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ABSTRACT

In order to put novel condensed matter physics theories to the test, we turn to simulations

and experiments. However, computer simulation is not always feasible due to inherent com-

putational obstructions or the demand for excessive computational resources to calculate

the dynamics of many particles, for example. Where computer simulators fail, we turn to

"quantum simulators," or experimental model systems. Within these poke-able model sys-

tems, we need only set up the experimental conditions that mirrors the physics of interest,

then glean information based on measurable quantities of the system. Examples of quantum

simulation platforms include trapped ions, cold atoms in optical lattices, superconducting

circuits, nitrogen-vacancy centers, and interacting photons in optical cavities—the platform

of the work presented in this thesis.

This thesis describes the quantum simulation of topologically ordered quantum materials

made of light using a twisted optical cavity and Rydberg polaritons. This platform—based

in atoms and cavities—additionally enables studies based in the manipulation of atoms

using light, leading to the optical mode conversion of photons at high efficiency. The work

presented in this thesis provides broad prospects for the study of topologically-ordered states

and spatiotemporal modulation of optical susceptibility as a tool for quantum information

as well as atomic, molecular, and optical (AMO) systems.
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CHAPTER 1

INTRODUCTION

1.1 What is a quantum material?

What are materials, fundamentally? In general, we think about materials as a collection of

interacting particles that are described by some sort of order. In many cases, this order is

well described by Landau’s theory of phase transitions as we will discuss in Chapter 5, but

not always. In the case of quantum materials—which are materials that are fundamentally

quantum mechanical—the concept of topological order [1] arises, violating Landau’s theory.

Intuitively, topological order can be thought of as "dancing patterns" of long-range quantum

entanglement [2], yielding strong correlations between particles and exotic properties that

may be potentially harnessed for fault-tolerant quantum computation [3] and studied to

understand and predict new phases of matter.

To me, I also often think of "topological" as meaning "insensitive to perturbations." In

the stereotypical example of topology, a coffee cup is topologically equivalent to a donut.

Perturb the donut to become a coffee cup, and really it’s still a donut. Topological materials

are "robust" in this sense. As a more concrete example, topological materials can host edge

modes [4], or modes that are physically confined to the system edge. Upon perturbing the

geometry of the edge, these edge modes still exist and are thus insensitive to the perturbation.

In order to fully realize the potential of topologically ordered quantum materials, we

need to better understand topological order. To date, topological order has been primarily

studied in electronic systems like graphene [5]. However, these systems can be quite difficult

to probe and control on an individual particle level. In order to answer open questions re-

garding topics such as transitions between topological phases and discovering materials the

exhibit different topological orders, we experimentalists seek platforms for simulating par-

ticle interactions—or "quantum simulators"—from the ground up in a controlled, quantum
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mechanical environment. By doing so, we aim to realize and study topologically ordered

states using real, model systems.

1.2 Quantum materials made of light

Across atomic, molecular, and optical (AMO) physics, a pattern arises in the choices of ex-

perimental platforms used to create synthetic quantum materials: some particle is used, it

has some interaction with other like-particles, and its dispersion is controlled by its environ-

ment. We already know electronic systems have been utilized, where electrons interact via

the Coulomb force and an ionic lattice influences their dispersion. However, electronic sys-

tems often come in the form of a bulk material comprised of many interacting particles—not

so ideal for individual particle control and tunability. Instead, we might utilize interacting

superconducting qubits [6] or perhaps ultracold atoms [7] that interact through the elec-

tromagnetic force in an optical lattice, which looks like a periodic potential to the atoms.

The platform of ultracold atoms has demonstrated some success at creating topologically

ordered states [8], but in the Simon Lab we opt to use interacting photons and influence

their dispersion using an optical cavity [9, 10].

But wait... photons don’t interact?! Well, not directly. In the presence of atoms—with

which photons do interact—photons can undergo effective interactions as we will discuss

in Chapter 5. Additionally, if we track the motion of a photon bouncing back and forth

between two curved cavity mirrors in a given transverse plane of the cavity, it appears to

oscillate as a massive harmonic oscillator! The intuition behind this choice of platform is that

photons can act like interacting, massive particles while maintaining their convenient, unique

qualities of speed, direct detectability, and manipulability with common optical elements.

With this platform, we ultimately aim to create and probe topologically ordered quantum

materials made of light. That said, this platform offers additional, interesting opportunities

for research as we will see in Chapter 6.

2



1.3 Thesis overview

This thesis is intended primarily for budding AMO graduate students and those generally

interested in the research of the Simon Lab.

As our platform boils down to atoms in a cavity, we will spend some quality time dis-

cussing each of these components individually in Chapter 2.

In Chapter 3, we will theoretically combine atoms and cavities, working our way through

dealing with Hamiltonians of increasingly complex atom-cavity systems.

Chapter 4 will discuss our experimental setup used in the research of Chapters 5 and 6.

Chapters 5 and 6 contain the main results of this thesis. Chapter 5 describes our efforts in

creating topologically ordered quantum materials made of light—namely, Laughlin states—

and how our next generation cavity should enable topological few-body physics. Chapter 6

describes how the same platform used in Chapter 5 can be used to convert photons from one

mode of the cavity to another at high efficiency.

Finally, Chapter 7 provides a brief outlook on future work.
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CHAPTER 2

ATOMS AND CAVITIES

2.1 Atoms

The first step in working with atoms is understanding atoms. This section details properties

of atoms, namely alkali metal atoms, from both an isolated and interacting standpoint.

2.1.1 The lone alkali metal atom

For a single atom, our mission is typically to compute the electronic 1) energies, and 2)

wavefunctions. Why? From the experimentalist viewpoint, this information is needed to

compute relevant quantities such as transition strengths and informs experimental choices

like what lasers to buy. If the energy difference between two atomic levels you’d like to

couple is 780 nm, you had best buy a 780 nm laser. When calculating the energies and

wavefunctions of a system in general, the standard practice is to write down the system’s

Hamiltonian and finds its eigenvalues (energies) and eigenfunctions (wavefunctions).1 For

an atom with one valence electron, as in hydrogen and the alkali metals, we typically think

of the system Hamiltonian in three parts:

(1) The unperturbed Hamiltonian, H0 = T + V

(2) The fine structure Hamiltonian, Hfs ∝ L · S

(3) The hyperfine structure Hamiltonian, Hhfs ∝ I · J

The eigenvalues of H0 gives us our energies, which are then modified by doing perturbation

theory for the small correction terms Hfs and Hhfs using our wavefunctions. In practice,

1. This process is equivalent to solving the time-independent Schrödinger equation, which is in essence
an eigenvalue problem (HΨ = EΨ)!
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the more complex structure of alkali metal atoms makes this process quite difficult and we

often rely on empirical observations and numerical computations to provide us with energies

and wavefunctions. Nevertheless, this subsection will take a look at Hamiltonians for single

hydrogen-like (namely, alkali metal) atoms.

The unperturbed Hamiltonian

The unperturbed Hamiltonian for an atom that has N electrons and nuclear charge Ze is [11]

H0 = T + V (2.1)

=
N∑
i=1

− ℏ2

2m
∇2
i −

Ze2

4πϵ0ri
+

N∑
j>i

e2

4πϵ0rij

 (2.2)

where rij = |ri−rj |, with ri the position if the ith electron. The kinetic term (T ) is accounted

for by the leftmost term in Equation 2.2, whereas the potential term (V ) is accounted for

by the middle and rightmost terms. V includes Coulomb potential contributions from both

the positively charged nucleus and the many electrons about it.

The form of Equation 2.2 is somewhat inconvenient to work with, but we can make

some simplifications using the central field approximation, which makes the assumption that

electrons move independently in a central potential that depends only on the radial distance

of an electron from the atomic nucleus:

H0 =
N∑
i=1

(
− ℏ2

2m
∇2
i + V (ri)

)
(2.3)

Now, this Hamiltonian is effectively N copies of the same form which is considerably more

manageable. However, what exactly is V (r) for each electron? For an electron close to

the nucleus, we know it should "see" much of the nuclear charge. For an electron far from

the nucleus, we know it should "see" a charge e as the nuclear charge is screened by the
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remaining electrons. An example of a model V (r) and its charge distribution Z(r) is given

in atomic units by [12]:

V (r) = −Z(r)
r

− αc
2r4

(1− e−(r/rc)
6
) (2.4)

Z(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e
−a2r (2.5)

where αc is the static dipole polarizability of the positive-ion core, rc is a cutoff radius,

and constants ai where i ∈ {1, 2, 3, 4} are atom-dependent and orbital angular momentum

l-dependent parameters. Note that for large r, V (r) approaches the familiar 1/r Coulomb

potential. For those interested in doing calculations with this model potential, numerical

tools are your friend and the values for αc, rc, and all the ai are listed in [12].

The fine structure Hamiltonian

The fine structure Hamiltonian arises from the interaction between the spin magnetic mo-

ment of an atom’s electron, µS , and the magnetic field experienced by the electron as a

result of its orbit about a charged environment. The fine structure Hamiltonian is [13]

Hfs = −µS · B (2.6)

= −
(
−µBgS

ℏ
S
)
·
(

1

mc2er

∂V (r)

∂r
L
)

(2.7)

=
µBgS
mc2ℏer

∂V (r)

∂r
L · S (2.8)

where µB = eℏ/2me is the Bohr magneton, gS ≈ 2 is the electron g-factor, and m =

memn/(me+mn) is the reduced mass (me is the mass of an electron, mn is the mass of the

nucleus of the atom in question). The expression for Hfs above excludes Thomas precession,

a relativistic effect, which can be accounted for by replacing gS with gS − 1:
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Hfs =
µB(gS − 1)

mc2ℏer
∂V (r)

∂r
L · S (2.9)

≈ 1

2m2c2r

∂V (r)

∂r
L · S (2.10)

Now Equation 2.10 is our fine structure Hamiltonian. In actuality, this Hamiltonian is still

missing a term (the Darwin term), but we will stop here with just the spin-orbit contribu-

tion. In working with this Hamiltonian, you may find use of a simplified V (r) from that

in Equation 2.4 depending on your goal. For example, if computing the energy of high n

and l level, the valence electron is far from the nucleus and "sees" a 1/r potential, which is

considerably more simple to work with.

The hyperfine Hamiltonian

The hyperfine structure Hamiltonian arises from a similar −µ · B interaction, except now

we consider the interaction of the nuclear magnetic moment, µI , with the magnetic field

generated by the electrons about the nucleus [13]:

Hhfs = −µI · B (2.11)

= −
(
−µBgI

ℏ
I
)
· (−bJ) (2.12)

=
Ahfs

ℏ2
I · J (2.13)

where Ahfs = magnetic dipole hyperfine constant. To slightly higher order including the

electric quadrupole constant, Bhfs,

Hhfs =
Ahfs

ℏ2
I · J +Bhfs

3
ℏ2 (I · J)

2 + 3
2ℏ(I · J)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(2.14)
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Typically, constants Ahfs and Bhfs are measured experimentally.

Finding the energies and wavefunctions

So how do we acquire atomic energies and wavefunctions, specifically for alkali metal atoms?

There are several paths:

(1) Do it yourself from the bottom up. By "the bottom up," I mean starting from

a theoretical foundation. In other words, solve the Schrödinger equation numerically

using the Hamiltonian(s) in this subsection with your favorite program.2

(2) Do it yourself from the top down. By "the top down," I mean starting from

empirical formulae that do a pretty good job of approximation. This path is par-

ticularly useful for calculating the transition frequency between two atomic Rydberg

levels (n ⪆ 10), for example, where hyperfine energy corrections matter less because

the electron is, on average, further from the nucleus. One such empirical formula is a

slightly modified Bohr formula with quantum defect δl,

E0(n, l) = − Ry

(n− δl)
2

(2.15)

where the mass-corrected Rydberg constant, Ry, is

Ry =
1

2

e4memn

16π2ϵ20ℏ2(me +mn)
(2.16)

Equation 2.15 approximates the energy levels of alkali metal atoms using an empirical

"fudge factor," δl, which is an actual number you should look up. You should think

of n − δl as an effective principle quantum number. For l ≥ 3, δl ≈ 0 as the electron

wavefunction has most of it amplitude located outside the atomic core. Thus, most of

2. Reference [11] contains additional information about solving the Schrödinger equation numerically,
including an exercise where the numerical solution is carried out using a spreadsheet!
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the time the electron "sees" the core as a single proton, thereby reducing the energy

formula to the hydrogen case. Another such formula is the Landé formula [14] for the

fine structure energy corrections to E0(n, l),

∆Efs =
Z2
i Z

2
o

(n− δl)
3l(l + 1)

α2Ry (2.17)

where α = (e2/4πϵ0)/ℏc ≈ 1/137 is the fine structure constant, Zi is the "inner"

atomic number for an electron close to the nucleus (Z), and Zo is the "outer" atomic

number for an electron far from the nucleus (1, for alkali metal atoms).

(3) Look it up. Literally, use Google. These resources have been tremendously helpful:

• Alkali D Line Data:

https://steck.us/alkalidata/

• ARC (Alkali.ne Rydberg Calculator):

https://github.com/nikolasibalic/ARC-Alkali-Rydberg-Calculator

2.1.2 Atom-atom interactions

Generally speaking, two neutral atoms interact rather weakly when they are both in their

ground states because each atom "sees" the other as, well, neutral, and neutral particles do

not directly experience a Coulomb force. Neutral atoms may experience dipole-dipole forces,

but for two neutral atoms in their ground states, the size of their dipoles is small compared

to typical atomic separations and thus these dipolar forces are weak. In the ground state,

electrons are separated from the nucleus by sub-nanometer length scales. This length scale

is a fraction of the distances between atoms of a typical trapped gas. A high trapped gas

density of 1014 atoms per cubic centimeter corresponds to a few hundreds of nanometers

separation between atoms, still much larger than the electron-nucleus separation and hence

why neutral ground state atoms are weakly interacting.
9



However, interactions between excited atoms are perhaps a bit more interesting. In an

excited atom, the valence electron orbit is considerably further from the nucleus. In the

presence of another excited atom, both atoms’ valence electrons can now "see" a distinction

between the other atoms’ negatively charged valence electron and positively charge core as

a result of the distant valence electron orbit from the nucleus, giving rise to stronger dipolar

interactions between atoms.

This subsection will briefly overview the interactions between Rydberg atoms, where the

principle quantum number n ⪆ 10, and the two primary interactions in the short range and

long range limiting cases [15]:

(1) The resonant dipole-dipole interaction ∝ 1/R3 (short range)

(2) The van der Waals interaction ∝ 1/R6 (long range)

Pair state energies

Two atoms located at R1 and R2 interact via the dipole-dipole interaction [16, 17]:

V (R) =
1

4πϵ0

(
d1 · d2 − 3(d1 · n)(d2 · n)

R3

)
(2.18)

where di is the dipole matrix element for the first atom (i = 1) for some Rydberg to Rydberg

state transition |r1⟩ → |r1′⟩ and second atom (i = 2) for some Rydberg to Rydberg state

transition |r2⟩ → |r2′⟩, R = R2 − R1, and n = R/R.

We know the Rydberg state energies for individual atoms from the previous subsection,

but now we’d like to know: what is the energy for pairs of Rydberg atoms? Let’s say the

energy for some generic Rydberg state |r⟩ is Er for an individual atom. In the absence of

dipole-dipole interactions, we call two of these Rydberg atoms a pair state |r⟩ ⊗ |r⟩ = |rr⟩

with energy Er + Er = 2Er. Just to rephrase the previous sentence slightly more overtly,

pair states are defined in the absence of atom-atom (i.e. dipole-dipole) interactions. As
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soon as we include the dipole-dipole interaction from Equation 2.18 in our calculations, we

perturb the pair states. The resulting eigenstates actually become admixtures of pair states,

and the resulting eigenenergies deviate from the initial pair state energies. Only if our two

atoms are sufficiently far apart do the eigenstates and eigenenergies approach pair states

whose energies are the sum of individual Rydberg state energies, and this is because the

dipole-dipole interaction goes to zero with large R meaning the atoms no longer interact!

So how do we calculate the eigenstates and eigenenergies of two Rydberg atoms shoved

together? Let’s revisit the parameters defined shortly after Equation 2.18. Let the energies

for the individual atom Rydberg states |r1⟩, |r1′⟩, |r2⟩, and |r2′⟩ be E1, E1′ , E2, and E2′ ,

respectively. Since we are considering the |r1⟩ → |r1′⟩ transition for the first atom and the

|r2⟩ → |r2′⟩ for the second atom, this means we ought to consider the pair states |r1r2⟩ with

energy E1 + E2 and |r1′r2′⟩ with energy E1′ + E2′ . We can find how V (R) mixes this pair

states by solving for the eigenvalues and eigenvectors of the Hamiltonian [18]

H =

 0 V (R)

V (R) ∆

 (2.19)

where ∆ is called the "energy defect" [19] and is given by the difference in pair state energies:

∆ = E1′ + E2′ − E1 − E2 (2.20)

Conceptually, this Hamiltonian says "there are two states: one at zero energy and one at

energy ∆, and they are coupled by the interaction V (R)."3 So, solving for the (normal-

ized) eigenvectors (Ψ±) and eigenvalues (λ±) of this Hamiltonian give the eigenstates and

eigenenergies of the two interacting Rydberg atoms:

3. In reality, we have set the energy of the |r1r2⟩ state, E1 +E2, equal to zero for simplicity. If you want
to calculate energy shifts on an absolute scale, note that you will need to add E1 + E2 to the eigenenergies
you solve for at the end!
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Ψ± =


−∆±

√
∆2+4V (R)2

V (R)

√
8+ 2∆

V (R)2

(
∆∓

√
∆2+4V (R)2

)
2√

8+ 2∆
V (R)2

(
∆∓

√
∆2+4V (R)2

)

 (2.21)

λ± =
∆±

√
∆2 + 4V (R)2

2
(2.22)

Note that the top entry and bottom entry of Ψ± give the amplitude contribution of the

|r1r2⟩ state and |r1′r2′⟩ state to the overall eigenstate, respectively. In this form, these

eigenstates and eigenenergies do not provide a ton of intuition. However, these expressions

are simplified considerably in limiting cases.

The resonant dipole-dipole interaction

In the limit V (R) ≫ ∆, the eigenstates and eigenenergies become

Ψ± =

±1√
2

1√
2

 (2.23)

λ± = ±V (R) (2.24)

This limit is also considered the "short range" limit where the distance between atoms R is

small, meaning V (R) is large. In this limit, the eigenstates are mixtures of our original pair

states: |Ψ±⟩ = ± 1√
2
|r1r2⟩ + 1√

2
|r1′r2′⟩. The eigenenergies λ± = ±V (R) = ±C3/R

3. The

coefficient C3 is called a dispersion coefficient that scales like n4 where n is the principle

quantum number. This limit is additionally known as the resonant dipole-dipole regime. As

V (R) ≫ ∆, we can think of our initial pair states as nearly degenerate, or "resonant."

The van der Waals interaction

In the limit V (R) ≪ ∆, the eigenstates and eigenenergies become

12



Ψ+ ≈

0
1

 Ψ− ≈

−1

0

 (2.25)

λ+ = ∆+
V (R)2

∆
λ− = −V (R)2

∆
(2.26)

This limit is also considered the "long range" limit where the distance between atoms R is

large, meaning V (R) is small. In this limit, the eigenstates are nearly our original pair states

(up to a phase). The eigenenergies both scale like V (R)2/∆ = C6/R
6 as a result of induced

dipole-dipole interactions, where C6/R
6 is called the van der Waals interaction and often

pops up as a potential term when dealing with interacting Rydberg atoms. The coefficient

C6 is also called a dispersion coefficient, and it scales like n11. Wow! This scaling is one of

the reason why we like Rydberg atoms—they interact strongly!

Rydberg blockade

The strong interactions between Rydberg atoms leads to an effect that is a foundational pillar

of the work presented in this thesis: Rydberg blockade. Conceptually, Rydberg blockade

can be boiled down to the following definition: if you’ve excited one atom to a Rydberg

state, you can’t excite a second atom to a Rydberg state within a certain radius of the first

atom. In other words, Rydberg blockade occurs when atom-atom interactions are sufficiently

strong to energetically shift the two-Rydberg state out of resonance with the excitation drive.

Mathematically, this statement means the energy shift of the two-Rydberg state, C6/R
6

(assuming the van der Waals regime), must exceed the larger of either ℏΓr or ℏΩ, where

Γr is the natural linewidth of the Rydberg state and Ω is the excitation linewidth [20].4

4. This Ω is the same as the Rabi frequency of the excitation drive, which we will talk about in the next
subsection!
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Figure 2.1: Rydberg blockade. Assuming the van der Waals regime and some drive
depicted by red arrows, a pair state of two Rydberg atoms |rr⟩ is allowed only if they are
sufficiently separated. As the interatomic distance, R, decreases, the energy E of the pair
state |rr⟩ shifts appreciably by C6/R

6 such that the drive is no longer in resonance with
exciting two Rydberg atoms! This effect is Rydberg blockade. Take note of two items that
are not depicted here: (1) |rg⟩ is the same energy as |gr⟩, but has been omitted for simplicity,
and (2) the drive and the atomic states have linewidths, so in reality the red arrows and blue
lines are "fuzzy." This fuzziness means that Rydberg blockade radius isn’t a hard radius per
say, and there is a chance two Rydberg atoms could still be excited.

Figure 2.1 depicts a pictorial representation of Rydberg blockade. Often times, Ω > Γr as

Rydberg states are quite narrow, or long-lived. Thus, the Rydberg blockade radius Rb within

which additional Rydberg excitations are suppressed is

Rb =

(
C6

ℏΩ

)1
6

(2.27)

This radius can be more than 10 microns, which is humongous compared to the size of a

ground state atom (sub-nanometer) and convenient for introducing nonlinearities into atomic

gases that are experimentally practical in size.

Pair state calculation tools
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In reality, there are many pair states that need to be considered when carrying out pair

state calculations. Fortunately, there are resources to make life easier in terms of calculating

eigenstates and eigenenergies as a function of the interatomic distance, C3 and C6 dispersion

coefficients, and more. One such resource is listed below.

• Pairinteraction - A Rydberg Interaction Calculator [21]:

https://www.pairinteraction.org/pairinteraction/sphinx/html/index.html

2.1.3 Atom-field interactions

Atoms have multiple, controllable degrees of freedom that make them a widely appealing

platform for atomic, molecular, and optical physicists. Most of this control is enabled by

the interactions of atoms with electromagnetic fields, for which we have even more tools to

control! After an overview of some relevant terminology, this subsection will detail several

key atom-field interactions:

(1) The AC Stark effect

(2) The DC Stark effect

(3) The DC Zeeman effect

The language of light-matter interactions

The dipole approximation. This approximation applies to atoms in an oscillating electric

field E(t), such as that of light, with wavelength λ. The approximation is that λ is much

greater than the size of the atom, thereby removing any spatial dependence from the inter-

action between the atom and E(t), leaving only temporal dependence. This approximation

is also called "the electric dipole approximation."
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Rabi frequency. The Rabi frequency, typically represented by the symbol Ω, is an angular

frequency that describes the state probability oscillation in a two-level system driven on

resonance. For example, an atom driven between some state |a⟩ and some state |b⟩ with

a laser of frequency ω and electric field E(t) = E0 cosωt will oscillate between |a⟩ and |b⟩.

This oscillation is called Rabi flopping. Assuming the atom initially began in |a⟩ and the

|a⟩ → |b⟩ transition is driven on resonance, the probability of finding the atom in |b⟩ is

sin2 (Ωt/2). Here, the Rabi frequency is defined as

Ω = ⟨a| er · E0 |b⟩ /ℏ = (d · E0)/ℏ (2.28)

where E0 = E0ê is the electric field vector, d = ⟨a| er |b⟩ is the transition dipole matrix

element between the states |a⟩ and |b⟩, e is the charge of the electron, and r is the position

of the atom’s valence electron relative to the atom’s center of mass. Note that er is an

electric dipole moment, which is why the approximation in the previous paragraph is called

the "dipole" approximation. Additionally note that 1) the greater the laser intensity, the

larger the Rabi frequency as it depends on the electric field amplitude, 2) Ω is a coupling

term and is typically found in the off-diagonal entries of Hamiltonians to represent a coupling

between two orthogonal states, 3) Ω can be a complex number, and 4) you may see Ω quoted

as 2π times some number in frequency units (e.g. MHz) to expressly convey Ω is an angular

frequency. The mathematics in this paragraph and the concept of the Rabi frequency will

be revisited in greater detail in Chapter 3.

π and π/2 pulses. The previous paragraph explained an example where the probability

of finding an atom in a state |b⟩ is sin2 (Ωt/2). Therefore, the probability of finding an

atom in a state |a⟩ is cos2 (Ωt/2) as the total probability of finding the atom in some state

must be 1 (i.e. sin2 (Ωt/2) + cos2 (Ωt/2) = 1 at all times t. A π pulse is the application

of a drive for some time tπ such that Ωtπ = π. This pulse prepares the atom in the state
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cos (π/2) |a⟩ + sin (π/2) |b⟩ = |b⟩. In this case, a π pulse completely "flips" the state of the

atom from |a⟩ to |b⟩. A π/2 pulse is the application of a drive for some time tπ/2 such

that Ωtπ/2 = π/2. This pulse prepares the atom in the state cos (π/4) |a⟩ + sin (π/4) |b⟩ =
1√
2
(|a⟩+ |b⟩). In this case, a π/2 pulse prepares the atom in an equal superposition state of

|a⟩ and |b⟩.

Linewidth. Atomic states, cavities, and lasers all have "linewidths." In the case of atomic

states, the linewidth of the state is typically represented by the symbol Γ and is the rate of

spontaneous decay in free space in units of angular frequency. The energy distribution of

an atomic state is a Lorentzian function with a full width at half maximum (FWHM) of Γ.

If viewing an atomic level diagram, this is why "broad" or short-lived states are typically

depicted as thicker lines, and "narrow" or long-lived states are typically depicted as thinner

lines. Γ can be found by summing over Einstein A coefficients, where a single Einstein

A coefficient is the decay rate between two atomic levels |nl⟩ →
∣∣n′l′〉. The Einstein A

coefficient is defined as

Anl→n′l′ =
4e2ω2nl,n′l′

3ℏc3
max (l, l′)
2l + 1

|
〈
n′l′
∣∣ r |nl⟩ |2 (2.29)

where ωnl,n′l′ is the frequency difference between states |nl⟩ →
∣∣n′l′〉 and

〈
n′l′
∣∣ r |nl⟩ is the

radial matrix element. The linewidth of a state |nl⟩ is then given by the sum over all decay

channels:

Γnl =
∑

n′l′<nl

Anl→n′l′ (2.30)

where the lifetime of state |nl⟩ is given by 1/Γnl. Tools such as ARC as mentioned in

Subsection 2.1.1 can be used to calculate atomic state linewidths via the formulae above.5

5. A note particularly about spontaneous decay: so far we’ve claimed that there are many atomic states
that are eigenstates of the atomic Hamiltonians in Subsection 2.1.1. Then shouldn’t an excited state atom
stay excited forever because eigenstates don’t evolve in time? Well, we have disregarded interactions of the
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Scattering. When an atom absorbs a photon, the photon imparts momentum to the atom,

then the atom eventually spontaneously emits or "scatters" a photon into any direction (i.e.

a solid angle of 4π steradians). Absorption of many photons will on average cause atoms

to change momentum significantly. This effect can be utilized to cool atoms, as in the case

of creating a magneto-optical trap (MOT), or heat atoms, as in the case of aligning laser

beams to atomic clouds in which we will sometimes "blow the atoms away" by essentially

blasting them with resonant or near-resonant light via the path we want to align. Assuming

a single two-level atom driven by a laser with Rabi frequency Ω and detuning ∆, the rate Γsc

at which photons are scattered is the probability that an atom is excited times the natural

linewidth, Γ, of the excited state [11]:

Γsc =
Γ

2

Ω2/2

∆ + Ω2/2 + Γ2/4
(2.31)

The detuning, ∆, is related to the laser frequency, ω, and atomic resonance frequency, ω0, by

∆ = ω−ω0. The scattering rate Γsc is extremely relevant when imaging atoms. If you know

how many you photons you’ve collected in a given time period along with Γsc, then you can

back out useful experimental quantities like the atom number and density. The absorption

cross section of the atom, σ(ω), is

σ(∆) =
3πc2

2ω20

Γ2

∆2 + Γ2/4
(2.32)

As with both Γsc and σ(ω), atoms can scatter and absorb photons off-resonance because

atomic states have non-zero linewidths. When the laser is resonant with the atom (∆ = 0),

the above expression reduces to

atom with the electromagnetic field even in the absence of a drive. In other words, we have disregarded
interactions of the atom with the vacuum, which can fluctuate in energy due to the Heisenburg uncertainty
principle even though the vacuum state contains zero photons. So in some sense, you can think of spontaneous
emission as stimulated emission due to "quantum fluctuations" of the vacuum. Wild, huh?
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σ(0) =
6πc2

ω20
=

3λ20
2π

(2.33)

where λ0 = 2πc/ω0, the wavelength of the laser on resonance. This is a convenient metric to

remember: when a laser is resonant with an atom, the absorption cross section of the atom

is about λ20/2.

Selection rules. The selection rules are constraints on what transitions are possible in the

atom. Essentially, they are derived in evaluating the coupling between two states. For an

atom in an oscillating electric field E(t) = E(t)ê such as light, the additional term we need

to add to our atomic Hamiltonian is one that describes the interaction of the atom with the

electric field, which can induce transitions between atomic levels. We typically call this term

the "interaction Hamiltonian," HI = er · E(t). To find the coupling between some atomic

states |a⟩ → |b⟩, we sandwich the interaction Hamiltonian between states |a⟩ and |b⟩:

⟨b|HI |a⟩ = ⟨b| er · E(t) |a⟩ = eE(t) ⟨b| rr̂ · ê |a⟩ (2.34)

Note that the expression above is suspiciously reminiscent of the expression for the Rabi

frequency. That’s because it is, and we could substitute in the Rabi frequency in the ex-

pression above if we wanted to! However from here, we will instead use the spatial atomic

wavefunctions of states |a⟩ and |b⟩ to acquire ⟨b| rr̂ · ê |a⟩:

|a⟩ = Rna,laYla,ma
(2.35)

|b⟩ = Rnb,lbYlb,mb
(2.36)
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⟨b| rr̂ · ê |a⟩ =
∫ 2π

0

∫ π

0

∫ ∞

0
R∗
nb,lb

Y ∗
lb,mb

rr̂ · êRna,laYla,ma
r2 sin θ dr dθ dϕ (2.37)

Rni,li and Yli,mi
are the radial and angular wavefunction, respectively, of the state |i⟩ where

i ∈ {a, b}. Fortunately, if we actually wanted to evaluate this integral, we can be lazy and

have a computer program do it for us. However, the upshot here is that sometimes this

integral goes to zero, meaning the coupling ⟨b|HI |a⟩ is zero and the transition is forbidden.

The cases in which this integral is zero are rather specific, leading to specific transition

constrains we call the selection rules. Table 2.1 contains the selection rules for electric dipole

transitions between fine structure states and hyperfine structure states.

Fine structure Hyperfine structure

Interaction L · S I · J
Total angular momentum J = L + S F = I + J
Eigenstates |LSJMJ ⟩ |IJFMF ⟩
Energy scaling ∝ Z2 ∝ Z
Selection rules ∆L = 0,±1 (L = 0 ↮ 0) ∆I = 0

∆S = 0 ∆J = 0,±1 (J = 0 ↮ 0)
∆J = 0,±1 (J = 0 ↮ 0) ∆F = 0,±1 (F = 0 ↮ 0)
∆MJ = 0,±1 ∆MF = 0,±1

Table 2.1: Properties of electric dipole transitions. This table was inspired by [11].
Note that there are no constrains on changes in the principle quantum number, ∆n. Addi-
tionally note that here, capital letters represent total quantities over many electrons. The
case in which this concept becomes relevant is for ∆L versus ∆l. For a single electron,
∆l = ±1 (i.e. S to S, P to P, etc. transitions are forbidden). We typically write Rydberg
states as |LSJMJ ⟩ states since the electron orbit is further away from the nucleus in highly
excited atoms, thereby reducing the interaction of the electron with the nucleus and making
hyperfine structure calculations not strictly necessary. On the other hand, we typically write
lower energy states (e.g. the 5S1/2 and 5P3/2 states of 87Rb) as |IJFMF ⟩ states where
the electron interaction with the nucleus is more relevant as the electron is physically closer
to the nucleus. Thus, in terms of the angular momenta I and J , lower energy states are
written in the coupled basis whereas Rydberg states are written in the uncoupled basis. If
considering a transition between a lower energy state and a Rydberg state, you will need to
apply the Wigner-Eckhart theorem to calculate quantities such as the dipole matrix element
for the transition.
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The AC Stark effect

The AC Stark effect, or "light shift," arises from the interaction between an atom and

an oscillating (i.e. AC) electric field, typically a laser. The interaction Hamiltonian that

describes this interaction is the same as the previous paragraph:

HI = er · E(t) (2.38)

Here, E(t) = E0 cosωt,6 where ω is the oscillation frequency of the electric field (or the

frequency of your laser). HI comes from the form −µ ·E, where here µ = −er and E = E(t).

The full Hamiltonian, H, becomes

H = Hatom +HI (2.39)

where Hatom = H0 + Hfs + Hhfs is the atomic Hamiltonian given by Subsection 2.1.1.

Let’s consider two atomic levels |a⟩ and |b⟩ with eigenenergies Ea = ℏωa and Eb = ℏωb,

respectively. In matrix form, the full Hamiltonian is

H =

⟨a|H |a⟩ ⟨a|H |b⟩

⟨b|H |a⟩ ⟨b|H |b⟩

 =

 Ea ℏΩcosωt

ℏΩ∗ cosωt Eb

 (2.40)

where the diagonal elements are simply the eigenenergies of the eigenstates |a⟩ and |b⟩,

⟨a|Hatom |a⟩ = Ea and ⟨b|Hatom |b⟩ = Eb, and the off-diagonal elements arise purely from

the interaction Hamiltonian ⟨a|HI |b⟩ = ℏΩcosωt and ⟨b|HI |a⟩ = ℏΩ∗ cosωt. The elements

⟨a|Hatom |b⟩ = ⟨b|Hatom |a⟩ = ⟨a|HI |a⟩ = ⟨b|HI |b⟩ = 0 because Hatom doesn’t induce

atomic state changes and HI is an odd function, so any integration over an even function

6. Note that we use E0 cosωt here instead of E0e
iωt because electric fields are real. Using the complex

representation of the field can potentially lead to incorrect conclusions (e.g. | cosωt| = cosωt is a very
different number than |eiωt| = 1). If your heart is set on working with complex numbers, just remember to
define your electric field in a way that extracts the real component.
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times HI will be odd and thus zero.7 Note that we have inserted the Rabi frequency, Ω into

the expression above where Ω is defined in Equation 2.28.

Ideally, we’d like to find the eigenvalues of this Hamiltonian to see how the presence of

an AC electric field changes our eigenenergies. However, there are some simplifications we

can make first with the goal of eliminating time-dependence in particular:

(1) Subtract Ea. Instead of working with absolute energies Ea and Eb, we are now going

to work with relative energies by subtracting Ea from the diagonal elements. All that

is happening here is a redefinition of our state energies, which does not impact the

off-diagonal terms. Now our Hamiltonian is

H =

 0 ℏΩcosωt

ℏΩ∗ cosωt Eb − Ea

 =

 0 ℏΩcosωt

ℏΩ∗ cosωt ℏω0

 (2.41)

where ω0 = ωb − ωa is the transition frequency between |a⟩ and |b⟩.

(2) Factor out ℏ. Since all terms of our Hamiltonian contain a factor of ℏ, we’re just

going to factor them out. This step is a quick step, but will result in a more "typical"-

looking Hamiltonian. This step also emphasizes frequency terms instead of energy

terms, which can be useful since we directly measure frequencies instead of energies in

the lab anyway. Now our Hamiltonian is

H = ℏ

 0 Ω cosωt

Ω∗ cosωt ω0

 (2.42)

(3) The rotating frame transformation. Here, we are going to perform a unitary

transformation to the Hamiltonian that will put us in the frame rotating at ω, the field

7. ⟨a|a⟩ and ⟨b|b⟩ will always be an integrals over an even function regardless of whether |a⟩ and |b⟩ are
even or odd functions just as xn × xn = x2n will always be an even function regardless of whether n is even
or odd.

22



oscillation frequency (or laser frequency). We will use the unitary matrix

U =

1 0

0 eiωt

 (2.43)

The transformed Hamiltonian H ′ is

H ′ = UHU† + iℏ
∂U

∂t
U† (2.44)

= ℏ

1 0

0 eiωt


 0 Ω cosωt

Ω∗ cosωt ω0


1 0

0 e−iωt

+ iℏ

0 0

0 iω

 (2.45)

= ℏ

 0 e−iωtΩcosωt

eiωtΩ∗ cosωt ω0

+ iℏ

0 0

0 iω

 (2.46)

= ℏ

 0 e−iωtΩcosωt

eiωtΩ∗ cosωt ω0 − ω

 (2.47)

(4) The rotating wave approximation. Take note: this approximation is distinctly

different from the rotating frame transformation above. Let’s begin by splitting up

cosωt into its complex components:

cosωt =
1

2
(eiωt + e−iωt) (2.48)

plugging this expression into our transformed Hamiltonian (Equation 2.47) yields
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H ′ = ℏ

 0 Ω
2 (e

i(ω−ω)t + e−i(ω+ω)t)

Ω∗
2 (ei(ω+ω)t + e−i(ω−ω)t) ω0 − ω

 (2.49)

= ℏ

 0 Ω
2 (1 + e−i(2ω)t)

Ω∗
2 (ei(2ω)t + 1) ω0 − ω

 (2.50)

The terms e−i(2ω)t and ei(2ω)t are very high frequency (in actual frequency units, ω

is many THz if we assume the oscillating electric field is generated by a laser!). Thus,

we can drop these terms as they will average to zero over any reasonable interaction

time as Ω is typically on the MHz to GHz scale at most (at least, in the scope of

the work presented in this thesis). The dropping of these terms is the rotating wave

approximation. Now, the Hamiltonian is

H ′ = ℏ

 0 Ω
2

Ω∗
2 ω0 − ω

 = ℏ

 0 Ω
2

Ω
2 −∆

 (2.51)

where the detuning ∆ = ω − ω0 and we have assumed Ω to be real in the last step.

Now we have eliminated the time dependence from the Hamiltonian! Phew! The eigen-

values, λ±, of the Hamiltonian from Equation 2.51 are

λ± =
−ℏ∆
2

± ℏ
√
∆2 + Ω2

2
(2.52)

Typically, we talk about the AC Stark effect far from the atomic resonance where |∆| ≫ Ω.

In this limit, the eigenvalues become
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λ+ = 0 +
ℏΩ2

4∆
(2.53)

λ− = −ℏ∆− ℏΩ2

4∆
(2.54)

In words, these expressions mean that the AC Stark effect energetically shifts our initial

energies (i.e. 0 and −ℏ∆ from the diagonal elements of Equation 2.51) by ±ℏΩ2

4∆ . For red

detuned light (∆ < 0), the states energetically shift away from each other. For blue detuned

light, the states energetically shift toward each other.

In summary, this energetic shift of atomic states by ±ℏΩ2

4∆ due to a detuned, oscillating

electric field is the AC Stark shift, which can be quite useful for manipulating atomic states.

The DC Stark effect

The DC Stark effect [22] arises from the interaction between an atom and a DC electric field,

such as from electrodes. The interaction Hamiltonian that describes this interaction is

HI = er · E (2.55)

Here, E = E0ê. Once again, we will consider two atomic levels |a⟩ and |b⟩ with eigenenergies

Ea = ℏωa and Eb = ℏωb, respectively, and the full Hamiltonian is H = Hatom + HI as in

Equation 2.39 (except now HI is the interaction Hamiltonian above). In matrix form, the

full Hamiltonian is

H =

⟨a|H |a⟩ ⟨a|H |b⟩

⟨b|H |a⟩ ⟨b|H |b⟩

 =

 Ea ℏΩ

ℏΩ∗ Eb

→ ℏ

0 Ω

Ω ω0

 (2.56)

where ω0 = ωb − ωa and Ω is the Rabi frequency. This Hamiltonian is time-independent

already! Nice! We have made just a few simplifications from the second to last step to the
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last step in the equation above, namely 1) shifting the energy scale (i.e. subtracting Ea from

the diagonal elements), 2) factoring out ℏ, and 3) assuming Ω is real. The eigenvalues, or

eigenenergies, of this Hamiltonian, λ±, are

λ± =
ℏω0
2

±
ℏ
√
ω20 + 4Ω2

2
(2.57)

Note that the form of these eigenvalues looks suspiciously similar to the forms of both

Equations 2.22 and 2.52. This is because the forms of the Hamitlonians from whence all of

these eigenvalues were derived are essentially the same. The form of the Hamiltonian as in

Equation 2.56 is fairly common and worth remembering! Let’s take a look at two different

limits for λ± above:

(1) Ω ≪ ω0. This limit is the "weak field" limit. Remember, Ω is directly proportional

to the electric field amplitude, and Ω is small in this limit. The eigenvalues become

λ+ = 0− ℏΩ2

ω0
(2.58)

λ− = ℏω0 +
ℏΩ2

ω0
(2.59)

In words, these expressions mean that the DC Stark effect energetically shifts our

initial energies (i.e. 0 and ℏω0 from the diagonal elements of Equation 2.56) by ±ℏΩ2

ω0
,

very similar to the AC Stark effect. This shift is often rewritten in terms of a quantity

called the polarizability, α0, which scales like n7 where n is the principle quantum

number [16].8 This is why atoms which high principle quantum number (i.e. Rydberg

atoms) are extremely sensitive to electric fields!9 The state-dependent energy shift,

8. Ω depends on the dipole matrix element, which scales like n2. ω0 depends on the atomic level spacing,
which scales like n−3. So, the DC Stark shift of ±ℏΩ2

ω0
, and therefore the polarizability, scales like (n2)2

n−3 = n7.

9. If you happen to be a graduate student attempting to experimentally zero the electric field for your
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∆E, and the polarizability for a state |i⟩ are [23]

∆E = −1

2
α0E

2
0 (2.60)

α0 = 2
∑
j ̸=i

| ⟨i| er · ê |j⟩ |2

Ej − Ei
(2.61)

Note that ∆E is the state-dependent because α0 is state-dependent. In our two-

level example with states |a⟩ and |b⟩ above, α0 = 2
(ℏΩ/E0)

2

ℏω0 for state |a⟩ and α0 =

−2
(ℏΩ/E0)

2

ℏω0 for state |b⟩, leading to energy shifts ∆E = −ℏΩ2

ω0
and ∆E = ℏΩ2

ω0
for

states |a⟩ and |b⟩, respectively (the same conclusion we came to initially).

Additionally note that Equation 2.61 is awfully reminiscent of good old second-order

perturbation theory. Essentially, it is second-order perturbation theory, where the first

order is vanishing in this case of applying a weak electric field to a set of non-degenerate

states.

(2) Ω ≫ ω0. This limit is both the "strong field" limit and the "degenerate states" limit.

The eigenvalues become

λ± = ∓ℏΩ (2.62)

In words, this expression means the energy shift is linear in the electric field (as Ω ∝ E0)

for either strong electric fields or for all field magnitudes in the case of degenerate

atomic states.

In reality, atoms have many, many states. In order to calculate experimentally accurate

sensitive Rydberg atoms, you can tell when you’re close because your atomic spectra will look quadratic in
the electric field about zero!

27



DC Stark shifts, one must include all states that are energetically close to a state of interest

in the Hamiltonian. Once again, calculational tools like ARC can help you do this.

In summary, the DC Stark shift is quadratic in the electric field for weak fields and linear

in the applied electric field for strong fields (or degenerate states). This shift can be useful

for "splitting out" degenerate states, or as a metric for experimentally tuning electric fields

to zero.

The DC Zeeman effect

The DC Zeeman effect, or just "the Zeeman effect," arises from the interaction between

an atom and a DC magnetic field, such as from magnetic coils. We will consider only the

first order energy corrections in the weak field limits where 1) the atom-field interaction is

perturbative to the fine structure atomic Hamiltonian, and 2) the atom-field interaction is

perturbative to the hyperfine structure atomic Hamiltonian. In other words, we will examine

two cases where the energy shift due to the atom-field interaction is small compared to 1)

the fine structure splittings, and 2) the hyperfine structure splittings.

(1) Perturbation to fine structure states. The interaction Hamiltonian that describes

the Zeeman effect, under the assumption it is a small perturbation to the fine structure

Hamiltonian, is [13]

HI = −(µS + µL) · B (2.63)

=
µB
ℏ

(gSS + gLL) · B (2.64)

=
µB
ℏ

(gSSz + gLLz)B0 (2.65)

Here, µS = µBgS
ℏ S is the magnetic dipole moment due to the electron spin, µL =

µBgL
ℏ L is the magnetic dipole moment due to the electron orbit, µB = eℏ/2me is the
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Bohr magneton, and we have assumed the magnetic field B0 to be along the z-axis

in the last step above. The factors gS and gL are the electron spin and orbital g-

factors, respectively, where the "g-factors" are dimensionless proportionality constants

that essentially relate experimentally observed magnetic moments to their respective

angular momenta. HI comes from the form −µ · B, where here µ = µl + µs. Taking

the first order perturbation using the fine structure states |JmJ ⟩ yields the energy

shift, ∆E, due to the Zeeman effect:

∆E = ⟨JmJ |HI |JmJ ⟩ (2.66)

= µBgJmJB0 (2.67)

gJ = gL + (gS − gL)
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.68)

≈ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.69)

where we’ve plugged in the values gL ≈ 1 and gS ≈ 2 in the last step. Here, we

have basically skipped to the punchline without explicit algebra as derivations of the

Zeeman energy shift are fairly uniform across atomic physics and quantum mechanics

literature [11, 24, 13].

(2) Perturbation to hyperfine structure states. The interaction Hamiltonian that

describes the Zeeman effect, under the assumption it is a small perturbation to the

hyperfine structure Hamiltonian, is very similar to that of the fine structure case [25]:
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HI = −(µS + µL + µI) · B (2.70)

=
µB
ℏ

(gSS + gLL + gII) · B (2.71)

=
µB
ℏ

(gSSz + gLLz + gIIz)B0 (2.72)

=
µB
ℏ

(gJJz + gIIz)B0 (2.73)

Here, gI is the nuclear spin g-factor and I is the nuclear spin operator. Taking the

first order perturbation using the hyperfine structure states |FmF ⟩ yields the energy

shift, ∆E, due to the Zeeman effect:

∆E = ⟨FmF |HI |FmF ⟩ (2.74)

= µBgFmFB0 (2.75)

gF = gJ + (gI − gJ )
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
(2.76)

≈ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
(2.77)

where the last step simplification could be made because gI ≪ gJ [26].10 Once again,

we have basically skipped to the punchline.

Note that we haven’t mentioned the AC Zeeman effect at all. If atoms can couple to

oscillating electric fields, shouldn’t they be able to couple to oscillating magnetic fields?

10. gI ≈ −0.001 for 87Rb.
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Atoms do couple to oscillating magnetic fields which leads to magnetic dipole transitions

as opposed to electric dipole transitions, but we typically use only the language of electric

dipole transitions as magnetic dipole transitions are rather weak. However, there are still

instances in which magnetic dipole transitions are used, such as in coupling different Zeeman

sublevels or hyperfine states using microwaves.

In summary, the energy shift due to the weak field Zeeman effect is linear in the applied

magnetic field field for both fine structure and hyperfine structure states.

2.2 Cavities

In the context of atomic, molecular, and optical physics, cavities11 are used widely as a

tool for manipulating light and light-matter interactions [27]. In the lab, we often generate

our light-matter interactions via lasers at optical frequencies that excite atomic transitions.

Hence, this section will overview various mathematical tools and parameters that are useful

for characterizing optical cavities, which are generally structures comprised of two or more

mirrors that confine light.

2.2.1 Gaussian beams

Before we can examine how light behaves inside a cavity, we should first examine how light

behaves more generally. We know light must obey Maxwell’s equations, and from Maxwell’s

equations we can construct a wave equation for light. Solving this equation, the "paraxial

Helmholtz equation," gives us the mathematical form for what we call Gaussian beams,

monochromatic electromagnetic waves whose transverse field amplitudes follow Gaussian

functions (see Table 2.2). In other words, solving this equations basically gives us the

mathematical form of a laser beam, which turns out to be quite useful if you work with

11. You may hear "resonator," "Fabry-Pérot interferometer," or "etalon" in place of "cavity." In essence,
they all describe the same object.
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lasers. This subsection will overview some of the main ideas and mathematical expressions

that describe Gaussian beams, how they behave in free space, and how they transform

through optical elements.

E(r, z) = E0
ω0
ω(z)

exp

(
−r2

ω(z)2

)
exp

(
−i
(
kz + k

r2

2R(z)
− ψ(z)

))
(2.78)

Quantity Symbol Expression

Field amplitude, phase, and direction E0

Radial distance r

Axial distance z

Wavelength λ

Refractive index n

Waist radius ω0

Wave number k
2πn

λ

Rayleigh range zR
πω20n

λ

Beam radius ω(z) ω0

√
1 +

(
z

zR

)2

Radius of curvature R(z) z

(
1 +

(
z

zR

)2
)

Gouy phase ψ(z) arctan

(
z

zR

)
Table 2.2: Electric field of a Gaussian beam. This table was inspired by the "Gaussian
beam" page on Wikipedia. Note that the beam radius is defined by the radial distance
at which the field amplitude falls to 1/e of its value at r = 0, which corresponds with
1/e2 in intensity. Additionally note that the Rayleigh range is the axial distance where
ω(zR) =

√
2ω0. In summary, Equation 2.78 describes a Gaussian beam in free space.
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The language of light

The paraxial approximation. In basic laser alignment and cavity construction, we often

assume that light travels at small angles relative to some optical axis formed by optical

components. In other words, the angle, θ, between the wave vector, k, and the optical axis

is small, such that sin θ ≈ tan θ ≈ θ. Note that |k| = k = 2πn/λ is the wave number. This

"small θ" approximation is called the paraxial approximation.

ABCD matrices. Also called "ray transfer matrices," the ABCD matrices are a collection

of matrices that describe how optical elements transform the properties of a beam in the

paraxial regime [28]. While not limited to 2 × 2 matrices, the ABCD matrices are often

expressed as 2× 2 matrices with elements A, B, C, and D with determinant

AD −BC = 1 (2.79)

so long as rays enter and leave optical elements in media of the same refractive index. There

are two major instances in which we use the ABCD matrices: (1) to transform light as a ray,

and (2) to transform light as a Gaussian beam.

(1) Light as a ray. As a ray, the ABCD matrices transform the position and slope vector

of light:

rf
r′f

 =

A B

C D


ri
r′i

 (2.80)

where ri = r(zi) is the initial position relative to some optical axis and r′i =
dr(z)
dz

∣∣
z=zi

≈

θi is the initial slope. rf and r′f are the ray’s final position and slope, respectively.

(2) Light as a Gaussian beam. As a Gaussian beam, the ABCD matrices transform

the complex beam parameter [28]:
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qf =
Aqi +B

Cqi +D
(2.81)

where

q(z) = z + izR (2.82)
1

q(z)
=

1

R(z)
− iλ

nπω(z)2
(2.83)

Table 2.3 lists some common ABCD matrices. Note that the electric field formula for

a Gaussian beam of Equation 2.78 may also be written in a much simpler form (ex-

cluding the kz phase factor) using the complex beam parameter for ease of extracting

experimentally relevant quantities such as the waist and radius of curvature:

E(r, z) = E0
1

q(z)
exp

(
−ik r2

2q(z)

)
(2.84)

It is necessary to use ABCD matrices larger than 2× 2 when dealing with higher dimen-

sional spaces and misaligned optical elements [28, 29]. For instance, the work presented in

this thesis utilizes a twisted, non-planar, 4-mirror cavity in which both the x and y positions

and slopes become relevant. Thus, the vector to be transformed in a cavity such as this is



x

x′

y

y′


(2.85)

thereby necessitating 4 × 4 ABCD matrices. In the case of misaligned optical elements,

the misalignment can be captured by an additional ABCD matrix dimension. The general
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Transformation Matrix

Propagation by a distance d through constant refractive index

1 d

0 1


Reflection from a curved mirror with radius of curvature R

 1 0

− 2
R 1


Refraction through a thin lens with focal length f

 1 0

− 1
f 1


Table 2.3: ABCD matrices. Note that reflection from a curved mirror occurs at normal
incidence. R > 0 for concave mirrors and f > 0 for convex lenses. Notice how propagation
changes only a ray’s position r whereas reflection from a curved mirror and refraction through
a thin lens change only a ray’s slope r′.

transformation of a ray’s position and slope vector in one dimension becomes the 3×3 ABCD

matrix


rf

r′f

1

 =


A B E

C D F

0 0 1



ri

r′i

1

 (2.86)

where matrix elements E and F quantify the amount of misalignment. See Reference [28]

for additional details.

2.2.2 Is it a cavity?

Let’s say you’re in the lab, you pick up a few random mirrors, and mount them on an optical

table generally facing one another. Is it a cavity? We answer "yes" if a light ray can be

confined indefinitely between the cavity mirrors.12

12. This statement assumes perfectly reflective mirrors. In the case of somewhat transmissive mirrors, we
may still answer "yes, it’s a cavity" even if light cannot be confined indefinitely so long as light is transmitted
through the cavity mirrors before it can "leak off" a physical mirror edge.
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The stability criterion

A cavity that can confine a light ray indefinitely is called "stable." A cavity than cannot

confine a light ray indefinitely is called "unstable."13 The "stability criterion" is the criterion

that needs to be met in order for a cavity to be considered stable. This criterion can be

expressed mathematically by modeling the cavity as a matrix that transforms a light ray’s

position and slope vector in the ABCD matrix formalism. We define the optical axis as

the axis formed by connecting the center points of the mirrors, and the coordinate z as the

distance along it.14 After one round trip through the cavity, the ray’s initial position relative

to the optical axis and slope transform as in Equation 2.80.

So how do we determine if an arbitrary ray will be confined by the cavity forever? If

the ray is confined forever, its position and slope must not diverge after N round trips

through the cavity. The divergence of the position and slope physically corresponds to the

ray escaping from the cavity. Finite-sized mirrors that are spaced apart can’t confine rays

with infinite position and slope! After N round trips in the cavity, the ray’s position and

slope transform as

rf
r′f

 =

A B

C D


N ri

r′i

 (2.87)

=
1

sinϕ

A sinNϕ− sin (N − 1)ϕ B sinNϕ

C sinNϕ D sinNϕ− sin (N − 1)ϕ


ri
r′i

 (2.88)

where

13. Some may even say "there is no cavity."

14. Note that the optical axis may not be a line that extends to infinity. For example, a three-mirror cavity
forms an optical axis that looks like a triangle!
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cosϕ =
A+D

2
(2.89)

we have kept elements A, B, C, and D as general coefficients for now, but will plug in

meaningful values later. Here, we have utilized a result from [30] to acquire the N th power

of the ABCD matrix based on Sylverster’s theorem.

If ϕ is complex, rf and r′f diverge as N → ∞ because the sine terms like sinNϕ/ sinϕ =

(eiNϕ − e−iNϕ)/(eiϕ − e−iϕ) then contain a real part that blows up.

If ϕ is real, rf and r′f do not diverge asN → ∞ because the sine terms like sinNϕ/ sinϕ =

(eiNϕ − e−iNϕ)/(eiϕ − e−iϕ) are then oscillatory.

Thus, ϕ must be real in order for rays to be forever confined within the cavity, leading

to the stability criterion −1 ≤ cosϕ ≤ 1, or

− 1 ≤ A+D

2
≤ 1 (2.90)

The stability criterion for a two-mirror cavity

In order to determine the stability criterion for a two-mirror cavity, we first need to determine

the round trip ABCD matrix for a such a cavity. From the ABCD matrices in Table 2.3, we

can construct the round trip matrix of a cavity comprised of two mirrors, one of radius R1

and one of radius R2, separated be a distance L by multiplying the ABCD matrices for the

individual cavity components in succession:

A B

C D

 =

1 L

0 1


 1 0

−2/R2 1


1 L

0 1


 1 0

−2/R1 1

 (2.91)

=

1− 4L
R1

− 2L
R2

+ 4L2

R1R2
2L− 2L2

R2

− 2
R1

− 2
R2

+ 4L
R1R2

1− 2L
R2

 (2.92)
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Physically, the ABCD matrix above corresponds to a ray that reflects off the first mirror,

propagates across the cavity length, reflects off the second mirror, then propagates across

the cavity length once more.15 Note that the order of these operations read right to left in

Equation 2.91 as right to left is the order in which the matrices will act on a ray’s position

and slope vector. The stability criterion is thus

−1 ≤ A+D

2
≤ 1 (2.93)

↓ (2.94)

−1 ≤ 1− 2L

R1
− 2L

R2
+

2L2

R1R2
≤ 1 (2.95)

↓ (2.96)

0 ≤ 1− L

R1
− L

R2
+

L2

R1R2
≤ 1 (2.97)

↓ (2.98)

0 ≤ g1g2 ≤ 1 (2.99)

where

g1 = 1− L

R1
(2.100)

g2 = 1− L

R2
(2.101)

Figure 2.2 depicts a visual representation of this stability criterion for different combina-

tions of g1 and g2, corresponding with different choices of L, R1, and R2.

15. We could equally have written down these matrices in a different order, for example starting with
propagation first or at the middle of the cavity instead of an end. The result will be the same!
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plane-parallel
(1, 1)

confocal
(0, 0)

hemispherical
(0, 1)

concentric
(-1, -1)

concave-convex
(2, 1/3)

(-1, 0)

0 g1

g2
 

Figure 2.2: Cavity stability. Light can be confined in cavities whose geometries obey the
stability criterion. Stable cavities lie in the blue region. Figure used from "Optical cavity"
Wikipedia webpage.
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2.2.3 Cavity parameters

The subsection will overview common cavity parameters and how to find them both theo-

retically and experimentally. This overview will include the following main ideas:

(1) Free spectral range

(2) Linewidth

(3) Finesse

(4) Transverse modes

Quantity Unit Symbol Expression

Free spectral range frequency FSR Fκ =
c

L

Linewidth frequency κ
FSR

F
=

1−R

π
√
R
FSR

Finesse unitless F FSR

κ
=

π
√
R

1−R
≈ 2π

2T

Table 2.4: Cavity parameters. The expression for the FSR holds for an cavity, where c is
the speed of light and L is the round trip cavity length. The expressions for the linewidth
and finesse were derived explicitly in the context of a cavity comprised of two lossless mirrors,
each with reflectivity R and transmittivity T .

Free spectral range

(1) Theory. The free spectral range is deeply intertwined with the concept of longitudinal

cavity modes, the modes along the cavity axis. Longitudinal modes, or resonances,

occur any time the phase of an electromagnetic wave returns to itself (modulo 2π)

after one round trip through the cavity. In blunt terms, "the wave fits exactly inside

the box." Mathematically, this resonance condition is
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kL = 2πL/λ = 2πn (2.102)

where n is an integer and kL = 2πL/λ is the phase accrued by an electromagnetic

wave after propagation through a distance L, which in this case is the round trip

distance through the cavity. The free spectral range is the frequency difference be-

tween two adjacent longitudinal modes. Utilizing the common relationship c = λν and

Equation 2.102 above,

FSR = ν2 − ν1 (2.103)

= c

(
1

λ2
− 1

λ1

)
(2.104)

= c

(
n+ 1

L
− n

L

)
(2.105)

=
c

L
(2.106)

For two-mirror cavities, you may see an expression like FSR = c
2d instead, which is

equivalent to the expression above. Often times, d will be defined as the cavity length

in the two-mirror case because it is easy to physically measure. So, to acquire the

round trip distance through the cavity (i.e. L), d needs to be multiplied by 2. Note

also that the longitudinal modes of two-mirror cavities are standing waves, whereas

the longitudinal modes of three or more mirror cavities are running waves, but can be

operated in a standing wave fashion if necessary [31]. Just as standing waves can exist

in free space by counterpropagating two laser beams, standing wave modes exist in a

two-mirror cavity because the "right" traveling waves interfere with the "left" traveling

waves. In a three or more mirror cavity, there is only either "right" or "left" traveling

waves unless one explicitly excites both directions by sending two laser beams into the
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cavity such that they counterpropagate inside. However, running wave cavities are

advantageous in that running waves do not create intracavity intensity gradients as in

the case of standing wave cavities—a favorable feature if you are trying to uniformly

illuminate a cloud of atoms in the cavity, for example.

(2) Experiment. How do I find the FSR of my real life cavity?

• Measure the cavity length.

Literally, take a ruler, measure the round trip distance by holding it up to the

cavity, then plug this distance in for L in Equation 2.106. This method isn’t the

world’s best measure of the FSR, but it should provide a decent estimate.

• Estimate by tuning the laser.

This method assumes a laser is aligned to the cavity, there is a measure of the

cavity output (e.g. spectra or imaging), the laser frequency is tunable via either

temperature or current, and there is a measure of how the laser frequency changes

with temperature or current (e.g. from a laser spec sheet). Identify some obvious

mode in your measure of the cavity output (the fundamental Gaussian mode is

usually a good choice), then tune the laser via either temperature or current until

that same mode appears again, note the temperature or current change, then map

that change to a frequency using your laser spec sheet.

More specifically, let’s say you initially sweep the laser current, and therefore

frequency, repeatedly to view the cavity spectra using a photodiode and oscillo-

scope. If the laser is not very well aligned to any one particular cavity mode,

there are probably a lot of different Lorentzian peaks which correspond to the

cavity’s various modes that you happen to be exciting. Tweak the alignment of

the laser to the cavity until one mode is fairly distinguishable (e.g. its Lorentzian

peak is by far the tallest), then tweak the current sweep to center your chosen
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mode on a definitive marking on the oscilloscope screen. It may be the case

that changing the overall current level will not change the frequency enough to

bring your chosen mode of the next FSR into view, so let’s say you choose to

change the laser temperature—which typically has a larger impact on the fre-

quency change—without changing the current sweep. So, the laser frequency will

be locally sweeping due to the current, but the center frequency of this sweep

will change due to the temperature. Once you change the laser temperature, the

peaks on the oscilloscope screen will move as a result of the laser’s center fre-

quency changing. After some amount of temperature tuning, a mode that looks

like your original chosen mode should appear of the oscilloscope screen—this is

your chosen mode, but of the next FSR over! Tune the temperature such that

this mode is centered on the definitive marking on the oscilloscope screen you

chose earlier. Record the temperature change, map the temperature change to a

frequency change, and the frequency change is the FSR. Words of caution: (1)

make sure temperature tuning won’t damage your laser (e.g. if you reduce the

temperature, make sure it doesn’t dip below the dew point. Otherwise, water will

condense on the laser!), (2) the laser frequency can be sensitive to temperature

tuning, so go easy on turning temperature knobs, and (3) it is possible the laser

will "mode hop," or jump in frequency, while being temperature tuned. If this

happens, I leave it to you to debug. Have fun!

• Use a frequency ruler in the cavity spectra.

This method also assumes a laser is aligned to the cavity, there is a measure of

the cavity spectra across at least one full FSR, and there is a way to modulate the

laser frequency (e.g. via current modulation or using an electro-optic modulator).

If you frequency modulate the laser, frequency sidebands should appear on either

side of every mode in the cavity spectra which you can use as a "frequency ruler."
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In other words, if you modulate the laser by 10 MHz, then you know the "dis-

tance" between then first order sideband and the carrier is 10 MHz in the spectra.

Save an oscilloscope trace that contains your frequency-modulated modes across

a full FSR, taking note which two Lorentzian peaks correspond with one FSR

(e.g. the fundamental Gaussian of one FSR and the fundamental Gaussian of the

next FSR; it may be difficult to tell which peak in the spectra corresponds with

the fundamental Gaussian without imaging the cavity output, but it is usually

the peak that is the tallest if the laser is well-aligned to the cavity). Read the

trace into your favorite analysis software (e.g. Mathematica, Python), fit the two

peaks that correspond with one FSR and at least one sideband of one of these

peaks with a Lorentzian function, and extract the distances between (1) the two

peaks that correspond with one FSR, and (2) a sideband and carrier. Note that

these distances will be in "oscilloscope units" that are not particularly meaning-

ful. However, the "distance" in frequency between a sideband and carrier is the

modulation frequency you selected earlier. Thus, you can find how "oscilloscope

units" transform to meaningful frequency units, then transform the distance be-

tween the two peaks that correspond with one FSR from "oscilloscope units" to

frequency units. The transformed distance in frequency units is the FSR.

Linewidth

(1) Theory. Typically represented by κ in angular frequency units, the linewidth of a

cavity is the FWHM of the cavity’s transmission function and a measure of the lifetime

of photons inside the cavity. In other words, 1/κ is the lifetime of photon in the cavity

before it is transmitted through a cavity mirror. In order to find the expression for the

cavity transmission, we consider a two-mirror cavity of length d. We assume the first

(second) mirror has reflection coefficient r1 (r2) and transmission coefficient t1 (t2).
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These coefficients quantify the fraction of the electric field (not intensity) that reflects

off and transmits through the mirrors. We additionally assume some intracavity loss

medium with coefficient l, which quantifies the fraction of the field that passes through

the medium. We can now write down a system of self-consistent equations to solve for

the reflected field off the cavity ER, the left circulating field inside the cavity ECL,

the right circulating field inside the cavity ECR, and the transmitted field through the

cavity ET , assuming some laser drive with amplitude E0 and wave number k = 2π/λ:

ECR = E0t1le
ikd + ECLr1le

ikd (2.107)

ECL = ECRr2le
ikd (2.108)

ER = −E0r1 + ECLt1 (2.109)

ET = ECRt2 (2.110)

where eikd is the phase accrued by propagation through the cavity length. The three

equations above contain three unknown variables (ER, EC , and ET ). Thus, we can

solve for these three unknown variables, such as in Mathematica, yielding the solutions

Figure 2.3: Fields in a two-mirror cavity. We can solve for the reflected field ER,
transmitted field ET , right circulating field ECR, and left circulating field ECL given some
laser drive with amplitude E0. Remember, the locations where all of these fields are defined
matter!
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ECR = E0
t1le

ikd

1− r1r2l2e2ikd
(2.111)

ECL = E0
r2t1l

2e2ikd

1− r1r2l2e2ikd
(2.112)

ER = E0

(
r2t

2
1l
2e2ikd

1− r1r2l2e2ikd
− r1

)
(2.113)

ET = E0
t1t2le

ikd

1− r1r2l2e2ikd
(2.114)

Note that you can utilize the method above to solve for the reflected, circulating, and

transmitted fields in general for cavities, but it is imperative that you (1) explicitly

define positions for where each field will be calculated (e.g. the left circulating field

is defined immediately to the right of the left mirror), and (2) obey the beam splitter

relations, which can flip the sign of some reflection coefficients (as in the case of Equa-

tion 2.109 where r1 is negative). Some sources [32, 33] will instead derive the reflected,

circulating, and transmitted fields from infinite sums of electric field components, but

I personally think the method above is more straightforward especially when dealing

with complicated cavity designs. We can now derive the cavity transmission function

in terms of intensities, where I ∝ |E|2 :
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IT
I0

=
|ET |2

|E0|2
=

(t1t2l)
2

1− 2r1r2l2 cos(2kd) + (r1r2l2)2
(2.115)

=
(t1t2l)

2

1− 2r1r2l2(1− 2 sin2(kd)) + (r1r2l2)2
(2.116)

=
(t1t2l)

2

(1− r1r2l2)2
1

1 + 4r1r2l2

(1−r1r2l2)2
sin2(kd)

(2.117)

=
T1T2L

(1−
√
R1R2L)2

1

1 + 4
√
R1R2L

(1−
√
R1R2L)2

sin2(kd)
(2.118)

where T1 = t21, T2 = t22, R1 = r21, R2 = r22, R1 + T1 = 1, R2 + T2 = 1, and L = l2.

This function is half its maximum value when

1

1 + 4
√
R1R2L

(1−
√
R1R2L)2

sin2(kd)
=

1

2
(2.119)

↓ (2.120)

kd = arcsin

√
(1−

√
R1R2L)2

4
√
R1R2L

(2.121)

Thus, the FWHM of the cavity transmission function is twice the value above. Max-

ima of the transmission function occur every time sin2(kd) = 0. Thus, the phase

between maxima is kd = π, corresponding with one FSR in frequency. Combining

Equation 2.121 with this fact, we can acquire the cavity linewidth κ in frequency:

κ = 2arcsin

√
(1−

√
R1R2L)2

4
√
R1R2L

FSR

π
(2.122)

which, if we assume no loss (L = 1), equal mirror reflectivities (R1 = R2 = R), and

highly reflective mirrors (R ≈ 1),
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κ = 2arcsin

√
(1−R)2

4R

FSR

π
(2.123)

≈ 2

√
(1−R)2

4R

FSR

π
(2.124)

=
1−R

π
√
R
FSR (2.125)

(2) Experiment. How do I find the linewidth of my real life cavity?

• Use a frequency ruler in the cavity spectra.

This method is similar to a method used for measuring the FSR of a cavity. It

assumes a laser is aligned to the cavity, there is a measure of the cavity spectra

across at least one cavity mode, and there is a way to modulate the laser fre-

quency to put first order sidebands on the cavity modes in the spectra. Let’s

say you modulate the laser, look at the cavity spectra on an oscilloscope, and see

sidebands appear on either side of a cavity mode. Save an oscilloscope trace of

the carrier and sidebands, read it into your favorite analysis software, and fit the

three mode peaks with Lorentzian functions. The distance, in frequency, between

a sideband and the carrier is the modulation frequency. Therefore, you know the

transformation between distance in "oscilloscope units" to distance in frequency

units. If you apply this transformation to the FWHM of one of the Lorentzian

peaks in "oscilloscope units," you will acquire the cavity linewidth in frequency

units. Note that the measured linewidth is actually a convolution of the laser

linewidth with the cavity linewidth. So, if you measure the linewidth with a par-

ticularly broad laser or have constructed a particularly narrow cavity, you will

likely need to deconvolve the two linewidths to attain the cavity linewidth.

Finesse
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(1) Theory. The finesse of a cavity is a measure of how "lossy" it is, where "loss" includes

transmission through cavity mirror(s), scattering or absorption via intracavity "junk,"

propagation at steep angles that causes light to literally "miss" mirror(s), and any

other mechanism by which light exits the cavity. A high finesse is indicative of low

loss, whereas a low finesse is indicative of high loss. For a cavity comprised of two

mirrors of equal reflectivity R and loss via transmission T only, the finesse is defined

as [32, 33]

F =
FSR

κ
=

π
√
R

1−R
(2.126)

Note that the finesse depends only on the reflective properties of the mirrors. For

highly reflective mirrors (R ≈ 1, T ≪ 1), we can make a convenient approximation

that is useful for remembering in the lab:

F =
π
√
R

1−R
=
π
√
1− T

T
≈ π

T
=

2π

2T
(2.127)

In words, for highly reflective mirrors, the finesse can be approximated by 2π divided

by the round trip loss! We approximated
√
1−T
T as 1

T above by taking the first order

of the Taylor series for
√
1−T
T about T = 0.

(2) Experiment. How do I measure the finesse of my real life cavity?

• Plug in mirror specs.

Literally, look at the spec sheet for the mirrors you’d like to use for your cavity,

extract their reflectivities, and plug the reflectivities in to the formula for the

finesse. The reflectivities quoted for mirrors will almost certainly be R (for in-

tensities), not r (for fields). This method will provide you with an estimate for

what finesse you should expect experimentally, but the experimental value may
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be different in reality due to dust, differences in the quoted reflectivity, and so on.

• Extract from the FSR and κ.

If you have measured the FSR and κ, you are essentially done! Plug these quan-

tities into Equation 2.126 to acquire the finesse.

• Ringdown.

This method assumes a laser is aligned to the cavity, there is a measure of the

cavity spectra across one cavity mode, and there is a a way to sweep the cavity

length over the cavity linewidth faster than it takes for light to escape. If you per-

form a sweep such as this (e.g. by ramping the voltage of a piezoelectric actuator

that controls the cavity length), the transmission will no longer be Lorentzian.

Instead, it will be a Lorentzian-like function that exhibits oscillations that de-

crease in magnitude on one side, or a "ringdown." The finesse can be extracted

from the fit function for this ringdown, which can be found in Reference [34].

Transverse modes

(1) Theory. In addition to longitudinal modes along the cavity axis, there are modes

perpendicular to the cavity axis called transverse modes [28]. These modes are charac-

terized by differing electric field profiles as viewed in the transverse planes of a cavity

(i.e. planes normal to the cavity axis). In other words, these are the modes you would

see if you looked directly at a laser beam bouncing around a cavity—the beam might

look like a typical Gaussian blob, a donut, or some other shape!16 These different

shapes are different transverse modes. The transverse modes often occur at different

frequencies as a result of the Gouy phase, an additional electric field phase that results

from propagation through a focus (i.e. the waist(s) of a cavity). The Gouy phase is

different for different transverse modes, resulting in non-degenerate transverse modes

16. Please do not look directly at a laser beam.
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for most cavity geometries.17 We will consider two main families of transverse modes

often observed in cavities: Hermite-Gaussian modes and Laguerre-Gaussian modes.

• Hermite-Gaussian modes.

The Hermite-Gaussian (HG) modes are the solutions to the paraxial Helmholtz

equation as written in Cartesian coordinates:

En,m(x, y, z) =E0
ω0
ω(z)

Hn

(√
2x

ω(z)

)
Hm

(√
2y

ω(z)

)

× exp

(
−x

2 + y2

ω(z)2

)
exp

(
−ik(x

2 + y2)

2R(z)

)
exp(iψ(z)) exp(−ikz)

(2.128)

where the Hi terms are Hermite polynomial of order i, ψ(z) is the Gouy phase,

and indices n,m refer to the x and y directions, respectively. Here, the Gouy

phase is

ψ(z) = (n+m+ 1) arctan

(
z

zR

)
(2.129)

• Laguerre-Gaussian modes.

The Laguerre-Gaussian (LG) modes are the solutions to the paraxial Helmholtz

equation as written in cylindrical coordinates:

El,p(r, ϕ, z) =E0C
LG
lp

ω0
ω(z)

(√
2r

ω(z)

)|l|

L
|l|
p

(
2r2

ω(z)2

)
× exp

(
− r2

ω(z)2

)
exp

(
−i kr

2

2R(z)

)
exp(iψ(z)) exp(−ilϕ)

(2.130)

17. A main focus of the research presented later in this thesis is to create a cavity in which transverse
modes are degenerate—a nontrivial task.
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where Llp are the generalized Laguerre polynomials, CLG
lp is a normalization con-

stant, ψ(z) is the Gouy phase, and indices l, p are the azimuthal index and radial

index, respectively. l can be any integer whereas p ≥ 0. The normalization

constant is

CLG
lp =

√
2p!

π(p+ |l|)!
(2.131)

and here, the Gouy phase is

ψ(z) = (|l|+ 2p+ 1) arctan

(
z

zR

)
(2.132)

While our resonance condition from Equation 2.102 still holds true for each individual

transverse mode, we consider a slightly modified version of this condition to calculate

the transverse mode frequencies relative to each other. For a two-mirror cavity of

length d, the round trip phase change δ is [32]

δ = 2kd− 2(ψ(z2)− ψ(z1)) = 2πq (2.133)

where we have imposed the round trip phase change must be equal to 2πq, where q is an

integer, in order for a transverse mode to be resonant. z1 and z2 are the z coordinates

of the first and second mirror, respectively, relative to the cavity waist. We can solve

for the resonance frequencies of the transverse modes by plugging in the expression(s)

for the Gouy phase and performing some simplifications.

For HG modes, the resonant frequencies of the transverse modes are

νnmq =

(
q + (n+m+ 1)

arccos±√
g1g2

π

)
c

2d
(2.134)
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For LG modes, the resonant frequencies of the transverse modes are

νlpq =

(
q + (|l|+ p+ 1)

arccos±√
g1g2

π

)
c

2d
(2.135)

In both Equations 2.134 and 2.135 above, g1 = 1 − d
R1

, g2 = 1 − d
R2

, the positive

sign is taken when g1, g2 > 0, and the negative sign is taken when g1, g2 < 0. Note

that there are many frequencies in which a given transverse mode can occur, and these

frequencies are separated by c
2d , or one FSR.

(2) Experiment. How do I find the transverse modes of my real life cavity?

• Combine imaging and spectra.

This method assumes a laser is aligned to the cavity, the laser frequency is both

tunable and sweepable, and the cavity output is sent to both a photodiode (to

observe spectra) and a camera (to observe the intensity profile of the output).

To identify which transverse mode a peak corresponds to in the spectra, tune the

laser frequency such that your selected peak in the spectra is the only peak the

laser sweeps over in frequency. As the laser sweeps over this peak, look at the

camera output on a monitor or computer. The transverse modes are fairly distinct

from one another, so you should be able to tell which transverse mode it is just

by the shape of the intensity profile! If instead you are interested in measuring

the transverse mode spacing in frequency, use the aforementioned method to first

identify the modes in the spectra, then use the "frequency ruler" trick mentioned

in previous parts of this subsection to acquire a frequency metric for spectra

measurements.
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CHAPTER 3

CAVITY QUANTUM ELECTRODYNAMICS

3.1 Quantum materials and cavity QED

In Chapter 2, we discussed atoms and cavities separately. Now, we are going to discuss

atoms in cavities, or cavity quantum electrodynamics (also known as "cavity QED" or

"cQED") [35]! When combined, atoms and cavities offer the essential ingredients for con-

structing quantum materials [36] made of light. Atoms offer their tunable interactions, and

cavities offer their ability to shape the energy landscape, or dispersion, of photons. To-

gether, these ingredients can be harnessed to create entangled photonic states, or quantum

materials, that exhibit strong correlations in time and space as we will see in Chapter 5.

This chapter will overview the theory behind atoms in cavities and how we can utilize it

to extract experimentally relevant information.

3.2 Common systems

3.2.1 A single two-level atom in a single mode cavity

This subsection will consider a single two-level atom in a single mode cavity. We will call the

two levels of the atom the "ground state" |g⟩ with energy ℏωg and the "excited state" |e⟩

with energy ℏωe. Remember, |g⟩ and |e⟩ are really spatial electronic wavefunctions, the ones

discussed in Subsection 2.1.1, for some states we have called the ground and excited state

here. In practice |g⟩ and |e⟩ might be the 5S1/2 and 5P3/2 states of 87Rb, respectively (which

is almost always the case for the work presented in this thesis). The cavity can host some

number of photons n in a single mode, corresponding with the photon state |n⟩. In other

words, |0⟩ means there are no photons in the cavity, |1⟩ means there is one photon in the

cavity, and so on. Photons are created with the creation operator a† and annihilated with
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the annihilation operator a. We will call the energy of this single cavity mode ℏωc, where

ωc is the angular frequency that corresponds with a particular transverse and longitudinal

mode, such as the fundamental Gaussian mode of some FSR.

As our system includes an atom, a cavity, and some interaction between the atom and

cavity photons, the full system Hamiltonian is the sum of the atomic Hamiltonian, cavity

Hamiltonian, interaction Hamiltonian, and a drive Hamiltonian [37] with strength ℏΩl and

frequency ωl.

H = Hatom +Hcav +Hint +Hdrive (3.1)

where

Hatom = ℏωg |g⟩ ⟨g|+ ℏωe |e⟩ ⟨e| (3.2)

Hcav = ℏωca†a (3.3)

Hint = er · E (3.4)

Hdrive = ℏΩl(e
−iωlta† + eiωlta) (3.5)

where Hint may look familiar from Subsection 2.1.3 when we discussed Stark effects. Phys-

ically, the drive Hamiltonian usually corresponds to some laser of frequency ωl that probes

the system. Without a drive, our system is stuck at 0 photons! Typically, this drive is

very weak and is often thought of as a perturbation to the full system Hamiltonian rather

than included in the full system Hamiltonian as we will see later in this chapter. However,

the drive must be included in the full system Hamiltonian when solving for the full time

dynamics of the system, which is why we will keep it around for now. We can write Hint

more explicitly in terms of states and operators as
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Hint = e(|g⟩ ⟨g| r |g⟩ ⟨g|+ |g⟩ ⟨g| r |e⟩ ⟨e|+ |e⟩ ⟨e| r |g⟩ ⟨g|+ |e⟩ ⟨e| r |e⟩ ⟨e|)

· êE0(a
† + a)

(3.6)

where we have utilized completeness to write r in terms of the atomic states. However,

⟨g| r |g⟩ = 0 and ⟨e| r |e⟩ = 0 as these are integrals over odd functions of r. Thus, Hint

simplifies to

Hint = |g⟩ ⟨e| ⟨g| er · êE0 |e⟩ a†

+ |g⟩ ⟨e| ⟨g| er · êE0 |e⟩ a

+ |e⟩ ⟨g| ⟨e| er · êE0 |g⟩ a†

+ |e⟩ ⟨g| ⟨e| er · êE0 |g⟩ a

(3.7)

However, the second and third terms in the equation above violate the conservation of energy!

So long as ⟨g| er · êE0 |e⟩ = ⟨e| er · êE0 |g⟩ ≪ (ℏωe−ℏωg), we can drop these terms and Hint

becomes

Hint = |g⟩ ⟨e| ⟨g| er · êE0 |e⟩ a† + |e⟩ ⟨g| ⟨e| er · êE0 |g⟩ a (3.8)

= ℏg(|g⟩ ⟨e| a† + |e⟩ ⟨g| a) (3.9)

where

g =
⟨g| er · êE0 |e⟩

ℏ
=

⟨e| er · êE0 |g⟩
ℏ

=
d · êE0

ℏ
(3.10)

E0 is defined to be the electric field magnitude at the location of the atom due to a single
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cavity photon, and d is the dipole matrix element between states |g⟩ and |e⟩. Now we can

write out the full system Hamiltonian with our newly simplified Hint:

H = ℏωg |g⟩ ⟨g|+ ℏωe |e⟩ ⟨e|

+ ℏωca†a

+ ℏg(|g⟩ ⟨e| a† + |e⟩ ⟨g| a)

+ ℏΩl(e
−iωlta† + eiωlta)

(3.11)

To simplify this Hamiltonian even further, we will set the ground state energy ωg to zero.

To include the real world effects of decay, we will incorporate two imaginary loss terms: one

that depends on Γ, the excited atomic state decay rate, and one that depends on κ, the

cavity decay rate. Now,

H = ℏ(ωe −
iΓ

2
) |e⟩ ⟨e|

+ ℏ(ωc −
iκ

2
)a†a

+ ℏg(|g⟩ ⟨e| a† + |e⟩ ⟨g| a)

+ ℏΩl(e
−iωlta† + eiωlta)

(3.12)

We can write the full Hamiltonian in matrix form by utilizing the |atom⟩ ⊗ |cavity⟩ states

of our system, where |g⟩ ⊗ |1⟩ = |g1⟩ is the state where the atom is in the ground state and

there is one photon in the cavity, for example.

If we consider only the states that contain up to one excitation, or the states that can

result from up to one photon bouncing around the atom-cavity system, only the states |g0⟩,

|g1⟩, and |e0⟩ are relevant. This collection of one-excitation states is called the first excitation

manifold.
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If we consider only the states that contain up to two excitations, or the states that

can result from up to two photons bouncing around the atom-cavity system, then we must

include the additional states |g2⟩ and |e1⟩. This collection of two-excitation states is called

the second excitation manifold.

If we consider only the states that contain up to three excitations... wait, how many

excitations do we actually need to consider theoretically? The number of excitations could

go on forever! Fortunately, there is a good rule of thumb, and it depends on what you are

interested in measuring experimentally. If you are interested in measuring the transmission

of photons through a cavity that you probe weakly with a laser, you need only consider one

photon. However, if you are interested in measuring quantities that depend on two or more

photons like temporal correlations, then you must utilize the full system Hamiltonian that

considers states with two or more excitations.

We will write down the full system Hamiltonian in matrix form considering states that

contain up to two excitations, as the work presented later in this thesis does not extend

beyond two-photon correlations. In matrix form, the full Hamiltonian is

H =



⟨g0|H |g0⟩ ⟨g0|H |g1⟩ ⟨g0|H |e0⟩ ⟨g0|H |g2⟩ ⟨g0|H |e1⟩

⟨g1|H |g0⟩ ⟨g1|H |g1⟩ ⟨g1|H |e0⟩ ⟨g1|H |g2⟩ ⟨g1|H |e1⟩

⟨e0|H |g0⟩ ⟨e0|H |g1⟩ ⟨e0|H |e0⟩ ⟨e0|H |g2⟩ ⟨e0|H |e1⟩

⟨g2|H |g0⟩ ⟨g2|H |g1⟩ ⟨g2|H |e0⟩ ⟨g2|H |g2⟩ ⟨g2|H |e1⟩

⟨e1|H |g0⟩ ⟨e1|H |g1⟩ ⟨e1|H |e0⟩ ⟨e1|H |g2⟩ ⟨e1|H |e1⟩


(3.13)

Plugging in the full system Hamiltonian H from Equation 3.12, we acquire
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H = ℏ



0 Ωle
iωlt 0 0 0

Ωle
−iωlt ωc − iκ

2 g
√
2Ωle

iωlt 0

0 g ωe − iΓ
2 0 Ωle

iωlt

0
√
2Ωle

−iωlt 0 2(ωc − iκ
2 )

√
2g

0 0 Ωle
−iωlt

√
2g (ωc − iκ

2 ) + (ωe − iΓ
2 )


(3.14)

For those who wish to consider Hdrive as a perturbation, it is useful to split the Hamiltonian

above into its unperturbed constituentH0 (given byHatom+Hcav+Hint) and its perturbative

constituent V (given by Hdrive) such that H = H0 + V .

H0 = ℏ



0 0 0 0 0

0 ωc − iκ
2 g 0 0

0 g ωe − iΓ
2 0 0

0 0 0 2(ωc − iκ
2 )

√
2g

0 0 0
√
2g (ωc − iκ

2 ) + (ωe − iΓ
2 )


(3.15)

V = ℏ



0 Ωle
iωlt 0 0 0

Ωle
−iωlt 0 0

√
2Ωle

iωlt 0

0 0 0 0 Ωle
iωlt

0
√
2Ωle

−iωlt 0 0 0

0 0 Ωle
−iωlt 0 0


(3.16)

We can eliminate the time dependence using a unitary transformation as we did in Subsec-

tion 2.1.3. We will make an educated guess for the correct transformation matrix. Educated

guesses do not work so well for more complicated systems, as we will discuss later, but here
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we will use the unitary transformation matrix

U =



1 0 0 0 0

0 eiωlt 0 0 0

0 0 eiωlt 0 0

0 0 0 ei2ωlt 0

0 0 0 0 ei2ωlt


(3.17)

After punching this transformation matrix and Hamiltonian into Mathematica, we compute

our transformed Hamiltonian to be

H ′ = UHU† + iℏ
∂U

∂t
U† (3.18)

= ℏ



0 Ωl 0 0 0

Ωl ωc − ωl − iκ
2 g

√
2Ωl 0

0 g ωe − ωl − iΓ
2 0 Ωl

0
√
2Ωl 0 2(ωc − ωl − iκ

2 )
√
2g

0 0 Ωl

√
2g (ωc − ωl − iκ

2 ) + (ωe − ωl − iΓ
2 )


(3.19)

where
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H ′
0 = ℏ



0 0 0 0 0

0 ωc − ωl − iκ
2 g 0 0

0 g ωe − ωl − iΓ
2 0 0

0 0 0 2(ωc − ωl − iκ
2 )

√
2g

0 0 0
√
2g (ωc − ωl − iκ

2 ) + (ωe − ωl − iΓ
2 )


(3.20)

V ′ = ℏ



0 Ωl 0 0 0

Ωl 0 0
√
2Ωl 0

0 0 0 0 Ωl

0
√
2Ωl 0 0 0

0 0 Ωl 0 0


(3.21)

If you care only about the states that contain up to one excitation, then you need only

utilize the upper left 3x3 portion of Equation 3.19. In fact, it is also not uncommon to

utilize only a 2x2 portion of Equation 3.19 when carrying out transmission calculations

using non-Hermitian perturbation theory as we will see later in this chapter.

3.2.2 N two-level atoms in a single mode cavity (VRS)

This subsection will consider N two-level atoms in a single mode cavity. Fortunately, we

can just steal the Hamiltonian from the previous subsection and modify it a bit to now sum

over N atoms instead of one and eliminate the time dependence that we already know can

be transformed away from Equation 3.19:
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H =
N∑
m

ℏ(ωe − ωl −
iΓ

2
) |e⟩m ⟨e|m

+ ℏ(ωc − ωl −
iκ

2
)a†a

+
N∑
m

ℏgm(|g⟩m ⟨e|m a† + |e⟩m ⟨g|m a)

+ ℏΩl(a
† + a)

(3.22)

Assuming some reasonable number of atoms that we deal with in the lab (on the scale

of hundreds to thousands), writing the full matrix form of the Hamiltonian above out by

hand can become horrifically large as just the first excitation manifold alone contains all the

|atom⟩ ⊗ |cavity⟩ states |gggg...1⟩, |eggg...0⟩, |gegg...0⟩, |ggeg...0⟩, and so on for N atoms.

However, we can simplify the Hamiltonian above by first considering the two-atom case.

Up to the first excitation manifold, the states we have at our disposal are |gg0⟩, |gg1⟩, |eg0⟩,

and |ge0⟩. We know the time evolution operator for some arbitrary state is e−iHt, which

Taylor expands as
∑∞

n
(−it)n(Hn)

n! . So, we should be able to determine which states we

actually need to consider by repeatedly applying H to our initial state, |gg0⟩, and seeing

which states result [38]. The Hamiltonian for two atoms is

H = ℏ(ωe − ωl −
iΓ

2
)(|e⟩1 ⟨e|1 + |e⟩2 ⟨e|2)

+ ℏ(ωc − ωl −
iκ

2
)a†a

+ ℏg1(|g⟩1 ⟨e|1 a
† + |e⟩1 ⟨g|1 a) + ℏg2(|g⟩2 ⟨e|2 a

† + |e⟩2 ⟨g|2 a)

+ ℏΩl(a
† + a)

(3.23)

Applying H above to the state |gg0⟩, we acquire the state |gg1⟩ as a "relevant" state after

normalization:
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H |gg0⟩ = ℏΩl |gg1⟩ → |gg1⟩ (3.24)

Great! Now let’s continue this procedure, while carrying out Gram-Schmidt orthogonaliza-

tion (intuitively, to "filter out" the states we have already found) and normalization to find

the set of normalized states that are relevant for our calculations:

H |gg1⟩ = ℏΩl |gg0⟩+ ℏ(ωc − ωl −
iκ

2
) |gg1⟩+ ℏg1 |eg0⟩+ ℏg2 |ge0⟩

→ g1 |eg0⟩+ g2 |ge0⟩√
g21 + g22

(3.25)

H
g1 |eg0⟩+ g2 |ge0⟩√

g21 + g22

= ℏ(ωe − ωl −
iΓ

2
)

g1√
g21 + g22

|eg0⟩

+ ℏ(ωe − ωl −
iΓ

2
)

g2√
g21 + g22

|ge0⟩

+
ℏg21√
g21 + g22

|gg1⟩+
ℏg22√
g21 + g22

|gg1⟩

→ no new states!

(3.26)

We have now found our set of relevant states: |gg0⟩, |gg1⟩, and g1|eg0⟩+g2|ge0⟩√
g21+g22

. We say these

states are written in the "coupled basis," whereas our original set of states, |gg0⟩, |gg1⟩,

|eg0⟩, and |ge0⟩, are written in the "uncoupled basis." You can write down the full system

Hamiltonian in matrix form using either of these bases, but there will be far fewer coupled

basis states than uncoupled basis states as the atom number N increases. The coupled basis

state g1|eg0⟩+g2|ge0⟩√
g21+g22

is one we refer to as a "collective state," in which the collective of atoms

"share" an excitation.

Extending this collective state language toN atoms, we can now simplify the Hamiltonian
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in Equation 3.22 by introducing the collective state operator

E† =
1√∑N
m g2m

N∑
m

gm |e⟩m ⟨g|m (3.27)

which creates a collective excited state when acted on the state |gggg...0⟩. We will use this

operator to essentially rewrite the Hamiltonian of Equation 3.22 in the context of collective

states, yielding

H = ℏ(ωe − ωl −
iΓ

2
)E†E

+ ℏ(ωc − ωl −
iκ

2
)a†a

+ ℏ
√∑N

m
g2m(Ea† + E†a)

+ ℏΩl(a
† + a)

(3.28)

Note that we have not just substituted the collective state operator into Equation 3.22

to acquire the Hamiltonian above. Rather, we have performed a partial diagonalization

to essentially make our Hamiltonian operate only on the coupled basis states we have

deemed relevant, which for N atoms are |gggg...0⟩, |gggg...1⟩, and the collective state

1√
g21+g22+g23+...

(g1 |eggg...0⟩+ g2 |gegg...0⟩+ g3 |ggeg...0⟩+ ...).

If we can assume most atoms "see" the same electric field (for example, if they are

localized near the center of a relatively large laser beam), then we can assume gm = g for

all atoms and the Hamiltonian further simplifies to
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H = ℏ(ωe − ωl −
iΓ

2
)E†E

+ ℏ(ωc − ωl −
iκ

2
)a†a

+ ℏg
√
N(Ea† + E†a)

+ ℏΩl(a
† + a)

(3.29)

Using the coupled basis states for N atoms, which are now |gggg...0⟩, |gggg...1⟩, and the

collective state 1√
N
(|eggg...0⟩ + |gegg...0⟩ + |ggeg...0⟩ + ...) for gm = g, the Hamiltonian

above can be written in matrix form up to the first excitation manifold as

H = ℏ


0 Ωl 0

Ωl ωc − ωl − iκ
2 g

√
N

0 g
√
N ωe − ωl − iΓ

2

 (3.30)

The matrix above is demonstrative of the power of collective states. In the uncoupled basis,

the size of our Hamiltonian in matrix form would have been (N+2) × (N+2). In the coupled

basis, the size of our Hamiltonian in matrix form is 3x3 (the matrix in Equation 3.30 above),

yet it encompasses the physics of N atoms! If anybody ever asks you "what’s your G?" or

"what’s big G?," they are likely referring to the coupling g
√
N , the collectively enhanced

coupling between the cavity and atomic states, as opposed to the single atom coupling g.

If the electric field "seen" by the atoms is non-uniform, you cannot assume gm = g

for all atoms as gm depends on the electric field at the location of atom m. Particularly

in multimode systems where different atoms can experience multiple different electric field

profiles, take care to identify what the relevant collective states actually are. It may be the

case that working in the uncoupled basis is easier for accommodating spatially-dependent

couplings.
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3.2.3 N three-level atoms in a single mode cavity (EIT)

This subsection will consider N three-level atoms in a single mode cavity, where we are now

going to introduce the third atomic level |r⟩ with energy ℏωr and decay rate γr. Here, the

third level "r" is suggestive of a "Rydberg" level, as it often is in the work presented in

this thesis. We are once again going to steal a Hamiltonian from the previous subsection,

Equation 3.22, and modify it to suit our current needs. We will add a third level for every

atom and a coupling to that level:

H =
N∑
m

ℏ(ωr − ωl −
iγr
2
) |r⟩m ⟨r|m

+
N∑
m

ℏ(ωe − ωl −
iΓ

2
) |e⟩m ⟨e|m

+ ℏ(ωc − ωl −
iκ

2
)a†a

+
N∑
m

ℏΩ(|e⟩m ⟨r|m eiωbt + |r⟩m ⟨e|m e−iωbt)

+
N∑
m

ℏgm(|g⟩m ⟨e|m a† + |e⟩m ⟨g|m a)

+ ℏΩl(a
† + a)

(3.31)

where in the Hamiltonian above, we have subtracted ωl from ωr from the get go as this would

have happened in the unitary transformation to remove the time dependence from the drive

term containing Ωl. Ω is the Rabi frequency between the second and third atomic level,

coupling |e⟩ and |r⟩. As the Rabi frequency depends on the electric field of the coupling

light, which oscillates at some frequency ωb, Ω can be increased by increasing the light

intensity and is also associated with time dependence.

Now, how do we simplify the Hamiltonian above? Remember how we found the relevant

coupled basis states for the two-atom case in the previous subsection? We found the collective
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excited state to be g1|eg0⟩+g2|ge0⟩√
g21+g22

. By acting the Hamiltonian above on this state, we unlock

a new collective state: the collective Rydberg state g1|rg0⟩+g2|gr0⟩√
g21+g22

assuming Ω is the same

for all atoms.1 Extending this collective Rydberg state idea to N atoms, we introduce a new

collective state operator

R† =
1√∑N
m g2m

N∑
m

gm |r⟩m ⟨g|m (3.32)

which creates a collective Rydberg state (or whatever third level you’re dealing with) when

acted on the state |gggg...0⟩. Using this operator and E† from the previous subsection, the

new partially diagonalized Hamiltonian is

H = ℏ(ωe − ωl −
iΓ

2
)E†E + ℏ(ωr − ωl −

iγr
2
)R†R

+ ℏ(ωc − ωl −
iκ

2
)a†a

+ ℏ
√∑N

m
g2m(Ea† + E†a) + ℏΩ(E†Reiωbt +R†Ee−iωbt)

+ ℏΩl(a
† + a)

(3.33)

Once again, if we can assume gm = g for all atoms, the Hamiltonian above simplifies further

to

1. What if Ω isn’t the same for all atoms? Then, the collective Rydberg state would look something like
Ω1g1 |rg0⟩ + Ω2g2 |gr0⟩ up to a normalization factor. Upon acting the Hamiltonian on this state, we are
taken to a new collective excited state proportional to Ω2

1g1 |eg0⟩+Ω2
2g2 |ge0⟩ instead of the collective excited

state proportional to g1 |eg0⟩+ g2 |ge0⟩ which we found initially. The upshot here is that if Ω isn’t the same
for all atoms, we end up with a mess of collective states that we have to consider and are not necessarily
orthogonal to one another. For this reason, we experimentally chose to make the beam that couples |e⟩ and
|r⟩ large so the atoms all roughly experience the same laser field and thus Ω.
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H = ℏ(ωe − ωl −
iΓ

2
)E†E + ℏ(ωr − ωl −

iγr
2
)R†R

+ ℏ(ωc − ωl −
iκ

2
)a†a

+ ℏg
√
N(Ea† + E†a) + ℏΩ(E†Reiωbt +R†Ee−iωbt)

+ ℏΩl(a
† + a)

(3.34)

Using the coupled basis states |gggg...0⟩, |gggg...1⟩, the collective excited state 1√
N
(|eggg...0⟩+

|gegg...0⟩ + |ggeg...0⟩ + ...), and the collective Rydberg state 1√
N
(|rggg...0⟩ + |grgg...0⟩ +

|ggrg...0⟩+...), the Hamiltonian above can be written in matrix form up to the first excitation

manifold as

H = ℏ



0 Ωl 0 0

Ωl ωc − ωl − iκ
2 g

√
N 0

0 g
√
N ωe − ωl − iΓ

2 Ωeiωbt

0 0 Ωe−iωbt ωr − ωl −
iγr
2


(3.35)

As in previous subsections, we will eliminate the time dependence in the Hamiltonian above

using a unitary transformation:

U = ℏ



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiωbt


(3.36)

The transformed Hamiltonian is
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H ′ = ℏ



0 Ωl 0 0

Ωl ωc − ωl − iκ
2 g

√
N 0

0 g
√
N ωe − ωl − iΓ

2 Ω

0 0 Ω ωr − ωl − ωb −
iγr
2


(3.37)

and we’re done! Note how there is no
√
N enhancement on Ω as there is with g. Intuitively,

when a photon that excites |g⟩ to |e⟩ is incident upon many atoms in the ground state, any

atom could absorb it. However, when a photon that excites |e⟩ to |r⟩ is incident upon the

atoms, there is only one atom in |e⟩ even though we know not which one. Hence, g receives

a
√
N enhancement whereas Ω does not.

3.2.4 N three-level atoms in a multimode cavity

This subsection will consider N three-level atoms in a multimode cavity. We are now going

to steal the Hamiltonian from Equation 3.22 in the previous subsection and modify it to

include a sum over M cavity modes:
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H =
N∑
m

ℏ(ωr − ωl − ωb −
iγr
2
) |r⟩m ⟨r|m

+
N∑
m

ℏ(ωe − ωl −
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2
) |e⟩m ⟨e|m

+
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2
)a

†
nan

+
N∑
m

ℏΩ(|e⟩m ⟨r|m + |r⟩m ⟨e|m)

+
M∑
n

N∑
m

ℏgmn(|g⟩m ⟨e|m a
†
n + |e⟩m ⟨g|m an)

+
M∑
n

ℏΩl,n(a
†
n + an)

(3.38)

where we have eliminated the time dependence attached to Ω by considering methods of

the previous subsection. This Hamiltonian is pretty gnarly. Hypothetically, we can make

some simplifications, but they will be difficult to make unless we know information about

the modes involved. For example, are the modes different transverse modes? Then spatial

dependence becomes important. How many modes do we care about? We could include

all the modes of our cavity, but doing so would be inefficient if only two or three modes

are significantly coupled to. So, the simplifications that can be made to the Hamiltonian

above are rather dependent on experimental conditions. I leave it to you to decide what

experimental conditions you have. If you find yourself struggling to find the relevant coupled

basis states, remember that utilizing the uncoupled |atom⟩ ⊗ |cavity⟩ basis states is always

an option. For N three-level atoms in a multimode cavity, these uncoupled basis states look

like |gggg...0000...⟩, |gggg...1000...⟩, |eggg...0000...⟩, |gggg...0100...⟩, and so on for seemingly

eternity if dealing with many modes and many atoms.
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3.3 Examples of theory in practice

The section will overview a few examples of theory in practice. In practice, we typically

use the tools of Mathematica, Python, or MATLAB to carry out our calculations using

the formalism of non-Hermitian perturbation theory (NHPT), master equations, or Floquet

theory. An overview of non-Hermitian perturbation theory has been well detailed across the

theses of Simon Lab members such as References [38, 33, 39, 40, 41], so we will not repeat

the derivation here.

My general rule of thumb has been to use non-Hermitian perturbation theory for time-

independent Hamiltonians. For time-dependent Hamiltonians, I turn to master equation

formalism or Floquet theory, if applicable. In our experiment, our primary means of data

collection is counting photons over time. Thus, one might want to predict measurements

such as cavity spectra or temporal correlations between photons using a model Hamiltonian

to see if the experimental data are consistent with our theoretical understanding.

This section will not overview an exhaustive list of examples, but hopefully it will eluci-

date the connection between theoretically derived Hamiltonians and how they may be put

to use.

3.3.1 NHPT for the VRS Hamiltonian in Mathematica

We’ve worked hard to simplify the Hamiltonian for N two-level atoms in a single mode cavity,

and now we are going to use the simplified, time-independent Hamiltonian of Equation 3.30.

Figure 3.1 depicts NHPT in code form where the laser drive is taken as a perturbation. The

result is the cavity spectra (normalized to bare cavity transmission) as a function of the

laser drive frequency ωl, where numerical values have been assigned to variables to carry out

computation. Additional results are the eigenvalues and eigenvectors of this Hamiltonian,

and the fit form of the cavity spectra.

This spectral feature is often referred to as vacuum Rabi splitting (VRS), and the cor-
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responding Hamiltonian as the N atom version of the Jaynes-Cummings Hamiltonian [42].

Intuitively, one might think of the atomic cloud as a piece of glass that changes the resonance

condition of the cavity because it imparts a slight phase shift on intracavity light, causing

this interesting spectral feature. Another way to think about this splitting is that the excited

atomic state is coupled to the cavity state of one photon, and as coupled modes spectrally

split in general, the result is a splitting in the spectra.

3.3.2 NHPT for the EIT Hamiltonian in Mathematica

We’ve also worked hard to simplify the Hamiltonian for N three-level atoms in a single

mode cavity, and now we are going to use the simplified, time-independent Hamiltonian of

Equation 3.37. Figure 3.2 depicts NHPT in code form where the laser drive is taken as a

perturbation once again, with similar results to Subsection 3.3.1.

This spectral feature is often referred to as electromagnetically induced transparency

(EIT). Importantly, the eigenstates here are what we call Rydberg polaritons—quasiparticles

that are atom-photon hybrids. There are two "bright" polaritons, which are comprised

partially of all three states—cavity photon, excited state, and Rydberg state—and one "dark"

polariton, which is "dark" to the excited state. The dark polariton is of particular interest

as a result of its strongly-interacting Rydberg component. When we create dark polaritons

experimentally, we simply park our drive laser at the frequency which corresponds with the

middle peak of this spectra, which is energetically the dark polariton.

3.3.3 NHPT for spatially-dependent Hamiltonians in Python

When dealing with a spatially-dependent Hamiltonian, it can be difficult to find the relevant

collective states of the system, and in fact may be more straightforward to construct the

Hamiltonian in the uncoupled basis. Once this Hamiltonian has been constructed, the most

non-trivial step in NHPT is inverting a potentially large matrix. This process can be a pain
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In[1]:= parms = {κ → 1.6, Γ → 6, G → 5, ωc → 0, ωe → 0};

H =
ωc - ⅈ κ

2
G

G ωe - ⅈ Γ

2

;

Imat = IdentityMatrix[Length[H]];
ψc = {1, 0};

Aout =
κ

2
ψc.Inverse[Imat δ - H].ψc;

EAout = EvaluateAbs[Aout]2 /. parms;

Plot[EAout, {δ, -15, 15}, PlotRange → {0, 1}] (*yields cavity spectra*)

Out[7]=

-15 -10 -5 0 5 10 15

0.2

0.4

0.6

0.8

1.0

In[8]:= Eigensystem
ωc - ⅈ κ

2
G

G ωe - ⅈ Γ

2

/. {κ → 0, Γ → 0, ωc → 0, ωe → 0}

(*Gives eigenvalues and eigenvectors!*)

Out[8]= {{-G, G}, {{-1, 1}, {1, 1}}}

In[9]:= Abs[Aout]2 (*fit form for VRS*)

Out[9]=
1

4
Abs

κ  ⅈ Γ

2
+ δ - ωe

-G2 + δ + ⅈ κ

2
- ωc  ⅈ Γ

2
+ δ - ωe


2

Figure 3.1: Theory in practice: VRS Hamiltonian. The spectra above occurs when the
cavity photon is resonant with the ground to excited transition in the atom, though one may
explore off-resonant conditions by tweaking "params." In fact, if one sets G = g

√
N to zero,

the resulting spectra is just bare cavity transmission, as expected without any coupling to
the atoms.
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for many atoms, but fortunately can be sped up using sparse matrix methods as many entries

in the Hamiltonian will end up being zero.

Let’s consider a few two-level atoms that experience a spatially-dependent g due to their

distribution across a spatially-varying cavity mode. The Hamiltonian for this system can

be constructed by brute force using for loops in Python—no special packages necessary—as

depicted in Figure 3.3, where the value for g is modified by the location of each atom and

mode parameters. After this Hamiltonian is constructed, we can carry out NHPT and view

the resulting spectra.

Each run of the code randomizes the locations of the atoms within some Gaussian

distribution—not unlike a real experiment. Figure 3.4 depicts how the cavity spectra de-

pends on the locations of the atoms. Put simply, an atom needs to overlap with the mode

in order for g to be nonzero for that atom! This reason is why atomic distributions that

overlap with the mode more have a greater overall splitting in the spectra.

3.3.4 Master equations for time-dependent Hamiltonians in Python

In this subsection, we will essentially put back the time dependence we simplified away for

our VRS Hamiltonian to demonstrate how one might handle time-dependent Hamiltonians.

It turns out this time dependence can be handled quite nicely using the built-in master

equation formalism in the QuTiP software for Python. Now, our laser drive term is no

longer treated as a perturbation as in NHPT and is included in the full Hamiltonian.

The left plot in Figure 3.5 depicts the expectation value of the cavity photon number over

time, which Rabi oscillates. Intuitively, this oscillation can be thought of as an exchange of

the photon between the atoms and the cavity. If we average over this oscillation in time for

various drive frequencies, we regain our familiar VRS splitting as depicted in the right plot

Figure 3.5. These time and frequency domain plots were generated by the code shown in

Figures 3.6 and 3.7, respectively.
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In[1]:= parms = {κ → 1.6, Γ → 6, G → 5, ωc → 0, ωe → 0, Δ → 0, γr → 1, Ω → 3};

H =

ωc - ⅈ κ

2
G 0

G ωe - ⅈ Γ

2
Ω

0 Ω Δ - ⅈ γr
2

;

Imat = IdentityMatrix[Length[H]];
ψc = {1, 0, 0};

Aout =
κ

2
ψc.Inverse[Imat δ - H].ψc;

EAout = EvaluateAbs[Aout]2 /. parms;

Plot[EAout, {δ, -15, 15}, PlotRange → {0, 1}] (*yields cavity spectra*)

Out[7]=
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In[8]:= Eigensystem

ωc - ⅈ κ

2
g 0

g ωe - ⅈ Γ

2
Ω

0 Ω Δ - ⅈ γr
2

/. {κ → 0, Γ → 0, ωc → 0, ωe → 0, Δ → 0, γr → 0}

(*Gives eigenvalues and eigenvectors! You can see how the
peak with eigenvalue 0 has a 0 component for the excited state!*)
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In[9]:= Abs[Aout]2 (*fit form for EIT*)

Out[9]=
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2
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2
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2
+ δ - ωe


2

Figure 3.2: Theory in practice: EIT Hamiltonian. The spectra above occurs when the
cavity photon is resonant with the ground to excited transition in the atom, and similarly a
control drive is resonant with the excited to Rydberg transition.
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Figure 3.3: Theory in practice: spatially-dependent Hamiltonian. The uncoupled
basis Hamiltonian is constructed by brute force using for loops over all atoms and cavity
modes.
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Figure 3.4: Effect of spatial dependence on spectra. The atoms in b overlap with the
cavity mode significantly more than the atoms in a, resulting in a wider VRS in the spectra.

Figure 3.5: Theory in practice: time-dependent Hamiltonian. Rabi oscillations can
be seen in the time domain (left), which equate to a VRS in the frequency domain (right).
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Figure 3.6: Generating time domain plots with QuTiP.

Figure 3.7: Generating frequency domain plots with QuTiP.
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CHAPTER 4

EXPERIMENTAL SETUP

4.1 Overview

This chapter is primarily intended to provide an overview of the physical equipment in

the experiment and how it operates. In an effort to be as blunt as possible, the first two

subsections of this chapter will pose the following explicit questions to be answered:

(1) What is the thing?

(2) Why do we have it?

As the work presented in this thesis is centered around the platform of atoms in cavities,

almost all aspects of the experimental setup boil down to manipulating light, atoms, and

cavities.

4.2 Inside vacuum

4.2.1 The twisted cavity structure

Figure 4.1: Cavity generations. From left to right: the first planar in-vacuum experimen-
tal cavity, the Original Twister, and Lluna.
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What is the thing? The twisted cavity structure is a machined block of metal that houses

the cavity within which we create quantum materials made of light and other components

for cavity and atom control. There have been several twisted cavity structure generations

(Figure 4.1), but I will discuss only the two most recent generations and their general features

below:

Original Twister (2018-2022)

Figure 4.2: The Original Twister.

The Original Twister cavity structure was used in the works of both Chapters 5 and 6

and was machined from 316 stainless steel by Zero Hour Parts.

This structure housed two twisted cavities whose modes crossed at 35 degrees: one pri-

marily for 780 nm light, and one primarily for 480 nm light. The 780 nm cavity was comprised

of four curved mirrors procured from LAYERTEC GmbH, two convex mirrors (99.91(1)%

reflection) and two concave mirrors (HR), to achieve a small waist at the location of the

atoms and effectively reduced the number of input-output ports from four to two. The 780

nm cavity mirrors were additionally coated at 1560 nm so that 1560 nm light could be used

for a Pound-Drever-Hall lock to stabilize the cavity length. Both cavities contained one mir-

ror glued to a short ring piezo (Noliac NAC2123) to actuate the cavity length stabilization.

The 780 nm cavity contained an additional mirror mounted to a long throw piezo for the

purpose of significantly tuning the overall cavity length. To avoid degradation of the mirror
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coatings in vacuum, the outer layer of all mirror coatings’ dielectric stacks were specified for

SiO2, not Ta2O5 [43].

Electrodes were mounted in the structure to control the electric field at the location of

the atoms (Figure 4.3). Here, "control" really means "zero" most of the time as we usually

deal with Rydberg atoms which are highly sensitive to electric fields. The electrodes are

screws that have had a hole drilled through the end for a voltage-delivering pin to be held by

friction. The screws are physically, and thus electrically, isolated from the cavity structure

by Macor washers. The washers facing the atoms are covered with very thin, handmade

copper washers to shield the atoms from potential fields generated by induced dipoles in

the dielectric Macor. To prevent our atoms from interacting with surface-generated fields in

general, we make an effort to physically space the atoms > 10 mm from any point in the

twisted cavity structures when possible. As electric field control entails three electric field

components and five independent electric field gradients, at least eight electrodes are needed

to account for eight degrees of freedom. The Original Twister cavity structure contained

eight electrodes plus voltage control of the structure itself, enabled by its electrical isolation

from the other components in the vacuum chamber. To relate electrode voltages to electric

fields and gradients at the location of the atoms, transformation matrices were calculated

using finite element analysis.

Figure 4.3: Pin electrode. A screw (green) passes through the cavity structure wall (beige).
It is electrically isolated from the cavity structure by two Macor inserts (pink), with a copper
washer (brown) shielding the inner insert from line of sight to the atoms. The screw is secured
with a nut (grey), and a voltage-delivering pin can slip into the hole drilled in the end of the
screw.
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A wire was threaded in a conduit around the structure for the purpose of heating, thereby

offering another option for changing the cavity length appreciably in addition to the long

throw piezo. All electrical connections for the Original Twister were made via Subminiature-

C connectors and Kapton-insulated wire (custom, from Accu-Glass Products, Inc.). Wires

from the heating wire, electrodes, and piezos terminated in these connectors that were glued

on to the structure itself, which were in turn connected to cables (Accu-Glass 100120) lead-

ing to the vacuum chamber feedthroughs (Accu-Glass 100012). The big advantage to this

connection design was its modular nature; clunky feedthrough cables need only be installed

once by feeding them through the tight spaces within the custom flange atop the main vac-

uum chamber, then the cavity structure could be installed and removed at will by plugging

in and unplugging the feedthrough cables into the Subminiature-C connectors on the struc-

ture. Torr-Seal was used for all components (mirrors, piezos, Subminiature-C connectors)

that needed to be glued somewhere on cavity structure.

The Original Twister cavity structure enabled a lot of neat science, but also had its

problems. One minor issue that occurred during operation with this cavity structure was

electric field drifts due to slow changes in the 780 nm cavity locking piezo voltage that

affected experimental performance when using Rydberg atoms. This problem was largely

resolved by using an Arduino-based feedback loop to keep the piezo voltage roughly constant

at 60 V by changing the cavity length with a pulse-width modulated 980 nm heating laser

(∼1 W) outside vacuum. This laser was cheaply acquired through Amazon. The laser was

focused to about a 1 mm spot on the long throw piezo housing, which juts out of the cavity

structure. Another issue that occurred was the degradation of the 480 nm cavity finesse over

time, likely due to the interaction of the high intracavity 480 nm power with a cavity mirror

that was last-minute acquired from eBay to replace the mirror that was originally going to be

used but wasn’t as it was loss-dominated. Yet another problem was the misalignment of the

480 nm cavity from the 780 nm cavity as a result of the vacuum bake-out after installation of
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the Original Twister structure. This issue was somewhat resolved by utilizing a higher order

transverse mode of the 480 nm cavity that was spatially large enough to intersect with the

780 nm cavity mode. While this solution was sufficient to continue with the experiment, the

misalignment of the 480 nm cavity ultimately meant much less 480 nm power incident on the

atoms than we had hoped. The largest problem that occurred was astigmatism in the 780

nm cavity that caused photonic modes to mix at the cavity length where we expected these

modes to by degenerate. Chapter 5 will go into this problem, workarounds, and solutions in

more depth. The next generation cavity, Lluna, was designed with the primary intention of

achieving mode degeneracy by minimizing optical aberrations.

Lluna (2022-present)1

Figure 4.4: Lluna.

1. Why the name "Lluna?" As quoted by Matt Jaffe on the Simon Lab Slack, because (1) the cavity
structure was "a bit of a moonshot" and (2) the two Ls are for (i) "Landau Level," (ii) "Lens-Lens," and
(iii) "to evoke the majestic llama."
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Lluna is the successor to the Original Twister. This cavity structure was machined from

aluminum by 3ERP. All previous structures were machined from 316 stainless steel as this

material has been tried and true (and also the most nonmagnetic stainless steel). However,

Lluna was more challenging to machine due to fine structural features and hence necessitated

a softer material. So far, it appears there have been no adverse affects due to the usage of

aluminum.

This structure also houses two twisted cavities, again primarily for 780 nm and 480 nm

light, whose modes cross at 32.5 degrees. The 780 nm cavity is comprised of four flat mirrors

(from FiveNine Optics) and two aspheric lenses (from Optimax). The 480 nm cavity is

comprised of a mixture of curved and flat mirrors (from FiveNine Optics). See Figure 4.5 for

more details. Both cavities contain one mirror glued to a short ring piezo (NAC2122 from

CTS, formerly Noliac) with Master Bond EP42HT-3AO glue. Both piezos were pre-baked

and cleaned by CTS and were affixed with A02 UHV-compatible wires, 28 AWG.

The electrodes are, once again, screws that hold voltage-delivering pins. Holes were

drilled in the ends of #2-56 screws that were electrically isolated from the cavity structure

by Macor washers machined by 3ERP. Copper washers were handmade using 0.005" thick

copper shim stock (Trinity Brand Industries 6CPR50-5) to cover the Macor. Holes were

drilled in the shim stock, then washers were punched out manually using a punch (Trinity

Brand Industries SP-9) of the appropriate the outer diameter to completely shield the atoms

from line of sight to any Macor. This cavity structure one again utilized Subminiature-C

connectors for ease of installation.

Lluna was designed with the intention of solving many of the problems that existed in

the Original Twister. To address the potential misalignment of the 480 nm cavity due to

the bake, we mounted ring piezo-backed mirror in a tip-tilt piezo stage (SmarAct STT-12.7-

UHVT-NM) to finely adjust the 480 nm cavity alignment in vacuum if necessary. While

not a problem in the Original Twister per say, Lluna now enables side optical access to

84



Figure 4.5: Lluna cavities. This graphic contains the most relevant components and their
specs for the 780 nm and 480 nm twisted cavities of Lluna. For those interested in the 3D
coordinates of all four mirrors m1, m2, m3, and m4, they are m1 = {0,−0.5 × arm1, 0},
m2 = {base, 0.5× arm2 × cos(angle), 0.5× arm2 × sin(angle)}, m3 = {base,−0.5× arm2 ×
cos(angle),−0.5× arm2 × sin(angle)}, and m4 = {0, 0.5× arm1, 0}.

the atoms for potential imaging or light excitation. Perhaps most importantly, Lluna was

designed to address the problem of non-degenerate modes by minimizing optical aberrations

that prevented degeneracy. See Chapter 5 for additional details. The upshot is that instead

of utilizing four curved mirrors in which the cavity mode strikes curved surfaces at non-

normal incidence as in the Original Twister, Lluna utilizes four flat mirrors and two curved

intracavity aspheric lenses to provide beam focusing. In this optical arrangement, the cavity

mode strikes curved surfaces at normal incidence, minimizing optical aberrations. One of

the intracavity lenses is mounted in a custom lens holder that is affixed to a 3-axis piezo

stage (3x SmarAct SL-0610-UHVT) for fine positioning in vacuum if necessary. This 3-axis

stage is further mounted on to a flexure machined into the side of the cavity structure for

initial alignment purposes outside vacuum.
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Original Twister Lluna

Material 316 Stainless steel Aluminum

780 nm cavity
Optics 4x curved mirrors 4x flat mirrors, 2x lenses
FSR 2500 MHz (adjustable) 2270 MHz (adjustable)
Linewidth κ 1.4 MHz 2.9 MHz
Finesse F 1900 1200 (experimental)
Waist at atoms 19 µm 18 µm

480 nm cavity
Optics 6x curved mirrors 4x curved, flat mirrors
FSR 1135 MHz 1760 MHz
Linewidth κ 6 MHz 720 kHz
Finesse F 190 3000 (experimental)
Waist at atoms 98 µm 106 µm

Additional features Pin electrodes x8+1 Pin electrodes x8+1
Piezo-backed mirrors x3 Piezo-backed mirrors x2
Heating wire Piezo stages x4

Table 4.1: Cavity comparison. The table above lists specs of the Original Twister versus
Lluna. See the Supplement of [44] for additional details about the Original Twister.

Why do we have it? Most importantly, the twisted cavity structure exists to create a

degenerate manifold of 780 nm photonic modes to enable to study of fractional quantum hall

physics. We position a cloud of 87Rb atoms at the intersection between the 780 nm and 480

nm cavity modes, which excite the atomic transitions 5S1/2 ↔ 5P3/2 and 5P3/2 ↔Rydberg,

respectively. As mentioned in the footnote of Subsection 3.2.3, it is important that the waist

of the 5P3/2 ↔Rydberg excitation beam is large, hence the large 480 nm waists relative to

the 780 nm waists in Table 4.1. In the scope of its remaining functions, the twisted cavity

structure holds necessary components for atom control (electrodes) and cavity control (piezo

stages, ring piezos, and heating elements).
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Figure 4.6: Rubidium dispensers. The rubidium dispensers, or getters, are the silver
rod-like objects mounted in the white Macor structure.

4.2.2 Rubidium dispensers

What is the thing? Our rubidium dispensers, or getters, are procured from SAES. After

activating them during the vacuum bake-out, we typically run a current of around 3-3.5 A

through them to evaporate rubidium into the main vacuum chamber, which additionally

contains the MOT coils and twisted cavity structure. Be careful not to run these dispensers

at too high of current as doing so can deplete the rubidium quickly!

The rubidium dispensers are mounted in a Macor block (Figure 4.6), which in turn is

mounted to two rods protruding from a groove grabber affixed on the vacuum chamber

grooves. Electrical connections between the wires of the Macor structure and the wires

leading to a vacuum chamber feedthrough are made within a PEEK terminal block, which

contains screws that clamp down on wires to make an electrical connection.

The rubidium dispensers used to be mounted to the Macor structure via screws that

clamped down on the dispenser edges, additionally providing an electrical connection. Dis-

pensers could initially be ran normally, but would fail to turn on again after the current

had been turned down to zero. However, dispensers we ran continuously would continue to

dispense. Thus, for the lifetime of the Original Twister, we ran current through dispensers

continuously, raising the current during daily operation to 3-3.5 A and dropping the current

87



down to 2 A overnight. Upon inspection of the dispensers during Lluna’s installation, we

discovered that the dispensers that failed to turn on again had physically disconnected from

their clamping screws, likely due to the thermal cycle associated with turning off the dis-

pensers completely after being heated by non-zero current. Now, we spot weld washers to the

dispenser edges and insert the clamping screw into the washer hole, significantly increasing

the surface area of electrical contact.

Why do we have it? The rubidium dispensers provide our 87Rb for the experiment!

4.2.3 Magneto-optical trap (MOT) coils

Figure 4.7: MOT coils. The coils themselves are shielded from line of sight to the atomic
cloud by strips of copper as the coils are coated in Kapton, which is a dielectric.

What is the thing? The magneto-optical trap (MOT) coils are two, 36-turn Kapton-

insulated wire coils in an anti-Helmholtz configuration. The dielectric Kapton is shielded

from line of sight to the atomic cloud by a strip of copper around the top of the coil struc-

ture 4.7.
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Why do we have it? The MOT coils provide the magnetic field gradient necessary to

produce a MOT, which traps a cloud of 87Rb atoms at the center of the chamber.

4.3 Outside vacuum

4.3.1 Lasers

Figure 4.8: Lasers.

What is the thing? We own many lasers for a variety of purposes. See Figure 4.8 for

information about our main lasers.

Why do we have it? See below for a list of our main lasers and their purposes. Remember,

5S1/2 (F = 2) ↔ 5P1/2 transitions are referred to as the D1 line and occur around 795 nm,

and 5S1/2 ↔ 5P3/2 transitions are referred to as the D2 line and occur around 780 nm.

• Master Laser. The Master Laser is utilized as a frequency reference for the MOT

Laser and Repumper Laser. It is typically locked on the F = 2 → 2′, F = 2 → 3′
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Figure 4.9: Lasers in the lab. The lasers listed in Figure 4.8 are physically indicated in
the figure above (where visible).

crossover frequency of 87Rb using a rubidium vapor cell, saturated absorption spec-

troscopy, and a lockbox.

• MOT Laser. The MOT Laser is used to create the MOT in the center of our main

vacuum chamber, then utilized for polarization-gradient cooling (PGC). Its frequency

is slightly red detuned from the 5S1/2 (F = 2) ↔ 5P3/2 (F ′ = 3) transition. This

detuning can be controlled in the experimental sequence (Section 4.4).

• MOT TA. The MOT tapered amplified (TA) is used to amplify the MOT Laser power

to ∼1 W, yielding 150-200 mW of power in each MOT arm (horizontal and diagonal)

near the main chamber.

• Repumper Laser. The Repumper Laser is used to "repump" the atoms that have

off-resonantly scattered photons and fallen into to the 5S1/2 (F = 1) state back up to

the 5S1/2 (F = 2) state so the MOT Laser can continue to cool them. Its frequency is

resonant with the 5S1/2 (F = 1) ↔ 5P3/2 (F ′ = 2) transition.

• D1 Laser. The D1 Laser is used for optical pumping the atoms into the 5S1/2 (F = 2)

stretched state. It is typically locked on the F = 2 → 1′, F = 2 → 2′ crossover

90



frequency. This light is frequency modulated to contain frequency tones near the 5S1/2

(F = 2) ↔ 5P1/2 (F ′ = 2) and 5S1/2 (F = 1) ↔ 5P1/2 (F ′ = 2) transitions. The tone

near 5S1/2 (F = 2) ↔ 5P1/2 (F ′ = 2) induces transitions toward the 5S1/2 (F = 2)

stretched state, and the tone near 5S1/2 (F = 1) ↔ 5P1/2 (F ′ = 2) repumps atoms

that have accidentally fallen to the 5S1/2 (F = 1) state back to the 5S1/2 (F = 2)

state. Finding the optimum power balance and frequencies of these tones has been

finicky in the past, so do explore the power and frequency parameter space if you find

optical pumping to be ineffective.

• 1560 Seed. The 1560 Seed laser is a narrow laser that seeds the NuFern amplifier,

which amplifies the 1560 nm power to be frequency doubled to 780 nm. This 780

nm light is utilized for several purposes including absorption imaging, locking to the

ultrastable cavity, and probing the 780 nm twisted cavity during the probe portion of

the experimental sequence (Section 4.4). Not all 1560 nm light is frequency doubled,

and this remaining light is typically used for locking the 780 nm twisted cavity, or is

stolen for use in the other Simon Lab experiments. Watch out for those light thieves

from the other experiments. The 1560 Seed laser can sometimes drift in temperature,

affecting the output power and causing the NuFern amplifier computer interface to

claim its seed power is too low. If this drift occurs, the temperature can be changed

using keyboard commands via a serial interface with the laser that can be opened in

the Arduino software, for example.

• NuFern Laser. While not a laser per say, the NuFern Laser is a fiber amplifier that

amplifies the 1560 Seed laser to ∼2 W.

• 480 Laser. The 480 Laser excites the 5P3/2 ↔Rydberg transition in 87Rb via injection

into the 480 nm twisted cavity. The 480 Laser is an external-cavity diode laser, in which

960 nm light is frequency doubled to 480 nm in a second-harmonic generation cavity.
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A small amount of 960 nm light that comes out a side port is used to lock this laser

to our ultrastable cavity. By sticking an allen wrench into the appropriate hole of this

laser, you can flip an internal beamsplitter cube up into the internal laser paths such

that the laser outputs all the 960 nm light instead of 480 nm light in the event you

want to use a lot of 960 nm light for something. By sticking a different allen wrench

into a different hole of this laser, you can also rotate an internal grating to change the

output frequency. This procedure becomes necessary when changing the Rydberg level

to which you want to excite and will require some minor realignment as changing the

grating angle affects the 480 nm output alignment. To realign the 480 nm output to

the 480 nm optics downstream, one can walk the beam’s position and angle using two

tip-tilt mirrors immediately after the 480 nm laser output.

• Lattice Seed. The Lattice Seed seeds the Lattice TA with ∼35 mW. It is far red-

detuned from the D2 line, providing dipole trapping for 87Rb atoms. We historically

did not lock this laser because of its large detuning, but eventually started locking this

laser to the ultrastable cavity to investigate lattice lifetime improvements.

• Lattice TA. The Lattice TA amplifies the Lattice Seed, yielding ∼250 mW going

into the main chamber. This power is utilized to create the vertical lattice (VLAT),

elliptical lattice (ELAT), and cavity optical dipole trap (CODT). The VLAT vertically

transports atoms from the MOT to the intersection between the 780 nm and 480 nm

twisted cavities, then the elliptical lattice then loads these atoms into a flat, pancake-

like shape to prevent more than one Rydberg excitation. The CODT is not always

utilized in the experimental sequence, but can potentially be used to increase the

atomic density, enhancing the collective atom-cavity coupling g
√
N .

• Brady. Brady is the seed laser for Gronk.2

2. Our postdoc, Logan, was a Patriots fan.
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• Gronk. Gronk is the erbium-doped fiber amplifier (EDFA) for Brady. Gronk can

output several watts of power at 1529 nm, which has typically been used to AC Stark

shift the 5P3/2 level via the 5P3/2 ↔ 4D5/2 and 5P3/2 ↔ 4D3/2 transitions. This

1529 nm light was used for both Floquet modulation (Chapter 5) and optical mode

conversion (Chapter 6).

• 1011 Laser. This laser was intended to be used for a magic optical dipole trap.

However, attempting to get this laser to operate robustly proved rather labor-intensive,

and this project was eventually terminated [39].

4.3.2 Ultrastable cavity

Figure 4.10: Ultrastable cavity.

What is the thing? Our ultrastable cavity is VH6020-4 from Stable Laser Systems. The

cavity is essentially two mirrors (coated for 780 nm and 960 nm) that have been optically

contacted to a tube composed of two different materials with opposite coefficients of thermal

expansion to keep the cavity length constant. This cavity is under vacuum and needs to
93



be temperature stabilized, and is thus controlled by a temperature controller and ion pump

controller.

Why do we have it? The ultrastable cavity acts as a stable reference for laser locking.

We have historically locked the 480 Laser (via the 960 nm light it produces), the 1560 Seed

(via the 780 nm light it produces), and the Lattice Seed to this cavity.

4.3.3 Digital micromirror device (DMD)

Figure 4.11: Digital micromirror device. This view is rather interesting as it captures
the view of our DMD through a DSLR camera that has its IR filter removed. If you look
closely, you can see a Gaussian pattern on the DMD surface that shapes the incoming beam.

What is the thing? Our main digital micromirror device (DMD) is the DLP3000 chip

from Texas Instruments, a 608×684 grid of small mirrors that can be tilted "on" or "off."
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In general, these chips are extracted from DLP LightCrafter Evaluation Modules. We can

upload custom bitmap images to be displayed on the DMD face using customized Python

code. Another DMD like the DLP4500 may not be compatible with this code, however

there are likely online resources already for interfacing with other DMDs using Python or

pre-existing GUIs.

Why do we have it? We use our DMD primarily to mode match into desired Laguerre-

Gaussian eigenmodes of the 780 nm twisted cavity. Before mode matching, we additionally

create a "phase map" to correct for optical aberrations imparted by optics between the DMD

and the cavity injection mirror. The efficiency of the DMD is rather atrocious; only about

∼ 1% of the incident light is converted to the desired mode. However, this efficiency is all

right as we desire near-single photon injection into the cavity, requiring an extraordinarily

attenuated 780 nm beam anyway.

4.3.4 Single photon counting modules (SPCMs)

What is the thing? We have several single photon counting modules (SPCMs) from

Excelitas Technologies (e.g. SPCM-AQRH-13-FC-ND, SPCM-AQRH-14-FC-ND).

Why do we have it? We use these SPCMs to count the photons that exit the 780 nm

twisted cavity, providing all of our data. In experiments that are sensitive to the dead

time of these SPCMs like time correlation measurements, we split the twisted cavity output

between two SPCMs using a fiber splitter. In experiments that are power-sensitive, the

nonlinear response of the SPCMs must be calibrated.
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Figure 4.12: Single photon counting modules. We keep our SPCMs buried under many
layers of foil because they are very sensitive to light. Never expose a powered-on SPCM to
room light—it will get toasted! Always power off SPCMs in the event you think they will
be exposed to light above their specified acceptable count rates.

4.4 The experimental sequence

In this thesis, our goal is to trap a cloud of atoms inside our vacuum chamber, cool them,

transport them up into the twisted cavity structure, and hold them at the lower waist of the

780 nm twisted cavity after some additional cloud shaping, cooling, and optical pumping.

From here, we can send in 780 nm photons to create topologically ordered states until the

atom number decreases sufficiently to warrant executing this cycle once more. We call this

cycle "the sequence." The sequence is a fluid beast and is executed via a home-built Python

3 interface dubbed "Front Panel." The Front Panel architecture was designed to be highly
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Figure 4.13: Connections between the lab and control room. We have a single
computer in our control room that runs the experiment. It contains an analog card and
a digital card by National Instruments that generate signals to be sent to devices in the lab
via BNC cables. There are a number of "connection points" for devices to plug into to send
signals to or receive signals from the control room, which is particularly convenient when
installing new devices. Signals from our SPCMs return to the control room, also by BNC
cables, and connect to the timer or counter FPGAs. These FPGAs are connected via USB
to the control computer.

modular, such that if one decides they want to control an additional piece of equipment in

the lab, it can be added as a new channel in the code and linked to modifiable variables—or

MVs—in the Front Panel GUI. Typically, we call each run of the sequence a "shot," where

sweeps over MVs can be programmed for a collection of shots so we can observe trends and

optimize various sequence steps. Each shot is about 300 ms long, with 200 ms of sample

preparation and 100 ms of data collection.

While the sequence is ever-changing based on our experimental needs, this section will

overview the major sequence steps that are relatively unchanging.
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4.4.1 Sample preparation

Figure 4.14: The sequence. A portion of our Front Panel GUI is displayed—including
the various tabs associated with our sequence steps—along with visualizations of what is
happening in the experiment during these steps. The second visualization contains two insets:
a fluorescence image of our MOT and transporting atomic cloud (left) and an absorption
image of atoms in the VLAT at the lower cavity waist (right). The third visualization
contains another two insets: an absorption image of atoms in the ELAT at the lower cavity
waist (left) and an absorption image of atoms in the CODT at the lower cavity waist (right).
There are several tabs not explained in the main text of this thesis, such as Init, PHD_freq,
SPCM_setting, and E_Filter. The MVs controlled in these tabs are important for setting
the cavity lockpoint and twisted cavity structure electrode voltages, for example, but are
not strictly part of preparing the atomic sample.

The list below describes the main steps of our experimental sequence in time order:

• MOT. This step controls the formation of our magneto-optical trap (MOT), which

initially traps a cloud of atoms floating around our vacuum chamber, using our MOT

Laser and Repumper Laser. The parameters we control through Front Panel are pri-

marily laser powers, laser detunings, and the magnetic fields produced by our MOT

coils and bias coils. The MOT is about 1 mm in diameter and should be visible via an

IR camera. It takes ∼1 second to load the MOT completely, so the atom number will
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likely fluctuate depending on the MOT loading time and if there is a long time gap

between runs. A normal MOT temperature is ballpark ∼100 µK. This temperature is

below the expected Doppler limit for a MOT due to PGC-like effects. Measurements

of this temperature can be achieve via a time-of-flight experiment, in which the MOT

is released after atoms have been loaded and fluorescence images of the expanding

atom cloud are captured. The temperature of the cloud can be extracted by fitting the

cloud’s diameter over time—hotter clouds will expand faster!

• PGC. This step controls the cooling of our MOT via polarization gradient cooling

(PGC) [45], again using our MOT Laser and Repumper Laser, to cool atoms into our

transport lattice. The mechanism behind PGC takes some time to fully understand,

but the overall gist is that two counterpropagating beams of orthogonal polarizations—

in our case, σ+ and σ−—create a polarization gradient in space. The energy levels of

atoms traveling along this polarization gradient experience a spatially-dependent shift.

This shift can be harnessed so that atoms are excited then decay to a lower energy,

causing cooling. A normal MOT temperature after PGC is 5-10 µK, which can again

be measured via a time-of-flight experiment. A temperature of 25 µK is all right, but

typically colder should be achievable.

• Lattice. This step controls the light from the Lattice TA via AOMs—namely, the

power and whether the light is on or off (TTL). During PGC, the atoms are loaded

into what we call the VLAT—the vertical lattice—which is a lowest-order Gaussian

beam that is vertically retroreflected to form a standing wave that holds the atoms

via dipolar forces. AOMs controlled in this step are used for frequency shifting the

retroreflected beam, thereby causing the standing wave to move, in turn transporting

the atoms.

• Transport. This step controls the what occurs during the vertical transport of the
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atoms up into the cavity such as the acceleration of the atoms, the transport distance,

pauses during the transport period, and various laser parameters. Fluorescence imaging

of the atoms in the MOT region can be quite useful in debugging the transport step.

For example, imaging can tell you if atom transport is occurring at all and how well

the VLAT can hold the atoms.

• dRSC. This step controls degenerate Raman sideband cooling (dRSC). This cooling

is performed to improve atom retention while simultaneously optically pumping the

atoms. This step is performed using our Lattice TA, D1 Laser, and HLAT laser, which

together pump the atoms into the lowest vibrational level of the 5S1/2 (F = 2) stretched

state. The HLAT—or, horizontal lattice—is a detuned 780 nm laser that is split into

two paths, each incident on the atoms through holes in the twisted cavity structure.

One path is retroreflected and one is running wave. Between the two horizontal lattice

paths and one vertical lattice path, a 3D lattice is made for the atoms with some trap

frequency that sets the vibrational energy level spacing. The normal atomic cloud

temperature after dRSC is ∼0.5 µK. See Reference [39] for additional details.

• TrapRamp. This step controls the transfer of atoms from the VLAT to the ELAT—

the elliptical lattice, which also utilizes Lattice TA light. This transfer shapes the

atomic cloud into a 2D pancake such that the blockade effect due to a single Rydberg

atom is strong. After transferring the atom cloud to the ELAT, its width along the

780 nm twisted cavity axis is 10 µm.

• RampCODT. This step controls the ramp on of the cavity optical dipole trap (CODT).

This step has not always been utilized, but has been more recently utilized with the

intention of increasing the atom density. Lattice TA light is sent through the 780 nm

twisted cavity path, providing compression at the lower cavity waist via dipolar forces.

• BField_OP_DEP. This step primarily controls a magnetic field ramp—using the
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bias coils—such that there is a well-defined quantization axis while probing the cavity

with 780 nm photons. This step additionally controls optical pumping and depumping

parameters to maintain a constant atom number throughout long probe times.

• CavPrb. This step controls the probing of the cavity. It is during this cavity probe

time that topologically ordered states are created and measured using our SPCMs.

Figure 4.14 depicts the CavPrb tab in Front Panel, which contains many MVs for

controlling the probe time, probe power, whether the 480 nm light is on or off, the

480 nm power, and so on. The probe light is quite weak and is provided by our

frequency-doubled Nufern Laser.

4.4.2 Data collection

Our data collection is primarily counting photons over time. During the CavPrb step, we

enable our SPCMs and they collect 780 nm photons that leak out of the 780 nm twisted

cavity. Signals from the SPCM are sent from the lab to our control room via long BNC

cables. These signals can then connect to the input of one of two Opal Kelly XEM6001

FPGAs: one which counts the number of photons detected within a specified time bin—the

"counter"—and one which assigns a time tag to every photon detected at 1.4 ns resolution—

the "timer."

The counter FPGA is used primarily in collecting cavity spectra, where the high temporal

resolution of the timer is not particularly necessary. The timer FPGA is used primarily for

measurements where high temporal resolution is necessary, such as for Rabi oscillations

or temporal correlations. After the data are collected, all post-processing is performed in

Python.

Much of the data we collect actually goes toward experiment calibration and optimization.

Figure 4.15 depicts a number of measurements we perform to evaluate our experimental

performance, optimize quantities such as the electric field, and extract relevant parameters.
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In parametric heating [46], we "squeeze" and "un-squeeze" the vertical lattice by modulating

the intensity of our lattice beam using an AOM. The atoms, which are trapped in harmonic-

like potentials in the standing wave of the lattice, are most noticeably shaken out of the

lattice at twice the lattice trap frequency, resulting in a dip in the measured atom number.

Parametric heating periodically changes the harmonic trap depth—intuitively, this process

is not unlike swinging on a swing. Pump your legs at the correct frequency, and you will

swing higher. Similarly, atoms will gain enough energy to escape the trap at the "correct"

modulation frequency. Performing this process at various atom transport distances can even

reveal the lattice waist location, where the intensity and thus trap frequency is the highest!

We can additionally sweep the electric fields in the x, y, and z directions. Remember, atomic

levels shift quadratically for small electric fields. We can use this fact to find the electrode

voltages that zero the electric field by observing the spectral location of the dark polariton

as a function of electrode voltage values. In the electric field scans in Figure 4.15, we claim

the electric field is approximately zero for Ex, Ey, and Ez values near the center of their

respective y-axes. Time of flight is used to extract the temperature of our atomic cloud

by fitting Gaussian functions to the freely moving cloud shape in images over time—hotter

clouds expand faster! Holding atoms in the VLAT or ELAT reveals their respective lattice

lifetimes—acquired by either imaging or measuring the VRS splitting over time. Lastly, the

"hotwire" effect can be a useful tool for aligning the atomic cloud to the 780 nm cavity mode.

This effect can be achieved by transporting atoms vertically through strong, near-resonant

probe light sent through the 780 nm cavity, effectively blasting the atoms away. This effect

is most useful when the alignment of the atoms to the cavity is already fairly good and when

one is interested in fine-tuning.
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Figure 4.15: Diagnostic procedures. This figure depicts a variety of diagnostic experi-
ments we run to extract useful quantities, evaluate performance, and optimize experimental
parameters.
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CHAPTER 5

QUANTUM MATERIALS MADE OF LIGHT

Sections 5.1 and 5.2 are based off of references [47, 44]:

Interacting Floquet polaritons.

L. W. Clark, N. Jia, N. Schine, C. Baum, A. Georgakopoulos, and J. Simon, Nature 571,

532–536, (2019).

Observation of Laughlin states made of light.

L. W. Clark, N. Schine, C. Baum, N. Jia, and J. Simon, Nature 582, 41-45, (2020).

Section 5.3 is based off of references [48, 49]:

Aberrated optical cavities.

M. Jaffe, L. Palm, C. Baum, L. Taneja, and J. Simon, Physical Review A, 104, 013524,

(2021).

Understanding and suppressing backscatter in optical resonators.

M. Jaffe, L. Palm, C. Baum, L. Taneja, A. Kumar, and J. Simon, Optica, 9, 878-885 (2022).

5.1 Motivation

5.1.1 Topological order and the fractional quantum Hall effect

Back in the 1940s, Lev Landau developed an incredibly successful general theory of orders

and their transitions that seemingly described all the various states of matter around us [1].

Enter the fractional quantum Hall (FQH) effect, discovered experimentally in 1982, which

could not be described by Landau’s theory (Figure 5.1). Rather, this effect is described by

topological order, corresponding to patterns of long-range quantum entanglement [2]. Thus
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began a new chapter of condensed matter physics and the study of topologically ordered

many-body states. These states exhibit fascinating properties largely unseen in other forms

of matter; for example, in addition to the robust quantized edge transport which also appears

in weakly-interacting systems [50], topologically ordered phases can host excitations with

fractional charge and anyonic exchange statistics [51]. More exotic phases can even host

non-Abelian anyons, a promising constituent for fault-tolerant quantum computers thanks

to their insensitivity to local perturbations [3].

Figure 5.1: The fractional quantum Hall effect. Topological order emerges in two-
dimensional sheet of metal pierced by a magnetic field, B, and containing a current Ix. The
quantum nature of this system is evidenced by plateaus in the Hall resistance, Rxy = Vy/Ix,
as a function of the magnetic field. The magnetoresistance, Rxx = Vx/Ix, is superposed.
Figure from [52].

The simplest recipe for realizing topologically ordered many-body states is to place

strongly-interacting particles in an effective magnetic field. However, few experimental sys-

tems have been found to host topologically ordered states. All definitive observations of such

order have been made in two-dimensional electron gases subjected to magnetic fields, origi-
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nally in semiconductor heterojunctions [53], as well as more recently in graphene [54, 5, 55]

and van der Waals bilayers [56].

The scarcity of physical platforms hosting topological order has spurred great interest

in elucidating its exotic properties using the wide tunability, particle-resolved control, and

versatile detection capabilities afforded by synthetic quantum materials [57, 58, 59, 60]. The

constituents of typical synthetic materials are atoms and photons, which do not experience a

Lorentz force in ordinary magnetic fields because they are charge neutral. Therefore, the key

challenge is to implement a synthetic magnetic field which creates an effective Lorentz force

and is compatible with strong interactions between particles. A classic approach employed

the Coriolis force in rotating ultracold atomic gases [61], and such systems approached the

few-body fractional quantum Hall regime [62]. More recent efforts in ultracold atoms focused

on Floquet engineering of synthetic magnetic fields [63] combined with strong atomic inter-

actions thanks to tight confinement in an optical lattice [64]. Furthermore, coupling atomic

gases with multiple modes of optical resonators provides exciting opportunities for study-

ing many-body physics [65, 66, 67, 68, 69, 70]. Photonic systems have also demonstrated

a variety of synthetic magnetic fields [59] compatible with strong interactions via coupling

to superconducting qubits in the microwave domain [71, 72] and cold atoms [73, 74, 75, 76]

or quantum dots [77] in the optical domain. Because these ingredients have yet to be effec-

tively combined and scaled, the formation of topologically ordered synthetic materials has

remained elusive.

We seek to combine the elements presented in this thesis—atoms and cavities—to ex-

perimentally create and probe topologically ordered quantum materials made of light. In

this chapter, we use a multimode, twisted optical cavity to generate a synthetic gauge field

for light [59, 78, 79, 80, 81, 82] and cavity Rydberg polaritons to mediate photon-photon

interactions. Making photons interact strongly in this cavity enables us to study strongly

correlated fractional quantum Hall states of light, namely Laughlin states, the grounds states
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of a fractional quantum Hall system [83, 84, 85, 86, 87, 88, 89, 90].

5.2 Combining atoms and cavities

In this section, we describe the formation of optical photon pairs in a Laughlin state. To this

end, we construct a photonic system analogous to an electronic fractional quantum Hall fluid

by combining two key ingredients: a synthetic magnetic field for light induced by a twisted

optical cavity [80] and strong photonic interactions mediated by Rydberg atoms [76].

We first observe that photons in this system undergo collisions which satisfy conservation

laws and have density-dependence characteristic of two-body processes. A closer examination

of the resulting two-body correlations reveals a two-photon angular momentum distribution

consistent with a Laughlin state. Moreover, characterizing these photon pairs in real space

reveals that they strongly avoid being in the same location. Together, these results indicate

the formation of photon pairs with 76(18)% overlap with a pure Laughlin state.

5.2.1 Interacting photons in a magnetic field

In our experiment, combining atoms and cavities results in cavity Rydberg polaritons, quasi-

particles composed of part cavity photon and part atomic Rydberg excitation. The Rydberg

component facilitates strong interactions between polaritons [91], while the cavity component

allows us to shape the polariton energy landscape via the mode structure of a twisted optical

cavity. This combination results in effective photon-photon interactions in a magnetic field,

mimicking the conditions for an electronic fractional quantum Hall system (Figure 5.2). The

motion of individual polaritons is determined by the cavity modes accessible to their pho-

tonic part [92]. The large energy spacing between longitudinal cavity manifolds restricts the

polaritons to a single manifold, confining them to undergo two-dimensional motion among its

transverse modes. Interactions between polaritons occur via Rydberg blockade and can be

characterized via the two-photon correlation function g(2)(τ) that quantifies the likelihood
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Figure 5.2: Ingredients for Laughlin states made of light. a, Our experiment couples
optical photons (red) with a gas of 6000(1000) laser-cooled Rubidium-87 atoms at the waist
of twisted, four mirror optical cavity. We continuously shine a weak probe laser beam on
the cavity for 100 ms. The initially uncorrelated photons from the probe laser which enter
the cavity are strongly coupled with an additional Rydberg coupling field (light blue) to a
resonant atomic transition. b, This coupling turns each photon entering the cavity into a
polariton, a quasiparticle combining the photon with a collective Rydberg excitation of the
atomic gas. Polaritons can move around in the transverse modes available to their photonic
component, and a pair of polaritons (depicted) strongly interacts because of their Rydberg
components (blue spheres). c, Two key ingredients enable this system to explore topological
order. First, we form a flat topological band of single-photon states using a twisted optical
cavity, which hosts a set of degenerate photonic modes that are equivalent to the states in
the lowest Landau level available to electrons in a strong magnetic field. d, Second, the
strong polaritonic interactions are analogous to the Coulomb interactions between electrons
in a traditional fractional quantum Hall system. Polaritons confined to a single cavity mode
reveal their strong interactions via transport blockade, in which a single polariton present
in the cavity prevents a second photon from entering. Blockade results in antibunched
correlations of photons exiting the cavity, shown here for l = 0. Figure taken from [44].

of seeing two photons emerge from the cavity separated by a time τ compared to completely

uncorrelated photons. Blockade manifests strikingly through anti-bunching; the same-time

correlation g(2)(0) falls to zero because there are never two polaritons present in the cavity

simultaneously.

We utilize Floquet engineering in our twisted optical cavity to form a set of three degen-

erate orbital angular momentum modes equivalent to the lowest Landau level accessible to

electrons in a magnetic field [93, 47], resulting in 2-particle Laughlin states made of light.
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5.2.2 Floquet engineering

As mentioned in Chapter 4, the twisted cavity used in this work—the Original Twister—was

unable to bring many orbital angular momentum modes into degeneracy as a result of optical

aberrations. However, we were able to bring three modes, l = 3, 6, and 9, effectively into

degeneracy by modulating the atoms at the frequency difference between orbital angular

momentum modes away from the intended degeneracy point.

Figure 5.3 depicts our "usual," unmodulated experimental setup in terms of the atomic

levels of 87Rb we excite to create Rydberg polaritons—the flavors of which are "bright"

and "dark." Dark polaritons are comprised only of a 780 nm cavity photon and the atomic

Rydberg state, thus "dark" to the lossy 5P3/2 level. We excite dark polaritons by injecting

780 nm photons at the frequency where the occur spectrally, inducing blockade and effective

photon-photon interactions.

Figure 5.3: The usual atomic levels. The 5S1/2 ↔ 5P3/2 transition is excited by 780 nm
photons in the 780 nm twisted cavity, and the 5P3/2 ↔Rydberg transition is excited by 480
nm photons in the 480 nm twisted cavity. This excitation configuration gives us electromag-
netically induced transparency (EIT), producing two types of Rydberg polaritons—"bright"
and "dark."

For a non-degenerate cavity, however, the 5P3/2 state cannot be resonant with multiple
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modes unless we do something about it as the 5P3/2 state occurs at a single frequency,

whereas the cavity modes occur at multiple different frequencies. As demonstrated in [47],

Floquet engineering can be used to effectively create frequency sidebands on the 5P3/2 atomic

state using an AC Stark-shirting modulation beam to solve this problem (Figure 5.4). In

the case of creating Laughlin states made of light, a 1529 nm modulation beam was used

to couple the 5P3/2 to nearby D states, giving the 5P3/2 state frequency sidebands at the

frequency difference between every third orbital angular momentum mode.

5.2.3 Laughlin states made of light

The Floquet engineering techniques of the previous subsection were used the couple the

5P3/2 state to the l = 3, 6, and 9 orbital angular momentum eigenmodes of the twisted

cavity, leading to three separate EIT features in Figure 5.5b.

When polaritons have access to multiple transverse modes, in our case in the lowest

Landau level of l = 3, 6, and 9, new physics emerges. It becomes possible for two polaritons

to enter in the cavity simultaneously while still avoiding one another: interactions need not

lead to blockade, but can instead drive collisions between polaritons, causing them to move

among the states of the Landau level and thereby reduce their interaction energy.

Despite the exotic nature of polaritonic quasiparticles, we find that they undergo collisions

much like ordinary particles [83, 84, 85, 97]. In particular, collisions between polaritons

conserve total energy, as well as angular momentum thanks to the rotational symmetry of

the Landau level and interactions. Accordingly, the only collision process which conserves

angular momentum converts two input polaritons with l = 6 into one output polariton with

l = 3 and another with l = 9. Similarly, as we tune the relative energies between the

different angular momentum states, we only observe photons emerging with l = 3 or 9 when

the aforementioned collision process can conserve energy (Figure 5.5. Indeed, we observe

that the rate at which collision products appear R3,9 ∝ R2
6 is quadratic in the rate R6 at
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Figure 5.4: Floquet engineering. a depicts the 780 nm twisted cavity, atomic cloud, and
modulation beam (green). b, The energy of the P state, Ep, is modulated in time due to
a temporally-varying AC Stark shift of the atoms. This modulation creates sidebands on
the 5P3/2 state (c) that can now couple to cavity modes at different frequencies. Increasing
the modulation amplitude gives the effect of creating several new P states to which the
cavity can couple, which are indicated by avoided crossings in the cavity spectra (d). Just as
changing the modulation amplitude of an EOM changes the powers in the various frequency
sideband orders for example, this concept applies to Floquet modulation as well (e). Figure
taken from [47].

which photons emerge in the initial angular momentum state (Figure 5.5d).

To understand the ordering that can emerge due to collisions between polaritons, in
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Figure 5.5: Collisions between polaritons in l = 3, 6, and 9. a, Schematic: To
test for mode-changing collisions between polaritons, we inject photons with orbital angular
momentum l = 6 and then count the photons emerging from the cavity in other angular
momentum modes using mode sorting cavities. b, We perform spectroscopy of the single-
polariton eigenstates by weakly injecting l = 3, 6, 9 photons and scanning their energies. We
observe Floquet Rydberg polariton resonances [94] (three narrow peaks) for each of the three
accessible lowest Landau level eigenstates, separated by ∼ 73 MHz. The l = 3, 9 polaritons
are more photon-like (broader & taller) than the l = 6 polariton (see text). We ignore the
broad "bright" polaritons [95], as they do not interact [96], instead probing collisions of
photons injected on the Rydberg polariton resonances. c, When l = 6 photons are injected
into the cavity at a higher rate, the total rate R3,9 at which photons emerge with angular
momentum l = 3 or 9 peaks when the collisions conserve energy (inset); El is the angular
momentum l polariton’s energy. d, At zero energy mismatch, varying the photon injection
rate reveals that R3,9 grows quadratically (solid curve) rather than linearly (dotted line)
with the rate R6 of injected l = 6 photons, consistent with l = 3 and 9 polaritons produced
in two-body collisions between l = 6 polaritons. Figure taken from [44].

Figures 5.6a and b we consider an idealized energy spectrum for zero, one, and two polaritons.

We consider a "flat Landau level" where all single-polariton states |l⟩ are degenerate, with

energy Epol. When only one single-particle eigenstate (for example, the l = 6 mode) is

accessible, the interactions between polaritons that arise from their Rydberg components

cause the state |66⟩ with two polaritons in that mode to have a shifted energy and shorter

lifetime absent such interactions [98, 99]. Thus, a probe laser which resonantly excites |6⟩

from the vacuum state |vac⟩ does not subsequently excite the |6⟩ → |66⟩ transition, leading

to blockade and precluding the formation of multi-polariton states.
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Figure 5.6: Correlations in angular momentum space. Schematic many-body energy
spectrum for states containing polariton numbers Npol ≤ 2 with each particle able to explore
only a single mode (a) or three modes of the lowest Landau level (b). In a single mode (here
l = 6), the polaritons cannot avoid each other, so the two polariton state |66⟩ has its energy
shifted (Uint) and rapidly decays (Γint) due to interactions; these effects induce blockade.
With three modes accessible, most two-polariton states are still shifted by interactions.
However, a Laughlin state |L⟩ arises in which the interference between |66⟩ and |39⟩ reduces
the interaction energy by keeping the particles apart. This pair state is longer-lived and thus
preferentially excited by the l = 6 probe laser (black arrows). In practice, we study and
measure correlations in the related but inequivalent optical quantum field emitted from the
cavity: c, When all emitted photons are included regardless of angular momentum, photons
with access to all three modes exhibit weak blockade. d, Correlations between photons
with l = 6 exhibit stronger blockade, with remnant nonzero correlation g66(0) = 0.32(3)
at zero delay. e, Photons with angular momenta l = 3 and l = 9 exhibit a large positive
cross-correlation because they are produced together in collisions. f, Relative populations in
the two-photon manifold determined from coincidence events (bars) are comparable to the
Laughlin state (squares) and an atomistic numerical model [94] (circles). Vertical bars in
panel c indicate the portion of g(2)all (0) accounted for by pairs in |39⟩ (orange), |66⟩ (green),
and all other states (black). All error bars indicate standard error. Figure taken from [44].

In this idealized limit, providing the polaritons access to three single-particle eigenstates

in the lowest Landau level leads to the emergence of a long-lived two-particle Laughlin state
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|L⟩ (Figure 5.6b). Our experiments offer a unique opportunity to connect the mathematical

form of this Laughlin state to measurements of its microscopic structure. For the particular

modes used in this work, the two-particle Laughlin wavefunction in real space is ψL(z1, z2) ∝

z31z
3
2(z

3
1 − z32)

2 exp
(
−|z1|2/4− |z2|2/4

)
where zk ≡ xk + iyk is a complex number reflecting

the position (xk, yk) of particle k. Expanding the polynomial prefactor lets us write this state

in angular-momentum space as |L⟩ = 1√
3.1

|66⟩−
√

2.1
3.1 |39⟩, where |mn⟩ is the state with two

polaritons of angular momenta mℏ and nℏ. Because the wavefunction goes to zero when the

particles are at the same position (ψL(z1 = z2) = 0), occupying the Laughlin state enables

two particles to avoid each other while remaining in the lowest Landau level. From the

perspective of angular momentum states, this avoidance arises from destructive interference

between the |66⟩ and |39⟩ two-particle amplitudes for co-located particles. Similar two-

particle Laughlin states can be formed in any set of three evenly spaced angular-momentum

states.

The spatial anti-correlation of polaritons in the Laughlin state suppresses the interaction

energy and interaction-induced decay present in other two-particle states. Thus, for ideal

polaritons, simply shining a laser into this atom-cavity system would cause a polaritonic

Laughlin state to form inside, because all other two-polariton states are blockaded (including

the “Anti-Laughlin” superposition state |AL⟩ =
√

2.1
3.1 |66⟩+

1√
3.1

|39⟩).

The collisions observed in Figure 5.5 are the first hint of such ordering. The finite optical

depth of our polaritons prevents them from reaching a polaritonic Laughlin state before

decaying. Surprisingly, we can distill a high purity photonic Laughlin state outside of the

cavity from the polaritonic state produced within the cavity: this is achieved by choosing

Floquet conditions to make the l = 3 and l = 9 polaritons more photon-like than the

l = 6 polariton (apparent from their larger width in Figure 5.5b), and correcting the phase

imparted to the outgoing photons by the Floquet modulation.

To definitively test for the formation of these photonic Laughlin states we experimentally
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investigate the correlations of the emerging photon pairs [90]. First, when we detect all

output photons regardless of their spatial mode, the "all-mode" correlations g(2)all (τ) reveal

only a weak blockade effect (Figure 5.6c).

This weak blockade confirms that photon pairs can traverse the three-mode cavity whereas

they were blocked in its single-mode counterpart; determining the structure of the pairs re-

quires more detailed measurements.

We gain deeper insight by examining the correlations g(2)jk between photons with angular

momenta l = j and l = k, again using the setup shown in Figure 5.5a. The correlations g(2)66

between photons with l = 6 have a nonzero value g(2)66 (0) = 0.32(3) at zero time delay, indi-

cating substantial population in the pair state |66⟩ (Figure 5.6d). However, their blockade is

still much deeper than that of the all-mode correlations g(2)all , indicating that the two-photon

state has a large contribution from pairs not in the state |66⟩. Most of the remaining pairs

are accounted for by examining g
(2)
39 , which exhibits a prominent peak at zero time (Fig-

ure 5.6e). The peak height indicates that photons are g(2)39 (0) = 22(2) times more likely to

appear in both modes simultaneously than expected for uncorrelated photons arriving with

the same individual rates. This bunching arises because photons in these modes are pre-

dominantly produced together from polaritonic collisions and rarely injected independently.

Unlike parametric collision processes observed in non-linear crystals requiring macroscopic

mode populations [100], collisions in our system appear for just two intracavity polaritons.

We quantitatively compare the observed pair-photon state with the Laughlin state by

calculating the two-particle populations ρjk with angular momenta j and k from the coin-

cidence rates of events where two photons are observed near-simultaneously (Figure 5.6f).

Coincidence events corresponding to |66⟩ or |39⟩ account for 85(15)% of all observed photon

pairs, consistent with angular momentum conservation. Moreover, the ratio ρ39/ρ66 = 1.5(5)

of pair populations is near the intended ratio of 2.1 for the Laughlin state. Deviations from

ideal populations could arise from the limited lifetime and interaction strength of our po-
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laritons, slight drifts of system parameters between experiments, or because the polaritons

with angular momentum l = 3 and 9 are insufficiently photon-like.
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Figure 5.7: Correlations in real space. a, A single-mode fiber (purple) admits only
photons at its location, enabling us to filter photons by their real-space position. A mode-
dependent phase compensator counteracts the phase difference between polaritons and pho-
tons imprinted by our Floquet scheme. b, The average density of photons forms a smooth
annulus with no angular structure. We place the fiber off-center (solid circle) at the radius
with the highest density and measure correlations as a function of the angle ϕ to a second
location (dashed circle) around the annulus. c, The measured angular correlations (circles)
for zero time delay exhibit a periodic structure. The minimum of correlation near ϕ = 0
reveals that photons avoid being in the same location. The solid curve is a fit to the function
g
(2)
fit (ϕ) = g0 + g1 sin

4(3ϕ/2) (see text). Error bars indicate standard error. Figure taken
from [44].

We next test for the remaining essential physical feature of Laughlin states: that the

photons avoid each other in real space. As a bonus, such spatial correlations directly quantify

the off-diagonal elements of the pair-state density matrix. To measure in real-space we

filter the photons exiting the cavity with a single-mode optical fiber (Figure 5.7a) that only

admits photons at the location of its tip. Thus, to count photons at a particular position, we

simply place the fiber tip there. Since the average density in a state composed of |39⟩ and
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|66⟩ forms a smooth annulus, we translate the fiber to the radius with the highest density

(Figure 5.7b). A natural method for measuring angular correlations g(2)(ϕ, τ = 0) between

photons separated by the angle ϕ around the annulus would be to use two fibers at different

positions; our Floquet scheme enables an equivalent measurement using a single fiber, whilst

inducing a mode-dependent phase shift between polaritons and photons that we compensate

with linear optics before the fiber.

Although the average density of our pairs exhibits no angular structure, we find that

two photons rarely occupy the same location (Figure 5.7c). The spatial correlations in

the Laughlin state should take the form g
(2)
L (ϕ) ∝ |ψL(z2 = eiϕz1)|2 ∝ sin4(3ϕ/2), which

oscillates with the angle ϕ between the photons with a periodicity of 120◦ because only every

third angular momentum state is accessible. Motivated by this expected form, we fit the

observed correlations with g(2)fit (ϕ) = g0+ g1 sin
4(3ϕ/2) allowing for an offset g0 from perfect

spatial anti-bunching and a reduction of the oscillation amplitude g1 due to imperfect state

fidelity or detection. The fit yields a small offset g0 = 0.11(19) and an oscillation amplitude

g1 = 0.77(36) with a significance of 2.1 standard deviations corresponding to a probability

of 0.02 to arise from statistical fluctuations in a system with no dependence of correlation on

angle. Additional data taken without phase compensation further reduces this probability

to 10−5.

In sum: the detected pair-populations in angular momentum space suggest Laughlin

physics, but are insensitive to the phase and even the purity of the superposition between

|39⟩ and |66⟩. The observed spatial anti-correlation, on the other hand, only occurs for a

coherent superposition with a minus sign. Combined, these data indicate that the photon

pairs, in a virtual image plane at the twisted cavity mode waist, have 76(18)% overlap with

a pure Laughlin state. This fidelity is limited primarily by our conservative assumptions

about the unmeasured momentum-non-conserving pair populations.

This work establishes quantum many-body optics in strongly interacting gases of topo-
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logical polaritons as a critical route to breakthroughs in quantum materials. We bring to

bear the unique microscopic control of our photonic platform, providing highly tunable sys-

tem parameters, energy- and space- resolved particle injection, and the ability to measure

correlations in almost any basis using simple linear optics. The present performance, com-

bined with a cavity that can be made precisely degenerate in lieu of the Floquet scheme

should directly support polaritonic Laughlin states. Looking ahead, novel state-preparation

schemes [101, 102] such as dissipative stabilization [103, 104, 105, 106, 107] will enable the

formation of larger topologically ordered states. Interestingly, the Laughlin state that we

have assembled in this work already contains a quasi-hole at its center, a precursor to directly

measuring statistical phases of anyons [108, 109, 110, 111, 112] or even non-Abelian braiding

in the Moore-Read state [113].

5.3 Understanding and improving cavity performance

The contents of the previous section described the creation of a 2-particle Laughlin state

made of light using Rydberg polaritons and a twisted optical cavity. However, the maximum

size of such a quantum material scales with the number of degenerate modes of the cavity.

Thus, this section describe our efforts to create a highly degenerate multimode twisted

cavity compatible with the Rydberg gas, enabling us to explore bigger and more robust

topologically-ordered Laughlin states with multiple polaritons.

5.3.1 Optical aberrations

Optical resonators have become an indispensable tool in optical and atomic physics. They

are typically understood and utilized in the paraxial, quadratic limit, where the transverse

mode structure and spectrum are derived [28]. For common cavities, this results in the

familiar Hermite-Gauss (HG) or Laguerre-Gauss (LG) families of eigenmodes, whose evenly-

spaced resonance frequencies are set by the Gouy phase. Usually this description is entirely
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adequate, as deviations from this approximation are typically small when the resonator mode

waist w is much larger than the wavelength λ. Additionally, most applications use only the

fundamental resonator mode.

As degenerate cavities have become more prevalent in quantum science experiments [114,

80, 70, 115, 116], the atomic physics community has begun to probe the limits of the afore-

mentioned approximations by pursuing high-finesse, small waist resonators for their enhanced

light-matter coupling [117, 118, 119]. Degenerate cavities in particular are alarmingly sensi-

tive to small deviations from the uniformly-spaced energy spectrum of the quadratic approx-

imation. For the nth degenerate mode to overlap within a resonator linewidth, the spacing

must be uniform to about one part in n times the finesse. Optical resonators often have

finesses in the range of 103 to 105, so achieving degeneracy requires extreme uniformity of

the spectrum.

A number of attempts have been made to predict resonator spectra beyond the paraxial,

quadratic limit. One might anticipate that finite-element or boundary-element approaches

would provide quantitatively accurate results, but the fact that the resonators are many

thousands of λ across makes discretization a substantial computational challenge. Instead,

the authors of Reference [120] make closed-form predictions for mode energies by expanding

the mode functions of two mirror resonators in spheroidal coordinates. References [121,

122] take a different approach, computing order-of-magnitude estimates of the impact of

perturbations to the the paraxial resonator modes. Reference [123] analyzed nonparaxial

eigenmodes of a half-symmetric two-mirror cavity using a perturbative expansion in a basis

of HG modes.

The work of Reference [48] pursues a more general treatment of aberrations using a novel

perturbative expansion of the round-trip propagation operator in the basis of the parax-

ial quadratic eigenmodes, and finds that this perturbative approach accurately captures

observed mode-mixing [80, 116] arising from aberration terms near degeneracy. This sub-
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section will briefly review several main results of this work and place them in the context

of twisted cavity development for the purpose of creating topologically ordered quantum

materials made of light.

0 20 40 60 80

50

60

70

80

displacement from waist (mm)
m
od
e
si
ze

(μ
m
)

0 20 40 60 80 100 120

50

100

150

200

displacement from waist (mm)

m
od
e
si
ze

(μ
m
)

-150 -100 -50 0 50 100 150

-1000

-500

0

500

1000

distance from degeneracy (μm)

d
et
un
in
g
(M
H
z)

-20-10 0 10 20
-40
-20
0
20
40

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

-100 -50 0 50 100
-100

-50

0

50

100

distance from degeneracy (μm)

d
et
un
in
g
(M
H
z)

-2 -1 0 1 2

-2
-1
0
1
2

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●

●●
●●●●
●●●●●●●●

●●●●●●●●
●●
●●
●●
●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●●

●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●
●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●
●●
●●
●●
●●
●●●●●●●●●●

●●●●●●
●●●●
●●
●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

-40 -20 0 20 40
-100

-50

0

50

100

distance from degeneracy (μm)

d
et
un
in
g
(M
H
z)

a b c

d e f

Figure 5.8: Aberrations in past Simon Lab cavities. Two non-planar cavities are
described: the cavity from Reference [80] (the Landau cavity) and the Original Twister [44].
a, Non-planar cavity geometry. The Original Twister is shown, but the Landau cavity is
nearly identical. b and c, Mode size over a cavity round trip for the Landau cavity and the
Original Twister, respectively, for λ = 780 nm. Mirror positions are indicated by the dashed
vertical lines. Colors indicate the two semi-axes. Small discontinuities are due to a change
of semi-axis basis arising from the astigmatism plus rotation after reflection into a new
plane. d, Paraxially-expected spectrum, with target degeneracy inset. e and f, Aberrated
theory spectra for the Landau cavity and the Original Twister, respectively. Each point’s
color is a blend of the color scheme in d, with weightings given by the paraxial eigenmode
contributions to the point’s corresponding eigenvector. Level repulsion and mode mixing due
to cubic astigmatism can be seen, which is much stronger in the Original Twister. Figure
taken from [48].

To demonstrate the utility of this perturbative approach to understanding aberrations,

Reference [48] calculates the aberrations of a resonator whose degeneracy is broken, at lowest

order, by cubic astigmatism. The cavity from [80] (the Landau cavity) and the Original

Twister were specifically designed to suppress the impact of quadratic astigmatism [80, 115].

In each case, the Landau level is formed by a set of degenerate orbital angular momentum

(OAM) modes. The first of the two cavities, with a larger waist, exhibited no observable

120



avoided crossing near degeneracy [80]; the second, with a ∼ 2× reduced mode waist size,

presented clear avoided crossings as degeneracy was approached [44]. In short, these cavities

provide a clear and simple testbed for beyond-quadratic resonator aberrations.

The cavities in question use a non-planar twist to generate a synthetic magnetic field for

light [80, 124, 115]. The non-planar twist necessitated off-axis incidence on curved mirrors,

and thus exhibited quadratic astigmatism that couples every second OAM mode due to the

different effective radii of curvature for the sagittal and tangential axes [125]. To avoid this

destabilization due to quadratic astigmatism, in Reference [80], it was found that by ensuring

that the twist generated a Gouy phase of 2π/3, a conical Landau level could be realized,

consisting of only every third OAM mode l = 0, 3, 6, ..., thereby suppressing the impact of

quadratic astigmatism. Unfortunately, this simply pushed the problem to slightly higher

order: Non-normal incidence on a spherical surface also introduces cubic astigmatism.

The basic resonator configuration is shown in Figure 5.8a. Four mirrors are arranged in

a tetrahedral configuration, providing the non-planarity. The Original Twister was designed

for a smaller waist (to allow for Rydberg-mediated interactions between the photons) relative

to the Landau cavity, which dramatically increases the effect of aberrations.

The expected spectrum calculated under the paraxial, quadratic assumptions is shown

in Figure 5.8d. Only the modes of interest, angular momentum modes with Laguerre-Gauss

indices (ℓ, p) = (ℓ, 0) are shown. As the Gouy phase varies with mirror spacing, a degeneracy

is approached when the mirror spacing sets the total round trip Gouy phase to be 2π
3 . The

expanded inset in Figure 5.8d shows the expected degeneracy of angular momentum modes

ℓ = 0, 3, 6, ....

Figures 5.8e,f shows the calculated perturbed spectra of Landau cavity and the Original

Twister, respectively. The cubic aberration is evident as the level repulsion around the

expected degeneracy. Incomplete level repulsion of the highest-order modes shown is a finite

basis effect (edge basis states do not have higher levels to couple to). In reality, high-order

121



modes also see increasing loss, as larger modes run off the edge of the mirror, or encounter

mirror imperfections within their larger surface area. For strong mixing, even "low-order"

modes become lossy, as they acquire a significant contribution of high-order unperturbed

modes. In fact, this mixing was strong enough to destabilize even the lowest-order mode in

the Original Twister as degeneracy was reached.

Apparently, the modest reduction in waist size in the Original Twister comes with a

dramatic increase in the cubic aberration. This can also be seen in the round trip mode-

size plots (Figures 5.8a,b) as the extra "work" done by each curved mirror surface in the

aberrated geometry. The zoomed inset of Figure 5.8e shows a similar level structure to that

of Figure 5.8f, though with much weaker mixing. Throughout Figure 5.8, we include only the

cubic perturbation (i.e., we ignore quartic and higher non-paraxial propagation and spherical

aberration terms). Our perturbative approach is limited by commutator ambiguities [126]

when combining terms of different orders, but we can ignore higher-order terms for these

cavities, which are dominated by resonant cubic terms.

Figure 5.9: Aberrated mode profiles. Mode profiles are shown for the Landau cavity
near the degeneracy point shown in Figure 5.8d. Profiles are shown for (top row) parax-
ial expectation (near-Laguerre-Gauss modes, with mode indices indicated), (middle row)
experimentally measured profiles, and (bottom row) aberrated calculation. Color bars at
right scale between zero and peak intensity of each image. Figure taken from [48].
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Our calculation method enables construction of the mode profiles (eigenvectors), in addi-

tion to the mode energies (eigenvalues) from Urt. For example, the mixed-modes of Landau

cavity near the degeneracy point in Figure 5.8d are shown in Figure 5.9. The resonant cubic

astigmatism leads to a clear three-fold symmetry, as modes separated by 3 OAM quanta are

coupled by cubic terms.

While the resemblance between the various modes in Figure 5.9 is clear, the experimental

modes show a more dramatic deviation from the paraxial expectation than even the aberrated

predictions. This could be due to further effects, such as (a) mixing that is strong enough

to be non-perturbative, (b) interaction between cubic terms and higher-order terms (e.g.,

resonant 6th-order astigmatism [as indicated by the six-fold symmetry in some modes], non-

paraxial propagation, spherical aberration), or (c) mode-dependent loss. High-order modes

are clearly involved, as seen by the long tails extending out to large radii in the last few

columns of Figure 5.9.

Motivated by the goal of achieving a large-scale degeneracy of photonic modes to build

topologically ordered quantum materials, Reference [48] proposes and builds a twisted cavity

consisting of flat mirrors and two intracavity lenses. Flat mirrors allow for the non-planar

twist without introducing astigmatism via non-normal incidence, while the on-axis intracav-

ity lenses provide the transverse confinement necessary for a stable cavity. This arrangement

enables a non-astigmatic cavity without relying on hard-to-manufacture elliptical or off-axis

parabolic mirrors.

Spectra at a range of lens splittings near degeneracy points can be seen in Figure 5.10.

Figure 5.10a shows s = 1 (involving every mode), Figure 5.10b shows s = 3 (involving

every third mode), and Figure 5.10c shows s = 3 for lenses oriented backwards. This

backwards configuration significantly worsens the observed aberrations, in agreement with

our theory. Importantly, this effect does not appear when modeling the lens as a position-

dependent phase plate (as in References [123, 121, 122], with mirrors). The slope-dependent
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Figure 5.10: Measured spectra of the twisted lens cavity. a, near the s = 1 point. b,
near the s = 3 point. c, near the s = 3 point with backwards lenses. a-c have the same
vertical and horizontal spans. Data positions along the horizontal axis are inferred from
the splitting between the fundamental mode and the lowest-excited mode in the degenerate
manifold. Markers indicate measured data points, while the lines indicate the perturbative
prediction with no free parameters. d-f, Missed-degeneracy due to aberrations for the s = 1,
s = 3 point, and s = 3 point with backwards lenses, respectively. Mode energies relative to
the fundamental mode are plotted against angular momentum ℓ at the lens separation where
the fundamental and ℓ = s modes are degenerate. Without aberrations, these modes would
all be degenerate at the same lens separation, so this quantity would be zero (solid line).
Data is shown in colored points, obtained by linear fits to the data of a-c. Our perturbative
calculation, with no free parameters, is shown by the dashed line (shown as continuous, for
ease of comparison to the data). d-f have the same vertical and horizontal spans. Note that
the aberration contribution to the spectrum is ∝ ℓ2, as expected for a quartic perturbation.
Figure taken from [48].

perturbation terms must be included to accurately reproduce the spectra.

Remarkably, the s = 1 point supports stable modes. From a purely paraxial standpoint,

this cavity should be unstable: the ABCD matrix is singular, akin to an exactly-confocal

cavity [125]. Quadratic astigmatism resonantly couples modes in this configuration, so the

cavity lenses must be aligned very precisely. Curved lens surfaces must be centered / un-tilted

with respect to the cavity axis to within δx ≲ 10µm (and/or equivalent tilt ∼ δx
R ≈ 0.1◦;

in practice the positioning is a more stringent constraint). Without this level of alignment,
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quadratic astigmatism mixes the modes near degeneracy, leading to level repulsion (as seen

in, e.g., Figure 5.8 for the cubic case). A quartic term breaks this degeneracy, confining

the light to within a finite radius of the cavity axis in the presence of small but finite

misalignment.

The s = 3 point enjoys protection against quadratic astigmatism (it is off-resonant), and

is thus significantly less sensitive to alignment. However, only 1/3 of the number of modes

lie within a given frequency window, as compared to s = 1. Eventually the quartic term

breaks this degeneracy, leaving only a few modes within several MHz in the "degenerate"

manifold.

Flipping the lenses such that the curved side faces the cavity waist worsens the aber-

rations, increasing their effect on the spectrum. This can be seen from the wider spread

in zero-crossings of the modes in Figure 5.10c compared to Figure 5.10b, as well as the

stronger quadratic contribution to mode energies in Figure 5.10f than in Figure 5.10e. Due

to technical aspects of our alignment procedure, the backwards lens-cavity was more am-

biguous to align. And while the quadratic astigmatism of misaligned lenses does not affect

the stability of the s = 3 manifold, it can affect the size of the splittings. For the model

in Figure 5.10f, we have included a single lens tilt of 2.5◦. In reality, both lenses could be

tilted / displaced in an arbitrary transverse direction. This would be difficult and not so

informative to disambiguate.

In conclusion, the perturbative approach presented in Reference [48] quantitatively pre-

dicts the spectra of aberrated optical cavities and proposes a twisted lens cavity to minimize

such aberrations. While the Original Twister did not achieve a large-scale degeneracy of

photonic modes, Lluna—our next-generation twisted lens cavity mentioned in Chapter 4—

shows promise for increasing the number of degenerate cavity modes, enabling us to create

few-body Laughlin states made of light.
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5.3.2 Backscatter suppression

High-finesse optical cavities are broadly useful across quantum optics, enabling efficient in-

terfaces of individual photons to quantum emitters such as atoms and ions [127], quantum

dots [128, 129], rare-earth ions [130, 131], and defect centers [132, 133]. Intracavity op-

tics, such as lenses or modulators, can radically expand the capabilities of such optical

resonators. While refractive elements are used extensively in free space optics, they have

thus far remained largely absent from moderate- to high- finesse optical cavities. Concerns

about backscatter and loss have typically been presumed to preclude intracavity changes

of refractive index, even if anti-reflection (AR) coatings are employed. If these concerns

could be addressed, intracavity optics would be transformative, enabling new capabilities for

light-matter interaction.

Backscattering has been studied across the electromagnetic spectrum, from microwave

to optical frequencies. It is of practical importance for applications in ring lasers [134, 135]

and gyroscopes [136, 137], and is fundamentally connected to topological systems [138]. In

particular, backscatter immunity is a defining characteristic of topologically protected edge

channels, even in the presence of disorder [139, 140, 78, 141]. Elimination of undesired optical

backreflections, however, has so far been limited to active [142] or passive [143] cancellation.

The work of Reference [49] presents a quantitative and experimental assessment of back-

reflections in cavities. This subsection will briefly review several main results of this work and

place them in the context of backreflection suppression in our current twisted cavity, Lluna

(as presented in Chapter 4). Reference [49] identifies three main sectors contributing the the

total amount of backreflection: polarization, mode envelope and transverse mode profile—

each of which can be optimized to suppress backreflections. These approaches amount to

either suppression of the back-coupling matrix element or reduction of the available density

of states for backscattering. Backscattering can be suppressed nearly one million-fold in

a twisted optical cavity, allowing for effective reflectivities below 1 part per billion (ppb).
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Engineering the polarization eigenstates of the cavity is the essential tool for achieving this

performance. Additionally, beams carrying orbital angular momentum (OAM) exhibit even

stronger suppression of backreflections due to a topological protection arising from their

phase winding.

Figure 5.11: Model of intracavity backscattering. a, We consider a planar running wave
cavity with a single intracavity reflector. Input and output mirrors have amplitude reflection
(transmission) coefficient r (t). The third mirror is a perfect reflector. The intracavity
reflector (green) has amplitude reflection (transmission) coefficient r̃ (t̃). Output paths of the
forward- and backward- modes from the input mirror are omitted. b-e. Cavity transmission
for different values of R̃ = |r̃|2. For R̃ = 0, we see the expected Lorentzian lineshape. The
cavity finesse has been set to 4000 via r and t with no loss. The blue (red) curve shows the
forward-traveling mode F (backward-traveling mode B) transmission. As R̃ increases, we
see coupling of the injected forward-traveling light into the backward-traveling mode. For
sufficiently small R̃, the forward and backward responses are both approximately Lorentzian
with peak ratio ∝ R̃. For larger R̃, the forward and backward modes hybridize, splitting into
two spectrally-separated peaks with near-equal participation of both F and B. The splitting
of these peaks ∆ is ∝

√
R̃ = |r̃|, and is directly analogous to the classical coupling of two

harmonic oscillators. The analysis in this figure assumes perfect mode- and impedance-
matching of the coupling between the forward and backward modes. Figure taken from [49].

To begin, Reference [49] considers a running wave optical cavity consisting of three mir-

rors as shown in Figure 5.11a. The two input/output mirrors have amplitude reflection

(transmission) coefficients r (t), while the third mirror is a perfect reflector. An intracavity

reflector with amplitude reflection (transmission) coefficient r̃ (t̃) can couple a forward-

traveling mode to a backward-traveling mode. Indeed, even in cavities without an explicit

reflector, the mirror imperfections in high-finesse ring cavities can be sufficient to induce

detrimental backscattering [142].

Using standard input/output field relations [125], the intracavity and output fields for
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both the forward- and backward-traveling modes may be computed, as shown in Figures 5.11(b-

e) for various values of R̃ = |r̃|2. As the intracavity reflectivity R̃ increases, the forward and

backward modes hybridize until they are fully mixed. Note that the highest reflectivity

shown, R̃ = 100 parts per million (ppm), corresponds approximately to the best (lowest-

reflectivity) commercially-available AR coatings. Thus, even at the modest finesse of 4000

shown in Figures 5.11(b-e), any optic within the cavity would fully hybridize the forward and

backward modes. Note that unlike the case of a standing wave cavity [144], sub-wavelength

changes of the single reflector’s longitudinal position do not impact the amount of backre-

flection for the running wave case.

Note that, in general, coupled modes split. Examples of this concept are vacuum Rabi

splitting (VRS), coupled cavities, and photonic modes coupled via an intracavity reflector

as in Figure 5.11. The suppression of backscattering, and thereby the coupling, should thus

manifest as a reduction in the observed mode splitting.

A powerful tool to break the forward-backward symmetry is a non-planar cavity geom-

etry, which provides a round-trip image/polarization rotation [145, 146] (an example of a

Pancharatnam-Berry phase [147, 148]). Combined with the Faraday effect, this rotation

allows introduction of loss for one polarization state via Brewster reflection and thus unidi-

rectional lasing of an active gain medium within such a cavity [149, 150]. For a resonator

without gain, this approach fails, making both modes lossy for a large enough coupling

between them. Our approach is to instead make the reflection-induced coupling between

forward and backward modes vanishingly small, achieved by ensuring that the backward-

propagating mode at the same energy has at least the opposite polarization, and potentially

also the opposite angular momentum. Traversing a non-planar cavity in the opposite di-

rection reverses the image rotation, breaking inversion symmetry of the system and thus

making it helical: the two polarization states of the cavity are split out in frequency, while

forward- and backward-traveling modes of the same helicity remain degenerate [151].
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The total effect of backscattering can be described as a product of matrix elements in

three sectors: (i) polarization; (ii) mode envelope; and (iii) transverse mode profile. We find

that sectors (i) and (iii) benefit from non-planarity.

d e f

cba

Figure 5.12: Polarization suppression of backscattering. Cavity polarization eigen-
states labeled by their eigenvalues χi and eigenvectors ψi are shown in (a-c). a. A cavity
with only birefringence has linearly polarized eigenstates (along the birefringent axes). c. A
non-planar cavity with image rotation has circularly polarized eigenstates. b. In a cavity
with both image rotation and birefringence, the modes are in general elliptically polarized.
The forward (blue) and backward (red) polarization modes are shown for each eigenvalue
χi, though they overlap exactly in a and c. d. Cavity arrangement. The pink mirror is
switched between a birefringent mirror and a non-birefringent mirror; see main text for de-
tails. Measured cavity transmission for the forward (blue) and backward (red) modes are
shown in e birefringent and f non-birefringent configurations. Simultaneous fits (black) to
the forward and backward data extract the effective reflectivity Reff. The same data is shown
on a logarithmic scale in the insets. Much lower excitation of the backward mode is evident
in the birefringence-canceled case. Figure taken from [49].

For the case of birefringent phase shifts arising from non-normal incidence on dielectrics

in a planar resonator (Figure 5.12a), the forward and backward matrices are the same. The

resulting polarization eigenstates are linear, oriented along the birefringence axes.

For the case of an image rotation only (Figure 5.12c), the backwards-traveling mode

image-rotates in the opposite direction. But, the z-direction inverts as well, so the forward

and backward matrices are again the same. The resulting eigen-polarizations are circular.
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However, these matrices are associated with two different eigenvalues, and thus for circular

polarization states in a twisted cavity, backreflections are energetically forbidden. Intuitively,

this can be seen from the polarization frequency splitting arising from the circular polariza-

tion vector rotating either with or against the image rotation. When a reflection occurs, the

image rotation changes sign, but the polarization rotation (i.e., spin angular momentum, not

helicity) does not.

To summarize, backreflection of linear polarization states is allowed: light resonant in

the forward direction is also resonant in the backward direction. Circularly polarized eigen-

modes of a twisted cavity, however, are protected against backreflections. Light of a given

polarization mode finds no density of states to backscatter into. In the general case of both

birefringence and rotations, the cavity polarization modes are elliptical (Figure 5.12b).

Reference [49] discusses the measurement of backreflections in a cavity whose schematic

is shown in Figure 5.12d. We employ a non-planar cavity with two intracavity plano-

convex lenses that act as reflectors. The lenses are super-polished for low surface rough-

ness (< 2 Å rms) and are AR-coated to RAR ≈ 250 ppm at 780 nm (as measured by the

manufacturer). All measurements reported in this work use a wavelength of 780 nm. The

lower input/output mirrors are designed for zero birefringent phase shift between s and p

polarization at their 28◦ angle of incidence (AOI). Minimizing this phase difference δsp is

critical; we found that a coating with δsp = 0 ± 1◦ specification performed notably better

than a different coating with δsp = 0± 3◦. The upper mirrors have a spatial rotation of 89◦

between their respective s and p axes. Thus, if these two mirrors have the same coating,

any residual birefringence nearly cancels after reflection off both mirrors, as s-polarization

for the first mirror very nearly becomes p-polarization for the second mirror. We can vary

the birefringence by using two upper mirrors from the same coating run (thus canceling

birefringence), or by using mirrors from different coating runs, leaving a residual birefringent

phase shift. The finesse of this cavity is F ≈ 3900, set primarily by the input/output mirror
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transmission. This geometry gives a waist of 18µm between the lenses, whose planar surfaces

are separated by about 22 mm.

The results for backreflections of the fundamental cavity mode are shown in Figure 5.12.

For the birefringent case (Figure 5.12e), the forward mode begins to hybridize with the

backward mode. Even in this case, the effective reflectivity (Rbiref
eff = 350 ppb) is about 700

times lower than the bare reflectivity of the AR-coated lens (RAR = 250 ppm). Furthermore,

the above analysis assumes a single reflector, while in reality, this cavity has reflections at

4 lens surfaces. This > 700× reduction in reflectivity from the free-space value primarily

results from the round-trip image rotation still dominating over the un-canceled birefringence,

meaning that the resulting polarization states are still nearly circular. From the measured

birefringence of the mirrors, we only expect the magnitude squared of the matrix element

|αpol|2 ∼ 6% overlap between the forward and backward cavity polarization modes with

the same eigenvalue. There is also another mechanism of backreflection suppression at work

related to the spatial mode profile of the cavity mode.

For the non-birefringent case, we use mirrors designed for δsp = 0± 10◦ at the 45◦ AOI

of the upper mirrors. Since both upper mirrors come from the same coating run in this case,

the 89◦ spatial rotation between these mirrors cancels much of any residual birefringence of

this coating. As shown in Figure 5.12f, we see a further 700-fold reduction in backreflec-

tions, plunging the effective reflectivity below 1 ppb. This is almost 1 million times lower

reflectivity than the best-achievable AR-coatings in free space, and results in a negligibly-

perturbed forward-propagating mode. Despite having four changes of refractive index per

cavity round trip, the cavity polarization state is sufficiently circular that backreflections are

almost entirely forbidden.

In addition to the polarization sector, the spatial mode profile matrix element between

the initial and target state must be nonzero to allow backreflection to occur.

Consider how the cavity mode profiles transform under a reflection for LG modes. The
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Figure 5.13: Spatial mode-matching suppression of backscattering. Standard (back-
ward) orientation of the rightmost lens is shown in the top (bottom) row. Left column: lenses
are shown, along with the cavity mode (blue; propagating left-to-right) and backreflected
beam profiles from the first and second surfaces (green and orange, respectively) of the right-
most lens, in order of incidence. We ignore here reflections from the leftmost lens. The lenses
have an outer diameter of 7.75 mm, with clear aperture ≥ 75%. The tubes indicating the
mode size have radius equal to 1.92 times the local beam waist; that is, 99.94% of the beam’s
power is contained within the tube, and losing all power outside of this tube would limit the
finesse to 104. Note that the reflection off of the second surface of the backwards lens is best
mode-matched to the backward-traveling fundamental mode. Middle column: The matrix
elements of reflection in the spatial profile sector between forward- and backward-traveling
modes are plotted for the lens surfaces, showing the spatial overlap integral vs. position
parameterization for each reflecting surface. The reflecting surfaces in our cavities are indi-
cated by the points along the curves. Note that the backwards-orientation plano surface has
substantially higher |α0,0spatial| than any of the other surfaces. Right column: Experimental
backreflection data. Due to the improved mode matching, the effective reflectivity coefficient
Reff in the backwards-lens case is about 20× greater than in the standard configuration (top
right is the same data as in Figure 5.12f). The standard configuration is thus more favorable
for reducing backscatter. Figure taken from [49].

radial coordinate r remains unchanged, while ϕ → −ϕ. Since the sign of ℓ only matters

in the phase winding term, the reflection thus has the effect of taking ℓ → −ℓ. That is,

the forward-propagating mode with angular momentum ℓ has the same phase profile as

the backward-propagating mode with angular momentum −ℓ. Furthermore, the backward-

propagating mode at a given plane has the opposite sign wavefront curvature R as the
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forward-propagating mode: if the forward mode has a diverging wavefront at a given plane,

the backward mode is converging.

A reflection should be well-mode-matched into the backwards traveling mode in order

to occur. This is visualized in the left column of Figure 5.13. This mode-matching can be

increased by turning one lens to be backwards, such that the cavity mode encounters the

lens’ flat surface when it is large and less-divergent. This gives better mode-matching of the

reflection into the backward mode, and thus a 20× increase in the effective reflectivity Reff

(right column of Figure 5.13).

For the standard lens orientation, we see from Figure 5.13 that the magnitude squared

of the matrix element |αspatial|2 ∼ 0.02, which provides a factor of 50 suppression of backre-

flections compared to the free space value. This factor of 50 due to mode mismatch accounts

for the rest of the ∼ 700× reduction of the free space reflectivity RAR to the birefringent

value Rbiref
eff in Fig. 5.12f.

Additionally, LG modes with nonzero angular momentum cannot backreflect into them-

selves. To experimentally probe this, we increase cavity backreflections by using the birefrin-

gent mirror configuration of Figure 5.12e, and reversing the orientation of one of the lenses

(Figure 5.13, bottom row). Using holographic beam-shaping with a digital micromirror de-

vice [152], we inject a desired LG ring mode (i.e., p = 0) into the cavity and observe its

backreflection behavior. While ℓ = 0 shows substantial backscatter, we see backreflection

suppression by one to four orders of magnitude for nonzero angular momentum. In fact, by

observing both the forward and backward modes on CCD cameras, we find that this back-

reflection suppression is limited entirely by the availability of other modes to backscatter

into.

In the lowest backreflection configuration (non-birefringent, standard lens orientation

as in Figure 5.12f), backreflections of higher-angular momentum states are unobservably

small. The suppression quantified for ℓ > 0 modes in the higher-backreflection configuration
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(birefringent, one lens backward) indicates that beams carrying orbital angular momentum

experience effective reflectivities in the lowest backreflection configuration as low as sub-

part-per-trillion.

In conclusion, Reference [49] demonstrated the ability to incorporate optics inside of high-

finesse optical cavities. Lenses and modulators could dramatically expand the capabilities of

such resonators, as they do for free space optics. By engineering the polarization properties

of the cavity eigenmodes, we suppress the effect of intracavity backreflections by six orders

of magnitude, resulting in sub-part-per-billion effective reflectivities. Beams carrying orbital

angular momentum provide even greater suppression due to their phase winding, limited

only by the available density of states for mode conversion, and yielding effective reflectiv-

ities at the part-per-trillion level. We have explored the effects on backreflection of both

polarization and spatial mode profile in these non-planar cavities. In general, harnessing

this backreflection suppression yields a more robust degenerate manifold of photonic states

in our most recent optical cavity, Lluna, for the purpose of creating photonic Laughlin states.
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CHAPTER 6

PHOTONIC MODE CONVERSION

This chapter is based off of reference [153]:

Optical mode conversion via spatiotemporally modulated atomic susceptibility.

C. Baum, M. Jaffe, L. Palm, A. Kumar, and J. Simon, arXiv preprint, (2022).

6.1 Motivation

Efficient control over photonic degrees of freedom, including frequency, polarization, and spa-

tial mode, has widespread applications in information and communication. Put simply: the

more degrees of freedom one can manipulate, the more information one can encode in a single

channel of light. This idea is utilized regularly in both classical and quantum communication,

where light has been multiplexed in arrival time [154, 155, 156], frequency [157, 154, 155, 156],

polarization [156], quadrature [156], and most recently space [158, 156, 159, 160, 161, 162,

163, 162, 164, 165] to substantially increase information transfer over a fiber [166, 167, 168]

and free-space link [169]. Spatial information may be conveniently encoded within fami-

lies of propagation eigenmodes; the Hermite-Gaussian (HG) and Laguerre-Gaussian (LG)

families are appealing for their orthogonality and infinite-dimensionality, supporting the ex-

ploration of higher-dimensional Hilbert spaces for quantum computing [170, 171], formation

of orbital angular momentum qudits [171, 172, 173, 160, 174, 175, 176], improved quantum

key distribution [172, 177, 160, 176, 178, 179, 180], lower-crosstalk quantum communica-

tion [181, 182, 178], and distribution of quantum information to multiple users in a quantum

network [174].

High-dimensional optical information encoding requires the ability to manipulate the

various photonic degrees of freedom through "mode conversion" [183, 184, 185, 186, 187,

188, 189, 190, 191, 192, 165]. Frequency and polarization mode conversion can be achieved
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quite flexibly at near-unit efficiency using electro-optic modulators [193] and waveplates.

However, efficient spatial mode conversion is more challenging. In general, spatial mode

conversion requires a spatially-dependent phase and amplitude modification of a photon’s

electric field. While phase can be modified losslessly by a phase-imprinting device, amplitude

modification occurs only through propagation or discarding amplitude via a physical barrier,

limiting the efficiency with which spatial mode conversion can occur. For instance, devices

such as spatial light modulators, digital micromirror devices, vortex plates, and liquid crystal

q-plates [194, 195, 196, 197, 198] are excellent devices for generating modes with orbital

angular momentum (OAM) by imprinting incident light with a spiral phase. While the

resulting mode has the correct phase winding to be purely LG, its amplitude distribution

does not. Rather, the resulting mode can be expressed as an expansion of the LG radial

modes for a given OAM, illustrating that a phase imprint alone is insufficient for highly

efficient spatial mode conversion to a single LG mode [199, 178]. Thus, mode-converting

devices have been designed to modify light in environments such as waveguides, cavities,

and photonic crystals that limit the occupiable spatial modes to enhance conversion to a

single target mode. Among these devices are a HG↔LG mode converter using an astigmatic

microcavity [200], an arbitrary HG mode-order converter utilizing the impedance mismatches

between coupled Fabry-Pérot resonators [201], design-by-specification converters based on

computational methods [202], and an assortment of silicon photonic converters that harness

refractive index variation to smoothly modify a propagating spatial mode [203, 204, 205,

206, 207, 208, 209, 210, 211, 212, 213, 214, 215].

In this chapter, we explore a new method in which spatial and frequency mode conversion

occur simultaneously in a single system with high efficiency. In effect, we create a rapidly

sculptable, rotating optic inside of an optical cavity that converts photons between cavity

modes. In practice, we modulate [47], in both space and time, the optical susceptibility of

a stationary atomic sample at the waist of a twisted optical cavity using a strong auxiliary

136



beam, inducing a coupling between cavity modes. This auxiliary beam Stark shifts the

energy levels of the atomic sample to create a spatiotemporally-varying optical susceptibility

across the atomic sample akin to a rotating optic. Photons that are incident on the atomic

sample accrue a position-dependent phase that couples the incident mode to other modes

of the cavity, which enables repeated light-atom interactions and preferentially enhances the

emission of light into supported, resonant spatial modes. We measure the efficiency of this

conversion process for increasing atom number and modulation beam intensity. We find a

parameter regime in which the internal conversion efficiency saturates near unity.

6.2 Experimental methods

We demonstrate conversion between LG modes of orbital angular momenta l = 3 → l = 0

(i.e. LG30 →LG00). Our optical cavity is a four-mirror twisted cavity, meaning one mirror

lies outside of the plane formed by the remaining three [216]. As the eigenmodes of this cavity

are non-degenerate LG modes, cavity photons require a change in both their spatial and

frequency degrees of freedom to undergo mode conversion. This change can be accomplished

by passage through the an atomic sample whose optical susceptibility varies in time and

space. Provided the variation occurs at the frequency difference between l = 0 and l = 3

and imprints a phase on l = 0(3) such that the resulting spatial mode has non-zero overlap

with l = 3(0), a coupling will be engineered between the l = 0 and l = 3 cavity modes.

Fig. 6.1a illustrates our mode conversion scheme. A 87Rb atomic sample resides at

the waist of our twisted optical cavity, which hosts modes at 780 nm (near the 5S1/2 ↔

5P3/2 transition of 87Rb) and at 1529 nm (near the 5P3/2 ↔ 4D5/2 transition of 87Rb).

The 5P3/2 ↔ 4D5/2 transition of the atomic sample is energetically modulated by a time-

varying, spatially-dependent optical Stark shift generated by an auxiliary ‘modulation’ beam

at 1529 nm whose intensity distribution is illustrated in Fig. 6.1b. This pattern is achieved

by overlapping 1529 nm l = 0 and l = 3 modes, forming an intensity profile with three
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Figure 6.1: Modulated atomic samples as sculptable optics. This work demonstrates
the conversion of photons between two Laguerre-Gaussian modes of orbital angular momenta
l = 0 and l = 3. These modes are the non-degenerate eigenmodes of the twisted cavity
depicted in a, which hosts 780 nm probe modes (red) and slightly larger, copropagating
1529 nm modulation modes (orange). We inject l = 3 probe photons which are converted
to l = 0 via coupling to an atomic sample of 87Rb atoms at the waist of the cavity. b,
The optical susceptibility of this sample is modulated in space and time by the 1529 nm
modulation beam, effectively sculpting a rotating, mode-coupling optic from the atomic
cloud with a spatiotemporally-varying refractive index. This coupling arises from the spatial
profile used modulate the atomic sample, which is comprised of both l = 0 and l = 3 modes
as illustrated in c. When an l = 0 mode of frequency ω is spatially overlapped with an l = 3
mode of frequency ω+δ, the resulting interference profile is a three-holed pattern that rotates
at the frequency difference between the two modes. When the atomic sample is illumated
with this rotating profile, the optical susceptibility of the sample is modulated according to
the profile of the modulation beam, effectively sculpting the stationary sample into a rotating,
three-fold symmetric optic. The relevant atomic levels for this mode conversion process are
illustrated in d. We inject 780 nm, l = 3 probe photons in the dispersive regime, 130 MHz
detuned from the 5S1/2 → 5P3/2 atomic resonance. These photons are coupled by the far-
detuned 1529 nm modulation beam to the l = 0 cavity mode at 780 nm. If mode conversion is
successful, l = 0 photons will emerge from the cavity at a frequency 65 MHz lower than that
of the injected l = 3 photons as a result of the frequency difference between non-degenerate
cavity eigenmodes. The optical susceptibility of the atomic cloud is modulated via the time-
varying, spatially-dependent optical Stark shift of the 5P3/2 energy, which periodically shifts
the 5S1/2 → 5P3/2 atomic resonance further from the cavity resonances.
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‘holes’ that rotates at the frequency difference (≈ 65 MHz) between the modes. Illuminating

the atomic sample with this profile changes the resonance condition of individual atoms

with intracavity 780 nm photons, creating a spatiotemporally-varying optical susceptibility

across the sample that adopts the modulation beam profile (Fig. 6.1c). As the modulation

beam profile is comprised of both the l = 0 and l = 3 modes, a coupling is engineered

between the l = 0 and l = 3 modes at 780 nm. Note that the atomic sample is stationary

whereas the modulation profile rotates, enabling far faster temporal modulation of incident

probe light than that which can be achieved by a real, rotating optic. We utilize the atomic

level scheme illustrated in Fig. 6.1d, which may be understood as a near-resonant four-wave

mixing process.

We begin our experimental sequence by transporting a sample of laser-cooled 87Rb into

the waist of our twisted optical cavity from a magneto-optical trap. The modulation beam

and weak probe beam co-propagate through the cavity and illuminate the atomic sample for

a probe time of 10 ms. Probe photons are injected into the l = 3 cavity eigenmode. These

photons pass through the modulated atomic sample and the resulting photons are collected

on the cavity output during the probe time. See Appendix A for additional details about

the experimental setup.

6.3 Experimental results

We search for l = 3 → l = 0 mode conversion for several different combinations of modulation

beam intensity and atom number by collecting only l = 0 light from the cavity using a single

mode fiber as a filter (Fig. 6.2a). For each of these combinations, we scan the frequency of

the probe beam about a point in the dispersive regime, where the l = 0 and l = 3 cavity

resonances are detuned from the atomic 5P3/2 state as illustrated in Fig. 6.1d. This scan

generates the l = 0 spectra in Fig. 6.2b. We observe an increase in the l = 3 → l = 0

internal conversion efficiency, E3→0, for increasing Ω and Nη, in effect the modulation beam
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Figure 6.2: Conversion in the cavity spectra. We inject l = 3 probe photons into the
twisted cavity and read out only on l = 0 using a single mode fiber as illustrated in a.
For various combinations of Ω and Nη, corresponding with the modulation beam intensity
and atom number, respectively, we observe the l = 0 transmission spectrum by scanning
the frequency of the probe laser frequency, δp, about the bare l = 3 transmission frequency
(δp = 0 MHz). In b, we plot the l = 0 transmission spectrum (normalized as an internal
conversion efficiency) at Ω/(2π) = (0.7, 1.3, 2.1, 3.5) GHz (light to dark) for each value of
Nη = (140, 250, 560). The l = 3 → l = 0 conversion efficiency, E3→0, increases for increasing
Ω and Nη, reaching near unity for the highest values of Ω and Nη. Intuitively, E3→0 should
increase for increasing modulation beam intensity and atom number, akin to increasing the
refractive index variation and density of our effective, intracavity optic from zero. The l = 0
transmission curves shift toward lower frequencies with increasing Ω due to the increasing
Stark shift of the 5P3/2 resonance with higher modulation beam intensity, which lessens the
dispersive shift of the l = 0 transmission curves away from the bare l = 3 transmission
frequency.

intensity and resonant optical density, respectively. See Appendix A for additional details

about E3→0. Here, Nη is the collective cooperativity [118] where N is the atom number

and η is the single atom cooperativity. This quantity can be generally interpreted as the

number of times a photon is lensed by the atomic sample before it leaks out of the cavity.

See Appendix A for additional details about Nη and Ω, respectively. As Ω increases, we

observe the l = 0 cavity transmissions collapse leftward toward the location of the bare l = 3

transmission at δp = 0. This behavior is a result of the 5P3/2 state energetically shifting

away from the l = 0 and l = 3 cavity resonances at higher modulation beam intensities,

reducing the dispersive shift of the resonances.

To verify photons are indeed converted into the l = 0 mode of the cavity, we perform

a spatial and frequency analysis of the cavity output. In principle, the modulated atomic

sample induces a coupling between the l = 3 mode and many other spatial modes. However,
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Figure 6.3: Saturation in conversion efficiency. We further examine l = 3 → l = 0
conversion in two-dimensional sweeps over δp and Ω for additional values of Nη. In a, E3→0
increases for increasing Ω and Nη. Plotting the numerical values of E3→0 in b at each
slice of Ω for all Nη (left) and for each Nη at maximum Ω (right) elucidates both the
attainment and saturation of conversion near E3→0=1. This internal efficiency corresponds
to a maximum external efficiency of 25% due to the double-ended nature of our cavity. In
general, light is fully transmitted through a double-ended cavity when the reflected light
cancels with the light that leaks out of the cavity. This idea assumes the two cavity ends,
or mirrors, have equal transmission coefficients and light drives the cavity from one side.
Even though the two ends of our twisted cavity have equal transmission coefficients, the
conversion of light from the injected mode to another mode acts as loss which breaks the
cavity impedance matching that enables full transmission. See SI A.1.2 and A.1.5 for more
details. Points are larger than their error bars of one standard deviation.

with the exception of the l = 6 mode, these modes are Purcell suppressed because they are

non-resonant. Despite a potential 3 ↔ 6 coupling, we do not observe l = 6 light on the

cavity output, likely because the l = 6 mode is further detuned from the 5S1/2 ↔ 5P3/2

atomic resonance compared to l = 3 and l = 0 modes (see Appendix A). Thus, in general,

the non-degenerate mode structure of the cavity improves the isolation of a target mode by

frequency discrimination.
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The increase of E3→0 with Ω and Nη can be interpreted intuitively in the context of

sculpting an effective optic from the atomic sample. For Ω = 0, there is no modulation of

the atomic sample. Probe photons pass through an effective optic that imparts an almost

completely flat phase, providing essentially no coupling between the l = 3 and l = 0 modes.

For Nη = 0, no atoms are present; there is no effective optic. Thus, E3→0 regardless of Ω.

For Ω > 0 and Nη > 0, we begin to observe l = 3 to l = 0 conversion as the effective optic

acquires density and a spatially-dependent optical susceptibility.

Fig. 6.3 is a more in-depth investigation of E3→0 as a function of Ω and Nη. E3→0

increases for increasing Ω and Nη and saturates near unity. In a double-ended cavity like

ours, where light can leak out one of two cavity mirrors, E3→0=1 corresponds to a maximum

external efficiency of 25% for lossless mirrors. For a general double-ended cavity comprised

of two equally-transmissive cavity mirrors, incident light can be fully transmitted as the

cavity is impedance matched. If a mode-converting element is placed within the cavity, this

impedance matching condition is broken, limiting the amount of light, both converted and

unconverted, that exits the cavity through the output mirror. In a single-ended cavity, the

maximum external efficiency increases to 100% (see Appendix A).

6.4 Conclusion

We have demonstrated a highly efficient method to simultaneously manipulate photonic

degrees of freedom by spatiotemporally modulating the optical susceptibility of an atomic

sample. In our twisted optical cavity, we observe l = 3 → l = 0 conversion at an internal

efficiency near unity. Extending this method to a low loss, single-ended cavity will provide

conversion near 100% efficiency for both internal and external efficiencies. This method is

additionally extendable to other atomic species, arbitrary cavity geometries, different prop-

agation eigenmodes, polarization conversion (see Appendix A), and the coherent conversion

of single photons [217]. Mode conversion via optical susceptibility modulation might also
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find applications in quantum state preparation, quantum information, and development as a

tabletop device. One might use this method to grow topological few-body states of light by

controllably adding orbital angular momentum to intracavity photons [218], convert within

mode pairs for mode-division multiplexed transmission [178], or create a miniaturized device

based on intracavity electro-optic elements whose refractive indices are modulated in space

and time.
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CHAPTER 7

OUTLOOK

Using the platform of atoms in cavities to induce effective interactions between photons

in a synthetic gauge field, we have demonstrated the formation of topologically ordered

photonic quantum materials—namely, Laughlin states. Using the same platform, we have

additionally demonstrated how the manipulation of atoms with light can lead to photonic

mode conversion at high efficiency. Both of these research topics have room to grow.

In the scope of quantum materials made of light, our most recent twisted lens cavity

shows promise in creating a large-scale degenerate manifold of photonic modes to support

the formation of larger Laughlin states. With this state growth comes additional challenges—

how do we reliably prepare a few-particle state, and how do we make useful measurements

to assess the state we’ve created? The answers to these questions may lie in dissipative state

preparation, Rydberg-enhanced detection, and spatial correlation measurements via imaging

as full quantum state tomography becomes impractical for high particle number.

In the scope of multimode photonics, the idea of mode conversion via spatiotemporally

modulated optical susceptibility can be further streamlined in the platform of electro-optic

crystals in cavities. Exploring mode conversion, and perhaps other concepts such as optical

isolation, using this platform would be an interesting project for future lab members.
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APPENDIX A

SUPPLEMENT: PHOTONIC MODE CONVERSION

A.1 Experiment

A.1.1 Experimental setup

The main ingredients used in the work of Chapter 6 are the twisted cavity, atomic sam-

ple, 780 nm probe beam, and 1529 nm modulation beam. Probe photons were converted

between eigenmodes of the twisted cavity via passage through the sample of atoms, whose

energy levels were spatiotemporally modulated to create a spatiotemporally-varying optical

susceptibilty akin to sculpting a phase plate out of the atomic sample.

The twisted cavity used in the work of Chapter 6 is the same as that described in [44]

and [47]. The eigenmodes of this cavity are non-degenerate Laguerre-Gaussian (LG) modes

at the lower cavity waist which coincides with the position of the atomic sample. In reality,

paraxial astigmatism distort the LG modes at other positions along the cavity axis [48].

Thus, in order to incouple to the l = 3 eigenmode at the location of the atoms, 780 nm

probe light is injected in the Ince-Gaussian spatial mode profile depicted in Figure A.1. The

transverse mode spacing between every third orbital angular momentum mode (l = 0, 3, 6...)

is about 65 MHz with slight variation depending on the choice of free spectral range. The free

spectral range is 2.5 GHz. The four cavity mirrors were coated and supplied by LAYERTEC

GmbH. As these mirrors are sufficiently reflective at both 780 nm and 1529 nm, cavity

modes exist for both the probe and modulation beams where further specifications are listed

in Table A.1. The lower waist size at 1529 nm is related to the lower waist size at 780 nm

by a factor of
√
1529/780.

The work of Chapter 6 requires probe light to be coupled into the l = 3 cavity mode

and modulation light to be coupled into both the l = 0 and l = 3 cavity modes. Due to the

aforementioned astigmatism, we inject probe photons with an Ince-Gaussian spatial profile
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Figure A.1: Beam preparation and measurement. From left to right, this figure depicts
the preparation of 780 nm (red) and 1529 nm light (orange) for injection into the twisted
cavity, the 780 nm and 1529 nm cavity modes at the lower cavity waist, and the detection
of the transmitted 780 nm light. The 780 nm light begins as a Gaussian beam which is
shaped into an Ince-Gaussian mode by a digital micromirror device (DMD). Due to paraxial
astigmatism, this mode evolves into an l = 3 LG mode at the lower cavity waist due where it
couples to the atomic sample. Light eventually leaks out of the cavity and passes through a
50/50 non-polarizing beamsplitter cube, splitting the light between two paths: one through
a multi-mode (MM) fiber, and one through a single mode (SM) fiber. Each fiber terminates
at a single-photon counting module (SPCM). The SM path is used to detect only l = 0
cavity photons, whereas the MM path detects all cavity photons. The 1529 nm light also
begins as a Gaussian beam. It passes through an electro-optic modulator (EOM), acquiring
frequency sidebands at the frequency difference between the l = 0 and l = 3 modes (65 MHz).
This light is then injected slightly off-center from the cavity axis which spatially couples the
incident 1529 nm light to a forest of modes, but l = 0 and l = 3 are isolated by frequency
discrimination. The superposed l = 0 and l = 3 modes form a rotating, three-holed profile
at the lower cavity waist that spatiotemporally modulates the atomic sample. The 1529 nm
light eventually leaks out of the cavity as well and is filtered out from the detection path.
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Table A.1: Dual-wavelength cavity specifications.

780 nm 1529 nm

Lower waist size 19 µm 27 µm
Top 2x mirrors 99.91% 99.82%
Bottom 2x mirrors >99.9% (HR) 99.94%
Finesse F 1900 1310

corresponding with l = 3 at the lower cavity waist. This profile is acquired by using a digital

micromirror device (DMD) to shape a preliminary probe beam as depicted in Figure A.1.

We use an electro-optic modulator (EOM) to inject a frequency-modulated l = 0 modulation

beam off-center from the cavity axis to couple to the l = 0 and l = 3 cavity modes. While the

off-center injection of an l = 0 transverse mode has spatial overlap with many other transverse

modes, we couple only to the l = 0 and l = 3 cavity modes by frequency discrimination.

Off-center injection is not particularly efficient, but this inefficiency was compensated by the

large amount of 1529 nm power we had at our disposal (> 1 W).

In order to have simultaneous injection of the l = 3, 780 nm mode and l = 0 and l = 3,

1529 nm modes, we tune the lockpoint frequency of the 1529 nm laser and the cavity length

using a piezoelectric actuator. We first tune the cavity length to transmit the l = 3, 780 nm

mode, then change the lockpoint frequency of the 1529 nm laser such that the carrier and

one sideband generated by the EOM are resonant with the l = 0 and l = 3 modes. The

modulation depth of the EOM is controlled by a variable attenuator to sweep the relative

l = 0 to l = 3 power. For given values of the collective cooperativity and cavity-atom

detuning, we optimize E3→0 through iterative fine-tuning scans of the 1529 nm lockpoint

frequency, EOM modulation frequency, and EOM modulation depth.

In the work of Chapter 6, the l = 3, 780 nm probe beam is 130 MHz detuned from the

5S1/2 ↔ 5P3/2 transition (see Section A.1A.1.6) and the 1529 nm modulation beam is about

14 GHz detuned from the 5P3/2 ↔ 4D5/2 transition. This 14 GHz detuning was selected

for several reasons. First, the 5P3/2 ↔ 4D3/2 transition is only 13.4 GHz higher than the
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5P3/2 ↔ 4D5/2 transition. We utilize only circular polarization for the probe and modulation

beams in this work, isolating only the stretched states of
∣∣∣5S1/2, F = 2

〉
,
∣∣∣5P3/2, F = 3

〉
,

and
∣∣∣4D5/2, F = 4

〉
assuming perfect polarization and optical pumping. In the event of

imperfection, the relatively large detuning of 14 GHz + 13.4 GHz from the 5P3/2 ↔ 4D3/2

transition suppresses mixing of the 4D3/2 state that could potentially complicate the mode

conversion process. Second, Ω/(2π) ≪14 GHz for all Ω used in this work. This condition

simplifies the intuition and calculations behind the mode conversion process: for Ω much less

than the detuning from the 5P3/2 ↔ 4D5/2 transition, the 4D5/2 state remains essentially

unpopulated. Thus, the modulation beam can be thought to virtually excite the 4D5/2

state to convert l = 3 probe photons to l = 0. In calculations, the 4D5/2 state can be

adiabatically eliminated, reducing the coupling to the 4D5/2 state to effective couplings in

the Hamiltonian (see Section A.2A.2.2). Third, 14 GHz was convenient given our available

frequency sources and high power at 1529 nm.

The peak cavity-atom coupling between a single 87Rb atom and l = 0 mode at 780 nm

is the same as that in [44]: gsingle = 2π × 0.58 MHz. Given this information, it is possible

to estimate the number of atoms from the dispersive shift of the twisted cavity transmission

feature in spectra measurements for an unmodulated atomic sample. This shift depends on

Ng2single where N is the atom number. In this work, we estimate an atom number of 500

for measurements with the lowest atom number (Nη = 70) and 3500 for measurements with

the highest atom number (Nη = 560). Nη is equivalent to 4Ng2single/κΓ where κ = 2π× 1.6

MHz (the cavity linewidth at 780 nm) and Γ = 2π × 6 MHz (the linewdith of the 5P3/2

state).

While the majority of the work of Chapter 6 focused exclusively on l = 3 → 0 conversion,

we briefly examined l = 0 → 3 conversion. For identical parameters that yielded l = 3 → 0

conversion near E3→0=1, we observed l = 0 → 3 conversion near E3→0=0.5. While this

behavior has yet to be understood, it may arise from the unequal detunings of the l = 0 and
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l = 3 modes to the 5P3/2 state. In early exploratory measurements of this work, we also

observed polarization conversion between two l = 0 polarization modes of the twisted cavity

under a slightly different atomic modulation scheme. Instead of modulating the atoms with

the l = 0 and l = 3 1529 nm modes separated by the transverse mode splitting frequency,

we modulated the atoms with the two l = 0 1529 nm polarization modes separated by

the polarization mode splitting frequency. The polarization conversion efficiency was not

rigorously quantified, but polarization conversion is mentioned here to demonstrate proof of

concept.

A.1.2 Calibration of E3→0

As illustrated in Figure A.1, the output of the cavity is split into two paths by a 50/50

beamsplitter: one leading to a multimode fiber, and one leading to a single mode fiber.

The single mode path collects only l = 0 light by filtering out higher order modes and

the multimode path collects l = 0, l = 3, and any other modes which may be present

(see Section A.1A.1.4 for why we do not see other modes). The ends of each fiber connect

to separate single photon counting modules (SPCMs). Data for each SPCM is collected

simultaneously, after which scale factors are applied in post-processing to account for the

nonlinearity of the SPCMs and count rate imbalance due to mismatched fiber incoupling

efficiencies. To acquire E3→0, the internal conversion efficiency from l = 3 to l = 0, the

post-processed l = 0 count rate is normalized to the post-processed l = 3 bare cavity count

rate then scaled up by a factor of 4. This factor of 4 arises from the double-ended nature of

our cavity, meaning light can leak out one of two mirrors of the cavity (see Section A.1A.1.5).

In reality, the cavity is comprised of four mirrors, but two of the mirrors are high reflectors

at 780 nm and so we do not consider these as significant leakage ports.

In a two-mirror cavity whose mirrors are lossless and equal reflectance, the l = 3 bare

cavity output power is equivalent to the input power assuming perfect spatial incoupling to
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the cavity. However, our cavity mirrors induce loss as a result of scattering, absorption, and

imperfections on the mirror surface such as dust. An estimate of the loss can be derived from

the measured finesse and mirror reflectance. The finesse of a two-mirror cavity comprised of

identical mirrors with low-loss A and transmissivity T is 2π/(2A + 2T ). Given the finesse

and reflectance specifications at 780 nm as listed in Table A.1, we expect the loss per mirror

to be about 750 ppm, which corresponds to a maximum l = 3 bare cavity output power

of (1 + A/T )−2 = 30% of the input power. Thus, the external, or end-to-end, efficiency

for l = 3 to l = 0 conversion is realistically E3→0 × 1
4 × 30% = 7.5% at maximum. This

calculation ignores imperfect cavity incoupling which can be corrected for externally with

mode-matching optics. However, 1
4 → 1 in single-ended cavities and 30% →∼ 100% for

low loss mirrors, leaving significant room to increase the external conversion efficiency to

near-100% in hypothetical future variants of the method presented in this paper.

A.1.3 Definition of Ω

The 1529 nm modulation beam is comprised of an l = 0 component and an l = 3 component.

In the work of Chapter 6, we use Ω to denote the Rabi frequency of the l = 3 component

which has a direct proportionality to the l = 0 Rabi frequency. The numerical value of Ω is

estimated through measurement of the cavity line shift in the dispersive regime due to the

AC Stark shift provided by a 1529 nm l = 0 only. Scale factors are applied to account for

differences in the l = 0 and l = 3 cavity incoupling efficiencies, spectral redistribution given

by the EOM depicted in Figure A.1, and nonlinearity of the acousto-optic modulator used

to control the modulation beam intensity. We estimate the l = 3 Rabi frequency is about 1.7

times higher than the l = 0 Rabi frequency. At maximum Ω/(2π) of 3.5 GHz, we estimate

the total incoupled power is on the order of 1 mW which is then cavity enhanced by a factor

of F1529/π = 420 where F1529 is the cavity finesse at 1529 nm.
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A.1.4 Confirmation of an l = 0 converted output

We detect converted photons that have a Gaussian spatial profile and frequency equivalent to

that of the bare cavity l = 0 eigenmode, thus verifying that light is indeed converted to l = 0.

The lower left corner of Figure A.2 depicts an image of the cavity output which has been

averaged over 200 experimental runs and decomposed into its l = 0 and l = 3 constituents

for the maximum values of Ω and Nη used in the work of Chapter 6 (Ω/(2π) = 3.5 GHz

and Nη = 560). Note that these images were captured for a singular, fixed probe frequency

and the image for l = 3 does not appear LG. While this mode is LG at the location of

the atomic sample, it emerges Ince-Gaussian due to astigmatism in the cavity (see [48] and

Supplement of [44]). In order to decompose the image of the cavity output into its l = 0 and

l = 3 constituents, a bare cavity l = 3 image was captured, scaled, then subtracted from

the cavity output image. Sums were calculated for the cavity output and the bare cavity

l = 3 images over the same small patch centered on the leftmost lobe in each image; the bare

cavity l = 3 image was scaled by the ratio of these sums. The subtraction of the scaled bare

cavity l = 3 image reveals a Gaussian profile expected of the l = 0 mode. Note that higher

order cavity eigenmodes, such as l = 6 and those with radial nodes, are not observed in

imaging. As the modulation beam plausibly induces additional couplings to these modes, we

suspect they may be suppressed as a result of their higher detuning from the 5S1/2 → 5P3/2

transition. We observed nonzero l = 3 output due to impedance matching considerations

as detailed in A.1A.1.5, and quantitative comparison in imaging further supports conversion

from l = 3 to l = 0 near E3→0 = 1.

Figure A.2 also depicts the dependence of the l = 0 and l = 3 output frequencies on

the modulation frequency for a singular, fixed probe frequency. To measure the frequencies

of the l = 0 and l = 3 constituents, the twisted cavity output is sent through a 2-mirror

filter cavity whose length is controllably scanned using a piezoelectric actuator and side-of-

fringe lock to an additional laser. This 2-mirror cavity acts as a frequency ruler that could
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Figure A.2: Spatial and frequency analysis of the cavity output. Imaging the total
cavity output (black) reveals both unconverted l = 3 light (blue) and converted l = 0 light
(teal) with conversion efficiency numbers comparable to that of our spectra data. Here, ∆
is the frequency difference between the output l = 3(0) mode and the bare cavity l = 3(0)
mode. Both l = 3 and l = 0 light appear at their bare cavity mode frequencies for an
atomic modulation frequency, fmod, equal to the transverse mode splitting. If fmod is varied
slightly, we observe the l = 0 frequency vary similarly while the l = 3 frequency remains
largely unchanged. Few values of fmod were considered here as this data was collected
primarily to confirm the frequencies of the l = 3 and l = 0 outputs, and variation of fmod
past the scale of the cavity linewidth results in very little conversion as light barely enters
the cavity.

spatially discriminate between modes. For varying 1529 nm modulation frequencies (fmod),

we measured the frequency differences (∆) of the converted l = 0 and unconverted l = 3

outputs relative to each of their bare twisted cavity frequencies. Not only did we observe the

converted l = 0 and unconverted l = 3 to be equal to their bare twisted cavity frequencies for

fmod equal to the transverse mode splitting (near 66 MHz for this choice of twisted cavity free

spectral range), but we observed the influence of the 1529 nm modulation on the frequency

of the converted l = 0 output. The converted l = 0 output frequency changed near-linearly

with fmod within about one twisted cavity linewidth at 1529 nm. Measurements were not

collected beyond one twisted cavity linewidth, as the conversion efficiency drops significantly

here due to insufficient 1529 nm power entering the cavity resulting in poor modulation of

the atomic sample.
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A.1.5 Impedance matching

Reference [201] and its appendix are excellent examples of how cavity impedance matching

affects the transmission and conversion of cavity modes. Here, we will follow a similar

formalism to illustrate why the external conversion efficiency is limited to 25% in a double-

ended cavity and how extension to a single-ended cavity should enable an external conversion

efficiency of 100% for lossless cavity mirrors.

Figure A.3 depicts a reinterpreted layout of the four-mirror twisted cavity. As two of the

four mirrors are highly reflective (HR), the twisted cavity is effectively reduced to a two-

mirror cavity. As the cavity hosts two coupled eigenmodes in the context of this work, we can

model the coupled eigenmodes as two coupled two-mirror cavities where each cavity hosts an

eigenmode and the left (right) mirror reflection coefficient is the same as the bottom (top)

mirror reflection coefficient r1 (r2). The coupling element is the modulated atomic sample

which can be modeled as some partially-reflective optic that obeys the beam splitter relations

and has reflection coefficient r. Assuming lossless mirrors, r =
√
1− t2, r1 =

√
1− t21,

and r2 =
√
1− t22 where t, t1, and t2 are the corresponding transmission coefficients. We

now solve the following system of equations to ultimately calculate the l = 3 and l = 0

transmissions plotted in Figures A.3b and A.3c:
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Figure A.3: Cavity impedance matching and conversion efficiency. This figure depicts
a reinterpreted layout of the twisted cavity and its corresponding transmission spectra. Light
can leak out only two of the four cavity mirrors, rendering our cavity double-ended. This
work describes two cavity modes that are coupled by a modulated atomic sample, which
is modeled here as two crossed, identical cavities that each host one of the spatial modes
and are coupled by a coupling element. The cavities need not be visualized as crossed,
but they are here for visibility and ease of considering the beam splitter relations of the
coupling element. The plots of a, b, and c depict experimental transmissions for the highest
values of Ω and Nη used in this work, simulated transmissions for a double-ended cavity
(akin to the cavity used in this work), and simulated transmissions for a single-ended cavity,
respectively. Transmission for l = 3 was acquired by subtracting the SM signal from the MM
signal, including appropriate scale factors to account for coupling efficiency differences and
the nonlinearity of the SPCMs (see Fig. A.1). The background level of the l = 3 transmission
is higher than that of l = 0 transmission as the MM fiber lets in more ambient light. The
shapes and numerical values of the transmission curves in a and b are directly comparable.
The shapes are a result from the coupling between modes, where coupled modes ‘split’ in
general, and the numerical values are a result of the double-ended nature of the cavity. If
we increase the reflectivity of the coupling element in b, both modes ‘split’ further in the
spectra, but the l = 0 transmission never exceeds 25%. c, If we replace one of the cavity
mirrors with a high reflector while all other parameters remain constant, we alter the cavity
from double-ended to single-ended and the maximum external efficiency increases from 25%
to 100%.
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E1AR = (E1ALr1 + E0At1)e
iδ

E1AL = (E2BLr + E2ALt)e
iδ

E2AR = (−E1BRr + E1ARt)e
iδ

E2AL = −E2ARr2e
iδ

E1BR = −E1BLr1e
iδ

E1BL = (−E2ALr + E2BLt)e
iδ

E2BR = (E1ARr + E1BRt)e
iδ

E2BL = E2BRr2e
iδ

(A.1)

These eight equations describe the two counter-propagating intracavity fields in each of

subsection of the cavity model formed between the coupling element and a mirror. The

notation Eijk denotes the field in subsection i ∈ (1, 2) for mode j ∈ (A,B) of propagating

direction k ∈ (L,R). In this work, mode A corresponds with l = 3 and mode B corresponds

with l = 0. E0A is the input field. The parameter δ is a phase factors accrued by propagation:

δ = kL where L is the length of each cavity subsection (which we assume to be equal) and

k is the wavenumber. If we vary δ, we essentially varying the frequency of the imaginary

laser probing this model cavity system. The transmitted fields are related to the intracavity

fields by the transmission coefficient of the mirror through which one wishes to calculate

transmission. The mirror through which we calculate the transmitted field is depicted in

bold in Figure A.3 with the corresponding intensity plotted below as a function of δ. The

calculated intensities are normalized to the input intensity.

For r1 = r2 =
√
0.9991 (the reflection coefficient of our top 2x cavity mirrors as listed

in Table A.1) and increasing r, the l = 0 transmission increases from zero and saturates to

25%. For r ∼ 0.001, the calculated l = 0 and l = 3 transmission in Figure A.3b mimics
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the measured l = 0 and l = 3 transmission in Figure A.3a. In fact, the non-Lorentzian line

shape of the l = 0 mode is a result of the l = 0 and l = 3 coupling. Increasing r couples the

l = 0 and l = 3 more strongly, resulting in a vacuum Rabi-like splitting in both the l = 0

and l = 3 spectra. Thus, the non-Lorentzian line shape of l = 0 is indicative of nonzero l = 0

and l = 3 coupling, but not enough to fully split the l = 0 mode in the spectra.

For r1 =
√
0.9991, r2 = 1, and the same r as in Figure A.3b, the l = 0 mode is fully

transmitted at 100% as depicted in Figure A.3c. This change in r2 is equivalent to making

our double-ended cavity into single-ended cavity, where light can leak out of only one cavity

mirror. Thus, applying the method presented in this paper to a low loss, single-ended cavity

holds promise for achieving mode conversion at an external efficiency near 100%.

A.1.6 E3→0 versus cavity-atom detuning

In the work of Chapter 6, we operated in the dispersive regime, where the l = 3 cavity mode

was 130 MHz detuned from the 5P3/2 state (∆cav−atom = 130 MHz). For the maximum

values of Ω and Nη used in this work (Ω/(2π) = 3.5 GHz and Nη = 560), we experimentally

observed high E3→0 around this detuning as illustrated in Figure A.4. For smaller and

opposite sign detunings, we observed a substantial decrease in E3→0. While the source of

this decrease has not yet been identified, we hypothesize it might arise from loss due to

couplings to other twisted cavity modes or hyperfine levels of the 5P3/2 state.

A.2 Theory

A.2.1 Laguerre-Gaussian modes

The normalized electric field for a Laguerre-Gaussian mode LGlp at the lower cavity waist

ω is,
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Figure A.4: Maximum conversion efficiency versus cavity-atom detuning. In this
work, the l = 3 cavity mode was 130 MHz detuned from the 5S1/2 → 5P3/2 atomic transition,
where we experimentally observed the highest E3→0. All data was collected for the highest
values of Ω and Nη used in this work.

ulp(r, ϕ) =
Clp

w

(
r
√
2
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)|l|
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|l|
p

(
2r2

w2

)
e−(r2/w2)e−ilϕ

where r (ϕ) is the radial (azimuthal) coordinate. The mode index l describes the orbital

angular momentum which manifests as a phase winding, whereas the mode index p describes

the number of radial, intensity ‘rings.’ Both indices are integers with p ≥ 0. Llp (x) are the

generalized Laguerre polynomials and the normalization constant Clp =
√

2p!
π(p+|l|)! to ensure

⟨ulp|ulp⟩ = 1.

A.2.2 Modeling conversion

This section describes steps taken to model the conversion process in the work of Chapter 6.

We write down the full, time-dependent Hamiltonian then consider a simplified version of

this Hamiltonian to computationally simplify spectra simulations. While the simulated spec-

tra lack quantitative agreement with the experimental data, likely because the simplified

Hamiltonian considers only a limited state space compared to the full Hamiltonian, they

qualitatively capture main features of the data and are discussed here for the interested

reader. The full, time-dependent Hamiltonian for the system described in this work written
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in the frame rotating with the 780 nm probe laser of frequency ωℓ is (ℏ ≡ 1),

H(t) =

Ncav∑
n

(ωn − ωℓ − i
κ

2
)a

†
nan

+

Nat∑
m

(ωp − ωℓ − i
Γp
2
)p

†
mpm

+

Nat∑
m

(ωd − ωℓ − i
Γd
2
)d

†
mdm

+

Ncav∑
n

Nat∑
m

(gmnp
†
man + g∗mnpma

†
n)

+

Nat∑
m

(Ωm(t)d
†
mpm + Ω∗

m(t)dmp
†
m)

+ Ωℓ(a
†
3 + a3)

(A.2)

where ωn is the energy of the nth 780 nm cavity mode, ωp is the energy of the 5P3/2 state, ωd

is the energy of the 4D5/2 state, κ is the cavity decay rate at 780 nm, Γp is the atomic decay

rate of the 5P3/2 state, and Γd is the atomic decay rate of the 4D5/2 state. The operators

an, pm, and dm annihilate a photon in the nth 780 nm cavity mode, a P -state excitation for

the mth atom, and a D-state excitation for the mth atom, respectively. The drive strength

of the probe laser is represented by Ωℓ, which drives only the l = 3 cavity mode.

The coupling strength gmn, which couples the P -state of the mth atom and the nth

780 nm cavity mode, can be expressed as

gmn = gnu
780
nlnp

(rm, ϕm) (A.3)

where gn is the single atom-photon coupling strength of the nth cavity mode and u780nlnp
(rm, ϕm)

is the field of the nth 780 nm cavity mode at the location of the mth atom. The nth 780 nm

cavity mode has l index nl and p index np.
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Figure A.5: Spectra predictions of a simple model. A simplified collective state model
of the conversion process described in the work is depicted in a. The l = 3, 780 nm mode
couples to the collective P3 state with effective coupling g3, the l = 0, 780 nm mode couples
to the collective P0 state with effective coupling g0, and both collective P3 and P0 states
couple to a collective D state with effective couplings Ω3 and Ω0, respectively. We solve for
the expectation value of a†0a0, the transmission of the l = 0, 780 nm light, as a function of δp,
Ω (the 1529 nm beam strength), and Nη using non-Hermitian perturbation theory where the
drive term Ωℓ(a3+a

†
3) is the perturbation. The resulting, simulated spectra are plotted below

the experimental spectra in b. All simulated parameters are identical to the experimental
parameters, with the exception of Ω3/Ω0 = 1.0 instead of 1.7 as better agreement with
the experimental data was observed. The simulated spectra has clear differences with the
experimental spectra. Namely, the presence of an unobserved spectral feature and increased
conversion at low Nη. However, simulations at even lower Nη display an overall decrease in
conversion akin to that in the data. Thus, we suspect this falloff in efficiency for lower Nη in
simulations compared to experiment may be because this simple model excludes couplings to
other collective states which act as loss channels. Despite the shortcomings of this model, it
qualitatively predicts the saturation of E3→0 to 1 for some minimum Ω and Nη and captures
the shapes of the experimental spectra.
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The time-dependent coupling strength Ωm(t), which couples the D-state of the mth atom

and the P -state of the mth atom, can be expressed as

Ωm(t) = Ω0u
1529
00 (rm, ϕm) exp

(
iω15290 t

)
+ Ω3u

1529
30 (rm, ϕm) exp

(
iω15293 t

)
(A.4)

where Ω0 and Ω3 are coupling strengths dependent on the field strength of the l = 0 compo-

nent and l = 3 component of the 1529 nm beam, respectively. The frequencies of the l = 0

component and l = 3 component are ω15290 and ω15293 , respectively. Ordinarily, the time

dependence of the Hamiltonian due to Ωm(t) can be eliminated by a transformation, but

here the presence of dual frequencies ω15290 and ω15293 prevents this elimination. Instead, the

time dependence must be handled with Floquet theory or by solving for the time dynamics

of the system. Additionally, coupling terms are often simplified by assuming uniformity of

electric fields across the atomic sample, but here this idea does not apply. For many atoms,

simulating this system with time- and space-dependent terms can by quite slow. An alter-

native approach to simplifying the massive state space for many atoms is to work in the

collective state picture after adiabatic elimination of the 4D5/2 state, though this process

comes with its own challenges such as determining the couplings between collective states

and identifying which collective states are the most meaningful.

In light of these challenges, we considered a much simpler Hamiltonian to explore how

well it could model the conversion spectra observed in the work of Chapter 6. Fig. A.5a

depicts a modified level diagram described by the Hamiltonian,
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H = (ω3 − ωℓ −
iκ

2
)a

†
3a3 + (ω0 − ωℓ − δ03 −

iκ

2
)a

†
0a0

+ (ωp − ωℓ −
iΓp
2

)P
†
3P3 + (ωp − ωℓ − δ03 −

iΓp
2

)P
†
0P0

+ (δd3 − ωℓ −
iΓd
2

)D†D

+ g0(a
†
0P0 + a0P

†
0 ) + g3(a

†
3P3 + a3P

†
3 )

+
Ω0

2
(D†P0 +DP

†
0 ) +

Ω3

2
(D†P3 +DP

†
3 )

+ Ωℓ(a3 + a
†
3)

(A.5)

which considers only l = 0 and l = 3 modes. Now, operators P0, P3, and D annihilate

collective excitations instead of excitations of a single atom, and g0, g3, Ω0, and Ω3 are

effective couplings to collective states. The collective states corresponding with the P0 and

P3 operators adopt the orthogonality properties of the LG modes and are each coupled

through one of the 1529 nm pathways to a collective D state. Detunings δ03 and δd3 are the

frequency differences ω0 − ω3 and ωd − ω1529ℓ , respectively, where ω1529ℓ is the frequency of

the l = 3 component of the 1529 nm beam.

While this model falls short of quantitative agreement with the experimental data and

predicts unobserved spectral features, it depicts the saturation of E3→0 to 1 for some mini-

mum threshold of Ω and Nη and captures the shapes of the experimental spectra (Fig. A.5b).

Additional work is necessary to attain a better understanding of the minimum Ω and Nη

needed to maximize the conversion efficiency and the conditions needed to suppress cou-

plings to non-target LG modes, but the qualitative similarities between the modeled and

experimental data provide some reassurance that the picture depicted in Fig. A.5a is a step

in the right direction.
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