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ABSTRACT  

As researchers have sought to understand the genetic architecture of complex 

traits, including disease, it has become apparent that the majority of the signal 

originates outside protein coding regions of the genome. These results, obtained 

through many genome wide association studies (GWAS), have led most to 

conclude that changes in the regulation rather than structure of genes is the 

driving force behind variation in complex traits. Therefore, many hundreds if not 

thousands of genetic variants with small effects drive variation in complex traits, 

making it difficult to identify meaning genetic variants. This has led many 

researches to focus on the effects of genetic variation on gene regulation as an 

intermediate phenotype. Here I present three works focused on improving our 

ability to understand the mechanisms underlying inter-individual variation in gene 

regulation and building a better systems to study these phenomena in disease 

relevant cell types. In my second chapter I will describe the effect of genetic 

variation on changes in DNA methylation levels and how these changes result in 

coordinate changes in histone modifications, transcription factor binding, and 

gene expression. My third chapter will focus on testing the fidelity of a new 

system, induced pluripotent stem cells, in which we can study gene regulation. 

Finally my fourth chapter will focus on characterizing inter-individual variation in 

gene regulation across three cell types (induced pluripotent stem cells, 

cardiomyocytes derived from induced pluripotent stem cells, and lymphoblastoid 

cell lines from which the induce pluripotent stem cells were derived). 
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CHAPTER 1: INTRODUCTION  
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Understanding how heritable genetic variation contributes to inter-

individual variation in phenotype is one of the major goals of Human Genetics. In 

particular, elucidating the genetic mechanisms underlying phenotypic traits has 

great potential to better predict and treat disease Phenotypic traits in are 

generally broken down into two major classes, simple or complex. Simple traits 

are those where a single locus contribute to the trait, for example, sickle cell 

anemia or Tay-Sachs disease. These traits are characterized by a binary 

phenotype (given complete penetrance) and generally the alleles driving the 

traits disrupt the protein coding sequence of a gene or large segments of a 

chromosome. Complex traits are shaped by many loci. These traits are usually 

thought of a quantitative – i.e. rather than the trait being present or absent a 

distribution of the trait exists in the population. One clear example is that of 

height, which demonstrated to be quantitative as early as 1914 [1]. Initial efforts 

to map both complex and simple traits relied upon linkage studies [2]. This 

method, first described by Botstein et al in 1980 [2] relies on family pedigrees 

where the trait and alleles are liked as they segregate in a family. The use of 

linkage studies was quite successful identifying the loci underlying simple traits – 

due to a single segregating locus with large effects and frequently high 

penetrance [3-8]. However, mapping loci underlying complex traits proved much 

less successful [9,10], in large part due to the high number of variants underlying 

complex traits and the low resolution of linkage mapping. Fortunately, in the past 

15 years there have been rapid advances in sequencing technologies allowing 

new methods to be developed to map complex traits. 
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The mapping of a full human genome [11] along with the advent of high 

throughput sequencing and array based genotyping allowed researchers to begin 

performing unbiased genome-wide scans for genetic variations associated with 

complex traits. Rather than searching for genetic variants that segregate within a 

family, these studies typically employed a case control design (of unrelated 

individuals) and test for differences in allele frequencies of all assayed genetic 

variants between groups.  

Genome wide associations studies or GWAS promised to be more 

successful than linkage analysis and many hoped they would uncover the 

majority of the variation underlying complex traits [3]. Unfortunately, the 

complexity of these traits was greater than realized. For example, a recent study 

performed a GWAS for body mass index (BMI) in over 300,000 individuals. Their 

analysis identified 97 loci associated with BMI at genome-wide significance (P < 

5 X 10 -8) [12], which account for only around 3% of the BMI variation. The 

inability of GWAS to explain a high proportion of the expected heritability of 

complex traits in not unique to the study of BMI; indeed, these finding have been 

replicated across many complex traits [3,13-16]. The results from these studies 

and others suggest there could be thousands of loci contributing to variation in 

complex traits. Unfortunately, this genetic architecture makes it exceedingly 

difficult to elucidate the genetic underpinnings of complex traits using simple 

associations alone. This is not to say that GWAS have been a total failure. 

Indeed, GWAS have provided valuable insights into the general principles of 

genetic architecture underlying complex traits. One of the major findings from 
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GWAS is that the vast majority of genetic variants associated with complex traits 

do not reside within the protein coding regions of the genome, but rather in 

regions responsible for the regulation of gene expression [3,13,17]  

Since genetic variants implicated in GWAS are often intergenic it is difficult 

to dissect the mechanism by which the variant acts on the trait of interest. Many 

studies suggest that the genetic variant acts on the nearest gene or genes [3], 

but these assumptions are often incorrect and can lead to researchers to follow 

up on incorrect genes [18]. Thus, a number of groups have set out to gain a 

better understanding of how genetic variation within the non-coding regions 

effects gene expression. Beginning in 2005 it was shown that inter-individual 

variation in mRNA levels could be mapped to genetic variants by performing 

association studies between genotype and gene expression levels [19].  These 

studies benefit from a reduced multiple testing burden by only considering 

genetic variants putatively acting in cis (within 100kb of a gene). Since 2005 

there has been tremendous progress mapping genetic variation that is 

associated with changes in gene expression and elucidating the mechanisms by 

which genetic variants affect gene expression. 

It has new been well demonstrated that genetic variation is a major driver 

of inter-individual variation in gene expression [20-33]. These results suggest that 

nearly every gene has at least one genetic variant affecting expression levels 

(eQTLs). In an effort to further dissect the mechanisms driving changes in gene 

expression many have begun instigating the effect of genetic variation on other 

aspects of gene regulation. Specifically, there have been association studies 
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performed between genetic variation and DNA methylation levels [27,34-36], 

chromatin accessibility [37] and histone modifications [38-41]. These studies 

demonstrate the ability of a genetic variant to affect many regulatory phenotypes 

in concert. Importantly, this work has found that disrupting transcription factor 

binding sites (TFBS) has the ability to alter chromatin function and result in 

expression changes [36,40].  

It has been demonstrated that jointly modeling genetic variation 

associated with expression and complex traits leads to an increase in power to 

identify variation associated with a complex trait and a better understanding of 

the underlying biology [42]. However, one major weakness detracting from the 

majority of eQTLs studies is the inability to perform such association studies in 

disease relevant tissues. Much of the work already mentioned was performed in 

immortalized cell lines. There are two major reasons for this shortcoming. First, 

cell lines are easy to maintain. They can be frozen and thawed indefinitely and 

used repeatedly for numerous studies. Additionally, it is feasible to obtain the 

millions of cells necessary for many of these analyses. Second, it is difficult to 

obtain primary tissue from living individuals, both practically and ethically. Often 

the tissues we are most interested in are critical for life and therefore cannot be 

sampled. A major effort by the GTEx consortium has collected post-mortem 

tissue from thousands of individuals and identified eQTLs across these tissues 

[32].  This represents a major advance to the field but has it’s own set of caveats. 

Namely, this tissue is finite and it is static. This results in a limited number of 

regulatory phenotypes that can be assayed (at this time only mRNA levels have 
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been characterized). Additionally, no perturbations can be performed on the 

tissues; thus only a single snapshot of steady state gene expression levels at the 

time of death is obtainable.  

A promising technology has emerged, which may aid in overcoming the 

shortcomings of current models. Namely, the discovery that human somatic cells 

can be reprogrammed into a pluripotent state [43-45] and then be differentiated 

[46] into multiple somatic lineages, has the potential to provide access to a wide 

range of cell types from practically any donor individual. Since the initial 

discovery of induced pluripotent stem cells (iPSCs) they have been used in a 

wide range of studies, mainly to model disease in vitro or rescue disease 

phenotypes in vivo [47-60]. However, their usefulness as a model system to 

study human phenotypes remains debated [61-63]. 

The major goal of this thesis is to demonstrate the usefulness of the iPSC 

model in the study of human traits, specifically inter-individual variation in gene 

regulation. I began by studying the effect of genetic variation on DNA methylation 

levels (meQTLs) in immortalized lymphoblastoid cell lines (LCLs), which will be 

transformed into iPSCs in the 4th chapter. Next, I set out to identify the major 

sources of gene expression and DNA methylation variation in iPSCs. Finally, I 

generate a large panel of iPSCs from a West African population, the Yoruba. I 

characterize genetic variation associated with gene expression in iPSCs and 

demonstrate the usefulness of iPSCs and iPSC-derived cell types as a model to 

study human traits. 
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CHAPTER 2: METHYLATION QTLS ARE ASSOCIATED WITH 

COORDINATED CHANGES IN TRANSCRIPTION FACTOR BINDING, 

HISTONE MODIFICATIONS, AND GENE EXPRESSION LEVELS 
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2.1 Abstract1 

 

DNA methylation is an important epigenetic regulator of gene expression. Recent 

studies have revealed widespread associations between genetic variation and 

methylation levels. However, the mechanistic links between genetic variation and 

methylation remain unclear. To begin addressing this gap, we collected 

methylation data at ~300,000 loci in lymphoblastoid cell lines (LCLs) from 64 

HapMap Yoruba individuals, and genome-wide bisulfite sequence data in ten of 

these individuals. We identified (at an FDR of 10%) 13,915 cis methylation QTLs 

(meQTLs)—i.e., CpG sites in which changes in DNA methylation are associated 

with genetic variation at proximal loci. We found that meQTLs are frequently 

associated with changes in methylation at multiple CpGs across regions of up to 

3 kb. Interestingly, meQTLs are also frequently associated with variation in other 

properties of gene regulation, including histone modifications, DNase I 

accessibility, chromatin accessibility, and expression levels of nearby genes. 

These observations suggest that genetic variants may lead to coordinated 

molecular changes in all of these regulatory phenotypes. One plausible driver of 

coordinated changes in different regulatory mechanisms is variation in 

transcription factor (TF) binding. Indeed, we found that SNPs that change 

                                            
1 Citation for chapter: Banovich NE, Lan X, McVicker G, van de Geijn B, Degner 
JF, Blischak JD, et al. (2014) Methylation QTLs Are Associated with Coordinated 
Changes in Transcription Factor Binding, Histone Modifications, and Gene 
Expression Levels. PLoS Genet 10(9): e1004663. 
doi:10.1371/journal.pgen.1004663 
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predicted TF binding affinities are significantly enriched for associations with 

DNA methylation at nearby CpGs.  

 

2.2 Introduction 

 

Changes in gene expression levels are important contributors to 

phenotypic variation in human populations [20-30]. One way in which gene 

expression levels may be altered is through changes in chromatin function 

[35,38-40,64-67]. Recent studies have focused on identifying genetic variants 

that impact chromatin function [65,68] by studying inter-individual variation in 

DNase I sensitivity, a general indicator of chromatin accessibility [37], as well as 

a variety of histone modifications [38-41]. A single genetic variant was often 

found to be associated with coordinated changes in multiple molecular 

phenotypes, including chromatin accessibility, nucleosome positioning, chromatin 

modifications and gene expression levels [38-40]. In many cases of coordinated 

changes, the associated genetic variants seem to act through the disruption of 

transcription factor binding sites [38-40]. This body of work highlights the value of 

using multiple molecular phenotypes to understand the connection between 

genetic variation and gene expression. One important epigenetic mark not 

considered by these recent integrated studies is DNA methylation. 

DNA methylation refers to the addition of a methyl group to cytosine 

nucleotides. In vertebrates, DNA methylation primarily affects cytosines that are 

immediately 5’ to guanines, i.e., CpGs. Appropriate methylation is essential for 
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development and cellular differentiation [69-71]. Changes in DNA methylation 

levels have been linked to a number of diseases including tumorigenesis, [72,73] 

age-related defects [74,75] and mental disorders [76,77]. Typical array-based 

methylation assays provide a single measurement for each CpG site, which is 

interpreted to reflect the proportion of cells in which a given site is methylated. In 

general, this measurement was found to have a bimodal distribution across sites 

[35,78-80], which is believed to indicate that most sites are either methylated or 

unmethylated in nearly all cells in a given tissue or culture.  Some 

measurements, however, are intermediate [79] (we refer to these as 

‘intermediate methylation levels’), which could either reflect methylation in a 

subset of cells or just in a single allele (one chromosome) in each cell. Most 

unmethylated CpGs are within CpG islands (CGIs), namely regions in the 

genome in which many CpGs are located in close proximity [79,81,82]. CGIs 

account for a small proportion of CpGs in the genome but they tend to be located 

near transcription start sites (TSSs). The methylation levels of CGIs are generally 

negatively correlated with the expression levels of nearby genes [35,79,81-83], 

an observation that led to a common early belief that DNA methylation was 

primarily a repressive epigenetic mark.  

A number of studies have shown that genetic variation is often associated 

with quantitative changes in methylation levels [27,34,35,84,85]. Early QTL 

studies focused on methylation data from relatively few CpGs with a heavy bias 

towards promoter regions. A more recent study that used a comprehensive array 

platform considered genome-wide patterns and reported over 20,000 methylation 
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QTLs (meQTLs [34]). A number of meQTLs were also shown to be associated 

with changes in gene expression level (namely, these meQTLs are also 

classified as eQTLs) [27,34,35], although it is not clear whether the methylation 

changes are a cause or consequence of the gene expression changes [34]. 

Interestingly, in contrast to the early belief that methylation is primarily associated 

with repression, both direct and inverse correlations between methylation and 

gene expression levels have been observed. This suggests that the relationship 

between DNA methylation and gene expression levels may depend on the 

genomic context of the CpG [27,34,35].  

In general, the mechanisms by which DNA methylation levels are being 

regulated remain unclear. One likely pathway is through coordination between 

DNA methylation and chromatin modifiers. For example, H3K4 methyltransferase 

is recruited by CFP1, which binds to unmethylated CpG islands [86]. In turn, 

H3K27me3 and DNA methylation have been shown to have mutually exclusive 

gene silencing functions, in at least some cases [87,88]. There is also limited 

evidence that TF binding may be associated with nearby changes in DNA 

methylation. For example, the insertion of a CTCF binding site was shown to 

cause changes in methylation levels near the insertion site (presumably due to 

the binding of CTCF) [80,89]. Less direct evidence comes from observations that 

TF binding sites are enriched in differentially methylated regions (DMRs) 

between individuals and cell types [90]. However, it is still unclear how frequently 

changes in TF binding affect the DNA methylation levels of nearby CpGs. It is 

also unclear whether this is a property that is associated with the binding of most 
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TFs or only a selected few. More generally, there has not yet been a broad 

examination of coordination between meQTLs and other molecular phenotypes. 

In the current study, we therefore examined associations and correlations 

between genetic variation, DNA methylation, and multiple additional cellular 

regulatory phenotypes. We focused on a panel of Yoruba HapMap 

lymphoblastoid cell lines (LCLs), which have been extensively characterized in 

previous work. In addition to the methylation data we collected for the present 

study, genomic sequences are available for the majority of these lines [37], as 

well as RNA sequencing data and DNase I sensitivity profiles [37]. Histone 

modification data (profiles for H3K4me1, H3K4me3, H3K27ac, H3K27me3P) and 

PolII ChIP-seq data are also available for a subset of these lines [40].  

 

2.3 Results 

We measured methylation levels in 64 Yoruba LCLs using the Illumina 

Infinium HumanMethylation450 array, which assays methylation levels at roughly 

450,000 cytosines, the majority of which are in CpGs. Probes on this array 

particularly target CpGs near transcription start sites, including CpG islands and 

CpG shores. As a first step in our data processing, we excluded array probes 

that did not uniquely map to the human genome as well as probes that 

overlapped a known sequence variant (see Methods). After these filtering steps 

we retained methylation measurements from 329,469 probes. As was suggested 

in previous studies [34,91,92], we quantile-normalized the data to a standard 

normal within each individual and across probes (though we considered the 
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effects of alternative normalization approaches; see Methods). To account for 

unobserved confounders we performed principal component analysis. We found 

that removing four principal components maximized our power to identify 

meQTLs. Further details on the data processing, normalization, and tests for the 

effect of confounders are provided in the Methods. In addition to the array data 

from 64 individuals, we also collected low-coverage whole-genome bisulfite 

sequencing data from a subset of ten individuals (median genomic coverage 

2.4x; see Methods).  

 

Mapping methylation QTLs  

We first examined the association between genetic variation and 

differences in methylation levels across individuals. For this analysis, we 

considered only the array data (because we performed whole-genome bisulfite 

sequencing in only ten individuals). We used previously collected and imputed 

[37] genotype data for the 64 individuals from the HapMap and 1000 Genomes 

Projects [93,94]. We focused on proximal (putatively cis) associations between 

genotypes and DNA methylation levels by considering, in each case, genetic 

variation within a 6 kb region centered on the genomic location of a methylation 

probe on the array. This window size was chosen because smaller and larger 

windows yielded fewer significant associations at a given FDR. At an FDR of 

10% we identified 13,915 CpG sites with at least one cis meQTL (Fig. 1A).  
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Figure 2.1 meQTLs identified in LCLs  

A) QQ plot of –log10 p-values for testing the null of no association between 
methylation levels measured by all probes that passed our quality filters, and all 
SNPs within 3 kb of these probes. Data for SNPs within the candidate window 
are in black; negative control SNPs for which we chose a random 6 kb window 
elsewhere in the genome are in green; SNPs with the genotype labels permuted 
are in blue. B) Average methylation levels estimated using the bisulfite sequence 
data at meQTL probes, segregated by meQTL genotype. C) Histogram showing 
the distribution of distances between meQTL SNPs and the associated 
methylated sites in base pairs, for meQTLs where there is a single most likely 
causal site. 
 

When multiple SNPs were significantly associated with methylation levels 

at a given site, we only considered (for the purpose of counting the overall 

number of meQTLs) the single most significant association. Since the 

methylation data measured by nearby pairs of probes are frequently correlated, 

we wondered whether this analysis might overstate the number of independent 

meQTL signals. To address this, we examined pairwise correlations of data from 

all probes located within 5 kb of each other. We found that data from only 203 or 

520 of the associated probes (normalized or untransformed data, respectively) 

are significantly correlated (Pearson Correlation and a T-test; P < 0.05) 

suggesting that the reported number of independent meQTL is not substantially 

inflated by correlation of the methylation data across nearby probes. 
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We next used the genome-wide bisulfite sequencing data to provide a 

general validation of meQTL associations that were identified using the array 

data (Fig. 1B), as well as to investigate whether meQTLs are generally 

associated with changes in methylation at a single CpG or a larger region. In 

general, we observed a high correlation between the estimates of methylation 

levels based on the array data and the estimates of methylation levels based on 

the whole genome bisulfite sequencing (R = 0.93; Fig. S1). We note that the read 

depth and sample size of the bisulfite sequencing data set are insufficient to 

allow for validation of individual meQTL. Instead, we aggregated the sequence 

data by considering the centers of probe locations whose methylation data are 

associated with meQTLs (see Methods for more details). Using that approach, 

we found a clear difference in methylation level across meQTL genotypes. In 

addition, we observed a broad-scale association of meQTL genotypes with 

methylation levels over a region extending between 1.5 and 2 kb in either 

direction from the methylation loci originally probed by the array. This result 

indicates that multiple CpGs within a local region are often associated with a 

single meQTL. 

We sought to estimate the typical distance between meQTLs and the 

location of associated methylated sites (based on the genomic location of the 

array probes). This analysis is complicated by the fact that, due to LD, it is often 

unclear which site is causal for any given meQTL. We thus focused on a subset 

of associations that are more likely to be causal, namely on 409 meQTLs that are 

the only strongly associated loci within 5 kb of the methylated site (see Methods). 
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Our approach does not provide direct evidence that these are indeed causal 

sites, but without additional experimental data (namely, using only the meQTL 

mapping framework), it is likely the best approach to obtain a subset of loci that is 

enriched with true causal associations [26,30]. These 409 meQTLs are generally 

located very near the associated methylation site (the median distance is 76bp; 

Fig. 1C), with only 52 (13%) of the putatively causal meQTLs located more than 

3 kb away from the methylated site.  

We then explored the distribution of methylated sites that are associated 

with meQTLs in the context of other cis-regulatory annotations. Using the 

chromatin state annotations from Ernst et al. [95], we classified the genomic 

regions containing the assayed methylated sites as insulators, enhancers, or 

promoters (see Methods). Compared to the distribution of all assayed 

methylation sites, we found a relative depletion of sites associated with meQTLs 

at promoters (chi-square test; P < 10-15), and an enrichment of such sites at 

insulators (chi-square test; P < 10-5) and enhancers (chi-square test; P < 10-9; 

Table S1), consistent with previous work [27,34].  

 

QTLs for other regulatory phenotypes are often meQTLs as well 

Our group has previously collected a number of genomic datasets from 

the same panel of Yoruba LCLs, pertaining to different regulatory mechanisms. 

We analyzed our methylation data in the context of these other data sets. We 

first performed a joint analysis of the methylation data with previously mapped 

eQTL data from the same LCLs [37]. We found that 146 (25%) of 595 eQTLs  
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Figure 2.2 meQTLs are enriched for QTLs from other regulatory 
phenotypes  

A) QQ plot of –log10 p-values for testing the null of no association between eQTL 
SNPs and methylation levels in sites within 3 kb. Positive correlations between 
expression and methylation levels are in red; Negative correlations are in blue, 
Data for random SNPs within the candidate window are in green; and data for a 
set of permuted genotype labels are in black. B) A plot of similar structure 
considering the associations of dsQTL SNPs [37] and with methylation levels at 
sites within 3 kb. C) A plot of similar structure considering the QQ plots of 
associations between histone modification QTLs [40] and methylation levels at 
sites within 3 kb. 
 

(classified at an FDR = 10%) within 3 kb of the genomic location of a methylation 

probe are also significantly associated with variation in DNA methylation 

(measured by the proximal probe; classified at an FDR = 10%). In other words, 

these SNPs are classified, using relatively stringent criteria, as both eQTLs and 

meQTLs (Fig. 2A). This represents a very strong enrichment of SNPs that are 

both eQTLs and meQTLs:  the mean overlap expected by chance alone is 2.8% 

(P < 10-5; see Methods). Although we are unable to infer causality in this case 

(namely, to determine whether methylation patterns underlie gene expression 

levels or the other way around, or alternatively both phenotypes are responding 

to a third underlying factor), our observations indicate a substantial degree of 

coordination between methylation levels and gene expression. 
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Interestingly, roughly half of the sites classified as both eQTLs and 

meQTLs (70 of the 146 sites) are associated with positively correlated gene 

expression and methylation levels; namely, we observe a pattern whereby the 

genotypes that are associated with high expression levels are also quite often 

associated with high methylation levels. This pattern was observed both for 

methylation sites located within and outside gene bodies, yet we found that the 

CpG sites whose methylation levels are positively correlated with the expression 

levels of nearby genes are further from the gene’s TSS (median distance of 

6,680 bp) than CpG sites whose methylation levels are negatively correlated with 

the expression levels of nearby genes (median distance of 1,020 bp; P = 0.018; 

Fig. S2). We were concerned that the more distal loci may be enriched for false 

positives. However, this observation remains significant (P = 0.027) even when 

we add effect size as a covariate in our model. 

 

Table 2.1 Associations between QTLs for other regulatory phenotypes and 
DNA methylation 
For each regulatory phenotype we randomly sampled a matched number of 
SNPs, within 3 kb of a DNA methylation probe, 100,000 times. We calculated 
proportion of these tests significantly associated with methylation at an FDR of 
10%. This was used to calculate the mean proportion from the subsample and 
the P-value columns.  
 

Next, we considered a joint analysis of the methylation data with QTL data 

for four histone modifications, PolII occupancy [40] and DNase I hypersensitivity 
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profiles [37].  We found that QTLs associated with changes in any of these 

regulatory features are significantly more likely to also be associated with 

changes in methylation levels than expected by chance alone (by permutations; 

 

Figure 2.3 A single SNP is associated with coordinated change in multiple 
regulatory phenotypes  

Read counts segregated by meQTL genotype for multiple regulatory phenotypes. 
The green line denotes the meQTL and the location of the probe measuring 
methylation data associated with the meQTL is identified by the black rectangle. 
The different colored data series indicate mean read depths segregated by 
genotype at the meQTL site: blue shows the homozygous genotype associated 
with low methylation level, orange shows the heterozygote, and purple the 
homozygous genotype associated with high methylation level. In this example, all 
of the regulatory phenotypes are negatively associated with DNA methylation 
levels. 
 

P < 10-4; Table 1; Fig. 2B, C). For example, 48% and 40% of QTLs associated 

with variation in H3K4me3 and H3K27ac, respectively, are also classified as 

meQTLs (at FDR = 10%). One particularly striking example of concerted changes 

in regulatory mechanisms that are associated with genetic variation at one locus 
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is shown in Figure 3. The genotypes of a SNP located on chromosome 6, in an 

intron of the HLA-DQB1 gene, are strongly associated with changes in DNase I 

hypersensitivity (P < 10-9), H3K4me3 (P < 10-4), H3k27ac (P < 10-4), gene 

expression levels (P < 10-15), and DNA methylation (P < 10-10).  

Previous work has demonstrated that DNA methylation levels are 

generally negatively correlated with nearby levels of chromatin modifications 

associated with active transcription [35,86,96]. Yet, we found that methylation 

levels and chromatin features associated with active transcription are often 

positively correlated when variation in all features is associated in concert with a 

single QTL (Table 1; Fig. 2B, Fig. 3). It is important to note that often these 

regulatory regions, while proximal to each other, are not overlapping (eg. Fig. 3), 

suggesting a complex coordination across extended genomic regions.  

 

Transcription factor binding may affect nearby patterns of DNA methylation  

A major limitation of most genomic studies, including ours, is the difficulty 

of identifying casual mechanisms. However, we reasoned that we might be able 

to gain better insight about causality, or at least the likely order of events, if we 

focused on SNPs disrupting TF binding sites. It is reasonable to assume that the 

most direct outcome associated with such genetic variation is the disruption of TF 

binding. If these SNPs are also associated with changes in additional regulatory 

mechanisms, it might therefore be reasonable to further assume that changes in 

TF binding resulted in concerted changes in other regulatory phenotypes. Recent 
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work has provided some measure of support for this rationale by suggesting that 

 

Figure 2.4 SNPs disrupting TF binding sites drive changes in DNA 
methylation 

A) Two-sided QQ-plots describing the effect of TF binding on DNA methylation. 
For each SNP in a predicted TF binding site [97] we tested whether the SNP was 
associated with methylation at sites within 500bp. Positive associations (upper 
right quadrant) indicate that the allele associated with increased PWM score for 
the TF in question is associated with increased methylation; negative 
associations (lower left quadrant) indicate that increased PWM score is 
associated with decreased methylation. We used a random set of SNPs in 
DNase I hypersensitive sites (DHSs) to indicate the expected baseline. When 
considering the control DHS SNPs, the direction of the effects was chosen 
randomly for the purpose of plotting.  Panel B) additionally highlights four TFs 
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that show particular strong association with changes in methylation levels. C) 
Two-sided QQ-plot of associations between Stat5 expression and DNA 
methylation at sites within 500bp of Stat5 binding sites.  D) QQ-plot of 
associations between ZNF274 expression and DNA methylation near ZNF274 
binding sites. In both C and D, the grey shading indicates a region that would 
contain the data 95% of the time when the null hypothesis is true for all tests, 
obtained based on permutation of the expression data while holding the 
methylation data constant. 
 

changes in TF binding can play causal roles in driving changes in histone marks 

[38-40] as well as DNase I hypersensitivity [37]. These results, in conjunction 

with previous examples of transcription factor binding altering methylation levels 

[80,89], led us to hypothesize that we could identify novel associations between 

TF binding and DNA methylation profiles. To do so, we examined the association 

of SNPs within TF binding with DNA methylation at nearby genomic regions.  

To identify SNPs that are likely to directly affect TF binding we used 

DNase-seq data and the Centipede algorithm [97] to infer sites that are putatively 

bound by TFs in our LCLs. We next identified SNPs disrupting these putative 

binding sites and calculated a position weight matrix (PWM) score for each allele. 

We used SNPs that are in DNase I hypersensitive sites (DHSs) but not in known 

TF binding sites as a set of matched controls. Considering the data for all TFs 

together, we found that alleles with lower predicted TF binding affinity (i.e., lower 

PWM scores) are frequently associated with increased DNA methylation within 

500bp of the binding site. The association was stronger than that observed for 

the control DHS SNPs (by permutations; P = 10-5; Fig. 4A). Considering binding 

sites for each TF separately, we identified three TFs (CTCF, PAX9, and ESE1; 

Fig. 4B), where a change in PWM score is significantly associated with the 
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methylation level of probes within 500bp of the binding site (Table 2). Changes in 

the predicted binding efficiency of ESE1 and PAX9 are negatively associated 

with methylation levels, while changes in the predicted binding efficiency of 

CTCF are positively associated with methylation levels at some loci and 

negatively associated at others.   

 

Table 2.2 Associations between SNPs disrupting TF binding sites and DNA 
methylation within 500bp of the binding site 
 

Our observations indicate that the level of predicted TF binding is 

associated with variation in methylation levels near the binding site. Given this, 

changes in TF abundance (approximated by the estimated expression level of 

that TF) might also be associated with variation in methylation levels around the 

TF binding sites. To test this, we considered previously collected gene 

expression (RNA-seq) data from the same LCLs [37]. We found that the inter-

individual variation in the expression levels of two TFs (STAT5A and ZNF274) is 

significantly correlated with variation in methylation levels around the TF binding 

sites (Fig. 4C/D). Specifically, an increase in STAT5A expression is associated 

with lower levels of DNA methylation and, interestingly, an increase in the 

expression of ZNF274 is associated with increased levels of DNA methylation.  

 

meQTLs are enriched with loci associated with complex disease 
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Previous work has suggested links between DNA methylation, QTLs, and 

complex traits [77,98]. To further explore this in our data we used the NHGRI’s 

catalog of published genome-wide associations [16] to identify SNPs associated 

with complex diseases that were within 3 kb of a methylation probe.  

 

Table 2.3 DAVID analysis of meQTLs implicated in GWAS 

We found that GWAS SNPs are significantly enriched among meQTLs (P 

< 10-5; Fig. S3); of the 2676 SNPs tested, 153 are also significantly associated 

with variation in methylation levels at an FDR of 10%. Given that LCLs are 

derived from B-lymphocytes and that DNA methylation exhibits tissue specificity, 

we hypothesized that the GWAS results would be enriched for genes pertaining 

to immune system functions. Using data from the original GWA studies we 

obtained a list of putatively affected genes associated with each of the 153 

GWAS/meQTL SNPs. These genes are indeed enriched (FDR < 1.2%; Table 3) 

for KEGG pathways pertaining to immune function (eg. type 1 diabetes, antigen 

processing, autoimmune thyroid disease) and GO terms for immune function (eg. 

antigen processing and MHC class II receptor activity). We further found that 

genes implicated in the GWAS/meQTL analysis tend to be up regulated in 



 

25 

peripheral blood leukocytes, compared to a background of multiple tissues (Table 

3).  

 

2.4 Discussion 

 

Our study considered inter-individual variation in methylation profiles using 

LCLs. The LCL model is a somewhat artificial system, and indeed it has been 

previously demonstrated that the Epstein-Barr virus transformation of primary B 

cells into LCLs results in widespread DNA methylation changes [99,100]. 

However, it is also clear that a large number of B cell-specific characteristics 

remain in LCLs and, in general, important and insights regarding gene regulatory 

processes have been learned from studies in LCLs in particular, often by using a 

QTL mapping approach [99].  

We have identified nearly 14 thousand CpG sites at which methylation 

levels are associated with genetic variation. The number and magnitude of 

associations are consistent with other recent meQTL studies of similar scale [34]. 

We took advantage of the fact that the LCLs we worked with are well studied (a 

clear advantage of the renewable LCL resource) to analyze the methylation data 

in combination with data on other regulatory mechanisms. We found strong 

evidence that DNA methylation is regulated in concert with other cellular 

phenotypes. Though the inference of causality is problematic for most genomic 

studies, including ours, we provided some indication that transcription factor 
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binding may result in changes in DNA methylation patterns at nearby genomic 

regions.  

Indeed, we found that, in general, SNPs disrupting TF binding sites are 

more likely to be associated with DNA methylation levels than SNPs within 

DNase I hypersensitive sites but not in TF binding sites.  We believe that using 

SNPs disrupting putative TF binding sites provides a powerful way to re-examine 

the interplay between QTLs for regulatory phenotypes. Our observations 

therefore suggest that changes in the binding of CTCF, PAX9, ESE1, STAT5, 

and ZNF274 result in changes in methylation patterns in nearby CpGs. This does 

not necessarily mean that the TF is directly regulating DNA methylation, but that 

changes in the binding of the TF (observed through change in mRNA abundance 

or PWM score) are the first step leading to a change in DNA methylation. In other 

words, our approach suggests that changes in TF binding are frequently a key 

early step in the regulatory cascade that leads to concerted changes in multiple 

mechanisms.  

 

The functional context of meQTLs 

We observed an under-representation of meQTLs at promoters. We 

suggest two possible explanations for this observation; unfortunately, we 

currently lack the ability to distinguish between the two. First, a technical / 

statistical explanation: We may be underpowered to detect changes in 

methylation at promoters. We found that DNA methylation levels at promoters 

are, in general, less variable and have a lower average methylation level 
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compared with other genomic regions, including enhancers (Fig. S4). The 

alternative explanation is more intriguing: It is possible that promoter methylation 

patterns are more often functional (with respect to their regulatory outcome) than 

methylation in other genomic regions. If so, promoter methylation patterns may 

evolve under stronger functional constraint, leading to lower true rates of 

meQTLs, as suggested previously [34].  

Related to this interpretation, we have also shown that the relationship 

between DNA methylation and activating marks is more complex then previously 

appreciated. Negative correlations between DNA methylation levels and the 

expression of nearby genes have been observed frequently [27,35,79,81,101], 

but few have explored cases where DNA methylation is positively correlated with 

gene expression levels or activating chromatin marks [27,34,35]. When we 

examine joint QTLs, all regulatory phenotypes associated with active 

transcription exhibited an unexpectedly high proportion of positive correlations 

with methylation levels at nearby sites (Table 1). Previous work has shown that 

DNA methylation in gene bodies is often associated with activating histone 

modifications and increased expression levels [102,103], yet at least when we 

considered meQTLs, we did not observe a difference in the direction of 

correlations between CpGs within or outside gene bodies. Instead, we have 

found that when eQTL/meQTLs are positively correlated the respective TSS and 

CpG sites tend to be further from each other. These observations suggest that 

DNA methylation in more distal regulatory elements may be more likely to have 

an activating effect. This hypothesis is supported by the observed enrichment of 
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CpG associated with meQTLs in enhancers and insulators, which are further 

from TSS than promoters.  

We propose two alternative hypotheses to account for the observations of 

positive correlations between methylation and expression levels at nearly half of 

meQTLs/eQTLs sites. First, if the expression of a gene is tightly regulated, DNA 

methylation could serve as a fine-tuning tool. For example, over-activation by 

histone modifications could be suppressed using DNA methylation or vice versa. 

Indeed, while DNA methylation was considered a very stable epigenetic mark, 

recent work has demonstrated that DNA methylation levels can dynamically 

change in vivo on very fast (hours) time scales [104].  

A second possibility is that observed positive correlations between 

methylation levels and the expression of nearby genes are due to 5-

Hydroxymethylcytosine (5hMc), an additional modification to DNA methylation 

that has been implicated in the process of demethylation [105]. It has been 

shown that 5hMc has activating effects on transcription [106]. The bisulfite 

conversion approach we used does not allow us to distinguish 5hMc from DNA 

methylation. It is therefore possible that positive correlations between DNA 

methylation and expression or activating histone modifications are due to 5hMc.  

 

 

Summary 

Our study joins a growing body of work, which indicates that methylation 

levels at a large number of loci across the genome are affected by genetic 
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variation at nearby sites. In many cases, these meQTLs are also associated with 

variation in a variety of other types of chromatin changes, gene expression 

changes, and often - changes in disease risk. Our data is consistent with the 

notion that TF binding likely plays a role in altering methylation levels, but the 

mechanisms underlying the vast majority of meQTLs remain unclear. Similarly, 

we still do not understand in detail the mechanistic links between DNA 

methylation and other epigenetic marks and gene expression outputs, and these 

types of questions will no doubt be a fruitful area for future research. 

 

 

2.5 Materials and Methods 

 

DNA methylation array 

To analyze DNA methylation, we extracted DNA from LCLs of 64 adult 

YRI HapMap individuals. The samples were bisulphite-converted and hybridized 

to the Infinium HumanMethylation450 BeadChip at the University of Chicago 

Functional Genomics facility. To validate the array probe specificity, probes were 

mapped to an in silico bisulfite-converted genome using the Bismark aligner 

[107]. Only uniquely mapped probes were retained (n = 459,221). We excluded 

probes on sex chromosomes (n = 11,016). Next, to eliminate the potential for 

spurious associations due to differences in probe hybridization affinity, we 

discarded probes (n = 118,736), overlapping known SNPs segregating in our 

panel based on our genotype data (see below). Following this series of 
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exclusions, we kept data from 329,469 probes for subsequent analysis. 

Methylation levels are reported as β-values, which are considered estimates of 

the fraction of chromosomes methylated at a given site. 

 

Whole genome bisulfite sequencing 

Bisulfite sequencing was performed using a modified version of the 

Illumina whole genome bisulfite sequencing protocol. Specifically, extracted DNA 

from LCL cell lines of 10 Yoruba HapMap population individuals and spiked-in 

unmethylated lambda phage DNA was fragmented into 100bp fragments using a 

Covaris ultra-sonicator. Fragmented DNA was blunt ended, repaired, and 

standard Illumin TruSeq adapters were ligated to the DNA fragments. DNA was 

then bisulfite-converted using the Invitrogen MethylCode Bisulfite Conversion Kit. 

The bisulfite-converted DNA was PCR amplified and sequenced using the 

Illumina HiSeq 2000. We walk the streets at night, we go where eagles dare. 

They picked up every movement, they pick up every loser. With jaded eyes and 

features, You think they really care? Sample was sequenced in at least two 

lanes. Average genome-wide coverage ranged from 0.4x to 7.0x per sample with 

a median of 2.4x. Sequencing reads were trimmed for quality and to remove the 

adapter sequences. PCR duplicates were removed using the SAMtools software 

package. Reads were mapped using the Bismark aligner, which maps bisulfite 

converted DNA to a G to A and C to T converted human genome [107]. The 

bisulfite conversion efficiency was determined using the spiked-in lambda phage 

DNA. Conversion efficiency for all samples was estimated to be greater than 
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99%. Locus-specific methylation levels were estimated by obtaining the ratio of 

methylated to unmethylated CpG counts. 

 

Correlation of data from methylation array and bisulfite sequencing 

To assess the overall agreement between the methylation array and the 

bisulfite-seq data we compared average methylation levels across CpG sites. To 

do so, we calculated the average of the untransformed array beta values from all 

64 individuals at each CpG site, and compared these values to the estimated 

locus specific methylation level based on the sequencing data (by dividing the 

number of methylated reads by the total coverage of a given site in each 

individual, and calculating the mean across all individuals with at least 5 reads at 

that site). Correlation (Fig. S1) was assessed using the Spearman rank 

correlation (because the data are not normally distributed).  

  

Genotype data 

We used the genotypes from a previous study of the same samples [37]. 

Briefly, genotypes were obtained by combining and imputing genotype based on 

the 1000 Genomes Project and HapMap [93,94]. A reference panel was built 

using all 210 YRI individuals (excluding 1st degree relatives). If genotypes were 

available from multiple datasets the dataset that was expected to be most 

accurate on average was chosen (1000 Genomes high coverage, followed by 

HapMap, then 1000 Genomes low coverage, respectively). This reference panel 

was used to impute missing genotypes for individuals in our cohort using the 
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BIMBAM software [108]. Genotype information was obtained for roughly 15.8 

million variants genome-wide. The genotypes that we used can be found at 

http://eqtl.uchicago.edu/Home.html.  

 

QTL analysis 

The distribution of methylation array data is non-Gaussian. We therefore 

quantile-normalized the data to a standard normal first, across all probes within 

an individual, and then across all individuals at each probe. We tested for 

confounders using principal component analysis. No known confounders were 

significantly correlated with a PC (Fig. S7). However, we found that removing 

four PCs provided optimal power to detect meQTLs. We then identified meQTLs 

by testing (using standard linear regression) for associations between normalized 

methylation levels and genotypes at all SNPs that were within 3 kb of an assayed 

CpG.  We only tested SNPs with a minor allele frequency greater than 5%. An 

FDR was computed using the R-package qvalue [109]. To investigate the overlap 

between QTLs for other molecular phenotypes and meQTLs we identified SNPs 

previously associated with changes in histone modifications, PolII, DHS, 

expression and complex diseases (using GWAS results) [16,37,40]. The 

rationale for this analysis is that the observation that a SNP is a QTL for other 

traits increases the overall likelihood that the SNP may also be associated with 

changes in methylation levels (in other words, we use previous observations as 

priors). Significant QTLs for any of the tested regulatory phenotypes or complex 

diseases, that were located within 3 kb of a methylation probe, were then tested 
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for association with methylation levels. For each class of previously identified 

QTLs an independent FDR [109] was calculated to assess the significance of 

association with methylation levels. 

To ensure that our results are not markedly impacted by the choice of 

normalization procedure, we also considered two alternative approaches. First, 

the data were quantile-normalized to a standard normal across all probes within 

an individual. This approach resulted in a minor excess of small p-values in the 

QTL analysis of permuted data (Fig. S5). Second, we quantile-normalized data 

from a given probe to a standard normal across all individuals. This method 

resulted in considerable variation in mean methylation levels across individuals, 

which is not ideal since the variable means may reflect array variation rather than 

true biology. Regardless of the specific properties (and possible shortcomings) of 

the alternative normalization and data processing approaches, the majority of 

meQTL associations we report remained significant (8,684 without removing 

PCs, 8863 when normalized by individual, 5496 when normalized by probe, and 

6283 when the data were untransformed; Fig. S6).  

 

Aggregation of bisulfite sequencing data 

We used the bisulfite sequencing data to generally validate the meQTLs 

identified using the array data, and more importantly, to visualize the association 

of meQTLs with methylation levels at CpGs that are located near each other. 

Since the sequence data are sparse (because the coverage is low) and available 

for only a small number of individuals, we only considered an aggregate analysis 
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across all individuals and across all the previously identified meQTL associated 

CpGs. Specifically, for each meQTL we separated the sequenced individuals by 

genotype (i.e., the genotypes associated with high methylation levels, 

heterozygote, or those associated with low methylation levels). Next, we counted 

the number of methylated and unmethylated reads in 51bp windows sliding 

across a 5 kb region centered on the associated CpG for each meQTL. The 

mean aggregate methylation levels for each window position and each genotype 

class were calculated as the sum of the number of methylated reads divided by 

the sum of total reads for that window and genotype class. We averaged this 

estimate across all meQTLs genome-wide. The result is an aggregate plot of the 

average methylation levels by genotype class, showing the spatial distribution of 

CpG methylation in a 5 kb window (Figure 1B). 

 

Identification of candidate causal SNPs from meQTL data 

Due to LD, the causal site for any given meQTL is typically ambiguous. In 

addition, though we used 1000 genome sequence data and imputation, we 

expect that a subset of common SNPs are missing from our data. For this 

reason, it is challenging to obtain an accurate estimate of the distribution of 

distances between probes and causal meQTL sites. In previous work, our group 

tackled this problem using a Bayesian model [35]. Here, since we have a much 

larger number of meQTLs (then eQTLs or dsQTLs, for example), we focused on 

a set of meQTLs where there is a single clear candidate variant that is likely to 

drive the signal. Specifically, we identified meQTLs for which the p-value of the 
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most significant SNP is at least two orders of magnitude lower than that of the 

next most significant SNP (within a slightly larger, 10 kb window). Previously, we 

used simulations to show that these stringent criteria provide strong enrichment 

for causal sites [26]. In reality, we consider these sites as putatively causal 

because the evidence supporting their role is circumstantial.  

 

Inclusions of previous data collected from the same samples 

DNase-seq data for 70 individuals, ChIP-seq data for 10 individuals and 

RNA-seq data for 69 individuals were obtained from previous studies performed 

in our labs [21,37,40]. In Figure 3, mapped fragments are reported as fragments 

per kilobase per million mapped reads (FPKM) and are smoothed using a 21bp 

Savitzky-Golay filter. 

  

Association between transcription factor binding and DNA methylation 

  We performed analysis that focused on SNPs that disrupt TF biding sites. 

To do so, we used inferences of TF binding based on DNase I sequencing data 

that were obtained from a previous study [37], which applied the Centipede 

algorithm [97] to DNase-seq data from the same LCLs. We identified putative 

binding sites overlapping genetic variants and calculated a position weight matrix 

(PWM) score for both alleles at each locus. Linear regression was then 

performed to identify associations between the PWM scores of each genotype 

and the methylation levels of CpGs within 500 base pairs of the motif position.  
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Association between transcription factor expression levels and DNA 

methylation at CpGs near the TF binding sites 

RNA-seq data for 56 of the 64 individuals with methylation array data were 

obtained from Degner et al. [37]. The mRNA levels of the transcription factors 

were standardized to RPKM and then quantile normalized. We used ChIP-seq 

broad-peak calls for 100 TFs, measured by the ENCODE project in the 

lymphoblastoid cell line GM12878, to identify TF binding sites [65]. (These data 

were downloaded from the ENCODE website 

(http://encodeproject.org/ENCODE/) in July 2013). If the TF ChIP-seq was 

performed in multiple replicates, only the peaks found in all replicates were 

considered as binding sites. A Pearson correlation test was performed between 

the TF expression and DNA methylation levels measured by probes within 500 

base pairs of TF binding sites. Given our expectation that TF expression would 

have a trans effect on DNA methylation genome-wide, we anticipated removing 

PCs from the methylation data would diminish our ability to identify associations.  

Indeed we find that using data with PCs removed reduces our power to identify 

associations. As such, we used methylation data that had only been normalized 

(first by individual then by probe) for this analysis.  

 

Pathway analysis of GWAS associated genes 

We performed a pathway analysis of GWAS associated genes using the 

DAVID program [110,111]. DAVID allows the user to input a custom 

“background” set of genes from which the program computes a null hypothesis. 



 

37 

Since there is a known bias toward immune system genes in GWA studies we 

used all genes implicated in GWA studies as our “background”. Thus, observed 

significant enrichments are beyond the bias in GWAS results.  

 

Accession Numbers 

Data from the methylation array and bisulfite sequencing are available at the 

GEO database (accession number GSE57483). A summary table of the meQTLs 

is available at the Gilad lab website http://giladlab.uchicago.edu/Data.html.  
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2.6 Appendix A: Supplementary Materials 

 

Figure S2.1 Scatterplot of CpG methylation levels estimated from the 
Illumina array and from whole genome bisulfite sequencing. 
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Figure S2.2 A boxplot of distances from methylation probe to transcription 
start site for eQTL/meQTLs.  
The boxplot on the left represents QTLs where methylation and expression are 
negatively correlated. The boxplot on the right represents QTLs where 
methylation and expression are positively correlated. 

 

Figure S2.3. QQ-plot of associations between SNPs implicated in GWAS 
studies and DNA methylation.  
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The red points are all SNPs from GWAS studies within 3 kb of a methylation 
probe. The black points are a subsample of all the SNPs within 3 kb of a 
methylation probe. 

 

Figure S2.4. Distributions of methylation levels  
Distributions of methylation levels at array probes in promoters and enhancers, 
respectively, and the full distribution across all probes. Promoters have reduced 
variability compared to all probes and to enhancers. 

 

Figure S2.5. Affect of normalization on meQTL calls 
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QQ-plot of all SNPs within 3 kb of a methylation probe normalized by either A) 
individual or B) probe. Visible inflation of associations is observed when 
normalizing by individual.  

 

Figure S2.6. Enrichment of QTLs under different normalization procedures 
The T-statistics of meQTLs identified in this study when regression is performed 
using other array normalization strategies. The histograms show the absolute T-
statistic for A) untransformed data, B) data normalized by individual only, C) data 
normalized by probe only, and D) normalized by individual then probe. The blue 
histogram represents permuted genotypes (controls) and the red histogram 
represents the meQTLs.  
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Figure S2.7. PCA plots 
PCA plots showing the first two PCs separated by A) sex, B) bisulfite conversion 
batch, or C) array batch. None of the known potential confounders are 
associated with PC1 or PC2. PC1 explains roughly 8% of the variance. 
 

	
  

meQTL	
  
probes	
   All	
  probes	
   P-­‐value	
  

Total	
   13915	
   329469	
   	
  	
  
In	
  promoters	
   3132	
   106006	
   <	
  10-­‐15	
  
In	
  insulators	
   299	
   5757	
   <	
  10-­‐5	
  
In	
  enhancers	
   1750	
   36435	
   <	
  10-­‐9	
  

 

Table S2.1 Enrichment analysis of probes location 
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The data used to test for enrichments/depletions of probes measuring 
methylation levels meQTL associated CpGs. The first column is the number of 
meQTLs associated CpGs within the specified genomic feature (eg. promoter). 
The second column is the total number of probes within the specified genomic 
feature. To calculate the chi-square statistic a two by two contingency table was 
created using the first two columns (described above), the total number of 
meQTL associated CpGs, and the total number of probes on the array. 
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CHAPTER 3: GENETIC VARIATION, NOT CELL TYPE OF ORIGIN, 

UNDERLIES THE MAJORITY OF REGULATORY DIFFERENCES IN IPSCS 
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3.1 Abstract1 

 

Induced pluripotent stem cells (iPSCs) are a new and powerful cell type that 

provides scientists the ability to model complex human diseases in vitro. These 

cells can be cryopreserved and later expanded, providing a renewable source of 

cells from the same individual. iPSCs can be made from a variety of somatic cells 

in the body and many labs have created them from blood and skin cells. We 

asked whether the cell type of origin impacts methylation and gene expression 

patterns in the reprogrammed iPSCs. Our findings indicate that there are 

remarkably few regulatory remnants of the cell type of origin in the iPSCs. In 

other words, most of the variation between iPSCs can be attributed to individual 

genetics. Our findings suggest that studies using iPSCs should focus on 

obtaining additional individuals rather than additional clones from the same 

individual. We caution that our current findings are limited to iPSCs and further 

studies are needed to address the question of somatic memory in differentiated 

cell types. 

 

3.2 Introduction 

 

                                            
1 Citation for chapter: Burrows CK*, Banovich NE*, Pavlovic BJ, Patterson K, 
Gallego Romero I, Pritchard JK, et al. (2016) Genetic Variation, Not Cell Type of 
Origin, Underlies the Majority of Identifiable Regulatory Differences in iPSCs. 
PLoS Genet 12(1): e1005793. doi:10.1371/journal.pgen.1005793 
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Research on human subjects is limited by the availability of samples. 

Practical and ethical considerations dictate that functional molecular studies in 

humans can generally only make use of frozen post mortem tissues, a small 

collection of available cell lines, or easily accessible primary cell types (such as 

blood or skin cells). The discovery that human somatic cells can be 

reprogrammed into a pluripotent state [43-45] and then be differentiated [46] into 

multiple somatic lineages, has the potential to profoundly change human 

research by providing access to a wide range of cell types from practically any 

donor individual. 

  Though much progress has been made since the initial development of 

iPSC reprogramming technology, and human iPSCs have been used in a wide 

range of studies [47-50], the usefulness of iPSCs as a model system for the 

study of human phenotypes is still extensively debated [61-63]. The principal 

issue is the extent to which reprogrammed iPSCs retain epigenetic and gene 

expression signatures of their cell type of origin. A residual epigenetic signature 

of the original precursor cell in the reprogrammed iPSCs is often referred to as 

‘epigenetic memory’ [112]. 

  The common view, established by a few early studies in mice and 

humans, is that epigenetic memory is a significant problem in iPSCs [62,112-

118]. In mice, methylation profiles in iPSCs and in the precursor somatic cells 

from which the iPSCs were generated were found to be more similar than 

expected by chance alone [112,114]. The extent of this similarity, however, could 

not be benchmarked against genetic diversity because the somatic cells and the 
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iPSCs were all from genetically identical mice. In turn, methylation profiles in 

human iPSCs reprogrammed from different somatic cell types were found to be 

quite distinct from each other [115,116]. However, the somatic cells were 

provided by different donor individuals, hence epigenetic memory and differences 

due to genetic diversity were confounded. 

Additionally, concerns were initially raised about residual epigenetic 

memory in iPSCs by studies that considered iPSCs generated using retroviral 

vectors [112,114-116]. Retroviral reprogramming is characterized by random 

integrations that vary in copy number and genomic location across lines. 

Furthermore, it has been shown that viral vectors commonly utilized in iPSC 

generation preferentially integrate into active gene bodies, strong enhancers or 

active promoters [119,120], this process of preferential integration into open 

chromatin would likely lead to a strong cell type of origin signature. In contrast to 

retroviral reprograming, the more recent episomal approaches to establish iPSCs 

are associated with much lower rates of genomic integration [121,122]. 

  Indeed, one recent study has concluded that when properly controlling for 

genetic variation and using integration free methodology to establish iPSCs, the 

effect of cell type of origin on gene expression in iPSCs is low compared to inter-

individual genetic contributions [123]. However, this study did not consider 

matched epigenetic markers, the supposed drivers of the suspected 

phenomenon of residual cell type of origin memory in reprogrammed iPSCs. 

  We thus designed a study to directly and effectively address this issue. 

We focused on two cell types that are the source for the majority of human iPSCs 
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to date, and the most easily collected tissue samples from humans: skin 

fibroblasts, and blood cells. Specifically, we collected skin biopsies and blood 

samples from four healthy Caucasian individuals (two males and two females). 

Dermal fibroblasts were isolated from dissociated skin biopsies and maintained in 

culture until reprogramming. We isolated the buffy coat from whole blood and 

subsequently used Epstein–Barr virus to transform B cells into immortalized 

lymphoblastoid cell lines (LCLs), one of the most common cell types used in 

genomic studies. 

3.3 Results 

 

To determine whether cell type of origin effects gene expression and CpG 

methylation we reprogrammed iPSCs from two somatic tissues of four 

individuals. We used an episomal reprogramming approach [121] to 

independently generate iPSCs from the LCLs and fibroblasts of each individual, 

three replicates from the LCLs and one from the fibroblasts (to study epigenetic 

memory; Fig. 1). We employed a wide range of quality control analyses and 

functional assays to demonstrate that all iPSCs were fully pluripotent, that they 

expressed endogenous, but not exogenous, pluripotency factors, that the iPSCs 

were free of vector integrations, and that iPSCs established from LCLs did not 

retain traces of integrated EBV (see methods; S1-4 Figs.). 
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Figure 3.1 Study Design.  

A schematic of the study design. Three independent iPSC lines were generated 
from LCLs and one from fibroblasts.  
  

Cell type of origin minimally contributes to gene regulation in iPSCs 

Once the quality of the iPSCs was confirmed, we extracted RNA and DNA 

from LCLs, fibroblasts, LCL derived iPSCs (L-iPSCs), and fibroblast derived 

iPSCs (F-iPSCs) from all four individuals. We then used the Illumina Infinium 

HumanMethylation450 array and the Illumina HumanHT12v4 array to measure 

DNA methylation and gene expression levels, respectively. Our data processing 

approach is described in detail in the methods. Briefly, considering the 

1

4

Primary Cell Type iPSC

3

2

DNA methylation/RNA DNA methylation/RNA

LCL

Fibroblast

Study Design
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methylation data, we first excluded data from loci that were not detected either as 

methylated or unmethylated (no signal; detection P > 0.01) in more than 25% of 

samples. We then applied a standard background correction [124] and 

normalized the methylation data using SWAN [125] (S5 Fig.), which accounts for 

the two different probe types in the platform. Finally, we performed quantile 

normalization (S6A/B Fig.). Following these steps we retained methylation data 

from 455,910 CpGs. Considering the expression data, we first excluded probes 

whose genomic mapping coordinates overlapped a known common SNP. We 

then retained all genes that were detected as expressed in any cell type in at 

least three individuals (S7 Fig.). We then quantile normalized the gene 

expression data (S6C/D Fig.). Following these steps we retained expression data 

for 11,054 genes. 

  To examine overall patterns in the data, we initially performed 

unsupervised clustering based on Euclidean distance. As expected, using gene 

expression or methylation data, samples clustered based on cell type (LCLs, 

fibroblasts, and iPSCs) without exception. Interestingly, using the methylation 

data, iPSCs clustered perfectly by individual, not cell type of origin (Fig. 2A). 

Within individual, however, data from L-iPSCs are more similar to each other 

than to data from F-iPSC in three of the four individual clusters. These results are 

consistent with a small proportion of the regulatory variation being driven by cell 

type of origin. 
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Figure 3.2 Hierarchical clustering and principal components analysis. 

Hierarchical clustering using the complete linkage method and Euclidean 
distance from autosomal loci for (a) DNA methylation data (n = 445,277 probes) 
and (b) gene expression data (n = 10,648 autosomal genes).  
 

The clustering pattern is less clear when we consider the gene expression 

data, although the iPSCs again tend to cluster by individual more than they do by 

cell type of origin (Fig. 2B). The property of imperfect clustering of iPSC gene 

expression data by individual is consistent with previous observations by 

Rouhani and Kumasaka et al. [123]. We believe that a possible explanation for 

this observation is that overall regulatory variation between iPSCs – even across 

individuals – is small.  

Given the large number of sites interrogated (particularly on the 

methylation array), we also examined the clustering of iPSCs using only the top 

1,000 most variable measurements across lines, similar to the approach of Kim 
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et al. 2011 [116]. Our clustering remained largely unchanged using this subset of 

variable sites for both methylation data (S8A Fig.) and expression data (S8B 

Fig.). Clustering based on pairwise Pearson correlations rather than Euclidian 

distance produced nearly identical results (S8C-F Fig.). We also examined 

patterns in the data using principal components analysis (PCA; S9 Fig.) The 

results from the PCA are not as easily interpretable as those from the clustering 

analysis, but it is clear that the major components of variation are not driven by 

cell type of origin. 

 

Little evidence of widespread epigenetic memory in iPSCs 

We next considered methylation and expression patterns at individual loci 

and genes, respectively. We first focused on differences in CpG methylation 

between the cell types. Using limma [126] (see methods), we identified 190,356 

differentially methylated (DM) CpG loci between LCLs and fibroblasts (FDR of 

5%). Similarly, we identified 310,660 DM CpGs between LCLs and L-iPSCs and 

226,199 DM loci between fibroblasts and F-iPSCs (Fig. 3A). In contrast, at the 

same FDR, we only classified 197 CpG loci (0.04% of the total sites tested; S10 

Fig.) as DM between L-iPSCs and F-iPSCs. Moreover, the 197 DM loci were not 

all independent; they clustered into 53 genomic regions, 37 of which are located 

near or within annotated genes. Of these 37 genes, 24 had measurable gene 

expression data (Fig. 3C).  

The observation of small number of significant DMs associated with cell 

type of origin does not preclude a persistent but small difference between the 



 

53 

epigenetic landscapes of L-iPSCs and F-iPSCs. We therefore asked, for each 

CpG classified as DM between LCLs and fibroblasts, whether the sign of the 

mean methylation difference between L-iPSCs and F-iPSCs is the same as the 

sign of the mean difference between the cell types of origin. We found a slight 

but significant enrichment of a consistent sign (50.5% of the loci; binomial test; P 

< 10-6) in these two contrasts. This observation confirms that while epigenetic 

memory in iPSCs can be detected, the magnitude of such effect is small.  
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Figure 3.3 Differential Methylation and Gene Expression Between the Four 
Cell Types (L-iPSC, F-iPSC, LCLs and fibroblasts).  

(a) A Venn diagram of differentially methylated (DM) loci (FDR of 5%) 
overlapping between different contrasts. (b) Venn diagram of differentially 
expressed (DE) genes (FDR of 5%) overlapping between different contrasts. (c) 
Heatmaps of the DNA methylation and gene expression levels where each row 
corresponds to a gene (labeled on the right). DNA methylation levels represent 
the average of all loci DM between L-iPSCs and F-iPSCs nearby the 
corresponding gene.   
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Of the 197 DM loci between L-iPSCs and F-iPSCs, 133 loci were also DM 

between LCLs and fibroblasts (a highly significant overlap; χ2 test; P < 10-15). 

Moreover, 122 of these 133 DM loci showed a difference in methylation between 

LCLs and fibroblasts that was in the same direction as the one seen between L-

iPSCs and F-iPSCs (sign test; P < 10-15). In principle, these observations support 

the idea of epigenetic memory, namely that a subset of epigenetic differences 

between the somatic cells persists in the reprogrammed iPSCs. Yet our results 

indicate that epigenetic memory persists in a remarkably small number of loci. 

 

A Single DE Gene Between F-iPSCs and L-iPSCs 

We turned our attention to the gene expression data. We again used 

limma to identify (at an FDR of 5%) 7,281 differentially expressed (DE) genes 

between LCLs and fibroblasts, 8,008 DE genes between LCLs and L-iPSCs, and 

7,420 DE genes between fibroblasts and F-iPSCs (Fig. 3B). In contrast, at the 

same FDR, we classified only a single gene (TSTD1) as DE between L-iPSCs 

and F-iPSCs. These results are consistent with recent observations [123]. More 

generally, we found nearly no evidence for departure from a null model of no 

differences in gene expression levels between L-iPSCs and F-iPSCs. We 

proceeded by performing a sign test, considering the sign of the mean gene 

expression difference between L-iPSCs and F-iPSCs in genes that were 

classified as DE between LCLs and iPSCs. We found fewer consistent signs than 

expected by chance alone (47.8%; binomial test: P = 10-4).  
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The single DE gene between L-iPSCs and F-iPSCs, TSTD1 (P = 6.28 x 

10-7; FDR 0.69%), is also DE between the LCLs and fibroblasts precursor cells. 

Moreover, 11 of 19 CpG sites that are located near the TSTD1 gene, and are 

assayed by the methylation array, are among the 197 DM loci between L-iPSCs 

and F-iPSCs. We observed a decreased fold change of TSTD1 expression when 

comparing between LCLs and fibroblasts (log2 fold change of 2.06) and L-iPSCs 

and F-iPSCs (log2 fold change of 1.34). This may be a case of epigenetic 

memory that maintains a gene expression residual difference, but it appears to 

be the only such case in our data. We found no evidence that any of the other 

DM loci are associated with gene expression differences between L-iPSCs and 

F-iPSCs (Fig. 3C). This is true even when we conservatively accounted for 

multiple tests by only considering the number of tests that involved genes that 

are associated with DM loci between L-iPSCs and F-iPSCs (S11 Fig.). 

Our observations indicate that remarkably little residual memory of the 

precursor somatic cell affects gene expression and methylation patterns in the 

reprogrammed iPSCs. To formally evaluate this we estimated the contribution of 

inter-individual differences and cell type of origin effects on variation in 

methylation and gene expression levels (see methods). The mean proportion of 

variance explained by donor individual is 16.2% and 15.5%, for the methylation 

and expression data, respectively; while the mean proportion of variance 

explained by cell type of origin is 6.6% and 6.7%, respectively (T-test; P < 10-15; 

KS test P < 10-15; Fig. 4). Interestingly, when we focus on gene and CpGs whose 

expression and methylation levels in LCLs were previously associated with 
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genetic variation (eQTLs and meQTLs, respectively), the mean proportion of 

variance explained by donor individual is significantly higher (21.2% and 19.9%, 

for the methylation and expression data, respectively; T-test P < 10-15; KS test P 

< 10-15; S13 Fig), while the mean proportion of variation explained by cell type of 

origin is roughly similar (6.28% and 6.34% for methylation and expression data, 

respectively). 

 

Figure 3.4 Contribution of Individual Differences Versus Cell Type of Origin 
to Methylation and Expression Levels.  

Estimated contribution of inter-individual differences and cell type of origin effects 
on variation in (a) methylation and (b) gene expression levels from a linear mixed 
effect model. There is a significant difference in the mean proportion of variation 
explained by individual and cell type of origin (P < 10-15). 
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3.4 Discussion 

 

To date, the common view is that iPSCs derived from somatic cells retain robust 

epigenetic traces of the precursor cells [62,112-117,124]. Yet, in our data, a 

remarkably small amount of the observed regulatory variation in iPSCs is driven 

by cell type of origin. Our observations are consistent with genetic background 

being a major driver of regulatory variation in iPSCs.  

While our results challenge the common view that epigenetic memory is 

prevalent in iPSCs, a careful examination of the literature suggests that our data 

are in fact consistent with previous studies, though our interpretation is not. The 

principal difference between previous studies and ours is that we were able to 

benchmark epigenetic memory against other sources of variation. Previous 

studies either characterized iPSCs from a single individual [112,114], or were not 

able to distinguish between genetic and cell type of origin effects [115,116]. For 

example, though Kim et al. [116] reported a similar number of DM loci (137-370) 

between iPSCs derived from different cell types as we observed in our study, 

Kim et al. interpreted their observation as evidence for a marked effect of the 

donor cells. Yet, our observation that DNA methylation is quite homogenous 

across all iPSCs (both within replicates and between L-iPSCs and F-iPSCs; 

S8C/D Fig.), is not in disagreement with the observations of Kim et al.  

Indeed, our study explicitly models the contribution of genetic background 

to variation in DNA methylation levels in iPSCs. When we consider DNA 

methylation in the context of variation explained by inter-individual differences, 
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we find a remarkably small effect associated with cell type of origin. Moreover, 

even unsupervised clustering (based on either DNA methylation or gene 

expression data) indicated that samples largely clustered by individual. We found 

little evidence of clustering by cell type of origin. When we turned our attention to 

individual loci, only 197 (0.043%) tested CpGs were classified as DM between L-

iPSCs and F-iPSCs, compared with 190,356 (41.7%) loci that were classified as 

DM between LCLs and fibroblasts.  

Our observation that only a handful of DM sites may drive regulatory 

differences between iPSCs from different origins is consistent with recent work 

by Rouhani and Kumasaka et al. [123] where a similar study design was 

employed examining only gene expression levels. Indeed, as in Kumasaka et al., 

we found that individual genetic background captures a much larger proportion of 

gene regulatory variation than cell type of origin using both the DNA methylation 

and gene expression data.  

Future work needs to address additional pertinent questions. First, our 

study was limited to methylation and gene expression levels in iPSCs. Future 

studies should focus on additional epigenetic and regulatory markers. Second, 

we focused on regulatory differences between iPSCs, but did not study 

differentiated cell types. This needs to be addressed in the future because the 

degree to which iPSCs retain regulatory signatures of their cell type of origin 

ultimately is expected to influence the extent to which iPSCs can be used as a 

model system for studying complex traits in differentiated cell types.  
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In conclusion, our study demonstrated that when accounting for individual, 

the impact of cell type of origin on DNA methylation and gene expression in 

iPSCs is limited to a small number of CpGs, which cluster into an even smaller 

number of genomic loci, and a single gene, with almost no detectable influence 

genome-wide. Our observations further confirm the usefulness of iPSCs for 

genetic studies regardless of the original somatic cell type. The high correlation 

of DNA methylation and gene expression levels (S8C/D Fig.) between 

individuals, demonstrate the faithfulness of the model, though as we pointed out 

– similar studies in differentiate cells are required to generalize these 

conclusions. While cell type of origin should continue to be carefully documented, 

our data also suggest that future studies should focus on collecting more 

individuals rather than establishing multiple iPSC clones from the same 

individual. 

3.5 Materials and Methods 

 

Isolation and culture of fibroblasts and LCLs 

Skin punch biopsies and blood were collected from the same individual 

within 20 minutes under University of Chicago IRB protocol 11-0524 (samples 

from four individuals were collected over three collection dates; samples from 

individuals 3 and 4 were collected on the same date). Skin and blood samples 

from an individual were processed at the same time. Fibroblast isolation and 

culture was conducted using the approach described in detail in Gallego Romero 

et al [127]. Briefly, skin punch biopsies (3mm) were digested using 0.5% 
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collagenase B (Roche), isolated fibroblasts were cultured in DMEM (Life 

Technologies) supplemented with 10% fetal bovine serum (FBS; JR Scientific), 

0.1mM NEAA, 2mM GlutaMAX (both from Life Technologies), 1% 

penicillin/streptomycin (Fisher), 64mg/L L-ascorbic acid 2-phosphate 

sesquimagnesium salt hydrate (Santa Cruz Biotechnology), at 5% CO2 and 5% 

O2. 

  All other cell culture was performed at 5% CO2 and atmospheric O2. For 

LCL generation, whole blood was drawn (within 20 minutes of obtaining skin 

punch biopsies) into two 8.5mL glass yellow top tubes (Acid Citrate Dextrose 

Solution A tubes; BD). Blood tubes were stored at room temperature and 

processed within 12 hours of collection. To isolate lymphocytes, we diluted whole 

blood with an equal amount of RPMI 1640 (Corning), diluted blood was slowly 

layered onto Ficoll-Paque (GE Lifescience) in 50 mL centrifuge tubes. This 

gradient was centrifuged at 1700 rpm for 30 minutes without acceleration or 

braking. Leukocytes and platelets formed a white band at the interface between 

the blood plasma and the Ficoll (called the buffy coat). We collected the buffy 

coat using a Pastette® and to that added 10mL of PBS. The collected buffy coat 

was then washed three times with PBS. 

  For EBV transformation, 4 x 106 fresh lymphocytes collected as described 

above were resuspended in a total of 4.5 ml of RPMI 1640 culture medium 

(Corning) containing 20% FBS and 1:100 phytohemagglutinin (PHA-M; 

LifeTechnologies) and transferred to a T-25 flask. EBV supernatant produced by 

the B95-8 cell lines (provided by the Ober lab) was added at 1:10 to the culture 
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flask. Cells were left undisturbed for three to five days before adding fresh media. 

Flasks were subsequently examined weekly for changes in cell growth as 

indicated by acidic pH (yellow color) and the appearance of clumps of cells 

growing in suspension. Once growth was established (21-35 days), cells were 

diluted or split to several flasks. When the cell density reached 8 x 105 to 1 x 106 

cells per mL they were cryopreserved at a density of 10 x 106 cells per ml of 

freezing media in cryovials. All LCLs using this study were transformed with the 

same lot of EBV supernatant. 

  

Episomally-reprogrammed iPSCs 

To establish iPSCs we transfected LCLs (Amaxa™ Nucleofector™ 

Technology; Lonza) and fibroblasts (Neon® Transfection System; Life 

Technologies) with oriP/EBNA1 PCXLE based episomal plasmids that containing 

the genes OCT3/4, SOX2, KLF4, L-MYC, LIN28, and an shRNA against p53 

[121]. We supplemented these plasmids with an in vitro-transcribed EBNA1 

mRNA transcript to promote exogenous vector retention following electroporation 

of the episomal vector [128,129]. Fibroblasts from all individuals were 

reprogrammed in two batches. LCLs were reprogrammed in four batches. The 

first three batches contained LCLs from all four individuals. Individual 4 failed 

reprogramming in batches one and three. A final fourth batch was therefore done 

with only individual 4. We plated a range of 10,000 - 40,000 transfected cells per 

well in a 6-well plate. Within 21 days colonies were visible and manually 

passaged onto a fresh plate of irradiated CF1 mouse embryonic fibroblasts 
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(MEF). We passaged these new iPSC colonies on MEF in hESC media 

(DMEM/F12 (Corning) supplemented with 20% KOSR (LifeTechnologies), 0.1mM 

NEAA, 2mM GlutaMAX, 1% Pen/Strep, 0.1% 2-Mercaptoethanol 

(LifeTechnologies)). Fibroblast derived iPSCs were supplemented with 100ng/mL 

human basic fibroblast growth factor, versus 25ng/mL for LCL derived iPSCs; all 

other culture conditions were identical. After 10 passages of growth we 

transitioned the cultures to feeder-free conditions and cultured them for an 

additional three passages before collecting cell pellets for analysis. Feeder-free 

cultures were grown using 0.01mg/cm2 (1:100) hESC-grade Matrigel (BD 

Sciences) and Essential 8 media (LifeTechnologies). Passaging was done using 

DPBS supplemented with 0.5mM EDTA. All RNA and DNA were isolated using 

Zymo dual extraction kits (Zymo Research) with a DNase treatment during RNA 

extraction (Qiagen). 

 

Characterization of iPSCs 

All iPSC lines were characterized as described previously [127]. Briefly, 

we initially confirmed pluripotency using PluriTest [130], a classifier that assigns 

samples a pluripotency score and novelty score based on genome-wide gene 

expression data. All samples were classified as pluripotent and had a low novelty 

score (S1 Fig.). We next performed qPCR using 1 µg of total RNA, converted to 

cDNA, from all samples to confirm the endogenous expression of pluripotency 

genes: OCT3/4, NANOG, and SOX2 (S2A-C Fig.). Additionally, we tested for the 

presence and expression of the EBV gene EBNA-1 using PCR (S2D/3 Figs.). We 
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tested all samples for both genomic integrations and vector-based EBV. We did 

this using primers designed to amplify the EBNA-1 segment found in both the 

episomal vectors and the EBV used to transform LCLs. If the cell was positive (a 

single positive case was found: Ind4 F-iPSC), we further tested the origin of the 

EBV (genomic or episomal) using primers specific to the LMP-2A gene found in 

EBV or part of the sequence specific to the episomal plasmid (S3 Fig.). Finally, 

we confirmed the ability of all iPSC lines to differentiate into the three main germ 

layers using the embryoid body (EB) assay. The EBs were imaged for the 

presence of all three germ layers (S4 Fig.). It should also be noted that gene 

expression and DNA methylation levels are extremely similar between iPSC 

lines. This relative homogeneity further demonstrates the quality of our iPSC 

lines. In summary, all iPSC lines established in this study showed expression of 

pluripotent genes quantified by qPCR, generated EBs for all three germ layers, 

and were classified as pluripotent based on PluriTest.  

  

Processing of methylation array 

Extracted DNA was bisulphite-converted and hybridized to the Infinium 

HumanMethylation450 BeadChip (Illumina) at the University of Chicago 

Functional Genomics facility. To validate the array probe specificity, probe 

sequences were mapped to an in silico bisulfite-converted genome using the 

Bismark aligner [131]. Only probes that mapped uniquely to the human genome 

were retained (n = 459,221). We further removed data from probes associated 

with low signal (detection P-value > 0.01) in more than 25% of samples (retained 
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data from n = 455,910 loci). Raw output from the array (IDAT files) were 

processed using the minfi package [124] in R. 

We performed standard background correction as suggested by Illumina 

[124], and corrected for the different distribution of the two probe types on the 

array using SWAN [125] (S5 Fig.). Additionally, we quantile normalized the red 

and green color channels (corresponding to methylated and unmethylated signal 

respectively) separately (S6A/B Fig.). To calculate methylation levels (reported 

as β-values) we divided the methylated signal by the total signal from both 

channels. β-values were considered estimates of the fraction of alleles 

methylated at that particular locus in the entire cell population. 

   

Processing of expression arrays 

RNA quality was confirmed by quantifying sample’s RNA Integrity Number 

(RIN) on an Agilent 2100 Bioanalyzer (Agilent Technologies). All samples had a 

RIN of 10. The extracted RNA from all samples was hybridized to the Illumina 

HT12v4 Expression BeadChip array (Illumina) at the University of Chicago 

Functional Genomics facility. Sample processing was performed using the lumi 

package in R [132]. We excluded data from a subset of probes prior to our 

analysis: First, we mapped the probe sequences to the human genome hg19 and 

kept only those with a quality score of 37, indicative of unambiguous mapping (n 

= 40,198; note that we also explicitly pre-filtered the 5,587 probes which were 

annotated as spanning exon-exon junctions to avoid mapping errors). Second, 

we downloaded the HapMap CEU SNPs 
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(http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-

08_phaseII+III/forward/) and converted their coordinates from hg18 to hg19 using 

the UCSC liftOver utility [133]. We retained only those probes that did not overlap 

any SNP with a minor allele frequency greater than 5% (n = 34,508). Third, we 

converted the Illumina probe IDs to Ensembl gene IDs using the R/Bioconductor 

package biomaRt [134] and retained only those probes that are associated with 

exactly one Ensembl gene ID (Ensembl 75 - Feb 2014; n = 22,032). The full 

pipeline was implemented using the Python package Snakemake [135]. We 

defined a gene as expressed in a given sample if at least one probe mapping to it 

had a detection P-value < 0.05. In the case of L-iPSCs, we defined a gene as 

expressed in an individual if any associated probes had a detection P-value < 

0.05 in at least one biological replicate. Using these criteria, we identified all 

genes expressed in at least three individuals in at least one cell type (S7 Fig.; n = 

14,111 probes associated with 11,054 annotated genes). In the case that 

multiple expressed probes were associated with the same ENSEMBL gene (n = 

3,057), we only retained data from the 3'-most detected probe. Following these 

filtration steps, we obtained estimates of expression levels in all samples across 

11,054 genes. Data from the 11,054 genes were quantile normalized using the 

lumiExpresso function in lumi [132] (S6C/D Fig.). 

 

Unsupervised hierarchical clustering and heatmaps 

Only data from autosomal probes were retained for the hierarchical 

clustering analyses in order to reduce bias towards clustering by individual or sex 
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(n = 10,648 expression, and n = 445,277 methylation). We calculated a matrix of 

pairwise Euclidean distances between samples from the methylation and 

expression data separately. From these matrices we performed hierarchical 

clustering analyzing using the complete linkage method as implemented in the R 

function hclust. The observed dendrograms remained consistent regardless of 

the linkage method chosen (complete, single, or average). The 1,000 most 

variable loci were defined by taking the loci with the highest variance in iPSCs. 

Clustering based on the 1,000 most variable probes were processed in an 

identical manner as above. Heatmaps were generated from matrices of pairwise 

Pearson correlations between samples using data from autosomes and sex 

chromosomes. 

  

Analysis of differences in gene expression and methylation levels 

Data from probes on both autosomes and sex chromosomes were 

included in this analysis, given that individuals were balanced across cell types (n 

= 455,910 CpGs; n = 11,054 genes). Additionally, we anticipated that sites on the 

sex chromosomes may be particularly sensitive to mis-regulation during 

reprogramming [136]. Differential expression and methylation analyses were 

performed using linear modeling and empirical Bayes methods as implemented 

in the limma package [126]. We tested for differential methylation and 

expression, using locus-specific models, between L-iPSCs and F-iPSCs; L-

iPSCs and LCLs; F-iPSCs and fibroblasts; and between fibroblasts and LCLs. 

We considered a locus DM or DE at an FDR < 5% (Benjamini Hochberg). We 
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also tested for DE genes between L-iPSCs and F-iPSCs using only genes that 

were classified as DE between L-iPSCs and LCLs; F-iPSCs and fibroblasts; and 

LCLs and fibroblasts (S11 Fig.). We estimated FDRs separately each time we 

considered only subsets of the data.   

Due to the imbalance of L-iPSC samples to F-iPSC samples we repeated 

our analyses using data from a reduced set of samples. Namely, we randomly 

sampled a single replicate of the L-iPSC from each individual. As expected, 

reducing the number of L-iPSC samples greatly reduces the number of loci 

classified as DM between L-iPSCs and F-iPSCs as well as between L-iPSCs and 

LCLs. However, the number of DM loci was reduced across all other contrasts as 

limma models the entire matrix together (S12 Fig.). Interestingly, we found that 

different combinations of replicates yielded DE genes other than TSTD1. 

Therefore, we sampled all possible combinations and overall, found six genes 

that were classified as DE (FDR 5%) in at least one of the combinations of 

reduced samples. Of note, we never classify TSTD1 as DE (FDR 5%) in the 

reduced data set. The most common DE gene, INPP5F, is the only gene that 

also has nearby DM CpGs (five of the 25 nearby loci). Additionally, in the full 

model, INPP5F has the second lowest P value (uncorrected P = 6.84 x 10-5; FDR 

38%). However, INPP5F was not DE between LCLs and fibroblasts, but was DE 

between LCLs and L-iPSCs and also fibroblasts and F-iPSCs (S3A-D Tables; 

Fig. 3C). 

 

Enrichment of DM loci in regulatory and genomic features 
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We employed two strategies to identify enrichments of DM loci between L-

iPSCs and F-iPSCs in regulatory features. First, we used the regulatory states 

defined by Ernst et al. [137]. We tested for enrichments in all regulatory 

categories using a χ-square test comparing the number DM loci and total probes 

within each regulatory class to the number DM loci and total probes outside the 

regulatory class. We found no significant enrichment for any of the defined 

regulatory states. 

Next, we used the UCSC_RefGene_Group annotation as supplied by 

Illumina. These annotations detail the location of probes in relation to genes (1st 

Exon, 3' UTR, 5' UTR, Gene Body, within 1.5kb of a TSS or within 200bp of a 

TSS). We identified significant enrichments of DM loci within 1.5kb of a TSS and 

gene bodies. However, there are six probes classified as both within a gene body 

and within 1.5kb of a TSS. We chose to report both results because it is difficult 

to deconvolute these categories. 

  We also considered the position of DM loci in relation to genes. The 

annotations were defined by Illumina. We were able to identify 37 genes 

associated with DM loci, but we only had corresponding gene expression data for 

24 of these genes. We attempted to identify signals of enrichment in DE levels 

between L-iPSCs and F-iPSCs in these 24 genes. To this end, we compared the 

log fold changes in gene expression between L-iPSCs and F-iPSCs from genes 

with nearby DM loci between L-iPSCs and F-iPSCs to 10,000 random samplings 

of log fold change in expression between L-iPSCs and F-iPSCs from all genes 

and found no enrichment for increased log fold changes.  
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Proportion of variance explained 

To estimate the proportion of variance explained by individual and cell 

type of origin we performed a linear mixed model with a fixed effect for cell type 

of origin and a random effect for individual. Only data from autosomes were 

included in this analysis so that the results would not be biased toward 

differences in individuals (n = 10,648 expression, and n = 445,277 methylation). 

To calculate the proportion of variance explained we divided the variance 

components of each term by the total variance in gene expression (Fig. 4). When 

focusing on CpGs and genes with previously identified genetic associations 

(eQTLs and meQTLs, respectively) we used genes with at least one eQTL 

identified by Lappalainen et al. 2013 [138] and CpGs with at least one meQTL 

identified by Banovich et al. 2014 [36] (S11 Fig.).  

 

Accession numbers 

The expression and methylation data sets supporting the results of this article are 

available in the Gene Expression Omnibus (GEO) under accession GSE65079 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65079). 

 

Ethics, consent and permissions 

All individuals consented to study participation under University of Chicago IRB 

protocol 11-0524. 
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3.6 Appendix B: Supplementary Materials 

 

Figure S3.1 Quality control of iPSCs.  
iPSC lines QC - PluriTest pluriscore results for all samples, showing all iPSC 
samples fall within the pluripotent threshold (red dashed lines). Additionally, all 
primary tissue samples fall within the non-iPSC cell type classification (blue 
dashed lines). 

−1
00

−5
0

0
50

PluriTest

P
lu

rip
ot

en
cy

 s
co

re

In
d1

 F
−i

P
S

C
In

d2
 L

−i
P

S
C

 C
In

d3
 L

−i
P

S
C

 B
In

d1
 L

C
L

In
d4

 L
−i

P
S

C
 C

In
d2

 L
−i

P
S

C
 B

In
d4

 L
−i

P
S

C
 A

In
d1

 F
ib

ro
bl

as
t

In
d1

 L
−i

P
S

C
 A

In
d4

 F
ib

ro
bl

as
t

In
d2

 L
C

L
In

d3
 F

−i
P

S
C

In
d2

 F
ib

ro
bl

as
t

In
d3

 L
C

L
In

d2
 L

−i
P

S
C

 A
In

d4
 L

C
L

In
d3

 F
ib

ro
bl

as
t

In
d1

 L
−i

P
S

C
 C

In
d2

 F
−i

P
S

C
In

d3
 L

−i
P

S
C

 A
In

d1
 L

−i
P

S
C

 B
In

d4
 L

−i
P

S
C

 B
In

d3
 L

−i
P

S
C

 C
In

d4
 F

−i
P

S
C



 

72 

 
Figure S3.2 Quality control of iPSC Lines.  
iPSC lines QC - Quantitative PCR (qPCR) of pluripotency genes (a) OCT3/4, (b) 
NANOG, and (c) SOX2 normalized on randomly selected Ind3 L-iPSC C. 
Relative expression is the RQ value with respect to GAPDH expression, with 
error bars representing the calculated min and max RQ value. All iPSC lines 
show endogenous expression of these pluripotency genes. (d) Expression of 
EBNA-1, a required viral gene of Epstein-Barr virus (EBV), normalized on 
randomly selected Ind3 LCL. EBNA-1 expression could stem from either the 
reprogramming vectors or, in LCLs and L-iPSCs, expression of integrated 
genomic EBV. Ind4 F-iPSC shows low expression of EBNA-1 due to low 
retention of reprogramming vectors as confirmed in Supplementary Fig. 3. This 
sample is kept for data analysis because all other QC measures are met and the 
sample is not an outlier in overall gene expression or DNA methylation. 
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Figure S3.3 Quality control of iPSCs.  
(a) PCR on DNA for presence or absence of EBV, both integrated and non-
integrated (reprogramming vector based). All four LCLs showed the presence of 
EBV along with one iPSC line, Ind4 F-iPSC. Additional banding in the images is 
due to RNA in the sample. These five samples, highlighted by a red box, were 
taken forward for two additional PCRs. First, the five samples were tested for the 
presence of the reprogramming vectors (b), of which only Ind4 F-iPSC was 
positive. Lastly, the five samples were tested for EBV based on the presence of 
the LMP-2A sequence (c; an EBV gene not found on the reprogramming vector). 
All LCLs were positive for EBV, and the iPSC sample was not. 

reddal bk1 In
d1

-
tsalborbiF

In
d4

-
tsalborbiF

In
d2

-F
ib

ro
bl

as
t

In
d3

-F
ib

ro
bl

as
t

In
d1

-L
C

L
In

d4
-L

C
L

In
d3

-L
C

L
In

d2
-L

C
L

In
d1

 L
-iP

S
C

 A
In

d2
 L

-iP
S

C
 C

In
d4

 L
-iP

S
C

 B
In

d3
 L

-iP
S

C
 C

In
d2

 L
-iP

S
C

 B
In

d3
 L

-iP
S

C
 A

In
d4

 L
-iP

S
C

 C
In

d2
 L

-iP
S

C
 A

In
d1

 L
-iP

S
C

 C
In

d4
 L

-iP
S

C
 A

In
d1

 L
-iP

S
C

 B
In

d3
 L

-iP
S

C
 B

In
d1

 F
-iP

S
C

In
d3

 F
-iP

S
C

 
In

d2
 F

-iP
S

C
In

d4
 F

-iP
S

C
N

eg
at

iv
e 

co
nt

ro
l

P
os

iti
ve

 c
on

tro
l 1

P
os

iti
ve

 c
on

tro
l 2

B
la

nk
1k

b 
la

dd
er

Genomic or vector-based EBNA-1

A

1k
b 

la
dd

er
In

d4
 F

-iP
S

C
In

d2
-L

C
L

In
d3

-L
C

L
In

d4
-L

C
L

In
d1

-L
C

L
Ve

ct
or

 P
os

iti
ve

 c
on

tro
l

E
BV

 P
os

iti
ve

 c
on

tro
l

N
eg

at
iv

e 
co

nt
ro

l
B

la
nk

1k
b 

la
dd

er

1k
b 

la
dd

er
In

d4
 F

-iP
S

C
In

d2
-L

C
L

In
d3

-L
C

L
In

d4
-L

C
L

In
d1

-L
C

L
Ve

ct
or

 P
os

iti
ve

 c
on

tro
l

E
BV

 P
os

iti
ve

 c
on

tro
l

N
eg

at
iv

e 
co

nt
ro

l
B

la
nk

1k
b 

la
dd

er

Reprogramming Vectors Integrated EBV

B C



 

74 

 
Figure S3.4 Quality control of iPSCs.  
iPSC lines QC - Embryoid body (EB) formation from iPSC lines to validate the 
ability to differentiate into all three germ layers. The leftmost column (a) shows 
EBs stained with Nestin, a cytoplasmic stain for ectoderm in green and MAP2, a 
cytoplasmic stain for ectoderm in red. The center column (b) shows EBs stained 
with SMA, a cytoplasmic stain for mesoderm in green and again for MAP2 in red. 
The rightmost column (c) shows EBs stained with AFP, a cytoplasmic stain for 
endoderm in green and HNF3β, a nuclear stain for endoderm in red. All iPSC 
lines generated showed the ability to differentiate into all three germ layers. All 
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imaging was done at 10x magnification and nuclei were stained blue with 
Hoechst. 

 
Figure S3.5 DNA methylation density plots.  
Representative density plots of DNA methylation levels separated by type I and 
type II probes before and after SWAN Normalization. 
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Figure S3.6 Array data normalization.  
Methylation levels (Beta) (a) pre- and (b) post- quantile normalization. Quantile 
normalization was performed independently on the red and green color channels. 
Gene expression data (c) pre- and (d) post- quantile normalization. 
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Figure S3.7 Probe inclusion scheme.  
For 22,032 probes we defined a gene as expressed in a given sample if at least 
one probe mapping to it had a detection P-Value < 0.05. In the case of L-iPSCs, 
we defined a gene as expressed in an individual if any associated probes had a 
detection P-Value < 0.05 in at least one biological replicate. Using these criteria, 
we identified all genes expressed in at least three individuals in at least one cell 
type (n = 14,111 probes, associated with 11,054 genes). 
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Figure S3.8 Hierarchical clustering.  
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Hierarchical clustering using the complete linkage method and Euclidean 
distance from the 1,000 most variable autosomal iPSC loci for (a) methylation 
data and (b) expression data. Heatmap showing pairwise Pearson correlations 
between all samples for all loci (autosomes and sex chromosomes) (c) 
methylation data and (d) gene expression data: note all iPSCs are highly 
correlated. Hierarchical clustering using the complete linkage method and 
Euclidean distance from all loci (autosomes and sex chromosomes) for (e) 
methylation data (n = 455,910) and (f) gene expression data (n = 11,054).  

 
Figure S3.9 Principal components analysis (PCA).  
Results of PCA on (a) methylation levels and (b) gene expression levels, using 
only autosomal loci in the iPSC samples.  
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Figure S3.10 Heatmap of DM loci.  
A heatmap of methylation levels at loci DM between L-iPSC and F-iPSC (n = 
197), ordered by genomic location. 
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Figure S3.11 DE tests in gene subsets.  
To confirm that the test to detect DE genes was not underpowered, we also 
tested for DE in subsets of genes most likely to be DE between L-iPSC and F-
iPSC – genes that were identified as DE in the other contrasts tested. We found 
no enrichment of significant P-Values based on DE tests with these subsets; see 
QQ plot of P-Values considering DE tests between L-iPSCs and F-iPSCs using 
four distinct gene sets: all genes, only genes DE between LCL and fibroblasts, 
only genes DE between LCL and L-iPSCs, and only genes DE between 
fibroblasts and F-iPSCs.  
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Figure S3.12 Differential methylation with single L-iPSC replicate.  
A Venn diagram depicting differentially methylated (DM) loci identified at an FDR 
of 5% overlapping between different contrasts with only a single L-iPSC replicate 
from each individual. A general decrease in the number of DM loci is observed 
across all contrasts as limma models all the data together. Yet, a far more 
marked decrease in the number of DM loci is observed in contrasts containing L-
iPSCs. 
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CHAPTER 4: HUMAN INDUCED PLURIPOTENT STEM CELLS: A 

POWERFUL MODEL TO INVESTIGATE INTER-INDIVIDUAL REGULATORY 

VARIATION ACROSS CELL TYPES 
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4.1 Abstract 

 

Human induced pluripotent stem cells (iPSCs) provide a powerful system 

to study complex human traits. To investigate inter-individual variation in gene 

regulation across multiple cell types from the same individuals, we established 

and validated a panel of 59 iPSCs from lymphoblastoid cell lines (LCLs) of 

Yoruba individuals, which have been extensively studied in the past. The 

genome sequences of all individuals were also available to us. We collected RNA 

sequencing, chromatin accessibility, and DNA methylation data from the LCLs 

and the iPSCs, as well as RNA sequencing from iPSC-derived cardiomyocytes 

(iPSC-CMs) from 13 of the same individuals. 

Using these gene regulatory data, we identified thousands of genetic 

associations with inter-individual variation in gene expression levels (eQTLs), 

methylation levels (meQTLs), and chromatin accessibility (caQTLs), across cell 

types. We found that regulatory variation is lower in iPSCs compared with the 

differentiated cell types, consistent with the intuition that developmental 

processes are generally canalized. By considering transcription factor footprints 

and inferred chromatin states, we were able to provide putative mechanistic 

explanations for many differences in regulatory QTL associations across cell 

types. In particular, we identified a large number of cell type specific regulatory 

QTLs in distal enhancers, which are likely to regulate tissue-specific gene 

expression patterns. 
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This study demonstrates the power of the iPS cellular model to 

dynamically study inter-individual variation in gene regulation.  

 

4.2 Introduction 

 

Understanding the genetic underpinnings of complex traits remains one of 

the major goals in human genetics. The advent of high throughput genotyping 

technologies (array and sequencing based) represented a transformative period 

in the study of complex traits. Researchers postulated that with large samples of 

individuals and well executed case control studies we would identify the majority 

of genetic drivers of complex traits including disease [3]. Unfortunately, it became 

clear that complex traits were even more complex then originally believed. 

Recent large-scale meta genome-wide association studies (GWAS) with traits 

such as BMI [12] suggest that there may be thousands of genetic variants with 

small effect sizes contributing to complex traits. Within the current framework 

prohibitively large sample sizes would be needed to fully elucidate the genetic 

architecture of any complex trait. However, GWAS studies have provided a 

wealth of information about the general properties of loci affecting complex traits. 

Notably, the majority of such loci lie outside of genes and likely act by modifying 

gene expression [17]. Indeed, recent work has shown you can dramatically 

increase your ability to identify genetic variants associated with disease traits by 

incorporating gene expression data from a disease relevant tissue [42]. These 



 

86 

results demonstrate the importance of studying gene regulation in identifying 

genetic variants associated with complex traits.  

To this end many studies have examined the effect of genetic variation on 

gene expression [31-33] and other regulatory phenotypes [27,34-41]. However, 

due to ethical and practical constraints, these studies have been limited to 

commercially available cell lines [27,34-37], easily accessible tissues (eg. skin 

and blood), and, more recently, post-mortem tissues [32]. While these studies 

have provided valuable insight into the genetic architecture of gene regulation, 

none of the aforementioned models provide a flexible framework to study inter-

individual variation in gene regulation in multiple cell types from the same 

individual. 

The discovery that somatic cells could be transformed into embryonic-like 

cells [43-45] and then re-differentiated into somatic cell types from any germ 

layer [46] provides a powerful cellular model to study gene regulation. 

Importantly, induced pluripotent stem cells (iPSCs) can be efficiently generated 

with a small number of exogenous factors [121]. Moreover, while the equivalence 

of iPSCs and embryonic stem cells (ESCs) remains debated, recent work using 

well-matched lines suggests that iPSCs are nearly indistinguishable from ESCs 

[139]. Recent work examining gene regulation in iPSCs has demonstrated that 

variation in gene expression and DNA methylation [123,140] is highly dependent 

on donor individuals. These results suggest that iPSCs can be used to study 

genetic effects on gene regulation. Indeed, one study has established that 

common genetic variation is associated with changes in gene expression and the 
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main driver of expression differences in iPSCs [141]. However, a more extensive 

evaluation of variation in multiple regulatory phenotypes from iPSCs and iPSC-

derived cell types is lacking. 

To this end we have generated a panel of iPSCs from 59 well 

characterized immortalized lymphoblastoid cell lines (LCLs). We have collected 

gene expression, chromatin accessibility, and DNA methylation data from this 

panel. Additionally, we have differentiated 13 of these lines into iPSC-derived 

cardiomyocytes (iPSC-CMs) from which we have collected gene expression. This 

study is the deepest characterization of gene regulation in iPSCs to date and 

represents a large advance in our ability to study the genetic architecture of gene 

regulation across cell types. 

4.3 Results 

 

Generation of high quality iPSCs from 59 Yoruba individuals 

We successfully generated iPSCs from 59 Yoruba individuals (see 

methods). Briefly, LCLs were reprogrammed using a previously described 

episomal approach [121]. After a week in suspension culture cells were seeded 

onto a layer of gelatin and mouse embryonic fibroblasts. A single clonal colony is 

obtained from each line and passaged for ten weeks before final characterization 

and collection. Pluripotency and stability were confirmed using three methods. 

First, iPSCs were allowed to form embroyid bodies and then spontaneously 

differentiate. After a week of differentiation iPSCs were stained for tissues from 
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all three germ layers (Fig. 4.1A).  Next, we applied a bioinoformatic classifier, 

 

Figure 4.1 Quality control of iPSC lines 

A) A representative image of immunohistochemistry staining for ectoderm, 
mesoderm, and endoderm cell types. B) Pluritest results. Upper left quadrant 
represents empirical cutoffs. C) A representative karyotype result 
 
PluriTest [130], to our data. The classifier compares gene expression levels from 

uncharacterized lines to a “gold standard” panel of embryonic stem cells and 

iPSCs. Two metrics are obtained from this method providing information about 

the similarity in gene expression of canonical pluripotency genes and amount of 

aberrant unexpected expression (Fig. 4.1B). Finally, all lines were karyotyped to 
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demonstrate genomic stability (Fig. 4.1C). The iPSCs described here passed all 

quality controls and have been grown for at least 20 passages in a feeder culture 

system. Additionally, all lines are able to transition to feeder-free conditions using 

a commercially available growth medium and extracellular matrix (see methods 

for more details).  

One major goal of this study was to generate resources of value to our lab 

and the field as a whole. To this end we have generated at least ten 

cryopreserved stocks from each line. Each stock can be thawed and expanded 

indefinitely. At least one stock from each individual has been tested and all lines 

thaw reliably. Furthermore, no lines have shown culture difficulties after thawing. 

This panel represents the largest stock of characterized non-European iPSCs to 

date.  

 

Regulatory variation is lower in iPSCs 

The faithfulness of iPSCs as a model of embryonic stem cells (ESCs) is 

still debated; nevertheless, the similarities are evident [139]. This work 

represents one of the largest collections of iPSCs obtained from healthy 

individuals. Moreover, to our knowledge this is the only large collection of iPSCs 

from individuals of African ancestry. Thus, this panel represents a powerful 

cellular model to study gene regulation at an embryonic-like state. Unique to this 

study, we have focused on three regulatory phenotypes, mRNA (RNA-seq; 

n=59), chromatin accessibility (ATAC-seq; n=58), and DNA methylation levels 

(EPIC array; n=58), to obtain a multi-level understanding of gene regulation in  
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Figure 4.2 Regulatory variation is lower in iPSCs 

Heatmaps generated from pairwise spearman correlations of A) gene 
expression, C) chromatin accessibility and D) DNA methylation levels. Coefficient 
of variation calculated from gene expression levels in iPSCs, LCLs and iPSC-
CMs. In all figures blue denotes iPSCs, black denotes LCLs, and red denotes 
iPSC-CMs. In all figures iPSCs are the most homogenous. 
 
iPSCs. Furthermore, data from each individual were collected at the same time 

from the same population of cells (see methods). By using three layers of 

regulatory data we are able to provide a more comprehensive picture of gene 
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regulation in iPSCs. To compare gene regulation in iPSCs to other cell types we 

have differentiated 12 individuals into iPSC-derived cardiomyocytes (iPSC-CMs; 

see methods) and collected gene expression data (RNA-seq). Additionally, we 

utilized data previously collected from Yoruba LCLs [36,37,138].  

 

We began our analysis by examining the different trends in overall gene 

expression between cell types. It became immediately apparent that gene 

expression in iPSCs is more homogenous than gene expression in LCLs or 

iPSC-CMs (Fig. 4.2 A&B). This is consistent with a model where embryonic cells 

are tightly regulated and developmental processes are canalized. We next turned 

our attention to the methylation and chromatin accessibility data in iPSCs and 

LCLs. We found that chromatin accessibility had a similar pattern to gene 

expression and methylation data exhibit an even more striking difference (Fig. 

4.2 C&D). While these data may suggest that our study will have lower power to 

detect genetic associations with gene regulation, recent work from our lab 

demonstrates that the gene expression variation in iPSCs segregates better by 

individual than gene expression variation in LCLs [142].  

 

Inter-individual genetic variation drives regulatory differences in iPSCs 

After examining overall gene expression patterns we set out to 

characterize the effect of genetic variation on gene regulation. At a false 

discovery rate (FDR) of 10%, we have identified thousands of putatively cis 

genetic associations (see methods) with gene expression (eQTLs: 1,629; Figure 



 

92 

4.3A), chromatin accessibility (caQTLs: 2,130), and DNA methylation (meQTLs: 

29,782). Although regulatory phenotypes display lower inter-individual variance in 

iPSCs compared to LCLs, we maintain equal or greater power to detect QTLs 

when using similar sample size (eQTLs: 1,167; caQTLs: 2,260). Using a recently 

developed method to identify eQTLs in small sample sizes (see methods) [143] 

we were able to identify 517 genes where gene expression was associated with 

at least one genetic variant in iPSC-CMs. This represents the first study to our 

knowledge that has identified eQTLs in iPSC-derived cell types 

Next we set out to characterize the properties of QTLs identified in LCLs 

and iPSCs. In general we find such properties are well matched across cell 

types. In particular there appears to be no difference in the average distance 

between a genetic variant and the associated locus (gene/peak/CpG) across cell 

types. Some small but significant differences in effect size were identified 

between cell types; however, these are difficult to interpret and fluctuate 

depending on the regulatory phenotype. Moreover, when focusing on eQTLs that 

are significant in both tissues, we see that the effect size of the QTL tracks quite 

well (Fig 4.3B). These results suggest a high degree of sharing between QTLs 

and that in general genetic variants affect gene regulation through the same 

mechanisms regardless of cell types. 

Using the pi1 estimate (1-pi0) developed by Story and Tibshirani we 

estimated the proportion of QTLs that were shared between iPSCs, LCLs, and 

iPSC-CMs. Rather than making a single estimate based off QTLs identified at an 



 

93 

FDR of 10%, we used a sliding scale to show the distribution of sharing at 

 

Figure 4.3 Properties of eQTLs across cell types 

A) QQ plot of genetic association with gene expression levels. The black dots 
denote tested SNPs and the grey dots denote permuted data. The red line 
represents the null expectation. B) Plot of the absolute effect size of eQTLs 
identified in LCLs and iPSCs. The plot is ordered by the effect size in iPSCs. 
Standard error of the estimate is plotted around each point. Red points denote 
LCLs and black points denote iPSCs. C) Estimates of eQTL sharing between 
iPSCs and LCLs (black lines), iPSCs and iPSC-CMs (grey line), LCLs and iPSCs 
(dark blue line) and LCLs and iPSC-CMs (light blue line). D-E) Estimates of 
caQTL and meQTL sharing between iPSCs (black line) and LCLs (red line). 
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different significance thresholds (Fig. 4.3 C-E). These data demonstrate that 

gene expression has an extremely high degree of sharing. Indeed, the majority of 

eQTLs identified in iPSCs are also significant in LCLs (between 71% and 91%; 

Fig. 4.3C). While the proportion of sharing is lower when considering iPSC-CMs 

(Fig. 4.3C), this is not unexpected given the difference in sample size. 

Interestingly, the patterns of sharing differ slightly between iPSCs and LCLs. 

Namely, eQTLs identified in LCLs exhibit a continual increase in the degree of 

sharing with iPSCs as the significance threshold increases (Fig. 4.3C). This 

sharing is maximized when considering only the 150 most significant genes in 

LCLs (the most stringent threshold). However, eQTLs identified in iPSCs have 

the largest degree of sharing with LCLs at a slightly more relaxed threshold. 

These results suggest that there is a higher degree of iPSC specific eQTLs with 

very low p-values compared to LCLs. Moreover, this pattern is replicated across 

the regulatory phenotypes tested here (Fig. 4.3 C-E). The proportion of sharing 

shown here is similar to previous estimates of sharing between iPSCs and 

somatic eQTLs  [141].  

Next, we attempted to identify cell type specific eQTLs. Identifying genetic 

variants with cell types specific effects on gene expression is a difficult task and 

has been the focus of many previous efforts [32,144]. Here we begin by 

examining genes that have at least one significant eQTL (eGenes) in iPSCs but 

were expressed at too low of a level to be tested in LCLs. There are 498 such 

genes, accounting for 31% of all genes with an eQTL. This is higher than the 

inverse where only 24% of eGenes in LCLs were not expressed in iPSCs. For 



 

95 

the remaining genes (those tested in both tissues) we used a fairly naïve 

approach to identify cell type specific eQTLs. First we removed any gene that 

was significant in both LCLs and iPSCs even if the lead variant differed between 

the two, and considered only those cases where the lead variant from the cell 

type where the eQTL was identified was tested in the second cell type. This left 

us with 533 genes in iPSCs and 530 genes in LCLs. Next we identified cell type 

specific eQTLs using a two p-value, such that variants significant in one tissue 

must have a p-value greater than 0.2 in the second tissue. We found nearly 

identical proportions of genes with a cell type specific eQTL in iPSCs (0.53; n= 

285) and LCLs (0.52; n= 278).   

One characteristic difference we observed between cell type specific 

eQTLs and all eQTLs is the distance between the lead variant and the 

transcription start site (TSS). The median distance in cell type specific eQTLs is 

significantly larger (iPSC: 35kb, P < 10-3; LCL: 35kb, P < 10-5) compared to all 

eQTLs (iPSC: 28kb; LCL: 24kb). This difference is further pronounced (iPSC: 

16kb; LCL: 17kb) when focusing on iPSCs that are shared across both cell types 

(association significant at 10-5 in both cell types). This is consistent with a model 

in which enhancers play a larger role in cell type specific gene regulation. To 

more explicitly examine this pattern we performed a hierarchical model (see 

methods) using cell type specific and shared annotations for chromatin states 

[137], transcription factor binding [145], and caQTLs. We identified enrichments 

that further suggest cell type specific eQTLs are enriched in enhancers and cell 

type specific caQTLs (Fig 4.4). These results led us to further examine the effect 
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of genetic variation on chromatin regulation as a putative mechanism driving the 

majority of cell type specific QTLs.  

 

Figure 4.4 Regulatory annotations driving cell type specific and shared 
eQTLs 

Estimates of the proportion of eQTLs explained by chromatin state annotations, 
genomics annotations, and caQTLs obtained from the hierarchical model in A) 
iPSCs and B) LCLs. The annotations are separated by shared or specific – i.e. 
present in both cell types or present in cell type where the eQTL was identified. 
The bar plots represent eQTLs that are cell type specific (purple), shared 
(orange), or all eQTLs (grey). These plots are ordered by the difference in the 
proportion of cell type specific vs shared eQTLs explained such that features 
explaining more of the cell type specific eQTLs are on top. 
 
Chromatin regulation drives the majority of cell type specific QTLs 

 

We postulated that by focusing on genetic variants affecting chromatin 

accessibility in a cell type specific manner, we may be better able to dissect the 

iPSC eQTLs LCL eQTLs
A B
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mechanisms that govern cell type specific eQTLs. For this analysis we limited 

 

Figure 4.5 cell type specific caQTLs 

A) A heatmap showing enrichment of cell type specific and shared caQTLs in 
regulatory annotations. A darker red denotes a stronger enrichment. B) Heatmap 
of chromatin accessibility in iPSCs and LCLs at iPSC-specific caQTL peaks. The 
darker orange denotes increase accessibility. C) An example of an LCL specific 
caQTL where the peak is accessibility in both regions (model 2) and thus the 
genetic variant is likely disrupting a cell type specific TFBS. The top row of the 
plot denotes gene location. The next row shows TF peaks from ChIP-seq data. 
The density plots show chromatin accessibility levles aggregated by caQTL 
genotype for iPSCs on the top and LCLs on the bottom. Under the density plots 
are cell type specific chromatin states. The vertical lines denote the accessibility 
peak of interest D) An example of an iPSC specific caQTL that is affecting distal 
regions (model 3). In this particular example the genetic variant is disrupting an 
insulator element.  
 
our focus on caQTLs where the genetic variants are within a chromatin 

accessibility peak. Here we examine the chromatin patterns that lead to cell type 

specific and shared QTLs. Again we identify specific and shared caQTLs using a 
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two p-value cutoff method (see methods). We first look for enrichment of cell type 

 

Figure 4.6 An iPSC specific caQTLs that drives cell type specific changes 
in expression 

This example shows an iPSC specific caQTL residing within an iPSC specific 
chromatin accessibility window that drives cell type specific expression changes. 
The top row of the plot denotes gene location. The next row shows TF peaks 
from ChIP-seq data. The third row displays transposable elements. The density 
plots show gene expression levels and chromatin accessibility levels aggregated 
by caQTL genotype for iPSCs on the top and LCLs on the bottom. Under the 
density plots cell type specific chromatin states are displayed. The vertical line 
denotes the position of the caQTL. 
  
specific caQTLs in chromatin states to confirm the patterns observed in cell type 

specific eQTLs. Indeed, we see an enrichment of cell type specific caQTLs in cell 

type specific enhancers (Fig. 4.5 A). In an attempt to identify chromatin patterns 

that drive cell type specific caQTLs we propose three general models: 1) the 

region containing the putatively casual SNP is only accessible in one cell type 

driving the specificity of the QTL 2) the region is accessible in both cell types, but 
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the SNP is disrupting different transcription factor binding sites 3) the SNP is 

distal to the region of interest and the change is happening due to interactions 

between regions. The majority of cell type specific caQTLs fall into the first model 

(~80%; Fig. 4.5B), a small number of caQTLs are consistent with the second 

model (~10%; Fig. 4.5C), and a very limited number of examples are of the third 

model (< 10%; Fig. 4.5D). When we examine shared caQTLs the opposite trend 

is observed. Namely, we see almost all peaks are accessible in both cell types.  

While not all cell type specific caQTLs are also associated with gene 

expression, 77% of all cell type specific caQTLs that are also eQTLs show a cell 

type specific pattern (n= 57; P < 10-5). One example, shown here, demonstrates 

a case of the first model, where the caQTL is also an eQTL. Interestingly, the 

gene affected by this putative enhancer, CD2AP, is expressed at similar levels in 

both cell types but only an eQTL in iPSCs (Fig. 4.6). These results demonstrate 

how using multiple layers of regulatory data can help us dissect the mechanisms 

underlying eQTLs.   

 

iPSC-derived cardiomyocytes replicate expression variation in primary 

hearts 

A major goal of this paper is to demonstrate the usability of the iPSC 

system for the study of complex traits, particularly in hard to collect and disease 

relevant tissues. To this end we have performed a number of analyses aimed at 

characterizing the fidelity of iPSC-CMs. Using gene expression data from iPSCs,  
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Figure 4.7 iPSC-CMs replicate expression variation from primary heart 
tissue 

A) Spearman correlations of gene expression levels from iPSCs, LCLs, iPSC-
CMs, and primary heart tissue. Darker red denotes a stronger correlation. Gene 
expression levels from iPSC-CMs and primary heart tissues cluster together. B) 
A QQ-plot of eQTLs identified in iPSC-CMs conditioned on being an eQTL in 
other cell types. He we examined eQTLs that were significant in hearts (red), 
spleen (pink), iPSCs (blue), LCLs (green). These are compared to all the variants 
tested in iPSC-CMs (black) and permuted data (grey). The deviation from the null 
observed in the permuted data is due to the small sample size. The variants that 
were eQTLs in primary heart tissue deviate from the line faster than eQTLs from 
any other tissue. These results suggest that eQTLs in iPSC-CM are most similar 
to eQTLs identified in primary heart tissue.  
 

iPSC-CMs, and, and tissues collected by the GTEx consortium [32] we 

performed hierarchical clustering. We find that iPSC-CMs are most similar to the 

GTEx tissue “Heart Left Ventricle” (Fig 4.7A). Continuing with the GTEx data, we 

examined the enrichment of eQTLs identified across all tissues in iPSC-CMs. 

Again, we find eQTLs identified in the “Heart Left Ventricle” are most enriched in 

iPSC-CMs. As a validation independent of GTEx tissues we used gene ontology 

enrichment analysis and found eGenes identified in iPSC-CMs are enriched in 
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many biological processes related to heart function (Table 4.1). Finally, we used 

a  

 

Table 4.1 Gene ontology enrichment of heart specific processes in iPSC-
CM eGenes 
polygenic method RolyPoly (see methods) to identify enrichments of GWAS 

signal in cell type specific gene expression. We examined four GWAS traits: 

 

Figure 4.8 iPSC-CMs enable the study of heart disease phenotypes 

Enrichment of trait-specific GWAS signal in genes with cell type specific 
expression. The darker red indices a higher degree of enrichment. 
 

rheumatoid arthritis (RA), body mass index (BMI), coronary artery disease 

(CAD), and myocardial infarction (MI).  Gene expression in iPSC-CMs is 

enriched for GWAS signal from BMI, CAD, and MI, while LCLs gene expression 

is enriched for RA and BMI (Fig 4.8). Taken together these results suggest that 

the gene expression patterns observed in iPSC-CMs replicate those observed in 
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primary heart tissue, making iPSC-CMs a powerful model in which to study heart 

specific traits.   

 

 

4.4 Discussion 

Here we have established a unique resource in 59 fully characterized 

iPSC lines. These lines derived from LCLs obtained from Yoruba individuals 

originally collected as part of the HapMap project. We believe this resource will 

be of great value to our lab as well as others. Indeed, we have already had and 

met requests to share a number of these lines with other labs. We have 

performed a deep characterization of the genetic architecture underlying inter-

individual variation in gene regulation. To our knowledge, this study represents 

the second largest characterization of gene expression and the largest 

characterization of chromatin accessibility and DNA methylation in iPSCs [141]. 

Furthermore, by combining data from LCLs, iPSCs and iPSC-CMs we have for 

the first time collected multiple regulatory phenotypes in three cell types from the 

same panel of individuals.  

We have identified novel QTLs in two cell types (iPSCs and iPSC-CMs). 

We show here that the reduced variation in regulatory phenotypes found in 

iPSCs does not diminish our ability to identify QTLs. We have identified a list of 

iPSC specific and LCL specific eQTLs. These eQTLs allowed us to identify 

chromatin features that drive cell type specific and shared eQTLs. The 

enrichments we observed suggested that genetic variants within enhancers 
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driving changes in chromatin at loci distal to the TSS were the major drivers of 

cell type specific eQTLs. This finding is consistent with what has been reported 

previously [32] and is supported by a large body of work demonstrating the tissue 

specificity of enhancers [18,67,146-150].  

The results presented here significantly advance our knowledge of cell 

type specific eQTLs. Others have reported and characterized the genomic 

architecture of cell type specific eQTLs [32,144], yet this is the first study using 

additional regulatory phenotypes to identify putative mechanisms driving such 

eQTLs. In particular, the chromatin accessibility data presented here allowed us 

to identify cell type specific caQTLs within enhancer elements that have a cell 

type specific effect on expression. These results provide a definite mechanism by 

which cell type specific eQTLs can act.  

Finally, we show that iPSC-CMs are a useful model for studying heart 

specific traits. Gene expression patterns in iPSC-CMs replicate those of primary 

heart tissue and genetic variation has similar effects. These results when taken 

together with other recent work [117] suggest that iPSC-CMs are a powerful 

model in which to study heart specific phenotypes. Importantly, this highlights the 

power of the iPSC system as a whole. Future studies using this panel of iPSCs 

will be able to assay dynamic gene expression by characterizing gene 

expression during differentiation, in multiple cell types from the same individuals, 

and in terminally differentiated cell types subjected to environmental 

perturbations. The study of dynamic gene regulation in these model, in 

conjunction with newly developed genome editing technologies [151] will allow 
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researchers to functionally follow up on putatively causative alleles. The research 

presented here is a valuable first step towards that goal. 

 

4.5 Materials and Methods 

iPSC generation 

We reprogrammed LCLs into iPSCs using an episomal reprogramming 

approach described previously [121,140]. Briefly, we transfected 1 million LCLs 

(Amaxa™ Nucleofector™ Technology; Lonza) with 1ug of oriP/EBNA1 PCXLE 

based episomal plasmids that contain the genes OCT3/4, SOX2, KLF4, L-MYC, 

LIN28, and an shRNA against p53. Cells were cultured in suspension for seven 

days after transfection in hESC media (DMEM/F12 supplemented with 20% 

KOSR, 0.1mM NEAA, 2mM GlutaMAX, 1% Pen/Strep, 0.1% 2-Mercaptoethanol, 

25ng/ul of bFGF and .5mM NaB). On the 8th day we plated a range of 8,000 - 

32,000 transfected cells per well in a 6-well plate coated with gelatin and seeded 

with irradiated CF1 mouse embryonic fibroblasts (MEF). Four days after the initial 

plating NaB was removed from the hESC media. Within 21 days colonies were 

visible and manually passaged onto a freshly prepared gelatin plate MEF. 

Manually passaging continued weekly for ten weeks. After ten passages of 

growth cells were expanded and at least ten stocks of cells were cryopreserved. 

Colonies that were not cryopreserved were then transitioned to feeder-free 

conditions and cultured for at least an additional three passages before collecting 

cell pellets for analysis. Feeder-free cultures were grown using 0.01mg/cm2 

(1:100) hESC-grade Matrigel and Essential 8 (E8) media. Feeder-free passaging 
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is enzymatic rather than manual and was performed using DPBS supplemented 

with 0.5mM EDTA. 

 

iPSC characterization 

All iPSC lines were characterized for pluripotency and stability using three 

methods. First, we confirmed the ability of lines to differentiate to all three germ 

layers using the embroyid body (EB) assay. Lines were manually dissociated 

from their culture dish in large pieces. This material was then cultured in a 

suspension plate using the hESC media described above without bFGF for one 

week, while dense spherical EBs form. EBs are then plated into 12 well plates 

with gelatin and cultured in EB medium (DMEM supplemented with 10% FBS, 

0.1mM NEAA, 2mM GlutaMAX) for one week. EBs in each well were then 

immunostained for cell types from all three germ layers (Fig 4.1A). Next, all lines 

were karyotyped to search for large genomic rearrangements (Fig. 4.1C). Lines 

were karyotypes by the WiCell Research Institute (Madison, WI). Only one line, 

19128, showed large genomic rearrangements that were not known 

rearrangements segregating in the population. The rearrangement observed in 

this line is a hallmark rearrangement of follicular lymphoma and thus was likely 

present in LCLs rather than a result of the reprogramming process. Finally, a 

classifier, PluriTest [130] was applied to gene expression data (Illumina 

HumanHT-12 array) to assay pluripotency bioinformatically. The classifier 

compares gene expression levels from uncharacterized lines to a “gold standard” 

panel of embryonic stem cells and iPSCs. Two metrics are obtained from this 
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method, a pluripotency score and a novelty score. The pluripotency score 

represents goodness of fit of canonical pluripotency genes in the sample. The 

novelty score represents the deviance of non-pluripotency genes in the sample. 

All of the lines here pass the suggested empirical threshold (Fig. 4.1B). 

 

iPSC-derived cardiomyocyte differentiation 

Differentiation from iPSCs to cardiomyocytes was done using slight 

modifications of existing protocols [152,153]. iPSCs cultured in feeder-free 

conditions cells were seeded to a 10cm dish three to five days prior to 

differentiation. When cells were 70-100% confluent (i.e. the total amount of dish 

occupied by cells) E8 media was replaced with heart media (RPMI supplemented 

with B27 minus insulin, 2mM GlutaMAX, and 100mg/mL Pen Strep) with the 

addition of 1:100 matrigel and 12uM of the GSK-3 inhibitor CHIR which activates 

WNT signaling (day 0) [152 ]. After 24 hours media was replaced with new heart 

media (day 1). After an additional 48 hours media was replaced with new heart 

media with the addition of 2uM of the WNT inhibitor WntC59 [152 ].  (day 3). 

Cells were cultured in the media with WntC59 for 48 hours. The cells were then 

cultured in heart media with regular media changes until day 14. Clusters of 

spontaneously beating cells were typically visible between 7 and 12 days. On 

day 14 heart media was replaced with CDM3 with lactate (RPMI without glucose, 

75 mg/ml human albumin, 213 ug/ml L-ascorbic acid 2-phoshate, 5mM sodium 

DL-lactate, and 100mg/mL Pen Strep) . CDM3 with lactate preforms a metabolic 

purification. Namely, the majority of cells cannot use lactate as their primary 
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source of energy, leaving a culture significantly enriched for cardiomyocytes 

[153]. Every other day media changes were performed until day 20. By day 20 

the cells had generally formed into large three-dimensional sheets of beating 

cells. To make a more uniform sheet of cells we dissociated the cultures using 

0.05% trypsin and replated cells into six well plates at a density of 1.5 million 

cells per well.  Cells were then cultured in galactose media (DMEM without 

glucose, 1.7 mg/mL galactose, 1mM Na pyruvate, 5mM HEPES, 2mM GlutaMax, 

10% FBS, and 100mg/mL Pen Strep). The galactose-based media helped to 

mature cardiomyocytes by forcing aerobic metabolism [52,154]. Regular media 

changes with galactose media continued for the duration of the experiment. After 

an additional four days (day 25) cells were moved to an incubator at 

physiological oxygen levels (10%). Five days after cells had been moved to 

physiological oxygen levels (day 29) they were subjected to electrical stimulation 

for three days to help further mature the cells [155]  and standardize beating rate 

across wells and lines. 

 

Sample Collection 

After at least three passages in feeder-free conditions iPSCs were 

passaged into a 10cm culture dish. At near full confluence cells were 

enzymatically dissociated and counted. After dissociation further collection is 

done on ice or in a temperature controlled centrifuge. One 10cm dish yields 

between 3 million and 15 million cells.  From each line 400,000 cells were divided 

into two tubes to be used for ATAC-seq [156]. The tagmentation step of the 
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ATAC-seq protocol was performed immediately on the two cell pellets containing 

200,000 cells each. The library preparation of ATAC-seq samples was done in 

larger batches at a later time. The remaining material was split between three 

tubes for RNA and DNA extractions. We isolated RNA and DNA using the Zymo 

dual extraction kits (Zymo Research) with a DNase treatment during RNA 

extraction (Qiagen) on a single cell pellet from each line. 50 bp single-end RNA 

sequencing libraries were generated from extracted RNA using the Illumina 

TruSeq kit as directed by the manufacturer. ATAC-seq and RNA-seq was 

performed on an Illumina 2500. Extracted DNA was bisulphite-converted and 

hybridized to the Infinium MethylationEPIC array (Illumina) at the University of 

Chicago Functional Genomics facility. 

iPSC-CMs were collected on ice using manual dissociation. One pellet 

was collected from each well of the six wells (see above). Generally between one 

and three wells were obtained per individual. We isolated RNA and DNA using 

the Zymo dual extraction kits (Zymo Research) with a DNase treatment during 

RNA extraction (Qiagen) on a single cell pellet from each line. 50 bp single-end 

RNA sequencing libraries were generated from extracted RNA using the Illumina 

TruSeq kit as directed by the manufacturer. RNA-seq was performed on an 

Illumina 2500.  

 

RNA-seq processing 

RNA-seq from LCLs [30] and iPSCs were mapped using the STAR RNA-

seq aligner standard settings. RNA-seq reads from cardiomyocytes were 
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mapped using Subread allowing for two mismatches. Reads overlapping SNPs 

were remapped to reduce reference bias as described previously [143]. Only 

reads with a MAPQ greater than ten were retained.  

 

ATAC-seq processing 

Paired end ATAC-seq reads were mapped using bowtie2 allowing for two 

mismatches per read. The ATAC-seq protocol works by randomly inserting 

sequencing adapters into open chromatin via a tagmentation enzyme. One 

unfortunate side effect of this procedure is an extreme enrichment of reads 

originating from mitochondrial reads (between 25%-75% of reads). Only nuclear 

reads are maintained for analysis. After mitochondrial reads are removed we 

remove all duplicate fragments (duplicates of both read pairs) and reads with a 

MAPQ less than ten. Each mate represents an independent tagmentation event 

and therefore after mapping and duplicate removal reads are treated as single 

end in all future analyses.  

 

DNase processing 

Previously collected DNase-seq from LCLs was used to assay chromatin 

accessibility. Reads were mapped using a custom mapper, which has been 

previously described in depth [97]. In this study counts per base directly obtained 

from a previous study were used [37]. 

  

Methylation array processing 
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Methylation levels were assayed using the Infinium MethylationEPIC array 

(Illumina) in iPSCs and the Infinium HumanMethylation450 array (Illumina) in 

LCLs. Methylation data from LCLs were obtained from a previous study [36]. In 

iPSCs a number of steps were taken to ensure high quality data. First, to enable 

accurate quantification of methylation levels all probes that contained a SNP with 

a MAF greater than 5% in the population were removed. Next, we removed all 

CpGs that were not detected in 75% of individuals. CpGs on the X or Y 

chromosome were removed. 

 

Identifying eQTLs  

To identify eQTLs in iPSCs and LCLs we fit expression levels to a 

standard normal within each individual (iPSC: n= 59, LCL: n= 59). We also 

accounted for unknown confounders by removing principal components from the 

LCL data. Genotypes were obtained using impute2 as described previously [31]. 

As in previous work we are limited to examining putatively cis acting genetic 

variants. Therefore, we only consider variants within 50kb of genes. To identify 

association between genotype and gene expression we used the fastqtl software 

[157]. This program performs a linear regression between the genotype of a 

genetic variant and expression level. After the initial regression a variable 

number of permutations are performed to obtain a gene-wise adjusted p-value 

[157]. To identify significant eQTLs we use Story’s q-value [109] on the adjusted 

p-values. Genes with a q-value less than 0.1 are considered significant.  
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The sample size of iPSC-CMs in this study was prohibitive to call eQTLs 

using a standard regression model. We therefore utilized the combined haplotype 

test (CHT) [143] to identify eQTLs. This method allows one to identify eQTLs with 

small sample sizes by using both regression and allelic imbalance tests in 

combination. Here we focus on variants within 25kb of a gene. Following the 

procedure outlined by the authors [109] we performed the CHT and one 

permutation of the CHT. Given the small sample size the test is not well 

calibrated, showing significant signal in the permuted version of the test. At the 

suggestion of the authors we identified significant SNPs by performing Story’s q-

value correction [109] on the null data. We then identified the largest p-value in 

the null data with a q-value less than 0.1. We used this p-value as a threshold in 

the non-permuted data to identify significant eQTLs.  

 

Identifying meQTLs 

To identify meQTLs in iPSCs and LCLs we fit methylation levels to a 

standard normal within each individual (iPSC: n= 58; LCL: n= 64) and unknown 

confounders are accounted for by removing principal components from the data 

(iPSC: 6 PCs removed; LCLs: 5 PCs removed). In accordance with previous 

work, genetic variants within 3kb of a CpG were tested for associations with 

methylation levels. meQTLs were identified using the fastqtl software following 

the procedure described above. We inherently identified a larger number of 

meQTLs in iPSCs compared to LCLs due to the increase in the number of CpGs 

tested. However, we also compared only the CpGs shared across both arrays 
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and found that we were still able to identify more meQTLs in iPSCs (n= 7,958; n= 

5,738).   

 

Identifying caQTLs 

We began by identifying a set of chromatin accessibility peaks that were 

shared in both iPSCs and LCLs. Of note, the chromatin accessibility data in 

iPSCs is from ATAC-seq while the chromatin accessibility data in LCLs is from 

DNase-seq. Chromatin accessibility levels were fit to a standard normal within 

each individual (iPSC: n= 55; LCL: n= 68) and principal components were 

removed to account for unknown confounders (iPSCs: 2 PCs removed; LCLs: 4 

PCs removed). Associations between genetic variants within 25kb of a peak and 

chromatin accessibility levels were identified using a linear regression. To obtain 

a locus-wise adjusted p-value the individual labels of genetic variants for each 

peak were shuffled and the regression was re-run. This permutation was 

performed 100,000 times and the adjusted p-value is the number of times a p-

value from the permutation was lower than the original lowest p-value divided by 

100,000. Story’s q-value [109] was applied to the adjusted p-values and a locus 

was considered significant if the q-value was less than 0.1.  

 

Estimating QTL sharing 

Story and Tibshirani developed a method to estimate the true proportion of 

null statistics from a given p-value distribution [109]. This metric (pi0) can be 

used to calculate the proportion of significant tests from a p-value distribution by 
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taking 1 - pi0 (pi1). Here we calculate pi1 for eQTLs, caQTL, and meQTLs 

between cell types. To obtain a better estimate of the true sharing we generated 

pi1 statistics for a range of stringencies. Specifically, for eQTLs and caQTLs we 

calculated pi1 cumulatively from the top 150 most significant genes/loci to the top 

2000 most significant genes/loci in intervals of 25 genes/lcoi. For meQTLs we 

calculated pi1 from the top 500 CpGs to the top 10,000 CpGs in intervals of 100 

CpGs. As is clear from the density plots (Fig. 4.3C-E), small deviations in 

threshold choice can create local valleys and peaks in sharing estimates. This 

method allows us to see sharing across a wide space of stringencies.   

 

Identifying specific and shared eQTLs 

We first removed loci that were tested in only one cell type. Next, any 

locus with a significant association (even with a different lead variant) in both cell 

types was removed. A QTL was considered cell type specific if significant at an 

FDR of 10% in one cell type and a nominal p-value of greater than 0.2 in the 

second cell type. QTLs were considered shared if they were significant with a p-

value of less than 10-5 in both cell types. 

 

GO term enrichment analysis 

GO terms were identified using the bioconductor package topGO [158]in 

R. Genes that had at least one significant association with a genetic variant were 

compared against a background of all genes tested. Only the ontology terms 
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associated with “biological processes (BP)” were considered. Fisher’s exact test 

was used to generate p-values.  

 

Hierarchical model 

 The hierarchical model used here was developed to identify causal SNPs 

from in eQTLs studies by incorporating annotations such as chromatin states or 

chromatin accessibility. The method is explained in detail elsewhere [31] and the 

software used to implement the model is available here: 

https://github.com/rajanil/qtlBHM. For the purposes of this paper we sought to 

identify annotations that were informative in cell type specific eQTLs when 

compared with shared eQTLs and all eQTLs.  

 

GTEx data 

Only summary statistics were collected from the GTEx data [32]. 

Specifically, for every gene tested in a tissue, the p-value of the lead variant was 

obtained. To overlap with eQTLs identified in iPSC-CMs the variant identified in 

the GTEx data was tested in iPSC-CMs. The QQ-plot was generated from a 

limited number of tissues for clarity (Fig. 4.7B).  

 

GWAS signal enrichments in gene expression data 

RolyPoly is a highly polygenic method that identifies trait-involved cell types by 

analyzing the enrichment of GWAS signal in cell type specific gene expression 

genome-wide. First, for each gene we calculate trait association scores by 
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aggregating GWAS summary statistics from a window (10kb) centered on the 

TSS. Then, we estimate the individual contribution of each cell type to the 

observed gene score variance using a generalized linear regression model with 

normalized gene expression features. For each cell type we estimate an effect 

size coefficient and standard error, which we use for hypothesis testing. We 

implemented the RolyPoly method in the rolypoly R package 
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CHAPTER 5: DISCUSSION 
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In chapter two I, in collaboration with Xun Lan, identified nearly 14 

thousand CpGs whose methylation levels are associated with genetic variation in 

LCLs. While these results were similar to other recent meQTL studies [34], we 

leveraged the plethora of information previously collected from these LCLs. 

Specifically, we identified associations between meQTLs and multiple histone 

modifications, Pol II binding, DNase I hypersensitivity, and expression. One 

interesting result that arouse in this study is that meQTLs, which are also eQTLs, 

often have the same direction of effect in both phenotypes. This challenges the 

general narrative that DNA methylation is negatively correlated with expression. 

In these cases the CpG and TSS are almost always quite distant from one 

another. This suggests that methylation is acting on a non-promoter element and 

that DNA methylation may context specific effects. These results add to a 

growing body of evidence that a single genetic variant is often associated with 

coordinated changes in multiple regulatory phenotypes and further demonstrate 

the complexity of interactions between such regulatory phenotypes.  

In this study we demonstrate that changes in methylation driven by 

genetic variation often act through disrupting transcription factor binding sites 

(TFBS). Specifically, changing the binding of transcription factors often affects 

the methylation levels of CpGs near a given TFBS. In particular, five transcription 

factors, CTCF, PAX9, ESE1, STAT5, and ZNF274, have a larger than expected 

effect on DNA methylation. One drawback of correlative studies such as this is 

that it is difficult to identify the order of events – i.e. we do not know what the first 
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step in the regulatory cascade is. However, by focusing on genetic variants 

disrupting TFBS we identify a putative mechanism and are likely observing the 

first step leading to a change in DNA methylation. In other words, this approach 

suggests that changes in TF binding are frequently a key early step in the 

regulatory cascade that leads to concerted changes in multiple mechanisms. 

In chapter three I, in collaboration with Courtney Burrows, turn my 

attention to iPSCs. While this model has been used for 10 years some serious 

questions remain about the usefulness of these cells to study human phenotypes 

and as a tool for regenerative medicine [61-63]. One major concern was that 

lingering “epigenetic memory” of the somatic tissue of origin remained after 

reprogramming [62,112-118]. These previous studies found that when clustering 

methylation and expression profiles of iPSCs derived from different cell types, the 

iPSCs would cluster by their cell type of origin [112,114-116]. However, all of the 

previous work, sans one study examining only gene expression [123], used study 

designs that confounded inter-individual differences with somatic cell type of 

origin. These studies were therefore less than ideal to study this phenomenon.  

Here we developed an effective study design to examine gene expression 

and DNA methylation levels in iPSCs derived from two cell types (LCLs and 

fibroblasts) in four individuals (two males and two females). When comparing 

DNA methylation and gene expression levels of iPSCs derived from different cell 

types we see almost no differences. Indeed, we identified only 197 CpGs out of 

over 300 thousand tested that were differentially methylated between fibroblast-

derived iPSCs (F-iPSC) and LCL-derived iPSCs (L-iPSCs), and only 37 of these 
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were near a gene. Even more shockingly, we identified only one differentially 

expressed gene between F-iPSCs and L-iPSCs. In an effort to measure the 

contribution of both individual and cell type of origin more explicitly, we employed 

a linear mixed model. Using this model we demonstrate that individual accounts 

for the majority of observable variation in both gene expression and DNA 

methylation. An additional study, which came out after the publication of the work 

presented here, validated our findings in an additional panel of iPSCs [159]. 

Importantly, Kyttala et al. also differentiated their iPSCs derived from two muscle 

and blood cells into iPSC-derived blood cells. Their results suggest that individual 

genetic variation is the largest contributor to variation in the iPSC-derived tissues 

[159].  

The results presented in chapter thre challenge the commonly held belief 

that “epigenetic memory” is one of the largest drivers of regulatory differences in 

iPSCs. Furthermore, results presented here and elsewhere [159] demonstrate 

that iPSCs have gene expression and DNA methylation patterns are driven by 

genetic variation. Taken together these results suggest that iPSCs are a suitable 

cell type in which to study inter-individual variation in gene regulation.  

Finally in chapter four I, in collaboration with Yang Li and Anil Raj, 

established and characterized a large panel of iPSCs from 59 West African 

Yoruba individuals. The resource developed here, and the subsequent results, 

represent four years of work. This panel of iPSCs has a number of unique 

features. First, the LCLs from which these lines were derived have been 

extensively characterized for numerous regulatory phenotypes [21,24,26,31,35-
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37,40,160]. Next, this is one of the largest collections of iPSCs derived from 

health individuals, and is, to our knowledge, the largest collection of iPSCs from 

individuals of African descent. Finally, this is the only panel of iPSCs, to our 

knowledge, where data on chromatin accessibility, DNA methylation, and gene 

expression levels has been collected. Moreover, this is the only data set of 

sufficient size to investigate inter-individual variation where three regulatory 

phenotypes have been collected at one time and processed in parallel from any 

cell type.  

Using the data generated here we are able to identify thousands of 

genetic associations with gene expression, chromatin accessibility, and DNA 

methylation in iPSCs. One additional study has identified eQTLs in iPSCs [141], 

yet this is the first study to identify meQTLs and caQTLs in iPSCs. After 

identifying eQTLs in both LCLs and iPSCs, we set out to find cell type specific 

and shared eQTLs. Similar to other studies examining cell type specific eQTLs 

we find such eQTLs enriched in enhancer elements, TFBS of transcription 

factors with tissue specific expression, and cell type specific caQTLs [144]; [32]. 

These results led us to focus on chromatin accessibility, particularly at distal 

enhancers, as a putative mechanism underlying cell type specific eQTLs. We 

were able to identify nearly 350 cell type specific caQTLs in both iPSCs and 

LCLs. Cell type specific caQTLs generally fall into three models: 1) the region 

containing the putatively casual SNP is only accessible in one cell type driving 

the specificity of the QTL 2) the region is accessible in both cell types, but the 

SNP is disrupting different transcription factor binding sites 3) the SNP is distal to 
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the region of interest and the change is happening due to interactions between 

regions. Over 80% of the cell type specific caQTLs we identified here are 

consistent with the first model. Not all cell type specific caQTLs are also eQTLs, 

yet, of those over 75% have cell type specific effects. Taken together results 

suggest that the majority of cell type specific caQTLs and eQTLs reside within 

enhancer elements active in the cell type of interest. While this result is not 

unexpected, these results could not have been obtained without characterizing 

both gene expression and chromatin accessibility.  

Finally, we differentiated iPSCs from 12 individuals into iPSC-derived 

cardiomyocytes (iPSC-CMs). We set out to demonstrate that iPSC-CMs are a 

viable model for the study of heart specific traits. To this end, we generated gene 

expression data and compared gene expression levels from iPSC-CMs to gene 

expression levels in primary tissue collected by the GTEx consortium [32]. 

Indeed, the iPSC-CMs cluster most similarly to primary heart tissue. Additionally, 

we found that gene expression in iPSC-CMs captures cell type specific 

enrichment of GWAS signals. Finally, we identified eQTLs in iPSC-CMs using the 

combined haplotype method [143]. eGenes identified in this analysis are 

enriched for biological processes related to heart function. We also found that 

eQTLs identified here are most enriched for eQTLs identified in primary heart 

tissue by the GTEx consortium [32]. Taken together we believe these results 

clearly establish the fidelity of iPSC-CMs and their usefulness to study heart 

specific traits. These results are bolstered by recent work showing iPSC-CMs 
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recapitulate doxorubicin-induced cardiotoxicity in a number of breast cancer 

patients [55]. 

The work presented in this thesis represents a major advance in our 

understanding of the mechanisms underlying regulation in gene expression. 

Additionally, this work has established an iPSC bank that can be used in future 

research indefinitely. Importantly, the work presented in this thesis makes a 

beginning at exploring dynamic gene regulation – i.e. gene expression in three 

cell types representing different developmental stages from the same individuals. 

The iPSCs generated here are already being used in large-scale studies to 

explore dynamic gene expression during differentiation and in response to 

environmental stimulus. Studies of dynamic gene expression in combination with 

recently developed gene editing techniques [151] promise to usher in a new era 

of genomics where true dissection and validation of mechanisms underlying 

inter-individual variation in gene expression is possible.  
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