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Abstract

Nearly all natural communities exhibit spatial structure, particularly those composed of

sessile organisms like forests. To this effect, spatial heterogeneity is thought to play an

important role in the maintenance of species coexistence. Recent work indicates that local

feedbacks – processes in which the presence or density of an individual organism modifies

the local environment – are a particularly important source of spatial heterogeneity. Here,

I study mathematical models that depict how local density-dependent interactions in spa-

tially structured communities affect plant competition, community dynamics, and species

richness. First, I examine how Janzen-Connell effects (distance-dependent specialized pre-

dation pressure) affects tree species richness. Recent theory indicates that Janzen-Connell

effects may be unable to maintain diversity when realistic levels of fitness variation are con-

sidered. I demonstrate that the ability of Janzen-Connell effects to maintain species richness

largely depends on how density-dependent interactions occur in space. Second, I extend

the above framework to examine the interaction between local biotically-generated negative

density-dependent feedbacks (e.g. Janzen-Connell effects) and abiotically generated spatial

heterogeneity (e.g. soil topography). I demonstrate that biotically and abiotically gener-

ated spatial heterogeneity can strongly interact to shape species richness, particularly when

the latter exhibits positive autocorrelation. Third, I examine how juvenile plant demog-

raphy impacts the strength of negative density dependence. I analyze a stage-structured

model and show that density-independent demographic rates strongly influence the strength

and measurement of density-dependence. These results provide insight into empirical mea-
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surements of negative density-dependence, particularly recent results indicating that the

strength of negative density dependence varies on environmental gradients. Fourth, I extend

this lens of analysis to examine how temporal variation in seed availability impacts gener-

alist predators, localized specialist predators, and tree coexistence. Many perennial trees

exhibit masting, irregular periodic intra-specific synchronous production of seeds. Masting

is thought to an evolutionary adaption to satiate predators. However, previous theory does

not examine how masting affects the ability of localized predators to maintain species rich-

ness. I show that masting can be stabilizing (increases species richness) or destabilizing

(decreases species richness) depending on the relatively non-linearity of specialist and gen-

eralist functional responses. Fifth, and in conclusion, I review these results in the context

of similar models, highlight existing theoretical gaps, synthesize theoretical results from the

literature, and point toward ways to better integrate empirical and theoretical work related

to density-dependent feedbacks in spatially structured communities.
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Chapter 1

Introduction

Ecological literature is rich with explanations for the diversity maintained in natural com-

munities: there is a diversity of diversity hypothesis. Many of these efforts in theoretical

community ecology can conceptually trace their origin to the so-called “Paradox of Plankton”

first outlined by Hutchinson in 1961 (Hutchinson, 1961). In this classic work, Hutchinson

asks how numerous species of plankton can coexist on few limiting resources; these obser-

vations seemingly contradict predictions derived from the competitive exclusion principle

(Gause, 1932; Hardin, 1960; Levin, 1970). The fixation with the paradox of plankton has

not persisted because the majority of theoretical ecologists are particularly invested in plank-

ton per se. Rather, this work embodies a broader theoretical problem in ecology yet to be

fully solved: how are the high levels of diversity in many ecological communities maintained

in a world in which the number of resources are so often limited?

This question is especially puzzling in communities like tropical forests in which hundreds

of woody plant species coexist on relatively few limiting abiotic factors (i.e. nutrients, space,

and light availability). Classical approaches to theoretical community ecology that consider

how processes such as resource partitioning affect species coexistence (e.g. MacArthur, 1970;

Tilman, 1982) are ill-equipped for this problem. As a result, ecologists in the last half-century

have proposed dozens of coexistence mechanisms. To name a few: species can coexist if they

have distinctive responses to temporally varying environmental factors (the temporal storage
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effect; Chesson and Warner, 1981) or space (the spatial storage effect; Chesson, 2000a), by

resource fluctuations in time or space that interact with relative non-linearity in consumer

species’ functional responses (Armstrong and McGehee, 1980; Huisman and Weissing, 1999),

through predation (Chase et al., 2002; Chesson and Kuang, 2008, which shall be discussed

in greater detail shortly), and complicated competitive structures composed of higher order

interactions and intransitive competition (e.g. Grilli et al., 2017; Mack et al., 2019). Indeed,

ecology is flush with proposed coexistence mechanisms and no single document can claim to

comprehensively explore the broad topic of “the maintenance of species diversity”.

In this thesis, I perform theoretical explorations of a particular class of spatial coexis-

tence mechanisms based on how density-dependent interactions in space structure ecological

communities. Various studies emphasize how uses of space affect species coexistence (par-

ticularly for sessile organisms; see Chesson, 2000a; Amarasekare, 2003; Amarasekare et al.,

2004; Leibold et al., 2004; Leibold and Chase, 2017). Within spatial coexistence mechanisms,

many recent developments focus on “local feedbacks”. While there are many possible defi-

nitions, I broadly define local feedbacks as processes in which the presence or local density

of a species modifies the local environment in a way that impacts the fitness of conspecifics

or other species. Feedbacks come in two potential flavors. Negative feedbacks decrease local

fitness and positive feedbacks increase local fitness. In forest communities, for example, the

Janzen-Connell Hypothesis (JCH) is a widely observed negative local feedback mechanism

that posits specialized natural enemies (e.g. pathogens, insect herbivores) accumulate near

trees or areas of high density and locally inhibit the survival of their offspring (i.e. seeds

and seedlings; Connell, 1971; Janzen, 1970; Kulmatiski et al., 2008; Petermann et al., 2008;

Comita et al., 2014; Bever et al., 2015; Song et al., 2021a). The phenomenon of decreased

juvenile survival near conspecific adult trees and/or in areas of high conspecifc density is

frequently referred to as either Janzen-Connell Effects (JCEs) or Conspecific Negative Den-

sity Dependence (CNDD). I will use the terms JCEs and CNDD somewhat interchangeably

2



throughout this thesis (though there are subtle differences in their use throughout the lit-

erature). JCEs function similarly to a spatially structured means of intra-specific apparent

competition (Holt, 1977; Comita and Stump, 2020): as a species’ density increases in space,

the attraction of natural enemies locally increases predation pressure for all nearby con-

specifics. More broadly, resource use can also generate negative feedbacks: a predator may

locally deplete its preferred prey or a plant may locally deplete its limiting nutrient, de-

creasing conspecific competitive ability. The key feature of negative local feedbacks is that

they result in intra-specific limitation, thereby promoting coexistence. Spatial structure

itself likely plays a key role in facilitating this intra-specific limitation (for example, high

local densities of seedlings may dramatically increase the probability of a specialist pathogen

outbreak).

Positive feedbacks can emerge through mutualistic relationships between plants and or-

ganisms such as symbiotic mycorrhizal fungi via their accumulation in the soil at local sites.

(Klironomos, 2002; Reynolds et al., 2003; McGuire, 2014; Bennett et al., 2017; Teste et al.,

2017). While both positive and negative feedbacks are important processes to examine, most

of this thesis will focus on negative feedbacks in forest communities, largely because recent

work indicates they are common in the forest communities world-wide (e.g. Comita et al.,

2014; Song et al., 2021a). However, the study of positive feedbacks remains an exciting area

of potential future research (Zahra et al., 2021).

Although first proposed over 50 years ago, the JCH has received renewed interest. The-

oretical work has laid the baseline foundation to understand how JCEs and CNDD might

affect the maintenance of species diversity in natural communities (Adler and Muller-Landau,

2005; Muller-Landau and Adler, 2007; Sedio and Ostling, 2013; Stump and Chesson, 2015;

Stump and Comita, 2018; Levi et al., 2019). At the same time, an explosion of empirical

research speaks to the commonness of JCEs and CNDD in natural communities (Comita

et al., 2014), evidence that it varies between species (e.g. Comita et al., 2010; Mangan et al.,
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2010), evidence that it varies along environmental gradients (e.g. LaManna et al., 2016;

Fibich et al., 2021; Magee et al., 2021), and evidence of its simultaneous operation with

other coexistence mechanisms (e.g. Bagchi et al., 2011; Yao et al., 2020; Huang et al., 2022).

The implications of many of these newer developments for species coexistence remain theo-

retically under-developed and, simultaneously, little theory has been presented that seeks to

explain these many intriguing newfound empirical patterns. Therefore, in a somewhat rare

instance in modern ecology, empirical work seems to have outpaced theory. My doctoral

work focuses on filling these theoretical gaps in the literature.

In Chapter 2, I revisit the basic ability of JCEs to maintain species richness. Recent

analyses suggest that JCEs are unlikely to maintain high species richness in communities

with realistic levels of inter-specific fitnes variation (e.g. Chisholm and Fung, 2020). I examine

this issue while noting that JCEs are integrated into theoretical models through somewhat

varied and inconsistent means. For this reason, drawing general conclusions on both the

efficacy of JCEs in maintaining species richness and what empirical parameters are necessary

to measure to evaluate said efficacy are unclear. Interestingly, the variation in modeling

assumptions within the theoretical literature mirrors recent debate in statistical methods

of measuring the strength of conspecific density dependence (see Detto et al., 2019). In an

effort to help bridge disparate modeling efforts, I present a simple framework evaluating

the community-level impacts that result from assumptions made by previous JCE-oriented

models and discuss their relevance for interpreting empirical patterns.

In Chapter 3, I examine the interaction between JCEs and Habitat Partitioning (HP).

Sessile organisms (e.g. trees) are often thought to coexist through persisting in different

locations in spatially heterogeneous environments (i.e. via the spatial storage effect; Chesson,

2000a). Superficially, HP and JCEs seem to operate through opposing forces – while JCEs

function through reducing the probability individuals colonize locations nearby conspecifics,

HP functions by aggregating conspecifics into specific areas that are often in close proximity.
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This implies that their simultaneous operation might reduce their efficacy in maintaining

species richness. Contrary to this intuition, however, I show the opposite is true – JCEs

and HP most strongly maintain diversity when species tend to induce negative feedbacks on

patches most favorable to them.

Chapter 4 serves to develop a theoretical framework for understanding how demographic

processes generate variation in CNDD measurements. As noted above, empirical work finds

that CNDD strength varies between species (often associated with life history strategies

such as growth rate) and varies strongly with environmental conditions (e.g. precipitation,

soil moisture, temperature, and light availability). While verbal explanations have been put

forward to explain these measurements, no quantitative framework has been put forward

to elucidate the factors underlying these observations. In this Chapter, I develop a simple

demographic model to understand how density-dependent feedbacks between life history

stages interact with environmental factors that modify density-independent demographic

traits and life history trade-offs between demographic traits.

In Chapter 5, I examine how temporal variation in seed production interacts with spe-

cialized and generalized predation to shape species coexistence. Many perennial tree species

exhibit masting, intra-specifically synchronized production of a large number of seeds over

irregular periods of two or greater years (Kelly and Sork, 2002). This is thought to be

an evolutionary adaptation to satiate the functional responses of seed predators, therefore

increasing the proportion of seeds that escape predation. On first blush, this phenomenon

appears to countervail JCEs – JCEs rely on local negative density dependence while predator

satiation creates positive density dependence. In this Chapter, I evaluate how the interac-

tions of generalist predation, localized specialized predation, masting, and predator satiation

affect the ability of specialized predators to maintain species diversity.

In a sixth and final Chapter, I provide a synopsis and review of the work presented in

this thesis in the context of previous theoretical work. First, I address several gaps left
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by the previous chapters. Then, I provide a brief review of previous models that examine

how local feedbacks in spatially structured communities affect species coexistence and the

modeling assumptions therein. I conclude by discussing future directions for better inte-

grating theoretical and empirical approaches to evaluating the impact CNDD has on species

diversity.
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Chapter 2

The functional form of specialized predation
affects whether Janzen-Connell effects can

prevent competitive exclusion1

2.1 Abstract

Janzen-Connell Effects (JCEs), specialized predation of seeds and seedlings near conspecific

trees, are hypothesized to maintain species richness. While previous studies show JCEs can

maintain high richness relative to neutral communities, recent theoretical work indicates

JCEs may weakly inhibit competitive exclusion when species exhibit inter-specific fitness

variation. However, recent models make somewhat restrictive assumptions about the func-

tional form of specialized predation – that JCEs occur at a fixed rate when offspring are

within a fixed distance of a conspecific tree. Using a theoretical model, I show that the

functional form of JCEs largely impacts their ability to maintain coexistence. If predation

pressure increases additively with adult tree density and decays exponentially with distance,

JCEs maintain considerably higher species richness than predicted by recent models. Loosely

. 1Originally published as: Smith, Daniel. “The functional form of specialised predation affects whether
Janzen-Connell effects can prevent competitive exclusion.” Ecology Letters (2022).
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parameterizing the model with data from a Panamanian tree community, I elucidate the con-

ditions under which JCEs are capable of maintaining high species richness.

2.2 Introduction

The Janzen-Connell hypothesis is a species coexistence mechanism frequently invoked to

explain the high diversity of tropical forests (Janzen, 1970; Connell, 1971; Wright, 2002;

Terborgh, 2012). It is based on the observation that specialized natural enemies (e.g. in-

sects, fungi, and pathogens) reduce the survivorship of seeds and seedlings when they are

near conspecific adult trees. These phenomena are frequently referred to as Janzen-Connell

Effects (JCEs). JCEs are thought to promote coexistence by generating negative frequency

dependence: the more common a species is, the greater the proportion of the environment

its offspring experience JCEs. However, the efficacy of this mechanism remains contested on

theoretical grounds.

Empirical evidence supports the presence of JCEs in a variety of systems (e.g. Hyatt

et al., 2003; Petermann et al., 2008; Mangan et al., 2010; Swamy and Terborgh, 2010; Johnson

et al., 2012; Comita et al., 2014; Bever et al., 2015; Hazelwood et al., 2021). Theoretical work

demonstrates JCEs can effectively delay extinction from ecological drift and maintain high

species richness relative to neutral communities (Armstrong, 1989; Adler and Muller-Landau,

2005; Sedio and Ostling, 2013; Levi et al., 2019). However, for a stabilizing mechanism to

maintain coexistence, it must be sufficiently strong to offset inter-specific fitness differences

(Chesson, 2000b). Recent studies that integrate inter-specific variation into JCE models call

into question their ability to promote deterministic coexistence (Stump and Comita, 2018;

Hülsmann et al., 2021; Cannon et al., 2021) causing some to label JCEs “a weak impediment

to competitive exclusion” (Chisholm and Fung, 2020).

A notable assumption of several recent JCE-type models (e.g. Levi et al., 2019; Chisholm

and Fung, 2020) is the functional form of specialized predation pressure. These studies as-
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sume that JCEs impact offspring within a fixed distance of a conspecific adult tree. Where

JCEs induce offspring mortality, they reduce survivorship by a fixed proportion that is in-

dependent of conspecific adult density. I refer to this as the “Non-additive−Fixed-distance”

(NF) model (Fig. 2.2A). The NF model is likely used because it decreases model complexity

and requires relatively low computational power. However, empirical evidence indicates that

offspring mortality increases additively with conspecific adult density and declines monoton-

ically with conspecific distance (e.g. Hubbell et al., 2001; Comita et al., 2010, 2014; Johnson

et al., 2014; Liu et al., 2015). I refer to this as the “Additive−Distance-decay” (AD) model

(Fig. 2.2D). Several previous studies use this functional form (e.g. Adler and Muller-Landau,

2005; Muller-Landau and Adler, 2007; Sedio and Ostling, 2013; Stump and Comita, 2020).

If offspring mortality increases with the local abundance of natural enemies that disperse

from nearby conspecific trees, this model captures more biological realism.

There are two axes on which the aforementioned functional forms vary. In terms of adult

density, predation pressure acts either additively or non-additively. In terms of distance,

predation occurs over a fixed distance or decays monotonically. To tease out the effect each

functional form assumption has on species coexistence, I develop an Ordinary Differential

Equation (ODE) approximation of each of the four possible spatially explicit JCE models

that incorporate these functional form assumptions (Fig. 2.1). I use the ODEs to compare

the relative ability of each JCE functional form to promote deterministic coexistence in a

community exhibiting inter-specific fitness variation. Overall, I show that the functional

form of specialized predation strongly affects the ability of JCEs to maintain species rich-

ness. This study highlights the need to more precisely determine the functional form of

specialized predation, quantify the parameters that affect its strength, and better integrate

these empirical results into theoretical models.
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2.3 Model and methods

I consider a tree community of N species that contains M patches in which the center of

every patch contains a single adult tree. Below, I describe the discrete-time spatially explicit

model.

2.3.1 Offspring (within-patch) dynamics

Each tree produces a set number of seeds each time-step. All trees uniformly disperse a

portion of their seeds (D) among patches and retain the remaining portion of their seeds

(1 − D) on the local patch. The number of offspring species i disperses to each patch

is proportional to Yi, henceforth intrinsic fitness (a composite parameter of fecundity and

offspring survival). On each patch, JCEs kill offspring. Let Ji,k(x) define the probability an

offspring of species i survives JCEs on a patch occupied by species k at location x. Then,

letting Si,k(x) represent the number of offspring of species i on a patch occupied by species

k at a location x:

Si,i(x) = Yi
[
(1−D) + piD

]
Ji,i(x)

Si,k(x) = YipiDJi,k(x)

Sall,i(x) =
N∑
n=1

Sn,i(x)

(2.1)

where pi is the proportion of species i in the population, i = 1, 2, ..., N . i ̸= k. If the adult

on the patch at location x dies during the time-step, a lottery determines which species

replaces the adult (see “Tree dynamics”). If the adult survives, all offspring on the patch die.

Appendix A5 provides a more detailed description.
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2.3.2 Janzen-Connell effect functional forms

Non-additive−Fixed-distance (NF) model

JCEs kill a fixed proportion of a species’ offspring when they are within r meters of a

conspecific adult (Fig. 2.1A):

Ji,i(x) = exp
[
− a
]

Ji,k(x) =


1, if min(xi) > r

exp
[
− a
]
, if min(xi) ≤ r

(2.2)

where min(xi) is the minimum distance between of an adult of species i and a patch at

location x. a represents baseline predation pressure (a composite trait of predation rate and

the time over which predation occurs; see Appendix A5). I assume a does not vary between

species.

Additive−Fixed-distance (AF) model

JCEs occur over a fixed radius, r, in which predation pressure increases linearly with the

number of conspecific adults (Fig. 2.1B):

Ji,i(x) = exp
[
− a

(
1 +

∑
m∈r

1m(i)

)]
Ji,k(x) = exp

[
− a

∑
m∈r

1m(i)

] (2.3)

where m ∈ r depicts the trees falling within the JCE radius. 1m(i) is an indicator function

for which 1m(i) = 1 if m = i and 1m(i) = 0 if m ̸= i.
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Non-additive−Distance-decay model (ND) model

Predation pressure is non-additive and decreases exponentially with distance (Fig. 2.1C):

Ji,i(x) = exp
[
− a
]

Ji,k(x) = exp
[
− ae−min(xi)/v

] (2.4)

where v defines rate at which predation declines with distance and min(xi) is the same as

defined in the NF model.

Additive−distance-decay (AD) model

Predation pressure increases linearly as a function of local conspecific density and decreases

exponentially with distance (Fig. 2.1D):

Ji,i(x) = exp
[
− a

(
1 +

Mpi∑
m=1

e−xi,m/v
)]

Ji,k(x) = exp
[
− a

Mpi∑
m=1

e−xi,m/v
] (2.5)

where xi,m is the mth smallest distance between the focal patch (x) and an adult of species

i. Mpi represents all trees of species i in the community. See Appendices A1-A5 for more

details on each functional form and the modeling assumptions therein.

2.3.3 Tree dynamics

Each time-step, adult trees die with probability δ. When a tree dies, it is immediately

replaced by a randomly selected offspring on the patch (a lottery model; Chesson and

Warner (1981)). Let PA,B(x) be the probability an offspring of species A colonizes a

patch previously occupied by species B at location x. Then, Pi,i(x) = Si,i(x)/Sall,i(x)
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AF model
Additive – Fixed-distance 

AD model
Additive – Distance-decay

NF model
Non-additive – Fixed-distance 

ND model
Non-additive – Distance-decay

(A)

(C)

(B)

(D)

Figure 2.1: Visualization of how each JCE functional form induces offspring mortality in
2D space. Each grid cell represents a patch on which an adult persists. For simplicity,
only three adults of a single species are depicted. Shading depicts the relative probability
of offspring mortality in space. Redder shading corresponds to higher offspring mortality;
white corresponds 100% offspring survival. The plots highlight the distinct features of each
modeling assumption. The fixed-distance models (NF and AF models; panels A and B)
induce concentrated predation pressure over a relatively small area while the distance-decay
models (ND and AD; panels C and D) distribute less concentrated predation pressure over
a larger area. The non-additive models (NF and ND; panels A and C) induce relatively
strong predation pressure near adults that does not increase with adult density whereas the
additive models (AF and AD; panels B and D) exhibit the highest mortality where multiple
conspecific adults are close in proximity. The images depict when v = 10, r = 10

√
2,

g = 0.172, N = 250, aA = 0.5, and aN = aA + aAE/N where E = EF = ED = 2πv2g
(as per the additive−non-additive normalization; see “Model normalizations” and Appendix
A5).
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and Pi,k(x) = Si,k(x)/Sall,k(x). In the spatially explicit model, patches are discretized in

space on a gridded torus of M = 275 × 275 patches. For the distance-decay models (AD,

ND), the distance between two patches is defined by the euclidean distance between their

center points. For the fixed-distance models (AF, NF), I incorporate JCEs using Moore

neighborhoods.

I developed a deterministic ODE approximation for each spatially explicit model by tak-

ing the expected offspring abundance on each patch type. The dynamics for the proportion

of species i (pi) in the community are

dpi
dt

= δ

[
E[Si,i(x)]
E[Sall,i(x)]

pi +
∑
k ̸=i

E[Si,k(x)]
E[Sall,k(x)]

pk − pi

]
(2.6)

for which i = 1, 2, ..., N . The first term in the parentheses is the rate at which species i

recolonizes patches previously occupied by conspecifics, the second term is the rate at which

species i colonizes patches previously occupied by species k (k ̸= i), and the third term is

the rate at which adults of species i die.

For the NF model, offspring abundances are:

E[Si,i(x)] = Yi
[
(1−D) + piD

]
e−a

E[Si,k(x)] = YipiD
[
e−piEF + e−a(1− e−piEF )

] (2.7)

where EF = πgr2 where g is density (adults per square meter). EF is the expected number

of trees that fall within the effect radius, r. For the AF model, the offspring abundances are:

E[Si,i(x)] = Yi
[
(1−D) + piD

]
e−ae−(1−e−a)piEF

E[Si,k(x)] = YipiDe−(1−e−a)piEF

(2.8)
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where EF is the same as in the NF model. For the ND model, the offspring abundances are:

E[Si,i(x)] = Yi
[
(1−D) + piD

]
e−a

E[Si,k(x)] = YipiDe−ae
−
√ π

2EDpi

(
1 + ae

−
√

π
2EDpi

(
ae

−
√

π
2EDpi − 1

)(
1− π

4

) 1

piED

)
(2.9)

where ED = 2πgv2. ED relates to the predation pressure each tree induces. For the AD

model, the seedling equations are:

E[Si,i(x)] = Yi
[
(1−D) + pid

]
e−ae−apiEDH(a)

E[Si,k(x)] = YipiDe−apiEDH(a)
(2.10)

where H(a) = 3F3(1, 1, 1; 2, 2, 2;−a), a Generalized Hypergeometric Function. See Ap-

pendix A1-A4 for details.

Model parameterizations

I roughly parameterized several key quantities using data from the Barro Colordo Island

(BCI) forest plot in Panama. g (adult density) can be estimated by dividing the total

number of individuals in the community by its area in square meters. The plot at BCI is

50-ha and contains approximately 86, 069 individuals of reproductive diameter based on the

1995 BCI census (Condit et al., 2019; Chisholm and Fung, 2020). This yields g ≈ 0.172

adults per square meter.

Comita et al. (2010) estimated a distance decay parameter at BCI (β) similar to v, finding

best and second best fit values equivalent to v = 5 and v = 10, respectively. β differs from v

in that it describes the distance decay of consepcific adult basal area on seedling survivorship

based on a GLM using a logit link function, but they are conceptually similar. To examine

a range of scenarios loosely based on this measurement, I examined v between 2.5 and 15.
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Chisholm and Fung (2020) found inter-specific fitness variation (Y ) at BCI to be log-

normally distributed with inter-specific variation approximately equivalent to Y ∼ lognormal

[µ = 0, σY = 1.0]. I examined when σY between 0.1 and 1.0. Note that the nature of the

lottery model (in which one species always wins the lottery) means that only relative, rather

than absolute, values of intrinsic fitness matter.

I examined several values of a (baseline predation pressure). In every model, 1 − e−a

corresponds to the probability an offspring dies due to JCEs when it is on a patch occupied

by a conspecific. I henceforth frame a in terms of 1 − e−a because it is easy to interpret.

I examined when 1 − e−a = 0.4, 0.7, and 0.99, which encompasses when JCEs range from

moderately strong to very strong.

2.3.4 Model normalizations

To compare models, I perform two inter-model normalizations that equalize predation pres-

sure across distance-dependent and density-dependent modeling assumptions. See Appendix

A5 for full details.

To normalize distance-decay and fixed-distance functional forms, I equalize the predation

pressure each individual tree induces over space. Let G(x) represent the relative predation

pressure induced x meters away from a single adult tree (G(x) ≤ 1). The total preda-

tion pressure induced by a single tree in 2-dimensional space is 2πg
∫∞
0 xG(x)dx. For the

distance-decay models (predation declines exponentially with distance) G(x) = e−x/v, giving

2πg
∫∞
0 xe−x/vdx = 2gπv2. For the fixed-distance models (predation occurs within a fixed

area, r) G(x) = 1 for x ≤ r and G(x) = 0 if x > r, giving 2πg
∫ r
0 xdx = gπr2. Setting these

values equal yields r = v
√
2 (which also implies EF = ED). This normalization is similar to

methods used in previous models (Adler and Muller-Landau, 2005; Sedio and Ostling, 2013)

and can be interpreted as equalizing the total number of predators that disperse from trees

(Appendix A5).
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Secondly, I normalize additive and non-additive models. To do so, I modify the baseline

predation pressure of the non-additive models such that additive and non-additive models ex-

hibit the same mean predation. Let E represent either ED or EF (which are equal under the

first normalization). On a random patch in a community of N species, it can be shown that

additive predation increases mean predation pressure by aE/N relative to when predation is

non-additive. This is derived by taking the expected predation pressure a species’ offspring

experiences on a random patch in the community (see Appendix A5). Then, letting an and

aA be the baseline predation pressure of the non-additive and additive models, respectively,

mean predation pressure is equal between models if an = aA + aAE/N . I henceforth use the

notation aA when referring to baseline predation pressure.

2.3.5 Presentation of results

Ordinary Differential Equation (ODE) analysis

Using the ODE model (Equation (2.6)), I ran simulations with the above-mentioned param-

eterizations and normalizations under different levels of dispersal limitation (D) to compare

how each functional form maintains species richness. The initial number of species for each

simulations was set to 300. 300 was selected on the basis that the forest plot at BCI con-

tains approximately 300 woody plant species (Condit et al., 2019). Simulations were run for

10,000 generations, more than sufficient for the system to reach equilibrium (Appendix A7,

Fig. 2.39). I considered species i to be extinct if log pi < −11 (recalling pi the proportion

of species i). This approximately corresponds to less than one individual at the BCI forest

plot (log 1/86, 006 ≈ −11). The additive−non-additive normalization was implemented by

running a simulation with additive models and using the number of species maintained to

normalize baseline predation. For example, if the AD model maintained N species, then

the NF and ND models were normalized by setting an = aA + aAED/N . Simulations were

performed in R (R Core Team, 2021) using the package deSolve (Soetaert et al., 2010).
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I performed additional analyses to explain the simulation outputs. First, I examined how

each functional form induces negative frequency dependence by analyzing equations (2.7-

2.10). Then, I analyzed approximate invasion criteria for each model. The invasion criteria

quantify the minimum fitness that permits the invasion of a rare species in a community of N

residents under the assumption of global dispersal (D = 1; Table 2.1; Appendices A.1-A.4).

ODE validation

I ran spatially explicit and ODE model simulations using identical parameterizations and

compared species richness outputs. Spatially explicit simulations were run on the 275 ×

275 patch community until the transient dynamics had approximately concluded (after

species richness approximately stabilized; Appendices A1-A4). I ran simulations with σY ∼

{0.1, 0.45, 0.8} and a ∼ {0.5, 1.0, 2.75, 4.5}. For each of the 12 parameter combinations, I ran

simulations with model v ∼ {5, 7.5, 10} for the distance-decay functional forms with g = 0.2.

For the fixed-distance model, I ran simulations with Moore neighborhoods ranging in size

from 3 × 3 (small) to 11 × 11 (large) which corresponds to r values between 4.0 − 14 for

g = 0.2.

2.4 Results

2.4.1 Species richness maintained by each model

For all models, species richness increased with baseline predation pressure (aA) and the

spatial scale of predation (v and r; Figs. 2.2 and 2.3) and decreased with inter-specific

fitness variation (σY ; Fig. 2.3). The AD model promoted the highest species richness in all

cases. Which model promoted the second highest species richness depended on aA. For low

to moderate aA, the AF model maintained the second greatest species richness (Figs. 2.2 and

2.3, columns 1-2). In these cases, the species richness maintained by the non-additive models
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(ND and NF) declined rapidly with increasing σY (Fig. 2.3, columns 1-2). While species

richness also decreased with σY for the additive models (AD and AF), the decline was much

less pronounced (particularly for large v and r). For large aA, the ND model maintained

the second highest diversity (Figs. 2.2 and 2.3, column 3). While all models were capable

of maintaining somewhat high species richness for large aA, the distance-decay models (AD

and ND) were more robust to inter-specific fitness variation than the fixed-distance models

(Fig. 2.3, column 3).

The initial pool of 300 species limited species richness when JCEs were strong (e.g.

Fig. 2.2 column 3; Fig. 2.3I). With a larger initial species pool (1, 000 species, similar to

the number of trees in central Panama; Condit et al., 2013) differences in species richness

maintained by each model were considerably more pronounced in these cases (Appendix A7,

Figs. 2.40-2.41). Therefore, Figs. 2.2 and 2.3 may understate model differences.

Dispersal limitation trivially affected the additive models, but decreased species richness

for the non-additive models (Fig. 2.2; Appendix A7, Fig. 2.40). This can be understood as

follows. In the absence of dispersal limitation (D = 1), a rare species suffers no offspring

mortality due to JCEs; when D < 1, a rare species’ locally dispersed offspring suffer JCE-

induced mortality. When predation is non-additive, a rare species’ locally dispersed offspring

experience the same mortality as those of resident species. When predation is additive,

resident species’ locally dispersed offspring always experience greater mortality than those

of rare species due to additive effects. Thus, dispersal limitation decreases rare species

advantage when predation is non-additive but not when it is additive. Dispersal limitation

most strongly affected species richness for intermediate aA. It can be shown that the dispersal

limited and non-dispersal limited cases converge when aA is very large or small (Appendix

A6).
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Figure 2.2: Species richness maintained by each JCE functional form under different values of
baseline predation pressure (aA), dispersal limitation (D), and the spatial scale of predation
(v and r). For each plot, the x-axis depicts either v or r (depending on the JCE functional
form) and the y-axis is species richness (the number of species maintained in the community
at equilibrium). Models are differentiated by point shape and color. Each column depicts a
different value of aA (the baseline predation pressure for the additive models) and each row
shows a different value of D (D = 1, D = 0.5, and D = 0.1, respectively). The non-additive
models are normalized such that aN = aA + aAE/NA where aN is the normalized predation
pressure for the non-additive models, NA is the diversity maintained by the additive model
to which the non-additive model is being compared, and E is either EF or ED (which are
equivalent). aN was calculated based on the diversity maintained by the AD model for
the additive – non-additive normalizations of both NF and ND models. Using AF model
outputs to quantify aN yielded trivially similar results. All simulations were conducted with
300 species initially in the population. Parameters not noted on the figure are as follows:
g = 0.172 and σY = 0.55 (Y ∼ lognormal[µ = 0, σY ]).
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Figure 2.3: How the level of inter-specific fitness variation (σY ) affects species richness for
each JCE functional form (Y ∼ lognormal[µ = 0, σY ]). For each plot, the x-axis is σY
and the y-axis is species richness (the number of species maintained in the community at
equilibrium). Each column depicts a different value of aA (the baseline predation pressure
for the additive models) and each row shows a different value of v or r (the spatial scale of
predation). Additive – non-additive normalizations were calculated using the same method
noted in Fig. 2.2. For lower aA (columns 1 and 2) the additive models (AD and AF) are
much more robust to fitness differences (σY ), particularly over larger spatial scales (row 2 and
3). For large aA (column 3), distance-decay models (AD and ND) are more robust to inter-
specific fitness differences than the fixed-distance models. All simulations were conducted
with 300 species initially in the population. Parameters not noted on the figure are as follows:
g = 0.172 and D = 0.5.
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2.4.2 Mechanisms of diversity maintenance

The AD model always promotes the highest species richness, the AF model promotes the

second highest species richness for lower baseline predation pressure (aA), and the ND model

promotes the second highest species richness for large aA (Figs. 2.2 and 2.3; Appendix A7,

Figs. 2.40-2.41). Below, I explain these results.

Examining equations (2.7-2.10), the proportion of surviving offspring of species i on a

random patch declines with increasing conspecific adult proportion in the community (pi)

for each model (Fig. 2.4). The nature of this decline, which reflects the strength of negative

frequency dependence, depends on whether predation is additive or non-additive. When

predation is additive (AD and AF models), offspring survival declines monotonically with

pi; when predation is non-additive (ND and NF models), offspring survival decreases as a

saturating function of pi (saturating to the fixed value set non-additive predation pressure,

an; Fig. 2.4). This difference between additive and non-additive functional forms is pro-

nounced when aA is relatively small (Figs. 2.4A, 2.4C). For large aA, all models strongly

reduce offspring survivorship when a species is common (fig. 2.4B, 1.4C), though still more

so for the additive models (Appendix A7, Fig. 2.42). However, under large aA, when species

proportion is near the population mean (pi ≈ 1/N), the distance-decay (AD and ND) mod-

els induce lower offspring survivorship than the fixed-distance (AF and NF) models (Figs.

2.4B, 2.4D; dotted lines). Thus, additive predation induces relatively strong negative fre-

quency dependence for small aA while the distance-decay functional form produces lower

mean offspring survival for large aA.

The invasion criteria quantify how these differences affect the growth rate of a rare

species. The right hand side of each invasion criterion (henceforth the “minimum invader

fitness”; Table 2.1) quantifies the minimum fitness required for a rare species to invade a

community of N residents. The minimum invader fitness is broken into two parts. (1) The

mean-JCE-fitness term, which consists of the product of the mean fitness of the resident
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Figure 2.4: How offspring survivorship scales with conspecific adult proportion for each functional
form. For each plot, the x-axis is the proportion of adults of a focal species in the population (pi)
and the y-axis is the expected proportion of surviving offspring on random patch occupied by a
heterospecific. These values are taken from equations (2.7-2.10). For the AD model, for example
(equation (2.10)): E[Si,k(x)] = YipiDe−aipiEDH(ai). The y-axis of this figure is e−aipiEDH(ai), which
is equivalent to E[Ji,k(x)] (see Appendices A1-A4). The other curves show the analogous terms
from equations (2.7-2.9). Models are indexed by color. Each model assumes N = 300; the dotted
lines depict 1/N , the mean proportion of the population. Columns show different values of 1−e−aA

(baseline predation pressure; 0.4 and 0.99, respectively). Rows show different values of v (5 and 10,
respectively). First consider low 1−e−aA (column 1; A and C). When pi is low (on the order of 1/N)
all models produce similar offspring survival. When pi is large, the additive models (AD and AF;
blue and green curves) produce lower offspring survival than the non-additive models (ND, NF).
Now, consider high 1− e−aA (column 2; B and D). All models produce low offspring survival when
species i is common (large pi). When pi is small (on the order of 1/N , the mean proportion) the
distance-decay models (AD an ND; blue and red curves) induce much lower survival than the fixed-
distance models. Note that the fixed-distance (AF and NF) models converge for large aA (the orange
and green curves are essentially identical). This is because nearly all offspring die if a conspecific
adult is found with the effect area, in which case additive predation does not meaningfully increase
offspring mortality. Parameters are as follows: g = 0.172, D = 1.0, N = 300, and aN = aA

(
1+E/N)

where E = EF = ED = 2πv2g.
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Model Abbreviation Approximate Invasion Criteria

Non-additive−
Fixed-distance NF Yi > Y

(
1−

(
1− e−a)(1− e

−EF
N
))

︸ ︷︷ ︸
mean

JCE-fitness term

+NCov(p, Y )

(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)
︸ ︷︷ ︸

covariance-JCE term

Additive−
Fixed-distance AF Yi > Y e−

(
1−e−a

)EF
N︸ ︷︷ ︸

mean
JCE-fitness term

+NCov(p, Y )

(
1−

(
1− e−a)EF

N

)
e−
(
1−e−a

)EF
N︸ ︷︷ ︸

covariance-JCE term

Non-additive−
Distance-decay ND Yi > Y e−ae

−
√

πN
2ED

(
1 + ae

−
√

πN
2ED

(
ae

−
√

πN
2ED − 1

)(
1− π

4

) N

ED

)
︸ ︷︷ ︸

mean JCE-fitness term

+ NCov(p, Y )Γ∗︸ ︷︷ ︸
covariance-JCE term

Additive−
Distance-decay AD Yi > Y e−aH(a)

ED
N︸ ︷︷ ︸

mean
JCE-fitness term

+NCov(p, Y )

(
1− aH(a)

ED

N

)
e−aH(a)

ED
N︸ ︷︷ ︸

covariance-JCE term

Table 2.1: Model types, their abbreviations, and their approximate invasion criterion. The
right hand side of each approximate invasion criterion quantifies the minimum fitness of a
rare species, Yi, required for invasion (deterministic increase in abundance). I refer to this as
the “minimum invader fitness”. Y = 1

N

∑N
k=1 Yk. Γ∗ is a large and complicated expression.

See Appendix A3 for the full expression and Appendices A1-A4 for derivations.

community (Y ) and the average proportion of offspring that survive JCEs in the resident

community (the latter component being equivalent to the dotted lines in Fig. 2.4). This

term quantifies the mean JCE-scaled fitness of the resident species that an invader competes

against. (2) The covariance-JCE term, which consists of two components: the covariance

between species proportion and intrinsic fitness (Cov(p, Y )) and several coefficients. Because

species differ only in intrinsic fitness, Cov(p, Y ) is positive (fitter species are more common).

The coefficients, in part, quantify how JCEs reduce the offspring survivorship of relatively

common species. The covariance-JCE term therefore quantifies the amount of competition

the invader faces from relatively fit and common species; lower values correspond to stronger

negative frequency dependence.

Examining the invasion criteria through numerical simulations, the AD model exhibited

the lowest minimum invader fitness in all cases (fig. 2.5). For relatively weak predation pres-

sure (low aA), the AF model exhibited the second lowest minimum invader fitness whereas

the non-additive models (ND and NF) produced relatively high invader minimum fitness, es-

pecially for larger v and r (Figs. 2.5A, 2.5D). The covariance-JCE terms of the non-additive
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(ND, NF) models were much greater those of their additive counterparts while mean-JCE

terms were similar, indicating the strength of negative frequency dependence underlies model

differences for low aA (Figs. 2.5C, 2.5F). When aA was large, the ND model produced the

lowest minimum invader fitness (Figs. 2.5A, 2.5D). In this case, the mean-JCE-fitness terms

of the distance-decay (AD and ND) models were considerably lower than those of the fixed-

distance (AF and NF) models whereas the covariance-JCE terms were similar. This indicates

that mean offspring survival underlies model differences for large aA (Fig. 2.5B and 2.5E;

2.5C and 2.5F). These results are consistent with the above analysis (Fig. 2.4) and species

richness outputs (Figs. 2.2 and 2.3).

2.4.3 ODE validation

The ODE model yielded species richness outputs highly similar to the spatially explicit mod-

els. Across simulations, the mean difference in species richness between the spatially explicit

models and ODEs for each functional form was less than 3.5 species. The r2 (coefficient of

determination) for species richness between spatially explicit and ODE models was greater

that 0.98 for all functional forms. (Appendices A1-A4; see Appendix A7 Fig. 2.37 for a

summary figure). Results for Shannon diversity were similar (Appendix A7, Fig. 2.38).

2.5 Discussion

2.5.1 How the functional form of specialized predation affects species richness

In this paper, I demonstrate that the functional form of specialized predation strongly af-

fects the ability of Janzen-Connell Effects (JCEs) to inhibit competitive exclusion. This

is important in the context of recent modeling studies which indicate JCEs are unable to

maintain diversity if species exhibit inter-specific fitness variation (e.g. Stump and Comita,

2018; Chisholm and Fung, 2020). These and similar studies (Levi et al., 2019) assume that
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Figure 2.5: How the different functional forms
promote invasion as defined by their invasion
criteria quantified from simulated communi-
ties. All simulations began with 300 species.
First, additive model simulations were run and
normalizations were performed as described
in the main text, fig. 2.2, and Appendix
A5. Simulations were run until each model
to reached equilibrium. Using the equilibrium
values, the invasion criteria components were
calculated for each model. Each row shows
a different component of the invasion crite-
ria. (A-C) show v = 6 (r = 6

√
2) and (D-

F) show v = 12 (r = 12
√
2). The x-axis of

each plot shows the baseline predation pres-
sure for the additive models (1 − e−aA). (A,
D) show the minimum invader fitness for each
invasion criteria (i.e. the right hand side of the
invasion criteria), (B, E) show the mean-JCE-
fitness term, and (C, F) show the covariance-
JCE term. Values for each model in (A) are
the sum of values (B) and (C); values for each
model in (D) are the sum of values in (E) and
(F). The key results are as follows: when aA is
small, the additive (AD and AF) models yield
a much lower covariance-JCE terms than the
non-additive (ND and NF) models. Hence,
the additive models produce lower minimum
invader fitness than the non-additive models.
When aA is large, the distance-decay (AD and
ND) models induce lower mean-JCE fitness
terms than the fixed-distance (AF and NF)
models. Hence, the distance-decay produce
lower minimum invader fitness than the fixed-
distance models. Parameters are as follows:
D = 1, g = 0.172, and σY = 0.375. Appendix
A7, Fig. 2.43 shows how the exact invasion
criteria values (the minimum invader fitness
values) compare to the approximations (A, D).
Outputs are qualitatively similar.
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specialized predation pressure affects offspring at a fixed rate within a discrete distance of

a conspecific tree (the NF model; Fig. 2.1A). Such functional forms leave out biological de-

tails as an approximation; previous work indicates that JCEs increase additively with adult

density decay monotonically with distance (the AD model; Hubbell et al., 2001; Comita

et al., 2010). To investigate how the functional form of specialized predation affects compet-

itive outcomes, I developed four models that utilize these combinations of assumptions (the

AD, ND, AF, and NF models). Overall, I find the AD model (the model with the greatest

biological complexity) promotes the highest species richness.

The importance of each functional form assumption depended on the parameter space.

When baseline predation pressure was relatively weak (low aA), additive predation produced

communities much more robust to high inter-specific fitness variation than non-additive

predation (Figs. 2.2-2.3; Appendix A7, Figs. 2.40-2.41). This result reflects how additive

predation produces relatively strong negative frequency dependence (Fig. 2.4) and limits

how much competition invaders experience from highly fit species (fig. 2.5C, 2.5F). Notably,

offspring recruitment near conspecific adults is likely not uncommon for low aA. Therefore,

contrary to previous arguments (Chisholm and Fung, 2020), the close proximity of conspecific

adults is not incompatible with the operation of strongly stabilizing JCEs if predation is

additive.

For large aA, the distance-decay (AD and ND) models maintained higher diversity than

the fixed-distance (AF and NF) models. The fixed-distance models induce concentrated

predation pressure within a highly localized area while the distance-decay models spread

less concentrated predation over a wider space (fig. 2.1) which can generate lower mean

offspring survival (Figs. 2.4B, 2.4D, 2.5B, 2.5E). Therefore, contrary to how JCEs are often

conceptualized (Terborgh, 2012), JCEs maintain higher species richness when predation

pressure is less (rather than more) localized (conceptually similar to Stump and Chesson,

2015).
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Results also suggest that dispersal limitation decreases species richness when predation is

non-additive but not when additive (Fig. 2.2). This asymmetry helps to explain seemingly

inconsistent results of previous JCE-type models. Models that consider non-additive preda-

tion find dispersal limitation decreases species richness (Stump and Chesson, 2015; Chisholm

and Fung, 2020) whereas several studies using additive functional forms indicate dispersal

limitation can increase species richness (Adler and Muller-Landau, 2005; Detto and Muller-

Landau, 2016; Wiegand et al., 2021). Although Stump and Chesson (2015) argue that the

combination dispersal limitation and localized predation decreases the stabilizing effects of

JCEs, results suggest this is the case only when predation is non-additive (see Appendix

A6).

2.5.2 Empirical measurements in relation to the model

The parameter aA encapsulates the sum of all JCE-related mortality that occurs throughout

juvenile development. Careful long-term measurements of inter-life history stage interactions

are necessary to quantify the probability of conspecific recruitment. Meta-analyses such as

Comita et al. (2014) indicate adult effects on conspecific seedlings are fairly strong. Song

et al. (2021a), examining 52 tree species across latitudes, found that seedlings near conspecific

adult trees experienced an average reduction in survivorship near 63% (Song et al. (2021a),

Fig. 6). Alvarez-Loayza and Terborgh (2011) found that seeds and seedlings near adult trees

experience nearly 100% mortality in an Amazonian forest. Overall, while estimates of aA

are inconclusive, it seems likely that JCEs are often strong enough to stabilize large fitness

differences if they occur on a sufficiently large spatial scale and predation is additive.

Determining the spatial scale of specialized predation requires accurately quantifying v

(or r) and g (tree density). Hubbell et al. (2001) found that negative density-dependent effect

lost significance ∼ 15 meters away from adult trees at BCI (although negative effects were

measured up to 30 meters away) and Comita et al. (2010) measured a parameter similar to v,
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for which the best and second best fits were equal to 5 and 10, respectively (as noted earlier).

While more measurements are warranted, these results point toward an intermediate value

of v, for which the AD model can maintain moderately high species richness, at least in

tropical communities such as BCI (Figs 2.2-2.3, Appendix A7, 2.40-2.41).

The effective spatial scale over which JCEs operate is determined by the interaction of

v and density (g). If individuals are tightly packed in space (high g), predation extending a

modest distance affects many patches. Consistent with this, lower species richness is main-

tained when models are parameterized with lower g (Appendix A7, Fig. 2.44). This suggests

JCEs are more stabilizing in highly dense communities, consistent with the hypothesis that

JCEs are particularly important in dense, species-rich tropical forests.

2.5.3 Limitations and future directions

Results are based on Ordinary Differential Equation (ODE) approximations of spatially

explicit models. The ODEs examine deterministic coexistence, ignoring ecological drift.

Although JCEs can stabilize against drift in otherwise neutral communities (Levi et al.,

2019), inter-specific variation in fitness induces variance in species’ equilibrium abundances,

making weaker competitors more susceptible to stochastic extinction over long time periods

(Nisbet and Gurney, 1982; Miranda et al., 2015). Similarly, this paper does not consider

species immigration, which May et al. (2020) suggest can drown out the signal of JCEs.

The JCE functional form comparisons of this study depend on normalizations which have

built-in assumptions. While these normalizations are biologically meaningful (Appendix

A5), they are not the only feasible method by which they could be performed. A better

understanding of the biological processes comprising JCEs would allow for more informed

comparisons.

A major simplification of this study is that species are modeled identically except for

intrinsic fitness (Y ). However, life history traits such as shade tolerance and mycorrhizal
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association affect which natural enemies attack specific host species (Jia et al., 2020) which

likely determines species-specific natural enemy dispersal (v) and baseline predation strength

(Zhu et al., 2018). Inter-specific variation in these traits can reduce species richness (Stump

and Comita, 2018). v also likely depends on host organism size: the roots, leaf litter, and

natural enemies of relatively large tree species are more likely to affect larger areas. Future

models should better integrate JCEs into life history theory, building on the work of Stump

and Comita (2020).

Similarly, adult density (g) was calculated by dividing the number of reproductive adults

at the BCI forest plot (∼ 86, 000) by its area (50 ha). This comprises disparate lifeforms, from

shrubs to canopy trees. There are fewer canopy trees than smaller plants, yet canopy trees

make up a considerable proportion of community DBH (diameter at 1.3 meters above ground;

Comita et al., 2007). Therefore, g may be inflated for larger organisms. Conversely, while

the calculation of g included only adults, density-dependent interactions occur at multiple

life history stages. The BCI plot contains approximately 210, 000 stems with DBH≥ 1cm

and many more smaller seedlings (Condit et al., 2019) which also contribute to conspecific

negative density effects (Comita et al., 2010; Zhu et al., 2015). These complications make g

difficult to confidently parameterize when modeling only adult-offspring interactions. Future

models should incorporate organism size structure and interactions between multiple plant

life history stages.

Assessing the importance of JCEs also requires a better characterization of distance and

density-dependent predation. A key factor to determine is the extent to which predation

is additive. This paper examines when predation pressure is either non-additive or linearly

additive, which represent two non-exhaustive baseline cases. Detto et al. (2019) found adult

density effects on seedling survival to be additive, but sub-linearly so. Empirical research

should emphasize measuring the precise functional form and theoretical studies should quan-

tify the impact of sub-linear density effects on species richness.
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2.5.4 Conclusion

Unraveling the importance of JCEs in species-rich communities remains a difficult empirical

and theoretical challenge. It is my hope that this paper will motivate more precise empirical

measurements of the functional form of specialized predation and motivate theoreticians to

more critically examine how modeling assumptions affect distance and density dependent

processes.
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Appendix A

Appendix A.1: Non-additive−Fixed-distance model SEM

and ODE approximation

Introduction

In this Appendix, I derive and analyze the non-additive−Fixed-distance (NF) model from

the main text. This Appendix is composed of three sections: (1) I introduce a spatially

explicit model (SEM) for the NF model. Then, I demonstrate that taking the expected

offspring abundances on each patch yields the Ordinary Differential Equation (ODE) model

discussed in the main text. (2) To asses the accuracy of the ODE approximation, I provide

outputs of the ODE model and the SEM model under identical parameterizations. I show

the outputs are highly similar, hence demonstrating that the ODE is a sufficiently accurate

approximation of the SEM. (3) I provide the derivation of the approximate invasion criteria

of the NF model.

SEM and derivation of ODE approximation

In this section, I assume the reader is generally familiar with the model discussed in the

main text. First, I discuss the SEM, briefly reviewing within-patch dynamics. Then, I show

the derivation of the ODE approximation.
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Spatially Explicit Model (SEM)

Using the methods similar to recent JCH-type models (Levi et al., 2019; Chisholm and Fung,

2020) I developed a spatially explicit model. The model depicts a community with M total

patches modeled as an L × L grid (L × L = L2 = M). A torus was used to avoid edge

effects. A single tree is present on every patch of the torus. At each time-step, each tree dies

with probability δ. Tree replacements occur via a lottery model determined by the relative

abundances of offspring of each species on each patch. As noted in the main text, offspring

abundances are defined by

Si,i(x) = Yi
[
(1−D) + piD

]
Ji,i(x)

Si,k(x) = YipiDJi,k(x)

Sall,i(x) =
N∑
n=1

Sn,i(x)

(2.11)

where SA,B(x) is the offspring abundance of species A on a patch occupied by species B at

location x, Ji,i(x) and Ji,k(x) are how JCEs affect offspring surivorship, pi is the proportion

of species i in the population, Yi is the intrinsic fitness of species i, and D is the dispersal

proportion. For the NF model, I consider when JCEs kill a fixed proportion of a species’

offspring on the nearest EF patches as defined by the Moore neighborhood surrounding the

patch. EF = 9 indicates a 3 × 3 Moore neighborhood, EF = 25 indicates a 5 × 5 Moore

neighborhood, and EF = 49 indicates a 7× 7 Moore neighborhood, etc. Then,

Ji,i(x) = e−ai

Ji,k(x) =


1, if i ̸∈ EF

e−ai , if i ∈ EF

(2.12)
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This yields the following offspring abundances:

Si,i(x) = Yi
[
(1−D) + piD

]
e−a

Si,k(x) =


YiDpi, if i ̸∈ EF

YiDpie
−a, if i ∈ EF

Sall,i(x) = Yi
[
(1−D) + piD

]
e−a +D

∑
k∈EF

Ykpke
−a +D

∑
j ̸∈EF

Yjpj

(2.13)

i ∈ EF is the condition that an adult of species i is within the Moore neighborhood around

a patch occupied by species k and i ̸∈ EF is the condition an adult is not within the Moore

neighborhood around a patch occupied by species k (k ̸= i). Noting that I use the notation

∈ EF rather than ∈ r, as I do in the main text. This is simply to emphasize that the

SEM uses a discrete lattice to model the area of effect, but these two notations can be used

interchangeably. EF = πr2g where g is tree density in individuals per square meters. To

examine parameterizations of the SEM in terms of r, values of r must be selected such that

they correspond to viable Moore neighborhood values (such that EF = πr2g = 9, 25, 49,

etc.).

Tree replacement is determined by a lottery model. Let PA,B(x) be the probability

species A colonizes a patch previously occupied by species B on patch x. Then, Pi,i(x) =

Si,i(x)/Sall,i)x) and Pi,k(x) = Si,k(x)/Sall,k(x).

Ordinary Differential Equation (ODE) Model

To derive the ODE model, I take approximations of the expected values of Pi,i(x) and Pi,k(x).

To do so, I take the expected abundance of Si,i(x), Si,k(x), and Sall,i(x) and then take their

quotients. Expectations are taken with respect to space. Using this, I derive the the ODE
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approximation
dpi
dt

= δ

[
E[Si,i(x)]
E[Sall,i(x)]

pi +
∑
k ̸=i

E[Si,k]
E[Sall,k(x)]

pk − pi

]
(2.14)

that captures the behavior of the SEM. See “Note” at the end of this Appendix for additional

information about the assumptions of this approximation.

The SEM incorporates JCEs based on the nearest EF neighbors of each patch that,

computationally, are stored in a matrix. In contrast, the deterministic ODE model is spatially

implicit. Therefore, it is necessary to use an approximation of the terms that does not

require spatial information. With this in mind, the quantity Si,k(x) must be approximated

as a spatially implicit term. I accomplish this by taking the expected offspring abundance

on each patch. Note that by the linearity of expectation,

E[Sall,i(x)] = E
[ N∑
n=1

Sn,i(x)

]

= E
[
Si,i(x) +

N∑
n ̸=i

Sn,i,x

]

= E[Si,i(x)] +
∑
n ̸=i

E
[
Sn,i(x)

]
(2.15)

Additionally, E[Si,i(x)] does not contain spatial information, as E[Si,i(x)] = E[Yi
[
(1−D) +

piD
]
e−a] = Yi

[
(1 − D) + piD

]
e−a. Therefore, it suffices to calculate the expectation of

Si,k(x), from which the other terms of interest (i.e. E[Sall,k(x)]) can be calculated.

The expected offspring abundance of species i on a given patch is equal to the number of

offspring it would have given it is not affected by JCEs multiplied the probability it does not

experience JCEs added to the number of offspring it would have given it experiences JCEs

multiplied the probability it does experience JCEs:

E[Si,k(x)] = P[i ̸∈ EF ]× S
i̸∈EF
i,k (x) + P[i ∈ EF ]× S

i∈EF
i,k (x) (2.16)
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Here, I again define EF . As noted in the main text, if the neighborhood is of radius r

meters and trees are of density g individuals per square meter, there will be on average gπr2

individuals within the neighborhood defined by r. Therefore, EF = gπr2.

The calculation of E[Si,k(x)] is as follows. Consider a single patch occupied by species k.

It is necessary to calculate the probability an adult of species i is within EF . Recall pi be

the proportion of species i in the population. Assuming species are approximately randomly

distributed, the probability that a conspecific is within the radius r of a random patch can be

captured with a 2D Poisson process (i.e. a spatial Poisson process) with a rate parameter of

λ = pig. The waiting time of first event of a 2D Poisson process is exponentially distributed

such that

P[i ̸∈ EF ] = e−λA (2.17)

where A is the area of the circle of radius r stemming from the focal patch. Therefore

A = πr2 and λA = pigπr
2 such that

P[i ̸∈ EF ] = e−pigπr
2

P[i ∈ EF ] = 1− e−pigπr
2

(2.18)

Additionally, as defined by equation (A.3), S i̸∈EF
i,k (x) = YipiD and S

i∈EF
i,k (x) = YipiDe−a.

Letting gπr2 = EF and using the above probabilities, the expected offspring value of Si,k(x)

is:

E[Si,k(x)] = P[i ̸∈ EF ]× S
i ̸∈EF
i,k (x) + P[i ∈ EF ]× S

i∈EF
i,k (x)

= YipiD
[
e−piEF + e−a(1− e−piEF )

] (2.19)
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Plugging this value into the offspring abundance terms yields

E[Si,i(x)] = Yi
[
(1−D) + piD

]
e−a

E[Si,k(x)] = YipiD
[
e−piEF + e−a(1− e−piEF )

] (2.20)

noting that Sall,i(x) =
∑N

n=1 Sn,i(x). These equations are identical to the offspring abun-

dance equations for the NF model in the main text.

Comparison between ODE model and SEM

In this section, I describe simulations that compare the ODE model to the SEM. Results

show that the SEM and ODE models yield highly similar outputs of species abundance and

species richness.

ODE and SEM parameterization

Each SEM simulation began with 300 species at equal abundance, with individuals randomly

distributed throughout the community. Simulations were conducted on a 275 × 275 torus

(thus containing 2752 individual trees). I use the following parameters: Y ∼ lognormal[µ =

0, σY ] with σY ∼ {0.1, 0.45, 0.8} and a ∼ {0.5, 1.0, 2.75, 4.5}. In all simulations, D = 1. I

tested each of the 12 parameter combinations of σY and a with EF = 9, 25, 49, 81, and 121.

This corresponds to examining a range of r approximately between 4 and 14 (assuming g =

0.2). This generated 60 outputs. Simulations were run for about 75 generations, sufficient

time for the community to approximately reach equilibrium without drift dominating the

dynamics of the lower abundance species. However, it was noticed that the cases in which

σY = 0.1 had longer transient dynamics. These were run for 150 generation instead. See

Figs. 2.11-2.13 for examples of the transient dynamics.

I then ran a set of ODE simulations using the same parameterizations as the SEM. I

compared the outputs of the SEM and ODE model in terms of species diversity, species
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abundance, and Shannon diversity. I considered a species to be extinct if it had less than 1

individual at any point of the simulation. This was implemented directly in the SEM; for the

ODE model, I assumed a species, i, to be extinct if p∗i < 1/2752 where p∗i is the equilibrium

proportion of species i. Note that these simulations do not attempt to demonstrate the

long-term resistance against extinction due to drift. Rather, they demonstrate that the

ODE model and SEM yield similar outputs of expected species abundance and richness

given the same parameterization.

Results of comparison

The ODE model and SEM yielded very similar results in species richness and Shannon

diversity (Figs. 2.6, 2.7). The ODE model and SEM also produced very similar species

proportions (Figs. 2.8-2.10). To quantify the quality of the approximation, I calculated the

mean difference in species richness between the ODE model and SEM, ∆R:

∆R =
1

S

S∑
k=1

(Rk
SEM −Rk

ODE) (2.21)

where S is the number of simulations, and Rk
SEM and Rk

ODE are the species diversity of the

kth simulation of the SEM and ODE model, respectively. I also examined the r2 (coefficient

of determination) between SEM and ODE diversity. For the comparisons, ∆R = 1.6 and

r2 = 0.987. Overall, the ODE provides a highly similar, albeit non-exact, estimation of

species diversity. Cases in which the ODE model predicted lower species richness are likely

due to incomplete transient dynamics of the SEM.

Derivation of invasion criteria

In this section, I derive the approximate invasion criteria of the fixed neighborhood effect

model when species experience inter-specific variation in intrinsic (Y ) and D = 1. The
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invasion criteria of an invader can be expressed as when the per capita growth rate as

pi → 0. Letting

E[Jk,i(x)] = e−pkEF + e−a(1− e−pkEF ) (2.22)

The per capita growth rate of species i, substituting in the offspring abundance values, is

1

pi

dpi
dt

= ri = δ

[
Yi
[
(1−D) + piD

]
e−a

Yi
[
(1−D) + piD

]
e−a +

∑
k ̸=i YkpkDE[Jk,i(x)]

+ YiD
∑
m̸=i

1

Yme−a
[
(1−D) + pmD

]
+
∑

k ̸=m YkpkDE[Jk,m(x)]
pm − 1

] (2.23)

Species i can invade is this quantity if positive when it is rare (pi → 0). When D = 1 (the

case of interest), the above reduces to

Yi
∑
m̸=i

pm
Yme−apm +

∑
k ̸=m Ykpk E[Jk,m(x)]

> 1 (2.24)

To simplify the above equation, I ignore the term Yme−apm in the denominator and incor-

porate an additional term the summation, yielding:

Yi
∑
m̸=i

pm∑
k ̸=i Ykpk E[Jk,i(x)]

> 1 (2.25)

This simplification is equivalent to making the species identity of the tree previously occu-

pying a patch (the tree that dies) irrelevant (i.e., JCEs only result from trees nearby the

patch rather than the previous occupant of the patch). As long as neighborhood effects are

somewhat strong – that is, so long as EF is not very small – this assumption should not

meaningfully affect the invasion criteria.

Importantly, the denominator of Equation (2.25) is no longer directly dependent on m.
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That is, Equation (2.25) can be rewritten as

Yi

(∑
m ̸=i

pm

)(
1∑

k ̸=i Ykpk E[Jk,i(x)]

)
> 1 (2.26)

Because, by definition,
∑

m̸=i pm = 1, the above equation can be rewritten as

Yi >
∑
k ̸=i

Ykpk E[Jk,i(x)] (2.27)

Substituting the appropriate value for E[Jk,i(x)], the invasion criteria becomes

Yi >
∑
k ̸=i

Ykpk
(
1− (1− e−a)(1− e−pkEF )

)
(2.28)

noting that the above equation has been slightly rearranged, but is the same as equation

(2.22). I then take the linearization of pk

(
1− (1−e−a)(1−e−pkEF )

)
around the point 1/N

where N is the number of species in the resident community yields a close approximation of

the expression so long as variation in pk does not span values much greater than 1/N (mean

community abundance). Then,

pk

(
1− (1− e−a)(1− e−pkEF )

)
≈ 1

N

(
1− (1− e−a)

(
1− e−

EF
N
))

+(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)(
pk −

1

N

)
(2.29)

Substituting this into the equation, the summation (the right hand side of the invasion
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criteria) can be rearranged and broken into two into three summations:

1

N

(
1− (1− e−a)

(
1− e−

EF
N
))∑

k ̸=i

Yk +

(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)∑
k ̸=i

Ykpk−(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)
1

N

∑
k ̸=i

Yk

(2.30)

The first and third summations are trivial to evaluate:

1

N

(
1− (1− e−a)

(
1− e−

EF
N
))∑

k ̸=i

Yk =

(
1− (1− e−a)

(
1− e−

EF
N
))

Y (2.31)

and

(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)
1

N

∑
k ̸=i

Yk =

(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)
Y

(2.32)

where Y is the mean fitness of the resident community.

The second summation can be evaluated by using the property

1

N

N∑
m=1

AmBm = A×B + Cov(A,B) (2.33)

I apply this property with respect to p and Y , noting that p = 1
N . Using this property and

substituting A and B with p and Y . Doing this yields:

(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)∑
k ̸=i

Ykpk

=

(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)[
Y +N Cov(p, Y )

] (2.34)

noting that p = 1/N .
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Adding all three sums together, equation (2.32) and the Y term from equation (2.34) will

cancel. Then, after some rearranging, the invasion criteria becomes

Yi > Y

(
1−

(
1− e−a)(1− e

−EF
N
))

︸ ︷︷ ︸
mean

JCE-fitness term

+NCov(p, Y )

(
e−

EF
N
(
1− e−a)(1− EF

N

)
+ e−a

)
︸ ︷︷ ︸

covariance-JCE term

(2.35)

which is the same as the corresponding equation in Table 2.1 of the main text.

Note on ODE approximation

To derive the ODE model, I took approximations of the expected values of Pi,i(x) and Pi,k(x).

To do so, I took the expected abundance of Si,i(x), Si,k(x), and Sall,i(x) with respect to

space and then examined their quotients. Note that this assumes E[Si,k(x)/Sall,i(x)] ≈

E[Si,k(x)]/E[Sall,k(x)] (I take the expectation of the numerator and denominator and then

take the quotient). Using a Taylor Expansion about the mean,

E
[
Si,k(x)

Sall,i(x)

]
≈

E[Si,k(x)]
E[Sall,k(x)]

−
Cov

(
Si,k(x), Sall,k(x)

)
E[Sall,k(x)]2

+ Var
(
Sall,k(x)

) E[Si,k(x)]
E[Sall,i(x)]3

Because there are many species in the community, Sall,i(x) >> Si,k(x). This implies that

the covariance term and the term containing E[Sall,i(x)]3 are close to zero. Additionally,

Var
(
Sall,i(x)

)
is likely small because it is assumed that dispersal is uniform across the com-

munity. Therefore, E[Si,k(x)/Sall,i(x)] ≈ E[Si,k(x)]/E[Sall,k(x)] is likely a good approxi-

mation. I rely on the quantitative similarity of the SEM and ODE model to validate this

assumption.
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Figure 2.6: ODE model validation. The figures compare species richness between SEM and
ODE model simulations under identical parameterizations. The dashed line is the one-to-one
line (points on the line represent when the SEM and ODE yield the exact same diversity
output). Red points are when EF = 9, orange/yellow points are when EF = 25, purple
points are when EF = 49, green points are when EF = 81, and blue points are when
EF = 121. To a first approximation, the ODE model yields the same output as the SEM.
These parameter values span the most of the parameter space explored in Figs. 2.2 and 2.3
of the main text.
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Figure 2.7: The same as the fig. 2.6, but showing Shannon Diversity instead of species
richness. As in the above case, the SEM and ODE model yield very similar outputs.
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Figure 2.8: Comparisons between identical parameterizations of the ODE approximation
(black) and SEM (blue) outputs under twelve parameter values when species vary in intrinsic
fitness (Y ). The y-axis depicts the log-proportion of each species and the x-axis depicts Y
of each species. In all plots, EF = 9, and D = 1.0. Other relevant parameters are listed on
each plot.
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Figure 2.9: The same format as fig. 2.8, but with EF = 25.

46



L
o

g
Sp

ec
ie

s
P

ro
p

o
rt

io
n

Y (Intrinsic Fitness)

Figure 2.10: The same format as fig. 2.8, but with EF = 49.
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Figure 2.11: Examples of the SEM simulation time series outputs, species richness over
time in the simulations, and Shannon diversity over time in the simulations. The top row
shows examples of the time series outputs of the SEMs. The x-axis is time and the y-
axis is each species’ proportion. Proportions have been square-root transformed to aid
visualization. Colored trajectories indicate species that persisted throughout the simulation;
grey trajectories indicate species that went extinct. Parameters are listed on each plot.
Dynamics as shown are typical examples from the SEMs. Most species settle into a relatively
stable pseudo-equilibrium, while lower abundance species fluctuate due to drift. The second
row shows the number of persisting species in the community as a function of time. Each
panel corresponds to the plot above it. Most species that go extinct do so in the early
stages of the dynamics. Therefore, the vast majority of persisting species likely persist
deterministically. The dashed red line is the diversity maintained by the ODE under the
same parameterization. All SEMs saturate, approximately, to the dashed line. The third
row is the same as the second row, except it shows Shannon diversity instead of species
richness.
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Figure 2.12: The same format as fig. 2.11, but with EF = 25.
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Figure 2.13: The same format as fig. 2.11, but with EF = 49.
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Appendix A.2: Additive−Fixed-distance model SEM and

ODE approximation

Introduction

In this Appendix, I analyze the Additive−Fixed-distance (AF) model presented in the main

text. This Appendix is composed of three main subsections: (1) I introduce a spatially

explicit model (SEM) of the AF model. I then demonstrate that taking the expected offspring

abundances on each patch yields the ODE model discussed in the main text. (2) I provide

outputs of the ODE model and the SEM model under the same parameterizations. I show

the outputs are very similar, hence demonstrating that the ODE is a sufficiently accurate

approximation of the SEM. (3) I provide the derivation of the invasion criteria approximation

of the AF model.

SEM and derivation of ODE approximation

In this subsection, I discuss the SEM, briefly reviewing within-patch dynamics from the

main text. Then, I show the derivation of the ODE approximation. I assume the reader is

generally familiar with the model discussed in the main text.

SEM

I developed a spatially explicit model (SEM) that integrates the AF model. The model

consists of a community on a grid of L × L patches (M total patches, M = L2) modeled

as a torus to avoid edge effects. A single tree is present on every space on the grid. At

each time step, each tree dies with probability δ and tree replacements occur via a lottery

model based on the relative abundance of offspring of each species on each patch. For the

AF model, predation pressure increases linearly as a function of local conspecific density and

occurs within a fixed area surrounding each tree (as decried in the main text). As noted in
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the main text, offspring abundances are defined by

Si,i(x) = Yi
[
(1−D) + pid

]
Ji,i(x)

Si,k(x) = YipiDJi,k(x)

Sall,i(x) =
N∑
n=1

Sn,i(x)

(2.36)

where SA,B(x) is the offspring abundance of species A on a patch occupied by species B at

location x, Ji,i(x) and Ji,k(x) are how JCEs affect offspring surivorship, pi is the proportion

of species i in the population, Yi is the intrinsic fitness of species i, and D is the dispersal

proportion. For AF model,

Ji,i(x) = exp
[
− a

(
1 +

∑
m∈r

1m(i)

)]
Ji,k(x) = exp

[
− a

∑
m∈r

1m(i)

] (2.37)

where 1k(i) is an indicator function for which

1m(i) =


1, if m = i

0, if m ̸= i

(2.38)

in which case, the predation pressure is equal to the sum of individuals found within the

effect area defined by r.

Offspring abundances are then determined by the following equations:
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Si,i(x) = Yi
[
(1−D) + piD

]
exp
[
− a

(
1 +

∑
m∈r

1m(i)

)]
Si,k(x) = YipiD exp

[
− a

∑
m∈r

1m(i)

]
Sall,i(x) = Yi

[
(1−D) +Dpi

]
exp
[
− a

(
1 +

∑
m∈r

1m(i)

)]
+
∑
k ̸=i

YkpkD exp
[
− a

∑
m∈r

1m(k)

]
(2.39)

For the discrete grid cells, it makes more sense to think about the number of grid-cells

that fall within r rather than r itself. Therefore, let EF represent the number of patches

that wall within an n × n Moore neighborhood around a focal tree (as would be contained

within r). Thus, EF = πr2g, where g is tree density in individuals per meters squared.

Notably, for the SEM, values of r must be selected such that they correspond to viable Moore

neighborhood values (such that EF = 9, 25, 49, etc.). Technically, this is not exactly the

same as the model described above (Moore neighborhoods are square rather than circular)

but is essentially mathematically identical.

The lottery is determined by the relative seedling abundances. Let PA,B(x) be the

probability species A colonizes a patch previously occupied by species B at location x.

Then, Pi,i(x) = Si,i(x)/Sall,i(x) and Pi,k = Si,k(x)/Sall,k(x).

ODE Model

To derive the ODE model, I take approximations of the expected values of Pi,i(x) and Pi,k(x).

To do so, I take the expected abundance of Si,i(x), Si,k(x), and Sall,i(x) and then take their

quotients. Expectations are taken with respect to space. Using this, I derive the the ODE

approximation
dpi
dt

= δ

[
E[Si,i(x)]
E[Sall,i(x)]

pi +
∑
k ̸=i

E[Si,k]
E[Sall,k(x)]

pk − pi

]
(2.40)
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that captures the behavior of the SEM. See “Note” at the end of this Appendix for additional

information about the assumptions of this approximation.

The additive predation function in the SEM is implemented spatially explicitly – the

location of trees are, computationally, is stored in a matrix. The deterministic ODE model

is implicit. Therefore, it is necessary to use an approximation of the terms that does not

require spatial information. In particular, the quantity Si,k(x)/Sall,k,x, which contains the

term

E[Si,k(x)] = exp
[
− a

∑
m∈r

1m(i)

]
(2.41)

This quantity must be approximated as a spatially implicit term.

Consider a single patch occupied by species k. It is necessary to calculate the expected

predation experienced by species i given that the JCE effect radius is r. Recall that g is

the density of trees in square meters, r is the distance in meters from the local patch that

defines the effect area, and pi is the proportion of species i in the population. Assuming trees

are approximately randomly distributed, the number of trees of species i within r meters

of the focal patch can be described by with a Poisson distribution with a rate parameter

of λ = πgr2pi. Then, letting Xi be the number of individuals of species i within r, the

probability that there are m individuals of species i within radius r is

P[Xi = m] =
(πgr2pi)

m

m!
e−πgr2pi

Now, recalling that EF = πr2g and that offspring survival decreases exponentially with the

number of conspecific adults falling within r, the expectation can be calculated as follows:
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E[Si,k(x)] = E
[
exp
[
− a

Mpi∑
m=1

1m(i)

]]

=
∞∑

m=0

P(Xi = m)× [probability of survival given Xi = m]

=
∞∑

m=0

(EF pi)
m

m!
e−EF pie−a m

= e−EF pi
∞∑

m=0

(EF pie
−a)m

m!

= e−(1−e−a)piEF

(2.42)

Similarly,

E[Si,i(x)] = E
[
exp
[
− a

(
1 +

Mpi∑
m=1

1xim
(r)

)]]

= e−a
∞∑

m=0

P(Xi = m)× [probability of survival given Xi = m]

= e−a
∞∑

m=0

P(Xi = m)e−am

= e−ae−EF pi
∞∑

m=0

(EF pie
−a m)m

m!

= e−ae−(1−e−a)piEF

(2.43)

Plugging these values value into the appropriated post-JCE offspring abundance terms yields

E[Si,i(x)] = Yi
[
(1− d) + dpi

]
e−ae−(1−e−a)piEF

E[Si,k(x)] = Yidpie
−(1−e−a)piEF

(2.44)

also noting that Sall,i(x) =
∑N

n=1 Sn,i(x). This is identical to the relevant expression for

the AF model in the main text.
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Comparison between ODE model and SEM

In this subsection, I describe simulations that compare the ODE model to the SEM. I

demonstrate that the SEM and ODE model highly similar species abundance and species

richness outputs.

ODE and SEM parameterization

Each SEM simulation began with 300 species at equal abundance, with individuals randomly

distributed throughout the community. Simulations were conducted on a 275 × 275 torus

(thus containing 2752 individual trees). I use the following parameters: Y ∼ lognormal[µ =

0, σY ] with σY ∼ {0.1, 0.45, 0.8} and a ∼ {0.5, 1.0, 2.75, 4.5}. In all simulations, D = 1.

I tested each of the 12 parameter combinations with EF = 9, 25, 49, 81, and 121. This

corresponds to examining a range of r between 3.8 and 14 (assuming g = 0.2). This generated

60 outputs. Simulations were run for about 75 generations, sufficient time for the community

to approximately reach equilibrium without drift dominating the dynamics of the lower

abundance species. However, it was noticed that the cases in which σY = 0.1 had longer

transient times. These were run for 150 generation instead. See Figs. 2.19-2.21 for examples

of the transient dynamics.

I then ran a set of ODE simulations using the same parameterizations as the SEM. I

compared the outputs of the SEM and ODE model in terms of species diversity, species

abundance, and Shannon diversity. I considered a species to be extinct if it had less than 1

individual at any point of the simulation. This was implemented directly in the SEM; for the

ODE model, I assumed a species, i, to be extinct if p∗i < 1/2752 where p∗i is the equilibrium

proportion of species i. Note that these simulations do not attempt to demonstrate the

long-term resistance against extinction due to drift. Rather, they demonstrate that the ODE

model and SEM yield similar outputs of expected species abundance and species richness

given the same parameterization.
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Results of comparison

ODE model and SEM produced very similar species richness and Shannon diversity (Figs.

2.17, 2.18). The ODE model and SEM also produced very similar species proportions (Figs.

2.16-2.18). To quantify the quality of the approximation, I calculated the mean difference in

species richness between the ODE model and SEM, ∆R:

∆R =
1

S

S∑
k=1

(Rk
SEM −Rk

ODE) (2.45)

where S is the number of simulations, and Rk
SEM and Rk

ODE are the species richness of the

kth simulation of the SEM and ODE model, respectively. I also examined the r2 (coefficient

of determination) between SEM and ODE richness. For the comparisons, ∆R = 2.1 and

r2 = 0.985. Overall, the ODE provides a highly similar, albeit non-exact, estimation of

species diversity. Error in which the ODE model predicted greater diversity than the SEM is

most likely due to stochastic extinction due to drift. This is particularly likely when diversity

is high, where the expected abundance of each species is correspondingly smaller. Cases in

which the ODE model predicted lower species richness are likely due to incomplete transient

dynamics of the SEM.

Derivation of invasion criteria

In this subsection, I derive the approximate invasion criteria of the additive−fixed-distance

model when species experience inter-specific variation in intrinsic (Y ) and D = 1. The

invasion criteria of an invader can be expressed as when the per capita growth rate as

pi → 0. Recalling that

E[Jk,i(x)] = e−(1−e−a)piEF (2.46)
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and

E[Ji,i(x)] = e−ae−(1−e−a)piEF (2.47)

and using variables previous defined in this appendix, the per capita growth rate of species

i (substituting in the seedling abundance values) is

1

pi

dpi
dt

= ri = δ

[
Yi
[
(1−D) + piD

]
Yi
[
(1−D) + piD

]
E[Ji,i(x)] +

∑
k ̸=i YkpkDE[Jk,i(x)]

+ YiD
∑
m̸=i

1

Ym
[
(1−D) + pmD

]
E[Jm,m(x)] +

∑
k ̸=m YkpkDE[Jk,m(x)]

pm − 1

]
(2.48)

Species i can invade is this quantity if positive when it is rare (pi → 0). When D = 1 (the

case of interest), the above reduces to

Yi
∑
m ̸=i

pm
Ym E[Jm,m(x)]pm +

∑
k ̸=m Ykpk E[Jk,m(x)]

> 1 (2.49)

To simplify the above equation, I ignore the term Ym E[Jm,m(x)]pm in the denominator and

incorporate an additional term representing species m into the summation, yielding:

Yi
∑
m̸=i

pm∑
k ̸=i Ykpk E[Jk,i(x)]

> 1 (2.50)

This simplification is equivalent to making the species identity of the tree previously occu-

pying a patch (the tree that dies) irrelevant (i.e., JCEs only result from trees nearby the

patch rather than the previous occupant of the patch). As long as neighborhood effects

are somewhat strong – that is, so long as EF is not very small – this assumption does not

meaningfully affect the invasion criteria.

With this simplification, the denominator of equation (2.50) is no longer directly depen-
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dent on m. That is, equation (2.50) can be rewritten as

Yi

(∑
m ̸=i

pm

)(
1∑

k ̸=i Ykpk E[Jk,i(x)]

)
> 1 (2.51)

Because, by definition,
∑

m̸=i pm = 1, the above equation can be rewritten as

Yi >
∑
k ̸=i

Ykpk E[Jk,i(x)] (2.52)

Substituting the appropriate value for E[Jk,i(x)], the invasion criteria becomes

Yi >
∑
k ̸=i

Ykpke
−(1−e−a)pkEF (2.53)

recalling that EF = πr2g. I take the linearization of pke−(1−e−a)pkEF about the point 1/N

where N is the number of species in the resident community (and thus, 1/N is the average

abundance). This yields a close approximation of the expression so long as no species exhibits

an abundance much greater than the mean abundance. For simplicity, let

J = (1− e−a)EF (2.54)

Taking the linearization yields

pke
−Jpk ≈ e−

J
N

N
+

e−
J
N

(
pk − 1

N

)
N

(
1− J

N

)
(2.55)

Substituting this into the original expression, the summation can be rearranged and broken

up into three parts:

e−
J
N

1

N

∑
k ̸=i

Yk + e−
J
N

(
1− J

N

)∑
k ̸=i

Ykpk − e−
J
N

(
1− J

N

)
1

N

∑
k ̸=i

Yk (2.56)
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The first summation is straightforward to calculate:

e−
J
N

1

N

∑
k ̸=i

Yk = e−
J
N Y (2.57)

where Y is the mean intrinsic fitness of the community.

The second term can be expressed by using the property

1

N

N∑
m=1

AmBm = A×B + Cov(A,B) (2.58)

I apply this property with respect to p and Y , noting that p = 1
N . Using this property and

substituting A and B with p and Y for the first and second summations yields

e−
J
N

(
1− J

N

)∑
k ̸=i

pkYk = e−
J
N

(
1− J

N

)
N

1

N

∑
k ̸=i

pkYk

= e−
J
N

(
1− J

N

)
N

[
Y

1

N
+ Cov(p, Y )

]
= e−

J
N

(
1− J

N

)[
Y +N Cov(p, Y )

] (2.59)

The third summation is easy to calculate:

−e−
J
N

(
1− J

N

)
1

N

∑
k ̸=i

Yk = −e−
J
N

(
1− J

N

)
Y (2.60)

Adding all three summations together, the third summation term will cancel with the Y

term of the second summation. Then, after some rearranging, I substitute J = (1− e−a)EF

back into the equation. This yields:

Yi > Y e−
(
1−e−a

)EF
N︸ ︷︷ ︸

mean
JCE-fitness term

+NCov(p, Y )

(
1−

(
1− e−a)EF

N

)
e−
(
1−e−a

)EF
N︸ ︷︷ ︸

covariance-JCE term

(2.61)
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which is the same as the expression given for the AF model in Table 2.1 of the main text.

Note on ODE approximation

To derive the ODE model, I took approximations of the expected values of Pi,i(x) and Pi,k(x).

To do so, I took the expected abundance of Si,i(x), Si,k(x), and Sall,i(x) with respect to

space and then examined their quotients. Note that this assumes E[Si,k(x)/Sall,i(x)] ≈

E[Si,k(x)]/E[Sall,k(x)] (I take the expectation of the numerator and denominator and then

take the quotient). Using a Taylor Expansion about the mean,

E
[
Si,k(x)

Sall,i(x)

]
≈

E[Si,k(x)]
E[Sall,k(x)]

−
Cov

(
Si,k(x), Sall,k(x)

)
E[Sall,k(x)]2

+ Var
(
Sall,k(x)

) E[Si,k(x)]
E[Sall,i(x)]3

Because there are many species in the community, Sall,i(x) >> Si,k(x). This implies that

the covariance term and the term containing E[Sall,i(x)]3 are close to zero. Additionally,

Var
(
Sall,i(x)

)
is likely small because it is assumed that dispersal is uniform across the com-

munity. Therefore, E[Si,k(x)/Sall,i(x)] ≈ E[Si,k(x)]/E[Sall,k(x)] is likely a good approxi-

mation. I rely on the quantitative similarity of the SEM and ODE model to validate this

assumption.
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Figure 2.14: ODE model validation. The figures compare species richness between SEM and
ODE model simulations under identical parameterizations. The dashed line is the one-to-one
line (points on the line represent when the SEM and ODE yield the exact same diversity
output). Red points are when EF = 9, orange/yellow points are when EF = 25, purple
points are when EF = 49, green points are when EF = 81, and blue points are when
EF = 121. To a first approximation, the ODE model yields the same output as the SEM.
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Figure 2.15: The same as the fig. 2.14, but showing Shannon Diversity instead of species
richness. As in the above case, the SEM and ODE model yield very similar outputs.
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Figure 2.16: Comparisons between identical parameterizations of the ODE approximation
(black) and SEM (blue) outputs under nine parameter values when species vary in intrinsic
fitness (Y ). They-axis depicts the log-proportion of each species and the x-axis depicts Y of
each species. These parameter values span the most of the parameter space explored in Fig.
4 of the main text. In all plots, EF = 9, g = 0.2, and D = 1.0. Other relevant parameters
are listed on each plot.
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Figure 2.17: The same format as fig. 2.16, but with EF = 25.
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Figure 2.18: The same format as fig. 2.16, but with EF = 49.
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Figure 2.19: Examples of the SEM simulation time series outputs, species richness over
time in the simulations, and Shannon diversity over time in the simulations. The top row
shows examples of the time series outputs of the SEMs. The x-axis is time and the y-
axis is each species’ proportion. Proportions have been square-root transformed to aid
visualization. Colored trajectories indicate species that persisted throughout the simulation;
grey trajectories indicate species that went extinct. Parameters are listed on each plot.
Dynamics as shown are typical examples from the SEMs. Most species settle into a relatively
stable pseudo-equilibrium, while lower abundance species fluctuate due to drift. The second
row shows the number of persisting species in the community as a function of time. Each
panel corresponds to the plot above it. Most species that go extinct do so in the early
stages of the dynamics. Therefore, the vast majority of persisting species likely persist
deterministically. The dashed red line is the diversity maintained by the ODE under the
same parameterization. All SEMs saturate, approximately, to the dashed line. The third
row is the same as the second row, except it shows Shannon diversity instead of species
richness.
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Figure 2.20: The same as fig. 2.19, but with EF = 25.
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Figure 2.21: The same as fig. 2.19, but with EF = 49.
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Appendix A.3: Non-additive−Distance-decay SEM and

ODE approximation

Introduction

In this Appendix, I analyze the Non-additive−Distance-decay (ND) model presented in the

main text. This Appendix is composed of three main subsections: (1) I introduce a spatially

explicit model (SEM) of the ND model. I then demonstrate that taking the expected offspring

abundances on each patch yields the ODE model discussed in the main text. (2) I provide

outputs of the ODE model and the SEM model under the same parameterizations. I show

the outputs are very similar, hence demonstrating that the ODE is a sufficiently accurate

approximation of the SEM. (3) I provide the derivation of the approximate invasion criteria

of the ND model (Table 2.1 in the main text). The structure of this Appendix is identical

to that of Appendices A and B.

Spatially Explicit Model and derivation of ODE approximation

In this subsection, I discuss the SEM, briefly review within-patch dynamics from the main

text, and show the derivation of the ODE approximation. I assume the reader is familiar

with the general model discussed in the main text.

SEM

I developed a spatially explicit model that integrates the non-additive−distance-decay func-

tional form. The model consists of a community on a grid of L×L patches (M total patches,

M = L2) modeled as a torus to avoid edge effects. A single tree is present on every space on

the grid. At each time-step, each tree dies with probability δ and tree replacement occurs

via a lottery based on offspring abundances on each patch. The ND model assumes that

predation pressure is non-additive and that predation pressure declines exponentially with
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distance. As noted in the main text, offspring abundances on each patch type are equal to

Si,i(x) = Yi
[
(1−D) + piD

]
Ji,i(x)

Si,k(x) = YipiDJi,k(x)

Sall,i(x) =
N∑
n=1

Sn,i(x)

(2.62)

where SA,B(x) is the offspring abundance of species A on a patch occupied by species B at

location x, Ji,i(x) and Ji,k(x) are how JCEs affect offspring surivorship, pi is the proportion

of species i in the population, Yi is the intrinsic fitness of species i, and D is the dispersal

proportion. For the ND model:

Ji,i(x) = exp
[
− a
]

Ji,k(x) = exp
[
− ae−min(xi)/v

] (2.63)

where min(xi) is distance between the focal patch and the closest individual of species i.

Offspring abundances are determined by the following equations:

Si,i(x) = Yi
[
(1−D) + piD

]
e−a

Si,k(x) = YipiD exp
[
− ae−min(xi)/v

]
Sall,i(x) = Yi

[
(1−D) + piD

]
e−a +D

∑
k ̸=i

Ykpk exp
[
− ae−min(xk)/v

] (2.64)

where SA,B(x) is the offspring abundance of species A on a patch occupied by species B

at location x. v defines rate at which predataion declines with distance (higher v indicates

a lower rate of predation decay). The lottery is determined by the relative abundance of

offspring. Let PA,B(x) be the probability species A colonizes a patch previously occupied

by species B at location x. Then, Pi,i(x) = Si,i(x)/Sall,i(x) and Pi,k(x) = Si,k(x)/Sall,k(x).
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For the SEM, patch-specific JCEs are determined by the euclidean distance between patches.

Distances are calculated between the center points of each patch and it is assumed offspring

are at the center of each patch.

ODE Model

To derive the ODE model, I take approximations of the expected values of Pi,i(x) and Pi,k(x).

To do so, I take the expected abundance of Si,i(x), Si,k(x), and Sall,i(x) and then take their

quotients. Expectations are taken with respect to space. Using this, I derive the the ODE

approximation
dpi
dt

= δ

[
E[Si,i(x)]
E[Sall,i(x)]

pi +
∑
k ̸=i

E[Si,k]
E[Sall,k(x)]

pk − pi

]
(2.65)

that captures the behavior of the SEM. See “Note” at the end of this Appendix for additional

information about the assumptions of this approximation.

JCEs in the SEM are implemented using the spatial proximity of trees that, computa-

tionally, is stored in a matrix. The deterministic ODE model is spatially implicit. Therefore,

it is necessary to use an approximation of the terms that do not require spatial information.

In particular, the quantity Si,k(x), which contains the term

exp
[
− ae−min(xi)/v

]
(2.66)

must be approximated as a spatially implicit term. To do so, I approximate the expected

survival of each species’ offspring on a random patch by evaluating

E
[
exp
[
− ae−min(xi)/v

]]
.

To evaluate this quantity, I use a Taylor Expansion to evaluate the first moment approx-
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imation the function of f(X) = exp
[
− ae−X/v

]
. The approximation is defined by:

E[f(X)] ≈ f(E[X]) +
1

2
f ′′(E[X])E

[
(X − E[X])2

]
= f(E[X]) +

1

2
f ′′(E[X])σ2X

(2.67)

where X is the a random variable of the nearest neighbor distribution in space (i.e. the

probability distribution of min(xi)) and σ2X is the variance of X. Assuming individuals

are approximately randomly distributed in space, X follows a Rayleigh distribution with

probability distribution function fX = 2πgpixe
−gpiπx

2
where x represents radial distance

from a point in 2D space (Clark and Evans, 1954). Relevant to the approximation,

E[X] =
1

2
√
pig

σ2X =

(
1− π

4

)
1

πgpi

(2.68)

for the Rayleigh distribution. In addition,

f ′′(X) =
1

v2
ae−ae−

X
v
e−

X
v

(
ae−

X
v − 1

)
(2.69)

Putting it all together and doing some rearranging yields

E[f(X)] ≈ e−ae
−
√ π

2EDpi

(
1 + ae

−
√

π
2EDpi

(
ae

−
√

π
2EDpi − 1

)(
1− π

4

) 1

piED

)
(2.70)

where

ED = 2πgv2
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Plugged into the appropriate offspring abundance equations, the approximation yields

E[Si,i(x)] = Yi
[
(1−D) + piD

]
e−a

E[Si,k(x)] = YiDpie
−ae

−
√ π

2EDpi

(
1 + ae

−
√

π
2EDpi

(
ae

−
√

π
2EDpi − 1

)(
1− π

4

) 1

piED

)
(2.71)

which are identical to the ND model offspring abundance expressions in the main text.

E[Sall,i(x)] =
∑N

n=1 E[Sn,i(x)].

Comparison between ODE model and SEM model

In this subsection, I describe simulations that compare the ODE model to the SEM. I

demonstrate that the SEM and ODE model yield highly similar outputs of species abundance

and species richness. I provide 36 comparisons of the SEM to the ODE (12 cases in which

v = 5, 12 cases in which v = 7.5, and 12 cases in which v = 10). Parameter values were

chosen to approximately encapsulate the range of parameters shown in the main text.

ODE and SEM parameterization

Each SEM simulation began with 300 species at equal abundance, with individuals randomly

distributed throughout the community. Simulations were conducted on a 275 × 275 torus

(thus containing 2752 individual trees). I used the following parameters: Y ∼ lognormal[µ =

0, σY ] with σY ∼ {0.1, 0.45, 0.8} and a ∼ {0.5, 1.0, 2.75, 4.5}. In all simulations, g = 0.20

and D = 1. I tested each of the 12 parameter combinations of σY and a with v ∼ {5, 7.5, 10}.

This generated 36 outputs. Simulations were run for about 65 generations, sufficient time for

the community to approximately reach equilibrium without drift dominating the dynamics

of the lower abundance species. See Figs. 2.27-2.29 for typical outputs of the SEM time

series dynamics.
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A corresponding set of 36 ODE simulations were run using the same parameterizations as

the SEM. I compared the outputs of the SEM and ODE model in terms of species diversity,

species abundance, and Shannon diversity. I considered a species to be extinct if it had less

than 1 individual at any point of the simulation. This was implemented directly in the SEM;

for the ODE model, I assumed a species, i, to be extinct if p∗i < 1/2752 where p∗i is the equi-

librium proportion of species i. Note that these simulations do not attempt to demonstrate

the long-term resistance against extinction due to drift. Rather, they demonstrate that the

ODE model and SEM yield similar outputs of expected species abundance and richness given

the same parameterization.

Results of comparison

ODE model and SEM produced very similar species richness and Shannon diversity (Figs.

2.22, 2.23). The ODE model and SEM also produced very similar species proportions (Figs.

2.24-2.26). To quantify the quality of the approximation, I calculated the mean difference in

species richness between the ODE model and SEM, ∆R:

∆R =
1

S

S∑
k=1

(Rk
SEM −Rk

ODE) (2.72)

where S is the number of simulations, and Rk
SEM and Rk

ODE are the species richness of the kth

simulation of the SEM and ODE model, respectively. I also examined the r2 (coefficient of

determination) between SEM and ODE species richness. For the comparisons, ∆R = −3.37

and r2 = 0.98. Overall, the ODE provides a highly similar, albeit non-exact, estimation of

species diversity. Error in which the ODE model predicted greater diversity than the SEM is

most likely due to stochastic extinction due to drift. This is particularly likely when diversity

is high, where the expected abundance of each species is correspondingly smaller. Cases in

which the ODE model predicted lower species richness are likely due to incomplete transient
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dynamics of the SEM.

Derivation of invasion criteria

In this subsection, I derive the approximate invasion criteria of the ND model when species

experience inter-specific variation in intrinsic fitness (Y ) with D = 1. Compared to the other

subsections, the algebra of this is quite messy. Therefore, I provide a brief description of the

steps. Interested readers can verify the abbreviated algebra or contact the author for details.

For simplicity, let

E[J(pi)] = e−ae
−
√ π

2EDpi

(
1 + ae

−
√

π
2EDpi

(
ae

−
√

π
2EDpi − 1

)(
1− π

4

) 1

piED

)

Then, the per capita growth rate of species i, substituting in the offspring abundance values,

is

1

pi

dpi
dt

= ri = δ

[
Yi
[
(1−D) + pid

]
e−a E[J(pi)]

Yi
[
(1−D) + piD

]
e−aJ(pi) +D

∑
k ̸=i Ykpk E[J(pk)]

+ YiD
∑
m̸=i

1

Ym
[
(1−D) + pmD

]
e−a E[J(pm)] +D

∑
k ̸=m Ykpk E[J(pk)]

pk − 1

]
(2.73)

Species i can invade is this quantity if positive when it is rare (pi → 0). When D = 1 (the

case of interest), the above reduces to

Yi
∑
m̸=i

1

Ympme−a +
∑

k ̸=m Ykpk E[J(pk)]
pm > 1 (2.74)
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To further simplify the above equation, I remove the term Ympme−a and substitute it with

Ympm E[J(pm)] in the denominator of the summation. Doing so yields

Yi
∑
m̸=i

pm∑
k ̸=i Ykpk E[J(pk)]

> 1 (2.75)

This simplification is equivalent to making the species identity of the tree previously occu-

pying a patch (the tree that dies) irrelevant (i.e., JCEs only result from trees nearby the

patch rather than the previous occupant of the patch). As long as predation occurs over a

non-trivial distance – that is, so long as v is not very small – this assumption should not

meaningfully affect the invasion criteria.

With this simplification, the denominator of equation (2.75) is no longer directly depen-

dent on m and equation (2.75) can be rewritten as

Yi

(∑
m̸=i

pm

)(
1∑

k ̸=i Ykpk E[J(pk)]

)
> 1 (2.76)

Because
∑

m ̸=i pm = 1, the inequality can be written as

Yi >
∑
k ̸=i

Ykpk E[J(pk)] (2.77)

I then take the linearization of pk E[J(pk)] around the point 1/N where N is the number of

species in the resident community yields a close approximation of the expression so long as

inter-specific variation in pk is not very large. This yields

pk E[J(pk)] ≈
1

N
J

(
1

N

)
+ J ′

(
1

N

)(
pk −

1

N

)
(2.78)

where J ′
(

1
N

)
is the derivative of E[J(pk)] with respect to pk at the point 1/N . Plugging
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this into the summation yields:

1

N
J

(
1

N

)∑
k ̸=i

Yk + J ′
(

1

N

)∑
k ̸=i

Ykpk − J ′
(

1

N

)
1

N

∑
k ̸=i

Yk (2.79)

The first and third summations in the above expression are easy to evaluate:

1

N
J

(
1

N

)∑
k ̸=i

Yk = J

(
1

N

)
Y (2.80)

and

−J ′
(

1

N

)
1

N

∑
k ̸=i

Yk = −J ′
(

1

N

)
Y (2.81)

where Y is the mean fitness of the resident community.

The second summation term, which contains a Ykpk term can be evaluated using the

property
1

N

N∑
m=1

AmBm = A×B + Cov(A,B) (2.82)

substituting A and B with p and Y . Ultimately, doing this procedure and rearranging terms

yields:

J ′
(

1

N

)∑
k ̸=i

Ykpk = J ′
(

1

N

)[
Y +NCov(p, Y )

]
(2.83)

noting that p = 1/N .

I then add all the summation terms together. Notably, the third summation term,

−J ′
(

1
N

)
Y , and the Y term from the second summation term, J ′

(
1
N

)
Y , will cancel. Af-

ter some algebra and substituting the correct values of J
(

1
N

)
and J ′

(
1
N

)
, the invasion

criterion can be expressed as
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Yi >Y e−ae
−
√

πN
2ED

(
1 + ae

−
√

πN
2ED

(
ae

−
√

πN
2ED − 1

)(
1− π

4

) N

ED

)
︸ ︷︷ ︸

mean JCE-fitness term

+NCov(p, Y )×

e−ae
−
√

πN
2ED

[
1−

(
1− π

4

)
a3N

√
πN
2ED

e
−3
√

πN
2ED

2ED
+

3
(
1− π

4

)
a2N

√
πN
2ED

e
−2
√

πN
2ED

2ED
−

a
√

πN
2ED

(
ED +

(
1− π

4

)
N
)
e
−
√

πN
2ED

2ED

]
︸ ︷︷ ︸

covariance-JCE term

(2.84)

which is identical to the expression in Table 2.1 in the main text with the covariance-JCE

term added.

Note on ODE approximation

To derive the ODE model, I took approximations of the expected values of Pi,i(x) and Pi,k(x).

To do so, I took the expected abundance of Si,i(x), Si,k(x), and Sall,i(x) with respect to

space and then examined their quotients. Note that this assumes E[Si,k(x)/Sall,i(x)] ≈

E[Si,k(x)]/E[Sall,k(x)] (I take the expectation of the numerator and denominator and then

take the quotient). Using a Taylor Expansion about the mean,

E
[
Si,k(x)

Sall,i(x)

]
≈

E[Si,k(x)]
E[Sall,k(x)]

−
Cov

(
Si,k(x), Sall,k(x)

)
E[Sall,k(x)]2

+ Var
(
Sall,k(x)

) E[Si,k(x)]
E[Sall,i(x)]3

Because there are many species in the community, Sall,i(x) >> Si,k(x). This implies that

the covariance term and the term containing E[Sall,i(x)]3 are close to zero. Additionally,

Var
(
Sall,i(x)

)
is likely small because it is assumed that dispersal is uniform across the com-

munity. Therefore, E[Si,k(x)/Sall,i(x)] ≈ E[Si,k(x)]/E[Sall,k(x)] is likely a good approxi-
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mation. I rely on the quantitative similarity of the SEM and ODE model to validate this

assumption.
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Figure 2.22: ODE model validation. The figure compares species richness between SEM and
ODE model simulations under identical parameterizations. The dashed line is the one-to-one
line (points on the line represent when the SEM and ODE yield the exact same diversity
output). Red points are when v = 5, orange/yellow points are when v = 7.5, and purple
points are when v = 10. To a first approximation, the ODE model yields the same output
as the SEM.
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Figure 2.23: The same as the fig. 2.22, but showing Shannon Diversity instead of species
richness. As in the above case, the SEM and ODE model yield very similar outputs.
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Figure 2.24: Comparisons between identical parameterizations of the ODE approximation
(black) and SEM (blue) outputs under twelve parameter values when species vary in intrinsic
fitness (Y ). The y-axis depicts the log-proportion of each species and the x-axis depicts Y
of each species. In all plots, v = 5, g = 0.2, and D = 1.0. Other relevant parameters are
listed on each plot.
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Figure 2.25: The same format as fig. 2.24, but with v = 7.5.
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Figure 2.26: The same format as fig. 2.24, but with v = 10.
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Figure 2.27: Examples of the SEM simulation time series outputs, species richness over
time in the simulations, and Shannon diversity over time in the simulations. The top row
shows examples of the time series outputs of the SEMs. The x-axis is time and the y-
axis is each species’ proportion. Proportions have been square-root transformed to aid
visualization. Colored trajectories indicate species that persisted throughout the simulation;
grey trajectories indicate species that went extinct. Parameters are listed on each plot.
Dynamics as shown are typical examples from the SEMs. Most species settle into a relatively
stable pseudo-equilibrium, while lower abundance species fluctuate due to drift. The second
row shows the number of persisting species in the community as a function of time. Each
panel corresponds to the plot above it. Most species that go extinct do so in the early
stages of the dynamics. Therefore, the vast majority of persisting species likely persist
deterministically. The dashed red line is the diversity maintained by the ODE under the
same parameterization. All SEMs saturate, approximately, to the dashed line. The third
row is the same as the second row, except it shows Shannon diversity instead of species
richness.
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Figure 2.28: The same as fig. 2.27, but with v = 7.5.
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Figure 2.29: The same as fig. 2.27, but with v = 10.
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Appendix A.4: Additive−Distance-decay model SEM and

ODE approximation

Introduction

In this Appendix, I analyze the additive−distance-decay (AD) model presented in the main

text. This Appendix is composed of three main subsections: (1) I introduce a spatially ex-

plicit model (SEM) for the AD model. I then demonstrate that taking the expected offspring

abundances on each patch yields the Ordinary Differential Equation (ODE) model discussed

in the main text. (2) I provide outputs of the ODE model and the SEM model under the

same parameterizations. I show the outputs are very similar, hence demonstrating that the

ODE is a sufficiently accurate approximation of the SEM. (3) I provide the derivation of the

approximate invasion criteria for the AD model (Table 2.1 in the main text). The structure

of this appendix is identical to that of appendices A-C.

Spatially Explicit Model and derivation of ODE approximation

In this subsection, I discuss the SEM, briefly reviewing within-patch dynamics from the

main text. Then, I show the derivation of the ODE approximation. I assume the reader is

generally familiar with the model discussed in the main text.

Spatially Explicit Model

I developed a Spatially Explicit Model (SEM) that incorporates additive predation pressure

that decays with distance. The model consists of a community on a grid of L × L patches

(M total patches, M = L2) modeled as a torus to avoid edge effects. A single tree is present

on every patch on the grid. At each time step, each tree dies with probability δ and tree

replacement occur via a lottery based on seedling abundances on each patch. I assume

predation pressure increases linearly as a function of conspecific density and that predation
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induced by conspecific adults on a patch decreases exponentially with distance. As noted in

the main text, offspring abundances are defined by

Si,i(x) = Yi
[
(1−D) + piD

]
Ji,i(x)

Si,k(x) = YipiDJi,k(x)

Sall,i(x) =
N∑
n=1

Sn,i,x

(2.85)

where SA,B(x) is the offspring abundance of species A on a patch occupied by species B at

location x, Ji,i(x) and Ji,k(x) are how JCEs affect offspring surivorship, pi is the proportion

of species i in the population, Yi is the intrinsic fitness of species i, and D is the dispersal

proportion. For the AD model:

Ji,i(x) = exp
[
− a

(
1 +

Mpi∑
m=1

e−xi,m/v
)]

Ji,k(x) = exp
[
− a

Mpi∑
m=1

e−xi,m/v
] (2.86)

Mpi is the total number of individuals of species i in the community and xi,m is the distance

between the mth closest individual of species i and the focal patch at location x. Ji,i(x)

contains the +1 term because the focal patch contains an individual of species i. v defines

rate at which predataion declines with distance (higher v indicates a lower rate of predation

decay) and a is the baseline rate of predation pressure. Offspring abundances are then

determined by the following equations:
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Si,i(x) = Yi
[
(1−D) + piD

]
exp
[
− a

(
1 +

Mpi∑
m=1

e−xi,m/v
)]

Si,k(x) = YipiD exp
[
− a

Mpi∑
m=1

e−xi,m/v
]

Sall,i(x) = Yi
[
(1−D) + piD

]
exp
[
− a

(
1 +

Mpi∑
m=1

e−xi,m/v
)]

+D
∑
k ̸=i

Ykpk exp
[
− a

Mpk∑
m=1

e−xk,m/v
]

(2.87)

As noted before, replacements are determined by a lottery model. The lottery is deter-

mined by the abundance of offspring. Let PA,B(x) be the probability species A colonizes

a patch previously occupied by species B at location x. Then, Pi,i(x) = Si,i(x)/Sall,i(x)

and Pi,k(x) = Si,k(x)/Sall,k(x). For the SEM, patch-specific JCEs are determined by the

euclidean distances of adults surrounding each patch. The position of each patch is defined

by its center point and it is assumed offspring are at the center of each patch.

ODE Model

To derive the ODE model, I take approximations of the expected values of Pi,i(x) and Pi,k(x).

To do so, I take the expected abundance of Si,i(x), Si,k(x), and Sall,i(x) and then take their

quotients. Expectations are taken with respect to space. Using this, I derive the the ODE

approximation
dpi
dt

= δ

[
E[Si,i(x)]
E[Sall,i(x)]

pi +
∑
k ̸=i

E[Si,k]
E[Sall,k(x)]

pk − pi

]
(2.88)

that captures the behavior of the SEM. See “Note” at the end of this Appendix for additional

information about the assumptions of this approximation.

Predation pressure in the SEM is implemented using the proximity trees in space that,
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computationally, is stored in a matrix. The deterministic ODE model is spatially implicit.

Therefore, it is necessary to use an approximation of the terms that does not require spatial

information. Specifically, it is necessary to approximate Ji,i(x) and Ji,k(x) in spatially

implicit terms. To do this, I evaluate

E
[
Ji,k(x)

]
(2.89)

noting that Ji,i(x) = e−aJi,k(x) (in which case, it is sufficient to just compute Ji,k(x) ).

To accomplish this, I evaluate the total mortality an individual of species i induces given

the AD model. Then, I assume individuals (and thus, mortality induced) are randomly

distributed in space. Then, I calculate the probability that mortality does not occur on a

random patch. The total mortality induced by an individual of species i is equal to

λ = 2πg

∫ ∞

0
x

(
1− e−ae−x/v

)
dx (2.90)

where x represents distance and
(
1 − e−ae−x/v

)
is the proportion of offspring that do not

survive x meters away from an adult of species i. The 2π term reflects that predation

pressure occurs in 2D space. Therefore, λ then represents the sum of mortality induced by

an individual of species i.

Species i is of proportion pi in the population and I assume adults of species i are ap-

proximately randomly distributed in space. Then adults of species i are Poission distributed

in 2D space and, by extension, mortality is also approximately Poisson distributed with rate

parameter piλ. Then, the probability that no mortality event occurs on a random patch (i.e.

the probability of survival) is relatively easy to define:

P(no mortality) = P(Poi(piλ) = 0) =
10e−piλ

0!
= e−piλ.
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This yields:

E[Ji,k(x)] = exp
[
− pi 2πg

∫ ∞

0
x

(
1− e−ae−x/v

)
dx
]
. (2.91)

which is the quantity of interested (the probability of offspring survival). It is necessary to

evaluate this quantity.

The integral (λ) is not trivial to evaluate. One approach is to take the Taylor series of

e−ae−x/v
. The expression becomes

2πg

∫ ∞

0
x

(
1−

∞∑
n=0

(−ae−x/v)n

n!

)
dx (2.92)

When n = 1, (−ae−x/v)n

n! = 1. Therefore, the above can be rewritten as

2πg

∫ ∞

0
x

(
1−

[
1 +

∞∑
n=1

(−ae−x/v)n

n!

])
= −2πg

∫ ∞

0
x

∞∑
n=1

(−ae−x/v)n

n!
dx (2.93)

noting the change in the index of summation (n = 1). Then, changing the order of integration

and summation and evaluating the integral yields

−2πg
∞∑
n=1

v(nx+ v)
(
−ae−x/v

)n
n2n!

∣∣∣∣∞
0

(2.94)

When all the constants are positive (as is the case for this expression) it is easy to show that

lim
x→∞

v(nx+ v)
(
−ae−x/v

)n
n2n!

→ 0 (2.95)

for all n ≥ 1 on the basis that limx→∞(x + K1)e
−xK2 → 0 if K1 and K2 are positive

constants (which is the case for the equivalent terms involving v and n in the equation
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above). Therefore,

−2πg
∞∑
n=1

v(nx+ v)
(
−ae−x/v

)n
n2n!

∣∣∣∣∞
0

=

lim
x→∞

(
− 2πg

∞∑
n=1

v(nx+ v)
(
−ae−x/v

)n
n2n!

)
+ lim

x→0
2π

∞∑
n=1

v(nx+ v)
(
−ae−x/v

)n
n2n!

= 2πgv2a
∞∑
n=1

(−a)n−1

n2n!

(2.96)

after some small algebraic manipulations. Importantly, while the summation

∞∑
n=1

(−a)n−1

n2n!

has no elementary solution I am aware of, it has all the properties of a Generalized Hyper-

geometric Function (henceforth, GHF). To see this, note that the summation follows the

form
∞∑
n=1

(−a)n−1

n2n!
= 1 +

1

222!
(−a)1 +

1

323!
(−a)2 + ...+

1

n2n!
(−a)n−1 (2.97)

Let βn be the nth coefficient of the summation (i.e. β0 = 1, β1 = 1
222!

, etc.). Therefore,

βn+1

βn
=

(n+ 2)2(n+ 2)!

(n+ 1)2(n+ 1)!
=

(n+ 2)3

(n+ 1)2
(2.98)

This yields the GHF
∞∑
n=1

(−a)n−1

n2n!
= 3F3(1, 1, 1; 2, 2, 2;−a) (2.99)

(a result the interested reader can confirm using Wolfram Mathematica; (Wolfram Inc.,
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2021). For simplicity, I use the notation

H(a) = 3F3(1, 1, 1; 2, 2, 2;−a) (2.100)

from this point forward. Therefore, finally,

2πg

∫ ∞

0
x

(
1− e−ae−x/v

)
dx = 2aπgv2H(a) (2.101)

in which case,

E[Ji,k(x)] ≈ e−2apiπgv
2H(a) (2.102)

Substituting this into the offspring abundance equations

E[Si,k(x)] = Yi
[
(1−D) + piD

]
e−ae−apiEDH(a)

E[Si,k(x)] = YipiDe−apiEDH(a)
(2.103)

where

ED = 2πgv2

and where Sall,i(x) =
∑N

n=1 Sn,i(x). These expressions are identical to the AD model

offspring abundance equations in the main text.

Comparison between ODE model and SEM model

In this subsection, I describe simulations that compare the ODE model to the SEM. I

demonstrate that the SEM and ODE model yield highly similar outputs of species abundance

and species richness. I provide 36 comparisons of the SEM to the ODE (12 cases in which

v = 5, 12 cases in which v = 7.5, and 12 cases in which v = 10).
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ODE and SEM parameterization

Each SEM simulation began with 300 species at equal abundance, with individuals randomly

distributed throughout the community. Simulations were conducted on a 275 × 275 torus

(thus containing 2752 individual trees). I used the following parameters: Y ∼ lognormal[µ =

0, σY ] with σY ∼ {0.1, 0.45, 0.8} and a ∼ {0.5, 1.0, 2.75, 4.5}. In all simulations, g = 0.20

and D = 1. I tested each of the 12 parameter combinations of σY and a with v ∼ {5, 7.5, 10}.

This generated 36 outputs. Simulations were run for about 65 generations, sufficient time for

the community to approximately reach equilibrium without drift dominating the dynamics

of the lower abundance species. See Figs. 2.35-2.37 for typical outputs of the SEM time

series dynamics.

A corresponding set of 36 ODE simulations were run using the same parameterizations as

the SEM. I compared the outputs of the SEM and ODE model in terms of species diversity,

species abundance, and Shannon diversity. I considered a species to be extinct if it had less

than 1 individual at any point of the simulation. This was implemented directly in the SEM;

for the ODE model, I assumed a species, i, to be extinct if p∗i < 1/2752 where p∗i is the equi-

librium proportion of species i. Note that these simulations do not attempt to demonstrate

the long-term resistance against extinction due to drift. Rather, they demonstrate that the

ODE model and SEM yield similar outputs of expected species abundance and richness given

the same parameterization.

Results of comparison

ODE model and SEM produced very similar species richness and Shannon diversity (Figs.

2.30, 2.31). The ODE model and SEM also produced very similar species proportions (Figs.

2.32-2.34). To quantify the quality of the approximation, I calculated the mean difference in
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species richness between the ODE model and SEM, ∆R:

∆R =
1

S

S∑
k=1

(Rk
SEM −Rk

ODE) (2.104)

where S is the number of simulations, and Rk
SEM and Rk

ODE are the species richness of the

kth simulation of the SEM and ODE model, respectively. I also examined the r2 (coefficient

of determination) between SEM and ODE species richness. For the comparisons, ∆R = −.52

and r2 = 0.99. Overall, the ODE provides a highly similar, albeit non-exact, estimation of

species diversity. Error in which the ODE model predicted greater diversity than the SEM is

most likely due to stochastic extinction due to drift. This is particularly likely when species

richness is high, where the expected abundance of each species is correspondingly smaller.

Cases in which the ODE model predicted lower species richness are likely due to incomplete

transient dynamics of the SEM.

Derivation of invasion criteria

In this subsection, I derive the approximate invasion criteria of the additive−fixed-distance

model when species experience inter-specific variation in intrinsic (Y ) and D = 1. Recalling

the derivations above,

E[Jk,i(x)] = e−apiEDH(a) (2.105)

and

E[Ji,i(x)] = e−ae−apiEDH(a) (2.106)

The invasion criteria of an invader can be expressed as when the per capita growth rate as

pi → 0. Using variables previous defined in this Appendix, the per capita growth rate of
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species i (substituting in the seedling abundance values) is

1

pi

dpi
dt

= ri = δ

[
Yi
[
(1−D) + piD

]
Yi
[
(1−D) + piD

]
E[Ji,i(x)] +

∑
k ̸=i YkpkDE[Jk,i(x)]

+ YiD
∑
m̸=i

1

Ym
[
(1−D) + pmD

]
E[Jm,m(x)] +

∑
k ̸=m YkpkDE[Jk,m(x)]

pm − 1

]
(2.107)

Species i can invade is this quantity if positive when it is rare (pi → 0). When D = 1 (the

case of interest), the above reduces to

Yi
∑
m ̸=i

pm
Ym E[Jm,m(x)]pm +

∑
k ̸=m Ykpk E[Jk,m(x)]

> 1 (2.108)

To simplify the above equation, I ignore the term Ym E[Jm,m(x)]pm in the denominator and

incorporate an additional term representing species m into the summation, yielding:

Yi
∑
m̸=i

pm∑
k ̸=i Ykpk E[Jk,i(x)]

> 1 (2.109)

This simplification is equivalent to making the species identity of the tree previously occupy-

ing a patch (the tree that dies) irrelevant (i.e., JCEs only result from trees nearby the patch

rather than the previous occupant of the patch). As long as JCEs occur over a non-trivially

small area (such that v is not very small) this assumption does not meaningfully affect the

invasion criteria.

Importantly, the denominator of equation (2.109) is no longer directly dependent on m.

That is, equation (2.109) can be rewritten as

Yi

(∑
m ̸=i

pm

)(
1∑

k ̸=i Ykpk E[Jk,i(x)]

)
> 1 (2.110)
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Because, by definition,
∑

m̸=i pm = 1, the above equation can be rewritten as

Yi >
∑
k ̸=i

Ykpk E[Jk,i(x)] (2.111)

Substituting the appropriate value for E[Jk,i(x)], the invasion criteria becomes

Yi >
∑
k ̸=i

Ykpke
−apkEDH(a) (2.112)

recalling that ED = 2πv2g. I take the linearization of pke−apkEDH(a) about the point 1/N

where N is the number of species in the resident community (and thus, 1/N is the average

abundance). This yields a close approximation of the expression so long as no species exhibits

an abundance much greater than the mean abundance. For simplicity, let

J = aEDH(a) (2.113)

The, taking the linearization yields

pke
−Jpk ≈ e−

J
N

N
+

e−
J
N

(
pk − 1

N

)
N

(
1− J

N

)
(2.114)

Substituting this into the original expression, the summation can be rearranged and broken

up into three parts:

e−
J
N

1

N

∑
k ̸=i

Yk + e−
J
N

(
1− J

N

)∑
k ̸=i

Ykpk − e−
J
N

(
1− J

N

)
1

N

∑
k ̸=i

Yk (2.115)

The first summation is straightforward to calculate:

e−
J
N

1

N

∑
k ̸=i

Yk = e−
J
N Y (2.116)
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where Y is the mean intrinsic fitness of the community.

The second term can be expressed by using the property

1

N

N∑
m=1

AmBm = A×B + Cov(A,B) (2.117)

I apply this property with respect to p and Y , noting that p = 1
N . Using this property and

substituting A and B with p and Y for the first and second summations yields

e−
J
N

(
1− J

N

)∑
k ̸=i

pkYk = e−
J
N

(
1− J

N

)
N

1

N

∑
k ̸=i

pkYk

= e−
J
N

(
1− J

N

)
N

[
Y

1

N
+ Cov(p, Y )

]
= e−

J
N

(
1− J

N

)[
Y +N Cov(p, Y )

] (2.118)

The third summation is easy to calculate:

−e−
J
N

(
1− J

N

)
1

N

∑
k ̸=i

Yk = −e−
J
N

(
1− J

N

)
Y (2.119)

Adding all three summations together, the third summation term will cancel with the Y

term of the second summation. Then, after some rearranging, I substitute J = aEDH(a)

back into the equation. This yields:

Yi > Y e−aH(a)
ED
N︸ ︷︷ ︸

mean
JCE-fitness term

+NCov(p, Y )

(
1− aH(a)

ED

N

)
e−aH(a)

ED
N︸ ︷︷ ︸

covariance-JCE term

(2.120)

which is identical to expression for the AD model in Table 2.1 of the main text.
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Note on ODE approximation

To derive the ODE model, I took approximations of the expected values of Pi,i(x) and Pi,k(x).

To do so, I took the expected abundance of Si,i(x), Si,k(x), and Sall,i(x) with respect to

space and then examined their quotients. Note that this assumes E[Si,k(x)/Sall,i(x)] ≈

E[Si,k(x)]/E[Sall,k(x)] (I take the expectation of the numerator and denominator and then

take the quotient). Using a Taylor Expansion about the mean,

E
[
Si,k(x)

Sall,i(x)

]
≈

E[Si,k(x)]
E[Sall,k(x)]

−
Cov

(
Si,k(x), Sall,k(x)

)
E[Sall,k(x)]2

+ Var
(
Sall,k(x)

) E[Si,k(x)]
E[Sall,i(x)]3

Because there are many species in the community, Sall,i(x) >> Si,k(x). This implies that

the covariance term and the term containing E[Sall,i(x)]3 are close to zero. Additionally,

Var
(
Sall,i(x)

)
is likely small because it is assumed that dispersal is uniform across the com-

munity. Therefore, E[Si,k(x)/Sall,i(x)] ≈ E[Si,k(x)]/E[Sall,k(x)] is likely a good approxi-

mation. I rely on the quantitative similarity of the SEM and ODE model to validate this

assumption.
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Figure 2.30: ODE model validation. The figures compare species richness between SEM and
ODE model simulations under identical parameterizations.The dashed line is the one-to-one
line (points on the line represent when the SEM and ODE yield the exact same diversity
output). Red points are when v = 5, orange/yellow points are when v = 7.5, and purple
points are when v = 10. To a first approximation, the ODE model yields the same output
as the SEM. These parameter values span the most of the parameter space explored in Figs.
2 and 3 of the main text.
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Figure 2.31: The same as the fig. 2.30, but showing Shannon Diversity instead of species
richness. As in the above case, the SEM and ODE model yield very similar outputs.
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Figure 2.32: Comparisons between identical parameterizations of the ODE approximation
(black) and SEM (blue) outputs under twelve parameter values when species vary in intrinsic
fitness (Y ). The y-axis depicts the log-proportion of each species and the x-axis depicts Y
of each species. In all plots, v = 5, g = 0.2, and D = 1.0. Other relevant parameters are
listed on each plot.
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Figure 2.33: The same format as fig. 2.32, but with v = 7.5.
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Figure 2.34: The same format as fig. 2.32, but with v = 10.
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Figure 2.35: Examples of the SEM simulation time series outputs, species richness over
time in the simulations, and Shannon diversity over time in the simulations. The top row
shows examples of the time series outputs of the SEMs. The x-axis is time and the y-
axis is each species’ proportion. Proportions have been square-root transformed to aid
visualization. Colored trajectories indicate species that persisted throughout the simulation;
grey trajectories indicate species that went extinct. Parameters are listed on each plot.
Dynamics as shown are typical examples from the SEMs. Most species settle into a relatively
stable pseudo-equilibrium, while lower abundance species fluctuate due to drift. The second
row shows the number of persisting species in the community as a function of time. Each
panel corresponds to the plot above it. Most species that go extinct do so in the early
stages of the dynamics. Therefore, the vast majority of persisting species likely persist
deterministically. The dashed red line is the diversity maintained by the ODE under the
same parameterization. All SEMs saturate, approximately, to the dashed line. The third
row is the same as the second row, except it shows Shannon diversity instead of species
richness.
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Figure 2.36: The same as fig. 2.35, but with v = 7.5.
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Figure 2.37: The same as fig. 2.35, but with v = 10.
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Appendix A.5: Explanation of model formulation and nor-

malizations

Introduction

In this Appendix, I explain the general conceptual and mathematical framework of the model

in greater detail than is presented in the main text. Then, I provide detailed mathematical

and conceptual explanations for the normalizations introduced in the main text. These

normalizations are essential for the modeling comparisons, as they ensure the mean predation

pressure offspring experience is identical between models.

General modeling framework

In this subsection, I provide an in-depth explanation of the within-patch dynamics and ex-

plicitly articulate how predation is incorporated into the model. Much of this first subsection

is simply a re-iteration of content found in the main text, but in greater detail. The below

descriptions are also relevant for motivating the inter-model normalizations.

The tree community model is conceptualized as having discrete time-steps. Each time-

step, offspring of each species accumulate on each patch. Offspring abundance are determined

in the following way: (1) each tree produces a set number of seeds each time-step, fi. All

trees uniformly disperse a portion of their seeds (D) among patches and retain the remaining

portion of their seeds (1 − D) on the local patch. Therefore, if pi is the proportion of

trees of species i in the population, species i disperses fipiD seeds to each heterospecific

patch and fi
[
(1 − D) + piD

]
seeds to each conspecific patch. (2) Offspring of species

i at location x, after dispersal, experience density-independent mortality at rate m′
i and

experience specialized predation pressure at rate a′Fi,k(x). a′ is a constant that defines the

baseline rate of specialized predation pressure and Fi,k(x) defines how the spatial distribution

of adult trees of species i affects conspecific offspring predation on a patch occupied by species
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k at location x. Fi,k(x) is the functional form of specialized predation pressure which may

be defined as the Additive−Distance-decay (AD) model, the Additive−Fixed-distance (AF)

model, the Non-additive−Distance-decay (ND) model, or the Non-additive−Fixed-distance

(NF) model. The reader may refer to the main text and Appendices A-D for more details

on the models.

In any case, Fi,k(x) is essentially a metric of the number of natural enemies at location x

that attack species i. The key point is that Fi,k(x) represents how the distance and density

of conspecific trees affect the rate at which predation occurs. Let Si,k(x, t) represent the

number of offspring of species i on a patch occupied by species k at location x and time t.

Post dispersal,
dSi,k(x, t)

dt
= −Si,k(x, t)

(
a′F (x) +m′

i

)
(2.121)

Solving the ODE yields

Si,k(x, τ) = Si,k(x, 0)e
−mie−aFi,k(x) (2.122)

in which a = a′τ and mi = m′
iτ where τ is the time over which predation occurs (in essence,

the time over which offspring develop and are susceptible to natural enemies and other

sources of mortality) and Si,k(x, 0) is the initial offspring abundance (at t = 0). If k = i

Si,i(x, 0) = fi
[
(1−D) + piD

]
(2.123)

such that

Si,i(x, τ) =
[
(1−D) + piD

]
fie

−mie−aFi,i(x) (2.124)

If k ̸= i,

Si,k(x, 0) = fipiD. (2.125)
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such that

Si,k(x, τ) = piDfie
−mie−aFi,k(x) (2.126)

Henceforth, I drop the τ from the notation such that

Si,i(x) =
[
(1−D) + piD

]
fie

−mie−aFi,i(x) (2.127)

and

Si,k(x) = piDfie
−mie−aFi,k(x) (2.128)

For both Si,i(x) and Si,k(x), offspring abundance is proportional to fie
−mi . Therefore,

“intrinsic fitness” is defined by

fie
−mi = Yi (2.129)

Intrinsic fitness is then (explicitly) a compound trait of fecundity and survivorship, which

represents the number of expected offspring in the absence of JCEs.

Finally, let Ji,i(x) = e−aFi,i(x) and Ji,k(x) = e−aFi,k(x). Ji,i(x) and Ji,k(x) are functions

that describe the proportion of offspring of species i that survive JCEs on a patch occupied

by species i and k, respectively (i ̸= k) at location x. Putting it all together, the number of

each species’ offspring on each patch type are equal to

Si,i(x) = Yi
[
(1−D) + piD

]
Ji,i(x)

Si,k(x) = YipiDJi,k(x)

Sall,i(x) =
N∑
n=1

Sn,i(x)

(2.130)

where i ̸= k. (3) If the adult in the focal patch at location x dies during the time step,

then a lottery determines which species replaces the adult. If the adult occupying the patch

does not die during the time-step, it is assumed all the offspring on the patch die. Equation
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(2.130) is identical to equation (2.1) from the main text.

Normalizations

In this subsection, I discuss the inter-model normalizations in detail.

Normalization of distance-decay and fixed-distance functional forms

Two distance-dependent functional forms are considered in the main text of the model: the

fixed-distance functional form (in which offspring experience predation pressure at a fixed

rate up until a distance of r meters from a conspecific adult) and the distance-decay functional

form (in which the predation pressure offspring experience from a conspecific adult decays

exponentially with distance). To ensure model comparisons are fair, it is necessary to set

equal the how each tree induces over space between functional forms. In other words, the

predation a tree induces within the radius r under the fixed distance (AF and NF) models

must be set equal to the predation over the scale set by v under the distance-decay (AD

and ND) models. Conceptually, this is analogous to assuming that the number of natural

enemies is maintained between distance-dependent functional forms, but are distributed in

space differently.

Consider a single tree from which natural enemies disperse and induce predation pressure

as defined by G(x) (analogous to Fi,k(x) in the above subsection, except from the perspective

from the adult tree rather than the offspring; I use G(x) instead of F (x) to avoid confusion).

G(x), in essence, represents the relative density of natural enemies that disperse from a

focal tree to a location x meters away from it. G(x) ≤ 1 such that G(x) = 1 corresponds

to maximum predation pressure induced by a single adult. For the fixed distance model,

G(x) = 1 if x ≤ r and G(x) = 0 if x > r. For the distance-decay model, G(x) = e−x/v.

Predation pressure is induced in 2-dimensional space such that the total predation pressure
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induced by a single adult is

g

∫ ∞

0
2πxG(x)dx (2.131)

Note that the 2πx term reflects that fact that predation is equal to the sum (integral) of

predation pressure spanned by the radius x in two dimensions.

For the fixed distance model:

g

∫ ∞

0
2πxG(x)dx = g

∫ r

0
2πxdx

= πgr2
(2.132)

and, for the distance-decay model:

g

∫ ∞

0
2πxG(x)dx = g

∫ ∞

0
2πxe−x/vdx

= 2πgv2
(2.133)

Predation pressure is therefore equal if gπr2 = 2gπv2; canceling terms yields the relationship

r = v
√
2. If this equality is satisfied, an individual tree induces the same total magnitude of

predation pressure irrespective of how predation decays with distance (albeit distributed over

space differently). Note that gπr2 = EF and 2gπv2 = ED. Therefore, this normalization is

equivalent to setting EF = ED.

Note that a is not included in the normalization – predation pressure is proportional to

a where JCEs occur, but a is not directly related to the distance-decay component of the

functional form. Thus, the above should be interpreted as normalizing r with v.

Connection to previous literature

It is noted in the main text that previous papers such as Adler and Muller-Landau (2005)

and Sedio and Ostling (2013) also normalize predation pressure using a mathematically

(and conceptually) similar method. I briefly articulate the similarity here. Making some
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modest simplifications and altering some notation for consistency, I describe how they model

predation.

First, they introduce the function

h(x) =
1

2πv2
e−x/v (2.134)

where h(x) is the relative density of natural enemies at distance x from the focal tree and

v is identical to v in the present study. h(x) integrates to 1. Then, Adler and Muller-

Landau (2005) and Sedio and Ostling (2013) assume that offspring survival on a patch is a

hyperbolically decreasing function of distance-weighted adult density (defined by h(x)) such

that:

Pr[Survival] =
1

1 + βN
∑Ni

m=1 h(xm)
(2.135)

where Ni is the number of adults of species i in the population and xm is the distance

of the mth individual of species i to the location x, β defines the strength of predication

pressure, and N acts as a general density term such that morality increases with the total

number of adults in the population. This is similar to the present study, in which survival

is an exponentially decreasing function (rather than hyperbolic). However, the models are

conceptually and mathematically very similar.

The key point is that Adler and Muller-Landau (2005) and Sedio and Ostling (2013)

vary v between simulations. Because h(x) is structured such that its integral over space

sums to 1, it follows varying v does not change the total number of natural enemies. In this

way, they normalize the distance-dependent component of their assumed functional form.

In the present study, I do not normalize v between simulations. Rather, I compare the

distance-decay and fixed-distance functional forms. In the present study, h(x) is analogous

to

G(x) = e−x/v (2.136)
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for the distance-decay models, which integrates to 2πv2; for the fixed-distance models, h(x)

is analogous to

G(x) =


1, if r ≤ x

0, if r > x

(2.137)

which integrates to πr2. Therefore, setting 2πv2 = πr2 serves the same function as ensuring

that h(x) integrates to 1 with respect to different values of v in Adler and Muller-Landau

(2005) and Sedio and Ostling (2013). This, in turn, is identical to assuming that each

distance-dependent functional form produces the same total number of natural enemies that

disperse from adult trees, albeit distributed in space differently. Therefore, this normalization

in the present study is biologically meaningful and consistent with previous literature.

It should be noted, however, that the coefficients that determine the baseline strength

of predation pressure (a in the present study and β in Adler and Muller-Landau (2005) and

Sedio and Ostling (2013)) have slightly different interpretations.

Normalization of additive and non-additive functional forms

In this subsection, I describe the process of normalizing predation pressure between the addi-

tive and non-additive functional forms. Because offspring experience mean greater predation

pressure under the additive models than under the non-additive models, it is necessary to

adjust the baseline predation pressure of the latter to compensate. I take the following ap-

proach: I calculate the mean predation pressure experienced by offspring in a community

given that predation is additive. Then, I adjust the non-additive model such that both

models exhibit the same mean predation pressure. Here, I present the normalization and

then I justify it with reference to its implementation for the non-additive models (the non-

additive−fixed-distance (NF) model and the non-additive−distance-decay (ND) model).

The normalization is as follows. Let aA and an be the predation pressure for an addi-

tive model and non-additive model, respectively. Additionally, let E represent En or ED
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(recalling that these quantities are identical due to the normalization described in the above

subsection). The additive−non-additive normalization sets an as

an = aA

(
1 +

E

N

)
(2.138)

where N is the number of species in the community.

Now, I describe the logic behind this normalization in the context of the NF and ND

models, respectively. For the NF model, if species i experiences JCEs on a given patch

because it falls within the radius defined by r, it experiences predation pressure with intensity

a. However, if predation pressure were additive, it would experience predation pressure

additional predation pressure equal to the total number of conspecifics found within the

effect radius, r. On average, one expects an additional piEF offspring to fall within the

patch (on the basis that pi is the proprotion of species i in the population and EF is the

expected number of trees in the effect area defined by r). Therefore, the expected additional

predation pressure induced by species i due to additive predation is equal to

aApiEF (2.139)

in which case, the total expected predation pressure for species i on a patch in which it

experiences JCEs is equal to

aA

(
1 + piEF

)
(2.140)

The +1 comes from the baseline predation pressure that species i experiences due to the

first adult falling within r and the piEF is the expected additional predation due to additive

effects. Thus, the above should be interpreted as “given offspring of species i experience JCEs

on a patch, what is the expected total predation pressure it experiences when predation is

additive?”.
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Then, the mean predation pressure within the community is equal to

E
[
aA

(
1 + piEF

)]
=

1

N

N∑
i=1

aA

(
1 + piEF

)
= aA

(
1 +

EF

N

) (2.141)

noting that the above results comes from the fact that E
[
pi
]
= 1/N (the mean proportion

in a community of N species is 1/N). Therefore, the normalization requires that

an = aA

(
1 +

EF

N

)
(2.142)

recalling an is the normalized baseline predation pressure for non-additive models and aA is

the baseline predation pressure for the additive models.

Very similar logic applies for the ND model. On a given patch, the ND model induces

predation pressure to offspring of species i on a given patch defined by the minimum distance

between the patch and a conspecific adult. However, when predation is additive, the expected

additional predation pressure experienced by offspring of species i is equal to aApiED. As

before, the expected predation pressure due to additive predation is equal to

E
[
aApiED

]
=

1

N

N∑
i=1

aApiED

= aA
ED

N

(2.143)

This yields the normalization

an = aA

(
1 +

ED

N

)
(2.144)

I now describe how this is implemented comparing numerical simulations (ODEs) of the

additive and non-additive models. I perform the following operations:

1. A simulation is run for one of the additive models with a given set of parameters (i.e.
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σY , g, aA, D, and v or r.

2. The number of coexisting species for the additive model at the end of simulation (after

reaching equilibrium) henceforth NA, is recorded.

3. The predation pressure for the non-additive model is set to

an = aA

(
1 +

E

NA

)
.

4. A simulation is run for the non-additive model and the number of coexisting species is

recorded after the community reaches equilibrium.

With these steps, additive and non-additive models are compared under the condition that

the mean predation pressure experienced by offspring is identical between simulations. More

precisely, this probes the question: given an additive model maintains NA species, how many

species would be maintained under a non-additive model if offspring experience the same

mean predation pressure non-additively?
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Appendix A.6: Arguments related to dispersal-limited com-

munities

Introduction

In this appendix, I outline several arguments related to dispersal limitation and species

richness referenced in the main text.

The effects of large a

In the main text, it is noted that dispersal limitation does not matter if a (baseline predation

pressure) is very large. To show this, consider the invasion criteria of species i (see Appendices

A-D) which can be written as

Yi(1−D)e−a

Yi(1−D)e−a +D
∑

k ̸=i Ykpk E[Jk,i(x)]
+

YiD
∑
m̸=i

1

Ym
[
(1−D) + pmD

]
e−a E[Jm,i(x)] +D

∑
k ̸=m Ykpk E[Jk,m(x)]pm

> 1
(2.145)

noting that E[Jm,m(x)] = e−a E[Jm,i(x)] because local JCEs simply induce an addition e−a

mortality. In Appendices A-D, it is assumed that D = 1 and that the species identity

of the tree previously occupying a patch does not matter such that Ympme−a E[Jm,i(x)] ≈

Ympm E[Jm,i(x)]. Making these assumptions and doing some rearranging of equation (2.145)

yields

Yi
∑
m̸=i

1∑
k ̸=i Ykpk E[Jk,i(x)]

pm > 1 (2.146)

Now, I consider when there is dispersal limitation and a is large. I take the limit of
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equation (2.145) as a → ∞. Therefore, all terms containing e−a will disappear. This yields

Yi
∑
m̸=i

1∑
k ̸=i,k ̸=m Ykpk E[Jk,i(x)]

pm > 1 (2.147)

Comparing Equations (2.146) and (2.147), the only difference is that species m is not included

in the denominator for the latter equation (noting the difference in the indexes on the

summations). In other words, only one less species’ offspring are present on a given patch.

Therefore, unless there are very few species or if one species is highly dominant, Equations

(2.146) and (2.147) will be approximately the same value. Therefore, for large a such that

e−a ≈ 0, the dispersal-limited case is approximately identical to that of the non-dispersal-

limited case.

The effects of small a

In the main text, it is also claimed that dispersal limitation should not matter for small a.

As a → 0, no JCEs occur. Then, the system converges to a lottery model with no stabilizing

effects (resulting in mono-dominance) in which case dispersal limitation is irrelevant. Taken

with the above result, this implies that dispersal limitation is less important for both low a

and very high a, consistent with fig. 2.2 from the main text (at least, for the non-additive

models).

Expanded argument on dispersal limitation

In the Results and Discussion of the main text, I argue that the functional form of specialized

predation (whether it is additive or non-additive) interacts with dispersal limitation. Here,

I present an extended argument for why dispersal limitation leads to lower species richness

when predation is non-additive but not when it is additive.

Consider when predation is additive and species experience dispersal limitation (D < 1).
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Additionally, consider two conspecific adults nearby in space such that they induce predation

pressure on each others patches. Each conspecific adult increases the offspring mortality of

the locally dispersed offspring on each patch. More generally, as a species becomes more

common in the community, its locally dispersed offspring experience greater and greater

mortality due to additive predation. Therefore, dispersal limitation does not affect rare

species advantage: although rare species lose some of their locally dispersed offspring to

Janzen-Connell Effects (JCEs), they lose a smaller proportion than more common species

lose.

In contrast, if predation is non-additive, then two conspecific adults close in proximity

do not affect the survival of offspring on each others patches. More generally, as a species

becomes more common in the community, the proportion of locally dispersed offspring that

experience mortality due to JCEs does not change. As a result, the survival a rare species’

locally dispersed offspring is exactly the same as that of common species. Thus, relative to

when there is no dispersal limitation (D = 1, in which case rare species’ offspring experience

no JCE-induced mortality) rare species advantage is diminished.

Connection to Stump and Chesson (2015)

I now connect the above arguments to Stump and Chesson (2015). Stump and Chesson

(2015) compare two JCE-related situations: (1) when JCEs are “local”, occurring directly

beneath adults (only on the local patch; identical to the NF model with E = 0) and (2)

when JCEs are entirely “non-localized”. For “non-localized” JCEs, predation occurs equally

on every patch in the community such that the proportion of offspring of species i that die

on every patch, Ji, is equal to:

Ji = αpi (2.148)

where pi is the proportion of species i in the community and α represents the strength

of JCEs (0 ≤ α ≤ 1). In comparing these models, Stump and Chesson (2015) find that
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dispersal limitation reduces the stabilizing effects of JCEs for the “local” model, but not for

the “non-local” model. They conclude that this is because locally dispersed offspring of rare

species experience mortality in the “local” model, but not in the “non-local” model.

This is not incorrect, but the I argue that it’s not the mortality of locally dispersed

offspring that causes this result per se. Rather, the “non-local” model presented by Stump

and Chesson (2015) is implicitly additive while their “local” model is non-additive. I aruge it

is this distinction that truly underlies why dispersal limitation decreases the JCE stabilizing

effect in Stump and Chesson (2015).

The “non-local” model in Stump and Chesson (2015) does not allow for any JCE-induced

local offspring mortality of rare species (Ji = αpi → 0 as pi → 0). In other words, all

offspring of rare species always escape JCEs. Therefore, it is ambiguous in Stump and

Chesson (2015) whether additive predation or the lack of local offspring mortality underlies

why the “non-local” model decreases JCE stabilizing effect strength. The additive (AD and

AF) models in the present paper allow for the co-occurrence dispersal limitation such that

a rare species’ locally dispersed offspring experience JCE-induced mortality and additive

predation simultaneously. When D < 1 and predation is additive (AD and AF models),

species richness is indistinguishable from the D = 1 case (main text, Fig. 2). When D < 1

and predation is non-additive (ND and NF models), species richness is lower than the D = 1

case. The additive models incorporate “local” predation as defined in Stump and Chesson

(2015) (the survival of locally dispersed offspring of rare species is decreased by JCEs)

yet species richness is unaffected by dispersal limitation. This implies that the nature of

predation – whether it is additive or non-additive – determines whether dispersal limitation

decreases the ability of JCEs to maintain species richness (rather than “local” vs. “non-

local” predation per se). In other words, whether JCEs kill locally dispersed offspring of

rare species does not affect whether dispersal limitation decreases the ability of JCEs to

stabilize coexistence – rather, what matters is if the locally dispersed offspring of rare species
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experience lower mortality relative to resident species.

Connection to other models

Despite the above insights, Muller-Landau and Adler (2007) find species richness can in-

crease with dispersal limitation (particularly when predators disperse large distances). As

their model incorporates additive predation, this seems to contradict the above results. Im-

portantly, Muller-Landau and Adler (2007) examine spatially explicit models, using spatially

explicit seed and predator dispersal kernels. I hypothesize the results from Muller-Landau

and Adler (2007) reflect how the co-occurrence of spatially explicit seed and predator dis-

persal kernels modify the spatial structure of trees. Similarly, papers in which dispersal

limitation increases species diversity (Detto and Muller-Landau, 2016; Wiegand et al., 2021)

largely attribute this result to species aggregation. Aggregation is not possible under the

model in this study (both in terms of how dispersal limitation is modeled and because the

ODE assumes species are approximately randomly distributed in space). Therefore, fur-

ther investigations of how dispersal and distance- and density-dependent are warranted, but

beyond the scope of the present study.
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Appendix A.7: Supplemental figures

In this Appendix, I present supplemental figure (most of which are referenced in the main

text). Figure legends provide all necessary information to interpret the figures.
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Figure 2.38: Ordinary Differential Equation (ODE) model validation. The figures compare
species richness between Spatially Explicit Model (SEM) and ODE model simulations under
identical parameterizations. Each panel shows a different model labeled by its functional
form. The dashed line is the one-to-one line (points on the line represent when the SEM
and ODE yield the exact same diversity output). For panels A and C (the fixed-distance
models), red points depict a 3×3 Moore Neighborhood (EF = 9), orange/yellow points depict
a 5× 5 Moore Neighborhood (EF = 25), purple points depict a 7× 7 Moore Neighborhood
(EF = 49), green points depict a 9 × 9 Moore Neighborhood (EF = 81), and blue points
depict an 11 × 11 Moore Neighborhood (EF = 121). This approximately corresponds to r
between 4.0 and 14. For panels B and D, red points are when v = 5, orange/yellow points
are when v = 7.5, and purple points are when v = 10. To a first approximation, the ODE
model yields the same species richness output as the SEM. See Appendices A-D for more
details and summary statistics.
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Figure 2.39: The same as fig. 2.37, but showing Shannon Diversity instead of species richness.
SEM and ODE model outputs are highly similar.
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Figure 2.40: An example of a time-series output from the ODE model, showing the AD
model. (A) shows the log-transformed proportion of each species as a function of time.
Abundances stop changing relatively early into the simulation. (B) shows number of species
persisting in the community as a function of time. This implies the transient dynamics have
concluded and the system is at equilibrium. This is a typical example. Parameters are as
follows: v = 10, g = 0.172, 1− e−a = 0.7 (a ≈ 1.2), D = 1, σY = 1.0.
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Figure 2.41: The same as fig. 2.2 from the main text, but with 1000 species in the initial
community (instead of 300). In the main text, it is noted that model differences are more
extreme for a larger initial species pool. In columns 1 and 2, the additive models can
maintain hundreds of more species than the non-additive models. Similarly, in column 3,
the species richness maintained by the distance-decay models is often several hundred greater
than the fixed-distance models. For large aA and large v, the species richness of the AD
model is nearly 1000 species. As in fig. 2.2 of the main text, g = 0.172 and σY = 0.55
(Y ∼ lognormal[µ = 0, σY ]). All other relevant parameters are noted on the figure.

129



AD Model

AF Model

NF Model

ND Model

Sp
ec

ie
s 

R
ic

h
n

es
s

Inter-specific fitness variation (𝜎𝑌)

Figure 2.42: The same as fig. 2.3 from the main text, but with 1000 species in the initial
community (instead of 300). As noted in the main text, results are qualitatively similar to
the 300 species case, but the numerical difference in species richness maintained by models
is larger. In particular, when JCEs extend over a large spatial scale (large v and r; rows 2
and 3) models differences are sometimes very large. The starkest contrast to fig. 2.3 of the
main text is Panel (I) – in this case, the AD model maintains hundreds of more species than
each other model. In the analogous plot in the main text (fig. 2.3, Panel (I)), all species
maintain high species richness for all σY . Therefore, when JCEs are very strong (large v
or r and large aA, as in Panel (I)), examining a larger species pool reveals the full extent
to which the AD maintains greater species richness than the other models (particularly the
fixed-distance models).
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Figure 2.43: The same as fig. 2.4 from the main text, but both axes are log-scaled (rather
than just the x-axis). This allows the observation that the additive models indeed produce
stronger negative frequency dependence (lower offspring survival for large pi) than the non-
additive models in all cases, including (B) and (D) (which is difficult to see in fig. 2.4 of the
main text). Parameters are as follows: g = 0.172, D = 1.0, N = 300, and aN = aA

(
1+E/N)

where E = EF = ED = 2πv2g.
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Figure 2.44: The approximate invasion criteria compared to the exact invasion criteria (the
right-hand-side, “minimum invader fitness”, of the invasion criteria shown in Table 2.1).
(A, C) show the exact invasion criteria for each model and (B, D) show the approximate
invasion criteria for each model. Results are qualitatively identical, although approximate
invasion criteria tends produce larger values (which means the approximation underestimates
stabilizing strength). Relevant parameters are as follows: D = 1, g = 0.172, and σY = 0.375.
Other parameters are listed on the figure.
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Figure 2.45: Species richness maintained by each JCE functional form under different values
of baseline predation pressure (aA), dispersal limitation (D), and the spatial scale of preda-
tion (v and r) at relatively low tree density (g = 0.06). In the main text, it is noted that lower
g produces lower species diversity; this figure should be compared to Fig. 2.2 of the main
text, as they are identical except for the value of g. For each plot, the x-axis depicts either v
or r (depending on the JCE functional form) and the y-axis is species richness (the number of
species maintained in the community at equilibrium). Models are differentiated by shape and
color. Each column depicts a different value of aA (the baseline predation pressure for the
additive models) and each row shows a different value of D (D = 1, D = 0.5, and D = 0.1,
respectively). The non-additive models are normalized such that aN = aA(1+E/NA) where
aN is the normalized predation pressure for the non-additive models, NA is the diversity
maintained by the additive model to which the non-additive model is being compared and E
is either EF or ED (which are equivalent). aN was calculated based on the diversity main-
tained by the AD model for the additive – non-additive normalizations. Using the AF model
outputs to quantify aN yielded trivially similar results. All simulations were conducted with
300 species initially in the population. g = 0.06 and σY = 0.55 (Y ∼ lognormal[µ = 0, σY ]).
All other relevant parameters are noted on the figure.
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Chapter 3

On the interaction between Janzen-Connell
effects and habitat partitioning in spatially

structured environments

3.1 Abstract

Janzen-Connell Effects and Habitat Partitioning have both been proposed as potential sta-

bilizing mechanisms in species-rich forest communities. Janzen-Connell Effects describe the

process in which specialized predators are attracted to adult trees, which reduce the sur-

vivorship of nearby conspecific juveniles. Habitat Partitioning describes when species ex-

hibit different fitness responses to spatially heterogeneous environmental factors, typically

causing species to aggregate into favorable habitat types. Despite substantial evidence that

both processes occur simultaneously in empirical systems, the theoretical implications of

how their interactions shape species richness remain underdeveloped. Here, I examine a spa-

tially explicit model that incorporates both processes. I show that Janzen-Connell Effects

and Habitat Partitioning can act synergistically to promote coexistence when environmental

spatial heterogeneity is positively autocorrelated. The results of this study highlight the

need to explicitly model the interactions between co-occurring spatially dependent coexis-

tence mechanisms to understand the role they play in the maintenance of species richness.
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3.2 Introduction

The maintenance of species richness in forest communities has long captured the interest of

ecologists. Janzen-Connell Effects (JCEs) and Habitat Partitioning (HP) are two leading

hypotheses, both frequently invoked to explain the high diversity of tropical forests. However,

their ability to promote diversity while operating simultaneously remains understudied.

JCEs are based on observation that host-specific natural enemies attracted to adult trees

(insects, pathogens, fungi, etc.) reduce juvenile conspecific offspring survivorship (Janzen,

1970; Connell, 1971; Terborgh, 2012). JCEs are thought to maintain species richness by

inducing negative frequency dependence: the more common a species is, the greater the

proportion of the environment that is rendered inhospitable to its offspring. Many empirical

systems show evidence of JCEs (e.g. Hyatt et al., 2003; Petermann et al., 2008; Mangan

et al., 2010; Swamy and Terborgh, 2010; Zhu et al., 2010; Johnson et al., 2012, 2014; Comita

et al., 2014; Bever et al., 2015); theoretical models evaluate the conditions under which

JCEs can maintain species diversity (e.g. Adler and Muller-Landau, 2005; Muller-Landau

and Adler, 2007; Stump and Chesson, 2015; Chisholm and Fung, 2020).

HP is based on the observation that species differ in their tolerances of environmental

conditions that vary in space (Mouquet and Loreau, 2003; Hortal et al., 2009; Stein et al.,

2014; Leibold and Chase, 2017). Environmental factors such as topography (e.g. elevation,

convexity) and soil composition (e.g. soil moisture, pH, nutrient composition) have been

observed to differentially affect species-specific demographic traits, often impacting seed and

seedling survival in tree communities. HP can stabilize coexistence if species are sufficiently

different in their environmental fitness associations (Chesson, 2000a; Snyder and Chesson,

2003). Empirical evidence strongly suggests that JCEs and HP co-occur in a variety of forest

communities (e.g. Hubbell et al., 2001; Wright, 2002; Uriarte et al., 2004; Freckleton and

Lewis, 2006; Queenborough et al., 2009; Chen et al., 2010; Bagchi et al., 2011; Bai et al.,

2012; Piao et al., 2013; Lu et al., 2015; Wu et al., 2016; Pu et al., 2017; Yao et al., 2020; Magee
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et al., 2021; Huang et al., 2022; Liu et al., 2022). Despite this, the theoretical implications of

communities that experience both coexistence mechanisms are surprisingly underdeveloped

(but see Stump and Chesson, 2015). Developing an understanding of their interactions is of

particular importance given that recent work casts doubt on the ability of JCEs operating in

isolation to maintain the high species richness observed in tropical forests (?Cannon et al.,

2021).

Superficially, JCEs and HP seem to operate through opposing forces: HP allows for coex-

istence by aggregating species into favorable habitat types, whereas JCEs function because

adults render nearby areas inhospitable to conspecifics. It is therefore important to eluci-

date how these seemingly countervailing forces affect diversity on the community level. The

interaction between JCEs and HP likely depends on the spatial structure of the abiotic en-

vironment. Specifically, the degree of spatial autocorrelation (the tendency for more similar

environmental types to neighbor each other) may impact the patches on which species expe-

rience JCEs (Fig. 3.1C) and modulate the extent to which it affects competitive outcomes.

Current theory does not examine how interactions between JCEs, HP, and spatial structure

affect species coexistence.

Previous work shows that JCEs alone are likely sufficient to maintain high species richness

in an otherwise neutral community (Levi et al., 2019). However, this result is not robust

to when communities exhibit realistic levels of inter-specific fitness variation (Chisholm and

Fung, 2020) unless they occur over a fairly large spatial scale (Smith, 2022a). In this study, I

explore the question: can the joint operation of JCEs and HP maintain high species richness

in communities that experience realistically large inter-specific fitness variation in situations

where a single mechanism is insufficient?

To address this question, I develop a simple spatially explicit model that incorporates

JCEs and HP. I show that JCEs and HP have the potential to synergetically promote coex-

istence. Specifically, I find that level of richness maintained by the simultaneous operation
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of JCEs and HP is considerably greater than the sum of their operation in isolation when

abiotic spatial heterogeneity is positively autocorrelated. Then, I demonstrate that the in-

teraction between JCEs and HP depends on a key metric, kM , which describes the level of

spatial autocorrelation on the spatial scale over which JCEs occur. Overall, the results of

this study provide a simple framework to understand the factors determining how JCEs and

HP interact and their subsequent effect on the maintenance of species richness.

3.3 Methods

3.3.1 Model description

I consider a discrete-time site occupancy model. The community consists of a X ×X grid,

upon which each cell represents a single patch that contains a single adult tree. First, I

describe the offspring dynamics on each patch type.

Each time-step, species i disperses Yi offspring uniformly throughout the environment.

i = 1, 2, .., N such that there are N species in the community. Yi is a composite parame-

ter of the fecundity and baseline density-independent mortality of species i’s offspring (see

Appendix B for details). I refer to Yi as “intrinsic fitness”. Because dispersal is global, the

number of offspring species i disperses to a patch is equal to piYi, where pi is the proportion

of patches in the environment occupied by species i. The number of offspring of species i on

a given patch is modified by (1) habitat type and (2) Janzen-Connell Effects (JCEs). Let x

represent a location in space. In addition to spatial information, x indexes a value defied by

its habitat type for which (for simplicity) 0 ≤ x ≤ 1. Each patch (i.e. each discrete grid-cell)

takes a single habitat value defined by x which I assume is constant through time. Similarly,

let Hi(x) be the probability that an offspring of species i survives on patch x as a function of

habitat type (i.e. the relative fitness of species i on the habitat type of x). I assume fitness
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Higher spatial autocorrelation
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Figure 3.1: Visualization of species’ responses to spatial environmental heterogeneity, habitat
structure, and its potential interaction with Janzen-Connell Effects (JCEs). (A) shows how
species-specific habitat associations are implemented in the model: fitness is a Gaussian
function of habitat type (Equation 3.1) with response breadth defined by σh. Environmental
type affects the probability a species’ offspring (seeds and seedlings) survive on a patch.
Responses depict when σh = 0.05. (B) shows the different landscapes examined, which
vary in their level of spatial autocorrelation. Different colors represent a different value of
an environmental variable, ranging from 0 − 1. Environments range from highly positively
autocorrelated (left hand side) to randomly distributed (zero autocorrelation; right hand
side). (C) depicts a small portion of the habitat. Each grid-cell is a patch which contains a
single adult tree; only a single tree is depicted for simplicity. Patterns around the tree depict
the area over which JCEs occur, spanning a 3×3 Moore neighborhood (lines), a 5×5 Moore
neighborhood (dots), and a 7 × 7 Moore neighborhood (crosshatches). If the focal tree has
a preference for red habitat types, then the autocorrleation of the environment affects how
many favorable (red) patches on which it induces JCEs. When autocorrelation is high, the
tree induces JCEs almost entirely on favorable patches. When autocorrelation is low, the
tree induces JCEs on relatively few favorable patches.
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is a Gaussian function of habitat type:

Hi(x) = exp(−(x− hopt,i)
2/2σ2h) (3.1)

where hopt,i is the optimal patch type of species i (0 ≤ hopt,i ≤ 1) and σh is the breadth of

environmental response (smaller σh means species are more specialized). See Fig. 3.1A for

a visualization.

JCEs are implemented by assuming adult trees within the M ×M Moore neighborhood

around a patch (x) decrease the probability of conspecific offspring survival therein such that

the probability of offspring survival is described by the function

Ji(x) = exp
(
− a

M(x)2∑
m=1

1m(i)

)
(3.2)

noting that M2 trees are contained within an M × M Moore neighborhood. M(x) refers

to the Moore Neighborhood around the patch located at x. a is a constant that defines the

baseline strength of JCEs such that e−a corresponds to the probability of offspring survival

when a single conspecific adult is found within the Moore neighborhood. 1m(i) is an indicator

function for which

1m(i) =


1, if m = i

0, if m ̸= i

(3.3)

Therefore, offspring survival declines exponentially with the number of conspecific adult trees

within the area of effect. The number of offspring of species i on patch x, Si(x), is then

equal to:

Si(x) = piYiHi(x)Ji(x) (3.4)

noting that this formulation of JCEs (Ji(x)) and the fitness response to the environment

(Hi(x)) means that JCEs and HP are, at the patch level, entirely independent (see Appendix
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B for more details). Therefore, interactions between JCEs and HP are emergent properties

of how adults are distributed in space (i.e. both depend on x).

Now, I describe adult dynamics. Each time-step, each adult dies with probability δ. If

the adult on a patch dies, the patch is immediately replaced by another individual. The

identity of the species replacing the patch is determined by a lottery model (Chesson and

Warner, 1981) where the probability species i “wins” the lottery and colonizes the patch is

equal to the relative abundance of its offspring on a patch. That is:

P(species i colonizes patch x) =
Si(x)∑N
j=1 Sj(x)

(3.5)

using the quantities from Equation 3.4 for each of the N species. Each time-step, all vacated

patches are replaced according to Equation 3.5.

3.3.2 Spatially explicit simulations

Simulations were conducted on a 500 × 500 grid on which each grid-cell represents a patch

containing a single adult tree (as noted above). The community was modeled on a torus

to avoid edge effects. Landscapes (i.e. habitat structure; Fig. 3.1B) were generated by

assigning a value between 0− 1 to each grid-cell, defining its habitat type. Autocorrelation

was introduced using a midpoint displacement algorithm (Saupe, 1988) by modifying the

value of the Hurst exponent using the [R] package NLMR (Sciaini et al., 2018). The resulting

landscape was subsequently modified such that frequency of habitat types was uniformly

distributed between 0− 1 throughout the entire community.

All simulations began with 300 species at equal abundance. Intrinsic fitness (Y ) was log-

normally distributed such that Y ∼ lognormal[µ = 0, σY = 1.0]. These values were chosen on

the basis that recent analyses at Barro Colorodo Island indicate inter-specific variation in low-

density seedling recruitment is of approximately this order (Wright et al., 2005; Chisholm and
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Fung, 2020). Each species was assigned a habitat preference, (hopt,i), with values regularly

distributed between 0 and 1. Simulations examined σh ∼ {.025, .05, .075., 0.10} (the breadth

of environmental response) and M ×M ∼ {1× 1, 3× 3, 5× 5, 7× 7, 9× 9} (the size of the

Moore neighborhood). For simulations, I consider when a = 0.5, which implies that the

presence of a single adult within the Moore neighborhood reduces offspring survivorship by

approximately 40% (i.e. e−a ≈ 0.60). This value of a is generally consistent with meta-

analyses assessing the strength of JCEs (if somewhat conservative; see Comita et al., 2014;

Song et al., 2021a). However, I consider a more generally in analytical treatments of the

model. Simulations were run for approximately 125 generations (equivalent to over 3× 107

tree replacements), sufficiently long for the transient dynamics to end (with species richness

and Shannon diversity in the community having approximately saturated to a constant

number; see Appendix B, Figs. 3.9-3.16). All simulations were conducted in [R] (R Core

Team, 2021).

Approximate invasion criterion

I derived an approximate invasion criterion that quantifies the condition under which a rare

species deterministically increases in abundance within a community of N resident species.

The derivation of the approximate invasion criterion and validation of its accuracy can be

found in Appendix B.

3.3.3 Quantification of spatial autocorrelation

To examine how spatial autocorrelation mediates the interaction of JCEs and HP, I derive

a metric of spatial autocorrelation of the habitat types (henceforth kM ) which quantifies

the level of spatial autocorrelation of habitat types with respect to the size of the Moore

neighborhood size (M) and the response breadth of habitat specialization (σh). To quantify
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kM , I consider the approximation

Hi(x) ≈


1, if hopt,i − 1

2σh
√
2π ≤ x ≤ hopt,i +

1
2σh

√
2π

0, otherwise
(3.6)

or, in words, species i experiences a relative fitness of 1 for the proportion of habitat types

between hopt,i − 1
2σh

√
2π and hopt,i +

1
2σh

√
2π and 0 in other habitat types (Appendix B,

Fig. 3.6). Therefore, a portion of approximately σh
√
2π of the community is favorable to

each species. kM is then calculated with the following summation:

kM =
1

σh
√
2πM2

X2∑
x=1

∑
j∈M2

1
[
j < f(x)

]
X2

(3.7)

recalling X2 is the number of patches in the community and where

1
[
j < f(x)

]
=


1, x− 1

2σh
√
2π ≤ j ≤ x+ 1

2σh
√
2π

0, otherwise
(3.8)

in which j represents the habitat type of one of the patches within the M ×M around x (j ∈ M2).

Equation 3.7 is therefore highly similar to a discrete-space analogue to Ripley’s K (Ripley, 1976).

kM quantifies how the habitat types of patches at the M×M Moore neighborhood scale deviate

from random (see Fig. 3.1C). Note that Equation 3.7 is divided by 1/σh
√
2πM2. If kM = 1, it

means that
X2∑
x=1

∑
j∈M2

1
[
j < f(x)

]
X2

= σh
√
2πM2 (3.9)

which implies, on average, a proportion of σh
√
2π of similar habitat types fall within M2. This

is identical to when patches are randomly distributed in the environment. Conversely, if km =

1/σh
√
2π, it follows that

X2∑
x=1

∑
j∈M2

1
[
j < f(h)

]
X2

= M2 (3.10)
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Figure 3.2: Species richness maintained by either Habitat Partitioning (HP) or Janzen-
Connell Effects (JCEs) in isolation. (A) shows the diversity maintained by HP under different
values of σh (the breadth of environmental response; Equation 3.82). Higher diversity is
maintained for smaller σh because species are more specialized (more species can persist in
the community because of relatively small niche overlap). The pink points show the exact
values from model simulations. The grey points show the approximate predicted level species
richness noted in the main text and Appendix B (1/σh

√
2π). (B) shows species richness when

only JCEs are present for different Moore neighborhood sizes (M). Diversity increases with
M . However, species richness is overall low: out of an initial pool of 300 species, up to 58
species are maintained.

which means all patches within M2 are always of similar habitat types (high spatial autocorrelation).

This is an upper bound to kM . Therefore,

1 ≤ kM ≤ 1

σh
√
2π

(3.11)

ranging from randomly distributed habitat types to highly spatially autocorrelated. Negatively

autocorrelated environments could yield kM < 1, but I do not examine this case in the present

study.
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3.4 Results

3.4.1 Simulations

In the presence of a single coexistence mechanism (JCEs or HP only) a relatively small portion of

the initial community persisted (often less than 10% of the initial community of 300 species; Fig.

3.2). When JCEs operated alone, species richness increased with increasing Moore neighborhood

size (M). When HP operated alone, species richness increased with greater specialization (smaller

σh, species habitat response breadth; Equation 3.1).

In communities with both JCEs and HP, species richness always increased relative to either

mechanism in isolation. However, the degree of spatial autocorrelation dramatically affected the

extent of this increase. For zero or low autocorrelation, the diversity maintained under JCEs and

HP together only modestly increased diversity relative to either mechanism in isolation (Fig. 3.3,

columns 3 and 4). The number of species maintained by JCEs and HP simultaneously under zero

autocorrelation (red dots, Fig. 3.3, column 4) was similar to the sum of species maintained by

each JCEs and HP in isolation (the sum of the dashed line and grey dots, Fig. 3.3) with their

simultaneous operation increasing species richness by up to 32%. When spatial autocorrelation

was high, the combination of JCEs and HP produced considerably greater diversity than either

mechanism in isolation (Fig. 3.3, columns 1 and 2). Simultaneous operation HP and JCEs (red

dots, Fig. ??, column 1) maintained up to 277% greater species richness than the sum of species

richness maintained by the mechanisms in isolation (the sum of the dashed line and grey dots, Fig.

3.3). Results were qualitatively identical when examining Shannon diversity (Appendix B, Fig.

3.17)
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𝑀
Figure 3.3: Species richness maintained by Janzen-Connell Effects (JCEs) and Habitat Par-
titioning (HP) operating simultaneously. Plots show how the level of spatial autocorrelation
(columns), response breadth (σh; rows), and Moore neighborhood size (M ; x-axis) affect
species richness. The four levels of spatial autocorrelation are the same as those depicted in
Fig. 3.1. Red points depict when JCEs and HP operate simultaneously, grey point depict
when only JCEs are present, and dashed lines depict when only HP is present. As in the
case of JCEs alone, species richness increases with increasing M and decreasing σh. The
magnitude of this increase depends on the level of spatial autocorrelation. For zero and
low autocorrelation, the species richness maintained at various Moore neighborhood sizes is
very similar to that of the JCEs only case (grey points) regardless of σh. In contrast, when
under medium and high spatial autocorrelation, diversity increases rapidly with M , partic-
ularly under lower σh. This indicates that the level of spatial autocorrelation mediates the
interaction between JCEs and HP. Results were qualitatively identical examining Shannon
diversity (Appendix B, Fig. 3.17).
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3.4.2 Invasion analysis

To provide some insight into these results, I derived an approximate invasion criterion that quantifies

the condition under which a rare species can invade a community of N resident species:

Yi > Y︸︷︷︸
mean

intrinsic
fitness

(
1 + Cov(Y, p)ϕ

)︸ ︷︷ ︸
relative

competition
term

R(σh, N)︸ ︷︷ ︸
HP
term

e−(1−e−a)M
2

N
R(σh,N)kM︸ ︷︷ ︸

JCE − HP
term

(3.12)

The left had side of Equation 3.12 represents the intrinsic fitness of a rare invading species. The

right-hand side of Equation 3.12 can be interpreted as the mean fitness of the resident community at

equilibrium, with smaller values more easily allowing a rare species to invade. The right-hand side

consists of several key terms. Y is the mean intrinsic fitness of the resident community. The relative

competition term (which is equal to or greater than 1) quantifies the degree to which invaders tend

to compete against species of high fitness. The mean intrinsic fitness and relative competition terms

are quantitatively important for determining invasion, but not qualitatively important concerning

how JCEs and HP interact to shape affect invasion (see Appendix B). I henceforth focus on the HP

and JCE−HP terms.

Ri(σh, N), the HP term, quantifies the extent to which HP in isolation promotes invasion. If

it is assumed species’ habitat preferences are randomly distributed in trait space, it can be shown

that

R(σh, N) ≈ 1− e−Nσh

√
2π (3.13)

(see Appendix B). Ri(σh, N) quantifies the expected proportion of habitat overlap between an

invader (species i) and the N residents (0 ≤ Ri(σh, N) ≤ 1). Ri(σh, N) increases with the number

of species in the community, N , rapidly saturating to 1 (Fig. 3.4A). This reflects how unless species

are highly specialized (σh is very small) potential habitat preferences (i.e. spatial niches) quickly

saturate such that a species invading a diverse community is likely to compete against species with

near-complete habitat preference overlap. Therefore, HP directly contributes to invasion when there

are relatively few species in the community, but not when it is diverse. Under the assumption that

species evenly partition the environment, (i.e. species’ habitat optima are all equidistant in trait
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Figure 3.4: Visualization of the different
components of the invasion criterion (Equa-
tion 3.12). The x-axis shows N , the num-
ber of species in the community. Note that
N in this figure is a parameter input into
the invasion criterion, not an output from a
simulation. For all invasion criterion com-
ponents (the y-axis of each plot) invasion
is easier when the component is smaller; a
value of 1 implies the component does not
facilitate invasion (i.e. no stabilizing effect).
(A) depicts the HP term, R(σh, N). Inva-
sion is made easier only for relatively small
N ; R(σh, N) rapidly saturates to 1 as N
increases. (B) shows the JCE−HP term
under three different values of kM (spa-
tial autocorrelation) and two different val-
ues of M (Moore neighborhood size). Grey
shows kM = 1 (no autocorrelation), orange
shows kM = 1/2σh

√
2π (moderate autocor-

relation), and red shows kM = 1/σh
√
2π

(high autocorrelation; the upper bound of
kM ). Invasion becomes more difficult with
increasing N , but less so when the spatial
environment is highly autocorrelated. Solid
curves show M = 5 and dashed curves show
M = 7. While invasion becomes easier with
larger M in all cases, the effect is much
more pronounced under high autocorrela-
tion (compare the difference between solid
and dashed curves in grey to the difference
between solid and dashed curves in red).
This reflects how positive autocorrelation
mediates a synergistic interaction between
JCEs and HP. (C) shows the product of (A)
and (B). (B) and (C) are almost identical,
while different colored curves within each
panel dramatically differ. Therefore, the ef-
fect of HP on species invasion through its
mediation of JCEs (i.e. kM ) is often more
quantitatively important than the direct of
effect of HP alone (R(σh, N)). Parameters
are as follows: σh = 0.05, a = 0.5.
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space) it can be derived that approximately 1/(σh
√
2π) species coexist in the community when HP

operates in isolation (see Appendix B, Equation 3.73). Simulation outputs are roughly consistent

with this approximation (Fig. 3.2).

The JCE−HP term quantifies how JCEs and their interactions with HP facilitate species inva-

sion. Invasion becomes easier with larger (1−e−a)M
2

N R(σh, N)kM , increasing species richness (Figs.

3.4 and 3.5). Larger values of a (baseline JCE strength) and M (Moore Neighborhood size) increase

the baseline strength and spatial scale over which JCEs occur, respectively, which (unsurprisingly)

facilitate invasion.

Species invasion also becomes easier with increasing kM (Fig. 3.4). As noted above, kM is a

metric of the autocorrelation of habitat types at the M × M Moore neighborhood. 1 ≤ kM ≤

1/σh
√
2π for which kM = 1 indicates zero autocorrelation and kM = 1/σh

√
2π indicates the upper

bound of spatial autocorrelation. To understand the impact of kM on invasion, first consider how

HP affects the spatial composition of adult trees. For each species, a proportion of approximately

σh
√
2π of the environment is favorable (Equation 3.6) and, consequently, each of the resident species

mainly inhabit patches favorable to them. Now consider a patch in the environment of habitat type

x that is favorable to the invader, species i. Species i competes mainly against resident species

that also have a positive habitat association with x. Species i experiences a competitive advantage

colonizing the patch due to JCEs induced by the surrounding M2 adult trees. However, species i

benefits from these JCEs only when the surrounding adults have a positive habitat association with

x. Because species tend to occupy favorable patches, JCEs most strongly promote invasion if species

tend to neighbor favorable patches – i.e., if habitats types are positively autocorrelated (Fig. 3.1C).

kM = 1 corresponds to when all species are equally likely to neighbor all habitat types. In this

case, JCE strength rapidly weakens with increasing N (the number of species in the community)

because many resident species induce JCEs on unfavorable patches, which does not benefit invaders

(Fig. 3.4B, grey curves). The upper bound to spatial autocorrelation (when kM = 1/σh
√
2π)

corresponds to when species only neighbor the (approximate) σh
√
2π proportion of patches they

find favorable. This reduces the diluting effect N has on JCE strength and species invasion because

resident species induce JCEs only on favorable patches, which always benefits invaders (Fig. 3.4B,
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red curves). Notably, for highly diverse communities (large N) in which R(σh, N) ≈ 1 (i.e. habitat

niche space is saturated) and there is zero autocorrelation (kM = 1), the invasion criterion for the

JCE and HP case (Equation 3.12) converges exactly to the invasion criterion of JCEs operating in

isolation. Therefore, positive spatial autocorrelation is necessary for the interaction between JCEs

and HP to boost invader growth rate in highly diverse communities. See Appendix B for details.

How HP promotes invasion through its mediation of JCEs (i.e. kM ) is potentially more quan-

titatively important than the direct effect of HP on invasion (i.e. Equation 3.13; see Fig. 3.4).

Consistent with this, variation in species richness between simulations depicted in Fig. 3.3 are al-
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Figure 3.5: The relationship between species richness and the key metric from the JCE−HP
term from Equation 3.52. In each plot, the color of each point represents a different value of
M (Moore Neighborhood size). Red: M = 1, orange: M = 3, green: M = 5, : M = 7, pur-
ple: M = 9. Panel (A) shows consideration of the entire quantity, (1−e−a)M2R(σh, N)kM .
Most of the variation in species richness is captured by this quantity. Panel (B) shows the
same plot as (A) when one ignores spatial structure and spatial autocorrelation. That is,
(B) shows the key metric from the JCE−HP term when it is assumed that habitat types
(and, by extension, all trees) are randomly distributed in space (i.e. when kM = 1). Taking
into account spatial structure (Panel A) explains species richness far more precisely than
it is ignored. In principle, considering spatial structure accounts for the number of favor-
able patches on which resident trees induce JCEs (proportional to M2kM ). Ignoring spatial
structure accounts for only the total number of patches on which resident trees induce JCEs
(proportional to M2). kM was calculated using Equation 3.7 (Methods), M2 and σh are
parameters from each simulation; a = 0.5 in all simulations.
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most entirely explained by the key quantity of the JCE−HP term, (1 − e−a)M2R(σh, N)kM (Fig.

3.5A). Failing to account for spatial structure (modifying the invasion criterion such that species

and patches are randomly distributed in space; i.e. kM = 1), while still informative, yields a much

poorer explanation of species richness (Fig. 3.5B).

3.5 Discussion

3.5.1 How Janzen-Connell Effects and Habitat Partitioning interact

Despite considerable theoretical attention given to both JCEs (e.g. Armstrong, 1989; Adler and

Muller-Landau, 2005; Stump and Comita, 2018; Levi et al., 2019; Chisholm and Fung, 2020; Smith,

2022a) and HP (e.g. Chesson, 1985, 2000a; Amarasekare, 2003; Leibold et al., 2004; Snyder and

Chesson, 2003; Shoemaker and Melbourne, 2016; Ben-Hur and Kadmon, 2020) in isolation and the

strong evidence of their joint presence in numerous communities, their potential interactions have

received relatively little theoretical attention. In this paper, I show that the interaction between

JCEs and HP fundamentally depends on the spatial composition of abiotic heterogeneity: JCEs

and HP synergistically interact to promote high species richness if habitat types exhibit positive

spatial autocorrelation.

This result stems from how HP and autocorrelation modify the spatial composition of com-

petitors and the patches they neighbor. First, consider the case of only JCEs: all species in the

community compete equally (in that no habitat preferences exist) so the particular patches on which

a species induces JCEs does not matter. This is not the case when HP is considered: species expe-

rience high fitness only on patches with suitable habitat types and compete primarily with species

sharing similar habitat preferences. When there is little or no spatial autocorrelation, species do not

tend to neighbor patches on which they experience high fitness (Fig. 3.1C) which means they induce

JCEs on many patches they are already unlikely to colonize. When habitat types are positively

autocorrelated, this is reversed: species tend to neighbor and induce JCEs on patches where they

have high fitness. This increases the strength of frequency dependence, allowing for the maintenance

of relatively high species richness (Fig. 3.3). In the extreme case – when there is high autocor-
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relation and species are highly specialized (Fig. 3.3A) – the community approximately acts like

it is structured with several sub-communities comprising primarily of competitors sharing habitat

preferences. This increases species richness because the strength by which JCEs promote invasion

is a decreasing function of the total number of species in the community (Equation 3.52). How

the spatial scale over which spatial heterogeneity is autocorrelated compares to the spatial scale

over which JCEs occur, kM , defines the strength of this effect. Measuring kM is therefore of key

importance in determining the interaction between these mechanisms.

Notably, Stump and Chesson (2015) examine a similar model and find a lack of interaction

between JCEs and HP. This discrepancy reflects the fact that their model treats space implicitly. In

doing so, JCEs occur entirely locally at the patch level (i.e. JCEs occur only on the patch occupied

by adults and no neighboring patches; equivalent to M = 1). While elegant, this simplification

ignores the spatial composition of adults, which constitutes the key factor governing the interaction

of JCEs and HP. Future modeling efforts should be cognizant of how explicit (as compared to

implicit) treatments of space may qualitatively change how coexistence mechanisms interact.

3.5.2 Realism of the model and future avenues

This model makes several simplifying assumptions which may quantitatively modify the results.

One limitation is that I considered a one-dimensional axis on which the spatial environment varies;

in reality, species-specific adaptations to spatial environmental heterogeneity are multidimensional.

Different spatially varying environmental factors may exhibit differing (and independent) levels

of autocorrelation, which may factor into how JCEs and HP interact. In addition, I assumed no

temporal variation in the habitats (habitat structure was invariant with time, sometimes called “pure

spatial variation”; Chesson, 1985). However, some forms of spatial environmental heterogeneity

emerge from short-term spatial-temporal fluctuations (e.g. flooding that occurs periodically and

randomly at different locations) such that changes in the spatial environment are rapid. If habitat

types change considerably faster than tree generation time, adults are no longer likely to neighbor

favorable patches (even if spatial structure shows positive autocorrelation). This can undermine

the synergistic interaction between JCEs and HP. More broadly, the interaction between JCEs
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and HP (defined by kM above) under spatial-temporal variation can be redefined by kM scaled by

the probability a patch changes between recruitment events (see Appendix B for details). Future

empirical studies examining JCEs and HP should emphasize the time-scale of spatial-temporal

variation in habitat types.

All species were assumed to have the same degree of habitat specialization, σh. However, the

breadth of environmental tolerance varies between species. For example, larger seeded species tend

to be tolerant of more stressful environmental conditions (large seeded species are thus habitat gen-

eralists with respect to stress; Moles et al., 2003; Moles and Westoby, 2004) and previous work shows

that a trade-off between seed size and fecundity can maintain diversity in communities with spa-

tial heterogeneity in environmental stress levels (the tolerance–fecundity trade-off; Muller-Landau,

2010). Future work explicitly integrating the effects of variable stress levels, the tolerance–fecundity

trade-off, and the model presented here might be a fruitful avenue to examine how interactions

between JCEs and HP manifest themselves in empirical communities. Empirical evidence also indi-

cates large-seeded (and shade-tolerant) species are less sensitive to JCEs (e.g. Lebrija-Trejos et al.,

2016), which offers a potential means of integrating JCEs into life history theory.

An intriguing spatially varying abiotic variable JCEs may interact with is light availability.

Species differ in their shade tolerance and light capture strategies (Wright et al., 2003; Rüger et al.,

2009; D’andrea et al., 2020). However, light availability is largely determined by biotic factors (e.g.

the presence or absence of canopy trees). This makes JCEs (which are biotically induced) and spatial

variation in light availability particularly likely to interact. In addition to providing insights about

species coexistence, theoretically exploring these interactions may provide insights into the growing

body of evidence showing light availability and species shade tolerance impacts measurements of

JCE strength (Comita et al., 2009; Inman-Narahari et al., 2016; McCarthy-Neumann and Kobe,

2019; Brown et al., 2020; Song et al., 2021b; Holík et al., 2021; Magee et al., 2021).

There are several further interesting avenues for future studies to explore. The model assumes

species are not seed-limited. However, seed limitation can reduce species richness (Hurtt and Pacala,

1995; Ben-Hur and Kadmon, 2020) and the parameter space over which coexistence mechanisms

operate (Muller-Landau, 2010). An additional complication is dispersal limitation, which can in-
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teract with both HP (Chesson, 2000a; Snyder and Chesson, 2003; Hart et al., 2017; Ben-Hur and

Kadmon, 2020) and JCEs (Muller-Landau and Adler, 2007; Stump and Chesson, 2015; Chisholm

and Fung, 2020). Furthermore, this study assumes distance and density-dependent effects are per-

fectly specialized. While measurements show JCEs are indeed highly specialized (e.g. Comita et al.,

2014; Sarmiento et al., 2017; Gripenberg et al., 2019) specialization is not perfect and often exhibits

taxonomic spillover (Ødegaard et al., 2005; Gilbert and Webb, 2007). Whether species that share

natural enemies are also more likely than random chance to have similar habitat associations is an

additional axis on which HP and JCEs can interact (Stump, 2017).

Overall, the assumptions of this model leave room for refined biological realism and integration

into life history theory that likely quantitatively modify how the joint ability of JCEs and HP to

maintain diversity. However, the main result – that the interaction between HP and JCEs is shaped

by the degree of spatial autocorrelation in habitat types – is likely to qualitatively hold so long as

additional assumptions do not disrupt the tendency of adults to neighbor (and induce JCEs on)

favorable patches when spatial autocorrelation is high.

3.5.3 Relevance to empirical measurements

Many studies measure JCE strength by quantifying the probability of juvenile survival close to

and distant from conspecific adults (e.g. references in Comita et al., 2014; Song et al., 2021a).

Previous empirical and theoretical work notes that the co-occurrence of JCEs and HP can complicate

measurements of the former (e.g. Comita et al., 2009; Piao et al., 2013; Stump and Chesson, 2015; Wu

et al., 2016). This is because in heterogeneous environments where HP operates, juveniles near adults

may inhabit favorable habitats while juveniles far from adults may persist in relatively unfavorable

conditions. This can obscure measurements purely based on the relative survival probability of

offspring near and far from conspecifics.

The scenario is further complicated when considering the interacting spatial scales of JCEs and

autocorrelation of the abiotic environment (defined by kM in the model). JCEs and HP are predicted

to strongly interact under positive spatial autocorrelation; it therefore is necessary to parse out how

both density-independent and density-dependent survival varies as a function of conspecific adult
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proximity. There are several avenues to accomplish this. For example, recent papers use GLMMs to

examine how conspecific (and heterospecific) distance and density-dependent effects and spatially

varying abiotic factors (e.g. topography, elevation, and pH) affect species-specific seedling and

sapling survival (Yao et al., 2020; Huang et al., 2022). Such measurements in concert with the

spatial distribution of habitat types and spatial point analyses of adult trees (e.g. Wiegand and

Moloney, 2013; Wiegand et al., 2021) offer a promising means of quantifying the strength of JCE-

HP interactions and the stabilizing effect it generates.

Another option is to preform experiments that directly tease out density/distance-dependent

and density-independent survival. As empirical evidence indicates that specialized natural enemies

(often fungal pathogens) generate JCEs (Bagchi et al., 2010, 2014; Liu et al., 2012; Hazelwood et al.,

2021), 2× 2 factorial manipulation experiments comparing juvenile survivorship near and far from

conspecific adults in fungicide-treated locations vs. untreated locations may provide insights. Such

an experiment would measure four quantities: (1) density-independent (fungicide-treated) juvenile

survival near conspecific adults (SN
T ), (2) density-independent (fungicide-treated) juvenile survival

far from conspecific adults (SF
T), (3) non-fungicide-treated juvenile survival near conspecific adults

(SN
U), and (4) non-fungicide-treated offspring survival far from conspecific adults (SF

U). Importantly,

JCEs and HP strongly interact when adults induce JCEs primarily on locations where offspring

have high survivorship (Figs. 3.2, 3.3). Evidence for this interaction would be supported if both

SN
T > SF

UT (density-independent survival is greater near conspecific adults) and SN
T/S

N
U > SF

T/S
F
U

(the proportional decrease in juvenile survival near conspecific adults is greater than the decrease

far from conspecific adults).

3.5.4 Broader significance

Results are relevant to conservation concerns. Previous work shows habitat fragmentation reduces

species richness (Hanski, 2015; Fletcher Jr et al., 2018) though the ecological processes that facili-

tate this are contentious. The results of this study suggest that fragmentation may reduce diversity

through its interaction with JCEs. The degree of spatial autocorrelation is related to the extent

of environmental fragmentation: lower autocorrelation implies that similar habitats are more frag-
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mented (or, at least, more homogenized) in space. Therefore, habitat fragmentation may have

particularly severe consequences for the maintenance of diversity of sessile organisms in systems for

which JCEs and HP jointly operate. Indeed, JCEs have been measured to decrease in strength in

more fragmented environments (nearer to the forest edge; Krishnadas et al., 2018) which can reduce

their ability to stabilize coexistence (Krishnadas and Stump, 2021). The results of this study provide

a potential mechanism for these observations if fragmentation results in a reduction in the mean

distance between patches on which juvenile trees experience relatively high fitness. Processes that

homogenize the spatial composition of habitats would also reduce potential synergetic interactions

between JCEs and HP, even if the total area of the habitat remains intact. Restoration efforts

should therefore be cognizant of how the spatial composition of restored habitats affects distance

and density-dependent processes.

3.5.5 Conclusion

JCEs and HP can work synergistically to promote species richness in spatially autocorrelated en-

vironments. This result highlights the need to carefully model the interactions between spatially-

dependent stabilizing mechanisms. Precise examinations of spatial coexistence mechanisms that

elucidate the conditions under which they work in series or parallel are necessary to explain the

high diversity of tropical forests and pinpoint environmental variables of high conservation concern.
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Appendix B

Introduction

This appendix is broken into several sections. First, I provide a more detailed general derivation of

the model presented in the main text. Second, I derive the approximate invasion criterion from the

main text. Third, I demonstrate that the JCE-HP (Janzen-Connell Effect - Habitat Partitioning)

model converges to a model with HP alone when a community is highly diverse (large N) and there

is no spatial autocorrelation (kM = 1; as noted in the main text). Fourth, I discuss how spatial-

temporal autocorrelation impacts the interaction between JCEs and HP. Fifth, I demonstrate the

accuracy of the approximate invasion criterion. Sixth, and finally, I provide additional details on

the simulations.

General model derivation

As noted in the main text, I consider a discrete-time site occupancy model. The community consists

of a X ×X grid, upon which each cell represents a single patch that contains a single adult tree.

Here, I (in detail) describe the offspring dynamics on each patch type.

Each time-step, species i disperses Ki seeds uniformly throughout the environment. i = 1, 2, .., N

such that there are N species in the community. Dispersal is assumed to be global. Therefore, the

number of offspring species i disperses to a each patch is equal to piKi, where pi is the proportion of

patches in the environment occupied by species i. The number of offspring of species i dispersed to

a given patch experience mortality due to (1) habitat type and (2) Janzen-Connell Effects (JCEs).
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Let x represent a given patch in space. The dynamics of the abundance of offspring of species i

dispersed at patch x at time t, henceforth Si(x, t), are described by the following ODE

dSi(x, t)

dt
= −hi(x)Si(x, t)− ji(x, t)Si(x, t) (3.14)

where hi(x) is a function defining the density-independent mortality of offspring of species i on

the patch at location x and ji(x, t) describes how the density of adults of species i influences

mortality. Importantly, density-independent mortality (hi(x, t)) and density-dependent mortality

(ji(x, t)) are entirely independent on the patch level. This means that interactions between JCEs

and HP (described below) are emergent properties of the spatial composition of adults.

Solving for the ODE (noting the initial number of offspring dispersed to a patch is equal to

piKi) yields

Si(x, τ) = piKi exp
(
− hi(x)τ

)
exp
(
− ji(x)τ

)
(3.15)

where τ is the period over which offspring are vulnerable to density-independent and density-

dependnet mortality. For simplicity, I use the notation Si(x) in place of Si(x, τ).

For density-independent effects, I describe mortality as a Gaussian function of habitat type,

which entails:

hi(x)τ = mi +
(x− hopt,i)

2

2σ2
h

(3.16)

therefore

exp
(
− hi(x)τ

)
= exp(−mi) exp

(
− (x− hopt,i)

2

2σ2
h

)
(3.17)

The first term, exp(−mi), is the baseline proportion of offspring that survive on a species’ optimal

patch type. The second term represents how patch type affects density-independent mortality where

hopt,i is the optimal patch type of species i (0 ≤ hopt,i ≤ 1) and σh is the breadth of environmental

response (smaller σh means species are more specialized). Note that latter term implies that survival

is a Gaussian function of habitat type. I henceforth let Hi(x) = exp
(
− (x−hopt,i)

2

2σ2
h

)
.

JCEs, defined by ji(x), are implemented by assuming that offspring mortality increases linearly
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with the number of adult trees within the M ×M Moore neighborhood around a patch. Therefore,

ji(x)τ = a

M(x)2∑
m=1

1m(i) (3.18)

noting that M2 trees are contained within an M × M Moore neighborhood. M(x) refers to the

Moore Neighborhood around the patch located at x. a is a constant that defines the baseline

strength of JCEs over the time period of vulnerability, τ . exp(−a) represents the proportion of

offspring that survive JCEs when a single adult falls within the Moore neighborhood. 1m(i) is an

indicator function for which 1m(i) = if m = i and 1m(i) = 0 if m ̸= i. Therefore,

exp
(
− ji(x)τ

)
= exp

(
− a

M(x)2∑
m=1

1m(i)

)
(3.19)

I henceforth let Ji(x) = exp
(
− a

∑M(x)2

m=1 1m(i)
)
.

Overall, then, Si(x) = Kiexp
(
− mi

)
Hi(x)Ji(x). Let Kiexp(−mi) = Yi, in which case Yi is a

composite parameter of the fecundity and the baseline density-independent mortality of species i’s

offspring. I refer to Yi as “intrinsic fitness”. Then,

Si(x) = piYiHi(x)Ji(x) (3.20)

as shown in the main text.

Derivation of approximate invasion criterion

In this section, I show the derivation of the approximate invasion criterion from the main text. This

term quantifies to what extent Janzen-Connell Effects (JCEs) and Habitat Partitioning (HP) affect

the ability of a rare species (a species at low proportion in the environment) to invade a community

of N resident species. The following derivation assumes (1) the proportion of habitat types are

uniformly distributed and (2) species fitness (and, hence, species abundance) is independent of

habitat association.

158



Basic setup

As noted in the main text and above, the number of offspring of species i on patch x, Si(x), is equal

to:

Si(x) = piYiHi(x)Ji(x) (3.21)

where

Hi(x) = exp(−(x− hopt,i)
2/2σ2

h) (3.22)

and

Ji(x) = exp
(
− a

M(x)2∑
m=1

1m(i)

)
(3.23)

wherein

1m(i) =


1, if m = i

0, if m ̸= i

(3.24)

Each time-step, each adult dies with probability δ. If the adult on a patch dies, the patch

is immediately replaced by another individual. The identity of the species replacing the patch is

determined by a lottery model Chesson and Warner (1981) where the probability species i “wins”

the lottery and colonizes the patch is equal to the relative abundance of its offspring on a patch.

That is:

P(species i colonizes patch x) =
Si(x)∑N
j=1 Sj(x)

(3.25)

using the quantities from Equation 3.21 for each of the N species.

Basic invasion criterion derivation

Using the above, the growth rate of species i is equal to

δ

[∑
all x

Si(x)∑N
j=1 Sj(x)

g(x)− pi

]
(3.26)

where δ is the proportion of adult trees that die each time-step. g(x) is a probability mass function

representing all patches in the community such that
∑

allx g(x) = 1. It is assumed that patch types
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are uniformly distributed such that there are an equal number of each patch type.

A rare species, species i, can invade if

δ

[∑
all x

Si(x)∑N
k=1 Sk(x)

g(x)− pi

]
> 0 (3.27)

I now substitute Equation 3.21 into Equation 3.27. If species i is rare in the population, it escapes

JCEs on essentially all patches, in which case Ji(x) ≈ 1. Therefore, species i can invade if

δpi

[
Yi
∑
all x

Hi(x)∑N
j=1 pjYjHj(x)Jj(x)

g(x)− 1

]
> 0 (3.28)

From here, I make several approximations in order to derive an analytical expression. Firstly, while

species fitness is a Gaussian function (Equation 3.22) of habitat type for the numerical simulations,

I make the approximation

Hi(x) ≈


1, if hopt,i − 1

2σh
√
2π ≤ x ≤ hopt,i +

1
2σh

√
2π

0, otherwise
(3.29)

or, in words, species i experiences a relative fitness of 1 for the proportion of habitat types between

hopt,i − 1
2σh

√
2π and hopt,i +

1
2σh

√
2π and 0 in other habitat types (Fig. 3.6). Note that this

approximation maintains the total area underneath Hi(x) (i.e.
∫∞
0 Hi(x) = σh

√
2π for both the

Gaussian function, Equation 3.22, and the approximation, Equation 3.29).

There are several implication to Equation 3.29 in relation to Equation 3.28. Firstly, species

i experiences non-zero fitness on a proportion of σh
√
2π patches, so patches in which species i

has 0 fitness can be ignored. Therefore, I subset
∑

all x such that x includes only patches for

which species i has a positive fitness association – that is, a fitness of 1 (henceforth
∑

x∈Hi(x)=1).∑
x∈Hi(x)=1 g(x) =

∑
all x g(x)σh

√
2π.

Let g′(x) be a new probability mass function that represents the distribution of patches favorable
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to species i (in which x ∈ Hi(x) = 1). Then, species i can invade if

δpi

[
Yiσh

√
2π

∑
x∈Hi(x)=1

1∑N
j=1 pjYjHj(x)Jj(x)

g′(x)− 1

]
> 0 (3.30)

Then, with some further algebraic manipulations, this is equal to

∑
x∈Hi(x)=1

1

1−
(
1−

∑N
j=1 pj

(
Yj/Yi

)(
Hj(x)/σh

√
2π
)
Jj(x)

)g′(x)− 1 > 0 (3.31)

Then, assuming the term in parentheses in the denominator is somewhat small, I take the linear

term of the Maclaurin series, which gives

∑
x∈Hi(x)=1

g′(x)

[
1 +

(
1−

N∑
j=1

pj
(
Yj/Yi

)(
Hj(x)/σh

√
2π
)
Jj(x)

)]
− 1 > 0 (3.32)

which, after canceling some terms and doing some rearranging, gives

Yi >
∑

x∈Hi(x)=1

N∑
j=1

pjYj
Hj(x)

σh
√
2π

Jj(x)g
′(x) (3.33)

noting that
∑

x∈Hi(x)=1 g
′(x) = 1 by the definition of g′(x) as a probability mass function.

The summations can be reversed and the above can be rewritten as

Yi >

N∑
j=1

pjYj
∑

x∈Hi(x)=1

Hj(x)

σh
√
2π

Jj(x)g
′(x) (3.34)

Then, Hj(x) can be broken into two parts, such the latter sum can be expressed as

∑
x∈Hi(x)=1

1

σh
√
2π

Hj(x)Jj(x)g
′(x) =

1

σh
√
2π

(
1−Rji

) ∑
x∈Hi(x)=1

0× Jj(x)g
′(x)

+
Rji

σh
√
2π

∑
x∈Hi(x)=1

1× Jj(x)g
′(x)

=
Rji

σh
√
2π

E
[
Jj(x)

]
(3.35)
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where Rji is the proportion of patches in which species j and species i both have positive habitat

associations. That is, Rji is the proportion of patches where for which Hj(x) = Hi(x) = 1 over

patches favorable to species i.

The expectation, E
[
Jj(x)

]
, is taken with respect to x. E[Jj(x)] should be interpreted as the

expected probability of survival of species j’s offspring due to JCEs on a suitable patch. This yields

the expression

Yi >
N∑
j=1

pjYj
Rji

σh
√
2π

E
[
Jj(x)

]
(3.36)

Evaluation of E[Jj(x)] and derivation of kM

Now, I evaluate E[Jj(x)]. Consider a patch in space. JCEs are induced on the patch by adult trees

within the M×M Moore neighborhood surrounding it. The probability species j’s offspring survive

on patch x is equal to (as noted before)

Jj(x) = exp
(
− a

M(x)2∑
m=1

1m(j)

)
(3.37)

where a is a constant that defines the baseline strength of JCEs and 1m(j) is an indicator function

for which

1m(j) =


1, if m = j

0, if m ̸= j

(3.38)

To approximate the expectation of Jj(x), I assume species are approximately randomly distributed

in space, with a caveat. Species j can only occupy patches for which it has a positive habitat

association (Hj(x) = 1). If patches are randomly distributed in space, then (by independence) the

probability that species i neighbors any patch follow a binomial distribution:

P(y of the M2 neighbors are species j ) ∼ Bin
(
M2, pj

)
(3.39)

noting that the probability that species j occupies an particular patch is equal to its proportion in

the community.
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The autocorrelation of the environment potentially modifies the number of individuals of species

j nearby a favorable patch. Firstly, consider when patches are randomly distributed (zero auto-

correlation). In this case, the probability species j neighbors any patch in the community is also

random (which is what Equation 3.39 assumes). This changes if patches are positively autocorre-

lated in space. To see this, consider an extreme case of high spatial autocorrelation in which a patch

favorable to species j is always neighbored only by patches that are also favorable to species j on the

scale of the M2-sized Moore neighborhood. Patches favorable to species j make up a proportion of

σh
√
2π of the community. If patches favorable to species j neighbor only patches that also favorable

to species j, then the probability a random patch favorable to species j is neighbored by an adult

of species j is equal to pj/(σh
√
2π). For example, if species j occupies 1/2 of all patches favorable

to it, then pj =
1
2σh

√
2π and pj/(σh

√
2π) = 1

2 .

More realistically, patches may exhibit some level of autocorrelation that are between the above-

mentioned extremes. Assuming habitat types range from zero autocorrelation to high autocorrela-

tion, the number of individuals of species j neighboring a favorable patch is given by

P(y of the M2 neighbors are species j ) ∼ Bin
(
M2, pjkM

)
(3.40)

where kM defines the extent to which patches are positively autocorrelated. kM ≈ 1 if patches are

randomly distributed and kM ≈ 1/σh
√
2π if patches are highly correlated. Or, put simply,

1 ≤ kM ≤ 1

σh
√
2π

(3.41)

In theory, kM could be less than 1 if habitat types are negatively spatially autocorrelated. However,

I do not consider this possibility for the purposes of this paper. kM is highly similar to Ripley’s K

(Ripley, 1976) in discrete space.

Then, to calculate E[Jj(x)], it is necessary to take the expectation of offspring survival. Recall

that offspring survival decreases exponentially with the number of conspecific adults within the

Moore neighborhood such that P(offspring of species j survive given y adults of species j ) = e−ay.
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Then,

E[Jj(x)] =
M2∑
y=0

P(y of the M2 neighbors are species j ) ×

P(offspring of species j survive given y adults of species j )

≈
M2∑
y=0

(
M2

y

)
(pjkM )y(1− pjkM )M

2−ye−ay

=
(
1− (1− e−a)pjkM

)M2

(3.42)

It is more convenient to work with the above expression by noting the property that (1−x)y ≈ e−xy.

Applying this to the above yields

E[Jj(x)] ≈ e−(1−e−a)M2kMpj (3.43)

and, overall, plugging this into the invasion criterion yields the expression

Yi >

N∑
j=1

Yj
Rji

σh
√
2π

pje
−(1−e−a)M2kMpj (3.44)

General invasion criterion derivation

I now evaluate the above summation. To do so, I first take the linearization of the terms in the

summation with respect to pj about the mean proportion in the population p. This gives

pje
−(1−e−a)M2kMpj ≈ p e−(1−e−a)pM2kM + e−(1−e−a)M2p kM

(
1− pM2kM (1− e−a)

)(
pj − p

)
(3.45)

Then, substituting the lineraization into the summation gives:
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N∑
j=1

(
Yj

Rji

σh
√
2π

)
pje

−(1−e−a)M2kMpj = N
1

N

N∑
j=1

(
Yj

Rji

σh
√
2π

)
pje

−(1−e−a)M2kMpj

≈ N
1

N

N∑
j=1

Yj p
Rji

σh
√
2π

e−(1−e−a)M2kM p +

Yj
Rji

σh
√
2π

e−(1−e−a)M
2

N
kM
(
1− pM2kM (1− e−a)

)(
pj − p

)
= N

1

N

N∑
j=1

Yj p
Rji

σh
√
2π

e−(1−e−a)M2kM p −

N
1

N

N∑
j=1

p Yj
Rji

σh
√
2π

e−(1−e−a)M2kM p
(
1− pM2kM (1− e−a)

)
+

N
1

N

N∑
j=1

Yjpj
Rji

σh
√
2π

e−(1−e−a)M2kM p
(
1− pM2kM (1− e−a)

)

(3.46)

Then, the above summations can be evaluated by using the property that 1
N

∑
XY = X Y +

Cov(X,Y ) where X and Y are random variables and X = 1
N

∑
X (i.e. it is the mean). Additionally,

1
N

∑
(XY )Z = XY Z + Cov(XY,Z).

In the above expression, there are three summations. The first two summations contains Yj and

Rji terms, but no pj terms. To evaluate these summations, I use the property that 1
N

∑
YjRji =

Ri Y + Cov(Ri, Y ). Because fitness is independent of habitat association, Cov(Ri, Y ) = 0. Thus,

the first sum in the above equation gives

N
1

N

N∑
j=1

p Yj
Rji

σh
√
2π

e−(1−e−a)M2kM p = Np Y
Ri

σh
√
2π

e−(1−e−a)M2kM p (3.47)

and the second sum gives

N
1

N

N∑
j=1

pYj
Rji

σh
√
2π

e−(1−e−a)M2kM p
(
1− pM2kM (1− e−a)

)
=

Np Y
Ri

σh
√
2π

e−(1−e−a)M2kM p
(
1− pM2kM (1− e−a)

) (3.48)

respectively.
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For the third summation, I use the property 1
N

∑
(pjYj)Rji = pY Ri + Cov(p Y,Ri). For the

purposes of this study, it can be assumed that Cov(p Y,Ri) ≈ 0. This is because habitat types

are uniformly distributed and species fitness (Yj) is independent of habitat association. pjYj is

equal to the number of offspring species j disperses to each patch. Fitness (Y ) is independent of

habitat association and species proportion (p) is simply a function of the the relative fitness of

species (i.e. species vary only in Y , so their proportion should only depend on Y ). Because the

number of patches of each habitat type is uniformly distributed, the number of offsrping that a

species produces is therefore independent of habitat association (which implies Cov(p Y,Ri) = 0).

More formally, pj = F (Yj) (i.e. p is a function of Y , as species vary only in Y , which ultimately

determines their relative proportion in the population). Therefore, pY = Y F (Y ) = G(Y ) where G

is a function. Then, Cov(p Y,Ri) = Cov(G(Y ), Ri) = 0 so long Ri and Y are independent and Y is

measurable (which is true on the basis fitness is randomly distributed, i.e., it is a random variable).

Additionally, using the same property, pY = 1
N

∑
pjYj = p Y+Cov(p, Y ) such that 1

N

∑
(pjYj)Rji

=
(
p Y + Cov(p, Y )

)
Ri. With these simplifications, the summation can be evaluated as:

N
1

N

N∑
j=1

Yj
Rji

σh
√
2π

pje
−(1−e−a)M2kM p

(
1− pM2kM (1− e−a)

)
=

N

[
pY

Ri

σh
√
2π

+
1

σh
√
2π

Cov(p Y,R)

]
e−(1−e−a)M2kM p

(
1− pM2kM (1− e−a)

)
= N

[
p Y + Cov(p, Y )

][
Ri

σh
√
2π

]
e−(1−e−a)M2kM p

(
1− pM2kM (1− e−a)

)
=

[
N p

Ri

σh
√
2π

Y +
Ri

σh
√
2π

N Cov(p, Y )

]
e−(1−e−a)M2kM p

(
1− pM2kM (1− e−a)

)
(3.49)

Adding all three of the summations (adding the final terms of Equations 3.47, 3.48, and 3.49) yields

expression

N∑
j=1

Yjpje
−(1−e−a)M2kMpj ≈ Y

(
1 + Cov(p, Y )ϕ

)
Np

Ri

σh
√
2π

e−(1−e−a)M2kM p (3.50)
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where

ϕ =
1

p

1

Y

(
1− pM2kM (1− e−a)

)
(3.51)

In which case, the invasion criterion can be written as

Yi > Y

(
1 + Cov(p, Y )ϕ

)
Np

Ri

σh
√
2π

e−(1−e−a)M2kM p (3.52)

Simplification of p

Consider the term p, which is present in Equation 3.52. If all patches in the community are occupied,

then

p =
1

N
(3.53)

on the basis that the sum of the proportions of all patches in the community should add to 1

(therefore, p = 1
N

∑N
j=1 pj =

1
N ). However, whether every patch in the community is filled depends

on if the trait space of the resident community (all hopt,j , j = 1, 2, ..N) comprise values that contain

the entire habitat space (between 0 and 1). Under the approximation of Equation 3.29, some habitat

types are completely unsuitable for species j. Therefore, if there are relatively few species in the

community (low N), it is possible that there are portions of the habitat for which no species has

a positive habitat association (at least, according the approximation). In this case, not all of the

community is occupied and
∑N

j=1 pj < 1. Conceptually, then:

p =
1

N
×
(
1− P

(
a habitat type is unoccupied

))
=

1

N
P(there is no unoccupied trait space between two species adjacent in trait space)

(3.54)

To derive an expression for p, I assume that traits (hopt,j) of the N species in the resident community

are randomly distributed in trait space (i.e. follow a uniform distribution). Trait vales (hopt,j) are
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between 0 and 1.

Let z represent a random point in trait space (0 ≤ z ≤ 1). In general, there will be species with

optima greater than and less than z. Let x1 be the closest value of a species’ optimum to z for

which x1 < z. Similarly, let x2 be the closest value of a species’ optimum to z for which x2 > z. x1

and x2 completely overlap z if x2 − x1 ≤ σh
√
2π (based on the approximation of Equation 3.29).

The quantity of interest,P(there is no unoccupied trait space between two species adjacent in trait

space), is then given by P
(
x2 − x1 ≤ σh

√
2π
)
. This is because each species’ range of suitability

extends xj ± 1
2σh

√
2π, so there is complete overlap so long as x2−x1 ≤ σh

√
2π. This can be readily

described using Order Statistics. Notably, the probability density function between adjacent order

statistics given N events (x2 and x1 in this case) is given by

x2 − x1 ∼ Beta
(
1, N). (3.55)

The desired quantity is P
(
x2 − x2 ≤ σh

√
2π
)
. This, by definition, can be evaluated using the

CDF of the above probability distribution function. This can be evaluated analytically. Let B(s, r)

represent the Beta function. Then:

P
(
x2 − x2 ≤ σh

√
2π
)
=

∫ σh

√
2π

0

(
1− t

)N−1
dt

B(1, N)

=

∫ σh

√
2π

0

(
1− t

)N−1
dt∫ 1

0

(
1− t

)N−1
dt

= 1−
(
1− σh

√
2π
)N

(3.56)

Noting that σh
√
2π is relatively small (less than 1), one can make the approximation 1 −

(
1 −

σh
√
2π
)N ≈ 1 − e−Nσh

√
2π (which is a highly accurate for the values of σh considered). Then,

overall, this yields

P
(
x2 − x1 ≤ σh

√
2π
)
≈ 1− e−Nσh

√
2π (3.57)
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therefore,

p =
1

N

(
1− e−Nσh

√
2π
)

(3.58)

and

Np = N

(
1

N
×
(
1− e−Nσh

√
2π
))

= 1− e−Nσh

√
2π

(3.59)

Noting that this ignores edge cases in which a species’ optima overlaps with trait space outside of

the community (i.e. the above assumes that σh
√
2π ≤ z ≤ 1− σh

√
2π).

This is an approximation – in principle (for the numerical simulations) Equation 3.22 assumes

that all species have non-zero fitness on all patches such that all patches would be occupied. How-

ever, it is necessary to make this adjustment – because it is assumed that the rare species cannot

colonize unfavorable patches (as defined by Equation 3.29) it must be also assumed that resident

species cannot occupy unfavorable patches (at least, for the purpose of deriving the invasion crite-

rion).

Evaluation of Ri and simplification of approximate invasion criterion

The invasion criterion (Equation 3.52) defines the condition that allows the invasion of a rare species

with a particular habitat association (hopt,i). While this is a potentially useful quantity, a more

useful metric would be to quantify how easy, on average, it is for a species to invade the community

with an arbitrary habitat association. To derive such a quantity, I take the expectation of Equation

3.52 with respect to different habitat preferences (i.e., all different values of hopt,i, from 0 to 1).

That is, I take the following expectation:

E
[
Yi
]
> E

[
Y

(
1 + Cov(p, Y )ϕ

)
Np

Ri

σh
√
2π

e−(1−e−a)M2kM p

]
(3.60)
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which can be rewritten as

E
[
Yi
]
> E

[
Y Np

Ri

σh
√
2π

e−(1−e−a)M2kM p

]
+ E

[
Ri

σh
√
2π

Cov(p, Y )ϕ′e−(1−e−a)M2kM p

]
(3.61)

where

ϕ′ =

(
1− M2kM

N
(1− e−a)

)
(3.62)

By independence, the above can be simplified to

E
[
Yi
]
>

(
E
[
Y
]
E
[

Ri

σh
√
2π

]
E
[
Np
]
+ E

[
Ri

σh
√
2π

]
E
[
Cov(p, Y )ϕ′]) E

[
e−(1−e−a)M2kM p

]
(3.63)

which is equal to

Yi >

(
Y E

[
Ri

σh
√
2π

]
Np+ E

[
Ri

σh
√
2π

]
Cov(p, Y )ϕ

)
e−(1−e−a)M2kM p (3.64)

The above separation of terms can be done because (1) intrinsic fitness is independent of habitat

association and (2) JCE strength is independent of habitat association. Overall, then, the quantity

E
[
Ri/σh

√
2π
]

must be evaluated.

Consider the term Ri/σh
√
2π. Recall that Ri represents the average proportion of the environ-

ment favorable to species i that competitors also experience as favorable (the mean proportion for

which Hj(x) = Hi(x) = 1). Thus, (1/σh
√
2π)E

[
Ri

]
is the mean proportion of the environment

favorable to species i that competitors also experience as favorable. Again assuming species are

randomly distributed in trait space (i.e. can be described by a Poisson process) I calculate the

expected overlap between species i with the N resident species. Let Oj,i be the overlap in habitat

preference between species i with species j. Then, letting dj = |hopt,j − hopt,i|,

Oj,i =


1− dj

σh

√
2π

if dj < σh
√
2π

0 Otherwise
(3.65)
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noting the above is derived from Equation 3.29. Then, E
[

Ri

σh

√
2π

]
is given by:

1

σh
√
2π

E
[
Ri

]
=

1

σh
√
2π

1

N
E
[∑

all j

Oj,i

]

=
2

σh
√
2π

1

N
E
[ ∑
j∈σh

√
2π

1− dj

σh
√
2π

]
by symmetry

=
2

σh
√
2π

1

N

(
E
[ ∑
j∈σh

√
2π

1

]
− E

[ ∑
j∈σh

√
2π

dj

σh
√
2π

])

=
2

σh
√
2π

1

N

(
Nσh

√
2π − 1

σh
√
2π

E
[ ∑
j∈σh

√
2π

dj

])
(3.66)

noting that the expression is multiplied by 2 because the sum must consider species that have

optima greater than or less than species i’s optima (i.e. the resident species’ optima are distributed

symmetrically around hopt,i).

dj is simply the waiting time of the jth event within the span of t = σh
√
2π of a Poisson process.

Therefore, E
[∑

j∈σh

√
2π dj

]
is equal to the expected sum of Poisson waiting times (a well-known

problem). Let X(t) represent the Poisson process at rate λ = N occurring over the “time period”

t = σh
√
2π. Additionally, let Z represent the sum of waiting times over t (that is, Z =

∑
j∈σh

√
2π dj).

This gives

E
[ ∑
j∈σh

√
2π

dj

]
= E

[
Z
]

= E
[
E
[
Z|X(t) = n

]]
= E

[1
2
tX(t)

]
because n Poisson events occurring within t

are uniformly distributed

=
1

2
λt2

=
1

2
N
(
σh

√
2π
)2

(3.67)

in which case,
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1

σh
√
2π

E
[
Ri

]
=

2

σh
√
2π

1

N

(
Nσh

√
2π − 1

σh
√
2π

1

2
N
(
σh

√
2π
)2)

= 1

(3.68)

Then, putting things together, let

R(σh, N) = Np
1

σh
√
2π

E
[
Ri

]
= 1− e−Nσh

√
2π

(3.69)

as shown in the main text. This also implies that

p =
1

N
R(σh, N) (3.70)

R(σh, N) is therefore a simple metric of the extent of habitat overlap. In words, R(σh, N) is the

probability a random habitat type in the environment falls within the range of habitat suitability of

at least one of the resident species. More nuanced metrics are possible, but this is sufficient for the

purposes of the present study. Note that the above derivations make the implicit approximation of

ignoring “edge cases” for which the invader’s or resident species’ habitat range overlaps with values

not in the environment (i.e., it is assumed that σh
√
2π ≤ hopt,i ≤ 1 − σh

√
2π). Accounting for

these cases would likely result in small quantitative differences in the above expressions, but no

qualitative changes.

Plugging Equations 3.69 and 3.70 into Equation 3.52 yields the invasion criterion:

Yi ≳ Y︸︷︷︸
mean

intrinsic
fitness

(
1 + cov(Y, p)ϕ

)
︸ ︷︷ ︸

relative
competition

term

R(σh, N)︸ ︷︷ ︸
HP
term

e−(1−e−a)M
2

N
R(σh,N)kM︸ ︷︷ ︸

JCE−HP
term

(3.71)

for which

ϕ =
N

R(σh, N)Y

(
1−R(σh, N)

M2

N
kM (1− e−a)

)
(3.72)
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noting that Equation 3.71 is identical to invasion criterion presented in the main text.

Interpretation of invasion criterion

Here, I provide several notes on the interpretation of Equations 3.71 and 3.72 that are not provided

in the main text. Generally, invasion becomes easier as the HP and JCE−HP terms decrease. The

HP term defines how HP in isolation make invasion easier (reduces the mean fitness encountered

by an invader) and the JCE−HP term quantifies how the interaction of JCEs and HP affect species

invasion.

R(σh, N) appears twice in the invasion criterion – once in the “HP term” and once in the

“JCE−HP term”. The HP term declines as R(σh, N) decreases while the JCE-HP term increases

as R(σh, N) decreases. This implies a tension between HP and JCE mechanisms. This can be

understood as follows. JCEs make invasion easier insomuch as they reduce the survival of the

resident species’ offspring that share habitat associations with the invader. R(σh, N) quantifies the

proportion of the environment in which the invader faces competitors. Therefore, the stabilizing

effect of JCEs decreases for small R(σh, N) because there are fewer species that may induce JCEs

on patches favorable to species i (the invader). This becomes unimportant for large N (when there

are a large number of species in the community).

The “relative competition term” (Equation 3.72) quantifies how the relative abundance of the

resident species affects species invasion. The relative competition term depends on Cov(Y, p). If

Cov(Y, p) is positive, invasion becomes more difficult. This will always be true (Cov(Y, p) > 0) in

the case examined in this model, as species vary only in Y (and species with higher Y are more

fit). Cov(Y, p) quantifies the degree to which species with relatively high fitness are also relatively

abundant – if highly fit species are also relatively abundant, then the invader experiences stronger

competition relative to when species abundance is unrelated to fitness (i.e. when Cov(Y, p) = 0

and the relative competition term = 1). ϕ is a constant that, in effect, quantifies how the JCEs (as

mediated by the JCE−HP term) reduce the fitness of relatively abundant species.
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Upper bound to R(σh, N)

If it assumed that species’ trait optima are regularly distributed (meaning species’ optima are

equidistant in trait space) then

R(σh, N) ≈


Nσh

√
2π N ≤ 1

σh

√
2π

1 N > 1
σh

√
2π

(3.73)

which represents an upper bound to R(σh, N). An interesting implication of Equation 3.73 is that

it implies that the stabilizing effect of HP alone disappears if N ≥ 1
σh

√
2π

, which suggests that no

more than 1
σh

√
2π

species should coexist when HP operates alone. This is therefore a lower bound

to species richness. Fig. 3.2 from the main text suggests this lower bound is a good approximation

(at least under high fitness variation, the situation examined in this paper).

Invasion criteria when only JCEs operate

In the main text, it is noted that in highly diverse communities (large N) for which R(σh, N) ≈ 1

(i.e. habitat niche space is saturated) in which there is zero autocorrelation (kM = 1) the invasion

criterion for the JCE and HP case (Equation 3.71) converges exactly to the invasion criterion for

which JCEs operate in isolation. Here, I provide a short proof of this claim.

Notably, Smith (2022a) shows that the invasion criterion of a rare species in a model almost

identical to that of this study without HP is approximately equal to

Yi > Y e−
(
1−e−a

)
M2

N︸ ︷︷ ︸
mean

JCE-fitness term

+NCov(p, Y )

(
1−

(
1− e−a

)M2

N

)
e−
(
1−e−a

)
M2

N︸ ︷︷ ︸
covariance-JCE term

(3.74)

with modifications to the notation in Smith (2022a) made for consistency. Setting R(σh, N) = 1

and kM = 1 in Equations 3.71 and 3.72, substituting the latter into the former, and doing some

rearranging yields an expression identical to Equation 3.74. Hence, the invasion criteria for the

JCE-HP case and the JCE-only cases are identical when N is large and habitats are randomly
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distributed in space at the patch level.

JCE-HP interactions under spatial-temporal variation

In the main text, it is noted that if habitat types change over time considerably faster than tree

generation time (i.e. fast relative to recruitment events), the synergistic interaction between JCEs

and HP is reduced. Here, I provide a simple analytical argument demonstrating this result.

In the above section “Evaluation of E[Jj(x)] and derivation of kM ”, I argue that the probability

y individuals of species j neighbor a random favorable patch is equal to

P(y of the M2 neighbors are species j ) ∼ Bin
(
M2, pjkM

)
(3.75)

where kM defines the extent to which patches are positively autocorrelated such that 1 ≤ kM ≤
1

σh

√
2π

. This conceptualization of kM , however, relies on the assumption that habitat types do not

change over time. If this assumption is relaxed, then kM must be modified to account for the

fact that a species initially near favorable patches may no longer neighbor them when recruitment

occurs.

Consider patches of type x such that x is favorable to species j. Let P(∆x) represent the

probability a patch remains favorable to species j between recruitment events. Conversely, a patch

changes from favorable to unfavorable for species j between recruitment events with probability

1−P(∆x). For simplicity, I assume that the level of spatial autocorrelation is unaffected by spatial-

temporal variation in habitat types (although a generative model would need to be specified to

implement this into simulations). Then, for a random patch x favorable to species j, the probability

a given neighbor within M2 is of species j is equal to

P(∆x)kM +
(
1− P(∆x)

)
(3.76)
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It then follows that

P(y of the M2 neighbors are species j ) ∼ Bin
(
M2, pj

[
P(∆x)kM +

(
1− P(∆x)

)])
(3.77)

from which the invasion criterion can be calculated in exactly the same way as the previous sections.

Therefore, the invasion criterion for a community with spatial-temporal variation is:

Yi ≳ Y︸︷︷︸
mean

intrinsic
fitness

(
1 + cov(Y, p)ϕ

)
︸ ︷︷ ︸

relative
competition

term

R(σh, N)︸ ︷︷ ︸
HP
term

e−(1−e−a)M
2

N
R(σh,N)

(
P(∆x)kM+

(
1−P(∆x)

))︸ ︷︷ ︸
JCE−HP

term

(3.78)

for which

ϕ =
N

R(σh, N)Y

(
1−R(σh, N)

M2

N
(1− e−a)

(
P(∆x)kM +

(
1− P(∆x)

))
(3.79)

I now highlight two limiting cases. If P(∆x) = 1 (patch types are very unlikely to change

between generations), then Equation 3.77) collapses to Equation 3.75 and, by extension, Equation

3.78 collapses to Equation 3.71. This is the case examined in the main text and the previous sections.

Conversely, if P(∆x) = 0 (patch types always change between generations), then P(∆x)kM +
(
1−

P(∆x)
)
→ 1. In this case, Equations 3.77 and 3.78 converge to the cause of zero autocorrleation

(kM = 1). In this case, there is no synergistic interaction between JCEs and HP.

More broadly, one should consider when 0 < P(∆x) < 1. The closer P(∆x) is to 1, the stronger

the synergistic interaction between JCEs and HP. Realistically, patches likely do not change entirely

randomly between types. Rather, the probability a patch of type x1 changes to type x2 between

recruitment events is likely a decreasing function of |x1 − x2|. Future models should explicitly

explore how specific regimes of spatial-temporal fluctuations impact the interaction between JCEs

and HP.
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Approximate invasion criterion validation and calculation

of kM

Previously, I derived the approximate invasion criterion from the main text. In this section, I derive

an expression that yields an “exact invasion criterion”. I then use simulations outputs to parameterize

the approximate and exact invasion criteria. I demonstrate that the exact and approximate invasion

criteria yield quantitatively similar outputs (Figs. 3.7 and 3.8) validating the usefulness of Equation

3.71 in interpreting the simulation outputs. Additionally, I show how kM is calculated (which is

necessary for quantifying the approximate invasion criterion). This calculation of kM is also shown

in the main text.

Comparison between approximate and exact invasion criteria

Numerically, species i will have a positive invader growth rate if

δ

[
1

X2

∑
all x

Si(x)∑N
k=1 Sk(x)

− pi

]
> 0 (3.80)

where X2 is all the patches in the community. Therefore, 1/X2 is the proportion each patch takes

up in the community. Substituting Si(x) = YiHi(x)pi, dividing each side by pi (such that per capita

growth rate is examined) and doing some re-arranging yields:

Yi >
X2∑

all x
Hi(x)∑N
k=1 Sk(x)

(3.81)

noting that

Hi(x) = exp(−(x− hopt,i)
2/2σ2

h) (3.82)

Now consider Equation 3.71, the approximate invasion criterion. Equation 3.71 was derived by

taking the expectation of the invasion criterion with respect to different optima (different values of
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hopt,i). The equivalent expression for Equation 3.81 is

Yi >

∫ 1

0

X2∑
all x

exp(−(x−h)2/2σ2
h)∑N

j=1 Sj(x)

dh (3.83)

where h is the habitat preference of the invader (with notation reduced for simplicity). However,

this can be computationally intense to calculate. Therefore, numerically, I examine

Yi >
1

S

S∑
h=1

X2∑
all x

exp(−(x−h/S)2/2σ2
h)∑N

j=1 Sj(x)

(3.84)

for which S is a constant, Note that Equation 3.84 converges to Equation 3.83 as S → ∞ by the

definition of a Riemann sum – thus, using a sufficiently large finite value of S allows for a close

numerical approximation of Equation 3.83.

Importantly, the left hand side of Equation 3.71 is identical to that of Equation 3.84. Therefore,

the quality of the approximation can be estimated by comparing the right hand sides of Equation

3.84 and Equation 3.71. I refer to the right hand side of Equations 3.84 and 3.71 as the “exact

invasion metric” and the “approximate invasion metric”, respectively.

I numerically compared the exact and approximate invasion metrics. For each of the simulations

depicted in Fig. 3.3 of the main text, I numerically calculated Equations 3.84 and 3.71 using the

X × X community produced by the simulation (i.e. the community after the final time-step).

Equation 3.84 was computed directly under the condition that S = 25. For Equation 3.71, I

calculated kM for each parameter combination (each combination of σh and M) using the method

explained below (and in the main text). Equation 3.71 was then evaluated using the values of p,

Y , σh, N , kM , and R(σh, N) from the persisting community for each case in Fig. ??. Comparisons

indicate that Equation 3.71 yields a highly accurate approximation in most cases (Figs. 3.7 and

3.8). Therefore, Equation 3.71 serves as an appropriate tool to explain the theoretical results. Both

values of R(σh, N) (that is, Equations 3.69 and 3.73) yielded highly accurate approximations.
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Calculation of kM

Equation 3.71 requires the calculation of kM , the metric of the autocorrelation of the environment

at the M ×M Moore neighborhood scale. As explained in the Methods and Materials of the main

text,

kM =
1

σh
√
2πM2

X2∑
x=1

∑
j∈M2

1
[
j < f(x)

]
X2

(3.85)

where x indicates a single patch in the community and X2 is the number of patches in the community.

1
[
j < f(x)

]
is an indicator function that describes the number of patches of similar type to x within

the M ×M Moore neighborhood about x:

1
[
j < f(x)

]
=


1, x− 1

2σh
√
2π ≤ j ≤ x+ 1

2σh
√
2π

0, otherwise
(3.86)

where j represents the habitat type of one of the patches within the M ×M around x (j ∈ M2).

kM is therefore highly similar to Ripley’s K Ripley (1976).

Note that Equation 3.85 is divided by 1
σh

√
2πM2 . With this, if km = 1, it implies that

X2∑
x=1

∑
j∈M2

1
[
j < f(x)

]
X2

= σh
√
2πM2 (3.87)

which means, on average, a proportion of σh
√
2π of similar habitat types fall within M2. This is

identical to when patches are randomly distributed in the environment. Conversely, if km = 1
σh

√
2π

,

it follows that

X2∑
x=1

∑
j∈M2

1
[
j < f(h)

]
X2

= M2 (3.88)

which means all patches within M2 are always of similar habitat types (high spatial autocorrelation).

This is an upper bound to kM . Therefore,

1 ≤ kM ≤ 1

σh
√
2π

(3.89)
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as noted above and in the main text.

Additional simulation details

All simulations use the following parameters: X = 500 (a 500 × 500 patch community), a =

0.5, and intrinsic fitness (Y ) was log-normally distributed such that Y ∼ lognormal[µ = 0, σY =

1.0]. Each simulation was run for 125 generations (equivalent to over 3 × 107 tree replacements).

Each simulation is characterized by an initial period of extinction, after which species richness

approximately converges to a constant value. Figs. 3.9-3.12 show time series plots from each

simulation, depicting species richness as a function of time. While future extinctions due to drift

may continue to occur, the majority of remaining species in each case likely persist deterministically.

This conclusion is strongly supported by Figs. 3.13-3.16, which show exp(Shannon diversity) –

“effective species richness” – which clearly saturate to a constant value.
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Figure 3.6: Examples of how the Guassian function that quantifies the fitness response to
habitat type (Equation 3.22) is approximated for the purpose of deriving the approximate
invasion criterion with Equation 3.29. (A) shows σh = 0.025, (B) shows σh = 0.05, (C)
shows σh = 0.075, and (D) shows σh = 0.10. hopt,i = 0.5 in all cases.
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Figure 3.7: Comparisons between the approximate invasion criterion (Equation 3.71) and
the “exact” invasion criterion (Equation 3.84). The x-axis shows the right-hand-side of
Equation 3.71 and the y-axis show the right-hand-side of Equation 3.84. The black dashed
is the one-to-one line (which depicts when the approximation and exact yield the same exact
quantity). Different colored points depict different cases. Blue depicts JCEs alone, yellow
depicts HP alone, red depicts JCEs and HP with high autocorrelation, orange depicts JCEs
and HP with medium autocorrelation, purple depicts JCEs and HP with low autocorrelation,
and green depicts JCEs and HP with zero autocorrelation. These cases depict all the values
depicted in Fig. ?? of the main text. Generally, the approximate invasion criterion accurately
captures the exact quantity. Points tend to fall below the dotted line, which indicates the
approximation is somewhat conservative – points below the line are when the approximate
invasion metric is greater than the exact invasion metric; the larger the invasion metric, the
larger Yi must be for species i to invade (and, thus, the more “difficult” invasion is).
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Figure 3.8: The same as the previous figure, but using the upper bound of R(σh, N) (Equa-
tion 3.73).
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Figure 3.9: Species diversity (the number of species in the community) as a function of time
(in generations). Parameters are as follows: a = 0.5. This plot shows when habitat types
are randomly distributed (zero spatial autocorrelation).
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Figure 3.10: The same as the previous figure, but with low spatial autocorrelation.
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Figure 3.11: The same as the previous figure, but with medium spatial autocorrelation.
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Figure 3.12: The same as the previous figure, but with high spatial autocorrelation.
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Figure 3.13: Exp(Shannon diversity) – that is, “effective species richness”, as a function of
time (in generations). Parameters are as follows: a = 0.5. This plot shows when habitat
types are randomly distributed (zero spatial autocorrelation).
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Figure 3.14: The same as the previous figure, but with low spatial autocorrelation.
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Figure 3.15: The same as the previous figure, but with medium spatial autocorrelation.
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Figure 3.16: The same as the previous figure, but with high spatial autocorrelation.
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𝑀
Figure 3.17: Similar to Fig. 3.3 in the main text, but showing exp(Shannon diversity)
(“effective species richness”) instead of species richness. Results are qualitatively identical to
Fig. 3.3.
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Chapter 4

How demography affects conspecific negative
density dependence

4.1 Abstract

Conspecific Negative Density Dependence (CNDD) is thought to be an important driver of plant

diversity. Empirical studies demonstrate that CNDD varies between species, life history strategy,

and environmental conditions. While past theoretical studies examine how CNDD strength affects

species coexistence, previous theory does not investigate how demographic traits (which are strongly

influenced by environmental variables and life history trade-offs) affect CNDD strength and mea-

surement. In this paper, I use a simple demographic model that highlights how key demographic

traits (e.g. seed production rate, juvenile growth rate, and density-independent mortality rate)

affect CNDD. I demonstrate that density-independent demographic traits strongly impact CNDD

strength, even when explicit trade-offs between CNDD susceptibility and demographic traits are

not assumed. I then show how these results provide insight into published CNDD measurements.

Finally, I incorporate the demographic model into a simple multi-species competition model, demon-

strating the density-independent factors which influence CNDD measurement have population level

implications for the ability of CNDD to stabilize coexistence. Overall, the results of this paper pro-

vide a theoretical framework to examine how life history strategies and environmental conditions

affect CNDD strength and its subsequent impact on species richness.
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4.2 Introduction

Conspecific Negative Density Dependence (CNDD) is a leading theory for how tree species coex-

ist. CNDD describes the empirical observation that juvenile trees experience decreased survival in

locations of high conspecific density. This phenomenon is often attributed to specialized natural en-

emies (e.g. pests and pathogens) that are attracted to areas of high host abundance (Janzen, 1970;

Connell, 1971; Comita et al., 2014; Bever et al., 2015). If species experience CNDD, the offspring of

common species will tend to experience higher mortality than those of rare species – this may give

rise to rare species advantage and play a role in maintaining species diversity (Chesson, 2000a).

A growing body of theoretical work examines how CNDD affects species richness (e.g. Adler and

Muller-Landau, 2005; Muller-Landau and Adler, 2007; Chisholm and Muller-Landau, 2011; Stump

and Chesson, 2015; Stump and Comita, 2018; Chisholm and Fung, 2020; Smith, 2022a). However,

an overlooked aspect of CNDD in the literature pertains to the factors that mediate its strength.

In these theoretical studies, CNDD is generally defined with a single parameter that quantifies the

probability a juvenile dies in an area of high conspecific density or nearby a conspecific adult. This

conceptualization is highly useful for exploring how CNDD might affect species abundance and

richness under the assumption it is present at a defined level. However, this methodology cannot be

used to examine the variables that influence density-dependent feedbacks and, consequently, CNDD

measurements.

This gap in the literature is most evident when considering the many factors that influence

CNDD strength. Firstly, there is robust empirical evidence CNDD varies with environmental con-

ditions. Non-exhaustively, tree species experience greater CNDD in moister soils (Swinfield et al.,

2012; LaManna et al., 2016; Magee et al., 2021; Zang et al., 2021) and/or greater precipitation

(Comita et al., 2014; Bachelot et al., 2015; Uriarte et al., 2018; Song et al., 2018; Milici et al., 2020).

Studies also find stronger CNDD at lower elevations (Fibich et al., 2021; LaManna et al., 2022; Xu

et al., 2022), in more pH neutral (less acidic) soils (LaManna et al., 2016), and in more productive

environments (LaManna et al., 2017a). CNDD varies with light availability (Inman-Narahari et al.,

2016; McCarthy-Neumann and Ibáñez, 2013; McCarthy-Neumann and Kobe, 2019; Song et al.,

2021b; Holík et al., 2021; Magee et al., 2021), soil nutrient composition (McCarthy-Neumann and
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Kobe, 2019; Zang et al., 2021), interanuual climate variability and temperature (Song et al., 2018;

Xu et al., 2022), and small-scale environmental conditions (Brown et al., 2021). Additionally, habi-

tat fragmentation has been found to decrease CNDD strength (CNDD is weaker nearer to the forest

edge; Krishnadas et al., 2018; Krishnadas and Stump, 2021).

In short, an accumulating body of evidence suggests CNDD is an emergent property of multiple

interacting abiotic and biotic processes. Several arguments have been put forward to explain these

results. Some use explanations based on biotic interactions. For example, LaManna et al. (2016)

suggest resource-rich environments may produce stronger CNDD by increasing the intensity of

host-specific natural enemy pressure or intra-specific competition; Milici et al. (2020) discuss how

greater precipitation and humidity might enhance phytopathogen transmission and host specificity.

However, others have argued that abiotic (density-independent) factors may simply be of relatively

high importance in determining juvenile survival where relatively weak CNDD is measured, in

which case direct environmental impacts on biotic interactions need not be invoked (Comita, 2017)

. While both reasonable, these different perspectives have not been explored theoretically. Similarly,

measurements of CNDD strength vary between species (e.g. Klironomos, 2002; Petermann et al.,

2008; Comita et al., 2010; Mangan et al., 2010; Johnson et al., 2017; Murphy et al., 2017; Song

et al., 2021a) variation that is sometimes associated with life history strategy (e.g. Zhu et al., 2018;

Brown et al., 2020; Song et al., 2021b; Qin et al., 2022). While it is often assumed CNDD variation

reflects inter-specific variation in susceptibility to natural enemies or sensitivity to intra-specific

competition, current theory does not evaluate how demographic processes affect the measurements

underlying said variation.

In addition, empirical studies examine the impact of conspecific density on juveniles through

measurements of differing vital rates. While the majority of studies examine how conspecific density

affects juvenile mortality, other studies observe impacts on juvenile growth rate (i.e. growth rate

decreases with conspecific density; e.g. Ramage et al., 2017; Hazelwood et al., 2021; LaManna

et al., 2022; Pu et al., 2022; Wei et al., 2022). While conspecific effects on each vital rate seem

likely to impact fitness, we lack a theoretical framework elucidating how they interact with juvenile

plant demography to shape recruitment probability. A further complication is that conspecific
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density is sometimes lumped into a single variable. However, it is unclear (for example) if density-

dependent mortality over the seed to seedling transition is primarily driven by (1) the number

of seeds at a location (2) the number of individuals undergoing the seed-to-seedling transition,

or (3) the number of established seedling recruits (Fig. 4.1). These factors may impact how

density-dependent feedbacks shape CNDD strength. Relevant to these distinctions, previous work

highlights that the functional form of CNDD – how the abundance of recruits responds to the

initial abundance of conspecific seeds – may be important in understanding its effect on species

richness (Freckleton and Lewis, 2006; Münkemüller et al., 2009; Bagchi et al., 2010, see Fig. 4.2).

CNDD may be under-compensating (recruit abundance increases with initial seed abundance, but

sub-linearly), compensating (recruit abundance is a saturating function of initial seed abundance),

or over-compensating (recruit abundance decreases as a function of initial seed abundance at high

density). Previous theory does not examine how the idiosyncrasies of juvenile tree demography and

density-dependent feedbacks therein might give rise to these distinctive patterns.

In this paper, I present a simple stage-structured model that elucidates how demographic factors

affect the strength of CNDD. I report several key results. (1) Density-independent demographic

traits, the life history stage that induces negative density dependence, and the vital rate conspecific

density impacts all interact to regulate the strength of CNDD measurements and its functional form.

Crucially, these results stem from how demographic traits modulate the densities and subsequent

interactions of the life history stages experiencing and generating negative density dependence – the

impact of density-independent demographic traits on CNDD strength emerges without assuming

life history trade-offs. (2) I show that demographic processes influence a common statistical method

of measuring CNDD which I use to interpret the measurements in Krishnadas and Stump (2021).

(3) I implement the stage-structured demographic model into a multi-species competition model,

through which I show that the aforementioned demographic factors strongly influence the ability of

CNDD to stabilize species coexistence.
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4.3 Methods and Model

4.3.1 Demographic Model

I consider a stage-structured model consisting of three life history stages: seed (S), seed undergoing

the seed-to-seedling transition (T), and seedling recruits R. See Fig. 4.1 for a visualization of the

model. All individuals persist on a discretely defined patch. The community consists of X patches,

in which each patch potentially contains a single adult tree. Each patch is indexed by a location,

x. Adults of species i (i = 1, 2, ..., N) produce seeds at rate fi and disperse seeds according to

a dispersal kernel. The relative density of seeds dispersed to location x is defined by Dix, which

contains spatial information of all adult trees of species i relative to location x (Dix defines how the

spatial distribution of all adults of species i influences the number of seeds found at x – this is more

convenient than defining the dispersal kernel of individual trees). I refer to Dix as “seed rain density”.

I assume no long-term seed bank. On patch x, seeds of species i (Six) die at density-independent

mortality at rate mSi (deaths per unit time) and begin the seed-to-seedling-transition at growth rate

gSi (i.e. the rate at which seeds of species i begin germination per unit time, upon which they enter

the Transitioning class, Tix). Transitioning juveniles of species i experience density-independent

mortality at rate mTi and transition into established seedling recruits (Rix) at rate gTi. Seedling

recruits experience density-independent mortality at rate mRi. I allow each life history stage to (1)

increase the mortality of juveniles undergoing the seed-to-seedling-transition and/or (2) decrease the

rate at which individuals transition into seedling recruits (i.e. reduce gT). I depict these dynamics

using Ordinary Differential Equations:

dSix(t)

dt
= fiDix(t)−mSiSix(t)− gSiSix(t)

dTix(t)

dt
= gSiSix(t)− Tix(t)M

(
Six(t),Tix(t),Rix(t)

)
−mTiTix(t)

− gTiTix(t)G
(
Six(t),Tix(t),Rix(t)

)
dRix(t)

dt
= gTiTix(t)G(Six(t),Tix(t),Rix(t)

)
−mRiRix(x)

(4.1)
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where M(Six(t),Tix(t),Rix(t)
)

and G(Six(t),Tix(t),Rix(t)
)

quantify how conspecific density im-

pacts transitioning juvenile mortality and growth rate, respectively. In this paper, I assume these

equations take a very simple form:

M(Six(t),Tix(t),Rix(t)
)
= aSiSix(t) + aTiTix(t) + aRiRix(t)

G(Six(t),Tix(t),Rix(t)
)
=

1

1 + a′SiSix(t) + a′TiTix(t) + a′RiRix(t)

(4.2)

where aSi, aTi, and aRi are constants that define the baseline strength of density-dependence. The

apostrophe (′) delineates between effects on mortality and growth (indicating the latter). As an

example, consider when aTi > 0 and aSi = aRi = 0. If CNDD is the consequence of soil pathogens,

this would imply it is the density of individuals transitioning from seed-to-seedling per se that results

in the local accumulation of pathogens (which increase the mortality of transitioning individuals).

More realistic methods of implementing this process are possible, but equation (4.2) is sufficient for

the purpose of examining how demographic traits affect the strength of CNDD (the main goal of

this paper).

I assume all negative density dependence occurs over the seed-to-seedling-transition. I make this

simplification for two reasons. Firstly, the seed-to-seedling-transition represents a key bottleneck

in tree demography (Poorter, 2007; Green et al., 2014). Secondly, the key feature I aim to parse

out is the consequence of negative density dependence experienced by a focal life history stage

(juveniles undergoing the seed-to-seedling-transition, T) that is potentially affected by conspecific

density of an earlier life history stage (seeds, S), conspecific density of the focal life history stage

(T), or a later life history stage (seedling recruits, R). Therefore, the qualitative results of this

study can be extended to other important bottlenecks in the plant regenerative pathway (i.e. the

seedling-to-adult transition).

4.3.2 Demographic analyses

I conduct analytical and numerical analyses of equation (4.1) to examine how CNDD strength is

impacted by (1) density-independent demographic rates (2) which life history stage induces negative
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𝑓

𝑚S 𝑚T

𝑎R

R𝑔T

𝑚R

𝑎S
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𝑎T

Figure 4.1: Visualization of the demographic model. Adults A produce seeds at rate f .
Seeds (S) experience independent-mortality at rate mS and begin the seed-to-seedling tran-
sition (i.e. begin germination) at rate gS. Transitioning individuals (T) experience density-
independent mortality at rate mS and transition into successful seedling recruit at rate gT.
Seedling recruits (R) experience density-independent mortality at rate mR. Seeds density,
transitioning individual density, and seedling recruit density all potentially affect the vital
rates of transitioning individuals (depicted with aS, aT, and aR).
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density-dependence, and (3) which vital rate conspecific density impacts (mortality or growth). For

these analyses, I assume the system of Ordinary Differential Equations in equation (4.1) are at equi-

librium at every patch (denoted by S∗
ix, T∗

ix, and R∗
ix where ∗ indicates equilibrium). This assumes

seed-to-seedling-recruit dynamics occur at a timescale considerably faster than tree replacement. I

define CNDD strength as the proportion of recruits that survive the seed-to-seedling transition rel-

ative to the absence of negative density-dependence at equilibrium. Let R∗′
ix represent equilibrium

recruit abundance when all coefficients in equation (4.2) (aSi, aTi, aRi, etc.) are set equal to zero

(i.e. no CNDD). Then, CNDD strength is defined as R∗
ix/R

∗′
ix for which a value of 1 indicates no

CNDD and values closer to zero indicate stronger CNDD.

How demographic traits impact a common method of CNDD measurement

Empirical studies often measure CNDD strength by censusing multiple seed traps; the number of

seeds in each trap are compared to the number of conspecific seedlings that recruit nearby (Harms

et al., 2000; Bagchi et al., 2014; LaManna et al., 2016; Fricke and Wright, 2017; Krishnadas and

Stump, 2021). This is achieved by fitting the equation:

Rix = αiS
βi
ix (4.3)

where Rix and Six represent newly emerged seedling recruit and seeds abundances of species i at

location x, respectively, αi represents the baseline proportion of seeds of species i that survive

the seed-to-seedling transition, and βi is a metric of the strength of CNDD of species i (βi = 1

implies no CNDD and βi < 1 implies species i experiences CNDD). Note that this measure of

CNDD differs from as the metric described in the previous section. To examine how demographic

factors affect fits of equation (4.3), I implement the demographic model (equation (4.1)) into a

spatially explicit model. I randomly distribute adult trees throughout the environment. I assume

each tree produces an initial number of seeds that disperse throughout the community according

to an exponential dispersal kernel (defined by Dix). After dispersal, juveniles follow the dynamics

described by equation (4.1) until all seeds on each patch either successfully transition to a seedling
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recruit or die before recruitment. I then fit equation (4.3) using the initial number of seeds and newly

emerged seedlings on each patch as Six and Rix, respectively, with a non-linear regression. Given a

fixed initial density of seeds, I examine how different demographic rates impact fits of β and α. I

use this approach instead of assuming equation (4.1) is at equilibrium because it is more consistent

with how empirical studies make measurements; assuming equilibrium yielded qualitatively identical

results. Krishnadas and Stump (2021) examined the impact of habitat fragmentation on CNDD

strength for 17 species in an Indian forest. They fit equation (4.3) to each species at four different

locations defined by their proximity to the forest edge (“Forest edge”, “Near-edge”, “Intermediate”,

and “Interior”) finding that CNDD strength and baseline seed-to-seedling survival both decline with

proximity to the forest edge (β is larger and α is smaller closer to the forest edge; Fig. 4.5A).

Krishnadas and Stump (2021) also find that within fragmentation zones, species with higher seed-

to-seedling survival tend to experience weaker CNDD strength (species with large β tend to have

large α; Fig. 4.5A). I investigate the question: might these two qualitative trends reflect different

underlying demographic processes?

4.3.3 Competition model and species richness analysis

I examine how demographic traits and CNDD impact species richness using a simple multi-species

competition model. As before, I consider a community of X patches, on which each patch contains

an adult tree. Adult trees disperse a fixed proportion of their seeds, D, uniformly throughout the

environment and disperse the remaining 1 − D seeds on the local patch (x). This simplification

allows relatively straightforward analytical of the model and is consistent with previous work (Stump

and Chesson, 2015; Stump and Comita, 2018; Smith, 2022a). Therefore, x now indexes the identity

of the tree occupying the patch. Let Dii and Dij represent the proportion of seeds of species i

dispersed to patches occupied by species i and j, respectively (i ̸= j). Then, Dii = 1−D+piD and

Dij = piD where pi is the proportion of patches occupied by species i. Adults of each species die

at rate δ. When an adult dies, it is replaced by a randomly selected individual in the plot weighted

by a species-specific competitive ability parameter, C (a lottery model). Let R∗
ik represent the

equilibrium recruit abundance of species i on a patch occupied by species k. Then, the probability
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species i replaces a patch occupied by species k is: R∗
ikCi/

∑
all j R

∗
jkCj .

I examine the deterministic behavior of this model. The simplified form of dispersal limitation

allows the model to be described spatially implicitly (patches can be described by just their occu-

pant). I assume that the timescale of juvenile (seed-to-recruit) dynamics is much faster than tree

mortality such recruits abundances always equilibrate between adult replacement events. Then,

adult dynamics (each species’ frequency, pi, i = 1, 2, .., N) can be described by the following system

of Ordinary Differential Equations:

dpi
dt

= δ

[
R∗

iiCi∑
all j R∗

jiCj
pi +

∑
k ̸=i

R∗
ikCi∑

all j R∗
jkCj

pk − pi

]
(4.4)

noting that δ is on the outside of the equation because it is assumed all adults die at an equal rate.

To analyze the model, I derive an approximate invasion criteria (the condition allowing a species to

increase from rarity in a community of N residents) and provide outputs of numerical simulations. I

conducted analyses in which species vary in their demographic traits (specified later) and, therefore,

vary in fitness. Species coexist when the strength of CNDD is sufficiently strong to compensate for

these fitness difference (i.e. stabilizing effects are stronger that fitness differences; Chesson, 2000b;

Barabás et al., 2018). All simulations began with 50 species at equal proportion in the population.

Simulations were run until equilibrium (greater than 104 generations) after which the remaining

species were assumed to be coexisting. Simulations were run in [R] (R Core Team, 2022) using the

package deSolve (Soetaert et al., 2010).

4.4 Results

4.4.1 How does demography influence the functional form of CNDD?

Strong CNDD can occur irrespective of the life history stage inducing density dependence or the

vital rate it affects (i.e. whether density affects mortality or growth rate as specified in equation

(4.2)). The functional form CNDD exhibits depends on both which life history stage induces den-

sity dependence and which vital rate density dependence affects (Fig. 4.2). When recruits induce
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density dependence, an under-compensating pattern always emerges (Fig. 4.2C). Density depen-

dence induced by transitioning individuals yields an under-compensating pattern when impacting

mortality (black curve) and a compensating pattern when impacting either growth rate or both

vital rates (Fig. 4.2B). When seeds induce density dependence, CNDD exhibits a compensating

functional form when seed density impacts a single vital rate and an over-compensating functional

form when impacting both vital rates (Fig. 4.2A).

These results reflect how density-dependent feedbacks are dictated by the developmental position

of the life history stage inducing density dependence relative to the life history stage experiencing

density dependence (those undergoing the seed-to-seedling transition). For example, seeds (the first

life history stage) are unaffected by density-dependent processes (density dependence occurs over

𝑓 × 𝐷𝑖𝑥 (seed production rate × seed rain density)

R
ec

ru
it

 a
b

u
n

d
an

ce
 (
𝑅
𝑖𝑥∗
)

No CNDD

NDD Mortality

NDD Growth

Both

Figure 4.2: Equilibrium seedling recruits as a function of seed rain density. Labels on each
column indicate the life history stage that induces density dependence per se. The x-axis
shows f×Dix, which quantifies the rate a which seeds of species i disperse to location x. The
y-axis shows the resulting number of seedling recruits (R∗

ix). The dashed grey lines shows
when there is no CNDD, the black curves show when density dependence directly induces
mortality, the teal dotted curves show when CNDD decreases growth rate over the seed-to-
seedling transition, and red curves depict when CNDD affects both vital rates. The vital rate
(mortality and/or growth rate) and the life history stage inducing density dependence both
determine the functional form of CNDD, which may be under-compensating, compensating,
or over-compensating. Parameters are as follows. Density-independent parameters: mS = 1,
gS = 1, mT = 1, gT = 1. For each column indicating the life history stage inducing CNDD,
aS or a

′
S = 0.025, aT or a

′
T = 0.04, aR or a

′
R = 0.1 when CNDD affects a single vital rate.

When CNDD affects both vital rates, each coefficient is set equal to half the above values
(for example, aS = a

′
S = 0.025× 0.5).
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the seed-to-seedling transition, not affecting seeds per se). When seeds induce density dependence,

greater seed rain density always increases negative density dependence over the seed-to-seedling

transition – this can give rise to compensating or over-compensating patterns. In contrast, when

seedling recruits induce density dependence on juveniles undergoing the seed-to-seedling transition

(Fig, 1C), the strength of density dependence depends on the number of individuals that have

already successfully transitioned. As a result, CNDD can only ever be under-compensating.

4.4.2 The impact of demographic traits on CNDD strength

Assuming seed abundances are not very high (i.e. not in the high abundance region depicted in Fig.

4.2), it can derived from equation (4.1) that equilibrium seedling recruit abundance is equal to:

R∗
ix ≈ Dix

fi
mSi + gSi

gTi gSi

mRi(mTi + gTi)︸ ︷︷ ︸
Baseline recruit density

1

1 +Dixρi︸ ︷︷ ︸
CNDD strength

(4.5)

where “Baseline recruit density” is the number of recruits that would be found at location x in the

absence of CNDD and “CNDD strength” is the proportion of recruits that survive CNDD. Note that

R∗
ix in equation (4.5) is exact when seeds induce density dependence and is an approximation for

the other two cases (see Appendix C for details).

CNDD strength is determined by the constant ρ (Table 4.1). Unsurprisingly and trivially, base-

line strength of density-dependence (aS, aT, and aR) increases ρ and, by extension, CNDD strength

(Table 4.1; Fig. 4.2, column 1). More interestingly, ρ strongly depends on density-independent

demographic traits. How each trait affects ρ strongly depends on the vital rate affected by density

dependence and the life history stage that induces it (Table 4.1). This is because each of these

factors modulates how feedbacks between life history stages impact the seed-to-seedling transition.

I highlight several illuminating results. First, higher seed production rate (larger f) and lower

seed mortality (lower mS) increase CNDD strength in all cases (Table 4.1; Fig. 4.3, columns 2-

3). Higher seed production and lower seed mortality lead to greater average densities, in which

case density-dependent effects are more important. Faster seed growth rate (gS) increases CNDD
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Figure 4.3: The impact of demographic traits on CNDD strength. The x-axis shows trait
values; the y-axis shows CNDD strength (the proportion of recruits that survive CNDD
relative to when CNDD is absent). The value of Dix is identical between plots – therefore,
the plots show how demographic traits impact CNDD strength at location x given a fixed
seed rain density. The black curves show when density dependence directly induces mortality,
the teal dotted curves show when CNDD decreases growth rate over the seed-to-seedling
transition, and red curves depict when both vital rates are affected by CNDD. Each row is
labeled by the life history stage that induces density dependence and each column shows a
different demographic trait, in which every other demographic trait is held constant. Exact
values (rather than approximations) are used in the plots. Non-specified parameters are as
follows. Density-independent parameters: f = 100, mS = 1, gS = 1, mT = 1, gT = 1.
For each column indicating the life history stage inducing CNDD, aS or a

′
S = 0.025, aT

or a
′
T = 0.04, aR or a

′
R = 0.1 when CNDD affects a single vital rate. When CNDD

affects both vital rates, each coefficient is set equal to half the above values (for example,
aS = a

′
S = 0.025× 0.5).
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strength when transitioning juveniles or seedling recruits induce density dependence (aT > 0 or

aR > 0; Figs. 4.3H, 4.3L) but decreases CNDD strength when seeds induce density dependence

(aS > 0; Fig. 4.3D). In the first cases (aT > 0 and aR > 0), larger gS means that individuals more

rapidly (and therefore, at higher densities) enter into the life history stages that induce density

dependence, which increase its effect strength. When aS > 0, the opposite is true – individuals more

rapidly exit the life history stage that induces density dependence (seeds), leading to a decrease in

CNDD strength.

The impact of density-independent transitioning mortality rate (mT) on CNDD is highly con-

tingent on the vital rate affected by density dependence (Fig. 4.4, column 1). If density dependence

increases mortality rate, lower mT always increases CNDD strength. This can be understood as

follows: CNDD strength is quantified by the increase in the probability of mortality due to density-

dependent effects. Therefore, all else kept equal, the higher density-independent mortality is, the

less important density-dependent mortality is by comparison. Thus, lower density-independent

mortality leads to stronger CNDD. When density dependence decreases growth rate, the impact of

mT on CNDD depends on the life history stage that induces it. If seeds induce density dependence

(a′S > 0), greater mT yields stronger CNDD (Fig. 4.4A, blue curve). Greater seed density leads

to individuals spending more time in the seed-to-seedling transition (in the T stage) – thus, the

Life history stage inducing negative density dependence
Seed (S) Transitioning (T) Seedling Recruit (R)

V
it

al
ra

te Mortality aS
mT+gT

f
mS+gS

aTgS
(mT+gT)2

f
mS+gS

aRgSgT
mR(mT+gT)2

f
mS+gS

Growth a′SmT
mT+gT

f
mS+gS

a′TgSmT
(mT+gT)2

f
mS+gS

a′RgSgTmT
mR(mT+gT)2

f
mS+gS

Table 4.1: Values of ρ from equation (4.5). Each column shows the life history stage that
induces density dependence and each row indicates the vital rates it affects. Parameters are
as follows. f : seed production rate (fecundity); mS: seed mortality rate; gS seed growth
(germination) rate; mT: transitioning mortality rate; gT: transitioning growth rate; mR:
seedling recruit mortality rate; aS, aT and aR: seed, transitioning, and seedling recruit
density-dependent effects, respectively. a ′ indicates density dependence affects growth rather
than mortality
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Figure 4.4: The same as Fig. 4.3, but showing different traits.
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larger mT is, the greater the increase in mortality due to density dependence. The other cases

(a′T > 0 or a′R > 0) are less straightforward. For example, when recruits induce density dependence,

CNDD strength is a unimodal function of mT. Larger mT increases the mortality of individuals

over the seed-to-seedling transition – while this potentially increases CNDD strength for the same

reason as the a′S > 0, larger mT also decreases how many recruits accumulate on the patch. Since

density-dependent feedbacks explicitly depend on the number of recruits, this can decrease CNDD

strength. These two factors create a tension such that peak CNDD strength occurs at an intermedi-

ate mortality level (precisely, when mT = gT). Similar logic applies to the impact of seed-to-seedling

transition growth rate (gT) on CNDD strength (Fig. 4.4H).

An additional illuminating result is that seeding recruit mortality rate (mR) affects CNDD

strength only when recruits induce density dependence (aR > 0; Fig. 4.4, column 3). Smaller mR

allows more seedling recruits to accumulate – this feeds back into stronger CNDD if recruits induce

density dependence (Fig. 4.4I) but does not impact CNDD strength if density dependence is driven

by a prior life history stage (Fig. 4.4C, 4.4F).

4.4.3 How demographic traits impact an empirical method of CNDD measure-

ment

Demographic traits strongly affect β (CNDD strength) and α (baseline survival) in fits of equation

(4.3) to data. Fig. 4.5 shows several representative cases in which transitioning individuals induce

density-dependent mortality (aT > 0; Figs 4B, 4C). Importantly (and relevant to Krishnadas and

Stump (2021)) demographic parameters can generate either a positive or a negative relationship

between β and α when varied between fits of equation (4.3). For example, a positive relationship

between β and α (meaning that CNDD strength is negatively correlated with baseline survival; Fig.

4.5B) occurs under fits of variable baseline density-dependence (aT) and seed-to-seedling transition

growth rate (gT). This pattern is consistent with the results reported in Krishnadas and Stump

(2021) within sites (inter-specific variation in CNDD measurements at set distances from the forest

edge; Fig. 4.5A). Conversely, a negative relationship between β and α emerges when fitting variable
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levels of density-independent seed-to-seedling transition mortality rate (mT) or seed growth rate

(gS; Fig. 4.5C). This pattern is consistent with the between-site results reported in Krishnadas and

Stump (2021) (Fig. 4.5A).

4.4.4 How CNDD affects species richness

Now I examine how the above results (in particular, the results highlighted in Figs. 4.3 and 4.4)

species affect coexistence. Applying invasion analysis to the competition model (equation 4.4),

Red:        Forest edge

Orange:  Near edge

Green:    Intermediate

Blue:       Interior 
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Figure 4.5: How demographic traits impact fits of equation (4.3) with reference to Krishnadas
and Stump (2021). Panel (A) shows data from Krishnadas and Stump (2021). Each point
indicates a fit of equation (4.3) of one of 17 different species fit at four different proximities
to the forest edge. Red indicates “forest edge” (0-5 m from the edge), orange indicates “near-
edge” (20-30 m from the edge), green indicates “intermediate” (50-60 m from the edge), and
blue indicates the forest “interior” (90-100 m from the edge). Visible statistics show significant
fits between the fit parameters of equation (4.3), showing positive relationships of fits of α and
β between species within the intermediate and interior regions and a negative relationship
between α and β between proximities (top-right). Panels (B) and (C) show the impact of
demographic traits on fits of α and β in a spatially explicit simulated community under the
assumptions that (1) seeds are dispersed according to an exponential dispersal kernel and
(2) transitioning individuals (T) induce CNDD by increasing mortality rate (i.e. aT > 0).
The shape of each point indicates which demographic trait is varied between fits. Each trait
is colored based on its relative value. Red indicates a higher value and blue indicates a lower
value. For example, diamonds (panel C) depict density-independent transitioning mortality
rate (mT) – smaller values of mT (lower density-independent mortality; bluer diamonds)
yield fits of stronger CNDD (lower β) and higher baseline survival (higher α).
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species i deterministically increases from rarity in a community of N residents species if:

ri ≈ ∆Yi +∆ρi︸ ︷︷ ︸
Fitness

differences

+ Pi︸︷︷︸
Stabilization

> 0 (4.6)

where ri is the growth rate of species i when rare. The terms in ri are:

∆Yi = D(2−D)
(
log Yi − log Y

)
∆ρi = D(1−D)

(
log
(
1 + (1−D)ρi

)
− log

(
1 + (1−D)ρ

))
Pi = D2(3− 2D)

(
ρ

N
+ Cov(p, ρ)

) (4.7)

noting that several approximations are necessary to evaluate ri. See Appendix C for a derivation.

Yi defines species i’s intrinsic fitness (the expected number of recruits a single tree is expected to

produce in the absence of CNDD when recruits are at equilibrium, multiplied by its competitive

ability): Yi = Ci
fi

gSi+mSi

gSigTi
gTi

+mTi
. Overlines (e.g. log Y ) indicate the average value of the resident

community (e.g. log Y = 1
N

∑N
k=1 log Yk). ρi (noting ρ should not be confused with p) is the CNDD

coefficient previously noted (Table 4.1). The “fitness differences” terms quantify how factors unre-

lated to species abundances (p) affect the ability of species i to invade. ∆Yi quantifies intrinsic fitness

differences (fitness differences induced by inter-specific variation in density-independent traits) – the

larger Yi relative to the mean (Y ), the easier invasion is. ∆ρi quantifies fitness differences induced

by CNDD (specifically, fitness differences related to how CNDD affects the proportion of locally dis-

persed offspring, 1−D). If species i experiences above-average CNDD strength (ρi > ρ), invasion is

more difficult. “Stabilization”, Pi, is a positive term that quantifies the increase in species i’s growth

rate due to CNDD experienced by the resident species (species with p > 0; specifically, how the

non-zero abundances of the resident species increase CNDD-induced mortality of their offspring).

A rare species can invade if the stabilization term (Pi) is sufficiently large to compensate for fitness

differences (∆Yi +∆ρi).

It is most interesting to interpret these results in the context of demographic trait values. The

210



Mean trait value

S
p
ec

ie
s 

ri
ch

n
es

s

Figure 4.6: How density-independent demographic traits impact the species richness main-
tained by CNDD. The x-axis shows trait values; the y-axis shows species richness from
simulations of equation (4.4). As in Figs. 4.3 and 4.4, the black curves show when density
dependence directly induces mortality, the teal dotted curves show when CNDD decreases
growth rate over the seed-to-seedling transition, and red curves depict when CNDD affects
both vital rates. Each row is labeled by the life history stage that induces density depen-
dence. Each column shows a different demographic trait that is varied between simulations
(with all other demographic traits held constant). The species richness maintained by CNDD
show the same qualitative patterns indicated in Figs. 4.3 and 4.4. Inter-specific fitness vari-
ation is incorporated by assuming competitive ability, C, varies between species for which
C ∼ U [1, 10]. Non-specified parameters are as follows. Density-independent parameters:
f = 100, mS = 1, gS = 1, mT = 1, gT = 1. For each column indicating the life history stage
inducing CNDD, aS or a

′
S = 0.025, aT or a

′
T = 0.04, aR or a

′
R = 0.1 when CNDD affects a

single vital rate. When CNDD affects both vital rates, each coefficient is set equal to half
the above values (for example, aS = a

′
S = 0.025× 0.5).
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strength of stabilization, the ability of rare species to invade, and species richness increases with

ρ – therefore, demographic traits that lead to higher ρ (see Table 4.1) increase the strength of

stabilization. Given a fixed amount of inter-specific intrinsic fitness variation, the species richness

maintained in a community qualitatively mirrors the patterns for CNDD strength (depicted in Figs.

4.3-4.4). For example, larger mean seed production rate (f) always increases species richness (Fig.

4.6, column 1); larger gS increases species richness when transitioning individuals or seedling recruits

induce density dependence, but reduces species richness when seeds induce density dependence (Fig.

4.6, column 2); how mT affects species richness is highly dependent on which vital rate CNDD affects

and the life history stage inducing density dependence (Fig. 4.6, column 3).

Which demographic trait underlies intrinsic fitness differences impacts the strength of stabi-

lization relative to fitness differences. For example, compare when inter-specific fitness variation is

driven by variation in seed production rate (f) versus seed growth rate (gS) under the assumption

that seeds induce density dependence (aS > 0). Given the same amount of initial fitness variation

(as quantified by inter-specific variation in Y ), inter-specific variation in gS leads to a much larger

reduction in species richness (Fig. 4.7A). Species with larger f have greater fitness (larger Y ), but

also experience stronger CNDD (larger ρ); less fit species with smaller f experience relatively weak

CNDD (smaller ρ). Consequently, from the perspective of a relatively unfit invader, ∆Yi < 0 (which

makes invasion more difficult; Fig. 4.7C) but ∆ρi > 0 (which makes invasion easier; Fig. 4.7B).

CNDD therefore acts as a fitness equalizing mechanism. Additionally, relatively fit species (species

with high f and, consequently, high ρ) tend to be more abundant than less fit species. Therefore,

Cov(p, ρ) > 0, which increases the strength of the stabilizing effect (Pi; Fig. 4.7D). The opposite

occurs when inter-specific fitness variation is primarily driven by gS. Species with larger gS have

both higher intrinsic fitness and lower ρ (experience weaker CNDD). Consider an invading species

with low fitness (low gS): ∆Yi < 0 by the same exact amount as the fecundity case (Fig. 4.7C) and

∆ρi < 0. Additionally, fitter species (species with larger gS and smaller ρ) tend to be more relatively

high in abundance. As a result, Cov(p, ρ) < 0, which decreases the strength of stabilization (Fig.

4.7D). These differences exacerbate fitness differences and decrease the stabilizing effect relative to

the fecundity case, leading to a reduction in species richness (Fig. 4.7A).
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Figure 4.7: How the demographic trait inducing inter-specific variation in intrinsic fitness
impacts the ability of CNDD to maintain species richness. Plots examine when species
experience inter-specific variation in intrinsic fitness (Y ) is driven by variation in seed pro-
duction rate (f ; red circles) and seed growth rate (gS; green triangles). Each point on
each plot shows a different simulation, with each simulation differentiated by the degree of
inter-specific fitness variation. The x-axis on each plot shows the maximum log-difference in
intrinsic fitness of the community at the start of the simulation (before any species went ex-
tinct; log Ymax−log Ymin). Panel (A) shows species richness as a function of fitness variation.
Panel (B) shows ∆ρi, panel (C) shows ∆Yi, and panel (D) shows Pi where i indicates the
species with the lowest intrinsic fitness (the poorest competitor). Note that panels (B)-(D)
only show the cases in all species coexist. Parameters are as follows: mS = 0.1, mT = 0.5,
gT = 0.05, D = 0.3, aS = 1, a

′
S = 0, aT = a

′
T = 0, aR = a

′
R = 0.
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4.5 Discussion

Previous theoretical work does not directly model how the stage-structured demographic processes

of juvenile trees may influence Conspecific Negative Density Dependence (CNDD). Here, I present

a first attempt at filling this gap by presenting a simple stage-structured model. Broadly, results

indicate that CNDD strength and measurement are strongly modulated by density-independent

demographic processes (Figs. 4.2 and 4.5) which may strongly influence the efficacy of CNDD in

maintaining species richness (Figs. 4.6-4.7).

4.5.1 Interspecific variation in CNDD

Tree species vary in their density-independent demographic traits (e.g. seed production rate, juvenile

mortality rate, growth rate, etc.). How demographic traits impact CNDD is, in turn, affected by

the vital rate density dependence impacts (mortality and/or growth rate) and the life history stage

that induces density dependence (Figs. 4.3-4.4). These factors also likely vary between species.

Consequently, observations of inter-specific CNDD strength may emerge from multiple mechanisms.

This is directly relevant with respect to how CNDD measurements can be interpreted – explanations

that assume variation in CNDD is driven by inter-specific variation in intra-specific competition

sensitivity or natural enemy susceptibility (variation in aS, aT, or aR; e.g. LaManna et al., 2016,

2017b) must be weighed against other demographic-based explanations.

This is particularly interesting to think about in terms of life history theory. For example, sev-

eral studies indicate slow-growing (often shade-tolerant) species tend to experience weaker CNDD

than faster growing species (Lebrija-Trejos et al., 2016; Zhu et al., 2018; Zang et al., 2021; Song

et al., 2021b). This relationship is often attributed to a defense-growth trade-off (a hypothesis that

enjoys a degree of empirical support; e.g. Coley, 1980; McCarthy-Neumann and Kobe, 2008). How-

ever, I show that this pattern can come about as a result of development rate impacting density-

dependent feedbacks between life history stages without assuming a trade-off (Figs. 4.3H, 4.3L,

4.4H). Therefore, it is necessary to distinguish these kinds of signals. In general, the result that

density-independent demographic rates modify CNDD strength reflects how traits modify the den-
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sity of individuals inducing negative density dependence. For example, if transitioning seedlings

induce density dependence (aT > 0) faster seed germination rate (gS) leads to a higher density

of transitioning individuals accumulating within the transition class (T) at the same time, which

generates stronger CNDD (Fig. 4.3H). This is distinctive from how larger aT increases CNDD

(larger aT simply increases per capita density-dependent effect strength). When comparing CNDD

between species, density manipulation experiments that control for the number of simultaneously

transitioning seedlings may help to distinguish between these alternative mechanisms.

It is also relevant to develop baseline theoretical expectations for how trade-offs between density-

independent life history traits affect CNDD strength. For example, plant species with faster growth

rates also tend to have greater density-independent mortality rates (e.g. Kobe et al., 1995; Wright

et al., 2010). How trade-offs between density-independent demographic traits (i.e. growth rate and

density-independent mortality) influence CNDD strength in the context of the different forms of

density-dependent feedbacks highlighted in this study (i.e. which vital rate density dependence im-

pacts; which life history stage induces density dependence) is an interesting and non-trivial question.

Future theoretical work should explore these questions with evolutionary models: how density-

dependence influences the evolution of growth-mortality trade-offs (or vice versa) will lead to a

better understanding of how CNDD fits into the broader picture of life history theory.

4.5.2 CNDD strength and environmental conditions

Environmental conditions unquestionably affect tree demographic traits such as seed production

rate (f), growth rate (gS, gT), and juvenile mortality rate (mS, mT, mR). I show that these traits

strongly impact CNDD strength (Figs. 4.3-4.4). This provides a simple explanation for the growing

body of literature showing environmental conditions affect CNDD.

This result also has implications for how CNDD varies along environmental gradients. For

example, while some evidence suggests specialized predation pressure does not vary on latitudinal

gradients (Novotny et al., 2002; Novotny and Basset, 2005; Moles et al., 2011; Chen and Moles, 2018)

abiotic conditions housed by different environments strongly impact juvenile tree demographic traits,

which may in turn alter density-dependent feedbacks. For example, recent studies show CNDD
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decreases on elevational gradients (Fibich et al., 2021; LaManna et al., 2022). If environmental

conditions increase in harshness as a function of elevation by raising seed or seedling mortality rate,

this would decrease CNDD strength (Figs. 4.3-4.4) and provide a mechanism for these observation.

Similarly, a recent analysis shows seed abundance exhibits a 250-fold increase between cool-dry and

warm-moist climates, driven largely by a 100-fold increase in seed production rate (Journé et al.,

2022). This is akin to a 100-fold increase of the parameter f in the demographic model, which

leads to dramatically stronger CNDD and higher species richness (Fig. 4.3, Fig. 4.6). Therefore,

even if per capita density-dependent effects (i.e. aS, aT, and/or aR) do not vary at all between

environments, warmer and moister conditions may still give rise to relatively strong CNDD. This

may explain why relatively strong CNDD is measured in such environments (Comita et al., 2014;

Bachelot et al., 2015; LaManna et al., 2016; Song et al., 2018; Milici et al., 2020; Magee et al., 2021).

4.5.3 Interpretation of CNDD measurements

Overall, it is important to parse out whether variation in density-dependent biological interaction

strength (e.g. aT, which may be mediate by pathogens) or density-independent demographic rates

(e.g. mT, which may be mediated by abiotic factors) underlie the relative strength of CNDD mea-

surements. Fitting equation (4.3) to a simulated community indicates that the specific demographic

trait or traits underlying CNDD variation may give rise to distinctive patterns with respect to the

fits of the CNDD strength parameter (β) and baseline survival parameter (α). Applying these

results to Krishnadas and Stump (2021) provides some insight into the mechanism of how habitat

fragmentation modifies CNDD strength. Krishnadas and Stump (2021) show CNDD strength de-

creases (β increases) and baseline survival decreases (smaller α) with proximity to the forest edge.

I find that this pattern can occur if proximity to the forest edge increases density-independent mor-

tality or decreases seed growth rate but is unlikely to fundamentally reflect a decrease in baseline

density dependence strength (aT, which may correspond to factors such as intra-specific competition

strength, natural enemy abundance, or natural enemy susceptibility; see Fig. 4.5B). Notably, the

environment of sites closer to the forest edge differ from those of interior (e.g., they may be hotter,

drier, and receive more light; see Asbjornsen et al., 2004; Arroyo-Rodríguez et al., 2017) which may
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affect innter-site demographic trait variation and the resulting CNDD measurements in Krishnadas

and Stump (2021). This result is encouraging, as it implies relatively simple CNDD metrics may

still provide some insight into the demographic processes underlying CNDD measurements. This is

also relevant for conservation planning – whether habitat fragmentation decreases CNDD strength

and species diversity via modification of density-dependent or density-independent demographic

rates may inform restoration efforts.

More broadly, empirical CNDD measurements take a variety of forms that are difficult to directly

compare. Many studies fit equation (4.3) (e.g. Harms et al., 2000; Bagchi et al., 2014; LaManna

et al., 2016; Fricke and Wright, 2017; Krishnadas and Stump, 2021); a number of studies calculate

the probability of juvenile survival in an area of relatively high density versus an area of low density

(e.g. see references in Comita et al., 2014; Song et al., 2021a); other studies fit a generalized linear

mixed model (often with a logit link function) to quantify the effect of conspecific density on the

probability of seedling and/or sapling survival (e.g. Comita et al., 2010; Zhu et al., 2018; Xu et al.,

2022). It is unclear if the CNDD metrics derived by each method relay the same information. Future

work should aim to conceptually and quantitatively bridge these various metrics by their mutual

implementation into simulated communities that incorporate mechanistic demographic processes.

This will allow for more robust interpretations of empirical measurements of CNDD and more

meaningful parameterizations of theoretical models.

4.5.4 CNDD strength and species richness

Results also indicate that density-independent demographic rates can shape the efficacy of CNDD

in maintaining species richness (Figs. 4.6-4.7). This implies that a robust understanding of tree

juvenile demographic processes is necessary to determine whether CNDD is an important coexistence

mechanism.

It is illuminating to consider this result in the context of previous theoretical CNDD-related

work. There are two related differences between the model of this study and previous models.

Previous studies (1) implement intrinsic fitness as a simplified composite parameter of fecundity

and density-independent juvenile mortality rate (often called “yield”) to define inter-specific fitness
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differences without explicitly modeling the demographic processes that comprise it and (2) assume

that CNDD effects are entirely independent of the demographic traits that comprise intrinsic fit-

ness (e.g. Adler and Muller-Landau, 2005; Chisholm and Muller-Landau, 2011; Stump and Chesson,

2015; Stump and Comita, 2018; Chisholm and Fung, 2020; Smith, 2022a,b). These differences may

affect conclusions on the efficacy of CNDD as a coexistence mechanism. For example, recent studies

that examine realistic levels of inter-specific variation in seed production rate (i.e. fecundity) in

communities experiencing CNDD argue the resulting inter-specific fitness differences can largely

erode species richness (Chisholm and Fung, 2020; Smith, 2022a). However, the aforementioned sim-

plifications these studies make miss two crucial features. Firstly, species with higher seed production

rate also tend to experience stronger CNDD (Fig. 4.3) which can equalize fitness differences (Fig.

4.7B). Secondly, these studies only consider relative seed production rate rather than absolute seed

rain (which f represents). While the absolute (mean) level of seed production does not matter

if intrinsic fitness and CNDD are treated independently, it is crucial in determining the strength

of CNDD and its ability to maintain diversity when demographic structure is explicitly modeled

(Fig. 4.3, column 2; Fig. 4.6, column 1). Therefore, more precise empirical estimates of the ab-

solute level of seed production rate (as well as other key demographic traits) are warranted before

conclusions can be drawn on whether CNDD is strong enough to overcome inter-specific fitness

differences. In particular, it is important to ask if inter-specific variation in intrinsic fitness is driven

by demographic traits that cause CNDD to exacerbate or mitigate fitness differences (Fig. 4.7B).

4.5.5 Caveats and Future Directions

There are a number of simplifications this model makes. First, CNDD is generally thought to

be the result of natural enemies that congregate to areas of high density. Future models should

directly incorporate these interactions. Models that examine insect predators can build on Nathan

and Casagrandi (2004); pathogen-motivated models can expand on Mordecai (2015). Second, I

assumed density-dependent effects on seed-to-seedling transition mortality to be linear (equation

(4.2)). However, these effects may exhibit non-linearities (Detto et al., 2019). Incorporating non-

linearities could further complicate how each demographic trait impacts CNDD.
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Third, I examined when seeds, transitioning individuals, or seedling recruits induce density de-

pendence – however, empirical measurements indicate that it may be the density of adult trees

themselves that increase conspecific mortality. I made this simplification because it allows exam-

ination of all sources of density dependence within the same framework (i.e. without the need of

defining how adult effects on juveniles decay with distance; see Smith, 2022a).

Additionally, I only examined when a single life history stage induces density dependence. How-

ever, the densities of multiple life history stages likely affect density-dependent processes. Similarly,

while empirical measurements indicate species experience CNDD over multiple life history stages,

I only examined when CNDD occurs over the seed-to-seedling transition. These simplifications

make the model examined in this study tractable, but may ignore key features affecting density-

dependent feedbacks. Future models should allow for CNDD to be induced and experienced by

juveniles throughout the entirety of development. This could be directly accomplished with the

implementation of actor based models that index juvenile individuals and their interactions based

on their size or age.

4.5.6 Conclusion

The key finding of this study is that density independent demographic traits play a key role in

determining CNDD strength. Therefore, empirical studies should explicitly consider how density-

independent demographic processes result in (1) inter-specific variation in CNDD measurements and

(2) CNDD variation along environmental gradients. More generally, vestments of CNDD vary be-

tween sites and/or between species, variation in density-independent demographic processes should

be thought of as an alternative hypothesis to variation in natural enemy susceptibility (noting these

mechanisms are not mutually exclusive). Future theoretical should work toward integrating CNDD

into life history theory, which may allow for the development of predictions on how CNDD strength

and trait associations evolve.
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Appendix C

Introduction

In this Appendix, I provide details on (1) approximations for recruit abundances, (2) spatially

explicit simulations and fits of the power regression model (equation 4.3 in the main text), and (3)

the derivation of the approximate invasion criterion in the main text.

Equilibrium Derivations and Approximations

In the main text, equation (5) breaks equilibrium recruit abundance into two terms:

R∗
ix ≈ Dix

fi
mSi + gSi

gTi gSi

mRi(mTi + gTi)︸ ︷︷ ︸
Baseline Recruit density

1

1 +Dixρi︸ ︷︷ ︸
CNDD strength

(4.8)

“Baseline recruit density” is the number of recruits that would be found at location x in the absence

of CNDD and “CNDD strength” is the proportion of recruits that survive CNDD. When seeds induce

NDD, this expression is exact; when transitioning individuals or seedling recruits induce NDD, R∗
ix

is an approximation. Here, I briefly show the derivations of R∗
ix.
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Broadly, this expression is derived from setting each ODE from equation 4.1 in the main text,

dSix(t)

dt
= fiDix(t)−mSiSix(t)− gSiSix(t)

dTix(t)

dt
= gSiSix(t)− Tix(t)M

(
Six(t),Tix(t),Rix(t)

)
−mTiTix(t)

− gTiTix(t)G
(
Six(t),Tix(t),Rix(t)

)
dRix(t)

dt
= gTiTix(t)G(Six(t),Tix(t),Rix(t)

)
−mRiRix(x)

(4.9)

to their non-trivial equilibria.

Notably, I examine the following cases:

M
(
Six(t),Tix(t),Rix(t)

)
= aSiSix(t)

M
(
Six(t),Tix(t),Rix(t)

)
= aTiTix(t)

M
(
Six(t),Tix(t),Rix(t)

)
= aRiRix(t)

(4.10)

for which G(Six(t),Tix(t),Rix(t)
)
= 1 and

G
(
Six(t),Tix(t),Rix(t)

)
=

1

1 + a
′
SiSix(t)

G
(
Six(t),Tix(t),Rix(t)

)
=

1

1 + a
′
TiTix(t)

G
(
Six(t),Tix(t),Rix(t)

)
=

1

1 + a
′
RiRix(t)

(4.11)

for which M(Six(t),Tix(t),Rix(t)
)
= 0.

In each of these cases, the equilibrium for seed abundance is identical:

S∗
ix = Dix

fi
mSi + gSi

(4.12)

from which, T ∗
ix and R∗

ix can be calculated (either exactly or approximately).
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Seeds induce NDD

M
(
Six(t),Tix(t),Rix(t)

)
= aSiSix(t)

It is trivial to solve the equilibrium for both T ∗
ix and R∗

ix. A little algebra yields:

T∗
ix =

gSiS∗
ix

mTi + gTi + aSiS∗
ix

=
DixgSi

fi
mSi+gSi

mTi + gTi +DixaSi
fi

mSi+gSi

R∗
ix = Dix

fi
mSi + gSi

gTi gSi

mRi(mTi + gTi)

1

1 +Dix
aSi

mTi+gTi

fi
mSi+gSi

(4.13)

G
(
Six(t),Tix(t),Rix(t)

)
= 1

1+a
′
SiSix(t)

The solution for the growth rate case (when negative density dependence affects growth rate) is

almost identical to the above case:

T∗
ix =

gSiS∗
ix(1 + a

′
SiS

∗
ix)

mTi + gTi + a
′
SiS

∗
ix

=

DixgSi
fi

mSi+gSi

(
1 + a

′
SiDix

fi
mSi+gSi

)
mTi + gTi +Dixa

′
SimTi

fi
mSi+gSi

R∗
ix = Dix

fi
mSi + gSi

gTi gSi

mRi(mTi + gTi)

1

1 +Dix
a
′
Si

mTi+gTi

fi
mSi+gSi

(4.14)

noting that in this case and the above case, I skip the derivation – this is because these quantities

can be derived by directly setting each expression in the system of Ordinary Differential Equation

in equation 4.9 to zero and solving for the equilibrium.

Transitioning individuals induce NDD

M
(
Six(t),Tix(t),Rix(t)

)
= aTiTix(t)

First, consider the dynamics of transitioning individuals with the above value inserted. Rearranging

terms slightly, the equilibrium is obtained by solving the following equation:

dTix(t)

dt
= gSiS∗

ix − T∗
ix

(
aTiT∗

ix +mTi + gTi

)
= 0 (4.15)
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However, directly solving this yields a quadratic that is somewhat unpleasant to work with. To

analyze this is the same framework as the seed case, I perform a linearization. To do so, I first

divide each side of the equation by aTiT∗
ix +mTi + gTi. With some rearranging, this gives:

1

mTi + gTi

gSi S∗
ix

1 + T∗
ix

aTi
mTi+gTi

− T∗
ix = 0 (4.16)

I then take the first order term of the geometric series of gSiS∗
ix

1+T∗
ix

aTi
mTi+gTi

, noting that 1/(1+r) ≈ 1−r

if r is fairly small. This then gives

1

mTi + gTi

(
gSi S∗

ix

)(
1− T∗

ix

aTi

mTi + gTi

)
− T∗

ix = 0 (4.17)

then, solving for T∗
ix and using the equilibrium, T∗

ix, to solve for R∗
ix (which is straight-forward)

gives:

T∗
ix ≈ gSiS∗

ix

mTi + gTi + S∗
ix

aSi
mTi+gTi

=
DixgSi

fi
mSi+gSi

mTi + gTi +Dix
aSigSi

mTi+gTi

fi
mSi+gSi

R∗
ix ≈ Dix

fi
mSi + gSi

gTi gSi

mRi(mTi + gTi)

1

1 +Dix
aSigSi

(mTi+gTi)2
fi

mSi+gSi

(4.18)

G
(
Six(t),Tix(t),Rix(t)

)
= 1

1+a
′
TiTix(t)

Similar to above, linearizations are performed to produce a relatively simple expression for T∗
ix. The

Ordinary Differential Equation gives:

dTix(t)

dt
= gSiS∗

ix −mTiT∗
ix − gTiT∗

ix

1

1 + a
′
SiT

∗
ix

= 0 (4.19)

for which I make two simplifications. First, I take the geometric expansion: 1

1+a
′
SiT

∗
ix

≈ 1− a
′
SiT

∗
ix.

Then, the above can be expressed as:

gSiS∗
ix − T∗

ix

(
mTi + gTi − a

′
SiT

∗
ix

)
= 0 (4.20)
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Then, dividing each side of the equation by mTi + gTi − a
′
SiT

∗
ix and doing so rearranging yields

1

mTi + gTi

gSiS∗
ix

1− a
′
SiT

∗
ix

mTi+gTi

− T∗
ix = 0 (4.21)

Taking the geometric series of the right had expression (as in the above section) yields

1

mTi + gTi
gSiS∗

ix

(
1 +

a
′
SiT

∗
ix

mTi + gTi

)
− T∗

ix = 0 (4.22)

With these simplifications, it is straightforward to solve for T∗
ix and R∗

ix, which ultimately yields

T∗
ix ≈ gSiS∗

ix

mTi + gTi − S∗
ix

aSi
mTi+gTi

=
DixgSi

fi
mSi+gSi

mTi + gTi +Dix
aTigSi

mTi+gTi

fi
mSi+gSi

R∗
ix ≈ Dix

fi
mSi + gSi

gTi gSi

mRi(mTi + gTi)

1

1 +Dix
a
′
TSimTigSi

(mTi+gTi)2
fi

mSi+gSi

(4.23)

Seedling recruits induce NDD

M
(
Six(t),Tix(t),Rix(t)

)
= aRiRix(t)

Solving for T∗
ix is straightforward and can be done exactly. This yields

T∗
ix =

1

mTi + gTi

gSiS∗
ix

1 +
aRiR∗

ix
mTi+gTi

=
1

mTi + gTi

DixgSi
fi

mSi+gSi

1 +
aRiR∗

ix
mTi+gTi

(4.24)

and then, the ODE describing recruit abundance is at equilibrium when

dRix(t)

dt
= gTi

1

mTi + gTi

gSiS∗
ix

1 +
aRiR∗

ix
mTi+gTi

−mRiR∗
ix = 0 (4.25)

This equation can be solved directly. However, it yields a simpler expression to take the first term

of the geometric expansion of 1

1+
aRiRix

mTi+gTi

, which gives

gTi
1

mTi + gTi
gSiS∗

ix

(
1− aRiR∗

ix

mTi + gTi

)
−mRiR∗

ix = 0 (4.26)
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which is straightforward to solve. This gives

R∗
ix ≈ Dix

fi
mSi + gSi

gTi gSi

mRi(mTi + gTi)

1

1 +Dix
aRigSigTi

(mTi+gTi)2
fi

mSi+gSi

(4.27)

G
(
Six(t),Tix(t),Rix(t)

)
= 1

1+a
′
RiRix(t)

As in the above section, solving for T∗
ix is straightforward and can be done exactly. This yields

T∗
ix =

1

mTi + gTi

gSiS∗
ix

(
1 + a

′
RiR

∗
ix

)
1 +

a
′
RimTiR∗

ix

mTi+gTi

=
1

mTi + gTi

DixgSi
fi

mSi+gSi

(
1 + a

′
RiR

∗
ix

)
1 +

a
′
RimTiR∗

ix

mTi+gTi

(4.28)

and then, the ODE describing recruit abundance is at equilibrium when

dRix(t)

dt
= gTi

1

mTi + gTi

gSiS∗
ix

(
1 + a

′
RiR

∗
ix

)
1 +

a
′
RiR

∗
ixmTi

mTi+gTi

1(
1 + a

′
RiR

∗
ix

) −mRiR∗
ix = 0 (4.29)

Firstly, the term 1 + a
′
RiR

∗
ix will cancel. This equation can be solved directly, but (once again) it

yields a simpler expression to take the first term of the geometric expansion of 1

1+
a
′
Ri

R∗
ix

mTi+gTi

. This

gives

gTi
1

mTi + gTi
gSiS∗

ix

(
1−

a
′
RimTiR∗

ix

mTi + gTi

)
−mRiR∗

ix = 0 (4.30)

which is straightforward to solve. This gives

R∗
ix ≈ Dix

fi
mSi + gSi

gTi gSi

mRi(mTi + gTi)

1

1 +Dix
a
′
RigSigTimTi

(mTi+gTi)2
fi

mSi+gSi

(4.31)

Seed-to-Seedling Transition Analysis for Regression Fit

In the main text, I describe a spatially explicit model for which fits of the equation

Rix = αiS
βi
ix (4.32)
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are performed. Rix and Six represent seed and newly emerged seedling recruit abundance of species

i at location x, respectively, αi represents baseline seed-to-seedling survival of species i, and βi is a

metric of the strength of CNDD of species i (βi = 1 implies no CNDD and βi < 1 implies species

i experiences CNDD). Here, I provide additional details on the simulations and the assumptions

therein.

General simulation details

I generate a 200× 200 grid on which each grid-cell contains a single adult tree. I randomly assign

each grid-cell a value between 1 and 20, which indexes a species. Arbitrarily, I examine species 1.

Species 1 distributes seeds in space. The number of seeds species i disperses to location x is given

by S0 × Dix where S0 is the total seeds eachh adult disperses and Dix is the seed rain density of

species i at location x (reflecting the location of nearby adults; see the below section). With regards

to equation 4.9, S0 ×Dix serves as the initial abundance of seeds of species i at patch x. Similarly,

I assume fi = 0 (all seeds at location x come from the initially dispersed seeds) and mRi = 0 (all

individuals that successfully recruit are counted). This more realistically reflects measurements,

which examine the number of seedling recruits that emerge from an initial pool of seeds counted in

nearby seed traps.

Dispersal kernel

In this section, I show the details of the term Dix (seed rain density) that is used for the spatially

explicit and fits of equation 4.32. I define the dispersal kernel similarly to Stump and Comita (2020).

For computational efficiency, I work with Manhattan distances rather than Euclidean distances

(i.e. the distance between two points (a1, b1) and (a2, b2) is |a1 − a2| + |b1 − b2| rather than√
(a1 − a2)2 + (b1 − b2)2. Simulations indicate this assumption does not affect results (particu-

larly because all that matters for the fits is that patches exhibit variation in the initial number of

seeds). I assume distances between patches are defined by the Manhattan distance between their

centers.
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I model dispersal with a discrete approximation of a 2-Dimensional exponential distribution

using the function:

Ei(z) = 2πz
1

2πσ2
Di

e−z/σDi (4.33)

where Ei(z) defines the probability that a seed of species i lands a distance of z meters away and

σDi defines how dispersal of species i declines with distance. Note that 2πz is on the numerator

(algebraically, the 2π terms cancel, but I leave things in this format because it is easier to understand

this way). As noted by Stump and Comita (2020), this formulation of Ei(z) defines the probability

an adult of species i disperses a seed anywhere a distance of z meters away.

Using this, I calculate the probability of seed dispersal to a given distance z meters away. Let

L represent the distance between the center-points of patches in meters, and let v represent the

number of patch centers between locations. For computational efficiency, I assume trees disperse

no seeds farther than 50 patch-lengths away (I ignore when v > 50). Under the parameterizations

of this study, this accounts for over 99.9% of seeds a tree produces. Then, the probability a seed of

species i lands on an individual patch v spaces away (henceforth di(z)) is equal to

di(z) =



∫ 0.5L
0 Ei(s)ds v = 0

1
4v

∫ L(v+0.5)
L(v−0.5) Ei(s)ds 1 ≤ v ≤ 50

0 v > 50

(4.34)

Integrals are taken in intervals of 0.5L because integrating throughout the entire length of the patch

relative to the center point entails integrating over half a patch length (i.e. expanding the radius of

the patch relative ot the center). Also note the second integral is divided by 4v because there are

always 4v sites of distance v from a central point under Manhattan distance. This formulation makes

the assumption that integrating radially over discrete square grid-cells is an adequate approximation.

The seed rain density at location x of species i, Dix, can be calculated by summing over the

proportion of seeds dispersed by all adults of species i to location x. Let zix represent the distance

228



of the zth closest patch to x occupied by species i. Then,

Dix =
∑
all z

di(zix) (4.35)

This implementation is used in the simulations.

Derivation of Invasion Criteria

General Setup

As noted in the main text, I examine how demographic traits and CNDD impact species diversity

using a simple competition model. I consider a community of X patches on which each patch con-

tains an adult tree. Adult trees disperse a fixed proportion of their seeds, D, uniformly throughout

the environment and locally disperse the remaining 1−D seeds on the local patch (x). Therefore,

x now indexes the identity of the tree occupying the patch. Then, let Dii and Dik represent the

proportion of seeds of species i dispersed to patches occupied by species i and j, respectively (i ̸= j).

Then, Dii = 1−D+piD and Dik = piD where pi is the proportion of patches occupied by species i.

Adults of each species die at rate δ. When an adult dies, it is replaced by a randomly selected indi-

vidual in the plot weighted by a species-specific competitive ability parameter, C (a lottery model).

Therefore, the probability species i replaces a patch occupied by species k is: R∗
ikCi/

∑
all j R

∗
jkCj .

The simplified form of dispersal limitation means that the model can be described spatially im-

plicitly (patches need only be described by the occupant but not their absolute position). Therefore,

adult dynamics can be described by the following system of Ordinary Differential Equations:

dpi
dt

= δ

[
R∗

iiCi∑
all j R∗

jiCj
pi +

∑
k ̸=i

R∗
ikCi∑

all j R∗
jkCj

pk − pi

]
(4.36)

For numerical implementations, I use exact values for R∗
ii and R∗

ji. For the invasion criteria, I use

the approximate values derived in the above section. The recruit equilibrium abundances are equal
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to:

R∗
ii =

[
(1−D) + piD

] fi
gSi +mSi

gSigTi

gTi +mTi︸ ︷︷ ︸
Baseline Recruit density

1

1 +
[
(1−D) + piD

]
ρi︸ ︷︷ ︸

CNDD strength

R∗
ik = piD

fi
gSi +mSi

gSigTi

gTi +mTi︸ ︷︷ ︸
Baseline Recruit density

1

1 + piDρi︸ ︷︷ ︸
CNDD strength

(4.37)

noting that, for future notation, let

Yi = Ci
fi

gSi +mSi

gSigTi

gTi +mTi

(4.38)

and that the values of ρ are summarized in Table 4.1 of the main text.

In addition, I use the notation

Ii =
∑
all j

R∗
jiCj =

[
(1−D) + piD

]
Yi

1

1 +
[
(1−D) + piD

]
ρi

+D
∑
j ̸=i

pjYj
1

1 + pjDρj
(4.39)

which will be convenient in the derivation.

Derivation

I follow provide a derivation of the invasion criteria similar to Stump and Comita (2018).

Basic Setup

Firstly, based on the ODE, species i can invade if its growth rate is greater than zero. That is,

letting ri represent the per capita growth rate of species i scaled by adult mortality rate, or

1

pi

1

δ

dpi
dt

= ri =

(
(1−D) + piD

)Yi
1

1+(1−D+piD)ρi

Ii
+D

∑
k ̸=i

piYi
1

1+piDρi

Ik
− 1 (4.40)

Species i can invade if ri > 0. The below analytical treatment is to obtain a relatively simple

expressions for the right-hand-side terms in the above expression.
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Firstly, note that if A/B does not differ very largely from one, the approximation A/B ≈

1+logA−logB serves as a good approximation. In the context of the model, a useful approximation

to make is

Yi
1

1+(1−D+piD)ρi

Ii
≈ 1 + log Yi − log

(
1 + (1−D + piD)ρi

)
− log Ii

≈ 1 + log Yi − log
(
1 + (1−D)ρi

)
− piDρi − log Ii

(4.41)

noting that log(A + B) ≈ log(A) + B if B is fairly small, which is used for the approximation

log
(
1 + (1−D + piD)ρi

)
≈ log

(
1 + (1−D)ρi

)
+ piDρi.

Using similar methods to above,

Yi
1

1+piDρi

Ik
≈ 1 + log Yi − piDρi − log Ik (4.42)

noting that these approximations assume “small effects” which implies fitness differences and the

strength of CNDD are not very large.

Approximation of Ii term

In this section, I derive a simplification for Ii. I make several changes in notation for this section,

as follows:

yi =
Yi

Y

yk =
Yk

Y

ρ′i =
[
(1−D) + piD

]
ρi

ρ′k = pkDρk

(4.43)

where Y represents the mean intrinsic fitness of the community. These simplifications will help in

simplifying the expression. Then, it follows that

Ii

Y
= yj

[
(1−D) + piD

] 1

1 + ρ′i
+D

∑
k ̸=i

ykpk
1

1 + ρ′k
(4.44)
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I then take the linearization of the right hand side of this expression around the points yi = yk = 1

and ρ′i = ρ′k = 0. That is, letting F represent a function depicts the right hand side of the above

equation,

Ii

Y
= F (yi, yk, ρ

′
i, ρ

′
k)

≈ F (1, 1, 0, 0) + F ′
yi(1, 1, 0, 0)(yi − 1) + F ′

yk
(1, 1, 0, 0)(yk − 1)

+ F ′
ρ′i
(1, 1, 0, 0)ρ′ + F ′

ρ′i
(1, 1, 0, 0)ρ′i

= 1 + (yi − 1)
[
1−D + piD

]
+D

∑
k ̸=i

(yk − 1)pk − ρ′i
[
1−D + piD

]
−D

∑
k ̸=i

pkρ
′
k

(4.45)

noting that F ′
x indicates the derivative of F with respect to x. Then, substituting back in

ρ′i =
[
(1−D) + piD

]
ρi

ρ′k = pkDρk

(4.46)

and doing some rearranging of the above expression yields

Ii

Y
≈ 1 + (yi − 1)(1−D) +D

∑
all k

(yk − 1)pk − ρi
[
(1−D)2 + 2D(1−D)pi]−D2

∑
all k

p2kρk (4.47)

then, assuming y is not very different from 1, one can make the approximation that yi = Yi

Y
≈

1 + log Yi − log Y . Substituting this into the Equation 4.47 then yields

Ii

Y
≈ 1 + log Yi(1−D) +D

∑
all k

log Ykpk︸ ︷︷ ︸
γY

−ρi
[
(1−D)2 + 2D(1−D)pi]−D2

∑
all k

p2kρk︸ ︷︷ ︸
γρ

(4.48)

noting the terms in braces, which will be substituted into the following expressions.

Furthermore, if the fitness of a particular species on a patch, Ii, does not vary that much from the

mean fitness (Y ), one can make the approximation that Ii
Y

≈ 1 + log Ii − log Y . Then, substituting

this into equation 4.48 and doing some rearring gives

log Ii ≈ (1−D) log Yi + γY − ρi
[
(1−D)2 + 2D(1−D)pi

]
− γρ (4.49)
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Additionally, if ρi is relative small, ρ(1−D) ≈ log
(
1+ρ(1−D)

)
. Then, the above can be rearranged

as

log Ii ≈ (1−D) log Yi + γY − (1−D) log
(
1 + ρi(1−D)

)
+ 2D(1−D)pi − γρ (4.50)

which will be useful for combining and canceling several terms.

Simplification of growth rate

Returning to Equation 4.40 and substituting some of the above approximations, species i’s growth

rate is

ri ≈
(
1−D + piD

)(
1 + log Yi − log

(
1 + ρi(1−D)

)
−Dpiρi − log Ii

)
+D

∑
k ̸=i

pk
(
1 + log Yi − piDρi − Ik

)
− 1

(4.51)

From here, it is useful to make several simplifications. Firstly, note that the term D
∑

k ̸=i pk(−piDρi)

can be taken out of the summation, which can be rearranged as −D2piDρi
∑

k ̸=i pk = D2piρi(1−pi)

noting that
∑

k ̸=i pk = 1− pi on the basis that
∑

all k pk = 1. Similarly, several terms can be moved

in and outside of the summation. Doing this and canceling several terms yields the expression:

ri ≈ log Yi − (1−D) log
(
1 + ρi(1−D)

)
− piD log

(
1 + ρi(1−D)

)
− (1−D)Dpiρi −D2ρipi − (1−D) log Ii −D

∑
all k

pkIk︸ ︷︷ ︸
γΣ

(4.52)

From here, it is convenient to make an additional approximation by letting piD log
(
1 + ρi(1−D)

)
≈ piρi(1−D)D (similar to the approximation from earlier). Then, the above expression becomes

ri ≈ log Yi − (1−D) log
(
1 + ρi(1−D)

)
−D(2−D)piρi − (1−D) log Ii −DγΣ (4.53)
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noting
∑

all k pkIk = γΣ. Then, substituting Equation 4.50 for log Ii, this yields

ri ≈ D(2−D) log Yi −D(1−D) log
(
1 + ρi(1−D)

)
−D2(3− 2D)piρi − (1−D)γY + (1−D)γρ −DγΣ

(4.54)

From here, it is useful to use a property first highlighted by Chesson (1994). If the resident species

are at equilibrium, it follows that their growth rates are at zero. Therefore,

ri = ri −
1

N

∑
k ̸=i

rk (4.55)

which is convenient for canceling several terms. Plugging the appropriate values of rk from equation

4.53 into the summation yields

1

N

∑
k ̸=i

rk =
1

N

∑
k ̸=i

[
D(2−D) log Yk −D(1−D) log

(
1 + ρk(1−D)

)
−D2(3− 2D)pkρk − (1−D)γY + (1−D)γρ −DγΣ

]
= D(2−D)log Y −D(1−D)log

(
1 + ρ(1−D)

)
− 1

N
D2(3− 2D)

∑
k ̸=i

pkρk − (1−D)γY + (1−D)γρ −DγΣ

(4.56)

Then, by noting the property E[AB] = AB + Cov(A,B) where A denotes the mean of A (i.e.

E(A) = A), it follows that

1

N

∑
k ̸=i

pkρk = p ρ+ Cov(p, ρ)

=
ρ

N
+ Cov(p, ρ)

(4.57)

Then, to calculate the invader growth rate of species i, I substitute Equation 4.57 into Equation

4.56, which I then substitute with along with Equation 4.54 into Equation 4.55. Additionally, I take

the limit of the resulting expression as pi → 0, which yields the growth rate of species i when it

is rare in the community. Doing so, several terms will cancel and, ultimately, yield an expression

234



which is conveniently expressed as

ri ≈ ∆Yi +∆ρi + Pi (4.58)

where

∆Yi = D(2−D)
(
log Yi − log Y

)
∆ρi = D(1−D)

(
log
(
1 + (1−D)ρi

)
− log

(
1 + (1−D)ρ

))
Pi = D2(3− 2D)

(
ρ

N
+ Cov(p, ρ)

) (4.59)

where ∆Yi represents fitness differences induced by density-independent fitness, ∆ρi is the fitness

difference related to CNDD (entirely dependent on ρ), and Pi is the stabilizing effect species i

experiences due to CNDD (in essence, the advantage species i enjoys because it is rare).
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Chapter 5

Masting, Janzen-Connell effects, and
coexistence: a theoretical perspective

5.1 Abstract

Seed and seedling predation are potent forces of juvenile tree mortality and play an important role in

determining recruitment. Many studies examine how Janzen-Connell effects – distance-dependent

specialized seed and seedling predation – facilitate species coexistence by producing negative density

dependence. At the same time, masting (synchronized inter-annual seed production) is frequently

observed in perennial forest communities. Predator satiation generated by mast events are observed

to saturate seed predator functional forms, leading to positively density-dependent seed survival.

Current theory does not examine how negative density dependence generated by Janzen-Connell

effects and positive density dependence created by masting interact to shape species coexistence

in competitive communities. To fill this gap, I present a theoretical model that incorporates both

processes. I show that masting can increase or decrease the ability of specialized predators to main-

tain species richness. First, I show that the ability of specialized predation to promote coexistence

depends on the ratio of specialized predation to generalized predation that seeds experience. This

result applies regardless as to whether masting occurs. Then, I show that the impact of masting

on species richness depends on the relative non-linearity of the functional forms of specialists and

generalists: masting promotes coexistence if specialists have less non-linear functional forms than
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generalists and masting erodes coexistence if specialists have more non-linear functional forms that

generalists. These results directly reflect how masting affects the relative importance of specialized

predation relative to generalized predation.

5.2 Introduction

Seed and seedling predation are fundamental processes that shape plant communities (Crawley,

2000). Two forms of predation are frequently discussed in the literature: specialized predation and

generalized predation. A large body of research investigates how seed predation impacts species

coexistence (e.g. Janzen, 1970; Connell, 1971; Hubbell, 1980; Armstrong, 1989; Kuang and Chesson,

2009, 2010; Adler et al., 2013; Larios et al., 2017). Despite this, how interactions between generalist

and specialist predators in temporally varying environments affect tree species diversity remains

under-studied.

Masting, intra-specifically synchronized production of a large number of seeds over (most often)

irregular periods of two or greater years, is an important source of temporal variation in forest

communities. However, little theory examines how it affects tree coexistence. Masting is a common

phenomenon for a large number of perennial trees worldwide (Janzen, 1971; Kelly and Sork, 2002;

Koenig, 2021; Pesendorfer et al., 2021; Zwolak et al., 2022). A number of hypotheses have been

suggested to explain the evolution of masting, including resource matching (seed production simply

reflects yearly resource availability; Kelly, 1994), wind pollination (synchronous flowering increases

pollination efficiency Janzen, 1978; Kelly and Sork, 2002), and predation satiation (Janzen, 1971).

In this study, I will focus on predator satiation.

Predator satiation is based on a simple premise: trees produce a large numbers of seeds in

synchrony (a mast event) such that they over-satiate the predators that consume them (Janzen,

1971; Silvertown, 1980). Due to this over-satiation, mast events increase the proportion of seeds that

escape predation. More formally, if it is assumed that seed predators have non-linear (concave-down)

type II functional responses (Holling, 1959), inter-annual variation in seed production will reduce

the mean predation seeds experience (due to non-linear averaging; Jensen’s inequality; Jensen, 1906)
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decreasing seed predation and seed predator growth rate. Simultaneously, gaps between mast events

may starve seed predators, further reducing seed predator abundance and predation during mast

events (Salisbury et al., 1942; Kelly and Sullivan, 1997; Kelly and Sork, 2002). These processes are

thought to jointly increase the proportion of seeds that escape predation on mast years. Notably, I

do not claim that predator satiation is the ultimate evolutionary cause of masting; rather, I simply

note that there is empirical evidence masting leads to predator satiation in a large number of

communities worldwide (e.g. Zwolak et al., 2022). Therefore, it is important to elucidate its impact

on species coexistence.

At the same time, Janzen Connell effects (JCEs) are widely thought to play an important

role in maintaining species richness in a number of forest communities (Janzen, 1970; Connell,

1971; Wright, 2002; Terborgh, 2012). JCEs are a specialized-predation-based species coexistence

mechanism: JCEs posit that distance-dependent specialized predators of seeds and seedlings are

attracted to adults and locally reduce offspring survival. Empirical evidence strongly suggests

that JCEs occur in a number of systems (e.g. Hyatt et al., 2003; Petermann et al., 2008; Mangan

et al., 2010; Swamy and Terborgh, 2010; Johnson et al., 2012; Comita et al., 2014; Bever et al., 2015;

Hazelwood et al., 2021). The logic behind how JCEs maintain diversity is relatively straightforward:

as a species becomes more common, its specialized predators occupy an increasingly large proportion

of the environment, generating stabilizing negative frequency dependence.

Both ideas (JCEs and predator satiation) were proposed (or, at least, popularized) by Daniel

Janzen despite their potentially contradictory implications: predation satiation (i.e. the saturating

of a functional response) yields positive density dependence while specialized predation (i.e. JCEs)

depend on negative density dependence (Janzen, 1970, 1971; Connell, 1971). While past work has

noted the potential tension between these processes (e.g. Janzen, 1978; Koenig et al., 2003), only rel-

atively recent empirical work that examines their potentially antagonistic interactions (Xiao et al.,

2017; Bogdziewicz et al., 2018; Cannon et al., 2020; Martini et al., 2022; O’Brien et al., 2022). More-

over, theoretical investigations of their interactions are virtually non-existent. As a recent analysis

shows that generalist and specialist predators alike experience satiation induced by mast events

(Zwolak et al., 2022), it is important to develop a theoretical understanding of how interactions
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between generalist predation, specialist predation, and masting affect species coexistence. This is

particularly pertinent given recent evidence that the impacts of masting on predator satiation are

changing (Zwolak et al., 2022).

To this end, I analyze a model incorporating generalist predation, localized specialist preda-

tion (as described by JCEs) and seed masting. I report two key results. First, I show that the

ability of specialized predation to maintain coexistence fundamentally depends on the ratio of spe-

cialized predation to generalized predation that species experience. Second, I find that the impact

of masting on species diversity depends on the relative of non-linearity of the functional responses

of generalist and specialist predators. Ultimately, masting is stabilizing (promotes coexistence) if

predator satiation affects generalists more than specialists and destabilizing if predation satiation

impacts specialists more than generalists. I then discuss how this process may impact empirical

measurements of negative density dependence and discuss future avenues of theoretical research.

5.3 Methods

5.3.1 Model

I consider a patch occupancy model that incorporates specialist predation, generalist predation, and

seed masting. The community consists of L patches and N tree species. Each patch is occupied by

a single adult tree that disperses seeds throughout the community. Masting events are incorporated

into the model by assuming temporal variation in seed production rate (see below). Each patch

contains seeds and a specialist seed predator; a single generalist species persists in the community

that attacks seeds on every patch.

First, I describe seed dynamics. Adult trees of species i uniformly disperse seeds throughout the

community at rate fi
(
Xi(t)

)
(defined below) in which case fi

(
Xi(t)

)
pi seeds are dispersed to each

patch where pi is the proportion of patches occupied by adults of species i in the population. Seeds

of species i die at density-independent mortality rate mi and experience generalized predation (see

below) on all patches. Seeds of species i on patches occupied or previously occupied by species i

additionally experience mortality due to specialized predation (see below). Overall, seed dynamics
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are described by

dSii

dt
= fi

(
Xi(t)

)
pi −miSii − PiF

i
P
(
Sii

)
Sii − PGFG

(
S
)
Sii

dSik

dt
= fi

(
Xi(t)

)
pi −miSik − PGFG

(
S
)
Sik

(5.1)

where Sii is the number of seeds of species i on patches occupied (or previously occupied) by species

i and and Sik is the number of seeds of species i on patches occupied (or previously occupied) by

species k (i = 1, 2, ..., N , k ̸= i). Note that the previous occupant of a patch is important because it

determines which species specialized natural enemies are present and the seed composition therein.

Pi and F i
P
(
Sii

)
represent the abundance and functional form of specialized predators of species i,

respectively (see below). PG and FG
(
S
)

represent generalist predator abundance and the functional

form of the generalist predator, respectively.

Masting is incorporated into the model with the function fi
(
Xi(t)

)
:

fi
(
Xi(t)

)
=


f0,i, no mast event

fM,i mast event
(5.2)

for which f0,i is species i’s seed production rate on non-mast years and fM,i is species i’s seed

production rate on mast years. I assume that masting occurs on an annual schedule (i.e. a mast

event increases seed production over the course of a year). Mast events of species i follow a random

variable, Xi(t). For simulations in this study, I assume mast years follow a Poisson process with

variance σ2.

Now, I describe the predators’ population dynamics and functional forms. Given that there are

N tree species, there are also N specialist seed predators. Specialized predators persist on patches

occupied by adults of the patch of seeds they specialize on (in line with how JCEs are classically

imagined). That is, I model an independent population of specialized predators on each patch

occupied (or previously occupied) by species i and locally consume species i’s seeds. I assume the

generalist predators attack all seeds in the community at random (attacking all seeds on all patches

at a constant rate, spending an equal amount of time on each of the L patches in the community).
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The dynamics of all specialist predators and the generalist predator, respectively, are described by:

dPi

dt
= ePPiF

i
P
(
Sii

)
Sii −mPPi

dPG

dt
= eGPGF

all
G

(
S
)
−mGPG

(5.3)

Importantly, the above equation for specialized predators (Pi, i = 1, 2, ..., N) describes their popu-

lation dynamics on the local patch level (these dynamics occur separately on every patch occupied

by species i). However, the equation for the generalist predator (PG) describes its global population

dynamics (the total number of generalists throughout the entire community). For both predators,

I consider type II functional responses:

F i
P
(
Sii

)
=

aP

1 + aPhPSii

FG
(
S
)
=

1

L

aG

1 + aGhG
∑

allj
∑

allk Skj(pj + Ej)

F all
G
(
S
)
=

aG
∑

allj
∑

allk Skj(pj + Ej)

1 + aGhG
∑

allj
∑

allk Skj(pj + Ej)

(5.4)

F i
P
(
Sii

)
is the functional response of specialist predators of species i (which quantifies the effect

of specialized natural enemies on individual patches). FG
(
S
)

is the functional response of the

generalist predator on individual patches (i.e. it quantifies how generalists attack seeds of each

species on individual patches). F all
G describes the overall (population-level) rate at which seeds are

consumed by generalists (i.e. it quantifies generalist predation over all patches). aG is the generalist

predator attack rate, aP is the specialist predator attack rate, hG is the generalist predator handling

time, hP is the specialist predator handling time, L is the number of patches in the community,

and Ej is the proportion of patches in the community that were previously occupied by species j

but are now unoccupied (see below for details). FG
(
S
)

contains a 1/L term because it is used to

calculate seed per patch seed consumption rate. Notably, as long as it is assumed that there are

enough patches that no species stochastically goes extinct, the value of L does not affect community

dynamics. Larger L increases the number of patches in the community and decreases the amount

of time each generalist spends on each patch (in which case, larger L increases total generalist
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abundance, but does not affect its impact on any individual patch). Simulations confirm that the

value of L does not affect seed and tree dynamics.

Now, I describe adult dynamics. Adults occupying patches die at rate δ. Upon the death of the

adult, the patch enters an “empty” state, E (e.g. pi → Ei). After a patch is emptied, I assume the

specialist predator previously occupying the patch stays the same until the patch is colonized by

another species (noting that the specialist predator’s population is maintained by seeds currently

located on and dispersed to the patch). The tree that colonizes a patch is determined by a lottery

model (i.e. the probability a species colonizes a patch is proportional to the number of its seeds

on it Chesson and Warner, 1981). The rate at which empty patches are colonized depends on the

number of seeds on the patch (described by ϕ, see below). With this, adult tree dynamics and

empty patch dynamics are described by

dpi
dt

=
∑
all k

SikCi∑
all j SjkCj

Ekϕk − δpi

dEi

dt
= δpi − Eiϕi

(5.5)

where Ci represents the relative competitive ability of species i and Ei is the proportion of patches

previously occupied by species i that are vacated. ϕk is the rate at which a vacated patch previously

occupied by k gets occupied. I assume

ϕk = c

[
1− exp

(
− g

∑
all j

Sjk

)]
(5.6)

where c is the maximum possible colonization rate and g is a constant that defines the rate at

which seed density affects colonization rate. In other words, the rate at which vacated patches

are colonized increases monotonically toward c as a function of the number of seeds therein scaled

by a constant, g. Notably, Eiϕi defines the overall colonization (or recruitment) rate of patches

previously occupied by species i.
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5.3.2 Presentation of results

I present analyses of the above model using a combination of analytical results and simulations.

First, I derive a simple metric (αt) which quantifies the strength of JCEs (i.e. the strength of

specialist predation relative to generalist predation). Then, I present simulations of the model (i.e.

equation 5.5) under various scenarios (masting and non-masting cases). For the non-masting case,

I examined how the strength of specialist predation relative to generalist predation affects species

coexistence. I ran simulations of equation 5.5 with 50 initial species while assuming species vary in

fitness (specifically, varying in relative competitive ability, C). To assess the impact of specialized

predation rate on species richness, I varied the strength of specialized predation attack rate (aP)

between simulations. Simulations were run for 106 generations, more than sufficient for the system

to reach equilibrium.

For cases incorporating masting, I performed three analyses. First, I examined how variation

in seed availability affects αt under different parameterizations of seed predator traits (namely hP

and hG) to examine how the relative non-linearity of functional responses affects JCE strength

(as defined by αt). Second, I ran simulations of equation 5.5 in a community in which all species

mast on the same year (no inter-annual masting variation) which allows analysis of masting and

predation in isolation (without the influence of the temporal storage effect). Specifically, I examined

how the relative non-linearity of generalist and specialist functional responses (hP compared to hG)

interacted with masting to shape species richness. Third, I performed simulations similar to those

described above, but allowing inter-specific variation in mast years. All simulations were performed

in [R] (R Core Team, 2021) using the deSolve package (Soetaert et al., 2010).
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5.4 Results

5.4.1 Analytical results

Assuming a separation of timescales such that seed dynamics are faster than predator dynamics,

the abundance of seeds on conspecific occupied and heterospecific occupied patches are given by

Sii(t) = pi
fi
(
Xi(t)

)
FG(S) +mi︸ ︷︷ ︸

abundance

1

1 +
PiF i

P(Sii)

PGFG(S)+mi︸ ︷︷ ︸
αi

Sik(t) = pi
fi
(
Xi(t)

)
FG(S) +mi︸ ︷︷ ︸

abundance

(5.7)

respectively. The above expressions are broken into two terms: the “abundance” term and αi.

The abundance term describes the number of seeds of species i that would persist on a patch in

the absence of any specialized predation. αi describes the proportion of seeds that survive in the

presence of specialists (noting that αi = 1 if F i
P(Sii) = 0). Notably,

Sii(t)

Sik(t)
= αi =

1

1 +
PiF i

P(Sii)

PGFG(S)+mi

(5.8)

in which case, αi is a metric of the decrease in survival of species i’s seeds due to localized specialized

predation. αi depends on the rate at which specialists kill species i’s seeds (PiF
i
P(Sii)) relative to

the rate at which species i’s seeds die due to non-specialized mechanisms (PGFG(S) +mi, the sum

of total generalized predation seeds of species i experience and density-independent mortality).

In other words, αi is a metric of the portion of seeds that survive in the presence of specialized

predators. On the community level, the smaller α is (i.e. the smaller the mean proportion of seeds

surviving specialized predation, defined below) the stronger negative frequency dependence within

the community is, and the more effectively specialized predation promotes coexistence (Stump and

Chesson, 2015; Stump and Comita, 2018, also see Fig. 5.1). I refer to α as “JCE strength”, with

smaller α indicating stronger JCEs.

To examine how masting impacts α and the importance of JCEs, I introduce a simple metric of
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the impact of specialized predation over time:

αt = Et

[
1

E(t)ϕ(t)

1

N

N∑
i=1

αi(t)Ei(t)ϕi(t)

]
(5.9)

αt provides a metric of the strength of JCEs. Firstly, 0 ≤ αt ≤ 1. This is easy to show by noting

0 ≤ αi ≤ 1. If one sets αi = 1 for all i, equation 5.9 reduces to 1; if one sets α = 0 for all

i, equation 5.9 goes to 0. αt quantifies how specialized predation affects seed survival scaled by

recruitment rate. First, consider the terms inside the expectation. Ei(t)ϕi(t) is the rate at patches

previous occupied by species i are colonized (i.e. recruitment rate; see equation 5.5). Therefore, the

terms inside the expectation can be interpreted as the proportion of seeds that survive specialized

predation throughout recruitment events at time t.

Equation 5.9 takes the expectation with respect to time (Et). Importantly, both JCE strength

(αi(t)) and recruitment rate (Ei(t)ϕi(t)) potentially vary over time due to masting because both

are explicit functions of seed abundance. How α(t) and Ei(t)ϕi(t) vary over time affects αt. For

example, if α(t) is negatively correlated with E(t)ϕ(t) (meaning JCEs tend to be strongest when

recruitment is highest), αt will be smaller and, consequently, JCEs will be stronger than in the

absence of temporal fluctuations. Conversely, a positive correlation between α(t) and E(t)ϕ(t) will

increase αt (decreasing the strength of JCEs relative to when there are no fluctuations). I use this

metric in the following analyses.

5.4.2 Non-variable environment

When there is no temporal variation in seed production (i.e. no masting) species richness depends

on αt (noting that the expectation with respect to time is unneeded; Fig. 5.1). Species richness

increases with smaller αt. This reflects the relative impacts of specialized and non-specialized

mortality – a greater ratio of specialized mortality to non-specialized mortality generates negative

frequency dependence, which stabilizes fitness differences and promotes species richness (Chesson,

2000b).
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Figure 5.1: How the strength of specialized predation (quantified by αt, JCE strength)
impacts species richness in a non-variable environment (no masting). The y-axis show species
richness; the x-axis shows αt (noting the expectation with respect to time is unnecessary in
the non-masting case). Each point shows a simulation beginning with 50 species at equal
abundance that ran for 106 generations. In each simulation, species were assumed to vary
in intrinsic fitness in the exact same way. Each simulation differs in their parameterization
of aP, specialist predator attack rate. Larger aP leads to stronger JCEs, smaller αt, and
greater species richness. Parameters are as follows: aG = 0.5, hG = 0.05, hP = 0.05,
eG = .05, eP = 0.05, mG = 0.025, mP = 0.025 mi = 0.1, f = 10 (where f fecundity),
and C ∼ U [1, 1.1] (recalling C is the relative competitive ability of species; variation in C
generates fitness differences). Simulations vary aP between 0.1 and 1.0.
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𝛼𝑡

Mast event variance (𝜎)

ℎP < ℎG
ℎP > ℎG

Figure 5.2: The effect of inter-annual fluctuations in seed production (masting) on αt as
mediated by each predators’ functional response. The x-axis shows mast event variance (σ,
the variance of the Poisson process, X(t), that defines mast events). The y-axis shows αt,
JCE strength. Each point shows the result of a simulation of αt under different σ. For
simplicity, these plots were generated under the assumption that generalist and specialist
predator abundance were equal and fixed. The color of points indicates the relative non-
linearity of each predator’s functional response. When the specialist had a more non-linear
functional response than the generalist (hP > hG, red points), greater mast event variance
(larger fluctuations in seed abundance) increased αt (decreasing JCE strength). When the
specialist had a less non-linear functional response than the generalist (hP < hG, blue
points), greater mast event variance increased αt (decreasing JCE strength). Parameters are
as follows. mi = 0.1 and f(t) = 10 (where f(t) is fecundity) for all simulations. For the red
points: hG = 0.01, hP = 0.075, aG = 0.05, and aP = 0.1. For the blue points: hG = 0.075
and hP = 0.01, aG = 0.1, and aP = 0.05.
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Figure 5.3: How masting interacts with the relative non-linearity of functional responses to
shape species richness. The x-axis of each plot shows time in years. Panels A and B show
relative species proportion. Panels C and D show αt (JCE strength). Panels E and F show
the mean ratio of specialized predators to generalist predators per patch. In each panel,
simulations begin with three species at equal proportion that vary in fitness. Initially, trees
do not mast. Halfway through the simulation, trees begin to mast; the dashed turquoise
line delineates the introduction of masting. When the functional response of specialists are
more non-linear that of the generalist (hP > hG, column 1), the introduction of masting
causes the weakest competitor (red) to go extinct (panel A). This is driven by an increase
in αt (decreasing JCE strength; panel C). The introduction of masting increases the ratio
generalists to specialists (panel E). When hP < hG (column 2), the introduction of masting
allows the weakest competitor (red) to invade when it would otherwise go extinct (panel
B). This is driven by a decrease in αt (increasing JCE strength; panel C). In this case, the
introduction of masting increases the ratio specialists to generalists (panel F). Note that
panels C and D show a 10 year moving average of αt (i.e. the expectation in equation 5.9
is taken over 10 year periods). Parameters are as follows. Column 1: aP = 0.5, aG = 0.5,
hG = 0.01, hP = 0.1, eG = .05, eP = 0.05, mG = 0.025, mP = 0.025 mi = 0.1, and
C ∼ U [1, 1.1]. Column 2: aP = 0.5, aG = 0.5, hG = 0.1, hP = 0.01, eG = .05, eP = 0.05,
mG = 0.025, mP = 0.025 mi = 0.1, and C ∼ U [1, 1.25]. When there is no masting, all trees
constantly produce seeds at rate f = 25. Mast events occur according to a Poisson process
with σ = 5. f0,i = 5 and fM,i = 105 for all species. All species follow the same Poisson
process for mast events (X1(t) = X2(t) = X3(t)).
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5.4.3 Variable environment

Variation in seed availability affects the ratio of specialized mortality to non-specialized mortality,

potentially increasing or decreasing JCE strength and, correspondingly, potentially increasing or

decreasing species richness.

Simulating variable seed availability (i.e. masting) shows that αt depends on the relative non-

linearity of the specialists’ and generalists’ functional responses (Fig. 5.2). When the specialists

have a more linear functional response than the generalist (hP < hG), more intense masting (greater

inter-annual seed variability; greater σ) leads to smaller αt (generating stronger JCE strength; Fig.

5.2, blue points). Conversely, when the specialists have more non-linear functional responses than

the generalist (hP > hG) the opposite occurs: more intense masting leads to greater αt (causing

weaker JCE strength; Fig. 5.2, red points). This simply reflects how satiation affects the functional

response of each class of predator (generalist or specialists) – the species with the less non-linear

functional response benefits more from higher seed abundance (which modifies αt accordingly).

This result mirrors how masting affects species coexistence in simulations. When hP > hG, the

introduction of masting can erode coexistence in a community that coexists in a non-variable seed

environment (Fig. 5.3A). The introduction of masting in this instance immediately increases αt,

destabilizing coexistence (Fig. 5.3C). Conversely, when hP < hG, masting can allow for coexistence

when a non-variable seed environment does not (Fig. 5.3B). Upon the introduction of masting, αt

decreases, stabilizing coexistence (Fig. 5.3D). These results are robust to whether all species mast

on the same year (i.e. masting is both intra- and inter-specifically synchronized; Fig. 5.3) or when

the probability that each species masts on a given year is independent of (Fig. 5.4).

These results reflect several factors: the relative non-linearity of functional responses of the gen-

eralist and specialists, their numerical responses, and competition between generalists and predators.

As shown in Fig. 5.2, masting affects αt via how satiation affects each type of predator. However, αt

also depends on the abundances of specialists and generalist. Importantly, the introduction of mast-

ing modifies the relative abundance of specialists and generalists (Fig. 5.3E, 5.3F). This, in part,

reflects how the numerical response of each predator is affected by satiation (the more non-linear

the functional response, the less efficiently the predator can convert high seed biomass into new off-
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spring). Secondly, the class of predator (generalist or specialist) with the more non-linear functional

response is at a competitive disadvantage relative to the predator with a less non-linear functional

response when resource availability exhibits temporal fluctuations. In extreme cases, this can likely

result in the extinction of either generalists or specialists (though I do not explicitly examine this

situation). The combination of these factors causes the ratio of specialist to generalist abundance

to decrease or increase when masting is introduced when hP > hG or hP < hG, respectively.

5.5 Discussion

Generalist and specialist seed predators are ubiquitous in nature and are thought to play important

roles in tree species coexistence. Using a theoretical model, I show that the ability of predation

to maintain tree specices coexistence fundamentally depends on the ratio of specialized predation

to generalized predation (Fig. 1). I extend this framework to incorporate masting (a wide-spread

phenomenon associated with seed predation). I demonstrate that masting interacts with both

generalized and specialized predation and is capable of either either stabilizing or destabilizing

coexistence.

For masting to be stabilizing, it must increase the proportion of seeds consumed by specialists

relative to generalists. This requires that the handling time of generalists exceeds that of specialists

(hP < hG). This is relevant in the context of interpreting how masting and high seed densities

impact the proportion of seeds that escape predation. Importantly, empirical evidence that suggests

masting increases the total proportion of surviving seeds (see Seget et al., 2022) is not inconsistent

with the possibility that masting stabilizes coexistence via strengthing JCEs. Classic theory assumes

predators can cause negative density dependence if predators increase the relative proportion of a

prey item they consume when said prey is at high abundance (which can occur via prey switching

as described by a type III functional response; e.g. Real, 1977). However, in this study, I show

masting can promote coexistence when it satiates generalists more than it satiates specialists (Figs.

5.2 and 5.3). In such cases, masting increases the proportion of seed mortality attributable to

specialists relative to generalists, which increases the strength of frequency dependence species
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Figure 5.4: How generalist vs. specialist satiation influences coexistence when the temporal
storage effect operates. For all panels, the x-axis shows time in years. Panels A and B show
relative species proportion. Panels C and D show αt (JCE strength). Mast events for each
species occur according to independent Poisson process. At the start of each simulation, it
is assumed generalists and specialists have linear functional responses (hP = hG = 0). Upon
the turquoise dashed lines, satiation in introduced by increasing the handling time of either
the specialist predator (column 1) or the generalist predator (column 2). Similar to Fig.
5.3, specialist satiation decreases JCE strength (increasing αt, panel C) and erodes diversity
(panel A). Conversely, generalist satiation increases JCE strength (smaller αt, panel D) and
promotes coexistence (panel B). Notably, the introduction of satiation also affects the mean
rate at which species consume seeds irrespective of fluctuations and satiation. To control
for this, the introduction of satiation is coupled with a modification to seed attack rate such
that mean seed consumption is unchanged. For example, let Sii be the mean abundance of
seeds of species i on conspecific occupied patches throughout the first half of the simulation.
Let P1 and P2 index the specialist predators traits before and after the introduction of
satiation, respectively. Satiation is introduced in panel A by changing hP1 → hP2 and
aP1 → aP2 such that F i

P1(Sii) = F i
P2(Sii). A similar operation is performed in panels B and

D. This guarantees that the introduction of satiation affects dynamics due to its interaction
with variation in seed availability due to non-linear averaging. Other parameters are as
follows. Column 1: aG = 0.5, eG = .05, eP = 0.05, mG = 0.025, mP = 0.025 mi = 0.1,
and C ∼ U [1, 1.5]. Column 2: aG = 0.5, eG = .05, eP = 0.05, mG = 0.025, mP = 0.025
mi = 0.1, C ∼ U [1, 2]. σ = 5 f0,i = 5 and fM,i = 105 for all species.
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experience. However, this need not decrease the total proportion of seeds that survive. For example,

if masting halves the rate at which generalist consume seeds but does not affect the proportion

specialists consume, this will generate a stabilizing effect (increasing αt) despite increasing the

proportion of seeds that escape predation. Therefore, to examine how masting and the associated

predator satiation affects species coexistence, it is necessary to examine how masting affects the

relative proportion of seeds predated by generalists and specialists, not just the total proportion

of seeds that survive. For example, evidence that localized density-dependent mortality (in line

with JCEs) is more important at the local level while satiation (and, therefore, positive density-

dependence) are more important on the population level hints that satiation might be stabilizing

rather than destabilizing (Xiao et al., 2017). More broadly, compelling evidence that seed predation

pressure increases on latitudinal gradients from the arctic to the tropics (Hargreaves et al., 2019)

does not necessarily constitute evidence that seed predators play an elevated role in maintaining

species diversity in tropical communities – rather, it is necessary to evaluate how the proportion of

specialized to generalized seed predation varies with latitude.

In this study, I emphasize how masting modifies the relative impacts of generalist and specialist

predation to shape coexistence. However, a large body of literature examines how species-specific

responses to the environment can maintain species coexistence (the temporal storage effect; Ches-

son and Warner, 1981; Chesson, 1994). Masting may contribute to coexistence via the temporal

storage effect if species mast in different years (which occurs in Figs. 5.4A and 5.4B). Previous

work shows that generalized predation pressure weakens the temporal storage effect by generating

apparent competition and reducing the covariance between environment and competition (Kuang

and Chesson, 2009). By extension, adding generalist predator satiation to generalized predation

may increase the strength of the storage effect. This is reflected in Fig. 5.4. While the coexisting

species in Fig. 5.4B are clearly stabilized at least in part through how satiation concentrates spe-

cialized predation relative to generalist predation (increasing αt; Fig. 5.4D), it is also possible that

adding generalist satiation increases the covariance between environment and competition (thereby

increasing the strength of the storage effect). Conversely, predator satiation can be destabilizing in

a variable environment if generalized predators are assumed to be optimally foraging (MacArthur
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and Pianka, 1966; Charnov, 1976) such that common species can satiate the generalist predator

while rare species cannot (Stump and Chesson, 2017). Future analytical investigations of these

dynamics should examine a larger variety of predator behavior in order to tease apart the extent to

which specialized predation and storage effects contribute to coexistence.

This model makes several simplifying assumptions that future work should address. Future

models should examine how ecological drift interacts with masting. The analysis in this paper is

deterministic insomuch that I assume species cannot stochastically go extinct. However, masting

may generate fluctuations in tree abundance which may make rarer species more susceptible to

demographic stochasticity. In particular, the probability of extinction likely depends on the pa-

rameters c and g (maximum colonization rate and the sensitivity of colonization rate to local seed

density, respectively). Sensitivity analyses of these parameters using a stochastic model may allow

for more nuanced analyses of how masting affects long-term species richness.

Another assumption is that all species either mast or do not mast. When species do mast, they all

do so with the same variance. Neither of these assumption are reflected in nature – masting intervals

(if a species masts at all) vary inter-specifically. Such variation likely has implications regarding how

masting affects species coexistence. Similarly, I assume masting is Poisson distributed – modeling

masting with using alternative renewal processes may provide additional insights. Furthermore, this

study considers masting in a purely ecological context, but fundamental questions about its evolution

remain unanswered. Results broadly indicate that masting affects inter-specific competition – how

inter-specific competition mediates the evolution of masting is an unexplored area of research.

Future models should also consider a broader range of ecology scenarios than those presented

here. In particular, the biological agents of JCEs may demand slightly more nuanced modeling ef-

forts. JCEs and conspecific negative density dependence are more often observed to affect seedlings

rather than seeds (Comita et al., 2014) and are often caused by pathogens (Bagchi et al., 2014;

Chen et al., 2019; Hazelwood et al., 2021). This may affect how masting and predator satiation

interact with JCE strength. For example, satiation of generalist predators (resulting in positive

density dependence) may allow seedlings to build to a sufficiently high density such that specialist

pathogen outbreaks become more likely. Alternatively, previous theoretical work shows that gener-

253



alist pathogens can increase the strength of the storage effect if they affect germinating seedlings

(Mordecai, 2015). How this dynamic interacts with masting and predation satiation is an intriguing

avenue for future research.

5.5.1 Conclusion

This study demonstrates that fairly complicated non-linear processes involving both positive and

negative density dependence modulate how masting qualitatively affects species richness. These

sorts of seemingly antagonistic interactions may be common in nature. For example, mutualistic

and pathogenic fungi are both important agents of plant-soil feedbacks (Bever et al., 2015). While

this is often modeled as a fixed effect that conceptually represents the cumulative sum of mutu-

alistic and pathogenic effects (i.e. feedbacks are positive if mutualists are more important than

pathogens and feedbacks are negative if pathogens are more important than mutualists; e.g. Ke

and Wan, 2020; Miller and Allesina, 2021), this may ignore complicated interactions between the

positive and negative feedbacks therein. For example, mutualists may initially increase seedling

abundance, but high seedling densities may ultimately lead to a pathogen outbreak (similar to the

above discussion). More generally, future theoretical studies should explore how positive and nega-

tive density-dependence generated by natural enemies and mutualists affecting different life history

stages interact to shape the overall type of density-dependence species’ offspring experience and its

subsequent effect on species richness.

254



Chapter 6

Synopsis: toward a synthesis of distance and
density dependent effects in sessile organisms

6.1 Introduction

Much work in community ecology has historically focused on species interactions that take place

within a defined environment that exists independent of them – that species are figuratively like ac-

tors upon an environmental stage that preexists them. This view is no longer substantiated: recent

decades have seen an explosion of research in how organisms shape their environments (Jones et al.,

1994). While I have mainly discussed forest communities in this thesis, biotically-driven modifica-

tions to the environment occur in a wide variety of ecology scenarios ranging from the pathogens

and host trees associated with Janzen-Connell effects (JCEs), to microbial nutrient exchange (Seth

and Taga, 2014), and filter feeders altering the light environment of benthic communities (Abra-

hams and Kattenfeld, 1997). In short, it is clear that the historical view that species and their

interactions cannot be imagined as occurring on an independent environmental stage. Rather, eco-

logical communities and the diversity therein are the products of feedbacks between species and the

localities they occupy – these feedbacks likely strongly influence natural environments and shape

species composition.

These processes are not just relevant in the context of diversity in natural ecosystems – crop

rotations are often implemented as a means of controlling specialized pathogens and pests that are
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attracted to areas of high host density (Paulitz et al., 2010; Bolluyt et al., 2011). In essence, local

feedbacks are highly relevant in fundamental human practices such as agriculture. This points to a

broader fact: while I have restricted my discussion to how local feedbacks impact forest communities

(and I will continue to do so within this text) it is important to note that the dynamics described

throughout this thesis are conceptually applicable to many systems. Returning our focus to forested

ecological communities – while specialized pests and pathogens are often a nuisance and threat in

the anthropocentric world of agriculture, they may have profound and fascinating implications for

species interactions in the natural world.

The regenerative pathway of trees in highly diverse forest communities is complex, depending

on a combination of interacting biotic and abiotic factors that both affect and are generated by

individuals at multiple life history stages (Schupp and Fuentes, 1995). An important question

relevant to this thesis is: “to what extent can we capture the key components of this complexity

with tractable models?”. A subset of theoretical work stresses the importance of highly simplified

models because they are relatively easy to work with. To this effect, such models have been useful

tools to develop baseline predictions related to how plant-soil feedbacks, JCEs, and similar processes

that may impact coexistence in natural communities (e.g. Bever et al., 1997). However, as I have

highlighted in this thesis, model predictions for how local feedbacks such as JCEs impact species

composition and richness are highly contingent on many fairly complex factors. Such factors include:

the functional form of distance-dependent processes (e.g. how JCE strength decays with distance;

Chapter 2, density-dependent processes (e.g. how JCE strength is modified by conspecific density

and which life history stage induces negative density dependence; Chapters 2 and 4), the explicit

spatial structure of the environment (i.e. the level of spatial autocorrelation, which interacts with

local feedbacks; Chapter 3), and spatial-temporal variation (e.g. how tree masting modifies the

relative strengths of generalist and specialist predation; Chapter 5). All of these factors combine

to shape how processes such as JCEs can concentrate intra-specific competition relative to inter-

specific competition (the key feature necessary for species coexistence). In this sense, minimal

models likely present a projection of these complicated processes in the same way that Lotka-

Volterra models may be seen as phenomenological representations or approximations of greater
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underlying complexity. Ultimately (as is often the case) forward progress requires a careful balance

of tractability and biological realism. This thesis highlights the importance of several features that

impact the strength of local feedbacks and regulate their impact on species coexistence. It is my

hope this work will provide guidance on which features of natural systems are of highest importance

to model and measure.

Despite the advances presented here, empirical and theoretical work on these topics are in

their infancy: many gaps (both theoretically and empirically) remain. To help illuminate the

many unanswered open questions, I present a brief review and synopsis of theoretical and empirical

literature related to distance and density dependent effects in communities of sessile organisms. I

discuss several theoretical assumptions common in the literature, highlight areas of recent progress

in relation to the work presented in this thesis, and discuss several avenues on which a better

integration of empirical and theoretical ideas will provide a fruitful synthesis.

6.2 Theoretical advances in spatially structured density-

dependent processes

6.2.1 Janzen-Connell effects, conspecific limitation, and heterospecific limita-

tion

Theoretical investigations of JCEs seek to understand if they are “strong” enough to maintain

species diversity. The key (and empirically motivated) assumption is that species are susceptible to

specialized natural enemies such that a species’ offspring are less likely to survive in areas of high

conspecific density or nearby conspecific adults (for simplicity, I will discuss the latter case). Many

models only directly incorporate conspecific effects (i.e. species i’s natural enemies are perfectly

specialized and do not affect heterospecifics; e.g. Adler and Muller-Landau, 2005; Muller-Landau

and Adler, 2007; Levi et al., 2019; Chisholm and Fung, 2020) or that a species’ natural enemies

affect all heterospecifics equally (e.g. Chisholm and Muller-Landau, 2011; Stump and Chesson,

2015). For example (considering the latter case), it might be assumed that species i’s offspring
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die with probability αi,i underneath conspecifics and probability αi, ̸=i beneath heterospecifics such

that αi,i > αi, ̸=i. Therefore, as a species becomes more common, its offspring experience decreased

survivorship on a increasingly large proportion of the environment. As a consequence, a species’

per capita growth rate inevitably declines with its frequency in the population – JCEs therefore

guarantee species experience negative frequency dependence. In the more familiar terms of a Lotka-

Volterra competition model, consider the two species case for which αii > αij and αjj > αji

(substituting ̸= i → j). Some rearranging yields αiiαjj

αjiαij
> 1 which constitutes the classic necessary

condition for coexistence (Chesson, 2000b). In short, JCE-related theory work often assumes a

stable equilibrium and examines the conditions under which it is feasible.

While in practice, implementations of the above-describe feature (i.e. αi,i > αi, ̸=i) in spatially

explicit JCE-inspired models do not track one-to-one with a Lotka-Volterra model, the key point is

that JCEs are by definition stabilizing (Chesson, 2000b). Therefore, theoretical JCE-related studies

examine whether specialized predation in spatially structured communities is sufficiently stabilizing

to prevent the erosion of species diversity via ecological drift (when it is assumed the community is

otherwise neutral; e.g. Hubbell, 1980; Adler and Muller-Landau, 2005; Levi et al., 2019) or prevent

competitive exclusion (when it is assumed there are inter-specific fitness differences; e.g. Stump and

Chesson, 2015; Chisholm and Fung, 2020; Smith, 2022a,b). Notably, the assumption that αi,i > αi, ̸=i

is not arbitrarily – the entire theoretical literature built around JCEs and plant-soil feedbacks is

motivated by empirical observations that natural enemies are indeed specialized enough such that

this inequality naturally emerges.

6.2.2 How the structure of predation affects diversity

The above discussion (as well as most of this thesis) ignores the structure of natural enemy overlap.

While empirical measurements indicate natural enemies are often specialized (e.g. Comita et al.,

2014; Sarmiento et al., 2017; Gripenberg et al., 2019), they also exhibit taxonomic spillover: species

more phylogenetically similar are often more likely to share natural enemies than more distantly

related species (Ødegaard et al., 2005; Gilbert and Webb, 2007; Novotny et al., 2010, see Fig. 6.1).

I will refer to this as “natural enemy spillover”. A key question is: how important is its structure
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and how does it affect coexistence? Empirically, this is still a fairly open question. However,

synthesizing and building on previous work allows several baseline theoretical predictions that may

serve as guidance for future efforts.

Several previous models examine JCEs and plant-soil feedbacks in this capacity. Sedio and

Ostling (2013), analyzing a model loosely parameterized with several of the above-mentioned studies,

find that specialization in tropical forests (at least, in Panama) can maintain considerably higher

diversity than a neutral model. However, Sedio and Ostling (2013), in the same spirit as other highly

similar models (Adler and Muller-Landau, 2005; Muller-Landau and Adler, 2007; Levi et al., 2019),

assume that species have identical fitness. However, as outlined by Stump (2017), the structure of

niche overlap (such as which species share predators) affects fitness difference, stabilizing effects,

and species coexistence.

Here, I examine a relatively simple “natural enemy spillover” model inspired by Sedio and Ostling

(2013), Stump (2017), and Smith (2022a) that helps clarify how the structure of natural enemy

spillover may affect species richness in forest communities; see Box 1 for model details. In the

model, I assume species vary in intrinsic fitness. How shared predators affects species richness is

contingent on how predator overlap correlates with fitness. If species with similar fitness tend to

share predators, some degree of shared predation pressure can dramatically increase species richness

(Fig. 6.2, blue points). This might occur if phylogenetic similarity causes species to have similar

traits and, therefore, are similarly fit and chemically similar such that they are susceptible to an

overlapping sweep of natural enemies. Alternatively, this may occur if character displacement is

more common in closely related species. Conversely, if predator overlap is random with respect to

fitness, greater predator overlap decreases species richness relative to when predators are not shared

(Fig. 6.2, green points).
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Box 1: JCE model with natural enemy spillover
I extend the model presented in Chapter 2, Appendix D to species exhibiting natural enemy overlap.
I consider a tree community of N species that contains M patches in which the center of every
patch contains a single adult tree. Each tree produces a set number of seeds each time-step. For
simplicity, I assume seeds are uniformly and globally distributed across patches in the community.
The number of offspring species i disperses to each patch is proportional to Yi, henceforth intrinsic
fitness (a composite parameter of fecundity and density-independent offspring survival). On each
patch, specialized predators kill offspring. Let Ji(x) define the probability an offspring of species
i survives predation pressure induced by natural enemies on a patch at location x. Then, letting
Si(x) represent the number of offspring of species i on a patch at a location x:

Si(x) = YiJi(x), Sall(x) =
N∑
k=1

Sk(x) (6.1)

where pi is the proportion of species i in the population, i = 1, 2, ..., N . If the adult on the patch
at location x dies during the time-step, a lottery determines which species replaces the adult. As
noted above, I assume that predation pressure increases linearly with adult density and decays
exponentially with distance. Thus:

Ji(x) = exp
[
− ai

N∑
k=1

pkM∑
m=1

ρik e
−xk,m/v

]
(6.2)

This summation describes the effect of all adults on offspring of species i at location x. The first
summation sums over all species; the second summation sums over all adults of species k in the
population (pkM). xk,m represents the distance (in meters) of the mth closest individual of species
k to location x. ai is the baseline susceptibility of natural enemies of species i, v is the rate at which
predation pressure declines with distance and ρik is the proportion of natural enemies affecting
species k that also affect species i. ρii = 1 and ρik ≤ 1.

Using methods similar to Chapter 2, a spatially implicit approximation of the spatially explicit
model is derived by taking the expectation of offspring mortality with respect to space. This yields:

E[Si(x)] = Yi exp
[
− aig

N∑
k=1

ρikpkEDH(ai ρik)

]
(6.3)

where H(ai ρik) = 3F3(1, 1, 1; 2, 2, 2;−ai ρik), a Generalized Hypergeometric Function and g is tree
density (tree per square meter). Population dynamics are described with a system of ODEs:

dpi
dt

= δ

[∑
all k

E[Si(x)]

E[Sk(x)]
pk − pi

]
(6.4)

where k = 1, 2, ..., N and δ represents the mortality rate of all adults. I assume symmetric effects
(ρik = ρki) and that ρ takes the functional form: ρik = max

[
1 − |τi − τk|r/c, 0

]
for which τi and

τk represent the location of species i and k in trait space related to natural enemy susceptibility,
respectively. 0 ≤ τ ≤ 1. |τi − τk| represents the distance between species i and k in trait space.
r determines the functional form of overlap as a function of trait difference and c quantities the
proportion of species with non-zero natural enemy overlap.
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This can be understood as follows. First consider perfect specialization (i.e., JCEs as they

are classically imagined; Fig. 6.2, dashed lines). Recent work demonstrates that the ability of

JCEs to maintain species richness is highly contingent on the number of species in the community

(N) relative to the spatial scale over which JCEs occur (Levi et al., 2019; Chisholm and Fung,

2020; Smith, 2022a,b). If said spatial scale is too small relative to the number of species in the

community, even relatively common species escape predation on most patches and, consequently,

frequency dependence is too weak to maintain very high species richness. Now, consider when

species have overlapping predators. Species with higher fitness tend to have relatively equilibrium

abundances. A species that shares natural enemies with a common (i.e. highly fit) experiences

predation on a larger proportion of the spatial environment, decreasing its fitness. This constitutes

an example of the “common competitor effect” (Stump, 2017). Conversely, a species that shares

predators with rare species is weakly impacted by the additional predation pressure it experiences

(as it encounters overlapping predators correspondingly rarely). When fitness is highly correlated

with predator overlap (Fig. 6.2, blue points), relatively fit (and, therefore, common) species tend

𝑌b 𝑌gn 𝑌gr 𝑌o 𝑌r

𝜌b,gn𝜌gn,b

𝜌b,b 𝜌gn,gn

𝜌gr,gn

𝜌gr,gr

𝜌o,gr𝜌gn,gr

𝜌o,o

𝜌gr,o 𝜌r,o

𝜌r,r

𝜌o,r

Figure 6.1: Visual representation of natural enemy spillover. ρx,y is the overlap of natural
enemies shared by species x and y, indexed by color. Classic JCEs are equivalent to assuming
ρx,x = 1, ρx,y = 0 for x ̸= y (ignoring all the dashed lines). Yx indicates the intrinsic fitness
of species x, also indexed by color. How predator overlap affects species richness depends
strongly on the relationship between species’ intrinsic fitness and the probability they share
natural enemies (see Fig. 6.2).
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Figure 6.2: How natural enemy spillover affects species richness. The x-axis depicts the
average portion of natural enemies that tree species share (i.e. the probability that ρxy > 0
for two randomly sampled tree species; this is equal to c, see Box 1). The y-axis depicts the
equilibrium species richness out of a pool of 300 initial species from simulations of equation
6.4 in a community that varies in intrinsic fitness (Y ). Blue points show when there is a
high correlation between the probability species share predators and their intrinsic fitness
(generated by assuming |τi−τk| and |Yi−Yk| exhibit a correlation coefficient of 0.85). Green
points show when predator overlap is random with respect to intrinsic fitness. The white
point and red dashed line show species richness under classic JCEs (when there is no natural
enemy spillover). Species richness can increase with c when there is a positive correlation
between fitness and natural enemy overlap, but declines rapidly if there is no correlation.
Parameters are as follows: a = 1.0, Y ∼ U [1, 20], g = 0.1, δ = 0.1, r = 0.5.
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to be mutually limiting. While rare (low fitness) species are also technically mutually limiting in

this scenario, the impact is negligible. Thus, common (fit) species experience a fitness loss, but rare

(low fitness) species do not – this equalizes fitness difference, allowing for higher equilibrium species

richness. However, when predator overlap and fitness are uncorrelated (Fig. 6.2, green points), many

rare species share natural enemies with common species. This undermines rare species advantage

and, as a result, greater natural enemy spillover erodes species richness.

Overall, the key point is that a modest amount of natural enemy spillover has the potential to

erode or strongly allow for species richness depending on how natural enemy spillover is structured

with respect to fitness differences. Quantifying this structure, possibly with existing food web data

(e.g. Gripenberg et al., 2019) and census data (e.g. Wright et al., 2005) may provide a means of

probing this question.

Demystifying the complicated interactions between natural enemies and their hosts

These results (along with nearly every model presented in this thesis and cited above) repre-

sent a highly phenomenological approach. The next (and perhaps most important) challenge in

JCE-related research is to develop mechanistic models of the interactions between host species

(i.e. trees), natural enemies, and mutualists. Very little theory investigates this problem (but see

Schroeder et al., 2020). This is understandable: while modeling a single spatially structured tropic

level is difficult, incorporating an additional trophic level dramatically increases the dimensional-

ity of the problem (particularly if both mutualists and pathogens are considered). However, the

Janzen-Connell Hypothesis, plant-soil feedbacks, and (more generally) natural enemy and mutualist-

mediated species coexistence in spatially structured communities will not constitute complete the-

ories until both trophic levels are explicitly modeled. For example, the model used in the above

analysis (see Box 1) assumes all effects of all adults occur additively (i.e. the survival of a species’

offspring is determined by the sum of all adult trees with which they share natural enemies). How-

ever, inter-specific interactions between natural enemies may alter how the presence of adult trees

impacts the success of their offspring.

However, the limitations of current work go far beyond questions regarding how natural enemies
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maintain tree diversity. One can reasonably argue that less than half of the question is being asked:

while the theoretical literature emphasizes how a large number of natural enemies maintain tree

diversity in spatially structured communities, far fewer models investigate how coexistence between

these natural enemies is affected by the spatial structure and relative abundance of plants and

trees. Even in Chapter 5, in which I explicitly model specialized and generalist predators, analyses

are framed to examine the effects of natural enemies on host species diversity and not the other

way around. This omission from the literature is non-trivial: if a single species experiences no

negative-density dependence (i.e. a single species’ natural enemies go extinct, releasing it from

negative density dependence), it is likely to competitively exclude all its competitors. Evolutionary

dynamics offer a promising lens to address this issue. Microbes (e.g. fungal pathogens causing

JCEs) and canopy trees differ in size and generation time by many orders of magnitude. This

massive time-scale separation implies that evolutionary change of the natural enemies between tree

recruitment events is very likely the norm – this may play a key role in the evolution of specialization

and prevent any particular species from escaping natural enemies (Lloyd-Smith, 2013, i.e. a species

that is released from natural enemies may generate strong selection for specialization in pathogens,

akin to a vacated niche). Conversely, the evolution of specialization in natural enemies may shape

both species-specific life history strategies (involving trade-offs between defense against pathogens

and growth rate; e.g. McCarthy-Neumann and Kobe, 2008; Lebrija-Trejos et al., 2016; Zhu et al.,

2018; Zang et al., 2021; Song et al., 2021b) and the relative abundance of host species (Comita

et al., 2010). Overall, the next frontier of theoretical analysis requires careful consideration of the

eco-evolutionary dynamics governing tree-pathogen interactions.

6.2.3 Toward a theoretical synthesis of distance and density-dependent effects

in sessile organisms

Throughout this thesis, I have highlighted how different aspects of the functional form of negative

density dependence, the specific life history stage or stages in which density-dependent interac-

tions occur, spatial aggregation, and dispersal interact to shape species richness. These results are
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part of a growing theoretical literature seeking to understand how complicated interactions between

distance-dependent effects, density-dependent effects, and dispersal structure competitive commu-

nities composed of sessile organisms. However, it is often confusing to make sense of the myriad

of different scenarios presented in the literature. A handful of theoretical studies over the last

twenty years examine subtly different models that make small yet important distinctive assump-

tions regarding how density and distance impact competitive interactions in spatially structured

communities. While many distinctions between these models can be discussed, I focus on three

different features of recent models, how the interactions between these modeling assumptions likely

impact their qualitative outputs, and then discuss future directions of empirical and theoretical

research.

Different assumptions in the theoretical literature

First, different models make different assumptions regarding which life history stage induces and

experiences density dependence. While this is examined in Chapter 4, the topic is broader than the

situations discussed therin. Previous work, broadly, examine three possibilities (see Fig. 6.3A for

visualizations). (1) Adults may impact juveniles (A→J; e.g. Adler and Muller-Landau, 2005). This

constitutes the classical conceptualization of JCEs and, in principle, how patch dynamic plant-soil

feedback models incorporate soil legacy effects (e.g. Bever et al., 1997; Ke and Wan, 2020). In each

case, the presence of an adult tree (current or past) modifies conspecific offspring survival or patch

colonization success. (2) Juveniles may impact other juveniles (J↔J). CNDD is often attributed to

pathogens that outbreak at high densities – thus, several papers consider when it is the density of

juveniles per se that leads to negative density-dependent effects. This is the assumption in Chapter

4. When species experience dispersal limitation, parsing out the signal of distance-dependent adult

effects vs. density-dependent effects driven by local juvenile density presents a difficult challenge

(Terborgh, 2012). (3) Density-dependence may occur via adult-adult interactions (e.g. Detto and

Muller-Landau, 2016). This represents a considerably different biological motivation and mechanism

than the previous cases. Factors such as resource competition or apparent competition generated

by high adult density could mediate this dynamic. Parsing out how each different type of density-

265



dependent interaction uniquely shapes species richness may lead to deep insights.

Second, models differ in the functional form of density-dependent effects (discussed in Chapter

2 and Smith, 2021). Broadly speaking, previous models tend to present either linearly additive

distance/density-dependent effects or non-additive effects (see Fig. 6.3B for visualizations). Non-

additive models often conceptualize JCEs as occurring within a fixed distance of a conspecific adult

in a “presence-absence” capacity (i.e. juveniles experience a fixed increase in mortality; Hubbell,

1980; Levi et al., 2019; Chisholm and Fung, 2020). Spatially implicit models (e.g. Chisholm and

Muller-Landau, 2011; Stump and Chesson, 2015; Stump and Comita, 2018) and plant-soil feedback

patch dynamic models (e.g. Miller and Allesina, 2021) in which juveniles experience increased mor-

tality or lower colonization probability when they are on patches occupied (or previously occupied)

by conspecifics are also implicitly non-additive in this respect. Conversely, other models assume den-

sity effects are linearly additive (i.e. conspecific effects are proportional to conspecific density; e.g.

Adler and Muller-Landau, 2005; Muller-Landau and Adler, 2007; Sedio and Ostling, 2013; Wiegand

et al., 2021). However, this binary is a false dichotomy. More broadly, the extent to which density

affects survival can be described on a spectrum of sub-linear to linear to super-linear. For example,

let Zi(x) represent the distance weighted neighborhood density of species i at location x. The effect

of conspecific density on seedling survival probability, p(S), might be calculated with the expression

p(S) = e−aZb where a represents the baseline strength of CNDD and b defines the functional form of

density effects; b ≈ 0 represents non-additive effects, 0 ≤ b ≤ 1 represents sub-additive effects, b = 1

represents linearly additive effects, and b > 1 represents super-additive effects (Fig. 6.3B). This

sort of weighting (b) has been directly implemented in recent empirical measurements of CNDD in

forest communities with the purpose of calculating unbiased neighborhood density effects (Detto

et al., 2019; LaManna et al., 2022; Xu et al., 2022).

Third, theoretical studies integrate various distinctive forms of dispersal into models (see Fig.

6.3C for visualizations). Some papers consider “global dispersal”, in which seeds are evenly dis-

tributed throughout the environment (although some studies implement Poisson distributed seed

dispersal on each patch to incorporate seed limitation; e.g. Muller-Landau, 2010). A second (and

frequent) form of dispersal limitation assumes “local dispersal”. Local dispersal is often implemented
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spatially explicitly through the use of a dispersal kernel (e.g. Adler and Muller-Landau, 2005) in

which juveniles are aggregated in space nearby conspecific adults. This impacts the spatial compo-

sition of trees and can generate species aggregation. Alternatively, several models implement local

dispersal limitation implicitly, where adults disperse a local proportion of seeds locally (directly on

the patch on which the adult occupies) and uniformly distribute the remaining seeds throughout the

community (Chesson, 2000a; Stump and Chesson, 2015; Stump and Comita, 2018; Smith, 2022a).

Finally, a recent theoretical study considers “clustered dispersal” (Wiegand et al., 2021) in which

recruits of each species are dispersed in space to one of several predefined locations as might occur

through animal seed dispersal. This decouples adult density from recruit location and potentially

influences patterns of aggregation.

Interactions between assumptions

These various assumptions regarding density-dependnet interactions, functional form, and dispersal

have intriguing population-level implications that are reflected in the theoretical literature. Exam-

ining how dispersal limitation impacts species richness within these previous models yields some

insights (Table 6.1).

Many theoretical papers examining Adult-Juvenile and Juvenile-Juvenile interactions find local

dispersal (both explicit and implicit) decreases species richness (Stump and Chesson, 2015; Stump

and Comita, 2020; Chisholm and Fung, 2020; Krishnadas and Stump, 2021). Interestingly, these

apparently consistent outcomes may reflect distinctive mechanisms. Papers that use non-additive

models (Stump and Chesson, 2015; Chisholm and Fung, 2020) or sub-additive models (Krishnadas

and Stump, 2021) likely measure a direct decrease in stabilizing effects. As noted in Chapter 2 (see

Appendix F), spatially implicit local dispersal decreases species richness when density-dependent

effects are non-additive but when they are additive (or, at least, the negative effect of dispersal is

weak; see fig. 2.2). This is because if rare species’ locally dispersed offspring experience mortality

at a rate equal to resident species’ locally dispersed offspring (which occurs when density-dependent

effects are non-additive, but not when it is additive) rare species advantage is diminished relative to

when dispersal is global. However, the model used in Chapter 2 examines local dispersal limitation
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Figure 6.3: Visualizations of the various assumptions in theoretical studies examining dis-
tance and density-dependent processes. Panel A depicts the life history stage(s) inducing and
experiencing density-dependent effects. Panel B shows how the functional form of density-
dependence, b, may affect an individual’s probability of survival as a function of conspecific
density (Z). b < 1 indicates sub-additive effects – if b ≈ 0, conspecific density exhibit a
“presence-absence”-like effect. b = 1 indicates linearly additive effects. b > 1 indicates super-
additive effects. Panel C illustrates different forms of dispersal used in models. “Explicit
local dispersal” is used in spatially explicit models and assumes the number of seeds a tree
disperses to a location declines monotonically with distance. “Implicit local dispersal” is used
in spatially implicit models. Trees disperse a portion of their seeds on the local patch they
occupy and uniformly disperse the remaining portion of seeds throughout the environment.
“Clustered dispersal”, examined in Wiegand et al. (2021), is intended to represent processes
such as animal dispersal. Seeds of each tree are dispersed in clusters to locations decoupled
from the parent tree.
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in a spatially implicit manner. This ignores how dispersal limitation may modify species aggre-

gation. Several papers find using spatially explicit local dispersal combined with additive effects

can decrease species richness (Muller-Landau and Adler, 2007; Stump and Comita, 2020), at least

in part attributable to rare species aggregation. Consistent with this, recent work demonstrates

that clumping generally reduces rare species advantage (Ellner et al., 2022). Interestingly, Muller-

Landau and Adler (2007) find spatially explicit local dispersal limitation increases species richness

when natural enemies disperse over a wide range yet decreases species richness when natural enemies

disperse over a short range. This is likely related to how each dispersal kernel impacts rare species

aggregation. While Adler and Muller-Landau (2005) find a combination of local spatially explicit

dispersal limitation in combination with highly localized natural enemies strongly increases species

richness, later work shows this is likely due to a combination of immigration and transient effects

(Stump and Chesson, 2015).

Paper Density
interaction Functional form Type of dispersal Effect of dispersal

limitation on diversity
Adler and Muller-Landau (2005) A→J Additive Explicit, local Positive
Muller-Landau and Adler (2007) A→J Additive Explicit, local Mixed
Stump and Chesson (2015) A→J Non-additive Implicit, local Negative
Detto and Muller-Landau (2016) A↔A Additive Explicit, local Positive
Chisholm and Fung (2020) A→J Non-additive Explicit, local Negative
Stump and Comita (2020) A→J, J↔J Additive Explicit, local Negative
Krishnadas and Stump (2021) J↔J Sub-additive Explicit, local Negative
Wiegand et al. (2021) A↔A Additive Explicit, local Positive
Wiegand et al. (2021) A↔A Additive Explicit, clustered Positive
Smith (2022) A→J Non-additive Implicit, local Negative
Smith (2022) A→J Additive Implicit, local No effect

Table 6.1: A non-comprehensive summary of theoretical papers that examine how
distance/density-dependent processes and dispersal limitation interact to shape species rich-
ness. “Density interaction” describes which life history stage induces and experiences negative
density dependence (depicted with arrows) where A represents adults and J represents ju-
veniles (see Fig. 6.3A). “Functional form” depicts how offspring survival scales with density;
see 6.3B. “Dispersal limitation” describes how adults disperse seeds in space; see Fig. 6.3C.
The final column describes the effect of increasing dispersal limitation on species richness
(for example, “negative” implies greater dispersal limitation decreases species richness)

Detto and Muller-Landau (2016) and Wiegand et al. (2021) unambiguously demonstrate that

dispersal limitation can interact with density-dependent effects to increase species richness. Im-

portantly, these models are unique among those examined thus far because they consider linearly
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additive adult-adult density-dependent effects. Detto and Muller-Landau (2016) examine a model in

which all species are equal (neutrality). Adult mortality rate (the probability of mortality) increases

with the neighborhood density of adults. Overall, they find this leads to species segregation; thus,

when a particular species falls to low abundance, it tends to occupy areas of relatively low density

(previously occupied by conspecifics, but currently at relatively low density) – thus, the adults of

rare species experience lower mortality, generating a stabilizing effect. Wiegand et al. (2021) ex-

plore a similar model incorporating clustered dispersal (Fig. 6.3C) in which each species’ seeds are

dispersed to each of a set number of sites located independently of adult locations. Through this,

rare species often recruit in areas of relatively low density and, ultimately, rare species tend to have

fewer neighbors that common species; because adult mortality is density-dependent, this generates

a stabilizing fitness-density covariance (Chesson, 2012).

Putting the pieces together

Unsurprisingly, assumptions vary between theoretical models examining how distance and density

dependent processes shape species richness. Such assumptions are necessary to reduce model com-

plexity – the key is to tease apart how each individual assumption affects results and produce robust

predictions. The work in this thesis and previous theoretical studies have made advances (see Table

6.1). For example, dispersal limitation tends to decrease the propensity for distance/density de-

pendent effects to maintain species richness under non-additive (or sub-additive) functional forms.

However, generally, we still lack a general theory of density-dependent feedbacks in spatially struc-

tured environments and many potential scenarios remain unexamined.

For example, Wiegand et al. (2021) examine the interaction between clustered dispersal and

adult-adult density-dependent effects. However, given the robust evidence that density-dependence

occurs at the seedling level (Comita et al., 2014), it is necessary to examine this novel means of

modeling dispersal for all potential density-dependent interactions. Similarly, studies modeling adult

density-dependent interactions (Detto and Muller-Landau, 2016; Wiegand et al., 2021) assume a

linearly additive functional form; how breaking this assumption would qualitatively affect results is

unknown. Within this, it is important to understand what generates said functional form in the first
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place. Some work in this thesis provides insights: in Chapter 4, I demonstrate that the life stage that

induces negative density dependence and the vital rate it affects interact to regulate the functional

form of density-dependent survival when seedlings experience CNDD (see Fig. 4.1). It would be

useful and informative to extend this lens of analyses to all the potential types of density-dependent

interactions highlighted above.

Furthermore, as highlighted in Chapter 3, density-dependent interactions do not occur in a vac-

uum. Rather, they occur on top of existing abiotic heterogeneity. Analyzing the interaction between

JCEs and habitat partitioning (Chapter 3) represents a step forward in terms of integrating the

spatial variables that mediate density-dependent interactions. However, the model therein leaves

some unanswered questions. For example, dispersal is assume to be global – how might dispersal

limitation affect the results? Does the density-dependent interaction (Fig. 6.3A) or the type disper-

sal (Fig. 6.3C) affect these results? For the latter question, existing literature surrounding habitat

partitioning stresses how abiotic heterogeneity and dispersal limitation affect the spatial composi-

tion of sessile organisms (Snyder and Chesson, 2003; Hart et al., 2017) which indicates the answer

is likely yes. However, broadly, the complicated interactions between abiotic spatial heterogeneity,

local density-dependent feedbacks, and dispersal limitation remain under-explored.

6.3 Integrating theoretical and empirical efforts

This thesis predominantly focuses on gaps in the theoretical Janzen-Connell effect and CNDD-

related literature while noting qualitative connections to empirical patterns (e.g. see Chapter 4,

Fig. 4.6). However, it is equally important to better integrate the above-discussed theoretical

advances with measurements performed in natural systems. The golden standard of synthesiz-

ing theoretical and empirical results is, of course, to parameterize sufficiently mechanistic models

with measurements of nature in order to evaluate if community dynamics can be described by the

processes of interest (i.e, if the parameterized models predict coexistence and accurately describe

relative species abundance). However, doing so is often extremely difficult – especially in the very

forest communities that JCEs are thought to structure.
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6.3.1 Measuring CNDD

Some recent work casts doubt on the ability of CNDD and JCEs to maintain diversity – not from

a theoretical perspective, but because reliable and unbiased measurements are difficult to perform

(Freckleton, 2011; Broekman et al., 2019; Detto et al., 2019; Hülsmann et al., 2021). In forest

communities, this is in part because the long lifespan of adult trees (long, at least, relative to time

over which most studies can feasibly be conducted) makes direct measurements of the probability

of species recruitment (from seed to adult) as a function of conspecific density highly impractical.

Therefore, measurements often examine CNDD effects over relatively small time-scales, focus on

individual life history stages, and use a number of (possibly error-prone) proxies of factors repre-

senting natural enemy density to quantify negative density-dependence. While the statistical issues

involved in detecting CNDD are deserving of careful discussion (see Chisholm and Fung, 2018; Hüls-

mann and Hartig, 2018; Detto et al., 2019) I will focus on the difficult task of accurately evaluating

how CNDD affects species coexistence under the assumption that measurements are unbiased.

In tree communities, most analyses examine how conspecific (and, often, heterospecific) den-

sities affect the survival probability of species’ offspring. Several strategies are used in different

studies, but I focus on two very common methods. As examined in Chapter 4, many studies ex-

amine the number of seedling recruits that emerge at multiple locations of different initial seed

densities (e.g. Bagchi et al., 2014; Krishnadas and Stump, 2021). Such studies fit the equation

Seedlings = α × seedsβ for which α is the baseline proportion of seeds that survive (density-

independent survival) and β quantifies the strength of CNDD. If β < 1, the proportion of seedlings

that recruit from an initial cohort of seeds decreases as a function of initial seed density; this in-

dicates the presence of CNDD. Alternately, many studies examine censuses that track the survival

of seedling or sapling survival over multiple years (e.g. Comita et al., 2010). Using spatial data,

GLMMs are fit using a logic link function such that p(S) =
(
1 + exp(−B0 − B1Z1 − B2Z2)

)−1 for

which p(S) is the probability a seedling or sapling of a focal species survives over the course of the

observations, B0 reflects density-independent survival, B1 and B2 are conspecific and heterospecific

effects on seedling/sapling survival, and Z1 and Z2 are distance-weighted conspecific and heterospe-

cific densities, respectively (Fig. 6.3B). In principle, if −B1 > −B2, conspecific effects are stronger
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than heterospecific effects.

It is genuinely difficult to use these measurements to parameterize ecological models that incor-

porate inter-specific competition. Firstly, each statistical fit assumes a particular functional form

that may not reflect nature. Therefore, while the above-models may yield accurate fits for the

densities and time periods over which they measure seedling or sapling survival, it is unclear how

well these fits will reflect reality when subjected to the range of conditions that are necessary to

model (e.g. when seeds become highly abundant or scarce; when a particular species becomes very

common or rare). Secondly, quantifying the ability of CNDD to stabilize coexistence requires how

conspecific density affects the probability of an individual’s recruitment over the entire seed-to-adult

transition. Therefore, unless these measurements take place at a key (or, perhaps the key) bottle

neck in the regenerative pathway, measurements may be uninformative. Thus, while several recent

studies directly implement these measurements into models (Stump and Comita, 2018; Krishnadas

and Stump, 2021) it is unclear if the parameterizations are informative or not.

Therefore, it is important to elucidate precisely how informative the above measurements are.

One solution is to perform extensive fits of simulated communities. This would require the devel-

opment of a spatially explicit actor based model of a multi-species tree community that models

seeds, juveniles, adults, realistic levels of stochasticity, and a realistic implementation of negative

density-dependence. Various scenarios could be simulated and each simulation treated as if it were

a field study in which the most common methods of measuring CNDD are implemented (such as

those detailed above). Simulated measurements could then be analyzed using analytical tools from

theoretical ecology (e.g. modern coexistence theory; Barabás et al., 2018; Chesson, 2018; Ellner

et al., 2019) to asses their accuracy in predicting stabilizing effects and species coexistence.

6.3.2 CNDD and fitness differences

Even if the above difficulties are overcome, the detection of CNDD is insufficient to guarantee it

is important for species coexistence. Rather, the strength of CNDD must be sufficiently strong

relative to heterospecific effects to compensate for inter-specific fitness differences. Therefore, fit-

ness differences must be precisely quantified to understand the importance of CNDD in natural
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communities. To this effect, much of this thesis (Chapters 2-4) is motivated by the observation that

available evidence indicates annual plant communities and tropical forests exhibit large inter-specific

fitness variation (Levine and HilleRisLambers, 2009; Kraft et al., 2015; Chisholm and Fung, 2020).

However, some ambiguity remains. Whether inter-specific variation in traits like seed production

rate or low density seedling recruitment (as examined in Chisholm and Fung, 2020) are good proxies

for tree fitness is unclear. Assuming these estimates do accurately represent inter-specific fitness

differences, stabilizing mechanisms (JCEs or otherwise) must be correspondingly strong to maintain

coexistence. Additionally, fitness differences can be driven by inter-specific variation in CNDD and

plant-soil feedback strength (Stump and Comita, 2018; Kandlikar et al., 2021; Yan et al., 2022).

This adds an additional axis of parameter space and further complicates how CNDD may affect

coexistence.

A path toward reducing this complexity is to better integrate CNDD into life history theory

(as argued in Chapter 4). Trade-offs between life history traits such as fecundity and seed size

may offset inter-specific fitness differences. However, it is extremely unlikely trade-offs entirely

equalize fitness (at least, for known trade-offs such as the trade-off between fecundity and seed

survival as mediated by seed size; Fenner et al., 2000; Muller-Landau, 2010). How species-specific

CNDD strength correlates with traits such as fecundity represents an additional important piece

of the puzzle – unstructured inter-specific variation on both axes of fitness (CNDD and density-

independent traits like fecundity) is highly likely to undermine coexistence (Cannon et al., 2021).

Consequently, the there is a desperate need for more empirical papers analyzing trait associations

with CNDD (following in the footsteps of Zhu et al., 2018; Brown et al., 2020; Song et al., 2021b;

Zang et al., 2021; Qin et al., 2022). From a theoretical perspective, Stump and Comita (2020)

represents an important conceptual advancement for thinking about CNDD through the lens of

life history; Chapter 4 of this thesis constitutes a step toward developing a demographic theory

of CNDD from which trade-offs naturally emerge and allow for null hypotheses for how negative

density-dependent effects and demographic traits combine to shape the probability of recruitment.
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6.4 Conclusion

The Janzen-Connell hypothesis was first proposed more than 50 years ago. Despite its age, debate

on its relevance in the maintenance of species richness has only intensified in recent years (Terborgh,

2020). In this thesis, I have filled several theoretical gaps. In Chapter 2, I highlight the need to pre-

cisely quantify how density-dependent conspecific interactions in spatially structured environments

affect recruitment. In Chapter 3, I elucidate how these processes interact with spatially varying

abiotic heterogeneity. Chapter 4 emphasizes how we must develop better demographic models of

Janzen-Connell effects to understand both what underlies patterns of its empirical measurement

and its impact on species richness. Finally, in Chapter 5, I hint at how specialized and generalized

predation may interact with spatial-temporal variation in offspring production.

While I view these results as important steps forward, they are precisely that – steps. Scien-

tists have been arguing about Janzen-Connell effects for decades and I have no delusion that the

conclusions of this thesis will amount to anything approaching an end to the discussion. Rather, I

hope my work will further fan the flames such that debate over local feedback mechanisms such as

Janzen-Connell effects spreads far and wide throughout the entire field of ecology.
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