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ABSTRACT: Mass spectrometry is a vital tool in the analytical
chemist’s toolkit, commonly used to identify the presence of
known compounds and elucidate unknown chemical structures. All
of these applications rely on having previously measured spectra for
known substances. Computational methods for predicting mass
spectra from chemical structures can be used to augment existing
spectral databases with predicted spectra from previously
unmeasured molecules. In this paper, we present a method for
prediction of electron ionization−mass spectra (EI−MS) of small
molecules that combines physically plausible substructure enumer-
ation and deep learning, which we term rapid approximate subset-
based spectra prediction (RASSP). The first of our two models, FormulaNet, produces a probability distribution over chemical
subformulae to achieve a state-of-the-art forward prediction accuracy of 92.9% weighted (Stein) dot product and database lookup
recall (within top 10 ranked spectra) of 98.0% when evaluated against the NIST 2017 Mass Spectral Library. The second model,
SubsetNet, produces a probability distribution over vertex subsets of the original molecule graph to achieve similar forward prediction
accuracy and superior generalization in the high-resolution, low-data regime. Spectra predicted by our best model improve upon the
previous state-of-the-art spectral database lookup error rate by a factor of 2.9×, reducing the lookup error (top 10) from 5.7 to 2.0%.
Both models can train on and predict spectral data at arbitrary resolution. Source code and predicted EI−MS spectra for 73.2M
small molecules from PubChem will be made freely accessible online.

■ INTRODUCTION
Mass spectrometry (MS) provides valuable information about
chemical substances, enabling scientists to understand
chemical abundance, identity, and certain structural motifs.
Gas chromatography/electron ionization−mass spectrometry
(GC/EI−MS) is a highly reproducible and cost-effective
version of MS that is used across fields such as medicine,1,2

ecology,3 protein sequencing,4 metabolomics,5 and more. For
these reasons, GC/EI−MS spectral databases have grown
significantly over the past few decades. Experimentally
obtained spectra can be compared to databases of known
spectra to identify and understand the structure of molecules,
but the limited coverage of these databases hinders their use.
By augmenting these spectral libraries using in silico methods
for spectral prediction, scientists may be able to perform real-
time identification of unknown substances by comparing
experimentally obtained spectra of novel substances to massive
chemical libraries consisting of both measured and predicted
spectra.

In this paper, we present two state-of-the-art models for in
silico prediction of EI−MS spectra on small molecules. Our
approach, which we call “rapid approximate subset-based
spectra prediction” (RASSP) predicts probability distributions
over reduced representations of molecular fragments�atom
subsets (vertex subsets of the molecular graph) and chemical

formulae. By leveraging existing spectral databases, enumerat-
ing physically plausible substructures, and using deep learning
to estimate probability distributions over these substructures,
we outperform previous methods for spectral prediction by a
significant margin. We evaluate these models on spectral
similarity metrics6 and a practical database lookup task.7 Our
first model, FormulaNet (hereafter RASSP:FN) predicts
probability distributions over possible chemical subformulae
and achieves a state-of-the-art forward prediction accuracy of
92.9% Stein dot product6 and a database lookup recall (at 10)
of 98.0%. Our second model, SubsetNet (hereafter RASSP:SN)
predicts probability distributions over atom subsets and
achieves a forward prediction accuracy of 91.8% Stein dot
product and a database lookup recall (at 10) of 95.2%.
Notably, RASSP:SN outperforms RASSP:FN in the high-
resolution, low-data regime, indicating that it may be useful for
future high-resolution (sub-Dalton resolution) CID-based
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MS2 data. Direct comparison against two previous methods for
in silico spectral prediction demonstrates that our best model
improves the lookup error rate over the prior best forward
model by a factor of ∼3×, reducing lookup error rate (at 10)
from over 6 to 2%, approaching the limiting error rate
associated with experiment-to-experiment noise of 1.2%
(Figure 1).

■ BACKGROUND
Gas chromatography/electron ionization−mass spectrometry
(GC/EI−MS) ionizes a volatile substance via high-energy
electron bombardment. The subsequent relaxation of the
ionized substance from the high-energy state induces
fragmentation, generating a shower of charged and neutral
fragments. The charge-to-mass (m/z) ratio of the fragments is
then measured in a spectrometer. It is reasonable to assume
that the fragments are singly charged,7,8 so the measured m/z
values can be interpreted directly as fragment masses. Due to
the cost-effectiveness and experimental reproducibility of GC/
EI−MS, it is a mainstay of modern analytical chemistry
workflows. The spectrum of a given compound is commonly
used as a “fingerprint” used for matching against known
database spectra. Additionally, it is often used as one of the first
steps in structural characterization.

Currently, the NIST Mass Spectral Library9 is the largest
publicly available database of EI−MS spectra, containing over
300,000 spectra for molecules containing ≤128 atoms.
However, the space of possible molecules is incredibly large,
and even annotated databases such as PubChem10 have over
100 million known chemical structures. Less than 0.30% of the
PubChem compounds have measured spectra. Clearly,
experimental characterization at such a scale is prohibitive.
This is exacerbated by the fact that cheap products are easily
attainable and measured many times, while many of the
structures in PubChem come from the long tail of rare, non-
natural, or difficult-to-procure set of compounds. Such
limitations require computational and statistical approaches
to predicting mass spectra.

Computational approaches to the mass spectral prediction
problem fall into two categories: first-principles physical-based
simulation and data-driven statistical methods.

First-Principles Physical Simulation. Purely Statistical
Theories. Ab initio approaches to EI−MS prediction leverage
quasi-equilibrium theory (QET) or Rice−Ramsperger−Kas-
sel−Marcus (RRKM) theories,11 which explicitly model the
redistribution of the energy over the internal degrees of
freedom. By keeping only the relevant vibrational modes (with
a harmonic oscillator approximation), the density of states
(core to the estimation of the rate constants) may be
approximated. Such theories and their expansions have been
used to study the relative abundances of fragment ions in well-
known spectra.12 The need to enumerate the possible reaction
pathways limits the successful application of such theories to
very small molecules.

Born−Oppenheimer Molecular Dynamics. Methods such
as QCEIMS and its derivatives13,14 combine quantum-
mechanical Born−Oppenheimer molecular dynamics (MD)
with fragmentation pathways to compute fragment ions within
picosecond reaction times and femtosecond intervals for the
MD trajectories. Statistical sampling of these trajectories then
provides a distribution of observed fragments, generating a
spectrum. However, even with the approximations made to
reduce runtime, the runtime complexity is prohibitive for
scaling, on the order of O (100 h) for small molecules less than
100 Da in mass.14 While these methods can often qualitatively
identify plausible fragmentation pathways, their accuracy is not
yet high enough for compound identification.13

Data-Driven Statistical Methods. Computational sys-
tems for predicting mass spectra fragmentation were a topic of
interest for early AI researchers, leading to projects like
DENDRAL15 in the 1960s, which applied rule-based heuristic
programming to the structural elucidation in organic
chemistry. The heuristics used in the project have been
improved upon over the last few decades, as chemists continue
to add to a library of known fragmentation processes,11 by
which chemical bonds and atoms are broken and rearranged.
These heuristics are used by chemists to manually identify and

Figure 1. Example predictions on the held out NIST 2017 test set from the models we assess in this paper: FormulaNet (RASSP:FN), SubsetNet
(RASSP:SN), NEIMS,7 CFM-ID,8 and experimentally measured spectra.9
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explain the occurrence of particular peaks in small-molecule
EI−MS spectra.16

Early approaches were rule-based approaches, iteratively
applying thousands of known rules to combinatorially
enumerate possible fragments. Such methods have very high
recall, providing a possible explanation for every peak in a
spectrum. Recent work fuses the high recall of the
combinatorial approach with learned models to improve
precision. In particular, the series of CFM-ID papers8,17−19

achieved state-of-the-art results in using a general rule-based
fragmentation scheme to generate a large fragmentation tree
for each molecule and then investigated the parameters for a
model that parameterizes a Markov transition process over the
tree.

The advent of machine learning and graph neural networks
has renewed the interest in this problem. Recent work7,20

innovates in this area using deep neural networks that directly
predict spectra from molecular fingerprints or molecular
graphs. These systems have been shown to do quite well on
learning the regularities present in EI−MS data, achieving
performance surpassing that of simpler linear or neural
network models.

■ METHODS
The complete calculation of the full fragmentation tree for a
given molecule undergoing EI−MS would contain all necessary
information to accurately predict the observed spectrum:
simply compute the isotopic m/z distribution for each
observed fragment and sum these over all fragments weighting
by the fragment probability. However, the physical complex-
ities and possible fragmentation paths make this a very
challenging, and perhaps impossible, computational task.
Approaches like CFM-ID17 attempt to model this process,
but the exponential growth in possible fragmentations naturally
limits the types of fragmentation events and fragmentation tree
depth, impacting spectral prediction accuracy.

We instead reason backward from our observation: the
spectrum. While one could attempt to directly predict the
spectrum, given an input molecular structure or molecular
fingerprint (like NEIMS), this discards effectively all physical
intuition about the problem. As we state later, we are
interested in developing methods that will naturally extend
to higher-resolution spectra, and contemporary machine
learning methods can struggle with extremely high-dimensional
output spaces. Figure 2 illustrates the possible representation

levels at which one can reason about the problem, starting
from the input molecule structure (viewed as a graph) and
ending with the mass peak distribution as viewed in the
spectrometer.

Note that for any fragment child ion of the original
molecule, both the chemical subformulae and the vertex
(atom) subsets allow us to exactly determine the observed
peak m/z distribution of the fragment. However, there are far
fewer formulae than atom subsets and far fewer atom subsets
than possible subgraphs. For example, C6H12O6 has a total of
18 bonds. If we consider complete bond breakages out to
depth d, we can generate 18!/(18 − d)! unique bond breaks
and up to the same amount of possible subgraphs but only 7 ×
13 × 7 = 637 possible subformulae. For d ≥ 3, the number of
possible subgraphs is already larger than the number of
possible subformulae. Thus, we focus only on chemical
formulae and atom subsets. Motivated by the need to
generalize to higher-resolution spectra, we adopt two different
physically informed substructure enumeration methods: one
that produces possible fragment formulae (used in RASSP:FN)
and another that produces possible fragment vertex subsets
(used in RASSP:SN).

Generating Subformulae. Generating subformulae for a
given molecule is straightforward. For a given molecule, we can
iteratively generate all subformulae by recursively taking the
setwise Cartesian product of the possible subformulae for a
single element of the molecule with the subformulae over the
rest of the molecule. For example, getSubformulae (C6H12O6)
= getSubformulae (C6) ⊗ getSubformulae (H12O6). The base
case is a single element X occurring N times, where the
possible subformulae are simply the possible occurrences of X:
getSubformulae (XN) = [X0, X1, ···, XN]. However, only
considering the chemical formula (which elements are present
and how many) discards vital structural information such as
bond connectivity. In doing so, we ignore all information about
which formulae might appear more often in the final spectrum
than others.

We thus explore an additional, richer representation of
fragments: vertex (atom) subsets. We use atom subsets and
vertex subsets interchangeably to refer a subset of the atoms
present in a molecule. Atom subsets are preferred to complete
fragment subgraphs because considering bond connectivity
explodes the number of subgraph objects we must consider.
Note that two fragment subgraphs with different bonds may
still implicate the same subset of atoms from the original
molecule.

Unfortunately, for most interesting molecules, it is quite
infeasible to enumerate all possible subsets as a molecule with
N atoms can have 2N possible atomic subsets. Conveniently for
us, this space of atomic subsets is highly redundant, with many
atomic subsets having similar mass peaks in a spectrum. Thus,
we cannot proceed like we did with the chemical subformulae
earlier, where we could simply enumerate all possible
subformulae. For atom subsets, we need to devise a scheme
that can generate sufficiently plausible subsets. It should have
enough generality to output all peaks in a spectrum but not so
many as to be computationally intractable to fit a model later
on.

Generating Subsets. To select plausible subsets from this
much larger space of possible subsets, we adopt a heuristic
bond-breaking approach where we begin with an initial
molecule and recursively break all possible bonds out to a
particular depth. In this paper, we consider all fragments

Figure 2. Different representation levels for the mass spectrometric
forward problem. Each molecule is represented as a graph where
nodes are atoms and edges are bonds. Subgraphs are connected
components of the original graph, where both atom/bond presence in
the subgraph is considered. Atom subsets are another level of
abstraction, where only atom presence in the set is considered.
Formulae are yet another level, where only the counts of unique
elements are considered. Finally, each unique formula corresponds to
a known mass peak distribution.
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generated by breaking bonds out to d = 3. Discussion on why d
= 3 is selected is presented later in the Evaluating the Impact of
the Subset Enumeration section. To improve the recall of this
process, we also perform exhaustive hydrogen rearrangements,
a well-studied transition in mass spectrometric fragmenta-
tions.11 Since our fragment generation process features bond
removal and addition, it is possible to generate subgraphs that
are not subisomorphic to the original molecule graph.
However, our process notably misses important fragmentation
processes. Consider the fragmentation process for toluene.
Toluene (C7H8) starts with a six-carbon-ring ion and one of
the possible pathways leads to an intermediate seven-carbon
ring ion. Such a graph structure is not isomorphic to the
original graph and must be formed by the bonds breaking and
rearranging to form a new ring ion.11 This fragment is not
explicitly generated by our subset enumeration process, though
the chemical formulae may still be output by our exhaustive
formula enumeration.

Graph Neural Networks for Predicting a Probability
Distribution over Atom Subsets and Chemical Sub-
formulae. Our different enumeration approaches map to
potential fragments, represented as either atom subsets or
chemical formulae. For basic molecule identification, this often
suffices�molecules of radically different structures will have
fragments with nonoverlapping peak distributions. However, as
molecules get larger and more complex, significant overlap
between their spectra can occur, even for molecules without
significant structural similarities. Since more information about

structure is captured in relative peak intensities, we would like
to increase the precision of our barcode spectra by assigning
different likelihoods to observing fragments. To do so, we
employ graph neural networks (GNNs) as function approx-
imators to learn a feature embedding for every atom in a
molecule.20−25 Rather than using GNNs directly to learn a
molecule embedding or fingerprint that we map to a spectrum,
we use them indirectly to learn per-atom features.

The feature embedding stored at each atom represents local
information about the atom’s neighborhood and global
information about the molecule. The chemical subformulae
contains information about which elements are present in a
fragment, and how many. Similarly, an atom subset contains
more specific information about the atoms that are present in a
fragment. The core idea is to combine these two sets of
information from the learned per-atom feature embedding and
the fragment features to produce a probability distribution over
chemical formulae (FormulaNet) or atom subsets (SubsetNet).
Once we have a probability distribution over atom subsets
(chemical subformulae), we can directly evaluate what the
predicted spectrum would be.

Per-Atom Feature Embedding via a Graph Neural
Network. For a molecule graph M = (V, E) with NA atoms,
we derive F0 features for each atom (see the Supporting
Materials for an exact description of features and network
architecture), giving a feature matrix X0 of shape NA × F0. The
bonds between atoms are represented as a symmetric
adjacency matrix A ∈ {0, 1, 1.5, 2, 3}NA×NA, where different

Figure 3. Message-passing graph neural network (GNN). We start off with a vector of features for each atom as our input features for the graph.
Each successive layer of the GNN performs an update of each atom’s embedding based on a nonlinear transform of the embeddings of the atoms
adjacent to it (hence “message-passing”). After n iterations, we generate a new set of embeddings for each atom.

Figure 4. FormulaNet. We compute per-atom feature embeddings using a graph neural network (GNN). We then compute an attention weight for
each atom’s embeddings using the attention mechanism described in the text, and use that to perform a weighted sum of those features to produce
a subformula-dependent graph embedding. We combine this with the representation of the subformula and (after several feedforward layers) derive
a probability that that subformula contributes to the final spectrum.
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bond orders are represented by different values. Together, we
feed the per-atom feature matrix X0 and adjacency matrix A
into a multilayer message-passing graph neural network
(GNN) that outputs a per-atom feature embedding

×X Rd
N FdA (Figure 3).

FormulaNet. The per-atom features Xd can be combined
with the atom subset/subformula information in a few ways.
The first model we discuss uses only the set of all chemical
formulae that arise from a molecule’s fragmentation. Note that
the chemical formula enumeration process is simple yet fully
exhaustive, combinatorially capturing all possible formula that
could arise, even the ones inaccessible via a physical-based
fragmentation process.

Our universe of elements is E = {H, C, O, N, F, S, P, Cl}.
These eight elements are chosen to ensure nearly full coverage
of molecules from PubChem and NIST. Each chemical
formula is represented by a count-encoded presentation, an
one-dimensional array of non-negative integers representing
how many atoms of each element are present +

| |F Z E . If a
molecule generates f(M) total chemical subformula, then the
count-encoded representation our model takes is a two-
dimensional array +

×| |F Z f M
c

( ) E . Within the model, the count-
encoded representation is converted into a run-length one-hot
encoding of form +

×F Z f M
r

( ) maxelem(E), where maxelem is
chosen to be sufficiently large so as to contain all chemical
formulae within the dataset. As an example, the formula CH3
may be encoded as [1, 1, 1, 0, 0, 1, 0, 0, 0, 0] where the first
five entries correspond to 5 maximum possible H atoms and
the last five entries correspond to five maximum possible C
atoms. The Supporting Information contains exact details on
how this is done.

We then compute an attention operation using the formula
embeddings Fc as key and the per-atom features Xd as query
and value. We then concatenate the result with the formula
embeddings: [attention(Fc, Xd, Xd), Fc] and pass this through a
MLP to get unnormalized scores S for each formula. The
unnormalized scores are converted to formula probabilities p

using a softmax and scaled against weights computed via a
linear layer from the per-atom features Xd (Figure 4).

SubsetNet. The direct fragmentation process generates a set
of atom subsets. For a molecule M = (V, E) with NA atoms and
NS unique atom subsets, the subset indicator matrix is a binary
matrix of {0, 1}NS×NA with 0 indicating the absence and 1
indicating the presence of an atom in a subset. We generate an
embedding for each subset by taking the mean of the per-atom
embeddings Xd for only the atoms present in each subset. The
subset embeddings Xd+1 and the run-length N-hot encoding of
the formula for each subset Fr are combined and then fed into
a MLP to generate probabilities for each subset (Figure 5).

Observation Model. Both RASSP:FN and RASSP:SN
generate probability distributions, the first over unique
chemical formulae and the second over atom subsets of the
original molecule. Given a formula, we can exactly calculate the
observed spectrum, taking into account isotopic variability at
natural abundance and mass defect. At integer-Dalton
resolution, summing the atomic masses and rounding is
sufficient, but using the exact spectral distribution will prove
useful for later high-resolution experiments.

We then weight each formula/subset’s mass spectrum
according to the model’s output probability and sum all of
the observed mass spectra together to obtain one final mass
spectrum prediction for the entire molecule.

Learning Model Parameters from Data. Note that for
both models, the input consists of the molecule graph and
either (1) a set of possible chemical subformula of the
molecule or (2) a set of possible atom subsets of the molecule.
The output is a probability distribution over the subformulae
or atom subsets. Because the exact mass peak distribution is
known for each subformula and subset (Observation Model
section), we then exactly compute the mass spectrum at
arbitrary resolution. We fit each model using stochastic
gradient descent against minibatches of experimentally
observed (molecule, spectra) pairs to minimize the L2 error
between scaled spectra, where the spectral intensities are scaled
by a power. Powers < 1 reduce the importance of outlier peaks,
whereas powers > 1 emphasize the importance of outlier peaks.

Figure 5. SubsetNet. Like FormulaNet, we use the GNN to generate per-atom feature embeddings. Separately, we generate candidate atom subsets
via direct substructure enumeration (bond breaking and rearranging). The per-atom feature embeddings are combined using the atom subsets as
“masks” to sum only the embeddings for the atoms present in each subset, generating an embedding for each atom subset. These subset
embeddings are then fed into an MLP to generate probabilities for each subset.
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Metrics. Each spectrum is represented as a set of charge-to-
mass ratios, intensity tuples (mk, Ik). We assume that all
measured ions have charge one, and as such, the charge-to-
mass ratios may be interpreted directly as masses. Nearly all
EI−MS data is obtained at integer-Dalton resolution, i.e., (1.0,
I1), (2.0, I2), ···. For peaks that do not conform to this
specification, such as output peaks from CFM-ID8 that specify
the exact fragment mass, we transform spectra from a set of
discrete peaks to a histogram by binning at integer-Dalton
resolution, with bins centered on integer values with unit
widths and summing all of the intensities for peaks falling
within the same bin. After binning the spectrum, we normalize
it to have unit L2 norm.

The key metric for forward model performance is the
weighted dot product (eq 1). The weighted dot product scales
each mass by a mass power and each intensity by an intensity
power. Note that due to the normalization factors on the
bottom, this metric is actually weighted cosine similarity and
not a proper dot product. Due to the normalization, the values
of the weighted dot product (for any a, b) fall in the range [0,
1].

=
×

|| || || ||
S S

m I m I

m I m I
DP ( , )

( ) ( )a b p r
k k

a
pk
b

k
a

rk
b

k k
a

pk
b

k k
a

rk
b, 2 2

(1)

Some common values include (a, b) = (1, 0.5) (regular dot
product, DP) and (a, b) = (3, 0.6) (Stein dot product, SDP).6a
≥ 1 increases the weight placed on errors at large masses, and b
< 1 reduces the impact of outlier intensity values. SDP is
commonly used in the literature to search and match spectra
against spectral databases.6

Beyond the dot product (DP) and Stein dot product (SDP),
we also track intensity-weighted barcode precision (WP) and
intensity-weighted false positive rate (WFPR). These addi-
tional metrics, respectively, represent how much of the
predicted spectral intensity was in bins also seen in the true
spectrum and how much of the predicted spectral intensity was
in bins not seen in the true spectrum. For barcode precision, a
bin was considered only if the L1-normalized intensity
surpassed some cutoff imin. In this paper, we use imin =
0.0001. Top-K precision is also a relevant metric (how many of
the top-K peaks in the predicted spectrum are also in the true
spectrum). This and further metrics may be found in the
Supporting Information.

Datasets. The primary dataset used for training both
SubsetNet and FormulaNet models was the NIST 2017 Main
Library.9 After filtering the dataset down to molecules
containing only HCONFSPCl atoms, with total atoms ≤ 48,
number of unique fragment formulae ≤ 4096 we obtained a
dataset of 125 643 molecules. Each molecule was divided into
10 mutually exclusive dataset folds according to the last digit of
the CRC32 checksum of the hashed Morgan fingerprint for the
molecule. This procedure groups identical molecules in the
same dataset fold, acting as an automatic check against
repeated rows or molecules in the dataset. We used the first
eight folds for training (2−9, 100 438 molecules, nist-
train) and the last 2 folds for validation (0 and 1, 25 205
molecules, nist-test).

To compare effectively with CFM-ID,8 which provides
spectra for evaluation on a small subset of the NIST 2014
Spectral Library, we generate the smallmols-orig dataset
from their provided molecule list.8 In addition, we pulled
molecules from the PubChem Substance database.10small-

Figure 6. EI−MS prediction performance: the bottom and top of the bars represent the 10th and the 90th percentiles, respectively, with the middle
bold tick representing the median (all percentiles evaluated over the dataset specified). (a) Performance of CFM-ID, NEIMS, SubsetNet, and
FormulaNet models on molecules from smallmols-orig (a subset of NIST EI−MS data selected in a previous paper8). (b) Performance of
NEIMS, SubsetNet, and FormulaNet models on nist17-mainlib. Metrics are the Stein dot product (SDP, weighted dot product with (a, b)
= (3, 0.6)), regular dot product (DP, (1, 0.5)), intensity-weighted precision (WP), and intensity-weighted false positive rate (WFPR). “Exp. repl.”
refers to experimental replicate variability, estimated by taking the mean metrics over all replicate experiments in nist17-replib and are
shown in both (a) and (b) for comparison purposes. They can be viewed as a proxy for experimental variability and as such an “upper limit” to the
forward prediction accuracy.
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smallmols-orig was filtered in the same way
as the nist17-mainlib (HCONFSPCl atoms,
≤48 atoms, ≤4096 unique fragment formula)
and used for evaluation against publicly
available parameters for the CFM-ID model8

and the NEIMS model.7 More information on
datasets used is available in the Support-
ing Information.

The final model with highest SDP and recall at 10 was
FormulaNet (see the Supporting Information for exact model
parameters). The trained model generalizes to molecules of
arbitrary size and fragments, so we evaluated it against the
73.2M PubChem molecules with HCONFSPCl atoms, ≤64
atoms, ≤32 768 max unique fragment formulae, and ≤49 152
max vertex subsets. All of the molecules and spectra are
indexed and publicly-available at our website spectroscopy.ai.

The NIST Replicate dataset consists of 63 741 total
“replicate” experimental measurements of 23 200 unique
molecules. None of these molecules appear in the NIST
Main Library. Each molecule was replicated a minimum of two
times, with a mean of 2.7 replicates, a median of 2, and a
maximum of 24 replicates. This dataset allows us to measure
the variability of the experimental process due to stochasticity
and inconsistent apparatuses. We use the replicate dataset to
estimate the run-to-run variability between measured spectra
contributed by varying apparatuses and protocols around the
world. This experimental noise provides an upper bound on
forward model performance.

■ RESULTS
EI−MS Forward Prediction. Example spectral predictions

are presented in Figure 1, and forward prediction metrics are
presented in Figure 6. SubsetNet (RASSP:SN) and For-
mulaNet (RASSP:FN) were trained for 40 full epochs against a
subset of the NIST 2017 EI−MS Spectral Library after
selecting for molecules with ≤48 atoms, ≤4096 max unique
subformulae, and ≤12 288 subsets (100 438 molecules from
nist17-train). A subset of molecules was held out and
used as a validation set for tuning hyperparameters and model
architectures (nist17-test). Where relevant, RASSP:SN
and RASSP:FN refer to the models of each architecture with
best performance on this validation set. Where available,
performance was also compared against the CFM-ID and
NEIMS forward models.7,8 NEIMS7 was trained from scratch
for 100 epochs on nist17-train. CFM-ID spectra for the
smallmols subset were derived from the Supporting Data
provided by the authors. Full model details, the training
process, and code are available in the Supporting Information.

As we can see in Figure 6a, our models show significant
improvement in performance over previous physics-based
models (CFM-ID), achieving a 95% SDP (out of 100%, actual
values are bounded in [0, 1]) on smallmols compared to
the CFM-ID 68%. FN and SN outperform NEIMS significantly
on both the smallmols dataset and the nist17 datasets.
We leverage the nist17 replicate experiments to compute
the best possible intra-experimental performance (labeled
“Exp. repl.”). Our prediction performance approaches this
experimental accuracy, as depicted in Figure 6b. This gives us a
sense of the run-to-run and apparatus-to-apparatus variability
in the EI−MS process, providing an upper bound on forward
model performance.

The actual distribution of DP values is depicted in Figure 7.
As we can see, the distributions for both SN and FN skew

much closer to that of experimental variability than NEIMS.
There remains some room for improvement, especially with
SN. This indicates how much headroom there might be left to
improve upon by improving forward model predictive
performance.

Library Matching. Another validation of the accuracy of
our predicted spectra is to use them in a database lookup
(library matching) task resembling the common comparison of
experimental spectra against spectral databases to identify
unknown compounds. We follow the procedure detailed in the
NEIMS paper:7 we evaluate the performance of an EI−MS
forward model using model-inferred spectra to replace a set of
molecule, spectra pairs in a spectral database, and then
comparing known experimental “replicate” (molecule, spectra)
pairs to the database to see whether the true molecule is
ranked highly.

We use the NIST 2017 Main and Replicate libraries
(nist17-mainlib and nist17-replib, respec-
tively) for this task. The Replicate library consists of replicated
experimental measurements and has no overlap with the Main
library. To evaluate a given model’s library matching
performance, we evaluate it against all molecules in the
Replicate library. These spectra are then added to the Main
library to form an augmented library that consists of mainlib
experimental spectra and replicate model-inferred spectra. We
use the Replicate library as a query library, randomly selecting
a replicate experimental spectrum for each molecule. Each mol,
the spectrum row in the query library is then tested against the
augmented library. The max peak in the query spectrum is
used to filter the augmented library molecules to ±5 Da, and
then, the rows from the augmented library are sorted by
decreasing SDP vs the query spectrum. The rank of the
matching spectrum is recorded. Some examples of the library
matching task are illustrated in Figure 9.

As seen in Figure 8, both SN and FN outperform NEIMS in
the library matching (database lookup) task they originally
detailed.7 The error rate at 1 for NIST, at 16.9%, indicates that
doing a simple database lookup and taking the top matching
molecule gets the wrong match 1 out of every 6 spectra. We
improve the error rate at 1 from 1 in 2 spectra (47.2%,

Figure 7. Histogram (probability density function) of prediction dot
products DP1,0.5. Here, we show the distribution of dot products for
all predictions on the NIST Mainlib from the 3 models NEIMS,
SubsetNet, and FormulaNet as compared to the distribution of dot
products for replicate experiments from NIST Replib (labeled “Exp.
repl.”). As forward models improve their accuracy, the distribution
should shift to the right. The NIST Replib distribution represents the
current limit of prediction performance, accounting for intrinsic
experimental variability and differences in experimental setups.
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NEIMS) to 1 in 4.6 spectra (21.4%, FN). The numbers
improve rapidly as the window increases, with the error rate at
10 declining to 1 in 83.3 molecules (1.2%, NIST Ref). FN
improves on NEIMS by nearly 3× in this library matching task.
Moreover, we note that SN and FN were trained to maximize
forward metric performance (SDP), not recall at 10.

Higher-Resolution Data. Nearly all computational
prediction and database lookups use EI−MS spectra measured
at integer-Dalton resolution. Our results detailed here are
similar. To test whether either of these models generalizes to
higher-resolution data, we trained both SN and FN against a
high-resolution synthetic dataset generated using the CFM-
ID8-provided weights to predict spectra (and their exact peaks)

for molecules from PubChem. Rather than binning at the 1 Da
resolution, we binned at 0.10 Da resolution. We randomly
selected 1000, 10 000, and 100 000 molecules to use as training
and held out 10 000 molecules to use as test. The
generalization performance of SN and FN is depicted in
Figure 10. We see that the performances of SN and FN

converge as the dataset size (and molecular diversity)
increases, but SN generalizes much better at low-dataset size.
Due to the limited availability and expense of collecting high-
resolution EI−MS data, this indicates that SN may generalize
far better in the low-dataset regime than FN, indicating that

Figure 8. Library matching performance. Comparison of the error
rate on the library matching task7 over the top 1, 5, and 10 ranked
spectra achieved by different model architectures. All graphics display
the performance of using NIST replicate spectra as query spectra,
indicating the lower bound of error rate, given present EI−MS
experimental accuracy. Error bars correspond to 1 − σ variation when
estimating the error rate using bootstraps, drawing 20% of the query
library randomly without replacement.

Figure 9. Library matching task. The left and right panels demonstrate two examples of the library matching task. The query spectrum
(experimental spectrum from the NIST Replib) is displayed at top in black, and the top 3 ranked spectra from the augmented database (comprised
of NIST Mainlib experimental spectra and model-predicted spectra on the NIST Replib) are shown, along with their chemical formulae and the
similarity metric (dot product with (1, 0.5)). Blue spectra are experimental spectra from NIST Mainlib and purple spectra are the predicted spectra
from the model used in the task. In this figure, predicted spectra are output from the best FormulaNet (FN) model. On the left, we see that the
correct match is the spectrum at rank 3. Two molecules with exact formula matches but slightly different structures (hydrogen placements) are
ranked higher. On the right, the correct match is ranked outside the top 3, but we can see that two molecules with matching formulae but slightly
different structures are ranked at the top.

Figure 10. Performance of SubsetNet and FormulaNet with scaling
dataset size. As we increase the size of the high-resolution training
dataset (synthesized using CFM-ID8,17,18 for molecules from
PubChem), we see that SN and FN both converge to similar
performance. However, their performance diverges dramatically when
the dataset is small.
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the atom subset representation generated by substructure
enumeration may be a more natural representation of the mass
spectral problem than simply enumerating the formulae. For
full details about the generation of the high-resolution
synthetic dataset, see the Supporting Information.

Dependence on Molecular Similarity. Ultimately we are
interested in our model’s performance on unseen structures.
Machine learning methods learn to recognize patterns in their
training data, and thus, care is taken to separate train and test
datasets. Fitting of our model is performed exclusively on
molecules in our identified training set with test molecules
reserved solely for metrics evaluation. In computational
spectral prediction, training and evaluating a model on
molecules of a particular class or structural motif can lead to
inaccurate evaluation of its performance.

To further investigate how our model may generalize to
unseen structures, we examine how our model’s predictions on
molecules in the test set change depending on how structurally
similar those test molecules were to molecules in our training
set. Such analysis is key in determining whether a model truly
generalizes to structures it has never seen before and can
provide further confidence in using its predictions on
molecules with no observed spectra.

Forward Spectral Prediction Performance. In Figure 11,
we present the SDP vs similarity to the closest molecule in the
training set for all of the molecules in our test set. We see a
clear dependence on similarity�the higher the similarity to

the training set, the better the performance. This effect is most
pronounced at low similarity levels, where the SDP for the 10%
similarity quantile falls to below 20%. Note that 90% of test set
molecules have a similarity to the training set over 69.0%
(vertical red line).

Library Matching Performance. In the library matching
task, the NIST Replicate Library we use as the query set
features molecules that are not seen in the Main Library. Thus,
for each molecule in the Replicate Library, we compute its
similarity to the Main Library as the similarity to the closest
molecule in the Main Library. We bin the molecules into “low
similarity” molecules (n = 29 339) and “high similarity”
molecules (n = 18 771). The cutoff is 90%, below which a
molecule is classified as “low similarity”, otherwise “high
similarity”. Low-similarity molecules have a mean log 10(rank)
of 0.11, whereas high-similarity molecules have a mean
log 10(rank) of 0.14. This intuitively makes sense�Replicate
library molecules with high structural similarity to Main
Library molecules are likely to have similar spectra in the
database, and similar spectra can often be hard to distinguish
from each other, causing the lookup rank to be higher (worse
identification) than molecules with lower similarity. More
detailed statistics can be found in the Supporting Information.

Evaluating the Impact of the Subset Enumeration.
The way we enumerate substructures (here, atom subsets and
chemical subformulae) is critical. Chemical subformulae can be
completely enumerated without knowledge of the molecule
structure, but atom subsets require bond breaking and
hydrogen rearrangements. As we increase the depth to which
we break bonds, we generate more fragments and should
expect monotonically increasing recall and coverage of spectra.
In Figure 12 we study the final performance of trained
SubsetNets, where all parameters are held constant except for
the bond-breaking depth used to generate atom subsets. Each
model is trained for 1000 epochs or until the validation SDP
no longer increases. The highest-performing checkpoint as
measured by validation SDP is selected for final metrics. As we
increase the depth to which we break bonds from d = 1−3, we
see increases in forward similarity (SDP and DP) but a
decrease at d = 4. The decrease may be due to the way we
randomly select a subset of the atom subsets to fit the entire
atom subset indicator matrix on GPU. Randomly subsampling
the generated atom subsets may throw out important
fragments that we no longer consider for weighting and
observation later in the pipeline. In this paper, we only focus
on the subsets achievable by bond breaking out to depth 3.
Notice that if we add hydrogen rearrangements (“d = 3 B&R”),
we continue to see improvement in performance. This
indicates that further improvements in the recall and physical
plausibility of the generated subsets are likely to boost
performance, in addition to increasing the number of atom
subsets considered for observation.

■ DISCUSSION
Previous efforts to learn machine learning models from mass
spectral data have focused on better rule-based fragment
enumeration schemes or used machine learning (graph neural
networks, transformers) to directly predict spectra from
molecule embeddings (SMILES strings, fingerprint hashes,
etc.). Comprehensive substructure enumeration methods tend
to have high recall at the cost of low precision, whereas
machine learning tends to help recover that precision. In this
work, we combine a physically plausible substructure

Figure 11. Stein dot product (SDP) vs Tanimoto similarity of our test
molecules (n = 25 205) to the closest molecule in the training dataset
(n = 100 438). Results are binned to the nearest decile and the 10%−
50% (median)−90% percentiles within each bin are plotted.
Additionally, the histogram of the similarities is shown inset above
the plot. The vertical red line is the 10th percentile of similarity,
plotted at similarity ≈69.0%. Test set molecules (10%) fall below this
similarity value, and 90% of test set molecules fall above.
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enumeration process with GNNs, demonstrating that this
fusion outperforms all previous models. We present SubsetNet
and FormulaNet, two models for predicting EI−MS spectra.
FormulaNet significantly outperforms all previous methods of
EI−MS spectral prediction, achieving an average SDP of 92.9%
and DP of 93.5% over the largest publicly available database of
EI−MS spectra. In addition, our predicted spectra may be
evaluated indirectly by utilizing them in a library matching
(database lookup) task. Here, we also outperform previous
methods, achieving a recall at 10 of 98.0%. SubsetNet does
much better at generalization in the low-data regime by
leveraging more fine-grained information about substructures.
Such performance approaches the limits of experimental data
(see Figure 7). We generate EI−MS spectra predictions for
73.2M molecules from PubChem and make them freely
available.

All computational approaches to predicting EI−MS spectra
are fundamentally limited by the available data. The largest
publicly available spectral library to date is still the NIST Mass
Spectral Library.9 Experimentalists from around the world are
free to contribute EI−MS spectra measured at 1 Da resolution
to the library. As higher-resolution tandem MS/MS machines
come online, spectral databases will increasingly consist of
heterogeneous data, mixing experimental spectra measured at
many different resolution scales. Importantly, because RASSP
predicts a probability distribution over fragments with known
exact mass peak distributions, it can be used to predict spectra
at arbitrary resolutions by simply changing how we bin the
binning of predicted probabilities. As such, our approach is the
first approach that can be used to leverage data from multiple

sources, thanks to the ability to train against high and low-
resolution data simultaneously. It is common to use some form
of dot products or cosine similarity as a spectral similarity
metric for measuring forward spectral prediction performance
and library matching. However, in higher-resolution tandem
MS/MS, the false positive rate may be even more critical.
Future work would investigate the importance of different
metrics in measuring spectral prediction performance and
integrating supervision from both higher-resolution EI−MS
spectral data and other types of metadata, such as ionization
energy and experimental apparatus.

Each of the modules (subset and subformula enumeration vs
machine learning model for the fragments) can be improved
independently. For computational ease, our enumeration
process generates fragments by breaking up to and including
three bonds and also includes all possible hydrogen rearrange-
ments. However, there are more exotic fragmentation schemes
that we have ignored, and their inclusion could potentially
improve the recall of the generated fragments. The graph
neural networks we use only consider the atoms and do not
take into account any information about the bonds, other than
their bond order. These models may be improved by
incorporating edge information and making changes to the
model architecture, such as a novel bipartite atom-bond
message-passing scheme or other improvements. Together,
future improvements may enhance both the recall and the
precision of our forward model.

An accurate in silico forward model for predicting EI−MS
spectra can be applied to library search and compound
identification. Running similarity search over spectral databases
using repeated spectral measurements obtained from NIST
Replib achieves an error rate of 1% at 10 using DP1,0.5, which
sets the lower bound on library matching accuracy, given
current EI−MS hardware. By augmenting existing spectral
databases with in silico spectral predictions from our forward
model, we can massively increase the number of molecule
candidates considered, potentially increasing the ability for
scientists to discover novel and rare compounds. However, the
search problem quickly becomes computationally challenging
as the number of molecules increases. A typical query over the
300K molecules in NIST Mainlib takes about 100 ms. To
improve the computational efficiency of the library matching/
database search task, we can use more efficient similarity
metrics, approximate computations, and dimensionality
reduction via approaches like nearest-neighbor hashing or
locality-sensitive hashing. Recent work has already demon-
strated that deep learning-based similarity measures can
dramatically improve accuracy over simpler cosine similarity
measures in database lookup tasks.26,27

In the long-term, we expect computational spectral
prediction to enable novel applications. For example, computa-
tionally obtained spectra may be used to augment metab-
olomics studies by enabling researchers to automatically match
spectra to molecules that have never been experimentally
studied. Future work could use a good computational forward
model for EI−MS to generate large amounts of training data
that could then be used as supervision for an inverse model to
further automate this and other types of molecular
identification problems. The runtime of these forward models
may be improved by further algorithmic improvements to the
substructure generation step and the machine learning models.

Figure 12. Performance of SubsetNet as depth of bond breaking
increases. We fix a SubsetNet architecture and dataset (nist17-
mainlib) and vary the depth to which we break bonds, affecting the
number of generated substructures and atom subsets. Training is
terminated after 1000 epochs and the final performance on the
validation set is reported here. We see that as depth increases to d = 3,
performance increases, but tapers off at d = 4. In addition, adding
hydrogen rearrangements (B&R) boosts performance over simply
doing more bond breaking.
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