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A B S T R A C T

Much inquiry in psycholinguistics has focused on evidence from the N400 and P600 components of the
event-related potential (ERP) signal—and a central theoretical challenge in this area is accounting for the
so-called ‘‘semantic P600’’, which involves unexpected patterns in these components relative to traditional
theories of the underlying mechanisms. In this paper we present a computational model of the language
processing mechanisms underlying these ERP components, which builds on existing psycholinguistic theories
in positing a heuristic interpretation stage of processing, but which deviates from existing theories in formulating
this heuristic interpretation process as probabilistic selection via a noisy channel model, and in quantifying
and accounting for fine-grained variation in statistical and representational properties of individual stimuli.
Our model successfully simulates N400 and P600 patterns from eight psycholinguistic experiments, reflecting
the full range of N400-only, P600-only, and biphasic N400-P600 effects, and its behaviors shed light on a
number of key patterns that have presented challenges for existing theories. The model’s success indicates
that a strong account for the processing mechanisms underlying these effects is one in which language
comprehension involves a probabilistic heuristic interpretation stage resembling a noisy channel process,
feeding into subsequent processes that assess target word fit and reconcile between heuristic and literal
interpretations. The model’s success also indicates that these mechanisms are critically sensitive to statistical
variation in individual stimuli, and that modeling the effects of this variation is essential to account for the
full range of observed effects in language processing.
1. Introduction

The phenomenon known as the ‘‘semantic P600’’ has presented a
continuing point of mystery in psycholinguistics. This phenomenon is
detected in association with measurement of event-related potentials
(ERPs), and involves unexpected behaviors of the N400 and P600
components of the ERP signal. The N400 component (a negative-
going deflection peaking at around 300–500 ms after the onset of the
stimulus) and the P600 ERP component (a post-N400 positive inflection
roughly in the 600–1000 ms time window) have historically been con-
nected with semantic and syntactic violations, respectively (Brown &
Hagoort, 1993; Hagoort, Brown, & Groothusen, 1993; Kutas & Hillyard,
1980; Osterhout & Holcomb, 1992). However, this traditional mapping
has been challenged by a number of studies finding P600 effects,
instead of N400 effects, in response to semantic violations such as
role-reversal and animacy violations. This phenomenon has often been
referred to as the ‘‘semantic P600 effect’’ (Erickson & Mattson, 1981;
Hoeks, Stowe, & Doedens, 2004; Kim & Osterhout, 2005; Kuperberg,
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2007, 2016; Nieuwland & Van Berkum, 2005; Van Herten, Kolk, &
Chwilla, 2005; Van Petten & Luka, 2012).

A variety of theories have been proposed to account for this seman-
tic P600 phenomenon. While these theories differ in the precise nature
of hypothesized mechanisms, most have in common the involvement
of what we will refer to as a heuristic interpretation—an interpretation
of the input that is in play during processing and that may differ from
the literal input. This interpretation is typically believed to be formed
on the basis of a subset of information in the input—such as the most
plausible combinations of words that have been presented, regardless
of actual syntax (Bornkessel-Schlesewsky & Schlesewsky, 2008; Hoeks
et al., 2004; Kim & Osterhout, 2005; Kolk, Chwilla, Van Herten, & Oor,
2003; Kuperberg, 2016; Michalon & Baggio, 2019; Van Herten et al.,
2005). Theories along this line are typically verbally formulated, and
often focus on the details of the different processing streams that may
compete to influence interpretations. While each of these theories gives
a compelling account for many of the observed experimental results,
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for all of these theories there are certain outstanding challenges that
remain to be addressed. In particular, existing theories tend not to
account for observation of different outcomes under the same manipu-
lation, or instances in which both N400 and P600 effects are observed
for a given manipulation (biphasic effects).

In this paper we present a computational model that builds on
these existing theories with two key mechanistic additions. Our first
addition is that we formalize the heuristic interpretation process as
a probabilistic selection between candidate interpretations. We model
this selection process via a noisy channel computation, which balances
a notion of interpretation plausibility against extent of deviation from
the literal input string. This probabilistic process can be conceptu-
alized as an ‘‘error-correction’’ decision, which determines whether
the heuristic interpretation of an input will remain true to the literal
input, or reflect a minimally-different alternative. After selection of the
heuristic interpretation, we then simulate N400 amplitude based on
target word probability within the selected heuristic interpretation, and
P600 amplitude based on semantic divergence between the heuristic
and literal interpretations. This approach builds on prior literature
applying noisy channel models for psycholinguistics (Gibson, Bergen,
& Piantadosi, 2013; Levy, 2008; Ryskin, Stearns, Bergen, Eddy, Fe-
dorenko, & Gibson, 2021), including work showing a relationship of
N400 and P600 amplitudes to probability of error correction (Ryskin
et al., 2021).

Our second addition is that we quantify key model variables (plau-
sibility, word probability, semantic divergence) via large pre-trained
neural networks, allowing for sensitivity to idiosyncratic statistical
variation between stimulus items. Using the real experimental stimuli
from the psycholinguistic studies that we simulate, we show that this
model is able to overcome both of the above challenges for existing
theories, successfully simulating ERP patterns to eight studies with
manipulations including role reversals (Chow, Smith, Lau, & Phillips,
2016; Ehrenhofer, Lau, & Phillips, in press), animacy violations (Kim
& Osterhout, 2005; Kuperberg, Choi, Cohn, Paczynski, & Jackendoff,
2010), word substitutions (Chow et al., 2016) and syntactic viola-
tion (Ainsworth-Darnell, Shulman, & Boland, 1998). One additional
simulation shows divergence from human patterns, likely as a result
of imperfect estimates from our neural networks, which we discuss in
detail.

Our model shows that if heuristic interpretation theories are formu-
lated probabilistically as we do here, and if they consider fine-grained
statistical variation among individual stimuli, they can account for a
wide range of N400/P600 results, including key outstanding challenges
related to the semantic P600. One important insight that comes out
of our analysis of the simulation results is that revisions involved in
the heuristic interpretation process have valuable explanatory power
for these phenomena, but they make up only part of a larger story,
in which fine-grained variation in probabilistic and representational
stimulus properties also exert important influence on the ultimate
effects generated by the posited mechanisms. On the whole, our model
lays out a promising account of the processing mechanisms that give
rise to observed ERP patterns in these experiments, building on ex-
isting theory while strengthening the detail and explanatory power of
previous accounts.

2. Background

2.1. Sentence processing models

Observations surrounding the semantic P600 have given rise to a
number of related theories involving multiple interacting streams of
processing. These theories share the notion of a semantic/plausibility
stream, which has the flexibility to process the sentence as a more
plausible alternative. Kim and Osterhout (2005) refer to this as Se-
2

mantic Attraction: if sufficiently semantically attractive, an alternative
interpretation can be chosen over the literal input meaning. The Mon-
itoring Theory (Kolk et al., 2003; Van Herten, Chwilla, & Kolk, 2006;
Van Herten et al., 2005; Van Schijndel & Linzen, 2021) has a plausibil-
ity stream that can produce a temporary heuristic interpretation based
on world knowledge, word meaning and surface word order. Continued
Combinatory Analysis (CCA) (Kuperberg, 2007) and the extended Ar-
gument Dependency Model (eADM) (Bornkessel-Schlesewsky & Schle-
sewsky, 2008) include a semantic stream plus an additional Thematic
stream. The means of determining these plausible alternatives varies
between theories. For the Semantic Attraction account, the authors use
a subjective criterion of semantic attractiveness based on experimenter
intuition (they assume, for instance, that the alternative to devouring is
devoured, and that this alternative will be attractive because a hearty
meal can be devoured, but a dusty tabletop cannot be agent or patient
for this verb). The Monitoring Theory defines plausibility of a sentence
by computing semantic relatedness (LSA) between arguments and tar-
get verbs. CCA considers multiple subjectively-defined factors including
animacy constraints, semantic association and sentence plausibility. In
eADM, the notion of plausibility is loosely defined by a composition
process based on ‘‘qualia’’ properties.

Others have proposed accounts involving a single processing stream
that is responsible for integrating and using different sources of in-
formation. Prominent among single-stream accounts is that of Kuper-
berg (2016), which proposes that multiple hypothesized interpretations
can be generated in parallel within a single processing system, and
the interpretations compete to select a single interpretation based on
reliability of many interacting cues.

Though multi-stream and single-stream models differ in assump-
tions on whether there are distinct processing mechanisms for syntactic
and semantic cues, they share the basic intuition that a subset of cues
may lead to a (possibly temporary) heuristic interpretation that can
differ from the literal meaning. For all theories, this heuristic interpre-
tation helps to account for the lack of N400 effect because the heuristic
interpretation represents a more plausible interpretation, and the N400
response is hypothesized to reflect processing relative to this more
plausible meaning. The P600, then, is typically considered to reflect
a conflict resolution process between this plausible interpretation and
the actual input—this can also be related to accounts of the P600
as reflecting perception of error, consistent with research linking the
P600 to the domain-general P3b component triggered by less probable
(non-linguistic) stimuli (Leckey & Federmeier, 2020). In the Semantic
Attraction account, the heuristic interpretation is permanent, and the
P600 reflects perceived grammatical error (which the plausible inter-
pretation has corrected) in the input. For Monitoring Theory, the P600
reflects reprocessing to check for errors. For CCA, the P600 reflects
a conflict between the semantic stream and one of the more literal
streams. For eADM, the P600 reflects both conflict between different
streams and a check for ‘‘well-formedness’’ of input.

While these theories provide compelling accounts, a central chal-
lenge that most of these theories face is the existence of biphasic
N400-P600 effects (see e.g. Brouwer, Fitz, & Hoeks, 2012, for discus-
sion). For instance, Chow et al. (2016) report a biphasic N400-P600
effect to ‘The tenant inquired which exterminator the landlord had evicted.’,
relative to ‘The tenant inquired which neighbor the landlord had evicted.’.
This effect is difficult to predict for the theories above because these
theories tend to assume that for a given experimental manipulation,
a more plausible heuristic interpretation either will or will not be
available—and if it is available, the theories predict a P600 but no
N400, whereas if it is not available, the theories predict an N400 but
no P600. For some theories, like eADM, this challenge has motivated
claims that the semantic P600 is generated by different mechanisms
entirely.

Another challenge for these theories is that different ERP patterns
can be observed in response to a seemingly identical linguistic ma-
nipulation. In particular, role reversal anomalies (...which waitress the

customer had served) have famously been found to elicit a semantic P600
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Table 1
A summary of psycholinguistic models for ERP effects.
Model Main claim N400 explanation P600 explanation

Semantic Attraction Semantic stream;
syntactic stream

Plausibility in semantic stream Detection of syntactic errors
in the syntactic stream

Monitoring Theory Heuristic stream;
algorithmic stream

Plausibility in heuristic stream Error monitoring

Continued
Combined Analysis

Semantic stream;
thematic stream;
syntactic stream

Plausibility in semantic
stream; can be blocked by
conflict in other streams

Conflict resolution

Extended Argument
Dependency Model

Semantic stream;
thematic stream

Plausibility in semantic or
thematic stream

Conflict resolution or
well-formedness check

Kuperberg
Generative Theory

Single stream with
all cues

Plausibility of interpretation
determined by strong cues at
N400 time window

Updating previous
interpretation
effect, with no immediate N400 effect (relative to canonical construc-
tions, e.g., ...which customer the waitress had served) (Chow, Lau, Wang,
& Phillips, 2018; Chow et al., 2016; Yano, 2018). However, recent
work testing with an identical role reversal manipulation has found an
immediate N400 effect with no P600 effect (Ehrenhofer et al., in press),
seemingly in direct contradiction of the earlier results. These conflicting
results pose a challenge for the above theories because the theories
typically predict existence or absence of a heuristic interpretation di-
rectly based on the experimental linguistic manipulation—for instance,
predicting that a role reversal will have a readily available heuristic in-
terpretation (the corresponding non-role-reversed interpretation), thus
yielding no N400 effect—and therefore are not well-equipped to predict
divergent results for an identical manipulation.

Our model is very close in spirit to these heuristic interpretation
theories, in that we build directly on the intuition that the processor
may entertain a more plausible heuristic interpretation that drives a
lack of N400 effect. A key difference is that we formalize the process
of arriving at the heuristic interpretation as a probabilistic selection
between candidate interpretations, and this selection process – as well
as quantification of N400 and P600 responses – is sensitive to statistical
idiosyncrasies in the experimental stimuli, allowing for differing results
depending on the particular stimuli. As a result, we find that our model
is able to account for biphasic effects as well as divergent ERP pat-
terns for a single linguistic manipulation, shedding light on particular
mechanisms and sensitivities that can explain the observed patterns.
Our account is largely agnostic as to whether these mechanisms should
be considered to exist within a single stream or multiple streams—
as we discuss further in Section 7, our formulation is in principle
compatible with either of these frameworks, so we leave resolution of
that dimension of inquiry for future work (see Table 1).

2.2. Computational models

A number of computational models have also been proposed to
account for these ERP phenomena. Rabovsky, Hansen, and McClelland
(2018) model the N400 as change in activations, within an internal
neural network representation layer intended to capture the predicted
meaning of the sentence. Brouwer, Crocker, Venhuizen, and Hoeks
(2017), Brouwer, Delogu, Venhuizen, and Crocker (2021) propose a
single-stream ‘‘Retrieval–Integration’’ model, in which the N400 re-
flects difficulty of lexical retrieval in context, and the P600 reflects
difficulty of lexical integration in context. ERP responses are simulated
as change of internal activation patterns in retrieval and integration
layers of a neural network model (Brouwer et al., 2017), or as change
of constructed utterance (surprisal) (Brouwer et al., 2021). Michalon
and Baggio (2019) implement a multi-stream processing system where
a semantic component uses lexical-semantic information to predict
grammatical roles, while a separate syntactic component predicts the
same set of grammatical roles with part-of-speech information. In this
3

model, the N400 reflects detection of semantic error, operationalized as
the accuracy of classifying whether the target verb can be a direct de-
pendent of the subject in a corpus, and the P600 monitors mismatches
between the syntactic labels predicted by the two components. While
the Brouwer et al. (2017, 2021) models in particular differ from the
above verbally-specified theories in having more of a capacity to handle
biphasic N400-P600 patterns, all of these computational simulations
use idealized synthetic inputs when training models—which means
that like verbally-specified theories, they are not well-equipped to
account for cases in which the same phenomenon produces different
results. That is, these models operate in synthetic environments, the
statistics of which are determined by planned variation introduced by
experimenters—and this means that the training environments typ-
ically do not leave room for unplanned idiosyncrasies from other
properties of stimuli.

In order to overcome limitations of synthetic stimuli, vector rep-
resentations and neural networks trained on natural data have also
been used for ERP modeling purposes. Ettinger (2018) uses word
embeddings trained on natural corpora to account for stimulus id-
iosyncrasies, and is able to account for the divergent N400 responses
to role reversals in Chow et al. (2016) and Ehrenhofer et al. (in
press). However, this model simulates N400 amplitude with heavy
reliance on cosine similarity between the target word and the last
content word of the context—which means that it is poorly equipped
to handle lexical changes that are more distant from the target in
prior context. Consequently, this model will struggle with some of the
additional experiments that we simulate in this paper. Other works
have used neural networks trained on natural data for simulating
the N400 component. Frank, Otten, Galli, and Vigliocco (2013, 2015)
establish a basic correspondence between N400 amplitude and word
surprisal estimated by recurrent neural networks (RNN). Michaelov
and Bergen (2020) use RNN surprisal from real experimental stimuli
to simulate N400 patterns from a range of neurolinguistic studies—
finding, however, that this RNN surprisal is unable to predict N400
effects to morpho-syntactic and event structure violations. More re-
cently, surprisal from transformers has been shown to outperform
RNN surprisal in predicting N400 amplitude (Merkx & Frank, 2021;
Michaelov, Bardolph, Coulson, & Bergen, 2021): these studies show that
transformers account for more variance in N400 amplitude overall, but
they do not test models’ ability to simulate N400 patterns to specific
target phenomena and linguistic manipulations as we do here. Other
work (Lindborg & Rabovsky, 2021) has represented N400 amplitude
as the difference between internal activation from the current word
and the previous word in transformers (GPT-2), and has successfully
simulated N400 effects in relation to semantic violations, cloze prob-
ability and unexpected primed words—however, this approach proves
unsuccessful in simulating N400 blindness to role reversal anomalies.
Fewer studies have attempted to simulate the P600 with neural network
measures, and it has been observed that both surprisal and entropy
reduction measures from RNNs may be inadequate to account for P600
or post-N400 positivities (Frank et al., 2015). Though neural network
measures have proven useful for simulating aspects of ERP components
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– specifically the N400 in certain settings – continuing limitations
suggest that neural network measures alone may not be sufficient to
explain the full range of ERP patterns. We propose to complement these
neural network measures with a noisy-channel framework that is able
to incorporate specialized mechanisms in distinct processing stages.

Noisy-channel models have been used for modeling syntactic am-
biguity resolution (Levy, 2008), setting the precedent for modeling
computations that may allow comprehenders to override the literal
linguistic input. Gibson et al. (2013) show that a noisy-channel model
can help to explain effects of stimulus properties on rates of non-literal
interpretation in comprehension. Futrell, Gibson, and Levy (2020) also
use noisy channel models to model language-dependent structural for-
getting and locality effects. While these models incorporate noisy chan-
nel inference into various aspects of processing, they do not attempt to
use this mechanism to account for ERPs. Most related to our work here
is that of Ryskin et al. (2021), which proposes that amplitudes of the
N400 and P600 components are indices of noisy-channel inference: as
more errors in the stimuli are corrected, N400 amplitude is reduced
and P600 amplitude increases. These authors design ERP experiments
consisting of semantically and syntactically anomalous sentences, with
an additional manipulation such that some sentences with semantic
violations are more easily correctable (e.g., The storyteller could turn any
incident into an amusing antidote/anecdote), as measured by how likely
humans are to correct the sentence into a control counterpart in an
editing experiment. The authors find that N400 and P600 magnitudes
are linearly related to ease of error correction, whether measured
by word edit distance or by human accuracy in the error correction
experiment. This model shares key intuitions with ours, in assuming an
error correction process that can be linked to noisy-channel inference,
and giving a probabilistic account that incorporates variation in error-
correction behaviors at the stimulus level. However, we extend beyond
what is done in that work, in implementing a full noisy-channel model
to computationally quantify N400 and P600 amplitudes, taking into
account finer-grained stimulus properties, and accounting for a broader
range of psycholinguistic experiments. We provide additional detail
about mechanistic differences between our model and that of Ryskin
et al. (2021) in Section 5.

3. Simulated experiments

In the present paper we introduce a computational model and
report the results of simulating N400 and P600 effects from nine
psycholinguistic experiments with various types of semantic anomalies
and syntactic anomalies. We select our experiments to cover the full
range of ERP patterns that have been reported in response to the
semantic violations of interest: N400-only, P600-only, and biphasic
N400-P600 effects. Additionally, we simulate one experiment with a
classic syntactic P600 effect, to show that effects to syntactic violations
can be accounted for as well. In this section, we first review the
experiments that we will be simulating.

3.1. Dataset

We use original stimuli from nine psycholinguistic experiments fea-
turing semantic/thematic or syntactic violations, with empirical results
varying between N400 effect only, P600 effect only, and biphasic
N400-P600 effect (see Table 2). Our selected experiments include four
kinds of linguistic manipulations: role reversal, animacy violation, word
substitution and preposition deletion.

Role reversal. Two of our simulated experiments involve role reversal
violations, in which the argument roles of nouns in sentences of the
experimental condition are reversed relative to what would be expected
in a canonical situation. In our simulations below, we include one
experiment that reports a P600 effect and one that reports an N400
effect, to test the capacity of our model to explain both patterns of
4
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result. The first experiment, from Chow et al. (2016), we refer to as
Reversal-1, and the second, from Ehrenhofer et al. (in press), we refer
to as Reversal-2. In both of these experiments, the original stimuli
are constructed using embedded object questions (e.g. the restaurant
owner forgot which customer the waitress had served...) to ensure that
information about argument roles precedes the verbs. ERP patterns
are measured at the final verb position. To obtain role reversed sen-
tences, the order of the two arguments within the embedded clauses is
switched. The sentences with canonical thematic role assignment create
highly probable scenarios (. . .which customer the waitress had served...),

hile sentences with reversed thematic roles violate comprehenders’
orld knowledge of thematic role assignment (. . .which waitress the

customer had served...). For the Reversal-1 experiment, the authors
report no N400 effect, but a significant P600 effect—consistent with
previous findings on the semantic P600. By contrast, in the Reversal-2
experiment, which uses similar stimuli and experimental procedure, the
authors report a larger N400 response in the role-reversed condition
than in the control condition, but no significant P600 effect. As we
describe above, this distinction is one of the primary sticking points
for any account that allows for just one pattern of ERP effects given a
role-reversal paradigm—this includes most verbally-specified theories
of the semantic P600 reviewed above, as well as computational mod-
els that use idealized stimuli without access to idiosyncrasies of real
experimental items.

Animacy. The second set of simulated studies consists of three exper-
iments involving violations of animacy constraints on noun phrases.
The experiments that we refer to as Animacy-1 and Animacy-2 are
drawn from Kim and Osterhout (2005) and the experiment that we
refer to as Animacy-3 is drawn from Kuperberg et al. (2010). For all
of these experiments, the subject of the sentence is inanimate, while
the target verb requires either an animate subject (critical condition)
or an animate object (control condition). Whether it is the subject or
object that must be animate is manipulated by use of the active (e.g. the
hearty meal was devouring...) or passive voice (e.g. the hearty meal
was devoured...) with verbs that require animate agents. The critical
distinction between Animacy-1 and Animacy-2 is the degree of lexico-
semantic association, which refers to the degree to which the target
verb is semantically/thematically associated with the arguments in the
context. Though semantic association is thought not to be an essential
trigger for the semantic P600, experiments in this set have suggested
that the semantic P600 effect is more likely when there is a strong
semantic association between the verbs and the arguments. In Animacy-
1, subjects are semantically attractive as patients/themes for the target
verbs, such that these sentences can easily be revised to more likely
alternatives by changing the grammatical form of the verb (e.g., The
hearty meal was devouring→ The hearty meal was devoured). This experi-
ment shows a classic semantic P600: no N400 effect, but a P600 effect.
In Animacy-2, there is significantly lower lexico-semantic association
between the subject and the target verb (e.g., The dusty tabletops were
devouring/devoured). In this experiment, the authors report an N400
effect, but no P600 effect. In Animacy-3, the lexico-semantic association
between verbs and subjects varies without being explicitly manipulated
(the Animacy-3 experimental and control conditions were intended to
be compared against a third, complement coercion condition, which is
not included in our experiments).1 In the Animacy-3 experiment, the
authors report a biphasic N400-P600 effect on critical verbs.

1 There are three conditions in the original Animacy-3 experiment: the
ournalist began/wrote/astonished the article. The ERP effects in the coercion
ondition (began) and in the animacy violation condition (astonished) are both
ompared with the control condition (wrote). The study shows that the N400
ffect in the coercion condition is similar to the N400 in the animacy violation
ondition, suggesting that the verb’s semantic structure is stored at a different

evel from syntactic structure.
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Table 2
List of simulated experiments, with experimental manipulations and results. The underlined word is used in the canonical condition. The
italicized word in parentheses is used in the critical (experiment) condition. The target word is marked as bold. Presence of N400/P600 effect
is determined by difference of ERP amplitudes between canonical and critical conditions.

Experiment Manipulation Sample sentence Observed
effect

Reversal-1 Role-reversal The restaurant owner forgot which customer
(waitress) the waitress (customer) had served...

P600

Reversal-2 Role-reversal ...which bull (cowboy) the cowboy (bull) had
ridden out on the range.

N400

Animacy-1 Active/passive The hearty meal was devoured (devouring)... P600
Animacy-2 Active/passive The hearty meal (dusty tabletops) were devoured

(devouring)...
N400

Animacy-3 Active/passive The journalist wrote (astonished) the article. Biphasic
Substitution-1 Word substitution The tenant inquired which neighbor (exterminator)

the landlord had evicted...
Biphasic

Substitution-2 Word substitution The tenant inquired which neighbor (exterminator)
the landlord had evicted...

Biphasic

Substitution-3 Word substitution The exterminator (neighbor) inquired which
neighbor (exterminator) the landlord had evicted...

N400

Preposition-1 Preposition deletion Kim recommended Shakespeare to (∅) everyone... P600
Word substitution. The third set of experiments that we simulate in-
olve word substitution. In these experiments, an argument noun
ithin an embedded clause is either changed to a different word

hat fits less well in the context, or swapped with the main subject
oun. In Substitution-1 and Substitution-2, both from Chow et al.
2016), the authors substitute one of the arguments in the embedded
lause (e.g., ...which exterminator the landlord had evicted... → ...which
eighbor the landlord had evicted...), which significantly lowers the se-
antic association between the target verb and the preceding context.

ubstitution-2 shares a portion of the stimuli from Substitution-1, but
he stimuli in Substitution-2 are expanded by pairing both contexts
ith a probable continuation (e.g. which neighbor the landlord had
victed; which exterminator the landlord had hired). For both Substitution-
and Substitution-2, the authors report a biphasic N400-P600 effect. In

ubstitution-3, also from Chow et al. (2016), the authors switch one ar-
ument in the embedded clause with the main subject (e.g. The neighbor
nquired which exterminator the landlord had evicted...→ The exterminator
nquired which neighbor the landlord had evicted...), thus keeping lexical
ontent the same between conditions. In the Substitution-3 experiment,
he authors report only an N400 effect.

reposition. The last experiment that we simulate involves manipula-
ion of syntactic violations by deleting the syntactic preposition (to)
n a dative construction with an indirect object (Kim recommended
hakespeare to everyone...) (Ainsworth-Darnell et al., 1998). The authors
f this experiment report a P600 effect with no N400 effect—we include
his experiment as a representative of the classically observed syntactic
600 effect.

.2. Use of real stimuli

Compared with many computational psycholinguistic models that
ave attempted to account for these types of phenomena while using
dealized synthetic inputs, a key distinction of our model comes from
he use of real experimental stimuli, which allows us to account for
diosyncratic properties of individual items. While psycholinguistic ex-
eriments typically manipulate a small set of key linguistic properties
nd link the manipulated features to one target cognitive question, it
s difficult to control all variables that may influence the outcomes.
he characteristics of stimuli from experiments with highly similar

inguistic structures and the same experimental design may still differ
n critical variables, which can give rise to different ERP results, as seen
n the divergent outcomes for Reversal-1 and Reversal-2. It has already
een observed that the preceding contexts and predicted verbs have
loser lexical associations in Reversal-1 than in Reversal-2, as mea-
ured by cosine similarities obtained from GloVe embeddings (Ettinger,
018). We argue that psycholinguistic models can be strengthened by
5

taking such item-level properties into consideration—otherwise models
will only be able to offer one prediction for a group of experiments with
the same linguistic manipulation (see Table 3). As we will demonstrate
below, the use of real experimental stimuli can also offer explanations
for biphasic effects that are not apparent from the nature of the
experimental manipulations.

4. Model overview: a noisy-channel based model of ERPs to se-
mantic anomalies

In this section we provide a high-level overview of the model that
we propose to account for the observed ERP effects (see Fig. 1). In this
model, a noisy channel computation decides the heuristic interpretation
for a given sentence input, balancing interpretation plausibility with ex-
tent of revision. The N400 then reflects the fit of the target word within
the interpretation computed through that noisy channel model, while
the P600 reflects level of conflict or divergence between the heuristic
and literal interpretations. We incorporate quantitative estimates for
measures like plausibility and semantic similarity for each of the indi-
vidual experimental stimuli, by using proxy measures from pre-trained
neural network models. Our model builds closely on existing intuitions
that processing of these sentences should involve a mechanism for
forming heuristic interpretations driven by plausibility—however, our
model formalizes this process as a probabilistic candidate selection
within a noisy-channel framework, and leverages large pre-trained
neural network models to enable sensitivity to idiosyncratic properties
of individual stimuli.

4.1. Computing heuristic interpretation: the noisy channel model

Our model assumes a stage of comprehension involving computa-
tion of an initial heuristic interpretation—this heuristic interpretation
weighs the prior plausibility of each potential interpretation against
the likelihood of perceiving the input sentence given the potential
interpretation. Note that we do not make any specific assumption about
whether this heuristic interpretation persists as an error correction
through the final comprehension stage, or serves only as a temporary
early interpretation to be replaced later by a more literal interpretation.
For the purpose of our model, it is only necessary that both heuristic
and literal interpretations exist, since divergence between heuristic and
literal interpretations will drive our simulated P600.

We formulate the heuristic interpretation process as a selection
process over candidate interpretations, using a noisy channel model.
The noisy channel computation assumes that the speaker chooses an
intended sentence 𝑚 to convey their intended meaning, but that the

perceived sentence 𝑠 reflects potential distortion due to noise. The noisy
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Table 3
Predicted ERP patterns for various psycholinguistic models.

Model Reversal-1,2 Animacy-1,3 Animacy-2 Substitution-1,2,3 Preposition-1

Semantic Attraction no effect P600 N400 N400 P600
Monitoring Theory P600 P600 N400 N400 P600
CCA P600 P600 N400 N400 P600
eADM P600 P600 N400 N400 P600
Generative Theory P600 P600 N400 N400, (P600)a P600

aThe presence of the ERP effect depends on the specific cues and relative strengths in the model setup.
Fig. 1. A overview of model architecture. Candidates (𝑚) are operationalized as literal interpretation (𝑚𝐿𝑖𝑡) and alternative interpretation (𝑚𝐴𝑙𝑡).
channel computation involves Bayesian inference of the true intended
sentence (𝑚) given the perceived stimulus (𝑠).

𝑃 (𝑚 ∣ 𝑠) =
𝑃 (𝑚)𝑃 (𝑠 ∣ 𝑚)

𝑃 (𝑠)
(1)

In this computation, the prior 𝑃 (𝑚) represents the prior probability of
the interpretation under consideration, independent of its relationship
to the perceived sentence. As we describe in greater detail below, we
aim for the computation of this prior probability to reflect a general
notion of plausibility of the interpretation 𝑚, using probabilities from
a pre-trained neural network language model.

The likelihood 𝑃 (𝑠|𝑚) in this computation represents how likely it is
that the interpretation 𝑚 would be distorted into the perceived sentence
𝑠 during message transmission. This ensures that interpretations that
are extremely different from the perceived sentence will not receive
high probability. As we describe below, for computing this value we
use a simple edit distance measure.

We consider the outcome of the heuristic interpretation process to
be selection of a single interpretation HI, which corresponds to the
interpretation 𝑚 with the greatest posterior probability 𝑃 (𝑚|𝑠), selected
from a set 𝑀𝑠 of possible interpretations for a given stimulus 𝑠, as in (2):

HI = argmax
𝑚∈𝑀𝑠

𝑃 (𝑚 ∣ 𝑠) = argmax
𝑚∈𝑀𝑠

𝑃 (𝑚)𝑃 (𝑠 ∣ 𝑚)
𝑃 (𝑠)

= argmax
𝑚∈𝑀𝑠

𝑃 (𝑚)𝑃 (𝑠 ∣ 𝑚)
(2)

If the chosen heuristic interpretation differs from the literal meaning
𝑚𝐿𝑖𝑡 of the presented sentence, we consider there to have been a (pos-
sibly temporary) ‘‘error correction’’ during the heuristic interpretation
process. Alternatively, if the interpretation with the highest posterior
matches the literal meaning of the presented sentence, we consider
there to have been no error correction.
6

4.2. Computing ERP components

Within our model, the simulation of both N400 and P600 ampli-
tudes depends upon the nature of the heuristic interpretation.

N400. In line with many classic psycholinguistic theories, in our model
the N400 can be considered to reflect sensitivity to semantic anomaly.
Specifically, we compute N400 amplitude based on fit of the target
word within the heuristic interpretation. This means that correction of
an anomalous presented sentence to a more plausible heuristic interpre-
tation will typically result in reduced N400 amplitude in the anomalous
condition (due to better fit of the target word), which can result in
lack of N400 effect between anomalous and control sentences. This is
consistent with many of the multi- and single-stream models described
above, where the existence of a plausibility-driven interpretation is
assumed to account for a lack of N400 effect. As we describe below,
we compute fit of the target word using conditional probability from a
pre-trained neural network language model.

P600. Also consistent with many psycholinguistic theories, our model
considers the P600 to reflect effort to reconcile conflict between dif-
ferent interpretations. We assume that the P600 reflects access to an
interpretation corresponding to the literal meaning of the presented
sentence, in addition to the heuristic interpretation which may deviate
from the literal meaning. P600 amplitude is then computed based on
the amount of semantic divergence between the heuristic interpretation
and the literal interpretation, to reflect effort of reconciliation between
these interpretations. If comprehenders derive a heuristic interpretation
that is different from the literal meaning, this will require more sub-
stantial reconciliation between these interpretations, leading to a larger
P600. As we describe below, we compute semantic divergence using a
pre-trained neural network model trained on semantic similarity. (Note
again that our model does not assume a specific temporal relationship
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between the heuristic and literal interpretations—only that the proces-
sor has access to both interpretations at the point at which the P600 is
generated, and to the heuristic interpretation at the point at which the
N400 is generated.)

5. Model implementation

Here we describe the details of our implementation of the model
summarized above.

5.1. Noisy channel model (selection of heuristic interpretation)

As described above, we compute posterior probabilities for candi-
date heuristic interpretations 𝑚 based on (1) the prior probability of 𝑚,
and (2) the likelihood of seeing 𝑠 as a distortion of 𝑚.

Prior. For the prior probability 𝑃 (𝑚), we aim to capture a version of
interpretation plausibility, which we approximate via sentence prob-
ability estimates from a large neural network pre-trained on word
prediction (OpenAI GPT) (Radford, Narasimhan, Salimans, & Sutskever,
2018).2 This model is a language model, which means that it assigns
probabilities to sequences of words, and to words in context. The mea-
sure that we use for our prior is inverse perplexity of a sentence based
on probabilities from the neural network language model. Perplexity is
a standard measure for evaluation of language models, which can be
thought of as quantifying how surprising the sequence is based on the
model’s probabilities. If the model assigns generally high probabilities
to the words within the sequence, the perplexity will be lower. For our
prior we use inverse perplexity, so that sequences that the model finds
less surprising (e.g., more plausible, or more grammatical sentences)
will receive higher priors.

𝑃 (𝑚) ∝ 1
Perplexity(𝑚)

= 𝑃 (𝑤1, 𝑤2,… , 𝑤𝑛)
1
𝑛 (3)

To what extent do the perplexities from this neural network actually
embody a notion of plausibility? The flexibility of these neural network
models enables us to derive fine-grained measures for real experimental
stimuli, but the trade-off is some reduction in transparency. To check
the relationship of our model’s prior measure with standard notions of
plausibility, we compare average prior values assigned by the model to
items from experimental and control conditions from the experiments
to be simulated in this paper. Given that in the majority of these
simulated experiments the items in the experimental condition are
designed to contain semantic anomalies, we can expect that ground
truth plausibility in the experimental condition should be lower than
in the experimental condition. Fig. 2 shows the results. We see that the
model consistently assigns lower prior probability (higher perplexity)
to experimental conditions relative to control conditions, despite the
fact that sentence pairs differ only slightly in surface form between
conditions. We also see significant variation in the magnitude of the
prior difference between conditions; as we will discuss in the analysis of
results below, this variation will be relevant in accounting for the range
of ERP results. The patterns observed here support the ability of this
neural network measure to capture the basic plausibility differences ex-
pected between experimental and control conditions, and also previews
how variation in this measure can help in capturing differences between
experiments. We can also compare these priors against offline human
plausibility ratings in Table 5, where we see several points of alignment
with model values: (1) greater plausibility difference in Reversal-1
than Reversal-2, (2) experimental sentences in Animacy experiments
show the lowest plausibility and the greatest difference from control

2 We also tried priors estimated from GPT-2 (Radford, Wu, Child, Luan,
Amodei, Sutskever, et al., 2019) and BERT (Devlin, Chang, Lee, & Toutanova,
2018), among which GPT provides sentence probabilities most similar to
human plausibility ratings.
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Fig. 2. Average prior (log-scale) of literal sentence interpretation in experimental and
control conditions across experiments.

conditions, and (3) the experimental condition in Substitution-2 shows
higher plausibility than in the other two Substitution experiments,
whereas the control sentences in Substitution-1 are rated more plausi-
ble than in the other experiments. Overall, these patterns give us good
reason to believe that our priors represent solid proxies for effects of
plausibility. Note, however, that while we see correspondence between
our estimate of plausibility and human offline plausibility judgments,
our model’s notion of plausibility is not identical to that embodied by
human offline ratings. We discuss this divergence further in Section 7,
but one immediately noteworthy deviation from standard notions of
plausibility is the fact that our measure is sensitive not only to se-
mantic anomalies, but also to the syntactic anomaly in Preposition-1.
This fact will be important in successfully simulating that experiment,
and it raises the important possibility that the relevant ‘‘plausibility’’
mechanisms underlying these effects are in fact broader than intuitive
notions of plausibility as embodied in offline judgments.

Likelihood. We base the likelihood 𝑃 (𝑠|𝑚) on the Damerau–
Levenshtein edit distance (D) between 𝑚 and 𝑠, to capture the greater
likelihood of interpretations that represent smaller deviations from the
true input.3 We design our edit distance metric such that it is more
costly to do insertion and substitution (cost 2) than deletion and swap
(cost 1), in line with experimental evidence showing that comprehen-
ders are more likely to correct sentences if the correction requires
deletion or swap than if it requires insertion (Gibson et al., 2013;
Poppels & Levy, 2016; Ryskin, Futrell, Kiran, & Gibson, 2018). We
calculate string distance similarity based on the number of characters
in the longest string (𝑀𝑎𝑥), and the weighted edit distance (𝐷). The
likelihood measure is then defined as follows:

𝑃 (𝑠 ∣ 𝑚) ∝ 1 −
𝐷(𝑚, 𝑠)

𝑀𝑎𝑥(𝑚, 𝑠)
(4)

Fig. 3 shows average likelihood 𝑃 (𝑠|𝑚) in the experimental con-
dition, for candidate interpretations that differ from the literal inter-
pretation 𝑚𝐿𝑖𝑡. (For the literal interpretation 𝑚𝐿𝑖𝑡, the likelihood is
always 1.) We see that the likelihood for Preposition-1 is highest,
as it only requires deletion of two characters (to). Animacy-1 and
Animacy-2 also show higher likelihoods than most experiments, be-
cause the construction of alternative sentences in these two cases only

3 We also tried unweighted Damerau–Levenshtein edit distance, and
weighted and unweighted Levenshtein edit distance—we find that these
variations do not make any major difference in the final results.
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Fig. 3. Average likelihood (string distance similarity) between literal and alternative
interpretations in critical conditions across experiments.

involves modification of morphemes (e.g. -ed → -ing), whereas the
other experiments require either change of position for two words or
substitution/insertion of a full word. Across experiments, likelihood
tends to be similar, as our alternative interpretations are chosen to
have minimal changes from the literal sentence—as a result, likelihood
is not the primary driving force in variation of ERP patterns across
experiments in our simulations. For all experiments, the likelihood
encourages the interpretation to stay consistent with the presented
sentence and penalizes letter-wise modifications, which discourages
error correction unless the gain in plausibility is sufficient.

Alternatives. To simplify model computation, for each stimulus we
limit to two candidate intended messages, of which one is the literal
interpretation 𝑚𝐿𝑖𝑡 (Lit in Table 4). The other candidate is an alter-
native interpretation 𝑚𝐴𝑙𝑡 (Alt in Table 4) derived manually following
principles often inspired by the original experimental manipulations,
but with the primary goal of identifying a minimal change that results
in a plausible alternative for the anomalous item. The same alternation
type that we select for the anomalous items is then also applied for the
control items (such that the control items typically have a slightly more
anomalous interpretation as the non-literal candidate). Table 4 shows
examples of these alternations. To form the alternative interpretation
for Reversal experiments, the position of the two arguments in the em-
bedded clause is simply swapped. For Animacy experiments, the form
of the target verb is changed from past participle to progressive or vice
versa, switching the sentence between passive and active voices. For
Substitution experiments, one argument is replaced with another lexical
item that appears in the same position of the counterpart experimental
stimulus. For Preposition-1, the syntactic preposition to is inserted or
deleted. In most cases, the alternatives align with manipulations from
the original psycholinguistic experiment, such that the alternative for
the experimental condition is the corresponding sentence in the control
condition, and vice versa. The exceptions are Animacy-2 and Animacy-
3, in which we alternate the sentences between active and passive
voice, instead of the word substitution manipulation done in the origi-
nal experiments. We make this exception for better consistency with
construction of alternatives in the other animacy-based experiment,
and because this is a smaller change to derive a plausible alternative
interpretation.
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As described above, we use the noisy channel model to compute pos-
terior interpretation probabilities for each candidate interpretation of
a given stimulus, and consider the candidate with the highest posterior
probability to be the selected heuristic interpretation HI.

5.2. Simulating N400 amplitude

Our N400 computation is designed to capture difficulty of process-
ing a target word in context, assuming that this processing reflects
the selected heuristic interpretation. Specifically, we compute N400
amplitude based on the conditional probability of the target word in the
context of the heuristic interpretation. These conditional probabilities
are again derived from GPT (Radford et al., 2018). When the target
word fits well with the heuristic context, the conditional probability
𝑃 (target ∣ contextHI) is greater—resulting in smaller N400 amplitude,
which is computed as below:

N400 amplitude = −𝑃 (target ∣ contextHI) (5)

Under this model, the N400 amplitude to target words will be smaller if
the targets have better fit to the selected heuristic context. The presence
of an N400 effect is determined by the difference of average N400
amplitude between experimental and control conditions.

How reasonable are the conditional probabilities produced by the
neural network model? Recall that these probabilities come from the
same model as the prior (plausibility) measure above—however, by
contrast to that perplexity measure, this conditional probability mea-
sure focuses on how surprising the target word is in context, rather
than the probability of the full sentence. Fig. 4 shows the conditional
probabilities for sentences from the experimental and control condi-
tions across experiments. Again, we see that the conditional probability
in the control condition is consistently greater than in the experimental
condition, indicating that based on these estimates, the target in the
control condition has better fit to context than in the experimen-
tal condition, as we would expect.4 The exception to this pattern is
Preposition-1, where we see that the syntactic anomaly has negligible
effect on target word fit to context, by contrast to the large effect of
syntactic anomaly on probability of the full sentence (Fig. 2).

We note that these conditional probabilities obtained from the
neural network do deviate from patterns seen in cloze probabilities
(derived from human fill-in-the-blank responses). For instance, in Fig. 4
we see that for Reversal experiments, the model assigns comparably
high conditional probabilities in both experimental and control con-
ditions. By contrast, Table 5 shows that cloze probabilities calculated
from human responses have the targets in experimental conditions
at cloze probabilities of approximately zero. Cloze probabilities are
not available for Preposition-1, but we might expect a larger cloze
probability difference between conditions here as well, given that the
target in the experimental condition is ungrammatical. It has been pre-
viously observed that conditional probabilities estimated from neural
networks tend to overestimate the probability of anomalous targets that
share semantic association with the context, or that are syntactically
related to the probable continuation (LeBrun, Sordoni, & O’Donnell,
2021; Michaelov & Bergen, 2020), relative to cloze probabilities. As
a result, the conditional probability will predict a smaller N400 effect
to ‘‘attractive’’ anomalies as compared to cloze probability. We will
discuss more about the role of this divergence in Section 7.

4 We see in Fig. 4 that certain conditional probabilities are especially
low—for instance, Animacy-1/Animacy-2 experimental conditions. We note
that these two conditions all use the gerund form for the target word, and
inspection shows that these conditions also contain a high percentage of items
in which the target is preceded by ‘‘had been’’. This structure seems to drive
the particularly low conditional probabilities in those conditions.
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Table 4
Sample candidate interpretations for items of all simulated experiments. Words in italics are changed in order to derive alternative (non-literal)
interpretations as minimal changes from the literal interpretations. The target word is marked in bold.

Experiment Critical condition Control condition

Reversal-1 Lit : ... which waitress the customer had served... Lit : ... which customer the waitress had served...
Alt : ... which customer the waitress had served... Alt : ... which waitress the customer had served...

Reversal-2 Lit : ...which cowboy the bull had ridden... Lit : ...which bull the cowboy had ridden...
Alt : ...which bull the cowboy had ridden... Alt : ...which cowboy the bull had ridden...

Animacy-1 Lit : The hearty meal was devouring ... Lit : The hearty meal was devoured ...
Alt : The hearty meal was devoured... Alt : The hearty meal was devouring ....

Animacy-2 Lit : The dusty tabletops were devouring .. Lit : The hearty meal was devoured...
Alt : The dusty tabletops were devoured.. Alt : The hearty meal was devouring ...

Animacy-3 Lit : The journalist astonished the article. Lit : The journalist wrote the article.
Alt : The journalist was astonished by the article. Alt : The journalist was written by the article.

Substitution-1 Lit : The tenant inquired which exterminator the
landlord had evicted...

Lit : The tenant inquired which neighbor the
landlord had evicted...

Alt : The tenant inquired which neighbor the
landlord had evicted...

Alt : The tenant inquired which exterminator the
landlord had evicted...

Substitution-2 Lit : The tenant inquired which exterminator the
landlord had evicted...

Lit : The tenant inquired which neighbor the
landlord had evicted...

Alt : The tenant inquired which neighbor the
landlord had evicted...

Alt : The tenant inquired which exterminator the
landlord had evicted...

Substitution-3 Lit : The neighbor inquired which exterminator the
landlord had evicted...

Lit : The exterminator inquired which neighbor the
landlord had evicted...

Alt : The exterminator inquired which neighbor the
landlord had evicted.

Alt : The neighbor inquired which exterminator the
landlord had evicted.

Preposition-1 Lit : Kim recommended Shakespeare everyone... Lit : Kim recommended Shakespeare to everyone...
Alt : Kim recommended Shakespeare to everyone... Alt : Kim recommended Shakespeare everyone...
Fig. 4. Average conditional probability of target (log-scale) in literal interpretation for
experimental and control sentences across experiments.

Table 5
Human plausibility ratings and cloze probabilities for simulated experiments, as
reported in original human experiments. Plausibility ratings are converted into a scale
of 0–100.

Plausibility rating Cloze probability

experiment control experiment control

Reversal-1 23.8 85.4 0 .25
Reversal-2 40 87.9 <.02 .36
Animacy-1 3 92 NA NA
Animacy-2 6 92 NA NA
Animacy-3 NA 76 NA .14
Substitution-1 31.1 90.3 0 0.28
Substitution-2 46.7 83.1 .004 .22
Substitution-3 29.2 77.2 .008 .22
Preposition-1 NA NA NA NA
9

5.3. P600 simulation

To capture reconciliation between interpretations, we simulate P600
amplitude as the amount of difference between the selected heuristic
interpretation HI and the literal interpretation 𝑚𝐿𝑖𝑡. We quantify this
difference by extracting vector representations of the sentences (heuris-
tic and literal interpretations) from a neural network trained to de-
tect semantic similarity (fine-tuned DistilBERT) (Reimers & Gurevych,
2019), and computing the cosine similarity between these vector repre-
sentations. Below is the computation of the P600 amplitude, where 𝑉
denotes the function mapping a sentence to its vector representation.

P600 amplitude = 1 − cosine(V(HI),V(mLit )) (6)

Under this model, we can say roughly that P600 amplitude will be
greater if the heuristic interpretation has greater semantic divergence
from the literal interpretation, and will be smaller if the semantic
representation of the heuristic interpretation is closer to that of the
literal interpretation. The presence of a P600 effect is determined by
the difference in average P600 amplitude between experimental and
control conditions.

For checking the validity of our semantic divergence measure,
we have less of a clear a priori comparison than we have with the
plausibility and N400 measures. However, we can spot check the
similarities assigned by the measure to different sentence pairs. Fig. 5
shows the average cosine similarities for each experiment. For each
experiment these cosines are computed between literal and alternative
interpretations of the sentences in the experimental condition, so these
similarities will be reflected in the P600 in the experimental condition
(for a given stimulus) if the noisy channel model opts to correct the
input sentence to the more plausible counterpart. We see that sentences
differing only in relative position of content nouns (Reversal-1 and -
2, Animacy-3, Substitution-3, Preposition-1) have very high similarity.
Sentences differing in inflection of the verb (Animacy-1, Animacy-2)
also have generally high similarity. Completely changing a noun of the
sentence (Substitution-1, -2) yields a lower cosine similarity, suggesting
that the neural network measure places particular weight on word
content. Fig. 6 shows cosine similarity between literal and alterna-
tive interpretations for all items in experimental conditions. We see
that there is greater variation for experiments with word substitution
(Substitution-1, -2). Animacy-2 also shows some variation, which we
speculate may depend on how much the dominant reading of the verb
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Table 6
Sample cosine similarities between critical and alternative sentences.
Experiment Experimental (Alternative) sentences Similarity

Reversal-1 ... which journalist (celebrities) the celebrities
(journalist) had interviewed.

0.97

Animacy-1 The legal contract had been signing (signed). 0.96
Animacy-2 The man’s signature was forging (forged). 0.73
Animacy-3 The composer astonished (wrote) the song. 0.97
Substitution-1,2 The tenant inquired which exterminator (neighbor

the landlord had evicted.
0.88

Substitution-3 The neighbor (exterminator) inquired which
exterminator (neighbor the landlord had evicted.

0.95

Preposition-1 Kim recommended Shakespeare ∅ (to) everyone. 0.97
Table 7
Sample cosine similarities between random sentence pairs.
Sentence 1 Sentence 2 Similarity

The librarian documented which
journalist the celebrities had
interviewed.

The composer astonished the song. 0.15

The legal contract had been signing. The librarian documented which
celebrities the journalist had
interviewed.

0.19

The mans signature was forging. The exterminator inquired which
neighbor the landlord had evicted.

0.12
Fig. 5. Average cosine similarity (log-scale) between literal and alternative sentences
in experimental conditions across experiments (strength of P600 amplitude when error
correction occurs).

changes with the change in inflection. Table 6 shows cosine similarities
assigned by the model to specific pairs from each of the simulated ex-
periments. Note the lower cosine similarity on the pair from Animacy-2,
which may be attributable to verb polysemy (e.g., forging may be most
commonly used in contexts like forging ahead while forged may more
commonly be used to refer to forged currency). In general, note that
cosine similarities between our literal and alternative sentences are
quite high compared to non-minimal sentence pairs (samples of which
are shown in Table 7).

It is worth highlighting at this point the details of the distinctions
between our simulation of the N400 and P600 and that in Ryskin
et al. (2021). In Ryskin et al. (2021), the amplitudes of both the N400
and P600 are linked directly to the probability of error correction.
10
Specifically, both components are predicted based on the ratio of the
posterior probability of an alternative interpretation relative to a literal
interpretation, given a presented sentence ( 𝑃 (𝑚𝐴𝑙𝑡|𝑠)

𝑃 (𝑚𝐿𝑖𝑡|𝑠)
= 𝑃 (𝑚𝐴𝑙𝑡)𝑃 (𝑠|𝑚𝐴𝑙𝑡)

𝑃 (𝑚𝐿𝑖𝑡)𝑃 (𝑠|𝑚𝐴𝑙𝑡)
).

When this posterior probability ratio becomes higher, the N400 is
predicted to be smaller, and the P600 is predicted to be larger. In
our model, the N400 is indexed by target word conditional proba-
bility given the heuristic interpretation, while the P600 is indexed
by semantic divergence between heuristic and literal interpretations,
where the heuristic interpretation is selected between a literal and a
more plausible alternative interpretation via a noisy-channel process.
So although these two modeling approaches share the intuition that
the N400 and the P600 are related to error correction of a presented
sentence into a more plausible alternative, they differ in the role and
influence of this error correction. In Ryskin et al. (2021), ERP ampli-
tudes directly reflect the size of the posterior probability ratios between
interpretations, while our ERP amplitudes do not—in our model, as
long as the posterior ratio is sufficient to trigger error correction, the
size of that ratio will have no further role. Our N400 will instead reflect
the fit of the target word given the selected heuristic interpretation, and
our P600 will reflect semantic divergence between the heuristic and
literal interpretations. Though we can expect some level of correlation
between the posterior probability ratios and our measures of condi-
tional probability and semantic divergence, these two sets of measures
will not produce equivalent patterns—and additionally, these compu-
tational distinctions have corresponding differences in the theoretical
cognitive implications of our models. In particular, our use of target
word conditional probability and semantic divergence hypothesize that
the N400 and P600 components are not driven by a noisy channel
process alone, but rather by separate cognitive mechanisms that act
on the outcome of a noisy channel process. Specifically, our model
suggests that the N400 is driven by mechanisms influenced by target
word fit to heuristic context, like pre-activation by, or integration of
target word information into, the heuristic interpretation—while the
P600 reflects a mechanism of resolving conflict between heuristic and
literal interpretations, likely linked to updating mental representations
to form a coherent situation model of sentence meaning. The success
that our model shows in simulating a wide range of N400 and P600
results lends some credence to the mechanisms posited in our account—
however, it is also possible that additionally incorporating a more direct
role for posterior probability ratios could further enhance the model’s
alignment with human patterns. This will be a useful possibility to
investigate in future work. As a final note, given that our model’s
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Fig. 6. Frequency distribution of cosine similarity between each critical and alternative sentence pairs in experimental condition across experiments.
Fig. 7. Simulated N400 (left) and P600 (right) effects (log-scale) across experiments. * represents significant N400/P600 effect in the original human experiment. Dotted line
represents a threshold (determined post-hoc) allowing for delineation between presence and absence of effect.
simulation of the P600 quantifies reconciliation in terms of ‘‘semantic
divergence’’, it is natural to wonder whether we will potentially under-
estimate certain syntactic P600 effects. However, as we show below,
our model does predict P600 effects to classic syntactic anomalies. This
suggests that our divergence measure may incorporate elements that
fall outside of traditional notions of semantic divergence—we provide
further discussion of this measure and its implications and limitations
in Section 7.

6. Simulation results

We now present the results of applying this model to the experimen-
tal stimuli from our nine selected experiments. The model simulation
results are shown in Fig. 7. In the figure we have plotted the differ-
ence between the average amplitudes in the control and experimental
conditions for the experiment in question (see Eq. (7)), as in Eq. (7).

Simulated ERP effect = ERPexp − ERPctrl (7)

Asterisks in the figure indicate experiments in which there was
a significant effect in the original human experiment, while taller
11
bars indicate a larger N400/P600 difference between conditions in
the computational simulation. We can see that if we were to de-
fine the presence of an N400/P600 effect via a simple threshold, it
would be possible to choose a threshold based on which the model
successfully predicts N400 effects from all nine target experiments,
since we see substantially greater differences between conditions for
Reversal-2, Animacy-2/-3, and Substitution-1/-2/-3. As for the P600,
with a simple threshold the model would successfully simulate the
P600 effect in eight of nine experiments, correctly predicting a P600
effect for Reversal-1, Animacy-1/-3, Substitution-1/-2, and Preposition-
1—but incorrectly predicting a P600 effect for Animacy-2. We include
horizontal dashed lines to indicate post-hoc thresholds that enable this
separation between significant and non-significant human ERP effects.

To verify the patterns suggested by these figures, we test for sig-
nificant effects of condition in the model outputs by fitting a linear
mixed effects model for each experiment. The dependent measure is
the simulated ERP amplitude. We set condition as a two-level contrast
(experimental condition vs. control condition), and we include by-item
slope and intercept as random effects. The results of this statistical
analysis, shown in Table 8, indicate that the simulated ERP components
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Table 8
A linear mixed effects model that compares simulated N400 and P600 in experimental
and control conditions across experiments. *p < .05, **p < .01, ***p < .001.

N400 effect P600 effect

t-value p t-value p

Reversal-1 .42 .67 4.91 <.001***
Reversal-2 2.21 .03* .89 .37
Animacy-1 1.13 .26 12.28 <.001***
Animacy-2 17.26 <.001*** 11.14 <.001***
Animacy-3 13.43 <.001*** 1.99 .04*
Substitution-1 2.27 .03* 7.09 <.001***
Substitution-2 3.72 <.001*** 2.36 .02*
Substitution-3 4.25 <.001*** .19 .85
Preposition-1 0 1 10.59 <.001***

or which the model produces a significant effect are precisely those
hat fall above the post-hoc thresholds drawn in Fig. 7.

In summary, our model is able to replicate fully the patterns of
400/P600 effects for eight of our nine simulated experiments, includ-

ng the divergent results between the two role reversal experiments
haracterized by identical linguistic manipulations, and the biphasic
ffects in Animacy-3, Substitution-1 and Substitution-2. The model is
lso able to capture the traditional syntactic P600 effect reflected in
reposition-1. The one failure of the model is its incorrect prediction
f a P600 effect in Animacy-2—we will discuss the reasons for this
ncorrect patterning below. We now turn to a more detailed analysis of
he dynamics within the model that enable it to produce these various
atterns of effects.

.1. Explanation of model patterns

We will first break down how the functioning of the model enables
he eight successful simulations, before discussing explanations for the
ehavior on the P600 in Animacy-2.

euristic interpretation selection. The component of the model that plays
n obvious role in these patterns is the heuristic interpretation mecha-
ism: this is what enables the model to select an interpretation that
eviates from the literal input, and this is also the component that
ligns most closely with hypothesized processes driving existing theo-
ies of the semantic P600. As in verbally-specified theories, our model
uilds on the intuition that if the processor is entertaining a less anoma-
ous interpretation of the input, this can lead to a reduced N400 in the
nomalous condition and a reduced or eliminated N400 effect between
onditions—while the need to reconcile this alternative interpretation
ith a more literal interpretation can lead to increased P600 in the
nomalous condition and thus a P600 effect. When we examine the
odel’s behavior in the simulations, we see that this is indeed the basic

ontribution of the heuristic interpretation mechanism: in general,
hen the model engages in error correction (selection of a less anoma-

ous, non-literal interpretation), this serves to reduce N400 amplitude
nd increase P600 amplitude. However, there are two key differences
hat allow our model to account for more complex variations between
xperiments. First, in our model this heuristic interpretation process is
robabilistic: rather than assuming that all anomalous sentences in the
xperimental condition will undergo error correction, our model esti-
ates for each stimulus whether it will receive a revised interpretation,

uch that some experiments will have higher rates of error correction
f their anomalous sentences than others (also in line with Ryskin
t al. (2021)). Second, in addition to predicting whether a given item
ill error-correct, we use item-specific measures to quantify exactly
ow well the target word fits within the chosen interpretation (for the
400), and exactly how dramatic the reconciliation is between inter-
retations (for the P600). When we analyze the dynamics between all of
hese components, we find that the heuristic interpretation mechanism
12

s indeed a significant contributor to simulated patterns—however, the
Fig. 8. Error correction rates for experimental and control conditions across ex-
periments. Blue * and yellow # represent significant N400 effect and P600 effect,
respectively, in original human experiments. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

interactions between rate of error correction, magnitude of target word
probability in context, and magnitude of semantic divergence between
interpretations give rise to a more complex overall picture which helps
to account for variations between experiments that are challenging to
explain with an error correction mechanism alone.

The heuristic interpretation process is driven by the noisy channel
computation, in which the prior (inverse perplexity) and likelihood
(string distance similarity) jointly determine whether to perform error
correction. Since the likelihood of transformation between input and
alternative sentences is roughly equivalent across experiments within
our simulations, the most important factor driving differences in error
correction rates between experiments is the prior, which is based in sen-
tence probability and which we associate with plausibility. Specifically,
we can trace the rate of error correction primarily to the distribution
of differences in this plausibility prior between literal and alternative
interpretations of items in each condition. In the experimental condi-
tion, when the more plausible alternative interpretation has a much
higher prior (is much more probable) than the anomalous original
sentence, error correction is more likely. Alternatively, if the priors of
literal and alternative sentences tend to be very similar, then the cost
of transformation (captured in the likelihood) is more likely to prevent
error correction. For the purpose of examining model dynamics in this
section, we define prior ratio of a given stimulus as Prior(Literal)

Prior(Alternative) . A
low prior ratio would encourage error correction of that item into the
alternative interpretation (because the literal interpretation has a much
lower prior, and is thus marked as substantially less plausible, than the
alternative).

Fig. 8 shows the model’s error correction rates per condition for
each of the simulated experiments, while Fig. 9 shows the distributions
of prior ratios. We will refer to these figures in the analysis below.

Role reversal experiments. We will begin by discussing the model’s
behavior in the role reversal experiments. We see above that the model
successfully predicts the divergent results between these experiments—
that is, a P600-only effect for Reversal-1, and an N400-only effect for
Reversal-2. What exactly in the models’ mechanisms gives rise to this
result? We see in Fig. 8 that the error correction rates in Reversal-1
differ much more between conditions than in Reversal-2. We can trace
this back to the prior ratios shown in Fig. 9, where we see that the
prior ratios in Reversal-1 trend lower than those in Reversal-2, with

ratios consistently below 1 for Reversal-1, and ratios often exceeding 1
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Fig. 9. The distributions of prior ratio between literal and alternative interpretations
in experimental conditions for all experiments, and in control condition for Animacy
experiments (Animacy-2 and −3 are those that contain alternatives that are not the
same as items in the other condition).

in Reversal-2. This means that the model rates role-reversed sentences
as substantially less good than the canonical sentences in Reversal-1,
but it finds the role-reversed and canonical sentences to be of similar
goodness in Reversal-2—with role-reversed sentences even being rated
better in many cases. As a result, in Reversal-1 the model frequently
error-corrects the role-reversed sentences to canonical sentences, and
rarely error-corrects in the other direction. In Reversal-2, however,
Fig. 8 shows that the error-correction rate is lower for role-reversed
sentences, with the model error-correcting the control sentences to
role-reversed sentences nearly as often.

These differences in error-correction patterns give rise directly to
the differences in N400 and P600 effects. In Reversal-1, we have high
rates of error correction of role-reversed to canonical sentences, and
low rates of correction in canonical sentences, which means that a
high percentage of trials will have the canonical sentences as heuris-
tic interpretations for both experimental and control conditions. This
leads to comparable N400 amplitudes between conditions, and thus
no N400 effect. Additionally, since there is a large difference in error-
correction between conditions – many heuristic interpretations in the
experimental condition deviate from the literal syntactic interpretation,
while most heuristic interpretations in the control condition do not –
this predicts a difference in P600 amplitudes between conditions, and
thus a P600 effect.

In Reversal-2, the error-correction rates for both conditions are
fairly low, and the rates are more similar between conditions. This
means that the model is less likely to process role-reversals with heuris-
tic interpretations that match the canonical sentences, so a higher
percentage of experimental trials will have larger N400 amplitude,
while most control trials will have the lower N400 amplitude associated
with canonical sentences (even though a small percentage of those trials
in fact error correct to role-reversed interpretations). This difference
between conditions leads to an N400 effect. Additionally, because the
error-correction rates are much more similar between experimental
and control conditions in Reversal-2, this indicates that the conflict
resolution costs will be comparable between conditions, resulting in no
P600 effect.

It is worth acknowledging at this point that in our model it is not
exclusively items in the experimental condition that undergo ‘‘error
correction’’—a small percentage of control items are in fact corrected
to alternatives that we would by default consider less plausible. As
we discuss below, to an extent this should probably be considered
13
noise in the neural network measures. However, we do not discount
the possibility that control items may at times also receive non-literal
heuristic interpretations in reality. We will explore this topic in more
detail in Section 7.

Animacy experiments. For Animacy-1 and Animacy-3, the model suc-
cessfully simulates P600-only and biphasic effects, respectively, and
the model correctly predicts an N400 effect for Animacy-2, though it
incorrectly predicts a P600 effect for Animacy-2. Here we discuss how
these different patterns arise.

For Animacy-1, in Fig. 8 we see that the difference in error cor-
rection rates between conditions is extremely large, as a result of
very low prior ratios in the experimental condition, mirrored by very
high prior ratios in the control condition, as shown in Fig. 9. This
means that the model finds the plausible alternatives much better
than the literal interpretations of the experimental sentences, leading
to a high error correction rate. As in the role reversal experiments,
the error-corrected alternatives for the experimental sentences are the
same as the corresponding control sentences, so the high rates of error
correction in the experimental condition will lead to the N400 being
computed on similar sentences in both conditions, leading to no N400
effect. Additionally, due to large difference in error correction rates
between conditions, there will be more significant reconciliation be-
tween interpretations in the experimental condition than in the control
condition, so we see a P600 effect. The reasons for these patterns
largely mirror those in Reversal-1, but the differences are even larger
than in Reversal-1.

For Animacy-3, the prior ratios in the experimental condition trend
very low, which again leads to a high error correction rate in the
experimental condition (100%). Incidentally, the prior ratios in the
control condition also drive a fairly high proportion of control sen-
tences to be reinterpreted as alternatives (52.8%), though there remains
a large difference between conditions in error correction rates. Just
as in the above experiments, the larger error correction rate in the
experimental condition than in the control condition gives rise to the
P600 effect—there is more reconciliation to be done in the experi-
mental condition than in the control condition, and this generates a
P600 effect. So how do we generate an N400 effect, despite the fact
that all of the experimental sentences are correcting to more plausible
alternatives? To understand why, it is important to remember that for
Animacy-3 (unlike the three experiments analyzed so far) when we
error-correct the experimental sentences to their more plausible passive
alternatives, these plausible alternatives are not the same as the cor-
responding control sentences. So although the experimental sentences
are error-correcting, this does not have the same effect as in the prior
experiments (eliminating the N400 effect due to similar sentences in
both conditions). Instead, we find that the conditional probability of
the target in the more plausible error-corrected experimental sentence
is still less probable than either version (literal or error-corrected) of
the control sentence. For example, for the experimental sentence The
journalist astonished the article, the model is correcting to the more
plausible alternative The journalist was astonished by the article—but the
probability of article in this sentence is still lower than either the passive
or the active version of the corresponding control sentence (Literal: The
journalist wrote the article; Alternative: The journalist was written by the
article). We can see these patterns at an aggregate level in Fig. 10.

This means that for this experiment, the N400 effect can arise
independent of error correction rates, because the closest alternatives
for the experimental sentences still yield less good target word fit than
the control sentences.

What this finding highlights is that we can increase the power
of our theories to account for biphasic effects by simply allowing
for the possibility that the processor corrects to more plausible non-
literal interpretations which nonetheless are still less plausible than the
control sentences. This finding also indicates that our manual choice
of alternative interpretation makes a significant contribution to our
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Fig. 10. Average conditional probability (log-scale) for literal and alternative
interpretations of experimental and control conditions in Animacy-2 and Animacy-3.

ability to simulate the ERP patterns in this experiment. It is important
to reiterate, therefore, that we chose these alternatives based on a
simple principle of identifying a minimal edit that would result in
a more plausible interpretation. While we cannot guarantee that our
selected alternative interpretations are precisely those entertained by
the processor, the success of the simulation supports the possibility that
the processor may be doing error corrections resembling these.

Finally, Animacy-2 is the experiment for which our model correctly
predicts an N400 effect, but incorrectly predicts an additional P600
effect. Similarly to Animacy-3, the prior ratios in Animacy-2 trend very
low in the experimental condition, leading to a high error correction
rate—and also similarly to Animacy-3, the conditional probabilities for
both the literal and alternative interpretations in the experimental con-
dition are lower than interpretations in the control condition. This leads
Animacy-2 to show a biphasic effect for similar reasons to Animacy-3:
although a significant percentage of sentences are error corrected, we
still produce an N400 effect because the targets in the error-corrected
sentences remain less probable than in the candidate interpretations
in the control condition. While this results in the correct pattern for
the N400 component, we are inclined to believe that in this case the
successful N400 simulation is a coincidence—as we will discuss below,
we believe that the model’s treatment of passives leads to a divergence
from human processing, generating a high error correction rate when
this may not cognitively be the case.

Substitution experiments. The model also successfully simulates bipha-
sic N400-P600 effects for Substitution-1 and Substitution-2, and an
N400-only effect for Substitution-3.

For Substitution-1, we have again a large difference in error-
correction rates between experimental and control conditions, driven
by generally low prior ratios in the experimental condition (mirrored
by high prior ratios in the control condition). As in the above ex-
periments, the difference in error correction rates between conditions
generates a straightforward P600 effect. How, then, is the N400 effect
generated? In many ways the patterns here resemble Reversal-1, in
that there is much more error-correction in the experimental than the
control condition, and the error-corrected versions of the experimental
sentences are again the same as the control sentences—so we may
expect absence of an N400 effect, since the heuristic interpretations
for a majority of items will be matched across conditions. However,
upon closer examination we find that the items from this experiment
differ on another measure: the conditional probabilities, shown in
Fig. 4, which drive the simulated amplitude of the N400. We see in
that figure that Substitution-1 has a much larger difference in con-
ditional probabilities between experimental and control sentences, by
comparison to Reversal-1—this means that the model finds the target
14
words in the uncorrected experimental sentences particularly surprising
in Substitution-1. The consequence is that even with a rather small
percentage of experimental condition items that remain uncorrected
(24.4%), the much larger N400 amplitudes from these uncorrected
items are strong enough to generate an overall N400 effect relative to
the control condition.

For Substitution-2 the model again succeeds in generating a biphasic
effect, as in Substitution-1—but in Substitution-2 this effect occurs for
slightly different reasons. The experimental condition error correction
rate is lower than Substitution-1, which leads to a more straightforward
N400 effect: for most trials, the N400 operates on the literal, anoma-
lous experimental sentence, so the N400 amplitude is larger in the
experimental condition. The question, then, is how the P600 effect is
generated, given that error-correction rates between experimental and
control conditions are similar—after all, in Reversal-2 we saw that simi-
lar error-correction rates led to a lack of P600 effect. For Substitution-2,
we find the explanation in the patterns of cosine similarity between
literal and heuristic interpretations, which is used to simulate P600
amplitude—the lower the cosine similarity, the higher the P600 am-
plitude. In Fig. 5, we see that average cosine similarity between literal
and alternative interpretations is much lower for Substitution-2 than
for Reversal-2. This means that the model considers error corrections
in Substitution-2 to involve more dramatic semantic deviation, so the
reconciliation process generates stronger P600 amplitudes. As a result,
the relatively small difference in error correction is amplified into a
large difference in P600 amplitudes, and a resulting P600 effect.

For Substitution-3 we see error correction patterns that are again
similar to Reversal-2 (even a bit more so, since the difference in error
correction rates between conditions for Substitution-3 is slightly smaller
than Substitution-2). We see an N400 effect for the same reasons as
Reversal-2 and Substitution-2: relatively low error correction overall,
leading to less plausible heuristic interpretations in the experimental
condition, higher N400 amplitudes in that condition, and an N400
effect between conditions. As for the P600, due to the small difference
in error correction rates between conditions, we expect the P600 ampli-
tudes to be similar between conditions as well. Unlike Substitution-2,
Fig. 4 shows that the average cosine similarity for Substitution-3 is
high, comparable with Reversal-2—so the small difference in error
correction rates, combined with the relatively high cosine similarities,
leads to a lack of P600 effect.

Preposition experiment. Finally, the model also successfully simulates
the P600 effect elicited by syntactic anomalies in Preposition-1. The
explanation of the model’s P600-only effect here is straightforward: as
we see in Fig. 8, all sentences in the experimental condition are error
corrected by the model, while none of the control sentences receive
error correction. This error correction pattern is driven by the large
difference in probabilities that the neural network assigns to the gram-
matical versus ungrammatical alternatives, as seen in Fig. 2. Because
of the large difference in error correction rates between conditions,
there is a straightforward P600 effect—and because the ungrammatical
experimental sentences are all being corrected to their grammatical
counterparts, which match the corresponding sentences in the control
condition, the N400 acts on the same heuristic interpretations in both
conditions, leading to a lack of N400 effect.

Unsuccessful simulation: Animacy-2 P600. The primary failure in these
simulations is that the model simulates a significant P600 effect for
Animacy-2, while the human experimental results show no P600 effect.
Why does this happen, and what should we conclude from this incorrect
pattern in the model?

The stimuli in Animacy-2 are designed such that the subject in
the experimental sentence should not be thematically attracted to the
main verb (e.g., The dusty tabletop was devouring...), so the obvious
alternative interpretation (e.g., The dusty tabletop was devoured...) is not
semantically more plausible than the original. The intention is that
the low plausibility of the alternative should block error correction,
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such that there should be a classic N400 effect with no P600 effect.
We have seen our model generate this type of effect with Reversal-
2 and Substitution-3. However, in the case of Animacy-2, our model
priors fail to reflect the fact that the alternative interpretations in
the experimental condition should not be consistently better than the
literal interpretations: we see in Fig. 9 that the prior ratios trend very
low for the experimental condition—and more so than in the control
condition—such that the model finds the alternative interpretations
substantially more tempting in the experimental condition, leading to
higher error correction and a P600 effect between conditions.

What this means is that the model is consistently preferring the
error-corrected alternative of the experimental sentences, despite the
fact that these stimuli are designed to block error correction—and the
lack of a P600 effect in humans suggests that this blocking is successful.
So why would the model prefer The dusty tabletop was devoured over
he dusty tabletop was devouring, despite the fact that neither sentence
s plausible? We suspect that the reason for this preference is that
he model has learned that inanimate subjects are unlikely to be the
ubjects of active verbs, so despite the residual semantic strangeness,
he model prefers the passive version on the basis of the improved
yntactic compatibility. This suggests a limitation in alignment between
he plausibility mechanisms driving error correction in the brain and
he neural-network-based perplexity measure used here: the Animacy-
human results suggest that improvement on this syntactic dimension

s not sufficient to drive an interpretation shift in humans, while it
s enough to do so in the model. Notably, though error correction on
his particular syntactic basis seems misplaced, the model’s inclination
oward error correction based on ungrammaticality is instrumental to
ur successful Preposition-1 simulation—so better aligning with the
uman mechanism is likely more complex than removing syntactic
ensitivities entirely. Note that the model does still generally rate the
xperimental sentences as worse than the control sentences, both before
nd after error correction—so the model is to an extent sensitive to
he strangeness of both The dusty tabletops were devouring and The dusty
abletops were devoured by comparison to The hearty meal was devouring.
owever, the models diverge from human patterns in preferring the
assive version when the inanimate entity is the subject.

This brings us back to our discussion above of the model’s correct
rediction of an N400 effect in the Animacy-2 simulation. The model
roduces an N400 effect despite the high rate of error correction, and
his is because the error-corrected interpretations are still rated as less
lausible than the control sentence interpretations (as in Animacy-3).
owever, we have just reasoned that the model’s high rate of error cor-

ection on these sentences is a deviation from the behavior of cognitive
echanisms—preferably, the model should adjust its plausibilities such

hat the syntactic improvement in the passive sentences is not enough
o prompt error correction in the first place. So while the N400 effect
n our simulation does align with the human results, we suspect that
he more cognitively plausible scenario would be for the N400 effect
o be generated on the basis of non-error-corrected stimuli in this case.
n Section 7 we discuss possible means of addressing this divergence
etween model and human behavior.

ummary. We see in these analyses that, in keeping with traditional
heories, a central driving influence on ERP patterns in our model is
hether the stimuli are error-corrected into more plausible alternatives
uring the heuristic interpretation stage. Error correction in general
ecreases the amplitude of the N400 by making the interpretation more
lausible, and increases the P600 by increasing semantic divergence
etween interpretations to be reconciled. However, our model reveals
more complex picture that helps to account for a greater amount

f the variation observed in human results. First, we see that in some
ases, if the error-corrected interpretations of anomalous experimental
entences are still more surprising than the control sentences, then
igh rates of error correction will not erase the N400 effect, enabling
15

iphasic effects. Second, we see that if conditional probabilities of a
arget words in context are dramatically different between conditions,
e can again produce an N400 effect even when the error correction

ate is relatively high—because even a small number of uncorrected
entences can produce an inflated average N400 amplitude. Similarly,
or the P600 component, in cases where there is particularly large
emantic divergence between heuristic and true interpretations, this
an result in P600 effects even in experiments with relatively low rates
f error correction.

These simulations allow us to tease apart how dynamics of individ-
al stimulus properties can help to explain the observed effects, within
rameworks firmly rooted in existing theory, but elaborated through
ur model. Below we will discuss more about what we learn from our
odel’s behavior, and what limitations and future work remain.

. Discussion

We have presented a computational model of the mechanisms un-
erlying the N400 and P600 response patterns from a range of psy-
holinguistic studies. Our model is founded on execution of a proba-
ilistic early interpretation stage, during which a heuristic candidate
nterpretation is selected on the basis of a noisy-channel computation.
his interpretation selection reflects a trade-off between the plausibility
f the candidate interpretation—as estimated by sentence probability
rom a pre-trained neural network—and amount of revision relative
o the literal interpretation. The selected interpretation then plays a
ey role in both N400 and P600 components: N400 amplitude reflects
he fit of the target word in the context of the selected heuristic
nterpretation, and P600 amplitude reflects the semantic reconciliation
etween the heuristic and literal interpretations.

This model is founded on many of the same insights as existing
heories—in particular, the notion that sentence processing involves
plausibility-driven interpretation component, which may yield inter-
retations that differ from the literal interpretation. However, rather
han assuming fairly uniform behavior across stimuli in a given ex-
eriment, our model makes fine-grained estimates of idiosyncratic
tatistical properties of each stimulus, and of the corresponding im-
acts on the hypothesized mechanisms driving ERP components. These
stimates come with certain tradeoffs, as we discuss further below—
owever, as a result of capturing this item-level variation, we are able
o account for patterns in human results that have been challenging to
xplain with verbally-specified theories, including divergent effects for
stensibly identical role reversal experiments, and biphasic effects that
ave presented challenges for classic heuristic interpretation accounts.

In incorporating fine-grained stimulus-level variation, our model
akes a step beyond computational models that have simulated N400
nd P600 phenomena using synthetic data and manually-engineered
nvironmental statistics (Brouwer et al., 2017, 2021; Rabovsky et al.,
018). The importance of capturing idiosyncratic stimulus properties
s supported by substantial experimental evidence suggesting that ERP
esponses are sensitive to a wide range of linguistic factors, includ-
ng frequency of words (Dufour, Brunellière, & Frauenfelder, 2013),
emantic association between targets and preceding contexts (DeLong

Kutas, 2020), degree of contextual constraint (Federmeier, Wlotko,
e Ochoa-Dewald, & Kutas, 2007), sentence plausibility (Van Petten &
uka, 2012), and predictability of targets (DeLong, Quante, & Kutas,
014). In ERP experiments, it is almost impossible to create stimuli
hat control all variables that may exert influence on experimental
utcomes. As a result, theories that focus exclusively on effects of a
mall set of linguistic variables of interest risk missing interactions
ith other important variables—and as we discuss in Section 2, similar

imitations apply to computational models that use synthetic stimuli
enerated based on only a small number of target variables. Our
odel, by contrast, runs on real experimental stimuli and incorporates

stimates from neural networks trained on natural data in order to

pproximate the effects of such idiosyncratic variation.
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At the same time, our model also takes a step beyond computational
simulations that have used neural network measures trained on natural
data, but that use these measures largely in isolation to simulate either
N400 or P600 components. As we discuss in Section 2, these studies
have shown clear evidence of alignment between these measures and
ERP components, but evidence also indicates that these measures alone
are not enough to account for the full scope of patterns observed in
the combined N400 and P600 components that we aim to account for
here. Our model takes advantage of the estimates provided by these
measures, but incorporates them within subcomponents of a larger
model designed to test psycholinguistic hypotheses in a more targeted
manner.

The success of our model lends stronger credence to the basic princi-
ples driving heuristic interpretation theories, while further elaborating
on several details of the relevant mechanisms in ways that strengthen
the explanatory coverage of the theories. Our model posits that the
processor employs a rational inference mechanism to select heuristic
interpretations. This rational inference process takes the form of a
noisy channel model, which ranks interpretations based on a tradeoff
between plausibility and extent of revision. Our account posits that the
driver of N400 amplitude is fit of target word (indexed by conditional
probability) in the context of this selected heuristic interpretation,
while the driver of P600 amplitude is the extent of reconciliation
needed between the heuristic interpretation and literal interpretation
(indexed by semantic divergence). We are not currently making any
strong assumptions about whether the heuristic interpretation is a
temporary interpretation that gives way to the literal, or a candidate
interpretation that persists throughout the comprehension process. Our
model does, however, assume that by the time the P600 is generated,
the processor has access to both the literal interpretation and the
heuristic interpretation, since the reconciliation between these inter-
pretations drives the P600 amplitude. Additionally, our model offers a
number of further theoretical details involving the role of fine-grained
stimulus variation, and how these stimulus properties interact with the
posited processing mechanisms to produce the observed ERP patterns.
In particular, our model indicates that error correction is only one
contributor to presence or absence of N400 and P600 effects: if error
correction yields interpretations that are still less plausible than control
sentences, or if items are characterized by extreme levels of target
word conditional probability or divergence between interpretations,
then these factors can explain patterns in the ERP components that are
not predicted by the error correction process alone.

Use of neural network measures. For capturing stimulus-level variation,
our model relies on three primary estimates from neural network
models: (1) estimate of the probability of an interpretation sentence,
which we use to capture a notion of plausibility in the prior of our
noisy channel model, (2) estimate of the conditional probability of the
target word given the interpretation context, which we use to simulate
N400 amplitude, and (3) estimate of the semantic divergence between
the heuristic and literal interpretations, which we use to simulate the
P600 amplitude. The success of our simulations not only provides
support for the general mechanisms posited in our model, but also
supports the capacity of these neural network measures to serve as
reasonable proxies to predict the specific behaviors and sensitivities of
these mechanisms.

While these neural network measures confer non-trivial benefits
in the model, it is also important to acknowledge limitations that
come with our use of these measures. The first limitation is in trans-
parency: while we can confidently characterize these estimates as
involving probability of a sentence, probability of a word in con-
text, and divergence between sentence representations respectively,
the precise linguistic components that drive these estimates remain
relatively opaque. This means that although the model on the whole is
comparatively transparent, for the subcomponents of the model defined
by these estimates we cannot make strong claims about the specific
16

linguistic cues that drive the corresponding behaviors.
One consequence of this is that we deviate from previous verbally-
specified theories that have focused on the specific balance of linguistic
cues driving the heuristic interpretations. Instead, in our selection of
the heuristic interpretation we use a fairly general notion of plausibility
estimated by sentence probability, and this probability measure incor-
porates a variety of cues, the types of which are not fully specified. This
general notion of probability applies also to our conditional probability
measure for N400 amplitude. As we have noted above, these neural
network sentence probabilities and target word conditional probabil-
ities do differ from human offline plausibility judgments and cloze
probabilities, respectively. One of the most salient such divergences is
in the models’ inclination to assign higher probability to anomalous
interpretations that are semantically or syntactically similar to plausi-
ble interpretations (LeBrun et al., 2021; Michaelov & Bergen, 2020).
Additionally, the neural network sentence probabilities exhibit more
sensitivity to ungrammaticality than would be predicted by an intuitive
notion of plausibility per se. In this sense, our model’s use of these
measures is positing that the notion of plausibility that influences the
heuristic interpretation process, and the notion of target word fit that
drives N400 amplitude, are slightly broader, more statistically driven
notions of plausibility and fit than are embodied in human offline
plausibility judgments and cloze probabilities. We note that our use
of probabilistic measures of this kind also aligns with the observation
that neural network conditional probabilities predict N400 amplitudes
better when the probabilities highly correlate with semantic similarity
between context and target (Michaelov et al., 2021).

As for the semantic divergence measure that drives P600
amplitude—this measure too should be interpreted with some care. We
compute this divergence between sentences using representations from
a model trained on a semantic task, so as to maximize the semantic
nature of the representations and their divergence estimates. However,
it is important to acknowledge that the exact information encoded in
these sentence representations remains relatively opaque, and their
ability to capture complex semantics is likely still limited (Ettinger,
2020; McCoy, Min, & Linzen, 2020; Min, McCoy, Das, Pitler, & Linzen,
2020; Yu & Ettinger, 2020). This means that our model currently
simulates the P600 as being driven by a relatively coarse-grained notion
of semantic divergence between literal and heuristic interpretations. As
we mention above, it is also possible that the semantic focus of our
divergence measure may result in underestimation of P600 amplitudes
in cases of syntactic anomaly—however, our measure shows enough
sensitivity to syntactic divergence that it is able to produce a syntactic
P600 effect, suggesting that to some extent our divergence measure
also incorporates sensitivities outside the traditional scope of semantic
similarity. It will be important in future work to investigate both the
true semantic content of these neural network representations, as well
as the possibility that the relevant divergence mechanisms are not
strictly semantic.

The second limitation is that these neural network models have not
originally been designed as psycholinguistic models – they are designed
for engineering purposes in artificial intelligence – so what alignment
they show with human mechanisms arises somewhat as a matter of
coincidence, and not because the modelers intended to hypothesize
and simulate particular human mechanisms. (Of course, the fact that
these models are designed with the high-level goal of replicating the
human capacity for language does make areas of alignment rather less
coincidental.) Ultimately these neural network language models are
simply large, sophisticated learning models that have high sensitivity
to statistical properties of language, and that learn to encode many
properties of language in their internal representations. The success
of our model suggests that the statistical sensitivities and represen-
tational properties captured by these neural networks can provide
reasonable estimates of the corresponding human properties that we
wish to simulate in the relevant subcomponents of our model. However,
there are bound to be divergences, and the clearest such case in

our simulations is the case that leads to the unsuccessful Animacy-2
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simulation: the neural network probabilities consistently favor passive
sentences when the subject is inanimate, even if the passive sentence
makes no more sense than the original. The fact that this results in a
divergence from the human patterns suggests that mechanisms driving
plausibility-based probabilistic inference in humans are less reliant on
this particular syntactic dimension than are the probabilities produced
by the neural network. Another area of potential divergence can be
found in our model’s prediction of error correction for a percentage of
control sentences, resulting in correction to what we would expect to
be more anomalous heuristic interpretations. It is important to consider
he possibility that the mechanisms driving heuristic interpretation may
ndeed at times favor interpretations that are not favored based on
umans’ conscious ratings of plausibility, and that the probabilities
ssigned by the neural network models may better predict some such
ases. However, it is likely that at least some of these cases represent
dditional divergences from human plausibility mechanisms influenc-
ng heuristic interpretation, marking further dimensions on which these
robability measures can be refined for greater cognitive accuracy.

Further improving the alignment of the model with human pat-
erns will require adjustment to the estimates that we are currently
rawing from neural network models. Unfortunately, it is not trivial
o make fine-grained changes to these estimates directly, since the
eural network models develop their patterns based on generalized
earning mechanisms operating on statistics in data. However, there are
couple of immediate possibilities worth testing. One possibility is to

xplore neural network models that achieve better performance on NLP
enchmarks—better (typically meaning more humanlike) performance
ould potentially correspond to more humanlike plausibility behaviors.
It is worth noting, however, that we did test estimates from a number
f highly successful neural network language models – BERT, RoBERTa,
PT-2 and GPT-3 – and all of these language models show the bias

oward passive constructions that leads to the Animacy-2 divergence.)
nother, perhaps more promising possibility would be to leverage

ine-tuning processes, modifying the language models’ sensitivities via
ifferent, more semantically-driven tasks such as labeling of thematic
oles. Greater sensitivity to semantic dependency statistics may help to
roduce the distinctive Animacy-2 behavior that our model is currently
issing: support for this possibility is provided by Michalon and Baggio

2019), who find that Animacy-1 and Animacy-2 have different profiles
n terms of whether the target verb can be a direct dependent of the
ubject noun in the Wikipedia corpus. Notably, however, as we have
bserved above, improving alignment with human mechanisms will
ikely be more complex than simply making the measures strictly more
‘semantic’’, since our model benefits importantly from its syntactic
ensitivities in simulating the syntactic P600.

If these more straightforward approaches are unable to improve
he alignment with human mechanisms, then the next step will be to
nvestigate alternative means of estimating probabilistic and represen-
ational properties altogether—in these simulations we have benefited
reatly from the estimates extracted from pre-trained neural network
anguage models, but these are by no means the only possible source
f such probabilities and representations. More direct experimentation
ith different types of statistical learning models and representational
odels has the potential to allow finer-grained adjustment to these

ritical estimates in our model, while yielding more transparent and
omprehensive insights into the posited cognitive mechanisms of plau-
ibility, fit to context, and reconciliation between interpretations. This
ill be a valuable but substantial undertaking, which we leave to future
ork.

As a final note: in this paper we have highlighted the benefits of the
eural network measures in allowing our model to capture complex
nteractions between individual stimuli and our posited mechanisms.
nother valuable future direction will be to leverage the model’s ability

o generate item-level quantitative predictions, and analyze the extent
f model alignment with human patterns at the item level. This will
rovide a still richer source of data for further refinement of the model’s
17

pproximation of human mechanisms.
Candidate interpretations. An important simplification that we have
made in our model is in the nature of candidate interpretations: in our
simulations, the model is only selecting between one literal and one
hand-picked alternative, when in reality the set of possible candidate
interpretations will presumably be much larger and more complex. In
selecting plausible alternatives for the anomalous sentences, we have
endeavored to follow consistent principles and to choose what can rea-
sonably be considered one of the closest possible plausible alternatives.
As we discuss in Section 6.1, we cannot guarantee that our chosen
alternatives align with those selected by the processor in reality—
however, the success of the simulations indicates that this combination
of hypothesized candidate interpretations and hypothesized processing
mechanisms provides a potentially viable account for the observed ERP
patterns in these experiments. Moreover, the dynamics that emerge
with these interpretation candidates are also informative—in particu-
lar, we see that biphasic effects can straightforwardly be achieved if
error correction of anomalous sentences yields interpretations in which
targets are still less probable than in the canonical condition. Even if
our chosen interpretations are not those that the processor entertains,
this is a consideration that will be important in future modeling of these
phenomena.

Another simplification in our candidate selection process is the
fact that the inference process operates over fully-formed hypothesized
interpretations, implying that the processor forms probability distribu-
tions over full candidate interpretations rather than filtering to subsets
of cues. Additionally, our model selects a single heuristic interpretation
based on the highest posterior probability, rather than maintaining a
full probability distribution over possible constructions (Levy, 2008;
Levy, Bicknell, Slattery, & Rayner, 2009). Though these simplifications
allow us to make substantive progress in understanding how to account
for observed ERP patterns, ultimately it will be important to model
the full process of generating candidate interpretations given a literal
sentence input. Modeling of this candidate generation process could
incorporate more direct influence of theories of relevant cue types, and
could make use of the full probability distribution over the interpre-
tation space (Jurafsky, 2003; MacDonald, Pearlmutter, & Seidenberg,
1994; McClelland, 1986). Modeling of this process can also naturally
engage with the long-standing debate between probabilistic serial mod-
els and probabilistic ranked parallel models (Gibson & Pearlmutter,
2000; Lewis, 2000).

Compatibility with broader N400 landscape. There is a robust history of
debate about the relationship between the N400 and predictive process-
ing, and use of predictive metrics to approximate the N400. Theories of
the N400 have in particular debated whether the N400 reflects context-
based pre-activation prior to arrival of upcoming words (Cheimariou,
Farmer, & Gordon, 2019; DeLong, Urbach, & Kutas, 2005; Kutas &
Federmeier, 2000; Szewczyk & Schriefers, 2018; Van Berkum, Brown,
Zwitserlood, Kooijman, & Hagoort, 2005; Wicha, Bates, Moreno, &
Kutas, 2003), semantic integration of current input into previous rep-
resentations of context (Hagoort, Baggio, & Willems, 2009), or a
combination of distinct cognitive processes, such as an interaction
of both pre-activation and integration (Calloway & Perfetti, 2017;
Nieuwland, Barr, Bartolozzi, Busch-Moreno, Darley, Donaldson, et al.,
2020; Van Berkum, 2009). We argue that simulating the N400 via
word probabilities conditioned on context, as we do in our model, is
in principle compatible with any of these views—these probabilities
reflect contextually-conditioned expectations for upcoming words, but
they can also serve as proxies for how well a word fits with (and
by extension how well it can be integrated into) a context. Note
that we use neural network language model probability here, but
use of conditional word probability for the N400 can accommodate a
wide range of probabilistic models with the potential to reflect broad
variation in underlying mechanisms.

What about N400 patterning beyond that in the studies simulated

above? Our simulations here have focused primarily on accounting for
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semantic anomaly patterns by incorporating a heuristic interpretation
process, such that the N400 reflects conditional probability of a word
within a potentially non-literal interpretation of the context. However,
as we have discussed in Section 2, broader N400 patterns can at
times be explained via conditional probabilities from neural network
language models alone, without intervention by a heuristic interpre-
tation mechanism. From the perspective of our modeling framework,
when neural network probabilities appear to explain N400 patterning
directly, we may assume that the heuristic interpretation mechanism is
yielding low rates of non-literal interpretation, such that the heuristic
interpretation matches the literal interpretation, and the N400 behaves
as it would if the heuristic interpretation stage did not exist. Future
work can determine whether experiments in which neural network
probabilities better explain N400 patterns are also those with lower
rates of error correction to non-literal interpretations.

While we can explain high correlation between N400 and condi-
tional probability in terms of low error correction rate, it is also worth
acknowledging that these neural network conditional probabilities can
at times show behaviors not unlike those accounted for by the heuris-
tic interpretation process—for instance, assigning high probability to
certain verbs in the role reversal paradigm regardless of the role
configuration of the nouns (Ettinger, 2020; Lindborg & Rabovsky, 2021;
Michaelov & Bergen, 2020). This raises the question of whether these
neural network models may have already developed certain strategies
that overlap in functionality with our heuristic interpretation mecha-
nism. To address this possibility, it is necessary that we continue to
work to increase the transparency of these neural network measures,
and to clarify the details of their alignment and divergence from human
patterns. As we come to better understand the contributing factors
driving the conditional probabilities from these models, and the extent
to which their alignment with N400 patterns are indeed satisfactorily
explained based on error correction rates from our posited heuristic
interpretation mechanism, we will be able to clarify further whether
there are redundancies to be addressed between these mechanisms.

Compatibility with broader P600 landscape. Beyond discussions of multi-
stream and single-stream models, as described in Section 2, the P600
literature has also involved important debate about whether P600
amplitude reflects syntactic reanalysis (Kim & Osterhout, 2005), ef-
fort of integrating structural information (Bornkessel-Schlesewsky &
Schlesewsky, 2008; Kaan, Harris, Gibson, & Holcomb, 2000) or mon-
itoring the size of errors (Kolk et al., 2003; Van de Meerendonk,
Indefrey, Chwilla, & Kolk, 2011; Van Herten et al., 2006, 2005). In
particular, error monitoring theories can be linked to theories that
view the P600 as a subcomponent of the more domain-general P300
signal, which is responsive to low-probability events. The latter theories
suggest that syntactic and semantic P600 may be separate compo-
nents entirely (Leckey & Federmeier, 2020). These functional and
mechanistic debates about the P600 are largely orthogonal to the
multi-stream/single-stream model debate.

As we claim in Section 2, our model is largely compatible with
either a multi-stream or a single-stream framework: one could assume
our heuristic interpretation process to reflect a separate mechanism or
stream from that which produces the literal interpretation, or one could
imagine the literal interpretation to emerge as a later interpretation
within the same processing stream. As for the reanalysis/integration
debate, our model also largely abstracts away from the particulars of
this discussion, in that we simulate P600 amplitude by quantifying
divergence between heuristic and literal interpretations, but do not
commit to the specific mechanisms used to reconcile between these
interpretations. This measure of divergence may superficially be more
aligned with a reanalysis mechanism, in that it involves calculating
divergence between updated and previous interpretations—however,
one can nearly as easily imagine that this measure of divergence
could quantify difficulty of integration, if the heuristic interpretation
18

reflects existing structure and the literal interpretation reflects new
information to be integrated. Our model is most obviously compatible
with P300 theories of the P600, where the P600 is manipulated by
errors—however, this class of theory diverges from our noisy-channel
framework in not considering whether the errors are likely to be cor-
rected. Additionally, while our model does not rule out the possibility
that semantic and syntactic P600 are separate components, the capacity
of our model to account for both types within a single framework
suggests the potential for shared mechanisms underlying both.

How feasible is it to extend our model to account for the broader
P600 literature? We have already seen that our model can account for
semantic P600 patterns as well as traditional P600 effects in response
to syntactic errors. Our model predicts that the P600 to syntactic and
non-syntactic violations will operate comparably: the P600 amplitude
will be decided by (1) whether there is an error correction and (2)
how dramatically the corrected interpretation differs from the literal
interpretation. One straightforward extension would be to account for
P600 effects in response to spelling errors (Van de Meerendonk et al.,
2011; Vissers, Chwilla, & Kolk, 2006). Similarly to our Preposition-
1 simulation, we can expect that our model will produce high rates
of error correction in the case of minor edits required to fix spelling
errors—and this will in turn force reconciliation between divergent
literal and heuristic interpretations, leading to larger P600 amplitudes
in erroneous sentences. Along the same line, the model could also
be applied to explain P600 effects to garden-path sentences (Frisch,
Schlesewsky, Saddy, & Alpermann, 2002; Gouvea, Phillips, Kazanina,
& Poeppel, 2010; Kaan & Swaab, 2003; Osterhout & Holcomb, 1992;
Osterhout, Holcomb, & Swinney, 1994): when presented with low-
probability garden-path sentences, the model could be expected to
select a structurally-simpler alternative heuristic interpretation, and
the divergence between this alternative and the literal interpretation
would drive an increased P600. Given that different interpretations of
garden-path sentences share the same set of surface forms, expanding
to this type of study would likely involve extending prior and likelihood
functions to operate directly on syntactic structures.

Our model could also be extended to account for the influence
of plausibility rate and task demands on the P600. The semantic
P600 has been reported to be sensitive to proportion of problematic
sentences (Gunter, Stowe, & Mulder, 1997; Hahne & Friederici, 1999)
and nature of task demands (Zwaan & Radvansky, 1998)—specifically,
P600 effects are reduced when there is a higher rate of anomalous
items, and P600 effects are larger when tasks encourage comprehension
or evaluation of a sentence. We anticipate that we can account for
such effects by assuming that stimulus properties and task demands
within experimental contexts can temporarily affect estimates of the
prior within the noisy channel model. For instance, if there is a large
proportion of implausible events being described, comprehenders may
be more likely to regard anomalous sentences as acceptable (as, for
instance, when reading scientific fiction). In this case, the prior 𝑃 (𝑚)
may come to assign higher probability to utterances that are less likely
in the real world, reducing error correction—and by extension, the
P600. The capacity of a noisy channel model to capture this type of
effect has already been demonstrated by Gibson et al. (2013), who
use a noisy-channel model to show that when larger proportions of
semantically implausible sentences cause a shift in the model prior,
this leads comprehenders to be less likely to interpret sentences as
plausible alternatives in offline sentence comprehension tasks. As for
the effect of task demands, we anticipate that this can be accounted
for by adjusting the levels of linguistic information that impact the
prior: when doing a comprehension task, the prior would operate as
assumed in the current model—but when doing a more superficial
task, human ‘‘plausibility’’ estimates may be driven by more superficial
factors such as syntactic acceptability. Accounting for this in our model
could be done fairly straightforwardly by manipulating the prior, but
would require exerting more control over the prior estimate than we
currently do with neural network perplexities. As we discuss above,

more controlled modification of the estimates that we currently draw
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from neural networks will be a non-trivial but important direction
for future work, as this will allow for greater transparency in adju-
dicating between contributions of different linguistic cues, while also
enabling finer-grained improvements in the accuracy of our model and
its application to still broader sets of phenomena.

8. Conclusion

In this paper, we present a computational model to account for
patterns of N400 and P600 ERP components in response to semantic
violations (as well as syntactic violations), simulating nine studies
featuring N400-only, P600-only, and biphasic N400-P600 effects. Our
model builds on the foundation of existing psycholinguistic theories
that posit what we refer to as heuristic interpretations, which can diverge
rom the literal interpretation of the input. In our model we formulate
he heuristic interpretation process as a probabilistic selection among
andidate interpretations driven by a noisy-channel model computa-
ion. N400 amplitude is then simulated based on the probability of the
arget word in the context of the heuristic interpretation, representing
ensitivity to fit of target word in context—and P600 amplitude is
imulated based on semantic divergence between heuristic and literal
nterpretations, representing reconciliation between these interpreta-
ions. In our simulations we use the real experimental stimuli from
he human experiments, and leverage measures from neural network
odels trained on large amounts of data in order to capture fine-

rained variation in stimulus properties. As a result, we are successfully
ble to reproduce patterns of N400 and P600 effects for eight of the
ine studies that we simulate, including accounting for challenging
atterns such as divergent effects for identical role reversal manipu-
ations, as well as biphasic effects. The model’s behaviors shed light
n more nuanced potential explanations for observed ERP patterns,
n which heuristic interpretation processes are only part of a larger
tory, and finer-grained probabilistic and representational properties
f stimuli have additional non-trivial influence on observed effects.
n the case of the single study that the model does not successfully
imulate, we are able to identify a straightforward explanation in terms
f divergence between what we infer to be factors driving human
lausibility mechanisms, and factors influencing our plausibility proxy
rawn from the neural network model. On the whole, the success of the
imulations indicates that the theory embodied by our model represents
strong candidate account for mechanisms driving the observed ERP

atterns. Further work can continue to investigate the breadth and
ranularity of results that the model is able to account for, continue
o refine the quantitative measures that we currently draw from neural
etwork models, and incorporate more detailed modeling of relevant
rocesses such as generation of candidate interpretations.

ata availability

The code and information about stimuli access are available on
ithub: https://github.com/goldengua/Cognition-Noisy-channel-ERP.

ppendix A. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.cognition.2022.105359.
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