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1 Introduction

Some of the deepest insights arising from the study of scattering amplitudes have been
the discovery of structural motifs that appear in seemingly unrelated theories. In many
cases this is a reflection of the underlying rigidity of consistent quantum field theories.
These recurring patterns in field theories take on various forms. A famous manifestation of
this underlying structure is Weinberg’s soft theorem [1], which shows that gauge theory
amplitudes in the soft limit have a universal form. Another important example is provided
by BCFW recursion relations, which make it possible to systematically construct amplitudes
for complicated processes from simpler building blocks [2]. Similarly, the double copy makes
precise the notion that some theories can be thought of as squares of others [3]. Taken
together, these examples are hints of deeper structures that relate different field theories.
In some cases these relations can be made more explicit via the double copy and other
transmutation operations that transform theories into each other [4–7]. Not only are these
relations conceptually illuminating, but they are practically useful in enabling computations
that would otherwise be out of reach.

These rich structures also appear in certain scalar field theories. Consistent theories of
massless spinning particles are highly constrained — with Yang-Mills and Einstein gravity
being essentially unique at low energies [8–12]—and this rigid structure partially explains
the recurrence of various features. Massless scalar theories are somewhat less constrained, in
the absence of any additional assumptions. However, requiring that the scalar field behave
as a Nambu-Goldstone boson — nonlinearly realizing certain symmetries — is a sufficiently
strong demand to make interesting structures reemerge. For example, scalar field theories
can then be classified by their amplitudes’ behavior in the soft limit [6, 13, 14], with the
nonlinear sigma model (NLSM), Dirac-Born-Infeld (DBI), and special galileon theories
appearing as distinguished points in theory space. These exceptional scalar theories exhibit
interesting relations to each other, and also to Yang-Mills and Gravity [6, 7, 15], and their
amplitudes can be constructed by means of recursion relations, similar to BCFW [16–19].
The interesting features and relative simplicity of these exceptional scalar field theories,
along with their connections to gauge theory amplitudes, make them ideal places to explore
the hidden structures in scattering amplitudes.

In this paper, we explore the analogues of these on-shell structures in the wavefunctional
of Nambu-Goldstone scalar theories. This is motivated by recent progress in the study of
cosmological correlation functions. Compared to our understanding of scattering amplitudes,
our knowledge of correlators (or the wavefunction) is considerably less sophisticated, even at
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tree level. Nevertheless, much is now known about the singularity structure of cosmological
correlators [20–24], including how they encode locality. Other properties of bulk time evolu-
tion are captured by the way that correlators behave as we vary the kinematic parameters
to move away from singular configurations [23, 25]. For example, bulk unitarity has been
studied both perturbatively [26–29] and non-perturbatively [30–33] in the cosmological
context. Aside from providing insights into the structure of quantum field theory, these
formal developments have also enabled the calculation of inflationary signatures that would
be otherwise intractable (see, e.g., [23, 34–45]).1

Despite recent progress, many deep mysteries remain in the study of cosmological
correlators, and our investigation is aimed at shedding light on some of these issues. Much
in the same way that exceptional scalar field theories have been useful in the study of
flat space scattering, it is natural to expect that there will be hidden structures in the
wavefunction of these exceptional scalar theories. Though our ultimate interest is in
cosmology, in this paper we specialize to the study of the wavefunction in flat space. The
study of the flat space wavefunction has already proven to be useful for the understanding
of de Sitter correlators, leading to many insights that can be imported into the cosmological
setting [22, 58–60]. Even more concretely, in many cases of interest the cosmological
wavefunction can be obtained from these flat space expressions by acting with appropriate
transmutation operations [22, 24, 41, 45]. We therefore anticipate that the lessons learned
for exceptional scalar theories in the flat space context can similarly be abstracted into the
cosmological setting.

Summary. For convenience, we summarize our main results:

• We derive the soft theorems that wavefunction coefficients satisfy as a consequence
of nonlinearly realized shift symmetries. The general soft theorem is given by equa-
tion (2.33), which we apply to a number of theories exhibiting these symmetries.
Evidently, the Ward identity is far more complicated than the (enhanced) Adler
zero condition enjoyed by the analogous scattering amplitudes. Ultimately this is
because, compared to scattering amplitudes, wavefunction coefficients depend on a
single additional variable — the total energy involved in the relevant process. Though
this difference might seem somewhat innocuous, it leads to important structural
differences between these two objects. In particular wavefunction coefficients obey
soft theorems relating n-point wavefunction coefficients to lower point wavefunction
coefficients when one of their external momenta is taken to be soft.2

• We organize soft information into a bootstrap-like construction and use this to fix the
wavefunction coefficients of theories with shift symmetries. A conceptually interesting
question is whether the wavefunction contains more, less, or the same information

1An important phenomenological motivation for these studies is the possibility of using the inflationary
background as a sort of cosmological collider [23, 34, 35, 46–57].

2Scattering amplitudes can also satisfy soft theorems when there are cubic vertices present that are
compatible with the nonlinearly realized symmetries, for example in the conformal dilaton [61], or in
non-relativistic cases [62] (see also [63] for another relativistic example).
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as the flat space S-matrix. In some cases it is known that these two objects can be
constructed from each other [59]. In these soft scalar theories, in addition to the
scattering information, one requires information about the soft theorems that the
wavefunction satisfies in order to reconstruct wavefunction coefficients uniquely.3

• We systematize the bootstrap by deriving recursion relations for wavefunction coeffi-
cients. The general recursion formula is given in equation (4.14), and is obtained by
deforming the kinematics that the wavefunction depends on into the complex plane.
The recursion relations are conceptually different from those in [22, 25, 65], which
deform the energy variables. In order to input information about the soft structure
of the wavefunction, it is important to deform the momentum variables directly. An
interesting feature of the complexified wavefunction in this case is that it has branch
cuts. In a sense, these branch cuts are avatars of particle exchange, and it turns out
that the wavefunction factorizes into a product of lower point shifted wavefunctions
along these branch cuts. This is analogous to how scattering amplitudes factorize
into lower point amplitudes on their poles. We recursively construct the wavefunction
with two different sets of inputs. First, we recurse wavefunction coefficients from
their respective scattering amplitudes and soft theorems. Then, we demonstrate that
for theories exhibiting higher order soft theorems (NLSM, DBI, special galileon), it
is possible to construct the wavefunction without knowledge of any scattering infor-
mation at all, though at the expense of complicating the procedure. An interesting
feature of these constructions it that we are able to effectively give a definition of
these exceptional scalar theories directly at the level of the wavefunction without
referring to the underlying action.

• There are a number of technical intermediate results that may be of independent
interest. Many of these details are given in the appendices. In particular, it is
interesting to note that the classical canonical momentum is a generating functional
for tree level wavefunction coefficients, which is expressed in (C.6). Perhaps more
surprisingly, we also show that the classical field profile at early times is a generating
functional for tree-level shifted wavefunction coefficients. This is expressed in (C.20),
and indicates that shifted wavefunction coefficients possess information about the
system at early times. These statements are analogues of the fact that the classical
field profile in the presence of a source with a Feynman pole prescription is a generating
functional of in/out correlators. We expect that both of these formulae hold at loop
order as well, and also have de Sitter analogues.

Outline. In section 2 we first review the definition and perturbative calculation of the
quantum field theory wavefunctional, which is the object of interest. We then describe
how wavefunction coefficients in scalar theories with nonlinearly realized symmetries obey
soft theorems. In section 3 we first derive the relevant soft theorems for the NLSM,

3This is perhaps unsurprising because there are ambiguities related to (position space) contact terms and
field redefinitions that have to be fixed in order to uniquely specify a wavefunction coefficient. See [64] for a
similar discussion in the context of inflation.
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DBI, and the special galileon. We then show how information about the wavefunction’s
singularities (including the fact that the residue of one of its singularities is the corresponding
scattering amplitude) along with partial information about the soft limit is sufficient to
uniquely reconstruct the wavefunction. In section 4, we systematize the construction of the
wavefunction in these theories by deriving recursion relations that input information about
singularities and soft limits in two ways. The first is a systematic implementation of the
arguments of section 3, which relies on scattering information as one of the inputs. It is
reasonable to ask if it is possible to replace the amplitude information with knowledge of
the full soft theorems that a given theory obeys, and indeed we show that this is the case by
explicitly constructing recursion relations relying only on soft information, but restricting
our discussion to the NLSM and DBI cases for simplicity. We conclude in section 5. A
number of appendices collect technical information that is somewhat outside the main line
of development. In appendix A we provide a brief review of the exceptional scalar theories
that we study in this paper. In appendix B, we discuss many of the important technical
subtleties that must be addressed in order to give a boundary definition of the wavefunction
of a higher-derivative bulk theory. In appendix C we show how the early time classical field
profile can be viewed as the generating functional of shifted wavefunction coefficients. In
appendix D we discuss some details of the analytic structure of the wavefunction. Finally in
appendix E we briefly discuss some aspects of the wavefunction double copy for the theories
of interest.

Conventions & notation. We work with the mostly plus metric signature in four
spacetime dimensions, use Greek letters, e.g., µ, ν, ρ, · · · to indicate spacetime indices, and
use Roman letters from the middle of the alphabet, e.g., i, j, k, · · · to indicate spatial
indices. We index various particles/lines/operators by Roman letters from the beginning
of the alphabet, e.g., a, b, c, · · · . We label spatial momenta by ~ka (or ~pa) with magnitude
ka ≡

√
~k2
a (or pa ≡

√
~p 2
a ), which we will refer to as “energies”. We Fourier transform with

the convention

f(x) =
∫ d3k

(2π)3 e
−i~k·~xf~k . (1.1)

We denote sums of energies by k12···n = k1 + k2 + · · · kn. For a given process, we denote
the total energy involved in the process by E (irrespective of the number of external
lines). In many cases we use the following partial energies: Ea1a2···an ≡ ka1 + ka2 + · · ·+
kan + |~ka1 + ~ka2 + · · ·+ ~kan |, which denote the energy flowing into a vertex of an exchange
diagram. We also define the exchanged momenta ~sa1···an ≡ ~ka1 + ~ka2 + · · · + ~kan and its
corresponding energy sa1···an ≡ |~ka1 + ~ka2 + · · ·+ ~kan |. Combined, we see that for example,
E12 = k12 + s12 ≡ E(s)

L flows into the left vertex of a four-point tree level exchange diagram
in the s-channel. When describing scattering amplitudes, we will also often make use of
generalized Mandelstam variables, which we define to be Si1...in = −(Pi1 + . . .+ Pin)2. The
variable φ denotes a field propagating in the four-dimensional bulk spacetime, while we
use ϕ to denote its profile on the time slice where we compute the wavefunction. Other
notational conventions are introduced as they arise.
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2 Wavefunction soft theorems

Our goal is to explore the features of the soft limit, where one of the external momenta
is taken to zero, in the wavefunction of scalar theories. We are particularly interested in
understanding the extent to which the wavefunction is fixed by its singularity structure
and soft limit. In the context of scattering amplitudes, enhanced Adler zeroes — where
amplitudes vanish faster than expected in the soft limit — correspond to nonlinearly
realized shift symmetries from the field theory perspective [13, 14]. We therefore begin
by exploring the consequences of these symmetries for the wavefunction. As we will show,
an important difference between the wavefunction and the S-matrix is that wavefunction
coefficients arising from exceptional scalar theories typically obey soft theorems rather than
having Adler zeroes. A simple way to understand the difference between the amplitude and
wavefunction case is to note that the highest-order enhanced Adler zeroes of amplitudes are
a result of a cancellation between exchange and contact contributions. In the wavefunction
context, these two contributions have a different analytic structure with respect to internal
energies, sI , so they cannot cancel. As a result, one must understand how to translate the
symmetries enjoyed by these theories into the relevant soft theorems. We will later utilize
these soft theorems as a bootstrap input to generate wavefunction coefficients.

2.1 Review of the wavefunction

We begin by briefly reviewing the definition of the quantum field theory wavefunctional
and its associated wavefunction coefficients, which will be the objects of central interest.
(For more details see, e.g., [22, 24, 66, 67].)

The wavefunctional of interest is a representation of the ground state of an interacting
field theory given by projecting onto the Heisenberg-picture eigenstates of the fields, φ,
as Ψ[ϕ(~x), t∗] ≡ 〈ϕ|0〉.4 The wavefunctional is therefore naturally a function of the field
profile ϕ(~x) ≡ φ(~x, t∗) at the time t∗. Given the wavefunctional, we can recover correlation
functions of the field φ at time t∗ by employing the usual quantum mechanics formula:

〈ϕ(~x1) · · ·ϕ(~xn)〉 =

∫
Dϕϕ(~x1) · · ·ϕ(~xn) |Ψ[ϕ]|2∫

Dϕ |Ψ[ϕ]|2
. (2.1)

It is convenient to organize the late-time wavefunctional in a series of connected wavefunction
coefficients, ψn(~kN ), in Fourier space as:5

log Ψ[ϕ, tf ] =
∑
n=2

1
n!

∫ d3k1 · · · d3kn
(2π)3n ϕ~k1

· · · ϕ~kn (2π)3δ(~k1 + · · ·+ ~kn)ψn(~kN ) , (2.2)

where the wavefunction coefficients are functions of the set of momenta ~kN ≡ {~k1, . . . , ~kn}.
We will also often make use of the canonical commutation relation

[φ(~x, t),Π(φ)(~y, t)] = iδ(3)(~x− ~y) , (2.3)
4The field eigenstates |ϕ〉 satisfy φ(~x, t)|ϕ〉 = ϕ(~x)|ϕ〉.
5We will often refer to these wavefunction coefficients — in a slight abuse of terminology — as

wavefunctions.
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which given our Fourier convention reads as follows in momentum space

[φ~k1
(t),Π(φ)

~k2
(t)] = i(2π)3δ(3)(~k1 + ~k2) . (2.4)

In this representation, the canonical momentum is realized as a functional derivative
Π(φ)
~k

= (2π)3 δ
iδφ−~k

.

2.1.1 Perturbation theory

In many cases it is convenient to express the wavefunction at some late time tf as a path
integral that evolves a wavefunction from an initial time ti, which we denote by Ψi, in the
following way

Ψ[ϕf , tf ] = 〈ϕf |0〉 =
∫
Dϕi 〈ϕf |ϕi〉 〈ϕi|0〉 =

∫
Dϕi

∫
φ(tf )=ϕf
φ(ti)=ϕi

Dφ eiS[φ] Ψi[ϕi, ti] . (2.5)

The path integration is done over all field configurations connecting the profile ϕi at the
initial time to ϕf at the final time. In the cases of interest, we will take the initial time to
be in the infinite past (ti → −∞) with an initial wavefunctional that is a gaussian

Ψi[ϕi, ti] = 〈ϕi|0〉 ∝ exp
(
−1

2

∫ d3k

(2π)3 E(Ek)ϕi~k ϕi−~k

)
, (2.6)

where E(Ek) is a kernel capturing the statistics of the initial fluctuations, which depends
on the energy of a mode with momentum ~k, denoted as Ek =

√
~k2 +m2. In what follows,

we will always set m2 = 0 and consider massless fields, so that Ek = k.6 We will primarily
be interested in wavefunction coefficients in Minkowski spacetime, where E(Ek) = Ek.
Sometimes when performing the path integral (2.5) it is convenient to trade the dependence
on the initial state for an unconstrained path integral, at the cost of introducing iε terms into
the action. However, since the initial state is typically not invariant under the symmetries
of interest — and thus contributes to the Ward identities we will derive — we will often
keep it explicit.

Similar to scattering amplitudes, the computation of the wavefunction coefficients
appearing in (2.2) can be organized into a diagrammatic perturbative expansion. There
are two essential differences from the computation of S-matrix elements. The first is that
energy is not necessarily conserved, because we have broken time translation invariance by
choosing a surface on which to compute the wavefunction. Relatedly, the second difference
is that there are now two different kinds of propagators that appear in diagrams. First,
there are those that connect bulk vertices to the boundary t = tf surface:

K(k, t) = eiEkt , (2.7)
6In the massless case, the vacuum wavefunction is actually highly degenerate due to the free action

having an infinite tower of nonlinearly realized symmetries which are all spontaneously broken. We will
always take (2.6) to be the initial state in our computations, and routinely abuse language by referring to
this state as the vacuum state.
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which we refer to as the bulk-to-boundary propagator in analogy to AdS/CFT. In the
expression (2.7) we have taken tf = 0, without loss of generality. In contrast, lines that
connect bulk vertices to each other represent the bulk-to-bulk propagator7

G(k; t, t′) = 1
2Ek

(
eiEk(t′−t)θ(t− t′) + eiEk(t−t′)θ(t′ − t)− eiEk(t+t′)

)
, (2.8)

which differs from the usual Feynman propagator by an un-time-ordered piece that enforces
the boundary condition G(k; 0, t′) = 0.

In order to compute wavefunction coefficients in perturbation theory, we follow a recipe
that is quite similar to the computation of scattering amplitudes. We derive Feynman rules
from the vertices in the action in the same way that we would do for the S-matrix (only
Fourier transforming in the spatial directions), and call the corresponding vertex factors
iV . Then, we draw all possible Feynman-Witten diagrams with the desired number of lines
ending on the t = 0 surface (for concreteness, n), associate to the bulk vertices factors of
iV , use G to connect bulk vertices to each other, and use K to connect bulk vertices to the
boundary at t = 0. We then integrate over all the bulk vertex insertion times to produce
the wavefunction coefficient ψn on the t = 0 surface.8

Effectively this Feynman diagram expansion is computing the saddle-point approxima-
tion of the path integral (2.5) by first constructing the classical solution to the nonlinear
equations of motion with vacuum initial conditions and a given field profile ϕ~k = φ~k(0) at
time t = 0, and then evaluating the action on-shell. The wavefunctional is then a functional
of the boundary field profile ϕ~k. From the bulk perspective the computation of wavefunction
coefficients is completely algorithmic, but becomes quite complicated even in flat space as
the multiplicity of external lines increases, which is part of the motivation to search for
more efficient computational methods.

2.1.2 Singularities and cuts

An important lesson about the structure of wavefunction coefficients is that their singularities
largely control their behavior [22–25]. Indeed, in some cases the singularity structure
completely specifies the wavefunction [24, 59]. Information about the singularities of
the wavefunction and their residues therefore serves as useful input from the boundary
perspective. The characteristics of the singularities can be thought of as a boundary
manifestation of bulk locality. There are also boundary manifestations of bulk unitarity
that provide important constraints on the wavefunction [26–29]. Specifically, bulk unitarity
implies that the wavefunction satisfies an analogue of Cutkosky rules [25, 29, 68, 69], that
also serve as a useful input to reconstruct the wavefunction [25, 44, 65]. We will utilize both
of these pieces of information in the following, so we briefly review both the singularities
and cuts of the wavefunction.

7This Green’s function satisfies (∂2
t + E2

k)G(k; t, t′) = −iδ(t− t′).
8In cases that involve loops of internal lines, one should also integrate over the undetermined loop

momenta. However, we will restrict ourselves to tree level computations in the following.
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Singularities. We first review the possible singularities of the wavefunction and their
residues. Interestingly, this information can be specified in a general way, without specializing
to a specific model. Essentially, from the bulk perspective wavefunction coefficients can
become singular when the energy flowing into a subgraph happens to add up to zero [22, 24].
An important special case is when the total energy involved in a process adds up to
zero. At this kinematic location, the wavefunction has a singularity whose residue is the
corresponding flat space scattering amplitude [20, 21]:

lim
E→0

ψn = An
E

, (2.9)

where we have denoted the total energy as E ≡ k1 +k2 +· · · kn.9 This total energy singularity
provides a beautiful connection between the wavefunction and the S-matrix: wavefunction
coefficients are in a precise sense deformations of scattering amplitudes. Physically, the
E → 0 divergence arises from integrating the bulk vertices all the way into the infinite
past, which typically is suppressed by an oscillatory factor ∼ eiEt. When the total energy
vanishes, this integration is unsuppressed and diverges.

The coefficients of singularities where the energy flowing into a subgraph vanishes
— so-called partial energy singularities—can also be understood in generality. At these
locations, the wavefunction factorizes into a product of a lower-point amplitude and a shifted
wavefunction. As a concrete example, consider an (n+m)-point wavefunction coefficient in
the limit that the energies flowing into some particular n-point subgraph, E1···n, add up
to zero. We will assume for simplicity that there is a single internal line connected to the
subgraph. Pictorially, we can write this as

E1···n En+1···m+n

sI = lim
E1···n→0

ψn+m = An × ψ̃m
E1···n

. (2.10)

The residue of this singularity is a product of the scattering amplitude, An, corresponding to
the subgraph whose energy is conserved, multiplied by a shifted version of the wavefunction
coefficient corresponding to the rest of the graph. Here the shifting is with respect to the
internal energy, sI , and is defined by

ψ̃m(kn+1, · · · , kn+m, sI) ≡
1

2sI

(
ψm(kn+1, · · · , kn+m,−sI)− ψm(kn+1, · · · , kn+m, sI)

)
.

(2.11)
The expression (2.10) can straightforwardly be understood from the form of the bulk-to-
bulk propagator with the terms corresponding to the left subgraph taken to the infinite
past, where the divergence is localized. These partial energy subgraph singularities are

9The intuition for this singularity is that the diagrammatics involved in computing the wavefunction and
the S-matrix are very similar. However, the different integration region for time — in the amplitude case we
go to frequency space which involves integrating over all times — leads to a pole in the total energy rather
than an energy-conserving delta function δ(E).
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signatures of exchange — wavefunctions arising from contact interactions have only a total
energy singularity.10

Importantly, the total energy and partial energy singularities are the only tree level
singularities of the wavefunction, which places strong constraints on its analytic structure.
In flat space, all of these singularities are simple poles, so that wavefunction coefficients are
rational functions in the total and partial energies.11

Cuts. We can get some further insight into the structure of the wavefunction from the
form of the bulk-to-bulk propagator (2.8). If we add to it its complex conjugate, all the
time-ordering disappears:

G̃(k; t, t′) ≡ G(k; t, t′) + G∗(k; t, t′) = − 1
2Ek

(
e−iEkt − eiEkt

)(
e−iEkt

′ − eiEkt′
)
. (2.12)

This suggests that certain combinations of wavefunction coefficients should simplify and be
writeable in terms of shifted lower-point wavefunctions. This is indeed the case, and such
relations can be systematized as a set of cutting rules satisfied by the wavefunction [25, 29,
68, 69], which are consequences of unitarity [26–29]. Schematically, the statement is that12

ψn(X) + ψ∗n(−X) = −
∑
cuts

ψn , (2.13)

where X is a multi-index standing for all the external energies of a given wavefunction.13 On
the right hand side, the sum runs over all partitions of the graph in two, flipping the signs
of the external energies of all the vertices to the right of the cut and replacing any internal
lines that the cut crosses with the cut propagator (2.12). This transforms the original graph
into a pair of graphs, each of which computes a shifted wavefunction coefficient.

In practice we will only require the simplest of these cutting rules. For contact diagrams,
the right hand side of (2.13) is zero, indicating that the wavefunction added to itself with
its external energies flipped will vanish. We will also make use of the case of single exchange,
which takes the pictorial form (for an (n+m)-point function)

XL XR

sI
+

−XL −XR

sI
+

XL −XR

sIsI = 0 .

10Though we have focused for simplicity on a graph with a single internal line, the fact that the wavefunction
has a pole when the energy flowing into any subgraph vanishes is true for an arbitrary graph and at arbitrary
order in perturbation theory, and the corresponding residues can be characterized.

11In de Sitter space, or other cosmological backgrounds, the nature of the singularities can change (for
example there are sometimes branch cuts), but the presence of singularities at these — and only these —
locations is robust (at least at tree level).

12Note that “cuts” in this context correspond to partitions of a graph, rather than branch cuts of a
complex function. While these two notions coincide in the amplitude context, they are distinct in the
wavefunctional context, essentially because (2.12) does not involve a delta function on the right hand side.

13In general in a cosmological spacetime one has to be careful about the precise analytic continuation to
negative energies, but this subtlety is unimportant in flat space.
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Here XL,R stand schematically for all the energies in the left (right) subgraph, while sI is
the energy of the internal line, and we denote the vertices with their energies flipped by
white dots. Translating this into an equation we obtain

ψn+m(XL, XR) + ψ∗n+m(−XL,−XR) = −2sI ψ̃n+1(XL,∓s) ψ̃m+1(−XR,∓s) . (2.14)

Analogues of this formula can be found for more complicated graph topologies, but we will
not need them.

2.1.3 (Non)uniqueness of wavefunction coefficients

An important issue that we have to face is that wavefunction coefficients are not completely
uniquely defined. In particular, field redefinitions and boundary terms can change the
wavefunction, and we must deal with these ambiguities.

The field redefinition ambiguity is relatively straightforward to resolve. Essentially it is
fixed by demanding that the wavefunction coefficients satisfy soft theorems in a particular
form. Intuitively, the soft theorems follow from certain symmetry transformations. If we were
to perform a field redefinition, this would change the form of the symmetry transformation,
and the wavefunction would correspondingly satisfy a different soft theorem.14 There is, of
course, the residual ambiguity that there could exist field redefinitions that preserve the
form of the symmetry transformation but nevertheless change the wavefunction coefficients.
However, we will see that this possibility does not arise because the wavefunctions of interest
are fixed uniquely by the soft information.

The question of boundary terms is more subtle. Given a wavefunction coefficient
bootstrapped via some set of criteria, it must correspond to some action, with some
particular choice of boundary terms. How are we to know which one? It turns out that
the relevant action is the one that has a well-posed variational principle. That is, the
boundary terms are such that the interactions have only a single time derivative per field.
This is a necessary condition for the on-shell action to actually be computing the transition
amplitude of interest. Any other choice of boundary terms will change the states involved
or, equivalently, correspond to matrix elements with operator insertions. This is a somewhat
technical point that we elaborate on in appendix B, but the takeaway is fairly simple to state:
there is a distinguished choice of boundary terms — those that make the variational principle
well-posed — and interestingly it is the wavefunction coefficients in this presentation that
are most naturally generated by the soft bootstrap.

2.2 Derivation of soft theorems

We now derive the various soft theorems that control the wavefunction coefficients of
derivatively coupled scalar field theories. Here we present the general formalism before
specializing to the relevant theories of interest in the following sections.

The philosophy is to start from the algebra of symmetries and their representation
on fields in the theory, δφ. We avoid as much as possible directly using the action that is
invariant under the relevant symmetries (though we do assume that one exists). Instead, we

14A similar point was made in the context of the inflationary curvature perturbation ζ in [64].
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want to extract the consequences of these symmetries for wavefunction coefficients directly,
without passing through some intermediate Lagrangian (see appendix B.2). The basic fact
that we use is conservation of the charge that generates the symmetry δφ, which we denote
Q(t).15 Conservation of this charge implies the following equality of matrix elements

〈ϕf |Q(tf ) |0〉 = 〈ϕf |Q(ti) |0〉 . (2.15)

Our goal in this section is to express this as a relation between wavefunction coefficients.
In order to simplify the left hand side of this equation, we take advantage of the fact

that the charge at time tf can be expressed in terms of the field ϕf and its conjugate
momentum, which in the field basis takes the form Π(φ)(tf ) = −iδ/δϕf . We can then write
the charge acting on the late-time wavefunctional abstractly as

〈ϕf |Q(tf ) |0〉 = Q
[
ϕ,

δ

iδϕ
, tf
]
Ψ[ϕ, tf ] . (2.16)

In explicit examples it will be useful to perform further manipulations to simplify this
expression, but for now we leave it abstract.

To simplify the right hand side of the expression (2.15) it is convenient to split the
charge into a piece that generates the nonlinear part of the relevant symmetry — denoted
by QNL — and the rest, denoted by QL:

Q = QNL +QL. (2.17)

The nonlinear part of the charge can always be written in terms of the canonical momen-
tum as

QNL =
∫

d3x δNLφΠ(φ) =
∫ d3k

(2π)3 δ
NLφ−~kΠ

(φ)
~k
, (2.18)

where δNLφ denotes the nonlinear part of the symmetry transformation on the field variable.16

In momentum space, we may write this as

δNLφ~k(t) = (2π)3Dn
~k

(t)δ3(~k) , (2.19)

where Dn
~k

(t) is some (possibly time dependent) order n differential operator. It is then
convenient to evaluate 〈ϕf |QNL(ti) |0〉 by introducing a complete set of early-time field
eigenstates

〈ϕf |QNL(ti) |0〉=
∫
Dϕi 〈ϕf |ϕi〉〈ϕi|QNL(ti) |0〉=

∫
Dϕi

∫
φ(tf )=ϕf

φ(ti)=ϕi

DφeiS[φ] QNL
[
ϕi,

δ

iδϕi

]
Ψ[ϕi, ti] .

(2.20)
15There is a technical subtlety associated with nonlinearly realized symmetries — this charge formally

does not exist. In practice, this is an infinite volume effect which we regulate by working in Fourier space
and taking the soft limit at the end of the calculation. Indeed this is why spontaneously broken symmetries
lead to soft theorems. An alternative (but equivalent) viewpoint is to consider the Hilbert space as being
spanned by different superselection sectors where in each sector all matrix elements involving the charge
vanish, and where the charge maps between different superselection sectors [70]. In this way of proceeding
the charge operator is perfectly well defined.

16More properly, this should be called the sub-linear part of the symmetry — i.e., the part independent of
the fields themselves.
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We have written the charge QNL(ti) in the field basis as we did for the charge at tf , now
acting on the initial wavefunctional. A benefit is that we know the initial wavefunction —
we work in the infinite past so that it is just a gaussian (as in (2.6))

QNL
[
ϕi,

δ

iδϕi
, ti
]
Ψ[ϕi, ti] = i(−1)nΨ[ϕi, ti]

∫
d3k δ(3)(~k)Dn

−~k(ti)
[
E(k)ϕi~k

]
, (2.21)

where E(k) is a kernel parameterizing the two-point function of ϕi, which is given by
〈ϕi~kϕi−~k〉 = 1/2 Re E(k). Inserting this into (2.20) we obtain

〈ϕf |QNL(ti) |0〉 =
∫
Dϕi 〈ϕf |ϕi〉 〈ϕi| i(−1)n

∫
d3k δ(3)(~k)Dn

−~k(ti)
[
E(k)φ~k(ti)

]
|0〉 . (2.22)

We can then remove the sum over the complete set of states |ϕi〉 so that

〈ϕf |QNL(ti) |0〉 = i(−1)n
∫

d3k δ(3)(~k)Dn
−~k(ti)

[
E(k) 〈ϕf |φ~k(ti) |0〉

]
. (2.23)

We still have to simplify the matrix element 〈ϕf |QL(ti) |0〉. In order to do this, it is
convenient to further split the linear part of the charge as

QL = −
∫

d3x∆tφ(~x, t) +QL
(2) . (2.24)

This first piece, proportional to ∆t, is present only when the free Lagrangian shifts by a
temporal boundary term under the symmetry of interest, and ∆tφ is precisely this boundary
term. It is worth noting that this type of contribution is special to nonlinearly realized
symmetries, and this is the only part of the charge linear in the field φ. The remaining part
of the charge QL

(2) captures all of the pieces that start at quadratic order and higher in φ
and Π(φ). Then, we can write

〈ϕf |QL(ti) |0〉 = −∆t

∫
d3k δ(3)(~k) 〈ϕf |φ~k(ti) |0〉+ 〈ϕf |QL

(2)(ti) |0〉 . (2.25)

Putting this together with (2.23) we obtain

〈ϕf |Q(ti) |0〉 =
∫

d3k δ(3)(~k)
(
i(−1)nDn

−~k(ti)
[
E(k) 〈ϕf |φ~k(ti) |0〉

]
−∆t 〈ϕf |φ~k(ti) |0〉

)
+ 〈ϕf |QL

(2)(ti) |0〉 .
(2.26)

Now we need to evaluate each of these pieces separately.
First, we will study 〈ϕf |φ(~k, ti) |0〉, which will allow us to simplify the first and second

terms in (2.26). In general, the full quantum object is difficult to compute. However, at
tree level this object (properly normalized) solves the classical equations of motion with
boundary sources ϕf :17

φcl
~k

(t) '

∫ ϕf
Dφ eiSε[φ]φ~k(t)∫ ϕf
Dφ eiSε[φ]

= 〈ϕf |φ(~k, ti) |0〉
〈ϕf |0〉

, (2.27)

17The factor in the denominator is simply the late time wavefunction itself, 〈ϕf |0〉, and serves to cancel
the disconnected contributions from computing the path integral in the numerator.
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where we have deformed the action Sε[φ] by iε terms that project onto the vacuum in the far
past, and the path integral is done subject to the boundary condition that φ approaches ϕf
at t = tf . In (2.26) we are interested more specifically in the classical field profile at early
times t→ −∞. This object is a generating functional for shifted wavefunction coefficients
(see appendix C):

φcl
~k

(−∞) = K(k,−∞)
∑
n=2

1
n!

∫ d3p1 · · · d3pn−1
(2π)3(n−2) ϕ~p1 · · ·ϕ~pn−1

× δ(3)(~p1 + . . .+ ~pn−1 − ~k)ψ̃n(~p1, · · · , ~pn−1,−~k) ,
(2.28)

where we have defined the shifted wavefunction coefficient

ψ̃n(~k) ≡ 1
2k
(
ψn(~p1, · · · , ~pn−1,~k;−k)− ψn(~p1, · · · , ~pn−1,~k; k)

)
, (2.29)

which is the difference of two wavefunction coefficients with the sign of the energy corre-
sponding to ~k flipped. We will only need the classical field profile in the soft limit, which
reduces to

lim
~k→0

φcl
~k

(−∞) = −
∑
n=2

1
(n− 1)!

∫ d3p1 · · · d3pn−1
(2π)3(n−2) ϕ~p1 · · ·ϕ~pn−1

× δ(3)(~p1 + . . .+ ~pn−1)∂kψn(~p1, · · · , ~pn−1, 0) . (2.30)

Using this expression, we can simplify the first two terms on the right hand side of (2.26).
Further simplification will require specifying the charge in a particular theory.

Finally we have to consider the third term in (2.26). Schematically its contribution is

〈ϕf |QL
(2)(ti) |0〉 ∼

∫
d3p1 · · · d3pm δ

(3)(~p1 + · · ·+ ~pm) 〈ϕf |φ~p1(ti) · · ·φ~pm(ti) |0〉 , (2.31)

for some integer m. At tree level, we can substitute in the classical field profile, sourced by
the boundary field ϕf . From (2.28), we see that at early times all of the time dependence
is contained in K(p, ti) ∼ eipti . Thus, we will arrive at an integral of the form

〈ϕf |QL
(2)(ti) |0〉 ∼

∫
d3p1 · · · d3pm e

i(p1+···+pm)tiF (~p1, · · · , ~pm)δ3(~p1 + · · ·+ ~pm) . (2.32)

For generic kinematics, the integrand is highly oscillatory as ti → −∞. Thus the integral
will vanish so long as the function F is sufficiently smooth in p1 + · · ·+ pm, which we will
assume to be the case. Thus, the matrix element 〈ϕf |QL

(2) |0〉 simply vanishes because we
are working in the limit where ti is in the infinite past.18

Putting all of this together, we obtain the soft theorem

Q
[
ϕ,

δ

iδϕ
, tf
]
Ψ[ϕf , tf ] = lim

~k→0

(
i(−1)nDn

−~k(ti)
[
E(k)φcl

~k
(ti)

]
−∆tφ

cl
~k

(ti)
)

Ψ[ϕf , tf ] ,

(2.33)
18Importantly, the same is not true of the contribution from QL with a single φ because it is evaluated in

the soft limit, which removes the oscillatory factor.

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
0
9
2

where we have evaluated the matrix elements involving a single field in (2.26) using (2.28).
Note that this implies that the soft theorem (2.33) is only valid at tree level, but this is
sufficient for our purposes.19 This expression should be utilized by substituting in the
expansion of the wavefunction into wavefunction coefficients (2.2) and replacing the classical
field profile with (2.28). Then, to isolate the soft theorem for a particular wavefunction
coefficient one simply acts repeatedly with δ/δϕ, setting ϕ to zero in the end. We now turn
to applying this general formalism to a few specific theories of interest.

3 The wavefunction from the S-matrix

As a first step toward constructing the wavefunction in theories with enhanced soft limits, we
take as an input the S-matrix of the relevant theory and ask: how much more information
is contained in the wavefunction? Interestingly, we find that if one is willing to input
information about the singularities of the wavefunction coefficients, the remaining part of
the wavefunction is fixed by a soft theorem at one lower order in the soft momentum than
the final wavefunction actually satisfies. Further, this lower-order soft theorem is actually
an Adler zero-like vanishing condition in general, which is simpler to implement.20

3.1 The nonlinear sigma model

We begin by considering the wavefunction of the nonlinear sigma model (NLSM). This theory
is the effective description of the Nambu-Goldstone modes arising from the spontaneous
breaking of SU(N)L × SU(N)R global symmetries to its diagonal subgroup. (For more
details, see appendix A.1.)

The nonlinear sigma model is a somewhat exceptional case because one does not need a
proper soft theorem to bootstrap its wavefunction. Its amplitudes exhibit an Adler zero and
vanish like O(p) in the soft limit, and the wavefunction coefficients correspondingly satisfy
a soft theorem that constrains their O(p0) behavior.21 However for a general wavefunction
coefficient this soft theorem is difficult to write down without knowing the precise form
of the symmetry itself to all orders. Fortunately, the wavefunction soft theorem is not
necessary — the wavefunction can be reconstructed from its singularities (including the
total energy scattering pole) along with the requirement that the U(1) mode decouples (see
appendix A.1.1 for details about flavor ordering and U(1) decoupling).

3.1.1 Wavefunction coefficients

In order to construct NLSM wavefunction coefficients, our strategy is to parameterize the
most general wavefunction, subject to the constraints that it has the correct singularity
structure and obeys the U(1) decoupling identity (see appendix A.1.1).

19Of course, this expression could be corrected at higher orders in perturbation theory by evaluating
〈ϕf |φ(~k, ti) |0〉 at higher order.

20The two-point and four-point wavefunctions for the (special) galileon are exceptions to this, see (3.52)
and (3.53).

21To be clear, we say that a theory has an O(pn) soft theorem if there is a Ward identity that controls
the behavior of the wavefunction or amplitude at order O(pn) in the soft limit. Note that the this slightly
different than the language used for Adler zeros — if an object possesses an order O(pn+1) Adler zero, then
it vanishes like pn+1 in the soft limit.
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Four points. To see explicitly how this works, we begin by bootstrapping the flavor
ordered four-point wavefunction, which is generated by a contact interaction in the bulk.
The most general ansatz for the four-point wavefunction coefficient, having only a total
energy singularity and a vanishing cut, is of the form22

ψ
(nlsm)
4 (~p1, ~p2, ~p3, ~p4) = A4

E
+R, (3.1)

where A4 is some representation of the corresponding scattering amplitude, and R is the
most general polynomial with mass dimension one in the variables pa, sab for a, b = 1, 2, 3, 4.
For brevity, we will often suppress the argument of the wavefunction. When this is the
case, the momenta are ordered as indicated above. Without loss of generality, we may
choose a representation for A4 which is manifestly Lorentz invariant. The difference between
this choice and any other choice can be absorbed into R. The symmetries of the flavor
decomposition imply that ψ4 must be even under cyclic permutations. This is most easily
achieved by defining A4 and R to separately be invariant under cyclic permutations. Since
the amplitude has two powers of momenta in each term, it will be constructible out of the
building blocks

C1 = P1 · P2 + P2 · P3 + P3 · P4 + P4 · P1 ,

C2 = P1 · P3 + P2 · P4 ,
(3.2)

where we have defined the four-momentum-like object Pµa ≡ (pa, ~pa) and the dot products
are the contraction Pa · Pb = ηµνP

µ
a P

ν
b where ηµν is the ordinary Minkowski space metric

(mostly plus signature). The two building blocks C1 and C2 are not actually independent,
but satisfy

C1 + C2 = 1
2
(
P1 + P2 + P3 + P4

)2
= −1

2E
2 . (3.3)

Among many, one viable representation of A4 is (temporarily setting the coupling 1/f2 to 1)

A4 = 1
2C1 . (3.4)

Next we construct R. Since we are studying a contact interaction, the cut of ψ4 must vanish.
The scattering part of our ansatz already has this property, so it must be obeyed separately
by R. Therefore, each term in R must have an odd number of pa’s, which by dimensional
analysis means that sab cannot appear. Therefore, the only cyclic permutation-invariant
combination of mass dimension one is the total energy: R = a1E where a1 is some constant
that remains to be determined. Our ansatz for the wavefunction is then

ψ4 = C1
2E + a1E . (3.5)

This ansatz manifestly has the correct total energy singularity and has a vanishing cut. We
must finally impose the constraint that the U(1) mode decouples, which is enforced by the
U(1) decoupling identity (see appendix A.1.1). At four points, this is

ψ4(~p1, ~p2, ~p3, ~p4) + ψ4(~p1, ~p3, ~p4, ~p2) + ψ4(~p1, ~p4, ~p2, ~p3) =
(
3a1 −

1
2
)
E = 0 . (3.6)

22We remind the reader that in this context, we mean a vanishing cut in the sense of (2.13), as opposed
to some analytic property of the wavefunction coefficient.
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Requiring that this vanishes imposes a1 = −1/6. Thus after restoring the coupling, we have
completely determined the flavor ordered four-point wavefunction to be

ψ
(nlsm)
4 = 1

2f2E

(
P1 · P2 + P2 · P3 + P3 · P4 + P4 · P1

)
+ 1

6f2E . (3.7)

It is straightforward to check that this matches a direct perturbative computation. Using
3-momentum conservation, we may also bring the wavefunction to the form

ψ
(nlsm)
4 = 1

3f2E

(
P1 · P2 + P2 · P3 − 2P1 · P3

)
− 1

6f2

(
p1 − 2p2 + p3

)
. (3.8)

By writing the wavefunction in this form, we have sacrificed cyclic invariance in order to
eliminate all instances of ~p4 and p4 (except in the total energy singularity). As we will see
momentarily, writing the wavefunction in this way is useful for bootstrapping wavefunction
coefficients that involve exchange interactions.23

Six points. As a more nontrivial example, one can construct the six-point wavefunction
coefficient from knowledge of its singularities along with the U(1) decoupling identity. Since
we are constructing the flavor ordered wavefunction, the only possible singularities occur
when adjacent sums of three energies add up to zero. There are three such factorization
channels: one is when E123 = p1 + p2 + p3 + s123 or E456 = p4 + p5 + p6 + s456 vanish, or
the analogous partial energy singularities in the other factorization channels. A natural
ansatz is then of the form (again setting the coupling 1/f2 to 1)

ψ
(nlsm)
6 (~p1, ~p2, ~p3, ~p4, ~p5, ~p6) = 1

E

(
N123N456
E123E456

+ N561N234
E561E234

+ N612N345
E612E345

)
+ C

E
+ regular ,

(3.9)
where the regular terms do not have any singularities. There are various ways to fix the
form of the kinematic numerators. The simplest is to note that the expression (3.9) must
factorize appropriately into products of shifted four-point functions when we take cuts
according to the prescription (2.14).24 These shifted four-point functions can be computed
using (3.7):

ψ̃
(nlsm)
4 (~p1, ~p2, ~p3, ~pI) = P1 · P2 + P2 · P3 − 2P1 · P3

3(p2
123 − s2

123) , (3.10)

where we have shifted the internal line, I. This implies that we should take

N123 ≡
1
3
(
P1 · P2 + P2 · P3 − 2P1 · P3

)
, (3.11)

and similarly for the other permutations. With this choice (3.9) will have the correct cuts
(and by extension the correct partial energy singularities). We must then fix the C and

23There is also a more economical way of writing the wavefunction, which takes the form of an NLSM
scattering amplitude divided by the total energy:

ψ
(nlsm)
4 = 1

6f2E

(
P1 · P2 + P2 · P3 + P3 · P4 + P4 · P1 − 2P1 · P3 − 2P2 · P4

)
.

24Equivalently, we can require that the residues of the partial energy singularities are the appropriate
combination of shifted four-point wavefunction coefficients and four-point amplitudes.
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regular terms in (3.9). The C terms have mass dimension two and can be built from the
cyclic permutation-invariant building blocks25

C1 = P1 · P2 + P2 · P3 + P3 · P4 + P4 · P5 + P5 · P6 + P6 · P1 ,

C2 = P1 · P3 + P2 · P4 + P3 · P5 + P4 · P6 + P5 · P1 + P6 · P2 .
(3.12)

Finally, the regular terms in (3.9) must also be cyclic permutation invariant, have mass
dimension one, and have a vanishing cut, which implies they must be proportional to E.
We then have

ψ
(nlsm)
6 = 1

E

(
N123N456
E123E456

+ N561N234
E561E234

+ N612N345
E612E345

)
+ a1C1 + a2C2

E
+ a3E . (3.13)

The coefficients a1 and a2 can be fixed from the E → 0 limit, whose residue must be the
scattering amplitude

A6 = −
(
N123N456
S123

+ N561N234
S561

+ N612N345
S612

)
− 1

18
(
C1 + 2C2

)
. (3.14)

We can then immediately read off the coefficients

a1 = − 1
18 , a2 = −1

9 . (3.15)

To fix the last coefficient, we use the U(1) decoupling identity, which at six points reads

0 = ψ6(~p1, ~p2, ~p3, ~p4, ~p5, ~p6) + ψ6(~p2, ~p1, ~p3, ~p4, ~p5, ~p6) + ψ6(~p2, ~p3, ~p1, ~p4, ~p5, ~p6)

+ ψ6(~p2, ~p3, ~p4, ~p1, ~p5, ~p6) + ψ6(~p2, ~p3, ~p4, ~p5, ~p1, ~p6) =
(
5a3 + 1

6
)
E .

This must vanish, which implies a3 = −1/30, so that the six-point wavefunction is given by

ψ
(nlsm)
6 = 1

E

(
N123N456
E123E456

+ N561N234
E561E234

+ N612N345
E612E345

)
− C1 + 2C2

18E − 1
30E , (3.16)

which can again be matched to a bulk perturbative calculation. At higher points, the
bootstrap procedure generalizes in a straightforward fashion.26

3.1.2 Soft theorem

Though the NLSM wavefunction is fixed by the residues of its singularities along with the
U(1) decoupling identity, it is nevertheless interesting to explore the soft theorem that the
wavefunction satisfies at O(p0). The NLSM wavefunction soft theorem is somewhat less
powerful than its amplitude counterpart. Essentially this is because it is necessary to know

25There is another possible cyclic-invariant building block with the right mass dimension: C3 = P1 · P4 +
P2 · P5 + P3 · P6. As in the four-point function case, these quantities are not independent, but are related by
C1 + C2 + C3 = −E

2

2 so we can eliminate C3 in terms of C1, C2 at the cost of shifting around the regular
terms with no singularities.

26A natural question is to understand how this discussion changes when studying double trace theories
— in particular the SO(N + 1)/SO(N) NLSM — where the Goldstones transform in the fundamental
representation of SO(N). In particular, there is no analogue of the U(1) decoupling identity for such theories,
and it would interesting to understand what (if any) piece of data replaces it.
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the precise form of the symmetry (A.5) (or, equivalently, the corresponding Noether charge)
to a given order in fields in order to derive the relevant soft theorem. Further, because the
symmetry transformation has infinitely many terms, there is no universal form of the soft
theorem that holds for a general n-point wavefunction. Instead, one must work out the soft
theorem order by order.

We begin by considering the NLSM symmetry transformation:

δφc =Bc− 1
3f2B

a1φb1φb2fa1b1b3f cb2b3− 1
45f4B

a1φb1φb2φb3φb4fa1b1 cfa2b2a3f b3ca4f b4a3a4 +O(φ6) ,
(3.17)

where f is the symmetry breaking scale and fabc are the Lie algebra structure constants
(hopefully the difference is clear from context). The corresponding symmetry charge is
given by

Q =
∫

d3x δφbΠ(φ)
b . (3.18)

We want to apply the formalism of section 2.2 to this particular charge. First, note that
Q only has a piece which is linear in Π, so computing the left hand side of (2.33) is
straightforward. Moreover, the differential operator coming from the nonlinear part of the
symmetry is just a constant Dn

~k
(t) = 1. Finally, note that Q does not contain a term with

an isolated φ, so ∆t = 0.27

With these considerations, we can write the soft theorem 2.2 as

− i lim
~k→0

δϕa~k
δ log Ψ[ϕf , tf ]

δϕa~k
= i lim

~k→0
Ba E(k)φcl

~k
a(ti) , (3.19)

where we have divided through by Ψ[ϕf , tf ] in order to write the l.h.s. in terms of log Ψ.
Next we expand both sides in terms of wavefunction coefficients, which gives

− lim
~k→0

∑
n=2

1
(n− 1)!

∫ d3p1 · · · d3pn−1
(2π)3(n−1) ϕb1

~p1
· · ·ϕbn−1

~pn−1
δϕa~kδ

(3)(~p1 + . . .+ ~pn−1)

× ψb1···bn−1a
n (~p1, · · · , ~pn−1,~k)

= lim
~k→0

BaE(k)
∑
n=2

1
(n− 1)!

∫ d3p1 · · · d3pn−1
(2π)3(n−2) ϕb1

~p1
· · ·ϕbn−1

~pn−1
δ(3)(~p1 + . . .+ ~pn−1)

× ∂kψb1···bn−1a
n (~p1, · · · , ~pn−1, ~k) . (3.20)

Note that the r.h.s. vanishes because E(k) vanishes in the soft limit, and ∂kψ is finite.
At this point, we may take functional derivatives with respect to ϕ to extract particular
wavefunction coefficients from these sums.

Since δφ has infinitely many terms, there is no uniform way to write the resulting soft
theorem for a general n-point wavefunction coefficient. Therefore, one must derive results
coefficient by coefficient. This is straightforward to do; after stripping the flavor indices,
one finds that the four-point soft theorem is

lim
~k→0

ψ4(~k, ~p2, ~p3, ~p4) = − 1
6f2

(
ψ2(p4)− 2ψ2(p3) + ψ2(p2)

)
. (3.21)

27This is because the symmetry transformation δφa does not induce a temporal boundary term on the
kinetic part of the action.
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It is easy to verify that (3.7) satisfies this identity. We can similarly work out the six-point
soft theorem

lim
~k→0

ψ6(~k, ~p2, ~p3, ~p4, ~p5, ~p6) =

− 1
6f2

(
ψ4(~p2 + ~p3, ~p4, ~p5, ~p6)− 2ψ4(~p6 + ~p2, ~p3, ~p4, ~p5) + ψ4(~p5 + ~p6, ~p2, ~p3, ~p4)

)
+ 1

180f4

(
ψ2(p6)− 4ψ2(p5) + 6ψ2(p4)− 4ψ2(p3) + ψ2(p2)

)
,

(3.22)

and check that it is satisfied by the true answer (3.16). It is worth emphasizing that in
contrast to the Adler zero that amplitudes satisfy, these soft theorems are comparatively
less useful, because we do not know how to write them down without knowing precisely
the form of the full symmetry transformation. Nevertheless, using these soft theorems, it
is possible to construct the NLSM wavefunction recursively, without using any scattering
information, as we show in section 4.4.1.

3.2 P (X) and Dirac-Born-Infeld

The next example we consider is that of a Dirac-Born-Infeld (DBI) scalar. This theory is a
particular example of so-called P (X) theories, which have a lagrangian of the form

S = ΛD
∫

dDxP (X) , (3.23)

where P (X) is an arbitrary function of the combination X ≡ −1
2(∂φ)2/ΛD. It is clear that

for any choice of function P , this theory will be invariant under the shift symmetry δCφ = 1.
The DBI theory is a distinguished member of the P (X) family that has enhanced symmetry,
owing to its particular functional form involving a square root (see appendix A.2 for details).
In addition to the ordinary shift symmetry, the theory is invariant under the symmetry

δBµφ = xµ + 1
f4φ∂µφ . (3.24)

In the context of scattering amplitudes, this symmetry causes the S-matrix elements to
vanish as O(p2) in the soft limit.

We will require input from these symmetries in the form of soft theorems in order
to fix the wavefunction. Since we are utilizing scattering information, we only need the
soft theorem corresponding to the shift symmetry, which in this case implies that the
wavefunction also has an Adler zero.28

3.2.1 Soft theorems

In the P (X) and DBI cases, bootstrapping wavefunction coefficients requires input from the
lowest-order soft theorem. This soft theorem is particularly simple — it is just a vanishing
statement like the Adler zero. We therefore first derive this identity. We will also derive

28Later in section 4 we will construct two types of recursion relations, one that uses the same input
as this section, but also one that uses the soft theorem for the DBI symmetry (3.24) instead of the
scattering amplitude.

– 19 –



J
H
E
P
0
3
(
2
0
2
3
)
0
9
2

the corresponding statement for the DBI symmetry. This latter statement is not directly
needed to bootstrap the wavefunction from the S-matrix, but can be used to recursively
construct the wavefunction via a different method (as we will do in section 4).

Wavefunction Adler zero. We first derive the lowest-order soft theorem satisfied by
P (X) wavefunctions (and in particular DBI). This is the soft theorem corresponding to the
shift symmetry δCφ = 1. This symmetry is generated by the charge

QC =
∫

d3xΠ(φ) , (3.25)

and the differential operator appearing in (2.33) is D0
~k
(ti) = 1. From here we proceed exactly

as in the case of the NLSM. However in this case the shift symmetry does not have quadratic
and higher terms, so there is a simple expression holding for all wavefunction coefficients:

lim
~k→0

ψn(~k, ~p2, · · · , ~pn) = 0 . (3.26)

That is, the wavefunction coefficients possess an Adler zero.

DBI symmetry soft theorem. We now sketch the derivation of the higher-order soft
theorem associated to the DBI symmetry (3.24). Notice that this symmetry has a full
Lorentz vector of charges. Since we are breaking Lorentz symmetry by choosing a time slice
on which to define the wavefunction, the spatial and temporal components of this charge
(and the corresponding soft theorems) behave slightly differently. Explicitly, these charges
are given by

QiB =
∫

d3x
(
xi + 1

f4φ∂
iφ
)
Π(φ) , (3.27)

QtB =
∫

d3x tΠ(φ) − φ
√(

1 + 1
f4 (∇φ)2

)(
1 + 1

f4 (Π(φ))2
)
. (3.28)

Knowing only the symmetry transformation δφ, we may immediately write down the spatial
charge by appealing to the logic outlined in appendix B.2. On the other hand, the temporal
charge must be computed by explicitly working out the boundary term that the Lagrangian
shifts by under this symmetry. We now consider the soft theorems arising from each of
these charges in turn.

Spatial soft theorem: first consider the spatial charge (3.27). The spatial DBI symmetry
does not have a boundary term, so ∆t = 0 in (2.33). The differential operator corresponding
to the xi part of the symmetry is D1

~k
= −id/d~k.29 The general soft theorem (2.33) then

takes the form

(2π)3 lim
~k→0

d
d~k

[δ logΨ[ϕ,tf ]
δϕ−~k

]
+ 1
f4

∫ dp3
1dp3

2dp3
3

(2π)3 δ(3)(~p1+~p2+~p3)
(~p1+~p2

2
)
ϕ~p1ϕ~p2

δ logΨ[ϕ,tf ]
δϕ−~p3

=− lim
~k→0

d
d~p
[
E(k)φcl

~k
(ti)

]
,

(3.29)
29A helpful fact to remember is ~x = i

∫
d3k ei

~k·~x~∂kδ
(3)(~k) .
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where the two terms on the l.h.s. come from the two terms in the charge (3.27). Now we
may expand both sides in terms of wavefunction coefficients and take functional derivatives
to obtain (after relabelling)

lim
~k→0

d
d~k
ψn(−~k, ~p2, · · · , ~pn) +

∑
pairs a,b

1
f4 (~pa + ~pb)ψn−2(~pa + ~pb, ~p2, · · · , pa, · · · , pb, · · · , ~pn)

= lim
~k→0

d
d~k

[
E(q)ψn(−~k, ~p2, · · · , ~pn)

]
,

(3.30)
where the bar over a particular momentum indicates that it should be removed. Using
the fact that lim~k→0 ψn = −∂kψn|0 along with the chain rule, we can simplify (3.30) to the
schematic form30

lim
~k→0

(
~∂kψn(−~k) + k̂∂kψn(−~k)

)
+ ψabn−2 = lim

~k→0

(
k̂∂kψn(−~k)− E(k) d

d~k

[
ψn(−~k)

])
(3.31)

where ψabn−2 is the sum in the first line of (3.30). Note that the terms involving lim~k→0 k̂

— which strictly speaking are ill-defined because they are direction dependent — cancel
between the two sides. The second term on the r.h.s. vanishes in the soft limit. Thus we
are left with

lim
~k→0

~∂kψn(~k, ~p2, · · · , ~pn) =
∑

pairs a,b

1
f4 (~pa + ~pb)ψn−2(~pa + ~pb, ~p2, · · · , pa, · · · , pb, · · · , ~pn) .

(3.32)
This implies that the DBI wavefunction coefficients at order O(p) satisfy a soft theorem
rather than an Adler zero.

Temporal soft theorem: finally, we want to derive the soft theorem associated to the
temporal DBI charge (3.28). Notice that this charge does have a term linear in φ, which
means that ∆t = 1. Moreover, the differential operator for the temporal symmetry is
D0
~k
(ti) = ti. The soft theorem (2.33) then can be written as

Q
t
B

[
ϕ,

δ

iδϕ
, tf
]
Ψ[ϕ, tf ] = lim

~k→0

(
itiE(k)− 1

)
φcl(~k, ti)Ψ[ϕ, tf ] , (3.33)

where QtB is only the square root term in (3.28).31 Now we expand this expression in
wavefunction coefficients and take functional derivatives to extract their soft theorems.
Unfortunately, there is no simple way to write the l.h.s. in general, but for particular examples
everything can be straightforwardly worked out. For example, we have at four-points

lim
~k→0

∂kψ4(~k, ~p2, ~p3, ~p4) = − 1
f4

(
~p2 · ~p3 + ψ2(p2)ψ2(p3)

)
+ perms. , (3.34)

30Specifically we use the relation dψn

d~k
= ~∂kψn + k̂∂kψn.

31At late times, we may ignore the nonlinear piece if we set tf = 0.
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where the overall δ-function on each side is δ(3)(~p2 + ~p3 + ~p4), and “perms.” indicates a
symmetrization over these momenta. At six points, the soft theorem reads

lim
~k→0

∂kψ6(~k, ~p2, ~p3, ~p4, ~p5, ~p6) =

1
f4ψ4(−~p234, ~p2, ~p3, ~p4)ψ2(p5)

+ 1
f8

(
− ~p2 · ~p3ψ2(p4)ψ2(p5) + 3ψ2(p2)ψ2(p3)ψ2(p4)ψ2(p5) + ~p2 · ~p3~p4 · ~p5

)
+ perms.

(3.35)
As in the case of the nonlinear sigma model, these soft theorems may be used to recursively
construct the six-point wavefunction coefficient if the scattering amplitude is not known,
see section 4.4.2. However, it is often simpler to use the scattering amplitude plus the Adler
zero that wavefunction coefficients satisfy as a consequence of the ordinary shift symmetry,
as we now demonstrate.

3.2.2 Wavefunction coefficients

Much like the NLSM, we can construct wavefunction coefficients of DBI from their singu-
larities, but now supplemented with the Adler zero condition. We will demonstrate this
procedure for a number of simple examples.

Four-point wavefunction. To bootstrap the four-point function, we will take an ansatz
of the form

ψ
(dbi)
4 = A4

E
+R , (3.36)

where A4 is an arbitrary representation of the scattering amplitude and R is analytic in the
total energy E. For convenience, we will choose a manifestly Lorentz invariant representation
of the scattering amplitude which is also manifestly Bose-symmetric (temporarily setting
the coupling 1/f4 to 1):

A4 = 1
2
(
(P1 ·P2)2 + (P1 ·P3)2 + (P1 ·P4)2 + (P2 ·P3)2 + (P2 ·P4)2 + (P3 ·P4)2

)
. (3.37)

To parametrize R, we write down the most general Bose-symmetric polynomial which is
cubic in pa, sab. As in the NLSM case, we are assuming that the wavefunction coefficient
is purely generated by a contact interaction in the bulk, which means that the cut of the
wavefunction vanishes. This implies that each term in R must have an odd number of
external energies, so by dimensional analysis sab can only appear in even powers. Modulo
dimension-dependent Gram identities, the most general polynomial of this form is

R = a1
(
p1p2p3+p1p2p4+p1p3p4+p2p3p4

)
+a2

(
p2

1p2+perms.
)

+a3
(
p3

1+p3
2+p3

3+p3
4

)
. (3.38)

All of the unfixed coefficients are completely determined by the simple Adler zero. Sending
~p1 → 0 gives:

lim
~p1→0

ψ4 =
(
a1−

3
4
)
p2p3p4 +

(
a2 + 3

8
)(
p3

2 +p3
3 +p3

4

)
+
(
a3 + 1

8
)(
p2

2p3 +p2
2p4 +p2

3p4
)
. (3.39)
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Since all the terms on the right hand side are independent, their coefficients must each
vanish, so that

a1 = 3
4 , a2 = −3

8 , a3 = −1
8 . (3.40)

Restoring the coupling, this fixes the wavefunction to be

ψ
(dbi)
4 = 1

2f4E

(
(P1 · P2)2 + (P1 · P3)2 + (P1 · P4)2 + (P2 · P3)2 + (P2 · P4)2 + (P3 · P4)2

)
+ 3

4f4

(
p1p2p3 + p1p2p4 + p1p3p4 + p2p3p4

)
− 3

8f4

(
p2

1p2 + perms.
)

− 1
8f4

(
p3

1 + p3
2 + p3

3 + p3
4

)
.

(3.41)
Later on, when it comes to performing recursion, the following form of the wavefunction
will also be useful:32

ψ
(dbi)
4 = − 2

f4E

(
P1 · P2 P2 · P3 + P2 · P3 P3 · P1 + P3 · P1 P1 · P2

)
− 1
f4

(
P1 · P2p3 + P1 · P3p2 + P2 · P3p1

)
.

(3.43)

It is possible to build the six-point wavefunction in the same systematic way, but in section 4
we give a more elegant recursive construction using the same input.

3.3 Galileon theories

As a final example, we consider galileon field theories. These are theories that have a shift
symmetry similar to the DBI symmetry (3.24), but which is field independent

δBµφ = xµ, (3.44)

along with the ordinary shift symmetry δCφ = 1. In this section we will focus solely on the
quartic galileon vertex. However, our results should generalize to any galileon theory. In
addition, among the class of galileon theories, there is a distinguished subset [6, 13, 71]—often
called the special galileon — that has an additional symmetry of the form

δSµνφ = sµν

(
xµxν + 1

f6∂
µφ∂νφ

)
. (3.45)

As before, we first derive the soft theorems associated to these symmetries and then use
them to bootstrap the wavefunction.

32Even this is not the most economical representation of the wavefunction. Using 3-momentum conservation,
it may be reduced to

ψ
(dbi)
4 = 1

f4E

(
P1 · P2 P3 · P4 + P1 · P3 P2 · P4 + P1 · P4 P2 · P3

)
. (3.42)

This is, of course, a particular representation of the scattering amplitude divided by the total energy. Notice
that this form of the amplitude in the numerator of (3.42) manifestly has the O(p) Adler zero, while this is
not manifest in (3.37). Noting that the different forms of the amplitude correspond to different forms of
the Lagrangian related by an integration by parts, we can see that this simple way of writing the answer
corresponds to the Lagrangian with one time derivative per field (see appendix B.1).
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3.3.1 Soft theorems

As was mentioned before, the special galileon has three different symmetries: an ordinary
shift symmetry, a symmetry linear in xµ (galileon), and a symmetry quadratic in xµ (special
galileon). We will treat each of these in turn.

Shift symmetry. Like the DBI case, the shift symmetry, δCφ = 1 leads to an Adler zero
— the wavefunction coefficients vanish in the soft limit as in (3.26).

Galileon symmetry. We next consider the δBµφ = xµ symmetry. We first need the
generators of the spatial and temporal parts of this symmetry:33

QiB = −i lim
~k→0

d
dkiΠ

(φ)(~k) , (3.47)

Q0
B = lim

~k→0

(
tΠ(φ)(~k)− φ~k(t)

)
+ N

f6

∫ d3p1d3p2d3p3
(2π)3·2 δ(3)(~p1 + ~p2 + ~p3)φ~p1(t)φ~p2(t)φ~p3(t)

(
p2

2p
2
3 − (~p2 · ~p3)2

)
.

(3.48)

Here, N is a constant which fixes the normalization of the interaction term in the action. It
may be absorbed into the coupling parameter 1/f6. However we will keep it explicit for
convenience later on when we bootstrap wavefunction coefficients. Interestingly, the K0

term in Q0
B only has a term with one φ and one with three φs. Eventually we will see that

these terms only contribute to the Ward identities satisfied by the two-point and four-point
wavefunction coefficients. All other wavefunction coefficients will actually have higher-order
Adler zeroes, vanishing like O(p2).

Spatial soft theorem: we first consider the soft theorem associated to the symmetry (3.47).
Everything proceeds essentially identically to the DBI case, except that there is no φ∂φ part
of the symmetry. The resulting soft theorem is the same as (3.29) with the middle term
removed, because it comes from the φ∂φ part of the symmetry. In terms of wavefunction
coefficients, we find

lim
~k→0

~∂kψn(~k, ~p2, · · · , ~pn) = 0 , (3.49)

which implies that the galileon wavefunction exhibits a spatial enhanced Adler zero.
33The spatial charge may be written down immediately if δφ is known. The temporal charge is more

subtle, but can be obtained by following the procedure outlined in appendix B.2. For the charge to act
correctly, it must be of the form

Q0
B =

∫
d3x tΠ(φ)(~x, t)−K0[φ(~x, t)] . (3.46)

Using the explicit expression for the charges, we can compute the commutator [QiB , Q0
B ] =∫

d3x δBiK0[φ(~x, t)]. We know from the algebra of symmetries that this commutator should vanish,
which requires that K0 is invariant under a spatial galileon symmetry transformation. The terms with this
symmetry and with the right derivative counting and number of fields are themselves (three-dimensional
euclidean) galileon terms:

K0[φ] = φ− N

f6 φ
[
(∇2φ)2 − (∂i∂jφ)2

]
.

Fourier transforming (3.46) then produces (3.48).
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Temporal soft theorem: we next turn to the soft theorem that is a consequence of the
temporal symmetry. In this case the general Ward identity (2.33) can be written as

Q0
BΨ[φ, tf ] = lim

~q→0

[
itiE(k)− 1

]
φcl
~k

(ti)Ψ[φ, tf ] , (3.50)

where Q0
B is given by (3.48). Now we may expand both sides in terms of wavefunction

coefficients. After relabelling we have

−
∫

d3kδ(3)(~k)ϕ~k(tf )+N

f6

∫ dp3
1dp3

2dp3
3

(2π)3·2 δ(3)(~p1+~p2+~p3)ϕ~p1(t)ϕ~p2(t)ϕ~p3(t)
(
p2

2p
2
3−(~p2 ·~p3)2

)
=− lim

~k→0

[ iti
(2π)3E(k)−1

]∑
n=2

1
(n−1)!

∫ d3p1 · · ·d3pn−1
(2π)3(n−2) δ(3)(~p1+. . .+~pn−1)

×ϕ~p1 · · ·ϕ~pn−1∂kψn(~p1, · · · , ~pn−1,~k) . (3.51)

In the soft limit, the E(k) term vanishes. We may take functional derivatives to extract the
soft theorems obeyed by the wavefunction coefficients:

lim
~k→0

∂kψ2(~k) = −1 , (3.52)

lim
~k→0

∂kψ4(~k, ~p2, ~p3, ~p4) = 2N
f6

(
p2

2p
2
3 − (~p2 · ~p3)2

)
+ perms. , (3.53)

lim
~k→0

∂kψn(~k, ~p2, . . . , ~pn) = 0, n > 4 . (3.54)

Notice that n = 2, 4 are exceptional cases where the wavefunction’s energy derivative in the
soft limit does not vanish, but rather obeys a soft theorem.

Special galileon symmetry. Finally we consider the soft theorems associated to the
special galileon symmetry (3.45). This symmetry has a full symmetric traceless tensor of
charges. As in the DBI case, the spatial and temporal components of the charges behave
differently. The spatial (traceless) charge is given by

sijQ
ij
S =

∫
d3x

(
xixj + 1

f6∂
iφ∂jφ

)
Π(φ) (3.55)

where sij is a symmetric and traceless tensor. This charge may be immediately written
down from the symmetry transformation following the logic in appendix B.2, and does not
require knowledge of the action. To derive the temporal charges, one needs to compute the
boundary term the action develops by brute force. Since we do not require the temporal
charges for our purposes, we leave these details for future work.

Spatial Soft Theorem: to derive the special galileon spatial soft theorem, we essentially
follow the same steps as in the derivation of the DBI spatial soft theorem. The end result is

lim
~k→0

sij∂
i
k∂

j
kψn(~k, ~p2, · · · , ~pn) = −

∑
pairs a,b

1
f6 sijp

i
ap
j
b ψn−2(~pa + ~pb, ~p2, · · · pa, · · · , pb, · · · , ~pn) .

(3.56)
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3.3.2 Wavefunction coefficients

We now want to use the soft theorems discussed in this section to bootstrap the wavefunction
of the galileon. We begin with an ansatz for the wavefunction of the form

ψ
(gal)
4 = A4

E
+R , (3.57)

where A4 is some representation of the scattering amplitude and R is a remainder term
without any singularities. Concretely, we can write the amplitude as (temporarily setting
the coupling 1/f6 to 1)

A4 = −1
2
(
P1 · P2P1 · P3P1 · P4 + perms.

)
. (3.58)

This way of writing the amplitude manifestly vanishes as O(p) in the soft limit. However
when energy is conserved, this object actually vanishes as O(p2), though this cannot be made
manifest.34 As in the case of NLSM and DBI, the cut of the wavefunction coefficient must
vanish, which means that each term must have an odd power of external energies. Then
by dimensional analysis, sab can only appear in even powers. Up to dimension-dependent
Gram identities, the most efficient ansatz takes the form

R = a1 p
2
1p2p3p4 + a2 p

3
1p2p3 + a3 p

4
1p2 + a4 p

5
1 + a5 p

2
1p

2
2p3 + a6p

3
1p

2
2

+ a7 p1s
4
12 + a8 p

2
1p2s

2
12 + perms.

(3.59)

In order to restrict this ansatz, we first check the simple Adler zero coming from the ordinary
shift symmetry. The amplitude part manifestly has this property, but in the soft limit,
R becomes

lim
~p1→0

R = a2 p
3
2p3p4 +

(
a3 + a7

)
p4

2p3 +
(
a4 + a7

)
p5

2 +
(
a5 + 2a8

)
p2

2p
2
3p4 + a6p

3
2p

2
3 + perms.

(3.60)
Since this is an independent basis of polynomials, in order for this quantity to vanish we
have to set

a2 = a6 = 0, a3 = a4 = −a7, a5 + 2a8 = 0 . (3.61)

Next, we impose the galileon symmetry soft theorem. First, we impose the O(p) spatial
soft theorem, which is an Adler zero condition:

lim
~p1→0

~∂p1ψ
(gal)
4 = ~p2

E

4 (p2 − p4)
[
(1 + 16a7)(p2 + p4)− (1 + 8a8)p3

]
+ ~p3

E

4 (p3 − p4)
[
(1 + 16a7)(p3 + p4)− (1 + 8a8)p2

]
.

(3.62)

In order for this quantity to vanish we must set

a7 = − 1
16 , a8 = −1

8 . (3.63)

34Actually it vanishes like O(p3) due to the special galileon symmetry, but we will not utilize this property.
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Now we proceed to impose the O(p) temporal soft theorem, which reads:35

lim
~p1→0

∂p1ψ
(gal)
4 = 1

4p
4
2 −

1
2p

2
2p

2
3 +

(
a1 + 1

2
)
p2

2p3p4 + perms.

= −3N
2 E

(
p2 − p3 − p4

)(
p4 − p2 − p3

)(
p3 − p2 − p4

)
.

(3.64)

Note that there is no choice of a1 which will cause the top line to vanish. This implies that
there is no theory that matches the galileon scattering amplitudes when E = 0, has an
O(p2) spatial Adler zero, and also exhibits an O(p2) temporal Adler zero. The best one
can do is fix a1 so that the wavefunction coefficient satisfies the soft theorem in (3.53). The
equation above is uniquely solved by

a1 = 1
2 , N = 1

6 . (3.65)

Thus, we have successfully bootstrapped the wavefunction. The final result is given by

ψ
(gal)
4 = 1

2f6E

(
P1 · P2P1 · P3P1 · P4 + perms.

)
+ 1
f6

(1
2 p

2
1p2p3p4 + 1

16 p
4
1p2 + 1

16 p
5
1 + 1

4 p
2
1p

2
2p3 −

1
16 p1s

4
12 −

1
8 p

2
1p2s

2
12

)
+ perms.

(3.66)
Contrary to the NLSM and DBI cases, there does not exist a way of writing the wavefunction
which takes the form of a manifestly Lorentz invariant scattering amplitude divided by
the total energy. This is related to the fact that after accounting for the boundary term,
the interaction term in the action is not manifestly Lorentz invariant (see appendix A.3).
This form of the wavefunction is somewhat cumbersome to work with when it comes to
performing recursion. A nicer form of the four-point function, which does not have manifest
Bose symmetry, is given by

ψ
(gal)
4 = 2

f6E
P1 ·P2P2 ·P3P3 ·P1

+ 1
f6

(
p1
(
p2

2p
2
3−(~p2 ·~p3)2)+p2

(
p2

1p
2
3−(~p1 ·~p3)2)+p3

(
p2

1p
2
2−(~p1 ·~p2)2)) . (3.67)

This form of the wavefunction coefficient may be straightforwardly derived by using three-
momentum conservation to eliminate all instances of ~p4 and p4 in (3.66), except in the total
energy singularity.

4 Recursion relations

So far, we have explored how the wavefunction in exceptional scalar theories can be fixed
in terms of the corresponding scattering amplitudes, supplemented by some information
about soft limits. However, the brute-force approach we have followed quickly becomes

35Recall that N corresponds to the normalization of the interaction term in the action. However, we have
already fixed this normalization by our choice of the overall constant in the scattering amplitude in (3.58).
Thus in this way of framing our input data, N is an additional parameter we must solve for.
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cumbersome, motivating us to search for a more efficient algorithm. In the S-matrix context,
similar problems have been overcome via the construction of powerful recursion relations —
the most famous of these being the BCFW relations [2]—which have been applied to scalar
theories [14, 16, 17, 19]. It is therefore natural to look for a similar recursive construction
of the wavefunction.

Recursion relations for the wavefunction both in flat space and in de Sitter space have
been studied already by [22, 25, 65]. These relations are obtained by deforming the energy
variables that the wavefunction depends on into the complex plane and writing the true
wavefunction as a sum over residues of the poles of the complex function. This is natural
because, as we reviewed in section 2.1.2, all the singularities of the wavefunction occur at
loci in energy space. However, the wavefunction is fundamentally a function of momenta,
rather than only energies. We are therefore motivated to look for a construction where the
3-momenta themselves are deformed. Another motivation for this approach is that we will
need additional input from soft theorems in our recursion relations. This is information
about the behavior of the wavefunction and its derivatives in the limit ~p→ 0, and shifts
that only deform the energies do not allow us to access this regime.

4.1 Recursion generalities

Here we describe the philosophy underlying the recursion relations that we are going to
construct. As orientation — and to contrast with the wavefunction case — it is useful
to quickly review the construction for scattering amplitudes. At the most basic level, the
idea is to deform the amplitude into the complex plane by shifting some of its kinematic
variables. This deformed amplitude, A(z), now is a complex function of the parameter of
this shift, z, while the undeformed (true) amplitude is A(0). We can then use Cauchy’s
formula to write

A(0) = 1
2πi

∮
z=0

dzA(z)
z

, (4.1)

where the subscript on the integral indicates that we are integrating around a small contour
encircling the point z = 0. Then, we can deform the contour out to infinity. If all the
singularities of A are poles (which they are for amplitudes at tree level), we can write A(0)
as a sum of residues, plus a possible contribution from a pole at infinity:

A(0) = −
∑
j

Res
z=zj

(
A(z)
z

)
−B∞ . (4.2)

In many cases of interest, the pole at infinity vanishes and we can therefore reconstruct the
amplitude from its residues, which are given by products of lower point amplitudes.

The situation for the wavefunction is conceptually similar. We imagine analytically con-
tinuing the wavefunction coefficients into the complex plane by deforming the 3-momenta as

~pa(z) = ~pa + z~qa, ~pa · ~qa = paqa,
∑
a

~qa(z) = 0 , (4.3)

where we have ensured that the ~qa sum up to zero, so that momentum conservation continues
to hold for the deformed variables. In addition, as a result of the middle constraint the
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shifted energies satisfy √
~pa2(z) = pa(z) = pa + zqa . (4.4)

That is, the energies get deformed by the lengths of ~qa.
There is a very important difference between scattering amplitudes and the wavefunction:

while analytically continued scattering amplitudes have only pole-like singularities, the
wavefunction has branch cuts in the complex z-plane due to the presence of sa1···am factors,
(where there are m momenta adding up to the exchange momentum).36 We must therefore
learn to deal with the branch cuts. This is equivalent to understanding the analytic structure
of the deformed partial energies E1···m(z). Under the shifts in (4.3), in the complex z plane
E1···m(z) has a cut which extends between the branch points

b± =
−~p1···m · ~q1···m ±

√
(~p1···m · ~q1···m)2 − ~p 2

1···m~q
2

1···m

~q 2
1···m

. (4.5)

In addition, because the partial energies generically appear in the denominator, one might
also be concerned about the partial energy poles E1···m(z) = 0. These lie at

z± =
−P1···m ·Q1···m ±

√
(P1···m ·Q1···m)2 − P 2

1···mQ
2
1···m

Q2
1···m

, (4.6)

where P1···m = (p1···m, ~p1···m) and Q1...m = (q1···m, ~q1···m). However the partial energies are
multi-valued functions, and it turns out that we can always define ψ(z) by choosing a
branch which does not have zeros (see appendix D for more details). Because of this, we
only have to worry about partial energy branch cuts.

In addition to the partial energy branch cuts, a generic wavefunction will also have a
singularity when E(z) = 0, whose residue is the corresponding scattering amplitude:

ψ(z) −−−−→
z→zE

A(zE)
E(zE) , where

∑
i

pi(zE) = 0 . (4.7)

Now that we have catalogued all the relevant structures in the complex plane, we may
arrange them into a recursion formula. The procedure is similar to the scattering amplitude
case. We write the true wavefunction as

ψ(0) = 1
2πi

∮
z=0

dz
z
ψ(z) , (4.8)

and then deform the contour out to infinity, which picks up contributions from the total
energy singularity, from the integration contour running along the partial energy branch
cuts, and a possible contribution from infinity. All together, this means that we can write
the wavefunction as

ψ(0) = −
∑
I

1
2πi

∮
cut I

dz
z
ψ(z)− 1

2πi

∮
E(z)=0

dzA(z)
E(z) −B∞ , (4.9)

36An exception is if we choose a special deformation such that ~q1 + · · · + ~qm = 0. In this case, the z
dependence under the square root falls out, and the branch cut issue is avoided, but only for the exchange
channel where the internal momentum is ~p1 + ~p2 + . . .+ ~pm. It is typically impossible to choose such set of
constraints that simultaneously simplifies all of the possible channels in this way.
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where “cut I” indicates that the contour encircles the branch cut associated to the partial
energy singularities of factorization channel I. We have also included a possible boundary
contribution, B∞.37 Note that the integral around E(z) = 0 just extracts the residue of the
integrand at zE — the point where E(zE) = 0 — which is −A(zE)

zE
. However, we will later

see that it is often possible to do further contour deformations to simplify the evaluation of
this expression.

Equation (4.9) is true, but only useful if we know how to deal with the integrations
along the branch cuts of ψ(z), which appear because of the square roots in the partial
energies. At tree level, we can gain some insight into this problem by examining where
the branch cuts come from in the first place. In terms of bulk perturbation theory, partial
energy singularities and their associated branch cuts arise from exchanges of particles. We
can understand the analytic structure of these exchanges by inspecting the bulk-to-bulk
propagator (2.8) in frequency space:

G(sI ; t1, t2) = 1
2

∫ ∞
−∞

dω
2πi

(
eiωt1 − e−iωt1

)(
eiωt2 − e−iωt2

)
ω2 − s2

I + iε
, (4.10)

where sI is the magnitude of the exchanged momentum ~sI . Consider a wavefunction with
an arbitrary number of exchanges, and for now focus on just a single one:

ψexc. =
KI ,VI KI ,VI

sI .

The grey blobs are any completion of the graph and may contain an arbitrary number of
exchanges. For exchange I, the energy flowing into the left vertex from the boundary is KI

and the energy flowing into the right vertex is KI .38 By I we therefore mean the set of
external lines corresponding to the “left” subgraph and by I we mean the set of external
lines associated to the “right” subgraph. In addition, VI and VI abstractly parametrize the
vertex factors appearing on the left (resp. right) side of the exchange. We can translate
this into an expression as

ψexc = 1
2

∫ dω
2πi

∫
dt1dt2 iVI(~kI , ω)eiKI t1

(
eiωt1 − e−iωt1

)(
eiωt2 − e−iωt2

)
ω2 − s2

I + iε
eiKI t2 iVI(~kI , ω) .

(4.11)
At the level of this expression, it is somewhat obscure from where the branch cuts in
the final wavefunction originate. However, this may be made manifest by performing the
time integrals:

ψexc = 1
2

∫ dω
2πiiVI(

~kI , ω) 2ω
(KI − iε)2 − ω2

1
ω2 − s2

I + iε

2ω
(KI − iε)2 − ω2 iVI(~kI , ω) . (4.12)

37The integrand must vanish strictly faster than 1/z for large z in order for this contribution to vanish.
38For example, for a four-point function we could refer to the s channel as the I = (12) channel, with

I = (34). The momentum flowing through the internal line is ~sI = ~p1 + ~p2.
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Notice that at the level of this integrand, only s2
I appears, so ψ(z) does not have a branch

cut inside the integral. Instead, the cut arises when we actually perform the frequency
integral. In particular, the ω-integral may be computed by residues, and upon doing so,
it is only the residue at ω = sI which has a branch cut. Therefore, it is only this residue
which contributes to the integral along the branch cut in (4.9). Looking back at the time
integral (4.11), we see that evaluating the integrand on the ω = s pole physically corresponds
to putting the internal propagator on-shell, and serves to cut the internal line as in (2.14).
In particular, the time integrand is exactly the cut propagator in (2.12), and carrying out
the time integrals computes a product of shifted wavefunctions, so that we have39

1
2πi

∮
cut I

dz
z
ψ(z) = − 1

2πi

∮
cut I

dz
z
sI(z) ψ̃I(z)× ψ̃I(z) . (4.13)

We have written the integral along the branch cut of the full wavefunction as an integral
along the branch cut of a product of lower point shifted wavefunction coefficients. In this
way, the wavefunction “factorizes” into lower point objects around its branch cuts, much in
the way that a scattering amplitude factors into lower point amplitudes on its poles. Putting
everything together, we can write the following recursion relation for the wavefunction:

ψ(0) =
∑
I

1
2πi

∮
cut I

dz
z
sI(z) ψ̃I(z)× ψ̃I(z)− 1

2πi

∮
E(z)=0

dz
z

A(z)
E(z) −B∞ . (4.14)

Given this general formula, we will now apply it to some specific examples. Typically we
will want to choose our shifts so that the boundary term B∞ is absent, allowing us to
recursively construct higher point functions from simpler building blocks.

4.2 Simple examples

In order to demonstrate the use of (4.14), we first consider two simple examples — the
wavefunction coefficients in a theory with φ3 and φ4 interactions, and the four-point
wavefunction coefficient in scalar QED.

Scalar theory with φ3 and φ4 interactions. Possibly the simplest example of a
nontrivial wavefunction coefficient is the 4-point wavefunction in a scalar theory with both
contact and exchange contributions. Concretely we consider a theory with interactions
Lint ∼ λ3

3! φ
3 + λ4

4! φ
4. We shift the momenta as

~̂pa(z) = ~pa + z~qa, with ~pa · ~qa = paqa, and
4∑
a

~qa = 0 . (4.15)

Under these shifts, the energies are deformed as

p̂a(z) = pa + zqa . (4.16)
39Notice the factor of 1/2 difference between the integrand on the r.h.s. and the cut diagram in e.g., (2.14).

This stems from the prefactor in (4.10), indicating that on the ω = s pole, the bulk-to-bulk propagator is
half the cut propagator.
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Note that we are not requiring that the total energy is conserved by the shifts (in contrast
to what is normally done for scattering amplitudes).40 This choice of shifts causes z−1ψ4(z)
to scale as z−2 when z →∞, so that the boundary term is absent.

In order to use the formula (4.14), we will require as inputs the three-point wavefunction
coefficient:

ψ3 = λ3
p1 + p2 + p3

, (4.17)

along with the four-point scattering amplitude

A4 = −λ2
3

( 1
S

+ 1
T

+ 1
U

)
+ λ4 , (4.18)

where S = p2
12 − s2 = p2

34 − s2 on the total energy singularity (and similarly for T, U). For
the s-channel, the shifted 3-point wavefunction coefficients are given by

ψ̃(12) = λ3
p2

12 − s2 ψ̃(34) = λ3
p2

34 − s2 (4.19)

and similarly for the other channels. With this information, we can write (4.14) as

ψ4 = 1
2πi

∮
s cut

dz
z

λ2
3 ŝ

(p̂2
12 − ŝ2)(p̂2

34 − ŝ2) + 1
2πi

∮
t cut

dz
z

λ2
3 t̂

(p̂2
14 − t̂2)(p̂2

23 − t̂2)

+ 1
2πi

∮
u cut

dz
z

λ2
3 û

(p̂2
13 − û2)(p̂2

24 − û2) −
1

2πi

∮
Ê=0

dz
z

A4(z)
Ê

,

(4.20)

where the hatted variables indicate that the energies are deformed by the complex parame-
ter, z. One lingering point of concern might be that the answer depends on the choice of
representation of the scattering amplitude. In particular, there are many different repre-
sentations which are all related by 4-momentum conservation, but which are inequivalent
when energy is not conserved. Thus a natural question is which one should be used?
Fortunately according to (4.20), one only needs information about A4(z) on the E(z) = 0
singularity, that is, when energy is conserved. On this singularity, all amplitudes related
by 4-momentum conservation are equivalent, so it does not matter which representation
we take.

Our goal now is to evaluate the integrals in (4.20). This is straightforward to do. For
now, focus on the s-channel integral. The most efficient strategy is to deform the contour
so that it surrounds poles corresponding to different kinematic relations, and then to use
those relations to simplify the integrand. This may be done until the only pole remaining is
the pole at z = 0, which is easy to evaluate. For instance, we may first deform the contour
away from the s cut and onto the poles at z = 0, p̂12 = ŝ, and p̂34 = ŝ. Note that the last

40We can write these shifts in four-vector notation more simply as

Pa(z) = Pa + zQa, Pa ·Qa = 0, Q2
i = 0,

4∑
a

~qa = 0 ,

where Pµa ≡ (pa, ~pa) and Qµa ≡ (qa, ~qa).
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two are folded singularities. On each locus, we apply the corresponding kinematic identity
to simplify the integrand, which yields

ψs cut = 1
2πi

∮
s cut

dz
z

λ2
3 ŝ

(p̂2
12 − ŝ2)(p̂2

34 − ŝ2) ,

= − λ2
3 s

(p2
12 − s2)(p2

34 − s2) −
1

2πi

∮
p̂12=ŝ

dz
z

λ2
3 p̂12

Ê(p̂2
12 − ŝ2)(p̂34 − p̂12)

− 1
2πi

∮
p̂34=ŝ

dz
z

λ2
3 k̂34

Ê(p̂12 − p̂34)(p̂2
34 − ŝ2)

.

(4.21)

Now we simply iterate the process by deforming the contour again to obtain:

ψs cut =− λ2
3 s

(p2
12 − s2)(p2

34 − s2) + λ2
3 p12

(p2
12 − s2)E(p34 − p12) + λ2

3 p34
E(p12 − p34)(p2

34 − s2)

+ 1
2πi

∮
p̂12=p̂34

dz
z

λ2
3 p̂12

Ê(p̂2
12 − ŝ2)(p̂34 − p̂12)

+ 1
2πi

∮
p̂34=p̂12

dz
z

λ2
3 p̂34

Ê(p̂12 − p̂34)(p̂2
34 − ŝ2)

+ 1
2πi

∮
Ê=0

dz
z

λ2
3 p̂12

Ê(p̂2
12 − ŝ2)(p̂34 − p̂12)

+ 1
2πi

∮
Ê=0

dz
z

λ2
3 p̂34

Ê(p̂12 − p̂34)(p̂2
34 − ŝ2)

.

(4.22)
In the second line, the p̂12 = p̂34 residues cancel one another. The total energy residues
may also be simplified, leaving us with

ψs cut =− λ2
3 s

(p2
12 − s2)(p2

34 − s2) + λ2
3 p12

(p2
12 − s2)E(p34 − p12) + λ2

3 p34
E(p12 − p34)(p2

34 − s2)

− 1
2πi

∮
Ê=0

dz
z

λ3
p̂2

12 − ŝ2 . (4.23)

The second and third terms are (minus) the folded singularities of the first term, and are
analytic in the s branch cut region.41 Simplifying this expression yields

ψs cut = λ2
3

E12E34E
− 1

2πi

∮
E=0

dz
z

λ3
p̂2

12 − ŝ2 , (4.24)

with a similar equation holding for the integrals along the t and u cuts.42

41To be clear, this means that there are no odd powers of s, which contains a branch cut, or poles at
s = 0, which are the branch points of the cut.

42An alternative procedure that is faster (but less systematic) is to simplify the integrands (4.20) before
evaluating the branch cut integrals. For instance, we may use the identity

ŝ

(p̂2
12 − ŝ2)(p̂2

34 − ŝ2) = − 1
Ê12Ê34Ê

+ 1
Ê

p̂12p̂34 + ŝ2

(p̂2
12 − ŝ2)(p̂2

34 − ŝ2) , (4.25)

and similarly for the t, u channels. Since the second term in (4.25) depends only on ŝ2, it has no branch
cuts in the z plane, so that inside the integral along the s branch cut we can replace∮

s cut

dz
z

λ2
3 ŝ

(p̂2
12 − ŝ2)(p̂2

34 − ŝ2) = −
∮
s cut

dz
z

λ2
3

ÊÊ12Ê34
= λ2

3
E12E34E

− 1
2πi

∮
Ê=0

dz
z

λ3

p̂2
12 − ŝ2 ,

which is precisely the same as in (4.24).
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Combining together all of the channels, one has

ψ4 = λ2
3

EE12E34
+ λ2

3
EE14E23

+ λ2
3

EE13E24

− 1
2πi

∮
Ê=0

dz
z

(
λ2

3
p̂2

12 − ŝ2 + λ2
3

p̂2
14 − t̂2

+ λ2
3

p̂2
13 − û2

)
− 1

2πi

∮
Ê=0

dz
z

A4(z)
Ê

.

(4.26)

From (4.18), it is clear that all of the exchange pieces of the scattering amplitude cancel
with the other term in the second line. This leaves only the contact contribution, whose
contour integral is straightforward to compute. Ultimately we end up with

ψ4 = λ2
3

EE12E34
+ λ2

3
EE14E23

+ λ2
3

EE13E24
+ λ4
E
. (4.27)

This formula has all of the correct singularities, and it agrees with the result of a direct bulk
calculation. It is worth noting that the analogous scattering amplitude is not recursively
constructible, essentially because the presence or absence of the contact λ4 contribution
cannot be determined from three-point information. In the way that we have proceeded, we
have used the residue of the total energy singularity — the scattering amplitude — as an
input, which fixes the coefficient of this contact term, making the wavefunction recursively
constructible.

We may apply precisely the same procedure to construct higher point wavefunction
coefficients. For instance, to recurse the 5-point wavefunction one simply needs to compute
shifted four-point and 3-point coefficients and stitch them together according to the general
recursion formula (4.14). The conceptual role of the integral along the branch cut continues
to hold: an exchange channel I is equal to the product of lower point shifted wavefunction
coefficients, plus correction pieces which are analytic in the sI -cut region and serve to
subtract off folded singularities.

Scalars with spin-1 exchange. As a more complicated example, we consider the four-
point wavefunction that arises from scalars exchanging a spin-1 field. This is the wavefunction
coefficient in a theory of scalar QED. This example is interesting not only because it involves
the exchange of a spinning particle, but also because the three-point coupling involved is
conformally invariant so the wavefunction coefficient for conformally coupled scalars is the
same in flat space and in de Sitter.

As before, one of the building blocks that we need is the four-point scattering amplitude43

A4 = 1 + 2U
S
, (4.28)

where, for simplicity, we will consider only the s-channel contribution to the wavefunction.
This truncation is consistent because the corresponding wavefunction is gauge invariant.
We emphasize that any form of the amplitude related to this by 4-momentum conservation
would work equally well. We also require the three-point wavefunction coefficient

ψJϕϕ =
~ξ3 · (~p1 − ~p2)
p1 + p2 + p3

. (4.29)

43Like in the pure scalar example, this amplitude makes a particular choice of scalar contact interaction,
whose coupling we have normalized to 1.
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From this, we can compute the product of shifted wavefunction coefficients

ψ̃ϕϕJ × ψ̃Jϕϕ =
s2Π(s)

1,1
(p2

12 − s2)(p2
34 − s2) , (4.30)

where we have defined the sum over internal helicities

s2Π(s)
1,1 ≡ (~p1 − ~p2)iπ(s)

ij (~p3 − ~p4)j = u2 − t2 + p12p34(p1 − p2)(p3 − p4)
s2 , (4.31)

by contracting the external momenta with the projector

π
(s)
ij ≡ δij −

sisj
s2 =

∑
λ

ξλi ξ
−λ
j . (4.32)

With these components, we can write (4.14) as

ψ4 = 1
2πi

∮
s cut

dz
z
ŝ

ŝ2Π̂(s)
1,1

(p̂2
12 − ŝ2)(p̂2

34 − ŝ2) −
1

2πi

∮
Ê=0

dz
z

1
Ê

(
1 + 2Û

Ŝ

)
. (4.33)

As in the φ3 example, we will now proceed to evaluate the integral along the branch cut in
s. The manipulations are exactly the same as in the scalar case, leading to the expression

ψscut =−s
s2Π(s)

1,1
(p2

12−s2)(p2
34−s2) + p12(u2−t2)+p34(p1−p2)(p3−p4)

(p2
12−s2)E(p34−p12)

+ k34(u2−t2)+p12(p1−p2)(p3−p4)
E(p12−p34)(p2

34−s2) + 1
2πi

∮
Ê=0

dz
z

1
Ê

(p̂1−p̂2)(p̂3−p̂4)+ t̂2−û2

p̂2
12−ŝ2 ,

(4.34)
where ψs cut stands for the first term in (4.33). The structure of this formula is the same as
in the scalar case. The first term is a product of shifted lower-point wavefunction coefficients,
and the second and third terms subtract off the folded singularities, and are analytic in the
s-cut region. The final term is a total energy correction which is exactly canceled by the
scattering amplitude piece in (4.33). Performing some algebra to clean up the result, we
are left with

ψ
(1)
4 =

s2Π(s)
1,1

EE12E34
−

Π(s)
1,0
E

, (4.35)

where we have defined the quantity

Π(s)
1,0 ≡

(p1 − p2)(p3 − p4)
s2 . (4.36)

This matches a direct calculation [24].

4.3 Recursion from the S-matrix

In this subsection, we will apply the recursion procedure to compute six-point functions
for the exceptional scalar field theories. We are using the same information as in the
brute-force bootstrap approach, but systematized using complex analysis. We will illustrate
the recursion algorithm for P (X)/DBI theories and galileon theories. As it turns out, NLSM
is an exceptional case. The data we used in addition to scattering information was the U(1)
decoupling identity, which unlike soft theorems, cannot be formulated in terms of analytic
structures in an obvious way. For this reason, it is easier to bootstrap the wavefunction as
in section 3.1.
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4.3.1 P (X) and DBI

First we demonstrate how to recurse the six-point wavefunction coefficient for a general
P (X) theory. For an arbitrary P (X) the required input is the scattering amplitude, the
product of four-point wavefunctions corresponding to cutting the internal propagator, and
the O(p0) soft theorem, which is an Adler zero condition. For DBI, one may substitute
the enhanced soft theorem for the scattering amplitude. The latter procedure (though
conceptually interesting) is more cumbersome and requires the full DBI soft theorem. We
have included an example computation in section 4.4.2.

To use scattering information, we employ the following shifts, which are suitable for
probing soft behavior:

~pa(z) = (1− caz)~pa, pa(z) = (1− caz)pa,
6∑
i=1

~pa = 0 . (4.37)

Note that the shifted momenta do not obey energy conservation, and therefore probe the
total energy singularity.

Similar to [14], it is necessary to introduce a mollifying function to improve the large z
behavior of the wavefunction coefficient. We will take this to be

F (z) =
n∏
a=1

(1− caz) , (4.38)

so that the quantity (zF (z))−1ψ6(z) scales as z−2 when z → ∞, causing the boundary
term to vanish.44 In general, the cost of introducing F (z) is that one must account for its
singularities in the derivation of (4.14). For a general n > 4 point function, the modified
recursion formula is

ψn(0) =
∑
I

1
2πi

∮
cut I

dz
zF (z)sI ψ̃I(z)×ψ̃I(z)− 1

2πi

∮
E(z)=0

dz
zF (z)

An(z)
E(z) −

1
2πi

∮
F (z)=0

dz
zF (z)ψn(z) .

(4.39)
The contour integral in the last term is a sum over the residues of the F (z) = 0 poles.
However, due to the O(p) Adler zero, the soft limit of the wavefunction vanishes like

lim
z→1/ca

ψn(z) ∼ (1− caz) . (4.40)

Thus the residue of the F (z) = 0 poles vanish, so that the last term in (4.39) is zero.
Now all we need to do is compute the building blocks for the recursion formula. A

convenient form of the four-point wavefunction coefficient is (3.43).45 From this, we can
compute the product of shifted four-point wavefunction coefficients. For instance, for the
(123) factorization channel, we get

ψ̃(123) × ψ̃(456) = 4
f8

Ñ123
p2

123 − s2
123

Ñ456
p2

456 − s2
123

,

where Ñ123 = P1 · P2 P2 · P3 + P2 · P3 P3 · P1 + P3 · P1 P1 · P2 .

(4.41)

44In the recursion of DBI scattering amplitudes, one actually needs F (z) ∼
∏

(1− zai)2. However, the
presence of the total energy singularity in the wavefunction coefficient allows us to use one fewer power of z.

45This form is not manifestly Bose symmetric, but it is convenient to treat one of the lines differently
because it is the one that will be shifted.
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Quantities in the other channels are defined analogously. We will also need an expression
for the scattering amplitude

A6 =
∑
I

4
f8
ÑIÑI

P 2
I

+ 3
f8P1 · P2P3 · P4P5 · P6 + perms., (4.42)

where we have defined P 2
I ≡ −p2

I + s2
I , which is the square of the sum of four-momenta

associated to the exchanged particle. As an example, for the I = (123) channel P 2
123 =

(P1 + P2 + P3)2. Putting these pieces together in the recursion formula gives

ψ
(dbi)
6 = 1

2πi
∑
I

∮
cut I

dz
zF (z)

4
f8 sI(z)

ÑI(z)ÑI(z)
(p̂2
I − ŝ2

I)(p̂2
I
− ŝ2

I
)

− 1
2πi

∮
E(z)=0

dz
zF (z)

1
Ê

(∑
I

4
f8
ÑI(z)ÑI(z)

P̂ 2
I

+ 3
f8 P̂1 · P̂2P̂3 · P̂4P̂5 · P̂6 + perms.

)
.

We can employ the analogue of the identity (4.25) to reduce this expression to

ψ
(dbi)
6 = 1

2πi
∑
I

∮
cut I

dz
zF (z)

4
f8
ÑI(z)ÑI(z)
ÊIÊÊI

− 1
2πi

∮
E(z)=0

dz
zF (z)

1
Ê

(∑
I

4
f8
ÑI(z)ÑI(z)

P̂ 2
I

+ 3
f8 P̂1 · P̂2P̂3 · P̂4P̂5 · P̂6 + perms.

)
,

(4.43)
and again add a contour at infinity in the first integral and deform the contour off the
branch cuts to sum over the residues of the simple poles in the complex plane. These
are the poles at z = 0, F (z) = 0, and E(z) = 0. The E(z) = 0 pole of the first integral
exactly cancels the exchange part in the second integral. Moreover, because of our choice of
representation for the shifted four-point wavefunction coefficients in the first integral, the
factors of (1− caz) in the numerator and those in F (z) cancel.46

Making these cancellations leaves us with

ψ
(dbi)
6 = 1

2πi
∑
I

∮
z=0

dz
z

4
f8
ÑI(z)ÑI(z)
ÊIÊÊI

− 1
2πi

∮
E(z)=0

dz
z

3
f8Ê

P̂1 · P̂2P̂3 · P̂4P̂5 · P̂6 + perms.

(4.44)
Finally, we add a contour at infinity in the second integral, and deform the contour so that
it only picks up the pole at z = 0. Evaluating the residue and combining it with the residue
of the first integral, the final answer is

ψ
(dbi)
6 =

∑
I

4
f8

ÑIÑI

EIEEI
+ 3
f8E

P1 · P2P3 · P4P5 · P6 + perms., (4.45)

which matches a direct computation. The algorithm can be readily generalized to
higher points.

46The same cancellation happens for the contact part of the amplitude in the second integral. Note
that this is the only form of the amplitude such that this the case. If we had chosen a different form of
the amplitude related to this one by energy conservation, the poles of F (z) in the second integral would
not cancel, and their residues must be computed, though the final answer would be the same. It is also
interesting to point out that the natural form of the scattering amplitude which we have chosen is also the
one such that the O(p) Adler zero is manifestly obeyed.
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4.3.2 (Special) galileon

Now we will demonstrate how to recursively construct the six-point wavefunction coefficient
for the general galileon. The procedure is very similar to the P (X) discussion in the
prior subsection. For the general galileon, one may recurse the wavefunction coefficient
using information about factorization along its unitarity cut, the scattering amplitude,
and the O(p) soft theorem. For n-point wavefunctions with n > 4, this is an Adler zero
condition. Similar to how DBI stands out as a privileged P (X) theory, the special galileon
is a distinguished point in the space of general galileon theories. In particular, one may
replace scattering information with the enhanced, O(p2) soft theorem.

In order to recurse a general galileon using scattering information, we will use the same
shifts as in (4.37). To preclude the boundary term, one must introduce the
mollifying function47

F (z) =
n∏
a=1

(1− caz)2 . (4.46)

The cost of introducing F (z) is that we have to account for its singularities in the derivation
of (4.14). The modified recursion formula is the same as in (4.39), and again the final
contour integral is a sum over the F (z) = 0 poles. However, for n > 4, the soft limit
vanishes like

lim
z→1/ca

ψn(z) ∼ (1− caz)2 . (4.47)

Thus the residue of the F (z) poles vanishes, so the term again is zero.
Now all we need to do is compute the building blocks for the recursion formula. The

form of the four-point wavefunction which makes the computation simple is (3.67). Happily,
when it comes to computing the shifted wavefunction coefficient the long tail of terms in this
expression which are analytic in the total energy does not contribute. For the (123) channel,

ψ̃
(123)
4 × ψ̃(123)

4 = 4
f12

Ñ123Ñ456
(p2

123 − s2
123)(p2

456 − s2
456)

Ñ123 = P1 · P2 P2 · P3 P3 · P1 .

(4.48)

Quantities in the other channels are defined analogously. We will also need the amplitude48

A6 =
∑
I

4
f12

ÑIÑI

P 2
I

. (4.49)

Putting these pieces together in the recursion formula gives

ψ
(gal)
6 = 1

2πi
∑
I

∮
cut I

dz
zF (z)

4
f12 ŝI

ÑI(z)ÑI(z)
(p̂2
I−ŝ2

I)(p̂2
I
−ŝ2

I
)−

1
2πi

∮
E(z)=0

dz
zF (z)

1
Ê

∑
I

4
f12

ÑI(z)ÑI(z)
P̂ 2
I

.

(4.50)
47For special galileon scattering amplitudes, one may derive additional recursion relations by defining

F (z) with an additional power of (1− caz).
48It is actually possible to recursively construct this wavefunction coefficient without using scattering

amplitude information. One may define shifts that are insensitive to the total energy singularity but still
cause the deformed wavefunction to vanish sufficiently fast at infinity that there is no boundary term.
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We employ the same identity as in (4.25) to reduce this expression to

ψ
(gal)
6 =− 1

2πi
∑
I

∮
cut I

dz
zF (z)

4
f12 ŝI

ÑI(z)ÑI(z)
ÊIÊÊI

− 1
2πi

∮
E(z)=0

dz
zF (z)

1
Ê

∑
I

4
f12

ÑI(z)ÑI(z)
P̂ 2
I

,

(4.51)
and again add a contour at infinity in the first integral and deform the contour so that we
can evaluate it as a sum over the resides of its poles at z = 0, F (z) = 0, and E(z) = 0. The
E(z) = 0 pole of the first integral exactly cancels the second integral. Because we have
made a convenient choice for the form of our shifted four-point wavefunctions, all of the
factors of (1− caz) contained in F (z) cancel with factors in the numerator. Thus, all that
remains is the z = 0 pole, with residue

ψ
(gal)
6 =

∑
I

4
f12

ÑIÑI

EIEEI
. (4.52)

This computation clearly demonstrates the advantage of the recursion procedure over doing
a direct perturbative computation with the action (A.30). From the perspective of this
action, it is completely non-obvious that the numerators will organize themselves into a
simple Lorentz invariant form, with no analytic pieces left over.

4.4 Recursion from soft theorems

In the previous sections, we implemented recursion relations for the wavefunction using the
corresponding scattering amplitudes as input. The advantage of this approach is that the
full information about the soft limits of the wavefunction is not needed. However, from
a conceptual viewpoint, we might want to construct the wavefunction without inputting
scattering information explicitly. This is indeed possible, but we have to use the full
information about the soft limit. This is technically more involved, but may be useful in
some situations, particularly in the cosmological context. In this section, we demonstrate
how this works for the simple examples of the NLSM and DBI.

4.4.1 Nonlinear sigma model

We first consider the nonlinear sigma model. In order to input the full soft behavior of the
wavefunction, we will use the following shifts:

~pa = (1− caz)~pa, pa(z) = (1− caz)pa,
∑
a

ca~pa =
∑
a

capa = 0 . (4.53)

The final condition ensures that our shifts are not sensitive to the total energy pole, so that
we will not need to make use of scattering information. The cost of this modification is that
ψn(z) has more divergent large-z behavior than if we allowed the shifts to probe the total
energy singularity. In fact, it has the same large-z behavior as the corresponding scattering
amplitude. To improve this behavior we need to introduce the mollifying function

F (z) =
n∏
a=1

(1− caz), (4.54)
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which is the same as is required to recurse the amplitude. The corresponding modified
recursion formula reads

ψn(0) =
∑
I

1
2πi

∮
cut I

dz
zF (z)sI(z)ψ̃I(z)× ψ̃I(z)− 1

2πi

∮
F (z)=0

dz
zF (z)ψn(z) . (4.55)

In order to evaluate this formula, we need the following building blocks. First, there is the
four-point wavefunction coefficient. Its most convenient form is (3.8), so that the product
of shifted wavefunction coefficients is

ψ̃(123)×ψ̃(456) = 1
9f4

Ñ123Ñ456
(p2

123 − s2
123)(p2

456 − s2
456) ,

Ñ123 = P1 · P2 + P2 · P3 − 2P1 · P3 .

(4.56)

To compute the residues at F (z) = 0, we will need the six-point soft theorem, given by (3.22).
Then we may write the residues of at F (z) = 0 in (4.55) as∮

F (z)=0

dz
zF (z)ψn(z) =

∮
F (z)=0

dz
zF (z) lim

~pa→0
ψn(z) , (4.57)

because F (z) = 0 probes the soft limit of the wavefunction. Overall, this reduces (4.55) to

ψ6 = 1
2πi

∑
I

1
9f4

∮
cut I

dz
zF (z)sI(z)

ÑI(z)ÑI(z)
(p̂2
I − ŝ2

I)(p̂2
I
− ŝ2

I
) −

∮
F (z)=0

dz
zF (z) lim

~pa→0
ψ6(z) .

(4.58)
To simplify the contour integral over the cut region, we use the analogue of (4.25):

ψ6 = − 1
2πi

∑
I

1
9f4

∮
cut I

dz
zF (z)

ÑI(z)ÑI(z)
EÊIÊI

−
∮
F (z)=0

dz
zF (z) lim

~pa→0
ψ6(z) . (4.59)

To compute the first integral, we add a contour at infinity and deform the contour to pick
up the residues of the simple poles of the integrand. These are at z = 0 and F (z) = 0.
This gives

ψ6 = 1
9f4

∑
I

ÑIÑI
EEIEI

+ 1
9f4

∑
I

∑
a

Res
z=1/ca

[
1

zF (z)
ÑI(z)ÑI(z)
EÊIÊI

]
−
∑
a

Res
z=1/ca

[
1

zF (z) lim
~pa→0

ψn(z)
]
.

(4.60)
The first sum captures the exchange pieces, in the sense that it is exactly what one finds
from computing exchange diagrams from a bulk computation. Thus, the last two sums must
combine to reconstruct the bulk contact piece. We will now verify that this is indeed correct.
We can compute the second two terms in (4.60) at for example the z = 1/c1 soft pole:

∑
I

Res
z=1/c1

[
1

zF (z)
ÑI(z)ÑI(z)
EÊIÊI

]
− Res
z=1/c1

[
1

zF (z) lim
~pa→0

ψ6(z)
]

= Res
z=1/c1

[
1

zF (z)

]
1
f4

( 1
18

1
E

(
Ñ456(z)+Ñ234(z)−2Ñ345(z)

)
− 1

45

(
p̂26−4p̂35+6p̂4

))∣∣∣∣
z=

1
c1

.

(4.61)
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This expression can be simplified using the following identity

(
Ĉ1−4Ĉ2+6Ĉ3

)∣∣∣
z= 1

c1

=−
[
5
(
Ñ456(z)+Ñ234(z)−2Ñ345(z)

)
−2
(
p̂26−4p̂35+6p̂4

)]∣∣∣∣
z= 1

c1

.

(4.62)
where we have used the cyclic building blocks defined in (3.12). A similar identity holds for
the other residues. Now summing over all of the residues, we finally arrive at

∑
I

∑
a

Res
z=1/ca

[
1

zF (z)
ÑI (z) ÑI (z)
EÊIÊI

]
−
∑
a

Res
z=1/ca

[ 1
zF (z) lim

~pa→0
ψ6 (z)

]
= −

∑
a

Res
z=1/ca

[ 1
zF (z)

1
90f4

1
E

(
Ĉ1 − 4Ĉ2 + 6Ĉ3

)]
.

(4.63)

This set of residues can be written as a contour integral encircling the locations where
F (z) = 0. If we add an arc at infinity, we can deform the contour to only pick up the z = 0
pole, whose residue is easy to evaluate. Performing this computation and substituting the
result into (4.60), we obtain

ψ
(nlsm)
6 = 1

9f4

∑
I

ÑIÑI

EEIEI
+ 1

90f4
1
E

(
C1 − 4C2 + 6C3

)
, (4.64)

which matches the bulk perturbative computation, along with the bootstrap procedure
in section 3.1.1 which utilized the scattering amplitude. As is clear from this example,
the computation is a bit cumbersome without using scattering information. Apart from
knowing the soft theorem, the limiting factor in this procedure’s utility is knowing how to
compute the sum of resides in (4.60). This approach in general requires nontrivial kinematic
identities as in (4.62). Nevertheless, this construction is conceptually useful, as it shows that
higher point functions can be reconstructed from soft information alone, without explicitly
using scattering amplitudes.

4.4.2 DBI

As another example, we can construct DBI wavefunction coefficients using soft limits. The
set up is largely the same as for the NLSM. We will use the same shifts as in (4.53). To
improve the large z behavior, we divide by

F (z) =
n∏
a=1

(1− caz)2 , (4.65)

which is the same as is required to recurse the scattering amplitude. Formally, the recursion
relation is also identical to (4.55). Moreover, the shifted wavefunction coefficients are
already computed in (4.41). To input soft information, consider expanding ψ(z) around
one of the z = 1/ca poles:

ψn(z ∼ 1/ca) =
(
~pa(z) · ~∂pa + pa(z)∂pa

)
ψn(~pa(z), pa(z))

∣∣∣
~pa(z)=0

+O(p2
a(z)) . (4.66)
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Then in the recursion formula, we can write the residues of F (z) = 0 as∮
F (z)=0

dz
zF (z) ψn(z) =

∮
F (z)=0

dz
zF (z)

(
~pa(z) · ~∂pa + pa(z)∂pa

)
ψ6(~pa(z), pa(z))

∣∣∣
~pa(z)=0

,

(4.67)
where the right hand side is controlled by the spatial and temporal DBI soft theorems.
Performing the same contour manipulations as in the NLSM case, we arrive at an analogous
residue formula:

ψ
(dbi)
6 = 4

f8

∑
I

ÑIÑI

EEIEI
+ 4
f8

∑
I

∑
a

Res
z=1/ca

[
1

zF (z)
ÑI(z)ÑI(z)
EÊIÊI

]

−
∑
a

Res
z=1/ca

[ 1
zF (z)

(
~pa(z) · ~∂pa + pa(z)∂pa

)
ψ6(~pa(z), pa(z))

]
.

(4.68)

where we have defined the quantity

Ñ123 = P1 · P2P2 · P3 + P2 · P3P3 · P1 + P3 · P1P1 · P2 (4.69)

As in the NLSM case, the first sum in (4.68) correctly produces the exchange contribution,
and the challenge is to show that the last two terms conspire to give the correct contact
contribution. Combining everything, we obtain49

4
f8

∑
I

∑
a

Res
z=

1
ca

[
1

zF (z)
ÑI(z)ÑI(z)
EÊIÊI

]
−
∑
a

Res
z=

1
ca

[
1

zF (z)

(
~pa(z)·~∂pa+pa(z)∂pa

)
ψ6(~pa(z),pa(z))

]

=−3
∑
a

Res
z=

1
ca

[ 1
zF (z) P̂1 ·P̂2P̂3 ·P̂4P̂5 ·P̂6

]
.

(4.70)
As in the NLSM case, we may easily compute this final set of residues by writing it as a
contour integral, and deforming the contour onto the z = 0 pole. Performing this procedure
and combining with the exchange contribution, the final result for the six-point wavefunction
coefficient is

ψ
(dbi)
6 =

∑
I

4
f8

ÑIÑI

EEIEI
+ 3
f8E

P1 · P2P3 · P4P5 · P6 + perms. , (4.71)

which matches the bulk perturbative computation, along with the recursion procedure
in 4.3.1 which utilized the scattering amplitude.

49Note that this step is rather nontrivial and requires the use of the kinematic identity:(
2(P̂µ2 + P̂µ3 )Ñ456(z) + (P̂µ2 + P̂µ3 )

(
p̂4P̂5 · P̂6 + p̂5P̂4 · P̂6 + p̂6P̂4 · P̂5

)
E

+ δµ0

(
~̂p2 · ~̂p3~̂p4 · ~̂p5 − ~̂p2 · ~̂p3p̂4p̂5 + 3p̂2p̂3p̂4p̂5

)
E + perms.

)∣∣∣∣
z= 1

c1

= −3P̂µ2 P̂3 · P̂4 P̂5 · P̂6

∣∣∣∣
z= 1

c1

+ perms. ,

along with its analogues for the other z = 1/ca residues, and where perms. indicates we should sum over
permutations of the 2, 3, 4, 5, 6 lines.
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5 Conclusions

We have studied the soft structure of the wavefunction of exceptional scalar field theories
in flat space. We find that, while most of the structure survives, there are interesting
and important differences with the scattering amplitude case. Foremost, wavefunction
coefficients of exceptional scalar theories like the NLSM, DBI, and the special galileon
satisfy nontrivial soft theorems in the limit where one of their external momenta is taken to
zero, in contrast to their amplitude counterparts which display Adler zeroes.

The soft theorems obeyed by these shift-symmetric scalar theories can be used to
reconstruct wavefunction coefficients in two ways. The most straightforward approach is
to input information about the total energy singularity of the wavefunction, which has
the corresponding scattering amplitude as a residue. In order to completely specify the
wavefunction we additionally need to use part of the soft limit of the wavefunction: theories
that have a shift symmetry that scales like O(xn) in coordinates have a soft theorem that
fixes the O(qn) part of wavefunction, where ~q is the soft momentum. If we input scattering
information, we only require the O(qn−1) soft theorem. Alternatively, we can use the
highest-order soft theorem to reconstruct the wavefunction, which does not require the
scattering amplitude as an input. We have also derived recursion relations that systematize
each of these constructions. These recursion relations directly deform the momentum
variables that the wavefunction depends on, and we have described how to handle the
resulting subtleties involving the analytic structure.

Our investigation suggests a number of interesting directions for future study:

• We have focused on the properties of flat space wavefunction coefficients. From a
formal standpoint, this situation is already of interest, but of course our ultimate aim
is to understand the properties of the wavefunction in cosmological spacetimes. The
most obvious and straightforward extension is to study the analogue of our results in
a fixed de Sitter background for the exceptional scalar theories constructed in [72, 73].
The fields appearing in these theories have particular masses in de Sitter space, so
that the relevant time integrals are related to those in flat space in a simple fashion.
Consequently, It should be possible to uplift parts of our analysis directly to de Sitter
space along the lines of [24, 41, 45].

• In section 4, we studied recursion relations for wavefunction coefficients that rely on
complex deformations of spatial momenta. The analytic structure of the deformed
wavefunction is slightly different in this case than when the energies are deformed [22,
25, 65]. It would be interesting to investigate these recursion relations in the de Sitter
context (and to compare them with those in [21]). Previous constructions have mostly
avoided dealing directly with the branch cuts that appear when complexifying the sI
variables, and the techniques developed here may be useful to recursively construct
de Sitter wavefunctions, especially in cases where external particles have spin.

• An important reason to study the structure of these theories is that they have
interesting inter-relations and relations to Yang-Mills and gravity. At the level of
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scattering amplitudes, aspects of these relations have been systematized using the
double copy [6] and by operations that transform amplitudes of the various theories
into each other [7]. It would be very interesting to understand both of these things from
the perspective of the wavefunction. It is natural to suspect that the transmutation
operations of [7] have some relation to the weight-shifting operators studied in [35, 74],
and perhaps analogues can be found also for the flat space wavefunction.

Some aspects of the double copy are understood for correlators and the wavefunc-
tion [75–82], but much remains to be learned. The study of the flat space wavefunction
could serve as a useful testing ground to better understand the intricacies of the
double copy when energy is no longer conserved. In appendix E, we briefly discuss
the simplest double copy relation between the NLSM and special galileon for the
flat space wavefunction. We expect that these scalar theories well help elucidate the
underlying structure and extend it both to de Sitter space and to other theories.

• In cosmology, a central challenge is to understand the emergence of time from the
late-time boundary where we define the wavefunction, or view observables. The static
nature of the future boundary provides new conceptual challenges compared to AdS
holography. One avenue toward progress could be to ask a different question to which
the wavefunction is the answer. In [22], such a problem was outlined, where the
wavefunction of a scalar field with polynomial interactions in flat space is interpreted
as a volume of a suitably defined polytope. This analysis proceeds diagram-by-diagram
in perturbation theory, and it is important to understand how these contributions fit
together into a more invariant structure. In this regard, the scalar theories that we
have studied may be helpful. The soft theorems require a conspiracy between various
diagrammatic contributions, so it would be very interesting to find a definition of the
wavefunction in these theories from a geometric perspective.

Many rich and interesting structures have already been uncovered in the study of
correlation functions in cosmological spacetimes, and there are many future discoveries
to be made. In this journey, the flat space wavefunction, and in particular wavefunction
coefficients of exceptional scalar theories, will serve as illuminating guideposts. We have
already seen that they possess interesting structures akin to those in scattering amplitudes,
and we expect that they will provide further structural insights into the nature of the
wavefunction and of quantum field theory in cosmology.

Acknowledgments

Thanks to Daniel Baumann, Rajendra Beekie, James Bonifacio, Carlos Duaso Pueyo,
Tanguy Grall, Kurt Hinterbichler, Lam Hui, Sadra Jazayeri, Hayden Lee, Enrico Pajer,
Guilherme Pimentel, Diederik Roest, Rachel Rosen, Luca Santoni, David Stefanyszyn, and
Sam Wong for helpful discussions. We are especially grateful to James Bonifacio, Tanguy
Grall, and David Stefanyszyn for detailed comments on a draft. NB is supported by Simons
Foundation Award Number 555117.

– 44 –



J
H
E
P
0
3
(
2
0
2
3
)
0
9
2

A Exceptional scalar theories

In this appendix, we give a brief overview of the different exceptional scalar field theories
discussed in the main text. These are the SU(N) nonlinear sigma model, Dirac-Born-Infeld
theory, and the special galileon. These theories are exceptional in the broader class of scalar
EFTs, because they have nonlinearly realized symmetries that control the structure of the
theory and lead to enhanced Adler zeroes, meaning their amplitudes vanish faster in the
soft limit than one would expect from derivative counting. These exceptional scalar theories
have a large amount of structure and interesting inter-relations and relations to Yang-Mills
and gravity.

A.1 The nonlinear sigma model

The nonlinear sigma model is the low energy effective field theory corresponding to the
symmetry breaking pattern GL ×GR → GV , where GL,R are two copies of some Lie group
(in our case SU(N) or U(N)) and GV is a diagonal subgroup. We will follow the conventions
of [83].50 On a group element U ∈ G, the symmetry acts like

U −→ VRUV
−1
L , VL,R ∈ GL,R . (A.1)

At lowest order in derivatives, the Lagrangian invariant under this symmetry is simply

L = −f
2

4 Tr[U−1∂µUU
−1∂µU ], U = exp

(√
2 i
f
φata

)
, (A.2)

where ta are the generators of G in the fundamental representation. For G = SU(N), we
will use a = 1, . . . , N2 − 1. For G = U(N), we append an extra generator t0 ∝ 1, which
spans the additional U(1) direction and commutes with all of the SU(N) generators. In
addition, note that we have used the exponential parametrization to represent the Goldstone
fields, see [84].

Expanding in the Goldstone fields φa, we may write the Lagrangian as

L = −1
2∂µφ

a∂µφa + 1
6f2∂µφ

a1∂µφa2φa3φa4fa1a3b1fa2a4b1

+ 1
45f4∂µφ

a1∂µφa2φa3φa4φa5φa6fa1a3b1fa4b1b2fa5b2b3fa2a6b3 +O(φ8) .
(A.3)

The benefit of this choice of field variables is that if we embed the SU(N) model in a U(N)
model, the decoupling of the U(1) degree of freedom occurs manifestly at the level of the
Lagrangian.51

50In particular, we take [ta, tb] = i
√

2fabctc, where fabc are the totally anti-symmetric structure constants.
Moreover the generators are normalized such that Tr[tatb] = δab.

51To see this, note that any structure constant with a zero index vanishes f0bc = 0 because the U(1)
generator is proportional to the identity. Because all of the fields in the Lagrangian are contracted
with structure constants, all interaction vertices involving the U(1) mode φ0 must be zero. Thus the
mode decouples.
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The diagonal subgroup GV acts linearly on the fields φa, which transform in the adjoint
representation. However, the axial subgroup of GL ×GR acts on U by

U −→ V UV, V ∈ G, (A.4)

and is realized on the Goldstone modes nonlinearly as

δφc =Bc− 1
3f2B

a1φb1φb2fa1b1b3f cb2b3− 1
45f4B

a1φb1φb2φb3φb4fa1b1 cfa2b2a3f b3ca4f b4a3a4 +O(φ6) .
(A.5)

The Ward identity corresponding to this symmetry is responsible for controlling the soft be-
havior of the NLSM scattering amplitudes and wavefunctions. NLSM scattering amplitudes
exhibit an O(p) Adler zero, despite having fewer than one derivative per field at the level of
the action.

There is an alternative representation of the Goldstone fields which is also commonly
used, known as the Cayley parametrization. In this case the group element U is given by

U =
1 + i√

2f φ

1− i√
2f φ

, (A.6)

and expanding out the Lagrangian gives

L = Tr
[
− 1

2∂µφ∂
µφ+ 1

2f2φ
2∂µφ∂

µφ+O(φ6)
]
. (A.7)

The axial symmetry is realized very simply in this representation:

δφ = B + 1
2f2φBφ . (A.8)

However, the disadvantage is that the U(1) mode does not decouple at the level of the
Lagrangian, though it does at the level of scattering amplitudes.52 This non-decoupling does
however appear in the wavefunction. For this reason, we do not use the Cayley parametriza-
tion, but it would be interesting to study the wavefunction of the U(N) NLSM further.

A.1.1 A brief tour of flavortown

Computing scattering amplitudes and wavefunction coefficients for the nonlinear sigma
model is made somewhat cumbersome by the presence of group theoretic flavor structures.
For the SU(N) nonlinear sigma model, one may circumvent this difficulty by working instead
with so-called flavor ordered objects. By prescribing a particular ordering of the legs of a
Feynman diagram, one may effectively remove the group-theoretic structures and reduce
the number of channels necessary to describe a process. While the full “dressed” object will
be a sum over channels composed of every combination of external momenta, the flavor
ordered version only sums channels composed of consecutive momenta, drastically reducing
the number of channels that need to be accounted for. In addition, flavor ordered objects

52This of course must be the case, because the exponential and Cayley parametrization are related by a
field redefinition.
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possess the same analytic structure and Ward identities (or a flavor ordered version thereof)
as their dressed counterparts. This is precisely the same as how color ordered amplitudes
for Yang-Mills maintain the correct singularity structure of the full amplitude and also obey
the same Ward identities enforced by gauge invariance. We will begin by outlining the
general procedure for computing a flavor ordered wavefunction from a dressed wavefunction.
Then we will derive some useful facts about flavor ordered wavefunction which are used in
the text.

We begin with a flavor dressed object (e.g., a scattering amplitude or wavefunction
coefficient)Ma1···an . In the exponential parametrization, the group theoretic factors will
always be products of structure constants.53 For tree level diagrams, it turns out to always
be possible to reduce the products of structure constants to a single trace over group
generators ta by successively applying only the following two identities

[ta, tb] = i√
2
fabctc, fabc = − i√

2
Tr
[
[ta, tb] tc

]
. (A.9)

In this way, we may write a flavor dressed object in terms of the following expansion (for
either U(N) or SU(N)):

Ma1a2···an(p1, p2, · · · , pn) =
∑

σ∈Sn/Zn

Tr[tσ(a1)tσ(a2) · · · tσ(an)]Mσ(p1, p2, · · · , pn) (A.10)

where σ is a non-cyclic permutation. Due to the Bose symmetry of the dressed object, all
of theMσ are related to one another via permutations of the momenta. More explicitly,

Mσ(p1, p2, · · · , pn) =M
(
σ(p1), σ(p2), · · · , σ(pn)

)
, (A.11)

where M(p1, p2, · · · , pn) is defined to be the coefficient of Tr[ta1ta2 · · · tan ]. Each of the
quantitiesM

(
σ(p1), σ(p2), · · · , σ(pn)

)
are called flavor ordered objects, and once just one is

known, we can apply this formula to generate the full flavor dressed object. Therefore, we
need only keep track of and work with one of the orderings as opposed to the fully dressed
object. In effect, we may view the set of possible single trace structures as a basis of flavor
structures. For SU(N), this basis is complete in the sense that54

N2−1∑
a=1

Tr[X, ta]Tr[ta, Y ] = Tr[XY ]− 1
N

Tr[X]Tr[Y ], (A.12)

53This remains true for amplitudes in any choice of field variables, but not for the wavefunction. Regardless,
the group factors for each interaction vertex may always be reduced to a single trace for any choice of
field variables.

54This is actually just a rewriting of the U(N) completeness relation

1
N

Tr[X]Tr[Y ] +
N2−1∑
a=1

Tr[X, ta]Tr[ta, Y ] = Tr[XY ],

which may be derived from the fact that any complex matrix may be written as a complex linear combination
of hermitian matrices.
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where X and Y are arbitrary matrices. Using this relation, one may also prove that the
trace structures are also approximately orthogonal:

N2−1∑
a1,...an=1

Tr[tσ(a1)tσ(a2) · · · tσ(an)]Tr[tρ(a1)tρ(a2) · · · tρ(an)] = Nn−2(N2 − 1)
(
δσρ +O

( 1
N2

))
(A.13)

So long as the flavor ordered objects do not depend on N (which they cannot, because
they were generated by applying (A.9), which does not have any N dependence), this is
sufficient to extract the flavor ordered object from the dressed object.

The flavor ordered objects enjoy a number of properties (see [83, 85, 86] for more
details) and interrelations. In the main text, we use two in an essential way:55

• Cyclicity: the flavor ordered objects obeyM
(
p1, p2, · · · , pn

)
=M

(
σ(p1), σ(p2), · · · , σ(pn)

)
,

where σ is a cyclic permutation.

• U(1) Decoupling: the flavor ordered objects obey the relations

M(p1, p2, p3, · · · , pn) +M(p2, p1, p3, · · · , pn) +M(p2, p3, p1, · · · , pn)
+ · · ·+M(p2, p3, · · · , p1, pn) = 0 .

(A.14)

The first identity follows from cyclicity of the trace. To prove the second identity, carry out
the expansion in (A.10) for U(N). Then set a1 = 0, and all of the other indices to SU(N)
values. On the left hand side, a1 always appears as the index of a structure constant. Thus
the left hand side vanishes. On the right hand side, this sets ta1 ∝ 1, which simplifies the
traces, allowing flavor ordered objects to be grouped together. This is best demonstrated
through a simple example. At three points, we have

Ma1a2a3 = Tr[ta1ta2ta3 ]M
(
p1, p2, p3

)
+ Tr[ta1ta3ta2 ]M

(
p1, p3, p2

)
. (A.15)

After setting a1 = 0, this may be simplified to

Tr[ta2ta3 ]
(
M(p1, p2, p3) +M(p1, p3, p2)

)
= 0 , (A.16)

which forces the term in parentheses to vanish. After applying cyclicity, this may be brought
to the form of the U(1) decoupling relation.

55Note that U(1) decoupling does not hold for the wavefunction in the Cayley parametrization, for which
the flavor-ordered wavefunction reads

ψCayley
4 (~p1, ~p2, ~p3, ~p4) = 1

2f2E

(
P1 · P2 + P1 · P4 + P2 · P3 + P3 · P4

)
.

This is to be expected, because the U(1) mode does not decouple at the level of the Cayley Lagrangian.
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For convenience, below we have included single trace representations for the products
of 2 and 4 structure constants:

fa1a2efa3a4e = 1
2
(
− Tr[1234] + Tr[1243] + Tr[2134]− Tr[2143]

)
, (A.17)

fa1a2efa3egfa4ghfa5a6h = 1
4

(
Tr[123456]− Tr[123465]− Tr[123564] + Tr[123654]

− Tr[124563] + Tr[124653] + Tr[125643]− Tr[126543]

− Tr[213456] + Tr[213465] + Tr[213564]− Tr[213654]

+ Tr[214563]− Tr[214653]− Tr[215643] + Tr[216543]
)
.

(A.18)

A.2 Dirac-Born-Infeld

Dirac-Born-Infeld is the theory of a D-dimensional brane probing a flat (D+ 1)-dimensional
bulk. At leading order in derivatives, the action is given by

S = −f4
∫

dDx
(√

1 + 1
f4 (∂φ)2 − 1

)
(A.19)

This action nonlinearly realizes the ISO(D + 1, 1) symmetry of the bulk. Translations in
the transverse bulk direction correspond to the simple shift symmetry φ 7→ φ+ c, whereas
the extra boost symmetry generates the transformation

δφ = vµx
µ + 1

f4 v
µφ∂µφ . (A.20)

The Ward identity for the enhanced shift symmetry implies an O(p2) Adler zero for scattering
amplitudes. For our application, we will need the boundary term generated by the enhanced
shift symmetry in order to compute the corresponding temporal charge. From the probe
brane formalism [87], this can be easily seen to be

δL = vµ∂µ
(
φL
)
. (A.21)

For the spatial symmetry, which has vt = 0, the boundary term is purely spatial and may
be dropped. On the other hand, for the temporal symmetry the boundary term has a
time component and thus contributes to the charge. This is described in more detail in
appendix B.2.

A.3 (Special) galileon

Galileon theories are those which are invariant under the enhanced shift symmetry [88]

δϕ = c+ bµx
µ, (A.22)

and which have second-order equations of motion. The Ward identity resulting from this
symmetry controls the soft behavior of the galileon scattering amplitudes, which exhibit a

– 49 –



J
H
E
P
0
3
(
2
0
2
3
)
0
9
2

O(p2) Adler zero. In D spacetime dimensions, a generic galileon action may be written as

L =
D+1∑
n=1

cnLn, Ln = (∂φ)2LTD
n−2, (A.23)

where cn are arbitrary coefficients and LTD
n is the unique total derivative that may be

formed with n copies of φ and two derivatives per field. Abstractly, these can be written

LTD
n =

∑
σ

(−1)σηµ1σ(ν1) · · · ηµ1σ(νn)∂µ1∂ν1φ · · · ∂µn∂νnφ , (A.24)

where the sum is over all permutations σ. The first few of these take the explicit form

LTD
1 = �φ (A.25)
LTD

2 = (�φ)2 − ∂µ∂νφ∂µ∂νφ (A.26)
LTD

3 = (�φ)3 − 3�φ∂µ∂νϕ∂µ∂νφ+ 2∂µ∂νφ∂ν∂αφ∂α∂µφ . (A.27)

The standard forms of the galileon action where Lorentz invariance is manifest all have
more than one time derivative per field. For Dirichlet boundary conditions, the action
as written therefore does not have a well-posed variational principle, and evaluating the
on-shell action computes wavefunction coefficients with operator insertions present (see
appendix B.1). To cure this, we must add a boundary term to the action, which breaks
manifest Lorentz invariance. We can do this explicitly for the quartic galileon, which is
relevant to the discussion in the main text. The bulk and boundary contributions to the
action are

S
(4)
bulk =

∫
d4x (∂φ)2

[
(�φ)2 − (∂µ∂νφ)2

]
, (A.28)

S
(4)
boundary = −2

∫
d3x∇2φ

[1
3 φ̇

3 − (∇φ)2φ̇
]
. (A.29)

The boundary contribution may be absorbed into the bulk contribution by writing it as
a total time derivative. After doing this and performing spatial integrations by parts, we
arrive at the following simple form:

S(4) = − 1
4f6

∫
d4x

(
φ̇2
[
(∇2φ)2 − (∇i∇jϕ)2

]
− 1

3∂iφ∂
iφ
[
(∇2φ)2 − (∇i∇jφ)2

])
.

(A.30)
This way of writing the action behaves simply under the galileon shift symmetry. First, the
action S(4) does not pick up a temporal boundary term under the spatial galileon symmetry.
This is not the case for the bulk action in (A.29), which does develop a temporal boundary
term. In addition, under the temporal shift symmetry δφ = b0t, the action S(4) does pick
up a temporal boundary term, which is given by

δS = −2b0

∫
d3xφ

[
(∇φ)2 − (∂i∂jφ)2

]
. (A.31)

More generally, after fixing the boundary term the action for the nth galileon term obeys

δφ = ~b · ~x, δS(n) = 0 ,

δφ = b0t, δS(n) = −2
∫

d3xφLTD
n−2[∂iφ] ,

(A.32)
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where we have discarded spatial boundary terms and LTD
n [∂iφ] is a galileon term comprised

of spatial derivatives only. That is, the variation of galileon terms does not generate a
temporal boundary term under the spatial symmetry δφ = ~b · ~x, but does generate a
temporal boundary term for the δφ = b0t symmetry.

In the space of galileon theories, there is a subset whose actions are invariant under an
enhanced field dependent shift symmetry. The simplest of these is the quartic galileon [71]

Ssgal =
∫

d4x − 1
2(∂φ)2 + 1

12f6

[
(�φ)2 − (∂µ∂ν)φ)2

]
, (A.33)

which is often called the special galileon. It is invariant under the symmetry

δφ = sµνx
µxν + 1

f6 s
µν∂µφ∂νφ , (A.34)

for sµν a traceless symmetric tensor. As a result of this symmetry, the amplitudes of the
special galileon have a O(p3) Adler zero. Being a subset of the galileon, we have already
described which boundary terms one must add to the action in order for the variational
principle to be well-posed. For tensors sµν that have no temporal component, i.e., s0µ = 0,
the action (with the appropriate boundary terms) does not develop a temporal boundary
term under the symmetry, in accordance with the logic laid out in B.2. On the other hand
if these components are not zero, the action does pick up a temporal boundary term. This
boundary term is cumbersome to specify and not essential for our main argument, so we
have omitted it.56

B A boundary view on the wavefunction

In the main text, we take a boundary point of view on the computation of the wavefunction,
in the sense that we try to define and compute this object directly on some particular time
slice. However, we know from the bulk perspective that there are various ambiguities and
subtleties in the definition of the wavefunction associated to, for example, boundary terms.
These subtleties should have an avatar from the boundary perspective. In this appendix we
explore these technical subtleties and their resolution.

56There is one way of writing of the special galileon action where the boundary term is simple to deduce:

Ssgal = −f
6

8

∫
d4x

(
x2 + 1

f6 ∂φ · ∂φ
)(

1− 1
2f6L

TD
2 + 1

24f12L
TD
4

)
.

Under special galileon symmetry, the Lagrangian changes by the total derivative

δL = 2
f6 ∂α

(
sαβ∂βφL

)
,

which is made explicit by the probe brane formalism of [89]. However, this way of writing the action does not
have a well-posed variational principle, and it turns out that the resulting charge will have time derivatives
of canonical momentum, so that it cannot be quantized in a straightforward fashion. It would be interesting
to determine whether or not there is a way to apply the probe brane formalism to determine the temporal
symmetry boundary term from the fixed action (A.30) in a simple manner.
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B.1 Boundary terms and the variational principle

An important subtlety that we have to address is the presence of boundary terms in the
action. When it comes to computing scattering amplitudes, such boundary terms are
typically harmless. However, they may affect the form of wavefunction coefficients, and
thus it is worth asking whether there is a natural choice at the level of the action. There
are two types of boundary terms which we will consider. The first type contain derivatives
which are normal to the future time slice on which we are evaluating the wavefunction.
That is, they contain time derivatives. We will refer to such boundary terms as nonlocal.
The second type of boundary term does not contain normal derivatives, and we will refer to
such terms as contact terms.57 We will argue that there is a natural way to fix nonlocal
boundary terms, and that contact terms may be precluded by derivative counting.

Consider first nonlocal boundary terms, which contain a time derivative. Boundary
terms of this type may be generated through integration by parts in time, or they may
present on their own. The natural choice of nonlocal boundary terms are those which
make the variational principle of the action well-posed. Furthermore, this is actually
the only choice of boundary terms for which the on-shell action is computing a vacuum
wavefunctional (a transition amplitude from the vacuum to a Heisenberg picture eigenstate)
as opposed to a transition amplitude with an operator insertion (or equivalently a transition
amplitude between an excited state and a Heisenberg picture eigenstate).

As a simple instructional example, consider a model which describes a free particle.
Traditionally, we take the action to be

S1 = 1
2

∫ t2

t1
dt q̇2, (B.1)

which has one time derivative per field. This is also the action that naturally appears when
computing a transition amplitude for a model described by the Hamiltonian H = p2/2:

〈x2, t2|x1, t1〉 =
∫

q(t2) =x2
q(t1) =x1

Dq eiS1[q] . (B.2)

If we imagine that terms that differ by integrations by parts are indistinguishable, there is
no reason to prefer this writing of the action over

S2 = −1
2

∫ t2

t1
dt qq̈ = 1

2

∫ t2

t1
dt q̇2 − 1

2qq̇
∣∣∣t2
t1
. (B.3)

However, actions with more than one time derivative per field typically do not have a
well-posed variational principle. Following the logic of [90], we can check this with our
simple point-particle example. The variation of S2 is given by

δS2 = −1
2

∫ t2

t1
dt δqq̈ − 1

2

∫ t2

t1
dt qδq̈ = −

∫ t2

t1
dt δqq̈ − qδq̇

∣∣∣t2
t1

+ q̇δq
∣∣∣t1
t2
. (B.4)

57This nomenclature is motivated by the way that these boundary terms contribute to the wavefunction.
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The variation δq is defined to vanish on the boundary, but there is no such constraint on
δq̇(t1,2), which may take on any value. Thus in order for the variational problem to be
well-posed, one must add a boundary term to the action whose variation cancels the δq̇(t1,2)
term in (B.4). The proper boundary term is

Sboundary = 1
2
(
q(t2)q̇(t2)− q(t1)q̇(t1)

)
, (B.5)

and altogether the action with a well-posed variational principle is

S2 + Sboundary ≡ S1, (B.6)

leading us back to the writing of the action with one time derivative per field.
We can also study what happens when we compute transition amplitudes. Traditionally,

we expect transition amplitudes for a model with Hamiltonian H = p2/2 to be computed
by (B.2). On the other hand, if we take S2 and plug it into the path integral, then we have∫
q(t2) =x2
q(t1) =x1

Dq eiS2[q] =
∫

q(t2) =x2
q(t1) =x1

Dq eiS1[q]e−
i
2 (q(t2)q̇(t2)−q(t1)q̇(t1)) = 〈x2, t2| e

i
2 (x2p2−x1p1) |x1, t1〉 .

(B.7)
This is still a transition amplitude in the theory with the Hamiltonian H = p2/2, but now
with an extra operator insertion present. Alternatively, we can view the boundary term as
modifying the states that we are computing a transition amplitude between. When it comes
to computing wavefunction coefficients, we do not want there to be any spurious operator
insertions as we time evolve the ground state. Therefore, we only want to study actions
which have at most one time derivative per field. In the theories that we are interested in
studying, this is enough to completely resolve the ambiguities of nonlocal boundary terms.

In practice, we can essentially resolve the problem of nonlocal boundary terms by taking
an action and performing integrations by parts in time until there is at most one time
derivative per field. Then the variational principle is manifestly well-posed. For the theories
that we study in the main text, it is usually the case that the natural and most familiar
form of the action is already written so that there is no more than one time derivative per
field. However, this is not the case for the (special) galileon. Most of the standard forms
of the galileon are manifestly Lorentz invariant, and as it turns out there is no writing of
the action which is both manifestly Lorentz invariant and has at most one time derivative
per field.

Now consider the case of contact boundary terms, which do not contain derivatives
normal to the boundary. For instance, for DBI we might add a term like

S ⊃
∫

d3p1d3p2d3p3d3p4 δ
(3)(~p1 + ~p2 + ~p3 + ~p4) ~p1 · ~p2~p3 · ~p4 ϕ~p1(tf )ϕ~p2(tf )ϕ~p3(tf )ϕ~p4(tf ) .

(B.8)
Such a term is called a contact term because its contribution to the wavefunction is
proportional to a δ-function in position space. For the theories we are studying, such terms
are forbidden by power counting. For instance, the contribution to the DBI four-point
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function from the bulk action contains 4 derivatives, and so boundary terms should only
contain 3 derivatives at this order in fields. However, the only way to form a rotationally
invariant boundary term with 3 derivatives is to use the magnitude of one of the momenta.
This in effect would require the boundary term to have a normal derivative, and thus it is
nonlocal, and covered by the discussion above. In this way, we may fix the contact terms in
the action for all of the theories that we study in the main text.

At the level of the action, we have addressed how to fix the boundary terms in order to
compute proper vacuum wavefunction coefficients. However in the bootstrap philosophy the
opposite question is more natural: if someone hands us a putative wavefunction coefficient
that has all of the expected singularities (or, if we bootstrap it ourselves), how do we know
it came from an action with a well-posed variational principle, or equivalently, that it was
computed with no spurious operator insertions in the path integral? We may test for this
by deriving the Ward identities obeyed by vacuum wavefunction coefficients, and check
that whatever we have bootstrapped obeys these Ward identities. If it does not, then
there must be an operator insertion. However the converse is not true; just because the
object we bootstrapped does obey the Ward identity does not mean there is no operator
insertion. The proper strategy is then to impose so many Ward identities that there is only
one object satisfying them all. Then we may be sure that the object we have bootstrapped
is a wavefunction coefficient.

As a simple example, consider the following two objects, computed with a DBI Hamil-
tonian at four points:

ψ
(a)
4 = 1

f4E

(
P1 · P2P3 · P4 + P1 · P3P2 · P4 + P1 · P4P2 · P3

)
, (B.9)

ψ
(b)
4 = − 1

2f4E

(
P1 · P2P2 · P3 + perms.

)
. (B.10)

Both of these have the correct singularity structure and appear to be perfectly reasonable
wavefunction coefficients computed by evaluating the on-shell DBI action. However, one of
these was computed from an action with a well-posed variational principle, while the other
is not. To detect which is the true wavefunction coefficient, we test each for the O(p) Adler
zero. The first object has the Adler zero, and the second does not, telling us that ψ(a)

4 is
the true vacuum wavefunction coefficient, whereas ψ(b)

4 was computed in the presence of
operator insertions. Indeed, each object comes from the respective action

S(a) ⊃
∫

d4x ∂φ4, (B.11)

S(b) ⊃
∫

d4xφ∂µ
(
∂µφ∂φ2

)
, (B.12)

which only differ by an integration by parts. However, only the first has a well-posed
variational principle. In this way, we can use Ward identities to detect well-posedness of
the variational principle.

B.2 Symmetry generators

In the main text, we are interested in deriving Ward identities for charges that generate
nonlinearly realized symmetries. If we know the action, it is a simple matter to compute the
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associated current and derive the charge which generates a particular symmetry. However,
from the on-shell point of view, in many cases we want to be able to derive Ward identities
without starting from the action. This means that we need a way to write down the
symmetry charges without utilizing the action. As it turns out, we may often intuit the
structure of the charges and their realization on fields just by knowing the symmetry
transformation δφ alone.

Our starting point will be the action

S[φ] =
∫

d4xL[φ, φ̇] . (B.13)

Note that we are specifically writing the action so that there is at most one time derivative
per field. There may be arbitrarily many spatial derivatives acting on a single field, and we
have suppressed their dependence in the Lagrangian. If δφ is a symmetry of the action,
then the Lagrangian changes by at most a total derivative:

δS[φ] =
∫

d4x ∂µK
µ, (B.14)

and the conserved current and its corresponding charge are given by

Jµ = δφ
∂L
∂∂µφ

−Kµ, (B.15)

Q =
∫

d3x δφ
∂L
∂φ̇
−K0 =

∫
d3x δφΠ(φ) −K0 . (B.16)

We have used that by definition, Π(φ) = ∂L/∂φ̇. Note that the K0 piece comes from the
temporal boundary term generated by the symmetry. The symmetry may also generate
spatial boundary terms, but they do not contribute to the charge.

Our strategy will be to use commutation relations to determine the form of K0. The
symmetry transformation δφ may contain powers of φ̇ (or equivalently Πφ) and have
dependence on the spacetime coordinate x. First, suppose that the symmetry δφ does not
involve any time derivatives or the time coordinate itself. Q must act on δφ via [Q,φ] = iδφ.
From (B.16), this requires that∫

d3x [K0(~x, t), φ(~y, t)] = −i
∫

d3x
δK0(~x, t)
δΠ(φ)(~y, t)

= 0 =⇒ K0 = K0[φ] . (B.17)

Therefore K0 does not have any powers of canonical momenta. Next, we will make the
following assertion, without proof: if Q commutes with the Hamiltonian for a Lorentz
invariant system, then the symmetry δφ does not generate a temporal boundary term in
the action, and in turn K0 = 0. Said another way, if Q commutes with the Hamiltonian for
a Lorentz invariant system, the Lagrangian (not the Lagrangian density) is invariant.58

58We do not have a general proof of this assertion. However, we will take it as an input; we are only
interested in studying theories where the charges are implemented on fields such that this condition is true.
It is worth noting that this is usually the case, so long as one properly fixes the boundary term so that
there is no more than one time derivative per field as prescribed in appendix B.1. One can indeed check
this for spacetime symmetries, as well as more exotic symmetries such as the shift symmetry, the spatial
DBI symmetry, and the spatial (special) galileon symmetry, where “spatial” indicates that the symmetry
generated commutes with the Hamiltonian. In fact, it would be interesting if there were a theory with a
symmetry charge such that this is not the case, but we are not aware of any examples.
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Now consider the case when the symmetry δφ does contain the time coordinate, but not
time derivatives. Such charges typically do not commute with the Hamiltonian. However,
requiring again that [Q,φ] = iδφ, we can again conclude that K0 = K0[φ]. However, if Q
and the Hamiltonian do not commute, we will not assume that K0 = 0. Despite this, it is
sometimes the case that K0 may be determined solely by the commutation relations of Q
with the other charges in the algebra, and does not need to be computed from the action at
all (see (3.46) for an example involving the general galileon).

Finally, consider the case when δφ contains time derivatives. In such cases, it is difficult
to write down the charges without starting from the action itself. Because δφ contains Π(φ),
even implementing [Q,φ] = iδφ becomes nontrivial. From (B.16) we have

[Q,φ] =
∫

d3x [δφ(~x, t), φ(~y, t)] + iδ(3)(~x− ~y)δφ(~x, t)− [K0(x), φ(~y, t)] . (B.18)

In order for Q to generate the symmetry properly, the first and third terms must cancel,
which means that K0 must contain factors of Π(φ), and there is not a straightforward way to
deduce the form of K0 in such cases. This is equivalent to the fact that we cannot anticipate
the boundary term which the action develops under a temporal symmetry without simply
computing it. This is the fact that limits the utility of using the temporal DBI soft theorem
and the temporal special galileon soft theorem in a bootstrap procedure.

C Classical field profile and generating functionals

In this appendix, we highlight some features of the classical field profile which are used in
the text to prove tree level soft theorems. These observations essentially relate the classical
field profile to combinations of wavefunction coefficients. First, we will derive relations for
the late time classical canonical momentum, which are similar to those pointed out in [91]
in the AdS context. These are the analogue of the statement that the classical field profile
with a Feynman pole prescription in the presence of a source is a generating functional
for tree level in/out correlators [92]. In the wavefunction context, we can actually derive
additional relations, using the Bunch-Davies condition to relate early time classical field
profiles to late time canonical momentum profiles in a simple and universal way.

To begin, we demonstrate the analogous statement for flat space in/out correlators:
the classical field profile with a Feynman pole prescription is a generating functional for
tree level Feynman diagrams. We start by defining W [J ], the generating functional for
connected in/out correlators:

eiW [J ] ≡
∫
Dφ eiS[φ]+i

∫
d4xφJ . (C.1)

Taking a functional derivative of this form of the generating functional, we have
δW [J ]
δJ

= e−iW [J ]
∫
Dφ eiS[φ]+i

∫
d4xφJφ ≡ 〈φ〉J . (C.2)

Thus, 〈φ〉J is a generating functional for in/out correlators. If we take the tree level
approximation, then the result follows:

φcl[J ] = δW [J ]
δJ

, (C.3)

where φcl[J ] is the classical field profile in the presence of the source, J .
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We want to carry out at a similar computation for the classical field profile with
Dirichlet boundary conditions. We begin with the generating functional for connected
Witten diagrams, which we will also call W [ϕ]. Of course, this is the logarithm of the
wavefunction itself:

eW [ϕ] ≡ Ψ[ϕ, tf ] =
∫ φ(tf )=ϕ

Dφ(t) eiS[φ] . (C.4)

Similar to the in/out computation, we can take a functional derivative of the generating
functional:

− iδW [ϕ]
δϕ(~x) = 1

〈ϕ, tf |Ψ〉
〈ϕ, tf |Π(φ)(~x, tf ) |Ψ〉 . (C.5)

Therefore, the connected part of the canonical momentum, computed with Dirichlet bound-
ary conditions, is a generating functional for connected Witten diagrams. At tree level,
we have

Π(φ)
cl (~p,tf )

=−i(2π)3 δW [ϕ]
δϕ−~p

=
∑
n=2

−i
(n−1)!

∫ d3p1 · · ·d3pn−1
(2π)3(n−2) ϕ~p1 · · ·ϕ~pn−1δ

(3)(~p1+· · ·+~pn−1−~p)ψn(~p1, · · · , ~pn−1,−~p) .

(C.6)
To relate this expression to the field profile itself, first write the canonical momentum

as
Π(φ)(~p, t) ≡ ∂L

∂φ̇
= φ̇+ (2π)3∂Lint

∂φ̇
. (C.7)

We will also need the following recursively defined expression for the classical field profile:

φ~p(t) = K(p, t)ϕ~p + i(2π)3
∫ 0

−∞
dt′ G(t, t′, ~p) δSint

δφ−~p(t′)
. (C.8)

Using the following property of the bulk-to-bulk propagator

∂tG(p; t, t′)
∣∣∣
t=0

= −iK(p, t′) , (C.9)

leads to an expression for the time derivative of the classical field on the future boundary:

φ̇~p(tf ) = ip ϕ~p + (2π)3
∫ 0

−∞
dt′K(p, t′) δSint

δφ−~p(t′)
. (C.10)

If the theory does not have interactions involving time derivatives, then Π(φ) = φ̇ exactly,
and recursively computing the above expression provides an alternative way to compute
wavefunction coefficients. If the theory does have time derivative interactions, then this
expression is not a generating functional for wavefunction coefficients, and one must include
corrections to account for the difference between Π(φ) and φ̇. Using (C.10) and (C.7), we
can write the following expression for Π(φ) evaluated on the future boundary:

Π(φ)(~p, tf ) = ipϕ~p + (2π)3 ∂Lint

∂φ̇−~p(t)

∣∣∣∣
t=tf

+ (2π)3
∫ 0

−∞
dt′K(p, t′) δSint

δφ−~p(t′)
. (C.11)
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Writing out explicitly the Euler-Lagrange derivative inside the integral we get

Π(φ)(~p, tf ) = ipϕ~p + (2π)3 ∂Lint

∂φ̇−~p(t)

∣∣∣∣
t=tf

+ (2π)3
∫ 0

−∞
dt′K(p, t′)

[
∂Lint

∂φ−~p(t′)
− d

dt
∂Lint

∂φ̇−~p(t′)

]
,

(C.12)
and after integrating the time derivative by parts, we find

Π(φ)(~p, tf ) = ipϕ~p + (2π)3
∫ 0

−∞
dt′K(p, t′)

[
∂Lint

∂φ−~p(t′)
+ ip

∂Lint

∂φ̇−~p(t′)

]
. (C.13)

This expression may be used to compute wavefunction coefficients for theories with arbitrary
scalar interactions.

As it turns out, we may use the above expression to derive statements about the
classical field profile at early times as well. Using the form of the bulk-to-bulk propagator
in (2.8) we have that at early times

lim
t→−∞

G(p; t, t′) = 1
2p
(
K(−p, t′)−K(p, t′)

)
K(p, t) . (C.14)

Thus, at early times, the classical field profile (C.8) reduces to

lim
t→−∞

φ~p(t) = K(p, t)
(
ϕ~p + i

2p(2π)3
∫ 0

−∞
dt′
[(
K(−p, t′)−K(p, t′)

) ∂Lint
∂φ−~p(t′)

−
(
K(−p, t′) +K(p, t′)

)
ip

∂Lint

∂φ̇−~p(t′)

])
,

(C.15)
where we have made the same simplifications of the δS/δφ term that we performed to get
from (C.11) to (C.13). Note there is no future boundary term because of the relative minus
sign between the bulk-to-boundary propagators.

Interestingly (C.15) is essentially the difference of two copies of (C.13) with the sign of
the external energy flipped:

lim
t→−∞

φ~p(t) = lim
t→−∞

i

2p
(
Π(φ)(~p,−p, tf )−Π(φ)(~p, p, tf )

)
K(p, t) . (C.16)

Therefore, the classical field profile at early times is a generating functional for shifted
wavefunction coefficients:

lim
t→−∞

φ~p(t) = lim
t→−∞

K(p,t)
∑
n=2

1
(n−1)!

∫ d3p1 · · ·d3pn−1
(2π)3(n−2) ϕ~p1 · · ·ϕ~pn−1

×δ(3)(~p1+· · ·+~pn−1−~p)ψ̃n(~p1, · · · , ~pn−1,−~p) ,
(C.17)

where we have defined the quantity

ψ̃n(~p) ≡ 1
2p
(
ψn(~p1, · · · , ~pn−1, ~pn;−pn)− ψn(~p1, · · · , ~pn−1, ~pn; pn)

)
. (C.18)
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We can in fact go one step further by noticing that a shifted wavefunction coefficient is in
the form of a finite difference in the energy associated with the classical field. In the soft
limit, we can make the replacement

lim
~p→0

ψ̃n(~p) = −∂pψn(~p)
∣∣∣
~p=0

. (C.19)

Thus, the soft classical field profile at early times is the generating functional for partial
derivatives of wavefunction coefficients with respect to energy:

lim
t→ −∞
~p→ 0

φ~p(t) = −
∑
n=2

1
(n− 1)!

∫ d3p1 · · · d3pn−1
(2π)3(n−2) ϕ~p1 · · ·ϕ~pn−1δ

(3)(~p1 + · · ·+ ~pn−1)∂pψn
∣∣∣
~p=0

.

(C.20)
This final formula indicates that shifted wavefunction coefficients contain information about
the system at early times. This fact is essential in understanding the role that the initial
state plays in various soft theorems.

D Navigating branch cuts

In this appendix, we will show that it is always possible to choose a branch of the complexified
partial energy functions which does not have any zeros.

We want to study the zeros of the multivalued functions of the form

f(z) = A+Bz +
√

(z − c−)(z − c+) , (D.1)

where A,B are real and c± are complex. The candidate zeros of the function are

z± = −(2AB + c− + c+)±
√

(2AB + c− + c+)2 − 4(B2 − 1)(A2 − c−c+)
2(B2 − 1) . (D.2)

We will prove that there is a branch of f(z) with no zeros, and a branch with two zeros.
Define the two branches as

f1(z) = A+Bz + |(z − c−)(z − c+)|
1
2 exp

(
i

2[arg(z − c−) + arg(z − c+)]
)
,

f2(z) = A+Bz + |(z − c−)(z − c+)|
1
2 exp

(
i

2[arg(z − c−) + arg(z − c+) + 2π]
)
.

(D.3)

We define both arg functions in both branches to take values in the range [0, 2π). This
unambiguously defines two single-valued functions which are (at least) meromorphic on the
space C− [c−, c+]. On the putative zeros, each branch becomes

f1(z±) = A+Bz± + |A+Bz±| exp
(
i

2[arg(z± − c−) + arg(z± − c+)]
)
,

f2(z±) = A+Bz± + |A+Bz±| exp
(
i

2[arg(z± − c−) + arg(z± − c+) + 2π]
)
.

(D.4)
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We can simplify this further by manipulating the arg functions, which are both defined
mod 2π. We have that

arg(z± − c−) + arg(z± − c+) = arg
(
(z± − c−)(z± − c+)

)
= arg

(
(A+Bz±)2

)
= 2 arg

(
A+Bz±

)
.

(D.5)

Substituting this into the prior equation, we come to

f1(z±) = A+Bz± + |A+Bz±| exp
(
i arg(A+Bz±)

)
= A+Bz± +A+Bz± 6= 0 ,

f2(z±) = A+Bz± + |A+Bz±| exp
(
i arg(A+Bz±) + iπ

)
= A+Bz± − (A+Bz±) = 0 .

(D.6)
Thus, the branch f1(z) has no zeros while the branch f2(z) has two zeros.

E Double copy

In this appendix, we include some brief comments about double copy relations between
the wavefunction coefficients we construct in the main text. In the context of scattering
amplitudes, exceptional scalar theories have a rich structure involving the double copy
that connects them to many other quantum field theories [3]. The simplest double copy
involves relating two copies of the nonlinear sigma model to the special galileon [6], and so
we focus on the wavefunction version of this double copy. We only consider properties of
the corresponding four-point wavefunctions, but it would be interesting to investigate the
structure at higher points.

In the exponential representation, the four-point wavefunction (3.8) for the nonlinear
sigma model, with flavor factors restored, is given by59

ψ
(nlsm)
4 = −fa1a2bfa3a4b 1

6E

(
T − U + E(t− u)

)
− fa1a4bfa2a3b 1

6E

(
U − S + E(u− s)

)
− fa3a1bfa2a4b 1

6E

(
S − T + E(s− t)

)
.

(E.1)

In order to double copy this object, we first put it in the form

ψ
(nlsm)
4 = 1

E

(
cs ns
S

+ ct nt
T

+ cu nu
U

)
, (E.2)

59Here we have defined some analogues of the flat space Mandelstam variables:

S ≡ −(k12 + s)(k34 + s) ,
T ≡ −(k14 + t)(k23 + t) ,
U ≡ −(k13 + u)(k24 + u) ,

which serve to simplify some expressions and allow us to cast them in a form similar to amplitudes. In the
E → 0 limit, these variables reduce to ordinary Mandelstam variables. One benefit of this is that one can
take E → 0 in all of our expressions and the formulas will reduce to their amplitude versions, divided by E.
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where we have defined the color numerators as

cs = fa1a2bfa3a4b ct = fa1a4bfa2a3b cu = fa3a1bfa2a4b . (E.3)

As a consequence of the Jacobi identity, these satisfy

cs + ct + cu = 0 . (E.4)

We similarly define the kinematic numerators in (E.2) as

ns = −S6
(
T − U + E(t− u)

)
, (E.5)

nt = −T6
(
U − S + E(u− s)

)
, (E.6)

nu = −U6
(
S − T + E(s− t)

)
. (E.7)

In contrast to the amplitude story, the kinematic numerators so defined do not satisfy a
kinematic Jacobi identity:

ns + nt + nu = −E6

(
S(t− u) + T (u− s) + U(s− t)

)
≡ −E E

nlsm

6 , (E.8)

which implicitly defines Enlsm. As expected, in the E = 0 limit the kinematic numerators
do add up to zero. This failure of the kinematic Jacobi identity implies that, despite
appearances, the presentation of the wavefunction (E.2) is not actually color-kinematics
symmetric. Fortunately, this is a solvable problem [76, 77]. Because the ca satisfy the Jacobi
identity, the wavefunction coefficient (E.2) is invariant under the following generalized
gauge-like transformation

ns 7→ ns + S χ , (E.9)
nt 7→ nt + T χ , (E.10)
nu 7→ nu + U χ , (E.11)

where χ is an arbitrary function. We can use the freedom to make the kinematic numerators
sum to zero. Shifting each of the numerators, we see that the equation we want to solve is

ns+nt+nu+(S+T +U)χ = −E6

(
S(t−u)+T (u−s)+U(s−t)

)
+(S+T +U)χ = 0 , (E.12)

which implies that

χ = − E Enlsm

6(S + T + U) . (E.13)

Thus, if we define the kinematic numerators

ns = −S6
(
T − U + E(t− u)

)
+ S6

E Enlsm

S + T + U , (E.14)

nt = −T6
(
U − S + E(u− s)

)
+ T6

E Enlsm

S + T + U , (E.15)

nu = −U6
(
S − T + E(s− t)

)
+ U6

E Enlsm

S + T + U , (E.16)
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they will satisfy the kinematic Jacobi identity ns + nt + nu = 0 and the wavefunction

ψ
(nlsm)
4 = 1

E

(
cs ns
S

+ ct nt
T

+ cu nu
U

)
, (E.17)

is color-kinematics dual.

Double copy. We can now try double copying (E.17) by replacing flavor factors with
kinematic ones to obtain60

ψ
(dc)
4 = 1

E

(
n2
s

S
+ n2

t

T
+ n2

u

U

)
. (E.20)

The natural question to ask is what is this object? In the E → 0 limit, we know that this is
the scattering amplitude of the special galileon, so we might be temped to say that this is
the four-point wavefunction of the special galileon (3.67). However, this is not the case. We
can write the difference between the double-copied wavefunction and the special galileon
four-point wavefunction:

ψ
(sgal)
4 −ψ(dc)

4 =−1
4
(
k3S2+k1T 2+k2U2

)
− 1

48

[
(3k13+2u+s+t)ST +(3k23+2t+s+u)SU+(3k12+2s+u+t)T U

]
− E

144

[
9(k1k2+k2

3 +k13t+k23u)+81k12k3+72k3s+7tu+t2+u2

+9(k3k2+k2
1 +k13s+k12u)+81k23k1+72k1t+7su+s2+u2

+9(k1k3+k2
2 +k12t+k23s)+81k13k2+72k2u+7ts+t2+s2

+T U+ST +SU−2k1k2k3(k1+k2+k3+s+t+u)
]

−E
2

16

[
(k12+s)(k13+u)(k23+t)+4k1(k23+t)2+4k2(k13+u)2

+4k3(k12+s)2−16k1k2k3

]
− 1

36
E (Enlsm)2

S+T +U .

(E.21)
It is worth noting that the difference between the two wavefunctions is regular as E → 0.
This is a needed requirement for consistency with the amplitudes double copy: the E → 0
singularity’s residue is the corresponding amplitude. Another notable feature is that the
shift by Enlsm does not help the double copy, in fact it introduces a spurious singularity.

60As was pointed out by [76, 77], after expressing flavor ordered wavefunctions as:

Eψ
(nlsm)
s−t ≡ n

(NLSM)
s

S − n
(NLSM)
t

T = S + T − 2U + E(s+ t− 2u) , (E.18)

Eψ
(nlsm)
u−t ≡ n

(NLSM)
u

U − n
(NLSM)
t

T = 2S − T − U + E(2s− t− u) , (E.19)

where (E.18) is the same as (3.8), we can actually solve for the kinematic numerators as a function of these
flavor ordered wavefunctions. (This is not possible for amplitudes because of BCJ relations.)
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Using the identity S + T + U = −E(E + s+ t+ u) we see that this last term in (E.21) has
an unwanted singularity at E + s+ t+ u = 0.

Since the particular choice of χ that we have made to satisfy color-kinematics duality
does not help the double copy, we can consider double copying the kinematic numerators
with χ left arbitrary. The only change from (E.21) will be to replace the last term with
(S + T + U)χ2/E. Since χ is a totally arbitrary function, we can of course choose it so
that (E.21) vanishes. (A similar point was made in [80].) However the resulting kinematic
numerators are extremely complicated, and do not satisfy color-kinematics duality. It would
be interesting to understand if this choice of kinematic numerators has an interpretation or
independent construction.

Essentially the takeaway is that we find that the most naive version of the double
copy does not work for the flat space wavefunction (this is broadly the same conclusion
as [77, 80–82]). Since the relation between the NLSM and special galileon is one of the
simplest double copy relations, we expect that further investigation will help elucidate the
fate and structure of the double copy for the wavefunction.
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