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Abstract: Clouds play an important role in the Earth’s energy budget, and their behavior is one of the
largest uncertainties in future climate projections. Satellite observations should help in understanding
cloud responses, but decades and petabytes of multispectral cloud imagery have to date received only
limited use. This study describes a new analysis approach that reduces the dimensionality of satellite
cloud observations by grouping them via a novel automated, unsupervised cloud classification
technique based on a convolutional autoencoder, an artificial intelligence (AI) method good at
identifying patterns in spatial data. Our technique combines a rotation-invariant autoencoder and
hierarchical agglomerative clustering to generate cloud clusters that capture meaningful distinctions
among cloud textures, using only raw multispectral imagery as input. Cloud classes are therefore
defined based on spectral properties and spatial textures without reliance on location, time/season,
derived physical properties, or pre-designated class definitions. We use this approach to generate a
unique new cloud dataset, the AI-driven cloud classification atlas (AICCA), which clusters 22 years of
ocean images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua
and Terra instruments—198 million patches, each roughly 100 km × 100 km (128 × 128 pixels)—into
42 AI-generated cloud classes, a number determined via a newly-developed stability protocol that
we use to maximize richness of information while ensuring stable groupings of patches. AICCA
thereby translates 801 TB of satellite images into 54.2 GB of class labels and cloud top and optical
properties, a reduction by a factor of 15,000. The 42 AICCA classes produce meaningful spatio-
temporal and physical distinctions and capture a greater variety of cloud types than do the nine
International Satellite Cloud Climatology Project (ISCCP) categories—for example, multiple textures
in the stratocumulus decks along the West coasts of North and South America. We conclude that our
methodology has explanatory power, capturing regionally unique cloud classes and providing rich
but tractable information for global analysis. AICCA delivers the information from multi-spectral
images in a compact form, enables data-driven diagnosis of patterns of cloud organization, provides
insight into cloud evolution on timescales of hours to decades, and helps democratize climate research
by facilitating access to core data.

Keywords: cloud classification; MODIS; artificial intelligence; deep learning; machine learning

1. Introduction

Over the past several decades, advancements in satellite-borne remote sensing in-
struments have produced petabytes of global multispectral imagery that capture cloud
structure, size distributions, and radiative properties at a near-daily cadence. While under-
standing trends in cloud behavior is arguably the principal challenge in climate science,
these enormous datasets are underutilized because climate scientists cannot in practice
manually examine them to analyze spatial-temporal patterns. Instead, some kind of au-
tomated algorithm is needed to identify physically relevant cloud types. However, the
diversity of cloud morphologies and textures, and their multi-scale properties, makes
classifying them into meaningful groupings a difficult task.
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Existing classification schemes are necessarily simplistic. The most standard classifica-
tion, the ISCCP (International Satellite Cloud Climatology Project) schema, simply defines
a grid of nine global classes based on low, medium, or high values of cloud altitude (cloud
top pressure) and optical thickness [1–3]. Because this classification is typically applied
pixel by pixel, it cannot capture spatial structures and can produce an incoherent spatial
distribution of cloud types in cloud imagery. The World Meteorological Organization’s
International Cloud Atlas [4], a more complex cloud classification framework, defines 28
different classes (of which 10 are considered ‘basic types’) with a complex coding procedure
that depends on subjective judgments, such as whether a cloud has yet “become fibrous
or striated.” The schema is subjective and difficult to automate, and furthermore does not
capture the full diversity of important cloud types. For example, it does not distinguish
between open- and closed-cell stratocumulus clouds, placing them both in “stratocumulus,”
though the two have different circulation patterns, rain rates, and radiative effects [5].
Because the human eye serves as a sensitive tool for pattern classification, human observers
can in principle group clouds into a larger set of types based on texture and shape as well as
altitude and thickness. In practice, however, it has been difficult to devise a set of artificial
cloud categories that encompass all cloud observations and can be applied consistently by
human labelers.

These issues motivate the application of artificial intelligence (AI)-based algorithms for
cloud classification. In the last several years, a number of studies have sought to develop
AI-based cloud classification by using supervised learning [6–10]. In these approaches, ML
models are trained to classify cloud images based on a training set to which humans have
assigned labels. However, the difficulty of generating meaningful and consistent labels is a
constant problem, and supervised learning approaches tend to succeed best when used on
limited datasets containing classic examples of well-known textures. For example, Rasp
et al. [7] classified just four particular patterns of stratocumulus defined and manually
labeled by Stevens et al. [11]. Supervised methods cannot discover unknown cloud types
that may be relevant to climate change research.

To serve the needs of climate research free from assumptions that may limit novel
discoveries, the more appropriate choice is unsupervised learning, in which unknown pat-
terns in data are learned without requiring predefined labels. The first demonstrations of
unsupervised methods applied to cloud images were made in the 1990s [12,13]. Even with
the primitive neural networks then available, Tian et al. [13] showed that cloud images from
the GOES-8 satellite could be sorted automatically into ten clusters that reproduced the ten
‘basic’ WMO classes with 65–75% accuracy. In 2019, Denby [14] and Kurihana et al. [15]
leveraged advances in deep neural network (DNN) methods to prototype unsupervised
cloud classification algorithms that used convolutional neural networks (CNNs, DNNs with
convolutional layers) and produced cloud classes from the resulting compact representa-
tions via hierarchical agglomerative clustering (HAC) [16]. Both works used only 12 classes
and neither was rotation-invariant, but both successfully produced reasonable-seeming
classifications—for Denby [14], from near-infrared images from the GOES satellite in the
tropical Atlantic, and for Kurihana et al. [15], from global multispectral images from the
Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on NASA’s Aqua
and Terra satellites). Kurihana et al. [15] were the first to use an autoencoder [17], a class
of unsupervised DNNs widely used for dimensionality reduction, for cloud classification,
and Kurihana et al. [18] extended the work by adding a more complex loss function to the
autoencoder to produce rotation-invariant cloud clustering (RICC). Kurihana et al. [18]
also developed a formal evaluation protocol to ensure that the resulting cloud classes were
physically meaningful.

The work described here builds on these previous results to generate a standardized
science product: an AI-driven Cloud Classification Atlas (AICCA) of global-scale unsuper-
vised classification of MODIS satellite imagery into 42 cloud classes. We first describe and
apply the protocol that we have developed to determine this optimal number of clusters
when applying RICC to the MODIS dataset. (The first author calculated this number before
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being informed of its occurrence in an unrelated context [19]). We demonstrate that the
resulting classes are coherent geographically, temporally, and in altitude-optical depth
space. Finally, we describe a workflow that allows us to apply the RICC42 algorithm to the
full two decades of MODIS imagery to provide a publicly available dataset. The result is an
automated, unsupervised classification process that discovers classes based on both cloud
morphology and physical properties to yield unbiased cloud classes free from artificial
assumptions that capture the diversity of global cloud types. AICCA is intended to support
studies of the response of clouds to forcing on timescales from hours to decades and to
allow data-driven diagnosis of cloud organization and behavior and their evolution over
time as CO2 and temperatures increase.

We describe this dataset as follows: Section 2 describes the MODIS imagery, infor-
mation used, and structure of output data. Section 3 describes the algorithm used for
classification, including the training procedure on one million randomly selected ocean-
cloud patches (Section 3.2). Section 4 evaluates the stability of the clustering step, and
Section 5 describes the characteristics of the resulting cloud clusters: their distribution
geographically, seasonally, and in altitude-optical depth space.

2. AICCA: Data and Outputs

The dataset described in this article, AICCA42 (or simply AICCA), provides AI-
generated cloud class labels for all 128 × 128 pixels (∼100 km by 100 km) ocean cloud
patches sampled by MODIS instruments over their 22 years of operation. (An ocean cloud
patch is defined as a patch with only ocean pixels and at least 30% cloud pixels). The cloud
labels are generated by the rotation-invariant cloud clustering (RICC) method of Kurihana
et al. [18]. In general, clusters produced by RICC may vary according to (1) the patches
used to train RICC, (2) the number of clusters chosen, and (3) the patches to which the
trained RICC is applied to generate centroids. We therefore define AICCA42 as the dataset
produced by training RICC on a subset of the data described in Section 2.1, clustered
into 42 classes with a set of reference centroids based on OC-PatchesHAC, as defined in
Section 4.4.

The labeled output is provided in two ways: per patch, which provides the finest
granularity of labels and associated physical properties, and resampled to 1◦ × 1◦ grid cells,
which supplies information in a daily global grid format that is familiar to climate scientists.

2.1. MODIS Data

The MODIS instruments hosted on NASA’s Aqua and Terra satellites have been
collecting visible to mid-infrared radiance data in 36 spectral bands from 2002 (Aqua) [20]
and 2000 (Terra) [21] through 2021. The instruments collect data over an approximately
2330 km by 2030 km swath every five minutes, with a spatial resolution of 1 km. AICCA
is based on the MODIS Level 1B calibrated radiance product (MOD02). (Note that, while
NASA uses the prefixes MOD and MYD to distinguish between Terra and Aqua, respectively,
for simplicity, we use MOD to refer to both throughout this article). We limit the dataset to the
six spectral bands most relevant for derivation of physical properties: bands 6, 7, and 20 relate to
cloud optical properties, and bands 28, 29, and 31 relate to the separation of high and low clouds
and the detection of the cloud phase. For the Aqua instrument, we use band 5 as an alternative
to band 6 due to a known stripe noise issue in Aqua band 6 [22]. (See also Kurihana et al. [18]
for more details). The total number of swath images per band is (12 swath/h) × (12 h/day) ×
(365 day/year) × (20 + 22 years, for Aqua and Terra, respectively) ≈ 2.2 million.

MODIS multispectral data are processed by NASA to yield a variety of derived
products, several of which we employ for post-processing or analysis. We take latitude
and longitude from the MOD03 geolocation fields to regrid the AICCA patches, and use
selected derived physical properties from the MOD06 product to evaluate the cloud classes:
four physical parameters related to cloud optical properties and cloud top properties.
Note that we employ the MOD06 variables only as a diagnostic, to evaluate associations
between AICCA clusters and cloud physical properties. They are not included in our RICC
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training data, which are thus free from any assumptions made by the producers of MOD06
variables. The data used in generating AICCA, listed in Table 1, have an aggregate size of
801 terabytes. All MODIS products are accessible via the NASA Level-1 and Atmosphere
Archive and Distribution System (LAADS), grouped into per-swath files.

Table 1. MODIS products used to create the AICCA dataset. Each product name MOD0X in the first
column refers to both the Aqua (MYD0X) and Terra (MOD0X) products. Source: NASA Earthdata.

Product Description Band Primary Use Process

MOD02 Shortwave infrared (1.230–1.250 µm) 5 Land/cloud/aerosol properties


Section 3.1

Shortwave infrared (1.628–1.652 µm) 6 Land/cloud/aerosol properties
Shortwave infrared (2.105–2.155 µm) 7 Land/cloud/aerosol properties
Longwave thermal infrared (3.660–3.840 µm) 20 Surface/cloud temperature
Longwave thermal infrared (7.175–7.475 µm) 28 Cirrus clouds water vapor
Longwave thermal infrared (8.400–8.700 µm) 29 Cloud properties
Longwave thermal infrared (10.780–11.280 µm) 31 Surface/cloud temperature

MOD03 Geolocation fields Latitude and Longitude
 Section 3.1MOD06 Cloud mask Cloud pixel detection

Land/Water Background detection
Cloud optical thickness Thickness of cloud

 Section 3.3Cloud top pressure Pressure at cloud top
Cloud phase infrared Cloud particle phase
Cloud effective radius Radius of cloud droplet

2.2. AICCA Patch-Level Data

The AICCA dataset uses all patches from Aqua and Terra MODIS image data dur-
ing 2000–2021, subject to the constraints that they (1) are disjoint in space and/or time;
(2) include no non-ocean pixels, and 3) each includes at least 30% cloud pixels. The re-
sulting set comprises about 198,676,800 individual 128 × 128 pixel (∼100 km by 100 km)
ocean-cloud patches, for each of which AICCA42 provides the following information (and
see Table 2):

• Source is either Aqua or Terra;
• Swath, Location, and Timestamp locate the patch in time and space;
• Training indicates whether the patch was used for training;
• Label is an integer in the range 1..42, generated by the rotation-invariant cloud cluster-

ing system configured for 42 clusters, RICC42 (see Section 4 for the stability protocol
used to select this number of clusters);

• COT_patch, CTP_patch, and CER_patch, the mean and standard deviation, across all
pixels in the patch, for three MOD06 physical values: cloud optical thickness (COT),
cloud top pressure (CTP), and cloud effective radius (CER); and

• CPI_patch, cloud phase information (CPI), four numbers representing the number
of the 128 × 128 pixels in the patch that are estimated as clear-sky, liquid, ice, or
undefined, respectively.

The resulting 146 bytes per patch represents a 16,159 × reduction in size relative to
the raw multispectral imagery.

The additional information shown in Table 2 to assist users in understanding individ-
ual patches is extracted from MOD06 by using the patch’s geolocation index and timestamp
(Location and Timestamp in Table 2) to locate the patch’s data in the appropriate MOD06
file. These mean values summarize the patch’s average physical characteristics; the stan-
dard deviations provide some indication as to the existence of multiple clouds (especially
low- and high-altitude clouds). We do not use the MOD06 multilayered cloud flag.

Output is provided as NetCDF [23] files that combine patches from each MODIS
swath into a single file. While AICCA contains no raw satellite data, it includes for each
patch an identifier for the source MODIS swath and a geolocation index; thus, users can
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easily link AICCA results with the original MOD02 satellite imagery and other MODIS
products. The complete OC-Patches set contains around (20 + 22 years) × (365 days/year)
× (26,000 patches) ×146 B ≈ 54.2 gigabytes.

Table 2. Information provided in AICCA for each 128 × 128 pixel ocean-cloud patch: metadata that
locate the patch in space and time, and indicate whether the patch was used to train RICC; a cloud
class label computed by RICC; and a set of diagnostic quantities obtained by aggregating MODIS
data over all pixels in the patch. A quotation mark indicates a repetition.

Variables Description Values Type

Swath Identifier for source MODIS swath 1 float32
Location Geolocation index for the upper left corner of patch 2 float32

Timestamp Time of observation 1 float32
Training Whether patch used for training 1 binary

Label Class label assigned by RICC: integer in range 1..k∗ 1 int32

COT_patch Mean and standard deviation of pixel values in patch 2 float32
CTP_patch " " "
CER_patch " " "
CPI_patch Number of pixels in patch in {clear-sky, liquid, ice, undefined} 4 int32

2.3. AICCA Grid Cell-Level Data

In addition to providing per-patch data, we follow common practice in climate datasets
by also providing data organized on a per-latitude/longitude grid cell basis. The second
element of the AICCA42 dataset spatially aggregates the patch-level class label and diag-
nostic values at a resolution of 1◦ × 1◦, a total of 181 × 360 grid cells over the globe. For
each grid cell, AICCA42 provides the information listed in Table 3, a total of 32 bytes:

• Source is either Aqua or Terra;
• Cell gives a latitude and longitude for the grid cell;
• Timestamp locates the grid cell in time;
• Label_1deg represents the most frequent class label in the grid cell (an integer in the

range 1..42); and
• COT_1deg, CTP_1deg, CER_1deg, and CPI_1deg aggregate values for four diagnostic

variables, as described in Section 2.3.

The aggregation process uses values from individual days from the Aqua and Terra
satellites, a reasonable choice since the swaths taken by each satellite’s MODIS instrument
generally do not overlap in a daily period. Since a single 2330 km by 2030 km MODIS
swath extends across multiple 1 degree by 1 degree grid cells, we extract the latitude and
longitude at the center of each OC-Patch by using MOD03, and aggregate the information
listed in Table 2 to each 1◦ × 1◦ grid cell (i.e., the area extending from −0.5◦ to +0.5◦ from
the grid cell center). To assign a class label to each grid cell on each day, we use the class
of the single ocean-cloud patch with the largest overlap with the grid cell. To provide
physical properties for each grid cell, we implement one simplification to reduce the use of
computing memory: instead of averaging pixel values within each grid cell, we identify all
ocean-cloud patches that overlap with the cell, and simply average those patches’ mean
COT, CTP, and CER values. To assign a cloud particle phase (clear–sky, liquid, ice, or
undefined), we use the most frequent phase in the overlapping patches. Grid cells with no
clouds are labeled as a missing value.

In some cases, especially at high latitudes, swaths may overlap within a single day.
When this occurs, patches with different timestamps will overlap a given grid cell on the
same day. In these cases, we discard one timestamp, to avoid inconsistent values between
grid cells. That is, when accumulating the most frequent label and aggregating values
on the overlapping cell, we use only those patches with a timestamp close to that of the
neighboring grid cells. This neighboring selection mitigates the problem of inconsistent
values between nearly grid cells due only to timing. Finally, we accumulate the aggregated



Remote Sens. 2022, 14, 5690 6 of 28

grid-cell values to create the daily files. Given the MODIS orbital coverage, the complete
OC-Gridcell set contains around (20 + 22 years) × (365 days/year) × (65,160 grid cells) ×
32 B ≈ 29.8 gigabytes.

Table 3. AICCA information for each 1◦ × 1◦ grid cell: a cloud class label computed by RICC and
diagnostic quantities obtained by aggregating MODIS data over all patch pixels for that grid cell.

Variables Description Values Type

Cell (lat, long) for grid cell 2 float32
Timestamp Time of observation 1 float32

Label Most frequent class label in grid cell 1 int32

COT_1deg Mean of pixel values in grid cell 1 float32
CTP_1deg " " "
CER_1deg " " "
CPI_1deg Most frequent particle phase in grid cell 1 int32

3. Constructing AICCA

The AICCA production workflow, shown in Figure 1, consists of four principal stages:
(1) download, archive, and prepare MODIS satellite data; (2) train the RICC unsupervised
learning algorithm, and cluster cloud patterns and textures; (3) evaluate the reasonableness
of the resulting clusters and determine an optimal cluster number; and (4) assign clusters
produced by RICC to other MODIS data unseen during RICC training. We describe each
stage in turn. The RICC code and Jupyter notebook [24] used in the analysis are available
online [25], and the trained RI autoencoder used for this study is archived at the Data and
Learning Hub for science (DLHub) [26], a scalable and low-latency model repository to
share and publish machine learning models to facilitate reuse and reproduction.

3.1. Stage 1: Download, Archive, and Prepare MODIS Data

Download and archive. As noted in Section 2.1, we use subsets of three MODIS products
in this work, a total of 801 terabytes for 2000–2021. In order to employ high-performance
computing resources at Argonne National Laboratory for AI model training and inference,
we copied all files to Argonne storage. Transferring the files from NASA archives is rapid
for the subset that are accessible on a Globus endpoint at the NASA Center for Climate
Simulation, which can be transferred via the automated Globus transfer system [27]. The
remaining files were transferred from NASA LAADS via the more labor-intensive option
of wget commands, which we accelerated by using the funcX [28] distributed function-as-
a-service platform to trigger concurrent downloads on multiple machines.

Prepare. The next step involves preparing the patches used for ML model training and infer-
ence. We extract from each swath multiple 128 pixel by 128 pixel (roughly 100 km× 100 km)
non-overlapping patches, for a total of ∼331 million patches. We then eliminate those
patches that include any non-ocean pixels as indicated by the MOD06 land/water indicator,
since, in these cases, radiances depend in part on underlying topography and reflectance.
(Note that even ocean-only pixels may involve surface-related artifacts in cases when the
ocean is covered in sea ice). We also eliminate those with less than 30% cloud pixels, as
indicated by the MOD06 cloud mask. The result is a set of 198,676,800 ocean-cloud patches,
which we refer to in the following as OC-Patches. For each ocean-cloud patch, we take
from the MOD02 product six bands (out of 36 total) for use in training and testing the
rotation-invariant (RI) autoencoder. We also extract the MOD04 and MOD06 data used for
location and cluster evaluation, as described in Section 2. For an in-depth discussion of
data selection, see Kurihana et al. [18].

We also construct a training set OC-PatchesAE by selecting one million patches at
random from the entirety of OC-Patches. Because we do not expect our unsupervised RI
autoencoder to be robust to the MODIS data used for training, we collect the 1M patches
that they are not overly imbalanced among seasons or locations.
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Figure 1. The AICCA production workflow comprises four principal stages. (1) Download/Archive
and Prepare MODIS data: Download calibrated and retrieved MODIS products from the NASA
Level-1 and Atmosphere Archive and Distribution System (LAADS), using FuncX and Globus for
rapid and reliable retrieval of 801 terabytes of three different MODIS products between 2000–2021.
Store downloaded data at Argonne National Laboratory. Select six near-infrared to thermal bands
related to clouds and subdivide each swath into non-overlapping 128 × 128 pixel patches by six
bands. Select patches with >30% cloud pixels over ocean regions, and apply a circular mask for
optimal training of our rotation-invariant autoencoder, yielding OC-Patches. (2) Train RICC: Train
an autoencoder on 1 M randomly selected patches to generate latent representations, and cluster
those latent representations to determine cluster centroids [18]. (3) Evaluate clusters: Apply five
protocols to evaluate whether the clusters produced are meaningful and useful. (4) Assign clusters:
Use trained autoencoder and centroids to assign cloud labels to unseen data. We use the Parsl parallel
Python library to scale the inference process to hundreds of CPU nodes plus a single GPU, and to
generate the AICCA dataset in NetCDF format. We then calculate physical properties and other
metadata information for each patch and for each 1◦ × 1◦ grid cell.

3.2. Stage 2: Train the RICC Autoencoder and Cluster Cloud Patterns

In this stage, we first train the RI autoencoder and then define cloud categories by
clustering the compact latent representations produced by the trained autoencoder.

Train RICC. The goal of training is to produce an RI autoencoder capable of generating
latent representations (a lower-dimensional embedding as the intermediate layer of the
autoencoder) that explicitly capture the variety of input textures among ocean clouds and
also map to differences in physical properties. We introduce general principles briefly
here; see Kurihana et al. [18] for further details of the RI autoencoder architecture and
training protocol.

An autoencoder [17,29] is a widely used unsupervised learning method that leverages
dimensionality reduction as a preprocessing tool prior to image processing tasks such as
clustering, regression, anomaly detection, and inpainting. An autoencoder comprises an
encoder, used to map input images into a compact lower-dimensional latent representation,
followed by a decoder, used to map that representation to output images. During training,
a loss function minimizes the difference between input and output. The resulting latent
representation in the trained autoencoder both (1) retains only relevant features for the tar-
get application in input images, and (2) maps images that are similar (from the perspective
of the target application) to nearby locations in latent space.
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The loss function minimizes the difference between an original and a restored image
based on a distance metric during autoencoder training. The most commonly used metric
is a simple `2 distance between the autoencoder’s input and output:

L(θ) = ∑
x∈S
||x− Dθ(Eθ(x))||22, (1)

where S is a set of training inputs; θ is the encoder and decoder parameters, for which
values are to be set via training; and x and Dθ(Eθ(x)) are an input in S and its output
(i.e., the restored version of x), respectively. However, optimizing with Equation (1) is
inadequate for our purposes because it tends to generate different representations for
an image x and the rotated image R(x), as shown in Figure 2, with the result that the
two images end up in different clusters. Since any particular physically driven cloud
pattern can occur in different orientations, we want an autoencoder that assigns cloud
types to images consistently, regardless of orientation. Other ML techniques that com-
bine dimensionality reduction with clustering algorithms have not addressed the issue of
rotation–invariance within their training process. For example, while non-negative matrix
factorization (NMF) [30] can approximate input data into a low-dimensional matrix—i.e.,
produce a dimensionally reduced representation similar to an autoencoder—that can be
used for clustering, applications of NMF are not invariant to image orientation.

We have addressed this problem in prior work by defining a rotation-invariant loss
function [18] that generates similar latent representations, agnostic to orientation, for similar
morphological clouds (Figure 2b). This RI autoencoder, motivated by the shifted transform
invariant autoencoder of Matsuo et al. [31], uses a loss function L that combines both
a rotation-invariant loss, Linv, to learn the rotation invariance needed to map different
orientations of identical input images into a uniform orientation, and a restoration loss,
Lres, to learn the spatial structure needed to restore structural patterns in inputs with high
fidelity. The two loss terms are combined as follows, with values for the scalar weights λinv
and λres chosen as described below:

L = λinvLinv + λresLres, (2)

The rotation-invariant loss function Linv computes, for each image in a minibatch, the
difference between the restored original and the 72 images obtained by applying a setR
of 72 scalar rotation operators, each of which rotates an input by a different number of
degrees in the set {0, 5, ..., 355}:

Linv(θ) =
1
N ∑

x∈S
∑

R∈R
||Dθ(Eθ(x))− Dθ(Eθ(R(x)))||22. (3)

Thus, minimizing Equation (3) yields values for θ that produce similar latent represen-
tations for an image, regardless of its orientation.

The restoration loss, Lres(θ), learns the spatial substructure in images by computing
the sum of minimum differences over the minibatch:

Lres(θ) = ∑
x∈S

min
R∈R
||R(x)− Dθ(Eθ(x))||22. (4)

Thus, minimizing Equation (4) results in values for θ that preserve spatial structure
in inputs.

Our RI autoencoder training protocol [18], which sweeps over (λinv, λres) values,
identifies (λinv, λres) = (32, 80) as the coefficients for the two loss terms that best bal-
ance the transform-invariant and restoration loss terms. We note that the specific values
of the two coefficients, not just their relative values, matter. For example, the values
(λinv, λres) = (32, 80) give better results than (λinv, λres) = (3.2, 8.0).
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Figure 2. Illustration of the learning process when training (a) a conventional autoencoder with
Equation (1) vs. (b) a rotation-invariant autoencoder with Equation (2). Because a conventional
autoencoder reflects orientation in the latent representation, two input images that are identical in
texture but different in orientation are assigned to different clusters, A and B. The rotation-invariant
autoencoder produces a latent representation that is agnostic to orientation, allowing clustering to
group both together.

The neural network architecture is the other factor needed to achieve rotation in-
variance: Following the heuristic approach of deep convolutional neural networks, we
designed an encoder and decoder that stack five blocks of convolutions, each with three
convolutional layers activated by leaky ReLU [32], and with batch normalization [33]
applied at the final convolutional layer in each block before activation. We train our RI
autoencoder on our one million training patches for 100 epochs by using stochastic gradient
descent with a learning rate of 10−2 on 32 NVIDIA V100 GPUs in the Argonne National
Laboratory ThetaGPU cluster.

Cluster Cloud Patterns. Once we have applied the trained autoencoder to a set of
patches to obtain latent representations, we can then cluster those latent representations to
identify the centroids that will define our cloud clusters. We use hierarchical agglomerative
clustering (HAC) [16] for this purpose, and select Ward’s method [34] for the linkage metric,
so that HAC minimizes the variance of square distances as it merges clusters from bottom
to top. We have shown in previous work [35] that HAC clustering results outperform those
obtained with other common clustering algorithms.

Given N data points, a naive HAC approach requires O(N2) memory to store the
distance matrix used when calculating the linkage metric to construct the tree structure [36]
—which would be impractical for the one million patches in OC-PatchesAE. Thus, we
use a smaller set of patches, OC-PatchesHAC, comprising 74911 ocean-cloud patches from
the year 2003 (the first year in which both Terra and Aqua satellites ran for the entire
year concurrently) for the clustering phase. We apply our trained encoder to compute
latent representations for each patch in OC-PatchesHAC and then run HAC to group those
latent representations into k∗ clusters, in the process identifying k∗ cluster centroids and
assigning each patch in OC-PatchesHAC a cluster label, 1..k∗. The sequential scikit-learn [37]
implementation of HAC that we use in this work takes around 10 hours to cluster the
74911 OC-PatchesHAC patches on a single core. While we could use a parallelizable HAC
algorithm [38–40] to increase the quantity of data clustered, this would not address the
intrinsic limitation of our clustering process given the 801 terabytes of MODIS data.

3.3. Stage 3: Evaluate Clusters Generated by RICC

A challenge when employing unsupervised learning is to determine how to evaluate
results. While a supervised classification problem involves a perfect ground truth against
which to output can be compared, an unsupervised learning system produces outputs
whose utility must be more creatively evaluated. Therefore, we defined in previous work a
series of evaluation protocols to determine whether the cloud classes derived from a set of
cloud images are meaningful and useful [18]. We seek cloud clusters that: (1) are physically
reasonable (i.e., embody scientifically relevant distinctions); (2) capture information on spatial
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distributions, such as textures, rather than only mean properties; (3) are separable (i.e., are
cohesive, and separated from other clusters, in latent space); (4) are rotationally invariant
(i.e., insensitive to image orientation); and (5) are stable (i.e., produce similar or identical
clusters when different subsets of the data are used). We summarize in Table 4 these criteria
and the quantitative and qualitative tests that we have developed to validate them.

Table 4. Our five evaluation criteria protocol, as described in Kurihana et al. [18], and protocols for
meeting them. In that work, we used the first four criteria to demonstrate that our quantitative and
qualitative evaluation protocols can distinguish useful from non-useful autoencoders, even when
common ML metrics such as `2 loss show insignificant differences. In the current work, we describe
a protocol to ensure meeting the last criterion, stability.

Criterion Test Requirement

Physically reasonable Cloud physics Non-random distribution; median inter-cluster correlation < 0.6

Spatial distribution

Spatial coherence Spatially coherent clusters

Smoothing Low adjusted mutual information (AMI) score

Scrambling Low AMI score

Separable Separable clusters No crowding structure

Rotationally invariant Multi-cluster AMI score closer to 1.0

Stable

Significance of cluster stability Ratio of Rand Index G/R ≥ 1.01

Similarity of clusterings Higher Adjusted Rand Index (ARI)

Similarity of intra-cluster textures Lower weighted average mean square distance

Clusters capture seasonal cycle Minimal seasonal texture difference

In our previous work [18], we showed that an analysis using RICC to separate cloud
images into 12 clusters satisfies the first four of these criteria. In this work, we describe how
we evaluate the last criterion, stability. Specifically, we evaluate the extent to which RICC
clusters cloud textures and physical properties in a way that is stable against variations
in the specific cloud patches considered, and that groups homogeneous textures within
each cluster. We describe this process in Section 4 in the context of how we estimate the
optimal number of clusters for this dataset when maximizing stability and similarity in
clustering. For the remaining criteria, the clusters necessarily remain rotationally invariant,
and we present in Section 5 results further validating that the algorithm, when applied to a
global dataset, produces clusters that show physically reasonable distinctions, are spatially
coherent, and involve distinct textures (i.e., learn spatial information).

3.4. Stage 4: Assign Cluster Labels to Patches

We have so far trained our RI autoencoder on the 1 million patches in OC-PatchesAE
and applied HAC to the 74,911 patches in OC-PatchesHAC to obtain a set of k∗ cluster
centroids, µ = {µ1, . . . , µk∗}, where k∗ is the number of clusters defined in Section 3.3. We
next want to assign a cluster label to each of the 198 million patches in OC-Patches. We
do this by identifying for each patch xi the cluster centroid µk with the smallest Euclidean
distance to its latent representation, z(xi). We use Euclidean distance as our metric because
our HAC algorithm uses Ward’s method with Euclidean distance. That is, we calculate the
cluster label assignment ck,i for the i-th patch as:

ck,i = arg min
k={1,...,k∗}

||z(xi)− µk||2. (5)

This label prediction or inference process is easily parallelized. We use the Parsl parallel
Python library [41], which enables scalable execution on many processors via simple
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Python decorators, for this purpose. We observe an execution time of 533 seconds per day
of MODIS imagery (∼13,000 patches) on 256 cores of the Argonne Theta supercomputer.

4. Evaluating Cluster Stability

Cluster stability is an important property for a cloud classification algorithm [15]. A
clustering method is said to be stable for a dataset, D, and a number of clusters, k, if it
produces similar or identical clusters when applied to different subsets of D. As noted in
Table 4, we define four tests to evaluate this criterion:

1. We measure clustering similarity by generating clusterings for different subsets of the
same dataset, and calculating the average distance between those clusterings.

2. We measure clustering similarity significance by comparing each clustering similarity
score to that obtained when our clustering method is applied to data from a uniform
random distribution.

3. We measure intra-cluster texture similarity by calculating the average distance between
latent representations in each cluster.

4. We measure seasonal stability by comparing intra-cluster texture similarity for patches
from January and July.

We are concerned not only to determine whether our clustering method, RICC, gen-
erates clusters that are stable, but also to identify the optimal number of clusters, k∗, to
use for AICCA. In determining that number, we must consider all four tests just listed:
we want a high clustering similarity, a high significance (certainly greater than 1), a low
intra-cluster similarity score, and low intra-seasonal texture differences.

For all of our stability tests, we work with D = {OC-Patches from 2003 to 2021, inclu-
sive}. |D| ≈ 180 M. (We do not consider data from 2000–2002 because Terra and Aqua
were not operating at the same time for an entire year-long observation during that period).
We create a holdout subset H with number of patches NH = 14,000, and create 30 random
subsets Si with NR = 56,000 by sampling without replacement from D \ H. This procedure
ensures that the different Si are mutually exclusive and that there is no intersection between
our holdout set H and the random subsets. The ratio NH : NR of 20 : 80 is standard practice.
We then create our 30 test datasets as H ∪ Si for ∀i ∈ {1, . . . , 30}.

In the remainder of this section, we describe four stability tests, whose results are
shown in Figures 3 and 4. These tests lead us to choose 42 as the optimal number of clusters.
We also conduct additional evaluations of whether the result of using RICC with 42 clusters
creates cloud classes that have reasonable texture and physical properties, when compared
to similar exercises with suboptimal numbers of clusters.

4.1. Stability Test 1: Clustering Similarity

We measure clustering similarity by first generating clusterings for different subsets
of the target dataset and then calculating the average pairwise distance between those
clusterings. This approach is documented as Algorithm A1 in Appendix A.2. As described
above, we work with sets H ∪ Si, i ∈ 1..30, to generate 30 different clustering assignments
via a trained RICC. We compute the adjusted Rand index, ARI (Appendix A.1), as a measure
of pairwise distance between pairs of clusterings. We average among the 30 clusterings
generated by the models {RICCi

k, i ∈ 1..30} to determine the mean clustering similarity for
that specific cluster number k, and then calculate the ARI for all (30

2 ) = 435 combinations of
those 30 clusterings to determine the mean ARI score G. See Appendix A.2 for details.
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Figure 3. Plots for the first three stability criteria metrics of Table 4, each as a function of the number of
clusters. (a) Clustering similarity: Adjusted Rand Index (ARI) as a measure of similarity of clusterings
generated by RICC models trained on different subsets of patches. (b) Clustering similarity significance:
The blue line represents the ratio of the mean Rand Index based on RICC applied to our holdout
patches {x | x ∈ H} (G) to the mean Rand Index from HAC applied to random uniform distributions
(R). The red dashed line is G/R ≥ 1.01, indicating that the stability of cluster label assignments
produced from RICC is ≥1% better than results of simply clustering random uniform data. (c) Intra-
cluster texture similarity: The blue line shows the weighted average of the mean squared Euclidean
distance between pairs of patches within each cluster. Lower values suggest more homogeneous
textures and physical features within each cluster. The use of three similarity tests allows for achieving
both stability and maximality criteria when grouping clusters.
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Figure 4. Seasonal stability test comparing the intra-seasonal variance of textures within each cluster
as a function of the number of clusters. Each of 9 · k colored dots for each value of k gives the average
squared distance (left y-axis) between July and January patches as described in the text; the color
indicates cluster density, a measure of cluster size. The black line shows the mean WASD (right
y-axis) from nine trials as described in text. The blue line shows a smoothed WASD curve obtained
by applying a Savitzky–Golay filter with a degree six polynomial. The minimum WASD value in
40 ≤ k∗ ≤ 48 occurs at k = 42, motivating our choice for AICCA.
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The optimal number of clusters k∗ should have G > 0, and a higher score indicates
that patches are more stably grouped into the same clusters. Figure 3a shows that the
mean ARI drops from 0.48 at eight clusters to 0.32 at 48 clusters, and then continues to
decline to below 0.3 after 68 clusters. Although the ARI score of 0.32 with 48 clusters
is far from the perfect score of 1, previous literature [42] on the relative association of
ARI scores and supervised learning measures for multiclass datasets reports that an ARI
of 0.29 corresponds to 63.13% in the classification correct percentage rate (COR) in the
configuration of supervised learning, and that an ARI of 0.46 corresponds to 62.4% in COR.
In addition, visual inspection suggests that the clusters produced by the RICC stably group
similar cloud patterns.

4.2. Stability Test 2: Significance of Similarities

Having determined how cluster similarity scores vary with the number of clusters,
we next turn to the question of whether these values are significant. Following Von
Luxburg [43], we compare cluster similarity scores, as shown in Algorithm A2 in Ap-
pendix A.3, against those obtained when the same method is applied to data generated
not by our trained autoencoder but from a random uniform distribution clustered with
the same HAC method. We then compute the mean clustering similarity score G from
our patches and R from the data from the random uniform distribution for each k for all
435 combinations, though here we use the Rand index (as described in Appendix A.1)
rather than ARI, as we are not comparing scores across k. We can then compare how the
ratio between those two values varies with number of clusters. A ratio > 1 indicates that
cluster assignments are more stably grouped than would be expected by chance; a value of
1 indicates that there is no benefit to adding extra clusters.

We expect the ratio G/R to be more than 1 if RICC cluster assignments are more
stable than than those obtained on the null reference distribution. We set a threshold of
G/R ≥ 1.01, meaning that the results obtained with RICC should be 1% or more better than
those with the null distribution. Figure 3b shows the significance of the stability values
G/R as a function of the number of clusters k. The significance curve drops to 1.01 at 50
clusters, indicating an optimal cluster number k∗ < 50.

4.3. Stability Test 3: Intra-Cluster Texture Similarity

A stable clustering should group patches with similar textures within the same cluster.
To determine whether a clustering has this property, we examine how the average distance
between latent representations within each cluster changes when we apply RICC to create
different numbers of clusters. The mean distance between pairs of latent representations in
a cluster relates to their similarity of texture, as our RI autoencoder learns texture features
and encodes those features in latent representations. Specifically, we calculate the mean
squared Euclidean distance between the latent representations computed for patches in
our holdout set H.

For a clustering with k clusters, let nc be the number of elements in cluster c, and
y1 .. ync be the patches in that cluster. As cluster sizes can vary, we weight each clus-
ter’s mean distance by wc = nc/ ∑k

i=1 ni, to obtain a weighted average mean squared
Euclidean distance:

dk =
k

∑
c=1

(
wc

m

∑
i=1

m

∑
j>i

||z(yi)− z(yj)||22
m
2 (m− 1)

)
where m = min(nc, Np), (6)

where z represents the latent representations generated by our RI autoencoder, and Np is
the maximum number of patches to consider in the distance calculation—a limitation used
to accelerate calculations. We set Np = 200 for our tests. Note that, when the total number
of clusters is large, some individual clusters may have a size less than this limit.

We calculate Equation (6) for k from 8 to 256 for each of our 30 clusterings of test
subsets {RICC1

k(H), . . . , RICC30
k (H)}, and then compute the mean value across clusterings.

The resultant weighted average distance decreases monotonically with the cluster number k:
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see Figure 4c, as does the metric G/R from test 2, but the trends have opposite implications:
lower values are worse in test 2 but better in test 3. A lower distance value indicates
that cloud texture and physical properties are more homogeneous within a given cluster,
meaning the resultant AICCA dataset provides a more consistent cloud diagnostic. The
implication is that the optimal number of clusters k∗ will be approximately the largest
number that satisfies our criterion in test 2.

In Figure 4c, the distance metric sharply decreases from 8 to 36 clusters, but the slope
then flattens and values are almost unchanged between 40–48 clusters. That is, the pairwise
similarity of latent representations drastically increases between 8 and 36 clusters but
becomes less different among the range between 40–48 clusters. Selection of a k value from
within this range would not change the result significantly. Since test 2 provides an upper
bound of k∗ < 50, the results of test 3 suggest that the optimal number of clusters lies in
40 ≤ k∗ ≤ 48.

To summarize: We observe that, as G/R decreases, ARI also declines, and that our
G/R threshold requires k∗ < 50. We observe that a cluster number in the range 40 ≤ k ≤ 48
satisfies all four stability criteria. We have validated that these choices also satisfy criteria
1–4 in Table 4.

4.4. Stability Test 4: Seasonal Variation of Textures within Clusters

The results of the three tests above indicate that choices in the range 40 ≤ k∗ ≤ 48 will
yield clusters that not only are stably assigned but also group similar cloud texture patterns.
Our final test investigates whether clusters produced via RICC show similar patterns
regardless of season: we compare intra-cluster texture similarity between OC-Patches
from January and July. If differences are small, the number of clusters used is sufficient to
accommodate the large seasonal changes in cloud morphology.

We use RICC with the autoencoder trained on OC-PatchesAE and cluster centroids
based on OC-PatchesHAC, for different numbers of clusters k, as before. For each k, we
then apply the trained RICCk model to the patches in OC-PatchesHAC to assign a label
c ∈ {1, .., k} to each patch, and for each c, extract the latent representations for ms

c randomly
selected July patches and mw

c randomly selected January patches with that label (with ms
c

and mw
c being at most 100 in these analyses, but less if a particular cluster has fewer January

or July patches, respectively), compute an intra-cluster texture similarity score for each set
of July and January patches, and (as in Section 4.3) weight each cluster mean by the actual
ms

c or mw
c so that we can consider texture similarities from many clusters without results

being dominated by trivial clusters that we observe to group fewer similar patches due to
undersampling. We then sum the scores to obtain the overall weighted averaged squared
distance (WASD) for k clusters. In summary:

WASDk =
k

∑
c=1

(
wc

ms
c

∑
i=1

mw
c

∑
j=1

||z(ys
i )− z(yw

j )||22
ms

c ·mw
c

)
(7)

where wc and z are as defined in Section 4.3 and ys = {ys
1 .. ys

ms
c
} and yw = {yw

1 .. yw
mw

c
} are the

January and July patches in cluster c, respectively.
We expand the analysis to account for two additional potential sources of bias. Because

the specific days used in OC-PatchesHAC may affect our results, we assemble two additional
versions of OC-PatchesHAC, selecting two days without replacement from each season
in 2003, as before. The resulting OC-PatchesHAC-2 and OC-PatchesHAC-3 have 77,235 and
76,143 patches, respectively. Similarly, to account for any effect of the random selection
of the ms summer and mw winter patches, we repeat the analysis of Equation (7) three
times for each of OC-PatchesHAC, OC-PatchesHAC-2, and OC-PatchesHAC-3. In this way, we
obtain a total of 9 · k mean squared distance values and nine WASD values for each k in the
range 8 to 256. These are shown as the dots in Figure 4. The WASD curve (black) decreases
with increasing cluster number k, implying as expected that higher cluster numbers allow
for better capturing of seasonal changes. Because a smoothed version of the WASD curve
(blue) has a minimum of k = 42 over the range 40 ≤ k ≤ 48, we choose 42 clusters as the
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optimum number and use this value in the inference step of Section 3.4. Given that the
WMO cloud classes define approximately 28 subcategories, the 42 AICCA clusters should
not overwhelm users who use AICCA to investigate cloud transitions.

4.5. Sanity Check: Comparison of RICCs with Different Number of Clusters to ISCCP Classes

As a final step, to confirm the utility of the choice of 42 classes, we consider whether
and how RICC clusters associate with the nine ISCCP classes. We compare and contrast the
frequencies of co-occurrence of (a) RICC clusters and (b) ISCCP classes, and evaluate how
this relationship varies with cluster number used, considering not only the selected k = 42
but also k = 10, 64, and 256.

Recall that each of the nine ISCCP classes is defined by a distinct range of cloud optical
thickness (COT) and cloud top pressure (CTP) values [3]: high, medium, and low clouds,
and thin, medium, and thick clouds. To compare RICC clusters with ISCCP classes, we
calculate the relative frequency of occurrence (RFO) of RICC clusters across the same two-
dimensional COT–CTP space, a standard approach to evaluating unsupervised learning
algorithms [44–46]. For this evaluation, we use the cluster assignments obtained with
RICC when trained on OC-PatchesAE and OC-PatchesHAC to produce the AICCA dataset,
as described in Section 3. We take the Terra satellite ocean-cloud patches for January and
July 2003, and for each cluster, use the mean and standard deviation of the COT and CTP
values for its patches to define a rectangular region for that cluster within two-dimensional
COT-CTP space that extends for one standard deviation on either side of the mean. We
then calculate the number of clusters that are associated with each of the nine ISCCP classes
by counting the number of clusters that overlap with that region of COT-CTP space and
dividing this number by the total number of cluster-class overlaps for all clusters and
classes. Note that the latter number will typically be greater than the number of clusters
because a single cluster can extend over multiple ISCPP classes.

This analysis shows a similar proportionality between RICC unsupervised learning
clusters and ISCCP observation-based classes. Table 5 compares the resulting proportions
of RICC clusters (for each value of cluster number k) with the simple mapping of all
patches to ISCCP classes based on their COT and CTP values (top line). In all cases, the
Stratocumulus (Sc) class is the largest single category, and medium-thickness clouds (Sc,
As, Cs) predominate at each altitude level.

Stratocumulus (Sc) account for approximately 30% of RICC cluster overlaps, while the
proportion of cloud observations in this category is over 50%. Similarly, for all k values,
relatively few RICC clusters are assigned to high clouds, as expected since these make up
only ~15% of total cloud occurrences. The thin and medium ISCCP classes (Cu, Sc, Ac,
As), which account for 78.4% of cloud occurrence in the MODIS dataset, are represented by
a similar proportion of RICC cluster overlaps: 74.45%, 70.44%, and 71.40% for k = 42, 64,
and 256 clusters, respectively. There is no physical reason that cluster overlaps and cloud
occurrence frequencies need be exactly the same: if, for example, all low medium-thickness
clouds were identical in texture, we would expect that they would be assigned to a single
cluster. However, the similarity of proportions suggests that AICCA captures physically
meaningful distinctions among cloud types.

4.6. Discussion of Stability Protocol Results

We have used the stability protocol described in this section to determine the number
of clusters that both achieves a stable grouping of patches and maximizes the richness of
the information contained in our clusters. Recall that Von Luxburg’s normalized stability
protocol [43] simply minimizes an instability metric to determine the number of clusters
that maximize stability. In contrast, we combine four tests—adjusted cluster similarity,
normalized stability, weighted intra-cluster distance, and seasonal texture differences—to
address the stability criterion. We used these tests to evaluate whether the cloud clusters
produced by our unsupervised learning approach can provide meaningful insights for
climate science applications.
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This use of multiple similarity tests is essential to achieving our goal of both stability
and maximality when grouping clusters. The clustering similarity test gives a mean score of
scaled values calculated by ARI as a measurement of the degree of stability in OC-Patches.
While this value is easy to understand when the resulting mean ARI is close to 1 (i.e.,
OC-Patches are always clustered into the same cluster group), ARI when applied to real
world data could result in a value that is close to neither 0 nor 1 [42].

Table 5. ISCCP: Relative frequencies of occurrence based on mean COT and CTP values for
OC-Patches from January and July, 2003. AICCA: Relative frequencies of occurrence of RICC clusters
over each of the nine ISCCP cloud classes [3], as determined by counting the number of clusters
that overlap (as determined by the mean, plus or minus one standard deviation, of COT and CTP
values for patches within each cluster) with each class, divided by the total number of cluster-class
overlaps. We allow double counts if a cluster overlaps more than one ISCCP class. Results are given
for k=10, 42, 64, and 256 clusters, and for just January patches, just July patches, and both January
and July patches. The AICCA values that are closest to the frequencies from MODIS column are in
boldface. Recall that MODIS values are based on frequencies of patches over COT-CTP space, while
the AICCA values are based on frequencies of clusters over COT-CTP space. Note that frequencies in
each line add to 100, modulo rounding. We observe that the AICCA cluster frequencies are roughly
proportional to the ISCCP category frequencies, although they consistently underestimate the Sc class
(by 20%) and overestimate Cu and As classes.

Height Low Medium High

Thickness Thin Med Thick Thin Med Thick Thin Med Thick

Dataset Month k Cu Sc St Ac As Ns Ci Cs Dc

ISCCP Jan & July 2003 5.29 53.94 2.93 3.65 15.50 2.12 3.39 10.52 2.60

AICCAk

Jan 2003

10 11.42 25.71 8.57 5.71 22.85 8.57 2.85 8.57 5.71
42 12.50 29.16 4.16 10.00 25.00 5.00 2.50 8.33 3.33
64 10.38 34.41 3.24 7.79 26.62 3.24 0.64 9.74 3.89

256 9.06 32.90 4.45 8.90 25.27 5.08 3.65 8.58 2.06

July 2003

10 13.33 23.33 3.33 6.66 16.66 3.33 6.66 16.66 10.00
42 10.30 30.92 4.12 7.21 20.61 4.12 3.09 13.40 6.18
64 10.20 30.61 1.36 10.20 19.04 2.72 5.44 14.28 6.12

256 9.31 32.16 2.46 8.78 21.61 1.93 5.97 13.53 4.21

Jan & July 2003

10 12.50 25.00 6.25 3.12 18.75 3.12 9.37 15.62 6.25
42 10.67 32.03 2.91 7.76 24.27 2.91 2.91 11.65 4.85
64 8.80 29.55 3.77 8.17 23.89 5.03 5.03 11.94 3.77

256 8.42 31.57 3.63 7.93 23.47 3.96 5.45 11.73 3.80

The significance of similarities test enables us to find the number of clusters after which
there is reduced merit, from the perspective of stability against the null reference distribu-
tion, in adding more clusters. Normalized stability thus provides statistical support for
eliminating certain cluster numbers, especially when the first test produces an ARI value
that is close to neither 0 nor 1.

We introduce the similarity of intra-cluster textures test because common approaches
to estimating an optimal number of clusters, such as the elbow method [47], silhouette
method [48], and gap statistics [49], seek to determine the minimum number of clusters
needed to characterize a dataset, which is not our goal. In our application, achieving a
minimum number of clusters might result in the merging of sub-clusters with unique tex-
tures and slightly different physical properties. By minimizing the intra-cluster difference
shown in Figure 4c until the slope of the curve of distance becomes small, the third test
causes the lower bound on the optimal number of clusters to increase to 40 ≤ k∗, avoiding
oversimplifications.
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Finally, the seasonal stability test provides a further validation of our choice of k∗. A
too-small number of clusters is likely to result in dissimilar July or January patches being
mapped to the same cluster. We see in Figure 4 a local minimum in weighted average
intracluster seasonal difference.

A disadvantage of our stability protocol is that, unlike other heuristic approaches [43,49],
it does not always determine a unique optimal number of clusters. Indeed, our stability
protocol in Section 4 concludes that 40 ≤ k∗ ≤ 48. Determining a single optimal number in
the range sandwiched by the results of the four tests ultimately requires a subjective choice,
based for example on the structure of cloud clusters in OC-PatchesHAC. In this study, we chose
42 as the number in the range 40 ≤ k∗ ≤ 48 that minimizes the seasonal variation of textures
within clusters: see Section 4.4—although we note that a different selection of OC-Patches in
OC-PatchesHAC could motivate a different value.

5. Results

Having determined in Section 4 an optimal number of clusters, k∗, we then validate
the scientific utility of AICCA42 by evaluating the relationship between cloud class labels
and their physical properties and spatial patterns. We have previously verified that the
cloud clusters produced by RICC are physically reasonable using a limited subset of the
MODIS data [18]. This section provides a similar analysis on a far more complete dataset of
589500 Terra ocean-cloud patches for January 2003 and July 2003. The goal is to confirm that
AICCA42 diagnoses meaningful physical properties for use in climate science applications.

5.1. Seasonal Variability of Cloud Cluster Regimes

Because the Earth is not symmetric, its clouds show strong seasonal variability not
only in any given location but in the global mean. In this section, we show that the physical
properties of AICCA42 clusters are reasonable and remain stable even if the dataset is
restricted to a single month. This analysis builds on those in Sections 4.4 and 4.5. In
Section 4.4, we used intra-cluster seasonal differences as a criterion for choosing an optimal
k of 42. In Section 4.5, we showed that RICC distributed those clusters in the COT-CTP
space that defines established ISCCP classifications roughly in accordance with actual
frequencies of cloud occurrence. We now plot the cluster distribution in COT-CTP space,
and show that it is indeed reasonably constant across seasons (Figure 5). Note that, in
assigning cluster labels, we sort the clusters first on CTP and then on the global occurrence
of the clusters within each 50 hPa pressure bin.

As expected based on prior results, Figure 5 shows that most AICCA42 clusters fall
in the low cloud range (680–1100 hPa cloud top pressure) with low to medium optical
thickness (2–20): Compare to Table 5. These results are broadly consistent with those of Jin
et al. [50], who performed a simple clustering analysis with the joint histogram of optical
thickness and cloud top pressure, though they obtained relatively more clusters associated
with high clouds (four of their 11 clusters, vs. five of 42 in this work). The distribution of
clusters is largely unchanged even when only January or July data are used in clustering.
For example, the cumulus (Cu: left bottom) and stratocumulus (Sc: center bottom) regimes
comprise 30 clusters in the full-year analysis, 30 in July only, and 32 in January only.

Using 42 clusters clearly allows RICC to capture richer cloud information than in
the limited set of nine ISCCP cloud classes. In our previous work [18], we found that 12
clusters were insufficient to achieve a clear separation between high and low clouds. In this
work, the clusters from our cloud fields can distinguish the full range of physical properties
here (from high to low CTP and thick to thin COT), though thin clouds are included only
because our cloud clusters defined by means and error bars (i.e., standard deviation of the
cloud parameter) cover more than one ISCCP class. The choice of a cluster number of 42
produces a reasonable trade-off.
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5.2. Comparing AICCA42 and ISCCP Classifications

We now investigate further how AICCA42 distributes clusters in COT-CTP space, and
compare to observed occurrence frequencies. A limitation of the ISCCP cloud classification
scheme is that the stratocumulus clouds whose behavior is of the greatest concern to climate
scientists, and which comprise 54% of the MODIS dataset (Table 5), are lumped into a
single ISCCP class (Figure 6a–c). A major motivation for AICCA42 is to provide greater
interpretive detail for understanding these low, marine clouds.
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Figure 5. Distributions of cluster properties for AICCA42 in COT–CTP space, where COT is cloud
optical thickness (dimensionless) and CTP cloud top pressure (hPa). We show January and July 2003
(left), January only (center), and July only (right). Dots indicate mean values for each cluster and error
bars the standard deviation of cluster properties. Data point colors indicate the relative frequency of
occurrence (RFO) of each individual cluster in the dataset. Note that, in assigning cluster labels, we
sort the clusters first on CTP and then on the global occurrence of the clusters within each 50 hPa
pressure bin. Thus, small cluster numbers (e.g., #1) represent high-altitude cloud, and within a similar
CTP range (e.g., 500 hPa–550 hPa), smaller numbers represent the more dominant patterns within the
bin. For clarity, we show only the 21 clusters with the highest RFOs. For comparison, dashed lines
divide the COT-CTP space into the nine regions corresponding to ISCCP cloud classes. AICCA42

captures a greater variety of cloud types than do the ISCCP categories, with most of the clusters at
low altitude (high CTP). January and July panels are similar, indicating that AICCA42 adequately
captures seasonal variation in cloud properties.

As shown in previous sections, AICCA42 does provide a richer sampling of the stra-
tocumulus (Sc) regime. AICCA42 allocates 71% of cluster centers to the stratocumulus
regime (Figure 5; 30 of 42 classes), or 32% of their relative occurrence frequency inclusive of
overlaps (Table 5; see Section 4.5 for description of methodology). While Table 5 provided
only mean values for each ISCCP class, Figure 6d shows the full distributions. As we
would hope, AICCA42 partitions cloud information more finely at low cloud altitudes and
moderate cloud thickness (Sc), while still sampling every part of COT-CPT space.

5.3. Separation of Ice and Liquid Phases

We showed in previous work that RICC-generated clusters can differentiate between
clouds that are dominated by ice vs. liquid phase. (See Figure 10 in Kurihana et al. [18]).
We extend this analysis here and demonstrate that the same discrimination occurs in the
larger AICCA42 dataset. Figure 7 shows for each cloud class the average percentage of
cloud pixels that are identified as an ice phase in the MOD06 cloud properties. As expected,
cloud classes centered at high altitude (low CTP) are predominantly ice, those at middle
altitudes are mixed, and those at low altitude are predominantly liquid. The lowest classes
have <3% ice labels, and note that MOD06 cloud properties themselves have some error
rate. The gradient in ice content across mid-level clouds, the region of transition from
liquid to ice, also matches physical expectations. Note that while our ice phase ratio metric
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predominantly captures mixed-phase clouds, in which ice and liquid coexist in a single
meteorological event (for our purposes, a patch), it is also affected by cases where a cluster
contains a mix of pure-ice and pure-liquid clouds.

In summary, the AICCA42 classes are sufficiently homogeneous to provide meaningful
interpretation. These results support the physical reasonableness of the AICCA dataset.
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Figure 6. Heatmaps of the relative frequency of occurrence in COT-CTP space for (a) observed
patches from both January and July, (b) values only from January, (c) values only from July, and
(d) cluster counts inclusive of overlap from AICCA42. Distributions are smoothed; resolution is 0.5 for
COT and 10 hPa for CTP. Panels for observed frequencies (a–c) and cluster density (d) are expected
to have different values. For example, in (a), a heatmap value of 0.1% indicates 5895 patches fall in a
given histogram bin. In (d), a heatmap value of 71% indicates that 30 of 42 clusters overlap with that
histogram bin over the range of one standard deviation. The data used here are those used throughout
Section 5: all ocean-cloud patches from January and July 2003 from the Terra instrument. White
dashed lines show the boundaries of the nine ISCCP cloud classes [3,51]: Cirrus (Ci), Cirrostratus
(Cs), Deep convection (Dc), Altocumulus (Ac), Altostratus (As), Nimbostratus (Ns), Cumulus (Cu),
Stratocumulus (Sc), and Stratus (St). AICCA42 clusters cover all nine ISCCP classes, with the largest
representation in the Stratocumulus (Sc) category where occurrence also peaks.
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Figure 7. Test of whether AICCA42 captures expected variations in cloud microphysics, i.e., the
ice and liquid fractions for individual cloud classes. The figure is constructed in the same way as
Figure 5, but with each color marker now showing the cluster’s mean ice phase ratio, defined as the
mean within-cluster percentage of cloud pixels denoted as ice phase. We omit all pixels labeled as
“undetermined” in MOD06; many of these are internally mixed phase but the proportions cannot
be determined. AICCA42 cloud classes are sufficiently restricted that they capture the expected
microphysics, with higher ice fractions in higher-altitude clouds.

5.4. Case Studies: Spatial Distribution of Cloud Textures and Associated Cluster Labels

To provide a visual example of the power of AICCA42 classes in interpreting cloud
processes, we examine two case studies involving swaths of MODIS imagery, both domi-
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nated by marine stratocumulus, off the west coast of South America: see Figure 8a. Note
that the swath labeled B is from January and that labeled C from July.
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Figure 8. (a) Geographical location of two example MODIS swaths (B and C) off the west coast
of South America, both from the Terra instrument but at different times; (b) Swath B, 133 ocean-
cloud patches between 18◦ S to 3◦ N, 76◦ S to 104◦ S, observed on 15 January 2003, with each patch
represented by a dot with color indicating its associated class label in the range 1..42; (c) Swath C,
147 ocean-cloud patches between 44◦ S to 23◦ S, 72◦ S to 103◦ S, observed on 20 July 2003, similarly
labeled. Note that not all clusters appear in each swath. Histograms in (b,c) show the distribution of
cloud class labels; note there is little overlap; (d) MODIS true color images [52] for all ocean-cloud
patches labeled in (b,c), grouped by cluster number. Note the visual similarity of cloud textures
within each cluster. AICCA42 produces spatially coherent cluster assignments, groups visually
similar textures, provides rich detail by subdividing stratocumulus clouds into multiple classes, and
identifies subtle spatial and/or temporal differences.
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The two example swaths show the richness and diversity of stratocumulus patterns.
The more equatorial swath B (Figure 8b) shows regions of both open- and closed-cell
stratocumulus clouds, and sharp transition regions. The mid-latitude summertime swath C
(Figure 8c) is dominated by open-cell stratocumulus clouds, with broad transitional regions
and only small patches of classic closed-cell.

AICCA42 cluster labels capture important aspects of these distributions. As usual,
we label only patches with >30% cloud pixels; each such patch is marked with a dot
in Figure 8b,c, with the color denoting the cluster label. The cloud classes assigned are
geographically contiguous and reflect clear visual distinctions in cloud texture (Figure 8d).
They also capture important and subtle distinctions. Each swath contains 12–14 unique
classes, but only four are shared between both. That is, cloud classes of otherwise similar
visual appearance are strongly differentiated in space and/or time. Open-cell stratocumulus
in swath B is assigned to classes #32 and #36, but that in swath C largely to #25, #34, and #42.
Similarly, closed-cell stratocumulus in swath B is assigned to classes #30, #31, #33, and #35,
none of which are present in swath C. Instead, the smaller areas of closed-cell stratocumulus
in swath C are labeled as class #24. These results suggest that real-world stratocumulus
cloud textures involve subtle but important spatial and/or temporal distinctions and that
AICCA42 is capturing those distinctions.

5.5. Use Case: Geographic Distribution of Cluster Label Occurrence

In this last study, we examine the geographic distribution of AICCA42 cluster labels.
Using the same dataset as in the other part of this section, we show in Figure 9 mean
incidences for each of the 42 cloud types in the dataset used throughout Section 5, gridded
on a 1◦ global grid We see strong geographic distinctions among cluster labels, with some
occurring only in the tropics and others only at high latitudes. Some show even finer
geographic restrictions. For example, cloud classes #1–#3 are localized primarily in the
West Pacific warm pool, all likely associated with tropical deep convection, though ranging
in altitude (232–367 hPa CTP) and thickness (24–6 COT). (Classes are numbered in order of
their mean altitude; see Section 5.1 for details). By contrast, the stratocumulus cloud labels
discussed for Figure 8 show different distributions. Those most clearly associated with
classic closed-cell stratocumulus—#30, #33, and #35—are as expected primarily localized to
small areas on the west coasts of continents. The most predominant open-cell Sc cloud labels
in Figure 8—#25, #32, and #36—are more widely distributed but with strong latitudinal
dependence. The six clusters just described are all low in altitude (mean CTP of 803–901 hPa)
and moderate in thickness (mean COT of 8.4–13.6 thickness for the closed-cell classes and
5.7–7.1 for the open-cell). All would therefore be labeled as Sc in the ISCCP classification;
AICCA42 reveals their striking differences. Note that, because our example dataset includes
both January and July 2003, these graphs include both summer and wintertime occurrences.
When displayed as an animation of monthly means, the geographic distinctions become
even sharper, with patterns migrating seasonally with the sun’s position.

To highlight the texture distinctions in the Sc cloud classes just discussed, we show
in Figure 10 the true color images [52] corresponding to the 20 patches closest to the
OC-PatchesHAC centroid for each of the six clusters. Patches shown for each cluster are
visually similar, and the different clusters have distinct differences in not only cloud pixel
density but also spatial arrangement, even within the broad open cell (top row, #25, #32, and
#36) and closed cell (#30, #33, and #35) categories. These distinctions show that AICCA42 is
separating stratocumulus clouds by texture as well as by mean properties across the patch.

The strong localization of some cloud classes near the poles raises concern that they
may be affected by the presence of sea ice. We have restricted analysis to ocean clouds to
avoid the complications of surface effects—the ocean provides a dark and homogeneous
background—but parts of the high-latitudes ocean are covered in wintertime ice. Because
two of the MODIS bands used in our cloud clustering system, bands 6 (1.6 µm) and
7 (2.12 µm), are also used by the MODIS snow and ice detection algorithm [53], the
resulting AICCA dataset can inadvertently include some surface information in the latent
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representation. To check for contamination, we use a MODIS cloud product that describes
the presence of a snow and ice background for each pixel (MOD06). Only one cloud class
may experience significant interference: #12, which forms in local winter. (Sea ice makes
up 16/31% of its labeled pixels in January/July). The other polar cloud classes appear in
local summer. Sea ice effects therefore do not appear to drive the labeling of geographically
distinct cloud classes that appear in polar oceans.

These results suggest that AICCA42 identifies real and important differences between
cloud types and can help climate scientists understand the drivers of distinct cloud patterns
and regimes.
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Figure 9. An example application of AICCA. We plot the relative frequency of occurrence (RFO) for
each of the 42 AICCA42 clusters, using all data from January and July, 2003. Land is in grey, and
areas where RFO < 1.0% are in white. Surtitles show global mean RFO, cloud optical thickness (COT),
and cloud top pressure (CTP) for the given cluster. Clusters show striking geographic distinctions,
and those with roughly similar spatial patterns have different mean physical properties, suggesting
meaningful physical distinctions. The 99 percentile of RFO values (RFO ≥ 1 %) of #30 is 29.85 % and
the value of #35 is 36.58 %.
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Cluster 25 Cluster 32 Cluster 36

Cluster 30 Cluster 33 Cluster 35

Figure 10. Selected MODIS true color images [52] for the six clusters that dominate open-cell (upper
row: #25, #32, and #36) and closed-cell (lower row: #30, #33, and #35) stratocumulus clouds in Figure 9.
Surtitles show the cluster numbers. We show the 20 patches closest to OC-PatchesHAC centroids. Note
how AICCA discriminates between textures (e.g., compare the fine-scale detail of #32 to the more
coarsely aggregated #36) even for patches of similar mean cloud properties.

6. Conclusions

We have introduced an AI-driven cloud classification atlas, AICCA42 that provides the
first global-scale unsupervised classification of clouds in MODIS satellite imagery. AICCA42
provides a compact form of the information available in multi-spectral satellite images,
reducing 801 TB of MODIS products to 54.2 gigabytes of cloud labels and, for diagnostic
purposes, four cloud properties from MOD06 (cloud optical thickness, cloud top pressure,
cloud phase, and cloud effective radius). We have described the complete workflow used
to generate the dataset, the five criteria used to assess its success (physically reasonable,
spatial distributions, separable, rationally invariant, and stable), and the novel protocol
developed to determine the optimal number of clusters that meets the stability requirement.

The new stability protocol is needed because our goal differs from the norm in cluster-
ing studies, which generally seek to determine the minimum number of clusters needed
to characterize a dataset. Instead, we seek to maximize the richness of information cap-
tured by determining the maximum number of clusters that remain stable to changes in the
training set. The protocol of four tests suggests an optimal cluster number of k∗ = 42, and
our seasonal stability sanity check confirms that this number is sufficient to capture the
full seasonal diversity of global cloud textures. The resulting atlas of cloud classes greatly
enhances the richness of information provided over the traditional 9-class ISCCP scheme,
especially for climate-critical cloud types: for example, 30 of the AICCA42 classes are
devoted to stratocumulus, whose behavior is a key uncertainty in climate projections [54].

Preliminary analysis of the AICCA42 atlas suggests its power for science. Its cloud
classes meaningfully group physical properties such as altitude or optical thickness, and
also capture distinct textures and patterns. Cloud classes show strikingly different ge-
ographical distributions, with distributions evolving seasonally. Some classes can be
matched to known cloud processes: deep convection in the West Pacific warm pool, for
example, or marine stratocumulus decks that form off the west coast of continents. In other
cases, cloud classes capture distinctions not previously appreciated, and can lead to new
lines of scientific inquiry. We conclude that (1) our methodology has explanatory power, in
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that it captures regionally unique cloud classes, and (2) 42 clusters is a useful number for a
global analysis.

The AICCA approach also opens up possibilities in other areas. For example, increas-
ing computing power means the spatial scale of climate simulations has shrunk to the
point where their output can resolve complex cloud textures [55]. Unsupervised cloud
classification can help in assessing whether models capture those textures correctly. More
broadly, advances in remote sensing instrumentation mean that many fields have seen
large increases in data volume. We have shown here that AI-based methods using a
convolutional autoencoder can effectively identify novel patterns in spatial data. Unsuper-
vised learning offers the possibility of unlocking large satellite datasets and making them
tractable for analysis.
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Appendix A

Appendix A.1. Rand Index and Adjusted Version for Chance

We describe the Rand index used in Section 4. Let U = {U1, . . . , Ur} and V =
{V1, . . . , Vc} be two clustering partitions of a set of N objects O = {o1, . . . , oNP}, such that⋃r

i=1 Ui =
⋃c

j=1 Vj = O, and Ui ∪ Ui′ = ∅ as well as Vj ∪ Vj′ = ∅ for 1 ≤ i ≤ r and

1 ≤ j ≤ c. We count how many of the (N
2 ) possible pairings of elements in O are in the

same or different clusters in U and V:

• P11: number of element pairs that are in the same clusters in both U and V;
• P10: number of element pairs that are in different clusters in U, but in the same cluster

in V;
• P01: number of element pairs that are in the same cluster in U, but in different clusters

in V; and
• P00: number of element pairs that are in different clusters in both U and V.

The Rand index then computes the fraction of correct cluster assignments:

RandI(U, V) =
P11 + P00

P11 + P10 + P01 + P00
=

P11 + P00

(N
2 )

(A1)

https://github.com/RDCEP/clouds#download-aicca-dataset
https://github.com/RDCEP/clouds#download-aicca-dataset
https://acdc.alcf.anl.gov/dlhub/?q=climate
https://github.com/RDCEP/clouds
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It has value 1 if all pairs of labels are grouped correctly and 0 if none are correct. The metric
is independent of the absolute values of the labels: that is, it allows for permutations.

To illustrate how the Rand index works, consider the two clusterings: A = {d1}, {d2, d3}
and B = {d1, d2}, {d3} of the dataset D = {d1, d2, d3}. Here, N = 3, and there are (3

2) = 3
possible pairings of the three dataset elements: (d1, d2), (d1, d3), (d2, d3). Thus: P11 = 0, as
no pair is in the same cluster in both A and B; P10 = 1, as d1 and d2 are in different clusters
in A but the same cluster in B; P01 = 1, as d2 and d3 are in different clusters in A but the
same cluster in B; and P00 = 1, as d1 and d3 are in different clusters in both A and B. Hence,
the Rand index by Equation (A1) of A and B is (0 + 1)/3 = 0.33.

A difficulty with the Rand index is that its value tends to increase with the number of
clusters, hindering comparisons across different numbers of clusters. In order to permit
comparisons of Rand index values across different numbers of clusters, the adjusted Rand
index (ARI) [56] corrects for co-occurrences due to chance:

ARI(U, V) =
(N

2 )(P11 + P00)− [(P11 + P10)(P11 + P01) + (P01 + P00)(P10 + P00)]

(N
2 )

2 − [(P11 + P10)(P11 + P01) + (P01 + P00)(P10 + P00)]
, (A2)

where the Pxy are as defined above.

Appendix A.2. Clustering Similarity Test

We present as Algorithm A1 our implementation of the clustering similarity test. As
described in Section 4.1, we use as the input dataset D all ocean-cloud patches from
2003–2021, inclusive. We define a holdout set, H, for evaluation (line 1), and use as our
“perturbed versions” N subsets selected without replacement from D \ H (line 3). Then,
for each number of clusters, k, in the range 8 ≤ k ≤ kmax, we: train RICC on each subset
(line 8); apply the trained RICC to generate a clustering for the holdout set (line 6); use
the adjusted Rand index, ARI, to evaluate pairwise distances between those clusterings
(line 10); and average among the 30 clusterings generated by the RICC models {RICCi

k,
i ∈ 1..30} to determine the mean clustering similarity for that specific cluster number k.
Finally, we calculate the ARI for all (30

2 ) = 435 combinations of those 30 clusterings and
determine the mean ARI score G8..Gkmax (line 12).

Algorithm A1 Pseudocode for the clustering similarity test described in Section 4.1.

Input: D: { OC-Patches for 2003–2021, inclusive }
Output: G8, . . . , Gkmax : Clustering similarity scores for cluster counts from 8 to kmax.

1: H := {x | x ∈ D} where |H| = NH . Select holdout set to be used for evaluation
2: for i from 1 to N do
3: Select a subset Si :=

{
x | x ∈ D \ H \⋃ i−1

j=1 Sj
}

with |Si| = NR

4: for k from 8 to kmax do
5: RICC i

k ← Train RICC with k clusters on Si ∪ H
6: C i

k ← RICC i
k(H) . Determine cluster assignments in H with RICC i

k
7: end for
8: end for
9: for k from 8 to kmax do

10: Gk =
1

(N
2 )

∑
(i,j)∈(N

2 )

ARI
(

C i
k , C j

k

)
. Mean similarities for RICC clusters

11: end for
12: Return clustering similarity scores {G8, . . . , Gkmax}

Appendix A.3. Stability Significance Test

Algorithm A2 implements the stability significance test described in Section 4.2. For
each k in the range 8..kmax, we first compute clusterings (line 9) as in the clustering similarity
test of Appendix A.2 and then compute the mean Rand index score (see Appendix A.1)
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G8..Gkmax (line 15). To produce random label assignments, we first prepare 30 datasets that
are sampled from random uniform distributions U ∈ [−2σ, 2σ] (line 6). We then apply
HAC to the random data to generate random labels (line 11), from which we also calculate
the Rand Index for 435 combinations, giving the mean scores R8..Rkmax (line 16). Finally, we
compare how the ratio Gk

Rk
varies with number of clusters, k (line 19).

Algorithm A2 Pseudocode for the stability significance test described in Section 4.2.

Input: D: { OC-Patches for 2003–2021, inclusive }, trained rotation-invariant autoencoder AE
Output: {G8

R8
, . . . , Gkmax

Rkmax
}: cluster similarity significance scores

1: H := {x | x ∈ D} where |H| = NH . Select holdout set to be used for evaluation
2: z = {AE(x) : x ∈ H} . Use trained autoencoder to compute latent representations

3: σ =
√

1
NH

NH

∑
j=1

(
zj − z

)2
. Calculate standard deviation σ for latent representations

4: for i from 1 to N do
5: Select a subset Si :=

{
x | x ∈ D \ H \⋃ i−1

j=1 Sj
}

with |Si| = NR

6: Sample Ui :=
{

u | u ∈ U [−2σ, 2σ]
}

with |Ui| = NH , U a random uniform distribution.
7: for k from 8 to kmax do
8: RICC i

k ← Train RICC on Si ∪ H
9: RICC i

k(H)← Determine cluster assignments in H
10: HAC i

k ← Train HAC on Ui
11: HAC i

k(Ui)← Determine cluster assignments in Ui
12: end for
13: end for
14: for k from 8 to kmax do . Calculate averages of cluster similarities

15: Gk =
1

(N
2 )

∑
(i,j)∈(N

2 )

[
RandI

(
RICC i

k(H), RICC j
k(H)

)]
. Mean similarities for RICC clusters

16: Rk =
1

(N
2 )

∑
(i,j)∈(N

2 )

[
RandI

(
HAC i

k(Ui), HAC
j
k(Uj)

)]
. Mean similarities for random clusters

17: Calculate Gk
Rk

, ratio of stability between RICC and random samples
18: end for
19: Return cluster similarities significance scores, {G8

R8
, . . . , Gkmax

Rkmax
}
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