubits rather

than spatial separation and using individual charge drive lines.
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CHAPTER 4

CHARACTERIZATION

We perform a series of initial experiments to understand, calibrate, and benchmark the

circuit before proceeding to the experiments that constitute the science we seek to study. As

a basic example, the fabricated Josephson junction SQUID loops provide upper and lower

frequency bounds as a function of applied flux, but without measuring those frequencies, the

starting flux, or the current-to-flux ratio we don’t have a good handle on manipulating even

single qubits in our system.

4.1 Resonator Spectroscopy

Each qubit is capacitively connected to two coupled λ/2 resonators - a narrow readout

resonator and a wide purcell filter, before connecting to the common feedline. Initial charac-

terization of the sample in Continuous Wave (CW) spectroscopy can be quickly done to find

the position and linewidth of the readout and purcell resonator frequencies using Network

Analyzers. This transmission measurement, sweeping across the frequency of the attached

resonator and purcell filter, can be fit to the expected analytic form of the Q.O. model of

the same system (Fig. 2.13). Experimentally we use the narrow-linewidth readout mode to

perform measurements, though high power readout [62] driving the purcell filter mode is a

method we have also successfully tested.

4.2 Two-Tone Spectroscopy

We use two-tone CW spectroscopy next to characterize each qubit connected to their res-

onator networks. By measuring the shift of the tone applied to the readout resonator while

sweeping a separate, second tone to drive the qubit we look for the location in frequency

and power where the second tone causes the readout resonance to shift due to the disper-
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Figure 4.1: Single-Tone Readout and Purcell Resonator Measurement. We begin
probing the sample by measuring the transmission response of photons sent through the
common feedline at the readout and filter frequencies. a,b The diagrammatic model and
optical image on-chip of the double-resonator system implemented as capacitively coupled
CPW λ/2 resonators. c,d The input-output model for this resonator network is matched to
the transmission spectrum, which we use to extract the circuit parameters.

sive coupling. We fit these data points to the Jaynes-Cummings model for each qubit as a

function of flux.

(Hq +Hr +HI)/ℏ = ωq/2σz + (ωr + χσ̂z)â
†â

Once we have fit model parameters for each qubit, we truncate the qubit ω(Φ) relation

to the single 1/2 period containing Φ = 0, which gives us an invertible function Φ(ω) within

this interval. We use these truncated functions to relate changes in frequency to changes in

flux, and we will see later that this becomes quite useful when dealing with crosstalk between

qubits.
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Figure 4.2: Jaynes-Cummings Model Fit. For each qubit + readout resonance in our
system we perform two-tone spectroscopy extract the a readout resonance and b qubit
frequency as a function of applied flux. In each case we fit the Jaynes-Cummings Hamiltonian
to both the measured g/e qubit transition and the measured qubit ground state resonator
frequency
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4.3 Qubit Readout

To enable single-site microscopy in our lattice we need to calibrate our homodyne detection

on the readout mode on each qubit. Using the above CW measurements we see a transition

minima in S21 at the mode of the readout resonator. To perform homodyne detection we

measure the change in response of the magnitude and phase of a single frequency we probe

- detecting the χ shift of the readout mode frequency magnitude and phase due to the state

of the qubit.

During the pulse sequence there is a dedicated readout window wherein a readout pulse

(”windowed” by a square wave) drives the readout resonator mode, where we measure the

state of the qubit dispersively via down-mixing the frequency using homodyne detection.

The time-trace of this pulse is stored in the Keysight M3102A digitizer, which collects both

quadratures of this down-mixed signal from an IQ mixer at 500MS/s. By integrating the

signal over time each shot of the experiment contributes to a Gaussian profile distribution4.3

about the mean value in IQ space, with width given by vacuum noise and additional classical

contributions from electronics (such as the HEMT) and thermal background.

The separation between the measured values is the fidelity of the readout. For the data

presented in Fig. 4.3, the fidelity metric

Fq = 1− (P (0|0̄)− P (0̄|0))/2

is used. The readout fidelity in this calibration experiment is 82%. The dominant con-

tributing factor is decay during the readout window, which can be seen visually in the first

image. On unstructured relabeling of the states using Gaussian mixture modeling from two

distributions, most of the points that have decayed are re-labeled as ground state points.

This allows us to construct a confusion matrix, where we use a calibration run to re-normalize

the measurement value based on previously measured decay and excitation rates.
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Figure 4.3: Single Shot Readout. To calibrate measurements of a qubit, we de-modulate
microwave signals at the readout resonator frequency and look at the quadrature compo-
nents (I,Q) as a function of the initially prepared qubit state |g⟩, |e⟩. a The single-shot
measurements show when we prepare |e⟩, many of these states decay to |g⟩ during the read-
out, whereas heating (|g⟩ → |e⟩ is not seen). b We can use Gaussian mixture modeling
to re-label the states. Using the learned distribution on successive measurements we can
renormalize measured |g⟩,|e⟩ values using a confusion matrix. c Other methods, for future
work, can use information obtained during the readout to further improve the fidelity. Here
the full trajectory (I(t), Q(t)) is used to label three clusters. The mean cluster trajectories
show a curve that aligns with |e⟩ but shifts back towards |g⟩, or qubit decay.

For future work, looking at the time-series trajectory information itself yields additional

information. The last figure in Fig. 4.3 is unstructured re-labeling of these trajectories into

three bins, showing the expected |g⟩, |e⟩ and an additional label whose mean trajectory

aims closer to |e⟩, then bends back towards the mean |g⟩ measurement values, resembling a

decay process. By truncating these measurements, the readout fidelity metric increases to

Fq = 0.92% on the same data. Other methods, such as a neural-network approach, are also

avenues for improvement in readout [63].

In practice we additionally sample frequencies around the ±χ values, searching for a 1D
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Figure 4.4: Rabi Rate. We calibrate the rabi rate for the staggered lattice of qubits. Part of
the optimization for choosing the position of the staggered array frequencies is the rabi rate,
which we sample by sweeping the frequencies of all qubits and repeating these experiments.

projection where homodyne detection remains invariant to observed crosstalk, e.g. invariance

in subspace projected locations of |g⟩, |e⟩ under excitations of other qubits on the lattice

which we observe, in exchange for optimum fidelity.

4.4 Qubit Drive

We apply power on a sideband through the common feedline to apply pulses to individual

qubits rather than using hardware such as individually coupled charge drive lines to ma-

nipulate the state of the qubit. The advantage is a reduction in circuit complexity, but a

disadvantage is the inability to address qubits individually, as all pulses are global. Thus,

localization of coupling happens in frequency-space. At this point we already begin to mo-

tivate the initial staggered configuration for our qubit lattice, where nearest-neighbors are

detuned by ∆NN >> J with the additional constraint that non-nearest neighbors do not

have frequency degeneracy (in our sample the upper and lower bands of qubits of evens and

odds have an additional smaller stagger of > 20MHz, allowing applied pulses to uniquely

select qubits.
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Using the information gained from sweeping the qubits in frequency and measuring the

effective Rabi rates, we also choose the static disorder configuration location in frequency

such that the drive rate Ω is insensitive to frequency drift. In Fig. 4.4 we can see the higher

frequency qubits near 5GHz are close to ∂ωΩ = 0 at a location with maximal coupling to

the feedline.

4.5 Tomography

We are interested in collecting the single-site density matrix for each lattice site, a process

which allows us to draw more in-depth conclusions about the physics of states on our lattice.

This is necessary to see physics, such as the growth of global entanglement across the lattice

through the single site purities Tr(ρ2) as a function of disorder. In general, Tomography is

the method of reconstructing the quantum state via repeated measurements performed on

successive identical copies of the state. In this series of experiments we only reconstruct the

many-body state up to the single-site density matrix using Maximum Likelyhood Estima-

tion [64]. The process for doing this is outlined below.

We start by building a Cholesky decomposition of the density matrix, where ti are real

numbers:

T =

 t1 0

t3 + it4 t2


and ρ = T †T

Tr(T †T )
, so

ρ =
1∑
i t

2
i

t21 + t23 + t24 t2(t3 − it4)

t2(t3 + it4) t22


Because we always measure in the Z basis, projections onto X, Y require pre-rotating the

state by Y−90, X90 respectively (which can be seen by drawing the Bloch sphere). Measur-
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ing each eigenvalue of each orthogonal projection X, Y, Z allows us to build the constraint

equations to the density matrix:

⟨X⟩ = Tr(Xρ) = 2t2t3 ⟨Y ⟩ = Tr(Y ρ) = 2t4t2 ⟨Z⟩ = Tr(Zρ) = t21 − t22 + t23 + t24.

We use the Maximum Likelyhood Estimate method to reconstruct the density matrix by

evaluating the 2-norm of the above observables over the repeated measurements: C(|ψ⟩) =∑
i(⟨O⟩i − ⟨Oψ⟩)2, where O runs over X, Y, Z and the sum runs over all measurements.

4.6 Flux Crosstalk

In order to tune each qubit’s frequency ωi we apply a local magnetic field by pushing current

through that qubit’s associated flux line. This current changes the magnetic field threading

the SQUID loop, thereby changing the effective Ej and changing the ωi. This is a good story,

and it does work. Unfortunately, when we actually perform the experiment another effect is

observed - the applied current Ii for qubit ωi threads a nonzero magnetic field through other

qubits omegaj , shifting their frequencies due to parasitic mutual inductance in the sample.

However, it is possible to correct for this. The parasitic mutual inductance between

the neighboring SQUID loops and the flux lines, once measured, can be inverted (assuming

linearity in the mutual inductance relation). There should exist an basis of N flux-vectors

that create constructive magnetic interference at each of the N qubits.

To measure the degree of crosstalk between lines, we measure the induced frequency shift

of the qubit ωi due to changing the current Ij on another qubit’s flux line, then normalize

this response by the magnitude of the slope of the measured qubit. By sampling the qubit

shift locally and normalizing we linearize the crosstalk:

∂ωi
∂Ij

(
∂ωi
∂ϕi

)−1 =
∂ϕi
∂Ij

≡Mij

The non-linear relation ω(ϕ) disappears from the mutual-inductance relation. Mij above
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Figure 4.5: DC, RF Flux Crosstalk Matrices. Measured using the quibt frequency
ωi(ϕ) response to changing Ij and normalizing to the slope of the measured qubit. See [2]
Supplementary Figure S5.

now relates the rate of change of flux to current. Inverting M gives us a mapM−1
ij : ∆ϕ→ ∆I

from flux to currents, and diagonalizing it informs us what flux vectors actually create the

previously mentioned constructive interference to tune an individual qubit independently.

RF Crosstalk is measured in a similar manner except a square wave pulse is applied

instead of a slowly varying DC signal on the flux line. In this regime we use the ratio of the

steady state amplitudes in the µs scale to determine the crosstalk. When signals we apply

vary over the duration of the experiment such as an adiabatic ramp or the diabatic ramp

back to readout we apply the RF crosstalk matrix. The measured crosstalk matrices for our

sample are shown in Fig. 4.5.

Measuring the crosstalk response can be done in several ways - we have chosen a method

that works in our sample for the experiments we are performing. A potentially faster method

to read the DC crosstalk values would be to measure the frequency response of the resonator,

rather than the qubit, to flux changes applied to other qubits. Additionally, the decompo-
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sition of flux crosstalk into “fast” and DC using the square wave basis may not be robust

for future experiments, instead requiring decomposing the AC crosstalk into a frequency-

sensitive crosstalk matrix M(ω) via Ramsey sequences [65]. This could give us additional

insight and power to compensate for parasitic mutual inductance and couplings. Another

possible solution for compensating flux crosstalk is to optimize for periodicity alone [66].

To mitigate the effect of DC crosstalk in our system we use an additional degree of

freedom, a global magnetic field, to minimize the energy used tuning the lattice of qubits

while compensating for the crosstalk.

4.7 Solenoid calibration

As each qubit has an individual flux line, when we solve for the current required Ii to

produce the magnetic field ϕi to create the qubit frequency geometry we want ωi(ϕi), we

would normally not have any wiggle room after solving this system. With an additional

magnetic field that can thread flux through all qubits, we can decrease the energy required

to achieve the required physical field. Since pushing current into the fridge pushes current

through the cryogenic resistors and adds a heat load, this is the same thing as decreasing

total power P ∼
∑
i I

2
i . After using the solenoid to change the distribution of applied current

we observe a decrease in mixing chamber temperature from 9.7mK to 8.2mK.

To take advantage of the solenoid we measure the flux sensitivity of each qubit to the

solenoid bias, in a similar fashion to the flux bias line measurement. We set the bias voltage

on the flux lines to 0V and probe the qubit frequency in two-tone spectroscopy to bias

current on the solenoid alone. Using the same physical parameters for the qubit in the

Jaynes-Cummings Hamiltonian HJC as the original flux bias line - we can see the shift in

the pure voltage scaling due to the bias coming from a new source.

Superimposing the qubit frequency shifts on one another as a function of the solenoid

bias (see Fig. 4.6) we see that, by tuning the solenoid, we can shift all of the qubits. to slight
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Figure 4.6: Global Solenoid Calibration. DC biasing flux lines contributes heat load at
the MXC from filtering, biasing the lattice with a global solenoid field alleviates this load.
Each qubit’s flux sensitivity to the solenoid is measured, then the position for the solenoid is
determined by minimizing the distance of the qubits from the desired DC staggered frequency
configuration.

aperiodicity and frequency offsets for each qubit, we use a 2-norm metric of the distance in fre-

quency from each qubit to a target lattice frequency configuration
∑
i(ωi(Isol)−ωi(ϕtarget)2

to optimize the solenoid current.

4.8 Anharmonicity

We calibrate the anharmonicity of each qubit by first putting the qubit into the |e⟩ state,

then looking for the frequency at which |e⟩/|f⟩ resonance occurs in pulse-probe spectroscopy

(Fig. 4.7). We have good initial guesses for the frequency to sample in pulsed measurements

as we can drive higher transitions using high-power CW spectroscopy.

4.9 Flux Pulse Calibration

When we apply pulses to the qubit SQUID loop through the flux line, there is invariably

distortion. The impedance through the flux line is not 50 Ω - we have applied RC, eccosorb,

and low-pass filters in-series connected to a Bias-Tee element, which end in a terminated

flux line to ground near the qubit. Applying a fast pulse, such as a square wave, from
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Figure 4.7: Anharmonicity. We drive the qubit of interest into the |e⟩ state and sweep for
a response to a short rabi drive around the expected anharmonicity. Once a signal is found
we calibrate the amplitude and time of the e/f pulse and extract the anharmonicity as the
difference between the frequencies.

an AWG will reproduce a waveform distored by the aforementioned circuit elements at the

qubit SQUID loop. At the sample, flux pulse distortions on the short and long time scales

accumulate and must be compensated [67, 68].

We correct the flux pulse distortions using linear response theory. The applied square

wave pulse from the AWG is an input signal x(t) distorted by an effective transfer function

u(t) which produces a changed output signal y(t). We use the qubit as an oscilloscope to

probe the output signal through time ω(t).

The output waveform’s distortion is given by the convolution of the transfer function

with the input signal:

y(t) = x(t)u(t)

The Fourier transform of the above means we can re-express the impact of the response

function in the frequency domain and invert it:

Y (ω) = X(ω)U(ω)

U−1(ω)Y (ω) = X(ω)
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Figure 4.8: Flux Pulse Calibration. We use the qubit frequency as an oscilloscope to
probe the transfer function distorting pulses between the AWG output port and the qubit
SQUID loop. By inverting the transfer function and pre-distorting the pulse we send out
of the AWG to the qubit, the signal that reaches the qubit looks far closer to theory. Here
we see a pre and post-corrected square wave sent to Q5 using this method. The grey lines
enclose a width of 1MHz, .5% of the amplitude of the ramp. See [2] Supplementary Figure
S6.

So by inverting the transform on U−1, we can apply the time-domain kernel u−1(t) to

y(t) and recover the input waveform we wish to apply - that is, invert the distortion.

We simplify this process by looking at the response of y(t) to a step input x(t). An

impulse-response characterization of the transfer function would call for a Dirac-delta dis-

tribution on the input:

y(t) =

∫ ∞

−∞
u(t)δ(t− τ)dτ = u(t)

but it is much easier to synthesize and still recover the transfer function:

y(t) =

∫ ∞

−∞
u(t)Θ(t− τ)dτ → y′(t) = u(t)

When we measure the qubit frequency response ω(t) we excite the qubit with a broad

20ns gaussian pulse at a time t0 in the experiment. We then fit the qubit responses at each

time to a Lorentzian and plot the central values over the duration of the step pulse to extract
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y(t). In practice we further simplify the problem and assume the response function U acts

a single pole element and fit the qubit response to the analytic exponential. We invert the

frequency response U−1(ω), with a cutoff applied to truncate high frequency behavior, and

apply the inverted kernel to our AWG inputs: x(t)u−1(t) as the corrected and pre-distorted

flux bias inputs.

4.10 Tunneling

We have designed our circuit to have a nearest-neighbor capacitive coupling strength−t
∑
a
†
iaj

of 10 MHz, but we need to experimentally verify this. We do so by sampling the swap rate

for a single excitation between two neighboring qubits (keeping all other lattice sites far

detuned) and iterating over values of frequency detuning between the qubits. By sampling

detuning values we give ourselves an additional benchmark to ensure our flux-correction pro-

tocols are working as intended - as the minimum swapping rate should occur at minimum

disorder (neighboring qubits on-resonance) and increasing disorder increases the swap rate.

Explicitly, we populate the stationary qubit with one photon and diabatically ramp the other

qubit to a specific detuning and measure the swap rate.

In more detail - a two-spin system

H = ℏωLσzL + ℏωRσzR +
g

2

(
σ+Lσ

−
R + σ−Lσ

+
R

)
Solving −iℏ∂t|ψ⟩ = H|ψ⟩ yields a time-dependent solution for a single excitation with

ω
√
g2 +∆2 where ∆ = ℏ(ωL−ωR). We then extract g searching for the minimum frequency

ω : ∆ → 0. Results for sweeping the neighboring Q0,Q1 are shown below:
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Figure 4.9: Nearest Neighbor Tunnel Calibration. By taking two neighboring qubits
QL, QR and a measuring the single photon swap rate geff =

√
g2 +∆2 between them b

across detuning values ∆ = ωL−ωR controlled by a flux tuning vector we are able to extract
the zero detuning ∆ = 0 bare coupling frequency g between nearest-neighobrs on the lattice.

4.11 Lifetime

We benchmark the excitation loss rate T1 for each qubit by measuring the exponential decay

rate of the excited state |e⟩ to the ground state |g⟩. As our experiment involves flux-tuning

the qubits along trajectories in frequency, we sample T1(ω) along the path each qubit takes

from the intial staggered configuration ωi to the disorder-less lattice ωf . Part of the initial

calibrations we perform involve choosing a frequency configuration where we observe high

lifetimes over the frequency bandwidth we wish to operate in, which can be pictured as

applying a global DC frequency offset to the experiment to shift out of observed low T1

regions. Dephasing T2∗ is sampled via a ramsey sequence for each quit in the same way as

part of an automated process along these frequency points, yielding typical lifetimes between

1− 4µs.
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Figure 4.10: T1 vs ω . We calibrate the T1 for each qubit in the lattice, sampling along
frequency positions (here swept nearby the stagger). We show the purcell limit for the
readout scheme again (Fig. 2.17) for reference

4.12 Landau Zener Characterization

ω1 in the table of values refers to the disordered stagger values for the larger detuning, while

ω2 refers to the smaller stagger. We use two separate disorder configurations to avoid errors

from Landau-Zener transitions in state preparation by apply excitations at the smaller array

past the |ee⟩⟨fg| transitions (∆NN < U).

In characterizing the severity of the unavoidable LZ errors we pick up on readout, wherein

the disorderless lattice is “ripped apart” by applying a step-response pulse to each qubit’s

flux-line to bring each site to the large-staggered array, we calibrate against a worst-case

nearest-neighbor LZ error for a square-wave pulse on the flux line transitioning each qubit

from the smaller stagger to the larger stagger (Fig. 4.11).

We measure accumulated |f⟩ state population of < 5% for all qubit pairs using this

method. By extension, the larger detuning from the disorder-less lattice using the same

functional step pulse to tune qubits to the final larger disordered configuration, we should

expect a smaller |f⟩ state population as our parameterized LZ velocity [69] (flux tuning) is

faster.
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Figure 4.11: Landau-Zener error characterization. We accumulate error from Landau-
Zener transitions on qubits whose nearest-neighbors have population in the excited state
due to our staggered configuration for readout having a detuning δ > U , so the matrix
element |gf⟩⟨ee| can contribute to the dynamics, pushing our system outside of the intended
Hilbert space. We characterize this error by looking at neighbors, (1) pushing them to |ee⟩
in the small disorder configuration, then (2) applying a step pulse to push them to the larger
staggered configuration, and reading out the |f⟩ state population.

4.13 Table of Values

After benchmarking our sample, the parameters of our sample are (Table 4.1):
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Qubit 1 2 3 4 5 6 7
U/2π (MHz) -241 -240 -240 -239 -239 -239 -240

Ji,i+1/2π (MHz) 9.0625 9.032 8.842 8.936 9.023 9.040 –
ω1/2π (MHz) 4410 4992 4466 4956 4513 5020 4489
ω2/2π (MHz) 4742 4860 4767 4875 4782 4890 4797

T1(µs) 14.6 35.5 57.7 28.4 60.3 54.7 40.0
T2 ∗ (µs) 0.85 0.64 1.31 0.77 3.57 0.84 1.4

Fge 0.91 0.92 0.93 0.95 0.87 0.92 0.83
ωr/2π (GHz) 6.197 6.323 6.427 6.556 6.655 6.78 6.871
κr/2π (KHz) 359 553 203 235 292 220 894
gr-q/2π (MHz) 60 63 72 64 78 70 70
χr-q/2π (MHz) 0.48 1.23 0.78 1.24 0.90 1.71 0.73
ωp/2π (GHz) 6.256 6.486 6.706 6.936 7.055 6.843 6.604
κp/2π (MHz) 77.5 52.7 92.5 72.4 103.1 56.9 60.8
gr-p/2π (MHz) 3 3.5 6 6.5 5 6 4.5

Table 4.1: List of Sample Parameters
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Preparing Compressible States of Light with Disorder

We have gone through great effort in designing, fabricating, and calibrating a one-dimensional

lattice of transmon qubits (Fig. 5.1) capable of producing strongly-interacting Bose Hubbard

Physics. However if we proceed to place this lattice within the fridge immediately and

carefully measure it as-is, we will simply measure the vacuum state. The critical next step

to studying interesting physics on our Bose-Hubbard simulator is to create desired states and

then measure observables. We are preparing quantum many-body states, so entanglement

and delocalization across lattice sites will increase the complexity of both the state and

therefore state preparation. There are several popular ways to overcome these challenges.

In previous work [37], we used a dissipative state preparation scheme on the same lattice

architecture with L = 8 sites in the unit filling Mott Insulator state, so N = 8 excitations

over eight sites gives N/L = 1 photon per site to form this in-compressible many-body state.

To stabilize the Mott Insulator state on the lattice we take one edge lattice site and drive the

two-photon transition |g⟩ ↔ |f⟩, and wait for the engineered (enhanced) decay |f⟩ → |e⟩.

The excitation tunnels into the neighboring empty lattice and the driven site would refill to

|g⟩ → |f⟩, repeating the process until the lattice is filled (the neighbor never empties). This

process terminates at unit filling as the energy required to fill the ”full” lattice with a new

photon is detuned by the anharmonicity - so the many-body gap stabilizes the many-body

state. This process works in the aforementioned in-compressible Mott Insulator phase, but

we now seek a method to stabilize the intermediate compressible states where the density of

photons n = N/L < 1.

In this work, our approach uses another popular method of state preparation - adiabatic

assembly. Suppose we have an initial Hamiltonian Ĥ(k), parameterized by some scalar k and
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Figure 5.1: Experimental Platform. a Optical image of the cryogenic microwave circuit.
Highlighted in blue b is the one-dimensional lattice of transmon qubits which form the
strongly interacting Bose-Hubbard Hamiltonian for photon excitations. Image from [2],
Figure 1.

a prepared eigenstate ψ(k) within the system. Slowly varying the parameter k allows the

eigenstate ψ(k) to “follow” the change we induce and remain an instantaneous eigenstate

across the values of k. If the change is adiabatic, all of the initial eigenstates ψn follow

the connected instantaneous eigenstate paths through the parameterization from Ĥ(k(ti))

to the final configuration Ĥ(k(tf )). However, we don’t get this for free: the “rate” of our

allowed speed dk
dt in this process is limited by the many-body spectrum in the energy level

landscape. Our process becomes diabatic, or non-adiabatic, once our parameterization speed

causes population transfer between eigenstates. We will use this adiabatic tuning method,

but we will parameterize the disorder within our system.

5.2 Disorder and Adiabaticity

Let us explicitly write the Bose-Hubbard Hamiltonian calling out the fact that we are free

to induce on-site frequency changes using flux-tuning of the transmon qubits:

ĤBH = −J
∑
<i,j>

a
†
iaj +

U

2

∑
i

ni(ni − 1)
∑
i

(ω0 + δi)ni

where J and U are, again, the nearest-neighbor tunneling and the on-site anharmonicity
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Figure 5.2: Adiabatic tuning of Disorder. a Eigenstates in a fixed disordered lattice
with suppressed tunneling are localized excitations on each site. Adiabatic removal of this
disorder connects each of these simple states to one of the disorder-less eigenstates on the
traditional 1D chain, which can have delocalized excitations and entanglement. b We create
the eigenstate in the disordered lattice by (1) applying local excitations to qubits, then (2)
ramping the disorder down adiabatically and (3) creating and measuring fluid-like states of
light on the lattice. To prepare a target eigenstate on the resonant lattice we choose the
corresponding eigenstate in the disordered lattice to prepare. Image from [2], Figure 1.

for the electromagnetic microwave excitations on the transmon lattice sites. ωi and δi are

the on-site energy and energy shift due to flux tuning for each lattice site.

To simplify state preparation it makes intuitive sense to simplify the system Ĥ. We

do this by adding disorder |δi| >> |J | between lattice sites - ensuring eigenstates are now

simply products of localized photons on individual lattice sites. Eigenstate preparation in

this disordered configuration amounts to creating products of localized excitations, we simply

choose which qubits we need to excite to reach the desired eigenstate and excite them as

separate qubit drives.
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A major point in this work is treating this added disorder as an adiabatically tunable

parameter 5.2. After moving to a desired eigenstate ψ with the above excitations on single

qubits (1), we now remove the disorder (2) as a tunable parameter Ĥ(δ → 0) to recover the

disorder-less Bose Hubbard lattice (3) and the target eigenstate ψ we desire, where we can

perform measurements to characterize these rich many-body states.

This experiment can be run backwards initially (in theory) to look at a desired state

in the disorder-less H(δ = 0), then track along the instantaneous eigenstate paths as the

disorder increases until finding which of the initial eigenstates in the disordered configuration

correspond to the desired state. Then, preparing that state experimentally and following

the adiabatic trajectory of disorder removal will create that desired state.

5.3 Single Particle Eigenstates

The simplest versions of the disorder assembly protocol are the states spanned by single

excitations. With only a single excitation, the interaction term U
∑
ni(ni − 1) which is

responsible for generating interactions between photons now contributes no physics. Without

disorder, all sites have the same energy so we can ignore the on-site term and we are left

with nearest-neighbor tunneling. Thus, Ĥ = −J
∑
<i,j> âiâj and so the system reduces to

the eigenmodes of a particle-in-a-box.

We show the dependence of these eigenstates upon disorder and their corresponding

energies in Fig. 5.3a. At maximum disorder (left) each eigenstate is an excitation localized

to a single site, while near zero disorder the eigenstates are delocalized particle-in-a-box

(right). By adiabatically tuning the disorder we follow connected manifolds of instantaneous

eigenstates. Thus, we form a unique map of eigenstates between the disordered lattice

configuration and the disorder-less configuration. For the single-particle case, we have a

unique map between the single lattice site excitation in the disordered configuration and the

eigenstate of the particle-in-a-box case.
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Figure 5.3: Single Particle Eigenstates. a In the single-particle manifold (shown numeri-
cally) we apply excitations to single sites in the “sawtooth” disordered configuration to reach
an eigenstate of choice. The highest and second-highest lattice sites map to the lowest and
second-lowest quasi-momenta disorder-less eigenstates, producing particle-in-a-box states set
by the open boundary conditions of the lattice. b We measure the population change over
the lattice during the adiabatic ramp by diabatically ramping the lattice apart at variable
values of disorder. For both quasi-momenta values we observe the expected delocalization
of the single excitation to the lattice quasi-momenta eigenstates. Image from [2], Figure 2.
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By examining this “sawtooth” staggered configuration depicted in cartoon form in Fig. 5.3a,

we can pick out the highest and second-highest eigenstates by exciting the highest and

second-highest frequency qubits: Q5 and Q3 indexed by their positions. In Fig. 5.3b, we

plot the measured density profile of each instantaneous eigenstate as we adiabatically remove

disorder from the staggered lattice. We can see the excitation delocalize from a single site

across the empty lattice sites, taking on the profile of the sinusoidal probability distributions

for the q = π/L and q = 2π/L particle-in-a-box/quasi-momentum states. Note that we quote

J > 0 in our platform, with a global minus sign for the kinetic term in the Hamiltonian. In

a hard-core band with a fixed photon number, the lowest and highest-energy eigenstates are

connected through a gauge transformation (by changing the sign of J). Without impacting

the physics, we focus our efforts in preparing the higher-energy states.

Our system, comprised of qubits with finite decay times for their electromagnetic exci-

tations, exhibits decay for each of the states we prepare. Our adiabatic state preparation

protocol therefore must compete against the timescales of these decay processes. We must

evolve faster than the decay time of the photons, but slower than the timescales dictated by

the transition to diabiaticity.

To simplify adiabatic state preparation in our system, we parameterize the detuning δ(t)

as an exponential ramp to reduce the degrees of freedom needed for optimization: δ(t) =

δie
−t/t0 . By sweeping over the timescale of the exponential ramp we are able to quickly

establish a ramp trajectory that satisfies adiabaticity while roughly taking advantage of the

gradient in the many-body instantaneous-eigenstates as the disorder is removed.

To establish whether an exponential ramp is reversible we look to see if the final state,

after reversing the trajectory is the same as the initial prepared state. We take the ramp

trajectory towards the disorder-less lattice, then we mirror the trajectory back out again to

the disordered lattice (Fig. 5.4a). If the ramp rate is too fast and has a diabatic component

we will gain population overlap with other eigenstates. Shown in the cartoon figure is an
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Figure 5.4: Characterizing Adiabaticity. We require adiabatic, or reversible, ramps to
connect eigenstates between the disordered and disorder-less lattices. a To test reversibility
of a ramp sequence to remove disorder in the single particle manifold we start with an
eigenstate and apply both the ramp and the reversed ramp sequence. If the sequence is
reversible the end population distribution should match the initial distribution - a single
localized excitation. The population on this site is our fidelity metric. b This population
recovery is our metric for reversibility as we sweep an exponential ramp profile over timescales
ranging 1ns to 1µs. Image from [2], Figure 2.
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example for the single particle lowest quasi-momentum case. By ramping diabatically to the

lattice we will transfer some population to other eigenstates. By inverting this ramp process

the diabatic transition places the transferred population we have accumulated into other

eigenstates, into other localized qubits. Thus, to quantify reversibility |⟨ψinit|ψfinal⟩|2 we

can look at the loss of population on the prepared site in the localized eigenstate basis on

the disordered lattice. To optimize adiabatic trajectories for multi-particle states (Fig. 5.5)

we use a similar method to the single particle case, maximizing projection of the population

to the initially populated states.

This is the metric we use to evaluate reversibility as we sweep the ramp timescale for

the exponential ramp trajectory of disorder. For the single particle case an the lowest quasi-

momentum, we collect data on the reversibility over a range of ramp timescales (Fig. 5.4b).

Initially the ramp timescale tramp ≪ J−1 is fast enough that it outpaces the physical

processes for tunneling (which happens at a frequency J) and the excitation remains in

place at the same lattice site, so the reversibility metric |⟨ψinit|ψfinal⟩|2 remains high. As

the process slows and we enter the tramp ∼ J−1 regime, tunneling between the lattice sites

takes place and diabatic transitions to other states suppress the population amplitude on

the initial lattice site when the ramp is reversed. As the ramp continues to slow down and

we enter tramp ≫ J−1, the state adiabatically delocalizes and relocalizes back to the same

site as the lattice loses and gains disorder respectively.

5.4 Multi-Particle Melting

Motivated by the success in single-particle state preparation - we can explore the natural

extension to multi-particle states on the lattice. With multiple photons existing at the same

time the interaction term U will begin perturbing the behavior of our physics away from

non-interacting bosons (Fig. 5.7) . As we fill the lattice with N excitations on L lattice sites

N/L = 2/7,3/7...6/7, we are preparing what are called “compressible” fluid-like states of
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Figure 5.5: Reversibility vs Density. To prepare any state adiabatically, including the
higher particle number compressible states on the disorder-less lattice, we benchmark the
reversibility of the same exponential ramp sequence as in the single particle case. As particle
number increases the state fidelity decreases due to loss. Image from [2], Extended Data
Figure 1.
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Figure 5.6: Multi-Particle State Assembly. By exciting more than one site initially we
can prepare multi-particle fluid states on the lattice. a The instantaneous eigenstate energy
levels increasing in particle number, demonstrating the separation in scales for the tunneling
energy J , the anharmonicity U (separating the excitations with doublons), and the energy
required to add an entire particle ω. b The three-particle manifold. The disordered state
is prepared with all sites in the top frequency band populated and all sites in the bottom
empty, leading to a large many-body gap in the ram (red) to the lowest quasi-momenta
state. c Instantaneous population measurements vs disorder during the melt for the lowest
quasi-momenta for N=2,3 and 4 excitations. As more photons are added photon loss causes
further deviations from the theoretical predictions (dashed line). Image from [2], Figure 3.

light on the lattice. Despite the strong interaction term U ≫ J between the photons they

can still delocalize and exchange kinetic energy as we remove disorder. At the N/L = 1

density we arrive at the incompressible Mott Insulator phase, where applying additional

excitations requires applying energy at a frequency detuned by the anharmonicity U - as

there are no accessible empty states left near the same energy ω.

The instantaneous eigenstates as a function of disorder for higher particle numbers can

be seen in Fig. 5.8a. Here we truncate the Hilbert space to two excitations per lattice site.

The smallest energy scale J sets the scale for phonon excitations in the disorder-less lattice,

while the interaction term U sets the energy scale for doublons. Looking up from the single

particle manifold ω, by adding another N particles with ω (the highest energy scale) we see,
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Figure 5.7: Interacting Photons. By mediating strong interactions between photons using
qubits, even a three excitations are enough to see a drastic change in particle distribution
relative to the b non or weakly interacting case, where the lowest quasi-momenta is, if at
all, only weakly perturbed.

in the disorder-less case, accessible states up to the last Mott Insulator state with density

N/L = 7/7.

For the N/L = 3/7 particle case, we zoom in on the instantaneous eigenstate diagram

to show the trajectory we take experimentally. We excite the highest-energy top band of

qubits in the disordered “sawtooth” configuration. In this case we follow an instantaneous

eigenstate path that is well-separated in energy from other states, allowing us to traverse an

adiabatic path at a fast rate. As in the single-particle case, the localized excitations on the

three separate lattice sites delocalize and entangle as the disorder is removed adiabatically,

reaching a new eigenstate at the disorder-less configuration.

We measure multi-particle disorder-assisted adiabatic preparation of the lowest quasi-

momentum eigenstate for up to N/L = 6/7 (Fig. 5.8). These data demonstrate that during

the melt the photons delocalize from their initial sites into all lattice sites with the melted

density profiles at the end being good agreement with the disorder-free numerics from exact

diagonalization, though we observe increasing infidelty scaling with N in our prepared states

coming from particle loss and crosstalk.
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5.4.1 Tonks-Girardeau Gas Model

Exact diagonalization is not the only tool we need to describe our system. We operate in

the regime where interactions outstrip the energy scale of tunneling: U ≫ J and so we

have a lattice of strongly interacting bosons (photons). Because we restrict excitations to

the single particle per site manifold, the sign of U does not influence the physics and we

can model our system as a Tonks-Girardeau gas [70, 71] of repulsing bosons in 1D. The

ground state is of the Bijl-Jastrow [72] form. This wavefunction is written as the product

of single- and two-particle components ΨB(x) = ϕ(x)φ(x), for x = (x0, x1, . . . , x6) [73].

The single-particle component ϕ(x) =
∏6
i=0 cos(πxi/L) corresponds to the non-interacting

lowest-energy particle-in-a-box state of the lattice. Without interactions each photon sees

the finite tight-binding lattice and, without excitations, will all condense to the ground state

of the system.

The two-point contact interaction term φ(x) =
∏
i<j |xi − xj | explicitly prevents the

B.E.C. story of overlapping bosons all lying in the ground cos(πx/L) state, as Ψ → 0

whenever two bosons occupy the same space xi = xj . We can compare the results of the

final prepared compressible states N/L = 1/7...6/7 to the theoretical predictions given by

the analytic model of the infinitely interacting Tonks-Girardeau gas. We can use these

analytics, in conjunction with our numerics and experimental results, to pursue observables

and structure beyond just the location of population on our lattice.

5.5 Fluid Correlations

Intuitively, the photons inherit strong non-linearities from the qubit lattice sites. This results

in repulsion between photons not just on a single site but between delocalized photons across

the lattice which can be seen by the relative distortion from the expected cos distribution

in the ground state as we add more particles. To measure the repulsion quantitatively, we

measure correlations in population and position:
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Figure 5.8: Measured Density Profile vs Exact Diagonalization. We measure the
population distribution of the adiabatically prepared disorder-less states with lowest quasi-
momenta varying density below unit filling. These are compared against the numerical
results for exact diagonalization, where decreasing fidelity due to loss can be seen for higher
particle number. Image from [2], Extended Data Figure 2.
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Figure 5.9: Correlations in the strongly interacting fluid. We observe particles avoid-
ing one another. a The conditional probability Pi|j , the probability of detecting a photon
at site i given detection of a photon at site j, for the two particle lowest quasi-momenta
eigenstate. Anharmonicity suppresses detection of a second photon on the conditionally
measured site, while the second photon is restricted to remain in the two “boxes” with sup-
pressed amplitude near the detected photon. Figure similar to [2], Figure 4.

5.5.1 Conditional Probability

By looking at a conditional probability metric we can see how the distribution of the resid-

ual wavefunction changes after finding a particle on a lattice site, and how the residual

wavefunction’s distribution is influenced by the interaction.

The conditional probability metric Pi|j we use is defined as the probability of detecting a

photon at site Qi given we have detected a photon at site Qj . We restrict our measurement

here to the two-particle case, so we can express our multi-particle wavefunction Ψ(x1, x2).

Once we detect one photon on a lattice site (xj) the two-particle wavefunction collapses

δ(x1−xj)ψ(x2) and the conditional probability metric of the second photon Pi|j = |ψ(xi)|2.
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The full symmetric Pi|j measured and exact numerical datasets can be seen in Fig. 5.9a,Fig. 5.9b,

respectively. Cutouts representing the residual probability distributions after conditional de-

tection of a particle on sites Q3,Q4 are presented in Fig. 5.9c, with numerical results accom-

panied. Simultaneous measurement of another excitation on the same site as the conditioned

photon is prohibited due to the anharmonicity of the lattice sites - which we have folded into

our ”infinite interaction” description of the system. Thus, in this strongly interacting 1D

system conditional measurement effectively partitions the lattice and confines the residual

wavefunction to two boxes. Minimization of the population near the detected site reflects the

influence of both repulsion and the minimization of kinetic energy from minimizing curvature

of the wavefunction.

5.5.2 Density-Density Correlations

To look at the influence of interactions beyond the two-particle state we can look at the

two-point density correlation function

g(2)(x) =
1

n̄2

∑
i

⟨ninx+i⟩.

This tells us the probability of simultaneously detecting two particles separated by a

distance of x lattice sites, normalized by the average density. From our previous results

of the density distribution in the N/L = 2/7 case, we should expect to see a decreased

probability of finding particles near one-another on the lattice.

The two-body density correlation measurements for the lowest quasi-momentum states

for densities N/L = 2/7 to 6/7 are shown in Fig. 5.10. With limited space on the finite

lattice, placing more particles (increasing N/L) diminishes the normalized anti-bunching

metric which accounts for the mutual repulsion - as there is decreasing space for photons to

move to. For low separation values x << L the asymptotic expansion of the pair correlation

function for point-contact bosons (Here Hint =
U
2

∑
i n̂(n̂− 1)) looks like [71]
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Figure 5.10: Density-Density Correlations. By measuring the population simultaneously
on separate lattice sites, we can extract the density-density correlation metric g2(x), allowing
us to see fermionization of the strongly interacting bosons. a Here, for lattice separation
x << L the g2(x) scales as 1 − (sin a/(a))2 where a = nx/L with a limiting behavior of
g2(x) → 1. However, we quickly sample outside this limit in our lattice size and discover
b the full symmetric behavior of the correlation function. In all cases The density-density
correlation function, normalized across the lattice, shows anti-bunching of photons clearly at
∆x = 1 which reduces as the density N/L increases - as photons have less space to separate.
Measured values across densities match theoretical predictions for a Tonks gas of infinitely
interacting bosons. c In the limit x << L we can re-scale by the density n/L, and see that
all measurements collapse to a density-independent Friedel oscillation with Fermi momenta
kF = πn̄. Image similar to [2], Figure 4.
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g2(x) = 1−
(
sin(πρx)

πρx

)2

If we collect the measured correlation data for “low” separations x ≤ 3 and re-normalize

the measurements by the total density, all plots collapse to the same density-independent

theoretical g2(x) curve (Fig. 5.10c), now demonstrating (more clearly) the expected Friedel

oscillations of a fermionized Tonks-Girardeau gas with fermi momenta kF = πn.

The full expression of the correlation function for the point-like bosons, which map to

the spinless free fermion gas, is

g2(x) = 1−
(

sin(πρx)

n−1 sin(πxL−1)

)2

which is valid beyond the asymptotic limit x << L. We show the rest of our experimental

data for the density-density correlation metric along with this expression in Fig. 5.10b.

5.6 Delocalization and Entanglement

Decreasing disorder adiabatically allows the localized excitations to tunnel and delocalize.

As these photons delocalize they avoid one-another, which we have characterized by looking

at the density-density correlation function. However, we have yet to probe the entanglement

generated by the delocalization through tunneling between the lattice sites.

In our experimental setup we do not perform simultaneous readout of all lattice sites (left

for future work!), so we do not directly measure the full density matrix of the system, only up

to simultaneous pairs of sites. Thus, to track the change in entanglement of the instantaneous

eigenstates over the entire lattice as disorder is removed, we track the entanglement each

individual site have to the rest of the system. The global entanglement [74, 75] is an average

of the impurity 1− Tr(ρ2i ) of each lattice site Qi:
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Figure 5.11: Entanglement in the Fluid. Tunneling of photons between lattice sites
mediates entanglement as disorder is removed during the adiabatic ramp. To characterize
this we measure the global entanglement Egl ≡ 2(1− ⟨Tr(ρ2i )⟩) by tracking the total single-
site impurities. a We measure Egl for N = 3 during the adiabatic ramp and sample disorder
values (orange), comparing to an adiabatically reversed ramp sequence (red) to rule out loss
of single-site purity from environmental effects. b We vary the particle number and perform
the same experiment, showing the final global entanglement values and reversed values for
each case. The entanglement is maximized in the regime where particle-hole symmetry is
highest (partial measurement here reveals the most about ψ), and increased particle loss is
responsible for the deviation from symmetry and numerics as density increases. Image from
[2], Figure 4.

Egl = 2− 2

N

N∑
i=1

Tr(ρ2i )

When initially localized by disorder the many-body state ρ looks like a direct product

of all ρi’s, and thus the purity of a single qubit remains high when looking at localized

eigenstates. As disorder is removed delocalization is mediated by tunneling and entanglement

of the state grows across the lattice, contributing to the impurity of each site.

We measure the global entanglement as a function of disorder for N/L = 3/7 in Fig. 5.11.

To make this measurement the lowest quasi-momentum three particle fluid is initially pre-

pared in the localized stagger, then the disorder is ramped down adiabatically to the point

we wish to sample where we return the lattice to the stagger configuration diabatically. At
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Figure 5.12: Global Entanglement vs Filling. We measure Egl across the adiabatic
delocalization trajectory for each compressible state below unit filling. Image from [2],
Extended Data Figure 3.

this point we reconstruct the single-site density matrix ρi for each Qi. This process is then

repeated for each disorder value, sampled exponentially to the disorder-less lattice.

The mechanism we ascribe to the increase in impurity for single-qubit density matrices

during this process is increased entanglement due to delocalization in the lattice. To exclude

increased impurity due to decoherence from the environment itself we run a second reversible

version of the experiment (Fig. 5.11a, inset) at each value of disorder (red) and show that

the value of entanglement we measure after following an adiabatic trajectory in removing

disorder and placing it back and measure a similar global entanglement as the initial value

- excluding dephasing from the environment as a major contributor to our entanglement

metric.

We measure the entanglement growth for densitiesN/L = 1/7 up to 6/7 as well (Fig. 5.12),

with dashed lines theoretical results coming from exact diagonalization of the system. We
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can see that at half filling the entanglement is maximized - from an information perspective

the number of available microstates is maximized at half-filling and diminish as either holes

or particles become sparse. Thus partial measurement of a lattice site provides the most

information of the system in the states near half-filling.
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CHAPTER 6

OUTLOOK AND CONCLUSION

We now have a method to generate compressible eigenstates, either single or many-body,

within the disorder-less lattice. Combined with previous work, we have access to both

compressible and incompressible states of light, spanning the two phases of matter in the

Bose-Hubbard phase diagram. If we consider the end of these experiments, the prepared

many-body eigenstates, as starting points instead then these rich many-body eigenstates on

the lattice lattice can be used for further experimentation.

In the work presented so far we have characterized the steady-state behavior of the

eigenstates, but we have not examined dynamical physics possible with these states. Taking

advantage of the same axis of control we used for state preparation, flux tuning, we can probe

the susceptibility of the prepared fluid states on one end of the chain to a small periodic

drive on the other (Fig. 6.1). Here we present, briefly, susceptibility measurements for the

first three particle number eigenstates. By sweeping the drive frequency of the flux-driven

qubit, we see larger responses close to the expected many-body phonon resonances in the

susceptibility data. Further conclusions and experimental results along these lines will be

left for future publications.

Quantum simulation is a leading technique to understand physical systems in the regime

that intersect the many-body, the quantum, and the strongly interacting and strongly cor-

related. Traditional analytical tools and classical computation are insufficient on their own

to tackle the fascinating new physics being demonstrated in these systems. To progress our

understanding in this regime, many types of quantum simulators have been constructed.

However, quantum simulation involves not only the construction of the analogous Hamilto-

nian but also the preparation of the (potentially complex) state of interest.

In this work we have described and presented the process for creating a one-dimensional

array of transmon qubits, a cryogenic microwave circuit capable of simulating the Bose-
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Figure 6.1: AC Susceptibility. One immediate extension is c probing the susceptibility
to an AC drive on one end of the chain. We measure the a time-domain response at the
other end of the chain to this drive and b the frequency response, with linear (diagonal,
dashed) contributions at ω and higher non-linear responses at 2ω, 3ω (dashed). This process
is repeated for different states d, and we compare the measured and expected response for
each.
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Hubbard Hamiltonian. Importantly, we have also presented a simple and extendable method

for preparing the many-body compressible fluid states of light. That is, the frequency tun-

ability of each qubit in our lattice can be thought of as disorder and an adiabatically tunable

parameter, so we have tackled many-body state preparation through simplifying the sys-

tem by localizing the eigenstates first, preparing excitations, then delocalizing by removing

disorder.

We have presented benchmarks on the single-particle states and developed a metric,

reversibility of the prepared state, to validate this process. Additionally, we have measured

the particle number distribution for the first two quasi-momenta states in the first particle

manifold, demonstrating our control over the eigenstates by simply choosing which qubit in

the disordered configuration to excite.

We have also discussed measurements of higher particle numbers on the lattice, starting

with particle density distributions for the lowest quasi-momenta states. These measurements

are compared the expected distribution form exact diagonalization, which in turn is compared

against the infinite interaction limit of the Tonks-Girardeau gas.

Further, we investigated the delocalization and entanglement growth that occurs for

these multi-particle states as we removed disorder adiabatically. Delocalization was studied

through two multi-site correlation metrics: the conditional probability measure Pi|j and the

density-density correlation function g2(x).

The conditional probability metric gave us insight into how, on the two-particle manifold,

detection of a single particle re-shapes the residual probability distribution in the presence of

strong interactions, strongly contrasting from the case where many identical bosons lying in

the same state will yield little change in the residual distribution upon measurement. When

we measured the density-density correlations on the lattice for different particle numbers

(for the lowest quasi-momenta state) we saw the influence of strong interactions emerge in

the anti-bunching (g2(x) < 1) result. However, we also see in this measurement very nice
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agreement between the theoretical predictions of the infinitely interacting Tonks-Girardeau

model of a 1D fermionized chain of bosons and our system in the correlation function,

allowing us to see Friedel oscillations (albeit small!) in the physics of our microwave photons.

We measured entanglement growth as we removed disorder by measuring the average

impurity of each individual lattice site (Egl), allowing us to track the entanglement growth

of the many-body state for the lattice without measuring the full density matrix. We present

measurements of the global entanglement metric for each of the lowest quasi-momenta com-

pressible states and sample across decreasing disorder to track it’s growth from the localized

to delocalized cases. Additionally, we compare these measured values to the reversed case,

where the ramp sequence is adiabatically brought back to the staggered configuration, where

we observe a lack of entanglement growth which we use to rule out entanglement with ele-

ments outside the intended Hilbert space and conclude that entanglement is happening as

theoretically expected with defects dominated by decay processes that scale with excitations.

This method of state preparation is broadly applicable. With ancilla qubits, OTOC’s for

measuring scrambling of quantum information [76] or probing anyon statistics [77]. Within

chiral CQED lattices [78] the creation of nontrivial topological fluid states of light [79] is

possible.
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[58] Vepsäläinen, A. P. et al. Impact of ionizing radiation on superconducting qubit coher-
ence. Nature 584, 551–556 (2020).

[59] Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting
circuit systems. EPJ Quantum Technology 6, 2 (2019).

[60] Pop, I. M. et al. Coherent suppression of electromagnetic dissipation due to supercon-
ducting quasiparticles. Nature 508, 369–372 (2014).

[61] Santavicca, D. & Prober, D. Impedance-matched low-pass stripline filters. Measurement
Science and Technology 19, 087001 (2008).

[62] Reed, M. D. et al. High-fidelity readout in circuit quantum electrodynamics using the
jaynes-cummings nonlinearity. Phys. Rev. Lett. 105, 173601 (2010).

[63] Lienhard, B. et al. Deep-neural-network discrimination of multiplexed superconducting-
qubit states. Physical Review Applied 17, 014024 (2022).

[64] Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997).

98



[65] Abrams, D. M., Didier, N., Caldwell, S. A., Johnson, B. R. & Ryan, C. A. Methods for
measuring magnetic flux crosstalk between tunable transmons. Phys. Rev. Applied 12,
064022 (2019).

[66] Dai, X. et al. Optimizing for periodicity: a model-independent approach to flux crosstalk
calibration for superconducting circuits (2022).

[67] Langford, N. K. et al. Experimentally simulating the dynamics of quantum light and
matter at deep-strong coupling. Nature Communications 8, 1715 (2017).

[68] Rol, M. A. et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference
in weakly anharmonic superconducting qubits. Phys. Rev. Lett. 123, 120502 (2019).

[69] Wittig, C. The landau- zener formula. The Journal of Physical Chemistry B 109,
8428–8430 (2005).

[70] Tonks, L. The complete equation of state of one, two and three-dimensional gases of
hard elastic spheres. Physical Review 50, 955 (1936).

[71] Girardeau, M. Relationship between systems of impenetrable bosons and fermions in
one dimension. Journal of Mathematical Physics 1, 516–523 (1960).

[72] Bijl, A. The lowest wave function of the symmetrical many particles system. Physica
7, 869–886 (1940).

[73] Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E. & Rigol, M. One dimensional
bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 83, 1405–
1466 (2011).

[74] Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems.
Reviews of Modern Physics 80, 517–576 (2008).

[75] Meyer, D. A. & Wallach, N. R. Global entanglement in multiparticle systems. J. Math.
Phys 43, 4273 (2002).

[76] Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling
of quantum information. Physical Review A 94, 40302 (2016).

[77] Grusdt, F., Yao, N. Y., Abanin, D., Fleischhauer, M. & Demler, E. Interferometric
measurements of many-body topological invariants using mobile impurities. Nature
communications 7, 1–9 (2016).

[78] Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states
made of light. Nature 582, 41–45 (2020).

[79] Grusdt, F., Letscher, F., Hafezi, M. & Fleischhauer, M. Topological growing of laughlin
states in synthetic gauge fields. Physical review letters 113, 155301 (2014).

99


	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Building Blocks of Circuit Quantum Electrodynamics
	The Quantum Harmonic Oscillator
	Transmission Lines
	Transmission Line Resonators
	 The Coplanar Waveguide 
	Josephson Junction
	Josephson Inductance
	Josephson energy

	Transmon
	SQUID

	Qubit - Resonator Coupling
	 Readout and Purcell Filter 
	Design and Simulation
	Single Qubit Design
	Tunneling
	Readout and Purcell filter


	Manufacturing
	Fabrication
	Wafer Processing
	Optical Layer
	E-Beam Layer
	Junction Evaporation
	Post-Processing
	Resistance Measurements

	Assembly
	Mounting
	Wiring
	Room Temperature
	Homodyne Detection
	Mixer


	Characterization
	Resonator Spectroscopy
	Two-Tone Spectroscopy
	Qubit Readout
	Qubit Drive
	Tomography
	Flux Crosstalk
	Solenoid calibration
	Anharmonicity
	Flux Pulse Calibration
	Tunneling 
	Lifetime
	Landau Zener Characterization
	Table of Values

	Experimental Results
	Preparing Compressible States of Light with Disorder
	Disorder and Adiabaticity
	Single Particle Eigenstates
	Multi-Particle Melting
	 Tonks-Girardeau Gas Model

	Fluid Correlations
	Conditional Probability
	Density-Density Correlations

	Delocalization and Entanglement

	Outlook and Conclusion
	References

