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ABSTRACT: Large-scale computational molecular models provide
scientists a means to investigate the effect of microscopic details on
emergent mesoscopic behavior. Elucidating the relationship between
variations on the molecular scale and macroscopic observable
properties facilitates an understanding of the molecular interactions
driving the properties of real world materials and complex systems
(e.g., those found in biology, chemistry, and materials science). As a
result, discovering an explicit, systematic connection between
microscopic nature and emergent mesoscopic behavior is a
fundamental goal for this type of investigation. The molecular forces
critical to driving the behavior of complex heterogeneous systems are
often unclear. More problematically, simulations of representative
model systems are often prohibitively expensive from both spatial and
temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While
the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained
(CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic
details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems
can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior.
However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller
system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a
smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by
(i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which
approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant
representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed
connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to
approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning
techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing
these approximations.

1. INTRODUCTION
Understanding how molecular phenomena translate into
emergent mesoscopic and macroscopic behavior is a common
theme throughout biology, chemistry, physics, materials science,
and engineering. Experimental techniques have offered micro-
scopic insights into systems from these fields. For example,
ensemble-averaged atomic structures can be resolved at high-
resolution using X-ray crystallography or cryo-electron micros-
copy.1,2 Alternatively, fluorescence techniques3,4 or nuclear
magnetic resonance (NMR) spectroscopy5,6 can provide
dynamic information, albeit at lower spatial resolution. To
complement these experimental approaches, theorists leverage
classical molecular dynamics (MD) simulations to investigate
dynamical phenomena at high spatial resolution, most
commonly at the atomistic level.7 However, within the space
of MD simulation techniques, coarse-grained (CG) modeling

and simulation are particularly attractive for the study of systems
with hierarchical length and time scales such as biomolecular
systems8−14 (including UNRES,15−18 OPEP,13,19 PRIMO,20

SIRAH,21,22 MARTINI,23−27 MS-CG,28−34 and REM35−41).
By design, CG models are reduced representations of fine-

grained (FG) atomistic resolution molecules, where CG sites
represent groups of corresponding FG atoms through a process
that can be called mapping. Effective interactions between the
CG sites are parametrized to retain the essential aspects of the
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system of interest under the chosen equations of motion.
However, defining these essential aspects depends upon the
scientific question at hand and the reference data available,
variations in which have led to the development of the top-down
and bottom-up approaches, which are the two general classes of
CG models that we will discuss later. CG simulations have three
primary benefits compared to FG simulations. First, these
models enable simulations of larger systems at appropriate
length scales by virtue of the reduced number of particles.
Second, a larger integration time step can be used in CG
simulations since the removal of highly fluctuating short
wavelength atomistic degrees of freedom results in a smoother
CG free energy surface that accelerates the sampling under
Hamiltonian mechanics. Finally, the construction of useful CG
models grants tacit insight into molecular features (i.e., fromCG
mappings) and energetics (i.e., from CG interactions and
associated equations of motion) that are essential for under-
standing mesoscopic and macroscopic behavior. For these
reasons, CG simulations provide perspectives that would
otherwise be inaccessible from more detailed atomistic MD
simulations, which has driven their continued use and
development.
The top-down strategy is perhaps the more typical CG

modeling approach. Often, the scientific question posed by top-
downCG studies is to determine if a particular set of interactions
is capable of reproducing specific macroscopic properties. For
example, the original MARTINI CG model for lipids was
parametrized to recapitulate partition coefficients.23−27 Studies
of self-assembling systems have also benefited from top-down
approaches. Using simplified geometries and interactions, it has
been possible to broadly explore how morphologies may be
dictated by a few adjustable parameters.42−45 However, as these
approaches neglect the direct validation of microscopic details
by design, it is unclear if the resultant CG models faithfully
reproduce microscopic physics. For example, the original
MARTINImodel, by construction, lacks a rigorous CGmapping
from atomistic degrees of freedom by design46 and also may not
reflect the underlying nature of atomistically mapped
interactions onto the CG representation, such as the correct
enthalpy−entropy decomposition for certain calculated poten-
tials of mean force (PMF).47,48

Bottom-up approaches use the opposite strategy and attempt
to reproduce microscopic (mapped atomistic) statistics. The
underlying principles of most bottom-up approaches are that
properties observed in reference simulations are to be captured
by the correct CG equations of motion describing equilibrium
and certain nonequilibrium processes. For example, static
properties are to be reproduced by the effective CG interactions
as determined by equilibrium statistical mechanical principles.
The majority of bottom-up CG approaches aim to reproduce
static correlations. One common strategy, which we refer to as
thermodynamic consistency, is to systematically parametrize CG
models such that the sampled distribution recapitulates the
multidimensional configurational distribution of their FG
counterparts when mapped to the CG phase space.28,31−33

Under this criterion, the ideal effective CGHamiltonians are the
conditioned (or CG mapped) many-body PMFs expressed in
the CG coordinates or configurations. Reproducing the many-
body PMFs using an arbitrarily complex set of functions or “basis
set”,34 however, is challenging and sometimes problematic, as
even if it is computationally feasible to capture the properties of
the simulation being analyzed for parametrization, the resulting
potential must also describe the larger system of primary interest

to the study at hand�an extrapolative task that becomes
increasingly difficult as the basis set grows in complexity.
Instead, bottom-up studies have explored if CG models that
recapitulate reduced sets of microscopic statistics using similarly
simplified basis functions are also capable of collectively
recapitulating mesoscopic and macroscopic behavior.9,49−51

Unlike static properties, dynamical processes are correlated with
both temporal and spatial variables and thus can be difficult to
represent at CG resolution. Extracting the time evolution of CG
systems from the FG reference provides a strategy for rigorously
integrating the many-body nature of time-dependent processes
into CG models.52−54

Bottom-up CG models are created to generate samples that
systematically approximate high-dimensional data produced by
a reference model. This approach is fundamentally similar to
those of contemporary methods in machine learning (ML).55,56

Algorithms for high-dimensional regression have been applied as
the building blocks for force fields that recapitulate high order
correlations in CGmapped atomistic data.57−60 Simultaneously,
ML techniques focused on directly generating samples from
high-dimensional distributions have provided approaches for
quantifying the error in existing CG models and more efficient
methods for generating atomistic configurations. These novel
generative approaches have additionally shown promise in
producing atomistic configurations from CG simulations (an
approach often referred to as “backmapping”).61−69

In this Review, we summarize recent advances in bottom-up
CGmodeling (with some, albeit abbreviated, historical context)
and discuss promising future directions. In particular, we focus
on how bottom-up CG models can be derived by establishing a
systematic connection between the microscopic (atomistic) and
the reduced descriptions. We first review fundamental concepts
in CG models that have been proposed over the past two
decades. We then discuss limitations and challenges in CG
modeling in terms of consistency, representability, and trans-
ferability. We briefly survey recent scientific findings and
breakthroughs that benefited from methodological advances,
e.g., concepts from ML. We conclude with a brief overarching
summary and future outlook toward the next generation of
bottom-up CG modeling.

2. BASICS OF BOTTOM-UP COARSE-GRAINED
MODELING

Two ingredients are necessary for any bottom-up CG modeling
recipe. While intertwined, these processes are typically
performed separately. First, one needs to define the CG
mapping that formally defines the correspondence between
the FG and reduced resolutions. Then, once a mapping is
selected, the CG mechanics need to be defined in the desired
CG phase space on the basis of the FG statistics mapped onto
that space. Various techniques can be applied for parametrizing
the interactions governing the CG equations of state. These two
ingredients are not only essential to construct CG models but
also to provide the theoretical basis to understand the challenges
underlying bottom-up CG modeling, i.e., consistency, trans-
ferability, and representability. Below, we briefly describe these
essential steps required for bottom-up CGmodeling and discuss
how they are related to the aforementioned challenges.
2-1. Coarse-Grained Mapping. The process of applying a

CG mapping reduces the high-dimensional atomistic phase
space to a low-dimensional CG phase space. Ideally, this should
involve mapping over both configurational and momentum
variables in phase space, but most molecular CG models do not
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involve momentum in their equilibrium distribution consis-
tency, and under this assumption, the majority of CG mappings
can be readily applied to only the configurational variables. The
field of chemistry has an established history of breaking complex
molecules into moieties and functional groups in order to
predict and understand atomistic behavior. This process
provides an intuitive basis for designing CG configurational
mappings. Even though there are numerous mapping schemes
that one can take in order to preserve the desired behavior in CG
models, the resultant CG interaction associated with the specific
mapping should be designed based on the statistical mechanical
principles given by the CGmethodology, which will be reviewed
in Section 2-2 below.
2-1.A. Based on Real Particles. Representing each chemical

moiety as a group of CG sites is perhaps most easily realized by
defining each CG site as a weighted average of the configurations
of various atoms. For these real particle-based mappings, the CG
mapping operator on configurational variables is expressed as a
set of N linear functionsM(r):(M1(r),...,MN(r)), where the FG
coordinates can be mapped into CG site I following

= cM r r( )I
i

Ii i
(1)

One example is the center-of-mass mapping (cIi ∝ mi),
enabling one to retain important molecular configurations and
momenta at the reduced level. For force-based CG method-
ologies, the center-of-mass mapping provides thermodynami-
cally consistent forces that act on the center-of-mass phase space
variables in comparison to atomistic forces.32 However,
information beyond configurations may be lost using the
center-of-mass mapping. Recent advances have suggested that
one can alternatively perform center-of-charge mapping, which
is a reweightedmass based on the partial charges of atoms within
CG sites,70 to better encode electrostatic information71,72 for
systems in which electrostatic interactions play a major role, e.g.,
ionic liquids.73 It is also conceivable that the geometry of the
system can be better conserved by performing center-of-
geometry mapping as cIi = 1/nI, where nI denotes the number
of FG particles involved in CG site I.
2-1.B. Based on Virtual Particles. Interactions that are

centered onCG sitesmapped from the FG variables alone can be
a limitation in CG modeling. Particles that do not explicitly
represent specific FG particles can be included as additional
interaction centers, thereby introducing a general means to
increase the expressivity of the desired model; we holistically
refer to these particles as “virtual sites”. Virtual sites have been
used to impart subtle anisotropic projections of forces acting
upon real sites. One prototypical example of this idea is the
atomistic TIP4P water model.74 Similar types of virtual sites
have been used in the context of high-resolution CG models,
notably for sterols and for aromatic hydrocarbons.75,76 Overall,
virtual sites can be thought of as relatively inexpensive
augmentations to conventional real particle-based mappings.
Virtual sites in CG models have been increasingly utilized in

recent years, most predominantly in top-down CGmodels.77−79

Moreover, virtual CG sites were required to describe directional
interactions at protein−protein interfaces that are responsible
for viral self-assembly.44,80−86 However, the use of virtual sites in
bottom-up CG models has been limited due to a lack of
systematic rules that describe effective virtual site interactions.
One proposed approach is to use the so-called center-of-
symmetry framework that maintains thermodynamic consis-
tency while preserving the molecular asymmetry via virtual

particles.76 We note that the necessity of preserving molecular
symmetry in CG mapping is still an open problem,87 but the
center-of-symmetry framework can effectively encode the
missing quadrupole information into CG models (e.g., π−π
stacking from benzene rings), enhancing the fidelity of structural
correlations and transferability. These early successes demon-
strate the utility of virtual sites and motivate the need for
additional efforts to determine systematic rules for virtual site
mappings and effective interactions for complex molecular
systems, e.g., polymers.88 Another approach that shares a similar
physical principle is to introduce virtual sites that help to
represent the effects of explicit solvent in implicit solvent
models.89 These so-called “solvent-free” CG models can
potentially provide an accurate and transferable CG modeling
for biomolecules, e.g., amphiphilic assemblies of lipids.
2-1.C. Mesoscopic Mapping: Clustering. On larger meso-

scopic scales, CG particles can instead be represented as
supramolecular “blobs”, and the CG mapping at this resolution
becomes less clear than at the molecular level. If the target
system is composed of bonded systems, one can still employ a
linear center-of-mass mapping.90−93 However, the same strategy
cannot be applied for unbonded systems since the construction
of CG blobs becomes a nonlinear and time-dependent
procedure. As developed by Español and co-workers, who
introduced the Voronoi cell representation,94 suitable meso-
scopic representations for unbonded systems must be obtained
via alternate approaches such as clustering methods other than
conventional center-of-mass and related mappings. One such
example is the application of the k-means clustering algorithm to
unbonded fluids,95,96 and another option proposed by
Praprotnik et al.97,98 uses spatial tessellation at adaptive
resolutions. By adjusting the center of each Voronoi cell based
on its center-of-mass, these clustering methods allow for
mesoscopic CG blobs to faithfully represent their FG counter-
parts. Yet, conformation-based clustering suffers from the
nonanalytical nature of the mapping process, which makes the
derivation of CG interactions impractical, and requires frequent
reclustering over the simulation. This limits the development of
highly CG models to study mesoscopic behavior.99 Hence,
several alternatives have been reported in the literature,
including a spherical CG blob mapping by Ayton et al.100 This
latter work was also extended (mainly, but not completely, in a
top-down manner) to treat biomolecular membranes, with and
without bound proteins.61,101−104

In general, the nonlinear, nonanalytic, and iterative nature of
the mesoscopic CGmapping is considered a major bottleneck in
mesoscale modeling of unbonded molecules (i.e., liquids).
Recently, a “dynamic mapping” scheme was developed by
mapping velocities instead of configurations, which only
requires the initial configuration from smoothed centroidal
Voronoi tessellations.105 To note, this mapping scheme is based
on a Lagrangian description to track individual fluid particles,
but a complementary Eulerian description can also be
established in a similar vein.106 In turn, this new approach
allows stable propagation of the CG blobs over time, indicating
its applicability to various fluids,107 e.g., heterogeneous multi-
phase systems.
2-1.D. Backmapping. Due to information loss during the

coarse-graining process, there is a seemingly inherent lower
bound to the CG resolution when creating a model for a
particular scientific question. While the CG resolution can be
tuned to optimize the level of detail remaining as to only include
the relevant parts of the system at hand (see Item E later), this
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resolution may itself prove to be too computationally expensive.
As a result, it is often desirable to recapture the full FG details by
“backmapping” the CG configurations onto FG configura-
tions.108 In prior studies, backmapped structures from CG
simulations have been used as starting points for FG simulations
in order to improve FG sampling.61−69 Generally, the procedure
is performed in two steps. First, an initial model for the
backmapped FG structure is predicted using geometric
algorithms. Then, the structure is equilibrated using a short
MD simulation. However, due to the degeneracy associated with
the CG mapping, this process is highly nontrivial, and some
recent advances have introduced ML techniques to perform
backmapping (see Section 6). Early work also developed
reasonably rigorous statistical mechanical methods for back-
mapping from the CG resolution to obtain the Boltzmann
distribution in the FG variables (or close to it).109−113

2-1.E. Optimal Resolution. Along with CG mapping, the
resolution of CG models impacts the resultant CG model phase
space and the performance of CG models in reproducing the
values of key observables. These factors are particularly
important for modeling complex biomolecules, where grouping
different atomistic entities becomes less clear. While there is no
definitive answer to this problem, the optimal resolution for the
desired CG models can be chosen to maximally reproduce the
key observables fromCGmodels or the loss of information from
the coarse-graining process.114

Notably, essential dynamics coarse-graining (ED-CG) has
been developed to systematically estimate the optimal
partitioning scheme for large biomolecules by recapitulating
key dynamics (or essential dynamics).115 ED-CG can be

employed in conjunction with principal component analysis
(PCA) of atomistic trajectories115 or CG models of large
proteins116 described by an heterogeneous elastic network
model (HeteroENM).117 Various determination protocols have
also been suggested recently to determine the optimal CG
representation, e.g., constrained minimization,118 stepwise
optimization,119 and fluctuation maximization.120

On the other hand, an alternative approach can be achieved by
minimizing the loss of information accompanied by the coarse-
graining process. References 121 and 122 systematically
investigated this concept by reproducing underlying fluctuations
in terms of the CG model spectrum using a Gaussian network
model, which can be further extended to elastic network models
(ENMs).123 As this information loss is intrinsically related to the
mapping entropy from the coarse-graining process, ref 124
suggests a CGmapping optimization strategy by minimizing the
mapping entropy with the aid of ML techniques125 or enhanced
sampling algorithms126 (e.g., Wang−Landau127,128) in a way to
preserve the maximum possible FG information. We emphasize
that the mapping entropy introduced here is one of the most
central quantities not only to determine the CG mapping but
also to correctly understand the representability and trans-
ferability of CG models as will be discussed in Section 2-4.
Beyond a single resolution, CG models with multiple

resolutions can be a way to capture different levels of detail in
inhomogeneous systems. However, these so-called adaptive
resolution models also require a concurrent coupling among
multiple levels of resolution and changing the particles’
resolution on the fly. One of the most commonly practiced
frameworks, the adaptive resolution simulation (AdResS)

Figure 1. Broad summary of bottom-up CG modeling. Based on FG reference statistics, CG modeling is composed of two steps. (1) CG mapping
(often performed on configurational variables) involves real or virtual CG particles at molecular resolution or includes mesoscopic mapping at coarser
resolutions. (2) CGmechanics are defined by the specific consistency criteria and design principles that determine the CG equation of motion and CG
interactions. CG equations of motions are generally chosen based on the target dynamical information, e.g., with or without fluctuation forces. CG
interactions are determined by the designed CG Hamiltonian, which may suffer from an imperfect basis set and transferability issues. Bottom-up
parametrization methodologies are then applied to yield effective CG interactions that optimally approximate the level of physics specified by the
consistency criteria and design principles.
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approach, allows for a smooth transition between different
resolutions by introducing a hybrid transition region.129 Then,
the coupling between each resolution is designed based on the
ensemble of interest and desired resolution ranging from
quantum to hydrodynamics levels. For the molecular level, the
original AdResS used a force coupling,129 and then Hamiltonian
AdResS (H-AdResS) was developed by designing the global
Hamiltonian.130−132 For different spatial levels, several AdResS-
based schemes have been developed, such as for larger
proteins,133 continuum hydrodynamics,134,135 systems with
quantized nuclei,136,137 open systems,138,139 and the grand
canonical ensemble.140,141 One particularly nontrivial question
would be to determine the thermodynamically consistent
bottom-up interactions at the multiple resolutions. We will
briefly discuss this in Section 2-4.
2-2. Coarse-Grained Mechanics. Once the mapping

operator is decided, CG mechanics must be determined via
(1) the equations of motion for the CG phase space variables
and (2) the effective CG interactions from the chosen equation
of motion in phase space, which will then enable CG simulations
to be performed. Similar to the process of CG mapping, in the
canonical (constant NVT) ensemble, the effective CG
interactions are only dependent on the CG configurations.
The essential building blocks for CG models are summarized in
Figure 1.
2-2.A. Coarse-Grained Equations of Motion. CG equations

of motion and energetics affect the fidelity of CG models in
different ways. In order to correctly address dynamical
properties, CG models should faithfully represent the friction
and fluctuations observed in the reference FG system.52−54 On
the other hand, the equilibrium static properties, e.g., structural
correlations, are not dependent on dynamical behavior. Correct
recapitulation of static correlations is possible through only
conservative interactions. While the latter can be propagated
under Hamiltonian mechanics, the proper dynamics (time-
dependent behavior) requires equations of motion accounting
for nonconservative interactions, e.g., the generalized Langevin
equation. In this section, we specifically discuss the performance
of CG models in terms of static correlations. The related
discussion on dynamical properties is presented in Section 5.
2-2.B. Coarse-Grained Energetics: Design Principles. In

general, it is impractical to determine exact forms of the
renormalizedmany-body CG interactions. Therefore, construct-
ing approximate bottom-up CG models is performed in two
sequential steps. The first step is to design the form of the CG
Hamiltonian in terms of configurational variables. This is often
done by adopting molecular mechanics functional forms similar
to that of the atomistic description, such that the approximate
CG interactions are written as a combination of analytical and
tractable forms, including bond, angle, torsion, and pair
nonbonded interactions. Various design principles for the CG
Hamiltonian will be described in detail in Section 3. The second
step is to determine the interaction parameters for the defined
CG Hamiltonian, which is the focus of this subsection.
2-3. Coarse-Grained Force Fields. 2-3.A. Bottom-up

Philosophies. In order to address a myriad of chemical and
biological systems, most CG methodologies provide a general
principle to determine CG interaction parameters regardless of
the CG Hamiltonian form. This is often manifested in the
bottom-up manner by enforcing certain statistical mechanical
principles to maintain the fundamental properties of the FG
system. Depending on the microscopic target of interest
(thermodynamic properties or static correlations), various

bottom-up CG methodologies have been proposed in the
field. In this subsection, we briefly survey some of the leading
strategies for approximating CG energetics, and we will review
naturally emerging issues in Section 3.
2-3.B. Based on Variational Principles. As noticed from the

CG equations of motion, forces are central to equilibrium
thermodynamics, and several methodologies have been
designed based on the conservative forces. The idea of
employing force-matching (without coarse-graining) originated
from the early work of Ercolessi and Adams142 and from Izvekov,
Parrinello, Burnham, and Voth143 to define molecular
mechanics force fields on an ad hoc basis from ab initio
calculations. The extension of force-matching to CG configura-
tional space was established with the Multiscale Coarse-
Graining (MS-CG) method developed first by Izvekov and
Voth for biomolecular systems28,30 and liquids.29 This advance
was accomplished through a recognition that force-matching
could be carried out along with a resolution reduction (coarse-
graining) and that this would be a variational route to determine
the many-body PMF for the CG variables. Later, in a series of
papers,31−34,70,144−151 the MS-CG method was more fully
developed and explored. By design, the MS-CG methodology
determines the effective force field acting on CG site I,
FI(M(rn)), by minimizing the least-squared force residual
χ2[F] between a target CG model and the FG counterpart.
Here, M denotes a mapping operator that maps the FG
configuration rn to the CG configuration RN. These force
differences are often expressed as a quadratic residual, and thus,
a systematic determination is possible by variationally
minimizing this force metric

[ ] = | |
=N

F F M r f r1
3

( ( )) ( )
I

N

I
n

I
n2

1

2

(2)

where FI(M(rn)) is the unknown CG forces at the CG
configuration, and fI(rn) is the projected microscopic forces on
the CG site I. The unknown CG forces can be linearly expressed
through the CG force field parameters U R: ( )N

CG =
V R( )k k k

N via FI(RN) = −∇IUCG(RN). In general, a two-
body (pairwise) approximation is often adopted to express the
CG force field basis sets, and subsequent algorithmic
advances34,152 introduced spline interpolation to describe
force field parameters as F R( )I

N = R e( )J I IJ IJ2 =

c u R e( )J I k k k IJ IJ which reduces the least-squares problem
in eq 2 to an overdetermined system of linear equations,153

resulting in the following matrix equation

=F f (3)

In eq 3, F is the force matrix calculated from the CG
configurations and the CG force field parameters ϕ, and the
column vector f represents the projected FG forces at the CG
resolution. From a statistical mechanical perspective, the MS-
CG methodology satisfies the thermodynamic consistency
between the FG and CG phase spaces.32,33 It is important to
note that this approach to training a bottom-up CG force field
from FG data can be considered an early example of “machine
learning”, which has become very popular in recent times
(including for coarse-graining), albeit a deep neural network59

was not utilized in that early MS-CG work of almost 20 years
ago.
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In contrast to the force-based metric, Shell and co-workers
have identified and implemented the information-theoretic
relative entropy as a target metric.35−41 Relative entropy is
defined as the differences between the FG and CG probability
distributions, given by the Kullback−Leibler divergence154

= +S d p
p

p
Sr r

r

R
( ) ln

( )

( )
n

n

Nrel FG
FG

CG
map

(4)

where ⟨Smap⟩CG denotes the mapping entropy (introduced in
Section 2-1) defined by a mapping operator, Smap = ln ∫ δ[M(r)
− R]dr. Thus, minimizing Srel enforces minimizing the log
difference between the FG and CG probability distributions.
Based on this metric, relative entropy minimization (REM) can
be expressed within the canonical ensemble as Srel = β⟨UFG −
UCG⟩CG − (AFG − ACG) + ⟨Smap⟩, where U and A denote the
internal energy and free energy, respectively. Then, a set of CG
model parameters {λi} can be variationally determined by
minimizing the relative entropy differences between the FG and
CG systems, resulting in the following conditions for local
optimality38

= =
S U UR R( ) ( )

0
i

N

i

N

i

rel CG

FG

CG

CG
(5a)

>
S

0
i

2
rel
2 (5b)

Due to the systematic nature of REM, several variations were
reported to enhance the predictability of CG models.155 The
connection between MS-CG and REM has also been
analyzed:38,156 both will give the exact many-body CG variable
PMF if a “perfect” basis set is used to describe the CG
interactions, but the two approaches will differ in comple-
mentary ways if more approximate basis sets are used.
Even though the aforementioned approaches can variationally

determine the effective CG interaction parameters, it is not
immediately clear if the resultant CG models will reproduce a
particular target atomistic correlation correctly given the
approximate nature of the CG Hamiltonian as well as the
basis set chosen to describe the CG interactions. Recent studies
have, however, shed light on such connections. Noid et al.
demonstrated that the MS-CG method determined from eq 2
satisfies the Yvon−Born−Green (YBG) hierarchical equa-
tion,157 indicating that MS-CG with two-body interactions
attempts to capture two-body and three-body structural
correlations.31 In a related fashion, Chaimovich and Shell
showed that REM guarantees capturing any n-body statistical
correlations that are explicitly represented in a corresponding n-
body CG Hamiltonian.38

By establishing links between force-based models and
structural correlations, explicit consideration of FG structural
correlations can result in modified strategies for force field
parametrization. Notably, Mullinax and Noid provided a
practical link by developing the generalized YBG (g-YBG)
framework to determine optimal interaction potentials for
complex classical force fields by utilizing only structural
correlation functions.158,159 The g-YBG approach was readily
applied to CG systems on the basis of the MS-CG framework,
where the structural correlations were used instead of
forces.158−162 This observation is based on eq 3 that the normal

equation form can be constructed by acting a transpose FT on
the left-hand side. This produces the following equation

G b (6)

where G ≔ FTF and b ≔ FTf. In the g-YBG approach, b is
expressed in terms of a set of structural correlation
functions,158−160 and G contains the ensemble average of
cross-correlations between the CG degrees of freedom.
An iterative refinement to eq 6 can improve the reproduction

of specified correlation functions. Namely, two iterative schemes
are possible. The first approach is to update the G matrix
iteratively by matching the CG forces at a given CG structure to
the mapped FG forces. Cho and Chu applied this scheme to the
MS-CG methodology,163 and Rudzinski and Noid made similar
extensions to the g-YBG framework.164 Another iterative
treatment is to recalculate the b column vector by matching
the CG forces at a given FG structure to the CG forces at a given
CG structure. The latter approach is equivalent to matching
expectations of basis function derivatives, as demonstrated by Lu
et al.165 Another recent advance has resulted in a noniterative
parametrization scheme, while still based on eq 6, in order to
directly reproduce pair correlations by transforming the
atomistic cross-correlations.166 Lastly, the parametrization
strategies discussed above can be improved by leveraging ML
techniques. While general principles and examples of ML-based
CG parametrization will be discussed in Section 6, we briefly
note here that force-matching and relative entropy ideas can be
translated into ML. For example, the Kullback−Leibler
divergence in eq 4 can be extended to general f-divergence,58

and the force-matching scheme in eq 2 can be utilized to train
the CG free energy functional.59 Beyond force-matching, the
effective f low by combining eq 2 and 4 can also be trained to
recapitulate the CG probability density.167

2-3.C. Based on Static Correlations. Alternatively, several
bottom-up CG approaches have been specifically designed to
capture target static correlations (as opposed to the many-body
PMF of the CG variables like MS-CG and REM). One of the
earliest attempts was to capture pair correlations, or radial
distribution functions (RDFs), from FG systems168,169 based on
Henderson’s uniqueness theorem,170 which asserts that there is
a unique pair potential that gives rise to a given RDF. Under
dilute (low-density) conditions, one can ignore the many-body
correlations in the system, and the effective pair interactions can
be approximated based on the RDF or gFG(R). This approach is
known as the (direct) Boltzmann inversion171

=U R k T g R( ) ln ( )B FG (7)

However, most condensed matter systems are not at the low-
density limit, and thus, the model RDF from the CG trajectory
using eq 7 often deviates from the reference RDF (gFG(R)). This
deviation can be corrected using an iterative scheme, known as
iterative Boltzmann inversion (IBI), where one can iteratively
improve the fidelity of the CG models by updating the CG
interactions according to

=+U R U R k T
g R

g R
( ) ( ) ln

( )

( )k k
k

1 B
FG (8)

with a convergence rate α.172 Even though the IBI approach has
been applied to various chemical systems with its relatively
simple update scheme, eq 8 is neither a variational approach nor
strictly based on rigorous statistical mechanical principles, and
thus, improving IBI models to resolve thermodynamic issues
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cannot be done systematically. As a result, several IBI-based
approaches require a heuristic, phenomenological theory to
design the parametrization strategy. We note that ref 173
substantiates the well-posedness of IBI under certain conditions,
but not all systems of interest fall into this case. Also, pair
correlation-based CG methodologies suffer from numerical
degeneracy in the RDF. Even though Henderson’s theorem
proves uniqueness, several practically constructed CG models
(such as those parametrized via IBI and REM) can yield similar
RDFs due to the sensitivity of pair distributions as well as
numerical issues. The pair distribution itself intrinsically
contains configurational degeneracy,174 and recent work by
Wang et al. systematically demonstrated that the RDF can be
insensitive to pair interactions,175 as substantiated by previously
reported systems using various CG modeling methods.176−178

Therefore, several extensions from IBI have been designed to
surmount these issues, including the multistate generalization
(multistate IBI) by McCabe and co-workers179,180 as well as
thermodynamic property-based IBI approaches such as
Kirkwood−Buff IBI by van der Vegt and co-workers181 and
−IBI by Junghans and Mukherji.182
Similarly, an approach named inverse Monte Carlo (IMC) by

Lyubartsev and Laaksonen also targets the reference RDF and
determines the CG interactions in an iterative manner.183,184

Yet, these IMC iterations often suffer from computational
overhead due to the sampling of all possible configurations.185 In
light of these issues, recent methodologies have been designed
based on an integral equation approach that can approximate the
many-body correlations via closure equations. For example,
Guenza and co-workers have proposed an Ornstein−Zernike
integral equation-based analytical approach to determine the
effective CG interactions for polymeric systems.186−188 It is also
possible to utilize an inverted integral equation as an initial guess
for IBI to improve parametrization efficiency.189

2-3.D. Based on Energetics. As opposed to target- or
correlation-based approaches, one can also directly derive CG
interactions from reference FG systems. Based on atomistic
energetics, this class of approaches attempts to extract the
reduced energetics, i.e., forces or free energies, directly from the
atomistic energetics. For example, by borrowing from the force-
matching philosophy, the effective force CG (EF-CG) approach
computes the averaged forces acting on the groups of atoms by
projecting onto corresponding radial vectors.190 By directly
extracting the force information from the atomistic simulations,
the CG Hamiltonian is approximated as atomistically averaged
forces, and EF-CG can be derived from an averaged description
of the MS-CG methodology. Similar averaging schemes, as well
as the EF-CG method, can be employed to capture structural
correlations,191−194 since these averaged interactions correctly
account for the existing pair- and many-body correlations in FG
systems. Similarly, in order to correctly capture the underlying
FG energetics, a recent extension of the MS-CG method195,196

(called “energy-matching”) has shown that one could variation-
ally determine the pair energy functions by minimizing the
energy differences akin to eq 2. This allows for the pinpointing of
energetic contributions from the many-body CG variable PMF,
which is advantageous for better understanding of trans-
ferability.
A direct assessment of the PMF is also possible by explicitly

computing effective pair potentials following the definition of
the PMF in the low-density limit. In this case, by adopting a free
energy perturbation approach, effective CG interactions can be
computed via conditional reversible work (CRW).197 This

fragment-based CG approach can be advantageous in terms of
transferability for different system conditions, yet, by design, it
does not guarantee that the static correlations will be correctly
addressed.198−202

2-4. Representability and Transferability in Coarse-
Grained Modeling. 2-4.A. Accuracy in Coarse-Grained
Modeling. The accuracy of bottom-up CG models is
undoubtedly important as it reflects the fidelity of CG models
relative to the FG reference. Yet, appropriate metrics for
accuracy are ambiguous at present. In this section, we define
three separate yet related measures of bottom-up CG model
fidelity: consistency, representability, and transferability. The use
and importance of each of these measures are dependent upon
the scientific question of interest. It is therefore worthwhile to
discuss each of these metrics with the understanding that all
three contribute to the overall accuracy of a bottom-up CG
model. It should be noted that to an extent top-down CG
models do not satisfy some or all of the properties discussed
below, and it will generally mean that those top-down models
are not consistent with statistical mechanics (meaning they do
not provide a direct connection between the FG and CG worlds
but are instead primarily models in the larger sense of the word).
2-4.B. Consistency. Consistency refers to the specific

statistical mechanical principle used to generate a bottom-up
CG model from a reference FG model. This consistency can
serve as the theoretical basis to derive CG force fields or be
utilized as the criterion to evaluate how the constructed CG
models capture FG statistics in a consistent manner.
Since the emergence of CG modeling as a “field”, various

consistency conditions have been proposed. For example, the
MS-CG methodology was initially built upon the consistency of
excess free energies, asserting that the CGmodel should provide
an excess free energy Aex = −kBT ln [∫ dRNe−βUCG(Rd

N)/VN] that is
identical to the FG excess free energy aex = −kBT ln
[∫ drne−βuFG(r d

n)/Vn].203 This condition is sufficient to derive the
effective CG interaction form in configurational space. However,
in order to consider the full phase space, the most commonly
used criterion built upon equilibrium statistical mechanics is
thermodynamic consistency,31−33 indicating that the CG variables
pCG(RN, PN) should have exactly identical probability
distributions as compared to that of FG variables pFG(rn, pn)
that are mapped to the specific CG phase variables via the
mapping operator M:(rn, pn) → (RN, PN). Both probability
distributions follow Boltzmann sampling at equilibrium, and
configurational and momentum variables can be separated as
discussed earlier. Mathematically, this can be expressed as

=

×

p d d

p

R P r M r R p M p P

r p

( , ) ( ( ) ) ( ( ) )

( , )

N N n n N n n N

n n

CG

FG (9)

where the mapping operators on configurational and momen-
tum variables are folded into the delta functions, which are
understood to be a product of delta functions in the expressions
here, one for each FG to CG mapping, i.e., M r R( ( ) )n N

M r R( ( ( ) ))I
N

I
n

I a n d M p P( ( ) )n N

M p P( ( ( ) ))I
N

I
n

I . This thermodynamic consistency can
be reduced into configurational and momentum consistency
relationships, respectively

=p d pR r M r R r( ) ( ( ) ) ( )N n n N n
CG FG (10a)
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=p d pP p M p P p( ) ( ( ) ) ( )N n n N n
CG FG (10b)

The configurational consistency implies that the effective CG
interaction potential should have the following form
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Eq 11 also demonstrates that the effective CG interaction that
ensures configurational consistency is equivalent to the many-
body PMF, which is a configuration-dependent free energy
function. Notably, this condition serves as a design principle for
CG force fields,33 and a rigorous link between eq 11 and force-
matching from eqs 2 and 3 was shown in ref 32.
Furthermore, the renormalized nature of the CG interactions

shown in eq 11 points to the nontrivial challenge in designing a
multiresolution CG model (one of the first systematic attempts
can be found in ref 204). Especially, at the AdResS-level linking
the FG and CG resolutions (assuming that we map to n0 FG
particles and N0 CG particles), the overall renormalized
interaction UFG/CG(rn, RN) should be written as

= ×U k T d

u
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(12)

where the constant term that is independent of configurational
variables is omitted for simplicity. In eq 12, the delta functions
containing the mapping function (to two different resolutions)
enter inside the integrand of the many-dimensional integral.
Therefore, the overall multiresolution interaction must be
considered to be renormalized at both levels, FG and CG.
However, this systematic thermodynamic connection is often
missing in many current multiresolution models.205−207 For
example, the AdResS treats the overall potential as130

= { + } +U V V V(1 )AdResS
FG CG int

(13)

where coupling parameter λα varies from 0 to 1 to couple the FG
and CG systems with their bulk (naked) interactions Vα

FG and
Vα
CG, respectively. While this interpolative approach has shown
to be able to capture various thermodynamic properties at
equilibrium, the thermodynamic consistency principle of eq 12
suggests that there is no formal theory to support the idea that eq
12 can be written in terms of the “naked” FG potential as done in
eq 13. As such, since the topic of adaptive and multiresolution
modeling is a complex one,204 it can still benefit from additional
development based on rigorous statistical mechanical principles.
In the remainder of this Review, we will therefore only focus on
CG models with a single level of resolution.
While configurational consistency reveals the many-body

nature of CG interactions, momentum consistency imposes a
rigorous condition when designing CG mapping operators.
Unlike configurational interactions, the momentum contribu-
tion to the system Hamiltonian is rather simple if the mapping
functions are linear: = mP /2i

n
i1 i

2 and = MP /2I
N

I1 I
2 for the FG

and CG systems, respectively. Moreover, this form of the

momentum contribution, combined with eq 10b, asserts that no
FG particles can be mapped to more than one CG site.32

2-4.C. Representability. The general connection between
microscopic statistics and dynamical or thermodynamic
observables (e.g., internal energy, entropy, pressure, temper-
ature, etc.) has been rigorously derived through statistical
mechanics. It is these relationships that allow computer
simulations of FG models (and generally only FG models) to
quantitatively predict experimental properties; in this paper, we
holistically refer to these relationships as representability. In the
case of dynamical representability, we will refer to how well the
CGmodels reproduce FG dynamical properties, and this is often
related to the choice of equations of motion used throughout the
CG simulations. We specifically discuss dynamical represent-
ability in Section 5. Furthermore, in contrast to time-dependent
properties and dynamical representability, the static picture of
CG models can be assessed via structural representability.
Structural representability is defined as how well the CGmodels
reproduce FG structural correlations, which is highly dependent
on the quality of the approximated conservative interactions at
the CG level. This particular topic will be discussed in Section 3.
Our particular interest in this section is in representability

issues that arise from thermodynamic inconsistencies observed
in various CG systems, which are broadly referred to as the
(thermodynamic) representability problem.49−51 Perhaps the
most common example is the trade-off between consistent
recapitulation of pairwise correlations (via configurational
consistency) and dramatic overestimation of pressure as
computed from the virial theorem due to missing degrees of
freedom in the CG model.208,209 From a statistical mechanical
perspective, the representability problem is rooted in the nature
of the renormalized degrees of freedom. Due to the missing
configurational andmomentum variables in the CG phase space,
the FG observables from the FG ensemble are not always
equivalent in value to their CG counterparts if the latter are
simply calculated using the same expressions as in the FG
model.49−51,121,195

To demonstrate this perspective on representability, consider
the fact that the ideal effective CG Hamiltonian in the CG
configurational space, UCG(RN), in the canonical ensemble
under thermodynamic consistency is equivalent to the many-
body PMF.31−33 As a projection of the free-energy, UCG has two
important attributes. First, UCG(RN) is clearly state point-
dependent, i.e., UCG(RN) = f(RN, V, T). Second, UCG encodes
both energetic (ECG) and entropic (SCG) contributions, i.e.,
UCG(RN) = ECG − TSCG(RN);148 the entropic contribution
represents the entropy “lost” and folded into the CG interactions
due to CG mapping, that is, the entropy associated with the FG
degrees of freedom that map to the same CG configuration.
Therefore, evaluating ⟨UCG⟩ would not give the FG internal
energy. Instead, a reformulated expression ⟨UCG + TSCG⟩ could
recover the FG internal energy; finding approximations for SCG
is an active area of research.51,121,124

The thermodynamic representability problem becomes more
apparent for observable expressions explicitly mapped from the
FG to CG ensembles.49 For example, if the observable of
interest, A, only depends upon configurational variables, this
inconsistency can be mathematically formulated by examining
the difference between AFG = ⟨A(rn)⟩rn and ACG = ⟨ACG(RN)⟩RN.
By introducing thermodynamic consistency into AFG, it can be
shown that observables at the CG resolution use equivalent
expressions to that of the FG resolution only when the following
definition is used:
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However, as can be seen from the complex expression in eq
14, not all observables satisfy this criterion (eq 14), and this
often results in AFG ≠ ACG.

49 There has been considerable
interest in determining the observable incompatibility from a
rigorous statistical mechanical perspective.210,211

Pressure is an example of a thermodynamic observable that
does not meet the criterion in the equation above. All FG
configurational variables contribute to pressure according to the
virial theorem,157,212 rather than only the reduced CG
configurational variables. As such, the evaluation of pressure in
a CG model by simply using the virial expression as if the CG
variables were the FG variables has essentially no connection to
the pressure of the system at the actual FG level. Stated
differently, the “pressure” in the CGmodel is rather meaningless
unless interpreted as a part of a global model in which virtually
everything is a model, not just the interactions between the CG
particles. On the other hand, if the volume dependence of UCG
were known, it would be possible to construct a modified virial
expression to compute the pressures using only CG variables
that are consistent with the FG pressures.49,146 One way to
resolve this discrepancy is to determine a compatible observable
expression using correct basis sets according to the thermody-
namic properties of interest. A recent study on determining the
correct observable expression for pressure using particle-wise
decompositions suggested that such an approach can resolve the
thermodynamic representability issue.213 In related fashion,
Lebold and Noid developed a dual-potential approach that
combines both structure- and energy-based variational
principles, resulting in a more faithful recapitulation of FG
energetics at CG resolution.195,196 We believe that this approach
is generalizable and that finding appropriate expressions at CG
resolution within the parametrized state point forms the basis of
CG representability. Moreover, these approaches are expected
to further reveal the fluctuations underlying fundamental
thermodynamic quantities, e.g., heat capacity and isothermal
compressibility, although, similar to CG potentials, they must be
able to extrapolate to the system of primary interest.
2-4.D. Transferability. In CG modeling, the transferability

issue naturally emerges from the differences between the FG and
CG Hamiltonians and can be defined as a measure of how
predictive or extrapolatory the CG models are to the statistics
beyond the parametrized conditions. Since effective bottom-up
CG interactions are free energy functions, unlike FG
Hamiltonians, the CG interactions will vary at different state
points (e.g., pressure, temperature, and composition). They are
clearly defined as a function of the thermodynamic state point.
For example, the constant NVT ensemble is generally chosen in
practice. However, this fact does not necessarily mean that
bottom-up CG models will have zero transferability. In this
regard, imbuing transferability onto bottom-up CG models
needs to be carried out in a manner consistent with the
underlying thermodynamics. For example, based on the
entropy-enthalpy decomposition approach introduced earlier,

=U E TSR R R( ) ( ) ( )N N N
CG CG CG (15)

the changes in entropic contributions to CG interactions
SCG(RN) at different densities or temperatures should be
correctly reflected while designing CG models. Most of these
conditions are natural variables of free energy (temperature,
pressure, volume) and system composition (bulk to mixtures
with different ratios). Yet, these conditions are inextricably
linked. For example, in mixture conditions, each molecular
entity will experience differences in pressure and volume due to
the presence of othermolecules, resulting in different interaction
profiles than that of bulk conditions. We will discuss recent
advances in dealing with the transferability issue in Section 3.
2-5. Current Challenges in Bottom-up Coarse-Grained

Modeling. Currently, major challenges in CG modeling
originate from the approximate nature of CG models that aim
to faithfully describe the complex many-body correlations and
properties of atomistic systems. Here, we present some
important challenges faced in these areas that have been and
are being actively pursued by a number of researchers in the
field.

• Structural Representability: How can one design CG
models to capture higher-order structural correlations
correctly? Most CG models suffer from this issue due to
the use of relatively simple pairwise interactions.

• Thermodynamic Representability: While structural repre-
sentability can be directly computed from CG simu-
lations, correct representation of CG thermodynamic
properties requires a systematic treatment. For example,
how can one obtain comparable pressures, internal
energies, or entropies with respect to the FG reference?

• Dynamical Representability: Since most bottom-up CG
methodologies focus on configurational variables, the
resultant CG dynamics is not guaranteed (or even likely)
to be consistent with the FG reference. How can one
overcome this inconsistency?

• Transferability: How can one design bottom-up CG
models that can be applied to nonparameterized
conditions? This issue is directly related to the
applicability of CG models.

• Machine Learning: How can one benefit from emerging
ML techniques to reduce the complexity underlying CG
modeling?

With this in mind, we aim to address each of these issues in the
remainder of this Review.

3. TOWARD MORE EXPRESSIVE COARSE-GRAINED
BASIS SETS
3-1. Design Principles for Coarse-Grained Energetics.

A bottom-up CG model that follows thermodynamic con-
sistency requires that the effective CG Hamiltonian, UCG(RN),
be exactly equivalent to the many-body PMF in terms of the CG
variables.31−33 However, it is computationally difficult to derive
a many-body expression for UCG(RN), and many-body
potentials are computationally expensive to use. Instead, low-
dimensional basis sets are commonly used by adopting
commonly used molecular mechanics functional forms, e.g.,
pairwise nonbonded interactions and bonded interactions
(typically up to four-body terms, i.e., dihedrals and improp-
ers).214−219 In summary, UCG(RN) is often approximated as
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where Unb
(2)(RIJ) is the two-body nonbonded potential that

depends upon the distance RIJ between CG sites I and J, Ub(dIJ)
is the two-body bonded potential, Uθ(θIJK) is the three-body
angle potential, and Uψ(ψIJKL) is the four-body dihedral or
improper potential.
3-2. Current Challenges and Breakthroughs. By

approximating the CG force field as eq 16, two types of errors
are naturally introduced. The first error is due to the simplified
nature of the interaction form (e.g., the pairwise approximation
in nonbonded potential). The other error is caused by the
inconsistency between FG force fields representing energetics
while CG force fields are representing free energies (the CG
PMFs). Even though eq 16 asserts that the CG PMFwill be only
a function of CG configurational variables, UCG(RN) ignores
explicit contributions from other thermodynamic variables (e.g.,
volume or temperature) as introduced in Section 2-4. It may be
typical that the former negatively impacts the structural
representability of CG models, whereas the latter limits the
thermodynamic representability and transferability of CG
models. A summary of these issues in CG force fields is
presented in Figure 1.
3-2.A. Beyond Pairwise Basis Sets. Due to their pairwise

approximate nature, CG models constructed from eq 16 are
often unable to reproduce the many-body correlations from the
FG reference systems. This problem is exacerbated by the
isotropic nature of CG particles (sites) that is commonly
adopted upon the CG mapping. By instead introducing virtual
sites that are designed to capture such correlations, CG models
can be improved while keeping the computational benefit of
pairwise basis sets. For example, one can introduce virtual sites
to represent complex chemical environments, e.g., the hydration
layer surrounding lipid bilayers, where the virtual site
interactions can be determined from a hybrid framework that
combines structure-based methods and force-based variational
principles.89 These choices are often more favorable than
introducing nonisotropic descriptions for CG particles, e.g.,
Gay−Berne interactions,220 due to the complexity and
computational cost of both the CG parametrization and CG
simulation. Thus, despite some preliminary efforts in non-
isotropic CG particle representation221−227 and parametrization
strategy,228 we will focus on efforts to improve CGmodels using
isotropic CG mapping representations in this section.
Alternatively, based on the many-body expansion,229 an

improvement can be achieved by introducing higher-order
interaction terms in the CG Hamiltonian
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where Unb
(n)(·) denotes the n-body nonbonded interaction with

configurational variables (·). For example, studies of bottom-up
1-site CG water have shown that pairwise interactions are
incapable of recapitulating the local structure due to hydrogen
bonds but can be recovered with the explicit addition of three-
body interactions Unb

(3).147 The importance of three-body
interactions in molecular systems230−236 can be seen by

applications of Stillinger−Weber interaction-based models,237
including in the top-down CG water model, e.g., mW.238

In principle, the aforementioned CG methodologies can be
readily applied to determine the interaction parameters for
higher-order Hamiltonians, e.g., MS-CG147,150 or IMC239 for
three-body Hamiltonians.240 However, introducing many-body
interactions inevitably reduces the efficiency gains from CG
modeling. In contrast, recent developments have proposed two
different generalized approaches to include many-body
interactions at a reduced computational cost. The first
approach193,194 implicitly projects the many-body interaction
(up to N-body) onto lower-order basis sets based on the
conditional probability p(OI

(n) | RIJ) of higher-order configura-
tional variables OI

(n)
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which can be interpreted as an extended Bogoliubov-Born−
Green-Kirkwood-Yvon (BBGKY) hierarchy for the configura-
tional interactions.241−245 Recently, eq 18 was applied to water,
where the three-body interactions are projected onto effective
pairwise interactions, resulting in the Bottom-up Many-body
Projected Water (BUMPer) model.193,194 The importance of
the many-body nature of interactions in water and aqueous
systems has been also investigated at the atomistic level, e.g., by
the MB-pol potential,246−248 or ML approaches.249 Notably,
BUMPer also highlights the computational efficiency of such
approaches while still recapitulating higher-order correlations.
The alternative approach can be realized by explicitly

introducing higher-order order parameters (or collective
variables) into the CG Hamiltonian. Explicitly evaluating
arbitrary higher-order order parameters will often reduce
simulation efficiency, but several order parameters that can be
computed using pairwise statistics can account for many-body
correlations with reduced computational cost. Inspired by
many-body Dissipative Particle Dynamics (DPD),250,251 there
have been active efforts to combine local number density ρ-
dependent interactions with conventional pairwise interactions
in order to improve the CG Hamiltonian,252,253 for example,

= +U U R UR( ) ( ) ( )n N

I J I
IJ

I
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nb
(2)

nb
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(19)

Due to notable improvements in modeling implicit
solvents254−256 and material systems,257−260 several papers
have reported that utilizing the local density enhances the
structural representability of CG models for phase separating or
interfacial systems.261−266 Taking a step further, one could
incorporate variations in the local density in terms of a local
density gradient U ( )I I Inb

( ) into eq 19 to accurately
describe inhomogeneous systems.267

Nevertheless, a direct advantage of eq 19 is that one can
introduce any kind of order parameter that can be computed in a
pairwise manner, other than local density ρ (e.g., particle
orientations,268,269 as well as order parameters related to liquid
crystals270 and glass transitions271,272) to accurately describe the
corresponding correlations. However, the choice of order
parameters used is often determined phenomenologically, and
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thus, a systematic principle should instead be established. We
will provide a systematic framework in Section 4. Finally, more
complex, high-dimensional N-body order parameters are
generally difficult to regress; ML techniques can help solve
such nonlinear problems (see Section 6).
3-2.B. Transferable Coarse-Grained Force Fields. In the

context of CG equations of motion, conjugate forces may
additionally contribute to observables (on top of forces due to
particle configurations). Since the effective CG interactions
obeying thermodynamic consistency are free energy varia-
bles,31−33 this point of view provides physical insights that
introduce conjugate forces in terms of thermodynamic variables.
Early attempts to address temperature transferability were

based on heuristics, such as temperature rescaling
×U R T U R T T T( , ) ( , ) /CG CG 0 0 for polymers.273,274 Re-

cently, more thermodynamically consistent approaches have
been pursued using entropy-enthalpy decomposition (eq 15)
under the pairwise approximation: UCG(R) = ECG(R) −
TSCG(R). By estimating the pairwise thermodynamic functionals
(ECG(R), SCG(R)) and extrapolating to nonparameterized
temperatures, temperature transferability can be achieved in
both constant NVT (Helmholtz free energy) and NPT (Gibbs
free energy) conditions.51,121,148,275 Even though eq 15 is a
natural extension of the free energy to CG PMFs, the physical
meaning of the pairwise thermodynamic functionals ECG(R),
SCG(R) remains relatively unclear at present.

276 A recent report
elucidated that these functionals may be deeply connected to the
thermodynamic representability issue for entropy.51,276 Alter-
natively, a more direct approach based on statistical mechanics
that does not suffer from the ambiguity of pairwise
thermodynamic functionals was developed by numerically
transferring the phase space expectation value at different
temperatures.145 It should be noted that reweighting approaches
often suffer from inefficient sampling and non-negligible
numerical noise.277,278 Notably, the dual approach by Lebold
and Noid circumvented this limitation in reweighting without
sampling other temperatures by employing the least-squares
minimization to the energy quantity to obtain ECG(R), which is
analogous to force-matching.195,196 Recently, Pretti and Shell
showed that the CG models constructed from microcanonical
basis sets in conjunction with REM for capturing entropy
functions can naturally provide temperature transferable CG
models by recapitulating atomistic energy fluctuations.41

Altogether, current findings and reports, regardless of
methodological details, emphasize the role of entropy in
temperature transferable CG models.
Temperature transferability is inevitably coupled with

pressure transferability in the case of the constant NPT
ensemble, as both thermodynamic variables affect the system
volume.146,279 Early improvements were based on rescaling CG
interactions with respect to pressure but lacked theoretical rigor.
Notably, one can introduce a volume-dependent conjugate force
into the CGHamiltonian, a strategy that dates back to the 1970s
for liquid metals.280 Das and Andersen showed that introducing
volume-dependent interactions UV(V) to the CG Hamiltonian
can correct the virial pressures in CG models146

+ +H V
M

U U VR P
P

R( , , )
2

( ) ( )N N

I

N
I

I

N
V

2

(20)

This interpretation has been further explored in refs 281−283
to impart transferable CG models while adequately addressing
the representability issue. Other than explicitly relying on eq 15

or 20, it is also possible to correctly reflect the changes in CG
interactions using order parameters that are coupled to system
conditions. One notable example is the Ultra-Coarse-Graining
(UCG) approach, which will be discussed in Section 4.
Transferability across composition is a more complicated

issue, where both temperature and pressure transferability come
into play. The ultimate goal would be to correctly address the
reduced pressure in mixture conditions, which is a nonlinear
process due to nonideal interactions, and to design the cross-
interactions between different molecular moieties. While this
direction has not been actively pursued due to its complexity,
several preliminary reports have paved the way for developing
so-called mixing rules for cross-interactions, indicating that
having a correct description of the CG thermodynamic
quantities is essential for achieving such transferability.51,284

Another free energy-based direction would be to introduce a
chemical potential-like term Δμ(R, N) as an analog to the
chemical potential term in the Helmholtz free energy.
Eventually, addressing the aforementioned transferability issues
will elucidate how to achieve chemical transferability where the
CG Hamiltonian can be determined a priori by grouping atoms
into molecular building blocks (or functional groups) and
sampling these groups at various configurations and state
variables.198,285−287 For example, an extended ensemble
approach by Mullinax and Noid suggested the use of topology
in composition and chemical transferability.285 Combined with
ML techniques, such a systematic treatment to predict CG
interactions for newmolecules is deemed possible by sufficiently
sampling numerous small molecules.287

3-2.C. Holy Grail for a Bottom-up Coarse-Grained Force
Field. An accurate CG Hamiltonian should be able to account
for both many-body correlations and transferability issues. On
the basis of the efforts described above, we argue that the ideal
effective CG Hamiltonian may be expressed as

* +

+ +

U T V N U U T

U V U N
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N n N N

N N

CG nb
( )

temp

press chem (21)

In eq 21, Unb
(n)(RN) accounts for the nonbonded interactions

up to n-body, which can be explicitly cast based on eq 17 or
implicitly described by eq 18. Alternatively, using an appropriate
n-body order parameter OI under the pairwise approximation,
this term would beU R( )n N

nb
( ) ≈ U R( )IJ IJnb

(2) + U O( )I
n

Inb
( ) and

shares similar mesoscopic physics as the many-body DPD
method.250,251 The last three terms in eq 21 correspond to
temperature-dependent, volume-dependent, and composition-
dependent potentials through a conjugate interaction to
thermodynamic observables. The first term Unb

(n)(RN) is
independent of state point, while the latter three terms
Utemp(RN, T), Upress(RN, V), and Uchem(RN, N) are examples of
state-dependent potentials. Both classes are examples of efforts
to improve the expressivity of UCG* (RN, T , V, N).
Alternatively, eq 21 can be interpreted as a projected

Helmholtz free energy functional along pairwise basis sets.
Note that = +A V T N P V S T N( , , ) i i i and
ΔACG(V, T, N) = ⟨UCG* (RN, T, V, N)⟩. This interpretation is in
line with the state-dependent potential derived from the free
energy perspective.288,289 Recently, some CG models have been
developed based on the above principles and shown favorable
results, such as the combination of density-dependent
interactions with volume-dependent terms290 or the UCG
models in the mean-field ansatz.275
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While eq 21 aims to directly determine conjugate force
components in free energy expressions, an indirect approach
based on the free energy is also possible by applying the
perturbations to the conjugate variables of interest in the coarse-
graining process.284 By deliberately extending the simulation
ensemble, matching a response of the system to perturbations
has recently shown to sample a broad range of parameters. This
wide parameter space with more abundant information allows
for determining the most transferable CG interactions by
maximizing an informationmetric, e.g., Fisher information.291 In
the future, it would be informative to rigorously elucidate the
physical nature of these pairwise thermodynamic functionals
and their relationship to CG systems at different thermodynamic
state points and ensemble conditions.

3-3. Mini Outlook. As researchers continue to explore
different avenues to increase the expressivity of UCG, it is
important to remain mindful of the trade-offs between model
complexity and computational cost, the latter of which includes
the cost of parametrization, implementation, and runtime. The
development of effective CG interactions bears resemblance to
“Jacob’s Ladder” as seen in density functional approximations
across quantum chemistry.292 Each degree of complexity can be
thought of as a new “rung” on the “ladder” that represents the
field of CG modeling. We note, however, that climbing
successive rungs does not necessarily guarantee improvement
in the overall accuracy of a given CG model. For instance, it is
possible that the increased complexity enhances the adherence
to CG model consistency at the expense of CG thermodynamic
representability and transferability.156 To avoid these pitfalls, a

Figure 2. UCG models are designed to capture the chemical or physical changes “beneath” the CG resolution (illustrated upper middle left for ATP
hydrolysis in F-actin). Practical design principles of UCG models are based on the relaxation time of internal state dynamics. (1) In the slowest limit
(SST), UCG state dynamics can be treated as a kind of surface hopping. An example of this is the gauche- and anti- configurations from 1,2-
dichloroethane (top panel). Based on the target system, distinct UCG states are identified, and the UCG models are built by parametrizing the state-
wise interactions and optimizing the kinetic rates described by the Metropolis-Hastings algorithm. (2) The internal states at the fastest switching limit
(RLE) can be thought to be in quasi-equilibrium, and the Ehrenfest dynamics idea can describe the internal states by mixing them with the state
probability. TheUCGmodels are then constructed by identifying the rapidly varying states with the corresponding order parameters. Then, bottom-up
CGmethodologies can be applied to determine the UCG state-wise interactions. As an example, we depict the solvated peptide here exhibiting folded
and unfolded states determined by the optimal CV (bottom panel).
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standardized method to derive, explore, and validate the benefit
of increasingly complex basis sets is still needed. Our focus in the
next two sections will be to discuss frameworks that can
systematically increase the expressivity of CG force fields using
theoretical and algorithmic procedures.

4. ULTRA-COARSE-GRAINING: MACHINERY TO
GENERALIZE REPRESENTABILITY AND
TRANSFERABILITY
4-1. Necessity of Generalized Coarse-Grained Frame-

work. In Section 3, we introduced several challenging problems
that are intrinsic to the parametrization nature of CG
interactions. For different systems, conventional approaches
introduced earlier have tackled these problems by altering the
CG Hamiltonian form or parametrization strategy case-by-case,
which limits general applicability. In order to attain a more
generalized approach, the Ultra-Coarse-Grained (UCG) model
and methodology were developed from the observation that
these problems originate from the inability of conventional CG
models to correctly address underlying chemical or physical
changes in the reference system.263,293,294 The idea under-
pinning the UCG approaches is to introduce internal quantum-
like “states” into the CG sites, and thus, the CGHamiltonian can
effectively account for the driving forces associated with these
discrete changes that are missing in conventional CG force field
treatments by modulating the internal state interactions (called
the “state-wise” interactions). The basic idea of a UCG model is
to utilize a kind of isomorphism with quantummechanics, i.e., in
the latter case the system nuclei can evolve on multiple potential
energy functions, which in turn depend on the quantum
mechanical state space of the system and its underlying
dynamics, and this in turn is tied back to the evolution of the
dynamics of the nuclei. “Simple” nonadiabatic dynamics with
surface hopping between electronic states295,296 is one example
of this behavior, albeit there can be other examples. The basic
notion of the UCG approach is to utilize this quantum
isomorphism to increase the expressivity of the CG model so
that the influences of the processes that become implicit at the
CG level are still included to a certain degree.
The importance of the underlying molecular nature beneath

the CG resolution is pronounced in many systems, especially for
highly coarsened representations. As indicated by refs 297 and
298 for ATP hydrolysis in actin protein, the missing important
molecular details beneath the CG models can affect the free
energy landscape and should be incorporated into the pertinent
UCG models.299,300

4-2. Ultra-Coarse-Grained State Dynamics: Practical
Realization. A UCG idea can be mathematically formulated by
introducing internal state variables into CG interactions but in
principle requires rigorous formulation and parametrization of
the correct equation of motion for the state variables, which can
significantly increase computational cost.293 Since the chemical
or physical changes in the molecular system have clearly
separated relaxation times, a separation of time scales can be
introduced. For example, physical changes such as bond
breaking or formation happen much slower than the CG
particle mass translations. On the other hand, chemical changes
in electronic states or solvation will directly affect the CG system
without any relaxation in state dynamics. Thus, instead of
seeking a generalized Hamiltonian involving both CG
configuration and state variable dynamics, two specific
approximations at each time scale limit can be designed,263,294

as described below. Figure 2 delineates a design principle for the
UCG models in terms of state dynamics.
4-2.A. Slow State Transition Limit. Under the slow state

transition (SST) limit, the internal states rarely change with the
characteristic relaxation time due to conformational transitions
that take place at time scales of nanoseconds or longer. A kinetic
Metropolis−Hastings-like approach294 can thus be utilized to
approximate the instantaneous rate of switching from states α to
β that are defined by the order parameter m (e.g., a dihedral
angle ψ in a protein299,300).
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In eq 22, the prefactors k and k are determined from
the FG simulations, experimental information, or they may be
treated phenomenologically; and the model parameter is
introduced to correctly capture the surface hopping-like
dynamics from the given state-wise CG interactionsU andU .
4-2.B. Rapid Local Equilibrium Limit. The opposite limit of

the SST limit is when internal states undergo rapid state
transitions or the so-called rapid local equilibrium (RLE). In this
case, in an analogy to Ehrenfest dynamics, the effective UCG
Hamiltonian can be expressed as a mixed interaction with
respect to its state probabilities that follow quasi-equilibrium
distributions. Ideally, one should consider the overall sN

configurations, where s is the number of internal states per
CG particle, and N represents the number of CG particles.
However, under the RLE limit, one can choose a local order
parameter to decouple state correlations between different
particles, resulting in the expression
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where p(sI|RN) denotes the probability of CG site I being sI, and
Us dI, sdJ

(2) (RIJ) is the state-wise interaction between sI and sJ.
263,301

Unlike the SST limit, the RLE limit explicitly accounts for the
driving forces (the term −∇p(sI|RN) in eq 23), and thus, UCG
models should be carefully designed using the correct order
parameters to extract the nonuniform physical or chemical
nature from the system. In this regard, various order parameters
suggested from the previous studies can be utilized: external
fields, relative particle positions, coordination numbers, and
local number densities.263 Notably, the UCG force field from eq
23 can be generalized to other CG Hamiltonians, such as the
multiconfigurational CG (MCCG)302 and conformational
surface hopping methods.303,304

It must be noted that the UCG approach has already achieved
notable success in treating realistic and highly complex
biomolecular systems, an example of which is the assembly of
the HIV-1 virus capsid from the more than 1,000 copies of its
capsid (CA) protein component.81,84,305

4-3. Structural Representability. 4-3.A. Chemical Accu-
racy. Even though most computationally efficient CG models
are not able to describe changes in the chemical nature, a key
attribute of UCG models in the SST limit, by design, is the
ability to explicitly model chemical transformations while
avoiding the use of many-body force fields by introducing
distinct states that represent different chemical phenomena.
This advance has enabled UCG models to capture previously
missing conformational transitions between gauche- and anti-
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conformations in 1,2-dichloroethane294 and the characterization
of ATP hydrolysis and phosphate-release reactions in actin
filaments.299,300 In a coarser description (lower resolution),
UCGmodels based largely on the SST limit have been applied to
capture the dynamic self-assembly behavior originating from
many-protein HIV viral capsids.81,84,305 As such, when
conformational transitions in complex biomolecules rarely
occur, the SST limit can effectively embed the finely detailed
chemical nature into a reduced level of representation.
4-3.B. Many-Body Correlations. Introducing flexibility into

CG interaction forms enables the UCG models to improve the
description of the many-body correlations necessary for more
accurate CG models. For the SST limit, chemical reactions due
to complex many-body correlations that involve many-particle
nonbonded and electrostatic interactions can be faithfully folded
into the UCGmodels. Namely, the SST limit implicitly encodes
the many-body correlations into distinct state-dependent
pairwise UCG potentials, which have a strong similarity to a
“polarizable” CG model.306

Other types of many-body correlations in terms of non-
bonded structures can be practically impossible to address using
only pairwise basis sets. We note, as before, that pairwise MS-
CG models attempt to capture two-body and three-body
correlations concurrently by satisfying the YBG equation,31 but
three-body correlations and even higher-order correlations are
often not well-captured in complex CG systems, e.g.,
water.147,165,193,194 Even though the UCG models at the RLE
limit are built upon the pairwise basis sets, these state-wise
interactions are linked via local order parameters. By choosing
these local order parameters properly, the resultant UCGmodel
can faithfully capture complex many-body correlations. Based
on the observation that the local density is an N-body property,
several studies have reported that the local density-based UCG
models can readily reproduce the many-body phenomena of
interest. For example, the solvophobic association of hydro-
phobic solutes due to many-body correlations between solute
molecules was captured with the UCG formalism as well as pair
correlations and clustering behavior.263 The local density can
also be an important order parameter for distinguishing different
phases in heterogeneous systems. This inhomogeneity is
pronounced in interfacial systems, where the conventional CG
models failed to properly describe two or more phases at their
interfaces. Notably, UCG interface models can differentiate
distinct characteristics emergent in the system, e.g., liquid and
vapor states in liquid/vapor interfaces with well-reproduced
liquid “slab” density profiles and structural correlations.265

Extending beyond interfacial UCG models, it was recently
demonstrated that the single UCG model is able to encompass
the structural correlations emergent from distinct bulk phases,
resulting in multiphase CG models.275

Since the local density of CG moieties reflects the various
chemical and physical natures (e.g., changes in structures and
electrostatics that may affect coordination), it is conceivable that
the local density can be utilized as a generalized order parameter
to indirectly represent the nonuniform nature of a given system.
For example, it has been shown that effects of FG hydrogen-
bonding interactions can be faithfully captured in a local density-
based UCG model by differentiating the donor and acceptor
states,307 with the hydrogen-bonding not being explicitly
resolved at the CG level.
4-4. Transferability.Themain advantage of UCGmodeling

not only lies in being able to reproduce important correlations
faithfully described by the order parameters but also in its

flexible interaction form. This is especially true in the RLE limit,
where the UCG Hamiltonian inherits transferability by design;
several distinct state-wise interactions are folded into a single
Hamiltonian form, allowing for transferring to different state
conditions. This flexibility is akin to Ehrenfest dynamics308 or
the empirical valence bond theory,309 where a systematic
connection between these different theories has been recently
demonstrated.310

First, the flexibility of eq 23 enables one to directly employ the
MS-CG variational principles to parametrize many state-wise
interactions that are distinguished by the imposed order
parameter. It has been seen that the parametrized UCG
interactions are comparable to bulk MS-CG interactions,
confirming the transferability of UCG models. For example,
state-wise interactions between denser states in liquid/vapor
interfaces are equivalent to bulk liquid interactions, and a similar
conclusion holds for liquid/liquid interfaces where the UCG
interactions are transferred to liquid mixture systems with
different compositions.265

Alternatively, one can introduce the already determined MS-
CG interactions into the UCG framework and utilize adequate
order parameters to distinguish each interaction. For example,
one can utilize the local density in order to mix bulk interactions
at high temperatures and low temperatures, resulting in
temperature transferable UCG models. A recent study showed
that such an approach has a direct link to the energy-entropy
decomposition under the mean-field ansatz and further
demonstrated that one can possibly design phase transferable
UCG models by combining liquid and gas phase MS-CG
interactions.275 Since number density directly responds to the
system condition, local density-based UCGmodels can be good
candidates for properly describing the conjugate forces exerted
by the thermodynamic variables of the system. For more
complex systems exhibiting various conformations, determining
the correct order parameter would be the most important step
toward transferability; this will potentially benefit from advances
in ML techniques that will be described in Section 6.
4-5. Mini Outlook. In contrast to conventional CG

methodologies, UCG theory provides a generalized framework
to greatly enhance the fidelity of CG models, and the practical
realization of UCG state dynamics imparts a physical presence of
the missing degrees of freedom in terms of internal states at the
reduced CG resolution. The UCG method has recently been
shown to be successful for describing various systems ranging
from liquids to biomolecules, demonstrating its applicability and
versatility. We conclude this section by providing open problems
for future developments.

• Intermediate State Dynamics. Various chemical and
physical processes may still exhibit intermediate state
dynamics that does not fall into either the SSL or RLE
limit. One illustrative example would be proteins that
slowly fold but have rapidly changing behaviors due to
their interactions with the environment or solvents. Even
though one direct direction for modeling intermediate
state dynamics would be to incorporate equations of
motion for state variables and to develop the correspond-
ing UCG Hamiltonian, we propose a hybrid UCG model
as a more efficient alternative by simultaneously
accounting for both the SST and RLE limits. For the
hybrid UCGmodel, defining two distinct UCG types that
undergo different dynamical limits can benefit from
existing dimensionality reduction methods. For example,
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time-lagged independent component analysis (TICA)
can be utilized to extract the most rapidly varying and the
slowest varying order parameters.311 With the recent
success of such dimensionality reduction techniques in
Markov State Models (MSM) for CG dynamics
modeling,312−317 the combination of the UCG method-
ology with TICA is expected to further extend the range of
dynamical transitions explicitly included in CGmodeling.

• Toward Large Biomolecules. Despite recent developments
in UCG models having been mostly focused on relatively
simple liquids, the UCG methodology in principle can be
extended to larger spatial scales, and MS-CG-based UCG
models can be also extended to much larger systems by
correctly differentiating the chemical environments using
local density parameters. For example, the numerous
conformations in protein folding result in complex energy
landscapes, e.g., dodecaalanine,318 and UCG models that
have internal states designed based on the local Cα
density could be expected to accurately capture the folded
and unfolded states. Similarly, the effect of solvents in a
solvated system can be faithfully modulated by solvent
density-based UCG models, e.g., lipid bilayers.

On the other hand, for more complex biomolecules, effective
large-scale UCG models can be built upon coarser descriptions
of state-wise CG interactions. Since the UCGmethodology does
not specify any of the interaction forms but rather provides a
systematic framework for embedding internal state information
into CG models, combining several CG interactions from
different methodologies with the UCG theory can correctly
account for the state dynamics. Recently, the UCG models
based on the fluctuation maximization with harmonic
interactions were developed for the glutamine-binding protein
and lactoferrin and were able to correctly describe the protein
conformational transitions.319 Relatedly, a network-based UCG
model was reported to effectively assess the mechanical
properties of microtubules.320

5. DYNAMICS OF THE COARSE-GRAINED MODELS

5-1. Limitations and Challenges. While the thermody-
namic properties of CG models differ from their FG counter-
parts, thermodynamic representability can be systematically
improved based on the FG and CG observable expressions, e.g.,
pressure and energy. However, dynamical properties pose
completely different problems in comparison to those from
thermodynamic properties.52−54 In this section, we elaborate on
such difficulties arising from the dynamics of CG models and
showcase recent advances in this area.
In order to assess the relevant dynamical variables in CG

representation, the Mori−Zwanzig projection operator formal-
ism can be applied to the microscopic Hamiltonian dynamics at
the FG resolution.321−324 The idea behind the Mori−Zwanzig
formalism is to project the relevant dynamic variables that are
left in the CG systems, resulting in a generalized Langevin
equation (GLE) form of the equation of motion.325 The
following integro-differential equation thus faithfully describes
the dynamics of the CG model326−329
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which is composed of particle conservative force, frictional, and
stochastic (random) forces, respectively. The notations in eq 24
are consistent with ref 91, where w(RN) is a normalized partition
function of the microscopic (renormalized) configurations at
RN. See ref 330 for the detailed discussion of the approximation
made in eq 24. Therefore, performing the CG simulations under
Hamiltonian mechanics using only conservative forces often
results in an accelerated CG dynamics due to the missing
friction. Note that friction and fluctuations are connected
through the second fluctuation dissipation theorem.91,331 These
fast CG dynamics might be considered advantageous for
performing CG simulations, allowing for simulations that span
large temporal scales with relatively small time steps. Never-
theless, correct dynamical information from CG simulations is
required to evaluate the dynamical properties when making
contact with experimental kinetics.
From our perspective, two different approaches may elucidate

the correct CG dynamics. The first approach would be to
reconstruct the dissipation and fluctuation information from eq
24, such that the velocity correlations, diffusion features, and
nonequilibrium properties of the system can be well reproduced.
Due to complexity in parametrizing the correct friction and
fluctuation terms, an alternative approach can be built upon
establishing the correspondence between FG and CG dynamics
by analyzing the fast CG dynamics when using Hamiltonian
mechanics with the conservative forces along. In this section, we
briefly review recent advances in both of these directions. More
detailed perspectives for each approach can be found in refs 332
and 333 for molecular CG modeling at equilibrium and in ref
334 for out of equilibrium conditions. Furthermore, ref 335
provides a general review of CGmodeling for both in and out of
equilibrium conditions.
5-2. Incorporating Missing Friction. In order to faithfully

represent the frictional and stochastic forces at the reference
level, continued attention has been paid to parametrizing the
frictional and stochastic forces from the Mori−Zwanzig
equation of motion in eq 24.54,91−93,105,107,327,336−342 Since
the Mori−Zwanzig formalism cannot be directly employed in
practical simulations due to its complexity and large computa-
tional cost, various approximations have been introduced in the
literature to simplify the nature of the CG dynamics, resulting in
various types of stochastic differential equations to describe the
time propagation of the CG system. The simplest approach one
can take is to parametrize the friction coefficient as described by
the Langevin equation in which the time correlations and
frictional kernels are omitted. For relatively simple CG systems,
such an approach has been shown to recapitulate the correct
diffusion behavior from the FG level.54 Nevertheless, the
Langevin equation is a rough approximation of the complete
dynamical behavior of CG models.
A more accurate description of frictional and stochastic forces

present in the CG equation of motion can be established in two
steps. First, one needs to choose an appropriate stochastic
differential equation as the equation of motion. Then, based on
the chosen equation of motion, one needs to parametrize the
friction kernels and associated stochastic forces in a “bottom-up”
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manner. Typically, the Mori−Zwanzig equation of motion is
approximated using a single-particle GLE or DPD-like equation
of motion. A single-particle GLE assumes that there are no
spatial correlations for the random forces acting on different CG
particles. Such an approximation reduces eq 24 into a more
tractable form that allows for developing various parametriza-
tion methods,105,341,343−345 but missing pairwise nature in such
approximation violates macroscopic physical principles by not
conserving the momentum. Conservation of momentum is
particularly important for reproducing the long-time tail of
velocity autocorrelations resulting from the hydrodynamic
effect.346 This discrepancy can be correctly addressed by
introducing a fluid mechanical description. For example, the
smoothed particle hydrodynamics (SPH)347−349 and the
smoothed DPD350,351 based on the discretized Navier−Stokes
equation can resolve the momentum conservation issue by
introducing pairwise frictional kernels to eq 24, yet most fluid
mechanics-based approaches often suffer from the top-down
nature. Thus, one should carefully choose the appropriate
physical descriptions at the desired resolution to embed into the
CG model in order to reduce eq 24 into an approximate
stochastic differential equation.
Once the form of the CG equation of motion is chosen, the

remaining step is to determine the friction kernels to be
consistent with the FG reference. Here, we provide a brief
discussion on bottom-up approaches for parametrizing these
nonconservative interactions. For bonded systems, e.g., star
polymers, a pairwise decomposition of instantaneous forces into
parallel and perpendicular directions at the FG level is possible at
the CG resolution. Practically, Hijon and Español introduced
the so-called “constraint dynamics” technique to extract the pair
decomposed forces under the Markovian DPD equation of
motion.92 This was further extended to the non-Markovian
DPD regime by Yoshimoto,338 and in recent years, Karniadakis
and co-workers have established a systematic parametrization of
GLE and DPD equations of motion for both Markovian and
non-Markovian limits.93,337,352−354 In this case, the friction
kernels are readily obtained from the stochastic forces, allowing
direct utilization of the Mori−Zwanzig formalism. However,
pairwise decomposition of instantaneous forces is only feasible
for bonded systems, and thus, this approach cannot be applied to
unbonded systems.
Alternatively, the friction kernel can be constructed indirectly

by inverting the time correlation functions from the FG
reference.93,337,338,353 In practice, this inverse approach matches
the pairwise velocity autocorrelation function and force−
velocity cross-correlation function, resulting in the Volterra
integral equation.344 Still, most of these approaches are limited
to bonded systems. Notably, a recent breakthrough for
constructing friction kernels of unbonded fluids was reported
using the dynamic mapping approach.107 By estimating the
instantaneous forces on dynamic blobs based on the velocity
Verlet algorithm,355 conservative forces in the form of the many-
body DPD interactions250,251 were determined using the MS-
CG principle. The deconvolution of correlation functions was
then applied to derive a DPD-like equation of motion in
Markovian and non-Markovian limits. This approach further
establishes the bottom-up link between the microscopic origins
of fluids and macroscopic physics. Such a bottom-up inference
of frictional and stochastic interactions has not been widely
investigated due to its complexity but remains a promising
direction for future research. For example, using the REM
framework, Español and Zuñiga designed a variational approach

to infer drift and diffusion terms in the Fokker−Planck
equation.356 Another interesting extension of the MS-CG
method was developed by Davtyan, Andersen, and Voth,
where they introduced fictitious particles and coupled themwith
CG sites to effectively introduce a memory kernel under the
GLE,339,340 which shares a similar physical idea with the auxiliary
model later developed by Karniadakis and co-workers.353

5-3. Understanding Accelerated Hamiltonian Dynam-
ics. Alternatively, a computationally less expensive yet
challenging direction would be to perform CG simulations
under Hamiltonian mechanics and then elucidate how the
accelerated CG diffusion is related to the FG (reference)
dynamics through various rescaling approaches.
5-3.A. Time Rescaling. A naıv̈e yet straightforward approach

is to think of the CG time scales as uniformly accelerated time
with respect to the physical time of the FG reference. This
uniform time rescaling approach assumes that the frictional
forces are not dependent on time, and thus, the Mori−Zwanzig
projection operator can remove the configuration, momentum,
and time dependence in the friction kernel.327 This approach has
been reported for polymer systems at different resolutions and
chain lengths but with limited applicability due to the strong
assumptions made.357−364 We note that even though one could
assume a uniform scaling ratio and estimate such value naıv̈ely
based on the FG and CG diffusion, there is no theoretical
guarantee that such a factor exists365 and may necessitate an
explicit consideration of the Mori−Zwanzig formalism.366−369

Also, the uniform scalar friction term obtained from the scaling
factor itself is a many-body quantity (renormalized memory
kernel) and differs by system conditions, e.g., thermodynamic
state point, and hinders its applicability to other chemical
systems.
5-3.B. Free Energy Landscape. Inspired by the energy-

landscape theory,370,371 e.g., protein folding,372 the free energy
landscape approach aims to address the dynamical properties
underlying barrier-crossing dynamics by correctly representing
the CG energy landscape. While the barrier-crossing dynamics is
quite different from the microscopic dynamics of the system,
recent advances have elucidated the structural-kinetic-thermo-
dynamic relationships for helix−coil transitions of helix-forming
peptides.373 More importantly, such approaches have been
shown to have a direct link to the MSMs, where the system
dynamics is represented by transitions between micro-
states.374−377 Notably, based on variational approaches to
understanding the conformational dynamics and then follow-up
work,378,379 Nüske et al. have developed a spectral matching
method that targets the dynamical propagator of CG systems,
resulting in correct long-time dynamics.380 Outside of theMSM-
based framework, Rudzsinki and Bereau have developed the
Bayesian dynamical reweighting scheme381 to correctly
recapitulate the kinetics of CG peptides.382 These pioneering
efforts in barrier-cross dynamics have highlighted how existing
observed deficiencies in CG dynamics and kinetics may be due
to not only incorrect CG equations of motion but also
inaccuracies in the approximation of the conservative forces
(i.e., the many-body CG variable PMF).
5-3.C. Excess Entropy Scaling. Another important recent

advance in CG dynamics has been an attempt to understand
accelerated CG dynamics using the excess entropy scaling
relationship. First proposed by Rosenfeld,383−385 the excess
entropy scaling relationship is an empirical, semiquantitative
relationship that links the dynamic property of the system D* to
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its molar excess entropy sex, which is the entropy difference
between the system and ideal gas, such that

* =D D sexp ( )ex0 (25)

To date, only a handful of studies paid attention to the
potential usefulness of eq 25 to assess CG dynamics in terms of
entropy, e.g., the perspective from the REM,39 and until recently,
employing eq 25 for CG systems had not been extensively
pursued. This is mainly because Rosenfeld scaling is not
established from first-principle physics, limiting the applicability
of this scaling relationship.383,386−391 The empirical nature of
this scaling relationship further exacerbates this limitation when
applied to CG dynamics. First, it is not guaranteed that the FG
and CG systems will obey the same scaling relationship, i.e., αFG
=? αCG. Also, the correspondence between DFG* and DCG* is still
unclear because there is no physical explanation for theD0 term,
which is the “entropy-free” coefficient from eq 25.
Recent progress on the excess entropy scaling has addressed

these aforementioned problems,392−394 starting from the excess
entropy difference between the FG and CG systems, known as
the mapping entropy.51 By computing the excess entropy based
on earlier arguments from Karplus, Lazaridis, and Zielkie-
wicz,395,396 ref 392 has confirmed that the universal scaling
relationship will hold for the same molecular systems upon the
coarse-graining process for fluids. In addition to unraveling the
universality of the Rosenfeld scaling in CG models, it was
recently demonstrated that D0 at the single CG-site resolution
can be physically understood from the hard sphere nature of CG
models of liquids, resulting in the analytical form of D0
determined by specific equations of state.393 Such an approach

requires an additional layer of coarsening of CG systems to
describe them as dynamically consistent hard spheres, and it has
been demonstrated that classical perturbation theory can
determine the effective hard sphere by mapping the short-
range repulsions (e.g., Barker−Henderson theory397,398) or
long-wavelength fluctuations (e.g., Weeks−Chandler−Ander-
sen theory399−401 or fluctuation matching393). While the hard
sphere treatment of CG systems determines the D0

CG, the
entropy-free diffusion coefficient for FG systems is usually larger
than D0

CG. This discrepancy can be understood from the degrees
of freedom that are missing at the CG resolution.394 By
incorporating the missing rotations and vibrations back into the
single CG-site resolution, the complete dynamic correspond-
ence between the FG and CG systems can be recapitulated for
liquids. In practice, then, one may (1) predict the accelerated
CG diffusion under the Hamiltonian mechanics by estimating
the D0

CG or (2) recover the reference FG diffusion from the CG
level by incorporating the missing diffusion into the translational
CG diffusion. However, these recent findings have primarily
focused on relatively simple CG systems of liquids, so
considerable effort to extend such dynamic correspondence to
nontrivial, complex CG systems, e.g., biomolecules, will be a
challenge and should be pursued. A detailed description of the
dynamical correspondence between the FG and CG systems
using the excess entropy scaling is given in Figure 3.
5-4. Mini Outlook and Future Challenges. In order to

correctly address dynamical representability in bottom-up CG
models, recent studies have examined the dynamical properties
of CG models using both GLE-like equations of motion and
rescaled Hamiltonian mechanics. While the GLE description
provides a rigorous statistical mechanical description of CG

Figure 3. Summary of the excess entropy-based approach to achieve dynamical representability under Hamiltonian mechanics. The dynamical
representability of CG models can be addressed by having a dynamical correspondence between the CG and FG models. In this case, without correct
fluctuations, CG dynamics is spuriously accelerated compared to the reference FG dynamics (e.g., diffusion coefficients in this figure). Therefore, the
ultimate goal in dynamical correspondence would be to address both directions across the FG and CG systems: (1) Predict the accelerated CG
dynamics from the FG information and (2) correct the fast CG dynamics to match the original FG dynamics by observing the missing degrees of
freedom upon the coarse-graining process. We depict the molecular liquids (water in this case) at the single-site CG resolution as an example, where
the hard sphere (HS) mapping theory can achieve (1) and incorporating the missing rotational information can address (2) (recovered FG).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.2c00643
J. Chem. Theory Comput. 2022, 18, 5759−5791

5775

https://pubs.acs.org/doi/10.1021/acs.jctc.2c00643?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00643?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00643?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00643?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00643?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


dynamics, complexity and numerical stability are currently a
bottleneck for application to complex molecular CG systems. In
addition, similar to the conservative interactions, dissipative and
stochastic forces present problems with transferability. The
majority of attempts has only been tested on uniform single-
component fluids, as multicomponent systems tend to face
transferability issues. Also, in the same context as the
transferability of the conservative forces (i.e., the many-body
CGPMF), thermodynamic transferability of dynamic properties
should be addressed to impart a high fidelity CG model. This
particular area has not been extensively explored at the current
stage, yet several preliminary directions have provided potential
directions: dynamical rescaling,366,367 energy renormaliza-
tion,402−406 and transfer learning using ML techniques.407

On the other hand, understanding accelerated CG dynamics
produced using Hamiltonian mechanics can lessen complica-
tions from frictional interactions by introducing ad hoc physical
scaling principles, e.g., excess entropy scaling. In this regard,
rigorous physical scaling principles beyond the hard sphere
description for explaining the excess entropy scaling are a
promising area for future research. A few possible directions are
based on the mode coupling theory408,409 and transition state
theory.410 A grand goal in CG dynamics would be to correctly
understand and faithfully reproduce transport phenomena
under nonequilibrium conditions. Continuous development of
a rigorous and practical bottom-up CG theory based on
nonequilibrium statistical mechanics would therefore pave the
way to a new era of CG modeling.

6. MACHINE LEARNING AND MOLECULAR
COARSE-GRAINING
6-1. When Bottom-up CG Modeling Meets Machine

Learning. ML is a subfield of artificial intelligence that uses
algorithms to study and analyze data.411 For example, in order to
design an automatedmethod that can determine the content of a
picture by inspecting its pixels, e.g., whether the image contains a
cat or a dog, two strategies could be considered. First, an
algorithm could be explicitly programmed to analyze each pixel
in the image to determine whether the picture is more similar to
a cat or a dog�an admittedly difficult task. On the other hand,
one could useML procedures to extract patterns from a large set
of images that are already labeled as containing a cat or dog. This
ML-based approach would then use this labeled data to learn the
connection between individual pixels and the overall content of
the image, resulting in a new algorithm that is able to discern
overall picture content. In other words, ML approaches can
leverage high volumes of data to perform tasks that seem
intractable when using other strategies. These techniques,
however, naturally require a large amount of data to succeed and
produce solutions whose quality and accuracy fundamentally
depend on the quality of the data used for parametrization.
Furthermore, the produced solutions may be opaque and
extrapolate poorly to cases outside the data used for para-
metrization, creating a natural barrier to transferability.
Nevertheless, the ability to create complex algorithms from
data has revolutionized a number of areas such as computer
vision and advertisement targeting.412

Since bottom-up CG approaches focus on learning patterns
from data sets generated from FG simulations, it should come as
no surprise that algorithms developed in ML have found use in
molecular CGmodeling. Given the similarities between CG and
FG models, a natural extension is to employ atomistic ML
techniques for CG systems. Our particular interest in this

subsection, however, is to describe applications of ML to CG
modeling with a focus on how these methods differ from ML
used in the atomistic setting. For a thorough survey of atomistic
(as well as some CG) ML methods, we refer readers to recent
reviews.60,413−418

6-2. Machine Learned CG Force fields. 6-2.A. Machine
Learning Design Principles. In the language typical to ML, the
MD-based CG and atomistic models discussed in this article fall
under a class of methods referred to as energy-based models
(EBMs).419,420 These EBMs are algorithms that describe a
distribution by specifying its probability up to an unknown
normalizing constant (CG and atomistic force fields are
naturally related to the “energy” term of EBMs). However, the
data available for training and the need for scientific
extrapolation create a specialized domain with its own
approaches and difficulties: similar to the atomistic setting, the
availability of a noisy estimate of the forces of the many-body
PMFs provides an important avenue for parametrization not
available in most EBM applications, and the need for physical
transferability impedes the use of many EBM architectures.
These two key details underpin the training and design of force
fields. Despite these differences, various function representation
approaches have been successfully adapted fromML to increase
the flexibility and accuracy of atomistic force fields for over two
decades,411 and many of these same methods have now been
transferred to the CG resolution. Recent reviews have detailed
several ML-based force field approaches, including several
kernel-based methods such as the Gaussian Approximation
Potential by John and Csańyi,421 the method introduced by
Scherer et al. that uses Gaussian process regression projected
onto tabulated potentials,422 and Gradient Domain ML-based
methods as described by Chmiela et al.423 and Wang et al.424

A growing number of CG neural network approaches have
also been introduced for estimating the many-body CG variable
PMFs, likely beginning with Lemke and Peter who developed a
convolutional neural network-based approach to learn correc-
tions to an existing CG force field through ideas connected with
noise contrastive estimation and adversarial learning.57,425,426

We also note that publications such as Schneider et al.427

similarly proposed using neural networks to capture free energy
surfaces but did not do so for a high-dimensional particle
representation. The Deep CG Potential (DeePCG), introduced
by Zhang et al.,428 was the first to adapt more traditional ideas
from the atomistic force field community,429 followed by
CGnet.59 We note that while typically used with highly general
feature sets, these same approaches could also be applied to
custom high-dimensional order parameters as discussed in
Section 3-2. Wang and Bombarelli subsequently introduced an
autoencoder augmented approach.424 Traditional autoencoders
are commonly used in data compression as they temporarily
reduce the feature space within the network.430−432 This
bottleneck feature allows the neural network to find a CG
mapping operator before force-matching.433 In addition,
CGSchNet developed by Husic et al.434 and the recent work
by Ruza et al.435 have introduced graph neural network-based
methods to CG force field development. These approaches can
be viewed as combining multilayer perceptron-based ap-
proaches (e.g., CGnet), which produce a CG force field using
user-supplied featurization, with SchNet,436 a graph neural
network architecture originally designed to reproduce ab initio
forces and energies, and a compatible simulation engine,
TorchMD.437 This use of graph neural networks requires no
molecular featurization to be supplied by the user, as the
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network learns its own features via its graph subnetwork. This
also has the added benefit of ideally making CGSchNet
transferable across system composition and accurately modeling
the solvation environment for biomolecules in a novel manner
with ISSNet.438 We note that graph neural network
architectures439 and graph-based approaches440 have addition-
ally found widespread use in other molecular tasks such as the
selection of CG mapping operators and automatic sampling of
atomistic configurations.441,442 The CGnet architecture has also
been adapted to only consider many-body interactions up to a
specified order. For example, it is shown that even 5-body
interactions notably improve the quality of the resulting CG
model when studying a small protein.443

6-2.B. Parametrization. When parametrizing an atomistic
model to match ab initio approaches, the force field is often
trained via regression to reproduce the connection between
molecular configurations and the energies and forces present in
the reference data set. While the initial data set may often be
generated via MD using a reference energy function, this is not
required; in fact, configurations outside the stable basins of the
reference system are often critical for reproducing the barriers
fundamental to chemical behavior.416,417,444−448 These addi-
tional structures are either included through human intervention
or actively added to the reference set through a variety of
strategies, one of which is of particular importance to the current
discussion when considering neural networks: query by
committee (QBC).417 In QBC, multiple neural networks are
trained with varying initial optimization conditions on a given
reference data set.449 While each of these neural networks can
typically reproduce energies on the reference data set, their
predictions outside this domain may differ. This disagreement is
then used as an engine for adding new structures to the reference
data set: If a candidate structure results in disagreement among
the various neural networks in the committee, a reference ab
initio calculation is performed, and the configuration is used for
parametrization. While QBC is an important technique, its
construction emphasizes how neural networks trained on finite
samples (especially those drawn from the reference Boltzmann
distribution, as is often used for the initial ab initio data set) often
exhibit inaccuracy outside the stable basins of the reference
system�thereby highlighting the importance of complex
sampling for high-dimensional force field parametrization.
While this ability to add particular configurations (along with

energies and forces) to a data set has proven to be critical to the
creation of high-dimensional atomistic force fields, this route has
not typically been pursued in the creation of CG force fields. In
order to understand the barriers to doing so, it is helpful to
compare the settings in which CG force fields are parametrized
in comparison to their atomistic counterparts. The atomistic
configurational energy corresponds to the many-body PMF in
terms of the CG variables, which is extremely difficult to evaluate
in practice. However, for the force-based parametrization
strategy given in Section 2-3, it is often straightforward to
create a noisy version of the forces given by the many-body PMF
using the forces in an atomistic trajectory. This noisy signal is
compatible with techniques such as least-squares regression,
partially reproducing the setting typical to atomistic modeling.
However, it is unclear how to add a single CG configuration to a
force-based reference data set unless conditional sampling is
used, as forces from a single configuration have no clear
connection to those of the many-body PMF�only the
conditional mean over all such configurations weighted
according to the Boltzmann distribution does. The modeler is

thus often forced to either select the corresponding atomistic
configuration from said conditional distribution by running
constrained atomistic MD or to use such constrained MD to
directly provide noiseless forces at arbitrary CG configurations,
e.g., using blue moon sampling.421,450 Doing so creates an
avenue to use active sampling strategies such as those described
in the previous paragraph.
However, often due to computational reasons, most studies

instead resort to canonically distributed nonconstrained atom-
istic reference samples for parametrization (the use of non-
Boltzmann distributed data sets to parametrize CG models has
been performed recently421,451 but does not seem to be
commonplace). This lack of non-Boltzmann sampling, when
combined with the similarity between the model architectures
used for atomistic and CG force fields and the nature of active
sampling strategies, seems to imply that current highly flexible
CG potentials trained using forces may persistently face
difficulties outside the stable basins of the system under study.
The situation for CG models may indeed be sometimes worse
than the atomistic case as implied by the previously mentioned
results of Wang et al.,443 where high order CG potential terms
were required to reproduce atomistic results, implying that low
capacity model representations may often be insufficient.
Despite this, however, the preliminary success of the results
discussed in earlier subsections provides hope for quantitatively
accurate CG force fields using ML-based algorithms.
Additional strategies beyond force-matching have been

developed (see Section 2) to parametrize CG models. These
approaches generally aim to either reproduce a particular
correlation (low-dimensional marginal distribution) or a high-
dimensional distribution described by a reference atomistic
trajectory mapped to the CG resolution.168,169,452,453 While not
the focus of this Review, we note that the direct inversion of
radial distribution functions to pair potentials using neural
networks has shown to be of repeated interest and represents a
route to parametrization requiring no additional reference data
once successful CG methods are established for similar systems.
Since the forces present in atomistic trajectories are not
referenced in these approaches, they are sometimes applicable
to general EBMs when the model architectures are compatible.
For example, the optimization procedure underpinning REM in
the CG literature closely matches the maximum likelihood
training of EBMs,420,454 although, in the CG case, the supporting
theory35 has a stronger multiresolution focus. The use of
classification to differentiate between data produced by a
candidate CG force field and that of the atomistic reference has
led to both additive updates reminiscent of noise contrastive
estimation57,425 as well as the adversarial strategies imitating
those found in Generative Adversarial Networks (GANs).58,426

Despite these initial connections, however, explicit cross-
pollination between these fields remains sparse and is an area
for future development.
6-3. Machine Learning-based Analysis of CG Models.

6-3.A. Recent Advances inMachine Learning.CG simulations,
similar to their atomistic counterparts, create large amounts of
data, and transforming this data into knowledge and under-
standing is of utmost importance and yet a difficult task. As
mentioned in Section 6-1, a large number of ML-based
techniques have been developed to understand the data
produced by atomistic simulations and are generally also
applicable at the CG resolution.60,413−417 We refer interested
readers to the aforementioned reviews. In this section, we
instead focus on two novel applications of ML that focus on
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problems common to CG simulation: the lack of atomistic detail
and the inability to identify high-dimensional structural
representability issues.
6-3.B. Sample Generation and Reconstruction. CG models

are more efficient than atomistic simulations due to their
reduced resolution, yet as posed earlier, this simplification
inhibits understanding the molecular driving forces under-
pinning emergent behavior. Approaches that reintroduce
atomistic details into CG configurations (aptly referred to as
“backmapping”methods) provide strategies to take advantage of
the efficiency of CG models while maintaining a clear atomistic
picture. Several ML-based techniques have recently been
developed to backmap CG data. Most of these approaches use
generative models455 or GANs in order to create samples at the
atomistic resolution that are consistent with a given CG sample.
GANs work by simultaneously training two neural networks
which “compete” against each other.426 One network (the
“generator”) is trained in the task of creating the backmapped
configurations, while the other (the “adversary”) is trained to
classify structures as being generated either via atomistic
molecular dynamics or the generator network. Over the course
of training, the generator ideally improves to the point that a
fully trained adversary can no longer distinguish between the
two sources of samples. In this ideal case, the generator produces
atomistic samples that are Boltzmann distributed conditioned
on a given CG sample. In application, similar to ML-based CG
force fields, the network could first be trained on a smaller
system and then applied in a larger context, providing a way to

atomistically interpret emergent behavior discovered in CG
simulations.
There are currently multiple examples of GAN-based

backmapping methods. One method introduced by Li et al.
uses the Pix2Pix network architecture which was originally
designed as a style transfer network for images.456 By converting
CG positions into a two-dimensional image, the method is able
to perform backmapping with minimal additions to an already
existing framework.457 Another method by Stieffenhoffer,
Wand, and Bereau utilizes a new network architecture designed
specifically for the task of backmapping.458 In this so-called
deepBackmap approach, the network not only sees CG
configurations but also has access to force field information,
allowing higher energy structures to be directly penalized. The
network also distinguishes between different chemical groups
such as aromatic rings and backbone atoms and additionally
builds the high-resolution structure one particle at a time, which
allows information from previous atoms to inform the placement
of later atoms. Recently, this method showed promising results
for complicated systems such as polymer melts and can translate
well to crystalline structures.286 We note that such stochastic
backmapping methods would also allow the force-based active
learning strategies previously described to be performed at a
minimal cost.
We also note that a number of MLmethods other than GANs

can be also employed to perform backmapping. To note, various
backmapping methods have been developed by utilizing
traditional supervised/unsupervised methods459 (e.g., graph

Figure 4. A summary of machine learning methods related to CGmodeling. Kernel methods utilize a covariance function to specify a random process
which can be used as a nonlinear estimator for CG potentials (left panel, top). Artificial neural networks (ANNs) can also be used to generate nonlinear
force fields. A variety of ANN architectures have been developed with applications in CG modeling, such as autoencoders which compress the data
stream before expanding it, which has natural connections to CG methods, and graph convolutions, which apply filters over graphs such as molecular
topologies (left panel, bottom). Machine learning has also found uses in analyzing CG models and trajectories. Neural networks can be used to
backmap CG configurations (right panel, left). Classifiers, especially interpretable ones, can be used to differentiate between configurations generated
by different models (such as a CG model and the reference data it was parametrized from) and also provide specific information about how the
ensembles are different (right panel, right).
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methods and PCA) or advanced ML methodologies, including
Bayesian inference,460 Gaussian process regression,461 and
autoencoders.433 In particular, the approach of directly
generating molecular configurations without extensive MD has
similarly been exploited by Boltzmann Generators, which are
trained on small amounts of molecular dynamics data and the
atomistic force field in an unconditional manner.462 This
technique, while not currently implemented for CG data, could
similarly be adapted to the backmapping domain and would
have the advantage of taking into account atomistic force field
information in a rigorous manner.
6-3.C. Ensemble Comparison. Even though bottom-up CG

models are rigorously built upon FG statistics, many CGmodels
have structural representability issues. In addition, the high-
dimensional parametrizations typical to bottom-up models can
make it difficult to intuit how two approximate CGmodels differ
beyond their qualitative or projected behavior. When para-
metrizing atomistic force fields, the per-configuration error in
the energy or forces is known for each entry in the reference data
set, and these known discrepancies can provide intuition on the
regions of phase space well-described by the model at hand.
Unfortunately, this type of analysis is not possible for bottom-up
CGmodels, as neither the truemany-bodyCG variable PMF nor
its gradients are typically known (although, as noted previously,
the gradients may be estimated by constrained simulation
techniques). Instead, the validation of CG models is generally
limited to comparing their performance using low-dimensional
free energy surfaces (i.e., marginal distributions), leaving the
differences in their full high-dimensional behavior relatively
undescribed.
In this regard, recent work463 has proposed a different strategy

for capturing and describing the errors present in parametrized
CG models. The output of a calibrated classifier trained to
differentiate between configurations in the reference atomistic
data set and those produced by a candidate CG model can be
transformed into an estimate of the difference in the CG force
field and the true many-body PMF at each configuration (and, if
the classifier is differentiable, the difference in the forces at these
configurations), variationally recapturing the information
present when dealing with atomistic force fields. Furthermore,
the applicability of classifiers in this domain opens the door to
exploiting techniques from explainable ML in order to interpret
the inferred configurational errors. These same ideas are also
applicable to resolutions coarser than that of the CG force field
and provide an avenue for understanding classification-based
training techniques, such as those in Lemke and Peter’s work as
well as in adversarial-residual-CG (ARCG).57,58

We summarize the current advances in ML-based CG
approaches in Figure 4.
6-4. Mini Outlook. Both bottom-up CG and ML use

algorithms to discern patterns in data. This similarity has
motivated the application of a variety of ML algorithms in CG
frameworks, ranging from novel force field approaches to
systematic methods for reintroducing atomistic detail. Collec-
tively, this increased expressivity can produce atomistic
explanations for previously uninvestigated phenomena. How-
ever, this increase in accuracy has come with a loss in model
transparency (whether this trade-off is inevitable is a topic of
debate).464,465 In situations where extrapolation and physical
intuition are critical, this trade-off can create problems. For
example, while bottom-up ML CG models may recapitulate the
ensemble it is parametrized to match, are the derived force field
parameters transferable to the primary system of interest where

emergent behavior is expected? Do backmapping approaches
parametrized in the stable basins of a system extrapolate
correctly to the transition regions? If a model is inaccurate in
portions of phase space, can this be predicted and scientifically
understood? As the parametrization of bottom-up methods is
often based on reference data sets that inherently do not
guarantee the performance of CG simulations, these questions
are critical to the many ML-based approaches currently in
development. These issues, of course, are not new to the
bottom-up CG community (see Section 2) or the ML
community.466−471 Unfortunately, the nature of molecular
models with high-dimensional parametrizations producing
molecular configurations in a high-dimensional phase space
makes these issues even more pertinent. Nevertheless, the initial
successes mentioned in previous paragraphs, along with the
successful creation of increasingly general purpose atomistic
potentials,472 motivate future development for all the
applications described in this section. Once the transferability
of an approach has been systematically established (ideally
through a combination of transparency and application), further
work can focus on computational efficiency and ease of use,
ideally leading to a class of CGmodels that underpin a new wave
of research devoted to previously insurmountable scientific
problems. In general, one may also expect an explosion of new
literature in the future in terms of ML methods applied to
coarse-graining.

7. CONCLUDING REMARKS AND PERSPECTIVE
For the past two decades, bottom-up CG models have been
developed by studying the microscopic origins underlying many
macroscopic processes and have emerged as efficient, powerful,
and multiscale computational tools in several fields of science.
However, due to the enormous complexity of atomistic systems,
statistical mechanics-driven CG modeling has primarily only
been possible for relatively simple systems, e.g., liquids and small
peptides, using various practical approximations from ad hoc
design principles. To move toward true “multiscale” models,
such bottom-up principles should maintain accuracy across
different physical scales. Notably, some recent advances are
pushing this limit forward to much smaller (quantum regime)
and larger (meso- to macro-scopic) regimes. An extension of the
MS-CG framework to the quantum regime,473 described by
quantum Boltzmann statistics, corroborates that such a
multiscale treatment is possible in one extreme, while the
other extreme toward macroscale CG modeling has been
actively pursued via mesoscopic fluids.105,107 Similarly, the
Electronic Coarse-Graining (ECG) method474,475 has been
developed to target configurationally dependent electronic
structure and applied to semiconductors476 and optoelectronic
materials.477 These advances promise to significantly extend the
spatiotemporal scale of systematically parametrized simulations,
which currently encompass biological entities comprising
millions to billions of atoms, e.g., the SARS-CoV-2 virion.478

When bridging across distinctly different scales, transferability
between these scales is critical to reconcile different emergent
physics within a single unified model. While at an early stage,
recent success in quantummechanics/CGmolecular mechanics
(QM/CG-MM),479,480 which encompasses both quantum and
molecular regimes, implies that it is possible to design CG
mappings, equations of motion, and energetics based on the
scale of interest. In the other limit, a promising direction would
be to incorporate classical field theory into the bottom-up CG
framework.481
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While future efforts should focus on extending the multiscale
regime, an equal amount of attention might be spent developing
new CG theories at the molecular level. Possible directions for
new CG methodologies include the following: (1) stable and
extensible nonlinear CG mappings for complex mesoscale
systems, (2) fully expressive CG energetics, (3) amore complete
description of UCG state dynamics, (4) a more complete
dynamic representability between the FG and CG systems, and
(5) advanced ML-based CG methodologies.
Lastly, we conclude this Review by emphasizing the necessity

and importance of infrastructure for computer software and data
set handling for the next generation of CG modeling. As models
and derivation strategies increase in complexity, infrastructure
for software and data becomes much more crucial. Since the
naissance of modern computer simulations for molecules,482

computer software has been inseparable frommolecular models.
Given the ad hoc nature of many existing CG models, CG
modeling software should be amenable to new feature
implementation and easy dissemination to facilitate both access
and utility to the general scientific community. Currently, there
are several options that satisfy these criteria with different
features and capabilities according to their objectives:
VOTCA185 (BI , IBI ; ht tps ://gi thub.com/votca) ,
MAGIC483,484 (IMC; http://bitbucket.org/magic-su/magic-
3), BOCS485 (g-YBG, iter-YBG; https://github.com/noid-
group/BOCS), openMSCG486 (MS-CG, iter-MS-CG, MC-
CG, REM; https://software.rcc.uchicago.edu/mscg/), and
CGNet59 (ML-based approaches; https://github.com/coarse-
graining/cgnet). Continued development in both CG method-
ology and software necessitates standardized data sets that are
used to validate existing or new CG methods. For example, in
the free energy sampling community, alanine dipeptide serves as
a standard example to validate new methodologies,487 and
ultralong atomistic MD trajectories for fast-folding pro-
teins488−490 using the ANTON supercomputer by the D. E.
Shaw lab491 have been extensively employed in kinetics studies
such as MSMs. Even though CG modeling tackles a variety of
chemical and biological systems across many different scales,
there are relatively few data sets that are publicly available in the
CG community. Therefore, by taking inspiration from the ML
community, future efforts should also aim to achieve community
agreement on which data sets are reliable to be shared and
standardized in order to benchmark various CG methodologies.
Altogether, we expect that a continuous exploration along these
directions will push the frontiers of bottom-up CG modeling
into the exploration and characterization of increasingly
complex molecular systems.
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Faustino, I.; Grünewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks, B.
M. H.; Wassenaar, T. A. Martini 3: A general purpose force field for
coarse-grained molecular dynamics. Nat. Methods 2021, 18 (4), 382−
388.
(27) Alessandri, R.; Barnoud, J.; Gertsen, A. S.; Patmanidis, I.; de
Vries, A. H.; Souza, P. C.; Marrink, S. J. Martini 3 coarse-grained force
field: Small molecules. Adv. Theory Simul. 2022, 5, 2100391.
(28) Izvekov, S.; Voth, G. A. A multiscale coarse-graining method for
biomolecular systems. J. Phys. Chem. B 2005, 109 (7), 2469−2473.
(29) Izvekov, S.; Voth, G. A. Multiscale coarse graining of liquid-state
systems. J. Chem. Phys. 2005, 123 (13), 134105.
(30) Izvekov, S.; Voth, G. A. Multiscale coarse-graining of mixed
phospholipid/cholesterol bilayers. J. Chem. Theory Comput. 2006, 2
(3), 637−648.
(31) Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Voth, G. A. Multiscale
coarse-graining and structural correlations: Connections to liquid-state
theory. J. Phys. Chem. B 2007, 111 (16), 4116−4127.
(32) Noid, W. G.; Chu, J.-W.; Ayton, G. S.; Krishna, V.; Izvekov, S.;
Voth, G. A.; Das, A.; Andersen, H. C. The multiscale coarse-graining
method. I. A rigorous bridge between atomistic and coarse-grained
models. J. Chem. Phys. 2008, 128 (24), 244114.
(33) Noid, W. G.; Liu, P.; Wang, Y.; Chu, J.-W.; Ayton, G. S.; Izvekov,
S.; Andersen, H. C.; Voth, G. A. Themultiscale coarse-grainingmethod.
Ii. Numerical implementation for coarse-grained molecular models. J.
Chem. Phys. 2008, 128 (24), 244115.

(34) Lu, L.; Izvekov, S.; Das, A.; Andersen, H. C.; Voth, G. A. Efficient,
regularized, and scalable algorithms for multiscale coarse-graining. J.
Chem. Theory Comput. 2010, 6 (3), 954−965.
(35) Shell, M. S. The relative entropy is fundamental to multiscale and
inverse thermodynamic problems. J. Chem. Phys. 2008, 129 (14),
144108.
(36) Chaimovich, A.; Shell, M. S. Anomalous waterlike behavior in
spherically-symmetric water models optimized with the relative
entropy. Phys. Chem. Chem. Phys. 2009, 11 (12), 1901−1915.
(37) Chaimovich, A.; Shell, M. S. Relative entropy as a universal
metric for multiscale errors. Phys. Rev. E 2010, 81 (6), 060104.
(38) Chaimovich, A.; Shell, M. S. Coarse-graining errors and
numerical optimization using a relative entropy framework. J. Chem.
Phys. 2011, 134 (9), 094112.
(39) Shell, M. S. Systematic coarse-graining of potential energy
landscapes and dynamics in liquids. J. Chem. Phys. 2012, 137 (8),
084503.
(40) Shell, M. S. Coarse-graining with the relative entropy. Adv. Chem.

Phys. 2016; Vol. 161, DOI: 10.1002/9781119290971.ch5.
(41) Pretti, E.; Shell, M. S. Amicrocanonical approach to temperature-
transferable coarse-grained models using the relative entropy. J. Chem.
Phys. 2021, 155 (9), 094102.
(42) Nguyen, H. D.; Brooks, C. L. Generalized structural poly-
morphism in self-assembled viral particles. Nano Lett. 2008, 8 (12),
4574−4581.
(43) Nguyen, H. D.; Reddy, V. S.; Brooks, C. L., III Invariant
polymorphism in virus capsid assembly. J. Am. Chem. Soc. 2009, 131
(7), 2606−2614.
(44) Perlmutter, J. D.; Qiao, C.; Hagan, M. F. Viral genome structures
are optimal for capsid assembly. eLife 2013, 2, e00632.
(45) Mohajerani, F.; Hagan, M. F. The role of the encapsulated cargo
in microcompartment assembly. PLOS Comput. Biol. 2018, 14 (7),
e1006351.
(46) Alessandri, R.; Souza, P. C. T.; Thallmair, S.; Melo, M. N.; De
Vries, A. H.; Marrink, S. J. Pitfalls of the martini model. J. Chem. Theory
Comput. 2019, 15 (10), 5448−5460.
(47) Jarin, Z.; Newhouse, J.; Voth, G. A. Coarse-grained force fields
from the perspective of statistical mechanics: Better understanding of
the origins of a martini hangover. J. Chem. Theory Comput. 2021, 17 (2),
1170−1180.
(48) Majumder, A.; Straub, J. E. Addressing the excessive aggregation
of membrane proteins in the martini model. J. Chem. Theory Comput.
2021, 17 (4), 2513−2521.
(49) Wagner, J. W.; Dama, J. F.; Durumeric, A. E. P.; Voth, G. A. On
the representability problem and the physical meaning of coarse-
grained models. J. Chem. Phys. 2016, 145 (4), 044108.
(50) Dunn, N. J. H.; Foley, T. T.; Noid, W. G. Van der waals
perspective on coarse-graining: Progress toward solving represent-
ability and transferability problems. Acc. Chem. Res. 2016, 49 (12),
2832−2840.
(51) Jin, J.; Pak, A. J.; Voth, G. A. Understanding missing entropy in
coarse-grained systems: Addressing issues of representability and
transferability. J. Phys. Chem. Lett. 2019, 10 (16), 4549−4557.
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(457) Li, W.; Burkhart, C.; Polinśka, P.; Harmandaris, V.; Doxastakis,
M. Backmapping coarse-grained macromolecules: An efficient and
versatile machine learning approach. J. Chem. Phys. 2020, 153 (4),
041101.
(458) Stieffenhofer, M.; Wand, M.; Bereau, T. Adversarial reverse
mapping of equilibrated condensed-phase molecular structures. Mach.
Learn.: Sci. Technol. 2020, 1 (4), 045014.
(459) Louison, K. A.; Dryden, I. L.; Laughton, C. A. Glimps: A
machine learning approach to resolution transformation for multiscale
modeling. J. Chem. Theory Comput. 2021, 17 (12), 7930−7937.
(460) Peng, J.; Yuan, C.; Ma, R.; Zhang, Z. Backmapping from
multiresolution coarse-grained models to atomic structures of large
biomolecules by restrained molecular dynamics simulations using
bayesian inference. J. Chem. Theory Comput. 2019, 15 (5), 3344−3353.
(461) An, Y.; Deshmukh, S. A.Machine learning approach for accurate
backmapping of coarse-grained models to all-atom models. Chem.
Commun. 2020, 56 (65), 9312−9315.
(462) Noé, F.; Olsson, S.; Köhler, J.; Wu, H. Boltzmann generators:
Sampling equilibrium states of many-body systems with deep learning.
Science 2019, 365 (6457), aaw1147 DOI: 10.1126/science.aaw1147.
(463) Durumeric, A. E. P.; Voth, G. A. Explaining classifiers to
understand coarse-grained models. 2021, arXiv:2109.07337. arXiv
preprint. https://arxiv.org/abs/2109.07337 (accessed 2022-08-16).
(464) Rudin, C. Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead. Nat.
Mach. Intell. 2019, 1 (5), 206−215.
(465) Allen, A. E.; Dusson, G.; Ortner, C.; Csányi, G. Atomic
permutationally invariant polynomials for fitting molecular force fields.
Mach. Learn. Sci. Technol. 2021, 2 (2), 025017.
(466) Kodratoff, Y. The comprehensibility manifesto. KDD Nugget

Newsletter; 1994; Vol. 94 (9).
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