
THE UNIVERSITY OF CHICAGO

ARCHITECTURAL DESIGN FOR EMERGING QUANTUM TECHNOLOGIES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

JONATHAN M. BAKER

CHICAGO, ILLINOIS

DECEMBER 2022

Copyright © 2022 by Jonathan M. Baker

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . xxix

ACKNOWLEDGMENTS . xxxi

ABSTRACT . xxxii

1 INTRODUCTION . 1

2 DETERMINING THE RIGHT ABSTRACTIONS: MULTIVALUED QUANTUM
LOGIC . 7
2.1 Relevant Background . 9
2.2 Prior Work in Multivalued Quantum Logic 13

2.2.1 Qudits . 13
2.2.2 Generalized Toffoli Gate . 13

2.3 Circuit Constructions . 15
2.3.1 Key Intuition . 15
2.3.2 Generalized Toffoli Gate . 16
2.3.3 Larger Arithmetic Circuits: The Incrementer 17
2.3.4 Larger Arithmetic Circuits: The A + B Adder 18
2.3.5 Larger Arithmetic Circuits: Constant, +K, Addition 21

2.4 Application to Algorithms . 26
2.4.1 Artificial Quantum Neuron . 26
2.4.2 Grover’s Algorithm . 27
2.4.3 Arithmetic Circuits and Shor’s Algorithm 27
2.4.4 Error Correction and Fault Tolerance 27

2.5 Simulator for Verification of Constructions 28
2.5.1 Noise Simulation . 28
2.5.2 Simulator Efficiency . 30

2.6 Simulation and Error Models . 32
2.6.1 Generic Noise Model . 32
2.6.2 Superconducting QC . 33
2.6.3 Trapped Ion 171Yb+ QC . 34

2.7 Simulation Results . 35
2.8 Qubit-Qudit Compression . 36

2.8.1 Motivation . 36
2.8.2 Compression Schemes . 37
2.8.3 Decompositions with Compression . 40

2.9 Discussion . 45

iii

3 ARCHITECTURAL TRADE-OFFS IN EMERGING TECHNOLOGY: NEUTRAL
ATOM ARCHITECTURES . 60
3.1 Introduction . 60
3.2 Relevant Background . 63

3.2.1 Quantum Computation and the Gate Model 63
3.2.2 The Quantum Compilation Problem 65
3.2.3 Neutral Atoms . 66

3.3 Neutral Atom Compiler and Methodology 66
3.3.1 Mapping, Routing, and Scheduling 66
3.3.2 Benchmarks . 69
3.3.3 Experimental Setup . 69

3.4 Unique Advantages of Neutral Atom Architectures 70
3.4.1 Long Range Interactions . 70
3.4.2 Native Multiquibit Gates . 73

3.5 Error Analysis of Neutral Atom Architectures 75
3.6 Unique Challenge: Sporadic Atom Loss . 78
3.7 Remarks . 83

4 APPLICATION-GUIDED ARCHITECTURAL DESIGN. VIRTUALIZING ERROR
CORRECTED QUBITS . 95
4.1 Introduction . 95
4.2 Relevant Background . 99

4.2.1 Superconducting Qubit Architectures 99
4.2.2 Qubit Memory Technology . 99
4.2.3 Quantum Errors . 101
4.2.4 Surface Codes, Error Decoding, and

Lattice Surgery . 103
4.3 Virtualized Logical Qubits . 105

4.3.1 Natural Surface Code Embedding . 106
4.3.2 Transversal CNOT . 109
4.3.3 Compact Surface Code Embedding 110
4.3.4 Architectural Considerations . 112

4.4 Evaluation . 114
4.4.1 Error Model and Noise Assumptions 114
4.4.2 Experimental Setup . 115

4.5 Error Threshold Results . 116
4.6 Error Sensitivity Results . 117
4.7 Magic State Distillation

Resource Estimates . 119
4.8 Conclusion . 120

iv

5 EVALUATING ARCHITECTURES AT THEIR LIMITS: IMPROVED COMPILA-
TION METHODS . 127
5.1 Memory-Equipped Quantum Architectures: The Power of Random Access . 128

5.1.1 Relevant Background . 131
5.1.2 A Memory-Equipped Quantum Architecture 134
5.1.3 Experimental Setup . 144
5.1.4 Results and Discussion . 147

5.2 Remarks . 156
5.3 Time-Sliced Quantum Circuit Partitioning for Modular Architectures 157

5.3.1 Relevant Background . 161
5.3.2 Mapping Qubits to Clusters . 163
5.3.3 Lookahead Weights . 167
5.3.4 Experimental Setup . 171
5.3.5 Results and Discussion . 174
5.3.6 Remarks . 178

5.4 Noise-Adaptive Compiler Mappings for Noisy Intermediate Scale Quantum
Computers . 179
5.4.1 Relevant Background . 181
5.4.2 Overview of our Compilation Framework 183
5.4.3 Optimal Compilation: Detailed Approach 188
5.4.4 Heuristic Compilation . 194
5.4.5 Experimental Setup . 196
5.4.6 Optimizing Execution Reliability . 198
5.4.7 Remarks . 204

5.5 Orchestrated Trios: Compiling for Efficient Communication in Quantum
Programs with 3-Qubit Gates . 206
5.5.1 Relevant Background . 210
5.5.2 Orchestrated Trios . 213
5.5.3 Evaluation . 216
5.5.4 Results and Discussion . 221
5.5.5 Remarks . 227

6 DISCUSSION AND CONCLUSION . 228

REFERENCES . 232

v

LIST OF FIGURES

2.1 Reversible AND circuit using a single ancilla bit. The inputs are on the left,

and time flows rightward to the outputs. This AND gate is implemented using

a Toffoli (CCNOT) gate with inputs q0, q1 and a single ancilla initialized to 0.

At the end of the circuit, q0 and q1 are preserved, and the ancilla bit is set to

1 if and only if both other inputs are 1. 10

2.2 The five nontrivial permutations on the basis elements for a qutrit. (Left) Each

operation here switches two basis elements while leaving the third unchanged.

These operations are self-inverses. (Right) These two operations permute the

three basis elements by performing a +1 mod 3 and −1 mod 3 operation.

They are each other’s inverses. 11

2.3 A Toffoli decomposition via qutrits. Each input and output is a qubit. The

red controls activate on |1⟩ and the blue controls activate on |2⟩. The first gate

temporarily elevates q1 to |2⟩ if both q0 and q1 were |1⟩. We then perform the

X operation only if q1 is |2⟩. The final gate restores q0 and q1 to their original

state. 16

2.4 Our circuit decomposition for the Generalized Toffoli gate is shown for 15

controls and 1 target. The inputs and outputs are both qubits, but we allow

occupation of the |2⟩ qutrit state in between. The circuit has a tree structure

and maintains the property that the root of each subtree can only be elevated

to |2⟩ if all of its control leaves were |1⟩. Thus, the U gate is only executed

if all controls are |1⟩. The right half of the circuit performs uncomputation

to restore the controls to their original state. This construction applies more

generally to any multiply-controlled U gate. Note that the three-qutrit gates

are decomposed into 6 two-qutrit and 7 single-qutrit gates in our actual

simulation, as based on the decomposition in [53]. 48

vi

2.5 Our circuit decomposition for the Incrementer. At each step in the design,

multiply-controlled gates using the decomposition in Figure 2.4 are used to

efficiently propagate carries over half of the subcircuit. The |2⟩ control checks

for carry generation and the chain of |1⟩ controls check for carry propagation.

The circuit depth is log2N , which is only possible because of our log depth

multiply-controlled gate primitive. 49

2.6 The Cuccaro adder of [46] with the Toffoli gates replaced by our efficient

decomposition. This only reduces the total depth of the circuit by a constant

amount, i.e. no asymptotic benefit is obtained. There are several simplifications

which can be made to this circuit, most notably the controlled X−1 followed

immediately by a controlled X+1 in several places. For clarity we’ve kept these

gates to see the direct replacement of our Toffoli decomposition into existing

circuits. 49

2.7 Decomposing the A+B circuit with intermediate qutrits. We take as input

two n qubit registers and output the sum S onto the bits of register B while

leaving register A unchanged. In this approach, we first decide if there will be

a carry generated on the top half of the inputs. If so, we apply a +1 gate to the

bottom half of the inputs (specifically on the bits of B) and then recursively

add the first half of A and B and second half of A and B in parallel. The

carry circuit outputs an encoded carry status on an/2, bn/2. The controlled

+1 can be implemented by just modifying the initial X+1 and final X02 gates

of the incrementer to be controlled by the final output carry status. This

decomposition is O(log3 n) depth provided the Carry circuit is O(log n) depth

and the incrementer is O(log2 n) depth. 50

vii

2.8 On the left is the encoding for generate (g), propagate (p), and kill (k) carry

statuses. On the right is the result of combining two input carry statuses Ci

and Cj with Ci corresponding to the less significant bits. Notice the order

matters, e.g. k + g = g but g + k = k. 50

2.9 Realization of the truth table of Table 2.2 as the gadget “Combine Carry

Status” (CCS). While this gate is expensive in terms of two qutrit gates, it is

constant depth. 51

2.10 Realizing the Carry operation in sublinear depth for n = 4 inputs using the

CCS gadget. The result is a (11) if and only if a carry is generated, while

leaving all of the remaining bits as junk, possibly in ternary states. The CCS

blocks always take four qubits as inputs, the first and last two bits and output

a binary output on the last two inputs. In the context of the A+B adder, we

take this output carry status and use it to control an incrementer on the more

significant bits. Afterwards, we would apply the inverse of the cascade on the

right to return to the original inputs; this step is omitted here. 51

2.11 The carry (C) and UnCompute and Add (UCA) gadgets used for linear +K

adder circuit. There are several instances which are a function of the specific

ki and ki+1 values. 52

2.12 Linear +K adder, with carry out on a register of size 4. We assume k0 = 1

and we use the gadgets of Figure 2.11. For no carry out, i.e. +K mod 2 |K|

simply omit the final C component in the cascade. Note a X+1 on an ancilla

has the same effect as a X01 allowing us to use the same C gadget. 52

2.13 The Decomposition of the +K circuit into a sequence of +Ki circuits, for

i ∈ [0,M], where M is a constant. 53

viii

2.14 The decomposition of the +Ki blocks of Figure 2.13 in O(log3 n) depth. Notice

again, the controlled incrementer is done by adding two controls, the carry

status output from the Carry circuit to the first and final gate of the incrementer.

The truth table for this transformation has been omitted for simplicity. . . . 53

2.15 The Prepare Carry (PC) circuit for when βi = 0. This takes four bits of input

A and the known constant βi and outputs on the last two bits the carry status

for this group of bits on its own, adding (aiai+1ai+2ai+4) + (0000). The other

two inputs are left in possibly ternary states. 53

2.16 The Prepare Carry (PC) circuit for when βi = 1. This takes four bits of

input A and the known constant βi and outputs on the last two bits the carry

status for this group of bits on its own, adding (aiai+1ai+2ai+4) + (1000). The

other two inputs are left in possibly ternary states. The truth table for this

transformation has been omitted for simplicity. 53

2.17 Similar to the Combine Carry Circuit (CCS) of Figure 2.9, the CCS+K gadget

combines carry statuses of the type found in Table 2.3. This gadget always

leaves the final two inputs as the new carry status while leaving the other two

inputs possibly in ternary states. The truth table for this transformation has

been omitted for simplicity. 54

2.18 Using the PC and CCS+K gadgets, we can produce an O(log n) depth Carry

circuit for the +Ki circuit. 54

2.19 Each iteration of Grover Search has a multiply-controlled Z gate. Our loga-

rithmic depth decomposition, reduces a logM factor in Grover’s algorithm to

log logM . 54

ix

2.20 This Moment comprises three gates executed in parallel. To simulate with

noise, we first apply the ideal gates, followed by a gate error noise channel

on each affected qudit. This gate error noise channel depends on whether the

corresponding gate was single- or two- qudit. Finally, we apply an idle error to

every qudit. The idle error noise channel depends on the duration of the Moment. 55

2.21 Exact circuit depths for all three benchmarked circuit constructions for

the N-controlled Generalized Toffoli up to N = 200. Both QUBIT and

QUBIT+ANCILLA scale linearly in depth and both are bested by QUTRIT’s

logarithmic depth. 55

2.22 Exact two-qudit gate counts for the three benchmarked circuit constructions

for the N-controlled Generalized Toffoli. All three plots scale linearly; however

the QUTRIT construction has a substantially lower linearity constant. . . . 56

2.23 Circuit simulation results for all possible pairs of circuit constructions and noise

models. Each bar represents 1000+ trials, so the error bars are all 2σ < 0.1%.

Our QUTRIT construction significantly outperforms the QUBIT construction.

The QUBIT+ANCILLA bars are drawn with dashed lines to emphasize that

it has access to an extra ancilla bit, unlike our construction. 56

2.24 The compression of 3 qubits into 2 qutrits and an ancilla, |0⟩. All +1 gates

are done modulo 3. Using a sequence of qutrit gates, we can transform three

input qubits into the desired ancilla. When A, B and C are not going to be

used for a long time in the circuit, they can be temporarily repurposed as an

ancilla bit elsewhere in the circuit. When we want to operate on these stored

bits, we run the inverse of this circuit using any ancilla for the third qubit. . 57

x

2.25 The compression of 2 qubits into a single ququart and generating an ancilla,

|0⟩. The +2 gate here is done modulo 4. This operation takes as input two

qubits, A and B, and produces a single ququart and an ancilla |0⟩. To do this,

we need only 3 two-ququart gates. Similarly, to retrieve the stored information,

we can do the inverse of this operation using any ancilla for the second qubit. 57

2.26 An adder circuit from [58] on two four-bit registers A and B with a carry-

out bit using ancilla. The sum S is computed in-place on register B while

A is untouched and the ancilla are restored to |0⟩. We use this as a sub-

component of our general decomposition. Each of the ancilla in this circuit

can be generated from other input qubits not shown here via our compression

circuits. Part a of the circuit computes carry generate and propagate for each

bit position. Part b computes the carry-in for every bit position. Part c does

the addition, storing the output in register B. Parts d and e uncompute b and

a respectively, restoring the ancilla back to |0⟩. 58

2.27 Our A + B adder that uses no external ancilla. The variant shown here for

c = 5 uses 2-3-1 compression to generate one ancilla (marked as |0⟩) for every

three unused qubits, storing their values in two qutrits (marked as d = 3). A

box is drawn around every (A + B)2 and Undo carry gate to indicate that

they use all the generated ancilla across the circuit. cout,i or cin,i is included

on some of the gates to indicate when the carry-in and carry-out versions are

used and on which ancilla the carry-out is stored. The SWAP gates (pairs of

× in the diagram) simply move a carry-out bit to another ancilla where it is

used as the next carry-in. The two blocks of gates shown with dashed lines are

repeated c− 2 = 3 times along the diagonal indicated. If 2-4-1 compression is

used, an ancilla is generated for every two unused qubits so only c = 4 blocks

are needed. The depth of this circuit is O(log n). 59

xi

3.1 Examples of interactions on a neutral atom device. (a) Interactions of various

distances are permitted up to a maximum. Gates can occur in parallel if their

zones do not intersect. The interaction marked with green checks can occur in

parallel with the middle interaction. (b) The maximum interaction distance

specifies which physical qubits can interact. Compiler strategies suited for

this variable distance are needed for neutral atom architectures. (c) Neutral

atom systems are prone to sporadic atom loss. Efficient adaptation to this loss

reduces computation overhead. 61

3.2 A quantum circuit with a 1, 2, and 3 qubit gate translated to interactions on a

NA device. These systems allow the execution of multiqubit gates. For 2 and

3 qubit gates the interacting qubits are excited to Rydberg states. Interactions

are possible if all interacting qubits are closer than the maximum interaction

distance. 64

3.3 Post-compilation gate count across benchmarks. On the top are percent savings

over the distance 1 baseline averaged over program sizes up to 100 qubits.

Each color is a max interaction distance. Noticeably, there is less additional

improvement as the MID increases, indicating most benefit is gained for smaller

distances. On the bottom is a sample benchmark (holds in general) with many

program sizes compiled for the whole range of MIDs. As the program size

increases, larger MID show benefit before flattening off. 86

xii

3.4 Post-compilation depth across all benchmarks. On the top, the reduction in

depth over the distance 1 baseline. Each bar is the average over all benchmark

sizes. On the bottom we see a similar drop off in post-compilation depth for

the QFT-Adder. We’ve chosen this specific benchmark to highlight the effect

of restriction zones. Here we show a subset of all sizes run. Depth initially

drops but for larger interaction distances some of this benefit is lost. We expect

this to be more dramatic for even larger programs. 87

3.5 The induced restriction zone from interaction distance increases serialization.

In the prior results this is hard to discern because compared to low interaction

distance the amount of gate savings translates to depth reduction. Here we

compare benchmarks compiled with our restriction zone and compare to a

program with no restriction zone, to mimic an ideal, highly parallel execution.

The existence of a restriction zone most effect on programs which are parallel

to begin with. On the bottom we directly compare this effect on the QAOA

benchmark; solid line is compiled with realistic restriction zone and dashed is

ideal. The separation between the corresponding lines signifies the effect of

the restriction zone. 88

3.6 Compiling to programs directly to three qubit gates reduces both gate count

and depth. Here we highlight a serial and parallel application written to three

qubit gates. Here dashed lines are compiled to two qubit gates decomposing

all Toffoli gates before mapping and routing. Solid lines compile with native

Toffoli gates. With native implementation of three qubit gates we obtain huge

reductions in both depth and gate count for both benchmarks. 89

xiii

3.7 Program success rate as a function of two-qubit error rate. Because current NA

error rates are lagging behind competitive technologies we scan over a range

of two-qubit error rates for each of the benchmarks all on 50 qubit programs

(49 for CNU) with max interaction distance of 3. Examining pairs of solid and

dashed lines we can compare NA to SC. In the limit of very low two qubit error

rate, systems can support error correction. Both SC and NA systems scale at

roughly the same rate (slope of the line) but the NA system diverges from the

completely random outcome at higher error, allowing us to run programs on

the hardware much sooner. 90

3.8 Another way to examine the data of Figure 3.7 is to ask, given a desired

program success rate, what the required two qubit error rate is. Here we sweep

again over two qubit error rates and record the maximum program size to run

with success probability greater than 2/3. Again, examining pairs of solid and

dashed lines we can compare NA to SC. With the reduced gate counts and

depth we expect to be able to run larger programs sooner. 91

3.9 Examples of two different atom loss coping strategies. (a) shows the initial

configuration of three qubits, with the spare qubits in a light grey, and in use

qubits black. (b) Represents how the atoms are shifted into the spare qubits to

accommodate a lost atom under the virtual remapping strategy. Notice that

the interaction is no longer within interaction distance 1. (c) Demonstrates how

the qubits can be swapped to a valid interaction configuration, and returned

for rerouting strategies. Numbers indicate the order of swaps. 91

xiv

3.10 Atom loss as a percentage of total device size which can be sustained before a

reload of the array is needed. Each program is 30 qubits on a 100 qubit device.

As the interaction distance increases most strategies can sustain more atom

loss. Strategies like full recompilation can sustain large numbers of atom loss

but as we will see are expensive computationally. Fast, hardware solutions or

hybrid solutions can sustain fewer numbers of holes but have lower overhead.

We show two representative benchmarks parallel vs. serial. 92

3.11 For strategies which modify the program such as recompilation or rerouting

strategies, additional gates could be added leading to a lower overall success

rate. Here we trace the success rate of our three program modifying strategies.

The full recompilation strategy (circles) is a rough upper bound which best

accounts for holes as they appear being able to move the entire program to

a more appropriate location and route best. The gap between strategies on

the same MID gets smaller as the MID gets larger. Here we’ve chosen the

two-qubit error rate corresponding to approximate 0.6 success rate to begin

with (based on Figure 3.8) in order to best demonstrate the change in shot

success probability over a range of atom loss. 92

3.12 Strategies that are able reduce the number of reloads necessary greatly reduce

the overhead time when running circuits. Here we show the overhead time

for all strategies except recompilation. The proportion of time dedicated to

reloading is shown by the dominate color in each bar, followed by fluorescence

in red, and recompilation in black. Any strategy whose overhead exceeds that

of always reloading, such as full recompilation, should not be considered. . . 93

xv

3.13 Sensitivity to the rate of atom loss for the balanced Compile Small and Reroute

strategy. In prior experiments we used a fixed rate of 2% atom loss. For larger

systems this rate could be worse and in the future we might expect this rate

to be much better. For each interaction distance we see as the rate of atom

loss gets better we can run many more trials before we must perform a reload

and reset. Some error bars don’t show on the log axis. 93

3.14 A timeline of 20 successful shots for Compile Small and Reroute with reload

time of 0.3 s and fluorescing time of 6 ms. A majority of the overhead time is

contributed by the reload time and fluorescence, indicating, that the duration

and count of these actions is crucial to overall runtime. 94

4.1 Our fault-tolerant architecture with random-access memory local to each

transmon. On top is the typical 2D grid of transmon qubits. Attached below

each data transmon is a resonant cavity storing error-prone data qubits (shown

as black circles). This pattern is tiled in 2D to obtain a 2.5D array of logical

qubits. Our key innovation here is storing the qubits that make up each

logical qubit (shown as checkerboards) across many cavities to enable efficient

computation. 97

4.2 A typical 2D superconducting qubit architecture. The dots are transmon

qubits where black are used as data and gray are used as ancilla for error

correction. The lines indicate physical connections between qubits that allow

operations between them. Four logical qubits, each consisting of 9 error-prone

data qubits, are shown here in the rotated surface code with distance 3. Z

parity checks are shaded yellow (light) and X parity checks are shaded blue

(dark) where checks on only 2 data are drawn as half circles. 100

xvi

4.3 A close-up representation of the qubit memory technology we use. On top is

a superconducting transmon qubit physically connected to a resonant super-

conducting cavity. This cavity has many resonant modes each used to store a

qubit. These qubits can be loaded and stored (with random access) via the

transmon. 101

4.4 The lattice surgery operations to perform a logical CNOT on the standard

surface code (and directly supported in our architecture). Given control and

target qubits |C⟩ and |T ⟩, a CNOT is performed by enabling and disabling

the parity checks as shown across 6 timesteps ((e) is two steps). We show this

complex process to contrast with the fast transversal CNOT enabled by our

architecture (described later in Section 4.3.2). 103

4.5 Circuit showing how to execute our Natural embedding on hardware. Left:

The layout of eight data (black) and two ancilla (gray) in hardware. CNOT

operations between qubits are drawn between. Right: A circuit diagram of

the operations applied over time where each horizontal line corresponds to a

qubit and each box or symbol is an operation. The steps are Lz: load from

memory mode z, |0⟩: reset ancilla, CNOTs: compute the Z or X parity, Meter:

measure the result, Sz: store back to memory. 106

4.6 The transversal CNOT enabled by our 2.5D architecture. The data qubits for

the control logical qubit are loaded into the transmons. Transmon-mediated

CNOTs to mode z for every data qubit perform the logical operation. This

takes one timestep to perform, 6x better than a lattice surgery CNOT. . . . 122

xvii

4.7 Transformation from Natural to Compact. (a) Natural embedding: Only

data have attached cavities (not shown). (b) The transformation: Z ancilla

(over yellow/light areas) merge with the upper-right data transmon and X

ancilla (over blue/dark areas) merge with the lower-left data transmon. The

opposite parings are key to keeping 4-way grid connectivity. (c) Compact

embedding: All ancilla transmons without attached cavities have been removed.

All remaining transmons have cavities and are used as both data and ancilla. 122

4.8 A 3D view of our Compact embedding. Shown at the top is the 2D grid

of transmon qubits. Attached below every transmon is a resonant cavity.

Compact surface code patches are shown stored, one in each mode. This

deformed patch can be tiled in 2D. 123

4.9 The Compact lattice surgery operations to perform a CNOT. The logical

operations performed are identical to Figure 4.4 but the corresponding physical

operations are arranged as shown in Figure 4.7. This uses half as many

transmons as Natural. As before, it takes 6 timesteps of d error correction

cycles each. 123

4.10 The CNOT sequence for parity checks in Compact. Left: A quantum circuit

showing the hardware operations over time. Right: The CNOT execution

order repeats A0D2, A1D3, A2C0, A3C1, B0C2, B1C3, B2D0, B3D1. The

AB and CD sequences run in parallel but offset to ensure ancilla and data use

do not conflict. CNOTs for A0D2 are marked in red where an isolated circle

indicates a transmon-mediated CNOT. 123

xviii

4.11 Error thresholds for the baseline 2D architecture and Natural and Compact

variants of our 2.5D architecture. The thresholds are comparable to the baseline

indicating the space savings obtained in our system does not substantially

reduce the error thresholds. The slopes of the lines in this figure indicate,

post-threshold, how much improvement in physical error rates improve logical

error rate. Except for the baseline, all use a cavity size of 10. 124

4.12 Sensitivity of logical error rate to various error sources in Compact, Interleaved.

The logical error rates are most sensitive to physical error of Loads/Stores and

SC-SC gates. The logical error rate is less sensitive to the coherence times and

mostly insensitive to effects of load-store duration and cavity size. 125

4.13 (a) The T-state generation rates of three different circuits. Higher generation

rate is better. (b) The space, in terms of number of patches, required to

produce a single |T ⟩ per time step. Lower is better. Fast [124] and Small [123]

work in the surface code and do not use memory. VQubits is implemented

with transversal CNOTs in our 2.5D architecture. All are based on [29]. . . . 126

5.1 Average qubit distance on several instances of near-term target architectures.

Average qubit distance approximates how many SWAPs are necessary to

interact an arbitrary pair of qubits. LNN architectures scale extremely poorly

in this metric resulting in a large number of added gates and depth. 2D and

MEQC architectures scale much better. We show this translates into reduced

number of gates and reduced depth as we scale into the future. 128

xix

5.2 Both current and the proposed MEQC device. On the left is a LNN device

where adjacent superconducting transmons are coupled enabling two qubit

interactions. In the center is a 2D mesh architecture common among current

manufacturers. On the right is the proposed MEQC architecture with trans-

mons arranged in a line. Each transmon has an attached cavity which stores in

memory multiple qubits. To operate on the qubits, they must first be loaded

into the transmons. 129

5.3 Compiling to near-term devices is a multi-step process. First we map the

logical, circuit qubits to the physical hardware qubits. Based on this placement

and the input program, we insert SWAPs in order to interact distant qubits.

Here we compile a simple quantum program, Bernstein-Vazirani, to a 4 qubit

LNN architecture. Quantum programs, like the input program on the left are

a sequence of gates specified on qubits. In this example, based on the given

mapping, a pair of SWAPs are required to execute a CNOT between |Ψ3⟩ and

|Ψ4⟩. 132

5.4 Compiling a small program to a MEQC device. In this case we map the input

qubits |Ψ1⟩ and |Ψ2⟩ to one of the two available cavity modes. When executing

the gates, we first execute a Load to move the qubit to the connected transmon.

The gate is then executed and the qubit is returned to its original mode via a

Store. We represent Loads as L− L and Stores as S − S. 136

5.5 The scaling of depth and gate count in a subset of our benchmarks. LNN-

50 is omitted because it adds substantially more gates than both of these

architectures and as such is not competitive. In many cases, 2D-5-10 is

competitive with the proposed architecture, however, clear separation emerges

in all cases. 143

xx

5.6 Post-compilation number of gates and circuit depth for 50 qubit input programs

on all benchmarks. In every case, MEQC with transmons arranged with

as a chain or a mesh shows improvement over a more standard 2D mesh

qubit arrangement. The increase in gate count in MEQC architectures is

approximately 60% due to loads and stores and the rest from SWAPs. By

requiring fewer gates, we reduce the possibility of gate-induced error. 148

5.7 Output fidelity for full density simulations of the QFT Adder on 2-10 qubits.

Even with more gates in these small instances, programs compiled to MEQC

devices are competitive, and at 10 qubits we see the start of advantage. . . . 149

5.8 An estimation of if no gate errors occur in small program instances. As noted,

this only accounts for errors due to one and two qubit gate errors and is not

influenced by decoherence errors. Larger is better and in general programs

compiled to our proposed architecture are competitive or better than a 2D

architecture. We expect with better T1 times and better gate and depth scaling,

our architecture will outperform, by increasing the likelihood or successful

execution, by a larger margin as programs scale and gate errors improve. All

data points were obtained by running 8000 trials of the input compiled input

program. 150

5.9 With 100x better gates, we begin to see the effect of improved compilation.

Specifically, by reducing the total number of gates required for execution on

the proposed MEQC devices we reduce the probability of a program failing

due to gate errors. Furthermore, with substantially longer T1 times in cavity,

qubits stored in memory are protected from decoherence errors. All data points

are obtained by running 8000 trials of the input program compiled to the two

target architectures. 151

xxi

5.10 Gates and depth of 20 qubit QFT Adder compiled to MEQC architectures with

different transmon connectivity and varying cavity sizes. As the number of

qubits per cavity increases, we expect the average qubit distance to be reduced

meaning fewer SWAPs necessary. However, in MEQC devices operations on

qubits in the same cavity cannot be done in parallel. Therefore, we expect

lose some degree of parallelism, hence the increase in depth. 154

5.11 Crossover points for various interconnect error rates of the QFT-Adder bench-

mark. Interconnect in MEQC devices may not be as good as SWAPs in

traditional architectures. We study how much interconnect error we can toler-

ate in the NISQ target of 100 qubit devices with 10−5 two qubit error rates.

We find we can tolerate up to 12x worse interconnect errors, provided programs

of at least size 52. 155

5.12 Non-local communication overhead in circuits mapped to cluster-based ma-

chines. Our new mapping scheme FPG-rOEE reduces the number of operations

added for non-local communication on all benchmarks. 159

5.13 An example modular architecture of qubits in individual ion traps connected

with optics proposed by Monroe et al [132]. Communication between traps

is supported by photon-mediated entanglement. Similar communication for

superconducting qubits [40] can facilitate modular architectures for that tech-

nology. 160

xxii

5.14 (Top) An example of a quantum program with single-qubit gates not shown.

The inputs are on the left and time flows to the right toward the outputs. The

two-qubit operations here are CNOT (controlled-NOT). (Bottom) The graph

representations of the quantum circuit of the above circuit. On the far left is

the total interaction graph where each edge is weighted by the total number

of interactions for the whole circuit. To the right is the sequence of time slice

graphs, where an edge is only present if the qubits interact in the time slice.

The sum of all time slice graphs is the total interaction graph. 161

5.15 An example of a time slice graph with lookahead weights based on the circuit

in Figure 5.14. We take the graph from the left and add weight to the edges

of qubits that interact in the future. In this case, we take the weight equal to

the number of times the qubits will interact in the future. 165

5.16 The effect of different lookahead functions with various σ on non-local com-

munication in the Cuccaro adder, a very regular circuit, with 76 data and 24

ancilla qubits using FGP-rOEE. We see the exponential function outperforms

the others for a circuit of highly regular structure. 168

5.17 The non-local communication, measured in number of operations between

clusters added, for our representative benchmark circuits mapped by each

FGP-rOEE using different lookahead functions, each with σ = 1. The x-axis

is the number of input/output qubits. The remainder are used as ancilla for

clean multi-control. The exponential function is better on all instances of

Clean multi-control and Cuccaro adder, and there is no substantial advantage

of one function over the others in the random circuit. 169

xxiii

5.18 The non-local communication overhead for our benchmark circuits mapped by

each mapping algorithm. The x-axis is the number of qubits that are used in

the circuit. The y-axis is the number of non-local communication operations

inserted to make the circuit executable in our hardware model. In Clean

multi-control, Clean multi-target, and Dirty multi-target, the remainder of the

100 qubits are used as ancilla (clean or dirty determined by the circuit name).

FGP-rOEE outperforms all other mapping algorithms on all but the multi-

target circuits, and shows substantial improvement over the static baseline.

As the size of the circuit increases, rOEE tends to outperform by a greater

margin, indicating scales better into the future. 176

5.19 Daily variations in qubit coherence time (larger is better) and gate error rates

(lower is better) in IBMQ 16 Rueschlikon. The qubits and gates that are most

or least reliable are different across days. 180

5.20 Figure (a) shows the intermediate representation of the Bernstein-Vazirani

algorithm on 4 qubits (BV4). Each qubit is represented by a line. X and

H are single qubit gates. The CNOT gates from each qubit p0,1,2 to p3 are

marked by vertical connectors. The measurement or readout operation is

indicated by the meter. Figure (b) shows a mapping where qubit movement is

required. The numbers on the labelled edges indicate the CNOT gate error

(×10−2). In this mapping, an error-prone CNOT is used. Figure (c) shows

an optimized mapping where qubit movement is not required and unreliable

hardware CNOTs (crossed) and unreliable qubits (hatched) are avoided. . . . 183

xxiv

5.21 Optimization Pipeline. Inputs are a QC program, details about the specific

hardware configuration, and a set of options, such as routing policy and solver

approach. From these, compiler generates a set of appropriate constraints and

uses them to map program qubits to hardware qubits and schedule operations.

Finally, the compiler generates an executable version of the program, here for

IBMQ16. 184

5.22 Two routing policies for swap-based architectures. 191

5.23 Measured success rate of R-SMT⋆compared to Qiskit and T-SMT⋆. (Of 8192

trials per execution, success rate is the percentage that achieve the correct

answer in real-system execution. R-SMT⋆obtains higher success rate than

Qiskit because it simultaneously adapts placement according to dynamic error

rates and avoids unnecessary qubit movement. 198

5.24 Executions of three benchmarks for 1 week. R-SMT⋆is more resilient to errors

compared to T-SMT⋆. Similar trends for other benchmarks. 199

5.25 Measured success rate, execution duration and compile time for three represen-

tative benchmarks. T-SMT⋆ which directly optimizes for execution duration

obtains the minimum execution durations, but R-SMT⋆ with ω = 0.5 is close,

and more resilient to errors (higher reliability). All benchmarks compile in less

than 1 minute. 200

5.26 For real data/experiment, on IBMQ16, qubit mappings for three optimization

objectives, varying the type of noise-awareness. In each figure, the edge labels

indicate the CNOT gate error rate (×10−2), and the numbers inside each

node indicate that qubit’s readout error rate (×10−2). (a), T-SMT⋆uses an

unreliable hardware CNOT between p3 and p0. (b) Program qubits are placed

on the best readout qubits, but p0 and p3 communicate using swaps. (c) Best

CNOTs and readout qubits are used. 201

xxv

5.27 Effect of gate durations, routing policy and objective function on execution

duration. Although reliability is our primary objective, several variants perform

well on run time as well. T-SMT⋆(either RR or OBP) has the best execution

duration, but R-SMT⋆is very close in run time and offers better success rates.

Noise-aware policies, R-SMT⋆and T-SMT⋆, are 1.6x better than T-SMT. . 202

5.28 Noise-aware Heuristics: GreedyE⋆ heuristic mapping offers reliability compa-

rable to R-SMT⋆on most benchmarks. 203

5.29 Scalability of optimal and heuristic methods on synthetic benchmarks. Each

line represents a qubit count. 204

5.30 Example routing from Qiskit (a) vs. Trios (b) for a single Toffoli operation.

Circles represent qubits and lines indicate two qubits are connected. Input

qubits are highlighted in red. SWAP arrows are labeled by timestep. The

routed locations for Trios routing are highlighted in green while Qiskit moves

them several times. Qiskit adds 16 SWAPs (=48 CNOTs), some during the

Toffoli, while Trios adds only 7 SWAPs (=21 CNOTs) all before the Toffoli.

Performing multiple passes of decomposition allows direct routing and enables

this huge reduction in communication, increasing the probability of program

success. 207

5.31 (a) Typical compilation passes used by Qiskit (simplified). (b) Trios compila-

tion passes. 209

5.32 A 6-CNOT decomposition of the Toffoli gate. 211

5.33 An 8-CNOT decomposition of the Toffoli gate. 211

xxvi

5.34 Example topologies of near-term quantum devices. Orange (a): IBM Johan-

nesburg. Yellow (b): 2D Grid. Purple (c): four groups of five fully connected

clusters. Green (d) Linear. Our real experiments run on Johannesburg and

our simulations explore all of these topologies. Colors correspond with the

bars in Figures 5.38, 5.39, 5.40. 212

5.35 Success probabilities of Toffoli gates between random triplets of qubits. Higher

is better. The x labels specify the three qubits and total swap distance. The

geometric mean success rates for each compiler are 41%, 35%, 47%, and 50%

respectively. Trios (8-CNOT) improves average success rate by 23% vs. the

Qiskit baseline. 219

5.36 Total number of two-qubit (CNOT) gates required to execute a Toffoli gate

between various distant qubits. Lower is better. The x labels specify the three

qubits and total swap distance. The geometric mean gate counts for each

compiler are 29, 28, 23, and 19 respectively. Trios (8-CNOT) reduces average

gate count by 35%. 219

5.37 Normalized success probabilities of Toffoli gates between triplets of qubits.

Higher is better. Bars below 100% indicate lower success rate for Trios. The

geometric mean increase in success rate is 23%. The x labels indicate the qubit

distance for a range of bars. 220

xxvii

5.38 Simulated upper-bounds on the program execution success probability on

various hardware (using 20x lower idle and gate errors than Johannesburg).

Neighboring pairs of bars compare the baseline with Trios compiled for Johan-

nesburg. Higher is better when comparing pairs of bars with the same color.

The geometric mean success rates over the benchmarks that use Toffoli gate

for each device type respectively are 2.2%→9.8%, 3.2%→12%, 0.19%→6.0%,

7.3%→17%. The rightmost three benchmarks contain zero Toffoli gates so

have no change vs. the baseline. 220

5.39 A comparison between the baseline and Trios for various hardware. Above 0%

indicates benefit. All two-qubit gates (for communication and computation)

are counted. The geometric mean reductions in gate counts are 37%, 36%,

48%, and 26% respectively. The rightmost three benchmarks contain zero

Toffoli gates so have no change vs. the baseline. 221

5.40 Normalized Figure 5.38 to show our consistent increase in program success with

Trios. Above 100 indicates benefit. Some improvement factors are huge due to

near-zero baseline success rates. The geometric mean increases in success rate

are 4.4x, 3.7x, 31x, and 2.3x respectively. The rightmost three benchmarks

contain zero Toffoli gates so have no change vs. the baseline. 222

5.41 Factor of improvement in success rate in Trios over baseline for scaling gate

error rates. The dotted line indicates current error rates on IBM Johannesburg

and the dashed line (20x improvement) indicates values of the near future used

in simulation. In our approximation of success rate factors of improvement in

gate error rates lead to an exponential fall off in success ratios, as expected.

In the very near term, we expect Trios to drastically improve the execution of

quantum programs. 223

xxviii

LIST OF TABLES

2.1 Asymptotic comparison of N -controlled gate decompositions. The total gate

count for all circuits scales linearly (except for Barenco [15], which scales

quadratically). Our construction uses qutrits to achieve logarithmic depth

without ancilla. We benchmark our circuit construction against Gidney [70],

which is the asymptotically best ancilla-free qubit circuit. 14

2.2 Truth table for taking two input carry statuses C0 = (c0,0c0,1) and C1 =

(c1,0c1,1), encoded as in the left table of Figure 2.8 and outputting the resulting

combined carry status C ′1 = (c′1,0c
′
1,1) while dirtying the bits of C0 based on

the desired behavior of the right table of Figure 2.8. For example, consider

the third to last row of the table. The bitstring is (1101) indicating the first

carry status is generate (g) and the second carry status is propagate (p). The

means we want to output generate g = (11) on the last two bits but we don’t

care what happens to the first two bits, as we’ve done here, leaving them in

ternary states, specifically |2⟩ |2⟩. 20

2.3 Carry status encoding scheme for the +K adder circuit. 23

2.4 Noise models simulated for superconducting devices. 34

2.5 Noise models simulated for trapped ion devices. 35

2.6 Truth table for 2-3-1 Compression . 39

2.7 Truth table for 2-4-1 Compression . 40

4.1 Starting point coherence times and constant gate times for the hardware models.116

4.2 Transmon, depth-10 cavity, and total qubit costs of each T-state generation

protocol for d = 5. 120

5.1 Benchmarks and some of their properties. 139

5.2 Error model details for current systems [92, 141]. 139

xxix

5.3 Summary of the improvements on 50 qubit benchmarks for MEQC-10-5-2D

over 2D-5-10. In all cases, we see strict improvement. 149

5.4 A subset of our benchmarks. Clean multi-control has a maximum size of 87.

With more than 87 data qubits and fewer than 13 clean ancilla, the depth

of the multi-control decomposition is too large to run on these cluster-based

machines with predicted error rates. 170

5.5 Comparing Static-OEE against FGP-rOEE over all benchmarked instances.

We obtain improvement across the board with the worst case still reducing

non-local communication by 22.6%. 177

5.6 Estimated execution time of the clean multi-control benchmark with 76 data

qubits and 24 ancilla. Two-qubit gates take 300ns [92] and the multiplier

indicates how many times longer non-local communication operations take. . 177

5.7 List of compiler configurations used in our study. The IBM Qiskit 0.5.7

compiler is used as a the baseline. The use of calibration data is marked by a ⋆.185

5.8 Characteristics of benchmark programs. 196

5.9 Details about benchmarks for Trios for reference, both NISQ programs and

other quantum subroutines . 218

xxx

ACKNOWLEDGMENTS

First and foremost I want to thank my advisor Fred Chong for all of his guidance through

my PhD. I’d also like my committee Hank Hoffmann, Ken Brown, and Ali Javadi-Abhari

all of whom have been valuable collaborators and mentors. I’d like to also thank all of my

collaborators with special thanks to several of my frequent collaborators - Prakash Murali,

Pranav Gokhale, Gokul Ravi, Kaitlin Smith, Sophia Lin, Andrew Litteken, Alex Hoover, and

most of all Casey Duckering. I am grateful for each of my collaborators beyond those here,

without which none of this work would have ever been completed.

I’d also like to thank everyone else along the way that’s supported me - academically,

emotionally, or otherwise. This includes all of the people I’ve met in EPiQC and the University

of Chicago and more, too many to list here. Finally I’d like to thank my family without

which I’d never have gotten anywhere close to this point.

xxxi

ABSTRACT

Despite its relative infancy, there are a number of emerging quantum technologies for quantum

computation, and it is unclear which will be the clear winner. Evaluation of these technologies

at the architectural level, far beyond the small-scale prototypes of 1 to 2 qubits, is critical to

producing viable systems capable of executing both near and long-term applications effectively.

In order to fairly evaluate new hardware platforms, it is vital to develop technology-specific

optimizations and compilation frameworks to push hardware closer to its fundamental limits

rather than being hindered by ineffective software. Ultimately, our goal is develop an

evaluation framework to help decipher whether or not proposed technologies are able to

scale efficiently into the future. Central questions in platform evaluation can be roughly

categorized into three themes: 1. Does this technology support fast and economical program

execution. 2. Can this technology produce consistent and high-quality program outputs? 3.

Does this technology fit the requirements of practical applications now and/or in the future?

This work aims to provide the first steps in the development of this framework.

In this thesis, I explore the design, optimization, and evaluation of a variety of competing

quantum technologies which are each vital when deciphering good candidates for scalable

quantum computation, even in its very early stages. This manifests as several case studies

serving as examples of a much larger, fundamental architectural questions. First, we consider

what are the right abstractions for a quantum computing system by exploring the use of

multivalued quantum logic to better make use of hardware capabilities. Second, we consider

architectural trade-off spaces by considering neutral atom hardware. Third, we consider

application-guided architectural design, evaluating how technology specific architectures can

be designed to best fit target applications, like error correction codes. We examine the use

of localized memory to enable virtualization of error corrected logical qubits. Finally, we

explore a variety of technology specific (and agnostic) compilation optimizations to push

proposed architectures and hardwares to their limits to best evaluate their ability to scale

xxxii

beyond prototypes and support large scale applications.

xxxiii

CHAPTER 1

INTRODUCTION

Despite recent booms in quantum information processing research, the field of practical

quantum computing is relatively new. As an emerging paradigm, it may seem odd to

consider new physical technologies, but the field is already at the horizon of some potentially

game-changing capabilities. Although current machines have shown impressive success with

devices based upon trapped ions and superconducting transmons, it is unclear what the

eventual winning technologies will be and it is imperative to consider how to design and build

large-scale architectures based subsets of these physical technologies.

Quantum hardware is still in its relative infancy, boasting tens of qubits as opposed to

the thousands to millions needed to execute important algorithms for unordered search and

factoring [78, 168]. Most available systems have struggled to scale beyond their prototypes

while simultaneously suppressing gate errors and increasing qubit coherence times. This

limits the types of programs which can execute effectively, let alone perform error correction.

It is unclear whether systems composed of superconducting qubits or trapped ions, the major

industry players will take the lead.

Device success is predicated on the increase in the number of qubits, reduction of gate

errors below error correction thresholds, and increases in qubit coherence times, or lifetimes.

In the near term, this translates into larger (more qubits), deeper programs (more operations

per qubit) with improved output distributions (higher likelihood of obtaining the correct

answers). In the long term, this translates into qubits which are protected from noise inherent

in operating quantum systems which cannot be perfectly isolated from the environment while

still having control in the form of encoded logical qubits.

In recent years, there have been a number of improvements throughout the compilation

pipeline both close to the hardware and high level circuit optimization. These optimizations

aim to reduce gate counts, circuit depth, and communication costs as proxies for increasing

1

the size and quality of programs executable on currently available hardware. These are

valuable optimizations and are often well correlated with improved program success rate or

reducing physical requirements as we graduate into error corrected regime.

An alternative approach is to evaluate the viability and trade-offs of new quantum

technology and associated architectures. This approach is tightly linked to optimizations

along the entire hardware-software stack, where it is much more advantageous to develop

technology-specific toolchains. Despite tremendous efforts at both the hardware and software

level to minimize the effects of noise, it is unclear if any of the available hardware will be able

to scale as needed and no clear winner on underlying hardware has emerged. Even further, it

is unknown whether this hardware is best suited to execute the desired programs and while

it is often the case that we adapt compilation to the hardware, i.e. transforming applications

into the right shape for execution, an alternative approach is explore how to design new

architectures which are better suited for the applications we want to run.

Evaluating new hardware technology at the architectural level is decidedly different,

though intrinsically coupled to, the development of quantum hardware. Device physicists’

goal is often to demonstrate the existence of high quality qubits and operations in prototypes,

while the architect’s goal is to evaluate the systems-level ramifications of this technology,

exploring the inherent trade-off spaces to determine viability in the near and long term.

Perhaps most critically, this architectural design exploration leads to important insights

about what is most important for hardware developers to optimize. For example if some

limitations can be effectively mitigated via software, hardware developers can focus on other

more fundamental issues. This process of co-design, by evaluating new technology early and

often, is central to accelerating scalability.

In this dissertation, we explore several key themes in the design of technology-specific

architectural frameworks. While we highlight these at a high level to support a much larger

design principle, each chapter that follows aims to be self-contained.

2

First, we consider how to determine the right abstractions for quantum computation,

specifically one of the most fundamental considerations: the computing radix. Most quantum

systems, like classical systems, are expressed using a two-level binary abstraction using qubits.

However, many available hardware platforms composed of trapped ions or superconducting

circuits are not intrinsically binary, instead offering access to a large, sometimes infinite,

spectrum of possible logical states. Efficient use of these states could prove extremely useful

in expediting quantum computation. For many quantum circuits, we can reduce the total

execution time of the program by using additional space in the form of additional qubits or

devices. When programs are time-limited it is critical to decompose circuits to minimize

depth. This requires that we maintain a delicate balance as using additional space limits the

total size of programs which can be executed if a large portion of resources must be reserved.

We advocate in particular for the use of intermediate qudits (begin and end as qubits) which

can be used to obtain the same asymptotic depth as the best known decompositions but can

be achieved without the need for any extra space.

The proposed techniques free up more hardware for computation, rather than dedicating

device space as ancilla, limiting the maximum size of computation which can be performed.

Current hardware is often calibrated for use only with qubits but has higher-level states

available. While classically multivalued and mixed-radix computing is niche, it is important

to evaluate the architectural ramifications of these strategies for quantum computation. By

temporarily accessing already available higher states, these works can accelerate common

circuit components and reduce space overhead, extending the frontier of what can be computed.

Second, we consider technology-specific architectural tradeoffs by considering one promising

platform candidate: neutral atoms. Current hardware implementations face unique and

fundamental scalability challenges. While these devices have been useful as proof of concept

demonstrations of small-scale, near-term algorithms, it is unclear whether any of them in

present form will be able to execute the large-scale computation needed for quantum speedup.

3

Evaluating the viability of new hardware is essential. Architectural studies which fully explore

their unique trade-off spaces are key for finding the best way to accelerate beyond prototypes.

One such alternative to superconducting qubits or trapped ions is neutral atoms.

There are distinct advantages, for example long distance interactions and native complex

instructions, provided by neutral atoms by developing a dedicated compilation pipeline for

executing quantum programs on the target hardware. Under similar gate error rates, neutral

atom architectures will be capable of executing larger programs sooner than other competing

technologies. Unfortunately, neutral atom systems suffer a potentially crippling drawback–

atoms can be lost both during and between program execution which usually requires the

entire array to be reloaded and the output to be discarded. Fortunately, software solutions

can effectively mitigate this increased run time overhead. By developing several compiler

solutions which are effective at mitigating this loss we are able to demonstrate viability for

scalable quantum computation sooner. This work highlights a key design principle: exploring

the use of new hardware serves a critical role in the development of the platform itself. By

solving fundamental problems at the systems level with software, hardware developers can

focus on solving and optimizing other problems. Co-design of quantum systems is key to

accelerate the advancement of quantum computing technology.

Third we consider architectural design driven by specific applications. In the long term,

error correction is one of the most important applications underlying hardware must support

and in the past it has been common to develop error correction codes with already available

hardware in mind, for example surface codes and color codes which rely on only nearest-

neighbor connectivity between devices to implement. While it has been effective, it may

not be ideal. The alternative is to consider designing architectures using new hardware

components to better fit codes, or generally applications. As an example, we consider using

new quantum memory technology to better match surface codes.

In general, current quantum architectures do not tend to make a distinction between

4

memory and processing of quantum information. These architectures are viable, however, as

more and more qubits are needed the scalability challenges become apparent. To scale to the

millions of qubits needed for error correction, a memory-based architecture can be used to

decouple qubit-count from transmon count. We explore a proof-of-concept demonstration of

its viability by virtualizing surface code tiles in a 2.5D memory-based architecture. Despite

the surface code being designed with currently available 2D architectures in mind, this

application is better matched with this 2.5D architecture which allows qubits to be virtualized

and stored in local memory. This design reduces physical qubit requirements, enabling fast

logical CNOTs, and expediting the creation of special resource states. This highlights a

central theme for current quantum architecture design–we must explore the uses of new

hardware technology, here the use of resonant cavities to store the information of many qubits,

at the systems level.

Fourth we consider the broad subject of quantum compilation pipelines, a critical compo-

nent in the evaluation of any emerging quantum technology. Without architecture-specific

compilation frameworks, it is very difficulty to effectively compare two technologies, and

superficial modifications to preexisting frameworks, while usable, are inefficient. To best

understand the limits of new architectures, we must integrate key features and constraints

into the mapping, routing, and scheduling stages of our pipelines.

We discuss several compiler optimizations which outperform generic methods and span

several different architectural models. For example, for cluster-based architectures, we can

use graph partitioning techniques to inform a timed-sliced routing compiler. Further, we can

use effective lookahead heuristics to minimize unnecessary qubit displacement which lead to

high latency cross-cluster interactions. These lookahead heuristics have proved essential for

other compiler designs for both cavity-based superconducting devices as well as neutral atom

devices, ensuring low communication overheads. For each of these architectures, we must

adapt compiler design to account for device-specific constraints.

5

The central message is clear: generic and standard compilation flow can often be ineffective,

introducing unnecessary communication overhead thereby reducing output quality. This

leads to many device-agnostic optimizations. For example, most available devices cannot

execute complex instructions like the Toffoli gate and instead decompose these gates early in

the compilation pipeline. Routing and scheduling of these gates tends to be more difficult,

requiring higher communication costs. However, by modifying this sequence, specifically by

decomposing complex instructions based on target hardware topology and only after routing

the interacting qubits together, this communication cost can be cut dramatically.

6

CHAPTER 2

DETERMINING THE RIGHT ABSTRACTIONS:

MULTIVALUED QUANTUM LOGIC

1 Given the severe constraints on quantum resources, it is critical to fully optimize the com-

pilation of a quantum algorithm in order to have successful computation. Prior architectural

research has explored techniques such as mapping, scheduling, and parallelism [55, 99, 79]

to extend the amount of useful computation possible. In this chapter, we consider another

technique: quantum trits (qutrits) and generally the use of qudits for any number of logical

levels d.

While quantum computation is typically expressed as a two-level binary abstraction

of qubits, the underlying physics of quantum systems is not intrinsically binary. Whereas

classical computers operate in binary states at the physical level (e.g. clipping above and

below a threshold voltage), quantum computers have natural access to an infinite spectrum of

discrete energy levels. In fact, hardware must actively suppress higher level states in order to

achieve the two-level qubit approximation. Hence, using three-level qutrits is simply a choice

of including an additional discrete energy level, albeit at the cost of more opportunities for

error.

Prior work on qutrits (or more generally, d-level qudits) identified only constant factor

gains from extending beyond qubits. In general, this prior work [154] has emphasized the

information compression advantages of qutrits. For example, N qubits can be expressed as

N
log2(3)

qutrits, which leads to log2(3) ≈ 1.6-constant factor improvements in run times.

Our approach utilizes qutrits in a novel fashion, intermediate qutrits, essentially using the

third state as temporary storage, but at the cost of higher per-operation error rates. Under

this treatment, the run time (i.e. circuit depth or critical path) is asymptotically faster, and

1. JMB’s contributions in this chapter include the majority of the circuit designs (with equal contribution
from CD for many and significant help from PG and CD on others) the introduction of logical temporary
ternary, testing and verification.

7

the reliability of computations is also improved. Moreover, our approach only applies qutrit

operations in an intermediary stage: the input and output are still qubits, which is important

for initialization and measurement on real devices [158, 157] and means it can easily be

substituted for a binary-only version without needing to modify the remainder of the circuit.

The net result of this section is to extend the frontier of what quantum computers can

compute. In particular, the frontier is defined by the zone in which every machine qubit is

a data qubit, for example a 100-qubit algorithm running on a 100-qubit machine. In this

frontier zone, we do not have room for non-data workspace qubits known as ancilla. The lack

of ancilla in the frontier zone is a costly constraint that generally leads to inefficient circuits.

For this reason, typical circuits instead operate below the frontier zone, with many machine

qubits used as ancilla. We demonstrate that ancilla can be substituted with qutrits, enabling

us to operate efficiently within the ancilla-free frontier zone.

We can further improve on this result in a more general way by instead having ancilla,

specifically clean ancilla, be generated local during the decomposition of an algorithm into a

quantum circuit. That is, we propose a new circuit which performs qubit-qudit compression

storing the information of many qubits as a small number of qudits at the cost of some gate

overhead. These compression circuits produce clean ancilla in the |0⟩ state. The stored data

can be retrieved later when needed since all quantum operations are reversible. Essentially,

when certain groups of qubits will be unused for a long period of time, we can repurpose them

by compressing them and using the produced ancilla. This “compression” is a rearrangement

of the stored binary values into higher states. This allows us to store more information into

the same number of physical quantum devices and free up qubits for computation.

In this section we present an application of this technique to give logarithmic depth

decompositions of quantum arithmetic circuits - a carry lookahead adder and by extension

addition by a constant a direct improvement to the more “clever” version we present at first.

We present two compression circuits for qubit-qutrit and qubit-ququart compression and

8

evaluate advantages of various compression schemes in real applications.

We highlight the primary contributions of this section:

1. A Generalized Toffoli circuit construction based on qutrits that leads to asymptotically

faster circuits (633N → 38 log2N) than equivalent qubit-only constructions. We also

reduce total gate counts from 397N to 6N .

2. Larger arithmetic circuit constructions with intermediate qutrits such as the Incre-

menter, A+B and +K adders which obtain O(log2 n), O(log3 n), and O(log3 n) depth,

respectively.

3. Simulation results using the simulator developed in [74], under realistic noise models,

which demonstrate our circuit construction outperforms equivalent qubit circuits in

terms of error. For completeness, we also benchmark our circuit against a qubit-only

construction augmented by an ancilla and find our construction is still more reliable.

4. The introduction of a novel use of intermediate qudits based on the compression of

information on many quantum devices into a small number but with more logical

states to directly enable allocation of devices as ancilla which generalizes the use of

intermediate qudits for any circuit.

2.1 Relevant Background

A qubit is the fundamental unit of quantum computation. Compared to their classical

counterparts which take values of either 0 and 1, qubits may exist in a superposition of the

two states. We designate these two basis states as |0⟩ and |1⟩ and can represent any qubit as

|ψ⟩ = α |0⟩+ β |1⟩ with ∥α∥2 + ∥β∥2 = 1. ∥α∥2 and ∥β∥2 correspond to the probabilities of

measuring |0⟩ and |1⟩ respectively.

Quantum states can be acted on by quantum gates which (a) preserve valid probability

distributions that sum to 1 and (b) guarantee reversibility. For example, the X gate transforms

9

a state |ψ⟩ = α |0⟩ + β |1⟩ to X |ψ⟩ = β |0⟩ + α |1⟩. The X gate is also an example of a

classical reversible operation, equivalent to the NOT operation. In quantum computation, we

have a single irreversible operation called measurement that transforms a quantum state into

one of the two basis states with a given probability based on α and β.

In order to interact different qubits, two-qubit operations are used. The CNOT gate

appears both in classical reversible computation and in quantum computation. It has a

control qubit and a target qubit. When the control qubit is in the |1⟩ state, the CNOT

performs a NOT operation on the target. The CNOT gate serves a special role in quantum

computation, allowing quantum states to become entangled so that a pair of qubits cannot

be described as two individual qubit states. Any operation may be conditioned on one or

more controls.

Many classical operations, such as AND and OR gates, are irreversible and therefore

cannot directly be executed as quantum gates. For example, consider the output of 1 from

an OR gate with two inputs. With only this information about the output, the value of

the inputs cannot be uniquely determined. These operations can be made reversible by the

addition of extra, temporary workspace bits initialized to 0. Using a single additional ancilla,

the AND operation can be computed reversibly as in Figure 2.1.

|q0⟩ • |q0⟩
|q1⟩ • |q1⟩
|0⟩ |q0 AND q1⟩

Figure 2.1: Reversible AND circuit using a single ancilla bit. The inputs are on the left, and
time flows rightward to the outputs. This AND gate is implemented using a Toffoli (CCNOT)
gate with inputs q0, q1 and a single ancilla initialized to 0. At the end of the circuit, q0 and
q1 are preserved, and the ancilla bit is set to 1 if and only if both other inputs are 1.

Physical systems in classical hardware are typically binary. However, in common quantum

hardware, such as in superconducting and trapped ion computers, there is an infinite spectrum

of discrete energy levels. The qubit abstraction is an artificial approximation achieved by

10

suppressing all but the lowest two energy levels. Instead, the hardware may be configured

to manipulate the lowest three energy levels by operating on qutrits. In general, such a

computer could be configured to operate on any number of d levels, except as d increases the

number of opportunities for error, termed error channels, increases. Here, we focus on d = 3

with which we achieve the desired improvements to the Generalized Toffoli gate.

In a three level system, we consider the computational basis states |0⟩, |1⟩, and |2⟩ for

qutrits. A qutrit state |ψ⟩ may be represented analogously to a qubit as |ψ⟩ = α |0⟩+ β |1⟩+

γ |2⟩, where ∥α∥2 +∥β∥2 +∥γ∥2 = 1. Qutrits are manipulated in a similar manner to qubits;

however, there are additional gates which may be performed on qutrits.

For instance, in quantum binary logic, there is only a single X gate. In ternary, there

are three X gates denoted X01, X02, and X12. Each of these Xij for i ̸= j can be viewed

as swapping |i⟩ with |j⟩ and leaving the third basis element unchanged. For example, for a

qutrit |ψ⟩ = α |0⟩+ β |1⟩+ γ |2⟩, applying X02 produces X02 |ψ⟩ = γ |0⟩+ β |1⟩+α |2⟩. Each

of these operations’ actions can be found in the left state diagram in Figure 2.2.

There are two additional non-trivial operations on a single trit. They are the +1 and

−1 (sometimes referred to as a +2) operations (with + meaning addition modulo 3). These

operations can be written as X01X12 and X12X01, respectively; however, for simplicity, we

will refer to them as X+1 and X−1 operations. A summary of these gates’ actions can be

found in the right state diagram in Figure 2.2.

|0⟩

|1⟩ |2⟩

X01

X12

X02

|0⟩

|1⟩ |2⟩
X−1

X+1

X+1

X+1

Figure 2.2: The five nontrivial permutations on the basis elements for a qutrit. (Left)
Each operation here switches two basis elements while leaving the third unchanged. These
operations are self-inverses. (Right) These two operations permute the three basis elements
by performing a +1 mod 3 and −1 mod 3 operation. They are each other’s inverses.

11

Other, non-classical, operations may be performed on a single qutrit. For example, the

Hadamard gate [147] can be extended to work on qutrits in a similar fashion as the X gate

was extended. In fact, all single qubit gates, like rotations, may be extended to operate on

qutrits. In order to distinguish qubit and qutrit gates, all qutrit gates will appear with an

appropriate subscript.

Just as single qubit gates have qutrit analogs, the same holds for two qutrit gates. For

example, consider the CNOT operation, where an X gate is performed conditioned on the

control being in the |1⟩ state. For qutrits, any of the X gates presented above may be

performed, conditioned on the control being in any of the three possible basis states. Just

as qubit gates are extended to take multiple controls, qutrit gates are extended similarly.

The set of single qutrit gates, augmented by any entangling two-qutrit gate, is sufficient for

universality in ternary quantum computation [35].

One question concerning the feasibility of using higher states beyond the standard two

is whether these gates can be implemented and perform the desired manipulations. Qutrit

gates have been successfully implemented [53, 140, 111] indicating it is possible to consider

higher level systems apart from qubit only systems.

In order to evaluate a decomposition of a quantum circuit, we consider quantum circuit

costs. The space cost of a circuit, i.e. the number of qubits (or qutrits), is referred to as

circuit width. Requiring ancilla increases the circuit width and therefore the space cost of a

circuit. The time cost for a circuit is the depth of a circuit. The depth is given as the length

of the critical path (in terms of gates) from input to output.

12

2.2 Prior Work in Multivalued Quantum Logic

2.2.1 Qudits

Qutrits, and more generally qudits, have been been studied in past work both experimentally

and theoretically. Experimentally, d as large as 10 has been achieved (both one- and two-qudit

operations) [112], and d = 3 qutrits are commonly used internally in many quantum systems

[37, 65].

However, in past work, qudits have conferred only an information compression advantage.

For example, N qubits can be compressed to N
log2(d)

qudits, giving only a constant-factor

advantage [154] at the cost of greater errors from operating qudits instead of qubits. Under

the assumption of linear cost scaling with respect to d, it has been demonstrated that d = 3

is optimal [77, 108].

The information compression advantage of qudits has been applied specifically to Grover’s

search algorithm [63, 121, 183, 96] and to Shor’s factoring algorithm [26]. Ultimately, the

tradeoff between information compression and higher per-qudit errors has not been favorable

in past work. As such, the past research towards building practical quantum computers has

focused on qubits.

This chapter introduces qutrit-based circuits which are asymptotically better than equiva-

lent qubit-only circuits. Unlike prior work, we demonstrate a compelling advantage in both

runtime and reliability for smaller constructions, thus justifying the use of qutrits.

2.2.2 Generalized Toffoli Gate

We first focus on the Generalized Toffoli gate, which simply adds more control qubits to

the Toffoli circuit in Figure 2.1. The Generalized Toffoli gate is an important primitive

used across a wide range of quantum algorithms, and it has been the focus of extensive past

optimization work. Table 2.1 compares past circuit constructions for the Generalized Toffoli

13

This Gidney [70] He [84] Barenco [15] Wang [183] Lanyon [115]
Work Ralph [156]

Depth logN N logN N2 N N
Ancilla 0 0 N 0 0 0
Control Type Qutrits Qubits Qubits Qubits Qutrits Qubits
Target Type Qubit Qubit Qubit Qubit Qubit d = N -level qudit
Constants Small Large Small Small Small Small

Table 2.1: Asymptotic comparison of N -controlled gate decompositions. The total gate
count for all circuits scales linearly (except for Barenco [15], which scales quadratically). Our
construction uses qutrits to achieve logarithmic depth without ancilla. We benchmark our
circuit construction against Gidney [70], which is the asymptotically best ancilla-free qubit
circuit.

gate to our construction.

Among prior work, the Gidney [70], He [84], and Barenco [15] designs are all qubit-

only. The three circuits have varying tradeoffs. While Gidney and Barenco operate at the

ancilla-free frontier, they have large circuit depths: linear with a large constant for Gidney

and quadratic for Barenco. The Gidney design also requires rotation gates for very small

angles, which poses an experimental challenge. While the He circuit achieves logarithmic

depth, it requires one ancilla per data qubit, effectively halving the effective potential of any

given quantum hardware. Nonetheless, in practice, most circuit implementations use these

linear-ancilla constructions due to their small depths and gate counts.

As in our approach, circuit constructions from Lanyon [115], Ralph [156], and Wang [183]

have attempted to improve the ancilla-free Generalized Toffoli gate by using qudits. Both the

Lanyon [115] and Ralph [156] constructions, which have been demonstrated experimentally,

achieve linear circuit depths by operating the target as a d = N -level qudit. Wang [183] also

achieves a linear circuit depth but by operating each control as a qutrit.

Our circuit construction has similar structure to the He design, which can be represented

as a binary tree of gates. However, instead of storing temporary results with a linear number

of ancilla qubits, our circuit temporarily stores information directly in the qutrit |2⟩ state of

the controls. Thus, no ancilla are needed.

14

In our simulations, we benchmark our circuit construction against the Gidney construction

[70] because it is the asymptotically best qubit circuit in the ancilla-free frontier zone. We

label these two benchmarks as QUTRIT and QUBIT. The QUBIT circuit handles the lack

of ancilla by using dirty ancilla, which unlike clean (initialized to |0⟩) ancilla, can have an

unknown initial state. Dirty ancilla can therefore be bootstrapped internally from a quantum

circuit. However, this technique requires a large number of Toffoli gates which makes the

decomposition particularly expensive in gate count.

Augmenting the base Gidney construction with a single ancilla2 does reduce the constants

for the decomposition significantly, although the asymptotic depth and gate counts are

maintained. For completeness, we also benchmark our circuit against this augmented

construction, QUBIT+ANCILLA. However, the augmented circuit does not operate at the

ancilla-free frontier, and it conflicts with parallelism.

2.3 Circuit Constructions

In order for quantum circuits to be executable on hardware, they are typically decomposed into

single- and two- qudit gates. Performing efficient low depth and low gate count decompositions

is important in both the NISQ regime and beyond.

2.3.1 Key Intuition

To develop intuition for our technique, we first present a Toffoli gate decomposition which

lays the foundation for our generalization to multiple controls. In each of the following

constructions, all inputs and outputs are qubits, but we may occupy the |2⟩ state temporarily

during computation, hence temporarily ternary. Maintaining binary input and output allows

these circuit constructions to be inserted into any preexisting qubit-only circuits.

2. This ancilla can also also be dirty.

15

|q0⟩ 1 1

|q1⟩ X+1 2 X−1

|q2⟩ X

Figure 2.3: A Toffoli decomposition via qutrits. Each input and output is a qubit. The red
controls activate on |1⟩ and the blue controls activate on |2⟩. The first gate temporarily
elevates q1 to |2⟩ if both q0 and q1 were |1⟩. We then perform the X operation only if q1 is
|2⟩. The final gate restores q0 and q1 to their original state.

In Figure 2.3, a Toffoli decomposition using qutrits is given. A similar construction for

the Toffoli gate is known from past work [115, 156]. The goal is to perform an X operation

on the last (target) input qubit q2 if and only if the two control qubits, q0 and q1, are both

|1⟩. First a |1⟩-controlled X+1 is performed on q0 and q1. This elevates q1 to |2⟩ iff q0 and q1

were both |1⟩. Then a |2⟩-controlled X gate is applied to q2. Therefore, X is performed only

when both q0 and q1 were |1⟩, as desired. The controls are restored to their original states by

a |1⟩-controlled X−1 gate, which undoes the effect of the first gate. The key intuition in this

decomposition is that the qutrit |2⟩ state can be used instead of ancilla to store temporary

information.

2.3.2 Generalized Toffoli Gate

We now present our circuit decomposition for the Generalized Toffoli gate in Figure 2.4. The

decomposition is expressed in terms of three-qutrit gates (two controls, one target) instead of

single- and two- qutrit gates, because the circuit can be understood purely classically at this

granularity. In actual implementation and in our simulation, we used a decomposition [53]

that requires 6 two-qutrit and 7 single-qutrit physically implementable quantum gates.

Our circuit decomposition is most intuitively understood by treating the left half of the

circuit as a tree. We specifically trace out the construction found in Figure 2.4 here, but is

easily generalized. The desired property is that the root of the tree, q7, is |2⟩ if and only if

each of the 15 controls was originally in the |1⟩ state. To verify this property, we observe the

16

root q7 can only become |2⟩ iff q7 was originally |1⟩ and q3 and q11 were both previously |2⟩.

At the next level of the tree, we see q3 could have only been |2⟩ if q3 was originally |1⟩ and

both q1 and q5 were previously |2⟩, and similarly for the other triplets. At the bottom level

of the tree, the triplets are controlled on the |1⟩ state, which are only activated when the

even-index controls are all |1⟩. Thus, if any of the controls were not |1⟩, the |2⟩ states would

fail to propagate to the root of the tree. The right half of the circuit performs uncomputation

to restore the controls to their original state.

After each subsequent level of the tree structure, the number of qubits under consideration

is reduced by a factor of ∼ 2. Thus, the circuit depth is logarithmic in N . Moreover, each

qutrit is operated on by a constant number of gates, so the total number of gates is linear in

N .

Our circuit decomposition still works in a straightforward fashion when the control type of

the top qubit, q0, activates on |2⟩ or |0⟩ instead of activating on |1⟩. These two constructions

are necessary for the Incrementer circuit. We verified our circuits, both formally and via

simulation, the code for these constructions is found with our simulation framework [6].

2.3.3 Larger Arithmetic Circuits: The Incrementer

The Incrementer circuit performs the +1 mod 2N operation to a register of N qubits. While

logarithmic circuit depth can be achieved with linear ancilla qubits [57], the best ancilla-free

incrementers require either linear depth with large linearity constants [71] or quadratic depth

[15]. Using our Generalized Toffoli gate with alternate control activations as a subcircuit, the

incrementer circuit is reduced to O(log2N) depth with no ancilla, a significant improvement

over past work.

The core operational principle of an incrementer is to flip bits starting with the LSB,

stopping after the first 0 is encountered. For example, in the bitstring 11001111, the increment

starts at the right and propagates through four 1’s before being terminated by the first 0

17

encountered. As a result, the right five bits are flipped. The key insight in our Incrementer

circuit decomposition is that a Generalized Toffoli can be used to propagate a carry bit to the

middle of a bitstring by checking if all of the right-half bitstrings were 1. This procedure is

then repeated recursively. Figure 2.5 shows an example of our incrementer circuit construction

for an N = 8 width register. We have verified the general construction, both by formal

proof and by explicit circuit simulation for larger N . The critical path of this circuit is the

chain of logN multiply-controlled gates (of width N
2 , N

4 , N
8 , ...) which act on |a0⟩. Since

our multiply-controlled gate decomposition has log-depth, we arrive at a total circuit depth

circuit scaling of log2N .

2.3.4 Larger Arithmetic Circuits: The A + B Adder

In the A+B adder, we take as input two n-qubit registers A and B and output on the B

bits the sum A+B while leaving the A bits unchanged. In all constructions presented here,

the least significant bit is found at the top (a0, b0) while the most significant bit is at the

bottom (an, bn). One of the most commonly used constructions is the Cuccaro adder [46].

A simple way of improving this construction with intermediate qutrits is to simply replace

all of the Toffoli gates used with our more efficient Toffoli decomposition found in Figure

2.3. We demonstrate this straightforward substitution in Figure 2.6. While this does improve

the constants, we do not obtain any asymptotic advantage. This suggests an important fact:

simple replacement of Toffoli decompositions in other quantum circuits is not a sufficient

method for obtaining asymptotic improvements. Instead, we need to be more clever about

how we use intermediate qutrits. For simplicity, we will ignore any carry-in or carry-out,

though these could be added in a straightforward way.

We will now demonstrate how to obtain sublinear depth with no additional ancilla using

intermediate qutrits. First, we observe the high level decomposition of Figure 2.7 in which

we see that adding A + B can be done by first computing if the first half of input bits

18

generate a carry and if so, adding 1 to the second half of the sum register. We can then

recursively compute A + B on the lower and higher order bits independently. We use the

incrementer construction of Figure 2.5, modified only by controlling the initial X+1 and

final X02 gates of the decomposition on the carry status output of the Carry circuit. In

order for this construction to have sublinear depth, we need only show the first part, the

carry-controlled incrementer, can be done in sublinear depth. This problem reduces further

by noting we already have shown an O(log2 n) depth incrementer implying we need to show

a sublinear carry operation.

Determining Carry Status In-Place in Sublinear Depth

First we introduce an encoding scheme for the different carry statuses, in the traditional

language of generate (g), propagate (p), and kill (k). For one bit of an adder, ai + bi, a carry

is generated if and only if ai = bi = 1 and a carry from a carry-in would be propagated to a

carry-out if and only if ai ⊕ bi = 1. Finally, any carry through these bits would be killed if

and only if ai = bi = 0. Therefore, we use the encoding scheme of the left table of Figure 2.8.

Next, we need to understand how these different carry statuses combine. For example, if one

set of bits generates and the next set propagates, then the net result of the combined group

is to generate; we summarize these combinations in the right table of Figure 2.8.

With these two pieces of information, we introduce our gadget which will allow us

to determine the carry status of a set of input bits in logarithmic depth via the general

decomposition of Figure 2.10. This gadget takes four bits as input, where the first pair

represents the encoded carry status of the first set and the second pair is the encoded carry

status of the second set. The output is the carry status of the combined groups on the

second pair. In order to do this we must dirty the first pair by having them occupy qutrit

states. This gadget guarantees the second pair will be qubits meaning this gadget can be

used recursively. Therefore, at the end of Figure 2.10, the output on the last two inputs will

19

c0,0 c0,1 c1,0 c1,1 c′0,0 c′0,1 c′1,0 c′1,1
0 0 0 0 (0 0) 0 0
0 0 0 1 (2 0) 0 0
0 0 1 0 (0 1) 0 0
0 0 1 1 (0 0) 1 1
0 1 0 0 (0 2) 0 0
0 1 0 1 (1 1) 0 1
0 1 1 0 (0 2) 1 0
0 1 1 1 (0 1) 1 1
1 0 0 0 (1 0) 0 0
1 0 0 1 (2 0) 0 1
1 0 1 0 (1 1) 1 0
1 0 1 1 (1 0) 1 1
1 1 0 0 (2 1) 0 1
1 1 0 1 (2 2) 1 1
1 1 1 0 (1 1) 1 1
1 1 1 1 (1 2) 1 1

Table 2.2: Truth table for taking two input carry statuses C0 = (c0,0c0,1) and C1 = (c1,0c1,1),
encoded as in the left table of Figure 2.8 and outputting the resulting combined carry status
C ′1 = (c′1,0c

′
1,1) while dirtying the bits of C0 based on the desired behavior of the right table

of Figure 2.8. For example, consider the third to last row of the table. The bitstring is (1101)
indicating the first carry status is generate (g) and the second carry status is propagate (p).
The means we want to output generate g = (11) on the last two bits but we don’t care what
happens to the first two bits, as we’ve done here, leaving them in ternary states, specifically
|2⟩ |2⟩.

20

be (11) if and only if a carry is generated. This carry circuit is logarithmic in depth because

at each layer we halve the number of input bits. The realization of this gadget is found in

Figure 2.9, and its truth table is found in Table 2.2.

Why is this decomposition O(log3 n) depth? We’ve shown an incrementer can be performed

in O(log2 n) depth. The depth of the carry circuit is O(log n) since every CCS circuit is

constant depth and the number of inputs is halved at each layer. We use the final carry status

output to control an incrementer which is done in O(log2 n) depth. We then uncompute

the carry to prepare for the recursive step, in which we compute A+ B on the two halves

of the inputs. Since this recursive step works on inputs half the size of the original input,

this requires O(log n) steps. This results in a total depth of O(log3 n). What this means is,

with more clever use of intermediate qutrits, beyond simple replacement, we can produce

asymptotically better decompositions.

2.3.5 Larger Arithmetic Circuits: Constant, +K, Addition

We will now present how to perform constant addition, that is given an input register A of n

qubits we want to add a known constant K to A. We will give two constructions, the first

uses a similar cascading technique as the Cuccaro adder to produce a linear depth +K adder

and the second will use a technique similar to the new A+B adder to produce a sublinear

depth +K adder.

Linear +K Addition

For each of the constructions we give, we want to take advantage of the fact that we know

every bit of the constant being added, K and use this to inform the circuits we build.

Specifically, the circuit’s exact decomposition is of course a function of K itself.

For this construction, we assume K = (k0k1...kn−1), with k0 the least significant bit.

Also, we assume k0 = 1. If k0 = 0, we find the first i for which ki = 1 and then add

21

K ′ = (kiki+1...kn−1) to A′ = (aiai+1...an−1). There are several components we use given

in Figure 2.11 which we choose based on the particular values of the bit string K. Used

together, we can quite simply compute A+K for some constant K in linear circuit depth

(as well as linear gate count) using intermediate qutrits and no additional ancilla, as found in

Figure 2.12.

Can we do better with this technique similar to the A+B adder? Using similar techniques

to that construction, as well as a different trick, we obtain a sublinear depth A+K adder

with intermediate qutrits.

O(log3 n) Depth +K Addition

Our goal of this is to demonstrate sublinearity which we do at the cost of some rather large

constants. Some methods for the reduction of these constants are discussed at the end of

this section. This construction is slightly more complicated than that of the A+B addition

mostly due to fewer available qubits. Specifically, in the A+B adder we could use the qubits

of A to store some carry information, giving us roughly twice as many available qubits for

the same sized registers. Here, we cannot simply employ the techniques of before.

First, we assume as before that K = (k0k1...kn−1) with k0 = 1 and k0 the least significant

bit. In the entire discussion following, the left most bit is the least significant bit. We will

make a further assumption for simplicity of future discussion, that is |K| = 4ℓ for some

ℓ ∈ Z+. This assumption is not necessary in general. Then, consider groups of bits of K,

Bm = (k4mk4m+1k4m+2k4m+3) for m ∈ [0, ℓ − 1]. For this discussion we say (Bi)(Bj) is

the concatenation of the binary number Bi to the front of Bj . In order to add the constant

(0...0)(Bm)(0...0) we can add (0...0)(1000)(0...0) exactly Bm-many times, that is

A+ (0...0)(Bm)(0...0) = A+

(Bm)∑
i=1

(0...0)(1000)(0...)

22

A B Carry Status
0 0 k
0 1 k
1 0 p
1 1 g

Table 2.3: Carry status encoding scheme for the +K adder circuit.

Then, taking M = max
j∈[0,ℓ−1]

(Bj) and since (B0)(B1)...(Bℓ−1) = K, we have

A+ (B0)(B1)...(Bn/4) = A+
M∑
i=0

(β0,i000)(β1,i000)...(βℓ−1,i000)

where βj,i = 1 if i ≤ (Bj) and 0 otherwise. Intuitively, we can understand this expression

as saying we can add K by adding a sequence of numbers which add up to K. This

sum has at most 15 terms in it since each Bj is exactly 4 bits, that is M ≤ 15. Taking

Ki = (β0,i000)(β1,i000)...(βℓ−1,i000) for each i ∈ [0,M] we have the circuit structure of

Figure 2.13.

We now show how to construct +Ki which can be done fairly similar to the construction

for A+B. A high level scheme for the decomposition of these blocks is given in Figure 2.14

and is very similar to that of Figure 2.7. In this case too we need only show a sublinear depth

Carry circuit. Note as before, in this circuit, the Carry outputs a single two-bit encoded

carry status and we modify the incrementer circuit by controlling the first and last operation

on the status encoding generate.

For this decomposition, we establish a new carry status encoding scheme, given in Table

2.3. This new scheme is necessary. Consider the case of βj,i = 0, all but 1 of the inputs

results in the carry status k, i.e. 15 of the 16 inputs need to output kill. With a simple

information theoretic argument we note the original encoding is insufficient. In that encoding,

with only a single output encoding kill, (00), at most 9 inputs could result in this output

(the other two input bits are used as qutrits for 32 states). Therefore, no circuit could exist

23

to output kill on 15 inputs. If we instead have two outputs encoding kill, here (00) and (01),

then we can have 2 ∗ 32 = 18 outputs encode kill. This new encoding is sufficient for both

βj,i being 0 or 1. We will combine carry statuses with the same strategy as before.

In each of the subcircuits presented, we note there is little intuition which can be provided

for the specific construction and each was constructed by defining a truth table with a desired

set of properties, usually with a certain subset of inputs remaining as qubits while other

inputs becoming dirtied. The circuits are then constructed via experimentation, though

techniques adapted from reversible logic synthesis could be used to produce similar cascades

of gates. These subcircuits all share one important property: they are all constant depth.

We now define two new gadgets which will prepare the groups (βj,i000), one for when

βj,i = 0 and one for when βj,i = 1. In each of these gadgets, we input the group of 4 bits

(a4ja4j+1a4j+2a4j+3) and output on the last two bits the carry status while leaving the first

two bits possibly in qutrit states. These two gadgets are found in Figures 2.15, 2.16. Finally,

we need a new combine carry status (CCS+K) gadget because we have a new carry status

encoding; this gadget can be found in Figure 2.17. Putting this all together we obtain the

Carry decomposition in Figure 2.18. This carry decomposition is done is logarithmic depth.

Every group of 4 inputs is prepared with the proper PC subcircuit in parallel in constant

depth. Using a cascade of constant depth CCS+K circuits, each with four inputs, we halve

the number of carry status inputs at each layer requiring O(log n) layers to obtain the final

carry status.

Each of the +Ki subcircuits has O(log3 n) depth. In each, we compute the carry in

logarithmic depth and use the result of the carry to control an incrementer in O(log2 n)

depth. We uncompute the carry to prepare for the recursive step. Since the number of

inputs is halved in each step of the recursion, we need O(log n) recursions. Note the base

case for this recursion is to perform an incrementer on the j-th set of bits if βj,i = 1 and do

nothing otherwise. This results in the desired O(log3 n) depth. Since there are a constant

24

(15) number of +Ki blocks added, this implies the total decomposition is O(log3 n) depth.

This is all done with 0 additional ancilla with all inputs and outputs guaranteed to be qubits.

We note there may be more optimized subcircuits which may further reduce our constants.

This demonstrates by using intermediate qutrits we can obtain asymptotically improved

circuits beyond just the Toffoli decomposition. In these larger arithmetic circuits, however,

the constants will be fairly large due to the large number of two-control gates we use in each

of our gadgets. Furthermore, in the +K circuit, we bound the number of Ki blocks by 15.

How can we improve on these constants to increase practicality? The number of multiply

controlled gates used in the PC, CCS, and other constant depth components could be reduced.

This could be done for example by using optimization methods found in reversible logic

synthesis. In the same vein, one other optimization could be to increase the number of bits

we use in our components from 4 to some higher constant. We chose 4 because it is the

smallest size, given our encoding schemes, for which the desired circuits exist. It is possible

to use larger components, but this may come at the cost of using more multiply-controlled

gates which have extremely poor decompositions.

For the +K circuit design, we note the use of 15 blocks is an intuitive design to bound

the number of +Ki blocks. However, there are ways this number can be reduced. One

such way to reduce this bound to just 4 blocks is to consider again dividing K into groups

K = B0B1...Bℓ−1 each containing 4 bits (bi,0bi,1bi,2bi,3). Note K = (b0,0000)...(bℓ−1,0000) +

(0)(b0,1000)...(bℓ−1,100) + ... + (000)(b0,3000)...(bℓ−1,3). That is, we can simply shift the

starting point. As a simple example, consider adding 410 = (0010)2, again the left most digit

is the least significant bit, to some number A = (a0a1a2a3). This can be done by applying a

+1 circuit to the last two bits of A, i.e. A+ (0010) = (a0a1)[(a2a3) + (10)]. So for the above

sum, we take the block Ki to be the i-th term, for a total of 4 blocks. Notice this works

because the final group of each block never participates in the Carry subcircuit; we never

require this group to have 4 bits. We execute the +Ki circuits in the same way as before,

25

except not including the i least significant bits. By breaking up K in this way, we can reduce

the total number of blocks we need to execute by a constant factor.

In this section we’ve demonstrated the general power of intermediate qutrits, specifically

by reducing the depth of many circuits such as the Generalized Toffoli and arithmetic circuits

asymptotically without requiring any additional ancilla which is particularly advantageous

on devices with limited numbers of qubits and extending what is possible at the ancilla-free

frontier.

2.4 Application to Algorithms

The Generalized Toffoli gate is an important primitive in a broad range of quantum algorithms.

In this section, we survey some of the applications of our circuit decomposition.

2.4.1 Artificial Quantum Neuron

The artificial quantum neuron [175] is a promising target application for our circuit con-

struction, because the algorithm’s circuit implementation is dominated by large Generalized

Toffoli gates. The algorithm may exhibit an exponential advantage over classical perceptron

encoding and it has already been executed on current quantum hardware. Moreover, the

threshold behavior of perceptrons has inherent noise resilience, which makes the artificial

quantum neuron particularly promising as a near-term application on noisy systems. The

current implementation of the neuron on IBM quantum computers relies on ancilla qubits

[174] which constrains the circuit width to N = 4 data qubits. Our circuit construction offers

a path to larger circuit sizes without waiting for larger hardware.

26

2.4.2 Grover’s Algorithm

Grover’s Algorithm for search over M unordered items requires just O(
√
M) oracle queries.

However, each oracle query is followed by a post-processing step which requires a multiply-

controlled gate with N = ⌈log2M⌉ controls [147]. The explicit circuit diagram is shown in

Figure 2.19.

Our log-depth circuit construction directly applies to the multiply-controlled gate. Thus,

we reduce a logM factor in Grover search’s time complexity to log logM via our ancilla-free

qutrit decomposition.

2.4.3 Arithmetic Circuits and Shor’s Algorithm

The Incrementer circuit is a key subcircuit in many other arithmetic circuits such as constant

addition, modular multiplication, and modular exponentiation, as seen before. Further, the

modular exponentiation circuit is the bottleneck in the runtime for executing Shor’s algorithm

for factorization [71, 81]. While a shallower Incrementer circuit alone is not sufficient to

reduce the asymptotic cost of modular exponentiation (and therefore Shor’s algorithm), our

other circuit constructions, specifically the +K adder, will reduce the depth without costing

any additional ancilla, that is space.

2.4.4 Error Correction and Fault Tolerance

The Generalized Toffoli gate has applications to circuits for both error correction [42] and

fault tolerance [50]. We foresee two paths of applying these circuits. First, our circuit

construction can be used to construct error-resilient logical qubits more efficiently. This is

critical for quantum algorithms like Grover’s and Shor’s which are expected to require such

logical qubits. In the nearer-term, NISQ algorithms are likely to make use of limited error

correction. For instance, recent results have demonstrated that error correcting a single qubit

at a time for the Variational Quantum Eigensolver algorithm can significantly reduce total

27

error [152]. Thus, our circuit construction is also relevant for NISQ-era error correction.

2.5 Simulator for Verification of Constructions

To simulate our circuit constructions, we developed a qudit simulation library, built on

Google’s Cirq Python library [2]. Cirq is a qubit-based quantum circuit library and includes

a number of useful abstractions for quantum states, gates, circuits, and scheduling.

Our work extends Cirq by discarding the assumption of two-level qubit states. Instead, all

state vectors and gate matrices are expanded to apply to d-level qudits, where d is a circuit

parameter. We include a library of common gates for d = 3 qutrits. Our software adds a

comprehensive noise simulator, detailed below.

In order to verify our circuits are logically correct, we first simulated them with noise

disabled. We extended Cirq to allow gates to specify their action on classical non-superposition

input states without considering full state vectors. Therefore, each classical input state can

be verified in space and time proportional to the circuit width. By contrast, Cirq’s default

simulation procedure relies on a dense state vector representation requiring space and time

exponential in the circuit width. Reducing this scaling from exponential to linear dramatically

improved our verification procedure, allowing us to verify circuit constructions for all possible

classical inputs across circuit sizes up to widths of 14.

The software from this section is fully open source [6].

2.5.1 Noise Simulation

Figure 2.20 depicts a schematic view of our noise simulation procedure which accounts for

both gate errors and idle errors, described below. To determine when to apply each gate and

idle error, we use Cirq’s scheduler which schedules each gate as early as possible, creating a

sequence of Moment’s of simultaneous gates. During each Moment, our noise simulator applies

a gate error to every qudit acted on. Finally, the simulator applies an idle error to every

28

qudit. This noise simulation methodology is consistent with previous simulation techniques

which have accounted for either gate errors [129] or idle errors [107].

Gate errors arise from the imperfect application of quantum gates. Two-qudit gates are

noisier than single-qudit gates [5], so we apply different noise channels for the two. Our

specific gate error probabilities are given in Section 2.6.

Idle errors arise from the continuous decoherence of a quantum system due to energy

relaxation and interaction with the environment. The idle errors differ from gate errors in

two ways which require special treatment:

1. Idle errors depend on duration, which in turn depend on the schedule of simultaneous

gates (Moments). In particular, two-qudit gates take longer to apply than single-qudit

gates. Thus, if a Moment contains a two-qudit gate, the idling errors must be scaled

appropriately. Our specific scaling factors are given in Section 2.6.

2. For the generic model of gate errors, the error channel is applied with probability

independent of the quantum state. This is not true for idle errors such as T1 amplitude

damping, which only applies when the qudit is in an excited state. This is treated in

the simulator by computing idle error probabilities during each Moment, for each qutrit.

Gate errors are reduced by performing fewer total gates, and idle errors are reduced by

decreasing the circuit depth. Since our circuit constructions asymptotically decrease the

depth, this means our circuit constructions scale favorably in terms of asymptotically fewer

idle errors.

Our full noise simulation procedure is summarized in Algorithm 1. The ultimate metric

of interest is the mean fidelity, which is defined as the squared overlap between the ideal

(noise-free) and actual output state vectors. Fidelity expresses the probability of overall

successful execution. We do not consider initialization errors and readout errors, because our

circuit constructions maintain binary input and output, only occupying the qutrit |2⟩ states

29

during intermediate computation. Therefore, the initialization and readout errors for our

circuits are identical to those for conventional qubit circuits.

|Ψ⟩ ← random initial state vector
|Ψ⟩ideal = circuit applied to |Ψ⟩ without noise

foreach Moment do
foreach Gate ∈ Moment do
|ψ⟩ ← Gate applied to |ψ⟩
GateError ← DrawRand(GateError Prob.)
|ψ⟩ ← GateError applied to |ψ⟩

end

foreach Qutrit do
if Moment has 2-qudit gate then

IdleErrors ← long-duration idle errors
else

IdleErrors ← short-duration idle errors
end

Prob. ← [∥M |Ψ⟩ ∥2 for M ∈ IdleErrors]
IdleError ← DrawRand(Prob.)
|ψ⟩ ← IdleError applied to |ψ⟩
Renormalize(|ψ⟩)

end

end

return ⟨Ψideal|Ψ⟩2 , fidelity between ideal & actual output;
Algorithm 1: Pseudocode for each simulation trial, given a particular circuit and noise
model.

We also do not consider crosstalk errors, which occur when gates are executed in parallel.

The effect of crosstalk is very device-dependent and difficult to generalize. Moreover, crosstalk

can be mitigated by breaking each Moment into a small number of sub-moments and then

scheduling two-qutrit operations to reduce crosstalk, as demonstrated in prior work [181, 28].

2.5.2 Simulator Efficiency

Simulating a quantum circuit with a classical computer is, in general, exponentially difficult

in the size of the input because the state of N qudits is represented by a state vector of

dN complex numbers. For 14 qutrits, with complex numbers stored as two 8-byte floats

30

(complex128 in NumPy), a state vector occupies 77 megabytes.

A naive circuit simulation implementation would treat every quantum gate or Moment as

a dN × dN matrix. For 14 qutrits, a single such matrix would occupy 366 terabytes–out of

range of simulability. While the exponential nature of simulating our circuits is unavoidable,

we mitigate the cost by using a variety of techniques which rely only on state vectors, rather

than full square matrices. For example, we maintain Cirq’s approach of applying gates by

Einstein Summation [22], which obviates computation of the dN × dN matrix corresponding

to every gate or Moment.

Our noise simulator only relies on state vectors, by adopting the quantum trajectory

methodology [33, 165], which is also used by the Rigetti PyQuil noise simulator [170]. At a

high level, the effect of noise channels like gate and idle errors is to turn a coherent quantum

state into an incoherent mix of classical probability-weighted quantum states (for example,

|0⟩ and |1⟩ with 50% probability each). The most complete description of such an incoherent

quantum state is called the density matrix and has dimension dN × dN . The quantum

trajectory methodology is a stochastic approach–instead of maintaining a density matrix,

only a single state is propagated and the error term is drawn randomly at each timestep.

Over repeated trials, the quantum trajectory methodology converges to the same results

as from full density matrix simulation [170]. Our simulator employs this technique–each

simulation in Algorithm 1 constitutes a single quantum trajectory trial. At every step, a

specific GateError or IdleError term is picked, based on a weighted random draw.

Finally, our random state vector generation function was also implemented in O(dN)

space and time. This is an improvement over other open source libraries [102, 103], which

perform random state vector generation by generating full dN × dN unitary matrices from a

Haar-random distribution and then truncating to a single column. Our simulator directly

computes the first column and circumvents the full matrix computation.

With optimizations, our simulator is able to simulate circuits up to 14 qutrits in width.

31

This is in the range as other state-of-the-art noisy quantum circuit simulations [38] (since

14 qutrits ≈ 22 qubits). While each simulation trial took several minutes (depending on

the particular circuit and noise model), we were able to run trials in parallel over multiple

processes and multiple machines, as described in Section 5.3.5.

2.6 Simulation and Error Models

All simulation results are are obtained using the noise simulator of [74]. Here we provide only

details about the particular error models for easier reference.

We chose noise models that represent realistic near-term machines. We first present a

generic, parametrized noise model that is roughly applicable to all quantum systems. We

then present specific parameters, under the generic noise model, that apply to near-term

superconducting quantum computers. Finally, we present a specific noise model for 171Yb+

trapped ions.

2.6.1 Generic Noise Model

Gate Errors

The scaling of gate errors for a d-level qudit can be roughly summarized as increasing as

d4 for two-qudit gates and d2 for single-qudit gates. For d = 2, we see that there are 4

single-qubit gate error channels and 16 two-qubit gate error channels. For d = 3 there are

9 and 81 single- and two- qutrit gate error channels respectively. We use the symmetric

depolarizing gate error model, which assumes equal probabilities between each error channel.

Under these noise models, we see that two-qutrit gates are ∼ (1− 80p2)/(1− 15p2) times less

reliable than two-qubit gates, where p2 is the probability of each two-qubit gate error channel.

Similarly, single-qutrit gates are ∼ (1− 8p1)/(1− 3p1) times less reliable than single-qubit

gates, where p1 is the chance of each single-qubit gate error channel.

32

Idle Errors

We focus on the amplitude damping idle error channel, also referred to as T1 relaxation.

This noise channel irreversibly takes qudits to lower states. For qubits, the only amplitude

damping channel is from |1⟩ to |0⟩, and we denote this damping probability as λ1. For qutrits,

we also model damping from |2⟩, which occurs with probability λ2.

2.6.2 Superconducting QC

We picked four noise models based on superconducting quantum computers that are expected

in the next few years. These noise models comply with the generic noise model above and

are thus parametrized by p1, p2, λ1 and λ2. The λi probabilities are derived from two other

experimental parameters: the gate time ∆t and the T1 lifetime of each qudit.

As a starting point for representative near-term noise models, we first consider param-

eters for current superconducting quantum computers. For IBM’s public cloud-accessible

superconducting quantum computers, we have 3p1 ≈ 10−3 and 15p2 ≈ 10−2. The duration

of single- and two- qubit gates is ∆t ≈ 100ns and ∆t ≈ 300ns respectively, and the IBM

devices have T1 ≈ 100µs [5, 122].

However, simulation for these current parameters indicates that an error is almost certain

to occur during execution of a modest size 14-input Generalized Toffoli circuit, our primary

simulation benchmark. This motivates us to instead consider noise models for better devices

that are a few years away. In particular, we adopt a baseline superconducting noise model,

SC, corresponding to a superconducting device which has 10x lower gate errors and 10x

longer T1 duration than the current IBM hardware. We note that this range parameters have

already been achieved experimentally in superconducting devices for gate errors [16, 17] and

for T1 duration [159, 61] independently. We also note that faster gates (shorter ∆t) are yet

another path towards greater noise resilience. To constrain the number of benchmarks, we

do not consider noise models with faster gates, though in practice, such improvements could

33

Noise Model 3p1 15p2 T1

SC 10−4 10−3 1ms

SC+T1 10−4 10−3 10ms

SC+GATES 10−5 10−4 1ms

SC+T1+GATES 10−5 10−4 10ms

Table 2.4: Noise models simulated for superconducting devices.

also make quantum computers more noise-resilient.

We also consider three additional near-term device noise models, which are indexed to

the SC noise model and further improve gate errors, T1, or both by a 10x factor. The

specific parameters are given in Table 2.4. Our 10x improvements projections are realistic

extrapolations of improvements to hardware. In particular, Schoelkopf’s Law–the quantum

analogue of Moore’s Law–has observed that T1 durations have increased 10x every 3 years

for the past 20 years [73]. Hence, 100x longer T1 is a reasonable projection for devices that

are ∼ 6 years away.

2.6.3 Trapped Ion 171Yb+ QC

We also simulated noise models from trapped ion quantum computing devices. Trapped ion

devices are well matched to our qutrit-based circuit constructions because:

• The devices feature all-to-all connectivity [31]

• many ions that are ideal candidates for QC devices are naturally multi-level systems

We focus on the 171Yb+ ion, which has been experimentally demonstrated as both a

qubit and qutrit [158, 157]. Trapped ions are often favored in QC schemes due to their long

T1 times. One of the main advantages of using a trapped ion is the ability to take advantage

of magnetically insensitive states known as “clock states.” By defining the computational

subspace on these clock states, idle errors caused from fluctuations in the magnetic field are

minimized. However, compared to superconducting devices, gates are much slower. Thus gate

34

Noise Model p1 p2

TI QUBIT 6.4× 10−4 1.3× 10−4

TI BARE QUTRIT 2.2× 10−4 4.3× 10−4

TI DRESSED QUTRIT 1.5× 10−4 3.1× 10−4

Table 2.5: Noise models simulated for trapped ion devices.

noise is the main source of error for ion trap devices. We modelled a fundamental source of

these errors: the spontaneous scattering of photons originating from the lasers used to drive

the gates. The duration of single- and two- qubit gates used in this calculation was ∆t ≈ 1

µs and ∆t ≈ 200 µs respectively [32]. The single- and two- qudit gate error probabilities are

given in Table 2.5.

2.7 Simulation Results

In order to further evaluate use of intermediate qutrits, we examined in more detail the

Generalized Toffoli circuit construction and used the noise simulator of [74]. Figure 2.21

plots the exact circuit depths for all three benchmarked generalized Toffoli circuits. The

qubit-based circuit constructions from past work are linear in depth and have a high linearity

constant. Augmenting with a single borrowed ancilla reduces the circuit depth by a factor of

8. However, both circuit constructions are surpassed significantly by our qutrit construction,

which scales logarithmically in N and has a relatively small leading coefficient.

Figure 2.22 plots the total number of two-qudit gates for all three circuit constructions.

As noted before, our circuit construction is not asymptotically better in total gate count–all

three plots have linear scaling. However, as emphasized by the logarithmic vertical axis, the

linearity constant for our qutrit circuit is 70x smaller than for the equivalent ancilla-free

qubit circuit and 8x smaller than for the borrowed-ancilla qubit circuit.

Our simulations under realistic noise models were run in parallel on over 100 n1-standard-4

Google Cloud instances. These simulations represent over 20,000 CPU hours, which was

35

sufficient to estimate mean fidelity to an error of 2σ < 0.1% for each circuit-noise model pair.

The full results of our circuit simulations are shown in Figure 5.7. All simulations are for

the 14-input (13 controls, 1 target) Generalized Toffoli gate. We simulated each of the three

circuit benchmarks against each of our noise models (when applicable), yielding the 16 bars

in the figure.

2.8 Qubit-Qudit Compression

2.8.1 Motivation

As we have seen, many quantum algorithms make use of ancilla, additional free bits used

to store temporary information during computation which are typically returned to their

original state after use. Ancilla have a variety of use cases such as to reduce the total

execution time. In some cases, they can provide asymptotic improvements to the depth of

circuit decompositions as with the generalized Toffoli before. This highlights an important

space-time tradeoff in quantum programs - we spend extra space in the form of ancilla in

order to reduce the depth of an input circuit.

Real quantum machines will have a limited number of qubits so it is important that we

make the most of them to enable computation of larger, more useful problems sooner. In

the previous examples we saw higher dimensional qudits could be used as a replacement for

ancilla in certain circuit components to great effect. Unfortunately, by accessing these states,

the computation is subject to a greater variety of errors, in fact the number of error types

scale quadratically in the computing radix. However, if qudit states are used properly, the

amount gained outweighs this cost. In this section we will make more explicit use of qudit

states temporarily during computation while maintaining binary inputs and outputs of a

circuit.

In this section we propose ancilla, specifically clean ancilla, be generated local during the

36

decomposition of an algorithm into a quantum circuit. That is, we propose a new circuit

which performs qubit-qudit compression storing the information of many qubits as a small

number of qudits at the cost of some gate overhead. These compression circuits produce clean

ancilla in the |0⟩ state. The stored data can be retrieved later when needed since all quantum

operations are reversible. Essentially, when certain groups of qubits will be unused for a long

period of time, we can repurpose them by compressing them and using the produced ancilla.

This “compression” is a rearrangement of the stored binary values into higher states. This

allows us to store more information into the same number of physical quantum devices and

free up qubits for computation.

In this work we present an application of this technique to give logarithmic depth

decompositions of quantum arithmetic circuits - a carry lookahead adder and by extension

addition by a constant. We present two compression circuits for qubit-qutrit and qubit-

ququart compression and evaluate advantages of various compression schemes. Then we

present our decomposition of the zero-ancilla, in-place A + B adder which takes as input

two registers A and B of qubits and possibly carryin and carryout; any fresh |0⟩ states used

are generated locally. We then evaluate the costs of this decomposition. Finally, we discuss

various extensions to our arithmetic decomposition in Sections 2.8.3 and 2.8.3.

2.8.2 Compression Schemes

Typically, when using a higher radix computing paradigm, we express a circuit entirely in

the specified base, that is all inputs and outputs are in the designated radix. An alternative

approach is to fix the input and output radix but allow the use of higher level states temporarily

during the computation, i.e. we are permitted to occupy any level up to a specified d during

a computation with the guarantee that we return to the specified radix.

What does this gain for us? It is known that by simply fully encoding a computation

into a higher radix we obtain a constant space and time advantage over binary-only circuits.

37

However, recently it was shown that use of these higher states can act as temporarily storage,

similar to the use of an ancilla, and can convey an asymptotic reduction in circuit depth [74].

This circuit construction, as well as other work, suggests we can obtain better circuits while

using fewer qubits by accessing higher states temporarily.

We take this a step further and generate ancilla temporarily out of input qubits in order

to take advantage of previously known efficient binary circuit decompositions like that of

[58]. Using this method, we can reduce the number of external ancilla needed from O(n) to 0

while keeping the same asymptotic circuit depth. To do this, we allow subsets of qubits to

temporarily store higher values, becoming qudits, to store the information of many qubits

within a few qudits. As a concrete example, consider three qubits. There are 23 = 8 total

basis states while for two qutrits there are 32 = 9 basis states. Therefore all the information

of 3 qubits can be stored in two qutrits and the third qubit can be left in a chosen state, |0⟩,

a clean ancilla. We refer to this process as compression, that is storing the information of

many qubits in a smaller number of qudits.

We consider various reversible compression schemes labeled x-y-z compression, where x

is the radix of the input qudits, y is the radix of the output qudits, and z is the number of

ancilla generated. Such operations exist if xm ≤ yn with 0 < n < m and m− n = z for some

integers m,n, the number of input qudits and the number of non-ancilla outputs, respectively.

Put more simply, these proposed compression circuits exist if the number of basis states

of the inputs is fewer than the number of basis states of the non-ancilla outputs and the

number of non-ancilla outputs is strictly smaller than the number of inputs. Ideally, we

choose compression schemes with a good compression ratio, i.e. those for which xm/yn ≈ 1.

We consider 2-3-1 and 2-4-1 compression as methods of generating ancilla for simplicity.

Many other schemes such as 2-8-2 and 3-9-1 are possible but require increasingly complex

compression circuits.

38

A B C A’ B’ C’
0 0 0 0 0 0
0 0 1 2 2 0
0 1 0 0 1 0
0 1 1 0 2 0
1 0 0 1 0 0
1 0 1 2 1 0
1 1 0 1 1 0
1 1 1 1 2 0

Table 2.6: Truth table for 2-3-1 Compression

2-3-1 Compression

In 2-3-1 compression we take as input three qubits and output 2 qutrits and a single ancilla,

a qubit guaranteed to be in the |0⟩ state. First, consider the truth table of Table 2.6. We

note the partial function represented by this truth table is invertible, implying there exists a

reversible circuit that realizes it. The third output, C’, is guaranteed to be in the |0⟩ state,

an ancilla. By storing qubit information used infrequently we can generate an extremely

useful ancilla to be used elsewhere in the circuit.

Because we ensure all inputs are binary, we do not need to consider the inputs with value

2 to the ternary circuit. An example circuit realizing this truth table is given in Figure 2.24.

When a compression circuit of this type is applied, we need to keep track of which pair of

qutrits encodes the three qubits, in order. When the compressed data is needed, we can

decompress by applying the inverse of this function. The inverse circuit is simply the gates in

reverse order with +1 replaced with −1. Notably, this inversion requires an ancilla as input.

To retrieve the information, the inverse should be applied taking in any free ancilla and then

the stored bits can be computed on as normal.

This circuit, while accomplishing what is desired, can be rather inefficient. For example,

in architectures with limited connectivity this circuit requires some number of expensive com-

munication operations since every input qubit must be adjacent at some point. Furthermore,

39

this circuit requires the use of a two-controlled qutrit gate which is typically decomposed

into a sequence of 6 two-qutrit gates and 10 single-qutrit gates [53]. In total this compression

requires 22 gates, 12 two-qutrit and 10 single-qutrit gates.

2-4-1 Compression

While 2-3-1 compression required a fairly substantial number of gates, the 2-4-1 compression

circuit can convert qubit inputs into ancilla more simply and with few gates. This does not

come for free. In quantum computing, we subject our computation to a greater probability

of error by using higher radix gates and by persisting for longer durations in higher energy

states. In Table 2.7, we show that two qubits can be compressed into a single ququart and

one ancilla. 2-4-1 compression is simpler than 2-3-1 compression because 22 states fit evenly

in a single ququart with 4 states. In Figure 2.25, we show a compression circuit using only 3

two-ququart gates in total, a substantial reduction over the 2-3-1 counterpart. In the next

section, we show how compression and decompression can be used to design efficient circuits

requiring no ancilla.

A B A’ B’
0 0 0 0
0 1 2 0
1 0 1 0
1 1 3 0

Table 2.7: Truth table for 2-4-1 Compression

2.8.3 Decompositions with Compression

We now present our A + B adder. This circuit takes as input two equal-sized registers of

qubits, A and B, and optionally carry-in or carry-out bits. This decomposition uses no

ancilla and instead generates ancilla locally when needed by sub-components. In prior work,

40

to achieve a logarithmic depth decomposition, O(n) many ancilla were required where n is

the size of the input register. We will demonstrate how this efficient decomposition can be

used along with our new compression technique to obtain an O(log n) depth decomposition

of the same adder in-place without the extra use of ancilla.

We first briefly review the work of [58] which gives a qubit-only in-place adder with ancilla

which we will refer to as (A+B)2. We give the decomposition for registers of size 4 in Figure

2.26. One of the key contributions of this prior work is to demonstrate how, in logarithmic

depth, the carry bits could be computed and used (and subsequently uncomputed to restore

input ancilla back to the |0⟩ state). This decomposition requires 2m−w(m)−⌊logm⌋ ancilla,

where w(m) is the number of 1’s appearing in the binary expansion of the number of inputs,

m. We will use this number later to determine how many ancilla to generate via compression.

This same prior work demonstrates several variants of this circuit. We require those with

either a carry-in bit, a carry-out bit, or both.

We will now present our decomposition shown in Figure 2.27. Let A = (a1a2 . . . an) and

B = (b1b2 . . . bn) be the input registers with a1, b1 the least significant bits of each register. We

divide these registers into c blocks R1, . . . , Rc each of size 2n/c. We assume for clarity that n is

a multiple of c but our constructions will work for any n, with one additional block containing

the remaining 2(n mod c) qubits. Take Ri = (a(i−1)(c/n)+1b(i−1)(c/n)+1 . . . ai(c/n)bi(c/n))

then notice for i > 1 we can perform an addition circuit (A+B)2 with carry-in and carry-out

on block Ri in O(log
(
n/c

)
) = O(log n) depth by generating the proper number of ancilla out

of the other input qubits, specifically 2(n/c)− w(n/c)− ⌊log n/c⌋ ancilla. We will assume

a worst case scenario of 2n/c ancilla to simplify the analysis. Suppose we are performing

(A+B)2 on block Ri while every other block is unused. We can perform compression on the

currently unused qubits in all other blocks {Rj |j ̸= i} to obtain generated ancilla which can

then be used by the current adder subcircuit.

Recall 2-3-1 compression takes 3 qubits and outputs a single ancilla. Let a 2-3-1 Compress

41

circuit be a circuit which takes any number of qubits m as input and applies 2-3-1 compression

to triplets resulting in ⌊m/3⌋ ancilla. Then applying 2-3-1 compression to all qubits in

{Rj |j ̸= i} we obtain ⌊(c− 1)2n/3c⌋ ancilla. We now have constraints on what the constant c

should be for our decomposition to be feasible. That is we must have ⌊(c− 1)2n/3c⌋ ≥ 2n/c.

Because we must store intermediate carry values between each (A + B)2, we will actually

require an additional c− 1 ancilla, giving us ⌊(c− 1)2n/3c⌋ ≥ 2n/c+ c− 1. By solving the

inequality, this implies our construction is feasible for c = 5 and n ≥ 30. An alternative adder

that is ancilla-free but does not scale well asymptotically, like an O(n)-depth adder [46], may

be used where our construction is infeasible on small problem sizes with n < 30.

The circuit construction now goes as follows, first considering the case when we have no

carry-in and no carry-out. To add in these additional features requires only minor adjustments,

discussed later. First, we compress the qubits in blocks {Rj |j ̸= 1}. Then we apply (A+B)2

with carry-out to the block R1 using the newly generated ancilla. The compression block is

constant depth (O(1)) and the adder is logarithmic depth (O(log
(
n/c

)
) = O(log n)). The

qubits b1, . . . , bn/c now store the first n/c bits of the addition, s1, . . . , sn/c. Also note the

adder circuit restores all ancilla (except the carry-out) to |0⟩. Then, apply a compression

block to R1. Swap the carry-out, cout,1, to any of the ancilla generated to hold on to whether

a carry should be applied to the next block (these carries are where the additional c− 1 term

come from above). Next, we uncompress all of the bits in R2 so we can apply (A + B)2

with carry-out and carry-in (cin = cout,1) to block R2 using the other generated ancilla. We

repeat this process until the last block, Rc. In this case, since we do not have a carry-out bit

we apply (A+B)2 with only carry-in (cin = cout,c−1).

We have now computed the sum A+B and now must cleanup the intermediate carry bits.

This can be done by working in reverse to uncompute each carry-out without undoing the

addition. One intuitive way would be to simply apply the inverse of the (A+B)2 circuit we

applied to block Rc−1 which will uncompute the addition and cout,c−1 and then re-apply it

42

without carry-out. Now the ancilla storing cout,c−1 is restored to |0⟩. We repeat this process

on each of the blocks in reverse order. Finally, after cout,1 has been uncomputed and the

ancilla restored to |0⟩, we uncompress all of the qubits. The resulting output will be the sum

S in register B with register A left unchanged from the input.

Uncomputing the intermediate carry-out bits can be improved dramatically by noticing

that by applying the inverse of (A+B)2 with carry-in and carry-out and the subsequently

applying (A+B)2 with only carry-in is unnecessary. Instead we can uncompute the carry-out

by only applying the inverse of the second half of (A+B)2 with carry-out and then executing

the second half of (A+B)2 with a few extra gates in Figure 2.26d to cancel the carry-out.

Earlier, we show our decomposition only works when c = 5 using 2-3-1 compression.

However, due to page size constraints, we do not show some of the repeated blocks in Figure

2.27. The block of gates surrounded by a dashed line is simply repeated in a block diagonal

pattern indicated by the ellipsis. If we instead used 2-4-1 compression, the factor of 3 in the

earlier inequality would be replaced with 2 making c = 4 feasible with a constraint of n ≥ 12.

Our decomposition performs addition in-place with zero ancilla, taking advantage of

qutrits (qudits in general) to obtain ancilla instead of extra qubits for ancilla. Each of the

(A+B)2 blocks has depth O(log n) for input register size n and we perform only a constant

2c− 1 of them so our decomposition also has O(log n) depth.

Carry-in and Carry-out

We can extend the above decomposition to allow for carry-in quite simply. When computing

the (A + B)2 and Undo carry on R1 we simply use the (A + B)2 circuit with carry-in.

Similarly, we can allow for carry-out by simply substituting an (A+B)2 with carry-in and

carry-out on block Rc.

43

+K Adder

The method used to construct the A+B adder shown above can be applied to any circuit

that can be divided into blocks while only needing to pass a constant number of bits to the

input of the following block. One example that follows from A+B is the +K adder. The

+K adder acts on a single register of qubits B and computes the sum B +K in-place where

K is a classical constant known when creating the circuit.

The design of our +K adder will use as subcircuits the (+K)2 circuit derived from

(A+B)2 from [58] and described earlier. The design of (+K)2 is the same as (A+B)2 except

the qubits of register A are removed and all CNOT gates with a control on ai are removed and

only replaced with X gates if ki = 1. Similarly, the Toffoli gates (controlled-controlled-not

gates) are removed and replaced with CNOT gates in the same way. Depending on the value

of K, some of the ancilla may also be removed but in the worst case, (+K)2 may still require

2n/c−w(n/c)− ⌊log n/c⌋ − 1 ancilla for input size n/c which we upper bound by 2n/c. The

circuit still has O(log n) depth.

We use the same diagonal block structure asA+B but now we defineRi = (b(i−1)(c/n)+1 . . . bi(c/n)).

At step i, the number of ancilla generated by applying 2-3-1 compression to all qubits in

{Rj |j ̸= i} is ⌊(c− 1)n/3c⌋. From this, we obtain the inequality ⌊(c− 1)n/3c⌋ ≥ 2n/c+ c− 1

which determines when there are enough unused qubits to generate the required ancilla.

The extra c− 1 ancilla are needed to store intermediate carry values. When we solve this

inequality, we find that c = 8 blocks are required and the circuit will only have enough ancilla

when n ≥ 168. Both the number of blocks and the minimum n are larger than for A + B

because the input to +K is only a single register so the ancilla required per input qubit is

doubled, resulting in a higher minimum n.

2-3-1 compression is not the only option. If we use 2-4-1 compression instead, more ancilla

can be generated per input qubit and we obtain the inequality ⌊(c− 1)n/2c⌋ ≥ 2n/c+ c− 1.

The solution to this tells us that the minimum c = 6 and we can use the circuit for n ≥ 60.

44

2.9 Discussion

We will first present a more detailed analysis of our Generalized Toffoli decomposition and

then give a high level discussion of the use of intermediate qutrits, for example using the

novel compression schemes, in general.

Figure 5.7 demonstrates that our QUTRIT construction (orange bars) significantly

outperforms the ancilla-free QUBIT benchmark (blue bars) in fidelity (success probability) by

more than 10,000x. or the SC, SC+T1, and SC+GATES noise models, our qutrit constructions

achieve between 57-83% mean fidelity, whereas the ancilla-free qubit constructions all have

almost 0% fidelity. Only the lowest-error model, SC+T1+GATES achieves modest fidelity of

26% for the QUBIT circuit, but in this regime, the qutrit circuit is close to 100% fidelity.

The trapped ion noise models achieve similar results–the DRESSED QUTRIT and the

BARE QUTRIT achieve approximately 95% fidelity via the QUTRIT circuit, whereas the

TI QUBIT noise model has only 45% fidelity. Between the dressed and bare qutrits, the

dressed qutrit exhibits higher fidelity than the bare qutrit, as expected. Moreover, as discussed

in the appendix of [74], the dressed qutrit is resilient to leakage errors, so the simulation

results should be viewed as a lower bound on its advantage over the qubit and bare qutrit.

Based on these results, trapped ion qutrits are a particularly strong match to our qutrit

circuits. In addition to attaining the highest fidelities, trapped ions generally have all-to-all

connectivity [31] within each ion chain, which is critical as our circuit construction requires

operations between distant qutrits.

The superconducting noise models also achieve good fidelities. They exhibit a particularly

large advantage over ancilla-free qubit constructions because idle errors are significant for

superconducting systems, and our qutrit construction significantly reduces idling (circuit

depth). However, most superconducting quantum systems only feature nearest-neighbor or

short-range connectivity. Accounting for data movement on a nearest-neighbor-connectivity

2D architecture would expand the qutrit circuit depth from logN to
√
N (since the distance

45

between any two qutrits would scale as
√
N). However, recent work has experimentally

demonstrated fully-connected superconducting quantum systems via random access memory

[142]. Such systems would also be well matched to our circuit construction.

For completeness, Figure 5.7 also shows fidelities for the QUBIT+ANCILLA circuit

benchmark, which augments the ancilla-free QUBIT circuit with a single dirty ancilla. Since

QUBIT+ANCILLA has linearity constants ˜10x better than the ancilla-free qubit circuit,

it exhibits significantly better fidelities. While our QUTRIT circuit still outperforms the

QUBIT+ANCILLA circuit, we expect a crossing point where augmenting a qubit-only

Generalized Toffoli with enough ancilla would eventually outperform QUTRIT. However,

we emphasize that the gap between an ancilla-free and constant-ancilla construction for the

Generalized Toffoli is actually a fundamental rather than an incremental gap, because:

• Constant-ancilla constructions prevent circuit parallelization. For example, consider the

parallel execution of N/k disjoint Generalized Toffoli gates, each of width k for some

constant k. An ancilla-free Generalized Toffoli would pose no issues, but an ancilla-

augmented Generalized Toffoli would require Θ(N/k) ancilla. Thus, constant-ancilla

constructions can impose a choice between serializing to linear depth or regressing to

linear ancilla count. The Incrementer circuit in Figure 2.5 is a concrete example of this

scenario–any multiply-controlled gate decomposition requiring a single clean ancilla or

more than 1 dirty ancilla would contradict the parallelism and reduce runtime.

• Even if we only consider serial circuits, given the exponential advantage of certain

quantum algorithms, there is a significant practical difference between operating at the

ancilla-free frontier and operating just a few data qubits below the frontier.

While we only performed simulations up to 14 inputs in width, we would see an even

bigger advantage in larger circuits because our construction has asymptotically lower depth

and therefore asymptotically lower idle errors. We also expect to see an advantage for the

circuits that rely on the Generalized Toffoli, although we did not explicitly simulate these

46

circuits. Similarly, for the larger arithmetic circuits, while constants may be prohibitive in

the near term, we have shown an improved asymptotic behavior with our technique.

Our circuit construction and simulation results point towards promising directions of

future work that we highlight below:

• Relatedly, we see value in a logic synthesis tool that injects qutrit optimizations into

qubit circuits, automated in ways inspired by classical reversible logical synthesis

tools [172, 130]; we’ve shown a small example of this in our implementation of the

Cuccaro adder with our improved Toffoli used instead of the less efficient qubit only

one, however, we also noted simple replacement was not sufficient to take full advantage

of intermediate qutrits.

• While d = 3 qutrits were sufficient to achieve the desired asymptotic speedups for our

circuits of interest, there may be other circuits that are optimized by qudit information

carriers for larger d. In particular, we note that increasing d and thereby increasing

information compression may be advantageous for hardware with limited connectivity.

Independent of these future directions, the results presented in this chapter are applicable

to quantum computing in the near term as is the case of the Toffoli and the generalized

version, on machines that are expected within the next five years, as well as showing how

in the longer term our technique can be used in larger circuits. The net result of this

work is to extend the frontier of what is computable by quantum hardware, and hence to

accelerate the timeline for practical quantum computing, rather than waiting for better

hardware. Emphatically, our results are driven by the use of qutrits, or qudits in general, for

asymptotically faster ancilla-free circuits. Moreover, we also improve linearity constants by

two orders of magnitudes in the case of the Generalized Toffoli and arithmetic circuits. Our

results justify the use of qudits as a path towards scaling quantum computers.

47

|q0⟩ 1 1

|q1⟩ X+1 2 2 X−1
|q2⟩ 1 1

|q3⟩ X+1 2 2 X−1
|q4⟩ 1 1

|q5⟩ X+1 2 2 X−1
|q6⟩ 1 1

|q7⟩ X+1 2 X−1
|q8⟩ 1 1

|q9⟩ X+1 2 2 X−1
|q10⟩ 1 1

|q11⟩ X+1 2 2 X−1
|q12⟩ 1 1

|q13⟩ X+1 2 2 X−1
|q14⟩ 1 1

|q15⟩ U

Figure 2.4: Our circuit decomposition for the Generalized Toffoli gate is shown for 15 controls
and 1 target. The inputs and outputs are both qubits, but we allow occupation of the
|2⟩ qutrit state in between. The circuit has a tree structure and maintains the property
that the root of each subtree can only be elevated to |2⟩ if all of its control leaves were
|1⟩. Thus, the U gate is only executed if all controls are |1⟩. The right half of the circuit
performs uncomputation to restore the controls to their original state. This construction
applies more generally to any multiply-controlled U gate. Note that the three-qutrit gates
are decomposed into 6 two-qutrit and 7 single-qutrit gates in our actual simulation, as based
on the decomposition in [53].

48

|a0⟩ X+1 2 2 2 2 2 X02 |(a+ 1)0⟩

|a1⟩ 1 1 X01 0 0 |(a+ 1)1⟩

|a2⟩ 1 X+1 2 X02 0 |(a+ 1)2⟩

|a3⟩ 1 X01 0 |(a+ 1)3⟩

|a4⟩ X+1 2 2 2 X02 |(a+ 1)4⟩

|a5⟩ 1 X01 0 |(a+ 1)5⟩

|a6⟩ X+1 2 X02 |(a+ 1)6⟩

|a7⟩ X01 |(a+ 1)7⟩

Figure 2.5: Our circuit decomposition for the Incrementer. At each step in the design, multiply-
controlled gates using the decomposition in Figure 2.4 are used to efficiently propagate carries
over half of the subcircuit. The |2⟩ control checks for carry generation and the chain of |1⟩
controls check for carry propagation. The circuit depth is log2N , which is only possible
because of our log depth multiply-controlled gate primitive.

cin 1 1 1 1 • cin

a0 X+1 2 X−1 X+1 2 X−1 a0

b0 • • X 1 1 1 1 • X • s0

a1 X+1 2 X−1 X+1 2 X−1 a1

b1 • • X • X • s1

|0⟩ cout

Figure 2.6: The Cuccaro adder of [46] with the Toffoli gates replaced by our efficient
decomposition. This only reduces the total depth of the circuit by a constant amount, i.e.
no asymptotic benefit is obtained. There are several simplifications which can be made to
this circuit, most notably the controlled X−1 followed immediately by a controlled X+1 in
several places. For clarity we’ve kept these gates to see the direct replacement of our Toffoli
decomposition into existing circuits.

49

a0

A + B

Carry Carry† A + B

a0
b0 s0
a1 a1
b1 s1

an/2
=

• an/2
bn/2 • sn/2

an/2+1

B + 1 A + B

an/2+1
bn/2+1 sn/2+1

an an
bn sn

Figure 2.7: Decomposing the A+B circuit with intermediate qutrits. We take as input two
n qubit registers and output the sum S onto the bits of register B while leaving register A
unchanged. In this approach, we first decide if there will be a carry generated on the top half
of the inputs. If so, we apply a +1 gate to the bottom half of the inputs (specifically on the
bits of B) and then recursively add the first half of A and B and second half of A and B in
parallel. The carry circuit outputs an encoded carry status on an/2, bn/2. The controlled +1
can be implemented by just modifying the initial X+1 and final X02 gates of the incrementer
to be controlled by the final output carry status. This decomposition is O(log3 n) depth
provided the Carry circuit is O(log n) depth and the incrementer is O(log2 n) depth.

A B Carry Status
0 0 k
0 1 p
1 0 p
1 1 g

Ci Cj Cout

k k k
k p k
k g g
p k k
p p p
p g g
g k k
g p g
g g g

Figure 2.8: On the left is the encoding for generate (g), propagate (p), and kill (k) carry
statuses. On the right is the result of combining two input carry statuses Ci and Cj with
Ci corresponding to the less significant bits. Notice the order matters, e.g. k + g = g but
g + k = k.

50

c0,0

CCS

X02 2 0 X12 2 1

c0,1
=

0 X02 2 1 X12 2

c1,0 0 1 X01 0 X01 1

c1,1 1 X01 0 1 0 X01

Figure 2.9: Realization of the truth table of Table 2.2 as the gadget “Combine Carry Status”
(CCS). While this gate is expensive in terms of two qutrit gates, it is constant depth.

a0

Carry

CCS
b0
a1 C0,0

CCS

b1 =
C0,1

a2

CCS
b2
a3 C2,0 C1,0 C2,0

b3 C2,1 C1,1 C2,1

Figure 2.10: Realizing the Carry operation in sublinear depth for n = 4 inputs using the
CCS gadget. The result is a (11) if and only if a carry is generated, while leaving all of the
remaining bits as junk, possibly in ternary states. The CCS blocks always take four qubits
as inputs, the first and last two bits and output a binary output on the last two inputs. In
the context of the A + B adder, we take this output carry status and use it to control an
incrementer on the more significant bits. Afterwards, we would apply the inverse of the
cascade on the right to return to the original inputs; this step is omitted here.

51

ai
C

ki = 0
=

2

ai+1 X+1

ai C
ki = 1

=
1

ai+1 X+1 X−1

ai UCA
ki = 0
ki+1 =

0

=
2

ai+1 X02

ai UCA
ki = 1
ki+1 =

0

=
1

ai+1 X02 X02

ai UCA
ki = 0
ki+1 =

1

=
2

ai+1 X02 X12

ai UCA
ki = 1
ki+1 =

1

=
1

ai+1 X+1 X12

Figure 2.11: The carry (C) and UnCompute and Add (UCA) gadgets used for linear +K
adder circuit. There are several instances which are a function of the specific ki and ki+1
values.

a0 X+k0 C
ki = k0

UCA
ki = k0

ki+1 = k1

X02

a1 X+k1 C
ki = k1

UCA
ki = k1

ki+1 = k2a2 X+k2 C
ki = k2

UCA
ki = k2

ki+1 = k3a3 X+k3 C
ki = k3|0⟩

Figure 2.12: Linear +K adder, with carry out on a register of size 4. We assume k0 = 1 and
we use the gadgets of Figure 2.11. For no carry out, i.e. +K mod 2 |K| simply omit the
final C component in the cascade. Note a X+1 on an ancilla has the same effect as a X01
allowing us to use the same C gadget.

52

A /n +K / = /n +K0 +K1 ... +KM /n A+K

Figure 2.13: The Decomposition of the +K circuit into a sequence of +Ki circuits, for
i ∈ [0,M], where M is a constant.

a0

+Ki

Carry Carry† +K ′i

s0
a1 s1

an/2−1
=

• sn/2−1
an/2 • sn/2

an/2+1

+1 +K ′′i

sn/2+1

an sn

Figure 2.14: The decomposition of the +Ki blocks of Figure 2.13 in O(log3 n) depth. Notice
again, the controlled incrementer is done by adding two controls, the carry status output
from the Carry circuit to the first and final gate of the incrementer. The truth table for this
transformation has been omitted for simplicity.

ai
PC
βi =

0

X02 2 X12 2 2 X02 0 2

ai+1
=

X02 2 X12 2 2 2 2

ai+2 1 X01 1 X01 1 1 X01 0 X01

ai+3 X01 0 X01

Figure 2.15: The Prepare Carry (PC) circuit for when βi = 0. This takes four bits of input A
and the known constant βi and outputs on the last two bits the carry status for this group of
bits on its own, adding (aiai+1ai+2ai+4) + (0000). The other two inputs are left in possibly
ternary states.

ai
PC
βi =

1

X02 2 2 2 X12 2

ai+1 X02 2 X12 2 2 X12 2

ai+2 = 1 X01 1 X01 X01 1 1 X01

ai+3 1 X01

Figure 2.16: The Prepare Carry (PC) circuit for when βi = 1. This takes four bits of input A
and the known constant βi and outputs on the last two bits the carry status for this group of
bits on its own, adding (aiai+1ai+2ai+4) + (1000). The other two inputs are left in possibly
ternary states. The truth table for this transformation has been omitted for simplicity.

53

c0,0

CCS+k

X02 2 2 2 X12 2

c0,1 X02 2 X12 2 X01 X12 2

c1,0 = 1 X01 X01 X01 1 1

c1,1 1 1 0 1 X01

Figure 2.17: Similar to the Combine Carry Circuit (CCS) of Figure 2.9, the CCS+K gadget
combines carry statuses of the type found in Table 2.3. This gadget always leaves the final
two inputs as the new carry status while leaving the other two inputs possibly in ternary
states. The truth table for this transformation has been omitted for simplicity.

a0

Carry

PC
β = β0,i

b0
a1 C0,0

CCS+k

b1 =
C0,1

a2

PC
β = β1,i

b2
a3 C2,0 C1,0 C2,0

b3 C2,1 C1,1 C2,1

Figure 2.18: Using the PC and CCS+K gadgets, we can produce an O(log n) depth Carry
circuit for the +Ki circuit.

Oracle

H X 1 X H

H X 1 X H

H X 1 X H

H X Z X H

Figure 2.19: Each iteration of Grover Search has a multiply-controlled Z gate. Our logarithmic
depth decomposition, reduces a logM factor in Grover’s algorithm to log logM .

54

U1 U1 Gate Error Idle Error

Idle Error

U2 =⇒ U2 Gate Error Idle Error

U3 U3 Gate Error
Idle Error

Idle Error

Figure 2.20: This Moment comprises three gates executed in parallel. To simulate with noise,
we first apply the ideal gates, followed by a gate error noise channel on each affected qudit.
This gate error noise channel depends on whether the corresponding gate was single- or two-
qudit. Finally, we apply an idle error to every qudit. The idle error noise channel depends on
the duration of the Moment.

25 50 75 100 125 150 175 200
101

102

103

104

105 ∼ 633N

∼ 76N

∼ 38 log2(N)

Number of Qudits

Circuit Depth

QUBIT QUBIT+ANCILLA QUTRIT

Figure 2.21: Exact circuit depths for all three benchmarked circuit constructions for the
N-controlled Generalized Toffoli up to N = 200. Both QUBIT and QUBIT+ANCILLA scale
linearly in depth and both are bested by QUTRIT’s logarithmic depth.

55

25 50 75 100 125 150 175 200
101

102

103

104

105

∼ 397N

∼ 48N

∼ 6N

Number of Qudits

Two-Qudit Gate Count

QUBIT QUBIT+ANCILLA QUTRIT

Figure 2.22: Exact two-qudit gate counts for the three benchmarked circuit constructions
for the N-controlled Generalized Toffoli. All three plots scale linearly; however the QUTRIT
construction has a substantially lower linearity constant.

SC SC+T1 SC+GATESSC+T1+GATES
0%

25%

50%

75%

100%

0.01% 0.56% 0.01%

26.1%
18.5%

52.3%

30.2%

84.1%

56.8%
65.9%

83.1%
94.7%

Fidelity for Superconducting Models

QUBIT QUBIT+ANCILLA QUTRIT

TI QUBIT

44.7%

89.9%

and Trapped Ion Models

B
A
R
E

Q
U
T
R
IT

94.9%

D
R
E
S
S
E
D

Q
U
T
R
IT

96.1%

Figure 2.23: Circuit simulation results for all possible pairs of circuit constructions and noise
models. Each bar represents 1000+ trials, so the error bars are all 2σ < 0.1%. Our QUTRIT
construction significantly outperforms the QUBIT construction. The QUBIT+ANCILLA
bars are drawn with dashed lines to emphasize that it has access to an extra ancilla bit,
unlike our construction.

56

A(d = 2)

2− 3− 1

+1 2 +1 2 A′(d = 3)

B(d = 2) = +1 2 +1 2 B′(d = 3)

C(d = 2) 1 X01 1 X01 1 1 X01 |0⟩

Figure 2.24: The compression of 3 qubits into 2 qutrits and an ancilla, |0⟩. All +1 gates are
done modulo 3. Using a sequence of qutrit gates, we can transform three input qubits into
the desired ancilla. When A, B and C are not going to be used for a long time in the circuit,
they can be temporarily repurposed as an ancilla bit elsewhere in the circuit. When we want
to operate on these stored bits, we run the inverse of this circuit using any ancilla for the
third qubit.

A(d = 2)

2− 4− 1
+2 2 A′(d = 4)

B(d = 2) = 1 X01 X01 |0⟩

Figure 2.25: The compression of 2 qubits into a single ququart and generating an ancilla, |0⟩.
The +2 gate here is done modulo 4. This operation takes as input two qubits, A and B, and
produces a single ququart and an ancilla |0⟩. To do this, we need only 3 two-ququart gates.
Similarly, to retrieve the stored information, we can do the inverse of this operation using
any ancilla for the second qubit.

57

a0

(A
+
B

) 2

• • • • a0
b0 • X • X s0
|0⟩ • • • |0⟩
a1 • • • • • a1
b1 • • X • • X s1
|0⟩ • • • • |0⟩
a2 = • • • • • a2
b2 • • • X • • • X s2
|0⟩ • |0⟩
|0⟩ • • |0⟩
a3 • • a3
b3 • • • • s3
|0⟩ cout

a b c d e
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 2.26: An adder circuit from [58] on two four-bit registers A and B with a carry-out
bit using ancilla. The sum S is computed in-place on register B while A is untouched and
the ancilla are restored to |0⟩. We use this as a sub-component of our general decomposition.
Each of the ancilla in this circuit can be generated from other input qubits not shown here
via our compression circuits. Part a of the circuit computes carry generate and propagate
for each bit position. Part b computes the carry-in for every bit position. Part c does the
addition, storing the output in register B. Parts d and e uncompute b and a respectively,
restoring the ancilla back to |0⟩.

58

a
1

(A+B)2

Compress

(d
=

3)

Uncompress

Undocarry

a
1

b 1
(d

=
3)

s 1
. . .

|0⟩
. . .

.

a
n
/c

.
a
n
/
c

b n
/c

×
c o
u
t,
1

c i
n
,2

×
s n

/c

a
n
/c
+
1

Compress

(d
=

3)

Uncompress

A
n
/
c+

1

(A+B)2

A
n
/c
+
1

Compress

Uncompress

a
n
/
c+

1

b n
/c
+
1

(d
=

3)
B
n
/c
+
1

S
n
/
c+

1
s n

/c
+
1

. . .
|0⟩

c o
u
t,
1

×
.

.
×

c o
u
t,
1

. . .
(d

=
3)

.
.

a
2n

/c
(d

=
3)

A
2n

/c
A
2n

/
c

a
2n

/
c

b 2
n
/c

|0⟩
B
2n

/c
S
2n

/
c

×
s 2

n
/
c

(d
=

3)

(d
=

3)
. . .

|0⟩
c o
u
t,
2

×
. . .

. . .
c i
n
,c
−
1

a
(c
−
2)
n
/c
+
1

Uncompress

Undocarry

Compress

a
(c
−
2)
n
/
c+

1

b (
c−

2)
n
/c
+
1

s (
c−

2)
n
/c
+
1

. . .
. . .

a
(c
−
1)
n
/c

a
(c
−
1)
n
/
c

b (
c−

1)
n
/c

c i
n
,c

×
s (
c−

1)
n
/c

a
(c
−
1)
n
/c
+
1

Uncompress

(A+B)2

Compress

a
(c
−
1)
n
/
c+

1

b (
c−

1)
n
/c
+
1

s (
c−

1
)n
/c
+
1

. . .
×

c o
u
t,
c−

1
. . .

a
n

a
n

b n
s n

F
ig

u
re

2.
27

:
O

u
r
A

+
B

ad
d

er
th

at
u

se
s

n
o

ex
te

rn
al

an
ci

ll
a.

T
h

e
va

ri
an

t
sh

ow
n

h
er

e
fo

r
c

=
5

u
se

s
2-

3-
1

co
m

p
re

ss
io

n
to

ge
n

er
at

e
on

e
an

ci
ll

a
(m

ar
k
ed

as
|0⟩

)
fo

r
ev

er
y

th
re

e
u

n
u

se
d

q
u

b
it

s,
st

or
in

g
th

ei
r

va
lu

es
in

tw
o

q
u

tr
it

s
(m

ar
k
ed

as
d

=
3)

.
A

b
ox

is
d

ra
w

n
ar

ou
n

d
ev

er
y

(A
+
B

) 2
an

d
U

n
d

o
ca

rr
y

ga
te

to
in

d
ic

at
e

th
at

th
ey

u
se

al
l

th
e

ge
n

er
at

ed
an

ci
ll

a
ac

ro
ss

th
e

ci
rc

u
it

.
c o
u
t,
i

or
c i
n
,i

is
in

cl
u

d
ed

on
so

m
e

of
th

e
ga

te
s

to
in

d
ic

at
e

w
h

en
th

e
ca

rr
y
-i

n
an

d
ca

rr
y
-o

u
t

ve
rs

io
n

s
ar

e
u

se
d

an
d

on
w

h
ic

h
an

ci
ll

a
th

e
ca

rr
y
-o

u
t

is
st

or
ed

.
T

h
e

S
W

A
P

ga
te

s
(p

ai
rs

of
×

in
th

e
d

ia
gr

am
)

si
m

p
ly

m
ov

e
a

ca
rr

y
-o

u
t

b
it

to
an

ot
h

er
an

ci
ll

a
w

h
er

e
it

is
u

se
d

as
th

e
n

ex
t

ca
rr

y
-i

n
.

T
h

e
tw

o
b

lo
ck

s
of

ga
te

s
sh

ow
n

w
it

h
d

as
h

ed
li

n
es

ar
e

re
p

ea
te

d
c
−

2
=

3
ti

m
es

al
on

g
th

e
d

ia
go

n
al

in
d

ic
at

ed
.

If
2-

4-
1

co
m

p
re

ss
io

n
is

u
se

d
,

an
an

ci
ll

a
is

ge
n

er
at

ed
fo

r
ev

er
y

tw
o

u
n
u

se
d

q
u

b
it

s
so

on
ly
c

=
4

b
lo

ck
s

ar
e

n
ee

d
ed

.
T

h
e

d
ep

th
of

th
is

ci
rc

u
it

is
O

(l
og
n

).

59

CHAPTER 3

ARCHITECTURAL TRADE-OFFS IN EMERGING

TECHNOLOGY: NEUTRAL ATOM ARCHITECTURES

1

3.1 Introduction

In the past several years, many leading gate-based quantum computing technologies such

as trapped ions and superconducting qubits have managed to build small-scale systems

containing on the order of tens of qubits [186, 93, 3, 171]. However, each of these systems

have unique scalability challenges [110, 34]. For example, IBM devices have continued to grow

in size while error rates have remained high, larger than what is needed for quantum error

correction [76]. Trapped ion machines, despite many promising results, have fundamental

challenges in controllability [137]. It is unclear whether any of these platforms in present

form will be capable of executing large-scale quantum computation needed for algorithms

with quantum speedup like Grover’s [168] or Shor’s [78].

These challenges are fundamental to the underlying technology. Consequently, current

approaches which aim to reduce error via software and push the limits of current devices are

insufficient for long-term scalability. In recent years there has been a number of improvements

to the compilation pipeline stretching across the hardware-software stack [136, 178, 184, 44,

89, 80, 144, 139]. Numerous studies have explored reductions in quantum circuit gate counts,

depths, and communication costs via heuristics and optimizations, but cannot overcome the

fundamental scalability limitations of the technology.

1. JMB’s contributions in this chapter include primary development of the compiler (with significant help
from AL), experimentation, and conceptual development, and analysis. The majority of the atom loss section
is from AL with help by JMB and CD.

60

(a) Restriction Zone (b) Max Distance 3 (c) Atom Loss

Figure 3.1: Examples of interactions on a neutral atom device. (a) Interactions of various
distances are permitted up to a maximum. Gates can occur in parallel if their zones do
not intersect. The interaction marked with green checks can occur in parallel with the
middle interaction. (b) The maximum interaction distance specifies which physical qubits
can interact. Compiler strategies suited for this variable distance are needed for neutral atom
architectures. (c) Neutral atom systems are prone to sporadic atom loss. Efficient adaptation
to this loss reduces computation overhead.

An alternative approach is to consider emerging quantum technologies and new archi-

tectures. In this work, we explore hardware composed of arrays of individually-trapped,

ultra-cold neutral atoms which have shown great promise and have unique properties which

make them appealing from a software standpoint [163]. These properties include: potential

for high-fidelity quantum gates, indistinguishable qubits that enable scaling to many qubits,

long-range qubit interactions that approximate global (or generally high) connectivity, and the

potential to perform multiqubit (≥ 3 operands) operations without expensive decompositions

to native gates [119].

Neutral-atom (NA) architectures also face unique challenges. Long-range interactions

induce zones of restriction around the operating qubits which prevent simultaneous operations

on qubits in these zones. Most importantly, the atoms in a neutral atom device can be lost via

random processes during and between computation. In the worst case, the compiled program

no longer fits on the now sparser grid of qubits, requiring a reload of the entire array every

cycle. This is a costly operation to repeat for thousands of trials. Coping with this loss in a

time-efficient manner is important to minimizing the run time of input programs while not

61

dramatically increasing either gate count or depth, both of which will reduce program success

rate. In Figure 3.1 we show a small piece of a NA system with many gates of various sizes

and distances being executed in parallel. Restriction zones are highlighted and importantly

no pair of gates have intersecting restriction zones. When atoms are lost during computation,

rather than a uniform grid we have a much sparser graph and qubits will be further apart on

average. A key to the success of a NA system is resilience to loss of atoms, avoiding expensive

reloads.

In this work, we explore the trade-offs in neutral atom architectures to assess both current

viability and near future prospects. We extend current compilation methods to directly

account for the unique NA constraints like long-range interactions, areas of restriction, and

native implementation of multiqubit gates. We propose several coping strategies at the

hardware and software level to adapt to loss of atoms during program execution; we evaluate

the tradeoff of execution time and resilience to atom loss versus program success rate.

The field of quantum computation is still early in development and no clear winner

for underlying hardware has emerged. It is vital to consider new technology and evaluate

its potential early and often to determine viability as it scales. In this work, we do just

that, considering a neutral atom architecture of size comparable to target hardware sizes

for competing technologies. Despite comparably higher gate errors and lack of large scale

demonstration, we determine if the unique properties offered by this new technology enable

more efficient computation at scale. Perhaps more importantly, this work can serve as a guide

for hardware developers. We demonstrate that the fundamental problem of atom loss can be

mitigated via software solutions and doesn’t need to be highly optimized at the hardware

level. This allows hardware engineers to focus on other fundamental problems which cannot

easily be mitigated by software, such as gate error rate.

In this section we introduce a scalable neutral atom architecture based on demonstrated

physical implementations which permit long range interactions and native multiqubit gates.

62

The specific major discussions center on the following:

• Adapt current quantum compiler technology by extending prior work to explicitly

account for interaction distance, induced restriction zones, and multiqubit gates.

• Evaluate system-wide implications of these properties, specifically reduced gate counts

and depth at the cost of increased serialization. Our compiler exploits the gain while

mitigating this cost.

• Demonstrate, via simulation based on experimental results and through program error

analysis, the ability of NA systems to quickly surpass competitors in the intermediate-

term despite currently worse gate errors.

• Model sporadic atom loss in NA systems and propose hardware and compiler solutions

to mitigate run time and program error rate overheads. We explore each strategy’s

resilience to atom loss, the effect on expected program success rate, and overall run

time.

3.2 Relevant Background

3.2.1 Quantum Computation and the Gate Model

Most quantum programs for gate-based quantum computation are expressed in the quantum

circuit model. On most hardware platforms, only single and two qubit gates are supported,

requiring complex operations to be decomposed into smaller pieces. Furthermore, most

hardware only supports a small highly calibrated universal set of gates, requiring input

programs be rewritten in terms of these gates. A small piece of a circuit is found in Figure

3.2a.

Two important metrics for quantum programs are the depth of the quantum program,

given as the length of the longest critical path from inputs to outputs, and the gate count,

63

q0

q1

q2

q0

q1

q2

q0

q1

q2

1-qubit

gate

CNOT

(2 qubits)

Toffoli

(3 qubits)

(a)

(b)

time

Figure 3.2: A quantum circuit with a 1, 2, and 3 qubit gate translated to interactions on
a NA device. These systems allow the execution of multiqubit gates. For 2 and 3 qubit
gates the interacting qubits are excited to Rydberg states. Interactions are possible if all
interacting qubits are closer than the maximum interaction distance.

64

that is how many operations it takes to perform the desired algorithm. Both are important

for near-term quantum computation which is noise prone. Qubits have limited coherence

time, likely erasing a qubit’s information by a time limit. Gate error rates are fairly high so

computations with many multiqubit gates are less likely to succeed.

3.2.2 The Quantum Compilation Problem

While we will discuss the compilation problem in more detail in the final chapter we give

a brief introduction to this problem here. In order to maximize the probability of program

success, quantum circuits often undergo extensive compilation and optimization. Compilation

generally falls into two main categories: circuit optimization to minimize total number of

gates, and translation of input programs to fit the constraints of the target hardware. The

latter is often the focus of near-term compilation strategies which break the problem into

three main steps: mapping, routing, and scheduling.

In mapping, the program qubits must be assigned to hardware qubits with the goal of

minimizing the distance between interacting qubits over the course of the program. As noted,

most hardware only supports interactions between a limited set of qubits. Qubits mapped

too far from each other must be moved nearby by inserting SWAPs or other communication

operations before interacting. This communication is often very expensive and every extra

gate needed for communication contributes to the overall error rate of the final program. It

is common for the mapping and routing steps to occur in tandem as routing changes the

mapping of the qubits over the course of the program. Finally, scheduling consists of deciding

when to execute which gates and is usually dictated by factors such as run time or crosstalk

where we may delay gates to avoid crosstalk effects but possibly increase runtime.

65

3.2.3 Neutral Atoms

We want to briefly introduce some background on the underlying neutral atom technology. A

nice introduction can be found in [88]. Atoms in a NA system are trapped via reconfigurable,

optical tweezer arrays. These atoms can be arranged in one, two, or even three dimensions

[62, 18, 109, 19]. We consider regular square 2D geometries in this work, but arbitrary

arrangements of atoms are possible. Historically, one of the major difficulties with scalable

neutral atom systems was the probabilistic nature of atom trapping, but this challenge

has since been overcome and defect-free arrays of more than 100 atoms [151] have been

demonstrated. The loading of qubits into the array is relatively slow, on the order of one

second, compared to program execution which usually takes milliseconds.

The single atom qubit states can be manipulated using Raman transitions which implement

single qubit gates. In order to execute gates between qubits, atoms are optically coupled

to highly excited Rydberg states leading to a strong dipole-dipole interaction between the

atoms [97]. These Rydberg interactions enable multiple atoms at once to interact strongly

and are used to realize multiqubit gates [119]. Furthermore, due to the long range of these

interactions, gates between qubits which are not directly adjacent in the atom array are

feasible. Importantly, these interactions induce a zone of restriction as a function of the

distance. Two gates can only occur in parallel if their restriction zones do not overlap.

3.3 Neutral Atom Compiler and Methodology

3.3.1 Mapping, Routing, and Scheduling

In this work we focus on adapting currently available and effective compilation methods

[185, 13, 98, 8] to directly account for the unique properties of neutral atom architectures.

We focus on mapping, routing and scheduling of the quantum compilation problem. Other

optimizations, such as circuit synthesis, gate optimization, or even pulse optimization, can be

66

performed as well, but are not the focus of this work. Many of the primary advantages and

disadvantages of the neutral atom hardware can be reduced to modifications of the hardware

topology or interaction model given to the compiler.

We represent the underlying topology as a graph, where nodes are hardware qubits and

edges are between nodes which can interact. We model the underlying hardware as a 2D grid

of qubits and, for a given instance, we fix the maximum interaction distance dmax. Therefore,

there is an edge between nodes u, v if d(u, v) ≤ dmax. We model the restriction zones as

circles of radius r centered at each of the interacting qubits. In this work we model this

radius as f(d) = d/2 where d is the maximum distance between interacting qubits, pairwise.

We have ensured this generalizes to any number of qubits in order to support multiqubit

gates. In practice, devices may require a different function of d. The larger this radius the

fewer possible parallel interactions can occur.

For most quantum programs, the entire control flow is known at compile time making op-

timal solutions for mapping and routing possible but exponentially difficult to find. Therefore

the dominant solutions are heuristics. We have extended prior work on lookahead heuristics.

Lookahead bases mapping and routing on the sum of weighted future interactions with

operations further into the future weighted less. The entire circuit is mapped and routed

in steps. At each step, we consider the weighted interaction graph where nodes are program

qubits and edges between nodes are weighted by the lookahead function:

w(u, v) =
∑
ℓ≥ℓc

e−|ℓc−ℓ|

where w(u, v) is the weight between program qubits u and v, ℓ is a layer of the program ,and

ℓc is the current layer, i.e. the frontier of the program DAG. When considering a multiqubit

gate we add this weighting function between all pairs of qubits in the gate.

For the initial mapping, we begin by placing the qubits with the greatest interaction

weight in the weighted interaction graph. We place these qubits adjacent in the center of

67

the device. For every subsequent qubit in this graph we consider all possible assignments to

hardware qubits and choose the best based on a score:

s(u, h) =
∑

mapped v

d(h, φ(v))× w(u, v)

where h is the potential hardware location, and φ is the mapping from program qubits to

hardware qubits. The goal is to place qubits which interact frequently close to each other

in order to avoid extra SWAPs during routing. We choose the hardware location h which

minimizes this score. We place qubits ordered by their weight to those previously mapped,

greatest first.

For routing and scheduling, we proceed layer by layer, considering operations in the

frontier as potential gates to execute. Ideally, we would execute all operations in the frontier

in parallel, however if interacting qubits are not close enough or the zones of restriction

intersect, this isn’t possible. Instead, we first select to execute operations in the frontier

which do not have intersecting zones. For any remaining long distance operations in the

frontier, we compute the best set of SWAPs to move qubits within the interaction distance.

We want to select a path of SWAPs with two goals in mind: the shortest path and the least

disruptive to future interactions. This leads to the following scoring function:

s(u, h) =
∑
v

[d(φ(u), φ(v))− d(h, φ(v))]× w(u, v)+

[d(h, φ(v))− d(φ(u), φ(v))]× w(φ−1(h), v)

where h is the new location for u after the SWAP. We choose the h which maximizes this

function but is also strictly closer to the most immediate interaction for u and v. In this

function, moving further away from future interactions or displacing the qubit in position h by

moving it far from its future interactions is penalized. This guarantees the qubit always moves

68

closer to its target. The SWAP is executed if it can run parallel with the other executable

operations, otherwise we must wait. We proceed until all operations have been executed.

Our compiler and evaluation source code is available at [1].

To scale target programs up to hundreds to thousands of qubits, the heuristics used are

fairly simple and fast. One clear advantage of NA is that simpler and faster heuristics will

suffice in practice because large interaction distances make the topology densely connected

thus saving communication cost.

We validated our compiler by compiling small programs via IBM’s Qiskit compiler [8]

with lookahead enabled against our compiler with maximum interaction distance (MID) set

to 1 and no restriction zones for two benchmarks, one parallel and one not. In both cases,

our compiler closely matched Qiskit in both gate count and depth.

3.3.2 Benchmarks

For this work, we have chosen a set of quantum programs which are parametrized, the input

size can be specified, to allow us to study how the advantages and disadvantages of a NA

system change as the program size increases. Specifically, we study Bernstein-Vazirani [21], a

common quantum benchmark, with the all 1s oracle to maximize gates, Cuccaro Adder [46],

a ripple carry adder with no parallelism, the CNU gate [15], a logarithmic depth and highly

parallel decomposition of a very common subcircuit, QFT Adder [161], a circuit with two

QFT components and a highly parallel addition component, and QAOA for MAX-CUT [64],

a promising near-term algorithm, on random graphs with a fixed edge density of 0.1.

3.3.3 Experimental Setup

For most experiments, we compile our benchmarks, with sizes up to 100, on a 10 × 10

NA device. We have a fixed radius of restriction but vary max interaction distance from

1 (emulating superconducting systems) up to the maximum needed for global connectivity

69

(here hypot(9, 9) ≈ 13). In relevant benchmarks we compile with decomposed multiqubit

gates and without. All experiments were run using on a machine using Python 3.7 [180],

Intel(R) Xeon(R) Silver 4110 2.10GHz, 132 GB of RAM, on Ubuntu 16.04 LTS. All plot error

bars show ±1 standard deviation.

3.4 Unique Advantages of Neutral Atom Architectures

In this section, we explore promising architectural advantages provided by the neutral atom

technology. We examine long range interactions where atoms distant on the device can

interact similar to a device with high connectivity. However, the cost of this longer range

interaction is higher serialization due to the proportional increase in restricted area. Second,

we explore the native execution of multiqubit gates on the NA platform. Since NA technology

is still in its early stages, it can be unfair to compare expected program success rates from

current gate error rates and coherence times. We analyze common metrics, gate count and

depth, which are good predictors of a program’s success rate if executed.

3.4.1 Long Range Interactions

Trapped ion and superconducting architectures currently support qubit interaction only

between adjacent qubits. In SC systems this usually corresponds to a 2D grid or some other

sparse connectivity, where each qubit is able to interact with a small number of qubits. One

of the important promises of trapped ions is all-to-all connectivity where each qubit can

interact freely with any other qubit in the same trap. Each trap however, is currently limited

by the number of ions it can support and expensive interactions across different traps.

In NA architectures, the connectivity lies somewhere between these two extremes. The

atoms, while often arranged in a 2D grid, have all-to-all connectivity beyond immediate

neighbors, i.e. within a fixed radius. This radius is dictated by the capabilities of the hardware

and can theoretically reach as large as the device. However, current demonstrations have

70

been more limited, for example up to distance 4. In this work, our experiments analyze the

full sweep of interaction distances to understand the importance of long range interactions to

optimizing program success rate predictors.

Long range interactions in NA are not free, we define an area of restriction imposed by

interacting qubits at a distance d from each other, f(d). Specifically, given this interaction

distance between qubits of the set Q all other qubits q ̸∈ Q with distance less than f(d) to

any of the interacting qubits cannot be operated on in parallel. Furthermore, suppose we

have two operations to be performed in parallel. These two operations can only execute in

parallel if their areas of restriction do not overlap. For experiments in this work we explore

the function f(d) = d/2. Intuitively, as this function becomes more restrictive, i.e. the areas

surrounding the interacting qubits get larger, fewer total operations will be executable in

parallel, affecting the total execution time of the program.

Long range interactions are important for reducing the total number of gates required

for execution on devices with relatively limited connectivity. Limited connectivity requires

compilers to add in many extra SWAP operations. The lower the connectivity, the greater

the average distance between qubits on the device therefore more SWAPs are required to

execute multiqubit gates between arbitrary sets of qubits. In Figure 3.3, we explore the gate

counts of compiled programs for various sizes over a range of maximum interaction distances

up to the largest possible distance supported on the device. In each of these experiments, all

programs are compiled to 1 and 2 qubit gates only. Intuitively, we might assume having a

larger maximum interaction distance will necessarily be better than a smaller one since it

emulates global connectivity therefore not requiring any additional SWAP operations. In

general, we find the most benefit in the first few improvements in max interaction distance

with more relative gain for larger programs. The reduction in gate count is due solely to a

reduction in total SWAPs.

Importantly, the benefit obtained from increasing max interaction distance tapers off with

71

vanishing benefit. The rightmost points in these figures correspond to an interaction distance

the full width of the device, providing all-to-all connectivity. At this distance no additional

SWAP gates are required, so this is the minimum possible number of gates to execute the

input program. This distance is not required to obtain the minimum (or near the minimum).

In fact, a smaller interaction distance is sufficient. This is promising in cases where large

interaction distances cannot be obtained and hardware engineers can focus on building higher

fidelity short to mid range interactions. For larger devices, the curves will be similar, however,

requiring increasingly larger interaction distances to obtain the minimum. The shape of the

curve will be more elongated, related directly to the average distance between qubits.

A similar trend exists for circuit depth as seen in Figure 3.4. As interaction distance

increases the depth tends to decrease, with the most benefit found in larger programs. Again,

the rate of benefit declines quickly. We expected that as the interaction distance increased,

the depth would decrease initially, then increase again due to restriction zones proportional

to the interaction distance. As the maximum allowed distance increases, the average size

of these zones will increase, limiting parallelism. However, there are several important

factors diminishing the presence of this effect. First, SWAPs are a dominant cost in both

gate count and depth, often occurring on the critical path. Therefore, reducing the need

for communication typically corresponds to a decrease in depth. Second, many quantum

programs are not especially parallel and often do not contain many other gates which need

to be executed at the same time limiting the potential for conflicting restriction zones. In

our set of benchmarks, the circuits with high initial parallelism like CNU and QFT-Adder

(a long stretch of parallel gates in the middle) do show increases in depth with increased

interaction size but are not especially dramatic. In cases where gate error is dominant over

coherence times, the reduction in gate count far outweighs the induced cost of greater depth

or run time.

This isn’t to say there is no cost from the presence of a restriction zone. In Figure 3.5 we

72

analyze the relative cost of the restriction zones. In this set of experiments the program is

compiled with the same maximum interaction distance. In the ideal case it is compiled with

no restriction zones, resembling other architectures which permit simultaneous interactions on

any set of mutually disjoint pairs. These two circuits have the same number of gates, including

SWAPs. When no parallelism is lost, either from the original circuit or from parallelized

communication, these lines are close. A large gap indicates the increased interaction distance

causes serialization of gates. One additional side effect, which we do not model here due to

complexity of simulation is the effect of crosstalk. By limiting which qubits can interact in

parallel we can effectively minimize the effects of crosstalk implicitly. This can be made more

explicit by artificially extending the restriction zone to reduce crosstalk error by increasing

serialization.

3.4.2 Native Multiquibit Gates

Long range interactions are not the only unique property of NA architectures. One of the

important promises of NA hardware is the ability to interact multiple qubits and execute

complex instructions natively. For example, gates like the three qubit Toffoli could be

executed in a single step. This is important for several reasons.

First, it doesn’t require expensive decompositions to one- and two-qubit gates. Gates

like the generalized Toffoli have expensive decompositions, transforming compact complex

instructions into long strings of gates before SWAPs or other communication is added. The

base, 3 qubit Toffoli itself requires 6 two qubit gates and interactions between every pair

of qubits. If all these Toffoli gates could be executed natively without decomposition this

saves up to 6x in gate count alone. Toffoli gates are fairly common in quantum algorithms

extended from classical algorithms like arithmetic since they simulate logical ANDs and ORs.

If even larger gates are supported, this improvement will be even larger.

Second, efficient decomposition of multiqubit gates often requires large numbers of

73

extra ancilla qubits. For example, in our CNU benchmark we use the logarithmic depth

decomposition which requires O(n) ancilla, where n is the number of controls. When complex

gates are executable natively, additional qubits are typically not needed, reducing space

requirements for efficient implementation of gates.

In the NA architecture, execution of these gates does come with some constraints. For

example, to execute a 3 qubit Toffoli gate, each interacting qubit needs to be less than

the maximum interacting distance to every other interacting qubit. Therefore, with only

an interaction distance of 1 it is impossible to execute these gates and instead they must

be decomposed and for larger gates more qubits will need to be brought into proximity.

While not explored explicitly in this work, larger control gates will require increasingly larger

interaction distances. In general, the more qubits interacting, the larger the restriction zone,

increasing serialization if the qubits are too spread out.

Our set of benchmarks contains two circuit written explicitly in terms of Toffoli gates:

CNU and Cuccaro. In Figure 3.6 we analyze the effect of native implementation of these gates

rather than decomposition. The benefit is substantial in both cases requiring many fewer

gates across all maximum interaction distances. While these gates have been demonstrated,

their fidelity is much lower than the demonstrated fidelity of two qubit gates. However, a

simple estimation given by the product of the gate errors in the decomposition shows the

fidelity of the Toffoli gate is greater than that of the decomposition. We give a more precise

analysis of this effect in the next section.

Both long range interactions and native implementation of multiqubit gates prove to

be very advantageous, though the benefit is tempered by a distance-dependent area of

restriction which serializes communication and computation. The importance of these effects

is input dependent. Programs written without multiqubit gates cannot take advantage

of native implementation. Programs which are inherently serial are less affected by large

restriction zones at long interaction distances. One of the most important observations is

74

that excessively long interaction distances are not required and most benefit is obtained in

the first few increases. However, as the input program size increases for larger hardware,

we expect more benefit to be gained from long interaction distances. This trend is evident

here where small programs have almost no benefit from increasing distance 2 to 3 but large

programs nearing the device size see much more.

3.5 Error Analysis of Neutral Atom Architectures

In the previous section we explored the effect on several key circuit parameters like gate

count, depth, and parallelism. These metrics are often good indicators for the success rate

of programs on near and intermediate term quantum devices where gate error is relatively

high and coherence times relatively low. In the case where gate errors and coherence times

are uniform across the device and comparable between technologies, these parameters are

sufficient for determining advantage of one architecture over another. However, current

quantum technology is still in development with some more mature than others. For example,

superconducting systems and trapped ion devices have a several year head start over recently

emerging neutral atoms.

Consequently, physical properties like gate errors and coherence times are lagging a

few years behind their counterparts. It is critical however to evaluate new technologies

early and often to determine practical advantages at the systems level and to understand if

the unique properties offered by some new technology are able to catapult the co-designed

architecture ahead of its competitors. In this section, we evaluate the predicted success rate

of programs compiled to a uniform piece of hardware with currently demonstrated error

rates and coherence times. It is important to note the gate fidelities and T1 times used as a

starting point are often measured from small systems as no large scale NA architecture has

been engineered to date. The average error, or T1, across the hardware may have variance,

as demonstrated in other publicly available technologies, though neutral atoms promises

75

uniformity and indistinguishability in their qubits, similar to trapped ions.

Simulating a general quantum system incurs exponential cost with the size of the system.

It is impractical to model all sources of errors during computation and simplified models are

typically used to predict program success rate. Here we compute the probability a program

will succeed to be the probability that no gate errors happen times the probability that no

decoherence errors occur. If pgate,i is the probability an i-qubit gate succeeds and ni is the

number of i-qubit gates then the probability no gate error occurs is given by
∏

i p
ni
gate,i. Here

we consider circuits with up to i = 3. For neutral atoms, we consider two different coherence

times for the ground state and excited state i.e. T1,g, T1,e and T2,g, T2,e where the ground

state coherence times are often much longer than excited state coherence times. Qubits

exist in the excited state when they are participating in multiqubit interactions only. The

probability coherence errors occur is given as e−∆g/T1,g−∆g/T2,g−∆e/T1,e−∆e/T2,e where ∆g,

∆e are the durations spent in the ground and excited states, respectively. Often, gate fidelities

already include the effects of T1 and T2, i.e. pgate,i includes coherence error. Therefore,

we will consider the probability of no coherence error as e−∆g/T1,g−∆g/T2,g only. These

simplifications serve as an upper bound approximation on the success rate of a program.

In this section we compare against superconducting systems, specifically, using error

values available via IBM for their Rome device, accessed on 11/19/2020. While we directly

compare using the same simulation techniques we want to emphasize the purpose of these

figures is to indicate the value gained from decreasing gate count and reducing depth relative

to other available technology and to suggest that these improvements help overcome current

gate error in neutral atom technology. These are not meant to suggest neutral atoms in their

current stages are superior to superconducting qubits.

Our simulation results are across a large sweep of error rates from an order of magnitude

worse to many orders of magnitude better, where error rates are expected to progress to

in order to make error correction feasible. The point is to evaluate different technologies

76

with comparable error rates, how much is saved by architectural differences rather than the

current status of hardware error rates, especially when neutral atoms are years behind in

development.

In Figure 3.7 we analyze the potential of NA architectures on three representative

benchmarks. Here we sweep across various physical error rates and extract the predicted error

rate with those parameters; lower is better. In both CNU and Cuccaro we permit 3 qubit

gates while the others contain only one- and two- qubit gates. The superconducting curves

correspond to similar simulations using error rates and coherence times provided by IBM. At

lower physical error rates we expect all architectures to perform well, at virtually no program

error rate. At this limit, the hardware is below the threshold for error correction. On the

other hand, in the limit of high physical error rates, we expect no program to succeed with

any likelihood and to produce random results. For near- and intermediate-term quantum

computation, the regions between the limits are most important and the divergence from this

all-noise outcome determines how quickly a device becomes viable for practical computation.

For comparable error rates between superconducting and NA architectures, we see great

advantage obtained via long range interactions and native multiqubit gates, diverging more

quickly than the limited connectivity SC devices.

Alternatively, we might ask what physical error rates are needed to run programs of a

given size with probability of success above some threshold. In Figure 3.8, we consider this

question for a threshold success rate of 2/3. Here we sweep across physical error rates and

compute the largest possible program of each benchmark we can successfully execute. There

are two interpretations. First, for a fixed physical error rate we can determine what size

program is likely to be successfully executed. Alternatively, suppose we have a program of a

given size we want to execute, we can then decide what physical error rate do we need to run

that program successfully. For a fixed error rate, we find we can execute a larger program

or, equivalently, require worse physical error rates than a superconducting system to run a

77

desired program.

3.6 Unique Challenge: Sporadic Atom Loss

So far, we’ve focused primarily on properties of a neutral atom system that are usually

advantageous and have analyzed that while there are tradeoffs, the gates and depth saved

drastically outweighs any cost. However, neutral atom systems are not without limitation.

The atoms in a NA system are trapped using optical dipole traps such as optical tweezers.

While this technique offers great flexibility in array geometries and the prospect of scaling

to large atom counts, the trapping potential per atom is weak when compared to trapped

ion architectures. Consequently, neutral atoms can be lost more easily during or between

computations forming a sparser grid. Fortunately, this loss can be detected via fluorescence

imaging and remedied with various software and hardware approaches with different overhead

costs analyzed here.

Atom loss has critical implications on program execution. For near-term computation, we

run programs hundreds or thousands of times to obtain a distribution of answers. Consider

running a program, after each trial we evaluate whether atoms have been lost. If an atom

used by the computation has been lost, then we have an incomplete answer. Upon a loss, we

have no way of knowing if it occurred in computation and must disregard the run from our

distribution and perform another shot. Furthermore, a program compiled for the original

grid of qubits may no longer be executable. The program must either be recompiled for the

now sparser grid of qubits, the array of atoms can be reloaded, or the compiled circuit can be

adapted to the atom loss. The first two solutions are costly in terms of overhead time. The

third may provide a faster alternative, and provide opportunity to perform more executions

in the same time while maintaining a valid program.

We model atom loss from two processes. The first is based on vacuum limited lifetime

where there is a finite chance a background atom collides with the qubit atom held in the

78

optical tweezers displacing the qubit. We approximate this occurs with probability 0.0068

over the course of a program and is uniform across all qubits [43]. Loss during readout

is much more likely. In some systems readout occurs by ejecting atoms which are not in

a given state, resulting in about 50% atom loss every cycle [69]. This model is extremely

destructive and coping strategies are only effective if the program is much smaller than the

total size of the hardware. Alternative, potentially lossless techniques, have been proposed

for measurement, but are not perfect with loss approximately 2% [113] uniformly across all

measured atoms. Detecting atom loss is done via fluorescence which takes on the order of

6ms.

We propose several coping mechanisms to the loss of atoms and examine their effectiveness

in terms of overheads such as the time to perform array loads, qubit fluorescence, and

potential recompilation. In each of these experiments we assume the input program is smaller

than the total number of hardware qubits in the original grid, otherwise any loss of an atom

requires a reload. These additional unused qubits after initial compilation are considered

spares, borrowing from classical work on DRAM sparing [143]. Currently, no program that

executes with reasonably high success will use the entire grid and these spares will come at

no cost. Potentially, as many atom losses can be sustained as number of spares. However, an

array reload is always possible there is an unlucky set of holes or no more spares. Below we

detail various strategies.

• Always Reload. Every time an atom loss is detected for a qubit used by the compiled

program we reload the entire array. This naive strategy is efficient when array reloads

are fast since only a single compilation step is needed.

• Always Full Recompile. When an interfering atom loss is detected we update the

hardware topology accordingly and recompile the input program. This fails when the

topology becomes disconnected, requiring a reload.

79

• Virtual Remapping. NA architectures support long range interactions up to a maximum

interaction distance. Therefore, shifts in the qubit placement is only detrimental to

execution when the required qubit interactions exceed this distance. For this strategy,

we start with a virtual mapping of physical qubits to physical qubits where each qubit

maps to itself. When an atom is lost we check if it is used in the program. If so, we

adjust the virtual mapping by shifting the qubits in a column or row of the qubit in

the cardinal direction with the most unused qubits starting from the lost atom to the

edge of the device. This process is shown in Figure 3.9b. In this figure, addressing qb

would now point to the original location of qc, and addressing qc would point to the

qubit to the left of qc’s original location. If there are no spare qubits, we perform a

full reload. Otherwise, we execute the gates in order according to the mapping. If two

qubits which must interact are now too far apart, we reload. This strategy is efficient

in terms of overhead since this virtual remapping can be done on the order of 40 ns in

hardware [47] via a lookup table. However, this strategy can be inefficient in number of

reloads required since it is easy to exceed the interaction distance. We later explore

how many atom losses can be sustained before reload which allows us to estimate how

many reloads will be required on average.

• Minor Rerouting. Here we perform the same shifting strategy as in Virtual Remapping

to occupy available spares. However, rather than failing when distance between the

remapped qubits exceeds the maximum interaction distance, we attempt to find a path

over the usable qubits, and insert SWAP gates along this path. To simplify computation

we SWAP the qubits on the found path, execute the desired gate, then reverse the

process to maintain the expected mapping. The rerouting is shown in Figure 3.9c. Too

many additional SWAPs are detrimental to program success. We may force a reload

if the expected success rate drops, for example by half, from the original program’s

expected success rate.

80

• Compile to Smaller Than Max Interaction Distance. For most programs there are

diminishing returns to compiling to larger max interaction distances, but can be sensitive

to atom loss. In this strategy we compile to an interaction distance less than the max so

when qubits get shifted away from each other it will take more shifts to exceed the true

maximum distance. The overhead is the same as Virtual Remapping but the compiled

program could be less efficient than one compiled to the true max distance.

• Compile Small and Minor Reroute. This strategy is based on Compile to Smaller Than

Max Interaction Distance but performs the same rerouting strategy as Minor Rerouting

with similar overhead costs.

Excluding the first approach of reloading with any interfering atom loss, we examine how

many losses can be sustained without exceeding the constraints of the architecture in size,

dimension, or needed interaction distances. Figure 3.10 shows the maximum number of holes

supported by the different strategies for a 30 qubit Cuccaro adder and a 29 qubit CNU. The

entries for compile small and compile small + reroute are compiled to one less than the

maximum interaction distance. We do not compile to interaction distance 1, so we do not

have entries for these strategies at interaction distance 2.

As would be expected, recompile is able to support the most lost atoms since the only

failure cases are: disconnected hardware topology, or fewer atoms than required qubits. In

fact, since our example circuits use 30% and 29% of the hardware, once the interaction

distance overcomes any disconnected pieces, recompiling can sustain 70% atom loss, the ideal

case for sustained loss. The non-rerouting strategies, while a fast solution, offer limited atom

loss recovery. The simple virtual remapping is only able to support a small amount of atom

loss, but does increase as the max distance increases. As predicted, compiling to a smaller

interaction distance does enable more resilience to atom loss since more movement can be

tolerated before exceeding the maximum interaction distance. Both rerouting strategies have

a disconnected topology failure case, but also the additional failure case of not having the

81

space in any direction to shift the qubits in the event of atom loss. As a result, both are only

able to sustain 50% atom loss at higher interaction distances.

However, these different strategies add varying numbers of extra SWAPs to handle atom

loss, lowering the success rate. As more atoms are lost, more SWAPs are needed, and the rate

decreases as seen in Figure 3.11 for Cuccaro and CNU with the rerouting and recompiling

strategies. With current error rates, success is very low for 30 qubit circuits. To better

demonstrate how the success rate changes, we use lower error rates so about 2/3 of shots

succeed without atom loss. For any strategy, as the interaction distance increases, fewer

SWAPs are needed so the shot success stays higher. Since the recompilation strategy is able

to schedule and map qubits with full knowledge of the current state, including missing atoms,

it as able to achieve the best routing and success rate out of all the atom loss strategies. Both

of the rerouting strategies have lower rates since they tend to add more SWAPs per atom

loss. But, since compiling to a smaller MID before rerouting means the interaction distance

is exceeded less often, it requires fewer SWAPs, boosting its rate over simply rerouting.

Taking this into account, we examine the estimated overhead time of each strategy for

500 runs of a given circuit. We use a 2% chance of atom loss for a measured qubit, and a

0.0068% chance of atom loss due to atom collision in a vacuum. The overhead times for CNU

are seen in Figure 3.12. For any rerouting strategy that requires extra SWAPs, a reload is

forced once the number of added swaps would decrease the success rate by 50%. For a 96.5%

successful two-qubit gate, this would be six SWAPs.

Recompilation is not shown in Figure 3.12 as software compilation exceeds the array

reload time, and the overhead time is larger than simply reloading. Other strategies are

always more time efficient than reloading all of the atoms. Additionally, since compiling to

a small size requires less fixes with swaps, the overhead time tends to be smaller at lower

interaction distances. As interaction distances increase, the overhead time of each strategy

converges. A sample timeline of 20 successful shots using compile small and reroute can be

82

seen in Figure 3.14. After initial compilation, reloading takes a majority of the time, so any

ability to reduce the number of reloads vastly reduces the overall run time.

Compile small + reroute is an efficient way to improve loss resilience, we next examine

the sensitivity of the successful shot count before a reload to the rate of atom loss for this

strategy. Figure 3.13 shows how the number of successful shots changes as the rate of atom

loss changes. A 10x improvement offers an expected 10x improvement in the number of

successful shots before a reload must occur. This is because the rate of atom loss decreases

as technology improves, reducing the number of reloads, improving overhead time.

3.7 Remarks

Reducing the overhead of running compiled quantum programs is critical to successfully

executing useful near- and intermediate term quantum algorithms. Neutral atoms have many

attractive properties: long-range interactions, native implementation of multiqubit gates, and

ease of scalability. These advantages reduce gate counts and depths dramatically in compiled

circuits by increasing the relative connectivity of the underlying hardware. While long range

interactions induce larger restriction zones which inhibit some parallelism, the amount of

gate and depth savings far outweighs this cost.

The dominant cost in NA systems is atom loss. Weaker trapping potential and destructive

measurement leads to the loss of atoms as computation is performed. We explore various

strategies to adapt to this loss including the extremes of full recompilation and always

reloading. Full recompilation is able to sustain high atom loss but is slow when thousands

of trials are needed. But reloading is also slow and is the dominant hardware cost. Our

reroute and compile small strategies balance atom loss resilience and shot success rate to

save computation time.

Popular competitor qubits have a head start on neutral atoms in terms of error rate and

device sizes. In simulation, we have demonstrated our large gate count and depth savings

83

give advantage over superconducting systems. SC systems are often easy to increase in size,

but fabrication variability and limited connectivity limit their effectiveness. Trapped-ion

systems offer many of the same advantages as neutral atoms such as global interactions and

multiqubit gates but at the cost of parallelism. Ions also have stronger trapping potential,

mitigating loss. Unfortunately, trapped ion systems will struggle to scale and maintain these

properties. These systems have limited parallelism and are held in one dimensional traps

limited to around 100 qubits. To scale, systems connect multiple traps with higher inter-trap

communication cost [137]. Neutral atom systems are theoretically capable of maintaining

their advantages as they scale.

Even at a small scale, the unique properties of the NA systems result in compiled circuits

which are lower depth and use fewer communication operations translating to an expected

higher probability of success. These advantages will become even clearer as devices scale since

the device connectivity per size grows much more favorably than other architectures. Our

algorithms for compilation are scalable heuristics and will be able to keep up with increasing

hardware size well. For atom loss, some techniques will not be favorable for larger device and

program sizes, such as full recompilation, however we’ve shown other more clever and faster

techniques are better suited for the problem and will be able to scale. For example, since

the speed to adjusting a hardware mapping is on the order of nanoseconds, rather than the

microseconds required to perform reloading and fluorescence, we can expect these techniques

to remain viable.

In this work we have focused on software and hardware techniques to demonstrate neutral

atoms, with our methods, are a viable and scalable alternative to more established technologies.

Long-distance interactions and multiqubit operations dramatically reduce communication

and depth overheads which translates into lower error rate requirements to obtain successful

programs. Like their competitors, there are fundamental drawbacks of a NA system; here

we’ve highlighted the problem of atom loss. This probabilistic loss is inherent in the trapping

84

process itself and prior hardware studies have focused hardware solutions to reduce this

probability of loss. We demonstrate that software solutions can effectively mitigate the

problems due to atom loss. This is critical for the overall development of the platform: by

solving fundamental problems at the systems level, hardware developers can focus on solving

and optimizing other problems and process of co-design which can accelerate the advancement

of the hardware tremendously.

85

BV CNU Cuccaro QFT-Adder QAOA
0%

20%

40%

60%

80%

100%

re
d
u
ct
io
n
in

ga
te

co
u
n
t

Gate Count Savings from Interaction Distance

2 3 4 5 8 13

1 2 3 4 5 6 7 8 9 10 11 12 13
0

200

400

600

800

1,000

1,200

1 13

maximum interaction distance

p
os
t-
co
m
p
il
at
io
n
ga

te
co
u
n
t

BV Gate Count

99
87
75
63
51
39
27
15
3

Figure 3.3: Post-compilation gate count across benchmarks. On the top are percent savings
over the distance 1 baseline averaged over program sizes up to 100 qubits. Each color is
a max interaction distance. Noticeably, there is less additional improvement as the MID
increases, indicating most benefit is gained for smaller distances. On the bottom is a sample
benchmark (holds in general) with many program sizes compiled for the whole range of MIDs.
As the program size increases, larger MID show benefit before flattening off.

86

BV CNU Cuccaro QFT-Adder QAOA
0%

20%

40%

60%

80%

100%

re
d
u
ct
io
n
in

d
ep

th

Depth Savings from Interaction Distance

2 3 4 5 8 13

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1,000

2,000

3,000

4,000

1 13

maximum interaction distance

p
os
t-
co
m
p
il
at
io
n
d
ep

th

QFT-Adder Depth

66
58
50
42
34
26
18
10

Figure 3.4: Post-compilation depth across all benchmarks. On the top, the reduction in
depth over the distance 1 baseline. Each bar is the average over all benchmark sizes. On
the bottom we see a similar drop off in post-compilation depth for the QFT-Adder. We’ve
chosen this specific benchmark to highlight the effect of restriction zones. Here we show a
subset of all sizes run. Depth initially drops but for larger interaction distances some of this
benefit is lost. We expect this to be more dramatic for even larger programs.

87

BV CNU Cuccaro QFT-Adder QAOA
0%

50%

100%

150%

200%

250%

300%

350%

in
cr
ea
se

in
d
ep

th

Depth Increase due to Gate Serialization

2 3 4 5 8 13

1 2 3 4 5 6 7 8 9 10 11 12 13
0

100

200

300

400

500

1 13

maximum interaction distance

p
os
t-
co
m
p
il
at
io
n
d
ep

th

QAOA Depth

50
50
40
40
30
30
20
20

Figure 3.5: The induced restriction zone from interaction distance increases serialization. In
the prior results this is hard to discern because compared to low interaction distance the
amount of gate savings translates to depth reduction. Here we compare benchmarks compiled
with our restriction zone and compare to a program with no restriction zone, to mimic an
ideal, highly parallel execution. The existence of a restriction zone most effect on programs
which are parallel to begin with. On the bottom we directly compare this effect on the QAOA
benchmark; solid line is compiled with realistic restriction zone and dashed is ideal. The
separation between the corresponding lines signifies the effect of the restriction zone.

88

2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

1 13

maximum interaction distance

p
os
t-
co
m
p
il
a
ti
o
n
ga

te
co
u
n
t

CNU Gate Count

91
91
59
59
19
19

2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

1 13

maximum interaction distance

Cuccaro Gate Count

94
94
54
54
14
14

2 4 6 8 10 12
0

100

200

300

400

1 13

maximum interaction distance

p
o
st
-c
o
m
p
il
at
io
n
d
ep

th

CNU Depth

91
91
59
59
19
19

2 4 6 8 10 12
0

200

400

600

800

1,000

1,200

1,400

1,600

1 13

maximum interaction distance

Cuccaro Depth

94
94
54
54
14
14

Figure 3.6: Compiling to programs directly to three qubit gates reduces both gate count and
depth. Here we highlight a serial and parallel application written to three qubit gates. Here
dashed lines are compiled to two qubit gates decomposing all Toffoli gates before mapping and
routing. Solid lines compile with native Toffoli gates. With native implementation of three
qubit gates we obtain huge reductions in both depth and gate count for both benchmarks.

89

10−5 10−4 10−3 10−2 10−1

10−1

100

two-qubit gate error

sa
m
p
le

er
ro
r
ra
te

Success Rate Comparison

BV
CNU

Cuccaro
QFT-Adder

QAOA
vs. SC device
Current SC

Figure 3.7: Program success rate as a function of two-qubit error rate. Because current NA
error rates are lagging behind competitive technologies we scan over a range of two-qubit
error rates for each of the benchmarks all on 50 qubit programs (49 for CNU) with max
interaction distance of 3. Examining pairs of solid and dashed lines we can compare NA to
SC. In the limit of very low two qubit error rate, systems can support error correction. Both
SC and NA systems scale at roughly the same rate (slope of the line) but the NA system
diverges from the completely random outcome at higher error, allowing us to run programs
on the hardware much sooner.

90

10−5 10−4 10−3 10−2 10−1

20

40

60

80

100

1

two-qubit gate error

la
rg
es
t
ru
n
n
ab

le
si
ze

Program Size Comparison
BV
CNU

Cuccaro
QFT-Adder

QAOA
vs. SC device
Current SC

Figure 3.8: Another way to examine the data of Figure 3.7 is to ask, given a desired program
success rate, what the required two qubit error rate is. Here we sweep again over two qubit
error rates and record the maximum program size to run with success probability greater
than 2/3. Again, examining pairs of solid and dashed lines we can compare NA to SC. With
the reduced gate counts and depth we expect to be able to run larger programs sooner.

qaqbqc qaqbqc qaqbqc

1

2 3

57 6 4

spare in use

(a) Circuit Before Loss (b) Virtual Remapping (c) Reroute

Figure 3.9: Examples of two different atom loss coping strategies. (a) shows the initial
configuration of three qubits, with the spare qubits in a light grey, and in use qubits black.
(b) Represents how the atoms are shifted into the spare qubits to accommodate a lost
atom under the virtual remapping strategy. Notice that the interaction is no longer within
interaction distance 1. (c) Demonstrates how the qubits can be swapped to a valid interaction
configuration, and returned for rerouting strategies. Numbers indicate the order of swaps.

91

2 3 4 5 6
0%

20%

40%

60%

80%

maximum interaction distance

#
a
to
m
s
lo
st
/d

ev
ic
e
si
ze

Max Atom Loss Tolerance (CNU)

virtual remapping reroute compile small c. small+reroute recompile

2 3 4 5 6

maximum interaction distance

Max Atom Loss Tolerance (Cuccaro)

Figure 3.10: Atom loss as a percentage of total device size which can be sustained before
a reload of the array is needed. Each program is 30 qubits on a 100 qubit device. As the
interaction distance increases most strategies can sustain more atom loss. Strategies like
full recompilation can sustain large numbers of atom loss but as we will see are expensive
computationally. Fast, hardware solutions or hybrid solutions can sustain fewer numbers of
holes but have lower overhead. We show two representative benchmarks parallel vs. serial.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of holes

es
ti
m
at
ed

sh
ot

su
cc
es
s

Shot Success Rate Drop (CNU)

reroute, MID: 2 3 5 c. small+reroute, MID: 3 5 recompile, MID: 2 3 5

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of holes

Shot Success Rate Drop (Cuccaro)

Figure 3.11: For strategies which modify the program such as recompilation or rerouting
strategies, additional gates could be added leading to a lower overall success rate. Here we
trace the success rate of our three program modifying strategies. The full recompilation
strategy (circles) is a rough upper bound which best accounts for holes as they appear being
able to move the entire program to a more appropriate location and route best. The gap
between strategies on the same MID gets smaller as the MID gets larger. Here we’ve chosen
the two-qubit error rate corresponding to approximate 0.6 success rate to begin with (based
on Figure 3.8) in order to best demonstrate the change in shot success probability over a
range of atom loss.

92

2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

220

240

260

maximum interaction distance

ov
er
h
ea
d
ti
m
e
(s
)

Overhead Time for 500 Shots (CNU)

virtual remapping compile small always reload
reroute c. small+reroute

Figure 3.12: Strategies that are able reduce the number of reloads necessary greatly reduce
the overhead time when running circuits. Here we show the overhead time for all strategies
except recompilation. The proportion of time dedicated to reloading is shown by the dominate
color in each bar, followed by fluorescence in red, and recompilation in black. Any strategy
whose overhead exceeds that of always reloading, such as full recompilation, should not be
considered.

10−1 100 101

10−3

10−2

10−1

100

101

102

100

10−2

102

atom loss rate improvement factor

#
su
cc
es
sf
u
l
sh
ot
s
b
ef
or
e
re
lo
ad

Successful Shot Rate Sensitivity (CNU)

6
5
4
3

Figure 3.13: Sensitivity to the rate of atom loss for the balanced Compile Small and Reroute
strategy. In prior experiments we used a fixed rate of 2% atom loss. For larger systems this
rate could be worse and in the future we might expect this rate to be much better. For each
interaction distance we see as the rate of atom loss gets better we can run many more trials
before we must perform a reload and reset. Some error bars don’t show on the log axis.

93

0 1.92

0.57 0.71

35µs 20+61µs6ms

(a) Entire Trace

(b) Atom-loss resilent execution

(c) Scaled for clarity

time (s)

compile run circuit fluorescence circuit fixup reload atoms

Figure 3.14: A timeline of 20 successful shots for Compile Small and Reroute with reload
time of 0.3 s and fluorescing time of 6 ms. A majority of the overhead time is contributed by
the reload time and fluorescence, indicating, that the duration and count of these actions is
crucial to overall runtime.

94

CHAPTER 4

APPLICATION-GUIDED ARCHITECTURAL DESIGN.

VIRTUALIZING ERROR CORRECTED QUBITS

4.1 Introduction

Quantum devices have improved significantly in the last several years both in terms of physical

error rates and number of usable qubits. For example, IBM and others have made accessible

via the cloud several devices with 5 to 53 qubits with moderate error rates [92]. Concurrently,

great progress has been made at the software level such as improved compilation procedures

reducing required overhead for program execution. These efforts are directed at enabling

NISQ (Noisy Intermediate-Scale Quantum) [155] algorithms to demonstrate the power of

quantum computing. Machines in this era are expected to run some important programs and

have recently been used to by Google to demonstrate “quantum supremacy”1 [10].

Despite this, these machines will be too small for error correction and unable to run

large-scale programs due to unreliable qubits. The ultimate goal is to construct fault-tolerant

machines capable of executing thousands of gates and in the long-term to execute large-scale

algorithms such as Shor’s [168] and Grover’s [78] with speedups over classical algorithms.

There are a number of promising error correction schemes which have been proposed such

as the color code [114] or the surface code [67, 90, 72]. The surface code is a particularly

appealing candidate because of its low overhead, high error threshold, and its reliance on few

nearest-neighbor interactions in a 2D array of qubits, a common feature of superconducting

transmon qubit hardware. In fact, Google’s next milestone is to demonstrate error corrected

qubits [10, 126].

Current architectures for both NISQ and fault-tolerant quantum computers make no

1. JMB’s contributions include the design of the naive and compact mapping of surface code to the 2.5D
architecture, syndrome extraction procedure, and original work on the memory-equipped architectural design
(see later). This work is equal contributions from both CD and JMB.

95

distinction between the memory and processing of quantum information (represented in

qubits). While currently viable, as larger devices are built, the engineering challenges of

scaling up to hundreds of qubits becomes readily apparent. For transmon technology used by

Google, IBM, and Rigetti, some of these issues include fabrication consistency and crosstalk

during parallel operations. Every qubit needs dedicated control wires and signal generators

which fill the refrigerator the device runs in. To scale to the millions of qubits needed for

useful fault-tolerant machines [72], we need to a memory-based architecture to decouple

qubit-count from transmon-count.

In this work, we use a recently realized qubit memory technology which stores qubits in a

superconducting cavity [142]. This technology, while new, is expected to become competitive

with existing transmon devices. Stored in cavity, qubits have a significantly longer lifetime

(coherence time) but must be loaded into a transmon for computation. Although the basic

concept of a compute qubit and associated memory has been demonstrated experimentally,

the contribution of our work is to design and evaluate a system-level organization of these

components within the context of a novel surface code embedding and fault-tolerant quantum

operations. We provide a proof of concept in the form of a practical use case motivating

more complex experimental demonstrations of larger systems using this technology.

Our proposed 2.5D memory-based design is a typical 2D grid of transmons with memory

added as shown in Figure 4.1. This can be compared with the traditional 2D error correction

implementation in Figure 4.2, where the checkerboards represent error-corrected logical

qubits. The logical qubits in this system are stored at unique virtual addresses in memory

cavities when not in use. They are loaded to a physical address in the transmons and made

accessible for computation on request and are periodically loaded to correct errors, similar to

DRAM refresh. This design allows for more efficient operations such as the transversal CNOT

between logical qubits sharing the same physical address i.e. co-located in the same cavities.

This is not possible on the surface code in 2D which requires methods such as braiding or

96

mode 0

mode 1

mode 2

cavity cavity cavity

data
ancilla

logical
qubit

Figure 4.1: Our fault-tolerant architecture with random-access memory local to each transmon.
On top is the typical 2D grid of transmon qubits. Attached below each data transmon is a
resonant cavity storing error-prone data qubits (shown as black circles). This pattern is tiled
in 2D to obtain a 2.5D array of logical qubits. Our key innovation here is storing the qubits
that make up each logical qubit (shown as checkerboards) across many cavities to enable
efficient computation.

lattice surgery for a CNOT operation.

We introduce two embeddings of the 2D surface code to this new architecture that spread

logical qubits across many cavities. Despite serialization due to memory access, we are

able to store and error-correct stacks of these logical qubits. Furthermore, we show surface

code operations via lattice surgery can be used unchanged in this new architecture while

also enabling a more efficient CNOT operation. Similarly, we are able to use standard

and architecture-specific magic-state distillation protocols [123] in order to ensure universal

computation. Magic-state distillation is a critical component of error-corrected algorithms so

any improvement will directly speed up algorithms including Shor’s and Grover’s.

We discuss several important features of any proposed error correction code, such as the

threshold error rate (below which the code is able to correct more errors than its execution

causes), the code distance, and the number of physical qubits to encode a logical qubit. In

many codes, the number of physical qubits can be quite large. We develop an embedding

from the standard representation to this new architecture which reduces the required number

97

of physical transmon qubits by a factor of approximately k, the number of resonant modes

per cavity. We also develop a Compact variant saving an additional 2x. This is significant

because we can obtain a code distance
√

2k times greater or use hardware with only 1
2k the

required physical transmons for a given algorithm. In the near-to-intermediate term, when

qubits are a highly constrained resource this will accelerate a path towards fault-tolerant

computation. In fact, the smallest instance of Compact requires only 11 transmons and 9

cavities for k logical qubits.

We evaluate variants of our architecture by comparing against the surface code on a larger

2D device. Specifically, we determine the error correction threshold rates via simulation

for each and find they are all close to the baseline threshold. This shows the additional

error sources do not significantly impact the performance. We explore the sensitivity of the

threshold to many different sources of error, some of which are unique to the memory used

in this architecture. We end by evaluating magic-state distillation protocols which have a

large impact on overall algorithm performance and find a 1.22x speedup normalized by the

number of transmon qubits.

At a high level, this chapter serves as a clear example of how applications, such as

error correction codes the long term goal of quantum hardware, can guide the design and

construction of architectures and help guide towards platforms which are best suited for it.

In summary, we discuss the following contributions:

• We introduce a 2.5D architecture where qubit-local memory is used for random access

to error-corrected, logical qubits stored across different memories. This allows a simple

virtual and physical address scheme. Error correction is performed continuously by

loading each from memory.

• We give two efficient adaptations of the surface code in this architecture, Natural and

Compact. Unlike a naive embedding, both support fast transversal CNOTs in addition

to lattice surgery operations with improved connectivity between logical qubits.

98

• We develop an error correction implementation optimized for Compact and designed to

maximise parallelism and minimize the spread of errors.

• Via simulation, we determine the surface code adapted to our 2.5D architecture is still

an effective error correction code while greatly reducing hardware requirements.

4.2 Relevant Background

We review current superconducting qubit architectures and memory technology our proposed

design takes advantage of. We then discuss the noise present in these physical systems. Next,

we introduce the basics of quantum error correction and give a detailed introduction to

the surface code and lattice surgery. We conclude with a review of the basic procedure for

decoding physical errors.

4.2.1 Superconducting Qubit Architectures

In contrast to other leading qubit technologies such as trapped ion devices with one or

more fully-connected qubit chains, superconducting qubits are typically connected in nearest-

neighbor topologies, often a 2D mesh on a regular square grid. For near-term computation,

this limitation makes engineering these devices easier but results in high communication

costs, increasing the chance of errors on NISQ devices and communication congestion for

error corrected operations. This is a leading technology in industry, used by Rigetti, IBM,

and Google.

4.2.2 Qubit Memory Technology

Recently, studies have demonstrated random access memory for quantum information [142, 83].

Qubit states can be stored in the resonant modes of physical superconducting cavities

attached to a transmon qubit as depicted in Figure 4.3. In these devices, transmon-transmon

99

data

ancilla

logical qubit logical qubit

logical qubit logical qubit

connectivity

Figure 4.2: A typical 2D superconducting qubit architecture. The dots are transmon qubits
where black are used as data and gray are used as ancilla for error correction. The lines
indicate physical connections between qubits that allow operations between them. Four
logical qubits, each consisting of 9 error-prone data qubits, are shown here in the rotated
surface code with distance 3. Z parity checks are shaded yellow (light) and X parity checks
are shaded blue (dark) where checks on only 2 data are drawn as half circles.

interactions are essentially the same as other superconducting transmon technology and

transmon-cavity interactions are expected to perform similarly. Currently demonstrated

error rates are promising, and there is nothing fundamental preventing this technology from

becoming competitive with other transmon devices. We expect operation error rates to

improve, cavity sizes and coherence times to increase and in general expect performance to

improve as it has with other quantum technologies.

Local memory is not free. Stored qubits cannot be operated on directly. Instead, operations

on this information are mediated through the transmon. Furthermore, to operate on qubits

stored in memory, we first load the qubit from memory. Then we perform the desired

operation on the transmons, and store the qubit back in its original location. A two-qubit

operation such as a CNOT can also be performed directly between the transmon and a

qubit in its connected cavity by manipulating higher states of the transmon. We use this

transmon-mode CNOT later.

In this architecture, qubits stored in the same cavity cannot be operated on in parallel.

100

mode 0

...

mode k

cavity

transmon

Figure 4.3: A close-up representation of the qubit memory technology we use. On top is a
superconducting transmon qubit physically connected to a resonant superconducting cavity.
This cavity has many resonant modes each used to store a qubit. These qubits can be loaded
and stored (with random access) via the transmon.

For example, consider two qubits stored in different modes of the same cavity (two virtual

addresses corresponding to the same physical address). If we want to perform an H gate on

each of them in parallel, this would not be possible. Instead, we serialize these operations.

There are two primary benefits of this technology. First, we are able to quickly perform

two-qubit interactions between any pair of qubits stored in the same cavity because we have

star-graph connectivity between the transmon and its cavity modes. Second, qubits stored in

the cavity are expected to have longer coherence times by about one order of magnitude i.e.

there will be 10x fewer idle errors when qubits are stored in the cavity.

4.2.3 Quantum Errors

Quantum systems are inherently noisy, subject to a variety of coherent and non-coherent

error. For example, when attempting to apply some gate U to a qubit we may actually apply

some other gate U ′ which is close to the desired operation but may include an additional

undesired operation. Fortunately, this type of coherent error is fairly easy to model. Since

every single-qubit unitary can be expressed as a linear combination of the Pauli matrices

I,X, Y, Z we can express this coherent error as a combination of bit flip (X) and phase flip

(Z) errors where I is no error and Y is simultaneous bit and phase errors (Y = iXZ). For a

101

quantum error correcting code this will play a part in digitizing errors, meaning we will be

able to simply detect and correct X and Z errors.

Errors such as decoherence errors can be attributed to interaction with the environment.

These errors are inevitable because manipulating qubits requires they not be perfectly isolated.

When modeling and simulating this type of error we require the use of full density matrix

simulation. In this paper, we opt not to model coherence errors in this way because simulation

of this class of errors is hard (density matrices have size exponential in the number of qubits),

we instead also model storage errors as Pauli errors. This is a common simplification and a

conservative overestimate for the error causing our error threshold estimation to be slightly

more conservative. For example, when decoherence resets a qubit to |0⟩, this causes an error

to a qubit in the |1⟩ state but not to a qubit already in the |0⟩ state whereas a Pauli X error

causes a bit flip which is an error on either state.

The above errors apply to all superconducting systems and we often assume consistent

error rates across the device. We treat all two-qubit interactions equally so gates like a

CNOT incur some fixed error cost, a fixed chance of some error U1 ⊗ U2 is applied to |ψ⟩

where U1, U2 ∈ {I,X, Y, Z}. In traditional superconducting architectures (our baseline), we

consider a few error sources–storage error, one and two-qubit gate error, and measurement

error. In superconducting architectures with resonant cavities such as our design, there is

more nuance. We consider cavity storage and transmon storage error rates separately since

each has its own coherence time and we separate transmon-transmon two-qubit gates and

transmons-cavity two-qubit gates. We detail this and our other assumptions for simulation

in experimental setup.

4.2.4 Surface Codes, Error Decoding, and

102

Figure 4.4: The lattice surgery operations to perform a logical CNOT on the standard
surface code (and directly supported in our architecture). Given control and target qubits
|C⟩ and |T ⟩, a CNOT is performed by enabling and disabling the parity checks as shown
across 6 timesteps ((e) is two steps). We show this complex process to contrast with the fast
transversal CNOT enabled by our architecture (described later in Section 4.3.2).

Lattice Surgery

The surface code [67] is one of the most promising quantum error correction protocols because

it requires only nearest neighbor connectivity between physical qubits. The surface code is

implemented on a two-dimensional array of physical qubits. These qubits are either data,

where the state of the logical qubit is stored, or ancilla used for syndrome extraction (parity

checks). These ancilla qubits are measured to stabilize the entangled state of the data. These

ancilla fall into two categories, measure-Z and measure-X for Z syndromes and X syndromes

designed to detect bit and phase errors respectively. Data qubits not on the boundary are

adjacent to two measure-Z and two measure-X qubits.

In Figure 4.2 we show four logical qubits with code distance 3 mapped to a 2D lattice of

superconducting qubits. Dark physical qubits are used as data and light qubits are used as

measure qubits. In this paper, we opt to explicitly indicate qubits in order to make clear

how logical qubits, formed of many square and half-circle plaquettes, are mapped directly

to hardware. In our diagrams however, we use customary notation by shading X-plaquettes

blue (dark) and Z-plaquettes yellow (light). Half-plaquettes contain only 2 data qubits and

are shown as half circles.

103

Each X (Z) plaquette corresponds to a single measure-X (Z) qubit and the four data

which it interacts with. The corners of each plaquette are the data qubits. For the baseline,

we use standard Z and X syndrome extraction (parity measurement) circuits where the qubits

of this circuit are physical qubits. The Z-syndrome measures the bit-parity of its corner

qubits and the X-syndrome measures their phase-parity. By repeatedly performing syndrome

extraction and detecting parity changes we are able to locate errors. This repeated syndrome

extraction collapses any error to a correctable Pauli error and forces the data to remain in

what is called the code, or quiescent, state. Once the qubits are in this state, subsequent

syndrome extraction should result in the same outcomes. If errors occur, we detect them as

changes in measurement outcomes.

Errors are decoded by running a classical algorithm on the measured syndromes [68].

In the surface code, when an error occurs on a data qubit, for example a single X bit-flip

error, we see this as a change in the measurement outcome of both of the Z-syndrome ancilla

adjacent to it. If an error occurs on every data qubit in a chain of neighbors, only the two

syndromes at the ends will detect a change. The standard way of performing error decoding

is to collect all of these changed syndromes into a complete graph with edge weights given

by the log-probability of that chain of errors occurring. We perform a maximum likelihood

perfect matching of this graph to find the most probable set of error locations which we

correct or track in the classical control. If errors are sufficiently low these error chains will

be well isolated and this decoding algorithm will be able to determine the correct set of

corrections to be made. If errors are less sparse, this matching algorithm may misidentify

which error chains have actually occurred and this can result in a logical error, that is a

logical bit flip or phase flip is applied. These logical errors cannot be detected because they

result from misidentifying the physical errors.

There are two primary ways to manipulate the logical qubits of the surface code to perform

desired logical operations–braiding and lattice surgery. In this paper we will primarily consider

104

lattice surgery which has been shown to have some advantages over braiding like using fewer

physical qubits. For a more thorough introduction to lattice surgery we refer the reader to

[90, 123, 116]. In our proposed scheme, all primitive lattice surgery operations can be used

such as split and merge which together perform a logical CNOT as shown in Figure 4.4. For

universal quantum computation in surface codes we allow for the creation and use of magic

states such as |T ⟩ or |CCZ⟩. These states are necessary because the T and CCZ operations

cannot be done transversely (using physical gates on the data in parallel to reliably perform

the logical gate) in this type of code. However, high fidelity versions of these states can be

generated via distillation [29, 123] where many error-prone copies of the state are combined to

generate the state with low error probability. Our scheme permits the use of these methods in

the same way as other surface code schemes and also allows more efficient implementations.

4.3 Virtualized Logical Qubits

In this section we describe in detail our proposed architecture, an embedding of the surface

code which virtualizes logical qubits, saving over 10x in required number of transmons. This

takes advantage of quantum resonant cavity memory technology described above to store

logical qubits, in the form of surface code patches, in memory local to the computational

transmons. In this section we describe how we can embed surface code tiles in two variations,

Natural and Compact. We show the hardware operations needed to perform efficient syndrome

extraction for both in our new fault-tolerant architecture. We then describe how typical

lattice surgery operations are translated into operations in this new scheme, and finally how

our system supports fault-tolerant transversal interactions between logical qubits sharing

the same virtual address. We verify these operations via process tomography. We briefly

describe how magic state distillation, an important primitive for algorithms, is translated to

our system.

105

Lz • Sz

Lz • Sz

|0〉
Lz • Sz

Lz • Sz

|0〉 H • • • • H

Lz Sz

Lz Sz

Figure 4.5: Circuit showing how to execute our Natural embedding on hardware. Left: The
layout of eight data (black) and two ancilla (gray) in hardware. CNOT operations between
qubits are drawn between. Right: A circuit diagram of the operations applied over time
where each horizontal line corresponds to a qubit and each box or symbol is an operation.
The steps are Lz: load from memory mode z, |0⟩: reset ancilla, CNOTs: compute the Z or X
parity, Meter: measure the result, Sz: store back to memory.

4.3.1 Natural Surface Code Embedding

Our goal here is to take logical qubits stored in a plane and find an embedding of that plane

in 3D where the third dimension (our transmon-local memory) is a limited size, k. The

intuitive answer is to simply fold the surface k times. While this works, it does not have the

benefits of a more clever embedding. We propose slicing the plane into many pieces, storing

them flat in memory to enable them to stitch together on-demand. This embedding enables

the fast transversal CNOT and high connectivity we will describe later.

Consider the high-level three dimensional view of the quantum memory architecture

presented in [142]. For every transmon in this architecture (the compute qubits in the top

layer of Figure 4.1) there is a cavity attached with a fixed number of resonant modes, k. Each

cavity can store k qubits, one per mode. Each transmon can load and store qubits from its

attached cavity by performing a transmon mediated iSWAP. We assume all transmons can

be operated on in parallel as is the case in most superconducting hardware (i.e. from IBM or

Google). For example, we can load qubit qiz to transmon ti and load qjz to transmon tj in

parallel, simultaneously execute single qubit operations on each qubit, then store in parallel.

106

Any other qubits stored in cavities i or j will be unaffected by these operations. We expect

this technology to allow cavity size k on the order of 10 to 100 qubits and it will likely not

be practical to scale k along with the size of the 2D grid as hardware improves so we cannot

implement a true 3D code such as [27]. For our analysis, we conservatively assume k = 10

and view this as a 2.5D architecture where we expect the width and height of the grid to

scale while the depth, k, remains small.

We demonstrate how our system is sensitive to the length of these cavities in section 4.6

where the amount of time between error correction cycles is directly a function of this cavity

size k. As the size of the cavity becomes very large, the physical qubits stored are expected

to be subject to more and more decoherence errors which will reduce our ability to properly

decode the errors.

Consider the rotated surface code of Figure 4.2 and the high level view of this architecture

in Figure 4.1. We imagine mapping each of the physical qubits of this logical qubit qL,1 to the

same mode z of each cavity in this memory architecture. Another logical qubit qL,2 can be

mapped to mode z2 ̸= z of the same set of cavities. We view this as stacking the surface code

patches, the logical qubits, together under the same set of transmon qubits. The transmons

themselves are only used for logical operations and error correction cycles performed on the

patches.

For logical qubits with code distance d we define patches on the architecture, contiguous

grids of size d×d data qubits and d×d ancilla qubits. Logical qubits are mapped to multiples

of d coordinates on the grid and a specific mode, z, for storage. For example, logical qubit qL

is mapped to a pair (Pxy, z) where Pxy refers to the square patch of data transmons qd·x,d·y

to qd·x+d−1,d·y+d−1 and z indicates which cavity mode it is stored in. A virtual memory

address of a logical qubit refers to exactly the pair (transmon patch, index). We sometimes

refer to all pairs with the same transmon patch collectively as a stack where transmon patch

is the physical memory address where a patch is loaded.

107

In this memory architecture, recall we are unable to operate on qubits stored in the same

cavity in parallel, however we are permitted to operated on qubits stored in different cavities

in parallel. This implies for two logical qubits qL,1 and qL,2 stored in the same stack we

are only able to perform syndrome extraction on at most one of these qubits at a time. In

order to detect measurement errors, we typically require d rounds of syndrome extraction

before we perform our decoding algorithm and correct errors. If all indices are occupied by

logical qubits and we want to perform d rounds of correction to each one we have two primary

strategies. We can load a logical qubit (meaning load all data in parallel to each transmon),

perform all d rounds of extraction, then store the qubit.

Alternatively, we can Interleave the extraction cycles by loading the logical qubit in index

0, performing one syndrome extraction step, then storing. We execute this same procedure

for every logical qubit in the stack and repeat d times. We expect this latter procedure to be

less efficient, subjecting the data qubits to d load and store errors per d cycles as opposed to

performing exactly one set of loads and stores when collecting all d measurements at once.

We study the effect of this choice of syndrome extraction on the error threshold in Section

4.5. We detail these extraction protocols for each syndrome in Figure 4.5. Here we use Lz

(Sz) to indicate loading (storing) the data from (to) index z of the attached cavity.

Intuitively, this scheme is stacking many different logical tiles together in a single location.

This includes mapping measure-Z/X ancilla to cavity modes. However, this is unnecessary,

because measure ancilla do not actually store any data and are reset before every extraction

step. Therefore, we can reduce the number of cavities required for this system by simply

omitting any cavity where ancilla are stored. Instead, every patch in the same stack shares

the same ancilla, the transmons at the top layer with no attached cavity.

In our system, up to k logical qubits share the same set of transmons, more efficiently

storing these qubits than on a single large surface. In order to interact logical qubits in

different stacks we load them in parallel to the transmons then interact them via lattice

108

surgery operations like the CNOT shown in Figure 4.4. In these cases, all of the other stacks’

transmons between the interacting logical qubits act as a single (possibly large) logical ancilla.

In typical planar architectures, we are unable to execute transversal two-qubit operations

due to limited connectivity. We can perform physical operations between qubits in the

same cavity, mediated by the transmon. Therefore, in our system, we are able to perform

transversal two-qubit interactions if the logical qubits are co-located in the same stack. We

describe this next.

4.3.2 Transversal CNOT

A major advantage of this 2.5D architecture, enabled by our embedding of patches across

memories, is the ability to do two-qubit operations transversely using the third dimension.

The logical operation is performed directly by doing the same physical gate to every data qubit

and correcting any resulting errors. On typical 2D architecture error correcting codes like

the surface code, the only transversal operations are single-qubit like X, Z, or H. Two-qubits

operations are not possible because the corresponding data qubits of two logical patches

cannot be made adjacent. However, with memory, it is possible to load one patch into the

transmons and apply two-qubit gates mediated by each transmon onto the data qubits for a

second qubit stored in one mode of the cavities. This works in both Natural and Compact

(described later).

Figure 4.6 demonstrates this for the transversal CNOT gate which we verified via process

tomography [145, 146] to apply the expected CNOT unitary in simulation. This can be

performed in a single round of d error correction cycles while the lattice surgery CNOT shown

in Figures 4.4 (and later 4.9) takes 6 rounds. This can translate to major savings in runtime

for algorithms.

The transversal CNOT is not limited to logical qubits currently stored in the same 2D

address. With an extra step it is possible to transversely interact any two logical qubits.

109

To do this one of the qubits must be moved to the same 2D address as the other using a

move operation described in [123]. The move operation involves growing the patch toward

the move target in one step by adding new plaquettes along the entire path and performing

d cycles, one timestep, of error correction. Once grown, the patch can be shrunk from the

other end back to its original size. The data qubits freed during the shrink are measured

and used to determine any fixup operation. Once the two qubits are in the same 2D address,

the transversal CNOT can be applied. It can then be moved back, left where it is, or moved

somewhere else as determined during compilation. This process takes 2 timesteps or 3 if

including the second move.

4.3.3 Compact Surface Code Embedding

In the previous scheme, half of the transmons did not have attached cavities (or they did not

make use them). An ancilla and data qubit could share a transmon because the data are

stored in the cavity the majority of the time and the ancilla are reset every cycle. This leads

to a more efficient, Compact embedding which halves the required number of transmons.

We will see that this comes at the cost of additional loads and stores from memory due to

contention during error correction, effectively trading some error and time for significant

space savings.

In the above memory architecture, because we do not store any logical qubits in the

transmon layer, these qubits can act as the measurement ancilla, rather than have separate

transmons only there to act as the syndrome measurement ancilla. With this observation, we

can pack the data qubits of the surface code patch of Figure 4.7a more efficiently with every

transmon having a cavity attached. Each plaquette of the rotated surface code has a single

ancilla at its center, interacting with each data qubit. For Z plaquette (yellow or light) in

this mapping scheme we colocate the upper-right data and the ancilla; the upper-right data

is located in the cavity attached to the transmon corresponding to the ancilla. Similarly, for

110

each X plaquette (blue or dark) we colocate the lower-left data and the ancilla; the lower-left

data is located in the cavity attached to the transmon corresponding to the ancilla.

This mapping results in plaquettes which resemble triangles rather than squares, where

the center of the hypotenuse of each triangle corresponds to both the ancilla qubit and the

data qubit, stored “beneath” in its cavity. Every data qubit is still mapped to the same

index. Notice in this scheme every data (sans the boundary) is still adjacent to two measure-Z

and two measure-X ancilla where adjacent means either in the cavity of the ancilla or in a

cavity adjacent to the ancilla. We illustrate this transformation from our undistorted Natural

surface code patch to Compact in Figure 4.7 and a diagram of this architecture with a cavity

for every transmon in Figure 4.8. If a different ancilla location were chosen, for example all

sharing with the upper-right data, some of the syndrome extraction gates in the resulting

arrangement would require six-way connectivity, two diagonal to the grid, which would be

much more difficult to engineer with low noise. This scheme where X and Z ancilla share with

data in opposite directions is the best scheme we found to satisfy the hardware connectivity.

In Natural, we assign square patches to predetermined square patches on the hardware.

In Compact, we assign square patches to predetermined rhombus or diamond patches on the

hardware. Previously, operations on the virtualized patches closely resembled the original

operations because the shape was unchanged, except with the addition of loads and stores to

retrieve the logical qubit from memory. The same operations apply here. We can examine

the original, unmapped surface code patch and perform the same sequence of operations

modulo loads and stores, on the transformed coordinates of the mapped version.

This new mapping also requires a new syndrome extraction procedure because data cannot

be loaded while a transmon is in use as an ancilla. A single round of syndrome extraction

can be executed by dividing the plaquettes into four groups, with each group containing

non-interfering plaquettes. Two plaquettes are non-interfering if they do not share their

ancilla with any data qubits of the other plaquette. This process is detailed explicitly in

111

Figure 4.10. It is imperative this process use both the minimum number of loads and stores

and keep data qubits loaded for as short a time as possible as the error incurred during this

circuit directly impacts the error threshold for the code. This has a similar cost as Natural,

Interleaved where a higher numbers of load and store gates were also required.

Error correction can be performed Interleaved or All-at-once just as with Natural. This

should be chosen dependent on how likely storage errors and gate errors are. For example,

if storage errors are expected to be significant, we may opt to use Interleaved syndrome

extraction. This will cost more loads and stores so if gate errors are more significant than

storage errors we may opt for All-at-once.

4.3.4 Architectural Considerations

When compiling and executing programs in our system there are several important architec-

tural features to keep in mind. First, it is always possible to execute a transversal two-qubit

interaction, rather than requiring use of split and merge. In surface code architectures, the

logical qubits are not bound to a specific hardware location and are free to move around

on the grid. This qubit movement is fairly cheap requiring only a single round of d error

correction cycles (usually referred to as a single timestep) to move any distance. However, we

require a clear area of unused patches to move through; typically, this requires about 1/3 to

1/2 of the total area to be kept as open channels to allow for distant qubit interactions. In

our architecture this translates to keeping one of the resonant modes in every stack unused

(1/k of total qubits for cavity depth k ≈ 10) and loading this mode along a path when a

logical qubit needs to move, i.e there is an index in the stack which has no logical qubit

mapped to it. This enables our system to transport logical qubits between stacks to execute

more time and space efficient transversal CNOTs. The empty mode is necessary for Compact

because data is always stored back to the cavity during syndrome extraction but not required

for Natural, All-at-once where the transmons themselves can act as the unused qubits to

112

move the logical qubit through.

Unfortunately, this qubit movement is not entirely free. During the compilation process if

we request many logical qubits to move in parallel this can be expensive due to serialization

of intersecting move paths. Just as in current quantum systems without error correction

where it is imperative to map and schedule multi-qubit interactions in a way which minimizes

total execution time, it is also important in our system that logical qubits which interact

heavily be located close by for similar reasons. The mapping problem on the system presented

here is interesting because there is now a tradeoff between locality and serialization between

operations with qubits sharing the same 2D address.

Second, we stress even though the logical qubits are stored in memory, they are still

subject to errors and it is critical that every logical qubit be error corrected regularly. In

the case of Interleaved syndrome extraction, every logical qubit of a stack will be roughly

guaranteed to get a round of correction every k time steps, where k is the cavity depth. This

rate is during steady state, when qubits are idle. When logical operations are being executed,

this rate may be reduced slightly. When compiling and executing on this system, we may need

to delay some operations in order to ensure stored logical qubits get the required amount of

error correction and are not left so long that errors accumulate and error correction becomes

less likely to succeed.

Finally, many lattice surgery operations require the use of ancilla logical qubits, for example

to measure specific stabilizers which are done to execute a particular set of operations in

[123]. This restriction requires our architecture and any compiler to guarantee one free mode

of every stack be allocated to temporarily obtain large logical qubits. This free mode may be

shared with qubit movement or separate if many ancilla logical qubits are used.

113

4.4 Evaluation

In this section, we outline our error model and experimental setup used to determine error

thresholds for our mapping and syndrome extraction schemes. We compare to the surface

code on a typical 2D architecture. Our goal is to demonstrate the error thresholds for various

error correction schemes, i.e. to determine the necessary physical error rate required to begin

obtaining exponentially better logical error rate as the code distance increases. Currently,

neither transmon devices nor transmon-memory devices used for our schemes have consistently

achieved physical error rates below this threshold and instead the threshold serves as a goal

or checkpoint.

4.4.1 Error Model and Noise Assumptions

For our experiments we make the following further assumptions about how noise and errors

behave in both a typical 2D architecture and our 2.5D cavity memory architecture since both

have the same fundamental underlying transmon technology:

• The error rates in the device do not fluctuate appreciably over time.

• Transmon qubits can be actively reset and reinitialized to |0⟩ efficiently and without

significant error.

• All errors are independent. No leakage errors and no correlated noise.

• All classical processing of the syndromes is instantaneous and error-free.

• Every n-qubit gate with the same n is equally error-prone. For example, every one

qubit operation has the exact same chance of failure regardless of which actual physical

qubit it is applied to.

• All errors are Pauli, i.e. drawn from the set {I,X, Y, Z}⊗n. For example, if a one-qubit

114

error occurs with probability p then we apply an X, Y , or Z with probability p/3 and

I (no error) with probability 1− p.

• We detect and correct X and Z errors independently. A Y error is both an X and Z

error.

For each of our experiments we rely on realistic device data for current superconducting

devices, provided by IBM [92]. For the memory hardware, we use experimental data from

[142]. These parameters are listed in Table 4.1, where T1,c is the coherence time of the cavity,

T1,t is the coherence time of the transmon, ∆t is the single qubit gate time, ∆t−t is the

two-qubit transmon-transmon gate time, ∆t−m is the two-qubit gate time of transmon-mode

interactions, and ∆l/s is the load and store times. In every experiment, the gate durations for

one- and two-qubit interactions is fixed. In a first set of experiments, we vary all gate errors

and coherence times together, all derived from a single probability of error p given as the

probability of an SC-SC (Transmon-Transmon gates) two-qubit gate error. We consider T1

times of both cavities and transmons to determine the probability of storage error given as

λ = 1− exp
{
−∆t/T1

}
, where ∆t is the duration stored. We consider the same potential gate

error rates for each of these devices since the underlying technology behaves very similarly.

While typical coherence errors are not generally Pauli, we model them as Pauli errors here as

a worst-case approximation since correcting Pauli errors is harder than correcting coherence

errors in general.

4.4.2 Experimental Setup

In every experiment, we run 2,000,000 simulated trials per data point with each trial consisting

of a round of error correction. We compute the logical error rate as the number of logical

errors (misidentified error chains) over the total number of trials. The large number of trials

is required to estimate logical error rates to 10−5. To determine the error threshold values

for different surface code schemes, we vary the physical error rate over several different code

115

Table 4.1: Starting point coherence times and constant gate times for the hardware models.

Hardware
Parameter

Baseline
Transmons

Transmons
with Memory

T1,t 100 µs 100 µs
T1,c - 1 ms
∆t−t 200 ns 200 ns
∆t 50 ns 50 ns

∆t−m - 200 ns
∆l/s - 150 ns

sizes. The goal is to find an intersection point for each of these lines which gives a physical

error rate below which we expect our logical error rate to get better as the physical error rate

improves. Below the threshold we also expect the logical error rate to get better exponentially

in the code distance d.

We study 5 setups to determine initial error thresholds.

• The surface code on a 2D superconducting architecture as our baseline.

• Our Natural embedding with either the All-at-once or Interleaved syndrome extraction.

• Our Compact embedding with either the All-at-once or Interleaved syndrome extraction.

In our designs, the possible sources of error are more nuanced and we study the thresholds’

sensitivity to variation in the parameters. In all threshold experiments, we assume cavity

depth of 10 but later study sensitivity to cavity size. The simulation code used to generate

our results is available on GitHub [60].

4.5 Error Threshold Results

We detail our threshold results in Figure 4.11. We study 5 different code distances in order

to obtain the physical error threshold value. The threshold value indicates at which point

increasing the code distance, d, improves the logical error rate instead of hurting it. This

threshold is a function of both the physical system model, the chosen syndrome extraction

116

circuit, and the specific decoding procedure. For example, decoding procedures which do

not accurately represent the probability of certain error chains occurring will do a poor job

of correcting those errors. The decoding process should be directly informed by the error

model. In systems with more complicated error models, the decoder should be aware of these

further details to inform its decision about which types of errors occurred and the proper

way to correct them. We use the usual maximum likelihood decoder because we use standard

assumptions in our error model.

The major difference in each procedure is the additional error sources and different

syndrome extraction procedures. For example, the baseline is not subject to any of the

effects related to cavity storage or transmon-mode operations. These syndrome extraction

procedures differ by the amount of storage time of data qubits in different locations (cavity

vs. transmon) as well as the number of different physical gate operations applied to them.

These differences however, do not cause substantial variation in the error threshold for the

different setups which is extremely promising. Second, the slopes for each code distance

compared across the various schemes is stable, indicating each scheme improves at a similar

rate, post error threshold, and showing that the logical error rate decays exponentially with

d as desired. This is significant because it means we will be able to save on total number of

transmons without major shifts in the error threshold. Since transmon memory technology

is expected to perform as well as other competing transmon technology, we obtain higher

distance codes, and hence better logical error rate, with fewer total transmons.

4.6 Error Sensitivity Results

In this section, we study the effects of different sources of error on the thresholds obtained in

section 4.5. Specifically, we show how different system-level details affect the threshold of the

code. Here we focus on Compact, Interleaved as the most efficient physical qubit mapping

and subject to a wide variety of errors. In these studies, the physical error rates of all but

117

a single error source are fixed at a typical operating point below the threshold obtained

previously, 2× 10−3 and the cavity depth is fixed at 10. Gate times are fixed while we vary

the physical error rate of SC-SC gates, SC-Cavity gates, Load-Store gates or the coherence

times of the cavity and the transmon. We additionally study the duration of load/store,

the gates unique to memory technology. We note the effect of the SC-Cavity gate duration

will be a similar, smaller effect since it occurs only once per qubit per error correction cycle.

Finally, we study the effect of cavity size by varying the number of modes per cavity, causing

a proportional delay between error correction cycles.

The results of these sensitivity studies are found in Figure 4.12. The logical error rate

is sensitive to a particular error source’s probability if the slope of the line is pronounced

at the marked reference value. The logical error rate for Compact, Interleaved is sensitive

to all changes in system-level details to some degree. The gate error rates show the highest

sensitivity, indicating improvement in these will give the greatest benefit. Coherence times

are not quite as sensitive but the slightly over 10x offset between the cavity and transmon

plots shows that there is no benefit in transmon T1 being longer than 1/10 cavity T1 when

the cavity size is 10. The lines taper off, indicating other errors sources eventually dominate.

Initially, we expected the cavity size to have a large impact on the logical error rate. However,

when coherence times are high and gate error rates are fairly low below the threshold, the

logical error rate does increase proportional to the length of the cavity but the effect is very

minor. This indicates, given cavities with good coherence times, our proposed system will be

able to scale smoothly into the future as cavity sizes increase.

While larger cavity sizes will make this architecture even more advantageous, there will

be a point at which it has a vanishing benefit because the delay between error correction

becomes too long and decoherence error dominates. For the error rates used in the evaluation,

we find that cavity decoherence error starts dominating after cavity size k ≈ 150. After this

point, it would be more beneficial to improve cavity coherence time.

118

4.7 Magic State Distillation

Resource Estimates

Now that we have shown error correction is effective in our virtualized qubit architecture, we

analyze how the transversal CNOT and memory connectivity can benefit the performance of

an algorithm overall. In error-corrected quantum algorithms, the dominating cost (commonly

> 90%) in both space and time resources is magic state distillation [177, 56, 72]. For this

analysis we consider how T-state distillation, a commonly used magic state, is improved.

Any improvements here will translate directly to improvements in important algorithms like

Shor’s and Grover’s.

We take the 15-to-1 distillation circuit of [29] to generate a T magic state using a single

patch of transmons with 6 logical qubits stored in the attached cavities. This circuit consists

of 16 qubit initializations, 15 measurements, 35 CNOT gates and a few other operations. It

takes a total of 110 surface code timesteps to generate a T-state using only a single patch of

transmons. If pairs of these circuits are executed in lock-step, they only take 99 timesteps.

In Figure 4.13 we compare the T-state generation rate with memory against two represen-

tative extremes designed for

119

Table 4.2: Transmon, depth-10 cavity, and total qubit costs of each T-state generation
protocol for d = 5.

Protocol # transmons # cavities total qubits

Fast Lattice [124] 1499 - 1499
Small Lattice [123] 549 - 549
VQubits (natural) 49 25 299
VQubits (compact) 29 25 279

speed or size, Fast Lattice [124] and Small Lattice [123] (also based on [29]). Fast Lattice

generates a T-state every 6 timesteps but uses 30 patches of space whereas Small Lattice,

generates a T-state every 11 timesteps using only 11 patches of space. We compare these

results by computing the T-state generation rate per timestep if we filled 100 patches with

copies of the circuit running in parallel. Table 4.2 show the qubit cost of each and chip area

will be proportional to the number of transmons. Using our VQubits protocol generates 1.82x

as many T-states as Fast Lattice and 1.22x as many as Small Lattice. This improvement

allows an algorithm like Shor’s to run roughly 1.22x faster or work on smaller hardware.

4.8 Conclusion

Realizable quantum error correction protocols are a critical step in the path towards fault-

tolerant quantum computing. There has been great progress in NISQ-era devices, but it is

equally critical to look towards designing architectures for QEC. In this paper, we introduce

a system which virtualizes logical, error corrected qubits and is both space and time efficient

without sacrificing in terms of fault tolerance.

By taking advantage of recent advances in quantum memory technology, we present a new

architecture to substantially reduce hardware requirements by storing logical qubits distributed

in memory. This technology allows memory to be separated but local to computation in a

quantum system. We provide two direct mappings of the surface code to this new system with

virtual addressing and illustrate how syndrome extraction and error correction procedures

120

can be executed efficiently on the embedded surface code. Our embedding, combined with

the random-access nature of the memory is important for several reasons. It enables fast

transversal gates like the CNOT which can reduce program execution time by allowing faster

operations and indirectly through improved magic-state distillation protocols. It significantly

reduces the total number of transmon qubits required (10x for our analysis) which allows

larger code distance patches while using 10x fewer transmon qubits and classical control wires.

This allows error correction to be realized much sooner on small architectures. Our results

show superconducting cavity-based architectures offer a promising path towards quickly

scaling fault-tolerant quantum computation and can be evaluated with 10 logical qubits using

as few as 11 transmons and 9 cavities. We hope this work motivates further experimental

efforts and prompts industry to adopt and scale-up this architecture.

121

CNOT gate

mode z

logical
control

logical
target

Figure 4.6: The transversal CNOT enabled by our 2.5D architecture. The data qubits for the
control logical qubit are loaded into the transmons. Transmon-mediated CNOTs to mode z
for every data qubit perform the logical operation. This takes one timestep to perform, 6x
better than a lattice surgery CNOT.

(a) (b) (c)

Figure 4.7: Transformation from Natural to Compact. (a) Natural embedding: Only data
have attached cavities (not shown). (b) The transformation: Z ancilla (over yellow/light
areas) merge with the upper-right data transmon and X ancilla (over blue/dark areas) merge
with the lower-left data transmon. The opposite parings are key to keeping 4-way grid
connectivity. (c) Compact embedding: All ancilla transmons without attached cavities have
been removed. All remaining transmons have cavities and are used as both data and ancilla.

122

mode 0

mode 1

mode 2

cavity
cavity cavity

dataancilla
shared data/ancilla

logical
qubit

Figure 4.8: A 3D view of our Compact embedding. Shown at the top is the 2D grid of
transmon qubits. Attached below every transmon is a resonant cavity. Compact surface code
patches are shown stored, one in each mode. This deformed patch can be tiled in 2D.

Figure 4.9: The Compact lattice surgery operations to perform a CNOT. The logical operations
performed are identical to Figure 4.4 but the corresponding physical operations are arranged
as shown in Figure 4.7. This uses half as many transmons as Natural. As before, it takes 6
timesteps of d error correction cycles each.

Lz • Sz

|0〉 •
Lz • Sz

Lz • Sz

|0〉 H • • • • H

Lz Sz

1 0

1 A
2

1 0

1 B
0

12
D

0

1

23

B
0

12

3

3

1 A
0

12
C

0

1

23

A
0

12

3

C
0

1

23

A
0

12

3

C
0

3

B
0

1
D

0

1

23

B
0

12

3

D
0

1

23

B
0

12

3

D
0

23
3

1
C

0

1

23

A
0

12

3

C
0

23

0

3

3

D
2

0

3

3

C
0

1

23

A
0

12

3

D
0

1

23

B
0

12

3

Figure 4.10: The CNOT sequence for parity checks in Compact. Left: A quantum circuit
showing the hardware operations over time. Right: The CNOT execution order repeats
A0D2, A1D3, A2C0, A3C1, B0C2, B1C3, B2D0, B3D1. The AB and CD sequences run
in parallel but offset to ensure ancilla and data use do not conflict. CNOTs for A0D2 are
marked in red where an isolated circle indicates a transmon-mediated CNOT.

123

10−3 10−2

10−4

10−2

100 pth = 0.009

L
og

ic
al

E
rr
or

R
at
e

Baseline Error Threshold

10−3 10−2

10−4

10−2

100 pth = 0.009

Natural, All-At-Once

10−3 10−2

10−4

10−2

100 pth = 0.008

Natural, Interleaved

d = 3
d = 5
d = 7
d = 9
d = 11

threshold
10−3 10−2

10−4

10−2

100 pth = 0.008

Physical Error Rate

L
og

ic
a
l
E
rr
o
r
R
at
e

Compact All-At-Once

10−3 10−2

10−4

10−2

100 pth = 0.008

Compact Interleaved

Figure 4.11: Error thresholds for the baseline 2D architecture and Natural and Compact
variants of our 2.5D architecture. The thresholds are comparable to the baseline indicating
the space savings obtained in our system does not substantially reduce the error thresholds.
The slopes of the lines in this figure indicate, post-threshold, how much improvement in
physical error rates improve logical error rate. Except for the baseline, all use a cavity size of
10.

124

10−5 10−4 10−3 10−2

10−4

10−2

100

SC-SC Error Rate

L
o
gi
ca
l
E
rr
or

R
at
e

SC-SC Error Sensitivity

10−5 10−4 10−3 10−2

10−4

10−2

100

Load-Store Error Rate

Load-Store Error Sensitivity

10−5 10−4 10−3 10−2

10−4

10−2

100

SC-Mode Interaction Error Rate

SC-Mode Interaction Sensitivity

10−5 10−4 10−3 10−2 10−1

10−4

10−2

100

Cavity Coherence Time (s)

L
og

ic
al

E
rr
or

R
at
e

Cavity T1 Sensitivity

10−5 10−4 10−3 10−2 10−1

10−4

10−2

100

Transmon Coherence Time (s)

Transmon T1 Sensitivity

10−7 10−6 10−5 10−4

10−4

10−2

100

Load-Store Gate Duration (s)

Load-Store Gate Duration Sensitivity

10 20 30

10−4

10−2

100

Cavity Size k

Cavity Size Sensitivity

d = 3 d = 5 d = 7 d = 9 d = 11 initial value

Figure 4.12: Sensitivity of logical error rate to various error sources in Compact, Interleaved.
The logical error rates are most sensitive to physical error of Loads/Stores and SC-SC gates.
The logical error rate is less sensitive to the coherence times and mostly insensitive to effects
of load-store duration and cavity size.

125

Fa
st

Fa
st

Sm
al
l

Sm
al
l

VQ
ub

its

VQ
ub

its

VQ
ub

its
0

0.2

0.4

0.6

0.8

1

|T
⟩P

ro
d

u
ct

io
n

R
at

e

(a) Rate with 100 Patches

Fa
st

Fa
st

Sm
al
l

Sm
al
l

VQ
ub

its

VQ
ub

its

VQ
ub

its
0

50

100

150
#

P
at

ch
es

(b) Space To get 1 |T ⟩ / Step

Figure 4.13: (a) The T-state generation rates of three different circuits. Higher generation
rate is better. (b) The space, in terms of number of patches, required to produce a single |T ⟩
per time step. Lower is better. Fast [124] and Small [123] work in the surface code and do
not use memory. VQubits is implemented with transversal CNOTs in our 2.5D architecture.
All are based on [29].

126

CHAPTER 5

EVALUATING ARCHITECTURES AT THEIR LIMITS:

IMPROVED COMPILATION METHODS

In the previous chapters, we focused primarily on the evaluation of potential quantum

technologies, however, as we saw in the neutral atom case study, it was vital to adapt

compilation methods - how we transform an input program from the user into an executable

which can be run on directly on hardware - which optimized directly the constraints of the

underlying machine. Different technologies come with their own set of benefits and pitfalls

which must be accounted for in order to fairly evaluate and compare different implementations

of universal gate-based quantum computers. In the neutral atom case, for example, if we use

a generic compiler which decomposes every operation into 1 and 2 qubit gates initially then

we may miss opportunities to execute complex multiqubit instructions natively using fewer

communication operations. On one hand, it is valuable to adapt compilation methods to meet

the device specific constraints and in this vein we explore two such examples: compilation to

memory-equipped quantum technologies and graph partitioning for distributed, clustered

quantum hardware.

While many compilation optimizations can be hardware specific, it is also valuable to

consider more generic compilation methods, for example developing mapping and routing

strategies which directly account for device errors which vary spatially and temporally. In

general, quantum compilation passes rely on heuristics to obtain approximate solutions with

optimality infeasible. In some passes, such as in operation routing, this results in using only

partial, local information about circuit structure while neglecting more global structures.

In the case where operations are decomposed into 1 and 2 qubit gates, using only local

information can result in poor decisions about how to move qubits around the device. An

alternative is to hierarchically route operations, in the simplest example by routing qubits

participating Toffoli gates at once, rather that individually routing pairs.

127

20 40 60 80 100

0

10

20

30

Num. Qubits

A
v
g
.
Q
u
b
it

D
is
t.

Avg. Qubit Distance In Some Devices

LNN
2D

MEQC-2D

Figure 5.1: Average qubit distance on several instances of near-term target architectures.
Average qubit distance approximates how many SWAPs are necessary to interact an arbitrary
pair of qubits. LNN architectures scale extremely poorly in this metric resulting in a large
number of added gates and depth. 2D and MEQC architectures scale much better. We show
this translates into reduced number of gates and reduced depth as we scale into the future.

In either case - hardware specific or agnostic - developing better optimization tools is

invaluable for the development of quantum hardware. In the context of this thesis, relying

on generic tools developed with one particular backend hardware in mind results in unfair

comparison between competing underlying technologies. In this chapter we discuss four

examples of compiler optimizations and respective architectures when appropriate: the

development of a compiler for memory-equipped quantum architectures which relies on new

cavity technology to store multiple qubits worth of information in the same physical location,

a compiler for distributed but clustered quantum hardware, noise-aware mapping and routing,

and a first step in hierarchical routing.

5.1 Memory-Equipped Quantum Architectures: The Power of

Random Access

There are several competing technologies for the underlying implementation of qubits such as

trapped ions or superconducting circuits. Each of these technologies present unique challenges

to scalability, at least without error correction. For example, in superconducting technology

with limited connectivity between hardware qubits, numerous additional operations called

SWAPs must be added to an input program in order to execute it. For example, in Linear-

128

Figure 5.2: Both current and the proposed MEQC device. On the left is a LNN device where
adjacent superconducting transmons are coupled enabling two qubit interactions. In the
center is a 2D mesh architecture common among current manufacturers. On the right is
the proposed MEQC architecture with transmons arranged in a line. Each transmon has an
attached cavity which stores in memory multiple qubits. To operate on the qubits, they must
first be loaded into the transmons.

Nearest-Neighbor and a 2D grid topologies on the order of thousands of additional operations

must be inserted for execution, many of which are derived from increased average distance

between qubits, as shown in Figure 5.1. With so many additional operations, the input

programs are almost guaranteed to fail. These added operations dramatically increase the

execution time of these programs, moving far beyond the coherence limit of current qubits

(approximately the lifetime of qubits)1.

Past efforts have focused primarily on the compilation problem to these small, near-term

devices, such as variation aware mappings or SWAP reductions [135, 188, 120, 187]. These

techniques have improved the ability of programs to succeed on currently available devices, but

do not provide a path to scalability. There are inherit limits in current quantum architectures,

such as gate error rates or qubit coherence times. Even with improved error rates or longer

qubit lifetimes, the large gate and depth overheads induced by limited connectivity are too

cumbersome.

We instead propose a new architecture, Memory-Equipped Quantum Computing (MEQC),

the same underlying technology utilized in the prior VLQ work. We use superconducting

qubits equipped with resonator cavities which can store qubits in their modes. Recently,

small, physical prototypes of this have been realized and experimented with; however, the

1. The work in this section is entirely contributed by JMB with advisorial support from FTC and DS.

129

architectural implications of this new technology are almost entirely unexplored. For example,

in the original experiments, the proposed benefit of this technology was to store less frequently

used qubits in long coherent memory. Qubits stored in the modes of the attached cavity

are expected to have an order of magnitude longer coherence times than typical transmon

coherence times. This directly will reduce the frequency of idle errors on qubits which are

unused. Idle errors are due inability to isolate qubits perfectly from the environment while

still being able to manipulate them. In other superconducting devices, all qubits are roughly

equally subject to these errors. In the proposed architecture, stored qubits are more isolated,

resulting in protection from these idle errors.

This benefit is secondary to another hugely important feature for near- and intermediate-

term and that is connectivity. In the proposed architecture, the transmon-cavity technology

enables a gate to be applied, via transmon mediation, to any pair of qubits stored in the

same cavity. This random access to stored qubits greatly improves local connectivity between

qubits in these devices. This translates into significant reduction in compilation overhead,

reducing the need for large numbers of SWAPs, but only if the compilation procedure properly

accounts for these well connected regions. While experimentalists anticipated the coherence

times of cavities to be the critical advantage, we find in our proposed MEQC architecture the

primary benefit is this random access. For our proposed architecture, we provide a complete

compilation framework transforming input quantum circuits to ones executable in hardware

utilizing transmon-local memory. Our framework explicitly maximizes the advantages of both

of these features to minimize compilation overhead.

Neither of these gains come for free. In the proposed architecture, in order to execute a

gate we must first load the qubit from memory into a transmon which can be manipulated.

Therefore, operations on this architecture require on average two additional operations in the

form of Loads and Stores. For small programs, this architecture will require more operations

than others. Furthermore, since there is only a single operational transmon per cavity, this

130

prevents gates from being executed in parallel on qubits located in the same cavity. The

gains of this new architecture in terms of scalability outweigh these downsides, specifically by

reducing the number of total operations required to execute input programs.

In the remainder of this section we perform the following:

• We introduce a new scalable quantum architecture, MEQC, which takes advantage of

recent quantum memory-like hardware increasing local qubit connectivity and protects

infrequently used qubits from idle errors.

• We develop a full compilation framework for MEQC devices which includes heuristics to

maximize time spent in long coherent memory when unused and heuristics for mapping

and routing of qubits during execution which minimizes the total number of SWAP

operations inserted.

• We demonstrate our system reduces required gate and depth overhead substantially

over other competitive options and subsequently increases the chance to succeed.

• We analyze different architecture-specific design choices such as number of modes per

cavity, and top-level transmon connectivity. Furthermore, our system is able tolerate

up to 12x worse transmon-transmon interconnect error which is expected to be the

dominant source of error in systems utilizing transmon-cavity technology in near-term.

We conclude our architecture presents a path towards scalability in the near and

intermediate term.

5.1.1 Relevant Background

Near-Term Quantum Architectures

In the last several years, a number of competing technologies have emerged such as supercon-

ducting qubits and trapped ions. These have been physically realized in systems containing

131

|Ψ1⟩ H • H

|Ψ2⟩ H • H

|Ψ3⟩ H • H

|Ψ4⟩ H H

Mapping
=====⇒ |Ψ3⟩ |Ψ1⟩ |Ψ4⟩ |Ψ2⟩ Routing

=====⇒

|Ψ1⟩ H • × • × H

|Ψ2⟩ H • H

|Ψ3⟩ H × × H

|Ψ4⟩ H H

Figure 5.3: Compiling to near-term devices is a multi-step process. First we map the logical,
circuit qubits to the physical hardware qubits. Based on this placement and the input
program, we insert SWAPs in order to interact distant qubits. Here we compile a simple
quantum program, Bernstein-Vazirani, to a 4 qubit LNN architecture. Quantum programs,
like the input program on the left are a sequence of gates specified on qubits. In this example,
based on the given mapping, a pair of SWAPs are required to execute a CNOT between |Ψ3⟩
and |Ψ4⟩.

on the order of 10s of qubits [3, 4, 171]. These devices have limited connectivity with qubit

connections specified by an underlying topology. We represent this connectivity as a graph

with nodes corresponding to physical qubits and edges indicating valid two-qubit interactions.

Some near-term topologies are found in Figure 5.2. For superconducting technology, common

underlying topologies are Linear Nearest Neighbor (LNN) and 2D Mesh connectivity. We

use these two styles of architectures as baselines to compare the proposed memory-equipped

superconducting architecture (MEQC).

Compilation to Quantum Architectures

In the near-term, quantum programs are typically specified as quantum circuits. In order to

execute this program, the circuit is decomposed into only single and two qubit gates. Then,

the circuit level qubits are mapped to the physical qubits of the device. Because movement

operations are expensive, qubits which interact often in the circuit should be placed in close

proximity. For each operation specified in the circuit, if the qubits are already adjacent,

nothing additional needs to be done. If they are not adjacent, a sequence of SWAP operations

are inserted into the circuit to as to make the qubits adjacent on hardware. This process is

known as routing.

Due to error, it is critical to minimize the number of added operations to circuits, in this

132

case these SWAP operations. Special care should be taken to map qubits to hardware in an

effective manner. It is imperative to compile input programs in a way which requires the

least amount of additional overhead in terms of number of gates and in added depth (roughly

the length of the critical path from start to end of a program).

Errors on Quantum Devices

Quantum devices in the NISQ era are subjected to fairly significant error rates, somewhere

on the order of 1 per 100-1000 operations [186, 92]. As such, the output of a quantum

computation may be erroneous and it is common for a program to be run thousands of

times to collect a distribution of outputs. In an ideal case, the correct answer appears with

substantially higher probability than all of the other wrong answers.

There are a variety of different types of errors which can occur during the execution of

a program [147]. The first are coherent errors such as bit-flip or phase-flip errors. These

typically occur due to an error in the application of the gate to the qubits. The one and

two qubit error rates of the device approximate how often this type of error occurs. These

gates are easier to model and we expect this class of errors to be dominant in the near-term.

Another type of error is decoherence errors, such as amplitude damping. This type of error

is due to interaction with the environment; physical qubits are often kept isolated from the

environment to avoid these types of decoherence errors, however, perfect isolation cannot be

achieved because in order to do something useful we need to manipulate the qubits. The

T1 times, or coherence times, of qubits and the amount of time it takes to execute a gate

approximate how frequently these types of errors will occur. A good quantum device has long

coherence times and low error rates. Finally, one other common error is crosstalk which occurs

when multiple gates (usually two qubit gates) occur in parallel on adjacent sets of qubits.

Unfortunately, crosstalk error is hard to approximate in larger systems, but it is suspected

crosstalk in our proposed system is no worse than crosstalk in current superconducting

133

systems.

We are interested in designing a new type of scalable quantum architecture, specifically,

one with long coherent memory attached to computational transmon qubits. As such we are

unable to execute our benchmarks on realizations of these larger-scale devices. Instead, we

model error in this and other competing architecture and use simulation results to determine

performance. We use the Kraus operator formalism and density matrix simulation allowing

us to inject noise channels into an executable circuit specific for a target architecture and

approximate how well, here by measuring fidelity, the circuit performs compared to the ideal

no noise version.

Simulating quantum systems is hard, requiring a large amount (exponential) of memory

[82], and we are only able to do this for small benchmarks. An alternative approach is to

use the probabilities of errors and for every operation in the circuit randomly draw if an

error occurs or not. A successful program is one in which no errors are drawn, that is we

assume any error causes the program to fail. In practice, this isn’t always the case but this

method provides a simple way to underestimate the probability of success (overestimate the

probability of failure) for larger circuits on the order to 50 to 100 qubits. We use this worst-

case estimation for programs with many qubits which even with the largest supercomputers

would be unable to simulate.

5.1.2 A Memory-Equipped Quantum Architecture

In this section, we will present the proposed architecture termed “Memory-Equipped Quantum

Computing” due to long coherent resonator cavities which resembles memory attached to

each of the transmon, computational qubits. Recently, some key hardware components have

been physically realized [142]. These initial experiments are significant but limited in scope

and their architectural implications remain unexplored. We present an architecture which

takes advantage of these memory-like components. These components have several proposed

134

benefits but also have technology-dependent constraints.

Our proposed architecture, while focused on superconducting qubit technology can be

extended readily to other technologies such as ion trap devices. As we will see, our cavity

model well approximates the operation of an ion trap device, specifically in connectivity.

Furthermore, inter-trap communication technology is being demonstrated and is analogous to

the transmon-transmon interactions presented here [25], wallraff2018deterministic. As such,

our algorithms extend to these other technologies, though would require some modification

regarding Loads, Stores, etc. which are technology specific.

We focus on the specific technology of [141] which realizes a multi-mode quantum “memory,”

but in general we naturally support other hardware components which are memory-like. For

multi-mode quantum memory, at a high level qubits stored in a mode of a resonator cavity

which have long coherence times (T1), about an order of magnitude longer than traditional

superconducting qubits. When qubits are unused or idle they can be well isolated from the

environment in these cavities, reducing the frequency of decoherence errors occurring. We

consider these cavities as a sort of attached quantum memory to the actual computational

qubits, here realized as transmons. These transmons in theory can be strung together or

connected to each other in configurations similar to other superconducting technology.

The qubits stored in memory cannot be operated on except by special operations called

Load and Store (transmon-mode iSWAPs) which essentially transfer the qubit stored in

memory to the parent transmon. Therefore, in order to perform a single qubit operation on

a qubit Q1 it must first be loaded into a transmon, the operation then is enacted, and then

Q1 is replaced back into memory. In order to perform any action on the stored qubits, an

additional two gates must be inserted. However, the modes of the resonator can be accessed

like random access memory meaning this Load and Store pair is all that is needed. Besides

improved resistance to decoherence errors, our architecture has the added benefit of full

connectivity between qubits within the same cavity. This means we can interact pairs of

135

|Ψ1⟩ H •

|Ψ2⟩ H

Compilation
=======⇒

|T ⟩ L H S L H S L • S

|c1⟩ L S L S

|c2⟩ L S

Figure 5.4: Compiling a small program to a MEQC device. In this case we map the input
qubits |Ψ1⟩ and |Ψ2⟩ to one of the two available cavity modes. When executing the gates, we
first execute a Load to move the qubit to the connected transmon. The gate is then executed
and the qubit is returned to its original mode via a Store. We represent Loads as L− L and
Stores as S − S.

qubits in the same cavity without needing to add a large number of SWAPs as we would

typically. These transmon-resonator pairs are strung together as in Figure 5.2.

This does not mean SWAPs are unnecessary altogether. SWAPs are still required in order

to interact qubits in different cavities. To interact pairs of qubits located far away, we first

load both qubits into the top level transmons. Then we can swap them through a path of

connecting transmons at the top level. Once they are co-located in the same cavity, we can

perform a two qubit interaction as usual. This architecture reduces the average distance

between any pair of qubits meaning reduction in SWAP overhead. This of course comes at

the cost of having a required a Load and Store for every operation.

As an example, consider an input program as in Figure 5.4. On other near-term devices,

this program could executed as is, with no additional operations (depending on the chosen

gate set the CNOT may need to be converted). On this device, we require no SWAPs but

several sets of Loads and Stores.

One other notable difference is the scale of the proposed devices. Our architecture would

require many cavities, which occupy a much larger volume (though still small) than transmons.

This leads to the need for unique ways of connecting the transmon qubits which may result

in worse interconnect error rates. We explore our sensitivity to this later.

136

MEQC Compilation: Input Program to Executable

We now present our compilation framework which takes as input a program specified as a

quantum circuit and outputs a new circuit executable on our architecture, specifically maps

program qubits to modes of the hardware cavities and inserts the requisite Loads and Stores

as well as any SWAPs that may be necessary to move qubits between cavities. For all of

the steps presented below we assume the input circuit has been decomposed into a suitable

gate set (the set of gates executable on the device) consisting of only one and two qubit

interactions.

From this decomposed circuit, we may produce the interaction graph of the circuit, where

nodes in this graph correspond to the circuit qubits and the edges are weighted by the number

of interactions between the pairs of qubits. Specifically, if the nodes of the interaction graph

are q1, ..., qn then w(qi, qj) is the number of interactions between qi and qj in the input

program.

Initial Qubit Placement via Graph Partitioning

The first step in the compilation process is to generate a mapping from circuit level qubits to

hardware qubits. In this case, we want to map the qubits to modes of the available resonator

cavities. In order to avoid needing excessive SWAPs, we want to map qubits which frequently

interact to the same cavity. Because there is essentially full connectivity between qubits

stored in the same cavity, by placing frequently interacting qubits together we circumvent

the need for SWAPs.

Because each cavity is represented as a fully connected graph in the underlying topology,

we can perform initial placement by partitioning the interaction graph such that we minimize

the number of edge crossings between partitions. Specifically, if we have k many cavities

with exactly p resonant modes, we want to partition the interaction graph into k clusters

with maximum cluster size of p. We do not require a minimum size; if there are disconnected

137

components it will usually be worse to force clusters to be full. We allow for clusters to be

non-full by adding in dummy nodes which have weight zero to every real qubit. This problem

is well-studied, and we adapt a version of a heuristic Overall Extreme Exchange to do this

initial partitioning [106].

Alone, this is insufficient. We want to map the clusters to the physical cavities. If these

cavities were fully connected (i.e. every transmon was connected to every other transmon),

then every assignment of clusters to cavities is the same, that is in order to interact a pair

of qubits located in different cavities we would need exactly one SWAP. However, this is

not in general the case and the transmon connectivity may be much less well connected and

therefore if clusters which interact frequently are distant we may need many more SWAPs.

To avoid this, we want to locate these cavities nearby in terms of the device topology.

To handle this, we first choose any mapping of clusters to cavities. Let P1, ..., Pn be the

partitions produced by the partitioning algorithm, which may be empty, and let C1, ..., Cn

be the cavities of the machine. These cavities have a distance between them d(Ci, Cj) give

by the shortest path distance in the device topology. This initial mapping is an assignment

of partitions to cavities, a bijective map φ. During the following process, the qubits in the

cavities remain fixed and therefore the weight between partitions is fixed and is given as

W (Pi, Pj) =
∑
qi∈Pi

∑
qj∈Pj

w(qi, qj)

where if W is large then the partitions Pi and Pj should be located nearby each other.

We then repeat the following process. First we compute the gain, g, obtained by swapping

pairs of adjacent partitions. We want to compute if by swapping two partitions they in

general get closer to partitions they have a large weight with while simultaneously not getting

too far from partitions they were already close to with high weight. Specifically, for every

pair of partitions Pi, Pj with d(φ(Pi), φ(Pj)) = 1 we compute the following “forward gain”

and “backward gain”

138

QAOA QFT-Adder Generalized-Toffoli Rand-0.4 Rand-0.6
Num. Qubits 10 20 50 10 20 50 9 19 49 10 20 50 10 20 50

Num. of Gates 290 580 1450 45 165 975 119 289 799 19 72 483 24 127 757
Circuit Depth 125 203 276 14 29 74 52 73 95 6 11 27 7 17 37

Table 5.1: Benchmarks and some of their properties.

Model p1 p2 ∆1 ∆2 ∆ℓ T1 T1,t T1,c
SC-Current 0.001 0.01 100 ns 300 ns - 73 µs - -

MEQC-Current 0.001 0.01 100 ns 250 ns 150 ns - 150 µs 900 µs

Table 5.2: Error model details for current systems [92, 141].

gf (Pi, Pj) =
∑
Pk

d(ℓj ,ℓk)<d(ℓi,ℓk)

W (Pi, Pk)−W (Pj , Pk)

gb(Pi, Pj) =
∑
Pk

d(ℓj ,ℓk)>d(ℓi,ℓk)

W (Pj , Pk)−W (Pi, Pk)

where ℓi = φ(Pi). Then the net gain is given as

g(Pi, Pj) = gf + gb

We choose the pair Pi, Pj with g(Pi, Pj) > 0 maximized and swap them. Specifically, we

set φ(Pi), φ(Pj) = φ(Pj), φ(Pi) and repeat until no more swaps can be made. This heuristic

helps locate strongly weighted partitions together on the topology in order to reduce needed

SWAPs to interact qubits between them.

Scheduling and Routing: Inserting Loads, Stores, and SWAPs

In this section, we will briefly describe the baseline method for compilation to other current

proposed scalable architectures specifically the LNN and 2D mesh, the benchmarks we test

139

on, and methods of evaluation.

In other common quantum architectures, we only need to insert SWAPs in order to make

interacting qubits adjacent. Here, we must also insert Loads and Stores. For an input circuit,

we define a moment as the maximal set of operations which can be performed simultaneously,

or in parallel. We assume all input programs have operations occurring as soon as possible.

In each moment, there are operations which can already be executed, that is all one-qubit

operations and all two-qubit operations for which both qubits are co-located in the same

cavity. We execute these first, in an arbitrary order.

For each single qubit operation we insert a Load, moving the qubit into the cavity’s

transmon, execute the gate on the transmon, then Store the qubit in it’s original location in

the resonator. For a two qubit controlled gate, we insert a Load to move the control into the

transmon, we execute the gate, and then Store the control in its original location.

Operations which cannot be executed in this moment are ones in which the two qubits

are located in different cavities, call them q0 and q1. SWAPs are inserted which modify the

qubit mapping. We determine the sequence of SWAPs based on a heuristic algorithm with

two goals. The first is to minimize the total number of SWAPs inserted. The second is to

displace qubits in the cavities along the path from q0 to q1 which are least attached to their

current location, i.e will interact the least in the future with qubits in its current cavity.

We begin by computing an updated interaction graph for the program, considering

only future moments, updating edge weights of the original interaction graph to be only

the number of future interactions between pairs of qubits, w(qi, qj). Let d(Ci, Cj) be the

distances between cavities on the device, as before. Let λ be a map from qubits to cavities.

The distance between qubits q0, q1 is then given as d(λ(q0), λ(q1)). Then, for every cavity

Ci with d(λ(q0), Ci) = 1 and d(Ci, λ(q1) < d(λ(q0), λ(q1)) we compute the following gain to

swap q0 with some element qt ∈ Ci

140

gain(q0, qt) =
∑

qi∈Ci\qt
[w(q0, qi)− w(qt, qi)]+

∑
qi∈λ(q0)\q0

w(qt, qi)

In the same way we compute gain(q1, qt) for qt ∈ Ci for every Ci with d(λ(q1), Ci) = 1

and d(Ci, λ(q0)) < d(λ(q1), λ(q0)). This captures how much is gained (or lost) by making

a particular swap of qubits between cavities while maintaining we only consider cavities

strictly closer to the target qubit. This ensures we always get closer to our target. We choose

to swap the qubits with the greatest gain, and then repeat. Notice we allow either q0 or

q1 to be moved at each step, so the qubits may meet in some cavity between them. The

SWAPs are executed in order by Loading both qubits to be swapped into their transmons,

execute the SWAP between transmons and Store the qubits back into their new cavity. This

may introduce redundant Loads and Stores, but they can be eliminated via an optimization

procedure (Sec 5.1.2).

The gain value above can be modified to favor swapping with cavities which are closest

to the target, however, we choose this method because it allows us to sometimes anticipate

future interactions of qubits eliminating the need for some future SWAPs. Once all the

operations of a moment have been executed, we move to the next moment and perform the

same procedure.

Optimizations

The above algorithms produce a valid executable of an input circuit, however with more gates

than necessary due to an invariant which requires every operation to be initiated with a Load

and terminated with a Store. For example, if we wanted to execute two single qubit gates on

the same qubit in sequence we would need to insert two Loads and two Stores resulting in a

141

total of 6 gates. We can eliminate redundant Loads and Stores by simply checking if a Store

from a transmon to a cavity mode is followed immediately by a Load from the same mode to

the same transmon.

Another important optimization is to ensure that qubits are loaded from memory only

immediately when they are being used. Because T1 times are much lower in the transmon,

we do not want any qubit to idle there and instead want to make sure it persists in a cavity

for as long as its unused to protect it from decoherence errors. We perform both of these

optimizations in our compilation process.

Fundamental Trade Offs

The proposed architecture has several fundamental trade offs distinct from currently opera-

tional architectures. The first is the requirement for qubits to be loaded from memory in

order to be operated on. This forces a greater degree of sequentialism since only a single

operation per cavity can be performed at once. This also means, for every operation we need

approximately 3 times as many gates, the Load, the Store, and the gate itself.

This architecture has several benefits which outweigh these costs as we scale to larger

devices. When qubits are not being operated on they are stored in memory with coherence

times substantially longer than the computational qubits, the transmons. The cavities are

random access for the transmon, providing full connectivity between qubits in the same

cavity and reducing the average distance between qubits on the device meaning many fewer

SWAPs required. Parallelism is still achievable in this architecture. Each transmon-cavity

pair operates independently; a well-partitioned algorithm with some degree of parallelism

will still be executed in parallel.

142

Limitations and Potential

The underlying technology which serves as a basis for our proposed architecture is less

developed than currently available commercial hardware like that of IBM or Rigetti. However,

the current limits such as greater errors, are not fundamental and the technology is expected

to evolve with similar trajectory of other current hardware. Our goal is to demonstrate the

power of the unique advantages provided by equipping transmons with localized memory. In

order to evaluate this, we experiment with more speculative error rates and coherence times

which are believed to reflect the potential of the underlying hardware. One possible important

advantage not evaluated here is consistency. Current manufacturers have struggled to scale

current designs beyond handfuls of transmon qubits with consistently low error rates. With

MEQC, obtaining the same number of logical qubits requires fewer total transmons which

may help in reducing overall variability by manufacturing a smaller number but higher quality

set of transmons. MEQC, while currently in developmental stages, is not fundamentally

limited.

0 10 20 30 40 50
0

5,000

10,000

15,000

C
o
m
p
il
ed

N
u
m
.
G
at
es QFT-Adder

0 10 20 30 40 50
0

2,000

4,000

Generalized Toffoli, CnX

10 20 30 40 50
0

2,000

4,000

6,000

QAOA

0 10 20 30 40 50
0

2,000

4,000

6,000

C
om

p
il
ed

C
ir
cu

it
D
ep

th

0 10 20 30 40 50
0

500

1,000

Num. Qubits

10 20 30 40 50
0

1,000

2,000

MEQC-10-5-LNN 2D-5-10

Figure 5.5: The scaling of depth and gate count in a subset of our benchmarks. LNN-50 is
omitted because it adds substantially more gates than both of these architectures and as such
is not competitive. In many cases, 2D-5-10 is competitive with the proposed architecture,
however, clear separation emerges in all cases.

143

5.1.3 Experimental Setup

Compiling to LNN and 2D Mesh Architectures

The compilation procedure for these devices closely reflects the compilation procedure for our

proposed MEQC architecture. For each of these, we utilize the heuristic found in [135] to give

an initial mapping of circuit qubits to hardware qubits. Operations on these architectures

are assumed to be done in parallel if possible and no loading or storing is required. If an

operation cannot be done given the initial mapping, the interacting qubits are moved via

SWAPs to each other, the operation is performed, and then the qubits are moved back to

their original position. This common SWAP strategy assumes the initial qubit mapping is a

good one, minimizing the average total distance between qubits which interact frequently

and consequently number of required SWAPs.

In order to limit the number of gates applied to specific qubits on the 2D mesh architectures,

we look at all shortest paths between interacting qubits given by the bounding rectangle

between them. For each path in this rectangle, we choose the path which uses qubits with

the fewest number of past and future uses. SWAP paths are done in parallel if possible.

These devices are denoted as LNN-x and 2D-n-m where x is the number of qubits in the

chain, and n,m are the dimensions of the mesh. The average distance between qubits in 2D

and LNN architectures scales much worse than an MEQC device, as noted in Figure 5.1,

meaning on average to interact a pair of qubits many more SWAPs will be required even

with MEQC transmons connected poorly.

Benchmarks

We evaluate our proposed architecture compared to other competing designs by compiling a

range of both parallel and serial NISQ applications, see Table 5.8.

144

Arithmetic Circuits

Many important quantum algorithms like Shor’s algorithm make use of arithmetic circuits.

Many of these circuits like modular exponentiation are beyond the NISQ era. Other smaller

arithmetics like addition are much more practical. There are several efficient implementation

of these circuits like the Cuccaro Adder [46] and the QFT (Quantum Fourier Transform)

Adder [160]. These circuits are highly sequential for a majority of their execution. We focus

on the QFT Adder as a representative for this class of circuits. Unlike the Cuccaro adder,

the QFT adder has a highly parallel section in the middle of its execution.

The Generalized Toffoli

The Toffoli gate, and its generalized form, is well studied as well as its decompositions. It

has many practical uses in a number of applications over a wide range of sizes for example

in Grover’s search algorithm, larger arithmetic circuits, etc. We consider a generalized

decomposition using ancilla given by [15] which allows this operation to be highly parallel,

specifically in logarithmic depth.

QAOA - MAX-CUT

One of the most promising algorithms for NISQ era devices is optimization problems. One

such problem is QAOA, quantum approximate optimization algorithm [64], which can be used

to find approximation solutions to combinatorial optimization problems such as MAX-CUT.

The parallelism in this circuit is dependent on the underlying graph in the input problem.

We run our QAOA on 4-regular graphs with n nodes, n the number of qubits.

145

Random Circuits

Finally, we generate a number of random circuits which tend to have very low amounts

of parallelism. To generate these circuits, over n trials we select with probability p if an

interaction exists between two qubits. If it does, we insert a two qubit interaction between

them. We explore p = 0.4 and p = 0.6 for more sparse and more dense random circuits,

respectively.

Evaluation

When evaluating systems, we use the error model details laid out in Table 5.2, where p1 be

the probability of an error occurring on a single qubit operation, p2 be the probability of

an error occurring on a two qubit operation, ∆1 the duration of a one qubit gate, ∆2 the

duration of a two qubit gate, ∆ℓ the duration of a Load or Store, T1 the coherence time

of a superconducting qubit in a traditional architecture, T1,c the coherence time of a qubit

located in the cavity, and T1,t the coherence time of a qubit located in the transmon of a

MEQC device. A dash indicates the value is not relevant to the architecture.

For small circuits and devices, we are able to perform full density matrix simulations and

compute the fidelity of circuits compiled for different architectures with noise channels based

on various error models. For these simulations, we use typical superconducting error rates for

one and two qubit gate errors. Similarly, we use the T1 times provided from [92] for current

SC devices and T1 from [141] for the proposed MEQC architecture as well as gate times.

For these simulations, we use the Kraus operator formalism [147] for noise simulation in

which coherent error channels (bit-flip and phase-flip operators) are symmetric and amplitude

damping probability is a function of the T1 times. For our architecture, we have two different

T1 times and we apply amplitude damping as a function of the T1,c when qubits are present

in the cavity and T1,t when being operated on.

Unfortunately, simulation for even moderate sized programs is extremely hard. For larger

146

circuits we will use an approximation method to determine an estimate for the probability of

success of a circuit. For each gate in the circuit, with given probability we draw if an error

occurs. If any error occurs during the entire circuit, we consider the program to have failed.

This is only a rough approximation and will be directly related to the number of gates in the

circuit. In this model, we are unable to quantify the effect of amplitude damping as a result

of different T1 times, however, it should be noted in general longer coherence times mean

qubits are well isolated from the environment and more protected from decoherence errors.

A more general metric we will use is gate count and depth of the compiled circuit. Usually,

as the number of gates increases the probability of success drops and as the depth increases

our computation will approach the coherence limit and so it is best to keep both as small as

possible.

We explore a variety of different MEQC arrangements, specifically exploring different

cavity sizes as well as different arrangements of the transmons. We will abbreviate these

machines as MEQC-x-y-z with x the number of transmons, y the number of modes per cavity,

and z the arrangement of the transmons, for example LNN for an arrangement in a chain, 2D

to refer to a mesh, and Full for full connectivity between transmons. For example, MEQC-2-

5-LNN means an MEQC design with 2 transmons connected in a chain each with a single

attached cavity containing 5 resonant modes. This device would be able to store 10 qubits in

memory. A 2D MEQC can be built by building the chain of cavities in the 3rd dimension

[40] and any effect on communication error in the mesh is discussed in Section 5.1.4.

5.1.4 Results and Discussion

Depth and Gate Count Scaling

As noted before, in the proposed MEQC architecture every gate requires approximately two

additional operations, the Load and the Store. Furthermore, this approach induces a large

degree serialization, specifically when multiple operations are scheduled to be done on qubits

147

Q
FT

A
dd
er

C
n X

Q
A
O
A

R
an
d-
0.
4

R
an
d-
0.
6

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

G
at
es

P
os
t-
C
om

p
il
at
io
n

Q
FT

A
dd
er

C
n X

Q
A
O
A

R
an
d-
0.
4

R
an
d-
0.
6

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

C
ir
cu

it
D
ep

th
P
os
t-
C
om

p
il
a
ti
o
n

Input Program MEQC-10-5-LNN
MEQC-10-5-2D 2D-5-10

Figure 5.6: Post-compilation number of gates and circuit depth for 50 qubit input programs
on all benchmarks. In every case, MEQC with transmons arranged with as a chain or a mesh
shows improvement over a more standard 2D mesh qubit arrangement. The increase in gate
count in MEQC architectures is approximately 60% due to loads and stores and the rest
from SWAPs. By requiring fewer gates, we reduce the possibility of gate-induced error.

148

Benchmark Factor Gate Factor Depth
Improvement Improvement

QFT-Adder 2.46x 2.35x
CnX 1.44x 1.76x

QAOA 1.74x 2.06x
Rand-0.4 1.46x 1.46x
Rand-0.6 1.36x 1.29x

Harmonic Mean 1.62x 1.70x

Table 5.3: Summary of the improvements on 50 qubit benchmarks for MEQC-10-5-2D over
2D-5-10. In all cases, we see strict improvement.

2 3 4 5 6 7 8 9 10

0.4

0.6

0.8

1

Num. Qubits

F
id
el
it
y

Simulation of QFT-Adder

MEQC-2-5-LNN
MEQC-1-10-LNN

2D-2-5

Figure 5.7: Output fidelity for full density simulations of the QFT Adder on 2-10 qubits.
Even with more gates in these small instances, programs compiled to MEQC devices are
competitive, and at 10 qubits we see the start of advantage.

149

5 10 15 20
0

0.5

1

P
ro
b
ab

il
it
y
of

N
o
G
at
e
E
rr
or
s

QFT-Adder

5 10 15 20
0

0.5

1

Generalized Toffoli, CnX

5 10 15 20
0

5 · 10−2

0.1

0.15

QAOA

5 10 15 20
0

0.5

1

Num. Qubits

P
ro
b
ab

il
it
y
of

N
o
G
at
e
E
rr
or
s

Rand-0.4

5 10 15 20
0

0.5

Num. Qubits

Rand-0.6

MEQC-10-5-LNN-Current 2D-5-10-Current

Figure 5.8: An estimation of if no gate errors occur in small program instances. As noted,
this only accounts for errors due to one and two qubit gate errors and is not influenced
by decoherence errors. Larger is better and in general programs compiled to our proposed
architecture are competitive or better than a 2D architecture. We expect with better T1
times and better gate and depth scaling, our architecture will outperform, by increasing
the likelihood or successful execution, by a larger margin as programs scale and gate errors
improve. All data points were obtained by running 8000 trials of the input compiled input
program.

150

0 10 20 30 40 50

0.2
0.4
0.6
0.8
1

P
ro
b
ab

il
it
y
of

N
o
G
a
te

E
rr
o
rs

QFT-Adder

0 10 20 30 40 50
0.7

0.8

0.9

1

Generalized Toffoli, CnX

10 20 30 40 50

0.6

0.8

1

QAOA

MEQC-10-5-LNN-10xGates 2D-5-10-10xGates

Figure 5.9: With 100x better gates, we begin to see the effect of improved compilation.
Specifically, by reducing the total number of gates required for execution on the proposed
MEQC devices we reduce the probability of a program failing due to gate errors. Furthermore,
with substantially longer T1 times in cavity, qubits stored in memory are protected from
decoherence errors. All data points are obtained by running 8000 trials of the input program
compiled to the two target architectures.

in the same cavity they cannot be executed in parallel. However, what we lose in some

serialization and required extra operations, we make up for in full connectivity within cavity

and reduced average distance between qubits.

In Figure 5.5 we compare the scaling of gate counts and depth in a subset of the benchmarks

to a 2D and MEQC device. We note all LNN devices with 50 qubits insert dramatically

more SWAPs and are completely infeasible, and as such they are omitted. In Figure 5.5,

2D-5-10 and MEQC-5-10-LNN are competitive in both gate count and depth, with a clear

separation emerging as we reach the limits of the devices. In Figure 5.6, we compare circuit

depth and gate count post compilation for 50 qubit inputs for all benchmarks. In all cases,

the number of gates required for execution is much greater than the input program. However,

MEQC with transmons connected as either LNN or 2D both improve over a traditional 2D

architecture. We expect this separation to be even more pronounced as the devices scale up.

For reference, in MEQC architectures approximately 60% of added gates are loads and stores

with the remainder due to added SWAPs.

While we might first anticipate architectures which permit every qubit to be operated

on in parallel if needed to outperform our proposed architecture which forces only a small

151

subset of qubits to be operated on at a time, it turns out communication limitations on

other near-term devices eliminates this advantage. The number of SWAPs inserted to make

a program executable scales extremely poorly. A greater degree of connectivity in near-term

devices, and therefore reduced average distance between qubits, is critical to the performance

of a program. The insertion of SWAPs itself induces a degree of serialization even in 2D or

LNN architectures. Even if a program is written maximizing parallel operations, compilation

procedures to transform a program into one satisfying connectivity constraints can evaporate

this advantage.

Even though more traditional architectures provide the mechanism for large amounts

of parallelism, it may be extraneous. In this case, qubits are still subject to the same low

T1 times even when not being operated on. There is no mechanism to protect these qubits

while being unused. Initially, MEQC was appealing because it avoided this issue. When

qubits are not needed, they can be stored in memory with long T1 times. Random access

memory and full connectivity within cavity provides a much more realizable advantage. These

architectural details were previously unexplored by physical experimentalists, but MEQC

indicates these new memory technologies are a path towards scalability in the near-term.

Effect On Probability of Success: An Estimation

In non-error corrected devices an input program is run thousands of times to obtain a

distribution of answers and if run without error we expect the correct answer to appear with

the highest probability. These systems have moderate errors and intuitively we expect as the

number of gates required for execution increases the probability with with a program succeeds

diminishes. Similarly, as the depth of a program increases, perhaps because parallelism is

sequentialized or communication operations like SWAPs delay input program’s execution,

the qubits are more and more likely to be subject to decoherence errors. This also leads to

a decreased chance of the correct answer appearing with highest probability in the output

152

distribution.

In order to evaluate the effect of this system on the probability of success, we simulate

some small instances of the QFT-Adder benchmark. We perform full density simulations by

injecting into the final compiled circuit both coherent errors, or gate errors, with probability

given in Table 5.2 and decoherence errors, specifically depolarizing errors with probability

given as a function of the T1 times and gate durations of Table 5.2. Specifically, we used

Google’s quantum framework Cirq [2] which contains a full density simulator. We run this

simulator on the compiled circuit, which results in the ideal outcome matrix, and the same

circuit except with the appropriate error channels which results in a noisy outcome matrix.

We compute the pseudo-metric fidelity to evaluate how close the noisy outcome is to the

ideal outcome. In Figure 5.7 we show the resulting fidelities for one benchmark. Despite

fewer gates and less depth in small circuits compiled to the traditional 2D architecture,

MEQC is competitive and begins to edge out the 2D architecture beginning around 10 qubits,

indicating the significantly longer T1 times of qubits stored in memory do indeed protect

these qubits. MEQC-2D is roughly the same performance as MEQC-LNN in these small

programs and is omitted for clarity.

Unfortunately, modeling errors via simulation is difficult to do for even moderately sized

programs, requiring exponential space and time. More generally, we rely on an approximation

to account for how added gates affect the output of a program. We approximate the

probability of no gate errors occurring given the error rates in Table 5.2. This will not

account for decoherence errors due to interaction with the environment. However, the T1

times of the proposed device are significantly longer than those of other competing devices.

We expect with reduced depth and larger coherence times that programs compiled to MEQC

architectures will be less affected by this type of error as we scale, as indicated by the small

simulations.

Given current error rates of typical superconducting devices, on all benchmarks up to size

153

20 we notice competitive if not better probability of no gate errors as in Figure 5.8. In order

to better distinguish the effects of Figure 5.5 on this probability, in Figure 5.9 we explore

a potential set of futuristic error rates, specifically 100x better gate errors. In this case,

we begin to be able to identify the advantage of our proposed architecture with separation

emerging on even moderate sized input programs. We expect even greater advantage when

all error types are considered.

Sensitivity to Arrangement and Cavity Size

2 4 6 8 10
600

800

1,000

1,200

1,400

Modes Per Cavity

N
u
m

G
at
es

Sensitivity to Modes Per Cavity

LNN 2D
Full Baseline 2D Arch.

2 4 6 8 10

400

600

Modes Per Cavity

C
ir
cu
it
D
ep
th

Sensitivity to Modes Per Cavity

LNN 2D
Full Baseline 2D Arch.

Figure 5.10: Gates and depth of 20 qubit QFT Adder compiled to MEQC architectures
with different transmon connectivity and varying cavity sizes. As the number of qubits per
cavity increases, we expect the average qubit distance to be reduced meaning fewer SWAPs
necessary. However, in MEQC devices operations on qubits in the same cavity cannot be
done in parallel. Therefore, we expect lose some degree of parallelism, hence the increase in
depth.

One notable feature of Figure 5.6 is that better connected transmon qubits results in fewer

gates and less depth. In order to further evaluate this we study two adjustable parameters in

the proposed MEQC architecture: the number of modes in resonator cavity and the top-level

connectivity of the transmon qubits. Specifically, we study LNN, 2D, and Full connectivity

between the transmons as well as cavities of various size.

We expect as the number of modes in the cavity increase, the number of SWAPs, and

hence the total gates, required will decrease because of improved average qubit distance. The

compilation procedure will prefer to place qubits in these large, well-connected regions of the

154

0 2 4 6 8 10 12

30

40
MEQC Better

MEQC Worse

Factor of Interconnect ErrorN
u
m

Q
u
b
it
s,

Q
F
T
-A

d
d
er

Sensitivity to Increasing Interconnect Error

Crossover

Figure 5.11: Crossover points for various interconnect error rates of the QFT-Adder benchmark.
Interconnect in MEQC devices may not be as good as SWAPs in traditional architectures. We
study how much interconnect error we can tolerate in the NISQ target of 100 qubit devices
with 10−5 two qubit error rates. We find we can tolerate up to 12x worse interconnect errors,
provided programs of at least size 52.

machine because of this. However, as we noted previously, operations cannot be performed

in parallel on qubits co-located in the same cavity. We expect this corresponds to an increase

in overall program depth because of reduced parallel operations. We study this tradeoff in

Figure 5.10, in which we study three different arrangements of 10 transmons with increasing

cavity size for a 20 qubit QFT Adder input program.

While full connectivity shows consistent improvement, it is only very slight advantage.

We expect as the size of the input program increases this will become more important but for

near-term devices it suggests we do not need as well connected transmons and what matters

most is the well connectedness of the cavity itself. The best choice of modes per cavity here

is 5, a balance between number of gates and depth, though these curves are a function of

the particular input program. For example, for the 50 qubit QFT Adder of Figure 5.6 there

is only marginal improvement by moving to a 2D connectivity of the transmons. For other

benchmarks, this gain is larger. This also demonstrates if we know gate errors will be much

more dominant than idle errors, we can choose to favor designs with larger cavities.

155

Sensitivity to Interconnect Error Rates

In each of the previous studies, we assume the error rates of SWAPs and communication

between transmons of MEQC devices is the same as they would be in other more traditional

architectures. Demonstrations of this communication protocol have achieved less desirable

fidelity, sometimes with error several factors worse than SWAPs in current devices [83, 40].

We call this interconnect error. As we’ve seen, the scaling of both number of gates and depth

is better for the proposed MEQC device and we study the degree to which we can tolerate

this greater interconnect error.

In Figure 5.11, we use fixed 100 qubit machines, 2D-10-10 and MEQC-10-10-2D, with

two qubit error rates 1000x better than current error rates (e.g. two qubit errors of 10−5),

target machines for the NISQ era [23]. We scale the error rate of gates occurring between

transmons of the MEQC devices and use our approximation method as before to predict

the probability of no gate errors occurring. We locate the crossover points, the program size

where it becomes advantageous to use our architecture.

The crossover points are depicted in Figure 5.11 for error factors up to 12x worse

interconnect error on the QFT-Adder. We find for NISQ devices up to 100 qubits, a 2D

MEQC can tolerate up to 12x worse interconnect error as other 2D architectures. As the

number of qubits n grows, the random access advantage of MEQC grows substantially (as long

as n does not overly dominate the maximum memory bank size of 10 cavities per transmon).

5.2 Remarks

Current quantum architectures have limited connectivity requiring numerous additional

operations in the form of SWAPs to be inserted into the circuit in order to execute them.

These added operations often result in not only a lower probability of success but longer

execution time. We propose MEQC as an alternative option as we scale into the NISQ era to

machines with 50-100 qubits or more.

156

While initially, the proposed architecture seemed to gain advantage in long coherent qubit

memory attached to more traditional computational qubits, the real benefit was in the form

of greater connectivity. This reduces the number of SWAPs which must be executed which

tend to dominate in other more traditional architectures and subsequently the depth of the

compiled program. Fewer gates and lower depth translates directly into a greater chance for

success.

While we were only able to demonstrate the effects of long coherence times for cavity

qubits for small programs up to 10 qubits with full density simulations, we were able to

show that with gate errors expected in the NISQ era the proposed architecture wins out over

other proposals. Furthermore, we demonstrated even if interconnect errors in the proposed

devices are much worse than SWAP error rates, we can tolerate this as we scale to larger

sized programs.

5.3 Time-Sliced Quantum Circuit Partitioning for Modular

Architectures

Due developing technology for communicating between different quantum chips [25, 182], we

may expect quantum hardware to scale via a modular approach similar to how a classical

computer can be scaled increasing the number of processors not just the size of the processors.

Two of the leading quantum technologies, ion trap and superconducting physical qubits, are

already beginning to explore this avenue and experimentalists project modularity will be

the key to moving forward [30, 52, 59, 14, 127, 131, 91]. One such example for ion traps

is shown in Figure 5.13 where many trapped ion devices are connected via a single central

optical switch. Technology such as resonant busses in superconducting hardware or optical

communication techniques in ion trap devices will enable a more distributed approach to

quantum computing, having many smaller, well-connected devices with sparser and more

expensive non-local connections between them. Optimistically, due to current technology in

157

the near term, we expect these non-local communication operations to be somewhere between

5-100x higher latency than in-cluster communication2.

With cluster-based approaches becoming more prominent, new compiler techniques

for mapping and scheduling of quantum programs are needed. As the size of executable

computations increase it becomes more and more critical to employ program mappings

exhibiting both adaptivity of dynamic techniques and global optimization of static techniques.

Key to realizing both advantages is to simplify the problem. Since non-local communication is

dominant, we focus on only non-local costs. This simplification, along with static knowledge

of all control flow, allows us to map a program in many timeslices with substantial lookahead

for future program behavior. This approach would not be computationally tractable on a

non-clustered machine.

For devices with many modular components mapping quantum programs translates readily

to a graph partitioning problem with a goal of minimizing edge crossings between partitions.

This approach is standard in many classical applications such as high performance parallel

computing, etc. [101, 169, 166] with the goal of minimizing total latency. Here latency is

approximated by the total number of times qubits must be shuttled between different regions

of the device. Graph partitioning is known to be hard and heuristics are the dominant

approach [66, 153, 106, 86, 54].

While this problem is related to many problems in distributed or parallel computing,

there are a few very important distinctions. In a typical quantum program, the control

flow is statically known at compile time, meaning all interactions between qubits are known.

Furthermore, the no-cloning theorem states we cannot make copies of our data, meaning

non-local communication between clusters is required to interact data qubits. Finally, any

additional non-local operations affect not only latency as they would classically but are directly

related to the probability a program will succeed since operations in quantum computing are

2. This work was equally contributed to by JMB, CD and AH with original conceptualization by JMB.

158

Cle
an

MC

Cle
an

MT

Dir
ty

MT

Cu
cca

ro
add

er

QF
T add

er

Ra
ndo

m 0.2

Ra
ndo

m 0.4

Ra
ndo

m 0.8
0%

10%

20%

30%

40%

50%

60%

70%

Percentage of operations used for non-local communication

Static-OEE FGP-rOEE

Figure 5.12: Non-local communication overhead in circuits mapped to cluster-based machines.
Our new mapping scheme FPG-rOEE reduces the number of operations added for non-local
communication on all benchmarks.

159

Figure 5.13: An example modular architecture of qubits in individual ion traps connected
with optics proposed by Monroe et al [132]. Communication between traps is supported by
photon-mediated entanglement. Similar communication for superconducting qubits [40] can
facilitate modular architectures for that technology.

error prone and therefore reducing non-local communication is especially critical for successful

quantum program execution.

Our primary contribution is the development of a complete system for mapping quantum

programs to near-term cluster-based quantum architectures via graph partitioning techniques

where qubit interaction in-cluster is relatively free compared to expensive out-of-cluster

interaction. Our primary goal is to minimize the communication overhead by reducing the

number of low-bandwidth, high-latency operations such as moving qubits which are required

in order to execute a given quantum program. Rather than partitioning the circuit once to

obtain a generally good global assignment of the qubits to clusters, we find a sequence of

assignments, one for each time slice in the circuit. This fine-grained approach is much less

studied, especially for this class of architectures. With our techniques, we reduce the total

number of non-local communication operations by 89.8% in the best case and 60.9% in the

average case; Figure 5.12 shows a few examples of circuits compiled statically versus with our

methods.

160

q0 •
q1 • •
q2 • · · ·
q3
q4

q0 q2

q1 q3

q48 4
8

4

q0 q2

q1 q3

q4

q0 q2

q1 q3

q4

q0 q2

q1 q3

q4

t = 1 t = 2 t = 3

Figure 5.14: (Top) An example of a quantum program with single-qubit gates not shown.
The inputs are on the left and time flows to the right toward the outputs. The two-qubit
operations here are CNOT (controlled-NOT). (Bottom) The graph representations of the
quantum circuit of the above circuit. On the far left is the total interaction graph where each
edge is weighted by the total number of interactions for the whole circuit. To the right is the
sequence of time slice graphs, where an edge is only present if the qubits interact in the time
slice. The sum of all time slice graphs is the total interaction graph.

5.3.1 Relevant Background

In this section, we are motivated by a specific set of architectures or extensions to such

architectures, as in [142, 179, 20, 118]. In these devices, qubits are arranged into several

regions of high connectivity with expensive communication between the clusters, referred to

as non-local communication. These devices naturally lend themselves to mapping techniques

which utilize partitioning algorithms.

Quantum programs are often represented as circuit diagrams, for example the one in

Figure 5.14a. We define a time slice in a quantum program as a set of operations which are

parallel in the circuit representation of the program. We express time slices as a function of

both the circuit representation and limitations of the specific architecture. We also define a

time slice range as a set of contiguous time slices; we also refer to them as slices and when

no length is specified, it will be assumed to be of length 1.

For evaluation, we consider two primary metrics: the width and the depth of a circuit.

The width is the total number of qubits used and the depth, or the run time, is the total

number of time slices required to execute the program. Qubit movement operations which

161

are inserted in order to move interacting qubits into the same partition contribute to the

overall depth of the circuit.

We consider two abstract representations of quantum programs: the total interaction

graph and a sequence of time slice interaction graphs, examples of which are found in Figure

5.14b. In both representations, each qubit is a vertex and edges between qubits indicate

two-qubit operations acting on these qubits. In the total interaction graph, edges are weighted

by the total number of interactions between pairs of qubits. In time slice graphs, an edge

with weight 1 exists only if the pair of qubits interact at that time slice.

Graph Partitioning

Static Partitioning

Finding graph partitions is a well studied problem [66, 153, 106, 87] and is used frequently in

classical architecture. In this paper, we consider a variant of the problem which fixes the total

number of partitions and bounds the total number of elements in each partition. Specifically,

given a fixed number of partitions k, a maximum partition size p, and an undirected weighted

graph G with
∣∣V (G)

∣∣ ≤ k · p we want to find a k-way assignment of the vertices to partitions

such that the weight of edges between vertices in different partitions is minimized. This

can be rephrased in terms of statically mapping a quantum circuit to the aforementioned

architectures. Let the total interaction graph be G and let k and p fixed by the topology of

the architecture. Minimizing the edge weight between partitions corresponds to minimizing

the total number of swaps which must be executed.

Solving for an optimal k-way partition is known to be hard [36], but there exist many

algorithms which find approximate solutions [106, 153, 66]. There are several heuristic

solvers such as in [105, 104] which can be used to find approximate k-way partition of a

graph. However, they often cannot make guarantees about the size of the resulting partitions,

preventing us from using them for the fixed size partitioning problem.

162

Partitioning Over Time

Rather than considering a single graph to be partitioned we instead consider the problem

of generating a sequence of assignments of qubits to clusters, one for each moment of the

circuit. We want to minimize the total number of differences between consecutive assignments,

naturally corresponding to minimizing the total number of non-local communications between

clusters. This problem is much less explored than the prior approach. Partitioning in this

way guarantees interacting qubits will be placed in the same partition making the schedule

for the input program immediate. In the case of a static partition, which gives only the initial

mapping, a further step is needed to generate a schedule.

Optimal Compilation and Exact Solvers

It is too computationally expensive to find a true optimal solution for even reasonably sized

input programs. Use of constraint-based solvers has been used recently to look for optimal

and near-optimal solutions [135, 150, 148]. Unfortunately, these approaches will not scale

in the near-term let alone to larger, error-corrected devices. We explored the use of these

solvers but found them to be too slow. Finding a static mapping with SMT is impractical

with more than 30 to 40 qubits, and SMT partitioning over time is impractical when number

of qubits times the depth became more than 40.

5.3.2 Mapping Qubits to Clusters

We define an assignment as a set of partitions of the qubits, usually at a specific time slice.

We present algorithms which take a quantum circuit and output a path, defined as a sequence

of assignments of the qubits with the condition that every partitioning in the sequence is valid.

An assignment is valid if each pair of interacting qubits in a time slice are located within

the same partition. Finally, we define the non-local communication between consecutive

assignments as the total number of operations which must be executed to transition the

163

system from the first assignment to the second assignment. The total communication of a

path is the sum over all communication along the path.

Computing Non-local Communication

To compute the non-local communication overhead between consecutive assignments of n

qubits, we first construct a directed graph with multiple edges where the nodes in the graph

are the partitions and the edges indicate a qubit moving from partition i to partition j. We

extract all 2-cycles from this graph and remove those edges from the graph. We proceed

extracting all 3-cycles, and so on and record the number of k-cycles extracted as ck. When

there are no cycles remaining, the total number of remaining edges is r, and the total

communication overhead C is given by

C = r +
n∑

k=2

(k − 1) · ck

The remaining edges indicate a qubit swapping with an unused qubit. We repeat this

process for every pair of consecutive assignments in the path to compute the total non-local

communication of the path. These cycles specify where qubits will be moved with non-local

communication.

Baseline Non-local Communication

As a baseline we consider using a Static Mapping using an owner computes model, which

takes into account the full set of qubit interactions for the circuit, providing a generally good

assignment of the qubits for the entire duration of the program, called the static assignment.

At each time step in the circuit, a good static assignment ensures, on average, qubits are

not too far from other qubits they will interact with frequently. We find the assignment

which requires the fewest number of swaps from the static assignment but has each pair of

164

q0 q2

q1 q3

q4

q0 q2

q1 q3

q4∞+ 7 ∞+ 3

4

8

Figure 5.15: An example of a time slice graph with lookahead weights based on the circuit
in Figure 5.14. We take the graph from the left and add weight to the edges of qubits that
interact in the future. In this case, we take the weight equal to the number of times the
qubits will interact in the future.

interacting qubits in a common partition. These assignments form a path for the computation.

We refer to this method of path generation in conjunction with a partitioning algorithm, for

example Static Mapping with OEE (Overall Extreme Exchange, discussed further later) is

referred to as Static-OEE.

Fine Grained Partitioning

The primary approach we developed to dynamically map a circuit to hardware is Fine Grained

Partitioning (FGP). In this algorithm, we find an assignment at every time slice using the

time slice graphs. By default, these time slice graphs give only immediately local information

about the circuit but have no knowledge about upcoming interactions. Alone, they only

specify the constraints of which qubits interact in that time slice. The key advantage for this

method is using lookahead weights. The main idea is to construct modified time slice graphs

capturing more structure in the circuit than the default time slice graphs. We refer to these

graphs as time slice graphs with lookahead weights, or lookahead graphs.

To construct the lookahead graph at time t, we begin with the original time slice graph

and give the edges present infinite weight. For every pair of qubits we add the weight

wt(qi, qj) =
∑

t<m≤T
I(m, qi, qj) ·D(m− t)

to their edge, where D is some monotonically decreasing, non-negative function, which we

165

call the lookahead function, and I(m, qi, qj) is an indicator that is 1 if qi and qj interact in

time slice m and 0 otherwise, and T is the number of time slices in the circuit. The new time

slice graphs consider the remainder of the circuit, more heavily weighting sooner interactions.

The effectively infinite weight on edges between interacting qubits is present to guarantee

any assignment will place interacting qubits into the same partition. An example is shown in

Figure 5.15.

The final mapping of the qubits in our model is obtained by partitioning each of these time

slices. Iteratively, we find the next assignment with a partitioning algorithm, seeded with the

assignment obtained from the previous time slice. The first can choose a seed randomly or

use the static assignment (presented in 5.3.2). The new weights in the time slice graphs will

force any movement necessary in the partitioning algorithm. Together, these assignments

give us a valid path for the circuit to be mapped into our hardware.

Choosing the Partitioning Algorithm

We assume full connectivity within clusters and the ability to move between clusters. These

assumptions give us the liberty to tap into well studied partitioning algorithms. The

foundation of many partitioning algorithms is largely considered to be the Kernighan-Lin

heuristic for partitioning graphs with bounded partition sizes [106, 66, 153]. The KL heuristic

selects pairs of vertices in a graph to exchange between partitions based on the weights

between the vertices themselves and the total weight between the vertices and the partitions.

We consider a natural extension of the KL algorithm, Overall Extreme Exchange presented

by Park and Lee [153]. The OEE algorithm finds a sequence of pairs of vertices to exchange

and makes as many exchanges as give it an overall benefit. Using OEE, the Fine Grained

Partitioning scheme often over corrects (see Figure 5.18). If a qubit needs to interact in

another partition, then it can “drag along” a qubit it is about to interact with because OEE

attempts to minimize weight between partitions regardless of its relation to the previous or

166

next time slice graphs. Choosing an optimal partitioning algorithm would not give better

solutions to our non-local communication based mapping problem. Instead, we consider a

more relaxed version of a partitioning algorithm using the KL heuristic.

Relaxing the Partitioning Algorithm

We provide relaxed version of the algorithm better suited to generating a path over time,

called relaxed-OEE (rOEE). We run OEE until the partition is valid for the time slice (all

interacting qubits are in the same partition) and then make no more exchanges. This is

similar in approach to finding the time slice partitions in our Static Mapping approaches.

It is critically important we make our exchange choices using lookahead weights applied to

the time slice graphs. Choosing without information about the upcoming circuit provides no

insight into which qubits are beneficial to exchange. As a side benefit, making this change

strictly speeds up OEE, an already fast heuristic algorithm. Although a strict asymptotic

time bound for OEE is difficult to prove, rOEE never took more than a few seconds on any

instance it was given.

With such a significant non-local communication overhead improvement (see Figure 5.18),

this relaxed KL partitioning algorithm is much better suited for the problem at hand. It has

the ability to take into account local structure in the circuit and avoid over correcting and

swapping qubits unnecessarily.

5.3.3 Lookahead Weights

Finding a suitable lookahead weight function to use in Fine Grained Partitioning is necessary

to maximize the benefit gained from choosing our swaps appropriately between time slices.

We only require the lookahead function to be monotonically decreasing and non-negative.

Throughout this section, we denote our lookahead weight function as D.

167

No lookahead Const Expon Gauss
0

20

40

60

80

100

120

140

160

180

N
u
m
b
er

of
O
p
er
at
io
n
s
A
d
d
ed

Comparison of lookahead weight functions

σ=1/2 σ=1 σ=5 σ=20

Figure 5.16: The effect of different lookahead functions with various σ on non-local communi-
cation in the Cuccaro adder, a very regular circuit, with 76 data and 24 ancilla qubits using
FGP-rOEE. We see the exponential function outperforms the others for a circuit of highly
regular structure.

168

50 60 70 80 90

50

100

150

200

250

300

350

N
u
m
b
er

o
f
O
p
er
at
io
n
s
A
d
d
ed

Clean multi-control

60 80 100

20

40

60

80

100

120

Number of Qubits

Cuccaro adder

60 80 100

200

400

600

800

1,000

Random 0.4

FGP-rOEE const-1 FGP-rOEE expon-1 FGP-rOEE gauss-1

Figure 5.17: The non-local communication, measured in number of operations between
clusters added, for our representative benchmark circuits mapped by each FGP-rOEE using
different lookahead functions, each with σ = 1. The x-axis is the number of input/output
qubits. The remainder are used as ancilla for clean multi-control. The exponential function is
better on all instances of Clean multi-control and Cuccaro adder, and there is no substantial
advantage of one function over the others in the random circuit.

169

Clean multi-control Clean multi-target Dirty multi-target Cuccaro adder
Data Qubits 50 76 87 50 76 100 50 76 100 50 76 100

Depth 82 265 846 17 22 99 26 34 99 435 669 885
Two Qubit Op Count (Unmapped) 760 2040 2488 57 85 99 103 157 99 505 778 1030
Non-local Comm. Ops (Static-OEE) 288 1297 1928 35 60 169 34 31 169 159 243 365

Non-local Comm. Ops (FGP-rOEE expon-1) 55 218 299 21 31 72 17 19 72 19 42 76

QFT adder Random 0.2 Random 0.4 Random 0.8
Data Qubits 50 76 100 50 76 100 50 76 100 50 76 100

Depth 72 111 147 15 23 30 28 41 54 46 67 86
Two Qubit Op Count (Unmapped) 625 1444 2500 246 588 995 477 1156 1997 965 2260 3944
Non-local Comm. Ops (Static-OEE) 512 1144 2542 180 486 863 344 993 1795 682 1944 3462

Non-local Comm. Ops (FGP-rOEE expon-1) 131 329 541 96 275 498 181 552 1028 386 1070 1964

Table 5.4: A subset of our benchmarks. Clean multi-control has a maximum size of 87. With
more than 87 data qubits and fewer than 13 clean ancilla, the depth of the multi-control
decomposition is too large to run on these cluster-based machines with predicted error rates.

Natural Candidates

We explore a few natural candidate weighting functions from the huge space of possible

functions. In each of the functions we explore below, we vary a stretching factor or scale

σ which can be tuned for the given circuit, providing a trade-off between local and global

information.

Constant Function

D(n) =


1 n ≤ σ

0 n > σ

A constant function captures a fixed amount of local information in the circuit. This is just

the number of times the pair of qubits interact in the next σ time slices. For σ = 0, this

function corresponds to no lookahead applied.

Exponential Decay

D(n) = 2−n/σ

An exponential is a natural way to model a decaying precedence. When σ ≤ 1, any interaction

will always have a weight at least as high as the sum of interactions after it.

170

Gaussian Decay

D(n) = e−n
2/σ2

Similar to an exponential, a Gaussian is natural to model decaying precedence with more

weight given to local interactions.

Evaluating Lookahead Functions

To evaluate the choice of lookahead function as well as choice of σ, we study Fine Grained

Partitioning using rOEE with all of the above candidate functions with varying σ on bench-

marks of various types: those with lots of local structure (a quantum ripple carry adder),

those with very little structure (a random circuit), and those which lie somewhere in between

(a Generalized Toffoli decomposition).

In Figure 5.16, we show an example of a circuit which benefits from having a large scale

σ, the Cuccaro Adder [46]. In contrast, all of the random benchmarks benefit from having

small σ values, functions which decay quickly even for small n.

We also compare the different natural lookahead functions we described in the previous

section on some representative benchmarks in Figure 5.17. In these figures, we see the

exponential decay has a clear benefit over the rest in the structured circuits of the Multi-

Control gate and the Cuccaro Adder. In random circuits, there seems to be no clear benefit

to any of the lookahead functions, so long as they have some small lookahead scaling factor.

So, we use exponential decay with σ = 1 for our primary benchmarks.

5.3.4 Experimental Setup

All experiments were run on an Intel(R) Xeon(R) Silver 4100 CPU at 2.10 GHz with 128

GB of RAM with 32 cores running Ubuntu 16.04.5. Each test was run on a single core. Our

framework runs on Python 3.6.5 using Google’s Cirq framework for circuit processing and

171

for implementing our benchmarks [2]. For testing exact solvers, we used the Z3 SMT solver

[48], though results could not be obtained for the size of benchmarks tested because Z3 never

completes on problems this size.

Benchmarks

We benchmark the performance of our circuit mapping algorithms on some common sub-

circuits used in many algorithms (for example Shor’s and Grovers) and, for comparison, on

random circuits. Our selection of benchmarks covers a wide variety of internal structure. For

every benchmark, we use a representative cluster-based architecture with 100 qubits with 10

clusters each containing 10 qubits but our methods are not limited to any size. We sweep

over the number of qubits used from 50 to 100, when in the cases of a few benchmarks the

remaining qubits are available for use as either clean or dirty ancilla3.

Generalized Toffoli Gate

The Generalized Toffoli gate (CnU) is an n-controlled U gate for any single qubit unitary

U and is well studied [147, 57, 71, 26, 81]. A CnX gate works by performing an X gate on

the target conditioned on all control qubits being in the |1⟩ state. There are many known

decompositions [70, 84, 15] both with and without the use of ancilla. A complete description

of generating these circuits is given by [12], which provides a method for using clean ancilla.

Multi-Target Gate

The multi-target gate performs a single-qubit gate on many targets conditioned on a single

control qubit being in the |1⟩ state. This is useful in several applications such as one quantum

adder design [71] and can also be used in the implementation of error correcting codes [51].

3. An ancilla is a temporary quantum bit used often to reduce the depth or gate count of a circuit. “Clean”
indicates the initial state of the ancilla is known while “dirty” means the state is unknown.

172

These circuits can be generated with different numbers of ancilla (both clean and dirty), as

given by [12].

Arithmetic Circuits

Arithmetic circuits in quantum computing are typically used as subcircuits of much larger

algorithms like Shor’s factoring algorithm and are well studied [57, 71, 125]. Many arithmetic

circuits, such as modular exponentiation, lie either at the border or beyond the range of

NISQ era devices, typically requiring either error correction or large numbers of data ancilla

to execute. We examine two types of quantum adders - the Cuccaro Adder and the QFT

Adder - as representatives of a class of highly structured and highly regular arithmetic circuits

[46, 160].

Random Circuit

The gates presented above have a lot of regular structure when decomposed into circuits. We

want to contrast this with circuits with less structure.

We create these random circuits by picking some probability p and some number of

samples and generate an interaction between two qubits with probability p for each sample.

These circuits have the same structure as QAOA solving a min-cut problem on a random

graph with edge probability p, so these circuits are a realistic benchmark.

Circuit to Hardware

We begin with a quantum program which is specified at the gate level, consisting of one and

two qubit gates. We then generate the total interaction and time slice graphs, where we

assume gates are inserted at the earliest possible time. Any further optimization, such as

via commutivity or template matching, should be done prior to mapping the program to

173

hardware. We also take the specifications of the hardware, such as number of clusters and

the maximum size of the clusters, which constrain possible mappings.

We use our rOEE as our algorithm for Fine Grained Partitioning. Therefore, we pass the

total interaction graph to a static partitioning algorithm to obtain a good starting assignment.

This serves as a seed to rOEE rather than starting with a random assignment which may

introduce unnecessary starting communication. To the time slice graphs, we apply the

lookahead function to obtain the lookahead graphs. We run rOEE on this set of graphs to

obtain an assignment sequence such that at every time slice qubits which interact appear in

the same bucket. This assignment describes what non-local communication is added before

each slice. Finally, we compute the cost and insert the necessary movement operations into

the circuit to move interacting qubits into the same partition, this is a path. As a byproduct,

by generating a partitioning over time, we obtain a schedule of operations to be performed.

5.3.5 Results and Discussion

We run our mapping algorithms on each of our benchmark circuits. The results are shown in

Figure 5.18.

Baseline mapping and the original version of OEE perform worse than our best scheme

on any benchmark tested. Baseline mapping uses global structure of the graph, but often

maintains this structure too much throughout the execution of the circuit. This lack of

local awareness and rigid nature of the Static Mapping limits its usefulness. Most out of the

box graph partitioning algorithms are designed to only minimize the edge weight between

partitions; this will tend to over correct for local structure in the circuit. FGP can overcome

this limitation with its choice of partitioning algorithm. By relaxing the partitioning algorithm

and not requiring local optimality, we only move qubits until all interacting pairs are together,

we require far fewer non-local operations.

The most noticeable changes between FGP-OEE and FGP-rOEE are on the clean multi-

174

control gate with many controls and on the Cuccaro adder. Here, there are often consecutive,

overlapping operations with little parallelism. With this structure, after the first operation is

performed, the original OEE algorithm will exchange qubits to comply with the next time

slice for the next operation. OEE is required to separate qubits which will later interact.

To minimize the total crossing weight between partitions, more qubits are shuffled around,

usually towards this displaced qubit. In rOEE, this reshuffle optimization never takes place

because we terminate once each pair of interacting qubits in a time slice is placed in a common

partition. The reshuffling detriments the overall non-local communication when running the

circuit because of how often qubits will be displaced from their common interaction partners.

In rOEE, not reshuffling keeps the majority of the qubits in sufficiently good spots and the

displaced qubit has the opportunity to immediately move back with its interaction partners

later.

We include the algorithm Fixed Length Slicing as an alternative not presented in this

paper. It is a method with slower computation which explores grouping time slices at fixed

intervals. Fixed Length Slicing was consistently the best performing time slice range based

mapping algorithm, so we present it in our results. FLS-OEE only beats FGP-rOEE on

some instances of the multi-target benchmarks and consistently performs worse on all other

benchmarks.

In Figure 5.12, we show the percentage of operations used for non-local communication

for each of the benchmark circuits, and in Table 5.5 we show the percent improvement of our

algorithm over the baseline. On average, we save over 60% of the non-local communication

operations added. When each non-local communication operation is implemented in hardware,

the amount of time each takes is significantly longer than the operations between the qubits

in the clusters [134]. Based on current communication technology, we expect these non-local

communication operations to take anywhere from 5x to 100x longer than local in-cluster

operations. Furthermore, the choice in technology limits how many of these expensive

175

Figure 5.18: The non-local communication overhead for our benchmark circuits mapped by
each mapping algorithm. The x-axis is the number of qubits that are used in the circuit.
The y-axis is the number of non-local communication operations inserted to make the circuit
executable in our hardware model. In Clean multi-control, Clean multi-target, and Dirty
multi-target, the remainder of the 100 qubits are used as ancilla (clean or dirty determined
by the circuit name). FGP-rOEE outperforms all other mapping algorithms on all but the
multi-target circuits, and shows substantial improvement over the static baseline. As the
size of the circuit increases, rOEE tends to outperform by a greater margin, indicating scales
better into the future.

operations can be performed in parallel.

In Table 5.6 we compute the estimated running time based on this ratio of costs and

show that by substantially reducing the non-local communication via FGP-rOEE, we can

drastically reduce the expected run time. We compare our algorithm to the baseline when

non-local communication can be performed in parallel (such as in optically connected ion

trap devices) and when it is forced to occur sequentially (as when using a resonant bus in

superconducting devices). Based on current technology, a 5-10x multiplier is optimistic while

100x is realistic in the near term.

176

Table 5.5: Comparing Static-OEE against FGP-rOEE over all benchmarked instances. We ob-
tain improvement across the board with the worst case still reducing non-local communication
by 22.6%.

% Reduction min max gmean
Clean multi-control 78.1 84.9 81.9
Clean multi-target 30.8 59.6 44.7
Dirty multi-target 22.6 65.1 39.9

Cuccaro adder 79.1 89.8 85.0
QFT adder 76.6 84.5 81.5
Random 0.2 52.4 57.8 55.3
Random 0.4 53.6 59.0 57.0
Random 0.8 57.0 60.4 59.1
Aggregate 22.6 89.8 60.9

Table 5.6: Estimated execution time of the clean multi-control benchmark with 76 data
qubits and 24 ancilla. Two-qubit gates take 300ns [92] and the multiplier indicates how many
times longer non-local communication operations take.

Sequential Comm. Parallel Comm.
Multiplier Static-OEE FGP-rOEE Static-OEE FGP-rOEE

5x 2.0 ms 0.41 ms 0.67 ms 0.26 ms
10x 4.0 ms 0.73 ms 1.3 ms 0.43 ms
100x 39 ms 6.6 ms 12 ms 3.6 ms

177

5.3.6 Remarks

Alternative to using near-optimal graph partitioning algorithms to find a single static assign-

ment for an entire circuit, we show considering the locality in a circuit during a mapping

gives a reduction in the total non-local communication required when running a quantum

circuit. There is a natural restriction in using static mappings suggesting the problem of

mapping qubits to cluster-based architectures has a different structure than partitioning a

single graph for minimum weight between the partitions. Our modification to OEE no longer

attempts to optimize the weights at every time slice. It is much more effective in practice to

guide the partitioning based on heuristics and not to find the optimal value for every time

slice. Optimality at every time slice does not correspond to a global reduction in non-local

communication overhead.

We propose to use similar schemes for other cluster-based quantum hardware, especially

those based on internally connected clusters. In our model, the different clusters of the

architecture are also very well connected, but is not limited to only this specific instance of a

clustered architecture.

Our proposed algorithm produces partitions based on a simplifying assumption about the

connectivity of the clusters because the cost of non-local communication is substantially more

expensive than any in-cluster operations. Our method can be adapted to other cluster-based

architectures by first applying our partitioning algorithm to obtain good clusters of operations

and then adding a device-specific scheduling algorithm for scheduling much cheaper in-cluster

operations.

A relaxed version with well chosen lookahead functions of a heuristic outperforms a well

selected initial static mapping. Using lookahead weights has been explored previously, as

in [188], and more can be done to better choose the lookahead function, for example based

on a metric of circuit regularity. Techniques for mapping which attempt to solve for near

optimal mappings will not scale and instead heuristics will be the dominant approach. Our

178

approach is computationally tractable and adaptable to changes in machine architecture,

such as additional or varied size clusters.

Non-local communication overhead in quantum programs makes up a large portion of

all operations performed, therefore, minimizing non-local communication is critical. In

recent hardware [134], the cost of moving between clusters makes non-trivial computation

impossible with current standards for mapping qubits to hardware. Reducing this hardware

bottleneck or finding algorithms to reduce the non-local communication are critical for

quantum computation. We reduce this cost substantially in cluster-based architectures.

5.4 Noise-Adaptive Compiler Mappings for Noisy Intermediate

Scale Quantum Computers

4

The term Noisy Intermediate-Scale Quantum (NISQ) computers refer to the current

and near-term QC systems which have roughly 1000 qubits or fewer—typically too small

to employ error correction codes (ECC) [155]. While resource constrained, NISQ machines

offer an important step forward: if used properly, they can demonstrate QC applications

generating useful results. Making good use of NISQ hardware, however, requires very efficient,

near-optimal mappings of algorithms onto them. This section proposes a suite of optimization-

and heuristic-based approaches for mapping applications onto NISQ hardware, and evaluates

them by running the mapped executables on a public 16-qubit IBM QC, IBMQ 16 Rueschlikon

referred to usually as IBMQ16 but has since been retired [93].

A good mapping of a quantum algorithm onto NISQ hardware requires first an intelligent

initial placement of the program qubits onto the hardware qubits in order to reduce commu-

nication requirements. Second, it requires efficient orchestration of operations both for the

4. JMB’s contributions include performance testing, refinement of the solver model, and design of the
scalable heuristics.

179

(a) Coherence time (T2) (b) CNOT gate error rate
Figure 5.19: Daily variations in qubit coherence time (larger is better) and gate error rates
(lower is better) in IBMQ 16 Rueschlikon. The qubits and gates that are most or least reliable
are different across days.

computation itself, and also for the additional SWAP operations which communicate state

between hardware qubits. Third and most importantly, mapping decisions must reduce the

likelihood of operational or decoherence errors which cause the program run to fail to achieve

a useful answer. Our work performs mappings using the daily calibration data provided

by IBM in order to avoid using unreliable qubits and to prioritize qubit positioning which

reduces the likelihood of communication (SWAP) errors. For example, Fig. 5.19 shows large

daily variations in the gate error rates and coherence times of the qubits of the IBMQ16

instance on which we experiment. Our contributions are:

• We develop an LLVM [117] compiler which optimally or near-optimally maps quantum

programs to OpenQASM assembly code [45] and then to the web-accessible IBMQ16

machine for real-system evaluation. For 12 QC programs written in the Scaffold

quantum programming language [7], we use this framework to explore how optimal and

heuristic mapping methods, qubit movement policies, and the intelligent adaptation to

machine calibration data can affect the quality of the compiled code.

• In particular, our compiler provides up to 1.68X gain in execution time and 9X gain in

success rate over an optimal but calibration-unaware baseline. Our compiler obtains an

average 2.9X improvement (up to 18X) in success rate, and an average 2.7X improvement

in execution time (up to 6X), compared to the IBM Qiskit compiler [8], which is the

180

industry standard for IBMQ16.

• Although compile-time is not a first-order design goal, QC compilers must scale well

enough for intelligent compilation to be tractable throughout NISQ-range machines.

We show that our methods based on Satisfiability Modulo Theory (SMT) scale well up

to 32 qubits. Further, we have developed calibration-aware heuristic methods which

produce executables with similar reliability and execution time as the SMT approaches,

but with more scalable compile-times.

• Across the 12 benchmarks, we study the influence of application instruction mix and

time varying qubit error characteristics on compiled programs. For example, applications

for which our compiler can identify zero-qubit-movement mappings have substantially

higher likelihood of success (up to 2.8x), compared to programs which require even a

single qubit movement operation.

Overall, NISQ systems are important to QC progress because their success in demon-

strating quantum supremacy and running small but useful QC programs is an important

stepping-stone in the maturation of this technology. In its leveraging of intelligent and

calibration-aware mapping techniques to significantly improve execution time and success

rate of quantum executions, our tool makes an important contribution in helping close the

gap to quantum supremacy and advancing toward practical QC.

5.4.1 Relevant Background

NISQ Systems

NISQ systems are near-term experimental quantum systems expected to scale to a few

hundred qubits, paving the way towards large-scale QC [155]. Qubits in NISQ systems have

short coherence time, high gate error rates and and limited qubit connectivity. They are

typically too resource-constrained to implement error-correcting codes (ECC).

181

Underlying systems implement a set of 1- and 2-qubit operations, akin to an instruction

set. For 2-qubit operations, many machines only support hardware CNOT gates being

performed between adjacent qubits, based on the topology. To perform CNOT gates between

non-adjacent qubits, we should use SWAP operations between adjacent qubits until the two

of interest for a given CNOT computation are in adjacent locations. Each SWAP operation

between two adjacent qubits itself requires 3 CNOT gates. Our compiler aims to reduce the

time cost of these operations. More importantly, each one of these operations incurs some

error, so a key goal of our optimization is to reduce operation counts and error rates in order

to increase the likelihood of an overall successful run. We refer to this as reliability and it is

the primary design goal of this work.

In addition to compiler optimization based on attributes like gate counts, our approach also

adapts based on publicly-available experimental data. In particular, the IBM Q machines are

calibrated twice a day. Once a day there are public postings of experimental measurements of

key properties: qubit relaxation time (T1), coherence time (T2), gate errors and readout errors

[94]. From daily calibration logs, we observe that qubit coherence time is 70 microseconds on

average, but varies up to 9.2x spatially and temporally across qubits and daily calibrations.

The average error rate for CNOTs is 0.04, readouts is 0.07 and single qubit gates is 0.002.

CNOT and readout error rates exhibit up to 9.0x and 5.9x variation across qubits and

calibration cycles, respectively. CNOT gate durations vary up to 1.8 across qubits.

These error rates imply only very short programs can execute reliably on the machine.

A program with more than 16 CNOT operations, has less than 50% chance of executing

correctly. A key goal of our compiler optimizations is to use this calibration data to boost

the success rate of individual program runs, by avoiding portions of the machine with poor

coherence, operation, or readout errors.

182

p0 H • H

p1 H • H

p2 H • H

p3 X H H

(a) Bernstein-Vazirani Intermediate
Representation

(b) Naive mapping

(c) Optimized mapping

Figure 5.20: Figure (a) shows the intermediate representation of the Bernstein-Vazirani
algorithm on 4 qubits (BV4). Each qubit is represented by a line. X and H are single qubit
gates. The CNOT gates from each qubit p0,1,2 to p3 are marked by vertical connectors. The
measurement or readout operation is indicated by the meter. Figure (b) shows a mapping
where qubit movement is required. The numbers on the labelled edges indicate the CNOT
gate error (×10−2). In this mapping, an error-prone CNOT is used. Figure (c) shows an
optimized mapping where qubit movement is not required and unreliable hardware CNOTs
(crossed) and unreliable qubits (hatched) are avoided.

5.4.2 Overview of our Compilation Framework

Our framework takes a Scaffold program [7] as input, and produces compiled OpenQASM

code [45]. The Scaffold quantum programming language extends C with quantum gates.

Scaffold programs are independent of the machine topology, size and qubit properties. The

ScaffCC compiler [100, 164] performs automatic gate and rotation decomposition, implements

high level operations like the Toffoli gate and produces an LLVM Intermediate Representation

(IR) [117] of the program. The IR version of the program includes the qubits required for

each operation and the data dependencies between operations. For example, Figure 5.20a

shows the IR for the simple 4-qubit Bernstein-Vazirani algorithm which is chosen because it

fits on machines of this size and has an answer which can be calculated to check our results

[21]. We use the program IR as a starting point for the noise-aware backend described here.

Starting from the LLVM IR, the noise-aware backend has three primary tasks. First,

qubits in the program must be mapped to distinct qubits in the hardware implementation,

183

QC
Application in
LLVM IR

Machine
Configuration
and Calibration
Details

Compiler Options
(Objective,
Routing Policy,
Solver etc.)

Compiler
Generate Configuration Constraints

Mapping
Constraints

Scheduling
Constraints

Routing
Constraints

Generate Data-Aware Constraints

Readout Error
Constraints

CNOT Time
Constraints

CNOT Error
Constraints

Solve Constrained Optimization
Qubit Mapping, Gate Scheduling and Routing

Executable OpenQASM Code Generation

OpenQASM for
Current
Machine State

Figure 5.21: Optimization Pipeline. Inputs are a QC program, details about the specific
hardware configuration, and a set of options, such as routing policy and solver approach.
From these, compiler generates a set of appropriate constraints and uses them to map
program qubits to hardware qubits and schedule operations. Finally, the compiler generates
an executable version of the program, here for IBMQ16.

preferably in a way that reduces qubit state movement required as the program executes.

Second, the compiler performs operation scheduling while respecting data dependencies

between gates. To accomplish this, each operation is assigned a start time constraint, and

the scheduler emits control code that enforces this. Third, to perform 2-qubit operations on

non-adjacent qubits, the compiler should orchestrate communication through SWAPs.

That is, it automatically inserts the required SWAP operations to bring the qubits adjacent

to each other before the operation is performed.

Consider a simple compilation method where program qubits are assigned to random

qubits on the hardware. Figure 5.20b shows such a mapping for the BV4 IR. In this mapping,

the compiler must insert qubit movement or swap operations to perform the CNOT gates

between p1 and p3. In contrast, the mapping shown in Figure 5.20c requires no qubit

movement because the qubits required for the CNOTs are adjacent. In addition, this mapping

is noise-aware; namely, it uses the calibration data to select a mapping that avoids using

qubits with low coherence time and gates with high error rates. Our compiler uses machine

184

Algorithm Objective Parameters Constraints

Qiskit Heuristic, minimize duration - -

T-SMT SMT solver, minimize duration Routing policy: RR, 1BP 1-4, 7-9

T-SMT⋆ SMT solver, minimize duration Routing policy: RR, 1BP 1-3, 5-9

R-SMT⋆ SMT solver, maximize reliability
Routing policy: 1BP
Readout weight ω ∈ [0, 1]

1-3, 5-6, 9, 10-11

GreedyV⋆ Heuristic, maximize reliability Routing Policy: Best Path -

GreedyE⋆ Heuristic, maximize reliability Routing Policy: Best Path -

Table 5.7: List of compiler configurations used in our study. The IBM Qiskit 0.5.7 compiler
is used as a the baseline. The use of calibration data is marked by a ⋆.

topology and calibration data to automatically generate such mappings for a given program.

Our primary goal is to maximize the likelihood that the program runs successfully. To

accomplish this, we have three main strategies. First, the compiler places program qubits

on hardware locations with high reliability, based on the calibration data. The compiler

considers the effect of errors due to CNOTs and readouts; for this machine, single-qubit

error rates are considerably smaller so our formulation chooses to ignore them. Second, to

mitigate errors due to decoherence, the compiler should schedule all gates to finish before the

coherence time of the hardware qubits (intuitively analogous to making use of data within the

refresh interval of a DRAM). Third, the compiler optimizes for the qubit topology to avoid

unnecessary qubit movement. Qubit movement not only increases execution duration, but

more importantly leads to high error rates since each qubit SWAP operation includes three

error-prone CNOTs. We have designed a set of optimal and heuristic compilation variants to

accomplish these goals.

Table 5.7 enumerates the full set of compiler variants we consider in this paper. In

addition to the publicly-available IBM Qiskit compiler we use as a comparative baseline, we

also develop several approaches which are either truly optimization-based or heuristic. We

give an overview of these approaches here, before offering details in the following section.

185

Optimization-Based Mappings

In the optimization-based variants of our compiler, we implement the above goals by posing

the compilation problem as a constrained optimization problem to be solved by a satisfiability

modulo theory (SMT) solver. The optimization problem has variables and constraints which

express program information, machine topology constraints, and machine error information.

The variables include program qubit locations, gate start times and routing paths. The

constraints specify qubit mappings should be distinct, gates should start in the program

dependency order, and routing paths should be non-overlapping. Fig. 5.21 summarizes

the general compilation pipeline for the solver-based approach, beginning with an IR of a

quantum program and resulting in execution-ready code.

The optimization objective is to maximize the reliability or success rate of program runs.

We express the reliability of the program as the product of the reliability of all gates in

the program. (Because of the degree of entanglement in QC programs, this serves as a

useful measure of overall correctness.) For a given qubit mapping, the solver determines

the reliability of each program CNOT, readout operation and single qubit gate. It then

computes an overall reliability score for the mapping. For the optimization variants which

are noise-aware, the solver can maximize the reliability score over all mappings by tracking

and adapting to the error rates, coherence limits, and qubit movement based on program

qubit locations.

Given a target machine, our framework converts the program IR into an optimization

problem by expressing an objective and constraints that can be solved using an Satisfiability

Modulo Theory (SMT) solver [48, 24]. For classical programs, these solvers have been used to

obtain optimal hardware mapping and scheduling for spatial architectures [149], but to our

knowledge, ours is the first use of them for QC systems. SMT solvers take as input a set of

linear constraints, and an objective function and search for an optimal solution. Although the

reliability objective is a product of individual gate reliability scores (and therefore non-linear),

186

we linearize the objective by instead optimizing for the additive logarithms of the reliability

scores. An SMT solver can then be invoked to find a mapping which maximizes the log

reliability.

Does maximizing the reliability score achieve our goal of increasing program

success rate?

Optimizing for the reliability score induces the compiler to place qubits at locations where

CNOT and readout errors are low. It also indirectly minimizes qubit movement because

CNOTs between far away qubits are error-prone. For example, for the BV4 IR, consider

mapping shown in Figure 5.20b. Here, the reliability of the CNOT between p0 and p3 is 0.8

(80% chance of executing correctly), while the reliability of the CNOT between p1 and p3 is

only 0.655. Thus, the compiler will choose mappings where communicating qubits are close

together, minimizing unnecessary qubit movement and allowing gates to be scheduled to

finish within the coherence window.

Heuristic Mappings

We also determine whether heuristic techniques can approach the optimization-based results,

but with better scalability. For this, we develop two comparative algorithms based on greedy

heuristics. The greedy heuristics analyze the CNOTs in the program IR, and determine a

gate frequency for each qubit and program CNOT.

We explore two policies. In the first policy, GreedyV⋆, we place program qubits on

hardware qubits in the heaviest qubit first order. In the second policy, GreedyE⋆, we place

program CNOTs and their control and target qubits in a heaviest edge first order. Intuitively,

the first policy aims to place qubits which use more CNOTs in locations which have good

5. p1 has to swap once to move to a location adjacent to p3. The net reliability of the 3 CNOTs required
to perform the SWAP is 0.93 = 0.729. Then the actual CNOT operation can be performed with reliability
0.9. Hence, the overall CNOT reliability is 0.65.

187

CNOT and readout error rates. The second policy places pairs of qubits which have the most

frequent CNOTs first.

5.4.3 Optimal Compilation: Detailed Approach

Notations and Assumptions

Let Q be the set of program qubits. Let H be the set of hardware qubits. In this work, we

assume hardware qubits are arranged as a 2-D grid of dimensions Mx ×My. Likewise, due

to the connectivity characteristics of IBMQ16, we assume only hardware qubits which are

adjacent in the grid are permitted to participate in two qubit operations. More elaborate

topology and routing assumptions can be handled in future work. For q ∈ Q, the ordered

pair (q.x, q.y) corresponds to the location of the hardware qubit assigned to the program

qubit q. Let G be the set of operations in the program. This includes single-qubit gates

such as H, and the 2-qubit CNOT gate and qubit measurement or Readout operations.

CNOT and Readout operations dominate the reliability outcomes, so the reliability score

focuses on them. The subset of CNOT gates is denoted by GCNOT , and the subset of

readout (qubit measurement) operations is GReadout. For each gate g in the program, the

start time is denoted by (g.τ), duration by (g.δ), and reliability by (g.ϵ). To denote data

dependencies between the operations, we use a binary relation > on the gates, so that for

two operations g2 > g1 if g2 depends on g1. Although the reliability objective focuses on a

subset of operations, we map and schedule all operations (including single-qubit operations)

to provide a valid real-system executable.

188

Constraints

Qubit Mapping Constraints

Constraint 5.1, guarantees all program qubits are mapped to actual hardware qubits. Con-

straint 5.2 guarantees each program qubit is assigned a unique location.

∀q ∈ Q : 0 ≤ q.x < Mx ∧ 0 ≤ q.y < My (5.1)

∀q1, q2 ∈ Q : q1.x ̸= q2.x ∨ q1.y ̸= q2.y (5.2)

Gate Scheduling Constraints

For each gate g in the program, the compiler determines the start time and execution duration

and emits classical control code to hold to this schedule. If two gates g1 and g2 both operate

on the same qubit, and g2 uses the output of g1, g2 should start only after g1 finishes. For

every such edge in the dependency graph, Constraint 5.3 shows the form we use to enforce

such data dependencies.

∀g1, g2 ∈ G : g2 > g1 ⇒ g2.τ ≥ g1.τ + g1.δ (5.3)

The durations, δ, for single qubit operations are set using the documented durations

in timeslots of the corresponding hardware operations. For CNOTs, the duration includes

both the operation itself as well as the time to bring the relevant program qubit states into

adjacent hardware qubits; this depends on the routing policy and is discussed below.

CNOT Duration based on Grid Distance

The duration of a CNOT gate accounts for both CNOT time and the duration of the swap

paths before and after the CNOT. For a CNOT g ∈ GC , let the control and target qubits be

189

qc and qt. Then the duration of the CNOT is: g.δ = 2 ∗ (∥qc − qt∥1 − 1) ∗ τSWAP + τCNOT

where ∥qc − qt∥1 = |qc.x− qt.x|+|qc.y − qt.y| and τSWAP , τCNOT are the times to complete

a SWAP or CNOT operation, respectively.

The compiler must schedule operations before the individual qubits decohere. For T-SMT

(noise-unaware) we simply use an assumption of MT as 1000 timeslots of coherence time,

which is the long-term average for the machine:

∀g ∈ G : g.τ + g.δ < MT (5.4)

CNOT Duration based on Calibration Data

For T-SMT⋆ and R-SMT⋆, we set durations based on calibration data. In particular, since

qubit coherence time changes daily (Figure 5.19a) and CNOT gate durations vary across

qubits, these approaches use the calibration-based data in the optimization constraint. To

set durations based on calibration data, we assume a routing policy and compute the CNOT

durations for each hardware qubit pair. Let ∆ be an |H| × |H| matrix where ∆hi,hj , i ≠ j,

specifies the duration of a CNOT between hardware qubits hi, hj ∈ H. The duration of a

program CNOT can be set as: for all g ∈ GCNOT and for all h1, h2 ∈ H:

gc = h1 ∧ gt = h2 ⇒ g.δ = ∆h1,h2 (5.5)

For the calibration-aware coherence time bound, constraint 5.6 ensures every gate finishes

before the coherence time of the qubits it acts on i.e., if a gate uses a hardware qubit h,

it should complete before h decoheres, with h.τ as the coherence time of a hardware qubit

190

(a) Rectangle
Reservation (RR)

(b) One Bend
Paths (1BP)

Figure 5.22: Two routing policies for swap-based architectures.

h ∈ H. We have for all g ∈ G and for all h1, h2 ∈ H:

gc = h1 ∧ gt = g2 ⇒ g.τ + g.δ ≤ min (h1.τ, h2.τ) (5.6)

Routing for CNOT Gates

To route multiple CNOTs in parallel, the compiler uses two routing policies based on policies

in VLSI routing [75, 44].

Rectangle Reservation

In this policy, for every CNOT in the program, the compiler blocks a 2D region bounded by

the control and target qubit, during the CNOT execution. For example, in Figure 5.22a, the

highlighted rectangle is reserved for the duration of the CNOT.

Consider a CNOT gate gi ∈ GCNOT . Let (lix, l
i
y) and (rix, r

i
y) denote the top left and

bottom right corners, respectively, of the bounding rectangle of gi. These variables are defined

using min and max relations on the qubit mapping variables of the CNOT. For two CNOTs

gi and gj , the routing constraint is:

S(Ri, Rj) = ¬(lix > r
j
x ∨ rix < l

j
x ∨ liy > r

j
y ∨ riy < l

j
y) (5.7)

T (gi, gj) = ¬(gi.τ > gj .τ + gj .δ ∨ gj .τ > gi.τ + gi.δ) (5.8)

191

Constraint S checks if the two rectangles overlap in space. Constraint T checks whether

CNOTs overlap in time. For any pair of CNOTs gi and gj , they cannot overlap in time if

they overlap in space: S(gi, gj) =⇒ ¬T (gi, gj).

One Bend Paths

In this policy, CNOT routes are restricted to the two paths along the bounding rectangle

of the control and target qubit. For example, in Figure 5.22b, the CNOT is allowed to use

one of the two highlighted paths. To implement this policy, the solver selects one of the two

routes for every CNOT in the program.

To express constraints for this policy, we use variables to record the junction through

which the CNOT is routed. The one bend path is composed of two segments: control to

junction and junction to target. For generality, we can consider these segments as rectangles,

and apply the same overlap check as in rectangle reservation. Denote the control to junction

path for CNOT i as R
cj
i . Then, we can check if two CNOTs gi and gj overlap using:

Overlap(i, j) =S(R
cj
i , R

cj
j) ∨ S(R

cj
i , R

jt
j)∨

S(R
jt
i , R

cj
j) ∨ S(R

jt
i , R

jt
j) (5.9)

Similar to rectangle reservation, we impose the condition that CNOTs do not overlap in time

if they overlap in space.

Reliability Constraints

To optimize the reliability of program executions, we use a set of constraints to track the

reliability scores of CNOT and readout operations in the program. Let g.ϵ denote the

192

reliability score for the operation g. For readout operations, we set the reliability as

∀g ∈ GReadout : ∀h ∈ H : g.q = h⇒ g.ϵ = ER
h (5.10)

where ER
h is the reliability score for readout operations on hardware qubit h, and GR ⊆ G is

the set of readout operations.

For CNOT gates, we set reliability tracking variables based on the routing policy. For

each pair of hardware qubits, we pre-compute a matrix EC , where EC
h1,h2

is the reliability of

the CNOT gate between qubit hi and hj . This reliability factors in the reliability of the swap

paths and the actual CNOT operation. Let g.j be the junction for gate g ∈ GCNOT . The

constraints to track CNOT error are given for all g ∈ GCNOT and for all h1, h2, hj ∈ H:

gc = h1 ∧ gt = h2 ∧ g.j = hj ⇒ g.ϵ = EC
h1,h2

(5.11)

In our experiments, considering the error rates of single qubit gates such as H, X, Y etc.

is not required for IBMQ16, because their error rates are much smaller than CNOTs and

readouts. For systems where such errors matter, they can be easily incorporated into the

optimization using similar constraints.

Optimal Compilation: Objective Function

The different optimization variants use different objective functions. For the time-oriented

variants T-SMTand T-SMT⋆, the objective function is based on the execution time for the

program. Using the gate scheduling and duration constraints from before, the objective is to

minimize the finish time of the last gate in the dependency order.

For the reliability-oriented variant, R-SMT⋆, the objective function is based on the

reliability of a program execution. We define the reliability of a program execution as

the product of the reliability of each of its gates. Since single qubit gates have low error,

193

we define the relibility using CNOT and readout operations only. Ideally, the reliability

objective would be the product across all gates of the readout and CNOT errors for the whole

program: max
∏
∀g∈GReadout∪GCNOT

(g.ϵ). Because the SMT solver requires linear operations,

we convert this to an additive linear objective function by considering the logarithm of the

operation reliabilities, instead of their product. Finally, to allow for different emphases on

readout error versus CNOT error, we convert the above objective into a weighted objective

using a weight ω which is applied to the readout error rates:

ω
∑

g∈GReadout

log(g.ϵ) + (1− ω)
∑

g∈GCNOT

log(g.ϵ). (5.12)

We use this objective to study the relative importance of CNOT and readout error rates.

Optimizing reliability places qubits at hardware locations with high CNOT and readout

reliability. It indirectly optimizes qubit movement because CNOT gates between non-adjacent

qubits have low reliability. This objective is used by R-SMT⋆ in our experiments. To

compute a qubit mapping and gate schedule which maximizes this objective, we set up an

optimization problem using this along with the mapping and scheduling constraints, gate

durations using calibration data, routing approaches, and reliability constraints discussed

before. The reliability constraints make the g.ϵ variables dependent on the qubit mapping

variables.

5.4.4 Heuristic Compilation

Where tractable, the SMT-based compilation approach offers the best chance at successful

application runs on real hardware. However, effective heuristic approaches may offer similar

reliability but scale better to future NISQ systems with hundreds of qubits. Here we propose

and evaluate heuristic mapping/scheduling alternatives as comparators to the optimization-

based approaches.

194

Our heuristic techniques are also based on a program graph constructed from the program

IR. The program graph has a node for every qubit, and an edge between every pair of qubits

which is involved in a CNOT. For example, the program graph of BV4 has 4 nodes for p0,1,2,3

and 3 edges, one from each of p0,1,2 to p3. For each heuristic, we first compute the most

reliable path between every pair of hardware qubits using Dijkstra’s algorithm, where edge

weights are given as the negative log of the CNOT errors from the calibration data. For both

heuristics, once we map the qubits, we schedule gates using an earliest ready gate first policy

[85] and route based on the precomputed paths.

Greatest Vertex Degree First

The GreedyV⋆ heuristic seeks to minimize communication distance (and therefore reduce the

number of error-prone SWAP operations) by considering qubits in descending order of degree.

The degree of the qubit is the number of CNOTs in which the qubit is used. First, place the

highest degree program qubit at the hardware location which has highest readout reliability

among high degree hardware qubits. Next, for each program qubit which shares a CNOT

with an already placed qubit, place this qubit in order to maximize the total reliability of

paths between it and each of its placed neighbors, where the total reliability is given by the

sum of the path lengths computed from before between it and its neighbors.

Greatest Weighted Edge First

In GreedyE⋆, we map edges in the descending order of weight. The weight of an edge

between two nodes is the number of times a CNOT gate is invoked between them. Therefore,

placing edges with high weight first allows qubits which interact highly to be close together.

Such placement reduces qubit movement and increases reliability. The algorithm starts by

placing the highest weighted edge at on hardware location with maximum CNOT and readout

reliability. Next, for each edge which has one mapped one unmapped endpoint, we map the

195

Table 5.8: Characteristics of benchmark programs.

unmapped qubit to the position which maximizes the total reliability of CNOTs with already

mapped qubits, where the total reliability is given by the sum of the path lengths computed

from before between it and its neighbors. The process is repeated for each unmapped edge in

weight order.

5.4.5 Experimental Setup

Benchmarks

Table 5.8 lists 12 quantum programs derived from prior work on compilation and system

benchmarking [9, 122, 173]. These benchmarks include the Bernstein-Vazirani algorithm

[21], Hidden Shift Algorithm [39], Quantum Fourier Transform [147], a one bit adder and

important quantum kernels such as the Toffoli gate [128]. We used or created Scaffold

programs for each benchmark and obtained LLVM IR using the ScaffCC compiler [100]. To

be runnable on real-system QC hardware, the benchmarks must be relatively small in qubit

counts and short in execution time steps. Nonetheless, our ability to show order-of-magnitude

improvements in success rate for these programs is a promising indicator of the value of such

compilation techniques for future larger systems and programs. Furthermore, several of these

programs—such as QFT and Toffoli—are important kernels for larger programs.

196

Beyond these, to study scalability trends across different qubit and gate counts, we

generate a synthetic benchmark where we can specify the number of qubits and gates and

from this, we experiment with randomly generated quantum programs with 4-128 qubits and

128-2048 gates. We generate these circuits by uniformly sampling gates from the universal

gate set of H,X,Y,Z,S,S†, T,T†, CNOT.

Compiler Configurations

In order to study various compilation schemes, our framework includes various options for

the solver, routing policy, use of calibration data and other parameters. We evaluate these

options one factor at a time using the set of configurations listed in Table 5.7.

Experimental Setup

Our compilation experiments use an Intel Skylake processor (2.6GHz, 12GB RAM) using

Python3.5 and gcc version 5.4. Our optimization approach uses the Z3 SMT solver [48]. To

perform experiments on IBMQ16, we use the IBM Quantum Experience APIs [93, 94]. The

daily machine calibration data is available through the Quantum Experience APIs. The

calibration data includes time data such as single qubit gate time, qubit coherence time (T2

time), durations for CNOT gates, and error rates such as single qubit gate error, CNOT

gate error, and read out (measurement) error. We use IBM’s Qiskit compiler/mapper as our

baseline for comparison, version 0.5.7.

Metrics

Before each run, we obtain the latest calibration data, and recompile the benchmark. We

execute each benchmark on IBMQ16, using 8192 trials in each run. We measure the success

rate as the fraction of trials which gave the correct answer. For example, success rate of 0.6

means the execution produced the correct answer in 60% of the trials. The ideal success rate

197

BV4 BV6 BV8 HS2 HS4 HS6 Toffoli Fredkin Or Peres QFT Adder
Benchmarks

0.0

0.2

0.4

0.6

0.8
S

uc
ce

ss
R

at
e

Qiskit T-SMTF R-SMTF ω = 0.5

Figure 5.23: Measured success rate of R-SMT⋆compared to Qiskit and T-SMT⋆. (Of 8192
trials per execution, success rate is the percentage that achieve the correct answer in real-
system execution. R-SMT⋆obtains higher success rate than Qiskit because it simultaneously
adapts placement according to dynamic error rates and avoids unnecessary qubit movement.

is 1, where all trials succeed. Results within a single graph are performed closely in time so

are comparable. Results from different graphs may not be comparable because the machine

error characteristics can be different across runs. We also study quantum execution time and

compilation time. Because timing granularity is so coarse, execution time is estimated using

real gate duration data from the IBMQ16 system. We report durations in terms of timeslots

on IBMQ16, where each timeslot is 80ns.

5.4.6 Optimizing Execution Reliability

Baseline Comparison to IBM Qiskit

Here we compare the success rate of program runs from our compiler versus the IBM Qiskit

compiler for real-system runs on IBMQ16. Figure 5.23 shows the success rate of the IBM Qiskit

compiler, T-SMT⋆ and R-SMT⋆ with ω = 0.5 on all the benchmarks. In all benchmarks,

R-SMT⋆ has higher success rate than Qiskit, indicating that its reliability-oriented objective

function is effective. In fact, R-SMT⋆ obtains geomean 2.9x improvement over Qiskit,

with up to 18x gain on BV8. For BV8, the compiled code produced by Qiskit uses 15

CNOT operations to move qubits, while R-SMT⋆ obtains mappings which require no qubit

movement. Each extra CNOT gate increases both the error rate and the execution duration

of the code and leads to poor success rate. Benchmarks which require no qubit movement

198

07
/3

1/
18

08
/0

1/
18

08
/0

2/
18

08
/0

3/
18

08
/0

4/
18

08
/0

5/
18

08
/0

6/
18

Date

0.3

0.4

0.5

0.6

S
uc

ce
ss

R
at

e

Toffoli T-SMTF

Toffoli R-SMTF ω = 0.5

BV4 T-SMTF

BV4 R-SMTF ω = 0.5

HS6 T-SMTF

HS6 R-SMTF ω = 0.5

Figure 5.24: Executions of three benchmarks for 1 week. R-SMT⋆is more resilient to errors
compared to T-SMT⋆. Similar trends for other benchmarks.

such as BV, HS, QFT and Adder have higher reliability than benchmarks such as Toffoli,

Fredkin, Or, and Peres, which require at least one qubit swap.

In all benchmarks, R-SMT⋆ outperforms T-SMT⋆, even though they use the same

number of qubit movement operations. Hence, while optimizing qubit communication is

important, it is essential to optimize for gate error rates to improve success rate. In fact, in

our experiments, when the machine state has high variability, R-SMT⋆ can obtain up to

9.2x improvement in success rate over T-SMT⋆ (see Figure 5.25).

Resilience to Daily Variations

Since IBM limits the executions researchers may perform per day, we perform detailed

experiments on three benchmarks, BV4, HS6 and Toffoli. These benchmarks are chosen as

examples of different CNOT patterns (see Table 5.8). Figure 5.24 compares the success rate

of R-SMT⋆ and T-SMT⋆ over a week for the three benchmarks. The success rate of the

199

BV4 HS6 Toffoli
Benchmarks

0.00

0.25

0.50
S

uc
ce

ss
R

at
e

T-SMTF

R-SMTF ω = 1

R-SMTF ω = 0

R-SMTF ω = 0.5

(a) Success Rate

BV4 HS6 Toffoli
Benchmarks

0

100

200

D
ur

at
io

n
(t

im
es

lo
ts

)

(b) Execution Duration

BV4 HS6 Toffoli
Benchmarks

0

10

20
C

om
pi

la
ti

on
T

im
e

(s
)

(c) Compile Time

Figure 5.25: Measured success rate, execution duration and compile time for three represen-
tative benchmarks. T-SMT⋆ which directly optimizes for execution duration obtains the
minimum execution durations, but R-SMT⋆ with ω = 0.5 is close, and more resilient to
errors (higher reliability). All benchmarks compile in less than 1 minute.

programs change every day because error rates of the hardware CNOT and readout units

change daily. (We recompile each day before running.) For all three benchmarks, R-SMT⋆

is more resilient to error than T-SMT⋆, since it adapts the qubit mappings to account for

daily variations in operation error rates. Since T-SMT⋆ compiles based on static information

(qubit topology and gate duration), it uses the same qubits and hardware gates every day,

irrespective of their dynamic error characteristics.

Choice of Optimization Objective

Figure 5.25 compares R-SMT⋆ with ω = {0, 0.5, 1} and T-SMT⋆ on the three benchmarks.

R-SMT⋆ with ω = 0.5 achieves the highest success rate among the methods, with up to 9.25x

gain over T-SMT⋆. For BV4, we illustrate the mappings obtained by the these methods

in Figure 5.26. T-SMT⋆ obtains a mapping which requires no qubit movement, but it uses

200

(a) T-SMT⋆:Optimize duration without error
data

(b) R-SMT⋆(ω = 1): Optimize readout relia-
bility

(c) R-SMT⋆(ω = 0.5): Optimize
CNOT+readout reliability

Figure 5.26: For real data/experiment, on IBMQ16, qubit mappings for three optimization
objectives, varying the type of noise-awareness. In each figure, the edge labels indicate the
CNOT gate error rate (×10−2), and the numbers inside each node indicate that qubit’s
readout error rate (×10−2). (a), T-SMT⋆uses an unreliable hardware CNOT between p3 and
p0. (b) Program qubits are placed on the best readout qubits, but p0 and p3 communicate
using swaps. (c) Best CNOTs and readout qubits are used.

a hardware CNOT with very high error rate. With ω = 1, R-SMT⋆ optimizes only for

readouts and uses long swap paths which reduce success rate. With ω = 0.5, R-SMT⋆ maps

qubits to simultaneously optimize CNOT gate error, readout error and qubit movement.

R-SMT⋆ with ω = 0.5 also achieves near-optimal execution durations, comparable to

T-SMT⋆, which directly optimizes for duration. From the perspective of compilation time,

optimizing for reliability is harder than optimizing execution duration. However, each method

finds optimal mappings in under a minute, for each benchmarks.

R-SMT⋆ was executed with ω ∈ [0, 1] to determine the relative importance of optimizing

for read out error and CNOT error. In general, choosing an ω roughly near 0.5 is appropriate

to obtain good success rates. On the IBMQ16 machine, readout and CNOT error rates are

fairly balanced, and hence we see that an equal weighted combination of both is suitable for

optimization.

201

BV4 BV6 BV8 HS2 HS4 HS6 Toffoli Fredkin OR Peres QFT Adder
Benchmarks

0

50

100

150

200

E
xe

cu
ti

on
D

ur
at

io
n

(t
im

es
lo

ts
)

T-SMT RR

T-SMTF RR

T-SMTF 1BP

R-SMTF 1BP

Figure 5.27: Effect of gate durations, routing policy and objective function on execution
duration. Although reliability is our primary objective, several variants perform well on run
time as well. T-SMT⋆(either RR or OBP) has the best execution duration, but R-SMT⋆is
very close in run time and offers better success rates. Noise-aware policies, R-SMT⋆and
T-SMT⋆, are 1.6x better than T-SMT.

Sensitivity to Gate Durations and Coherence Time

We test whether the use of real gate time data significantly affects the execution duration

of NISQ benchmarks. Our compiler is run on three settings: T-SMT(RR) which assumes

all hardware CNOTs have the same gate duration and T-SMT⋆ (RR) and R-SMT⋆ (1BP)

which use real gate durations. We restrict R-SMT⋆ to the 1BP policy to reduce the number

of experimental configurations; we show in Section 5.4.6 the choice of routing policy doesn’t

affect execution duration for NISQ benchmarks.

Gate Durations

Figure 5.27 shows execution duration, computed using the gate time data, for the three

methods. Considering real gate durations can improve the execution duration for each

benchmark, with up to 1.68x gain on Toffoli. Considering real durations increases the number

of constraints in the optimization problem and increases the compilation time by up to 3x

(not shown). However, even with real durations, each benchmark requires only a few seconds

of compilation time.

202

BV4 BV6 BV8 HS2 HS4 HS6 Toffoli Fredkin Or Peres QFT Adder
Benchmarks

0.0

0.2

0.4

0.6

0.8
R

el
ia

bi
lit

y

R-SMTF ω = 0.5 GreedyEF GreedyVF

Figure 5.28: Noise-aware Heuristics: GreedyE⋆ heuristic mapping offers reliability comparable
to R-SMT⋆on most benchmarks.

Coherence Time

Each benchmark finishes in less than 150 timeslots using the R-SMT⋆ method. Since the

coherence time of the worst qubit on the machine is more than 300 timeslots, considering

fine grained variations in coherence time is not necessary for our benchmarks.

Effect of Routing Policy

Figure 5.27 compares the execution duration and compilation time of T-SMT⋆ with two

routing policies (RR and 1BP) and R-SMT⋆ (1BP). The three policies produce executables

with similar execution duration since NISQ benchmarks are small, and have only few parallel

CNOTs. Hence, most CNOTs execute without swapping or blocking qubits. Although

R-SMT⋆ optimizes reliability, it obtains execution durations close to T-SMT⋆ on all

benchmarks.

Success Rate and Scalability of Heuristics

In this section, we compare the success rate of heuristics to the optimal methods and evaluate

the scalability of all methods.

Figure 5.28 compares the success rate of the heuristics and R-SMT⋆. Greedy methods

are comparable to R-SMT⋆ in success rate and in some cases, they outperform R-SMT⋆

marginally because ω = 0.5 may not the optimal value for every benchmark and machine

203

12
8

19
2

25
6

38
4

51
2

76
8

10
24

15
36

20
48

Operation Count

101

102

103

104

105

106

107

108

109

1010

C
om

pi
la

ti
on

T
im

e
(u

se
c)

4 (R-SMTF)

8 (R-SMTF)

32 (R-SMTF)

4 (GreedyEF)

8 (GreedyEF)

32 (GreedyEF)

128 (GreedyEF)

Figure 5.29: Scalability of optimal and heuristic methods on synthetic benchmarks. Each
line represents a qubit count.

state. GreedyE⋆ is as successful as R-SMT⋆ in all cases. Our study reveals the edge

based heuristic GreedyE⋆, is more successful than the vertex based heuristic GreedyV⋆.

Considering edges instead of vertices allows the heuristic to prioritize the reliability of the

most frequent CNOTs.

To study the scalability of optimal and heuristic methods, we used a benchmark of

randomly generated quantum programs. Figure 5.29 shows the compilation time on the

benchmark. R-SMT⋆ requires up to 3 hours to compile a program with 32 qubits and 384

gates. On the other hand, the greedy methods compile programs in under one second in all

cases.

5.4.7 Remarks

This paper proposed and evaluated calibration-aware compiler techniques for NISQ systems.

We considered optimal and heuristic compilation methods, the use of calibration data, different

204

objective functions and routing policies. Our evaluations show it is crucial to adapt quantum

program compilation to dynamic operation error characteristics of the machine. It is most

important to consider CNOT and readout error rates, since these operations are more noisy

than single qubit gates. Optimization based on qubit coherence time is also useful, but

less critical here because gate errors severely limit useful computation time. Our compiler,

which optimizes program placement using these choices, obtained up to 2.9X geomean and

up to 18X improvement in reliability over the widely-used IBM Qiskit compiler. We plan

to open-source our code and facilitate its integration into Qiskit releases for broader use.

Although we demonstrate our real-system results on a machine with 16 superconducting

qubits, our approaches can easily support other NISQ systems and technologies. These

include fully-connected trapped-ion QCs, of which a 5-qubit prototype is available [49]. We

can also support other routing approaches such as teleportation-based communication [41],

by choosing the appropriate technology-specific durations in the CNOT constraints. Our

compiler can be extended to include local, qubit-specific optimizations to improve reliability:

for example, if a hardware qubit has poor readout reliability, and a neighboring qubit has

a reliable readout unit, a swap operation can be used to transport and then output the

hardware qubit reliably. Such resource multiplexing may be important for executing large

quantum programs that use almost all of the machine qubits.

This sections’s results offer important insights on QC based on real-system measurements.

In particular, our work shows the importance of initial qubit placement, namely benchmarks

which require more qubit movement are hard to reliably execute on systems with 2D grid

topologies. Our results show proper placement could result in over 10X improvements in run

success rate. Mapping and scheduling based on calibration data such as gate error rates and

coherence times offer further benefits. Ultimately the best-performing approach offered up to

18X improvement (2.9X average) in success rate and up to 6X (2.7X average) improvement in

runtime over the current IBM Qiskit baseline. Our results also give insights to future system

205

designers. Developing richer qubit topologies, such as the diagonal CNOT connections in the

50-qubit system announced by IBM [95] will reduce the need for SWAP operations and will

be helpful in reliably executing important quantum primitives such as the Toffoli gate.

This research has shown that SMT approaches are very effective for current and near-term

systems, but may not scale well to the far-NISQ machines of 500 qubits or more. For those,

we have developed heuristic approaches, GreedyV⋆ and GreedyE⋆, which offer nearly as

good results but with much more tractable compile times.

Overall, given the challenges of building reliable and scalable QC hardware, the key for the

next five years or more will lie in ultra-efficient use of the resources available in NISQ systems.

Our tool offers important leverage in stewarding runtime resource usage and optimizing

reliability.

5.5 Orchestrated Trios: Compiling for Efficient Communication in

Quantum Programs with 3-Qubit Gates

6

As we have already seen, quantum program compilation involves many passes of transfor-

mations and optimizations similar in many ways to classical compilers. Some optimizations

occur at the abstract circuit level, independent of the underlying hardware, such as gate

cancellation [144]. One of the first steps usually taken is to convert an input program into a

gate set (ISA) supported by the target hardware. For example, on IBM devices, gates are

typically rewritten using only gates in the set {u1, u2, u3, cx} [93] (single-qubit gates and

the common CNOT gate described later). One critical limitation of many current available

architectures is the inability to execute more complex multi-qubit operations, like the Toffoli,

directly; instead, these gates must be decomposed into the supported one- and two-qubit gates.

6. JMB’s contributions in this section include benchmarking, routing pass design, and experimentation
(with support form AL). Original conceptualization and split circuit decomposition due to CD.

206

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

1

1

1

2

2

3

4, 10

5, 9

5

6, 10 7

8

8

(a) Expensive Qiskit routing

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

1

12

2

3

3

4

(b) Efficient Trios routing

Figure 5.30: Example routing from Qiskit (a) vs. Trios (b) for a single Toffoli operation.
Circles represent qubits and lines indicate two qubits are connected. Input qubits are
highlighted in red. SWAP arrows are labeled by timestep. The routed locations for Trios
routing are highlighted in green while Qiskit moves them several times. Qiskit adds 16 SWAPs
(=48 CNOTs), some during the Toffoli, while Trios adds only 7 SWAPs (=21 CNOTs) all
before the Toffoli. Performing multiple passes of decomposition allows direct routing and
enables this huge reduction in communication, increasing the probability of program success.

207

Furthermore, many current superconducting architectures only support two qubit operations

on adjacent hardware qubits wired together with a coupler. This requires the insertion of

additional operations called SWAPs to move the data onto adjacent (and connected) qubits.

The process of transforming an optimized and decomposed program to the desired target

is typically broken down into three distinct steps: decomposing the program into basic gates,

mapping the logical qubits of a program to hardware qubits and routing interacting qubits

so that they are adjacent on hardware when they interact, and scheduling operations in

order to minimize total program run time (depth) or to minimize errors due to crosstalk

[139]. Each of these steps is critical to the success of the input program. A well-mapped and

well-routed program will reduce the total number of communication operations added and

subsequently reduce the compiled program’s depth, both of which will increase the chance of

success. Conventionally, these three steps occurs sequentially. By doing so, current strategies

are unable to account for structure in the input program, resulting in inefficient routing of

qubits. An optimal compiler could find the best routing despite the lack of structure but at

the cost of much slower compilation. Consider the SWAP paths inserted by IBM’s Qiskit

compiler for a single Toffoli compiled to IBM’s Johannesburg device in Figure 5.30a. This

baseline strategy adds a large number of unnecessary SWAPs as it individually routes each

CNOT composing the Toffoli, dramatically reducing the probability of successful execution.

The approach of this section, Orchestrated Trios (Trios) decomposes and routes qubits in

multiple stages, as seen in Figure 5.31b. For example, first decompose an input program to

one- two-, and three-qubit gates (e.g. do not decompose Toffoli gates) and route as before

except for three-qubits, route all three to a common location with minimal SWAPs. This new

program can then undergo a second round of decomposition to produce a circuit containing

only hardware permitted one- and two-qubit gates. The second round may use the now known

mapping (locations of data qubits on the device) to generate fine-tuned decompositions for

the architecture.

208

Input program

Unroll+Decompose

Circuit of 1- and 2-qubit gates
(between any qubit pairs)

Map and Route

Circuit of 1- and 2-qubit gates
(between connected qubits)

Schedule

Executable Circuit

Input program

Unroll+Decompose to Toffoli

Circuit of 3-qubit Toffoli
and other 1- and 2-qubit gates

Map and Route

Circuit of Toffoli gates
between nearby qubits

Mapping-Aware Decompose

Circuit of 1- and 2-qubit gates
(between connected qubits)

Schedule

Executable Circuit

(a) Conventional compilation (b) Trios compilation

Figure 5.31: (a) Typical compilation passes used by Qiskit (simplified). (b) Trios compilation
passes.

This layered approach has a major advantage over current routing techniques: we are

better able to capture program structure by inspecting intermediate complex operations for

routing. This better informs how qubits should be moved around the device during program

execution. In Figure 5.30, the Trios strategy reduces the total number of SWAPs added to

21: fewer than half compared to Qiskit. This was an extreme example we selected to present

the issue, not an average case.

We specifically propose a two-pass approach to circuit decomposition. We will focus on

superconducting hardware systems like IBM’s cloud accessible devices, but our strategy can

easily be adapted to other systems. An overview of our compilation structure is found in

Figure 5.31b. This strategy has a substantial benefit on the overall success rate of programs.

We demonstrate these improvements by executing Toffoli gates on a real IBM quantum

computer and estimating success probability of a suite of benchmarks via simulation.

This section focuses its discussion on the following:

209

• A new compiler structure, Trios, with two passes for decomposition with a modified

routing pass in between which greatly improves qubit routing.

• A simple method for architecture-tuned Toffoli decompositions during the second

decompose pass that allows for a new kind of location-aware optimization.

• On Toffoli-only experiments, Trios reduces the total number of gates by 35% geomean

(geometric mean) resulting in 23% geomean increase in success rate when run on real

IBM hardware as compared to Qiskit.

• On near-term algorithms shown in Figure 5.40 (4 to 20 qubit benchmarks), Trios

reduces total gate count by 37% geomean resulting in 344% geomean increase in (or

4.44x) simulated success rate on IBM Johannesburg with noise rates of near-future

hardware as compared to programs compiled without Trios. A sensitivity analysis over

four architecture types shows the benefit range from 133% to 3020% increase in success

rate.

5.5.1 Relevant Background

Quantum Circuits in the Context of Trios

As usual, complex instructions must be decomposed into multiple simpler, supported opera-

tions. For example, many quantum algorithms and subroutines make use of the Toffoli gate,

a three-input gate which performs the logical AND between two controls bits and writes the

output onto the target bit. This gate cannot be executed directly on available hardware and

instead is decomposed into an equivalent sequence of one- and two-qubit operations. Two

such popular decompositions are given in Figures 5.32, 5.33. There are two key distinctions

in these decompositions illustrating a more general trade off. The first [147] is the most

popular decomposition using only 6 CNOT gates but requires CNOTs between all three pairs

210

• • • • T •

• = • • T T †

H T † T T † T H

Figure 5.32: A 6-CNOT decomposition of the Toffoli gate.

• T • • • •

• = T • • T † • •

H T T T † T † H

Figure 5.33: An 8-CNOT decomposition of the Toffoli gate.

of qubits. This would require inserted SWAPs or a device connectivity containing a triangle.

The second [167] uses a total of 8 CNOT gates and requires all three inputs be only linearly

connected (only two of the three qubit pairs are required to be connected). While the first is

apparently more efficient, this is not true if the connectivity of the underlying hardware does

not directly support it. It is more efficient to use the 8-CNOT version than use the 6-CNOT

version with added SWAPs.

Current Quantum Devices

In this paper we focus primarily on currently available superconducting quantum devices.

This type of hardware is the primary focus of many industry players like IBM, Rigetti, and

Google [171, 93, 3]. We show some representative topologies for superconducting devices

in Figure 5.34abd. For completeness, we include a clustered device shown in Figure 5.34c

representative of a QCCD ion trap device such as [133]. These systems exhibit all of the

properties previously discussed. They have a small universal supported gate set which

all programs must be transformed into and only support local two-qubit operations. The

connectivity of these devices is given as a coupling graph specifying which pairs of qubits can

211

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

01

2

3

4

5

6

7

8

9

1011

12

13

14

15

16

17

18

19

(a) IBM Johannesburg (b) 2D Grid (c) 4, 5 qubit fully connected
clusters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(d) Linear

Figure 5.34: Example topologies of near-term quantum devices. Orange (a): IBM Johannes-
burg. Yellow (b): 2D Grid. Purple (c): four groups of five fully connected clusters. Green (d)
Linear. Our real experiments run on Johannesburg and our simulations explore all of these
topologies. Colors correspond with the bars in Figures 5.38, 5.39, 5.40.

execute CNOTs.

The Baseline Compilation Scheme

IBM’s Qiskit compiler, the standard for compiling programs to execute on an IBM device,

has a default sequence of passes. First, all high level optimization and analysis passes are

performed and all gates are unrolled and decomposed to the target gate set. Then single

passes of mapping, routing, and scheduling are performed [8].

Evaluation Metrics

As in the previous sections, our primary metric is program success rate, the fraction of circuit

executions that result in the correct output. Others use fidelity which can stand-in for success

rate when evaluating sub-circuits where the output is not measured. When executing a

quantum algorithm, the corresponding quantum circuit is typically executed thousands of

212

times to gather output statistics or identify the error-free result.

Program success rate is highly dependent to the noise characteristics of the quantum

computer the program runs on. The rates of these device errors can fluctuate day-to-day so

we also use the simpler metric of two-qubit gate count. The number of two-qubit operations

in the final compiled circuit is inversely correlated with the success rate because they are

usually the largest source of noise.

Simulation, Reiterated

Simulating general quantum systems is exponentially expensive in the size of the system

and therefore it is difficult to realistically model all of the errors during the execution of a

quantum program. We use a simplified model for simulation to predict, specifically obtain

a close upper bound on, the success rate of a program with specified gate error rates and

qubit coherence times. In our simplified model, we compute the probability of a program

succeeding as the probability that no gate errors occur (pgate)
ngates times the probability no

coherence errors occur pcoherence, where the latter is computed as e∆/T1+∆/T2 , where ∆ is

the total program duration and T1 and T2 are the relaxation and dephasing times, collectively

decoherence.

Current error rates, while rapidly improving, are still insufficient to obtain high probabili-

ties of success, making it difficult to compare our mid-size benchmarks that are large enough

to need many SWAPs. For our simulations we use error rates 20x improved over current IBM

Johannesburg error rates to obtain reasonable success rates and we study sensitivity to this

choice later.

5.5.2 Orchestrated Trios

In this section we describe our proposed compilation structure compared to the conven-

tional one as outlined in Figure 5.31. Specifically, we focus on improving the routing and

213

decomposition stages of compilation. Previously, we identified a key problem in current

methods: decomposing the program to one- and two-qubit gates up front hinders the ability

of heuristic-based compilers to effectively minimize the communication cost, i.e. the number

of SWAPs added, and eliminates the possibility of location-aware decompositions.

We propose a new pass structure. Rather than performing a single round of decomposition

and routing, we propose a split approach. Any program processing prior to decomposition

stays the same. The decomposition pass is then divided so the majority of decomposition

occurs next but any Toffoli gates are left as-is before moving on to mapping and routing.

The mapping and routing passes come next like normal but must be modified slightly

to handle three-qubit gates. The mapper can simply treat the non-decomposed Toffoli as it

would the equivalent 6 CNOTs for the purposes of determining which qubits most need to

be placed nearby. We then do the modified routing pass, moving groups of qubits together

instead of only pairs where all or all-but-one of the group are moved into a single neighborhood

via SWAPs. This greatly improves the effectiveness of the routing heuristics when applied

to this modified routing pass. There are some subtleties when coordinating the routing of

multiple qubits to the same place to ensure the paths don’t overlap. For the purposes of our

evaluations we do the following but many similar heuristic strategies are possible.

Taking the next operation to apply, we first find the shortest paths (using any shortest

path algorithm on a graph) between all the pairs of qubits. We choose the qubit with the

shortest sum of paths to the other two qubits as the destination. SWAPS following these two

paths are then inserted into the circuit. The two shortest paths are checked for overlap. If

the ending points overlap, the second is only routed to the penultimate hardware location

along the swap path and the first becomes the middle qubit adjacent to both others. This

can save one valuable SWAP but doesn’t affect the correctness. Once they are adjacent, the

Toffoli gate is now on adjacent qubits and routing can continue to the next operation.

Finally, the second decomposition pass is run. This is different from normal decomposition

214

as there are only Toffoli gates to decompose and they are already mapped to neighboring

qubits. We could use the default 6-CNOT decomposition and still get the above benefit of

improved routing but now that we have more information, this can be exploited to further

reduce SWAPs due to a mismatch between the decomposition and the hardware connectivity.

If all three pairs of qubits are connected, then the 6-CNOT Toffoli of Figure 5.32 is best,

otherwise use the 8-CNOT Toffoli of Figure 5.33, ensuring the middle qubit is used for the

middle of the decomposition (Any of the three qubits can be the target by simply moving

the two H gates to that qubit).

When routing complex operations like the Toffoli, we recognize the underlying hardware

does not usually support triangles in the connectivity graph but linear connectivity is sufficient

for a decent decomposition. Since we are creating operations on three qubits, the qubits

must be routed into a valid linear connectivity. That is, a configuration where each qubit is

connected with at least one of the other qubits.

This method can be easily extended to be noise-aware like previous work [136, 178]

by using a noise-aware mapper with the simple modification described earlier where the

path-finding graph has weighed edges with the – log value of the CNOT success rate. The

path distance represents the – log probability of success of that particular path where lower

values indicate a higher success rate and the shortest path can be found just as before and

the routing steps are unchanged. Any routing strategy designed for one and two-qubit gates

can be modified to work for one, two, and three-qubit gates and used as the first routing step

of Trios.

In programs where there are no three qubit gates as in the typical NISQ benchmark,

Bernstein-Vazirani [21], which is specified directly as CNOT gates, our strategy will have

no effect. Many benchmarks, however, are written using Toffoli gates because they are the

quantum analog the AND gate ubiquitous in arithmetics and other common subroutines.

Trios can naturally be extended to any multi-qubit operation of three or more qubits

215

but this introduces the challenges of simultaneously routing many qubits and of designing

decompositions that are efficient with whichever grouping the simultaneous router can achieve.

It is not obvious how to route more than three qubits into a line or other desired shape.

As many NISQ benchmarks are not typically written with more complex structures and

usually phrase them in terms of one-, two-, and three-qubit gates, this extension may only be

desirable for larger-scale quantum computing.

5.5.3 Evaluation

Toffoli Only Circuits

We first evaluate the effect of our new compilation strategy by studying simple circuits

containing only a single Toffoli gate. In these experiments, we place the three input qubits at

random locations on the target hardware to emulate the potential locations of the qubits at

some intermediate point in the execution of a more complex circuit.

We study these circuits on a real IBM device, namely IBM Johannesburg, a 20-qubit

device with limited connectivity in Figure 5.34a. We use the default Qiskit compiler which

decomposes the Toffoli gates before doing shortest path routing compared to our proposed

method where we do shortest path routing first and then decompose the Toffoli. We study

the use of two different Toffoli implementations, a 6 CNOT decomposition with full qubit

connectivity and an 8 CNOT decomposition with linear qubit connectivity.

In all four configurations, we compare the total compiled CNOT counts which correlates

with the total success probability of a program. For execution on Johannesburg, we prepare

the qubits in the states |110⟩, perform the compiled Toffoli, then measure the three qubits

of interest and compute the success rate as the probability of obtaining the correct answer

(here the |111⟩ state), where each experiment is performed with 8192 trials.

216

NISQ Benchmarks and Quantum Subroutines

We also study Trios on real quantum benchmarks of moderate size using simulation only.

The error rates of current devices are still too high to run benchmarks of these sizes but are

expected to run on current devices as errors improve in the near future. We choose error

rates 20x better than Johannesburg rates as this make the estimated success probabilities

within a reasonable range and is a realistic near-term estimate. We discuss sensitivity to this

choice later.

We study four implementations of the many-controlled-NOT (CnX) gate. This subroutine

has many use cases from Grover’s algorithm to various arithmetics. The implementations take

advantage of differing numbers of ancilla and are chosen based on the number of available

qubits on hardware. We study three adder implementations: Cuccaro, Takahashi, and QFT.

The first two have many uses of the Toffoli gate while the latter has no such gates, for

comparison. We study a small version of Grover’s algorithm as well which makes use of the

cnx_logancilla subroutine. Finally, we compile two common NISQ benchmarks: QAOA

for Max-Cut and Bernstein Vazirani (BV). We expect no gain on these benchmarks since

they do not contain any Toffoli gates.

A summary of our benchmarks is found in Table 5.9 using implementations found in [11].

The last three benchmarks use no Toffoli gates where we expect advantage only for circuits

containing Toffoli gates. For BV, we assume the all 1 bit string oracle. The different CnX

(many-controlled-NOT) benchmarks use various numbers of ancilla.

As noted previously, the connectivity of the underlying hardware has a significant impact

on the number of required SWAPs. For example, on a completely connected set of qubits,

no SWAPs are ever needed. In architectures with greater connectivity, we may opt for a

more efficient Toffoli decomposition using 6 CNOTs. With simulation we study the effect of

7. The total number of CNOT gates is after decomposition with the 8-CNOT Toffoli but does not including
any SWAPs for routing.

217

Table 5.9: Details about benchmarks for Trios for reference, both NISQ programs and other
quantum subroutines

Benchmark Qubits Toffolis CNOTs7

cnx_dirty [12] 11 16 128
cnx_halfborrowed [70] 19 32 256
cnx_logancilla [15] 19 17 136
cnx_inplace [70] 4 54 490

cuccaro_adder [46] 20 18 190
takahashi_adder [176] 20 18 188

incrementer_borrowedbit [70] 5 50 448
grovers[78] 9 84 672

qft_adder [162] 16 0 92
bv [21] 20 0 19

qaoa_complete [64] 10 0 90

connectivity on the overall expected success rates and gate counts. We study four different

connectivity models, all shown in Figure 5.34, each with 20 qubits, the topology of IBM’s

Johannesburg device containing four connected rings, a 2D mesh, a line, and a small clustered

architecture representative of a QCCD ion trap.

We use error rates reported by IBM obtained via randomized benchmarking on a daily basis;

for simulations we use error numbers obtained from Johannesburg obtained on 8/19/2020

with an average T1 time of 70.87µs, T2 time of 72.72µs, two qubit gate time of 0.559µs, a

one qubit gate time of 0.07µs, two qubit gate error of 0.0147, one qubit gate error of 0.0004.

Source code for all experiments is available at [60]. Experiments using IBM are tested with

version 0.14.0 through their Python API. When compiling with Qiskit for the single Toffoli

experiments, we use the default settings for the transpile function while specifying the

Johannesburg backend. This means light optimization is performed: a stochastic routing

policy is chosen, and some simple optimizations such as single qubit gate consolidation is

performed. We fix the initial mapping to force routing to occur.

218

(6
-1
7-
3)
10

(1
6-
1-
8)
10

(7
-1
8-
3)
9

(1
7-
4-
11
)
9

(1
9-
2-
6)
9

(1
-1
9-
8)
8

(3
-1
5-
14
)
8

(7
-3
-1
9)
8

(1
5-
0-
9)
8

(1
9-
1-
7)
8

(1
-2
-1
8)
7

(6
-1
3-
2)
7

(1
4-
5-
15
)
7

(1
6-
1-
18
)
7

(1
9-
10
-6
)
7

(0
-1
2-
15
)
6

(5
-3
-9
)
6

(9
-3
-5
)
6

(1
3-
10
-1
)
6

(1
9-
15
-1
3)
6

(0
-6
-1
1)
5

(8
-6
-1
9)
5

(1
1-
15
-8
)
5

(1
4-
13
-1
6)
5

(1
8-
7-
8)
5

(2
-5
-3
)
4

(5
-1
-3
)
4

(8
-1
0-
6)
4

(1
1-
7-
9)
4

(1
7-
10
-5
)
4

(1
-3
-4
)
3

(9
-1
2-
14
)
3

(1
0-
11
-0
)
3

(3
-1
-2
)
2

(1
7-
16
-1
8)
2

ge
o-
m
ea
n

0

0.2

0.4

0.6

0.8

su
cc
es
s
p
ro
b
ab

il
it
y

Toffoli Experiment on IBMQ Johannesburg

Qiskit (baseline) Qiskit (8-CNOT Toffoli) Trios (6-CNOT Toffoli) Trios (8-CNOT Toffoli)

Figure 5.35: Success probabilities of Toffoli gates between random triplets of qubits. Higher
is better. The x labels specify the three qubits and total swap distance. The geometric mean
success rates for each compiler are 41%, 35%, 47%, and 50% respectively. Trios (8-CNOT)
improves average success rate by 23% vs. the Qiskit baseline.

(6
-1
7-
3)
10

(1
6-
1-
8)
10

(7
-1
8-
3)
9

(1
7-
4-
11
)
9

(1
9-
2-
6)
9

(1
-1
9-
8)
8

(3
-1
5-
14
)
8

(7
-3
-1
9)
8

(1
5-
0-
9)
8

(1
9-
1-
7)
8

(1
-2
-1
8)
7

(6
-1
3-
2)
7

(1
4-
5-
15
)
7

(1
6-
1-
18
)
7

(1
9-
10
-6
)
7

(0
-1
2-
15
)
6

(5
-3
-9
)
6

(9
-3
-5
)
6

(1
3-
10
-1
)
6

(1
9-
15
-1
3)
6

(0
-6
-1
1)
5

(8
-6
-1
9)
5

(1
1-
15
-8
)
5

(1
4-
13
-1
6)
5

(1
8-
7-
8)
5

(2
-5
-3
)
4

(5
-1
-3
)
4

(8
-1
0-
6)
4

(1
1-
7-
9)
4

(1
7-
10
-5
)
4

(1
-3
-4
)
3

(9
-1
2-
14
)
3

(1
0-
11
-0
)
3

(3
-1
-2
)
2

(1
7-
16
-1
8)
2

ge
o-
m
ea
n

0

20

40

60

C
N
O
T

ga
te

co
u
n
t

Toffoli Experiment on IBMQ Johannesburg

Qiskit (baseline) Qiskit (8-CNOT Toffoli) Trios (6-CNOT Toffoli) Trios (8-CNOT Toffoli)

Figure 5.36: Total number of two-qubit (CNOT) gates required to execute a Toffoli gate
between various distant qubits. Lower is better. The x labels specify the three qubits and
total swap distance. The geometric mean gate counts for each compiler are 29, 28, 23, and
19 respectively. Trios (8-CNOT) reduces average gate count by 35%.

219

10–9– 8– 7– 6– 5– 4– 3– 2–gmean

50%

100%

150%

200%

250%

300%

p
tr
io
s
/p

ba
se
li
n
e

Toffoli Experiment Success Normalized to Baseline

Trios Qiskit (reference at 100%)

Figure 5.37: Normalized success probabilities of Toffoli gates between triplets of qubits.
Higher is better. Bars below 100% indicate lower success rate for Trios. The geometric mean
increase in success rate is 23%. The x labels indicate the qubit distance for a range of bars.

cnx
dirt

y-11

cnx
half

bor
row

ed-1
9

cnx
loga

ncil
la-1

9

cnx
inpl

ace-
4

cucc
aro

add
er-2

0

taka
hash

i ad
der-

20

incr
emente

r bo
rrow

edb
it-5
grov

ers-
9

geom
etri

c m
ean

qft
add

er-1
6

bv-2
0

qao
a com

plet
e-10

0

0.2

0.4

0.6

0.8

su
cc
es
s
p
ro
b
ab

il
it
y

Simulated Benchmark Success Probability

Baseline Trios (ibmq) Baseline Trios (grid) Baseline Trios (line) Baseline Trios (clusters)

Figure 5.38: Simulated upper-bounds on the program execution success probability on various
hardware (using 20x lower idle and gate errors than Johannesburg). Neighboring pairs of bars
compare the baseline with Trios compiled for Johannesburg. Higher is better when comparing
pairs of bars with the same color. The geometric mean success rates over the benchmarks that
use Toffoli gate for each device type respectively are 2.2%→9.8%, 3.2%→12%, 0.19%→6.0%,
7.3%→17%. The rightmost three benchmarks contain zero Toffoli gates so have no change vs.
the baseline.

220

cnx
dirt

y-11

cnx
half

bor
row

ed-1
9

cnx
loga

ncil
la-1

9

cnx
inpl

ace-
4

cucc
aro

add
er-2

0

taka
hash

i ad
der-

20

incr
emente

r bo
rrow

edb
it-5
grov

ers-
9

geom
etri

c m
ean

qft
add

er-1
6

bv-2
0

qao
a com

plet
e-10

0%

20%

40%

60%

p
er
ce
n
t
fe
w
er

C
N
O
T

ga
te
s

Simulated Benchmark Gate-Count Reduction over Baseline

ibmq-johannesburg full-grid-5x4 line-20 clusters-5x4

Figure 5.39: A comparison between the baseline and Trios for various hardware. Above 0%
indicates benefit. All two-qubit gates (for communication and computation) are counted.
The geometric mean reductions in gate counts are 37%, 36%, 48%, and 26% respectively. The
rightmost three benchmarks contain zero Toffoli gates so have no change vs. the baseline.

5.5.4 Results and Discussion

Trios Reduces Total Number of Gates

In both sets of experiments, the total number of gates required to make the input programs

executable is much less than when using the default Qiskit compiler. When compiling our

simple programs consisting of a single Toffoli gate with qubits mapped in random locations,

we reduce the average number of gates by 35% geomean.

In Figure 5.36 we show 35 different triplets of hardware qubits for each of the four

strategies. For each triplet, we note the total distance between the qubits on the hardware,

given by the shortest path distance in the underlying topology. Even when the distance is

relatively small, Trios outperforms reducing overall gate count and as the distance increases,

the margin tends to increase. In the small distance cases, this can be attributed to Trios

choosing the better Toffoli decomposition for a linearly connected topology. This is significant

221

cnx
dirt

y-11

cnx
half

bor
row

ed-1
9

cnx
loga

ncil
la-1

9

cnx
inpl

ace-
4

cucc
aro

add
er-2

0

taka
hash

i ad
der-

20

incr
emente

r bo
rrow

edb
it-5
grov

ers-
9

geom
etri

c m
ean

qft
add

er-1
6

bv-2
0

qao
a com

plet
e-10

100

101

102

103

p
tr
io
s
/p

ba
se
li
n
e

Simulated Benchmark Success Normalized to Baseline

ibmq-johannesburg full-grid-5x4 line-20 clusters-5x4

Figure 5.40: Normalized Figure 5.38 to show our consistent increase in program success with
Trios. Above 100 indicates benefit. Some improvement factors are huge due to near-zero
baseline success rates. The geometric mean increases in success rate are 4.4x, 3.7x, 31x, and
2.3x respectively. The rightmost three benchmarks contain zero Toffoli gates so have no
change vs. the baseline.

222

100 101 102
100

101

102

103

104

105

106

107

108

error rate improvement factor

p
tr
io
s
/p

ba
se
li
n
e

Sensitivity to Device Error Rates

cnx halfborrowed-19

takahashi adder-20

cuccaro adder-20

grovers-9

incrementer borrowedbit-5

cnx logancilla-19

cnx inplace-4

cnx dirty-11

for experiment

for benchmarks

Figure 5.41: Factor of improvement in success rate in Trios over baseline for scaling gate
error rates. The dotted line indicates current error rates on IBM Johannesburg and the
dashed line (20x improvement) indicates values of the near future used in simulation. In
our approximation of success rate factors of improvement in gate error rates lead to an
exponential fall off in success ratios, as expected. In the very near term, we expect Trios to
drastically improve the execution of quantum programs.

223

for two reasons. First, the fewer the gates, the less likely an error occurs due to qubit

manipulation. Second, fewer gates, especially long sequential chains of SWAPs, often means

lower circuit depth, meaning fewer chances for decoherence errors. Together this translates

into faster and more successful programs.

This advantage extends to our NISQ benchmarks which contain various numbers of Toffoli

gates. In Figure 5.39 we note substantial reductions in total gates across all benchmarks

containing Toffoli gates across all underlying topologies. The only exception is the two

smallest benchmarks (on 4 and 5 qubits) for the clustered topology because they could be

compiled with zero SWAPs.

An extreme of the clustered topology is a single cluster with all-to-all connected qubits.

On this device, Orchestrated Trios would have no benefit as operations can be performed

between any pair of qubits so no SWAPs are needed and routing is trivial. However, as

quantum technologies scale to more than a few qubits, fully-connected architectures hits

physical limitations and must be re-engineered. As trapped ion qubit chains get longer, for

example, gate operations become slower and lower fidelity. [138] showed that the optimal

trap size is 15-25 ions interconnected similar to our cluster model with cluster sizes of 15-25

where Trios does benefit.

On average, for Toffoli-containing programs we reduce gate count 37%, 36%, 48%, 26%

for Johannesburg, Grid, Line, and Cluster topologies respectively with the maximum gain

obtained for linear devices.

Trios Improves Overall Success Rate

In general, we expect programs with fewer total two-qubit gates, to succeed with higher

probability. In devices with limited connectivity, the addition of routing operations like

SWAPs, usually decomposed to 3 CNOTs, can severely reduce the chance an input program

can succeed. While success rate is inversely correlated with number of gates, gate error is not

224

the only reason a program can fail and reducing gate counts does not guarantee improved

success rates.

In Figure 5.35 we show the success rates of our Toffoli-only experiments when the two

controls are initialized to |1⟩ and the target is initialized to |0⟩ so we measure the probability

of obtaining |111⟩. These results are obtained from Johannesburg on 8/19/2020. The x-axes

of both Figures 5.35 and 5.36 line up to compare gate counts and resulting success rate. In

general, experimentally, fewer gates results in substantial improvements to success rates. For

example, a Toffoli on (6-17-3) compiled with Trios improves success rate from around 30%

to over 50%. On average, we improve success rates by 23 % geomean with max of 286%.

In Figure 5.37, we show improvements compiled with Trios normalized to baseline for 99

different triplets of varying total distance on Johannesburg.

Trios on average improves the probability of success for these circuits. However, there

are a small number of cases where Trios performs worse despite having a smaller number of

total gates. This can be attributed to several different factors. For example, the chosen edges

for SWAP paths may be more noisy, or on pairs of edges with greater crosstalk, or the final

qubits which are measured have worse readout error. Regardless, reducing the overall gate

count of a program is an important contributing factor to improving expected success rate.

For our simulated NISQ benchmarks, we see even larger gains. The reduced gate counts

in Figure 5.39 translate to major improvements in simulated success rate in Figure 5.38

(normalized success rates in Figure 5.40). For example, in cnx_logancilla-19, Trios more

than doubles the expected success rates when compiled to each of the architectures. In

many cases, the expected success rate of programs compiled with Qiskit is effectively zero

while Trios has a realistic chance of obtaining the correct answer. As expected, on programs

containing no Toffoli gates, Trios has no effect on success showing that it introduces no

excessive overhead. This suggests Trios can easily be added to other quantum compilation

toolflows.

225

Trios Routes Complex Interactions Better

Trios improves gate counts, and consequently improves success rates, by routing more efficiently

and choosing more appropriate Toffoli decompositions based on the underlying architecture’s

connectivity. Current compilers, like Qiskit, perform routing on fully decomposed and unrolled

programs, and while this must eventually be done, it leads to less efficient routing policies

and relies on assumptions that a theoretically good decomposition (fewer CNOTs) is the

best decomposition for the hardware. Trios eliminates this by choosing a context-dependent

Toffoli decomposition and routing multiqubit gates as single units.

Trios greatly improves effectiveness compared to a heuristic-based compiler by applying

similar heuristics to the higher abstraction level Toffoli gates. An optimal routing of the

decomposed circuit would be better except it cannot select the best architecture location-

specific decomposition. This makes a huge difference specifically with Toffolis on any

square-grid-based device. One might choose to improve the solution found by an optimal

compiler by always decomposing Toffolis to the 8-CNOT version before optimally routing, but

this will still limit the solution. There are multiple possible qubit orders for the decomposition

and the best can only be selected after the routing pass.

Simulation Sensitivity to Error Rates

For our simulations we use an error model (20x better than current errors on Johannesburg)

which is forward looking. As errors improve, we expect Trios to have a reduced impact on

program success rates since gate errors will contribute less and less to program failure though

Trios will never perform worse than the baseline. In Figure 5.41 we study the sensitivity of

simulation results to two qubit error rates beginning with current IBM error rates. For poor

error rates, the benefit of Trios is extremely large, owed to the fact that programs compiled

with the baseline have probabilities of success very close to 0. In our simplified simulation

framework, as error rates improve we expect an exponential drop off in improvement with

226

the most advantage obtained with current error rates.

5.5.5 Remarks

We present a new quantum compilation structure, Trios, with a split decomposition pass to

greatly reduce compiled communication cost and enable architecture-tuned decompositions.

We specifically target the three-qubit Toffoli operation to capture program structure enabling

more optimal compiled circuits. Because current quantum computers are especially error

prone, they require high levels of optimization to reduce gate counts and maximize the

probability the compiled program will succeed.

Orchestrated Trios both greatly improves the effectiveness of qubit routing given newly

exposed program structure and improves decompositions with connectivity-awareness. These

both greatly benefit the program success rate, a critical metric for today’s error-prone

and resource-constrained quantum computers. We hope this inspires more hierarchically

designed NISQ algorithms now that we have shown breaking the abstractions of discrete

compilation passes can help bridge the gap between these noisy quantum hardware and

practical applications.

227

CHAPTER 6

DISCUSSION AND CONCLUSION

The high level objective of this work is to open a discussion on how to approach new hardware

technologies - what are the fundamental tradeoff spaces as we move from small numbers

of error-prone devices to large numbers of error corrected devices? This work introduces

and adapts software optimization frameworks, both technology-dependent and technology-

agnostic, to bridge the gap between what can be computed on available hardware and

long-term application targets with a secondary objective in opening a discussion on how to

fairly evaluate competing quantum technologies.

Recently, hardware developers have begun to develop more reliable, more consistent, and

much larger devices composed of increasing numbers of qubits each typically corresponding to

a single physical device which can be connected together to give a larger, monolithic machine.

We are moving quickly beyond small-scale proof-of-concept machines composed of 1-5 qubits

and providers are able to fabricate machines on the orders of 10s and 100s of qubits. Major

industry players like IBM, IonQ and ColdQuanta have demonstrated machines with 127

superconducting qubits, 32 trapped ion qubits, and 64 neutral atom qubits each different

underlying physical technologies used to realize qubits. While increasing qubit counts is a

major accomplishment as it allows us to think about executing programs of non-trivial sizes,

but alone is not sufficient. Most of these machines are missing consistent reliability which is

needed to get these qubits and machines to actually work. Evaluation of these devices at

scale is currently necessary to determine their long-term viability, and therefore it is vital to

develop corresponding optimization frameworks to get them there.

Quantum systems are noisy, and current ones prohibitively so, meaning as we execute

programs there is a chance that desired operations don’t execute as expected or qubit states

decohere; meaning that the qubits can only be reliably usable for a limited amount time. For

success in the long run, we need to simultaneously increase qubit counts while suppressing

228

these various error rates. There are a variety of competing technologies, some examples

mentioned above. Each has their own promising advantages but come with fundamental

limitations to scalability; for example different technologies have specific types of errors or

drawbacks which are more dominant than others. These require tailored optimizations to

mitigate. It is currently unclear which technologies will be the eventual winners which able

to scale efficiently to support large-scale error corrected applications.

This uncertainty makes it imperative to evaluate each technology to determine its viability

as we scale - and highlights the primary objective of this work. Physicists and hardware

developers often focus on improvement to fundamental properties in small physical prototypes,

while this work proposes an alternative which is to examine the effects of advantages and

limitations in systems with thousands to millions of physical devices. It is often the case that

the expected appeals of these systems are overshadowed by more important features at scale.

The ultimate goal of quantum computation may be large scale error corrected applications

with millions of physical qubits, but there is certainly a long trajectory from where we are

now, where we can execute near-term algorithm on hardware with modest numbers of noisy

qubits, and where we’re going, the far right where we have huge numbers of qubits which

are protected from error. This work compiles several points along this this spectrum and

across many different technologies. It’s important to note, that even work that targets

near-term improvements such as hardware error mitigation, can accelerate progress towards

error correction.

At the highest level, this work is motivated by how to fairly evaluate new quantum

technologies as they are developed by designing appropriate architectures, adapting existing

optimization frameworks, and building complete and tailored compilation pipelines. This

evaluation framework can be viewed as a pyramid; that is suppose we’re presented with

some new piece of quantum technology - for example a new way to implement a qubit or a

new way to communicate qubits at long distances - we want to think about many different

229

factors affecting whether or not it will be compatible with our top -level question “will this

technology scale efficiently into the future?” to begin to answer this, the goal is to ask the

right set of questions and apply the right set of optimization tools to maximize proposed

advantages while mitigating fundamental hardware limitations; we need to both optimize over

trade-off spaces but identify the most important first. In many cases, the key limitations may

not be immediate and similarly what might be thought to be prohibitive could be effectively

mitigated in software.

Here, this top level question is supported by three primary legs or factors that will help

guide these questions. The first of these categories of questions is “does this technology

support fast and economical program execution?” Fast meaning how long does the actual

quantum circuit take to execute on hardware which will be directly related to output quality or

meaning how long does it take in terms of wall-clock time which is relevant for say variational

algorithms where we want to avoid the quantum computer taking too long that machine

parameters change. Second, we want to consider “can this technology produce consistent and

high quality program outputs?” Limited coherence times mean the time from initialization

to measurement to obtain our classical bitstring answer is bounded and gates on those qubits

may not execute exactly as planned, for example we might over-rotate or rotate around the

wrong axis. These types of errors can vary over time and from qubit to qubit and result in

incorrect or non-optimal answers. While errors can be very complex, it is useful to discern

which are most dominant. Finally, we want to ensure that whichever technology we choose

is going to be suitable for both near-term and long-term applications - “will it’s properties

match what’s needed for programs we are and are going to run?” In one sense, there are a

limited set of known algorithms to date and while it’s continuing to grow it may be more

appealing to design architectures and choose technologies based on our ultimate application

targets as we saw in the VLQ work.

Each technology that emerges will have its own diverse set of unique advantages and

230

disadvantages - asking the right sets of questions will guide our development of hardware-

specific optimizations and enable a holistic evaluation of its ability to scale into the future.

There is clearly an interplay between each of these high-level lines of questioning. For

example: clearly support for applications will require a certain degree of reliability which will

be dependent on say the underlying hardware topology, how the qubits are connected. Full

evaluation relies on full-stack, cross-cutting examination of these tradeoff spaces.

In this work we have discussed several case studies based on emerging technologies and

their corresponding optimization frameworks which more deeply analyze some fundamental

questions about emerging quantum technologies at scale. For example, multivalued logic for

quantum computation extends the computational space of each physical device which when

used properly, e.g. to mitigate the increased possibility for error, can lead to some major

gains in both physical space requirements and execution time. However, there is still many

open questions about our temporary ternary (or higher states) paradigm - such as will it be

useful beyond hand optimizations? Can we develop compilation and optimization frameworks

which apply this strategy to any input?

Similarly, we’ve shown certain applications, like the Surface Code quantum error correction

code, despite being designed for 2D architectures, are actually better suited for a 2.5D or

3D architecture resulting in lower physical qubit requirements and faster gate executions

and under our realistic error model have equivalently good or slightly worse error correction

thresholds as a baseline 2D implementation. Again, there are many open questions remaining

- such as “is this architecture the best match for the application? Is this application the best

match for this architecture? What about for some new architecture based on a completely

different technology?”

Ultimately, each of the presented projects are examples just scratching the surface of

a much larger set of questions centered towards the end-goal of efficient scalability. There

are so many potential technologies, this work only exploring one subset, with unique sets

231

of advantages and constraints both physically and at scale, and its entirely unclear which

technologies are going to be ultimately viable or best suited for quantum applications.

What’s clear, however, is that any evaluation of these technologies requires a complete

exploration of systems-level tradeoffs. Clearly some of the most important advantages of

a new technology can only be studied at scale and may not even be obvious from small-

scale prototypes. Furthermore, any evaluation will require tailored technology-specific,

vertically integrated, optimization frameworks to push the technology to its true limitations.

This is a full-hardware-software-stack interdisciplinary-effort - improving on and optimizing

qubit implementations, their control, software mitigation of errors, a architecture specific

compilation framework, and applications like quantum error correction tailored to the

architecture. Our ultimate objective is to develop these technology-specific frameworks so

we can best determine which are well positioned to support near and intermediate-term

algorithms as we transition to large-scale quantum computation in the future.

232

REFERENCES

[1] Neutral atom compilation.

[2] Cirq: A python framework for creating, editing, and invoking noisy intermediate scale

quantum (NISQ) circuits. https://github.com/quantumlib/Cirq, 2018.

[3] A preview of bristlecone, google’s new quantum processor, Mar 2018.

[4] Quantum devices simulators, Jun 2018.

[5] Quantum devices and simulators. https://www.research.ibm.com/ibm-q/

technology/devices/, 2018.

[6] Code for asymptotic improvements to quantum circuits via qutrits. https://github.

com/epiqc/qutrits, 2019.

[7] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F. Chiang,

S. Vanderwilt, J. Black, F. Chong, M. Martonosi, M. Suchara, K. Brown, M. Pedram,

and T. Brun. Scaffold: Quantum programming language. Report TR-934-12, Princeton

University, 2012.

[8] H. Abraham, AduOffei, R. Agarwal, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander,

M. Amy, E. Arbel, Arijit02, A. Asfaw, A. Avkhadiev, C. Azaustre, AzizNgoueya,

A. Banerjee, A. Bansal, P. Barkoutsos, A. Barnawal, G. Barron, G. S. Barron, L. Bello,

Y. Ben-Haim, D. Bevenius, A. Bhobe, L. S. Bishop, C. Blank, S. Bolos, S. Bosch, Bran-

don, S. Bravyi, Bryce-Fuller, D. Bucher, A. Burov, F. Cabrera, P. Calpin, L. Capelluto,

J. Carballo, G. Carrascal, A. Chen, C.-F. Chen, E. Chen, J. C. Chen, R. Chen, J. M.

Chow, S. Churchill, C. Claus, C. Clauss, R. Cocking, F. Correa, A. J. Cross, A. W.

Cross, S. Cross, J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales, S. Dague, T. E.

Dandachi, M. Daniels, M. Dartiailh, DavideFrr, A. R. Davila, A. Dekusar, D. Ding,

233

https://github.com/quantumlib/Cirq
https://www.research.ibm.com/ibm-q/technology/devices/
https://www.research.ibm.com/ibm-q/technology/devices/
https://github.com/epiqc/qutrits
https://github.com/epiqc/qutrits

J. Doi, E. Drechsler, Drew, E. Dumitrescu, K. Dumon, I. Duran, K. EL-Safty, E. East-

man, G. Eberle, P. Eendebak, D. Egger, M. Everitt, P. M. Fernández, A. H. Ferrera,

R. Fouilland, FranckChevallier, A. Frisch, A. Fuhrer, B. Fuller, M. GEORGE, J. Gacon,

B. G. Gago, C. Gambella, J. M. Gambetta, A. Gammanpila, L. Garcia, T. Garg, S. Gar-

ion, A. Gilliam, A. Giridharan, J. Gomez-Mosquera, Gonzalo, S. de la Puente González,

J. Gorzinski, I. Gould, D. Greenberg, D. Grinko, W. Guan, J. A. Gunnels, M. Haglund,

I. Haide, I. Hamamura, O. C. Hamido, F. Harkins, V. Havlicek, J. Hellmers, L. Herok,

S. Hillmich, H. Horii, C. Howington, S. Hu, W. Hu, J. Huang, R. Huisman, H. Imai,

T. Imamichi, K. Ishizaki, R. Iten, T. Itoko, JamesSeaward, A. Javadi, A. Javadi-Abhari,

W. Javed, Jessica, M. Jivrajani, K. Johns, S. Johnstun, Jonathan-Shoemaker, V. K,

T. Kachmann, A. Kale, N. Kanazawa, Kang-Bae, A. Karazeev, P. Kassebaum, J. Kelso,

S. King, Knabberjoe, Y. Kobayashi, A. Kovyrshin, R. Krishnakumar, V. Krishnan,

K. Krsulich, P. Kumkar, G. Kus, R. LaRose, E. Lacal, R. Lambert, J. Lapeyre, J. La-

tone, S. Lawrence, C. Lee, G. Li, D. Liu, P. Liu, Y. Maeng, K. Majmudar, A. Malyshev,

J. Manela, J. Marecek, M. Marques, D. Maslov, D. Mathews, A. Matsuo, D. T. Mc-

Clure, C. McGarry, D. McKay, D. McPherson, S. Meesala, T. Metcalfe, M. Mevissen,

A. Meyer, A. Mezzacapo, R. Midha, Z. Minev, A. Mitchell, N. Moll, J. Montanez,

G. Monteiro, M. D. Mooring, R. Morales, N. Moran, M. Motta, MrF, P. Murali,

J. Müggenburg, D. Nadlinger, K. Nakanishi, G. Nannicini, P. Nation, E. Navarro,

Y. Naveh, S. W. Neagle, P. Neuweiler, J. Nicander, P. Niroula, H. Norlen, NuoWenLei,

L. J. O’Riordan, O. Ogunbayo, P. Ollitrault, R. Otaolea, S. Oud, D. Padilha, H. Paik,

S. Pal, Y. Pang, V. R. Pascuzzi, S. Perriello, A. Phan, F. Piro, M. Pistoia, C. Piveteau,

P. Pocreau, A. Pozas-iKerstjens, M. Prokop, V. Prutyanov, D. Puzzuoli, J. Pérez,

Quintiii, R. I. Rahman, A. Raja, N. Ramagiri, A. Rao, R. Raymond, R. M.-C. Re-

dondo, M. Reuter, J. Rice, M. Riedemann, M. L. Rocca, D. M. Rodŕıguez, RohithKarur,

M. Rossmannek, M. Ryu, T. SAPV, SamFerracin, M. Sandberg, H. Sandesara, R. Sapra,

234

H. Sargsyan, A. Sarkar, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L.

Scholten, E. Schoute, J. Schwarm, I. F. Sertage, K. Setia, N. Shammah, Y. Shi, A. Silva,

A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov, S. Sivarajah, M. B. Sletfjerding,

J. A. Smolin, M. Soeken, I. O. Sokolov, I. Sokolov, SooluThomas, Starfish, D. Steenken,

M. Stypulkoski, S. Sun, K. J. Sung, H. Takahashi, T. Takawale, I. Tavernelli, C. Taylor,

P. Taylour, S. Thomas, M. Tillet, M. Tod, M. Tomasik, E. de la Torre, K. Trabing,

M. Treinish, TrishaPe, D. Tulsi, W. Turner, Y. Vaknin, C. R. Valcarce, F. Varchon,

A. C. Vazquez, V. Villar, D. Vogt-Lee, C. Vuillot, J. Weaver, J. Weidenfeller, R. Wiec-

zorek, J. A. Wildstrom, E. Winston, J. J. Woehr, S. Woerner, R. Woo, C. J. Wood,

R. Wood, S. Wood, S. Wood, J. Wootton, D. Yeralin, D. Yonge-Mallo, R. Young, J. Yu,

C. Zachow, L. Zdanski, H. Zhang, C. Zoufal, Zoufalc, a kapila, a matsuo, bcamorrison,

brandhsn, nick bronn, brosand, chlorophyll zz, csseifms, dekel.meirom, dekelmeirom,

dekool, dime10, drholmie, dtrenev, ehchen, elfrocampeador, faisaldebouni, fanizza-

marco, gabrieleagl, gadial, galeinston, georgios ts, gruu, hhorii, hykavitha, jagunther,

jliu45, jscott2, kanejess, klinvill, krutik2966, kurarrr, lerongil, ma5x, merav aharoni,

michelle4654, ordmoj, sagar pahwa, rmoyard, saswati qiskit, scottkelso, sethmerkel,

shaashwat, sternparky, strickroman, sumitpuri, tigerjack, toural, tsura crisaldo, vvil-

pas, welien, willhbang, yang.luh, yotamvakninibm, and M. Čepulkovskis. Qiskit: An

open-source framework for quantum computing, 2019.

[9] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm for

fast synthesis of depth-optimal quantum circuits. 2012.

[10] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,

S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro,

R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney,

M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho,

M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri,

235

K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis,

M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant,

X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y.

Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan,

N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick,

A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and

J. M. Martinis. Quantum supremacy using a programmable superconducting processor.

Nature, 574(7779):505–510, 2019.

[11] J. M. Baker, C. Duckering, P. Gokhale, and A. Litteken. Quantum circuit benchmarks.

https://github.com/jmbaker94/quantumcircuitbenchmarks, 2020.

[12] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong. Decomposing quantum

generalized toffoli with an arbitrary number of ancilla. arXiv preprint, Apr. 2019.

[13] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong. Time-sliced quantum circuit

partitioning for modular architectures. In Proceedings of the 17th ACM International

Conference on Computing Frontiers, pages 98–107, 2020.

[14] A. Bapat, Z. Eldredge, J. R. Garrison, A. Deshpande, F. T. Chong, and A. V. Gor-

shkov. Unitary entanglement construction in hierarchical networks. Physical Review A,

98(6):062328, 2018.

[15] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,

J. A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Phys.

Rev. A, 52:3457–3467, Nov 1995.

[16] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus,

A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill,

P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland,

236

https://github.com/jmbaker94/quantumcircuitbenchmarks

and J. M. Martinis. Superconducting quantum circuits at the surface code threshold

for fault tolerance. Nature, 508:500 EP –, 04 2014.

[17] E. Barnes, C. Arenz, A. Pitchford, and S. E. Economou. Fast microwave-driven three-

qubit gates for cavity-coupled superconducting qubits. Phys. Rev. B, 96:024504, Jul

2017.

[18] D. Barredo, S. De Léséleuc, V. Lienhard, T. Lahaye, and A. Browaeys. An atom-

by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science,

354(6315):1021–1023, 2016.

[19] D. Barredo, V. Lienhard, S. De Leseleuc, T. Lahaye, and A. Browaeys. Synthetic

three-dimensional atomic structures assembled atom by atom. Nature, 561(7721):79–82,

2018.

[20] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler,

T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk,

R. Blatt, S. Benjamin, and M. Müller. Assessing the progress of trapped-ion processors

towards fault-tolerant quantum computation. 2017.

[21] E. Bernstein and U. Vazirani. Quantum complexity theory. In Proceedings of the

Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pages

11–20, June 1993.

[22] J. Biamonte and V. Bergholm. Tensor networks in a nutshell. arXiv preprint

arXiv:1708.00006, 2017.

[23] L. S. Bishop, S. Bravyi, A. Cross, J. M. Gambetta, and J. Smolin. Quantum volume.

Quantum Volume. Technical Report, 2017.

237

[24] N. Bjørner, A.-D. Phan, and L. Fleckenstein. νz - an optimizing smt solver. In C. Baier

and C. Tinelli, editors, Tools and Algorithms for the Construction and Analysis of

Systems, pages 194–199, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[25] B. R. Blakestad, A. Vandevender, C. Ospelkaus, J. Amini, J. W. Britton, D. G. Leibfried,

and D. J. Wineland. High fidelity transport of trapped-ion qubits through an x-junction

trap array— nist. Nature Physics, 102(Nature Physics), 2009.

[26] A. Bocharov, M. Roetteler, and K. M. Svore. Factoring with qutrits: Shor’s algorithm

on ternary and metaplectic quantum architectures. Phys. Rev. A, 96:012306, Jul 2017.

[27] H. Bomb́ın. Gauge color codes: optimal transversal gates and gauge fixing in topological

stabilizer codes. New Journal of Physics, 17(8):083002, 2015.

[28] K. E. Booth, M. Do, J. C. Beck, E. Rieffel, D. Venturelli, and J. Frank. Comparing

and integrating constraint programming and temporal planning for quantum circuit

compilation. In Twenty-Eighth International Conference on Automated Planning and

Scheduling, 2018.

[29] S. Bravyi and J. Haah. Magic-state distillation with low overhead. Physical Review A,

86(5):052329, 2012.

[30] T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf.

Multilayer microwave integrated quantum circuits for scalable quantum computing. npj

Quantum Information, 2:16002, 2016.

[31] K. R. Brown, J. Kim, and C. Monroe. Co-designing a scalable quantum computer with

trapped atomic ions. npj Quantum Information, 2:16034, 2016.

[32] N. C. Brown and K. R. Brown. Comparing zeeman qubits to hyperfine qubits in the

context of the surface code: 174Yb+ and 171Yb+. Phys. Rev. A, 97:052301, May 2018.

238

[33] T. A. Brun. A simple model of quantum trajectories. American Journal of Physics,

70(7):719–737, 2002.

[34] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage. Trapped-ion quantum

computing: Progress and challenges. Applied Physics Reviews, 6(2):021314, 2019.

[35] J.-L. Brylinski and R. Brylinski. Universal quantum gates. In Mathematics of quantum

computation, pages 117–134. Chapman and Hall/CRC, 2002.

[36] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is

NP-hard. 42(3):153 – 159.

[37] T. Bækkegaard, L. B. Kristensen, N. J. S. Loft, C. K. Andersen, D. Petrosyan, and

N. T. Zinner. Superconducting qutrit-qubit circuit: A toolbox for efficient quantum

gates. arXiv preprint arXiv:1802.04299, 2018.

[38] A. Y. Chernyavskiy, V. V. Voevodin, and V. V. Voevodin. Parallel computational

structure of noisy quantum circuits simulation. Lobachevskii Journal of Mathematics,

39(4):494–502, May 2018.

[39] A. M. Childs and W. van Dam. Quantum algorithm for a generalized hidden shift

problem. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA ’07, pages 1225–1232, Philadelphia, PA, USA, 2007. Society for

Industrial and Applied Mathematics.

[40] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao,

L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf. Deterministic teleportation

of a quantum gate between two logical qubits. Nature, 561(7723):368–373, 2018.

[41] K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao,

L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf. Deterministic teleportation

of a quantum gate between two logical qubits, 2018.

239

[42] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and

S. S. Somaroo. Experimental quantum error correction. Phys. Rev. Lett., 81:2152–2155,

Sep 1998.

[43] J. P. Covey, I. S. Madjarov, A. Cooper, and M. Endres. 2000-times repeated imaging

of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett., 122:173201, May

2019.

[44] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons, and S. Sivarajah. On

the qubit routing problem. arXiv preprint arXiv:1902.08091, 2019.

[45] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open quantum assembly

language, 2017.

[46] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton. A new quantum

ripple-carry addition circuit, 2004.

[47] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contem-

porary DRAM architectures. In Proceedings of the 26th International Symposium on

Computer Architecture (Cat. No.99CB36367), pages 222–233, 1999.

[48] L. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and

J. Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[49] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe.

Demonstration of a small programmable quantum computer with atomic qubits. Nature,

536:63 EP –, Aug 2016.

[50] E. Dennis. Toward fault-tolerant quantum computation without concatenation. Phys.

Rev. A, 63:052314, Apr 2001.

240

[51] S. J. Devitt, K. Nemoto, and W. J. Munro. Quantum error correction for beginners.

2009.

[52] M. H. Devoret and R. J. Schoelkopf. Superconducting circuits for quantum information:

an outlook. Science, 339(6124):1169–1174, 2013.

[53] Y.-M. Di and H.-R. Wei. Elementary gates for ternary quantum logic circuit. arXiv

preprint arXiv:1105.5485, 2011.

[54] C. H. Q. Ding and H. D. Simon. A min-max cut algorithm for graph partitioning and

data clustering. In Proceedings 2001 IEEE International Conference on Data Mining,

pages 107–114, Nov 2001.

[55] Y. Ding, A. Holmes, A. Javadi-Abhari, D. Franklin, M. Martonosi, and F. Chong.

Magic-state functional units: Mapping and scheduling multi-level distillation circuits for

fault-tolerant quantum architectures. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 828–840. IEEE, 2018.

[56] Y. Ding, A. Holmes, A. Javadi-Abhari, D. Franklin, M. Martonosi, and F. Chong.

Magic-state functional units: Mapping and scheduling multi-level distillation circuits for

fault-tolerant quantum architectures. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 828–840. IEEE, 2018.

[57] T. G. Draper. Addition on a quantum computer. arXiv preprint quant-ph/0008033,

2000.

[58] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore. A logarithmic-depth quantum

carry-lookahead adder. Quantum Information & Computation, 6(4):351–369, 2006.

[59] L.-M. Duan and C. Monroe. Colloquium: Quantum networks with trapped ions.

Reviews of Modern Physics, 82(2):1209, 2010.

241

[60] C. Duckering and J. M. Baker. Simulation source code for virtualized logical qubits.

https://github.com/cduck/VLQ, 2020.

[61] N. Earnest, S. Chakram, Y. Lu, N. Irons, R. K. Naik, N. Leung, L. Ocola, D. A.

Czaplewski, B. Baker, J. Lawrence, J. Koch, and D. I. Schuster. Realization of a Λ

system with metastable states of a capacitively shunted fluxonium. Phys. Rev. Lett.,

120:150504, Apr 2018.

[62] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Krajenbrink,

C. Senko, V. Vuletic, M. Greiner, and M. D. Lukin. Atom-by-atom assembly of

defect-free one-dimensional cold atom arrays. Science, 354(6315):1024–1027, 2016.

[63] Y. Fan. Applications of multi-valued quantum algorithms. arXiv preprint

arXiv:0809.0932, 2008.

[64] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization

algorithm. arXiv preprint, Nov. 2014.

[65] A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff. Implementation of a

toffoli gate with superconducting circuits. Nature, 481:170 EP –, Dec 2011.

[66] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network

partitions. In 19th Design Automation Conference, pages 175–181. IEEE, 1982.

[67] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes: Towards

practical large-scale quantum computation. Physical Review A, 86(3):032324, 2012.

[68] A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg. Towards practical classical

processing for the surface code. Physical review letters, 108(18):180501, 2012.

[69] A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, and A. Browaeys. Free-space lossless

state detection of a single trapped atom. Phys. Rev. Lett., 106:133003, Mar 2011.

242

https://github.com/cduck/VLQ

[70] C. Gidney. Constructing large controlled nots, 2015.

[71] C. Gidney. Factoring with n+2 clean qubits and n-1 dirty qubits. arXiv preprint

arXiv:1706.07884, 2017.

[72] C. Gidney and M. Eker̊a. How to factor 2048 bit rsa integers in 8 hours using 20 million

noisy qubits. arXiv preprint arXiv:1905.09749, 2019.

[73] S. M. Girvin. Circuit qed: superconducting qubits coupled to microwave photons.

Quantum Machines: Measurement and Control of Engineered Quantum Systems, page

113, 2011.

[74] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R. Brown, and F. T. Chong.

Asymptotic improvements to quantum circuits via qutrits. In Proceedings of the 46th

International Symposium on Computer Architecture, pages 554–566. ACM, 2019.

[75] T. F. Gonzalez and D. Serena. Complexity of pairwise shortest path routing in the

grid. Theoretical Computer Science, 326(1):155 – 185, 2004.

[76] D. Gottesman. An introduction to quantum error correction and fault-tolerant quantum

computation. In Quantum information science and its contributions to mathematics,

Proceedings of Symposia in Applied Mathematics, volume 68, pages 13–58, 2010.

[77] A. D. Greentree, S. G. Schirmer, F. Green, L. C. L. Hollenberg, A. R. Hamilton,

and R. G. Clark. Maximizing the hilbert space for a finite number of distinguishable

quantum states. Phys. Rev. Lett., 92:097901, Mar 2004.

[78] L. K. Grover. A fast quantum mechanical algorithm for database search. In Annual

ACM Symposium on Theory of Computing, pages 212–219. ACM, 1996.

[79] G. G. Guerreschi and J. Park. Two-step approach to scheduling quantum circuits.

Quantum Science and Technology, 3(4):045003, jul 2018.

243

[80] G. G. Guerreschi and J. Park. Two-step approach to scheduling quantum circuits.

Quantum Science and Technology, 3(4):045003, 2018.

[81] T. Häner, M. Roetteler, and K. M. Svore. Factoring using 2n + 2 qubits with toffoli

based modular multiplication. Quantum Info. Comput., 17(7-8):673–684, June 2017.

[82] T. Häner and D. S. Steiger. 0.5 petabyte simulation of a 45-qubit quantum circuit.

In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, page 33. ACM, 2017.

[83] C. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S. M. Girvin, and L. Jiang.

Hardware-efficient quantum random access memory with hybrid quantum acoustic

systems. arXiv preprint arXiv:1906.11340, 2019.

[84] Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang. Decompositions of n-qubit

Toffoli Gates with Linear Circuit Complexity. International Journal of Theoretical

Physics, 56:2350–2361, July 2017.

[85] J. Heckey, S. Patil, A. JavadiAbhari, A. Holmes, D. Kudrow, K. R. Brown, D. Franklin,

F. T. Chong, and M. Martonosi. Compiler management of communication and par-

allelism for quantum computation. In Proceedings of the Twentieth International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS ’15, pages 445–456, New York, NY, USA, 2015. ACM.

[86] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for

mapping parallel computations. SIAM Journal on Scientific Computing, 16(2):452–469,

1995.

[87] B. Hendrickson and R. Leland. A multi-level algorithm for partitioning graphs. 1995.

[88] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and

C. Jurczak. Quantum computing with neutral atoms. Quantum, 4:327, Sep 2020.

244

[89] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima. An efficient conversion of

quantum circuits to a linear nearest neighbor architecture. Quantum Information and

Computation, 11(1):142, 2011.

[90] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter. Surface code quantum

computing by lattice surgery. New Journal of Physics, 14(12):123011, 2012.

[91] D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell. Spectroscopy of a

synthetic trapped ion qubit. Physical review letters, 119(10):100501, 2017.

[92] IBM Quantum Devices. https://quantumexperience.ng.bluemix.net/qx/devices.

Accessed: 2019-03-16.

[93] IBM Quantum Devices. https://quantumexperience.ng.bluemix.net/qx/devices.

Accessed: 2018-05-16.

[94] IBM Quantum Experience API. https://github.com/Qiskit/qiskit-api-py/tree/

master/IBMQuantumExperience. Accessed: 2018-05-16.

[95] IBM Announces Advances to IBM Quantum Systems and Ecosystem. https://www-03.

ibm.com/press/us/en/pressrelease/53374.wss. Accessed: 2018-08-05.

[96] S. S. Ivanov, H. S. Tonchev, and N. V. Vitanov. Time-efficient implementation of

quantum search with qudits. Phys. Rev. A, 85:062321, Jun 2012.

[97] D. Jaksch, J. Cirac, P. Zoller, S. Rolston, R. Côté, and M. Lukin. Fast quantum gates

for neutral atoms. Physical Review Letters, 85(10):2208, 2000.

[98] S. Jandura. Improving a quantum compiler, Sep 2018.

[99] A. Javadi-Abhari, P. Gokhale, A. Holmes, D. Franklin, K. R. Brown, M. Martonosi,

and F. T. Chong. Optimized surface code communication in superconducting quantum

245

https://quantumexperience.ng.bluemix.net/qx/devices
https://quantumexperience.ng.bluemix.net/qx/devices
https://github.com/Qiskit/qiskit-api-py/tree/master/IBMQuantumExperience
https://github.com/Qiskit/qiskit-api-py/tree/master/IBMQuantumExperience
https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
https://www-03.ibm.com/press/us/en/pressrelease/53374.wss

computers. In Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-50 ’17, pages 692–705, New York, NY, USA, 2017. ACM.

[100] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and

M. Martonosi. Scaffcc: A framework for compilation and analysis of quantum computing

programs. In Proceedings of the 11th ACM Conference on Computing Frontiers, CF

’14, pages 1:1–1:10, New York, NY, USA, 2014. ACM.

[101] F. M. Johannes. Partitioning of vlsi circuits and systems. In 33rd Design Automation

Conference Proceedings, 1996, pages 83–87, June 1996.

[102] J. Johansson, P. Nation, and F. Nori. Qutip: An open-source python framework

for the dynamics of open quantum systems. Computer Physics Communications,

183(8):1760–1772, 8 2012.

[103] J. Johansson, P. Nation, and F. Nori. Qutip 2: A python framework for the dynamics

of open quantum systems. Computer Physics Communications, 184(4):1234–1240, 4

2013.

[104] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.

Journal of Parallel and Distributed Computing, 48(1):96 – 129, 1998.

[105] G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix

Ordering System, Version 4.0. http://www.cs.umn.edu/~metis, 2009.

[106] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.

Bell system technical journal, 49(2):291–307, 1970.

[107] N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels. Qx: A high-

performance quantum computer simulation platform. In Proceedings of the Conference

on Design, Automation & Test in Europe, DATE ’17, pages 464–469, 3001 Leuven,

Belgium, Belgium, 2017. European Design and Automation Association.

246

http://www.cs.umn.edu/~metis

[108] M. H. A. Khan and M. A. Perkowski. Quantum ternary parallel adder/subtractor with

partially-look-ahead carry. J. Syst. Archit., 53(7):453–464, July 2007.

[109] H. Kim, W. Lee, H.-g. Lee, H. Jo, Y. Song, and J. Ahn. In situ single-atom array

synthesis using dynamic holographic optical tweezers. Nature communications, 7(1):1–8,

2016.

[110] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavsson,

and W. D. Oliver. Superconducting qubits: Current state of play. Annual Review of

Condensed Matter Physics, 11:369–395, 2020.

[111] A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra. Qutrit quantum computer

with trapped ions. Phys. Rev. A, 67:062313, Jun 2003.

[112] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino,

S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti. On-chip

generation of high-dimensional entangled quantum states and their coherent control.

Nature, 546:622 EP –, 06 2017.

[113] M. Kwon, M. F. Ebert, T. G. Walker, and M. Saffman. Parallel low-loss measurement

of multiple atomic qubits. Phys. Rev. Lett., 119:180504, Oct 2017.

[114] A. J. Landahl, J. T. Anderson, and P. R. Rice. Fault-tolerant quantum computing

with color codes. arXiv preprint arXiv:1108.5738, 2011.

[115] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch,

G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White. Simplifying quantum logic

using higher-dimensional hilbert spaces. Nature Physics, 5:134 EP –, 12 2008.

[116] L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, and

C. G. Almudever. Mapping of lattice surgery-based quantum circuits on surface code

architectures. Quantum Science and Technology, 4(1):015005, 2018.

247

[117] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis

& transformation. In Proceedings of the International Symposium on Code Generation

and Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,

Washington, DC, USA, 2004. IEEE Computer Society.

[118] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and W. K.

Hensinger. Blueprint for a microwave trapped-ion quantum computer. 2015.

[119] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien,

M. Greiner, V. Vuletić, H. Pichler, et al. Parallel implementation of high-fidelity

multiqubit gates with neutral atoms. Physical review letters, 123(17):170503, 2019.

[120] G. Li, Y. Ding, and Y. Xie. Tackling the qubit mapping problem for nisq-era quantum

devices, 2018.

[121] H. Y. Li, C. W. Wu, W. T. Liu, P. X. Chen, and C. Z. Li. Fast quantum search

algorithm for databases of arbitrary size and its implementation in a cavity QED

system. Physics Letters A, 375:4249–4254, Nov. 2011.

[122] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman,

K. Wright, and C. Monroe. Experimental comparison of two quantum computing

architectures. Proceedings of the National Academy of Sciences, 114(13):3305–3310,

2017.

[123] D. Litinski. A game of surface codes: Large-scale quantum computing with lattice

surgery. Quantum, 3:128, 2019.

[124] D. Litinski. Magic state distillation: Not as costly as you think. arXiv preprint

arXiv:1905.06903, 2019.

[125] I. L. Markov and M. Saeedi. Constant-optimized quantum circuits for modular multi-

plication and exponentiation. 2012.

248

[126] J. Martinis. Quantum supremacy using a programmable superconducting processor,

11 2019. Institute for Quantum Information and Matter Seminar at the California

Institute of Technology.

[127] D. Maslov, Y. Nam, and J. Kim. An outlook for quantum computing [point of view].

Proceedings of the IEEE, 107(1):5–10, 2018.

[128] N. D. Mermin. Quantum Computer Science: An Introduction. Cambridge University

Press, New York, NY, USA, 2007.

[129] D. Miller, T. Holz, H. Kampermann, and D. Bruß. Propagation of generalized pauli

errors in qudit clifford circuits. Physical Review A, 98(5):052316, 2018.

[130] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based algorithm for

reversible logic synthesis. In Proceedings 2003. Design Automation Conference (IEEE

Cat. No.03CH37451), pages 318–323, June 2003.

[131] C. Monroe and J. Kim. Scaling the ion trap quantum processor. Science, 339(6124):1164–

1169, 2013.

[132] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and

J. Kim. Large-scale modular quantum-computer architecture with atomic memory and

photonic interconnects. Phys. Rev. A, 89:022317, Feb 2014.

[133] S. Moses, J. Pino, J. Dreiling, C. Figgatt, J. Gaebler, M. Allman, C. Baldwin, M. Foss-

Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis. Demonstration of the

QCCD trapped-ion quantum computer architecture. Bulletin of the American Physical

Society, June 2020.

[134] E. Mount, D. Gaultney, G. Vrijsen, M. Adams, S.-Y. Baek, K. Hudek, L. Isabella,

S. Crain, A. van Rynbach, P. Maunz, et al. Scalable digital hardware for a trapped ion

quantum computer. Quantum Information Processing, 15(12):5281–5298, 2016.

249

[135] P. Murali, J. M. Baker, A. J. Abhari, F. T. Chong, and M. Martonosi. Noise-adaptive

compiler mappings for noisy intermediate-scale quantum computers, 2019.

[136] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi. Noise-

adaptive compiler mappings for noisy intermediate-scale quantum computers. In

Proceedings of the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 1015–1029, Apr. 2019.

[137] P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi. Architecting noisy

intermediate-scale trapped ion quantum computers. In 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA), pages 529–542. IEEE,

2020.

[138] P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi. Architecting noisy

intermediate-scale trapped ion quantum computers. In 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA), pages 529–542, June 2020.

[139] P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari. Software mitigation of

crosstalk on noisy intermediate-scale quantum computers. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 1001–1016, 2020.

[140] A. Muthukrishnan and C. R. Stroud. Multivalued logic gates for quantum computation.

Phys. Rev. A, 62:052309, Oct 2000.

[141] R. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu, N. Earnest, D. McKay, J. Koch,

and D. Schuster. Random access quantum information processors using multimode

circuit quantum electrodynamics. Nature communications, 8(1):1904, 2017.

250

[142] R. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu, N. Earnest, D. McKay, J. Koch,

and D. Schuster. Random access quantum information processors using multimode

circuit quantum electrodynamics. Nature communications, 8(1):1904, 2017.

[143] P. J. Nair. Architectural techniques to enable reliable and scalable memory systems.

arXiv preprint arXiv:1704.03991, 2017.

[144] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov. Automated optimization

of large quantum circuits with continuous parameters. npj Quantum Information,

4(1):1–12, 2018.

[145] M. G. Neeley. Generation of three-qubit entanglement using Josephson phase qubits.

PhD thesis, University of California, Santa Barbara, 2010.

[146] M. A. Nielsen and I. L. Chuang. Quantum information and quantum computation.

Cambridge: Cambridge University Press, 2(8):23, 2000.

[147] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information:

10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th

edition, 2011.

[148] T. Nowatzki, N. Ardalani, K. Sankaralingam, and J. Weng. Hybrid optimization/heuris-

tic instruction scheduling for programmable accelerator codesign. In Proceedings of the

27th International Conference on Parallel Architectures and Compilation Techniques,

PACT ’18, pages 36:1–36:15, New York, NY, USA, 2018. ACM.

[149] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and B. Robat-

mili. A general constraint-centric scheduling framework for spatial architectures. In

Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’13, pages 495–506, New York, NY, USA, 2013. ACM.

251

[150] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and B. Robat-

mili. A scheduling framework for spatial architectures across multiple constraint-solving

theories. ACM Trans. Program. Lang. Syst., 37(1):2:1–2:30, Nov. 2014.

[151] D. Ohl de Mello, D. Schäffner, J. Werkmann, T. Preuschoff, L. Kohfahl, M. Schlosser,

and G. Birkl. Defect-free assembly of 2D clusters of more than 100 single-atom quantum

systems. Physical Review Letters, 122(20), May 2019.

[152] M. Otten and S. K. Gray. Accounting for errors in quantum algorithms via individual

error reduction. npj Quantum Information, 5(1):11, 2019.

[153] T. Park and C. Y. Lee. Algorithms for partitioning a graph. Computers & Industrial

Engineering, 28(4):899–909, 1995.

[154] A. Pavlidis and E. Floratos. Arithmetic circuits for multilevel qudits based on quantum

fourier transform. arXiv preprint arXiv:1707.08834, 2017.

[155] J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, Aug.

2018.

[156] T. C. Ralph, K. J. Resch, and A. Gilchrist. Efficient toffoli gates using qudits. Phys.

Rev. A, 75:022313, Feb 2007.

[157] J. Randall, A. M. Lawrence, S. C. Webster, S. Weidt, N. V. Vitanov, and W. K.

Hensinger. Generation of high-fidelity quantum control methods for multilevel systems.

Phys. Rev. A, 98:043414, 10 2018.

[158] J. Randall, S. Weidt, E. D. Standing, K. Lake, S. C. Webster, D. F. Murgia, T. Navickas,

K. Roth, and W. K. Hensinger. Efficient preparation and detection of microwave dressed-

state qubits and qutrits with trapped ions. Phys. Rev. A, 91:012322, 01 2015.

252

[159] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang,

J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J.

Schoelkopf. Quantum memory with millisecond coherence in circuit qed. Phys. Rev. B,

94:014506, Jul 2016.

[160] L. Ruiz-Perez and J. C. Garcia-Escartin. Quantum arithmetic with the quantum fourier

transform. 2014.

[161] L. Ruiz-Perez and J. C. Garcia-Escartin. Quantum arithmetic with the quantum fourier

transform. Quantum Information Processing, 16(6):152, 2017.

[162] L. Ruiz-Perez and J. C. Garcia-Escartin. Quantum arithmetic with the quantum fourier

transform. Quantum Information Processing, 16(6):152, 2017.

[163] M. Saffman. Quantum computing with atomic qubits and rydberg interactions:

progress and challenges. Journal of Physics B: Atomic, Molecular and Optical Physics,

49(20):202001, 2016.

[164] ScaffCC Compiler. https://github.com/epiqc/ScaffCC. Accessed: 2018-05-16.

[165] R. Schack and T. A. Brun. A C++ library using quantum trajectories to solve quantum

master equations. Computer Physics Communications, 102(1-3):210–228, 1997.

[166] K. Schloegel, G. Karypis, and V. Kumar. Sourcebook of parallel computing. chapter

Graph Partitioning for High-performance Scientific Simulations, pages 491–541. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[167] N. Schuch. Implementation of quantum algorithms with Josephson charge qubits.

Universität Regensburg, Dec. 2002.

[168] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, Oct. 1997.

253

https://github.com/epiqc/ScaffCC

[169] H. Simon. Partitioning of unstructured problems for parallel processing. Computing

Systems in Engineering, 2(2):135 – 148, 1991. Parallel Methods on Large-scale Structural

Analysis and Physics Applications.

[170] R. S. Smith, M. J. Curtis, and W. J. Zeng. A practical quantum instruction set

architecture. arXiv preprint arXiv:1608.03355, 2016.

[171] R. S. Smith, M. J. Curtis, and W. J. Zeng. A practical quantum instruction set

architecture. arXiv preprint arXiv:1608.03355, 2016.

[172] M. Soeken, S. Frehse, R. Wille, and R. Drechsler. Revkit: An open source toolkit

for the design of reversible circuits. In A. De Vos and R. Wille, editors, Reversible

Computation, pages 64–76. Springer Berlin Heidelberg, 2012.

[173] M. Soeken, T. Häner, and M. Roetteler. Programming quantum computers using design

automation, 2018.

[174] F. Tacchino. Personal Communication.

[175] F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni. An artificial neuron imple-

mented on an actual quantum processor. npj Quantum Information, 5(1):26, 2019.

[176] Y. Takahashi, S. Tani, and N. Kunihiro. Quantum addition circuits and unbounded

fan-out. arXiv preprint, Oct. 2009.

[177] S. S. Tannu, Z. A. Myers, P. J. Nair, D. M. Carmean, and M. K. Qureshi. Taming the

instruction bandwidth of quantum computers via hardware-managed error correction. In

2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pages 679–691. IEEE, 2017.

[178] S. S. Tannu and M. Qureshi. Ensemble of diverse mappings: Improving reliability of

quantum computers by orchestrating dissimilar mistakes. In Proceedings of the 52nd

254

Annual IEEE/ACM International Symposium on Microarchitecture, pages 253–265,

2019.

[179] C. J. Trout, M. Li, M. Gutierrez, Y. Wu, S.-T. Wang, L. Duan, and K. R. Brown.

Simulating the performance of a distance-3 surface code in a linear ion trap. 2017.

[180] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts

Valley, CA, 2009.

[181] D. Venturelli, M. Do, E. Rieffel, and J. Frank. Compiling quantum circuits to realistic

hardware architectures using temporal planners. Quantum Science and Technology,

3(2):025004, feb 2018.

[182] A. Wallraff. Deterministic quantum state transfer and generation of remote entanglement

using microwave photons. In APS Meeting Abstracts, 2018.

[183] Y. Wang and M. Perkowski. Improved complexity of quantum oracles for ternary

grover algorithm for graph coloring. In 2011 41st IEEE International Symposium on

Multiple-Valued Logic, pages 294–301, May 2011.

[184] R. Wille, L. Burgholzer, and A. Zulehner. Mapping quantum circuits to IBM QX

architectures using the minimal number of SWAP and H operations. In 2019 56th

ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2019.

[185] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R. Drechsler.

Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum circuits.

In 2016 21st Asia and South Pacific design automation conference (ASP-DAC), pages

292–297. IEEE, 2016.

[186] K. Wright, K. Beck, S. Debnath, J. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. Pisenti,

M. Chmielewski, C. Collins, et al. Benchmarking an 11-qubit quantum computer.

Nature communications, 10(1):1–6, 2019.

255

[187] X. Zhang, H. Xiang, T. Xiang, L. Fu, and J. Sang. An efficient quantum circuits

optimizing scheme compared with qiskit, 2018.

[188] A. Zulehner, A. Paler, and R. Wille. An efficient methodology for mapping quantum

circuits to the ibm qx architectures, 2017.

256

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Determining the Right Abstractions: Multivalued Quantum Logic
	Relevant Background
	Prior Work in Multivalued Quantum Logic
	Qudits
	Generalized Toffoli Gate

	Circuit Constructions
	Key Intuition
	Generalized Toffoli Gate
	Larger Arithmetic Circuits: The Incrementer
	Larger Arithmetic Circuits: The A + B Adder
	Larger Arithmetic Circuits: Constant, +K, Addition

	Application to Algorithms
	Artificial Quantum Neuron
	Grover's Algorithm
	Arithmetic Circuits and Shor's Algorithm
	Error Correction and Fault Tolerance

	Simulator for Verification of Constructions
	Noise Simulation
	Simulator Efficiency

	Simulation and Error Models
	Generic Noise Model
	Superconducting QC
	Trapped Ion 171Yb+ QC

	Simulation Results
	Qubit-Qudit Compression
	Motivation
	Compression Schemes
	Decompositions with Compression

	Discussion

	Architectural Trade-offs in Emerging Technology: Neutral Atom Architectures
	Introduction
	Relevant Background
	Quantum Computation and the Gate Model
	The Quantum Compilation Problem
	Neutral Atoms

	Neutral Atom Compiler and Methodology
	Mapping, Routing, and Scheduling
	Benchmarks
	Experimental Setup

	Unique Advantages of Neutral Atom Architectures
	Long Range Interactions
	Native Multiquibit Gates

	Error Analysis of Neutral Atom Architectures
	Unique Challenge: Sporadic Atom Loss
	Remarks

	Application-Guided Architectural Design. Virtualizing Error Corrected Qubits
	Introduction
	Relevant Background
	Superconducting Qubit Architectures
	Qubit Memory Technology
	Quantum Errors
	Surface Codes, Error Decoding, and Lattice Surgery

	Virtualized Logical Qubits
	Natural Surface Code Embedding
	Transversal CNOT
	Compact Surface Code Embedding
	Architectural Considerations

	Evaluation
	Error Model and Noise Assumptions
	Experimental Setup

	Error Threshold Results
	Error Sensitivity Results
	Magic State Distillation Resource Estimates
	Conclusion

	Evaluating Architectures at their Limits: Improved Compilation Methods
	Memory-Equipped Quantum Architectures: The Power of Random Access
	Relevant Background
	A Memory-Equipped Quantum Architecture
	Experimental Setup
	Results and Discussion

	Remarks
	Time-Sliced Quantum Circuit Partitioning for Modular Architectures
	Relevant Background
	Mapping Qubits to Clusters
	Lookahead Weights
	Experimental Setup
	Results and Discussion
	Remarks

	Noise-Adaptive Compiler Mappings for Noisy Intermediate Scale Quantum Computers
	Relevant Background
	Overview of our Compilation Framework
	Optimal Compilation: Detailed Approach
	Heuristic Compilation
	Experimental Setup
	Optimizing Execution Reliability
	Remarks

	Orchestrated Trios: Compiling for Efficient Communication in Quantum Programs with 3-Qubit Gates
	Relevant Background
	Orchestrated Trios
	Evaluation
	Results and Discussion
	Remarks

	Discussion and Conclusion
	References

