

Contents lists available at ScienceDirect

Drug and Alcohol Dependence Reports

Critical access medication for opioid use disorder (MOUD) treatment facilities in the continental United States

Harold A. Pollack^{a,b,c,*}, Francis Lee^d, Susan Paykin^e, Javier Andres Rojas Aguilera^e

^a Crown Family School of Social Work, Policy & Practice, University of Chicago. 969 East 60th St., Chicago, IL 60637, United States

^b University of Chicago Urban Health Lab, 33 North Lasalle St., Chicago, IL 60602, United States

^c Department of Public Health Sciences, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, United States

^d Department of Medicine and Epidemiology, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, United States

e Center for Spatial Data Science, University of Chicago, 1155 East 60th St. Room 212, Chicago, IL 60637, United States

ABSTRACT

Research objective: Medication opioid use disorder (MOUD) treatment is the first-line approach to the treatment of opioid use disorder (OUD). This analysis seeks to identify "critical access" MOUD facilities that ensure geographic access for MOUD patients. Using public-source data and spatial analysis, we identify the top 100 "critical access" MOUD units across the continental U.S.

Study design: We use locational data from SAMHSA's Behavioral Health Treatment Services Locator and DATA 2000 waiver buprenorphine providers. We identify the closest MOUDs to each ZIP Code Tabulation Area (ZCTA)'s geographic centroid. We then construct a difference-in-distance metric by computing the difference in this distance measure between closest and second-closest MOUD, multiplied by ZCTA population, ranking MOUDs by difference-distance scores.

Population studied: All listed MOUD treatment facilities and all listed ZCTA's across the continental U.S., and all listed MOUD providers proximate to these areas. *Principal findings:* We identified the top 100 critical access MOUD units in the continental United States. Many critical providers were in rural areas in the central United States, as well as a band extending east from Texas to Georgia. Twenty-three of the top 100 critical access providers were identified as providing naltrexone. Seventy-seven were identified as providing buprenorphine. Three were identified as providing methadone.

Conclusions: Significant areas of the United States are dependent on a single critical access MOUD provider.

Implications for policy or practice: Place-based supports may be warranted to support MOUD treatment access in areas dependent upon critical access providers.

1. Introduction

Medication for opioid use disorder treatment (MOUD) improves medical outcomes, well-being, and social functioning for many patients who experience opioid use disorders (Johnson et al., 1992; Mattick et al., 2009; Minozzi et al., 2011). Ensuring proper access to MOUD is thus a key priority in public health. While patients in-need of MOUD often face financial (Liebling et al., 2016) or social (Schleimer et al., 2021) barriers to treatment access, simple geographic proximity is a basic concern for many patients (Saloner et al., 2022).

Previous work examining geographic factors and substance use disorder treatment adherence has found that travel distance was a pivotal factor in treatment adherence (Amiri et al., 2018; Amiri et al., 2020). While recent research has examined geographic availability by region(Cantor et al., 2021) and by urban-rural contrasts,(Kiang et al., 2021) we examine geographic availability relative to the presence/absence of other local MOUD providers. As there many barriers may hinder consistent treatment for opioid use disorder (OUD), including cost, transportation, and job schedules, we seek to explore the closest treatment facilities for three types of treatment and identify key strategic points to identify areas that may be under-served from local resources. Cole et al. (2019) found that every additional mile from an MOUD provider was associated with a 1.2% reduction in the odds of receiving MOUD (Cole et al., 2019 cited in Saloner et al., 2022). Geographic proximity is also associated with fewer missed methadone doses, and with longer duration of buprenorphine treatment (Cole et al., 2019).

Given the importance of such proximity, we seek in this short paper to identify MOUD providers who play a critical role in ensuring geographic proximity for nearby communities—providers whose absence might create a treatment 'desert' were they to shut down or prove unable to treat additional patients.

2. Methods

We measured geographic access to MOUD resources using the following data sources. The primary data source was the SAMHSA Behavioral Health Treatment Services Locater for all substance use treatment facilities providing methadone and extended-release naltrexone (derived from the 2019 National Survey of Substance Abuse Treatment Services) and DATA 2000 waiver buprenorphine providers, obtained on August

E-mail address: haroldp@uchicago.edu (H.A. Pollack).

https://doi.org/10.1016/j.dadr.2022.100130

^{*} Corresponding author at: Harold Pollack, Crown Family School of Social Work, Policy & Practice, University of Chicago. 969 East 60th St., Chicago, IL 60637, United States.

Received 12 July 2022; Received in revised form 25 November 2022; Accepted 15 December 2022

^{2772-7246/© 2022} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Fig. 1. Conceptual Illustration of critical access providers.

29, 2020. All analyses were conducted in R version 3.6.0. A total of 43,502 unique MOUD treatment providers were included in the analysis.

We included all ZIP Code Tabulation Areas (ZCTA)s in the U.S.. ZC-TAs are generalized aerial representations of populated US Postal Service ZIP Code service areas. From every ZCTA in the US, we identify the top 5 closest providers to the geographic center (centroid) of the ZCTA and their corresponding distances. Distance was measured by Euclidean (straight line) distance, from each MOUD location to the ZCTA centroid, as an approximation of travel distance. Alaska and Hawaii were not included in this analysis. MOUD providers at the same physical location (as indicated by common latitude and longitude) were considered to be a common resource for the purposes of this analysis.

We then examine the difference in distances between the closest and second-closest provider from that area, to quantify the distance one must travel beyond the closest provider in order to reach the second provider if the closest were unavailable. We aggregate these additional distances from every zip code to characterize a notion of the strategic value of the provider with regards to distance traveled. We then weight distance metrics by population, to gage which units are critical access for many people.

Fig. 1 provides geographic intuition regarding the access challenge. Here MOUD treatment units are shown as circles. The zip codes that utilize a particular treatment center are shown as squares. The area of each square represents population size.

As shown, MOUD Unit 4 is the closest unit to zip codes D, E, and F. These zip codes are also reasonably populated. Unit 1 is the closest unit to a highly-populated zip code. However, Unit 2 is nearly the same distance from that service area. Unit 3 closest to several zip codes, but the affected service areas are thinly populated. On our population-weighted distance metric, Unit 4 would thus likely be judged the most important critical-access unit, given the combination of these factors.

The mathematics of our method is presented formally in Eq. (1) below. We may characterize the critical access value (*CAV*) of a particular clinic (denoted as C_j) out of the set of all providers (*C*) below for the centroid of a zip code (z_i) from the first zip code to the last by calculating the distance (*Dist*).

711

Table 1

Top 100 critical-access providers, Continental United States.

Treatment	Number of Critical-access Providers	Proportion of Non-Critical-access Providers offering medication
Offers Naltrexone	23	19.6%
Offers Buprenorphine	77	80.7%
Offers Methadone	3	2.93%

We also threshold the traveling distance of the closest provider as needing to be within 100 miles away from the centroid of the zip code to have its critical-access value counted, under the assumption that people will not travel more than 100 miles to receive treatment. Based on this metric, we identify the top 100 critical-access MOUD providers in the continental United States. We then analyze characteristics of these providers (identified treatment type) and the areas surrounding it. Publicly available data from the U.S.Census describing the 2019 population showcase the population sizes of a zip code within that year.

3. Results

The top 100 critical-access MOUD units are mapped in Fig. 2 below (See Appendix Table A1 for more specific information.). Table 1 presents the corresponding treatment modality of critical-access units, compared with others.

We compare the proportion of different types of treatment available relative to the treatments offered by providers that aren't in this subset in Table 1 (Percentages do not add to 100, because some providers offer multiple forms of MOUD.). Seventy-seven of the top 100 providers offered buprenorphine service, four of which also offered naltrexone or methadone services. Three of the top 100 units offered methadone services, one of which also offered buprenorphine. Twenty-three of the top 100 units offered naltrexone, two of which also offered buprenorphine.

Differences between these proportions in critical-access versus other units are not statistically significant ($\chi_2^2 = 0.765$, p = 0.68),. Binomial proportion tests indicate that the pairwise differences in the medication being dispensed are not statistically significant for buprenorphine ($\hat{p} = 0.77$, p = 0.3742) naltrexone ($\hat{p} = 0.23$, p = 0.3791), and methadone ($\hat{p} = 0.03$, p = 0.7695), indicating no difference in the top 100 providers relative to the overall sample.

Robustness analysis: Our methodological assumptions are reasonable but arbitrary. We therefore varied these assumptions to examine whether these alter our qualitative results. In particular, we analyzed our data with a 50-mile rather than a 100-mile threshold. This lower threshold might be somewhat more realistic in suburban or urban areas. Although this reanalysis changes the dependence metrics and the subsequent ordering of critical access providers, we identify precisely the same list of the top 100 providers, indicating that our findings are robust to this assumption.

To assure the robustness of our results, we also examined the top 200 critical-access providers (See Fig. A1 and Table A1). We found generally similar geographic patterns to the top 100 providers, with one exception. We did identify more providers in the Illinois-Indiana-Kentucky

$$CAV(C_{j}) = \sum_{i=z_{1}}^{z_{1}} I\left(\operatorname{argmin}\left(Dist(C, z_{i})_{(1)} = C_{j}\right) * \left(Dist(C, z_{i})_{(2)} - Dist(C, z_{i})_{(1)}\right)\right)$$
(1)

In our analysis, the critical-access value of a particular provider is dependent on the distance of the other providers available in adjacent areas, measuring additional travel distance as opposed to absolute travel distance. Thus, if the closest provider to a particular zip code is 50 miles away, and the second-closest is 51 miles away, our measure would characterize the critical-access value of that provider associated with that zip code as 1 mile. We weight these distances traveled by the zip code's population.

tristate area areas distinctively affected by the opioid overdose epidemic.

4. Discussion

Geography poses important barriers to initiation and continued engagement with MOUD treatment. In this analysis, we identify the top

Fig. 2. Top 100 Critical Access MOUD treatment facilities, Continental United States.

100 critical access providers in the continental United States, whose presence specifically reduces these geographic barriers.

A conspicuous proportion of critical access providers are located in the central United States, roughly within a north-south segment bounded by Texas, Wisconsin, and North Dakota, and an additional ribbon extending east from Texas to Georgia in the Southeastern United States. Almost one-quarter of identified critical access providers are identified as providing naltrexone treatment. Only three of the top 100 critical access offer methadone treatment.

4.1. Study limitations

Our findings should be considered in light of several study limitations.

First and foremost, our treatment access metric is based solely on geographic distance. Other barriers impact the practical accessibility and attractiveness of MOUD treatment beyond physical proximity. Euclidean distance may also provide a misleading metric for travel time in congested metropolitan areas. We will examine more realistic drive-time metrics in future work, drawing on zip-code-focused driving metrics now appearing in the literature (Hu et al., 2020).

Conversely, we do not consider geographic access barriers within a given zip code area. An MOUD provider is considered to have distance zero to any point within its own ZTAC. We also do not consider potential nonlinear relationships in our distance measures. If one MOUD provider is fifty miles from a ZTAC centroid and another is 51 miles away, our algorithm yields the same results as it would if one unit were three miles away, and another four miles away. Depending on local context, these may be qualitatively different situations, for example if patients are unwilling or unable to access treatment fifty miles away in the first example, or if patients lack access to an automobile.

We also do not model local demand for MOUD services. Given similar MOUD treatment capacity, areas with high concentration of OUD patients may experience greater access challenges. We hope to include these factors in future analyses, particularly given some patterns we observed in the set of top-200 critical-access providers.

Third, we provisionally accept as ground-truth the accuracy of our underlying SAMHSA treatment locator data. Existing studies underscore the limitations of these data (Beetham et al., 2019). Our data do not indicate whether a particular provider is accepting new patients and is well-equipped to serve those who seek MOUD care (Presnall et al., 2022). Some units may not be taking new patients or favor patients with specific forms of insurance coverage (Richards et al., 2022). We hope in future work to audit treatment availability at these providers.

5. Conclusion

Particularly, but not exclusively, in midwestern and southeastern states, some areas of the United States are strikingly dependent on a limited set of critical-access providers for proximate access to MOUD care.

Also concerning is the high representation of naltrexone-only units among critical access providers. A notable fraction of MOUD patients state a preference for methadone or buprenorphine over naltrexone (Brenna et al., 2022). These findings are also concerning because injectable extended-release naltrexone may be less effective than other forms of MOUD in reducing overdose and other substance use risks (Lee et al., 2018; Murphy et al., 2019; Waddell et al., 2021).

Geographic dependence is particularly important in light of evidence that proximity exerts a strong impact on treatment adherence and care continuity. Most care-seekers do not wish to travel far to receive care (Garnick et al., 2020; Rosenbaum et al., 2011). Critical access MOUD units that service high local demand may face capacity constraints that likewise hinder treatment quality or timeliness (Bouchery et al., 2015).

Place-based supports may thus be warranted to expand, sustain, and ensure quality of MOUD treatment in areas dependent upon critical access providers. Given the importance of such providers, state substance use agencies and SAMHSA might specifically monitor these providers, monitoring on an annual basis whether these providers remain open and able to accept new patients. States and SAMHSA might also provide focused investments for quality assurance, staff recruitment/retention, and expanded capacity at these critical access providers. States and SAMHSA might provide additional supports for expanded treatment capacity in opioid "treatment deserts," and other local areas identified as dependent upon critical-access providers (Hyder et al., 2021).

This work was supported by the NIDA Justice Community Opioid Innovation Network (JCOIN) Methodology and Advanced Analytics Resource Center (MAARC) U2CDA050098. and the University of Chicago NIDA T-32–Integrative Training in the Neurobiology of Addictive Behaviors. 5T32 Act DA043469.

Author disclosures

Role of Funding Source This project was funded by NIDA. The funder had no role in the design, analysis, or conclusions in this manuscript.

Declaration of Competing Interest

No conflict declared.

CRediT authorship contribution statement

Harold A. Pollack: Formal analysis, Writing – original draft, Writing – review & editing. Francis Lee: Formal analysis, Writing – original

Table A1

top 200 Critical access providers.

Drug and Alcohol Dependence Reports 6 (2023) 100130

draft, Writing – review & editing. **Susan Paykin:** Data curation, Formal analysis, Writing – review & editing. **Javier Andres Rojas Aguilera:** Data curation, Formal analysis, Writing – review & editing.

Acknowledgments

We acknowledge participants in the NIDA JCOIN Steering Committee, Bradley Stein, Jonathan Caulkins, Bryce Pardo, Beau Kilmer, and Keith Humphreys provided helpful comments.

Appendix A

	County	State	Medication(s) offered	Population-weighted Distance-dependence metric	
1	CLALLAM	WA	buprenorphine	27,535,230	
2	SONOMA	CA	buprenorphine	7,666,646	
3	VAL VERDE	TX	buprenorphine	7,189,558	
4	BALDWIN	GA	buprenorphine	4,408,768	
5	LYON	KS	buprenorphine	3,784,824	
6	OKTIBBEHA	MS	buprenorphine	3,136,198	
7	GRAY	TX	buprenorphine	3,124,979	
8	GILLESPIE	TX	buprenorphine	2,908,022	
9	BUTTS	GA	Methadone, buprenorphine	2,565,032	
10	SCOTT	MO	naltrexone	2,386,473	
11	MUSCATINE	IA	buprenorphine	2,363,868	
12	BARRON	WI	buprenorphine	2,317,933	
13	CRISP	GA	buprenorphine	2,270,888	
14	WASHINGTON	TX	buprenorphine	2,222,640	
15	STARK	ND	naltrexone	2.138.097	
16	JONES	MS	buprenorphine	2.088.920	
17	DAWSON	MT	buprenorphine	2,081,360	
18	GORDON	GĂ	methadone	2,026,169	
19	CLINTON	IN	Buprenorphine, naltrexone	2.024.639	
20	PIKE	AL.	buprenorphine	1 980 596	
21	BIG STONE	MN	buprenorphine	1 980 049	
22	FISHER	TX	buprenorphine	1 973 202	
23	KARNES	TX	buprenorphine	1 910 213	
24	CLINTON	MO	buprenorphine	1 767 173	
25	GRENADA	MS	buprenorphine	1 757 270	
26	HUMBOLDT	NV	buprenorphine	1 744 397	
20	FLUS	KS	naltrexone	1,730,476	
27 28	CALLOWAY	KV	hupreporphine	1,685,738	
20	CRUNDY	MO	paltrevone	1,605,756	
30	HOCKLEY	TY	hupreporphine	1,023,389	
31	ANGELINA	TY	methadone	1 503 026	
33	ALLAMAKEE	IA	huprenorphine	1,593,520	
32	RAPTON	IA VS	buprenorphine	1,582,040	
24	DARTON	CA	buprenorphine	1,517,505	
34 9E	LYON	MN	buprenorphine	1,517,490	
33	LION	IVIIN	burnen om bine	1,309,129	
30 27	MULEOD	MIN OV	buprenorphine	1,492,283	
37	DEAECMITH	UK	burnen om bine	1,439,423	
38 20	DEAF5MIIIT	IA	buprenorphine	1,445,785	
39 40	DEN UU		burnen om bine	1,402,917	
40	DEN HILL	GA		1,301,040	
41	DECATOR	11N	haurexone	1,359,840	
42 49	LIVINGSIUN	INI CD	buprenorphine	1,330,314	
43 11	BEADLE	5D TV	buprenorphine	1,335,987	
44 45	TUUNG	1X TV		1,330,800	
40 46	TDALGO	1X TV		1,324,484	
40	IKAVIS	1X	haurexone	1,310,891	
4/	COLES	IL A D	Duprenorphine	1,308,716	
48	SCOTT	AR	buprenorphine	1,302,085	
49	MARSHALL	KS	buprenorphine	1,295,025	
50	SCOTT	MS	buprenorphine	1,288,128	
51	BLAINE	ID	naltrexone	1,287,290	
52	LEXINGTON	SC	buprenorphine	1,287,129	
53	OKEECHOBEE	FL	buprenorphine	1,279,762	
54	GARFIELD	CO	buprenorphine	1,260,011	
55	LINCOLN	TN	buprenorphine	1,251,945	
56	LAKE	SD	buprenorphine	1,243,212	

(continued on next page)

(County	State	Medication(s) offered	Population-weighted Distance-dependence metric
57 (OKMULGEE	ОК	naltrexone	1,242,566
58 E	BECKER	MN	buprenorphine	1,241,088
59 N	MARSHALL	IA	buprenorphine	1,233,832
60 I	AMAR	MS	buprenorphine	1,232,547
61 1	TATE	MS	naltrexone	1,212,351
52 V	WHITE	TN	buprenorphine	1,189,744
64 (AL NM	buprenorphine	1,188,389
55 F	ROBERTS	SD	buprenorphine	1 177 767
56 N	MADERA	CA	buprenorphine	1.170.371
57 I	DAKOTA	MN	buprenorphine	1,159,978
58 A	ARENAC	MI	buprenorphine	1,151,992
59 E	BROWN	KS	buprenorphine	1,147,845
70 1	TAYLOR	WI	naltrexone	1,134,844
71 F	PLATTE	WY	naltrexone	1,132,298
72 1	WHITE PINE	NV	buprenorphine	1,115,386
/3 J	IERAULD	SD	buprenorphine	1,111,957
74 S	SAN PATRICIO	1X MC	buprenorphine	1,100,518
76 1	RANKLIN	TX	buprenorphine	1 081 251
77 (COBB	GA	buprenorphine	1 079 470
78 I	DAWSON	TX	buprenorphine	1,068,801
79 I	FULTON	IN	Buprenorphine, naltrexone	1,061,478
80 C	GUNNISON	CO	naltrexone	1,057,167
81 A	ATASCOSA	TX	buprenorphine	1,051,482
82 1	TITUS	TX	buprenorphine	1,046,498
83 F	KENDALL	TX	buprenorphine	1,039,651
84 Y	ELLOW MEDICINE	MN	naltrexone	1,039,026
35 E	LLIS	1X IA	buprenorphine	1,036,821
50 C	TA22	IA GA	hupreporphine	1,032,018
88 F	RUSSELL	KY	buprenorphine	1.012.203
89 1	TRIPP	SD	naltrexone	1009,282
90 I	PEACH	GA	buprenorphine	989,532
91 H	HOWARD	IA	buprenorphine	986,274
92 F	RICE	MN	naltrexone	975,829
93 J	IEFFERSON	IN	naltrexone	975,283
94 (CLARK	WA	buprenorphine	970,830
95 H	HEMPSTEAD	AR	naltrexone	958,577
96 F	ORT BEND	TX	buprenorphine	951,938
97 I 08 I	TANSFURD	I A FI	buprenorphine	948,803
99 F	RICHMOND	VA	naltrexone	938 132
100 N	MCDONOUGH	IL IL	naltrexone	932.321
101 0	OGLALA LAKOTA	SD	buprenorphine	927,951
102 J	IACKSON	IA	buprenorphine	926,029
103 0	CALHOUN	GA	buprenorphine	902,845
104 J	JACKSON	GA	methadone	901,497
105 F	REDWOOD	MN	buprenorphine	899,177
106 F	PRICE	WI	buprenorphine	891,024
108 G	AINININ ROCKANE	GA	puprenorpnine	880,245 880,333
109 k	AUFMAN	TX	huprenorphine	878 673
10 N	WILLE LACS	MN	buprenorphine	878,195
111 8	STEPHENS	TX	buprenorphine	870,981
112 M	MARTIN	MN	naltrexone	870,938
113 0	CONECUH	AL	buprenorphine	865,711
114 V	WASHINGTON	MN	buprenorphine	863,425
115 F	PRENTISS	MS	buprenorphine	862,274
116 H	KERSHAW	SC	buprenorphine	859,459
117 (110 -	JKANT	WA	naltrexone	850,558
110 (110 N	JAK VIIN MONTGOMEDV	UK TV	buprenorphine	040,200 840,649
120 C	COLUMBIA	AR	buprenorphine	837 775
121	SHERBURNE	MN	buprenorphine	835,301
122 J	EFFERSON DAVIS	LA	buprenorphine	834,256
123 V	AN ZANDT	TX	naltrexone	814,706
124 H	HENDERSON	IL	buprenorphine	813,552
125 H	KAUFMAN	TX	naltrexone	810,953
126 0	CLAY	IA	buprenorphine	810,209
127 J	IEFFERSON	PA	naltrexone	809,642
128 V	WHITLEY	IN	Buprenorphine, naltrexone	806,691
129 (JUACHITA	AR	buprenorphine	806,639
130 (LAKE	IV11	naitrexone	806,298

(continued on next page)

Table A1 (continued)

	County	State	Medication(s) offered	Population-weighted Distance-dependence metric
132	DEKALB	TN	naltrexone	796,619
133	SEVIER	AR	buprenorphine	793,737
134	SENECA	OH	naltrexone	790,865
135	OCONTO	WI	buprenorphine	789,830
136	LABETTE	KS	buprenorphine	786,944
137	PAWNEE	KS	buprenorphine	774,471
138	MERCED	CA	buprenorphine	771,770
139	POLK	MO	naltrexone	770,060
140	CLARKE	IA	naltrexone	768,588
141	SCOTT	MN	buprenorphine	766,138
142	VERNON PARISH	LA	buprenorphine	764,633
143	GIBSON	IN	buprenorphine	764,360
144	MARION	IA	methadone, naltrexone	762,957
145	HARDEMAN	TN	buprenorphine	747,544
146	MARION	OR	naltrexone	747,479
147	PONDERA	MT	buprenorphine	745,350
148	GREENE	VA	buprenorphine	743,584
149	NICOLLET	MN	buprenorphine	740,887
150	GREENE	MO	buprenorphine	737,733
151	JEFFERSON DAVIS	MS	buprenorphine	734,050
152	ASCENSION	LA	buprenorphine	733,767
153	YADKIN	NC	naltrexone	732,639
154	ELLIS	TX	buprenorphine	729,567
155	BOND	IL	naltrexone	723,735
156	COAHOMA	MS	buprenorphine	721,374
157	MADISON	MO	naltrexone	716,608
158	SIOUX	ND	buprenorphine	715,276
159	KINGMAN	KS	buprenorphine	709,199
160	PAGE	VA	haurexone	709,110
161	IIPPECANOE	IN	buprenorphine	708,342
162	SABINE PARISH	LA	buprenorphine	706,437
163	MAHASKA	IA	buprenorphine	/02,6/4
164	LOGAN	IL	buprenorphine	698,100
165	FRANKLIN	KS	naltrexone	696,224
100	PALO ALTO	IA	buprenorphine	670 491
10/	CHRISTIAN	IL SC	buprenorphine	679,421
108	DORCHESTER	SC	buprenorphine	674,997
109	ANDERCON	INE		674,897
170	ANDERSON	KY	naitrexone	674,889
1/1	SI. CROIX	VVI CA	haurexone	6/3,/32
172	ALAMEDA	CA	buprenorphine	6/2,1/1
173	TATEMEL	NC II	buprenorphine	662.051
175	IAZEWELL	IL MC	buprenorphine	662,951
1/5	SHARKEI	IVIS TV	buprenorphine	660 172
176	UVALDE	1.X	buprenorphine	660,173
177	BUREAU	IL	buprenorphine	659,628
178	COWLEY	KS	naitrexone	658,585
179	WARREN	MO	naltrexone	656,836
101	GREGG	17	buprenorphine	650,119
181	MOBILE	AL	buprenorphine	651,260
182	NAVAJO	AZ	haurexone	647,764
183	SI FRANCOIS	MO	buprenorphine	646,245
184	TAMA	MI	buprenorphine	642,348
185	TELFAIR	GA	buprenorphine	637,846
180	GUADALUPE	IX	buprenorphine	637,400
10/	VVELLO CACDAMENITO		hunnenembine	622,000
100	THEA	CA OV	burner embine meltrevene	622 520
109	WOODS	OK	buprenorphine, flattrexoffe	622,259
190	MADION MADION		buprenorphine	032,239
100	MARION	AL	buprenorphine	627,302
192	COPIAH	MS	naitrexone	625,/11
193	UNEIDA	WI WV	buprenorphine	624,605
194	TODD	KY IA	buprenorphine	624,462
195	FLOYD	IA	buprenorphine	624,130
196	LASALLE	IL 1.	naltrexone	619,949
197	COCONINO	AZ	buprenorphine	619,660
198	FOND DU LAC	WI	buprenorphine	618,480
	ALLEN	KS	buprenorphine	617 247
199	ALLEN	100		017,217

Fig. A1. Top 200 Critical Access MOUD treatment facilities, Continental United States.

References

- Amiri, S., Lutz, R., Socías, M.E., McDonell, M.G., Roll, J.M., Amram, O., 2018. Increased distance was associated with lower daily attendance to an opioid treatment program in Spokane County Washington. J. Subst. Abuse Treat. 93, 26–30. doi:10.1016/j.jsat.2018.07.006.
- Amiri, S., Lutz, R.B., McDonell, M.G., Roll, J.M., Amram, O., 2020. Spatial access to opioid treatment program and alcohol and cannabis outlets: analysis of missed doses of methadone during the first, second, and third 90 days of treatment. Am. J. Drug Alcohol Abuse 46 (1), 78–87. doi:10.1080/00952990.2019.1620261.
- Beetham, T., Saloner, B., Wakeman, S.E., Gaye, M., Barnett, M.L., 2019. Access to officebased buprenorphine treatment in areas with high rates of opioid-related mortality: an audit study. Ann. Intern. Med. 171 (1), 1–9. doi:10.7326/M18-3457.
- Bouchery, E., Morris, R., Little, J., Examining substance use disorder treatment demand and treatment capacity in a changing health care system: Initial findings report. Washington, DC: U.S. Department of Health and Human Services, Office of the Assistant Secretary for Planning and Evaluation, Office of Disability, Aging, and Long-term Care Policy; 2015. https://aspe.hhs.gov/reports/examining-substance-usedisorder-treatment-demand-provider-capacity-changing-health-care-system.
- Brenna, I.H., Marciuch, A., Birkeland, B., Veseth, M., Røstad, B., Løberg, E.M., Weimand, B., 2022. Not at all what I had expected': discontinuing treatment with extended-release naltrexone (XR-NTX): a qualitative study. J. Subst. Abuse Treat. 136, 108667. doi:10.1016/j.jsat.2021.108667.
- Cantor, J., Powell, D., Kofner, A., Stein, B.D., 2021. Population-based estimates of geographic accessibility of medication for opioid use disorder by substance use disorder treatment facilities from 2014 to 2020. Drug Alcohol Depend. 229 (Pt A), 109107. doi:10.1016/j.drugalcdep.2021.109107.
- Cole, E.S., DiDomenico, E., Cochran, G., Gordon, A.J., Gellad, W.F., Pringle, J., Donohue, J.M., 2019. The role of primary care in improving access to medication-assisted treatment for rural medicaid enrollees with opioid use disorder. J. Gen. Intern. Med. 34 (6), 936–943. doi:10.1007/s11606-019-04943-6.
- Garnick, D.W., Horgan, C., M, Acevedo, A, Lee, M, T., Panas, L., Ritter, G.A., Campbell, K, 2020. Rural clients' continuity into follow-up substance use disorder treatment: impacts of travel time, incentives, and alerts. J. Rural Health 36 (2), 196–207.
- Hu, Y., Wang, C., Li, R., Wang, F., 2020. Estimating a large travel time matrix between zip codes in the united states: a differential sampling approach. J. Transp. Geogr. 86. doi:10.1016/j.jtrangeo.2020.102770.
- Hyder, A., Lee, J., Dundon, A., Southerland, L.T., All, D., Hammond, G., Miller, H.J., 2021. Opioid treatment deserts: concept development and application in a US midwestern urban county. PLoS One 16 (5), e0250324. doi:10.1371/journal.pone.0250324. Johnson, R.E., Jaffe, J.H., Fudala, P.J., 1992. A controlled trial of buprenorphine treatment
- for opioid dependence. JAMA 267 (20), 2750–2755. Kiang, M.V., Barnett, M.L., Wakeman, S.E., Humphreys, K., Tsai, A.C., 2021. Ro-
- bustness of estimated access to opioid use disorder treatment providers in ru-

ral vs. urban areas of the United States. Drug Alcohol Depend. 228, 109081. doi:10.1016/j.drugalcdep.2021.109081.

- Lee, J.D., Nunes, E.V., Novo, P., Bachrach, K., Bailey, G.L., Bhatt, S., Rotrosen, J., 2018. Comparative effectiveness of extended-release naltrexone versus buprenorphine-naloxone for opioid relapse prevention (X:BOT): a multicentre, open-label, randomised controlled trial. Lancet 391 (10118), 309–318. doi:10.1016/S0140-6736(17)32812-X.
- Liebling, E.J., Yedinak, J.L., Green, T.C., Hadland, S.E., Clark, M.A., Marshall, B.D., 2016. Access to substance use treatment among young adults who use prescription opioids non-medically. Subst. Abuse Treat. Prev. Policy 11 (1), 38. doi:10.1186/s13011-016-0082-1.
- Mattick, R.P., Breen, C., Kimber, J., Davoli, M., 2009. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. Cochrane Database Syst. Rev. (3), CD002209 doi:10.1002/14651858.CD002209.pub2.
- Minozzi, S., Amato, L., Vecchi, S., Davoli, M., Kirchmayer, U., Verster, A., 2011. Oral naltrexone maintenance treatment for opioid dependence. Cochrane Database Syst. Rev. (4), CD001333 doi:10.1002/14651858.CD001333.pub4.
- Murphy, S.M., McCollister, K.E., Leff, J.A., Yang, X., Jeng, P.J., Lee, J.D., Schackman, B.R., 2019. Cost-effectiveness of buprenorphine-naloxone versus extendedrelease naltrexone to prevent opioid relapse. Ann. Intern. Med. 170 (2), 90–98. doi:10.7326/M18-0227.
- Presnall, N.J., Butler, G.C., Grucza, R.A., 2022. Consumer access to buprenorphine and methadone in certified community behavioral health centers: a secret shopper study. J. Subst. Abuse Treat. 139, 108788. doi:10.1016/j.jsat.2022.108788.
- Richards, M.R., Leech, A.A., Stein, B.D., Buntin, M.B., Patrick, S.W., 2022. Medicaid prevalence and opioid use disorder treatment access disparities. Health Serv. Res. 57 (2), 422–429. doi:10.1111/1475-6773.13920.
- Rosenbaum, A., Cleland, C.M., Fong, C., Kayman, D.J., Tempalski, B., Parrino, M., 2011. Distance traveled and cross-state commuting to opioid treatment programs in the United States. J. Environ. Public Health doi:10.1155/2011/948789.
- Saloner, B., Landis, R.K., Jayakrishnan, R., Stein, B.D., Barry, C.L., 2022. A bridge too far? Distance to waivered physicians and utilization of buprenorphine treatment for opioid use disorder in West Virginia Medicaid. Subst. Abuse 43 (1), 682–690. doi:10.1080/08897077.2021.1986882.
- Schleimer, J.P., Wright, M.A., Shev, A.B., McCort, C.D., Asif-Sattar, R., Sohl, S., Kagawa, R.M.C., 2021. Alcohol and drug offenses and suicide risk among men who purchased a handgun in California: a cohort study. Prev. Med. 153, 106821. doi:10.1016/j.ypmed.2021.106821.
- Waddell, E.N., Springer, S.A., Marsch, L.A., Farabee, D., Schwartz, R.P., Nyaku, A., Lee, J.D., 2021. Long-acting buprenorphine vs. naltrexone opioid treatments in CJS-involved adults (EXIT-CJS). J. Subst. Abuse Treat. 128, 108389. doi:10.1016/j.jsat.2021.108389.