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Abstract
We study nonlinear optimization problems with a stochastic objective and deter-
ministic equality and inequality constraints, which emerge in numerous applications
including finance, manufacturing, power systems and, recently, deep neural networks.
We propose an active-set stochastic sequential quadratic programming (StoSQP) algo-
rithm that utilizes a differentiable exact augmented Lagrangian as the merit function.
The algorithm adaptively selects the penalty parameters of the augmented Lagrangian,
and performs a stochastic line search to decide the stepsize. The global convergence is
established: for any initialization, the KKT residuals converge to zero almost surely.
Our algorithm and analysis further develop the prior work of Na et al. (Math Program,
2022. https://doi.org/10.1007/s10107-022-01846-z). Specifically, we allow nonlin-
ear inequality constraints without requiring the strict complementary condition; refine
some of designs in Na et al. (2022) such as the feasibility error condition and the
monotonically increasing sample size; strengthen the global convergence guarantee;
and improve the sample complexity on the objective Hessian. We demonstrate the
performance of the designed algorithm on a subset of nonlinear problems collected in
CUTEst test set and on constrained logistic regression problems.
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1 Introduction

We study stochastic nonlinear optimization problems with deterministic equality and
inequality constraints:

min
x∈R

d
f (x) = E[F(x; ξ)],

s.t. c(x) = 0,

g(x) ≤ 0, (1)

where f : R
d → R is an expected objective, c : R

d → R
m are deterministic equality

constraints, g : R
d → R

r are deterministic inequality constraints, ξ ∼ P is a random
variable following the distribution P, and F(·; ξ) : R

d → R is a realized objective.
In stochastic optimization regime, the direct evaluation of f and its derivatives is not
accessible. Instead, it is assumed that one can generate independent and identically
distributed samples {ξi }i from P, and estimate f and its derivatives based on the
realizations {F(· ; ξi )}i .

Problem (1) widely appears in a variety of industrial applications including finance,
transportation, manufacturing, and power systems [8, 56]. It includes constrained
empirical risk minimization (ERM) as a special case, where P can be regarded as
a uniform distribution over n data points {ξi = ( yi , zi )}ni=1, with ( yi , zi ) being the
feature-outcome pairs. Thus, the objective has a finite-sum form as

f (x) = 1

n

n∑

i=1
F(x; ξi ) = 1

n

n∑

i=1
F(x; yi , zi ).

The goal of (1) is to find the optimal parameter x� that fits the data best. One of the
most common choices of F is the negative log-likelihood of the underlying distribution
of ( yi , zi ). In this case, the optimizer x� is called the maximum likelihood estimator
(MLE). Constraints on parameters are also common in practice, which are used to
encode prior model knowledge or to restrict model complexity. For example, [30, 31]
studied inequality constrained least-squares problems, where inequality constraints
maintain structural consistency such as non-negativity of the elasticities. [42, 45]
studied statistical properties of constrained MLE, where constraints characterize the
parameters space of interest.More recently, a growing literature on training constrained
neural networks has been reported [15, 25, 32, 33], where constraints are imposed to
avoid weights either vanishing or exploding, and objectives are in the above finite-sum
form.

This paper aims to develop a numerical procedure to solve (1) with a global
convergence guarantee. When the objective f is deterministic, numerous nonlinear
optimization methods with well-understood convergence results are applicable, such
as exact penalty methods, augmented Lagrangian methods, sequential quadratic pro-
gramming (SQP)methods, and interior-pointmethods [41].However,methods to solve
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constrained stochastic nonlinear problems with satisfactory convergence guarantees
have been developed only recently. In particular, with only equality constraints, [4]
designed a very first stochastic SQP (StoSQP) scheme using an �1-penalized merit
function, and showed that for any initialization, the KKT residuals {Rt }t converge
in two different regimes, determined by a prespecified deterministic stepsize-related
sequence {αt }t :
(a) (constant sequence) if αt = α for some small α > 0, then

∑t−1
i=0 E[R2

i ]/t ≤
Υ /(αt)+ Υ α for some Υ > 0;

(b) (decaying sequence) if αt satisfies
∑∞

t=0 αt = ∞ and
∑∞

t=0 α2
t < ∞, then

lim inf t→∞ E[R2
t ] = 0.

Both convergence regimes are well known for unconstrained stochastic problems
where Rt = ‖∇ f (xt )‖ (see [12] for a recent review), while [4] generalized the results
to equality constrained problems. Within the algorithm of [4], the authors designed a
stepsize selection scheme (based on the prespecified deterministic sequence) to bring
some sort of adaptivity into the algorithm. However, it turns out that the prespecified
sequence,which can be aggressive or conservative, still highly affects the performance.
To address the adaptivity issue, [40] proposed an alternative StoSQP, which exploits
a differentiable exact augmented Lagrangian merit function, and enables a stochastic
line search procedure to adaptively select the stepsize. Under a different setup (where
the model is precisely estimated with high probability), [40] proved a different guar-
antee: for any initialization, lim inf t→∞ Rt = 0 almost surely. Subsequently, a series
of extensions have been reported. [3] designed a StoSQP scheme to deal with rank-
deficient constraints. [18] designed a StoSQP that exploits inexact Newton directions.
[6] designed an accelerated StoSQP via variance reduction for finite-sum problems.
[5] further developed [4] to achieve adaptive sampling. [17] established the worst-
case iteration complexity of StoSQP, and [39] established the asymptotic local rate of
StoSQP and performed statistical inference. In addition, [43] investigated a determin-
istic SQP where the objective and constraints are evaluated with noise. However, all
aforementioned literature does not include inequality constraints.

Our paper develops this line of research by designing a StoSQP method that works
with nonlinear inequality constraints. In order to do so, we have to overcome a number
of intrinsic difficulties that arise in dealing with inequality constraints, which were
already noted in classical nonlinear optimization literature [7, 41]. Our work is built
upon [40], wherewe exploited an augmented Lagrangianmerit function under the SQP
framework. We enhance some of designs in [40] (e.g., the feasibility error condition,
the increasing batch size, and the complexity of Hessian sampling; more on these
later), and the analysis of this paper is more involved. To generalize [40], we address
the following two subtleties.

(a) With inequalities, SQP subproblems are inequality constrained (nonconvex)
quadratic programs (IQPs), which themselves are difficult to solve in most cases.
Some SQP literature (e.g., [10]) supposes to apply a QP solver to solve IQPs
exactly, however, a practical scheme should embed a finite number of inner loop
iterations of active-set methods or interior-point methods into the main SQP loop,
to solve IQPs approximately. Then, the inner loop may lead to an approximation
error for search direction in each iteration, which complicates the analysis.
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(b) When applied to deterministic objectives with inequalities, the SQP search direc-
tion is a descent direction of the augmented Lagrangian only in a neighborhood of
a KKT point [50, Propositions 8.3, 8.4]. This is in contrast to equality constrained
problems,where the descent property of the SQPdirection holds globally, provided
the penalty parameters of the augmented Lagrangian are suitably chosen. Such a
difference is indeed brought by inequality constraints: to make the (active-set)
SQP direction informative, the estimated active set has to be close to the optimal
active set (see Lemma 3 for details). Thus, simply changing the merit function in
[40] does not work for Problem (1).

The existing literature on inequality constrained SQP has addressed (a) and (b) via
various tools for deterministic objectives, while we provide new insights into stochas-
tic objectives. To resolve (a), we design an active-set StoSQP scheme, where given the
current iterate, we first identify an active set which includes all inequality constraints
that are likely to be equalities. We then obtain the search direction by solving a SQP
subproblem, where we include all inequality constraints in the identified active set but
regard them as equalities. In this case, the subproblem is an equality constrained QP
(EQP), and can be solved exactly provided the matrix factorization is within the com-
putational budget. To resolve (b), we provide a safeguarding direction to the scheme.
In each step, we check if the SQP subproblem is solvable and generates a descent
direction of the augmented Lagrangian merit function. If yes, we maintain the SQP
direction as it typically enjoys a fast local rate; if no, we switch to the safeguard-
ing direction (e.g., one gradient/Newton step of the augmented Lagrangian), along
which the iterates still decrease the augmented Lagrangian although the convergence
may not be as effective as that of SQP.

Furthermore, to design a scheme that adaptively selects the penalty parameters and
stepsizes for Problem (1), additional challenges have to be resolved. In particular, we
know that there are unknown deterministic thresholds for penalty parameters to ensure
one-to-one correspondence between a stationary point of themerit function and aKKT
point of Problem (1). However, due to the scheme stochasticity, the stabilized penalty
parameters are random. We are unsure if the stabilized values are above (or below,
depending on the context) the thresholds or not. Thus, we cannot directly conclude that
the iterates converge to aKKTpoint, even ifwe ensure a sufficient decrease on themerit
function in each step, and enforce the iterates to converge to one of its stationary points.

The above difficulty has been resolved for the �1-penalized merit function in [4],
where the authors imposed a probability condition on the noise (satisfied by symmet-
ric noise; see [4, Proposition 3.16]). [40] resolved this difficulty for the augmented
Lagrangian merit function by modifying the SQP scheme when selecting the penalty
parameters. In particular, [40] required the feasibility error to be bounded by the
gradient magnitude of the augmented Lagrangian in each step, and generated mono-
tonically increasing samples to estimate the gradient. Although that analysis does not
require noise conditions, adjusting the penalty parameters to enforce the feasibility
error condition may not be necessary for the iterates that are far from stationarity.
Also, generating increasing samples is not satisfactory since the sample size should be
adaptively chosen based on the iterates. In this paper, we refine the techniques of [40]
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and generalize them to inequality constraints. We weaken the feasibility error condi-
tion by using a (large) multiplier to rescale the augmented Lagrangian gradient, and
more significantly, enforcing it only when the magnitude of the rescaled augmented
Lagrangian gradient is smaller than the estimated KKT residual. In other words, the
feasibility error condition is imposed only when we have a stronger evidence that the
iterate is approaching to a stationary point than approaching to a KKT point. Such a
relaxation matches the motivation of the feasibility error condition, i.e., bridging the
gap between stationary points and KKT points. We also get rid of the increasing sam-
ple size requirement by adaptively controlling the absolute deviation of the augmented
Lagrangian gradient for the new iterates only (i.e. the previous step is a successful step;
see Sect. 3). Following [40], we perform a stochastic line search procedure. However,
instead of using the same sample set to estimate the gradient ∇ f and Hessian ∇2 f
as in [40], we sharpen the analysis and realize that the needed samples for ∇2 f are
significantly less than ∇ f .

With all above extensions from [40], we finally prove that the KKT residual Rt

satisfies limt→∞ Rt = 0 almost surely for any initialization. Such a result is stronger
than [44, Theorem 4.10] for unconstrained problems and [40, Theorem 4] for equality
constrained problems, which only showed the “liminf” type of convergence. Our
result also differs from the (liminf) convergence of the expected KKT residual E[R2

t ]
established in [3–6, 18] (under a different setup).

Related work
A number of methods have been proposed to optimize stochastic objectives with-

out constraints, varying from first-order methods to second-order methods [12]. For
all methods, adaptively choosing the stepsize is particularly important for practical
deployment. A line of literature selects the stepsize by adaptively controlling the batch
size and embedding natural (stochastic) line search into the schemes [11, 13, 20, 22,
29]. Although empirical experiments suggest the validity of stochastic line search,
a rigorous analysis is missing. Until recently, researchers revisited unconstrained
stochastic optimization via the lens of classical nonlinear optimization methods, and
were able to show promising convergence guarantees. In particular, [1, 9, 16, 28, 57]
studied stochastic trust-region methods, and [2, 14, 19, 44] studied stochastic line
search methods. Moreover, [3–6, 18, 40] designed a variety of StoSQP schemes to
solve equality constrained stochastic problems. Our paper contributes to this line of
works by proposing an active-set StoSQP scheme to handle inequality constraints.

There are numerous methods for solving deterministic problems with nonlinear
constraints, varying from exact penalty methods, augmented Lagrangian methods,
interior-point methods, and sequential quadratic programming (SQP) methods [41].
Our paper is based on SQP, which is a very effective (or at least competitive) approach
for small or large problems. When inequality constraints are present, SQP can be
classified into IQP and EQP approaches. The former solves inequality constrained
subproblems; the latter, to which our method belongs, solves equality constrained
subproblems. A clear advantage of EQP over IQP is that the subproblems are less
expensive to solve, especially when the quadratic matrix is indefinite. See [41, Chap-
ter 18.2] for a comparison. Within SQP schemes, an exact penalty function is used
as the merit function to monitor the progress of the iterates towards a KKT point.
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The �1-penalized merit function, f (x)+ μ (‖c(x)‖1 + ‖max{g(x), 0}‖1), is always
a plausible choice because of its simplicity. However, a disadvantage of such non-
differentiable merit functions is their impedance of fast local rates. A nontrivial local
modification of SQP has to be employed to relieve such an issue [10]. As a resolu-
tion, multiple differentiable merit functions have been proposed [7]. We exploit an
augmented Lagrangian merit function, which was first proposed for equality con-
strained problems by [46, 51], and then extended to inequality constrained problems
by [47, 48]. [50] further improved this series of works by designing a new augmented
Lagrangian, and established the exact property under weaker conditions. Although not
crucial for that exact property analysis, [50] did not include equality constraints. In
this paper, we enhance the augmented Lagrangian in [50] by containing both equality
and inequality constraints; and study the case where the objective is stochastic. When
inequality constraints are suppressed, our algorithm and analysis naturally reduce to
[40] (with refinements).We shouldmention that differentiablemerit functions are often
more expensive to evaluate, and their benefits are mostly revealed for local rates (see
[38, Figure 1] for a comparison between the augmented Lagrangian and �1 merit func-
tions on an optimal control problem). Thus, with only established global analysis, we
do not aim to claim the benefits of the augmented Lagrangian over the popular �1 merit
function. On the other hand, the augmented Lagrangian is a very common alternative
of non-differentiable penalty functions, which has been widely utilized for inequality
constrained problems and achieved promising performance [52–55, 60]. Also, our
global analysis is the first step towards understanding the local rate of StoSQP when
differentiable merit functions are employed.

Structure of the paper
We introduce the exploited augmented Lagrangian merit function and active-set

SQP subproblems in Sect. 2. We propose our StoSQP scheme and analyze it in Sect. 3.
The experiments and conclusions are in Sects. 4 and 5. Due to the space limit, we defer
all proofs to Appendix.
Notation We use ‖ · ‖ to denote the �2 norm for vectors and spectrum norm for
matrices. For two scalars a and b, a ∧ b = min{a, b} and a ∨ b = max{a, b}. For
two vectors a and b with the same dimension, min{a, b} and max{a, b} are vectors
by taking entrywise minimum and maximum, respectively. For a ∈ R

r , diag(a) ∈
R
r×r is a diagonal matrix whose diagonal entries are specified by a sequentially.

I denotes the identity matrix whose dimension is clear from the context. For a set
A ⊆ {1, 2, . . . , r} and a vector a ∈ R

r (or a matrix A ∈ R
r×d ), aA ∈ R

|A| (or
AA ∈ R

|A|×d ) is a sub-vector (or a sub-matrix) including only the indices in A;
ΠA(·) : R

r → R
r (or R

r×d → R
r×d ) is a projection operator with [ΠA(a)]i = ai if

i ∈ A and [ΠA(a)]i = 0 if i /∈ A (for A ∈ R
r×d , ΠA(A) is applied column-wise);

Ac = {1, 2, . . . , r}\A. Finally, we reserve the notation for the Jacobian matrices
of constraints: J (x) = ∇T c(x) = (∇c1(x), . . . ,∇cm(x))T ∈ R

m×d and G(x) =
∇T g(x) = (∇g1(x), . . . ,∇gr (x))T ∈ R

r×d .
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2 Preliminaries

Throughout this section, we suppose f , c, g are twice continuously differentiable (i.e.,
f , g, c ∈ C2). The Lagrangian function of Problem (1) is

L(x,μ,λ) = f (x)+ μT c(x)+ λT g(x).

We denote by

Ω = {x ∈ R
d : c(x) = 0, g(x) ≤ 0} (2)

the feasible set and

I(x) = {i : 1 ≤ i ≤ r , gi (x) = 0} (3)

the active set. We aim to find a KKT point (x�,μ�,λ�) of (1) satisfying

∇xL(x�,μ�,λ�) = 0, c(x�) = 0, g(x�) ≤ 0, λ� ≥ 0, (λ�)T g(x�) = 0. (4)

When a constraint qualification holds, existing a dual pair (μ�,λ�) to satisfy (4) is a
first-order necessary condition for x� being a local solution of (1). In most cases, it is
difficult to have an initial iterate that satisfies all inequality constraints, and enforce
inequality constraints to hold as the iteration proceeds. This motivates us to consider
a perturbed set. For ν > 0, we let

Ω � Tν :=
{
x ∈ R

d : a(x) ≤ ν/2
}

where a(x) =
r∑

i=1
max{gi (x), 0}3. (5)

Here, the perturbation radius ν/2 is not essential and can be replaced by ν/κ for any
κ > 1. Also, the cubic power in a(x) can be replaced by any power s with s > 2,
which ensures that a(x) ∈ C2 provided gi (x) ∈ C2, ∀i . We also define a scaling
function

qν(x,λ) = aν(x)

1+ ‖λ‖2 with aν(x) = ν − a(x), (6)

where aν(x) measures the distance of a(x) to the boundary ν, and qν(x,λ) rescales
aν(x) by penalizing λ that has a large magnitude. In the definitions of (5) and (6),
ν > 0 is a parameter to be chosen: given the current primal iterate xt , we choose
ν = νt large enough so that xt ∈ Tν . Note that while it is difficult to have xt ∈ Ω , it
is easy to choose ν to have xt ∈ Tν . We also note that

ν

2(1+ ‖λ‖2) ≤ qν(x,λ) ≤ ν ∀(x,λ) ∈ Tν × R
r , and qν(x,λ) → 0 as ‖λ‖ → ∞.
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With (6) and a parameter ε > 0, we define a function to measure the dual feasibility
of inequality constraints:

wε,ν(x,λ) := g(x)− bε,ν(x,λ)

:= g(x)−min{0, g(x)+ εqν(x,λ)λ} = max{g(x),−εqν(x,λ)λ}. (7)

The following lemma justifies the reasonability of the definition (7). The proof is
immediate and omitted.

Lemma 1 Let ε, ν > 0. For any (x,λ) ∈ Tν ×R
r , wε,ν(x,λ) = 0 ⇔ g(x) ≤ 0,λ ≥

0,λT g(x) = 0.

An implication of Lemma 1 is that, when the iteration sequence converges to a
KKT point, wε,ν(x,λ) converges to 0, i.e., g(x) = bε,ν(x,λ). This motivates us to
define the following augmented Lagrangian function:

Lε,ν,η(x,μ,λ) = L(x,μ,λ)+ 1

2ε
‖c(x)‖2

+ 1

2εqν(x,λ)

(
‖g(x)‖2 − ‖bε,ν(x,λ)‖2

)

+η

2

∥∥∥∥

(
J (x)∇xL(x,μ,λ)

G(x)∇xL(x,μ,λ)+ diag2(g(x))λ

)∥∥∥∥
2

, (8)

where η > 0 is a prespecified parameter, which can be any positive number throughout
the paper. The augmented Lagrangian (8) generalizes the one in [50] by includ-
ing equality constraints and introducing η to enhance flexibility (η = 2 in [50]).
Without inequalities, (8) reduces to the augmented Lagrangian studied in [40]. The
penalty in (8) consists of two parts. The first part characterizes the feasibility error
and consists of ‖c(x)‖2 and ‖g(x)‖2 − ‖bε,ν(x,λ)‖2. The latter term is rescaled
by 1/qν(x,λ) to penalize λ with a large magnitude. In fact, if ‖λ‖ → ∞, then
qν(x,λ)λ → 0 so that bε,ν(x,λ) → min{0, g(x)} (cf. (7)). Thus, the penalty term
(‖g(x)‖2 − ‖bε(x,λ)‖2)/qν(x,λ) → ∞, which is impossible when the iterates
decreaseLε,ν,η. The second part characterizes the optimality error and does not depend
on the parameters ε and ν. We mention that there are alternative forms of the aug-
mented Lagrangian, some of which transform nonlinear inequalities using (squared)
slack variables [7, 60]. In that case, additional variables are involved and the strict
complementarity condition is often needed to ensure the equivalence between the
original and transformed problems [23].

The exact property of (8) can be studied similarly as in [50], however this is incre-
mental and not crucial for our analysis. We will only use (a stochastic version of)
(8) to monitor the progress of the iterates. By direct calculation, we obtain the gra-
dient ∇Lε,ν,η. We first suppress the evaluation point for conciseness, and define the
following matrices

Q11 = (∇2
xL)J T , Q12 =

m∑

i=1
(∇2ci )(∇xL)eTi,m, Q1 = Q11 + Q12 ∈ R

d×m,

123



Inequality constrained stochastic nonlinear optimization…

Q21 = (∇2
xL)GT , Q22 =

r∑

i=1
(∇2gi )(∇xL)eTi,r , Q23 = 2GT diag(g)diag(λ),

Q2 =
3∑

i=1
Q2i ∈ R

d×r ,

M =
(
M11 M12
M21 M22

)
=
(
J J T JGT

G JT GGT + diag2(g)

)
∈ R

(m+r)×(m+r), (9)

where ei,m ∈ R
m is the i-th canonical basis of R

m (similar for ei,r ∈ R
r ). Then,

⎛

⎝
∇xLε,ν,η

∇μLε,ν,η

∇λLε,ν,η

⎞

⎠ =
⎛

⎝
I 1

ε
J T 1

εqν
GT

I
I

⎞

⎠

⎛

⎝
∇xL
c

wε,ν

⎞

⎠+
⎛

⎜⎝

3‖wε,ν‖2
2εqνaν

GT l
0

‖wε,ν‖2
εaν

λ

⎞

⎟⎠

+η

⎛

⎝
Q1 Q2
M11 M12
M21 M22

⎞

⎠
(

J∇xL
G∇xL+ diag2(g)λ

)
, (10)

where l = l(x) = diag(max{g(x), 0})max{g(x), 0}. Clearly, the evaluation of
∇Lε,ν,η requires ∇ f and ∇2 f , which have to be replaced by their stochastic counter-
parts ∇̄ f and ∇̄2 f for Problem (1). Based on (10), we note that, if the feasibility error
vanishes, then ∇Lε,ν,η = 0 implies the KKT conditions (4) hold for any ε, ν, η > 0.
We summarize this observation in the next lemma. The result holds without any
constraint qualifications.

Lemma 2 Let ε, ν, η > 0 and let (x�,μ�,λ�) ∈ Tν × R
m × R

r be a primal-dual
triple. If ‖c(x�)‖ = ‖wε,ν(x�,λ�)‖ = ‖∇Lε,ν,η(x�,μ�,λ�)‖ = 0, then (x�,μ�,λ�)

satisfies (4) and, hence, is a KKT point of Problem (1).

Proof See Appendix A.1 ��
In the next subsection, we introduce an active-set SQP direction that is motivated

by the augmented Lagrangian (8).

2.1 An active-set SQP direction via EQP

Let ε, ν, η > 0 be fixed parameters. Suppose we have the t-th iterate (xt ,μt ,λt ) ∈
Tν ×R

m ×R
r , let us denote Jt = J (xt ), Gt = G(xt ) (similar for ∇ ft , ct , gt , qtν etc.)

to be the quantities evaluated at the t-th iterate. We generally use index t as subscript,
except for the quantities (e.g., qtν) that depend on ε, ν, or η, which have been used
as subscript. For an active set A ⊆ {1, . . . , r}, we denote λta = (λt )A, λtc = (λt )Ac

(similar for gta , gtc , Gta , Gtc etc.) to be the sub-vectors (or sub-matrices), and denote
Πa(·) = ΠA(·), Πc(·) = ΠAc (·) for shorthand.

With the t-th iterate (xt ,μt ,λt ) and the above notation, we first define the identified
active set as

At
ε,ν := Aε,ν(xt ,λt ) := {i : 1 ≤ i ≤ r , (gt )i ≥ −εqtν · (λt )i }. (11)
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We then solve the following coupled linear system

Kta︷ ︸︸ ︷⎛

⎝
Bt J Tt GT

ta
Jt
Gta

⎞

⎠

⎛

⎝
Δxt
Δ̃μt

Δ̃λta

⎞

⎠ = −
⎛

⎝
∇xLt − GT

tcλtc
ct
gta

⎞

⎠ , (12a)

(
Jt J Tt JtGT

t
Gt J Tt GtGT

t + diag2(gt )

)

︸ ︷︷ ︸
Mt

(
Δμt
Δλt

)

= −
{(

Jt∇xLt

Gt∇xLt +Πc(diag2(gt )λt )

)
+
(
QT

1,t
QT

2,t

)
Δxt

}
, (12b)

for some Bt that approximates the Hessian∇2
xLt . Our active-set SQP direction is then

Δt := (Δxt ,Δμt ,Δλt ). Finally, we update the iterate as

⎛

⎝
xt+1
μt+1
λt+1

⎞

⎠ =
⎛

⎝
xt
μt
λt

⎞

⎠+ αt

⎛

⎝
Δxt
Δμt
Δλt

⎞

⎠

with αt chosen to ensure a certain sufficient decrease on the merit function (8).
The definition of active set was introduced in [50, (8.5)] and has been utilized, e.g.,

in [53]. Intuitively, for the i-th inequality constraint, if g�
i = (g(x�))i = 0 and λ�

i > 0,
then i will be identified when (xt ,λt ) is close to (x�,λ�); if g�

i < 0 and λ�
i = 0, then

i will not be identified. The stepsize αt is usually chosen by line search. In Sect. 3,
we will design a stochastic line search scheme to select αt adaptively. Compared to
fully stochastic SQP schemes [3, 4, 18], we need a more precise model estimation.
We explain the SQP direction (12) in the next remark.

Remark 1 Our dual direction (Δμt ,Δλt ) differs from the usual SQP direction intro-
duced, for example, in [50, (8.9)]. In particular, the system (12a) is nothing but the
KKT conditions of EQP:

min
Δxt

1

2
(Δxt )T BtΔxt + (∇ ft )

TΔxt ,

s.t. ct + JtΔxt = 0,

gta + GtaΔxt = 0.

Thus, (Δxt ,μt + Δ̃μt ,λta + Δ̃λta ) solved from (12a) is also the primal-dual solution
of the above EQP. However, instead of using (Δ̃μt , Δ̃λta ,−λtc ), we solve the dual
direction (Δμt ,Δλt ) for both active and inactive constraints from (12b). As Bt con-
verges to∇2

xLt and (xt ,μt ,λt ) converges to a KKT point (x�,μ�,λ�), it is fairly easy
to see that (Δμt ,Δλt ) converges to (Δ̃μt , Δ̃λt ) (where we denote Δ̃λtc = −λtc ) in a
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higher order by noting that

(
Jt J Tt JtGT

t
Gt J Tt GtGT

t + diag2(gt )

)(
Δ̃μt

Δ̃λt

)
(12a)=

(
0

Πa(diag2(gt )Δ̃λt )

)

−
{(

Jt∇xLt

Gt∇xLt +Πc(diag2(gt )λt )

)
+
(
Jt
Gt

)
BtΔxt

}
.

Thus, the fast local rate of the SQP direction (Δxt , Δ̃μt , Δ̃λt ) is preserved by Δt .
However, it turns out that the adjustment of Δt is crucial for the merit function (8)
when Bt is far from ∇2

xLt . A similar, coupled SQP system is employed for equality
constrained problems [35, 40], while we extend to inequality constraints here. In fact,
[50, Proposition 8.2] showed that (Δxt , Δ̃μt , Δ̃λt ) is a descent direction of Lt

ε,ν,η

if (xt ,μt ,λt ) is near a KKT point and Bt = ∇2
xLt . However, Bt = ∇2

xLt (i.e.,
no Hessian modification) is restrictive even for a deterministic line search, and that
descent result does not hold if Bt �= ∇2

xLt . In contrast, as shown in Lemma 3, Δt is a
descent direction even if Bt is not close to ∇2

xLt .

2.2 The descent property of1t

In this subsection, we present a descent property of Δt . We focus on the term
(∇Lt

ε,ν,η)
TΔt . Different from SQP for equality constrained problems, Δt may not

be a descent direction of Lt
ε,ν,η for some points even if ε is chosen small enough. To

see it clearly, we suppress the iteration index, denote ga = gta (similar for λa , λc etc.),
and divide∇Lε,ν,η (cf. (10)) into two terms: a dominating term that depends on (ga,λc)

linearly, and a higher-order term that depends on (ga,λc) at least quadratically. In
particular, we write ∇Lε,ν,η = ∇L(1)

ε,ν,η + ∇L(2)
ε,ν,η where

⎛

⎝
∇xL(1)

ε,ν,η

∇μL(1)
ε,ν,η

∇λL(1)
ε,ν,η

⎞

⎠ =
⎛

⎝
I 1

ε
J T 1

εqν
GT

I
I

⎞

⎠

⎛

⎝
∇xL
c

wε,ν

⎞

⎠

+ η

⎛

⎝
Q1 Q2
M11 M12
M21 M22

⎞

⎠
(

J∇xL
G∇xL+Πc(diag2(g)λ)

)
,

⎛

⎝
∇xL(2)

ε,ν,η

∇μL(2)
ε,ν,η

∇λL(2)
ε,ν,η

⎞

⎠ =
⎛

⎜⎝

3‖wε,ν‖2
2εqνaν

GT l
0

‖wε,ν‖2
εaν

λ

⎞

⎟⎠+ η

⎛

⎝
Q2,a
M12,a
M22,a

⎞

⎠ diag2(ga)λa . (13)

Loosely speaking (seeLemma3 for a rigorous result), (∇L(1)
ε,ν,η)

TΔprovides a suffi-

cient decrease provided the penalty parameters are suitably chosen,while (∇L(2)
ε,ν,η)

TΔ

has no such guarantee in general. Since ∇L(2)
ε,ν,η depends on (ga,λc) quadratically, to

ensure∇LT
ε,ν,ηΔ < 0, we require ‖ga‖∨‖λc‖ to be small enough to let the linear term

(∇L(1)
ε,ν,η)

TΔ dominate. This essentially requires the iterate to be close to a KKT point,
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since ‖ga‖ = ‖λc‖ = 0 at a KKT point. With this discussion in mind, if the iterate is
far from a KKT point,Δmay not be a descent direction ofLε,ν,η. In fact, for an iterate
that is far from a KKT point, the KKT matrix Ka (and its component Ga) is likely
to be singular due to the imprecisely identified active set. Thus, Newton system (12)
is not solvable at this iterate at all, let alone it generates a descent direction. Without
inequalities, the quadratic term∇L(2)

ε,ν,η disappears and our analysis reduces to the one

in [40]. We realize that the existence of ∇L(2)
ε,ν,η results in a very different augmented

Lagrangian to the one in [40]; and brings difficulties in designing a global algorithm
to deal with inequality constraints.

We point out that requiring a local iterate is not an artifact of the proof technique.
Such a requirement is imposed for different search directions in related literature.
For example, [50] showed that the SQP direction obtained by either EQP or IQP is a
descent direction ofLε,ν,η in a neighborhood of a KKT point (cf. Propositions 8.2 and
8.4). That work also required Bt = ∇2

xLt , which we relax by considering a coupled
Newton system. Subsequently, [53, 55] studied truncated Newton directions, whose
descent properties hold only locally as well (cf. [53, Proposition 3.7], [55, Proposition
10]).

Now, we introduce two assumptions and formalize the descent property.

Assumption 1 (LICQ) We assume at x� that (J T (x�) GT
I(x�)(x

�)) has full column
rank, where I(x�) is the active inequality set defined in (3).

Assumption 2 For z ∈ {z ∈ R
d : Jt z = 0,Gta z = 0}, we have zT Bt z ≥ γB‖z‖2 and

‖Bt‖ ≤ ΥB for constants ΥB ≥ 1 ≥ γB > 0.

The above condition on Bt is standard in nonlinear optimization literature [7]. In
fact, Bt = I withγB = ΥB = 1 is sufficient for the analysis in this paper. The condition
ΥB ≥ 1 ≥ γB > 0 (similar for other constants defined later) is inessential, which is
only for simplifying the presentation. Without such a requirement, our analyses hold
by replacing γB with γB ∧ 1 and ΥB with ΥB ∨ 1.

Lemma 3 Let ν, η > 0 and suppose Assumptions 1 and 2 hold. There exist a constant
Υ > 0 depending on ΥB but not on (ν, η, γB), and a compact set Xε,ν ×M×Λε,ν

around (x�,μ�,λ�) depending on (ε, ν) but not on η,1 such that if (xt ,μt ,λt ) ∈
Xε,ν ×M×Λε,ν with ε satisfying ε ≤ γ 2

B(γB ∧ η)/ {(1 ∨ ν)Υ }, then

(∇Lt (1)
ε,ν,η)Δt ≤ −γB ∧ η

2

∥∥∥∥∥∥

⎛

⎝
Δxt

Jt∇xLt

Gt∇xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

.

1 Here,wemeanXε,ν andΛε,ν onlydirectly depend on ε, ν but notη,which are in contrast to neighborhoods
Xε,ν,η and Λε,ν,η . However, since the threshold of ε, γ 2

B (γB ∧ η)/ {(1 ∨ ν)Υ }, is also determined by η,
the final local neighborhoods Xε,ν and Λε,ν with ε below the threshold also indirectly depend on η. Recall
that η can be any positive constant throughout the paper.
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Furthermore, there exists a compact subset Xε,ν,η×M×Λε,ν,η ⊆ Xε,ν ×M×Λε,ν

depending additionally on η, such that if (xt ,μt ,λt ) ∈ Xε,ν,η ×M×Λε,ν,η, then

(∇Lt (2)
ε,ν,η)Δt ≤ γB ∧ η

4

∥∥∥∥∥∥

⎛

⎝
Δxt

Jt∇xLt

Gt∇xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

.

Proof See Appendix A.2 ��
Similar arguments for other directions can be found in [53, Proposition 3.5] and [55,

Proposition 9]. By the proof of Lemma 3, we know that as long as Mt and (J Tt GT
ta )

in the SQP system (12) have full (column) rank, (∇Lt (1)
ε,ν,η)

TΔt ensures a sufficient
decrease provided ε is small enough. However, from (A.11) in the proof, we also see
that (∇Lt (2)

ε,ν,η)
TΔt is only bounded by

(∇Lt (2)
ε,ν,η)Δt ≤ Υ ′

(
1 ∨ ν

ε(1 ∧ ν2)
∨ η

)
(‖gta‖ + ‖λtc‖)

∥∥∥∥∥∥

⎛

⎝
Δxt

Jt∇xLt

Gt∇xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

,

where Υ ′ > 0 is a constant independent of (ε, ν, η). Thus, to ensure (∇Lt
ε,ν,η)

TΔt

to be negative, we have to restrict to a neighborhood, in which ‖gta‖ ∨ ‖λtc‖ is small
enough so that Υ ′( 1∨ν

ε(1∧ν2)
∨ η)(‖gta‖ + ‖λtc‖) ≤ (γB ∧ η)/4. This requirement

is achievable near a KKT pair (x�,λ�), where the active set is correctly identified
(implying that ‖gta‖ ≤ ‖(gt )I(x�)‖ and ‖λtc‖ ≤ ‖(λt ){i :1≤i≤r ,λ�

i=0}‖); and the radius
of the neighborhood clearly depends on (ε, ν, η).

In the next section, we exploit the introduced augmented Lagrangian merit function
(8) and the active-set SQP direction (12) to design a StoSQP scheme for Problem (1).
We will adaptively choose proper ε and ν (recall that η > 0 can be any positive
number in this paper), incorporate stochastic line search to select the stepsize, and
globalize the scheme by utilizing a safeguarding direction (e.g., Newton or steepest
descent step) of the merit function Lε,ν,η. If the system (12) is not solvable, or is
solvable but does not generate a descent direction, we search along the alternative
direction to decrease the merit function. However, since Δt usually enjoys a fast local
rate (see [50, Proposition 8.3] for a local analysis of (Δxt , Δ̃μt , Δ̃λt ) and Remark 1),
we prefer to preserve Δt as much as possible.

3 An adaptive active-set StoSQP scheme

Wedesign an adaptive scheme for Problem (1) that embeds stochastic line search, orig-
inally designed and analyzed for unconstrained problems in [14, 44], into an active-set
StoSQP. There are two challenges to design adaptive schemes for constrained prob-
lems. First, the merit function has penalty parameters that are random and adaptively
specified; while for unconstrained problems one simply uses the objective function in
line search. To show the global convergence, it is crucial that the stochastic penalty
parameters are stabilized almost surely. Thus, for each run, after few iterations we
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always target a stabilized merit function. Otherwise, if each iteration decreases a dif-
ferent merit function, the decreases across iterations may not accumulate. Second,
since the stabilized parameters are random, they may not be below unknown deter-
ministic thresholds. Such a condition is critical to ensure the equivalence between
the stationary points of the merit function and the KKT points of Problem (1). Thus,
even if we converge to a stationary point of the (stabilized) merit function, it is not
necessarily true that the stationary point is a KKT point of Problem (1).

With only equality constraints, [4, 40] addressed the first challenge under a bound-
edness condition, and our paper follows the same type of analysis. Similar boundedness
condition is also required for deterministic analyses to have the penalty parameters
stabilized [7, Chapter 4.3.3]. [4] resolved the second challenge by introducing a noise
condition (satisfied by symmetric noise), while [40] resolved it by adjusting the SQP
scheme when selecting the penalty parameters. As introduced in Sect. 1, the technique
of [40] has multiple flaws: (i) it requires generating increasing samples to estimate the
gradient of the augmentedLagrangian (cf. [40, Step1]); (ii) it imposes a feasibility error
condition for each step (cf. [40, (19)]). In this paper, we refine the technique of [40] and
enable inequality constraints. As revealed by Sect. 2, the present analysis of inequal-
ity constraints is much more involved; and more importantly, our “lim” convergence
guarantee strengthens the existing “liminf” convergence of the stochastic line search
in [40, 44]. In what follows, we use ¯(·) to denote random quantities, except for the
iterate (xt ,μt ,λt ). For example, ᾱt denotes a random stepsize.

3.1 The proposed scheme

Let η, αmax , κgrad , χgrad , χ f , χerr > 0; ρ > 1; γB ∈ (0, 1]; β, pgrad , p f ∈
(0, 1); κ f ∈ (0, β/(4αmax )] be fixed tuning parameters. Given quantities
(xt ,μt ,λt , ν̄t , ε̄t , ᾱt , δ̄t ) at the t-th iteration with xt ∈ Tν̄t , we perform the following
five steps to derive quantities at the (t + 1)-th iteration.

Step 1: Estimate objective derivatives
We generate a batch of independent samples ξ t1 to estimate the gradient ∇ ft and

Hessian ∇2 ft . The estimators ∇̄ ft and ∇̄2 ft may not be computed with the same
amount of samples, since they have different sample complexities. For example, we
can compute ∇̄ ft using ξ t1 while compute ∇̄2 ft using a fraction of ξ t1 (more on this in
Sect. 3.4). With ∇̄ ft , ∇̄2 ft , we then compute ∇̄xLt , Q̄1,t , and Q̄2,t used in the system
(12).

We require the batch size |ξ t1| to be large enough to make the gradient error of the
merit function small. In particular, we define

Δ̄(∇Lt
η) := ‖∇̄Lt

ε̄t ,ν̄t ,η
−∇Lt

ε̄t ,ν̄t ,η
‖.

A simple observation from (10) is that Δ̄(∇Lt
η) is independent of ε̄t (and ν̄t ), which

will be selected later (Step 2). We require |ξ t1| to satisfy two conditions:
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(a) the event Et1,

Et1 =
{
Δ̄(∇Lt

η) ≤ κgrad ᾱt

∥∥∥∥∥∥

⎛

⎝
∇̄xLt

ct
max{gt ,−λt }

⎞

⎠

∥∥∥∥∥∥
︸ ︷︷ ︸

R̄t

}
, (14)

satisfies

Pξ t1

(
Et1
) ≥ 1− pgrad; (15)

(b) if t − 1 is a successful step (see Step 5 for the meaning), then

Eξ t1
[Δ̄(∇Lt

η)] ≤ χgrad · (δ̄t/ᾱt )
1/2. (16)

The sample complexities to ensure (15) and (16) will be discussed in Sect. 3.4.
Compared to [40], we do not let |ξ t1| increase monotonically, while we impose an
expectation condition (16) when we arrive at a new iterate. By our analysis, it is
easy to see that (16) can also be replaced by requiring the subsequence {|ξ t1| : t −
1 is a successful step} to increase to the infinity (e.g., increase by at least one each
time), which is still weaker than [40]. The right hand side of (16) will be clear when
we utilize δ̄t later in Step 5 (cf. (27)).We use Pξ t1

(·) andEξ t1
[·] to denote the probability

and expectation that are evaluated over the randomness of sampling ξ t1 only,while other
random quantities are conditioned on, such as (xt ,μt ,λt ) and ᾱt . More precisely, we
mean Pξ t1

(Et1) = P(Et1 | Ft−1) (similar forEξ t1
[·]) where the σ -algebraFt−1 is defined

in (28) below.

Step 2: Set parameter ε̄t . With current ν̄t , we decrease ε̄t ← ε̄t/ρ until ε̄t is small
enough to satisfy the following two conditions simultaneously:
(a) the feasibility error is proportionally bounded by the gradient of the merit function,
whenever the iterate is closer to a stationary point than a KKT point:

∥∥(ct ,wt
ε̄t ,ν̄t

)
∥∥ ≤ χerr‖∇̄Lt

ε̄t ,ν̄t ,η
‖ if χerr‖∇̄Lt

ε̄t ,ν̄t ,η
‖ ≤ R̄t ; (17)

(we use the same multiplier χerr only for simplifying the notation.)
(b) if the SQP system (12) with ∇̄xLt , Q̄1,t , and Q̄2,t is solvable, then we obtain
Δ̄t = (Δ̄xt , Δ̄μt , Δ̄λt ) and require

(∇̄Lt (1)
ε̄t ,ν̄t ,η

)T Δ̄t ≤ − (γB ∧ η)

2

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

. (18)

We prove in Lemma 4 and Lemma 5 that both (17) and (18) can be satisfied for
sufficiently small ε̄t . In fact, Lemma3 has already established (18) for the deterministic
case. Even though Δ̄t is not always used as the search direction, we still enforce (18) to
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hold for (∇̄Lt (1)
ε̄t ,ν̄t ,η

)T Δ̄t . The reason for this is to avoid ruling out Δ̄t just because ε̄t is

not small enough, which would result in a positive dominating term (∇̄Lt (1)
ε̄t ,ν̄t ,η

)T Δ̄t . If
(12) is not solvable (e.g., the active set is imprecisely identified so that Kta is singular),
then (18) is not needed.

The condition (17) is the key to ensure that the stationary point of the merit func-
tion that we converge to is a KKT point of (1). Motivated by Lemma 2, we know
that “the stationarity of the merit function plus vanishing feasibility error” implies
vanishing KKT residual. (17) states that the feasibility error is roughly controlled by
the gradient of the merit function. (17) relaxes [40, (19)] from two aspects. First,
[40] had no multiplier while we allow any (large) multiplier χerr . Second, [40]
enforced (17) for each step, while we enforce it only when we observe a stronger
evidence that the scheme is approaching to a stationary point than to a KKT point.
The above relaxations are driven by the intention of imposing the condition. When
adjusting ε̄t , if ‖∇̄Lt

ε̄t ,ν̄t ,η
‖ first exceeds R̄t before ‖(ct ,wt

ε̄t ,ν̄t
)‖ (which easily hap-

pens for a large ν̄t ), then one can immediately stop the adjustment of ε̄t . Compared
to [40] where the SQP system is supposed to be always solvable, (17) has extra use-
fulness: when Δ̄t is not available, (17) ensures that the safeguarding direction can
be computed using the samples in Step 1. Such a desire is not easily achieved, and
further relaxations of (17) can be designed if we generate new samples for the safe-
guarding direction (in Step 3). The subtlety lies in the fact that no penalty parameters
are involved when we generate ξ t1 in Step 1, while (17) builds a connection between
ξ t1 and the penalty parameters. It implies that the set ξ t1 satisfying (15) and (16) also
satisfies the corresponding conditions for the safeguarding direction.

Step 3: Decide the search direction.
We may obtain a stochastic SQP direction Δ̄t from Step 2. However, if (12) is not

solvable, or it is solvable but Δ̄t is not a sufficient descent direction because

(∇̄Lt (2)
ε̄t ,ν̄t ,η

)T Δ̄t >
(γB ∧ η)

4

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

, (19)

then an alternative safeguarding direction Δ̂t must be employed to ensure the decrease
of the merit function. In that case, we follow [53, 55] and regardLε̄t ,ν̄t ,η as a penalized
objective. We require Δ̂t to satisfy

(∇̄Lt
ε̄t ,ν̄t ,η

)T Δ̂t ≤ −1/χu · ‖∇̄Lt
ε̄t ,ν̄t ,η

‖2 and ‖Δ̂t‖ ≤ χu ·
∥∥∥∇̄Lt

ε̄t ,ν̄t ,η

∥∥∥ (20)

for a constant χu ≥ 1. Similar to (17), we use the same constant χu for the two
multipliers to simplify the notation. When using two different constants χ1,u and
χ2,u , we can always set χu = 1/χ1,u ∨ χ2,u to let (20) hold. The condition (20) is
standard in the literature [53, (60a,b)] [55, (52a,b)]. One example that satisfies (20)
and is computationally cheap is the steepest descent direction Δ̂t = −∇̄Lt

ε̄t ,ν̄t ,η
with

χu = 1. Such a direction can be computed (almost) without any extra cost since
the two components of ∇̄Lt

ε̄t ,ν̄t ,η
, ∇̄Lt (1)

ε̄t ,ν̄t ,η
and ∇̄Lt (2)

ε̄t ,ν̄t ,η
, have been computed when
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checking (18) and (19). Another example that is more computationally expensive is
the regularized Newton step ĤtΔ̂t = −∇̄Lt

ε̄t ,ν̄t ,η
, where Ĥt captures second-order

information of Lt
ε̄t ,ν̄t ,η

and satisfies 1/χu I � Ĥt � χu I . In particular, Ĥt can be
obtained by regularizing the (generalized) Hessian matrix Ht , which is provided and
discussed in [50, 53], and has the form2

Ht,xx = Bt + ηBt

{
J Tt Jt + GT

t Gt

}
Bt + 1

ε̄t
J Tt Jt + 1

ε̄t qtν̄t
GT

taGta ,

Ht,(μ,λ)x =
(

Jt
Πa(Gt )

)
+ η

(
Jt J Tt JtGT

t
Gt J Tt GtGT

t + diag2(Πc(gt ))

)(
Jt
Gt

)
Bt ,

Ht,(μ,λ)(μ,λ) =
(
0 0
0 −ε̄t qtν̄t diag(Πc(1))

)
+ η

(
Jt J Tt JtGT

t
Gt J Tt GtGT

t + diag2(Πc(gt ))

)2

.

(21)

Here, 1 = (1, . . . , 1) ∈ R
r is the all one vector. Other examples that improve upon the

regularized Newton step include the choices in [21, 54], where a truncated conjugate
gradient method is applied to an indefinite Newton system [54, Proposition 3.3, (14)].
We will numerically implement the regularized Newton and the steepest descent steps
in Sect. 4.

Step 4: Estimate the merit function. Let qΔt denote the adopted search direction; thus
qΔt = Δ̄t from Step 2 or qΔt = Δ̂t from Step 3. We aim to perform stochastic line
search by checking the Armijo condition (26) at the trial point

xst = xt + ᾱt qΔxt , μst = μt + ᾱt qΔμt , λst = λt + ᾱt qΔλt .

We estimate the merit function in this step and perform line search in Step 5.
First, we check if the trial primal point xst is in Tν̄t . In particular, if xst /∈ Tν̄t ,

that is ast = a(xst ) > ν̄t/2 (cf. (5)), then we stop the current iteration and reject the
trial point by letting (xt+1,μt+1,λt+1) = (xt ,μt ,λt ), ε̄t+1 = ε̄t , ᾱt+1 = ᾱt , and
δ̄t+1 = δ̄t . We also increase ν̄t by letting

ν̄t+1 = ρ j ν̄t with j = �log(2ast /ν̄t )/ log ρ�, (22)

where �y� denotes the least integer that exceeds y. The definition of j ≥ 1 in (22)
ensures xst ∈ Tν̄t+1 . However, j = 1 works as well, since xt+1 = xt ∈ Tν̄t ⊆ Tν̄t+1 ,
as required for performing the next iteration. In the case of xst /∈ Tν̄t , particularly if
ast ≥ ν̄t , evaluating the merit function Lst

ε̄t ,ν̄t ,η
is not informative since the penalty

term in Lst
ε̄t ,ν̄t ,η

may be rescaled by a negative multiplier. Thus, we increase ν̄t and
rerun the iteration at the current point.

Otherwise xst ∈ Tν̄t , then we generate a batch of independent samples ξ t2, that
are independent from ξ t1 as well, and estimate ft , fst ,∇ ft ,∇ fst . Similar to Step 1,

2 See (6.1)–(6.3) in [50] for a similar expression to (21). Our Ht generalizes that definition by including
equality constraints and approximating the Hessian ∇2

xLt by Bt .
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the estimators f̄t , f̄st and
¯̄∇ ft ,

¯̄∇ fst may not be computed with the same amount of

samples. For example, f̄t and f̄st can be computed using ξ t2 while
¯̄∇ ft and

¯̄∇ fst can be
computed using a fraction of ξ t2. The sample complexities are discussed in Sect. 3.4.

Here, we distinguish ¯̄∇ ft from ∇̄ ft in Step 1. While both of them are estimates of
∇ ft , the former is computed based on ξ t2 and the latter is computed based on ξ t1. Using

f̄t , f̄st ,
¯̄∇ ft ,

¯̄∇ fst , we compute L̄t
ε̄t ,ν̄t ,η

and L̄st
ε̄t ,ν̄t ,η

according to (8).
We require |ξ t2| is large enough such that the event Et2,

Et2 =
{∣∣∣L̄t

ε̄t ,ν̄t ,η − Lt
ε̄t ,ν̄t ,η

∣∣∣ ∨
∣∣∣L̄st

ε̄t ,ν̄t ,η
− Lst

ε̄t ,ν̄t ,η

∣∣∣ ≤ −κ f ᾱ
2
t (∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt

}
, (23)

satisfies

Pξ t2

(
Et2
) ≥ 1− p f (24)

and

Eξ t2
[|L̄t

ε̄t ,ν̄t ,η
− Lt

ε̄t ,ν̄t ,η
|2] ∨ Eξ t2

[|L̄st
ε̄t ,ν̄t ,η

− Lst
ε̄t ,ν̄t ,η

|2] ≤ χ f · δ̄2t . (25)

Similar to (15) and (16), Pξ t2
(·) and Eξ t2

[·] denote that the randomness is taken over

sampling ξ t2 only, while other random quantities are conditioned on. That is, Pξ t2
(Et2) =

P(Et2 | Ft−0.5) (similar for Eξ t2
[·]) where the σ -algebra Ft−0.5 = Ft−1 ∪ σ(ξ t1) is

defined in (28) below.

Step 5: Perform line search. With the merit function estimates, we check the Armijo
condition next.
(a) If the Armijo condition holds,

L̄st
ε̄t ,ν̄t ,η

≤ L̄t
ε̄t ,ν̄t ,η

+ βᾱt (∇̄Lt
ε̄t ,ν̄t ,η

)T qΔt , (26)

then the trial point is accepted by letting (xt+1,μt+1,λt+1) = (xst ,μst ,λst ) and the
stepsize is increased by ᾱt+1 = ρᾱt ∧ αmax . Furthermore, we check if the decrease
of the merit function is reliable. In particular, if

− βᾱt (∇̄Lt
ε̄t ,ν̄t ,η

)T qΔt ≥ δ̄t , (27)

then we increase δ̄t by δ̄t+1 = ρδ̄t ; otherwise, we decrease δ̄t by δ̄t+1 = δ̄t/ρ.
(b) If the Armijo condition (26) does not hold, then the trial point is rejected by letting
(xt+1,μt+1,λt+1) = (xt ,μt ,λt ), ᾱt+1 = ᾱt/ρ and δ̄t+1 = δ̄t/ρ.

Finally, for both cases (a) and (b), we let ε̄t+1 = ε̄t , ν̄t+1 = ν̄t and repeat the proce-
dure from Step 1. From (27), we can see that δ̄t (roughly) has the order ᾱt‖∇̄Lt

ε̄t ,ν̄t ,η
‖2,

which justifies the definition of the right hand side of (16).
The proposed scheme is summarized in Algorithm 1. We define three types of

iterations for line search. If the Armijo condition (26) holds, we call the iteration a
successful step, otherwise we call it an unsuccessful step. For a successful step, if the
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sufficient decrease in (27) is satisfied, we call it a reliable step, otherwise we call it
an unreliable step. Same notion is used in [14, 40, 44].

To end this section, let us introduce the filtration induced by the randomness of the
algorithm.Given a random sample sequence {ξ t1, ξ t2}∞t=0,3 we letFt = σ({ξ j

1 , ξ
j
2 }tj=0),

t ≥ 0, be the σ -algebra generated by all the samples till t ; Ft−0.5 = σ({ξ j
1 , ξ

j
2 }t−1j=0 ∪

ξ t1), t ≥ 0, be the σ -algebra generated by all the samples till t−1 and the sample ξ t1; and
F−1 be the trivial σ -algebra generated by the initial iterate (which is deterministic).
Throughout the presentation, we let ε̄t be the quantity obtained after Step 2; that is, ε̄t
satisfies (17) and (18). With this setup, it is easy to see that

σ(xt ,μt ,λt ) ∪ σ(ν̄t ) ∪ σ(ᾱt ) ∪ σ(δ̄t ) ⊆Ft−1,
σ (xst ,μst ,λst ) ∪ σ(Δ̄t , Δ̂t , qΔt ) ∪ σ(ε̄t ) ⊆Ft−0.5.

(28)

We analyze Algorithm 1 in the next subsection.

3.2 Assumptions and stability of parameters

We study the stability of the parameter sequence {ε̄t , ν̄t }t . We will show that, for each
run of the algorithm, the sequence is stabilized after a finite number of iterations. Thus,
Lines 5 and 14 of Algorithm 1 will not be performed when the iteration index t is large
enough. We begin by introducing the assumptions.

Assumption 3 (Regularity condition) We assume the iterate {(xt ,μt ,λt )} and trial
point {(xst ,μst ,λst )} are contained in a convex compact region X×M×Λ. Further,
if xst ∈ Tν̄t , then the segment {ζ xt + (1 − ζ )xst : ζ ∈ (0, 1)} ⊆ Tθν̄t for some
θ ∈ [1, 2). We also assume the functions f , g, c are thrice continuously differentiable
over X, and realizations |F(x, ξ)|, ‖∇F(x, ξ)‖, ‖∇2F(x, ξ)‖ are uniformly bounded
over x ∈ X and ξ ∼ P.

Assumption 4 (Constraint qualification) For any x ∈ Ω , we assume that
(J T (x) GT

I(x)(x)) has full column rank, where Ω is the feasible set in (2) and I(x) is
the active set in (3). For any x ∈ X\Ω , we assume the linear system

ci (x)+∇T ci (x)z = 0, i : ci (x) �= 0,

gi (x)+ ∇T gi (x)z ≤ 0, i : gi (x) > 0,
(29)

has a solution for z ∈ R
d .

The boundedness condition on realizations in Assumption 3 is widely used in
StoSQP analysis to have a well-behaved stochastic penalty parameter sequence [3, 4,
18, 40]. The third derivatives of f , g, c are only required in the analysis and not needed

3 We note that ξ t2 may not be generated if Lines 13 and 14 of Algorithm 1 are performed. However, for
simplicity we suppose a sample ξ t2 is still generated in this case, although no quantity is determined by this
sample.
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Algorithm 1 An Adaptive Active-Set StoSQP with Augmented Lagrangian
1: Input: (x0, μ0, λ0), ᾱ0 = αmax > 0, ε̄0, δ̄0, η, κgrad , χgrad , χ f , χerr > 0, ρ > 1, γB ∈ (0, 1], β,

pgrad , p f ∈ (0, 1), κ f ∈ (0, β/(4αmax )], ν̄0 = 2
∑r

i=1 max{(g0)i , 0}3 + 1;
2: for t = 0, 1, 2 . . . do
3: Generate ξ t1 so that (a) (15) holds; (b) (16) holds if t − 1 is a successful step; compute ∇̄xLt , Q̄1,t ,

Q̄2,t as in (9); � Step 1: estimate derivatives

4: while {(17) does not hold} OR {(12) is solvable AND (18) does not hold} do
5: ε̄t ← ε̄t/ρ; � Step 2: set ε̄t
6: end while

7: if {(12) is not solvable} OR {(12) is solvable AND (19) holds} then
8: Obtain a backup direction Δ̂t and let qΔt = Δ̂t ; � Step 3: decide qΔt
9: else
10: qΔt = Δ̄t ;
11: end if

12: if xst /∈ Tν̄t then � Step 4: estimate merit function
13: (xt+1, μt+1, λt+1) = (xt , μt , λt ), ᾱt+1 = ᾱt , δ̄t+1 = δ̄t , ε̄t+1 = ε̄t ;
14: ν̄t+1 = ρ j ν̄t with j = �log(2ast /ν̄t )/ log ρ�;
15: else
16: Generate ξ t2 and compute L̄t

ε̄t ,ν̄t ,η , L̄
st
ε̄t ,ν̄t ,η

so that (24) and (25) hold;

17: if L̄st
ε̄t ,ν̄t ,η

≤ L̄t
ε̄t ,ν̄t ,η + βᾱt (∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt then � Step 5: line search

18: (xt+1, μt+1,λt+1) = (xst ,μst , λst ), ᾱt+1 = ρᾱt ∧ αmax ; � successful step

19: if −βᾱt (∇̄Lt
ε̄t ,ν̄t ,η

)T qΔt ≥ δ̄t then � reliable step

20: δ̄t+1 = ρδ̄t ;
21: else � unreliable step
22: δ̄t+1 = δ̄t/ρ;
23: end if
24: else � unsuccessful step
25: (xt+1, μt+1,λt+1) = (xt , μt , λt ), ᾱt+1 = ᾱt/ρ, δ̄t+1 = δ̄t/ρ;
26: end if
27: ε̄t+1 = ε̄t , ν̄t+1 = ν̄t ;
28: end if
29: end for

in the implementation. They are required since the existence of the (generalized)
Hessian of the augmented Lagrangian needs the third derivatives. See, for example,
[50, Section 6] for the same requirement. For deterministic schemes, the compactness
condition on the iterates is typical for the augmented Lagrangian and SQP analyses [7,
Chapter 4] [41, Chapter 18]. Some literature relaxed it by assuming all quantities (e.g.,
the objective gradient and constraints Jacobian, etc.) are uniformly upper boundedwith
a lower boundedobjective (so as themerit function).However, either condition is rather
restrictive for StoSQPdue to theunderlying randomness of the scheme.That said, given
the StoSQP iterates presumably contract to a deterministic feasible set, we believe that
an unbounded iteration sequence is rare in general. Furthermore, compared to fully
stochastic schemes in [3, 4, 18],we generate a batch of samples to have amore precise
estimation of the truemodel in each iteration; thus, our stochastic iterates have a higher
chance to closely track the underlying deterministic iterates.
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The convexity of M × Λ can be removed by defining a closed convex hull
conv(M) × conv(M). However, the convexity of the set for the primal iterates is
essential to enable a valid Taylor expansion. See [54, Proposition 2.2 and Section 4]
[52, Proposition 2.4 and (14)] and references therein for the same requirement for
doing line search with (8) and applying its Taylor expansion.

In particular, by the design of Algorithm 1, we have xt ∈ Tν̄t for any t , while the
trial step xst may be outside Tν̄t . If xst /∈ Tν̄t , we enlarge ν̄t (Line 14) and rerun the
iteration from the beginning. Assumption 3 states that if it turns out that xst ∈ Tν̄t , then
the whole segment ζ xt + (1− ζ )xst , which may not completely lie in Tν̄t as Tν̄t may
be nonconvex, is supposed to lie in a larger space Tθν̄t with θ ∈ [1, 2). Since Lε̄t ,ν̄t ,η

is SC1 in T◦2ν̄t ×R
m ×R

r and Tθν̄t ⊆ T◦2ν̄t , where T
◦
2ν̄t denotes the interior of T2ν̄t , the

second-order Taylor expansion at (xt ,μt ,λt ) is allowed [50]. Note that the range of θ

is inessential. If we replace ν/2 in (5) by ν/κ for any κ > 1, then we would allow the
existence of θ in [1, κ). In other words, θ can be as large as any κ . In fact, the condition
on the segment always holds when the input αmax , the upper bound of ᾱt (cf. Line 18),
is suitably upper bounded. Specifically, supposing supX ‖∇a(x)‖ ∨ supt ‖ qΔxt‖ ≤ Υ

(ensured by compactness of iterates), for any θ > 1 and ζ ∈ (0, 1), as long as
αmax ≤ (θ − 1)ν̄0/(2Υ 2), we have ζ xt + (1− ζ )xst ∈ Tθν̄t by noting that

a(ζ xt + (1− ζ )xst ) = a(xt + ᾱt (1− ζ ) qΔxt ) ≤ a(xt )+ ᾱt (1− ζ )Υ 2

≤ ν̄t

2
+ αmaxΥ

2 ≤ ν̄t

2
+ (θ − 1)ν̄0

2
≤ ν̄t

2
+ (θ − 1)ν̄t

2
= θν̄t

2
.

Clearly, the condition on the segment is not required if Tν in (5) is a convex set,
which is the case, for example, if we have linear inequality constraints x ≤ 0; or more
generally, each gi (·) is a convex function.We further investigate the effect of the range
of θ by varying κ (κ = 2 by default; cf. (5)) in the experiments.

By the compactness condition and noting that ν̄t is increased by at least a factor of
ρ each time in (22), we immediately know that ν̄t stabilizes when t is large. Moreover,
if we let

ν̃ = ρ j̃ ν̄0 with j̃ = �log(2max
X

a(x)/ν̄0)/ log ρ�, (30)

then ν̄t ≤ ν̃, t ≥ 0, almost surely. We will show a similar result for ε̄t .
Assumption 4 imposes the constraint qualifications. In particular, for feasible points

Ω , we assume the linear independence constraint qualification (LICQ),which is a stan-
dard condition to ensure the existence and uniqueness of the Lagrangian multiplier
[41]. For infeasible points X\Ω , we assume that the solution set of the linear system
(29) is nonempty. The condition (29) restricts the behavior of the constraint func-
tions outside the feasible set, which, together with the compactness condition, implies
Ω �= ∅ (cf. [36, Proposition 2.5]). In fact, the condition (29) weakens the gener-
alized Mangasarian-Fromovitz constraint qualification (MFCQ) [59, Definition 2.5];
and relates to the weak MFCQ, which is proposed for problems with only inequalities
in [36, Definition 1] and adopted in [50, Assumption A3] and [53, Assumption 3.2].
However, [36] requires the weak MFCQ to hold for feasible points in addition to
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LICQ; while [50, 53] and this paper remove such a condition. The condition (29)
simplifies and generalizes the weak MFCQ in [36, 50, 53] by including equality con-
straints. We note that the weak MFCQ is slightly weaker than (29). By the Gordan’s
theorem [26], (29) implies that {ci · ∇ci }i :ci �=0 ∪ {∇gi }i :gi>0 are positively linearly
independent:

∑

i :ci �=0
ai ci∇ci +

∑

i :gi>0

bi∇gi �= 0,

for any coefficients ai , bi ≥ 0 and
∑

i a
2
i + b2i > 0. In contrast, the weak MFCQ only

requires that the above linear combination is nonzero for a particular set of coefficients.
However, we adopt the simplified but a bit stronger condition only because (29) has
a cleaner form and a clearer connection to SQP subproblems. The coefficients of the
weak MFCQ in [36, 50, 53] are relatively hard to interpret. Instead of regarding the
constraint qualification as the essence of constraints, those coefficients depend on
particular choice of the merit function, although that assumption statement is sharper.
That said, (29) is still weaker than other literature on the augmented Lagrangian [34,
47, 49]; and weaker than what is widely assumed in SQP analysis [10], where the
IQP system, ci + ∇T ci z = 0, 1 ≤ i ≤ m, gi + ∇T gi z ≤ 0, 1 ≤ i ≤ r , is supposed
to have a solution. Moreover, we do not require the strict complementary condition,
which is often imposed for the merit functions that apply (squared) slack variables to
transform nonlinear inequality constraints [60, A2], [23, Proposition 3.8].

The first lemma shows that (17) is satisfied for a sufficiently small ε̄t . Although
(17) is inspired by [40, (19)] for equalities, the proof is quite different from that paper
(cf. Lemma 4 there).

Lemma 4 Under Assumptions 3 and 4, there exists a deterministic threshold ε̃1 > 0
such that (17) holds for any ε̄t ≤ ε̃1.

Proof See Appendix B.1. ��
The second lemma shows that (18) is satisfied for small ε̄t . The analysis is similar

to Lemma 3. We need the following condition on the SQP system (12).

Assumption 5 We assume that, whenever (12) is solvable, (J Tt GT
ta ) has full column

rank, and there exist positive constants ΥB ≥ 1 ≥ γB ∨ γH such that

Bt � ΥB I , Mt � γH I ,

(
Jt
Gta

) (
J Tt GT

ta

) � γH I ,

and zT Bt z ≥ γB‖z‖2, ∀z ∈ {z ∈ R
d : Jt z = 0,Gta z = 0}.

Assumption 5 summarizes Assumptions 1 and 2. As shown in Lemma 3, the condi-
tions on Mt and (J Tt GT

ta ) hold locally. For the presented global analysis, the Hessian
approximation Bt is easy to construct to satisfy the condition, e.g., Bt = I ; how-
ever, such a choice is not proper for fast local rates. In practice, given a lower bound
γB > 0, Bt is constructed by doing a regularization on a subsampled Hessian (e.g., for
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finite-sum objectives) or a sketched Hessian (e.g., for regression objectives), which
can preserve certain second-order information and be obtainedwith less expense.With
Assumption 5, we have the following result.

Lemma 5 Under Assumptions 3 and 5, there exists a deterministic threshold ε̃2 > 0
such that (18) holds for any ε̄t ≤ ε̃2.

Proof See Appendix B.2. ��
We summarize (30), Lemmas 4 and 5 in the next theorem.

Theorem 1 Under Assumptions 3, 4, and 5, there exist deterministic thresholds ν̃,
ε̃ > 0 such that {ν̄t , ε̄t }t generated by Algorithm 1 satisfy ν̄t ≤ ν̃, ε̄t ≥ ε̃. Moreover,
almost surely, there exists an iteration threshold t̄ < ∞, such that ε̄t = ε̄t̄ , ν̄t = ν̄t̄ ,
t ≥ t̄ .

Proof The existence of ν̃ is showed in (30). By Lemmas 4 and 5, and defining ε̃ =
(ε̃1 ∧ ε̃2)/ρ, we show the existence of ε̃. The existence of the iteration threshold t̄ is
ensured by noting that {ν̄t , 1/ε̄t }t are bounded from above; and each update increases
the parameters by at least a factor of ρ > 1. ��

We mention that the iteration threshold t̄ is random for stochastic schemes and
it changes between different runs. However, it always exists. The following anal-
ysis supposes t is large enough such that t ≥ t̄ and ε̄t , ν̄t have stabilized. We
condition our analysis on the σ -algebra Ft̄ , which means that we only consider
the randomness of the generated samples after t̄ + 1 iterations and, by (28), the
parameters ε̄t̄ , ν̄t̄ are fixed. We should point out that, although it is standard to focus
only on the tail of the iteration sequence to show the global convergence (even
for the deterministic case [41, Theorem 18.3]), an important aspect that is missed
by such an analysis is the non-asymptotic guarantees. In particular, we know the
scheme changes the merit parameters for at most log(ν̃ε̄0/(ν̄0ε̃))/ log(ρ) times; how-
ever, how many iterations it spans for all the changes is not answered by our analysis.
Establishing a bound on t̄ in expectation or high probability sense would help us
further understand the efficiency of the scheme. However, since any characteriza-
tion of t̄ is difficult even for deterministic schemes, we leave such a study to the
future. Another missing aspect is the iteration complexity, where we are interested in
the number of iterations to attain an ε-first- or second-order stationary point (we abuse
ε notation here to refer to the accuracy level). The iteration complexity is recently
studied for two StoSQP schemes under very particular setups [5, 17]; none of the
existing works allow either stochastic line search or inequality constraints. We leave
the iteration complexity of our scheme to the future as well.

3.3 Convergence analysis

We conduct the global convergence analysis for Algorithm 1. We prove that
limt→∞ Rt = 0 almost surely, where Rt = ‖(∇xLt , ct ,max{gt ,−λt })‖ is the KKT
residual. We suppose the line search conditions (15), (16), (24), (25) hold. We will
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discuss the sample complexities that ensure these generic conditions in Sect. 3.4. It is
fairly easy to see that all conditions hold for large batch sizes.

Our proof structure closely follows [40]. The analyses are more involved in Lem-
mas 7, 9, 10, 11 and Theorem 3, which account for the differences between equality
and inequality constraints, and account for our relaxations of the feasibility error con-
dition and the increasing sample size requirement of [40]. The analysis in Theorem 5
is new, which strengthens the “liminf" convergence in [40]. The analyses are slightly
adjusted inTheorem4, and the same inLemma8 andTheorem2. The adopted potential
function (or Lyapunov function) is

Θ t
ε̄t̄ ,ν̄t̄ ,η,ω = ωLt

ε̄t̄ ,ν̄t̄ ,η
+ 1− ω

2
ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + 1− ω

2
δ̄t , t ≥ t̄ + 1, (31)

whereω ∈ (0, 1) is a coefficient to be specified later.Wenote that usingLt
ε̄t̄ ,ν̄t̄ ,η

by itself
(i.e.,ω = 1) tomonitor the iteration progress is not suitable for the stochastic setting; it
is possible thatLt

ε̄t̄ ,ν̄t̄ ,η
increaseswhile L̄t

ε̄t̄ ,ν̄t̄ ,η
decreases. In contrast,Θ t

ε̄t̄ ,ν̄t̄ ,η,ω linearly
combines different components and has a composite measure of the progress. For
example, the decrease of Θ t

ε̄t̄ ,ν̄t̄ ,η,ω may come from δ̄t (Lines 22 and 25 of Algorithm
1).

Since parameters ε̄t̄ , ν̄t̄ , η in Lε̄t̄ ,ν̄t̄ ,η are fixed (conditional on Ft̄ ), we denote
Θ t

ω = Θ t
ε̄t̄ ,ν̄t̄ ,η,ω for notational simplicity. In the presentation of theoretical results,

we only track the parameters (β, αmax , κgrad , κ f , pgrad , p f , χgrad , χ f ) that relate to
the line search conditions. In particular, we use C1,C2 . . . and Υ1, Υ2 . . . to denote
deterministic constants that are independent from these parameters, but may depend
on (γB, γH , ΥB, χu, χerr , ρ, η, ε̄0, ν̄0), and thus depend on the deterministic thresh-
olds ε̃ and ν̃. Recall that (γB, γH , ΥB, χu) come from Assumption 5 and (20), while
(χerr , ρ, η, ε̄0, ν̄0) are any algorithm inputs.

The first lemma presents a preliminary result.

Lemma 6 Under Assumptions 3, 4, 5, the following results hold deterministically
conditional on Ft−1.
(a) There exists C1 > 0 such that the following two inequalities hold for any iteration

t ≥ 0 ((a2) also holds for st ), any parameters ε, ν, and any generated sample set
ξ :

(a1)
∥∥∥∇̄Lt

ε,ν,η −∇Lt
ε,ν,η

∥∥∥ ≤ C1
{∥∥∇̄ ft −∇ ft

∥∥ ∨ (R̄t ∧ 1)
} · ∥∥∇̄2 ft − ∇2 ft

∥∥;

(a2)
∣∣∣L̄t

ε,ν,η − Lt
ε,ν,η

∣∣∣ ≤ C1{| f̄t − ft |∨[(R̄t ∨‖∇̄ ft −∇ ft‖)∧1] ·∥∥∇̄ ft −∇ ft
∥∥}.

(b) There exists C2 > 0 such that for any t ≥ 0 and set ξ ,

∥∥∇̄xLt
∥∥ ≤ C2

{
‖∇̄Lt

ε̄t ,ν̄t ,η
‖ + ∥∥(ct , wt

ε̄t ,ν̄t
)
∥∥
}

.

(c) There exists C3 > 0 such that for any t ≥ 0 and set ξ , if (12) is solvable, then

∥∥∥∇̄Lt
ε̄t ,ν̄t ,η

∥∥∥ ≤ C3

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥
.
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Proof See Appendix B.3. ��
The results in Lemma 6 hold deterministically conditional on Ft−1, because the

samples ξ for computing ∇̄Lt
ε̄t ,ν̄t ,η

, ∇̄xLt are supposed to be also given by the state-
ment. The following result suggests that if both the gradient∇Lt

ε̄t̄ ,ν̄t̄ ,η
and the function

evaluations Lt
ε̄t̄ ,ν̄t̄ ,η

, Lst
ε̄t̄ ,ν̄t̄ ,η

are precisely estimated, in the sense that the event Et1∩Et2
happens (cf. (14), (23)), then there is a uniform lower bound on ᾱt to make the Armijo
condition hold.

Lemma 7 For t ≥ t̄ + 1, suppose Et1 ∩ Et2 happens. There exists Υ1 > 0 such that the
t-th step satisfies the Armijo condition (26) (i.e., is a successful step) if

ᾱt ≤ 1− β

Υ1(κgrad + κ f + 1)
.

Proof See Appendix B.4. ��
The next result suggests that, if only the function evaluations Lt

ε̄t̄ ,ν̄t̄ ,η
, Lst

ε̄t̄ ,ν̄t̄ ,η
are

precisely estimated, in the sense that the event Et2 happens, then a sufficient decrease

of L̄t
ε̄t̄ ,ν̄t̄ ,η

implies a sufficient decrease of Lt
ε̄t̄ ,ν̄t̄ ,η

. The proof directly follows [40,
Lemma 6], and thus is omitted.

Lemma 8 For t ≥ t̄ + 1, suppose Et2 happens. If the t-th step satisfies the Armijo
condition (26), then

Lst
ε̄t̄ ,ν̄t̄ ,η

≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T qΔt .

Based on Lemmas 7 and 8, we now establish an error recursion for the potential
functionΘ t

ω in (31). Our analysis is separated into three cases according to the events:
Et1 ∩ Et2, (Et1)c ∩ Et2 and (Et2)c. We will show that Θ t

ω decreases in the case of Et1 ∩ Et2,
while may increase in the other two cases. Fortunately, by letting pgrad and p f be
small, Θ t

ω always decreases in expectation.
We first show in Lemma 9 that Θ t

ω decreases when Et1 ∩ Et2 happens. We note that
the decrease of Θ t

ω exceeds ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 by δ̄t (up to a multiplier).

Lemma 9 For t ≥ t̄ + 1, suppose Et1 ∩ Et2 happens. There exists Υ2 > 0, such that if
ω satisfies

1− ω

ω
≤ β

Υ2(κgradαmax + αmax + 1)2
∧ 1

18(ρ − 1)
, (32)

then

Θ t+1
ω −Θ t

ω ≤ −1

2
(1− ω)

(
1− 1

ρ

)(
ᾱt

∥∥∥∇Lt
ε̄t̄ ,ν̄t̄ ,η

∥∥∥
2 + δ̄t

)
.

Proof See Appendix B.5. ��
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We then show in Lemma 10 that Θ t
ω may increase, if ∇Lt

ε̄t̄ ,ν̄t̄ ,η
is not precisely

estimated (i.e., (Et1)c happens) but Lt
ε̄t̄ ,ν̄t̄ ,η

, Lst
ε̄t̄ ,ν̄t̄ ,η

are precisely estimated (i.e., Et2
happens). The increase is proportional to ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2.

Lemma 10 For t ≥ t̄ + 1, suppose (Et1)c ∩ Et2 happens. Under (32), we have

Θ t+1
ω −Θ t

ω ≤ ρ(1− ω)ᾱt

∥∥∥∇Lt
ε̄t̄ ,ν̄t̄ ,η

∥∥∥
2
.

Proof See Appendix B.6. ��
We finally show in Lemma 11 that Θ t

ω increases and the increase can exceed
ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2, if Lt

ε̄t̄ ,ν̄t̄ ,η
, Lst

ε̄t̄ ,ν̄t̄ ,η
are not precisely estimated. In this case, the

exceeding terms have to be controlled by making use of the condition (25).

Lemma 11 For t ≥ t̄ + 1, suppose (Et2)c happens. Under (32), we have

Θ t+1
ω −Θ t

ω ≤ ρ(1− ω)ᾱt

∥∥∥∇Lt
ε̄t̄ ,ν̄t̄ ,η

∥∥∥
2

+ω
{∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣
}

.

Proof See Appendix B.7. ��
Combining Lemmas 9, 10, 11, we derive the one-step error recursion of Θ t

ω. The
proof directly follows that of [40, Theorem 2] and is omitted.

Theorem 2 (One-step error recursion) For t ≥ t̄ + 1, suppose ω satisfies (32) and
pgrad and p f satisfy

pgrad +
√

(1 ∨ χ f ) · p f

(1− pgrad)(1− p f )
≤ ρ − 1

8ρ

{
1

ρ
∧ 1− ω

ω

}
. (33)

Then

E

[
Θ t+1

ω −Θ t
ω | Ft−1

]

≤ −1

4
(1− pgrad)(1− p f )(1− ω)

(
1− 1

ρ

)(
δ̄t + ᾱt

∥∥∥∇Lt
ε̄t̄ ,ν̄t̄ ,η

∥∥∥
2
)

.

With Theorem 2, we derive the convergence of ᾱt R2
t in the next theorem, where

Rt = ‖(∇xLt , ct ,max{gt ,−λt })‖ is the KKT residual.

Theorem 3 Under the conditions of Theorem 2, lim
t→∞ ᾱt R2

t = 0 almost surely.

Proof See Appendix B.8. ��
Then, we show that the “liminf” of the KKT residuals converges to zero.
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Theorem 4 (“liminf” convergence) Consider Algorithm 1 under Assumptions 3, 4, 5.
Suppose ω satisfies (32) and pgrad , p f satisfy (33). Then, almost surely, we have that
lim inf t→∞ Rt = 0.

Proof See Appendix B.9. ��
Finally, we strengthen the statement in Theorem 4 and complete the global

convergence analysis of Algorithm 1.

Theorem 5 (Global convergence) Under the same conditions of Theorem 4, we have
that

lim
t→∞ Rt = 0, almost surely.

Proof See Appendix B.10. ��
Our analysis generalizes the results of [40] to inequality constrained problems.

The “lim” convergence guarantee in Theorem 5 strengthens the existing “liminf”
convergence guarantee of stochastic line search for both unconstrained problems [44,
Theorem 4.10] and equality constrained problems [40, Theorem 4]. Theorem 5 also
differs from the results in [3, 4, 18], where the authors showed the (liminf) convergence
of the expected KKT residual under a fully stochastic setup. Compared to [3, 4,
18], our scheme does not tune a deterministic sequence that controls the stepsizes
and determines the convergence behavior (i.e., converging to a KKT point or only
its neighborhood). Our scheme tunes two probability parameters pgrad , p f . Seeing
from (32) and (33), the upper bound conditions on pgrad , p f depend on the inputs
(ρ, β, κgrad , αmax ) and a universal constant Υ2. Estimating Υ2 is often difficult in
practice; however, pgrad , p f affect the algorithm’s performance only via the generated
batch sizes, and the batch sizes depend on pgrad , p f only via the logarithmic factors
(see (37) and (41) later). Thus, the algorithm is robust to pgrad , p f . We will also
empirically test the robustness to parameters for Algorithm 1 in Sect. 4. In addition,
(32) and (33) suggest that the larger the parameters (ρ, 1/β, κgrad , αmax ) we use,
the smaller the probabilities pgrad , p f have to be. Such a dependence is consistent
with the general intuition: the algorithm performs more aggressive updates with less
restrictiveArmijo conditionwhen (ρ, 1/β, κgrad , αmax ) are large; thus, amore precise
model estimation in each iteration is desired in this case.

3.4 Discussion on sample complexities

As introduced in Sect. 1, the stochastic line search is performed by generating a batch
of samples in each iteration to have a precise model estimation, which is standard in
the literature [11, 13, 14, 20, 22, 29, 44]. The batch sizes are adaptively controlled
based on the iteration progress. We now discuss the batch sizes |ξ t1| and |ξ t2| to ensure
the generic conditions (15), (16), (24), (25) of Algorithm 1. We show that, if the KKT
residual Rt does not vanish, all the conditions are satisfied by properly choosing |ξ t1|
and |ξ t2|.
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Sample complexity of ξ t1 The samples ξ t1 are used to estimate ∇ ft and ∇2 ft in Step 1
of Algorithm 1. The estimators ∇̄ ft and ∇̄2 ft can be computed with different amount
of samples, and their samples may or may not be independent. Let us suppose ∇̄ ft is
computed by samples ξ t1, while ∇̄2 ft is computed by a subset of samples τ t1 ⊆ ξ t1. The
case where ∇̄ ft and ∇̄2 ft are computed by two disjoint subsets of ξ t1 can be studied
following the same analysis. We define

∇̄ ft = 1

|ξ t1|
∑

ξ∈ξ t1

∇F(xt ; ξ), ∇̄2 ft = 1

|τ t1|
∑

ξ∈τ t1

∇2F(xt ; ξ).

By Lemma 6(a1), we know that (15) holds if, with probability 1− pgrad ,

‖∇̄ ft −∇ ft‖ ≤ O(κgrad ᾱt R̄t ), ‖∇̄2 ft −∇2 ft‖ ≤ O(κgrad ᾱt R̄t/(R̄t ∧ 1)),(34)

where we suppress universal constants (such as the variance of a single sample) in
O(·) notation. By matrix Bernstein inequality [58, Theorem 7.7.1], (34) is satisfied if

|ξ t1| ≥ O

(
log(d/pgrad)

κ2
grad ᾱ

2
t R̄

2
t

)
and |τ t1| ≥ (R̄2

t ∧ 1) · |ξ t1|. (35)

Furthermore, we use the bound E[‖∇̄2 ft −∇2 ft‖2 | Ft−1] ≤ O(log d/|τ t1|) (cf. [58,
(6.1.6)]) and know that (16) holds if

|ξ t1| ≥ O

(
ᾱt log d

χ2
grad δ̄t

)
and |τ t1| ≥ (R̄2

t ∧ 1) · |ξ t1|. (36)

Combining (35) and (36) together, we know that the conditions (15) and (16) are
satisfied if

|ξ t1| ≥ O

(
log(d/pgrad)

κ2
grad ᾱ

2
t R̄

2
t ∧ χ2

grad δ̄t/ᾱt

)
, |τ t1| ≥ (R̄2

t ∧ 1) · |ξ t1|. (37)

Since (16) is imposed only when t − 1 is a successful step, the term χ2
grad δ̄t/ᾱt on the

denominator in (37) can be removed when t − 1 is an unsuccessful step. In contrast to
[40], where the gradient ∇ ft and Hessian ∇2 ft are computed based on the same set
of samples, we sharpen the calculation and realize that the batch size |τ t1| for∇2 ft can
be significantly less than |ξ t1| for ∇ ft . When R̄t gets close to zero, the ratio |τ t1|/|ξ t1|
will also decay to zero.

We mention that R̄t on the right hand side of the condition |ξ t1| in (37) has to be
computed by samples ξ t1. A practical algorithm can first specify ξ t1, then compute
R̄t , and finally check if (37) holds. For example, a While loop can be designed to
gradually increase |ξ t1| until (37) holds (cf. [40, Algorithm 4]). Such a While loop
always terminates in finite time when Rt > 0, because R̄t → Rt as |ξ t1| increases (by
the law of large number) so that the right hand side of (37) does not diverge.
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Sample complexity of ξ t2 The samples ξ t2 are used to estimate ft , fst ,∇ ft ,∇ fst in Step

4 of Algorithm 1. Similar to the discussion above, the estimators f̄t , f̄st and
¯̄∇ ft ,

¯̄∇ fst
can be computed with different amount of samples, and their samples may or may not

be independent. Let us suppose f̄t , f̄st are computed by samples ξ t2, while
¯̄∇ ft ,

¯̄∇ fst
are computed by a subset of samples τ t2 ⊆ ξ t2. We define (similar for f̄st ,

¯̄∇ fst )

f̄t = 1

|ξ t2|
∑

ξ∈ξ t2

F(xt ; ξ), ¯̄∇ ft = 1

|τ t2|
∑

ξ∈τ t2

∇F(xt ; ξ).

By Lemma 6(a2), we know that (24) holds if, with probability 1− p f ,

| f̄t − ft | ∨ | f̄st − fst | ≤ O(−κ f ᾱ
2
t (∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt ),

‖ ¯̄∇ ft − ∇ ft‖ ∨ ‖ ¯̄∇ fst − ∇ fst ‖ ≤ O

⎧
⎨

⎩
−κ f ᾱ

2
t (∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt

{ ¯̄Rt ∨ ¯̄Rst ∨ {−κ f ᾱ
2
t (∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt }1/2

}
∧ 1

⎫
⎬

⎭ ,

(38)

where ¯̄Rt and ¯̄Rst are computed by τ t2 and we use the fact that, for scalars a, b,
(a ∧ 1) ∨ (b ∧ 1) = (a ∨ b) ∧ 1. By Bernstein inequality, (38) is satisfied if

|ξ t2| ≥ O

(
log(d/p f )

κ2
f ᾱ

4
t {(∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt }2

)
,

|τ t2| ≥
({ ¯̄R2

t ∨ ¯̄R2
st ∨ −κ f ᾱ

2
t (∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt } ∧ 1

) · |ξ t2|
= ({ ¯̄R2

t ∨ ¯̄R2
st } · |ξ t2| ∨ {log(d/p f ) · |ξ t2|}1/2

) ∧ |ξ t2|.

(39)

Moreover, byE[| f̄t − ft | | Ft−0.5] ≤ O(1/|ξ t2|) andE[‖ ¯̄∇ ft −∇ ft‖4] ≤ O(1/|τ t2|2),
we can see that (25) holds if

|ξ t2| ≥ O(1/(χ f δ̄
2
t )), |τ t2| ≥

({ ¯̄R2
t ∨ ¯̄R2

st ∨ χ f δ̄
2
t } ∧ 1

) · |ξ t2|. (40)

Combining (39) and (40) together, the conditions (24) and (25) are satisfied if

|ξ t2| ≥ O

(
log(d/p f )

κ2
f ᾱ

4
t {(∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt }2 ∧ χ f δ̄

2
t

)
,

|τ t2| ≥
({ ¯̄R2

t ∨ ¯̄R2
st } · |ξ t2| ∨ {log(d/p f ) · |ξ t2|}1/2

) ∧ |ξ t2|.
(41)

Similar to the complexity (37), (41) suggests that the batch size |τ t2| for ∇ ft , ∇ fst is
significantly less than |ξ t2| for ft , fst , with the ratio |τ t2|/|ξ t2| decaying to zero when
t increases. The denominator in (41) is nonzero if R̄t �= 0 (which is always the case;
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otherwise, we should stop the iteration). In particular, if qΔt = Δ̄t , then

−κ f ᾱ
2
t (∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt

(B.24)≥ κ f ᾱ
2
t (γB ∧ η)

4

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

(B.26)≥ O(κ f ᾱ
2
t R̄

2
t ) > 0;

if qΔt = Δ̂t , then

−κ f ᾱ
2
t (∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt

(20)≥ κ f ᾱ
2
t /χu

∥∥∥∇̄Lt
ε̄t ,ν̄t ,η

∥∥∥
2 (B.28)≥ O(κ f ᾱ

2
t R̄

2
t ) > 0.

3.5 Discussion on computations and limitations

Wenowbriefly discuss the per-iteration computational cost ofAlgorithm1, and present
some limitations and extensions of the algorithm.
Objective evaluations By Sect. 3.4 and the complexities in (37) and (41), Algorithm 1
generates |ξ t1| + |ξ t2| samples in each iteration, and evaluates 2|ξ t2| function values,
|ξ t1| + 2|τ t2| gradients, and |τ t1| Hessians for the objective. To see their orders from
(37) and (41) clearly, let us suppose ᾱt stabilizes at αmax (i.e., the steps are successful)
and δ̄t = O((∇̄Lt

ε̄t ,ν̄t ,η
)T qΔt ) (see (27) for the reasonability). We also replace the

stochastic quantities in (37), (41) by deterministic counterparts and let Rt ≈ Rst .
Then, we can see that |ξ t1| = |τ t2| = O(1/R2

t ), |ξ t2| = O(1/R4
t ), and |τ t1| = O(1).

Thus, the objective evaluations are

function values: O(1/R4
t ), gradients: O(1/R2

t ), Hessians: O(1).

We note that the evaluations for the function values and gradients are increasing as the
iteration proceeds, and the function evaluations are square of the gradient evaluations.
Under the same setup, our evaluation complexities for the functions and gradients
are consistent with the unconstrained stochastic line search [44, Section 2.3] with Rt

replaced by ‖∇ ft‖. Although the augmented Lagrangian merit function requires the
Hessian evaluations, the Hessian complexity is significantly less than that of functions
and gradients, and does not have to increase during the iteration. Such an observation
is missing in the prior work [40].

Constraint evaluations Since the constraints are deterministic, Algorithm 1 has the
same constraint evaluations as deterministic schemes. In particular, the algorithm
evaluates four function values (two for equalities and two for inequalities; and for
each type of constraint, one for current point and one for trial point), four Jacobians,
and two Hessians in each iteration.

Computational cost Same as deterministic SQP schemes, solving Newton system
dominates the computational cost. If we do not consider the potential sparse or block-
diagonal structures that many problems have, solving the system (12) requires O((d+
m + |active set|)3) + O((m + r)3) = O(d3 + m3 + r3) flops. Such computational
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cost is larger than solving a standard SQP system (see [50, (8.9)]) by the extra term
O((m+r)3). However, as explained in Remark 1, the analysis of standard SQP system
relies on the exact Hessian, which is inaccessible in our stochastic setting. When the
SQPdirection is not employed, the backup direction can be obtainedwith O(d+m+r)
flops for the gradient step, O((d + m + r)3) flops for the regularized Newton step,
and between for the truncated Newton step. Such computational cost is standard in
the literature [53, 55], where a safeguarding direction satisfying (20) is required to
minimize the augmented Lagrangian.We should mention that, as the EQP scheme, the
above computations are not very comparable with the IQP schemes. In that case, the
SQP systems include inequality constraints and are more expensive to solve, although
less iterations may be performed.

Limitations of the design Algorithm 1 has few limitations. First, it solves the SQP
systems exactly. In practice, one may apply conjugate gradient (CG) or minimum
residual (MINRES) methods, or apply randomized iterative solvers to solve the sys-
tems inexactly. The inexact direction can reduce the computational cost significantly
[18]. Second, our backup direction does not fully utilize the computations of the SQP
direction. Although our analysis allows any backup direction satisfying (20), and uti-
lizing Newton direction as a backup is standard in the literature [53, 55], a better
choice is to directly modify the SQP direction. Then, we may derive a direction that
has a faster convergence than the gradient direction, and less computations than the
(regularized) Newton direction. We leave the refinements of these two limitations to
the future.

4 Numerical experiments

We implement the following two algorithms on 39 nonlinear problems collected in
CUTEst test set [27]. We select the problems that have a non-constant objective with
less than 1000 free variables.We also require the problems to have at least one inequal-
ity constraint, no infeasible constraints, no network constraints; and require the number
of constraints to be less than the number of variables. The setup of each algorithm is
as follows.

(a) AdapNewton: the adaptive scheme inAlgorithm 1with the safeguarding direction
given by the regularized Newton step. We set the inputs as ᾱ0 = αmax = 1.5,
β = 0.3, κ f = β/(4αmax ) = 0.05, κgrad = χgrad = χ f = δ̄0 = 1, ε̄0 = 10−2,
η = 10−4, pgrad = p f = 0.1, ρ = 2. Here, we set αmax > 1 since a stochastic
scheme can select a stepsize that is greater than one (cf. Fig. 4). β is close to the
middle of the interval (0, 0.5), which is a common range for deterministic schemes.
(ε̄0, δ̄0) are adaptively selected during the iteration, while we prefer a small initial
ε̄0 to run less adjustments on it. κ f is set as the allowed largest value β/(4αmax )

(cf. Algorithm 1); however, the parameters (κgrad , κ f , χgrad , χ f , pgrad , p f ) all
affect the batch sizes and play the same role as the constant C that we study later.
We let η be small so that the last penalty term of (8) is almost negligible, and the
merit function (8) is close to a standard augmented Lagrangian function. We also
test the robustness of the algorithm to three parameters C , κ , χerr . Here, C is the
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constant multiplier of the big “O" notation in (37) and (41) (the variance σ 2 of a
single sample is also absorbed in “O", which we introduce later). κ is a parameter
of the set Tν (κ = 2 in (5)), and χerr is a parameter of the feasibility error condition
(17). Their default values are C = κ = 2 and χerr = 1, while we allow to vary
them in wide ranges: C, κ ∈ {2, 23, 26} and χerr ∈ {1, 10, 102}. When we vary
one parameter, the other two are set as default.

(b) AdapGD: the adaptive scheme in Algorithm 1 with the safeguarding direction
given by the steepest descent step. The setup is the same as (b).

For both algorithms, the initial iterate (x0,μ0,λ0) is specified by theCUTEst package.
The package also provides the deterministic function, gradient andHessian evaluation,
ft ,∇ ft ,∇2 ft , in each iteration. We generate their stochastic counterparts by adding
a Gaussian noise with variance σ 2. In particular, we let f̄t ∼ N( ft , σ 2), ∇̄ ft ∼
N(∇ ft , σ 2(I+11T )), and (∇̄2 ft )i j ∼ N((∇ ft )i j , σ 2).We try four levels of variance:
σ 2 ∈ {10−8, 10−4, 10−2, 10−1}. Throughout the implementation, we let Bt = I (cf.
(12), (21)) and set the iteration budget to be 104. The stopping criterion is

ᾱt‖ qΔt‖ ≤ 10−7 OR Rt ≤ 10−5 OR t ≥ 104.

The former two cases suggest that the iteration converges within the budget. For each
algorithm, each problem, and each setup, we average the results of all convergent runs
among 5 runs. Our code is available at https://github.com/senna1128/Constrained-
Stochastic-Optimization-Inequality.

KKT residualsWe draw the KKT residual boxplots for AdapNewton and AdapGD in
Fig. 1. From the figure, we see that both algorithms are robust to tuning parameters
(C, κ, χerr ). For both algorithms, themedian of the KKT residuals gradually increases
as σ 2 increases, which is reasonable since themodel estimation of each sample is more
noisy when σ 2 is larger. However, the increase of the KKT residuals is mild since,
regardless of σ 2, both methods generate enough samples in each iteration to enforce
the model accuracy conditions (i.e., (15), (16), (24), (25)). Figure1 also suggests that
AdapNewton outperforms AdapGD although the improvement is limited. In fact, the
convergence on a few problems may be improved by utilizing the regularized Newton
step as the backup of the SQP step; however, the SQP stepwill be employed eventually.

Sample sizesWedraw the sample size boxplots forAdapNewton andAdapGD inFig. 2.
From the figure, we see that both methods generate much less samples for estimating
the objectiveHessian compared to estimating the objective value and gradient, between
which the the objective gradient is estimated with less samples than the objective
value. The sample size differences of the three quantities—objective value, gradient,
Hessian—are clearer asσ 2 increases. For afixedσ 2, the sample sizes of different setups
of (C, κ, χerr ) do not vary much. In fact, the parameters κ , χerr do not directly affect
the sample complexities. The parameter C plays a similar role to σ 2 and affects the
sample complexities via changing the multipliers in (37) and (41). However, varying
C from 2 to 64 is marginal compared to varying σ 2 from 10−8 to 10−1. Thus, Fig. 2
again illustrates the robustness of the designed adaptive algorithm.

Moreover, as discussed in Sects. 3.4 and 3.5, the objective value, gradient, and
Hessianhavedifferent sample complexities in each iteration,whichdependondifferent
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Fig. 1 KKT residual boxplots. Each panel corresponds to a setup of (C, κ, χerr ). The default values are
C = κ = 2 and χerr = 1. When we vary one parameter, the other two are set as default. Thus, the three
figures on the left column are the same

powers of the reciprocal of the KKT residual 1/Rt . When σ 2 = 10−8, the small
variance dominates the effect of 1/Rt so that all three quantities can be estimated with
very few samples. When σ 2 = 0.1, the different dependencies of the sample sizes on
1/Rt aremore evident. Overall, Fig. 2 reveals the fact that different objective quantities
can be estimated with different amount of samples. Such an aspect improves the prior
work [40], where the quantities with different sample complexities are estimated based
on the same set of samples, and the effect of the variance σ 2 on the sample complexities
is neglected.

In addition, we draw the trajectories of the sample size ratios. In particular, for both
algorithms, we randomly pick 5 convergent problems and draw two ratio trajectories
for each problem: one is the sample size of the gradient over the sample size of the
value, and one is the sample size of theHessian over the sample size of the gradient.We
take C = 64 as an example. The plot is shown in Fig. 3. From the figure, we note that
the sample size ratios tend to be stabilized at a small level, and the trend ismore evident
when σ 2 = 0.1. As we explained for Fig. 2 above, such an observation is consistent
with our discussions in Sect. 3.4, and illustrates the improvement of our analysis over
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Fig. 2 Sample size boxplots. Each panel corresponds to a setup of (C, κ, χerr ). The default values are
C = κ = 2 and χerr = 1. When we vary one parameter, the other two are set as default. Thus, the three
figures on the left column are the same

[40] for performing the stochastic line search on the augmented Lagrangian merit
function.

Stepsize trajectories Figure4 plots the stepsize trajectories that are selected by stochas-
tic line search. We take the default setup as an example, i.e., C = κ = 2, χerr = 1.
Similar to Fig. 3, for each level of σ 2, we randomly pick 5 convergent problems to
show the trajectories. Although there is no clear trend for the stepsize trajectories due
to stochasticity, we clearly see for both methods that the stepsize can increase signifi-
cantly from a very small value and even exceed 1. This exclusive property of the line
search procedure ensures a fast convergence of the scheme, which is not enjoyed by
many non-adaptive schemes where the stepsize often monotonically decays to zero.

We also examine some other aspects of the algorithm, such as the proportion of
the iterations with failed SQP steps, with unstabilized penalty parameters, or with a
triggered feasibility error condition (17). We also study the effect of a multiplicative
noise, and implement the algorithm on an inequality constrained logistic regression
problem. Due to the space limit, these auxiliary experiments are provided in Appendix
D.
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Fig. 3 Sample size ratio trajectories (C = 64). Each plot has four rows, from top to bottom, corresponding
to σ 2 = 10−8, 10−4, 10−2, 10−1. Each plot has ten lines with two colors. The five lines with the same
color correspond to the five convergent problems

Fig. 4 Stepsize trajectories. Each plot has four rows, from top to bottom, corresponding to σ 2 =
10−8, 10−4, 10−2, 10−1. Each plot has five lines, corresponding to the five problems

5 Conclusion

This paper studied inequality constrained stochastic nonlinear optimization prob-
lems. We designed an active-set StoSQP algorithm that exploits the exact augmented
Lagrangian merit function. The algorithm adaptively selects the penalty parameters
of the augmented Lagrangian, and selects the stepsize via stochastic line search. We
proved that the KKT residuals converge to zero almost surely, which generalizes and
strengthens the result for unconstrained and equality constrained problems in [40, 44]
to enable wider applications.

The extension of this work includes studying more advanced StoSQP schemes. As
mentioned in Sect. 3.5, the proposed StoSQP scheme has to solve the SQP system
exactly. We note that, recently, [18] designed a StoSQP scheme where an inexact
Newton direction is employed, and [3] designed a StoSQP scheme to relax LICQ
condition. It is still open how to design related schemes to achieve relaxations with
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inequality constraints. In addition, some advanced SQP schemes solve inequality con-
strained problems by mixing IQP with EQP: one solves a convex IQP to obtain an
active set, and then solves an EQP to obtain the search direction. See the “SQP+"
scheme in [37] for example. Investigating this kind of mixed scheme with a stochas-
tic objective is promising. Besides SQP, there are other classical methods for solving
nonlinear problems that can be exploited to deal with stochastic objectives, such as the
augmented Lagrangian methods and interior point methods. Different methods have
different benefits and all of them deserve studying in the setup where the model can
only be accessed with certain noise.

Finally, asmentioned in Sect. 3.2, non-asymptotic analysis and iteration complexity
of the proposed schemearemissing in our global analysis. Further, it is known for deter-
ministic setting that differentiablemerit functions can overcome theMaratos effect and
facilitate a fast local rate, while non-smooth merit functions (without advanced local
modifications) cannot. This raises the questions: what is the local rate of the proposed
StoSQP, and is the local rate better than the one using non-smooth merit functions?
To answer these questions, we need a better understanding on the local behavior of
stochastic line search. Such a local study would complement the established global
analysis, recognize the benefits of the differentiable merit functions, and bridge the
understanding gap between stochastic SQP and deterministic SQP.
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A Proofs of Sect. 2

A.1 Proof of Lemma 2

Throughout the proof, we denote g� = g(x�), w�
ε,ν = wε,ν(x�,λ�), ∇L� =

∇L(x�,μ�,λ�) (similar for c�, a�
ν , q�

ν etc.) to be the quantities evaluated at
(x�,μ�,λ�) ∈ Tν ×R

m ×R
r . Since w�

ε,ν = 0, we know from Lemma 1 that g� ≤ 0,
λ� ≥ 0, (λ�)T g� = 0. This implies that diag2(g�)λ� = 0. Furthermore, by c� = 0,
w�

ε,ν = 0, a�
ν, η, ε > 0, and ∇μ,λL�

ε,ν,η = 0, we obtain from (10) that

(
M�

11 M�
12

M�
21 M�

22

)(
J �

G�

)
∇xL� = 0. (A.1)
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Recalling the definition of M� in (9), we multiply the matrix ∇T
x L�((J �)T (G�)T )

from the left and obtain

0
(A.1)= ∇T

x L�
(
(J �)T (G�)T

) ( J �(J �)T J �(G�)T

G�(J �)T G�(G�)T + diag2(g�)

)(
J �

G�

)
∇xL�

=
∥∥∥
(
(J �)T J � + (G�)T G�

)
∇xL�

∥∥∥
2 + ∥∥diag(g�)G�∇xL�

∥∥2 .

This implies
(
(J �)T J � + (G�)T G�

)∇xL� = 0. Multiplying ∇xL� from the left, we
have J �∇xL� = 0 andG�∇xL� = 0. Plugging into (10) and noting that∇xL�

ε,ν,η = 0,
w�

ε,ν = 0, c� = 0, diag2(g�)λ� = 0, and q�
ν , a�

ν, ε > 0, we obtain ∇xL� = 0. This
shows (x�,μ�,λ�) satisfies (4), and we complete the proof.

A.2 Proof of Lemma 3

We require the following two preparation lemmas.

Lemma 12 Let I(x�) be the active set defined in (3), and I+(x�,λ�) ={
i ∈ I(x�) : λ�

i > 0
}
. For any ε, ν > 0, there exists a compact set Xε,ν × Λε,ν  

(x�,λ�) depending on (ε, ν), such that

I+(x�,λ�) ⊆ Aε,ν(x,λ) ⊆ I(x�), ∀(x,λ) ∈ Xε,ν ×Λε,ν.

Proof See Appendix A.3. ��
Lemma 13 Under Assumption 1, there exist a compact set X  x� and a con-
stant γH ∈ (0, 1] such that M(x) � γH I for any x ∈ X, where M(x) is defined in
(9). Furthermore, for any ε, ν > 0, there exists a compact set Xε,ν ×Λε,ν  (x�,λ�)

depending on (ε, ν), such that

(
J (x)

GAε,ν (x,λ)(x)

) (
J (x)T GAε,ν (x,λ)(x)T

) � γH I , ∀(x,λ) ∈ Xε,ν ×Λε,ν.

Proof See Appendix A.4. ��
We now prove Lemma 3. We suppress the evaluation point and the iteration

index t . Let X ×M × Λ ⊆ Tν × R
m × R

r be any compact set around (x�,μ�,λ�)

(independent of ε, ν, η) and suppose (x,μ,λ) ∈ X ×M × Λ. By Lemma 13, we
know there exist a constant γH ∈ (0, 1] and, for any ε, ν > 0, a compact subset
Xε,ν ×Λε,ν ⊆ X×Λ such that for any point in the subset,

M � γH I and

(
J
Ga

) (
J T GT

a

) � γH I . (A.2)

Thus, by Assumption 2, we know from [41, Lemma 16.1] that Ka is invertible, and
thus (12) is solvable. Furthermore, we can also show that (see [40, Lemma 1] for a
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simple proof)

‖K−1
a ‖ ≤ 7Υ 2

B/(γBγH ). (A.3)

With the above two results, we conduct our analysis. Throughout the proof, we use
Υ1, Υ2 . . . to denote generic upper bounds of functions evaluated in the setX×M×Λ,
which are independent of (ε, ν, η, γB , γH ). As they are upper bounds, without loss of
generality, Υi ≥ 1, ∀i .

We start from (∇L(1)
ε,ν,η)

TΔ and suppose (x,μ,λ) ∈ Xε,ν ×M × Λε,ν ⊆ X ×
M×Λ, where Xε,ν and Λε,ν come from Lemma 13. We have

(∇L(1)
ε,ν,η)

TΔ
(13)= ΔxT∇xL+ ηΔxT

(
Q1 Q2

) ( J∇xL
G∇xL+Πc(diag2(g)λ)

)
+ 1

ε
ΔxT J T c

+ 1

εqν

ΔxT GTwε,ν +
(

Δμ

Δλ

)T (
c

wε,ν

)

+ η

(
Δμ

Δλ

)T (
M11 M12

M21 M22

)(
J∇xL

G∇xL+Πc(diag2(g)λ)

)

(12b)= ΔxT∇xL+ 1

ε
ΔxT J T c + 1

εqν

ΔxT GTwε,ν +
(

Δμ

Δλ

)T (
c

wε,ν

)

− η

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥
2

(7)
(11)= ΔxT (∇xL− GT

c λc)+ 1

ε
ΔxT J T c + 1

εqν

ΔxT GT
a ga +

(
c
ga

)T (
Δμ

Δλa

)

− εqνΔλT
c λc − η

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥
2

(12a)= −ΔxT BΔx +
(

c
ga

)T (
Δ̃μ+Δμ

Δ̃λa +Δλa

)
− 1

ε
‖c‖2 − 1

εqν

‖ga‖2 − εqνΔλT
c λc

− η

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥
2

. (A.4)

Since (x,μ,λ) ∈ X×M×Λ, there exists Υ1 ≥ 1 such that ‖(Q1 Q2)‖ ≤ Υ1. Thus,
we have

∥∥∥∥

(
Δμ

Δλ

)∥∥∥∥
(12b)=

∥∥∥∥M
−1
(

J∇xL
G∇xL+Πc(diag2(g)λ)

)
+ M−1

(
QT

1
QT

2

)
Δx

∥∥∥∥
(A.2)≤ 1

γH

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥+
Υ1

γH
‖Δx‖

≤ 2Υ1

γH

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
(since 1 ≤ Υ1). (A.5)
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Moreover, we note that

⎧
⎨

⎩

⎛

⎝
J
Ga

Gc

⎞

⎠( J T GT
a Gc

)+
⎛

⎝
0 0 0
0 diag2(ga) 0
0 0 diag2(gc)

⎞

⎠

⎫
⎬

⎭

⎛

⎝
Δ̃μ

Δ̃λa
−λc

⎞

⎠

(12a)= −
⎛

⎝
J
Ga

Gc

⎞

⎠ BΔx −
⎛

⎝
J∇xL
Ga∇xL

Gc∇xL+ diag2(gc)λc

⎞

⎠+
⎛

⎝
0

diag2(ga)Δ̃λa
0

⎞

⎠

(12a)= −
⎛

⎝
J
Ga

Gc

⎞

⎠ BΔx −
⎛

⎝
J∇xL
Ga∇xL

Gc∇xL+ diag2(gc)λc

⎞

⎠−
⎛

⎝
0

diag(ga)diag(Δ̃λa)GaΔx
0

⎞

⎠ .

By (x,μ,λ) ∈ X×M×Λ, there exist Υ2, Υ3, Υ4 ≥ 1 such that

∥∥∥(J T GT )

∥∥∥ ≤ Υ2, ‖Δ̃λa‖
(12a)≤

∥∥∥∥∥∥
K−1
a

⎛

⎝
∇xL− GT

c λc

c
ga

⎞

⎠

∥∥∥∥∥∥

(A.3)≤ Υ3

γHγB
,

and

‖diag(ga)diag(Δ̃λa)Ga‖ ≤ Υ4

γHγB
.

Combining the above three displays,

∥∥∥∥∥∥

⎛

⎝
Δ̃μ

Δ̃λa
−λc

⎞

⎠

∥∥∥∥∥∥

(A.2)≤ 1
γH

(
Υ2‖BΔx‖ + Υ4

γH γB
‖Δx‖

)
+ 1

γH

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥

≤ Υ2ΥB+Υ4+1
γ 2
H γB

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
(since γH ∨ γB ≤ 1),

(A.6)

where the second inequality also uses ‖B‖ ≤ ΥB by Assumption 2. Combining (A.4),
(A.5), (A.6), and using 0 < qν ≤ ν and γH ∨ γB ≤ 1,

(∇L(1)
ε,ν,η)

TΔ

(A.4)≤ −ΔxT BΔx +
∥∥∥∥

(
c
ga

)∥∥∥∥

{∥∥∥∥

(
Δ̃μ

Δ̃λa

)∥∥∥∥+
∥∥∥∥

(
Δμ

Δλa

)∥∥∥∥

}
− 1

ε(1 ∨ ν)

∥∥∥∥

(
c
ga

)∥∥∥∥
2

+ εν‖Δλc‖‖λc‖ − η

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥
2

(A.5)
(A.6)≤ −ΔxT BΔx + 2Υ1 + Υ2ΥB + Υ4 + 1

γ 2
HγB

∥∥∥∥

(
c
ga

)∥∥∥∥

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
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− 1

ε(1 ∨ ν)

∥∥∥∥

(
c
ga

)∥∥∥∥
2

+ εν · 2Υ1(Υ2ΥB + Υ4 + 1)

γ 3
HγB

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

− η

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥
2

≤ −ΔxT BΔx + Υ5

γ 2
HγB

∥∥∥∥

(
c
ga

)∥∥∥∥

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
− 1

ε(1 ∨ ν)

∥∥∥∥

(
c
ga

)∥∥∥∥
2

+ ενΥ5

γ 3
HγB

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

− η

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥
2

, (A.7)

where the last inequality holds by defining

Υ5 = 2Υ1 + Υ2ΥB + Υ4 + 1 ∨ 2Υ1(Υ2ΥB + Υ4 + 1).

To deal with ΔxT BΔx in (A.7), we decompose Δx as Δx = Δu + Δv where
Δu ∈ Image

{
(J T GT

a )
}
and Δv ∈ Ker

{
(J T GT

a )T
}
. Note that

−
(
c
ga

)
=
(

J
Ga

)
Δx =

(
J
Ga

)
Δu !⇒ Δμ = − (J T GT

a

) {( J
Ga

) (
J T GT

a

)}−1 ( c
ga

)

(A.2)!⇒ ‖Δμ‖ ≤ 1√
γH

∥∥∥∥

(
c
ga

)∥∥∥∥ . (A.8)

Thus, by Assumption 2,

−ΔxT BΔx

= −ΔvT BΔv − 2ΔuT BΔv −ΔuT BΔu ≤ −γB‖Δv‖2 + 2ΥB‖Δv‖‖Δu‖ + ΥB‖Δu‖2

≤ −3γB

4
‖Δv‖2 + (ΥB + 4Υ 2

B

γB
)‖Δu‖2 = −3γB

4
‖Δx‖2 + (ΥB + 4Υ 2

B

γB
+ 3γB

4
)‖Δu‖2

(A.8)≤ −3γB

4
‖Δx‖2 + (ΥB + 4Υ 2

B

γB
+ 3γB

4
)
1

γH

∥∥∥∥

(
c
ga

)∥∥∥∥
2

≤ −3γB

4
‖Δx‖2 + Υ6

γHγB

∥∥∥∥

(
c
ga

)∥∥∥∥
2

, (A.9)

where the last inequality holds with Υ6 = ΥB + 4Υ 2
B + 1 by noting that γB ≤ 1.

Combining the above display with (A.7) and using the following Young’s inequality,

Υ5

γ 2
HγB

∥∥∥∥

(
c
ga

)∥∥∥∥

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
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≤
(γB

8
∧ η

4

)
∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

+ 2Υ 2
5

γ 4
Hγ 2

B(γB ∧ η)

∥∥∥∥

(
c
ga

)∥∥∥∥
2

,

we have

(∇L(1)
ε,ν,η)

TΔ ≤ −3γB

4
‖Δx‖2 +

{(γB

8
∧ η

4

)
+ ενΥ5

γ 3
HγB

}∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

+
{

Υ6

γHγB
+ 2Υ 2

5

γ 4
Hγ 2

B(γB ∧ η)
− 1

ε(1 ∨ ν)

}∥∥∥∥

(
c
ga

)∥∥∥∥
2

− η

∥∥∥∥

(
J∇xL

G∇xL+Πc(diag2(g)λ)

)∥∥∥∥
2

≤ −
{

γB ∧ η

2
+
(γB

8
∧ η

4

)
− ενΥ5

γ 3
HγB

}∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

−
{

1

ε(1 ∨ ν)
− Υ6

γHγB
− 2Υ 2

5

γ 4
Hγ 2

B(γB ∧ η)

}∥∥∥∥

(
c
ga

)∥∥∥∥
2

.

Therefore, as long as

γB

8
∧ η

4
≥ ενΥ5

γ 3
HγB

⇐! 1

ε
≥ 8νΥ5

γ 3
HγB(γB ∧ η)

, (A.10a)

1

ε(1 ∨ ν)
− Υ6

γHγB
− 2Υ 2

5

γ 4
Hγ 2

B(γB ∧ η)
≥ 0 ⇐! 1

ε
≥ (1 ∨ ν)(2Υ 2

5 + Υ6)

γ 4
Hγ 2

B(γB ∧ η)
, (A.10b)

we have

(∇L(1)
ε,ν,η)

TΔ ≤ −γB ∧ η

2

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

.

Thus, letting Υ = {
8Υ5 ∨ (2Υ 2

5 + Υ6)
}
/γ 4

H and noting that (A.10a) is implied by
(A.10b), we complete the first part of the statement.

We now prove the second part of the statement. By (13), (x,μ,λ) ∈ X×M×Λ

(and hence (A.12)), and the fact that aν ≥ ν/2, there exists Υ7 ≥ 1 such that

(∇L(2)
ε,ν,η)

TΔ
(13)= 3‖wε,ν‖2

2εqνaν

ΔxT GT l + ηΔxT Q2,adiag
2(ga)λa + ‖wε,ν‖2

εaν

ΔλTλ

+ η(ΔμT ΔλT )

(
M12,a
M22,a

)
diag2(ga)λa

≤ Υ7

{
1

εν2

(
‖ga‖2 + ε2ν2‖λc‖2

)
‖Δx‖ + η‖ga‖2‖Δx‖

+ 1

εν

(
‖ga‖2 + ε2ν2‖λc‖2

)
‖Δλ‖ + η‖ga‖2‖(Δμ,Δλ)‖

}
.

123



S. Na et al.

Since ε ≤ 1 by (A.10) (noting that Υ ≥ 1 ≥ γH ∨ γB), we simplify the above display
by

(∇L(2)
ε,ν,η)

TΔ

≤ Υ7

{
1 ∨ ν2

εν(1 ∧ ν)
(‖ga‖2 + ‖λc‖2)(‖Δx‖ + ‖Δλ‖)+√

2η‖ga‖2‖(Δx,Δμ,Δλ)‖
}

≤ √
2Υ7

{
1 ∨ ν2

εν(1 ∧ ν)
(‖ga‖2 + ‖λc‖2)‖(Δx,Δλ)‖ + η‖ga‖2‖(Δx,Δμ,Δλ)‖

}

≤ 2
√
2Υ7

(
1 ∨ ν

ε(1 ∧ ν2)
∨ η

)
(‖ga‖2 + ‖λc‖2)‖(Δx,Δμ,Δλ)‖.

Noting that

∥∥∥∥∥∥

⎛

⎝
Δx
Δμ

Δλ

⎞

⎠

∥∥∥∥∥∥
≤ ‖Δx‖ +

∥∥∥∥

(
Δμ

Δλ

)∥∥∥∥
(A.5)≤ ‖Δx‖ + 2Υ1

γH

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

≤ 3Υ1

γH

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
(since γH ≤ 1 ≤ Υ1),

and

∥∥∥∥

(
ga
λc

)∥∥∥∥ ≤ ‖ga‖ + ‖λc‖
(12a)
(A.6)≤ Υ2‖Δx‖ + Υ2ΥB + Υ4 + 1

γ 2
HγB

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

≤ Υ2(ΥB + 1)+ Υ4 + 1

γ 2
HγB

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
(since γH ∨ γB ≤ 1),

we define Υ8 = 6
√
2Υ7Υ1(Υ2(ΥB + 1)+ Υ4 + 1) and have

(∇L(2)
ε,ν,η)

TΔ ≤ Υ8

γ 3
HγB

(
1 ∨ ν

ε(1 ∧ ν2)
∨ η

)
(‖ga‖ + ‖λc‖)

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

.

(A.11)

By Lemma 12, we can find a compact subset of Xε,ν ×Λε,ν depending only on (ε, ν)

such that Aε,ν ⊆ I(x�) and Ac
ε,ν ⊆ {I+(x�,λ�)}c; thus

‖ga‖ ≤ ‖gI(x�)‖ and ‖λc‖ ≤ ‖λ(I+(x�,λ�))c‖.
Furthermore, we let Xε,ν,η × Λε,ν,η ⊆ Xε,ν × Λε,ν be a compact subset depending
additionally on η, such that

‖gI(x�)‖ ≤ γ 3
HγB

Υ8

(
ε(1 ∧ ν2)

1 ∨ ν
∧ 1

η

)
γB ∧ η

8
,
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‖λ(I+(x�,λ�))c‖ ≤
γ 3
HγB

Υ8

(
ε(1 ∧ ν2)

1 ∨ ν
∧ 1

η

)
γB ∧ η

8
.

Then, combining (A.11) with the above two displays leads to

(∇L(2)
ε,ν,η)

TΔ ≤ γB ∧ η

4

∥∥∥∥∥∥

⎛

⎝
Δx
J∇xL

G∇xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

.

This completes the proof.

A.3 Proof of Lemma 12

Let X×Λ ⊆ Tν × R
r be any compact set around (x�,λ�). For any (x,λ) ∈ X×Λ,

we have

qν(x,λ)
(6)≥ ν

2
· 1

1+maxλ∈Λ ‖λ‖2 =: κν. (A.12)

For any i ∈ I+(x�,λ�), we know g�
i = 0 and λ�

i > 0. Thus, g�
i + εκνλ

�
i > 0.

Consider the ball Bx
i = {x : ‖x − x�‖ ≤ ri } ∩ X and Bλ

i = {λ : ‖λ− λ�‖ ≤ ri } ∩Λ.
For a sufficiently small ri (depending on ε and ν), we have (x�,λ�) ∈ Bx

i ×Bλ
i ⊆ X×Λ

and, for any (x,λ) ∈ Bx
i × Bλ

i ,

gi (x) ≥ −εκνλi
(A.12)≥ −εqν(x,λ)λi .

The first inequality is due to the continuity of gi . This implies i ∈ Aε,ν(x,λ). There-
fore, for any (x,λ) in the compact set ∩i∈I+(x�,λ�)Bx

i × Bλ
i , we have I+(x�,λ�) ⊆

Aε,ν(x,λ). The argument Aε,ν(x,λ) ⊆ I(x�) can be proved in the same way.

A.4 Proof of Lemma 13

By Assumption 1, there exists a compact set X  x� small enough such that
(J T (x) GT

I(x�)(x)) has full column rank for all x ∈ X . Furthermore, for any

(a, b) ∈ R
m+r , we note that

0 = (aT bT )M(x)

(
a
b

)
!⇒ bIc(x�) = 0

!⇒ ‖J T (x)a + GT
I(x�)(x)bI(x�)‖ = 0 !⇒ (a, b) = 0, (A.13)

where the first implication is due to diag(g(x))b = 0 and Ic(x�) ⊆ Ic(x) (since X
is small), and the second implication is due to ‖J T (x)a + GT (x)b‖ = 0. Therefore,
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M(x) is invertible. Moreover, for any A ⊆ I(x�), we have

σmin

{(
J (x)

GA(x)

) (
J T (x) GT

A(x)
)} ≥ σmin

{(
J (x)

GI(x�)(x)

)(
J T (x) GT

I(x�)(x)
)}

> 0, (A.14)

where σmin(·) denotes the least singular value of a matrix. By (A.13), (A.14), and
the compactness of X , we know that there exists γH ∈ (0, 1] such that

M(x) � γH I ,

(
J (x)

GA(x)

) (
J T (x) GT

A(x)
) � γH I , ∀x ∈ X and A ⊆ I(x�).

(A.15)

To show the second part of the statement, we apply Lemma 12, and know that there
exists a compact set Xε,ν × Λε,ν ⊆ X × R

r such that A(x,λ) ⊆ I(x�), ∀(x,λ) ∈
Xε,ν × Λε,ν . Combining this fact with (A.15), we complete the proof.

B Proofs of Sect. 3

B.1 Proof of Lemma 4

It suffices to show that there exists a threshold ε̃ > 0 such that for any samples ξ1,
any parameter ν ∈ [ν̄0, ν̃], where ν̄0 is the fixed initial input of Algorithm 1 and ν̃ is
defined in (30), and any point (x,μ,λ) ∈ X×M×Λ with x ∈ Tν , if ε ≤ ε̃, then

∥∥(c(x),wε,ν(x,λ)
)∥∥ ≤ χerr ·

∥∥∇̄Lε,ν,η(x,μ,λ)
∥∥ ,

where ∇̄Lε,ν,η is computed using samples in ξ1 and η, χerr > 0 are any given posi-
tive constants. Note that everything above is deterministic; that is, our analysis does not
depend on a specific iteration sequence {(xt ,μt ,λt )}t . Thus, the threshold ε̃ is deter-
ministic. Let us prove the above statement by contradiction.Without loss of generality,
we suppose χerr ≤ 1.

Suppose the statement is false, then there exist a sequence {ε j , ξ
j
1 , ν j } j and an

evaluation point sequence {(x j ,μ j ,λ j )} j ∈ X × M × Λ such that ν j ∈ [ν̄0, ν̃],
x j ∈ Tν j , ε j ↘ 0 and

‖∇̄L j
ε j ,ν j ,η

‖ < 1/χerr · ‖(c j ,w j
ε j ,ν j

)‖, ∀ j ≥ 0, (B.1)

where ∇̄L j
ε j ,ν j ,η is computed using samples ξ

j
1 , and η and χerr are fixed constants.

By the compactness condition, we suppose (x j ,μ j ,λ j ) → (x̃, μ̃, λ̃) ∈ X×M×Λ

and ν j → ν as j →∞ (otherwise, we can consider a convergent subsequence, which

must exist). Noting that c j = c(x j ) and w
j
ε j ,ν j = max{g(x j ),−ε j qν j (x j ,λ j )λ j } are

bounded due to the compactness of (x j ,μ j ,λ j ) and the boundedness of ν j and ε j ,
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we have from (B.1) that

ε j‖∇̄xL j
ε j ,ν j ,η

‖ → 0 as j →∞. (B.2)

Moreover, since x j ∈ Tν j , we have
∑r

i=1 max{(g j )i , 0}3 ≤ ν j/2. Taking limit j →
∞ leads to x̃ ∈ Tν . Furthermore, by (10), (B.2), and the convergence of (x j ,μ j ,λ j ),
we get

J T (x̃)c(x̃)+ 1

qν(x̃, λ̃)
GT (x̃)max{g(x̃), 0} + 3‖max{g(x̃), 0}‖2

2qν(x̃, λ̃)aν(x̃)
G(x̃)T l(x̃) = 0,

which is further simplified as

∑

i :ci (x̃)�=0
ci (x̃)∇ci (x̃)+

∑

i :gi (x̃)>0

{
1

qν(x̃, λ̃)
+ 3‖max{g(x̃), 0}‖2gi (x̃)

2qν(x̃, λ̃)aν(x̃)

}
gi (x̃)∇gi (x̃) = 0.

(B.3)

Suppose x̃ ∈ X\Ω and let Ic(x̃) = {i : 1 ≤ i ≤ m, ci (x̃) �= 0}, and Ig(x̃) = {i :
1 ≤ i ≤ r , gi (x̃) > 0}. By Assumption 4, the set

{
z ∈ R

d : ci (x̃)∇T ci (x̃)z < 0, i ∈ Ic(x̃) and ∇T gi (x̃)z < 0, i ∈ Ig(x̃)
}

is nonempty. By the Gordan’s theorem [26], for any ai , bi ≥ 0 such that

∑

i∈Ic(x̃)

ai ci (x̃)∇ci (x̃)+
∑

i∈Ig(x̃)

bi∇gi (x̃) = 0, (B.4)

we have ai = bi = 0. Comparing (B.4) with (B.3), and noting that the coefficients
of (B.3) are all positive (since x̃ ∈ Tν), we immediately get the contradiction. Thus,
x̃ ∈ Ω .

By Assumption 4 and following the same reasoning as (A.13), M(x̃) is invertible
and, particularly, is positive definite. Thus, Mj is invertible for large enough j . Let us
suppose ‖M−1

j ‖ ≤ ΥM for some ΥM > 0. Further, by direct calculation, we have

diag(g j )λ j = diag(λ j )w
j
ε j ,ν j

− 1

ε j q
j
ν j

(diag(g j )− diag(w j
ε j ,ν j

))w j
ε j ,ν j

. (B.5)

Thus, we can obtain

(
J j
G j

)
∇̄xL j

ε j ,ν j ,η

(10)=
(
J j
G j

)
∇̄xL j + η

(
J j
G j

) (
Q1, j Q2, j

) ( J j ∇̄xL j

G j ∇̄xL j + diag2(g j )λ j

)

+ 1

ε j

(
J j
G j

)(
J Tj

GT
j

q j
ν j

+ 3GT
j l j (w

j
ε j ,ν j )

T

2q j
ν j a

j
ν j

)(
c j

w
j
ε j ,ν j

)
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(B.5)=
{
I + η

(
J j
G j

) (
Q1, j Q2, j

)}( J j ∇̄xL j

G j ∇̄xL j + diag2(g j )λ j

)

+ 1

ε j

{(
J j
G j

)(
J Tj

GT
j

q j
ν j

+ 3GT
j l j (w

j
ε j ,ν j )

T

2q j
ν j a

j
ν j

)

+
⎛

⎝
0 0

0
diag2(g j )−diag(g j )diag(w

j
ε j ,ν j )

q j
ν j

− ε jdiag(g j )diag(λ j )

⎞

⎠
}(

c j
w

j
ε j ,ν j

)

=: H1, j

(
J j ∇̄xL j

G j ∇̄xL j + diag2(g j )λ j

)
+ 1

ε j
H2, j

(
c j

w
j
ε j ,ν j

)
. (B.6)

Let us focus on H2, j . We know that

H2, j =
(

J j J Tj J jGT
j /q

j
ν j

G j J Tj

{
G jGT

j + diag2(g j )
}

/q j
ν j

)
+

⎛

⎜⎜⎜⎜⎝

0 3
2q j

ν j a
j
ν j

J j GT
j l j (w

j
ε j ,ν j )

T

0

3

2q
j
ν j

a
j
ν j

G j GT
j l j (w

j
ε j ,ν j )

T

− diag(g j )diag(w
j
ε j ,ν j

)

q
j
ν j

−ε j diag(g j )diag(λ j )

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ΔH2, j

= Mj

(
I 0
0 1

q j
ν j

I

)
+ΔH2, j .

Recalling that σmin(·) denotes the least singular value of a matrix, by the
Weyl’s inequality,

σmin(H2, j ) ≥ σmin

{
Mj

(
I 0
0 1

q j
ν j

I

)}
− ‖ΔH2, j‖ ≥ σmin(Mj )

1 ∨ q j
ν j

− ‖ΔH2, j‖.

Since ε j → 0 and w
j
ε j ,ν j → 0 as j → ∞ (because x̃ ∈ Ω), we know ΔH2, j → 0.

In addition, since Mj → M(x̃) with M(x̃) being positive definite, and q j
ν j ≤ ν j = ν̃,

we know for some constant ϕ > 0 and sufficiently large j ,

σmin(H2, j ) ≥ ϕ. (B.7)

Now we bound the first term in (B.6). By (10) and the invertibility of Mj , we know

∥∥∥∥

(
J j ∇̄xL j

G j ∇̄xL j + diag2(g j )λ j

)∥∥∥∥
(10)= 1

η

∥∥∥∥∥∥
M−1

j

⎧
⎨

⎩

(
∇̄μL j

ε j ,ν j ,η

∇̄λL j
ε j ,ν j ,η

)
−
⎛

⎝
c j

w
j
ε j ,ν j +

‖w j
ε j ,ν j ‖2
ε j a

j
ν j

λ j

⎞

⎠

⎫
⎬

⎭

∥∥∥∥∥∥

≤ ΥM

η

{(
∇̄μL j

ε j ,ν j ,η

∇̄λL j
ε j ,ν j ,η

)
+
∥∥∥∥

(
j

w
j
ε j ,ν j

)∥∥∥∥+
‖w j

ε j ,ν j ‖2‖λ j‖
ε j a

j
ν j

}

(B.1)≤ ΥM

η

{(
1+ 1

χerr

)∥∥∥∥

(
c j

w
j
ε j ,ν j

)∥∥∥∥+
‖w j

ε j ,ν j ‖2‖λ j‖
ε j a

j
ν j

}
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(6)≤ 2ΥM

χerrη

{∥∥∥∥

(
c j

w
j
ε j ,ν j

)∥∥∥∥+
‖w j

ε j ,ν j ‖2‖λ j‖
ε jν j

}

(also use χerr ≤ 1)

≤ 2ΥM

χerrηε j

{
ε j +

‖w j
ε j ,ν j ‖‖λ j‖

ν j

}∥∥∥∥

(
c j

w
j
ε j ,ν j

)∥∥∥∥ . (B.8)

Moreover, by the compactness condition, we have ‖H1, j‖ ≤ Υ1 and ‖(J Tj GT
j )‖ ≤ Υ2

for some constants Υ1, Υ2 > 0. Combining (B.7), (B.8) with (B.6), we have

ε jΥ2

∥∥∥∇̄xL j
ε j ,ν j ,η

∥∥∥ ≥ ε j

∥∥∥∥

(
J j
G j

)
∇̄xL j

ε j ,ν j ,η

∥∥∥∥

(B.6)≥
∥∥∥∥H2, j

(
c j

w
j
ε j ,ν j

)∥∥∥∥− ε j

∥∥∥∥H1, j

(
J j ∇̄xL j

G j ∇̄xL j + diag2(g j )λ j

)∥∥∥∥

(B.7)≥ ϕ ·
∥∥∥∥

(
c j

w
j
ε j ,ν j

)∥∥∥∥− ε jΥ1

∥∥∥∥

(
J j ∇̄xL j

G j ∇̄xL j + diag2(g j )λ j

)∥∥∥∥

(B.8)≥
{

ϕ − 2Υ1ΥM

χerrη

(
ε j +

‖w j
ε j ,ν j ‖‖λ j‖

ν j

)}∥∥∥∥

(
c j

w
j
ε j ,ν j

)∥∥∥∥

=: (ϕ − ϕ j )‖(c j ,w j
ε j ,ν j

)‖.

Noting that ϕ j → 0 as j →∞ (since w
j
ε j ,ν j → 0 and ε j → 0), we obtain for large

j that

ε jΥ2/χerr · ‖(c j ,w j
ε j ,ν j

)‖ (B.1)≥ ε jΥ2‖∇̄xL j
ε j ,ν j ,η

‖ ≥ ϕ/2 · ‖(c j ,w j
ε j ,ν j

)‖,

which cannot hold because ε j ↘ 0. This is a contradiction, and thus we complete the
proof.

B.2 Proof of Lemma 5

The proof closely follows the proof of Lemma 3 in Appendix A.2 We suppress the
iteration t and assume ξ t1 is any sample set. Our analysis is independent of the sample
set ξ t1 for computing ∇̄Lt

ε̄t ,ν̄t ,η
, and we will see that the threshold is independent of t .

Like Lemma 3, we use Υ1, Υ2, . . . to denote generic constants that are independent of
(ε̄t , ν̄t , η, γB, γH ), whose existence is ensured by the compactness of the iterates.

Following the derivation of (A.4), we have

(∇̄L(1)
ε̄,ν̄,η)

T Δ̄ = −Δ̄xT BΔ̄x +
(

c
ga

)T
( ¯̃

Δμ+ Δ̄μ
¯̃

Δλa + Δ̄λa

)
− 1

ε̄
‖c‖2 − 1

ε̄qν̄

‖ga‖2

−ε̄qν̄ Δ̄λT
c λc − η

∥∥∥∥

(
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

)∥∥∥∥
2

, (B.9)
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where (
¯̃

Δμ,
¯̃

Δλa) is the dual solution of (12a) with ∇xL being replaced by ∇̄xL.
Following the derivation of (A.5), there exists Υ1 > 0 such that

∥∥∥∥

(
Δ̄μ

Δ̄λ

)∥∥∥∥ ≤
Υ1

γH

∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
. (B.10)

Following the derivation of (A.6), there exists Υ2 > 0 such that

∥∥∥∥∥∥∥

⎛

⎜⎝

¯̃
Δμ
¯̃

Δλa
−λc

⎞

⎟⎠

∥∥∥∥∥∥∥
≤ Υ2

γ 2
HγB

∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥
. (B.11)

Following the derivation of (A.7) by combining (B.9), (B.10), and (B.11), and noting
that 0 < qν̄ ≤ ν̄ ≤ ν̃ where ν̃ is defined in (30), there exists Υ3 > 0 such that

(∇̄L(1)
ε̄,ν̄,η)

T Δ̄ ≤ −Δ̄xT BΔ̄x + Υ3

γ 2
HγB

∥∥∥∥

(
c
ga

)∥∥∥∥

∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

− 1

ε̄(1 ∨ ν̃)

∥∥∥∥

(
c
ga

)∥∥∥∥
2

+ ε̄ν̃Υ3

γ 3
HγB

∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

− η

∥∥∥∥

(
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

)∥∥∥∥
2

. (B.12)

Following the derivation of (A.9), there exists Υ4 > 0 such that

−Δ̄xT BΔ̄x ≤ −3γB

4
‖Δ̄x‖2 + Υ4

γHγB

∥∥∥∥

(
c
ga

)∥∥∥∥
2

.

Combining the above display with (B.12) and using the following Young’s inequality

Υ3

γ 2
HγB

∥∥∥∥

(
c
ga

)∥∥∥∥

∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

≤
(γB

8
∧ η

4

)
∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

+ 2Υ 2
3

γ 4
Hγ 2

B(γB ∧ η)

∥∥∥∥

(
c
ga

)∥∥∥∥
2

,
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we have

(∇̄L(1)
ε,ν,η)

T Δ̄ ≤ −3γB

4
‖Δ̄x‖2 +

{(γB

8
∧ η

4

)
+ ε̄ν̃Υ3

γ 3
HγB

}∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

+
{

Υ4

γHγB
+ 2Υ 2

3

γ 4
Hγ 2

B(γB ∧ η)
− 1

ε̄(1 ∨ ν̃)

}∥∥∥∥

(
c
ga

)∥∥∥∥
2

− η

∥∥∥∥

(
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

)∥∥∥∥
2

≤ −
{

γB ∧ η

2
+
(γB

8
∧ η

4

)
− ε̄ν̃Υ3

γ 3
HγB

}∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

−
{

1

ε̄(1 ∨ ν̃)
− Υ4

γHγB
− 2Υ 2

3

γ 4
Hγ 2

B(γB ∧ η)

}∥∥∥∥

(
c
ga

)∥∥∥∥
2

.

Therefore, as long as

γB

8
∧ η

4
≥ ε̄ν̃Υ3

γ 3
HγB

⇐! 1

ε̄
≥ 8ν̃Υ3

γ 3
HγB(γB ∧ η)

,

1

ε̄(1 ∨ ν̃)
− Υ4

γHγB
− 2Υ 2

3

γ 4
Hγ 2

B(γB ∧ η)
≥ 0 ⇐! 1

ε̄
≥ (1 ∨ ν̃)(2Υ 2

3 + Υ4)

γ 4
Hγ 2

B(γB ∧ η)
,

(B.13)

we have

(∇̄L(1)
ε,ν,η)

T Δ̄ ≤ −γB ∧ η

2

∥∥∥∥∥∥

⎛

⎝
Δ̄x
J ∇̄xL

G∇̄xL+Πc(diag2(g)λ)

⎞

⎠

∥∥∥∥∥∥

2

.

Thus, we can define

ε̃2 := γ 4
Hγ 2

B(γB ∧ η)

(2Υ 2
3 + 8Υ3 + Υ4)(ν̃ ∨ 1)

,

which implies (B.13) and completes the proof.

B.3 Proof of Lemma 6

We let C1,C2, . . . be generic constants that are independent of
(β, αmax , κgrad , κ f , pgrad , p f , χgrad , χ f ). These constants may not be consistent
with the constants C1,C2,C3 in the statement. However, the existence of C1,C2,C3
in the statement follows directly from our proof.
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(a1)By the definition of∇Lε,ν,η in (10), all quantities depending on ε, ν do not depend
on the batch samples. We have

∇̄Lt
ε,ν,η − ∇Lt

ε,ν,η

(10)=
⎛

⎝
∇̄xLt −∇xLt

0
0

⎞

⎠+ η

⎛

⎝
Q̄1,t Q̄2,t

M11,t M12,t

M21,t M22,t

⎞

⎠
(

Jt ∇̄xLt

Gt ∇̄xLt + diag2(gt )λt

)

− η

⎛

⎝
Q1,t Q2,t

M11,t M12,t

M21,t M22,t

⎞

⎠
(

Jt∇xLt

Gt∇xLt + diag2(gt )λt

)

=
⎛

⎝
∇̄xLt −∇xLt

0
0

⎞

⎠+ η

⎛

⎝
Q1,t Q2,t

M11,t M12,t

M21,t M22,t

⎞

⎠
(

Jt (∇̄xLt − ∇xLt )

Gt (∇̄xLt −∇xLt )

)

+ η

⎛

⎝
Q̄1,t − Q1,t Q̄2,t − Q2,t

0 0
0 0

⎞

⎠
(

Jt ∇̄xLt

Gt ∇̄xLt + diag2(gt )λt

)
.

By Assumption 3, the definition (9), and the facts that ∇̄xLt − ∇xLt = ∇̄ ft −
∇ ft and ∇̄2

xLt − ∇2
xLt = ∇̄2 ft − ∇2 ft , there exists C1 > 0 (depending on η) such

that

‖∇̄Lt
ε,ν,η −∇Lt

ε,ν,η‖
≤ C1‖∇̄ ft − ∇ ft‖ + C1‖∇̄2 ft − ∇2 ft‖(‖∇̄xLt‖ + ‖diag2(gt )λt‖).

Since ‖diag2(gt )λt‖ ≤ C2‖max{gt ,−λt }‖ for some constant C2 > 0, we apply the
definition of R̄t in (14) and the uniform boundedness of R̄t , and know that the above
inequality leads to the statement.
(a2) By the definition of Lε,ν,η in (8), all quantities depending on ε, ν do not depend
on the batch samples. We have

L̄t
ε,ν,η − Lt

ε,ν,η

(8)= L̄t − Lt + η

2

(
Jt (∇̄xLt −∇xLt )

Gt (∇̄xLt − ∇xLt )

)T (
Jt (∇̄xLt +∇xLt )

Gt (∇̄xLt +∇xLt )+ 2diag2(gt )λt

)
.

By Assumption 3 and the facts that L̄t − Lt = f̄t − ft and ‖diag2(gt )λt‖ ≤
C2‖max{gt ,−λt }‖, there exists C3 > 0 (depending on η) such that

|L̄t
ε,ν,η − Lt

ε,ν,η| ≤ C3| f̄t − ft | + C3‖∇̄ ft −∇ ft‖(Rt + R̄t ).

Using Rt ≤ R̄t + ‖∇̄ ft −∇ ft‖ ≤ 2(R̄t ∨ ‖∇̄ ft −∇ ft‖), we prove the statement.
(b) By (10) and Assumption 3, there exists C4 > 0 such that

‖∇̄xLt‖ ≤ ‖∇̄xLt
ε̄t ,ν̄t ,η

‖ + C4

{∥∥∥∥

(
Jt ∇̄xLt

Gt ∇̄xLt

)∥∥∥∥+ ‖diag2(gt )λt‖
}
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+ C4

ε̄t (1 ∧ qtν̄t )

∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥+
C4

ε̄t qtν̄t a
t
ν̄t

‖wt
ε̄t ,ν̄t

‖2.

By Theorem 1, we have

ε̄0 ≥ ε̄t ≥ ε̃, ν̃ ≥ ν̄t ≥ qtν̄t
(A.12)≥ κν̄t ≥ κν̄0 , ν̃ ≥ ν̄t ≥ atν̄t ≥

ν̄t

2
≥ ν̄0

2
.

(B.14)

Thus, there exists C5 > 0 such that

‖∇̄xLt‖ ≤ ‖∇̄xLt
ε̄t ,ν̄t ,η

‖ + C5

{∥∥∥∥

(
Jt ∇̄xLt

Gt ∇̄xLt

)∥∥∥∥+ ‖diag2(gt )λt‖ +
∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥+ ‖wt
ε̄t ,ν̄t

‖2
}

.

Moreover, there exists C6 > 0 such that

‖diag2(gt )λt‖ ≤ C6

∥∥∥∥

(
gta
λtc

)∥∥∥∥ ≤
C6

ε̄t qtν̄t ∧ 1

∥∥∥∥

(
gta

−ε̄t qtν̄tλtc

)∥∥∥∥
(B.14)≤ C6

ε̃κν̄0 ∧ 1
‖wt

ε̄t ,ν̄t
‖,

(B.15)

and

‖wt
ε̄t ,ν̄t

‖ Lem. 14≤ C6(ε̄t q
t
ν̄t
∨ 1) ≤ C6(ε̄0ν̃ ∨ 1). (B.16)

Combining the above three displays, there exists C7 > 0 such that

‖∇̄xLt‖ ≤ ‖∇̄xLt
ε̄t ,ν̄t ,η

‖

+C7

{∥∥∥∥

(
Jt ∇̄xLt

Gt ∇̄xLt

)∥∥∥∥+
∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥

}
. (B.17)

We deal with the middle term. We know that

(
M11,t M12,t
M21,t M22,t

)(
Jt ∇̄xLt

Gt ∇̄xLt

)

(10)= 1

η

(
∇̄μLt

ε̄t ,ν̄t ,η∇̄λLt
ε̄t ,ν̄t ,η

)
− 1

η

⎛

⎝
ct

wt
ε̄t ,ν̄t

+ ‖wt
ε̄t ,ν̄t

‖2
ε̄t atν̄t

λt

⎞

⎠

−
(
M12,t
M22,t

)
diag2(gt )λt . (B.18)

Multiplying ((Jt ∇̄xLt )
T (Gt ∇̄xLt )

T ) on both sides, there exists C8 > 0 such that

‖J Tt Jt ∇̄xLt + GT
t Gt ∇̄xLt‖2 ≤

(
Jt ∇̄xLt

Gt ∇̄xLt

)T (
M11,t M12,t
M21,t M22,t

)(
Jt ∇̄xLt

Gt ∇̄xLt

)
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(B.18),(B.14)−(B.16)≤ C8‖∇̄xLt‖
{∥∥∥∥∥

(
∇̄μLt

ε̄t ,ν̄t ,η∇̄λLt
ε̄t ,ν̄t ,η

)∥∥∥∥∥+
∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥

}
. (B.19)

Furthermore,

∥∥∥∥

(
Jt ∇̄xLt

Gt ∇̄xLt

)∥∥∥∥
2

≤ ‖∇̄xLt‖ · ‖J Tt Jt ∇̄xLt + GT
t Gt ∇̄xLt‖

(B.19)≤ √
C8‖∇̄xLt‖ 3

2

{∥∥∥∥∥

(
∇̄μLt

ε̄t ,ν̄t ,η∇̄λLt
ε̄t ,ν̄t ,η

)∥∥∥∥∥+
∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥

} 1
2

.

Combining the above display with (B.17), there exists C9 > 0 such that

‖∇̄xLt‖ ≤ C9

{∥∥∥∇̄Lt
ε̄t ,ν̄t ,η

∥∥∥+
∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥

}
+ C1/4

9 ‖∇̄xLt‖ 3
4

{∥∥∥∇̄Lt
ε̄t ,ν̄t ,η

∥∥∥+
∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥

} 1
4

≤ 5C9

4

{∥∥∥∇̄Lt
ε̄t ,ν̄t ,η

∥∥∥+
∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥

}
+ 3

4
‖∇̄xLt‖,

where the second inequality is due to Young’s inequality a3/4b1/4 ≤ 3a/4 + b/4.
Thus,

‖∇̄xLt‖ ≤ 5C9

{∥∥∥∇̄Lt
ε̄t ,ν̄t ,η

∥∥∥+
∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥

}
.

(c) By (10) and using (B.14), (B.15) and (B.16), there exists C10 > 0 such that

∥∥∥∇̄Lt
ε̄t ,ν̄t ,η

∥∥∥ ≤ ‖∇̄xLt‖ + C10

∥∥∥∥

(
Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

)∥∥∥∥+ C10

∥∥∥∥

(
ct

wt
ε̄t ,ν̄t

)∥∥∥∥

≤ ‖∇̄xLt‖ + C10

∥∥∥∥

(
Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

)∥∥∥∥+ C10(ε̄t q
t
ν̄t
∨ 1)

∥∥∥∥∥∥

⎛

⎝
ct
gta
λtc

⎞

⎠

∥∥∥∥∥∥

(B.14)≤ ‖∇̄xLt‖ + C10

∥∥∥∥

(
Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

)∥∥∥∥+ C10(ε̄0ν̃ ∨ 1)

∥∥∥∥∥∥

⎛

⎝
ct
gta
λtc

⎞

⎠

∥∥∥∥∥∥
. (B.20)

For ∇̄xLt , we have the following decomposition

∇̄xLt =
{
I − (J Tt GT

ta )

{(
Jt
Gta

)
(J Tt GT

ta )

}−1 ( Jt
Gta

)}

︸ ︷︷ ︸
Pt
JG

∇̄xLt + (I − Pt
JG)∇̄xLt .
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By Assumptions 3 and 5, we know ‖(I − Pt
JG)∇̄xLt‖ ≤ C11‖(Jt ∇̄xLt ,Gta ∇̄xLt )‖

for some constant C11 > 0. Furthermore, for some constant C12 > 0, we also have

‖Pt
JG∇̄xLt‖ (12a)=

∥∥∥Pt
JG

{
BtΔ̄xt + J Tt

¯̃
Δμt + GT

ta
¯̃

Δλta − GT
tcλtc

}∥∥∥

≤ ‖Pt
JG BtΔ̄xt‖ + ‖Pt

JGG
T
tcλtc‖

(B.11)≤ C12

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥
.

Combining the last two displays, we have

‖∇̄xLt‖ ≤ (C11 + C12)

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥
. (B.21)

Moreover, there exists C13 > 0 such that

∥∥∥∥

(
ct
gta

)∥∥∥∥
(12a)≤ C13‖Δ̄xt‖, ‖λtc‖

(B.11)≤ C13

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥
.

(B.22)

Combining (B.20), (B.21), and (B.22) together, we complete the proof.

B.4 Proof of Lemma 7

Analogous to the proof of Lemma 6, we only track the constants
(β, αmax , κgrad , κ f , pgrad , p f , χgrad , χ f ). We use Υ1, Υ2, . . . to denote generic
constants that are independent from (β, αmax , κgrad , κ f , pgrad , p f , χgrad , χ f ). Note
thatΥ1 in the proof may not be consistent withΥ1 in the statement, while the existence
of Υ1 in the statement follows directly from our proof.

Let Υε,ν,η be the upper bound of the generalized Hessian of Lε,ν,η in the compact
set (X ∩ Tθν) × M × Λ (see [50] for the definition of the generalized Hessian).
In particular, Υε,ν,η = sup(X∩Tθν )×M×Λ ‖∂2Lε,ν,η‖. Without loss of generality, we

suppose ε̃ in Theorem 1 satisfies ε̃ = ε̄0/ρ
ĩ for some integer ĩ . Then, with definition

j̃ in (30), we let

Υε̃,ν̃,η = max{Υε,ν,η : ε = ε̄0/ρ
i , ν = ρ j ν̄0, 1 ≤ i ≤ ĩ, 1 ≤ j ≤ j̃}

and have Υε̄t̄ ,ν̄t̄ ,η ≤ Υε̃,ν̃,η. Noting that xst , xt ∈ Tν̄t̄ , we apply the Taylor expansion
and have

Lst
ε̄t̄ ,ν̄t̄ ,η

≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt (∇Lt
ε̄t̄ ,ν̄t̄ ,η

)T qΔt + Υε̃,ν̃,ηᾱ
2
t

2
‖ qΔt‖2

= Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt (∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T qΔt + ᾱt (∇Lt
ε̄t̄ ,ν̄t̄ ,η

− ∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T qΔt + Υε̃,ν̃,ηᾱ
2
t

2
‖ qΔt‖2
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≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt (∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T qΔt + ᾱt‖ qΔt‖ · Δ̄(∇Lt
η)+

Υε̃,ν̃,ηᾱ
2
t

2
‖ qΔt‖2

(14)≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt (∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T qΔt + κgrad ᾱ
2
t · R̄t‖ qΔt‖ + Υε̃,ν̃,ηᾱ

2
t

2
‖ qΔt‖2. (B.23)

We consider the following two cases.
Case 1, qΔt = Δ̄t Combining (18) with (19), we have

(∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T Δ̄t ≤ −γB ∧ η

4

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

. (B.24)

By (B.10), there exists Υ1 > 0 such that

‖Δ̄t‖ ≤ Υ1

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥
. (B.25)

Furthermore, we have

R̄t
Lem. 14≤ 1

ε̄t̄ q
t
ν̄t̄
∧ 1

∥∥∥∥∥∥

⎛

⎝
∇̄xLt

ct
wt

ε̄t̄ ,ν̄t̄

⎞

⎠

∥∥∥∥∥∥

(B.14)≤ 1

ε̃κν̄0 ∧ 1

∥∥∥∥∥∥∥∥

⎛

⎜⎜⎝

∇̄xLt

ct
gta

−ε̄t̄ q
t
ν̄t̄

λtc

⎞

⎟⎟⎠

∥∥∥∥∥∥∥∥
≤ ε̄0ν̃ ∨ 1

ε̃κν̄0 ∧ 1

∥∥∥∥∥∥∥∥

⎛

⎜⎜⎝

∇̄xLt

ct
gta
λtc

⎞

⎟⎟⎠

∥∥∥∥∥∥∥∥
,

and thus, by (B.21), (B.22), there exists Υ2 > 0 such that

R̄t ≤ Υ2

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥
. (B.26)

Plugging (B.25) and (B.26) into (B.23), we have

Lst
ε̄t̄ ,ν̄t̄ ,η

≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt (∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T Δ̄t

+
{

Υ1Υ2κgrad + Υε̃,ν̃,ηΥ
2
1

2

}
ᾱ2
t

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

(B.24)≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt (∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T Δ̄t −
{

Υ1Υ2κgrad + Υε̃,ν̃,ηΥ
2
1

2

}
4ᾱ2

t

γB ∧ η
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t

≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt
{
1− Υ3

(
κgrad + 1

)
ᾱt
}
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t , (B.27)

where Υ3 = 4Υ1Υ2/(γB ∧ η) ∨ 2Υ 2
1 Υε̃,ν̃,η/(γB ∧ η).

Case 2, qΔt = Δ̂t By Lemma 6(b), Lemma 14, (17), and (B.14), there exists Υ4 > 0
such that

R̄t ≤ Υ4‖∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

‖. (B.28)
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Plugging (20) and (B.28) into (B.23), we have

Lst
ε̄t̄ ,ν̄t̄ ,η

≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt (∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T Δ̂t + Υ4χuκgrad ᾱ
2
t · ‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + Υε̃,ν̃,ηχ

2
u ᾱ2

t

2
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2

(20)≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt (∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T Δ̂t −
(

Υ4χ
2
u κgrad + Υε̃,ν̃,ηχ

3
u

2

)
ᾱ2
t · (∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t

≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt
{
1− Υ5

(
κgrad + 1

)
ᾱt
}
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t , (B.29)

where Υ5 = Υ4χ
2
u ∨ Υε̃,ν̃,ηχ

3
u /2.

Combining (B.27) and (B.29), and letting Υ6 = Υ3 ∨ Υ5 ∨ 2, we obtain

Lst
ε̄t̄ ,ν̄t̄ ,η

≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt
{
1− Υ6(κgrad + 1)ᾱt

}
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T qΔt . (B.30)

By the event Et2, we have

L̄st
ε̄t̄ ,ν̄t̄ ,η

(23)≤ Lst
ε̄t̄ ,ν̄t̄ ,η

− κ f ᾱ
2
t (∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T qΔt

(B.30)≤ Lt
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt
{
1− Υ6

(
κgrad + 1

)
ᾱt − κ f ᾱt

}
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T qΔt

(23)≤ L̄t
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt
{
1− Υ6

(
κgrad + 1

)
ᾱt − 2κ f ᾱt

}
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T qΔt

≤ L̄t
ε̄t̄ ,ν̄t̄ ,η

+ ᾱt
{
1− Υ6

(
κgrad + κ f + 1

)
ᾱt
}
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T qΔt (since Υ6 ≥ 2).

Therefore, as long as

1− Υ6
(
κgrad + κ f + 1

)
ᾱt ≥ β ⇐⇒ ᾱt ≤ 1− β

Υ6(κgrad + κ f + 1)
,

we have

L̄st
ε̄t̄ ,ν̄t̄ ,η

≤ L̄t
ε̄t̄ ,ν̄t̄ ,η

+ ᾱtβ(∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T qΔt .

This completes the proof.

B.5 Proof of Lemma 9

Algorithm 1 has three types of steps: a reliable step (Line 19), an unreliable step
(Line 21), and an unsuccessful step (Line 24). For each type of step, qΔt = Δ̄t or
qΔt = Δ̂t . Thus, we analyze in the following six cases.
Case 1a, reliable step, qΔt = Δ̄t By Lemma 8, we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t

(27)≤ 4ᾱtβ

9
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t − δ̄t

18
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(B.24)≤ − ᾱtβ(γB ∧ η)

9

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

− δ̄t

18
.

(B.31)

Note that

‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖ ≤ Δ̄(∇Lt
η)+ ‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖ (14)≤ κgrad ᾱt R̄t + ‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖.

Combining the above display with (B.26), Lemma 6(c), and using ᾱt ≤ αmax , there
exists Υ1 > 0 such that

‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖ ≤ Υ1(κgradαmax + 1)

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥
. (B.32)

Combining the above inequality with (B.31), we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ − ᾱtβ(γB ∧ η)

18

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

− ᾱtβ(γB ∧ η)

18Υ 2
1 (κgradαmax + 1)2

‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − δ̄t

18
.

By Line 20 of Algorithm 1, δ̄t+1 − δ̄t = (ρ − 1)δ̄t . By the Taylor expansion and
ᾱt+1 ≤ ρᾱt (Line 18), there exists Υ2 > 0 such that

ᾱt+1‖∇Lt+1
ε̄t̄ ,ν̄t̄ ,η

‖2 − ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 ≤ 2ρᾱt

{
‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + Υ 2

ε̃,ν̃,ηᾱ
2
t ‖Δ̄t‖2

}

(B.25)≤ 2ρᾱt

⎧
⎪⎨

⎪⎩
‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + Υ 2

ε̃,ν̃,ηα
2
maxΥ2

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2
⎫
⎪⎬

⎪⎭
.

(B.33)

Combining the above two displays with (31), we obtain

Θ t+1
ω −Θ t

ω ≤ −
(

ωβ(γB ∧ η)

18
− (1− ω)ρΥ 2

ε̃,ν̃,η
α2maxΥ2

)
ᾱt

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt
Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

−
(

ωβ(γB ∧ η)

18Υ 2
1 (κgradαmax + 1)2

− (1− ω)ρ

)
ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2

−
(

ω

18
− (1− ω)(ρ − 1)

2

)
δ̄t .

Let

ωβ(γB ∧ η)

36
≥ (1− ω)ρΥ 2

ε̃,ν̃,ηα
2
maxΥ2 ⇐⇒ ω

1− ω
≥ 36ρΥ 2

ε̃,ν̃,η
α2
maxΥ2

β(γB ∧ η)
,
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ωβ(γB ∧ η)

36Υ 2
1 (κgradαmax + 1)2

≥ (1− ω)ρ ⇐⇒ ω

1− ω
≥ 36ρΥ 2

1 (κgradαmax + 1)2

β(γB ∧ η)
,

(B.34)

ω

36
≥ (1− ω)(ρ − 1)

2
⇐⇒ ω

1− ω
≥ 18(ρ − 1),

which is further implied by

ω

1− ω
≥ Υ3(κgradαmax + αmax + 1)2

β
∨ 18(ρ − 1) (B.35)

if we define Υ3 = (36ρΥ 2
ε̃,ν̃,η

Υ2 ∨ 36ρΥ 2
1 )/(γB ∧ η). Then, we obtain

Θ t+1
ω −Θ t

ω ≤ −ωβ(γB ∧ η)

36
· ᾱt

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

− ωβ(γB ∧ η)

36Υ 2
1 (κgradαmax + 1)2

· ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − ω

36
δ̄t . (B.36)

Case 2a, unreliable step, qΔt = Δ̄t By Lemma 8, we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t

(B.24)≤ − ᾱtβ(γB ∧ η)

8

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

(B.32)≤ − ᾱtβ(γB ∧ η)

16

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

− ᾱtβ(γB ∧ η)

16Υ 2
1 (κgradαmax + 1)2

‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2.

By Line 22 of Algorithm 1, δ̄t+1− δ̄t = −(1− 1/ρ)δ̄t , while (B.33) still holds. Thus,
under (B.35), we have

Θ t+1
ω −Θ t

ω ≤ −ωβ(γB ∧ η)

36
· ᾱt

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

− ωβ(γB ∧ η)

36Υ 2
1 (κgradαmax + 1)2

· ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − 1

2
(1− ω)

(
1− 1

ρ

)
δ̄t .

(B.37)
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Case 3a, unsuccessful step, qΔt = Δ̄t In this case, (xt+1,μt+1,λt+1) = (xt ,μt ,λt ),
ᾱt+1 = ᾱt/ρ and δ̄t+1 = δ̄t/ρ. Thus, we immediately have

Θ t+1
ω −Θ t

ω ≤ −1

2
(1− ω)

(
1− 1

ρ

)(
ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + δ̄t

)
. (B.38)

Combining (B.36), (B.37), (B.38), and noting that

ωβ(γB ∧ η)

36Υ 2
1 (κgradαmax + 1)2

≥ 1− ω

2

(
1− 1

ρ

)
⇐! ω

1− ω
≥ 18Υ 2

1 (κgradαmax + 1)2

β(γB ∧ η)
,

ω

36
≥ 1− ω

2

(
1− 1

ρ

)
⇐! ω

1− ω
≥ 18(ρ − 1),

with the right hand side being implied by (B.34) and further by (B.35), we know
(B.38) holds for all three cases with qΔt = Δ̄t .
Case 1b, reliable step, qΔt = Δ̂t By Lemma 8, we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t

(27)≤ ᾱtβ

3
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t − δ̄t

6

(20)≤ − ᾱtβ

3χu
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 − δ̄t

6
.

Note that

‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖ ≤ Δ̄(∇Lt
η)+ ‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖ (14)≤ κgrad ᾱt R̄t + ‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖.

Combining the above display with (B.28) and using ᾱt ≤ αmax , there exists Υ4 > 0
such that

‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖ ≤ Υ4(κgradαmax + 1)‖∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

‖. (B.39)

Combining the above three displays,

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ − ᾱtβ

6χu
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 − ᾱtβ

6Υ 2
4 χu(κgradαmax + 1)2

‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − δ̄t

6
.

By Line 20 of Algorithm 1, δ̄t+1 − δ̄t = (ρ − 1)δ̄t . By the Taylor expansion and
ᾱt+1 ≤ ρᾱt (Line 18),

ᾱt+1‖∇Lt+1
ε̄t̄ ,ν̄t̄ ,η

‖2 − ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 ≤ 2ρᾱt

{
‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + Υ 2

ε̃,ν̃,ηᾱ
2
t ‖Δ̂t‖2

}

(20)≤ 2ρᾱt

{
‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + Υ 2

ε̃,ν̃,ηχ
2
uα2

max‖∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

‖2
}

. (B.40)
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Combining the above two displays,

Θ t+1
ω −Θ t

ω ≤−
(

ωβ

6χu
− (1− ω)ρΥ 2

ε̃,ν̃,ηχ
2
uα2

max

)
ᾱt‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2

−
(

ωβ

6Υ 2
4 χu(κgradαmax + 1)2

− (1− ω)ρ

)
ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2

−
(

ω

6
− (1− ω)(ρ − 1)

2

)
δ̄t .

Let

ωβ

12χu
≥ (1− ω)ρΥ 2

ε̃,ν̃,ηχ
2
uα2

max ⇐⇒
ω

1− ω
≥ 12ρΥ 2

ε̃,ν̃,η
χ3
uα2

max

β
,

ωβ

12Υ 2
4 χu(κgradαmax + 1)2

≥ (1− ω)ρ ⇐⇒ ω

1− ω
≥ 12ρΥ 2

4 χu(κgradαmax + 1)2

β
,

ω

12
≥ 1− ω

2
(ρ − 1) ⇐⇒ ω

1− ω
≥ 6(ρ − 1), (B.41)

which is implied by (B.35) if we re-define Υ3 ← Υ3 ∨ 12ρΥ 2
ε̃,ν̃,η

χ3
u ∨ 12ρΥ 2

4 χu .
Then,

Θ t+1
ω −Θ t

ω ≤ − ωβ

12χu
· ᾱt‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2

− ωβ

12Υ 2
4 χu(κgradαmax + 1)2

· ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − ω

12
δ̄t .

(B.42)

Case 2b, unreliable step, qΔt = Δ̂t By Lemma 8, we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t

(20)≤ − ᾱtβ

2χu
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2

(B.39)≤ − ᾱtβ

4χu
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 − ᾱtβ

4Υ 2
4 χu

(
κgradαmax + 1

)2 ‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2.

By Line 22 of Algorithm 1, δ̄t+1− δ̄t = −(1− 1/ρ)δ̄t , while (B.40) still holds. Thus,
under (B.35), we have

Θ t+1
ω −Θ t

ω ≤ − ωβ

12χu
· ᾱt‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2

− ωβ

12Υ 2
4 χu(κgradαmax + 1)2

· ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − 1

2
(1− ω)

(
1− 1

ρ

)
δ̄t .

(B.43)
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Case 3b, unsuccessful step, qΔt = Δ̂t In this case, (B.38) holds. Combining (B.42),
(B.43), (B.38), and noting that

ωβ

12Υ 2
4 χu(κgradαmax + 1)2

≥ 1− ω

2

(
1− 1

ρ

)
⇐! ω

1− ω
≥ 6Υ 2

4 χu(κgradαmax + 1)2

β
,

ω

12
≥ 1− ω

2

(
1− 1

ρ

)
⇐! ω

1− ω
≥ 6(ρ − 1),

as implied by (B.41) and further by (B.35), we know (B.38) holds for all three cases
with qΔt = Δ̂t . In summary, under (B.35), (B.38) holds for all cases. This completes
the proof.

B.6 Proof of Lemma 10

The proof follows the proof of Lemma 9, except that (B.32) and (B.39) do not hold
due to (Et1)c. We consider the following six cases.
Case 1a, reliable step, qΔt = Δ̄t By Lemma 8, we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t

(27)≤ 4ᾱtβ

9
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t − δ̄t

18

(B.24)≤ − ᾱtβ(γB ∧ η)

9

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

− δ̄t

18
.

By Line 20 of Algorithm 1, δ̄t+1 − δ̄t = (ρ − 1)δ̄t , while (B.33) still holds. By the
condition of ω in (B.34) and (B.35), we know that under (32) (which implies (B.35)),

Θ t+1
ω −Θ t

ω ≤ −ωβ(γB ∧ η)

36
· ᾱt

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

+ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − ω

36
δ̄t .

(B.44)

Case 2a, unreliable step, qΔt = Δ̄t By Lemma 8, we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t

(B.24)≤ − ᾱtβ(γB ∧ η)

8

∥∥∥∥

(
Δ̄xt

Jt ∇̄xLtGt ∇̄xLt +Πc(diag2(gt )λt )

)∥∥∥∥
2

.
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By Line 22 of Algorithm 1, δ̄t+1− δ̄t = −(1− 1/ρ)δ̄t , while (B.33) still holds. Thus,
under (32),

Θ t+1
ω −Θ t

ω ≤ −ωβ(γB ∧ η)

36
· ᾱt

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

+ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − 1

2
(1− ω)

(
1− 1

ρ

)
δ̄t . (B.45)

Case 3a, unsuccessful step, qΔt = Δ̄t In this case, (B.38) holds. Combining (B.44),
(B.45), and (B.38), we have

Θ t+1
ω −Θ t

ω ≤ ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2. (B.46)

Case 1b, reliable step, qΔt = Δ̂t By Lemma 8, we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t

(27)≤ ᾱtβ

3
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t − δ̄t

6

(20)≤ − ᾱtβ

3χu
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 − δ̄t

6
.

By Line 20 of Algorithm 1, δ̄t+1 − δ̄t = (ρ − 1)δ̄t , while (B.40) still holds. By the
condition of ω in (B.41), we know that under (32) (which implies (B.41)),

Θ t+1
ω −Θ t

ω ≤ − ωβ

12χu
· ᾱt‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + ρ(1− ω)ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 − ω

12
δ̄t . (B.47)

Case 2b, unreliable step, qΔt = Δ̂t By Lemma 8, we have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t

(20)≤ − ᾱtβ

2χu
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2.

By Line 22 of Algorithm 1, δ̄t+1− δ̄t = −(1− 1/ρ)δ̄t , while (B.40) still holds. Thus,
under (32),

Θ t+1
ω −Θ t

ω ≤ − ωβ

12χu
· ᾱt‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2

+ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − 1− ω

2

(
1− 1

ρ

)
δ̄t . (B.48)

Case 3b, unsuccessful step, qΔt = Δ̂t In this case, (B.38) holds. Combining (B.47),
(B.48), and (B.38), we note that (B.46) holds as well. Thus, (B.46) holds for all six
cases. This completes the proof.
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B.7 Proof of Lemma 11

The proof follows the proof of Lemma 10, except that Lemma 8 is not applicable. We
consider the following six cases.
Case 1a, reliable step, qΔt = Δ̄t We have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ L̄st
ε̄t̄ ,ν̄t̄ ,η

− L̄t
ε̄t̄ ,ν̄t̄ ,η

+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

≤ ᾱtβ(∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T Δ̄t +
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

(27)≤ 4ᾱtβ

5
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t − δ̄t

5
+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

(B.24)≤ − ᾱtβ(γB ∧ η)

5

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

− δ̄t

5

+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣ .

By Line 20 of Algorithm 1, δ̄t+1 − δ̄t = (ρ − 1)δ̄t , while (B.33) still holds. By the
condition of ω in (B.34) and (B.35), we know that under (32) (which implies (B.35)),

Θ t+1
ω −Θ t

ω ≤ −ωβ(γB ∧ η)

36
· ᾱt

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

+ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2

+ω
{∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣
}
− ω

36
δ̄t . (B.49)

Case 2a, unreliable step, qΔt = Δ̄t We have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ L̄st
ε̄t̄ ,ν̄t̄ ,η

− L̄t
ε̄t̄ ,ν̄t̄ ,η

+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣
(26)≤ ᾱtβ(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̄t +

∣∣∣L̄st
ε̄t̄ ,ν̄t̄ ,η

− Lst
ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

(B.24)≤ − ᾱtβ(γB ∧ η)

4

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣ .
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By Line 22 of Algorithm 1, δ̄t+1− δ̄t = −(1− 1/ρ)δ̄t , while (B.33) still holds. Thus,
under (32),

Θ t+1
ω −Θ t

ω ≤ −ωβ(γB ∧ η)

36
· ᾱt

∥∥∥∥∥∥

⎛

⎝
Δ̄xt

Jt ∇̄xLt

Gt ∇̄xLt +Πc(diag2(gt )λt )

⎞

⎠

∥∥∥∥∥∥

2

−1

2
(1− ω)

(
1− 1

ρ

)
δ̄t

+ω
{∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣
}

+ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2. (B.50)

Case 3a, unsuccessful step, qΔt = Δ̄t In this case, (B.38) holds. Combining (B.49),
(B.50), and (B.38), we obtain

Θ t+1
ω −Θ t

ω ≤ ω
{∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣
}

+ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2. (B.51)

Case 1b, reliable step, qΔt = Δ̂t We have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ L̄st
ε̄t̄ ,ν̄t̄ ,η

− L̄t
ε̄t̄ ,ν̄t̄ ,η

+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

≤ ᾱtβ(∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T Δ̂t +
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

(27)≤ ᾱtβ

2
(∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
)T Δ̂t − δ̄t

2
+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

(20)≤ − ᾱtβ

2χu
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 − δ̄t

2
+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣ .

By Line 20 of Algorithm 1, δ̄t+1 − δ̄t = (ρ − 1)δ̄t , while (B.40) still holds. By the
condition of ω in (B.41), we know that under (32) (which implies (B.41)),

Θ t+1
ω −Θ t

ω ≤ − ωβ

12χu
· ᾱt‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + ω

{∣∣∣L̄st
ε̄t̄ ,ν̄t̄ ,η

− Lst
ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣
}

+ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − ω

12
δ̄t . (B.52)

Case 2b, unreliable step, qΔt = Δ̂t We have

Lt+1
ε̄t̄ ,ν̄t̄ ,η

− Lt
ε̄t̄ ,ν̄t̄ ,η

≤ L̄st
ε̄t̄ ,ν̄t̄ ,η

− L̄t
ε̄t̄ ,ν̄t̄ ,η

+
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣

≤ ᾱtβ(∇̄Lt
ε̄t̄ ,ν̄t̄ ,η

)T Δ̂t +
∣∣∣L̄st

ε̄t̄ ,ν̄t̄ ,η
− Lst

ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣
(20)≤ − ᾱtβ

χu
‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 +

∣∣∣L̄st
ε̄t̄ ,ν̄t̄ ,η

− Lst
ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣ .
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By Line 22 of Algorithm 1, δ̄t+1− δ̄t = −(1− 1/ρ)δ̄t , while (B.40) still holds. Thus,
under (32),

Θ t+1
ω −Θ t

ω ≤ − ωβ

12χu
· ᾱt‖∇̄Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + ω

{∣∣∣L̄st
ε̄t̄ ,ν̄t̄ ,η

− Lst
ε̄t̄ ,ν̄t̄ ,η

∣∣∣+
∣∣∣L̄t

ε̄t̄ ,ν̄t̄ ,η
− Lt

ε̄t̄ ,ν̄t̄ ,η

∣∣∣
}

+ρ(1− ω)ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 − 1

2
(1− ω)

(
1− 1

ρ

)
δ̄t . (B.53)

Case 3b, unsuccessful step, qΔt = Δ̂t In this case, (B.38) holds. Combining (B.52),
(B.53), and (B.38), we note that (B.51) holds as well. Thus, (B.51) holds for all six
cases. This completes the proof.

B.8 Proof of Theorem 3

We suppose there are infinite many successful steps. Otherwise, ᾱt decreases to zero
(cf. Line 25 of Algorithm 1) and the argument holds trivially.We use t̄ < t1 < t2 < . . .

to denote the subsequence with ti − 1, ∀i ≥ 1, being a successful step. By Lemma 14,
Lemma 6(b), and (B.14), there exist Υ1, Υ2 > 0 such that for any i ≥ 1,

Rti
Lem. 14≤ Υ1

∥∥∥∥∥∥

⎛

⎝
∇xLti
cti

w
ti
ε̄t̄ ,ν̄t̄

⎞

⎠

∥∥∥∥∥∥

Lem. 6(b)≤ Υ2

{
‖∇Lti

ε̄t̄ ,ν̄t̄ ,η
‖ +

∥∥∥∥

(
cti

w
ti
ε̄t̄ ,ν̄t̄

)∥∥∥∥

}
.

Since ti ≥ t̄+1, two parameters ε̄t̄ , ν̄t̄ are fixed conditional on any σ -algebraF ⊇ Ft̄ .
Thus, for any i ≥ 1,

∥∥∥∥

(
cti

w
ti
ε̄t̄ ,ν̄t̄

)∥∥∥∥ = E

[∥∥∥∥

(
cti

w
ti
ε̄t̄ ,ν̄t̄

)∥∥∥∥ | Fti−1
]

= E

[∥∥∥∥

(
cti

w
ti
ε̄t̄ ,ν̄t̄

)∥∥∥∥ 1χerr ‖∇̄Lti
ε̄t̄ ,ν̄t̄ ,η

‖≤R̄ti
| Fti−1

]
+ E

[∥∥∥∥

(
cti

w
ti
ε̄t̄ ,ν̄t̄

)∥∥∥∥ 1R̄ti <χerr ‖∇̄Lti
ε̄t̄ ,ν̄t̄ ,η

‖ | Fti−1
]

(17)≤ E

[
χerr‖∇̄Lti

ε̄t̄ ,ν̄t̄ ,η
‖ · 1

χerr ‖∇̄Lti
ε̄t̄ ,ν̄t̄ ,η

‖≤R̄ti
| Fti−1

]

+ (ε̄t̄ q
ti
ν̄t̄
∨ 1)E

[∥∥∥∥

(
cti

max{gti ,−λti }
)∥∥∥∥ · 1R̄ti <χerr ‖∇̄Lti

ε̄t̄ ,ν̄t̄ ,η
‖ | Fti−1

]
(also use Lemma 14)

(B.14)≤ χerrE

[
‖∇̄Lti

ε̄t̄ ,ν̄t̄ ,η
‖ | Fti−1

]
+ (ε̄0ν̃ ∨ 1)E

[
R̄ti · 1R̄ti <χerr ‖∇̄Lti

ε̄t̄ ,ν̄t̄ ,η
‖ | Fti−1

]

≤ {1+ (ε̄0ν̃ ∨ 1)}χerrE

[
‖∇̄Lti

ε̄t̄ ,ν̄t̄ ,η
‖ | Fti−1

]

≤ {1+ (ε̄0ν̃ ∨ 1)}χerr

{
‖∇Lti

ε̄t̄ ,ν̄t̄ ,η
‖ + E

[
‖Δ̄(∇Lti

η )‖ | Fti−1
]}

(16)≤ {1+ (ε̄0ν̃ ∨ 1)}χerr

{
‖∇Lti

ε̄t̄ ,ν̄t̄ ,η
‖ + χgrad

√
δ̄ti /ᾱti

}
.
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Combining the above two displays, we know there exists Υ3 > 0 such that

Rti ≤ Υ3(χgrad + 1)

{
‖∇Lti

ε̄t̄ ,ν̄t̄ ,η
‖ +

√
δ̄ti /ᾱti

}
,

which implies

ᾱti R
2
ti ≤ 2Υ 2

3 (χgrad + 1)2
{
ᾱti ‖∇Lti

ε̄t̄ ,ν̄t̄ ,η
‖2 + δ̄ti

}
. (B.54)

On the other hand, by Theorem 2, we sum up the error recursion for t ≥ t̄ + 1, take
conditional expectation on Ft̄ , and have

∞∑

t=t̄+1
E[ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2 + δ̄t | Ft̄ ]

≤ 4ρ

(1− pgrad)(1− p f )(1− ω)(ρ − 1)

∞∑

t=t̄+1
E[Θ t

ω | Ft̄ ] − E

[
Θ t+1

ω | Ft̄

]

≤ 4ρ

(1− pgrad)(1− p f )(1− ω)(ρ − 1)

(
Θ t̄+1

ω − min
X×M×Λ

ωLε̄t̄ ,ν̄t̄ ,η

)
< ∞.

(B.55)

Thus, applying the Fubini’s theorem to exchange the summation and expectation,
we know thatE[lim supt→∞ ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2+ δ̄t | Ft̄ ] = 0. Since ᾱt‖∇Lt

ε̄t̄ ,ν̄t̄ ,η
‖2+ δ̄t

is non-negative, we further obtain ᾱt‖∇Lt
ε̄t̄ ,ν̄t̄ ,η

‖2 + δ̄t → 0 as t →∞ almost surely.

By (B.54), we have ᾱti R
2
ti → 0 as i → ∞. Noting that ᾱt R2

t ≤ ᾱti R
2
ti for any

ti ≤ t < ti+1, we complete the proof.

B.9 Proof of Theorem 4

We adapt the proof of [40, Theorem 4]. By Theorem 3, it suffices to show that the
“limsup” of the random stepsize sequence {ᾱt }t is lower bounded away from zero. To
show this, we define two stepsize sequences as follows. For any t > t̄ + 1, we let

φt = log(ᾱt ),

ϕt =min{log(c), 1Et−11 ∩Et−12
(log(ρ)+ ϕt−1)+ (1− 1Et−11 ∩Et−12

)(ϕt−1 − log(ρ))},

and let φt̄+1 = ϕt̄+1 = log(ᾱt̄+1). Here, c is a deterministic constant such that

c ≤ 1− β

Υ1(κgrad + κ f + 1)
∧ αmax

and c = ρ−iαmax for some i > 0. The first constant comes from Lemma 7. We aim
to show φt ≥ ϕt , ∀t ≥ t̄ + 1.
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First, we note that by the stepsize specification in Lines 18 and 25 of Algorithm 1
(Line 13 is not performed since t ≥ t̄ + 1), ᾱt = ρ jt c for some integer jt . Second,
we note that φt and ϕt are both Ft−1-measurable, that is, they are fixed conditional
on Ft−1. Third, we show that φt ≥ ϕt by induction. Note that φt̄+1 = ϕt̄+1. Suppose
φt ≥ ϕt , we consider the following three cases.
(a) If φt > log(c), then φt ≥ log(c)+ log(ρ). Thus, φt+1 ≥ φt − log(ρ) ≥ log(c) ≥
ϕt+1.
(b) If φt ≤ log(c) and 1Et1∩Et2 = 1, then Lemma 7 leads to

φt+1 = min{log(αmax ), φt + log(ρ)} ≥ min{log(c), ϕt + log(ρ)} = ϕt+1.

(c) If φt ≤ log(c) and 1Et1∩Et2 = 0, then

φt+1 ≥ φt − log(ρ) ≥ ϕt − log(ρ) ≥ ϕt+1.

Combining the above three cases, we have φt ≥ ϕt , ∀t ≥ t̄ + 1. Note that, conditional
on Ft̄ , {ϕt }t≥t̄+1 is a random walk with a maximum and a drift upward (cf. [24,
Example 6.1.2]). Thus, lim supt→∞ ϕt ≥ log(c) almost surely. In particular, we have

P

(
lim sup
t→∞

φt ≥ log(c)

)

=
∞∑

i=0

∫

Fi

P

(
lim sup
t→∞

φt ≥ log(c) | Fi , t̄ = i

)
P
(
Fi , t̄ = i

)

φt≥ϕt≥
∞∑

i=0

∫

Fi

P

(
lim sup
t→∞

ϕt ≥ log(c) | Fi , t̄ = i

)
P
(
Fi , t̄ = i

)

=
∞∑

i=0

∫

Fi

P
(
Fi , t̄ = i

)

= 1,

whichmeans that the “limsup” of ᾱt is lower bounded almost surely. Using Theorem 3,
we complete the proof.

B.10 Proof of Theorem 5

Suppose lim supt→∞ Rt = ε > 0. By Theorem 4, we know there exist two sequences
{ni }i and {mi }i with ni < mi < ni+1 for all i , such that

Rni ≥
2ε

3
, Rt ≥ ε

3
, t = ni + 1, . . . ,mi − 1, Rmi <

ε

3
.

For each interval [ni ,mi ], we use {ti, j }Jij=1 to denote a subsequence within the interval
such that ni = ti,1 < . . . < ti, j < . . . < ti,Ji = mi and ti, j − 1 is a successful step.
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In other words, ti, j is the first index that we arrive at the new point. Here, we suppose
ni − 1 is a successful step; that is, the index ni is the first time we arrive at the point
(xni ,μni ,λni ) (one can always choose ni to satisfy this condition). We also note that
ti,Ji = mi because Rmi−1 ≥ ε/3 while Rmi < ε/3. With these notation, there exist
Υ1, Υ2 > 0 such that

ε

3
≤ Rni − Rmi ≤

mi−1∑

t=ni
|Rt+1 − Rt |

≤
mi−1∑

t=ni

∥∥∥∥∥∥

⎛

⎝
∇xLt+1 − ∇xLt

ct+1 − ct
max{gt+1,−λt+1} −max{gt ,−λt }

⎞

⎠

∥∥∥∥∥∥

≤ Υ1

mi−1∑

t=ni
‖(xt+1 − xt ,μt+1 − μt ,λt+1 − λt )‖ (due to the Lip-continuity)

= Υ1

Ji∑

j=2
‖(xti, j − xti, j−1,μti, j − μti, j−1,λti, j − λti, j−1)‖

= Υ1

Ji∑

j=2
ᾱti, j−1‖ qΔti, j−1‖ ≤ Υ2

Ji∑

j=2
ᾱti, j−1 (due to Assumption 3)

≤ Υ2

Ji−1∑

j=1
ᾱti, j (due to Line 25 of Algorithm 1). (B.56)

Let us define the set T = {t : t − 1 is successful and Rt ≥ ε/3}. We can see from
(B.54) and (B.55) that

∑
t∈T ᾱt < ∞. This contradicts (B.56) since

∑
t∈T ᾱt ≥

∑
i
∑Ji−1

j=1 ᾱti, j
(B.56)= ∞. Thus, we know lim supt→∞ Rt = 0; and thus, we complete

the proof.

C Auxiliary lemmas

Lemma 14 Let ε, ν > 0 and (x,λ) ∈ Tν × R
r . Then

‖wε,ν(x,λ)‖
εqν(x,λ) ∨ 1

≤ ‖max{g(x),−λ}‖ ≤ ‖wε,ν(x,λ)‖
εqν(x,λ) ∧ 1

.

Proof To prove Lemma 14, we require the following lemma. ��

Lemma 15 For any two scalars a, b and a scalar c > 0, |max{a, b}| ≤
1

c∧1 |max{a, cb}|.

Proof Without loss of generality, we assume b �= 0 and c �= 1.We consider four cases.
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Case 1: b > 0, c < 1 If a ≤ cb < b, then |max{a, b}| = b = 1
c |max{a, cb}|. If

cb < a ≤ b, then |max{a, b}| = b ≤ 1
c a = 1

c |max{a, cb}|. If cb < b < a, then
|max{a, b}| = a ≤ 1

c |max{a, cb}|. Thus, the result holds.
Case 2: b > 0, c > 1 If a ≤ b < cb, then |max{a, b}| = b ≤ cb = |max{a, cb}|.
If b < a ≤ cb, then |max{a, b}| = a ≤ cb = |max{a, cb}|. If b < cb < a, then
|max{a, b}| = a = |max{a, cb}|. Thus, the result holds.
Case 3: b < 0, c < 1 If a ≤ b < cb, then |max{a, b}| = |b| = 1

c |max{a, cb}|. If
b < a ≤ cb, then |max{a, b}| = |a| ≤ |b| = 1

c |max{a, cb}|. If b < cb < a, then

|max{a, b}| = |a| ≤ |a|
c = 1

c |max{a, cb}|. Thus, the result holds.
Case 4: b < 0, c > 1 If a ≤ cb < b, then |max{a, b}| = |b| ≤ c|b| = |max{a, cb}|.
If cb < a ≤ b, then |max{a, b}| = |b| ≤ |a| = |max{a, cb}|. If cb < b < a, then
|max{a, b}| = |a| = |max{a, cb}|. Thus, the result holds.
Combining the above four cases, we complete the proof. ��

Since ε, ν > 0, (x,λ) ∈ Tν × R
r , and qν(x,λ) > 0, we have for any

i ∈ {1, 2, . . . , r},

|(wε,ν(x,λ))i |
= |max{gi (x),−εqν(x,λ)λi }| ≤ 1

1
εqν (x,λ)

∧ 1
|max{gi (x),−λi }|

= (εqν(x,λ) ∨ 1) · |max{gi (x),−λi }|
≤ εqν(x,λ) ∨ 1

εqν(x,λ) ∧ 1
|max{gi (x),−εqν(x,λ)λi }|

= εqν(x,λ) ∨ 1

εqν(x,λ) ∧ 1

∣∣(wε,ν(x,λ))i
∣∣ ,

where both inequalities are from Lemma 15. Taking �2 norm on both sides, we finish
the proof.

DAuxiliary experiments

We follow the experiments in Sect. 4 and provide additional results. We first examine
three proportions: (1) the proportion of the iterations with failed SQP steps, (2) the
proportion of the iterations with unstabilized penalty parameters, (3) the proportion of
the iterations with a triggered feasibility error condition. We then investigate a multi-
plicative noise, and apply the method on an inequality constrained logistic regression
problem.
Failed SQP steps Figure5 plots the proportion of the iterations with failed SQP steps.
From the figure, we see that the proportion varies from 10% to 60% across the prob-
lems, and AdapNewton tends to have a smaller proportion than AdapGD. Although
the proportion does not have a clear dependency on the variance σ 2, the noticeable
proportion of failed SQP steps illustrates the differences between equality and inequal-
ity constrained problems. As analyzed in Sect. 2, the active-set SQP steps may not be
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Fig. 5 Failed SQP step boxplots. Each panel corresponds to a setup of (C, κ, χerr ). The default values are
C = κ = 2 and χerr = 1. When we vary one parameter, the other two are set as default. Thus, the three
figures on the left column are the same

informative if the identified active set is very distinct from the true active set. Due to
the potential failure of the SQP steps, utilizing a safeguarding direction is critical in
achieving the global convergence for the algorithm.
Non-stationary penalty parameters Figure6 plots the proportion of the iterations with
unstabilized penalty parameters; i.e., the last iteration that we update ε̄0 over the
total number of the iterations. From the figure, we observe that the proportion varies
from 20% to 70%, and AdapNewton and AdapGD have comparable results. In fact,
the proportion highly depends on the adopted initial ε̄0 and the updating rule of ε̄0.
For example, a large ρ and a small ε̄0 will reduce the proportion significantly; and
the updating rules ε̄0 ← ε̄0/ρ and ε̄0 ← exp(−1/ε̄0) will also lead to different
proportions. The large variation in Fig. 6 suggests that different problems stabilize ε̄0 to
different levels; thus, a problem-dependent tuning of ε̄0 is desired in practice. We note
in the experiments that the results on some problems can be improved if ε̄0 = 10−4,
while such a setup may not be suitable for other problems. Thus, designing a robust
scheme to select the penalty parameters deserves further studying.
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Fig. 6 Unstabilized penalty parameter boxplots. Each panel corresponds to a setup of (C, κ, χerr ). The
default values are C = κ = 2 and χerr = 1. When we vary one parameter, the other two are set as default.
Thus, the three figures on the left column are the same

Feasibility error condition Figure7 plots the proportion of the iterations with a trig-
gered feasibility error condition. We do not show the results for the different setups of
χerr . In fact, when χerr = 1, the results are identical to C = 2 and κ = 2 (see the left
column of Fig. 7). However, when χerr = 10 or 100, the feasibility error condition
is never triggered. From Fig. 7, we see that the proportion is extremely small (e.g.,
as small as 1%). This suggests that the condition (17) is hardly triggered in practice.
Figure7 also plots the iteration proportion that (17) is triggered for an unsuccessful
step. We see that such an proportion is even smaller (e.g., less than 0.5%). Given these
negligible proportions, we can conclude that the condition (17) does not negatively
affect the performance of the designed StoSQP scheme.
Multiplicative noise We also investigate a multiplicative noise in the experiments.
In particular, we employ the default setup (C, κ, χerr ) = (2, 2, 1) but replace the
noise variance σ 2 by (1+‖xt‖2)σ 2. Thus, the variance scales linearly with respect to
the magnitude of the (primal) iterate. The KKT residual and sample size boxplots are
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Fig. 7 Feasibility error condition boxplots. Each panel corresponds to a setup of (C, κ). The default values
are C = κ = 2. When we vary one parameter, the other parameter is set as default. Thus, the two figures
on the left column are the same

Fig. 8 Multiplicative noise boxplots. The left figure shows the KKT residual boxplot and the right figure
shows the sample size boxplot

shown in Fig. 8. Compared to Figs. 1 and 2, we see that the algorithm achieves com-
parable results to additive noise. This observation is as expected because, regardless
of the noise type, the algorithm enforces the same stochastic conditions on the model
estimation accuracy in each iteration, and adaptively selects the batch sizes that are
mainly characterized by the current KKT residual.
Logistic regression problem We study an inequality constrained logistic regres-
sion problem, where we let

F(x; (ξa, ξb)) = log{1+ exp(−ξb · ξ Ta x)}, g(x) = Cx + q.
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Fig. 9 KKT residual boxplots. The left figure shows the residual boxplot for the Gaussian design, and the
right figure shows the residual boxplot for the exponential design

We set d = 10, r = 5, and generate each entry of the matrix C ∈ R
5×10 and vector

q ∈ R
5 from the standard Gaussian distribution. We let ξb be a Rademacher variable

(i.e., taking {−1, 1}with equal probability), and consider different design distributions
for ξa. In particular, we consider both a light tail design (ξa)i ∼ N(0, σ 2

a ) and vary
σ 2
a ∈ {10−8, 10−4, 10−2}, and a heavy tail design (ξa)i ∼ Exp(λa) and vary λa ∈
{10, 102, 104}. Note that Exp(λa) has the variance 1/λ2a. For each design, we run
AdapNewton and AdapGD for 20 times. The default algorithm setup is the same as
in Sect. 4.

Figure 9 shows the KKT residual boxplots. From the figure, we observe that Adap-
Newton performs slightly better than AdapGD. Both methods achieve reasonable
performance on all setups of the two designs, although the two methods perform bet-
ter on the Gaussian design that has a lighter tail than the Exponential design. Overall,
the experiments demonstrate the effectiveness of the proposed algorithm.
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29. Krejić, N., Krklec, N.: Line search methods with variable sample size for unconstrained optimization.
J. Comput. Appl. Math. 245, 213–231 (2013). https://doi.org/10.1016/j.cam.2012.12.020

30. Liew, C.K.: Inequality constrained least-squares estimation. J. Am. Stat. Assoc. 71(355), 746–751
(1976). https://doi.org/10.1080/01621459.1976.10481560

123

https://doi.org/10.1287/ijoc.9.2.111
https://doi.org/10.1287/ijoo.2019.0016
https://doi.org/10.1287/ijoo.2019.0016
https://doi.org/10.1017/s0962492900002518
https://doi.org/10.1017/s0962492900002518
https://doi.org/10.1137/17m1154679
https://doi.org/10.1137/16m1080173
https://doi.org/10.1007/s10107-012-0572-5
https://doi.org/10.1007/s10107-017-1137-4
https://doi.org/10.1007/s10107-017-1137-4
https://doi.org/10.1007/978-3-030-01237-3_25
https://doi.org/10.1007/978-3-030-01237-3_25
https://doi.org/10.1007/s10107-017-1141-8
https://doi.org/10.1007/s10107-017-1141-8
http://arxiv.org/abs/2112.14799
http://arxiv.org/abs/2107.03512
http://arxiv.org/abs/2007.15966
http://proceedings.mlr.press/v54/de17a.html
https://doi.org/10.1007/s11590-009-0132-y
https://doi.org/10.1007/s11590-009-0132-y
https://doi.org/10.1137/110830629
https://doi.org/10.15807/jorsj.60.262
https://doi.org/10.1017/cbo9781139626514
https://doi.org/10.1017/cbo9781139626514
https://doi.org/10.1109/cvpr.2018.00093
https://doi.org/10.1109/cvpr.2018.00093
https://doi.org/10.1515/9781400881987-005
https://doi.org/10.1515/9781400881987-005
https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/10.1093/imanum/drx043
https://doi.org/10.1093/imanum/drx043
https://doi.org/10.1016/j.cam.2012.12.020
https://doi.org/10.1080/01621459.1976.10481560


S. Na et al.

31. Liew, C.K.: A two-stage least-squares estimation with inequality restrictions on parameters. Rev. Econ.
Stat. 58(2), 234 (1976). https://doi.org/10.2307/1924031

32. Livieris, I.E., Pintelas, P.: An adaptive nonmonotone active set—weight constrained—neural network
training algorithm. Neurocomputing 360, 294–303 (2019). https://doi.org/10.1016/j.neucom.2019.06.
033

33. Livieris, I.E., Pintelas, P.: An improved weight-constrained neural network training algorithm. Neural
Comput. Appl. 32(9), 4177–4185 (2019). https://doi.org/10.1007/s00521-019-04342-2

34. Lucidi, S.: New results on a class of exact augmented Lagrangians. J. Optim. Theory Appl. 58(2),
259–282 (1988). https://doi.org/10.1007/bf00939685

35. Lucidi, S.: Recursive quadratic programming algorithm that uses an exact augmented Lagrangian
function. J. Optim. Theory Appl. 67(2), 227–245 (1990). https://doi.org/10.1007/bf00940474

36. Lucidi, S.: New results on a continuously differentiable exact penalty function. SIAM J. Optim. 2(4),
558–574 (1992). https://doi.org/10.1137/0802027

37. Morales, J.L., Nocedal, J., Wu, Y.: A sequential quadratic programming algorithm with an additional
equality constrained phase. IMA J. Numer. Anal. 32(2), 553–579 (2011). https://doi.org/10.1093/
imanum/drq037

38. Na, S.: Global convergence of online optimization for nonlinear model predictive control. Adv. Neural
Inf. Process. Syst. 34, 12441–12453 (2021)

39. Na, S., Mahoney,M.W.: Asymptotic convergence rate and statistical inference for stochastic sequential
quadratic programming. arXiv preprint (2022). arXiv:2205.13687

40. Na, S., Anitescu, M., Kolar, M.: An adaptive stochastic sequential quadratic programming with differ-
entiable exact augmented Lagrangians. Math. Program. (2022). https://doi.org/10.1007/s10107-022-
01846-z

41. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Finan-
cial Engineering, 2nd edn. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-
5

42. Onuk, A.E., Akcakaya, M., Bardhan, J.P., Erdogmus, D., Brooks, D.H., Makowski, L.: Constrained
maximum likelihood estimation of relative abundances of protein conformation in a heterogeneous
mixture from small angle x-ray scattering intensity measurements. IEEE Trans. Signal Process. 63(20),
5383–5394 (2015). https://doi.org/10.1109/tsp.2015.2455515

43. Oztoprak, F., Byrd, R., Nocedal, J.: Constrained optimization in the presence of noise. arXiv preprint
(2021). arXiv:2110.04355

44. Paquette, C., Scheinberg,K.: A stochastic line searchmethodwith expected complexity analysis. SIAM
J. Optim. 30(1), 349–376 (2020). https://doi.org/10.1137/18m1216250

45. Phillips, R.F.: A constrained maximum-likelihood approach to estimating switching regressions. J.
Econom. 48(1–2), 241–262 (1991). https://doi.org/10.1016/0304-4076(91)90040-k

46. Pillo, G.D., Grippo, L.: A new class of augmented Lagrangians in nonlinear programming. SIAM J.
Control. Optim. 17(5), 618–628 (1979). https://doi.org/10.1137/0317044

47. Pillo, G.D., Grippo, L.: A new augmented Lagrangian function for inequality constraints in nonlin-
ear programming problems. J. Optim. Theory Appl. 36(4), 495–519 (1982). https://doi.org/10.1007/
bf00940544

48. Pillo,G.D.,Grippo, L.:A continuously differentiable exact penalty function for nonlinear programming
problems with inequality constraints. SIAM J. Control. Optim. 23(1), 72–84 (1985). https://doi.org/
10.1137/0323007

49. Pillo, G.D., Grippo, L.: An exact penalty function method with global convergence properties
for nonlinear programming problems. Math. Program. 36(1), 1–18 (1986). https://doi.org/10.1007/
bf02591986

50. Pillo, G.D., Lucidi, S.: An augmented Lagrangian function with improved exactness properties. SIAM
J. Optim. 12(2), 376–406 (2002). https://doi.org/10.1137/s1052623497321894

51. Pillo, G.D., Grippo, L., Lampariello, F.: A method for solving equality constrained optimization prob-
lems by unconstrained minimization. In: Optimization Techniques, Springer-Verlag, Lecture Notes in
Control and Information Science, vol. 23, pp. 96–105 (1980). https://doi.org/10.1007/bfb0006592

52. Pillo, G.D., Lucidi, S., Palagi, L.: Convergence to second-order stationary points of a primal-dual
algorithm model for nonlinear programming. Math. Oper. Res. 30(4), 897–915 (2005). https://doi.org/
10.1287/moor.1050.0150

123

https://doi.org/10.2307/1924031
https://doi.org/10.1016/j.neucom.2019.06.033
https://doi.org/10.1016/j.neucom.2019.06.033
https://doi.org/10.1007/s00521-019-04342-2
https://doi.org/10.1007/bf00939685
https://doi.org/10.1007/bf00940474
https://doi.org/10.1137/0802027
https://doi.org/10.1093/imanum/drq037
https://doi.org/10.1093/imanum/drq037
http://arxiv.org/abs/2205.13687
https://doi.org/10.1007/s10107-022-01846-z
https://doi.org/10.1007/s10107-022-01846-z
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1109/tsp.2015.2455515
http://arxiv.org/abs/2110.04355
https://doi.org/10.1137/18m1216250
https://doi.org/10.1016/0304-4076(91)90040-k
https://doi.org/10.1137/0317044
https://doi.org/10.1007/bf00940544
https://doi.org/10.1007/bf00940544
https://doi.org/10.1137/0323007
https://doi.org/10.1137/0323007
https://doi.org/10.1007/bf02591986
https://doi.org/10.1007/bf02591986
https://doi.org/10.1137/s1052623497321894
https://doi.org/10.1007/bfb0006592
https://doi.org/10.1287/moor.1050.0150
https://doi.org/10.1287/moor.1050.0150


Inequality constrained stochastic nonlinear optimization…

53. Pillo, G.D., Liuzzi, G., Lucidi, S., Palagi, L.: A truncated Newton method in an augmented Lagrangian
framework for nonlinear programming. Comput. Optim. Appl. 45(2), 311–352 (2008). https://doi.org/
10.1007/s10589-008-9216-3

54. Pillo, G.D., Liuzzi, G.S.L.: A primal-dual algorithm for nonlinear programming exploiting negative
curvature directions. Numer. Algebra Control Optim. 1(3), 509–528 (2011). https://doi.org/10.3934/
naco.2011.1.509

55. Pillo, G.D., Liuzzi, G., Lucidi, S.: An exact penalty-Lagrangian approach for large-scale nonlin-
ear programming. Optimization 60(1–2), 223–252 (2011). https://doi.org/10.1080/02331934.2010.
505964

56. Silvapulle, S.: Constrained Statistical Inference, vol. 912. Wiley, New York (2004)
57. Sun, S., Nocedal, J.: A trust region method for the optimization of noisy functions. arXiv preprint

(2022). arXiv:2201.00973
58. Tropp, J.A.:An introduction tomatrix concentration inequalities. Found.Trends®Mach.Learn.8(1–2),

1–230 (2015). https://doi.org/10.1561/2200000048
59. Xu, M., Ye, J.J., Zhang, L.: Smoothing augmented Lagrangian method for nonsmooth constrained

optimization problems. J. Glob. Optim. 62(4), 675–694 (2014). https://doi.org/10.1007/s10898-014-
0242-7

60. Zavala, V.M., Anitescu, M.: Scalable nonlinear programming via exact differentiable penalty functions
and trust-region Newton methods. SIAM J. Optim. 24(1), 528–558 (2014). https://doi.org/10.1137/
120888181

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10589-008-9216-3
https://doi.org/10.1007/s10589-008-9216-3
https://doi.org/10.3934/naco.2011.1.509
https://doi.org/10.3934/naco.2011.1.509
https://doi.org/10.1080/02331934.2010.505964
https://doi.org/10.1080/02331934.2010.505964
http://arxiv.org/abs/2201.00973
https://doi.org/10.1561/2200000048
https://doi.org/10.1007/s10898-014-0242-7
https://doi.org/10.1007/s10898-014-0242-7
https://doi.org/10.1137/120888181
https://doi.org/10.1137/120888181

	Inequality constrained stochastic nonlinear optimization via active-set sequential quadratic programming
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 An active-set SQP direction via EQP
	2.2 The descent property of Δt

	3 An adaptive active-set StoSQP scheme
	3.1 The proposed scheme
	3.2 Assumptions and stability of parameters
	3.3 Convergence analysis
	3.4 Discussion on sample complexities
	3.5 Discussion on computations and limitations

	4 Numerical experiments
	5 Conclusion
	Acknowledgements
	A Proofs of Sect.2
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 3
	A.3 Proof of Lemma 12
	A.4 Proof of Lemma 13

	B Proofs of Sect.3
	B.1 Proof of Lemma 4
	B.2 Proof of Lemma 5
	B.3 Proof of Lemma 6
	B.4 Proof of Lemma 7
	B.5 Proof of Lemma 9
	B.6 Proof of Lemma 10
	B.7 Proof of Lemma 11
	B.8 Proof of Theorem 3
	B.9 Proof of Theorem 4
	B.10 Proof of Theorem 5

	C Auxiliary lemmas
	D Auxiliary experiments
	References


