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ABSTRACT 

 

In this dissertation, I focus on mapping intermediate phenotypes, or endophenotypes, to 

characterize the molecular basis of inter-individual variation in immune disease 

susceptibility. In chapter 2, mapping serum interferon-alpha (IFN-α) activity, a stable 

heritable molecular sub-phenotype, enabled identification of novel loci associated with 

systemic lupus erythematosus (SLE), a chronic autoimmune disorder. These loci were 

replicated in an independent cohort of SLE cases, and represent novel loci underlying 

variation in SLE susceptibility, through dysregulation of the IFN-α pathway. Due to the 

genetic and phenotypic heterogeneity of SLE, which reduces the power of overall case-

control studies, the endophenotype mapping approach was particularly useful for 

identification of novel disease-associated loci. In chapter 3, I shift focus to characterizing 

the transcriptional effects of vitamin D which plays an important immunomodulatory role, 

and is a modifiable environmental factor for autoimmune diseases. I examined the patterns 

of transcriptional response to the active, hormonal form of vitamin D, 1,25-

dihydroxyvitamin D3 (1,25D), in primary human monocytes, both in the presence and 

absence of bacterial lipopolysaccharide (LPS), a potent immune stimulant. A joint Bayesian 

analysis enabled clustering of genes into patterns of shared transcriptional response across 

treatments. The biological pathways enriched within these expression patterns highlighted 

the opposite effects of 1,25D and LPS on the transcriptome, and the potential molecular 

mechanisms through which 1,25D exerts its immunomodulatory role, such as through 

induction of genes in the mTOR signaling and EIF2 signaling pathways. Dysregulation of 

these pathways could contribute to the risk of the several immune-mediated diseases that 
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are linked to vitamin D deficiency, such as SLE. The processed gene expression values and 

differential expression analysis results from this chapter are included in the online 

Supplementary File 3.1. Finally, in chapter 4, I focus on mapping the molecular 

mechanisms underlying inter-individual variation in response to the immunomodulatory 

effects of 1,25D both at the cellular and at the transcriptional level. Two intergenic SNPs 

were associated, at genome-wide significant levels, with variation in percent inhibition of 

cell proliferation (Imax) induced by 1,25D treatment of peripheral blood mononuclear cells 

(PBMCs). I also identified several expression quantitative trait loci (eQTLs), which underlie 

variation in transcriptional response to 1,25D. Combining the information from the cellular 

and transcriptional endophenotypes in this study enabled identification of loci that 

putatively mediate the anti-proliferative activity of 1,25D in the immune system. Overall, 

the work described in this dissertation demonstrates that it is possible to detect the genetic 

determinants of intermediate endophenotypes, such as IFN-α activity in SLE, and cellular 

and transcriptional response to vitamin D, using relatively small sample sizes. These loci 

may not only underlie inter-individual variation in susceptibility to immune-mediated 

diseases, but they may also provide potential therapeutic targets for these diseases.  
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CHAPTER 1: INTRODUCTION 

 

Inter-individual variation in susceptibility to immune disease can be attributed to 

several underlying factors, including both environmental and genetic factors. Historically, 

family-based studies and twin studies have been used to measure heritability in complex 

traits [1]. Linkage studies have been useful in identifying genes associated with ‘Mendelian’ 

types of diseases, attributable to single genes with large effect sizes. However, for variants 

with modest effect sizes, linkage studies have been very limited in their power and 

resolution [2, 3]. More recent studies of the genetic contribution to complex disease 

susceptibility have used genome-wide association studies (GWAS), which assay several 

hundreds of thousands to millions of single nucleotide polymorphisms (SNPs), in 

thousands of individuals, to deduce the genetic architecture of complex traits [1, 4, 5]. So 

far, hundreds of complex disease variants have been identified using GWAS, but these still 

do not fully explain the phenotypic variation that is attributable to genetic components in 

these complex diseases [1]. Several strategies have been postulated to increase the power 

to detect additional disease-associated variants in order to fully explain the heritability of 

these complex traits, including larger sample sizes for GWAS, since most of these disease-

associated variants tend to have low effect sizes. However, with the expected modest effect 

sizes of variants associated with common disease susceptibility, very large sample sizes, 

reaching the tens of thousands of cases and controls, would be required to detect these 

variants with reasonable power [6, 7]. These sample sizes begin to reach the limits of 

feasibility, especially for complex autoimmune diseases, which affect a smaller proportion 

of the population compared to other common diseases, such as asthma or heart disease. It 
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is hence crucial to consider more practical approaches in designing GWAS for complex 

traits.  

One such practical approach, which has been the focus of my thesis studies, is the 

evaluation of intermediate biological phenotypes, or ‘endophenotypes’, namely quantifiable 

heritable traits, such as gene expression or activity of specific proteins, that are related to 

the complex disease [8].  Since complex diseases represent the end points of several 

pathologic and physiological processes, mapping these intermediate endophenotypes 

presents a more powerful tool to detect additional variants that underlie disease 

susceptibility [9]. The advantage of studying endophenotypes is that they are less 

heterogeneous than the complex diseases, and the effect sizes of the variants associated 

with these endophenotypes are greater due to the simplicity of these endophenotypes. For 

these reasons, mapping disease-related quantitative traits is expected to increase the 

power to detect additional loci associated with complex diseases even within a smaller 

sample cohort. 

 

Mapping serum interferon-alpha activity: an endophenotype in Systemic Lupus 

Erythematosus pathogenesis 

Systemic lupus erythematosus (SLE) is a complex genetically and clinically 

heterogeneous trait that is influenced by a combination of genetic and environmental 

factors that lead to an irreversible break in immunologic self-tolerance [10]. It is 

characterized by multi-system involvement commonly affecting the skin, renal, 

musculoskeletal, and hematopoietic systems. Case-control genetic studies in SLE have been 

successful in identifying more than 30 loci linked to SLE susceptibility, with the HLA locus 
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providing the strongest evidence for association. The HLA locus contains greater than 100 

genes [11, 12] that have functions in the immune system, including antigen presentation to 

adaptive immune cells, an event that is central to the manifestation of SLE and other 

autoimmune diseases. Several non-HLA loci have also been identified through GWAS, with 

many of these loci having roles in both the innate and adaptive immune system [13, 14]. 

Using statistical linear models to estimate the variance in liability explained by individual 

variants, several studies have indicated that these variants account for less than 20% of the 

heritability of SLE [13, 15-21]. This is similar to other complex diseases such as Crohn’s 

disease, where more than 30 loci have been identified so far, yet these explain less than half 

of the heritability [20, 22]. 

Increasingly, mapping intermediate biological phenotypes, or endophenotypes, in 

GWAS studies has been shown to be more powerful in uncovering the underlying genetic 

and molecular mechanism of disease [8, 9]. This is especially important in SLE, which has a 

large amount of genetic and phenotypic heterogeneity, which greatly reduces the power of 

overall case-control genetic studies in SLE. Furthermore, previous work has shown that 

some of the established SLE-risk loci are characterized by strong effects on 

endophenotypes, providing more evidence for the increased power to detect pathogenic 

loci when endophenotype effects are incorporated into GWAS designs [23].  

The molecular endophenotype that I focused on in my studies on SLE was serum 

interferon-alpha (IFN-α) activity, which is a stable heritable trait that is central to the 

pathogenesis of SLE. IFN-α is a type I interferon cytokine that plays an important role in 

viral defense. It activates dendritic cells and other antigen-presenting cells, and increases 

the expression of MHC class I and II molecules upon viral nucleic acid uptake. IFN-α has the 
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potential to break self-tolerance by potentially lowering the threshold for productive pro-

inflammatory antigen presentation after uptake of nucleic acid material from the host, or 

‘self’-material [24, 25]. Serum IFN-α is elevated in many SLE patients, and elevations often 

correlate with disease activity [26, 27]. In addition, serum IFN-α is abnormally high in 

healthy first degree relatives of SLE patients as compared to healthy unrelated individuals, 

suggesting that high serum IFN-α is a heritable risk factor for SLE [28].  

Mapping this important molecular endophenotype was therefore a useful tool to 

address the challenge posed by heterogeneity in SLE. Using a relatively small sample size 

compared to standard GWAS, we performed a GWAS of serum IFN-α activity using only SLE 

cases comparing SLE patients with high and low IFN-α activity. Using this study design 

increased our power to detect additional loci underlying SLE pathogenesis that have not 

been previously reported in case-control SLE studies. This study underscored the complex 

genetic architecture of SLE, and the importance of molecular sub-phenotyping in 

deciphering this complex architecture.  

 

Vitamin D and Systemic Lupus Erythematosus risk 

To further dissect the mechanisms underlying autoimmune disease susceptibility, I 

focused on studying vitamin D, a modifiable environmental factor in autoimmune disease 

with a well-known role as an immune system modulator [29-41]. The primary source of 

vitamin D is an inactive compound found in the skin, 7-dehydrocholesterol, which is 

converted to vitamin D precursors through exposure to ultraviolet (UV) light. As UV light 

exposure is central to the primary production of vitamin D, populations living at higher 

latitudes, where sun exposure is lower, have a higher prevalence of vitamin D deficiency. 
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Furthermore, individuals with darker skin pigmentation living in higher latitudes are 

especially prone to vitamin D deficiency, as is the case in the United States, where 

individuals of African-American ancestry have the highest prevalence of vitamin D 

deficiency [42-45]. Vitamin D deficiency is implicated as one of the environmental factors 

that contribute to SLE prevalence [46, 47], attributable to the role of vitamin D as a 

modulator of the immune system, where it attenuates the pro-inflammatory immune 

response. Inadequate vitamin D levels could hence contribute to an unchecked pro-

inflammatory state that could lead to the pathogenesis of SLE. Indeed, numerous 

epidemiological studies have reported associations between deficiency in the circulating 

stable form of vitamin D, 25-hydroxyvitamin D3 (25D), and risk of SLE [47-49]. It is also 

interesting to note that African-Americans, who have the highest prevalence of vitamin D 

deficiency, also have a higher prevalence and severity of SLE [10, 50-52]. 

Various studies have attempted to elucidate the mechanisms underlying the link 

between vitamin D deficiency and SLE risk. Studies on dendritic cells, which produce IFN-α 

after stimulation by nucleic acid-containing immune complexes, provide some clues on the 

mechanisms through which vitamin D could confer protection against SLE pathogenesis. 

These studies show that vitamin D suppresses dendritic cell differentiation and activity by 

inducing a tolerogenic phenotype [41], and it also suppresses the expression of IFN-α 

inducible genes, or the “interferon signature”, in monocyte-derived dendritic cells from SLE 

patients [48, 49]. Given the central role of IFN-α in SLE pathogenesis, targeting of the IFN-α 

pathway provides a crucial link to the protective role of vitamin D.  

Further knowledge on the manner in which vitamin D modulates the immune 

system is needed for potential use of vitamin D as a therapeutic agent for SLE, as well as 
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other immune-mediated diseases. The primary aim of my thesis studies on vitamin D was 

to examine the mechanisms through which vitamin D exerts its role in immune cells and 

the genetic architecture underlying inter-individual variation in the modulatory functions 

of vitamin D, in order to identify novel loci and pathways whose dysregulation could lead to 

pathogenesis of immune-mediated diseases like SLE. 

 

Transcriptional effects of vitamin D in the immune system 

The immunomodulatory role of vitamin D is mediated by its active hormonal 

substrate, 1,25-dihydroxyvitamin D3 (1,25D), through a transcriptional mechanism [32, 37, 

38]. Circulating inactive 25-hydroxyvitamin D3 (25D) is converted to 1,25D by the enzyme 

CYP27B1, which is expressed in the kidney [53, 54]. The classic systemic role of 1,25D is to 

promote calcium homeostasis and bone health by enhancing absorption of calcium in the 

small intestine, and stimulating osteoclast differentiation and calcium reabsorption of the 

bone [38, 55]. Extra-renal tissues that express CYP27B1, such as cells of the immune 

system, are able to locally synthesize the active 1,25D intracellularly from the circulating 

25D, in response to organismal demands such as infections [56, 57]. Immune cells also 

express the vitamin D receptor (VDR), which when bound by 1,25D forms a heterodimer 

with the retinoid-X-receptor (RXR) [30, 33, 37, 38, 58]. This heterodimer translocates into 

the nucleus and acts as a transcriptional regulator of vitamin D-responsive genes. Systemic 

and local intracellular 1,25D levels are regulated by CYP24A1, an enzyme that initiates the 

degradation of 1,25D into an inactive metabolite that is excreted [53, 54].  

Vitamin D exerts its immunomodulatory role in innate immune cells by enhancing 

the antimicrobial response through induction of antimicrobial genes such as cathelicidin 
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antimicrobial peptide (CAMP), β-defensin 4A (DEFB4A) and autophagy related 5 (ATG5) 

[32, 39, 59]. The antimicrobial effects of vitamin D have been demonstrated through 

epidemiological studies that have linked low levels of the inactive 25D with increased 

susceptibility to tuberculosis (Tb), which is caused by the bacterium Mycobacterium 

tuberculosis [60, 61]. Vitamin D has historically been used as a treatment for bacterial 

infections in diseases like Tb through ingestion of cod liver oil, a rich source of vitamin D2, 

[62], or through the use of UV light, the principal source of the cutaneous production of 

vitamin D3, to treat lupus vulgaris, a cutaneous form of Tb, which earned Niels Friensen a 

Nobel Prize in Medicine in 1903 [56, 63].  More recent studies on the anti-microbial activity 

of vitamin D in monocytes indicate that activation of Toll-like receptors, which are 

primarily expressed on monocyte cell membranes, by bacterial stimuli like 

lipopolysaccharide (LPS), induces the expression of CYP27B1 and VDR. Induction of 

CYP27B1 leads to the localized synthesis of 1,25D, which in turn up-regulates antimicrobial 

genes like CAMP, leading to the subsequent intracellular killing of bacteria [32, 59]. In 

addition to its important antimicrobial role, several studies have also shown that 1,25D 

attenuates the pro-inflammatory immune response through induction of a tolerogenic 

phenotype in monocyte-derived dendritic cells, which lose their capacity to induce 

autoreactive T cell proliferation [41, 64-66].  

Previous studies have examined the transcriptional effects of 1,25D in innate 

immune cells to elucidate the molecular mechanisms underlying its immunomodulatory 

effects. Several of these studies have used a targeted gene approach to quantify the 

induction of antimicrobial gene production by 1,25D [32, 59], but such targeted gene 

approaches are limited in their capacity to fully delineate various pathways and molecular 



8 
 

mechanisms underlying the function of 1,25D in the immune system. Subsequent studies 

have profiled the transcriptome-wide effects of 1,25D in a human THP-1 macrophage cell 

line [67-69], which was originally obtained from an infant with acute monocytic leukemia 

[70]. A significant limitation to using this cell line for characterizing genome-wide 

transcriptional effects in monocytes, is the failure to capture the physiological context-

specific effects of primary immune cells, such as inter-cellular cross-talk and antigen 

presentation [71]. Recognizing this limitation, more recent studies have shifted to using 

primary human immune cells to profile genome-wide transcriptional response to 1,25D. A 

study on primary monocyte-derived dendritic cells elucidated the mechanisms underlying 

the role of 1,25D in maintaining a tolerogenic phenotype in the dendritic cells, through 

transcriptional regulation of metabolic pathways [41]. However, this study did not examine 

the role of 1,25D in the context of an inflammatory challenge, which would give a better 

picture of how 1,25D modulates the immune response. Another study on peripheral blood 

mononuclear cells (PBMCs) measured the genome-wide transcriptional response to 1,25D 

in the presence of phytohemagglutinin (PHA), an immune cell stimulant [72], and observed 

a significant enrichment of immune-related processes such as interferon signaling among 

down-regulated genes, while metabolic processes were enriched among up-regulated 

genes. While the use of PHA to stimulate PBMCs was useful for highlighting the pathways 

modulated by 1,25D in stimulated immune cells, it has been shown that PHA stimulation 

might be more effective for T and B lymphocyte cells, and may not be as adequate a 

stimulant for innate immune cell subtypes such as monocytes.   

My thesis work in chapter 3 therefore focused on characterizing the genome-wide 

transcriptional response patterns to 1,25D in monocytes, the primary innate immune cell 
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type, in the context of LPS, which activates a pro-inflammatory response by signaling 

through the TLR4 and CD14 receptors expressed on the membrane surfaces of monocytes. 

Stimulating the monocytes with LPS enabled examination of how an inflammatory stimulus 

modifies the transcriptional response to 1,25D. I analyzed the genome-wide transcriptional 

response to 1,25D and LPS using two statistical approaches: a linear mixed-effects analysis, 

which identified significantly differentially expressed genes in each treatment category, 

and a Bayesian approach which assigned all the differentially expressed genes into distinct 

differential expression patterns. This analysis highlighted several biological pathways that 

are modulated by 1,25D in the absence of LPS, such as oxidative phosphorylation and 

mitochondrial dysfunction, which were significantly enriched among up-regulated genes. 

The study also highlighted various immune response pathways such as pro-inflammatory 

cytokine signaling, which were strongly induced by LPS, and this response was then 

reversed by 1,25D, which down-regulated the genes in these immune response pathways. 

The strength of this study is that it highlights the context-specific transcriptional regulation 

of several functional pathways by 1,25D, both in the presence and absence of LPS 

stimulation, which might mediate its immunomodulatory effects in primary monocytes. 

 

Mapping cellular and transcriptional response to vitamin D 

The important immunomodulatory role of 1,25D also extends to inhibition of 

activation and proliferation of T and B lymphocytes, and attenuation of production of pro-

inflammatory cytokines [29, 38, 73-77], leading to an overall tempering of an intense pro-

inflammatory response, which, if left unchecked, can have toxic consequences such as 

sepsis and septic shock [78-80], or can lead to autoimmune disease pathogenesis. With 
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several epidemiological studies linking vitamin D deficiency with risk of autoimmune 

diseases [29, 47, 48, 81-84], there has been an increased interest in the use of vitamin D as 

a potential therapeutic in immune-mediated diseases, which has led to several randomized 

vitamin D supplementation trials [49, 84-89]. However, these trials have yielded mixed 

results. For example, a randomized trial testing the efficacy of vitamin D in attenuating the 

IFN-α-induced gene signature in SLE patients showed no significant differences between 

the vitamin D-recipients and the placebo-recipients [90]. Several other vitamin D 

supplementation trials in other immune-mediated diseases have also shown mixed results 

[85-89, 91]. The underwhelming success of vitamin D as a potential therapeutic agent could 

be due to several factors, such as small study population sizes, short duration of the trials, 

and insufficient dosage of 25D [92, 93]. Another important factor is the inter-individual 

differences in the response to vitamin D, irrespective of its concentration in circulation or 

within the cells at the level of the target organ. Little is known about the contribution of 

genetics to the inter-individual variation in response to vitamin D. 

The main objective of chapter 4 was to map the genetic bases of inter-individual 

variation in the response to 1,25D. This study built upon a previous study that 

characterized the molecular basis for inter-individual variation in the response to 

glucocorticoids, which are steroid hormones that are widely used as therapeutic agents for 

a variety of diseases [94]. Since vitamin D is a fat-soluble steroidal hormone with anti-

proliferative effects [37, 38, 73, 74], I was interested in similarly characterizing the 

molecular basis for inter-individual variation in 1,25D response, both at the cellular and 

transcriptional level, in peripheral blood mononuclear cells (PBMCs). Using PBMCs was 
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appropriate and practical for this study design as they are an abundant and easily 

accessible primary cell type.  

To this end, I carried out a GWAS to map genetic variants underlying inter-

individual variation in the percent inhibition of cell proliferation (Imax) by a single, high 

dose of 1,25D treatment of PBMCs obtained from 88 African-American healthy individuals. 

By measuring the proportion of African ancestry in this African-American cohort, I was 

able to directly test the relationship between African ancestry and response to 1,25D.  

While there were no significant associations between Imax and the proportion of African 

ancestry, there was a negative trend in the relationship between the proportion of African 

ancestry and serum 25D levels, which suggests a genetic contribution to the higher 

prevalence of vitamin D deficiency and insufficiency observed in African Americans [42]. 

Furthermore, majority of the GWAS of complex traits have been performed in individuals of 

European ancestry. While there are some shared variants underlying complex traits 

between populations, including the variants associated with variation in serum IFN-α 

activity described in chapter 2, many of the SNPs identified in European ancestry 

populations do not replicate in other non-European populations, resulting in an incomplete 

picture of the genetic architecture of complex traits. Individuals of recent African ancestry 

have the greatest genetic diversity and lower levels of linkage disequilibrium (LD) between 

alleles at different loci compared to non-African populations [4, 95]. Due to the shorter 

haplotype blocks in African ancestry populations, identifying disease-associated variants in 

these populations is likely to increase the resolution of putative-disease associated loci. 

Furthermore, vitamin D deficiency and insufficiency is most prevalent in individuals of 

African-American ancestry, and yet they are the most under-studied population in vitamin 
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D GWAS studies [42-45]. Understanding the genetic architecture of immune response to 

vitamin D, particularly in individuals of African-American ancestry, will be crucial in 

informing therapeutic supplementation interventions for immune-mediated diseases that 

have a higher prevalence in African-Americans, such as SLE.  

In addition to mapping the immune cellular proliferation response to 1,25D, I also 

mapped genome-wide transcriptional response to 1,25D in the same individuals and cell 

culture system. Expression quantitative trait loci (eQTL) mapping is another powerful 

technique which utilizes variation in transcript abundance as an intermediate phenotype, 

or an endophenotype, to elucidate the genetic bases of complex traits [71]. Indeed, it has 

been shown that most of the single nucleotide polymorphisms (SNPs) identified in GWAS of 

a broad spectrum of complex traits are enriched for eQTLs [96]. Since most GWAS SNPs are 

non-coding and may affect gene regulation, incorporating eQTL mapping provides context 

to these non-coding SNPs, highlighting their transcriptional regulatory role on specific 

genes and pathways that underlie disease pathogenesis. For this study, I mapped cis-eQTLs 

within 100kb of the transcriptional start site of genes that were responsive to a single high 

dose of 1,25D treatment. 

Intersecting the information from the eQTL mapping and GWAS of Imax analyses 

enabled identification not only of putative candidate genes that mediate the anti-

proliferative properties of 1,25D in immune cells, but also enabled identification of variants 

that may influence inter-individual variation in response to 1,25D. Incorporating 

information on these genetic variants promises to be informative for future 

supplementation trials involving vitamin D, particularly in immune-mediated diseases like 

SLE.  
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CHAPTER 2: GENETIC ANALYSIS OF THE PATHOGENIC MOLECULAR SUB-PHENOTYPE 

INTERFERON-ALPHA IDENTIFIES MULTIPLE NOVEL LOCI INVOLVED IN SYSTEMIC 

LUPUS ERYTHEMATOSUS1 

 

2.1: ABSTRACT 

 

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder 

characterized by inflammation of multiple organ systems, loss of tolerance to self-antigens, 

and dysregulated interferon responses. SLE is both genetically and phenotypically 

heterogeneous, and we hypothesize that this greatly reduces the power of overall case-

control studies in SLE.  Increased circulating level of the cytokine interferon alpha (IFN-α) 

is a stable, heritable trait which has been implicated in SLE pathogenesis. To study genetic 

heterogeneity in SLE, we performed a case-case genome-wide association study comparing 

patients with high vs. low IFN-α in over 1550 SLE cases in both the discovery and 

replication cohorts. In the meta-analysis, the top associations in European ancestry 

subjects were rs7897633, an intronic SNP in protein kinase, cyclic GMP-dependent, type I 

(PRKG1) (PMeta = 2.75 x 10-8), and rs1049564, a missense SNP in purine nucleoside 

phosphorylase (PNP) (PMeta = 1.24  x 10-7).  We also found evidence for cross-ancestral 

background associations in SNPs within the genes ANKRD44 and PLEKHF2.  These loci have 

not been previously identified in case-control SLE genetics studies.  Bioinformatic analyses 

implicate these loci functionally in dendritic cells and natural killer cells, both of which are 

                                                        
1 Citation for chapter: Kariuki SN, Ghodke-Puranik Y, et. al (2015). “Genetic analysis of the 
pathogenic molecular sub-phenotype interferon-alpha identifies multiple novel loci involved in 
systemic lupus erythematosus.” Genes Immun 16(1): 15-23. 
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involved in IFN-α production in SLE.  As case-control studies of heterogeneous diseases 

reach a limit of feasibility with respect to subject number and detectable effect size, the 

study of informative pathogenic sub-phenotypes becomes an attractive strategy for genetic 

discovery in complex human disease.   

 

2.2: INTRODUCTION 

 

Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder 

characterized by involvement of multiple organ systems including skin, musculoskeletal, 

renal and hematologic systems. The pathogenesis of SLE is driven by a combination of both 

genetic and environmental risk factors, which lead to an irreversible break in immunologic 

self-tolerance [10]. SLE is four times more common in African-Americans compared with 

European-Americans [10], and both immunologic and genetic differences are appreciated 

between SLE patients from these ancestral backgrounds [50, 51, 97]. Familial aggregation 

and monozygotic twin studies strongly support the idea that SLE has a genetic component.  

There is a 50% concordance between identical twins, while first-degree relatives of SLE 

cases have a 20-fold higher risk of getting SLE [10, 28]. Genetic studies in SLE in various 

world populations have identified numerous susceptibility loci, however these account for 

far less than half of the heritability of SLE [15-19, 98], and most of the genes described have 

modest overall effect sizes (odds ratio (OR) ~1.5 to 1.2 ) [19, 98].  

Further characterizing the heritability of SLE is challenging because of the large 

amount of genetic and phenotypic heterogeneity.  Different genetic variations and 

molecular pathways may be of varying importance in different patients.  Previous work 
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from our group has shown that some of the established SLE-risk loci are characterized by 

strong sub-phenotype effects, which are much greater than the overall case-control effect 

size [99].  This heterogeneity between patients greatly reduces the power of case-control 

studies in SLE, and is a potential explanation for much of the “missing heritability” in this 

disease.  Designing genetic studies for SLE focusing on molecular endophenotypes should 

greatly increase our power to detect pathogenic loci.  

Interferon alpha (IFN-α) is a molecular sub-phenotype which is central to the 

pathogenesis of SLE. IFN-α is a cytokine which works at the interface of the innate and 

adaptive immune systems, with the potential to break self-tolerance by activating antigen-

presenting cells after the uptake of self-material [24].  Serum IFN-α is elevated in many SLE 

patients, and levels are stable over time [26, 100, 101].  Many lines of investigation support 

IFN-α as a primary causal factor in human SLE [102].  We have previously demonstrated 

familial aggregation of high IFN-α in SLE families [28], suggesting that high IFN-α is a 

heritable risk factor for SLE.  Additionally, recombinant human IFN-α administered to 

humans as a therapy for chronic viral hepatitis and malignancy can induce de novo SLE in 

some cases.  This IFN-α-induced SLE typically resolves after the IFN-α therapy is 

discontinued, which supports the idea that IFN-α is causal [103, 104].  Case-control 

genome-wide association studies (GWAS) in SLE have demonstrated remarkable over-

representation of genes involved in type I interferon (IFN) signaling, production and 

response [98].  We have shown that many of these SLE-risk loci in the IFN-α pathway are 

associated with increased IFN-α pathway activity in SLE patients [105-108], supporting the 

idea that these loci are gain-of-function in humans. High circulating levels of IFN-α 

correspond to particular clinical manifestations [100], and thus activation of this pathway 
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contributes to both susceptibility and heterogeneity in SLE [109]. We suspect that 

heterogeneity in the molecular pathogenesis of SLE between patients is a major factor in 

the unexplained heritability of the disease to date. In this study, we directly address this 

heterogeneity by mapping the causal IFN-α molecular trait, which allowed for detection of 

novel genetic variations underlying SLE disease pathogenesis. In addition, over-activity of 

the IFN-α pathway has been implicated in other autoimmune diseases such as Sjogren’s 

syndrome and inflammatory myositis [110, 111], and it is possible that these IFN-related 

loci underlie some of the genetic architecture of these conditions as well. 

 

2.3: RESULTS 

 

SNPs associated with IFN-α in the discovery cohort 

We generated serum IFN-α activity data (using reporter cell assay described in 

Materials and Methods section to detect functional IFN-α activity) in the SLE cases who 

were genotyped in the SLE Genetics (SLEGEN) consortium genome-wide association study 

(GWAS) study for whom there was a serum sample available (n = 400) [16]. This group was 

used as our discovery cohort. Reanalyzing the GWAS data in a case − case analysis stratified 

by high vs low serum IFN-α, we found a number of strong associations (OR > 2.0) with 

serum IFN-α activity. These included single nucleotide polymorphisms (SNPs) in genes 

such as chromosome 7 open reading frame 57 (C7orf57), protein kinasecyclic 

GMPdependent type I (PRKG1), purine nucleoside phosphorylase (PNP), activating 

transcription factor 7 interacting protein (ATF7IP) and ankyrin repeat domain 44 

(ANKRD44) (Supplementary Table 2.1, Figure 2.1). We conducted a pathway analysis to 
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identify canonical functional pathways that are enriched in the genes nearby these SNPs, 

and the results from this analysis are described later. The top SNPs identified in this 

analysis did not share any SNPs or loci in common with the known case-control SLE GWAS 

associations, supporting the ability of this approach to detect novel associations. Many of 

the underlying genetic variations with SLE could impact particular pathways or subsets of 

this heterogeneous disease, and these genetic variants can be missed by large case-control 

SLE GWAS in which all patients are grouped together. We then planned to replicate all SNPs 

identified in the discovery phase with p < 10−4 (323 SNPs). In this replication list, there was 

one SNP which has been previously reported in a case-control SLE GWAS (rs1143678 in 

the gene ITGAM, p = 0.044) [16, 112], and there were two loci on the replication list which 

had previously been associated with serum IFN-α levels in SLE patients (EFNA5 and 

ZKSCAN1/LAMTOR4, p = 0.036) [23, 113] (Supplementary Table 2.2). 
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Figure 2.1: Top signals of association with increased serum IFN-α activity in SLE 

cases in the discovery phase. A) Manhattan plot showing top GWAS association signals by 

chromosome.  B) Q-Q Plot showing association of SLE GWAS SNPs with serum IFN-α. P-

values that would be expected under the null hypothesis (no association between SNPs and 

serum IFN-α activity) are represented by the red line, and the observed P-values are 

represented by blue dots, one for each tested SNP- IFN-α activity association. 
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Validation of SNPs associated with serum IFN-α activity in an independent cohort 

The 323 top SNPs which had a p < 10-4 were genotyped in an independent cohort of 

1165 SLE cases of European-American and African-American ancestry (see 

Supplementary Table 2.3 for the characteristics of the replication cohort). We used 

logistic regression analysis to test SNPs from the discovery cohort for association with 

serum IFN-α, and European-American and African-American ancestral groups were 

analyzed separately. SNPs in the PRKG1 (rs7897633, rs7906944) and PNP (rs1049564) loci 

showed strong evidence for association (Table 2.1) in the European-American patients.  In 

meta-analysis, both PRKG1 rs7897633 and PNP rs1049564 were associated with serum 

IFN-α in European ancestry with p-values that exceeded a conservative Bonferroni 

correction for multiple comparisons (p < 1.71 x 10-7, Table 2.1). Thus, the novel loci 

identified in the current study achieve genome-wide significance in the overall meta-

analysis of discovery and replication sets. Table 2.2 shows a list of the top SNP 

associations in African-Americans. No significant SNP-SNP interactions were detected. 

Haplotype analysis was performed when evidence for association was observed for two 

nearby SNPs, but none of the haplotype models were superior to the individual SNP models 

of association. For the SNPs which demonstrated evidence for association in both 

European-American and African-American ancestral backgrounds, those with homogenous 

effects by Breslow-Day testing were analyzed in meta-analysis assuming a fixed-effect 

model. The two SNPs included in this cross-ancestral background meta-analysis were 

rs4850410, an intronic SNP in ANKRD44 (OR = 0.64; 95%CI (0.48 – 0.84); PMeta =1.3 × 10-6] 

and rs297573, which is downstream of the pleckstrin homology domain containing, family 

F member 2 gene (PLEKHF2) (OR=0.70; 95%CI (0.50 – 0.98); PMeta =1.2 × 10-4).  
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Table 2.1: List of top replicated SNPs associated with IFN-α in European-Americans 
 

Chr* Locus SNP SNP type Assoc. 
allele* 

Odds Ratio 
(95% CI) P-discovery P-replication PMeta 

10 PRKG1 rs7897633 intron C 
0.59 

(0.44 - 0.78) 1.07 x 10-5 2.96 x 10-4 2.75 x 10-8 

14 PNP rs1049564 missense T 
2.08 

(1.34 - 3.21) 1.32 x 10-5 9.88 x 10-4 1.24 x 10-7 

6 DLL rs1028488 intergenic* A 
0.51 

(0.38 - 0.70) 8.50 x 10-4 3.12 x 10-5 2.21 x 10-7 

7 CALD1 rs6467557 intron T 
1.50 

(1.15 - 1.97) 5.00 x 10-5 3.12 x 10-3 1.40 x 10-6 

14 PNP rs1713420 intron C 
1.82 

(1.21 - 2.73) 4.25 x 10-5 3.90 x 10-3 1.58 x 10-6 

4 GRXCR1 rs6850606 intergenic* A 
0.64 

(0.50 - 0.83) 4.75 x 10-4 5.88 x 10-4 1.81 x 10-6 

19 ZNF536 rs1549951 intergenic* T 
0.62 

(0.45 - 0.85) 7.28 x 10-5 3.10 x 10-3 1.91 x 10-6 

10 PRKG1 rs7906944 intron A 
0.74 

(0.57 - 0.93) 6.50 x 10-6 1.83 x 10-2 2.54 x 10-6 

1 CHIA rs7411387 intron C 
1.61 

(1.24 - 2.1) 1.23 x 10-3 3.80 x 10-4 3.07 x 10-6 

11 TMPRSS5 rs3934007 intergenic* T 
1.55 

(1.19 - 2.00) 4.86 x 10-4 9.98 x 10-4 3.12 x 10-6 
 
Chr*: Chromosome 
Assoc. allele*: Associated allele/minor allele 
Intergenic*: The corresponding genes that are listed are those that are found nearest to the  
intergenic SNPs.    
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Table 2.2: List of top SNPs associated with serum IFN-α in African-Americans  
 

Chr* Locus SNP SNP type Assoc. 
allele* 

Odds Ratio  
(95% CI) P-value 

10 NRG3 rs1649949 intron C 
1.60  

(1.20 - 2.15) 1.37 x 10-3 

2 ANKRD44 rs4850410 intron T 
0.64  

(0.48 - 0.85) 1.69 x 10-3 

5 LOC729506 rs1666793 intron C 
1.5  

(1.10 - 2.12) 1.10 x 10-2 

8 ASPH rs7812327 intron T 
0.66  

(0.48 - 0.93) 1.59 x 10-2 

20 PLCB4 rs2299676 intron G 
0.70  

(0.50 - 0.95) 2.47 x 10-2 

5 FGF18 rs7711912 near 3’ A 
1.45  

(1.04 - 2.02) 2.90 x 10-2 

16 RBFOX1 rs4608354 intron A 
1.57  

(1.03 - 2.40) 3.44 x 10-2 

8 PLEKHF2 rs297573 near 3'   C 
0.70  

(0.50 - 0.98) 3.83 x 10-2 

12 KCNA5 rs526654 near 3’ G 
0.75  

(0.57 - 1.00) 4.00 x 10-2 
 
Chr*: Chromosome 
Assoc. allele*: Associated allele/minor allele  



22 
 

Association of GWAS candidates with autoantibody subsets in the replication cohort 

Because the presence of particular autoantibodies has been strongly associated with 

high IFN-α in SLE [100], we also tested the SNPs which were replicated from the GWAS 

study for association with SLE autoantibodies.  Supplementary Tables 2.4 and 2.5 show 

the autoantibody associations observed in different ancestral groups in the replication 

cohort. These include the SNPs in PRKG1 and PLEKHF2 which were associated with IFN-α, 

as well as a SNP in a locus that we have previously found to be associated with 

autoantibodies in SLE (EFNA5) [23].  None of these serological associations withstood 

correction for multiple comparisons.  

 

Canonical pathway analysis of GWAS candidate SNPs 

A pathway analysis of the networks enriched among the top SNPs in the discovery 

cohort was generated through the use of IPA (Ingenuity Systems, www.ingenuity.com).  All 

SNPs from the discovery cohort with P < 10-4 were included.  The top canonical pathways 

related to IFN-α-associated SNPs which pass a Benjamini-Hochberg false discovery rate of 

0.05 are shown in Table 2.3. There was prominent representation of pathways associated 

with neural signaling and transmission, purine metabolism, and T cell signaling. Some of 

the key molecules defining these pathways were also some of the top validated serum IFN-

α-associated loci in our replication cohort, such as PNP and PRKG1.  Networks enriched in 

our study included those with various cellular functions such as cell morphology, cellular 

assembly and organization (PRKG1), cellular development and cell-mediated immune 

response (PNP) (Supplementary Table 2.6). 
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Table 2.3:  Top 10 canonical pathways from IFN-α associated SNPs in initial discovery 
GWAS data 
 
 

Canonical Pathways Ratio P-value  

Axonal Guidance Signaling 0.03 4.04 x 10-4 

Synaptic Long Term Depression 0.04 4.27 x 10-3 

Dopamine-DARPP32 Feedback in cAMP Signaling 0.03 7.21 x 10-3 

Xanthine and Xanthosine Salvage 1.00 7.46 x 10-3 

Guanine and Guanosine Salvage I 0.50 1.49 x 10-2 

Adenine and Adenosine Salvage I 0.50 1.49 x 10-2 

Cellular Effects of Sildenafil (Viagra) 0.03 1.60 x 10-2 

Antiproliferative Role of TOB in T Cell Signaling 0.08 1.60 x 10-2 

Caveolar-mediated Endocytosis Signaling 0.04 1.67 x 10-2 

Cardiac Î²-adrenergic Signaling 0.03 1.77 x 10-2 
 
Ratio and P-value are calculated as described in the Methods section. 
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Genome-scale Integrated Analysis of gene Networks in Tissues (GIANT) 

Because the top loci identified in this study were not classical type I IFN pathway 

genes, we used the GIANT software to query potential relevance of the gene products 

encoded by these loci in various immune cell subsets. Figure 2.2 shows the networks 

produced by the GIANT algorithm when the top hits from our study are used as the input 

data in the various immune cell subsets available for analysis. Networks with the highest 

density were observed in dendritic cells and natural killer (NK) cells, and low density 

networks were seen in T and B lymphocytes (Table 2.4).  Similarly, the top associations 

with serum IFN-α generally demonstrated the greatest network strength in plasmacytoid 

dendritic cells and NK cells.  These data support biological relevance of the transcripts in 

dendritic cells, which have been implicated as the major IFN-α producing cell type in SLE 

[114], and NK cells, which have been reported to play a critical cooperative role with 

dendritic cells in the production of IFN-α [115].  In addition, when examining the other 

molecules functionally implicated in these networks, a number of SLE-associated molecules 

are observed in the network diagrams, including IL12, TLR7, and the JAK/STAT pathways.   
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Figure 2.2: Tissue specific analysis of gene networks in different immune cells.  
Networks demonstrate relationships between PNP, PRKG1, ANKRD44 and PLEKHF2 to 
other molecules in immune cells.  Edges with weight (relative confidence) greater than 0.4 
are shown.  Each network diagram represents a different immune cell type as follows:  A: B 
lymphocyte, B: Dendritic cell, C: Monocyte, D: Neutrophil, E: NK cell, F: T lymphocyte. 
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Table 2.4:  Network density and network strength analysis for tissue specific gene 
networks in different immune cells  
 

Cells Network Density  Network Strength 
ANKRD44 PNP PRKG1 PLEKHF2 

B lymphocyte 0.12   1.1  5.5 
Dendritic cell 0.58     9.3 27.4 

Monocyte 0.18 0.4 3.7   3.4 
Neutrophil 0.13 1.4 1.9   8.7 

T lymphocyte 0.09 0.4 1.4   7.3 
NK cell 0.52 11.7 1.4 17.0 24.6 

 
Networks generated by the GIANT software program for each immune cell type.  Network 
density and strength calculated as described in the Methods.  Density is calculated for the 
overall network in the cell, and strength is calculated for each of the loci entered in the 
analysis. 
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2.4: DISCUSSION 

 

SLE is a highly heterogeneous disease, hence it is likely that certain genetic factors 

will be related to particular disease phenotypes and pathogenic pathways [10, 116, 117], 

and that genetic associations will not be shared between all SLE patients.  We suspect this 

is a major factor in the unexplained heritability of the disease to date. Directly studying this 

heterogeneity by mapping a causal molecular trait greatly enhanced our power to detect 

novel genetic variations underlying SLE disease pathogenesis. The top loci in our study 

have not been previously reported in other case-control GWAS of SLE, and were not top 

loci in the initial case-control GWAS data set that we used in this study [16].  Thus, our 

alternative strategy was capable of finding genetic variants associated with disease that are 

not readily apparent in case-control designs, supporting a complexity in genetic 

architecture that will require molecular sub-phenotyping to fully delineate.   

rs7897633, an intronic SNP in PRKG1 (p = 2.75 x 10-8) was the strongest association 

observed in our study.  This gene encodes the soluble isoforms of the cyclic GMP-

dependent protein kinase (Iα and Iβ), which are important components of signal 

transduction processes in diverse cell types [118]. Canonical pathway analysis revealed 

this gene was associated with pathways such as synaptic long term depression, Dopamine-

DARPP32 feedback in cyclic AMP signaling and netrin signaling; pathways in which 

modulation of cyclic GMP and cyclic AMP plays an important role in signaling and function.  

GIANT analysis supported biological function for PRKG1 in dendritic cells and NK cells, two 

cell types which cooperate to generate IFN-α in SLE [115].  PRKG1 function was not as 

strongly supported in other immune cells such as T and B lymphocytes, which are not 
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thought to be major IFN-α producing cells. It is not immediately clear how PRKG1 might 

impact type I IFN production or signaling, but mechanistic experiments directed at the IFN 

pathway in both dendritic and NK cells are likely to be informative.   

The other strongly associated polymorphism in our study was a missense SNP in 

PNP (rs1049564, P = 1.24 x 10-7). PNP encodes the nucleoside phosphorylase enzyme, 

which is involved in purine metabolism. PNP together with adenosine deaminase (ADA), 

serve a key role in purine catabolism in the salvage pathway.  Deficiency in this pathway 

leads to build up of elevated deoxy-GTP levels, resulting in T-cell toxicity and deficiency 

[119, 120]. Rare autosomal deficiency of the PNP gene results in a metabolic 

disorder characterized by defective T-cell and B-cell immunity as well as defective antibody 

responses [121, 122].  Interestingly, PNP-deficient patients have also been reported to 

develop autoimmune disorders, such as SLE, autoimmune hemolytic anemia, and idiopathic 

thrombocytopenic purpura [123].  The SNP identified in our study is a common coding-

change variant which does not cause complete deficiency, and whether this variant results 

in some change in enzyme function is not currently known.  In silico bioinformatic analysis 

using Polymorphism Phenotyping 2 (PolyPhen2) and Sorting Intolerant From Tolerant 

(SIFT) predicts this SNP as non-damaging, but an effect on enzyme activity would still be 

possible.  There was strong representation of the purine metabolic pathway in our 

canonical pathway analysis, and PNP was the key molecule associated with this pathway. 

Some rare, highly penetrant variants in genes involved in nucleic acid metabolism have 

been associated with SLE, such as three prime repair exonuclease 1 (TREX1) and 

deoxyribonuclease I-like 3 (DNASE1L3) [124-126].  Given this precedent, PNP is a 

fascinating genetic association with SLE.   

http://en.wikipedia.org/wiki/Autoimmune_disorder
http://en.wikipedia.org/wiki/Hemolytic_anemia
http://en.wikipedia.org/wiki/Idiopathic_thrombocytopenic_purpura
http://en.wikipedia.org/wiki/Idiopathic_thrombocytopenic_purpura
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The non-European ancestral backgrounds studied were smaller, and did not allow 

for strong independent significance. Our discovery set was exclusively of European 

ancestry, and thus variants specific to other ancestral backgrounds could not have been 

discovered. Despite these limitations, we observed some interesting evidence for 

associations, which were of similar effect in European-American and African-American 

ancestral backgrounds. Intronic SNPs in ANKRD44 and PLEKHF2 were associated with IFN-

α in African-American and European ancestral backgrounds (rs4850410, PMeta =1.3 × 10-6, 

and rs297573, PMeta =1.2 × 10-4, respectively). PLEKHF2 is an endosome-associated protein 

responsible for modulating the structure and function of endosomes, as well as the 

endocytotic process [127].  PLEKHF2 can increase the activity of caspase 12, and a role in 

ER-related apoptotic pathway has been suggested [128]. ENCODE ChIP-seq data 

demonstrate that rs297573, the SNP downstream of PLEKHF2 which was associated with 

IFN-α in our study, resides in the NFκB transcription factor binding site. ANKRD44 has not 

been extensively studied, but it binds to the catalytic subunit of protein phosphatase 6 

[129], which plays a role in cell cycle progression.  

Our initial discovery cohort showed association of two SNPs in the C7orf57 locus 

with serum IFN-α activity; however, this locus failed to replicate. One of the possible 

reasons for lack of replication could be that this locus was related to some unique feature of 

the discovery cohort that was not present in the replication cohort.  One previous GWAS 

study of amyotrophic lateral sclerosis which used a very similar Illumina genotyping 

platform found evidence for association between these two SNPs and ALS which then failed 

to replicate in an additional independent replication cohort [130]. It is possible that some 

peculiarity of the earlier Illumina genotyping platform made it more likely for these SNPs 
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to be spuriously associated, although this locus was not associated in the original SLEGEN 

GWAS case-control study [16]. We used an entirely different rtPCR-based genotyping 

method for our replication cohort to eliminate potential platform-related biases. Another 

possibility is that this could have been a false-positive result due to statistical noise in our 

discovery cohort, which is why we could not replicate it in the independent replication 

cohort.    

As referenced above, discovery methods followed by replication in non-European 

ancestral backgrounds would be an important next step to this work. It is likely that some 

polymorphisms will be ancestry specific, and will not be evident until a discovery strategy 

is used in that particular ancestral background.  This would be especially important for 

African-Americans who have a higher incidence of SLE and more severe clinical 

manifestations [10]. African-American SLE cases also have higher levels of serum IFN-α 

activity [100], which could be one factor related to the increased incidence and severity of 

the disease.  Our findings could have pharmacogenomic implications, as therapeutics 

targeting the IFN-α pathway are currently in development for SLE.  Knowledge of the 

functional genetic factors underlying IFN-α dysregulation in a given patient could be useful 

in individualizing therapy with these agents.  

 

2.5: METHODS 

 

Samples and Genotyping 

Discovery cohort: 
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Genome wide association study (GWAS) data from 755 SLE cases were obtained 

from multiple study centers as part of the international consortium for Systemic Lupus 

Erythematosus Genetics (SLEGEN) [16].  The cohort studied by the SLEGEN consortium for 

GWAS in SLE consists of unrelated women of self-reported European ancestry and has been 

described in detail [16].  Out of 755 SLE cases, 400 cases had serum available for IFN-α 

analysis and were included in the discovery GWAS phase.   

Samples were genotyped at 317,000 SNPs on the Illumina Infinium HumanHap300 

genotyping Beadchip (Illumina Inc., San Diego, CA, USA).  SNPs that failed the Hardy-

Weinberg equilibrium test (p<0.001) were excluded, as were SNPs with a genotyping 

success rate < 95% or with a minor allele frequency < 0.05, resulting in 291,943 SNPs that 

were used in the analysis.  

 

Replication cohort: 

The independent multi-ethnic replication cohort of  1165 SLE patients was obtained 

from the Lupus Family Registry and Repository (LFRR) at the Oklahoma Medical Research 

Foundation and consisted of the following self-reported ancestral backgrounds:  715 

European-Americans and 450 African- Americans. We incorporated 238 Hispanic/Native-

American and 40 Asian-American SLE cases, in addition to the 1165 SLE cases, in the 

principal components analysis (PCA) to determine population stratification in the 

replication cohort. Clinical characteristics and demographic details for the patients in the 

replication cohort are summarized in Supplementary Table 2.3. Informed consent was 

obtained from all patients in both cohorts included in this study, and the study was 

approved by the institutional review boards at the respective institutions. 
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We followed up IFN-α associated SNPs, which had a p < 1 x 10-4 from the initial 

discovery GWAS analysis. SNPs that failed SNP assay design were excluded, resulting in 323 

SNPs which were genotyped in the replication cohort. A separate panel of 334 ancestry-

informative markers [131] was also genotyped in the replication cohort.  SNPs were 

genotyped in genomic DNA using the Fluidigm Biomark microfluidic qPCR system 

(Fluidigm Corp, South San Francisco, CA, USA).  All DNA samples were pre-amplified using 

the SNP-type primers from the genotyping assays, according to the manufacturer’s 

protocol. PCR data were analyzed using the BioMark SNP Genotyping Analysis software 

version 3 (Fluidigm Corp) to obtain genotype calls. Scatter plots were all reviewed 

individually for quality, and SNPs that deviated significantly from the expected Hardy-

Weinberg proportions (P < 0.001) or with < 95% genotyping success were excluded from 

the analysis.  

 

Measurement of serum IFN-α activity 

Enzyme-linked immunosorbent assay (ELISA) methods for the measurement of type 

I IFN in human sera have been complicated by low sensitivity and low specificity [132].  We 

used a well-documented sensitive and reproducible reporter cell assay to generate IFN-α 

activity data from patient sera [28, 133]. The reporter cells in this assay (WISH cells, ATCC 

#CCL-25, Manassas, VA, USA) measure the ability of patient sera to cause IFN-induced gene 

expression. These cells are an epithelial-derived cell line that is highly responsive to IFN-α. 

Cells are incubated with patient serum for 6 hours. Then real-time PCR is used to quantify 

three canonical IFN-α-induced transcripts in the WISH cell lysates (IFIT1, MX1 and PKR). 

Sera from healthy unrelated controls (n=200) were tested to establish a normal value for 
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the assay.  Results from patient samples are expressed as the number of standard deviation 

(s.d.) above the mean of healthy unrelated control sera.  The sum of the number of s.d. 

above healthy controls for the three transcripts is used as the quantitative output from the 

assay, representing a serum IFN-α activity score.   This assay has been extremely 

informative in SLE and other autoimmune diseases [100, 111, 134]. 

  

Statistical Analysis 

Control for Population Structure 

To account for potential differences in admixture or population structure within 

self-reported ancestral backgrounds in the discovery and replication cohort, we performed 

a PCA using the GWAS SNPs and 334 independent ancestry-informative marker SNPs, 

respectively. PCA in the discovery cohort was carried out on all of the GWAS SNPs that 

passed quality control thresholds. This cohort is composed of SLE cases with self-reported 

European ancestry, and as shown in the principal components analysis plots (Figure 2.3a), 

there were no major population outliers. As expected, cases with varying proportions of 

Northern- and Southern-European ancestry were included in the study, and some cases 

cluster with the Ashkenazi Hap Map reference population, suggesting Jewish ancestry 

(Figure 2.3b).   

PCA of the ancestry-informative markers genotyped in the replication cohort 

revealed that the PC1 obtained in this analysis provided a strong separation between 

subjects of self-reported African-American ancestry and the non-African ancestral 

backgrounds, while PCs 2 and 3 provided a separation between subjects of self-reported 

Asian-, Hispanic-, and European-American ancestry (Figures 2.3c and d).  Self-reported 
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Hispanic-or Native-American ancestry subjects were largely overlapping in this analysis, 

and are considered together in these analyses. Association analyses were not performed in 

the Hispanic- or Native American (n=238) and Asian-American cases (n=40), due to the 

small number of subjects.  These subjects were included in the principal component 

analysis of the AIMs to assist with the determination of population structure. Correction for 

population structure within the discovery and replication cohort was done using the first 

three PCs as covariates in the logistic regression association analyses. PCA analysis was 

performed using Cluster 3.0 software [135].  

 

Association Analyses 

Logistic regression analysis was used to detect associations between the SNPs and 

serum IFN-α in both stages of the study. IFN-α activity was studied as a categorical trait 

because the trait distribution is highly skewed, such that log transformation does not result 

in a normal distribution and the highly skewed data did not allow for linear modeling in a 

quantitative trait locus analysis. We used a binning strategy that has been highly 

informative in previous large scale studies and multivariate analyses of the serum IFN trait 

in SLE [28, 97, 100], in which subjects with a value > 2 s.d. above the mean of healthy 

controls are binned as high IFN-α, and the rest are binned as low IFN-α. Using this binning 

strategy prevents high outlying values from exerting an inordinate amount of influence in 

the model. In the discovery cohort, 88 were categorized as high IFN-α, and 322 were 

categorized as low IFN-α. Logistic regression analysis was carried out using PLINK v.1.07 

software [136]. The first three PCs from the PCA of the GWAS SNPs were used as covariates 

in the logistic regression to control for population structure in the discovery cohort.  
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In the replication cohort, each self-reported ancestral background was analyzed 

separately, and the first three PCs were included as covariates to correct for population 

structure and admixture. Regression analysis was also performed to detect any potential 

associations between the presence of particular autoantibodies and SNPs in the replication 

cohort, because autoantibodies have been associated with high IFN-α in SLE patients [100]. 

In the replication cohort, we used the Benjamini–Hochberg procedure to control the false 

discovery rate at 0.05, and the SNPs which passed this threshold were considered for meta-

analysis. The P-value threshold used for significance in the overall meta-analysis corrects 

for the number of SNPs which were analyzed for association in the initial GWAS discovery 

analysis, controlling the family-wise error rate at the 0.05 level.  

For SNPs that demonstrated a homogenous effect across the discovery and 

replication sets by Breslow–Day testing, meta-analysis was performed using the weighted 

Z-score method [137] using R 2.11.1 statistical analysis software (www.r-project.org). For 

statistical correction of multiple comparisons, we applied a Bonferroni correction to the 

meta-analysis results using the number of SNPs that passed quality control in the discovery 

GWAS (n = 291 943), resulting in a threshold P-value for this study of p < 1.71 × 10−7. In the 

cross-ancestral background analysis, SNPs that demonstrated a homogenous effect across 

both ancestral backgrounds were meta-analyzed using the same weighted Z-score method 

[137], assuming a fixed-effect model. Enrichment P-values were calculated using a Fisher’s 

exact test with the following parameters: for the SNP-wise calculation for the SLE-

associated SNP, the number of possible confirmed SLE-risk SNPs in European ancestry was 

estimated at 40, and the number of SNPs that passed quality control in our GWAS screen 

was used as the denominator to establish the null proportion. The observed proportion 
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was one SNP out of the 323 SNPs in our replication list. For the locus-wise comparison for 

genes associated with circulating IFN in SLE, we estimated 18 loci, which have been 

previously associated with IFN in SLE, and 20 000 as the number of human gene loci to 

estimate the null proportion. The observed proportion was 2 loci out of the 277 loci 

represented by the 323 SNPs in the replication list. 

 

Canonical pathway analysis 

From the initial discovery GWAS data, IFN-α-associated SNPs (n = 323) with a p < 

1x10-4 were analyzed further using Ingenuity Pathway Analysis (IPA; Ingenuity Systems, 

www.ingenuity.com) to identify the top canonical pathways related to IFN-α-associated 

SNPs. SNPs were attributed to the nearby gene, and the genes were then compared with 

curated functional attribution lists organized by canonical pathway function. The 

magnitude of over-representation of a particular canonical pathway in the gene list from 

our study was calculated as the ratio of the number of molecules from our data set that 

map to the pathway divided by the total number of reference molecules in that pathway in 

the IPA database (a list of genes belonging to major canonical pathways is curated in IPA 

based on published literature). Statistical significance was determined using the Fisher’s 

exact test, comparing the observed ratio of genes in a particular pathway to the null 

expectation (that the genes would assort proportionally across all IPA pathways), to 

estimate the probability that the observed over-representation of the particular pathway 

would arise by chance. 

 

Genome-scale Integrated Analysis of gene Networks in Tissues (GIANT) 
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The top genes from the replication cohort were queried using the GIANT software 

program to determine likely functional relationships of these genes in various types of 

immune cells. GIANT is a public, web-based software program that uses tissue-specific 

gene expression databases to predict tissue-specific gene interactions 

(http://giant.princeton.edu/about/). About 145 tissues/cell types are available to be 

queried, including major immune cell subsets. The software generates functional networks 

based on the genes queried via the integration of thousands of publicly available gene 

expression datasets, sequence data, transcription factor binding sites and protein-protein 

interaction data to generate gene association matrix. Bayesian weights derived from the 

gold-standard tissue-specific datasets are then applied, and networks are generated for 

each tissue queried, which illustrate the most probable functional relationships between 

the queried genes and other molecules in that particular tissue.  Network relationship 

confidence (edge weight) was set at a minimum of 0.4 for our analyses.  After the networks 

were generated, we calculated overall network density and network strength of each of our 

study genes in each immune cell subset network.  Network density (D) was defined as a 

ratio of the number of edges (E) to the number of possible edges, given by the binomial 

coefficient , giving D=2E/N (N-1); where N=number of nodes.  In these weighted 

networks, we calculated strength as the sum of a node's edge weights. 

 

Prediction of the impact of coding-change SNPs 

Prediction of consequences on protein structure and/or function of non-

synonymous SNPs were evaluated using the prediction programs SIFT (http://sift.bii.a-

star.edu.sg/) and PolyPhen ( http://genetics.bwh.harvard.edu/pph/). These two programs 
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use algorithms to determine the likelihood that a particular coding-change polymorphism 

impacts protein-folding based upon local protein structure as well as the particular amino 

acid substitution. 
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2.6: Appendix: Supplementary Materials 

 
Supplementary Table 2.1:  List of top 10 SNPs associated with IFN-α in the GWAS 
discovery cohort 
 

 
  

Chromosome Locus SNP SNP type 
Associated 

allele 
Odds Ratio 

(95% CI) P-value 

7 C7orf57 rs2708912 missense G 
4.21 

(2.33 – 7.62) 2.01 x 10-6 

7 C7orf57 rs2686792 intron G 
4.17 

(2.29 – 7.59) 3.13 x 10-6 

7 C7orf57 rs2708890 missense G 
4.02 

(2.22 – 7.29) 4.44 x 10-6 

10 PRKG1 rs7906944 intron A 
0.43 

(0.30 – 0.62) 6.50 x 10-6 

10 PRKG1 rs7905063 intron G 
0.42 

(0.29 – 0.62) 6.97 x 10-6 

10 PRKG1 rs7897633 intron G 
0.43 

(0.29 – 0.62) 1.07 x 10-5 

14 PNP rs1049564 missense A 
2.49 

(1.65 – 3.75) 1.32 x 10-5 

2 ANKRD44 rs6730027 intron T 
2.57 

(1.67 – 3.98) 2.11 x 10-5 

12 ATF7IP rs10772783 intron C 
2.21 

(1.53 – 3.18) 2.22 x 10-5 

10 PRKG1 rs9415777 intron A 
0.45 

(0.31 – 0.65) 2.40 x 10-5 
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Supplementary Table 2.2:  List of top 323 SNPs from discovery GWAS genotyped in 
the replication cohort 
 
 
Chr SNP P-value Gene Feature Left gene Right gene 
1 rs7541937 0.000817 DLGAP3 Intron C1orf212 LOC653160 
1 rs3911861 0.008714 C1orf164 intron PRNPIP TMEM53 
1 rs357210 0.009949 NEGR1 intron ZRANB2 LOC100132353 
1 rs11577464 7.08 x 10-5 NA NA LOC100133118 ST6GALNAC5 
1 rs17449554 0.000872 NA NA LOC729779 ADH5P2 
1 rs1334336 0.000489 NA NA LMO4 PKN2 
1 rs10489944 0.005257 NA NA LMO4 PKN2 
1 rs7411387 0.001232 CHIA intron RP11-165H20.1 C1orf88 
1 rs6537810 0.004346 SYT6 intron LOC100132906 MRP63P1 
1 rs946817 0.00037 NA NA SEC16B LOC100131700 
1 rs7544563 0.000578 NA NA IVNS1ABP HMCN1 
1 rs10926978 0.009515 SDCCAG8 intron CEP170 LOC729199 
1 rs11589847 0.000605 PLD5 intron LOC200149 LOC391183 
1 rs10924309 0.000799 KIF26B intron LOC100128825 SMYD3 
2 rs9636493 0.000511 NA NA MYT1L LOC729897 
2 rs9287725 0.000371 NA NA LOC645054 FLJ33534 
2 rs2380595 0.000727 NA NA TRIB2 FAM84A 
2 rs4047462 6.17 x 10-5 NA NA LOC100128475 FAM49A 
2 rs875974 0.000792 NA NA FLJ41481 OSR1 
2 rs13011502 0.000212 OSR1 near 3' FLJ41481 OSR1 
2 rs41462149 0.000255 KLHL29 intron FLJ14126 ATAD2B 
2 rs6547906 0.000504 LOC165186 intron WDR43 C2orf71 
2 rs2754530 0.004128 SRD5A2 intron XDH AK2P2 
2 rs2123774 0.000658 NA NA LTBP1 RASGRP3 
2 rs4670532 0.000885 NA NA MRPL50P1 CRIM1 
2 rs7559001 0.000254 EML4 intron SGK493 COX7A2L 
2 rs2216784 0.002363 NRXN1 intron LOC130728 LOC730100 
2 rs1016387 0.000573 NA NA NRXN1 LOC100128029 
2 rs746784 4.32 x 10-5 NA NA DNMT3AP1 LOC644838 
2 rs6546353 0.003299 NA NA ETAA1 C1D 
2 rs7593084 0.000928 EXOC6B intron LOC100128605 SPR 
2 rs4553845 0.000943 NA NA C2orf3 LOC100129863 
2 rs885187 0.000762 NA NA LOC647275 LRRTM4 
2 rs10519329 0.000766 NA NA LOC647275 LRRTM4 
2 rs924901 4.25 x 10-5 NA NA LOC647275 LRRTM4 
2 rs1016347 5.20 x 10-5 NA NA LOC647275 LRRTM4 
2 rs7558427 0.009702 ATOH8 intron GNLY ST3GAL5 
2 rs1192795 0.000754 RNF149 intron SNORD89 CREG2 
2 rs10188630 0.008033 SH3RF3 intron EDAR LOC100132457 
2 rs1025736 0.000387 NA NA EN1 MARCO 
2 rs1838999 0.002995 NAP5 intron LYPD1 LOC100130315 
2 rs1030599 0.000972 NA NA LOC100128759 NR4A2 
2 rs956986 0.000302 CCDC148 intron UPP2 LOC100128061 
2 rs7574002 0.000811 NA NA DLX2 ITGA6 
2 rs17777566 0.000993 NA NA ZNF385B KIAA1604 
2 rs1449264 0.000127 ITGA4 intron LOC100127923 CERKL 
2 rs4850410 0.006391 ANKRD44 intron PGAP1 LOC729342 
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Supplementary Table 2.2 – continued. 
Chr SNP P-value Gene Feature Left gene Right gene 
2 rs1036542 0.000201 ANKRD44 near 3' PGAP1 ANKRD44 
2 rs6730027 2.11 x 10-5 ANKRD44 intron PGAP1 LOC729342 
2 rs1429411 0.000956 NA NA ANKRD44 LOC729342 
2 rs10168275 0.009742 CAB39 intron LOC645870 ITM2C 
2 rs1797399 0.000857 NA NA NMUR1 LOC391490 
2 rs7577137 0.000252 LOC339766 intron UGT1A10 HJURP 
3 rs9854602 0.000602 NA NA LOC402123 CNTN6 
3 rs6764561 0.000959 GRM7 intron MRPS36P1 LMCD1 
3 rs250403 0.000522 RAD18 near 3' OXTR RAD18 
3 rs17009067 0.000232 ZNF385D intron VENTXP7 LOC728516 
3 rs4245878 0.000448 NA NA RPSAP11 LOC100129194 
3 rs9833530 0.000707 NA NA RPSAP11 LOC100129194 
3 rs4642086 0.000553 NA NA CCDC137P RYBP 
3 rs6764864 0.000723 NA NA LOC643766 HTR1F 
3 rs2399441 0.000879 NA NA CD200R1L CD200R1 
3 rs10511349 0.001417 LSAMP intron GAP43 BZW1L1 
3 rs6766694 0.002214 IQCB1 intron GOLGB1 EAF2 
3 rs9813363 0.00014 RAB6B intron SRPRB C3orf36 
3 rs6439563 0.000805 EPHB1 intron LOC645218 PPP2R3A 
3 rs931726 0.000503 EPHB1 intron LOC645218 PPP2R3A 
3 rs9881418 0.003068 SLC9A9 intron LOC100128739 LOC257039 
3 rs9842818 0.000298 NA NA PLSCR4 LOC440981 
3 rs2688692 0.000918 PLSCR1 intron PLSCR2 PLSCR5 
3 rs6777677 0.000887 NA NA LOC646849 LOC344741 
3 rs4507220 0.00692 NA NA LOC646849 LOC344741 
3 rs9846083 0.00089 TNIK intron SLC2A2 PLD1 
3 rs1201292 0.000997 TBL1XR1 intron LOC730168 LOC339845 
3 rs13086642 0.000624 NA NA BCL6 FLJ42393 
4 rs6446401 0.000821 CRMP1 intron EVC LOC100128651 
4 rs4447863 0.009131 SLC2A9 intron LOC100131256 WDR1 
4 rs10517228 0.000923 NA NA LOC645716 LOC642305 
4 rs6850606 0.000475 NA NA ATP8A1 GRXCR1 
4 rs1531289 0.000838 KDR intron LOC100132311 LOC100128865 
4 rs7654599 0.000138 KDR intron LOC100132311 LOC100128865 
4 rs441785 0.000923 NA NA LOC100131356 LOC644682 
4 rs524907 0.000183 NA NA TIGD2 GPRIN3 
4 rs1377918 0.002944 NA NA MGC48628 TMSL3 
4 rs1514733 0.000635 MGC48628 intron MMRN1 TMSL3 
4 rs10516939 0.000889 GRID2 intron LOC133083 ATOH1 
4 rs17625855 0.000516 NA NA ZBED1P LOC100133103 
4 rs1472076 0.000152 NA NA LOC391686 LOC132719 
4 rs4438820 0.000488 NA NA NT5C3P1 NDST3 
4 rs6535930 0.000887 KIAA0922 intron MND1 WDR45p 
4 rs6536595 0.000862 FSTL5 intron RAPGEF2 LOC729725 
4 rs2279932 0.000275 AGA intron NEIL3 LOC285500 
4 rs2613024 0.000731 NA NA LOC391719 hCG_2025798 
4 rs3796644 0.005047 SORBS2 intron PDLIM3 TLR3 
4 rs1879724 0.007361 NA NA MGC39584 LOC728339 
4 rs13119686 0.00089 NA NA MGC39584 LOC728339 
5 rs7702501 0.000411 BRD9 intron LOC100132536 TRIP13 
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Supplementary Table 2.2 – continued. 
5 rs30483 0.000529 NA NA IRX1 LOC340094 
5 rs10512926 0.007331 ADCY2 intron LOC442132 C5orf49 
5 rs1666793 0.000722 NA NA LOC729506 LOC100128382 
5 rs40687 0.000872 SEMA5A intron LOC100128382 SNORD123 
5 rs1019810 0.000658 FBXL7 intron LOC391741 MARCH11 
5 rs6878131 0.009759 FBXL7 intron LOC391741 MARCH11 
5 rs2291114 0.001937 PDZD2 synonymous LOC100129608 GOLPH3 
5 rs2289876 0.000793 UGT3A2 intron UGT3A1 LMBRD2 
5 rs583595 0.000925 UGT3A2 intron UGT3A1 LMBRD2 
5 rs2287934 0.000596 SKP2 intron LMBRD2 C5orf33 
5 rs27130 0.000952 SKP2 intron LMBRD2 C5orf33 
5 rs1990977 0.000492 NA NA LOC345645 LOC441073 
5 rs16893364 0.000543 NA NA SDCCAG10 ADAMTS6 
5 rs2441109 0.00944 MAST4 intron LOC100129571 LOC100128443 
5 rs17732825 0.000271 RGNEF intron UTP15 ENC1 
5 rs12514694 0.000909 PDE8B intron ALDH7A1P1 WDR41 
5 rs10491245 0.000696 NA NA FLJ41309 LOC100127911 
5 rs26521 0.000284 HISPPD1 intron GIN1 C5orf30 
5 rs250253 7.88 x 10-5 EFNA5 intron LOC100129233 LOC345576 
5 rs26054 4.55 x 10-5 NA NA STARD4 C5orf13 
5 rs4957975 0.003668 NA NA C5orf13 C5orf26 
5 rs1389849 0.007989 NA NA C5orf13 C5orf26 
5 rs6897947 0.000867 SEMA6A intron LOC100128691 LOC644146 
5 rs6887255 0.000544 NA NA LOC100129374 LOC100130699 
5 rs884623 0.009212 CYFIP2 intron C5orf40 ICHTHYIN 
5 rs7711912 0.000501 NA NA FGF18 C5orf50 
5 rs4074670 0.000498 NA NA LOC100132848 LOC100129457 
5 rs3828686 0.000372 GFPT2 intron MAPK9 CNOT6 
6 rs17379732 0.000452 NA NA F13A1 RP3-398D13.1 
6 rs9328444 0.009399 BMP6 intron RPL29P1 TXNDC5 
6 rs1753290 0.000646 FGD2 intron MTCH1 RP3-405J24.3 
6 rs3846755 0.009725 CD109 near 5' SLC17A5 CD109 
6 rs10457255 0.000331 NA NA PA2G4P5 LOC643884 
6 rs2810169 0.000378 NA NA LOC728590 LOC100132053 
6 rs6908717 0.000247 NA NA LOC643954 hCG_1820801 
6 rs761840 0.000376 NA NA TMEM200A LOC285733 
6 rs9494022 0.000913 NA NA FAM8A6P LOC645175 
6 rs2846546 0.006682 PARK2 intron LOC100129958 PACRG 
6 rs9365514 0.000946 PACRG intron PARK2 LOC729658 
6 rs9458956 0.000959 LOC728275 intron QKI LOC728316 
6 rs1912668 0.007588 NA NA LOC728275 LOC728316 
6 rs4709060 0.007301 NA NA LOC728275 LOC728316 
6 rs7775504 0.008524 WDR27 intron LOC100130617 C6orf120 
6 rs1028488 0.00085 DLL1 near 3' LOC154449 DLL1 
7 rs1992025 0.000772 TMEM195 intron LOC100128217 MEOX2 
7 rs2191892 0.000494 NA NA FERD3L TWISTNB 
7 rs227951 0.000739 NA NA LOC442517 CLK2P 
7 rs2107124 0.000505 NA NA NPVF LOC100131016 
7 rs2717907 0.000985 NA NA NPVF LOC100131016 
7 rs13224312 0.000587 RALA intron LOC646999 LOC349114 
7 rs7780837 0.000881 PKD1L1 intron FLJ21075 HUS1 



43 
 

Supplementary Table 2.2 – continued. 
7 rs2708912 2.01 x 10-6 C7orf57 missense SUNC1 UPP1 
7 rs2686792 3.13 x 10-6 C7orf57 intron SUNC1 UPP1 
7 rs7794902 0.000402 NA NA STAG3L4 AUTS2 
7 rs12698713 0.000965 NA NA STAG3L4 AUTS2 
7 rs215276 0.000482 SEMA3E intron PCLO LOC100130572 
7 rs2371877 8.28 x 10-5 NA NA LOC100130572 SEMA3A 
7 rs6967487 0.009988 NA NA LOC100128334 ZKSCAN1 
7 rs4727499 0.009263 NA NA EMID2 MYLC2PL 
7 rs1017607 7.99 x 10-5 NA NA SND1 LOC100131212 
7 rs12706827 0.000969 NA NA SND1 LOC100131212 
7 rs6467557 5.00 x 10-5 CALD1 intron LOC100130187 AGBL3 
7 rs10250570 0.009738 CNTNAP2 intron LOC643308 tcag7.1231 
7 rs916514 0.000851 DPP6 intron DPP6 LOC100132707 
7 rs13221118 0.000744 MNX1 intron NOM1 LOC645249 
7 rs1049329 0.000128 PTPRN2 3' UTR tcag7.1023 LOC100127991 
8 rs11137053 0.000365 LOC100132301 intron MCPH1 AGPAT5 
8 rs9918794 0.000769 NA NA CHMP7 R3HCC1 
8 rs6988827 0.000977 NA NA NKX2-6 STC1 
8 rs13256023 0.000717 CHD7 intron RAB2A LOC442389 
8 rs2279572 0.000372 RLBP1L1 intron NPM1P6 ASPH 
8 rs2350620 5.98 x 10-5 ASPH intron hCG_1988300 LOC645551 
8 rs2882460 3.60 x 10-5 ASPH intron hCG_1988300 LOC645551 
8 rs6549 0.000516 ASPH 3' UTR hCG_1988300 LOC645551 
8 rs7812327 0.000312 ASPH intron hCG_1988300 LOC645551 
8 rs11990408 9.84 x 10-5 ASPH intron hCG_1988300 LOC645551 
8 rs11783343 0.000967 NA NA ASPH LOC645551 
8 rs1434937 0.000218 C8orf34 intron LOC728774 LOC100129096 
8 rs7016101 0.000626 C8orf34 intron LOC728774 LOC100129096 
8 rs1481278 0.000897 NA NA LOC100129096 LOC100129809 
8 rs1866897 0.001001 SULF1 intron LOC100129809 SLCO5A1 
8 rs1440333 0.009587 KCNB2 intron LOC100129527 TERF1 
8 rs297573 0.000791 NA NA PLEKHF2 C8orf37 
8 rs7839523 0.000792 DDEF1 intron FAM49B DDEF1IT1 
8 rs2649127 0.00343 NA NA KHDRBS3 LOC100129367 
9 rs2380941 0.000733 GLIS3 intron C9orf70 SLC1A1 
9 rs303723 6.73 x 10-5 NA NA NFIB ZDHHC21 
9 rs4961497 0.000681 BNC2 intron LOC648570 CNTLN 
9 rs883966 0.009408 PAX5 intron MELK LOC100128706 
9 rs2768659 0.007333 GRHPR intron ZCCHC7 LOC100132896 
9 rs662975 0.000565 NA NA TRPM3 TMEM2 
9 rs1329778 0.000146 NA NA TRPM3 TMEM2 
9 rs2771090 0.000116 NA NA OR7E116P LOC340515 
9 rs7872276 0.000896 NA NA OR13C4 OR13C3 
9 rs6477693 0.000358 C9orf4 intron C9orf5 EPB41L4B 
9 rs1887521 0.000159 PALM2 intron LOC402375 LOC100131672 
9 rs12555920 0.006403 CTNNAL1 intron C9orf6 C9orf5 
9 rs2767762 0.000235 NA NA LHX2 NEK6 
9 rs4962060 0.000429 NA NA NTNG2 SETX 
9 rs4363274 0.000895 NA NA RXRA COL5A1 
9 rs1891999 0.000978 NA NA LOC401557 C9orf62 
10 rs3750685 0.000172 ADARB2 intron C10orf109 LOC100129465 
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Supplementary Table 2.2 – continued. 
10 rs11256581 0.000483 NA NA TCEB1P3 LOC254312 
10 rs749232 0.000411 FAM107B intron FRMD4A ARMETL1 
10 rs1904694 6.40 x 10-5 PRKG1 intron A1CF CSTF2T 
10 rs1904683 8.86 x 10-5 PRKG1 intron A1CF CSTF2T 
10 rs7897633 1.07 x 10-5 PRKG1 intron A1CF CSTF2T 
10 rs7906944 6.50 x 10-6 PRKG1 intron A1CF CSTF2T 
10 rs7097412 0.009661 KIAA1274 intron NODAL PRF1 
10 rs2031517 0.004761 ZMIZ1 intron LOC283050 PPIF 
10 rs1649949 0.00057 NRG3 intron LOC727960 LOC728027 
10 rs7069120 0.00013 C10orf59 intron LOC100128990 LIPJ 
10 rs6586129 0.000104 C10orf59 intron LOC100128990 LIPJ 
10 rs809812 0.00087 FER1L3 intron LOC643863 CEP55 
10 rs2094405 0.008948 TCF7L2 intron LOC143188 hCG_1776259 
10 rs1537685 7.28 x 10-5 ATRNL1 intron TRUB1 GFRA1 
10 rs845079 0.000555 NA NA LOC100131719 GPR26 
10 rs4363506 0.000913 NA NA DOCK1 NPS 
10 rs7076452 0.000319 NA NA DOCK1 NPS 
11 rs11043097 0.000939 NA NA LOC729013 GALNTL4 
11 rs2938282 0.005736 SOX6 intron INSC AKR1B1P3 
11 rs4944448 0.000972 NA NA C11orf76 LOC100133306 
11 rs4923611 0.002851 NELL1 intron LOC100130160 ANO5 
11 rs1374616 0.000401 MPPED2 intron C11orf46 DCDC5 
11 rs3818229 0.00093 TCP11L1 intron DEPDC7 PIGCP1 
11 rs570098 0.000835 MACROD1 intron OTUB1 FLRT1 
11 rs542941 0.000399 NA NA RBM7 REXO2 
11 rs7931871 0.008592 NA NA ODZ4 LOC646112 
11 rs7949150 0.008506 NA NA LOC100129203 FAM76B 
11 rs4922828 0.000163 NELL1 intron LOC100130160 ANO5 
11 rs2886189 0.000337 NA NA DRD2 TMPRSS5 
11 rs4245155 0.000129 NA NA DRD2 TMPRSS5 
11 rs11214985 0.00054 NA NA RBM7 REXO2 
11 rs3934007 0.000486 NA NA DRD2 TMPRSS5 
11 rs633745 0.000833 PKNOX2 intron LOC729492 FLJ30719 
11 rs3740898 0.000959 PKNOX2 intron LOC729492 FLJ30719 
11 rs2155314 3.58 x 10-5 KIRREL3 intron ST3GAL4 PRR10 
11 rs1506876 0.002533 OPCML intron LOC100128095 LOC646522 
12 rs10491958 0.00086 NA NA ERC1 FBXL14 
12 rs4765914 0.009348 CACNA1C intron DCP1B LOC100129797 
12 rs887304 0.000235 EFCAB4B 3' UTR UNQ3104 PARP11 
12 rs720333 0.000766 NA NA FGF23 FGF6 
12 rs526654 0.000212 NA NA KCNA5 LOC387826 
12 rs1963810 0.00035 NA NA KCNA5 LOC387826 
12 rs1047771 0.000737 LEPREL2 missense GPR162 GNB3 
12 rs7312042 0.000312 ATF7IP intron LOC644693 FLJ22662 
12 rs10772783 2.22 x 10-5 ATF7IP intron LOC644693 FLJ22662 
12 rs2900333 0.000547 NA NA ATF7IP FLJ22662 
12 rs10841614 0.00063 NA NA SLCO1C1 SLCO1B3 
12 rs163117 0.000834 NA NA LHX5 LOC100129739 
13 rs9576827 0.000668 LHFP intron TNAP COG6 
13 rs599909 0.000401 NA NA ATXN8OS DACH1 
13 rs9573126 0.000555 NA NA FABP5L1 LOC730242 
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Supplementary Table 2.2 – continued. 
13 rs7989815 0.000791 NA NA RP11-114G1.1 LOC100129260 
13 rs9514046 0.000809 NA NA C13orf39 FLJ40176 
14 rs1049564 1.32 x 10-5 NP missense TMEM55B GAFA1 
14 rs1713420 4.25 x 10-5 NP intron TMEM55B GAFA1 
14 rs10162514 0.00061 NA NA RPS15AP3 RPL18P1 
14 rs17118957 0.00084 NA NA RPS15AP3 RPL18P1 
14 rs1555233 0.000537 NA NA RPS15AP3 RPL18P1 
14 rs8019172 0.001 NA NA COX5AP2 PTGDR 
14 rs1951210 0.000182 PPP2R5E intron GPHB5 LOC100129928 
14 rs10139749 0.000192 PLEKHH1 intron C14orf83 PIGH 
14 rs740505 3.30 x 10-5 COQ6 intron FAM161B ENTPD5 
14 rs4899503 0.000496 NA NA LIN52 VSX2 
14 rs10484153 0.000318 NA NA LOC730105 RNU3P3 
14 rs2110706 0.000239 FOXN3 intron CAP2P1 LOC400236 
14 rs3759722 0.007979 CPSF2 intron NDUFB1 SLC24A4 
14 rs10484068 0.000754 BCL11B intron RPL3P4 SETD3 
15 rs1463408 0.000361 NA NA TRPM1 LOC283710 
15 rs1157619 0.007113 MEIS2 intron LOC145845 LOC390576 
15 rs11071319 0.000598 CGNL1 intron LOC100128711 GCOM1 
15 rs875339 0.000756 RORA intron CYCSP38 VPS13C 
15 rs290312 0.000302 NA NA LOC100128015 MGC15885 
15 rs2053294 0.000773 SMAD3 intron LOC100131796 FLJ11506 
15 rs17526330 0.004241 RGMA intron CHD2 LOC100124334 
15 rs4965671 0.000684 NA NA LASS3 PRKXP1 
16 rs4608354 0.000641 A2BP1 intron LOC100131413 LOC100131080 
16 rs1573638 0.000596 NA NA LOC729993 ERCC4 
16 rs1143678 0.007228 ITGAM missense TRIM72 ITGAX 
16 rs7204044 0.007594 SLC12A3 intron NUP93 HERPUD1 
16 rs8044442 0.00076 CFDP1 intron BCAR1 TMEM170A 
16 rs11149991 0.000239 ADAMTS18 intron VN2R10P NUDT7 
16 rs1155970 2.52 x 10-5 CDH13 intron MPHOSPH6 HSBP1 
16 rs16959371 0.000691 CDH13 intron MPHOSPH6 HSBP1 
16 rs4782395 0.000775 MVD intron CYBA SNAI3 
16 rs11648894 0.000745 RNF166 intron SNAI3 C16orf84 
17 rs13422 0.000851 PMP22 3' UTR LOC441781 TEKT3 
17 rs9635758 0.00065 NA NA LOC388401 CA10 
17 rs9904424 0.005124 PSMD12 intron HELZ LOC729822 
17 rs7219896 0.006201 KIAA1303 intron LOC201259 LOC100128105 
18 rs11664521 0.000248 NA NA SMCHD1 EMILIN2 
18 rs4602126 0.000707 RNF165 intron C18orf23 LOXHD1 
18 rs2046241 0.000489 KIAA0427 intron LOC100130666 SMAD7 
18 rs2045154 0.000803 DCC intron LOC100132995 LOC100133176 
18 rs11151299 0.000805 NA NA CDH19 DSEL 
18 rs7242877 0.000979 NA NA MBP GALR1 
18 rs2850855 9.92 x 10-5 NA NA MBP GALR1 
19 rs1982074 0.000802 KRI1 missense ATG4D CDKN2D 
19 rs1549951 7.28 x 10-5 NA NA ZNF536 TSHZ3 
19 rs757638 0.008229 HIF3A intron IGFL1 PPP5C 
19 rs7259731 0.000109 NA NA LILRA5 LILRA4 
19 rs2889010 0.000898 C19orf18 intron LOC646820 ZNF606 
20 rs6039134 0.008644 ANGPT4 intron FAM110A RSPO4 
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20 rs2299676 0.003536 PLCB4 intron PLCB1 C20orf103 
20 rs6134059 0.000106 NA NA JAG1 FAT1P1 
20 rs11907253 0.000185 COX4I2 missense ID1 BCL2L1 
20 rs6060627 0.001223 BCL2L1 intron COX4I2 TPX2 
20 rs6058381 6.05 x 10-5 BCL2L1 intron COX4I2 TPX2 
20 rs6067709 0.000333 NA NA RPSAP1 NFATC2 
20 rs856336 0.000975 NA NA MRPS33P4 RPL36P1 
20 rs856327 0.000283 NA NA MRPS33P4 RPL36P1 
21 rs723855 0.007739 NA NA HSPA13 SAMSN1 
21 rs2284568 0.00019 ITSN1 intron CRYZL1 ATP5O 
21 rs2835561 0.000411 NA NA DSCR6 PIGP 
21 rs6586230 0.000317 NA NA C21orf129 RIPK4 
21 rs2839437 0.000796 NA NA ZNF295 C21orf121 
21 rs4819077 0.000953 NA NA C21orf93 COL18A1 
22 rs933241 0.000959 NA NA CYTH4 ELFN2 
22 rs5750457 0.000314 NA NA LGALS2 GGA1 
22 rs5757387 0.000214 NA NA CBX6 APOBEC3A 
22 rs5768213 4.68 x 10-5 NA NA RP11-191L9.1 LOC388915 
23 rs6520279 0.00044 NA NA NA NA 
23 rs5924090 0.000653 NA NA KLHL4 RPSAP15 
23 rs5924103 0.000621 NA NA RPSAP15 MRPS22P1 
23 rs7062843 0.000842 NA NA NA NA 
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Supplementary Table 2.3:  Clinical and serologic characteristics of the replication 
cohort 
 
 

Clinical Feature 
Cases 

AA 
n=450 

EA 
n=715 

His 
n=238 

Asian 
n=40 

Demographic 
characteristics 

Age, years* 43 (33-51) 46 (37-54) 40 (31-49) 30 (25-44) 
Female, no (%) 407 (90) 626 (88) 212 (89) 37 (92) 

 
 
 
 
 
 
ACR Clinical 
Criteria for SLE 

Malar rash, no (%) 182 (40) 408 (57) 124 (52) 25 (63) 
Discoid rash, no (%) 114 (25) 131 (18) 44 (19) 3 (8) 
Photosensitivity, no (%) 207 (46) 498 (70) 151 (63) 21 (53) 
Oral ulcers, no (%) 121 (27) 286 (40) 80 (34) 11 (27.5) 
Arthritis, no (%) 346 (77) 571 (80) 169 (71) 23 (58) 
Serositis, no (%) 190 (42) 281 (39) 83 (35) 14 (35) 
Renal disorder, no (%) 242 (54) 246 (34) 132 (56) 23 (58) 
Neurological disorder, no (%) 92 (20) 123 (17) 44 (19) 7 (18) 
Hematological disorder, no (%) 304 (68) 414 (58) 145 (61) 29 (73) 
Immunological disorder, no (%) 358 (80) 524 (73) 198 (83) 36 (90) 

 
 
Prevalence of 
Specific 
Autoantibody 
Profiles 

ANA, no (%) 434 (96) 653 (91) 221 (93) 39 (98) 
Ro, no (%) 110 (24) 139 (19) 51 (21) 11 (28) 
La, no (%) 24 (5) 44 (6) 19 (8) 2 (5) 
Sm, no (%) 56 (12) 12 (2) 15 (6) 2 (5) 
RNP, no (%) 176 (39) 57 (7) 41 (17) 11 (28) 
DNA, no (%) 143 (32) 173 (24) 54 (23) 17 (43) 

 
* values are the median (interquartile range). 
AA = African American, EA = European-American, His = Hispanic-American/Native 
American  Association analyses were not performed in the Hispanic-American/Native 
American (n=238) and Asian-American cases (n=40), due to the small number of subjects, 
but these subjects were included in the ancestry analysis to help with the designation of 
genetic ancestry and admixture in our cohort. 
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Supplementary Table 2.4:  Autoantibody associations observed in European SLE 
patients in the replication cohort 
 

CHR Locus SNP SNP type OR  
(95% CI) P value Antibody 

1 LOC730102 rs946817 Intron 1.76  
(1.19-2.61) 4.68 x 10-3 ANA 

3 SLC9A9 rs9881418 Intron 0.53  
(0.32-0.86) 1.09 x 10-2 ANA 

6 LOC105378111 rs4709060 Intergenic 0.79  
(0.67-0.94) 7.63 x 10-3 Anti_dsDNA 

16 CDH13 rs16959371 Intron 1.39  
(1.08-1.79) 9.78 x 10-3 Anti_dsDNA 

6 LOC105378111 rs1912668 Intergenic 0.8  
(0.68-0.95) 1.01 x 10-2 Anti_dsDNA 

21 RIPPLY3 rs2835561 Intergenic 0.77  
(0.63-0.95) 1.19 x 10-2 Anti_dsDNA 

1 STARD4-AS1 rs17449554 Intron 0.64  
(0.45-0.91) 1.34 x 10-2 Anti_dsDNA 

5 STARD4-AS1 rs26054 Intron 0.65  
(0.47-0.92) 1.49 x 10-2 Anti_dsDNA 

17 RPTOR rs7219896 Intron 0.74  
(0.58-0.95) 1.82 x 10-2 Anti_dsDNA 

12 ATF7IP rs7312042 Intron 0.52  
(0.36-0.74) 3.40 x 10-4 Anti_La 

12 ATF7IP rs10772783 Intron 0.5  
(0.34-0.73) 4.16 x 10-4 Anti_La 

4 KDR rs7654599 Intron 0.61  
(0.44-0.86) 4.11 x 10-3 Anti_La 

12 LINC01234 rs163117 Intergenic 0.52  
(0.31-0.87) 1.32 x 10-2 Anti_La 

12 ATF7IP rs2900333 3' UTR 2.41  
(1.17-4.95) 1.71 x 10-2 Anti_La 

10 FAM107B rs749232 Intron 0.45  
(0.23-0.87) 1.77 x 10-2 Anti_La 

11 PKNOX2 rs3740898 Intron 0.65  
(0.49-0.86) 2.25 x 10-3 Anti_RNP 

19 LILRA4 rs7259731 Near 3' 0.62  
(0.45-0.85) 3.15 x 10-3 Anti_RNP 

7 LAMTOR4 rs7785392 Intron 0.75  
(0.62-0.91) 4.41 x 10-3 Anti_RNP 

2 ANKRD44 rs6730027 Intron 0.73  
(0.58-0.91) 5.70 x 10-3 Anti_RNP 

10 NRG3 rs1649949 Intron 1.36  
(1.09-1.7) 7.53 x 10-3 Anti_RNP 

8 STC1 rs6988827 Intergenic 0.41  
(0.21-0.81) 1.04 x 10-2 Anti_RNP 

10 PRKG1 rs1904683 Intron 1.32  
(1.07-1.64) 1.13 x 10-2 Anti_RNP 

2 CRIM1 rs4670532 Intergenic 0.68  
(0.5-0.93) 1.42 x 10-2 Anti_RNP 

10 PRKG1 rs7897633 Intron 1.44  
(1.08-1.92) 1.44 x 10-2 Anti_RNP 
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Supplementary Table 2.4 – continued. 
CHR LOC102724145 SNP SNP type OR  

(95% CI) P value Antibody 

3 PALD1 rs17009067 Intron 0.77  
(0.63-0.95) 1.65 x 10-2 Anti_RNP 

3 ATF7IP rs6777677 Intergenic 0.75 
 (0.63-0.9) 1.63 x 10-3 Anti_Ro 

10 EFNA5 rs7097412 Intron 0.67  
(0.5-0.89) 6.31 x 10-3 Anti_Ro 

12 TENM4 rs10772783 Intron 0.78  
(0.65-0.94) 8.03 x 10-3 Anti_Ro 

5 TLN2 rs250253 Intron 1.32  
(1.07-1.62) 8.37 x 10-3 Anti_Ro 

11 ATF7IP rs7931871 Intron 0.77  
(0.63-0.94) 8.62 x 10-3 Anti_Ro 

15 LOC101927661 rs290312 Intergenic 0.78  
(0.64-0.94) 1.06 x 10-2 Anti_Ro 

12 EPHB1 rs7312042 Intron 0.79  
(0.66-0.95) 1.10 x 10-2 Anti_Ro 

2 FAM179A rs746784 Intron 0.76  
(0.61-0.94) 1.35 x 10-2 Anti_Ro 

3 PLEKHF2 rs931726 Intron 0.72  
(0.55-0.94) 1.41 x 10-2 Anti_Ro 

2 ANKRD44 rs6547906 Intron 0.8  
(0.66-0.96) 1.67 x 10-2 Anti_Ro 

8 ANKRD44 rs297573 Near 3' 1.33  
(1.05-1.68) 1.97 x 10-2 Anti_Ro 

2 BCL11B rs1036542 Intron 0.54  
(0.35-0.81) 3.26 x 10-3 Anti_Sm 

2 LOC730102 rs6730027 Intron 0.59  
(0.41-0.86) 5.63 x 10-3 Anti_Sm 

14 SLC9A9 rs10484068 Intron 0.44  
(0.24-0.8) 6.84 x 10-3 Anti_Sm 
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Supplementary Table 2.5:  Autoantibody associations observed in African American 
SLE patients in the replication cohort 
 

CHR Locus SNP SNP type OR  
(95% CI) P value Antibody 

15 TRPM1 rs1463408 near 5' UTR 3.08  
(1.44-6.6) 3.74 x 10-3 ANA 

14 MDGA2 rs10162514 Intron 3.21  
(1.32-7.79) 1.00 x 10-2 ANA 

8 CLVS1 rs2279572 Intron 2.91 
(1.24-6.83) 1.42 x 10-2 ANA 

9 GRHPR rs2768659 Intron 2.52  
(1.34-4.74) 4.18 x 10-3 Anti_dsDNA 

8 ASAP1 rs7839523 Intron 0.69  
(0.5-0.94) 1.90 x 10-2 Anti_dsDNA 

8 TNFRSF10A rs9918794 Near 3' 0.4  
(0.23-0.7) 1.36 x 10-3 Anti_La 

2 CCDC85A rs1159916 Intron 0.4  
(0.21-0.77) 5.90 x 10-3 Anti_La 

16 ERCC4 rs1573638 Intergenic 0.4  
(0.21-0.78) 6.74 x 10-3 Anti_La 

4 FSTL5 rs6536595 Intron 0.38  
(0.19-0.78) 8.29 x 10-3 Anti_La 

3 TNIK rs9846083 Intron 0.34  
(0.14-0.81) 1.49 x 10-2 Anti_La 

4 SLC2A9 rs4447863 Intron 0.48  
(0.26-0.88) 1.88 x 10-2 Anti_La 

10 NRG3 rs1649949 Intron 0.61  
(0.45-0.81) 6.29 x 10-4 Anti_RNP 

12 EFCAB4B rs887304 3' UTR 0.5 (0.29-
0.85) 1.12 x 10-2 Anti_RNP 

1 ST6GALNAC5 rs11577464 Intergenic 1.82  
(1.15-2.9) 1.12 x 10-2 Anti_RNP 

2 NRXN1 rs2216784 Intron 0.43  
(0.22-0.83) 1.24 x 10-2 Anti_RNP 

13 LOC105370255 rs599909 Intergenic 1.72  
(1.12-2.65) 1.37 x 10-2 Anti_RNP 

10 PALD1 rs7097412 Intron 0.54  
(0.37-0.78) 9.14 x 10-4 Anti_Ro 

2 LOC101927661 rs746784 Intron 0.58  
(0.39-0.86) 7.32 x 10-3 Anti_Ro 

11 TENM4 rs7931871 Intron 1.52  
(1.11-2.09) 9.52 x 10-3 Anti_Ro 

7 RALA rs13224312 Intron 0.63  
(0.44-0.91) 1.40 x 10-2 Anti_Ro 

17 PMP22 rs13422 3'UTR 0.61  
(0.41-0.91) 1.52 x 10-2 Anti_Ro 

14 BCL11B rs10484068 Intron 0.37  
(0.16-0.84) 1.81 x 10-2 Anti_Sm 
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Supplementary Table 2.6:  Top 5 enriched networks by Ingenuity Pathway Analysis 
 
 

ID Molecules in Network Score Focus 
Molecules 

Top Diseases and 
Functions 

1 AKAP12, AKAP13, ALS2, DCC, DYNC1I2, ERK1/2, 
FAIM3, FSH, GFPT2, GLIS3, GTPase, IFT140, Insulin, 
Lh, MGAT3, MYO10, NRG3, NRP2, PDE1C, PDE8B, 
PRKAC, PRKG1, Proinsulin, PTPRN2, RGMA, 
RNF165, SEMA3E, SH3BP4, SLC25A12, Smad1/5/8, 
SORBS1, Sos, SYN1, SYN3, ZNF423 

57 26 Cell Morphology, 
Cellular 
Compromise, 
Cellular Assembly 
and Organization 

2 Actin, Akt, BCL11B, CALD1, Calmodulin, CDH13, 
CNTNAP2, EPB41L2, ERK, estrogen receptor, 
EXOC6B, F Actin, Focal adhesion kinase, GRIA2, 
Histone h3, Histone h4, IL33, Immunoglobulin, LPP, 
Mapk, OSBPL10, PDGF BB, PI3K (complex), Pka, 
PNP, RALA, SCD5, SLFN12L, SRC (family), Tgf beta, 
TRPM3, Vegf, YEATS2, ZFPM2, ZMIZ1 

34 18 Cancer, Cell-
mediated Immune 
Response, Cellular 
Development 

3 APBB2, CALM1 (includes others), CBX1, CCDC168, 
COQ6, CSNK1A1, CSNK2A1, DOPEY2, E2F1, ERC1, 
FAM114A1, FAM83B, FIS1, HSP90AA1, HSP90AB1, 
KIAA0922, KIF20A, LCORL, LDLRAD4, MAGEA1, 
MCTP2, MID1, MIEF1, MYH9, PADI2, PAK3, PARK2, 
PRR14L, RAB6B, RABGAP1, REXO2, SLC39A14, 
THUMPD3, UBC, ZBTB16 

28 15 Cancer, Endocrine 
System Disorders, 
Organismal Injury 
and Abnormalities 

4 ADRB2, ALDH6A1, BNC2, CALD1, CAPZA2, CEP76, 
CHD7, CWC22, DCTD, EDIL3, FSCN1, KANK1, 
KCNK10, KHDRBS2, miR-124-3p (and other 
miRNAs w/seed AAGGCAC), MYH9, NDEL1, 
PAFAH1B1, PAFAH1B2, PAFAH1B3, PINX1, PLS3, 
PPP1CA, PPP1R18, RB1, RBFOX1, RBM24, SASS6, 
SLC7A14, TBC1D15, TMOD3, TPM2, UBC, UHMK1, 
ZCCHC24 

23 13 Lipid Metabolism, 
Small Molecule 
Biochemistry, 
Cellular 
Development 

5 APP, ASPH, BDNF, beta-estradiol, CAB39L, CAMK1, 
CaMKII, CDADC1, CDC37, Ck2, corticosterone, 
CWF19L2, EIF3M,F10, Actin, FOXN3, KIRREL3, 
LINGO2, LURAP1L, MARCKS, Metalloprotease, 
MPPED2, NAPB, NPHS1, NXPH1, PCP4L1, PPP6R2, 
RAB3A, RELN, Ryr, SHC1, SYN2, TJP1, TPM1, 
UBXN7 

19 12 Behavior, Nervous 
System 
Development and 
Function, Cell-To-
Cell Signaling and 
Interaction 

 
  



52 
 

CHAPTER 3: Patterns of transcriptional response to 1,25-dihydroxyvitamin D3 and 

bacterial lipopolysaccharide in primary human monocytes2 

 

3.1: Abstract 

 

The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), plays an important 

immunomodulatory role, regulating transcription of genes in the innate and adaptive 

immune system. The present study examines patterns of transcriptome-wide response to 

1,25D and the bacterial lipopolysaccharide (LPS) in primary human monocytes, to 

elucidate pathways underlying the effects of 1,25D on the immune system. Monocytes 

obtained from healthy individuals of African-American and European-American ancestry 

were treated with 1,25D, LPS, or both simultaneously. The addition of 1,25D during 

stimulation with LPS induced significant up-regulation of genes in the antimicrobial and 

autophagy pathways and down-regulation of pro-inflammatory response genes compared 

to LPS treatment alone. A joint Bayesian analysis enabled clustering of genes into patterns 

of shared transcriptional response across treatments. The biological pathways enriched 

within these expression patterns highlighted several mechanisms through which 1,25D 

could exert its immunomodulatory role. Pathways such as mTOR signaling, EIF2 signaling, 

IL-8 signaling and Tec Kinase signaling were enriched among genes with opposite 

transcriptional responses to 1,25D and LPS, respectively, highlighting the important roles 

of these pathways in mediating the immunomodulatory activity of 1,25D. Furthermore, a 

                                                        
2 Citation for chapter: Kariuki SN, Blischak JD, et al. (2016). “Patterns of transcriptional response to 
1,25-dihydroxyvitamin D3 and bacterial lipopolysaccharide in primary human monocytes.” G3 
(Bethesda). Epub 2016/03/16. doi: 10.1534/g3.116.028712. 
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subset of genes with evidence of inter-ethnic differences in transcriptional response was 

also identified, suggesting that in addition to the well-established inter-ethnic variation in 

circulating levels of vitamin D, the intensity of transcriptional response to 1,25D and LPS 

also varies between ethnic groups. We propose that dysregulation of the pathways 

identified in this study could contribute to immune-mediated disease risk. 

 

3.2: Introduction 

 

Vitamin D plays an important immunomodulatory role through a transcriptional 

mechanism [32, 37-39]. In the immune system, the active form of vitamin D, 1,25-

dihydroxyvitamin D3 (1,25D), binds the vitamin D receptor (VDR), which translocates into 

the nucleus where it modulates the transcription of genes with immune function such as 

cathelicidin antimicrobial peptide (CAMP) , defensin genes such as β-defensin 4A (DEFB4A) 

, and autophagy genes such as autophagy related 5 (ATG5) [32, 37-39, 59, 138, 139]. In 

monocytes/macrophages, 1,25D can be produced intracellularly from the inactive form, 

25-hydroxyvitamin D3 (25D), which is found abundantly in circulation. The circulating 

levels of 25D vary greatly across individuals and ethnic groups [42, 43, 45]. Attesting to the 

important role of vitamin D in immune response, low levels of 25D have been linked to 

increased susceptibility to tuberculosis (Tb) [60, 61]. Moreover, 25D supplementation in 

individuals with hypovitaminosis D resulted in an enhanced antimicrobial response [32, 

59, 91]. Although many studies have been conducted on the inter-individual and inter-

ethnic variation in the circulating inactive 25D levels, with corresponding epidemiological 
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links to immune-related diseases [47, 48, 81, 83, 84], little is known about inter-individual 

and inter-ethnic variation in the transcriptional response to active 1,25D.  

Previous studies of 1,25D activity in immune cells highlight its complex 

immunomodulatory role, regulating activities such as enhancement of the response to 

Mycobacterium tuberculosis (M. tb) in THP-1 macrophage cell lines [67], down-regulation of 

immune-related pathways such as interferon signaling in peripheral blood mononuclear 

cells (PBMCs) [72], and induction of a tolerogenic phenotype as well as an attenuation of 

the pro-inflammatory response in dendritic cells [41, 65, 66]. Though the 

immunoregulatory role of 1,25D in different innate immune cell types is complex, it 

generally results in the attenuation of an intense pro-inflammatory response, which can 

have toxic consequences such as sepsis and septic shock [78-80].  

In this study, we focused on characterizing the transcriptional response to 1,25D in 

primary monocytes in the presence or absence of a pro-inflammatory stimulus, bacterial 

lipopolysaccharide (LPS). Stimulating monocytes with LPS enabled examination of how an 

inflammatory stimulus modifies the transcriptional response to 1,25D in monocytes. This 

analysis highlighted several biological pathways that are modulated by 1,25D in the 

absence of LPS (e.g. oxidative phosphorylation and mitochondrial dysfunction) as well as 

others that are modulated by LPS and reversed by 1,25D (e.g. pro-inflammatory cytokine 

signaling pathways). In addition, we identified inter-ethnic differential expression patterns, 

suggesting that the well-established inter-ethnic variations in the vitamin D pathway 

extend to the intensity of transcriptional response to LPS and 1,25D. 
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3.3: METHODS 

 

Ethics Statement 

All donors to Research Blood Components (http://researchbloodcomponents.com/) 

and Sanguine Biosciences (https://www.sanguinebio.com/) sign an IRB-approved consent 

form giving permission to collect blood, and use it for research purposes. This study did not 

require IRB review at the University of Chicago because blood samples were not shipped 

with individually identifiable information. 

 

Subjects 

All subjects were healthy donors collected by Research Blood Components and 

Sanguine Biosciences. Self-reported ethnicity, age, gender, date, and time of blood drawing 

were recorded for each donor. Buffy coats from 10 African-American (AA) and 10 

European-American (EA) subjects were shipped within 24 hours of collection.  We 

processed samples in multiple batches, balanced by ethnic group. Serum samples from the 

donors were sent to the Clinical Chemistry Laboratory of the University of Chicago to 

determine 25-hydroxyvitamin D3 (25D) levels and parathyroid hormone (PTH) levels. 

Total serum 25D and PTH levels were determined using electrochemiluminescence 

detection assays (cat. no. 06506780160 and cat. no. 11972103160 respectively, Roche 

Diagnostics Corporation, Indianapolis, IN, USA).  

 

Monocyte culture and treatment 



56 
 

We isolated peripheral blood mononuclear cells (PBMCs) from the buffy coats of the 

20 subjects by density gradient centrifugation using Ficoll-Paque PLUS medium (GE 

Healthcare Life Sciences, Pittsburgh, PA). We isolated monocytes from the PBMCs by 

positive selection using magnetic CD14 MicroBeads according to the supplier’s protocol 

(Miltenyi Biotec, San Diego, CA). We cultured isolated monocytes (1x106 cells/mL) in RPMI 

1640 medium (Gibco, Life Technologies, Grand Island, NY), 25mg/mL Gentamicin (Gibco) 

and 10% charcoal-stripped fetal bovine serum (Gibco) in 24-well plates. Monocytes were 

cultured in three replicates for 24 hours for each of the following treatments: 1) Vehicle 

solution containing 1% Ethanol and 99% culture medium, as a negative control, 2) 100nM 

of 1,25D, 3) 10ng/mL of LPS in the vehicle solution, and 4) 100nM of 1,25D and 10ng/mL 

of LPS (experimental design summarized in Supplementary Figure 3.1). These four 

treatments are abbreviated E, V, L, and V+L, respectively. 

 

Transcriptome analysis 

We pooled the three replicates for each treatment and extracted total RNA from the 

pool using Qiagen RNeasy Plus mini kit (Valencia, CA). We extracted RNA from 80 samples 

consisting of the 20 subjects that each received 4 treatments, in 10 batches each balanced 

by ethnic group. RNA concentration and RNA integrity score (RIN) were recorded for each 

sample on the 2100 Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA) 

(average RNA concentration and RIN scores in each ethnic group summarized in 

Supplementary Table 3.1). Total RNA was reverse transcribed into cDNA, labeled, 

hybridized to Illumina (San Diego, CA, USA) Human HT-12 v3 Expression Beadchips and 

scanned at the University of Chicago Functional Genomics Core facility. The microarrays 
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were hybridized in three batches, and we recorded the array batch number for each sample 

to be used as a covariate in subsequent analyses.  

We performed low-level microarray analyses using the Bioconductor software 

package lumi [140] in R, as previously described [141]. Briefly, we annotated probes by 

mapping their sequence to RefSeq (GRCh37) transcripts using BLAT. We discarded probes 

that mapped to multiple genes to avoid ambiguity in the source of a signal due to cross-

hybridization of similar RNA molecules. We also discarded probes containing one or more 

HapMap SNPs to avoid spurious associations between expression measurements and 

ethnicity, due to allele frequency differences between ethnic groups. We applied variance 

stabilization to all arrays, discarded poor quality probes, and quantile normalized the 

arrays using the default method implemented in the lumiN function. After these filters, 

probes mapping to 10,958 genes were used in downstream analyses (data available in 

Supplementary File 3.1). 

 

Differential expression analysis 

We tested each gene for differential expression (DE) using a linear mixed-effects 

model with the R package, lme4 [142]. The model included fixed effects for ancestry and 

the three treatment conditions (V, L, V+L), as well as interaction effects between ancestry 

and the treatments. It also included a random effect to model the differences between the 

individuals. Lastly, the model included covariates for the technical factors with the 

strongest effects on the expression data (p < 0.05), as determined by their association with 

the principal components described below, including array batch, age, baseline 25D levels, 

baseline PTH levels, RNA concentration and RIN scores. P-values were obtained using the R 
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package, lmerTest, which provides a summary function with p-values added for the t-test 

based on the Satterthwaite approximation for denominator degrees of freedom [143]. To 

correct for multiple testing, we estimated the false discovery rate (FDR) using the “qvalue” 

function in R, based on the Storey method [144]. The FDR for DE was set at 1%. To identify 

genes that were DE between the two ancestries, we tested the significance of the fixed 

interaction effects between ancestry and the treatments. Here we used a more relaxed FDR 

threshold of 10% to determine significance, due to the smaller sample size in the inter-

ethnic comparison (10 AA’s and 10 EA’s). 

We also performed a joint Bayesian analysis using the R package Cormotif [145], 

which jointly models expression data across different experiments enabling classification 

of genes into patterns of shared and distinct differential expression. Genes are assigned to 

correlation motifs, which are the main patterns of differential expression obtained from the 

shared information across experiments, which in our study are treatments and ethnic 

groups. We regressed out the technical covariates described above from the expression 

data using the limma package removeBatchEffect [146], and used the residuals as input. 

We used a modified version of Cormotif as described in [147] where the original code was 

modified to return the cluster likelihood for each gene to enable downstream analyses. 

Also, since Cormotif is non-deterministic, we ran each test 100 times and kept the result 

with the largest maximum likelihood estimate.  

 

Gene set enrichment analysis 

We performed gene set enrichment analyses using the commercially available 

software Ingenuity Pathway Analysis (IPA). We compared DE genes with curated 
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functional attribution lists organized by canonical pathway function. The magnitude of 

over-representation of a particular canonical pathway in the gene list from our study was 

calculated as the ratio of the number of genes from our data set that map to the pathway 

divided by the total number of reference genes in that pathway in the IPA database. 

Statistical significance of the observed enrichment of a particular pathway was determined 

using Benjamini-Hochberg multiple testing corrected p-values provided by IPA [148]. 

 

Identifying vitamin D receptor binding sites near DE genes 

We reanalyzed published data sets of VDR ChIP-seq, which used THP-1 monocytic 

cell lines treated with 1,25D and LPS or 1,25D alone [149], and FAIRE-seq, which used 

THP-1 cells treated with 1,25D [150]. First, we aligned sequence reads to the human 

reference (GRCh37) using BWA backtrack 0.7.5 [151]. Second, we kept only sequence reads 

with phred-scaled mapping quality ≥ 30 using samtools v1.1 [152]. Third, PCR duplicates 

were removed with Picard v 1.130 (http://broadinstitute.github.io/picard/). For the ChIP-

seq data sets, we confirmed the quality of data sets by strand cross-correlation (SCC) 

analysis [153] implemented in the R script “run_spp_nodups.R” packaged in 

phantompeakqualtools (https://code.google.com/p/phantompeakqualtools/). Statistically 

significant peaks were identified using MACS version 2 [154] with the following essential 

command line arguments: macs2 callpeak --bw X -g hs --qvalue=0.05 -m 5 50, where X is a 

length of the bandwidth that was defined as a fragment length calculated by SCC for the 

ChIP-seq data or as 200 bp for the FAIRE-seq data reported in Seuter et al. (2013). 

To identify VDR response elements, we considered peaks that overlapped 

completely or partially between the ChIP-seq data after 1,25D and LPS treatment and the 
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FAIRE-seq data. We then annotated them using HOMER [155] to find the closest gene to 

each peak and, among these genes, we selected those that were DE genes in response to 

1,25D (V) and the combined 1,25D + LPS (V+L) treatments from the linear mixed-effects 

analysis. Enrichment of VDR response elements was determined using Fisher’s exact test, 

comparing peaks in DE genes to those in non-DE genes.  

We also examined the enrichment of VDR binding sites among genes clustered in 

each expression pattern from the joint Bayesian analysis using Cormotif. To inclusively 

identify VDR binding sites, we merged the ChIP-seq data from THP-1 cells treated with 

1,25D and LPS treatment with data from THP-1 cells treated with 1,25D alone. We 

examined overlap between the genes that were closest to the peaks, and the genes in each 

expression pattern. Enrichment of VDR peaks was then determined using Fisher’s exact 

test, comparing VDR peaks in each expression pattern with peaks in the “Non-DE” pattern.  

 

Data availability 

The raw microarray data files have been deposited in NCBI's Gene Expression 

Omnibus (GEO) [156] and are accessible through GEO Series accession number GSE78083 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78083). The normalized 

expression values, the results from the linear mixed-effects model, and the results from 

Cormotif are provided in Supplementary File 3.1. 

 

3.4: Results 

 

Sources of transcriptome-wide variation 
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To evaluate the variation in transcriptional response to 1,25D in the innate immune 

system in the presence and absence of an inflammatory stimulus, we cultured primary 

monocytes obtained from 10 African-American and 10 European-American healthy donors 

in four different conditions in parallel: i. EtOH (i.e. the vehicle control, or E), ii. LPS (L), iii. 

1,25 D (V), and iv. 1,25D plus LPS (V + L); the experimental design is illustrated in 

Supplementary Figure 3.1. Transcript levels were measured with gene expression arrays 

for each treatment condition and each individual, resulting in a total of 80 transcriptome 

data sets. Relevant covariates, including serum levels of 25D, were measured or recorded 

and used in downstream analyses (see Methods). Although there was significant inter-

individual and inter-ethnic variation in serum 25D levels in our sample of donors 

(Supplementary Table 3.1), this variable was not correlated with the transcriptional 

response to LPS, 1,25D or their combination (Supplementary Figure 3.5). This suggests 

that our in vitro system is not affected by 25D levels in vivo.   

To evaluate the sources of variation in the overall transcriptome data, we performed 

a principal components analysis (PCA) of the variance-stabilized log2-transformed 

expression data using the prcomp function in R. Principal component 1 (PC1) separates the 

samples by LPS treatment, accounting for 22% of the total variation in gene expression and 

reflecting the large effect of LPS on the transcriptome (Supplementary Figure 3.2 (A) and 

(C), Supplementary Table 3.2), while PC2 separates the samples by 1,25D treatment, and 

accounts for 8.6% of the total variation in gene expression (Supplementary Figure 3.2 (A) 

and (D), Supplementary Table 3.2). PC3 and PC4, which account for 6.7% and 5.8% of 

variation respectively, separate the samples by the three array processing batches 

(Supplementary Figure 3.2 (B), (E) and (F), Supplementary Table 3.2). We also tested 
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for associations between the PCs and the different covariates recorded for each sample 

(average sample covariates are compared between ancestries in Supplementary Table 

3.1). PC1 was associated with RNA concentration (p = 1.54 x 10-5, r2 = 0.219), PC2 was 

weakly associated with the RNA integrity number (RIN) scores (p = 9.0 X10-3, r2 = 0.086), 

while PC3 was associated with age (p = 1.36 x 10-6, r2 = 0.266), baseline 25D levels (p = 1.0 

x 10-3, r2 = 0.136), baseline PTH levels (p = 6.1 x 10-6, r2 = 0.237), and RIN score (p = 5.0 x 

10-3, r2 = 0.099) (Supplementary Table 3.2). The effects of array processing batch, RNA 

concentration, RIN scores, serum 25D and PTH levels were subsequently included as 

covariates in the linear mixed-effects model for differential expression.  

After regressing out the covariates using the limma package removeBatchEffect, and 

performing PCA on the residuals of the covariates-corrected expression data, we observed 

that PC1 and PC2 separated the samples by treatment (Supplementary Figure 3.3 (A), (C) 

and (D), Supplementary Table 3.3), but PC1 was still associated with RNA concentration 

(p = 3.56 x10-5, r2 = 0.203) while PC2 was still associated with RIN score (p = 3 x10-3, r2 = 

0.113) (Supplementary Table 3.3). PC3, which accounted for 5% of the total variation in 

gene expression, was associated with sample (p = 4.5 x10-7, r2 = 0.286), and ancestry (p = 

1.04 x10-5, r2 = 0.227), highlighting the effect of inter-individual and inter-ethnic variation 

on gene expression (Supplementary Figure 3.4, Supplementary Table 3.3). 

 

Opposite effects of 1,25D and LPS on the transcriptome 

Using the main effects for each treatment from the linear mixed-effects model, we 

identified genes that were DE in response to the different treatment conditions at a FDR of 

1%. 2,888 genes were DE in response to 1,25D alone relative to vehicle (V vs. E). Gene set 
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enrichment analysis identified metabolic processes, such as oxidative phosphorylation and 

the tricarboxylic acid (TCA) cycle, enriched among up-regulated genes (Supplementary 

Table 3.4). Pathways that play important roles in regulating translation processes, such as 

EIF2 signaling and mTOR signaling, were also significantly enriched among up-regulated 

genes, indicating an important role of 1,25D in regulating translation. Immune responses 

involving chemokine signaling, B and T cell signaling, as well as various pro-inflammatory 

signaling cascades such as Tec kinase signaling, Phospholipase C signaling, and Integrin 

signaling were enriched amongst the down-regulated genes, consistent with the 

immunomodulatory function of 1,25D.  

There was a strong transcriptomic response to LPS treatment relative to vehicle (L 

vs. E), with 4,461 genes DE at a FDR of 1%. Pathways enriched among LPS responsive 

genes highlight the opposite direction of transcriptional response to 1,25D and LPS, where 

pro-inflammatory immune response pathways were enriched among up-regulated genes, 

while oxidative phosphorylation and translational control pathways were enriched among 

down-regulated genes (Supplementary Table 3.4), indicating the importance of these 

pathways in the pro-inflammatory effects induced by LPS stimulation. 

 

Effects of combined 1,25D + LPS treatment on the transcriptome 

The combined treatment of 1,25D + LPS resulted in 4,720 genes significantly DE 

relative to vehicle (V + L vs. E). We also examined the transcriptional response of the 

combined 1,25D+LPS treatment relative to LPS (V + L vs. L) in an attempt to isolate the 

effect of 1,25D on the transcriptome in the presence of LPS, and identified 2,404 genes 

significantly DE in this treatment category. 
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The pattern of response to V + L vs. E followed a similar pattern to LPS treatment 

alone (L vs. E), with similar pathways enriched among genes in these treatment categories 

(Supplementary Table 3.4), probably because of the overwhelming transcriptional 

response to LPS. Genes significantly DE in response to V + L vs. L, which effectively 

subtracts the transcriptional effects of LPS, were similar to the genes significantly DE in 

response to 1,25D treatment alone (V vs. E), with similar pathways enriched.  

We detected additional pathways enriched among genes significantly DE in 

response to the combined V + L treatments, both relative to vehicle and relative to LPS. 

These included adipogenesis and insulin receptor signaling pathways, both involved in 

lipid metabolic processes, which were enriched among up-regulated genes. IL-4 signaling, 

which is associated with allergy and asthma through development of T cell mediated 

immune responses [157, 158], was significantly enriched among down-regulated genes 

(Supplementary Table 3.4). Pathways enriched among genes responsive to the combined 

V + L treatment indicate a regulatory role of 1,25D in these pathways specifically in the 

context of LPS stimulation. 

 

Bayesian analysis of shared transcriptional response across treatments and ethnic 

groups 

To further dissect the effects of 1,25D and LPS on the transcriptome, we sought to 

identify the shared and distinct patterns of transcriptional response across treatments and 

across ethnic groups. A popular approach to this question is to investigate the overlap of 

DE genes between conditions at a given FDR threshold. However, this approach fails to 

account for incomplete power to detect DE genes, thus exaggerating the differences in the 
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transcriptional response between the conditions. In order to identify shared patterns of 

transcriptional response across treatments and ancestry while accounting for incomplete 

power, we implemented a joint Bayesian analysis with the R/Bioconductor package 

Cormotif [145]. Genes were classified into different response patterns, or correlation 

motifs, across treatments and ancestry (Figure 3.1). Since Cormotif does not distinguish 

the direction of effect across treatments, we used the results of the linear mixed-effects 

model in conjunction with the Cormotif approach to establish direction of response in the 

different response patterns (Figure 3.2).  

A total of 5,737 genes were classified in the “No response” pattern, which includes 

genes whose expression levels were unchanged across all the treatments (Figures 3.1 and 

3.2A). This is broadly consistent with the results of the linear mixed-effects model, with 

80% of these genes being also classified as non-DE for any treatment in the linear mixed-

effects model. 

Genes that responded to all the treatments were classified in the “All” pattern and 

included 265 genes whose expression levels changed across all treatments and ancestries 

(Figures 3.1 and 3.2B). Genes classified in this Cormotif had response patterns to 1,25D 

and LPS that were both concordant (i.e. up- or down-regulated in both treatments) and 

discordant (i.e. up-regulated in one treatment and down-regulated in the other). Genes that 

were up-regulated in all treatments (top-right quadrant, Figure 3.2B) included CD14, 

which encodes a surface antigen expressed on monocytes that is involved in mediating 

response to bacterial LPS. Genes that were down-regulated in all treatments included 

chemokine signaling genes such as CCL13 (bottom-left quadrant, Figure 3.2B). The 

discordant response patterns included genes that were up-regulated by 1,25D and down-
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regulated by LPS (top-left quadrant, Figure 3.2B), with EIF2 signaling and mTOR signaling 

pathways significantly enriched among these genes (Figure 3.3). This is consistent with 

the opposite transcriptional effects of 1,25D and LPS on genes in these pathways that were 

highlighted in the linear mixed-effects analysis. Genes that were down-regulated by 1,25D 

and up-regulated by LPS (bottom-right quadrant, Figure 3.2B) included some cytokine 

receptor genes such as IL7R and IL2RA which are important components of the pro-

inflammatory signaling cascade.  

The “All except V+L” pattern included 1,364 genes whose expression levels changed 

in all treatments except the combined 1,25D+LPS relative to vehicle (V + L vs. E). All the 

genes in this Cormotif pattern were discordant in their response to 1,25D and LPS resulting 

in a neutral effect in the response to the combined V + L vs. E (Figures 3.1 and 3.2C). 

Genes that were responsive to the combined V + L vs. L followed a similar direction of 

response to the genes DE in response to the individual V vs. E treatment, suggesting that 

the response to 1,25D at these genes is not dramatically influenced by LPS. The genes that 

were up-regulated by 1,25D and down-regulated by LPS (top-left quadrant, Figure 3.2C) 

were enriched for EIF2 and mTOR signaling pathways, similar to the discordant genes in 

the “All” category (Figure 3.3). In addition, oxidative phosphorylation and mitochondrial 

dysfunction pathways were significantly enriched amongst these genes. On the other hand, 

genes that were down-regulated by 1,25D and up-regulated by LPS (bottom-right 

quadrant, Figure 3.2C) were enriched for various pro-inflammatory response pathways, 

including Granulocyte Adhesion and Diapedesis, IL-8 signaling, NF-kB signaling, TNFR2 

signaling and Role of NFAT in regulation of the immune response (Figure 3.3).  
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Genes responsive to 1,25D were divided into three Cormotif patterns: “1,25D”, 

“1,25D+LPS”, and “1,25D all”. The “1,25D” pattern included 350 genes that were DE in 

response to V vs. E alone (Figures 3.1 and 3.2D). Oxidative phosphorylation and 

mitochondrial dysfunction pathways were significantly enriched among up-regulated 

genes (Figure 3.3). Interestingly, the oxidative phosphorylation pathway genes enriched in 

this Cormotif pattern responded similarly to the genes in the same pathway classified in 

the “All except V+L” Cormotif pattern, in that they are significantly induced by 1,25D. 

However, the oxidative phosphorylation pathway genes in the “1,25D” pattern respond 

exclusively to 1,25D, while those in the “All except V+L” Cormotif pattern are up-regulated 

by 1,25D and down-regulated by LPS (Figure 3.3, Supplementary Figure 3.6). This 

indicates a context-specific response profile among genes in the same pathway, where 

some genes in the oxidative phosphorylation pathway are uniquely regulated by 1,25D, 

whereas other genes in the same pathway are regulated by both 1,25D and LPS.  

The “1,25D+LPS” pattern included 270 genes that responded to 1,25D only in the 

presence of LPS. This pattern captured genes that were DE in response to the combined V + 

L vs. E, and V + L vs. L (Figures 3.1 and 3.2E). Although there were no enriched pathways 

among genes in this Cormotif pattern at an FDR of 5%, some interesting pathways, such as 

eNOS signaling and cholesterol biosynthesis pathway, were represented among the down-

regulated genes at a FDR of 27%, suggesting a role for 1,25D in modulating these pathways 

upon LPS stimulation.  

The “1,25D all” pattern included 782 genes that were DE in response to 1,25D in the 

presence and in the absence of LPS (Figures 3.1 and 3.2F). Genes in the antimicrobial 

pathway were included in this category, such as the anti-bacterial peptide gene CAMP, 
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autophagy genes ATG3, ATG5, ATG2A and ATG9A and the intracellular pattern recognition 

receptor gene NOD2. These genes were significantly up-regulated in response to 1,25D 

alone or in combination with LPS. The Role of JAK family kinases in IL-6-type Cytokine 

Signaling was the most significantly enriched pathway amongst the up-regulated genes 

(Figure 3.3), and included genes such as MAPK14, PTPN11 and STAT5B, all of which could 

be crucial for triggering antimicrobial responses in monocytes. Biological pathways 

enriched among down-regulated genes in this category included B cell receptor signaling, 

Tec kinase signaling and Leukocyte extravasation signaling (Figure 3.3 and 

Supplementary Figure 3.7), highlighting the role of 1,25D in repressing pro-inflammatory 

response pathways. Interestingly, immunological and inflammatory diseases were among 

the most enriched disease categories from the IPA analysis among the down-regulated 

genes (Supplementary Table 3.6 and Supplementary Figure 3.7), suggesting a 

protective role of 1,25D in immunological diseases. Overall, the “1,25D all” response 

pattern illustrates the important dual immunomodulatory role played by 1,25D in 

monocytes, where antimicrobial pathway genes are up-regulated, while pro-inflammatory 

pathway genes associated with immunological and inflammatory disease are down-

regulated by 1,25D in the presence or absence of LPS stimulation. 

The “LPS” pattern included 1,400 genes whose expression levels changed in 

response to L vs. E and the combined V + L vs. E (Figures 3.1 and 3.2G). Consistent with 

the results from the linear mixed-effects model, pro-inflammatory pathways were 

significantly enriched among the up-regulated genes in this category, including IL-8 

signaling, NF-kB signaling, IL-17 signaling, and TNFR2 signaling among others (Figure 

3.3). Among the down-regulated genes, tRNA charging, mitochondrial dysfunction, the TCA 
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Cycle II, galactose metabolism pathway and folate transformation pathway were 

significantly enriched (Figure 3.3 and Supplementary Table 3.5), indicating that LPS 

modulates transcription of genes in these metabolic pathways.  
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Figure 3.1: Transcriptional response patterns shared across the different treatments 
and ancestries identified by implementing a joint Bayesian analysis using Cormotif. 
The shading of each box represents the posterior probability that a gene assigned to a given 
expression pattern (rows) is differentially expressed in individuals from a particular 
ancestry in response to each treatment (columns). V=Response to 1,25D, relative to 
vehicle; L = Response to LPS relative to vehicle; V+L = Response to 1,25D+LPS relative to 
vehicle; V+L.vs.L = Response to 1,25D+LPS relative to LPS; EA = European-American; AA = 
African-American. 
 

 

 

 

 

 



71 
 

Figure 3.2: Direction of response in the different correlation motifs. Patterns of 
differential response to single treatment with 1,25D (vertical axis) or LPS (horizontal axis) 
for each correlation motif are shown in A-D and F-H.  E shows patterns of differential 
response to the combined treatment with 1,25D and LPS relative to LPS (vertical axis) and 
1,25D and LPS relative to vehicle (horizontal axis). Genes are color coded based on q-values 
< 0.01 from linear mixed-effects analysis as follows: Red = DE in response to both 1,25D 
and LPS; Blue = DE in response to 1,25D; Green = DE in response to LPS; Grey = not DE.  
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Figure 3.2 – continued. 
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Figure 3.3: Sharing of enriched biological pathways across Cormotifs. The table shows 
the biological pathways that were enriched (FDR < 0.05) in more than one Cormotif 
subdivided based on the direction of transcriptional response (up-regulated genes in light 
grey and down-regulated genes in dark grey) and the treatment (V=Response to 1,25D, 
relative to vehicle; L = Response to LPS relative to vehicle; V+L = Response to 1,25D+LPS 
relative to vehicle; V+L.vs.L = Response to 1,25D+LPS relative to LPS). 
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Genes with inter-ethnic differential response 

The “Inter-ethnic” pattern was of particular interest, as it identified 164 genes with 

evidence of differential responses to LPS treatments between AA’s and EA’s, with a 

stronger response in EA’s compared to AA’s (Figures 3.1 and 3.2H).  

We also interrogated the degree of inter-ethnic differences in transcriptional 

response using the main interaction term for treatment and ancestry in the linear mixed-

effects model. We identified 15 genes with strong inter-ethnic differences in response to V 

+ L vs. E at a FDR < 10%. These genes include PPAP2B which encodes a member of the 

phosphatidic acid phosphatase (PAP) family and has been implicated in coronary artery 

disease risk [159, 160], STEAP3 which encodes an endosomal ferrireductase required for 

efficient transferrin-dependent iron uptake, and AKNA which encodes a transcription factor 

that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154 

on lymphocyte cell surfaces, which are critical for antigen-dependent-B-cell development 

(Figure 3.4A). Interestingly, 13 out of the 15 genes showed more significant differential 

responses in EA’s (Supplementary Figure 3.8), similar to the pattern observed in the 

“Inter-ethnic” Cormotif pattern.  

To account for the effect of LPS, and examine the extent to which the inter-ethnic 

differential response patterns were modulated by 1,25D, we examined inter-ethnic 

differential response to the combined V + L vs. L. PPAP2B and KIAA1958 were the only 

statistically significant genes identified in this category (p = 2.96 x10-6 and 9.62 x10-6, 

respectively), with both of these genes more significantly differentially expressed in EA’s 

(Figure 3.4B).  
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Figure 3.4: Inter-ethnic differential response patterns. Genes with inter-ethnic 
differences in transcriptional responses to 1,25D+LPS relative to vehicle (A), and relative to 
LPS (B) were identified using the interaction term for treatment and ancestry in the linear 
mixed-effects model (FDR < 0.10). The boxplots show examples of these genes with 
different log-fold change in transcript levels between the two ethnic groups. AA = African-
American; EA = European-American.  
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Figure 3.4 – continued. 
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Regulatory elements near DE genes 

We examined the overlap between genes DE in response to 1,25D and the combined 

1,25D+LPS treatments in our primary monocytes, and published datasets for VDR ChIP-seq 

[149] and FAIRE-seq [150] performed in THP-1 monocytic cells, to examine whether there 

was enrichment of open chromatin regions and VDR binding sites near the transcription 

start sites of DE genes. We found a significant enrichment of VDR binding sites amongst 

genes DE in response to V vs. E (p = 4.56 x 10-11), V + L vs. E (p = 3.97 x10-8) and V + L vs. L 

(p = 1.54 x 10-7) (Supplementary Table 3.7). There was an overlap of 201 genes between 

the DE genes, VDR ChIP-seq and FAIRE-seq datasets, highlighting genes such as CAMP and 

CD14, which contain open chromatin regions and VDR binding sites near the transcription 

start site; these 201 genes are potentially direct VDR targets.  

In addition, we examined the enrichment of VDR binding sites across the different 

Cormotif patterns (Table 3.1). The genes in the “1,25D-all” and “All” Cormotif patterns had 

the highest enrichment of VDR binding sites (p = 6.88 x10-13 and 2.57 x10-8 respectively), 

indicating a higher proportion of potentially direct VDR targets represented in these 

Cormotif patterns. Genes in the “1,25D” Cormotif pattern were not significantly enriched 

for VDR binding sites, suggesting that the presence of LPS, in addition to 1,25D, is 

important to enable the 1,25D-VDR transcriptional activity in primary monocytes.  
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Table 3.1: Proportion of genes in each Cormotif pattern containing vitamin D 

receptor (VDR) binding sites. Enrichment of VDR peaks in each category was calculated 

using Fisher’s exact test, comparing genes in each Cormotif pattern to those in the “Non-

DE” Cormotif pattern. 

 

Cormotif 
pattern Total No. Genes 

No. Genes with 
VDR binding 
site 

Proportion of 
genes with VDR 
binding site 

Enrichment p-
value 

Non-DE 5737 186 0.03 - 
All 265 31 0.12 2.57 x10-8 
All except V+L 1364 65 0.05 0.01 
1,25D 350 17 0.05 0.13 
1,25D+LPS 270 23 0.09 1.49 x10-4 
1,25D-all 782 76 0.10 6.88 x10-13 
LPS 2026 96 0.05 3.79 x10-3 
Inter-ethnic 164 8 0.05 0.27 
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3.5: Discussion 

 

We used a transcriptomic approach to characterize the immunomodulatory role of 

1,25D in the presence of a pro-inflammatory stimulus to identify the mechanisms through 

which 1,25D exerts its immunomodulatory role.  We analyzed differential expression 

patterns using both a linear mixed-effects analysis, which modeled individual treatment 

comparisons, and a Bayesian analysis using the Cormotif method, which jointly modeled 

differential expression across all treatments and ethnic groups, thereby accounting for 

incomplete power. A similar joint Bayesian framework has been successfully applied to 

expression quantitative trait loci (eQTL) mapping to distinguish between shared and 

context-specific eQTLs [161, 162]. Our joint Bayesian analysis enabled clustering of DE 

genes into distinct transcriptional response patterns, with pathways enriched within these 

transcriptional patterns highlighting mechanisms that mediate the immunomodulatory 

role of 1,25D.  

Metabolic pathways involving oxidative phosphorylation were enriched among up-

regulated genes in the “All except V+L” and “1,25D” Cormotif patterns (Figure 3.3). We 

highlight context-specific response pattern of genes within this pathway, where some 

genes were uniquely induced by 1,25D, while genes in other parts of the pathway were 

regulated by both 1,25D and LPS. The crucial role played by 1,25D in regulating oxidative 

phosphorylation was previously reported in PBMCs and dendritic cells [41, 66, 72], and 

this regulation of metabolic reprogramming by 1,25D is thought to be crucial for 

controlling function, growth, proliferation, and survival of various immune cell subsets 

[163, 164]. The fact that LPS down-regulated genes in the oxidative phosphorylation 
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pathway confirms previous reports indicating that LPS induces a metabolic shift away from 

oxidative phosphorylation to anaerobic glycolysis in macrophages and dendritic cells to 

enable ATP production [164]. This effect is similar to the Warbug effect in tumor cells 

whose high energy demand is met by switching the metabolic profile away from the 

tricarboxylic acid cycle and the oxidative phosphorylation pathway, towards glycolysis 

thereby enabling rapid ATP production [164, 165]. Previous work done in mouse 

macrophages and dendritic cells [166, 167] indicated that a metabolic shift towards 

glycolysis mediated the pro-inflammatory response, and this pro-inflammatory response 

could be attenuated by pharmacologic inhibition of glycolysis. From our study, this subset 

of oxidative phosphorylation pathway genes that were down-regulated by LPS, were then 

up-regulated by addition of 1,25D in combination with LPS (Figure 3.3). Therefore, 

oxidative phosphorylation could be one of the mechanisms through which 1,25D 

attenuates the pro-inflammatory response induced by LPS in monocytes, and the subset of 

genes in this pathway that we identified which were modulated by both LPS and 1,25D 

could be central to this mechanism.  

The mTOR signaling pathway was consistently enriched among genes that were up-

regulated by 1,25D and down-regulated by LPS in the “All” and “All except V+L” patterns. 

mTOR signaling was previously implicated in inhibition of pro-inflammatory response in 

LPS-stimulated monocytes/macrophages and dendritic cells, as well as in the maintenance 

of a tolerogenic phenotype in dendritic cells [41, 168-170]. Inhibition of mTOR resulted in 

increased pro-inflammatory cytokine production by LPS-stimulated 

monocytes/macrophages and dendritic cells [168, 170] and increased T cell proliferation 

[41, 170], implicating a role of mTOR in regulating the pro-inflammatory response. The 
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genes in this pathway were significantly down-regulated by LPS; however this direction of 

response was reversed by addition of 1,25D in combination with LPS (Figure 3.3), 

implying that 1,25D attenuates the pro-inflammatory response by up-regulating mTOR 

signaling. In addition, the genes in this pathway play important roles in regulating 

translation initiation, and include the ribosomal protein gene RPS27, and the eukaryotic 

translation initiation factor gene EIF2A, which encodes the eukaryotic initiation factor 2 

(eIF-2α) that has been shown to be a downstream target of the vitamin D receptor [171]. 

Therefore, regulation of translation initiation through targeting the mTOR signaling 

pathway could be a novel mechanism for the attenuation of the pro-inflammatory response 

mediated by 1,25D in monocytes. 

Furthermore, the EIF2 signaling pathway was also enriched among genes up-

regulated by 1,25D and down-regulated by LPS in the “All” and “All except V+L” patterns, 

and this result is consistent with the individual treatment DE analysis using the linear 

mixed-effects model (Table 3.1, Supplementary Tables 3.4 and 3.5). EIF2 signaling plays 

an important role in regulating translation initiation in response to stress, and was 

implicated in regulating pro-inflammatory cytokine production and bacterial invasion in 

mouse embryonic fibroblast cells (MEFs) [172]. Shrestha et al. (2012) reported that the 

Yersinia-encoded virulence factor, YopJ, inhibited EIF2 signaling in MEFs. Similarly in our 

study, LPS consistently down-regulated genes in the EIF2 signaling pathway, in a 

mechanism that might be similar to that triggered by YopJ. In addition, Shrestha et al. 

(2012) observed that mutant MEFs with defective EIF2 signaling that were infected with 

different bacterial pathogens experienced enhanced cytotoxicity compared to wild type, 

due to increased bacterial invasion, indicating a direct role of EIF2 signaling in the 
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antimicrobial response. 1,25D could hence exert its antimicrobial role in monocytes by up-

regulating genes in the EIF2 signaling pathway.  

The dual immunomodulatory role of 1,25D was also highlighted by the genes 

clustered in the “1,25D-all” pattern. While 1,25D broadly down-regulated genes in the pro-

inflammatory cytokine and signaling cascade pathways, it also played a crucial role in 

inducing important antimicrobial and autophagy genes in this Cormotif pattern. The most 

significantly enriched biological pathway among the up-regulated genes was the Role of 

JAK family kinases in IL-6-type cytokine signaling, which contained genes such as STAT5B 

which regulates signaling in diverse biological processes. Previous reports indicate that the 

TLR2/1-mediated induction of the vitamin D-dependent antimicrobial pathway requires 

IL-15 activity [173], which could be mediated via STAT5 activation which has been shown 

to be important for IL-15 signaling [174, 175]. 1,25D could hence regulate genes in this 

pathway to trigger antimicrobial responses in monocytes.  

By profiling transcriptional response in monocytes from individuals of African-

American and European-American ancestries, we identified some patterns of inter-ethnic 

variation in response to LPS, and the combined 1,25D+LPS treatment in both the linear 

mixed-effects analysis and the joint Bayesian analysis, while correcting for inter-individual 

variation in baseline levels of circulating 25D.  This raises the intriguing possibility that 

inter-ethnic variation in the vitamin D pathway is not limited to the well-established 

differences in circulating levels of 25D [42, 43, 45], but it may extend to the intensity of the 

transcriptional response to LPS and 1,25D. Interestingly, most of the genes with inter-

ethnic differential response showed more significant differential responses in EA’s. The fact 

that most of the inter-ethnic transcriptional differences were detected in the response to 
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LPS or to the combined 1,25D+LPS, both relative to vehicle, suggests that these two ethnic 

groups differ in the pro-inflammatory transcriptional response. However, two genes had 

significant inter-ethnic differences in transcriptional response to the combined 1,25D+LPS 

relative to LPS (Figure 3.4B), suggesting that they differ more specifically in their response 

to vitamin D. 

We further identified enrichment of VDR ChIP-seq and FAIRE-seq peaks among 

genes DE in response to the combined 1,25D+LPS treatments. This enrichment was 

particularly strong for genes in the “1,25D-all” and “All” Cormotif patterns, suggesting that 

a substantial proportion of these genes are under direct regulation of the 1,25D-VDR 

transcription factor complex. Intriguingly, we did not detect an enrichment of VDR binding 

sites near genes in the “1,25D” Cormotif.  Different explanations could account for this 

observation. One is that the combination of both 1,25D and LPS is important for stimulating 

the transcriptional activity of the 1,25D-VDR transcriptional complex in human monocytes 

[32, 59, 149]. On the other hand, because the genes in the “1,25D” Cormotif are observed to 

respond only to one treatment condition, it is possible that they are enriched for false 

positives relative to genes in other Cormotifs that are found to respond to multiple 

treatment conditions. Another caveat to this analysis is that we examined the overlap of 

VDR ChIP-seq peaks from published data sets with experimental conditions that were 

different to ours. While we treated primary monocytes with 100nM 1,25D and 10 ng/mL 

LPS for 24 hours, the VDR ChIP-seq data was obtained from THP-1 monocytic cell lines 

cultured with 100 ng/mL LPS for 24 hours, and then treated with 10nM 1,25D for 80 

minutes [149]. Future VDR ChIP-seq studies with uniform experimental conditions in 
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primary monocytes will enable better characterization of the regulatory architecture of 

1,25D response genes. 

Overall, through transcriptomic profiling, our study characterizes the dual 

immunomodulatory role of 1,25D in primary human monocytes, highlighting the 

importance of biological pathways such as mTOR signaling and EIF2 signaling in mediating 

this immunomodulatory role. The pathways highlighted in this study may provide 

mechanistic clues for the observed associations between insufficient levels of circulating 

serum 25D and increased disease risk. The inter-individual and inter-ethnic variation in 

intracellular transcriptional response to 1,25D has not been previously characterized, and 

could serve as an additional contribution to disease risk. 
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3.6: Appendix: Supplementary Material 

 

Supplementary Figure 3.1: Experimental Design. Primary monocytes were isolated 
from peripheral blood mononuclear cells (PBMCs) obtained from twenty healthy 
individuals of African-American (AA) and European-American (EA) ancestry. The 
monocytes were cultured in triplicate for 24 hours under four treatment conditions: i. the 
vehicle control (ethanol or E), ii. 1,25D (V), iii. LPS (L), and iv. 1,25D + LPS (V + L). The 
three replicates for each treatment were pooled for RNA extraction, and genome-wide gene 
expression was measured using Illumina microarrays. 
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Supplementary Figure 3.2: Principal components analysis (PCA) of the expression 
data indicating the sources of transcriptome-wide variation. (A) Plot of PC1 vs. PC2, 
both of which captured the effects of treatment on the transcriptome. (B) Plot of PC3 vs. 
PC4, both of which captured array batch effects. (C) Boxplot showing effects of LPS 
treatment on expression data captured by PC1. (D) Boxplot showing effect of 1,25D 
treatment on expression data captured by PC2. (E) The array batch effects were captured 
by PC3 (E), and PC4 (F). The proportion of variation explained by the PCs is in parentheses. 
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Supplementary Figure 3.3: Principal components analysis (PCA) of covariates-
corrected expression data indicating the sources of transcriptome-wide variation 
after correction for technical covariates. (A) Plot of PC1 vs. PC2, both of which captured 
treatment effects. (B) Plot of PC3 vs. PC4 which shows that the array batch effects were 
corrected for. (C) Boxplot showing effect of LPS treatment on expression data captured by 
PC1.  (D) Boxplot showing effect of 1,25D treatment on expression data captured by PC2. 
Array batch effects were no longer evident in the covariates-corrected expression data (E) 
and (F). The proportion of variation explained by the PCs is in parentheses. 
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Supplementary Figure 3.4: Inter-ethnic variation. Boxplots showing inter-ethnic 
variation in covariates-corrected expression data captured by PC3 and PC4, with the 
proportion of variation explained in parenthesis.  
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Supplementary Figure 3.5: Examining the effect of serum 25D levels on 
transcriptional response. (A) Distribution of p-values from simple linear model 
measuring association between baseline 25D levels and log-fold change response to each of 
the four treatment conditions (1,25D, LPS, 1,25D+LPS relative to vehicle, and 1,25D+LPS 
relative to LPS). (B) Correlation between principal components 1 and 2 (PC1 and PC2), and 
baseline 25D levels. PC1 and PC2 captured the effect of LPS and 1,25D on the 
transcriptome.  
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Supplementary Figure 3.5 - continued. 
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Supplementary Figure 3.6: Treatment-specific response patterns in the oxidative 
phosphorylation pathway. Boxplots of genes in the oxidative phosphorylation pathway 
clustered in the “1,25D” and “All except V+L” Cormotif patterns with treatment-specific 
response patterns. Genes representing the five respiratory complexes are shown in A-E. 
Oxidative phosphorylation pathway genes in the “1,25D” pattern were responsive only to 
1,25D, while genes in the “All except V+L” pattern were responsive to both 1,25D and LPS 
in opposite directions.  
 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

A: Complex I  

B: Complex II  
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Supplementary Figure 3.6 - continued. 

 
 

 
 
 
 

 
 
 
 

 

C: Complex III  

D: Complex IV 

E: Complex V 
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Supplementary Figure 3.7: Network of down-regulated genes in the “1,25D-all” 
Cormotif pattern. Biological pathways enriched among these genes are highlighted in 
cyan. Immunological and Inflammatory diseases enriched among these genes are 
highlighted in orange, while genes associated with diseases are circled in purple. 
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Supplementary Figure 3.8: Genes with significant inter-ethnic differential 
expression. Boxplots of genes with different log fold change in transcript levels between 
the two ethnic groups in response to 1,25D+LPS relative to vehicle (V + L vs. E) at a FDR < 
0.10. 13 genes showed stronger response in EA’s, while the 2 genes indicated with asterisks 
(AKNA, and DEGS1) showed stronger response in AA’s. AA = African-American; EA = 
European-American. 
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Supplementary Figure 3.8 - continued. 
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Supplementary Table 3.1: Sample characteristics. Averaged sample covariates data are 
compared across ancestries, with p-values obtained from t-test. 
 

Covariates  EA AA p-value 

Age 29.7 30.1 0.90 

Gender (F/M)  3/7 0/10 2.04 x10-4 

Serum 25D concentration (nM) 52.8 35.3 6.92 x10-6 

Serum PTH (pM) 27.6 32.7 0.26 

RNA concentration (ng/mL) 53.6 44.0 0.16 

RIN 8.2 8.6 0.90 
 
EA = European-American, AA =African-American, F = Female, M = Male. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

Supplementary Table 3.2: Principal components analysis of variance-stabilized log2-
transformed expression data. (A) P-values for association between first six principal 
components (PCs) and sample covariates, with proportion of variance in expression data 
explained by each principal component at the bottom row. (B) R-squared values measuring 
effect sizes of associations between PCs and covariates. 
 
P-values PC1 PC2 PC3 PC4 PC5 PC6 
Sample ID 0.966 0.993 0.205 0.094 5.01 x10-5 6.17 x10-5 
Array Batch 0.164 0.265 4.95 x10-6 3.44 x10-16 0.392 0.757 
Treatment 6.08 x10-17 4.68 x10-6 0.332 0.334 0.695 0.711 
Month 0.303 0.801 0.834 0.001 0.043 1.0 x10-3 
Age 0.853 0.946 1.36 x10-6 0.617 4.0 x10-3 0.097 
Gender 0.314 0.547 0.272 0.863 0.124 0.739 
Ancestry 0.711 0.911 0.399 0.403 0.047 0.004 
Serum 25D 0.205 0.920 1.0 x10-3 0.147 0.743 0.929 
Serum PTH 0.569 0.615 6.1 x10-6 0.055 0.758 0.336 
RNA concentration 1.54 x10-5 0.986 0.029 0.158 0.935 0.061 
RIN 0.160 9.0 x10-3 5.0 x10-3 0.277 0.524 0.973 
       
 PC1 PC2 PC3 PC4 PC5 PC6 
Proportion of Variance 0.223 0.086 0.067 0.058 0.039 0.034 
 
 
R-squared values PC1 PC2 PC3 PC4 PC5 PC6 
Sample ID 2.47 x10-5 1.12 x10-6 0.021 0.037 0.196 0.191 
Array Batch 0.025 0.016 0.241 0.586 0.010 1.0 x10-3 
Treatment 0.604 0.242 0.012 0.012 2.0 x10-3 2.0 x10-3 
Month 0.014 1 x10-3 1 x10-3 0.139 0.053 0.140 
Age 4.56 x10-3 6.01 x10-5 0.266 3 x10-3 0.103 0.036 
Gender 0.013 5.0 x10-3 0.016 3.95 x10-4 0.031 1 x10-3 
Ancestry 0.002 1.65 x10-4 9 x10-3 9 x10-3 0.051 0.103 
Serum 25D 0.021 1.35 x10-4 0.136 0.027 1.0 x10-3 1.05 x10-4 
Serum PTH 0.004 3.0 x10-3 0.237 0.048 1.0 x10-3 0.012 
RNA concentration 0.219 3.89 x10-6 0.061 0.026 8.80 x10-5 0.045 
RIN 0.026 0.086 0.099 0.016 5 x10-3 1.0 x10-4 
 
 
 

 

 

B. 

A. 
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Supplementary Table 3.3: Principal components analysis of variance-stabilized log2-
transformed expression data adjusted for covariates. (A) P-values for association 
between first six principal components (PCs) and sample covariates, with proportion of 
variance in expression data explained by each principal component at the bottom row. (B) 
R-squared values measuring effect sizes of associations between PCs and covariates. 
 
P-values PC1 PC2 PC3 PC4 PC5 PC6 
Sample ID 0.937 0.716 4.5 x 10-7 7.0 x 10-3 0.041 3.50 x 10-4 
Array Batch 0.853 0.865 0.961 0.938 0.963 0.989 
Treatment 1.62 x 10-17 2.76 x 10-7 0.715 0.402 0.865 0.996 
Month 0.829 0.843 0.955 0.927 0.956 0.987 
Age 0.634 0.714 0.810 0.886 0.882 0.799 
Gender 0.969 0.940 0.081 0.151 0.299 0.056 
Ancestry 0.866 0.689 1.04 x 10-5 1.0 x 10-3 0.017 1.66 x 10-6 
Serum 25D 0.518 0.888 0.037 0.129 0.253 0.026 
Serum PTH 0.381 0.992 0.536 0.850 0.851 0.565 
RNA concentration 3.56 x 10-5 0.754 0.667 0.045 0.378 0.820 
RIN score 0.345 3.0 x 10-3 0.516 0.576 0.374 0.499 
       
 PC1 PC2 PC3 PC4 PC5 PC6 
Proportion of Variance 0.248 0.109 0.050 0.042 0.034 0.031 
 
 
R-squared values PC1 PC2 PC3 PC4 PC5 PC6 
Sample ID 8.34 x 10-5 2.0 x 10-3 0.286 0.090 0.054 0.156 
Array Batch 4.52 x 10-4 3.83 x 10-4 3.16 x 10-5 8.09 x 10-5 2.92 x 10-5 2.53 x 10-6 
Treatment 0.617 0.295 2.0 x 10-3 9.0 x 10-3 3.83 x 10-4 3.50 x 10-7 
Month 0.001 1.0 x 10-3 4.30 x 10-5 1.10 x 10-4 3.97 x 10-5 3.44 x 10-6 
Age 0.003 2.0 x 10-3 1.0 x 10-3 2.72 x 10-4 2.94 x 10-4 1.0 x 10-3 
Gender 1.99 x 10-5 7.58 x 10-5 0.040 0.027 0.014 0.047 
Ancestry 3.79 x 10-4 2.0 x 10-3 0.227 0.140 0.073 0.262 
Serum 25D 6.0 x 10-3 2.62 x 10-4 0.056 0.030 0.017 0.063 
Serum PTH 0.010 1.31 x 10-6 5.0 x 10-3 4.76 x 10-4 4.64 x 10-4 4.0 x 10-3 
RNA concentration 0.203 1.0 x 10-3 2.0 x 10-3 0.052 0.010 1.0 x 10-3 
RIN score 0.012 0.113 6.0 x 10-3 4.0 x 10-3 0.010 6.0 x 10-3 
 
 
 
 
 
 

A. 

B. 
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Supplementary Table 3.4: Biological pathways enriched at a FDR < 0.05 among genes 
significantly DE in response to single treatment with 1,25D or LPS, identified using 
linear mixed-effects model. The biological pathways are stratified by direction of 
transcription response, where up-regulated genes are indicated in green while down-
regulated genes are indicated in red. The biological pathways are also grouped according 
to the similar response patterns to 1,25D in the V vs. E (1,25D relative to vehicle) and V + L 
vs. L (1,25D+LPS relative to LPS) treatment categories, and the similar response patterns 
to LPS in the L vs. E (LPS relative to vehicle) and V + L vs. E (1,25D+LPS relative to vehicle) 
treatment categories. 
 
 

Biological Pathway 

V vs. E 

V + L vs. L 

L vs. E 

V + L vs. E 

EIF2 Signaling         
mTOR Signaling       
Oxidative Phosphorylation        
Mitochondrial Dysfunction        
Adipogenesis pathway       
Insulin Receptor Signaling       
fMLP Signaling in Neutrophils        
NRF2-mediated Oxidative Stress Response        
Signaling by Rho Family GTPases       
Role of NFAT in Regulation of the Immune Response         
Chemokine Signaling       
Remodeling of Epithelial Adherens Junctions        
Antigen Presentation Pathway       
Androgen Signaling         
Germ Cell-Sertoli Cell Junction Signaling        
Phagosome maturation       
Tec Kinase Signaling       
Phospholipase C Signaling       
Integrin Signaling        
Role of JAK1, JAK2 and TYK2 in Interferon Signaling       
T Helper Cell Differentiation        
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages        
OX40 Signaling Pathway       
PI3K Signaling in B Lymphocytes        
IL-8 Signaling        
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses        
Dendritic Cell Maturation        
CD28 Signaling in T Helper Cells       
B Cell Receptor Signaling        
Communication between Innate and Adaptive Immune Cells        
NF-kB Signaling        
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Supplementary Table 3.4 – continued.  
Mismatch Repair in Eukaryotes       
G-Protein Coupled Receptor Signaling       
Protein Ubiquitination Pathway       
IL-4 Signaling       
Leukocyte Extravasation Signaling        
IL-10 Signaling       
IL-6 Signaling       
Acute Phase Response Signaling       
TNFR2 Signaling       
TNFR1 Signaling       
Glucocorticoid Receptor Signaling       
CD40 Signaling       
IL-17 Signaling       
LPS-stimulated MAPK Signaling       
Toll-like Receptor Signaling       
JAK/Stat Signaling       
iNOS Signaling       
B Cell Activating Factor Signaling       
Apoptosis Signaling       
IL-15 Signaling       
CD27 Signaling in Lymphocytes       
IL-1 Signaling       
IL-2 Signaling       
Role of JAK family kinases in IL-6-type Cytokine Signaling       
T Cell Receptor Signaling       
IL-9 Signaling       
Oncostatin M Signaling       
IL-22 Signaling       
IL-12 Signaling and Production in Macrophages       
VDR/RXR Activation       
Differential Regulation of Cytokine Production in Macrophages and T Helper Cells by IL-
17A and IL-17F 

    

tRNA Charging     
Fatty Acid beta-oxidation I     
Galactose Degradation I (Leloir Pathway)     
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Supplementary Table 3.5: Biological pathways enriched at a FDR < 0.05 among genes 
in the different Cormotif patterns. The pathways are stratified by direction of 
transcription response in each Cormotif pattern, where up-regulated genes are indicated in 
green while down-regulated genes are indicated in red. For the pathways enriched among 
genes in the "All" and "All except V+L" patterns, green = genes up-regulated by 1,25D and 
down-regulated by LPS, red = genes down-regulated by 1,25D and up-regulated by LPS. 
 
 

Biological Pathway 

All 

All except V+L 

1,25D
 

1,25D
-all 

LPS 

EIF2 Signaling           
Regulation of eIF4 and p70S6K Signaling           
mTOR Signaling           
Purine Nucleotides De Novo Biosynthesis II           
tRNA Charging           
Spermidine Biosynthesis I           
Adenine and Adenosine Salvage I           
Inosine-5'-phosphate Biosynthesis II           
Oxidative Phosphorylation           
Mitochondrial Dysfunction           
Granulocyte Adhesion and Diapedesis           
IL-8 Signaling           
NF-κB Signaling           
IL-17A Signaling in Fibroblasts           
PPAR Signaling           
TNFR2 Signaling           
Role of NFAT in Regulation of the Immune Response           
Unfolded protein response           
Mechanisms of Viral Exit from Host Cells           
4-1BB Signaling in T Lymphocytes           
phagosome maturation           
Induction of Apoptosis by HIV1           
STAT3 Pathway           
TWEAK Signaling           
UDP-N-acetyl-D-glucosamine Biosynthesis II           
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid 
Arthritis           
CXCR4 Signaling           
IL-10 Signaling           
Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of 
Influenza           
Apoptosis Signaling           
Macropinocytosis Signaling           
Adipogenesis           
Role of JAK family kinases in IL-6-type Cytokine Signaling           
RhoGDI Signaling           
B Cell Receptor Signaling           
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Supplementary Table 3.4 – continued. 
Chemokine Signaling           
fMLP Signaling in Neutrophils           
Actin Nucleation by ARP-WASP Complex           
RhoA Signaling           
Integrin Signaling           
Tec Kinase Signaling           
Hereditary Breast Cancer Signaling           
Regulation of Actin-based Motility by Rho           
p70S6K Signaling           
Ephrin Receptor Signaling           
Role of BRCA1 in DNA Damage Response           
NRF2-mediated Oxidative Stress Response           
Signaling by Rho Family GTPases           
Actin Cytoskeleton Signaling           
CD28 Signaling in T Helper Cells           
Axonal Guidance Signaling           
FAK Signaling           
Non-Small Cell Lung Cancer Signaling           
N-acetylglucosamine Degradation II           
CCR3 Signaling in Eosinophils           
Remodeling of Epithelial Adherens Junctions           
Leukocyte Extravasation Signaling           
Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes           
Epithelial Adherens Junction Signaling           
IL-4 Signaling           
Glioma Signaling           
IL-6 Signaling           
Role of IL-17A in Arthritis           
IL-17A Signaling in Airway Cells           
Role of IL-17F in Allergic Inflammatory Airway Diseases           
TREM1 Signaling           
CD40 Signaling           
Dendritic Cell Maturation           
IL-17 Signaling           
Acute Phase Response Signaling           
Type II Diabetes Mellitus Signaling           
Glucocorticoid Receptor Signaling           
Role of IL-17A in Psoriasis           
RANK Signaling in Osteoclasts           
Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes           
Agranulocyte Adhesion and Diapedesis           
Type I Diabetes Mellitus Signaling           
Amyloid Processing           
HGF Signaling           
T Helper Cell Differentiation           
NF-κB Activation by Viruses           
Toll-like Receptor Signaling           
IL-22 Signaling           
Hypoxia Signaling in the Cardiovascular System           
Cholecystokinin/Gastrin-mediated Signaling           
EGF Signaling           
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Supplementary Table 3.4 – continued. 
Erythropoietin Signaling           
TNFR1 Signaling           
Gαq Signaling           
Role of Tissue Factor in Cancer           
Chondroitin and Dermatan Biosynthesis           
April Mediated Signaling           
PEDF Signaling           
PKCθ Signaling in T Lymphocytes           
Activation of IRF by Cytosolic Pattern Recognition Receptors           
Graft-versus-Host Disease Signaling           
JAK/Stat Signaling           
PI3K Signaling in B Lymphocytes           
LPS-stimulated MAPK Signaling           
B Cell Activating Factor Signaling           
GM-CSF Signaling           
Molecular Mechanisms of Cancer           
Pyridoxal 5'-phosphate Salvage Pathway           
G-Protein Coupled Receptor Signaling           
IL-2 Signaling           
MIF-mediated Glucocorticoid Regulation           
Gα12/13 Signaling           
Acute Myeloid Leukemia Signaling           
Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis           
IL-15 Signaling           
Circadian Rhythm Signaling           
HMGB1 Signaling           
IL-1 Signaling           
Death Receptor Signaling           
RAR Activation           
IL-12 Signaling and Production in Macrophages           
Role of JAK1, JAK2 and TYK2 in Interferon Signaling           
IL-9 Signaling           
Antioxidant Action of Vitamin C           
Wnt/β-catenin Signaling           
Glutaryl-CoA Degradation           
Isoleucine Degradation I           
Tryptophan Degradation III (Eukaryotic)           
Fatty Acid β-oxidation I           
Galactose Degradation I (Leloir Pathway)           
Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via Mevalonate)           
Ketolysis           
Mevalonate Pathway I           
Heme Biosynthesis II           
Cell Cycle Control of Chromosomal Replication           
Folate Transformations I           
TCA Cycle II (Eukaryotic)           
Superpathway of Methionine Degradation           
Tetrapyrrole Biosynthesis II           
Folate Polyglutamylation           
Ketogenesis           
Dolichyl-diphosphooligosaccharide Biosynthesis           
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Supplementary Table 3.6: Diseases enriched among down-regulated genes in the 
“1,25D-all” Cormotif pattern at a FDR < 0.05. B-H p-value* = Benjamini-Hochberg 
multiple testing corrected p-value. 
 
 
Disease 
Category 

 B-H p-
value* 

Genes down-regulated in “1,25D-all” Cormotif pattern 

Inflammatory 
Response 

6.24 x 10-5 DPYSL2,GAS6,SGK1,DUSP3,TMSB10/TMSB4X,ICOSLG/LOC102723996,CF
L1,RRAS,PLEC,ANXA2,RAP1A,ABCA7,OGG1,MTMR4,CAPN1,ALCAM,PIK3C
D,ARHGAP1,ACTG1,CNN2,HAMP,RAB32,POU2F2,PRDX1,IL21R,HYOU1,TN
FSF10,MMP25,ANPEP,DUSP2,SASH3,TNFSF12,DOCK2,ORAI1,RNASE2,C12
orf4,IFNGR2,GNAQ,TOB1,CD58,NRROS,KIAA0226,GPR183,ABHD6,GNAI3,
LY96,WAS,IMPDH1,TNFSF13,RBPJ,ARHGDIA,CD81,CH25H,RGS1,HYAL2,N
AGK,TNFRSF4,PFN1,IDI1,IL12RB1,HSPA5,CD300A,RHOB,LTBR,SH3KBP1,
STK17B,S100A10,NBEAL2,P4HB,IL2RG,PTPN6,BMP2K,MALT1,NFKBID,FZ
D5,MGAT2,ABCD1,SPRED1,CCL24,OTULIN,HSP90B1,CCDC88A,AHNAK,DU
SP10,CD22,PRKCA,TPMT,CALR,NAIP,IRF4,PRMT2,AP3D1,SMAD7,SOD1,PL
XND1,TNFRSF14,BTK,ZBTB46,CORO1A,TLR6,CTSC,DNM1L,LGALS1,MSN 

Immunological 
Disease 

1.55 x 10-3 RFXANK,CD81,DPYSL2,RGS1,NAGK,TNFRSF4,IDI1,IL12RB1,GAS6,SGK1,PT
TG1,DDB2,HSPA5,RB1,SEC24D,RHOB,OLIG2,XPO1,LTBR,ICOSLG/LOC102
723996,STK17B,NBEAL2,P4HB,IL2RG,PTPN6,CFL1,RRAS,DLEU2,TSPAN3
3,MALT1,ARHGDIB,ABCA7,OGG1,DVL2,MTMR4,CAPN1,CECR6,BTG2,RASS
F4,ALCAM,PIK3CD,ARHGAP1,ACTG1,POU2F2,PRDX1,IL21R,DAGLA,TNFSF
10,DUSP2,TTC37,AHNAK,TNFSF12,DUSP10,DOCK2,EAF2,CD22,PALD1,BL
M,ORAI1,PRKCA,CALR,ATP1B1,IRF4,TGFBI,SMAD7,IFNGR2,TOB1,CD58,S
OD1,TNFRSF14,BTK,ZBTB46,CRELD2,SIRT2,MUM1,WAS,TNFSF13,TLR6,C
ORO1A,ARHGDIA,RBPJ,FEN1,DNM1L,SEPT6,MSN,LGALS1 

Inflammatory 
Disease 

1.55 x 10-3 TNFRSF4,GAS6,IL21R,TNFSF10,HSPA5,HSP90B1,DUSP10,LTBR,STK17B,P
RKCA,CALR,NBEAL2,IL2RG,PTPN6,IRF4,RRAS,SMAD7,TOB1,TSPAN33,SO
D1,ABCA7,TNFRSF14,BTK,CORO1A,ALCAM,RBPJ,LGALS1 

Neurological 
Disease 

1.55 x 10-3 SPRED1,PFN1,TNFRSF4,VPS35,GAS6,IL21R,CWF19L1,TNFSF10,SETX,HSP
A5,HSP90B1,FANCD2,DUSP10,DHTKD1,FGD4,LTBR,RTN2,STK17B,PRKCA
,CALR,IL2RG,IRF4,TGFBI,RRAS,GNAQ,TOB1,LRSAM1,LZTR1,SOD1,TNFRSF
14,KIAA0226,SLC33A1,CORO1A,ALCAM,RBPJ,LGALS1 

Hematological 
Disease 

4.78 x 10-3 HYAL2,TNFRSF4,SGK1,GAS6,PTTG1,DDB2,HSPA5,RB1,SEC24D,RHOB,OLI
G2,XPO1,LTBR,STK17B,NBEAL2,IL2RG,CFL1,DLEU2,TSPAN33,ANXA2,MA
LT1,ABCA7,OGG1,DVL2,MTMR4,CECR6,CAPN1,BTG2,RASSF4,PIK3CD,ACT
G1,ARHGAP1,POU2F2,PRDX1,IL21R,TNFSF10,DAGLA,MKL1,HSP90B1,DU
SP10,EAF2,DOCK2,CD22,PALD1,BLM,TPMT,IRF4,TGFBI,IFNGR2,CD58,SO
D1,TNFRSF14,BTK,CRELD2,SIRT2,WAS,MUM1,TLR6,FEN1,DNM1L,SEPT6,
LGALS1 

Hereditary 
Disorder 

2.32 x 10-2 RFXANK,PFN1,VPS35,PTTG1,CWF19L1,SETX,HSPA5,HSP90B1,AHNAK,TN
FSF12,DOCK2,DHTKD1,FGD4,RTN2,ORAI1,CALR,IL2RG,PTPN6,TGFBI,PLE
C,LRSAM1,SOD1,ARHGDIB,KIAA0226,BTK,SLC33A1,IMPDH1,PIK3CD,ARH
GDIA,ARHGAP1 

Hypersensitivity 
Response 

3.52 x 10-2 BTK,IL2RG,TNFRSF4,MTMR4,WAS,CAPN1,CORO1A,C12orf4,PIK3CD,DUSP
2,CD300A,ORAI1 
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Supplementary Table 3.6 – continued. 
Cancer 3.52 x 10-2 CD81,TUBA1B,PHLDA1,ARHGAP26,TNFRSF4,GAS6,NDRG2,SGK1,PTTG1,K

LF6,MCUR1,DDB2,POTEG,HSPA5,CACYBP,VASH1,RB1,SEC24D,RHOB,OLIG
2,DHTKD1,XPO1,LTBR,PLCL1,TMSB10/TMSB4X,ICOSLG/LOC102723996,
STK17B,S100A10,NBEAL2,PTPN6,IL2RG,CFL1,DLEU2,PLEC,TSPAN33,SIP
A1L2,ANXA2,ARHGDIB,ABCA7,OGG1,DVL2,MTMR4,TES,CECR6,BTG2,RAS
SF4,KIDINS220,ALCAM,KLHL12,PIK3CD,ACTG1,EMILIN2,POU2F2,PRDX1,
IL21R,HMGN1,HYOU1,DAGLA,TNFSF10,MKL1,ANPEP,USO1,CCDC88A,HSP
90B1,ACTR3,FANCD2,TNFSF12,DOCK2,EAF2,CD22,PALD1,BLM,PRKCA,O
RAI1,CALR,IRF4,MAP3K6,TGFBI,DROSHA,SMAD7,CD58,SOD1,TNFRSF14,
BTK,LACC1,ZBTB46,CRELD2,SIRT2,WAS,MUM1,IMPDH1,TNFSF13,TLR6,F
EN1,DNM1L,CTSC,SEPT6,LGALS1 

Organismal 
Injury and 
Abnormalities 

3.52 x 10-2 TUBA1B,GAS6,SGK1,DDB2,CACYBP,RB1,SEC24D,OLIG2,TMSB10/TMSB4X,
PLCL1,ICOSLG/LOC102723996,CFL1,PLEC,ANXA2,SIPA1L2,TSPAN33,ABC
A7,OGG1,ARHGDIB,DVL2,MTMR4,BTG2,KIDINS220,ALCAM,PIK3CD,ARHG
AP1,ACTG1,EMILIN2,PRDX1,POU2F2,IL21R,HMGN1,HYOU1,TNFSF10,DA
GLA,ANPEP,SASH3,USO1,ACTR3,TNFSF12,DOCK2,PALD1,ORAI1,TGFBI,D
ROSHA,GNAQ,TOB1,CD58,ZG16B,MUM1,WAS,TNFSF13,IMPDH1,ARHGDI
A,FEN1,RBPJ,CD81,PHLDA1,TNFRSF4,ARHGAP26,NDRG2,PTTG1,KLF6,MC
UR1,POTEG (includes 
others),HSPA5,VASH1,RHOB,DHTKD1,XPO1,LTBR,STK17B,S100A10,NBE
AL2,PTPN6,IL2RG,DLEU2,LZTR1,TES,CECR6,RASSF4,KLHL12,SPRED1,MK
L1,CCDC88A,HSP90B1,FANCD2,EAF2,CD22,BLM,PRKCA,CALR,IRF4,MAP3
K6,SMAD7,SOD1,TNFRSF14,BTK,LACC1,CRELD2,ZBTB46,SIRT2,TLR6,AR
HGAP31,DNM1L,CTSC,SEPT6,LGALS1 

Skeletal and 
Muscular 
Disorders 

4.43 x 10-2 CD81,CALR,RB1,HSP90B1,AHNAK,RRAS,PLEC,HSPA5,NDN 

Developmental 
Disorder 

4.64 x 10-2 RFXANK,CALR,IL2RG,SPRED1,TGFBI,PTTG1,GNAQ,LZTR1,HSPA5,ARHGDI
B,SASH3,BTK,HSP90B1,WAS,DOCK2,ARHGAP31,RBPJ,PIK3CD,ARHGDIA,A
RHGAP1,ORAI1,PRKCA 
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Supplementary Table 3.7: Enrichment of VDR ChIP-seq peaks among genes 
responsive to 1,25D treatment. VDR ChIP-seq peaks were obtained from published 
datasets, while 1,25D responsive genes were obtained among those that were significantly 
differentially expressed in response to different 1,25D treatment conditions, from the 
linear mixed-effects and Cormotif analyses. Enrichment of VDR peaks was calculated using 
Fisher’s exact test, comparing DE genes to non-DE genes. 
 
 

Treatment DE 
genes 

DE genes 
with 
VDR 
binding 
site 

Proportion 
of DE genes 
with VDR 
binding site 

Non-
DE 
genes 

Non-DE 
genes 
with VDR 
binding 
site 

Proportio
n of Non-
DE genes 
with VDR 
binding 
site 

Enrichment 
p-values 

Linear mixed-effects model 

V vs. E 2887 202 0.07 8071 300 0.04 4.56 x 10-11 

V + L vs. E 4720 335 0.07 6238 280 0.04 3.97 x 10-8 

V + L vs. L 2405 209 0.09 8554 466 0.05 1.54 x 10-7 

Cormotif Analysis 
1,25D response 
(“All”, “All 
except V+L”, 
“1,25D” and 
1,25D-all” 
Cormotifs) 

2761 189 0.07 5737 186 0.03 3.28 x 10-12 

1,25D 
response: 
(“1,25D” and 
1,25D-all” 
Cormotifs) 

1132 114 0.10 5737 186 0.03 3.33 x 10-18 
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CHAPTER 4: MAPPING VARIATION IN CELLULAR AND TRANSCRIPTIONAL RESPONSE 

TO 1,25-DIHYDROXYVITAMIN D3 IN PERIPHERAL BLOOD MONONUCLEAR CELLS 

 

4.1: Abstract 

 

The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is an 

important modulator of the immune system, inhibiting cellular proliferation and regulating 

transcription of immune response genes. In order to characterize the genetic basis of 

variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 

1,25D response at both the cellular and the transcriptional level. We carried out a genome-

wide association scan of percent inhibition of cell proliferation (Imax) induced by 1,25D 

treatment of peripheral blood mononuclear cells from 88 healthy African-American 

individuals. Two genome-wide significant variants were identified: rs1893662 in a gene 

desert on chromosome 18 (p=2.32 x 10-8) and rs6451692 on chromosome 5 (p=2.55 x 10-

8), which may influence the anti-proliferative activity of 1,25D by regulating the expression 

of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, 

PAIP1. We also identified 8 expression quantitative trait loci at a FDR<0.10 for 

transcriptional response to 1,25D treatment, which include the transcriptional regulator 

ets variant 3-like (ETV3L) and EH-domain containing 4 (EHD4). In addition, we identified 

response eQTLs in vitamin D receptor binding sites near genes differentially expressed in 

response to 1,25D, such as FERM Domain Containing 6 (FRMD6), which plays a critical role 

in regulating both cell proliferation and apoptosis. Combining information from the GWAS 

of Imax and the response eQTL mapping enabled identification of putative Imax-associated 
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candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the 

variants identified in this study are strong candidates for immune traits and diseases linked 

to vitamin D, such as multiple sclerosis. 

 

4.2: Introduction 

 

Epidemiological studies have linked variation in the circulating inactive form of 

vitamin D, 25-hydroxyvitamin D3 (25D), to risk of autoimmune diseases such as multiple 

sclerosis, type 1 diabetes and systemic lupus erythematosus [29, 47, 48, 81-84], consistent 

with the known effects of vitamin D as an immune system modulator [30, 33, 37, 38, 77]. 

Furthermore, genetic variation in the vitamin D pathway is linked to autoimmune disease 

risk. For example, several studies have highlighted associations between variants in 

CYP27B1, which encodes the enzyme that activates 25D to 1,25-dihydroxyvitamin D3 

(1,25D), and risk for multiple sclerosis [176-178].  

 The fact that immune cells express CYP27B1 indicates that active vitamin D can be 

produced intra-cellularly in the immune system in response to organismal demands such 

as infections. Immune cells also express the vitamin D receptor (VDR), which when bound 

by the active 1,25D, forms a heterodimer with the retinoid X receptor (RXR) and 

translocates to the nucleus, resulting in transcriptional regulation of vitamin D-responsive 

genes [30, 33, 37, 38, 58]. The genes regulated by 1,25D are involved in various pathways 

including metabolic regulation, antimicrobial response and inflammatory cytokine 

response [29, 41, 49, 64, 73-76]. 
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Extensive inter-individual and inter-ethnic variation in the circulating levels of 25D 

levels has been reported, with lower levels on average in African Americans compared to 

European Americans [42-45]. These differences are known to be influenced by various 

factors such as sun exposure, dietary intake, as well as genetic variations in critical genes in 

the vitamin D metabolic pathway [177, 179, 180]. Despite the strong epidemiological 

associations of 25D levels and disease risk, randomized clinical trials aimed at testing the 

efficacy of vitamin D supplementation as a therapeutic intervention [49, 84-88, 91] have 

yielded mixed results [92, 93]. In addition to environmental confounders, these results 

could be due to inter-individual differences in the response to vitamin D, irrespective of its 

concentration in circulation or within the cells at the level of the target organ. Indeed, at 

least one study identified a polymorphism in the VDR gene that influenced the response to 

vitamin D supplementation [89]. However, beyond the VDR gene, little – if anything – is 

known about the contribution of genetics to the inter-individual variation in response to 

vitamin D. 

The aim of this study was to map the genetic bases of inter-individual variation in 

the transcriptional response to 1,25D and in the inhibition of cell proliferation induced by 

1,25D in primary immune cells. To isolate the effects of genetic variation on the response to 

active vitamin D rather than on its concentration, we treated primary peripheral blood 

mononuclear cells cultured in vitro with a fixed amount of 1,25D and, in parallel, with a 

vehicle control. This allowed us to characterize the response to vitamin D both at the 

cellular and transcriptional level and to identify genetic variants associated with cellular 

and transcriptional response to 1,25D. 
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4.3: Methods 

 

Samples 

Peripheral blood was obtained from 88 African American (AA) donors collected by 

Research Blood Components (http://researchbloodcomponents.com/) as part of a larger 

study on transcriptional response [94]. All subjects were healthy donors and were not on 

any medication. All donors to Research Blood Components are required to sign an 

Institutional Review Board (IRB)-approved consent form giving permission to collect 

blood, and use it for research purposes. The IRB at the University of Chicago determined 

that this study is not human subject research because blood samples were not shipped with 

individually identifiable information. Self-reported ethnicity, age, gender, date, and time of 

blood drawing were recorded for each donor. Samples were processed in multiple 

successive batches. Batch number was recorded and used as a covariate. 

 

Cell culture and treatment 

The experimental design is illustrated in Supplementary Figure 4.1. We isolated 

peripheral blood mononuclear cells (PBMCs) from heparin-treated whole blood by density 

gradient centrifugation using Ficoll-Paque PLUS medium (GE Healthcare Life Sciences, 

Pittsburgh, PA).  PBMCs were washed in PBS and transferred to RPMI supplemented with 

10% charcoal-stripped fetal bovine serum. Each sample was then divided into one aliquot 

of 1.8 x 106 cells for measuring cell proliferation, and one aliquot of 9 x 106 cells for 

genome-wide transcriptional profiling. For the cell proliferation measurements, PBMCs 

were cultured at 2 x 105 cells per well in 10% charcoal-stripped media in 96-well plates. 
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Each donor was treated in triplicate with phytohemagglutinin (PHA) (2.5ug/ml) and either 

vehicle (EtOH) or 1,25-dihydroxyvitamin D3 (1,25D) (100nM) for 48 hours. For 

transcriptional profile measurements, PBMCs from each donor were cultured at 106 cells 

per well in 10% charcoal-stripped media in 24-well plates. As with the cellular 

proliferation measurements, each donor was treated in triplicate with PHA (2.5ug/ml) and 

either vehicle or 1,25D (100nM) for 6 hours. Cell type composition of the PBMCs was 

measured using flow cytometry as previously reported for these samples [94], where 

proportions of T cells including T helper cells (CD4+) and cytotoxic T (CD8+) cells, B cells, 

monocytes and neutrophils were measured using antibodies specifically targeting these 

cell types.  

 

Cellular proliferation measurements 

After 48 hours of treatment, cell proliferation was measured by H3-thymidine 

incorporation using standard protocols as previously described [141]. The median value 

was taken from across the three replicates. Percent inhibition of proliferation by 1,25D 

(Imax) was calculated as 1 – [(proliferation in 1,25D+PHA)/(proliferation in EtOH+PHA)], 

and fit to a normal distribution. Associations between covariates and Imax were tested using 

a simple linear regression.  

 

Transcriptional response profiling 

After 6 hours of treatment with PHA and 1,25D or vehicle, the three replicates from 

each donor were pooled before RNA extraction. Total RNA was extracted from each pool 

with the RNeasy Plus Mini Kit (Qiagen 74134). Total RNA was reverse transcribed into 
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cDNA, labeled, hybridized to Illumina (San Diego, CA, USA) Human HT-12 v3 Expression 

Beadchips and scanned at the University of Chicago Functional Genomics Core facility. We 

performed low-level microarray analyses using the Bioconductor software package LUMI 

[140] in R, as previously described [141]. Briefly, we annotated probes by mapping their 

sequence to RefSeq (GRCh37) transcripts using BLAT. We discarded probes that mapped to 

multiple genes, or contained one or more HapMap SNPs. We applied variance stabilization 

transformation to all arrays, discarded poor quality probes, and quantile normalized the 

arrays using the default method implemented in the lumiN function. After these filters, 

probes mapping to 11,897 genes were used in downstream analyses. We used a paired t-

test to identify genes that were differentially expressed between 1,25D- and vehicle-treated 

samples. False-discovery rates (FDR) were estimated using the q value function in R [144]. 

Gene set enrichment analysis was performed using the commercially available software 

Ingenuity Pathway Analysis (IPA). 

 

Genome-wide association of inhibition of cellular proliferation by 1,25D (Imax) 

Samples were genotyped on two Illumina Omni BeadChip platforms, with a total of 

884,015 SNPs across the genome genotyped for each donor, as previously described [94]. 

We then imputed genotypes at all SNPs identified in the 1000 Genomes Project [181] using 

IMPUTE2 [182], applying the output file flag option “-pgs_miss”, which replaces the missing 

genotypes at typed SNPs with imputed genotypes. We filtered SNPs for minor allele 

frequency (>0.1), imputation quality (>0.9), and departure from Hardy Weinberg 

equilibrium (p> 0.001), resulting in a total of 4,047,158 SNPs available for all 88 samples.  
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We performed a genome-wide association scan (GWAS) of the cellular inhibition of 

proliferation by 1,25D (Imax) using a likelihood ratio test correcting for genome-wide 

proportions of African ancestry to control for spurious associations due to population 

structure. Genome-wide African ancestry proportions in each donor were estimated using 

STRUCTURE which uses multi-locus genotype data to investigate the genetic structure of 

populations [183]. Prior to the GWAS analysis, Imax was corrected for all covariates 

including age, gender, and cell type proportions.  

 

Mapping variation in transcriptional response 

We performed a genome-wide test for association between log2 fold change at every 

gene and SNPs within 100kb of the transcriptional start site of each gene. Transcriptional 

response profile data was not collected for 3 out of the 88 donors. For the 85 donors, the 

total number of genome-wide SNPs available for eQTL mapping that passed the filters 

described earlier was 4,100,242. eQTL mapping was performed using Matrix eQTL 

software, which performs a linear regression test for association between each SNP and 

each transcript, modeling the additive linear genotype effect on transcriptional response 

[184]. FDRs were calculated according to the Benjamini and Hochberg method [185]. We 

also corrected for genome-wide African ancestry proportions in this analysis.  

As a complementary approach, we applied a Bayesian statistical framework that 

identifies different genotype-treatment interaction patterns, using the statistical software 

BRIdGE [161]. We mapped interaction eQTLs within 100kb of expressed genes, modeling 

four conditions through which SNPs could interact with transcriptional response 

phenotype under the two treatment conditions (1,25D and control): (i) Control-only model, 
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where genotype is associated with transcript levels in control-treated aliquots, but not in 

1,25D-treated aliquots, (ii) 1,25D-only model, where genotype is associated with transcript 

levels in 1,25D-treated aliquots, but not in EtOH-treated aliquots, (iii) General interaction 

model, where genotype is associated with transcript levels in both conditions, but with 

different effects in each condition, and (iv) No interaction model, where genotype is 

associated with transcript levels in both conditions, with equal effect in each condition 

(baseline eQTLs). Using a hierarchical model, information across SNPs in each gene region 

and across genes was combined, and a posterior probability for each gene that it follows 

each of the models, and that it is affected by a SNP that follows that model, was calculated. 

 

Identifying eQTLs within regulatory regions 

We reanalyzed published data sets of VDR ChIP-seq obtained in THP-1 monocytic 

cell lines treated with 1,25D and LPS or 1,25D alone [149], and FAIRE-seq performed in 

THP-1 cells treated with 1,25D [150]. First, we aligned sequence reads to the human 

reference (GRCh37) using BWA backtrack 0.7.5. Second, we kept only sequence reads with 

phred-scaled mapping quality ≥ 30 using samtools v1.1 [152]. Third, PCR duplicate were 

removed with picard tool v 1.130 (http://broadinstitute.github.io/picard/). For the ChIP-

seq data sets, we confirmed the quality of data sets by strand cross-correlation (SCC) 

analysis [153] implemented in the R script “run_spp_nodups.R” packaged in 

phantompeakqualtools (https://code.google.com/p/phantompeakqualtools/). Statistically 

significant peaks were identified using MACS version 2 [154] with the following essential 

command line arguments: macs2 callpeak --bw X -g hs --qvalue=0.05 -m 5 50, where X is a 
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length of the bandwidth that was defined as a fragment length calculated by SCC for the 

ChIP-seq data or as 200 bp for the FAIRE-seq data reported in Seuter et al. (2012). 

Out of the 4,100,242 SNPs available for eQTL mapping, we identified subsets of 

these SNPs that were within ChIP-seq and FAIRE-seq peaks. We then used these subsets of 

SNPs to map response eQTLs using Matrix eQTL as described in the previous section. 

 

Overlap between cellular and transcriptional response phenotypes 

To identify genes whose transcriptional response to 1,25D may play a role in the 

inhibition of cell proliferation, we performed linear regression to test the association 

across individuals between the cellular response phenotype (Imax), and log-fold change 

response (1,25D-treated over vehicle-treated expression), and we estimated FDR using the 

q value function in R. We also applied a Bayesian method with the program Sherlock [186] 

to predict putative causal genes associated with Imax. This method predicts causal genes by 

identifying SNPs in these genes that are associated both with gene expression in cis and 

trans, and with the trait of interest, in our case, Imax. We used the results from the response 

cis-eQTL mapping and the GWAS of Imax to perform this analysis, setting the prior for 

association of each SNP with gene expression in cis, as well as association of each SNP with 

Imax, to 0.01. We chose this high prior due to the fact that we were examining 

transcriptional and cellular response phenotypes in primary cells obtained from the same 

individuals. The statistical significance of the Bayes factor for each gene was indicated by 

the corresponding p-values, which were calculated by permutation of the GWAS data, as 

detailed by He et al. (2013).  
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4.4: Results 

 

Mapping variation in inhibition of cellular proliferation by 1,25D 

To characterize inter-individual variation in cellular response to 1,25D, we 

measured cellular proliferation in PBMCs, which had been stimulated for 48 hours with 

PHA in the presence of either 1,25D or its vehicle (EtOH) as a control. Imax was calculated as 

the proportion of proliferation in 1,25D treated cells relative to proliferation in vehicle-

treated cells. Using a simple linear regression, we measured the association between each 

donor’s age, gender, time of collection, batch, serum 25D and cortisol levels, and found no 

significant correlations between these covariates and Imax. We also found no significant 

correlations between cell type proportions and Imax. However, to avoid any potential 

sources of confounding, we corrected Imax for all of these covariates before further 

downstream analyses.  

To control for spurious associations potentially caused by population structure, we 

corrected for the proportion of genome-wide African ancestry in each donor, estimated 

using the program STRUCTURE. The median proportion of African ancestry in our donors 

was 81.4%, with an interquartile range of 14.7%. There were no significant correlations 

between Imax, or the other covariates, and proportion of African ancestry. However, there 

was a negative correlation between the genome-wide proportion of African ancestry and 

serum 25D levels (p = 0.035, β = -0.034) (Supplementary Figure 4.2), which suggests a 

genetic contribution to the higher prevalence of vitamin D insufficiency observed in African 

Americans [42]. The average serum 25D level in our African American donors was 20.81nM 
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with a standard deviation of 10.39nM, which is a level considered to be at risk for 

deficiency according to the Institute of Medicine definitions (less than 30nM) [187]. 

To investigate the genetic bases of variation in Imax, we carried out a genome-wide 

association scan for a total of 4,047,158 SNPs and identified genome-wide significant SNPs 

in chromosomes 5 and 18 (Figures 4.1A and B). The top signal of association was an 

intergenic SNP in chromosome 18 (rs1893662, p = 2.32 x 10−8) (Figures 4.1A and C, 

Supplementary Table 4.1). The A allele was associated with increased inhibition of 

proliferation (Figure 4.1E), and had a lower frequency in populations of African ancestry 

compared to European and Asian populations (allele frequency: 0.325, 0.811, and 0.648 

respectively) (Supplementary Figure 4.3A). The next strongest signal of association was 

an intergenic SNP in chromosome 5 (rs6451692, p = 2.55 x 10−8) (Figure 4.1A and D, 

Table S1). The C allele was associated with increased inhibition of proliferation (Figure 

4.1F), and had a higher frequency in populations of African ancestry compared to 

European and Asian populations (allele frequency: 0.839, 0.565, and 0.198 respectively) 

(Supplementary Figure 4.3B). The closest gene to this SNP is CCL28, which encodes a 

chemokine that recruits T cells, eosinophils, and B cells to mucosal sites; other genes within 

100 kb of this SNP are two uncharacterized open reading frames (C5orf28 and C5orf35) and 

PAIP1, which plays a role in stimulating translation initiation. Interestingly, we observed a 

marginal association between rs6451692 C allele and transcriptional response of PAIP1 to 

1,25D (p = 0.02, beta = -0.39) (Supplementary Table 4.2). In addition, this SNP lies less 

than 1 kb away from H3K4me1 enhancer-associated chromatin marks, DNase I 

hypersensitive sites and binding events for transcription factors such as TCF7L2, GATA3 

and CEBPB in seven cell lines from the ENCODE project, including lymphoblastoid cell lines 
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[188] (Supplementary Figure 4.4). These chromatin marks highlight the potential 

regulatory activity of rs6451692 on transcriptional activity in immune cells. 

To determine the proportion of variation of Imax explained by the top two SNPs in 

chromosomes 18 and 5, we examined the correlation coefficient from the linear model 

measuring the association between the top two associated SNPs and Imax. These two SNPs 

had a large effect on Imax, where rs1893662 explained 29.94% of the phenotypic variation 

in our samples, while rs6451692 explained 29.8% of the phenotypic variation in our 

samples. These top two SNPs explained ~45% of the variation in Imax.  
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Figure 4.1: GWAS of inhibition of cellular proliferation by 1,25D (Imax). (A) Manhattan 
plot of -log10 p-values of association of genome-wide variants with Imax. (B) Quantile-
quantile (QQ) plot of distribution of observed -log10 p-values on the y-axis, versus the 
expected -log10 p-values on the x-axis. LocusZoom plots of the Imax GWAS associated regions 
in (C) chromosome 18 around rs1893662, and (D) chromosome 5 around rs6451692 
(400kb windows, using 1000 genomes African populations as a reference). (E) Boxplots of 
Imax relative to genotypes of rs1893662 and rs6451692. Imax was corrected for age, gender, 
time of blood collection, batch, serum 25D levels, serum cortisol levels, and cell type 
proportions.  
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Figure 4.1 – continued. 
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Mapping variation in transcriptional response to 1,25D 

We measured the expression of 11,897 genes in PBMCs from 85 donors treated with 

100nM 1,25D and vehicle for 6 hours. We identified 720 genes differentially expressed 

(DE) in response to 1,25D at a FDR<0.01. Biological pathways significantly enriched among 

these genes included immune response pathways such as TREM1 signaling (p = 4.0 x 10−7, 

FDR = 2 x 10−4), Granulocyte differentiation and Diapedesis (p = 2.0 x 10−5 FDR = 4 x 10−3), 

and T Helper Cell Differentiation (p = 6.0 x 10−4, FDR = 6.5 x 10−2) (Supplementary Table 

4.3), supporting the important role of 1,25D as an immunomodulator. In addition, there 

was an enrichment of the VDR/RXR activation pathway (p = 7.0 x 10−4, FDR = 6.5 x 10−2), 

including genes such as CD14, which encodes a monocyte surface antigen mediating innate 

immune response to bacterial lipopolysaccharide (LPS), CAMP which encodes an 

antimicrobial peptide, and CYP24A1 which encodes the enzyme that initiates the 

degradation of 1,25D. A previous study characterizing patterns of transcriptional response 

to 1,25D and LPS in primary monocytes also found an overlapping list of immune response 

pathways identified in this study enriched among genes that were significantly down-

regulated by 1,25D [189]. 

In order to identify polymorphisms that influence the transcriptional response to 

1,25D, we tested the association between log2 fold change in transcript levels at each 

expressed gene and SNPs within 100kb of each gene using Matrix eQTL. Because DE genes 

tend to be those with consistent differences in transcript levels across all individuals, they 

may be biased against genes with common regulatory polymorphisms. For this reason, we 

did not limit our mapping analyses to the DE genes. We identified response cis-eQTLs for 8 

genes at a FDR<0.10, with the most significant response eQTLs including the 
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transcriptional factor ets variant 3-line (ETV3L), and EH-domain containing 4 (EHD4), 

which plays a role in early endosomal transport (Table 4.1A, Supplementary Figure 4.5). 

Mapping log2 fold change does not distinguish among the types of genotype-by-treatment 

interactions that influence transcriptional response. To do that, we applied a Bayesian 

statistical framework using the BRIdGE software, which compares different interaction 

models to each other and to a null model of no genotypic effect in both treatment 

conditions. We identified 4 genes with high confidence interactions (posterior probability 

of interaction > 0.7) between 1,25D treatment and SNP genotype; all these interaction 

eQTLs followed a 1,25D-only model, namely genotype has an effect on transcript levels in 

the 1,25D-treated aliquot but not in the control-treated one (Table 4.1B). These 

interaction eQTLs included the top 2 most significant response eQTLs that had been 

identified by mapping log2 fold change: ETV3L and EHD4. In addition, we identified 

interaction eQTLs in leucine rich repeat containing 25 (LRRC25), which is involved in 

activation of various immune cell types, and the transcriptional regulator unkempt family 

zinc finger (UNK).  
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Table 4.1: cis-eQTLs for transcriptional response to 1,25D. 
  
(A) cis-eQTL mapping of log-fold change expression using Matrix eQTL  
 
SNP Gene T-Statistic P-value FDR Beta 

rs74116976 ETV3L 6.77 1.73 x 10-09 1.17 x 10-4 0.84 

rs11070354 EHD4 6.11 3.16 x 10-8 1.28 x 10-3 0.86 

rs7311057 PARPBP 5.73 1.56 x 10-7 2.43 x 10-2 0.79 

rs59937851 ZNHIT1 5.41 5.98 x 10-7 1.52 x 10-2 1.02 

rs7178702 SPESP1 5.12 1.97 x 10-6 1.30 x 10-2 0.69 

rs10282056 COBL -4.78 7.50 x 10-6 3.10 x 10-2 -0.92 

rs62014366 VWA9 4.74 8.66 x 10-6 4.67 x 10-2 0.94 

rs7779605 CPED1 4.31 4.38 x 10-5 7.63 x 10-2 0.75 
 
 
(B) Interaction cis-eQTL mapping using BRIdGE  
 
Gene SNP Posterior probability for each interaction model 

  Control-only 1,25D-only General 
interaction 

No 
interaction 

EHD4 rs1648856 0 0.994 0 0.001 
LRRC25 rs3848646 0 0.965 0 0.027 
UNK rs8081606 0 0.803 0 0.049 
ETV3L rs6689823 0 0.723 0 0.277 
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To evaluate additional response cis-eQTLs found in VDR response elements, we 

identified 988 SNPs within VDR ChIP-seq peaks from a dataset of published THP-1 

monocytic cell lines treated with 1,25D [149], and mapped response eQTLs using this 

subset of SNPs. At a distance of 1Mb, we identified statistically significant response eQTLs 

(FDR < 0.10) in two genes: FERM Domain Containing 6 (FRMD6), a key activator of the 

Hippo kinase pathway with important roles in regulating cell proliferation and apoptosis 

[190], and the undefined KIAA1211 (Figure 4.2A and B). In addition, we identified 17,417 

SNPs within open chromatin regions, identified by FAIRE-seq from a published dataset of 

THP-1 monocytic cell lines treated with 1,25D [150]. Within this subset, we identified 

statistically significant response eQTLs (FDR < 0.10) in ETV3L, EHD4 and ZNHIT1 

(Supplementary Table 4.4). These eQTLs were in strong linkage disequilibrium (LD) with 

the response eQTLs we had identified for the same genes (r2 = 0.93, 0.69 and 0.95 for 

ETV3L, EHD4 and ZNHIT1, respectively), raising the possibility that these response eQTLs 

are due to variants affecting open chromatin conformation. 
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Figure 4.2: Associations between SNPs in vitamin D receptor (VDR) binding sites and 
transcriptional response. (A) Boxplots showing the effect of genotype on log2 fold change 
of FRMD6 and KIAA1211 transcript levels, with genotypes of associated SNPs coded as the 
number of copies of the alternative allele. (B) Location of SNPs associated with 
transcription response of FRMD6 (rs3783273, top panel) and KIAA1211 (rs7698085, 
bottom panel) within VDR binding sites, indicated by the gray horizontal arrows. The SNP 
locations are indicated by the vertical orange arrows. VDR binding site information was 
obtained from a published ChIP-seq dataset from THP-1 monocytic cells treated with 1,25D 
and bacterial lipopolysaccharide (LPS). 
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Figure 4.2 – continued. 
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Combined analysis of cellular and transcriptional response phenotypes 

We examined the relationship between the two 1,25D response phenotypes: 

transcriptional response and the inhibition of cellular proliferation. To evaluate whether 

the SNPs associated with inhibition of cellular proliferation exerted their effects through 

regulation of transcriptional response, we first examined associations between the two 

most significant Imax GWAS SNPs and log2 fold change expression at all 11,897 genes 

expressed in the PBMCs. At a FDR < 0.10, we found no statistically significant associations. 

We then focused on the subset of genes where log2 fold change in expression was 

associated with Imax, reasoning that these genes are more likely to share genetic variation 

influencing both transcriptional response and inhibition of cell proliferation.  Using a linear 

regression approach, we identified 16 associated genes at an FDR < 0.2 (Supplementary 

Table 4.5).  When we considered only these genes, we found significant associations 

between two Imax-associated genes (PCSK6 and RASL11A) and the top GWAS SNP in 

chromosome 18, rs1893662, and one Imax-associated gene (KNCN) with the second GWAS 

SNP in chromosome 5, rs6451692 (Table 4.2), at a Bonferroni-corrected p < 3.125 x 10−3. 

Both PCSK6 and KNCN are involved in vesicular trafficking and secretory pathways, 

highlighting potential molecular mechanisms involved in inhibition of proliferation by 

vitamin D.  
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Table 4.2.  Association between top Imax GWAS SNPs and transcriptional response  
 
 rs1893662 rs6451692 

Gene Name Beta P-value Beta P-value 

PCSK6 -2.09 2.1 x 10-3 -0.78 0.26 

SMARCD3 2.01 2.1 x 10-3 0.93 0.16 

RASL11A 2.08 2.3 x 10-3 1.17 0.09 

KNCN -1.24 3.21 x 10-2 -1.85 9.95 x10-4 
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We further predicted putative causal genes associated with Imax based on a Bayesian 

approach implemented in the program, Sherlock, using our response eQTL and GWAS of 

Imax data. At p < 10-4 (FDR = 0.3), we identified three putative Imax-associated genes, 

including the translation initiation gene PAIP1, a transcriptional repressor gene ZNF649, 

and a golgin family gene GORAB (Supplementary Table 4.6). Interestingly, the top Imax-

associated SNP in chromosome 5, rs6451692, was identified as being associated with 

transcriptional response of PAIP1 using this method, which suggests that this SNP 

influences the inhibition of cell proliferation through a transcriptional mechanism in 

PBMCs.  

 

4.5: Discussion 

 

While the inter-individual variation in the circulating inactive form of vitamin D, 

25D, has been well documented, little is known about the inter-individual variation in 

immune response to the active 1,25D. In this study, we identified several variants 

underlying variation in response to 1,25D both at the cellular and transcriptional level 

using primary peripheral blood mononuclear cells from a cohort of healthy individuals of 

African-American ancestry. These variants highlight genes with an important role in 

mediating the immunomodulatory effects of 1,25D, thereby providing a genetic basis for 

inter-individual variation in those aspects of the immune response influenced by vitamin D.  

Intergenic SNPs in chromosome 5 that were significantly associated with inhibition 

of cellular proliferation by 1,25D are located close to several genes such as CCL28, which 

encodes a chemokine that recruits T cells, eosinophils, and B cells to mucosal sites [191-
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193], and PAIP1 which encodes a protein that interacts with poly(A)-binding protein and 

with the eIF4A cap-binding complex, stimulating translation initiation [194]. Interestingly, 

we found a marginal association between rs6451692 and down-regulation of PAIP1, raising 

the possibility that this polymorphism influences the inhibitory effects of 1,25D on immune 

cell proliferation by regulating the transcriptional response of a translation initiation gene. 

 We observed several regulatory marks near rs6451692 in seven cell lines from the 

ENCODE project, including an enrichment of H3K4me1 histone mark, which is associated 

with enhancers. There was also an abundance of transcription factor binding events in this 

region, where rs6451692 overlaps a TCF7L2 binding site. TCF7L2 is a member of the high 

mobility group DNA binding protein family of transcription factors which has been 

implicated in type 2 diabetes risk [195-197]. Other transcription factors with binding sites 

in the region include RXRA, which binds to the VDR, forming a heterodimer which then 

regulates transcription of vitamin D-responsive genes, GATA3 which has important roles in 

T cell development [198, 199], and CEBPB which plays an important role in regulating 

immune and inflammatory response genes [200-203]. The abundance of transcription 

factor binding events in this region suggests that the regulatory activity of rs6451692 on 

the surrounding genes could involve enhancer activity. Further functional validation assays 

specifically in PBMCs treated with vitamin D are needed to elucidate the regulatory 

mechanisms of this Imax GWAS interval.  

In addition, from the Genotype-Tissue Expression (GTEx) project catalogue [204], 

we observed that rs6451692 is associated with variation in transcript levels of 

surrounding genes in multiple tissues. The C allele is associated with decreased expression 

of CCL28 in the pancreas, decreased expression of NNT in skeletal muscle, and decreased 



131 
 

expression of the novel antisense long non-coding RNA RP11-159F24.5 in multiple tissues 

such as subcutaneous adipose, tibial nerve, testis, thyroid and skin, suggesting that this 

variant influences the regulation of several genes in that genomic region. RP11-159F24.5 

was not covered by probes in our expression microarrays, therefore we cannot determine 

if rs6451692 has effects on the expression of this gene in PBMCs.  

Enrichment of immune response pathways such as TREM1 signaling, which 

enhances innate immune responses to microbial infections and activates pro-inflammatory 

responses [205], and T helper cell differentiation among the genes that respond 

transcriptionally to 1,25D, underscores the important immunomodulatory role played by 

1,25D [37, 38, 77]. This is consistent with the results of a previous study from our group 

investigating the transcriptional response to 1,25D and to bacterial lipopolysaccharide 

(LPS) in primary monocytes, where we also found an enrichment of immune response 

pathways, particularly among genes that were down-regulated by 1,25D and up-regulated 

by LPS [189]. This highlights the important immunomodulatory role played by 1,25D 

across cells in both the innate and adaptive immune system. In addition, among the genes 

that were up-regulated by 1,25D in monocytes, metabolic and translation initiation 

pathways were significantly enriched, consistent with previous reports in dendritic cells 

[41]. These pathways were not significantly enriched amongst the DE genes in PBMCs in 

this study (Supplementary Table 4.3), which could indicate that 1,25D regulates 

pathways involving metabolic reprogramming and translation particularly in innate 

immune response. It was however interesting to note the marginal association between 

one of the top Imax SNPs, rs6451692, and transcriptional response of PAIP1, a translation 

initiation gene.  
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Several studies have mapped genome-wide VDR binding sites in different immune 

cell lines [149, 206, 207]. Interestingly, one study examined VDR binding sites in primary 

CD4+ T cells from nine individuals with varying 25D levels and reported a correlation 

between 25D levels and number of VDR binding sites [208], directly supporting the notion 

that vitamin D status affects the response to vitamin D. In addition, genome-wide maps of 

VDR binding sites allow identification of genetic variants within VDR binding sites that in 

turn may influence variation in the transcriptional response to vitamin D. Interestingly, one 

such study reported that many risk variants for autoimmune diseases detected in genome-

wide association studies fall within VDR binding sites [70], suggesting that disease risk is 

influenced not only by inter-individual variation in 25D levels, but also by variation in the 

response to vitamin D. To build on these studies, we focused on mapping variants that 

regulate genome-wide transcriptional response to 1,25D in primary PBMCs. The cis-

response eQTLs identified in this study highlighted several genes that could play an 

important role in mediating the effects of 1,25D in the immune response. Genes identified 

using both the linear regression and Bayesian eQTL mapping approaches included ETV3L, 

which is a transcriptional regulator that has been reported to play a role in inhibiting 

proliferation of neural progenitor cells [209], and EHD4, which plays a role in controlling 

early endosomal trafficking [210, 211]. Furthermore, we identified statistically significant 

response eQTLs in regions of open chromatin, marked by FAIRE-seq peaks, in ETV3L, 

EHD4, and ZNHIT1 - a gene that is implicated in regulating the transcriptional activity of the 

orphan nuclear receptor Rev-erbbeta [212]. Interestingly, both ETV3L and ZNHIT1 are 

transcriptional regulators, raising the possibility that these loci could play a role in 

modulating transcriptional response of other genes to 1,25D in immune cells.  



133 
 

We then identified variants within VDR binding sites that regulate transcriptional 

response possibly by altering the structure or accessibility of the VDR binding site. We did 

this by combining our cis-response eQTL data with a published VDR ChIP-seq dataset from 

a monocytic cell line [149]. We identified a response eQTL within a VDR binding site in 

FRMD6, which is part of the conserved Hippo pathway playing a critical role in controlling 

organ size by regulating both cell proliferation and apoptosis [213, 214]. FRMD6 has been 

linked to various complex diseases such as asthma, Alzheimer’s disease, and lung cancer 

[214-216], where it is thought to have tumor suppressor properties. The T allele of 

rs3783273, which is associated with increased FRMD6 expression (Figure 4.2), could alter 

the binding properties of the VDR to its receptor elements in FRMD6 and could affect the 

transcriptional response of this gene to 1,25D. Given its putative tumor suppressor 

properties, FRMD6 may play a crucial role in mediating the role of 1,25D in inhibiting 

proliferation of immune cells. 

Using both simple linear regression analysis and a Bayesian approach, we combined 

the information from response cis-eQTL mapping and the GWAS of Imax to identify 

candidate genes mediating the inhibitory effects of cellular proliferation by 1,25D. Genes 

such as PAIP1, ZNF649 and GORAB contained Imax-associated SNPs that also regulated 

transcriptional response of these genes in cis. While PAIP1 encodes a protein that is 

involved in initiating translation, ZNF649 encodes a transcriptional repressor that inhibits 

transcription factor complexes such as AP-1 which is involved in cellular proliferation and 

survival [217-219], and GORAB encodes a golgin family member with roles in the 

intracellular membrane trafficking and the secretory pathways of the Golgi apparatus [220, 

221]. In addition, we identified trans effects of the top GWAS SNPs on transcriptional 
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response of genes such as PCSK6 and KNCN, which both have roles in vesicular trafficking 

and secretory pathways, highlighting potential molecular mechanisms involved in the anti-

proliferative activity of 1,25D.  Increased PCSK6 expression has been previously implicated 

in risk for rheumatoid arthritis [222]. Interestingly, knockdown of PCSK6 by RNA 

interference significantly decreased proliferation, invasion, and migration of cultured 

rheumatoid arthritis synovial fibroblasts. It is plausible that the top Imax-associated SNP, 

rs1893662, regulates the anti-proliferative activity of 1,25D by regulating PCSK6 

transcription in immune cells. The potential mechanisms through which these putative 

Imax-associated candidate genes could mediate the inhibition of proliferation of immune 

cells by 1,25D should be further studied. 

In summary, mapping response to 1,25D at both the cellular and transcriptional 

level in immune cells enabled identification of variants which may influence inter-

individual variation in response to 1,25D, and identification of genes with potentially 

crucial roles in mediating the immunomodulatory role of 1,25D. Characterizing these 

genetic mediators of 1,25D activity in the immune system could inform additional 

therapeutic targets and markers for immune-related diseases in future randomized VD 

supplementation trials. 
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4.6: Appendix: Supplementary Material 

 

Supplementary Figure 4.1: Experimental Design. Peripheral blood mononuclear cells 
(PBMCs) were obtained from 88 healthy African American donors. PBMCs were cultured 
for 6 hours with phytohemagglutinin (PHA) and either vehicle (EtOH) or 1,25-
dihydroxyvitamin D3 (1,25D), and RNA was extracted for gene expression measurements. 
PBMCs from the same samples were also cultured for 48 hours with PHA and either vehicle 
or 1,25D for cell proliferation measurements. DNA was also extracted from PBMCs for 
genotyping.  
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Supplementary Figure 4.2: Correlation between serum 25D levels and global 
ancestry.  Serum levels of 25D are negatively correlated with global proportions of African 
ancestry. Serum 25D levels were corrected for age and batch effects. 
 

 
 
 
 
 
 

 

 

 

 

 

 



137 
 

Supplementary Figure 4.3: Allele frequency distribution of top SNPs. Large inter-
population allele frequency differentiation was observed in the top GWAS SNPs, rs1893662 
(A) and rs6451692 (B). Image obtained from the Geography of Genetic Variants (GGV) 
browser [223]. 
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Supplementary Figure 4.4: Regulatory marks near rs6451692. The image illustrates a 
magnified view of the GWAS interval in chromosome 5, with the location of rs6451692 
highlighted by the blue rectangle, and nearby enhancer marks (H3K4me1), DNase I 
hypersensitive sites, and transcription factor binding sites obtained from seven cell lines 
from the ENCODE project [188].  
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Supplementary Figure 4.5: Mapping log-fold change response cis-eQTLs. Response 
eQTLs were identified using a linear model in Matrix eQTL [184], where the additive effect 
of genotype on log2 fold change in transcript levels in response to 1,25D was measured. The 
boxplots show the results of 8 response cis-eQTLs identified at an FDR < 10%, with 
genotype coded as the number of copies of the minor allele.  All SNPs are within 100kb of 
the transcriptional start site (TSS) of their respective genes.  
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Supplementary Table 4.1: The top SNPs identified in the GWAS of Imax. The SNPs 
shown have p-values < 10-8, which corresponds to a FDR of 0.036.   
 

SNP Chr MAF Nucleotide position Beta P 

rs1893662 18 0.318 36142887 0.355 2.32 x 10-8 

rs6451692 5 0.778 43433735 0.361 2.55 x 10-8 

rs7724571 5 0.761 43433143 0.355 3.15 x 10-8 

rs4800030 18 0.318 36153493 0.352 7.78 x 10-8 

rs7707976 5 0.773 43429523 0.347 9.10 x 10-8 

rs7708443 5 0.773 43429761 0.347 9.10 x 10-8 

rs7708369 5 0.773 43429964 0.347 9.10 x 10-8 

rs750582 5 0.773 43430273 0.347 9.10 x 10-8 

rs750584 5 0.773 43430406 0.347 9.10 x 10-8 
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Supplementary Table 4.2: Association between top Imax-associated SNPs in chromosome 
5, and transcription response of nearby genes (within 100kb).  
 

SNP GeneName 
Response 
eQTL  
p-value 

Beta Imax GWAS P-
value 

SNP-Gene 
distance (bp) 

rs6451692 PAIP1 2.0 x 10-2 -0.39 2.6 x 10-8 92,634 

rs10941640 PAIP1 3.5 x 10-2 0.37 1.1 x 10-5 0 

rs6866325 PAIP1 1.2 x 10-2 -0.39 2.0 x 10-5 0 

rs7708072 C5orf34 4.2 x 10-2 0.37 3.1 x 10-5 81,827 

chr5:43598333:I C5orf34 4.4 x 10-2 0.37 6.5 x 10-5 83,060 
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Supplementary Table 4.3: Gene set enrichment analysis of significantly differentially 
expressed (DE) genes at FDR < 0.01. Enrichment analyses were conducted using 
Ingenuity Pathway Analysis (IPA) software. The enriched pathways shown are at a p-value 
threshold of 0.05. The top 8 pathways were statistically significant at a FDR < 0.10. B-H p-
value* = Benjamini-Hochberg multiple testing corrected p-value. 
 
Ingenuity Canonical Pathways p-value B-H p-value Genes 

TREM1 Signaling 4 x 10-7 2 x 10-4 
TREM1,ICAM1,NLRP3,TLR8,CIITA,CCL3,TL
R4,NOD2,PLCG2,TLR6,CASP1,CD86,IL1B,C
CL7 

Granulocyte Adhesion and 
Diapedesis 2 x 10-5 4 x 10-3 

FPR3,ICAM1,C5AR1,FPR2,CCL22,CXCL5,M
MP25,CCL3,CXCL6,FPR1,CLDN23,ITGAM,C
CL8,CCL3L1,CCL3L3,IL1B,CXCL1,TNFRSF1
B,CCL7 

T Helper Cell Differentiation 6 x 10-4 6.5 x 10-2 
ICOS,HLA-
DMB,IL10RB,IL10RA,IFNGR2,CD86,IL2RA,
TNFRSF1B,ICOSLG/LOC102723996 

Role of Pattern Recognition 
Receptors in Recognition of 
Bacteria and Viruses 

7 x 10-4 6.5 x 10-2 PTX3,NLRP3,C5AR1,TLR8,TLR4,NOD2,PR
KCD,PLCG2,TLR6,CASP1,OSM,IL1B,RIPK2 

VDR/RXR Activation 7 x 10-4 6.5 x 10-2 SERPINB1,CAMP,CYP24A1,GADD45A,PRK
CD,CD14,NCOR2,CEBPB,THBD,RXRA 

Role of IL-17A in Arthritis 1 x 10-3 7.4 x 10-2 CXCL1,MAPK13,CXCL5,PTGS2,RPS6KA1,M
APKAPK2,CXCL6,CCL7 

Role of IL-17A in Psoriasis 1 x 10-3 7.4 x 10-2 S100A9,CXCL1,CXCL5,CXCL6 
Sulfate Activation for Sulfonation 1 x 10-3 8.1 x 10-2 PAPSS1,PAPSS2 
Primary Immunodeficiency 
Signaling 3 x 10-3 0.13 BTK,LCK,ICOS,CIITA,ADA,CD3D 

Role of IL-17F in Allergic 
Inflammatory Airway Diseases 5 x 10-3 0.20 IL1B,CXCL1,CXCL5,RPS6KA1,CXCL6,CCL7 

LPS/IL-1 Mediated Inhibition of 
RXR Function 7 x 10-3 0.23 

CPT1A,CHST7,PAPSS2,CHST15,TLR4,LY96,
CAT,IL1B,XPO1,CD14,PPARGC1B,HS3ST1,S
LC27A3,RXRA,TNFRSF1B,ACSL1 

MIF-mediated Glucocorticoid 
Regulation 7 x 10-3 0.23 TLR4,PLA2G4A,LY96,CD14,PTGS2 

LXR/RXR Activation 7 x 10-3 0.23 TLR4,LYZ,LY96,CD36,CD14,IL1B,NCOR2,P
TGS2,TNFRSF1B,RXRA,CCL7 

Agranulocyte Adhesion and 
Diapedesis 7 x 10-3 0.23 

ICAM1,C5AR1,CCL22,CXCL5,MMP25,CCL3,
CXCL6,CLDN23,CCL8,CCL3L1,CCL3L3,IL1B
,CXCL1,CCL7 

Uracil Degradation II (Reductive) 9 x 10-3 0.23 DPYSL2,UPB1 
Thymine Degradation 9 x 10-3 0.23 DPYSL2,UPB1 

Mitochondrial Dysfunction 1.2 x 10-2 0.30 
COX7B,ATP5G1,UCP2,CPT1A,CAT,COX5A,T
RAK1,NDUFAF2,UQCRC1,CYB5R3,NDUFAB
1,UQCRB 

CMP-N-acetylneuraminate 
Biosynthesis I (Eukaryotes) 1.4 x 10-2 0.33 NAGK,CMAS 

Macropinocytosis Signaling 1.6 x 10-2 0.35 PRKCD,PLCG2,HGF,USP6NL,CD14,ITGB8,P
DGFB 

Type I Diabetes Mellitus Signaling 1.6 x 10-2 0.35 
HLA-
DMB,IFNGR2,CD86,BID,IL1B,SOCS2,MAPK
13,TNFRSF1B,CD3D 

MIF Regulation of Innate Immunity 1.8 x 10-2 0.38 TLR4,PLA2G4A,LY96,CD14,PTGS2 
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Supplementary Table 4.3 – continued. 
Purine Ribonucleosides 
Degradation to Ribose-1-phosphate 2 x 10-2 0.40 ADA,PGM2 

Toll-like Receptor Signaling 2.2 x 10-2 0.42 TLR4,LY96,TLR6,TLR8,CD14,IL1B,MAPK1
3 

Communication between Innate 
and Adaptive Immune Cells 2.4 x 10-2 0.42 TLR4,CCL3L3,TLR6,TLR8,CD86,IL1B,CCL3 

iNOS Signaling 2.5 x 10-2 0.42 TLR4,LY96,IFNGR2,CD14,MAPK13 
γ-linolenate Biosynthesis II 
(Animals) 2.6 x 10-2 0.42 SLC27A3,CYB5R3,ACSL1 

Mitochondrial L-carnitine Shuttle 
Pathway 2.6 x 10-2 0.42 CPT1A,SLC27A3,ACSL1 

Differential Regulation of Cytokine 
Production in Macrophages and T 
Helper Cells by IL-17A and IL-17F 

3 x 10-2 0.47 IL1B,CXCL1,CCL3 

IL-6 Signaling 3.6 x 10-2 0.50 TNFAIP6,CYP19A1,CD14,IL1B,MAPK13,CE
BPB,TNFRSF1B,MAPKAPK2,MCL1 

p53 Signaling 3.6 x 10-2 0.50 RB1,GADD45B,GADD45A,THBS1,GNL3,HIF
1A,DRAM1,PTEN 

iCOS-iCOSL Signaling in T Helper 
Cells 3.6 x 10-2 0.50 

LCK,ICOS,HLA-
DMB,IL2RA,VAV1,CD3D,ICOSLG/LOC1027
23996,PTEN 

Cardiolipin Biosynthesis II 3.9 x 10-2 0.52 PGS1 

Hepatic Cholestasis 4.4 x 10-2 0.57 TLR4,LY96,CYP27A1,PRKCD,ADCY3,CD14,
OSM,IL1B,TNFRSF1B,RXRA,ADCY7 

IL-17A Signaling in Fibroblasts 4.5 x 10-2 0.57 MAPK13,CXCL5,CEBPB,CCL7 
Hepatic Fibrosis / Hepatic Stellate 
Cell Activation 4.9 x 10-2 0.60 TLR4,LY96,ICAM1,HGF,IL10RA,IFNGR2,CD

14,IL1B,ECE1,TNFRSF1B,PDGFB,COL7A1 
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Supplementary Table 4.4: Response cis-eQTLs found in open chromatin regions 
detected by FAIRE-seq. These response eQTLs are significant at a FDR < 0.10. The 
strength of the FAIRE-seq peaks is indicated by the Peak P-values and Peak FDR values. 
 

SNP Gene T-
Statistic P-value FDR Beta Peak P-

value Peak FDR 

rs7520303 ETV3L 6.73 2.14 x 10-9 6.13 x 10-5 0.85 2.02 x 10-11 1.51 x 10-19 

rs12913835 EHD4 5.21 1.36 x 10-6 2 x 10-2 0.72 2.22 x 10-5 1.3 x 10-5 

rs6946706 ZNHIT1 4.94 4.07 x 10-6 4 x 10-2 0.87 1.76 x 10-6 3.56 x 10-12 
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Supplementary Table 4.5: Genes whose transcription responses are associated with 
inhibition of cellular proliferation by 1,25D at a FDR < 0.2.  
 

Gene Beta P-value FDR 

ZNF571 -1.05 2.68 x 10-5 0.17 

FNTA -1.16 4.26 x 10-5 0.17 

GALNT4 -0.82 9.74 x 10-5 0.17 

PYCRL -1.48 1.04 x 10-4 0.17 

HARBI1 -1.62 1.16 x 10-4 0.17 

UQCRC2 0.96 1.25 x 10-4 0.17 

RASL11A 1.65 1.60 x 10-4 0.17 

NOTCH3 1.45 1.60 x 10-4 0.17 

ABCG1 2.01 1.65 x 10-4 0.17 

PPP2R1A -1.11 1.90 x 10-4 0.17 

GEMIN7 -1.37 1.93 x 10-4 0.17 

SMARCD3 1.55 2.18 x 10-4 0.17 

SERPINA11 -2.50 2.20 x 10-4 0.17 

KNCN -1.33 2.61 x 10-4 0.19 

PCSK6 -1.57 2.88 x 10-4 0.19 

PTGR2 1.20 2.97 x 10-4 0.19 
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Supplementary Table 4.6: Genes associated with inhibition of cellular proliferation 
by 1,25D (Imax). These genes were detected using a Bayesian approach, implemented in 
the statistical program Sherlock [186]. The strength of the association between the genes 
and Imax is given by the overall log10 of Bayes factor (LBF). 
 
Information on gene associated 
with Imax 

Information on SNP associated with transcriptional response of 
corresponding gene, and with Imax 

Gene LBF P-value FDR SNP SNP 
Location 

eQTL P-
value 

GWAS P-
value 

LBF of 
SNP 

PAIP1 2.51 5.59 x 10-6 0.03 rs6451692 chr5: 
43,433,735 2.01 x 10-2 2.55 x 10-8 2.51 

ZNF649 2.32 5.59 x 10-6 0.03 rs12459256 chr19: 
52,323,088 3.84 x 10-4 1.82 x 10-5 2.32 

GORAB 1.06 8.94 x 10-5 0.27 rs6427252 chr1: 
170,409,400 2.10 x 10-4 8.42 x 10-4 1.06 

CAMK1G 0.85 1.90 x 10-4 0.43 rs17014822 chr1: 
209,756,470 4.44 x 10-4 6.63 x 10-4 0.85 

RAD18 0.79 2.46 x 10-4 0.44 rs73132887 chr3: 
8,823,195 3.27 x 10-4 3.66 x 10-4 0.79 

FGD2 0.69 3.80 x 10-4 0.57 rs831504 chr6: 
36,988,364 9.28 x 10-3 1.04 x 10-4 0.69 

LIN7A 0.60 5.59 x 10-4 0.61 rs1163656 chr12: 
81,337,458 1.63 x 10-3 1.32 x 10-4 0.60 

SMIM14 0.58 5.81 x 10-4 0.61 rs11937734 chr4: 
39,482,848 5.70 x 10-4 2.41 x 10-3 0.58 

TMEM8C 0.56 6.37 x 10-4 0.61 rs3793627 chr9: 
136,407,659 3.14 x10-4 1.69 x 10-2 0.56 

B3GNT2 0.55 6.82 x 10-4 0.61 rs2122382 chr2: 
62,326,484 7.03 x 10-4 1.18 x 10-3 0.55 

ZNF385D 0.47 8.94 x 10-4 0.67 rs6774929 chr3: 
21,480,184 1.11 x 10-3 4.66 x 10-4 0.47 

ZFR 0.47 8.94 x 10-4 0.67 rs11948227 chr5: 
32,273,114 9.96 x 10-3 1.70 x 10-4 0.47 
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CHAPTER 5: CONCLUSIONS 

 

Endophenotype mapping enables identification of novel loci associated with Systemic 

Lupus Erythematosus risk 

 

The main goal of this dissertation was to investigate the feasibility of immune 

endophenotype mapping to characterize the molecular basis of inter-individual variation in 

immune disease susceptibility. I describe the utility of this approach in chapter 2, where I 

focused on mapping variation in serum IFN-α activity in individuals with SLE. Focusing on 

this endophenotype enabled a case-case study design, which directly addresses the 

heterogeneity in SLE, where cases on the tail end of the distribution of serum IFN-α were 

assessed. This greatly enhanced our power to detect variants with odds ratios > 2, 

supporting the idea that genetic variants associated with molecular sub-phenotypes have 

higher effect sizes, and can therefore be detected in smaller sample cohorts.  

Importantly, this approach greatly enhanced our power to detect novel genetic 

variations that provided information on the underlying biological etiology of SLE 

pathogenesis. For example, one of the top signals identified was a missense SNP in purine 

nucleoside phosphorylase (PNP), which encodes an enzyme with important roles in purine 

metabolism. Deficiency in PNP is characterized by defective T-cell and B-cell immunity as 

well as defective antibody responses [123]. The amino acid change in the missense SNP 

identified in this study could hence have significant effects on the activity of this enzyme in 

immune cells.  
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The novel loci identified in this study provided information on molecular processes 

that could lead to dysregulation of the IFN-α pathway and subsequent pathogenesis of SLE. 

These loci have not been reported in previous case-control genetic association studies in 

SLE, supporting the notion that genetic mapping of pathogenic molecular sub-phenotypes 

can address some of the unexplained heritability in complex heterogeneous diseases.  

 

Immunomodulatory transcriptional effects of vitamin D in the immune cells 

 

The pathogenesis of SLE is driven by a combination of both genetic and 

environmental risk factors. My work in chapter 2 focused mainly on the genetic bases for 

variation in SLE susceptibility. In chapters 3 and 4, I shifted my focus to vitamin D, which is 

a modifiable environmental factor for immune-mediated diseases like SLE. In chapter 3, I 

characterized the genome-wide transcriptional effects of the active hormonal form of 

vitamin D, 1,25-dihydroxyvitamin D3 (1,25D). This work was done in the primary innate 

immune cell type, monocytes, in the context of a pro-inflammatory stimulant, bacterial 

lipopolysaccharide (LPS), which enabled examination of how inflammation modifies 

transcriptional response to 1,25D.  

The main strength of the study design in chapter 3 was the ability to discern how 

1,25D reverses the transcriptional effects of LPS on specific pathways in monocytes. Genes 

in pro-inflammatory signaling pathways, such as IL-8, TNFR2 and NF-kB signaling, which 

were significantly up-regulated by LPS, were conversely down-regulated by 1,25D. This 

pattern was also illustrated among genes in the mTOR signaling and EIF2 signaling 

pathways, which were significantly down-regulated by LPS, while 1,25D significantly up-
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regulated the same genes, reversing the transcriptional effects of LPS. The mTOR and EIF2 

signaling pathways are particularly interesting as they have been previously implicated in 

regulating pro-inflammatory response in various cell types [41, 168-170, 172], and they 

thus highlight some mechanisms through which 1,25D attenuates the pro-inflammatory 

response to LPS.  

This study characterized the transcriptional effects of 1,25D in the presence or 

absence of LPS, highlighting several biological pathways that mediate the 

immunomodulatory function of 1,25D. Dysregulation of these pathways could lead to 

immune disease pathogenesis.  

 

Molecular basis for inter-individual variation in response to vitamin D 

 

The main goal of my final thesis project described in chapter 4 was to understand 

the genetic basis for inter-individual variation in response to 1,25D. The increased interest 

in the potential use of 1,25D as a therapeutic agent in immune-mediated diseases has 

resulted in randomized supplementation trials of vitamin D. The results of these trials have 

so far been mixed, and it is important to consider inter-individual differences in the 

response to vitamin D, as well as the genetic basis of these differences, in the design of 

these studies. At least one study supports this notion, where a polymorphism in the vitamin 

D receptor gene (VDR) was identified as a modulator of response to vitamin D 

supplementation in Tuberculosis patients [89].  

An additional strength of endophenotype mapping is the ability to incorporate 

multiple levels of phenotypic information to increase the power to detect novel loci in 
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relatively small sample sizes. Chapter 4 describes the joint mapping of cellular and 

transcriptional response phenotypes in peripheral blood mononuclear cells (PBMCs) from 

88 individuals treated with 1,25D or vehicle control for both cellular and transcriptional 

response experiments, resulting in identification of novel loci underlying the 

immunomodulatory effects of 1,25D. The GWAS on the percent inhibition of PBMC 

proliferation (Imax) by 1,25D identified genome-wide significant SNPs in intergenic regions 

in two loci. Combining the information on cellular and transcriptional effects enabled 

identification of potential trans-effects of the two top GWAS SNPs, revealing a regulatory 

cascade where the top GWAS SNPs could influence cellular response to 1,25D through 

trans-regulation of genes that mediate the anti-proliferative activity of 1,25D.  

 

Overall, this dissertation demonstrates that focusing on endophenotypes may 

provide useful insights into the genes underlying variation not only in disease 

susceptibility, but also variation in response to therapeutic agents for these diseases. Using 

this powerful endophenotype mapping approach to understand the etiology of disease 

pathogenesis and drug response may be informative not only for supplementation trials, 

but it may also provide additional potential therapeutic targets for these diseases.  
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Future Directions: Functional validation of novel loci underlying variation in 

immune disease susceptibility 

 

Future work could involve incorporation of functional experiments, such as assays 

for transcription factor binding sites, enhancers, and other epigenetic markers, to the 

endophenotype mapping analyses in relevant primary immune cell subtypes, under the 

same experimental conditions. Ideally, carrying out this type of multi-level phenotypic 

analysis in a longitudinal study prior to, and after disease onset, will enable further 

understanding of the genetic architecture of the events that lead to final disease 

pathogenesis. Full knowledge of the molecular mechanisms underlying disease 

pathogenesis will be especially useful in predicting individuals who are more prone to 

complex immune-mediated diseases like SLE, and who are more likely to benefit from 

therapies specifically targeting the pathogenic endophenotypes that lead to disease 

susceptibility. 
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