
THE UNIVERSITY OF CHICAGO

TOWARDS SCALE-CHECKABLE SYSTEMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

CESAR ANDRES STUARDO MORAGA

CHICAGO, ILLINOIS

DECEMBER 2022

Copyright © 2022 by Cesar Andres Stuardo Moraga

All Rights Reserved

To my wife Paulina, and my son Cesar

I am the wisest man alive, for I know one thing, and that is that I know nothing.

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Research Questions . 5

1.3 Towards Scale-Checkable Systems . 7

1.3.1 Scalability Faults in Large-Scale Cloud Systems: A Comprehensive Study . 7

1.3.2 SCALECHECK: A Single-Machine Approach for Discovering Scalability

Bugs in Large Distributed Systems . 8

1.3.3 SVIEW: Identifying and Analyzing Potential Scalability Faults in Large-

Scale Distributed Systems . 9

1.4 Thesis Overview . 9

2 SCALABILITY FAULTS IN LARGE-SCALE CLOUD SYSTEMS: A COMPREHEN-

SIVE STUDY . 11

2.1 Methodology . 11

2.2 Observed Symptoms: How do scalability faults manifest? 14

2.3 Testing or Deployment: When do scalability faults manifest? 17

2.4 Faulty Protocols: Where do scalability faults manifest? 19

2.5 Root causes . 21

2.5.1 Compute Faults . 21

2.5.2 Unbound faults . 24

2.5.3 Bloat faults . 27

2.5.4 Logic faults . 30

2.6 Solution patterns and engineering effort . 30

2.6.1 Solving Compute faults . 31

2.6.2 Solving Unbound faults . 32

2.6.3 Solving Bloat faults . 33

2.6.4 Solving Logic faults . 34

2.7 Conclusions . 34

3 SCALECHECK: A SINGLE-MACHINE APPROACH FOR DISCOVERING SCALA-

BILITY BUGS IN LARGE DISTRIBUTED SYSTEMS 36

3.1 SFIND . 37

3.1.1 Auto-tagging of scale-dependent collections 38

3.1.2 Finding scale-dependent loops . 39

v

3.1.3 Reporting and triaging . 39

3.2 STEST . 40

3.2.1 Black-box approaches . 41

3.2.2 White-box approaches . 43

3.3 SCALECHECK . 47

3.4 Application and implementation . 48

3.5 Evaluation . 49

3.5.1 Exposing scalability faults . 50

3.5.2 Discovering unknown faults . 55

3.5.3 Accuracy . 56

3.5.4 Colocation factor . 58

3.5.5 Pre-memoization and replay time . 60

3.5.6 Test coverage . 61

3.6 Limitations . 61

3.7 Conclusions . 61

4 SVIEW: IDENTIFYING AND ANALYZING POTENTIAL SCALABILITY FAULTS IN

LARGE-SCALE DISTRIBUTED SYSTEMS . 63

4.1 Dimensional Code Fragments . 64

4.2 Overview . 64

4.3 Characteristics of Scalability Faults and Dimensional Code Fragments 66

4.4 SVIEW Design . 68

4.4.1 Identifying Per-System Dimensions . 69

4.4.2 Writing Scaling Workloads . 70

4.4.3 Instrumenting the Runtime . 71

4.4.4 Outputting Traces . 74

4.4.5 Identifying and Filtering Growth . 75

4.4.6 Categorizing Growth Trends . 77

4.5 Analysis Modules . 79

4.5.1 Critical Path Analysis (CP) . 79

4.5.2 Lock Contention Analysis (LC) . 81

4.5.3 I/O Analysis (IO) . 81

4.6 Evaluation . 82

4.6.1 Reproducing Scalability Issues . 83

4.6.2 SVIEW Statistics . 85

4.6.3 Reporting Potential Issues to Developers 87

4.7 Related Work . 88

4.8 Conclusion . 89

5 OTHER WORKS . 91

5.1 Layered And Uniform Contention Mitigation Capabilities For Cloud Storage . . . 91

5.2 TRANSACTUATIONS: Where Transactions Meet The Physical World 91

5.3 FLYMC: Highly Scalable Testing of Complex Interleavings in Distributed Systems 92

vi

5.4 MITTOS: Supporting Millisecond Tail Tolerance With Fast Rejecting SLO-Aware

OS Interface . 92

5.5 PBSE: A Robust Path-Based Speculative Execution For Degraded Network Tail

Tolerance In Data-Parallel Frameworks . 93

6 CONCLUSIONS AND FUTURE WORK . 94

6.1 Scalability Faults in Large-Scale Cloud Systems: A Comprehensive Study 94

6.1.1 Conclusions . 94

6.1.2 Future work . 95

6.2 SCALECHECK: A Single-Machine Approach for Discovering Scalability Bugs in

Large Distributed Systems . 95

6.2.1 Conclusions . 95

6.2.2 Future work . 96

6.3 SVIEW: Identifying and Analyzing Potential Scalability Faults in Large-Scale Dis-

tributed Systems . 97

6.3.1 Conclusions . 97

6.3.2 Future work . 97

REFERENCES . 99

A SCALECHECK SELECTED SCALABILITY FAULTS 112

B SFINDPIL ALGORITHMS . 116

C SVIEW SELECTED SCALABILITY FAULTS . 119

vii

LIST OF FIGURES

1.1 Scalability fault definition . 1

1.2 Cassandra scalability fault . 2

1.3 Other scalability faults . 3

2.1 Per-system dimension break down . 13

2.2 Symptom types: severity and dimensional break down 15

2.3 Manifestation types: severity and dimensional break down 17

2.4 Protocol types: dimensional break down . 19

2.5 Compute fault code samples . 22

2.6 Compute faults: dimensional, manifestation, protocol and symptom break down 23

2.7 Unbound fault code samples . 24

2.8 Unbound faults: dimensional, manifestation, protocol and symptom break down 26

2.9 Bloat fault code samples . 27

2.10 Bloat faults: dimensional, manifestation, protocol and symptom break down 28

2.11 Logic faults: dimensional, manifestation, protocol and symptom break down 29

2.12 Common solution techniques and effort involved . 31

3.1 O(N3) scale-depended loops . 37

3.2 SFIND on-heap collection tracking and mapping . 38

3.3 Global Event Driven Arch . 43

3.4 SCALECHECK Testing Pipeline . 48

3.5 SCALECHECK effectiveness in exposing scalability faults 51

3.6 Discovering unknown faults . 55

3.7 Cassandra internal metrics . 57

3.8 Accuracy in exposing ca-6127 . 58

3.9 Maximum colocation factor . 59

4.1 SVIEW design . 65

4.2 Fault characterizations . 67

4.3 Efforts to solve . 68

4.4 Sample scaling workloads . 71

4.5 Instrumentation example . 72

4.6 Output trace . 73

4.7 Sample output visualization . 74

4.8 Growth analysis . 75

4.9 Growth patterns . 77

4.10 Similarity measures . 79

4.11 Potentially harmful loops . 80

4.12 Reproduced symptoms of existing faults . 83

4.13 DCF iterations in Cassandra testing tools . 90

B.1 SFINDPIL sample memoization block . 117

B.2 SFINDPIL sample replay block . 118

viii

http://issues.apache.org/jira/browse/CASSANDRA-6127

LIST OF TABLES

2.1 Dimensions, summary and examples . 12

2.2 Per-issue SFDB classifications . 14

2.3 Test APIs, stress-test tools and benchmark examples 18

3.1 Colocation strategies and bottlenecks . 42

3.2 SCALECHECK integration effort (LOC) . 49

3.3 Fault benchmark . 50

4.1 System Dimensions . 69

4.2 Theoretical models to growth trends . 78

4.3 Existing faults reproduced . 82

4.4 SVIEW statistics . 86

4.5 Scaling workload configurations . 87

A.1 SCALECHECK selected scalability faults . 112

C.1 SVIEW selected scalability faults . 119

ix

ACKNOWLEDGMENTS

My Ph.D. could not have been accomplished without the support from my advisor, committee,

colleagues, and family, to whom I would like to express my gratitude here.

First, I would like to sincerely thank my advisor, Haryadi S. Gunawi. Haryadi’s thoroughness,

discipline and vision are, from my point of view, unparalleled. Being advised by him implies

being challenged to learn, to improve and become a better version of yourself. The kind of advice

Haryadi gives to his students sticks with them in and outside their professional life. It was a

pleasure for me to work with him at this great institution.

Next, I would like to thank my committee members, Shan Lu and Cindy Rubio-González.

Shan’s work has been an inspiration for me and many of my colleagues, and her vision has always

been a solid contribution on my work. Cindy’s observations in the last part of my work were very

useful, and I sincerely appreciate her point of view on SVIEW.

I will also like to thank my colleagues, the ones still at our group, Daniar H. Kurniawan, Meng

Wang, Ruidan Li and Ray Andrew, and the ones that already graduated, Tanakorn Leesataporn-

wongsa, Jeffrey F. Lukman, Riza O. Suminto, Huan Ke, Mingzhe Hao and Huaicheng Li. Working

with you over the years was a privilege that I sincerely hope we can repeat some day. A very spe-

cial mention to Tanakorn, whose mentorship at the start of my journey was crucial, and his support

over the years has been tremendous.

My family’s support was crucial in this endeavor. My wife, Paulina, and my son, Cesar, were

the corner stones of my resilience. Having you both with me has been a gift. Thanks for everything

Paulina, for all your effort and patience. I could not have done this without you. And Cesar, my

little friend, I hope someday you can follow your dreams too. To my parents, grandparents, in-

laws, brothers, cousins, aunts and uncles, dead and alive, thanks for everything, this is for you

too.

Last but not least, to all the people that I have met through my journey and I have not mentioned,

it was a pleasure to meet you all.

x

ABSTRACT

In this document, we present our approaches for understanding and discovering scalability faults,

i.e. faults whose symptoms appear at larger scales but are not visible at smaller scales. First,

we present a study of over 350 scalability faults collected from the repositories of 10 popu-

lar open-source distributed systems. We analyze the symptoms they produce, the scenarios in

which they manifest, their root causes, the effectiveness of existing testing tools in detecting

them and the solutions and effort involved in tackling them. Then, we present SCALECHECK,

an emulation-based approach for discovering scalability faults in large-scale distributed storage

systems. SCALECHECK employs a set of black and white box techniques to allow developers to

“deploy” a cluster in a single-machine and accurately observe the behavior of their systems as if

they were deployed in multiple machines. Moreover, SCALECHECK includes a collection-tracking

mechanism that allows developers to discover potentially harmful code paths affected by the in-

crease in the number of nodes in the cluster. We integrated this approach into 4 popular distributed

storage systems and accurately reproduced the symptoms of 10 known scalability faults using a

single machine. Finally, we present SVIEW, a framework for identifying and analyzing potential

scalability faults in large-scale distributed systems. SVIEW combines instrumentation and statisti-

cal concepts to identify dimensional code fragments (DCFs), i.e. pieces of code whose number of

executions (e.g., # loop iterations, # method executions) is positively correlated with the increase

in the size of one or more system dimensions (e.g. # number of files, # clients, # requests), with

static analysis modules that detect faulty code patterns involving the DCFs. SVIEW’s lightweight

approach does not require modifications in the system under test, it’s portable without effort across

different versions of the same system and focuses on the root cause of scalability faults rather than

the symptoms they produce. We evaluate SVIEW in 15 different versions of 4 popular distributed

systems and use our analysis modules to detect known and unknown scalability faults.

xi

CHAPTER 1

INTRODUCTION

In light of the limits of Moore’s Law, Dennard scaling and the ever increasing computing demand,

the last decade has seen unprecedented deployment scales: tens of thousands Cassandra nodes are

managing petabytes of data at Netflix, more than 50K Yarn nodes are performing Exabyte-size

data analytics at Microsoft and over 150K Hadoop jobs are submitted at Twitter on a daily basis

[62, 63, 102]. Scale surpasses the limits of a single machine in meeting increasing demands in

compute and storage, allowing companies to cope with unexpected emergencies: in light of the

(almost over?) covid pandemic, Zoom experienced an order of magnitude growth in its users,

going from around 10M to 200M, and a similar trend in the amount of cloud instances used to

satisfy this unprecedented increase in traffic [110].

B
u
g
 s

y
m

p
to

m
s

#Nodes (N)

e.g.,

N>100

Scalability faults: Latent faults that are

scale dependent, whose symptoms sur-

face in large-scale deployments (e.g.,

N > 100 nodes), but not necessarily in

small/medium-scale deployments (e.g.,

N < 100 nodes).

Figure 1.1: Scalability fault definition. Detailed examples are in section 1.1.

There is an undeniable benefit on the rise of large-scale cloud systems, but is scale a friend

or a foe [157]?. As pointed out more than a decade ago, scalability is not an after-thought: It

requires systems to be designed with it in mind, as many of their protocols could seem scalable

when evaluated using small inputs (e.g.small amounts of data) or under low load but explode in

terms of cost (e.g., execution time, memory consumption) when the size of the input or load grows

[106]. In this document, we refer to these types of explosive manifestations as scalability faults,

i.e.faults that become visible at larger scales but are not visible at smaller scales, as illustrated in

figure 1.1.

1

 (Y5, map[N]) {

 O(N3)

} node X

f
Y5Y9 Y7...

backlog

gossip(Y1)

gossips node Z

...

Y=dead
(no new
gossip)

a

b

c
d

e

Figure 1.2: Cassandra scalability fault. The figure represents the process related to ca-6127.

This fault surfaced when bootstrapping hundreds of nodes and led to cluster instability with tens of

thousands of flappings; a “flap” is when a node marks a peer node as down and then alive again.

(a) During bootstrapping, every node gossips to peer nodes its view of the node-ring (the peers’

version numbers it has received). Every second, each node sends a gossip to a random node and

increases its own version number (“I’m still alive” flag); for example, node Y has gossiped up to

version Y9. (b) The receiving node (e.g., node X) then finds any view differences between the two

nodes to synchronize their views of the ring. The root cause is that the gossip processing during

bootstrapping is scale-dependent (the “O(N3) f ()”), because the gossips carry many new view

changes. (c) Because gossip processing is single-threaded (to alleviate concurrency issues), and

when N is large, it creates a backlog of new gossips. (d) As a result, the processing node only sends

the latest (old) versions it knows about peer nodes; for example, X only gossips version Y1 to other

nodes. (e) As Y ’s recent gossips are not propagated on time, other nodes (e.g., Z) will mark Y as

dead.

1.1 Motivation

As a motivational an example, let us consider the fault in Cassandra [1], a scalable peer-to-peer

key-value store, described in figure 1.2. If a customer initially deploys a cluster of 50 nodes and

later scales it out with 50 additional nodes, the operation can be done smoothly. However, if the

customer deploys a 200-node cluster and then adds 200 more nodes, the protocol that rebalances

the key-range partitions (which nodes should own which key ranges) becomes CPU intensive as

the calculation has an O(N3) complexity where N is the number of nodes. This combined with

the gossiping and failure detection logic leads to a scalability fault that makes the cluster unstable

(many live nodes are declared as dead, making some data not reachable by the users).

But Cassandra is far from being the only system exhibiting scalability faults. As shown in figure

1.3, large scale deployments of HDFS, Riak and Voldemort are prone to this types of issues too. In

figure 1.3(a)[57], when D HDFS’s datanodes are decommissioned, the blocks must be replicated to

the other N −D nodes. Every 5 minutes, the DecommissionMonitor thread in HDFS’s namenode

iterates all the block descriptors to check if the D nodes can be safely decommissioned (when

2

http://issues.apache.org/jira/browse/CASSANDRA-6127

0

5

10

 32 64 128 256

(a) Max Lock Hold Time (sec)
in Decommission

0

.6

1.2

 32 64 128 256

(b) Longest RPC Queue
Observed (x1000)

 0

 50

 100

 32 64 128 256

(c) Duration (x1000 sec) of
Voldemort Rebalance

0

5

10

 32 64 128 256

(d) Duration (x1000 sec)
of Riak Bootstrap

Figure 1.3: Other scalability faults. In all figures, the x axis represents the number of nodes,

while the y axis is related to an specific symptom. In (a), the symptom is the amount of time the

HDFS’s decommission lock is being held. In (b), the symptom is the size of the HDFS’s RPC queue.

In (c) the symptom is the duration of Voldemort’s rebalance process. Finally, in (d) the symptom is

the duration of Riak’s bootstrap process.

all data replications complete). This thread, unfortunately, must hold the global file system lock.

When N > 256, this process can hold the lock (i.e., stall user requests) for more than 10 seconds

(y > 10).

In figure 1.3(b)[58] incremental block reports (IBRs) from HDFS datanodes to the namenode

acquire the global master lock. As N grows, more IBR calls acquire the lock. The IBR requests

quickly backlog the namenode’s IPC queue; with 256 nodes, the IPC queue hits the max of 1000

pending requests; y = 1 (×1000). When this happens, user requests are undesirably dropped by

the namenode. The fix batches the IBR request processing. In figure 1.3(c)[105] Voldemort’s

rebalancing was not optimized for large clusters; it led to more stealer-donor partition transitions as

the cluster size grows (128+ nodes). Finally, in 1.3(d)[95] Riak’s rebalancing algorithm employed

3 complex stages (claim-target, claim-hole, full rebalance) to converge to a perfectly balanced ring.

Each node runs this CPU-intensive algorithm on every bootstrap gossip received. The larger the

cluster, the longer time the perfect balance is achieved (a high y value in 128+ nodes).

Motivated by these and other faults we have studied (discussed later at chapter 2 and summa-

rized at tables A.1 and C.1), we have made the following observations about scalability faults:

• Scalability faults only appear at extreme scale: ca-6127 does not surface in 30-node de-

ployment. In 128-node cluster, the symptom appears mildly (tens of flaps). From 200-500

nodes, flapping skyrockets from hundreds to thousands of flaps. Testing in small/medium

3

http://issues.apache.org/jira/browse/CASSANDRA-6127

scales is not sufficient, which is also true for other faults we studied.

• Protocols are scalable in design, but not in practice: related to ca-6127, the accrual failure

detector/gossiper [129] was interestingly adopted by Cassandra as it is scalable in design

[136]. However, the design proof does not account gossip processing time during bootstrap,

which can be long. To understand the fault, the developers tried to “do the [simple] math”

[15] but failed. In practice, the assumption that new gossips are propagated every second is

not met (due to the backlog). The actual implementations overload gossips with many other

purposes (e.g., announcing boot/rebalance changes) beyond their original design sketch.

• Scalability faults are implementation specific and hard to predict. the backlog-induced

flapping in ca-6127 was caused specifically by Cassandra’s implementation choice: meta-

data checkpoint, multi-map cloning, and its single-threaded implementation. State-update

processing time is hard to predict (ranges from 0.001 to 4 seconds) as it depends on a 2-

dimensional input: the receiving node’s ring table size and the number of new state changes

[15].

• Scalability faults cause cascading impacts of “not-so-independent” nodes. In cluster-wide

control protocols, distributed nodes are not necessarily independent; nodes must communi-

cate with each other to synchronize their views of cluster metadata. As the cluster grows,

the cluster metadata size increases. Thus, unpredictable processing time in individual nodes

can create cascading impacts to the whole cluster.

• Large-scale debugging is long and difficult: ca-6127 generated over 40 back-and-forth dis-

cussion comments and took 2 months to fix. It is apparent that there were many hurdles

of deploying and debugging the buggy protocol at real scale [15]. Important to note is that

debugging is not a single iteration; developers must repeatedly instrument the system (add

more logs) and re-run the system at scale to find and fix the bug, which is not trivial. The

scalability faults we studied took from 6 to 157 days to fix (27 on average).

4

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127

• Not all developers have large test budgets: Another factor of delayed fixes is the lack

of budget for large test clusters. Such luxury tends to be accessible to developers in large

companies, but not to open-source developers. When ca-6127 was submitted by a customer

who had hundreds of nodes, the Cassandra developers did not have an instant access to a test

cluster of the same scale.

• Developers perform quick fixes and face repeated faults. Faults are often fixed with quick

patches (development pressures), but the new fix might not eradicate the problem completely

[180]. For example, for ca-6127, the patch simply disables failure detection during bootstrap.

As the protocol was not redesigned, the fault still appeared in another workload (e.g., scaling

out from 128 to 256 nodes). In the next version of Cassandra, the simple fix has been

removed and the gossip protocol has been redesigned. We also found that old fixes can

become obsolete in protocol re-designs, which then can give birth to new scalability faults.

For example, the fix for ca-3831 became obsolete as “vnodes” was introduced, which then

gave rise to a new vnode-related scalability fault (ca-3881).

1.2 Research Questions

Motivated by our observations and findings, we spent the first two years of our work studying

scalability faults, an effort that involved tens of students collecting, classifying and discussing

those, aiming to address the following research questions:

• RQ1: How do scalability faults manifest? What are the common symptoms observed by

reporters?

• RQ2: What are their common root causes? Some common patterns have been observed

before [139], but are there other root causes?, and if so, how common are those?

• RQ3: What are the common solutions proposed by developers? and how much effort is

involved in fixing these faults?

5

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881

Understanding the intricate details of scalability faults, their root causes, related symptoms

and manifestation scenarios was vital for understanding how current testing mechanisms fail or

succeed to address them. After this study, we decided to tackle the lack of large-scale testing tools,

in an effort that included months of developing deep knowledge of the architecture and internals

of tens of distributed systems and reproducing tens, if not hundreds, of faulty scenarios, aiming to

answer two research questions:

• RQ4: How to discover latent scalability faults? Scalability faults are not easy to discover;

their symptoms only surface in large deployment scales (e.g., N > 100 nodes). Protocol

algorithms might seem scalable in design sketch, but until real deployment takes place, some

faults remain unforeseen.

• RQ5: How to democratize large-scale testing? According to our study and industrial

experience [91], developers might not have direct access to the same cluster scale and must

wait for a “higher-level” budget approval for using large test clusters, which heavily increases

the cost of this practice.

Bu the approach we proposed for the latter research questions left many questions unanswered

and had a few disadvantages [166]. It relied heavily on emulation and involved modifications to the

target systems (on the order of hundreds of lines of code). The inherent limitations of emulation

and the effort involved hinder its adoption. Moreover, our static analysis approach was focused

on data structures, did not capture the relevant code patterns, produced false positives and more

importantly did not provide a sufficient explanation on how the scalability of the system is affected

by certain code patterns.

With the latter in mind, we invested the final two years of our work in creating a testing ap-

proach that is (a) focused on the root cause of the problem, not the related symptoms, (b) is not

subject to the culprits of emulation, (c) is portable without effort between different versions of

a system and (d) guides developers in understanding the relationship between the system and its

6

dimensionality (e.g. # nodes, # tables, # clients), i.e., how the increase in size of such dimensions

affects the system. The goal here is to address the following research questions:

• RQ6: Which pieces of code are affected by dimensionality? Mature distributed systems

are usually comprised of hundreds of thousands of lines of code, but according to our ob-

servations, only some of those code fragments are dimensional, i.e., as one or more system

dimensions grow, the number of executions of these fragments also grows.

• RQ7: How to detect dimensional code fragments? What are the necessary steps and tools

we need to find such fragments?. Moreover, which techniques are useful in determining their

correlation with certain dimensions and categorizing their growth trends?.

• RQ8: When do dimensional code fragments become problematic? Dimensional code

fragments are the building blocks of distributed systems, thus not all of them are inherently

problematic. Then, when do they become problematic?.

These research questions are the main focus of this document. Over the next sections we detail

our contributions, and provide a high-level overview of our intents to address those questions.

1.3 Towards Scale-Checkable Systems

1.3.1 Scalability Faults in Large-Scale Cloud Systems: A Comprehensive Study

The first part of this document is focused on understanding scalability faults and answering RQ1,

RQ2 and RQ3. To do so, in chapter 2 we present a comprehensive study of deployment and devel-

opment fault reports from 10 popular large-scale cloud systems, including Hadoop, MapReduce,

HDFS, HBase, Cassandra, Kafka, Ignite, Spark, Storm, and Yarn, reviewing over 110K issues from

a 14-year period. From those, we selected 350 faults that manifest at larger scales (e.g. hundreds

of nodes) but not at smaller scales (e.g. tens of nodes), i.e. scalability faults, as previously defined

in figure 1.1. Our study includes the dimensions and system protocols involved, the symptoms

7

observed and the mechanisms, if any, for detecting such faults. We further analyze the faulty code

and identify the related root causes and categorize the proposed solutions.

1.3.2 SCALECHECK: A Single-Machine Approach for Discovering Scalability

Bugs in Large Distributed Systems

Next, from the study presented at chapter 2 we took a 55 issue sample (13 in Cassandra, 5 in

Couchbase, 6 in Hadoop, 13 in HBase, 16 in HDFS, 1 in Riak, and 1 in Voldemort, summarized

at table A.1) and outline two main challenges: First, albeit systems usually include unit tests,

benchmarks and API’s that allow developers to build custom tests, no tool is focused on finding

scalability faults. Second, the common practice of debugging such faults is arduous, slow and

expensive. For example, when customers report scalability issues, the developers might not have

direct access to the same cluster scale and must wait for a “higher-level“ budget approval for using

large test clusters. To overcome these challenges, chapter 3 presents SCALECHECK, a set of tools

and practices for discovering scalability faults in distributed systems, our attempt to address RQ4

and RQ5. First, to reveal hidden scalability faults, we build SFIND, a program analysis support

for finding “scale-dependent loops“. Our strategy, based on the findings of chapter 2, focuses on

loops that iterate on data structures that grow as the system scales out (e.g., the O(N3) described

at figure 1.2). Next, to “democratize“ large-scale testing, we build STEST, a single-machine scale-

testing framework. We target one machine because arguably the most popular testing practice is

via unittests, which only requires a PC. For this, we introduce novel colocation techniques such

as global-event driven architecture (GEDA) in single-process cluster and processing illusion (PIL)

with non-intrusive modification.

8

1.3.3 SVIEW: Identifying and Analyzing Potential Scalability Faults in

Large-Scale Distributed Systems

Finally, in chapter 4 we present SVIEW, a framework for identifying and analyzing potential scala-

bility faults in large-scale distributed systems, our attempt to address RQ6, RQ7 and RQ8. SVIEW

combines instrumentation, scaling workloads and mathematical concepts like correlation to detect

dimensional code fragments (DCFs), this is, pieces of code whose number of executions (i.e., #

loop iterations, # method executions) is positively correlated with one or more system dimensions.

Once detected, SVIEW employs similarity measures to categorize DCFs into complexity categories

(e.g., linear or superlinear), in an attempt to explain developers how impactful the DCFs are regard-

ing their system’s dimensionality. As DCFs or their complexity categories are not problematic by

themselves, SVIEW uses static analysis modules to look for problematic code patterns that cause

performance degradation in critical paths, severe protocol contention or other more classic issues

such as dimensional I/O. Combining these 3 factors, SVIEW provides the necessary guidance and

depth in order to find scalability faults in complex distributed systems.

1.4 Thesis Overview

The rest of this document is organized as follows: chapter 2 presents the study outlined in section

1.3.1, including its methodology (section 2.1), observed symptoms (section 2.2), categorization of

fault-manifestation scenarios (section 2.3), protocols types (section 2.4), root causes (section 2.5),

and observed solution patterns (section 2.6).

Chapter 3 presents the details of SCALECHECK [166], outlined in section 1.3.2, including a

complete description of SFIND, a static-analysis tool intended to detect scalability faults in source

code (section 3.1), the techniques we deviced to create STEST, a single-machine distributed sys-

tems runtime designed to reproduce scalability faults in a single machine (section 3.2), the imple-

mentation details and evaluation of the aforementioned components (sections 3.4 and 3.5 respec-

9

tively), and a discussion on the limitations of this work (3.6).

Chapter 4 presents the details of SVIEW [167], outlined in section 1.3.3, including the main

motivation for that work, dimensional code fragments (DCFs) (section 4.1), and continuing with

a design overview of SVIEW (section 4.2). Then, in the following sections, we detail our contri-

butions: study of DCFs (section 4.3), the design of SVIEW (section 4.4) and the analysis modules

built on top (section 4.5), and an in-depth evaluation of SVIEW that covers 4 real distributed sys-

tems with a total of 15 versions (section 4.6). We then close the chapter with related work (section

4.7) and conclusions (section 4.8)

Finally, chapter 6 presents our conclusions and details on future work and chapter 5 discusses

other (unrelated to the main topic of this document) contributions done during my Ph.D. program.

10

CHAPTER 2

SCALABILITY FAULTS IN LARGE-SCALE CLOUD SYSTEMS: A

COMPREHENSIVE STUDY

As discussed in section 1.3.1, this chapter presents our scalability fault study, where the goal is to

address the following research questions:

• RQ1: How do scalability faults manifest? What are the common symptoms observed by

reporters?

• RQ2: What are their common root causes? Some common patterns have been observed

before [139], but are there other root causes?, and if so, how common are those?

• RQ3: What are the common solutions proposed by developers? and how much effort is

involved in fixing these faults?

The rest of this chapter is organized as follows: In section 2.1 we present our methodology and

in the following sections we address our 3 research questions, including a discussion on observed

symptoms at section 2.2, categorization of fault-manifestation scenarios at section 2.3, protocols

types at section 2.4, root causes at section 2.5 and observed solutions at section 2.6. Finally, we

summarize this chapter and show our contributions in section 2.7.

2.1 Methodology

In this section, we describe our methodology, in specific how we choose the target reports, the

classifications we created and the resulting database.

• Issue repositories: The development projects of our target systems [1, 2, 3, 4, 5, 7, 9, 10, 11, 50]

are all hosted under the Apache Software Foundation Project [8], where each of them maintains a

highly organized issue repository [6]. Each repository contains development and deployment is-

sues submitted mostly by developers and sometimes by a larger user community composed mainly

11

Dimension % reports Examples

Load 39 #requests, rpcs

Data 36 # or size of tables, files, partitions

Cluster 21 #peers, datanodes, namenodes

Fail 4 #processing errors

Table 2.1: Dimensions, summary and examples. The second column shows the percentage of

the total reports (350) that corresponds to dimensional each axis.

of operators and other practitioners. We use the term “issue”, “fault” and “report” interchangeably

in this paper to represent both bugs and new features.

• Issue selection: We manually analyzed 110K issues, ranging from 2007 to 2020, and selected

350 instances where the root cause was related to an increase in the scale of load, the scale of

data-size, the scale of cluster-size and/or the scale of failure. Examples of each dimension are

shown at the third column of table 2.1, while the dimensional per-system break down is shown in

figure 2.1.

• Issue analysis: We analyzed the description and comments of each reports, including the related

pull-requests, if any, to understand the observed symptoms and the issue manifestation mechanism.

For the symptoms, we identified 6 main categories and assigned one or more to each fault, as a

report might include more than one type of reported symptom. We also documented the severity

of the symptoms: issues that caused node crashes, hangs or when in general one or more nodes

in the cluster stopped working were considered severe, while others were considered mild. In the

case of manifestation mechanisms, we identified 2 main categories and divided one of those into 3

subcategories.

• Source code analysis: We analyzed the faulty code paths, which we refer in this paper as proto-

cols, using the pointers provided by developers, if any. We created 3 protocol categories, including

a generic one in which we classified reports that could affect the first 2 types, and assigned a single

category to each report. We then studied the issue in depth to identify its root cause. We used the

pointers provided by reporters and developers and sometimes compared the faulty code with the

proposed solution in order to understand the possible contributing factors, selecting the one that

12

15

30

45

ca hd ha mr sp

68 60

Load (%) Data (%) Cluster (%) Fail (%)

15

30

45

hb st kf ig yr

69 52 53

Figure 2.1: Per-system dimension break down. From left to right, the systems in the top-most

figure are Cassandra, HDFS, Hadoop, MapReduce and Spark, while the ones in the figure at the

bottom are HBase, Storm, Kafka, Ignite, Yarn. The bar graphs show the percentage of reports

associated with each dimension, as defined in table 2.1.

contributes the most according to our analysis, as the root cause. We finally created 4 main root

cause categories with 2-3 subcategories each, for a total of 11 types of root causes, and assigned

one and only one to each report.

• Patch analysis: Finally, we analyzed the proposed patches and pull requests. For each, we

collected data related to the effort involved in fixing the issue (the modified lines of code in the

latest patch), the amount of and size of the related unit tests (number of new/modified classes

and methods) and analyzed the solution patterns. For the later, we identified 28 common solution

patterns, representing commonly known solutions (e.g.throttling or batching).

• Scale Fault DB (SFDB): The product of our classifications is stored in SFDB [96], a set of

raw text files that enables us (and future SFDB users) to perform both quantitative and qualitative

analysis of scalability faults using the tagging system described in table 2.2.

• Threats to validity: To the best of our effort, we consider our collection process as complete as

possible, albeit we might have missed relevant reports due to manual scanning. Each issue cited

in this report was discussed by at least 3 people. If an ambiguity raised when tagging an issue, we

discussed such ambiguity until we reached a unified conclusion. Finally, we report the solution

and patches as they were informed by the end of February 2020. After that date, new fixes might

have been added and new developments on the issue might have occurred, including an issue being

13

Classification Cardinality

creation year 1

dimension(s) involved +

patch count 1

latest patch LOC 1/0

new unit tests (classes and methods) 1

mod unit tests (classes and methods) 1

manifestation category 1

protocol category 1

root cause category and subcategory 1

observed symptoms +

observed severity +

solution mechanism +

reported cluster size *

reported data size *

reported load *

reported company 1/0

Table 2.2: Per-issue SFDB classifications. The second column shows the cardinality of each tag,

where “1” stands for “one and only one”, “1/0” for “one or none”, “+” for “at least one” and

“*” for “zero or more”. The actual tagging system is defined at the database [96] documentation.

reopened due to the solution not being effective, which is part of the fluid nature of this type of

repositories.

2.2 Observed Symptoms: How do scalability faults manifest?

We identified 6 main symptom categories related to contention, crashes, performance degradation,

high machine-level resource usage, high memory usage and operation failures. Below we discuss

each category, including the main dimensions involved, the severity of the fault and real world

examples.

• In over 57%of faults reporters observe some level of performance (pe) degradation, such as

tail latency or long execution time, as shown in the third column of figure 2.2(a). The severity

breakdown, also in figure 2.2(a), seems to indicate that most of these degradations did not cause

severe implications. This is one of the most common reported symptoms and is, according to our

observations, closely related to the data and cluster-size dimensions, as shown in the third column

14

15

30

45

60

co cr pe rs mm fa

(a) Symptom Type

%
 o

f
to

ta
l

mild severe

25

50

75

100

co cr pe rsmmfa

(b) Symptom vs Dim.

R
e

l.
 %

Load
Data

Cluster
Fail

Figure 2.2: Symptom types: severity and dimensional break down. In figure (a), the symptom

categories are non-exclusive, thus the sum of the percentages is larger than 100%. In the afore-

mentioned figure, the y-axis represents % of the total while in (b) the percentages are relative. In

the x-axis of all figures, “co” stands for “contention”, “cr” for “crash”, “pe” for “performance”,

“rs” for “OS resources”, “mm” for “memory” and “fa” for “operation failure”, while in figure

(b) title “Dim.” stands for “Dimension” (section 2.1).

of figure 2.2(b). Examples are very diverse and include st-2733, were heavy garbage collection

[70] activity degraded storm’s worker node performance, rendering it unable to cope with the

incoming traffic.

• In over 38%of faults reporters observe some level of memory (mm) related issues, such as high

memory usage, running out of memory, frequent object allocation and/or bloating data structures,

as shown in the fifth column of figure 2.2(a). The severity breakdown indicates that in half of

these cases the memory consumption caused severe impacts, i.e.one or more nodes in the cluster

crashed due to OOM. This is the second largest category and seems to be heavily related to the

data and load dimensions, as shown in the fifth column of figure 2.2(b). Examples are very diverse

and include yr-9067, where improper cleaning of connections upon failure ends up building a large

memory leak that in time ends up rendering the Resource Manager out of memory.

• In over 11%of faults reporters observe some level of lock-related contention (co), as shown in

the first column of figure 2.2(a). We initially expected that most of the faults where contention was

observed were related to the load dimension, but the first column of figure 2.2(b) proved us wrong.

After further analysis, we realized that, as will be discussed in section 2.3, protocols sensitive to

15

http://issues.apache.org/jira/browse/STORM-2733
http://issues.apache.org/jira/browse/YARN-9067

an increase in load, like user-facing protocols, are frequently performance-tested and contention

bottlenecks are one of the first possible issues testers will look for. On the other hand, the larger the

amount of data the more possible contention between user-facing and operational protocols (e.g.to

maintain consistency), such as in hd-14854 where decommissioning a single datanode D uses a

global lock that is held on the namenode while iterating over D’s files , thus the more files in D the

more time the cluster is not responsive.

• In over 11%of faults reporters observe single or multiple node crashes (cr), as shown in the

second column of figure 2.2(a). In this case, all reports indicate severe implications, for logical

reasons. Crashes are one of the categories more strongly correlated to the fail dimension, as shown

in the second column of figure 2.2(b). Notable examples include ca-15013, where memory related

issues in a heavily loaded cluster ended up killing multiple nodes.

• In over 10%of faults reporters observe some level of machine-related resource (rs) shortage,

such as storage bloating, high CPU usage or exhaustion of file descriptors, as shown in the fourth

column of figure 2.2(a). This type of faults are commonly related to the load and cluster-size

dimensions, since typical system’s designs involve per-node or per-request connections (sometimes

organized in pools), as shown in the fourth column of figure 2.2(b). Examples in this category

include ha-15813, where wrong per-request connection caching logic leads to machines running

out of file descriptors under load.

• Finally, in over 13%of faults reporters observe some level of operation failures (fa), such as

timeouts, as shown in the sixth column of figure 2.2(a). Operation failures are highly correlated

to the data and cluster-size dimensions which we suspect is related to the reasons we described

previously for the contention category. Examples reporting operation failures include ig-12042,

where reporters claim that attempting to remove a data page from a fully populated data region

ends up in allocating one more data page, causing the operation to fail.

16

http://issues.apache.org/jira/browse/HDFS-14854
http://issues.apache.org/jira/browse/CASSANDRA-15013
http://issues.apache.org/jira/browse/HADOOP-15813
http://issues.apache.org/jira/browse/IGNITE-12042

15

30

45

60

de tt ah bm st

(a) Manifestation Types

%
 o

f
to

ta
l

mild severe

25

50

75

100

de tt ah bm st

(b) Manifestation vs Dim.

R
e

l.
 %

Load
Data

Cluster
Fail

Figure 2.3: Manifestation types: severity and dimensional break down. In figure (a), the

third, fourth and fifth columns are a break down of the second column. Also in figure (a), the

y-axis represents % of the total, since the categories are exclusive, while in (b) the percentages

are relative given that the categories are non exclusive. In the x-axis of all figures, “de” stands

for “deployment”, “tt” for “test total”, “ah” for “ad-hoc”, “bm” for “benchmark” and “st” for

“stress”, while in figure (b) title “Dim.” stands for “Dimension” (section 2.1).

2.3 Testing or Deployment: When do scalability faults manifest?

According to our observations, over 61%faults were found when the system was already deployed

while 39%were detected before using tests, which we further subdivided based on the mechanism

in ad-hoc testing, were testers create their own workload using provided testing APIs [51, 64] and

use automated tools to detect possible bottlenecks [75, 78, 90], using known system benchmarks

[52, 101] and using stress-test tools [23, 80]. Below we describe the major traits of our 2 main

categories and 3 subcategories and present the related findings.

• Over 61%of all faults manifest during deployment (de), as shown in the first column of figure

2.3(a). The category not only concentrates the most issues, but also the most severe manifestations,

where almost half of the total occurrences killed at least one instance in the cluster. Dimensionally,

it concentrates almost all cluster and failure size related issues, as shown in the first column of

figure 2.3(b).

• Over 39%of all faults manifest during testing (tt), as shown in the second column of figure

2.3(a), using APIs and tools as the ones shown in table 2.3. These mechanisms are usually de-

17

Type ha mr hd hb ca kf ig sp st yr

Test APIs [51] [86] [51] [55] [19] [82] ✗ [99] ✗ [108]

Stress [53] [53] [101] [54] [23] [80] [67] [98] [100] [107]

Benchmark [52] ✗ [60] ✗ [20] [81] [66] ✗ ✗ ✗

Table 2.3: Test APIs, stress-test tools and benchmark examples. The APIs, benchmarks and

stress-test tools in this table might not be the only ones available. ✗ indicates that, to the best of

our efforts, we could not locate any publicly available tool or framework that included reusable

code in the related category.

signed to catch faults in protocols that are related to data and load management, which is why

proportionally most of the issues being reported using them are related to those dimensions, as

shown in the second column of figure 2.3(b). We further subdivided this category in 3 subcate-

gories related to the test mechanism that was employed by the reporter, which we describe below:

• Over 20%of all faults and 52%of the faults found during testing manifest while performing

ad-hoc (ah) tests, as shown in the third column of figure 2.3(a). As stated before, ad-hoc testing

often involves custom APIs that allow developers to create single-node clusters, i.e.clusters where

multiple nodes are deployed in the same machine (but with different communication ports), dis-

tributed testing frameworks like DTest [64], or simply involve in-house test on production clusters

running workloads at scales that closely resemble the scale customers have. Examples of faults

found this way include ca-15364, where developers created custom distributed tests and used the

aforementioned tools to detect a performance fault when starting a node with too many unverified

transactions.

• Over 10%of all faults and 27%of all faults found during testing manifest while using known

benchmarks (bm), as shown in the fourth column of figure 2.3(a). As most of these benchmarks

are focused on measuring performance, typically in terms of execution time, most of the faults

found using these are related to the data and cluster-size dimensions, their most common target

[141, 177], as shown in the fourth column at figure 2.3(b). Examples in this category include

ig-12087, where reporters use custom benchmarks to trace down performance regressions related

to the data dimension and kf-4444, where an operational protocol involves super-linear iteration

over possibly large data structures (as discussed in section 2.5.1), causing an impact on shutdown-

18

http://issues.apache.org/jira/browse/CASSANDRA-15364
http://issues.apache.org/jira/browse/IGNITE-12087
http://issues.apache.org/jira/browse/KAFKA-4444

15

30

45

60

op us ge

(a) Protocol Types

%
 o

f
to

ta
l

mild severe

25

50

75

100

op us ge

(b) Protocol vs Dim.

R
e

l.
 %

Load
Data

Cluster
Fail

Figure 2.4: Protocol types: dimensional break down. In figure (a), the y-axis represents % of

the total, since the categories are exclusive, while in (b) the percentages are relative given that the

categories are non exclusive. In the x-axis of all figures, “op” stands for “operational”, “us” for

“user-facing” and “ge” for “general”, while in figure (b) title “Dim.” stands for “Dimension”

(section 2.1).)

command’s performance.

• Finally, over 9%of all faults and 21%of all faults found during testing manifest while using

stress-test (st) tools, as shown in the fifth column of figure 2.3(a). Being tools mostly focused on

creating different levels of load with varied levels of customization, it is not surprising that over

77%of these are related to the load-size dimension, as shown the fifth column of figure 2.3(b).

Typical examples related to the load and data-size dimensions include reports of high contention

under load, as in hd-14997, or reports of running out of memory while stress-testing using large-

sized requests, as in ca-14747. Examples of cluster-size related issues discovered using these kind

of tools include hb-10501, where faulty logic in region assignment tend to produce overloaded (too

many regions) Region Servers.

2.4 Faulty Protocols: Where do scalability faults manifest?

Besides the main read/write user-facing protocols, we identified many operational protocols, which

perform background and on-demand management operations. Examples of these are compaction

and scrub operations in Cassandra [18, 22], were the former is an operation that can happen in

19

http://issues.apache.org/jira/browse/HDFS-14997
http://issues.apache.org/jira/browse/CASSANDRA-14747
http://issues.apache.org/jira/browse/HBASE-10501

the background when certain conditions are met or be triggered manually by operators using an

administrative interface [21], and the later is a data-cleaning operation triggered by operators. In

addition to these two types of protocols, we also identified general code paths, where the reported

faults do not explicitly belong to any operational or user-facing path but are part of a more general

component made to be reused across the whole system. Below we describe the major traits of our

3 categories and present the related findings.

• Operational protocols (op) are involved in 62%of the total faults, as shown in the first column

of figure 2.4(a). As operational protocols often deal with coordination among peers, membership

and failures in those operations, they tend to concentrate cluster-size and failure-size related faults,

as shown in the first column of figure 2.4(b), the later being extremely rare in other categories.

Examples in this category are very diverse and include a case where a non-scalable membership

protocol implementation lead to intermittent changes in membership in large scale deployments,

as in ca-3881, and excessive cross-system communication during partition reassignment, as in

kf-6134.

• User-Facing protocols (us) are involved in 27%of the total faults, as shown in the second

column of figure 2.4(a). As all user-facing operations deal with either adding or retrieving data

from the system through a myriad of mechanisms expressed as different types of requests, it is not

surprising that almost 92%of these faults are related to the data and load dimensions, as shown in

the second column of figure 2.4b). Examples of this type of faults are related to cluster-size related

resource leaks as in kf-1567, load-size related resource leaks as in ha-16242 and failure storms

caused by failed read requests as in mr-2947.

• General protocols (ge) are involved in 11%of the total faults, as shown in the third column

of figure 2.4(a), and are related to code paths that can belong to both operational and user-facing

protocols. They involve code that is designed to be reused like shared data structures, common

cross-cutting code paths implementing desirable system’s properties, like consistency or durability

and connection and other resource managers. Examples in this category include ca-5506, where the

20

http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/KAFKA-6134
http://issues.apache.org/jira/browse/KAFKA-1567
http://issues.apache.org/jira/browse/HADOOP-16242
http://issues.apache.org/jira/browse/MAPREDUCE-2947
http://issues.apache.org/jira/browse/CASSANDRA-5506

fault is related to non-scalable data structure design that uses too much memory when instantiated

many times and ig-8681, where a super-linear implementation of a consistency-related operation

triggered from both operational and user-facing paths degrades performance.

2.5 Root causes

In this section we present our findings related to the 4 main root cause categories and 11 subcat-

egories we identified. In section 2.5.1 we discuss compute faults, our most common root cause

typically related to performance and contention. In section 2.5.2 and section 2.5.3 we discuss un-

bound and bloat faults, generally related to resource consumption, especially memory. Finally, in

section 2.5.4 we discuss logic issues that tend to cause faults at scale, including leaks, races and

even corner cases.

2.5.1 Compute Faults

Compute faults are related to explicit iteration of scale dependent data structures, previously no-

ticed at [139, 166] and defined there as data structures whose size grows as the size of a specific

dimension (e.g.#files, #peers) grows. It is our largest category, representing 41% of the total re-

ports and includes 3 subcategories:

• compute-cross faults, accounting for 32% of this category, where external API calls (e.g.methods

from pluggable components or external clients) or IO operations (disk or network) are performed

while iterating scale dependent data structures, creating an amplification effect that is correlated

to one or more scale dimensions. These faults are based in known performance antipatterns [88]

and have been observed in several types or architectures [119, 178, 182]. An example is shown

in figure 2.5(a). There, each Kafka topic owns one or more partition. Updates to this owner-

ship, invoking the method updateOwner, trigger synchronous communication with a cross-layer

component (Zookeeper, at line 5). As the number of partitions grows, the number of synchronous

messages grows, thus the execution time of the whole operation becomes dependent on the network

21

http://issues.apache.org/jira/browse/IGNITE-8681

1 void updateOwner(Partition[] ps){
2 //for every partition

3 for(Partition p: ps){
4 //cross-system call

5 ZKClient.send(p.id, p.owner);

6 }
7 }
8

9

10

11

void updateTokens(Token[] ts){
writeLock();

for every token

for(Token t: ts){
if(!cachedTokens.contains(t)){
cachedTokens.add(t)

}
}
writeUnlock();

}

void unwindEvicts(Partition[] all){
for every partition

for(Partition o : all){
for every token

for(Partition i : o.versions()){
if(i.isExpired()) {

i.markForRemoval();

}
}

}
}

(a) compute-cross (b) compute-sync (c) compute-app

Figure 2.5: Compute fault code samples. Based on real world faults, (a) is based on kf-5642

and shows a compute-cross fault when communicating with Zookeeper’s client in a synchronous

fashion in Kafka. (b) is based on ca-5456 and shows a compute-sync fault in Cassandra where

frequent, long and blocking consistency management operations collide with membership updates,

putting the later in distress. Finally, (c) is based on ig-8681 illustrates compute-app faults, where

albeit no heavy or expensive (e.g.IO) operations are present, the loop nesting and its location

(inside a performance-critical path) creates an unnecessary performance issue.

speed and the load on the external component.

• compute-sync faults, representing 39% of this category, where iteration of scale dependent data

structures is protected by global locks, creating a synchronization bottleneck where the amount of

time every other thread needs to wait for said lock is correlated to one or more scale dimensions.

This type of faults have been observed frequently [166, 182] in centralized architectures such as

HDFS. In this category, we included both cases where the locks wrap scale dependent iteration and

cases where the locks are located inside the iteration, where the former is the most frequent. An

example is shown in figure 2.5(b). There, the method updateTokens is invoked every time range

movements are performed in order to maintain consistency when a Cassandra cluster’s topology

is changing. But since this operation is performed holding a global lock (line 2), other threads,

in particular the thread that handles membership changes, have to wait until the whole operation

finishes. As the number of data partitions grow (or the cluster becomes larger), the execution time

of the code block between lines 4 and 8 grows too, causing a negative impact on elasticity, akin to

what was observed at [139, 166].

• compute-app, accounting for 29% of this category, where iteration of scale dependent data

22

http://issues.apache.org/jira/browse/KAFKA-5642
http://issues.apache.org/jira/browse/CASSANDRA-5456
http://issues.apache.org/jira/browse/IGNITE-8681

25

50

75

100

tt cr sy ap
(a) Dimension

R
e

l.
 %

Load
Data

Cluster
Fail

25

50

75

100

tt cr sy ap
(b) Manifestation

de
ah

bm
st

25

50

75

100

tt cr sy ap
(c) Protocols

op
us

ge

25

50

75

100

tt cr sy ap
(d) Symptoms

co
cr

rs
mm

fa
pe

Figure 2.6: Compute faults: dimensional, manifestation, protocol and symptom break down.

In all figures the y-axis represents the relative percentage of the category. Also, “tt” stands for

“total”, “cr” for “compute-cross”, “sy” for “compute-sync” and “ap” for “compute-app”. Other

abbreviations are discussed at section 2.1, section 2.2, section 2.4 and section 2.2 respectively.

structures, typically in a nested fashion, is placed in performance critical paths, creating bottle-

necks. We grouped in this category faults where albeit the computation(s) inside the iteration itself

are not considered costly, the common nesting is >= 2, meaning that the correlation between one

or more scale dimensions influences execution time in a quadratic fashion. An example is shown

in figure 2.5(c). There, unwindEvicts is invoked every time a remote Ignite command is processed.

This method iterates two scale dependent collections of O(P = #partitions) size (lines 3 and 5) in

a nested fashion, adding an O(P2) complexity factor to every remote command execution. Since

the later are considered part of the critical path and the execution time of this method grows as the

number of partitions grow, invoking this method was considered problematic.

• Discussion: Dimensionally, as shown at the first column of figure 2.6(a), compute faults seem

to be highly correlated to the cluster-size and data-size dimensions, which sounds intuitive con-

sidering that iteration tends to happen over collections of elements such as lists of peers, lists of

blocks, lists of files, and others. The subcategory breakdown shows that compute-app, i.e.faults re-

lated to nested loops, are the ones that concentrate the impact on the cluster size dimension, while

this dimension seems to be least commonly involved in compute-sync faults, i.e., lock-contention

related faults. According to our observations, this is related to the fact that what is being protected

by the aforementioned locks is usually data and, very uncommonly, cluster wide bookkeeping data

structures, such as the ones identified as culprits in [139, 166].

23

1 void processRequest(Request r){
2 // Execute

3 Result re = r.execute();

4 if(re.isDone()){
5 // no admission control

6 responseQueue.add(re);

7 }
8 }
9

10

void loadCache(Domain[] ds){
for(Domain d : ds){

// Bring all into memory

Entity[] es = d.load();

for(Entity e : es){
// Accumulate in cache

cache.put(e);

}
}

}

void processRequest(Request r){
Result re = r.execute();

// one connection per request

Socket connection =

new Socket(r.ip, r.port, 10);

replyTo(connection, rs);

}

(a) unb-collection (b) unb-alloc (c) unb-os

Figure 2.7: Unbound fault code samples. Based on real world faults, (a) is based on ca-15013

and illustrates a case where large, in terms of size, responses accumulate in an Java Executor’s

processing queue (unbounded) until the node ends up running out of memory. (b) is based on

yr-7147 and illustrates a case where a component tries to load large, in terms of size, domain

entities, consuming all of the application’s memory and failing to start. Finally, (c) is based on

ha-15696 and shows a case where each request is processed using a single socket. When the

system is flooded with requests, the machine runs out of file descriptors and consumes an excessive

amount of memory.

As shown in figure 2.6(a), several of these faults are found in deployment, which is related to

the fact that most of these faults are located in operational protocols, as shown in 2.6(c), an obser-

vation that also supports the claims at [166] on those being typically under tested when compared

to user-facing protocols. Figure 2.6(b) also shows that only around 25% of the faults can be caught

using one of the known benchmarks or stress-test tools, an apparently poor effectivity. Finally, as

iteration is commonly related to performance, it is not surprising that the later is the most common

observed symptom, as shown in figure 2.6(d), others being failures and contention, intuitively re-

lated to the fact that slow performance might imply timeouts and the already discussed contention

between operational and user-facing protocols.

2.5.2 Unbound faults

Unbound faults are related to data structures that grow without bounds, generally in terms of

size, when one or more dimensions grow. The category is closely related to unbounded resource

consumption and message processing protocols (e.g.RPC or intra-cluster communication), as the

24

http://issues.apache.org/jira/browse/CASSANDRA-15013
http://issues.apache.org/jira/browse/YARN-7147
http://issues.apache.org/jira/browse/HADOOP-15696

later can be considered implicit iteration over implicit scale dependent data structures whose size

depends on the amount of load. This category represents 23% of the total reports and includes 3

subcategories:

• unb-collection faults, accounting for 43% of this category, where a long-lived data structure,

such as inbound/outbound message processing queues or multi-purpose caches, grow without

bounds in response to the growth of one or more dimensions, typically a combination of load

and/or data size. According to our observations, these long-lived data structures tend to contain

objects of variable size and have none, or faulty, access control mechanism. An example is shown

in figure 2.7(a). There, Cassandra message response queue get filled up by pending responses (line

7) of variable and possibly large size. If the responding threads (which consume those objects)

cannot keep up, the queue keeps growing without bounds and the node runs out of memory.

• unb-alloc faults, representing 35% of this category, where temporary memory allocations, such

as stack-level data structures (e.g.list of rows loaded from an on-disk table or set of peers used

for speeding up a search algorithm), grow without bounds in response to the growth of one or

more dimensions. This category can be intuitively related to the lack of buffering or paging when

loading from a remote source, such as a file or even a database, as observed by others [89, 119].

An example is shown in figure 2.7(b). There, the method loadCache is invoked every time the

Timeline Server [103] component of Yarn is started. The application’s cache is loaded from on-

disk contents (line 7), but to do so the whole file is materialized in memory in one method call

(line 4), causing the component to run out of memory when the related files get too big (contain

many records). Notice that in this case the component is killed and it can be restarted only if there

is more memory available or the caching feature is disabled.

• unb-os faults, accounting for 22% of this category, where OS resource allocation, such as threads

and file descriptors, grow without bounds in response to the growth of one or more dimensions.

These faults tend to be uncommon in newer versions since the unbounded increase of threads

and/or sockets is a known issue (e.g., thread-per-request is known to be a bad choice) and is typ-

25

25

50

75

100

tt cl ac os
(a) Dimension

R
e

l.
 %

Load
Data

Cluster
Fail

25

50

75

100

tt cl ac os
(b) Manifestation

de
ah

bm
st

25

50

75

100

tt cl ac os
(c) Protocols

op
us

ge

25

50

75

100

tt cl ac os
(d) Symptoms

co
cr

rs
mm

fa
pe

Figure 2.8: Unbound faults: dimensional, manifestation, protocol and symptom break down.

In all figures the y-axis represents the relative percentage of the category. Also, “tt” stands for

“total”, “cl” for “unb-collection”, “ac” for “unb-alloc” and “os” for “unb-os”. Other abbrevi-

ations are discussed at section 2.1, section 2.2, section 2.4 and section 2.2 respectively.

ically targeted in early designs using frameworks like [69]. Notice that just as in unb-collection,

this category is strongly related to RPC or message processing paths (or implicit iteration). An

example is shown in figure 2.7(c). There, an encryption-related HDFS component creates a sin-

gle Socket (with a corresponding file descriptor) every time a request is processed. Even if these

connections are meant to be short-lived, as the default idle-timeout for it is set to 10 seconds (line

5), an explosive increase in the amount of requests (by calling method processRequest) ends up

in failures (system run out of file descriptors) and performance impacts (due to the increase of

memory consumption).

• Discussion: In terms of dimensions, as shown in figure 2.8(a), load-size is clearly the dominant

category in every case except in unb-alloc, where what is being loaded into memory is not neces-

sarily related with load-size, but more likely with data-size. According to what we have observed,

the cluster-size dimension might play an amplifying role when, for example, a centralized compo-

nent loads lists of blocks [61], where the size of that list is proportional to said dimension, a pattern

that is common in HDFS (as in blocks per datanode).

Figure 2.8(b) shows how ineffective benchmarks and stress-tests are in locating these type

of faults are. We expected benchmarks to be a little more useful for unb-alloc, where the same

framework and code used to measure execution time could be used to check memory consumption,

akin to how [76] is used in some cases. On the other hand, as unb-collection and unb-os are closely

26

1 class StatsMetadata {
2 // Heavy object

3 byte[] min = new

4 byte [1000000];

5 byte[] max = new

6 byte [1000000];

7 // ...

8 }
9

class IndexSummary {
// long[] is preferable

List<Long> pos =

new ArrayList<>();

// byte[][] is preferable

Map<Byte, Byte> keys =

new Map<>();

// ...

}

(a) bloat-waste (b) bloat-opt

Figure 2.9: Bloat fault code samples. Here, (a) is based on ca-15400, illustrating a case in

which a class is designed with a heavy and wasteful overhead, while (b) is based on ca-5506 and

shows a class design that uses java collections, thus bloats memory as described in [134].

related to message processing protocols, we expected stress-test to be useful in these cases, but

according to our observations they are rarely used for this purposes (or are rarely useful for this

type of efforts).

Finally, the reported symptoms are dominated by memory consumption, failures and perfor-

mance, as shown in figure 2.8(d). The later sounds surprising but is mainly due to the fact that

since all the target systems are Java based, frequent GC [70] is always one of the symptoms ob-

served. As the later is an operation typically performed by many threads in a blocking fashion,

performance tends to suffer. Unexpectedly, not many issues report suffering from machine-level

resource shortage, which according to our observations tends to be related to the fact that typical

connection-per-request models involve creating one thread to handle said connection. As each

of those threads uses memory to, for example, allocate a stack [73], reporters tend to see severe

memory issues way before file descriptors are exhausted.

2.5.3 Bloat faults

Bloat faults are generally related to data structures for which their design limits the amount of

times they can be instantiated, thus becoming problematic when that amount is correlated with the

size of one or more dimensions. Albeit these bloating or sometimes sub-optimal scale dependent

27

http://issues.apache.org/jira/browse/CASSANDRA-15400
http://issues.apache.org/jira/browse/CASSANDRA-5506

25

50

75

100

tt ws ot
(a) Dimension

R
e

l.
 %

Load
Data

Cluster
Fail

25

50

75

100

tt ws ot
(b) Manifestation

de
ah

bm
st

25

50

75

100

tt ws ot
(c) Protocols

op
us

ge

25

50

75

100

tt ws ot
(d) Symptoms

co
cr

rs
mm

fa
pe

Figure 2.10: Bloat faults: dimensional, manifestation, protocol and symptom break down.

In all figures the y-axis represents the relative percentage of the category. Also, “tt” stands for

“total”, “ws” for “bloat-waste” and “ot” for “bloat-opt”. Other abbreviations are discussed at

section 2.1, section 2.2, section 2.4 and section 2.2 respectively.

structures do not have specific purposes nor belong to specific domains, their design seems to

follow some known antipatterns related to over-engineering or “just in case” programming [151].

This category represents 8% of the total reports and includes 2 subcategories:

• bloat-waste faults, accounting for 72% of this category, related to design issues where unneces-

sarily large fields such as fixed arrays or buffers are referenced, either directly or indirectly, by scale

dependent structures, causing memory pressure. We consider this type of bloat to be a waste, but

make the observation that the aforementioned large fields might be necessary for some instances

(i.e., they are used at their capacity) while in others they might be wasteful. An example is shown

in figure 2.9(a). There, Cassandra creates one StatsMetadata instance per each BigTableReader,

an internal data structure related to the load dimension. The former declares two fixed-size 1M

buffers that, according to developers, are frequently not used in their entirety. When under high

load, many live BigTableReader instances lead to high memory usage and eventually ends in out

of memory issues, affecting not one but several nodes in the cluster.

• bloat-opt faults, representing 28% of this category, related to design optimizations in which

developers report that certain fields of a scale dependent structure could be represented using

less space in order to decrease memory consumption when many of these instances are alive.

According to our observations, these correspond mostly to optimizations and design improvements

that allow operators to alleviate memory consumption without resorting to vertical scaling. An

28

25

50

75

100

tt lk rc cn
(a) Dimension

R
e

l.
 %

Load
Data

Cluster
Fail

25

50

75

100

tt lk rc cn
(b) Manifestation

de
ah

bm
st

25

50

75

100

tt lk rc cn
(c) Protocols

op
us

ge

25

50

75

100

tt lk rc cn
(d) Symptoms

co
cr

rs
mm

fa
pe

Figure 2.11: Logic faults: dimensional, manifestation, protocol and symptom break down.

In all figures the y-axis represents the relative percentage of the category. Also, “tt” stands for

“total”, “lk” for “logic-leak”, “rc” for “logic-race” and “cn” for “logic-corner”. Other abbre-

viations are discussed at section 2.1, section 2.2, section 2.4 and section 2.2 respectively.

example is shown at figure 2.9(b). There, Cassandra nodes use a scale dependent structure called

IndexSummary which reportedly uses the collections framework [68, 134, 151] to store the internal

representation of said index. As the later uses objects references, a 2X per-element overhead in

positions (line 3-4) and over 10X in keys (line 6-7) caused a 70% overhead in a cluster with billions

of rows.

• Discussion: In terms of dimensions, as shown in figure 2.10(a), there is a dominant trend of

both data-size and load-size, but along with compute faults, this category also concentrates several

cluster-size related issues. This is mainly due to state related data structures, accumulating per-

peer or per-replica elements with a bloating design. The intuition behind this claim is also reflected

in 2.10(c), where general protocols are present in a fair share of these faults, indicating these scale

dependent structures are likely cluster-wide bookkeeping-related classes.

According to 2.10(b), detecting these faults during testing is not as complex as unbound faults,

which we attribute to the fact that this type of memory related issues are related to design thus

are observable regardless of the workload, making them easier to observe than the aforementioned

class using standard tools [75, 77, 78].

29

2.5.4 Logic faults

Logic faults are related to logic corner cases that become problematic only at large-scale, but not

(or do not appear to be of concern) at smaller scales. This category represents a surprising 28% of

the total reports and includes memory and resource leaks (60% of the category), data races (15%

of the category) and small corner cases in logic that become apparent at large-scale (25% of the

category).

Examples of leaks and races correspond to the classical descriptions given at [123, 133, 137,

138, 144], and can be intuitively related to large-scale deployments. Fault report samples for those

two categories can be seen at hd-13039 and ha-16385 respectively. Examples for corner cases

wildly vary, ranging from limiting data type choices, as in st-3256 where choosing short over int

for storing thread ids limits the amount of possible threads, a “disaster for large scale computing”

according to the reporter, to chicken-and-egg like problems such as ig-12042, where removing one

page from a fully populated data region requires allocating one more page in said region.

The dimensional, protocolar and symptomatic breakdown of this category is shown at figure

2.11, where the load-size dimension dominates on leaks while the cluster-size dimension plays an

important role in races, the reason being most of the races we detected are between operational

and user-facing protocols depending on each other. Regarding symptoms, leaks clearly concentrate

resource-related ones while races concentrate failures and crashes. Finally, the diversity of corner

cases is shown in the fourth column of figures 2.11(a)-(d), where no clear trend can be observed.

2.6 Solution patterns and engineering effort

According to our findings, around 87% of the issues in our database have at least one publicly

available patch, the median being 2 patches and the 90th percentile rounding 10 patches. The

amount of changes in those, in terms of LOC (lines of code, including insertions and deletions)

moves between 94 (median) and 625 (90th percentile) LOC. In our analysis we identified a total

of 28 different patterns and we describe the 21 most prominent below. To put them in context, we

30

http://issues.apache.org/jira/browse/HDFS-13039
http://issues.apache.org/jira/browse/HADOOP-16385
http://issues.apache.org/jira/browse/STORM-3256
http://issues.apache.org/jira/browse/IGNITE-12042

25

50

75

100

tt cr sy ap
(a) compute fixes

R
e
l.
 %

th
cc

ba
lc

pr
gr

as
re

500

1k

1.5k

2k

th cc ba lc

(e) compute fix effort

L
O

C

25

50

75

100

tt cl ac os
(b) unbound fixes

th
rs

po
cc

nn
la

ca
to

500

1k

1.5k

2k

th po ca rs

(f) unbound fix effort

25

50

75

100

tt ws ot

(c) bloat fixes

sk
la

dd
rs

250

500

750

1k

sk la dd rs

(g) bloat fix effort

25

50

75

100

tt lk rc cn

(d) logic fixes

rs
hn

lg
th

rt
re

el
ds

150

300

450

600

rs hn lg th

(h) logic fix effort

Figure 2.12: Common solution techniques and effort involved. Figures (a)-(d) show the most

common solution patterns for each root cause. There, “tt” stands for “total”, “lk” for “leak”,

“rc” for “race” and “cn” for “corner case”. The abbreviations shown in the x-axis of figures (a),

(b) and (c) are the same used in figures 2.6, 2.8 and 2.10 respectively. Figures (e)-(f) show the

amount of effort, in terms of LOC, for the 4 most common solution techniques in relationship to

the root cause.

present them along with the related root causes they address.

2.6.1 Solving Compute faults

According to our observations, solution techniques for this type of faults fall in 8 known patterns,

throttling (th), batching (ba), parallelizing (pr), asynchronous implementation (as), caching

(cc), lazy-computing (lc), granularity-modification (gr) and removing (re). The frequency of

each technique is shown in figure 2.12(a), where the first column groups the total of this root cause

category while the subsequent columns refer to each subcategory.

Compute-cross faults, related to explicit iteration containing cross-layer communication, have

solution patterns related to batching, when the issue is related to too many roundtrips [88, 119,

145, 178], parallelizing, consisting in implementing a parallel version of an algorithm to avoid

contention and in this case used when the cross-layer communication is slow and lazy-computing,

i.e.avoid the computation at all and resort to perform it only in certain cases. Regarding compute-

sync faults, the dominating fixes are related to throttling mechanisms, where the goal is to release

31

the locks involved while iterating effectively rate-limiting contention and allowing more fairness,

and granularity-modification, consisting in shrinking the critical section or even moving it outside

the iteration, if possible at all.

Compute-app faults tend to involve expensive computation in critical paths and are typically

solved by caching, i.e.avoid performing expensive computations too frequently and instead store

the results, lazy-computing also avoiding the need to compute frequently by resorting to last-minute

computations or simply by removing unnecessary computations from critical paths. Notice that the

later is not always possible, thus the first two techniques decrease the frequency of the computation

but do not avoid it in its entirety. Finally, figure 2.12(e) shows that the effort for the 4 most common

techniques, throttling, caching, batching and lazy-computing, ranges between hundreds and 2000

LOC. This variation is mainly due to the fact that creating a throttling mechanism to solve compute-

sync faults (i.e., lock throttling) is much less expensive than creating a throttling mechanism from

the ground to avoid cross-layer calls, where the later might involve new unit tests, new parameters

and changes in other layers.

2.6.2 Solving Unbound faults

According to our observations, solution techniques for this type of faults fall in 8 known solution

patterns, throttling (th), pooling (po), capping (ca), eager resource-release (rs), caching (cc),

lazy-allocation (la), creating timeout-mechanisms (to) or simply none (nn), since this root cause

category concentrates most of the unsolved issues. The frequency of each technique is shown

in figure 2.12(b), where the first column groups the total of this root cause category while the

subsequent columns refer to each subcategory.

Unb-collection faults are complex to solve from the point of view of code, since they are related

to memory pressure thus depend on the amount of memory available. Here, throttling dominates,

due to its relationship with Little’s Law [143], along with eager resource-release, as in releasing

resources as fast as possible to make more room for concurrent memory-hungry tasks. In unb-alloc

32

faults, the dominating fixes are related to throttling mechanisms (e.g.paging), caching to avoid too

many or too large allocations, lazy-allocation to resort to allocate only when strictly necessary or

simply capping, creating a hard-cap on the amount of elements that can be loaded and failing when

that cap is exceeded, thus avoiding the issue.

In the case of unb-os faults, pooling, i.e.create pools of resources instead of unboundedly allo-

cating them, is the dominating category and the most intuitive solution. In the same spirit as eager

resource-release, a timeout-mechanism can be created to release resources and avoid faults when

too many requests come at the same time. Finally, figure 2.12(f) shows that the effort for the 4 most

common techniques, throttling, pooling, capping and resource-release, ranges between hundreds

and 2000 LOC. Complex solutions like pooling or throttling clearly require more lines of code due

to their complexity. On the other hand, capping and releasing tend to be easier and have less side

effects, requiring less tests and less code in general. The former is typically designed as a fail-fast

mechanism, i.e.fail when the cap is exceeded, making its implementation less complex and even

requiring less testing.

2.6.3 Solving Bloat faults

According to our observations, solution techniques for this type of faults fall in 4 known solution

patterns, shrinking (sk), deduplicating (dd), lazy-allocation (la) and resource-release (rs). The

frequency of each technique is shown in figure 2.12(c), where the first column groups the total of

this root cause category while the subsequent columns refer to each subcategory.

Bloat-waste faults are generally solved by shrinking the bloating data structure (reduce the

weight), creating lazy-allocation mechanisms to reduce memory pressure or simply by eager

resource-release, where the target resource is memory and the mechanism is to allocate just be-

fore the first use. On the other hand, more colorful techniques appear for bloat-opt faults, where

finding deduplication opportunities [131, 149] is an interesting optimization. Others include the

ones described at [134], aiming at bloating java collections [68, 134, 151]. Finally, figure 2.12(g)

33

shows that the effort for the aforementioned techniques ranges anywhere between hundreds and

1000 LOC, where shrinking and lazy-allocation require more changes (since they are related to

architectural changes) and deduplicating and eager resource-release require the least effort.

2.6.4 Solving Logic faults

According to our observations, solution techniques for this type of faults fall in 8 known solu-

tion patterns, resource-release (rs), creating proper error handlers (hn), throttling (th), small

adjustments in logic (lg), disabling (ds) a component, enlarging (el) a predefined cap, creating

retry (rt) mechanism or simply removing (re) faulty code. The frequency of each technique is

shown in figure 2.12(d), where the first column groups the total of this root cause category while

the subsequent columns refer to each subcategory.

The first two mechanisms are the ones built to alleviate logic-leak faults, where most happen

either because there is simply no cleanup logic or said logic does not properly handle error cases.

Throttling is sometimes used for logic-race faults, as in to slow-down one component to avoid

races with others. The rest of the mechanisms are used depending on the specific problem since,

as discussed earlier, this category is diverse in terms of software defects. Finally, figure 2.12(g)

shows that the effort for the aforementioned techniques is below 650 LOC. This is compliant with

the fact that these are small corner cases in logic and according to our analysis most of the effort

goes in creating new unit tests or modifying existing ones.

2.7 Conclusions

To the best of our knowledge this chapter presents the largest empirical study on the field, in

the hopes on bringing new insights on these intricate faults. We show a wide range of examples

and describe situations that are only visible at large-scale deployments. We studied their reported

symptoms (section 2.2), related protocols (section 2.4), and detection mechanisms (section 2.3),

if any. We further analyzed the faulty code and classified the root causes (section 2.5), or main

34

contributing factor, of each fault. We finally identified the main solution techniques, analyzed the

patches and inspected the newly incorporated or modified unit-tests (section 2.6). To summarize,

our contributions are the following:

1. To the best of our knowledge, we conduct the largest and deepest study of scalability faults

in cloud systems, covering a wide range of architectures and design patterns. Our findings

can help understand the main characteristics of scalability faults and provide guidance to

future research.

2. The publicly available product of our classifications, SFDB [96], a set of classification text

files containing the aforementioned 350 reports classified using the tagging system described

at table 2.2.

We hope and believe that the product of our study [96] will be beneficial for the research

community and fuel future developments in the field.

35

CHAPTER 3

SCALECHECK: A SINGLE-MACHINE APPROACH FOR

DISCOVERING SCALABILITY BUGS IN LARGE DISTRIBUTED

SYSTEMS

As discussed in section 1.3.2, this chapter presents SCALECHECK [166], a single-machine ap-

proach for discovering scalability faults in large distributed systems. The goal of this chapter is to

address the following research questions:

• RQ4: How to discover latent scalability faults? Scalability faults are not easy to discover;

their symptoms only surface in large deployment scales (e.g., N > 100 nodes). Protocol

algorithms might seem scalable in design sketch, but until real deployment takes place, some

faults remain unforeseen.

• RQ5: How to democratize large-scale testing? According to our study and industrial

experience [91], developers might not have direct access to the same cluster scale and must

wait for a “higher-level” budget approval for using large test clusters, which heavily increases

the cost of this practice.

The rest of this chapter is organized as follows: section section 3.1 presents SFIND, a static-

analysis tool intended to address the first research question of this chapter. Then, section 3.2

presents STEST, a runtime environment intended to address the second research question of this

chapter, discussing our black-box (section 3.2.1) and white-box (section 3.2.2 approaches. In

section section 3.3 we show how SFIND and STEST collaborate as a primitive version of our target

scale-test pipeline, while in sections 3.4 and 3.5 we discuss implementation details and evaluate

the aforementioned components. Finally, sections 3.6 and 3.7 show the limitations of our approach

and the conclusions of this chapter.

36

applyStateLocally (epStateMap)

 for (e : epStateMap)

 if (!localStateMap.get(e.key))

 handleChange(ep, e.val);

handleChange (ep, epState)

 for (subscriber : subscribers)

 subscriber.onJoin(ep, epState);

onJoin (ep, epState)

 for (e : epState)

 onChange (ep, e.key, e.val);

onChange (ep, state, val)

 if (state == STATUS)

 if (val.val[0] == NORMAL)

 handleNormal(ep, val.val);

handleStateNormal (ep, pieces)

 calcPendingRanges();

calcPendingRanges ()

 for (tab : nonSysTabs)

 calcPendingRanges(tab);

calcPendingRanges (tab)

 for (r : affectedRanges)

 tm.cloneOnlyTokenMap();

cloneOnlyTokenMap ()

 HashMap.create(ep.map);

create(map)

 for (m : map)

 newmap.add(m);

O(N3)

O(N2)

O(N)

Figure 3.1: O(N3) scale-depended loops. The partial code segment above depicts the O(N3)
loops in ca-6127. Note that not all loops are scale-dependent loops. The “epStateMap”, “affecte-

dRanges”, and “map” variables are not the annotated scale-dependent variables, however SFIND

taints them with a dataflow analysis.

3.1 SFIND

Based on the findings presented at section 2.5.1, around 41% of scalability faults are caused by

scale-dependent iteration, i.e. in-code loop statements (such as for or while loops) that become

scale-dependent in terms of the number of iterations they need to perform. We further subdivided

this category into 3 subcategories:

• compute-cross faults, accounting for 32% of the category, where external API calls (e.g.methods

from pluggable components or external clients) or IO operations (disk or network) are per-

formed while iterating scale dependent data structures.

• compute-sync faults, representing 39% of this category, where iteration of scale dependent

data structures is protected by global locks, creating a synchronization bottleneck where the

amount of time every other thread needs to wait for said lock is correlated to one or more

scale dimensions

• compute-app, accounting for 29% of this category, where iteration of scale dependent data

structures, typically in a nested fashion, is placed in performance critical paths, creating

bottlenecks.

The focus of this chapter are compute-app faults. Here, the first challenge to address is: how

to find scale-dependent loops, i.e. loops that traverse the aforementioned scale-dependent data

37

http://issues.apache.org/jira/browse/CASSANDRA-6127

N

N

1

1L
en

g
th

Step

Step 1

2

2

Step 2

List nodes

growth tendency

Step N

…

A A

B

nodes = {A} nodes = {A, B} nodes = {A, B, …, N}
A

List tables Set tokens Set indexes

List nodes Set rowsMap cache

(b) Node A On-Heap Collections

Growth tendencies

Scale-dependent No relationship

(a) Dynamic On-heap Tracking

Node A Java Heap

…

BNAdd node B

to cluster
Repeat N

times

Figure 3.2: SFIND on-heap collection tracking and mapping. This figure illustrates the process

of auto-tagging scale-dependent collections described in section 3.1. In (a), at every step the

cluster is grown by one peer, which increases the size of the list “nodes”, an on-heap object [104],

by a single element. In (b), as only some of said on-heap collections grow when the cluster size

grows, not all collections will be tagged as scale-dependent.

structures? Unfortunately, it is not trivial as such loops can span multiple functions and iterate

many scale-dependent collections (iterable data-structure instances such as list). In Figure 3.1, the

O(N3) loops span 1000+ LOC, 3 classes, 10 functions and iterate 3 scale-dependent collections.

This difficulty motivates SFIND, a generic program analysis tool that helps developers pinpoint

scale-dependent loops. Below are the three main steps of SFIND.

3.1.1 Auto-tagging of scale-dependent collections

SFIND first automatically tags scale-dependent collections. This is done by growing the cluster

and data sizes (e.g., add nodes and add files/blocks) in steps, as shown in figure 3.2(a). After each

step, we record the size of each instantiated collection. When all the steps are done, we check

each collection’s growth tendency and mark as scale dependent those whose size increases as the

cluster/data size grows, as shown in figure 3.2(b). This, however, is insufficient due to two reasons.

First, there are collections that only grow when background/operational tasks are triggered; thus,

we must also run all non-foreground tasks. Second, there are “ephemeral” collections (e.g., mes-

sages) whose content are scale-dependent but might have been garbage collected by the runtime

[70]. Given that the measurements are taken in steps, garbage collection can happen in between

38

them so these collections will not be detected consistently, thus this phase must be iterated multiple

times to remove such noise. For Java-based systems, we track heap objects and map them to their

instance names by writing around 1042 LOC of analysis on top of Java language supports such as

JVMTI [156] and Reflection [72]. This phase also performs a dataflow analysis to taint all other

variables derived from scale-dependent collections.

In our experience, by scaling out to just 30 nodes (N = 30 steps), which can be done easily on

one machine, scale-dependent collections can be clearly observed (though not the symptoms). This

phase found 32 scale-dependent collections in Cassandra (three in Figure 3.1) and 12 in HDFS.

3.1.2 Finding scale-dependent loops

With the tagging, SFIND then automatically searches for scale-dependent loops, specifically by

tainting loops (for, while) as well as recursive functions that iterate through the scale-dependent

collections, performing a control-flow analysis to construct the nested Big O complexity of each

loop. With these steps, in figure 3.1 for example, SFIND can mark applyStateLocally as an

O(N3) function.

3.1.3 Reporting and triaging

SFIND finds 131 scale-dependent loops in Cassandra and 92 in HDFS, hence the need for triaging.

For example, if a function g has lower complexity than f , and g is within the call path of f , then

testing f can be prioritized. For every nested loop to test, SFIND reports the relevant control- and

data-flows from the outer-most to inner-most loop, along with the entry points (either client/admin

RPCs or background daemon threads). The entry points are finally ranked by counting the number

of spanned scale-dependent lines of code, the theoretical complexity (in terms of scale-dependent

data structures), the number of IO operations (including reads/writes) and the number of blocking

operations (including locking and operations that block waiting for a future result) in that path. The

theoretical complexity is not by itself a complete indicator of potential bottlenecks. For example,

39

an entry point reported with high complexity ,e.g. O(N3), but with no IO/Blocking operations on

its code path might not be as bottleneck prone as one reported with less complexity, e.g. O(N),

but many IO/Blocking operations on its code path. This ranking helps developers prioritize and

create the necessary test workloads. For example, in Figure 3.1, the O(N3) path is only exercised

if the cluster bootstraps from scratch when peers do not know about each other (hinted from the

“if(!localStateMap.get())”, “onChange()”, “state==STATUS” and “val==NORMAL”). SFIND re-

ports that this entry point spans over 6700 scale-dependent lines of code and performs over 20N

IO and 4N blocking operations, which implies that it is likely to become a bottleneck as the cluster

size grows and should be prioritized.

Creating test workloads from SFIND report is a manual process. Automated test generation is

possible for single-machine programs/libraries [114], however, we are not aware of any work that

automates such process in the context of real-world, complex, large-scale distributed systems. We

put our work in the context of DevOps culture [142] where developers are testers and vice versa,

which (hopefully) simplifies test workload creation.

3.2 STEST

The next challenge is: how to test scale-dependent loops at real scales (hundreds of nodes) on one

machine? Many scale-dependent loops were unfortunately not subjected to testing because existing

unittest frameworks do not scale. Below we describe the hurdles to achieve a high colocation factor.

Starting in Section 3.2.1, we began with black-box methods (no/small target system modification).

Unfortunately, we found that existing systems are not built with single-machine scale-testing in

mind (the theme of this section); we faced many colocation bottlenecks (memory/CPU contentions

and context switching delays) that limit large colocation. In Section 3.2.2, we will describe our

solutions to achieve single-machine scale-testable systems with minimal changes. All the methods

we use are summarized in Table 3.1 using Cassandra as an example. Abbreviations of our methods

(e.g., NP, SPC, GEDA) are added for ease of reference in the evaluation.

40

3.2.1 Black-box approaches

Naive packing (NP)

The easiest setup is (naively) packing all nodes as processes on a single machine. However, we did

not reach a large colocation factor, which is caused by the following reasons.

• Memory bottlenecks: Many distributed systems today are implemented in managed lan-

guages (e.g., Java, Erlang) whose runtimes consume non-negligible memory overhead. Java

and Erlang VMs, for example, use around 70 and 64 MB of memory per process respec-

tively. We also tried running nodes as Linux KVM VMs and using KSM (kernel samepage

merging) tool. Interestingly, the tool does not find many duplicate pages even though the

VMs/processes are supposed to be similar (as reported elsewhere [131]). Overall, including

Cassandra’s memory usage, per-node memory consumption reaches 100 MB. Thus, a 32-GB

machine can only colocate around 300 nodes.

• Process context switches: Before we hit the memory bottleneck (e.g., reach 300 nodes),

we observed that the target systems’ “inaccuracy” is already high when we colocate just 50

nodes. For measuring inaccuracy, we measure several application-level metrics; for example,

in Cassandra, if gossips should be sent every 1 second, but are sent every 1.3 second, then the

inaccuracy is 30%. We use 10% as the maximum acceptable inaccuracy/event lateness. We

noticed high inaccuracies even before we hit the CPU bottlenecks (i.e., CPU has not reached

90% utilization). We suspected that the process context switches could be the reasons.

• Managed-language VM limitations: We also found that managed-language VMs are backed

by advanced services. For example, Erlang VMM contains a DNS service that sends heart-

beat messages among connected VMs. When hundreds of Erlang VMs (one for each Riak

node) run on one Erlang VMM, the heartbeat messages cause a “network” overflow that

undesirably disconnects Erlang VMs (also reported in [116]). Naive packing is infeasible.

41

Technique #Nodes per PC LOC added Colocation bottlenecks

Black/gray-box approaches (section 3.2.1)

(a) Naive (NP) 50 – Memory, proc. switch

(b) SPC 70 – User-kernel switch

(c) SPC+Stub 120 +91 Context switch

White-box approaches (section 3.2.2)

(d) GEDA 130 +581 CPU

(e) GEDA+PIL 512 +246 CPU

Table 3.1: Colocation strategies and bottlenecks. Here, “NP” stands for Naive Packing, “SPC”

for single process cluster, “SPC+Stub” for single process cluster + network stub (section 3.2.1),

“GEDA” for global event-driven architecture and PIL for “Processing Illusion” (section 3.2.2).

Single process cluster (SPC) + network stub

To address the bottlenecks above, we deployed all nodes as threads in a single process. Sur-

prisingly, our target systems are not easy to run in this “single-process cluster.” For example,

Cassandra developers bemoan the fact that their gossip/fault-detector protocols are not adequately

scale-tested [16, 92] because Cassandra (and many other systems) uses “singleton” design pattern

for simplicity (but bad for modularity) [97]. That is, most global states are static variables that

cannot be modularized to per-node isolated variables. Our strawman attempt was a redesign to a

more modular one, which costs us almost 3000 LOC (and no longer a black-box method); Cas-

sandra developers also attempted a similar method to no avail [16, 92]. We found another way:

leveraging class loader isolation support from the language runtime [74], which is rarely used but

fits SPC purpose. In Java systems, we can manipulate the class loader hierarchy such that a node’s

main thread (and all child threads) use an isolated set of Java class resources, not shared with those

belonged to other nodes, hence no target system modification. In later (by the time of publication)

versions, we found that Cassandra developers also begin to develop a similar method to address

this problem [14].

42

\ \

Stage A

Figure (4b) GEDA

\ \

Stage A
\\ Node i ...

Global

Node 1 Node 2

\ \

Stage B
Node i ...

xy

\

Stage B
Global

\

Figure (4a) Per-Node SEDA

Node 1

x

Node 2

2

1
3

Figure 3.3: Global Event Driven Arch. The figure format follows [175, Figure 6].

3.2.2 White-box approaches

Adding network stub is our last black-box approach as we found no other way to reduce thread

context switching in a black-box way. In fact, we observed a massive thread context switching

issue. In P2P systems such as Cassandra, each node spawns a thread to listen from a peer. Thus,

just for messaging, there are N2 threads to manage for the whole cluster. This can be solved by

using select()-like system call [71], which would reduce the problem to N threads. However, we

still observed around N×26 active threads – each node still runs multiple service stages (gossiper,

failure detector, etc.), each can be multi-threaded. A high colocation factor will spawn thousands

of threads.

Global Event Driven Architecture (GEDA)

To address the problem, we must redesign the target system, but with minimal changes. We lever-

age the staged event-driven architecture (SEDA) [175] (Figure 3.3(a)), common in server code,

in which each service/stage (in each node) exclusively has an event queue and a thread pool. In

STEST mode, we convert SEDA to a global-event driven architecture (GEDA; Figure 3.3(b). That

is, for every stage, there is only one queue and one thread pool for the whole cluster. As an ex-

ample, let’s consider a periodic gossip service. With 500-node colocation, there are 500 threads in

SPC, each sending a gossip every second. With GEDA, we only deploy a few threads (matched

with the number of available cores) shared among all the nodes for sending gossips. As another ex-

43

ample, for gossip processing stage, there is only one global gossip-receiving queue shared among

all the nodes.

GEDA works with a minimal code change to the target system. Logically, as events are about

to be enqueued into the original per-node event queues (1© in Figure 3.3), we redirect them to

GEDA-level event queues, to be later processed by GEDA worker threads. This only requires

∼10 LOC change per stage (as we use aspect-oriented programming [12]). While simple, care

must be taken for single-threaded/serialized stage. For example, Cassandra’s gossip processing is

intentionally single-threaded to prevent concurrency issues. This is illustrated in case 2© in Figure

3.3 where the per-node stage is serialized (i.e., y must be processed after x). Here, if the events

are forwarded down during enqueue, GEDA’s multiple threads will break the program semantic

(e.g., x and y can be processed concurrently). Thus, for single-threaded/serialized stage, we must

interpose at dequeue time (3© in Figure 3.3), which costs ∼50 LOC change per stage.

Adding GEDA to Cassandra only costs us 581 LOC (table 3.1(d) and is simple; the same 10-50

LOC method above is simply repeated across all the stages. Overall, GEDA does not change the

logic of the target systems, but successfully removes some delays that should have never existed in

the first place, as if the nodes run exclusively on independent machines. For HDFS tests, GEDA

enables 512-node colocation (section 3.5.4) but for some Cassandra tests, it only enables around

130-node colocation (table 3.1(d)), which we elaborate in the next section.

Processing Illusion (PIL)

Finally, the last challenge we address is: how to produce accurate results (i.e., the same fault

symptoms observed in real-scale deployment) when colocating hundreds of CPU-intensive nodes?

We found that STEST is sufficient for accurately revealing fault symptoms in scale-dependent

lock-related loops or IO serializations, as these root causes do not contend for CPUs. For CPU-

intensive loops, STEST is also sufficient for master-worker architecture where only one node is

CPU intensive (e.g., HDFS master). However, for CPU-intensive loops in P2P systems such as

44

Cassandra, where all nodes are busy, the fault symptoms reported by STEST are not accurate.

For example, for ca-6127 (figure 1.2), in 256-node real deployment, we observed around 2000

flappings (the fault symptom) but 21,000 flappings in STEST. The inaccuracy gets worse as we

scale; with N CPU-intensive nodes on a C-core machine, roughly N/C nodes contend on a given

core.

To address this, we need to emulate CPU-intensive processing by supplementing STEST with

processing illusion (PIL), an approach that replaces an actual processing with sleep(). For ex-

ample, for ca-6127, we can replace the expensive gossip/stage-changes processing (see figures 1.2

and 3.1), with sleep(t) where t is an accurate timing of how long the processing takes.

The intuition behind PIL is similar to the intuition behind other emulation techniques. For

example, Exalt provides an illusion of storage space; their insight was “how data is processed is

not affected by the content of the data being written, but only by its size” [173]. Similarly, PIL

provides an illusion of compute processing; our insight is that “the key to computation is not the

intermediate results, but rather the execution time and eventual output.” In other words, with PIL,

we will still observe the overall timing behaviors and the corresponding impacts accurately. PIL

might sound outrageous, but it is feasible as we address the following concerns:

• How a function (or code block) can be safely replaced with sleep() without changing

the whole processing semantic? Our first challenge is to ensure that functions (or code

blocks) can be safely replaced with sleep(), but still retain the cluster-wide behavior and

unearth the fault symptoms. We name such functions as “PIL-safe functions.” We identify

two main characteristics of such functions: (1) they have memoizable output, this is, a

PIL-safe function must have a memoizable (deterministic) output based on the input of the

function, and (2) they do not contain Non-pertinent IOs: if a function performs local/re-

mote disk IOs that are not pertinent to the correctness of the corresponding protocol, the

function is PIL-safe. For example, in ca-6127, there is a ring-table checkpoint (not shown)

needed for fault tolerance but is irrelevant (never read) during bootstrapping.

45

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-6127

We extend SFIND to SFINDPIL , which includes a static analysis that finds code blocks in

scale-dependent loops that can be safely PIL-ed. SFINDPIL analyzes the content of each

loop in functions related to the relevant cluster state and checks for two cases: (1) The loop

performs operations that affect the cluster state, so we need to insert pre-memoization and

replay code to record/reconstruct the cluster state. We consider all variables involved in the

execution of a target protocol as relevant states. While our static analysis tool eases the iden-

tification of these variables, programmer intervention can help for additional verification. In

(2), the loop performs non-pertinent operations only (such as IO). In this case, we can auto-

matically replace the loop with a sleep call without affecting the behavior of the protocol. A

complete description of the related algorithms, can be found at appendix B.

• How we can produce the output and predict the timing “t” if the actual compute is

skipped? As PIL-safe functions no longer perform the actual computation, the next question

to address is: how do we manufacture the output such that the global behavior is not altered

(e.g., rebalancing protocol should terminate successfully)?. For functions with no pertinent

outputs, we just need to do time profiling but not output recording. For functions with

pertinent outputs, our solution is pre-memoization, which records input-output pairs and the

processing time, specifically a tuple of three items (ByteString in, out, long nanoSec)

indexed by hash(in)), which represent the to-be-modified variables before and after the

function is executed and the processing time, respectively (figure 3.4(b)).

Another challenge encountered is non-determinism: the state of each node (the input) de-

pends on the order of arriving messages (which are typically random). Let’s consider Riak’s

[94] bootstrap+rebalance protocol where eventually all nodes own a similar number of par-

titions. A node initially has an unbalanced partition table, receives another partition table

from a peer node, then inputs it to a rebalance function, and finally sends the output to a

random node via gossiping. Every node repeats the same process until the cluster is bal-

anced. In a Riak cluster with N=256 and P=64, there are in total 2489 rebalance iterations

46

with a set of specific inputs in one run. Another run of the protocol will result in a different

set of inputs due to gossip randomness. Our calculation shows that there are (NNP)2 possi-

ble inputs. To address this, during pre-memoization, we also record non-determinism such

as message orderings such that order determinism is enforced during replay. For example,

across different runs, a Riak node now receives gossips from the same sequence of nodes.

With order determinism, pre-memoization and SCALECHECK work as follow: (1) We first

run the whole cluster on a real deployment and interpose sleep-safe functions. (2) When

sleep-safe functions are executed, we record the inputs and corresponding outputs to a mem-

oization database (SSD-backed files). (3) During this pre-memoization phase, we record

message non-determinism (e.g., gossip send-receive pairs and their timings). (4) After pre-

memoization completes, we can repeatedly run SCALECHECK wherein order determinism

is enforced (e.g., no randomness), sleep-safe functions replaced with PIL, and their outputs

retrieved from the memoization database. Note that steps 1-3 are the only steps that require

real deployment.

Other than this, similar to the theme in the previous section that existing systems are not

amenable to single-machine testing, we found similar issues such as the use of wall-clock time

which essentially incapacitates memoization and replay. Here, we convert wall-clock time to “clus-

ter start time + elapse time” in 296 LOC (table 3.1(e)).

3.3 SCALECHECK

Figure 3.4(a)-(d) summarizes the complete four stages of SCALECHECK: a© SFIND searches

for scale-dependent loops which helps developers create test workloads. b© For test workloads

that show CPU busyness in all nodes, SFINDPIL finds PIL-safe functions and inserts our pre-

memoization library calls. Next, STEST now works in two parts. c© STESTmez (without PIL) will

run the test on a real cluster, but just one time, to pre-memoize PIL-safe functions and store the

tuples to a SSD-backed database file. d© STESTPIL (with PIL) will then run by having SFINDPIL

47

 in = modVars;
 t = getTime(in);
 sleep(t);
 // F();
 modVars = getOut(in);

list L1, L2, L3;
 scale-dep list

func F(){
 for(...L1)
 for(...L2)
 for(...L3)
 ...; }

 in = modVars;
 t1 = time();
 F();
 t = time()-t1;
 out = modVars;
 store(in,out,t);

> T sec

1 2 .. N 1 2 .. N

Auto instrumentation of
memoization library

zzzN N
.. ..

2 2
1 1zzz

SFindera b c d

O(N3)

SFinderPIL
STest

1

2

..

N

#
M

a
c
h

in
e

s

T sec

Testing in real

deployment
Mez

Single-machine testing
w/ pre-memoization

1
 M

a
c
h

in
e

PIL Replay with PILAuto PIL infusion by SFinder

T+e sec
STest PILSCkvs.

h
u

n
d

re
d
s

Figure 3.4: SCALECHECK Testing Pipeline. ”SCk” represents SCALECHECK. The left-most

figure illustrates testing in real deployments, where testing time is fast (T) but requires N machines.

Stages (a) to (d) reflect the automated SCALECHECK process as described in section 3.1 and

section 3.2. STEST in stage (c) runs on one machine but will take some time (>T). PIL in stage

(d) still runs on one machine but only consumes a similar time as in deployment testing (T+e) and

can be replayed numerous times.

remove the pre-memoization library calls, replace the expensive PIL-safe function with sleep(t),

and insert our code that constructs the memoized output data. SCALECHECK also records message

ordering during STESTmez and replays the same order in STESTPIL (not shown).

As another benefit, SCALECHECK can also ease real-scale debugging efforts. First, the only

step that consumes more time is the no-PIL pre-memoization phase (figure 3.4(c)), up to 6x longer

time than real-deployment testing (section 3.5.5). However, this is only a one-time overhead. Most

importantly, developers can repeatedly re-run STESTPIL (figure 3.4(d)) as many times as needed

(tens of iterations) until the fault behavior is completely understood. In STESTPIL , the protocol

under test runs in a similar duration as if all the nodes run on independent machines.

Second, some fixes can be tested by only re-running the last step; for example, fixes such as

changing the failure detector Φ algorithm (for ca-6127), caching slow methods (ca-3831), chang-

ing lock management (ca-5456), and enabling parallel processing (vd-1212). However, if the fixes

involve a complete redesign (e.g., optimized gossip processing in ca-3881, decentralized to cen-

tralized rebalancing in rk-3926), STESTmez must be repeated.

3.4 Application and implementation

Table 3.2 quantifies the application of SCALECHECK techniques to a variety of distributed systems,

Cassandra [1], HDFS [4], Riak [94], and Voldemort [93]. The major system-specific change is

48

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-5456
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html

Cass HDFS Riak Vold

STEST-able systems 918 179 217 800

SFIND code 4026 (generic)

STEST library 6047 (generic)

Table 3.2: SCALECHECK integration effort (LOC).

achieving “STEST-able systems” (i.e., supporting SPC and GEDA), which range between 179 to

918 LOC (less than 1% of the target code size). This is analogous to how file systems code are

modified to make them “friendlier” to fsck [130, 146]. The rest is the generic SFIND and STEST

library code (pre-memoization, auto PIL insertion, message order determinism support, AspectJ

utilities). SFIND was built with Eclipse AST Parser [35] to support Java programs. We left porting

to Erlang’s parser [36, 37] as future work.

We show the generality of SCALECHECK with two major efforts. First, we scale-checked

a total of 18 protocols: 8 Cassandra (bootstrap, scale-out, decommission, drain, partial failure,

snapshot, upgrade, and various administration statistic related protocols), 8 HDFS (write, decom-

mission, full and incremental block reports, snapshot, volume failure, refresh, management and

partial failures), 1 (rebalance), and 1 Voldemort (rebalancing) protocols. A protocol can be built

on top of other protocols (e.g., bootstrap on gossip and failure detection protocols). Second, for

exposing known faults, we applied SCALECHECK to a total of 10 earlier releases: 4 Cassandra

(v0.8.9, v1.1.10, v1.2.0, v1.2.9), 4 HDFS (v0.12.3, v0.19.0, v0.23.6, v2.0.0), 1 Riak (v0.14.2),

and 1 Voldemort old releases (v0.90.1). For finding unknown faults, we also ran SCALECHECK

on recent releases of the four systems (Cassandra v2.2.5, HDFS v2.7.3, HDFS 2.9.0, Riak v.2.1.3,

and Voldemort v1.10.21).

3.5 Evaluation

We now evaluate SCALECHECK: Is SCALECHECK effective in exposing scalability faults (sec-

tions 3.5.1-3.5.2), accurate (section 3.5.3), scalable and efficient (sections 3.5.4-3.5.5)? We com-

49

Fault# N Protocol Metric Tm Tpil

ca-6127 [15] ≥256 Bootstrap #flaps 2h 15m

ca-3831 [15] ≥256 Decomm. #flaps 17m 9m

ca-3881 [15] ≥64 Add nodes #flaps 7m 5m

ca-5456 [15] ≥256 Add nodes #flaps 16m 4m

rk-3926 [95] ≥128 Rebalance TComp 6h 2h

vd-1212 [105] ≥128 Rebalance TComp 22h –

hd-9198 [58] ≥256 Blk. report QSize 8m –

ha-4061 [57] ≥256 Decomm. TLock 6h –

ha-1073 [49] ≥512 Pick nodes TComp 1m –

hd-395 [56] ≥512 Blk. report TComp 5m –

Table 3.3: Fault benchmark. The table lists the scalability faults we use for benchmarking

SCALECHECK. “ca” stands for Cassandra, “hd” for HDFS, “rk” for Riak, and “vd” for Volde-

mort. The “N” column represents the #nodes for the fault symptoms to surface. The “Metric”

column lists the quantifiable metrics of the fault symptoms; TComp, TLock, and QSize denote com-

putation time, lock time, and queue size, respectively. The “Tm” and “ Tpil” columns quantify the

duration of the pre-memoization (STESTmez) and PIL replay (STESTPIL) stages when N≥256, as

discussed in section 3.5.5. “–” implies PIL is unnecessary.

pare SCALECHECK with real deployments of 32 to 512 nodes, deployed on at most 128 machines

(testbed group limit), each has 16-core AMD Opteron(tm) with 32-GB DRAM. Our target proto-

cols only make at most 2 busy cores per node, which justifies why we pack 8 nodes per one 16-core

machine for the real deployment.

3.5.1 Exposing scalability faults

Table 3.3 lists the 10 real-world faults we use for benchmarking SCALECHECK. We chose these

(among the 55 faults we studied) because the reports contain detailed descriptions of the faults,

which is important for us to create the “input” (i.e., the test cases). Figure 3.5 shows the accuracy

of SCALECHECK in exposing the 10 faults using the “bug-symptom” metrics in table 3.3 (the first

fault, ca-6127, will be shown later in section 3.5.3 and the last fault, hd-395, is omitted in figure

3.5 for space).

50

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-5456
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/HDFS-9198
http://issues.apache.org/jira/browse/HADOOP-4061
http://issues.apache.org/jira/browse/HADOOP-1073
http://issues.apache.org/jira/browse/HDFS-395
http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/HDFS-395

 0

 100

 200

 300

 32 64 128 256

(a) #Flaps (x1000) in
 Cassandra Decommission (ca3831)

SCk
Real

SCk+PIL

 0

 10

 20

 30

 40

 32 64 128 256

(b) #Flaps (x1000) in
 Cassandra Scale-Out (ca3881)

SCk
Real

SCk+PIL

 2

 4

 6

 8

 32 64 128 256

(c) #Flaps (x1000) in
 Cassandra Scale-Out (ca5456)

SCk
Real

SCk+PIL

0

4

8

12

16

20

 32 64 128 256

(d) Duration (x1000 sec)
of Riak Bootstrap (rk3926)

SCk
Real

SCk-PIL

 0

 20

 40

 60

 80

 32 64 128 256

(e) Duration (x1000 sec) of
Voldemort Rebalance (vm1212)

Real
SCk

.2

.4

.6

.8

1

 32 64 128 256

(f) Longest RPC Queue
Observed (x1000) (hd9198)

SCk
Real

 0

 2

 4

 6

 8

 10

 12

 32 64 128 256

(g) Max Lock Hold Time (sec)
in Decommission (hd4061)

SCk
Real

.4

.8

1.2

 32 64 128 256 512

(h) Node Choosing Time (sec)
for Data Write (hd1073)

Real
SCk

Figure 3.5: SCALECHECK effectiveness in exposing scalability faults. ”SCk” represents

SCALECHECK. The faults are listed in table 3.3. The x-axis represents the number of nodes (N).

The figure title describes the y-axis, i.e., the fault symptom metrics as recorded in “Real” deploy-

ment vs. SCALECHECK. For Cassandra and Riak faults (a-d), where all nodes are CPU-intensive,

the fault symptoms are inaccurate without PIL (“SCk” lines). However, with PIL (“SCk+PIL”

lines), the fault symptoms are relatively accurate as in the real deployment scenarios. For Volde-

mort and HDFS faults (e-h), where there is no concurrent CPU busyness, PIL is not needed.

Results summary

First, SCALECHECK is effective and accurate in exposing scalability faults, some of which only

surface in 256+ nodes. As shown, for Cassandra and Riak faults where all nodes are CPU intensive,

PIL is needed for accuracy (SCk+PIL vs. Real lines in figures 3.5(a)-(d)), but for the rest, STEST

suffices (SCk vs. Real in 3.5(e)-(f)).

Second, SCALECHECK can help developers prevent recurring faults; the series of Cassan-

dra faults (as described later below) involves the same protocols (gossip, rebalance, and failure

detector) and create the same symptom (high #flaps). As code evolves, it can be continuously

scale-checked with SCALECHECK.

Third, different systems of the same type (e.g., key-value stores, master-worker file systems)

implement similar protocols. The effectiveness of SCALECHECK methods in scale-checking the

different protocols above can be useful to many other distributed systems.

51

Fault descriptions

We now describe the faults and scale-dependent collections involved.

• In ca-6127 [15] protocol bootstrap (from scratch, without data) has complexity ∼ O((np)3)

(where n is the number of nodes and p is number of vnodes) because for each entry in the

message, it needs to iterate on every vnode in the ring and clone the ring. This causes CPU

spikes, gossip backlog (gossip messages tend to accumulate, given that gossip processing is

single threaded), and flapping (a node is declared “dead” incorrectly). The main collections

iterated in this scenario (as reported by our tools) are endpoint-state maps (maps that contain

the metadata of each peer, fields of the classes Gossiper, GossipDigestAck, GossipDiges-

tAck2), a collection of live endpoints (each peer ip address, field of the class Gossiper) and

token (peer data) metadata (fields of the class TokenMetadata).

• In ca-3831 [15] protocol commission/decommission has complexity ∼ O(n4 ∗ (log(n))3) (n

is the number of nodes) because for each entry in a message, a node needs to calculate and

sort the current view of tokens. Moreover, the method StorageService#calculatePendingRanges

(established as the culprit) is called multiple times for one gossip message. This causes CPU

spikes, gossip backlog (gossip messages tend to accumulate, given that gossip processing is

single threaded), and flapping (a node is declared “dead” incorrectly). The main collections

iterated in this scenario (as reported by our tools) are endpoint-state maps (maps that contain

the metadata of each peer, fields of the classes Gossiper, GossipDigestAck, GossipDiges-

tAck2), a map of unreachable endpoints (each unreachable peer ip address, field of the class

Gossiper) and token (peer data) metadata (fields of the class TokenMetadata).

• ca-3881 [15] is similar to ca-3831. After patching ca-3831 developers realized that even if

the maximum practical size of a cluster was improved the solution was not robust yet.

• In ca-5456 [15] protocol commission/decommission acquires a lock for computation with

complexity ∼ O((np)2 ∗ log(np)) (n is the number of nodes and p is number of vnodes per

52

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3881
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-3831
http://issues.apache.org/jira/browse/CASSANDRA-5456

node) because for each vnode in a message, the algorithm keeps sorting tokens in nested

loops. This lock blocks gossip processing causing flapping (a node is declared “dead” incor-

rectly). The main collections iterated in this scenario (as reported by our tools) are endpoint-

state maps (maps that contain the metadata of each peer, fields of the classes Gossiper, Gos-

sipDigestAck, GossipDigestAck2), a map of unreachable endpoints (each unreachable peer

ip address, field of the class Gossiper) and token (peer data) metadata (fields of the class

TokenMetadata).

• In rk-3926 [95] the membership protocol requires that all nodes share the exact same view

of the partition table (a table that contains the relationship between partition and owner) and

also that this table is “balanced”, meaning that each node should own a similar number of

partitions. For this, whenever a message is received, a full “rebalance” algorithm is exe-

cuted (∼ O(n3)) and the resulting output is communicated to another node, which in time

will perform a full “rebalance” operation. Given that this operation has a high asymptotic

complexity and that is performed each time a node receives a new message, as the cluster

grows convergence time tends to be long and while happening cpu usage tends to get higher.

The main collection iterated in this scenario is a map (defined in module riak core ring

of the riak core package) that contains the mapping between each partition (key) and each

owner (value). This data structure is both iterated explicitly (via for loop constructions) and

recursively (common in Erlang).

• In vd-1212 [105] when new nodes join the cluster, the existing nodes will move part of

key partitions to the new nodes. As per implementation, each gossip message moved parti-

tions one by one, incrementing the number of messages and incurring in network overhead,

severely affecting performance.

• In hd-9198 [58], each datanode will send incremental block report to namenode for ev-

ery new block operation (e.g. creation or deletion). These reports are sent at the same

53

http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
http://issues.apache.org/jira/browse/HDFS-9198

time by each datanode, so the namenode could be processing n ∗ b (where n is the num-

ber of datanodes and b is the number of blocks) blocks, which severely degrades perfor-

mance due to excessive (global) lock contention (FSNamesystem lock) from multiple IPC

handler threads. This is a case of implicit scale dependency for the method FSNameSys-

tem#processIncrementalBlockReport (is not executed within a loop, but is executed by every

datanode call) and it involves datanode related collections (a map at the class Datanode-

Manager) and lists of blocks (in general part of the communication protocol classes, like

StorageBlockReportProto or LongDecoder).

• In ha-4061 [57], when a datanode being decommissioned, the blocks that belong to it need

to be moved/replicated. During this replication period, DecommissionedMonitor thread (na-

menode) will check the replication status of every block periodically and determine whether

a decommissioning datanode is now safe to terminate (all blocks have been replicated by a

“live” datanode). This operation is blocking and holds FSNamesystem (global) lock, thus

when the number of blocks grows the locking could severely degrades performance. The

main collections involved in this case are datanode related collections (a map at the class

DatanodeManager) and lists of blocks (located in classes PendingReplicationBlocks, Un-

derReplicatedBlocks or LongDecoder).

• In ha-1073 [49], the namenode needs to choose a pipeline (of size r, where is the replication

factor) for each file written. Each pipeline selection involves costly sorting, string compar-

ison and grouping. In a scenario with multiple writes and a large number of datanodes the

pipeline selection algorithm was causing connection timeouts (long processing time) and

high CPU usage. The main collections involved in this case are datanode related collections

(a map at the class DatanodeManager and a map of replicas at the class ReplicaMap).

• In hd-395 [56] is similar to hd-9198, but in this case the block report contained all blocks

(and not only the ones with changes), thus wasting CPU (processing blocks that have not

54

http://issues.apache.org/jira/browse/HADOOP-4061
http://issues.apache.org/jira/browse/HADOOP-1073
http://issues.apache.org/jira/browse/HDFS-395
http://issues.apache.org/jira/browse/HDFS-9198

 0

 50000

 100000

 150000

 200000

 250000

 32 64 128 256 512

#
F

a
ls

e
 f
a

ilu
re

 d
e

te
c
ti
o

n

Cluster size (nodes)

(a) Cassandra: Decommision

Real

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

2
20

2
21

2
22

2
23

2
24

S
n

a
p

s
h

o
t
d

if
f
ti
m

e
 (

s
)

Snapshot diff size

(b) HDFS: Snapshot Diff

Snapshot diff time

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

2
20

2
21

2
22

2
23

2
24

m
e

ta
s
a

v
e

 t
im

e
 (

s
)

Under-replicated blocks

(c) HDFS: MetaSave

Metasave time

Figure 3.6: Discovering unknown faults. The x-axis represents the number of nodes (a) and

the number of blocks (b-c). The y-axis represents the observed fault symptom and the figure title

shows the system and the workload under test. In (a) the symptom being observed is the number

of flaps (number of times a node is declared “dead” incorrectly while the cluster membership is

not settled). In (b-c) the symptom being observed in the amount of time (in seconds) the namenode

global lock is being held (while the workload is being executed).

changed) and degrading namenode performance.

3.5.2 Discovering unknown faults

We also integrated SCALECHECK to more recent stable versions of Cassandra, HDFS, Riak, and

Voldemort, and found 1 unknown fault in Cassandra and 3 faults in HDFS. Below we describe the

details of such faults.

• In the fist fault (Cassandra v2.2.5, figure 3.6(a)), SFIND pointed us to the method Gos-

siper#applyStateLocally, which is invoked for every gossip message processed. Given that

the complexity of this method is ∼O(n3p) (where n is the number of nodes and p is the num-

ber of partitions), the processing time of each message tends to be long (e.g. for a 256-node

cluster, the average processing time is 30 seconds). This expensive computation happens

whenever cluster membership changes (e.g. when adding or removing nodes) and produces

cluster instability in the form of flappings (a node is declared “dead” incorrectly). Due to

this and other issues related to this protocol, developers started a new initiative for designing

“Gossip 2.0” to scale to 1000+ nodes [13], which until these days has unknown results.

• In the second fault (HDFS v2.7.3) SFIND pointed us to a code path involving the meth-

ods (1) DatanodeManager#refreshNodes (holding a global lock) and (2) DatanodeMan-

55

ager#refreshDatanodes with complexity ∼ O(nb) (where n is the number of datanodes

and b is the number of blocks per datanode). As reported, this could render the namenode

unresponsive when several “fat” datanodes (containing many blocks) are recommissioned.

• In the third fault (HDFS v2.7.3, figure 3.6(b)) our static analysis pointed us to a data structure

(AbstractINodeDiffList) involved in snapshot diff reports (given two snapshots, get the differ-

ence between them). We found that the snapshotDiff operation has a complexity of ∼ O(nb)

(where n is the number of datanodes and b is the number of blocks per datanode), involves a

recursive operation (on the method DirectorySnapshottableFeature#computeDiffRecursively)

and also holds a global lock.

• Finally, in the fourth fault (HDFS v2.9.0, figure 3.6(c)) our static analysis pointed us to a

code path involving the methods (1) FSNameSystem#metaSave (holding a global lock) and

(2) BlockManager#metaSave with complexity O(nb) where n is the number of datanodes

and b is the number of blocks per datanode). As reported, this code path (executed as part of

an administration command) could render the namenode unresponsive if not used with care.

The impact of this operation is even more dangerous when there are many under replicated

blocks (e.g. after a portion of the cluster fails or in the presence of network failures).

For Riak v.2.1.3 and Voldemort v1.10.21, we found that the bootstrap/rebalance protocols in our

target versions do not exhibit any scalability faults, up to 512 nodes.

3.5.3 Accuracy

The goal of our next evaluation is to show that PIL-infused SCALECHECK mimics similar behav-

iors as in real-deployment testing and is accurate not only in the final bug-symptom metric but also

in the detailed internal metrics. For this, we collected roughly 18 million values. For space, we

only focus on ca-6127 [15] (see section 1.1).

56

http://issues.apache.org/jira/browse/CASSANDRA-6127

a) #flaps = f (Φ > 8)
b) Φ = f (TavgGossip, TlastGossip)

TavgGossip = avg. of last 1000 TlastGossip

c) TlastGossip = f (#hops, TgossipExec)
#hops = log(N) on average

TgossipExec = TstateU pdate (if new state changes)

d) TstateU pdate = f (SizeringTable , SizenewStates)
SizeringTable ≤ N×P and SizenewStates ≤ N

Figure 3.7: Cassandra internal metrics. Above are the metrics we measured within the Cas-

sandra bootstrap protocol for measuring SCALECHECK accuracy (figure 3.8). “f” represents “a

function of” (i.e., an arbitrary function).

Figure 3.7(a)-(d) shows the internal metrics that we measured within Cassandra failure detec-

tion protocol for every pair of nodes; the algorithm runs on every node A for every peer B.

Figures 3.8(a)-(d) compare in detail the accuracy of STEST without PIL (“SCk”) and STESTPIL

with PIL (“SCk+PIL”), respective to the real-deployment testing (“Real”).

Figure 3.8(a) shows the total number of flaps (alive-to-dead transitions) observed in the whole

cluster during bootstrapping. STEST by itself will not be accurate if all nodes are CPU intensive

(section 3.2.2). However, with PIL, SCALECHECK closely mimics real deployment scenarios.

Next, Figure 3.7(a) defines that #flaps depends on Φ [129]. Every node A maintains a Φ for a peer

B (a total of N×(N−1) variables to monitor).

Figure 3.8(b) shows the maximum Φ values observed for every peer node; for graph clarity,

from here on we only show with-PIL results. For example, for the 512-node setup, the whisker

plots show the distribution of the maximum Φ values observed for each of the 512 nodes. As

shown, the larger the cluster, more Φ values exceeds the threshold value of 8, hence the flapping.

Figure 3.7(b) points that Φ depends on the average inter-arrival time of when new gossips about B

arrives at A (TavgGossip) and the time since A heard the last gossip about B (TlastGossip). The point

is that TlastGossip should not be much higher than TavgGossip.

Figure 3.8(c) shows the whisker plots of gossip inter-arrival times (TlastGossip) that we collected

for every A-B pair (millions of gossips as a gossip message contains N gossips of the peer nodes).

The figure shows that in larger clusters, new gossips do not arrive as fast as in smaller clusters,

57

 0

 10

 20

 30

 32 64 128 256 512

Cluster size (nodes)

(a) #Flaps (x1000)

SCk
Real

SCk+PIL

 0

 10

 20

 30

 40

32 64 128 256 512

Cluster size (nodes)

(b) Max Phi for each node

Real
SCk+PIL

 0

 10

 20

 30

 40

32 64 128 256 512

Cluster size (#nodes)

(c) T-lastGossip every A-B pair (sec)

Real
SCk+PIL

1e0

1e1

1e2

1e3

1e4

32 64 128 256 512

Cluster size (#nodes)

(d) Update process time (ms)

Figure 3.8: Accuracy in exposing ca-6127. The figures represent the metrics presented in figure

3.7, measured in real deployment (“Real”) and in SCALECHECK (”SCk”) with different cluster

sizes (32, 64, 128, 256, and 512 in the x-axis). The y-axes (the metrics) are described in the figure

titles.

especially at high percentiles. Figure 3.7(c) shows that TlastGossip depends on how far B’s new

gossips propagate through other nodes to A (#hops) and the gossip processing time in each hop

(TgossipExec). The latter (TgossipExec) is essentially the state-update processing time (TstateU pdate),

triggered whenever there are state changes.

Figure 3.8(d) (in log scale) shows the whisker plots of the state-update processing time (TstateU pdate).

In the 512-node setup, we measured around 25,000 state-update invocations. The figure shows

that at high percentiles, TstateU pdate is scale dependent (the culprit). As shown in figure 3.7(d),

TstateU pdate complicatedly depends on a scale-dependent 2-dimensional input (SizeringTable and

SizenewStates). A node’s SizeringTable depends on how many nodes it knows, including the partition

arrangement (≤N×P) and SizenewStates (≤N), which increases as cluster size grows.

3.5.4 Colocation factor

This section shows the maximum colocation factor SCALECHECK can achieve as each technique is

added one at a time on top of the other. To recap, the techniques are: single-process cluster (SPC),

network stub (Stub), global event driven architecture (GEDA), and processing illusion (PIL). The

results are based on a 16-core machine.

58

http://issues.apache.org/jira/browse/CASSANDRA-6127

 0
64

128

256

512

(a
)C

as
s

(b
)R

ia
k

(c
)V

ol
d

(d
)H

D
FS

#
N

o
d
e
s

MaxCF: Max Colo. Factor

Naive
+SPC
+Stub

+GEDA
+PIL

Figure 3.9: Maximum colocation factor. The colocation factor reached as each technique is

added.

Maximum colocation factor (“MaxCF”)

A maximum colocation factor is reached when the system behavior in SCALECHECK mode starts

to “deviate” from the real deployment behavior. Deviation happens when one or more of the

following bottlenecks are reached: (1) high average CPU utilization (>90%), (2) memory exhaus-

tion (nodes receive out-of-memory exceptions and crash), and (3) high event “lateness.” Queuing

delays from thread context switching can make events late to be processed, although the CPU uti-

lization is not high. We instrument our target systems to measure event lateness of relevant events

(as described in section 3.2.2). We use 10% as the maximum acceptable event lateness. Note that

the residual limiting bottlenecks come from the main logic of the target protocols, not removable

with general methods.

Results and observations

Figure 3.9 shows different sequences of integration to our four target systems and the resulting

maximum colocation factors. We make several important observations from this figure.

First, when multiple techniques are combined, they collectively achieve a high colocation factor

(up to 512 nodes for the three systems respectively). For example, in Figure 3.9(a), without using

PIL in Cassandra, MaxCF only reaches 136. But with PIL, MaxCF significantly jumps to 512.

When we increased the colocation factor (+100 nodes) beyond the maximum, we hit the residual

59

bottlenecks mentioned before; at this point, we did not measure MaxCF with small increments

(e.g., +1 node) due to time limitation.

Second, distributed systems are implemented in different ways. Thus, integrations to different

systems face different sequences of bottlenecks. To show this, we tried different sequences of

integration sequences. For example, in Cassandra (figure 3.9(a)), our integration sequence is +SPC,

+Stub, +GEDA, and +PIL (as we hit context switching overhead before CPU). For Riak (figure

3.9(b)), we began with PIL as we hit CPU limitation first before hitting Erlang VMM network

overflow which requires SPC (section 3.2.1), and Riak does not require GEDA because Erlang,

as an event-driven language, manages thread executions as events. For Voldemort (figure 3.9(c)),

we began with SPC and then network stub to reduce Java VM and Java NIO memory overhead

respectively, and PIL so far is not needed as the tested workload does not involve parallel CPU-

intensive operations. For HDFS (figure 3.9(d)), we only need SPC and GEDA but not PIL as only

the master node that is CPU intensive (but not the datanodes).

Finally, it is the combination of all techniques that make SCALECHECK effective. For example,

while in figure 3.9(a) we apply the sequence of SPC+Stub+GEDA+PIL resulting in PIL as the

dominant factor, in another experiment we applied a different sequence PIL+SPC+Stub and failed

to hit 512 nodes, not until GEDA is added and becomes the dominant factor.

3.5.5 Pre-memoization and replay time

The “Tm” and “Tpil” columns in table 3.3 quantifies the duration of the pre-memoization (STESTmez)

and PIL-based replay (STESTPIL) stages when N≥256. For example, for CPU-intensive faults

such as ca-6127, the pre-memoization time takes 2 hours while the PIL-based replay is only 15

minutes (similar to the real-deployment test); for rk-3926, it is 6 vs. 2 hours. Pre-memoization

does not necessarily take N× longer time because one node only consumes 2 cores (while the

machine has 16 cores) and also not every node is busy all the time.

60

http://issues.apache.org/jira/browse/CASSANDRA-6127
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html

3.5.6 Test coverage

SFIND labeled 32 collections in Cassandra and 12 in HDFS as scale dependent. From these,

SFIND identified 131 and 92 scale-dependent loops in Cassandra and HDFS (out of more than

1500 and 1900 total loops) respectively. So far, we have tested 57 (44%) and 64 (69%) of the loops

in Cassandra and HDFS. The time-consuming factor is the manual creation of new test cases that

will exercise the loops (see end of section 3.1).

We emphasize that SFIND is not a bug-finding tool, hence the reason why we do not report

false positives.

3.6 Limitations

At the moment, our work focuses on scale-dependent CPU/processing time (section 3.1), and the

“scale” here implies the scale of cluster size ((section 2.1). The specific list of faults we studied

are shown in table A.1.

However, there are other scaling problems that lead to IO and memory contentions [125, 158,

164], usually caused by the scale of load [112, 126] or data size [152]. For emulating data size,

we are only aware of one work, Exalt [173], which is orthogonal to SCALECHECK. In our fault

study, we learn that some load or data-size related fault can be addressed with accurate modeling

[126] (e.g., d dead nodes will add d/(N−d) load to every live node) and some others can already be

reproduced with a single machine (e.g., loading as much file metadata to check the limit of HDFS

memory bottleneck [164]).

3.7 Conclusions

Technical leaders of a large cloud provider emphasized that “the most critical problems today is

how to improve testing coverage so that faults can be uncovered during testing and not in pro-

duction” [122]. It is now evident that scalability faults are new-generation faults to combat, that

61

existing large-scale testing is arduous, expensive, and slow, and that today’s distributed systems

are not single-machine scale-testable. Our work addresses these contemporary issues and will

hopefully spur more solutions in this new area.

62

CHAPTER 4

SVIEW: IDENTIFYING AND ANALYZING POTENTIAL

SCALABILITY FAULTS IN LARGE-SCALE DISTRIBUTED SYSTEMS

As discussed in section 1.3.3, this chapter presents SVIEW [167], a framework for identifying and

analyzing potential scalability faults in large-scale distributed systems. The goal of this chapter is

to address the following research questions:

• RQ6: Which pieces of code are affected by dimensionality? Mature distributed systems

are usually comprised of hundreds of thousands of lines of code, but according to our ob-

servations, only some of those code fragments are dimensional, i.e., as one or more system

dimensions grow, the number of executions of these fragments also grows.

• RQ7: How to detect dimensional code fragments? What are the necessary steps and tools

we need to find such fragments?. Moreover, which techniques are useful in determining their

correlation with certain dimensions and categorizing their growth trends?.

• RQ8: When do dimensional code fragments become problematic? Dimensional code

fragments are the building blocks of distributed systems, thus not all of them are inherently

problematic. Then, when do they become problematic?.

The rest of this chapter is structured as follows: we first introduce the main motivation for this

work, dimensional code fragments (DCFs) (section 4.1), and continue with a design overview of

SVIEW (section 4.2). Then, in the following sections, we detail our contributions: study of DCFs

(section 4.3), the design of LEAP (section 4.4) and the analysis modules built on top (section 4.5),

and an in-depth evaluation of LEAP that covers 4 real distributed systems with a total of 15 versions

(section 4.6). We then close with related work (section 4.7) and conclusions (section 4.8).

63

4.1 Dimensional Code Fragments

In the study presented at chapter 2, we found various dominant root causes such as unbounded

resource usage, bloated data structure design, etc. While there are many root causes to dissect,

this chapter specifically puts our attention to the largest dominant root cause that covers almost

half of the reports, dimensional code fragments (DCFs), pieces of code in which the number of

executions (e.g., loop iterations, method calls, etc) is positively correlated to the increase in the

size of a dimension in the system, such as cluster size, amount of data processed, etc. Imagine

this simple code segment below whose computation grows as the number of nodes and files in the

cluster grows.

for (i=0...numNodes)

for (j=0...numFiles)

doSomething

If the cluster grows in number of nodes and number of files, one can imagine that this simple

code segment can cause ripple effects to other parts of the system. Let’s suppose that this seg-

ment is holding a lock used by a user-facing/foreground call, the long lock contention will cause

performance issues that directly affect users. The doSomething segment could also involve I/O op-

erations, hence generating excessive small I/Os, which is a known scalability anti-pattern. While

we portray a simple example above, this paper shows various cases of dimensional code fragments

including the challenges in finding which ones can potentially lead some harm to the system.

4.2 Overview

We present SVIEW, a framework for identifying and analyzing potential scalability faults in large-

scale distributed systems. SVIEW outputs a list of dimensional code fragments and their relation-

ships to the the system dimensions. For example, an output like

{AbstractReplicationStrategy.java, line:240, SuperLinear(tokens)}

64

Identifying
Dimensions

a
Scaling
Workloads

b
Instrumented
Runtime

c d e
Output Viz.
& Traces

Filtering
Growth

f
Growth
Trends

+
Analysis
Modules

superlinear /

linear /

sublinear

Nodes

Files

Critical Path

Lock

Contention

I/O Analysis# Tokens

Figure 4.1: SVIEW design. The figure shows the 6 stages in SVIEW and the 3 analysis modules

built on top.

indicates that a code fragment located at that class file and starting at that line has a superlinear

relationship with the number of tokens. If the number of tokens is large, this code can lead to a

bottleneck at scale.

SVIEW comprises of 6 stages as illustrated in Figure 4.1. (a) In the first stage, SVIEW users

(e.g., developers) identify per-system dimensions, i.e., the target system components that are scal-

able such as the number of nodes, partitions, files, tokens, etc., which typically can be found in

design documents. (b) Next, the user writes scaling workloads, a set of tests that scale the identi-

fied dimensions. The workloads use the system APIs (e.g., addNodes()) as well as SVIEW-specific

APIs to flow important information to the target system’s runtime to assist the subsequent stages in

automatically identifying the DCFs and their relationship with the scaled dimensions. (c) Within

the system runtime (e.g., Java runtime), we instrument three types of loops as “potential DCFs”:

application, library, and “implicit” loops (e.g., a namenode function called by N datanodes in the

cluster). Then we monitor the complexity of potential DCFs automatically, that is how the number

of iterations is increased as each of the dimensions is being scaled.

After the user runs the workloads on the instrumented system, (d) SVIEW outputs a trace

file containing detailed information of potential DCF iterations and their relationships with the

scale dimensions. SVIEW can visualize each of the potential DCFs as illustrated in Figure 4.1(d)

where each small figure shows a growth or flat pattern with respect to the scaled dimension(s).

(e) The previous stage generates potentially over 1000 graphs (one for each potential DCF), thus

the next stage is to identify true DCFs, i.e., determining those whose number of iterations truly

65

increases with the scaled dimension being and discarding the flat ones. However, this phase is

not as straightforward as expected due to “noises” stemming from real-world system behaviors

such as complex protocol-specific if-else conditions and system optimizations such as batching

and thread scheduling. To handle this, we introduce a 3-step empirical-driven filtering process

that distinguishes four unique patterns (clear growth, clear flat, noisy growth, and noisy flat). (f)

Finally, by filtering in the “true” DCFs, SVIEW categorizes the DCF growth trend with a similarity-

measures technique to superlinear, linear, or sublinear trends. This last step can help developers

prioritize their analysis.

SVIEW by itself is not a bug finding tool. Its goal primarily is to provide developers the “view”

of their systems with respect to DCFs. In other words, not all DCFs are harmful, hence we try

to find DCFs that could potentially bring harmful effects to the system. For this, developers can

build analysis modules on top of SVIEW’ results. In this work, we built three modules: critical

path analysis to find DCFs within user-facing/foreground paths; lock contention analysis to find

DCFs in background/operational protocols that contend with a foreground lock; and I/O analysis

to find disk/network I/Os inside a DCF that could lead to the “chatty I/O” problem, a performance

antipattern.

4.3 Characteristics of Scalability Faults and Dimensional Code Fragments

So far we have covered 66 bug reports, shown in table C.1. Below we characterize them, including

the dimensions, the scenarios (when they were discovered), the related code paths, to which we

refer as protocols, and the effort in terms of time, discussion length and patches, that was required

to solve them.

High-level dimensions: Figure 4.2(a) categorizes the high-level dimensions over 3 axes of

scale: cluster size (# nodes, # partitions, etc.), data (# files, # tables, # rows, etc.) and load (#

clients, # requests, etc.). The majority is concentrated among the first two axes (around 42% for

each) while a relatively small percentage (16%) is related to load. Later Section 4.4.1 will break

66

12

25

37

50

cl
us

te
r

da
ta

lo
ad

%
 o

f
Is

s
u

e
s

(a) Dimensions

15

30

45

60

de
pl
oy

te
st

ad
-h

oc

be
nc

h

%
 o

f
Is

s
u

e
s

(b) Scenarios

20

40

60

80

op us
er

ut
il

%
 o

f
Is

s
u

e
s

(c) Protocols

Figure 4.2: Fault characterizations. The figures breaks down the characterizations of scalability

issues in terms of the high-level dimensions, the scenarios in which they were found, and the

protocols involved.

down further the per-system dimensions that are necessary to create scalability test suites.

Scenarios: Figure 4.2(b) shows that 58% of the issues were found in deployment (“deploy”

bar) while 42% during testing (“test” bar). Within the testing scenarios, we further subdivide them

into ad-hoc testing (“ad-hoc” bar at 11% of total), where the developers create custom workloads

to reproduce the issues, and benchmarking (“bench” at 31%), where the developers use popular

benchmarking suites or stress-testing tools. This highlights that dimensional code fragments could

be missed by existing tools (mainly because the root dimensions are not scale tested) and the

developers have to resort to ad-hoc testing or waiting until the problems surface in deployment.

Protocol types: To understand why scalability issues are often hidden, we study the protocol

types, which we simply break to user-facing/foreground paths (e.g., read/write), operational/back-

ground protocols (e.g., membership management, cleaning, compaction, backup, snapshot opera-

tions), and general utilities used by both. Figure 4.2(c) shows that 72% of scalability faults linger

in operational protocols and only 21% and 7% are in user-facing protocols and general utilities,

respectively. While user-facing protocols are technically implicitly tested “all the time” in deploy-

ment, operational protocols often do not receive the same treatment. Not to mention, some of the

issues arise from the interaction of operational and user-facing protocols (e.g., lock contention),

which increases the difficulties in terms of the amount of effort required for testing.

Time to solve, discussions, and patches: The complexity of scalability issues can also be seen

from the number of months needed to close the bug report and/or the number of comments made

67

25

50

75

100

9 18 27 36
C

D
F

 (
%

)

Months

(a) Time to solve

25

50

75

100

20 40 60 80

C
D

F
 (

%
)

Comments

(b) Discussions

25

50

75

100

5 101520

C
D

F
 (

%
)

Patches

(c) Patches

Figure 4.3: Efforts to solve. The CDF figures summarize the developer’s effort to address the

problem in terms of time to mark the issue as solved, number of discussion comments, and number

of patches submitted.

by the developers in the bug report. Figure 4.3(a) shows the CDF of the solution time. 49% of them

are closed after more than a month and in the long tail, 20% of them need more than 6 months to

close. 40 of them are labeled Major, 4 Urgent, 10 Critical and 12 Normal. Figure 4.3(b) portrays

the same complexity by showing the number of comments. Over 50% of them require over 16

back-and-forth comments. Finally, Figure 4.3(c) summarizes the number of patches submitted.

75% only require fewer than 5 patches, which might include patches for different versions of the

system when necessary, and 3% include 10-20 patches, which arguably required a lot of time to

spend.

Overall, our bug study shows that dimensional code fragments are not trivial to find and test.

We found that the developer discussion was centered around the difficulties of correctly identifying

the root cause of the problem and making sure the proposed solution was sound and the modified

system passed all related test cases, new and existing ones. In some cases, this led to dozens of

comments spawning a conversation over years. This study led us to the design of SVIEW.

4.4 SVIEW Design

This section details our design of the SVIEW pipeline: identifying per-system dimensions (section

4.4.1), writing scaling workloads (section 4.4.2), instrumenting system runtime (section 4.4.3),

outputting the traces (section 4.4.4), identifying and filtering growth (section 4.4.5), and categoriz-

68

H.L. Per-system

Dims. Dimensions ca ha hb hd ig kf sp

Cluster

peers

managers

workers

consumers

Load

clients

jobs/tasks

requests

Data

rows

columns

tables/keyspaces

logs

snapshots

files/dirs

blocks

partitions

sstables

Table 4.1: System Dimensions. This table lists the high-level and per-system dimensions in

Cassandra (ca), Hadoop (ha), HBase (hb), HDFS (hd), Ignite (ig), Kafka (kf), and Spark (sp).

ing growth trends (section 4.4.6).

4.4.1 Identifying Per-System Dimensions

The first stage of the pipeline is identifying the per-system dimensions, i.e., the components of the

system that can scale (increase in numbers). This process is a manual task that requires understand-

ing the system design and in some cases their internal implementations. Per-system dimensions

are not the high-level dimensions such as cluster size, data size, and load, but rather they are one

level more detail. For example, cluster size can imply the number or nodes, logical partitions,

tokens, and many others. Data size can be the number of files, blocks per file, directories, tables,

segments, etc.Load size can represent the number of clients, connections, or more specifics such

as consumers or producers.

Table 4.1 lists the per-system dimensions that we have identified for the systems that we stud-

ied. We collected the dimensions from the discussion comments of the fault reports as well as from

their publicly available design documents. The names we use in Table 4.1 are abstract names for

69

readability. In reality, every system has their own specific naming (e.g., in Cassandra, a “table” is a

ColumnFamily and a “partition” is a Token). A system can have more dimensions than others. The

list in Table 4.1 is not necessarily complete, but we expect developers (can) have the full list.

It is important to identify each of the per-system dimensions because unlike prior works, our

goal is to provide a clear “view” of which code fragments are dependent on which dimensions. We

do not want to merely output that a code fragment can grow linearly or quadratically in compute

cost but without the root cause. For example, a sample of output like

{AbstractReplicationStrategy.java, line:240, SuperLinear(tokens)},

identifies that a code fragment starting at this line has a super linear relationship where if the

number of tokens is large this code can be a potential bottleneck. As the number of per-system

dimensions is likely constant and small (e.g., fewer than 20) and described in the design documents,

we expect that developers can bear the manual process.

4.4.2 Writing Scaling Workloads

The next step is to write scaling workloads, a set of tests to exercise the growth of the identified

dimensions and expose the behavior of the dimensional code segments in relation to the growth.

These workloads can be programmed in common languages like Python or bash and are entirely

external to the system under test.

Figure 4.4(a) shows a pseudo-code of a scaling workload that tests the cluster size dimension.

In lines 2 and 4, the developer set the maximum number of nodes and the for loop that keeps

adding one node at a time. Line 6, addNode() is the existing system API provided by the target

system to scale this particular dimension. Line 7, runOp() is a sample function where the developer

can choose to decide to run some additional foreground/background operations [17, 59, 65, 79].

The developer also must call the Leap APIs, specifically setTest() on line 3 that declares the

dimension name that is being scaled (e.g., “#nodes”) and setScaleState on line 5 that sets the

current scale state of the workload, which is varied within the loop (e.g., n = 10 nodes currently).

70

1 // scaling nodes

2 maxNodes=32

3 setTest("#nodes")

4 for (n=0..maxNodes)

5 setScaleState(n)

6 addNode()

7 runOp()

1 // scaling both

2 maxNodes=32

3 step=10000

4 curRow=step

5 setTest("#nodes", "#rows")

6 for (n=0..maxNodes)

7 setScaleState(n, curRow)

8 addNode()

9 addRows(step)

10 curRow += step

(a) One Dimension (b) Two Dimensions

Figure 4.4: Sample scaling workloads. The figures show sample pseudo-code of one and two

dimensional scaling workloads (nodes and nodes+table rows, respectively).

These APIs form an important information flow to the target system’s runtime that we automati-

cally instrument in the next section. The issue we address via these APIs is that our instrumented

runtime is calculating the complexity of the dimensional code fragments but it has no knowledge

of the current scale status of the system. Providing such a simple information proves to be useful

for the subsequent steps.

Figure 4.4(b) shows another simplified example where we scale two dimensions at the same

time, number of nodes and rows of a key-value table. A couple of differences include: the use of

system APIs that allow batch update such as adding 10,000 rows at a time (addRows(step) on line

9), declaration of the two dimensions (setTest() on line 5), and update of the scale status of the

two dimensions (setScaleState(n,curRow) on line 7).

4.4.3 Instrumenting the Runtime

Next we monitor the complexity of dimensional code segments automatically, that is how the

number of iterations is increased as each of the dimensions is being scaled. As our systems under

test are all written in Java, we instrument both the target system code (“application” code) and Java

libraries by combining Javassist [85], a bytecode manipulation framework, with instrumentation

agents [84], which directs the instrumentation process and provides an entry point for parame-

71

1 void update(Peers[] p) {
2 int id = 1117

3 int ln = 6

4 int cn = 0

5 int[] ss = getScaleState()

6 for (Peer n : p) {
7 ++cn

8 cache.add(n,n.tokens())

9 }
10 logScaleState(id,ln,cn,ss)

11 }

void add(K k, V[] v) {
int id = callerId()

int ln = callerLine()

int cn = 0

int[] ss = getScaleState()

for (V val : v) {
++cn

map.put(k,val)

}
logScaleState(id,ln,cn,ss)

}

(a) Application Code (b) Library Code

Figure 4.5: Instrumentation example. The highlighted lines correspond to code added by our

instrumentation around (a) application and (b) library loops.

ter passing. The former provides the necessary APIs to detect specific types of code structures,

such as loops in bytecode, while the latter allows us to pass the necessary filters to distinguish

between application and library code (e.g.which package prefixes should be considered part of the

application). We instrument three important types of loops: application, library and implicit loops.

Application loops: A simple example of an application loop instrumentation is shown 4.5(a),

where the code automatically added by our instrumentation is highlighted. As our tool detects an

application loop on line 6 (for (Peer n:p)) that belongs to the system under test, it adds a unique

ID, line number, and a count variable (lines 2 to 4). More important, it also retrieves the scale state

(getScaleState() on line 5), which provides the information about the dimension that is being

grown. This way we can correlate the dimension being exercised and the increasing number of

iterations via the counter added by our tool (cn++ on line 7).

Library loops: Beyond application loops, we found that root causes of scalability bugs can

remain unseen due to “hidden” dimensional loops inside library calls. The application loop can

look O(N) but if the body calls another O(N) library then the complexity becomes quadratic. Here,

libraries imply external code where the original source code might not be available. However, since

we instrument at bytecode we can identify such loops and differentiate them from the application

loops by using the Java agents, specifically by filtering external classes to the system (e.g., not

72

Scale: #nodes,#rows

...

A,1117,234,810000,9,90000

A,1117,234,1000000,10,100000

A,1117,234,1210000,11,110000

A,1117,234,1440000,12,120000

A,1117,234,1690000,13,130000

A,1117,234,1960000,14,140000

...

Field Value
Type App. loop
Method ID 1117
Line # 234
Iters 1000000
Nodes 10
Rows 100000

(a) Two-dimensional trace (b) Details

Figure 4.6: Output trace. The figure shows a sample output trace from running a two-

dimensional (#nodes and #rows) scaling workload.

org.apache.cassandra.* classes). We then associate the library loops with the caller in the target

system code. Figure 4.5(b) shows an instrumentation result where the id is not a unique ID but

rather the caller ID (line 2). The line number (ln) is also not accessible inside a library bytecode,

hence the line is the caller’s line. The rest are the same as described for application loops.

Implicit loops: We also found scalability issues where the dimensionality exists but there is no

explicit loop, but rather an “implicit loop” forms. Imagine a function f() in a single master node

being called by every data node in the cluster (tens to potentially thousands) in a very frequent

manner with heavy tasks. Here f() acts like a body of a loop that is being iterated many times.

Thus, our instrumentation also handles this kind of scenario by recording the number of times each

method is invoked.

We emphasize again the advantages of interposing all the loop types above in the runtime com-

pared to doing loop analysis statically. With static approaches [117, 124, 153, 174, 176], we must

first know which data structures are dimension dependent and then perform a dataflow analysis

[166]. However, we find that there are many ways that the original dimension-dependent data

structures (e.g., List nodes;) can be copied to other “temporary” data structures that are copied

as a body of a transient message (e.g., message.nodeList = copy(nodes)). If static analysis fails

to track them properly, then the loop analysis will also be impaired, i.e., loops on temporary dimen-

sional data structures will not be marked as growing. Furthermore, static analysis also cannot cover

implicit loops unless the developer annotates which functions can be called by many components

73

Figure 4.7: Sample output visualization. Here SVIEW visualizes the growth of each loop in the

output trace. Each small figure represents a single loop. The number of iterations (in the y-axis of

each small figure) is projected over the scaled dimension (in the x-axis of each small figure). For

simplicity, here we only visualize the output of a single-dimensional scaling workload.

of the system in parallel.

4.4.4 Outputting Traces

With the instrumentation, every time a scaling workload is run, SVIEW will output a trace file that

records the information of its loop iterations. Figure 4.6 shows an example of a segment of an

output trace file for a two-dimensional scaling workload (#nodes and #rows). Every line is a tuple

in the form of 〈A/L/F, id, ln,cn, [ss]〉, where A/L/F represent an application, library, or function

loop (i.e., implicit loop), id the unique method ID, ln the line number of the loop, cn the iteration

count, and [ss] the scale state in an array with one or two numbers for one- or two-dimensional

tests, respectively. As a concrete example, 〈A,1117,234,1000000,10,100000〉 implies that an

application loop in method ID 1117 at line 234 has iterated 1000000 times when the number of

nodes and rows have reached 10 and 10000, respectively. LEAP’ subsequent steps will then clean

and analyze the traces.

After a scaling workload completes, the resulting trace will show all the loops that are exercised

and their growth with respect to the dimension being scaled. Figure 4.7 shows a sample of trace

output visualization. For simplicity, here we only show an output of a 1-dimensional test where we

74

9

18

27

36

0 .2 .4 .6 .8

Not clear

P
D

F
 (

in
 %

)
Correlation coeff.

(a) Before cleaning

20

40

60

80

0 .2 .4 .6 .8

Clear
growth

Clear
flat

P
D

F
 (

in
 %

)

Correlation coeff.

(b) After cleaning

12

25

37

50

0 50 100

Clear
growth

Noisy
growth

Noisy
flat

P
D

F
 (

in
 %

)

% Data retained

(c) Last cleaning

Figure 4.8: Growth analysis . Figure (a) shows the probability distribution function (PDF) of

Spearman correlation coefficient of the raw datasets before cleaning, bucketed in 0.1 step (in the

x-axis); Figure (b) plots the filtered data after cleaning, separating loops with clear non-growth

(flat) and growth; and Figure (c) shows the distribution of the percentage of retained datapoints

where the result clearly distinguishes the three growth patterns.

scale the number of keyspaces (tables) in Cassandra. The trace shows 880 application, 104 library,

and 566 implicit loops being exercised, and only some of them are shown in the figure. Each small

graph in Figure 4.7 represents a loop. The x- and the y-axis in each small figure are the dimension

(in this case the number of keyspaces being added) and the number of iterations, respectively.

4.4.5 Identifying and Filtering Growth

The next step is to identify growth, i.e., determining the code fragments whose number of iterations

increases with the dimension being scaled (e.g., a loop at the bottom left corner graph in Figure

4.7) and ignoring the flat ones (e.g., a loop at the upper right corner of the same figure). In other

words, flat loops are not harmful and should be discarded but growing loops can be harmful and

should be filtered in. By manually “eyeballing” the graphs, we can easily identify the growing

ones but this is not a viable approach given the thousands of graphs plotted by SVIEW.

One straightforward way of automating this filtering process is to plug in the numbers to statis-

tical algorithms such as Pearson, Kendall and Spearman [113] correlation coefficients, and let them

decide which datasets exhibit high correlations. However we found naively doing so generates a lot

of noise. Using the same example above, we use Spearman on 1550 sets of data (representing all

the loops) and receive 1550 correlation coefficients. In our case, a coefficient near 0 implies no cor-

75

relation (flat) and a coefficient near 1 identifies growth. 4.8(a) shows the probabilistic distribution

function (PDF) of the 1550 coefficients bucketed in every 0.1 coefficient range. We were expecting

a bimodal distribution with many cases separated to the two opposite sides, 0 and 1 (in the x-axis),

with the hope that we can easily filter in the highly correlated ones (near x = 1). However, we see

around 31% (in the y-axis) of the datasets do not have a clear outcome (0.4 ≤ x ≤ 0.6).

Upon further analysis, we found two expected flat/growth patterns and two other interesting

patterns that make the noise, as illustrated in Figures 4.9(a)-(d) (please focus on the gray dots and

lines at this point and ignore the red dots and lines). The first one (4.9(a)) is a clear flat pattern

where the loop iterations do not grow (in the y-axis) even when the dimension being exercised

continues to grow (in the x-axis). The second one (4.9(b)) is a clear growth pattern, in this example

a loop with a linear, O(N) complexity. The third one (4.9(c)) is an interesting noisy growth pattern.

Here we observe a trend of growth but often times there are data points in the output traces that

show 0 iterations (y = 0 in the middle area of Figure 4.9(c)). We will explain the fourth figure

(4.9(d)) later.

After further debugging, we found two main root causes for the noise. First, complex dis-

tributed systems have if-else conditions specific to the logic of their protocols. For example, a

key-range rebalancing process might discard a message containing a list of nodes if that message

is outdated (e.g., has an older ballot), hence the associated for loop will not be executed. Second,

system optimization techniques such as batching and thread scheduling also will make some ac-

tions being skipped, making the loops potentially do more work in future iterations. To sum up,

the sources of noise are “real” stemming from real-world system behaviors, which led us to data

cleaning.

To perform cleaning of the noise, we perform a 3-step empirical-driven filtering process. (i)

We first only retain a data point (the number of iterations) that is larger than the maximum of all

the previous data points. For some illustrations, in Figure 4.9(a), there is only one point (in red

box) retained while the others are removed as they are smaller than the first point. In Figure 4.9(b),

76

Raw Filtered growth

(a) Clear flat (b) Clear growth (c) Noisy growth (d) Noisy flat

Figure 4.9: Growth patterns. The figures summarize the four major patterns that we observed

from all the output visualization akin to Figure 4.8.

all data points are kept as they are monotonically increasing. In Figure 4.9(c), only 5 data points

are considered, and this simple process converts the noisy growth into a cleaner growth pattern

(the red dashed line). (ii) Next, for the retained points, we use Spearman to give us the correlation

coefficient and the result is much clearer, as shown in Figure 4.8(b); it is either a flat (the correlation

coefficient is 0 ≤ x ≤ 0.1) or growth pattern (0.9 ≤ x ≤ 1). (iii) Finally, among the datasets with

clear growth pattern, we need to handle one more case, the noisy flat pattern in Figure 4.9(d) where

the overall pattern is flat but the small number of filtered datapoints shows growth. To exclude

cases like this, we analyze the percentage of retained datapoints after the cleaning in first step.

Figure 4.8(c) shows the distribution and three groups appear: the normal growth group (Figure

4.9(b)) where over 80% of the datapoints are retained (x > 80%); the noisy growth group (Figure

4.9(c)) where about 30-60% of the datapoints are kept (30% < x < 60%); and finally the noisy

flat group (Figure 4.9(d)) where only less than 10% of data is kept. Thus, in this last cleaning we

remove the last group because they do not have enough datapoints to confirm the growth pattern.

4.4.6 Categorizing Growth Trends

The final step is to categorize the complexity of each dimensional code fragment that has been

filtered from the previous step. Based on our fault study and experience running LEAP, they can

be categorized into three trends: superlinear (47% of the faults in our study), linear (53%) or

sublinear (0% but we found a few cases in LEAP’ filtered output). This simple categorization

can be useful for developers in order to estimate the urgency or priority of the issue. For example,

77

Theoretical model # Dimensions Type

I = D2
1 1 superlinear

I = D1 ∗D2 2 superlinear

I = D1 1 linear

I = D1 +D2 2 linear

I = log(D1) 1 sublinear

I = 2
√

D1 1 sublinear

Table 4.2: Theoretical models to growth trends. The table shows different types of theoretical

models that represent the number of iterations (“I”) as a function of the size of one or more

dimensions (“D”), and how they can be mapped to the three growth trends (superlinear, linear

and sublinear).

among the fault reports involving superlinear fragments, 35% are marked as “critical/urgent” while

it’s only 8% for linear fragments.

To categorize the computational complexity to one of the three trends, we empirically selected

a few computational theoretical models (Table 4.2) based on our study. Then we determine which

model best fits with our data points by exploring similarity measures, more specifically Fréchet

Distance (“d”) [111]. Such measures are employed to determine how close two curves are within

the same metric space. To apply this method, we first take the filtered datapoints from the previous

phase (the red dots in Figure 4.9); normalize the y-values to [0, 1] range; generate datapoints

for each of the theoretical models in the same range; compute the distance value d between our

datapoints and each model; and finally pick the model (trend) that has the smallest distance value.

Figure 4.10 illustrates an example of when we analyze a linear fragment. In the first and last

graphs (4.10(a) and 4.10(c)) the linear filtered datapoints are far from the superlinear and sublinear

models, respectively, generating a positive d value. In the middle one (4.10(b)), the datapoints

match the linear model, hence this final phase labels the fragment with “linear” trend.

Other than Fréchet Distance, we also experimented with other algorithms such as r2 [140] and

mean absolute error [160], however we find them not reliable for our datasets. We observed an

imprecision of up to 20%; “imprecise” means that for around 20% of 10k randomly generated

datasets with linear, superlinear and sublinear filtered datapoints, those algorithms reported more

than one category (e.g.the same d value was reported when comparing against linear and sublinear

78

d = 0.25

(a) vs. superlinear

Filtered Growth

.25

.5

.75

1

d = 0N
o
rm

.
it
e
rs

.

(b) vs. linear

Model

d = 0.2

(c) vs. sublinear

Dist.

Figure 4.10: Similarity measures. The three graphs illustrate how Fréchet Distance categorizes

computational complexity to three growth patterns.

models) as correct. The reason is that they are not that robust in analyzing impartial datasets (e.g.,

noisy growth patterns with gaps in between filtered datapoints). For Fréchet Distance, so far we

observed a 100% precision.

4.5 Analysis Modules

In complex distributed systems, dimensional loops are one of the basic building blocks, hence not

all of them are harmful, even the superlinear ones. Thus, the next question to address is: which

dimensional loops could potentially bring harmful effects to the system? For this, we turned to our

fault study again (4.3) and found three simple but potentially harmful loop patterns that can pose

a performance threat to the system, as summarized in Figure 4.11. By formalizing those cases we

build three analysis modules on top of SVIEW. Using Spoon [159], we implemented the analysis

using static call-graph analysis that analyzes the linear/superlinear loops that SVIEW has triaged,

as described below. We also label them (CP, LC and IO) for evaluation purposes later.

4.5.1 Critical Path Analysis (CP)

We define critical path as a code path that is user facing, also often called a “foreground” opera-

tion such as file reading/writing, key-value querying, table creation/manipulation or job/task sub-

mission. User-facing/foreground operations are expected to be latency sensitive. Unfortunately,

dimensional loops are sometimes present in critical paths (21% in our fault study), as illustrated in

79

// critical path

void append(...){
...

for(datanodes){
...

}
...

}

(a) Critical Path (CP)

void rename(...){
...

for(files){
// network I/O

azureRename(...);

}
...

}

(c) I/O (IO)

// operational path

void update(...){
...

lock()

for(tokens){
...

}
unlock()

...

}

// critical path

void write(...){
...

lock()

...

unlock()

...

}

(b) Lock Contention (LC)

Figure 4.11: Potentially harmful loops. These code snapshots, based on hd-14366,

ca-14660 and ha-13403 respectively, represent three harmful loops that (a) exist in a

critical/foreground/user-facing path, (b) hold a lock contending with a foreground lock, and (c)

contain I/O operations.

Figure 4.11(a). Albeit, mechanisms like stress testing [23, 60, 80, 109] are often useful to detect

such bottlenecks, the lack of dimensionality, i.e. not scaling the relevant dimensions in the test

setups, reduces their effectiveness when looking for scalability issues.

For this, our critical-path (CP) analysis module takes an input of all foreground APIs as the

starting points and then performs a call-graph analysis by traversing all functions and lines reach-

able from the APIs. If the analysis observes a linear/superlinear loop (that was already triaged by

SVIEW), the CP module will throw a warning. It is important that we do not quickly declare them

as “bugs” because the developers might be willing to take the performance hit in cases where there

is no obvious alternative to fix the problem. Our CP module essentially performs a forward slicing

because the number of user-facing/foreground APIs is bounded. A backward slicing method that

starts the analysis from the dimensional loop locations is also possible.

80

http://issues.apache.org/jira/browse/HDFS-14366
http://issues.apache.org/jira/browse/CASSANDRA-14660
http://issues.apache.org/jira/browse/HADOOP-13403

4.5.2 Lock Contention Analysis (LC)

The second problematic pattern relates to lock contention at scale. As show in Figure 4.11(b),

a thread executing a dimensional loop (update) is holding a lock (potentially for a long time)

that is also used by another thread (write). The developer of the latter thread might assume a

fast operation, but such an assumption breaks when a large dimensional loop holds the lock for

a long time. This case covers 74% of our fault study and can happen in foreground/background

interactions (e.g., a message processing operation must wait for a long time until a background

rebalancing operation completes).

Our lock contention (LC) analysis module basically performs a backward slicing from every

dimensional loop triaged by SVIEW. If during the backward slice we find a lock acquire method,

our analysis searches for other places that use the lock and throw a warning. We throw warnings not

only in foreground/background lock contention but also in background/background interactions.

Again, in complex systems different pieces of code might be written by different developers and

some background operations also need some latency bound.

4.5.3 I/O Analysis (IO)

Finally, the last potentially problematic pattern relates to dimensional I/Os (e.g., disk or network

I/Os) as shown in Figure 4.11(c) (azureRename). Here, the body of loop contains either a disk

read/write operation or a synchronous network message, thus the amount of I/O operations is

tied to the size of one or more dimensions. This leads to the “chatty I/O” problem, a performance

antipattern [88], and furthermore a large number of small I/Os is often known to cause a significant

performance overhead.

Our I/O analysis module essentially analyzes the body of the dimensional loop. Obtaining the

list of I/O APIs was done as a preprocessing step (e.g., File#write, Socket#read). Such APIs can

be native method calls or external library calls. Unit/stress testing or benchmarking often fails to

surface the severity of dimensional I/O loops because they need to be tested at a sufficient scale.

81

Fault ID Dim. Trend [DCF] CP LC IO

a) ca-15141 [40] N,T superlinear(N,P) [26]

b) ca-14660 [39] N,T superlinear(N,P) [25]

c) ca-13923 [38] N,T superlinear(P) [27]

d) ha-16850 [42] R linear(R) [29]

e) ha-13403 [41] F linear(F) [28]

f) hd-15415 [44] B linear(B) [30]

g) hd-14366 [43] N linear(N) [31]

h) ig-12087 [45] R,E superlinear(R,E) [32]

i) kf-9393 [47] R,P superlinear(P) [34]

j) kf-8736 [46] R,E superlinear(R,E) [33]

Table 4.3: Existing faults reproduced. The table lists the fault IDs, the corresponding dimen-

sions (“Dim.”) being scaled, the trend LEAP identifies including links to the harmful dimensional

code fragments, and the analysis modules (CP/LC/IO) that threw the warnings. For the dimen-

sions, “N” stands for nodes, “T” for tokens, “R” for requests, “F” for files, “B” for blocks, “P”

for partitions, and “E” for cache entries.

However with SVIEW, with just a small scale, the growth projection (e.g., superlinear) can be

identified, and combined with I/O analysis, the corresponding warning is also thrown.

4.6 Evaluation

We now evaluate SVIEW and the three analysis modules, by specifically answer these questions:

i Can they help find root causes of known scalability faults? ii Do they run well on most recent

versions of our target systems and what are the output statistics? iii Can they identify potential

scalability issues in most recent versions?

To answer these questions, we integrate SVIEW with 4 popular scalable distributed systems

(Cassandra, HDFS, Ignite and Kafka) and do so across a total of 11 old and 4 recent versions.

All of the experiments are run using a single machine with 48 AMD EPYC cores and 256-GB DRAM

on Chameleon [24]. Some of the experiments in reproducing old fault symptoms also have been

packaged using Chameleon Trovi [83].

82

http://issues.apache.org/jira/browse/CASSANDRA-15141
http://issues.apache.org/jira/browse/CASSANDRA-14660
http://issues.apache.org/jira/browse/CASSANDRA-13923
http://issues.apache.org/jira/browse/HADOOP-16850
http://issues.apache.org/jira/browse/HADOOP-13403
http://issues.apache.org/jira/browse/HDFS-15415
http://issues.apache.org/jira/browse/HDFS-14366
http://issues.apache.org/jira/browse/IGNITE-12087
http://issues.apache.org/jira/browse/KAFKA-9393
http://issues.apache.org/jira/browse/KAFKA-8736

Buggy Fixed

0

.5

1

2
6

2
8

2
10

N
o

rm
.

ti
m

e

Tokens

(a) ca15141: Gossip lock
contention time

0

.5

1

0 15 30
N

o
rm

.
tp

u
t

Time (sec)

(b) ca14660: Write
throughput

0

.5

1

0 15 30

N
o

rm
.

tp
u

t

Time (sec)

(c) ca13923: Write
throughput

0

.5

1

0 15 30

N
o

rm
.

tp
u

t

Time (sec)

(d) ha16850: Request
throughput

0

.5

1

2
4

2
6

2
8

N
o

rm
.

ti
m

e

Files

(e) ha13403: Rename
 execution time

0

.5

1

2
21

2
23

2
25

N
o

rm
.

ti
m

e

Blocks

(f) hd15415: Scan lock
contention time

0

.5

1

0 15 30

N
o

rm
.

tp
u

t

Time (sec)

(g) hd14366: Append
throughput

0

.5

1

0 15 30
N

o
rm

.
tp

u
t

Time (sec)

(h) ig12087: putAll
throughput

0

.5

1

0 15 30

N
o

rm
.

tp
u

t

Time (sec)

(i) kf9393: Produce
throughput

0

.5

1

0 15 30

N
o

rm
.

tp
u

t

Time (sec)

(j) kf8736: Put
throughput

Figure 4.12: Reproduced symptoms of existing faults. The figures show the performance

implications (in the y-axis, normalized to [0− 1] range) of the scalability issues before the issue

was fixed (blue dashed line) and after we apply the patch (red solid line).

4.6.1 Reproducing Scalability Issues

To reproduce existing scalability issues from our fault study, we performed the following steps.

(i) We picked 10 fault samples that have clear issue descriptions, as listed in Table 4.3. (ii) The

descriptions guide us in writing the scaling workloads that will likely cover the root cause. Note at

this point, we don’t have to “reproduce” the fault symptoms, because there are various performance

metrics to analyze to measure the symptoms, as explained later. The second column (“Dim.”)

of the table lists the dimensions being exercised in our scaling workloads. (iii) We use SVIEW

(section 4.4) to filter dimensional code fragments that have growing trends as the dimension(s)

being scaled. The third column in the table (“Trend [DCF]”) cites the GitHub links to the harmful

dimensional code fragments (DCFs) and shows the trends reported by SVIEW on these DCFs. (iv)

We use the three analysis modules (section 4.5) to help us point the dimensional code fragments

that are potential harmful. The last three columns in the table show the CP/LC/IO warnings that the

three analysis modules throw on the fragments. (v) We analyze the fault reports again to understand

specific performance metrics that we need to measure as we run the scaling workload.

83

These steps serve two purposes. First, it proves that we have successfully reproduced the faults.

Second, when we re-use the same scaling workloads to find potential issues in newer versions (sec-

tion 4.6.3), we can measure the same metrics again to know the ground truth whether there are still

problems in the newer versions. Overall, Figures 4.12(a)-(j) show the performance implications

before the issue was fixed (blue dotted line) and after we apply the patch (red bold). Note that

the figure x-axis uses scale when the direct impact is on latency and time when the impact is on

throughput.

(a) In ca-15141 (Figure 4.12(a)), when Cassandra observes nodes being added/removed, a

single-thread Cassandra’s gossip (operational) protocol with O(tokens2) complexity is triggered

[26] while holding a write lock. The figure shows the lock contention time skyrockets as the

number of tokens jumps, causing delays in other write operations. After the developers fixed the

design, the contention went away.

(b) In ca-14660 (Figure 4.12(b)), the (critical) write path in Cassandra is contending on a

synchronized block with an operational protocol with a O(nodes× tokens) logic [25] on a Guava

[48] collection, external to Cassandra’s application code. User write throughput experienced an

unstable (up and down) behavior.

(c) In ca-13923 (Figure 4.12(c)), similarly the (critical) write path this time collides with an-

other background O(tokens2) method that flushes in-memory data to the storage [27]. The critical

write threads need to wait for memory availability for a long time, collapsing the write throughput.

(d) In ha-16850 (Figure 4.12(d)), HDFS’s request path for JVM metrics iterates over every out-

standing request thread [29] in an O(outstandingRequests) loop that causes increased execution

time of other types of requests due to internal JVM-level locking mechanisms, affecting through-

put.

(e) In ha-13403 (Figure 4.12(e)), HDFS’s user-facing rename operation performs O(f iles) I/O

calls [28], and when the number of files is large and they are stored in a third party cloud storage,

the operation makes many long network I/O calls that increase the rename latency.

84

http://issues.apache.org/jira/browse/CASSANDRA-15141
http://issues.apache.org/jira/browse/CASSANDRA-14660
http://issues.apache.org/jira/browse/CASSANDRA-13923
http://issues.apache.org/jira/browse/HADOOP-16850
http://issues.apache.org/jira/browse/HADOOP-13403

(f) In hd-15415 (Figure 4.12(f)), HDFS’s DirectoryScanner feature performs several O(blocks)

operations [30] while holding the same lock used by other operations.

(g) In hd-14366 (Figure 4.12(g)), hd-’s append (critical) path contains an O(dataNode) opera-

tion in order to identify the live replicas of the file that is being appended [31]. This is an example

where the patch only made a small throughput improvement because the loop was necessary and

there was no easy way to remove it entirely from the critical path.

(h) In ig-12087 (Figure 4.12(h)), Ignite cache’s putAll critical path for data map performs

a check on all possible grid candidates with an O(cacheSize× inputDataSize) complexity while

holding a lock [32], causing a 50% throughput drop.

(i) In kf-9393 (Figure 4.12(i)), Kafka’s produce() critical path collides in a synchronized

block with an operational protocol in charge of cleaning the write logs with an O(partitions)

command that lists directory files [34], causing throughput instability.

(j) In kf-8736 (Figure 4.12(j)), Kafka cache’s put() critical path performs evictions when the

cache becomes full and to do that put() calls the size() method [33], which is typically O(1) in

most Java Collection implementations but can be O(entries) if the configuration chooses a specific

data structure such as ConcurrentSkipListMap. SVIEW caught the superlinear complexity under

this configuration as it covers both the O(request) implicit and O(entries) library loops in this

specific configuration.

4.6.2 SVIEW Statistics

SVIEW is able to identify the harmful DCFs of all the 10 faults we have reproduced. Of course,

SVIEW also reports some other DCFs as potentially harmful as well. Although we are interested in

investigating whether these reported DCFs are real problems, the developers are typically unwilling

to comment on issues reported on old versions of their software. Therefore, we decide to repeat

the same exercise on newer versions of these software.

In the previous section, in order to generate prior faults, we ran SVIEW on old versions of our

85

http://issues.apache.org/jira/browse/HDFS-15415
http://issues.apache.org/jira/browse/HDFS-14366
http://issues.apache.org/jira/browse/HDFS-'
http://issues.apache.org/jira/browse/IGNITE-12087
http://issues.apache.org/jira/browse/KAFKA-9393
http://issues.apache.org/jira/browse/KAFKA-8736

Cassandra HDFS Ignite Kafka

Workloads 14 3 1 7

Avg. LOC 71 91 61 67

#APIs/Ops exercised 5 3 1 1

Avg. time (hours) 1.1 0.3 0.2 0.2

#Fragments (unique) 1964 2632 762 1132

#Growth (unique) 167 123 32 148

#Growth (%) 9% 5% 4% 13%

Super Linear (%) 10% 9% 3% 6%

Linear (%) 76% 81% 75% 79%

Sub Linear (%) 14% 10% 22% 15%

CP 7 17 2 0

LC 17 11 1 12

IO 0 2 0 0

Table 4.4: SVIEW statistics. The table shows the number of workloads and the statistic of the

resulting outputs.

target systems specifically 7 Cassandra, 3 HDFS, 2 Ignite, and 3 Kafka old versions. In addition to

these, we also run SVIEW on one of their recent stable versions, Cassandra v4.0.0, Hadoop/HDFS

v3.3.3, Ignite v2.14, and Kafka v3.2.

Table 4.4 shows the statistics of the SVIEW outputs when running on the more recent versions

of our 4 target systems. For each system, we wrote from 1 to 14 scaling workloads (Cassandra has

the highest number because that is our first target system); the average line of code is from 61 to

91 LOC (trivial effort); 3 to 5 dimensions being scaled; 1 to 5 system foreground and background

operations being exercised; and overall took between 0.2 to 1.1 hours per workload on average.

Table 4.5 further details the dimensions and scales we configure for our scaling workloads.

In the middle row section of Table 4.4, we can also see that across the 4 systems, SVIEW found

between 762 to 1964 application/library/implicit loops (section 4.4.3), with only 32 to 167 of them

that are being marked with real growth (section 4.4.5), and among these growing dimensional code

fragments, 3-10% of them have a superlinear trend, 75-81% linear trend, and 10-22% sublinear

trends.

Finally in the bottom section of Table 4.4, the three analysis modules (section 4.5) throw 26

warnings for the critical path analysis (CP), 41 for the lock contention analysis (LC) and 2 for I/O

86

H.L. Per-system

Dims. Dimensions ca hd ig kf

Cluster

peers 32 . 32 32

datanodes . 32 . .

consumers . . . 32

Load
requests 32000 32000 32000 32000

clients . 32 . 32

Data

blocks . 1024 . .

files 1024 . .

tables 64 . . .

keyspaces 64 . . .

rows 32000 . . .

partitions 128 . 128 128

topics . . . 128

Table 4.5: Scaling workload configurations. The table shows the maximum scale for every

dimension that we exercised in our 5 target systems. The step value is 1000 for requests, 1000 for

rows, 2 for keyspaces, and 1 for the rest.

analysis (IO). We emphasize again that they are warnings, because although they might be harmful,

there might be no easy way for the developers to change the design. However, we believe these

warnings can provide developers with some awareness of a potential problem in the future.

4.6.3 Reporting Potential Issues to Developers

Among all the 69 warnings reported in the previous section, we prioritize analyzing the superlinear

trends (2 warnings) and 1 linear trend, since the related dimension can easily reach the scale of

millions. Our goal is not to swamp the developers with too many fault reports, but rather only

report incrementally starting with the ones that likely could impact performance. We also would

like to emphasize that we name them as “potential issues” because scalability faults are not merely

implementation bugs but usually point to “design bugs.” The former usually can be fixed in a few

days if not weeks, while the latter can take weeks, if not months. Going back to our fault study

in Section 4.3, 49%, 33%, 20%, and 13% of the scalability issues took more than 1, 3, 6, and

12 months to close. Below we describe 3 clear patterns of potential scalability issues reported by

SVIEW.

87

In Cassandra v4.0.0, the Gossip protocol processes changes in the cluster and gossip messages.

When nodes are (de)commissioned, it will execute an O(nodes× tokens) operation while holding

a lock. This means incoming gossip messages from other live nodes must wait. If the execution

takes more than the timeout value, the live nodes will be marked unavailable (as their gossips

“never arrived”). The developer confirmed that this is the expected behavior. The solution is not

to fix the “bug” but rather this information can help operators of large Cassandra clusters to adjust

the timeout value (e.g., dynamically [147]) when (de)commissioning a large number of nodes.

In HDFS v3.3.3, there is an array data structure that will be resized (create-new-then-copy) in

an O(blocks) operation whenever it is full in order to to accommodate more blocks. This operation

is found in at least 4 critical/foreground and 3 operational/background paths while holding a global

lock, potentially making requests wait a long time if the number of blocks is in the order of millions.

We found 5 older related reports (2 of them still open) where a performance issue is being reported

and the stack traces reported include this resize operation. Our report is still marked Open and

under discussion with the developers. Two potential solutions are to keep multiple small arrays

that don’t require a create-new-then-copy procedure or perform the resize proactively when it is

almost full and the load is low.

In Kafka v3.2, response handlers are responsible to handle incoming messages, but when one

of the handlers needs to process a partition-assignment message, it serializes the operation in

O(consumers× partitions) iterations while holding a global lock, making all the response handlers

stall. We felt that this expensive process can be pushed to a background thread. The developers

have not responded to our report (after two months).

4.7 Related Work

Approaches for guiding developers on analyzing potential scalability faults can be divided into

three main categories: modeling, emulation and extrapolation.

First, efforts have been made to find scalability faults in parallel applications by accurately

88

modeling execution time in terms of number of concurrent processes, processor counters and other

low-level hardware resources [115, 120, 132]. As these approaches are designed for parallel ap-

plications, their effectiveness or applicability to distributed systems, the main target of SVIEW,

remains unclear.

Second, emulation techniques [127, 148, 166, 173, 181] focus on simulating large-scale de-

ployments in a small set of machines, in the hopes of exposing specific fault symptoms (e.g., high

cpu/memory/storage/network usage). Albeit useful, these approaches are inherently limited by the

amount of instances that can be emulated, which varies depending on the type of resource that

is being emulated. Moreover, they often require sizable source code modifications that hindrance

their adoption. SVIEW is not subject to any of those constrains.

Third, extrapolation techniques [135, 163, 166, 183, 184] are used to identify potential scal-

ability faults using small scale experiments to project systems behavior at large scale. Albeit

SVIEW follows a similar approach, it neither focuses on symptoms [135, 163, 166, 184], targets

specific types of architectures [163, 183], nor depends on specific types of data structures (e.g.,

Java Collections) [166] for its analysis, as it targets code structures (e.g., loops) that belong to

the implementation language, not to specific libraries.

Other related works include instrumentation for performance bottleneck identification [118,

154, 170, 171], static/dynamic analysis tools to detect performance anti-patterns [121, 141, 165,

179], and purely static tools to detect potential performance issues [117, 124, 153, 155, 174, 176].

These approaches are orthogonal to SVIEW as the proposed tools could contribute on specific parts

of the process (e.g., loop complexity bounding). However, none of them are specifically focused on

scalability faults nor inspect the relationship between a distributed system and its dimensionality.

4.8 Conclusion

According to our findings, issues related to dimensional code fragments (DCFs) often appear after

the system has been deployed and only a small percentage of them is found using traditional

89

0

50

100

50 100 150

C
D

F
 (

%
)

Iterations

(a) Unit tests

0

50

100

50 100 150

C
D

F
 (

%
)

Iterations

(b) Bench. + ad-hoc

Figure 4.13: DCF iterations in Cassandra testing tools. The figures show the maximum number

of iterations performed by 93 DCFs (application loops) counted while using (a) Cassandra v4.0.0

unit tests and (b) benchmarks/ad-hoc testing tools (included in their main repository).

testing tools (Figure 4.2(b)). Figure 4.13(a)-(b) shows the CDFs (%) of the maximum number of

iterations performed in unit tests and benchmarks/ad-hoc tests by 93 (application loops only) of

the 167 dimensional code fragments we found in a recent stable version of Cassandra (Table 4.4).

Roughly 50% of the tested DCFs performed less than 25 iterations in both types of test suites.

With such a low iteration count, developers cannot identify the performance impact caused by

DCFs. Moreover, as only 77% and 81% of the selected fragments are respectively covered by

these types of tests, a myriad of scenarios are being ignored and left for post-mortem root cause

analysis. The latter depicts how complex it is to detect potential scalability faults. As they are not

caused solely by DCFs, linear/superlinear complexity nor specific patterns in source code, but by

a combination of all those circumstances, traditional testing tools lack the necessary guidance and

depth.

We believe that this situation gives rise to the need for frameworks like SVIEW. By identifying

DCFs, we provide a guided approach that, complemented by analysis modules, delivers the nec-

essary depth in detecting potential scalability faults. Nevertheless, more exciting challenges are in

the horizon as more scalability fault root causes need to be addressed. We hope SVIEW motivates

more advancements in this research area.

90

CHAPTER 5

OTHER WORKS

In this section, I present the abstracts of the papers I have participated on during my Ph.D. program

that are not directly related to my main research focus. In all of these papers, I had the pleasure

of making intellectual and technical contributions along with my colleagues, to whom I sincerely

extend my gratitude.

5.1 Layered And Uniform Contention Mitigation Capabilities For Cloud

Storage

In this paper [172], we introduce an ecosystem of contention mitigation supports within the operat-

ing system, runtime and library layers. This ecosystem provides an end-to-end request abstraction

that enables a uniform type of contention mitigation capabilities, namely request cancellation and

delay prediction, that can be stackable together across multiple resource layers. Our evaluation

shows that in our ecosystem, multi-resource storage applications are faster by 5-70% starting at

90P (the 90th percentile) compared to popular practices such as speculative execution and is only

3% slower on average compared to a best-case (no contention) scenario.

5.2 TRANSACTUATIONS: Where Transactions Meet The Physical World

A large class of IoT applications read sensors, execute application logic, and actuate actuators.

However, the lack of high-level programming abstractions compromises correctness especially in

presence of failures and unwanted interleaving between applications. A key problem arises when

operations on IoT devices or the application itself fails, which leads to inconsistencies between

the physical state and application state, breaking application semantics and causing undesired con-

sequences. Transactions are a well-established abstraction for correctness, but assume properties

91

that are absent in an IoT context. In our award wining paper [161, 162], we studied one such en-

vironment, smart home, and established inconsistencies manifesting out of failures. We proposed

an abstraction called TRANSACTUATION that empowers developers to build reliable applications.

Our runtime, RELACS, implemented the abstraction atop a real smart-home platform. We evaluated

programmability, performance, and effectiveness of transactuations to demonstrate its potential as

a powerful abstraction and execution model.

5.3 FLYMC: Highly Scalable Testing of Complex Interleavings in

Distributed Systems

In this paper [144], we present a fast and scalable testing approach for datacenter/cloud systems

such as Cassandra, Hadoop, Spark, and ZooKeeper. The uniqueness of our approach is in its

ability to overcome the path/state-space explosion problem in testing workloads with complex

interleavings of messages and faults. We introduce three powerful algorithms: state symmetry,

event independence, and parallel flips, which collectively makes our approach on average 16X

(up to 78X) faster than other state-of-the-art solutions. We have integrated our techniques with 8

popular datacenter systems, successfully reproduced 12 old bugs, and found 10 new bugs — all

were done without random walks or manual checkpoints.

5.4 MITTOS: Supporting Millisecond Tail Tolerance With Fast Rejecting

SLO-Aware OS Interface

In this paper we presented MITTOS [128], a tail-latency support mechanism for distributed stor-

age systems. MITTOS provides operating system support to cut millisecond-level tail latencies for

data-parallel applications. In MITTOS, we advocate a new principle that operating system should

quickly reject IOs that cannot be promptly served. To achieve this, MITTOS exposes a fast re-

jecting SLO-aware interface wherein applications can provide their SLOs (e.g., IO deadlines). If

92

MITTOS predicts that the IO SLOs cannot be met, MITTOS will promptly return EBUSY signal,

allowing the application to failover (retry) to another less-busy node without waiting. We build

MITTOS within the storage stack (disk, SSD, and OS cache managements), but the principle is

extensible to CPU and runtime memory managements as well. MITTOS‘ no-wait approach helps

reduce IO completion time up to 35% compared to wait-then-speculate approaches.

5.5 PBSE: A Robust Path-Based Speculative Execution For Degraded

Network Tail Tolerance In Data-Parallel Frameworks

In this paper [168], we reveal loopholes of Speculative Execution (SE) implementations under a

unique fault model: node-level network throughput degradation. This problem appears in many

data-parallel frameworks such as Hadoop MapReduce and Spark. To address this, we present

PBSE, a robust, path-based speculative execution that employs three key ingredients: path progress,

path diversity, and path-straggler detection and speculation. We show how PBSE is superior to

other approaches such as cloning and aggressive speculation under the aforementioned fault model.

PBSE is a general solution, applicable to many data-parallel frameworks such as Hadoop/HDFS+QFS,

Spark and Flume.

93

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this document, we have presented the details on our efforts to combat scalability faults, de-

fined in chapter 1. In chapter 2, we discussed the root causes, symptoms, manifestation scenarios,

potential solutions and developer effort involved for scalability faults. Then, in chapter 3, we

presented SCALECHECK, our emulation-based approach for discovering scalability faults and en-

abling large-scale testing in a single machine. Finally, in chapter 4, we presented SVIEW, a frame-

work for identifying and analyzing potential scalability faults in large-scale distributed systems,

a lightweight approach that combines instrumentation, statistics and static analysis for detecting

scalability faults. Over the next sections, I present concluding remarks and future work for each of

those chapters.

6.1 Scalability Faults in Large-Scale Cloud Systems: A Comprehensive

Study

6.1.1 Conclusions

In chapter 2, we presented a study on scalability faults that covers 10 systems, and includes a total

of 350 reports taken for a universe of 110K reported faults. Our study highlights the culprits that

developers face when addressing scalability faults: First, in section 2.3 we show how these types of

faults are not found by state of the art testing tools. Second, in section 2.4 we discuss the relevant

code paths, and we point the fact that most of these faults linger in “operational” protocols, often

under-tested. Third, in section 2.6 we discuss the solution techniques proposed by developers and

show that there is no clear mapping between the mechanism proposed, the symptoms observed

and the actual root cause of the fault. The latter is not a coincidence, as most of these mechanisms

are focused on the symptoms produced by the fault rather than the actual root cause. As the

94

main effort for this part of our work is focused on categorizing such root causes (section 2.5), we

sincerely hope our efforts could be a significant contribution to the research community.

6.1.2 Future work

Our scalability fault study is, to this date, the largest study on these types of faults. Here, there

is room for improvement on how scalability faults are mined from bug repositories. The process

is currently entirely manual, which is error prone and potentially causes the loss of interesting

reports. Automated techniques taken from the field of repository mining [169] could be useful

in this context. Since the lack of “keywords” when looking for scalability faults is problematic,

simple approaches for detecting relevant keywords based on existing reports could also be an

interesting approach.

6.2 SCALECHECK: A Single-Machine Approach for Discovering

Scalability Bugs in Large Distributed Systems

6.2.1 Conclusions

In chapter 3, we presented SCALECHECK, an approach for finding scalability faults in large-scale

distributed systems and enabling single-machine large-scale testing. For the former, SFIND (sec-

tion 3.1), within its limitations, is a relatively effective mechanism to detect scalability faults

caused by scale-dependent loops. For the latter, STEST (section 3.2) provides an environment

to emulate large clusters in a single machine, capable of colocating up to 512 CPU-hungry in-

stances (section 3.5.4). This colocation factor allowed us to reproduce faults that otherwise would

have required hundreds of machines and several hours of experimentation using only one machine.

Finally, using SFIND, we detected 4 new bugs that affect popular distributed systems.

95

6.2.2 Future work

SCALECHECK was our first approach in approaching scalability faults, and its divided in two

components: SFIND (section 3.1) and STEST (section 3.2). SFIND was our prototype tool focused

on tracking collection [68] growth trends using simple statistical methods. Albeit our collection

tracking mechanism was significantly improved by SVIEW, in some scenarios, especially the ones

that cannot benefit from SVIEW’s iteration measuring capabilities, collection tracking might be

useful. One specific case for this is addressing scalability faults where Queues (e.g., request/task

queues) grow beyond bounds and accumulate objects causing potential OutOfMemory errors or

significant garbage collection [70]. As there is likely no iteration involved, SVIEW could not detect

such issues. As the latter root cause involves a relatively large portion of our faults (section 2.5.2),

studying and implementing a mechanism aiming for those could be an interesting contribution.

For STEST, emulation has several limitations as it requires specific code changes, involving an

integration effort, and is inherently limited by the amount of instances that can be emulated, which

varies depending on the type of resource that is being emulated. Nevertheless, a single-machine

large-scale testing environment is useful when the goals are related to observing the symptoms

caused by scalability faults in context rather than in an isolated fashion. For example, in some

scenarios developers might want to inspect the type of logging and general behavior of their nodes

when the problem is happening, or analyze the behavior of an error handling module in the presence

of scalability faults, capabilities that SVIEW does not have. For these cases, a combination of

scale-testing-focused system design, i.e., avoiding code patterns like the ones discussed in section

3.2, and the use of possibly “a few” machines instead of one, could improve STEST capabilities,

especially its colocation factor (section 3.5.4). For the former, a proposal could be drawn on which

design patterns are suitable (and non suitable) for enabling large-scale single-machine testing, an

effort that could involve multiple years of fault/system study. For the latter, mechanisms as the

ones proposed in [87, 150] would certainly be a contribution for decreasing context switching cost

and network traffic, two of the scalability bottlenecks that still remain unaddressed by STEST.

96

6.3 SVIEW: Identifying and Analyzing Potential Scalability Faults in

Large-Scale Distributed Systems

6.3.1 Conclusions

In chapter 4, we presented SVIEW, a framework for identifying and analyzing potential scalability

faults in large-scale distributed systems. SVIEW is focused on detecting dimensional code frag-

ments (DCFs), i.e., pieces of code whose number of executions (e.g., # loop iterations, # method

executions) is positively correlated with the increase in size of one or more system dimensions

(section 4.1). As we discuss in the chapter, such fragments are instrumental components of scal-

ability faults as they reflect the dimensionality of the system, this is, they reflect the relationship

between the dimensions that compose the system and the code that implements the system. The

pipeline we implemented for DCF detection combines scaling workloads (section 4.4.2), instru-

mentation (section 4.4.3) and statistical techniques (sections 4.4.5 and 4.4.6), and as shown in table

4.4, it effectively exposes DCFs from a potentially large universe of candidates. The latter allowed

us to build simple-but-useful static analysis modules, that guided by those DCFs, deeply explored

the system’s code and detected 10 known and 3 unknown scalability faults in mature large-scale

distributed systems.

6.3.2 Future work

SVIEW, our latest approach, has several advantages over SCALECHECK in terms of scalability

fault detection, but it still lacks some capabilities, specifically for addressing other root causes

related to memory consumption. For example, new analysis modules (section 4.5) could be added

on top of the existing ones, such as dimensional allocation scenarios in which several short-lived

objects are allocated when one or more dimensions increase. Such faults, documented in our study

(section 2.5.2), cause performance degradations at large scale related to the cost of allocation

(usually more expensive in terms of execution time than method calls) and garbage collection [70].

97

Related to the same root cause, integrating a collection tracking mechanism to address the culprits

described in section 6.2.2 could be useful, as instrumentation is a more suitable approach than heap

tracking (section 3.1) for this purpose.

Another interesting aspect of SVIEW is related on to how scaling workloads are implemented.

Currently, manual effort is necessary for identifying dimensions and building such workloads. For

this, a set of system interfaces for scalability testing (or verification) could be proposed, reduc-

ing the amount of manual effort. This could include a dimensional hierarchy, a document that

described the system’s relevant dimensions, the relationship between each other and more impor-

tantly the relevant testing interfaces (detailing how such dimensions should be grown). An effort

like this would certainly be a contribution to SVIEW and could sprung the development of new

testing approaches in this area.

Finally, an effort should be made to address triaging. Currently, SVIEW results have to be

manually analyzed by developers in order to establish in they could or not become problematic.

Here, ML techniques could be used to, for example, predict the “priority” of a potential report

based on the involved code paths and previous reports/patches. Other approaches might consider

producing “symptom reports” (e.g.using STEST to reproduce the problem and show its effects)

that could help developers understand the effect of a faulty code path in the system. Automatically

generating benchmark code is another approach that could improve this section of the pipeline.

98

REFERENCES

[1] Apache Cassandra. http://cassandra.apache.org/.

[2] Apache Hadoop. https://hadoop.apache.org/.

[3] Apache HBase. https://hbase.apache.org/.

[4] Apache HDFS. http://hadoop.apache.org/.

[5] Apache Ignite. http://ignite.apache.org.

[6] Apache JIRA. https://issues.apache.org/jira/secure/Dashboard.jspa.

[7] Apache Kafka. https://kafka.apache.org/.

[8] Apache Software Foundation. https://www.apache.org/.

[9] Apache Spark. https://spark.apache.org/.

[10] Apache Storm. http://storm.apache.org/.

[11] Apache Yarn. http://hadoop.apache.org/.

[12] AspectJ. www.eclipse.org/aspectj.

[13] CASSANDRA-12345: Gossip 2.0. https://issues.apache.org/jira/browse/

CASSANDRA-12345.

[14] CASSANDRA-14821: Make it possible to run multi-node coordinator/replica tests in a

single JVM. https://issues.apache.org/jira/browse/CASSANDRA-14821.

[15] CASSANDRA-6127: vnodes don’t scale to hundreds of nodes. https://issues.apache.

org/jira/browse/CASSANDRA-6127.

[16] CASSANDRA-9100: Gossip is inadequately tested. https://issues.apache.org/

jira/browse/CASSANDRA-9100.

[17] CASSANDRA admin commands. https://docs.datastax.com/en/cassandra-oss/

3.x/cassandra/tools/toolsNodetool.html.

[18] Cassandra Compaction. https://cassandra.apache.org/doc/latest/operating/

compaction/index.html.

[19] Cassandra Distributed Tests (DTests). https://github.com/apache/cassandra-

dtest.

[20] Cassandra Internal Benchmarks. https://github.com/apache/cassandra/tree/

trunk/test/microbench/org/apache/cassandra/test/microbench.

99

http://cassandra.apache.org/
https://hadoop.apache.org/
https://hbase.apache.org/
http://hadoop.apache.org/
http://ignite.apache.org
https://issues.apache.org/jira/secure/Dashboard.jspa
https://kafka.apache.org/
https://www.apache.org/
https://spark.apache.org/
http://storm.apache.org/
http://hadoop.apache.org/
www.eclipse.org/aspectj
https://issues.apache.org/jira/browse/CASSANDRA-12345
https://issues.apache.org/jira/browse/CASSANDRA-12345
https://issues.apache.org/jira/browse/CASSANDRA-14821
https://issues.apache.org/jira/browse/CASSANDRA-6127
https://issues.apache.org/jira/browse/CASSANDRA-6127
https://issues.apache.org/jira/browse/CASSANDRA-9100
https://issues.apache.org/jira/browse/CASSANDRA-9100
https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/tools/toolsNodetool.html
https://docs.datastax.com/en/cassandra-oss/3.x/cassandra/tools/toolsNodetool.html
https://cassandra.apache.org/doc/latest/operating/compaction/index.html
https://cassandra.apache.org/doc/latest/operating/compaction/index.html
https://github.com/apache/cassandra-dtest
https://github.com/apache/cassandra-dtest
https://github.com/apache/cassandra/tree/trunk/test/microbench/org/apache/cassandra/test/microbench
https://github.com/apache/cassandra/tree/trunk/test/microbench/org/apache/cassandra/test/microbench

[21] Cassandra NodeTool. https://cassandra.apache.org/doc/latest/tools/

nodetool/nodetool.html.

[22] Cassandra Scrub Command. https://docs.datastax.com/en/cassandra-oss/3.0/

cassandra/tools/toolsScrub.html.

[23] Cassandra Stress. https://cassandra.apache.org/doc/latest/tools/cassandra_

stress.html.

[24] Chameleon. https://www.chameleoncloud.org.

[25] (DCF) CASSANDRA 3.0.17: create. https://github.com/apache/cassandra/

blob/d52c7b8c595cc0d06fc3607bf16e3f595f016bb6/src/java/org/apache/

cassandra/utils/SortedBiMultiValMap.java#L59.

[26] (DCF) CASSANDRA 3.11.0: getAddressReplicas. https://github.com/Instagram/

cassandra/blob/15141-trunk/src/java/org/apache/cassandra/locator/

AbstractReplicationStrategy.java#L240.

[27] (DCF) CASSANDRA 3.11.0: getRangeAddresses. https://github.com/apache/

cassandra/blob/88dee7e9d515ad94ecf8f2309f1e6138ec79e1a2/src/java/org/

apache/cassandra/locator/AbstractReplicationStrategy.java#L193.

[28] (DCF) HADOOP 2.7.2: execute. https://github.com/apache/hadoop/blob/branch-

2.7.2/hadoop-tools/hadoop-azure/src/main/java/org/apache/hadoop/fs/

azure/NativeAzureFileSystem.java#L399.

[29] (DCF) HADOOP 2.8.2: getThreadUsage. https://github.com/apache/hadoop/blob/

branch-2.8.2/hadoop-common-project/hadoop-common/src/main/java/org/

apache/hadoop/metrics2/source/JvmMetrics.java#L174.

[30] (DCF) HDFS 3.2.0: scan. https://github.com/apache/hadoop/blob/

f6c4e006cd1190e27fadbe0a38ce09782f45ca04/hadoop-hdfs-project/

hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/

DirectoryScanner.java#L398.

[31] (DCF) HDFS 3.3.0: getNumLiveDatanodes. https://github.com/apache/hadoop/

blob/rel/release-3.3.0/hadoop-hdfs-project/hadoop-hdfs/src/main/java/

org/apache/hadoop/hdfs/server/blockmanagement/DatanodeManager.java#

L1259.

[32] (DCF) Ignite 2.7.6: checkThreadChain. https://github.com/apache/ignite/

blob/626c4cda245940ad87958b3698ce2a46ec72ea66/modules/core/src/

main/java/org/apache/ignite/internal/processors/cache/distributed/

GridDistributedCacheEntry.java#L748.

100

https://cassandra.apache.org/doc/latest/tools/nodetool/nodetool.html
https://cassandra.apache.org/doc/latest/tools/nodetool/nodetool.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/tools/toolsScrub.html
https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/tools/toolsScrub.html
https://cassandra.apache.org/doc/latest/tools/cassandra_stress.html
https://cassandra.apache.org/doc/latest/tools/cassandra_stress.html
https://www.chameleoncloud.org
https://github.com/apache/cassandra/blob/d52c7b8c595cc0d06fc3607bf16e3f595f016bb6/src/java/org/apache/cassandra/utils/SortedBiMultiValMap.java#L59
https://github.com/apache/cassandra/blob/d52c7b8c595cc0d06fc3607bf16e3f595f016bb6/src/java/org/apache/cassandra/utils/SortedBiMultiValMap.java#L59
https://github.com/apache/cassandra/blob/d52c7b8c595cc0d06fc3607bf16e3f595f016bb6/src/java/org/apache/cassandra/utils/SortedBiMultiValMap.java#L59
https://github.com/Instagram/cassandra/blob/15141-trunk/src/java/org/apache/cassandra/locator/AbstractReplicationStrategy.java#L240
https://github.com/Instagram/cassandra/blob/15141-trunk/src/java/org/apache/cassandra/locator/AbstractReplicationStrategy.java#L240
https://github.com/Instagram/cassandra/blob/15141-trunk/src/java/org/apache/cassandra/locator/AbstractReplicationStrategy.java#L240
https://github.com/apache/cassandra/blob/88dee7e9d515ad94ecf8f2309f1e6138ec79e1a2/src/java/org/apache/cassandra/locator/AbstractReplicationStrategy.java#L193
https://github.com/apache/cassandra/blob/88dee7e9d515ad94ecf8f2309f1e6138ec79e1a2/src/java/org/apache/cassandra/locator/AbstractReplicationStrategy.java#L193
https://github.com/apache/cassandra/blob/88dee7e9d515ad94ecf8f2309f1e6138ec79e1a2/src/java/org/apache/cassandra/locator/AbstractReplicationStrategy.java#L193
https://github.com/apache/hadoop/blob/branch-2.7.2/hadoop-tools/hadoop-azure/src/main/java/org/apache/hadoop/fs/azure/NativeAzureFileSystem.java#L399
https://github.com/apache/hadoop/blob/branch-2.7.2/hadoop-tools/hadoop-azure/src/main/java/org/apache/hadoop/fs/azure/NativeAzureFileSystem.java#L399
https://github.com/apache/hadoop/blob/branch-2.7.2/hadoop-tools/hadoop-azure/src/main/java/org/apache/hadoop/fs/azure/NativeAzureFileSystem.java#L399
https://github.com/apache/hadoop/blob/branch-2.8.2/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/metrics2/source/JvmMetrics.java#L174
https://github.com/apache/hadoop/blob/branch-2.8.2/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/metrics2/source/JvmMetrics.java#L174
https://github.com/apache/hadoop/blob/branch-2.8.2/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/metrics2/source/JvmMetrics.java#L174
https://github.com/apache/hadoop/blob/f6c4e006cd1190e27fadbe0a38ce09782f45ca04/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/DirectoryScanner.java#L398
https://github.com/apache/hadoop/blob/f6c4e006cd1190e27fadbe0a38ce09782f45ca04/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/DirectoryScanner.java#L398
https://github.com/apache/hadoop/blob/f6c4e006cd1190e27fadbe0a38ce09782f45ca04/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/DirectoryScanner.java#L398
https://github.com/apache/hadoop/blob/f6c4e006cd1190e27fadbe0a38ce09782f45ca04/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/datanode/DirectoryScanner.java#L398
https://github.com/apache/hadoop/blob/rel/release-3.3.0/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/blockmanagement/DatanodeManager.java#L1259
https://github.com/apache/hadoop/blob/rel/release-3.3.0/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/blockmanagement/DatanodeManager.java#L1259
https://github.com/apache/hadoop/blob/rel/release-3.3.0/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/blockmanagement/DatanodeManager.java#L1259
https://github.com/apache/hadoop/blob/rel/release-3.3.0/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/hadoop/hdfs/server/blockmanagement/DatanodeManager.java#L1259
https://github.com/apache/ignite/blob/626c4cda245940ad87958b3698ce2a46ec72ea66/modules/core/src/main/java/org/apache/ignite/internal/processors/cache/distributed/GridDistributedCacheEntry.java#L748
https://github.com/apache/ignite/blob/626c4cda245940ad87958b3698ce2a46ec72ea66/modules/core/src/main/java/org/apache/ignite/internal/processors/cache/distributed/GridDistributedCacheEntry.java#L748
https://github.com/apache/ignite/blob/626c4cda245940ad87958b3698ce2a46ec72ea66/modules/core/src/main/java/org/apache/ignite/internal/processors/cache/distributed/GridDistributedCacheEntry.java#L748
https://github.com/apache/ignite/blob/626c4cda245940ad87958b3698ce2a46ec72ea66/modules/core/src/main/java/org/apache/ignite/internal/processors/cache/distributed/GridDistributedCacheEntry.java#L748

[33] (DCF) KAFKA 2.3.0: maybeEvict. https://github.com/apache/kafka/blob/2.

3.0/streams/src/main/java/org/apache/kafka/streams/state/internals/

ThreadCache.java#L238.

[34] (DCF) KAFKA 2.4.0: listSnapshotFiles. https://github.com/apache/kafka/blob/2.

4/core/src/main/scala/kafka/log/ProducerStateManager.scala#L458.

[35] Eclipse Java development tools. http://www.eclipse.org/jdt/.

[36] Elvis: Erlang Style Reviewer. https://github.com/inaka/elvis.

[37] Erlang man page: Dialyzer. http://erlang.org/doc/man/dialyzer.html.

[38] (Fault) CASSANDRA-13923: Flushers blocked due to many SSTables. https://issues.

apache.org/jira/browse/CASSANDRA-13923.

[39] (Fault) CASSANDRA-14660: Improve TokenMetaData cache populating performance for

large cluster. https://issues.apache.org/jira/browse/CASSANDRA-14660.

[40] (Fault) CASSANDRA-15141: Faster token ownership calculation for NetworkTopologyS-

trategy. https://issues.apache.org/jira/browse/CASSANDRA-15141.

[41] (Fault) HADOOP-13403: AzureNativeFileSystem rename/delete performance improve-

ments. https://issues.apache.org/jira/browse/HADOOP-13403.

[42] (Fault) HADOOP-16850: Support getting thread info from thread group for JvmMetrics to

improve the performance. https://issues.apache.org/jira/browse/HADOOP-16850.

[43] (Fault) HDFS-14366: Improve HDFS append performance. https://issues.apache.

org/jira/browse/HDFS-14366.

[44] (Fault) HDFS-15415: Reduce locking in Datanode DirectoryScanner. https://issues.

apache.org/jira/browse/HDFS-15415.

[45] (Fault) IGNITE-12087: Transactional putAll - significant performance drop on big batches

of entries. https://issues.apache.org/jira/browse/IGNITE-12087.

[46] (Fault) KAFKA-8736: Performance: ThreadCache uses size() for empty cache check.

https://issues.apache.org/jira/browse/KAFKA-8736.

[47] (Fault) KAFKA-9393: DeleteRecords may cause extreme lock contention for large partition

directories. https://issues.apache.org/jira/browse/KAFKA-9393.

[48] Google Core Libraries for Java (Guava). https://github.com/google/guava.

[49] HADOOP-1073: DFS Scalability: high CPU usage in choosing replication targets and file

open. https://issues.apache.org/jira/browse/HADOOP-1073.

[50] Hadoop MapReduce. http://hadoop.apache.org/.

101

https://github.com/apache/kafka/blob/2.3.0/streams/src/main/java/org/apache/kafka/streams/state/internals/ThreadCache.java#L238
https://github.com/apache/kafka/blob/2.3.0/streams/src/main/java/org/apache/kafka/streams/state/internals/ThreadCache.java#L238
https://github.com/apache/kafka/blob/2.3.0/streams/src/main/java/org/apache/kafka/streams/state/internals/ThreadCache.java#L238
https://github.com/apache/kafka/blob/2.4/core/src/main/scala/kafka/log/ProducerStateManager.scala#L458
https://github.com/apache/kafka/blob/2.4/core/src/main/scala/kafka/log/ProducerStateManager.scala#L458
http://www.eclipse.org/jdt/
https://github.com/inaka/elvis
http://erlang.org/doc/man/dialyzer.html
https://issues.apache.org/jira/browse/CASSANDRA-13923
https://issues.apache.org/jira/browse/CASSANDRA-13923
https://issues.apache.org/jira/browse/CASSANDRA-14660
https://issues.apache.org/jira/browse/CASSANDRA-15141
https://issues.apache.org/jira/browse/HADOOP-13403
https://issues.apache.org/jira/browse/HADOOP-16850
https://issues.apache.org/jira/browse/HDFS-14366
https://issues.apache.org/jira/browse/HDFS-14366
https://issues.apache.org/jira/browse/HDFS-15415
https://issues.apache.org/jira/browse/HDFS-15415
https://issues.apache.org/jira/browse/IGNITE-12087
https://issues.apache.org/jira/browse/KAFKA-8736
https://issues.apache.org/jira/browse/KAFKA-9393
https://github.com/google/guava
https://issues.apache.org/jira/browse/HADOOP-1073
http://hadoop.apache.org/

[51] Hadoop MiniCluster. https://hadoop.apache.org/docs/stable/hadoop-project-

dist/hadoop-common/CLIMiniCluster.html.

[52] Hadoop NN Benchmarks. https://hadoop.apache.org/docs/current/hadoop-

project-dist/hadoop-common/Benchmarking.html.

[53] Hadoop Stress. https://community.cloudera.com/t5/Community-Articles/

Benchmarking-Hadoop-with-TeraGen-TeraSort-and-TeraValidate/ta-p/

248381.

[54] HBase Stress. https://blog.cloudera.com/hbase-performance-testing-using-

ycsb/.

[55] Hbase Test Utils. https://github.com/apache/hbase/tree/master/hbase-

testing-util.

[56] HDFS-395: DFS Scalability: Incremental block reports. https://issues.apache.org/

jira/browse/HDFS-395.

[57] HDFS-4061: Large number of decommission freezes the Namenode. https://issues.

apache.org/jira/browse/HDFS-4061.

[58] HDFS-9198: Coalesce IBR processing in the NN. https://issues.apache.org/jira/

browse/HDFS-9198.

[59] HDFS admin commands. https://hadoop.apache.org/docs/stable/hadoop-

project-dist/hadoop-hdfs/HDFSCommands.html.

[60] HDFS Benchmarks. https://github.com/erikmuttersbach/hdfs-benchmark.

[61] HDFS Data Blocks. https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#

Data+Blocks.

[62] How Microsoft drives exabyte analytics on the world’s largest YARN cluster. https://

bit.ly/3p8DEN4.

[63] How Netflix manages petabyte scale Apache Cassandra in the cloud. https://www.

apachecon.com/acna19/s/#/scheduledEvent/1010.

[64] How to Write a Dtest. https://www.datastax.com/blog/how-write-dtest.

[65] IGNITE admin commands. https://ignite.apache.org/docs/latest/tools/

control-script.

[66] Ignite Internal Benchmarks. https://github.com/apache/ignite/tree/master/

modules/benchmarks/src/main/java/org/apache/ignite/internal/benchmarks.

[67] Ignite Yardstick Stress Test. https://ignite.apache.org/docs/latest/perf-and-

troubleshooting/yardstick-benchmarking.

102

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/CLIMiniCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/CLIMiniCluster.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Benchmarking.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/Benchmarking.html
https://community.cloudera.com/t5/Community-Articles/Benchmarking-Hadoop-with-TeraGen-TeraSort-and-TeraValidate/ta-p/248381
https://community.cloudera.com/t5/Community-Articles/Benchmarking-Hadoop-with-TeraGen-TeraSort-and-TeraValidate/ta-p/248381
https://community.cloudera.com/t5/Community-Articles/Benchmarking-Hadoop-with-TeraGen-TeraSort-and-TeraValidate/ta-p/248381
https://blog.cloudera.com/hbase-performance-testing-using-ycsb/
https://blog.cloudera.com/hbase-performance-testing-using-ycsb/
https://github.com/apache/hbase/tree/master/hbase-testing-util
https://github.com/apache/hbase/tree/master/hbase-testing-util
https://issues.apache.org/jira/browse/HDFS-395
https://issues.apache.org/jira/browse/HDFS-395
https://issues.apache.org/jira/browse/HDFS-4061
https://issues.apache.org/jira/browse/HDFS-4061
https://issues.apache.org/jira/browse/HDFS-9198
https://issues.apache.org/jira/browse/HDFS-9198
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html
https://github.com/erikmuttersbach/hdfs-benchmark
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Data+Blocks
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Data+Blocks
https://bit.ly/3p8DEN4
https://bit.ly/3p8DEN4
https://www.apachecon.com/acna19/s/#/scheduledEvent/1010
https://www.apachecon.com/acna19/s/#/scheduledEvent/1010
https://www.datastax.com/blog/how-write-dtest
https://ignite.apache.org/docs/latest/tools/control-script
https://ignite.apache.org/docs/latest/tools/control-script
https://github.com/apache/ignite/tree/master/modules/benchmarks/src/main/java/org/apache/ignite/internal/benchmarks
https://github.com/apache/ignite/tree/master/modules/benchmarks/src/main/java/org/apache/ignite/internal/benchmarks
https://ignite.apache.org/docs/latest/perf-and-troubleshooting/yardstick-benchmarking
https://ignite.apache.org/docs/latest/perf-and-troubleshooting/yardstick-benchmarking

[68] Java Collections. https://docs.oracle.com/javase/7/docs/api/java/util/

Collections.html.

[69] Java Executors. https://docs.oracle.com/javase/tutorial/essential/

concurrency/executors.html.

[70] Java Garbage Collection. https://www.oracle.com/webfolder/technetwork/

tutorials/obe/java/gc01/index.html.

[71] Java NIO Selector. http://tutorials.jenkov.com/java-nio/selectors.html.

[72] Java Reflection API. https://docs.oracle.com/javase/tutorial/reflect/index.

html.

[73] Java Thread Basics. https://docs.oracle.com/cd/E13150_01/jrockit_jvm/

jrockit/geninfo/diagnos/thread_basics.html.

[74] JBoss AS 7 classloading. http://www.mastertheboss.com/jboss-server/jboss-as-

7/jboss-as-7-classloading.

[75] JConsole. https://docs.oracle.com/javase/7/docs/technotes/guides/

management/jconsole.html.

[76] JMH. https://openjdk.java.net/projects/code-tools/jmh/.

[77] JMX. https://docs.oracle.com/javase/7/docs/technotes/guides/jmx/.

[78] JXray. https://jxray.com/.

[79] KAFKA admin commands. https://docs.cloudera.com/documentation/

enterprise/6/6.3/topics/kafka_admin_cli.html.

[80] Kafka Stress. https://docs.cloudera.com/runtime/7.2.2/kafka-managing/

topics/kafka-manage-cli-perf-test.html.

[81] Kafka Stress. https://github.com/apache/kafka/tree/trunk/jmh-benchmarks.

[82] Kafka Test API. https://github.com/apache/kafka/tree/trunk/tests/

kafkatest/tests.

[83] (Misc) Chameleon Trovi. https://chameleoncloud.readthedocs.io/en/latest/

technical/sharing.html.

[84] (Misc) Java Instrumentation Agents. https://docs.oracle.com/javase/8/docs/

technotes/guides/instrumentation/index.html.

[85] (Misc) Javassist Github Repository. https://github.com/jboss-javassist/

javassist.

103

https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://tutorials.jenkov.com/java-nio/selectors.html
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/thread_basics.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/thread_basics.html
http://www.mastertheboss.com/jboss-server/jboss-as-7/jboss-as-7-classloading
http://www.mastertheboss.com/jboss-server/jboss-as-7/jboss-as-7-classloading
https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
https://openjdk.java.net/projects/code-tools/jmh/
https://docs.oracle.com/javase/7/docs/technotes/guides/jmx/
https://jxray.com/
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/kafka_admin_cli.html
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/kafka_admin_cli.html
https://docs.cloudera.com/runtime/7.2.2/kafka-managing/topics/kafka-manage-cli-perf-test.html
https://docs.cloudera.com/runtime/7.2.2/kafka-managing/topics/kafka-manage-cli-perf-test.html
https://github.com/apache/kafka/tree/trunk/jmh-benchmarks
https://github.com/apache/kafka/tree/trunk/tests/kafkatest/tests
https://github.com/apache/kafka/tree/trunk/tests/kafkatest/tests
https://chameleoncloud.readthedocs.io/en/latest/technical/sharing.html
https://chameleoncloud.readthedocs.io/en/latest/technical/sharing.html
https://docs.oracle.com/javase/8/docs/technotes/guides/instrumentation/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/instrumentation/index.html
https://github.com/jboss-javassist/javassist
https://github.com/jboss-javassist/javassist

[86] MRUnit. https://mrunit.apache.org/.

[87] Paul Turner: User-level threads... with threads. https://www.youtube.com/watch?

v=KXuZi9aeGTw&t=1s.

[88] Performance Antipattern: Chatty I/O. https://docs.microsoft.com/en-us/azure/

architecture/antipatterns/chatty-io/.

[89] Performance Antipattern: Extraneous Fetching antipattern. https://docs.microsoft.

com/en-us/azure/architecture/antipatterns/extraneous-fetching/.

[90] Performance Flame Graphs. http://www.brendangregg.com/flamegraphs.html.

[91] Personal Communication from Andrew Wang and Wei-Chiu Chuang of Cloudera and Uma

Maheswara Rao Gangumalla of Intel; they are also part of Apache Hadoop Project Manage-

ment Committee (PMC) members.

[92] Personal Communication from Jonathan Ellis, Joel Knighton, Josh McKenzie, and other

Cassandra developers.

[93] Project Voldemort. http://www.project-voldemort.com/voldemort/.

[94] Riak. http://basho.com/products/riak-kv.

[95] RIAK: Large ring creation size. https://docs.riak.com/riak/kv/latest/

configuring/basic/index.html#ring-size.

[96] ScaleFault DB: A collection of scalability faults, root causes and solution patterns.

https://github.com/ucare-uchicago/scale-bug-study.

[97] Singletons are pathological liars. https://testing.googleblog.com/2008/08/by-

miko-hevery-so-you-join-new-project.html.

[98] Spark Stress. https://codait.github.io/spark-bench/.

[99] Spark Test API. https://zedar.gitbooks.io/spark-hadoop-notes/content/

spark_unit_testing_with_hdfs.html.

[100] Storm Stress Test. https://github.com/yahoo/storm-perf-test.

[101] TestDFSIO Benchmark. https://github.com/tthx/testdfsio.

[102] The Infrastructure Behind Twitter: Scale. https://blog.twitter.com/engineering/

en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-

scale.html.

[103] The YARN Timeline Service v.2. https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/TimelineServiceV2.html.

104

https://mrunit.apache.org/
https://www.youtube.com/watch?v=KXuZi9aeGTw&t=1s
https://www.youtube.com/watch?v=KXuZi9aeGTw&t=1s
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/extraneous-fetching/
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/extraneous-fetching/
http://www.brendangregg.com/flamegraphs.html
http://www.project-voldemort.com/voldemort/
http://basho.com/products/riak-kv
https://docs.riak.com/riak/kv/latest/configuring/basic/index.html#ring-size
https://docs.riak.com/riak/kv/latest/configuring/basic/index.html#ring-size
https://github.com/ucare-uchicago/scale-bug-study
https://testing.googleblog.com/2008/08/by-miko-hevery-so-you-join-new-project.html
https://testing.googleblog.com/2008/08/by-miko-hevery-so-you-join-new-project.html
https://codait.github.io/spark-bench/
https://zedar.gitbooks.io/spark-hadoop-notes/content/spark_unit_testing_with_hdfs.html
https://zedar.gitbooks.io/spark-hadoop-notes/content/spark_unit_testing_with_hdfs.html
https://github.com/yahoo/storm-perf-test
https://github.com/tthx/testdfsio
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/TimelineServiceV2.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/TimelineServiceV2.html

[104] Understanding Memory Management. https://docs.oracle.com/cd/E13150_01/

jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html#:~:text=Java

%20objects%20reside%20in%20an,making%20space%20for%20new%20objects.

[105] VOLDEMORT: Number of partitions. https://groups.google.com/forum/#!msg/

project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ.

[106] Werner Vogels: A Word on Scalability. https://www.allthingsdistributed.com/

2006/03/a_word_on_scalability.html.

[107] Yarn Stress Test. https://hadoop.apache.org/docs/current/hadoop-sls/

SchedulerLoadSimulator.html.

[108] Yarn Test API. https://github.com/naver/hadoop/tree/master/hadoop-yarn-

project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-tests/src/

test/java/org/apache/hadoop/yarn/server.

[109] YCSB. https://github.com/brianfrankcooper/YCSB.

[110] Zoom: A Message To Our Users. https://blog.zoom.us/a-message-to-our-users/.

[111] Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk. Fréchet

Distance for Curves, Revisited. In Proceedings of the 14th Annual European Symposium

(AES), 2006.

[112] Peter Bodik, Armando Fox, Michael Franklin, Michael Jordan, and David Patterson. Char-

acterizing, Modeling, and Generating Workload Spikes for Stateful Services. In Proceedings

of the 1st ACM Symposium on Cloud Computing (SoCC), 2010.

[113] Sarah Boslaugh and Paul Andrew Watters. Statistics in a nutshell - a desktop quick reference.

O’Reilly, 2008.

[114] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and Automatic

Generation of High-Coverage Tests for Complex Systems Programs. In Proceedings of the

8th Symposium on Operating Systems Design and Implementation (OSDI), 2008.

[115] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf. Using Automated Per-

formance Modeling to Find Scalability Bugs in Complex Codes. In Proceedings of Inter-

national Conference on High Performance Computing, Networking, Storage and Analysis

(SC), 2013.

[116] Natalia Chechina, Huiqing Li, Amir Ghaffari, Simon Thompson, and Phil Trindera. Im-

proving the network scalability of Erlang. Journal of Parallel and Distributed Computing,

90-91:22–34, April 2016.

[117] Bihuan Chen, Yang Liu, and Wei Le. Generating Performance Distributions via Probabilistic

Symbolic Execution. In Proceedings of the 38th International Conference on Software

Engineering (ICSE), 2016.

105

https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html#:~:text=Java%20objects%20reside%20in%20an,making%20space%20for%20new%20objects.
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html#:~:text=Java%20objects%20reside%20in%20an,making%20space%20for%20new%20objects.
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html#:~:text=Java%20objects%20reside%20in%20an,making%20space%20for%20new%20objects.
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
https://groups.google.com/forum/#!msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ
https://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html
https://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html
https://hadoop.apache.org/docs/current/hadoop-sls/SchedulerLoadSimulator.html
https://hadoop.apache.org/docs/current/hadoop-sls/SchedulerLoadSimulator.html
https://github.com/naver/hadoop/tree/master/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-tests/src/test/java/org/apache/hadoop/yarn/server
https://github.com/naver/hadoop/tree/master/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-tests/src/test/java/org/apache/hadoop/yarn/server
https://github.com/naver/hadoop/tree/master/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-tests/src/test/java/org/apache/hadoop/yarn/server
https://github.com/brianfrankcooper/YCSB
https://blog.zoom.us/a-message-to-our-users/

[118] Jinfu Chen, Weiyi Shang, and Emad Shihab. PerfJIT: Test-Level Just-in-Time Prediction for

Performance Regression Introducing Commits. IEEE Transactions on Software Engineering

(TSE), 48(5):1529–1544, 2022.

[119] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser, and

Parminder Flora. Detecting Performance Anti-patterns for Applications Developed using

Object-Relational Mapping. In Proceedings of the 36th International Conference on Soft-

ware Engineering (ICSE), 2014.

[120] Sai P. Chenna, Greg Stitt, and Herman Lam. Multi-Parameter Performance Modeling using

Symbolic Regression. In The 2019 International Conference on High Performance Com-

puting and Simulation (HPCS), 2019.

[121] Ting Dai, Daniel Dean, Peipei Wang, Xiaohui Gu, and Shan Lu. Hytrace: A Hybrid Ap-

proach to Performance Bug Diagnosis in Production Cloud Infrastructures. In Proceedings

of the 8th ACM Symposium on Cloud Computing (SoCC), 2017.

[122] Pantazis Deligiannis, Matt McCutchen, Paul Thomson, Shuo Chen, Alastair F. Donaldson,

John Erickson, Cheng Huang, Akash Lal, Rashmi Mudduluru, Shaz Qadeer, and Wolfram

Schulte. Uncovering Bugs in Distributed Storage Systems during Testing (Not in Produc-

tion!). In Proceedings of the 14th USENIX Symposium on File and Storage Technologies

(FAST), 2016.

[123] Anh-Tu Do-Mai, Thanh-Dang Diep, and Nam Thoai. Race Condition and Deadlock Detec-

tion for Large-Scale Applications. In Proceedings of the 15th International Symposium on

Parallel and Distributed Computing (ISPDC), 2016.

[124] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. SPEED: precise and efficient

static estimation of program computational complexity. In Proceedings of the 36th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), 2009.

[125] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake,

Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman, Vin-

centius Martin, and Anang D. Satria. What Bugs Live in the Cloud? A Study of 3000+

Issues in Cloud Systems. In Proceedings of the 5th ACM Symposium on Cloud Computing

(SoCC), 2014.

[126] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo, Tom Bergan,

Madan Musuvathi, Zheng Zhang, and Lidong Zhou. Failure Recovery: When the Cure Is

Worse Than the Disease. In The 14th Workshop on Hot Topics in Operating Systems (HotOS

XIV), 2013.

[127] Diwaker Gupta, Kashi Venkatesh Vishwanath, and Amin Vahdat. DieCast: Testing Dis-

tributed Systems with an Accurate Scale Model. In Proceedings of the 5th Symposium on

Networked Systems Design and Implementation (NSDI), 2008.

106

[128] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O. Suminto, Cesar A.

Stuardo, Andrew A. Chien, and Haryadi S. Gunawi. MittOS: Supporting Millisecond Tail

Tolerance with Fast Rejecting SLO-Aware OS Interface. In Proceedings of the 26th ACM

Symposium on Operating Systems Principles (SOSP), 2017.

[129] Naohiro Hayashibara, Xavier Defago, Rami Yared, and Takuya Katayama. The Phi Accrual

Failure Detector. In The 23rd Symposium on Reliable Distributed Systems (SRDS), 2004.

[130] Val Henson, Zach Brown, Theodore Ts’o, and Arjan van de Ven. Reducing fsck time for

ext2 file systems. In Ottawa Linux Symposium (OLS), 2006.

[131] Michihiro Horie, Kazunori Ogata, Kiyokuni Kawachiya, and Tamiya Onodera. String Dedu-

plication for Java-based Middleware in Virtualized Environments. In The 10th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE), 2014.

[132] Yuyang Jin, Haojie Wang, Teng Yu, Xiongchao Tang, Torsten Hoefler, Xu Liu, and Jidong

Zhai. SCALANA: Automating Scaling Loss Detection with Graph Analysis. In Proceedings

of International Conference on High Performance Computing, Networking, Storage and

Analysis (SC), 2020.

[133] Anshul Jindal, Paul Staab, Jorge Cardoso, Michael Gerndt, and Vladimir Podolskiy. Online

Memory Leak Detection in the Cloud-based Infrastructures. In Proceedings of the Interna-

tional Workshop on Artificial Intelligence for IT Operations (AIOPS), 2020.

[134] Kamil Jezek and Richard Lipka. Antipatterns causing memory bloat: A case study. In 2017

IEEE 24th International Conference on Software Analysis, Evolution and Reengineering

(SANER), 2017.

[135] Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Gregory L. Lee, Mar-

tin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen, and Feng Qin.

Debugging High-Performance Computing Applications at Massive Scales. Communications

of the ACM (CACM), 58(9), 2015.

[136] Avinash Lakshman and Prashant Malik. Cassandra - A Decentralized Structured Storage

System. In The 3rd ACM SIGOPS International Workshop on Large Scale Distributed Sys-

tems and Middleware (LADIS), 2009.

[137] Tanakorn Leesatapornwongsa and Haryadi S. Gunawi. SAMC: A Fast Model Checker for

Finding Heisenbugs in Distributed Systems. In Proceedings of the International Symposium

on Software Testing and Analysis (ISSTA), 2015.

[138] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi.

TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Distributed

Systems. In Proceedings of the 21st International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2016.

107

[139] Tanakorn Leesatapornwongsa, Cesar A. Stuardo, Riza O. Suminto, Huan Ke, Jeffrey F.

Lukman, and Haryadi S. Gunawi. Scalability Bugs: When 100-Node Testing is Not Enough.

In Proceedings of the 16th Workshop on Hot Topics in Operating Systems (HotOS XVI),

2017.

[140] Colin Lewis-Beck and Michael Lewis-Beck. Applied regression: An introduction. Sage

publications, 2015.

[141] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S. Gunawi, Xiaohui

Gu, Dongsheng Li, and Xicheng Lu. PCatch: Automatically Detecting Performance Cas-

cading Bugs in Cloud Systems. In Proceedings of the 2018 EuroSys Conference (EuroSys),

2018.

[142] Thomas A. Limoncelli and Doug Hughe. LISA ’11 Theme – DevOps: New Challenges,

Proven Values. USENIX ;login: Magazine, 36(4), 2011.

[143] John D. C. Little. A Proof for the Queuing Formula. Operations Research, 9(3):383–387,

June 1961.

[144] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Daniar H. Kurniawan,

Dikaimin Simon, Satria Priambada, Chen Tian, Feng Ye, Tanakorn Leesatapornwongsa,

Aarti Gupta, Shan Lu, and Haryadi S. Gunawi. FlyMC: Highly Scalable Testing of Com-

plex Interleavings in Distributed Systems. In Proceedings of the 2019 EuroSys Conference

(EuroSys), 2019.

[145] Yingjun Lyu, Ali Alotaibi, and William G. J. Halfond. Quantifying the Performance Impact

of SQL Antipatterns on Mobile Applications. In IEEE International Conference on Software

Maintenance and Evolution (ICSME), 2019.

[146] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. ffsck:

The Fast File System Checker. In Proceedings of the 11th USENIX Symposium on File and

Storage Technologies (FAST), 2013.

[147] Sixiang Ma and Yang Wang. Accurate Timeout Detection despite Arbitrary Processing

Delays. In Proceedings of the 2018 USENIX Annual Technical Conference (ATC), 2018.

[148] Nuno Machado, Francisco Maia, Francisco Neves, Fábio Coelho, and José Pereira. Minha:

Large-scale distributed systems testing made practical. In Proceedings of the 23rd Interna-

tional Conference on Principles of Distributed Systems (OPODIS), 2019.

[149] Bo Mao, Hong Jiang, Suzhen Wu, and Lei Tian. Leveraging Data Deduplication to Improve

the Performance of Primary Storage Systems in the Cloud. In Proceedings of the 4th ACM

Symposium on Cloud Computing (SOCC), 2013.

[150] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer, Carlo Con-

tavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve D. Gribble, Nicholas

Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick, Lena E. Olson, Erik

108

Rubow, Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi Wang, and Amin

Vahdat. Snap: a microkernel approach to host networking. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles (SOSP), 2019.

[151] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. Four Trends Leading to Java Runtime

Bloat. Communications of the ACM (CACM), 27, 2010.

[152] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat Alamian, and

Onur Mutlu. Yak: A High-Performance Big-Data-Friendly Garbage Collector. In Pro-

ceedings of the 12th Symposium on Operating Systems Design and Implementation (OSDI),

2016.

[153] Adrian Nistor, Po-Chun Chang, Cosmin Rădoi, and Shan Lu. CARAMEL: Detecting and

Fixing Performance Problems That Have Non-Intrusive Fixes. In Proceedings of the 37th

International Conference on Software Engineering (ICSE), 2015.

[154] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: Detecting Performance

Problems via Similar Memory-Access Patterns. In Proceedings of the 35th International

Conference on Software Engineering (ICSE), 2013.

[155] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static Detection of Asymptotic Performance

Bugs in Collection Traversals. In Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2015.

[156] Oracle. JVMTM Tool Interface version 1.2. https://docs.oracle.com/javase/8/

docs/platform/jvmti/jvmti.html.

[157] John Ousterhout. Is Scale Your Enemy, Or Is Scale Your Friend?: Technical Perspective.

Communications of the ACM (CACM), 54(7), 2011.

[158] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun. Mak-

ing Sense of Performance in Data Analytics Frameworks. In Proceedings of the 12th Sym-

posium on Networked Systems Design and Implementation (NSDI), 2015.

[159] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Sein-

turier. Spoon: A Library for Implementing Analyses and Transformations of Java Source

Code. Software: Practice and Experience, 46:1155–1179, 2015.

[160] Claude Sammut and Geoffrey I. Webb. Encyclopedia of Machine Learning. Springer Pub-

lishing Company, Incorporated, 2011.

[161] Aritra Sengupta, Tanakorn Leesatapornwongsa, Masoud Saeida Ardekani, Gustavo Petri,

and Cesar A. Stuardo. Transactuations: Where Transactions Meet The Physical World.

ACM Transactions on Computer Systems (TOCS), 36:1–31, November 2018.

[162] Aritra Sengupta, Tanakorn Leesatapornwongsa, Masoud Saeida Ardekani, and Cesar A.

Stuardo. Transactuations: Where Transactions Meet The Physical World. In Proceedings of

the 2019 USENIX Annual Technical Conference (ATC), 2019.

109

https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

[163] Rong Shi, Yifan Gan, and Yang Wang. Evaluating Scalability Bottlenecks by Workload

Extrapolation. In Proceedings of the IEEE International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems (MASCOTS), 2018.

[164] Konstantin V. Shvachko. HDFS Scalability: The Limits to Growth. USENIX ;login:,

35(2):6–16, 2010.

[165] Linhai Song and Shan Lu. Performance Diagnosis for Inefficient Loops. In Proceedings of

the 39th International Conference on Software Engineering (ICSE), 2017.

[166] Cesar A. Stuardo, Tanakorn Leesatapornwongsa, Riza O. Suminto, Huan Ke, Jeffrey F.

Lukman, Daniar H. Kurniawan, Wei-Chiu Chuang, Shan Lu, and Haryadi S. Gunawi.

ScaleCheck: A Single-Machine Approach for Discovering Scalability Bugs in Large Dis-

tributed Systems. In Proceedings of the 17th USENIX Symposium on File and Storage

Technologies (FAST), 2019.

[167] Cesar A. Stuardo, Hao-Nan Zhu, Miao Yu, Patrick J. Chapman, Cindy Rubio-Gonzáles,

Yang Wang, and Haryadi S. Gunawi. SView: Identifying and Analyzing Potential Scalabil-

ity Faults in Large-Scale Distributed Systems. In In submission., 2023.

[168] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark, Huan Ke, Tanakorn Leesataporn-

wongsa, Bo Fu, Daniar H. Kurniawan, Vincentius Martin, Uma Maheswara Rao G., and

Haryadi S. Gunawi. PBSE: A Robust Path-Based Speculative Execution for Degraded-

Network Tail Tolerance in Data-Parallel Frameworks. In Proceedings of the 8th ACM Sym-

posium on Cloud Computing (SoCC), 2017.

[169] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu, Premku-

mar T. Devanbu, Bogdan Vasilescu, and Cindy Rubio-González. BugSwarm: mining and

continuously growing a dataset of reproducible failures and fixes. In Proceedings of the 41st

International Conference on Software Engineering (ICSE), 2019.

[170] Mert Toslali, Emre Ates, Alex Ellis, Zhaoqi Zhang, Darby Huye, Lan Liu, Samantha Puter-

man, Ayse K. Coskun, and Raja R. Sambasivan. Automating Instrumentation Choices for

Performance Problems in Distributed Applications with VAIF. In Proceedings of the 12th

ACM Symposium on Cloud Computing (SoCC), 2021.

[171] Mohammad Mejbah ul Alam, Tongping Liu, Guangming Zeng, and Abdullah Muzahid.

SyncPerf: Categorizing, Detecting, and Diagnosing Synchronization Performance Bugs. In

Proceedings of the 2017 EuroSys Conference (EuroSys), 2017.

[172] Meng Wang, Cesar A. Stuardo, Daniar Heri Kurniawan, Ray A. O. Sinurat, and Haryadi S.

Gunawi. Layered Contention Mitigation for Cloud Storage. In Proceedings of the IEEE

International Conference on Cloud Computing (CLOUD), 2022.

[173] Yang Wang, Manos Kapritsos, Lara Schmidt, Lorenzo Alvisi, and Mike Dahlin. Exalt:

Empowering Researchers to Evaluate Large-Scale Storage Systems. In Proceedings of the

11th Symposium on Networked Systems Design and Implementation (NSDI), 2014.

110

[174] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. Singularity: Pattern Fuzzing

for Worst Case Complexity. In Proceedings of the 26th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (FSE), 2018.

[175] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture for Well-Conditioned,

Scalable Internet Services. In Proceedings of the 18th ACM Symposium on Operating Sys-

tems Principles (SOSP), 2001.

[176] Xiaofei Xie, Bihuan Chen, Liang Zou, Yang Liu, Wei Le, and Xiaohong Li. Automatic Loop

Summarization via Path Dependency Analysis. IEEE Transactions on Software Engineering

(TSE), 45(6):537–557, 2019.

[177] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung. How not to

structure your database-backed web applications: a study of performance bugs in the wild.

In Proceedings of the 40th International Conference on Software Engineering (ICSE), 2018.

[178] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung. How not to

structure your database-backed web applications: a study of performance bugs in the wild.

In Proceedings of the 40th International Conference on Software Engineering (ICSE), 2018.

[179] Junwen Yang, Cong Yan, Chengcheng WanS, Shan Lu, and Alvin Cheung. View-Centric

Performance Optimization for Database-Backed Web Applications. In Proceedings of the

41st International Conference on Software Engineering (ICSE), 2019.

[180] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi Bairavasun-

daram. How do fixes become bugs? In Proceedings of the 19th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering (FSE), 2011.

[181] Yukun Zeng, Mengyuan Chao, and Radu Stoleru. EmuEdge: A Hybrid Emulator for Re-

producible and Realistic Edge Computing Experiments. In Proceedings of the 2019 IEEE

International Conference on Fog Computing (ICFC), 2019.

[182] Yutong Zhao, Lu Xiao, Xiao Wang, Lei Sun, Bihuan Chen, Yang Liu, and Andre B. Bondi.

How Are Performance Issues Caused and Resolved? - An Empirical Study from a Design

Perspective. In Proceedings of the ACM/SPEC International Conference on Performance

Engineering (ICPE), 2020.

[183] Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi. Vrisha: Using Scaling Properties of

Parallel Programs for Bug Detection and Localization. In Proceedings of the 20th IEEE

International Symposium on High Performance Distributed Computing (HPDC), 2011.

[184] Wenju Zhou, Jiepeng Zhang, Jingwei Sun, and Guangzhong Sun. Using Small-Scale History

Data to Predict Large-Scale Performance of HPC Application. In Proceedings of the 34th

IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),

2020.

111

APPENDIX A

SCALECHECK SELECTED SCALABILITY FAULTS

Table A.1 shows the complete list of faults that were considered in chapter 3.

System Issue # Title

1 CASSANDRA 2058 Load spikes due to MessagingService-generated garbage collection

2 CASSANDRA 3831 Scaling to large clusters in GossipStage impossible due to calculate-

PendingRanges

3 CASSANDRA 3881 Reduce computational complexity of processing topology changes

4 CASSANDRA 4288 Prevent thrift server from starting before gossip has settled

5 CASSANDRA 5220 Repair improvements when using vnodes

6 CASSANDRA 5456 Large number of bootstrapping nodes cause gossip to stop working

7 CASSANDRA 6127 vnodes don’t scale to hundreds of nodes

8 CASSANDRA 6268 Poor performance of HADOOP if any DC is using VNodes

9 CASSANDRA 6345 Endpoint cache invalidation causes CPU spike (on vnode rings?)

10 CASSANDRA 6409 Gossip performance improvement at node startup

11 CASSANDRA 6485 NPE in calculateNaturalEndpoints

12 CASSANDRA 6862 Poor performance of HADOOP if any DC is using VNodes

13 CASSANDRA 13968 Cannot replace a live node in large clusters

14 COUCHBASE 1040 Improve bootstrapping speed by creating/initializing all nodes in par-

allel

15 COUCHBASE 8640 Rightscale template :: 15 of 120 node sized array stranded in booting:

exited with 2, expected 0.

16 COUCHBASE 13102 Empty and idle node runs Flusher frequently, problem for scaling

past 10 buckets

Table A.1: SCALECHECK selected scalability faults. This table shows the 55 faults chosen

when evaluating SCALECHECK, where the second column is a hyperlink to the corresponding

JIRA report.
112

https://issues.apache.org/jira/browse/CASSANDRA-2058
https://issues.apache.org/jira/browse/CASSANDRA-3831
https://issues.apache.org/jira/browse/CASSANDRA-3881
https://issues.apache.org/jira/browse/CASSANDRA-4288
https://issues.apache.org/jira/browse/CASSANDRA-5220
https://issues.apache.org/jira/browse/CASSANDRA-5456
https://issues.apache.org/jira/browse/CASSANDRA-6127
https://issues.apache.org/jira/browse/CASSANDRA-6268
https://issues.apache.org/jira/browse/CASSANDRA-6345
https://issues.apache.org/jira/browse/CASSANDRA-6409
https://issues.apache.org/jira/browse/CASSANDRA-6485
https://issues.apache.org/jira/browse/CASSANDRA-6268
https://issues.apache.org/jira/browse/CASSANDRA-13968
https://issues.couchbase.com/browse/NCBC-1040
https://issues.couchbase.com/browse/MB-8640
https://issues.couchbase.com/browse/MB-13102

System Issue # Title

17 COUCHBASE 15757 Graceful failover either fails or takes very long time, delta rebalance

fails - with latest build 3470

18 COUCHBASE 16807 New UI slightly slow at least on 130 node cluster

19 HADOOP 3656 Sort job on 350 scale is consistently failing with latest MRV2 code

20 HADOOP 3711 AppMaster recovery for Medium to large jobs take long time

21 HADOOP 4478 TaskTracker’s heartbeat is out of control

22 HADOOP 4946 Type conversion of map completion events leads to performance

problems with large jobs

23 HADOOP 5124 AM lacks flow control for task events

24 HADOOP 5508 JobTracker memory leak caused by unreleased FileSystem objects in

JobInProgress#cleanupJob

25 HBASE 3620 Make HBCK Faster

26 HBASE 4742 Split dead servers log in parallel

27 HBASE 5422 StartupBulkAssigner would cause a lot of timeout on RIT when as-

signing large numbers of regions (timeout = 3 mins)

28 HBASE 6728 Prevent OOM possibility due to per connection responseQueue being

unbounded

29 HBASE 7060 Region load balancing by table does not handle the case where a

table’s region count is lower than the number of the RS in the cluster

30 HBASE 7190 Add an option to hbck to check only meta and assignment

31 HBASE 8778 Region assigments scan table directory making them slow for huge

tables

32 HBASE 9208 ReplicationLogCleaner slow at large scale

33 HBASE 9377 Backport HBASE- 9208 ”ReplicationLogCleaner slow at large scale”

34 HBASE 9775 Client write path perf issues

113

https://issues.couchbase.com/browse/MB-15757
https://issues.couchbase.com/browse/MB-16807
https://issues.apache.org/jira/browse/MAPREDUCE-3656?attachmentOrder=asc
https://issues.apache.org/jira/browse/MAPREDUCE-3711
https://issues.apache.org/jira/browse/MAPREDUCE-4478
https://issues.apache.org/jira/browse/MAPREDUCE-4946
https://issues.apache.org/jira/browse/MAPREDUCE-5124
https://issues.apache.org/jira/browse/MAPREDUCE-5508?attachmentOrder=asc
https://issues.apache.org/jira/browse/HBASE-3620
https://issues.apache.org/jira/browse/HBASE-4742
https://issues.apache.org/jira/browse/HBASE-5422
https://issues.apache.org/jira/browse/HBASE-6728
https://issues.apache.org/jira/browse/HBASE-7060
https://issues.apache.org/jira/browse/HBASE-7190
https://issues.apache.org/jira/browse/HBASE-8778
https://issues.apache.org/jira/browse/HBASE-9208
https://issues.apache.org/jira/browse/HBASE-9377
https://issues.apache.org/jira/browse/HBASE-9775

System Issue # Title

35 HBASE 10209 Speed region assign in failover

36 HBASE 11290 Unlock RegionStates

37 HBASE 12139 StochasticLoadBalancer doesn’t work on large lightly loaded clusters

38 HDFS 354 Data node process consumes 180% cpu

39 HDFS 395 DFS Scalability: Incremental block reports

40 HDFS 611 Heartbeats times from Datanodes increase when there are plenty of

blocks to delete

41 HDFS 1073 DFS Scalability: high CPU usage in choosing replication targets and

file open

42 HDFS 1851 HDFS-15 scalability improvements

43 HDFS 2495 Increase granularity of write operations in ReplicationMonitor thus

reducing contention for write lock

44 HDFS 2938 Recursive delete of a large directory makes namenode unresponsive

45 HDFS 3990 NN’s health report has severe performance problems

46 HDFS 4061 Large number of decommission freezes the Namenode

47 HDFS 4075 Reduce recommissioning overhead

48 HDFS 4360 Multiple BlockFixer should be supported in order to improve scala-

bility and reduce too much work on single BlockFixer

49 HDFS 4479 logSync() with the FSNamesystem lock held in commitBlockSyn-

chronization

50 HDFS 4937 ReplicationMonitor can infinite-loop in BlockPlacementPolicyDe-

fault#chooseRandom()

51 HDFS 9198 Coalesce IBR processing in the NN

52 HDFS 9287 Block placement completely fails if too many nodes are decommis-

sioning

114

https://issues.apache.org/jira/browse/HBASE-10209
https://issues.apache.org/jira/browse/HBASE-11290
https://issues.apache.org/jira/browse/HBASE-12139
https://issues.apache.org/jira/browse/HDFS-354
https://issues.apache.org/jira/browse/HDFS-395
https://issues.apache.org/jira/browse/HDFS-611
https://issues.apache.org/jira/browse/HADOOP-1073
https://issues.apache.org/jira/browse/HDFS-1851
https://issues.apache.org/jira/browse/HDFS-2495
https://issues.apache.org/jira/browse/HDFS-2938
https://issues.apache.org/jira/browse/HDFS-3990
https://issues.apache.org/jira/browse/HADOOP-4061
https://issues.apache.org/jira/browse/HDFS-4075
https://issues.apache.org/jira/browse/HDFS-4360
https://issues.apache.org/jira/browse/HDFS-4479
https://issues.apache.org/jira/browse/HDFS-4937
https://issues.apache.org/jira/browse/HDFS-9198
https://issues.apache.org/jira/browse/HDFS-9287

System Issue # Title

53 HDFS 10609 Uncaught InvalidEncryptionKeyException during pipeline recovery

may abort downstream applications

54 RIAK 3926 Large ring creation size

55 VOLDEMORT 1212 Number of Partition

115

https://issues.apache.org/jira/browse/HDFS-10609
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-April/003926.html
https://groups.google.com/forum/#%21msg/project-voldemort/3vrZfZgQp2Y/Uqt8NgJHg4AJ

APPENDIX B

SFINDPIL ALGORITHMS

Algorithms 1 to 2 show the pseudo-code of our PIL algorithms. The code basically attempts to

find PIL-safe functions. Note that it focuses on finding scale-dependent loops that can be PIL-ed

as opposed to finding all PIL-safe code blocks.

1 Algorithm isPILCandidate

2 Input loop : Loop

3 loopContext : Method

4 Output pilType : int

5 category : string

6 begin

7 // in here, we are going to analyze a loop in its context

8 boolean hasOnlyNonPertinentOperations = true

9 // we consider a loop that only performs IO operations as non pertinent

10 // these are typically method calls

11 for(Statement stamenent : loop.getStatements())

12 if(!statement.isIOOPeration()) hasOnlyNonPertinentOperations = false

13 // can be PIL-ed without memoization

14 if(hasOnlyNonPertinentOperations) return 1

15 // now second case

16 for(Statement stamenent : loop.getStatements()) {
17 // we perform static analysis to check what are the related variables

18 // this is a time consuming operation. State is globally defined

19 if(StaticAnalysisManager.touchesClusterState(statement)) {
20 return 2

21 }
22 }
23 // cannot be PIL-ed

24 return 0

25 end

Algorithm 1: isPILCandidate.

Algorithm 1 establishes if a code block (a scale dependent loop) is a candidate for PIL. The

main idea is to analyze the contents of the loops in function of the relevant cluster state and the

operations performed in that loop. In here, we need to distinguish between two cases: (1) the loop

performs non-pertinent operations only (such as IO). In this case, we can safely replace the loop

by a sleep call without affecting the behavior of the protocol. In (2), the loop performs operations

116

that affect the cluster state, so we need to insert pre-memoization and replay code.

Algorithm 2 inserts the pre-memoization and replay code into a target method (using a code

block as reference). The blocks that are inserted are shown at figures B.1 and B.2. We use the

same algorithm to illustrate the two cases described above since the difference between them are

minimal from an implementation perspective.

1 Algorithm insertPreMemoizationCode

2 Input targetBlock : CodeBlock

3 targetMethod : Method

4 replayBlock : CodeBlock

5 memoizeBlock : CodeBlock

6 pilType : int

7 Output None

8 begin

9 // we have identified the target block we want to modify, so we just insert code

10 targetMethod.insertBefore(targetBlock, replayBlock);

11 if (pilType == 2) targetMethod.insertBefore(targetBlock, memoizeBlock);

12 end

Algorithm 2: insertPreMemoizationCode.

1 Time time = now();

2 // execution of target block happens here

3 Time elapsed = now() - time;

4 if (isMemoizeEnabled()) {
5 State state = StateManager.recordClustesState();

6 StateSerializer.recordClusterState(state, elapsed);

7 }
8 // method continues

Figure B.1: SFINDPIL sample memoization block.

It is important to notice that in here we do require programmer defined cluster state. We con-

sider as relevant state all variables involved in the execution of a target protocol and we discard non

pertinent operations (such as IO). Our static analysis tools ease the identification of these variables,

but programmer intervention is needed to discard/add possible false positives. Also, given that we

use Java serialization to save/reconstruct the target state, we also require that all classes involved

117

1 if (isReplayEnabled()) {
2 // the arguments to this call identify the current state

3 State state = StateSerializer.getState(currentStateId);

4 // sleep

5 sleep(State.getProcessingTime());

6 // now reconstruct, only for PIL type 2

7 if (shouldReconstructState()) StateManager.reconstructStateFromSnapshot(state);

8 }
9 else {

10 // normal execution of target block happens here

11 }

Figure B.2: SFINDPIL sample replay block.

are marked as Serializable. In this context, programmers can modify the generated code in order to

use custom (probably faster) serialization mechanisms by overriding the base classes provided by

our API. Given that most of the code is generated automatically, we consider that the effort related

to this integration task is minimal compared to manual identification/implementation. Finally, we

reduce the overhead of reading/writing cluster state by using SSD’s.

118

APPENDIX C

SVIEW SELECTED SCALABILITY FAULTS

Table C.1 shows the complete list of faults that were considered in chapter 4.

System Issue # Title

1 CASSANDRA 15141 Faster token ownership calculation for NetworkTopologyStrategy

2 CASSANDRA 14660 Improve TokenMetaData cache populating performance for large

cluster

3 CASSANDRA 13923 Flushers blocked due to many SSTables

4 CASSANDRA 13065 Skip building views during base table streams on range movements

5 CASSANDRA 12281 Gossip blocks on startup when there are pending range movements

6 CASSANDRA 12245 initial view build can be parallel

7 CASSANDRA 10654 Make MV streaming rebuild parallel

8 CASSANDRA 9258 Range movement causes CPU and performance impact

9 CASSANDRA 7758 Some gossip messages are very slow to process on vnode clusters

10 CASSANDRA 6488 Batchlog writes consume unnecessarily large amounts of CPU on

vnodes clusters

11 CASSANDRA 6345 Endpoint cache invalidation causes CPU spike (on vnode rings?)

12 CASSANDRA 6297 Gossiper blocks when updating tokens and turns node down

13 CASSANDRA 5456 Large number of bootstrapping nodes cause gossip to stop working

14 CASSANDRA 3881 reduce computational complexity of processing topology changes

15 CASSANDRA 3831 scaling to large clusters in GossipStage impossible due to calculate-

PendingRanges

16 HADOOP 16850 Support getting thread info from thread group for JvmMetrics to im-

prove the performance

Table C.1: SVIEW selected scalability faults. This table shows the 66 faults chosen when evalu-

ation SVIEW, where the second column is a hyperlink to the corresponding JIRA report.

119

https://issues.apache.org/jira/browse/CASSANDRA-15141
https://issues.apache.org/jira/browse/CASSANDRA-14660
https://issues.apache.org/jira/browse/CASSANDRA-13923
https://issues.apache.org/jira/browse/CASSANDRA-13065
https://issues.apache.org/jira/browse/CASSANDRA-12281
https://issues.apache.org/jira/browse/CASSANDRA-12245
https://issues.apache.org/jira/browse/CASSANDRA-10654
https://issues.apache.org/jira/browse/CASSANDRA-9258
https://issues.apache.org/jira/browse/CASSANDRA-7758
https://issues.apache.org/jira/browse/CASSANDRA-6488
https://issues.apache.org/jira/browse/CASSANDRA-6345
https://issues.apache.org/jira/browse/CASSANDRA-6297
https://issues.apache.org/jira/browse/CASSANDRA-5456
https://issues.apache.org/jira/browse/CASSANDRA-3881
https://issues.apache.org/jira/browse/CASSANDRA-3831
https://issues.apache.org/jira/browse/HADOOP-16850

System Issue # Title

17 HADOOP 14600 LocatedFileStatus constructor forces RawLocalFS to exec a process

to get the permissions

18 HADOOP 14369 NetworkTopology calls expensive toString() when logging

19 HADOOP 13403 AzureNativeFileSystem rename/delete performance improvements

20 HADOOP 4061 Large number of decommission freezes the Namenode

21 HADOOP 1073 DFS Scalability: high CPU usage in choosing replication targets and

file open

22 HBASE 11368 Multi-column family BulkLoad fails if compactions go on too long

23 HBASE 10209 Speed region assign in failover

24 HBASE 9377 Backport HBASE- 9208 ”ReplicationLogCleaner slow at large scale”

25 HBASE 9208 ReplicationLogCleaner slow at large scale

26 HBASE 8778 Region assigments scan table directory making them slow for huge

tables

27 HDFS 15415 Reduce locking in Datanode DirectoryScanner

28 HDFS 15150 Introduce read write lock to Datanode

29 HDFS 14997 BPServiceActor processes commands from NameNode asyn-

chronously

30 HDFS 14859 Prevent unnecessary evaluation of costly operation getNumLive-

DataNodes when dfs.namenode.safemode.min.datanodes is not zero

31 HDFS 14854 Create improved decommission monitor implementation

32 HDFS 14657 Refine NameSystem lock usage during processing FBR

33 HDFS 14613 BlockManagerSafeMode should avoid to check datanode thresholds

with default zero value.

34 HDFS 14497 Write lock held by metasave impact following RPC processing

120

https://issues.apache.org/jira/browse/HADOOP-14600
https://issues.apache.org/jira/browse/HADOOP-14369
https://issues.apache.org/jira/browse/HADOOP-13403
https://issues.apache.org/jira/browse/HADOOP-4061
https://issues.apache.org/jira/browse/HADOOP-1073
https://issues.apache.org/jira/browse/HBASE-11368
https://issues.apache.org/jira/browse/HBASE-10209
https://issues.apache.org/jira/browse/HBASE-9377
https://issues.apache.org/jira/browse/HBASE-9208
https://issues.apache.org/jira/browse/HBASE-8778
https://issues.apache.org/jira/browse/HDFS-15415
https://issues.apache.org/jira/browse/HDFS-15150
https://issues.apache.org/jira/browse/HDFS-14997
https://issues.apache.org/jira/browse/HDFS-14859
https://issues.apache.org/jira/browse/HDFS-14854
https://issues.apache.org/jira/browse/HDFS-14657
https://issues.apache.org/jira/browse/HDFS-14613
https://issues.apache.org/jira/browse/HDFS-14497

System Issue # Title

35 HDFS 14476 lock too long when fix inconsistent blocks between disk and in-

memory

36 HDFS 14366 Improve HDFS append performance

37 HDFS 14171 Performance improvement in Tailing EditLog

38 HDFS 13821 RBF: Add dfs.federation.router.mount-table.cache.enable so that

users can disable cache

39 HDFS 13702 Remove HTrace hooks from DFSClient to reduce CPU usage

40 HDFS 13136 Avoid taking FSN lock while doing group member lookup for FSD

permission check

41 HDFS 12998 SnapshotDiff - Provide an iterator-based listing API for calculating

snapshotDiff

42 HDFS 12866 Recursive delete of a large directory or snapshot makes namenode

unresponsive

43 HDFS 12749 DN may not send block report to NN after NN restart

44 HDFS 11225 NameNode crashed because deleteSnapshot held FSNamesystem

lock too long

45 HDFS 10477 Stop decommission a rack of DataNodes caused NameNode fail over

to standby

46 HDFS 7213 processIncrementalBlockReport performance degradation

47 HDFS 5790 LeaseManager.findPath is very slow when many leases need recovery

48 HDFS 5757 refreshNodes with many nodes at the same time could slow down NN

49 HDFS 5341 Reduce fsdataset lock duration during directory scanning.

50 HDFS 5153 Datanode should send block reports for each storage in a separate

message

51 HDFS 4075 Reduce recommissioning overhead

121

https://issues.apache.org/jira/browse/HDFS-14476
https://issues.apache.org/jira/browse/HDFS-14366
https://issues.apache.org/jira/browse/HDFS-14171
https://issues.apache.org/jira/browse/HDFS-13821
https://issues.apache.org/jira/browse/HDFS-13702
https://issues.apache.org/jira/browse/HDFS-13136
https://issues.apache.org/jira/browse/HDFS-12998
https://issues.apache.org/jira/browse/HDFS-12866
https://issues.apache.org/jira/browse/HDFS-12749
https://issues.apache.org/jira/browse/HDFS-11225
https://issues.apache.org/jira/browse/HDFS-10477
https://issues.apache.org/jira/browse/HDFS-7213
https://issues.apache.org/jira/browse/HDFS-5790
https://issues.apache.org/jira/browse/HDFS-5757
https://issues.apache.org/jira/browse/HDFS-5341
https://issues.apache.org/jira/browse/HDFS-5153
https://issues.apache.org/jira/browse/HDFS-4075

System Issue # Title

52 IGNITE 12087 Transactional putAll - significant performance drop on big batches of

entries.

53 IGNITE 8681 Using ExpiryPolicy with persistence causes significant slowdown.

54 IGNITE 5578 Discovery events coalescing

55 IGNITE 5521 Large near caches lead to cluster instability with metrics enabled

56 IGNITE 1837 Rebalancing on a big cluster (30 nodes and more)

57 KAFKA 9393 DeleteRecords may cause extreme lock contention for large partition

directories

58 KAFKA 8736 Performance: ThreadCache uses size() for empty cache check

59 KAFKA 7142 Rebalancing large consumer group can block the coordinator broker

for several seconds

60 KAFKA 5642 Use async ZookeeperClient in Controller

61 KAFKA 4851 SessionStore.fetch(key) is a performance bottleneck

62 KAFKA 4469 Consumer throughput regression caused by inefficient list removal

and copy

63 KAFKA 4415 Reduce time to create and send MetadataUpdateRequest

64 SPARK 29351 Avoid full synchronization in ShuffleMapStage

65 SPARK 29048 Query optimizer slow when using Column.isInCollection() with a

large size collection

66 SPARK 27801 InMemoryFileIndex.listLeafFiles should use listLocatedStatus for

DistributedFileSystem

122

https://issues.apache.org/jira/browse/IGNITE-12087
https://issues.apache.org/jira/browse/IGNITE-8681
https://issues.apache.org/jira/browse/IGNITE-5578
https://issues.apache.org/jira/browse/IGNITE-5521
https://issues.apache.org/jira/browse/IGNITE-1837
https://issues.apache.org/jira/browse/KAFKA-9393
https://issues.apache.org/jira/browse/KAFKA-8736
https://issues.apache.org/jira/browse/KAFKA-7142
https://issues.apache.org/jira/browse/KAFKA-5642
https://issues.apache.org/jira/browse/KAFKA-4851
https://issues.apache.org/jira/browse/KAFKA-4469
https://issues.apache.org/jira/browse/KAFKA-4415
https://issues.apache.org/jira/browse/SPARK-29351
https://issues.apache.org/jira/browse/SPARK-29048
https://issues.apache.org/jira/browse/SPARK-27801

