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A B S T R A C T   

We examine differences in mobility outcomes between residents of highest and lowest socio-economic index 
(SEI) at the Census block group (CBG) level in nine major US cities prior to and during the COVID-19 pandemic. 
While low-SEI groups generally traveled shorter distances but visited more city-wide CBGs before the pandemic, 
high-SEI residents universally reduced their mobility to a greater extent during the pandemic. Although high-SEI 
residents were making more trips to parks and health-care providers, and fewer subsistence trips to retail stores 
already before the pandemic, COVID-19 significantly widened these differences thereby exacerbating “mobility 
gaps” between low-SEI and high-SEI groups. We further examine how such “mobility gaps” can be mitigated by 
spatial advantages of home locations, controlling for political inclination. We find that living in better transit- 
served or more walkable neighborhoods generally benefited high-SEI residents more than low-SEI residents, 
with some variation across cities. This suggests that built environments not only impact mobility outcomes 
during “normal” times, but also influence how different socio-economic groups are able to adapt during times of 
crisis.   

1. Introduction 

Mobility inequality and spatial segregation are linked to the social 
well-being (or the lack thereof) of urban residents (De Vos et al., 2013; 
Lucas, 2012; Martens, 2016). Studies in the U.S. have found that higher 
income households make about 30 % more trips, and their average trip 
length is >40 % larger than that of trips made by lower income house-
holds (Memmott & Bureau of Transportation Statistics, 2007). The 
mobility of low-income households is limited by relatively poor quality 
and coverage of public transit alternatives in most American cities, 
reduced access to private cars, and barriers to obtaining a driving license 
(Agrawal et al., 2011; King et al., 2019; Klein & Smart, 2017). Higher 
income groups enjoy convenient access to a diverse array of mobility 
options—multiple vehicles owned per household and lower financial 
barriers to using transit, ride-hailing services, or pay-per-use transport 
infrastructure—in addition to residing in locations from where more 
jobs, amenities, and social opportunities can be easily accessed. The 
ability to travel to diverse destinations results in greater access to urban 
resources and more expansive social networks, which contribute to 

social and financial benefits across urban populations (Pentland, 2014). 
While the broad strokes of income-related mobility inequality in U.S. 

cities is widely acknowledged (Taylor & Ong, 1995; Wachs & Taylor, 
1998), how people's mobility behavior at the opposite ends of the socio- 
economic spectrum varies within and across specific cities has not 
received adequate attention. How long, how widely, and to which kinds 
of destinations do the least and the most privileged residents travel in 
specific urban environments? How might such behaviors be mitigated 
by the characteristics of the neighborhoods where people live? And how 
has the COVID-19 pandemic affected changes in mobility outcomes 
across socioeconomic groups in the U.S.? 

Mounting evidence suggests that COVID-19 has had significant 
adverse effects on marginalized racial and socioeconomic communities 
(Chang et al., 2021; Chen & Krieger, 2021; Gross et al., 2020). Similar 
trends had been observed during previous pandemics (Zhao et al., 
2015), thus reinforcing the existence of longstanding inequities in the 
social determinants of health (Chowkwanyun & Reed, 2020; Van Dorn 
et al., 2020; Yancy, 2020). Examining mobility specifically, some evi-
dence suggests that higher levels of mobility may have increased COVID- 
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19 spread due to the possibility of increased inter-personal contact 
(Cartenì et al., 2020; Jia et al., 2020). In recognition of these risks, travel 
restrictions and stay-at-home orders were introduced as mobility 
reduction policies to curb the spread of COVID-19 with varying degrees 
of success (Block et al., 2020; Chinazzi et al., 2020; Courtemanche et al., 
2020; Hsiang et al., 2020; Pan et al., 2020). As a result of these policies, 
aggregate urban mobility reached its lower bound in the United States 
during the spring of 2020 (Xiong et al., 2020), but significant hetero-
geneity has been observed among residents of different cities, neigh-
borhoods, and income groups (Basu, Ferreira, 2021a; Chang et al., 2021; 
Jay et al., 2020; Lee et al., 2020; Ruiz-Euler et al., 2020). 

Prior studies exploring the effects of income on pandemic-related 
behaviors have been limited in the generalizability of their findings on 
several aspects. First, income alone may not be sufficient to capture the 
mobility trends of the nation's most vulnerable communities in light of 
how race, place, and poverty jointly contribute to socioeconomic status 
in the U.S. (Tung et al., 2017; Williams & Collins, 2016). Such re-
lationships are difficult to observe and explore at smaller, disaggregate 
spatial scales, due to lack of official data on socio-economic status and 
mobility outcomes at finer resolutions of Census data. Moreover, prior 
literature on COVID-19 related mobility changes has largely focused on 
the frequency of trips as opposed to their diversity, or examined a single 
destination type at a time, instead of multiple destinations concurrently. 
There is a need to better understand how widely and to which kinds of 
destinations different socioeconomic groups traveled to before and 
during the pandemic, as well as how mobility outcomes for different 
socio-economic groups may have been influenced by the spatial ad-
vantages of their home locations. Can living at a better location help 
less-privileged communities overcome typical mobility disadvantages 
and lead to a reduced “mobility gap” between the least and the most 
privileged? 

In this study, we seek to explore the nuances of mobility inequality as 
laid bare before and during the pandemic, in addition to various ap-
proaches to potentially mitigate them. We examine differences in 
mobility patterns across nine major U.S. cities (Atlanta, Boston, Chicago, 
Denver, Houston, Los Angeles, Philadelphia, Seattle, and St. Louis – 

shown in Fig. 1) on a monthly basis before (2019) and during (2020) the 
COVID-19 pandemic. We use a large longitudinal smartphone dataset to 
explore (a) how mobility behavior for the least and the most advantaged 
social groups differed prior to the pandemic, (b) how the pandemic 
changed these differences, and (c) how mobility inequality varies across 
cities. In each case, we examine differences in mean trip distances, the 
spatial extent of city-wide travel, and the proportion of total trips made 
to three types of destinations (parks, healthcare services, and retail es-
tablishments) by socio-economic group. We additionally test whether 
and how the spatial advantage of residential location may offset the 
effect of social disadvantage on mobility outcomes. 

Instead of comparing mobility outcomes across income groups alone 
(Jay et al., 2020; Weill et al., 2020), or using a general nation-wide 
yardstick of social (dis)advantage, we develop a Census Block Group 
(CBG) level socio-economic index (SEI) (Wheeler et al., 2017) that is 
uniquely calibrated to each city, allowing us to contrast mobility out-
comes for different SEI groups within and across cities. This study is 
unique in (a) examining empirical mobility records at the CBG scale 
across nine major U.S. cities using multiple indicators of mobility 
simultaneously to contrast socio-economic mobility inequality before 
and during the pandemic in U.S. cities, (b) in using a more compre-
hensive and contextually sensitive definition of socio-economic status 
(Jay et al., 2020; Weill et al., 2020), and (c) in controlling for the spatial 
advantage of residential location and political inclination at the CBG 
scale. 

We first introduce our data for month-to-month mobility behavior 
analyses and present our socio-economic categorization approach. We 
then turn to our mobility inequality analyses and findings. The discus-
sion section summarizes our takeaways, presents policy implications, 
and highlights directions for future research. 

2. Data and methods 

We obtained mobility data for this study from SafeGraph's COVID-19 
Data Consortium, which has made its data freely available to re-
searchers. SafeGraph captures mobility patterns of smartphone users, 

Fig. 1. Geographic coverage of nine cities included in the study. Marker radii are proportional to city population sizes.  
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sourced from different location-aware applications (“apps”). We used 
two different SafeGraph datasets: (a) Census Block Group (CBG) to CBG 
trip data, associated with users whose estimated home-location lies 
within the origin CBG; and (b) point of interest (POI) trips, indicating the 
POI destinations visited from each CBG. While CBGs are delineated by 
official US Census geometry polygons (United States Census Bureau, 
2020a), POIs represent point locations for various destination activities 
included in SafeGraph data—retail stores, parks and playgrounds, 
health service providers, etc. (SafeGraph, 2022). 

Much of the early geographic literature on mobile phone positioning 
has relied on locating devices based on cell identification or signal- 
strength triangulation (Masso et al., 2019; Reades et al., 2007; Sevtsuk 
& Ratti, 2010), which can have a spatial accuracy margin of several 
hundred meters. More recent studies have used anonymized global 
positioning technology (GPS) records from smartphones (Ruiz-Euler 
et al., 2020), location-tagged tweets (Ruiz-Euler et al., 2020), and 
aggregated mobility reports from Apple and Google (Huang et al., 
2021). The SafeGraph data we use are also based on GPS data, where 
location error is far smaller than cell identification or signal-strength 
triangulation, typically <10 m (Merry & Bettinger, 2019). This en-
ables SafeGraph data to be used for higher resolution spatial analysis, 
including visits to specific urban amenities that we explore below. 

Average commute time and journey-to-work mode choice informa-
tion is also published by the US Census as part of the American Com-
munity Survey (ACS), but ACS data only reflects work-related trips and 
general patterns are imputed based on a relatively small randomly 
collected sample. SafeGraph data are advantageous for their compara-
tively (and significantly) larger sample and coverage of all trip types, not 
just work trips. Our data includes over 139 million individual trips in 
nine cities, covering almost 13 million individuals living in around 9000 
Census block groups. Table 1 provides a breakdown of total trip vol-
umes, households, and individuals across all CBGs in our nine cities in 
our SafeGraph data (Full sample column), as well as by three SEI levels 
used in our analysis (more on this below). 

Despite the large sample, we acknowledge that SafeGraph data are 
imperfect and may contain biases for illustrating human mobility pat-
terns. The most obvious caveat is that SafeGraph data only detect user 
movements among people who own a smartphone. In 2021, around 85 
% of adults in the U.S. had a smartphone, with lower smartphone 

penetration levels reported among rural, elderly, and less educated 
populations (Pew Research, 2021, April 7). Smartphone ownership is 
also uneven by income: among households with annual incomes higher 
than $100 k, 97 % of adults owned a smartphone in 2021. Among the 
$30 k to $99 k earning households, adult smartphone penetration was 
87 %, and among the below $30,000 earning households 76 % (Vogels, 
2021, June 22). At the same time, the share of adults who use their 
smartphone as a primary means to go online is higher among the lowest 
earning group (27 %) than the highest earning group (6 %). SafeGraph 
data could thus underrepresent the movements of lower income and 
elderly adults in cities, but the data from those lowest earning adults that 
are present are likely to be more voluminous and spatially accurate. 

We computed the average monthly travel distance for trips origi-
nating from each origin CBG in the nine cities (n = 9062) by observing 
the volume of trips going to all other CBGs in the same city according to 
network driving distances between CBG centroids using Mapbox Di-
rections API (Mapbox, 2021) (weighted by the number of trips to each 
destination). Beyond average monthly travel time, we also characterized 
typical spatial extents of trips originating from each CBG by computing 
the average monthly proportion of city-wide CBGs visited, which 
allowed us to compare how the geographic extent of travel from each 
CBG may differ across socio-economic groups. We also examined the 
average monthly percent of trips from each CBG that were headed to 
parks, retail amenities, and health-related amenities. We chose these 
three destination types as specific categories of interest that have been 
shown to affect travel behavior during the COVID-19 pandemic in the 
literature (Basu, Ferreira, 2021a; Chang et al., 2021; Jay et al., 2020; Lee 
et al., 2020; Ruiz-Euler et al., 2020; Xiong et al., 2020). 

We categorized each CBG in the nine cities by five SEI quintiles using 
the methodology proposed by Wheeler et al. (Wheeler et al., 2017). 
Socioeconomic status is typically a composite variable, constructed from 
a number of input parameters, including income, housing, employment, 
and educational attainment, with coefficients assigned to each compo-
nent based on equal weighting, factor analysis, or principal component 
analysis (Cabrera-Barona et al., 2015; Diez-Roux et al., 2001). However, 
these approaches do not consider the relationship between the outcome 
and the socioeconomic variables when constructing the index. 
Following (Wheeler et al., 2017), we used a weighted quantile sum 
(WQS) regression to estimate a city-specific socioeconomic index (SEI) 
for each CBG, using the monthly mean difference in trip distance be-
tween 2020 and 2019 as the dependent variable. Demographic variables 
for CBGs inside cities' administrative boundaries, including income, 
race, and educational attainment, were obtained from the American 
Community Survey 2015–2019 five-year estimates by the US Census 
Bureau (United States Census Bureau, 2020b). The key advantages of 
this approach are that (a) SEI categories are constructed specifically to 
examine mobility behaviors, and (b) the particular weights of socio-
economic characteristics (e.g., income, race, education, etc.) can vary by 
city, outlining how attributes of relative privilege differ by context. 
Table 2 shows best fitting SEI weights for the nine cities included in our 
study, using aggregate difference in mean distance traveled per month 
as the dependent variable of the WQS regression. In Chicago, Philadel-
phia and Seattle, for instance, SEI is primarily determined by race, in 
Atlanta mostly by income, and in Boston by educational attainment. 
Though we also explored using the same category weights for SEI 
groupings across all cities, the weights reported in Table 2 affirmed that 
the social attributes that predict mobility privilege differ by city. 

Access to jobs by transit from each CBG was obtained from the 
University of Minnesota's Accessibility Observatory (University of 
Minnesota Center for Transportation Studies, 2019). The Accessibility 
Observatory publishes worker-weighted transit accessibility by using 
transit schedule data and measuring the number of jobs reached from 
CBG centroids within a 30-minute travel time between 7:00 AM and 
8.59 AM on workdays. A walkability rating for each CBG was obtained 
from the WalkScore API (WalkScore, 2021), which rates walkability 
levels of individual address points in cities on a 0–100 scale based on the 

Table 1 
Sample characteristics.  

Variable Low SEI 
(SEI < 20% 
ile) 

20–80 % 
SEI 

High SEI 
(SEI > 80% 
ile) 

Full sample 

Census block 
groups 

1817 5435 1808 9060 

Individuals 2,392,647 8,135,270 2,401,327 12,929,244 
Individuals per 

block group 
1316 (677) 1497 (764) 1328 (718) 1427 (743) 

Households 809,877 2,989,277 1,087,011 4,886,165 
Households per 

block group 
446 (227) 550 (302) 601 (374) 539 (309) 

Smartphone devices 
(All trips) 

25,833,615 87,078,842 26,673,937 139,586,394 

Smartphone devices 
per block group 
(All trips) 

14,218 
(17,728) 

16,022 
(17,572) 

14,753 
(15,500) 

15,407 
(17,226) 

Smartphone devices 
(POI trips) 

682,986 2,570,138 820,302 4,073,425 

Smartphone devices 
per block group 
(POI trips) 

376 
(449) 

473 
(581) 

454 
(605) 

450 
(563) 

Note: Counts are provided by socioeconomic status (SEI) quintile groups (Q1, 
Q2–4, Q5) and the full sample for Census block groups, individuals, households, 
and smartphone devices. Means (standard deviations) are reported for per- 
block-group variables. Smartphone device counts cover a two-year period 
from Jan 2019 to Dec 2020. 
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availability and diversity of pedestrian destinations within walking 
range. Table 3 illustrates how both transit access to jobs and WalkScore 
values are distributed among the lowest (0–20%ile), middle (20–80% 
ile) and highest (80–100%ile) SEI groups across all CBGs in the nine 
cities in our dataset, highlighting that the highest SEI groups tend to 
reside in more transit accessible and walkable neighborhoods, and the 
lowest SEI groups in the least transit accessible and walkable neigh-
borhoods. On average, highest SEI groups can reach 2.5 times more jobs 
by 30-minute transit ride on a typical weekday morning than the lowest 
SEI groups and their neighborhoods tend to be 15 % more walkable, on 
average. 

3. Analyses and findings 

We start by describing the differences in these outcome variables 
between the lowest and the highest SEI groups in each city before the 
pandemic, and then turn to the question of how the COVID-19 pandemic 
may have affected changes in travel behavior outcomes across socio-
economic groups. 

3.1. Social and spatial determinants of pre-pandemic mobility 

In order to establish a baseline for mobility patterns in 2019, we 
present the results of explanatory models of monthly-averaged pre- 
pandemic travel outcomes in Table 4, where variations in five different 
dependent variables are explained with socio-economic differences be-
tween CBGs, as well as two mobility-related spatial advantages of the 

travelers' locations—transit accessibility to jobs and WalkScore. We 
additionally include some interaction effects between the two categories 
of variables. The middle SEI groups (20%ile – 80%ile) are used as a 
reference to compare high- and low-SEI differences in outcome 
variables. 

Comparing the dummy coefficients for Lowest SEI and Highest SEI 
across each of the outcome variables (rows two and three of Table 4), we 
find that residents of block groups in the highest SEI quintile traveled 
longer distances than residents of the lowest SEI block groups 
(− 0.101*** < − 0.301***), which corroborates prior literature on U.S. 
travel statistics (Memmott & Bureau of Transportation Statistics, 2007). 
The negative signs suggest that both the highest and the lowest SEI 
groups traveled less distance and visited a smaller percentage of city-
wide destinations than the middle SEI groups in the nine cities on 
average, though the lowest SEI groups had wider travel extents than the 
highest SEI groups (− 0.077*** > − 0.238***). We also find that people 
from high SEI blocks made significantly more trips to parks (0.246*** >
− 0.086***) and healthcare destinations (0.067*** > 0.037) and fewer 
trips (− 0.115*** < 0.246***) to retail destinations than people from the 
lowest-SEI blocks in 2019. This broadly corroborates that mobility 
outcomes of relatively low and high SEI groups significantly differed 
even before the pandemic started. 

Table 4 also provides insight into how location advantages—living in 
relatively amenity-rich neighborhoods (with high WalkScore values), or 
living in more public transit served areas—could impact mobility out-
comes before the pandemic. Averaged across all SEI groups, we find that 
living in high WalkScore neighborhoods implied shorter average trip 
lengths (− 0.502***) and fewer city-wide CBGs visited overall 
(− 0.069***), likely due to the availability of more destinations nearby. 
Living in more walkable neighborhoods also implied a larger proportion 
of trips made to retail destinations (0.324***), likely due to having a 
larger choice of smaller stores within walking distance rather than 
driving to big-box general stores further way—but a smaller proportion 
of trips to parks (− 0.100***) and health services (− 0.032***), which 
may be lacking in denser urban areas. 

Living in neighborhoods with better public transit access to jobs also 
implied shorter trip lengths on average (− 0.130***), but a higher pro-
portion of city-wide CBGs visited (0.179***), and a larger proportion of 
total trip-making to parks (0.125***), retail destinations (0.172***), 
and healthcare destinations (0.061***) alike. Prior to the pandemic, 
walkability and transit access thus both contributed to reducing mean 
trip distances. While living in walkable neighborhoods primarily 
increased retail visits, transit access provided residents better access to 
city-wide destinations overall and increased proportional visits to all 
three destination types. 

However, the effects of advantageous home location—residing in 
more walkable or transit served areas—on travel behavior were not the 
same for high and low SEI groups even in pre-pandemic times. Inter-
estingly, higher-SEI groups living in more transit-accessible neighbor-
hoods actually had longer average trip distances (0.077***) and visited 
significantly more city-wide destinations (0.116***) than the middle SEI 
control group. Given that transit trips are typically shorter in distance 
and more spatially constrained than automobile trips, this likely points 
to more automobile use by high SEI groups even when living near 
transit. Prior research has pointed to a phenomenon of “transit-induced 
gentrification”, whereby high-income households who move into 
transit-oriented developments actually end up using more automobiles 
and not relying on transit (Basu, Ferreira, 2021a; Basu, Ferreira, 2021b). 
Among low SEI groups, we find that living in more transit-served areas is 
correlated with lower average trip lengths (− 0.056) and fewer city-wide 
CBGs visited (− 0.148***), suggesting greater reliance on transit 
services. 

Living in more walkable neighborhoods also affected travel behavior 
of low and high SEI block group residents differently. In addition to the 
overall walkability effect reported above, high SEI groups living in more 
walkable areas traveled less to other parts of the city—they made shorter 

Table 2 
Best fitting SEI weights for the nine cities, using aggregate difference in mean 
distance traveled per month as the dependent variable of a weighted quantile 
sum regression model. 

Note: The variables used to construct the socio-economic index (SEI) of a Census 
Block Group (CBG) are: (a) % Non-Hispanic White individuals, (b) Median 
household income, (c) % adults (aged 25 or more) with at least a college degree, 
(d) Population density, (e) % renter-occupied housing units interacted with 
median household income, and (f) % workers (aged 16 or more, not working at 
home) with at-most 30 minute-long commutes. The weights are proportionally 
adjusted such that they sum to one across each row. Table is color-coded by row, 
where red indicates higher and green lower weights for each city separately. 

Table 3 
Mean transit access to jobs and mean WalkScore by SEI groups across nine cities.   

Avg. nr of jobs reached by transit within 30 min 
on a weekday morning. 

Avg. WalkScore 
(0− 100) 

Lowest 
SEI  

1,204,974  64.0 

Middle 
SEI  

1,401,554  66.2 

Highest 
SEI  

3,084,827  73.7 

Note: The averages reflect all 9063 CBGs across nine cities; they are therefore 
disproportionately affected by larger cities such as LA, Chicago and Houston. 
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trips (− 0.059***) and visited fewer city-wide CBGs overall 
(− 0.118***), but allocated a smaller proportion of their travel to retail 
destinations (− 0.114***) than middle SEI groups (our reference group). 
For low SEI blocks, living in walkable neighborhoods did not signifi-
cantly alter travel behavior compared to the middle SEI control group 
levels (all Lowest-SEI * WalkScore coefficients are statistically insignif-
icant). This suggests that high SEI groups were able to take more 
advantage of highly walkable neighborhoods than low SEI groups, in 
terms of reducing trip distances, but were less likely to patronize local 
retailers than the middle SEI group, possibly because of higher reliance 
on e-commerce. At the same time, low SEI households may not have 
been be able to afford goods and services in highly walkable areas, or the 
destinations they needed may be have been under provisioned at the 

neighborhood scale. 

3.2. Changes in mobility outcomes by socioeconomic status from 2019 to 
2020 

In order to explore how the COVID-19 pandemic shifted mobility 
outcomes for different socioeconomic groups in 2020, we first present 
descriptive statistics of monthly aggregated mobility outcomes for both 
2019 and 2020 by SEI quintiles in Table 5. While mean raw trip dis-
tances for the lowest and highest SEI groups were statistically indistin-
guishable in 2019 (t = 1.6, p = 0.12), the lowest-SEI group traveled 695 
m more than the highest-SEI group following the outbreak in 2020 (t =
33.0, p < 0.001), on average across nine cities and all CBGs within them. 

Table 4 
Explanatory models of pre-pandemic mobility outcomes.*  

Mobility outcomes (Jan-Dec 2019) 

Dependent variable  

Avg. monthly trip 
length 

Avg. monthly proportion of city- 
wide CBGs visited 

Avg. monthly park trip 
proportion 

Avg. monthly retail trip 
proportion 

Avg. monthly health trip 
proportion 

(1) (2) (3) (4) (5) 

Constant 0.064*** (0.044, 
0.084) 

0.055*** (0.030, 0.080) − 0.046*** (− 0.069, 
− 0.022) 

− 0.008 (− 0.032, 0.017) − 0.043*** (− 0.065, 
− 0.021)  

t = 6.308 t = 4.350 t = − 3.846 t = − 0.597 t = − 3.783  
p = 0.000 p = 0.00002 p = 0.0002 p = 0.551 p = 0.0002 

Lowest-SEI − 0.301*** (− 0.343, 
− 0.259) 

− 0.077*** (− 0.130, − 0.025) − 0.086*** (− 0.135, 
− 0.037) 

0.246*** (0.194, 0.298) 0.037 (− 0.009, 0.084)  

t = − 14.048 t = − 2.898 t = − 3.444 t = 9.213 t = 1.576  
p = 0.000 p = 0.004 p = 0.001 p = 0.000 p = 0.116 

Highest-SEI − 0.101*** (− 0.143, 
− 0.060) 

− 0.238*** (− 0.290, − 0.186) 0.246*** (0.198, 0.295) − 0.115*** (− 0.167, 
− 0.063) 

0.067*** (0.021, 0.113)  

t = − 4.776 t = − 9.023 t = 9.959 t = − 4.360 t = 2.854  
p = 0.00001 p = 0.000 p = 0.000 p = 0.00002 p = 0.005 

Transit access to jobs − 0.130*** (− 0.162, 
− 0.098) 

0.179*** (0.139, 0.219) 0.125*** (0.088, 0.163) 0.172*** (0.132, 0.212) 0.061*** (0.026, 0.097)  

t = − 7.957 t = 8.749 t = 6.565 t = 8.443 t = 3.372  
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.001 

WalkScore − 0.502*** (− 0.524, 
− 0.480) 

− 0.069*** (− 0.096, − 0.041) − 0.100*** (− 0.126, 
− 0.074) 

0.324*** (0.297, 0.351) − 0.032*** (− 0.057, 
− 0.008)  

t = − 44.719 t = − 4.903 t = − 7.613 t = 23.146 t = − 2.582  
p = 0.000 p = 0.00000 p = 0.000 p = 0.000 p = 0.010 

% Democratic votes − 0.132*** (− 0.149, 
− 0.115) 

− 0.144*** (− 0.165, − 0.123) 0.163*** (0.144, 0.183) 0.084*** (0.063, 0.104) 0.144*** (0.126, 0.163)  

t = − 15.597 t = − 13.636 t = 16.493 t = 7.920 t = 15.358  
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 

Lowest-SEI X Transit 
access to jobs 

− 0.056 (− 0.123, 
0.011) 

− 0.148*** (− 0.232, − 0.064) 0.040 (− 0.039, 0.118) − 0.011 (− 0.095, 0.073) 0.041 (− 0.033, 0.116)  

t = − 1.634 t = − 3.460 t = 0.986 t = − 0.255 t = 1.082  
p = 0.103 p = 0.001 p = 0.325 p = 0.800 p = 0.280 

Highest-SEI X Transit 
access to jobs 

0.077*** (0.024, 
0.129) 

0.116*** (0.050, 0.181) − 0.155*** (− 0.216, 
− 0.093) 

− 0.069** (− 0.134, 
− 0.003) 

0.014 (− 0.045, 0.072)  

t = 2.858 t = 3.462 t = − 4.942 t = − 2.060 t = 0.455  
p = 0.005 p = 0.001 p = 0.00000 p = 0.040 p = 0.649 

Lowest-SEI X WalkScore 0.008 (− 0.041, 0.056) − 0.027 (− 0.088, 0.033) − 0.030 (− 0.087, 0.027) − 0.014 (− 0.074, 0.047) − 0.034 (− 0.088, 0.020)  
t = 0.311 t = − 0.880 t = − 1.038 t = − 0.440 t = − 1.242  
p = 0.757 p = 0.380 p = 0.300 p = 0.661 p = 0.215 

Highest-SEI X WalkScore − 0.059*** (− 0.099, 
− 0.020) 

− 0.118*** (− 0.167, − 0.069) 0.025 (− 0.021, 0.071) − 0.114*** (− 0.163, 
− 0.065) 

− 0.058*** (− 0.102, 
− 0.014)  

t = − 2.944 t = − 4.711 t = 1.077 t = − 4.554 t = − 2.602  
p = 0.004 p = 0.00001 p = 0.282 p = 0.00001 p = 0.010 

Observations 9062 9061 9062 9062 9062 
R2 0.397 0.057 0.048 0.143 0.034 
Adjusted R2 0.397 0.056 0.047 0.142 0.033 
Residual Std. Error 0.736 (df = 9052) 0.918 (df = 9051) 0.860 (df = 9052) 0.917 (df = 9052) 0.816 (df = 9052) 
F Statistic 663.501*** (df = 9; 

9052) 
60.988*** (df = 9; 9051) 51.097*** (df = 9; 9052) 168.151*** (df = 9; 

9052) 
35.151*** (df = 9; 9052) 

Note: Data for all 12 months of 2019 are used. We standardized all variables within each city to obtain city-standardized z-scores that were used as explanatory 
variables in the model. This was done to address the different distributions of sociodemographic variables within each city, e.g., the mean Non-White population 
proportion is much higher in St. Louis than in Boston. 

* p < 0.1. 
** p < 0.05. 
*** p < 0.01. 
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Additionally, while the lowest SEI group traveled to 0.1 % points more 
city-wide CBGs per month than the high SEI group in 2019 (t = 4.1, p <
0.001), this gap widened to 0.3 % points during the pandemic in 2020 (t 
= 15.0, p < 0.001). 

Regarding destination types, we find that the lowest-SEI group made 
0.8 % points fewer trips to parks (t = − 9.8, p < 0.001) than the highest- 
SEI group in 2019, reflecting the lower tendency of recreational trip- 
making from lower-SEI CBGs during ‘normal’ times. The pandemic 
substantially widened this disparity to 4.7 % points (t = − 36.2, p <
0.001) in 2020. Given that only 5.5 % of all trips were headed to parks 
for lowest SEI residents in 2020 overall, this suggests that high SEI 
residents dedicated almost double the proportion of their overall jour-
neys to green spaces. Similar inequities regarding park visits during 
COVID-19 have been reported elsewhere in the literature (Jay et al., 
2020; Jay et al., 2021; Larson et al., 2021). Lower-SEI groups also made 

1.8 % points more retail trips in 2019 than high SEI groups and this gap 
increased to a 3.0 % difference (t = 15.3, p < 0.001) in 2020. Finally, in 
2019 the lowest-SEI group made 0.3 % points more trips to healthcare 
centers than the highest-SEI group (t = 5.4, p < 0.001). However, this 
difference flipped during the pandemic, when the lowest-SEI group 
made 0.9 % points fewer healthcare trips than the highest-SEI group (t =
− 11.2, p < 0.001). These descriptive statistics suggest that during the 
public health crisis, the lowest-SEI group reduced healthcare trips 
significantly (from 4.2 % to 3.1 %), while the highest-SEI group saw a 
marginal increase (from 3.9 % to 4.0 %). 

3.3. Social and spatial determinants of pandemic-induced mobility 
changes from 2019 to 2020 

The descriptive differences reported above become more pro-
nounced when we examine the factors that explain changes in mobility 
outcomes at the CBG level across the two time periods as presented in 
Table 6. Unlike the average 2019 outcome variables modeled in Table 4, 
here the dependent variables in each of the five columns reflect changes 
from 2019 to 2020. For instance, column one in Table 6 illustrates the 
average monthly percent change in trip length at the CBG level, calcu-
lated as (2020 monthly average value – 2019 monthly average value) / 
(2020 monthly average value) further averaged over nine months (April 
through December) to account for seasonal differences in mobility 
outcomes. 

Even though mobility behavior was additionally affected by business 
closures and government shut-down policies, which varied across cities 
during the pandemic, we standardized all modeled variables by each 
city's mean to address unobserved city-level fixed effects that could not 
be included at the CBG resolution. Using city-level standardization thus 
also eliminated the need for separate city-level dummy variables. 
However, we acknowledge that some unobserved variables could also 
vary by SEI group. For instance, unemployment has been reported to 
have affected the lowest SEI groups the most severely during the 
pandemic. The differences we report between highest and lowest SEI 
group travel patterns can therefore reflect behavior changes, policy ef-
fects, and additional unobserved covariates concurrently. We recognize 
the challenge in isolating these three effects and acknowledge this as a 
limitation of our work. 

A positive coefficient for lowest SEI groups (0.453***) suggests that 
the percent change in average trip length from 2019 to 2020 was around 
45 % smaller for the lowest SEI group compared to the middle SEI 
control group, affirming a much smaller reduction in travel among the 
least privileged residents. The lowest SEI groups also witnessed a 21.2 % 
smaller reduction in the proportion of city-wide CBGs visited than the 
middle SEI group. The highest-SEI group experienced the opposite: their 
average trip length decreased 47.6 % more than the middle SEI group 
and they reduced their city-wide visits to other CBGs 46.2 % more than 
the middle SEI group. This indicates that the lowest-SEI group had to 
travel further to access necessary goods, services and jobs during the 
pandemic, whereas higher SEI groups were more likely to be able to 
work from home and turn to e-commerce for subsistence deliveries. 

Additionally, the lowest-SEI group reduced the proportion of their 
total trip-making dedicated to parks (− 0.229***) and healthcare 
(− 0.125***) and increased the proportion of trips to retail establish-
ments (0.109***) during the pandemic. The highest-SEI group, in 
contrast, increased the proportion of their trips dedicated to parks 
(0.572***) and healthcare (0.180***), and did not show a significant 
change in retail trip-making. This indicates that more socioeconomically 
advantaged groups were able to limit their mandatory travel (e.g., 
commuting to work) and instead increase their recreational and main-
tenance travel (e.g., to parks and healthcare) during the pandemic. 

Similar to our pre-pandemic observations, we find differences across 
neighborhood contexts as well. Residents of CBGs with better transit 
access to jobs reduced their trip distances significantly less than resi-
dents of CBGs that were further away from transit access. We noted in 

Table 5 
Differences in monthly-aggregated mobility outcomes by SEI quintiles.  

Mobility outcomes 
(monthly average) 

Quintile 1 
[Q1: Lowest 
SEI] 
mean 
(std. dev.) 

Quintiles 
2–4 
mean 
(std. dev.) 

Quintile 5 
[Q5: 
Highest SEI] 
mean 
(std. dev.) 

Q1 vs. Q5 
Diff. in mean 
(95 % CI) 
t-stat 
(residual d.f.) 

Trip distance (2019) 
[meters] 

4467 
(1841) 

4882 
(1890) 

4433 
(2135) 

34 
(− 9, 78) 
1.556 
(31,865) 

Trip distance (2020) 
[meters] 

3736 
(1802) 

3735 
(1771) 

3041 
(1965) 

695 
(653, 736) 
33.035*** 
(31,837) 

% of within-city 
non-home CBGs 
visited (2019) 

3.1 % 
(3.3 %) 

3.3 % 
(3.3 %) 

3.0 % 
(3.1 %) 

0.1 % points 
(0.07 %, 0.21 
%) 
4.079*** 
(32,461) 

% of within-city 
non-home CBGs 
visited (2020) 

1.6 % 
(2.0 %) 

1.7 % 
(1.8 %) 

1.3 % 
(1.9 %) 

0.3 % points 
(0.28 %, 0.37 
%) 
15.042*** 
(32,160) 

% of trips made to 
parks (2019) 

6.4 % 
(7.8 %) 

6.2 % 
(6.8 %) 

7.2 % 
(7.1 %) 

− 0.8 % points 
(− 1.0 %, 
− 0.6 %) 
− 9.813*** 
(32,328) 

% of trips made to 
parks (2020) 

5.5 % 
(9.2 %) 

6.5 % 
(9.9 %) 

10.2 % 
(13.8 %) 

− 4.7 % points 
(− 5.0 %, 
− 4.5 %) 
− 36.193*** 
(27,658) 

% of trips made to 
retail 
establishments 
(2019) 

64.9 % 
(11.1 %) 

63.2 % 
(10.4 %) 

63.1 % 
(11.4 %) 

1.8 % points 
(1.5 %, 2.0 %) 
14.140*** 
(32,540) 

% of trips made to 
retail 
establishments 
(2020) 

67.6 % 
(15.0 %) 

64.7 % 
(15.2 %) 

64.6 % 
(19.8 %) 

3.0 % points 
(2.6 %, 3.4 %) 
15.310*** 
(29,746) 

% of trips made to 
healthcare centers 
(2019) 

4.2 % 
(5.7 %) 

3.8 % 
(4.4 %) 

3.9 % 
(4.7 %) 

0.3 % points 
(0.2 %, 0.4 %) 
5.350*** 
(31,459) 

% of trips made to 
healthcare centers 
(2020) 

3.1 % 
(6.2 %) 

3.2 % 
(6.5 %) 

4.0 % 
(9.3 %) 

− 0.9 % points 
(− 1.2 %, 
− 0.8 %) 
− 11.166*** 
(27,704) 

Note: Data for April through December are summarized to provide monthly 
statistics for 2019 and 2020; *** indicates p < 0.001. January and February are 
omitted because the pandemic had not yet affected mobility outcomes in Jan- 
Feb 2020, while March is omitted because of precipitous mobility changes 
implying a transition period (see Fig. 2). April is the first ‘stable’ post-outbreak 
month in 2020. 
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Table 3 that more transit accessible neighborhoods are typically popu-
lated by higher SEI groups. That households living close to transit 
traveled longer distances during the pandemic than households without 
transit likely reflects that middle income groups who relied on transit 
prior to the pandemic, left their neighborhoods on longer car-based trips 
to access green spaces and other amenities during the pandemic. Resi-
dents living in areas without good transit connections likely had bigger 
suburban homes with yards, without much need to leave their neigh-
borhoods to access green spaces during the pandemic. Residents of 
walkable CBGs had more favorable outcomes during the pandemic due 
to their proximity to amenities within the neighborhood, which was 
reflected through shorter trips to fewer destinations and a higher pro-
portion of healthcare trips than usual. 

We also tested whether and how political inclination—captured as 

the percent of votes for President Biden in the 2020 presidential elec-
tion—explains pandemic-induced changes in mobility behavior in 
Table 6. The 2020 U.S. Presidential election data, showing percent of 
votes for President Biden, were obtained from The Upshot (The Upshot, 
2021) and matched to CBGs featured in our sample. Given that most 
large U.S. cities are Democratically leaning overall, we did not divide 
CBGs into Republican versus Democrat groups, but rather used a 
continuous variable showing the percent of votes for President Biden in 
the 2020 election from each CBG. SafeGraph mobility data were linked 
with demographic data of the associated home CBG. We see in Table 6 
that more Democratically leaning CBGs traveled to significantly fewer 
other CBGs in their city during 2020 (− 0.239***). A 1 % increase in 
democratic leaning at the CBG level produced a 0.24 % percent decrease 
in city-wide travel extent in 2020, compared to pre-pandemic travel 

Table 6 
Explanatory models of pandemic-induced mobility changes.  

Change in mobility outcomes (Apr-Dec 2019 VS Apr-Dec 2020) 

Dependent variable  

Avg. monthly % change in trip 
length (2020–2019) 

Avg. monthly change in 
destination proportion 

Avg. monthly change in 
park trip proportion 

Avg. monthly change in 
retail trip proportion 

Avg. monthly change in 
health trip proportion 

(1) (2) (3) (4) (5) 

Constant − 0.003 (− 0.027, 0.020) 0.036*** (0.014, 0.059) − 0.075*** (− 0.099, 
− 0.052) 

− 0.035*** (− 0.061, 
− 0.009) 

− 0.026** (− 0.049, 
− 0.002)  

t = − 0.291 t = 3.133 t = − 6.325 t = − 2.639 t = − 2.119  
p = 0.772 p = 0.002 p = 0.000 p = 0.009 p = 0.035 

Lowest-SEI 0.453*** (0.404, 0.502) 0.212*** (0.164, 0.260) − 0.229*** (− 0.278, 
− 0.180) 

0.109*** (0.054, 0.164) − 0.125*** (− 0.174, 
− 0.075)  

t = 18.037 t = 8.672 t = − 9.107 t = 3.892 t = − 4.905  
p = 0.000 p = 0.000 p = 0.000 p = 0.0002 p = 0.00000 

Highest-SEI − 0.476*** (− 0.525, − 0.428) − 0.462*** (− 0.509, 
− 0.415) 

0.572*** (0.523, 0.620) 0.011 (− 0.043, 0.066) 0.180*** (0.131, 0.229)  

t = − 19.212 t = − 19.162 t = 23.016 t = 0.415 t = 7.159  
p = 0.000 p = 0.000 p = 0.000 p = 0.679 p = 0.000 

Job access by 
transit 

0.051*** (0.013, 0.088) − 0.148*** (− 0.185, 
− 0.112) 

0.102*** (0.065, 0.140) − 0.090*** (− 0.131, 
− 0.048) 

0.033* (− 0.005, 0.071)  

t = 2.644 t = − 7.964 t = 5.329 t = − 4.209 t = 1.688  
p = 0.009 p = 0.000 p = 0.00000 p = 0.00003 p = 0.092 

WalkScore − 0.046*** (− 0.072, − 0.020) − 0.174*** (− 0.199, 
− 0.149) 

− 0.040*** (− 0.065, 
− 0.014) 

− 0.023 (− 0.052, 0.006) 0.043*** (0.017, 0.069)  

t = − 3.473 t = − 13.582 t = − 3.007 t = − 1.568 t = 3.217  
p = 0.001 p = 0.000 p = 0.003 p = 0.117 p = 0.002 

% Democratic 
votes 

0.016 (− 0.003, 0.036) − 0.239*** (− 0.257, 
− 0.220) 

− 0.015 (− 0.034, 0.005) − 0.011 (− 0.032, 0.011) − 0.004 (− 0.023, 0.016)  

t = 1.618 t = − 24.729 t = − 1.489 t = − 0.962 t = − 0.359  
p = 0.106 p = 0.000 p = 0.137 p = 0.336 p = 0.720 

Lowest-SEI X Job 
access 

0.033 (− 0.046, 0.112) 0.074* (− 0.003, 0.151) − 0.104** (− 0.183, 
− 0.025) 

0.043 (− 0.045, 0.131) 0.059 (− 0.021, 0.139)  

t = 0.816 t = 1.895 t = − 2.576 t = 0.963 t = 1.442  
p = 0.415 p = 0.059 p = 0.011 p = 0.336 p = 0.150 

Highest-SEI X Job 
access 

0.040 (− 0.021, 0.102) 0.072** (0.012, 0.132) − 0.016 (− 0.077, 0.046) 0.052 (− 0.017, 0.121) 0.024 (− 0.039, 0.086)  

t = 1.281 t = 2.341 t = − 0.498 t = 1.485 t = 0.748  
p = 0.201 p = 0.020 p = 0.619 p = 0.138 p = 0.455 

Lowest-SEI X 
WalkScore 

0.040 (− 0.017, 0.096) − 0.014 (− 0.069, 0.041) 0.061** (0.004, 0.118) − 0.118*** (− 0.181, 
− 0.054) 

0.023 (− 0.035, 0.080)  

t = 1.363 t = − 0.491 t = 2.109 t = − 3.643 t = 0.778  
p = 0.173 p = 0.624 p = 0.036 p = 0.0003 p = 0.437 

Highest-SEI X 
WalkScore 

− 0.099*** (− 0.146, − 0.053) − 0.069*** (− 0.114, 
− 0.024) 

− 0.032 (− 0.079, 0.014) 0.034 (− 0.018, 0.085) 0.001 (− 0.045, 0.048)  

t = − 4.209 t = − 2.993 t = − 1.374 t = 1.283 t = 0.057  
p = 0.00003 p = 0.003 p = 0.170 p = 0.200 p = 0.955 

Observations 9061 9060 9059 9059 9059 
R2 0.116 0.211 0.094 0.009 0.023 
Adjusted R2 0.115 0.21 0.093 0.008 0.022 
Residual Std. Error 0.863 (df = 9051) 0.838 (df = 9050) 0.863 (df = 9049) 0.960 (df = 9049) 0.873 (df = 9049) 
F Statistic 132.064*** (df = 9; 9051) 268.411*** (df = 9; 9050) 104.532*** (df = 9; 9049) 9.540*** (df = 9; 9049) 23.714*** (df = 9; 9049) 

Note: Dependent variables measure observed change from expected levels in 2020 (during the pandemic). All variables are city-level standardized; Data for Apr-Dec 
2019–2020 are used. 

* p < 0.1. 
** p < 0.05. 
*** p < 0.01. 
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levels. Left-leaning neighborhoods thus exhibited more cautious travel 
behavior during the pandemic. 

To examine whether spatial advantage may offset socioeconomic 
disadvantage during the pandemic, we again interacted job accessibility 
and WalkScore with dummy variables for the lowest and the highest SEI 
groups in Table 6. The results suggest that both high and low SEI groups 
increased the percent of city-wide CBGs visited when living in better 
transit-served areas compared to the middle SEI control group (0.074* 
for lowest SEI; 0.072** for highest SEI). Again, this likely signals a shift 
from transit use to automobile use during the pandemic compared to a 
“normal” year before. While high-SEI groups already traveled to more 
city-wide destinations when living in transit-served areas before the 
pandemic, that was not the case for low-SEI groups in 2019—the latter 
actually visited a smaller proportion of city-wide CBGs when living near 
transit prior to the pandemic (see Table 4). The SEI-specific trip desti-
nation proportions in Table 6 suggest that when living in transit served 
areas, higher SEI-groups left these inner-city areas more for park access, 
while the lowest SEI groups left more for sustenance travel to retail 
destinations. The last two coefficient estimates in Table 6 suggest that 
living in walkable neighborhoods enabled high SEI groups to have 
shorter average journeys (− 0.099***) and to travel to fewer city-wide 
destinations (− 0.069***) during the pandemic. There was no signifi-
cant effect of highly walkable areas on these outcomes for the lowest SEI 
groups. 

3.4. Differences among cities 

We supplement our general findings presented above with explora-
tions of the differences in mobility outcomes for trip distance and travel 
extent across the nine cities in our study. Fig. 2 compares how average 
monthly trip lengths changed in 2020 within each city by SEI category. 
The dashed line in the middle of each graph represents pre-pandemic 
mean trip distance for each month in 2019. We observe two common-
alities across all cities: (a) there was a sharp decrease in trip lengths 
observed in March and April, and (b) the relationship between SEI 
category and trip length reduction is directly proportional. The highest- 
SEI groups were able to reduce their trip lengths more than the lowest- 
SEI groups across all cities observed. Chicago, Houston, and 

Philadelphia exhibited the largest “mobility gap” between the highest 
and lowest-SEI groups, while Seattle and Atlanta showed a much more 
moderate gap. Trip distances for the lowest-SEI group recovered to pre- 
pandemic levels in Denver and St. Louis in June and Chicago in 
December 2020. For other groups, trip distances remained well below 
pre-pandemic levels throughout 2020, with the largest sustained re-
ductions observed in Boston and Seattle. 

The pooled regression models for changes in trip length and percent 
of city-wide CBGs visited presented in the previous section were esti-
mated on combined data from the nine cities to extract general findings, 
but some differences in these outcomes are expected across the various 
cities. We therefore estimated sub-models with the same specification 
for each city separately. City-specific changes in trip lengths and per-
centages of city-wide CBGs visited between 2019 and 2020 are pre-
sented in Fig. 3 (comparative charts for 2019 are presented in 
Supplementary Materials). Large differences between mobility behav-
iors of the highest and lowest SEI groups can be seen in seven of the nine 
cities (excluding Atlanta and Seattle), where higher-SEI groups reduced 
both trip lengths and the number of destinations they traveled to during 
the pandemic, while the lowest SEI groups did not (Fig. 3a and d). The 
biggest differences between the highest and lowest SEI groups' travel 
behavior is seen in Chicago, Denver, Houston, Los Angeles and Phila-
delphia. Atlanta, along with Seattle to a lesser extent, stands out as an 
exception, where both the pandemic-induced changes in trip lengths and 
city-wide CBGs visited were similar and statistically indistinguishable 
between the highest and lowest SEI groups. Seattle and Atlanta thus 
have the least inequitable pandemic-induced changes in travel behavior 
among their most and the least privileged residents. Although this raises 
an interesting question about which particular spatial, social, and eco-
nomic qualities of cities may contribute to relatively smaller or larger 
“mobility gaps” between the highest and lowest SEI groups, an answer is 
beyond the scope of this paper and will have to remain a subject of future 
research. 

Finally, we also examined how political leaning towards a Demo-
cratic presidential nominee in the 2020 election impacted the extent of 
city-wide travel in each of the nine cities separately (Fig. 4). Residents of 
Democratically leaning CBGs traveled to fewer non-home CBGs in each 
of the nine cities individually (all coefficients in Fig. 4 are significant at 

Fig. 2. Deviation in monthly-averaged 2020 trip distances from 2019. Actual monthly trip lengths in 2020 are compared to 2019 trip lengths. Block groups in each 
city are clustered into one of three groups - Q1 (lowest SEI), Q2-4 (combination of SEI quintiles 2, 3, and 4), and Q5 (highest SEI). Point estimates represent the 
monthly means. 
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95 % confidence, except for 90 % in St. Louis). This suggests that po-
litical ideology does not merely impact travel in strongly Democratic 
cities, such as Boston or Los Angeles, but even within cities that have an 
overall Republican leaning. Houston TX, for instance, had an overall 74 
% support for Trump in the 2020 election, but those CBGs within 
Houston that were leaning more towards Biden, exhibited a more 
cautionary travel behavior according to our data. 

4. Discussion 

Despite city-specific heterogeneity in the highest and lowest SEI 
groups' mobility prior to the pandemic, our findings highlight that 
during the pandemic, lowest-SEI groups universally traveled the largest 
distances and visited the most destinations in each of the nine cities we 

analyzed. During extraordinary circumstances, mobility privilege that 
comes with higher SEI is manifested by a greater freedom to choose 
whether and where to travel. Longer trips to more destinations among 
lower SEI groups during the pandemic, including a higher rate of retail 
visits, and a lower rate of park and healthcare visits, aligns with prior 
work suggesting that essential- and service-sector workers continued to 
travel for employment, family-care, and sustenance during the public- 
health emergency, while middle- and higher-income populations could 
more readily work and organize childcare from home (Dimke et al., 
2020; Ruiz-Euler et al., 2020). 

Our results also highlight that the mobility gap is more complex than 
simply the higher income group traveling more before the pandemic and 
less during the pandemic. Spatial characteristics of neighborhoods such 
as higher levels of walkability and transit accessibility impact travel 
outcomes beyond income or socio-economic status and the direction-
ality of such impacts was further affected by the pandemic. In 2019, 
before the pandemic, we observed that living in a transit-served neigh-
borhood was related to lower trip lengths and a higher proportion of 
city-wide CBGs reached, on average across all SEI groups, but longer trip 
lengths among the high SEI groups. This suggested that high SEI resi-
dents living in transit-rich areas may be benefitting from other attractive 
neighborhood qualities that come with density and transit access, while 
still using private automobiles for most of their travel. During the 
pandemic, even average residents living in a transit-served neighbor-
hood reduced their trip distance less than an average resident in a 
transit-poor area, suggesting a broader shift to automobile travel in 
transit-oriented areas during the public health emergency. This signals a 
long-term challenge to regain trust and re-establish habits of using 
public transportation in U.S. cities across income and class spectra. 

Residing in more walkable and amenity-rich neighborhoods, on the 
other hand, was correlated with overall reductions in trip lengths and 
travel extents before the pandemic, but again the effect clearly differed 
by socio-economic class—living in a more walkable area further reduced 
trip lengths and city-wide travel for high SEI residents, who could afford 
to patronize local amenities. We did not observe any WalkScore effect 
for trip lengths and city-wide travel extents for lowest SEI residents, who 
may be priced out of more expensive amenities in walkable neighbor-
hoods or because their amenity-needs are under-represented in walkable 
neighborhoods, and whose mobility range thus remained unaffected. 
The same difference persisted during the pandemic—we found that 
living in more walkable areas further reduced travel for the highest SEI 
residents during the pandemic, but not the lowest SEI residents. Among 
the latter, living in high WalkScore areas was in fact related to a larger 

Trip length Pct city-wide CBGs visited

Fig. 3. (a) City-specific standardized coefficient estimates for average changes in trip length between April–December 2020 for highest and lowest SEI quintile CBGs, 
(d) City-specific standardized coefficient estimates for average changes in proportion of non-home CBGs visited in the city between April–December 2020 for highest 
and lowest SEI quintile CBGs. Whiskers denote 95 % confidence intervals. 

Fig. 4. City-specific standardized estimates of the effect of political inclination 
on pandemic-induced change in destination count between April–December 
2019–2020. 
Note: Whiskers denote 95 % confidence intervals. 
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reduction in retail trips than for other lowest SEI residents who do not 
live in walkable neighborhoods. Our findings suggest that while living at 
a more walkable location does generally benefit higher-SEI groups by 
reducing their need to travel further to access destinations, it does not 
necessarily benefit lower-SEI groups in a similar way. Given that our 
data shows aggregated CBG-level outcomes, it is possible that individual 
low-SEI persons residing in high SEI blocks, or vice versa, could expe-
rience different outcomes. However, the idea of simply affording a home 
in “high-opportunity” neighborhoods may not equalize local accessi-
bility and mobility outcomes without other supportive policies, such as 
affordable commercial amenities. The unaffordability of smaller-scale 
neighborhood amenities could push low SEI residents to travel further 
to big-box retail destination. Such mitigating neighborhood influences 
on mobility outcomes of different socio-economic groups have been 
under-examined so far and our findings call for more research. 

In line with prior research that has explored the effect of political 
ideologies and religious beliefs on compliance with COVID-19 related 
mobility reduction policies (Chan et al., 2020; Hill et al., 2020a; Hill 
et al., 2020b), we found that residents of more Democratically leaning 
CBGs traveled to fewer non-home CBGs in their respective cities city 
during the pandemic across all nine cities (Table 6), and in each of the 
cities individually (all coefficients are significant at 95 % confidence, 
except for 90 % in St. Louis – see Fig. 4). Unlike prior studies, our esti-
mates control for both SEI and location effects, thereby affirming that 
the pandemic's impact on travel behavior is shaped by social standing, 
spatial context, and political ideology simultaneously. 

Travel behavior outcomes also differed by city—the biggest socio- 
economic mobility gaps between high and low SEI group during the 
pandemic were observed in Chicago, Denver, Houston, Los Angeles and 
Philadelphia, while Seattle and Atlanta exhibited relatively small dif-
ferences between the highest and lowest SEI groups' travel behavior. 
Future research could particularly examine why mobility behavior be-
tween the highest and lowest SEI groups is remarkably similar in some 
cities and starkly contrasting in others. Although our descriptive anal-
ysis does not identify causal mechanisms that determine mobility gaps 
within and across American cities, the large datasets on urban mobility 
and place quality explored here can facilitate further research on such 
mechanisms. 

For urban policy making, our findings suggest that strategic policies 
and targeted investment are needed to combat mobility inequality in 
cities. Our findings indicate that lowest SEI groups traveled less than 
highest SEI groups before the pandemic, largely due to higher reliance 
on public transportation. This does not suggest corrective policies that 
would lead to more driving and longer travel distances among the urban 
poor—quite the opposite. In light of urban climate change goals, policy 
innovation is needed to reduce driving and longer trip distances among 
the highest SEI groups in American cities, instead increasing public 
transit use among them. Our data showed that while living near transit 
before the pandemic generally explained lower trip distances but wider 
city-wide travel extents, this was not the case for high SEI CBGs, who 
instead exhibited longer, likely car-based trips from transit-oriented 
areas. To counter transit gentrification and achieve more transit rider-
ship across socio-economic class lines, two types of policies are needed: 
(a) policies that guarantee affordable housing options for lower-income 
residents—who are already most likely to use transit—close to transit 
stations, including preservation of existing low rent homes; and (b) 
policies that induce middle- and higher-income populations to shift from 
automobile use to transit use. The latter entail more investments into the 
spatial coverage, frequency and quality of transit services along with 
more restrictive parking and congestion fees near transit-served inner- 
city neighborhoods. The COVID-19 pandemic has further reduced 
transit ridership among all income groups, suggesting that more im-
mediate campaigns and fare incentives to regain trust and re-establish 
habits for bus and rail travel may be needed. 

Our analysis also showed uneven mobility behaviors between the 
highest and lowest SEI groups who live in more walkable, amenity-rich 

neighborhoods. While the availability of diverse local destinations in 
such areas tend to reduce the need for longer journey distances and 
wider city-wide travel for higher SEI groups, that was not the case for the 
lowest SEI groups. To address this, affordable housing policies need to be 
extended to commercial space as well. Ensuring that a certain propor-
tion of commercial space in highly walkable areas is available to 
community-servicing businesses at below-market rates can help broaden 
local accessibility to goods and services among lower-income house-
holds, thus helping extend the benefits of walkable neighborhoods to 
more constituents (Sevtsuk, 2020). 

Furthermore, since a great deal of travel for households with children 
involves care-related trips (de Madariaga & Zucchini, 2019), it is also 
important to ensure public investments into childcare, local public 
schools and social institutions, such as public libraries, sports and rec-
reational facilities, freely accessible for all. Our analysis showed that 
higher SEI groups dedicate a higher proportion of trips to parks and 
health-related destinations than lowest SEI groups, and that this gap 
notably widened during the pandemic. Ensuring more local access to 
high-quality parks, health- and social institutions can address mobility 
inequality at the neighborhoods scale. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cities.2022.104006. 
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