
RESEARCH ARTICLE

Towards self-describing and FAIR bulk

formats for biomedical data

Michael LukowskiID
1☯, Andrew Prokhorenkov1☯, Robert L. GrossmanID

1,2,3☯*

1 Center for Translational Data Science, University of Chicago, Chicago, Illinois, United States of America,

2 Section of Biomedical Data Science, Department of Medicine, University of Chicago, Chicago, Illinois,

United States of America, 3 Department of Computer Science, University of Chicago, Chicago, Illinois, United

States of America

☯ These authors contributed equally to this work.

* rgrossman1@uchicago.edu

Abstract

We introduce a self-describing serialized format for bulk biomedical data called the Portable

Format for Biomedical (PFB) data. The Portable Format for Biomedical data is based upon

Avro and encapsulates a data model, a data dictionary, the data itself, and pointers to third

party controlled vocabularies. In general, each data element in the data dictionary is associ-

ated with a third party controlled vocabulary to make it easier for applications to harmonize

two or more PFB files. We also introduce an open source software development kit (SDK)

called PyPFB for creating, exploring and modifying PFB files. We describe experimental

studies showing the performance improvements when importing and exporting bulk biomed-

ical data in the PFB format versus using JSON and SQL formats.

Author summary

Many biomedical data sets have a unique structure that encapsulates and describes the

data. When working with these datasets it can be difficult to keep track of the overall

structure and ontologies that define the individual properties. PFB was developed so

that working with this type of data is made simpler. This allows anyone interacting with

the data to bring this fully self-describing dataset in one file anywhere and do analysis

over the phenotypic and biological data contained within it. PFB was devleoped over

the Avro serialized data format which helps researchers and commons operators to

make data schema updates as well as change references to external ontolgies. In this

work we show the advantages to using PFB as a bioinformatic tool and how it is used

to enable fast sharing of large biomedical research data sets. The results also show that

PFB is bringing significant speedups for storing and sharing structured biomedical

datasets.

This is a PLOS Computational Biology Software paper.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lukowski M, Prokhorenkov A, Grossman

RL (2023) Towards self-describing and FAIR bulk

formats for biomedical data. PLoS Comput Biol

19(3): e1010944. https://doi.org/10.1371/journal.

pcbi.1010944

Editor: Pedro Mendes, University of Connecticut

School of Medicine, UNITED STATES

Received: July 24, 2022

Accepted: February 13, 2023

Published: March 13, 2023

Copyright: © 2023 Lukowski et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The PyPFB software

can be obtained from https://github.com/uc-cdis/

pypfb. The data from the experimental studies can

be obtained from: https://github.com/uc-cdis/pfb-

paper-artifacts.

Funding: Research reported in this publication was

supported by the NIH Common Fund under Award

Number U2CHL138346, which is administered by

the National Heart, Lung, And Blood Institute

(https://www.nhlbi.nih.gov/) of the National

Institutes of Health. The content is solely the

responsibility of the authors and does not

https://orcid.org/0000-0002-9321-1338
https://orcid.org/0000-0003-3741-5739
https://doi.org/10.1371/journal.pcbi.1010944
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010944&domain=pdf&date_stamp=2023-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010944&domain=pdf&date_stamp=2023-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010944&domain=pdf&date_stamp=2023-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010944&domain=pdf&date_stamp=2023-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010944&domain=pdf&date_stamp=2023-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010944&domain=pdf&date_stamp=2023-03-23
https://doi.org/10.1371/journal.pcbi.1010944
https://doi.org/10.1371/journal.pcbi.1010944
http://creativecommons.org/licenses/by/4.0/
https://github.com/uc-cdis/pypfb
https://github.com/uc-cdis/pypfb
https://github.com/uc-cdis/pfb-paper-artifacts
https://github.com/uc-cdis/pfb-paper-artifacts
https://www.nhlbi.nih.gov/


1 Introduction

We introduce a self-describing format based upon Avro [1] for bulk structured biomedical

data called the Portable Format for Bioinformatics (PFB) that encapsulates a data model, a

data dictionary, the data itself, and pointers to third party controlled vocabularies. The data

types supported include persistent identifiers to data objects stored in public and private

clouds and manifests (also known as bundles or containers) of these.

The GA4GH Data Repository Service (DRS) [2] is emerging as a standard for data objects
stored in public clouds to support cloud based biomedical platforms, but there is no analogous

format for the long term storage of bulk structured data in public clouds, such as clinical or

biospecimen data. By “bulk structured data,” we mean data that is stored in a database, used

for operational purposes, and exported in a bulk format for importing into another system, for

archival purposes, or for some other purpose. It is common for a cloud-based data platform to

manage data with both a database and with data objects, where there are DRS references to the

data objects managed by the database [3]. Importantly, unlike data objects, structured data

requires a data schema, and over time, it is unfortunately common for the data and data

schema to become separated if they are stored in separate files.

Examples of structured data include: 1) EHR data; 2) real world evidence (RWE) data; 3)

clinical trial data; 4) pre-clinical data / experimental data. Each of these different types of data

have common standards, including FHIR [4] and OMOP [5] for EHR and RWE; CDISC [6]

for clinical trials; and discipline specific standards for pre-clinical and experimental data.

When considering formats for bulk structured data, it is sometimes helpful to distinguish

between two types of systems and the bulk data formats they typically use (see, for example, [7,

Chapter 4]). The first type are systems supporting health care and medical research and the

second type are systems supporting patient encounters with health care providers. The first

type of system include data repositories and data registries that are patient-centered and pur-

pose driven. An example of a purpose in this context is outcomes research. The second type

of system include electronic health records (EHR) systems that are visit focused and transac-

tional. For simplicity, we will use the terms research systems and operational systems respec-

tively for these two types of systems.

Operational systems are well supported by the FHIR standard [4], but there is not yet the

same level of consensus for accessing bulk data for research systems. As an example of a

research system that benefit from data formats such as PFB are data ecosystems consisting of

multiple interoperating data platforms, data repositories, knowledgebases and other compo-

nents [3, 8] in which bulk structured data must be exported and imported between data eco-

system components. As another example, patient-centered bulk data are usually the preferred

format for machine learning and AI research, and, in this context, are referred to as AI-ready

datasets. Although PFB can be used more generally for any type of structured scientific data,

for simplicity we only consider biomedical data in this paper.

The importance of data serialization formats for structured data was broadly recognized

with Google’s public introduction of Protocol Buffers in 2008 [9]. Protocol Buffers were used

internally within Google prior to that. As stated succinctly in [9], a data serialization formats is

a “flexible, efficient, automated mechanism for serializing structured data—think XML, but

smaller, faster, and simpler.” There are a variety of serialization formats available, including

Apache’s Thrift, developed by Facebook, and Apache Avro, which is used within the Hadoop

Project.

We follow [9] in explaining the main reasons for adapting serialization formats for working

efficiently with structured data in data commons. Serialization formats are:

• Extensible: New fields can be added to a serialization format in a forward-compatible way.

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 2 / 12

necessarily represent the official views of the

National Institutes of Health. The sponsors played

no role in the study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010944


• Efficient: Data is serialized into a compact binary representation for writing, reading and

transmission, which can sometimes improve performance by a factor of 10x or more.

• Portable: Serialization formats allow different applications to exchange data simply by

importing and exporting.

• Type safe: Programming errors resulting from incorrect types can be quite difficult and

labor intensive to track down. Serialization formats enforce correct types.

The alternative is often to use custom code with long chains of “if statements” checking for

different versions of the clinical data.

We are specifically interested in an application independent and system independent serial-

ization format for importing and exporting: 1) the data schema and other metadata associated

with structured data, 2) pointers to third party controlled vocabularies and standards, and 3)

the data itself. See Fig 1.

PFB supports storing, editing, and versioning of bulk structured biomedical data, such as

clinical, phenotype, or biospecimen data. PFB inherits the advantages of Avro and is fast and

extensible, which allows for quick imports and exports within and between systems. Using

PFB, it is straightforward to save snapshots of the data schema and associated data for version-

ing and archival purposes. In particular, PFB files can be assigned persistent digital identifiers

and exposed through APIs to make bulk clinical data packaged as a PFB file findable, accessi-

ble, interoperable and reusable (FAIR) [10]. PFB also allows biomedical data to be exported,

processed using any technologies desired, and then re-imported.

PFB is designed to be integrated into a GA4GH compliant environment as a GA4GH

evolves. Today, in systems such as Gen3, i) a PFB file is assigned a GA4GH DRS identifier; ii)

metadata is associated with the DRS identifier that describes the PFB file; and, iii) data objects

referred to within the PFB file use DRS identifiers. As GA4GH establishes a standard mecha-

nism to assign metadata to a DRS identifier, this practice can be adopted by systems such as

Gen3 that use PFB.

We conclude this section by describing some of the existing formats for both general pur-

pose scientific data and biomedical data. The most common way that clinical data is managed

is in a database and therefore the most common way that a system imports and exports clinical

data is by importing and exporting a collection of database tables in a TSV or CSV format.

Although not widely used in the biomedical community, the W3C standard CSV on the Web

supports CSV formats, but is not designed for bulk data, as is the focus of PFB.

There are quite a few attempts to create various data interchange formats for clinical data,

and, more generally, biomedical data. These include the DataMed DATS format [11], which is

a JSON format targeted at making data discoverable. The Fast Healthcare Interoperability

Fig 1. A data commons or application in a data ecosystem can export a PFB file and the same or another data commons or application can

import it.

https://doi.org/10.1371/journal.pcbi.1010944.g001

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 3 / 12

https://doi.org/10.1371/journal.pcbi.1010944.g001
https://doi.org/10.1371/journal.pcbi.1010944


Resources (FHIR) is a standard describing data formats and elements and an application pro-

gramming interface for exchanging electronic health records. The standard was created by the

Health Level Seven (HL-7) International health-care standards organization [12]. FHIR is built

over JSON, XML and RDF.

GA4GH Phenopackets defines a schema that is a phenotypic description of a patient/sam-

ple in the context of rare/common diseases or cancer [13]. The schema and data is also serial-

ized, in this case with Protocol Buffers. We described in Section 2.1 some of the differences

between Avro and Protocol Buffers and why we chose Avro for PFB. Also, as mentioned, PFB

can be used with any data model, while Phenopackets are particularly focused on phenotypic

data.

Another widely used format for scientific data, especially for geospatial data and images is

the Hierarchical Data Format (HDF) [14]. In the context here, HDF files, and in particular,

HDF files representing images would be assigned a DRS identifier, which would be referenced

by the PFB file, similar to how BAM files would be managed. This is for example, common

with single cell transcriptomics images.

RO-Crate is a lightweight approach for packaging research data and the associated meta-

data [15]. RO-Crate is based on Schema.org annotations in JSON-LD. An RO-Crate object is a

structured archive associated with a research project that includes identifiers, provenance, rela-

tions and annotations, and hence is targeted at capturing more information than a PFB object.

2 Design and implementation

2.1 Avro PFB format

Avro is an Apache data serialization format that is extensible, efficient, and portable (https://

avro.apache.org/). Avro is a flexible serialization format designed to support arbitrary data.

Using Avro as the base for PFB, enables PFB to take advantage of the numerous benefits from

Avro, such as schema evolution and the large amount of tooling developed to work with Avro.

We chose Avro over other common serialization formats because it has the following

advantages. Avro is self-describing, so Avro stores both the data and schema in one file that

results in easier sharing and storing of the resulting files. The Avro schema is dynamic so there

is no need for recompilation of programs to support new schemas. Avro is converted between

a computationally efficient binary format, and a human readable JSON format. The ability to

convert between the two formats provides the ability to cover a large variety of use cases for

PFB. See Table 1 for a summary of some of the reasons that Avro was chosen over Protobuf

and other data serialization formats for PFB.

Although, PFB can be defined for a variety of different types of data models, in this paper

we focus on graphical data models, since this is the type of data model used by Gen3 data com-

mons [3], which are are used for the experimental studies reported in this paper. In a Gen3

commons, a data dictionary is defined, as well as a graph based data model specifying

Table 1. A comparison of Avro versus Protobuf for managing biomedical data.

Avro Protobuf

self-describing Y N

schema-evolution Y Y

dynamic schema Y partially, needs recompiling

compilation required N Y

Hadoop support Y requires 3rd party library

JSON schema Y requires separate IDL for schema

https://doi.org/10.1371/journal.pcbi.1010944.t001

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 4 / 12

https://avro.apache.org/
https://avro.apache.org/
https://doi.org/10.1371/journal.pcbi.1010944.t001
https://doi.org/10.1371/journal.pcbi.1010944


relationships between different data elements. For simplicity, we refer to the data dictionary

and the graph based data model collectively as the data dictionary. The data dictionary define

the nodes and edges on the graph data model as well as the properties for each node. Each

node has a type, such as number, string, enumeration, or date. The valid ranges for the proper-

ties are included in the data dictionary definitions. In general, each node in the data dictionary

also includes a reference to an appropriate third party controlled vocabulary, ontology, or

other standard. Popular ontologies that are referenced in PFB files include the NCI Thesaurus

[16], SNOMED CT [17], Disease Ontology [18], and Human Phenotype Ontology [19]. Fig 2

shows a graphical representation of the schema as it is encoded in PFB for a simple case where

there is only one node present, Demographic.

2.2 Encoding a graphical data model in PFB

A formal definition of PFB can be found https://uc-cdis.github.io/pypfb/.

To further understand PFB it is useful to look at the Avro IDL format [1] for PFB and how

a single node of a graphhical data model is encoded in PFB.

Fig 2. The graphical representation of PFB schema for a data model with only a Demographic node.

https://doi.org/10.1371/journal.pcbi.1010944.g002

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 5 / 12

https://uc-cdis.github.io/pypfb/
https://doi.org/10.1371/journal.pcbi.1010944.g002
https://doi.org/10.1371/journal.pcbi.1010944


record Node {

string name;

string ontology_reference;

array<Link> links;

array<Property> properties;

}

Each node is given an identifier, referred to in PFB as the name. This identifier is unique to

a single node in the PFB file. The ontology reference property is defined as a string type called

ontology_reference. The value of this string is the URI to the appropriate ontology for

the node. The properties and links are both arrays allowing an arbitrary number of either to be

present on a single node.

The properties for each node are defined as follows:

record Property {

string name;

string ontology_reference;

map<string> values;

}

Each property is given an identifier (name), which is unique to the node in which it is

attached. The ontology reference is again the URI to the appropriate ontology for this prop-

erty. The values are a map data structure, with keys being strings (Avro specification supports

only strings for keys) and types being strings. The map contains the ontology_refer-
ence as a key so that each value can also be referenced to a 3rd party ontology. The map can

also be used to store the source information, or comments about the value.

The edges in the graphical data model are specified on each node as a link pointing to the

parent node. The links themselves are described as follows in the Avro IDL:

enum Multiplicity {

ONE_TO_ONE,

ONE_TO_MANY,

MANY_TO_ONE,

MANY_TO_MANY

}

record Relation {

string dst_id;

string dst_name;

}

record Link {

Multiplicity multiplicity;

string dst;

}

As can be seen, the link contains a string pointing to the name of the destination nodes.

Each link also contains a multiplicity property describing if the link allows only one-to-one,

one-to-many, many-to-one, or many-to-many relations with the parent nodes.

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 6 / 12

https://doi.org/10.1371/journal.pcbi.1010944


For clarity, we note that the nodes and relationships coded in PFB correspond to a

graphical data model that describes the structured data. As noted above, PFB formats

can be defined for data models other than graph data models. PFB is also silent on

what the graph data model encodes. In particular, although PFB could be used to

encapsulate a knowledge graph, as an instance of a graph data model, there is no specific

support in PFB for knowledge graphs beyond the ability to encapsulate data and a data

model, with the data model containing optional links to third party controlled vocabularies

or ontologies.

To ease the storing and processing of a PFB, PFB uses a wrapper type called Entity. An

Entity helps to store the data and metadata (id, node name inside field name and Rela-
tion to other nodes in relations) for this record separately. Each Relation stores the

destination node name and destination record id.

The Metadata type stores ontology references for both nodes and their properties. To

properly link each node with its properties to ontology references, PFB stores the name of the

ontology references and additional properties inside values. Values can include all the

information required for an ontology reference, e.g., URL, ontology version, ontology name. It

also stores list of properties for a node and its ontology references in the same format.

The Avro schema for PFB is generated from the data dictionary. Each PFB file stores a list

of records of type Entity.

3 Results

3.1 PFB SDK

We have developed an open source Python-based SDK for working with PFB files called

PyPFB that is available from Github (https://github.com/uc-cdis/pypfb). PyPFB allows users to

create, explore, modify, import and export PFB files. PyPFB is licensed under Apache License

2.0. The experimental studies below were done with PyPFB.

As an example, with PyPFB, a user can create a stub PFB file from a data dictionary and

then populate it with data from JSON files. By a stub PFB file, we mean a PFB file without data.

PyPFB can also be used to import and export PFB from a system. PyPFB commands include:

From

usage: pfb from [OPTIONS] COMMAND [ARGS]. . .

Generate PFB from other data formats.

To

Usage: pfb to [OPTIONS] COMMAND [ARGS]. . .

Convert PFB into other data formats.

Show

Usage: pfb show [OPTIONS] COMMAND [ARGS]. . .

Show records of the PFB file.

Specify a sub-command to show other information.

Make

Usage: pfb make [OPTIONS] NAME

Make a blank record according to given NODE schema in the PFB file.

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 7 / 12

https://github.com/uc-cdis/pypfb
https://doi.org/10.1371/journal.pcbi.1010944


Rename

Usage: pfb rename [OPTIONS] COMMAND [ARGS]. . .

Rename different parts of schema.

Importer

Usage: pfb importer [OPTIONS] COMMAND [ARGS]. . .

Create job to import PFB to commons.

3.2 Experimental setup

The experimental studies were performed using Gen3 data commons running in AWS and

using the PyPFB for exporting and importing PFB files. S3 was used to store the data objects,

including BAM, FASTQ, and imaging files. The data commons used for these studies included

over 5 PB of data in S3 buckets.

The clinical and other structured data in the Gen3 commons were stored in a PostgreSQL

database running in AWS. The structured data was extracted, transformed and loaded into

Elasticsearch to support queries. PostgreSQL uses a db.r4.large AWS instance, while Elastic-

search uses a m4.large.elasticsearch instance.

Gen3 uses microservices for authentication, authorization, indexing, querying, and access-

ing the object data and structured data. The experimental studies used 5 AWS instances of

EC2 services at a t3.xlarge size for managing the microservices, except for the indexing micro-

service which used a db.r4.large instance.

For the tests importing and exporting PFB described in this section, we used simulated data

generated by an open source data simulator made specifically to simulate structured data for

Gen3 data commons (https://github.com/uc-cdis/data-simulator/). This tool simulates data

based upon a Gen3 data dictionary. The tool verifies the dictionary, builds an appropriate

graph structure for a Gen3 data model, and populates JSON files with simulated data.

For this series of experiments, we used synthetic data based on a graph data model with 26

nodes and 399 attributes. The choice of 26 nodes and 399 attributes was arbitrary but corre-

sponds approximately to the number of nodes and attributes arising in the Gen3 data com-

mons mentioned above. We have not seen any change in import/export performance as the

number of attributes ranges between 100 and 10,000 beyond that associated with the total data

size, which is captured by increasing the number of records.

Comparing read and write speeds of PFB versus JSON was done using a Macbook Pro

13-inch, 2017 with Intel Core i5-7267U CPU @ 3.10GHz, 16 GB 2133 MHz LPDDR3 and 500

GB Flash Storage.

3.3 Transforming PFB files

As a simple example of how PFB can be used, if data elements in a data platform refer to the

CDISC standard (https://www.cdisc.org/), the data could be exported to a PFB file, the CDISC

references could be replaced with references to the NCI Thesaurus (NCIt) (https://ncit.nci.nih.

gov/ncitbrowser/) by processing the PFB file, and the new transformed PFB file with references

to NCIt could be re-imported into the data platform. The supporting information contain a

Python notebook that illustrate this.

3.4 Importing and exporting PFB files

In the first set of experiments, we imported data into a Gen3 data commons using Sheepdog,

which is the Gen3 data submission system, versus bulk loading the data using PFB. For this

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 8 / 12

https://github.com/uc-cdis/data-simulator/
https://www.cdisc.org/
https://ncit.nci.nih.gov/ncitbrowser/
https://ncit.nci.nih.gov/ncitbrowser/
https://doi.org/10.1371/journal.pcbi.1010944


series of experiments, we generated simulated data in JSON format corresponding to a

graph data model with 26 nodes and 399 total attributes as described above. We then used

PyPFB to convert the JSON data into PFB. We tested submissions from 10 records per node

(260 records in total) to 100000 records per node (2.6 million records in total) to compare

the submission times of the current Gen3 data submission system, compared to importing

the same data using PFB. We ran these tests 3 times and the shown results are the averages.

The number of attributes is the number of fields submitted per record. The results are in

Table 2.

As we can see from Table 2, the PFB import is over an order of magnitude faster than the

current native Gen3 data import system. We then tested the export time between a dump to

PFB file and a SQL dump through Gen3’s native export. This was done using the same simu-

lated data. See Table 3.

Next, we look at the size of the bulk data files after compression. For JSON compression, we

used tar.bz2, and, for PFB compression, we used Avro’s built in compression codec.

Table 4 shows the sizes of compressed JSON to PFB. For Avro compression, we used the

default Avro support for compression (the deflate codec). Avro allows us to submit a com-

pressed PFB file with little to no overhead for compression.

We also performed several experiments using the structured project data from three large

scale cloud-based data platforms: the KidsFirst Data Resource [20], the NHLBI BioData Cata-

lyst system [21], and the NCI Genomic Data Commons (GDC) [22]. We took: 1) PostgreSQL

Table 2. Import time comparison between Gen3 Import and PFB. � denotes that the submission did not complete and would take over 40 hours.

Records Attributes Size JSON Import (sec) PFB Import (sec) Improvement

260 399 256K 36.55 50.74 0.72

2600 399 1.9M 244.60 53.34 4.58

26000 399 19M 2302.65 93.58 24.60

260000 399 184M 19596.05 462.07 42.40

2600000 399 1.9G � 4134.68 �

https://doi.org/10.1371/journal.pcbi.1010944.t002

Table 3. Export time comparison between PFB and Gen3.

Records Attributes Size JSON Export (sec) PFB Export (sec) Improvement

260 399 256K 2 3.2 0.6225

2600 399 1.9M 2 5.5 0.363

26000 399 19M 11.6 11 1.054

260000 399 184M 87.5 69.7 1.255

2600000 399 1.9G 912.5 551 1.656

https://doi.org/10.1371/journal.pcbi.1010944.t003

Table 4. Size comparison between JSON and PFB, [c] denotes the data was compressed.

Records Attributes JSON PFB PFB [c]

260 399 256K 187K 108K

2600 399 1.9M 867K 347K

26000 399 19M 7.5M 3.0M

260000 399 184M 74M 29M

2600000 399 1.9G 542M 239M

https://doi.org/10.1371/journal.pcbi.1010944.t004

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 9 / 12

https://doi.org/10.1371/journal.pcbi.1010944.t002
https://doi.org/10.1371/journal.pcbi.1010944.t003
https://doi.org/10.1371/journal.pcbi.1010944.t004
https://doi.org/10.1371/journal.pcbi.1010944


dumps and 2) PFB exports from each system. A summary is in Table 5. From Table 5, we can

see that database exports to PFB can be much smaller than SQL.

In a final set of experiments, we compared the raw speed of reading PFB and JSON to and

from disk. The results are shown in Table 6. Note that, as expected, reading clinical data using

PFB versus JSON is about 4.3 times faster, while writing PFB versus JSON is about 2.6 times

faster. Note that the other experiments above were concerned with the relative speed of

importing and exporting structured data into and out of a Gen3 data commons using the

Gen3 native services versus PFB services.

Availability and future directions

A common use of PFB is to make bulk clinical data FAIR. The structured data in a data plat-

form can be exported to a PFB file, a digital ID can be assigned to the PFB file, and the PFB file

can then be uploaded as a data object to a data lake, data commons, or other data repository.

Another common use is to version bulk clinical data by taking a snapshot of the data and

exporting a PFB file, which can be managed as a data object with a DRS identifier. Clinical

data can be rolled back to a previous version by importing the associated PFB file.

Submitting data to a production data platform can be challenging and labor intensive. One

of the advantages of using PFB and related formats is that a separate system can be used to

curate and prepare data for submission. The data can then be checked for compliance with all

the data submission requirements and then exported as a PFB file. The data can then be bulk

uploaded to a production data platform.

All code related to the SDK is available at https://github.com/uc-cdis/pypfb. All data used

for testing, as well as showcasing uses of PFB in the paper is availiable at https://github.com/

uc-cdis/pfb-paper-artifacts

Conclusion

Over the past several years, several large scale cloud-based data commons and data clouds

have been developed, including the NCI Genomic Data Commons, the Kids First Data

Resource, and the NCI Cloud Resources [3]. These systems manage petabytes of data and

make use of cloud-based bioinformatics workflows that require hundreds of thousands to

millions of core hours. These systems use a data lake architecture with digital object IDs to

manage large genomic and imaging files, which makes this data findable, accessible, interop-

erable and reusuable (FAIR). To date, there has not been a FAIR approach that has proved

effective for managing the clinical and other structured data that these data clouds and data

Table 5. Size comparison of existing commons between SQL dump and PFB dump.

Data Commons # records # attributes SQL PFB

GDC 5740427 795 30.7GB 3.6GB

KidsFirst 153431 384 277MB 39MB

BioData Catalyst 3024605 739 33GB 981MB

https://doi.org/10.1371/journal.pcbi.1010944.t005

Table 6. Read/write speed comparison between PFB and JSON from/to disk.

Format Records Size (GB) Read speed (records/s) Write speed (records/s)

PFB 2600000 0.568 6.5 × 106 1.8 × 106

JSON 2600000 1.921 1.5 × 106 0.7 × 106

https://doi.org/10.1371/journal.pcbi.1010944.t006

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 10 / 12

https://github.com/uc-cdis/pypfb
https://github.com/uc-cdis/pfb-paper-artifacts
https://github.com/uc-cdis/pfb-paper-artifacts
https://doi.org/10.1371/journal.pcbi.1010944.t005
https://doi.org/10.1371/journal.pcbi.1010944.t006
https://doi.org/10.1371/journal.pcbi.1010944


commons contain and can still be efficiently be processed in bulk by third party applications

and services.

We introduced the Portable Format for Biomedical data (PFB) for this purpose, developed

a SDK for it, integrated the SDK with a Gen3 data commons, and provided several experimen-

tal studies showing that PFB can manage the structured biomedical data that current data

clouds and data commons contain. In particular, we showed that this approach can signifi-

cantly speed up the importing and exporting of bulk clinical data and, in this way, improve the

interoperability of data ecosystems consisting of multiple data commons, data repositories,

and other data platforms. Data ecosystems often include data from a wide variety of different

disciplines, and a general format like PFB has advantages compared to discipline specific data

formats, such as FHIR.

Author Contributions

Conceptualization: Robert L. Grossman.

Software: Michael Lukowski, Andrew Prokhorenkov, Robert L. Grossman.

Writing – original draft: Michael Lukowski, Robert L. Grossman.

Writing – review & editing: Robert L. Grossman.

References
1. Apache Avro Project. Apache Avro 1.11.0 IDL; 2021. Available from: https://avro.apache.org/.

2. Rehm HL, Page AJ, Smith L, Adams JB, Alterovitz G, Babb LJ, et al. GA4GH: international policies and

standards for data sharing across genomic research and healthcare. Cell Genomics. 2021; 1

(2):100029. https://doi.org/10.1016/j.xgen.2021.100029 PMID: 35072136

3. Grossman RL. Data Lakes, Clouds, and Commons: A Review of Platforms for Analyzing and Sharing

Genomic Data. Trends in Genetics. 2019;. https://doi.org/10.1016/j.tig.2018.12.006 PMID: 30691868

4. Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR: a standards-based, inter-

operable apps platform for electronic health records. Journal of the American Medical Informatics Asso-

ciation. 2016; 23(5):899–908. https://doi.org/10.1093/jamia/ocv189 PMID: 26911829

5. Observational Health Data Sciences and Informatics (ODHSI) Collaborative. OMOP Common Data

Model; 2021. https://www.ohdsi.org/data-standardization/the-common-data-model.

6. CDISC Consortium. Clinical Data Interchange Standards Consortium (CDISC); 2022. https://www.

cdisc.org/.

7. Gliklich RE, Dreyer NA, Leavy MB, et al. Registries for evaluating patient outcomes: a user’s guide, 3rd

edition, Addendum 2. Rockville (MD): Agency for Healthcare Research and Quality (US); 2019.

8. Grossman RL. Progress Toward Cancer Data Ecosystems. Cancer journal (Sudbury, Mass). 2018; 24

(3):126–130. https://doi.org/10.1097/PPO.0000000000000318 PMID: 29794537

9. Google. Protocol Buffers: Developers Guide; 2018. https://developers.google.com/protocol-buffers/

docs/overview.

10. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding

Principles for scientific data management and stewardship. Scientific data. 2016; 3. https://doi.org/10.

1038/sdata.2016.18 PMID: 26978244

11. Ohno-Machado L, Sansone SA, Alter G, Fore I, Grethe J, Xu H, et al. Finding useful data across multi-

ple biomedical data repositories using DataMed. Nature genetics. 2017; 49(6):816. https://doi.org/10.

1038/ng.3864

12. Bender D, Sartipi K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. In:

Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems. IEEE;

2013. p. 326–331.

13. Jacobsen JO, Baudis M, Baynam GS, Beckmann JS, Beltran S, Buske OJ, et al. The GA4GH Pheno-

packet schema defines a computable representation of clinical data. Nature biotechnology. 2022; 40

(6):817–820. https://doi.org/10.1038/s41587-022-01357-4

14. HDF Group. HDF5; 2022. Available from: https://confluence.hdfgroup.org/display/HDF5/HDF5.

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 11 / 12

https://avro.apache.org/
https://doi.org/10.1016/j.xgen.2021.100029
http://www.ncbi.nlm.nih.gov/pubmed/35072136
https://doi.org/10.1016/j.tig.2018.12.006
http://www.ncbi.nlm.nih.gov/pubmed/30691868
https://doi.org/10.1093/jamia/ocv189
http://www.ncbi.nlm.nih.gov/pubmed/26911829
https://www.ohdsi.org/data-standardization/the-common-data-model
https://www.cdisc.org/
https://www.cdisc.org/
https://doi.org/10.1097/PPO.0000000000000318
http://www.ncbi.nlm.nih.gov/pubmed/29794537
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
https://doi.org/10.1038/ng.3864
https://doi.org/10.1038/ng.3864
https://doi.org/10.1038/s41587-022-01357-4
https://confluence.hdfgroup.org/display/HDF5/HDF5
https://doi.org/10.1371/journal.pcbi.1010944


15. Soiland-Reyes S, Sefton P, Crosas M, Castro LJ, Coppens F, Fernández JM, et al. Packaging research

artefacts with RO-Crate. Data Science. 2021; p. 1–42.

16. de Coronado S, Wright LW, Fragoso G, Haber MW, Hahn-Dantona EA, Hartel FW, et al. The NCI The-

saurus quality assurance life cycle. Journal of biomedical informatics. 2009; 42(3):530–539. https://doi.

org/10.1016/j.jbi.2009.01.003 PMID: 19475726

17. Donnelly K, et al. SNOMED-CT: The advanced terminology and coding system for eHealth. Studies in

health technology and informatics. 2006; 121:279. PMID: 17095826

18. Schriml LM, Arze C, Nadendla S, Chang YWW, Mazaitis M, Felix V, et al. Disease Ontology: a back-

bone for disease semantic integration. Nucleic acids research. 2012; 40(D1):D940–D946. https://doi.

org/10.1093/nar/gkr972 PMID: 22080554

19. Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, et al. The human phenotype

ontology in 2017. Nucleic acids research. 2017; 45(D1):D865–D876. https://doi.org/10.1093/nar/

gkw1039 PMID: 27899602

20. Heath AP, Taylor DM, Zhu Y, Raman P, Lilly J, Storm P, et al. Gabriella Miller Kids First Data Resource

Center: Harmonizing clinical and genomic data to support childhood cancer and structural birth defect

research; 2019.

21. Manning AK, Avillach P, Boyles RR, Leaf AE, Kaltman JR, Suber S. NHLBI BioData Catalyst and the

future of cloud computing. Genetic Epidemiology. 2021; p. 774–775.

22. Heath AP, Ferretti V, Agrawal S, An M, Angelakos JC, Arya R, et al. The NCI Genomic Data Commons.

Nature genetics. 2021; 53(3):257–262. https://doi.org/10.1038/s41588-021-00791-5 PMID: 33619384

PLOS COMPUTATIONAL BIOLOGY Towards self-describing and FAIR bulk formats for biomedical data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010944 March 13, 2023 12 / 12

https://doi.org/10.1016/j.jbi.2009.01.003
https://doi.org/10.1016/j.jbi.2009.01.003
http://www.ncbi.nlm.nih.gov/pubmed/19475726
http://www.ncbi.nlm.nih.gov/pubmed/17095826
https://doi.org/10.1093/nar/gkr972
https://doi.org/10.1093/nar/gkr972
http://www.ncbi.nlm.nih.gov/pubmed/22080554
https://doi.org/10.1093/nar/gkw1039
https://doi.org/10.1093/nar/gkw1039
http://www.ncbi.nlm.nih.gov/pubmed/27899602
https://doi.org/10.1038/s41588-021-00791-5
http://www.ncbi.nlm.nih.gov/pubmed/33619384
https://doi.org/10.1371/journal.pcbi.1010944

