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ABSTRACT
As researchers have sought to understand the genetic architecture of complex
traits, including disease, it has become apparent that the majority of the signal
originates outside protein coding regions of the genome. These results, obtained
through many genome wide association studies (GWAS), have led most to
conclude that changes in the regulation rather than structure of genes is the
driving force behind variation in complex traits. Therefore, many hundreds if not
thousands of genetic variants with small effects drive variation in complex traits,
making it difficult to identify meaning genetic variants. This has led many
researches to focus on the effects of genetic variation on gene regulation as an
intermediate phenotype. Here | present three works focused on improving our
ability to understand the mechanisms underlying inter-individual variation in gene
regulation and building a better systems to study these phenomena in disease
relevant cell types. In my second chapter | will describe the effect of genetic
variation on changes in DNA methylation levels and how these changes result in
coordinate changes in histone modifications, transcription factor binding, and
gene expression. My third chapter will focus on testing the fidelity of a new
system, induced pluripotent stem cells, in which we can study gene regulation.
Finally my fourth chapter will focus on characterizing inter-individual variation in
gene regulation across three cell types (induced pluripotent stem cells,
cardiomyocytes derived from induced pluripotent stem cells, and lymphoblastoid

cell lines from which the induce pluripotent stem cells were derived).
X



CHAPTER 1: INTRODUCTION



Understanding how heritable genetic variation contributes to inter-
individual variation in phenotype is one of the major goals of Human Genetics. In
particular, elucidating the genetic mechanisms underlying phenotypic traits has
great potential to better predict and treat disease Phenotypic traits in are
generally broken down into two major classes, simple or complex. Simple traits
are those where a single locus contribute to the trait, for example, sickle cell
anemia or Tay-Sachs disease. These traits are characterized by a binary
phenotype (given complete penetrance) and generally the alleles driving the
traits disrupt the protein coding sequence of a gene or large segments of a
chromosome. Complex traits are shaped by many loci. These traits are usually
thought of a quantitative — i.e. rather than the trait being present or absent a
distribution of the trait exists in the population. One clear example is that of
height, which demonstrated to be quantitative as early as 1914 [1]. Initial efforts
to map both complex and simple traits relied upon linkage studies [2]. This
method, first described by Botstein et al in 1980 [2] relies on family pedigrees
where the trait and alleles are liked as they segregate in a family. The use of
linkage studies was quite successful identifying the loci underlying simple traits —
due to a single segregating locus with large effects and frequently high
penetrance [3-8]. However, mapping loci underlying complex traits proved much
less successful [9,10], in large part due to the high number of variants underlying
complex traits and the low resolution of linkage mapping. Fortunately, in the past
15 years there have been rapid advances in sequencing technologies allowing

new methods to be developed to map complex traits.



The mapping of a full human genome [11] along with the advent of high
throughput sequencing and array based genotyping allowed researchers to begin
performing unbiased genome-wide scans for genetic variations associated with
complex traits. Rather than searching for genetic variants that segregate within a
family, these studies typically employed a case control design (of unrelated
individuals) and test for differences in allele frequencies of all assayed genetic
variants between groups.

Genome wide associations studies or GWAS promised to be more
successful than linkage analysis and many hoped they would uncover the
majority of the variation underlying complex traits [3]. Unfortunately, the
complexity of these traits was greater than realized. For example, a recent study
performed a GWAS for body mass index (BMI) in over 300,000 individuals. Their
analysis identified 97 loci associated with BMI at genome-wide significance (P <
5 X 10 -8) [12], which account for only around 3% of the BMI variation. The
inability of GWAS to explain a high proportion of the expected heritability of
complex traits in not unique to the study of BMI; indeed, these finding have been
replicated across many complex traits [3,13-16]. The results from these studies
and others suggest there could be thousands of loci contributing to variation in
complex traits. Unfortunately, this genetic architecture makes it exceedingly
difficult to elucidate the genetic underpinnings of complex traits using simple
associations alone. This is not to say that GWAS have been a total failure.
Indeed, GWAS have provided valuable insights into the general principles of

genetic architecture underlying complex traits. One of the major findings from



GWAS is that the vast majority of genetic variants associated with complex traits
do not reside within the protein coding regions of the genome, but rather in
regions responsible for the regulation of gene expression [3,13,17]

Since genetic variants implicated in GWAS are often intergenic it is difficult
to dissect the mechanism by which the variant acts on the trait of interest. Many
studies suggest that the genetic variant acts on the nearest gene or genes [3],
but these assumptions are often incorrect and can lead to researchers to follow
up on incorrect genes [18]. Thus, a number of groups have set out to gain a
better understanding of how genetic variation within the non-coding regions
effects gene expression. Beginning in 2005 it was shown that inter-individual
variation in mRNA levels could be mapped to genetic variants by performing
association studies between genotype and gene expression levels [19]. These
studies benefit from a reduced multiple testing burden by only considering
genetic variants putatively acting in cis (within 100kb of a gene). Since 2005
there has been tremendous progress mapping genetic variation that is
associated with changes in gene expression and elucidating the mechanisms by
which genetic variants affect gene expression.

It has new been well demonstrated that genetic variation is a major driver
of inter-individual variation in gene expression [20-33]. These results suggest that
nearly every gene has at least one genetic variant affecting expression levels
(eQTLs). In an effort to further dissect the mechanisms driving changes in gene
expression many have begun instigating the effect of genetic variation on other

aspects of gene regulation. Specifically, there have been association studies



performed between genetic variation and DNA methylation levels [27,34-36],
chromatin accessibility [37] and histone modifications [38-41]. These studies
demonstrate the ability of a genetic variant to affect many regulatory phenotypes
in concert. Importantly, this work has found that disrupting transcription factor
binding sites (TFBS) has the ability to alter chromatin function and result in
expression changes [36,40].

It has been demonstrated that jointly modeling genetic variation
associated with expression and complex traits leads to an increase in power to
identify variation associated with a complex trait and a better understanding of
the underlying biology [42]. However, one major weakness detracting from the
majority of eQTLs studies is the inability to perform such association studies in
disease relevant tissues. Much of the work already mentioned was performed in
immortalized cell lines. There are two major reasons for this shortcoming. First,
cell lines are easy to maintain. They can be frozen and thawed indefinitely and
used repeatedly for numerous studies. Additionally, it is feasible to obtain the
millions of cells necessary for many of these analyses. Second, it is difficult to
obtain primary tissue from living individuals, both practically and ethically. Often
the tissues we are most interested in are critical for life and therefore cannot be
sampled. A major effort by the GTEx consortium has collected post-mortem
tissue from thousands of individuals and identified eQTLs across these tissues
[32]. This represents a major advance to the field but has it's own set of caveats.
Namely, this tissue is finite and it is static. This results in a limited number of

regulatory phenotypes that can be assayed (at this time only mRNA levels have



been characterized). Additionally, no perturbations can be performed on the
tissues; thus only a single snapshot of steady state gene expression levels at the
time of death is obtainable.

A promising technology has emerged, which may aid in overcoming the
shortcomings of current models. Namely, the discovery that human somatic cells
can be reprogrammed into a pluripotent state [43-45] and then be differentiated
[46] into multiple somatic lineages, has the potential to provide access to a wide
range of cell types from practically any donor individual. Since the initial
discovery of induced pluripotent stem cells (iPSCs) they have been used in a
wide range of studies, mainly to model disease in vitro or rescue disease
phenotypes in vivo [47-60]. However, their usefulness as a model system to
study human phenotypes remains debated [61-63].

The major goal of this thesis is to demonstrate the usefulness of the iPSC
model in the study of human traits, specifically inter-individual variation in gene
regulation. | began by studying the effect of genetic variation on DNA methylation
levels (meQTLs) in immortalized lymphoblastoid cell lines (LCLs), which will be
transformed into iPSCs in the 4™ chapter. Next, | set out to identify the major
sources of gene expression and DNA methylation variation in iPSCs. Finally, |
generate a large panel of iPSCs from a West African population, the Yoruba. |
characterize genetic variation associated with gene expression in iPSCs and
demonstrate the usefulness of iPSCs and iPSC-derived cell types as a model to

study human traits.



CHAPTER 2: METHYLATION QTLS ARE ASSOCIATED WITH
COORDINATED CHANGES IN TRANSCRIPTION FACTOR BINDING,

HISTONE MODIFICATIONS, AND GENE EXPRESSION LEVELS



2.1 Abstract’

DNA methylation is an important epigenetic regulator of gene expression. Recent
studies have revealed widespread associations between genetic variation and
methylation levels. However, the mechanistic links between genetic variation and
methylation remain unclear. To begin addressing this gap, we collected
methylation data at ~300,000 loci in lymphoblastoid cell lines (LCLs) from 64
HapMap Yoruba individuals, and genome-wide bisulfite sequence data in ten of
these individuals. We identified (at an FDR of 10%) 13,915 cis methylation QTLs
(meQTLs)—i.e., CpG sites in which changes in DNA methylation are associated
with genetic variation at proximal loci. We found that meQTLs are frequently
associated with changes in methylation at multiple CpGs across regions of up to
3 kb. Interestingly, meQTLs are also frequently associated with variation in other
properties of gene regulation, including histone modifications, DNase |
accessibility, chromatin accessibility, and expression levels of nearby genes.
These observations suggest that genetic variants may lead to coordinated
molecular changes in all of these regulatory phenotypes. One plausible driver of
coordinated changes in different regulatory mechanisms is variation in

transcription factor (TF) binding. Indeed, we found that SNPs that change

! Citation for chapter: Banovich NE, Lan X, McVicker G, van de Geijn B, Degner
JF, Blischak JD, et al. (2014) Methylation QTLs Are Associated with Coordinated
Changes in Transcription Factor Binding, Histone Modifications, and Gene
Expression Levels. PLoS Genet 10(9): e1004663.
doi:10.1371/journal.pgen.1004663
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predicted TF binding affinities are significantly enriched for associations with

DNA methylation at nearby CpGs.

2.2 Introduction

Changes in gene expression levels are important contributors to
phenotypic variation in human populations [20-30]. One way in which gene
expression levels may be altered is through changes in chromatin function
[35,38-40,64-67]. Recent studies have focused on identifying genetic variants
that impact chromatin function [65,68] by studying inter-individual variation in
DNase | sensitivity, a general indicator of chromatin accessibility [37], as well as
a variety of histone modifications [38-41]. A single genetic variant was often
found to be associated with coordinated changes in multiple molecular
phenotypes, including chromatin accessibility, nucleosome positioning, chromatin
modifications and gene expression levels [38-40]. In many cases of coordinated
changes, the associated genetic variants seem to act through the disruption of
transcription factor binding sites [38-40]. This body of work highlights the value of
using multiple molecular phenotypes to understand the connection between
genetic variation and gene expression. One important epigenetic mark not
considered by these recent integrated studies is DNA methylation.

DNA methylation refers to the addition of a methyl group to cytosine
nucleotides. In vertebrates, DNA methylation primarily affects cytosines that are

immediately 5’ to guanines, i.e., CpGs. Appropriate methylation is essential for
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development and cellular differentiation [69-71]. Changes in DNA methylation
levels have been linked to a number of diseases including tumorigenesis, [72,73]
age-related defects [74,75] and mental disorders [76,77]. Typical array-based
methylation assays provide a single measurement for each CpG site, which is
interpreted to reflect the proportion of cells in which a given site is methylated. In
general, this measurement was found to have a bimodal distribution across sites
[35,78-80], which is believed to indicate that most sites are either methylated or
unmethylated in nearly all cells in a given tissue or culture. Some
measurements, however, are intermediate [79] (we refer to these as
‘intermediate methylation levels’), which could either reflect methylation in a
subset of cells or just in a single allele (one chromosome) in each cell. Most
unmethylated CpGs are within CpG islands (CGls), namely regions in the
genome in which many CpGs are located in close proximity [79,81,82]. CGls
account for a small proportion of CpGs in the genome but they tend to be located
near transcription start sites (TSSs). The methylation levels of CGls are generally
negatively correlated with the expression levels of nearby genes [35,79,81-83],
an observation that led to a common early belief that DNA methylation was
primarily a repressive epigenetic mark.

A number of studies have shown that genetic variation is often associated
with quantitative changes in methylation levels [27,34,35,84,85]. Early QTL
studies focused on methylation data from relatively few CpGs with a heavy bias
towards promoter regions. A more recent study that used a comprehensive array

platform considered genome-wide patterns and reported over 20,000 methylation
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QTLs (meQTLs [34]). A number of meQTLs were also shown to be associated
with changes in gene expression level (namely, these meQTLs are also
classified as eQTLs) [27,34,35], although it is not clear whether the methylation
changes are a cause or consequence of the gene expression changes [34].
Interestingly, in contrast to the early belief that methylation is primarily associated
with repression, both direct and inverse correlations between methylation and
gene expression levels have been observed. This suggests that the relationship
between DNA methylation and gene expression levels may depend on the
genomic context of the CpG [27,34,35].

In general, the mechanisms by which DNA methylation levels are being
regulated remain unclear. One likely pathway is through coordination between
DNA methylation and chromatin modifiers. For example, H3K4 methyltransferase
is recruited by CFP1, which binds to unmethylated CpG islands [86]. In turn,
H3K27me3 and DNA methylation have been shown to have mutually exclusive
gene silencing functions, in at least some cases [87,88]. There is also limited
evidence that TF binding may be associated with nearby changes in DNA
methylation. For example, the insertion of a CTCF binding site was shown to
cause changes in methylation levels near the insertion site (presumably due to
the binding of CTCF) [80,89]. Less direct evidence comes from observations that
TF binding sites are enriched in differentially methylated regions (DMRSs)
between individuals and cell types [90]. However, it is still unclear how frequently
changes in TF binding affect the DNA methylation levels of nearby CpGs. It is

also unclear whether this is a property that is associated with the binding of most
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TFs or only a selected few. More generally, there has not yet been a broad
examination of coordination between meQTLs and other molecular phenotypes.
In the current study, we therefore examined associations and correlations
between genetic variation, DNA methylation, and multiple additional cellular
regulatory phenotypes. We focused on a panel of Yoruba HapMap
lymphoblastoid cell lines (LCLs), which have been extensively characterized in
previous work. In addition to the methylation data we collected for the present
study, genomic sequences are available for the majority of these lines [37], as
well as RNA sequencing data and DNase | sensitivity profiles [37]. Histone
modification data (profiles for H3K4me1, H3K4me3, H3K27ac, H3K27me3P) and

Polll ChlP-seq data are also available for a subset of these lines [40].

2.3 Results

We measured methylation levels in 64 Yoruba LCLs using the Illumina
Infinium HumanMethylation450 array, which assays methylation levels at roughly
450,000 cytosines, the majority of which are in CpGs. Probes on this array
particularly target CpGs near transcription start sites, including CpG islands and
CpG shores. As a first step in our data processing, we excluded array probes
that did not uniquely map to the human genome as well as probes that
overlapped a known sequence variant (see Methods). After these filtering steps
we retained methylation measurements from 329,469 probes. As was suggested
in previous studies [34,91,92], we quantile-normalized the data to a standard

normal within each individual and across probes (though we considered the
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effects of alternative normalization approaches; see Methods). To account for
unobserved confounders we performed principal component analysis. We found
that removing four principal components maximized our power to identify
meQTLs. Further details on the data processing, normalization, and tests for the
effect of confounders are provided in the Methods. In addition to the array data
from 64 individuals, we also collected low-coverage whole-genome bisulfite
sequencing data from a subset of ten individuals (median genomic coverage

2.4x; see Methods).

Mapping methylation QTLs

We first examined the association between genetic variation and
differences in methylation levels across individuals. For this analysis, we
considered only the array data (because we performed whole-genome bisulfite
sequencing in only ten individuals). We used previously collected and imputed
[37] genotype data for the 64 individuals from the HapMap and 1000 Genomes
Projects [93,94]. We focused on proximal (putatively cis) associations between
genotypes and DNA methylation levels by considering, in each case, genetic
variation within a 6 kb region centered on the genomic location of a methylation
probe on the array. This window size was chosen because smaller and larger
windows yielded fewer significant associations at a given FDR. At an FDR of

10% we identified 13,915 CpG sites with at least one cis meQTL (Fig. 1A).
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Figure 2.1 meQTLs identified in LCLs

A) QQ plot of —log10 p-values for testing the null of no association between
methylation levels measured by all probes that passed our quality filters, and all
SNPs within 3 kb of these probes. Data for SNPs within the candidate window
are in black; negative control SNPs for which we chose a random 6 kb window
elsewhere in the genome are in green; SNPs with the genotype labels permuted
are in blue. B) Average methylation levels estimated using the bisulfite sequence
data at meQTL probes, segregated by meQTL genotype. C) Histogram showing
the distribution of distances between meQTL SNPs and the associated
methylated sites in base pairs, for meQTLs where there is a single most likely
causal site.

When multiple SNPs were significantly associated with methylation levels
at a given site, we only considered (for the purpose of counting the overall
number of meQTLs) the single most significant association. Since the
methylation data measured by nearby pairs of probes are frequently correlated,
we wondered whether this analysis might overstate the number of independent
meQTL signals. To address this, we examined pairwise correlations of data from
all probes located within 5 kb of each other. We found that data from only 203 or
520 of the associated probes (normalized or untransformed data, respectively)
are significantly correlated (Pearson Correlation and a T-test; P < 0.05)

suggesting that the reported number of independent meQTL is not substantially

inflated by correlation of the methylation data across nearby probes.
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We next used the genome-wide bisulfite sequencing data to provide a
general validation of meQTL associations that were identified using the array
data (Fig. 1B), as well as to investigate whether meQTLs are generally
associated with changes in methylation at a single CpG or a larger region. In
general, we observed a high correlation between the estimates of methylation
levels based on the array data and the estimates of methylation levels based on
the whole genome bisulfite sequencing (R = 0.93; Fig. S1). We note that the read
depth and sample size of the bisulfite sequencing data set are insufficient to
allow for validation of individual meQTL. Instead, we aggregated the sequence
data by considering the centers of probe locations whose methylation data are
associated with meQTLs (see Methods for more details). Using that approach,
we found a clear difference in methylation level across meQTL genotypes. In
addition, we observed a broad-scale association of meQTL genotypes with
methylation levels over a region extending between 1.5 and 2 kb in either
direction from the methylation loci originally probed by the array. This result
indicates that multiple CpGs within a local region are often associated with a
single meQTL.

We sought to estimate the typical distance between meQTLs and the
location of associated methylated sites (based on the genomic location of the
array probes). This analysis is complicated by the fact that, due to LD, it is often
unclear which site is causal for any given meQTL. We thus focused on a subset
of associations that are more likely to be causal, namely on 409 meQTLs that are

the only strongly associated loci within 5 kb of the methylated site (see Methods).
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Our approach does not provide direct evidence that these are indeed causal
sites, but without additional experimental data (namely, using only the meQTL
mapping framework), it is likely the best approach to obtain a subset of loci that is
enriched with true causal associations [26,30]. These 409 meQTLs are generally
located very near the associated methylation site (the median distance is 76bp;
Fig. 1C), with only 52 (13%) of the putatively causal meQTLs located more than
3 kb away from the methylated site.

We then explored the distribution of methylated sites that are associated
with meQTLs in the context of other cis-regulatory annotations. Using the
chromatin state annotations from Ernst et al. [95], we classified the genomic
regions containing the assayed methylated sites as insulators, enhancers, or
promoters (see Methods). Compared to the distribution of all assayed
methylation sites, we found a relative depletion of sites associated with meQTLs
at promoters (chi-square test; P < 10™"°), and an enrichment of such sites at
insulators (chi-square test; P < 10°°) and enhancers (chi-square test; P < 10

Table S1), consistent with previous work [27,34].

QTLs for other regulatory phenotypes are often meQTLs as well

Our group has previously collected a number of genomic datasets from
the same panel of Yoruba LCLs, pertaining to different regulatory mechanisms.
We analyzed our methylation data in the context of these other data sets. We
first performed a joint analysis of the methylation data with previously mapped

eQTL data from the same LCLs [37]. We found that 146 (25%) of 595 eQTLs
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Figure 2.2 meQTLs are enriched for QTLs from other regulatory
phenotypes

A) QQ plot of —log10 p-values for testing the null of no association between eQTL
SNPs and methylation levels in sites within 3 kb. Positive correlations between
expression and methylation levels are in red; Negative correlations are in blue,
Data for random SNPs within the candidate window are in green; and data for a
set of permuted genotype labels are in black. B) A plot of similar structure
considering the associations of dsQTL SNPs [37] and with methylation levels at
sites within 3 kb. C) A plot of similar structure considering the QQ plots of
associations between histone modification QTLs [40] and methylation levels at
sites within 3 kb.

(classified at an FDR = 10%) within 3 kb of the genomic location of a methylation
probe are also significantly associated with variation in DNA methylation
(measured by the proximal probe; classified at an FDR = 10%). In other words,
these SNPs are classified, using relatively stringent criteria, as both eQTLs and
meQTLs (Fig. 2A). This represents a very strong enrichment of SNPs that are
both eQTLs and meQTLs: the mean overlap expected by chance alone is 2.8%
(P < 10°; see Methods). Although we are unable to infer causality in this case
(namely, to determine whether methylation patterns underlie gene expression
levels or the other way around, or alternatively both phenotypes are responding

to a third underlying factor), our observations indicate a substantial degree of

coordination between methylation levels and gene expression.
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Interestingly, roughly half of the sites classified as both eQTLs and
meQTLs (70 of the 146 sites) are associated with positively correlated gene
expression and methylation levels; namely, we observe a pattern whereby the
genotypes that are associated with high expression levels are also quite often
associated with high methylation levels. This pattern was observed both for
methylation sites located within and outside gene bodies, yet we found that the
CpG sites whose methylation levels are positively correlated with the expression
levels of nearby genes are further from the gene’s TSS (median distance of
6,680 bp) than CpG sites whose methylation levels are negatively correlated with
the expression levels of nearby genes (median distance of 1,020 bp; P = 0.018;
Fig. S2). We were concerned that the more distal loci may be enriched for false
positives. However, this observation remains significant (P = 0.027) even when

we add effect size as a covariate in our model.

Proportion of
Regulatory Number of SNPs significant Mean proportion Positive correlation Negative correlation

phenotype SNPs tested at 10% FDR from permutation P-value with methylation with methylation
H3K4me3 570 48% 4% <10"° 61 215
H3K4me1 164 41% 7% <10 38 29
H3K27ac 700 40% 5% <10 ° 78 201
Polll 586 33% 3% <10° 47 147
DHS 3858 31% 5% <10 ° 413 801

H3K27me3 150 13% 8% 0.02 7 12

Table 2.1 Associations between QTLs for other regulatory phenotypes and
DNA methylation

For each regulatory phenotype we randomly sampled a matched number of
SNPs, within 3 kb of a DNA methylation probe, 100,000 times. We calculated
proportion of these tests significantly associated with methylation at an FDR of
10%. This was used to calculate the mean proportion from the subsample and
the P-value columns.

Next, we considered a joint analysis of the methylation data with QTL data

for four histone modifications, Polll occupancy [40] and DNase | hypersensitivity
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profiles [37]. We found that QTLs associated with changes in any of these
regulatory features are significantly more likely to also be associated with

changes in methylation levels than expected by chance alone (by permutations;
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Figure 2.3 A single SNP is associated with coordinated change in multiple
regulatory phenotypes

Read counts segregated by meQTL genotype for multiple regulatory phenotypes.
The green line denotes the meQTL and the location of the probe measuring
methylation data associated with the meQTL is identified by the black rectangle.
The different colored data series indicate mean read depths segregated by
genotype at the meQTL site: blue shows the homozygous genotype associated
with low methylation level, orange shows the heterozygote, and purple the
homozygous genotype associated with high methylation level. In this example, all
of the regulatory phenotypes are negatively associated with DNA methylation
levels.

P < 10 Table 1; Fig. 2B, C). For example, 48% and 40% of QTLs associated
with variation in H3K4me3 and H3K27ac, respectively, are also classified as
meQTLs (at FDR = 10%). One particularly striking example of concerted changes

in regulatory mechanisms that are associated with genetic variation at one locus
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is shown in Figure 3. The genotypes of a SNP located on chromosome 6, in an
intron of the HLA-DQB1 gene, are strongly associated with changes in DNase |
hypersensitivity (P < 10°), H3K4me3 (P < 10™*), H3k27ac (P < 10®), gene
expression levels (P < 107"°), and DNA methylation (P < 10™°).

Previous work has demonstrated that DNA methylation levels are
generally negatively correlated with nearby levels of chromatin modifications
associated with active transcription [35,86,96]. Yet, we found that methylation
levels and chromatin features associated with active transcription are often
positively correlated when variation in all features is associated in concert with a
single QTL (Table 1; Fig. 2B, Fig. 3). It is important to note that often these
regulatory regions, while proximal to each other, are not overlapping (eg. Fig. 3),

suggesting a complex coordination across extended genomic regions.

Transcription factor binding may affect nearby patterns of DNA methylation

A major limitation of most genomic studies, including ours, is the difficulty
of identifying casual mechanisms. However, we reasoned that we might be able
to gain better insight about causality, or at least the likely order of events, if we
focused on SNPs disrupting TF binding sites. It is reasonable to assume that the
most direct outcome associated with such genetic variation is the disruption of TF
binding. If these SNPs are also associated with changes in additional regulatory
mechanisms, it might therefore be reasonable to further assume that changes in

TF binding resulted in concerted changes in other regulatory phenotypes. Recent
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work has provided some measure of support for this rationale by suggesting that
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Figure 2.4 SNPs disrupting TF binding sites drive changes in DNA
methylation

A) Two-sided QQ-plots describing the effect of TF binding on DNA methylation.
For each SNP in a predicted TF binding site [97] we tested whether the SNP was
associated with methylation at sites within 500bp. Positive associations (upper
right quadrant) indicate that the allele associated with increased PWM score for
the TF in question is associated with increased methylation; negative
associations (lower left quadrant) indicate that increased PWM score is
associated with decreased methylation. We used a random set of SNPs in
DNase | hypersensitive sites (DHSs) to indicate the expected baseline. When
considering the control DHS SNPs, the direction of the effects was chosen
randomly for the purpose of plotting. Panel B) additionally highlights four TFs
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that show particular strong association with changes in methylation levels. C)
Two-sided QQ-plot of associations between Stat5 expression and DNA
methylation at sites within 500bp of Stat5 binding sites. D) QQ-plot of
associations between ZNF274 expression and DNA methylation near ZNF274
binding sites. In both C and D, the grey shading indicates a region that would
contain the data 95% of the time when the null hypothesis is true for all tests,
obtained based on permutation of the expression data while holding the
methylation data constant.

changes in TF binding can play causal roles in driving changes in histone marks
[38-40] as well as DNase | hypersensitivity [37]. These results, in conjunction
with previous examples of transcription factor binding altering methylation levels
[80,89], led us to hypothesize that we could identify novel associations between
TF binding and DNA methylation profiles. To do so, we examined the association
of SNPs within TF binding with DNA methylation at nearby genomic regions.

To identify SNPs that are likely to directly affect TF binding we used
DNase-seq data and the Centipede algorithm [97] to infer sites that are putatively
bound by TFs in our LCLs. We next identified SNPs disrupting these putative
binding sites and calculated a position weight matrix (PWM) score for each allele.
We used SNPs that are in DNase | hypersensitive sites (DHSs) but not in known
TF binding sites as a set of matched controls. Considering the data for all TFs
together, we found that alleles with lower predicted TF binding affinity (i.e., lower
PWM scores) are frequently associated with increased DNA methylation within
500bp of the binding site. The association was stronger than that observed for
the control DHS SNPs (by permutations; P = 10°°; Fig. 4A). Considering binding
sites for each TF separately, we identified three TFs (CTCF, PAX9, and ESET;

Fig. 4B), where a change in PWM score is significantly associated with the
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methylation level of probes within 500bp of the binding site (Table 2). Changes in
the predicted binding efficiency of ESET1 and PAX9 are negatively associated
with methylation levels, while changes in the predicted binding efficiency of
CTCF are positively associated with methylation levels at some loci and

negatively associated at others.

Name SNPs tested Proportion significant at 10% Mean proportion from permutation P-value

CTCF 370 15% 3% <10°°
PAX9 85 1% 3% <10*
ESE1 55 15% 2% <10*

Table 2.2 Associations between SNPs disrupting TF binding sites and DNA
methylation within 500bp of the binding site

Our observations indicate that the level of predicted TF binding is
associated with variation in methylation levels near the binding site. Given this,
changes in TF abundance (approximated by the estimated expression level of
that TF) might also be associated with variation in methylation levels around the
TF binding sites. To test this, we considered previously collected gene
expression (RNA-seq) data from the same LCLs [37]. We found that the inter-
individual variation in the expression levels of two TFs (STAT5A and ZNF274) is
significantly correlated with variation in methylation levels around the TF binding
sites (Fig. 4C/D). Specifically, an increase in STAT5A expression is associated
with lower levels of DNA methylation and, interestingly, an increase in the

expression of ZNF274 is associated with increased levels of DNA methylation.

meQTLs are enriched with loci associated with complex disease
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Previous work has suggested links between DNA methylation, QTLs, and
complex traits [77,98]. To further explore this in our data we used the NHGRI’s
catalog of published genome-wide associations [16] to identify SNPs associated

with complex diseases that were within 3 kb of a methylation probe.

Category Term Fold Enrichment Bonferroni FDR

KEGG_PATHWAY Type | diabetes mellitus 113 2.7E-11 3.9E-10
KEGG_PATHWAY Antigen processing and presentation 101 1.9€-07 2.7E-06
KEGG_PATHWAY Graft-versus-host disease 98 2.3E-07 3.3E-06
KEGG_PATHWAY Autoimmune thyroid disease 91 3.4E-07 4.9E-06
KEGG_PATHWAY Allograft rejection 88 4.1E-07 5.8E-06
GOTERM_MF_FAT MHC class Il receptor activity 190 2.0E-06 1.1E-05
KEGG_PATHWAY Cell adhesion molecules (CAMs) 42 9.6E-07 1.4E-05
KEGG_PATHWAY Viral myocarditis 69 1.4E-06 2.0E-05
GOTERM_CC_FAT MHC protein complex 34 7.8E-06 5.9E-05
UP_TISSUE Blood 10 1.0E-05 1.1E-04
UP_TISSUE Peripheral blood leukocyte 47 1.6E-05 1.8E-04
GOTERM_BP_FAT Antigen processing and presentation 25 3.8E-04 5.3E-04
KEGG_PATHWAY Asthma 88 8.2E-04 0.012

Table 2.3 DAVID analysis of meQTLs implicated in GWAS

We found that GWAS SNPs are significantly enriched among meQTLs (P
< 10; Fig. S3); of the 2676 SNPs tested, 153 are also significantly associated
with variation in methylation levels at an FDR of 10%. Given that LCLs are
derived from B-lymphocytes and that DNA methylation exhibits tissue specificity,
we hypothesized that the GWAS results would be enriched for genes pertaining
to immune system functions. Using data from the original GWA studies we
obtained a list of putatively affected genes associated with each of the 153
GWAS/meQTL SNPs. These genes are indeed enriched (FDR < 1.2%; Table 3)
for KEGG pathways pertaining to immune function (eg. type 1 diabetes, antigen
processing, autoimmune thyroid disease) and GO terms for immune function (eg.
antigen processing and MHC class |l receptor activity). We further found that

genes implicated in the GWAS/meQTL analysis tend to be up regulated in
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peripheral blood leukocytes, compared to a background of multiple tissues (Table

3).

2.4 Discussion

Our study considered inter-individual variation in methylation profiles using
LCLs. The LCL model is a somewhat artificial system, and indeed it has been
previously demonstrated that the Epstein-Barr virus transformation of primary B
cells into LCLs results in widespread DNA methylation changes [99,100].
However, it is also clear that a large number of B cell-specific characteristics
remain in LCLs and, in general, important and insights regarding gene regulatory
processes have been learned from studies in LCLs in particular, often by using a
QTL mapping approach [99].

We have identified nearly 14 thousand CpG sites at which methylation
levels are associated with genetic variation. The number and magnitude of
associations are consistent with other recent meQTL studies of similar scale [34].
We took advantage of the fact that the LCLs we worked with are well studied (a
clear advantage of the renewable LCL resource) to analyze the methylation data
in combination with data on other regulatory mechanisms. We found strong
evidence that DNA methylation is regulated in concert with other cellular
phenotypes. Though the inference of causality is problematic for most genomic

studies, including ours, we provided some indication that transcription factor

25



binding may result in changes in DNA methylation patterns at nearby genomic
regions.

Indeed, we found that, in general, SNPs disrupting TF binding sites are
more likely to be associated with DNA methylation levels than SNPs within
DNase | hypersensitive sites but not in TF binding sites. We believe that using
SNPs disrupting putative TF binding sites provides a powerful way to re-examine
the interplay between QTLs for regulatory phenotypes. Our observations
therefore suggest that changes in the binding of CTCF, PAX9, ESE1, STATS,
and ZNF274 result in changes in methylation patterns in nearby CpGs. This does
not necessarily mean that the TF is directly regulating DNA methylation, but that
changes in the binding of the TF (observed through change in mRNA abundance
or PWM score) are the first step leading to a change in DNA methylation. In other
words, our approach suggests that changes in TF binding are frequently a key
early step in the regulatory cascade that leads to concerted changes in multiple

mechanisms.

The functional context of meQTLs

We observed an under-representation of meQTLs at promoters. We
suggest two possible explanations for this observation; unfortunately, we
currently lack the ability to distinguish between the two. First, a technical /
statistical explanation: We may be underpowered to detect changes in
methylation at promoters. We found that DNA methylation levels at promoters

are, in general, less variable and have a lower average methylation level
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compared with other genomic regions, including enhancers (Fig. S4). The
alternative explanation is more intriguing: It is possible that promoter methylation
patterns are more often functional (with respect to their regulatory outcome) than
methylation in other genomic regions. If so, promoter methylation patterns may
evolve under stronger functional constraint, leading to lower true rates of
meQTLs, as suggested previously [34].

Related to this interpretation, we have also shown that the relationship
between DNA methylation and activating marks is more complex then previously
appreciated. Negative correlations between DNA methylation levels and the
expression of nearby genes have been observed frequently [27,35,79,81,101],
but few have explored cases where DNA methylation is positively correlated with
gene expression levels or activating chromatin marks [27,34,35]. When we
examine joint QTLs, all regulatory phenotypes associated with active
transcription exhibited an unexpectedly high proportion of positive correlations
with methylation levels at nearby sites (Table 1). Previous work has shown that
DNA methylation in gene bodies is often associated with activating histone
modifications and increased expression levels [102,103], yet at least when we
considered meQTLs, we did not observe a difference in the direction of
correlations between CpGs within or outside gene bodies. Instead, we have
found that when eQTL/meQTLs are positively correlated the respective TSS and
CpG sites tend to be further from each other. These observations suggest that
DNA methylation in more distal regulatory elements may be more likely to have

an activating effect. This hypothesis is supported by the observed enrichment of
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CpG associated with meQTLs in enhancers and insulators, which are further
from TSS than promoters.

We propose two alternative hypotheses to account for the observations of
positive correlations between methylation and expression levels at nearly half of
meQTLs/eQTLs sites. First, if the expression of a gene is tightly regulated, DNA
methylation could serve as a fine-tuning tool. For example, over-activation by
histone modifications could be suppressed using DNA methylation or vice versa.
Indeed, while DNA methylation was considered a very stable epigenetic mark,
recent work has demonstrated that DNA methylation levels can dynamically
change in vivo on very fast (hours) time scales [104].

A second possibility is that observed positive correlations between
methylation levels and the expression of nearby genes are due to 5-
Hydroxymethylcytosine (5hMc), an additional modification to DNA methylation
that has been implicated in the process of demethylation [105]. It has been
shown that 5hMc has activating effects on transcription [106]. The bisulfite
conversion approach we used does not allow us to distinguish 5hMc from DNA
methylation. It is therefore possible that positive correlations between DNA

methylation and expression or activating histone modifications are due to 5hMc.

Summary
Our study joins a growing body of work, which indicates that methylation

levels at a large number of loci across the genome are affected by genetic
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variation at nearby sites. In many cases, these meQTLs are also associated with
variation in a variety of other types of chromatin changes, gene expression
changes, and often - changes in disease risk. Our data is consistent with the
notion that TF binding likely plays a role in altering methylation levels, but the
mechanisms underlying the vast majority of meQTLs remain unclear. Similarly,
we still do not understand in detail the mechanistic links between DNA
methylation and other epigenetic marks and gene expression outputs, and these

types of questions will no doubt be a fruitful area for future research.

2.5 Materials and Methods

DNA methylation array

To analyze DNA methylation, we extracted DNA from LCLs of 64 adult
YRI HapMap individuals. The samples were bisulphite-converted and hybridized
to the Infinium HumanMethylation450 BeadChip at the University of Chicago
Functional Genomics facility. To validate the array probe specificity, probes were
mapped to an in silico bisulfite-converted genome using the Bismark aligner
[107]. Only uniquely mapped probes were retained (n = 459,221). We excluded
probes on sex chromosomes (n = 11,016). Next, to eliminate the potential for
spurious associations due to differences in probe hybridization affinity, we
discarded probes (n = 118,736), overlapping known SNPs segregating in our

panel based on our genotype data (see below). Following this series of
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exclusions, we kept data from 329,469 probes for subsequent analysis.
Methylation levels are reported as [-values, which are considered estimates of

the fraction of chromosomes methylated at a given site.

Whole genome bisulfite sequencing

Bisulfite sequencing was performed using a modified version of the
lllumina whole genome bisulfite sequencing protocol. Specifically, extracted DNA
from LCL cell lines of 10 Yoruba HapMap population individuals and spiked-in
unmethylated lambda phage DNA was fragmented into 100bp fragments using a
Covaris ultra-sonicator. Fragmented DNA was blunt ended, repaired, and
standard lllumin TruSeq adapters were ligated to the DNA fragments. DNA was
then bisulfite-converted using the Invitrogen MethylCode Bisulfite Conversion Kit.
The bisulfite-converted DNA was PCR amplified and sequenced using the
lllumina HiSeq 2000. We walk the streets at night, we go where eagles dare.
They picked up every movement, they pick up every loser. With jaded eyes and
features, You think they really care? Sample was sequenced in at least two
lanes. Average genome-wide coverage ranged from 0.4x to 7.0x per sample with
a median of 2.4x. Sequencing reads were trimmed for quality and to remove the
adapter sequences. PCR duplicates were removed using the SAMtools software
package. Reads were mapped using the Bismark aligner, which maps bisulfite
converted DNA to a G to A and C to T converted human genome [107]. The
bisulfite conversion efficiency was determined using the spiked-in lambda phage

DNA. Conversion efficiency for all samples was estimated to be greater than
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99%. Locus-specific methylation levels were estimated by obtaining the ratio of

methylated to unmethylated CpG counts.

Correlation of data from methylation array and bisulfite sequencing

To assess the overall agreement between the methylation array and the
bisulfite-seq data we compared average methylation levels across CpG sites. To
do so, we calculated the average of the untransformed array beta values from all
64 individuals at each CpG site, and compared these values to the estimated
locus specific methylation level based on the sequencing data (by dividing the
number of methylated reads by the total coverage of a given site in each
individual, and calculating the mean across all individuals with at least 5 reads at
that site). Correlation (Fig. S1) was assessed using the Spearman rank

correlation (because the data are not normally distributed).

Genotype data

We used the genotypes from a previous study of the same samples [37].
Briefly, genotypes were obtained by combining and imputing genotype based on
the 1000 Genomes Project and HapMap [93,94]. A reference panel was built
using all 210 YRI individuals (excluding 1%' degree relatives). If genotypes were
available from multiple datasets the dataset that was expected to be most
accurate on average was chosen (1000 Genomes high coverage, followed by
HapMap, then 1000 Genomes low coverage, respectively). This reference panel

was used to impute missing genotypes for individuals in our cohort using the
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BIMBAM software [108]. Genotype information was obtained for roughly 15.8
million variants genome-wide. The genotypes that we used can be found at

http://eqtl.uchicago.edu/Home.html.

QTL analysis

The distribution of methylation array data is non-Gaussian. We therefore
quantile-normalized the data to a standard normal first, across all probes within
an individual, and then across all individuals at each probe. We tested for
confounders using principal component analysis. No known confounders were
significantly correlated with a PC (Fig. S7). However, we found that removing
four PCs provided optimal power to detect meQTLs. We then identified meQTLs
by testing (using standard linear regression) for associations between normalized
methylation levels and genotypes at all SNPs that were within 3 kb of an assayed
CpG. We only tested SNPs with a minor allele frequency greater than 5%. An
FDR was computed using the R-package qvalue [109]. To investigate the overlap
between QTLs for other molecular phenotypes and meQTLs we identified SNPs
previously associated with changes in histone modifications, Polll, DHS,
expression and complex diseases (using GWAS results) [16,37,40]. The
rationale for this analysis is that the observation that a SNP is a QTL for other
traits increases the overall likelihood that the SNP may also be associated with
changes in methylation levels (in other words, we use previous observations as
priors). Significant QTLs for any of the tested regulatory phenotypes or complex

diseases, that were located within 3 kb of a methylation probe, were then tested
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for association with methylation levels. For each class of previously identified
QTLs an independent FDR [109] was calculated to assess the significance of
association with methylation levels.

To ensure that our results are not markedly impacted by the choice of
normalization procedure, we also considered two alternative approaches. First,
the data were quantile-normalized to a standard normal across all probes within
an individual. This approach resulted in a minor excess of small p-values in the
QTL analysis of permuted data (Fig. S5). Second, we quantile-normalized data
from a given probe to a standard normal across all individuals. This method
resulted in considerable variation in mean methylation levels across individuals,
which is not ideal since the variable means may reflect array variation rather than
true biology. Regardless of the specific properties (and possible shortcomings) of
the alternative normalization and data processing approaches, the majority of
meQTL associations we report remained significant (8,684 without removing
PCs, 8863 when normalized by individual, 5496 when normalized by probe, and

6283 when the data were untransformed; Fig. S6).

Aggregation of bisulfite sequencing data

We used the bisulfite sequencing data to generally validate the meQTLs
identified using the array data, and more importantly, to visualize the association
of meQTLs with methylation levels at CpGs that are located near each other.
Since the sequence data are sparse (because the coverage is low) and available

for only a small number of individuals, we only considered an aggregate analysis
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across all individuals and across all the previously identified meQTL associated
CpGs. Specifically, for each meQTL we separated the sequenced individuals by
genotype (i.e., the genotypes associated with high methylation levels,
heterozygote, or those associated with low methylation levels). Next, we counted
the number of methylated and unmethylated reads in 51bp windows sliding
across a 5 kb region centered on the associated CpG for each meQTL. The
mean aggregate methylation levels for each window position and each genotype
class were calculated as the sum of the number of methylated reads divided by
the sum of total reads for that window and genotype class. We averaged this
estimate across all meQTLs genome-wide. The result is an aggregate plot of the
average methylation levels by genotype class, showing the spatial distribution of

CpG methylation in a 5 kb window (Figure 1B).

Identification of candidate causal SNPs from meQTL data

Due to LD, the causal site for any given meQTL is typically ambiguous. In
addition, though we used 1000 genome sequence data and imputation, we
expect that a subset of common SNPs are missing from our data. For this
reason, it is challenging to obtain an accurate estimate of the distribution of
distances between probes and causal meQTL sites. In previous work, our group
tackled this problem using a Bayesian model [35]. Here, since we have a much
larger number of meQTLs (then eQTLs or dsQTLs, for example), we focused on
a set of meQTLs where there is a single clear candidate variant that is likely to

drive the signal. Specifically, we identified meQTLs for which the p-value of the
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most significant SNP is at least two orders of magnitude lower than that of the
next most significant SNP (within a slightly larger, 10 kb window). Previously, we
used simulations to show that these stringent criteria provide strong enrichment
for causal sites [26]. In reality, we consider these sites as putatively causal

because the evidence supporting their role is circumstantial.

Inclusions of previous data collected from the same samples

DNase-seq data for 70 individuals, ChIP-seq data for 10 individuals and
RNA-seq data for 69 individuals were obtained from previous studies performed
in our labs [21,37,40]. In Figure 3, mapped fragments are reported as fragments
per kilobase per million mapped reads (FPKM) and are smoothed using a 21bp

Savitzky-Golay filter.

Association between transcription factor binding and DNA methylation

We performed analysis that focused on SNPs that disrupt TF biding sites.
To do so, we used inferences of TF binding based on DNase | sequencing data
that were obtained from a previous study [37], which applied the Centipede
algorithm [97] to DNase-seq data from the same LCLs. We identified putative
binding sites overlapping genetic variants and calculated a position weight matrix
(PWM) score for both alleles at each locus. Linear regression was then
performed to identify associations between the PWM scores of each genotype

and the methylation levels of CpGs within 500 base pairs of the motif position.
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Association between transcription factor expression levels and DNA
methylation at CpGs near the TF binding sites

RNA-seq data for 56 of the 64 individuals with methylation array data were
obtained from Degner et al. [37]. The mRNA levels of the transcription factors
were standardized to RPKM and then quantile normalized. We used ChlP-seq
broad-peak calls for 100 TFs, measured by the ENCODE project in the
lymphoblastoid cell line GM12878, to identify TF binding sites [65]. (These data

were downloaded from the ENCODE website

(http://encodeproject.org/ENCODE/) in July 2013). If the TF ChlIP-seq was
performed in multiple replicates, only the peaks found in all replicates were
considered as binding sites. A Pearson correlation test was performed between
the TF expression and DNA methylation levels measured by probes within 500
base pairs of TF binding sites. Given our expectation that TF expression would
have a trans effect on DNA methylation genome-wide, we anticipated removing
PCs from the methylation data would diminish our ability to identify associations.
Indeed we find that using data with PCs removed reduces our power to identify
associations. As such, we used methylation data that had only been normalized

(first by individual then by probe) for this analysis.

Pathway analysis of GWAS associated genes
We performed a pathway analysis of GWAS associated genes using the
DAVID program [110,111]. DAVID allows the user to input a custom

“background” set of genes from which the program computes a null hypothesis.
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Since there is a known bias toward immune system genes in GWA studies we
used all genes implicated in GWA studies as our “background”. Thus, observed

significant enrichments are beyond the bias in GWAS results.

Accession Numbers
Data from the methylation array and bisulfite sequencing are available at the
GEO database (accession number GSE57483). A summary table of the meQTLs

is available at the Gilad lab website http://giladlab.uchicago.edu/Data.html.

37



2.6 Appendix A: Supplementary Materials

Correlation of bisulfite sequencing data and illumina array data

0.8

r=0.9290

0.4

Mean methylation level of bisulfie sequencing

0.2

0.0

Mean methylation level of array data

Figure S2.1 Scatterplot of CpG methylation levels estimated from the
lllumina array and from whole genome bisulfite sequencing.
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Figure S2.2 A boxplot of distances from methylation probe to transcription
start site for eQTL/meQTLs.

The boxplot on the left represents QTLs where methylation and expression are
negatively correlated. The boxplot on the right represents QTLs where
methylation and expression are positively correlated.
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Figure S2.3. QQ-plot of associations between SNPs implicated in GWAS
studies and DNA methylation.
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The red points are all SNPs from GWAS studies within 3 kb of a methylation
probe. The black points are a subsample of all the SNPs within 3 kb of a
methylation probe.
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Figure S2.5. Affect of normalization on meQTL calls
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QQ-plot of all SNPs within 3 kb of a methylation probe normalized by either A)
individual or B) probe. Visible inflation of associations is observed when
normalizing by individual.
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Figure S2.6. Enrichment of QTLs under different normalization procedures
The T-statistics of meQTLs identified in this study when regression is performed
using other array normalization strategies. The histograms show the absolute T-
statistic for A) untransformed data, B) data normalized by individual only, C) data
normalized by probe only, and D) normalized by individual then probe. The blue
histogram represents permuted genotypes (controls) and the red histogram
represents the meQTLs.
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Figure S2.7. PCA plots
PCA plots showing the first two PCs separated by A) sex, B) bisulfite conversion
batch, or C) array batch. None of the known potential confounders are
associated with PC1 or PC2. PC1 explains roughly 8% of the variance.

-0.2 -0.1 0.0

PC1(0.08184)

0.1 0.2

meQTL All probes | P-value
probes
Total 13915 329469
In promoters 3132 106006 | < 10"
In insulators 299 5757 | <10®
In enhancers 1750 36435 | < 10°

Table S2.1 Enrichment analysis of probes location
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The data used to test for enrichments/depletions of probes measuring
methylation levels meQTL associated CpGs. The first column is the number of
meQTLs associated CpGs within the specified genomic feature (eg. promoter).
The second column is the total number of probes within the specified genomic
feature. To calculate the chi-square statistic a two by two contingency table was
created using the first two columns (described above), the total number of
meQTL associated CpGs, and the total number of probes on the array.
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CHAPTER 3: GENETIC VARIATION, NOT CELL TYPE OF ORIGIN,

UNDERLIES THE MAJORITY OF REGULATORY DIFFERENCES IN IPSCS



3.1 Abstract’

Induced pluripotent stem cells (iPSCs) are a new and powerful cell type that
provides scientists the ability to model complex human diseases in vitro. These
cells can be cryopreserved and later expanded, providing a renewable source of
cells from the same individual. iPSCs can be made from a variety of somatic cells
in the body and many labs have created them from blood and skin cells. We
asked whether the cell type of origin impacts methylation and gene expression
patterns in the reprogrammed iPSCs. Our findings indicate that there are
remarkably few regulatory remnants of the cell type of origin in the iPSCs. In
other words, most of the variation between iPSCs can be attributed to individual
genetics. Our findings suggest that studies using iPSCs should focus on
obtaining additional individuals rather than additional clones from the same
individual. We caution that our current findings are limited to iPSCs and further
studies are needed to address the question of somatic memory in differentiated

cell types.

3.2 Introduction

! Citation for chapter: Burrows CK*, Banovich NE*, Pavlovic BJ, Patterson K,
Gallego Romero |, Pritchard JK, et al. (2016) Genetic Variation, Not Cell Type of
Origin, Underlies the Majority of Identifiable Regulatory Differences in iPSCs.
PLoS Genet 12(1): e1005793. doi:10.1371/journal.pgen.1005793
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Research on human subjects is limited by the availability of samples.
Practical and ethical considerations dictate that functional molecular studies in
humans can generally only make use of frozen post mortem tissues, a small
collection of available cell lines, or easily accessible primary cell types (such as
blood or skin cells). The discovery that human somatic cells can be
reprogrammed into a pluripotent state [43-45] and then be differentiated [46] into
multiple somatic lineages, has the potential to profoundly change human
research by providing access to a wide range of cell types from practically any
donor individual.

Though much progress has been made since the initial development of
iPSC reprogramming technology, and human iPSCs have been used in a wide
range of studies [47-50], the usefulness of iIPSCs as a model system for the
study of human phenotypes is still extensively debated [61-63]. The principal
issue is the extent to which reprogrammed iPSCs retain epigenetic and gene
expression signatures of their cell type of origin. A residual epigenetic signature
of the original precursor cell in the reprogrammed iPSCs is often referred to as
‘epigenetic memory’ [112].

The common view, established by a few early studies in mice and
humans, is that epigenetic memory is a significant problem in iPSCs [62,112-
118]. In mice, methylation profiles in iPSCs and in the precursor somatic cells
from which the iPSCs were generated were found to be more similar than
expected by chance alone [112,114]. The extent of this similarity, however, could

not be benchmarked against genetic diversity because the somatic cells and the
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iPSCs were all from genetically identical mice. In turn, methylation profiles in
human iPSCs reprogrammed from different somatic cell types were found to be
quite distinct from each other [115,116]. However, the somatic cells were
provided by different donor individuals, hence epigenetic memory and differences
due to genetic diversity were confounded.

Additionally, concerns were initially raised about residual epigenetic
memory in iPSCs by studies that considered iPSCs generated using retroviral
vectors [112,114-116]. Retroviral reprogramming is characterized by random
integrations that vary in copy number and genomic location across lines.
Furthermore, it has been shown that viral vectors commonly utilized in iPSC
generation preferentially integrate into active gene bodies, strong enhancers or
active promoters [119,120], this process of preferential integration into open
chromatin would likely lead to a strong cell type of origin signature. In contrast to
retroviral reprograming, the more recent episomal approaches to establish iPSCs
are associated with much lower rates of genomic integration [121,122].

Indeed, one recent study has concluded that when properly controlling for
genetic variation and using integration free methodology to establish iPSCs, the
effect of cell type of origin on gene expression in iPSCs is low compared to inter-
individual genetic contributions [123]. However, this study did not consider
matched epigenetic markers, the supposed drivers of the suspected
phenomenon of residual cell type of origin memory in reprogrammed iPSCs.

We thus designed a study to directly and effectively address this issue.

We focused on two cell types that are the source for the majority of human iPSCs
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to date, and the most easily collected tissue samples from humans: skin
fibroblasts, and blood cells. Specifically, we collected skin biopsies and blood
samples from four healthy Caucasian individuals (two males and two females).
Dermal fibroblasts were isolated from dissociated skin biopsies and maintained in
culture until reprogramming. We isolated the buffy coat from whole blood and
subsequently used Epstein—Barr virus to transform B cells into immortalized
lymphoblastoid cell lines (LCLs), one of the most common cell types used in

genomic studies.

3.3 Results

To determine whether cell type of origin effects gene expression and CpG
methylation we reprogrammed iPSCs from two somatic tissues of four
individuals. We used an episomal reprogramming approach [121] to
independently generate iPSCs from the LCLs and fibroblasts of each individual,
three replicates from the LCLs and one from the fibroblasts (to study epigenetic
memory; Fig. 1). We employed a wide range of quality control analyses and
functional assays to demonstrate that all iPSCs were fully pluripotent, that they
expressed endogenous, but not exogenous, pluripotency factors, that the iPSCs
were free of vector integrations, and that iPSCs established from LCLs did not

retain traces of integrated EBV (see methods; S1-4 Figs.).
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Figure 3.1 Study Design.

A schematic of the study design. Three independent iPSC lines were generated
from LCLs and one from fibroblasts.
Cell type of origin minimally contributes to gene regulation in iPSCs

Once the quality of the iPSCs was confirmed, we extracted RNA and DNA
from LCLs, fibroblasts, LCL derived iPSCs (L-iPSCs), and fibroblast derived
iPSCs (F-iPSCs) from all four individuals. We then used the Illumina Infinium
HumanMethylation450 array and the lllumina HumanHT12v4 array to measure
DNA methylation and gene expression levels, respectively. Our data processing

approach is described in detail in the methods. Briefly, considering the
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methylation data, we first excluded data from loci that were not detected either as
methylated or unmethylated (no signal; detection P > 0.01) in more than 25% of
samples. We then applied a standard background correction [124] and
normalized the methylation data using SWAN [125] (S5 Fig.), which accounts for
the two different probe types in the platform. Finally, we performed quantile
normalization (S6A/B Fig.). Following these steps we retained methylation data
from 455,910 CpGs. Considering the expression data, we first excluded probes
whose genomic mapping coordinates overlapped a known common SNP. We
then retained all genes that were detected as expressed in any cell type in at
least three individuals (S7 Fig.). We then quantile normalized the gene
expression data (S6C/D Fig.). Following these steps we retained expression data
for 11,054 genes.

To examine overall patterns in the data, we initially performed
unsupervised clustering based on Euclidean distance. As expected, using gene
expression or methylation data, samples clustered based on cell type (LCLs,
fibroblasts, and iPSCs) without exception. Interestingly, using the methylation
data, iPSCs clustered perfectly by individual, not cell type of origin (Fig. 2A).
Within individual, however, data from L-iPSCs are more similar to each other
than to data from F-iPSC in three of the four individual clusters. These results are
consistent with a small proportion of the regulatory variation being driven by cell

type of origin.
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Figure 3.2 Hierarchical clustering and principal components analysis.

Hierarchical clustering using the complete linkage method and Euclidean
distance from autosomal loci for (a) DNA methylation data (n = 445,277 probes)
and (b) gene expression data (n = 10,648 autosomal genes).

The clustering pattern is less clear when we consider the gene expression
data, although the iPSCs again tend to cluster by individual more than they do by
cell type of origin (Fig. 2B). The property of imperfect clustering of iPSC gene
expression data by individual is consistent with previous observations by
Rouhani and Kumasaka et al. [123]. We believe that a possible explanation for
this observation is that overall regulatory variation between iPSCs — even across
individuals — is small.

Given the large number of sites interrogated (particularly on the
methylation array), we also examined the clustering of iPSCs using only the top

1,000 most variable measurements across lines, similar to the approach of Kim
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et al. 2011 [116]. Our clustering remained largely unchanged using this subset of
variable sites for both methylation data (S8A Fig.) and expression data (S8B
Fig.). Clustering based on pairwise Pearson correlations rather than Euclidian
distance produced nearly identical results (S8C-F Fig.). We also examined
patterns in the data using principal components analysis (PCA; S9 Fig.) The
results from the PCA are not as easily interpretable as those from the clustering
analysis, but it is clear that the major components of variation are not driven by

cell type of origin.

Little evidence of widespread epigenetic memory in iPSCs

We next considered methylation and expression patterns at individual loci
and genes, respectively. We first focused on differences in CpG methylation
between the cell types. Using limma [126] (see methods), we identified 190,356
differentially methylated (DM) CpG loci between LCLs and fibroblasts (FDR of
5%). Similarly, we identified 310,660 DM CpGs between LCLs and L-iPSCs and
226,199 DM loci between fibroblasts and F-iPSCs (Fig. 3A). In contrast, at the
same FDR, we only classified 197 CpG loci (0.04% of the total sites tested; S10
Fig.) as DM between L-iPSCs and F-iPSCs. Moreover, the 197 DM loci were not
all independent; they clustered into 53 genomic regions, 37 of which are located
near or within annotated genes. Of these 37 genes, 24 had measurable gene
expression data (Fig. 3C).

The observation of small number of significant DMs associated with cell

type of origin does not preclude a persistent but small difference between the
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epigenetic landscapes of L-iPSCs and F-iPSCs. We therefore asked, for each
CpG classified as DM between LCLs and fibroblasts, whether the sign of the
mean methylation difference between L-iPSCs and F-iPSCs is the same as the
sign of the mean difference between the cell types of origin. We found a slight
but significant enrichment of a consistent sign (50.5% of the loci; binomial test; P
< 10®) in these two contrasts. This observation confirms that while epigenetic

memory in iPSCs can be detected, the magnitude of such effect is small.
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Figure 3.3 Differential Methylation and Gene Expression Between the Four
Cell Types (L-iPSC, F-iPSC, LCLs and fibroblasts).

(@) A Venn diagram of differentially methylated (DM) loci (FDR of 5%)
overlapping between different contrasts. (b) Venn diagram of differentially
expressed (DE) genes (FDR of 5%) overlapping between different contrasts. (c)
Heatmaps of the DNA methylation and gene expression levels where each row
corresponds to a gene (labeled on the right). DNA methylation levels represent
the average of all loci DM between L-iPSCs and F-iPSCs nearby the
corresponding gene.
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Of the 197 DM loci between L-iPSCs and F-iPSCs, 133 loci were also DM
between LCLs and fibroblasts (a highly significant overlap; »? test; P < 107°).
Moreover, 122 of these 133 DM loci showed a difference in methylation between
LCLs and fibroblasts that was in the same direction as the one seen between L-
iPSCs and F-iPSCs (sign test; P < 10'15). In principle, these observations support
the idea of epigenetic memory, namely that a subset of epigenetic differences
between the somatic cells persists in the reprogrammed iPSCs. Yet our results

indicate that epigenetic memory persists in a remarkably small number of loci.

A Single DE Gene Between F-iPSCs and L-iPSCs

We turned our attention to the gene expression data. We again used
limma to identify (at an FDR of 5%) 7,281 differentially expressed (DE) genes
between LCLs and fibroblasts, 8,008 DE genes between LCLs and L-iPSCs, and
7,420 DE genes between fibroblasts and F-iPSCs (Fig. 3B). In contrast, at the
same FDR, we classified only a single gene (TSTD7) as DE between L-iPSCs
and F-iPSCs. These results are consistent with recent observations [123]. More
generally, we found nearly no evidence for departure from a null model of no
differences in gene expression levels between L-iPSCs and F-iPSCs. We
proceeded by performing a sign test, considering the sign of the mean gene
expression difference between L-iPSCs and F-iPSCs in genes that were
classified as DE between LCLs and iPSCs. We found fewer consistent signs than

expected by chance alone (47.8%; binomial test: P = 10™).
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The single DE gene between L-iPSCs and F-iPSCs, TSTD1 (P = 6.28 x
107; FDR 0.69%), is also DE between the LCLs and fibroblasts precursor cells.
Moreover, 11 of 19 CpG sites that are located near the TSTD1 gene, and are
assayed by the methylation array, are among the 197 DM loci between L-iPSCs
and F-iPSCs. We observed a decreased fold change of TSTD1 expression when
comparing between LCLs and fibroblasts (log2 fold change of 2.06) and L-iPSCs
and F-iPSCs (log2 fold change of 1.34). This may be a case of epigenetic
memory that maintains a gene expression residual difference, but it appears to
be the only such case in our data. We found no evidence that any of the other
DM loci are associated with gene expression differences between L-iPSCs and
F-iPSCs (Fig. 3C). This is true even when we conservatively accounted for
multiple tests by only considering the number of tests that involved genes that
are associated with DM loci between L-iPSCs and F-iPSCs (S11 Fig.).

Our observations indicate that remarkably little residual memory of the
precursor somatic cell affects gene expression and methylation patterns in the
reprogrammed iPSCs. To formally evaluate this we estimated the contribution of
inter-individual differences and cell type of origin effects on variation in
methylation and gene expression levels (see methods). The mean proportion of
variance explained by donor individual is 16.2% and 15.5%, for the methylation
and expression data, respectively; while the mean proportion of variance
explained by cell type of origin is 6.6% and 6.7%, respectively (T-test; P < 10°™"°;
KS test P < 10™"°; Fig. 4). Interestingly, when we focus on gene and CpGs whose

expression and methylation levels in LCLs were previously associated with
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genetic variation (eQTLs and meQTLs, respectively), the mean proportion of
variance explained by donor individual is significantly higher (21.2% and 19.9%,
for the methylation and expression data, respectively; T-test P < 107%; KS test P
< 10™"%; S13 Fig), while the mean proportion of variation explained by cell type of

origin is roughly similar (6.28% and 6.34% for methylation and expression data,

respectively).
A Methylation level variation in iPSCs explained by B Gene expression variation in iPSCs explained by
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Figure 3.4 Contribution of Individual Differences Versus Cell Type of Origin
to Methylation and Expression Levels.

Estimated contribution of inter-individual differences and cell type of origin effects
on variation in (a) methylation and (b) gene expression levels from a linear mixed
effect model. There is a significant difference in the mean proportion of variation
explained by individual and cell type of origin (P < 10™"°).
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3.4 Discussion

To date, the common view is that iPSCs derived from somatic cells retain robust
epigenetic traces of the precursor cells [62,112-117,124]. Yet, in our data, a
remarkably small amount of the observed regulatory variation in iPSCs is driven
by cell type of origin. Our observations are consistent with genetic background
being a major driver of regulatory variation in iPSCs.

While our results challenge the common view that epigenetic memory is
prevalent in iPSCs, a careful examination of the literature suggests that our data
are in fact consistent with previous studies, though our interpretation is not. The
principal difference between previous studies and ours is that we were able to
benchmark epigenetic memory against other sources of variation. Previous
studies either characterized iPSCs from a single individual [112,114], or were not
able to distinguish between genetic and cell type of origin effects [115,116]. For
example, though Kim et al. [116] reported a similar number of DM loci (137-370)
between iPSCs derived from different cell types as we observed in our study,
Kim et al. interpreted their observation as evidence for a marked effect of the
donor cells. Yet, our observation that DNA methylation is quite homogenous
across all iPSCs (both within replicates and between L-iPSCs and F-iPSCs;
S8C/D Fig.), is not in disagreement with the observations of Kim et al.

Indeed, our study explicitly models the contribution of genetic background
to variation in DNA methylation levels in iPSCs. When we consider DNA

methylation in the context of variation explained by inter-individual differences,

58



we find a remarkably small effect associated with cell type of origin. Moreover,
even unsupervised clustering (based on either DNA methylation or gene
expression data) indicated that samples largely clustered by individual. We found
little evidence of clustering by cell type of origin. When we turned our attention to
individual loci, only 197 (0.043%) tested CpGs were classified as DM between L-
iPSCs and F-iPSCs, compared with 190,356 (41.7%) loci that were classified as
DM between LCLs and fibroblasts.

Our observation that only a handful of DM sites may drive regulatory
differences between iPSCs from different origins is consistent with recent work
by Rouhani and Kumasaka et al. [123] where a similar study design was
employed examining only gene expression levels. Indeed, as in Kumasaka et al.,
we found that individual genetic background captures a much larger proportion of
gene regulatory variation than cell type of origin using both the DNA methylation
and gene expression data.

Future work needs to address additional pertinent questions. First, our
study was limited to methylation and gene expression levels in iPSCs. Future
studies should focus on additional epigenetic and regulatory markers. Second,
we focused on regulatory differences between iPSCs, but did not study
differentiated cell types. This needs to be addressed in the future because the
degree to which iPSCs retain regulatory signatures of their cell type of origin
ultimately is expected to influence the extent to which iPSCs can be used as a

model system for studying complex traits in differentiated cell types.
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In conclusion, our study demonstrated that when accounting for individual,
the impact of cell type of origin on DNA methylation and gene expression in
iPSCs is limited to a small number of CpGs, which cluster into an even smaller
number of genomic loci, and a single gene, with almost no detectable influence
genome-wide. Our observations further confirm the usefulness of iPSCs for
genetic studies regardless of the original somatic cell type. The high correlation
of DNA methylation and gene expression levels (S8C/D Fig.) between
individuals, demonstrate the faithfulness of the model, though as we pointed out
— similar studies in differentiate cells are required to generalize these
conclusions. While cell type of origin should continue to be carefully documented,
our data also suggest that future studies should focus on collecting more
individuals rather than establishing multiple iPSC clones from the same

individual.

3.5 Materials and Methods

Isolation and culture of fibroblasts and LCLs

Skin punch biopsies and blood were collected from the same individual
within 20 minutes under University of Chicago IRB protocol 11-0524 (samples
from four individuals were collected over three collection dates; samples from
individuals 3 and 4 were collected on the same date). Skin and blood samples
from an individual were processed at the same time. Fibroblast isolation and
culture was conducted using the approach described in detail in Gallego Romero

et al [127]. Briefly, skin punch biopsies (3mm) were digested using 0.5%
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collagenase B (Roche), isolated fibroblasts were cultured in DMEM (Life
Technologies) supplemented with 10% fetal bovine serum (FBS; JR Scientific),
0.1mM NEAA, 2mM GlutaMAX (both from Life Technologies), 1%
penicillin/streptomycin  (Fisher), 64mg/L L-ascorbic acid 2-phosphate
sesquimagnesium salt hydrate (Santa Cruz Biotechnology), at 5% CO, and 5%
O..

All other cell culture was performed at 5% CO, and atmospheric O,. For
LCL generation, whole blood was drawn (within 20 minutes of obtaining skin
punch biopsies) into two 8.5mL glass yellow top tubes (Acid Citrate Dextrose
Solution A tubes; BD). Blood tubes were stored at room temperature and
processed within 12 hours of collection. To isolate lymphocytes, we diluted whole
blood with an equal amount of RPMI 1640 (Corning), diluted blood was slowly
layered onto Ficoll-Paque (GE Lifescience) in 50 mL centrifuge tubes. This
gradient was centrifuged at 1700 rpm for 30 minutes without acceleration or
braking. Leukocytes and platelets formed a white band at the interface between
the blood plasma and the Ficoll (called the buffy coat). We collected the buffy
coat using a Pastette® and to that added 10mL of PBS. The collected buffy coat
was then washed three times with PBS.

For EBV transformation, 4 x 10° fresh lymphocytes collected as described
above were resuspended in a total of 4.5 ml of RPMI 1640 culture medium
(Corning) containing 20% FBS and 1:100 phytohemagglutinin (PHA-M;
LifeTechnologies) and transferred to a T-25 flask. EBV supernatant produced by

the B95-8 cell lines (provided by the Ober lab) was added at 1:10 to the culture
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flask. Cells were left undisturbed for three to five days before adding fresh media.
Flasks were subsequently examined weekly for changes in cell growth as
indicated by acidic pH (yellow color) and the appearance of clumps of cells
growing in suspension. Once growth was established (21-35 days), cells were
diluted or split to several flasks. When the cell density reached 8 x 10° to 1 x 10°
cells per mL they were cryopreserved at a density of 10 x 10° cells per ml of
freezing media in cryovials. All LCLs using this study were transformed with the

same lot of EBV supernatant.

Episomally-reprogrammed iPSCs

To establish iPSCs we transfected LCLs (Amaxa™ Nucleofector™
Technology; Lonza) and fibroblasts (Neon® Transfection System; Life
Technologies) with oriP/EBNA1 PCXLE based episomal plasmids that containing
the genes OCT3/4, SOX2, KLF4, L-MYC, LIN28, and an shRNA against p53
[121]. We supplemented these plasmids with an in vitro-transcribed EBNA1
mMRNA transcript to promote exogenous vector retention following electroporation
of the episomal vector [128,129]. Fibroblasts from all individuals were
reprogrammed in two batches. LCLs were reprogrammed in four batches. The
first three batches contained LCLs from all four individuals. Individual 4 failed
reprogramming in batches one and three. A final fourth batch was therefore done
with only individual 4. We plated a range of 10,000 - 40,000 transfected cells per
well in a 6-well plate. Within 21 days colonies were visible and manually

passaged onto a fresh plate of irradiated CF1 mouse embryonic fibroblasts
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(MEF). We passaged these new iPSC colonies on MEF in hESC media
(DMEM/F12 (Corning) supplemented with 20% KOSR (LifeTechnologies), 0.1mM
NEAA, 2mM GlutaMAX, 1% Pen/Strep, 0.1% 2-Mercaptoethanol
(LifeTechnologies)). Fibroblast derived iPSCs were supplemented with 100ng/mL
human basic fibroblast growth factor, versus 25ng/mL for LCL derived iPSCs; all
other culture conditions were identical. After 10 passages of growth we
transitioned the cultures to feeder-free conditions and cultured them for an
additional three passages before collecting cell pellets for analysis. Feeder-free
cultures were grown using 0.01mg/cm? (1:100) hESC-grade Matrigel (BD
Sciences) and Essential 8 media (LifeTechnologies). Passaging was done using
DPBS supplemented with 0.5mM EDTA. All RNA and DNA were isolated using
Zymo dual extraction kits (Zymo Research) with a DNase treatment during RNA

extraction (Qiagen).

Characterization of iPSCs

All iPSC lines were characterized as described previously [127]. Briefly,
we initially confirmed pluripotency using PluriTest [130], a classifier that assigns
samples a pluripotency score and novelty score based on genome-wide gene
expression data. All samples were classified as pluripotent and had a low novelty
score (S1 Fig.). We next performed gPCR using 1 ug of total RNA, converted to
cDNA, from all samples to confirm the endogenous expression of pluripotency
genes: OCT3/4, NANOG, and SOX2 (S2A-C Fig.). Additionally, we tested for the

presence and expression of the EBV gene EBNA-1 using PCR (S2D/3 Figs.). We
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tested all samples for both genomic integrations and vector-based EBV. We did
this using primers designed to amplify the EBNA-1 segment found in both the
episomal vectors and the EBV used to transform LCLs. If the cell was positive (a
single positive case was found: Ind4 F-iPSC), we further tested the origin of the
EBV (genomic or episomal) using primers specific to the LMP-2A gene found in
EBV or part of the sequence specific to the episomal plasmid (S3 Fig.). Finally,
we confirmed the ability of all iPSC lines to differentiate into the three main germ
layers using the embryoid body (EB) assay. The EBs were imaged for the
presence of all three germ layers (S4 Fig.). It should also be noted that gene
expression and DNA methylation levels are extremely similar between iPSC
lines. This relative homogeneity further demonstrates the quality of our iPSC
lines. In summary, all iPSC lines established in this study showed expression of
pluripotent genes quantified by qPCR, generated EBs for all three germ layers,

and were classified as pluripotent based on PluriTest.

Processing of methylation array

Extracted DNA was bisulphite-converted and hybridized to the Infinium
HumanMethylation450 BeadChip (lllumina) at the University of Chicago
Functional Genomics facility. To validate the array probe specificity, probe
sequences were mapped to an in silico bisulfite-converted genome using the
Bismark aligner [131]. Only probes that mapped uniquely to the human genome
were retained (n = 459,221). We further removed data from probes associated

with low signal (detection P-value > 0.07) in more than 25% of samples (retained
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data from n = 455,910 loci). Raw output from the array (IDAT files) were
processed using the minfi package [124] in R.

We performed standard background correction as suggested by lllumina
[124], and corrected for the different distribution of the two probe types on the
array using SWAN [125] (S5 Fig.). Additionally, we quantile normalized the red
and green color channels (corresponding to methylated and unmethylated signal
respectively) separately (S6A/B Fig.). To calculate methylation levels (reported
as B-values) we divided the methylated signal by the total signal from both
channels. B-values were considered estimates of the fraction of alleles

methylated at that particular locus in the entire cell population.

Processing of expression arrays

RNA quality was confirmed by quantifying sample’s RNA Integrity Number
(RIN) on an Agilent 2100 Bioanalyzer (Agilent Technologies). All samples had a
RIN of 10. The extracted RNA from all samples was hybridized to the lllumina
HT12v4 Expression BeadChip array (lllumina) at the University of Chicago
Functional Genomics facility. Sample processing was performed using the lumi
package in R [132]. We excluded data from a subset of probes prior to our
analysis: First, we mapped the probe sequences to the human genome hg19 and
kept only those with a quality score of 37, indicative of unambiguous mapping (n
= 40,198; note that we also explicitly pre-filtered the 5,587 probes which were
annotated as spanning exon-exon junctions to avoid mapping errors). Second,

we downloaded the HapMap CEU SNPs
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(http://hapmap.ncbi.nim.nih.gov/downloads/genotypes/2010-

08_phasell+lll/forward/) and converted their coordinates from hg18 to hg19 using
the UCSC liftOver utility [133]. We retained only those probes that did not overlap
any SNP with a minor allele frequency greater than 5% (n = 34,508). Third, we
converted the lllumina probe IDs to Ensembl gene IDs using the R/Bioconductor
package biomaRt [134] and retained only those probes that are associated with
exactly one Ensembl gene ID (Ensembl 75 - Feb 2014; n = 22,032). The full
pipeline was implemented using the Python package Snakemake [135]. We
defined a gene as expressed in a given sample if at least one probe mapping to it
had a detection P-value < 0.05. In the case of L-iPSCs, we defined a gene as
expressed in an individual if any associated probes had a detection P-value <
0.05 in at least one biological replicate. Using these criteria, we identified all
genes expressed in at least three individuals in at least one cell type (S7 Fig.; n =
14,111 probes associated with 11,054 annotated genes). In the case that
multiple expressed probes were associated with the same ENSEMBL gene (n =
3,057), we only retained data from the 3'-most detected probe. Following these
filtration steps, we obtained estimates of expression levels in all samples across
11,054 genes. Data from the 11,054 genes were quantile normalized using the

lumiExpresso function in lumi [132] (S6C/D Fig.).

Unsupervised hierarchical clustering and heatmaps
Only data from autosomal probes were retained for the hierarchical

clustering analyses in order to reduce bias towards clustering by individual or sex
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(n = 10,648 expression, and n = 445,277 methylation). We calculated a matrix of
pairwise Euclidean distances between samples from the methylation and
expression data separately. From these matrices we performed hierarchical
clustering analyzing using the complete linkage method as implemented in the R
function hclust. The observed dendrograms remained consistent regardless of
the linkage method chosen (complete, single, or average). The 1,000 most
variable loci were defined by taking the loci with the highest variance in iPSCs.
Clustering based on the 1,000 most variable probes were processed in an
identical manner as above. Heatmaps were generated from matrices of pairwise
Pearson correlations between samples using data from autosomes and sex

chromosomes.

Analysis of differences in gene expression and methylation levels

Data from probes on both autosomes and sex chromosomes were
included in this analysis, given that individuals were balanced across cell types (n
= 455,910 CpGs; n = 11,054 genes). Additionally, we anticipated that sites on the
sex chromosomes may be particularly sensitive to mis-regulation during
reprogramming [136]. Differential expression and methylation analyses were
performed using linear modeling and empirical Bayes methods as implemented
in the limma package [126]. We tested for differential methylation and
expression, using locus-specific models, between L-iPSCs and F-iPSCs; L-
iPSCs and LCLs; F-iPSCs and fibroblasts; and between fibroblasts and LCLs.

We considered a locus DM or DE at an FDR < 5% (Benjamini Hochberg). We
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also tested for DE genes between L-iPSCs and F-iPSCs using only genes that
were classified as DE between L-iPSCs and LCLs; F-iPSCs and fibroblasts; and
LCLs and fibroblasts (S11 Fig.). We estimated FDRs separately each time we
considered only subsets of the data.

Due to the imbalance of L-iPSC samples to F-iPSC samples we repeated
our analyses using data from a reduced set of samples. Namely, we randomly
sampled a single replicate of the L-IPSC from each individual. As expected,
reducing the number of L-IPSC samples greatly reduces the number of loci
classified as DM between L-iPSCs and F-iPSCs as well as between L-iPSCs and
LCLs. However, the number of DM loci was reduced across all other contrasts as
limma models the entire matrix together (S12 Fig.). Interestingly, we found that
different combinations of replicates yielded DE genes other than TSTD7.
Therefore, we sampled all possible combinations and overall, found six genes
that were classified as DE (FDR 5%) in at least one of the combinations of
reduced samples. Of note, we never classify TSTD1 as DE (FDR 5%) in the
reduced data set. The most common DE gene, INPPSF, is the only gene that
also has nearby DM CpGs (five of the 25 nearby loci). Additionally, in the full
model, INPP5F has the second lowest P value (uncorrected P = 6.84 x 10°; FDR
38%). However, INPP5F was not DE between LCLs and fibroblasts, but was DE
between LCLs and L-iPSCs and also fibroblasts and F-iPSCs (S3A-D Tables;

Fig. 3C).

Enrichment of DM loci in regulatory and genomic features
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We employed two strategies to identify enrichments of DM loci between L-
iPSCs and F-iPSCs in regulatory features. First, we used the regulatory states
defined by Ernst et al. [137]. We tested for enrichments in all regulatory
categories using a x-square test comparing the number DM loci and total probes
within each regulatory class to the number DM loci and total probes outside the
regulatory class. We found no significant enrichment for any of the defined
regulatory states.

Next, we used the UCSC_RefGene_Group annotation as supplied by
lllumina. These annotations detail the location of probes in relation to genes (1st
Exon, 3' UTR, &' UTR, Gene Body, within 1.5kb of a TSS or within 200bp of a
TSS). We identified significant enrichments of DM loci within 1.5kb of a TSS and
gene bodies. However, there are six probes classified as both within a gene body
and within 1.5kb of a TSS. We chose to report both results because it is difficult
to deconvolute these categories.

We also considered the position of DM loci in relation to genes. The
annotations were defined by lllumina. We were able to identify 37 genes
associated with DM loci, but we only had corresponding gene expression data for
24 of these genes. We attempted to identify signals of enrichment in DE levels
between L-iPSCs and F-iPSCs in these 24 genes. To this end, we compared the
log fold changes in gene expression between L-iPSCs and F-iPSCs from genes
with nearby DM loci between L-iPSCs and F-iPSCs to 10,000 random samplings
of log fold change in expression between L-iPSCs and F-iPSCs from all genes

and found no enrichment for increased log fold changes.
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Proportion of variance explained

To estimate the proportion of variance explained by individual and cell
type of origin we performed a linear mixed model with a fixed effect for cell type
of origin and a random effect for individual. Only data from autosomes were
included in this analysis so that the results would not be biased toward
differences in individuals (n = 10,648 expression, and n = 445,277 methylation).
To calculate the proportion of variance explained we divided the variance
components of each term by the total variance in gene expression (Fig. 4). When
focusing on CpGs and genes with previously identified genetic associations
(eQTLs and meQTLs, respectively) we used genes with at least one eQTL
identified by Lappalainen et al. 2013 [138] and CpGs with at least one meQTL

identified by Banovich et al. 2014 [36] (S11 Fig.).

Accession numbers
The expression and methylation data sets supporting the results of this article are
available in the Gene Expression Omnibus (GEO) under accession GSE65079

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSEG65079).

Ethics, consent and permissions

All individuals consented to study participation under University of Chicago IRB

protocol 11-0524.
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3.6 Appendix B: Supplementary Materials
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Figure S3.1 Quality control of iPSCs.
iPSC lines QC - PluriTest pluriscore results for all samples, showing all iPSC
samples fall within the pluripotent threshold (red dashed lines). Additionally, all

primary tissue samples fall within the non-iPSC cell type classification (blue
dashed lines).
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qPCR for canonical pluripotency transcription factors
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Figure S3.2 Quality control of iPSC Lines.
iPSC lines QC - Quantitative PCR (qPCR) of pluripotency genes (a) OCT3/4, (b)
NANOG, and (c) SOX2 normalized on randomly selected Ind3 L-iPSC C.
Relative expression is the RQ value with respect to GAPDH expression, with
error bars representing the calculated min and max RQ value. All iPSC lines
show endogenous expression of these pluripotency genes. (d) Expression of
EBNA-1, a required viral gene of Epstein-Barr virus (EBV), normalized on
randomly selected Ind3 LCL. EBNA-1 expression could stem from either the
reprogramming vectors or, in LCLs and L-iPSCs, expression of integrated
genomic EBV. Ind4 F-iPSC shows low expression of EBNA-1 due to low
retention of reprogramming vectors as confirmed in Supplementary Fig. 3. This
sample is kept for data analysis because all other QC measures are met and the
sample is not an outlier in overall gene expression or DNA methylation.
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Figure S3.3 Quality control of iPSCs.

(a) PCR on DNA for presence or absence of EBV, both integrated and non-
integrated (reprogramming vector based). All four LCLs showed the presence of
EBV along with one iPSC line, Ind4 F-iPSC. Additional banding in the images is
due to RNA in the sample. These five samples, highlighted by a red box, were
taken forward for two additional PCRs. First, the five samples were tested for the
presence of the reprogramming vectors (b), of which only Ind4 F-iPSC was
positive. Lastly, the five samples were tested for EBV based on the presence of
the LMP-2A sequence (c; an EBV gene not found on the reprogramming vector).
All LCLs were positive for EBV, and the iPSC sample was not.
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Ind1 F-iPSC Ind2 F-iPSC

Ind1 L-iPSC A

Ind1 L-iPSC B

Ind1 L-iPSC C

Nestin/MAP2/Hoechst SMA/MAP2/Hoechst AFP/HNF3B/Hoechst Nestin/MAP2/Hoechst SMA/MAP2/Hoechst AFP/HNF3B/Hoechst

Ind3 F-iPSC Ind4 F-iPSC

Ind3 L-iPSC A Ind4 L-iPSC A

Ind3 L-iPSC B

Ind3 L-iPSC C Ind4 L-iPSC C

Nestin/MAP2/Hoechst SMA/MAP2/Hoechst AFP/HNF3p/Hoechst Nestin/MAP2/Hoechst SMA/MAP2/Hoechst AFP/HNF3p/Hoechst
Figure S3.4 Quality control of iPSCs.

iPSC lines QC - Embryoid body (EB) formation from iPSC lines to validate the
ability to differentiate into all three germ layers. The leftmost column (a) shows
EBs stained with Nestin, a cytoplasmic stain for ectoderm in green and MAP2, a
cytoplasmic stain for ectoderm in red. The center column (b) shows EBs stained
with SMA, a cytoplasmic stain for mesoderm in green and again for MAP2 in red.
The rightmost column (c) shows EBs stained with AFP, a cytoplasmic stain for
endoderm in green and HNF3B, a nuclear stain for endoderm in red. All iPSC
lines generated showed the ability to differentiate into all three germ layers. All
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imaging was done at 10x magnification and nuclei were stained blue with
Hoechst.

Raw methylation values by probe type SWAN normalized methylation values
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Figure S3.5 DNA methylation density plots.
Representative density plots of DNA methylation levels separated by type | and
type Il probes before and after SWAN Normalization.
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Quantile normalized methylation levels by sample

Raw methylation levels by sample
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Figure S3.6 Array data normalization.

normalization was performed independently on the red and green color channels.

Gene expression data (c) pre- and (d) post- quantile normalization.
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Probes with detectable gene expression by sample type

Detected in Fibroblasts 11,060 Detected in F-iPSCs 11,448 Detected in L-iPSCs 12,559 Detected in LCLs 10,220

7921 not detected in any

Figure S3.7 Probe inclusion scheme.

For 22,032 probes we defined a gene as expressed in a given sample if at least
one probe mapping to it had a detection P-Value < 0.05. In the case of L-iPSCs,
we defined a gene as expressed in an individual if any associated probes had a
detection P-Value < 0.05 in at least one biological replicate. Using these criteria,
we identified all genes expressed in at least three individuals in at least one cell
type (n = 14,111 probes, associated with 11,054 genes).
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Hierarchical clustering using the complete linkage method and Euclidean
distance from the 1,000 most variable autosomal iPSC loci for (a) methylation
data and (b) expression data. Heatmap showing pairwise Pearson correlations
between all samples for all loci (autosomes and sex chromosomes) (c)
methylation data and (d) gene expression data: note all iPSCs are highly
correlated. Hierarchical clustering using the complete linkage method and
Euclidean distance from all loci (autosomes and sex chromosomes) for (e)
methylation data (n = 455,910) and (f) gene expression data (n = 11,054).
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Figure S3.9 Principal components analysis (PCA).
Results of PCA on (a) methylation levels and (b) gene expression levels, using
only autosomal loci in the iPSC samples.

79



0 02040608 1

i

_ 101 vhul
| [ 107 €pyy
101 Zpuy|
107 1Pyl
0 0Sd!-1 ¥pu
I} 9 0Sd!-1vpul
V 0Sd!-1 vpul
I} O 0SdI-1gpul
g 0Sdl-1 €pul
v OSdI-1 €pu|
0 0Sd!-1zZpul
g 0Sd!-1zZpul
v OSdI-1 Lpy|
0 0Sd!-1 Lpu
g 0Sd!-1 Lpul
V 0Sd!-1 Lpu]
1l 0Sdrd ppu
0Sdr4 €puy]
— 0Sdl-4 Zpul
0Sdl-4 Lpu
1se|qouqid ypul
_ 1se|qoiqid €pu|
1se|qoiqid zpu|
1se|qouqid Lpu|

A heatmap of methylation levels at loci DM between L-iPSC and F-iPSC (n =

Figure S3.10 Heatmap of DM loci.
197), ordered by genomic location.

80



QQ Plot by DE Gene Subsets

® All Genes
Genes DE LCL v Fib o

6 — ® Genes DE LCL v L-iPSC

Genes DE Fib v F-iPSC

Observed (-logP)

Expected (-logP)

Figure S3.11 DE tests in gene subsets.

To confirm that the test to detect DE genes was not underpowered, we also
tested for DE in subsets of genes most likely to be DE between L-iPSC and F-
iPSC — genes that were identified as DE in the other contrasts tested. We found
no enrichment of significant P-Values based on DE tests with these subsets; see
QQ plot of P-Values considering DE tests between L-iPSCs and F-iPSCs using
four distinct gene sets: all genes, only genes DE between LCL and fibroblasts,
only genes DE between LCL and L-iPSCs, and only genes DE between
fibroblasts and F-iPSCs.
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DM Loci shared across contrasts: one L-iPSC
replicate

L-iIPSCs vs F-IPSCs L-IPSCs vs LCLs F-IPSCs vs fibroblasts  LCLs vs fibroblasts
123 247,735 200,059 161.634

19,842

Figure S3.12 Differential methylation with single L-iPSC replicate.

A Venn diagram depicting differentially methylated (DM) loci identified at an FDR
of 5% overlapping between different contrasts with only a single L-iPSC replicate
from each individual. A general decrease in the number of DM loci is observed
across all contrasts as limma models all the data together. Yet, a far more
marked decrease in the number of DM loci is observed in contrasts containing L-
iPSCs.
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CHAPTER 4: HUMAN INDUCED PLURIPOTENT STEM CELLS: A

POWERFUL MODEL TO INVESTIGATE INTER-INDIVIDUAL REGULATORY

VARIATION ACROSS CELL TYPES



4.1 Abstract

Human induced pluripotent stem cells (iPSCs) provide a powerful system
to study complex human traits. To investigate inter-individual variation in gene
regulation across multiple cell types from the same individuals, we established
and validated a panel of 59 iPSCs from lymphoblastoid cell lines (LCLs) of
Yoruba individuals, which have been extensively studied in the past. The
genome sequences of all individuals were also available to us. We collected RNA
sequencing, chromatin accessibility, and DNA methylation data from the LCLs
and the iPSCs, as well as RNA sequencing from iPSC-derived cardiomyocytes
(iPSC-CMs) from 13 of the same individuals.

Using these gene regulatory data, we identified thousands of genetic
associations with inter-individual variation in gene expression levels (eQTLs),
methylation levels (meQTLs), and chromatin accessibility (caQTLs), across cell
types. We found that regulatory variation is lower in iPSCs compared with the
differentiated cell types, consistent with the intuition that developmental
processes are generally canalized. By considering transcription factor footprints
and inferred chromatin states, we were able to provide putative mechanistic
explanations for many differences in regulatory QTL associations across cell
types. In particular, we identified a large number of cell type specific regulatory
QTLs in distal enhancers, which are likely to regulate tissue-specific gene

expression patterns.
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This study demonstrates the power of the iPS cellular model to

dynamically study inter-individual variation in gene regulation.

4.2 Introduction

Understanding the genetic underpinnings of complex traits remains one of
the major goals in human genetics. The advent of high throughput genotyping
technologies (array and sequencing based) represented a transformative period
in the study of complex traits. Researchers postulated that with large samples of
individuals and well executed case control studies we would identify the majority
of genetic drivers of complex traits including disease [3]. Unfortunately, it became
clear that complex traits were even more complex then originally believed.
Recent large-scale meta genome-wide association studies (GWAS) with traits
such as BMI [12] suggest that there may be thousands of genetic variants with
small effect sizes contributing to complex traits. Within the current framework
prohibitively large sample sizes would be needed to fully elucidate the genetic
architecture of any complex trait. However, GWAS studies have provided a
wealth of information about the general properties of loci affecting complex traits.
Notably, the majority of such loci lie outside of genes and likely act by modifying
gene expression [17]. Indeed, recent work has shown you can dramatically
increase your ability to identify genetic variants associated with disease traits by

incorporating gene expression data from a disease relevant tissue [42]. These
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results demonstrate the importance of studying gene regulation in identifying
genetic variants associated with complex traits.

To this end many studies have examined the effect of genetic variation on
gene expression [31-33] and other regulatory phenotypes [27,34-41]. However,
due to ethical and practical constraints, these studies have been limited to
commercially available cell lines [27,34-37], easily accessible tissues (eg. skin
and blood), and, more recently, post-mortem tissues [32]. While these studies
have provided valuable insight into the genetic architecture of gene regulation,
none of the aforementioned models provide a flexible framework to study inter-
individual variation in gene regulation in multiple cell types from the same
individual.

The discovery that somatic cells could be transformed into embryonic-like
cells [43-45] and then re-differentiated into somatic cell types from any germ
layer [46] provides a powerful cellular model to study gene regulation.
Importantly, induced pluripotent stem cells (iPSCs) can be efficiently generated
with a small number of exogenous factors [121]. Moreover, while the equivalence
of iPSCs and embryonic stem cells (ESCs) remains debated, recent work using
well-matched lines suggests that iPSCs are nearly indistinguishable from ESCs
[139]. Recent work examining gene regulation in iPSCs has demonstrated that
variation in gene expression and DNA methylation [123,140] is highly dependent
on donor individuals. These results suggest that iPSCs can be used to study
genetic effects on gene regulation. Indeed, one study has established that

common genetic variation is associated with changes in gene expression and the
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main driver of expression differences in iPSCs [141]. However, a more extensive
evaluation of variation in multiple regulatory phenotypes from iPSCs and iPSC-
derived cell types is lacking.

To this end we have generated a panel of iPSCs from 59 well
characterized immortalized lymphoblastoid cell lines (LCLs). We have collected
gene expression, chromatin accessibility, and DNA methylation data from this
panel. Additionally, we have differentiated 13 of these lines into iPSC-derived
cardiomyocytes (iPSC-CMs) from which we have collected gene expression. This
study is the deepest characterization of gene regulation in iPSCs to date and
represents a large advance in our ability to study the genetic architecture of gene

regulation across cell types.

4.3 Results

Generation of high quality iPSCs from 59 Yoruba individuals

We successfully generated iPSCs from 59 Yoruba individuals (see
methods). Briefly, LCLs were reprogrammed using a previously described
episomal approach [121]. After a week in suspension culture cells were seeded
onto a layer of gelatin and mouse embryonic fibroblasts. A single clonal colony is
obtained from each line and passaged for ten weeks before final characterization
and collection. Pluripotency and stability were confirmed using three methods.
First, iPSCs were allowed to form embroyid bodies and then spontaneously

differentiate. After a week of differentiation iPSCs were stained for tissues from
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all three germ layers (Fig. 4.1A). Next, we applied a bioinoformatic classifier,
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Figure 4.1 Quality control of iPSC lines

A) A representative image of immunohistochemistry staining for ectoderm,
mesoderm, and endoderm cell types. B) Pluritest results. Upper left quadrant
represents empirical cutoffs. C) A representative karyotype result

PluriTest [130], to our data. The classifier compares gene expression levels from
uncharacterized lines to a “gold standard” panel of embryonic stem cells and
iPSCs. Two metrics are obtained from this method providing information about

the similarity in gene expression of canonical pluripotency genes and amount of

aberrant unexpected expression (Fig. 4.1B). Finally, all lines were karyotyped to
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demonstrate genomic stability (Fig. 4.1C). The iPSCs described here passed all
quality controls and have been grown for at least 20 passages in a feeder culture
system. Additionally, all lines are able to transition to feeder-free conditions using
a commercially available growth medium and extracellular matrix (see methods
for more details).

One major goal of this study was to generate resources of value to our lab
and the field as a whole. To this end we have generated at least ten
cryopreserved stocks from each line. Each stock can be thawed and expanded
indefinitely. At least one stock from each individual has been tested and all lines
thaw reliably. Furthermore, no lines have shown culture difficulties after thawing.
This panel represents the largest stock of characterized non-European iPSCs to

date.

Regulatory variation is lower in iPSCs

The faithfulness of iPSCs as a model of embryonic stem cells (ESCs) is
stil debated; nevertheless, the similarities are evident [139]. This work
represents one of the largest collections of iPSCs obtained from healthy
individuals. Moreover, to our knowledge this is the only large collection of iPSCs
from individuals of African ancestry. Thus, this panel represents a powerful
cellular model to study gene regulation at an embryonic-like state. Unique to this
study, we have focused on three regulatory phenotypes, mRNA (RNA-seq;
n=59), chromatin accessibility (ATAC-seq; n=58), and DNA methylation levels

(EPIC array; n=58), to obtain a multi-level understanding of gene regulation in
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Figure 4.2 Regulatory variation is lower in iPSCs

Heatmaps generated from pairwise spearman correlations of A) gene
expression, C) chromatin accessibility and D) DNA methylation levels. Coefficient
of variation calculated from gene expression levels in iPSCs, LCLs and iPSC-
CMs. In all figures blue denotes iPSCs, black denotes LCLs, and red denotes
iPSC-CMs. In all figures iPSCs are the most homogenous.

iPSCs. Furthermore, data from each individual were collected at the same time
from the same population of cells (see methods). By using three layers of

regulatory data we are able to provide a more comprehensive picture of gene
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regulation in iPSCs. To compare gene regulation in iPSCs to other cell types we
have differentiated 12 individuals into iPSC-derived cardiomyocytes (iPSC-CMs;
see methods) and collected gene expression data (RNA-seq). Additionally, we

utilized data previously collected from Yoruba LCLs [36,37,138].

We began our analysis by examining the different trends in overall gene
expression between cell types. It became immediately apparent that gene
expression in iPSCs is more homogenous than gene expression in LCLs or
iPSC-CMs (Fig. 4.2 A&B). This is consistent with a model where embryonic cells
are tightly regulated and developmental processes are canalized. We next turned
our attention to the methylation and chromatin accessibility data in iPSCs and
LCLs. We found that chromatin accessibility had a similar pattern to gene
expression and methylation data exhibit an even more striking difference (Fig.
4.2 C&D). While these data may suggest that our study will have lower power to
detect genetic associations with gene regulation, recent work from our lab
demonstrates that the gene expression variation in iPSCs segregates better by

individual than gene expression variation in LCLs [142].

Inter-individual genetic variation drives regulatory differences in iPSCs
After examining overall gene expression patterns we set out to

characterize the effect of genetic variation on gene regulation. At a false

discovery rate (FDR) of 10%, we have identified thousands of putatively cis

genetic associations (see methods) with gene expression (eQTLs: 1,629; Figure
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4.3A), chromatin accessibility (caQTLs: 2,130), and DNA methylation (meQTLs:
29,782). Although regulatory phenotypes display lower inter-individual variance in
iPSCs compared to LCLs, we maintain equal or greater power to detect QTLs
when using similar sample size (eQTLs: 1,167; caQTLs: 2,260). Using a recently
developed method to identify eQTLs in small sample sizes (see methods) [143]
we were able to identify 517 genes where gene expression was associated with
at least one genetic variant in iPSC-CMs. This represents the first study to our
knowledge that has identified eQTLs in iPSC-derived cell types

Next we set out to characterize the properties of QTLs identified in LCLs
and iPSCs. In general we find such properties are well matched across cell
types. In particular there appears to be no difference in the average distance
between a genetic variant and the associated locus (gene/peak/CpG) across cell
types. Some small but significant differences in effect size were identified
between cell types; however, these are difficult to interpret and fluctuate
depending on the regulatory phenotype. Moreover, when focusing on eQTLs that
are significant in both tissues, we see that the effect size of the QTL tracks quite
well (Fig 4.3B). These results suggest a high degree of sharing between QTLs
and that in general genetic variants affect gene regulation through the same
mechanisms regardless of cell types.

Using the pi1 estimate (1-pi0) developed by Story and Tibshirani we
estimated the proportion of QTLs that were shared between iPSCs, LCLs, and

iPSC-CMs. Rather than making a single estimate based off QTLs identified at an
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FDR of 10%, we used a sliding scale to show the distribution of sharing at
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Figure 4.3 Properties of eQTLs across cell types

A) QQ plot of genetic association with gene expression levels. The black dots
denote tested SNPs and the grey dots denote permuted data. The red line
represents the null expectation. B) Plot of the absolute effect size of eQTLs
identified in LCLs and iPSCs. The plot is ordered by the effect size in iPSCs.
Standard error of the estimate is plotted around each point. Red points denote
LCLs and black points denote iPSCs. C) Estimates of eQTL sharing between
iPSCs and LCLs (black lines), iPSCs and iPSC-CMs (grey line), LCLs and iPSCs
(dark blue line) and LCLs and iPSC-CMs (light blue line). D-E) Estimates of
caQTL and meQTL sharing between iPSCs (black line) and LCLs (red line).
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different significance thresholds (Fig. 4.3 C-E). These data demonstrate that
gene expression has an extremely high degree of sharing. Indeed, the majority of
eQTLs identified in iPSCs are also significant in LCLs (between 71% and 91%;
Fig. 4.3C). While the proportion of sharing is lower when considering iPSC-CMs
(Fig. 4.3C), this is not unexpected given the difference in sample size.
Interestingly, the patterns of sharing differ slightly between iPSCs and LCLs.
Namely, eQTLs identified in LCLs exhibit a continual increase in the degree of
sharing with iPSCs as the significance threshold increases (Fig. 4.3C). This
sharing is maximized when considering only the 150 most significant genes in
LCLs (the most stringent threshold). However, eQTLs identified in iPSCs have
the largest degree of sharing with LCLs at a slightly more relaxed threshold.
These results suggest that there is a higher degree of iPSC specific eQTLs with
very low p-values compared to LCLs. Moreover, this pattern is replicated across
the regulatory phenotypes tested here (Fig. 4.3 C-E). The proportion of sharing
shown here is similar to previous estimates of sharing between iPSCs and
somatic eQTLs [141].

Next, we attempted to identify cell type specific eQTLs. Identifying genetic
variants with cell types specific effects on gene expression is a difficult task and
has been the focus of many previous efforts [32,144]. Here we begin by
examining genes that have at least one significant eQTL (eGenes) in iPSCs but
were expressed at too low of a level to be tested in LCLs. There are 498 such
genes, accounting for 31% of all genes with an eQTL. This is higher than the

inverse where only 24% of eGenes in LCLs were not expressed in iPSCs. For
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the remaining genes (those tested in both tissues) we used a fairly naive
approach to identify cell type specific eQTLs. First we removed any gene that
was significant in both LCLs and iPSCs even if the lead variant differed between
the two, and considered only those cases where the lead variant from the cell
type where the eQTL was identified was tested in the second cell type. This left
us with 533 genes in iPSCs and 530 genes in LCLs. Next we identified cell type
specific eQTLs using a two p-value, such that variants significant in one tissue
must have a p-value greater than 0.2 in the second tissue. We found nearly
identical proportions of genes with a cell type specific eQTL in iPSCs (0.53; n=
285) and LCLs (0.52; n= 278).

One characteristic difference we observed between cell type specific
eQTLs and all eQTLs is the distance between the lead variant and the
transcription start site (TSS). The median distance in cell type specific eQTLs is
significantly larger (iPSC: 35kb, P < 10; LCL: 35kb, P < 10®) compared to all
eQTLs (iPSC: 28kb; LCL: 24kb). This difference is further pronounced (iPSC:
16kb; LCL: 17kb) when focusing on iPSCs that are shared across both cell types
(association significant at 10™ in both cell types). This is consistent with a model
in which enhancers play a larger role in cell type specific gene regulation. To
more explicitly examine this pattern we performed a hierarchical model (see
methods) using cell type specific and shared annotations for chromatin states
[137], transcription factor binding [145], and caQTLs. We identified enrichments
that further suggest cell type specific eQTLs are enriched in enhancers and cell

type specific caQTLs (Fig 4.4). These results led us to further examine the effect
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of genetic variation on chromatin regulation as a putative mechanism driving the

majority of cell type specific QTLs.
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Figure 4.4 Regulatory annotations driving cell type specific and shared
eQTLs

Estimates of the proportion of eQTLs explained by chromatin state annotations,
genomics annotations, and caQTLs obtained from the hierarchical model in A)
iPSCs and B) LCLs. The annotations are separated by shared or specific — i.e.
present in both cell types or present in cell type where the eQTL was identified.
The bar plots represent eQTLs that are cell type specific (purple), shared
(orange), or all eQTLs (grey). These plots are ordered by the difference in the
proportion of cell type specific vs shared eQTLs explained such that features
explaining more of the cell type specific eQTLs are on top.

Chromatin regulation drives the majority of cell type specific QTLs

We postulated that by focusing on genetic variants affecting chromatin

accessibility in a cell type specific manner, we may be better able to dissect the
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mechanisms that govern cell type specific eQTLs. For this analysis we limited
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Figure 4.5 cell type specific caQTLs

A) A heatmap showing enrichment of cell type specific and shared caQTLs in
regulatory annotations. A darker red denotes a stronger enrichment. B) Heatmap
of chromatin accessibility in iPSCs and LCLs at iPSC-specific caQTL peaks. The
darker orange denotes increase accessibility. C) An example of an LCL specific
caQTL where the peak is accessibility in both regions (model 2) and thus the
genetic variant is likely disrupting a cell type specific TFBS. The top row of the
plot denotes gene location. The next row shows TF peaks from ChIP-seq data.
The density plots show chromatin accessibility levles aggregated by caQTL
genotype for iPSCs on the top and LCLs on the bottom. Under the density plots
are cell type specific chromatin states. The vertical lines denote the accessibility
peak of interest D) An example of an iPSC specific caQTL that is affecting distal
regions (model 3). In this particular example the genetic variant is disrupting an
insulator element.

our focus on caQTLs where the genetic variants are within a chromatin
accessibility peak. Here we examine the chromatin patterns that lead to cell type

specific and shared QTLs. Again we identify specific and shared caQTLs using a
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two p-value cutoff method (see methods). We first look for enrichment of cell type

iPSC specific caQTL that drives changes in expression.
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Figure 4.6 An iPSC specific caQTLs that drives cell type specific changes
in expression

This example shows an iPSC specific caQTL residing within an iPSC specific
chromatin accessibility window that drives cell type specific expression changes.
The top row of the plot denotes gene location. The next row shows TF peaks
from ChlP-seq data. The third row displays transposable elements. The density
plots show gene expression levels and chromatin accessibility levels aggregated
by caQTL genotype for iPSCs on the top and LCLs on the bottom. Under the
density plots cell type specific chromatin states are displayed. The vertical line
denotes the position of the caQTL.

specific caQTLs in chromatin states to confirm the patterns observed in cell type
specific eQTLs. Indeed, we see an enrichment of cell type specific caQTLs in cell
type specific enhancers (Fig. 4.5 A). In an attempt to identify chromatin patterns
that drive cell type specific caQTLs we propose three general models: 1) the
region containing the putatively casual SNP is only accessible in one cell type

driving the specificity of the QTL 2) the region is accessible in both cell types, but
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the SNP is disrupting different transcription factor binding sites 3) the SNP is
distal to the region of interest and the change is happening due to interactions
between regions. The majority of cell type specific caQTLs fall into the first model
(~80%; Fig. 4.5B), a small number of caQTLs are consistent with the second
model (~10%; Fig. 4.5C), and a very limited number of examples are of the third
model (< 10%; Fig. 4.5D). When we examine shared caQTLs the opposite trend
is observed. Namely, we see almost all peaks are accessible in both cell types.
While not all cell type specific caQTLs are also associated with gene
expression, 77% of all cell type specific caQTLs that are also eQTLs show a cell
type specific pattern (n= 57; P < 10”°). One example, shown here, demonstrates
a case of the first model, where the caQTL is also an eQTL. Interestingly, the
gene affected by this putative enhancer, CD2AP, is expressed at similar levels in
both cell types but only an eQTL in iPSCs (Fig. 4.6). These results demonstrate
how using multiple layers of regulatory data can help us dissect the mechanisms

underlying eQTLs.

iPSC-derived cardiomyocytes replicate expression variation in primary
hearts

A major goal of this paper is to demonstrate the usability of the iPSC
system for the study of complex traits, particularly in hard to collect and disease
relevant tissues. To this end we have performed a number of analyses aimed at

characterizing the fidelity of iPSC-CMs. Using gene expression data from iPSCs,
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Figure 4.7 iPSC-CMs replicate expression variation from primary heart
tissue

A) Spearman correlations of gene expression levels from iPSCs, LCLs, iPSC-
CMs, and primary heart tissue. Darker red denotes a stronger correlation. Gene
expression levels from iPSC-CMs and primary heart tissues cluster together. B)
A QQ-plot of eQTLs identified in iPSC-CMs conditioned on being an eQTL in
other cell types. He we examined eQTLs that were significant in hearts (red),
spleen (pink), iPSCs (blue), LCLs (green). These are compared to all the variants
tested in iPSC-CMs (black) and permuted data (grey). The deviation from the null
observed in the permuted data is due to the small sample size. The variants that
were eQTLs in primary heart tissue deviate from the line faster than eQTLs from
any other tissue. These results suggest that eQTLs in iPSC-CM are most similar
to eQTLs identified in primary heart tissue.

iPSC-CMs, and, and tissues collected by the GTEx consortium [32] we
performed hierarchical clustering. We find that iPSC-CMs are most similar to the
GTEXx tissue “Heart Left Ventricle” (Fig 4.7A). Continuing with the GTEx data, we
examined the enrichment of eQTLs identified across all tissues in iPSC-CMs.
Again, we find eQTLs identified in the “Heart Left Ventricle” are most enriched in

iPSC-CMs. As a validation independent of GTEx tissues we used gene ontology

enrichment analysis and found eGenes identified in iPSC-CMs are enriched in
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many biological processes related to heart function (Table 4.1). Finally, we used

a

GO.ID Term Annotated Significant  Expected classicfisher
G0:0003012 muscle system process 250 25 11.49 0.0002
G0:0002026 regulation of the force of heart contrac... 22 6 1.01 0.00036
G0:0006936 muscle contraction 211 21 9.7 0.00069
G0:0030049 muscle filament sliding 25 6 1.15 0.00076
G0:0033275 actin-myosin filament sliding 25 6 1.15 0.00076
G0:0002704 negative regulation of leukocyte mediate... 17 5 0.78 0.00078
G0:0002698 negative regulation of immune effector p... 45 8 2.07 0.0009
G0:0070252 actin-mediated cell contraction 71 10 3.26 0.00141
G0:0030048 actin filament-based movement 86 11 3.95 0.00185

Table 4.1 Gene ontology enrichment of heart specific processes in iPSC-
CM eGenes
polygenic method RolyPoly (see methods) to identify enrichments of GWAS

signal in cell type specific gene expression. We examined four GWAS ftraits:

iPS-differentiated CM enables
study of heart diseases

=

0 4 8
-log10 p-value LCL -

iPS
< = 0O =
r = < =

Figure 4.8 iPSC-CMs enable the study of heart disease phenotypes

Enrichment of trait-specific GWAS signal in genes with cell type specific
expression. The darker red indices a higher degree of enrichment.

rheumatoid arthritis (RA), body mass index (BMI), coronary artery disease
(CAD), and myocardial infarction (MI). Gene expression in iPSC-CMs is
enriched for GWAS signal from BMI, CAD, and MI, while LCLs gene expression
is enriched for RA and BMI (Fig 4.8). Taken together these results suggest that

the gene expression patterns observed in iPSC-CMs replicate those observed in

101



primary heart tissue, making iPSC-CMs a powerful model in which to study heart

specific traits.

4.4 Discussion

Here we have established a unique resource in 59 fully characterized
iPSC lines. These lines derived from LCLs obtained from Yoruba individuals
originally collected as part of the HapMap project. We believe this resource will
be of great value to our lab as well as others. Indeed, we have already had and
met requests to share a number of these lines with other labs. We have
performed a deep characterization of the genetic architecture underlying inter-
individual variation in gene regulation. To our knowledge, this study represents
the second largest characterization of gene expression and the largest
characterization of chromatin accessibility and DNA methylation in iPSCs [141].
Furthermore, by combining data from LCLs, iPSCs and iPSC-CMs we have for
the first time collected multiple regulatory phenotypes in three cell types from the
same panel of individuals.

We have identified novel QTLs in two cell types (iPSCs and iPSC-CMs).
We show here that the reduced variation in regulatory phenotypes found in
iPSCs does not diminish our ability to identify QTLs. We have identified a list of
iPSC specific and LCL specific eQTLs. These eQTLs allowed us to identify
chromatin features that drive cell type specific and shared eQTLs. The

enrichments we observed suggested that genetic variants within enhancers
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driving changes in chromatin at loci distal to the TSS were the major drivers of
cell type specific eQTLs. This finding is consistent with what has been reported
previously [32] and is supported by a large body of work demonstrating the tissue
specificity of enhancers [18,67,146-150].

The results presented here significantly advance our knowledge of cell
type specific eQTLs. Others have reported and characterized the genomic
architecture of cell type specific eQTLs [32,144], yet this is the first study using
additional regulatory phenotypes to identify putative mechanisms driving such
eQTLs. In particular, the chromatin accessibility data presented here allowed us
to identify cell type specific caQTLs within enhancer elements that have a cell
type specific effect on expression. These results provide a definite mechanism by
which cell type specific eQTLs can act.

Finally, we show that iPSC-CMs are a useful model for studying heart
specific traits. Gene expression patterns in iPSC-CMs replicate those of primary
heart tissue and genetic variation has similar effects. These results when taken
together with other recent work [117] suggest that iPSC-CMs are a powerful
model in which to study heart specific phenotypes. Importantly, this highlights the
power of the iPSC system as a whole. Future studies using this panel of iPSCs
will be able to assay dynamic gene expression by characterizing gene
expression during differentiation, in multiple cell types from the same individuals,
and in terminally differentiated cell types subjected to environmental
perturbations. The study of dynamic gene regulation in these model, in

conjunction with newly developed genome editing technologies [151] will allow
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researchers to functionally follow up on putatively causative alleles. The research

presented here is a valuable first step towards that goal.

4.5 Materials and Methods

iPSC generation

We reprogrammed LCLs into iPSCs using an episomal reprogramming
approach described previously [121,140]. Briefly, we transfected 1 million LCLs
(Amaxa™ Nucleofector™ Technology; Lonza) with 1ug of oriP/EBNA1 PCXLE
based episomal plasmids that contain the genes OCT3/4, SOX2, KLF4, L-MYC,
LIN28, and an shRNA against p53. Cells were cultured in suspension for seven
days after transfection in hESC media (DMEM/F12 supplemented with 20%
KOSR, 0.1mM NEAA, 2mM GlutaMAX, 1% Pen/Strep, 0.1% 2-Mercaptoethanol,
25ng/ul of bFGF and .5mM NaB). On the 8" day we plated a range of 8,000 -
32,000 transfected cells per well in a 6-well plate coated with gelatin and seeded
with irradiated CF1 mouse embryonic fibroblasts (MEF). Four days after the initial
plating NaB was removed from the hESC media. Within 21 days colonies were
visible and manually passaged onto a freshly prepared gelatin plate MEF.
Manually passaging continued weekly for ten weeks. After ten passages of
growth cells were expanded and at least ten stocks of cells were cryopreserved.
Colonies that were not cryopreserved were then transitioned to feeder-free
conditions and cultured for at least an additional three passages before collecting
cell pellets for analysis. Feeder-free cultures were grown using 0.01mg/cm2

(1:100) hESC-grade Matrigel and Essential 8 (E8) media. Feeder-free passaging
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is enzymatic rather than manual and was performed using DPBS supplemented

with 0.5mM EDTA.

iPSC characterization

All iPSC lines were characterized for pluripotency and stability using three
methods. First, we confirmed the ability of lines to differentiate to all three germ
layers using the embroyid body (EB) assay. Lines were manually dissociated
from their culture dish in large pieces. This material was then cultured in a
suspension plate using the hESC media described above without bFGF for one
week, while dense spherical EBs form. EBs are then plated into 12 well plates
with gelatin and cultured in EB medium (DMEM supplemented with 10% FBS,
0.1mM NEAA, 2mM GlutaMAX) for one week. EBs in each well were then
immunostained for cell types from all three germ layers (Fig 4.1A). Next, all lines
were karyotyped to search for large genomic rearrangements (Fig. 4.1C). Lines
were karyotypes by the WiCell Research Institute (Madison, WI). Only one line,
19128, showed large genomic rearrangements that were not known
rearrangements segregating in the population. The rearrangement observed in
this line is a hallmark rearrangement of follicular lymphoma and thus was likely
present in LCLs rather than a result of the reprogramming process. Finally, a
classifier, PluriTest [130] was applied to gene expression data (lllumina
HumanHT-12 array) to assay pluripotency bioinformatically. The classifier
compares gene expression levels from uncharacterized lines to a “gold standard”

panel of embryonic stem cells and iPSCs. Two metrics are obtained from this
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method, a pluripotency score and a novelty score. The pluripotency score
represents goodness of fit of canonical pluripotency genes in the sample. The
novelty score represents the deviance of non-pluripotency genes in the sample.

All of the lines here pass the suggested empirical threshold (Fig. 4.1B).

iPSC-derived cardiomyocyte differentiation

Differentiation from iPSCs to cardiomyocytes was done using slight
modifications of existing protocols [152,153]. iPSCs cultured in feeder-free
conditions cells were seeded to a 10cm dish three to five days prior to
differentiation. When cells were 70-100% confluent (i.e. the total amount of dish
occupied by cells) E8 media was replaced with heart media (RPMI supplemented
with B27 minus insulin, 2mM GlutaMAX, and 100mg/mL Pen Strep) with the
addition of 1:100 matrigel and 12uM of the GSK-3 inhibitor CHIR which activates
WNT signaling (day 0) [152 ]. After 24 hours media was replaced with new heart
media (day 1). After an additional 48 hours media was replaced with new heart
media with the addition of 2uM of the WNT inhibitor WntC59 [152 ]. (day 3).
Cells were cultured in the media with WntC59 for 48 hours. The cells were then
cultured in heart media with regular media changes until day 14. Clusters of
spontaneously beating cells were typically visible between 7 and 12 days. On
day 14 heart media was replaced with CDM3 with lactate (RPMI without glucose,
75 mg/ml human albumin, 213 ug/ml L-ascorbic acid 2-phoshate, 5mM sodium
DL-lactate, and 100mg/mL Pen Strep) . CDM3 with lactate preforms a metabolic

purification. Namely, the majority of cells cannot use lactate as their primary
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source of energy, leaving a culture significantly enriched for cardiomyocytes
[153]. Every other day media changes were performed until day 20. By day 20
the cells had generally formed into large three-dimensional sheets of beating
cells. To make a more uniform sheet of cells we dissociated the cultures using
0.05% trypsin and replated cells into six well plates at a density of 1.5 million
cells per well. Cells were then cultured in galactose media (DMEM without
glucose, 1.7 mg/mL galactose, 1mM Na pyruvate, 5mM HEPES, 2mM GlutaMax,
10% FBS, and 100mg/mL Pen Strep). The galactose-based media helped to
mature cardiomyocytes by forcing aerobic metabolism [52,154]. Regular media
changes with galactose media continued for the duration of the experiment. After
an additional four days (day 25) cells were moved to an incubator at
physiological oxygen levels (10%). Five days after cells had been moved to
physiological oxygen levels (day 29) they were subjected to electrical stimulation
for three days to help further mature the cells [155] and standardize beating rate

across wells and lines.

Sample Collection

After at least three passages in feeder-free conditions iPSCs were
passaged into a 10cm culture dish. At near full confluence cells were
enzymatically dissociated and counted. After dissociation further collection is
done on ice or in a temperature controlled centrifuge. One 10cm dish yields
between 3 million and 15 million cells. From each line 400,000 cells were divided

into two tubes to be used for ATAC-seq [156]. The tagmentation step of the
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ATAC-seq protocol was performed immediately on the two cell pellets containing
200,000 cells each. The library preparation of ATAC-seq samples was done in
larger batches at a later time. The remaining material was split between three
tubes for RNA and DNA extractions. We isolated RNA and DNA using the Zymo
dual extraction kits (Zymo Research) with a DNase treatment during RNA
extraction (Qiagen) on a single cell pellet from each line. 50 bp single-end RNA
sequencing libraries were generated from extracted RNA using the lllumina
TruSeq kit as directed by the manufacturer. ATAC-seq and RNA-seq was
performed on an lllumina 2500. Extracted DNA was bisulphite-converted and
hybridized to the Infinium MethylationEPIC array (lllumina) at the University of
Chicago Functional Genomics facility.

iPSC-CMs were collected on ice using manual dissociation. One pellet
was collected from each well of the six wells (see above). Generally between one
and three wells were obtained per individual. We isolated RNA and DNA using
the Zymo dual extraction kits (Zymo Research) with a DNase treatment during
RNA extraction (Qiagen) on a single cell pellet from each line. 50 bp single-end
RNA sequencing libraries were generated from extracted RNA using the lllumina
TruSeq kit as directed by the manufacturer. RNA-seq was performed on an

[llumina 2500.

RNA-seq processing
RNA-seq from LCLs [30] and iPSCs were mapped using the STAR RNA-

seq aligner standard settings. RNA-seq reads from cardiomyocytes were
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mapped using Subread allowing for two mismatches. Reads overlapping SNPs
were remapped to reduce reference bias as described previously [143]. Only

reads with a MAPQ greater than ten were retained.

ATAC-seq processing

Paired end ATAC-seq reads were mapped using bowtie2 allowing for two
mismatches per read. The ATAC-seq protocol works by randomly inserting
sequencing adapters into open chromatin via a tagmentation enzyme. One
unfortunate side effect of this procedure is an extreme enrichment of reads
originating from mitochondrial reads (between 25%-75% of reads). Only nuclear
reads are maintained for analysis. After mitochondrial reads are removed we
remove all duplicate fragments (duplicates of both read pairs) and reads with a
MAPQ less than ten. Each mate represents an independent tagmentation event
and therefore after mapping and duplicate removal reads are treated as single

end in all future analyses.

DNase processing

Previously collected DNase-seq from LCLs was used to assay chromatin
accessibility. Reads were mapped using a custom mapper, which has been
previously described in depth [97]. In this study counts per base directly obtained

from a previous study were used [37].

Methylation array processing
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Methylation levels were assayed using the Infinium MethylationEPIC array
(NMlumina) in iPSCs and the Infinium HumanMethylation450 array (lllumina) in
LCLs. Methylation data from LCLs were obtained from a previous study [36]. In
iPSCs a number of steps were taken to ensure high quality data. First, to enable
accurate quantification of methylation levels all probes that contained a SNP with
a MAF greater than 5% in the population were removed. Next, we removed all
CpGs that were not detected in 75% of individuals. CpGs on the X or Y

chromosome were removed.

Identifying eQTLs

To identify eQTLs in iPSCs and LCLs we fit expression levels to a
standard normal within each individual (iPSC: n= 59, LCL: n= 59). We also
accounted for unknown confounders by removing principal components from the
LCL data. Genotypes were obtained using impute2 as described previously [31].
As in previous work we are limited to examining putatively cis acting genetic
variants. Therefore, we only consider variants within 50kb of genes. To identify
association between genotype and gene expression we used the fastqtl software
[157]. This program performs a linear regression between the genotype of a
genetic variant and expression level. After the initial regression a variable
number of permutations are performed to obtain a gene-wise adjusted p-value
[157]. To identify significant eQTLs we use Story’s g-value [109] on the adjusted

p-values. Genes with a g-value less than 0.1 are considered significant.
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The sample size of iPSC-CMs in this study was prohibitive to call eQTLs
using a standard regression model. We therefore utilized the combined haplotype
test (CHT) [143] to identify eQTLs. This method allows one to identify eQTLs with
small sample sizes by using both regression and allelic imbalance tests in
combination. Here we focus on variants within 25kb of a gene. Following the
procedure outlined by the authors [109] we performed the CHT and one
permutation of the CHT. Given the small sample size the test is not well
calibrated, showing significant signal in the permuted version of the test. At the
suggestion of the authors we identified significant SNPs by performing Story’s g-
value correction [109] on the null data. We then identified the largest p-value in
the null data with a g-value less than 0.1. We used this p-value as a threshold in

the non-permuted data to identify significant eQTLs.

Identifying meQTLs

To identify meQTLs in iPSCs and LCLs we fit methylation levels to a
standard normal within each individual (iPSC: n= 58; LCL: n= 64) and unknown
confounders are accounted for by removing principal components from the data
(iPSC: 6 PCs removed; LCLs: 5 PCs removed). In accordance with previous
work, genetic variants within 3kb of a CpG were tested for associations with
methylation levels. meQTLs were identified using the fastqtl software following
the procedure described above. We inherently identified a larger number of
meQTLs in iPSCs compared to LCLs due to the increase in the number of CpGs

tested. However, we also compared only the CpGs shared across both arrays
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and found that we were still able to identify more meQTLs in iPSCs (n= 7,958; n=

5,738).

Identifying caQTLs

We began by identifying a set of chromatin accessibility peaks that were
shared in both iPSCs and LCLs. Of note, the chromatin accessibility data in
iPSCs is from ATAC-seq while the chromatin accessibility data in LCLs is from
DNase-seq. Chromatin accessibility levels were fit to a standard normal within
each individual (iPSC: n= 55; LCL: n= 68) and principal components were
removed to account for unknown confounders (iPSCs: 2 PCs removed; LCLs: 4
PCs removed). Associations between genetic variants within 25kb of a peak and
chromatin accessibility levels were identified using a linear regression. To obtain
a locus-wise adjusted p-value the individual labels of genetic variants for each
peak were shuffled and the regression was re-run. This permutation was
performed 100,000 times and the adjusted p-value is the number of times a p-
value from the permutation was lower than the original lowest p-value divided by
100,000. Story’s g-value [109] was applied to the adjusted p-values and a locus

was considered significant if the g-value was less than 0.1.

Estimating QTL sharing
Story and Tibshirani developed a method to estimate the true proportion of
null statistics from a given p-value distribution [109]. This metric (pi0) can be

used to calculate the proportion of significant tests from a p-value distribution by
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taking 1 - pi0 (pi1). Here we calculate pi1 for eQTLs, caQTL, and meQTLs
between cell types. To obtain a better estimate of the true sharing we generated
pi1 statistics for a range of stringencies. Specifically, for eQTLs and caQTLs we
calculated pi1 cumulatively from the top 150 most significant genes/loci to the top
2000 most significant genes/loci in intervals of 25 genes/Icoi. For meQTLs we
calculated pi1 from the top 500 CpGs to the top 10,000 CpGs in intervals of 100
CpGs. As is clear from the density plots (Fig. 4.3C-E), small deviations in
threshold choice can create local valleys and peaks in sharing estimates. This

method allows us to see sharing across a wide space of stringencies.

Identifying specific and shared eQTLs

We first removed loci that were tested in only one cell type. Next, any
locus with a significant association (even with a different lead variant) in both cell
types was removed. A QTL was considered cell type specific if significant at an
FDR of 10% in one cell type and a nominal p-value of greater than 0.2 in the
second cell type. QTLs were considered shared if they were significant with a p-

value of less than 107 in both cell types.

GO term enrichment analysis
GO terms were identified using the bioconductor package topGO [158]in
R. Genes that had at least one significant association with a genetic variant were

compared against a background of all genes tested. Only the ontology terms
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associated with “biological processes (BP)” were considered. Fisher's exact test

was used to generate p-values.

Hierarchical model

The hierarchical model used here was developed to identify causal SNPs
from in eQTLs studies by incorporating annotations such as chromatin states or
chromatin accessibility. The method is explained in detail elsewhere [31] and the

software used to implement the model is available here:

https://github.com/rajanil/qtiBHM. For the purposes of this paper we sought to
identify annotations that were informative in cell type specific eQTLs when

compared with shared eQTLs and all eQTLs.

GTEx data

Only summary statistics were collected from the GTEx data [32].
Specifically, for every gene tested in a tissue, the p-value of the lead variant was
obtained. To overlap with eQTLs identified in iPSC-CMs the variant identified in
the GTEx data was tested in iPSC-CMs. The QQ-plot was generated from a

limited number of tissues for clarity (Fig. 4.7B).

GWAS signal enrichments in gene expression data
RolyPoly is a highly polygenic method that identifies trait-involved cell types by
analyzing the enrichment of GWAS signal in cell type specific gene expression

genome-wide. First, for each gene we calculate trait association scores by
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aggregating GWAS summary statistics from a window (10kb) centered on the
TSS. Then, we estimate the individual contribution of each cell type to the
observed gene score variance using a generalized linear regression model with
normalized gene expression features. For each cell type we estimate an effect
size coefficient and standard error, which we use for hypothesis testing. We

implemented the RolyPoly method in the rolypoly R package
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CHAPTER 5: DISCUSSION



In chapter two |, in collaboration with Xun Lan, identified nearly 14
thousand CpGs whose methylation levels are associated with genetic variation in
LCLs. While these results were similar to other recent meQTL studies [34], we
leveraged the plethora of information previously collected from these LCLs.
Specifically, we identified associations between meQTLs and multiple histone
modifications, Pol Il binding, DNase | hypersensitivity, and expression. One
interesting result that arouse in this study is that meQTLs, which are also eQTLs,
often have the same direction of effect in both phenotypes. This challenges the
general narrative that DNA methylation is negatively correlated with expression.
In these cases the CpG and TSS are almost always quite distant from one
another. This suggests that methylation is acting on a non-promoter element and
that DNA methylation may context specific effects. These results add to a
growing body of evidence that a single genetic variant is often associated with
coordinated changes in multiple regulatory phenotypes and further demonstrate
the complexity of interactions between such regulatory phenotypes.

In this study we demonstrate that changes in methylation driven by
genetic variation often act through disrupting transcription factor binding sites
(TFBS). Specifically, changing the binding of transcription factors often affects
the methylation levels of CpGs near a given TFBS. In particular, five transcription
factors, CTCF, PAX9, ESE1, STATS, and ZNF274, have a larger than expected
effect on DNA methylation. One drawback of correlative studies such as this is

that it is difficult to identify the order of events — i.e. we do not know what the first

117



step in the regulatory cascade is. However, by focusing on genetic variants
disrupting TFBS we identify a putative mechanism and are likely observing the
first step leading to a change in DNA methylation. In other words, this approach
suggests that changes in TF binding are frequently a key early step in the
regulatory cascade that leads to concerted changes in multiple mechanisms.

In chapter three |, in collaboration with Courtney Burrows, turn my
attention to iPSCs. While this model has been used for 10 years some serious
questions remain about the usefulness of these cells to study human phenotypes
and as a tool for regenerative medicine [61-63]. One major concern was that
lingering “epigenetic memory” of the somatic tissue of origin remained after
reprogramming [62,112-118]. These previous studies found that when clustering
methylation and expression profiles of iPSCs derived from different cell types, the
iPSCs would cluster by their cell type of origin [112,114-116]. However, all of the
previous work, sans one study examining only gene expression [123], used study
designs that confounded inter-individual differences with somatic cell type of
origin. These studies were therefore less than ideal to study this phenomenon.

Here we developed an effective study design to examine gene expression
and DNA methylation levels in iPSCs derived from two cell types (LCLs and
fibroblasts) in four individuals (two males and two females). When comparing
DNA methylation and gene expression levels of iPSCs derived from different cell
types we see almost no differences. Indeed, we identified only 197 CpGs out of
over 300 thousand tested that were differentially methylated between fibroblast-

derived iPSCs (F-iPSC) and LCL-derived iPSCs (L-iPSCs), and only 37 of these
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were near a gene. Even more shockingly, we identified only one differentially
expressed gene between F-iPSCs and L-iPSCs. In an effort to measure the
contribution of both individual and cell type of origin more explicitly, we employed
a linear mixed model. Using this model we demonstrate that individual accounts
for the majority of observable variation in both gene expression and DNA
methylation. An additional study, which came out after the publication of the work
presented here, validated our findings in an additional panel of iPSCs [159].
Importantly, Kyttala et al. also differentiated their iPSCs derived from two muscle
and blood cells into iPSC-derived blood cells. Their results suggest that individual
genetic variation is the largest contributor to variation in the iPSC-derived tissues
[159].

The results presented in chapter thre challenge the commonly held belief
that “epigenetic memory” is one of the largest drivers of regulatory differences in
iPSCs. Furthermore, results presented here and elsewhere [159] demonstrate
that iPSCs have gene expression and DNA methylation patterns are driven by
genetic variation. Taken together these results suggest that iPSCs are a suitable
cell type in which to study inter-individual variation in gene regulation.

Finally in chapter four |, in collaboration with Yang Li and Anil Raj,
established and characterized a large panel of iPSCs from 59 West African
Yoruba individuals. The resource developed here, and the subsequent results,
represent four years of work. This panel of iPSCs has a number of unique
features. First, the LCLs from which these lines were derived have been

extensively characterized for numerous regulatory phenotypes [21,24,26,31,35-
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37,40,160]. Next, this is one of the largest collections of iPSCs derived from
health individuals, and is, to our knowledge, the largest collection of iPSCs from
individuals of African descent. Finally, this is the only panel of iPSCs, to our
knowledge, where data on chromatin accessibility, DNA methylation, and gene
expression levels has been collected. Moreover, this is the only data set of
sufficient size to investigate inter-individual variation where three regulatory
phenotypes have been collected at one time and processed in parallel from any
cell type.

Using the data generated here we are able to identify thousands of
genetic associations with gene expression, chromatin accessibility, and DNA
methylation in iPSCs. One additional study has identified eQTLs in iPSCs [141],
yet this is the first study to identify meQTLs and caQTLs in iPSCs. After
identifying eQTLs in both LCLs and iPSCs, we set out to find cell type specific
and shared eQTLs. Similar to other studies examining cell type specific eQTLs
we find such eQTLs enriched in enhancer elements, TFBS of transcription
factors with tissue specific expression, and cell type specific caQTLs [144]; [32].
These results led us to focus on chromatin accessibility, particularly at distal
enhancers, as a putative mechanism underlying cell type specific eQTLs. We
were able to identify nearly 350 cell type specific caQTLs in both iPSCs and
LCLs. Cell type specific caQTLs generally fall into three models: 1) the region
containing the putatively casual SNP is only accessible in one cell type driving
the specificity of the QTL 2) the region is accessible in both cell types, but the

SNP is disrupting different transcription factor binding sites 3) the SNP is distal to
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the region of interest and the change is happening due to interactions between
regions. Over 80% of the cell type specific caQTLs we identified here are
consistent with the first model. Not all cell type specific caQTLs are also eQTLs,
yet, of those over 75% have cell type specific effects. Taken together results
suggest that the majority of cell type specific caQTLs and eQTLs reside within
enhancer elements active in the cell type of interest. While this result is not
unexpected, these results could not have been obtained without characterizing
both gene expression and chromatin accessibility.

Finally, we differentiated iPSCs from 12 individuals into iPSC-derived
cardiomyocytes (iPSC-CMs). We set out to demonstrate that iPSC-CMs are a
viable model for the study of heart specific traits. To this end, we generated gene
expression data and compared gene expression levels from iPSC-CMs to gene
expression levels in primary tissue collected by the GTEx consortium [32].
Indeed, the iPSC-CMs cluster most similarly to primary heart tissue. Additionally,
we found that gene expression in IPSC-CMs captures cell type specific
enrichment of GWAS signals. Finally, we identified eQTLs in iPSC-CMs using the
combined haplotype method [143]. eGenes identified in this analysis are
enriched for biological processes related to heart function. We also found that
eQTLs identified here are most enriched for eQTLs identified in primary heart
tissue by the GTEx consortium [32]. Taken together we believe these results
clearly establish the fidelity of iPSC-CMs and their usefulness to study heart

specific traits. These results are bolstered by recent work showing iPSC-CMs
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recapitulate doxorubicin-induced cardiotoxicity in a number of breast cancer
patients [55].

The work presented in this thesis represents a major advance in our
understanding of the mechanisms underlying regulation in gene expression.
Additionally, this work has established an iPSC bank that can be used in future
research indefinitely. Importantly, the work presented in this thesis makes a
beginning at exploring dynamic gene regulation — i.e. gene expression in three
cell types representing different developmental stages from the same individuals.
The IPSCs generated here are already being used in large-scale studies to
explore dynamic gene expression during differentiation and in response to
environmental stimulus. Studies of dynamic gene expression in combination with
recently developed gene editing techniques [151] promise to usher in a new era
of genomics where true dissection and validation of mechanisms underlying

inter-individual variation in gene expression is possible.
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