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Abstract

Single-molecule methods have revolutionized molecular science, but techniques possessing

the bond-level structural sensitivity required for chemical problems—e.g. vibrational spec-

troscopy—remain difficult to apply in solution. This thesis describes a new approach,

fluorescence-encoded infrared (FEIR) spectroscopy, that couples IR-vibrational absorption

to a fluorescent electronic transition to achieve high-sensitivity vibrational detection in so-

lution with conventional far-field optics. Our approach uses a double resonance scheme that

first excites vibrations by resonant IR absorption, followed by an electronically pre-resonant

visible excitation (‘encoding’) that selectively brings the molecule to its fluorescent excited

state. Femtosecond IR and visible pulses are used to make these transitions coincident

within the picosecond vibrational lifetime, while splitting the IR pulse into a pulse-pair with

an interferometer enables Fourier transform measurements of FEIR vibrational spectra.

An FEIR instrument is described that combines design principles of ultrafast IR spec-

troscopy with single-molecule fluorescence microscopy to achieve high detection sensitivity.

Specifically, a trade-off in repetition-rate between the requirements of efficient fluorescence

photon counting and intense, femtosecond mid-IR pulse generation is satisfied by employing

a 1 MHz Yb fiber laser to pump the experiment, and the IR pulse delivery is integrated

into a confocal fluorescence microscope configuration. FEIR correlation spectroscopy, an IR-

vibrational analogue of fluorescence correlation spectroscopy, is introduced to demonstrate

single-molecule sensitivity in solution. Potential applications of this method as a vibra-

tional probe of dynamic solution-phase chemical processes are proposed. The role of FEIR

resonance conditions and other practical experimental factors in achieving single-molecule

sensitivity are discussed through a comparative study of coumarin fluorophores.

xxiii



To aid in understanding the spectroscopic information content of FEIR experiments, a

theoretical description based on fourth-order response functions for the electronic excited

population is developed. Incorporating the effect of finite pulses and inter-mode vibrational

coherence explains the appearance and encoding-delay dependence of FEIR signals in our

measurements. Polarization-dependent FEIR experiments that probe the relative orientation

of the vibrational and electronic transitions, as well as the manifestation of vibrational

relaxation phenomena in FEIR signals, are discussed.
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Chapter 1

Introduction

1.1 Interrogating single molecules: what can they tell us

and how can we ask?

1.1.1 The single-molecule advantage

Single-molecule (SM) methods have had a profound impact on how we describe molecu-

lar phenomena in chemistry, biology, materials science, and beyond. Studying the behav-

ior of molecules one at a time offers the unique ability to access their distinct individual

characteristics—information which would otherwise be lost within the ensemble average in a

conventional bulk experiment. The nature of this ‘hidden’ information and how it is revealed

can take may forms, and speaks to the wide diversity of research areas revolutionized by SM

approaches, as well as their continually expanding potential. Variations in each molecule’s in-

ternal configuration, their interactions with each other, or their local nanoscale environment

invariably lead to heterogeneity across a macroscopic sample. From a static perspective,

the distribution of this disorder can be directly probed by collecting observations on many

distinct individuals, while an ensemble measurement might only provide the mean, or else
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give ambiguous results as to the true extent and origin of the disorder.

Reaction coordinate Reaction coordinate

Ensemble relaxation Single-molecule trajectory
(synchronized) (asynchronous)

Figure 1.1: Performing time-dependent experiments at the ensemble and single-molecule
levels.

From a time-dependent perspective, SM observation can reveal the trajectory of a molec-

ular observable as it freely explores its configurational space. The simple power of this

idea has profound implications for the experimental study of dynamical problems, and is

illustrated in Figure 1.1. To observe time-dependent phenomena in an ensemble, molecules

across the entire sample must by synchronized so that a transient signal can be measured.

In practice, this requires some form of perturbation which either triggers the process of in-

terest, or prepares the ensemble in a non-equilibrium state. While the time-course of the

signal in principle follows the evolution of the ensuing molecular dynamics, it is also influ-

enced by the heterogeneity in the sample, and information is lost as the individual molecular

trajectories diverge. On the other hand, simply observing one of the molecules continuously

at equilibrium can often provide this dynamical information directly without the need for

synchronization. In fact, provided sufficient time-resolution and sampling, such trajectory
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measurements represent the purest form of studying kinetics and dynamics in that the res-

idence times within, transitions between, and overall history of states visited are directly

accessible.

1.1.2 Fluorescence: the workhorse of SM detection

The first demonstration of SM observation in 1989 by Moerner et al was accomplished by

measuring the optical absorption by a molecule’s electronic transition at cryogenic temp-

eratures.1 Capturing the minute change in the probe beam’s optical energy due to absorp-

tion by an individual molecule was an incredible feat of experimental design, and can be

appreciated by considering the highly sophisticated double-modulation approach that was

required to pull out the tiny SM signature. Shortly after this tour de force experiment, an-

other method for observing single molecules was demonstrated by Orrit et al (on the same

sample, no less!), this time by simply monitoring their fluorescence emission in response to

the optical excitation.2 The clear, fundamental advantage of the fluorescence detection ap-

proach is striking upon comparison—namely, due to the molecule’s Stokes shift, the emitted

fluorescence is at a longer wavelength than the excitation light and can be isolated by a spec-

tral filter, thereby creating an intrinsically background-free signal. Even if only a handful of

photons are emitted, they can be registered on a sensitive detector, whereas the analogous

situation in an absorption experiment requires measuring the loss of a few photons from the

intense and—due to the inherent shot noise at the photon level—noisy excitation beam.

Launched by this powerful background-free advantage, fluorescence excitation has gone

on to become the most widely adapted method for SM detection and spectroscopy. Further

advantages of fluorescence detection became evident as new capabilities emerged,3,4 includ-

ing transient observation of single-molecules in room-temperature solution5, direct imaging
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of single-molecules at room temperature in the optical near-field,6–8 and then the far-field

using confocal, wide-field, and total internal reflection configurations.9,10 The transition from

the optical near-field—characterized by the use of structures smaller than the wavelength of

light to influence its coupling into and out of a molecule within the same sub-wavelength

region—into the far-field—where the molecule is many wavelengths away from any optical

elements—is especially significant. With all far-field optics, the molecule can be left unper-

turbed in its natural environment, rather than needing to be placed in nanometer proximity

to the specially fabricated metallic nanostructures required for near-field probing. With ad-

vances in microscopy tools and methodologies, far-field fluorescence detection has become

compatible with SM observation in increasingly complex environments, ranging from free

solution, polymer matrices, and molecular glasses, to the interior of lives cells and even

biological tissues.

This adaptability to complex molecular environments has played a large part in the huge

success of SM fluorescence methods for studying biological problems through the investi-

gation of macromolecules like proteins and nucleic acids.11–13 These experiments use the

fluorescence of probe chromophores, either intrinsic to the target biomolecule or as extrin-

sic labels, to report on some aspect of the biomolecule’s state. The primary challenge of

experimental design is therefore how to encode the desired molecular properties into the flu-

orophore’s absorption or emission characteristics. One common strategy uses the change in

fluorescence brightness induced by binding to a specific site or structural motif, or resulting

from a biomolecule-catalyzed reaction.14,15 Fluorescence lifetime can be used to sense differ-

ences in solvent exposure or quencher proximity during conformational changes or folding,16

or the fluorescence polarization can be used to follow reorientation or rotational motion.17

Another highly successful approach is to employ Förster resonance energy transfer (FRET)
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between a pair of fluorophores to monitor nanometer-scale distance.18–21

A second, more incisive, reason SM fluorescence has been so impactful in molecular

biology may have become clear from considering the character of the fluorescence observables

in the examples above. Namely, the information content accessible from the fluorescent

probe is by and large limited to conformational coordinates greater than the size of the

chromophore, changes that influence its surroundings in an averaged way, or the outcome of

reaction events that change its chemical identity in a binary fashion. This lack of sensitivity

to the finer levels of chemical structure is fundamentally related to the delocalized character

of the electronic states at play in fluorescence, and sets a limit on the molecular resolution

that can be obtained. In the study of large biological macromolecules, much of the interesting

phenomena occur on these larger nanometer length scales, so fluorescence can (and continues)

to provide a wealth of valuable information. However, fluorescence spectroscopy consequently

has much more limited utility for situations requiring knowledge of structural information

at the level of chemical bonds within a molecule—that is, the study of chemistry.

1.2 Studying chemistry at the SM level with vibrational

spectroscopy

Addressing the problems of chemistry, i.e. those determined by the specific structure, inter-

actions, and reactivity of molecules, requires access to local chemical structure information.

Vibrational spectroscopy provides a direct view into chemical structure in that a molecule’s

normal modes of vibration encode the connectivity and strength of the bonds linking its con-

stituent atoms. Beyond reporting on a molecule’s static intramolecular composition, probing

its vibrations offers sensitivity to the formation and breaking of intermolecular contacts as
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well as other angstrom-scale changes in its structure—the dynamic molecular events that

drive chemical phenomena. Following the pioneering work in SM fluorescence spectroscopy,

a concurrent development of SM vibrational methods emerged to apply the SM advantage in

the problems of chemistry. While this combination of capabilities offers enormous potential,

SM vibrational detection presents unique technical challenges that compound the difficulty

of experiments, and continues to be developed in many different forms.

1.2.1 SM vibrational detection in the optical near-field

The primary difficulties associated with the optical detection of molecular vibrations are

their small light-matter interaction cross-sections and fast non-radiative relaxation rates,

precluding any kind of luminescent emission that could serve as a background-free signal.

Currently, the most prevalent approaches employ near-field optical effects to both amplify the

light-matter interaction and reduce the observation volume to the point were SM detection is

possible. The most important examples are surface- and tip-enhanced Raman spectroscopy

(SERS and TERS) which achieve near-field signal enhancement through nanometer prox-

imity or direct adsorption to a metallic nanostructure, and have been used extensively for

SM spectroscopy for over two decades.22–26 Infrared (IR) techniques based on scattering-

type scanning near-field microscopy (IR s-SNOM), atomic force microscopy (AFM-IR), and

other near-field schemes can isolate signals from small ensembles of oscillators at nanometer

length scales,27,28 and are being developed toward SM detection with some recent success.29

Non-optical methods based on scanning tunnelling microscopy (STM) have also been used to

probe the vibrations of individual molecules, and similarly rely on sub-nanometer localization

with a metallic probe.30 However, the necessity for contact with a surface, nanostructure,

or probe imposes severe restrictions on the types of samples that can be studied with these
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methods. Critically, molecular systems in solution or other condensed-phase environments

where these requirements are too perturbative remain out of reach.

1.2.2 Circumventing the near-field: Vibrational detection by double-

resonance fluorescence spectroscopy

An alternative approach that circumvents the optical near-field is to couple the ground-state

vibrational spectroscopy to a fluorescence read-out signal. Using the by now well-developed

far-field microscopy methods of SM fluorescence, this signal can be detected from molecules

left unperturbed in their natural environments, with all the detection sensitivity advan-

tages of fluorescence working in its favor. This idea long predates SM spectroscopy and

was explored in the work of Laubereau, Seilmeier, and Kaiser, who in 1975 introduced a

double-resonance method employing a picosecond IR pulse followed by a picosecond UV/Vis

pulse to resonantly excite vibrations and then selectively bring those molecules to their flu-

orescent electronic excited state.31–34 Critical to this approach is the use of pulses that are

of similar duration to or shorter than the typically picosecond vibrational lifetime, ensuring

that the sequential double-resonance process is competitive against the vibration’s popula-

tion relaxation. In fact, the original motivations for this approach were not necessarily of

chasing high detection sensitivity, but rather just as a way to investigate the up till then

unstudied relaxation dynamics of molecular vibrations in liquids with the newly-pioneered

picosecond IR laser pulses (presumably because IR detector technology lagged considerably

behind). However, the original demonstration of this idea, which was termed the ‘two-pulse

fluorescence’ experiment, showed sensitivity down to low µM concentrations, which is still a

remarkable ∼2-3 orders of magnitude below most modern time-resolved IR spectroscopies!

7



Chapter 1. Introduction

A similar double-resonance approach using stimulated Raman excitation instead of IR ab-

sorption was proposed by Wright,35 and later explored theoretically by Orrit and co-workers

as a potential technique for SM vibrational detection.36 Min and coworkers successfully

established this double-resonance Raman method—stimulated Raman excited fluorescence

(SREF) spectroscopy—using modern high repetition-rate laser sources and microscopy tools.

With this approach, they demonstrated the first SM vibrational detection operating entirely

in the far-field.37,38 Like the IR-pumped method pioneered by Kaiser and co-workers, using

picosecond pulses is crucial for achieving sufficient overall excitation efficiencies.

1.3 Fluorescence-encoded infrared spectroscopy

The work in this thesis describes an effort to take the concept of Laubereau, Seilmeier, and

Kaiser’s ‘two-pulse fluorescence’ experiment and develop it into a method for SM vibrational

spectroscopy in solution and soft-matter. In lieu of a compelling name from its historical

development, we term this approach fluorescence-encoded IR, or FEIR, spectroscopy. FEIR

is a mixed vibrational/electronic technique that operates on fluorescent molecules. As in

its original implementation described above, FEIR spectroscopy functions by the double

resonance scheme depicted in Figure 1.2(a). An IR pulse resonantly drives vibrations into

their first excited state, after which an electronically pre-resonant visible pulse selectively

brings the fluorophore to its electronic excited state. The resulting fluorescence emission

intensity is therefore dependent on the excited vibrational population created by the IR

field on the ground electronic state, and is used as an action signal that encodes vibrational

information.

In practice, the weak IR-vibrational absorption cross-sections and picosecond lifetimes
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Figure 1.2: Principle of FEIR spectroscopy and experimental schematic for detection in the
single-molecule regime. (a) Energy level diagram for FEIR spectroscopy. (b) Schematic of
the FEIR microscope and pulse sequence used for the experiments described in this thesis.

necessitate short, intense pulses of mid-IR light, and a similarly short visible encoding pulse.

Our implementation of FEIR spectroscopy uses femtosecond pulses, making it an ultrafast

time-domain technique sensitive to the vibrational dynamics occurring during the encoding

delay τenc. The short IR pulse duration corresponds to a large spectral bandwidth, which

we used to our advantage by performing Fourier transform measurements of the vibrational

spectrum. As shown in Figure 1.2(b), this is accomplished by splitting the IR pulse into

a pulse-pair and measuring the FEIR signal as a function of their relative delay τIR, after

which the molecule’s FEIR vibrational spectrum is recovered by Fourier transformation.

Our group’s initial entry into FEIR spectroscopy used the conventional instrumentation

of modern ultrafast IR spectroscopy, based on 1 kHz repetition-rate Titanium:Sapphire laser

technology with table-top optics. These experiments demonstrated the principle of ultrafast

9



Chapter 1. Introduction

and Fourier transform FEIR vibrational measurements at the high concentrations charac-

teristic of bulk IR methods.39,40 In this thesis we describe a new experimental approach

specifically tailored towards the goal of SM measurements that more fully integrates the

methodologies of ultrafast IR spectroscopy with those of fluorescence microscopy. Critical

to this approach is the use of a much higher 1 MHz pulse repetition-rate that enables effi-

cient single-photon counting detection of the small FEIR signals from individual molecules.

As stressed earlier in Section 1.2.2, the advantage of dealing with a fluorescence signal is

the availability of advanced, well-developed far-field microscopy tools to help with achieving

sensitive detection. In keeping with this philosophy, we adapt a confocal fluorescence micro-

scope configuration (shown in Figure 1.2(b)) with the IR and visible beams incident from

either side of the sample to achieve tight focusing, a small observation volume in solution,

and efficient collection of the fluorescence signal.

1.4 Thesis outline

This thesis is organized as follows. In Chapter 2 we discuss the general theoretical back-

ground for FEIR spectroscopy. The time-domain modality of our measurements is most

naturally handled by the nonlinear response function framework common to ultrafast and

multidimensional spectroscopy. Using this formalism connects FEIR spectroscopy to this

larger field, allowing us to draw upon decades of knowledge and practice to understand

the detailed workings of our experiments. The 4th-order response function description we

develop is closely related to nonlinear action methods gaining increasing popularity in the

multidimensional electronic spectroscopy community.

Chapter 3 is an extension of the theoretical development in Chapter 2 to incorporate

10



Chapter 1. Introduction

the effect of finite pulses. While the spectroscopic information content can largely be un-

derstood from the molecular response function alone, the actual appearance of real data can

be strongly influenced by the temporal and spectral pulse characteristics. As every photon

counts for an SM measurement, understanding each and every detail of the signal in this

way is worthwhile.

In Chapter 4 we discuss the details of the FEIR instrumentation, including the overarch-

ing technical design principles, generation of femtosecond mid-IR and visible pulses, FEIR

microscope, signal acquisition, and data processing.

Chapter 5 describes some of the concepts and theoretical principles of correlation spec-

troscopy, a class of quasi-SM methods exemplified by fluorescence correlation spectroscopy

(FCS) that leverage SM sensitivity to extract dynamic information from the equilibrium

fluctuations of an ensemble. Specifically, we discuss the implementation of FEIR correlation

spectroscopy (FEIR-CS) as an IR-vibrational analogue of FCS, and propose its potential

application to studying time-dependent chemical phenomena in solution.

Chapter 6 demonstrates experimentally that FEIR spectroscopy can achieve SM sen-

sitivity in solution. Our method for doing so is to perform proof-of-principle versions of

the FEIR-CS experiments introduced in Chapter 5. Although these measurements do not

probe interesting chemical reaction phenomena—only observing the diffusion of molecules

through the microscope’s observation region—they demonstrate the viability of FEIR spec-

troscopy for SM vibrational investigation while providing quantitative benchmarks for SM

FEIR signal levels.

Chapter 7 provides a more detailed investigation into the practical experimental factors

involved in achieving SM sensitivity, as well as the general quality of an FEIR measurement

in terms of contrast and signal-to-noise. Particular emphasis is given to the role of the FEIR

11



Chapter 1. Introduction

double-resonance condition (Figure 1.2(a)) as one of the central properties that must be

optimized for a successful experiment. These studies are carried out on a series of coumarin

FEIR fluorophores that are used throughout the remainder of the thesis.

Chapter 8 discusses the detailed interpretation of FEIR signals at early encoding delays.

Here we put the theoretical methods developed in Chapters 2 and 3 to use by comparing

response function simulations with real data.

Chapter 9 treats polarization-dependent FEIR spectroscopy, which interrogates the ori-

entational response of the molecule to yield information on the relative arrangement of its

vibrational and electronic transition dipoles. The theoretical framework is closely related

to the orientational response in 3rd-order coherent spectroscopies, and similar experimental

observables like the polarization anisotropy are useful under appropriate conditions. We

describe some examples of polarization-dependent FEIR experiments that could be used to

gain further structural insight.

Finally, in Chapter 10 we discuss how vibrational relaxation phenomena manifest in FEIR

spectroscopy. Perhaps it is fitting to come back full circle in this way to this original arena

of FEIR spectroscopy as conceived by Laubereau, Seilmeier, and Kaiser nearly five decades

ago. Consistent with their original measurements and many other time-resolved vibrational

experiments since then, our results suggest a picture of rapid picosecond depopulation of

the initial vibrational population through intramolecular vibrational energy redistribution

into a quasi-thermal distribution of the molecule’s low-frequency modes, which then cools by

dissipation into the solvent. This process results in an interesting dependence of the observed

signal relaxation during τenc on the FEIR double-resonance conditions, as well as suggesting

a potential mechanism for FEIR signal generation based on vibrational energy transfer.

12



Chapter 2

Theory of FEIR Spectroscopy

2.1 Introduction

In introducing the concept of FEIR spectroscopy, we have put forward a qualitative picture

consisting of three sequential molecular events: (1) excitation of the vibration by resonant

IR absorption, (2) upconversion to the excited electronic state (i.e. ‘encoding’) by resonant

visible absorption, and (3) emission of the fluorescence photon. Underlying these events are

fast system dynamics, which makes the problem of understanding and modelling the FEIR

process intrinsically time-dependent as well as nonlinear. Specifically, a key experimental

principle is the use of ultrashort pulses for vibrational excitation and encoding to ensure

the overall process is efficient in the presence of picosecond vibrational relaxation processes

ubiquitous in the condensed phase. A theoretical description of FEIR spectroscopy that

can adequately describe the details of our measurements must therefore be rooted in the

dynamical nature and time-domain modality of the technique.

Before delving into the spectroscopy, we highlight that the encoding transition (step (2))

is contingent on the existence of coupling between the molecule’s vibrational and electronic
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degrees of freedom. Vibrational-electronic (i.e. vibronic) coupling is therefore the key molec-

ular property that enables FEIR detection, or conversely, is the molecular observable most

sensitively revealed in FEIR measurements. Given the central importance of vibronic cou-

pling, as well as the wide variety of different physical effects that can give rise to it, we will

begin this chapter with a discussion of its theoretical description and its influence on the

spectroscopic transitions in an FEIR experiment.

An important simplification in describing the overall FEIR process arises from the large

separation of timescale between the femtosecond to picosecond vibrational dynamics and the

nanosecond electronic relaxation that gives rise to fluorescence emission. Namely, we can as-

sume that the processes of FEIR excitation (i.e. steps (1) and (2)) and fluorescence emission

(step (3)) are essentially independent. Our approach is to describe the excitation process

using the nonlinear response function formalism widely employed in the theory of ultra-

fast spectroscopy, and then treat the emission process phenomenologically. This theoretical

strategy is characteristic of action spectroscopy—the general class of techniques where the

detected observable is an indirect read-out of the spectroscopic excitation. Formally, action

observables are proportional to the population of an excited state or set of states that the

system is driven into by the excitation method. Action-based techniques, especially those

using fluorescence, are gaining wider popularity in the field of ultrafast and multidimensional

spectroscopy, and there is much useful insight to be gained by setting up our treatment of

FEIR spectroscopy within this wider context. We will therefore devote some time to intro-

ducing the perturbative response function formulation of nonlinear action spectroscopy, and

discuss how it differs from its more familiar form in coherent spectroscopy. Specifically, we

will explore a fundamental correspondence between a system’s coherent and action responses

occurring at n and n+ 1 orders of nonlinearity, respectively. This correspondence is by now
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well established in the link between 3rd-order coherent techniques like two-dimensional (2D)

spectroscopy, and their 4th-order action-based counterparts.

Casting the FEIR excitation process in perturbation theory language requires developing

the light-matter interaction to 4th-order, as two interactions each are required to describe

the transfer of population in steps (1) and (2). In terms of nonlinear response, FEIR spec-

troscopy is therefore on par with existing 4th-order action-detected spectroscopies, and by the

correspondence mentioned above also to 3rd-order coherent techniques. We will use the re-

sulting conceptual and technical analogies to our advantage by describing FEIR experiments

in the well-developed language of these ultrafast nonlinear methods. Specifically, FEIR as

performed in this thesis is a three-pulse (IR-IR-visible) experiment, in which the delay be-

tween the first two pulses (τIR) is scanned to resolve the vibrational excitation frequency via

Fourier transformation, while the delay before the third pulse (τenc) acts as a waiting time

in which the system evolves before the encoding step. These aspects of the experiment are

directly analogous to 2D spectroscopy, although FEIR does not go on to resolve a second

coherence period and conjugate frequency after the waiting time. As such, many direct

similarities exist in the spectroscopic information content and how it is visualized, as well

as in the practicalities of how measurements are conducted and data is processed. Mixed

IR/visible techniques such as 2D vibrational-electronic spectroscopy are especially closely

related.41–43

While these analogies are useful, it is also important to keep in mind that the pri-

mary motivations for developing FEIR spectroscopy—namely, for performing single-molecule

experiments—are different in many ways from those of ultrafast and multidimensional spec-

troscopies and lead to different priorities in experimental design. Along these lines, we will be

less concerned with how FEIR spectroscopy can probe ultrafast system dynamics or reveal
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the correlation between multiple transitions, but rather with how one-dimensional vibra-

tional spectra can be measured with the highest possible detection sensitivity. Nevertheless,

this richness in spectroscopic information content is still important to understand, as it can

have a major impact on the appearance of these apparently simple spectra and their in-

terpretation. Some examples of the information ‘beyond linear spectroscopy’ that appears

in FEIR experiments are vibrational relaxation dynamics, inter-mode vibrational coherence

and dephasing, and the relative orientation of vibrational and electronic transition dipoles.

Of particular importance is the contribution of vibrational coherence, and specifically how

these coherent signal contributions affect the appearance of spectra at early encoding delays.

The orientational dependence of the vibrational and electronic transition dipole moment

directions and resulting polarization-dependence of FEIR signals will be treated in Chapter

9, while vibrational relaxation phenomena are discussed in Chapter 10. The effect of the

real pulse characteristics used in experiment can also have a significant impact on measured

signals, and will be treated in Chapter 3. In short, the details matter, and the aim of the

present chapter is to provide the basic framework for incorporating all these various factors

into a unified theoretical description.

2.2 Vibronic coupling

2.2.1 Multimode vibronic Hamiltonian

Before embarking on developing response function expressions for FEIR experiments, it will

be useful to describe in some detail a model Hamiltonian for the types of systems studied with

FEIR spectroscopy. Of central importance is the coupling of the vibrational and electronic

degrees of freedom, as without such coupling the encoding transition cannot occur and any
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FEIR signal vanishes. At the outset it is worth noting that the term vibronic coupling is used

in various contexts to describe many different types of physical effects.44 Here we will work

within the Born-Oppenheimer framework, where the adiabatic separation of electronic and

nuclear coordinates is always assumed to hold. As such, non-adiabatic coupling effects will

not be considered.45 We will largely describe vibronic coupling within the Franck-Condon

approximation where spectroscopic transitions between adiabatic electronic surfaces proceed

with the nuclei fixed, although we will briefly discuss non-Condon effects in the form of

Herzberg-Teller coupling. In the Franck-Condon picture, vibronic coupling manifests through

the differences in the relaxed nuclear geometries of the initial and final electronic states, which

influence how their respective nuclear wavefunctions overlap, or, from a time-dependent

perspective, how a nuclear wavepacket evolves on the final electronic surface.46,47 Due to

the core importance of these wavefunction overlaps, i.e. the Franck-Condon factors, in

determining transition moments, we will devote some time to their calculation for our model

system.

We consider a two-level electronic system consisting of ground (g) and excited (e) levels

coupled to multiple harmonic vibration modes. Restricting ourselves to harmonic vibrations

is largely for convenience and analytic tractability. Importantly, the FEIR experiments ex-

plored in this thesis only access singly-excited vibrational levels, and are therefore not directly

sensitive to vibrational anharmonicity in the way that degenerate nonlinear IR techniques

like 2D IR spectroscopy are. The system Hamiltonian is

HS = |g⟩Hg⟨g|+ |e⟩(He + ℏω0
eg)⟨e| (2.1)

where Hg and He are the nuclear Hamiltonians for the electronic ground and excited states,
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respectively, and ℏω0
eg is the energy difference between electronic states. These nuclear Hamil-

tonians are intended to describe the spectroscopically accessible vibrations of the system.

Mostly what we have in mind by this are the chromophore’s high-frequency intramolecu-

lar vibrations resonant with the IR pulses in an experiment, although it is also possible to

consider low-frequency vibrations not within the window of the pulse spectrum. An anal-

ogous Hamiltonian could be used to describe the nuclear coordinates comprising the bath

that arise either from the molecule’s unobserved intramolecular coordinates or the solvent

environment, which would lead to a Brownian oscillator model that describes the electronic

energy gap dynamics and resulting lineshape.48 However, we will not pursue this approach

here. The nuclear modes are described by a set of normal coordinates qi and conjugate mo-

menta pi. In general, the normal coordinates are linear combinations of the mass-weighted

atomic Cartesian coordinates

qi =
∑
k

Lik

√
mk(xk − x0k) (2.2)

relative to the equilibrium geometry x0k, where Lik is the normal mode transformation.49 In

these coordinates the ground-state Hamiltonian is

Hg =
∑
i

p2i
2

+ Vg({qi}) (2.3)

with the ground-state potential

Vg({qi}) =
∑
i

1

2
ω2
i q

2
i (2.4)
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where ωi is frequency of the ith-normal mode coordinate. It is also convenient to switch to

dimensionless coordinates

Qi = (ωi/ℏ)1/2qi (2.5a)

Pi = (ℏωi)
−1/2pi, (2.5b)

in which the Hamiltonian is rewritten as

Hg =
∑
i

1

2
ℏωiP

2
i + Vg({Qi}) (2.6a)

Vg({Qi}) =
∑
i

1

2
ℏωiQ

2
i . (2.6b)

As we will see, both the conventional normal mode coordinates and their corresponding di-

mensionless versions will be useful in various contexts. The excited-state nuclear Hamiltonian

is

He =
∑
i

1

2
ℏωiP

2
i + Ve({Qi}), (2.7)

where the excited-state potential is expressed in terms of the ground-state coordinates as

Ve({Qi}) =
∑
i

1

2
ℏωiQ

2
i −

∑
i

ℏωidiQi +
1

2

∑
i,j

UijQiQj. (2.8)

In writing this expression we have taken the perspective of treating the effect of changing

the electronic state as a perturbation to the ground state potential, which acts to couple to

electronic and nuclear degrees of freedom in the molecule. We will generally refer to this
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form of vibronic coupling as Franck-Condon (FC) coupling, to distinguish it from Herzberg-

Teller coupling, which will be discussed briefly in Section 2.2.2. Specifically, moving from the

ground to excited state induces changes in the nuclear structure described by the difference

potential

Ve − Vg = −
∑
i

ℏωidiQi +
1

2

∑
i,j

UijQiQj, (2.9)

which separates effects due to linear FC coupling, described by di, and quadratic FC coupling,

described by Uij. More generally, higher order coupling terms could be included, which would

result in an anharmonic excited state. However, we will restrict our model to purely harmonic

effects.

Keeping only the linear term (i.e setting Uij = 0) results in the displaced harmonic

oscillator (DHO) model (Figure 2.1(a)), which is the most commonly adopted model for FC

vibronic coupling due to its simplicity, and, as we will see later, its analytic tractability.48,50

Specifically, the linear term displaces the minimum of the excited state potential relative to

the ground state by the dimensionless shift di along the ith-coordinate, which is evident by

completing the square in Eq. 2.8,

Ve =
∑
i

1

2
ℏωi(Qi − di)

2 −
∑
i

1

2
ℏωid

2
i . (2.10)

As we can see, this displacement also comes with a constant decrease in excited state energy

by 1
2
ℏωid

2
i , known as the reorganization energy associated with mode i. Many descriptions

of the displaced harmonic oscillator define the excited state Hamiltonian with this shift

added in so that the minimum of the potential does not change energy as it gets displaced

along the nuclear coordinate.48 In that picture, the value of the excited-state potential at
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-ħωidiQi

ħωidi
21

2—

di

Ve

Vg

ħωeg
0

Qi

Vg

Qi

Uii > 0
Uii < 0

a b c

VeVg

qi

qj

qj
(e)

qi
(e)

Ve

θ

Figure 2.1: Forms of FC coupling in the harmonic limit. (a) Linear FC coupling resulting in a
DHO model. The linear coupling term (red) is shown for the case of a positive displacement
di > 0, superimposed over the excited potential in the absence of coupling (gray). The
minimum of the resulting excited potential (black) is also shifted down in energy by the
reorganization energy 1

2
ℏωid

2
i . (b) Frequency changes of the excited-state potential resulting

from quadratic FC coupling. (c) Duschinsky rotation of the normal coordinates for a two-
dimensional potential as a result of off-diagonal quadratic FC coupling. The ground and
excited potentials are represented by solid black and dashed red contours, respectively. The
ratio of mode frequencies is ωi/ωj = 2, with no associated frequency changes in the excited
state. The modes are mixed by an angle of θ = −30◦, as indicated by the relative rotation of
the ground- and excited-state normal coordinate axes (solid black and red lines, respectively).

the ground-state equilibrium geometry Ve(Qi = 0) is consequently raised above ω0
eg by the

reorganization energy, while in our current description it remains unchanged. The Huang-

Rhys factor, defined as

Si =
1

2
d2i (2.11)

is a particularly convenient dimensionless parameter to describe the strength of the linear FC

coupling, as will become evident in Section 2.2.3 when calculating FC wavefunction overlap.
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The quadratic FC coupling terms are responsible for two other classes of physical effects:

(1) changes in mode frequency, and (2) mixing of the normal mode coordinates, commonly

referred to as Duschinsky mixing or rotation.51 When the off-diagonal quadratic couplings

are neglected (Ui ̸=j = 0), the remaining diagonal terms Uii can be seen to impart frequency

changes of

∆ωi = ω
(e)
i − ω

(g)
i = Uii/ℏ (2.12)

upon promotion to the excited state. As shown in Figure 2.1(b), the potential correspond-

ingly softens for Uii < 0 and hardens for Uii > 0.

The off-diagonal coupling terms Ui ̸=j mix the ground-state coordinates Qi in the excited

state. Without loss of generality, we require that Uij = Uji. Because the resulting excited-

state potential is still quadratic, however, a set of new, un-mixed excited-state coordinates

Q
(e)
i can be found by diagonalizing He. The result is a rotation of the normal coordinates

between the ground and excited states. Geometrically, we can see this explicitly for the

case of a two-dimensional potential with ground-state coordinates Q1 and Q2, in which the

rotational transformation

R =

cos θ − sin θ

sin θ cos θ

 , (2.13a)

with

θ =
1

2
tan−1

( 2U12

ℏω1 + U11 − ℏω2 − U22

)
(2.13b)

transforms the ground-state normal coordinates into the excited-state normal coordinates.52
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Figure 2.1(c) shows the ground and excited potentials for this case with θ = −30◦ and no

frequency changes (U11 = U22 = 0). For an arbitrary number of modes, this transformation is

accomplished by the so-called Duschinsky matrix Jij, which by convention is usually defined

to express the ground-state coordinates in terms of the excited-state coordinates and is

typically expressed with respect to the dimensional normal coordinates

qi =
∑
j

Jijq
(e)
j . (2.14)

Formally, the Duschinsky matrix can be expressed in terms of the normal mode transforma-

tions (Eq. 2.2) for the ground (Lij) and excited (L(e)
ij ) potentials,53

Jij =
∑
k

(L−1)ikL
(e)
kj . (2.15)

In terms of dimensionless coordinates, the Duschinsky matrix is modified by the square root

of the frequency ratios between modes54

Qi =
∑
j

J̃ijQ
(e)
j (2.16a)

J̃ij =

√
ω
(g)
i /ω

(e)
j Jij. (2.16b)

We note that while Jij is an orthogonal transformation ((J−1)ij = Jji), J̃ij is in general not

due to these frequency scalings. For our two-mode system the Duschinsky matrix is the

inverse of the rotation matrix in Eq. 2.13a, i.e. Jij = (R−1)ij. We note that in the presence

of off-diagonal quadratic coupling, frequency changes are no longer simply given by Eq. 2.12,

and are instead influenced in more complicated ways by the diagonalization procedure.
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2.2.2 Transition dipole moments

Spectroscopically, the coupling of vibrational and electronic degrees of freedom is most promi-

nently manifested through modifications to the transition dipole moments connecting vi-

bronic states. Here we describe some of these effects for our model system Hamiltonian,

with an emphasis on the transitions relevant for FEIR spectroscopy. Within the Born-

Oppenheimer approximation the total system dipole operator is the sum of electronic and

vibrational contributions

M(r,Q) = Melec(r) +Mvib(Q), (2.17)

which depend on the set of all electronic and nuclear coordinates, for brevity denoted by r

and Q, respectively. The vibronic eigenstates are taken to be adiabatic Born-Oppenheimer

wavefunctions

|a(r,Q)⟩ = |ψa(r,Q)⟩|χa(Q)⟩ (2.18)

where the nuclear part χa is independent of the electronic coordinates and the electronic part

ψa depends only parametrically on the nuclear coordinates. The transition dipole moment

connecting vibronic eigenstates a and b is therefore

Mba =⟨χb(Q)|⟨ψb(r,Q)|Melec(r)|ψa(r,Q)⟩|χa(Q)⟩

+⟨ψb(r,Q)|ψa(r,Q)⟩⟨χb(Q)|Mvib(Q)|χa(Q)⟩. (2.19)
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Vibrational transitions

When |a⟩ and |b⟩ belong to the same electronic state, |ψa⟩ = |ψb⟩ and the first term in Eq.

2.19 vanishes, assuming the system does not have a permanent electronic dipole moment.

The transition dipole moment then reduces to a pure vibrational transition dipole moment

Mba = ⟨χb(Q)|Mvib(Q)|χa(Q)⟩. (2.20)

FEIR spectroscopy deals only with the pure vibrational transitions on the electronic ground

state. The vibrational coordinate dependence of Mvib may be expanded in a power series

Mvib(Q) = µ(0) +
∑
i

µ
(1)
i Qi +

1

2

∑
i,j

µ
(2)
ij QiQj + · · · (2.21)

where the coefficients µ(0) = Mvib(Q0), µ
(1)
i =

(
∂Mvib
∂Qi

)
0
, µ(2)

ij =
(

∂2Mvib
∂Qi∂Qj

)
0

are evaluated at

the equilibrium geometry Q0. The constant term µ(0) can be ignored, as the accompanying

wavefunction overlap ⟨χb|χa⟩ = 0 in Eq. 2.20. The linear term µ
(1)
i produces the usual

IR harmonic selection rule ∆νi = ±1, while µ
(2)
ij and higher-order nonlinear terms describe

electrical anharmonicity of the vibrational dipole moment and are responsible for multi-

quantum overtone or combination band transitions. In this work we will only retain the

linear term, and denote the pure vibrational dipole moment of the i-th mode on the ground

state as µi.

Vibronic transitions

On the other hand, when |a⟩ and |b⟩ belong to different electronic states, |ψa⟩ and |ψb⟩ are

orthogonal and the second term in Eq. 2.19 vanishes. We will examine the case most relevant
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to FEIR spectroscopy where |a⟩ ∈ |g⟩ and |b⟩ ∈ |e⟩. The remaining term is

Mba =⟨χb(Q)|Meg(Q)|χa(Q)⟩, (2.22)

where the vibrational coordinate-dependence to the electronic transition moment comes from

the parametric dependence of the electronic wavefunctions in the integral

Meg(Q) = ⟨ψe(r,Q)|Melec(r)|ψg(r,Q)⟩. (2.23)

This Q-dependence can be similarly developed in a power series expansion

Meg(Q) = µ(0)
eg +

∑
i

µ
(1)
eg,iQi + · · · (2.24)

where µ
(0)
eg = Meg(Q0) is the pure electronic transition dipole moment at the equilibrium

nuclear geometry, while µ
(1)
eg,i =

(
∂Meg
∂Qi

)
0

describes linear coordinate-dependence through the

dipole derivative along the i-th mode. The Condon approximation neglects all vibrational

coordinate-dependence to the electronic transition dipole moment, keeping only the µ
(0)
eg

term. The resulting Franck-Condon vibronic transition matrix element is

Mba = µ(0)
eg ⟨χb|χa⟩, (2.25)

that is, simply the product of µ(0)
eg with the vibrational wavefunction overlap, i.e. the FC

factor. The µ(1)
eg,i term produces Herzberg-Teller (HT) coupling, which allows modes with zero

FC overlap to be active, i.e. gain or lose vibrational quanta, in the electronic transition.55

Similarly, dipole-forbidden electronic transitions, i.e. for which µ
(0)
eg = 0, may gain intensity
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through HT coupling to vibrations of appropriate symmetry. Specifically, by developing the

derivative µ
(1)
eg,i as an expansion over all electronic states, it can be shown that the HT-

active vibration acts to couple the forbidden g → e transition to other allowed electronic

transitions, thereby facilitating “intensity borrowing”.56,57 HT coupling is consequently often

important for weakly allowed electronic transitions, but less prevalent or obvious for the

strong, dipole-allowed electronic transitions that are mostly of interest for generating bright

signals in sensitive FEIR spectroscopy experiments. While exceptions to this observation

exist, in this work we will largely describe vibronic coupling in the FC approximation, and

only keep the µ
(0)
eg term in Eq. 2.24 which we will henceforth simply denote by µeg.

In terms of transition dipole orientation, an important consequence of the FC limit is that

the vibronic transition moments are necessarily aligned along the pure electronic moment µeg,

as the FC factor in Eq. 2.25 is a just scalar that modifies the magnitude of the transition. On

the other hand, HT coupling can influence the orientation of the vibronic transition moment

through the vectorial dipole derivatives µ
(1)
eg,i. In some cases, this form of coupling can fully

rotate the transition orientation by 90◦.58

2.2.3 Franck-Condon factors

Here we calculate some FC factors relevant to FEIR spectroscopy for our vibronic Hamil-

tonian, and demonstrate how they depend on the various forms of FC coupling discussed

in Section 2.2.1. We note that some authors reserve the term FC factor for the square

of the wavefunction overlap |⟨χb|χa⟩|2, however we will use this term to refer to the over-

lap ⟨χb|χa⟩ itself. We will consider the case discussed above where |χa⟩ and |χb⟩ are the

ground- and excited-state nuclear wavefunctions, respectively. As our model potentials
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are harmonic, these wavefunctions are multidimensional products of 1D harmonic oscilla-

tor wavefunctions,59,60 e.g. for the ground state

χa(Q) =
K∏
i=1

Nνgi
Hνgi

(Qi)e
−Q2

i /2 = |νg1 · · · ν
g
i · · · ν

g
K⟩ (2.26)

where νgi is the number of quanta in the ith-mode, K is the total number of normal modes,

Hνgi
(x) is the Hermite polynomial of degree νgi , Nνgi

is a normalization factor, and we re-

call that Qi is dimensionless (Eq. 2.5). The second equality indicates the notation for this

wavefunction in terms of the number of quanta in each mode. The excited-state nuclear

wavefunction is given by an analogous expression, but rather using the excited-state coordi-

nates Q(e)
i and their occupation numbers νei ,

χb(Q
(e)) =

K∏
i=1

Nνei
Hνei

(Q
(e)
i )e−(Q

(e)
i )2/2 = |νe1 · · · νei · · · νeK⟩. (2.27)

The FC factor is the multi-dimensional overlap integral61

⟨χb|χa⟩ = ⟨νe1 · · · νeK |ν
g
1 · · · ν

g
K⟩ =

∫
χ∗
b(Q

(e))χa(Q) dQ, (2.28)

where here we have expressed the integration over the ground-state coordinates, although it

would be equally valid to use the excited-state coordinates. In either case, it is necessary to

express one set of coordinates in terms of the other, which is accomplished by the following

linear transformation, often referred to as the Duschinsky transformation,

Qi =
∑
j

J̃ijQ
(e)
j + di. (2.29)
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Here J̃ij is the dimensionless version of the Duschinsky matrix from Eq. 2.16 and di is the

dimensionless displacement. We note that the Duschinsky transformation is more typically

expressed in terms of the dimensional normal mode coordinates53

qi =
∑
j

Jijq
(e)
j +

√
ℏ/ωidi. (2.30)

The interpretation of this expression is that the excited state normal modes are first rotated

(via Jij), and then displaced to match up to the ground state normal modes. To perform

the integrals in Eq. 2.28, the inverse Duschinsky transformation would be used to express

Q
(e)
i in terms of Qi,

Q
(e)
i =

∑
j

(J̃−1)ij(Qj − dj), (2.31)

that is, the ground-state modes are first displaced, and then rotated. We note that because

the vibrational wavefunctions in the integral are real-valued, the FC factor is consequently

also real and satisfies ⟨χb|χa⟩ = ⟨χa|χb⟩.

In the absence of mode mixing (Ui ̸=j = 0), the Duschinsky matrix is the identity, and the

multidimensional overlap integral can be separated into the products of 1D integrals over

each normal coordinate,

⟨νe1 · · · νeK |ν
g
1 · · · ν

g
K⟩ =

∏
i

⟨νei |ν
g
i ⟩, (2.32)

which greatly simplifies the situation and allows for relatively straightforward closed-form

expressions. Below, we discuss 1D FC factors first in the case of mode displacements without

frequency changes, yielding the well-known DHO FC factors, and then address the effects
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of frequency changes. Finally, we will return to the multidimensional treatment required for

incorporating the effects of mode-mixing.

Mode displacement

The case of purely linear FC coupling (Uij = 0), i.e. the DHO model, results in the following

simple closed-form expressions for 1D overlap integrals62

⟨νe|νg⟩ =



√
νe!

νg!

( d√
2

)νg−νe

Lνg−νe

νe

( d√
2

)
⟨0e|0g⟩, νg ≥ νe

√
νg!

νe!

(
− d√

2

)νe−νg

Lνe−νg

νg

( d√
2

)
⟨0e|0g⟩, νg ≤ νe,

(2.33a)

where d is the dimensionless displacement (Eq. 2.10) and the 0-0 FC factor is

⟨0e|0g⟩ = e−d2/4, (2.33b)

and Lk
n(x) are the associated Laguerre polynomials.63 The first few of these polynomials are

Lk
0(x) = 1 (2.33c)

Lk
1(x) = −x+ (k + 1) (2.33d)

Lk
2(x) = x2 − 2(k + 2)x+

(k + 1)(k + 2)

2
. (2.33e)

Figures 2.2(a)-(b) show these FC factors for νg = 0 and 1 and νe = 0, 1, and 2 as a

function of the dimensionless displacement d. Here we see that achieving a non-zero FC

factor with νg ̸= νe requires having a non-zero mode displacement, which is also evident

in the general case from Eq. 2.33a. These FC factors have the following symmetry when
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Figure 2.2: Selected DHO FC factors and their squares as a function of dimensionless dis-
placement d and Huang-Rhys factor S = d2/2. FC factors with (a) νg = 0 and (b) νg = 1
for νe = 0, 1, 2 as a function of d. (c) and (d) show the squares of the FC factors in (a) and
(b), respectively, as a function of S. The x axis range of [0, 3] in (c) and (d) corresponds
to the positive half of [−

√
6,
√
6] in (a) and (b). (e)-(f) Overlap of the ground-state (solid)

and excited-state (dashed) nuclear potentials and wavefunctions involved in the ⟨0e|1g⟩ FC
factor for displacements of d =

√
2 and d = −

√
2, respectively (S = 1). The corresponding

values of ⟨0e|1g⟩ are indicated in (b) with red and blue arrows, respectively. In both cases
the ground and excited potentials are vertically positioned so that the νg = 1 and νe = 0
wavefunctions share a common zero-level.

exchanging ground- and excited-state vibrational quantum numbers

⟨νe = l|νg = k⟩ = (−1)l−k⟨νe = k|νg = l⟩. (2.34)

Figures 2.2(c)-(d) show the corresponding squares of the FC factors in panel (a) and (b) as
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a function of the Huang-Rhys factor S = d2/2. In the special case where either νe = 0 or

νg = 0, the squares of the FC factors are given by a Poisson distribution

⟨ne = n|0g⟩2 = ⟨0e|ng = n⟩2 = Sne−S

n!
(2.35)

with the Huang-Rhys factor playing the role of the Poisson parameter. Of special importance

in FEIR spectroscopy is the 1-0 FC factor ⟨0e|1g⟩, which nominally controls the strength

of the encoding transition that brings the vibrationally excited molecule to the electronic

excited manifold under typical resonance conditions. In the DHO model, its square takes the

simple form |⟨0e|1g⟩|2 = S exp(−S) ≈ S, where this final approximation holds for small S.

Typical Huang-Rhys factors for vibronically active modes on electronic chromophores range

from S ∼ 0.01 to 0.5.64–66 In general, the following sum rule

∞∑
n=0

|⟨ne = n|ng⟩|2 =
∞∑
n=0

|⟨ne|ng = n⟩|2 = 1 (2.36a)

holds for any ng and ne, respectively, which simply reflects the normalization of the harmonic

oscillator wavefunctions.

In addition to the absolute magnitude, in some cases the sign of an FC factor depends

on d. Specifically, FC factors for which |νg − νe| is odd are odd functions of d, that is,

they will invert sign when d inverts sign. This can be seen graphically for ⟨1e|0g⟩, ⟨0e|1g⟩,

and ⟨2e|1g⟩ in Figures 2.2(a) and (b). Notably, the FEIR-relevant 1-0 FC factor exhibits

this sign inversion. The physical rational for the sign inversion can seen by considering the

parity and overlap of the initial and final wavefunctions, and is shown specifically for ⟨0e|1g⟩

in Figures 2.2(e)-(f). For positive displacement (panel (e)), the equilibrium position of the

coordinate lengthens in the excited state, resulting in overlap of |0e⟩ with the positive lobe
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of |1g⟩. Similarly, for negative displacements (panel (f)), the coordinate shortens, leading to

overlap of |0e⟩ with the negative lobe of |1g⟩. As we will see later when calculating FEIR

signals in Section 2.4.5, this sign change can produce a dramatic effect in the appearance of

FEIR spectra in the presence of vibrational coherence.

Frequency changes

Next we consider the effect of a change in mode frequency between the ground and excited

state induced by diagonal quadratic coupling (Uii). A general expression for ⟨νe|νg⟩ with

arbitrary displacement and frequency change may be found in Ref. [62], however here we

will specialize to the FEIR-relevant ⟨0e|1g⟩ FC factor. Explicitly,

⟨0e|1g⟩ = 2dβ2
√
1− β2√

2(1 + β2)(1− β4)
⟨0e|0g⟩, (2.37a)

⟨0e|0g⟩ =

√
2β

1 + β2
exp
( −d2β2

2(1 + β2)

)
, (2.37b)

where β2 = ω(e)/ω(g) is the ratio of excited- to ground-state frequency. In the limit β2 → 1,

direct substitution shows that ⟨0e|0g⟩ reverts to its DHO value of exp(−d2/4) = exp(−S/2).

Similarly, ⟨0e|1g⟩ is seen to achieve its corresponding DHO value of (d/
√
2) exp(−d2/4) =

sgn(d)
√
S exp(−S/2), where sgn(d) denotes the sign of d, with the help of the limit

limx→1

√
1− x2/

√
1− x4 = 1/

√
2. Figure 2.3(a) shows the magnitude of this FC factor

as a function of both S and β2. Importantly, the FC factor is zero for S = 0 regardless of the

frequency ratio, i.e. displacement is required for the mode to be FC active. Physically, this

reflects the fact that |0e⟩ always has equivalent overlap with the positive and negative lobes

of |1g⟩ for S = 0 independent of the frequency change which simply stretches or compresses
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the wavefunctions with respect to each other.
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Figure 2.3: Effect of frequency changes on the ⟨0e|1g⟩ FC factor (FCF). (a) Absolute value
of the FCF as a function of S and β2. (b) Ratio of the FCF to its β2 = 1 value as a function
of β2 for selected S values (indicated in (a) by arrows). The inset shows the region around
β2 = 1.

For non-zero S < 2, the FC factor’s magnitude increases for β2 > 1 (higher excited-state

frequency) and decreases for β2 < 1 (lower excited-state frequency). Figure 2.3(b) shows

the ratio of the FC factor for variable β2 against its β2 = 1 value for a range of S values.

The change is most significant for small S, but is overall a small effect given that frequency

changes for the high-frequency modes in electronically conjugated molecules are often below

10%. The inset shows that the changes to the FC factor are less than 5% within this range.

Mode-mixing

To demonstrate the effect of Duschinsky mixing, we analyze the two-mode system discussed

earlier in Section 2.2.1, as the physical geometry of the problem can be easily visualized. We

will consider the case where Q1 is the vibration of interest being interrogated in an FEIR
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Figure 2.4: Duschinsky transformation for a two-mode system. (a) Ground-state (black)
and excited-state (red) wavefunctions for various mixing angles plotted in the ground-state
coordinate frame (top row) and excited-state coordinate frame (bottom row). Solid and
dashed contours denote positive and negative wavefunction amplitude, respectively. Black
and red dots denote the origin of the ground and excited coordinates frames, respectively.

experiment, while Q2 is another system mode (of lower or higher frequency) that is not

being excited, i.e. a ‘spectator’ mode. The relevant FC factor in this scenario is ⟨0e10e2|1
g
10

g
2⟩.

Without mode-mixing this integral is separable, and we recover our earlier results: namely,

displacement along Q1 (e.g. linear FC coupling) is required for the FC factor to be non-

zero. Of special interest is the question of whether mode-mixing can alter this state of

affairs, i.e. can Q1 become vibronically active even without any displacement of its own?

As demonstrated in Figures 2.4 and 2.5, the answer is yes, mode-mixing can make this FC

factor non-zero under certain conditions that we will discuss below.

It is useful to begin at a qualitative level by visualizing the wavefunctions involved in

the overlap integral, and how they are influenced by the mode-mixing. Figure 2.4 shows
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the ground- and excited-state nuclear wavefunctions represented as contour plots for mixing

angles of θ = 0◦, 45◦ and 90◦. In this example we have set d1 = 0 and d2 =
√
2, and the

modes have a relative frequency ratio of ω2/ω1 = 1/2 with no frequency changes between

the ground and excited states. In order for the relative difference in frequency between

the modes to be visible (e.g. evident in the ellipticity of the |0e10e2⟩ contours), we have

employed dimensional normal coordinates qi, rather than the frequency-scaled dimensionless

coordinates Qi. The Duschinsky transformation is shown both from the perspective of the

ground-state coordinates (top row) and the excited-state coordinates (bottom row). Starting

in the ground-state coordinate frame, |0e10e2⟩ is first displaced along q2 by
√

ℏ/ω2

√
2, then

rotated by −θ. From the excited-state perspective, |1g10
g
2⟩ is first rotated by θ, then displaced

(along the new rotated q2 axis) by −
√

ℏ/ω2

√
2. The resulting relative positioning of the two

wavefunctions can be seen to be equivalent in both frames.

For θ = 0◦ and 90◦, |0e10e2⟩ symmetrically covers both the positive and negative lobes of

|1g10
g
2⟩, leading to zero overlap. However, for θ = 45◦ we see that due to the partial rotation,

there is more overlap of |0e10e2⟩ with the negative than the positive lobe of |1g10
g
2⟩, resulting in

a non-zero FC factor. One way to frame this is that mode-mixing has caused Q1 to “borrow”

FC activity from Q2.

Calculating FC factors for multi-dimensional harmonic systems with mode-mixing is

most conventionally done by way of recursion relations that build up arbitrary FC factors

from the 0-0 overlap,53,67–70 although analytic expressions (of substantial complexity) can be

found for low-dimensional cases.71–73 As our problem consists of one quantum of excitation

in a single mode in the ground state, the recursion method is thankfully very convenient.

Here we provide the relevant expression for the case of K modes74,75, which we will evaluate

numerically for our two-mode system. Using the notation |0e⟩ = |0e1 · · · 0el · · · 0eK⟩ and |0g +

36



Chapter 2. Theory of FEIR Spectroscopy

1gl ⟩ = |0g1 · · · 1
g
l · · · 0

g
K⟩,

⟨0e|0g + 1gl ⟩ =
1√
2
Bl⟨0e|0g⟩. (2.38a)

The recursion factor is the lth element of the vector

B = 2d
(
1−Ω1/2

g JX−1J−1Ω1/2
g

)
, (2.38b)

with

X = J−1ΩgJ+Ωe, (2.38c)

where d is a column vector of the dimensionless displacements, J is the Duschinsky matrix, 1

is the identity matrix, and Ωg and Ωe are diagonal matrices of the ground- and excited-state

frequencies. The 0-0 overlap is

⟨0e|0g⟩ = (detΩg detΩe)
1/4
(2N detJ

detX

)1/2
exp
[
−1

2
dTd+

1

2
YTX−1Y

]
, (2.38d)

with

Y = J−1Ω1/2
g d. (2.38e)

Using this expression, Figure 2.5(a) shows the value of the ⟨0e10e2|1
g
10

g
2⟩ FC factor as a

function of θ and d1 for d2 =
√
2. As in Figure 2.4, the frequency ratio is ω2/ω1 = 1/2 with

no frequency changes between the ground and excited states. The case of d1 = 0 we have been

considering is indicated by a dashed line, and shown explicitly in Figure 2.5(c). The three
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angles depicted in Figure 2.4 are indicated by arrows. The FC factor has 180◦ periodicity

in the mixing angle, which can be inferred by visual inspection of the wavefunctions. The

maximum value achieved by the FC factor in Figure 2.5(b) is near 0.1, a non-negligible

fraction of the 1D overlap ⟨0e2|1
g
2⟩ = e−1/2 ≈ 0.61 if the “spectator” mode was being excited.
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Figure 2.5: Effect of Duschinsky mixing on the ⟨0e10e2|1
g
10

g
2⟩ FC factor (FCF). (a) FC factor

as a function of θ and d1 for ω2/ω1 = 1/2. (b) Slice along d1 = 0 of the FC factor (top panel)
and its square (bottom panel). (c) FC factor as a function of θ and ω2/ω1 for d1 = 0. (d)
Slice along θ = 45◦ of the FC factor (top panel) and its square (bottom panel).

A crucial factor in facilitating this mixing-induced FC activity are the relative frequencies

of the two modes. Figure 2.5(c) shows the FC factor for the case of d1 = 0 as a function of θ
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and the frequency ratio ω2/ω1. As we can see, for a given mixing angle the FC factor increases

in absolute magnitude as the frequency ratio departs from unity, e.g. Figure 2.5(d) shows

the slice along θ = 45◦. In terms of the wavefunctions in Figure 2.4, this can be understood

by the improved selectivity of overlap between |0e10e2⟩ and the positive or negative lobe of

|1g10
g
2⟩ with increasing ellipticity of the wavefunctions. The FC factor vanishes as ω2/ω1

approaches unity, and when the modes are degenerate Duschinsky rotation is no longer well

defined. The sign of the FC factor flips when the frequency ratio switches from ω2/ω1 < 1

to ω2/ω1 > 1. For ω2/ω1 > 1, the maximum FC factor magnitude always occurs at a mixing

angle of θ = 45◦, while for ω2/ω1 < 1, it moves to increasingly lower mixing angles.

Overall, we have seen that mode-mixing can cause an undisplaced mode to gain FC

activity (i.e. achieve a non-zero 1-0 FC factor) if it mixes with a displaced mode of different

frequency in the excited state. The magnitude of the effect is highly dependent on the mixing

angle and relative frequency, and the example discussed here uses rather extreme cases of

these parameters. The importance of these effects are therefore highly system dependent,

and should be evaluated for the vibration and molecule at hand. For example, quantum

chemical calculations for the coumarin dyes used in the thesis show very little mode mixing

between the S0 and S1 states, while excited-state frequency changes are also small (< 5%).74

Therefore, the DHO model is likely a good model with which to understand vibronic coupling

as it pertains to the FEIR spectroscopy of these molecules.
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2.3 Nonlinear action spectroscopy

2.3.1 Fluorescence as action spectroscopy

Give the ubiquity of fluorescence as a tool in molecular science—or indeed as a basic phe-

nomenon observed in everyday life—it may appear somewhat surprising that a satisfactory,

fully self-consistent physical picture of the emission process is rather elusive.76 Fluorescence,

or the spontaneous emission of light from an electronically-excited molecule, is difficult to

describe rigorously with the typical semi-classical methods found in a physical chemist’s the-

oretical tool-box. Part of the subtlety arises from a rigorous description of photons, which

requires a fully quantum-mechanical treatment of the electromagnetic field,77,78 and is noto-

riously fraught with confusion and miscommunication.79 The interaction of such a quantum

field with the spectroscopic system of interest is a further complicating factor that goes be-

yond the typical formalism that chemists such as myself would prefer to use. Specifically,

the radiative relaxation of the excited level and associated emission of a photon is ultimately

governed by the interaction of the material system with the vacuum state of the radiation

field, although even this statement might elicit an indignant response from practitioners of

quantum optics.80–82

One solution to describing fluorescence-detected experiments in the face of these theo-

retical complexities is to simply ignore them. More precisely, if the details of the measure-

ment don’t explicitly reveal the quantum electrodynamical nature of spontaneous emission,

a simple phenomenological treatment is likely sufficient or even desirable. This approach of

theoretical agnosticism about the physical processes underlying the detection method can be

classified under the umbrella of ‘action spectroscopy’. Specifically, action spectroscopy refers

to any method whereby the spectroscopic signal is read out from the system by indirect
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means. Here our meaning of ‘indirect’ is defined in contrast to the situation in conventional

spectroscopy where excitation and signal generation can be treated on essentially the same

footing, e.g. directly monitoring absorption, scattering, interference, or amplification of the

interrogating electromagnetic field. The indirect response detected in an action experiment

is assumed to arise in a proportional manner from the spectroscopic excitation, but its de-

tails are not explicitly treated and can often involve substantial microscopic complexity.

In addition to fluorescence, some examples of action observables include the detection of

photocurrent, photoelectrons, ions produced by photofragmentation, mechanical motion, or

temperature changes and thermal gradients.

The term action spectroscopy is used in a variety of contexts with slightly different

meanings. It seems to have originated in the field of photosynthetic biology, where an action

spectrum measures the frequency-dependent effect of light on some biological response in an

organism.83,84 In fact, this idea dates back to the remarkable work of Engelmann in the 1880’s,

who measured the first action spectrum by monitoring the accumulation of aerotactic (i.e.

oxygen-seeking) bacteria around photosynthetic algae on a plate illuminated by spectrally-

dispersed light.85,86 The amount of oxygen produced by the algae in different regions of the

plate depended on the strength of photosynthetic response induced by the particular incident

color, which was correspondingly read out by the sizes of bacterial colonies which congregated

in the different regions. The resulting ‘bacterial accumulation’-detected spectrum (quite the

complicated action observable!) looks remarkably similar to the optical absorption spectrum

of chlorophyll.

Modern usage of the term action spectroscopy in physical chemistry is common in the

gas-phase community, where it refers mostly to techniques that detect ions produced by

dissociation proceeding optical absorption.87 Our usage of the term is aligned with that in
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ultrafast and multidimensional spectroscopy, where action detection formally refers to the

measurement of a specific excited state population by proxy through a proportional quantity.

Fluorescence is perhaps the most common mode of action detection in ultrafast spectroscopy,

which has roots in linear wave-packet interferometry experiments involving phase-controlled

femtosecond pulses,88–90 and is by now widespread in multidimensional experiments.91–94

Other more recent examples of action methods involve the detection of photocurrent,95–101

photoelectrons,102 and mass-resolved ions,103–106 to name a few. Fluorescence-detected action

spectroscopies are often referred to as ‘incoherent’, because the fluorescence emission from the

sample does not retain a coherent temporal phase-relationship to a macroscopic polarization

set up in the sample by the driving fields. Indeed, the creation of such a macroscopic

polarization is not required for the success of the experiment, and in fact does not even

occur at the relevant nonlinear order for spatial symmetry reasons that will be discussed

later in this section.

In the case of fluorescence, multiple types of information are in principle available beyond

intensity, including emission spectrum, polarization, and emission kinetics. In many cases

these can be incorporated in the action framework through phenomenological strategies. In

describing the FEIR experiments in this thesis, however, we will mostly be concerned with

intensity. Despite the theoretical subtleties mentioned above, we will use the term ‘photon’

liberally in this thesis. In the context of light detection what we really have in mind is a

click on a photon-counting detector, the accumulation of which describes the fluorescence

intensity.

The principle of action spectroscopy can be illustrated in the context of the following

simple and widely used phenomenological model for fluorescence emission. In this model,

electronically excited molecules can decay back to the ground state either by emitting a
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photon with the radiative rate constant Γr or through nonradiative relaxation with rate

constant Γnr. The number of excited molecules at time t therefore obeys the linear rate law

dN(t)

dt
= −(Γr + Γnr)N(t), (2.39)

and considering an ensemble of molecules excited impulsively at t = 0, the solution is

N(t) = N(0)e−(Γr+Γnr)t. (2.40)

The number of photons emitted in the interval [t, t+ dt] is determined by the radiative rate

F (t)dt = ΓrN(t)dt. (2.41)

The signal typically measured is the time-integrated fluorescence output (in practice scaled

by factors involved in the instrument’s detection efficiency)

F =

∫ t1

t0

F (t)dt (2.42)

where the integration bounds can in principle be set by a fast time-gated detector. In a

pulsed experiment, the excitation process occurs over and over again at the repetition-rate

of the laser system, and this signal is therefore more conveniently represented as the pulse-

train averaged photon count rate rather than the total number of photons collected. Taking

the integration bounds to cover the entire decay profile, we have

F =

∫ ∞

0

F (t)dt =
Γr

Γr + Γnr
N(0). (2.43)

43



Chapter 2. Theory of FEIR Spectroscopy

This defines the fluorescence quantum yield

ϕ = Γr/(Γr + Γnr), (2.44)

which dictates the probability that an excitation decays by photon emission. In action

spectroscopy language, the signal measured in experiment is sufficiently well-described by

Eq. 2.43, that is, only with knowledge of the initial excited populationN(0) and the quantum

yield ϕ. In other words, the physical processes and dynamics that actually give rise to the

emission of the photon do not need to be known in detail to calculate or analyze the signal

as detected in experiment. This perspective is useful for the FEIR experiments discussed in

this thesis, where for the most part the spectroscopic information is wrapped up in excitation

process, and the intensity of fluorescence emission merely acts to “read out” this excitation.

From a theoretical standpoint this means our efforts can go into simulating the excitation

process, i.e. calculating N(0), and the remainder of this chapter is devoted to this task.

When considering single molecules, rather than an ensemble, we can interpret the ex-

pressions above in terms of probability densities, rather than populations. Making the

substitution N(t) → Pexcited(t) = N(t)/Ntot where Ntot is the total number of molecules

in the ensemble, Eq. 2.40 is the probability density an initially excited molecule is still in

the excited state at time t, assuming a homogeneous ensemble.

2.3.2 Response function formulation of time-dependent perturba-

tion theory

Response functions provide a convenient method for calculating the response of a system ob-

servable to an external perturbation within the framework of time-dependent perturbation
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theory. The modern origins of this approach can be traced to the work of Kubo in develop-

ing methods for treating non-equilibrium dynamics.107 In the context of optical spectroscopy,

the external perturbation is the light-matter interaction between the incident electromag-

netic field controlled by the experimenter and the system being interrogated. The system’s

response is developed order-by-order in a perturbative expansion of the interaction, and

the resulting response function at the appropriate order of nonlinearity is used to describe

the nonlinear signals measured in experiment. This formulation is especially well suited to

time-domain experiments using multiple short pulses, as the correspondence between the

theoretical response functions and spectroscopic data can be made particularly direct under

appropriate conditions. Indeed, largely thanks to the highly influential work of Mukamel,48

the response function formalism is deeply embedded in the modern field of ultrafast spec-

troscopy down to the very language used in the interpretation and design of experiments.

It is useful to provide a brief overview of the response function approach as it is typically

applied to nonlinear spectroscopy. This method uses a semiclassical treatment of the light-

matter interaction in which the material system is described quantum-mechanically, while the

electromagnetic field is a classical function obeying Maxwell’s equations. Response functions

are most naturally represented when using the density matrix to describe the system and its

dynamics. The density matrix evolves according to the Liouville-von Neumann equation

∂ρ(t)

∂t
= − i

ℏ
[H(t), ρ(t)]. (2.45)

The Hamiltonian is expressed as

H(t) = H0 + V (t), (2.46)

45



Chapter 2. Theory of FEIR Spectroscopy

where H0 is the time-independent matter Hamiltonian describing the system and its en-

vironment, and the perturbation V (t) is the light-matter interaction taken in the dipole

approximation,108–110

V (t) = −µE(t). (2.47)

Here µ is the system dipole operator, E(t) is the incident electric field (a classical, real-

valued function), and to simplify the notation for the time being, we have ignored their

vector qualities. The vectorial nature of these quantities is, however, critical for describing

polarization-dependent spectroscopy, and will be built back into the response function later

on. Working in the interaction picture, a solution for the time-dependent density matrix can

be developed in a series expansion

ρ(t) = ρ0 + ρ(1)(t) + ρ(2)(t) + ρ(3)(t) + · · · . (2.48)

Each successive term is found by plugging the previous back into the Liouville-von Neumann

equation, yielding

ρ(n)(t) =
(
− i

ℏ

)n ∫ t

t0

dtn

∫ tn

t0

dtn−1 · · ·
∫ t2

t0

dt1[V (tn), [V (tn−1), · · · [V (t1), ρ0] · · · ]], (2.49)

where the initial state of the system (and hence 0th-order term in the perturbation) is ρ(t0) =

ρ0. The expectation value of any system observable O can then be expressed order-by-order
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as

⟨O(t)⟩ = O(0)(t) +O(1)(t) +O(2)(t) +O(3)(t) + · · · , (2.50a)

O(n)(t) = Tr{O(t)ρ(n)(t)}. (2.50b)

Plugging in Eq. 2.49, the nth-order contribution is

O(n)(t) = Tr{O(t)ρ(n)(t)}

=
(
− i

ℏ

)n ∫ t

t0

dtn

∫ tn

t0

dtn−1 · · ·
∫ t2

t0

dt1

× Tr{O(t)[V (tn), [V (tn−1), · · · [V (t1), ρ0] · · · ]]} (2.51)

=
( i
ℏ

)n ∫ t

−∞
dtn

∫ tn

−∞
dtn−1 · · ·

∫ t2

−∞
dt1E(tn)E(tn−1) · · ·E(t1)

× Tr{O(t)[µ(tn), [µ(tn−1), · · · [µ(t1), ρ0] · · · ]]}, (2.52)

where in the last line we have also sent t0 → −∞, taking ρ0 to be the equilibrium den-

sity matrix. Next, the integration variables are changed from absolute interaction times

tn, tn−1, . . . , t1 to the time intervals between interactions τn = t−tn, τn−1 = tn−tn−1, . . . , τ1 =

t2 − t1, yielding

O(n)(t) =
( i
ℏ

)n ∫ ∞

0

dτn

∫ ∞

0

dτn−1 · · ·
∫ ∞

0

dτ1

× E(t− τn)E(t− τn − τn−1) · · ·E(t− τn − · · · − τ1)

× Tr{O(t)[µ(t− τn), [µ(t− τn − τn−1), · · · [µ(t− τn − · · · − τ1), ρ0] · · · ]]}. (2.53)
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The trace’s invariance to cyclic permutation means we can arbitrarily shift the absolute

origin of time inside the trace, e.g. for any set of operators A1, . . . , An

Tr{A1(t)A2(t) · · ·An(t)} = Tr{U0(τ)U †
0(τ)A1(t)U0(τ)U †

0(τ)A2(t)U0(τ) · · · U †
0(τ)An(t)}

= Tr{U †
0(τ)A1(t)U0(τ)U †

0(τ)A2(t)U0(τ) · · · U †
0(τ)An(t)U0(τ)}

= Tr{A1(t+ τ)A2(t+ τ) · · ·An(t+ τ)}, (2.54)

where U0(τ) = e−iH0τ/ℏ is the free time-evolution operator. Applying such a transformation

to Eq. 2.53, we set t = τn + · · · + τ1, which removes the spurious t-dependence from inside

the trace by referring the origin of time to the first light-matter interaction. The nth-order

response then appears in the following form,

O(n)(t) =

∫ ∞

0

dτn

∫ ∞

0

dτn−1 · · ·
∫ ∞

0

dτ1E(t− τn)E(t− τn − τn−1) · · ·E(t− τn − · · · − τ1)

×R(n)(τn, τn−1, . . . , τ1), (2.55a)

where we have defined the nth-order response function

R(n)(τn, τn−1, . . . , τ1)

=
( i
ℏ

)n
θ(τn) · · · θ(τ1)Tr{O(τn + · · ·+ τ1)[µ(τn−1 + · · ·+ τ1), · · · [µ(τ1), [µ(0), ρ0]] · · · ]}

(2.55b)

=
( i
ℏ

)n
θ(τn) · · · θ(τ1)Tr{[[· · · [O(τn + · · ·+ τ1), µ(τn−1 + · · ·+ τ1)] · · · , µ(τ1)], µ(0)]ρ0}.

(2.55c)

These two alternate forms of the nested commutators inside the trace are related by repeated
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application of the identity [A, [B,C]] = [[A,B], C]. Although the Heaviside step functions

θ(τi) are redundant in light of the integration bounds in Eq. 2.55a, their inclusion reminds

us of the strict sequential time-ordering of the n light-matter interactions when working with

R(n) in isolation.

2.3.3 Response functions for coherent vs. action spectroscopy

The response function framework can be used to calculate any system observable, and there-

fore can be adapted to describe experiments using various detection stratgies. Here we will

make a general comparison between coherent and action techniques from the formal per-

spective of their response functions. In coherent spectroscopy, the experimentally measured

quantity is the electric field radiated from a material polarization induced by the incident

laser fields. This signal field is an intense, classical electric field, for which the details of gen-

eration, propagation, and detection are described by the laws of classical electrodynamics

independently of the molecular response. The object of interest is therefore the source po-

larization, which is usually expressed via the expectation value of the system dipole operator

P (t) = ⟨µ(t)⟩. (2.56)

This source polarization is really a macroscopic polarization density extended over the sample

by many wavelengths of light, and the right-hand side of this expression should be understood

as the density of microscopic dipole moments at a certain location averaged over a spatial

region much smaller than this wavelength.

On the other hand, in action spectroscopy the experimental observable is assumed to

be proportional to the population of a specific excited state or set of excited states. This
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population is intrinsically a property of an individual molecule or particle, and does not

depend on the spatial arrangement of the macroscopic sample. The system observable to be

calculated is therefore a projection operator

N = |f⟩⟨f | (2.57)

where for simplicity we consider a single relevant excited state |f⟩ which we will call the

target state. In general, there could be multiple target states to consider, each of which might

contribute to the resulting action signal with unequal weights. This case will be addressed

briefly at the end of this section. Evaluating the expectation value of the projection operator

is equivalent to calculating the density matrix element corresponding to the target population

⟨N⟩ = Tr{Nρ} = ρff .

The response function approach calculates the nth-order contributions P (n)(t) and N (n)(t)

via Eq. 2.55 with the observed system operator O = µ and O = N , respectively. Crucially, in

the coherent case both the perturbation and the system observable involve the dipole opera-

tor, and the nth-order response function is therefore made up of terms involving products of

n+1 dipole operators. This is not the case for action detection, where the nth-order response

function only contains products of n dipole operators. However, increasing the perturbative

order to n+ 1 for the action response function consequently reproduces these same number

of dipole operators found in the nth-order coherent response function. This association forms

the mathematical basis for the correspondence between coherent and action-based nonlinear

techniques. For spatial symmetry reasons that will be discussed below in Section 2.3.4, even-

order contributions to the nonlinear polarization vanish in isotropic media like free solution,

and therefore coherent spectroscopies that probe the bulk are odd-order techniques. As a

result, the corresponding action versions are described by even order response functions,
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which produces some formal distinctions worth mentioning.

For both coherent and action response functions, expanding the n nested commutators

inside the trace in Eq. 2.55b produces 2n total terms, called Liouville pathways. Because each

commutator represents the choice of placing a dipole operator on the left-side (associated

with a positive sign) or the right-side (negative sign) of the equilibrium density operator,

every pathway carries an overall sign given by (−1)k, where k is the number of right-side

dipole interactions. Each pathway has a complex conjugate partner (not considering overall

sign) formed by reversing the left/right choice for each of the n dipoles. In the coherent case,

the final (n+1)th dipole operator at time τn+ · · ·+τ1 is not considered as it is not associated

with a commutator. Therefore there are effectively 2n−1 independent complex terms, which

as shown below are formally multi-time dipole correlation functions.

To see how these terms play out, we examine the specific case of the 3rd-order coherent

response and the corresponding 4th-order action response. Using Eq. 2.55b, the coherent

3rd-order response function is

R
(3)
C (τ3, τ2, τ1) =

( i
ℏ

)3
θ(τ3)θ(τ2)θ(τ1)Tr{µ(τ3 + τ2 + τ1)[µ(τ2 + τ1), [µ(τ1), [µ(0), ρ0]]]}

=
( i
ℏ

)3
θ(τ3)θ(τ2)θ(τ1)

4∑
α=1

[
Rα(τ3, τ2, τ1)−R∗

α(τ3, τ2, τ1)
]

(2.58)

where the 23−1 = 4 constituent correlation functions are

R1 = Tr{µ(τ3 + τ2 + τ1)µ(0)ρ0µ(τ1)µ(τ2 + τ1)}

= ⟨µ(τ1)µ(τ2 + τ1)µ(τ3 + τ2 + τ1)µ(0)⟩, (2.59a)

R2 = Tr{µ(τ3 + τ2 + τ1)µ(τ1)ρ0µ(0)µ(τ2 + τ1)}

= ⟨µ(0)µ(τ2 + τ1)µ(τ3 + τ2 + τ1)µ(τ1)⟩, (2.59b)
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R3 = Tr{µ(τ3 + τ2 + τ1)µ(τ2 + τ1)ρ0µ(0)µ(τ1)}

= ⟨µ(0)µ(τ1)µ(τ3 + τ2 + τ1)µ(τ2 + τ1)⟩, (2.59c)

R4 = Tr{µ(τ3 + τ2 + τ1)µ(τ2 + τ1)µ(τ1)µ(0)ρ0}

= ⟨µ(τ3 + τ2 + τ1)µ(τ2 + τ1)µ(τ1)µ(0)⟩. (2.59d)

Here the bracket notation denotes an equilibrium average, i.e. for any operator A, ⟨A⟩ =

Tr{Aρ0}, and going between the first and second version of each expression is accomplished

by cyclically permuting the dipole operators so that ρ0 is the final member of product. We

note that taking the difference between complex conjugate terms in Eq. 2.58 results in the

coherent 3rd-order response function begin given by the imaginary parts of its correlation

functions.

Each pathway (i.e. a correlation function or its complex conjugate) can be given a

diagrammatic shorthand in a number of well-established ways,48,111 and in Figure 2.6(a) we

show a version that represents all the mathematical information present so far. We note

that these diagrams do not yet include information about the incident fields, which will

be incorporated later in Section 2.3.6 along with an expansion over system eigenstates to

produce so-called double-sided Feynman diagrams and ladder diagrams. Here a pathway is

represented by a double vertical line with time increasing in the upward direction. Each

left (i.e. ket) side dipole interaction is represented by an black node and line on the left,

while the right (i.e. bra) side interactions are red nodes and lines on the right. The time

intervals τi between these interactions are indicated by the vertical spacing between successive

nodes, and the time-ordering of the interactions is represented by the sequence in which they

progress from bottom to top. The final dipole operator (of which the expectation value is

begin taken) is shown in grey to distinguish it from the perturbation-theoretic light-matter
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(-1)2 = +1

Figure 2.6: Diagramatic representation of the constituent correlation functions making up
(a) the coherent response function R

(3)
C and (b) the action response function R

(4)
A . See text

for details.

interactions. Due to the cyclic invariance of the trace, it could be placed on either side of

the diagram without changing its mathematical meaning, but by convention it is placed on

the left (ket) side. The overall sign of the pathway is indicated above each diagram. The

diagram for a pathway’s complex conjugate is found by reflecting the original diagram across

the vertical, with the exception of the final grey node.

As mentioned above, the 3rd-order response function is proportional to the imaginary
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parts of its constituent correlation functions. This is a general feature of the odd-order,

while for even-order the response function is proportional to the real parts of its constituent

correlation functions. This arises because for odd n the complex conjugate pairs of pathways

have opposite signs, while for even n they have the same sign, producing purely imaginary

or real results when summed, respectively. To see this, we note that if the overall sign of a

pathway is (−1)k where k is the number of right-side interactions, then its conjugate’s sign

is

(−1)n−k = (−1)n/(−1)k =


−(−1)k n odd

(−1)k n even.
(2.60)

The prefactor (i/ℏ)n is imaginary for odd n and real for even n, so the response function

always works out to be purely real, as is required by Eq. 2.55a.

This distinction between odd and even order can be seen when comparing the results

above for 3rd-order coherent response with the 4th-order action response function

R
(4)
A (τ4, τ3, τ2, τ1) =

( i
ℏ

)4
θ(τ4)θ(τ3)θ(τ2)θ(τ1)

× Tr{N(τ4 + τ3 + τ2 + τ1)[µ(τ3 + τ2 + τ1), [µ(τ2 + τ1), [µ(τ1), [µ(0), ρ0]]]]}

=
( i
ℏ

)4
θ(τ4)θ(τ3)θ(τ2)θ(τ1)

8∑
α=1

[
Qα(τ4, τ3, τ2, τ1) +Q∗

α(τ4, τ3, τ2, τ1)
]
(2.61)

which has 24−1 = 8 constituent correlation functions

Q1 = Tr{N(τ4 + τ3 + τ2 + τ1)µ(τ3 + τ2 + τ1)µ(0)ρ0µ(τ1)µ(τ2 + τ1)}
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= ⟨µ(τ1)µ(τ2 + τ1)N(τ4 + τ3 + τ2 + τ1)µ(τ3 + τ2 + τ1)µ(0)⟩ (2.62a)

Q2 = Tr{N(τ4 + τ3 + τ2 + τ1)µ(τ3 + τ2 + τ1)µ(τ1)ρ0µ(0)µ(τ2 + τ1)}

= ⟨µ(0)µ(τ2 + τ1)N(τ4 + τ3 + τ2 + τ1)µ(τ3 + τ2 + τ1)µ(τ1)⟩ (2.62b)

Q3 = Tr{N(τ4 + τ3 + τ2 + τ1)µ(τ3 + τ2 + τ1)µ(τ2 + τ1)ρ0µ(0)µ(τ1)}

= ⟨µ(0)µ(τ1)N(τ4 + τ3 + τ2 + τ1)µ(τ3 + τ2 + τ1)µ(τ2 + τ1)⟩ (2.62c)

Q4 = Tr{N(τ4 + τ3 + τ2 + τ1)µ(τ3 + τ2 + τ1)µ(τ2 + τ1)µ(τ1)µ(0)ρ0}

= ⟨N(τ4 + τ3 + τ2 + τ1)µ(τ3 + τ2 + τ1)µ(τ2 + τ1)µ(τ1)µ(0)⟩ (2.62d)

Q5 = −Tr{N(τ4 + τ3 + τ2 + τ1)µ(0)ρ0µ(τ1)µ(τ2 + τ1)µ(τ3 + τ2 + τ1)}

= −⟨µ(τ1)µ(τ2 + τ1)µ(τ3 + τ2 + τ1)N(τ4 + τ3 + τ2 + τ1)µ(0)⟩ (2.62e)

Q6 = −Tr{N(τ4 + τ3 + τ2 + τ1)µ(τ1)ρ0µ(0)µ(τ2 + τ1)µ(τ3 + τ2 + τ1)}

= −⟨µ(0)µ(τ2 + τ1)µ(τ3 + τ2 + τ1)N(τ4 + τ3 + τ2 + τ1)µ(τ1)⟩ (2.62f)

Q7 = −Tr{N(τ4 + τ3 + τ2 + τ1)µ(τ2 + τ1)ρ0µ(0)µ(τ1)µ(τ3 + τ2 + τ1)}

= −⟨µ(0)µ(τ1)µ(τ3 + τ2 + τ1)N(τ4 + τ3 + τ2 + τ1)µ(τ2 + τ1)⟩ (2.62g)

Q8 = −Tr{N(τ4 + τ3 + τ2 + τ1)µ(τ2 + τ1)µ(τ1)µ(0)ρ0µ(τ3 + τ2 + τ1)}

= −⟨µ(τ3 + τ2 + τ1)N(τ4 + τ3 + τ2 + τ1)µ(τ2 + τ1)µ(τ1)µ(0)⟩. (2.62h)

These are depicted in Figure 2.6(b) using analogous diagrammatic notation. The only im-

portant difference in the diagrams is that the action of the final projection operator N within

the trace is represented by a loop connecting the left and right sides, indicating that a pop-

ulation is being computed, rather than a transition dipole connecting two different states.

Another consequence of the conjugate pathway pairs having the same sign for even n is

that the correlation functions cannot uniformly be defined to be positive, as is the case for
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odd n in which the positively signed pathway of a conjugate pair is conventionally defined

as the correlation function. For example, the ‘Four-wave mixing’ naming convention for

the 3rd-order coherent correlation functions Rα used in Eq. 2.59 and Figure 2.6(a) is well

established.48,112–115 However, the naming convention for 4th-order correlation functions Qα

is intrinsically more ambiguous, because it is no longer possible to choose the positively

signed pathways as the correlation functions. In practice, multiple different schemes are

used, e.g. by authors describing fluorescence-detected 2D electronic spectroscopy.93,116,117

Here, we have chosen a naming scheme designed to highlight the correspondence with R(3)
C :

Q1-Q4 have the same first three interactions as R1-R4 with a fourth interaction on the ket

side, while Q5-Q8 instead have the fourth interaction on the bra side.

The final remaining difference between the coherent and action response functions is in

the interpretation and treatment of the final time argument denoting the delay between the

last light-matter interaction and the evaluation of the system observable. In the 3rd-order

coherent case, the radiation of the detected signal field is driven by the oscillation of the

material polarization

Ẽsig(t) = iP̃ (3)(t) (2.63)

where in this expression, a complex representation denoted by a tilde has been used to

indicate a π/2 phase-shift. The time-dependence of the polarization is in turn determined

by the response function and incident fields via the multiple convolution integrals

P (3)(t) =

∫ ∞

0

dτ3

∫ ∞

0

dτ2

∫ ∞

0

dτ1R
(3)
C (τ3, τ2, τ1)

× E(t− τ3)E(t− τ3 − τ2)E(t− τ3 − τ2 − τ1), (2.64)
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This process is depicted schematically in Figure 2.7(a) for the case where the three light-

matter interactions occur with three short, well-separated pulses. We see that it is the

coherent system evolution during τ3 that produces the oscillating polarization.

tt=0

t3 t4

N(4)(t)

t1 t2

τ3 τ4τ1 τ2

t    0>>

t

t3t1 t2

τ3τ1 τ2

E1

P(3)(t)

E2 E3

E1 E2 E3 E4

a

b

N(4)¯

Figure 2.7: Generation of (a) the 3rd-order polarization and (b) the 4th-order population with
generalized pulse sequences and relevant perturbation-theoretic time variables. The limiting
final target population N̄ (4) after the action of the last pulse is indicated. Also shown is
the eventual relaxation of the target population on a time-scale much longer than the pulse
durations and time-delays.

In the 4th-order action case, an additional light-matter interaction promotes the system

to the target excited population. If a fourth short pulse is used for this interaction, as

depicted in Figure 2.7(b), the same coherent evolution in τ3 can be encoded in the time-

delay between pulses 3 and 4. This is the strategy adopted by essentially all action-detected

2D spectroscopy techniques. However, formally we still have the last time interval τ4 to deal

with. Specifically, the structure of the response function framework is set up to calculate
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N (4) at any time t, i.e.

N (4)(t) =

∫ ∞

0

dτ4

∫ ∞

0

dτ3

∫ ∞

0

dτ2

∫ ∞

0

dτ1R
(4)
A (τ4, τ3, τ2, τ1)

× E(t− τ4)E(t− τ4 − τ3 − τ2)E(t− τ4 − τ3 − τ2)E(t− τ4 − τ3 − τ2 − τ1).

(2.65)

The time-dependence of the target population is characterized by relaxation under the free

system plus bath Hamiltonian, and is in principle described by the τ4-dependence of R(4)
A .

While this relaxation is important—in fact critically so, as it is a consequence of the very

process giving rise to the action signal being detected—it is in general difficult to describe

microscopically, and more importantly its details usually do not directly influence the ex-

perimental observable. As discussed in Section 2.3.1, here is where the motivating principle

of action spectroscopy comes into play. We will simply use the initial population of the

target state created by the excitation fields as a proxy for whatever kind of experimental

signal is eventually recorded. In practice, this means we wish to calculate the value of N (4)

“right after” the last light-matter interaction. In the impulsive limit where the electric fields

envelopes are much shorter than any system dynamics and N (4) is directly proportional to

the response function, this is simply accomplished by setting τ4 = 0. However, when us-

ing arbitrary finite duration pulses a different approach is necessary to make this procedure

mathematically sound.

Our approach is to assume that the relaxation timescale of the target state is much longer

than the pulse durations (e.g. as in Figure 2.7(b)), and then calculate the limiting “final”

population created after the last pulse has finished interacting, i.e. N̄ (4) ≡ N (4)(t ≫ τp),

where t = 0 is set at the center of the last pulse and τp is the pulse duration (Figure 2.7(b)).

Taking this limit is most convenient in terms of the absolute time of the last interaction
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t4 = t− τ4,

N (4)(t) =

∫ t

−∞
dt4

∫ ∞

0

dτ3

∫ ∞

0

dτ2

∫ ∞

0

dτ1R
(4)
A (t− t4, τ3, τ2, τ1)

× E(t4)E(t4 − τ3)E(t4 − τ3 − τ2)E(t4 − τ3 − τ2 − τ1). (2.66)

This assumption lets us make two approximations. First, because the target population’s

relaxation is slow, N is approximately a constant of the motion under free evolution so that

N(τ4 + τ3 + τ2 + τ1) = N in Eq. 2.61. Second, the upper integration limit of the t4 integral

can be safely extended to t→ ∞, as the product of the four electric fields will be essentially

zero for these t4 values. This also takes care of causality, so the step function θ(t − t4) can

be dropped from the response function. The result is

N̄ (4) = lim
t→∞

N (4)(t) =

∫ ∞

−∞
dt4

∫ ∞

0

dτ3

∫ ∞

0

dτ2

∫ ∞

0

dτ1R
(4)
A,eff(τ3, τ2, τ1)

× E(t4)E(t4 − τ3)E(t4 − τ3 − τ2)E(t4 − τ3 − τ2 − τ1). (2.67)

with

R
(4)
A,eff(τ3, τ2, τ1)

=
( i
ℏ

)4
θ(τ3)θ(τ2)θ(τ1)Tr{N [µ(τ3 + τ2 + τ1), [µ(τ2 + τ1), [µ(τ1), [µ(0), ρ0]]]]}. (2.68)

This effective action response function does not depend on τ4, and only on the time intervals

between the four successive light-matter interactions. The corresponding correlation func-

tions are likewise given by Eq. 2.62 with the time dependence of N removed. The resulting

action signal intensity can then be taken to be simply proportional to N̄ (4).
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For fluorescence detection, the proportionality factor is the quantum yield ϕ which arises

from the relaxation dynamics of N , e.g. via the phenomenological treatment in Section

2.3. Specifically, accounting for the repetition-rate of the experiment r and overall detection

efficiency of a fluorescence photon η, the fluorescence count rate from the sample is

F = rηϕN̄ (4). (2.69)

In the case of multiple target states, more complicated relaxation dynamics like fast equili-

bration between excited levels can occur. However, in terms of the detected signal, the effect

of these dynamics can be described through a set of different quantum yields specific to the

various target states.93,117,118 These can then be included directly in the projection operator

to give an effective ‘action observable’

A =
∑
f

ϕf |f⟩⟨f |, (2.70)

which can be used in place of N in Eq. 2.68. This approach has been especially important in

modelling fluorescence-detected 2D spectroscopy signals from multi-chromophoric systems,

where processes like exciton annihilation control the yield from different excited states and

thus play a crucial role in re-weighting different excitation pathways.94,119 However, for the

FEIR experiments performed and analyzed in this thesis, we will assume a single target state

can be used to account for the emission process.
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2.3.4 Odd vs even in coherent vs action: Consequences of inversion

symmetry

The previous discussion laid out some of the differences in the structure of nonlinear response

functions at odd and even perturbative orders (specifically, 3rd and 4th-order, respectively),

which was motivated by the fact that only the odd-order coherent response can contribute

in media with inversion symmetry, also called centrosymmetry. As the corresponding action

response occurs at even order, does this same symmetry argument preclude its existence in

isotropic solution, where ensemble-averaged quantities necessarily have inversion symmetry?

Clearly the answer is no, as demonstrated by the success and general acceptance of 4th-order

theories of action-based 2D spectroscopy applied to isotropic systems. The explanation is

related to the fact that action response functions calculate system populations that, unlike

the material polarization, do not need to transform spatially with the coordinate system

chosen for the problem. However, this does not mean that nonlinear action response functions

are immune to the spatial symmetry properties of the system. On the contrary, inversion

symmetry in fact dictates that it is the odd-order contributions to the action response that

vanish in centrosymmetric media.

To discuss these points, here we examine the constraints imposed on nonlinear response

functions by inversion symmetry from a more rigorous standpoint. The following is based on

an argument laid out by Ippen for the nonlinear susceptibility,120 and can also be found in

the text by Butcher and Cotter.121 As a spatial symmetry property that has to do with how

the system ‘looks the same’ in opposing directions, inversion symmetry must be analyzed

with the vector nature of the system dipole moment and electric fields explicitly included.
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Updating Eq. 2.47, the light-matter interaction is

V (t) = −µ · E(t) (2.71)

where bold-face notation denotes a Cartesian vector. By Eq. 2.56, the nth-order material

polarization P(n) is also a vector, and the nth-order coherent response function R
(n)
C that

relates P(n) to the n incident fields is therefore a Cartesian tensor of rank n+1. Suppressing

the time-dependence and multiple time convolution integrals, the vector components of P(n)

are expressed as

P
(n)
i =

∑
j···s

R
(n)
C,ij···sEj · · ·Es, (2.72)

where each of the indices i, j, ..., s runs over the three lab-frame Cartesian components

X, Y, Z. The particular choice of lab-frame coordinates used to describe the system is ar-

bitrary, and any new coordinate system formed by an orthogonal transformation, i.e. one

that merely rotates or reflects the coordinate system, is in principle equally good. Such a

coordinate change may be effected by a transformation matrix T with the orthogonality

property

Tij = Tji = (T−1)ij. (2.73)
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Applying such a transformation to the polarization and fields expresses them in the new

coordinate system denoted by primed indices and components

P
(n)′
i′ =

∑
i

Ti′iP
(n)
i (2.74a)

E ′
j′ =

∑
j

Tj′jEj. (2.74b)

The orthogonality condition 2.73 means the inverse transformation back to the original

coordinates is also given by the same transformation matrix

P
(n)
i =

∑
i

Ti′iP
(n)′
i′ (2.75a)

Ej =
∑
j

Tj′jE
′
j′ . (2.75b)

Plugging Eqs. 2.75 into Eq. 2.72 yields

P
(n)′
i′ =

∑
j′···s′

R
(n)′
C,i′j′···s′E

′
j′ · · ·E ′

s′ , (2.76)

where

R
(n)′
C,i′j′···s′ =

∑
ij···s

Ti′iTj′j · · ·Ts′sR(n)
C,ij···s (2.77)

are the components of the transformed tensorial response function. This equation simply

demonstrates how the response function transforms, and is always true for any situation.

The specific case of inversion is described by the following orthogonal transformation that
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sends each coordinate to its negative

Tij = (−1)δij, (2.78)

where δij is the Kronecker delta. When the material system has inversion symmetry, however,

it and its relationship to the external fields must be invariant to this transformation, meaning

the tensor components of the response function must remain unchanged even as the fields

and polarization invert. Namely, applying Eq. 2.78 to Eq. 2.77, this constraint results in

R
(n)
C,ij···s = R

(n)′
C,i′j′···s′ = (−1)(n+1)R

(n)
C,ij···s. (2.79)

For even n this relation is only satisfied when every element is identically zero, i.e. the

even-order coherent response function vanishes for centrosymmetric media.

So what is different in the case of the action response? The target population is a scalar

quantity, so the nth-order action response function R
(n)
A that connects N (n) to the n incident

fields is only a tensor of rank n. Using similar notation as before

N (n) =
∑
ij···r

R
(n)
A,ij···rEiEj · · ·Er. (2.80)

Repeating the same argument as above shows that the tensorial action response function

transforms in exactly the same way, just with one less copy of the transformation matrix (n

rather than n+ 1)

R
(n)′
A,i′j′···r′ =

∑
ij···r

Ti′iTj′j · · ·Tr′rR(n)
A,ij···r. (2.81)
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Therefore, for a medium with inversion symmetry, the components must satisfy

R
(n)
A,ij···r = R

(n)′
A,i′j′···r′ = (−1)nR

(n)
A,ij···r, (2.82)

that is, the odd-order action response function vanishes!

The lesson of this analysis is that the tensorial properties of the material system’s response

functions must encode its spatial symmetries. The switching of the even-odd inversion

symmetry rule between nonlinear coherent and action spectroscopies is due to their respective

dependence on n + 1 and n dipole operators, which makes their corresponding nth-order

response functions tensors of rank n+1 and n, respectively. In fact, given the correspondence

of microscopic information content between nth-order coherent and (n + 1)th-order action

response functions, this switching should appear rather unremarkable. Namely, in order

to encode similar information, the nth-order coherent and (n + 1)th-order action response

functions had better vanish together if required by the symmetry of the system. We note

that the tensorial properties of the response functions analyzed here are specific to the

dipole-approximation, and higher multipolar light-matter interactions will result in different

symmetry considerations.121

It is worth making some comments on how action techniques fit into the convention

of classifying nonlinear spectroscopies based on the order of nonlinear susceptibility that

they ‘belong’ to. The nonlinear susceptibility χ(n) is the frequency-domain analogue of the

coherent response function, and relates frequency components of the nonlinear polarization to

those of the driving electric fields.48,121 Because the susceptibility is fundamentally associated

with the material polarization, the statement that a given action-detected experiment “is

χ(n)” is therefore not especially meaningful. However, along the lines of the correspondence

between nth-order coherent and (n + 1)th-order action response functions analyzed in this
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chapter, the most preferable statement would be that an nth-order action experiment is

χ(n−1). Some authors have used the term χ(3+1) when describing 4th-order fluorescence-

detected 2D electronic spectroscopy to emphasize the correspondences and differences with

coherent 3rd-order 2D electronic spectroscopy.122 The perspective advocated in this thesis,

however, is that it would be more correct (and useful) to say that such a 4th-order action

experiment, of which FEIR spectroscopy is an example, is a χ(3) technique.

2.3.5 Material pathways in the action response function

Progressing further with calculating the spectroscopic response for a given experiment re-

quires knowledge of the material system’s internal Hamiltonian including its interaction with

its environment, and is usually accomplished by expanding over a set of spectroscopically

relevant eigenstates. Here we return to the 4th-order action response function R
(4)
A , specif-

ically the ‘effective’ version where the target state’s population dynamics are not included

(Eq. 2.68). Overall, with the exception of the final projection onto the target state, the

4-point dipole correlation functions that make up R
(4)
A are common to the 3rd-order coherent

response, and the same strategies and methods can be used to evaluate them. The aim of

this section is to develop analogous expressions and notation for R(4) (we will henceforth

drop the subscript A) and discuss how the desired signals arise from the system’s response.

These expressions will form the basis for describing FEIR experiments in Section 2.4.

Expanding over system eigenstates first requires making a distinction between system

and bath by partitioning the material Hamiltonian as

H0 = HS +HB +HSB. (2.83)
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Here, HS is the system Hamiltonian describing the spectroscopically accessible coordinates

(e.g. the multimode vibronic Hamiltonian discussed in Section 2.2), HB describes the bath

which is assumed not to interact with the incident fields, and HSB describes the system-bath

interaction. To illustrate this process, we develop expressions for the correlation function Q1

in Eq. 2.62, which as we will see in Section 2.4 plays an important role in FEIR spectroscopy.

Indexing the system eigenstates independently by each a, b, c, and d, the correlation function

is expanded as follows,

Q1(τ3, τ2, τ1) =
∑
a,b,c,d

δfcµdcµcbµadµbaP (a)
〈
Gcd(τ3)Gbd(τ2)Gba(τ1)

〉
B
. (2.84)

Here P (a) = ⟨a|ρ0|a⟩ is the equilibrium population of the initial state |a⟩, Gij(t) is the

Liouville-space propagator for the ij system density matrix element, and the average ⟨...⟩B

denotes a trace over the equilibrium bath degrees of freedom. Explicitly, the propagator is

defined by its action on any bath operator A as Gij(t)A = exp(−iHit/ℏ)A exp(iHjt/ℏ), where

Hi = ⟨i|H0|i⟩ is the bath and system-bath coupling Hamiltonian associated with the system

eigenstate |i⟩. Specifically, Hi is a matrix element with respect to the system sub-space,

but an operator over the bath sub-space.123 The transition dipole moment µij = ⟨i|µ|j⟩

connecting systems states |i⟩ and |j⟩, is assumed to be independent of the bath coordinates.

The Kroenecker delta δfi is the effect of the projection operator N : the final state |i⟩ must

be the target state |f⟩, or belong to the target subsystem if there are multiple target states.

Each of the 8 correlation functions and their complex conjugates can be represented on the

Liouville-space coupling diagram in Figure 2.8.48,124 Each node corresponds to the propagator

of a specific system density matrix element according to Eq. 2.62, and evolves for the time

interval the separates successive nodes. The segments connecting nodes represent the dipole
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da

ad ac ab aa

aa

bb

dd

−∞ 0 τ1 τ2 + τ1 τ3 + τ2 + τ1

Q2≡C1

Q1≡C2

Q3≡C3

aa

bdba bc

cd ccca

* *

Figure 2.8: Liouville space coupling diagram illustrating all 4th-order pathways ending in a
population. The three pathways Q1, Q∗

2, and Q∗
3 are overlayed, which are respectively the

correlation functions C2, C1, and C3 relevant for FEIR spectroscopy, as discussed in Section
2.4. Their complex conjugates can be found by reflection across the diagonal perpendicular
to the dashed lines indicating the interaction times.

interactions, with left-side interactions that change the ket state going down, and right-side

interactions that change the bra state going to the right. As we can see, the requirement of

ending in a population after four interactions has fixed the number of independent eigenstate

indices that label the nodes at four (a, b, c, d), just as in the coherent 3rd-order response. The

pathway Q1 as well as two others that are relevant in FEIR spectroscopy are outlined.
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The homogeneous limit

In the homogeneous limit where the bath dynamics are sufficiently fast to decorrelate on the

shortest system timescales, the bath averages of the propagators factorize,113 for example in

Q1

〈
Gcd(τ3)Gbd(τ2)Gba(τ1)

〉
B
=
〈
Gcd(τ3)

〉
B

〈
Gbd(τ2)

〉
B

〈
Gba(τ1)

〉
B
. (2.85)

We can then use phenomenological models for the propagators Gab(t) ≡
〈
Gba(t)

〉
B

indepen-

dently in each evolution period, e.g. in the so-called optical Bloch model48,125

Gba(t) = θ(t) exp
(
−iωbat− Γbat

)
. (2.86)

Here, ωba = (Eb −Ea)/ℏ is a system eigenfrequency, and Γba is a population relaxation rate

for a = b and the dephasing rate for a ̸= b. This overall dephasing rate is related to the

population relaxation via

Γba = Γab =
1

2
(Γbb + Γaa) + Γ̂ba, (2.87)

where Γ̂ba is the pure dephasing rate. For a single transition, the inverse of the overall

dephasing rate is often referred to as the T2 time, the inverse population relaxation rate is

called the T1 time, and the inverse pure dephasing rate is termed T ∗
2 .126–128

The homogeneous limit breaks down when the timescale of bath-induced fluctuations in

the system energy levels are intermediate or slower than the time-resolution of the experi-

ment, nominally given by the pulse durations. This situation is, in fact, typically the norm in

femtosecond vibrational and electronic spectroscopies in the condensed phase. Indeed, much
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of the power of these methods, exemplified by the various flavors of 3rd-order and higher

multidimensional techniques, derives from the sensitivity of the multi-time correlation func-

tions to persistent heterogeneity which prevents their factorization. This general case can

be approached by pulling out the contribution oscillating at the system eigenfrequencies and

treating the remainder as a dephasing function F a,b,c,d
α (τ3, τ2, τ1) for α = 1, . . . , 8, which does

not factorize into terms depending on single time intervals, e.g. for the average in Eq. 2.85

〈
Gcd(τ3)Gbd(τ2)Gba(τ1)

〉
B
= exp

(
−iωcdτ3 − iωbdτ2 − iωbaτ1

)
F a,b,c,d
1 (τ3, τ2, τ1). (2.88)

Analytic expressions for the dephasing functions can be derived for some models of the bath

and its interaction with the system, notably the multimode Brownian oscillator model.48,123

However, the aim of this thesis is to illustrate the basic spectroscopic features of FEIR

experiments, and we will largely adopt the homogeneous limit to simplify the expressions

and their calculation.

Separation of vibronic and orientational contributions

The vectorial transition dipole moment connecting system eigenstates |a⟩ and |b⟩ can be

written as

⟨b|µ|a⟩ = µbaµ̂ba, (2.89)

where µ̂ba is the unit vector along the direction of the transition dipole and µba its magnitude.

Given that the system wavefunctions can in general be complex-valued, the transition dipole

matrix elements can also be complex quantities. However, it can be shown that if the system

Hamiltonian HS is time-reversal symmetric, its eigenfunctions can always be chosen to be
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real, ensuring that the dipole matrix elements in the energy eigenbasis are also real.108,129 It

is worth noting that Eq. 2.89 has some redundancy if the magnitude of the scalar part is

allowed to be positive or negative, as a change in sign in µba has the same effect as inverting

the unit vector µ̂ba. We will allow for this redundancy, as it is convenient to describe the

magnitude of Franck-Condon vibronic transitions through the scalar factor, which as we saw

in Section 2.2 can be positively or negatively signed.

Assuming independence of the vibronic and rotational degrees of freedom, i.e.

HS = Hvibr +Hrot, (2.90)

the fourth-rank tensorial correlation functions can be separated into products of scalar path-

ways describing the vibronic dynamics, and fourth-rank tensors describing the orientational

dynamics.130 In components,

(Qα)IJKL(τ3, τ2, τ1) =
∑
a,b,c,d

(Yα)
a,b,c,d
IJKL(τ3, τ2, τ1)Q

a,b,c,d
α (τ3, τ2, τ1), (2.91)

where I, J,K, and L each refer to the lab-frame Cartesian coordinates X, Y, Z, and α =

1, · · · , 8 indexes the 8 correlation functions. The orientational dynamics are conventionally

treated classically, and the resulting orientational response functions will be addressed in

Chapter 9. Therefore we will henceforth use HS to refer specifically to the vibronic part

of the system Hamiltonian. The scalar vibronic terms of Q1 expressed in the homogeneous

limit are

Qa,b,c,d
1 (τ3, τ2, τ1) = δfcµdcµcbµadµbaP (a) exp

(
−iωcdτ3 − iωbdτ2 − iωbaτ1

)
× exp

(
−Γcdτ3 − Γbdτ2 − Γbaτ1

)
. (2.92)
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The corresponding orientational correlation function elements are

(Y1)
a,b,c,d
IJKL(τ3, τ2, τ1) =

∑
ijkl

Ỹ ijkl
IJKL(τ3, τ2, τ1)

[
µ̂dc · î

][
µ̂cb · ĵ

][
µ̂ad · k̂

][
µ̂ba · l̂

]
(2.93)

where î, ĵ, k̂, and l̂ are the unit vectors along the Cartesian coordinates in the molecular

frame and Ỹ ijkl
IJKL(τ3, τ2, τ1) performs the orientational average to transform to the lab-frame,

and will be discussed in Chapter 9.

2.3.6 Diagrammatic notation, the rotating wave approximation,

and signal isolation strategies

So far we have developed expressions for the system response function, but have not examined

the role of the driving electric fields. Time-domain nonlinear experiments use the charac-

teristics of the pulse sequence to control the set of light-matter interactions encoded in the

response function. Depending on the type of experiment, the various ‘controls knobs’ of the

pulse sequence available to the experimenter could include inter-pulse delays and ordering,

field frequency and resonance, propagation wavevector, or field phase. Two well-established

systems of diagrammatic notation, known as double-sided Feynman (DSF) diagrams and

ladder diagrams, respectively, are employed to indicate how these field characteristics are

imprinted in the spectroscopic response.48,50,111,131,132 Here we give a brief overview of these

notations, and how their usage is specified to action spectroscopy.

DSF diagrams build off of the diagrammatic notation for the correlation functions intro-

duced earlier in Section 2.3.3, while ladder diagrams explicitly show the system’s energy level

level structure. Both types of diagram explicitly indicate the sequence of system eigenstates

that a given pathway from the response function progresses through, as well as information
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on the electric field that drives each transition. Specifically, the total electric field which

appears in the convolution integrals (e.g. in Eq. 2.67), is given by the sum of individual

pulse electric fields Ej

E(t, r) =
∑
j

Ej(t− Tj, r), (2.94)

where Tj is the arrival time of the j-th pulse, r is position in the sample, and we have ignored

the fields’ vectorial character. These fields are real-valued, as is the overall response function.

However, an exceptionally useful simplification that captures the effect of resonance, known

as the rotating wave approximation (RWA), comes about from breaking the fields into their

complex positive and negative frequency components. Explicitly, each field is expressed as

Ej(t, r) = E+
j (t, r) + E−

j (t, r) (2.95a)

E+
j (t, r) =

1

2
ej(t) exp

(
−iωjt+ ikj · r+ iϕj

)
(2.95b)

E−
j (t, r) = (E+

j (t, r))
∗. (2.95c)

The positive frequency complex component E+
j is formally the complex analytic representa-

tion of the field,133 and more about this decomposition will be said in Chapter 3. The utility

of this representation arises from the separation of the pulse’s field into a slowly-varying

envelope ej(t) and a phase factor exp
(
−iωjt + ikj · r + iϕj

)
that depends on the carrier

frequency ωj, wavevector kj, and possibly an additional constant phase ϕj. For simplicity,

this expression assumes that each pulse propagates spatially as a plane wave.121,134

Within the convolution integrals, all possible permutations of products between these

positive and negative field components and the complex material pathways making up the
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response function are present. The RWA amounts to only selecting those products in which

the integration variable-dependent phase factors from the fields approximately cancel out

with (i.e. are RWA conjugate to) those in the material pathways.48,135 Doing so results

in an integrand which varies slowly and therefore survives the convolution integrals. This

cancellation is only possible on resonance, i.e. when the field’s carrier frequency is similar

in magnitude to the transition energy gap. An explicit example of this cancellation can be

found in Section 3.2 of Chapter 3, where we see the RWA in action when evaluating the

convolution integrals.

|a〉〈a|

|b〉〈a|

|a〉〈a|

|a〉〈b|

Ket-side

Bra-side

Ej ∼ e+iω t e-ik ∙r e-iφ−

|a〉〈a|

|b〉〈a|

|a〉

|b〉

|a〉

|b〉
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|b〉

|a〉
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|b〉

|a〉
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Double-sided
Feynman diagram Ladder diagram Role under RWAComplex field factor

Ej ∼ e-iω t e+ik ∙r e+iφ+
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|a〉
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|b〉
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Figure 2.9: Rules for pairing a complex field phase factor to a transition in a material
pathway for DSF and ladder diagrams. All possible combinations of E+

j vs. E−
j , ket-side vs.

bra-side, and upward (ωba > 0) vs. downward (ωba < 0) are shown, and their resulting roles
within the RWA are indicated.
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DSF and ladder diagrams explicitly incorporate the RWA in a visually intuitive way,

which allows for straightforward book-keeping of the relevant terms. Figure 2.9 provides a

legend for how each field interaction is incorporated into both types of diagram, while Figure

2.10 shows examples of two different pathways contributing to the 4th-order action response

in both styles. DSF diagrams are ‘filled-in’ versions of the correlation function diagrams

in Section 2.3.3, where time progresses upwards, the system density matrix elements before

and after each light-matter interaction are indicated, and the intervening evolution periods

correspond to the propagators Gij(τk). An interaction driven by E+
j (E−

j ) is denoted by a

right (left) pointing arrow. The net result is that the field’s temporal phase evolution is RWA

conjugate to that in the material pathway for an inward pointing arrow (E+
j on the ket-side or

E−
j on the bra-side) when the pathway transitions upwards in energy (ωba = (Eb−Ea)/ℏ > 0

in Figure 2.9), or for an outward pointing arrow (E+
j on the bra-side or E−

j on the ket-side)

for a downward transition (ωba < 0).

This state of affairs naturally suggests the terminology that an upward transition driven

by an inward pointing arrow is absorption, while a downward transition driven by the outward

arrow is stimulated emission. While this nomenclature is useful, it is important to note that

we are not actually keeping track of the system’s or field’s energy after each interaction, so

these terms cannot be taken too literally. Indeed, individual diagrams do not describe the

actual time-evolving state of the system during the pulse sequence, nor do they correspond

to real physical processes. In this context, the labels absorption and emission should be

thought of as direct consequences of the RWA and reflect the resonant nature of the light-

matter interactions. It is instructive to consider the field/pathway combinations that do not

survive the RWA, e.g. involving a downward transition with an inward pointing arrow or

the other disallowed cases shown in Figure 2.9. In these cases, the diagram ‘looks wrong’,
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which works well as a visual guide to screen them out in a calculation within the RWA.

Ladder diagrams encode the same information, and have the advantage of simultaneously

displaying the system’s energy-level structure. In a ladder diagram, time progresses from

left to right, and ket- or bra-side interactions are represented by solid or dashed arrows,

respectively. The upward or downward direction of the arrow corresponds to the inward or

outward direction of the corresponding arrow in a DSF diagram, i.e. not directly to E+
j vs.

E−
j , which could be considered a disadvantage. Another disadvantage of ladder diagrams is

that the propagators for the evolution periods between interactions are less evident than in

the DSF representation.

|α〉

|β〉

τ3τ2τ1

|α〉〈α|

|β〉〈α|

|β〉〈β|

|β〉〈χ|
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|χ〉
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+

E2
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−
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Figure 2.10: Comparison of DSF and ladder diagrams for two example pathways contributing
to a three-level system’s 4th-order action response. (a) and (b) are equivalent DSF and
ladder diagrams, respectively, for an excited-state pathway belonging to Q1, while (c) and
(d) represent a ground-state bleach pathway in Q∗

7.

Figure 2.10 compares both types of diagrams for two example pathways contributing
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to the 4th-order action response of a three-level system with eigenstate energies ordered as

Eα < Eβ < Eχ, and in which |χ⟩ is the target state. The pathway shown in panels (a) and

(b) belongs to Q1 and can be labelled as an excited-state absorption pathway progressing

through the intermediate state |β⟩. All four interactions are absorptive, and the pathway

has rephasing character, meaning the sign of the pathway’s phase evolution in τ1 is opposite

that in τ3. As we will discuss in Section 2.4, this pathway is relevant to FEIR spectroscopy,

where it is one of a set of pathways that represent the sequential excitation of the vibration

followed by the encoding transition. Figures 2.10(c) and (d) show a pathway belonging to

Q∗
7. Notably, the sequence of RWA-conjugate field factors E±

j are the same as in panels

(a) and (b), however the second transition is emissive, and the resulting diagram represents

a ground-state bleach. This type of pathway will not contribute to the FEIR signal under

typical resonance conditions. Both pathways end in the target population |χ⟩⟨χ|, as required

in order to contribute to the action response.

In both styles of diagram, we have only shown the four perturbation-theoretic light-matter

interactions leading to the population of the target state, as this is formally the full extent

of what is being calculated. However, it is common practice for DSF diagrams in action

spectroscopy (particularly fluorescence-detected techniques) to additionally include a final

pair of squiggly arrows emanating from both sides of the diagram,94,136,137 or alternatively a

horizontal arrow above the top to indicate the ‘signal emission’.93,138 One reason for doing

this is to highlight the correspondence to diagrams for 3rd-order coherent spectroscopy in

which the trace against the final dipole operator is depicted as an outgoing squiggly arrow

(i.e. as in Figure 2.6). However, in the action case the final projection onto the target

population is already explicitly indicated in the DSF diagram (e.g. by |χ⟩⟨χ| after the final

rung). Therefore, while these additional arrow(s) are perhaps visually compelling, they
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do not contribute any new mathematical meaning to the diagram within the scope of the

formalism presented here. As the primary goal of the diagram is to directly represent a

mathematical term in the response calculation, we will therefore avoid this convention.

Signal isolation: Phase-matching vs. phase-cycling and phase-modulation

Before concluding this section, it is worth making some comments on the differences in

the type of signal isolation strategies that are possible in coherent vs. action techniques.

The crucial distinction involves the spatially-extended nature of the macroscopic polariza-

tion central to coherent spectroscopy, which is tied to the phenomenon of phase-matching.

Phase-matching refers to how the wavevector of the nonlinear polarization, and therefore

the emitted signal field (Eq. 2.63), is related to those of the driving fields. Specifically, the

propagation wavevector for a signal field radiated by the 3rd-order polarization is given by

ksig = ±k1 ± k2 ± k3, (2.96)

where the individual choice of plus or minus for each field wavevector depends on whether

E+
j or E−

j is RWA conjugate for each interaction, respectively. In this way, the wavevector

of the signal a given pathway will contribute to can be directly read off of its diagram.

Isolating the contribution from a subset of desired pathways can therefore be aided through

control of the incident fields’ wavevectors, for example by employing a fully non-collinear

beam geometry where each pulse propagates toward the sample along a unique wavevector.

Phase-matching is the result of alternating constructive and destructive interference be-

tween radiation from the countless microscopic dipole oscillations making up the polarization

density across the sample.48,121,139 The successful operation of coherent techniques is therefore

intimately tied to the polarization’s macroscopically-extended and possibly spatially-varying
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structure. For example, in 2D spectroscopy performed in the BOXCARS geometry, the

result of the first two pulses is to imprint the system’s coherent τ1 phase evolution in an

excited population grating extended over the beam overlap region, which helps explain why

measurements can be made at waiting times much longer than the transitions’ dephasing

timescale (often by many orders of magnitude for electronic transitions).140 In the pump-

probe geometry, these first two pulses are collinear and the resulting spatial profile of excited

population is uniform (i.e. the grating wavevector is zero).129,141 However, signal generation

is still a phase-matched process requiring the coherent addition of radiation from the ensem-

ble of dipoles in order to produce a field strong enough to noticeably modulate the probe

beam’s intensity through interference.

In action spectroscopy, on the other hand, the macroscopic polarization is not involved

in signal generation, and, as discussed previously in Section 2.3.4, its relevant nonlinear

component in fact vanishes in centrosymmetric media due to the even perturbative order.

Furthermore, in the case of fluorescence detection, photon emission from individual molecules

is random and uncorrelated across the ensemble, so the net fluorescence signal from the sam-

ple is incoherent. Phase-matching is therefore not a viable strategy for pathway isolation.

On the contrary, for phase-sensitive action experiments it is required that the relative phases

of the driving fields be constant over the spatial region from which the action signal is be-

ing detected, so that the interferometric resolution is not washed away when collecting the

aggregate incoherent emission. For example, the implementation of fluorescence-detected

2D electronic spectroscopy by De et al122 employed a mildly non-collinear geometry, which

resulted in a spatial grating of target population in the sample. Successful detection of the

2D signal was only possible by selectively monitoring emission from the grating’s central

fringe through confocal imaging. As a result, nonlinear action spectroscopies—including our
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present implementation of FEIR spectroscopy—employ fully collinear beam geometries in

most cases, although for the reason mentioned in the previous paragraph the pump-probe

geometry is also viable for 4th-order experiments.142 A crucial feature of not having to rely

on the sample’s macroscopic polarization for signal generation is the applicability (in prin-

ciple) of action-based methods to single-molecule or single-particle detection. Indeed, this

is often one of the principle motivations cited for developing fluorescence-detected nonlinear

action techniques, and is central to our approach with FEIR spectroscopy. Femtosecond lin-

ear and nonlinear fluorescence-detected methods have been applied to study the electronic

spectroscopy of single-molecules in a variety of contexts.143–149

Signal isolation in nonlinear action spectroscopy is usually accomplished through various

flavors of phase control. In general, for a 4th-order experiment the additional constant phase

of ϕj in each incident field (Eq. 2.95) is imprinted in the signal via

ϕsig = ±ϕ1 ± ϕ2 ± ϕ3 ± ϕ4, (2.97)

where the choice of plus or minus is determined in the same way as in the case of phase-

matching above. Such a constant phase may be added to each pulse electric field by acousto-

optic modulation or pulse-shaping techniques.150 Phase-cycling is a strategy that involves

taking the linear combination of successive measurements with the ϕj set at different val-

ues such that unwanted contributions cancel out, revealing the desired signal.91,116,122,151,152

Phase-modulation is a similar approach in which the different ϕj are continuously swept

at unique frequencies, and the desired signal is recovered by demodulating the total re-

sponse by a reference constructed from the appropriate linear combination of sweeping

frequencies.90,92,153–155

As it turns out, for the FEIR experiments discussed in this thesis we will not need to
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explicitly employ phase-cycling or phase-modulation to extract the desired signal contribu-

tions (although employing such approaches could offer important improvements). We will

instead rely on the resonance conditions to reduce the number of pathways that contribute.

As discussed in Section 2.4.3, there is a close analogy with how signal components appear in

the total response between our implementation of FEIR spectroscopy and 2D spectroscopy

performed in the pump-probe geometry. This analogy is also useful in aspects of the exper-

imental design and data processing strategies which will be discussed in Chapter 4.

2.4 FEIR as fourth-order action spectroscopy

2.4.1 Overview

The physical picture for FEIR excitation is a sequential, double-resonance process consisting

of the absorption of an IR photon by the vibration, followed by the absorption of a visible

photon by a vibronic transition from the vibration’s excited level to the excited electronic

manifold. Putting this into perturbation theory language requires two light-matter interac-

tions for the IR-vibrational transition and two for the visible-vibronic transition, resulting in

a 4th-order description. Here, we will develop a theoretical description for FEIR excitation

based on the 4th-order action response function introduced in Section 2.3. While a 4th-order

response function formulation may at first seem unnecessarily complicated for understand-

ing the basic features of FEIR experiments, understanding all the details requires such a

treatment, and this development will be well worth it.

Just as resonance plays a critical role in successful experimental FEIR detection, it also

greatly simplifies the theoretical response function expressions by imposing strict conditions

on which pathways can contribute. Figure 2.11(a) shows a generalized energy level diagram
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Figure 2.11: Energy level diagram, pulse sequence, and target population in an FEIR exper-
iment. (a) Generalized energy level diagram for FEIR excitation. Relative energy gaps are
not to scale. (b) Pulse sequence, excited target population, and relevant time variables for
the calculation of the system response.

relevant to FEIR spectroscopy for the two-level electronic system coupled to multiple high-

frequency vibrations discussed in Section 2.2. Because there are only 2 IR-vibrational light-

matter interactions and the target state is only reached by two-photon material resonances,

only the singly-excited levels of the oscillators can be accessed. Specifically, neither overtone

nor combination states, e.g. in the notation of Section 2.2 |2gi 0
g
j⟩ or |1gi 1

g
j⟩, need to be

considered. We can therefore adopt the simplified level structure and notation where the

electronic ground state is composed of the global ground state |g, 0⟩ with zero quanta in all

vibrational oscillators, and the manifold of singly-excited vibrational states |g, 1i⟩ in which

the i-th mode has one quantum of excitation while all others remain in the ground state.

These system vibrational frequencies are assumed to be substantially higher than kBT/ℏ

so that the one-quantum manifold is not appreciably populated at equilibrium. Similarly,

the excited electronic state has the zero-quantum level |e, 0⟩ and corresponding manifold of

one-quantum levels |e, 1i⟩.
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The IR field (photon energy ℏωIR indicated by red arrow) is tuned to resonance with

the vibrational fundamentals, and has sufficient bandwidth to cover multiple transitions.

The visible encoding field (blue arrow) is tuned to be resonant with the transitions from

|g, 1i⟩ to |e, 0⟩. Critically, the visible frequency ωvis is below resonance with any transitions

from the equilibrium ground state |g, 0⟩ to the electronic excited state, as otherwise one-

photon excitation, e.g. to 2nd-order in the light-matter interaction, would dominate. As a

consequence of this resonance condition, transitions between the |g, 1i⟩ and |e, 1i⟩ manifolds

are also out of resonance. Therefore, the target state for action detection can simply be

taken to be |e, 0⟩, and the higher vibrational levels can be ignored. In general, the visible

field should also be narrowband with respect to the electronic linewidth to ensure good

spectral selectivity of double-resonance FEIR vs. one-photon excitation.

The pulse sequence used in an FEIR experiment is depicted in Figure 2.11(b). Explicitly,

the incident electric field is

E(t) = E3(t) + E2(t+ τenc) + E1(t+ τenc + τIR), (2.98)

where E1 and E2 are a pair of IR pulses separated by delay τIR, and E3 is the visible

encoding pulse delayed with respect to E2 by the encoding delay τenc. These pulses propagate

collinearly, and their parallel wave-vectors will therefore be left out of the notation. Two

light-matter interactions with the visible field are required to reach the target excited state,

and in the case of well-separated pulses shown in Figure 2.11(b) they must be sequential. In

what follows, we denote the total system dipole operator generically by M as in Section 2.2.2

to allow specific notation for vibrational and vibronic transition moments later on. For well-

separated pulses in the ‘proper’ ordering shown in Figure 2.11(b), the 4th-order contribution
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to the target population is

N̄ (4) ≡ lim
t→∞

N (4)(t) =

∫ ∞

−∞
dt4

∫ ∞

0

dτ3

∫ ∞

0

dτ2

∫ ∞

0

dτ1R
(4)(τ3, τ2, τ1)

× E3(t4)E3(t4 − τ3)E2(t4 − τ3 − τ2)E1(t4 − τ3 − τ2 − τ1), (2.99)

where the multiplication of the tensorial response function with the field vectors is understood

as a tensor contraction. Here we have used the limiting procedure described by Eqs. 2.66-2.68

with the effective action response function

R(4)(τ3, τ2, τ1)

=
( i
ℏ

)4
θ(τ3)θ(τ2)θ(τ1)Tr{N [M(τ3 + τ2 + τ1), [M(τ2 + τ1), [M(τ1), [M(0), ρ0]]]]}, (2.100)

where N = |f⟩⟨f | is the projection onto the target state |f⟩. We will treat the effects of

finite pulse duration, including different pulse interaction orderings that occur during their

temporal overlap in Chapter 3. The remainder of this chapter describes the basic features

of FEIR spectroscopy in the impulsive limit.

2.4.2 Response function

The system’s level structure and resonance conditions dictate that the target state is only

accessible through two-photon material resonances, specifically involving the singly-excited

vibrational states as intermediates. In terms of Liouville pathways for the response function,

this means that two bra and ket side interactions each are required to arrive in the target

state. This requirement immediately excludes all correlation functions in Eqs. 2.61-2.62 and

Figure 2.6 except for Q1, Q2, and Q3. For convenience and to establish specificity to FEIR
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spectroscopy, we will rename these correlation functions C1 ≡ Q∗
1, C2 ≡ Q2, and C3 ≡ Q∗

3.

Each of these correlation function is depicted in Figure 2.8. Explicitly, the response function

is written as

R(4)(τ3, τ2, τ1) =
1

ℏ4
θ(t3)θ(τ2)θ(τ3)

3∑
α=1

[
Cα(τ3, τ2, τ1) +Cα(τ3, τ2, τ1)

∗
]

(2.101)

with

C1(τ3, τ2, τ1) = Tr{NM(τ2 + τ1)M(0)ρ0M(τ1)M(τ3 + τ2 + τ1)} (2.102a)

C2(τ3, τ2, τ1) = Tr{NM(τ3 + τ2 + τ1)M(0)ρ0M(τ1)M(τ2 + τ1)} (2.102b)

C3(τ3, τ2, τ1) = Tr{NM(τ1)M(0)ρ0M(τ2 + τ1)M(τ3 + τ2 + τ1)}. (2.102c)

The scalar vibronic terms in these correlation functions expressed in the homogeneous limit

are

Ca,b,c,d
1 (τ3, τ2, τ1) = δfcMdcMcbMadMbaP (a) exp

(
−iωcdτ3 − iωbdτ2 − iωbaτ1

)
× exp

(
−Γcdτ3 − Γbdτ2 − Γbaτ1

)
(2.103a)

Ca,b,c,d
2 (τ3, τ2, τ1) = δfcMcbMdcMadMbaP (a) exp

(
−iωbcτ3 − iωbdτ2 − iωbaτ1

)
× exp

(
−Γbcτ3 − Γbdτ2 − Γbaτ1

)
(2.103b)

Ca,b,c,d
3 (τ3, τ2, τ1) = δfcMdcMadMcbMbaP (a) exp

(
−iωcdτ3 − iωcaτ2 − iωbaτ1

)
× exp

(
−Γcdτ3 − Γcaτ2 − Γbaτ1

)
, (2.103c)

85



Chapter 2. Theory of FEIR Spectroscopy

while the corresponding orientational tensor elements are

(Y1)
a,b,c,d
IJKL(τ3, τ2, τ1) =

∑
ijkl

Ỹ ijkl
IJKL(τ3, τ2, τ1)

[
m̂dc · î

][
m̂cb · ĵ

][
m̂ad · k̂

][
m̂ba · l̂

]
(2.104a)

(Y2)
a,b,c,d
IJKL(τ3, τ2, τ1) =

∑
ijkl

Ỹ ijkl
IJKL(τ3, τ2, τ1)

[
m̂cb · î

][
m̂dc · ĵ

][
m̂ad · k̂

][
m̂ba · l̂

]
(2.104b)

(Y3)
a,b,c,d
IJKL(τ3, τ2, τ1) =

∑
ijkl

Ỹ ijkl
IJKL(τ3, τ2, τ1)

[
m̂dc · î

][
m̂ad · ĵ

][
m̂cb · k̂

][
m̂ba · l̂

]
(2.104c)

These orientational correlation functions differ only in the order in which the transition

dipole unit vectors appear, and will be treated in Chapter 9. For the remainder of this

chapter we will restrict ourselves to analyzing the scalar vibronic response. Specifically, the

vibronic correlation functions are the sum over all material pathways

Cα(τ3, τ2, τ1) =
∑
a,b,c,d

Ca,b,c,d
α (τ3, τ2, τ1) (2.105)

for α = 1, 2, and 3.

2.4.3 Two- and three-pulse signals and FEIR spectra

The full pulse sequence shown in Figure 2.11(b) and reproduced here in Figure 2.12(a)

facilitates the measurement of Fourier transform (FT) vibrational spectra as a function of

encoding delay. The total FEIR signal F is proportional to the final target population N̄ (4)

via Eq 2.69, and is the sum of the following three contributions

F (τIR, τenc) = F12(τIR, τenc) + F1(τIR + τenc) + F2(τenc). (2.106)
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Figure 2.12: Pulse sequences with experimental delays and perturbation-theoretic interac-
tion time variables for (a) the two-pulse and (b) three-pulse signals. (c) Projection-slice
relationship between the τenc-dependent FEIR spectrum S(ω, τenc) derived form the three-
pulse signal (left panel) and the two-pulse signal F (τenc) (right panel) for a single lifetime-
broadened vibrational mode at 1600 cm-1 with 1 ps population relaxation calculated in the
impulsive limit. Explicitly, the two-pulse signal could be either F1(τenc) (i.e. with τIR = 0),
F2(τenc), or F (τIR = 0, τenc).

The contribution F12(τIR, τenc) is due to one interaction each with E1 and E2 and two with

the encoding field E3 (Figure 2.12(a)), and is therefore termed the three-pulse signal. The

three-pulse signal resolves the vibrational free-induction decay in τIR and is consequently

the desired signal for measuring vibrational spectra. F1(t) = F2(t) are two-pulse signals

where both IR-vibrational interactions occur with either E1 or E2, respectively (2.12b).

This situation is analogous to 2D spectroscopy experiments performed in the pump-probe

geometry, where the 2D signal (analogous to F12) must be separated from the pump-probe

signals (analogous to F1 and F2).129,141,156,157 Explicit expressions for these contributions in

terms of convolution integrals of the response function and pulse electric fields will be given
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in Chapter 3. By symmetry, the two- and three-pulse signals are related via

F12(τIR = 0, τenc) ∝ F1(τenc) = F2(τenc). (2.107)

The FEIR spectrum at a given encoding delay is given by the FT of the three-pulse signal

S(ω, τenc) = Re
∫ ∞

0

F12(τIR, τenc)e
iωτIRdτIR. (2.108)

The two-pulse signal measures the encoding delay dependence of the integrated vibrational

resonances projected onto the τenc-axis, as described formally by the projection-slice theorem

F12(τIR = 0, τenc) =

∫ ∞

−∞
S(ω, τenc)dω (2.109)

in conjunction with Eq. 2.107. This relationship between the spectrum and two-pulse signal

is demonstrated in Figure 2.12(c) for the case of a single vibrational mode, discussed below

in Section 2.4.4.

In practice, the two-pulse signal can be measured either by blocking E1 (measuring

F2(τenc)), or setting τIR = 0 (measuring F12(τIR = 0, τenc) + F1(τenc) + F2(τenc)). Due to the

effect of constructive interference, this latter method produces a 4 times larger signal size

than the former, as will be demonstrated experimentally in Chapter 4. For brevity, we will

refer to the two-pulse signal simply by F (τenc).
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2.4.4 Single-mode population response

To describe the basic spectroscopic features in a typical FEIR measurement we first address

the simplest case of a single vibrational oscillator coupled to the electronic transition. Re-

ferring to the generic level structure in Figure 2.11(a), this system can be represented by a

three-level system consisting of the global ground state |0⟩ ≡ |g, 0⟩, first vibrational excited

state |1⟩ ≡ |g, 1⟩, and zero-quantum level of the excited electronic state |e⟩ ≡ |e, 0⟩ which is

the target state. Assuming only the ground state |0⟩ is initially populated at equilibrium,

this model produces one unique material pathway per correlation function (or its complex

conjugate), which are shown in Figure 2.13 as both double-sided Feynman diagrams and

ladder diagrams. The corresponding complex conjugate pathways are found by switching

each ket-side interaction to bra-side interaction, and vice versa. The red or blue color of the

arrows indicate interaction with an IR or visible field, respectively. Each of these pathways

involves only two unique transition dipole moments.

In the language of 2D or pump-probe spectroscopy, pathways C1 and C2 represent excited-

state absorption, while C3 has the character of a double quantum coherence pathway. In each

case, all four interactions are absorptive, and every pathway carries an overall positive sign

due to having two bra-side interactions, and consequently contributes a gain in fluorescence

output from the molecule. This should come as no surprise, as we specifically restricted

the response function to such terms to describe the double-resonance excitation process.

Likewise, the lack of ground-state bleaching or stimulated emission pathways is a consequence

of the level structure and resonance conditions. Filling in the eigenstate indices according

to Eq. 2.103, the single-mode pathways C0,1,e,1
1 and C0,1,e,1

2 will be referred to as population

pathways, as they report on the excited population of the vibration being pumped.
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Figure 2.13: (a) Double-sided Feynman diagrams and (b) ladder diagrams for the unique
pathway contributing to each correlation function for a three-level system. Red and blue
arrows indicate IR and visible field interactions, respectively.

In the homogeneous limit (Eq. 2.103), the vibronic correlation functions C1 and C2 are

C0,1,e,1
1 = |Me1|2|M10|2 exp

[(
−i(ωe0 − ω10)− Γe1

)
τ3 − Γ11τ2 + (−iω10 − Γ10)τ1

]
(2.110a)

C0,1,e,1
2 = |Me1|2|M10|2 exp

[(
i(ωe0 − ω10)− Γe1

)
τ3 − Γ11τ2 + (−iω10 − Γ10)τ1

]
. (2.110b)

Here Γ11 is the vibrational population relaxation rate, and Γ10 and Γe1 are the dephasing rates

of the |0⟩ → |1⟩ vibrational fundamental and |1⟩ → |e⟩ vibronic transition, respectively. Both

pathways’ magnitude is given by the square of both the vibrational and vibronic transition

dipoles, M10 and Me1, respectively. The vibronic transition dipole is only non-zero in the

presence of some form of vibronic coupling, which as discussed in Section 2.2 could arise
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from Franck-Condon activity or more generally from a non-Condon vibrational coordinate-

dependence to the electronic transition moment. Specifically, in the Condon approximation

|Me1|2|M10|2 = |µeg|2⟨0e|1g⟩2|µ10|2, (2.111)

were ⟨0e|1g⟩ is the Franck-Condon overlap between the nuclear wavefunctions of the |1⟩ and

|e⟩ states. Because the squared electronic transition matrix element |µeg|2 will always be

present in any pathway’s amplitude, we will call the product ⟨0e|1g⟩2|µ10|2 the (Condon

approximation) FEIR activity of the vibration. Within a given molecule, the FEIR activity

is a simple indicator of the strength of a vibration’s FEIR response, although orientational

factors will also contribute (discussed in Chapter 9). The τ1 and τ3 dependence describe

the frequency and linewidth of the vibrational and vibronic transitions, respectively, while

vibrational population relaxation during τ2 causes the response to decay and represents a

loss channel for the overall FEIR excitation probability.

While the C3 pathway satisfies the resonance conditions, it involves the mixed IR-Vis-

IR-Vis ordering of light-matter interactions, and therefore can only contribute during the

temporal overlap of the IR and visible fields when |τenc| ≲ τp, where τp is the duration of the

IR/Vis pulse cross-correlation. Explicitly,

C0,1,e,1
3 = |Me1|2|M10|2 exp

[(
−i(ωe0 − ω10)− Γe1

)
τ3 −

(
−iωe0 − Γe0

)
τ2 + (−iω10 − Γ10)τ1

]
.

(2.112)

This pathway involves a rapidly oscillating electronic |e⟩⟨0| coherence during τ2, which typ-

ically dephases within tens of femtoseconds. As discussed in Chapter 3, it typically will not

survive the pulse convolution integrals and can be safely neglected.
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In the impulsive limit, the τ1-dependence is mapped out in the IR pulse-pair delay τIR,

τ2 becomes the encoding delay τenc, and τ3 = 0 as the two interactions with E3 become

time-coincident. Similarly, C3 ∝ δ(τenc) and therefore vanishes for positive τenc. Figure

2.12(d) shows the τenc-dependent FEIR spectrum S(ω, τenc) calculated from the impulsive

three-pulse signal

F12(τIR, τenc) ∝ θ(τenc)θ(τIR)
[
C1(0, τenc, τIR) + C2(0, τenc, τIR) + c.c.

]
∝ θ(τenc)θ(τIR)|Me1|2|M10|2 exp(−Γ11τenc) cos(ω10τIR) exp(−Γ10τIR) (2.113)

with ω10 = 1600 cm-1 and Γ10 = Γ11 = 1 ps. The FEIR spectrum resolves the vibrational

fundamental’s frequency and lineshape, and decays in τenc due to population relaxation of

the |1⟩ state. The two-pulse signal

F (τenc) ∝ θ(τenc)
[
C1(0, τenc, 0) + C2(0, τenc, 0) + c.c.

]
∝ θ(τenc)|Me1|2|M10|2 exp(−Γ11τenc) (2.114)

correspondingly tracks this relaxation directly without resolving the lineshape via the

projection-slice relationship.

The C1 and C2 pathways differ only in the sign of their τ3 phase evolution. The C1 path-

way has the same sign of phase evolution during τ1 and τ3 and can therefore be classified as

a non-rephasing pathway, while the C2 pathway exhibits opposite signs and is consequently

a rephasing pathway. The presence of correlated heterogeneity between the vibrational and

electronic frequencies will therefore affect these pathways differently, although the large mis-

match in magnitude of the vibrational and electronic transition frequencies precludes strong
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echo behavior.158 However, because both the third and fourth light-matter interaction occur

with the same pulse, the phase evolution in τ3 is not directly monitored. These pathways

are therefore not distinguishable in experiment, and contribute similarly to the measured

signals (although perhaps with different magnitudes in the presence of heterogeneity). The

consequence is that FEIR spectroscopy as performed in this thesis is not directly sensitive

to heterogeneity in the way that related non-degenerate 3rd-order techniques like 2DVE and

2DEV are. The rephasing/non-rephasing terminology is however still useful for bookkeeping

purposes when setting up finite-pulse calculations in Chapter 3.

2.4.5 Multimode coherence

When multiple vibrational modes are covered within the bandwidth of the IR pulses, pairs

of fundamentals may be excited coherently if the vibrations are coupled. To describe these

vibrationally coherent signals we add in a second vibrational oscillator, resulting in a four-

level system with the ground state |0⟩ ≡ |g, 0m, 0n⟩, singly-excited vibrational states |m⟩ ≡

|g, 1m, 0n⟩ and |n⟩ ≡ |g, 0m, 1n⟩, and the target excited state |e⟩ ≡ |e, 0⟩. In addition to the

population pathways residing in either |m⟩⟨m| or |n⟩⟨n| during τ2 described above, there

is the possibility for pathways residing in an |m⟩⟨n| or |n⟩⟨m| coherence during τ2. Each

correlation function has a pair of coherence pathways formed by exchanging the roles of the

two vibrations n and m, i.e. which differ by which mode is excited first. Such a pair of

pathways is shown for C1 in Figure 2.14(a), while the analogous pair for C2 would be found

by switching the order of the final two interactions with the visible field. Explicitly,

C0,m,e,n
1 =M∗

enMemM
∗
n0Mm0

× exp
(
(−i(ωeg − ωn0)− Γen)τ3 + (−iωmn − Γmn)τ2 + (−iωm0 − Γm0)τ1

)
, (2.115a)
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C0,n,e,m
1 =M∗

emMenM
∗
m0Mn0

× exp
(
(−i(ωeg − ωm0)− Γem)τ3 + (−iωnm − Γnm)τ2 + (−iωn0 − Γn0)τ1

)
. (2.115b)

Both pathways exhibit oscillatory behavior in τ2 at the difference frequency ωmn or

ωnm between the vibrational fundamentals. Specifically, the oscillating part of the τ2-

dependence acts as a phase-shift ϕmn(τ2) = ωmnτ2 on the vibrational lineshape encoded

in the τ1-dependence. This phase has opposite sign for the two pathways in a coherence

pair, ϕmn(τ2) = −ϕnm(τ2). The resulting contribution of the pair of coherence pathways to

the FEIR spectrum is shown in Figure 2.14(b), with the coherence dephasing Γnm = Γmn = 0

for purposes of illustration. At τ2 = 0 the coherence phase is zero, and C0,m,e,n
1 and C0,n,e,m

1

produce absorptive vibrational lineshapes centered at ωm0 and ωn0, respectively. As τ2 in-

creases the phase evolves with opposite signs over each resonance, leading to dispersive

lineshapes with overlapping negative lobes at ϕmn = −ϕnm = π/2, inverted absorptive line-

shapes at ϕmn = −ϕnm = π, and then dispersive lineshapes with overlapping positive lobes

at ϕmn = −ϕnm = 3π/2.

The coherence contribution decays away in τenc due to dephasing processes characterized

by the rate Γnm, shown for the impulsive FEIR spectrum and two-pulse transient in Figures

2.14(c) and (d), respectively. As discussed in Section 2.3.5, this overall dephasing rate has

contributions from both energy relaxation (i.e. the concomitant decay of the excited |m⟩ and

|n⟩ populations) and phase relaxation (pure dephasing). The pure dephasing component of

Γnm is determined by environmentally induced fluctuations in the energies of each level. In

general when the vibrations are uncoupled, e.g. on different molecules where the use of a

common ground state is not meaningful, these fluctuations must be completely uncorrelated

so that the coherence pathway cannot survive the equilibrium average of Eq. 2.84 and will
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Figure 2.14: Vibrational coherence pathways and their τenc-dependent spectral signatures.
(a) Ladder diagrams for a pair of coherence pathways connecting fundamentals m and n.
(b) Lineshapes of a positive coherent pathway pair after acquiring phases of ϕmn = 0, π/2, π,
and 3π/2 through τenc-evolution, respectively. The fundamentals have frequencies ωm0 =
1570 cm-1 and ωn0 = 1630 cm-1, and are lifetime-broadened with Γ−1

m0 = Γ−1
n0 = 1000 fs. The

coherence dephasing Γnm has been set to zero. (c) Isolated contribution of the coherence
to the impulsive τenc-dependent FEIR spectrum, with Γ−1

nm = 500 fs. Color-coded dashed
lines indicate the τenc values corresponding to the different coherence phases in (b). (d)
Contribution of the coherence to the impulsive two-pulse transient, with analogous dashed
lines showing the τenc values corresponding to the coherence phases in (b).
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not contribute to the signal. The presence of coherence in a measurement is therefore a

marker of coupling between the vibrations.

The amplitudes of the two pathways in a coherence pair are always the same due to

the reality of the transition dipole moments. Specifically, in the Condon approximation this

amplitude is

M∗
enMemM

∗
n0Mm0 =M∗

emMenM
∗
m0Mn0 = |µeg|2⟨0e|1gn⟩⟨0e|1gm⟩µn0µm0. (2.116)

The transition dipole moments of both vibrations and their respective FC factors contribute

to the pathway pair’s magnitude. As such, the strength of the coherence can be thought

of as being determined by a ‘mixture’ of both vibration’s FEIR activity. Crucially, as the

signs of these four matrix elements could be variable, the overall coherence amplitude can

be positive or negative. Along the lines of our discussion on the separation of vibronic and

orientational effects in Section 2.3.5, without loss of generality we take the vibrational matrix

elements µm0 and µn0 to be positive, and let their dipole unit vectors in the orientational

correlation function assume any direction. However, in the Condon approximation the vi-

bronic transitions must be aligned along the bare electronic transition dipole unit vector µ̂eg

(Eq. 2.25). Therefore we set both the vibronic transition dipole unit vectors to be µ̂eg in the

orientational correlation function, and let their FC factors ⟨0e|1gn⟩ and ⟨0e|1gm⟩ vary freely in

sign. Indeed, we saw in Section 2.2 how the sign of these FC factors depends in various ways

on the nature of the vibronic coupling. The result of assuming this convention is that the

sign of the coherence amplitude in the vibronic response function (Eq. 2.116) is sensitive

to the relative sign of two mode’s FC factors. The relative orientation of the electronic and

two vibrational transitions can also affect the sign of the coherence through the orientational

correlation function, as will be discussed in Chapter 9.
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Figure 2.15: Interference between population and coherence contributions of positive or
negative sign. Contributions to the impulsive-limit τenc-dependent FEIR spectrum from (a)
population pathways and (b) coherence pathways, and (c) the total spectrum in the case
of a positively-signed coherence. (d)-(f) show the analogous case for a negatively-signed
coherence. (h) and (i) show the corresponding two-pulse signal and its population and
coherence contributions for a positively- and negatively-signed coherence, respectively.
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This overall sign sensitivity has dramatic consequences for the way in which the pop-

ulation and coherence contributions interfere in the total FEIR signal, as demonstrated in

Figure 2.15. Panels (a), (b), and (c) show the contribution of the population pathways, co-

herence pathways, and the resulting total τenc-dependent FEIR spectrum for the two-mode

system in the case where both FC factors have the same sign, resulting in a positive co-

herence amplitude at τenc = 0 fs. This is the situation shown previously in Figure 2.14.

At τenc = 0 fs the positive absorptive coherence lineshape interferes constructively with the

population features, leading to maximally intense, absorptive lineshapes in the spectrum.

This constructive interference correspondingly leads to a signal maximum at τenc = 0 fs in

the two-pulse signal, shown in Figure 2.15(h).

The case of oppositely signed FC factors resulting in a negatively-signed coherence is

shown in Figures 2.15(d)-(f) and (i). The population features are unchanged (c.f. panel (a)),

as they depend on the square of matrix elements (i.e. the vibrations’ respective FEIR activ-

ities). However, the coherence amplitude is inverted, which could equivalently be described

as a π phase-shift to the coherence evolution cycle depicted in Figure 2.14. As a result, the

total spectrum is subject to destructive interference between the population and coherence

features at τenc = 0 fs. In this example the modes have equal FEIR activity, so this destruc-

tive interference is complete, as can be seen by the total cancellation of two-pulse signal at

τenc = 0 fs in Figure 2.15(i). Instead, the two-pulse signal is peaked at the first half-cycle

of the coherence phase evolution near τenc ∼ 250 fs, where the spectrum’s lineshape is also

fully absorptive.
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Finite-pulse effects

3.1 Overview

So far we have discussed the theoretical description of FEIR signals within the impulsive

limit, that is, with pulses that are essentially infinitely short compared to the system and

bath dynamics encoded in the response function. This was done by simply isolating the

desired pathways from the response function and replacing the relevant evolution times by

the experimental inter-pulse delays. Formally, this procedure involves first selecting the

pathways that contribute to the signal under the RWA (while discarding the rest), and then

assigning delta function pulse envelopes to the electric fields in the multiple convolution inte-

grals. Assuming the impulsive limit, as is commonly done in modelling ultrafast time-domain

nonlinear experiments, is for the most part a convenience that simplifies the problem, rather

than a good physical approximation. In fact, the effect of the actual pulses used in experi-

ment can have an enormous impact on the appearance of the measured signals. Some of the

most apparent effects are caused by the pulses’ finite spectral bandwidth, which effectively

windows the system response in the frequency domain and thereby distorts spectra,141,159,160
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or their finite duration, which modifies the apparent system dynamics measured in the time-

domain.64,161–163 These two types of effects are in general connected by a Fourier transform

relation, and occur simultaneously in a measurement. Perhaps less intuitive, but no less

important, are effects involving distortions due to non-uniform spectral phase, i.e. when

pulses are not transform-limited.164–166 Another class of artifacts emerges from the presence

of ‘improperly’ time-ordered light-matter interactions, most notably occurring when pulses

overlap in time and the desired sequentiality of interaction cannot be enforced. Some exam-

ples are the perturbed free-induction decay contribution and “coherence spike” in transient

absorption spectra,167–169 or various distortions to absorptive 2D spectra from the spurious

mixing of rephasing, non-rephasing, and double-quantum coherence pathways.160,170–172

Coherently-detected nonlinear experiments are also often affected by other signal contri-

butions not originating from the spectroscopic response of the system of interest, for example

arising instead from the solvent or sample cell substrates. These contributions are often non-

resonant with the incident fields, and therefore occur during pulse overlap where they can

overwhelm the desired experimental signal. Some common examples include cross-phase

modulation of the probe field,173 and multi-photon absorption or stimulated Raman scat-

tering from the solvent and/or windows.174,175 As these processes are not described by the

response function of the system in question, they present an additional layer of complexity

in the task of achieving quantitative agreement between the measured and modelled data,

and therefore limit the utility and pay-off of incorporating finite pulse effects for realistic

simulation of early-time signals.

It is often claimed that action-based techniques, specifically those employing fluorescence

detection, are immune to these non-resonant pulse-overlap artifacts because the fluorescence

signal comes unambiguously from the spectroscopic system being targeted.94,117,137,142,176
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While it is true that this ability to selectively sample the system does preclude many of

the pulse-overlap artifacts mentioned above and is an important advantage of fluorescence-

detected experiments, it is still possible for undesired processes to influence the system’s

target population—and hence fluorescence signal—during pulse-overlap. One important ex-

ample is multi-photon excitation proceeding through virtual states, i.e. non-resonant with

the real intermediate system states that are of spectroscopic interest. Therefore it can still

be difficult to interpret early-time data in the pulse-overlap region, especially when also con-

sidering the misordered system response. In FEIR spectroscopy, vibrationally-nonresonant

IR + visible two-photon absorption is an example of such a pulse-overlap artifact that can

contribute to early-time data, and will be discussed in Section 3.7.

Understanding the effects of real pulses in FEIR experiments is especially important for

a number of reasons. First and foremost, the aim of single-molecule detection sensitivity

dictates achieving the largest possible signal levels, which invariably occur at early encoding

delays—often within the pulse-overlap region—before the vibrational excitation has signif-

icantly relaxed. Data in this early-time region is most susceptible to the combination of

finite-pulse effects introduced above, and its interpretation therefore benefits the most from

incorporating these effects into response function simulations. Specifically, the problem of

where the largest signal is located along the encoding delay, which is strongly influenced by

the interference of population and coherence contributions in multimode measurements, is

especially sensitive to finite-pulse effects.

Second, the 150-350 fs IR and visible pulses used in our FEIR experiments—durations

longer than those typically used in modern ultrafast spectroscopies in both the IR and visible

regions—are in practice not all that much shorter than some of the vibrational dynamics of

the chromophores being studied. As a result, finite-pulse effects are expected to be quite
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dramatic in the measured signals. While the choice of pulse durations for our FEIR experi-

ments is partly constrained from a practical standpoint by the instrumentation currently at

hand, in general it would not be desirable to use significantly shorter pulses. Specifically,

a fundamental limitation arises from the correspondingly broad spectral bandwidth of the

visible encoding pulse, which would degrade the spectral selectivity of FEIR against direct

one-photon excitation due to its overlap with the red-wing of the electronic absorption line-

shape. As a result, high-quality FEIR experiments cannot be done with, for example, the

truly ultrafast ∼10 fs visible pulses with corresponding bandwidths well over 1000 cm-1 now

standard in femtosecond electronic spectroscopy.

Along similar lines, a third reason to understand finite-pulse effects is to explore avenues

for maximizing single-molecule FEIR efficiencies through optimal pulse design. The primary

importance of maximizing overall efficiency alters the fundamental strategy in FEIR exci-

tation from that typical of conventional ultrafast spectroscopies—that is, to approach the

impulsive limit with the shortest possible pulses in order to directly measure the unadulter-

ated system response function. In contrast, an FEIR excitation scheme that optimizes the

excitation rate per molecule at the expense of imprinting the pulse characteristics into the

data would in principle be desirable, provided that the resulting signal can still be interpreted

to reveal the sought after molecule information.

Incorporating finite-pulse effects into a response function calculation presents two main

challenges: (1) accounting for all possible time-orderings of light-matter interactions sup-

ported by the pulses at any given set of inter-pulse delays, and (2) evaluating the multiple

time-convolution integrals of the pulse electric fields against the response function. For

fully-degenerate techniques, this first consideration is a combinatorial problem that can

often become overwhelming. In contrast, the resonance conditions of FEIR spectroscopy
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significantly limit the number of pathways that can contribute, which greatly simplifies this

mixed time-ordering situation. We address this first aspect of the problem in Section 3.2 by

transforming to a set of pulse-specific time variables introduced by Jonas and co-workers.129

Section 3.3 describes the relevant finite pulse characteristics and lays out notation for their

incorporation in the calculation. The second issue of performing the integration is compu-

tationally challenging due to its high dimensionality. Specifically, four nested convolution

integrals are required to compute the target population in FEIR. Our approach, described

in Section 3.4, is to use a numerical Monte Carlo integration procedure. In principle, Monte

Carlo integration with optimized sampling schemes can greatly outperform conventional de-

terministic integration in high dimensional problems. However, our current approach uses

simple uniform sampling and is advantageous primarily due to its simplicity. Section 3.5

then demonstrates some of the most salient finite-pulse effects from calculations on a simple

two-mode model system, while Section 3.6 discusses a lineshape distortion that occurs within

the IR/Vis pulse-overlap region.

3.2 Mixed time-ordering in the response function convo-

lution integrals

Calculating the final target population, and hence FEIR signal, generated by finite-duration

pulses requires evaluating the multiple convolution integrals against the response function

N̄ (4) ≡ lim
t→∞

N (4)(t) =

∫ ∞

−∞
dt4

∫ ∞

0

dτ3

∫ ∞

0

dτ2

∫ ∞

0

dτ1R
(4)(τ3, τ2, τ1)

× E(t4)E(t4 − τ3)E(t4 − τ3 − τ2)E(t4 − τ3 − τ2 − τ1). (3.1)
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Here we have reverted to the most general case where the four fields in the product each

represent the sum of all pulses, in order to allow for all possible time-orderings to contribute

to the response (c.f. Eq. 2.99 in Chapter 2). For simplicity of notation we have suppressed

the tensorial nature of the response function and electric fields vectors.

We recall that the perturbation-theoretic delays τi in this expression are fully time-

ordered, e.g. the τ2 interval must always proceed the τ1 interval etc., regardless of the

sequence of the pulse envelopes. To separate the different time-ordered contributions per-

mitted for an arbitrary set of inter-pulse delays and durations, we will recast the integration

in terms of partially time-ordered ‘pulse-specific’ light-matter interaction time variables (Fig-

ure 3.1).129 First, to avoid confusion between the identities of each pulse when considering

their different possible orderings, we will rename each pulse electric field in the sequence as

follows: the IR pulse from the moving arm of the interferometer E1 ≡ Ea, the IR pulse from

the stationary arm E2 ≡ Eb, and the visible encoding pulse E3 ≡ Ec. The total electric field

is given by

E(t) = Ec(t) + Eb(t+ τenc) + Ea(t+ τenc + τIR). (3.2)

As shown in Figure 3.1, the pulse-specific interaction delay τα for α = a, b, c specifies the

time-delay between the perturbation-theoretic light-matter interaction facilitated by pulse

Eα and the final interaction with the encoding pulse Ec at time t4. Each pulse-specific delay is

causally restricted to positive values, however they can assume any relative ordering among

themselves. The final interaction time t4 is not a causally restricted interval, and occurs

anywhere within the profile of Ec. The relationship between these pulse-specific interaction

delays and the conventional, fully-time-ordered variables ti and τi introduced early are shown

in Figure 3.1a in the case of a well-separated, properly-ordered pulse sequence.
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Figure 3.1: Pulse-specific interaction time variables τα and their relationship to the fully
time-ordered light-matter interaction times ti and time-delays τi. (a) Relationship between
all sets of time variables in the properly time-ordered case τa < τb < τc with well-separated
pulses obeying τIR > 0 and τenc > 0. (b) Improperly-ordered IR interactions τb < τa < τc
with τIR < 0. (c) Improperly-ordered IR-vis-IR-vis interaction when |τenc| < τp, where τp
is the longer of the IR and visible pulses. Specifically shown is the case τa > τc > τb with
τenc < 0 and τIR > |τenc|.

Two IR and two visible light-matter interactions are always required in FEIR, so the

product of real-valued electric fields in Eq. 3.1 can be written in terms of pulse-specific
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delays as

Ec(t4)Ec(t4 − τc)Eb(t4 + τenc − τb)Ea(t4 + τenc + τIR − τa). (3.3)

Specifically, this field product describes the three-pulse signal F12(τIR, τenc) (Eq. 2.106),

where each of the two IR pulses contributes one interaction. However, as the two IR pulses

are identical copies, to calculate the two-pulse signal we can simply set τIR = 0 in Eq. 3.3

(i.e. using Eq. 2.107). With the pulse-specific time variables, this field product handles all

possible time-orderings of light-matter interactions allowed by the resonance conditions and

system level structure. The task of keeping track of these different time-orderings is in turn

accorded to the response function and will be tackled next.

As discussed in Chapter 2, to apply the RWA we decompose each real-valued pulse electric

field into its complex positive and negative frequency components

Eα(t) = E+
α (t) + E−

α (t), (3.4a)

E+
α (t) =

1

2
eα(t)e

−iωαt, (3.4b)

E−
α (t) = (E+

α )
∗, (3.4c)

where ωα is the center frequency, eα(t) is the (in general complex) pulse envelope, and

α = a, b, c. Specifically,

ωa = ωb = ωIR, (3.5)

ωc = ωvis. (3.6)

The specific characteristics of these fields, including temporal profile, spectrum, and spectral
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phase, will be discussed in Section 3.3. In general, we will assume that each field’s temporal

envelope eα(t) is a pulse of characteristic duration ∼ τp,α.

Expanding each real-valued field in Eq. 3.3 into its pair of counter-rotating complex

parts via Eq. 3.4 yields 24 = 16 terms. Our analysis of the FEIR response function in

Chapter 2 established that each response pathway must involve four absorptive interactions:

one bra/ket-side pair resonant with the IR and the other bra/ket-side pair resonant with the

visible. As a result there are only two unique choices (up to complex conjugation) of the

product of four complex fields that can contribute within the RWA, which we will term EI

and EII:

EI(τIR, τenc, t4, τc, τb, τa) ≡ E+
c (t4)E

−
c (t4 − τc)E

−
b (t4 + τenc − τb)E

+
a (t4 + τenc + τIR − τa)

= ec(t4)e
∗
c(t4 − τc)e

∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa)

× e−iωvisτceiωIR(τa−τb)e−iωIRτIR , (3.7a)

EII(τIR, τenc, t4, τc, τb, τa) ≡ E−
c (t4)E

+
c (t4 − τc)E

−
b (t4 + τenc − τb)E

+
a (t4 + τenc + τIR − τa)

= e∗c(t4)ec(t4 − τc)e
∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa)

× eiωvisτceiωIR(τa−τb)e−iωIRτIR . (3.7b)

These field combinations differ in the ordering of the two oppositely-signed encoding field

carriers.
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The total response N̄ (4)(τIR, τenc) is then expressed as the sum of the two real-valued

contributions which result from these two field combinations

N̄ (4)(τIR, τenc) = N̄
(4)
I (τIR, τenc) + N̄

(4)
II (τIR, τenc), (3.8a)

N̄
(4)
I (τIR, τenc) =

∫ ∞

−∞
dt4

∫ ∞

0

dτc

∫ ∞

0

dτb

∫ ∞

0

dτa

× S
(4)
I (τc, τb, τa)EI(τIR, τenc, t4, τc, τb, τa) + c.c., (3.8b)

N̄
(4)
II (τIR, τenc) =

∫ ∞

−∞
dt4

∫ ∞

0

dτc

∫ ∞

0

dτb

∫ ∞

0

dτa

× S
(4)
II (τc, τb, τa)EII(τIR, τenc, t4, τc, τb, τa) + c.c. (3.8c)

The ‘mixed’ response functions S(4)
I and S(4)

II (explicit expressions given in Eq. 3.9) are piece-

wise functions of the different time-orderings of pulse-specific delays that account for the

switching between pathways depending on the sequentiality of field interactions. Table 3.1

summarizes the ‘recipe’ for their construction in terms of the correlation functions and fully

time-ordered interaction delays, while Figure 3.2 shows every double-sided Feynman diagram

(excluding complex conjugates) contributing to N̄ (4)
I and N̄ (4)

II for the single-oscillator system

discussed in Section 2.4.4 of Chapter 2.

In general, there are 6 permutations for ordering the delays τa, τb, and τc. We will first

consider the two orderings in which both IR interactions precede the visible encoding inter-

actions. The abc ordering, i.e. τa > τb > τc, represents the ‘proper’ sequence of interaction

which occurs for well-separated pulses with τIR > 0 and τenc > 0 (Figure 3.1a). Measur-

ing Fourier transform FEIR spectra via the three-pulse signal uses one-sided time-domain

data with τIR > 0, so this situation reflects the dominant ordering, and is the only order-

ing that needs to be considered in the impulsive limit. For this ordering, contribution I is
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Interaction order RWA conjugate to EI RWA conjugate to EII τ1 τ2 τ3

τa ≥ τb ≥ τc C2(τ3, τ2, τ1) C1(τ3, τ2, τ1) τa − τb τb − τc τc

τb > τa ≥ τc C∗
1(τ3, τ2, τ1) C∗

2(τ3, τ2, τ1) τb − τa τa − τc τc

τa ≥ τc > τb 0 C3(τ3, τ2, τ1) τa − τc τc − τb τb

τb > τc ≥ τa C∗
3(τ3, τ2, τ1) 0 τb − τc τc − τa τa

τc ≥ τa > τb 0 0 τc − τa τa − τb τb

τc > τb > τa 0 0 τc − τb τb − τa τa

Table 3.1: RWA conjugated pathways for each pulse interaction order and their corresponding
time arguments in terms of pulse interaction delays.

comprised of rephasing pathways (C2), while contribution II is non-rephasing (C1). This can

be seen, for example, by inspection of the diagrams in Figure 3.2. The bac ordering, i.e.

the ‘improper IR’ ordering when the stationary IR pulse Eb contributes the first interaction,

dominates for τIR < 0 (Figure 3.1b). As stated above, the τIR < 0 range is not used when

processing three-pulse data, because the τ1 and τ2 evolution periods are being varied simul-

taneously. However, the bac ordering does contribute to the measured signal within the IR

pulse-pair overlap region when 0 < τIR ≲ τp,a = τp,b, and therefore cannot be ignored. Here

the rephasing/non-rephasing identity of I and II are switched, as the ordering of the two IR

interactions are reversed (Figure 3.2).

Next, we have the two mixed IR-Vis-IR-Vis orderings acb and bca. Both orderings can

only occur during IR/Vis pulse overlap, i.e. for |τenc| ≲ τp (Figure 3.1c). Both involve the

double-quantum coherence correlation function C3, which is a fundamentally different kind

of excitation pathway compared to the ‘proper’ FEIR pathways C1 and C2. Importantly,

because the two visible interactions occur with the same pulse but are not directly sequential,

the system evolution periods are no longer simply connected to the experimentally-controlled
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Figure 3.2: Diagrams (excluding complex conjugates) for all contributing orderings of light-
matter interactions for a three-level system. For a generic multimode system more diagrams
exist within each correlation function, but this general structure holds.

inter-pulse delays. As we will see, these contributions will generally not survive the convolu-

tion integrals under typical conditions. Finally, the orderings cab and cba involve the visible

field interacting first, and therefore do not contribute under FEIR resonance conditions and

can be ignored. For completeness, we give explicit expressions for the mixed response func-

tions below:
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S
(4)
I (τc, τb, τa) =

1

ℏ4



C2(τc, τb − τc, τa − τb) τa > τb > τc

C∗
1(τc, τa − τc , τb − τa) τb > τa > τc

0 τa > τc > τb

C∗
3(τb, τc − τb, τa − τc) τc > τa > τb

0 τc > τa > τb

0 τc > τb > τa

, (3.9a)

S
(4)
II (τc, τb, τa) =

1

ℏ4



C1(τc, τb − τc, τa − τb) τa > τb > τc

C∗
2(τc, τa − τc , τb − τa) τb > τa > τc

C3(τb, τc − τb, τa − τc) τa > τc > τb

0 τc > τa > τb

0 τc > τa > τb

0 τc > τb > τa

. (3.9b)

The positive-valued integration ranges of the τα enforce causality, so the usual heaviside

step-functions do not need to be included.
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The RWA is fully incorporated in the integrands of the I and II contributions. For

example, we can see this by considering the explicit expression for contribution I

N̄
(4)
I (τIR, τenc) = e−iωIRτIR

∫ ∞

−∞
dt4

∫ ∞

0

dτc

∫ ∞

0

dτb

∫ ∞

0

dτa

× S
(4)
I (τc, τb, τa)e

−iωvisτceiωIR(τa−τb)

× ec(t4)e
∗
c(t4 − τc)e

∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa) + c.c.,

(3.10)

and specifically examining the abc time-ordering where S(4)
I (τc, τb, τa) = C2(τc, τb−τc, τa−τb).

For our three-level system (Eq. 2.110) this correlation function oscillates as exp[i(ωe0 −

ω10)τc−iω10(τa−τb)], while the complex field phase-factors oscillate as exp[−iωvisτc+iωIR(τa−

τb)]. On resonance when ωIR ≈ ω10 and ωvis ≈ ωe0−ω10, these complex phase oscillations ap-

proximately cancel out, leaving behind a slowly varying function of the integration variables

that therefore survives the integration.

We also note that Eq. 3.10 (and the analogous expression for N̄ (4)
II (τIR, τenc)) is modulated

by the IR carrier phase ωIRτIR outside of the integrals, which reflects the interferometric

excitation by the IR pulse-pair. Explicitly, we can write these expressions for m = I or II as

N̄ (4)
m (τIR, τenc) = N (4)

m (τIR, τenc)e
−iωIRτIR +

(
N (4)

m (τIR, τenc)
)∗
eiωIRτIR (3.11a)
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where

N (4)
I (τIR, τenc) =

∫ ∞

−∞
dt4

∫ ∞

0

dτc

∫ ∞

0

dτb

∫ ∞

0

dτa

× S
(4)
I (τc, τb, τa)e

−iωvisτceiωIR(τa−τb)

× ec(t4)e
∗
c(t4 − τc)e

∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa) (3.11b)

N (4)
II (τIR, τenc) =

∫ ∞

−∞
dt4

∫ ∞

0

dτc

∫ ∞

0

dτb

∫ ∞

0

dτa

× S
(4)
II (τc, τb, τa)e

iωvisτceiωIR(τa−τb)

× e∗c(t4)ec(t4 − τc)e
∗
b(t4 + τenc − τb)ea(t4 + τenc + τIR − τa). (3.11c)

These functions N (4)
m (τIR, τenc) can be interpreted as the complex analytic envelopes of the

m = I or II contributions to the three-pulse signal. In practice, to calculate the three-pulse

signal we only need to calculate its complex envelope,

N (4)(τIR, τenc) =
∑

m=I,II

N (4)
m (τIR, τenc), (3.12)

which evolves slowly in τIR and can therefore be sampled much more sparsely. Specifically,

the sampling interval only needs to be Nyquist for the difference frequency between the

highest and lowest frequency features in the response. This corresponds to working in a

‘fully-rotating’ frame where the carrier ωIR is referenced to zero.157,177,178 For the two-pulse

signal, τIR = 0 and the envelope is real with N̄ (4)(τenc) = 2N (4)(τenc).
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3.3 Pulse characteristics

We will define our pulses in the frequency domain as

Ẽα(ω) = Aα(ω)e
iΦα(ω), (3.13)

where Aα(ω) and Φα(ω) are real-valued functions describing the spectral amplitude and

phase of pulse α = a, b, or c, respectively. The frequency- and time-domain representations

of the pulse electric fields are related by Fourier transformation

Ẽα(ω) =

∫ ∞

−∞
Eα(t)e

iωtdt, (3.14a)

Eα(t) =
1

2π

∫ ∞

−∞
Ẽα(ω)e

−iωtdω. (3.14b)

The pulse spectrum is defined as the field’s frequency-domain power spectrum

|Ẽα(ω)|2 = Aα(ω)
2. (3.15)

The reality of the time-domain electric field imposes the condition

Ẽα(ω) = Ẽ∗
α(−ω), (3.16)

and for brevity in what follows we will only explicitly address the positive frequency portion.

For simplicity, we will define our pulses to have Gaussian spectra with spectral bandwidth

characterized by fwhm ∆ωα

|Ẽα(ω)|2 =
(
Aα,0 exp(−2 ln(2) (ω − ωα)

2/∆ω2
α)
)2
, (3.17)
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where ωα is the center frequency and Aα,0 the spectral amplitude. The spectral phase is

described by the power series expansion

Φα(ω) =
γα,2
2!

(ω − ωα)
2 +

γα,3
3!

(ω − ωα)
3 + · · · (3.18)

The 2nd-order dispersion, γα,2, and 3rd-order dispersion, γα,3, are conventionally expressed

in units of fs2 and fs3, respectively. With the frequency expressed in cm-1, a multiplier of

2πc0 on the frequency is required for numerical evaluation in this case. The 0th- and 1st-

order terms would describe the carrier-envelope phase and a uniform temporal displacement,

respectively, and are ignored.179

The positive frequency component E+
α (t) of the time-domain field (Eq. 3.4) is, as its

name suggests, given by the one-sided Fourier transform of just the positive frequencies

E+
α (t) =

1

π

∫ ∞

0

Ẽα(ω)e
−iωtdω. (3.19)

Formally, E+
α (t) is the complex analytic representation of the real time-domain electric

field.133,180 Our specific decomposition of this complex field into envelope and carrier in

Eq. 3.4, and repeated here for convenience,

E+
α (t) =

1

2
eα(t)e

−iωαt (3.20)

uses the same center frequency ωα as the spectrum. It is worth making some comments

about this decomposition, as in general the separation of amplitude- and phase-modulation

effects in an arbitrary time-dependent waveform is not unique. The temporal envelope eα(t)
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is in general complex and can be expressed as

eα(t) = Eα(t)eiϕα(t), (3.21)

where Eα(t) is a real-valued temporal amplitude function and ϕα(t) is a real-valued temporal

phase function. Because Eα(t) = 2|E+
α (t)|, the complex analytic representation uniquely

determines the temporal amplitude. However, ϕα(t) is arbitrary up to an additive factor of

ω′t for any shift ω′, provided the carrier phase ωαt in Eq. 3.20 is accordingly modified by

−ω′t. This reflects the formally arbitrary assignment of the carrier frequency. However, it can

be shown generally that defining ωα as the mean of the ω > 0 half of |Ẽα(ω)|2 produces the

slowest-varying complex analytic envelope eα(t) in the mean-squared sense, and is therefore

in some sense the ‘best’ choice of carrier frequency.133,181

If the pulse is transform-limited, i.e. the spectral phase Φα(ω) = 0, then the temporal

phase ϕα(t) = 0 as well, and the envelope function is real. For our Gaussian pulse spectrum

this transform-limited envelope is also a Gaussian

eα(t) = eα,0 exp(−2 ln(2) t2/τ 2p,α), (3.22)

where the pulse duration τp,α is defined as the fwhm of the intensity profile |eα(t)|2 and eα,0

is the peak field amplitude. For non-transform-limited pulses, the temporal amplitude and

phase functions each depend on both the spectrum and spectral phase in more complicated

ways. In general the temporal fwhm of the intensity profile is related to the fwhm bandwidth

by

τp,α∆ωα ≥ 2 ln(2)

π
, (3.23)
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where the equality hold for the transform-limited Gaussian case.179 Using this expression

with numerical values for τp,α in fs and ∆ωα in cm-1 requires an additional factor of c0 on

the left-hand side.

3.4 Numerical evaluation by Monte Carlo integration

With sufficiently flexible expressions for the convolution integrals in place, all that remains

is their brute-force numerical evaluation. For this purpose, we will use a Monte Carlo in-

tegration method that is straightforward to implement for our problem. The traditional

deterministic approach to numerical integration divides up the entire integration region into

a grid of sufficiently small bins over which the integrand can be either treated as a constant,

or approximated by a more complicated quadrature rule. As the number of grid points that

must be calculated scales exponentially in the dimensionality of the integral, these determin-

istic methods are in general difficult to apply to high dimensional problems. On the other

hand, Monte Carlo integration instead operates by drawing random samples of the integrand

over the integration region.182 This approach is therefore agnostic to dimensionality both in

terms of scaling and practical implementation. In particular, the complicated piece-wise

structure of the mixed response functions would be tricky to scan through deterministically,

but are straightforward to sample randomly.

Suppose we wish to integrate the function f(X) over some region Ω,

I =

∫
Ω

f(X)dX, (3.24)

where in general X is a multidimensional variable and Ω is a correspondingly multidimen-

sional region with volume V =
∫
Ω
dX. The basic premise of Monte Carlo integration is to
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construct an estimator of this integral

IN =
V

N

N∑
i=1

f(Xi) (3.25)

where X1, · · · ,XN ∈ Ω are points uniformly sampled from the integration region. According

to the law of large numbers

I = lim
N→∞

IN , (3.26)

and so, in practice, with sufficiently large N the Monte Carlo estimate IN should provide a

sufficiently good value for I. Specifically, it can be shown that the error, I − IN , scales as

∼ N−1/2.182 While this convergence might be somewhat slow, it is importantly independent

of the dimensionality of the integral, i.e. the quality of numerical evaluation just depends on

the amount of sampling. Additionally, IN is an unbiased estimator, meaning the expectation

value of IN (for finite N) is I. This means that the error on the finitely sampled estimator

is random noise without any systematic bias.

The approach codified by Eq. 3.25 is sometimes referred to as ‘naive’ Monte Carlo inte-

gration, as the integration region is being sampled uniformly. It is generally understood that

the computational time required to achieve convergence for naive Monte Carlo is not lower

than for typical deterministic approaches. However, using forms of enhanced sampling that

preferentially address the region of the integrand that is known to be large can create con-

siderable advantages in computational cost.183 In this thesis we will use the ‘naive’ approach

for simplicity, however we expect that improvements via enhanced sampling could be quite

useful.

The integration region for the multiple convolutions we wish to evaluate in Eqs. 3.8 is
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composed of infinite intervals. However, the pulse envelope functions eα(t) are essentially zero

beyond a few multiples of the pulse duration and therefore effectively window the integrand,

so we only need to sample the integration variables within these envelopes. In particular, we

use the following sampling ranges

t4 ∈ [−Lτp,c, Lτp,c], (3.27a)

τc ∈ [0, Lτp,c], (3.27b)

τb ∈ [max(0,−Lτp,b + τenc), Lτp,b + τenc], (3.27c)

τa ∈ [max(0,−Lτp,a + τenc + τIR), Lτp,a + τenc + τIR], (3.27d)

where τp,α is the fwhm of pulse α’s temporal intensity profile |eα(t)|2, and L is a multiplier

that determines how far out in the profile to sample. We use the value L = 2.5, which

was used by Jonas and co-workers in their deterministic numerical integration procedure

for calculating 3rd-order signals.129 We note that using smaller values of L produces faster

convergence, as the largest regions of the integrand are being sampled more densely, however

significant distortions begin to appear for L = 1.5 and lower. The lower range limits of the

τα in Eq. 3.27 are constrained to be non-negative to enforce causality, and if the inter-pulse

delays and pulse durations are such that any of their upper range limits become negative,

the value of the integral is simply set to zero.

For every fixed combination of the inter-pulse delays τenc and τIR desired, N samples

of the 4 integration variables τa, τb, τc, and t4 are drawn uniformly from their respective

ranges, and the Monte Carlo estimates of N (4)
m (τIR, τenc) for m = I and II are computed

via Eq. 3.25, where f(X) represents the integrand in Eq. 3.11(b) or (c). In both cases

the volume of the integration region is simply the product of the 4 sampling ranges in Eq.
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3.27. Every sample of the integration variables is first categorized by its ordering (abc, bac,

etc.), which determines which piece of the mixed response functions (Eq. 3.9) is used to

compute the integrand. The correlation functions making up the mixed response functions

are expressed analytically in the homogeneous limit (Eq. 2.103) with the RWA conjugate

field phase factors directly incorporated, and are evaluated numerically for every sample of

the integration variables. The pulses electric fields are specified in the frequency domain via

Eq. 3.13, and their envelope functions are computed numerically via FFT. The product of

the envelopes is then evaluated by lookup table for each Monte Carlo sample. Depending

on the parameters in the response function, the pulse characteristics, and the resonance

conditions, typically N = 106 to 5 × 107 samples are sufficient to achieve reasonable signal

to noise.

3.4.1 Two-pulse signal

Figure 3.3 shows an example calculation of the two-pulse signal for the single-oscillator

system discussed in Section 2.4.4 of Chapter 2 using the same molecular parameters, i.e. a

lifetime-broadened mode at ω10 = 1600 cm-1 with 1 ps lifetime. The electronic dephasing

time of the encoding transition is set to Γ−1
e1 = 10 fs. We recall that the FEIR response

of this system is only composed of population pathways. The pulses are transform-limited

with spectra/durations chosen to be representative of the those used in experiment. The

IR pulse Ea = Eb = EIR is set directly on resonance with ωIR = 1600 cm-1 and has ∆ωIR

= 120 cm-1 bandwidth, which produces a transform-limited duration of τp,IR = 123 fs. The

visible encoding pulse Ec = Evis has ∆ωvis = 50 cm-1 bandwidth resulting in a 297 fs pulse

duration, and is tuned such that the encoding transition is directly on resonance.
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Figure 3.3a shows the contributions of the 4 allowed time-orderings abc, bac, acb, and

bca overlayed on the impulsive signal, with N = 5 × 107 samples used for every τenc point.

Because τIR = 0, or equivalently because both IR interactions occur within the same IR pulse

profile, the abc and bac contributions are identical within noise. Neither of the misordered

IR/Vis contributions acb or bca contribute any amplitude above noise (∼10-4 times the

maximum abc response). The relative frequency of sampling the 4 different time-orderings

are shown in Figure 3.3(b), with the intensity profiles of the IR and visible pulses overlayed

at τenc = 0 for visual reference. We note that the τenc-dependent appearance of these relative

sampling frequencies is influenced by the multiplier L, and is not indicative of the weight of

the different time-orderings in the signal, but merely reflects how often they are sampled by

the Monte Carlo algorithm.

The full two-pulse signal is the sum over all time-orderings, and therefore resembles the

abc and bac contributions. Overall, the appearance of this finite-pulse signal is consistent

with the convolution of the impulsive signal with an instrument response of duration given

by the temporal cross-correlation of the IR and visible intensity profiles,
√
τ 2p,IR + τ 2p,vis = 321

fs. Namely, the signal rises to roughly half its maximum by τenc = 0, and is peaked at ∼ 300

fs. Because the pulse cross-correlation is meaningfully shorter than the vibrational lifetime,

the decay of the signal beyond the pulse-overlap region is still a good measure of the system’s

population relaxation kinetics.

3.4.2 Three-pulse signal and FEIR spectrum

Next we calculate the three-pulse signal and FEIR spectrum of the same system with the

same pulses. The encoding delay is fixed at τenc = 500 fs, which is beyond the bulk of the

pulse-overlap region. As we will show in Section 3.6, spectra within the pulse-overlap region
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Figure 3.3: Finite-pulse calculation of the two-pulse signal for a single-oscillator system. (a)
Relative amplitude of the abc, bac, acb, and bca time-ordered contributions to the total finite-
pulse signal, with the impulsive limit signal shown for reference. (b) Relative frequency of
sampling the abc, bac, acb, and bca time-orderings in evaluating the Monte Carlo estimate
with L = 2.5. The intensity profiles of the IR pulse |ea(t)|2 = |eb(t)|2 and visible pulse |ec(t)|2
are overlayed at τenc = 0.

can be subject to additional lineshape distortions. Figure 3.4(a) shows the real part of the

total three-pulse envelope N (4)(τIR, τenc), its decomposition into the 4 time-orderings, and the

impulsive signal envelope (abc ordering only). In this specific case the envelope happens to

be fully real because the IR and visible fields have symmetric spectra, are transform-limited,

and are exactly on resonance with the symmetric vibrational resonance. As before, the

Monte Carlo sampling frequencies of each time-ordering are shown below in Figure 3.4(b).

Because the vibration is lifetime-broadened, i.e. the dephasing and population relaxation

rates are the same Γ10 = Γ11, the abc contribution to the three-pulse envelope has a similar

τIR-dependence to the τenc-dependence of the two-pulse signal. As in the two-pulse case,
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neither of the mixed IR/Vis time-orderings acb or bca contribute any signal amplitude above

noise. The bac contribution dominates for negative τIR but then falls off to zero when Ea

starts arriving after Ec for |τIR| > τenc. However, a quickly decaying portion of the bac

contribution does appear for positive τIR and will therefore play a role in the spectrum as

discussed below.
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Figure 3.4: Finite-pulse calculation of the τenc = 500 fs three-pulse signal and FEIR spec-
trum for the same single-mode system as Figure 3.3. (a) abc, bac, acb, and bca time-ordered
contributions, and the total signal overlayed on the impulsive signal. (b) Relative Monte
Carlo sampling frequency of the abc, bac, acb, and bca time-orderings. (c) Impulsive FEIR
spectrum plotted over the IR pulse spectrum. (d) Total finite-pulse FEIR spectrum and its
abc and bac contributions. The lower panel shows magnified detail around the baseline.

The spectrum of the IR pulse is shown overlayed on the impulsive FEIR spectrum in

Figure 3.4c. The finite-pulse FEIR spectrum is found by Fourier transformation of the

τIR ≥ 0 portion of the signal. Specifically, the real part of the FFT of the one-sided complex

envelope N (4)(τIR ≥ 0, τenc) is first calculated, and then shifted up to the carrier frequency

123



Chapter 3. Finite-pulse effects

ωIR. We note that in general the complex-valued nature of the time-domain envelope ensures

that its frequency components can be properly assigned above or below the carrier.178 Figure

3.4(d) shows the resulting FEIR spectrum as well as its decomposition into the abc and

bac contributions. As the IR pulse is broadband compared to the vibrational linewidth

(∼11 cm-1), the spectrum matches the impulsive limit very closely. The contribution of the

abc ordering on its own almost entirely determines the spectrum. However, it has a small

distortion in the form of shallow negative wings along the breadth of the pulse spectrum, as

can be seen in a magnified view of the baseline region (lower panel of Figure 3.4(d)). This

spectral distortion is caused by the delayed peak of the abc contribution along τIR due to

the finite pulse convolutions. However, the bac contribution is a broad positive feature that

perfectly cancels out this distortion, resulting in the proper absorptive appearance of the

complete spectrum. As we will discuss in Section 3.6, in the IR/Vis pulse-overlap region

the abc and bac contributions are mis-weighted and no longer add up to give an absorptive

lineshape, leading to spectral distortions.

3.5 Finite-pulse effects in a two-mode system

In this section we will apply the methods described above to examine the impact of finite

pulses in the FEIR spectroscopy of a system of two coupled vibrations. Since a two-mode

system is the minimal case that exhibits vibrational coherence, this model system captures

many of the features common to the multimode FEIR experiments discussed in this the-

sis. Correspondingly, we will be able to clearly demonstrate the most important finite-pulse

effects, including the windowing of vibrational spectra by the finite IR bandwidth, the dis-

tortion of coherence evolution in τenc, and the resulting consequences to the interference
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Figure 3.5: Spectral characteristics of the two-mode model system and its FEIR resonance
conditions. (a) Linear IR-vibronic spectrum Svibr(ω) (see text), IR pulse spectrum |ẼIR(ω)|2,
and their product. (b) Lineshapes of the encoding transitions S(1m → e) and S(1n → e) for
mode m and n, respectively, and the bare 0-0 electronic transition S(0 → e). The visible
pulse spectrum |Ẽvis(ω)|2 is overlayed.

between population and coherence contributions.

The system and its resonance conditions, depicted in Figure 3.5, are chosen to reflect a

situation commonly encountered in our experiments on coumarin dyes, where modes differ

both in their FEIR activity and coverage by the IR pulse spectrum. The two modes are

set at ωm0 = 1515 cm-1 and ωn0 = 1585 cm-1, and as before we assume the homogeneous

limit and lifetime broadened resonances with Γ−1
m0 = Γ−1

n0 = Γ−1
mm = Γ−1

nn = 1 ps. We set the

FEIR activity of the lower frequency mode m, i.e. the squared product of the vibrational

transition moment and FC factor |µm0⟨1gm|0e⟩|2, to be half that of mode n. We also set the

modes’ FC factors ⟨1gm|0e⟩ and ⟨1gn|0e⟩ to have the same sign, so the resulting coherence will

be positively-signed as discussed in Section 2.4.5 of Chapter 2. Figure 3.5(a) plots the IR-

vibronic spectrum Svibr, defined as the linear IR absorption spectrum with each vibrational

resonance weighted by the square of its FC factor. This spectrum is formally equivalent to
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the impulsive FEIR spectrum at τenc = 0 with all coherence pathways removed, and reflects

the intrinsic FEIR activity of each mode. We use the same transform-limited IR and visible

pulses as before in Section 3.4. The resulting IR spectral coverage is such that the weaker

mode falls in the low-frequency wing of the pulse spectrum. This difference in IR spectral

intensity over each mode is evident by comparing Svibr with the product Svibr × |ẼIR|2.

Figure 3.5(b) shows the lineshapes of the encoding transitions for each mode and that

of the bare 0-0 electronic transition for reference. The visible pulse spectrum is shown

superimposed, and is centered at ωvis = 19360 cm-1 to match that of our current experiment.

The dephasing time of each of these transitions is set to Γ−1
em = Γ−1

en = Γ−1
e0 = 10 fs, which

results in a lorentzian fwhm of 1061 cm-1 that is over an order of magnitude broader than

the visible pulse spectrum (∆ωvis = 50 cm-1). The resonance conditions are set with respect

to the bare electronic transition so that ωe0 = ωIR + ωvis. Given how broad the encoding

transition lineshapes are, there is very little difference (indicated in Figure 3.5(b)) between

their degree of resonance with the visible pulse spectrum under these conditions.

We first demonstrate the impact of the finite pulses on the system’s two-pulse FEIR

signal. Figure 3.6(a) shows the total signal as well as its decomposition into population

and coherence contributions in the impulsive limit. The coherence dephasing time has been

set at Γ−1
mn = 500 fs, and as mentioned above the coherence is positively-signed, leading

to constructive interference with the population contribution at τenc = 0 fs. Figure 3.6(b)

shows the same signal and its population and coherence components from the finite-pulse

calculation. The IR/Vis temporal cross-correlation (321 fs fwhm) represents the effective

instrument response function (IRF) of the measurement, and is shown for reference. The

IRF and its characterization will be discussed further in Section 3.7. Perhaps the most

apparent effect of the finite pulses is to reduce the amplitude of the coherence pathways

126



Chapter 3. Finite-pulse effects

-500 0 500 1000 1500 2000
-0.5

0

0.5

1 population
coherence
total

-500 0 500 1000 1500 2000
-0.5

0

0.5

1 population
coherence
total

N
or

m
al

iz
ed

 a
m

pl
itu

de

τenc (fs) τenc (fs)

N
or

m
al

iz
ed

 a
m

pl
itu

de

a b

IRF

Figure 3.6: Two-pulse FEIR signals from the two-mode system in (a) the impulsive limit and
(b) with finite pulses. In both cases the total signal (black) is normalized to its maximum
value, while the population (red) and coherence (blue) components have not been scaled
further, and add up to reproduce the total signal amplitude. The IRF is shown in (b) for
reference.

relative to the population pathways, leading to a strong suppression of the beating in the

total signal. This can be understood qualitatively by considering the finite duration of the

IRF as a low-pass convolution filter which preferentially washes away the high-frequency

variations along τenc.184 This suppression is particularly strong over the first half-cycle of

the coherence phase occurring during pulse overlap. The result of the interference between

coherence and population pathways in this case is that the total signal peaks with the first

recurrence of the coherence phase at ∼500 fs, which is substantially beyond the decay of the

IRF.

Next, we analyze the effects of the finite pulses on the FEIR spectrum, and particularly

its τenc-dependence. Figure 3.7 compares the τenc-dependent FEIR spectrum in the impulsive

limit with that produced by finite pulses. Starting with the impulsive limit, we note that the

factor of two lower FEIR activity of mode m compared to n leads to a slightly deeper relative

coherent modulation over ωm0, as can be seen in Figures 3.7(a) and (g). This occurs because
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the population response of each mode is determined by its FEIR activity (Figure 3.7(b)),

whereas the coherent response is determined by the ‘shared’ activity µm0µn0⟨1gm|0e⟩⟨1gn|0e⟩,

and is therefore always equal over both resonances (Figure 3.7(c)) . The total spectrum at

ωm0 correspondingly has a larger fractional coherence contribution.

With finite pulses, the reduction in relative amplitude of the coherence contribution seen

in the two-pulse signal is also strongly apparent in the spectra (note the additional ×3 scaling

in Figure 3.7(f)), as required by the projection-slice relation. However, the manner in which

the coherence and population amplitudes are modified along the vibrational frequency axis

are importantly different. Namely, a comparison of Figures 3.7(e) and (b) shows that the

population feature from the lower-frequency mode m is suppressed relative to mode n due

to the lower IR spectral intensity at its location in the wing of the pulse spectrum. However,

the amplitude of the coherence pathways are still equal over both modes (i.e. comparing

Figures 3.7(f) and (c) outside of the pulse overlap region). The result is that the fractional

contribution of coherence to the total spectrum over the lower-frequency band at ωm0 is

significantly amplified with respect to that over ωn0. This unequal spectral weighting is

evident in the much deeper coherent modulation seen in the τenc-slice along the ωm0 resonance

at 1515 cm-1 compared to that along ωn0 = 1585 cm-1 (Figure 3.7(g)), when compared to

the impulsive limit (Figure 3.7(h)).

The spectral filtering effect of the finite IR bandwidth is examined in more detail in

Figure 3.8. The finite-pulse FEIR spectrum and its population and coherence contributions

are shown at encoding delays corresponding to a coherence phase of ϕmn ∼ π (τenc = 250 fs,

Figure 3.8(a)) and ϕmn ∼ 2π (τenc = 500 fs, Figure 3.8(b)). In both cases, the population

response is multiplicatively windowed by the IR pulse spectrum, as can be seen by the nearly

perfect overlay of the population contribution on Svibr×|ẼIR|2. This spectral reshaping of the
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Figure 3.8: Effect of IR spectral filtering and pump-normalization on FEIR spectra of the
two-mode system. Finite-pulse FEIR spectra (black) at (a) τenc = 250 fs (coherence phase
∼ π) and (b) τenc = 500 fs (coherence phase ∼ 2π) including the decomposition into popu-
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and coherence components at (c) τenc = 250 fs (d) τenc = 500 fs. Svibr (dashed gray) is plotted
over the total spectrum and population component.
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population features is an intuitive consequence of the one-photon IR dependence—namely,

the magnitude of response at a given frequency is simply scaled by the IR intensity at

that frequency. On the other hand, the excitation of vibrational coherence is non-local in

frequency, in that it depends on the IR pump intensity over both resonances. As a result, the

coherence amplitude remains equal and symmetric over both bands, as evident in Figures

3.7(a) and (b). In general, this state of affairs holds for any pair of vibrations with arbitrary

(transform-limited) pulses.

Because the IR pulse spectrum reshapes the FEIR response in the frequency-domain, it

would appear reasonable to ‘pump-normalize’ the data, i.e. divide the FEIR spectrum by

the IR spectrum used in the measurement

Spnorm(ωenc, τenc) =
S(ωenc, τenc)

|ẼIR(ωenc)|2
. (3.28)

Figures 3.8(c) and (d) show the pump-normalized FEIR spectra and their population and

coherence components corresponding to panels (a) and (b), respectively. In light of the

discussion in the previous paragraph, this pump-normalization procedure correctly ‘undoes’

the spectral windowing of the population pathways, but incorrectly treats the coherence

pathways. Specifically, the pump-normalized population contribution overlays onto Svibr,

however pump-normalizing the coherence contribution artificially inflates the amplitude over

the weaker lower-frequency band from the wing of the IR spectrum. When the coherence

phase is negative absorptive (ϕmn ∼ πk for integer k) as in Figure 3.8(c), the result is an

apparent suppression of the weaker mode’s amplitude compared to Svibr. Conversely, on the

positive absorptive side of the coherence cycle (ϕmn ∼ 2πk), the weak mode’s amplitude is

exaggerated, as in Figure 3.8(d).
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It is important to note that the presence of vibrational coherence will always compli-

cate the correspondence between a multimode FEIR spectrum and the ideal FEIR activity

spectrum Svibr, even in the impulsive limit. However, as this analysis shows, the effect of

the IR pulse spectrum can further complicate the apparent strength of a given resonance

through the different way in which population and coherence pathways are affected. For

example, a naive assessment of the relative FEIR activity of modes m and n based on their

band intensities from the ‘pump-corrected’ spectra in Figures 3.8(c) or (d) would alternately

underestimate the activity of mode m by 57%, or overestimate it by 47%, respectively.

3.6 Lineshape distortions during pulse-overlap
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Figure 3.9: IR/Vis pulse-overlap lineshape phase distortion for a single-mode population
feature, and its dependence on the IR-vibrational detuning ∆ = ωIR−ω10. The upper panels
show the FEIR spectrum at τenc = 0 fs and 500 fs overlayed on the IR pulse spectrum. Lower
panels show contour plots of the full τenc-dependent FEIR spectrum, with the fwhm and 1/e2

full-width of the IR/Vis intensity cross-correlation indicated. Contouring spacing is set at
5%, with the same coloring as in Figure 3.7.
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Our analysis of finite-pulse FEIR spectra so far has been careful to avoid early encoding

delays that fall solidly within the pulse-overlap region. Here we briefly demonstrate a specific

lineshape distortion to the population features that occurs within the IR/Vis pulse-overlap.

Figure 3.9 shows τenc-dependent FEIR spectra of the single-mode system discussed in Section

3.4 with four different IR center frequencies, resulting in IR-vibrational detunings of ∆ =

ωIR − ω10 = -100, -50, 50, and 100 cm-1. In each case the IR pulse remains transform-

limited with ∆ωIR = 120 cm-1, and the visible pulse is likewise the same as that used

previously in Sections 3.4 and 3.5. At τenc = 0 the vibrational lineshape exhibits a phase

twist that depends on the magnitude and sign of ∆. For ∆ = -100 cm-1, when the vibrational

resonance is deep in the red-wing of the IR pulse spectrum, this phase distortion produces

a negative/positive wing on the low/high frequency side of the band, respectively. For

smaller |∆| this phase twist becomes less extreme, while it switches sign when ∆ becomes

positive. This lineshape distortion is contained within the pulse overlap region, whose extent

is indicated by both the IR/Vis cross-correlation fwhm (
√
τ 2p,IR + τ 2p,vis = 321 fs) and 1/e2

full-width (2w =
√
2fwhm/

√
ln 2 = 546 fs). With these pulses, the spectrum is essentially

free of distortion by τenc = 500 fs.

This apparent phase distortion in the population response is likely related to the improper

weighting of the abc and bac time-ordered contributions discussed in Section 3.4, although

a detailed understanding of its origins requires further investigation. Coherence features are

also distorted (although not in the same way) during pulse-overlap, as can be seen e.g. in

Figure 3.6(f), where the amplitude near the center of the IR pulse spectrum is additionally

enhanced. Overall, FEIR spectra for τenc within pulse-overlap should be approached with

caution, although familiarity with the phenomenology of these artifacts should help build

confidence in interpreting (or, importantly, not over-interpreting) early-time data.
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3.7 IR + visible two-photon excited fluorescence

As mentioned in the overview of this chapter, vibrationally-nonresonant two-photon absorp-

tion (TPA) is a possible excitation route for generating target population, and therefore

represents a potential artifactual contribution to the fluorescence signal in an FEIR ex-

periment. Understanding how this signal artifact appears in the data is correspondingly

important for interpreting early-time signals. On the other hand, the nonresonant nature of

the TPA response (with respect to the IR or visible pulses individually) means that it reports

in a direct way on the temporal pulse characteristics, and therefore has utility as a pulse

diagnostic tool for the FEIR spectrometer. Specifically, as we will see, the TPA response

directly reports on the IR/Vis intensity cross-correlation and can therefore be used to map

out the experiment’s IRF.

From the perspective of the molecular system, this non-degenerate two-photon process

involving one IR and one visible photon is essentially instantaneous, occurring within the

electronic dephasing time of some 10’s of fs. In practice, TPA therefore only occurs during

the temporal overlap of the IR and visible pulse electric fields. The language conventionally

used is of sequential excitation mediated by a ‘virtual’ state. Formally, this is short-hand

for describing the overall transition amplitude as a sum over two-step pathways involving

all possible system states as intermediates, which is related to the system’s polarizability

by a Kramers-Heisenberg-Dirac expansion (i.e. the second-order version of Fermi’s Golden

Rule).81,109,185,186 In density-matrix language, the overall two-photon excitation probability

(i.e. the square modulus of the overall transition amplitude) is given by the final target

population, and is described to 4th-order in the incident field.187 As a result, the formal

structure for calculating TPA is closely related to our 4th-order response function description

of FEIR excitation. In principle, it would be possible to model the TPA contribution along

134



Chapter 3. Finite-pulse effects

the same lines as the finite-pulse response calculations developed earlier in this chapter, with

the response function suitably replaced by sets of delta functions to reflect the essentially

impulsive molecular polarizability response.

However, a much simpler (and formally equivalent) approach is to assume that the in-

stantaneous excitation rate is directly proportional to the product of the IR and visible field

intensities. This approach is typically adopted to describe the practical phenomenology of

how multi-photon or other nonlinear parametric signals depend on the driving fields.179,188

The final accumulation of target population after the pulse sequence has finished interacting

with the sample is then proportional to the time integral

N̄TPA ∝
∫ ∞

−∞
(EIR(t))

2(Evis(t))
2dt. (3.29)

With our FEIR pulse sequence the TPA fluorescence signal S ∝ N̄TPA is therefore

S(τIR, τenc) =

∫ ∞

−∞
(E1(t+ τIR + τenc) + E2(t+ τenc))

2(E3(t))
2dt. (3.30)

To evaluate this expression we break the real-valued fields into their positive and negative

frequency components as before in Section 3.2. Invoking the RWA, we only keep the terms

where the carrier phase oscillations between the four fields cancel,

S(τIR, τenc) =

∫ ∞

−∞
(E+

1 E
−
1 + E+

2 E
−
2 + E+

1 E
−
2 + E−

1 E
+
2 )(E

+
3 E

−
3 )dt

= S1(τIR + τenc) + S2(τenc) + S12(τIR, τenc), (3.31a)
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where

S1(τIR + τenc) =
1

4

∫ ∞

−∞
E2
1 (t+ τIR + τenc)E2

3 (t)dt, (3.31b)

S2(τenc) =
1

4

∫ ∞

−∞
E2
2 (t+ τenc)E2

3 (t)dt, (3.31c)

S12(τIR, τenc) =
1

2
Re
{
e−iωIRτIR

∫ ∞

−∞
E1(t+ τIR + τenc)E2(t+ τenc)E2

3 (t)e
i[ϕIR(t+τIR)−ϕIR(t)]dt

}
.

(3.31d)

Here we have used the notation for temporal pulse amplitude and phase introduced in Section

3.3. Specifically, ϕIR(t) is the temporal phase of the IR pulse, which is assumed to be the

same for both copies E1 and E2. Importantly, the TPA signal is not sensitive to the phase of

the visible pulse E3, which can be interpreted as a consequence of the bra- and ket-side pair of

light-matter interactions occurring within its envelope. The subscripts labelling the different

contributions in Eq. 3.31 indicate their dependence on the IR pulses in an analogous way to

our notation for the different FEIR signal contributions in Section 2.4.3 of Chapter 2, i.e. S1

depends on E1 but not E2, while S12 depends on both. We note the clear similarity between

these contributions to the TPA signal versus those for FEIR. Specifically, the ‘two-pulse’ and

‘three-pulse’ contributions are related among themselves by

S12(τIR = 0, τenc) = 2S2(τenc) = 2S1(τenc), (3.32)

as can be verified directly from the expressions in Eq. 3.31.

Figure 3.10 shows a numerical calculation of the full three-pulse-resolved TPA signal

S(τIR, τenc) as well as slices along τenc and τIR, for the transform-limited Gaussian IR and

visible pulses used earlier in Sections 3.4 and 3.5 (see figure caption). The three-pulse
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Figure 3.10: Appearance of the three-pulse-resolved TPA signal in the time-domain. The
IR and visible pulses are transform-limited and Gaussian with ∆ωIR = 120 cm-1 (τp,IR = 123
fs), and ∆ωvis = 50 cm-1 (τp,vis = 297 fs). (a) Fully-resolved signal S(τIR, τenc), (b) the slice
S(τIR, τenc = 0), and (c) the slice S(τIR = 0, τenc).

contribution S12 is responsible for the interferometric oscillation along τIR, while the two-

pulse contributions S1 and S2 form the cross-shaped pattern intersecting at the origin.

It is worth considering the similarities and differences between this three-pulse-resolved

TPA signal and various types of pulse characterization techniques using parametric nonlin-

ear sample response, e.g. interferometric autocorrelation, or the various flavors of frequency-

resolved optical gating.179,188 The trace S(τIR, τenc = 0) (Figure 3.10(b)) qualitatively resem-

bles an interferometric autocorrelation, with the important differences that the intensity ratio

of peak to baseline is 4:1, rather than 8:1, and the oscillating component only has frequency

content around ωIR, and not also at 2ωIR. These differences arise because the TPA signal is

only quadratic in EIR, rather than quartic in the case of the interferometric autocorrelation.

The trace S(τIR = 0, τenc) (Figure 3.10(c)) is formally the IR/Vis intensity cross-correlation,
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which can also be seen explicitly in the expression Eq. 3.31(c) in conjunction with Eq. 3.32.

This cross-correlation represents the IRF of an FEIR experiments, and its width is therefore

a practical measure of the time-resolution. In a two-pulse FEIR measurement, the TPA

signal (if present) therefore appears as a spike riding on top of the FEIR signal at τenc = 0,

and indicates the pulse-overlap region.

Next, we examine the behavior of the TPA signal in the frequency-domain, i.e. as it

would appear when measuring FEIR spectra with the three-pulse experiment. From a pulse

diagnostic standpoint, more information about the IR spectral phase can be gleaned from this

frequency-domain representation of the TPA signal. The three-pulse-resolved TPA signal is

processed in the same way as three-pulse FEIR data, i.e. the spectrum is the real part of

the one-sided Fourier transform of τIR > 0 data

STPA(ω, τenc) = Re
∫ ∞

0

S12(τIR, τenc)e
iωτIRdτIR. (3.33)

Just like the case for FEIR signals, a projection-slice relation connects the projection of

the frequency-resolved TPA signal onto the encoding delay to the IR/Vis intensity cross-

correlation

∫ ∞

−∞
STPA(ω, τenc)dω = S12(τIR = 0, τenc)

= 2S1(τenc) = 2S2(τenc) =
1

2
S(τIR = 0, τenc). (3.34)

Figure 3.11 displays contour surface representations of STPA(ω, τenc) for a variety of dif-

ferent IR and visible pulse characteristics. Figure 3.11(a) shows the case corresponding to

the time-domain data in Figure 3.10, i.e. transform-limited pulses with spectral bandwidth

representative of our current experiments. The overall frequency extent of the signal follows
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Figure 3.11: Frequency-resolved TPA signals STPA(ω, τenc) with corresponding IR and visible
temporal intensity profiles and cross-correlations for a variety of relative pulse durations and
values of γIR,2. In all cases the IR spectrum is Gaussian with ωIR = 1600 cm-1 and ∆ωIR = 120
cm-1. In (a)-(c) both pulses are transform-limited with τp,IR = 123 fs and (a) ∆ωvis = 50 cm-1

(τp,vis = 297 fs), (b) ∆ωvis = 300 cm-1 (τp,vis = 49 fs), and (c) ∆ωvis = 23 cm-1 (τp,vis = 640
fs). The top panel of (a) shows the projection of the TPA signal onto the ω-axis overlayed on
the IR spectrum. (d)-(f) use the same spectra as (a), with a transform-limited visible pulse
but chirped IR of (d) γIR,2 = -8700 fs2 (τp,IR = 232 fs), (e) γIR,2 = -30,000 fs2 (τp,IR = 689
fs), and (f) γIR,2 = 30,000 fs2 (τp,IR = 689 fs).
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the IR pulse spectrum, and as shown in the upper panel, the projection of STPA(ω, τenc)

onto the ω-axis in fact exactly reproduces the IR pulse spectrum. This equality between the

ω-projection and IR spectrum holds for all the cases shown in Figure 3.11, and is therefore

not shown for the other cases.

The projection onto the τenc-axis, i.e. the IR/Vis cross-correlation, is shown on the right

panel superimposed on the IR and visible temporal intensity profiles. While the IR/Vis

cross-correlation is symmetric in τenc, the shape of the TPA spectrum varies asymmetrically

in τenc, with small negative side lobes for τenc < 0, switching to exaggerated positive wings

for τenc > 0. Figures 3.11(b) and (c) show cases where the IR pulse is the same as in (a),

but with a transform-limited visble pulse that is alternately much shorter (∆ωvis = 300

cm-1, τp,vis = 49 fs), or much longer (∆ωvis = 23 cm-1, τp,vis = 640 fs), respectively. When

the visible pulse is significantly shorter than the IR (Figure 3.11(b)), the magnitude of this

asymmetry is more significant (e.g. evident from the deeper negative lobes), while in the

opposite scenario (Figure 3.11(c)) the asymmetry is less pronounced. This asymmetric τenc-

evolution may have a physcial interpretation along similar lines to that of the pulse-overlap

lineshape distortion to FEIR spectra discussed previously in Section 3.6.

The effect of second-order dispersion (γIR,2, Eq. 3.18), often referred to loosely as ‘chirp’,

on the IR pulse is demonstrated in Figures 3.11(d)-(f). These three cases use the same IR

and visible pulse spectra as in (a), and the visible remains transform-limited. Figure 3.11(d)

shows the case of γIR,2 = -8700 fs2, which produces a mildly chirped pulse of 232 fs duration,

and is representative of the IR pulse at the sample in our instrument as characterized by

interferometric autocorrelation (discussed further in Chapter 4). The effect of this dispersion

is to tilt the spectral feature in the ω-τenc plane, and roll its phase asymmetrically to one side

of ωIR. The direction of this tilt and asymmetry is consistent with the sign of the γIR,2, in
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this case a negative sign corresponding to a ‘down-chirp’ where the high frequencies precede

the low frequencies within the envelope. This sensitivity to the sign of γIR,2 is demonstrated

in more extreme circumstances in Figures 3.11(e) and (f), where the tilt and asymmetry are

flipped when switching between γIR,2 = -30,000 fs2 and 30,000 fs2, respectively. In principle,

evidence of higher-order IR spectral dispersion could be inferred from the frequency-resolved

TPA signal, although their characteristic signatures are more complicated. For example,

third-order dispersion contributes a triangular horn-shaped pattern (not shown).

Overall, we have seen how vibrationally-nonresonant TPA can manifest in FEIR mea-

surements. Specifically, the TPA response exists within the IR/Vis pulse-overlap region, and

can therefore potentially obscure the interpretation of the FEIR data at the earliest encoding

delays. In two-pulse experiments, the TPA response is exactly the IR/Vis intensity cross-

correlation, and appears as a spike at τenc = 0. In FEIR spectra derived from three-pulse

measurements, the TPA response spans the IR pulse spectrum as would be expected for a

nonresonant process, although the τenc-dependence is sensitive the pulses’ relative duration

and the IR spectral phase.

Because the TPA response effectively maps out the pulse-overlap region, it can be used

to characterize the temporal pulse characteristics and provides a rather direct measure of the

FEIR spectrometer’s instrument response function. We will discuss this method in Chapter 4.

Because the resonance conditions for FEIR excitation are automatically the same as that for

IR + visible TPA, a natural question of great practical importance is under what conditions

will the TPA response be present, and how large will it be relative to the proper FEIR signal?

The strength of the TPA response is presumably connected to the molecular polarizibility,

and might correlate with the degenerate two-photon cross-section of the molecule’s electronic

transition, which have often been characterized for popular fluorophores. In cases where the
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FEIR activity of vibrations under investigation are small, it might be expected that the

relative size of the TPA response could be significant. On the other hand, for the goal of

instrument response characterization, a dye without any FEIR active vibrations resonant

within the IR bandwidth is desirable.
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Chapter 4

Experimental implementation of FEIR

spectroscopy

4.1 Overview

This chapter describes the experimental FEIR instrumentation and data acquisition proce-

dures used in this thesis. In general, the detection sensitivity potential of FEIR spectroscopy

is facilitated by diverse and technically-mature fluorescence-based microscopy and single-

molecule methodologies that may be incorporated into the experimental design. Specifically,

our approach is based on adapting a confocal epifluorescence microscope configuration with

single-photon counting detection. At the same time, FEIR spectroscopy requires intense,

ultrashort-pulse excitation to efficiently pump and encode the weak and short-lived mid-IR

vibrational resonances. Combining these disparate technologies—fluorescence microscopy

and ultrafast IR spectroscopy—requires unique experimental design strategies and compro-

mises. Here we will describe the particular path we have taken, including its drawbacks and

opportunities for potential improvements.

Perhaps the single most important design feature is the choice of the instrument’s pulse
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Figure 4.1: Schematic overview of the primary components of the FEIR instrument. Signal
acquisition and motion control/feedback dependencies are indicted by gray wires.

repetition-rate. Specifically, photon counting detection allows at most one emitted photon

to be registered in response to every repetition of the pulse sequence. Therefore, for photon

counting to be efficient, the repetition-rate should be as high as possible while still allowing

the system to fully relax before the next pulse sequence arrives. However, for nonlinear ex-

periments using ultrashort pulses, especially with weak mid-IR vibrational transitions, pulse

energies must also be high enough to efficiently drive population into excited states. We strike

a balance between high repetition-rate and pulse energy by employing a 1 MHz repetition-

rate amplified Yb fiber laser (Coherent Monaco 1035-40) to pump our experiment. Figure

4.1 shows a schematic overview of the primary components of the FEIR instrument. Fem-

tosecond mid-IR pulses are generated by a home-built optical parametric amplifier (OPA),
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which will be the subject of Section 4.2. The IR pulses are sent through a Mach-Zehnder

interferometer to produce a collinear pulse-pair with controllable delay (τIR), which are then

delivered to the FEIR microscope. The visible encoding pulse is generated by doubling the

Yb fiber laser fundamental, passed through a delay line to set and control the encoding delay

(τenc), and finally sent into the microscope. Both of these components are described briefly

in Section 4.3.

Section 4.4 describes the optical design and characteristics of the FEIR microscope. To

achieve intense excitation fields and a small probe volume, the IR and visible beams are fo-

cused into the sample with high numerical aperture (NA) optics in a counter-propagating ge-

ometry, with the smaller diffraction-limited visible focus centered within the larger IR focus.

Fluorescence is collected with the same visible objective lens (known as the epifluorescence

geometry189), passed through selective bandpass filters, and imaged onto a single-photon

avalanche photodiode (SPAD) with its small active area serving as a confocal aperture. This

confocal aperturing reduces out of focus fluorescence, thereby restricting the experimental

observation volume to a small ∼1 µm3 region where molecules are most efficiently excited

by the focus of the visible encoding field.

Data collection during FEIR measurements and auxiliary experimental setup or charac-

terization involves the detection of both IR and single-photon fluorescence signals, which—

being analog and digital signals, respectively—use different acquisition strategies. Section

4.5 discusses the nuts and bolts of the detection electronics for the various modes of signal

acquisition, as well as motion control procedures used to scan the τIR and τenc delays in

experiments. With the instrumental aspects of signal acquisition covered, the specific mode

of collection and processing of data in bulk FEIR measurements is then discussed in Section

4.7. Specifically, we will describe the acquisition of two- and three-pulse FEIR signals, and
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the processing of the latter into Fourier transform FEIR spectra.

The tight focusing of the IR beam guarantees sufficiently high peak field intensities in

the sample to drive the FEIR excitation process with reasonable efficiency. However, the

correspondingly large average power densities, especially considering the high repetition-rate,

can produce thermal loads in the sample. In mild and intermediate cases, these thermal loads

produce artifacts in the data ranging from minor to severe, while extreme cases can render

any measurement impossible by vaporizing the solvent. As the potential for these heating

effects is intrinsic to FEIR spectroscopy, in particular within the current collinear IR/Vis

beam geometry, we will devote some time in Section 4.8 to a thorough discussion of their

phenomenology.

Finally, in Section 4.9 we will discuss the incorporation of time-resolved fluorescence

detection by way of time-correlated single-photon counting (TCSPC). For typical bulk ex-

periments, this capability does not necessarily add much insight beyond simply monitoring

the fluorescence intensity, although an interesting application to using fluorescence lifetimes

to disentangle the vibrational spectra of multicomponent systems will be described. How-

ever, for single-molecule or small-ensemble experiments where useful photons are limited,

time-tagged and time-resolved detection is critical for making optimal use of the sparse pho-

ton stream. The major application of this TCSPC functionality is to photon correlation

used in FEIR correlation spectroscopy, and background scatter suppression in small signal

scenarios, both of which will be described later in Chapter 6.
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4.2 Generation of femtosecond mid-IR pulses at 1 MHz

repetition-rate

The material in this section is adapted from:

Penwell, S. B.; Whaley-Mayda, L.; Tokmakoff, A., Single-stage MHz mid-IR OPA using
LiGaS2 and a fiber laser pump source. Optics Letters 2018 43 (6), 1363-1363.

4.2.1 Introduction

As described above, our choice of a 1 MHz repetition-rate system represents a compromise

between the technical requirements of single-photon counting and ultrashort IR pulse gen-

eration. This repetition-rate is on the low end for modern photon-counting fluorescence ex-

periments that employ pulsed excitation, where repetition-rates of 20-80 MHz are standard.

On the other hand, ultrafast IR techniques are most often built on 1 kHz repetition-rate

Ti:Sapphire systems, which can provide mJ-level pulses centered near 800 nm with dura-

tions well under 100 fs. Down-conversion schemes to produce µJ-level ∼100 fs mid-IR pulses

pumped by these sources have been well established, and commercial options are standard.

Producing sufficiently intense femtosecond IR pulses at the much higher 1 MHz repetition-

rate presents multiple new technical challenges, and in many ways represents the primary

instrumental hurdle that had to be dealt with in our development of the FEIR experiment.

This section describes the mid-IR optical parametric amplifier (OPA) based on a single-stage

of amplification in Lithium Gallium Sulfide (LGS) developed for this purpose. Much of this

material is published in Ref. [190], although improvements in performance since then, most

notably higher mid-IR output power, will be noted.
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The recent developments of both Yb- and fiber-based gain media in ultrafast laser tech-

nology has opened up new possibilities for high repetition-rate spectroscopy. Compared to

Ti:Sapphire, Yb-doped gain media enable more efficient direct diode pumping, which allows

for operation at higher repetition-rates while maintaining large pulse energies.191 Further-

more, fiber-based gain media readily handle higher average powers due to the increased

surface-to-volume ratio’s favorable thermal dissipation properties, thereby enabling further

scalability into MHz repetition-rates.192 Fiber lasers are also appealing pump sources due

to their lower cost, turnkey operation, reliability, and compact footprint. Among other

things, the increased repetition-rate allows for high-throughput averaging, reducing the ac-

quisition time for low signal experiments. These advantages are especially promising for IR

spectroscopy, which typically suffers from low sensitivity and requires large pulse energies.

Recently, an increasing number of ultrafast IR instruments operating at 100 kHz have been

demonstrated using Yb:KGW or Yb fiber systems.193–200 There are, however, limited com-

mercial options for mid-IR generation compatible with high repetition-rate Yb laser pump

sources. Furthermore, most existing commercial schemes for generating mid-IR from the

1033 nm Yb fundamental rely on multiple stages of amplification and difference frequency

generation between the amplified signal and idler. The complexity of these schemes often

reduces their net efficiency and results in price points comparable to or exceeding the pump

laser itself. Many alternative methods for mid-IR generation have been proposed, however,

most do not reduce the complexity of the design, or fail to span a sufficient portion of the

mid-IR.193,201–214
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4.2.2 Mid-IR nonlinear crystals for Yb laser pumping

A simple, direct OPA design is appealing due to the ease of use, low cost, and potential

increase in efficiency. Most materials currently used for three-wave mixing in OPA, however,

are oxide crystals suitable for amplification of visible or near-IR wavelengths with 800 nm

pump sources. While these materials have the high damage thresholds required for OPA

pumping, they absorb in the mid-IR (typical absorption edges cutting on in the range of 3-5

µm), precluding their use for direct mid-IR generation. As such, there is currently a limited

selection of materials capable of phase-matching direct OPA to generate a mid-IR idler in the

range of 3-8 µm with a 1033 nm pump.215 Of these materials, few are commercially available

and many have low damage thresholds or bandgaps near/below the 2.4 eV two-photon energy

of the Yb fundamental. The relatively new non-oxide Li-based materials (LGS, LSGE, LIS,

and LISE) show particular promise due to their transparency across the mid-IR, high damage

thresholds, and large band gaps. These materials have previously been explored for use in

optical parametric oscillators (OPOs),216 difference frequency generation (DFG) for THz

generation,217,218 DFG for mid-IR generation,219–221 and there has been one report of an 800

nm pumped OPA.222 Since the time of writing Ref. [190], these materials have seen a large

increase in popularity for mid-IR generation by OPA and DFG schemes.223–228

The materials capable of Type I or II phase-matching to produce a mid-IR idler in the

range of 3-8 µm with a 1033 nm pump wavelength are listed in Table 4.1. The table includes

the values of the bandgap and the effective Kleinman d-coefficient for the second-order

nonlinear susceptibility (deff)139,231,232 for generation of a 5 µm idler in both Type I or II

phase-matching according to the SNLO nonlinear optical code (available from A. V. Smith,

AS-Photonics, Albuquerque, NM). Of this list, only AGGS, AGS, HGS, LGS, LGSE, LIS,

and LISE have bandgaps larger than the two photon energy of the pump (2.4 eV). AGGS
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Table 4.1: Nonlinear crystals for phase-matching 3-8 µm generation by OPA with a 1033 nm
pump.

Abbreviation Chemical Formula Type I deff Type II deff Eg

(pm/V) (pm/V) (eV)
AAS Ag3AsS3 25 15 2.2
AGGS AgGaGeS4 4.9 - 3.0
AGS AgGaS2 12 15 2.7
ASS Ag3SbS3 16 1.5 2.2
GS GaSe 57 50 2.0229

HGS HgGa2S4 28 32 2.79
HS HgS 52 55 2.0230

LGS LiGaS2 -4.4 5.9 3.76
LGSE LiGaSe2 -7.7 9.4 3.65
LGT LiGaTe2 51 36 2.41
LIS LiInS2 -4.7 7.2 3.57
LISE LiInSe2 -4.8 11 2.86
Effective nonlinear susceptibility (deff) from SNLO for a 5 µm idler.
Bandgaps (Eg) taken from Petrov et al.215 unless noted.

and AGS are common materials for DFG, but have low damage thresholds.233 While HGS

has a large deff, it has limited transparency and is not readily commercially available due to

challenges associated with the growth of sufficiently large crystals.215

The remaining Li-based materials have large band gaps, reasonably high damage thresh-

olds, and good transparency out to near 10 µm, but also have the lowest deff values, requiring

the use of thick crystals which may limit the amplified bandwidth.234 Of these Li-based ma-

terials, LGS has the largest band gap, highest thermal conductivity, and lowest predicted

spatial and temporal walk off in a collinear OPA configuration.235 Figure 4.2(a) shows the

mid-IR absorption spectrum of LGS. Additionally, Type I phase-matching in LGS is pre-

dicted to produce the steepest angle-tuning curve of all the Li based materials. This tuning

curve, calculated by SNLO and shown in Fig. 4.2, predicts idler generation in the range

of 3-7.5 µm over a ∼7 degree range of internal angles. Taken together, these properties
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Figure 4.2: (a) LGS mid-IR absorption and (b) Type I phase-matching angles for a 1033 nm
pump. (a) Absorption spectrum of a 4 mm thick LGS crystal used in the OPA (sourced from
Del Mar Photonics). A baseline absorption due to clipping of the FTIR beam around the
crystal’s 5×5 mm clear aperture has been subtracted. The sharp features with absorbance
< 0.1 are due to imperfectly subtracted atmospheric H2O (∼ 1400 − 1800 cm-1 and ∼
3600− 4000 cm-1) and CO2 (∼ 2300 cm-1) absorption. (b) The signal (blue) and idler (red)
wavelengths are shown as a function of the crystal’s internal phase-matching angle θ. The
bounds of the tuning range from 3-7.5 µm are indicated by dashed black lines in (a) and (b).

motivate our selection of LGS for mid-IR generation in an OPA configuration.

4.2.3 Design and performance of the mid-IR OPA

Here we describe the OPA’s optical design and characteristics. The final mid-IR output,

tunable from 3-7.5 µm, is the idler from a single-stage of collinear amplification in LGS

pumped by the 1033 nm Yb laser fundamental. The seed is provided by the near-IR (1150-

1700 nm) portion of a super-continuum (SC) generated by filamentation of the fundamental

in yttrium aluminum garnet (YAG). A schematic of the key components is shown in Figure

4.3. While the beam paths in Fig. 4.3 has been slightly simplified for clarity, the number of
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reflections and geometries of the pump and SC seed arms are designed to match the direction

of any input pointing fluctuations at the LGS crystal in order to increase stability.
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Figure 4.3: Schematic of the OPA. The pump is shown in brown, the SC seed in yellow, the
mid-IR idler in red, and the HeNe tracer in dashed red. λ/2 are half-waveplates, PBS is a
polarizing beamsplitter, TFP is thin film polarizer, NDW is neutral density wheel, A is an
iris aperture, DC1 and DC2 are identical dichroic beamsplitters, and L1-L4 are lenses. See
text for details.

The pump laser is a Coherent Monaco 1035-40, which provides a 40 W, 1 MHz repetition

rate output centered at 1033 nm with 40 µJ/pulse , ∼400 fs pulse durations, a ∼3 mm

1/e2 beam diameter, and vertical linear polarization. 95% of its output is split toward

the OPA, and a half-waveplate (Thorlabs WPH05M-1030) and high-power polarizing beam

splitting cube (Thorlabs CCM1-PBS25-1064-HP) set the total input power to the OPA to

30 W, with the excess energy directed to a beam dump (dump 1). A second waveplate and
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thin film polarizer (Eksma 420-1298) split the input into two components to control the

balance of power for SC generation (SCG, 6 W, S-polarized) and the OPA pump (24 W,

P-polarized). All mirrors in the OPA pump line and the SCG line upstream of the YAG

crystal are dielectric high reflectors for the fundamental (Newport 10D20DM.10). The OPA

pump line includes a manual delay stage (Newport 423) and a 250 mm lens (L1, Thorlabs

LA1252-B) that focuses the pump slightly beyond a 4 mm thick LGS crystal cut for Type I

phase-matching. Multiple crystals have been employed, cut with Phi = 0◦ and either Theta

= 45◦ (phase-matching ∼4.5 µm at normal incidence) or Theta = 48◦ (∼7 µm at normal

incidence), all of size 5× 5× 4 mm (sourced from either Ascut Ltd. or Del Mar Photonics).

These crystals have been either uncoated or anti-reflective (AR) coated for the pump on

both faces. At the crystal, the pump beam fwhm is ∼250 µm, and the power is 22 W due

to aggregated losses through the pump line.

In the SCG line, an ND wheel (NDW, Thorlabs NDC-50C-2-B), adjustable iris aperture

(A, Thorlabs SM1D12C-SM1), and 100 mm lens (L2, Thorlabs LA1509-B) determine the

pump fluence and convergence into a 10 mm YAG crystal (NewLight YAG0100), where

filamentation generates a SC spanning the NIR out to ∼1700 nm. This configuration for

SCG was reported by Calendron et al.236. Typically, the aperture diameter is set between

2.7-3.1 mm to optimize the power and stability of the seed. A representative seed spectrum

is shown in Figure 4.4(a). A 40 mm achromat (L3, Thorlabs AC254-040-C-ML) collects and

refocuses the SC into the LGS crystal. One 1150 nm longpass dichroic beamsplitter (DC1,

Edmund 87-043) reflects the residual SCG pump into a water-cooled beam block (dump

2) while a second (DC2) combines the OPA pump (P-polarized) and the SC (S-polarized)

before the LGS crystal. A 75 mm BaF2 lens (L4, ISP Optics BF-PX-25-75) collimates the

S-polarized mid-IR idler after the crystal. An AR-coated Ge window (Edmund 83-349) in
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a custom water-cooled mount reflects the residual pump and amplified signal towards a

beam dump (dump 3) while transmitting the mid-IR idler. A second Ge window overlaps

a reflected HeNe tracer onto the transmitted mid-IR beam to aid alignment of the output

further into the downstream instrumentation. When tuned between 4 and 7 µm, a 3.6 µm

long pass filter (Edmund 68-654) may be placed at the output to block a weak, P-polarized

second harmonic of the idler, which can be generated incidentally in this region of the tuning

curve where idler SHG is simultaneously phase-matched.237 However, this unwanted second

harmonic is often not present at appreciable powers and the long pass filter is not used for

the experiments in this thesis. The OPA is enclosed and purged with a dry N2 atmosphere

to protect the optics from dust and avoid idler absorption by CO2 and water vapor.

The mid-IR output of the OPA is tunable from 3-7.5 µm, producing pulses with 85-165

cm−1 bandwidth and 140-540 fs duration, as summarized in Figure 4.4. The pulse energies

and durations here and durations are from Ref. [190], in which a lower pump line power

of 18 W was used. With the higher pump power of 24 W and small improvements in the

configuration made since then, current pulse energies are in the range of 90 to 120 nJ.

Tuning is achieved primarily through the LGS crystal angle, with minor adjustments to the

timing, spatial overlap, and SC focusing. Representative spectra across the tuning range are

shown in Figure 4.4(b). The reported spectra were collected with an Acton SpectraPro 2150i

monochromator using a 150 g/mm grating blazed for 3 µm and a photovoltaic MCT detector

(Boston Electronics PVM10.6). The mid-IR idler was focused at the entrance slit with a 150

mm CaF2 lens. The entrance and exit slits were in the range of 100-400 µm. Pulse durations

are determined by interferometric autocorrelation using the Mach Zehnder interferometer,

which will be discussed further in Sections 4.3 and 4.6. A cooled InSb detector (InfraRed

Associates IS-1.0) was used to measure the isolated second harmonic of the idler for these
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measurements. The red side of the tuning range is limited by the blue edge of the dichroic

used to combine the OPA pump with the SC (Figure 4.4(a)). The blue side of the tuning

range is likely limited by the power in the SC.
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Figure 4.4: SC seed spectrum and mid-IR idler tuning range and pulse characteristics. (a)
Seed spectrum as measured through a monochromator with an InGaS photodiode. The high
frequency cutoff near 1150 nm is due to the dichroic beamsplitter (DC1 and 2), and the steep
fall-off beyond 1600 nm reflects the red wavelength range of the InGaS detector’s sensitivity,
although the seed spectrum likely does not extend appreciably further. The limits of the
OPA tuning range achieved are indicated by dashed lines. (b) Example spectra of the mid-IR
idler output across the tuning range. Output (c) bandwidth (black, left y axis) and pulse
energy (purple, right y axis) with 2σ error-bars, and (d) pulse duration (black, left y axis)
and time bandwidth product (purple, right y axis). The transform limited time-bandwidth
product for a Gaussian pulse (∼0.44) is indicated by a dashed purple line.
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The mid-IR output pulse energy (at the time of writing Ref. [190]) and bandwidth are

shown in Figure 4.4(c). Typical power fluctuations are <2% rms (measured over 5 min on a

Coherent PS-19 power head), although <1% rms can be routinely achieved. As mentioned

above, current pulse energies in the range of 4.5-6.5 µm are between 90 and 120 nJ, while

the bandwidths are similar. The increase in power on the red side of the tuning curve is

due to an increase in the efficiency of the process and the bandwidth of amplification. In

addition, the crystal used in Ref. [190] was cut for 7 µm, so the blue side has the steepest

angle of incidence. The large bandwidth on the red side of the curve can be understood

from the phase-matching curve in Fig. 4.2, which approaches a vertical slope around 8.5

µm. The pulse duration and time-bandwidth product are shown in Figure 4.4(d). The time

bandwidth product shows that the output is close to transform-limited except when tuned

red of about 5.5 µm. This increase in pulse duration is likely due to second-order dispersion

from transmissive optical elements in the IR path. In Ref. [190], a CaF2 collimating lens was

used, which exhibits a dramatic increase in nonlinear dispersion red of 6 µm (group velocity

dispersion (GVD) -1250 fs2/mm at 6.2 µm)238, and is the largest contributor to this increase

in pulse duration beyond the transform limit. The material of this lens has been updated

to BaF2, which has a slower onset of nonlinear dispersion (GVD -591 fs2/mm at 6.2 µm),

but is still significant. Section 4.6 discusses more aspects of temporal pulse characteristics

and sources of dispersion downstream of the OPA. This excess second-order dispersion could

potentially be compensated for by using introducing significantly more Ge into the IR line,

which has an oppositely-signed GVD to BaF2 in this frequency range (GVD 673 fs2/mm at

6.2 µm).
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4.2.4 Operational details and challenges

The 1 MHz repetition rate poses unique challenges for the design, characterization, and

operation of the OPA, some of which we believe will also apply more generally in the extension

of ultrafast IR spectroscopy to these repetition rates. Working at a high repetition rate while

maintaining pulse energies sufficient to drive nonlinear optical processes results in average

beam powers higher than typically encountered with kHz systems. Controlling the resulting

thermal loads on optics and mounts must be prioritized in the OPA design to avoid damaging

components and ensure stable, reliable performance.

While LGS (in the absence of defects) does not absorb a significant amount of thermal

energy from the pump due to its band gap being significantly above the two-photon energy,

absorption of scattered pump energy has led to catastrophic damage of the crystal on two

occasions. This may have been due to either an internal defect, surface damage of an AR

coating, or dust particles landing and burning onto the crystal surface. As both of the

crystals that failed were those sourced from Del Mar Photonics, while the crystals from

Ascut Ltd. (both coated and uncoated) have not exhibited this failure mode to date, it is

likely that defects introduced in the growth process played a role. In practice, burn spots

appear on the exit face of the crystal after a few days or weeks of operation, at which point

the crystal needs to translated to a clean spot.

While AR coatings on the crystal could increase its susceptibility to damage in this

way, they also reduce the power of unwanted back reflections and increase the input and

output coupling efficiency. In Ref. [190], the LGS crystal is uncoated and the pump back

reflection from the crystal face is ∼3.6 W (from a reduced input pump power of 18 W),

which is sufficient to heat optical mounts and destabilize the OPA if not controlled. This is

consistent with the 12-13% Fresnel reflection at each interface, calculated from the Sellmeier
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coefficients from Isaenko et al.234 Using this uncoated crystal also produced a weak ‘ghost’ IR

pulse delayed by ∼60 ps from the main idler pulse when angle-tuned near normal incidence

due to internal reflections off the back and front face. AR coating both faces at the pump

wavelength mitigate both of these issues.

The Ge window used to isolate the mid-IR idler from the pump and signal absorbs a

portion of the pump energy and heats dramatically. Water-cooling the mount controls the

heat load, but also creates a thermal lens in the Ge. Mounting configurations that maintain

symmetric thermal contact with the window avoid abberating the transmitted IR mode, but

also tend to distort the wavefront flatness of the Ge and thus abberate the reflected tracer

beam. Therefore, a second Ge window, mounted without distortions to the Ge flatness,

is required to overlap the HeNe tracer and mid-IR. An ideal solution would use a longpass

dichroic mirror with a high-reflective coating over the pump and signal wavelengths, however

the large idler tuning range makes finding appropriate coatings impractical. The iris aperture

in the SC line also heats up substantially in regular operation (but is left uncooled), while

the residual pump filtered out from the SCG is directed to a cooled beam dump to avoid

heating nearby mounts.
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4.3 Mach-Zehnder interferometer and visible encoding

line

4.3.1 Mach-Zehnder interferometer

The Mach-Zehnder interferometer (MZI) is shown schematically in Figure 4.1 with a sim-

plified beam path. BS1 and BS2 are matched 50:50 ZnSe beamsplitters (Rocky Moun-

tain Instrument Co.WI1512Z) used to split the input and recombine the two arms, respec-

tively. Both arms have protected gold retroreflectors (PLX OW-25-2G), and a precision stage

(AeroTech ANT95-50L-MP) with motion controller (AeroTech A3200 Npaq) determines the

relative delay of the moving and stationary arm, i.e. the τIR pulse delay. All reflective optics

are protected gold. The in-phase output of the MZI (bright arm) is sent in to the FEIR

microscope. The out-of-phase output (dark arm) is focused with a 25 mm CaF2 lens onto a

single-channel, room-temperature photovoltaic HgCdTe (MCT) detector (Boston Electronics

PVM10.6). As described in Sections 4.5 and 4.7, this dark arm IR intensity channel is used

to measure the IR pulse spectrum and act as a phase reference for three-pulse FEIR exper-

iments. The MCT detector may alternately be placed in the FEIR microscope to measure

the transmitted power of the bright arm through the sample, as described next in Section

4.4.

The MZI is enclosed and purged with dry N2. An optical chopper (New Focus 3501

Optical Chopper using the ‘2’ wheel) is placed in the bright arm before it exits the enclosure.

As described in Section 4.5, this chopper is used to isolate the total FEIR signal from any

fluorescence background for experiment setup and diagnostic purposes, but is not used in

regular data collection.
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4.3.2 Visible encoding line

The salient components of the visible encoding pulse generation and delay line are also

shown in Figure 4.1. 5% of the Monaco fundamental is split off and used for this purpose.

A half-waveplate (λ/2, Thorlabs WPH05M-1030) and polarizing beam splitting cube (PBS,

Thorlabs CCM1-PBS25-1064-HP) are used to set the power into a 3 mm thick BBO crystal

cut for second harmonic generation of the 1033 nm P-polarized fundamental. The visible

encoding pulse is the resulting S-polarized second harmonic output from the crystal (516.5

nm, spectrum shown in Figure 4.7). The first three routing mirrors after the crystal are

532 nm high reflectors that pass the residual fundamental, resulting in a sufficiently pure

isolated second harmonic beam. This beam is then routed into a delay line consisting of a

protected silver retroreflector mounted on an identical Aerotech ANT95-50L-MP stage. This

stage sets the τenc delay, and is controlled by the same motion controller (AeroTech A3200

Npaq). The beam is then sent through a spatial filter to produce a ∼ 6mm circular mode

to overfill the back aperture of the objective in the microscope. The pulse energy after the

spatial filter is adjustable between ∼ 10 fJ and 2.2 µJ via the half-waveplate and polarizer

before the doubling BBO, as measured by a Coherent LM-2 VIS power head.

4.4 The FEIR microscope

4.4.1 Microscope body and optical layout

The FEIR microscope is based on an upright epifluorescence configuration, and is constructed

largely using components from the Thorlabs Cerna Series. Figure 4.5 shows photos of the

microscope from the font and sides, with the IR and visible beam paths highlighted. The

IR beam out of the MZI is routed into the microscope (Figure 4.5(b)) and undergoes two
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Figure 4.5: Layout of the FEIR microscope.

reflections off protected gold mirrors into an uncoated ZnSe aspheric lens (ISP Optics ASPH-

ZC-25-12), which focuses the beam into the sample from below. Considering the f = 12.7

mm focal length and quoted 90% clear aperture of the 25.4 mm diameter, the NA of this

lens is nominally

NA = n sin θ = n sin
[
arctan

(D
2f

)]
≈ 0.68, (4.1)

where D is the effective back-aperture diameter and we take the index n = 1 of the air gap

before the sample. The size of the IR beam at the back of the lens is ∼8 to 12 mm, and

therefore does not completely fill its aperture. The ZnSe lens is mounted with X,Y and Z

translation, and the IR path up to its sample-facing top surface is enclosed in beam tubes

and purged with dry N2.

The linearly polarized visible beam is first sent through a half-waveplate (Thorlabs
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WPH10M-514, λ/2 in Figure 4.5(c)) to set the polarization relative to the IR beam in

the sample, then routed up to the top of the microscope, and sent downward into the objec-

tive turret. For nearly all FEIR measurements discussed in this thesis, with the important

exception of polarization-dependent experiments discussed in Chapter 9, the polarization of

the visible is set to be parallel with the IR. The workhorse objective for high-sensitivity FEIR

measurements in this thesis is a NA 0.8 Zeiss A-Plan 63x air objective lens. The working

distance of this objective, defined as the distance between the front assembly housing and the

focus, is 300 µm. Alternatively, a 0.5 NA reflective Schwarzschild-type objective (Thorlabs

LMM40X-P01) is used when collecting the transmitted IR beam, or when a much larger

working distance (this objective having at least 7 mm) is desired, at the expense of looser

focusing and lower collection efficiency. Both objectives are infinity corrected and parfocally

matched, meaning their focal points occur at the same location in Z, to within a few µM.

The sample cell (discussed next in Section 4.4.2) is held in a sample holder mounted

to three axes of micro-positioning (Thorlabs PLS-XY and ZFM2020) driven by a Thorlabs

MCM3001 controller. The Z motion (vertically along the optical axes of the IR and visible

beams) may be automatically scanned to profile the sample with ∼1 µm repeatability, but

the XY motion is not sufficiently reproducible for raster scanning, and is only used to position

the sample with visual feedback e.g. from a camera (discussed below).

The routing optics and detection assembly on the top of the microscope are shown in

Figure 4.6(a). To facilitate the multiple detection modalities required for experiments, align-

ment, and auxiliary characterization, the beam routing setup incorporates four magnetic

bases (labeled Insert 1 through 4) that accept exchangeable inserts containing different op-

tics (Thorlabs DFM1 series). For FEIR measurements, or otherwise when fluorescence from
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Figure 4.6: (a) Top view of the FEIR microscope detection area with principle components
labelled, and (b) illustration of an Airy pattern from an idealized diffraction-limited spot in
the objective’s focal plane (intensity on log-scaled heat map).

the sample is being monitored, Insert 1 is empty, Insert 2 contains a dichroic mirror (Sem-

rock FF526-Di01) which reflects the visible beam toward the objective and transmits the

fluorescence, and Insert 3 is empty to pass the fluorescence towards the detector. The flu-

orescence is then passed through a notch (Thorlabs NF-514-17) and bandpass (Semrock

FF01-550/49) filter to thoroughly remove residual scattered excitation light and spectrally

restrict detection around the target molecular fluorescence spectrum. The spectral profiles

of the dichroic and filter set are shown in Figure 4.7 overlayed on the visible encoding pulse
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spectrum and the absorption and emission spectra of the FEIR dye coumarin 6 for reference.

This dichroic/filter set collects fluorescence on the Stokes side of the visible excitation, as in

a conventional fluorescence microscope. However we note that the electronic pre-resonance

conditions required for FEIR in principle enable detecting emission on the anti-Stokes side,

which may have advantages for dyes with small Stokes shifts.
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Figure 4.7: Spectral characteristics of the epifluorescence filter set. (a) Left y axis: Nor-
malized absorption (solid black) and fluorescence (dashed black) spectra of coumarin 6 in
acetonitrile and visible encoding pulse spectrum (gray). Right y axis: transmission spectra
of the notch filter (green), dichroic beamsplitter (blue), and emission filter (red). (b) Trans-
mission of the notch filter, emission filter, and dichroic beamsplitter in optical density units
with the spectrum of the visible encoding pulse overlayed.

The detector is a single-photon avalanche photodiode (SPAD, MPD PDM 50) which has

a 50 µM active area. To achieve confocal conditions, the focal length of the tube lens (L1

in Figure 4.6) is chosen to produce the magnification required to roughly match the image

size of visible objective’s point spread function with that of the active area. In this way,

the active area acts as the pinhole itself, giving rise to the confocal filtering effect.239 Here
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we briefly describe how this tube lens focal length is determined. An idealized diffraction-

limited point spread function in the focal plane is given by an Airy pattern, shown in Figure

4.6(b).189,240,241 The central disk contained within the first diffraction ring has a diameter

dfocus in the sample of

dfocus ≈
1.22λ

NA
, (4.2)

where λ is the wavelength (516.5 nm for the encoding pulse). For the 0.8 NA Zeiss objective,

this focal spot diameter is dfocus = 0.788 µm. The size of this spot imaged at the detector

dimage is simply scaled up by the overall magnification M of the optical system

dimage =Mdfocus =
fTL

fobj
dfocus, (4.3)

where the magnification is in turn determined by the focal ratio of the tube lens (fTL)

and objective (fobj). In practice, manufacturers of modern infinity-corrected objectives do

not usually directly report their focal length, but rather specify a magnification which is

only defined with respect to a given standard tube lens focal length. Unfortunately, each

manufacturer uses their own tube lens standard (which to the detriment of the uninitiated

are not always clearly indicated), some of which are summarized in Table 4.2. The 0.8 NA

Zeiss objective is specified with nominal magnification of 63x, meaning its actual focal length

is fobj = (165mm)/63 = 2.62 mm. We therefore choose a tube lens with fTL = 150 mm,

producing an actual magnification of ∼57x and focal spot image of 45.5 µm, which is close

to being matched with the detector.

To position the sample in the focus and perform other alignment procedures, a silver

mirror may be placed in Insert 3, which directs the beam path upward and through a 125
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Manufacturer fTL standard (mm)
Zeiss 165

Thorlabs 200
Olympus 180

Leica 200
Nikon 200

Mitutoyo 200

Table 4.2: Tube lens standards for different objective manufacturers.

mm tube lens (L2) to focus onto a CMOS camera (Thorlabs DCC1545M). To measure the

transmitted IR intensity, the Schwarzschild objective is used, and Inserts 2 and 4 contain

silver mirrors that instead route the beam toward a separate arm with a 25 mm CaF2 focusing

lens (L3 in Figure 4.6) onto a single-element MCT detector. This is the same detector used

for the out-of-phase output of the MZI, and must be moved between these two locations.

To aid in positioning the sample, performing alignments, and other basic characterization

tasks, widefield epi and transmission illumination are provided by two LEDs (Thorlabs MN-

WHL4 and MCWHLP1, respectively, both with LEDD1B driver), shown in Figure 4.5(a).

In both cases, a relay of lens and a pair of iris apertures are used to create conditions for

Köhler illumination, which essentially images perfectly out of focus light from the LEDs onto

the sample to ensure uniform and homogeneous illumination.189 For using epi-illumination,

Insert 1 contains a mirror and some of the relay lenses, while Insert 2 has the same dichroic

used for fluorescence detection. For transmission illumination, another exchangeable insert

(Figure 4.5(a)) containing a mirror and relay lenses is placed in the IR beam path below the

ZnSe asphere.
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4.4.2 IR and visible focal characterization and sample region

Figure 4.8(a) illustrates the FEIR microscope’s observation volume formed by the counter-

propagating and cofocused IR and visible beams in solution, emphasizing the significant

size mismatch in their focal volumes due to the diffraction-limit. Therefore, even though

FEIR excitation depends on the intensity of both fields, the operational probe volume of the

experiment is essentially determined exclusively by the visible focus and its imaging onto

the detector. Sample solutions are held in a home-built aluminum cell between a coverslip

(top, visible/fluorescence side) and 1 mm thick Calcium Fluoride (CaF2) window (bottom,

IR side) separated by a 50 µm thick polytetrafluoroethylene (PTFE) spacer. Both coverslip

and window are 25.4 mm rounds, and the spacer is cut in an roughly 3 mm narrow annulus

of similar outer diameter. For many of the experiments described in this thesis (including

those in Refs. [242, 243] and some of Ref. [244]), the top coverslip is a standard 175 µm thick

#1.5H glass coverslip (Marienfeld). However, as we will discuss in Section 4.8, thermal effects

caused by IR absorption of these poorly transparent glass coverslips limit the signal sizes

and can produce artifacts in FEIR experiments. Switching to IR-transparent CaF2 coverslips

(sourced from Crystran in either 200 or 150 µm thickness) eliminates these thermal effects,

and represents a dramatic improvement in the sensitivity and quality of FEIR measurements.

More details and considerations of imaging quality through these non-standard coverslips will

be discussed further in Section 4.8.

The following characterization of the sizes of the IR and visible focal spots was done in

an older version of the instrument (only used for the work described in Ref. [242]), which

employed a modified Bruker Hyperion FTIR microscope. Unlike the less than ideal situation

in the current version of the custom FEIR microscope described here, the sample stage of this

commercial microscope allowed for repeatable micro-positioning in the XY plane, making
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these focal profiling measurements possible. Fortunately, as the same ZnSe asphere and Zeiss

objective were used in this original instrument, the following characterization should still be

representative of the current experiment.

The size of the IR focus at the sample was determined by measuring the transmission

through a 5 µm pinhole which is raster scanned across the beam. The pinhole was mounted

between a 1 mm CaF2 window and coverslip to mimic the sample profile. Figure 4.8(b)

shows an XY scan at the IR focal plane. Cross sections with Gaussian fits are shown in

Figures 4.8(d) and (e). The measured beam size represents the true beam size convoluted

with the 5 µm pinhole, which is not a significant difference. For simplicity we report the

spot size as the average of the measured X and Y cross-sections, yielding a 10.5 µm fwhm or

8.9 µm 1/e2 radius. Figure 4.8(c) shows a Z scan along the axis of the beam, where negative

Z positions are above the focus.

The visible focal size with the NA 0.8 Zeiss objective was determined by measuring the

emission intensity from a 100 nm fluorescent bead as it was scanned through the focus.

The bead sample was prepared by drop casting a few µL of bead solution (Fluoresbrite YO

Carboxylate Microspheres 0.10 µm) on a clean coverslip. Figures 4.8(f) and (g) show an X

cross section at the focal plane and Z scan along the optical axis, yielding a fwhm (1/e-2

radius) of 0.43 µm (0.36 µm) and 1.7 µm (1.4 µm), respectively. These measurements were

performed without employing a strong confocal effect by properly matching the image size

of the focus on the 50 µm active area of the detector. Specifically, for this measurement a

short f = 75 mm tube lens was used, producing a smaller 15 µm Airy disk at the detector.

The resulting size should therefore only be taken as approximate, but are roughly consistent

with diffraction-limited focusing with the 0.8 NA.

Refraction affects the apparent thickness of the nominally 50 µm solution layer, i.e. the
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Figure 4.9: Fluorescence Z profiles of multiple samples on linear (a) and logarithmic (b)
vertical scales, indicating typical variations in apparent thickness.

distance the sample needs to be translated in real space in order for the visible focus to move

from the top to the bottom interface. The relation between the apparent and real thickness

h and hr, respectively, can be found from Snell’s law considering the NA of focusing, and is

given by

h = hr

√
NA2 − n2

i

NA2 − n2
s

, (4.4)

where ni is the index of the immersion medium contacting the objective (air, n = 1 in our

case), and ns is the index of the solution.245 For acetonitrile (or acetonitrile-d3) with index

of ns = 1.345 at the visible excitation frequency, a 50 µm layer would appear to be ∼36 µm

using the Zeiss objective. Figure 4.9 shows Z profiles of the one-photon excited fluorescence

from rhodamine 6G solutions in acetonitrile-d3 of varying concentration. The width of

these profiles are roughly consistent with that expected of a 50 µm layer while also giving
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some indication of the sample-to-sample variations in solution layer thickness. Additionally,

these profiles demonstrate the sharp ∼1 µm step-response in Z at the top solution interface

indicative of good confocal filtering, as well as the linearity of count rate with concentration

from the bulk.

FEIR measurements are typically conducted with the focus at an apparent distance (i.e.

h not hr) of 20 µm below the top interface, after first checking that the total solution layer is

thick enough to accommodate this depth. The bending flexibility of the coverslip can often

cause the sample to slowly decrease in thickness if the solvent evaporates over the course of

the measurement, a problem that can be especially troublesome for highly volatile organic

solvents. One solution is to use a spacer shape that incorporates a support structure (e.g.

an arm pointing in from the one side of the annulus) near the center of the coverslip so that

is cannot flex downwards.

4.5 Detection of IR and fluorescence signals

4.5.1 Data acquisition architecture

Here we describe the general approach to recording IR and single-photon fluorescence sig-

nals from the MCT detector and SPAD, respectively. For bulk FEIR measurements and

routine instrument alignment, these signal acquisition tasks are handled by a multifunc-

tion data acquisition (DAQ) card (National Instruments PCIe-6361) with software written

in LabVIEW. A breakout terminal block (National Instruments BNC 2090-A) is used for

a front-end connection interface to the DAQ card. Time-tagged and time-resolved photon

detection by TCSPC is accomplished by a separate dedicated system, and will be described

in Section 4.9.
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Figure 4.10: Signal acquisition architecture using the DAQ card. (a) DAQ setup for shot-to-
shot detection of IR intensity from the MCT detector. A 1 or 2 MHz trigger waveform from
the delay generator provides the sample clock for analog-to-digital conversion (ADC) of the
signal voltage. (b) Waveforms of the MCT signal voltage and 1 and 2 MHz triggers, with
sampling events indicated by vertical dashed lines. (c) DAQ setup for photon counting with
the SPAD. (d) A counter enumerates incoming edges of the SPAD’s digital TTL waveform,
and this counter is sampled either by an internal clock, or by an external source. The case
shown in (c) is of the chopper’s digital phase reference waveform, which facilities differential
acquisition of the FEIR count rate above the background. The 1 MHz laser sync is shown
in (d) to indicate that fluorescence photons are detected in response to the excitation pulse
train, but this waveform is not used in photon counting mode.

IR detection

Shot-to-shot measurement of the mid-IR intensity at 1 MHz requires a detector bandwidth

high enough to ensure that its voltage response has fully relaxed before the next pulse arrives.

The photovoltaic MCT detector used has a sufficiently fast multi-nanosecond response time

to satisfy this requirement. Furthermore, since boxcar integrators that can be triggered at
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1 MHz are not readily available, determination of the mid-IR intensity relies on sampling

the peak detector response. The DAQ architecture for synchronously recording the detector

response at its peak is shown in Figures 4.10(a)-(b). A 1 MHz sync from the Monaco’s

amplifier (exact repetition-rate 994.7 kHz) triggers a delay generator (Stanford Research

Systems DG 645), which is configured to output either a 1 or 2 MHz digital waveform with

an electronic delay tuned to synchronize against the detector response profile. This waveform

acts as the sample clock, triggering acquisitions of either just the peak voltage in the case of

the 1 MHz trigger, or alternating peak and baseline voltages for the 2 MHz trigger (Figure

4.10(b)). In the 2 MHz mode, the digitized signal is then separated into peak and baseline

values and their difference is taken for each shot. This 2 MHz detection scheme is useful

for removing the constant offset voltage from the detector’s preamplifier, which can drift

slowly on the timescale of minutes to hours. This mode is therefore useful when the absolute

magnitude of detector response is of interest, e.g. during alignment with the MCT on top of

the microscope. As we will discuss below, when measuring IR interferograms from the MZI,

the 1 MHz mode is used as it imposes a milder bandwidth load on the DAQ card, and the

fast, continuous stage scanning procedure circumvents slow noise from this baseline drift.

Fluorescence photon counting

Unlike the case of IR detection, photon counting with the SPAD is asynchronous with respect

to the laser pulse train. The acquisition scheme for photon counting is shown in Figures

4.10(c)-(d). Photon detection events registered by the SPAD are output in two separate

digital channels, one using a transistor-transistor logic (TTL) waveform, and the other a

Nuclear Instrument Modules (NIM) waveform. The TTL is sent to the DAQ, while the

NIM, which has slightly lower timing-jitter, is used for TCSPC (Section 4.9). A counter in
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the DAQ is programmed to increment on the incoming TTL edges. The value of this counter

is then sampled either by an internal clock onboard the DAQ card, or by an external trigger

(Figure 4.10(d)). The difference in the counter value between successive samples is the

number of photons recorded in that interval, or bin. When monitoring the total fluorescence

level from the sample during alignment or auxiliary characterization, an internal sample

clock is used, typically with a 50 millisecond bin time (20 Hz sample clock). The number

of photons per bin is converted to an intensity (count rate) by multiplying by the sampling

rate.

Chopped-mode counting

One example where an external clock source is used is in ‘chopped-mode’, where the IR

beam into the microscope is being chopped, and the difference in fluorescence count rate

with and without the IR beam is monitored directly. This mode isolates the count rate of

the FEIR signal on top of any background. The chopping rate is set at 100 Hz by the chopper

controller’s internal clock, and is asynchronous with respect to the orders of magnitude higher

pulse repetition-rate. Counts during successive on and off phases of the chopper cycle are

separately recorded and subtracted. In practice, photon counts within adjustable potions at

the beginning and end of the chopping duty cycle are ignored to avoid situations when the

IR beam is only partially blocked by the blades on the chopper wheel. Chopped-mode is

useful for alignment purposes when optimizing the FEIR signal magnitude, and can also be

used when stepping pulse delays or sample stage positions. However, FEIR data acquisition

is mostly done by fast continuous scanning of the optical delays without chopping. In this

case, a position feedback waveform from the delay stage controller acts as the external sample

clock, and will be described next.
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4.5.2 Continuous stage ‘fastscanning’ with Position Synchronized

Output (PSO)

Continuously scanning pulse delays is an attractive option for collecting time-domain data,

as much of the experimental ‘dead-time’ associated with stepping delay stages, e.g. due to

communication latency and mechanical settling time, can be avoided. Besides decreasing the

time required to sample a given number of laser shots over a range of delay values, continuous

scanning can also dramatically improve signal to noise ratios if the delays are varied faster

than the slow noise fluctuations in signal due to, for example, laser power variations or

mechanical drift in the spectrometer. As a result, the actual speed up in acquisition time

required to achieve a given signal to noise can be quite significant. This is particularly true

in our case as the 1 MHz repetition-rate is high enough to facilitate very fast scan speeds

while still adequately sampling the data in real time.

Either the τIR and τenc stages in the interferometer and visible delay line, respectively,

(each identical AeroTech ANT95-50L-MP) may be fastscanned. Our method for fastscanning

employs the Position Synchronized Output (PSO) of the stage controller (AeroTech A3200

Npaq), which produces electronic TTL pulses synced to predefined increments of the stage’s

internal encoder within a specified window of travel. The PSO waveform is used as a grid over

which signal acquisition events may be referenced to in real time. How this is accomplished

depends on the character of the signal channel.

The case of the IR intensity from the dark arm of the MZI is illustrated in Figure 4.11. A

counter on the DAQ card enumerates incoming edges of the PSO waveform while the stage

moves at constant velocity. The 1 MHz sync waveform from the delay generator is then used

to simultaneously trigger samples of the MCT detector’s peak voltage and the PSO counter

value. The PSO count is either then interpolated up to laser sync sampling rate to generate
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Figure 4.11: IR detection with continuous stage motion.

the position axis, or the voltages within a constant PSO count value are averaged together

(shown in Figure 4.11), defining the voltage value of that position bin.

Figure 4.12 shows an example of a fastscan IR interferogram measured with the MCT

detector monitoring the dark arm of the MZI. The raw data in panels (a)-(c) show the

individual samples of both voltage and PSO counter at the 1 MHz sampling rate. In practice,

the high 1 MHz acquisition rate produces unnecessarily dense sampling of the interferometric

fringes (evident in panels (b) and (c)) even for fast scan speeds (here 2 mm/s). Therefore,

data collection most often uses the binning approach described above, where after each

sweep of the stage, voltages are averaged within each PSO bin (shown in panels (d)-(e)) in

the LabView routine. For this data (1.8 mm scan window corresponding to τIR = [−2, 10]

ps), the average duration of a forward and reverse scan cycle including turn around time

and LabView processing is ∼3.8 s. Typical PSO bin sizes for τIR-dependent signals are 300
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Figure 4.12: Fastscan acquisition of an IR pulse interferogram. (a)-(c) Raw MCT voltage
and PSO counter acquisitions (triggered by the 1 MHz Monaco sync) for a reverse direction
scan of the interferometer stage. The x axis consists of the array index in LabView that
receives each sample. The grayed-out region in (a) indicates the window of delays the PSO
has been programmed to monitor (here 1.8 mm of travel). (b) and (c) show successively
zoomed in views of the region around the central fringe of the interferogram. The PSO
increment, reflected by the width of each step of the PSO counter values, is 150 nm. (d)
Interferogram in the forward (blue) and reverse (red) travel direction with the x axis binned
up to 150 nm (∼1 fs bins) and averaged over 20 scans. (e) Zoomed in view of the central
fringe in (d). (f) Processed IR pulse spectra from the interferograms in (d).
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nm (×2/c0 ≈ 2 fs), which is well above Nyquist sampling for the mid-IR wavelength. As

the signal is being binned (i.e. averaged) within the PSO increments, rather than sampled

directly at discrete positions, systematic under-sampling is not possible with this approach.

For the fluorescence channel, a second counter on the DAQ monitors the TTL output

of the SPAD, i.e. counts incoming photon arrival events. The PSO counter is then used to

trigger samples of the cumulative photon count. The increment in photon count between

successive PSO triggers is therefore the number of photons detected within the corresponding

increment of stage travel. For each repetition of the scan new photon arrivals are accumulated

in their respective bins, and the data builds up as a histogram of delay bins.

Stage position

1 MHz laser sync

PSO waveform
(sample clock)

SPAD counter

SPAD
TTL output

Lab time

∆

Figure 4.13: Fluorescence detection with continuous stage motion.

In either case, the accuracy of the stage’s encoder in general depends on the direction

and speed of travel, so care must be taken to separately process data from each direction

and use the same scan speed for the three-pulse FEIR signal and IR reference data (used

for processing Fourier transfrom spectra as described in Section 4.7). A limitation of this
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acquisition procedure is that the fluorescence and IR channels cannot be detected simulta-

neously by the DAQ card, and must be done sequentially. In practice, an IR reference is

usually taken before and after an FEIR measurement to determine if phase drift due to any

instrumental pathlength change has occurred.

Fastscanning of the τenc delay is done for two-pulse FEIR measurements (Section 4.7),

which can use much larger bin sizes due to the slower evolution of the FEIR signal in τenc.

Typically, 40 fs bins are used, and the τenc axes in the two scan directions are sufficiently

similar to be directly averaged together.

4.5.3 Fourier transform spectral artifacts from periodic stage posi-

tion errors

Small periodic errors from the encoder of the τIR stage give rise to spectral artifacts that

appear as satellite features in Fourier transform data, analogous to ‘Rowland ghosts’ encoun-

tered with diffraction gratings.246,247 For our particular stage, these satellite or ‘ghost’ peaks

appear offset at spacings of ∼ n×250 cm-1 for n = · · · ,−2,−1, 0, 1, 2, · · · with roughly 1-5%

of the true band’s intensity (see e.g. Figure 4.15(c)). This behavior seems to be consistent

with other Aerotech ANT95 stages of similar generation. Thankfully, these periodic position

errors are reproducible from scan to scan and therefore may be corrected by calibration.

Here we describe a simple approach to this calibration using the optical phase evolution of

the HeNe tracer beam extracted by the analytic signal representation of its intensity interfer-

ogram. This approach is inspired by the operation of an interferometric laser encoder. How-

ever, unlike more sophisticated strategies that directly measure in-phase and in-quadrature

fringes to monitor the phase on a point-by-point basis,248 our approach requires measuring

the entire interferogram and extracting the phase after the fact in post-processing. As such,
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Figure 4.14: Tracking stage position errors with the HeNe tracer interferogram. (a) Detail
of the raw HeNe inteferogram I(δraw) (blue) and its Hilbert transform (red). (b) Calibration
of corrected positions δcorr against raw positions δraw by Eq. 4.7 over the same range as in
(a). (c) Position error δcorr − δraw over a ∼16 mm range of stage travel. (d) Zoomed in view
of the position error showing periodic structures on the ∼10 µm scale.

the method’s success is reliant on the reproducibility of position errors over the course of

the measurements being conducted. No additional optics are required, provided that the

correct HeNe spot can be isolated from the multiple laterally displaced spots arising from

reflections off the incorrect beamsplitter surfaces. Simply irising down the beam to perform

the calibration is usually sufficient.
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During stage motion, the intensity of the HeNe in the dark arm of the MZI is monitored

by a photodiode, and acquisitions of its voltage are sampled by the 1 MHz Monaco sync

in the same way as described above for the MCT detector. In order to extract the phase

evolution from the intensity fringes I(δraw) (with the constant offset first subtracted), the

analytic signal representation Z(δraw) is calculated numerically after the fact using the Hilbert

transform H,133,249,250

Z(δraw) = I(δraw) + iH{I(δraw)}. (4.5)

The imaginary part of Z is referred to as the quadrature component of the signal, which is

appropriate given its π/2 phase-shifted behavior evident in Figure 4.14(a). For this data the

PSO increment is 50 nm, the scan speed is 2 mm/s, and the δraw of each point is the result

of interpolating the PSO count up to the 1 MHz sampling rate of the HeNe intensity. In

general, the fastscan parameters should be identical to those used in the measurement to be

corrected. The optical phase evolution is reconstructed from the phase of Z(δraw), defined

with reference to an arbitrary stage position δref such that φ(δref) = 0,

φ(δraw) = arg{Z(δraw)} = tan−1
(H{I(δraw)}

I(δraw)

)
. (4.6)

The corrected stage positions are then simply given by

δcorr =
λHeNe

4π
φ(δraw), (4.7)

where λHeNe = 632.816 nm is the HeNe laser line wavelength in air. This relationship

produces a calibration of corrected against raw stage encoder positions over a given range
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of travel (shown over a small range in Figure 4.14(b)), which can be used as a lookup

table to correct the position axis in a measurement. In practice, the raw positions are first

converted to the corrected positions, which in general are unevenly spaced. The signal is

then interpolated onto an evenly-spaced position grid. Figures 4.14(c) and (d) show the

position error, δcorr − δraw, as a function of raw position along a ∼16 mm portion of the τIR

stage’s 50 mm range. Here we have taken δref = 0 mm. The regular periodic structure seen

in panel (d) is likely the source of the spectral satellite artifacts. As in the theory of Rowland

ghosts, this can be understood as the generation of side-bands by phase-modulation.

Figure 4.15 shows the effect of carrying out the calibration procedure to correct the posi-

tion axis. Panels (a) and (b) show the spectrum of the HeNe derived from its interferogram

before and after the correction. The inset in panel (b) demonstrates that the measured

lineshape of the HeNe is exactly given by the Hann apodization window used to process the

Fourier transform, i.e. the corrected HeNe interferogram is a pure cosine wave. As the same

HeNe interfeogram being corrected was that used to create the calibration, this is true by

construction, and simply illustrates the process. Figures 4.15(c) and (d) demonstrate the

correction on an independently measured IR pump interferogram. The satellite features cre-

ated by the periodic position errors are successfully removed. The quality of the correction

produced by a given HeNe calibration interferogram degrades within a week or so as the

stage’s motion and/or encoder performance drift.

In practice, the IR bandwidth used in our FEIR experiments is narrower than the spacing

to the first set of satellites, and we therefore can usually leave the stage positions uncorrected.

The experiments analyzed in this thesis do not employ this stage correction. However,

even though these most obvious artifacts fall safely outside the IR pulse spectrum, subtle

distortions may still exist within its bandwidth, and experiments requiring high precision
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Figure 4.15: Removal of spectral satellites with the stage position correction. (a) Uncorrected
HeNe spectrum calculated from its interferogram, showing multiple orders of satellites. (b)
HeNe spectrum with corrected positions. The inset shows a detailed view of the laser line
on a log y scale, which exhibits the characteristic side-lobe structure of the Hann window
used for apodization in the Fourier transform. (c) Uncorrected IR pump spectrum. The
lower panel is a zoomed-in view of the baseline, showing the satellite peaks. (d) IR pump
spectrum with corrected positions. The satellites are removed, and the remaining features
outside the pulse spectrum can be assigned to slow noise near zero frequency and the effect
of mild detector saturation producing an apparent second-harmonic response.

lineshape analysis should by done with the correction procedure.
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4.5.4 Correction to photon count rates for pile-up error

For large fluorescence intensities, single-photon counting is practically limited by the speed

at which the detector can reset itself between photon arrivals, which can lead to artifacts as

photons are missed. Errors of this nature are often referred to as photon pile-up.251 Here

we analyze the specific kind of pile-up error which manifests as a sub-linear response in our

experimental configuration.

100 101 102 103 104

X (kHz)

100

101

102

103

104

X
m

 (k
H

z)

ideal

r
pile-up

0 500 1000
Xm (kHz)

0

20

40

60

80

100

(X
 - 

X
m

)/X

a b

(%
)

m

0 100 200
0

5

10

Figure 4.16: Model for pile-up error. (a) X vs Xm in the presence of pile-up (Eq. (4.11),
red) compared to the ideal case where every photon is registered (black), with r indicated
(dashed black). (b) Percent error in Xm, with inset showing the 0 - 200 kHz range.

The repetition-rate of our excitation pulses is fixed at r = 994.7 kHz, while the fluo-

rescence lifetime of the fluorophores used is typically on the order of a few nanoseconds.

Therefore, essentially all useful signal light will arrive at the detector in the few first per-

cent of the ∼1 µs duty cycle. Our detector has a hardware fixed dead-time of 75 ns, so

that once a photon is detected any subsequent photons reaching the detector during this

dead-time interval will not be registered. In practice this means that at most one photon

can be counted per excitation pulse sequence, and the measured count rate will therefore
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saturate at the repetition-rate. However, even at lower count rates it is possible that multiple

signal photons will arrive at the detector per excitation cycle, only the first of which will

be counted. The measured count rate will therefore always be smaller than the true count

rate, with the error growing as the count rate approaches saturation. It is important to note

that this possibility of multiple photons per pulse sequence is only relevant for the case of an

ensemble of uncorrelated emitters, e.g. from a solution at concentrations greater than a few

nM. If an individual molecule is being observed then only one photon can be emitted at a

time anyways, and this type of pile-up is not an issue. In practice, however, this distinction

is not important in our measurements because the single-molecule count rates we encounter

are far below the pile-up threshold, as shown below.

To avoid this nonlinearity, the total count rate needs to be kept below a certain level to

ensure that pile-up errors are small. To determine what this level should be, we consider a

simple model where the probability of n photons reaching the detector after an excitation

pulse sequence follows a Poisson distribution

p(n, λ) =
e−λλn

n!
. (4.8)

Here the rate parameter λ is the average photon number ⟨n⟩, and therefore the true count

rate, i.e. without pile-up, is X = rλ where r is the pulse repetition-rate. The measured

count rate Xm is equal to the repetition-rate times the average number of photons counted

per pulse sequence

Xm = r⟨nc⟩ = r

∞∑
n=0

nc(n)p(n, λ), (4.9)
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where the number of counted photons is

nc(n) =


0 n = 0

1 n ≥ 1.

(4.10)

Evaluating this expression, we get

Xm = r
(
0 +

∞∑
n=1

e−λλn

n!

)
= r
(
−e−λ +

∞∑
n=0

e−λλn

n!

)
= r(1− e−λ) = r(1− e−X/r). (4.11)

This gives the relationship between the true count rate X and measured count rate Xm,

which is inverted to give the correction function cited in the main text,

X = −r ln(1−Xm/r). (4.12)

Figure 4.16(a) shows the relationship between X and Xm for this model, while the cor-

responding magnitude of error in Xm is shown in Figure 4.16(b). For count rates below

∼200 kHz, the error grows linearly in Xm with the approximate rate of 1% per 20 kHz.

Beyond this range the growth rate increases and eventually diverges as saturation Xm ∼ r

is approached.

To test how well Eq. (4.12) works to correct real data, we measured the Ivis-dependence

of the fluorescence count rate from a 1 µM Rhodamine 6G (R6G) solution in acetonitrile-

d3. We used the same experimental configuration as an FEIR measurement (with a glass

coverslip), although with the IR beam blocked. R6G is directly resonant with the visible

pulse, and this concentration should be high enough to ensure we observe a large ensemble

of molecules with low individual excitation probabilities to avoid photophysical saturation.
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Figure 4.17: Experimental evaluation of the pile-up correction. Raw (black) and corrected
(blue) count rates as a function of Ivis on log-log (a) and linear (b) axes (note the smaller
Ivis range in (b)). The blue line is a linear fit to the corrected points with Ivis < 0.2 GW
cm-2. The dashed line indicates 500 kHz, which we feel is the practical limit of measured
count rate that can be successfully corrected.

Ideally, the true count rate should therefore be linear in Ivis, and any deviations in the

measured count rate reflect pile-up error. Figure 4.17 shows the raw and corrected count

rates from this experiment on both log-log (panel (a)) and linear (panel (b)) axes. Applying

the correction successfully restores a linear intensity dependence for measured count rates

up to ∼500 kHz (dashed line). However, beyond this point the quality of the correction

evidently breaks down, as the corrected points fall below the low-intensity linear trend (blue

line). In experiments where measuring the absolute count rate levels is important (as in

Chapter 7), we keep the measured count rate below 200 kHz (∼10% error before correction),

which we feel is solidly within the range that can be pile-up corrected with high fidelity by

Eq. (4.12). However, for achieving higher signal to noise with more rapid acquisition times

in bulk measurements (important e.g. for measuring τenc-dependent FEIR spectra), going
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up to Xm ∼ 500 kHz is reasonable with this correction.

4.6 Temporal pulse characterization and instrument re-

sponse

4.6.1 IR pulse characterization by interferometric autocorrelation

The IR pulse duration is characterized by interferometric autocorrelation (IAC) in a 0.5

mm AgGaS2 (AGS) crystal at the sample position. The resulting SHG signal is collected

through the microscope as described in Section 4.4. Depending on the IR center frequency

ωIR, different materials are placed in front of the detector as transmission filters to block the

fundamental while passing the SHG. For ωIR ∼3 µm clear acrylic is used, for ωIR between 4

and 5 µm 10 mm of N-BK7, and for ωIR > 5.5µm two ∼1 mm glass microscope slides. 1 mm

of CaF2 is included in the optical path before the AGS crystal to account for transmission

into the sample cell.

Figure 4.18 shows the spectra and IACs for IR pulses produced by the OPA near 6 µm,

and 4.5 µm. The IAC data is shifted and scaled so that the lowest fringe falls to zero

and the long-time baseline is unity. The zero frequency band of the data is the intensity

autocorrelation (IA),179 which is extracted by a Fourier filter. We use the fwhm of the

temporal pulse intensity profile as a definition of pulse duration, τp, IR. Assuming a Gaussian

profile, the pulse duration, taken as fwhm temporal intensity envelope, is related to the fwhm

of the IA by τp = τIA/
√
2. We use this relation to report the pulse duration from a Gaussian

fit of the recovered IA.
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Figure 4.18: IR Pulse spectra and interferometric autocorrelations at (a)-(b) ωIR = 1620
cm-1 (6.17 µm) and (c)-(d) ωIR = 2235 cm-1 (4.47 µm). In (b) and (d) the extracted IA (red)
is shown over the IAC (blue).

For the 6 µm pulse, the resulting 232 fs IR pulse duration (transform limit of 107 fs) is

consistent with the dispersion that results from the summed GVD of materials in the optical

path. This includes the 4 mm thick LGS OPA crystal, the BaF2 collimating lens, two 1 mm

thick Germanium windows, the ZnSe beamsplitters, ZnSe asphere, and 1 mm CaF2 bottom

sample window. The 4.5 µm pulse is closer to transform-limited, with a 182 fs duration

(transform limit of 141 fs), due to the lower combined dispersion from these materials at this

shorter wavelength and smaller bandwidth over which dispersion can play a role.
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4.6.2 IR/Vis temporal pulse overlap characterized by two-photon-

excited fluorescence

As discussed in Chapter 3, fluorescence induced by vibrationally non-resonant two-photon

absorption (TPA) can be used to measure the temporal overlap of the IR and visible pulses.

This method therefore characterizes the effective temporal instrument response function

(IRF) of the FEIR experiment. With independent knowledge of the IR pulse characteris-

tics, e.g. by IAC, the visible pulse duration can therefore be backed out. At minimum, a

fluorophore that can be used for this purpose must exhibit IR + Vis two-photon electronic

resonance, which operationally is automatically satisfied for the electronic pre-resonance con-

dition used for FEIR. However, it must also not contain any FEIR active vibrations (or better

yet, no vibrations at all) in resonance with the IR spectrum. Additionally, the molecule must

have a non-vanishing two-photon cross-section. In practice, this second criterion is difficult

to achieve in the 6 µm region, where most electronically-conjugated molecules have C=C

ring stretching vibrations. Using TPA to characterize the IRF for 6 µm experiments there-

fore remains a currently unsolved problem. However, to demonstrate this method, and along

the way characterize the visible pulse duration, we move the IR to 4.5 µm where many dye

molecules exhibit clear windows.

Figure 4.19 shows the pure TPA signals from coumarins 6 and 343 (C343) using the

4.5 µm IR pulse characterized above in Section 4.6.1. Neither of the coumarins have any

vibrations within its bandwidth, while they both exhibit good electronic resonance with the

sum frequency ωIR + ωvis (Figure 4.19(a)). Background-subtracted two-pulse transients for

both molecules are shown in Figure 4.19(b), which are symmetric in τenc and fit well to

Gaussians that decays fully to zero, indicative of a nonresonant pulse-overlap signal. The

frequency-resolved version of this signal from C343 (measured via the three-pulse signal as
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Figure 4.19: TPA signals from C343 and C6 with vibrationally off-resonant IR pumping.
(a) Electronic absorption spectra for C343 and C6 indicating resonance conditions for ωIR

= 2235 cm-1 (4.47 µm). (b) Background-subtracted, normalized two-pulse transients for C6
and C343. The two signals have been offset for clarity. A Gaussian fit yielding a fwhm of
356 fs is shown for C343. (c) Frequency-resolved TPA signal from C343. The projection of
the surface onto the frequency axis is shown overlayed on the IR pulse spectrum, while the
projection onto the τenc axis is shown with a Gaussian fit yielding a fwhm of 370 fs. (d)
Calculation of frequency-resolved TPA signal with using a Gaussian IR pulse spectrum with
second-order dispersion consistent with the experimental IAC, and a transform-limited 315
fs Gaussian visible pulse.

for an FEIR spectrum discussed in Section 4.7), is shown in Figure 4.19(c). Its projec-

tion onto the frequency axis matches well with the IR pulse spectrum, as predicted for the
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frequency-resolved TPA signal in Chapter 3. Gaussian fits to the two-pulse signal and the

projection of the frequency-resolved signal onto the τenc axis yield fwhm values of 356 and

370 fs, respectively. Assuming these values represent the fwhm of the IR/Vis intensity cross-

correlation, and taking the IR pulse duration from the IAC, we back out the visible pulse

duration of τp,vis =
√
3562 − 1822 = 306 fs or 322 fs for the longer or shorter measurements,

respectively. We take the average value of 315 fs as our measure of the visible pulse duration.

Figure 4.19(d) shows a calculation of the frequency-resolved TPA signal using a Gaussian IR

pulse spectrum with second-order dispersion consistent with the experimental IAC, and a

transform-limited 315 fs Gaussian visible pulse, yielding good agreement with features in the

TPA spectrum including the shallow negative wing on the red side of the pump indicative

of mild IR down-chirp.

4.6.3 Uncertainties in assigning τenc = 0

The proper assignment of time zero for τenc is made difficult by the counter-propagating

experimental geometry, which couples the relative timing of the IR and visible pulses to

longitudinal position along the optical axis. In principle this effect could wash out the time-

resolution along τenc if the signal is collected from a region with a longitudinal dimension

larger than the effective pulse lengths (e.g. ∼30 µm for a 100 fs pulse in vacuum). In

our experiment the few µm longitudinal size of the point spread function provided by the

objective and confocal detection renders this effect negligible. However, another consequence

is that, in order to maintain the same τenc = 0 between auxiliary characterization and

measurement, whatever sample or material is being used to determined τenc = 0 via a TPA

signal or some other nonresonant parametric response must also have the same thickness and

index profile as the sample the FEIR measurement is being performed on. As mentioned
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previously, we have not yet been able to independently measure τenc = 0 for the 6 µm FEIR

experiments studied in this thesis. Our assignment of τenc = 0 for these experiments is

instead based on response function calculations and is described in Chapter 8.
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Figure 4.20: Coupling of the relative IR/Vis timing and Z position in the sample. Normalized
two-pulse signals from C343 in CHCl3 as a function of Z position (indicated in the legend).

The coupling of timing and Z position is illustrated in Figure 4.20, which shows two-

pulse signals from C343 in chloroform for various Z values below the bottom of the coverslip

(i.e. h in Eq. 4.4). For this solvent, there is a nearly 100 fs timing shift per 10 µm of Z

travel. To achieve reproducible τenc values between measurements it is therefore important

to ensure that the signal is being collected from the same Z position in the solution layer,

while variations in the thickness of this layer will contribute to uncertainty in timing. This

Z-dependent timing shift is less severe in acetonitrile-d3, in which most FEIR experiments

in this thesis are performed.

193



Chapter 4. Experimental implementation of FEIR spectroscopy

4.7 Acquisition and processing of bulk FEIR signals

4.7.1 Two-pulse experiments

The total photon count rate measured in any FEIR experiment is given by

Ftot(τIR, τenc) = F (τIR, τenc) + F0 +B. (4.13)

Here F is the desired FEIR signal, F0 is a constant background fluorescence due to direct

excitation of the target molecule by the visible pulse alone, and B encapsulates all other

sources of background not arising from the target molecule, e.g. solvent Raman scattering,

emission from impurities and optics, and detector dark counts. More about these latter two

background components will be discussed in detail in Chapters 6 and 7. As described in the

theoretical development of Chapter 2, two-pulse signals may be measured either by blocking

the moving arm (E1) of the interferometer so only E2 (the stationary IR pulse) and E3 (the

visible encoding pulse) are present in the sample, or by setting τIR = 0, thereby superposing

E1 and E2. As shown later in Figure 4.22, this latter method produces a 4 times larger signal

which can be understood by considering the effect of constructive interference between the

IR pulses. Therefore, this is the preferred method for measuring two-pulse transients and

is exclusively used in this thesis unless otherwise noted. Likewise, two-pulse transients are

collected by fastscanning τenc at 2 mm/s with 40 fs bin size.

Figure 4.21(a) shows the raw fluorescence count rate Ftot(τenc) from a two-pulse experi-

ment on Coumarin 6 (C6) in acetonitrile-d3. The coverage of the IR pulse spectrum, shown

later in Figure 4.23, is centered on the high frequency coumarin ring vibrations, and rep-

resents a similar pump condition used for most of the coumarin experiments discussed in
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Figure 4.21: Two-pulse signal from C6 in acetonitrile-d3. (a) Raw photon count rate Ftot(τenc)
from a two-pulse measurement with the IR pulse pair at τIR = 0. The maximum FEIR signal
F and background F0+B levels are indicated. (b) Same data with the background subtracted
on a logarithmic y axis and showing a longer scan range.

this thesis. The signal F and background F0 + B components are labeled. Figure 4.21(b)

shows the normalized F component on a logarithmic y scale, exhibiting a bimodal decay

profile consisting of ∼1 ps and ∼10 ps decay components. This relaxation behavior will be

discussed in Chapter 10, and is suggestive of intramolecular vibrational energy redistribution

followed by vibrational cooling of the molecule.

4.7.2 Three-pulse Fourier transform experiments

In a three-pulse experiment, the FEIR signal has the following components

F (τIR, τenc) = F12(τIR, τenc) + F1(τIR + τenc) + F2(τenc). (4.14)

Specifically, F1(τIR + τenc) = F2(τenc) are two-pulse signals were both IR-vibrational inter-

actions occur with either E1 or E2, respectively, while F12(τIR, τenc) is the three-pulse signal
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due to one interaction each with E1 and E2 and two with the encoding pulse E3.

Figure 4.22: Signal contributions in a three-pulse experiment and projection slice relation-
ship. (a) Background-subtracted FEIR signal F (τIR, τenc) from C6. (b) Various 1D slices of
the FEIR signal, indicated by color-coded arrows in (a). (c) Processed FEIR spectrum and
(d) projection of the spectrum onto the τenc axis (black circles). The two-pulse signal from
Figure 4.21 is overlayed (solid black) to illustrate the projection-slice relationship between
these quantities.

Figure 4.22(a) shows the full background-subtracted time-domain FEIR signal F (τIR, τenc)
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from the C6 sample. The F2(τenc) component can be seen as a horizontal stripe along

τenc) = 600 fs, while the other two-pulse component F1(τIR + τenc) is the stripe oriented

along the anti-diagonal where τIR + τenc = 600 fs. The three-pulse signal can be made

out as the rapidly oscillating component along τIR. Figure 4.22(b) shows the 1D slices

F (τIR, τenc = 600 fs), F (τIR = 0 fs, τenc) (the two-pulse signal measured with the superposed

pulse-pair), and F (τIR, τenc = −600 fs) (only capturing the F1 two-pulse signal). Comparing

these latter two versions of the two-pulse signal shows the 4:1 amplitude ratio expected

based on constructive interference (ratio of blue to orange arrow sizes in panel (b)). Figure

4.22(c) shows the FEIR spectrum processed from the three-pulse signal, as will be described

next. The projection of this τenc-dependent spectrum onto the τenc axis overlays with the

independently measured two-pulse signal, demonstrating the projection-slice relationship

between these quantities discussed in Chapter 2.

When performing a three-pulse FEIR experiment, an IR reference (dark arm of the MZI)

is collected either immediately before or after collecting the FEIR signal. The bin size,

range of positions, and scan speed are kept the same to ensure identical τIR axes. Figure

4.23(a)-(c) shows an example of the time-domain three-pulse FEIR data with τenc = 600 fs

with the corresponding IR reference. The Ftot level at the far positive end of the τIR scan

range is subtracted off to remove the F0 + B background and constant F2 two-pulse signal.

Next, the phase extracted from the IR reference is used to determine the absolute timing

between the IR pulse-pair in a similar manner to pump-probe geometry 2D IR spectroscopy

experiments.156,252,253 In practice, both FEIR and IR channels are Fourier transformed after

having been appropriately apodized, zero-padded, and rotated to an approximate time zero

bin in the τIR axis. The frequency domain FEIR data is divided by the complex phase factor

from the IR reference and transformed back to the time domain, where the now correctly
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Figure 4.23: Acquisition and processing of the three-pulse signal to a spectrum. (a) Total
count rate Ftot in a three-pulse FEIR experiment on C6 at τenc = 600 fs and (b) IR reference
data from the forward scan direction. A constant offset voltage in (b) has been removed, and
the slight asymmetry between the amplitude of fringes above and below the zero level are
caused by the onset of mild detector saturation. (c) Detail of the two signals in (a) and (b),
showing the π phase-shift from the dark arm of the MZI. (d) Processed FEIR spectra from
the forward scan direction (purple), reverse direction (green), and the IR pulse spectrum
(gray) processed from the IR reference. (e) Detail of the baseline from the spectra in (d).
The black dashed line along the baseline has been added to guide the eye.

assigned negative τIR data is removed. A final FT of the one-sided data produces the FEIR

spectrum as its real part (Figure 4.23(d)), where the other two-pulse signal F1 has been

198



Chapter 4. Experimental implementation of FEIR spectroscopy

filtered to the zero-frequency band. For τenc-dependent three-pulse experiments, this process

is done for each step of τenc using the same IR reference.

Due to the direction-dependence of fastscanned position axes, this FT procedure is per-

formed separately for the forward and reverse directions of stage travel. As shown in Figure

4.23(e), there may be small residual phase errors in the FEIR spectrum that vary between

the two scan directions. In this particular measurement this errors are small enough to be

inconsequential (much less than 1% of the total amplitude), however errors at the 1-3% level

are also common, and are not always oppositely signed between directions. We suspect this

artifact may originate from or at least be exacerbated by the fact that the IR reference is

not collected simultaneously with the FEIR data, allowing for instrumental drift (e.g. in

the MZI pathlength difference) between acquisitions. The character of this phase error is,

however, also consistent with a thermal effect, as discussed in Section 4.8. In practice, we

average the forward and reverse spectra together, which often roughly cancels this effect.

4.7.3 IR and visible power dependence

Here we show IR and visible power dependencies of the FEIR signal and background. This

characterization was performed on the older version of the instrument in Ref. [242], and

only investigates the lower range of effective IR intensities at the sample available in the new

instrument. More extensive visible power dependence measurements, including saturation

effects at much higher excitation densities than used here, are presented in Chapter 7. The

measurements here are performed on 40 µm C6 in acetonitrile-d3 with the same IR spectral

coverage as shown in the previous sections and using a glass coverslip. Specifically, we

investigate the peak of the two-pulse signal (τenc = 600 fs) while chopping the IR beam at

100 Hz, as described in Section 4.5.1. We have verified that these power dependencies do
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not vary with τenc along the transient. The IR power was adjusted by a pair of wire-grid

polarizers (Specac). The IR power was measured after the polarizers and scaled to the

maximum power measured at the sample. The visible power was controlled by the half-

waveplate and polarizer before the doubling crystal. The reported visible powers are those

measured after the spatial filter but before entering the microscope, and should be scaled by

∼ 0.43 to account for the overall transmission into the sample.
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Figure 4.24: IR and visible power dependence of the FEIR signal. (a) F (IRon - IRoff, red)
and F0 (IRoff, blue) amplitude as function of IR pulse energy. (b) The modulation ratio
M = F/F0 as a function of IR pulse energy. (c) F (red) and F0 (blue) count rate as a
function of visible pulse energy. (d) Modulation ratio as a function of visible pulse energy.

Figure 4.24(a) shows the IR power dependence of the F count rate (IRon - IRoff), as well

as the background F0 (IRoff, assuming non-molecular background B is negligible). The small

200



Chapter 4. Experimental implementation of FEIR spectroscopy

decrease in the background count rate as IR power is increased is likely a thermal effect

due to heating of the sample. This heating-dependent reduction in collection efficiency also

affects the F amplitude, which results in a slight sub-linearity to the power dependence.

However, plotting the modulation ratio M = F/F0 (Figure 4.24(b)) appears to adjusts for

this thermal effect, resulting in a linear power dependence. This thermal effect is investigated

and discussed further in Section 4.8. Figure 4.24(c) shows the visible power dependence with

the IR pulse energy fixed at 9 nJ. Both the F and F0 amplitudes grow linearly, and the

modulation ratio (Figure 4.24(d)) is constant.
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4.8 Bulk heating effects

4.8.1 Thermal modulation of the detected fluorescence intensity

The total fluorescence count rate in an FEIR experiment can be sensitive to the steady state

heat load produced by absorption of the IR pulses in the sample and optical substrates.

For example, this can be seen by comparing the IR power dependence of the C6 FEIR

signal measured in solvents of varying transparency. As shown in Figure 4.25, the power

dependence is roughly linear in chloroform and acetonitrile-d3, which have good transparency

in the frequency range of the IR pulse. However, in ethanol, which has substantial absorption

across the entire pulse spectrum, the power dependence is markedly sub-linear. This sub-

linear trend does not depend on the encoding delay τenc along the transient, that is, it is not

directly related to the ultrafast or picosecond response of the sample.
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Figure 4.25: Solvent dependence of the thermal effect. (a) IR power dependence of the
F signal for C6 in aceotnitrile-d3 (green), chloroform (blue), and ethanol (orange). (b)
FTIR spectra of the solvents (50 µm pathlength) and the coverslip (black). The region with
appreciable IR field intensity is shaded gray.

We rationalize this behavior as a decrease in overall fluorescence collection efficiency as a

function of the temperature profile in the sample, likely due to thermal lensing effects. It is
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important to note that the glass coverslip used for these measurements absorbs the majority

of IR light incident on it (Figure 4.25(b)). However, this appears to have only a minor

contribution to the thermal effect for these particular measurements, which used lower IR

intensities in the older instrument of Ref. [242].
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Figure 4.26: Thermal modulation with different sample configurations for a 30 µM C6 solu-
tion in acetonitrile-d3. (a) Glass coverslip, (b) CaF2 coverslip, and (c) 1 mm CaF2 window
with a long working distance objective. (d)-(f) Total photon count rates measured from the
sample when unblocking then re-blocking the IR beam for the corresponding configurations
in (a)-(c), respectively.

As noted before and discussed later in Chapter 7, the use of glass coverslips in 6 µm

experiments with the higher IR excitation densities in the updated instrument can lead to

strong thermal modulation for even these highly transparent solvents. Figure 4.26 shows
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three different experimental configurations and the time-dependence of the thermal modu-

lation on the few seconds scale. In each case the same 30 µM C6 solution in acetonitrile-d3

is used. Panel (a) shows the original configuration with a glass coverslip, while (b) replaces

glass with an IR-transparent CaF2 coverslip of either 200 of 150 µm thickness. Panel (c)

shows an alternate configuration using the long working distance, but significantly lower NA,

reflective Schwarzschild objective that allows for the use of a more conventional 1 mm CaF2

window on top. Panels (d)-(f) show the real-time count rate from the sample when the IR

initially blocked (first ∼10-20 s), unblocked for ∼30 s, then blocked again.

In the case of the glass coverslip (Figure 4.26(d)), a seconds-timescale relaxation of the

count rate into its thermally-modulated value is clearly present. A recovery of the background

level to its non-thermally-modulated value after the IR beam is blocked again is also visible.

This modulation is essentially completely removed by switching to CaF2 in both Figures

4.26(e) and (f). In (e) the IR-on count rate (with identical incident visible power) is, however,

lower than the un-modulated level in (d). This reflects the degradation of the Zeiss objective’s

imaging performance with the excessively thick, non-standard index, coverslip. Employing a

150 µm thick CaF2 (not shown) restores the imaging quality, and represents the best current

configuration for performing sensitive FEIR measurements. This configuration is used in the

concentration-dependent analysis of signal-to-background in the second part of Chapter 7.

Using the low NA reflective objective is practically convenient as the 1 mm thick windows

do not flex (caused solution layer thickness issues for volatile samples as discussed in Section

4.4.2). This allows for reliable measurements over long periods of time with volatile solvents.

However, as shown in Figure 4.26(f), the signal level is reduced compared to (d) and (e) even

with over 20× the visible power. This reduction in apparent brightness is due to the lower

NA of focusing and fluorescence collection, the reduced transmission of the visible excitation

204



Chapter 4. Experimental implementation of FEIR spectroscopy

beam from the objective’s central obscuration, and from not being confocally-matched to

the detector. As such, this configuration is not adequate for sensitive detection, and is

only useful for high concentration bulk experiments. Importantly, the lack of good confocal

detection in this configuration means the Z resolution in the sample is also degraded, leading

to potential time-resolution issues discussed in Section 4.6.3 as well as the possibility of

collecting unwanted signals from molecules stuck to the interfaces.

4.8.2 Immersion oil heating

The highest possible NA readily achievable with an air objective is ∼0.95, which is ex-

pected to produce a 50% increase in collection efficiency over the current 0.8 NA. Moving

to significantly higher NA is possible with immersion objectives, however the presence of an

immersion medium that the IR beam will traverse after the sample could lead to thermal

heating issues and must be considered. Here we show an example where such immersion

medium heating destroys the possibility of performing an FEIR experiment. Specifically,

Figures 4.27(a) and (b) show the IR spectra of two possible immersion media of index ∼1.4,

silicone immersion oil (Olympus) and a fully halogenated hydrocarbon oil (Fluorolube), that

could be used with a 1.35 NA silicone oil immersion objective (UPLSAPO100XS) kindly

supplied by Olympus as a demo. The silicone oil has small absorption features within the

IR pulse bandwidth, while the Fluorolube is exceptionally transparent as far as a molecular

liquid goes (the offset could be due to reflective losses in the FTIR spectrometer). However,

even with the Fluorolube, the presence of the IR beam completely destroys the imaging

properties of the visible objective, as demonstrated by the reflection of the visible focus off

the CaF2/solution interface (Figures 4.27(c) and (d)). By eye, a small distortion in the

Fluorolube at the location of the IR beam, either caused by a thermal lensing effect or a
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physical perturbation to the local shape of the liquid drop, is clearly visible (Figures 4.27(e)

and (f))

Figure 4.27: Heating effects in immersion media. (a) FTIR spectra of silicone immersion
oil and Fluorolube oil (50 µm pathlength) with the IR pulse spectrum superposed. (b)
Same FTIR spectra on a much wider frequency axis. (c)-(d) Images of the reflection of the
visible focus off the solution/coverslip (acetonitrile-d3/CaF2) interface on the camera with
the IR blocked and unblocked, respectively, using Fluorolube as the immersion medium.
(e)-(f) Photographs of the Fluorolube immersion medium corresponding to (c) and (d),
respectively (visible objective rotated away). The small distortion at the location of the IR
beam in circled in red. The yellow coloring below the sample cell is due to the ZnSe aspheric
lens.

Even though the Fluorolube is highly transparent, it could be possible that its thermal

conductivity is no sufficiently good to dissipate the small heat load, leading to the observe
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phenomena. One possibility for moving to higher NA immersion objectives with the cur-

rent counter-propagating IR/Vis geometry could be to use acetonitrile-d3 as the immersion

medium for a 1.2 NA water immersion objective, as the index is similar and this solvent

successfully avoids thermal modulation effects in our current configuration.

4.8.3 Spectral artifacts caused by thermal modulation along τIR

As the thermal modulation of collection efficiency appears to correlate to the amount of

IR optical power absorbed by the sample, Fourier transform FEIR measurements should

spectrally resolve this heating response because scanning τIR will imprint the IR intensity

modulation into a thermal modulation. By introducing a strong but spectrally sharp and iso-

lated absorption into an otherwise highly transparent sample we may attempt to characterize

the resulting thermal effect in a more controlled manner.

To demonstrate this effect we perform FEIR measurements on C6 in a 10:1 mixture of

chloroform and acetone. The dilute acetone carbonyl stretch has a narrow, intense absorption

at 1715 cm-1. We tune the frequency of the IR pump to ωIR = 1680 cm-1, which falls in

a high transparency window of chloroform, but covers the two highest frequency coumarin

6 ring modes and the acetone carbonyl stretch (shown schematically in the simulation in

Figure 4.28(a)). The lactone carbonyl stretch of C6 near 1712 cm-1 is not sufficiently FEIR

active to contribute significantly to the FEIR signal in this IR pump configuration. The

optical densities of the dye ring modes are negligible compared to the acetone carbonyl (at

typical µM concentrations for bulk FEIR measurements they are well below the detection

sensitivity of an FTIR spectrometer). The acetone carbonyl mode should therefore act as

both a thermal ‘source’ and ‘probe’.
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To help interpret these measurements we will describe a minimal model for the thermal

effect. We proceed by assuming that the collection efficiency modulation is a purely bulk

optical effect and that the thermal load does not influence the microscopic FEIR response.

That is, we may write the total measured fluorescence in a three-pulse FEIR experiment

with fixed encoding delay as

F (τIR) = S(τIR)T (τIR) (4.15)

where S(τIR) is the total fluorescence of the dye (i.e. the FEIR signal and background

that would be measured in the absence of any thermal effects), and T (τIR) is the thermal

modulation. We will also assume that the magnitude of the thermal modulation depends

linearly on the average IR power absorbed by the sample, so that

T (τIR) = 1− αP (τIR) (4.16)

where P (τIR) is proportional to average IR power absorption and α is a scaling parameter

that determines the strength of modulation. The thermal load most often appears to decrease

the collection efficiency, so we set α > 0. The case of α > 1 is clearly unphysical, and for large

modulations the linearity assumed in Eq. 4.16 most likely breaks down. The (normalized)

IR power absorption as a function of interferometer delay τIR is given by

P (τIR) =
1

2

(
1 + I(τIR)/Imax

)
(4.17a)

I(τIR) = FT−1
{
Spump(ω)Ssolv(ω)

}
(4.17b)

which is simply the interferogram of the solvent absorption spectrum Ssolv(ω) windowed
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by the IR pump spectrum Spump(ω). The notation here is meant to convey that the power

absorption is constant at half its maximum for large τIR (no interference), and goes to zero for

perfectly destructive interference (approximately the case at the first π out-of-phase fringes).
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Figure 4.28: Experimental and modelled steady-state thermal signatures in an FEIR spec-
trum. (a) Frequency domain FEIR response of the dye ring modes (blue), absorption of
the acetone carbonyl stretch in the solvent (red), and IR pulse spectrum (gray). (b) Time
domain molecular response S (blue), thermal modulation T from the acetone carbonyl (red),
and the resulting total detected signal F (green). (c) FEIR spectrum calculated from F .
The inset displays the baseline of the same spectrum on an extended frequency axis to show
the AM sidebands. (d) Measured FEIR spectrum from the dilute acetone experiment, with
inset displaying the same region as in (c).

Implicit in Eq. 4.16 is the assumption that the thermal profile is at a steady state for
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every interferometer delay position. This means we are considering the cumulative time-

averaged effect of absorbing the 1 MHz pulse train balanced by the sample’s macroscopic

thermal relaxation. In our first acetone experiment we will attempt to enforce steady state

conditions by stepping, rather than continuously scanning, the interferometer delay stage,

which allows the sample to achieve its new steady state temperature profile before signal is

collected. After discussing this steady state case, we will incorporate the effects of rapidly

scanning the optical delay before the temperature profile fully relaxes.

Figure 4.28(b) shows the time domain FEIR response S, thermal modulation M , and

resulting total signal F for the steady-state model. Here the molecular response is the total

FEIR signal and background, S(τIR) = S0 + S1(τIR) + S2 + S12(τIR). For simplicity the two

ring modes have been given exponential dephasing times that roughly reproduce the exper-

imental linewidths, and the relative amplitudes of the signal and background contributions

are likewise set to conform to the experimental time domain data. The acetone carbonyl

absorption is also given a lorenztian lineshape.

The resulting model FT FEIR spectrum is shown in Figure 4.28(c). The effect of the

acetone carbonyl absorption appears as a negative feature at the same frequency (1715 cm-1).

This can be understood within the language of amplitude modulation (AM) in analog signal

processing as being due to the ‘baseband’ component of the molecular response, S0+S2+S1,

which has been modulated up to the frequency of T .250 It is negative because of the π phase

shift between the modulation and the three-pulse signal S12 (evident in the red and blue

curves in Figure 4.28(b)), which physically arises because the thermal load decreases the

fluorescence count rate. The modulation of S12 produces AM sidebands at the sum and

difference frequencies between S12 and T , which can be seen in the FEIR spectrum near 100

cm-1 and 3300 cm-1 (inset of Figure 4.28(c)). The experimental FT FEIR spectrum (Figure
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4.28(d)) shows both the negative ‘modulated baseband’ feature as well as the AM sidebands.

To get qualitative similarity between the model and data, the strength of the modulation

was set to α = 0.13.

We now describe the thermal effect for the case when FEIR data is collected by contin-

uously scanning the interferometer stage, as described in Section 4.5.2. To do this we need

to consider the finite timescale of the sample’s thermal relaxation in relation to the speed

at which the average power absorbed from the IR pulse-pair varies with the interferometer

delay. Intuitively, one would expect that if the delay is scanned through interference fringes

faster than the thermal profile can relax, then the thermal modulation will become partially

washed out and lag behind the optical interference.

To capture this effect mathematically, it is convenient to describe the delay in stage

displacement units, δ = 2c0τIR, where c0 is the speed of light. When the interferometer

stage is continuously scanning, the displacement δ is a function of laboratory time t. We

proceed by modifying Eq. 4.16, which is now also ultimately a function of t. Retaining the

assumption of linearity, the modulation is rewritten as

T (t) = 1− α

∫ ∞

−∞
H(t′)P (t− t′)dt′ (4.18)

whereH(t) is a response function that describes the sample’s macroscopic thermal relaxation.

For simplicity we use an exponential decay with time constant τR

H(t) = θ(t)
1

τR
e−t/τR , (4.19)

where the Heaviside step function θ(t) has been included to enforce causality. The other

quantities in Eq. 4.18 retain their original meaning, and Eqs. 4.15 and 4.17 still hold in
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their original forms after the appropriate change of variables. For example, during fast scan

data acquisition the stage moves at constant velocity

δ = δ0 + vt (4.20)

where the velocity v has opposite signs during forward (v > 0) and reverse (v < 0) travel

directions. The IR power absorption P is calculated from Eq. 4.17, transformed to lab time

by τIR = (δ0 + vt)/2c0, and then inserted into Eq. 4.18 to calculate the resulting thermal

modulation T . After transforming T back to τIR units, Eq. 4.15 is used to find the total

signal F .

The important aspect of this case is that the thermal modulation now depends on the

speed and direction of stage travel. As shown in Figure 4.29a, the time (or pathlength)

domain thermal modulations for the forward and reverse directions have reduced amplitudes

and oppositely signed phase shifts with respect to the steady state modulation. Here, the

thermal time constant τR and the scan speed |v| were chosen so that the timescale of thermal

relaxation (shown by H plotted in pathlength units) is similar to the timescale of the IR

optical phase evolution (shown for example by the fringes of the steady state modulation).

Figure 4.29b shows the resulting effect on the calculated FEIR spectrum. The scan velocity

dependent phase shift acquired by the thermal modulation manifests as a phase twist, or

partially dispersive lineshape, in the negative solvent feature, while the amplitude reduction

is also evident. The same effect appears in the AM sidebands (not shown).

In Figure 4.30 we compare FEIR data from the dilute acetone experiment collected

alternately by stepping and fast scanning the delay. The scan direction dependent phase

twist of the negative acetone feature is evident in the fast scan spectra, and is qualitatively

similar to the model in Figure 4.29(b). The distinct character of the amplitude modulation
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Figure 4.29: Model of thermal modulation with fastscanning of the IR delay. (a) Thermal
amplitude modulation in the time or pathlength domain for fastscanning the delay in the
forward (blue) and reverse (red) directions, compared to the steady state case of stepping
the delay (black). The thermal response function H (orange) used to calculate the forward
and reverse modulations is plotted in transformed units. (b) Effect on the FEIR spectrum.
The negative solvent heating feature has reduced amplitude and acquires a phase twist with
opposite signs for the forward and reverse directions.

between steady state stepping, forward scans, and reverse scans can be seen through the

beating it produces in the time domain.

As the speed of stage travel is increased, the rate of IR optical phase evolution will

eventually surpass the thermal relaxation timescale of the sample by enough to completely

wash out the interferometric structure of the thermal modulation, and the resulting uniform

scaling will have no effect on the FEIR spectrum. On the other hand, for very slow stage

motion the thermal profile in the sample will keep pace with the fringes of the IR power

absorption, and the steady state behavior from Eq. 4.16 will be recovered. In our model

we may define an intermediate point between these regimes by considering the scan speed

for which the thermal relaxation time is roughly equal to a half cycle of the interferometric
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Figure 4.30: Thermal signatures in three-pulse FEIR data with stepscan and fastscan ac-
quisition. (a) - (b) Three-pulse FEIR data in the frequency and time domain, respectively,
for the dilute acetone experiment in the steady-state case of stepping the delay (same data
as Figure 4.28(d)). In the frequency domain panel the IR pulse spectrum in shown in grey,
and the dashed black line along the baseline is included to guide the eye. (c) - (d) FEIR
data from the forward direction of a fast scan with 2 mm/s stage speed. The time domain
data has been shifted to remove the constant offset (F0+F2 contributions). (e) - (f) Reverse
direction from the same fast scan experiment.

phase evolution, or

vs =
1

ν̃τR
(4.21)

where ν̃ is the center frequency (in wavenumbers) of the solvent feature responsible for

IR power absorption. In Figure 4.31 we show the scan speed dependence of the thermal
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signature in the FEIR spectrum over roughly three orders of magnitude for the dilute acetone

experiment and model. Because the frequency of the acetone carbonyl and set of scan speeds

are fixed at known values from the experiment, we may estimate the thermal time constant by

adjusting its value to produce the best agreement between the set of experimental spectra

and a set of model spectra with the same speed ratios between scans. This results in a

thermal relaxation time constant of roughly 20 ms. At the fastest experimental scan speed

of 10 mm/s, the thermal signature, although much reduced in amplitude, is still visible. This

speed is near the practical upper limit of our acquisition procedure, which indicates that we

will not yet be able to access the ‘fast travel limit’ where artifact-free FEIR spectra could

be collected even in the presence of large thermal effects.
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Figure 4.31: Scan speed dependence of the thermal spectral artifact. (a) Detail of the acetone
thermal signature in experimental FT FEIR spectra for scan speeds between 25 µm/s and
10 mm/s in the reverse direction. (b) Model calculations with the same ratios between
scan speeds. Speeds are reported in units of vs as defined in Eq. 4.21. This set of speeds
was chosen to produce the best qualitative agreement between the calculated and measured
spectra, and results in the assignment of τR = 20ms when numerical values for the acetone
absorption frequency and stage speeds are considered.

We conclude this section with a brief summary of our current understanding of how

heating effects can influence FEIR measurements, and comment on the implications and
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outlook for the application of FEIR in the future. Our observations are consistent with the

presence of thermally-induced amplitude modulation of the bulk fluorescence collection effi-

ciency. This amplitude modulation is well correlated to the average optical power the sample

absorbs from the IR pulse train. As a result, if the IR absorption changes as a function of

the experimentally varied optical delays, then the thermal modulation will introduce a sig-

nature, or artifact, into the measured signal. For example, τIR-dependent FEIR experiments

are susceptible to this artifact while the two-pulse experiments are not, because average IR

power absorption does not vary with the visible encoding delay. The timescale with which

the thermal profile relaxes has been estimated by considering how the amplitude modulation

is affected by stage velocity during continuous scanning data acquisition, and appears to

be on the order of 20 milliseconds. This timescale corresponds to the sequential arrival of

10,000 IR pulses, which is consistent with our picture of ‘steady state’ heating due to the

cumulative effect of the entire pulse train. We note this timescale is much faster than the

seconds-timescale relaxation of the thermal modulation shown in Figure 4.26. These two

timescales we observe are likely only partial views of a complex, multi-component process

involving dissipation of the heat load from the excitation volume out to the entire sample

cell configuration.

We rationalize our current experiment’s susceptibility to thermal effects by the combina-

tion of large average IR power density and sensitive high-NA optical system for fluorescence

collection. Indeed, it is interesting to compare our FEIR microscope to the instrumentation

used in photothermal spectroscopy and imaging experiments (see for example Li et al254).

Mitigating thermal effects will be crucial for extending the application of FEIR to condensed

phase systems that lack high IR transparency, most notably to aqueous solutions. Utiliz-

ing sample flow and exploring alternate IR focusing conditions, for example total internal

216



Chapter 4. Experimental implementation of FEIR spectroscopy

reflection of the IR, are possible routes forward.

4.9 Time-resolved fluorescence detection

4.9.1 Data acquisition with time-correlated single-photon counting
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Figure 4.32: Microtime-resolved photon count data for a two-pulse FEIR measurement. (a)
Raw microtime- and τenc-dependent photon data from a two-pulse experiment on 30 µm C6.
(b) Projection onto the τenc axis. (c) Projection onto the microtime axis (black), and the
IRF (gray). Inset shows detail of the early time data.

Time-correlated single-photon counting (TCSPC) is performed using a PicoQuant Time-

Harp 260 PICO PCIe card. The sync channel is provided by the delay generator triggered

off the Monaco amplifier. The photon channel is the 15dB attenuated NIM output of the

SPAD. For FEIR measurements the PSO waveform from the delay stage controller during
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stage fastscanning is sent to the TCSPC card and used as a marker integrated into the time-

tagged time-resolved (TTTR) photon record. After every scan this raw TTTR record is

processed on the fly by custom LabView code, which uses the markers to place each photon

into its respective delay stage position bin. The result is two-dimensional data, where one

dimension is the scanned delay (τenc or τIR), and the other is the photon arrival time relative

to the sync channel (microtime) with 25 ps bins. In photon correlation measurements, like

FEIR correlation spectroscopy discussed in Chapters 5 and 6, the pulse delays are fixed

and the raw TTTR record is saved for analysis in post processing. The TCSPC instrument

response function (IRF) is measured from visible pump light reflected from the air-coverslip

interface with the spectrally-selective fluorescence filter-set replaced with appropriate neutral

density filters.

Figure 4.32(a) shows the raw microtime-resolved count data from a two-pulse measure-

ment on a 30 µm C6 solution. The τenc bin size is 40 fs. Figure 4.32(b) shows the projection

of this raw data onto the τenc axis (i.e. integration over microtime). Figure 4.32(c) shows

the projection onto the microtime axis, producing a TCSPC histogram. To avoid strongly

distorting the microtime decay kinetics the maximum count rate (indicated on the right y-

axis of Figure 4.32(b)) is kept below 5% of the repetition-rate.255 The IRF, shown in gray in

Figure 4.32(c), has a 250 ps fwhm with a more slowly relaxing tail for positive microtimes.

The zero of microtime is set at the maximum of the IRF.

4.9.2 Fluorescence lifetime-resolved FEIR spectra

Microtime-resolved three-pulse signals can be measured in the same way. Figure 4.33(a)

shows a portion of the raw microtime-resolved count data from a three-pulse measurement

on C6 in tetrachloroethylene (C2Cl4) solution. The data is processed into a spectrum along
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the τIR axis by the same procedure discussed in Section 4.7, resulting in the microtime-

dependent spectrum shown in Figure 4.33(b). One way to represent the emission kinetics

as a function of vibrational frequency is to fit the microtime decay profile within small

frequency bins. Single-exponential time-constants (i.e. fluorescence lifetimes) resulting from

this process are shown overlayed on the FEIR spectrum in Figure 4.33(c). In this case, the

lifetime is constant across the spectrum, as expected for a homogeneous system.

Figure 4.33: Microtime-resolved three-pulse FEIR signal and spectrum. (a) Section of the
raw microtime-resolved photon count data from a three-pulse measurement on C6 in C2Cl4
(τenc = 600 fs). (b) Microtime-resolved processed FEIR spectrum. (c) FEIR spectrum
integrated over all microtimes (black), with fluorescence lifetimes (blue circles) extracted
from exponential fits to the microtime decay within 3 cm-1 bins across the frequency axis.
Error bars indicated 95% confidence intervals from the fit routine.
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4.9.3 Using fluorescence lifetime-resolved FEIR spectra to disen-

tangle multicomponent systems: hydrogen-bonded thiourea

and coumarin heterodimers

In multicomponent or otherwise heterogeneous systems, the observation of multiple corre-

lated observables can help understand the underlying distribution of species by spreading

out information along multiple coordinates. Here we show a simple example where mea-

suring fluorescence lifetime correlated to FEIR vibrational spectra can offer further insight

into a bimolecular association equilibrium. Specifically, we investigate the hydrogen-bond

(H-bond) facilitated dimerization of C6 with a thiourea organocatalyst, Scheiner’s thiourea

catalyst (STC). Thioureas are a family of organocatalysts that activate carbonyl or nitrile

groups in a substrate to nucleophilic attack through the formation of strong, double H-bond

interactions,256–258 shown schematically for our system in Figure 4.34(a). The particularly

good H-bond donating ability of STC, which has been correlated to its catalytic activity,

is proposed to arise in large part from the electron withdrawing bis(trifluoromethyl)phenyl

groups that strongly polarize the amine N-H bonds.259–261

To facilitate a strong interaction between the coumarin and thiourea, we use the non-

polar solvent C2Cl4. Figure 4.34(b) shows the IR spectra of C6 and a 1:1 mixture of C6

and STC. The most prominent spectral change is the presence of a new band at 1681 cm-1

which we assign to the C6 lactone carbonyl H-bonded to the thiourea, producing a 47 cm-1

red-shift from its free form. Smaller spectral shifts of the R1 and R2 ring modes are also

evident. More details about the assignments of these coumarin vibrations are provided in

Chapter 8. Figure 4.34(c) shows the electronic absorption spectra of C6 with and without

STC. A prominent red-shift of the electronic band is induced by the interaction. As a result,
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Figure 4.34: IR and electronic spectral characteristics of C6 and Schreiner’s thiourea associ-
ation in C2Cl4. (a) Structures of C6 and STC and proposed double H-bonding configuration.
(b) FTIR spectra of C6 (2 mM) and a 1:1 mixture of C6 and STC (both 0.5 mM). Both spec-
tra are solvent subtracted, a 0.5 mM STC solution being used for subtraction in the latter
case. (c) Electronic absorption spectra of C6 (20 µM) in the absence and presence of 0.5 mM
STC. FEIR resonance conditions are indicated by dashed lines. (d),(e) STC concentration-
dependent fluorescence excitation and emission spectra, respectively. The C6 concentration
is 2 µM, and the spectra are area-normalized. (f) Integrated fluorescence intensity (counts)
excited at 20830 cm-1 (indicted by dashed line in (d)) as a function of STC concentration,
with a fit to a classic ligand-binding model. (g) TCSPC decay profile of maximum C6 FEIR
signal (pumping at ωIR = 1600 cm-1) without (black) and with (red) 0.5 mM STC.
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the bound C6 species is expected to have a much stronger FEIR resonance under the current

experimental conditions. To characterize the strength of the binding equilibrium, Figures

4.34(d)-(e) show STC concentration-dependent fluorescence excitation and emission spectra.

The area normalized spectra show clean isosbestic points suggestive of a two-component

equilibrium. A dissociation constant Kd is extracted by fitting the concentration-dependence

of the integrated fluorescence intensity excited at 20830 cm-1 (Figure 4.34(f)), just beyond the

absorption edge of free C6, to a classic ligand-binding model (Langmiur isotherm) yieldingKd

= 107±12 µM.262 Figure 4.34(g) demonstrates a change in C6 fluorescence lifetime induced

by the presence of STC.

While the concentration-dependent electronic spectra are suggestive of a two-state associ-

ation equilibrium between C6 and STC, it is not a priori clear that the change in fluorescence

lifetime is explicitly linked to the formation of a specific H-bonded structure between the

binding partners. Lifetime-resolved FEIR spectra provide a means to directly probe this

relationship at the ensemble level. Figure 4.35 illustrates the approach. Lifetime-resolved

FEIR spectra are measured with the IR pump centered near 1730 cm-1 to pump the weakly

IR active carbonyl band, which through its large red-shift upon H-bonding provides a clear,

spectrally isolated signature of the presence of an H-bonded complex. The C6 and STC

concentrations are 150 and 250 µM respectively, which ensure that both free and bound

C6 are present. Figure 4.35(a) shows the resulting FEIR spectrum at τenc = 500 fs, with

the free and bound carbonyl bands highlighted. Figure 4.35(b) shows the microtime emis-

sion decay integrated within these two bands, which exhibit distinct fluorescence lifetimes

similar to those measured from the entire ensemble in Figure 4.34(g). Figure 4.35(c) shows

an alternative representation of this data introduced in Section 4.9.2, where the extracted

fluorescence lifetime is plotted across the FEIR spectrum. The clear distinction in lifetime
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Figure 4.35: Microtime-resolved three-pulse FEIR signal and spectrum. (a) FEIR spectrum
of a C6 and STC solution (150 and 250 µm, respectively) integrated over all microtimes.
(b) Emission decay kinetics integrated over the free (blue) and bound (red) carbonyl bands
(integration windows indicted in (a)). The inset shows the same traces on a log y scale with
fluorescence lifetimes extracted from a single-exponential fit. (c) FEIR spectrum (same as
in (a)) with fluorescence lifetimes extracted from 3 cm-1 bins across the frequency axis as in
Figure 4.33(c).

between the free and bound carbonyl bands is apparent, while the lifetime is also variable

in the ring-mode region, but is harder to interpret due to the spectrally overlapping bands.

The observation of a direct correlation between a H-bonded carbonyl vibration and the
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change in fluorescence lifetime provides a more incisive view of the association equilibrium.

Specifically, it is explicitly the formation of the H-bonded complex, rather than, e.g. a

solvation effect, that changes the lifetime. The observation of this correlation also indicates

that the ground-state complex persists in the electronic excited state, and provides a lower

bound for the exchange timescale between the free and bound configurations. Namely, in

order to produce a distinct fluorescence lifetime of ∼2.6 ns, the H-bonded complex must, at

the very least, persist for the duration of this lifetime.
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Chapter 5

Principles of fluorescence and FEIR

correlation spectroscopy

5.1 Overview

True single-molecule (SM) observation with FEIR spectroscopy represents the ultimate tech-

nical goal of this new method, and would enable the application of many of the strategies

developed in SM fluorescence spectroscopy over the years to the investigation of chemical

problems. However, short of the extended observation of individual molecules, correlative

techniques that analyze the fluctuations from small ensembles of molecules—correlation

spectroscopy (CS)—can offer much insight into dynamic phenomena with many of the

same advantages presented by SM over bulk experiments. CS experiments, most impor-

tantly fluorescence correlation spectroscopy (FCS) and its related methods, measure the

timescales of dynamical processes through the time correlation function of stochastic equi-

librium fluctuations.263–266 Like true SM dynamics measurements, this mode of operation

tracks the natural time-course of the molecular dynamics asynchronously, circumventing the

need to apply a perturbation and facilitating the study of processes that are impossible to
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synchronise across a macroscopic sample. As such, CS experiments rely on SM sensitiv-

ity, i.e. the ability to resolve signal changes caused by the dynamic behavior of individual

molecules, and are sometimes considered as SM techniques, although they are formally en-

semble measurements that record averaged kinetics. It is interesting to note that the original

demonstration of FCS by Magde, Elson, and Webb involved measurements on an ensemble

of ⟨N⟩ ∼ 104 molecules, and was therefore an impressively difficult experiment.263,267 Indeed,

the size of the desired signal fluctuations relative to the mean scales as ⟨N⟩−1/2, and therefore

FCS is best done near SM equivalent concentrations. It was not until the early 1990’s (coin-

cidentally when SM fluorescence spectroscopy was first emerging) that Rigler and coworkers

introduced the now standard methodology for performing FCS with a confocal microscope

that enabled measurements with ⟨N⟩ ∼ 1,268–270 making the technique widely accessible.

From a technical standpoint, CS experiments are often less demanding than true SM de-

tection in that they can take advantage of time-averaging to increase signal to noise without

sacrificing time-resolution. This property is intrinsic to the acquisition of a time-correlation

function, where the time lag between successive events, rather than their absolute sequen-

tially, is interrogated. Beyond providing a means to increase signal-to-noise, the correlative

modality of CS experiments can yield much higher time-resolution than that in the direct

measurement of SM trajectories, as time-resolution is set by the shortest possible interval be-

tween photon detection events rather than the bin size for counting photons. In modern FCS

experiments, the time-resolution can reach the fundamental limit of an asynchronous mea-

surement set by the fluorescence lifetime. FCS most often operates in solution, and monitors

the real-time fluorescence fluctuations from freely diffusing molecules within a small, open

probe volume formed by the focal spot of a microscope. During the course of the experiment

molecules are therefore continuously replaced, avoiding the most serious photo-bleaching
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problems inherent to direct SM observation.

In this chapter we provide an overview of the theoretical concepts underlying CS ex-

periments, specifically FCS, with the goal of demonstrating how FEIR spectroscopy can be

implemented as a CS technique. We propose strategies for using FEIR-CS to study chemical

exchange processes in solution, and comment on their relative merits. As an FEIR-CS meau-

rement would be less technically demanding than rigorous SM observation, such experiments

would serve as conceptual and practical stepping-stone towards true SM studies.

5.2 Evaluation of the correlation function for diffusion

and chemical reaction

5.2.1 General method

A method of calculating the correlation function for FCS was presented by Elson and Magde

in their original theoretical analysis,271 and remains a common way of determining the func-

tional forms produced by various dynamical models.264 Theirs is a continuum framework

based on a linear reaction-diffusion equation for the spatial concentration profile of each

chemical species involved. Importantly, this model neglects photophysical effects, and treats

the detected fluorescence intensity as a continuous classical function simply proportional

to the instantaneous concentration profile integrated against the experiment’s observation

volume. As such, the photon correlation aspects of the measurement are ignored, and the

central object of calculation is the concentration fluctuation correlation function. Likewise,

all dynamical processes, such as the interconversion of species due to chemical reaction or
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exchange, is handled by the time-dependence of their concentrations, and they are not as-

sumed to be subject to any internal dynamics. Here we summarize the workings of this

model in order to show how diffusion and chemical reaction phenomena may be measured by

FCS, as well as providing a theoretical background for our proposed FEIR-CS experiments.

We consider a solution of multiple species, indexed by i, that exist in chemical and thermal

equilibrium. The fluctuating fluorescence emission from the probed volume is expressed as

F (t) =
∑
i

Qi

∫
d3rCi(r, t)Ω(r). (5.1)

Here Ci(r, t) is the concentration of the ith chemical species at location r and time t. Ω(r) is

the overall optical observation function which determines the probe volume from which the

signal is generated and collected from. It is shaped both by the spatial intensity profile of

the excitation beam(s) as well as the imaging properties of the detection apparatus. Lastly,

Qi is the overall brightness of the ith species, i.e. is proportional to the product of effective

excitation cross-section and fluorescence emission probability. In analogy to conventional

fluorescence brightness, we will discuss the concept of FEIR brightness in some detail in

Chapter 7. Within the framework of this model, the only difference between regular FCS

and FEIR-CS experiments is the dependence of this effective brightness on the external pa-

rameters of the excitation scheme. For our proposed FEIR-CS experiments, we will leverage

the structural information from a molecule’s vibrational spectrum by modulating the excita-

tion resonance between the IR field and the vibrational transitions, which will be discussed

in Section 5.3.
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The mean value of the fluorescence signal is

⟨F ⟩ =
∑
i

Qi⟨Ci⟩
∫
d3rΩ(r), (5.2)

where ⟨Ci⟩ is the average, i.e. thermodynamic, concentration of the ith species. The spatial

integral
∫
d3rΩ(r) may be considered as a measure of the effective volume of the observation

region, in which case Eq. 5.2 has the simple interpretation as the average number of molecules

of each species multiplied by their respective brightnesses. However, as we will see in Section

5.2.3, this sense of the probe region’s volume is not unique, and a slightly different version

more naturally comes about when considering the effective molecule number in FCS. The

fluctuation about the mean is

δF (t) = F (t)− ⟨F ⟩ =
∑
i

Qi

∫
d3r δCi(r, t)Ω(r), (5.3)

that is, directly reflective of the concentration fluctuations δCi(r, t) = Ci(r, t) − ⟨Ci⟩. The

correlation function measured in FCS is

G(τ) =
⟨δF (t)δF (t+ τ)⟩

⟨F ⟩2
=

⟨δF (0)δF (τ)⟩
⟨F ⟩2

. (5.4)

Here τ is the lag-time, while t is laboratory time. In the second equality we have used of

the stationary property, i.e. the independence from any unique origin of time, of the equilib-

rium fluctuations. The correlation function is often called the fluorescence autocorrelation

function, although in more precise language it is the autocovariance, that is, the autocor-

relation of the fluctuations in the fluorescence.272 In these expressions, the angle brackets

formally denote an ensemble average, although experimentally the correlation function is
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always measured as a time average. We will always assume the system is ergodic, that is,

that it samples all its possible configurations within a sufficiently long time so that these

two averages are equivalent.273,274 As we will see later on, the denominator in Eq. 5.4 has an

important role as a normalization factor, which gives FCS some useful ratiometric properties

that allow—among other things—the absolute determination of local molecule number or

concentration.

To proceed, the fluorescence correlation function is next decomposed into partial contri-

butions Gij(τ) connecting species i and j as

G(τ) = ⟨F ⟩−2⟨δF (0)δF (τ)⟩ = ⟨F ⟩−2
∑
i,j

Gij(τ), (5.5a)

where

Gij(τ) = QiQj

∫
d3r

∫
d3r′Ω(r)Ω(r′)ϕij(r, r

′, τ) (5.5b)

and

ϕij(r, r
′, τ) = ⟨δCi(r, 0)δCj(r

′, τ)⟩ (5.6)

is the concentration fluctuation correlation function (CFCF). As the solution is isotropic and

homogeneous on average, the CFCF can only depend on the relative displacement |r − r′|,

just as it only depends on the lag-time τ . However, it will be convenient to keep both spatial

variables for the sake of the ensuing calculation. The fluctuations in concentration are taken
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to obey a set of linearized reaction-diffusion equations

∂

∂t
δCi(r, t) = Di∇2δCi(r, t) +

∑
j

KijδCj(r, t) (5.7)

where Di is the diffusion constant of the ith species, and Kij is a matrix of first-order

rate constants for inter-conversion between the different chemical species. Importantly, this

assumption of a linear rate law governing the reaction essentially decouples the reaction

and diffusion phenomena, leading to much simpler dynamics. Notably, nonlinear reaction-

diffusion systems can be incredibly complex, giving rise to a rich diversity of unexpected

behavior, and represents a large area of current investigation in physical, chemical, and

biological contexts.275–277

Taken at face value, Eq. 5.7, which has deterministic solutions decaying to a time-

independent steady-state, may seem at odds with our physical picture of δCi(r, t) as repre-

senting the incessant microscopic fluctuations consistent with the system equilibrated at a

given temperature. More correctly, we will see below that it is really the CFCF ϕij that obeys

Eq. 5.7 (e.g. see Eq. 5.18a). The analysis can be recast to make this explicit, however, the

notation is less cumbersome if we work with an equation of motion for δCi(r, t) directly, and

the result is the same. We may think of this as a statement of Onsager’s regression hypoth-

esis, namely, that the decay of the equilibrium fluctuation correlation function follows the

same rate law as the macroscopic variables.273,278,279 Also along these lines, the applicability

of linearized rate laws for the regression of reactive fluctuations in the kinetic scheme can be

seen as a consequence of being at equilibrium.280

231



Chapter 5. Principles of fluorescence and FEIR correlation spectroscopy

The reaction-diffusion equation is more naturally handled in the spatial Fourier domain,

where it takes the form of a system of linear ordinary differential equations

∂

∂t
δC̃i(k, t) =

∑
j

Mij δC̃j(k, t), (5.8)

for the spatial Fourier components of the concentration profiles

δC̃i(k, t) =

∫
d3r e−ik·rδCi(r, t). (5.9)

This system may be immediately solved by computing the eigenvalues and eigenvectors of

the M matrix which has components

Mij = Kij −Di|k|2δij, (5.10)

where δij is the Kronecker delta. Explicitly, this matrix is diagonalized by

Λ = X−1MX (5.11)

where Λ is a diagonal matrix of eigenvalues Λij = λiδij and the columns of X are the

eigenvectors. The solution of Eq. 5.8 can then written in terms of the initial condition

δC̃i(k, 0) in the usual way

δC̃i(k, t) =
∑
k

Xike
λkt
∑
l

X−1
kl δC̃l(k, 0). (5.12)
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It is convenient to rewrite this as

δC̃i(k, t) =
∑
j

Zij(t,k) δC̃j(k, 0), (5.13)

where

Zij(t,k) =
∑
k

Xik e
λktX−1

kj (5.14)

are propagating functions that evolve the spatial Fourier components of each species’ concen-

tration profiles forward in time. It can be shown that detailed balance imposes the symmetry

condition271

Zij(t,k)⟨Cj⟩ = Zji(t,k)⟨Ci⟩, (5.15)

or equivalently

ϕij(r, r
′, t) = ϕji(r, r

′, t). (5.16)

To proceed, we first write the CFCF as

ϕij(r, r
′, τ) =

1

(2π)3

∫
d3k eik·r

′⟨δCi(r, 0)δC̃j(k, τ)⟩, (5.17)
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where we have preemptively decomposed δCj(r
′, t) into its spatial Fourier components (k

begin conjugate to r′ in this case). Inserting Eq. 5.13 we get

ϕij(r, r
′, τ) =

1

(2π)3

∫
d3k eik·r

′∑
k

Zjk(τ,k)⟨δCi(r, 0)δC̃k(k, 0)⟩ (5.18a)

=
1

(2π)3

∫
d3k

∫
d3r′′ eik·r

′
e−ik·r′′

∑
k

Zjk(τ,k)⟨δCi(r, 0)δCk(r
′′, 0)⟩, (5.18b)

where we inserted the inverse Fourier transform of δC̃k(k, 0). At this point we invoke the

initial condition

⟨δCi(r, 0)δCk(r
′′, 0)⟩ = ⟨(δCi)

2⟩δikδ(r− r′′) = ⟨Ci⟩δikδ(r− r′′). (5.19)

The first equality says that fluctuations of separate molecules are uncorrelated, which

amounts to assuming the solution is sufficiently dilute so as to be ideal. The second equality

assumes that the occupation number of molecules in a given volume obeys Poisson statistics

(i.e. the variance equals the mean). Inserting this into Eq. 5.18a and performing the r′′

integral gives

ϕij(r, r
′, τ) =

1

(2π)3

∫
d3k eik·(r

′−r)Zji(k, τ)⟨Ci⟩. (5.20)

The partial contribution of ϕij to the correlation function in Eq. 5.5 is then

Gij(τ) =
QiQj

(2π)3

∫
d3r

∫
d3r′

∫
d3kΩ(r)Ω(r′)eik·(r

′−r)Zji(k, τ)⟨Ci⟩

=
QiQj

(2π)3

∫
d3k

∫
d3rΩ(r)e−ik·r

∫
d3r′Ω(r′)eik·r

′
Zji(k, τ)⟨Ci⟩
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=
QiQj

(2π)3

∫
d3k Ω̃(k)Ω̃∗(k)Zji(k, τ)⟨Ci⟩

=
QiQj

(2π)3

∫
d3k |Ω̃(k)|2 Zji(k, τ)⟨Ci⟩. (5.21)

This concludes the general method. All that needs to be done is to choose a specific kinetic

model to produce a rate matrix for Eq. 5.10, assign a functional form to the optical detection

function Ω(r), and describe each species’ brightness Qi.

5.2.2 Separation of diffusion and reaction

While Eq. 5.7 neglects direct coupling between reaction and diffusion phenomena, the propa-

gators Zji(k, τ) still describe both processes and can be complicated if the diffusion constant

Di is different for each inter-converting species. A major simplification is possible if it is

assumed that each species has the same diffusion constant D. In this case Eq. 5.10 becomes

M = K−D|k|21, (5.22)

where 1 is the identity matrix, so that the eigenvalues of the M matrix are simply those

of the rate matrix K minus D|k|2, while their eigenvectors are the same. From Eq. 5.14,

the result is that the propagators factorize into a part that depends on k, which reports on

diffusion, and a spatially independent part Yij that reports on the reaction kinetics,

Zji(k, τ) = e−D|k|2τYji(τ). (5.23)
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The partial contributions Gij can then also be separated as

Gij(τ) =
QiQj

(2π)3
Yji(τ)⟨Ci⟩

∫
d3k e−D|k|2τ |Ω̃(k)|2. (5.24)

The final result is that the overall correlation function factorizes into independent reaction

and diffusion terms

G(τ) = Grxn(τ)GD(τ). (5.25)

While this simplification in the analytic form of the correlation function is very convenient,

a uniform diffusion constant is often a bad assumption for many situations of practical

interest. For example, in binding problems where one reactant associates with a much

more massive partner, the correspondingly large change in diffusion constant is important to

capture properly. These cases can be treated within the general formalism, but yield more

complicated analytic forms of the correlation function.281

5.2.3 Diffusion through a 3D Gaussian observation volume

Here we compute a widely used analytic form of the ‘diffusion only’ contribution to the

correlation function GD(τ). In the simplest case of a single species in solution, the full

correlation function also reduces to GD(τ). Specifically, an especially simple and widely

used analytic form for this correlation function arises by assuming that the optical detection

function is a 3D Gaussian

Ω(r) = Ω0 exp

[
−2(x2 + y2)

w2
xy

− 2z2

w2
z

]
(5.26)
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Here wxy and wz are the 1/e2 radii transverse to and along the optical axis, respectively, and

Ω0 is a constant that describes the magnitude of the excitation intensity. It is important to

note that this assumption of a Gaussian probe volume is largely one of analytic convenience,

and real optical geometries commonly used confocal microscope configurations can produce

substantial deviations from this shape, leading to artifacts when using the resulting functional

form to fit data.282 The Fourier transform of the Gaussian optical detection function is

Ω̃(k) =

∫
d3rΩ(r)e−ik·r = Ω0

(π
2

)3/2
w2

xywz exp

[
−
w2

xy(q
2
x + q2y)

8
− w2

zq
2
z

8

]
(5.27)

Assuming only a single species and therefore dropping the index i, the full correlation function

given by Eqs. 5.5 and 5.24 is

G(τ) = GD(τ) = ⟨F ⟩−2 Q2

(2π)3
⟨C⟩

∫
d3k e−D|k|2τ |Ω̃(k)|2. (5.28)

The mean fluorescence in Eq. 5.2 can be written as

⟨F ⟩ = Q⟨C⟩
∫
d3rΩ(r) = Q⟨C⟩Ω0

(π
2

)3/2
w2

xywz (5.29)

where we have used the fact that
∫
d3rΩ(r) = Ω̃(k = 0). Inserting Eq. 5.27 we have

G(τ) = ⟨F ⟩−2Q2⟨C⟩
w4

xyw
2
z

26

∫∫∫
dkxdkydkz

× exp
[
−
(w2

xy + 4Dt)(k2x + k2y)

4
− (w2

z + 4Dt)k2z
4

]
= ⟨F ⟩−2Q2⟨C⟩Ω2

0

w4
xyw

2
z

26

( 4π

w2
xy/4 +Dt

)( 4π

w2
z/4 +Dt

)1/2
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=

(
Q⟨C⟩Ω0

(π
2

)3/2
w2

xywz

)−2

Q2⟨C⟩Ω2
0

π3/2w2
xywz

23

(
1 +

4Dt

w2
xy

)−1(
1 +

4Dt

w2
z

)−1/2

=
1

⟨C⟩V

(
1 +

t

τD

)−1(
1 +

t

κ2τD

)−1/2

=
1

⟨N⟩

(
1 +

t

τD

)−1(
1 +

t

κ2τD

)−1/2

. (5.30)

Here

τD =
w2

xy

4D
(5.31)

is a convenient parameter that can be seen to represent the average timescale of diffusion

across the transverse profile of the optical detection region, and

κ = wz/wxy (5.32)

is the ratio of its longitudinal to transverse profiles. In practice κ is often significantly larger

than 1, and τD therefore marks the time-point at which GD has approximately decayed by

half. Similarly, by defining an effective volume

V = π3/2w2
xywz, (5.33)

the correlation function has the convenient property that

GD(0) =
1

⟨N⟩
, (5.34)
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where ⟨N⟩ = ⟨C⟩V is the average number of molecules in the probe volume. From the

perspective of this calculation, the average molecules number is defined by the concentration

and effective volume of the observation region. It is worth noting that a prolate spheriod

with minor and major axes of wxy and wz, respectively, has volume

V =
4π

3
w2

xyw
2
z ≈ 4.19w2

xyw
2
z , (5.35)

while π3/2 ≈ 5.57 in Eq. 5.33. With knowledge of the size and shape of the observation

volume, it is in principle possible to thereby back out the concentration from a measurement.

However, without assuming a known concentration or observation volume, one can treat the

inverse early time amplitude GD(0)
−1 as an independent definition of the average number of

molecules participating in the experiment. In general, this interpretation of the early-time

correlation amplitude does not even depend on the specific shape of the observation volume,

and is a way of defining ⟨N⟩ solely based on the Poisson occupation number statistics.283

This approach only works provided that diffusion is the only dynamical process responsible

for fluorescence fluctuations so that G(τ) = GD(τ).

5.2.4 Two-state equilibrium

To demonstrate how a chemical reaction phenomena may appears in a CS measurement, we

will calculate the correlation function for the simplest case of a two-state exchange reaction

A⇌ B. (5.36)

We begin by constructing the rate matrix. The forwards and backward rates are kf and kb,

respectively, and satisfy detailed balance kf/kb = K where K is the equilibrium constant.
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In order to take advantage of the convenient factorization property in Section 5.2.2, we set

the diffusion constants of each species to be equal DA = DB ≡ D. The M matrix from Eq.

5.10 is

M =

−kf −D|k|2 kb

kf −kb −D|k|2

 (5.37)

Its eigenvalues are

λ1 = −D|k|2, λ2 = −D|k|2 −R (5.38)

where R = kf + kb is the kinetic relaxation rate. It is worth noting here that only one eigen-

value reports on chemical kinetics, and only through the sum of forward and backward rate

constants. As in a bulk relaxation experiment, it is not possible to directly measure the for-

ward and backward rates independently, which in this case can be considered a consequence

of the ensemble-averaged nature of the correlation function.

The propagating functions Zij factorize as in Eq. 5.23, and the spatially-independent

reaction propagators Yij(τ) are

YAA(τ) =
1 +Ke−Rτ

1 +K
(5.39a)

YBB(τ) =
K + e−Rτ

1 +K
(5.39b)

YAB(τ) =
K −Ke−Rτ

1 +K
(5.39c)

YBA(τ) =
1− e−Rτ

1 +K
. (5.39d)
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Figure 5.1: Reaction propagating functions YAA(τ)⟨CA⟩ and YAB(τ)⟨CB⟩ for a two-state
exchange reaction. The profile of the diffusion component of the correlation function (am-
plitude scaled to visualization) is overlayed.

Figure 5.1 shows two of these propagating functions, the YAA ‘autocorrelation’ which dictates

the persistence of A, and the YAB ’cross-correlation’ which describes how B converts to A.

In each case, the propagators are scaled by the relevant average concentration as they would

appear in Eq. 5.21. In this example, the equilibrium constant is set to K = 1 with relaxation

rate R = kf + fb = 105 s-1, and ⟨CA⟩ = ⟨CB⟩ = 1 nM. Also shown is the decay profile of

GD(τ) for a diffusion timescale of τD = 400 µs and probe volume aspect ratio of κ = 4. In this

case, the kinetics are faster than the diffusion timescale, and could therefore be measured.

The resulting reactive part of the correlation function for the two-state system is

Grxn(τ) =
(
1− P + P exp(−Rτ)

)
, (5.40a)
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where

P =
kfkb(QA −QB)

2

(kf + kb)(kfQ2
A + kbQ2

B)
(5.41)

depends on the relative brightness of the two species.283 In the simplest case where B is

completely dark, QA = Q and QB = 0, this amplitude reduces the to P = kb/(kf + kb), i.e.

the fraction of B at equilibrium. In this case, the total correlation function (Eq. 5.25) is

then

G(τ) =

(
1 +K exp(−Rτ)

)
1

⟨N⟩

(
1 +

t

τD

)−1(
1 +

t

κ2τD

)−1/2

. (5.42)

The inverse early-time amplitude is G(τ → 0)−1 = ⟨N⟩/(1−K), which has the simple inter-

pretation as the average number of A molecules, i.e. the effective number of molecules that

are actually visible. In general, measuring the chemical kinetics requires contrast between

the states, as we can see by P = 0 when QA = QB.

5.3 FEIR correlation spectroscopy

With some of the conceptual background in place, here we describe how potential FEIR-

CS experiments could be designed to track chemical phenomena in solution. The core idea

is to use the changes in a molecule’s vibrational spectrum sensed by the FEIR signal to

create contrast between different states. This plays into the generality of the CS approach,

where any dynamical process can be studied provided that it modulates the measured signal

intensity. Whereas FCS methods rely on changes in electronic fluorescence observables—like

spectrum, brightness, polarization, or FRET efficiency284–290—FEIR-CS will act as an IR
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-vibrational analogue of these methods, providing chemical bond-level information through

the probing of structurally-sensitive vibrational resonances.
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Figure 5.2: Cartoon illustrating the concept of FEIR-CS and strategies for achieving selective
IR resonance for a vibration undergoing a frequency shift in response to two-state chemical
exchange process. (a) Schematic trajectory of an individual molecule diffusing through the
probe volume while undergoing chemical exchange between state A (black) and B (red). (b)
Spontaneous fluctuations in the total detected signal. (c) Correlation function (red), showing
the resolved decay components due to the exchange reaction and diffusion. also shown is the
diffusion-only component (dashed black). (d)-(f) Strategies for achieving selective with the
IR spectrum (gray) for a vibration undergoing a frequency shift between ωA and ωB. (d)
Narrowband IR, (e) broadband interferometry, and (f) generalized pulse-shaping.
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Figure 5.2 demonstrates the concept of a potential realization of FEIR-CS to study

an idealized two-state chemical exchange process. At equilibrium, an individual molecule

diffuses through the probe volume while undergoing chemical exchange events manifested by

a stochastic sequence of jumps between the two states A and B (Figure 5.2(a)). Contrast

between the states is achieved via spectrally-selective vibrational FEIR excitation with a

controllable IR pulse spectrum. Both of these processes imprint spontaneous fluctuations

onto the total FEIR signal (Figure 5.2(b)), and their average kinetic timescales are recovered

from the decay profile of the resulting time correlation function (Figure 5.2(c)). The form of

this correlation function is that discussed previously in Section 5.2.4, although in the current

case B is made bright while A is suppressed by the excitation procedure. In this example, a

large separation of timescale between exchange R−1 = 10−5 s, and diffusion τD = 10−2, was

chosen to clearly show how they appear in the correlation function. Additionally, this cartoon

shows the schematic trajectory of one individual molecule, but in reality many molecules will

contribute to the correlation signal over the course of the measurement.

The crucial factor for resolving the exchange process is therefore the spectroscopic con-

trast in FEIR excitation. Multiple options exist for modulating the IR spectrum experi-

mentally, some of which are shown in Figure 5.2(d)-(f) in the context of a single vibrational

band undergoing a frequency shift in response to the exchange process. The simplest option

(Figure 5.2(d)) uses a narrowband IR pulse that can be tuned to selectively excite the band

in one state only. Here the bandwidth must be matched to or broader than the vibrational

linewidth so that the pulse duration is commensurate to or shorter than the population re-

laxation, ensuring efficient FEIR excitation. Such picosecond IR pulses (> 10-20 cm-1) could

be produced by the mid-IR OPA described in Chapter 4 by increasing the thickness of the

nonlinear crystal to reduce the amplification phase-matching bandwidth.
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With our current broadband IR pulses and interferometer, frequency selectivity can be

achieved by fixing the inter-pulse delay τIR such that the resulting spectral fringes overlap

with one or the other state (Figure 5.2(e)). This spectral interferometry approach will work

best when the FEIR spectrum is dominated by a single vibration but has the advantage of

easy switching between exciting either or both states. Begin able to modulate how the various

species are excited represents a means to control the way in which their reaction kinetics are

manifested in the correlation function, providing additional insight for interpreting its decay

components. More sophisticated methods that step through multiple interferometer delays

to perform Fourier transform frequency-resolved CS, similar in concept to photon correlation

Fourier spectroscopy,291,292 are also enabled with this approach. Finally, the most general

strategy involves arbitrary control over the IR pulse spectrum (Figure 5.2(f)), for example by

acousto-optic pulse-shaping or the use of custom filters. All of these strategies for converting

vibrational frequency changes into FEIR intensity fluctuations could also be applied to true

time-dependent SM experiments that resolve individual trajectories.

As photon emission is locked to the excitation pulse train, time resolution is set by the

inverse of the repetition-rate, currently 1 µs for the instrument described in this thesis.

Increasing the repetition-rate therefore represents an improvement in time-resolution, as

well as general signal-to-noise by allowing more photons per molecule to be collected. The

longest measurable kinetic timescales will be limited by the diffusion of molecules through

the observation volume, 20-100 µs for dye molecules in common solvents, but extendable

beyond the millisecond range for viscous environments.

The generic two-state exchange example shown here illustrates how potential FEIR-

CS experiments could leverage changes in a molecule’s vibrational spectrum to isolate the

persistence of specific chemical structures or follow how reactants and products interconvert
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on microsecond timescales. For example, local-mode vibrational probes could be used to

address the impact of site-specific interactions like hydrogen-bonding or ion association on

molecular transport in complex environments. Similarly, FEIR-CS experiments could track

the formation and breaking of specific intermolecular contacts between reactive partners

during the initial diffusive encounter and subsequent binding in diffusion-limited bimolecular

reactions.
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Chapter 6

Demonstrating single-molecule

sensitivity with FEIR correlation

spectroscopy

The material in this Chapter is adapted from:

Whaley-Mayda, L.; Guha, A.; Penwell, S. B.; Tokmakoff, A., Fluorescence-Encoded In-
frared Vibrational Spectroscopy with Single-Molecule Sensitivity. Journal of the American
Chemical Society 2021 143 (8), 3060-3064.

6.1 Introduction

Up to this point we have discussed the theoretical principles of FEIR spectroscopy, the prac-

tical details of its experimental implementation, and some potential strategies for developing

single-molecule (SM) applications starting with the techniques of correlation spectroscopy.

In this chapter we show direct experimental evidence that FEIR spectroscopy can achieve

SM sensitivity. This demonstration of sensitivity serves to establish the viability of FEIR
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spectroscopy for SM investigation. From a technical perspective, it represents a major cul-

mination of much of the work presented in this thesis so far, and validates the conception

of the FEIR principle and its current experimental design. Establishing direct, quantitative

proof of SM sensitivity—rather than, e.g. extrapolating signal levels from the bulk—is a

critical aspect of this step.

Our method for demonstrating SM sensitivity is to perform proof-of-principle FEIR cor-

relation spectroscopy (FEIR-CS) measurements, the basic theoretical background for which

was introduced in Chapter 5. Specifically, we leverage the ability of these measurements

to count the average number of molecules ⟨N⟩ contributing the signal at any given time,

and show that experiments with ⟨N⟩ < 1 are possible. While this establishes SM sensitiv-

ity, it is not true SM detection, i.e. the continuous observation of one individual molecule

for an extended period. Nevertheless, this sensitivity milestone is an important step in

developing SM FEIR experiments. For example, knowing how many molecules a signal is

coming from allows us to benchmark the count rate per molecule and therefore overall exci-

tation probability—quantities that are crucial for understanding the overall performance of

the technique in relation to its theoretical sensitivity limits. We will explore these aspects

further in Chapter 7.

Another purpose of these experiments is to demonstrate the technical feasibility of FEIR-

CS. Although the FEIR-CS experiments show here only measure the diffusion of molecules

through the probe volume and do not leverage vibrational spectra to track chemical exchange

phenomena as proposed in Chapter 5, they indicate how such measurements could be carried

out in practice and illustrate some of the technical requirements for making them work. Much

of the material is the chapter can be found in Ref. [243].
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6.2 FEIR resonance and signals from Coumarin 6
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Figure 6.1: Resonance conditions and FEIR data on C6 in acetonitrile-d3. (a) FTIR spec-
trum of C6 in acetonitrile-d3 with IR pulse spectrum. (b) Electronic absorption (solid) and
fluorescence (dashed) spectra with the visible pulse spectrum, convolution of visible and IR
pulse spectra (distribution of their frequency sums), and emission bandpass. (c) Two-pulse
FEIR data on a 30 µM C6 solution. Molecular structure of C6 is inset. (d) FEIR spectrum
of the same sample at τenc = 600 fs compared with the FTIR spectrum scaled by the IR
pulse spectrum. Data acquisition times for (c) and (d) were <5 minutes

We will use coumarin 6 (C6) in acetonitrile-d3 as a model system for all FEIR experiments

in this chapter. As we will see, one reason for this molecule’s excellent performance as an
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FEIR chromophore has to do with the resonance conditions of the experiment. Specifically,

the quality of the double resonance condition plays a crucial role for achieving sensitive FEIR

vibrational detection. Figure 6.1(a) shows that the tunable IR pulses have the spectral

breadth to be resonant with the carbonyl (νC=O) and three highest frequency C=C ring

(νR1-3) vibrations when centered at ωIR = 1620 cm-1. More detailed assignments of these

vibrations will be given in Chapter 8. Figure 6.1(b) shows the electronic absorption and

fluorescence spectra of C6. Maximal resonance for the encoding transition is achieved when

the sum of IR and visible center frequencies (ωIR + ωvis = 20980 cm-1, λsum = 477 nm)

falls near the peak of the electronic absorption band. However, the visible pulse (fixed

center frequency ωvis = 19360 cm-1, λvis = 516.5 nm) alone directly excites the red tail of

the band, creating undesirable background fluorescence. The resonance condition shown in

Figure 6.1(b) is likely a nearly ideal compromise between large FEIR resonance and low

one-photon background, but could be further optimized with a tunable visible pulse. The

role of these resonance conditions on signal to background and overall detection sensitivity

will be explored further in detail in Chapter 7.

Figure 6.1(c) shows the total fluorescence count rate from two-pulse FEIR signal mea-

sured of a 30 µM C6 solution. As discussed in Chapter 4, in practice this is done by setting

τIR = 0, rather than blocking the moving arm of the interferometer. The baseline appar-

ent for τenc < 0 is the sum of the aforementioned one-photon excited fluorescence F0 and

non-molecular background B, including solvent Raman scattering, impurity and optics fluo-

rescence, and detector dark-counts. After a nearly pulse-limited rise to a maximum labeled

F , the FEIR signal decays away, tracking the vibrations’ population relaxation kinetics. The

FEIR vibrational spectrum at τenc = 600 fs, corresponding to the signal maximum in Figure

6.1(c), is shown in Figure 6.1(d) overlaid on the FTIR linear absorption spectrum scaled by
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the spectrum of the IR pulse. The FEIR spectrum is free of background due to the Fourier

transform acquisition modality. Differences in relative peak amplitudes between the FEIR

and conventional IR spectra are due to the contribution of vibrational-electronic coupling

in the former, which controls the strength of the electronic encoding transition. Specifically,

the factor of ∼5 difference in FEIR intensity between the similarly IR-intense νR2 and νR1

modes at 1586 and 1616 cm-1 as well as the nearly absent νC=O band at 1712 cm-1 are well

described by these vibrations’ respective Huang-Rhys factors.74,293

More details about the appearance of these FEIR signals with interpretation aided by

simulations, including the full τenc-dependence of the spectrum, will be presented in Chapter

8. For the moment, we note that the peaking of the two-pulse signal at τenc = 600 fs,

notably beyond the pulse-overlap region, as well as the absorptive spectral lineshapes that

match reasonably well with those of the FTIR, are influenced by a coincidental alignment

of inter-mode vibrational coherence pathways—a rather fortuitous property which further

adds to the ‘goodness’ of C6 as a model chromophore in these experiments.

6.3 Time-gated detection for background reduction in

the small-signal regime

The ultimate detection sensitivity of an FEIR measurement hinges upon the ability to resolve

the FEIR signal F against the background F0 + B, quantified by the modulation ratio

M = F/(F0+B). Maximizing M therefore requires simultaneously optimizing the brightness

of molecular fluorescence F + F0 against B, as well as F against F0—a non-trivial problem

strongly influenced by the double resonance condition mentioned above and subject to further

analysis in Chapter 4.

251



Chapter 6. Demonstrating single-molecule sensitivity

a b

10-9 10-8 10-7 10-6 10-5 10-4
101

102

103

104

105

106

107

10-9 10-8 10-7 10-6 10-5 10-4

Concentration (mol/L) Concentration (mol/L)

0

2

4

6

8

10

12

M

F
F0+B

F/
I vi

s (H
z 

cm
2  k

W
-1

)

Figure 6.2: Concentration dependence of FEIR signal and background for C6. (a) C6 con-
centration dependence of F/Ivis (red circles) and (F0+B)/Ivis (blue diamonds). Dashed line
shows a linear dependence for reference. (b) Modulation ratios M corresponding to panel
(a).

Figure 6.2a shows the concentration dependence of the maximum F signal and back-

ground level F0 + B for C6, scaled by the visible excitation intensity Ivis. While the FEIR

signal is roughly linear in concentration across the entire range, the background levels off

to a concentration-independent value in the nM regime. This constant level represents Ivis-

dependent contributions to B, e.g. solvent Raman scattering or fluorescence from impurities

and optics. Correspondingly, M (Figure 6.2b) falls by nearly two orders of magnitude from

its B-free value of ∼11 in the µM range.

One method to increase the modulation ratio in the low concentration regime where FEIR

photons are scarce is to use time-gated detection to preferentially suppress contributions to

B that arrive at the detector in time-windows distinct from the desired fluorescence signal.

Specifically, using time-correlated single-photon counting (TCSPC) as introduced previously

in Chapter 4, prompt scattering background can be suppressed by time-gating data acquisi-

tion for photon arrivals between 1-15 ns after the encoding pulse. Figure 6.3(a) shows TCSPC
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Figure 6.3: Time-gated fluorescence detection for background reduction. (a) TCSPC his-
tograms from two-pulse FEIR measurements on C6 at 30 µM (black), 30 nM (brown), and
1 nM (red) with the IRF (gray). The time-gate (1 ns to 15 ns) used in panels (b), (d),
and (e) is indicated by dashed black lines. (b) Comparison of raw and time-gated two-pulse
FEIR measurements at 1 nM. (c) F (red) and F0 + B (blue) count rates (left y-axis), and
M (black, right y-axis) from the data in panel (b) as a function of the starting edge of the
time gate with the ending edge fixed at 15 ns. The optimal starting edge at 1 ns is indicated
by a dashed black line. (d) F (red circles) and F0 + B (blue diamonds) count rates as a
function of C6 concentration. Filled symbols are time-gated, open symbols are raw. (e)
Modulation ratios corresponding to the count levels in panel (d). The visible pulse energy
used for (b)-(e) and the 1 nM data in (a) was 12 pJ.
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histograms of every photon’s microtime from two-pulse FEIR measurements on C6 solutions

at 30 µM, 30 nM, and 1 nM, along with the TCSPC instrument response function (IRF). At

the highest concentration the emission kinetics show a clean single-exponential decay with

a ∼2.5 ns lifetime, indicating that the majority of detected photons are C6 fluorescence. At

30 nM a prompt component, most likely due to Raman scattering from the solvent, that

conforms to the shape of the IRF appears, and by 1 nM dominates the distribution.

Due to the separation of timescales between the IRF duration and fluorescence lifetime, a

substantial portion of this scattering component can be eliminated by only accepting photons

within the time gate indicated by dashed lines in Figure 6.3(a). As shown in Figure 6.3(b),

the resulting time-gated 1 nM FEIR transient has a 4-fold reduction in background and

subsequently contends with less shot noise than the raw, un-gated data—at the expense of a

30% loss in FEIR signal counts. The dependence of the FEIR signal F , background F0 +B,

and modulation ratio M = F/(F0 +B) on the starting edge of the time gate (Figure 6.3(c))

demonstrates this tradeoff between improving signal to background and losing signal, with

what we believe to be a roughly optimal compromise at a 1 ns gate starting edge indicated,

improvingM from 0.2 to 0.6. Figures 6.3(d) and 6.3(e) demonstrate the background-reducing

effect of this time-gate on the 1-10 nM range of the C6 concentration dependence (un-gated

data same as Figure 6.2). We note that time-gating offers minimal improvement for FEIR

spectra, as the Fourier transform filters the background out with the DC component while its

associated noise is distributed across the entire frequency axis, diluting its contribution within

the IR pulse bandwidth. As we will discuss below, this background reduction procedure by

time-gating also plays a critical role in FEIR-CS measurements.
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6.4 SM determination by FEIR-CS

6.4.1 FEIR-CS data acquisition and processing

Before proceeding with our presentation and analysis of the FEIR-CS experiments, here we

describe some of the technical details regarding the photon correlation and data processing

that are involved. Raw photon time-series for FEIR-CS measurements are saved as time-

tagged time-resolved (TTTR) records listing the macro- and micro-times for each detected

photon. The correlation function is computed in post-processing with an algorithm described

by Enderlein and coworkers,294 and implemented in MATLAB. This correlation algorithm

is optimized for sparse photon data, and operates on the intermittency periods between

successive detection events. It incorporates a so-called multi-tau binning scheme so that the

lag-time axis of the correlation function has quasi-logarithmic spacing.
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Figure 6.4: SPAD afterpulsing distribution and removal in photon correlation. (a) TCSPC
histograms of R6G fluorescence and the IRF. The full microtime axis has a range of roughly
819 ns, corresponding to the TimeHarp’s 215 bins of 25 ps width. (b) FCS correlation
functions of the raw time series (all photons, black), and with only accepting photons with
microtime < 30 ns (excluding afterpulses, red).
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Time-series are recorded in 3 minute sections, and the resulting correlation functions are

averaged together. Each FEIR-CS correlation function is the result of a 60 minute total

acquisition time (i.e. 20 3-minute sections). Prior to autocorrelation, the time-series are

time-gated by microtime, which serves the purpose of both removing the artifact caused by

detector afterpulsing in a addition to reducing scattering background as discussed above.

The manner in which the background affects the correlation measurement and how it is

mitigated is discussed in Section 6.4.2.

Removal of detector afterpulsing

The removal of the photon correlation afterpulsing artifact is demonstrated in Figure 6.4 for

a conventional FCS measurement from a 1 nM rhodamine 6G (R6G) solution in acetonitrile-

d3 as an example. The electronic transition in R6G is directly resonant with the visible

encoding pulse, and the IR beam is not present. Figure 6.4(a) shows TCSPC histograms of

the fluorescence signal with the IRF for reference. Afterpulses, caused by residual charge-

carriers trapped after the primary photo-electron detection event, can be seen as the low-

amplitude resurgence of counts after the hardware-fixed 75 ns dead-time. While rare (< 0.2%

probability295), their high time-correlation with true photon counts leads to a prominent spike

at the earliest few time points in the correlation function (Figure 6.4(b)). If the afterpulsing

temporal distribution function is well characterized, this artifact may be suppressed with

various filtering algorithms.296 However, in our case the repetition-rate (1 MHz) is low enough

that the afterpulse distribution fully decays before the next excitation pulse arrives, and

therefore afterpulses can be explicitly excluded by only accepting photons for correlation

that have microtimes shorter than the 75 ns dead-time. As shown in Figure 6.4(b), gating

photons in this way removes the afterpulsing spike, providing clean data all the way to the
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1 µs time-resolution limit (inverse of the repetition-rate). We note that in this conventional

FCS experiment on R6G, there is no prompt scatter background component because the

visible power is much lower owing to the direct one-photon excitation resonance.

6.4.2 FEIR-CS experiments on nanomolar C6 solutions

As a demonstration of SM sensitivity, we perform FEIR-CS measurements to effectively

count the average number of molecules that contribute at a given time. As introduced in

Chapter 5, we measure the correlation function

G(t) = ⟨δFtot(0)δFtot(t)⟩/⟨Ftot⟩2, (6.1)

where Ftot(t) is the total real-time photon stream from an FEIR measurement with optical

delays fixed at the maximum signal level (τenc = 0 fs, τenc = 600 fs). Like a conventional

FCS experiment, diffusion of molecules through the probe volume produces spontaneous

fluctuations in Ftot(t), causingG(t) to decay with the characteristic timescale of these transits

with early-time amplitude given by the inverse of the average molecule number G(0) =

⟨N⟩−1. In this case the coumarin vibrational resonances are uniformly covered by the IR

spectrum and should not be affected by any chemical exchange processes. Therefore both

the FEIR and one-photon background component, F and F0, contribute in the same way to

the bursts of fluorescence that produce G(t). However, as the intrinsic B-free modulation

ratio is ∼11, most of this correlated signal is composed of FEIR photons.
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Figure 6.5: FEIR and FEIR-CS experiments at SM equivalent concentrations. (a) FEIR
correlation functions from C6 solutions at 1, 2, 5, and 10 nM (offset for clarity with zero-
levels indicated by dashed lines). Fits are shown by black lines. (b) G(0) = ⟨N⟩−1 from the
fits in (a) as a function of concentration, with the linear trend shown by a dashed line. (c)
two-pulse FEIR transient from the 1 nM solution. (d) FEIR spectra at 1 nM, 30 nM, and
30 µM (offset for clarity). The visible pulse energy was 25 pJ for (a), (b), and the 1 nM
spectrum in (d), and 12 pJ in (c). Acquisition times were 60 minutes in (a), and 30 minutes
for (c) and 1 and 30 nM data in (d).

Figure 6.5(a) shows FEIR correlation functions from C6 solutions at 1, 2, 5, and 10 nM

along with fits to the single-component diffusion model discussed in Chapter 5

G(t) =
1

⟨N⟩

(
1 +

t

τD

)−1(
1 +

t

κ2τD

)−1/2

(6.2)

with τD = w2
xy/(4D), κ = wz/wxy, and ⟨N⟩ = Cπ3/2w2

xywz. The average molecule number

⟨N⟩ and diffusion timescale τD are fit parameters, and the probe volume aspect ratio κ, which

is rather insensitive parameter in determining the shape of the fit function, is fixed at 4—the
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value estimated from the visible focal volume characterization in Chapter 4. Estimates for

the individual probe volume dimensions wxy and wz can be made based on that character-

ization, but are not required for the determination of ⟨N⟩. Specifically, along the lines of

the discussion in Chapter 5, we take ⟨N⟩ to be defined by the inverse correlation amplitude

(i.e. the average occupation number consistent with the Poisson fluctuation statistics) via

Eq. 6.2.

Critically, the presence of uncorrelated background can confound the measurement of

⟨N⟩ by the correlation amplitude. This is because uncorrelated background contributes to

the denominator but not the numerator of G(t) in Eq. 6.1, thereby lowering its amplitude

and artificially inflating the measured value of ⟨N⟩.282,297 Reducing the background from

scattering by the time-gating method described above is therefore crucial for our FEIR-

CS measurements. In general, time-gating or more sophisticated filtering methods using

TCSPC can be applied to FCS measurements to improve accuracy or discriminate species

by lifetime.298,299 Here, we use the time-gating procedure introduced above in Section 6.3 to

reduce the effect of this background on the correlation amplitude. Figure 6.6(a) shows the

effect of varying the starting edge of the time gate on the 1 nM FEIR-CS correlation function.

The starting edges relative to the TCSPC histogram are depicted in Figure 6.6(b) with the

same color-coding. The ending edge of the gate is fixed at 15 ns. As shown in Figure 6.6(c),

the early-time correlation amplitude G(0) extracted from the fit increases dramatically as

the starting edge is scanned over the prompt scattering component, and appears to reach

a saturating value of 1.54 for edges > 2 ns. While other background sources with emission

kinetics on the fluorescence timescale are likely still present, we take this value, corresponding

to ⟨N⟩ = 0.65 as our estimate of the average molecule number. As evident in Figure 6.6(a),

the signal to noise degrades rapidly for increasingly aggressive time-gates as useful FEIR
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signal is thrown away, and we choose the 1 - 15 ns gate (cyan curve) as a compromise (used

for all correlation functions in main text Figure 6.5(a)).
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Figure 6.6: Dependence of the FEIR-CS amplitude on time-gating to remove scattering
background. (a) FEIR-CS correlation functions from the 1 nM C6 solution as a function of
the time gates displayed in (b). The early-time amplitude G(0) is shown by black circles.
(b) Time gates (color-coding matching to (a)) overlaid on the TCSPC histogram. (c) Early-
time amplitude G(0) as a function of the starting edge. The saturating value G(0) = 1.54 is
indicated by a dashed line.

As demonstrated in Figure 6.5(b), ⟨N⟩ extracted from the fits depends linearly on con-

centration, which further supports the assessment of ⟨N⟩ < 1 at 1 nM. The error bars on

⟨N⟩ in Figure 6.5(b) correspond to 95% confidence intervals from the fit routine. Figures

6.5(c) and (d) show the FEIR decay transient and spectrum recorded from the 1 nM solution,

260



Chapter 6. Demonstrating single-molecule sensitivity

demonstrating that the vibrational relaxation and frequency of the brightest ring mode νR2

can still be reliably measured at this level.

The fit to the 1 nM FEIR-CS correlation function produces a diffusion time constant

τD = 47 ± 5µs, which is longer than that for the conventional FCS measurement on R6G

in Figure 6.4b (τD = 32 ± 2µs). Besides differences in molecular diffusion constant, the

higher visible power used for the FEIR-CS measurement (26 pJ vs. 1.5 pJ) could result in

a slightly larger effective probe volume if saturation effects are at play.300 In Chapter 7, we

show how that the encoding transition indeed exhibits saturation behavior with an onset

near the intensities used here.
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Figure 6.7: Concentration dependence of the total photon count rate for the time series
underlying the FEIR-CS correlation functions (time gated to remove afterpulsing but not
scattering). Linear trend shown by dashed line with equation.

In these experiments, the F count rate per molecule (un-gated) is determined to be 110

Hz by considering the concentration dependence of the total photon count rate from the time

series used for the FEIR-CS measurements, shown in Figure 6.7. The offset of the linear trend

measures the non-molecular background B, while the slope of 78 Hz/nM, combined with the

determination that ⟨N⟩ = 0.65 at 1 nM, leads to 120 Hz per molecule (F + F0). Taking
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into account the B-free modulation ratio of ∼11 implies F = 110 Hz. This number is also

consistent with the 40 Hz F1 level seen in Figures 6.3(b) and (c) considering that the visible

excitation intensity used there is half that for the FEIR-CS measurements (12 pJ vs. 26 pJ).

To determine the overall excitation probability, the count rate per molecule is divided by

the fluorescence quantum yield, instrument collection efficiency, and 1 MHz pulse-repetition

rate. The instrument collection efficiency can be estimated at ∼1%, and is discussed more

thoroughly in Chapter 7. Assuming a fluorescence quantum yield of 0.63 reported by Jones

et al,301, this count rate per molecule corresponds to a 2% overall excitation efficiency per

pulse sequence. Our recent measurement of this quantum yield is substantially higher at

0.89. Chapter 7 discusses more recent FEIR-CS measurements of this system using a sample

configuration employing CaF2 coverslips which yield significantly larger signal levels. In

these updated measurements, the largest average SM count rates are 480 Hz, corresponding

to a ∼4% overall excitation probability per pulse sequence.

6.5 Discussion and Outlook

We note that the FEIR experiments shown here are fundamentally ensemble measurements,

even if ⟨N⟩ < 1. To clarify this point we highlight the distinction, commonly invoked in

the context of FCS within SM fluorescence,302 between SM detection—exclusively observing

a particular individual for an extended period—and SM sensitivity—the ability to measure

signals and resolve changes caused by individuals. Our proof-of-principle demonstration of

FEIR correlation spectroscopy (FEIR-CS) establishes SM sensitivity in that it requires the

observation of correlated bursts of FEIR photons from individual molecules. Furthermore,

our determination that ensemble FEIR vibrational spectra and relaxation transients can be
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measured ‘one molecule at a time’ is an encouraging sensitivity milestone along the path

toward realizing true SM observation.

Many opportunities to optimize this technique are available, including tunable visible ex-

citation, increasing collection efficiency, and—crucially—higher repetition-rates, and we note

that the pros and cons established by comparison to the related stimulated Raman excited

fluorescence spectroscopy developed by Min and co-workers—featuring tunable, frequency-

domain stimulated Raman excitation—will offer important insight.37,38,303

As an intermediate step toward SM spectroscopy, FEIR-CS has potential as a powerful

vibrational probe of chemical processes in solution, just as FCS often plays an auxiliary

role to SM fluorescence experiments. While vibrational analogues of FCS using Raman

scattering have been implemented previously, to our knowledge FEIR-CS is the first to be

sensitive enough for use with single molecules.304–306 Along the lines of the proposals in

Chapter 5, changes in vibrational frequencies due to chemical interconversion or specific

molecular interactions in an equilibrium state could be sensed as FEIR signal fluctuations

and monitored via the correlation function.

In conclusion, we have demonstrated that FEIR vibrational spectroscopy can be per-

formed with SM sensitivity. Careful optimization of the resonance condition is crucial for

achieving sufficient signal brightness, while time-resolved photon detection can significantly

reduce background levels. We demonstrated proof-of-concept FEIR-CS, which has the po-

tential for development as a vibrational analogue of FCS for studying kinetics of chemical

systems in solution with enhanced structural sensitivity. With improvements to the methods

reported here, we believe true SM vibrational detection using FEIR spectroscopy is within

reach.
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Chapter 7

Influence of resonance conditions on

detection quality and single-molecule

sensitivity

The material in this Chapter is adapted from:

Whaley-Mayda, L.; Guha, A.; Tokmakoff, A., Resonance Conditions, Detection Quality,
and Single-Molecule Sensitivity in Fluorescence-Encoded Infrared Vibrational Spectroscopy.
Journal of Chemical Physics 2022 156, 174202.

7.1 Introduction

While our initial demonstration of SM sensitivity is encouraging, developing FEIR spec-

troscopy as a generally useful method will require a more thorough understanding of the

optical and molecular factors involved in SM FEIR detection. Specifically, what makes a

molecule a good FEIR chromophore, and given such a molecule, how is FEIR detection

optimized? This first question can be initially addressed by considering the minimum re-

quirements of a good, i.e. SM capable, FEIR chromophore from a heuristic standpoint: high
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fluorescence brightness, strong IR activity of the target vibration(s), and strong vibronic

coupling of this target vibration to the electronic transition, e.g. Franck-Condon activity.

Next, the double-resonance condition must be met: the IR frequency ωIR is tuned to cover

the vibrational transition while the visible frequency ωvis should “make up the difference” to

bring the molecule to the electronic excited state, i.e.

ωIR + ωvis = ωeg, (7.1)

where ωeg is the electronic transition frequency. Practically speaking, this relation suggests

that the visible pulse should be pre-resonant with the electronic absorption band by an

amount commensurate with the target vibrational frequency. However, given the typically

broad electronic lineshape in room-temperature solution with its interplay of intramolecular

vibrational and solvation contributions, it is not a priori clear where this optimal resonance is

located, or even to what extent the equilibrium absorption lineshape is a useful or predictive

guide. Furthermore, direct excitation by the visible pulse produces an undesirable fluores-

cence background that degrades detection contrast and therefore must also be considered in

the optimization of the resonance condition.

Motivated by these questions, in this chapter we investigate the practical experimental

factors that govern FEIR signal strength and detection quality with the objective of eluci-

dating the requirements for achieving SM sensitivity. We introduce an experimental FEIR

brightness metric that accounts for instrumental parameters to isolate the intrinsic molec-

ular factors that control signal size, and thereby facilitates comparison between different

chromophores. We will focus on the particular role of the resonance condition in optimizing

FEIR brightness and signal to noise. Perhaps the most direct experiment to capture the

effect of electronic resonance would be to excite a single vibration at fixed ωIR while tuning

265



Chapter 7. Influence of resonance conditions

ωvis. However, our current instrument is limited to a fixed ωvis, so here we adopt the strategy

of performing measurements across a series of dyes whose electronic spectra span a range of

different frequencies. Motivated by our demonstration of SM sensitivity for coumarin 6 (C6)

in acetonitrile-d3 described in Chapter 6, we use a set of structurally-similar coumarin dyes

in the same solvent in order to keep the vibrational and vibronic aspects of the chromophores

as similar as possible. Clearly these vibration-specific factors are crucial for sensitive FEIR

detection, and we will address mode-specific considerations including normal mode charac-

ter and molecular symmetry with the aid of more detailed theory and electronic structure

calculations in future work.

Questions of signal strength, detection sensitivity, and ‘goodness’ of chromophore are

also fundamentally coupled to the spectroscopic information content of an experiment. As

a nonlinear ultrafast technique, FEIR spectroscopy can access information beyond linear vi-

brational spectra, including relaxation dynamics, relative orientation of the vibrational and

electronic transition dipoles, and inter-mode coherence and dephasing. These phenomena

are addressed to various extent in Chapters 2, 8, 9, and 10. However, our analysis here is

concerned with experimental photon count rates and signal to noise at a practical level. We

find that the electronic absorption spectrum can predict the dependence of FEIR brightness

on the resonance condition to a reasonable degree across the full frequency range consid-

ered. For bulk measurements, signal to noise is limited by background fluorescence from

direct visible excitation, and therefore detuning from resonance to decrease the overlap of

ωvis with the tail of the electronic band is often desirable. However, at SM equivalent con-

centrations background is mostly of non-molecular origin and maximal resonance should be

employed. We observe saturation of the vibronic encoding transition by the visible pulse,

which ultimately limits the upper range of molecular emission rates that can be achieved.
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7.2 Experimental Methods

7.2.1 Steady-state spectroscopic characterization of coumarin

FEIR dyes

Ten commercially available 7-aminocoumarin dyes were obtained from Sigma (C30 and

C153), TCI America (C314, C337, C334, and C7), Acros Organics (C343 and C6), and

Exciton-Luxottica (C525 and C545), and used as received. For each Coumarin dye, Fourier

transform IR (FTIR) absorption measurements were performed in 1-5 mM acetonitrile-d3

solution at 100-500 µm pathlength using a Bruker Tensor 27 FTIR spectrometer at 2 cm-1

resolution. Each FTIR spectrum was solvent-subtracted and converted to molar extinction

units by dividing the measured absorbance by concentration and pathlength.

UV/Vis absorption was performed with an Agilent Technologies Cary 5000 spectropho-

tometer using a 4 nm excitation bandwidth with 0.5 nm steps. Dye solutions in acetonitrile

at 40 µM were measured in a 1 cm pathlength quartz cuvette, resulting in maximum ab-

sorbances < 2, which was determined to be within the linear range of the spectrometer.

Each spectrum was corrected by an independently measured solvent blank and converted to

molar extinction units. An exponential fit to the low-frequency absorption wing was used

to extract the extinction value at ωvis for all coumarins but C545 (Figure 7.A.1 in Appendix

7.A).

Fluorescence spectra were measured with a Horiba Flouorlog-3 fluorimeter using right-

angle collection from 1 cm pathlength quartz cuvettes. The concentration was adjusted

(typically < 2 µM) to keep the maximum absorbance below 0.1 to avoid inner filter arti-

facts. Excitation-emission surfaces were measured with 3 nm slit widths for both excitation

and emission monochromators. The excitation spectra acquired by integrating over the
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emission axis were found to match the lineshape of the UV/Vis absorption, and fluorescence

emission spectra were acquired by integrating over the excitation axis. Fluorescence quan-

tum yields were measured relative to coumarin 153 in ethanol (ϕ= 0.53) as a standard using

the procedure outlined in Ref.[307], and we estimate uncertainties of ∼10% for these values.

All solutions were air-saturated.

7.2.2 FEIR measurements

FEIR measurements were performed with the experimental apparatus described in Chapter

4. Briefly, 230 fs IR pulses (center-frequency ωIR = 1620 cm-1, 120 cm-1 fwhm bandwidth)

were generated with a home-built OPA pumped by a 1 MHz repetition-rate Yb fiber laser

(Coherent Monaco).190 These pulses were sent through a Mach-Zehnder interferometer to

create a collinear pulse-pair with controllable delay τIR, then focused into the sample from

below using a ZnSe aspheric lens of numerical aperture (NA) ∼0.7. The visible encoding

pulse (∼330 fs, center-frequency ωvis = 19360 cm-1 (= 516.5 nm), fwhm bandwidth < 80

cm-1 (< 2 nm)) was generated by frequency doubling the fiber laser fundamental, delayed

with respect to the stationary pulse of the IR pulse-pair by τenc, and focused into the sample

from above, collinear to the IR, with a 0.8 NA air objective. The IR and visible pulses were

linearly polarized with parallel orientation in the sample. Fluorescence was collected with

the same objective, separated geometrically from the visible excitation beam by a long-pass

dichroic, sent through both a ωvis-band rejection and selective fluorescence bandpass filter,

and imaged onto a single-photon counting avalanche photodiode (SPAD) using its 50 µm

diameter active area as a confocal aperture to remove out of focus light. Considering the NA

and magnification (57×), the radius of this aperture corresponds to 4.2 optical units at ωvis,

or equivalently ∼1.1 times the Airy disk radius. While slightly larger than the optimal size
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for maximum signal to noise in confocal microscopy (2.4-3.3 optical units), this aperture is

close to that for producing optimal signal to noise in fluorescence correlation spectroscopy

(∼4.5 optical units).282,308,309

Sample solutions (30-100 µM in acetonitrile-d3) were held between a 1 mm thick CaF2

window (bottom, IR side) and either a 175 µm-thick glass or 150 µm-thick CaF2 coverslip

(top, visible side), separated by a 50 µm PTFE spacer, and positioned so that the visible

confocal volume was ∼20 µm below the coverslip. As discussed in Chapter 4, detrimental

thermal effects due to IR absorption by the conventional glass coverslips limited the upper

range of IR power that could be used and reduced signal levels.242 However, switching to the

CaF2 coverslips effectively removed these artifacts, yielding FEIR signals ∼3 times larger.

In this work, both types of coverslips were used (glass for the data in Section 7.4.3, CaF2 in

Section 7.4.4), however quantitative comparisons are only made among measurements using

the same type.

The IR pulse energy at the sample during total constructive interference between the

pulse-pair (τIR = 0) was kept constant at ∼50 nJ, although variations of ±5% occurred

between measurements. Considering the pulse duration and 1/e2 focal radius of ∼9 µm,

the corresponding peak intensity is ∼160 GW/cm2, with a pulse-train average intensity of

∼40 kW/cm2. The visible pulse energy was varied between 10 fJ – 100 pJ depending on the

concentration and resonance condition for each sample, which considering pulse duration and

0.34 µm 1/e2 focal radius corresponds to peak intensities of 0.015-150 GW/cm2, or average

intensities of 0.005-50 kW/cm2. In each case the visible pulse energy was chosen to keep the

total fluorescence count rate from exceeding 200 kHz (20% of repetition rate) to prevent

pile-up distortions—caused by the arrival of multiple photons at the detector per excitation

cycle, only the first of which can be registered—from being too severe (< 10% error). As
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described in Chapter 4, the raw count rates were then corrected for pile-up using the relation

xcorrected = −r ln(1− xraw/r) where r = 994.7 kHz is the exact repetition-rate.

7.3 Theoretical principles of signal and background size

The total photon count rate Ftot (Hz) detected in an FEIR measurement consists of the

following components

Ftot(τIR, τenc) = F (τIR, τenc) + F0 +B. (7.2)

Here F is the desired FEIR signal which depends on the pulse delays, F0 is a constant back-

ground fluorescence due to direct excitation of the target molecule by the visible pulse alone,

and B encapsulates all other sources of background not arising from the target molecule, e.g.

solvent Raman scattering, emission from impurities and optics, and detector dark counts.

For the sake of this analysis we will consider the IR pulse-pair delay fixed at τIR = 0, i.e. two-

pulse experiments (one IR and one visible pulse). In previous publications we have referred

to such experiments as 1-pulse,242 or 1-IR-pulse measurements,243 however here we modify

our terminology to reflect the total number of pulses, in keeping with the naming conven-

tion used consistently throughout this thesis. The two-pulse amplitude F (τenc) reflects the

integrated response of all vibrations within the bandwidth of the IR pulse spectrum. The

fractional contribution to the count rate from a distinct vibrational resonance can in princi-

ple then be calculated using the FEIR spectrum measured at that encoding delay, although

we will not explore this strategy here. We will consider early, positive τenc where F is near

its maximum, and suppress the time argument for brevity. In general, successful FEIR de-

tection requires the ability to distinguish the signal F against the background F0 + B, and
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therefore a practical figure of merit is the modulation ratio

M =
F

F0 +B
, (7.3)

i.e. the ratio of useful FEIR photons to all other detected photons. The presence of F0—

a fluorescence signal from the target molecule, yet contributing to the background—is an

important aspect of the practical optimization of FEIR detection. As a signal to background

ratio, M is a readily apparent feature of the raw data, and consequently a convenient target

for optimization. However, the more fundamental descriptor of detection quality is the signal

to noise ratio

SNR =
FT√
FtotT

=
F√

F + F0 +B

√
T (7.4)

defined here for the shot noise limit as the ratio of the number of FEIR photons accumulated

during the integration time T relative to the Poisson noise of the total number of detected

photons. Therefore, both the contrast M and the absolute magnitude of the signal F need

to be considered to maximize the SNR.

7.3.1 FEIR Brightness

Since the absolute size of an FEIR signal is ultimately governed by the molecular emission

rate, we seek to relate experimental count rates to the overall probability of excitation,

emission, and detection per molecule. Furthermore, accounting for the instrument-specific

factors that influence these probabilities should in principle isolate purely molecular metrics

that describe the propensity of a given vibration to be detected via FEIR. In conventional

fluorescence spectroscopy, such a metric is the fluorescence brightness, which characterizes

a fluorophore’s ability to emit a photon in response to optical excitation. From an external
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Figure 7.1: Energy-level diagram for FEIR excitation of a single vibration coupled to the
electronic transition.

spectroscopic standpoint, brightness can be defined as the product of absorption cross-section

(at the excitation frequency) and fluorescence quantum yield (σel×ϕ).307,310,311 Alternatively,

fluorescence brightness has also been defined directly from experimental SM count rates,

which can be related to σel × ϕ with knowledge of the excitation beam photon flux and

overall detection efficiency.312 This concordance of definitions is made possible by the linear

nature of the fluorescence excitation process, which facilitates a straightforward separation

of molecular and optical factors.

In contrast, FEIR excitation is a nonlinear process consisting of IR excitation of the vi-

brational ν = 1 population followed sequentially by a vibronic transition to the excited elec-

tronic state (Figure 7.1). To a first approximation, these two steps may each be considered

as the resonant absorption of one photon (IR, then visible), producing a linear dependence

separately in the intensity of the IR and visible fields. Formally, this picture emerges from

the nonlinear response function description described in Chapters 2 and 3 when assuming
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non-overlapping IR and visible pusles and neglecting vibrational relaxation and inter-mode

coherence. In reality, however, the overall FEIR excitation process competes with picosec-

ond vibrational relaxation, and its efficiency is therefore sensitive to aspects of the temporal

pulse profiles beyond peak or integrated photon fluxes. Additionally, inter-mode coherence

excitation of pairs of vibrational fundamentals within the IR bandwidth further complicate

the interplay between molecular and optical factors. While these effects can be properly

treated by our theoretical response function description with finite-pulses, they are beyond

the scope of our present analysis and discussion.

Given these theoretical complexities, here we take a practical route to defining FEIR

brightness based on experimental count rates and a simple phenomenological model for how

the signal scales with experimental parameters. We assume the overall probability Pex that a

molecule is electronically excited in response to a pulse sequence follows the bilinear intensity

dependence

Pex = aIIRIvis (7.5)

where IIR and Ivis are peak pulse intensities (GW cm-2) and a plays the role of an FEIR

cross-section and is defined by this relation. While neglecting time-dependence and pulse

duration effects in general, this relation is applicable to varying the energy of pulses with

fixed time-delays and temporal profiles. The measured count rate is proportional to Pex,

specifically

F = r⟨N⟩ηϕaIIRIvis, (7.6)

where r is the pulse repetition-rate, ⟨N⟩ is the average number of molecules in the probe

volume, η is the overall photon detection efficiency, and ϕ the fluorescence quantum yield.
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This expression neglects a negative contribution to F due to depletion of the equilibrium

ground state by the IR pump which consequently reduces the amount of fluorescence from

direct visible excitation. Formally, these effects arise from ground-state bleach pathways

neglected in the response function description of Chapter 2, and can be seen in the negative-

going FEIR signals found for the fluorescence-loss resonance condition explored with C153

in Ref. [39]. However, for the resonance conditions considered in this work, this depletion

contribution is negligible compared to the proper FEIR excited contribution (i.e. described

by Pex), and we will not consider its effect in our analysis. As shown in Chapter 4, we

have previously verified this linear IIR- and Ivis-dependence for bulk samples where Pex ≪ 1

for any given molecule. In analogy to fluorescence brightness, the FEIR brightness in the

context of this model is a× ϕ.

Our approach is to extract this value, or a proportional quantity, from the measured count

rate by dividing out the experimental and instrument-specific parameters in Eq. (7.6). Not

all of these parameters can be directly measured, although reasonable estimates can be made.

For example, the detection efficiency can be approximated as

η = ηcoll

∫
sfl(ω)Tbp(ω)ηdetector(ω)dω. (7.7)

Here ηcoll is the geometric collection efficiency of the objective lens and optical path coupling

the photon onto the detector, which can depend on the specific details of the experimental

configuration in complicated ways and is difficult to measure absolutely. The objective’s nu-

merical aperture (NA) is the dominant factor, and for isotropic emission in a homogeneous

medium of refractive index n the objective’s collection efficiency is sin2
(
1
2
sin−1(NA/n)

)
,

which is 10% in our experiments. The frequency integral in Eq. (7.7) is the overlap of the
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molecule’s area-normalized fluorescence spectrum sfl(ω), transmission function of the emis-

sion filters’ bandpass Tbp(ω), and detector quantum efficiency ηdetector(ω). For our detector

ηdetector(ω) is ∼45% and slowly varying over the emission frequencies considered.295 The fac-

tor that is significantly variable between different molecules is the fraction of the fluorescence

spectrum transmitted by the bandpass filters

ηbp =

∫
sfl(ω)Tbp(ω)dω, (7.8)

which may be calculated directly from steady-state fluorescence and transmission measure-

ments. Overall, using these estimates η ≈ 0.045× ηbp, although this is likely only an upper

bound due to further unknown factors in ηcoll.

Similarly, ⟨N⟩ is difficult to measure in general, but can be represented up to propor-

tionality by the solution concentration C (mol L-1). As described in Chapter 6, we have

previously measured ⟨N⟩ directly from nM solutions of C6 by performing FEIR correlation

spectroscopy (FEIR-CS), finding ∼0.65 molecules/nM, or, assuming this relation is scalable

to any concentration ⟨N⟩ = 0.65 × 10−9C.243 However, to ensure we only use parameters

that are directly controlled or measured, we define FEIR brightness (mol-1 L GW-2 cm4) as

q =
F

rCηbpIIRIvis
≈ 1.44× 1012 (mol−1L)ϕa (7.9)

where the second approximate equality uses the estimates stated above to isolate the fully-

corrected FEIR brightness in Eq. (7.6).
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7.3.2 FEIR cross-section

The FEIR cross-section a reflects the microscopic molecular factors governing the overall

excitation process, shown in Figure 7.1. While a complete description that includes the

effects of vibrational relaxation, pulse durations and spectra, and multimode excitation is

best handled by a response function calculation, here we discuss the relevant quantities

from a heuristic standpoint. For a single vibration within the Condon approximation, and

assuming early encoding delays where vibrational relaxation is negligible

a ∼ |µeg|2|⟨1g|0e⟩|2|µ10|2 · Y ·∆(ωvis − (ωeg − ω10)). (7.10)

Here ω10 and µ10 are the vibrational frequency and transition dipole moment, ωeg and µeg

are the pure electronic transition frequency and dipole moment, and ⟨1g|0e⟩ is the Franck-

Condon factor describing the vibrational-electronic coupling. Y = ⟨[µ̂eg · ϵ̂vis]
2[µ̂10 · ϵ̂IR]2⟩

is an orientational factor determined by the projection of the pulse polarization vectors ϵ̂IR

and ϵ̂vis onto the transition dipole directions µ̂10 and µ̂eg, averaged over the orientational

distribution present in the experiment. Such orientational factors are common to coherent

3rd-order nonlinear techniques, the most directly analogous being 2D-VE spectroscopy,313,314

however in terms of overall magnitude this factor plays a minor role, and we will not discuss

its contribution in detail here. Chapter 9 treats orientational effects in more detail. The final

factor ∆(ωvis − (ωeg − ω10)) is a normalized resonance term that accounts for the spectral

overlap of the visible pulse with the encoding transition, i.e. the vibronic transition from the

ν = 1 state of the vibration being pumped to the excited electronic manifold. Here we have

assumed that the IR pulse is spectrally broad compared to the vibrational transition and

tuned to resonance ωIR ≈ ω10, so that ∆ describes the detuning from the resonance condition
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in Eq. (7.1). As an effective lineshape function for the encoding transition, ∆ should

in principle be influenced by many of the same intramolecular vibrational and solvation

coordinates that govern the lineshape of the equilibrium electronic transition.

7.3.3 Background

In analogy to Eq. (7.6), the directly excited fluorescence background F0 can be written as

F0 = r⟨N⟩ηϕa0Ivis, (7.11)

where a0 is the coefficient relating the probability of one-photon electronic excitation to

the visible peak pulse intensity. Specifically, a0 is related to the absorption cross-section

and visible pulse duration tvis as a0 = σel(ωvis)tvis/ℏωvis. Higher-order contributions in Ivis,

e.g. two-photon absorption, can also become significant in cases when ωvis is sufficiently off-

resonance from the electronic absorption band. We define the direct excitation brightness

(mol-1 L GW-1 cm2) as

q0 =
F0

rCηbpIvis
. (7.12)

When linear absorption is the dominant contribution, q0 ∝ ϕa0 with the same estimated

proportionality factor as Eq. (7.9), and represents the conventional fluorescence brightness

excited at ωvis. The nonlinearity of the FEIR excitation process spatially localizes signal

generation to the product of the IR and visible intensity profiles. However, because the size

of the IR focus is at least an order of magnitude larger than the visible, the spatial distribution

of FEIR signal generation within the 50 µm-thick solution layer is essentially the same as

the one-photon fluorescence background, which precludes the use of more aggressive confocal

filtering to selectively suppress F0.
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The sources of background not originating from the target molecule can be numerous, and

naturally become increasingly prevalent in the low concentration regime of SM experiments.

However, these contributions to the non-molecular background B can be decomposed by its

excitation power dependence

B = d+ bIvis + · · · (7.13)

The constant d represents the detector dark count rate (∼40 Hz in our experiments), while the

term linear in Ivis describes Raman scattering from the solvent as a well as fluorescence from

the optics or undesired impurities. In principle, higher-order terms like multiphoton-excited

fluorescence could contribute but do not appear to be important under our experimental

conditions. We have not observed any background signal due to excitation with the IR pulse

alone.

7.4 Results and Discussion

7.4.1 Electronic absorption and fluorescence spectra

The series of 10 coumarin dyes used in this study is shown in Figure 7.2(a). Our naming con-

vention follows the Kodak catalogue, with the exception of C525 and C545 which are Exciton

catalogue names.315 The electronic spectroscopy of the S0 → S1 transition is influenced by the

charge-transfer character of the S1 excited state, which is modulated by the electron-donating

and electron-withdrawing abilities of the amino group (shown in blue) and substituent on

the lactone ring (shown in red), respectively.316–318 The variation of electron-withdrawing

group and degree of alkylation of the amino group consequently tunes the absorption and

fluorescence spectra (Figures 7.2(b) and (c), respectively) across a frequency range of ∼3000
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Figure 7.2: Electronic absorption and emission characteristics of the coumarin dye series
in acetonitrile. (a) Structures of the coumarin dyes with their abbreviated names. (b)
Electronic absorption spectra plotted as molar decadic extinction on a linear wavenumber
scale (lower x-axis common with (c)) with corresponding wavelength values on the upper
x-axis. Visible pulse spectrum (gray) with center frequency (dashed black) ωvis indicated,
and similarly for the IR/vis spectral convolution (center frequency ωIR + ωvis = 20980 cm-1

= 477 nm). (c) Normalized fluorescence spectra with the emission bandpass Tbp(ω) shown
in gray. (d) First moment of the absorption spectrum (ωmean), frequency of the absorption
maximum (ωmax), half-way point up the low-frequency edge (ω1/2), and 0-0 transition (ω0−0,
see text) for each coumarin. (e) Low-frequency edges of the electronic absorption spectra
in (b) plotted on a logarithmic y-axis. In (d) and (e) ωvis and ωIR + ωvis are indicated by
dashed lines.
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cm-1. We illustrate the resulting span of FEIR excitation resonance conditions by overlaying

the visible pulse spectrum and convolution of visible and IR pulse spectra on the absorption

bands in Figure 7.2(b) (spectral distributions shown in gray, with respective center frequen-

cies ωvis and ωIR+ωvis denoted by dashed lines). The IR/visible spectral convolution, formally

the distribution of all IR + visible frequency sums accessible between their bandwidths, nom-

inally indicates the breadth of double resonance around ωIR +ωvis that can be supported by

the pulse spectra, and has a fwhm of ∼140 cm-1. Notably, both this distribution and the

visible pulse spectrum are narrowband with respect to the coumarins’ electronic absorption

lineshapes. Figure 7.2(d) shows ωvis and ωIR+ωvis against various metrics characterizing the

electronic absorption frequency (see also Table 7.1): ωmean, first moment of the band, ωmax,

frequency of the band maximum, ω1/2, frequency of the half-way point up the low-frequency

edge, and ω0−0, an approximation of the 0-0 transition frequency given by the crossing point

of the normalized absorption and fluorescence lineshapes. The coumarins have been ordered

by decreasing ω1/2 values. For C30, the most blue-shifted coumarin under consideration,

ωIR + ωvis falls ∼1500 cm-1 below ω0−0, while the three reddest—C6, C525, and C545—have

ωIR + ωvis > ω0−0, notably with ωIR + ωvis ≈ ωmax for C545.

While each of these electronic frequency metrics is influenced to some degree by the

band’s shape, they nevertheless cannot adequately account for the breadth of the lineshape.

As a potentially more direct characterization of FEIR resonance, we will investigate εel(ωIR+

ωvis)—the value of the extinction coefficient at the double-resonance frequency. Figure 7.2(e)

shows the same absorption spectra on a logarithmic y-axis to better show the extent of the

low-frequency edge, with ωIR + ωvis and ωvis indicated by dashed lines. From the bluest

to reddest coumarins in the series, εel(ωIR + ωvis) spans nearly 3 orders of magnitude. In

principle this metric describes both detuning, through position on the lineshape, as well
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Table 7.1: S0 → S1 spectroscopic parameters of the coumarin dye series. f is the oscillator
strength, ∆ωedge is the hwhm of a Gaussian fit to the red-edge of the absorption band, and
the Stokes shift is defined by the difference between the absorption and fluorescence band
maxima.

Coumarin ϵmax f ωmax ω0−0 ∆ωedge Stokes shift ϕ ηbp

(L mol-1 cm-1) (cm-1) (cm-1) (cm-1) (cm-1)

30 43000 0.74 24500 22420 1240 3730 0.64 0.15
314 36000 0.47 23200 22000 900 2120 0.70 0.10
153 19000 0.36 23900 21200 1470 5030 0.65 0.35
337 50000 0.63 22600 21500 880 2130 0.76 0.18
343 42000 0.51 22300 21300 810 1960 0.63 0.18
334 45000 0.58 22300 21300 840 1920 0.89 0.16
7 48000 0.78 22900 21300 740 2600 0.86 0.23
6 55000 0.85 21900 20700 720 2150 0.89 0.29

525 51000 0.75 21800 20600 820 2120 0.75 0.28
545 52000 0.72 21000 20000 770 1750 0.71 0.39

as electronic transition strength, through the extinction magnitude. Maximum extinction

values, as well as oscillator strengths f calculated from the molar decadic extinction spectra

via the numerical relation f = 4.32 × 10−9
∫
ε(ω)dω with ω expressed in cm-1,319,320 are

listed in Table 7.1 and vary by a factor ∼3 across the series. In the context of the heuristic

expression for FEIR cross-section in Eq. (7.10), εel(ωIR + ωvis) should supply information

on |µeg|2 by proportionality with f , while we would also expect similarities with the ωvis-

dependence of the encoding lineshape function ∆ in the presence of shared line-broadening

mechanisms.

Linear absorption of the visible pulse is controlled by ε(ωvis), which also varies dramat-

ically by over 3 orders of magnitude across the coumarin series. Below a few percent of
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the band maxima, the low-frequency absorption tails exhibit an exponential frequency de-

pendence, apparent as linear slopes in the logarithmic scaling of Figures 7.2(e) (exponential

fits shown in Figures 7.A.1 and 7.A.2 of Appendix 7.A). This so-called “Urbach tail” is a

well known feature in the band-edge spectra of solid-state materials,321,322 but is also fre-

quently observed for organic molecules in solution, often with a 1/kBT -dependent decay

constant.323–326 For molecules, this exponential tail and characteristic temperature depen-

dence has been interpreted as the cumulative effect of hot-band transitions originating from

the sparsely thermally-occupied excited levels of Franck-Condon active vibrations on the

ground state. For all the coumarins, with the possible exception of C545, ωvis falls within

this Urbach region.

The fluorescence quantum yield ϕ and fractional spectral bandpass ηbp are listed in Table

7.1. The optimal location of the instrument’s emission bandpass depends on the interplay

between the fluorophore’s Stokes shift, fluorescence lineshape, and the pre-resonant shift on

the order of ωIR ≈ ω10 required for FEIR resonance (i.e. Eq. (7.1)). A detection band on

the Stokes side of ωvis can in general only access a smaller portion of the emission spectrum

than in a conventional one-photon resonant fluorescence excitation scheme due to this pre-

resonant shift. For fluorophores with small Stokes shifts, placing the detection band on the

anti-Stokes side of ωvis could in principle allow for larger ηbp, with the added benefit of

contending with the weaker anti-Stokes solvent Raman background. In this work we use a

Stokes-side bandpass (Figure 7.2(c)) that relies on the relatively large Stokes shifts of the

coumarin dyes (Table 7.1), which for the most part greatly exceed ω10 for the vibrations

under consideration. The decrease in ηbp from ∼0.4 to ∼0.1 when moving red to blue across

the coumarin series is a consequence of the increasingly off-resonant FEIR excitation with

Stokes-side detection. C153 is notable by its large ∼5000 cm-1 Stokes shift, which results in
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the second-highest ηbp in the series despite its position in the blue side of the series.

7.4.2 FTIR absorption spectra

FTIR spectra of the coumarin series are shown in Figure 7.3. The IR pulse spectrum used in

each FEIR measurement is superimposed to indicate the vibrations being excited. The pulse

is broadband with respect to the vibrational linewidths and spans multiple modes in each

case. Below 1650 cm-1 in the spectral range shown are C=C ring vibrations localized pre-

dominantly on the coumarin core, while the lactone carbonyl stretching band appears above

1700 cm-1. In many cases this carbonyl band shows considerable structure (e.g. the splitting

especially prominent for C153 and C525), which is likely due to a Fermi resonance.327–329

C334, C314, and C343 contain another carbonyl group in the electron-withdrawing sub-

stituent, which appears between 1650-1700 cm-1. The center of the IR pulse spectrum ωIR

= 1620 cm-1 was chosen to maximize coverage of the highest frequency ring modes, which

have similar character across the coumarin series, and, as shown below, are typically the

most strongly FEIR active. In contrast to the large variation in electronic resonance cre-

ated by the range of absorption frequencies, here the collection of vibrational modes being

pumped are fairly similar in frequency and extinction. Nevertheless, the vibrational transi-

tion strength is a critical factor for FEIR brightness via Eq. (7.10), and any differences in

IR-vibrational cross-section should be reflected in the strength of the signal. To characterize

these differences given the spectrally broad excitation, we compute the overlap

εIR =

∫
εvib(ω)|ẼIR(ω)|2dω, (7.14)
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where εvib(ω) is the vibrational extinction spectrum and |ẼIR(ω)|2 is the normalized IR

spectral intensity profile. As shown in Figure 7.A.8, εIR only varies by a factor of ∼2 across

the series.

7.4.3 Brightness analysis of high concentration FEIR data

Bulk FEIR measurements on 3 representative coumarins are shown in Figure 7.4 (complete

series shown in Figure 7.A.3 of Appendix 7.A). High concentrations (30-100 µM) were used

to keep the non-molecular background B negligibly small compared to the coumarin fluores-

cence. Panels (a)-(c) show the total detected photon rate Ftot from two-pulse measurements

in brightness units, that is, divided by rCηbpIvis. Instead of additionally dividing the FEIR

component F by IIR to recover q as in Eq. 7.9, it will be convenient for our analysis to work

with an effective FEIR brightness where the IR intensity dependence has not been removed

qIR =
F

rCηbpIvis
= qIIR, (7.15)

which has the same units as q0, facilitating direct comparison of their respective magnitudes.

Furthermore, because IIR is held constant in this study, qIR can still be compared between

measurements on different molecules, and we will also refer to this quantity as the FEIR

brightness unless further distinction is required. As B is negligible, q0 is given by the constant

offset (blue arrows) for τenc < 0 where F = 0 by causality.

F reaches a maximum at early τenc before decaying away on a picosecond timescale

due to vibrational relaxation processes However, the details of the τenc-dependence near the

maximum, notably the peak position, vary for the different coumarins. As F (τenc) measures

the integrated response of the multiple vibrations within the IR bandwidth, some aspects of
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these differences reflect the variation in frequency spread, vibronic activity, and relaxation

kinetics of the modes being sampled. To show which vibrations are contributing to the

response in each case, Figures 7.4(d)-(f) show the corresponding FEIR spectra at selected

early encoding delays superimposed on the IR pump-scaled FTIR spectra. In all cases,

the high frequency ring modes between 1570-1620 cm-1 have the largest contribution to

the F amplitude. Multimode coherence produces the strongly-damped oscillatory behavior
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present in some two-pulse transients, which to some extent also plays a role in the location

of the signal maximum. However, in the vicinity of τenc = 0 the signal may also contain

pulse-overlap artifacts, for example contributions from improperly ordered interactions of

the IR and visible fields or vibrationally-nonresonant IR + visible two-photon absorption.

We note that even in these cases the signal amplitude is still determined by the molecular

response—–one of the benefits of fluorescence detection which precludes non-resonant pulse-

overlap contributions from the solvent or windows. Nevertheless, to avoid these potential

complications, we will use the average value of F (τenc) between 400 and 800 fs (gray region in

Figures 7.4(a)-(c) with red arrow indicating the average) to define qIR for our analysis. While

this window safely avoids the pulse-overlap region, in many cases the excited vibrational

population has already undergone partial relaxation which may result in artificially lower

measured FEIR brightness (Section 7.A.4 compares these FEIR brightnesses with those

using the maximum F values). Chapter 8 discusses the details of the FEIR signals in this

early-time region using finite-pulse response function calculations.

The coumarins in Figure 7.4 were chosen to represent the full range of FEIR resonance

conditions across the series; C314 being one of the bluest, C7 intermediate, and C545 the

reddest. As evident from the y-axis scales of Figure 7.4(a)-(c), the brightness of the overall

fluorescence (F + F0) increases dramatically for the redder coumarins. However, for C545

the direct excitation background has become larger than the FEIR signal. This reduction in

contrast is evident in a much smaller modulation ratio of M = 0.35 for C545, compared to

M = 35 for C7 and M = 6.8 for C314.

In Figure 7.5 we investigate how brightness and contrast are explicitly influenced by the

FEIR resonance condition discussed in Section 7.4.1. To normalize out variations in emission

probability, we divide the FEIR and direct excitation brigthnesses by quantum yield ϕ. The
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resulting quantities qIR/ϕ and q0/ϕ are proportional to aIIR and a0, respectively, with the

same proportionality constant. The quantity aIIR may be interpreted as the effective cross-

section seen by the visible pulse after vibrational excitation of the molecule with the IR

pulse in our instrument. Figure 7.5(a) shows that these proxies for the FEIR and direct

excitation cross-sections are linearly related to the electronic extinction coefficient evaluated
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at ωIR + ωvis and ωvis, respectively, over several orders of magnitude. Logarithmic scaling is

used to conveniently represent the multiple decades in each axis (same data on linear axes

is shown in Figure 7.A.6 of Appendix 7.A).

The strong linear relationship between εel(ωvis) and q0/ϕ indicates that linear absorption

of the visible pulse is the primary contributor to the direct excitation background F0 across

the range of resonance conditions studied here, and we will consequently also refer to F0

as the one-photon background. However, we note that for the bluest coumarins C30 and

C314, the Ivis-dependence of F0 becomes super-linear beyond the intensities used in Figure

7.5 (Figure 7.A.14 in Appendix 7.A), implying a cross-over to two-photon absorption being

the dominant source of F0 background for these deeply pre-resonant excitation conditions

where εel(ωvis) is exceptionally small.

On the other hand, the linear relationship between εel(ωIR + ωvis) and qIR/ϕ (and by

proportionality a), though more diffuse, is a more striking and a priori less obvious re-

sult. Taken exactly, a perfect linear relationship would indicate that the effective lineshape

function of the encoding transition is simply given by the equilibrium absorption lineshape

red-shifted by the vibrational frequency, i.e.

∆(ω) ∼ gel(ω − ω10), (7.16)

where gel(ω) is the normalized electronic lineshape function. While intuitive and in line with

the heuristic double-resonance picture evoked by Eq. (7.1), this association cannot be for-

mally exact, as in general both the initial and final states involved in the encoding transition

are different from the bare electronic transition. The equilibrium lineshape gel(ω) is composed

of multiple vibronic transitions involving the Franck-Condon active intramolecular coumarin

vibrations—including, but importantly not limited to, the vibrations being interrogated by
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FEIR—as well as being broadened by overdamped solvation coordinates. While the vibronic

contribution to ∆(ω) from the mode being pumped is certainly different because the initial

state is ν = 1 rather than ν = 0, it is reasonable to expect a similar contribution from

the solvent, as, from the solvent’s perspective, vibrational excitation on the ground-state is

a small perturbation compared with electronic excitation. As the FEIR resonance condi-

tions explored here probe the red-side of the transition where the breadth of the lineshape

is likely dominated by the solvent contribution, Eq. (7.16) could therefore be a reasonable

approximation. For coumarins on the blue side of the series, εel(ωIR + ωvis) falls within the

Urbach region of the lineshape, and it is possible that initial thermal population of low-

frequency modes is important. A similar correspondence between signal size and resonance

condition for ωvis < ω0−0 − ωIR was found in some of the original experiments of Kaiser and

co-workers, although the vibrations being pumped were likely combination bands.323 From a

computational perspective, ∆(ω) is related to the lineshape of the vibrationally pre-excited

absorption spectrum introduced by Burghardt and coworkers to model the closely-related ex-

citation process in vibrationally promoted electronic resonance (VIPER) spectroscopy.74,330

Although their approach only investigated the effect of the intramolecular modes and did

not treat broadening from the solvation environment explicitly, their results typically show

a peak red-shifted from the 0-0 transition by roughly ω10 due primarily to the pre-excited

mode’s 1-0 vibronic transition. These computational results support the frequency shift in

Eq. (7.16) as well as the simplified energy level diagram in Figure 7.1.

The scatter in the εel(ωIR + ωvis) vs. qIR/ϕ trend is likely influenced by variations in the

other terms in Eq. (7.10), i.e. the vibrational transition dipoles, Franck-Condon overlaps,

and orientational factors. In fact, given that these factors are not accounted for, it is perhaps

somewhat remarkable that a linear regression of this quality is even observed. This may be
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explained in the following ways. First, as the a values here reflect the collective response

of multiple vibrations, the differences in these unaccounted factors are potentially smoothed

out between dyes, thereby isolating the electronic resonance dependence for an “average”

coumarin. Second, the structural similarity between the dyes likely precludes very large

variations in these factors for the dominant core ring modes, while in contrast εel(ωIR +ωvis)

varies by almost 3 orders of magnitude. As mentioned in Section 7.4.2, one way to account

for the vibrational transition strength is by the factor ϵIR (Eq. (7.14)). However, using

ϵIR · εel(ωIR + ωvis) as the x-values does not substantially improve the linear relationship

(Figure 7.A.8 in Appendix 7.A), perhaps because the remaining factors play the dominant

role. Uncontrolled differences in the instrument’s alignment and errors in experimental

parameters between measurements also contribute to uncertainty in the measured brightness

values. We characterized day-to-day differences in qIR and q0 for C6, and found a coefficient

of variation (standard deviation over mean) of 12% and 10%, respectively (Section 7.A.3).

We expect this experimental uncertainty to be representative across the coumarin series, and

it is smaller than the size of the data markers in Figure 7.5(a). Therefore, we believe that

this scatter is predominantly reflective of differences in the vibrational mode-specific factors,

of which the vibronic coupling is likely the most important.

Figure 7.5(b) shows the corresponding modulation ratios M (Eq. (7.3)) from the FEIR

measurements in Figure 7.5(a). As B is negligible, M can be written as

M = (a/a0)IIR, (7.17)

which is manifested graphically as the signed distance (in log units) between respective

y-values in Figure 7.5(a), (indicated for C314). The vertical error bar for C6 shows two

standard deviations for the experimental uncertainty stated above. The M values are plotted
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against the extinction coefficient ratios

κ = εel(ωIR + ωvis)/εel(ωvis), (7.18)

thereby effectively combining both trends in Figure 7.5(a). The relationship between these

quantities describes the extent to which the equilibrium absorption lineshape alone can

predict the contrast in an FEIR experiment for given IR intensity. The resulting correlation

is quite diffuse (Pearson correlation coefficient r = 0.49) primarily because the scatter in the

qIR/ϕ vs. εel(ωIR + ωvis) trend caused by the unaddressed vibrational and vibronic factors

is magnified. Additionally, noise on the small εel(ωvis) values for the bluer coumarins likely

amplifies the uncertainty in their κ values, although we do not estimate the corresponding

error bars. While M is correlated to κ, the relationship is not sufficiently good to be widely

predictive in a quantitative sense, most likely due to the importance of the vibrational mode-

specific factors.

However, some general observations about how the contrast depends on the relationship

between εel(ω), ωvis, and ω10 can still be made. The order of magnitude smaller M value for

C545 compared to the rest of the series is clearly due to the large one-photon background

produced by ωvis falling substantially higher on the absorption band tail (ωvis at ∼6% of the

band maximum). Even though C545 has the highest FEIR brightness in the series—which

assuming Eq. (7.16) holds corresponds to fully maximized FEIR resonance—in practice

measurements on this molecule suffer from lower signal to noise caused by the large shot

noise introduced by F0, requiring longer averaging times (Figure 7.A.4 in the Appendix 7.A).

Evidently, for the frequencies of vibration under consideration the electronic absorption edge

is not sufficiently steep (quantified e.g. by ∆ωedge in Table 7.1, and Figures 7.A.1 and 7.A.2 in

Appendix 7.A) to allow maximal FEIR resonance without excessive one-photon background.
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How much direct band overlap, i.e. εel(ωvis)/εel(ωmax), can be tolerated in practice depends

on how much slower a grows with εel(ωIR+ωvis) than a0 grows with εel(ωvis). This comparison

may be quantified by the trend line slope ratio α/β = 2.0% (dashed line in Figure 7.5(b)).

Because the detuning dependence is accounted for, this value describes on average the relative

efficiency of FEIR excitation vs. direct one-photon excitation for a prototypical coumarin dye

with the IR pulses of our instrument. Specifically, this value suggests that FEIR vibrational

detection at maximal resonance is overall ∼50 times less efficient in these experiments than

conventional fluorescence detection at maximal resonance. In terms of contrast, this implies

that κ should be at least greater than ∼50 to achieve M > 1.

Even if the absorption edge is too broad to support maximal FEIR resonance with low

one-photon background, detuning slightly could produce a workable compromise. For exam-

ple, C6 has a similarly steep absorption edge as C545, but is detuned from maximal FEIR

resonance by ∼900 cm-1, putting ωIR+ωvis and ωvis at 63% and 0.19% of the band maximum,

respectively (κ = 340). The resulting FEIR cross-section is ∼0.7 times the size of that for

C545, but with a ∼40-fold decrease in one-photon background, leading to an excellent signal

to background of M ∼ 10.

7.4.4 Signal to background in the SM regime

The analysis in the previous section made use of high concentration measurements where

essentially all of the detected light is dye fluorescence. As a per-molecule quantity, the

construct of FEIR brightness is transferable to SM investigation, as is the brightness of

the direct excitation background. However, in the low concentration regime where SM

experiments operate, sources of background independent of the target molecule, i.e. B, will

usually play the dominant role in influencing contrast and signal to noise. To investigate
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Figure 7.6: Concentration dependence of the FEIR signal and background for C6 and C7.
(a) Concentration dependence of F/Ivis (circles) and (F0 + B)/Ivis (diamonds) for C6 (red)
and C7 (black). The dashed line indicates a linear relationship between the log-scaled x-
and y-axes to guide the eye. (b) M values corresponding to panel (a).

the impact of B and how the practical considerations for contrast and signal to noise differ

in the SM limit, we perform concentration-dependent measurements for two members of the
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coumarin series: C6 and C7. These molecules have similar FEIR spectra that are dominated

by a single ring mode just below 1600 cm-1, and likewise show similarly-shaped two-pulse

transients (Figure 7.A.3 in Appendix 7.A). C6 was previously used to demonstrated SM

sensitivity in Chapter 6, and produces the second-brightest FEIR signal in the series. With

the fixed resonance conditions of our instrument, C7 is ∼ 1/3 as FEIR bright as C6, but

displays an ∼3-fold higher B-free modulation ratio. As such, at high concentrations where

Ivis can be varied to set the total fluorescence output at will, C7 is technically the better FEIR

chromophore in terms of detection quality, although M is sufficiently high for both to be

excellent. As mentioned in Section 7.2.2, the CaF2 coverslips employed for the measurements

in this section allowed for a ∼3-fold increase in FEIR brightness relative to the experiments

in the previous section and Chapter 6, while maintaining a similar background size (cf.

high-concentration M values in Figure 7.6 and Figure 7.5).

Figure 7.6(a) shows the concentration-dependence of the FEIR signal size F/Ivis and

background (F0 + B)/Ivis from 100 µM to 1 nM for both molecules (complete FEIR data

is provided in Section 7.A.5). In this representation, the effect of increasing Ivis to achieve

reasonable count rates as C is lowered is normalized out to isolate the C-dependence across

5 orders of magnitude. For both dyes the FEIR component decreases roughly linearly with

C. The lowest concentration points fall slightly below a linear dependence, which may be

due to a saturation effect as discussed below, or could be caused by systematic error in the

concentration from the serial dilution procedure. On the other hand, the background is

linear in C at high concentrations, but in the low-C limit approaches a C-independent value

which is the same for both coumarins: ∼15 Hz GW-1 cm2, which can be assigned as the b

coefficient in Eq. 7.13. This reflects the change from the background being dominated by

F0 at high C to being almost entirely composed of B in the nM range. As shown in Chapter
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6, the distribution of photon arrival times for measurements in the nM range is dominated

by a prompt component absent at high C, which suggests that solvent Raman scattering is

likely the major contributor to B. As shown in that work, time-gating photon detection to

exclude this prompt component can therefore increase M and the SNR, however we will not

discuss this approach further here.

The C-dependence of the corresponding modulation ratios is shown in Figure 7.6(b). At

high concentrations M is C-independent because F0 ≫ B (i.e. Eq. (7.17) holds) and the

empirical contrast guidelines discussed in Section 7.4.3 apply. However, below a certain con-

centration M begins to fall as the dye’s fluorescence must compete with the C-independent

B background, and at SM equivalent concentrations (∼1 nM, see below) M is 1-3 orders

of magnitude lower than its high-C limit. The threshold concentration below which M de-

creases is notably lower for C6 than C7, and results in a crossing of their M vs. C curves

at ∼100 nM. As a result C6 is distinctly the better SM FEIR chromophore under these

resonance conditions, although C7 can still be detected at SM equivalent concentrations due

to the ∼3-fold increase in FEIR signal facilitated by the updated sample configuration. This

difference in bulk versus SM signal to background reflects a crossover from prioritizing a large

F vs. F0 contrast to prioritizing the brightness of overall fluorescence F + F0 against B.

As long as the high-C limit of the modulation ratio is sufficiently large, say M > 1, we can

define a limiting concentration Clim where the F and B rates are predicted to be equal based

on FEIR brightness, and below which FEIR detection becomes increasingly impractical,

Clim =
b/r

qIRηbp
. (7.19)

The potential for SM detectability of an FEIR chromophore can then be simply assessed from

a high concentration measurement by how close the calculated Clim is to the SM-equivalent
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concentration (Figure 7.A.12 in Appendix 7.A). For example, we predict that C525 and C545

would also be possible SM FEIR candidates under the current resonance conditions, as at

high-C we expect an increase to M ∼ 1 for C545 with the new sample configuration.

In the range where F , F0, and B each grow linearly with visible intensity, the signal to

noise of a measurement may be improved by increasing Ivis while M remains constant, e.g.

Eq. (7.4) predicts improvement by ∼
√
Ivis. In practice, however, saturation effects in the

encoding transition set a limit on how large Ivis can usefully be made while still increasing

the SNR. Figure 7.7 shows the Ivis-dependence of the FEIR signal size, here represented as

F/C, for C6 and C7. Data from the entire concentration range in Figure 7.6 has been used

in order to access both very low and high Ivis while keeping Ftot within the linear range of

photon counting, and dividing F by C collapses the points onto a common saturation curve

for each coumarin (log-scale plot in Figure 7.A.13). Figure 7.6 uses the lowest Ivis point for
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Dye c (Hz mol-1 L) IS (GW cm-2)
C6 5.3× 1011 ± 0.3× 1011 42± 6

C7 1.9× 1011 ± 0.1× 1011 40± 5

Table 7.2: Saturation curve fit parameters for the exponential model c(1 − exp(−Ivis/IS))
including 95% confidence intervals from the fitting routine.

each concentration, which at the lowest concentrations nevertheless lies near the onset of

saturation, which may partially explain the deviation from a linear F/Ivis vs. C relationship

in Figure 7.6(a) mentioned above.

In general, the intensity-dependent form of saturation is influenced by the temporal

characteristics of excitation. For a two-level system with cw pumping, the steady-state

upper level population, and hence the emission rate, saturates with the hyperbolic form

pss =
σIvis/ℏωvis

1 + Ivis/IS
, (7.20)

where the saturation intensity is IS = ℏωvis/(2στfl), τfl is the fluorescence lifetime, and σ the

absorption cross-section.302 However, for pulsed excitation where the pulse duration tvis is

much shorter than τfl while the repetition period τrep is simultaneously much longer than τfl,

the excited population immediately after each pulse is

pmax =
1

2

(
1− exp(−Ivis/IS)

)
, (7.21)

where IS = ℏωvis/(2σtvis).77,331 The lower level population fully recovers before the next

pulse arrives, and the average fluorescence output is therefore proportional to pmax. Our

experiments operate in this short pulse limit (tvis ≈ 300 fs, τfl ≈ 1 ns, τrep ≈ 1 µs) and fits to

the measured saturation curves using this exponential model are shown in Figure 7.7 with fit
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parameters listed in Table 7.2. In line with their relative FEIR brightnesses, F saturates at

∼3 times higher count rates for C6 than C7. However, the threshold intensities IS extracted

from the fits are the same within error, which is surprising given that IS should be inversely

proportional to the cross-section of the transition, and aIIR is ∼3 times smaller for C7 com-

pared to C6. Other photophysical mechanisms that sequester population, like intersystem

crossing to triplet states, could also be playing a role in the saturation threshold.332 Perhaps

more importantly, treating the initial and final states of the encoding transition as a simple

two-level system is likely not a reasonable assumption to describe the observed saturation

behavior. So far we have not observed a similar saturation behavior in IIR, although a more

careful investigation is needed.

The background continues to grow roughly linearly in Ivis over the same range of inten-

sities (Figure 7.A.13 in Appendix 7.A). Therefore, the contrast degrades as Ivis is increased

into the saturating regime, leading to an eventual decrease in SNR. We find that a practical

compromise is to operate near the saturation threshold IS. Regardless of the mechanism,

saturation leads to an increase in the effective size of the visible probe volume because the

spatial distribution of excitation efficiency flattens out near the center of the focus but con-

tinues to increase in the wings.333 At a given concentration the average number of molecules

⟨N⟩ in the probe volume therefore increases with Ivis, and determination of ⟨N⟩ by FEIR-CS

is intensity-dependent. We measure ⟨N⟩ = 0.7 for 1 nM C6 via FEIR-CS at the saturation

threshold Ivis = 42 GW cm-2, which from the two-pulse transient at the same intensity

yields an F count rate per molecule of 480 Hz (see Figures 7.A.15 and 7.A.9 in Appendix

7.A, respectively). While FEIR-CS was not performed on the 1 nM C7 solution, assuming

equivalent ⟨N⟩ at the same Ivis gives a lower count rate per molecule of 150 Hz, and the

signal to noise of the two-pulse signal is also correspondingly lower (cf. Figures 7.A.9 and
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7.A.10 in Appendix 7.A). To facilitate comparison with existing SM optical methods it is

useful to estimate the overall excitation probability Pex. Considering our estimate for the

total detection efficiency of fluorescence from C6 (η ≈ 1.3%), its quantum yield (ϕ = 0.89),

and the repetition-rate (994.7 kHz), this measured count rate per molecule corresponds to

Pex ≈ 4.2%. If this is indeed at the saturation threshold for the encoding transition (i.e.

at (1 − 1/e) of the saturated transition probability of 50%), this Pex value implies a 13%

IR-vibrational excitation probability. In this case we would expect that meaningful improve-

ments to the overall excitation efficiency can still be made with larger IR fields.

7.5 Conclusions

In this work, we have examined some of the practical spectroscopic aspects of optimizing an

FEIR experiment for bulk and SM vibrational detection. For a given molecule and vibration,

the FEIR resonance condition is the most important aspect of experimental optimization.

As ωIR must always be tuned to cover the vibrational transition, this resonance condition

amounts to a selection of ωvis that efficiently brings the vibrationally-excited molecule to

the electronic excited state. Our experimental results indicate that the electronic absorption

spectrum is a useful guide for this selection, specifically that the brightness of the FEIR

signal scales linearly with εel(ωIR + ωvis) on the low-frequency side of the band. However,

optimizing the resonance condition is also constrained by the background fluorescence from

direct visible excitation, which for all but the most deeply pre-resonant cases is caused by

linear absorption and hence proportional to εel(ωvis). For bulk measurements, keeping this

fluorescence background small compared to the FEIR signal is the primary consideration for

high signal to noise data acquisition. To this end, depending on the shape of the electronic
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absorption edge and particularly the fall-off of its red wing, bulk FEIR detection can be

improved by detuning the resonance condition. In the SM regime, however, background is

dominated by sources independent of the target molecule and signal photons are scarce, so

the resonance condition should be adjusted to increase the absolute brightness of the FEIR

signal at the expense of more one-photon background. Saturation of the encoding transition

in the visible intensity limits the maximum photon count rates that can be achieved, although

further improvements to the IR-vibrational excitation efficiency are likely still available.

Although the experiments presented here utilized a series of dyes with variable electronic

spectra against a fixed ωvis, we have framed the discussion of resonance conditions from the

perspective of a tunable ωvis. Indeed, our results indicate that being able to freely adjust

ωvis to carefully optimize resonance for the chromophore at hand will significantly improve

the versatility of FEIR spectroscopy, and represents an important technical step towards its

application to more general SM vibrational investigation. Additionally, a wide tuning range

will facilitate the selection of fluorophores across the entire visible spectrum as potential

FEIR candidates. While the equilibrium electronic spectrum can be used to predict the effect

of resonance, our results also show that it alone is not sufficient to predict FEIR brightness

and that substantial variations occur even for similar-character vibrations of the structurally-

related coumarin dyes we studied. Therefore, a more detailed understanding of vibrational

mode-specific factors will be crucial for predicting which vibrations on different families of

fluorophores can be used as FEIR probes. In particular, we are interested in understanding

the symmetry and structural properties required of a fluorophore to exhibit FEIR bright

vibrations, and to what extent various spectroscopically useful probe vibrations, e.g. local

carbonyl stretching modes, can be made sufficiently FEIR active to yield SM sensitivity.

The largest SM signal count rates (480 Hz) achieved with our current implementation of
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FEIR spectroscopy are still low compared with the few to hundreds of kHz rates commonly

encountered in modern solution-phase SM fluorescence experiments.14,334–336 From the per-

spective of photon budget, further improvement beyond this level would likely be required

to successfully implement SM dynamics measurements based on the direct analysis of signal

intensity trajectories. With our current signal levels, however, one route towards accessing

kinetic information from real-time SM fluctuations is through correlation spectroscopy (CS)

methods analogous to fluorescence correlation spectroscopy and related techniques.264,266

These methods measure ensemble-averaged kinetic timescales via time-correlation functions

of signal fluctuations that arise from the dynamics of individual molecules transiently oc-

cupying the probe volume. Because the time-resolution of a correlation function is not

degraded by time-averaging, CS methods can use longer data acquisition times when signal

levels are small, and are also less susceptible to photobleaching as diffusion replenishes the

probe volume with new molecules. The FEIR-CS measurements used here and in Ref. [243]

to characterize SM sensitivity demonstrate the basic feasibility of this approach.

Multiple routes exist for increasing SM FEIR signal sizes. Increasing the pulse repetition-

rate beyond the current 1 MHz would have the greatest impact on accessing higher count

rates. While the repetition-rate scalability of generating nJ-level sub-ps mid-IR pulses has

technical challenges, increases by a factor of ∼10 with reduced pulse energy and band-

width are feasible. When coupled with higher NA focusing of the IR, sufficiently large

IR-vibrational excitation rates should still be accessible. Important gains in detection effi-

ciency are also expected through increasing the NA of fluorescence collection, which at 0.8 is

currently low compared to typical SM fluorescence experiments. With these improvements,

we believe more useful kHz-level SM FEIR count rates should be accessible.
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7.A Appendix: Supplementary material

7.A.1 Low-frequency electronic absorption tails
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Figure 7.A.1: Low-frequency electronic extinction spectra (black circles) for each coumarin
on a log y-scale, with fits of the Urbach region to an exponential (red). ωvis and ωIR + ωvis

are indicated by dotted lines.
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As shown in Figure 7.A.1, for all but the reddest 3 coumarins in the series (C6, C525,

C545) the extinction spectrum at ωvis is just above or within the noise floor of the absorp-

tion measurement. To extract the value of ε(ωvis), we fit the band tail to an exponential

a exp(kedgeω), which describes the band shape in the low-frequency Urbach region, as de-

scribed in Section 7.4.1. In the case of C30 and C314, this fit essentially provides an extrap-

olation as ε(ωvis) is solidly in the noise floor. The fitted decay constants kedge are plotted in

Figure 7.A.2.
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Figure 7.A.2: Exponential decay parameter kedge from the fits to the low-frequency absorp-
tion edge in Figure 7.A.1. Error bars represent 95% confidence intervals from the fit routine.

7.A.2 Complete coumarin series high concentration FEIR data and

acquisition details

The two-pulse transients were recorded with 40 fs τenc bins from roughly -3 to 10 ps (323

total bins), while the τIR scan range used for the FT spectra (raw data not shown) was from

-2 to 8 ps with 2 fs bins (4995 total bins). The fastscanning procedure used to sweep these

delays as well as the processing steps for FT spectra are described in Chapter 4. In both

cases, the scan speed of the delay stage was 2 mm/s (scan rates of ∼3 and ∼0.15 ms per bin,
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Figure 7.A.3: Complete coumarin series data in brightness units. (a-j) Left panels: Total
photon output Ftot from two-pulse experiments on each coumarin plotted in brightness units.
The effective FEIR (qIR) and direct excitation (q0) brightness are indicated by arrows in (a)
and are found analogously for the remaining data. Right panels: Comparison of IR pump
spectrum-scaled FTIR spectra (dashed line) with FEIR spectrum (solid line) at the encoding
delay indicated.

respectively), and photon counts were accumulated over many scans. To represent the data

acquisition time in these measurements, Figure 7.A.4 shows the effective integration time

per bin (Tbin), i.e. number of scans times scan rate per bin, for each measurement in Figure

7.A.3. The total data acquisition time of a measurement (Ttotal) is found by multiplying Tbin
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Figure 7.A.4: Integration time per bin (Tbin, left axis) and total experimental acquisition
time (Ttotal, right axis) for (a) the two-pulse transients and (b) spectra shown in Figure 7.A.3.

by the total bin number and constant factor of ∼1.33 which accounts for dead-time during

stage turnaround and software latency.

7.A.3 Instrument-dependent uncertainty in brightness values

Estimating the error in the experimental FEIR and one-photon brigthnesses is difficult due

to the many parameters used in their determination, as well as factors beyond direct control.

Here we investigate the contribution from the most important of this latter category—day-

to-day variations in IR intensity and the overall alignment of the instrument. Figure 7.A.5(a)

shows the qIR and q0 values from 12 independent measurements on C6 each taken on separate

days during the period when the data was collected. These measurements shared the same

nominal experimental configuration including the use of glass coverslips. The vertical and

horizontal bars indicate intervals of 2 standard deviations around the mean in qIR and q0,

respectively. Notably, the variation in these values are highly correlated to each other as

evident from the clustering along the diagonal. Figure 7.A.5(b) shows the corresponding
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Figure 7.A.5: Experimental uncertainty in brightness values. (a) qIR vs. q0 from repeat
measurements on C6 (µqIR = 1.24× 104 L mol-1 GW-1 cm-2, σqIR = 0.15× 104 L mol-1 GW-1

cm-2, µq0 = 1.22× 103 L mol-1 GW-1 cm-2, σq0 = 0.13× 103 L mol-1 GW-1 cm-2). (b) M , (c)
qIR, and (d) q0 vs. IIR from the same set of measurements.

modulation ratios against IIR (calculated from the measured average IR power out of the

OPA assuming a constant pulse duration, spot size, and transmission factor), which shows

day-to-day variations with mean µ = 148 GW cm-2 and standard deviation σ = 8 GW cm-2.

M does not appear to be correlated to IIR over this range, which is at odds with the linear

power dependence assumed in our model. As shown in Figures 7.A.5(c) and (d), both qIR

and q0 are anti-correlated with IIR over this range, which explains part of the spread and
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correlation in panel (a). As noted in Section 7.2.2, these IR intensities are near the upper

limit that can be tolerated before thermal effects become severe, leading to more significant

decreases in overall fluorescence collection efficiency and eventually bubble formation in the

solvent. The negative trend in qIR and q0 in panels (c) and (d) is most likely a result of such

a thermal effect, although of manageable severity. Because of this thermal effect, we will

use the average value of IIR when converting between qIR and q. The remaining variation

in qIR and q0 is likely due to the overall microscope alignment. Systematic errors in sample

concentration were not characterized.

7.A.4 Brightness vs. extinction on linear axes, FEIR brightness at

signal maximum, and correlation incorporating εIR

Table 7.3: FEIR and one-photon background brightnesses

Coumarin q (L mol-1
GW2 cm-4)

qIR(L mol-1
GW cm-2)

qmax
IR (L mol-1
GW cm-2)

q0 (L mol-1
GW cm-2)

30 7.79×10−1 1.24×102 1.36×102 9.80
314 5.89×10−1 9.33×101 1.97×102 1.38×101

153 1.90 3.01×102 5.35×102 6.43×101

337 4.35 6.90×102 1.30×103 5.61×101

343 3.00 4.75×102 9.89×102 7.35×101

334 5.81 9.21×102 1.32×103 9.65×101

7 2.79×101 4.41×103 4.89×103 1.26×102

6 7.94×101 1.24×104 1.37×104 1.24×103

525 4.66×101 7.39×103 1.14×104 3.36×103

545 9.20×101 1.46×104 1.75×104 4.11×104

Table 7.3 lists the numerical values for three versions of the FEIR brightness (q, qIR, and

qmax
IR ) and the one-photon background brightness q0. As mentioned in the previous section,
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Figure 7.A.6: Brightness and electronic extinction correlations on linear axes. (a) qIR vs.
εel(ωIR + ωvis) and (b) q0 vs. εel(ωvis) on linear axes. These data and the linear regressions
(dashed lines) are the same as shown Figure 7.5(a). The vertical error bars for C6 indicate
a range of 2 standard deviations from experimental uncertainty referred to in Section 7.4.3
and described in Section 7.A.3. The inset in (b) shows a blown up view of the points near
the origin.

q is derived from qIR by dividing out the average value of IIR over all measurements in order

to avoid including spurious variations due to thermal effects (present with glass coverslips).

qmax
IR is analogous to qIR but uses the maximum value of F , regardless of the encoding delay

at which it occurs. Figure 7.A.6 shows the same data as Figure 7.5(a), but on linear axes

with qIR vs. εel(ωIR + ωvis) and q0 vs. εel(ωvis) displayed on separate plots. The linear

regressions were performed on this unmodified data, and the logarithmic scaling in Figure

7.5(a) is merely to show the many decades in each axis.

Figure 7.A.7 compares the correlation between effective FEIR cross-section and εel(ωIR+

ωvis) using q as defined in Section 7.4.3 (averaging over 400 < τenc < 800 fs) and alternately

using the maximum signal, i.e. qmax
IR /IIR. Using the signal maximum produces a higher R2
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value and slightly higher slope. The inset in panel (b) shows the ratios of FEIR brightnesses

calculated using the two methods. Panel (c) shows the M values using the maximum signal

against κ (cf. Figure 7.5). The resulting correlation (correlation coefficient 0.69) is better

than the case shown in Section 7.4.3, but still diffuse.

Figure 7.A.8 shows the correlation between q/ϕ and the product of εel(ωIR + ωvis) and

εIR as defined by Eq. 7.14 and displayed for each coumarin in the inset to panel (a).
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7.A.5 C6 and C7 concentration and visible intensity dependent

data

Figures 7.A.9 and 7.A.10 show the full concentration and Ivis dependent FEIR data used in

Section 7.4.4. The raw count rate Ftot, background subtracted F count rate, and normalized

F signal are shown for each concentration and intensity. The IR intensity is nominally

constant, but varies day-to-day with a similar spread as discussed in Section 7.A.3. These

measurements used CaF2 coverslips. For all but 1 nM C7, two repeated measurements

for each concentration and Ivis point were made and both are shown. The F count rate

used in Figures 7.6 and 7.7 is the mean over 400 < τenc < 800 fs averaged over the repeat

measurements, while the background F0 +B is determined from the mean over −3 < τenc <

−1 ps. In each case the error bars represent 2 standard deviations. For the measurements
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that exhibit saturation in Ivis, there is a small change in the shape of the decay transient

(most apparent in the normalized signals) consistent with the suppression of the maximum,

however the effect is subtle. The integration time per bin and total experimental acquisition

times are summarized in Figure 7.A.11.
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Figure 7.A.9: C6 concentration and Ivis dependent two-pulse FEIR data.
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Figure 7.A.10: C7 concentration and Ivis dependent two-pulse FEIR data.
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7.A.6 Limiting concentrations of the coumarin series

C30
C31

4
C15

3
C33

7
C34

3
C33

4 C7 C6
C52

5
C54

5
10-9

10-8

10-7

10-6

C
lim

 (m
ol

 L
-1

)

Figure 7.A.12: Clim (Eq. 7.19) for the coumarin series, using the qIR values measured with
glass coverslips (Table 7.3). The Clim values for the newer sample configuration using CaF2

coverslips are ∼3 times lower.
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7.A.7 Details of encoding transition saturation behavior

The saturation curves for C6 and C7 shown in Figure 7.7 are reproduced here in Figure

7.A.13(a) and shown on log-log axes in Figure 7.A.13(b). We have also included a fit to

the hyperbolic model (Eq. 7.20) which qualitatively follows the shape of the saturation

curves slightly better than the exponential model. In the short pulse limit, saturation due

to trapping in µs-lifetime triplet states is predicted to produce a hyperbolic shape to the

saturation curve.332 The Ivis dependence of the background level is shown in Figure 7.A.13(c)

and (d) for C6 and C7, respectively. The constant dark count level d = 43 Hz has been

subtracted off. Due to the concentration-independent B contribution, dividing the count

rates by concentration as in panels (a) and (b) would not collapse the data onto a single trend

(this is evident by the diminishing vertical offsets between the trends for each concentration

as the concentration decreases). Data for each concentration is fit to a power law, and

the resulting exponents are shown in Figure 7.A.13(e) and (f). These exponents are close

enough to 1 to indicate an approximately linear intensity-dependence, although there is a

slight decrease in exponent for the lowest concentrations where the highest Ivis are used.
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Figure 7.A.13: Details of the encoding transition saturation behavior. (a) F saturation
curves for C6 (circles) and C7 (triangles). (b) same data as (a) on log-log axes. Fits to the
exponential and hyperbolic models are shown by solid black and dashed gray lines, respec-
tively. (c-d) Dark count subtracted background level vs. Ivis for C6 and C7, respectively.
The color coding for concentration is the same as in (a) and (b). Power law fits for each
concentration are shown by dashed lines. (e-f) Power law exponents from the fits in (c) and
(d), respectively, with error bars indicating 95% confidence intervals.
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7.A.8 Visible intensity dependence for C30 and C314

Figure 7.A.14 summarizes the Ivis dependence for the two most pre-resonant coumarins in

the series: C30 and C314. As mentioned in Section 7.4.3, the background level is super-linear

above a certain range, where it follows a quadratic Ivis dependence. The Ivis used for the

brightness analysis are indicated by arrows in panels (b) and (e), and fall below the onset

of this quadratic behavior. The F count rate also shows an apparent saturation behavior

in Ivis, and the saturation thresholds IS extracted from fits to the exponential model in dis-

cussed in Section 7.4.4 are listed. However, as the concentration is high (100 µM for both),

the measured count rates correspond to very small overall excitation probabilities, so this

mechanism for the observed saturation is unlikely. Given the deeply pre-resonant excita-

tion conditions and the corresponding cross-over to multiphoton background excitation, a

different explanation beyond our current treatment of the FEIR excitation process is likely

needed to explain this effect.
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Figure 7.A.14: Super-linear visible intensity dependence for C30 and C314. Ivis-dependence
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C314. Fits to the exponential saturation model are shown as black lines in (a) and (d) with
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7.A.9 FEIR-CS on 1 nM C6 solution

The FEIR-CS measurement used to determine ⟨N⟩ for the 1 nM C6 solution is shown in

Figure 7.A.15. A CaF2 coverslip was used. Details on the method and procedure are found

in Chapter 6. ⟨N⟩ is given by the inverse of the early-time amplitude G(0) of the correlation

function, which is extracted from a fit to the data using a standard model assuming diffusion
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through a Gaussian probe volume.
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Figure 7.A.15: 1 nM C6 FEIR-CS measurement with updated sample configuration. FEIR-
CS data at Ivis = 42 GW cm-2 (black circles) with fit to a standard diffusion model (red).
The inset shows the dependence on the early time amplitude G(0) extracted from the fit on
the starting edge of the time-gate used to filter the photon stream, with the limiting value
of 1.39 (corresponding to ⟨N⟩ = 0.72) indicated. The red dashed line indicates the 1 ns
starting edge of the time-gate used for the data in the main plot.
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Interpreting early encoding-delay FEIR

signals

8.1 Overview

This chapter deals with the practical phenomenology of multimode FEIR signals at early

encoding delays. Specifically, the ‘early-time’ region may refer to the range of encoding

delays in which intermode vibrational coherence has not dephased, the IR/vis pulse-overlap

region and its near vicinity, or both. As we have discussed previously in Chapters 2 and

3, vibrational coherence can lead to strange lineshapes and non-intuitive band intensity

patterns in FEIR spectra, while the effect of the finite pulse durations and spectra can

introduce further distortions that are most strongly apparent in the early-time region. At

the same time, the FEIR signal size is invariably largest at early times, which compels us

to work in this region for single-molecule or otherwise high-sensitivity applications. This

state of affairs suggests that we had better get properly acquainted with the various quirks

of early-time FEIR data.

With this in mind, our primary goal in this chapter is to develop some practical insight
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into the ins and outs of early-time FEIR signals through a comparison of experimental data

with finite-pulse response function calculations developed in Chapter 3. We will adopt a

descriptive approach, and try to catalogue some of the early-time behavior at a qualitative

level. Specifically, the calculations in this chapter are intended to be demonstrative, rather

than to facilitate proper fits to the measured data (a much more serious undertaking). That

is, instead of trying to rigorously extract molecular parameters from FEIR measurements,

we will attempt to show how various features in the data can be seen to arise from minimal

models of the molecular response and pulse sequence with a reasonable choice of parameters.

We will not treat orientational effects in these calculations.

The experimental data examined here are from FEIR measurements on coumarin dyes,

with the IR pulse tuned to cover the highest-frequency coumarin ring modes and lactone

carbonyl stretch. The full data set of measurements on 10 coumarins is used in Chapter 7

to explore the impact of experimental resonance conditions on practical aspects of detection

sensitivity. All measurements were performed in acetonitrile-d3 solution at high concentra-

tions (30 - 100 µM). Our focus here is on the τenc-dependent behavior of these signals, and we

refer the reader to Chapter 7 for more details regarding the FEIR experiments and further

characteristics of the coumarins.

Figure 8.1 shows two-pulse FEIR transients from the full series of coumarins. Overall,

there are distinct variations in the shape of the signals, including steepness of the rising edge,

location of the signal maximum, and character of beating (or lack thereof). For example,

in some cases the signal peaks notably beyond the extent of the pulse-overlap region, while

in others the peak occurs near τenc = 0 ps. We will specifically treat coumarin 6 (C6) and

coumarin 153 (C153) as case studies, which are for the most part representative of these two

types of τenc-dependent behavior, respectively. Additionally, C6 in this pump configuration is
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Figure 8.1: Early-time two-pulse FEIR signals measured for 10 coumarin dyes with ωIR =
1620 cm-1 (same data as in Chapter 7). The projection of the τenc-dependent FEIR spectrum
onto the τenc-axis is overlayed to demonstrate the projection-slice relationship. The full τenc-
dependent spectrum was not measured for C545. The 1/e2 full-width of the pulse-overlap
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the model system we have used for demonstrating single-molecule sensitivity by FEIR-CS in

Chapter 6, and therefore has obvious importance to the development of FEIR spectroscopy

presented in this thesis. For good measure, we include τenc-dependent FEIR data for the full

series of coumarins in Appendix 8.A.

The width of the pulse-overlap region indicated in Figure 8.1 is the more generous 663

fs 1/e2 full-width (e.g. as compared to the 390 fs fwhm) of the IR/vis cross-correlation,

calculated assuming Gaussian IR and visible pulse durations of 230 and 315 fs, respectively.

As discussed in Chapter 4, identifying the absolute origin of time along the τenc axis is

currently difficult in this IR frequency range, and in fact our assignment of τenc = 0 here

is an educated guess. Therefore, another goal of this chapter is to show why this guess is

reasonable through comparison against finite-pulse calculations. While the assignment of

τenc = 0 was thus done after the fact, the relative timing of the transients for the different

coumarins is correct up to an uncertainty of ∼100 fs.

8.2 Coumarin 6

Figure 8.2 shows the FTIR linear absorption spectrum of C6 with ground-state normal

mode frequencies and intensities calculated by density functional theory (DFT) overlayed.

The DFT calculation employed the B3LYP functional with 6-31G(d,p) basis set, and were

carried out in the Gaussian09 package using a polarizable continuum model to account for

the acetonitrile solvent. As we will see, the FEIR data can be adequately described by

considering the three most intense bands, labelled in order of descending frequency as νR1

(experimental frequency 1616 cm-1), νR2 (1586 cm-1), and νR3 (1515 cm-1). With the help of

the DFT calculation, we assign these three bands to various high-frequency ring vibrations of
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Figure 8.2: C6 experimental FTIR absorption spectrum and normal modes calculated by
DFT. (a) Solvent-subtracted and normalized FTIR absorption (left y axis) with frequencies
and intensities of DFT-calculated normal modes (right y axis) overlayed. The calculated
frequencies have been scaled by the factor 0.961.337 The three normal modes involved in the
FEIR calculation νR3, νR2, νR1, as well as the carbonyl stretch νC=O, are assigned in (a), and
their atomic displacements are shown with the same color-coding in (b)-(e), respectively. In
each case, the displacement vectors are normalized to the largest in the normal mode.
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the coumarin core, for which normal mode atomic displacement vectors are shown in Figures

8.2(b)-(d). The mode νR3 also has substantial contributions from bending motions of the

diethylamino substituent. The band at 1712 cm-1 in experiment corresponds to the lactone

carbonyl stretch νC=O (Figures 8.2(e)), but is not sufficiently FEIR active to contribute to

the measurement with the IR pump spectrum used, and will not be included in the present

calculation.

Mode ω10 (cm-1) µ10 ⟨0e|1g⟩ Γ−1
10 (fs) Γ−1

11 (fs) Γ−1
e1 (fs)

νR1 1616 0.9 -0.11 1200 1200 10

νR2 1586 1 0.27 1000 1000 10

νR3 1515 1.12 0.12 1000 1000 10

Table 8.1: Response function parameters for C6. The intermode coherence dephasing be-
tween each pair of fundamentals is set to Γ−1

nm = 400 fs.

To model the FEIR spectroscopy of this molecule, we construct a minimal system con-

sisting of these three vibrational modes. Along the lines of the theory discussed in Chapter

2, this results in a 5-level system consisting of the global ground state, the three singly-

excited vibrational states, and the zero-quantum level of the electronic excited state which

is the target state. We employ the homogeneous limit, and the relevant parameters for the

response function are listed in Table 8.1. The frequencies ω10 are taken from experiment,

and we similarly choose the vibrational transition moments µ10 and dephasings Γ−1
10 so that

the resulting Lorentzian lines that roughly match the intensities and linewidths from the

FTIR spectrum. Vibrational population relaxation is set by assuming lifetime broadening.

We note that only the relative sizes of the modes’ transition matrix elements are meaningful

in the calculation. The magnitude and relative sign of the FC factors ⟨0e|1g⟩ are chosen

to produce qualitative agreement with the FEIR measurement, although we note that the
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resulting values in Table 8.1 also agree reasonably well with those calculated from optimized

ground- and excited-state electronic structure calculations,293 and their arbitrary common

scaling factor was chosen to highlight this correspondence. There are three pairs of intermode

vibrational coherences, and we set the dephasing time for each of these to 400 fs.

The overall comparison of the experimental and calculated τenc-dependent FEIR spec-

troscopy of this system is shown in Figures 8.3 and 8.4. Panels (a) and (d) of Figure 8.3

compare the coverage of the IR pulse spectrum with the vibrational resonances in experi-

ment and the calculation, respectively. For the calculation, the IR pulse is taken to be a

transform-limited Gaussian centered at ωIR = 1600 cm-1 with ∆ωIR = 120 cm-1 bandwidth,

which results in a duration of τp,IR = 123 fs. This pulse spectrum is slightly narrower than

that in the experiment (ωIR = 1620 cm-1 with ∆ωIR ∼ 140 cm-1), but is closely matched in

profile on the red-side where the vibrational resonances are located. Residual 2nd-order dis-

persion in the experiment leads to a somewhat chirped IR pulse duration of ∼230 fs. Panel

(d) shows both the model’s linear IR absorption spectrum SIR as well as the IR-vibronic

spectrum Svibr introduced in Chapter 3 to represent the FEIR activity of each mode. The

visible encoding pulse is taken to be transform-limited with ∆ωvis = 50 cm-1 bandwidth

resulting in a 297 fs pulse duration. As in Chapter 3, the visible pulse is tuned so that

ωe0 = ωIR + ωvis. Similarly, the dephasing time of the encoding transitions are all set to Γ−1
e1

= 10 fs, which produces lineshapes sufficiently broad to not cause variations in resonance

with the encoding pulse.

We start by identifying some of the most salient features of the experimental signals.

Figure 8.3(b) shows the full τenc-dependent FEIR spectrum, while slices taken along the

frequencies of the three bands are plotted in Figure 8.3(c). Overall, the response is dominated

the νR2 mode. Coherent amplitude modulation is strongly apparent over the νR3 band, but
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much less obvious on the other two resonances. Figure 8.4(a) shows the experimental two-

pulse signal. The τenc-projection of the surface in Figure 8.3(b) has been superimposed to

demonstrate the projection-slice relationship between these two measurements. The two-

pulse signal correspondingly exhibits very little obvious beating, although subtle features

in its τenc-dependent shape are visible. Notably, this signal is peaked at ∼600 fs—safely

beyond the pulse-overlap region as shown in Figure 8.1. At this encoding delay, the bands

in the FEIR spectrum (Figure 8.3(a)) have essentially absorptive lineshapes that closely

match those in the FTIR spectrum, although their relative amplitudes are reweighed by the

differing vibronic activities. Taken together, these characteristics (i.e. intuitive spectrum at

maximum signal strength) make this system an ideal example case for demonstrating high

sensitivity FEIR vibrational detection, hence its use in Chapters 4 and 6 and Refs. [242–244].
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Figure 8.4: Comparison of experimental and calculated two-pulse signals from C6. (a) Exper-
imental two-pulse signal (solid) and τenc-projection of the spectrum (circles). (b) Calculated
two-pulse signal (black) and its decomposition into population (red) and coherence (blue)
contributions. Vertical dashed lines indicate τenc = 600 and 500 fs in (a) and (b), respec-
tively.

To gain insight into the origin of these features we turn to the calculation. The calcu-

lated signals are shown in Figures 8.3(d) -(f) and Figure 8.4(b). The three-mode model with
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finite pulses succeeds in qualitatively capturing the τenc-dependence of the spectrum and

corresponding two-pulse transient across the entire early-time region. Overall, the observed

behavior can be seen to originate from the dominant FEIR activity of the νR2 mode (mod-

elled activities appearing in ratio of 0.24:1:0.13 for νR1:νR2:νR3), the signs of the coherences

between pairs of modes, and the coverage by the IR pulse spectrum. The much larger ac-

tivity of νR2 causes the amplitude of the coherences to be significant relative to population

response over the νR3 and νR1 bands, while being only a minor relative contribution over νR2.

The relative signs of the FC factors, (−,+,+) for (νR1,νR2,νR3), are such that the νR2-νR3

coherence is positively signed (in the sense defined in Section 2.4.5 of Chapter 2), while the

νR2-νR1 coherence is negatively signed. The νR1-νR3 coherence is negligible due to the small

FEIR activities of the modes involved, as well as being more strongly suppressed by the finite

pulses’ convolution filter effect owing to its higher τenc evolution frequency. The signature of

the positive νR2-νR3 coherence is seen in the appearance near τenc = 0 fs of the first oscillatory

peak of the νR3 band (Figures 8.3(e)-(f)). On the contrary, the negative νR2-νR1 coherence

results in a shallow negative dip along the νR2 mode near τenc = 0 fs, followed by a first

maximum near τenc = 500 fs.

A more detailed view of these interference effects, as well as the role of the pulses,

is revealed in Figure 8.5, which shows the decomposition of the calculated τenc-dependent

spectrum into population and coherence contributions in both the impulsive and finite-pulse

cases. The frequency differences between the modes, ωR2 − ωR3 = 71 cm-1 and ωR1 − ωR2

= 30 cm-1, are such that ωR2 − ωR3 ≈ 2(ωR1 − ωR2). This difference-frequency relation

between the mode pairs, together with their oppositely signed coherences, produces a striking

coincidental alignment of their coherence phases. Specifically, the location of the negative

νR2-νR1 coherence’s first peak near τenc = 500 fs (coherence phase ϕnm ∼ π) roughly coincides
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with the positive νR2-νR3 coherence’s first recurrence (ϕnm ∼ 2π). As a result, the total

coherence lineshape is essentially absorptive across all modes at this encoding delay, which

can be seen in Figure 8.5(c). Then, as evident in Figure 8.5(f), the amplitude of the νR2-νR3

coherence is greatly reduced relative to that of νR2-νR1 through both spectral windowing by

the IR pulse as well as the time-domain convolution filter effect.
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The overall effect of the interference between these coherences and the population re-

sponse are therefore seen to give rise to the convenient features of the C6 response mentioned

above. Namely, the peaking of the νR1 and νR2 bands near τenc = 400-500 fs in the calcula-

tion is due to alternating destructive and constructive interference of their negatively-signed

coherence’s ϕnm = 0 minimum (τenc ∼ 0 fs) an ϕnm = π maximum (τenc ∼ 500 fs) with

the population response, respectively. As these two bands together make up the majority of

the overall response under these IR pump conditions, the two-pulse signal is correspondingly

peaked near τenc = 500 fs as well. In fact, as shown in Figure 8.4(b), roughly 20% of the total

FEIR signal at maximum is due to coherence. The fact the all three modes then exhibit ab-

sorptive lineshapes at this encoding delay is due to the approximate alignment of coherence

phases resulting from the chance difference-frequency relationship ωR2−ωR3 ≈ 2(ωR1−ωR2).

Overall, the good qualitative agreement between the signals’ τenc-evolution in experiment

and the calculation supports our assignment of τenc = 0 in experiment. However, a more

careful comparison reveals a discrepancy of ∼100-150 fs in timing between the calculation

and experiment, e.g. evident by the relative offset between the maxima of two-pulse signals

in Figures 8.4(a) and (b). One possible contribution on the side of the calculation is our use

of transform-limited Gaussian pulses, of which the IR is notably shorter than the chirped

(and spectrally non-Gaussian) IR pulse in experiment. Similarly, our homogeneous three-

mode model system is highly idealized, and we have not chosen its parameters by any

rigorous optimization procedure. On the other hand, this timing discrepancy is also on

the scale of the instrumental uncertainty in τenc from sample to sample (without a reliable

auxiliary procedure for setting timing), and could therefore represent a legitimate error in

our experimental τenc = 0 assignment.
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8.3 Coumarin 153
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Figure 8.6: C153 experimental IR absorption spectrum and relevant normal modes calculated
by DFT. Panels (a)-(d) are analogous to those in Figure 8.2.

In this section we present an analogous analysis of the FEIR signals of C153. As men-

tioned previously and demonstrated in Figure 8.1, our measurements on C153 exhibit a

prominent signal peak near τenc = 0, which is also observed in four other coumarins. Figure

8.6 shows the FTIR spectrum of C153 and its DFT-calculated normal modes, using the same

level of theory as before in Section 8.2. Unlike in C6, the lactone carbonyl stretch νC=O of

C153 (experimental peak frequency 1731 cm-1, Figure 8.6(d)) is strongly FEIR active, which

as we will see below has important consequences to the appearance of early-time signals.

The band exhibits a broad linewidth with substructure consistent with the presence of two
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split resonances. Similar behavior is often observed in unsaturated lactone carbonyl bands,

and is likely due to a Fermi resonance.327–329 Indeed, many of the coumarin lactone carbonyls

show similar complicated substructure (see e.g. Appendix 8.A or Chapter 7). However, for

the FEIR calculation we will model the carbonyl as a single Lorentzian line. We will ad-

ditionally include the two highest frequency ring vibrations νR1 (1620 cm-1) and νR2 (1600

cm-1), shown from the DFT calculation in Figures 8.6(c) and (b)), respectively. The lower

frequency modes present in the spectrum are also of coumarin ring character, but do not

contribute significantly to the FEIR response with the IR pump spectrum used and will not

be considered.

Mode ω10 (cm-1) µ10 ⟨0e|1g⟩ Γ−1
10 (fs) Γ−1

11 (fs) Γ−1
e1 (fs)

νC=O 1725 1.5 -0.31 400 600 10

νR1 1620 0.5 0.10 1000 1000 10

νR2 1600 1 -0.13 1000 1000 10

Table 8.2: Response function parameters for C153. The intermode coherence dephasing
between each pair of modes is set to Γ−1

nm = 400 fs.

We employ the same homogeneous 5-level model for the response function calculation, for

which the system parameters are shown in Table 8.2. To account for the broader carbonyl

lineshape, its dephasing is taken to be slightly faster than its population relaxation. The

other parameters were chosen in similar fashion as in the case of C6 above, and all intermode

coherence dephasings are set to 400 fs. We use the same pulse characteristics as in the C6

calculation, with the exception of setting the IR center frequency to ωIR = 1620 cm-1 to

achieve more representative coverage of νC=O.

The experimental and calculated FEIR signals are compared in Figure 8.7. Panels 8.7(a)-

(c) shows the experimental IR spectral coverage of the vibrational bands, the τenc-dependent
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Figure 8.7: Comparison of (a)-(c) experimental and (d)-(f) calculated τenc-dependent FEIR
signals of C153. (a) Experimental FTIR spectrum (dashed black), IR pulse spectrum (gray),
and FEIR spectrum at τenc = 500 fs (red). (b) Experimental τenc-dependent FEIR spectrum.
(c) Experimental two-pulse signal (solid) and τenc-projection of the spectrum (circles). Panels
(d)-(f) show the calculated signals analogous to those in (a)-(c). Panel (f) also shows the
decomposition of the two-pulse signal (black) into population (red) and coherence (blue)
contributions. Contour spacing in (c) and (e) is set at 6.7%. Dashed lines in (b)-(c) and
(e)-(f) indicate τenc = 500 fs.
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spectrum, and the two-pulse signal. Comparing panels (b) and (c), we see that the peak in

the two-pulse signal at τenc = 0 ps corresponds to a broad ridge-like feature connecting the

carbonyl resonance to that of the ring modes. The τenc-extent of this ridge (fwhm ∼350 fs) is

similar to the estimated duration of the IR/vis cross-correlation (fwhm ∼390 fs). In addition

to this ridge feature, the lineshapes of all three modes appear strongly phase-distorted in

the vicinity of τenc = 0 ps, evident e.g. in the substantial negative features near 1610 and

1740 cm-1. Figures 8.7(d)-(f) show the analogous quantities from the calculation. Overall,

the calculation captures much of the τenc-dependent shape of the spectral features, including

the ridge and pattern of lineshape distortions near τenc = 0 ps. However, the magnitude of

the ridge feature is significantly smaller than in experiment, and as a result the calculation

does not reproduce the spike in the two-pulse signal at τenc ∼ 0 ps.

As before, more insight into the τenc-dependence can be found by decomposing the cal-

culated signals into population and coherence contributions, as well as comparing the finite-

pulse and impulsive versions. Figure 8.8 shows this decomposition in both cases. Due to

the large FEIR activity of νC=O, the impulsive FEIR signals are strongly modulated by the

νC=O-νR1 and νC=O-νR2 coherences, which evolve rapidly in τenc on account of the large >100

cm-1 difference-frequency between pairs of modes (Figures 8.8(a) and (c)). However, this

high-frequency τenc-modulation is consequently strongly suppressed by the low-pass convo-

lution filtering action of the finite pulses, and is essentially completely washed out. The only

remaining coherent contribution is therefore from the negatively-signed νR1-νR2 coherence

(Figure 8.8(f)). In the vicinity of τenc = 0 ps this inter-ring-mode coherence interferes de-

structively with the population response, contributing to the distorted lineshape. The overall

amplitude over the ring modes peaks near τenc = 500 fs due to the overlap of the coherence

maximum (at ϕnm < π because the dephasing is substantially faster than the oscillation
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period) with the population features. At this location the resulting νR1 and νR2 lineshapes

are therefore roughly absorptive (although their inter-peak spacing is reduced by ∼4 cm-1),

while νC=O is similarly absorptive due to the complete suppression of its coherences.

The distortion of the νC=O band near τenc = 0 ps is necessarily unrelated to vibrational

coherence. As shown in Figure 8.8(e), this distortion is present in the population response and

is a result of the pulse-overlap-induced phase distortion discussed in Section 3.6 of Chapter

3. The coverage of the νC=O band by the extreme blue wing of the IR pulse spectrum gives

rise to the notable severity of this phase distortion as well as its sign (positive/negative

wings on the low/high frequency side of the band). In fact, the low-frequency wing of this

phase-twisted lineshape itself is seen to constitute the ridge feature, which is so dominant

due to the broad linewidth of the νC=O band.

Overall, much of the phenomenology of the early-time region can therefore be explained

by the influence of the finite pulses on interfering population and coherence contributions, as

well as additional pulse-overlap-induced lineshape distortions. However, the full amplitude

of the τenc = 0 ridge in the experimental spectrum, or corresponding spike in the two-pulse

signal, is critically not accounted for. One possible conclusion is that a substantial portion

of the amplitude of this ridge/spike does not originate from the vibrations’ FEIR response,

but rather arises from vibrationally-nonresonant IR + visible two-photon absorption (TPA).

Indeed, this feature has many of the characteristics of the TPA response analyzed in Chapter

3, including being restricted to the IR/vis temporal overlap, and being spectrally-extended

along much of the IR pulse spectrum. If this feature is indeed due at least partially to

TPA, its center can be used to set τenc = 0, which would further support our current timing

assignment for the coumarin experiments.

C153 exhibits the most extreme case of this ridge/spike feature, which, as shown in
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Figure 8.8: Comparison of impulsive and finite-pulse calculations for the C153 model system.
All panels are analogous to those in Figure 8.5. Contour spacing is set to 6.7%

Appendix 8.A, can also be found in the measurements on C314, C337, C343, and C334

(and perhaps in C525 at very low amplitude). We may speculate on two possible reasons

for why this subset of the coumarins studied show this feature. First, these coumarins are

those which show some degree of response from their carbonyl modes under these pump

conditions. As the carbonyl bands fall under the blue-wing of the IR pulse spectrum, the

ridge feature could be at least partially caused by the pulse-overlap lineshape phase distortion

in a similar manner as in the C153 calculation above. Second, these coumarins are also those

whose overall experimental FEIR cross-section falls below the electronic resonance trend line
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discussed in Chapter 7, and therefore can be considered to have intrinsically weaker FEIR

response than the others. As such, the balance in strength between FEIR excitation and

TPA could be shifted more toward TPA for these dyes, resulting in the relative prominence

of a ridge/spike feature. A much more extreme example of the dominance of TPA over FEIR

response can be found in the experiments on the C337 nitrile mode in Chapter 9.
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8.A Appendix: Coumarin series τenc-dependent FEIR

data with ωIR = 1620 cm-1
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Figure 8.A.1: Coumarin 525 τenc-dependent FEIR data. Top panel: FTIR spectrum (dashed
black), IR pulse spectrum (gray), and FEIR spectrum at the indicated encoding delay.
Center panel: τenc-dependent FEIR spectrum. Contour spacing is set at 5%. Right panel:
Experimental two-pulse signal (solid) and τenc-projection of the spectrum (circles). The
encoding delay used for the FEIR spectrum in the top panel is indicated by a dashed line
across the central and right panels.
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Chapter 9

Polarization-dependent FEIR

spectroscopy

9.1 Overview

As a nonlinear technique that successively excites a molecule’s vibrational and electronic

transitions, FEIR spectroscopy is sensitive to the relative orientation of their dipole mo-

ments. From the standpoint of spectroscopic information content, this sensitivity can reveal

more structural detail in a number of ways. Knowing the orientation of various transition

dipoles within a molecule represents yet another view of its structure. As a practical matter,

being able to access this information can help in assigning the features of complicated spec-

tra. Furthermore, as specific intermolecular interactions or rotational dynamics can change

these orientations, their observation provides probes into many condensed phase phenom-

ena, thereby augmenting the spectroscopic tool-kit of FEIR. From a detection sensitivity

perspective, the signal’s dependence on transition orientation represents an important factor

that must be understood and handled to optimize absolute brightness for single-molecule

applications. Additionally, orientational effects could be leveraged to preferentially enhance
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or suppress signals from certain vibrations to improve a measurement’s sensitivity to the

desired coordinates.

Orientational information manifests in the polarization-dependence of spectroscopic sig-

nals. In the dipole approximation (Chapter 2), the strength of the light-matter interaction

V between a molecular transition µba and the electric field E driving it depends on the angle

θ between the transition’s dipole moment unit vector and the field’s polarization vector as

V = −µbaE cos θ. (9.1)

With linear techniques like conventional absorption spectroscopy, this dependence can only

be seen when interrogating an individual molecule with fixed orientation, or otherwise an en-

semble of similarly oriented molecules. For measurements in solution, the incessant rotational

motion of molecules and the randomized distribution thereof washes out this dependence.

Nonlinear techniques, on the other hand, follow a sequence of multiple transitions, ensur-

ing that some information on their relative orientation can still be recovered even from an

isotropic distribution of molecules.

In this chapter, we describe the orientational component of the FEIR response, and

how orientational information can be extracted from polarization-dependent experiments.

The theoretical description of orientational effects is contained within the response function

framework for FEIR spectroscopy laid out in Chapter 2. Specifically, the relative orientation

of the multiple transition dipoles probed in a nonlinear experiment with polarized excitation

fields are encoded in the orientational correlation functions. Due to the formal correspon-

dence between nth-order coherent and (n + 1)th-order action response functions analyzed

in Section 2.3, the orientational correlation functions for 4th-order FEIR experiments have

the same form as those for 3rd-order coherent spectroscopies, and therefore—to our great
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convenience—can be developed with the same existing methods and notation. Here we give

an overview of the approach and develop the expressions that will allow us to calculate

the cases relevant for FEIR spectroscopy. We then show some experimental examples of

polarization-dependent measurements, and discuss their potential application.

9.2 Orientational response

9.2.1 Orientational averaging

Calculating the orientational response functions for a given system requires knowledge of

the molecular-frame orientation of the transition dipoles participating in the material path-

way, the dynamics that rotate the molecular frame during the pulse sequence, and the

distribution of all possible initial orientations of the molecular frame that must be averaged

over. As introduced in Chapter 2, this is accomplished by the orientational averaging tensor

Ỹ ijkl
IJKL(τ3, τ2, τ1), which transforms the molecular-frame to the lab-frame coordinates, thereby

taking into account all relative orientations of these two coordinate systems consistent with

the experimental configuration. For the solution-phase ensemble measurements mostly an-

alyzed in this thesis, we will use the well-known orientational averages for isotropic distri-

butions. However, it is worth noting that in some potential application of single-molecule

measurements, the molecular frame can be fixed relative to the lab frame over the course of

the experiment, and this averaging may not always be needed.

In the simplest case, evolution of the relative orientation of the vibrational and electronic

transitions during the experimental inter-pulse delays occurs due to the body-fixed rotation of

the entire molecule, which given the relatively large size of a typical fluorophore used in FEIR

occurs on the timescale of tens to hundreds of picoseconds or longer in solution.338 In what
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follows, we will largely assume these orientational dynamics are slow relative to the vibronic

dynamics in the scalar part of the response function so that they may be neglected. Doing

so lets us replace the time-dependent orientational averaging tensor Ỹ ijkl
IJKL(τ3, τ2, τ1) with

its constant τi = 0 value. However, we will briefly describe the appearance of orientational

relaxation in long-time τenc-dependent measurements in Section 9.2.3.

To see how this transformation is accomplished, let µ be a vector in the molecular frame

and m represent the same vector in the lab frame. As in Chapter 2, we use upper case letters

I, J,K, L and lower case letters i, j, k, l to index the Cartesian coordinates in the lab-frame

(X, Y, Z) and molecular-frame (x, y, z), respectively. For one particular realization of the

two frame’s relative orientation, these two vectors are related by a rotational transformation

S

m = S(Ω)µ, (9.2)

parameterized by a set of angles Ω. For example, the Euler angles Ω = (α, β, γ) can be

used to conveniently represent this transformation. Many definitions of the Euler angles and

the construction of the rotation matrix are possible, and we use the following representation

favored by Arfken63

S =


cγcβcα − sγsα cγcβsα + cγcα −cγsβ

−sγcβcα − cγsα −sγcβsα − cγcα sαsβ

sβcα sβsα cβ

 . (9.3)
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Here, cα = cosα and sα = sinα and similarly for the other angles. The angles are defined

over 0 ≤ α < 2π, 0 ≤ β ≤ π, 0 ≤ α ≤ 2π, and integration over their full range is given by

∫
dΩ =

∫ 2π

0

dα

∫ π

0

sin βdβ

∫ 2π

0

dγ =
1

8π2
. (9.4)

The probability density of orientations representing isotropic solution is therefore the uniform

distribution P0(Ω) = 1/8π2.

The product of four molecular-frame dipole unit vectors appearing in a given pathway,

denoted generically by µ,ν,ρ, and σ, is formally a fourth-rank tensor that is transformed by

four successive applications of S(Ω). Explicitly, the tensor components of the corresponding

lab-frame dipole product, denoted respectively by Roman letters, are

sIrJnKmL =
∑
ijkl

SIi(Ω)SJj(Ω)SKk(Ω)SLl(Ω)σiρjνkµl (9.5)

Averaging this expression over the orientational distribution P0(Ω) produces the desired

orientational tensor element

Y σρνµ
IJKL ≡ ⟨sIrJnKmL⟩P0 =

∑
ijkl

Ỹ ijkl
IJKLσiρjνkµl, (9.6)

where the orientational averaging tensor is

Ỹ ijkl
IJKL =

∫
SIi(Ω)SJj(Ω)SKk(Ω)SLl(Ω)P0(Ω) dΩ. (9.7)

The notation for a general orientational tensor element lists the molecular-frame transition

dipoles as superscripts from right to left in order of interaction, for example, Y σρνµ
IJKL represents
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(Y1)
a,b,c,d
IJKL in Eq. 2.93 in Chapter 2 when µ = µ̂ba, ν = µ̂ad, ρ = µ̂cb, and σ = µ̂dc. Alterna-

tively, these superscripts will be suppressed when discussing properties of the orientational

tensor common to any set of dipoles.

The spatial symmetries of isotropic media put substantial constraints on what the ori-

entational tensor elements can be. The inversion symmetry rules for even and odd-order

response functions discussed previously in Chapter 2 are a powerful example. That analysis

showed that odd-rank tensors vanish because each element must simultaneously change sign

and remain the same upon inversion of all coordinates. Beyond centrosymmetry, isotropic

media are additionally invariant to all reflections and rotations—in short, any othogonal

transformation (as defined by Eq. 2.73 in Chapter 2). Applying a similar line of reasoning

to the reflections across the principle Y Z, ZX, or XY lab-frame planes

T(Y Z) =


−1 0 0

0 1 0

0 0 1

 , T(ZX) =


1 0 0

0 −1 0

0 0 1

 , T(XY ) =


1 0 0

0 1 0

0 0 −1

 , (9.8)

we find that tensor components with an odd number of any given index must vanish. For

example, invariance under T(ZX) requires YZZZY = −YZZZY = 0, while YZZY Y is unaffected

as the pair of negative signs cancel. For the fourth-rank orientational tensor components

this means indices must appear in pairs or all be the same, reducing the total number of

non-zero terms from 34 = 81 to 3 + 3 × 3 × 2 = 21. This condition applies independently

to both the upper and lower indices of the orientational averaging tensors Ỹ ijkl
IJKL. Applying
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this result greatly simplifies the terms that need to be summed over in Eq. 9.6, namely

Y σρνµ
IJKL =

∑
ijkl

Ỹ ijkl
IJKLσiρjνkµl

=
∑
i ̸=j

[
Ỹ iiii
IJKLσiρiνiµi + Ỹ iijj

IJKLσiρiνjµj

+ Ỹ ijij
IJKLσiρjνiµj + Ỹ ijji

IJKLσiρjνjµi

]
. (9.9)

Finally, using similar arguments it can be shown that invariance to rotations equates tensor

components in which the indentity of X, Y , or Z are freely interchanged among all the

indices, i.e. YZZZZ = YY Y Y Y = YXXXX , YZZY Y = YZZXX = YY Y XX = · · · , and so on.121 In

fact, only three independent components are needed to build up all 21 non-zero terms in an

isotropic fourth-rank tensor using these symmetry properties and the following relation

YZZZZ = YZZY Y + YZY ZY + YZY Y Z . (9.10)

Again, this relation holds independently for both the upper and lower indices of the orien-

tational averaging tensor.

Tensor element Value

Y zzzz
ZZZZ 1/5

Y zzyy
ZZZZ = Y zzzz

ZZY Y 1/15

Y zyyz
ZZZZ = Y zyzy

ZZZZ 1/15

Y zzyy
ZZY Y 2/15

Y zyzy
ZZY Y = Y zyyz

ZZY Y −1/30

Table 9.1: Elements of the orientational averaging tensor for isotropic media.
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For illustration purposes, we calculate some of the elements of the orientational averaging

tensor using Eqs. 9.3 and 9.7,

Y zzzz
ZZZZ =

∫
SZz(Ω)

4P0(Ω) dΩ

=
1

8π2

∫ 2π

0

dα

∫ π

0

cos4 β sin βdβ

∫ 2π

0

dγ =
1

5
, (9.11)

Y zzyy
ZZZZ = Y zyyz

ZZZZ = Y zyzy
ZZZZ =

∫
SZz(Ω)

2SZy(Ω)
2P0(Ω) dΩ

=
1

8π2

∫ 2π

0

sin2 αdα

∫ π

0

cos2 β sin3 βdβ

∫ 2π

0

dγ =
1

15
. (9.12)

A minimal number of elements, some of which involve a more tedious calculation that those

above, are listed in Table 9.1. Employing the symmetries discussed above allows for the

construction of the entire orientational averaging tensor from these elements.

9.2.2 FEIR orientational response for population and coherence

pathways

As we saw in Chapter 2, in FEIR spectroscopy the number of unique transitions appearing in

any pathway can either be two (for population pathways), or four (for coherence pathways).

Population pathways involve one vibrational fundamental, µ = ν, and one vibronic transition

ρ = σ. In this case the orientational response depends only the projection angle of one dipole

onto the other. This case is common to the 2D spectroscopy of coupled transitions, e.g.

the orientational dependence of a cross-peak.339 On the other hand, multimode coherence

pathways involve four different transition dipoles, which in the most general case could each

have unique orientations in the molecular-frame. However, as discussed in Chapter 2, we

will take the Condon approximation where the vibronic transitions are all parallel to the
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bare electronic transition. In this case the number of unique transition dipole unit vectors

in a coherence pathway reduces to three—the electronic transition dipole ρ = σ, and two

ground state vibrational transition dipoles µ, and ν.
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Figure 9.1: Orientational correlation functions for two and three independent transition
dipoles. (a) Angles describing three arbitrarily oriented dipole unit vectors in the molecular
frame. (b) Orientational correlation functions YZZZZ (blue) and YZZY Y (red) in the two-
dipole case when µ = ν with θ1 = θ2 ≡ θ and ϕ2 = 0. (c) YZZZZ and (d) YZZY Y in the case
of three co-planar dipoles (Eqs. 9.15 and b).

Here we explicitly calculate the orientational tensor elements for these two-dipole (popula-

tion) and three-dipole (coherence) pathways in the ZZZZ and ZZY Y polarization schemes.
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The two-dipole expressions are found as a special case of the three-dipole expression when

µ = ν, so we only need to calculate the three-dipole case. Figure 9.1(a) shows the arrange-

ment of the three unit dipoles in the molecular frame. We take the electronic unit dipole σ

to be aligned along the z axis. Then without loss of generality, one of the vibrational unit

dipoles ν can be taken to lie in the xz plane with polar angle θ1, while the other vibra-

tional unit dipole µ is described by the polar and azimuthal angles θ2 and ϕ2, respectively.

Explicitly, the molecular-frame components of each unit dipole are

σ =


σx

σy

σz

 =


0

0

1

 , ν =


sin θ1

0

cos θ1

 , µ =


cosϕ2 sin θ2

sinϕ2 sin θ2

cos θ2

 . (9.13)

Starting with the all parallel polarization scheme, we find only two non-vanishing terms in

Eq. 9.9

Y σσνµ
ZZZZ = Ỹ zzzz

ZZZZ(σz)
2νzµz + Ỹ zzxx

ZZZZ(σz)
2νxµx

=
1

5
cos θ1 cos θ2 +

1

15
cosϕ2 sin θ1 sin θ2. (9.14a)

Similarly, for perpendicular IR/vis polarizations, we have

Y σσνµ
ZZY Y = Ỹ zzzz

ZZY Y (σz)
2νzµz + Ỹ zzxx

ZZY Y (σz)
2νzµz

=
1

15
cos θ1 cos θ2 +

2

15
cosϕ2 sin θ1 sin θ2. (9.14b)

The fluorophores used in FEIR experiments are typically planar, electronically-conjugated

molecules, in which the electronic transition dipole is contained in the plane of the conjugated
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core. The mid-IR vibrations being interrogated most often involve the in-plane motion of

nuclei, and therefore also have transition dipoles in this same plane. In this case, all transition

dipoles are coplanar, and ϕ2 can be set to zero. The resulting orientational correlation

functions in this fully-coplanar limit are

Y σσνµ
ZZZZ =

1

5
cos θ1 cos θ2 +

1

15
sin θ1 sin θ2

=
1

15

(
2 cos(θ1 − θ2) + cos(θ1 + θ2)

)
, (9.15a)

Y σσνµ
ZZY Y =

1

15
cos θ1 cos θ2 +

2

15
sin θ1 sin θ2

=
1

30

(
3 cos(θ1 − θ2)− cos(θ1 + θ2)

)
. (9.15b)

These functions are plotted in Figure 9.1(c) and (d). When µ = ν, only a single projection

angle θ = θ1 = θ2 is at play, and these expressions reduce to the two-dipole orientational

correlation functions

Y σσνν
ZZZZ =

1

15

(
2 cos2 θ + 1

)
, (9.16a)

Y σσνν
ZZY Y =

1

15

(
2− 2 cos2 θ

)
, (9.16b)

which are plotted in Figure 9.1(b).

9.2.3 Polarization-dependence of signals and the FEIR anisotropy.

In the FEIR experiment, both IR pulses E1 and E2 have the same linear polarization, which

may be varied with respect to the linear polarization of E3 (Figure 9.2). Each pulse’s

electric field polarization unit vector is denoted by êα with α = 1, 2, or 3, and Θ is the angle
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ê1

ê2

ê3

Figure 9.2: Polarized FEIR pulse sequence.

between ê1 or ê2 and ê3. To be consistent with the typical convention in 3rd-order coherent

spectroscopies, we assign the beams’ direction of propagation to be along the lab-frame X

axis, and take ê3 to lie along the Z axis. We note this convention breaks with our notation for

the lab frame coordinates when discussing the sample region in the microscope in Chapter 4,

however, having the directly analogous terminology for polarization configurations is useful.

Then each polarization unit vector is expressed as

ê1 =


(ê1)X

(ê1)Y

(ê1)Z

 =


0

sinΘ

cosΘ

 , ê2 =


0

sinΘ

cosΘ

 , ê3 =


0

0

1

 . (9.17)

The polarization-dependence of an individual pathway depending on the arbitrary transition

dipoles σ,ρ,ν, and µ in either the two- or three-pulse signal can then be expressed as

the linear combination of the parallel (ZZZZ) and perpendicular (ZZY Y ) orientational
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response function components

Spol(Θ) =
∑
IJKL

Y σρνµ
IJKL (ê3)I(ê3)J(ê2)K(ê1)L

= Y σρνµ
ZZZZ cos(Θ)2 + YZZY Y sin(Θ)2 = (Y σρνµ

ZZZZ − Y σρνµ
ZZY Y ) cos(Θ)2 + Y σρνµ

ZZY Y . (9.18)

The parallel and perpendicular response components are recovered when Θ = 0◦ or 90◦,

respectively.
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Figure 9.3: (a) Anisotropy (R) of the single-mode population response as a function the
relative angle θ between vibrational and electronic transition dipoles. (b) Anisotropy decay
for the case of parallel transition dipoles due to orientational diffusion of the chromophore
modelled as a spherical rotor.

A particularly useful quantity is the polarization anisotropy R, defined as

R =
FZZZZ − FZZY Y

FZZZZ + 2FZZY Y

, (9.19)

where FZZZZ and FZZY Y are the FEIR signals measured in the all parallel (Θ = 0◦) or

perpendicular (Θ = 90◦) polarization configurations. The anisotropy defined in this way is
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a well-known experimental observable in 3rd-order coherent techniques,111,132,340–343 and also

has analogies in linear fluorescence and Raman spectroscopies.255,280 In FEIR, the anisotropy

is especially useful when the isolated population response can be measured, either in a

two-pulse experiment of a single-mode system, or in the FEIR spectrum where coherence

contributions have dephased or are otherwise absent. In a single-mode system (described

in Section 2.4.4) without any orientational dynamics, the anisotropy can be computed used

Eq. 9.16

R =
1

5

(
3 cos2 θ − 1

)
, (9.20)

where θ is the angle between the vibrational and electronic transition dipole unit vectors.

This expression is plotted in Figure 9.3(a), where its symmetry and extreme values of 2/5 at

θ = 0◦ and −1/5 at θ = 90◦ can be seen. As coherence pathways have more complicated ori-

entational dependencies described by Eqs. 9.14 or 9.15, their contribution to the anisotropy

is similarly much more complex and likely of limited experimental utility.

Rotational diffusion of the entire chromophore on the timescale of the pulse sequence

will cause the orientational correlation functions to decay, and can be treated by calculating

the full time-dependence of the orientational averaging tensors Ỹ ijkl
IJKL(τ3, τ2, τ1).

344 Here we

briefly cite the result, illustrated in Figure 9.3(b), for how the anisotropy of the population

response decays along the encoding delay assuming a simple model for rotational diffusion

based on a classical small-angle orientational diffusion equation of a spherical rotor.280,339

Specifically,

R(τenc) = R(τenc = 0) exp(−6τenc/τor). (9.21)
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Here R(τenc = 0) is the initial value of the anisotropy (i.e. Eq. 9.20, τor is the orientational

correlation time characterizing the diffusion process, and we have assumed the impulsive

limit. This expression could refer to anisotropy of the two-pulse signal from a single-mode

system, or the decay of a particular band in a multimode FEIR spectrum in the absence of

coherence.

In this rather simple situation, the anisotropy decay is independent of an population

dynamics and therefore is a useful measure of orientational relaxation. The opposite effect,

i.e. removing the orientational contribution to the signal, may be accomplished by recording

the isotropic component

Fiso = FZZZZ + 2FZZY Y , (9.22)

i.e. the denominator in Eq. 9.20. The isotropic two-pulse signal will be considered in

Chapter 10 to investigate population relaxation phenomena in FEIR measurements.

9.3 Polarization-dependent FEIR experiments

9.3.1 Polarization-dependence and anisotropy decay of a single-

mode system: coumarin 337 nitrile stretch

To demonstrate some of the basic orientational effects in FEIR spectroscopy, and correspond-

ingly test our theoretical description, we perform polarization-dependent experiments on the

simplest case of a single-mode system. The nitrile stretch vibration of coumarin 337 (C337),

shown in Figure 9.4(a), is a convenient choice of model system, as this vibrational resonance

is spectrally isolated as well as being a local mode that has an intuitive transition dipole
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Optimized ground-state structure of coumarin 337 calculated by DFT, showing the atomic
displacement vectors associated with the nitrile stretching band (orange), its transition dipole
unit vector (red), and the S0 → S1 electronic transition dipole unit vector(blue). (c) Top
panel: FEIR spectra at τenc = 0 ps (blue), τenc = 1 ps (red), and pump-scaled FTIR spec-
trum (dashed black) of the nitrile mode in dimethylformamide (DMF). The IR pump spec-
trum is overlayed in grey. Bottom panel: full τenc-dependent FEIR spectrum. Polarization-
dependence of the background-subtracted two-pulse FEIR count rate at (c) τenc = 0 ps and
(d) τenc = 1 ps. Fits to the model a cos2Θ+ b are superimposed. (e) Left y axis: two-pulse
FEIR signals in ZZZZ (solid gray) and ZZY Y (dashed gray). Right y axis: anisotropy
(solid black) calculated from the two-pulse signals, with an exponential fit with no offset
parameter (dashed green). The two-pulse measurements in (e) use a slightly higher visible
intensity that those in (c)-(d), resulting in the slightly higher count rates.
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direction within the molecule. FEIR measurements are performed in dimethylformamide

(DMF) solution at 100 µM concentration. As calculated by DFT (using the same methods

described in Chapter 8), the nitrile’s transition dipole is oriented nearly anti-parallel to the

S0 → S1 electronic transition dipole, forming an angle of θ = 172◦. The electronic tran-

sition dipole falls roughly along a line connecting the electron-donating amino substituent

with the electron-withdrawing nitrile, consistent with the charge-transfer character of the

transition.150,316 This orientation of the electronic transition is roughly conserved in DFT

calculations across the series of coumarin dyes studied in this thesis.

Figure 9.4(b) shows the nitrile’s IR absorption spectrum and τenc-dependent FEIR spec-

tra for ZZZZ polarization. During pulse-overlap, the FEIR signal is contaminated with the

vibrationally-nonresonant two-photon absorption (TPA) signal discussed in Chapters 3, 4,

and 8. Interestingly, within the expected TPA signal extended along the breadth of the IR

pulse spectrum, the nitrile feature appears as a fully dispersive resonance (τenc = 0 ps in

the top panel Figure 9.4(b)) resembling a Fano lineshape.345 This phase-distortion is impor-

tantly not accounted for by the pulse-overlap induced phase artifact discussed in Chapter 3,

which would have the opposite sign. A possible explanation might involve coupling of the

IR-vibrational resonance to the molecule’s polarizability. Regardless of its origin, this dis-

persive feature fully decays with the pulse cross-correlation, and at τenc > 0.5 ps an intuitive

absorptive lineshape matching that of the FTIR spectrum is present, indicative of a simple

population feature.

The experimental polarization-dependence of the total FEIR signal at τenc = 0 ps and

τenc = 1 ps are shown in Figure 9.4(c) and (d), respectively. In both cases, the signals are

well-fit to an a cos2Θ + b dependence as predicted by Eq. 9.18. As shown in Table 9.2,

the anisotropy value from the polarization dependence of the τenc = 1 ps signal is somewhat
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R θ (deg)

Experiment 0.29 154
Calculation 0.39 172

Table 9.2: Experimental (τenc = 1 ps) and calculated C337 nitrile FEIR anisotropy and
relative transition dipole angle.

lower than that predicted by Eq. 9.20 using the transition dipoles calculated by DFT.

One possible explanation for this discrepancy on the experimental side is the effect of the

non-ideal polarization purity of the IR and visible beams resulting from the high numerical

aperture focusing in the FEIR microscope. Further characterization and modelling of this

effect would be necessary to ensure accurate anisotropies can be reliably measured. The

anisotropy at τenc = 0 ps is slightly higher at R = 0.31, but still lower than the predicted

value, while also complicated by the pulse-overlap signal.

The two-pulse signals in ZZZZ and ZZY Y polarization and resulting anisotropy decay

are shown in Figure 9.4(e). The pulse-overlap signal produces the large spikes at τenc = 0 ps

in both polarizations, and the amplitude of the ensuing true FEIR population response is

significantly smaller. The anisotropy decay is fit to a single exponential with decay constant

of 15 ± 3 ps, where the high uncertainty is due to both the noisy signal and consequently

limited scan range. Assuming the simple spherical rotor model leading to Eq. 9.21, the

resulting orientational correlation time is on the order of τor = 90 ± 20 ps, which is consistent

with previous studies on coumarin rotational dynamics by fluorescence up-conversion and

anisotropy.338
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9.3.2 Anisotropy in a mulitmode system: coumarin 334 carbonyl

and ring vibrations

Another potentially useful application of polarization-dependent FEIR measurements is to

measure the relative orientation among multiple vibrational modes to aid in their assignment,

or eventually provide more detail into the kind of structures formed during intermolecular

association events. To investigate how well FEIR anisotropy measurements can distinguish

relative orientation in a multimode system, we examine the polarization-dependent FEIR

spectroscopy of coumarin 334 (C334) in acetonitrile-d3. These FEIR measurements belong

to the larger data set investigated in Chapter 7, were only the ZZZZ signals were used.

As shown in Figures 9.5(a)-(d), C334 has two carbonyl local modes, νlactone and νactyl, in

addition to a ring mode νR1, that are each expected to have distinct orientations based on

DFT calculation. These three vibrational transition dipoles are essentially co-planar with

the electronic transition. Each mode is assigned in the FTIR spectrum in 9.5(e).

Figure 9.5(f) shows the FEIR spectra at τenc = 0.5 ps in both ZZZZ and ZZY Y po-

larizations, along with the resulting anisotropy spectrum. The anisotropy exhibits distinct

values at the locations of the three bands. The presence of coherence pathways, which could

lead to more complicated orientational dependence in the anisotropy, are likely at play to

some extent in these spectra, which can be appreciated in the full ZZZZ τenc-dependent

spectrum shown in Figure 8.A.4 in Chapter 8. However, here we will attempt to see how

well the different vibrations’ anisotropies as measured by integrating along there respective

bands (indicated by the grayed out regions in Figure 9.5(f)) can used used to extract relative

angles be Eq. 9.20.

The resulting anisotropies and angles are summarized in Table 9.3 along with the pre-

dictions from the DFT calculation. Qualitatively, these anisotropies and extracted angles
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Figure 9.5: C334 FEIR spectrum anisotropy. (a)-(c) DFT-calculated normal mode atomic
displacement vectors for νR1, νactyl, and νlactone, respectively, and (d) their normalized transi-
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y axis) of C334 in acetonitrile-d3, with the DFT calculated normal modes superimposed.
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Both spectra are commonly normalized to the brightest feature in the ZZZZ spectrum.
Right y axis: Anisotropy spectrum. The gray bands indicate the regions the anisotropy is
averaged over to produce the values in Table 9.3.

show reasonable agreement with the calculation, although, as in Section 9.3.1, the experi-

mental values of do not seem to reach the extreme high and low values predicted for νR1 and

νactyl, respectively. This behavior is consistent with impure polarization, which by averaging

around a spread in experimental polarization angles Θ would in effect alternately lower and
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R (exp) R (calc) θ (exp) θ (calc)

νR1 0.31 0.40 157◦ 175◦

νactyl -0.10 -0.19 114◦ 96◦

νlactone 0.02 0.05 127◦ 130◦

Table 9.3: Experimental (τenc = 0.5 ps) and calculated FEIR anisotropy and relative tran-
sition dipole angles for selected modes in C334.

raise the extreme values for parallel or perpendicular transition dipoles, respectively. Over-

all, these spectral anisotropy measurements provide useful qualitative insight. In particular,

if the frequency ordering of the two carbonyls νactyl and νlactone was not known ahead of time

by DFT calculation, the difference in their measured anisotropies combined with chemical

intuition about how the C=O bonds should be oriented against the electronic transition in

the molecule would lead us to correctly assign νactyl as the lower frequency of the two bands.

366



Chapter 10

Vibrational relaxation through the lens

of FEIR spectroscopy

10.1 Overview

Over the course of this thesis we have largely demonstrated the principles of FEIR spec-

troscopy and investigated its information content at early encoding delays, where vibrational

relaxation has not substantially depleted the initially excited populations. From a practical

standpoint, this early-time region is the natural arena for single-molecule applications of

FEIR spectroscopy, as the signals are largest. Indeed, using short pulses in order to access

the early-time region for high overall excitation efficiency is one of the central experimental

design principles for FEIR spectroscopy. However, further insight into the FEIR process,

and specifically a deeper understanding of how the encoding step samples the vibrational

resonances, can be gained from analyzing the full encoding delay dependence of the signal.

In this chapter we explore some of the longer timescale relaxation phenomena observed in

FEIR spectroscopy. Specifically, we will focus on the region of encoding delays after inter-

mode vibrational coherence has fully dephased—in some senses the opposite limit of the
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early-time region that was the subject of Chapter 8.

From a time-resolved spectroscopy perspective, such encoding-delay dependent FEIR ex-

periments provide a means to study vibrational relaxation processes. Indeed, the historical

origins of FEIR spectroscopy in the 1970’s represented just such a method to study vibra-

tional relaxation dynamics using the newly available picosecond IR laser pulses.31,32 Since

then, much has been learned about the complexities of these phenomena from time-resolved

IR and Raman methods as well as theoretical approaches, and the study of vibrational

relaxation in the condensed phase is by now in many ways a mature field.346–351 In large

molecules like the fluorophores used for FEIR, the general picture that has emerged is one

dominated by fast depopulation of the initially excited level by intramolecular vibrational en-

ergy redistribution (IVR),352–354 followed by a slower dissipation of the excess energy into the

solvent.32 For fundamentals in the mid-IR range, this initial depopulation step often occurs

on the timescale of a few picosecond or even hundreds of femtoseconds, due to the ubiquitous

anharmonic coupling among intramolecular vibrations and the high density of states that

are in resonance arising from the dense vibrational ladders of low-frequency modes.

Here we will discuss two main observations about the nature of FEIR signals in the late-

time region. First, that the character of the observed decay kinetics depends on the electronic

resonance conditions in the experiment. We demonstrate this phenomenon by analyzing the

same FEIR measurements on the coumarin series used previously in Chapter 7 to explore

how resonance influences signal size at early times. Second, while in the early-time region the

FEIR activity of each mode is influenced by its vibronic coupling to the electronic transition,

at late-times the relative amplitudes of vibrational bands are effectively reshaped to more

closely resemble those in the conventional IR absorption spectrum. We interpret both of

these observation in terms of a rapid statistical IVR process that redistributes the initial
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population into a ‘hot’ ground state with a quasi-thermal distribution of excitation in the

molecule’s low-frequency modes, which subsequently cools by dissipation into the solvent. In

this case, the encoding transitions originate from the sub-ensemble of levels from modes with

some degree of Franck-Condon activity. The apparent resonance dependence of the signals’

decay kinetics are then seen to reflect how this distribution is sampled by the encoding

process, while the reshaping of the relative band intensities indicates how the encoding step

no longer involves the specific vibronic transitions originating from each mode’s excited state,

but rather depends only on the IR energy initially absorbed.

10.2 Encoding-resonance dependent long-time relaxation

behavior in coumarins

As in Chapter 7, studying a series of structurally-similar coumarin dyes with variable elec-

tronic transition frequencies allows us to investigate effects related to the experimental res-

onance conditions in lieu of a tunable visible encoding pulse. Here we analyze the two-pulse

decay transients of the coumarin series under the same experimental condition as in Chap-

ters 7 and 8, i.e. in 30-100 µM acetonitrile-d3 solution with the IR pulse tuned to cover the

high-frequency coumarin ring vibrations. This FEIR data uses slightly higher visible exci-

tation intensities to produce larger signals for better signal to noise acquisition of the small

late-time amplitude, but otherwise follows the same methods described in Section 7.2.2.

Figure 10.1 shows the long-time behavior of the coumarin series’ two-pulse transients,

and demonstrates how they depend on the extent of FEIR resonance as characterized by the

detuning between the frequency of the electronic 0-0 transition, defined by the crossing-point

of the normalized absorption and fluorescence lineshapes, and the encoding pulse, ∆ = ω0−0−
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the coumarins is used throughout each panel.
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ωvis. Figure 10.1(a) plots each coumarin’s electronic absorption and fluorescence lineshapes,

showing the resulting spread in detunings ∆ from ∼3000 to ∼500 cm-1. Figures 10.1(b)

and (c) show the background-subtracted, normalized isotropic component of the two-pulse

FEIR signals for each coumarin on linear and logarithmic vertical scales, respectively. As

discussed in Chapter 9, the isotropic signal is used to avoid any dependence of orientational

dynamics in the decay kinetics, although we note that the all parallel FEIR signals show

essentially the same behavior. A persistent small amplitude oscillatory component evident

in the C545 signal is a noise artifact, and is especially evident for this measurement due to

its large one-photon background.

All of the coumarin two-pulse signals exhibit a similar bimodal decay profile. The early-

time region is characterized by a roughly picosecond decay accompanied in some cases by

strongly damped oscillations due to inter-mode vibrational coherences, as discussed in Chap-

ter 8. After this fast component has relaxed, a second slower decay is evident, which may

be seen more clearly in the logarithmic scaling of Figure 10.1(c). Strikingly, the relative

amplitude of this slow relaxation component is much higher for the redder coumarins with

smaller ∆.

To extract the characteristics of this slow relaxation component, we fit the two-pulse

transients to a bi-exponential model

afast exp
(
−τenc/τfast

)
+ aslow exp

(
−τenc/τslow

)
(10.1)

shown in Figure 10.A.1 of Appendix 10.A. As only the slow component is of interest, we

restrict the fitting procedure to data with τenc > 2 ps, with the fast component in the model

used solely to provide sufficient flexibility in fitting the late-time behavior. The resulting fits

adequately capture the decay profile out to the full 30 ps range scanned. The relationship
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between detuning ∆ and the slow component’s time-constant and amplitude is shown in

Figures 10.1(d) and (e), respectively. The time-constants τslow exhibit a mild slowdown as

the detuning in decreased, varying by a factor of roughly 2 from the bluest to reddest energy

gaps. This slowdown appears to be roughly linear in ∆, and is fit to a trend line of

τslow = p1∆+ p0, (10.2)

with p1 = 1.65×10-3 ± 0.7×10-3 ps/cm-1 and p0 = 12.2 ± 1.3 ps in Figure 10.1(d). The

amplitude exhibits a much stronger dependence on ∆, which can be fit to an exponential

model

aslow = a exp(−∆/b) + c, (10.3)

with a = 1.8 ± 0.8, b = 450 ± 140 cm-1, and c = 0.051 ± 0.028, as shown in Figure 10.1(e).

In order to interpret these trends in the slow relaxation behavior, we must first assume

that the mechanism of vibrational relaxation is qualitatively the same in each coumarin.

Indeed, while small differences in behavior owing to the varying chemical substitution of

the coumarin core may certainly exist, it is highly improbable that these differences should

happen to conspire in such a way to produce the trends in Figures 10.1(d) and (e). Under

this assumption, because the way in which the measurement is conducted cannot affect the

underlying vibrational relaxation dynamics, the observed trends must reflect the differing way

in which the FEIR signal reports on the molecules’ time-evolving state. Figure 10.2 shows a

cartoon picture indicating our proposed model for the detuning-dependence of the encoding

process. As the detuning increases, the set of vibrational energy levels from which transitions

to the electronic excited state are in resonance is restricted to increasingly higher energies. In
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a statistical IVR process where the initially excited fundamentals have depopulated to create

a distribution of population in the molecule’s many lower frequency modes, the encoding

process therefore samples the increasingly high energy tail of this distribution for the larger

detunings.
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Figure 10.2: Schematic representation of vibrational cooling and how the FEIR resonance
condition influences the sampling of the resulting quasi-thermal distribution.

The faster observed relaxation for these large detunings can be explained by considering a

Boltzmann distribution of vibrational energy with a time-dependent temperature T ∗ (Figure

10.2), in which case cooling more rapidly depletes the higher energy portion of the distribu-

tion. A similar probe frequency-dependence to vibrational relaxation rates was observed in

transient IR-pump visible-probe spectroscopy on small molecules in solution by Crim and

coworkers.326,355 Within this picture of a cooling, quasi-thermal vibrational distribution, the
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exponential detuning-dependence of the slow component’s amplitude then follows as a natu-

ral consequence of the varying amount of population that is within encoding resonance and

therefore can be sampled. Specifically, as the detuning is decreased, an increasingly larger

fraction of the vibrational distribution is accessible, resulting in a larger amplitude late-time

signal. The observed exponential dependence, suggesting Boltzmann statistics, is a com-

pelling indicator of an internally relaxed, thermal distribution. In fact, directly interpreting

the exponential fit parameter b in Eq. 10.3 as a thermal energy via b = kBT
∗ yields a value

of T ∗ = 650 ± 200 K. The original picosecond FEIR experiments by Kaiser and coworkers

observed a similar exponential encoding frequency dependence of the late-time amplitude

for coumarin 7 when pumping N-H and combination bands near 3 µm, which suggested an

internal temperature of T ∗ = 400 K.32,323

10.3 Reshaping of the FEIR spectrum at late encoding

delays

Resolving the relaxation kinetics in a mode-specific manner by measuring τenc-dependent

FEIR spectra suggests the possibility of following the fate of each vibrational excitation

through the relaxation process. However, within the statistical IVR picture suggested by

the detuning-dependence, these initially prepared excited populations are essentially fully

depopulated after a picosecond or so, and the surviving FEIR spectrum must be interpreted

in terms of encoding the hot thermal distribution that results. Specifically, at late times

the vibrational bands in the spectrum no longer reflect the population and coherence path-

ways involving the IR resonant fundamental transitions as laid out in the response function
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framework of Chapter 2, but rather simply indicate the frequencies at which the molecule

initially absorbed vibrational energy.
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Figure 10.3: Comparison of FEIR spectra at early and late encoding delays with the IR
pump-scaled FTIR spectrum for selected coumarins. The early-time spectra (blue) are the
same as those show in Chapters 7 and 8 and are either at τenc = 500 or 600 fs. The late
time-spectra (orange) are the result of averaging together spectra at 3, 4, 5, and 6 ps from
the τenc-dependent data sets shown in Chapter 8 in order to recover somewhat higher signal
to noise. The data sets on the four remaining coumarins (C30, C314, C525, C545) not shown
here did not have sufficiently high signal to noise in this τenc range.

This picture is supported by comparing the early-time FEIR, late-time FEIR, and IR

pump-scaled FTIR absorption spectra for various coumarins in Figure 10.3. The pump-

scaled FTIR spectrum represents the frequency spectrum of absolute IR energy absorption

by the molecule in the FEIR experiment. In this thesis have discussed the various ways in
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which the early-time FEIR spectra differ from conventional IR absorption, most importantly

through the vibronic coupling strength that determines FEIR activity but also through the

presence of vibrational coherences as well as possible finite-pulse effects. However, the late-

time spectra more closely track the profile of the pump-scaled IR absorption spectra, within

their more limited signal to noise. For example, the 1616 cm-1 νR1 mode in C6 has become

substantially more intense in the late-time spectrum to essentially match with its relative

level in the FTIR. A similar reshaping of vibrational bands in response to relaxation has

been observed in ion-detected transient IR action spectroscopy in the gas phase.356

10.4 Discussion and outlook

Taken together, the encoding resonance-dependence of the slow relaxation component and

the reshaping of the spectra to resemble direct IR absorption suggest a rapid depletion of

the initially created vibrational populations into a quasi-thermal distribution throughout

the molecule’s low-frequency modes, which then cools through vibrational energy transfer

into the solvent. As in Chapter 7, where the effect of resonance was tuned by varying the

molecular system rather than the encoding pulse, a more ideal investigation of this behavior

could be achieved by way of a tunable encoding pulse. While our study here was restricted to

coumarins, we have observed similar bimodal two-pulse decay kinetics in acridine and flavin

dyes. It would be interesting to see under which conditions deviations from this vibrational

relaxation behavior may exist in FEIR measurements.

The vibrational relaxation phenomena discussed here have some important implications

for the interpretation of FEIR experiments and their possible applications. From a practical
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standpoint, using relaxation transients from τenc-dependent FEIR measurements to inves-

tigate a molecule’s interactions with its environment must be approached with caution to

avoid convolving resonance effects with real differences in vibrational dynamics. For exam-

ple, while the vibrational cooling process is undoubtedly sensitive to changing the solvent,

or otherwise introducing the chromophore into a different environment, any accompanying

electronic solvatochromism will also influence the observed relaxation kinetics through its

modulation of the encoding resonance. Being able to separate these effects will be critical

for recovering the true changes in vibrational dynamics that are of interest. Similarly, as

a consequence of the spectral reshaping, the τenc-dependence of individual bands can show

different relaxation kinetics. Such differences do not necessarily reflect the variations in true

population lifetimes, as they are influenced by the mismatch in FEIR and IR activity of the

modes in question. Another interpretation of the reshaping of band intensities is through

direct energy transfer between the fundamentals. However, this interpretation is at odds

with the present quasi-thermal model for the observed detuning dependence, in which the

the fundamental ν = 1 levels are essentially fully depopulated at these late encoding delays.

The way in which vibrational relaxation manifests in FEIR spectroscopy suggests interest-

ing possibilities for the generation of useful FEIR signals through vibrational energy transfer.

Indeed, one potential application of the spectral reshaping phenomenon is as a method for

interrogating vibrations that are IR active but not vibronically coupled, and therefore appear

dark in early-time spectra. While the overall signal brightness is drastically reduced for the

late-time spectra of the coumarins shown here, under appropriate resonance conditions or

in cases of much slower vibrational cooling these relaxation-induced FEIR bands could be

used as highly sensitive or even single-molecule vibrational probes. Besides extending the

set of vibrations on the fluorophore that may be used, there is the intriguing possibility of
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using energy transfer to measure FEIR signals from vibrations on other molecules in con-

tact with the fluorophore. For example, a binding partner whose intermolecular contacts

induce strong anharmonic coupling of its vibrations with those of the FEIR chromophore

may conceivably transfer enough vibrational energy on a picosecond timescale to yield an

FEIR signal. Being able to measure the vibrational spectra of molecules in the fluorophore’s

immediate environment would dramatically expand the scope of investigations possible with

FEIR spectroscopy.
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10.A Appendix: Fitting of two-pulse transients
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