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ABSTRACT

End-user programming on Internet of Things (IoT) smart devices enables users without

programming experience to automate their homes. Trigger-action programming (TAP),

supported by several smart home systems [20, 53, 58, 70, 89, 94], is a common approach

for such end-user programming. However, it can be hard for users to correctly express their

intention in TAP [12, 127] even under some daily automation scenarios.

This thesis introduces our efforts to enhance users’ trigger-action programming experi-

ence. We believe that help from automated tools can be provided to users. Across sev-

eral projects, we helped users in all stages of TAP’s life cycle including TAP creation and

TAP refinement. In these projects, we developed multiple automated tools that reduce the

amount of users’ coding effort in TAP with the information fetched from users in the form

of natural-language-like property statements, intended automated behaviors, or even the

history of sensors and devices.

We developed AutoTap, a system that lets novice users easily specify desired proper-

ties for devices and services. AutoTap translates these properties to linear temporal logic

(LTL). Then it both automatically synthesizes property-satisfying TAP rules from scratch

and repairs existing TAP rules [127]. We also created Trace2TAP, a novel method for au-

tomatically synthesizing TAP rules from users’ past behaviors. Given that users vary in

their automation priorities, and sometimes choose rules that seem less desirable by tradi-

tional metrics like precision and recall, Trace2TAP comprehensively synthesizes TAP rules

and brings humans into the loop during automation [128]. Lastly, we designed TapDebug,

a system that automatically fixes TAP rules with user-specified behavioral feedback either

identified from their device usage history or explicitly specified by themselves through our

novel interface. In the TapDebug study, we conducted an empirical user study to discover

obstacles throughout the TAP debugging process and evaluated how well TapDebug helped

users overcome them.

xi



CHAPTER 1

INTRODUCTION

Internet of Things (IoT) smart devices have become common in users’ homes [63]. These

devices can communicate with each other, sense environment contexts/user behaviors, and

react accordingly. This offers opportunities for automating users’ homes and improving their

daily life. End-user programming enables users without programming experience to configure

how the smart devices should be automated.

An approach of such end-user programming is trigger-action programming (TAP). With

TAP, in a graphical interface users create event-driven rules (termed TAPs, short for trigger-

action programs, or TAP rules) following the form “IF a trigger occurs, THEN perform

an action”. The trigger is a statement of events that can happen in users’ smart home, and

the action is a command sent to controllable devices (termed actuators). For example, “IF

it starts raining, THEN turn the lights blue”.

TAP has been popular over the years. It is supported by automation providers such as

IFTTT [70], Mozilla’s Things Gateway [58], Samsung SmartThings [89], Microsoft Flow [70],

OpenHab [94], Home Assistant [53], Ripple [20], Zapier [70], and others. Besides being widely

supported, trigger-action programming is also proven to be simple enough to be learnt by

users within minutes [114]. In fact, users have created a large number of TAP rules [115].

As a result, we believe that TAP is an ideal paradigm to use if users of smart home devices

wish to express their intents over automation. Furthermore, end-user programming brings

users into the decision making cycle. Given that users have different preferences on home

automation, we believe end-user programming has an advantage over statistical or machine

learning (ML) techniques that learn automation from users in a completely automatic way.

As a result, end-user programming is still important and cannot be bypassed. The “ideal

paradigm” of end-user programming, TAP, has its future.

Despite being popular and promising, TAP is far from perfect and has the following

1



challenges:

1) Creating and refining TAP can become hard in complex device-automation scenarios.

While having users write TAP excels at simple scenarios [114], it often gets hard in complex

and nuanced device-automation scenarios. In such scenarios, multiple TAP rules must work

together, and conditional TAP rules (e.g., “IF trigger occurs WHILE conditions are met,

THEN apply action”) are often needed. In this case, Brankenbury et al. [12] discovered that

end-users suffer from bugs in TAP related to TAP logic confusions, inaccurate expectations,

and so on. Our study [127] also showed that end-users did not perform well in writing correct

TAPs even for tasks appearing in daily life - these tasks cannot be achieved with simply one

or two TAP rules. It is likely for users to miscomprehend TAP rules or forget to handle

corner cases.

2) Users receive no tool support during creation and refinement of TAPs. Traditionally,

programmers get assistance throughout all programming stages if needed. For example,

when writing code, IDEs often auto-complete code and identify syntax errors. When errors

occur in run-time, programmers can diagnose the issue with step-by-step debugger as well

as information from exception backtraces or core dumps. Users receive none of these tool

support in the current practice of trigger-action programming. At rule creation stage, users

need to identify devices and configure parameters solely based on knowledge in their minds,

getting no suggestions or feedback. At rule refinement stage, when issues arise, users get no

hints on when, how, and why misbehaviors happened. Our studies show that users often feel

clueless when these issues happen. It is surprising to us that no TAP-based systems offer

assistance, or at least some feedback in these cases though their non-technical audience need

help.

To tackle the above challenges, the thesis statement is claimed as below:

We explore challenges users face in trigger-action programming with user

studies, and assist end-user trigger-action programming through automation and

2



Figure 1.1: Design space of assisting TAP and our proposed works

interface design.

We present two dimensions to summarize our effort in assisting TAP: 1) amount of coding

effort: we reduce users’ coding effort in trigger-action programming by either automating

some steps in TAP or enabling more natural types of input for users than TAPs alone; 2)

TAP stages: we help users across all stages of TAP - both TAP creation and TAP refinement.

In this thesis, we present three works that cover our design space of assisting TAP as shown

in Figure 1.1.

AutoTap Creating or refining TAPs manually requires high coding effort as shown by

“Control” in Figure 1.1. To reduce users coding effort, we developed AutoTap, a system that

lets novice users specify desired properties in the form of natural language statements for

their devices. AutoTap translates these properties to linear temporal logic (LTL) and either

automatically synthesizes property-satisfying TAP rules from scratch or repairs existing TAP

rules. The properties users specify with AutoTap are often a lot simpler than TAP rules that

achieve the same goal. Our experiments showed that novice users made significantly fewer

mistakes when expressing desired behaviors using AutoTap than using TAP rules. AutoTap

deploys a novel analyzing algorithm to ensure its synthesized TAPs introduce only minimal
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changes to the devices’ behavior, not disabling any device behaviors that originally satisfy

the properties.

Trace2TAP The coding effort can be made even lower if users are not required to pro-

vide any explicit input to the system in order to create TAPs. We present Trace2TAP, a

novel method for automatically synthesizing TAP rules from traces (time-stamped logs of

sensor readings and manual actuations of devices). Trace2TAP uses a novel algorithm that

uses symbolic reasoning and SAT-solving to synthesize TAP rules from traces. It deploys a

clustering/ranking system and visualization interface to intelligibly present the synthesized

rules to users. Trace2TAP was evaluated through a field study in seven offices. Participants

frequently selected rules ranked highly by our clustering/ranking system. Participants varied

in their automation priorities, and they sometimes chose rules that would seem less desirable

by traditional metrics like precision and recall. Trace2TAP supports these differing priori-

ties by comprehensively synthesizing TAP rules and bringing humans into the loop during

automation [128].

TapDebug We also present TapDebug, which helps users refine their TAPs with low cod-

ing effort in case of unexpected behaviors. TapDebug was inspired by a user study we

conducted about TAP debugging. It is the first empirical study of users’ end-to-end TAP

debugging process, focusing on identifying obstacles users face in debugging TAPs and how

well users ultimately fix incorrect automations - without additional support, participants

were often unable to fix buggy TAPs due to a series of obstacles we documented. We devel-

oped TapDebug, a collection of two novel tools that were found to help users overcome many

of these obstacles and more successfully debug TAPs. These tools collect either implicit or

explicit feedback from users about automations that should or should not have happened

in the past, using a SAT-solving-based algorithm we developed to automatically modify the

TAPs to account for this feedback.

4



AutoTap, Trace2TAP and TapDebug collectively assist users in all stages of trigger-action

programming. Users can create TAP rules more easily with AutoTap/Trace2TAP and refine

existing TAP rules better with AutoTap/TapDebug. Our 3 works also offer a rich set of ways

for users to express their need and thus get assistance in TAP. AutoTap and Trace2Tap are

published [127, 128] and open-sourced 12. TapDebug has been submitted to a conference

and is currently in review. More details about our 3 works are introduced in the following 3

chapters (2,3, and 4).

1. AutoTap: https://www.github.com/zlfben/autotap.

2. Trace2TAP: https://www.github.com/zlfben/trace2tap.
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CHAPTER 2

AUTOTAP: SYNTHESIZING AND REPAIRING

TRIGGER-ACTION PROGRAMS USING LTL PROPERTIES

2.1 Introduction

Unfortunately, while TAP is widely used and novice users are able to successfully express

many automation behaviors using TAP interfaces [114], attempts to express more complex,

yet commonly desired, behaviors often contain bugs [55, 125, 90, 13, 12]. These bugs encom-

pass timing errors [55], issues with control flow [118], conflicting behaviors [90], and incorrect

user expectations [12]. As a result, an important open question is how to help users with

no programming experience, and therefore no debugging experience, correctly express their

wide variety of desired behaviors in TAP. Otherwise, users will encounter frustration and

experience safety threats [111] from buggy TAP rules.

For example, imagine the simple and sensible desire to keep the window closed when it

is raining. With current interfaces, a user might create the straightforward TAP rule “IF it

begins to rain THEN close the window” (Figure 2.1a). Unfortunately, this rule is insufficient.

For example, while it is raining, a different rule might be triggered and open the window, or

an oblivious person might open the window manually. To fully express this desire therefore

requires a complex set of rules.

To address this open question, we present AutoTap, a system that provides easy end-user

programming for smart devices and online services with fewer chances for human mistakes.

If initial rules are provided alongside the desired property, AutoTap will automatically

check these rules and, if necessary, repair them to prevent the system from violating the

property. AutoTap thus minimizes the opportunity for TAP mistakes. The following two

key components of AutoTap work together to achieve the above functionality:

1) A novel property-specification interface. The key goal of TAP is to empower novice
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(a) A (buggy) TAP rule. (b) A proposed TAP property.

Figure 2.1: The TAP rule (a) cannot guarantee the property (b).

users without programming knowledge to automate and customize their devices and services.

AutoTap therefore needs an interface that is both (a) expressive, allowing users to specify

most of their desired properties for smart-device systems, and (b) easy-to-use, requiring

minimal training for non-technical home users to use correctly.

To this end, we first conducted an online user study in which 71 current users of smart

devices each provided (in free text) ten properties they would want their devices to satisfy

(Section 2.2). We qualitatively coded their responses, finding that nearly all the desired

properties followed one of seven templates. Subsequently, we implemented a graphical, click-

only interface that mirrors the design of popular TAP rule-specification interfaces [70]. This

interface enables users to specify properties following these seven templates without requiring

any text input. AutoTap then directly translates properties specified in this interface to

formulas in linear temporal logic (LTL) that can be used by AutoTap’s other components

(Section 2.3). While prior work has proposed interfaces for property specification [79], no

prior efforts fully satisfy our requirements in the unique context of smart-device systems
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Figure 2.2: An overview of AutoTap, which takes user-specified properties and (optionally)
user-specified TAP rules to automatically generate a set of TAP rules that satisfy the prop-
erties.

(Section 5.5).

2) Novel synthesis techniques for TAP rules. We want all programs synthesized by Au-

toTap to be (a) property-compliant, guaranteeing the programmed devices satisfy the

specified properties; (b) accommodating, not disabling any device behaviors that origi-

nally satisfy the properties — crucial for human-centric systems; and (c) valid, following

the syntax of TAP rules and physical constraints of smart devices. For example, given the

property in Figure 2.1b, generating only one of the two TAP rules presented earlier is ac-

commodating, yet non-compliant. Generating TAP rules that prevent the window from ever

opening even in sunny weather is compliant, yet not accommodating. Generating TAP rules

that prevent rain is impossible, and therefore not valid.

To achieve these goals, AutoTap takes three steps, as shown in Figure 2.2. First, it

automatically builds a Büchi Automaton to formally model desired properties and the smart-

device system itself, including any existing TAP rules. At this step, the novel techniques we
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introduce simplify models and properly represent time-related properties (Section 2.4.1).

Second, AutoTap leverages a unique feature shared by all LTL safety properties to design

a simple algorithm that identifies Büchi Automaton edges whose removal guarantees the

compliant and accommodating goals of synthesis (Sec. 2.4.2).

Third, AutoTap designs an algorithm to systematically synthesize valid new TAP rules

or rule changes to remove Automaton edges identified above, while making a best effort to

keep rules simple and thus intelligible for users (Section 2.4.3).

These techniques are general. They are not limited to any specific patch template. They

apply to any LTL safety property, not just those that can be expressed using AutoTap’s cur-

rent property-creation interface. Furthermore, while our interface design focuses on smart

devices, the same techniques apply to online services, such as the hundreds IFTTT sup-

ports [86].

These techniques are also novel. We cannot use previously proposed synthesizers [16, 98,

74], which do not satisfy the requirements discussed above in the unique context of smart-

device systems (Section 5.2). A small but quickly growing literature has begun to apply

formal methods to TAP [76, 15, 91, 19]. Our techniques move beyond this work in both

the target and the solution. Some of this work only aims to detect property violations [19],

while others only repair existing rules by editing or adding conditions [76, 15] or triggers

[91]. Our techniques are the first to also synthesize new rules from scratch and to provide

the accommodating guarantees, not disabling any device behaviors that originally satisfy the

desired properties — a crucial feature for human-centric systems that fundamentally cannot

be provided using the fixing-by-counterexample approach of previous work [35, 76].

Our evaluation of AutoTap includes several parts (Section 2.5). We conducted a sec-

ond user study in which 78 participants were randomly assigned to use either a traditional

TAP rule interface or our AutoTap property interface. They used their assigned interface

to express 7 behaviors randomly assigned from a larger set of 14. For all 14 behaviors, a
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larger fraction of participants using the AutoTap property interface correctly expressed the

behavior than those using the traditional TAP rule interface. We also benchmarked Auto-

Tap’s performance, synthesizing TAP rules from scratch using the sets of correct properties

collected in our study. AutoTap successfully generated patches for 157 of these 158 sets.

To encourage replication and adoption, we are open-sourcing the code for both AutoTap

and our rule- and property-specification interfaces. We are also releasing the anonymized

data from our two user studies (with the permission of both our IRB and participants) and

our full survey instruments. All of these are available at https://www.github.com/zlfbe

n/autotap.

2.2 User Study 1: Mapping Desired Properties

To understand what types of properties users commonly desire for smart devices, we con-

ducted an online user study.

Methodology: We designed a survey asking people who had experience with IoT smart

devices in their own homes to write free-text properties they would want their devices and

home to satisfy. Specifically, we asked them to write “statements about internet-connected

household devices that you believe should be effective at all times, with only occasional

exceptions, if any.” To encourage diversity, we asked participants to imagine their house

was filled with 27 smart devices we listed. We asked for ten statements, preferably five that

should always be true and five that should never be true in their smart home.

We recruited participants on Amazon’s Mechanical Turk who reported having an internet-

connected household IoT device and living in the USA. We compensated $5 for the study,

which also included a section on experiences with buggy behaviors in smart homes that is

outside this paper’s scope.

Through qualitative coding, we analyzed and grouped these free-text desired properties

into templates. Members of the research team read through responses and iteratively pro-
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Table 2.1: AutoTap’s property templates. G, F, X, and W are “always Globally”, “even-
tually in the Future”, “neXt”, and “Weakly until” LTL operators. state is a user-specified
atomic proposition or its negation. # and ∗ relate to timing (Sec. 2.4.1).

Property Type Input Template LTL Formula

One-State Unconditional
[state] should [always] be active G(state)
[state] should [never] be active ¬F(state)

One-Event Unconditional [event] should [never] happen ¬F(@event)

One-State Duration
[state] should [always] be active for more than [time] G(state → (stateWtime ∗ state))
[state] should [never] be active for more than [time] ¬F(time ∗ state)

Multi-State Unconditional
[state1, ..., staten] should [always] occur together ¬F(!(state1 ↔ ... ↔ staten))
[state1, ..., staten] should [never] occur together ¬F(state1 ∧ ... ∧ staten)

State-State Conditional
[state] should [always] be active while [state1, ..., staten] G((state1 ∧ ... ∧ staten) → state)
[state] should [never] be active while [state1, ..., staten] ¬F(state1 ∧ ... ∧ staten ∧ state)

Event-State Conditional
[event] should [only] happen when [state1, ..., staten] G(X@event → (state1 ∧ ... ∧ staten))
[event] should [never] happen when [state1, ..., staten] ¬F(state1 ∧ ... ∧ staten ∧ X@event)

Event-Event Conditional
[event1] should [always] happen within [time] after [event2] G(@event2 → (time#event2W@event1))
[event1] should [never] happen within [time] after [event2] ¬F(time#event2 ∧ X@event1)

posed templates. Two coders then independently categorized each response (κ = 0.62) and

met to resolve discrepancies.

To encourage complex and diverse properties, we randomly assigned half of participants

to see four example properties (e.g., “The temperature in my bedroom should never be

below 65 degrees”), while the other half did not see any examples. While both participants

who did and did not see examples wrote properties following six of the seven templates, the

proportion of properties matching a given template differed significantly between these two

groups (χ2, p = .003). Thus, we always first report the percentage among properties written

by participants who did not see examples, followed by the percentage from those who did.

Results: We received 75 responses, discarding four who gave off-topic responses or

reported having no smart devices. Of the resultant 71 participants, 64% identified as male

and 36% as female. The median age range was 25–34 (53%), and 9% were age 45+. Among

participants, 24% reported a degree or job in CS or technology. Participants most frequently

reported having internet-connected cameras (55% of participants), lights (54%), thermostats

(52%), cooking devices (18%), door locks (15%), and outdoor devices (8%).

We found that seven templates captured the vast majority of desired properties par-

ticipants expressed. We differentiate them based on whether they are conditional (i.e.,

conditioned on at least one other clause), whether they rely on a duration (i.e. expressing
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temporal bounds), and whether they are described based on states and/or events. The small

number of remaining properties were either out of scope (e.g., requesting new features) or

too ambiguous to analyze reliably.

Below are the seven templates, each with the proportion of responses that fit that tem-

plate from participants who did not see examples and those who did, respectively. We also

provide a sample response from participants for each template.

a) One-State Unconditional (40.6%, 14.7%) “Smart refrigerator should always be

on.”

b) One-Event Unconditional (24.1%, 14.5%) “My thermostat should never go above

75 degrees.”

c) One-State Duration (0.9%, 7.5%) “My smart lights should stay on for at least 30

seconds each time.”

d) Multi-State Unconditional (0.3%, 0.2%) “Never run the washing machine and the

dish washer at the same time.”

e) State-State Conditional (1.6%, 7.5%) “The stove should always be off if no one is

home.”

f) Event-State Conditional (26.3%, 40.7%) “My smart window should never be

opened while the AC is on.”

g) Event-Event Conditional (5.3%, 13.8%) “My smart door lock should always lock

after I come in.”

2.3 AutoTap property-specification interface

AutoTap aims to synthesize TAP programs satisfying user-specified properties. This section

discusses our design of a property-specification user interface that aims to be expressive,

easy to use, and also compatible with LTL, allowing an easy translation from every specified

property into an LTL formula.
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Interface Entry Property Type

• Multi-state Unconditional

• One-State Unconditional

• One-State Duration

• State-State Conditional

• One-Event Unconditional

• Event-State Conditional

• Event-Event Conditional

Figure 2.3: Templates in AutoTap’s property-specification UI.

Property types: Table 2.1 summarizes the seven property types we commonly observed

in our first user study. They differ along three dimensions: whether the subject was a state

or an event; whether something should or should not happen; and whether the desire was

conditional or unconditional.

We note that any state-state conditional property can be written as an equivalent multi-

state unconditional property. Further, some one-state duration properties have equivalent

event-event conditional properties. However, to better match users’ mental models, we chose

not to merge these types.

Every type of property in our interface has a straightforward translation to an LTL

formula, as shown in Table 2.1. The example in Figure 2.1a corresponds to a state-state

conditional property: “The [window] should always be closed when [weather] is raining”.

It corresponds to an LTL formula G(weather.raining → window.closed).

Interfaces for property specification: To not overwhelm users, AutoTap lets them

13



first pick from three template categories, as shown in Figure 2.3, and then customize that

template by selecting items from drop-down lists of devices, states, or events. Users also

select whether they desire certain situation to always occur or never occur. This interface

provides users with the same vocabulary about devices, states, and events as traditional

TAP rule interfaces, as in Figure 2.1.

AutoTap’s user interface design focuses on common user desires. It does not aim to cover

all possible properties a user might think of, or all properties AutoTap synthesis can handle.

As an alternative, AutoTap also allows expert users to specify safety properties directly in

LTL. For example, imagine someone has a smart light bulb and wants the “red” color to

always be followed by “green” or “yellow.” This desire is not supported by the user interface

above, yet can be described in LTL as G(color.red → X(color.green ∨ color.yellow)) and

thus can be handled by AutoTap.

2.4 AutoTap TAP synthesis

Problem statement: Informally speaking, smart devices continuously interact with un-

predictable human users and environments. Naturally, some interactions (sequences) might

cause undesirable device states or state sequences. AutoTap aims to automatically synthe-

size TAP programs or program patches so that all desirable situations remain intact (i.e.,

being accommodating) and all undesirable situations become disabled or transient (i.e., being

property-compliant).

Straw-man: One potential solution is to repeatedly attempting the following two steps,

as illustrated by the dashed lines in Figure 2.4: (1) propose a TAP program (patch); (2)

try to prove that this program guarantees satisfaction of the desired properties, returning to

Step 1 if not.

The second step can be done through model checking [76], which typically uses a finite

Büchi Automaton to represent all possible executions of the system, checking if all these
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Figure 2.4: AutoTap approach vs. straw-man approach

executions satisfy a property ϕ by analyzing the automaton graph. Unfortunately, given the

large search space of potential TAP programs, particularly when we synthesize programs

from scratch, how to conduct the first step is unclear.

AutoTap approach: AutoTap takes a unique approach to solving this problem in a

general and systematic way. As illustrated in Figure 2.4, it does not require iterative retries.

Step 1: Turn the given smart-device system, TAP rules (if any), and the desired property

ϕ into a Büchi Automaton A accepting ϕ-violating executions, like what traditional model

checkers do internally.

Step 2: Figure out how to modify A so that all ϕ-satisfying executions are kept, which

guarantees being accommodating, and all originally accepted (i.e., ϕ-violating) executions

disappear, which guarantees being property-compliant.

Step 3: Find valid TAP program(s) that can make the automaton changes suggested at

Step 2.

The first step is largely straightforward, but we need to carefully model timing-related

properties and avoid unnecessarily large automata. Section 2.4.1 explains how we do so.

The second step is very challenging at first glance. There are innumerable ways to change

an automaton A. It is hard to know which changes are compliant, accommodating, and

valid (e.g., changes that require modifying property ϕ and device specifications are invalid).

Section 2.4.2 will present a simple algorithm that identifies such compliant, accommodating,
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and valid changes (i.e., a set of edges to cut in A), leveraging a unique property of LTL

safety properties. As Section 2.3 explained, the desired properties we commonly observed in

our first user study all map directly to LTL safety properties.

The third step, finding valid program changes1 that correspond to a given automaton

change, is challenging for general programming languages. However, as we will explain in

Section 2.4.3, it can be done in a systematic way for TAP.

2.4.1 Step 1: Model Construction

AutoTap’s inputs are: (1) safety properties ϕ in LTL, obtained through the user interface

presented in Section 2.3; (2) TAP rules, if any; (3) specifications for every smart device in the

form of a transition system. We expect device specifications to be provided once by device

manufacturers or tool developers like us, yet used by all device users. Our experiments used

the specifications from Samsung SmartThings [107].

AutoTap’s baseline model construction follows traditional model-checking techniques [45].

First, a transition system is built for a set of devices together with their TAP rules, if any

(e.g., Figure 2.5). Some events in the transition system are controllable (e.g. “turn on the

light”), while others are not (e.g. “stop raining”). This distinction is kept by AutoTap for

its synthesis phase.2 Then, this transition system is turned into a Büchi Automaton As that

accepts all executions allowed in the smart-device system (e.g., Figure 2.6b). Next, AutoTap

applies Spot [40] to the LTL formula representing ¬ϕ to get a Büchi Automaton A¬ϕ that

accepts all executions violating ϕ (e.g., Figure 2.6a). Finally, As and A¬ϕ are combined into

a Büchi Automaton A that accepts all ϕ-violating executions in the smart-device system

(e.g., Figure 2.7).

Our discussion below focuses on two techniques we developed for AutoTap beyond typical

1. AutoTap does not differentiate program synthesis from patch synthesis, as the former is a special case
of the latter when the original program is null.

2. The device specification we used [107] contains such information: capabilities with “commands” are
controllable, while others can only be sensed.
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Figure 2.5: Transition system for RAIN and a Window. Statements in parentheses are
Atomic Propositions held in each state.

baseline modeling.

Device selection: To avoid unnecessary complexity, AutoTap selects devices D related

to the given property ϕ to model. To do so, AutoTap first initializes D with all the devices

that appear in ϕ. AutoTap then iteratively expands D with devices that can affect any

device already in D until reaching a fixed point. Here, AutoTap considers one device to

affect another device if these two both appear in a TAP rule r, with the former in the trigger

and the latter in the action.

Model timing information: AutoTap extends baseline models to support timing-

related propositions like “event e happened within the past t (seconds)”, denoted as t#e,

and “ap has been true for at least t (seconds)”, denoted as t ∗ ap. AutoTap’s property-

specification interface supports both.

AutoTap first adds a count-down timer attribute timer(t#e) or timer(t*ap) into the

transition system. The countdown starts at t, when e has just occurred, or when a system

state associated with ap has just appeared. It ends at 0, indicating e has occurred or ap

has been true for at least t seconds. When the system reaches a state no longer associated

with ap, the t ∗ ap timer immediately flips to −1. Consequently, a state is associated with

a t#e proposition if the corresponding timer is positive. It is associated with t*ap if the

corresponding timer is 0. Then, AutoTap introduces an environmental event tick that counts
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(a) LTL property:
¬G(RAIN.on →
Win.closed)

(b) Device system: Window + RAIN

Figure 2.6: Büchi Automata of our running example.

down every positive timer uniformly. When tick is applied to a state s, AutoTap finds the

smallest value of all the positive timers associated with s and counts down every positive

timer by that value. For example, if a state is associated with three timers with values

{0, 30, 100}, one tick will direct the system to a state with these timers being {0, 0, 70},

and another tick will set all three timers to 0. This count-down scheme helps AutoTap

avoid unnecessary state-space explosions without losing accuracy, as counting down timers

by smaller values will not change any timing related propositions (e.g., {0, 30, 100} and {0,

25, 95} will have the same set of time-related propositions).

Here, AutoTap uses its own design to handle timing-related propositions for simplicity

reasons: since AutoTap only cares about two simple timed propositions t#e and t∗ap, using

more complicated timing logic like MTL [71] and more complicated timed automata [3] will

only add unnecessary complexity to AutoTap property checking and rule synthesis.

2.4.2 Step 2: Patching the Automaton

The first step builds a Büchi Automaton A that accepts all ϕ-violating executions on smart

devices. If no execution can be accepted by A, users’ desire ϕ is already guaranteed. Other-
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wise, this second step figures out how to change A.

Task: We first clarify AutoTap’s task at this step by reviewing some related background

on Büchi Automata. By definition [45], an execution is accepted by a Büchi Automaton

if and only if its corresponding path on the automaton visits every accepting-node set an

infinite number of times. For example, the automaton in Figure 2.6a has one accepting set

that consists of exactly one node, the double-circled one. It accepts every execution with a

prefix ending in a state where RAIN.on and !Win.closed are true, which guarantees visiting

the double-circled node an infinite number of times.

Consequently, AutoTap must figure out how to change A so that all (and only those)

paths that infinitely visit A’s accepting-node set disappear. There are several challenges.

First, the change has to be valid, doable through possible additions or revisions of TAP

rules. Naming accepting nodes as un-accepting is invalid. Deleting an edge in A is usually

valid, as discussed in the next sub-section. Second, for arbitrary ϕ, it is difficult to tell which

edges we should cut. This edge-cutting must not only eliminate every path that visits the

accepting-node set infinitely (i.e., property-compliant), but also keeps intact every path that

originally does not visit the accepting-node set infinitely (i.e., accommodating).

Observation: AutoTap’s algorithm is based on a key observation: as long as ϕ is an

LTL safety property, A has no edge connecting an accepting node to an un-accepting node.

This observation holds because, as long as ϕ is an LTL safety property, we can always find

an A¬ϕ whose only accepting node has a single edge pointing to itself with condition 1. Once

a path reaches this node, it will be stuck in this node infinitely,3 just like the double-circled

node in Figure 2.6a.

This property of A¬ϕ then leads to the above observation of A. The reason is that, by

combining the smart-device automaton As and the property automaton A¬ϕ, every node in

3. Due to space constraints, we cannot include a complete formal proof. Informally, given a Büchi
Automaton of an LTL safety property, all nodes corresponding to the last state of a violating prefix of the
property can be replaced with an accepting node with an edge 1 pointing to itself. Those nodes can be
combined, giving us the Büchi Automaton A¬ϕ we desire.

19



Figure 2.7: Combined Büchi Automaton of the running example. (The top is the original.
The bottom is after adding a rule.)

A is a cartesian product of two nodes, ns in As and nϕ in A¬ϕ. The accepting-node set of A

consists of every node whose corresponding node in A¬ϕ is an accepting node. Furthermore,

if there exists an edge from n1 to n2 in A, there must exist an edge from n1¬ϕ to n2¬ϕ in A¬ϕ.

Consequently, since there is no edge connecting the accepting node back to any un-accepting

nodes in A¬ϕ, there must be no edge connecting accepting nodes back to un-accepting nodes

in A either.

Algorithm: AutoTap identifies all the edges that connect an un-accepting node to an

accepting node in A, informally referred to as bridge edges, and suggests cutting all of them,

like the two edges in the middle of Figure 2.7.

This algorithm is simple, with complexity linear in the number of edges in A.

This algorithm is compliant, preventing any property violations. The reason is that, af-

ter cutting all bridges, no execution can ever touch accepting nodes, not to mention infinitely.

Consequently, all ϕ-violating executions are eliminated.

This algorithm is also accommodating, preserving all the system behaviors that do not
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Figure 2.8: Device automaton (a) changed to (b) by adding a rule.

violate ϕ. Recalling Section 2.4.2, ϕ-satisfying executions will not go through any bridges.

Since our algorithm only removes or redirects bridges, yet not other edges, those executions

are untouched.

2.4.3 Step 3: TAP Synthesis

At this third step, AutoTap needs to identify additions of, or revisions to, TAP rules that

can delete the bridges in A identified in Step 2. Mapping a Büchi Automaton change to

a program-code change is challenging for most imperative programming languages, but is

fortunately tractable for TAP.

Task: We first clarify AutoTap’s task by reviewing some background on Büchi Automata.

In A, which is combined by the smart-device automaton As and the property-negation

automaton A¬ϕ, every edge e : n1
ap−→ n2 is combined by an edge es : n1s

aps−−→ n2s in As and

an edge e¬ϕ : n1¬ϕ
ap¬ϕ−−−→ n2¬ϕ in A¬ϕ. ap is an atomic proposition (AP) set describing what

is accepted by e, and e only accepts what is accepted by both es and e¬ϕ. If aps conflicts

with ap¬ϕ, edge e would disappear from A. To ease the discussion, we will informally refer

to ap as the post-condition of n1 and the pre-condition of n2.

Since the property ϕ and the corresponding A¬ϕ cannot be changed, AutoTap changes

every bridge e’s corresponding edge es in As, which we also refer to as a bridge, removing es

or changing its aps so that e can disappear from A.
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Example: Before presenting AutoTap’s general algorithm, we use a concrete example

to demonstrate how adding a TAP rule can change the smart-device automaton As and

correspondingly make some edges disappear in A.

Figure 2.8a is part of the automaton As in Figure 2.6b that models the weather (RAIN)

and a smart window (Win) with no TAP rules. We can focus on node 1○. Its preceding

edge indicates a pre-condition when it was not raining and the window was open. Its suc-

ceeding edge 1○ @RAIN :ON−−−−−−−−−−−−−−−→
{RAIN.on, Win.open}

2○ indicates that the rain starts (@RAIN:ON) with the

post-condition being raining and window staying open. Note that this post-condition AP-set

is the same as that of the bridge in A¬ϕ, illustrated in Figure 2.6a. Consequently, 1○→ 2○

is a bridge in As that contributes to the red bridge edge in the combined automaton A in

Figure 2.7.

Figure 2.8b shows the effect of adding a TAP rule. As highlighted in the figure, this

rule’s triggering state Rain.off AND Win.open exactly matches the pre-condition of node

1○. Its triggering event @RAIN.ON and rule action @Win.OFF exactly match the events asso-

ciated with edge 1○ → 2○ and edge 2○→ 4○, respectively. Consequently, immediately after

1○→ 2○ takes place, this rule would automatically push the system through the 2○→ 4○ edge,

essentially making the 1○→ 2○ edge transient, marked by “T” in Figure 2.8. By changing

the nature of 1○→ 2○, its AP-set no longer matches with that of the bridge edge in Figure

2.6a. Consequently, the corresponding bridge edge in A (i.e., the red edge in Figure 2.7) will

disappear.

AutoTap fixing algorithm

We first consider a simple case where the bridge edge es in As has only one predecessor

and one successor, as in Figure 2.9a. To cut its corresponding bridge e in the combined

automaton A, we simply need to add a TAP rule “IF e1 WHILE AP 1 THEN e2”, where e1

is the event associated with the bridge, AP1 is the pre-condition of the bridge, and e2 is the
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Figure 2.9: Generalization of adding TAP rules.

event associated with the succeeding edge. Like the example in Figure 2.8, this new rule will

make states associated with es transient, no longer able to combine into e. That is, bridge

e in A will be successfully cut.

Refine trigger state: The baseline algorithm uses AP1, the bridge’s pre-condition, as

the trigger state of the synthesized rule. In fact, it does not have to be. We want the new

rule to be triggered (1) at an original bridge edge, but (2) not at any non-bridge situations.

The former implies that the rule’s trigger-state condition should be weaker than the bridge’s

pre-condition. For example, since the bridge’s pre-condition in Figure 2.8 is RAIN.off AND

Win.on, the trigger state can be RAIN.off, or Win.on, or TRUE. The latter implies that, in

other places where the trigger event could happen, the pre-conditions should conflict with

the rule’s trigger state, preventing the rule from being unnecessarily triggered.

To achieve this goal, AutoTap processes not only the bridge’s pre-condition AP1, but

also pre-conditions AP ′
i associated with all other cases where the trigger event could occur.

When there are multiple expressions satisfying the above requirements, we turn this into a

hitting set problem. We use a greedy algorithm to find the smallest one.

Refine the triggered action: The baseline algorithm uses e2 as the action of the

synthesized rule because the bridge edge only has a single successor and hence e2 is the only

possible action taken in Figure 2.9. When the bridge has multiple successors with multiple
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possible succeeding actions, AutoTap filters out two types of actions: (1) actions that cannot

be initiated by smart devices (i.e., non-controllable events like “stop raining” discussed in

Section 2.4.1), and (2) actions causing other property violations. If multiple actions pass

the above filtering, the only ranking AutoTap does currently is to downgrade an action that

reverts the trigger event. For example, if the trigger event is turning on the air conditioner

(AC), AutoTap will not suggest a rule that turns off the AC unless there are no other choices.

Revise existing rule: When the bridge edge es is associated with an event that is

automatically triggered by an existing TAP rule r, the baseline patch would immediately

trigger one TAP rule after another. A better solution is to revise r so that r is no longer

triggered in this bridge situation, yet is still triggered in other situations. To achieve that, we

split the general rule r into many edge-specific TAP rules by narrowing r’s triggering state to

only accept the pre-condition of every specific edge. Then, we simply delete the edge-specific

rule associated with the bridge edge and keep the remaining ones, assuring minimum impact

to the system’s behavior.

Rule merging: AutoTap can merge TAP rules with the same trigger event and rule

action, or even similar trigger states, to make the program easier to understand without

changing system behaviors. We omit the details due to space constraints.

2.5 Evaluation

2.5.1 User Study 2: Specifying Rules vs. Specifying Properties

To evaluate usability questions regarding whether AutoTap’s property-driven approach en-

ables novice users to express their intent correctly and easily, we conducted a second online

user study. In this study, we compared participants’ ability to express a series of refer-

ence tasks as TAP rules (using a traditional rule-based interface) and participants’ ability

to express the same series of tasks as properties (using AutoTap’s interface). We chose
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a rule-based TAP interface as our point of comparison because such interfaces are widely

used [86] and prior usability studies have shown that even novice users can create TAP rules

successfully [114, 56, 46, 13].

Methodology: We again recruited participants from the USA on Mechanical Turk,

though for this study we did not require that they had previously used a smart device. We

randomly assigned each participant to one of the following interfaces, which they used for

the duration of the study:

• Rules: Participants created TAP rules using a web interface modeled closely after

IFTTT (see Figure 2.1a).

• Properties: Participants created properties using AutoTap’s interface (see Figure 2.1b)4.

The interfaces used identical events and states. In other words, if the rule interface had an

“it begins to rain” event grouped under “weather,” so did the property interface.

Participants began the study by completing a short tutorial on their assigned interface.

The tutorial explained key concepts (e.g., the difference between events and states) and

included attention-check questions. These questions automatically pointed out the right

answer for anything participants answered incorrectly. We designed the two tutorials to

have parallel structure and share examples as much as possible.

Participants then used their assigned interface to complete 7 tasks randomly selected

(and randomly ordered) from a larger set of 14. We developed each of the 14 tasks based on

desired properties expressed in Study 1. However, we rewrote the tasks so that the wording

of the task would not make obvious which property template should be used. An example

task follows:

4. At the time of the study, our interface let users specify positive Event-State Conditional properties
through an “event E should always happen while state S is true” template. Afterwards, we replaced “always”
with “only” to avoid ambiguity, as shown in Table 2.1 and Figure 2.3. For participant answers using this
“always” template, we interpret them as “E should be triggered while S becomes true,” in this way judging
three participants’ answers to be correct.
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You have a Roomba robotic vacuum cleaner in your home, and you’ve given it a schedule

for when it should clean the floor. However, when the curtains in your home are open, the

drawstring lays on the floor and often causes the Roomba to get stuck on the string. You want

to make sure this does not happen again.

This task could be completed successfully with the rules “IF Roomba becomes on WHILE

the curtain is open, THEN close the curtain; IF curtain becomes open WHILE Roomba

is on, THEN turn off Roomba” or the property “Roomba is on should NEVER be active

WHILE curtain is open”. We constructed the set of tasks so that at least two tasks could be

completed with each of the 7 property templates. Since many properties can be expressed

in multiple ways, though, most templates could be used for more than two tasks.

After each task, participants rated their confidence in their submission and perception of

how difficult it was to complete the task on five-point scales. They also had the opportunity

to explain, in free text, any corner cases they had considered. After completing all 7 tasks,

they filled out demographics questions and the standardized System Usability Scale.

We analyzed our data as follows. Since many tasks could be completed in multiple

ways, two researchers independently coded each response as “correct,” “partially correct,”

or “completely incorrect,” meeting to resolve discrepancies. The “partially correct” category

was used when a response did not address a corner case. To compare categorical data (e.g.,

the distribution of correct/incorrect responses), we used the χ2 test. To compare ordinal

data (e.g., confidence) we used the Mann-Whitney U test. To correct p-values for multiple

testing, we used the Holm method within each family of tests.

A key limitation is that the 14 tasks were not intended to be a representative sample of

all desired behaviors in TAP systems. Because the tasks were based in part on Study 1, they

likely over-represent behaviors that can be expressed as properties. While our study can

show whether some tasks are easier to express as rules or safety properties, the proportion

of tasks for which this is the case is not generalizable.
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Figure 2.10: Correctness of properties and rules by task. P-values are from Holm-corrected
χ2 tests comparing the proportion of statements correct when written using rules versus
properties.
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Results: A total of 81 Mechanical Turk workers participated in Study 2. Three gave

nonsensical free-response answers, leaving 78 valid participants.

For all 14 tasks, the percentage of correct responses was higher for AutoTap’s property-

creation interface than for the TAP rule interface. This difference was statistically significant

for five of these tasks (the bolded p-values in Figure 2.10). The tasks for which we observed

significant differences generally required multiple rules to capture all corner cases. For exam-

ple, in the aforementioned Roomba task (Task 11 in Figure 2.10), only one property is needed:

“the window curtains are open SHOULD NEVER BE ACTIVE WHILE the Roomba is on.”

AutoTap automatically generates rules to satisfy this property in all situations. However,

two rules are required. One possibility is a rule closing the curtains whenever the Roomba

turns on, and another turning off the Roomba whenever the curtain is opened. Under 5% of

participants wrote both of these rules. While over 55% of participants who used the prop-

erty interface solved this task, one particular error appeared commonly. The property “the

curtain is open AND the Roomba is on SHOULD ALWAYS OCCUR TOGETHER” inad-

vertently binds the two states, causing the Roomba to start anytime the curtain is opened,

misinterpreting the intent.

Participants often performed similarly with the rule and property interfaces when both

a single rule and a single property sufficed. For example, Task 3 (preventing a room from

getting too hot) required only one of each. Participants performed similarly with either

interface. AutoTap’s property interface was more successful when multiple rules were needed

to capture corner cases. Two tasks caused participants great difficulty, even for properties.

Task 7 required either two properties or six rules. All participants missed corner cases.

Task 13 dealt with delaying vacuuming when guests were over, requiring either two properties

or two rules. Most participants neglected to start the vacuuming after a delay.

We compared the System Usability Scale scores provided by users to the rule interface

and AutoTap property interface. We found both interfaces to be “usable”, with mean scores
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of 70.4 and 63.2 respectively. This difference was not statistically significant (Mann-Whitney

U = 590.5, p = .052).

2.5.2 TAP Program Synthesis

We further check if AutoTap can synthesize TAP rules from scratch to accomplish all 14

tasks in this user study. In a less challenging version, one of the authors (representing an

expert user) wrote properties for every task, and AutoTap successfully synthesized TAP rules

for all tasks.

In a more challenging version, we used all the correct properties written by user-study

participants (158 sets of properties in total, with each from one participant targeting one

task). Sets contain 1.83 properties on average. These properties were transformed into LTL

formulas following Table 2.1. AutoTap successfully generated TAP programs for 157 out of

the 158 property sets, and all are guaranteed to satisfy corresponding properties. The only

set that AutoTap failed to synthesize is for “When Bobbie is in the kitchen, the oven door

should be closed” and “When Bobbie is in the kitchen, the oven door should be locked.”

If Bobbie enters the kitchen when the oven door is open, the system needs to trigger two

actions immediately, both closing and locking the oven door. AutoTap fails to find a solution

because it currently only considers using a single action to redirect each bridge edge in the

Büchi Automaton. Future work can extend AutoTap to consider using multiple actions to

redirect a bridge, addressing this limitation.

We also checked how many TAP program candidates AutoTap generates for one property

set. On average, AutoTap generates 2.13 candidates for one set, with a median of 1. The

largest set contains 27 candidates. This is a special case as the program consists of three

rules. For every rule, the potential action could be opening any one of three windows in

a house. Even in this case, end users will not face 27 candidates at once. They will only

need to make a one-out-of-three choice three times. As all candidates satisfy users’ desires,
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Table 2.2: How AutoTap fixes buggy TAP programs. Subscripts are the # of cases AutoTap
patches revert the mutation.

Source #buggy TAP sets Successful Fixing

mutation: change trigger event 5 41
mutation: add condition 7 77
mutation: change condition 5 51
mutation: change action 4 30
mutation: delete rule 4 44

Total 25 2313

AutoTap can also randomly pick one candidate.

2.5.3 TAP Program Fixing

We randomly take 10 correct TAP program written by user-study participants and apply a

wide variety of mutations to them, as shown in Table 2.2. AutoTap successfully fixes the

buggy TAP program to satisfy the given property in 23 out of 25 cases, showing its generality

across different types of TAP bugs. The two cases where AutoTap fails are like the following.

The task is “the thermostat should never be above 80◦F”, and the rule is “IF thermostat

goes above 80◦F, THEN set thermostat to 81◦F”, with the action randomly mutated from

“set thermostat to 75◦F”. Since the buggy rule triggers itself recursively and AutoTap does

not regard intermediate triggering states as violating properties, AutoTap could not identify

the bridge edges and hence did not repair the program.

As also shown in Table 2.2, AutoTap often generates a patch to revert the add-condition

mutation or the delete-rule mutation, but not for all types of mutations. The reason is that

AutoTap only fixes the part of a TAP program that violates the safety property. If a rule

becomes a non-violating different rule after mutation, AutoTap will not revert the mutation

back.
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2.5.4 Handling Multiple Properties

Properties that share the same capabilities of devices sometimes interfere with each other. We

evaluated AutoTap on 7 scenarios where such things happened, with each scenario combining

different property sets in our user study together. For example, one scenario could contain

two properties “the living room window, the bedroom window and the bathroom window

should never be closed together (ϕ)” and “the living room window should always be closed

while it is raining (ψ)”.

AutoTap simply combines different properties ϕ and ψ together as ϕ∧ ψ. It successfully

handles all scenarios by generating TAP programs to satisfy every multi-property scenario

unless the properties conflict with each other. In the latter case, AutoTap correctly reports

that no TAP rules can possibly guarantee all the properties. One example of conflicting

properties is “the window should always be open” and “the window should never be open

when the air conditioner is on.”

2.6 Conclusion

With the wide adoption of smart devices, helping users correctly express their intent for

how these devices should interact is crucial. AutoTap helps users by allowing them to

directly specify properties they wish to hold, rather than writing rules for exactly how

devices should behave in order to satisfy those properties. To achieve this goal, we first

conducted a user study to map the properties users commonly desire. We then designed an

easy-to-use interface for property specification and a technique supported by formal methods

to automatically synthesize TAP programs or program patches that guarantee the system

satisfies the specified properties.
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CHAPTER 3

TRACE2TAP: SYNTHESIZING TRIGGER-ACTION

PROGRAMS FROM TRACES OF BEHAVIOR

3.1 Introduction

End-user programming paradigms such as trigger-action programming (TAP) enable au-

tomation in users’ smart home, potentially improving users’ quality of life by streamlining

their daily routines [1, 108]. However, automation is only helpful if it aligns with the user’s

intent. How to efficiently translate user intent into desired automation remains a crucial and

challenging open problem.

Past attempts to address this problem mainly follow two directions. The first direction

relies completely on users to program their smart devices. For example, through trigger-

action programming (TAP) [114, 55, 115, 46], users write if-this-then-that rules (e.g., “IF

trigger occurs WHILE conditions are true, THEN take some action”) as described in Section

1. The second direction relies completely on automated prediction leveraging statistical or

machine learning techniques. That is, automated analysis of users’ past behaviors produces

a model that predicts and automates future interaction between users and devices. Both

directions have limitations.

The first direction, having users write rules, often excels at simple scenarios. Unfor-

tunately, in the nuanced and complex device-automation scenarios that frequently arise

in homes or other environments with more than a handful of devices, users may write

rules with bugs [12, 55, 83] or struggle to understand why particular automations are run-

ning [85, 125, 84]. In short, while prior work has shown that even non-technical users can

write simple trigger-action programs with ease [114], users struggle to communicate their in-

tent via rules when the intent they wish to communicate becomes more complicated, involves

particular devices being controlled simultaneously by multiple rules, or involves automation

32



actions that trigger based on opaque sensor readings.

The second direction, building an automated predictor using statistical or ML tech-

niques [104, 7], excels at finding a model or a program that best emulates past user behaviors

based on metrics like precision and recall. Unfortunately, maximizing precision and recall

based on past behaviors does not necessarily best capture an individual user’s intentions, pri-

orities, and concerns. Notably, what type of automation is “best” varies across users. Some

may want to automate a particular context more than others, while others may care more

about precision or rule generalizability. Furthermore, while a statistical or ML algorithm

is trained exclusively on past behaviors, a user’s true intention may not be clear from past

behaviors. In a home or office environment filled with sensors, there will be many spurious

correlations between sensors and actions that should not be automated. On the other hand,

the intended automation may not even exist verbatim among the observed behaviors. For

example, a user may want the light to turn off right after they leave the kitchen, yet the

location of the light switch means that the automated system always observes them turn-

ing the light off moments before leaving the kitchen. As another example, the trace may

show that a light was often kept on for the whole night, but that may not reflect the user’s

intent—the user may happen to be a forgetful person. Finally, it is exceedingly difficult

to bring a non-technical human into the loop with most ML classifiers. For many types of

automated predictors, it is difficult both to explain to the user what exactly the predictor

does and to enable the user to edit the predictor.

To better support device automation, in this paper we propose and evaluate a new

hybrid approach that combines the respective strengths of trigger-action programming and

automated learning. Our approach, Trace2TAP, takes as input a trace of user behavior,

or time-stamped log of all sensor/environmental readings and events, as well as all instances

of humans manually taking actions (e.g., turning on the air conditioning by pressing the

“on” button in a smartphone app in real time). Trace2TAP automatically synthesizes TAP
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rules that could automate a good portion of the observed instances of human actions in

a comprehensive way to accommodate for users’ diverse priorities and concerns. To align

the user’s intent with what is being automated, Trace2TAP presents the user with the

synthesized rules and visualizes for them the rationale for each rule based on the trace.

Because there are often myriad synthesized rules, including variants with subtle differences,

Trace2TAP clusters rules based on the similarity of their actuations and ranks both clusters

and the rules within each cluster based on a number of relevant characteristics. Furthermore,

Trace2TAP aids in debugging by suggesting patches (modified rules or new rules) based on

observations of automations being reverted (e.g., a human closing the shades immediately

after a rule had automatically opened them).

Our Contributions in Designing and Evaluating Trace2TAP

Clearly, Trace2TAP cannot simply combine existing techniques to achieve the aforementioned

vision. As detailed below, we developed a novel synthesis algorithm to comprehensively

generate TAP rules, designed a new clustering/ranking scheme to help end users navigate

among all the synthesized rules, designed user interfaces for explaining TAP rules based on

the traces from which they were synthesized, and fully implemented our approach on top

of Samsung’s SmartThings platform. We also conducted a user study applying our system

to the control of smart devices in a workplace environment, encompassing formative field

deployments in ten offices to aid in the development of Trace2TAP, followed by a summative

evaluation field study in seven offices.

1) A novel algorithm for rule synthesis: For every device action to automate (e.g.,

“turn on the light”), Trace2TAP first identifies a set of device capabilities (termed variables)

that are statistically correlated with the action (Section 3.4.1). It then applies symbolic ex-

ecution and SAT-solving techniques [32] to exhaustively generate all possible rules involving

those variables that can automate more than a threshold portion of instances in the trace

of the user manually taking that action (Section 3.4.2). Our novel use of symbolic reason-
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ing and SAT-solving techniques for synthesizing TAP rules enables Trace2TAP to be both

automated (synthesizing rules automatically from observed behaviors) and comprehensive

(producing a large number of rules that can approximate users’ past device interactions in

various ways). The latter property captures the spectrum of users’ priorities and intentions.

2) A novel prioritization and visualization scheme for rule presentation: A

key goal was for Trace2TAP to bring the human into the loop intelligibly and efficiently. To

help users avoid redundancy and choose the rules that best capture their intent, Trace2TAP

clusters the many rules synthesized to automate an action (Section 3.5.1). Clusters repre-

sent rules that automate similar instances of the user manually performing that action, as

captured in the trace. Within each cluster, Trace2TAP ranks the rules based on six features

we identified through formative deployments in ten offices. To help users understand the

relationship between a synthesized rule’s potential automations and the manual instances of

those actions from the trace, Trace2TAP visualizes the state of the various sensors at points

in the trace the synthesized rule would have triggered (Section 3.5.2).

3) A mixed-methods empirical field study: We validated Trace2TAP through a

summative field study in seven offices. We installed commercial sensors and smart devices in

each office. Participants manually controlled the devices as they normally would. After four

months of usage, we conducted a semi-structured interview during which participants used

Trace2TAP to choose their automations, enabling us to gauge the alignment between the

participant’s intent and the rules Trace2TAP synthesized. Trace2TAP successfully generated

TAP rules that participants selected to automate almost all manual actions in their offices.

We found that participants selected rules that were frequently ranked highly by our clustering

and ranking approach; the median rank of selected rules was second. We also found our

clustering scheme to be effective; participants almost never selected more than one rule from

a given cluster. Participants sometimes chose rules that would seem less desirable based only

on quantitative metrics, highlighting the value in Trace2TAP comprehensively generating
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a variety of TAP rules and making those proposed automations intelligible to users, who

could then make informed decisions. Furthermore, this field study uncovered a number of

lessons for why participants might reject certain rules that otherwise seem promising. It also

highlighted subjective factors influencing participants’ approach to automation, as well as

best practices for sensor placement and sensor visualization.

4) A novel debugging approach: After a user chooses a set of TAP rules, Trace2TAP

continues to help align device automation with the user’s intent by observing and acting upon

cases when the user implicitly demonstrates dissatisfaction with an automation. When a user

manually reverts an automation caused by a rule, Trace2TAP automatically synthesizes rule

patches, or proposed modifications to the set of rules, using a similar symbolic reasoning

and constraint-solving framework (Section 3.4.3). The rule-presentation interface mentioned

above then helps the user understand the impact of each patch and make a proper debugging

decision.

We have open-sourced Trace2TAP,1 including implementations of the algorithms and

our software integration with Samsung SmartThings. We are also releasing our user study

materials and, with participants’ opt-in permission, the raw traces collected in our field

study. We encourage reuse of both our data and Trace2TAP tool.

3.2 End-to-End Example of Trace2TAP and its User Experience

Before detailing Trace2TAP’s algorithms, implementation, and evaluation in subsequent sec-

tions, here we provide an example of Trace2TAP’s end-to-end usage. This example describes

the automations Trace2TAP suggested for controlling the lights in one of the ten offices in

our formative initial deployment. In doing so, it also distills key elements of our conceptual

approach in designing Trace2TAP’s algorithms and user experience.

1. The Trace2TAP algorithm and code, integration with SmartThings, and evaluation data are available
at https://github.com/zlfben/trace2tap
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(a) User comes to work. (b) User temporarily leaves the office.

(c) User closes the door for work. (d) User goes home.

Figure 3.1: Visualizations of different use cases in the trace collected from an example office
occupant.

Among the devices the occupant chose for their office were Philips Hue lights, which they

used as primary illumination. At a high level, the occupant’s intent was for the lights to be

on while they were in the office and off otherwise, with a weak preference for the lights to

remain on as a signaling mechanism that they would return soon when they had momentarily

stepped out of their office. For two weeks, the occupant of this particular office manually

operated the lights with a wireless Philips Hue light switch located on their desk. Sensors

recorded motion in two parts of the office, the office’s temperature and illumination (via a

multipurpose sensor), whether the door was open (via a contact sensor), and the time of each

reading. As observed in the trace collected (see Figure 3.1), the occupant typically turned

the lights on upon arrival in the morning, though their arrival time was variable. When they

left their office for extended periods of time or at the end of the day, they turned their lights

off. They occasionally left their office for short restroom breaks, leaving the lights on during

them. While in their office, they usually left the door open. However, they also sometimes
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(a) Rule 1 in Cluster 1 for turning off the lamp. (b) All rules in Cluster 3, shown on
demand.

Figure 3.2: An example of Trace2TAP’s UI for showing proposed rules to the occupant.

closed their door to concentrate.

Trace2TAP synthesized and proposed numerous rules for turning the lights on and off,

yet clustered these rules into just a few clusters. Note that this particular office contained

multiple lights controlled identically, and Trace2TAP’s rules for the lamp were the same

for all other fixtures. For turning the lamp on, the rule Trace2TAP ranked highest (first

and only cluster, first rule) was straightforward: ‘IF door opens THEN turn on the lamp.’

While this rule would try to automate turning the lamp on many times when the lamp

was already on, Trace2TAP intentionally only labels automations as false positives if they

would put the device in a state different from that observed in the trace. This rule was also

ranked higher than many other rules because it is compact, not involving any additional

conditions (e.g., as opposed to ‘IF door opens WHILE the temperature is 71°. . . ’ ). While

more granular rules might fit the trace’s data more precisely, more compact rules tend to

generalize better. Trace2TAP presented the proposed rules to the occupant through a UI

analogous to Figure 3.2. The UI also visualized relevant sensors and devices from the trace, as

in Figure 3.1. Upon demand, the user could show all rules in the cluster, as in Figure 3.2b.

We developed the ranking system, UI, and visualizations iteratively during our formative

deployment.
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The three clusters of rules synthesized for turning the lights off were more nuanced than

for turning them on. Proposed rules for turning them off needed to account for the occupant

briefly leaving the office. Trace2TAP proposed ‘IF door has been closed for 3 minutes THEN

turn the lamp off,’ which Trace2TAP ranked highly and also initially seemed to match the

occupant’s intent. The occupant looked through the different clusters before choosing this

rule, sometimes looking at the additional rules in the cluster.

Another strength of Trace2TAP relative to prior work is that, even after TAP rules have

been manually written by the user or synthesized by the tool, Trace2TAP continues to use the

trace to propose patches (modifications). Instances of the user reverting rules’ automations

or manually controlling devices beyond the current automations both contribute to patches.

As such, Trace2TAP provides human-intelligible proposals for automation throughout a

workflow that simultaneously supports manual trigger-action programming for the commu-

nication of intent.

This advantage was critical in adjusting the rules. Even though the rule ranked first in

Cluster 1 for turning off the light (Figure 3.2) captured most use cases, it turned the light

off when the occupant closed their door to concentrate. In subsequent days, the occupant

turned the light back on multiple times when that automation occurred, so Trace2TAP

proposed a patch (Figure 3.3) that added an additional condition: “Motion Sensor doesn’t

detect motion.” At a high level, while the door being closed for more than a few minutes was

normally correlated with the lights being turned off, the continuing trace also showed cases

in which the occupant stayed in their office when the door was closed, registering motion on

the motion sensors and wanting the lights to be on.

Multiple aspects of Trace2TAP contributed to its ability to identify and prioritize an

appropriate rule, and then to refine it. Unlike most prior work (Section 5.6), Trace2TAP’s

algorithm handles events that appear out of order. Because of the physical location of the

wireless light switch in the office, the occupant first turned off the lights and then closed
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Figure 3.3: The patch Trace2TAP suggested to modify Rule 1 from Cluster 1 based on the
user reverting automations.

the door. Nonetheless, both the temporal aggregation phase of Trace2TAP’s pre-processing

and its ability to create time-based triggers (Section 3.4) account for out-of-order events in

the trace. Furthermore, Trace2TAP’s comprehensive approach to TAP rule synthesis across

variables enabled it to identify an appropriate rule combining sensors in complex ways,

presenting the most promising possibilities to the user in an intelligible way to enable them

to filter the rules through their own intent.

3.3 Definitions and Terminology

To make further discussion easier, we formally define a few important concepts below:

A variable represents a device capability. A smart home system with a color light

and a thermostat would contain variables light.switch, light.brightness, light.color,

therm.current temperature and therm. temperature setting. We collect all the vari-

ables for each device based on SmartThings [89] API manuals.

A value is the setting of a variable at a given time (e.g., a switch variable could be valued

“on” or “off”).

A state is the union of all variables’ values in the system at a given time. It can be

regarded as a dictionary with variables as keys. We will refer to a state as S : State, where
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S[V ] is the value of variable V in state S.

An event is what happens in the system that causes a state change, like “the light gets

turned on” or “temperature drops below 0 degrees.” We denote an event as E : Event, and

E.var is the variable whose value is changed to E.val by E. For the event “the light gets

turned on,” E.var is light.switch and E.val is on. An event can be external or automated.

External events are applied by the environment or manually by users, and automated events

are triggered by the TAP automation system. An action is a type of event that can be sent

to an actuator as a command, such as “turn on the lamp” or “mute the speaker.”

A trace is the history of a smart device system over a time period. A trace T : Trace has

3 fields. T.init : State represents the system state at the beginning of the trace; T.events :

list(Event) is a list of events that happened during the trace’s time period; T.timestamps :

list(Time) is a list of the timestamps of the events.

A proposition is a Boolean expression that compares the setting of a variable V with a

constant value K, denoted as “V op K.”

In Trigger-Action Programming (TAP), each TAP program consists of a set of TAP

rules. In this paper, we use a variant of TAP rules with the format “IF trigger happens

WHILE conditions are true THEN apply action” [12]. The trigger is an event and the

conditions are a set of propositions. This type of TAP rule is deployed in some smart

home frameworks [53, 89], and prior work has found that it is the least ambiguous TAP

format [12, 97].

As we will explain in Section 3.4.2, to synthesize a TAP rule that can trigger a specific ac-

tion, Trace2TAP essentially needs to synthesize a trigger proposition and condition propo-

sitions. For example, a trigger-proposition “light.switch == on” corresponds to “IF the

light gets turned on” in a TAP rule. A condition-proposition “therm.current temperature

> 70” corresponds to “WHILE temperature is above 70 degrees” in a TAP rule.
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3.4 Trace2TAP Rule Synthesis Algorithms and Procedure

In this section, we present how Trace2TAP automatically synthesizes TAP rules in a com-

prehensive manner.

Inputs: Trace2TAP takes as input a trace T , the list of rules R1, ..., Rm already installed

in the system, and an action A to automate (e.g., turn on the light).

Outputs: Trace2TAP will synthesize a list of TAP rules.

For each rule R to be synthesized, although its final presentation by Trace2TAP will

have the intuitive form “IF trigger WHILE conditions THEN action,” the raw output of

this synthesis component includes one trigger proposition, denoted as Vt opt Kt, and one or

multiple condition propositions, denoted as Vc opc Kc. Note that the “action” component

of R must be A and hence needs no further discussion.

For example, to synthesize a rule to automatically turn on the light, Trace2TAP may

synthesize three components to form the trigger proposition: (1) illuminance for the vari-

able Vt; (2) < for the operator opt; and (3) 100 lux for the constant value Kt. It may

also synthesize three components to form the condition proposition: (1) door.open for the

variable Vc; (2) == for the the operator opc; and (3) TRUE for the constant Kc. This result

will be post-processed and then presented as “IF the illuminance in the room drops below

100 lux WHILE the door is open THEN turn on the light.”

Goals: Trace2TAP aims to synthesize many TAP rule candidates, as many as it can,

that approximate over a threshold portion of action A’s instances in the trace T . Here,

approximating an action instance A means that if the rule R was in place, R would auto-

matically trigger A close to the original moment when A took place. This goal aims to be

comprehensive and approximate. First, we intentionally do not require the rule to trigger A

exactly at its original moment as a user’s intention may not be to exactly repeat what they

did manually. For example, automatically turning off the light 30 seconds after the user

typically had done so manually could be fine, or even more desired. Second, we intentionally
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do not require the rule to trigger all or most instances of the action A because a given action

could occur under different contexts and hence may require more than one rule to automate.

For example, one may turn off a light because the room is empty or because it is already

bright outside.

Solution overview: A naive solution is to enumerate every possible TAP rule with A

as its action and then check how many instances of action A in the trace could have been

approximated by this rule. This clearly would consume too much time to be practical. In

fact, such a rule enumeration might never finish because the constant values of the trigger

and condition propositions, Kt and Kc, might take on an infinite number of settings.

Trace2TAP uses a novel two-step solution. It first identifies top variable candidates that

are most suitable for the trigger and condition propositions, respectively, by applying signal

processing techniques to analyze the trace T . It then formulates a symbolic constraint that

represents what type of TAP rules, composed of those identified variables, can approximate

over a threshold portion of action A instances in the trace. Consequently, instead of enu-

merating through all possible TAP rules, Trace2TAP simply feeds the symbolic constraint

into a constraint solver, getting all the constraint-satisfying TAP rules generated.

The first step is crucial to avoid state-space explosion problems in the later constraint

solving. It will be explained in Section 3.4.1. The second step is the key that allows

Trace2TAP to be inclusive. It will be explained in Section 3.4.2. Finally, we will also discuss

how a small adaptation to the Trace2TAP rule synthesis framework also allows Trace2TAP

to automatically synthesize rule patches in Section 3.4.3.

3.4.1 Rule Synthesis: Variable Selection

We discuss below how to select top candidate variables that constitute trigger propositions

(Vt) and condition propositions (Vc), respectively, based on their different roles in a TAP

rule.
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Figure 3.4: Calculating how a variable var is related to target action.

Finding trigger variables Our first step is to identify a potential trigger for our TAP

rule. By definition, a TAP rule conditionally causes an action to take place right after

the triggering event occurs. Consequently, for a TAP rule to automate a good portion of

instances of the action A near their original occurrences in the trace, its trigger variable

should have a temporal relationship with A. For example, if we want to automatically turn

on the heater and the trace shows that the heater is often turned on shortly after the door

is opened, the variable “door.open” can be a candidate to form the trigger of the TAP

rule. On the other hand, if a certain capability of a device (i.e., a variable) rarely changes

its setting within a short time window around the to-be-automated action A, this device

capability is unlikely to form the rule trigger we are looking for.

To evaluate whether variable V : Variable has a temporal relationship with action A:

Event, we regard all events related to V in the trace (i.e., all E so that E.var == V ) and

all instances of the action A as two sets of pulses, with each pulse lasting for a certain time

period (15 minutes by default in our current implementation), as illustrated in Figure 3.4.

We then calculate the cross-correlation between these two signal sequences. Cross-correlation

is used frequently in signal processing to measure the similarity between two signals based

on sliding convolution.
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To accommodate for the potential time gap between a trigger event and a to-be-automated

action instance, both to make Trace2TAP inclusive and because rule triggers can contain

time buffers (e.g., “10 minutes after Alice leaves the house”), we also evaluate the cross-

correlation between the two signal sequences at various time differences, ranging from 1

second to 30 minutes. Trace2TAP then records the time difference time∆ with the highest

correlation for each variable V , (time∆, correlationmax).

Finally, for all variables in the system, Trace2TAP picks the three variables2 with the

highest correlationmax values. These three variables will be considered as candidate trigger

variables, denoted as Vt1 , Vt2 , Vt3 . If a candidate variable uses a time∆ greater than one

second to achieve its highest correlation, we store its time∆ with it, which can be used later

to compose temporal TAP rules (Section 3.4.2).

Finding condition variables Recall that our TAP rules take the form “IF trigger happens

WHILE conditions are true THEN apply action.” Each rule must have a single trigger,

and that trigger must represent an event that occurs at a discrete moment in time (e.g.,

a door changes from the closed state to the open state). However, conditions have very

different semantics [12], and condition variables serve a different role from trigger variables.

A rule may have zero or more conditions, each representing a state that is true or false (a

proposition). For instance, a condition might test whether a door is currently in the open

state, and when it entered into that state is irrelevant. A condition variable Vc therefore

does not need to correlate with the rule action A in a temporal way. The variable’s value

does not need to change around the time when the rule action is triggered; it just needs to

stay at a particular value or value range around that time.

Consequently, we treat this as a conditional information problem. Each variable can

be considered a random variable if we sample it throughout a trace, and we can calculate

2. Trace2TAP can be configured to pick more trigger or condition variables. We use three as our default
setting because the complexity of the rule constraint solving grows exponentially with the number of variables
and three variables was sufficient in our experience.
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the entropy, a “randomness” measurement, of the variable based on the distribution of its

value in the trace. If the variable is related to whether or not to apply a specific action A,

the distribution of its value will be less random if we sample its value when an instance of

A occurs in the trace. To evaluate how much randomness we can reduce by sampling at

instances of A, we calculate the variable’s conditional entropy at those times. The difference

between the two entropies represents how predictable the variable becomes when A occurs.

The more predictable it is, the more likely it can be used in a rule condition. We rank all

variables by the following value:

entropy(throughout trace)− entropy(at A)
entropy(throughout trace)

The top three variables are selected as potential variables to constitute rule conditions,

denoted as Vc1 , Vc2 , Vc3 .

3.4.2 Rule Synthesis: Symbolic Constraint Solving

Given the candidate variables, Trace2TAP takes three steps to synthesize trigger and condi-

tion propositions: (1) defining a symbolic rule template to represent the whole search space;

(2) formulating the rule synthesis problem into symbolic constraints; and (3) solving the

constraint formula and generating all rules that satisfy the constraints. Trace2TAP uses Z3

Theorem Prover [32] to handle the last task. Here, we focus on Step 1 and Step 2.

A. A Symbolic Rule Template

Having a symbolic rule template allows Trace2TAP to reason just about one symbolic rule,

instead of many (or even infinite) concrete rules. As shown in Table 3.1, to form a trigger

proposition using a specific variable Vt∗ , we need to decide what constant value, represented

by symbol Kt∗ , to compare with, and what exact comparison, > or == or others, to conduct,
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Table 3.1: A symbolic TAP rule. λ’s, ⊗’s, K’s, µ’s, ⊕’s are symbols; Vt∗ and Vc∗ are
candidate variables for the rule’s trigger and conditions, respectively.

IF


λt1 ⇒ Vt1 ⊗t1 Kt1

λt2 ⇒ Vt2 ⊗t2 Kt2

λt3 ⇒ Vt3 ⊗t3 Kt3

, WHILE
µc1 → Vc1 ⊕c1 Kc1
µc2 → Vc2 ⊕c2 Kc2
µc3 → Vc3 ⊕c3 Kc3

, THEN take action A.

Symbol Name Description

⊗,⊕ Comparator symbols Each can be “=” (become), “ ̸=” (change from), “¿” (be-
come greater than) or “¡” (become smaller than), depend-
ing on the variable type.

K Value symbols Each can be true or false for boolean variables, set op-
tions for set variables, or a number for range variables.

λ,µ Selection symbols Each can be true or false, indicating whether its corre-
sponding trigger or condition proposition is selected to
form the rule. For example, if λt1 is true while λt2 and
λt3 are false, the new rule’s trigger is “Vt1 ⊗t1 Kt1”.

represented by symbol ⊗. We then need a set of selection symbols λVt1
, λVt2

, λVt3
to

represent which one of the three candidate trigger variables and its corresponding proposition

will be included in the synthesized rule.

As also shown in Table 3.1, we can form condition propositions in a similar way, using

three sets of symbols. Note that, by definition, a TAP rule’s trigger can only contain one

event and hence one variable. However, a TAP rule’s condition could be the conjunction of

multiple propositions involving multiple variables. This difference is visualized in Table 3.1

and will be reflected in the symbolic constraints that we will explain later.

Once all symbols are assigned with concrete values, we get a concrete TAP rule like the

example below:

Value assignment: λVt1
:= TRUE; λVt2

,λVt3
:= FALSE; ⊗Vt1

:= > ; KVt1
:= 75;

µVc2
,µVc3

:= TRUE; µV c1 := FALSE; ⊕Vc2
:= = ; KVc2

:= Sunny;

⊕Vc3
:= ̸= ; KVc3

:= Off

Concrete rule: IF Vt1 rises above 75 WHILE Vc2 is Sunny AND Vc3 is not Off, THEN

take action A.
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B. Formulating Rule Constraints

There are two sets of constraints that we want a synthesized rule to follow: (1) the rule has

to be syntax-valid and non-redundant; (2) the rule has to approximate more than a threshold

portion of the instances of A in the trace.

Rule validity constraints To avoid invalid rules, we require the following:

• ∀V : R.λV → (¬R.µV ): Variables showing up in the trigger should not show up again

in the conditions because it will contain no more information;

•
3∑

i=1
[R.λVti

] == 1: Each rule should only have one trigger;

• ∀ boolean var : R.⊕V = “ = ” ∧ R.⊗V = “ = ”: “= False” and “̸= True” mean the

same thing. We force comparators for Boolean parameters to be “=”.

Rule automation constraints Thinking about a specific action instance A that occurred

at the moment tA in the trace T , we want to formulate a constraint that reflects whether a

rule R could have triggered A within the time window from tA −∆1 to tA +∆2
3 under the

original context of T . We represent this constraint as the following:

S′[A.var] == A.val, S′ = executeTrace (episode,R1 . . . Rm, R)

Here, episode is the sub-trace of T that spans the time window from t − ∆1 to t + ∆2,

including all original events in T except for A. The function executeTrace outputs a formula

representing the final system state after applying all the input rules to the input trace or

sub-trace, which we will explain in detail in Section 3.4.2. The constraint above describes

that at the end of the episode, the effect of action A has to be there: S′[A.var] == A.val.

3. ∆1 and ∆2 are configurable. In our current prototype, they are set to 10 minutes and 5 minutes,
respectively.
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Following this process of constraint reasoning for every single action instance A applied

manually by users, we can now get the following constraint which requires the rule to approx-

imate over a threshold4 portion of all instances of action A. Instances triggered by existing

rules are not considered here because our focus in this phase is to automate manual actions.

We intend the newly synthesized rule to co-exist with the existing rules. episode1 . . . episoden

are the episodes corresponding to all of the n instances of action A in the original trace T :

n∑
i=1

[S′i[A.var] == A.val] ≥ threshold× n (3.1)

S′i = executeTrace (episodei, R1 . . . Rm, R), and “[· · · ]” is the indicator function of a

Boolean expression.

C. executeTrace

As shown in Algorithm 1, executeTrace starts from the trace’s initial state trace.init and

keeps updating the system state by sequentially applying every external event E in the trace.

For every event E, executeTrace first applies the direct impact of E to the system state,

updating its corresponding variable S′[E.var] := E.val. executeTrace then goes through

every rule R: R1, ... Rj to see if a rule R is triggered. If so, it updates the corresponding

variable: S′[R.action.var] := R.action.val.

The checkRule function listed in Algorithm 2 is used to check whether a rule R will

be triggered right after an event E under a system state S. It first checks if the event E

matches the trigger event of R: the variable of E needs to be selected as the trigger variable

(∃i ∈ {1, 2, 3} : Vti == E.var and λti is true), and the post-event value setting of E needs

to match that of the trigger (E.val ⊗ti Kti is true). It then checks whether the state of

the system S satisfies all condition propositions of R. For this checking, checkRule iterates

through all variables that exist in the rule conditions (Vc1 · · ·Vc3). For the i-th variable

4. In our current study, we set threshold to 0.3.
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Vci , its condition proposition is satisfied when “condi : µ[Vci ]
→

(
S[Vci ]⊕Vci

KVci

)
” is true.

The whole rule’s condition requirement is met when cond1 . . . cond3 are all true. Finally,

checkRule returns the conjunction of the formula trig, representing whether R’s trigger

matches E, and the formula cond, representing whether R’s condition is satisfied by the

system state S.

With all these, the executeTrace function will generate the symbolic formula represent-

ing the final system state S′ after applying all rules R1, ... Rj to a given trace.

Note that the inputs to executeTrace could contain not only a symbolic rule, but also

concrete rules that already exist in the system. Those concrete rules can be handled as

special cases of the symbolic rule with corresponding rule components containing concrete,

instead of symbolic, values. Also note that it is possible for one external event to activate

more than one rule. Our automation system, which we will discuss in Section 3.6, makes sure

that those multiple activated rules will be executed one after the other with no race situation.

Consequently, reasoning about multiple activated rules can be reduced to reasoning about

just one rule at a time.

50



Input : Trace to be re-executed trace
Input : Rules to apply R1, ..., Rj
Output: Final state S′

Function executeTrace(trace, R1 . . . Rj)
S := trace.init;
for Every E in trace.events do

if E is external then
S[E.var] := E.val;
for r := R1 . . . Rj do

triggered := checkRule(r, E, S);
if triggered then

S[r.action.var] := r.action.val;
end

end

end

end
return S;

Algorithm 1: Compute the final system state after applying a set of rules
to a trace

Input : A rule R
Input : An event E
Input : Current system state S
Output: A boolean result representing if rule is triggered
Function checkRule(R, E, S)

if ∃i : E.var = R.Vti then
trig :=

(
(E.val)R.⊗ti (R.Kti)

)
∧R.λti ;

else
trig := false;

end
for i := 1 . . . 3 do

condi := R.µci →
(
(S[Vci ])R.⊕ci (R.Kci)

)
;

end
cond := cond1 ∧ · · · ∧ condn;
result := trig ∧ cond;
return result;

Algorithm 2: Check if symbolic rule R of the format in Table 3.1 is triggered. We use
R.K, R.⊗, and so on to refer to symbols in R.

D. Handling Temporal Rules

Trace2TAP also supports analyzing and generating rules with timing triggers like “exactly

{time} ago, var := value became true and has remained so.” We do not treat time as a

51



symbolic variable in the symbolic rule template (Table 3.1) because doing so would introduce

concurrency issues in symbolic re-execution and tremendously increase the complexity of our

symbolic constraint solving. Instead, we pre-compute the time periods for candidate trigger

variables and then adapt the symbolic rule template.

As mentioned in Section 3.4.1, when calculating the cross-correlation between events

related to a variable V and the target action, Trace2TAP identifies the time∆ used to help

V achieve its highest cross-correlation. When time∆ is larger than 1 second, Trace2TAP

considers a timing option for any trigger proposition involving V . For example, if two out of

the three trigger candidate variables have timing options 10 seconds for Vt1 and 60 seconds

for Vt3 , the symbolic trigger of R would change from that in Table 3.1 to the following:



λVt1
⇒ Vt1 ⊗Vt1

KVt1

λVt2
⇒ Vt2 ⊗Vt2

KVt2

λVt3
⇒ Vt3 ⊗Vt3

KVt3

λ̃Vt1
⇒ “Vt1⊗̃Vt1

K̃Vt1
” has been true for exactly 10s

λ̃Vt3
⇒ “Vt3⊗̃Vt3

K̃Vt3
” has been true for exactly 60s

λ̃, ⊗̃, and K̃ are symbols related to the timing statements. Since the time parameters (e.g.,

10 seconds and 60 seconds) are concrete values, evaluating such a symbolic rule with timing

triggers is very similar to that for a symbolic rule without timing triggers.

3.4.3 Rule Debugging and Patching

Users may not be totally satisfied with the current rules in the system and may need to

manually revert some events activated by existing rules. In these cases, Trace2TAP can

help generate rule patches to revert some of the automated events. These patches cover

potential ways to revert some automated events by adding conditions to a rule, deleting a
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rule, or changing parameters in a rule. In this section, we demonstrate how Trace2TAP finds

patches to add conditions to a rule.

Imagine that an existing rule R triggers an action A a total of m times in a trace T ,

where k of these m instances were reverted by the user shortly afterwards. Without loss of

generality, we will denote these k instances as occurring at time t1, t2, ... tk. The goal here

is to add more conditions to the rule R, represented by the symbolic rule below, so that R

would trigger its action A in a more selective way. We do not conduct variable selection here

because the complexity is limited without modifying the rule trigger and action.

IF trigger WHILE conditions AND

µVc1
→ Vc1 ⊕c1 Kc1

µVc2
→ Vc2 ⊕c2 Kc2

· · ·

µVcm
→ Vcm ⊕cm Kcm

THEN take ac-

tion A.

Intuitively, we can evaluate whether the modified rule would still be triggered at time ti

by checking whether those extra conditions are satisfied by the system at ti, which can be

represented by the following formula:

Ti :=
(
µVc1

→ Sti [Vc1 ]⊕c1 Kc1

)
∧ · · · ∧

(
µVcm

→ Sti [Vcm ]⊕cm Kcm

)

Then, similar to Equation 3.1, we can set up the constraint below. By solving it, we get

all potential patches to a rule R that can keep a large proportion of R’s correct behaviors

(> threshold1) and dismiss a certain portion of its undesirable ones (> threshold2). n∑
i=k+1

[Ti] ≥ threshold1 × (n− k)

 ∧

 k∑
i=1

[¬Ti] ≥ threshold2 × k


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3.5 Trace2TAP rule presentation

In this section, we discuss how we designed Trace2TAP to present synthesized rule candidates

intelligibly, empowering users to make intuitive and informed selections. In Section 3.5.1,

we discuss how Trace2TAP clusters and ranks rules. In Section 3.5.2, we then show how

Trace2TAP visualizes each rule’s rationale and implications.

3.5.1 Clustering and Ranking

Trace2TAP organizes rule candidates in two steps. First, Trace2TAP clusters all rule candi-

dates into groups based on the overlap in instances of manual actions they would automate,

which we term a usage context. Trace2TAP presents one cluster at a time to the user.

Second, Trace2TAP ranks the rules within each cluster using a linear scoring function that

considers a combination of six features. Our goal is to aid users in identifying one or more

rules within each context that match their intent. Trace2TAP’s two-step approach lets users

focus on one context at a time and avoid the often confounded attempt of quantitatively

comparing rules across contexts.

A. Clustering

Trace2TAP clusters all rules based on which subset of user actions in the trace (context)

each rule approximates. Specifically, Trace2TAP uses an n-element bit vector for each rule,

with the i-th bit indicating whether the i-th instance of the target action A is approximated

by the rule (‘1’) or not (‘0’). For example, imagine that the user manually applied A five

times. Rule 1’s bit vector is 10011, while Rule 2’s bit vector is 01100. This shows that Rule 1

automates different scenarios than Rule 2 and thus likely captures a different usage context.

Trace2TAP then automatically clusters all rule candidates based on the Hamming dis-

tance between their bit vectors, using the K-modes [57] unsupervised clustering algorithm.

54



K-modes is an extension of the classic K-Means algorithm that handles categorical data

spaces. Trace2TAP automatically chooses the best number of clusters based on the Silhou-

ette score [106], limiting the maximum number of clusters to five.

B .Ranking

Since all rules within a cluster cover similar usage scenarios, users will likely want to choose

at most one rule from each cluster. Trace2TAP thus ranks the rules within each cluster.

Trace2TAP’s ranking function considers the following six features, which we identified by

manually analyzing and discussing the comprehensive list of rules synthesized during pilot

deployments of Trace2TAP in the co-authors’ offices:

1) True positives (TPs): To prioritize rules that automate many manual actions, we

count the number of times the rule would have automated manual instances of the selected

action in the trace (within 10 minutes before or 5 minutes after the manual action, as in

Figure 3.5).

2) Precision: To prioritize rules whose automations typically correspond to manual ac-

tions, we divide the number of true positives by the total number of times the proposed rule

would have been triggered in the trace.

3) Recall: To prioritize rules that automate many of the manual actions, we divide the

number of true positives by the total number of manual action instances in the trace.

4) Time discrepancy: To prioritize rules that perform actions around when the user would

have performed them, we average the timing difference between the rule’s automated actions

and the human’s manual actions.

5) Complexity: Because shorter rules are frequently more intelligible and more general-

izable, we count the number of conditions in the synthesized rule.

6) Rule delay: Some rules trigger only after some delay (e.g., “IF trigger has been true

for 10 seconds, THEN apply action”). To minimize the time needed to take the action after
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Figure 3.5: Counting a rule’s true positives
and false positives.

Figure 3.6: A visualization of
when in the trace the rule would
have triggered (the “on” with the
beige background).

an observed state change, we consider the delay in seconds, setting it to 0 for non-time-based

triggers.

To weight these six factors in a principled way, we ran a formative deployment in ten

offices. Note that no participants or offices in this formative deployment participated in our

summative evaluation (Section 3.8). In this pre-study, we used Trace2TAP to synthesize

rules based on a one-week trace collected from each office. We then presented 50 rules,

selected using ad-hoc methods, to each participant. We asked them to label which rules

they would consider selecting, and which they would not. Using this labeled data, we

trained a linear scoring function consisting of the six factors above. Trace2TAP uses this

linear scoring function to rank rules within each cluster. Further, Trace2TAP orders the

clusters themselves based on the score of each cluster’s highest-ranked rule.

3.5.2 Visualizing the Impact of a Prospective Rule

To help users understand the behavior of each rule candidate, Trace2TAP presents a number

of metrics associated with the rule, such as the number of true positives and false positives

(under different terminology). Figure 3.2a from Section 3.2 exemplifies this screen.

Trace2TAP also visualizes when the rule candidate would have triggered during the

collected trace. For every moment t when the rule would have been triggered in the trace,

Trace2TAP visualizes the events around t. To avoid overwhelming the user, we show only the

relevant devices/sensors and only the relevant events immediately preceding and following
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when the rule would have automated the action. As shown in Figure 3.6, the column with

the light green background shows the status of the target device (lamp). The two columns

with darker blue backgrounds list the status of the sensors included in synthesized rules.

The last column, in lighter blue, shows the status of sensors found to be related to the target

action in the variable selection step, but not included in the current rule. Such sensors like

“door” in Figure 3.6’s case are often temporally or conditionally related to the target action

to be automated. They help users remember the contexts at the visualized time point. In

this example, the user manually turned on the lamp at 9:02am. The visualization shows

that the lamp would have been turned on by the rule at 9:01am (the “on” with a beige

background). The solid lines in the visualization mean that those devices/sensors were in

an active state (e.g., on, open, motion detected) at the time.

3.6 Trace2TAP System Implementation

To let us collect rich data about Trace2TAP in ecologically valid circumstances as part of

a field study in office environments, we implemented the whole Trace2TAP system. Our

implementation encompasses a Samsung SmartApp and a companion web application. As

mentioned in Section 3.1, we open-sourced our implementation.

The SmartApp serves as an intermediate layer that enables Trace2TAP to work with

the devices in Samsung’s vast SmartThings ecosystem. It logs all events supported by the

devices, including users’ interactions with smart devices and environmental information (e.g.,

motion, temperature, and illumination). Furthermore, the SmartApp is also responsible

for interpreting every TAP rule that the user saves through the Trace2TAP web interface,

executing those rules by sending commands to the relevant physical device using Samsung’s

SmartThings API. Trace2TAP avoids race conditions among actions triggered simultaneously

by enforcing the following: (1) each rule is assigned an ID in our database; (2) only sensors

(not actuations of other devices) are permitted in triggers and conditions to avoid rule
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chains [117]; (3) when two rules are triggered with the same event, the rule with the lower

ID is run first; and (4) a newly synthesized rule always receives a higher ID than any existing

rule.

The web application stores all collected traces in a database, runs the SMT-solver, and

presents all user interfaces we created. In the user interface, the web application first shows

users all actions that have occurred at least a threshold number of times in the trace (by

default, the threshold is 4 times). As detailed in Section 3.2, after the user selects an action

to automate, Trace2TAP synthesizes rules, clusters/ranks them, and then presents them

with their accompanying visualizations. We also permit users to directly write their own

TAP rules; we implemented our own interface visually approximating IFTTT [61], albeit

with our expanded TAP syntax (Section 3.3).

3.7 Evaluation Methodology

For our field study (summative evaluation), we initially recruited nine participants from the

Computer Science Department of the authors’ institute. Participants volunteered to have

Internet-connected devices temporarily installed in their offices. We excluded from further

analysis two participants who never used the installed devices during the study’s time period.

Among the remaining seven valid participants, two (p3 and p4 ) are staff members without

any technical expertise, while five (p1, p2, p5, p6, and p7 ) are CS faculty members. We

selected this mix to gauge how both non-technical and highly technical users would interact

with Trace2TAP. Non-technical staff members might not deeply understand trigger-action

programming or the sensors, providing a window into Trace2TAP’s ability to reach a broad

audience. Technical faculty members’ programming expertise would make them likely to

analyze rules critically and in a manner that accounts for corner cases, providing insight into

Trace2TAP’s ability to synthesize appropriate rules in the nuanced circumstances of a real

deployment.
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Members of the research team installed Internet-connected devices (chosen by the par-

ticipant) in each participant’s office. These devices included various Philips Hue lighting

devices, and optionally the participant’s choice of an iTvanila humidifier and a Dezin elec-

tric tea kettle connected to a Samsung SmartThings smart plug. A number of sensors,

including Samsung SmartThings motion sensors, Samsung SmartThings contact sensors,

and Aeotec multipurpose sensors, were also installed. Depending on the size of the office,

one to three Samsung SmartThings motion sensors were installed, along with one additional

Aeotec multipurpose sensor, which could also be used for motion detection. These motion-

related sensors were placed strategically to cover the maximum area in an office. In addition

to motion detection, the Aeotec multipurpose sensor also measures illuminance, humidity,

temperature, UV index, and vibration. Contact sensors were installed on all doors to detect

if they were open or closed. Across the seven valid participants’ offices, we installed 2 floor

lamps, 10 table lamps, 3 lightstrips, 3 kettles, 1 humidifier, 8 motion sensors, 7 multi-purpose

sensors, 12 buttons, and 7 door contact sensors.

The field study ran from November 2019 to March 2020. In the study, participants were

asked to interact with their devices manually, which was traced by Trace2TAP. At the end of

the study, we held a semi-structured interview with each participant. We introduced them

to the concept of trigger-action programming and had them use Trace2TAP’s interactive

workflow, as described in Section 3.2. For each action that Trace2TAP proposed automat-

ing, we asked participants to go through the suggested rules in each cluster and select any

they liked. We permitted participants to use the interface organically, without assistance.

Participants were allowed to skip lower-ranked rules within a cluster, though we required

they at least look at each cluster. Throughout this process, we asked participants to think

aloud, as well as to explain why they decided to accept or reject particular rules.5

5. We had planned a subsequent phase of the study to evaluate Trace2TAP’s debugging features. This
phase was cut short by the COVID-19 pandemic. We were only able to witness Trace2TAP’s debugging
feature in action anecdotally during our formative deployment (see Section 3.2).
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3.8 Evaluation Results

During the 4 months of our field study, Trace2TAP recorded 1,226,688 events in total across

the installed devices, 4,405 of which were participants’ manual interactions with actuators.

Across the seven offices, the traces contained 18 unique actions on 9 unique devices (7 table

lamps, 1 lightstrip, and a floor lamp) that Trace2TAP considered as targets for automation.6

For these 18 target actions, Trace2TAP synthesized 71 clusters containing 1,578 rules

in total. The synthesis for most actions was completed within 30 seconds. By selectively

navigating these rules using Trace2TAP’s interface, participants selected 32 rules from 31

clusters to install in their offices, automating 16 out of the 18 target actions. The median

rank of the 32 rules selected by participants was second within each cluster.

In this section, we present detailed results about the effectiveness of Trace2TAP’s cluster-

ing and ranking schemes (Section 3.8.1 and 3.8.3), how important it is for rule synthesis to be

comprehensive (Section 3.8.2), and what factors influenced participants’ decision processes

(Section 3.8.4).

3.8.1 How Effective is Clustering?

Are there different contexts under which an action occurs? Our results show that the answer

is “yes.” In most cases, participants need more than one rule to automate a single action to

their satisfaction, with the median number of rules picked for each action being 2, and the

largest number being 4. These rules automate different usage contexts of a single action.

Are we clustering the right sets of rules together? Ideally, we want each cluster to repre-

sent a unique context. Based on the results, we have achieved this goal. Among the 32 rules

accepted by the participants, only two of them came from the same cluster. Future users of

Trace2TAP can simply stop checking more rules in a cluster after they accept one from that

6. Occasionally, the participants used multiple devices (i.e., lights) in almost the same way. In those
cases, we only covered one representative device in our interviews and skipped the others.
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cluster.

Does clustering help users find their rules more easily? To compare the difference between

using and not using clustering, we first compared the ranking of the selected rules within

each cluster and globally (i.e., making a single ranked list of all rules synthesized) under the

same ranking function.

As shown in Figure 3.7, the median rank of the selected rules within their clusters (blue

bars and the blue box plot below) was 2, whereas their median rank globally was 7.5 (orange

bars and the orange box plot below)—a striking difference in ranking. As visualized by the

cumulative distribution function (CDF) curve in the figure, more than 80% of the selected

rules are ranked in the top 5 within their clusters. However, close to half of the selected rules

are not among the top 10 rules in the global ranking. Without clustering, many of these

low-ranked rules may never have been viewed by participants, nor selected by them.

For further comparison, we evaluated what proportion of selected rules would have been

covered after users checked the first N rules, with and without clustering. Determining the

first N rules a user would check without clustering is straightforward as all rules are totally

ordered without clustering. To approximately identify the first N rules a user would check

with clustering, we assumed a breadth-first search style of rule navigation: first checking all

rules ranked first across all clusters, then all rules ranked second across all clusters, and so on.

Once the user accepted a rule in a cluster, we assumed the remainder of that cluster would be

skipped. We examined the total number of rules users needed to check across all 18 actions to

reach a given coverage of the 32 selected rules under the search policy, showing the result in

Figure 3.8. Note that this would be an underestimate of the capability of clustering because

Trace2TAP actually ranked clusters themselves, presenting the most promising clusters first

rather than treating them equally. Even with this underestimate, Figure 3.8 shows that

Trace2TAP’s clustering can help users see more promising rules while expending the same

amount of search effort. Putting all the rules synthesized for all actions together, without
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Figure 3.7: Rank distribution of rules selected by participants with and without clustering.
The dashed curves are CDFs.

clustering participants would have needed to examine 386 and 501 rule candidates to find

70% and 80%, respectively, of the rules they eventually chose to install. In contrast, with

clustering, they only needed to examine 203 and 274 rule candidates, respectively. Thus,

clustering reduced the effort needed by half.

3.8.2 How Important is it for Rule Synthesis to be Comprehensive?

We examined several features of the 32 rules that were selected by participants to see how

comprehensive synthesis of rule candidates needs to be. First, for every selected rule that

automates action A, we checked what proportion of A instances in the trace could have

been approximated by this rule if it was installed at the beginning of the field study. The

histogram of this automation-proportion achieved by each selected rule is shown in Figure

3.9. This figure highlights that 10 out of the 32 selected rules actually approximate less

than 40% of their corresponding actions’ instances (the threshold used in Trace2TAP is

30%), while the mean approximation proportion is only 57.2%. If we were to have raised

the threshold even to 50%, almost half of the rules that participants selected would have
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disappeared from our rule candidates. This result supports Trace2TAP’s design philosophy

of being “comprehensive,” one of its key advantages over prior work.

We also examined the number of conditions each of the 32 rules contains. As shown

in Figure 3.10, rules with 1 condition are the most common (about 40%) among the 32

rules, followed by rules with no condition (close to an additional 40%). Rules with more

conditions are rarer among those selected, but they do exist: 6 selected rules contain 2

conditions, while 1 selected rule contains 3 conditions. Unsurprisingly, the overall trend

seems to be that participants prefer rules with fewer conditions, which are less complicated
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and frequently more generalizable than those with many conditions. However, the good

number of zero-condition, one-condition, and two-condition rules again demonstrates that a

variety of types of rules appealed to participants, so it is important for rule synthesis to be

comprehensive.

3.8.3 How Effective is the Ranking Function?

Trace2TAP uses its ranking function, which was discussed in Section 3.5.1, in two places.

First, Trace2TAP uses it to rank rules within a given cluster. To see how effective the

ranking function is for this purpose, we compared it with two naive ranking functions,

one ranking solely based on true positives (TP) and one ranking solely based on precision

(i.e., True Positives
True Positives+False Positives). As shown in Figure 3.12, Trace2TAP’s current ranking

function ranks the selected rules highly in each cluster (median rank 2), while the two

alternative ranking functions perform much worse, offering a median rank of 6 and 4.5,

respectively.

Second, Trace2TAP also uses the ranking function to decide which cluster of rules to

present first. The higher a cluster’s top-ranked rule scores, the earlier this cluster will be

shown to the user, although we encouraged every participant in the field study to at least

look at every cluster. Figure 3.11 shows the total number of clusters ranked k-th among all

clusters for one action, as well as the total number of k-th ranked clusters that have at least

one rule picked by the participants. As the figure highlights, participants picked rules from
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higher-ranked clusters more frequently than from lower-ranked clusters. Notably, partici-

pants picked rules from 12 out of 18 top-ranked clusters. At the same time, participants also

selected rules regularly even from low-ranked clusters. For example, participants selected

rules from 5 out of the 12 clusters ranked fourth.

3.8.4 Qualitative Analysis of Participants’ Rule-Selection Processes

To better understand participants’ approaches, we analyzed qualitative data from our semi-

structured interviews.

A. General Themes behind Rule Acceptance and Rejection

To summarize common themes in the interviews regarding why the participant decided to

accept or reject a rule, one researcher on the team went through the recordings and created

a codebook that contains reasons why a participant accepted or rejected a rule. Specifically,

reasons participants expressed for accepting a rule were: (1) Anti-FP (false positives): The

rule would not be triggered in scenarios where participants didn’t want it to be triggered;

(2) Trace match: The rule matched participants’ past behavior; (3) Intention match: The

rule did what participants wished to do. (4) Short edit distance: The rule was close to

participants’ intended rule. (5) “Have a try”: Participants would like to try the rule. (6)

Simplicity : The rule was simple without unnecessary things involved. (7) Good time: The

time shown in the rule was good. In contrast, reasons participants expressed for rejecting

a rule were: (1) False positives : The rule would be triggered in undesired cases; (2) Wrong

condition: The rule had a wrong or unnecessary condition; (3) Missing condition: The rule

should have an additional condition; (4) Intention mismatch: The rule was not doing what

participants wanted; (5) Trace mismatch: The rule did not match what participants usually

did.

Using the above codebook, two researchers coded the interview data independently and
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then met to resolve disagreements. The result is shown in Figure 3.13. Several trends

stand out. First, “intention match” was a dominant reason for participants to accept a rule,

contributing to 18 out of 32 selected rules. “Intention mismatch” was likewise a common

reason for participants to reject a rule. In comparison, more objective reasons like “trace

match” and “trace mismatch” appear much less frequently. This result further demonstrates

that the most important metric for a user is not how accurately a rule matches past traces,

but instead how well it matches their intention. It is thus crucial to involve users in the

rule-selection process. Second, participants mentioned that the rules had good timing (9

times), especially for the rules that have a time trigger (e.g. “IF it becomes 9am, THEN

turn on my light”), indicating that Trace2TAP is handling temporal rules effectively. Third,

“too many false positives” was a common reason for participants to reject a rule, partly

because Trace2TAP rule synthesis currently does not have constraints on the number of

false positives. However, as we will discuss next, naively filtering out all rules with a large

number of false positives would eliminate some rules that participants selected.
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B. Do Users Have Different Priorities and Concerns?

We noticed from our qualitative data that participants did not reason about rules in the same

way. Their reasoning for their rule selection reflects their different preferences, technical back-

ground, and even mental models for how devices should be automated. We highlight some

of the salient observations below. Such results provide further evidence that rule generation

should be comprehensive and should involve the human in the loop to best accommodate

users’ different priorities and concerns.

Technical background With the caveat that our study was very small-scale, we noticed

that participants with more background in programming tended to be more cautious, rea-

soning carefully about different scenarios in which a rule might be triggered. On the other

hand, participants with less technical background (P3, P4) were often willing to give rules

a try and generally were more open to installing new rules. While P3 and P4 selected 14

rules out of 26 clusters (53.8%), the other participants selected 18 rules out of 45 clusters

(40.0%).

Personal preferences and mental models Participants’ personality sometimes influ-

enced their rule selection. For example, P3 mentioned that she preferred to see the light

being turned off in person. Otherwise she felt she needed to go back to her office to double-

check. As a result, she rejected all rules that would turn off the light with a delay after she

left the office (e.g., if no motion has been detected for 1 minute, turn off the light). P5 cared

more about comfort than energy efficiency. She selected some rules for turning on the light,

but no rules for turning off the light, saying she would be annoyed if the light turned off

incorrectly.

Different participants also treated the same device differently. For example, P4 used her

lamp as an “indicator,” rather than a light source. She chose rules that turned on her lamp

when no motion had been detected, expressing that the lamp turning on would be a good
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reminder of her lack of activity. In contrast, P2 and P5 used the lamp as a light source and

told us that it should always be on during their work hours, regardless of whether motion

was detected or not. In summary, different models and priorities for devices can lead to

diversity in rule selection.

To give users the chance to find their ideal rules, we believe there are two important

design considerations. First, a system should show a large variety of potential automa-

tions (i.e., TAP rules) to users. With such diversity, the system is more likely to capture

different people’s intent. Second, the result should be explainable—users need to under-

stand what each program would do to make their selections. Therefore, Trace2TAP takes a

comprehensive approach in synthesizing rules, also committing huge effort to summarizing

and visualizing rules. In contrast, synthesizers that rely only on users’ past traces or take

black-box approaches are likely to miss such factors.

C. Can We Trust the Trace?

We next analyzed the degree to which participants’ intentions were, or were not, reflected

verbatim in the trace. Our results emphasized that a home automation system should not

just try to learn automations verbatim from users’ past behaviors (traces). There is a bi-

directional influence between users’ behavior and the automation system. For example, a

user can only turn off the lights before leaving the office, but an automated device can turn

them off after the user leaves. It is critical for automation systems to understand that users’

manual capabilities are sometimes more limited than what they truly prefer to automate.

One of the key advantages of Trace2TAP’s approach over prior work is that its approach

to abstraction can synthesize TAP rules that reflect orderings of events that differ from the

trace. To quantify this benefit regarding timing, we examined how often the rules selected by

users would cause events to occur in a different timing order from what was recorded in the

trace, which we term a timing mis-order. Specifically, for each selected rule I, we looked
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back into users’ traces and checked every moment when it automated a target manual action

A. If this rule’s trigger event occurred after A, we considered it a case of timing mis-order.

For each rule, we calculated the proportion of such timing mis-orders among all instances

when it automated A. For example, if the selected rule was “IF door closes THEN turn off

the lamp,” we checked how often the door was actually closed after the lamp was turned

off in the trace, instead of before it. Figure 3.14 shows a histogram of such proportions for

all 32 rules selected by participants. Over half of the selected rules have such mis-ordered

cases, and 9% are almost exclusively mis-ordered. This indicates the necessity of Trace2TAP

handling timing mis-orders (see Section 3.4).

To further understand the value of Trace2TAP synthesizing rules that effectively deviate

from the trace, we measured the degree to which pattern mining approaches typical of

prior work [104] could also have synthesized the TAP rules participants ultimately selected.

We wrote our own implementation approximating such approaches. We also varied these

approaches to roughly capture Trace2TAP’s novel capabilities to handle mis-ordered events

(order-tolerant) and triggers with a time delay, like “the door has been closed for 5 minutes”

(delay-tolerant). Figure 3.15 shows that pattern mining approaches in their original form

capture few of the rules participants selected. Even with these new capabilities, about one-

third of rules participants selected still cannot be covered.

Causality vs. Correlation We also noticed that when Trace2TAP synthesized TAP

rules, participants were unsurprisingly looking for causality, rather than incidental correla-

tion. Whether a correlation is incidental or reflective of some causal phenomenon is unique

knowledge the human brings to the interaction, which is why Trace2TAP’s approach of hav-

ing the human in the loop is critical. The trigger should be the reason to apply the action

in a TAP rule. However, a trace captures only correlations between events. Sometimes,

the TAP rule that best fits the trace under some metrics (e.g., precision, recall) might only

represent an incidental correlation rather than causality. For example, in one of our pilot
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studies, a temperature sensor was installed under the lamp, and Trace2TAP subsequently

synthesized rules that turned on the lamp when the temperature was high. While these rules

had a high precision score, they were only measuring a sensed artifact of the lamp being on,

not a causal trigger. We believe being comprehensive in rule synthesis is important for

tackling this problem because the “best” rules under a certain metric might only represent

correlation, rather than causality.

False positives or not Another reason not to rely on a rigid metric in rule synthesis is

that a synthesized rule’s apparent false positives relative to the trace may not actually be

false positives regarding users’ intent. A “false positive” only means that the rule would be

triggered at a time when the user did not apply the target action in the trace. However,

it does not mean the user intended not to apply the action. The user may simply have

forgotten about applying the action or was unable to do so. For example, P4 mentioned

that she often forgot to turn on the lamp even when she intended to do so. As a result, she

selected a rule that seemed to have many false positives. Such rules would not be shown to

users if we only tried to find the “best” rule under a rigid metric.
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D. How to Deploy Smart Devices?

It is critical to install devices, especially sensors, to maximize the amount of information

collected in the trace. During our field study, P2 mentioned that it was impossible for the

system to identify when he was at his conference table (a signal he hoped to use as a trigger)

because no sensors were located there. P6 told us that detecting motion near the door was

not as important as detecting motion at his seat. Users will need to consider their daily

routines to help installers place sensors appropriately. Future work could perhaps equip the

system to determine automatically whether sensors are optimally placed based on the trace.

Another issue is that it is often difficult to help users understand how sensors work. Nearly

all participants raised some questions about motion sensors. Some of the motion sensors did

not have a visual indicator showing whether motion had been detected. Participants thus

expressed their uncertainty about the delay, sensitivity, or range of the motion sensors. The

same issue applied to illuminance sensors as participants struggled to build a relationship

between their perception of the brightness and the reading from the sensor. During the

interview, we often needed to do some experiments with the participants to help them

understand the way such sensors worked. More intuitive ways are needed to communicate

to users sensors’ functionalities and capabilities.

3.9 Conclusion

With the ubiquity of consumer smart devices, how to effectively align user intent with device

automation has been a crucial open problem. In contrast to prior work that either fully

relies on users to write trigger-action programs or fully relies on automated learning to infer

automation models, this paper proposes a new hybrid approach that combines the respective

strengths of those two methods. To accommodate for users’ diverse priorities and concerns,

Trace2TAP applies symbolic reasoning and SAT solving in a novel manner to search the

space of TAP rules exhaustively and synthesize a comprehensive set of program candidates
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automatically. It then employs a novel prioritization scheme and user interface to help users

navigate and identify desired candidates. Our field study of 7 participants over 4 months

of trace collection demonstrated that Trace2TAP is effective in automatically synthesizing

rules that align with users’ intentions, including rules that would be deemed “undesirable”

by traditional metrics like precision and recall. Trace2TAP’s novel prioritization scheme also

helps participants navigate rules with greater efficiency than alternative schemes like global

ranking. Our semi-structured interviews with the participants revealed diverse user priorities

and intentions for automation. This finding, along with the principle of giving users control

as rooted in ubicomp literature [9, 38, 41, 124, 85], highlights the benefits of Trace2TAP’s

approach in involving the user even when the system automatically synthesizes automation

from observed behaviors.

We believe Trace2TAP is a starting point in combining comprehensive automation and

end-user participation for smart system automation. Trace2TAP relies on a flexible frame-

work to synthesize TAP rules and can be easily extended to meet extra constraints. This

paper has shown that, by changing only the template and the constraints, one can deploy

Trace2TAP as a debugger for TAP rules. Currently, Trace2TAP only considers implicit

feedback from users (“the user applied some action” or “the user reverted some action”).
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CHAPTER 4

TAPDEBUG: HELPING USERS DEBUG TRIGGER-ACTION

PROGRAMS

4.1 Introduction

Although TAP excels in solving simple automation tasks [114], prior work has shown that

users suffer from misunderstandings and bugs when using TAP in complex scenarios [12, 55].

Furthermore, in real-world studies, some participants struggled to write correct TAP rules

even for common daily tasks [127]. Thus, it can be hard for users to develop correct TAPs

with a single attempt in complex and nuanced automation scenarios.

As a result, TAP debugging is thus a process that users will frequently encounter when

deploying TAPs in real situations. Despite a rich and growing literature on TAP, to our

knowledge no prior work has studied the end-to-end process of debugging TAPs. That

is, while prior work has studied users’ misunderstandings about TAP in highly controlled

scenarios [55, 12] or designed algorithms and tools for identifying possible bugs [15, 76, 131,

117, 91, 28, 83], these prior studies did not examine how users move from experiencing

incorrect automation behaviors to trying to pinpoint the issue to trying to fix problematic

TAPs. It remains unclear what exact obstacles users may face at each stage of debugging.

While not understanding the full end-to-end TAP debugging process is a key gap in the

literature, the existence of this gap is much less surprising when considering the substantial

hurdles to conducting rigorous studies on this topic. The logistics of a real-world TAP

debugging study are daunting, from the cost of purchasing smart devices to the time required

to temporarily deploy these devices in participants’ homes to the justifiable privacy concerns

of potential participants. Furthermore, for each participant, TAPs might only be triggered

a couple of times a day, so many days or weeks of interaction may be required before even

a single debugging scenario emerges. Making things worse, it is extremely hard to compare
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different TAP debugging tools in a controlled way because participants have different home

layouts, device usage patterns, TAPs, and expectations.

Based on debugging approaches in contexts other than end-user programming, we hy-

pothesized that TAP debugging would encompass the following four-step process, which the

“Stages” column in Figure 4.1 also illustrates:

(I) The user experiences and identifies an unexpected or incorrect behavior of their auto-

mated device(s);

(II) The user examines the TAPs to localize the fault, identifying a possible cause of the

unexpected behavior(s);

(III) The user proposes a modification (which we term a patch) to the TAPs aiming to

resolve the problem;

(IV) The user attempts to refine the initial patch to ensure it matches the intended behavior.

Prior work has only examined parts of this end-to-end debugging process in isolation.

Previous papers have provided insights into automated bug detection [15, 76, 127, 117, 91,

28, 83] (related to Stage II), automated TAP synthesis [127, 128] (related to Stage III), and

TAP visualization [28, 83, 132, 131]. These existing tools are not designed to help users

through the whole process of fixing TAPs based on misbehavior(s) they experience.

Contributions

To better understand and support end-to-end TAP debugging, this work makes the following

contributions:

1) Design and implementation of new TAP debugging interfaces and correspond-

ing algorithms. To improve user support at every stage of TAP debugging (Figure 4.1),

we design and implement the following novel user interface components, those interfaces’

underlying algorithms, and additional analysis tools:
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Figure 4.1: Hypothesized cognitive stages of debugging and our proposed automated debug-
ging workflows.
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• A History Visualization interface (Figure 4.2) that allows users to efficiently review

automation events and contexts of interest, enabling them to interactively annotate

system misbehavior by clicking on a timeline.

• ATrace Analysis algorithm that analyzes a smart home’s history to detect potentially

wrong or missing automations. It may infer an automation is missing if users often

manually control a device to perform an action. Similarly, it may infer an automation

is wrong if users often revert the corresponding action.

• A Patch Synthesis algorithm (Figure 4.3) that generates TAP patches based on

intended TAP behaviors either explicitly specified by the user through the History

Visualization interface or implied from the user’s historical device usage by the Trace

Analysis algorithm.

• A Patch Behavior Visualization interface (Figure 4.4) that shows users what would

have happened in the history if a patch were applied.

We combine the above components into two debuggingworkflows as shown in Figure 4.1:

• Explicit-Feedback: (i) The History Visualization component receives from the user

system misbehavior in the form of wrong or missing device automation(s); (ii) the Patch

Synthesis component automatically generates TAP patches to fix the specified misbe-

havior; and (iii) the Patch Behavior Visualization component presents these patches

for the user to select.

• Implicit-Feedback: (i) The Trace Analysis component infers system misbehavior

implicitly based on the user’s manual actions and reversions of automations; (ii) the

Patch Synthesis component generates TAP patches accordingly; and (iii) the Patch

Behavior Visualization component presents them to the user.
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Figure 4.5: We enabled trigger-action programs (left) to control the Home I/O smart home
simulator (right).

2) An empirical user study over the whole TAP debugging process, enabled by

smart home simulation. To overcome the aforementioned challenges of time, cost, and

participant privacy when conducting TAP studies in participants’ homes,1 and to enable

more comparable deployments across participants, we extended the Home I/O [105] 3-D

smart home simulator software (Figure 4.5, right) to support TAP. Specifically, we built a

web application that connects client-side simulations in Home I/O to a server-side system

for managing trigger-action programs, enabling TAP automation of all smart devices in the

simulator.

In this study, we designed five TAP debugging tasks. In each task, a set of initial TAPs

were pre-loaded in the simulated smart home. These TAPs (sets of if-then rules) were de-

signed to be close to correct, yet occasionally exhibit problematic behavior. For example,

rules might be set up to keep the room bright, but they sometimes would erroneously open

the shade when users were asleep at night. We conducted remote interviews in which partic-

ipants interacted with the simulator on their own computer while sharing their screen with

a moderator. During these interviews, each participant’s goal was to experience a misbe-

having automation, diagnose the misbehavior, and eventually resolve the issue by modifying

the TAP rules. In a between-subjects design, participants were assigned to either a control

1. The continued emergence of Covid-19 variants and related pandemic concerns make in-home studies
even more challenging.
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workflow where debugging was done manually without any tool assistance, or to one of our

two novel workflows (Explicit-Feedback and Implicit-Feedback).

In total, we collected data from 30 participants across 84 hours of TAP debugging, split

into multiple sessions per-participant to minimize fatigue.

We were able to observe participants’ approach to debugging problems, map out their

mental processes, and identify the main obstacles that led to debugging failures. Through

qualitative coding of the sessions, we observed a total of 16 obstacles that participants

experienced across our four hypothesized stages of debugging. We also evaluated how well our

two novel debugging workflows assisted participants in debugging TAPs. We discovered that

our novel workflows (interfaces and underlying algorithms) led to significant improvements

in participants’ ultimate success in debugging TAPs and helped them avoid key obstacles.

4.2 Definitions

For precision when discussing TAP, we define the following concepts:

• An event represents a change in the status of a device or sensor. It happens only at

exact moments. An example event would be “a light turns on at 10:03 pm on January

1st.”

• A trace is a collection of events. In this paper, a trace primarily refers to the history

of smart devices in a smart home during a time period (e.g., yesterday from 8 AM to

1 PM).

• A TAP rule is an automation rule in the following form:

“IF a trigger happens, WHILE conditions are true, THEN apply an action”

– A trigger is a statement over events. For example, “the motion detector starts

detecting motion” and “the temperature falls below 75◦ F” are both triggers.
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– A condition is a Boolean proposition over the status of device capabilities. For

instance, “the temperature is below 75◦ F” is a condition. Note that conditions

are optional for our version of TAP.

– An action is a class of events with the same status change to the same device

capability. For example, “turn on the light” is an action. An event is a single,

concrete instance of an (abstract) action.

If the event in a rule’s trigger occurs, the system attempts to execute that rule,

pending the conditions. If the system confirms the conditions are met, it will apply

its action by sending a command to an actuator. Figure 4.6 displays three example

TAP rules. We use TAPs to refer to a set of TAP rules.

• A TAP patch is a modification to a set of TAP rules. For example, if the original

set of TAP rules should have happened under more cases, a possible patch would be

to delete a condition from an existing rule.

4.3 Novel TAP Debugging Workflows Leveraging User Feedback

To help users debug trigger-action programs, we have designed and implemented two end-to-

end debugging workflows that offer automation and interface support at various debugging

stages. We name these two workflows Explicit-Feedback and Implicit-Feedback based

on the different ways that they take feedback about system misbehavior from users. In

addition, we have also implemented a Control workflow that represents users’ experience

of manual TAP debugging without any tool support. In this section, we first summarize

these workflows at a high level. We then provide further details about the interfaces and

algorithms underpinning each.
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(a) Rule page (b) Parameter configuration

Figure 4.6: TAP management with the Control interface, representing current practice.

4.3.1 Overview of Workflows

The Control workflow, representing current practice in deployed TAP systems, presents to

users the set of TAP rules currently used by the smart home system, allowing users to make

any changes they want to the rules in a web-app interface. Changes include deleting rules,

adding new rules, and editing existing rules, as shown in Figure 4.6. This workflow offers no

automated support and requires users to manually perform all debugging steps.

The Explicit-Feedback workflow leverages user’s annotations of misbehaving automa-

tions to automatically suggest patches. As illustrated in Figure 4.1, users first explicitly an-

notate system misbehavior—what events in the history should or should not have occurred—

through a history-visualization interface (see Section 4.3.2). Using that feedback, the system

automatically synthesizes candidate patches, with each patch aiming to address a large frac-

tion of the misbehavior. Section 4.4 details the patch synthesis algorithm. Finally, these

candidate patches are presented, together with summary statistics and a patch-behavior

visualization, to help users make informed decisions in patch selection and refinement. Sec-

tion 4.3.4 details the presentation of patch candidates.

The Implicit-Feedback workflow differs from the Explicit-Feedback workflow only in

terms of how it collects users’ feedback about system misbehavior. Instead of requiring

that specific misbehaviors be annotated explicitly, Implicit-Feedback automatically infers
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potential misbehaviors by analyzing users’ behavior in the history, such as users manually

actuating devices or reverting automations (e.g., turning off a light that has just automati-

cally turned on). Section 4.3.3 details how these inferences are made. Nonetheless, the user

still specifies explicitly which device and associated action they believe to be misbehaving.

For the remainder of this paper, we will refer to the two types of misbehavior using the

following two terms:

• Under-Automation is a misbehavior where an automated event should have hap-

pened at a certain time, but did not (e.g., “the light should have been turned on at

7 PM last night”).

• Over-Automation is a misbehavior where an automated event did happen, but

should not have happened then (e.g., “the light should not have turned on at 10 AM

today, but did”).

4.3.2 Explicit-Feedback: User Annotation of Automation Misbehavior

The Explicit-Feedback workflow asks users to explicitly specify system misbehavior, which

will then be used for patch synthesis. Specifically, for every misbehavior case, users need to

specify four pieces of information: (i) the problematic device, (ii) the problematic action,

(iii) whether this is a case of over-automation or under-automation, and (iv) the time when

the misbehavior occurred.

The bedroom light should/shouldn’t have turned on at 7pm last night.
(1) (2)(3) (4)

It would be overwhelming to ask users for all these details at once, identifying the single

misbehaving device out of tens or hundreds of devices in a home and remembering the

exact time of the misbehavior. Consequently, we have designed the following interface and

workflow to help users specify these details step by step.
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Figure 4.7: Device selection
(Explicit-Feedback)

Figure 4.8: Action and under-vs-over-automation selec-
tion (Explicit-Feedback)

Figure 4.9: Specifying that an event
should not have happened, but did
(Over-Automation)

Figure 4.10: Specifying that an event
should have happened, but did not
(Under-Automation)
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Device Selection This workflow first asks users which device’s automation is problematic.

There might be many devices installed at people’s smart home (e.g., 162 in the simulated

smart home used in our study). To not overwhelm users, the interface categorizes devices

based on location (a specific room). Once users select a location, all devices installed at that

location are displayed (Figure 4.7).

Action and Under-vs-Over-Automation Selection Next, users are asked how they

would like to modify the problematic device’s automation. As shown in Figure 4.8, users are

asked to pick from an exhaustive list that includes two options for every possible action of the

device. These two options are (i) letting an action happen under more contexts (fixing under-

automation), and (ii) letting it not happen under certain contexts (fixing over-automation).

We intentionally combine the question about which action to modify and the question about

under-automation versus over-automation into one question, as shown in Figure 4.8, because

our pilot study found that asking them separately caused extra confusion. For example, when

pilot participants noticed that the shade opened at an improper time, them often did not

know whether to choose “open the shade” or “close the shade” as the action to modify. Pilot

participants found the option “I would like ‘open the shade’ to not automatically happen

under certain contexts” less confusing.

Time Point Identification Users are then asked for time points when the specified under-

or over-automation case(s) occurred. This is a challenging question for users as the misbe-

havior may have happened a while ago with many correct behaviors occurring subsequently.

To help users, we developed an interface where users navigate a visualized event history of

related smart devices and click to indicate time points of events to be cancelled or auto-

mated. For example, Figure 4.9 and Figure 4.10 show how users can click the time points

of the exact events that should not have been automated and should have been automated,

respectively. As shown in both screenshots, we offer the event history of not only the misbe-
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having device (e.g., Bedroom #3 Roller Shades in the figures), but also related devices that

can offer contextual information to users and hence assist users’ misbehavior pinpointing.

We identified these related devices leveraging the open-sourced variable correlation analysis

of Trace2TAP [128]. We allow users to specify multiple time-points where this specified

device had under-automation (or over-automation) for the specified action so that users do

not need to repeat this process.

4.3.3 Implicit-Feedback: Inferring Instances of Automation Misbehavior

The Implicit-Feedback workflow needs the same four pieces of information as the Explicit-

Feedback workflow. Like Explicit-Feedback, Implicit-Feedback employs a user interface to

elicit from users three pieces of information about misbehaviors — (i) the device, (ii) the

action, and (iii) whether this is over- or under-automation. Different from Explicit-Feedback,

the Implicit-Feedback workflow automatically infers the fourth piece of information — the

time when the misbehavior occurred — by analyzing the trace, instead of asking the users.

Going through the history visualization to find the times of misbehaviors is the most time-

consuming part of the Explicit-Feedback workflow, which underpins our rationale for the

Implicit-Feedback workflow. The inference is based on the intution that certain manual

actions reflect what the user likes or dislikes. For example, if the user selected “I would

like the action ‘Open Roller Shades’ to not automatically happen under certain contexts” in

the interface shown in Figure 4.8 and the trace contained a record where the user manually

closed the roller shade shortly after the shade was opened automatically at the time point T

(Figure 4.11), the trace analysis can then infer that T is one of the cases of over-automation.

Similarly, if the user selected “I would like the action ‘Open Roller Shades’ to automatically

happen under more contexts” and the trace contained a record where the user manually

opened the shade at T , the analysis can infer that T is one of the under-automation time

points.
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⚡Open Close

10:30:00 pm 10:30:40 pm

1 minute ⚡…

…

Automated events

Users’ manual events

Time

Figure 4.11: An automated event that opened the roller shade is marked as a case of over-
automation by Implicit-Feedback because it was manually reverted within one minute by
the user.

4.3.4 Explicit- and Implicit- Feedback Workflows: TAP Patch Presentation

After patch candidates are synthesized (see Section 4.4), they are carefully ranked and their

prospective behaviors are visualized so that users can easily navigate among them and make

an informed choice.

Patch ranking Our ranking considers the following factors:

• Number of fixed Under-Automations: We say an under-automation (“the target action

should have automatically happened at time T”) is fixed when the target action would

happen between T − ∆1 and T + ∆2 if the patch were applied (∆1 and ∆2 form a

configurable time window). The more, the better for a patch.

• Number of fixed Over-Automations: We say an over-automation (“the automated event

at T should have been cancelled”) is fixed when the event would not happen if patch

were applied. The more, the better.

• Number of cancelled events outside Over-Automation: When we apply a patch to the

trace, it may stop automating an event that is not an over-automation. The less this

occurs, the better.

• Number of newly automated events outside Under-Automation: When we apply a

patch to the trace, it may automate the target action at moments that are far away from

the under-automation time points. That is, assuming T1, ..., Tn are when the target
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Figure 4.12: Visualization to show
a patch’s behavior (fixing Over-
Automation)

Figure 4.13: A patch adding a new condi-
tion to an existing rule to (fixing Under-
Automation)

action was under-automated in the trace, events newly automated outside Ti −∆1 to

Ti +∆2 are undesirable. The less this occurs, the better.

We linearly combine these four numbers to get the final score of a TAP patch, presenting

patches in descending order of score. We configure the weights among these four numbers

as follows: 1, 1,−1,−0.25. The last coefficient is smaller because we found in pilot studies

that introducing extra automation beyond what users specified as under-automation is less

of an issue and is sometimes even preferred. Patches accepted by users often led to extra

automation at time points users forgot to mark as under-automation.

Behavior visualization To help users compare patch candidates, we introduce a “stats

and visualization” component in the patch presentation page. For each patch, we present

the four metrics that we use to rank patches, as discussed above. Furthermore, when users

click on a metric, a visualization of the corresponding events that would be automated or no

longer automated by the patch is displayed. For example, Figure 4.12 shows that the patch,

if applied, would not have automated a shade-open event at 10:28 PM.
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4.4 Automatically Synthesizing TAP Patches to Support

Debugging

Our Explicit-Feedback and Implicit-Feedback workflows (Section 4.3) automatically generate

TAP patches to fix over-automation and under-automation. Here, we formally define patch

synthesis and detail our algorithm.

4.4.1 Problem Definition

The input to a patch synthesis problem includes:

• A trace containing the history of smart devices. It is a list of events, either automated

by TAP programs or manually conducted by human users, ordered chronologically.

• Misbehavior cases reported by users. If the misbehavior is about over-automation,

the input includes events E1, ..., En in the trace, which all automate a specific target

action of a device and should not have happened. If the misbehavior is about under-

automation, the input includes a series of time points T1, .., Tn, when a specific target

action of a device should have occurred shortly before or after.

From these inputs, the synthesis algorithm aims to automatically generate the following

output:

• A list of TAP patches: each patch should fix over a threshold thd portion of misbe-

havior cases (> thd × n). Here, thd is configurable. The higher it is, the stricter the

synthesis algorithm would be and fewer patches would be generated. In our study, we

used 0.3.
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4.4.2 Intuition and Overview

A naive approach to finding all TAP patches that achieve our goal is to apply every possible

modification to the current TAP rules, execute every resulting TAP program against the

history trace, and see how many over- and under-automations could have been avoided by

each patch. However, this approach is extremely time consuming, as the search space of all

possible patches is gigantic. Instead of evaluating every possible patch, we use a symbolic

approach. Specifically, our algorithm includes four components: (1) we design a symbolic

representation for common TAP patches that can be applied to any existing set of TAP rules;

(2) we execute the symbolic TAP program, which is the result of applying the symbolic

patch to the existing TAP rules, against the history trace; (3) we formulate a symbolic

representation of our patch-synthesis goal, like how many Over/Under-Automation cases in

the history trace should be fixed; (4) we feed the trace execution result and the synthesis

goal into a SAT solver, which will then generate all concrete TAP patches guaranteed to

achieve our goal.

We use open-sourced tools Trace2TAP [128] and Z3[32] to handle components (2) and

(4), respectively. We present our design for component (1) and (3) in the next two sub-

sections. Note that the existing Trace2TAP tool is designed to automate manual actions by

synthesizing new TAP rules when there are no existing rules. It offers a symbolic execution

framework that shows symbolic TAP rules’ behaviors in a trace. However, it cannot directly

solve our TAP debugging problem, because, by design, it only attempts to add new TAP

rules, but not to delete or modify existing rules. This is a fundamental limitation, because

many debugging problems, particularly over-automation problems, can only be fixed by

deleting or revising problematic rules but not by adding new rules. Furthermore, even for

problems that can be fixed by adding new rules, like many under-automation problems, there

are often simpler and hence more user-friendly patches accomplished by deleting conditions

of existing rules or modifying parameters in an existing rule.
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4.4.3 Symbolic TAP Patches

Before introducing different symbolic TAP patches in our system, we first give a brief

overview of related concepts. A symbolic TAP patch is a patch containing symbols that have

not been assigned to a concrete value. As a result, the patch’s behavior is non-deterministic

(i.e., relying on values assigned to its symbols). We say a symbolic patch is concretized once

all its symbols have been assigned concrete values. A symbol may appear as a parameter

in a rule statement (e.g., “brightness is above level x”), a device selector (i.e., which device

is used in a rule depends on the value of the symbol), an appearance flag for a WHILE

statement (i.e., a condition only exists when the symbol is evaluated true), or an appearance

flag for an entire rule.

Our system creates the following symbolic TAP patches over the existing TAP rules (Fig.

4.14, where symbols are marked red).

• Adding a new condition. We introduce a symbolic patch that adds one condition to

each existing TAP rule by attaching one symbolic WHILE condition to each one of

them. We introduce the condition Dnci = Vnci (the device Dnci is at value Vnci)

only if ADDnci is true.

• Deleting conditions. We can also put a DELci symbol on each WHILE condition

that already exists in the TAP rules. After the symbolic patch is applied, the WHILE

condition i will only be checked if the associated DELci is false.

• Deleting rules. To synthesize a symbolic patch that deletes rules, we can flag each

existing rule (say, rule i) with a symbolic flag DELi. After applying the symbolic

patch, rule i will be deleted if the flag DELi is true.

• Adding a new rule. Finally, we can introduce a symbolic new rule. Every component

of this rule is symbolic, except for the action of this new rule: it is the concrete target
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Original TAP rules IF clock := 4pm WHILE brightness < 3, THEN light := on
IF motionSensor := detected WHILE clock > 7pm, THEN light := on

Symbolic Patch for Adding a WHILE Symbolic Patch for Deleting a WHILE Symbolic Patch for Deleting a Rule Symbolic Patch for Adding a Rule
IF clock := 4pm 
WHILE brightness < 3
AND ADDnc1 ⇒(Dnc1=Vnc1),
THEN light := on

IF motionSensor := detected
WHILE clock > 7pm
AND ADDnc2 ⇒(Dnc2=Vnc2),
THEN light := on

IF clock := 4pm 
WHILE ¬DELc1 ⇒(brightness < 3),
THEN light := on

IF motionSensor := detected
WHILE ¬DELc2 ⇒(clock > 7pm),
THEN light := on

DEL1:
IF clock := 4pm 
WHILE brightness < 3,
THEN light := on

DEL2:
IF motionSensor := detected
WHILE clock > 7pm,
THEN light := on

IF clock := 4pm 
WHILE brightness < 3,
THEN light := on

IF motionSensor := detected
WHILE clock > 7pm,
THEN light := on

IF Dt:=Vt
WHILE ADDc ⇒(Dc=Vc),
THEN light := on

Example Concretization Example Concretization Example Concretization Example Concretization
ADDnc1 =True, Dnc1 =motionSensor,

Vnc1 =detected, ADDnc2 =False
DELc1 =True, DELn2 =False DEL1 =False, DEL2 =True Dt =brightness, Vt =4, Dc =clock,

ADDc =True, Vc =5pm

IF clock := 4pm 
WHILE brightness < 3
AND motionSensor=detected,
THEN light := on

IF motionSensor := detected
WHILE clock > 7pm
THEN light := on

IF clock := 4pm, 
THEN light := on

IF motionSensor := detected
WHILE clock > 7pm,
THEN light := on

IF clock := 4pm 
WHILE brightness < 3,
THEN light := on

IF clock := 4pm 
WHILE brightness < 3,
THEN light := on

IF motionSensor := detected
WHILE clock > 7pm,
THEN light := on

IF brightness:=4
WHILE clock=5pm,
THEN light := on

Figure 4.14: Symbolic patches introduced over original TAP rules. In our real implemen-
tation, we also symbolize the comparators (=,<,>). For adding a new rule, the real imple-
mentation also supports having multiple WHILE conditions.

action specified by users, which was either over-automated or under-automated in the

past. In this new rule, both the IF statement and WHILE statement are symbolic.

4.4.4 Goal Expressions

Now, we can use the symbols used in our symbolic patch, denoted as symbs below, to

represent whether a patch candidate has accomplished its debugging goal. As mentioned

earlier, all the symbolic execution below is carried out in an existing symbolic TAP execution

framework [128].

For each Over-Automation case specified by users, where event E should not have hap-
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pened, we can symbolically re-execute part of the history trace where E.Trigger occurred -

the event that triggered E - in a new system where the symbolic patch is applied and check

whether E could be cancelled. We construct the following Over-fix-expression, FOver:

FOver([symbs...], E, trace) =


1 if the event E would be cancelled

0 if the event E would not be cancelled

For each Under-Automation case, where the target action should happen at around T , we

can symbolically re-execute part of the history trace around time T (i.e., between T−∆1 and

T +∆2; in this paper, we use ∆1 = 10 min, ∆2 = 5 min, following previous patch synthesis

work[128].) in a new system where the symbolic patch is applied and check whether the

target action would have been triggered. We construct a Under-fix-expression, FUnder:

FUnder([symbs...], T, trace) =
1 if the target action would be triggered between T −∆1 and T +∆2

0 if the target action would not be triggered between T −∆1 and T +∆2

Assume that users want to trigger the target action at a number of time points T1, ..., Tn,

or cancel a number of automated events E1, ..., En, depending on what users selected in Fig.

4.8. Now we can express the expectation that a patch can fix over a threshold portion of

misbehavior cases as the following goal expression:

n∑
i=1

FUnder([symbs...], Ti, trace) ≥ thd×n or
n∑

i=1

FOver([symbs...], Ei, trace) ≥ thd×n

(4.1)
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4.4.5 Unified Patch Synthesis Workflow

Here, we put everything together. Given a set of existing TAP rules, four symbolic patches

are generated over them, aiming to add a new condition to an existing rule, delete a condition

from an existing rule, delete an existing rule, and add a new rule, respectively, as shown in

Figure 4.14. Then, based on the misbehavior cases, we symbolically re-execute part(s) of

the history trace with each of the symbolic patch applied. This process produces the goal

expression for each symbolic patch, as described in Expression 4.1. We then send the goal

expression to a SAT solver. If the goal expression is satisfiable, the SAT solver will return

sets of concrete values for the symbols that achieve the goal. We concretize the symbolic

patches with each set of values to get our TAP patches.

4.5 Methodology

In this section, we present the methods of our remote user study leveraging the Home I/O

smart home simulator.

4.5.1 TAP and Smart Home Setting for Users

As mentioned in Section 4.1, participants in our user study experience TAP and smart homes

in a simulator rather than a physical home setting. Instead of installing hundreds of smart

devices at home and living with them for many days, participants in our study only need to

(1) install and use a TAP-enabled smart home simulator and (2) run our TAP programming

and debugging web application in their browser, as illustrated in Figure 4.15.

The TAP-enabled simulator is our extension of Home I/O. The original Home I/O is a

game-like smart home simulator with 3D physical models developed by Real Games [105]

(Figure 4.5). Users are able to move freely inside/outside a smart home and interact with

a large number of smart devices in first person point of view. The simulator also precisely
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Figure 4.15: Our framework that enables TAP for Home I/O

models environmental factors such as sunlight and temperature in relation to time and

seasons. Users can also fast forward time, or load pre-defined scenarios.

We need to extend Home I/O[105], as it does not support trigger-action programs. For-

tunately, Home I/O allows external software to monitor and control all the devices inside

the simulated home through a .NET 2.0 memory mapped file. Therefore, we developed a

connector software that periodically reads the TAP rules stored in a backend Django server,

parses the TAP rules, and constantly monitors and updates the status of all the devices in

the simulated home based on the TAP rules.

Finally, our web application allows users to read and edit their trigger-action programs

stored in the backend Django server, which can be fetched and used by the connector, as

discussed above. In addition, our web application also receive traces of simulation from the

connector and store them in the backend, enabling the two workflows.

As we can see, the above setting allows users to conduct our TAP debugging study in a

more cost/effort efficient (without device purchasing and installation), time efficient (with

fast-forwarding in the simulator), and fair (with every participant in the same home setting)

way than in a physical setting.

4.5.2 User Debugging Tasks

We designed 6 tasks for each participant, with 1 of them being the tutorial task, as summa-

rized in Table 4.1. Each task started with an initial goal and some TAP rule(s) that were
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Table 4.1: Tasks. Over-Automation and Under-Automation are shortened to “Over” and
“Under.”

ID Problem
Error
type

Discovered
immediately

Ideal
modification

0 (tutorial)
The garage door closes
when people are under it.

Over Yes Add a WHILE condition

1
The light turns on
even when it is bright.

Over Yes Add a WHILE condition

2
The blind opens when
it’s dark outside.

Over Yes Add a WHILE condition

3
The light turns on too late
in winter.

Under Yes Change a parameter

4
The garage door is left
open sometimes.

Under No Add a new rule

5
The entrance gate is left
open at night sometimes.

Under No Add a new rule

set to achieve it. However, these TAP rules had some flaws as specified in the “problem”

column in the table. The participant’s goal was to modify the TAP rules so that the problem

can be corrected while the initial goal would still be achieved.

We have carefully designed these tasks so that they collectively offer a good coverage of

different task natures. As shown in the “Error type” column, some of our tasks aimed to

let participants fix over-automation problems (i.e. imperfect rules wrongly triggered some

actions), while others were about under-automation issues (i.e. imperfect rules failed to

automate some actions). Furthermore, in some tasks, participants would notice the wrong

or missing automated behavior right after it happened. In other tasks, however, participants

would only be able to realize something went wrong later (e.g., in the next morning). This

is illustrated in the “Discovered immediately” column in Table 4.1. The ideal modifications

to fix the problems are shown in the “Ideal modification” column.
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4.5.3 Pilot Studies

Before starting our formal interviews, we conducted 45 pilot interviews. These sessions

helped us refine our workflow and protocol design in the following ways. To avoid par-

ticipants’ confusion, we merged the overautomation-vs-underautomation selection with the

target action selection as discussed in Section 4.3.2. To reduce participants’ cognitive load,

we revised the tasks to be more concise. On the protocol side, we separated the study process

into an onboarding phase and an interview phase to reduce researchers’ waiting time. We

also added a confirmation process to minimize no-shows. We also randomized the order of

tasks to avoid confounds from learning effects.

4.5.4 Participants Recruitment and Assignment

We recruited participants from the United States on Prolific [100] in several rounds. In each

round, we randomized the order of the 5 tasks, and recruited 3 participants to respectively

use Control, Explicit-Feedback, and Implicit-Feedback workflows in a round-robin way. Ev-

ery qualifying participants had a Windows machine and a mouse for running game-like smart

home simulations. In our study, each participant went through two phases—an onboarding

phase (Section 4.5.5) and an interview phase (Section 4.5.5).

4.5.5 Interview Process

A. Onboarding Phase

We surveyed participants on Qualtrics during this phase. First, we presented a consent

form to each participant to make sure that all participants were over 18 years old, had

proper computers/peripherals for the simulation, and agreed to participate in the study.

Next, each participant went through a tutorial on trigger-action programming (TAP), which
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taught key concepts such as the TAP syntax and the difference between state statements

used in IF triggers (“the window is open”) and event statements used in WHILE conditions

(“the window becomes open”). We then asked each participant simple questions about TAP

as an attention check. Subsequently, we presented participants instructions on installing

Home I/O and the Connector. At the end of the survey, participants answered questions on

demographics.

B. Interview Phase

By this point, we assumed that participants had successfully installed the simulator and the

connector. After giving us their consent on screen and speech recording, participants shared

their screens and we started the recording and the interview. During the interview, we

first offered a brief tutorial on the simulator. During this tutorial, participants familiarized

themselves with operations in the simulator, such as moving, interacting with devices, reading

the mini map, and controlling the time flow. Subsequently, participants went into the main

part of the study: task solving.

Participants were asked to solve Task 1–5 (Table 4.1), with the order randomized, after

we demonstrated the whole process by solving the tutorial task, Task 0, using their assigned

debugging workflow. For each task, we showed them the goal, the existing rules, and the

problem to be corrected in a summarized version without any specific information on causes

and contexts. With the previously mentioned information and possibly some procedural

clarifications from the researcher, participants then went through some daily routines related

to the rules in the simulator, experiencing both desired and undesired behavior of the current

rules by themselves. Afterwards, participants were directed to their assigned TAP debugging

workflow. We then asked participants to find out what went wrong with the rules and fix

them with the assigned workflow tool, recording whether they submitted a correct answer.

Finally, after each task, we asked participants a set of questions regarding their debugging
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experience — for example, whether they were able to identify which part in the rule(s) were

wrong before going into this workflow, whether they understood the task, and whether they

were confident in the final patch they submitted. Afterwards, participants completed the

System Usability Scale for the workflow.

We encouraged participants to manually revert some wrong actions of automated devices

in the simulator as what they would do in real life (e.g., turning off a light that has been

mistakenly turned on). This is crucial as the Implicit workflow relies on users’ interactions

with sensors and devices to synthesize patches.

4.5.6 Coding of Results

From interview recordings, two researchers independently coded up the correctness scores

of all 150 sessions (3 workflows × 10 participants × 5 tasks) from “0-completely incorrect”

to “3-completely correct”, meanwhile identifying obstacles faced by the participants. Note

that while the correctness scores usually have definite, referable values, the obstacles can

be ambiguous and inferred. As a result, we identify obstacles participants encountered in a

precise but not complete manner. These two researchers resolved each conflict by reviewing

and discussing the corresponding recording. Cohen’s Kappa was calculated between the

correctness scores.

4.6 Results

In this section, we first give an overall review of the performances of 3 interfaces (Section

4.6.1). The next section (Section 4.6.2) details the results of Control-group participants and

the typical obstacles they encountered. Finally, we report the performances of non-control

interfaces and evaluate their strengths and weaknesses (Section 4.6.3).
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Table 4.2: Distribution of participants’ correctness rate in each task with the 3 interfaces.
The x-axis is tasks. The y-axis is the number of participants.

Control Explicit-Feedback (Explicit) Implicit-Feedback (Implicit)

Task 1 Task 2 Task 3 Task 4 Task 5
0

2

4

6

8

10

Task 1 Task 2 Task 3 Task 4 Task 5
0

2

4

6

8

10

Task 1 Task 2 Task 3 Task 4 Task 5
0

2

4

6

8

10

0-Compeletely incorrect 1-Incorrect with good idea 2-Correct but imperfect 3-Completely correct

Table 4.3: P-values for statistical tests we performed: the smaller the p-value is, the more
evidence we have in favor of the alternative hypothesis. Hypothesis-1 was tested using
the Kruskal-Wallis test adjusted with Benjamini-Hochberg method. Hypothesis 2 and 3
were tested using Mann-Whitney U test. Significant p-values (< 0.05) are bolded. N/A:
The Mann-Whitney U test was not conducted when there was no statistical significance for
hypothesis 1.

Alternative Hypothesis Task 1 Task 2 Task 3 Task 4 Task 5

1. Results of three interfaces are
from different distributions

0.0223 0.3432 0.3433 0.0358 0.0042

2. Explicit-participants performed
better than Control-participants

0.0096 N/A N/A 0.0095 0.0099

3. Implicit-participants performed
better than Control-participants

0.0328 N/A N/A 0.1980 0.9668
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4.6.1 Overall Correctness by Workflow

Two researchers independently scored the correctness of the 150 sessions. with a Cohen’s

Kappa of κ = 0.86. The distributions of the final correctness scores are shown in Table

4.2; identified obstacles are summarized in Fig. 4.16. Here, we elaborate on several general

findings.

When automated tools were absent, participants struggled to solve our tasks.

As shown in the “Control” row of Table 4.2, except for Task 3, the control-group partic-

ipants performed poorly in every task, where only 0–2 out of the 10 participants scored

“3-completely correct”. In fact, in Task 2, 4, and 5, the majority of the control-group par-

ticipants scored “0-completely incorrect”. Even in the simplest task, Task 3, only half of the

participants scored “3-completely correct”, while 4 of the participants scored “0-completely

incorrect” or “1-incorrect with good idea”.

Generally, participants in the Explicit-Feedback and Implicit-Feedback groups

were able to achieve better correctness scores than their counterparts in the

Control group. As shown in Table 4.2, compared with the control group, the Explicit-

Feedback group had more participants completely solve the problem (i.e., scoring “3”) and

fewer participants completely fail the problem (i.e., scoring “0”) in every task. The Implicit-

Feedback group also performed better than the Control group: it had more participants

completely solve the problem in every task, except for Task 5, and fewer participants com-

pletely fail the problem in every task than that in the Control group.

Such supremacy in correctness is not homogeneous but interestingly differenti-

ated from task to task. For each task, we performed statistical test, with the details

shown in Table 4.3, and discovered that:
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• In Task 2 and 3, Explicit-Feedback and Implicit-Feedback interfaces performed bet-

ter than Control, but not with statistical significance, as indicated by the omnibus

test (Kruskal-Wallis) result shown in Table 4.3. For task 3, no matter which interface

was used, participants generally performed well, as this task was simple, only requir-

ing the participants to fix a time parameter in an existing rule (i.e., “IF clock turns

6:20pm4:00pm, THEN turn on the light”). For task 2, there was a different story.

Participants in the Control group struggled to come up with the right patch—only

1 participant figured it out. Both automation interfaces were able to automatically

synthesize the right patch. However, only 50–60% of the participants were able to pick

the right patch out of multiple patch candidates due to mental obstacles that will be

discussed in 4.6.3, which diminished the advantage of the two automation interfaces.

• In Task 1, both Explicit-Feedback and Implicit-Feedback interface performed better

than Control with statistical significance.

• In Task 4 and 5, Explicit-Feedback performed better than Control with statistical

significance, and yet Implicit-Feedback did not. What differentiates these two tasks

from the other tasks was that home users were not on site (e.g., they were sleeping)

and hence did not immediately discover the home system’s misbehavior, as shown in

Table 4.1. As a result, without the immediate manual feedback from home users,

Implicit-Feedback interface only offered limited help.

Finally, all three interfaces received similar usability scores, although the Implicit-

Feedback interface received the least questions from participants. SUS scores were

generated per participant. If a participant took multiple interviews to finish all tasks, we cal-

culated the average score across interviews for her. Control, Explicit-Feedback and Implicit-

Feedback respectively scored a mean SUS of 71.7, 74.9 and 72.6 among participants. The

difference was not significant (F statistic: 0.0768, p-value: 0.926 from one-way ANOVA).
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I. Misbehavior 
Identification

Context Fail to identify the context when bugs happened. E.g., in Task 5, some did not realize the bug open happened during weekends.

Action Fail to identify the wrong or missing automated event. E.g., in Task 2, some did not notice the blind opened sleep time.

Task Forget about the problem to solve in a task. E.g., some tried to solve a different problem from what we specified.

Intra-rule Logic Misunderstand intra-rule logic. E.g. some did not consider IF as event triggers, WHILE as constraints, and THEN as commands.

Inter-rule Dependency Misunderstand inter-rule logic. E.g., some wrongly assumed dependency between TAP rules, believing one rule overrode another.

Syntax Try to use language features that are not supported by TAP. E.g., some tried to use loops or branches.

Level Get confused about the level for numeric variables. E.g., some did not know how bright was “level 3” for outside.

Device Fail to pick related devices to solve the problem, or misunderstand devices’ functionality.

Relationship Ignore relationship between devices and sensors. E.g., some did not realize indoor brightness was influenced by lights.

Misreading Misread or overlook texts, labels, or values in statements. E.g., some misread “outside” as “office”.

Behavior Misunderstand behavior of patches. E.g., some wrongly believed their patch would turn on the lights when needed.

Intra-rule Logic
Inter-rule Dependency

Level
Defined similarly as in previous stagesDevice

Relationship

II. Fault Localization

III. Patch 
Creation

IV. Patch 
Refinement

Figure 4.16: Obstacles users face in debugging TAP

Although the SUS scores were similar, there were the fewest sessions where participants

needed clarification on the interface from us in the Implicit group (Control: 40 questions out

of 50 sessions, Explicit: 48/50, Implicit: 18/50).

4.6.2 Obstacles Faced in Manual Debugging

To understand what exact obstacles are encountered by users during their manual debugging,

we watched the interview recordings and summarized typical obstacles participants faced

(criteria shown by our code book in the appendix). The full list of obstacles and their

definitions are shown in Fig. 4.16, and the frequencies of obstacles’ occurrences are shown

in Fig. 4.17. In this section, we discuss some of the major obstacles.

Note that, more than one obstacle could be encountered for a participant when he/she

tackled a task, in which case, the different obstacles might contribute differently to the

potential debugging failure. Also note that, a user who encountered an obstacle might still

be able to correctly finish a debugging task, although this was very rare without automated

tool support, only occurring in 2 task sessions (one in Task 1 showing the “Level” obstacle,

another in Task 3 showing the “Level” and “Syntax” obstacles) in our study.
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I.Context
I.Action
I.Task
II.Intra-rule Logic
II.Infra-rule Dependency
III.Syntax
III.Level
III.Device
III.Relationship
IV.Misreading
IV.Behavior
IV.Intra-rule Logic
IV.Infra-rule Dependency
IV.Level

ControlObstacles

IV.Device

Explicit-Feedback Implicit-Feedback

IV.Relationship
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8/12

11/3

7/1

4/3

7/5

13/0

1/0

3/0

0/1

7/6

7/6
#Sessions where participants faced the obstacle, and eventually failed the task (correctness<3) 

#Sessions where participants faced the obstacle, and eventually solved the task (correctness=3) 

Figure 4.17: Frequency of obstacles’ occurrence: in how many sessions (among 50 = 5 tasks
× 10 participants for each interface) did each type of obstacles showed up.

Fault-Localization::Intra-rule Logic To localize the specific rule or rule component that

has caused the system misbehavior, end users need to accurately understand the rules. Dur-

ing this process, it was common for participants to inaccurately comprehend the meanings of

IF, WHILE and THEN statements, supposedly because these terms are polysemous in daily

usages. In the 50 sessions with control-group participants (5 tasks × 10 participants), such

confusion was revealed in 21 sessions and all of these 21 sessions ended up with debugging

failures (correctness score < 3). These confusions primarily fall into the following categories:

• Perceiving IF statements as qualifiers on states, instead of on events. Al-

though our TAP tutorial taught every participant that the IF statement describes an

event whose occurrence may trigger an action, many participants mistakenly interpret

the IF statement as describing a system state that is repeatedly checked . For example,

a statement like ”IF brightness goes below level 3” only takes effect at the moment

when the measurement of a brightness sensor dips from above 3 to below 3. However,

several participants think that it consistently takes effect as long as the sensor reports
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a brightness level below 3.

• Perceiving WHILE statements as qualifiers on events, instead of states.

WHILE statements restrict the triggering of a rule—even if the event in the IF state-

ment occurs, the rule is not triggered if the state in the WHILE statement is not held.

However, some participants misunderstood WHILE to be an alias of IF. For instance,

some participants added “WHILE the clock is 10pm” to an existing rule and thought

that the rule would get additionally triggered at 10pm. In reality, this extra WHILE

statement caused the rule to almost never take effect, as when the IF event occurs the

clock is almost never 10pm.

• Perceiving IF and WHILE statements as describing actions to take. The

action to take by a TAP rule is only what inside the THEN statement, but some

participants got this wrong. For example, one participant created a rule “IF clock

turns 11pm, WHILE the gate is closed, THEN arm the central alarm”, and told us

that at 11 pm, the system will not only arm the central alarm, but also close the gate.

Fault-Localization::Inter-rule Dependency Different rules in a TAP program are trig-

gered independently. However, some participants assumed non-existent relationships among

rules. With such a wrong understanding, they failed to accurately identify the misbehavior-

inducing fault in the existing TAP program. This showed up in 7 sessions with control-group

participants in the following ways.

• Assuming that two rules with opposite actions could completely offset each

other. In both Task 1 and Task 2, the faults of the TAP programs are that the

triggering conditions of some rules were too loose, causing excessive rule action. Un-

fortunately, some participants believed that the faults were the missing of rules with

opposite actions. This belief led them to add new rules with opposite actions from

those in existing TAP rules. Their debugging attempts failed, as it is very difficult to
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coordinate two rules so that one can precisely offset the other at the right moment.

For example, in Task 2, some participants believed a rule of ”IF clock turns 10pm,

THEN close the blind” would ensure that the original ”IF brightness falls below level

1, THEN open the blind” would not happen after 10pm, which is wrong.

• Assuming that rules are triggered sequentially. When there are multiple TAP

rules listed, some participants believed that the later listed rules would only be trig-

gered after the earlier listed rules were executed. We hypothesize that this confusion

came from their experience with programming languages where code was interpreted

sequentially.

• Assuming that a WHILE statement constrains all TAP rules. Some par-

ticipants believed that all rules would be constrained by a WHILE statement newly

attached to a single rule.

Patch-Creation::Syntax The simplicity of trigger-action programming comes at the cost

of missing some general programming language features, which puzzled some participants,

especially the expert ones (i.e., who had at least some programming experience), during patch

creation. Generally, while expert participants performed better than non-expert participants

(Spearman correlation = 0.275, p-value = 0.0530 between experience and correctness score),

the former encountered a bigger ”Syntax” obstacle, projecting their knowledge of general

programming languages onto TAP. In Task 4, for example, 7 participants completely gave

up on solving this task, as they were determined to use loops, a common feature in general

programming languages, to periodically check the status of an infrared sensor and yet loop

is not supported in TAP. Notably, 6 among them were expert users. In this regard, we

speculatively suggest that users’ thinking sets may impede them from realizing a simpler,

supported solution - ”IF infrared-sensor stops detecting something, THEN close the garage

door” - and this phenomenon seemed considerably more prominent among experts.
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Patch-Creation::Device In 14 of the 50 control-group sessions, participants did not

demonstrate good understandings of related devices (e.g., sensors) - that is, the devices

they suggested, either explicitly or implicitly, could not possibly compose a rule to solve the

problem. Specifically, this obstacle typically comes in two forms.

• Unawareness of existences: Some participants failed to realize that there existed

sensors that would fit their need. For example, the solution to Task 2 is to have one of

the rules to not be triggered when it is dark outside, including during the night time.

4 out of 10 participants were not aware that there was a brightness sensor outside, and

hence failed to solve the problem.

• Misunderstanding of functions: Participants may also misinterpret the functions

of relevant sensors even when they have noticed the existences of relevant sensors.

In Task 4 and 5, participants often mistook motion detectors as sensors for presence

instead of movements.

4.6.3 Our Novel Workflows’ Impact on TAP Debugging

We have already shown in Section 4.6.1 that the use of our two automated debugging work-

flows - Explicit-Feedback and Implicit-Feedback - led to more debugging success in most

tasks. In this sub-section, we discuss their advantages (Section 4.6.3) and limitations (Section

4.6.3) against the Control workflow, as well as the comparison between these two workflows

(Section 4.6.3) in details.

A. General Advantages

Based on our interview with the participants, the main advantage of these two automated

debugging workflows is that they made obstacles in Stage II: Fault Localization and
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Stage III: Patch Creation less consequential to the debugging result, comparing with the

Control workflow. As per the nature of these two non-Control workflows, participants only

needed to provide to-be-modified target action and (only for Explicit-Feedback) specify the

exact wrong behavior to have the system generating candidate patches for them (Fig. 4.1).

In terms of the obstacle stages, the system bridged Stage I: Misbehavior Identification

and Stage IV: Patch refinement for participants and handled the other two stages on

its own with the patch synthesis algorithm (Section 4.4). As a result, obstacles originally in

State II and III such as Intra-rule logic, Level and Device were now shifted to the later

stage, Stage IV: Refine the patches (Fig. 4.16, 4.17). This stage shift is crucial: by

effectively changing participants’ role from patch creator to reviewer, Explicit-Feedback and

Implicit-Feedback workflows diluted the influence of these obstacles on the correctness of final

modifications. For example, as shown in Fig. 4.17, among all 21 Control-group sessions in

which participants expressed confusion Intra-rule Logic, none had the participant correctly

fix the bug; in contrast, this proportion skyrocketed to 14/23 and 12/20 with the use of

Explicit-Feedback and Implicit-Feedback interfaces, respectively. Similar trend was seen for

other obstacles such as Level, Device and Infra-rule Dependency. We explain this distinction

with our use of the patch synthesis algorithm - our system automatically configured patches

with correct TAP logic and reasonable parameters from the history (trace). As a result,

using the two feedback-based workflows, participants were able to select correct rules even

without rigorous understanding of devices, sensors, and TAP logic.

B. Limitations of our automated debugging workflows

Explicit-Feedback and Implicit-Feedback workflows merely delayed and allevi-

ated - not eliminated - these obstacles. From our interactions with the participants,

we saw that confusions could make participants reject the correct patches or select wrong

ones: participants could still fail with Explicit-Feedback or Implicit-Feedback (Fig. 4.17).
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Among all 100 sessions performed with non-control workflows, 10 of them had participants

rejecting all correct patches synthesized by the system. For example, a participant who

thought that additional WHILE statements would cause the rule to trigger more (Intra-

rule Logic obstacle) rejected a correct patch that prevented the blind from wrongly opening

because she thought it would do the opposite.

Automated debugging workflows might increase users’ probabilities of misread-

ing. The obstacle of ”Misreading,” as illustrated in Stage IV: Patch Refinement in

Figure 4.16, refers to participants’ linguistic errors during their comprehension of statements

on the debugging interfaces, which included but were not limited to misreading device loca-

tions (e.g., taking office brightness as outside brightness), comparators (e.g., taking above as

below), or action verbs (e.g. mistaking open as close). Interestingly, this confusion seemed

to be a major obstacle only for participants in the two non-control groups: statistically, only

1 session in the Control group had demonstrated any significant sign of misreading, whereas

Explicit-Feedback and Implicit-Feedback each had 28 and 18 instances. To account for this

phenomenon, we hypothesize that users are more prone to misreading statements that are

not configured by themselves: the two feedback-based workflows both had the system in-

stead of the participants generate TAP rules, so reasonably participants would have higher

chances of misreading.

Users could be confused about the over-automation vs under-automation se-

lection The Explicit-Feedback and Implicit-Feedback workflows require users to specify

whether the misbehavior is an over-automation or under-automation issue (Fig.4.8). For

example, if the issue was about roller shade opening under undesired contexts (Task 1), it

would be an over-automation issue about shade-open (option 1 in Fig. 4.8). However, some

participants failed to make this connection. Wrong selections had been made in 9/50 and

6/50 sessions with Explicit-Feedback and Implicit-Feedback. What makes this confusion
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fatal and thus more crucial is that both workflows would not be able to suggest good fixes

without such information from users.

Our patch behavior visualization had limited success. When showing candidate

patches with the two automated debugging workflows, we recreated histories assuming that

the patch was originally in place (Fig. 4.12). We made this visualization information-

comprehensive (i.e., encompassing all introduced behaviors and all potentially related devices

and sensors) expecting that more details would generate more value to end users. However,

only in 9 out of all 100 sessions, participants consulted the behavior visualization section to

make decisions, despite that the interviewers had introduced its potential usages beforehand

in the tutorial.

C. Comparison between Explicit-Feedback and Implicit-Feedback

The Explicit-Feedback workflow reduces the “Action” and “Context” obstacles

in Stage I: Misbehavior Identification With Explicit-Feedback, participants were re-

quired to identify wrong automated behaviors in the visualized smart home’s history (Fig.

4.9,4.10). Although this encouraged participants to talk more about the context and exact

wrong automated events for the misbehavior, participants showed fewer signs of facing the

“Context” and “Action” obstacle than these in Control and Implicit-Feedback. We hypoth-

esize that explicitly reading about history of related devices helps users better understand

contexts and wrong events about the misbehavior.

The Implicit-Feedback requires users to provide instant feedback in order to gen-

erate patches. The Implicit-Feedback offers the advantage of requiring the least amount

of inputs from users at the cost of relying on participants’ instant manual reactions to wrong

or missing automated events in order to identify misbehavior to fix. As a side effect, the

Implicit-Feedback workflow would likely fail to address when participants were not able to
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give instant feedback of the wrong behavior. In Task 4 and 5, participants were only able

to observe the consequences of the wrong or missing automation long after it happened: for

example, in Task 5, participants would not realize the door had been left open through-

out nighttime until the next morning. Naturally, participants were able to give no instant

manual feedback in these two tasks. Indeed, the correctness result for the 2 tasks with

Implicit-Feedback was not good: for Task 4 and Task 5, only 5 and 0 out of 10 sessions each

had any correct patch showed up. While the data for Task 4 (5 out of 10 sessions) did not

seem persuasive enough, there was a noteworthy reason on why the correct patch showed up

in these cases: we analyzed the traces of Task 4 and discovered that these 5 successes were

in fact due to some unrelated routines, not the one to be modified. To conclude, when users

could not immediately apply manual feedback, while correct patches may still show up by

chance, it would be better to use the Explicit-Feedback workflow instead.

The learning curve is lower with Implicit-Feedback than with Explicit-Feedback.

Although the Explicit-Feedback workflow might be more effective in more tasks (Table 4.2),

it also seems to require more effort from the users, by requiring the users to carefully inter-

act with simulation histories to provide explicit feedback. In contrast, the Implicit-Feedback

workflow enables users to be “just one click away” from synthesized results. This compar-

ison between workflows led us to believe that the Implicit-Feedback workflow requires less

tutorial for end users than the Explicit-Feedback workflow. Results from our interviews also

support this hypothesis. During the interview, when participants expressed non-TAP related

confusions, we gave some hints and tutorials. In 48/50 sessions with Explicit-Feedback had

participants receive clarifications or hints about the interface, whereas this number went

down to 18 for the Implicit-Feedback group. (The number was 40 for the Control group.)

The part that required the most additional clarification in the Explicit-Feedback interface

was the manual behavioral feedback page (Fig. 4.9,4.10). We often needed to illustrate how

to suggest a new automated event or cancel an existing event.
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4.7 Discussion and Future Work

This work focuses on TAP debugging, a process that is frequently conducted by TAP users

but has not been well studied by researchers. We conduct the first observational study

through users’ TAP debugging process with a 3-D smart home simulator and identify obsta-

cles users face - users eventually fail to debug their TAPs in most cases when they encounter

the obstacles. Furthermore, we develop two workflows that automatically fix trigger-action

programs based on the misbehavior users experienced. The two workflows have been shown

to help users overcome the obstacles and achieve better performance in TAP debugging. Our

work also shows that it is feasible to study users’ trigger-action programming and debugging

experience in a 3D simulator. This reduces the overhead of time, cost, and privacy concerns

of conducting TAP studies in the real world.

We hope that the mental obstacles summarized from our user study, the debugging

workflows that we developed, and the TAP-enabled 3D simulator can all help future research

on TAP programming and debugging.

Our protocol to study TAP debugging has the following limitations. First, our proto-

col guided participants through pre-set routines, with the goal to expose our pre-designed

misbehaviors. Tasks tested under this protocol may not represent all TAP debugging prob-

lems, and users may perform differently if they spontaneously identify misbehaviors instead.

Second, we only passively collected evidence of mental obstacles based on participants’ con-

versations with us. As a result, how much data was collectable relied on the extent to

which participants exposed their confusion; our identification of obstacles was precise but

not complete.
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CHAPTER 5

RELATED WORK

5.1 Trigger Action Programming (TAP) in Smart Spaces

Trigger-action programming (TAP) has been a popular paradigm for controlling physical

smart devices. It is widely used [115, 86] by systems including IFTTT [61], Zapier [70], Mi-

crosoft Flow [75], Samsung SmartThings [89], Mozilla Things Gateway [58], OpenHAB [94],

and Home Assistant [53]. Initial user studies found that non-technical users could accurately

write TAP rules to automate smart spaces in simple scenarios [114, 120, 90, 46]. However,

more recent work has observed shortcomings of TAP in more complex scenarios [13, 25], in

particular relating to users writing rules that contain bugs or otherwise fail to match their

intent [12, 125, 55]. Furthermore, users often find it hard to reason about how sensors (e.g.,

motion sensors) in smart homes work [52]. For example, they may misunderstand what

brightness-level readings mean.

5.2 Bug-Detection and Fixing for Smart Home Automation

Much work has been done to automatically detect bugs in trigger-action programs using

static analysis and model checking. Every bug detection technique focuses on a particular

type of bugs, such as violations to a set of device-specific safety properties [19, 2], violations

to a set of system properties manually defined by users in the form of “should not happen”

or linear temporal logic (LTL) [15, 76, 127], TAP rule interaction vulnerabilities, such as

action duplication and action conflict [126, 117], rule conflicting and rule chaining [54, 22,

28, 34, 121, 60, 68], missing triggers [91].

In addition to debugging, some previous works [76, 15] applied formal methods to fix

violations to LTL or CTL policies in TAP programs. They search potential TAP patches

by changing trigger-states of existing TAP rules in three ways: (1) deleting a conjunction
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clause; (2) adding a conjunction clause that appears in the LTL/CTL policy; or (3) modifying

numerical parameters. Consequently, they cannot synthesize patches that change TAP rules’

trigger events or rule actions, not to mention creating new TAP rules from scratch. The

end-user property-specification interface of previous work [15] only accepts “[states] shall

not happen”, missing many common desires.

By design, bug detection and fixing complement each other.

5.3 Program Synthesis Using Formal Methods

Synthesizing a program from a formal specification, or LTL synthesis, has been an open

problem [10]. Most work in this area synthesizes reactive systems based on formal speci-

fications [16, 10, 98, 74]. Our first work, AutoTap is related to, but also fundamentally

different from, such work. AutoTap needs to synthesize TAP rules, not just finite state

models, and needs to accommodate for an existing finite state model (i.e., the smart-device

system model). Degiovanni et al. proposed an algorithm that synthesizes control-operation

programs, which have similar syntax as TAPs, to satisfy formal requirements [35]. Due to

the different usage contexts, their algorithm, which uses SAT solvers to iteratively resolve

counter-examples by changing existing rules’ trigger states, cannot add new rules or preserve

existing property-compliant behaviors.

To synthesize TAP rules, Trace2TAP and TapDebug turn their requirements about TAP

rule candidates into symbolic constraints and leverages an existing constraint solver, Z3 [32],

to exhaustively generate solutions. A constraint solver finds value assignments of a set

of binary, numeric, or enumerate symbols that satisfy given constraints, a problem often

referred to as a “Satisfiability Modulo Theories (SMT)” problem. Although even an SMT

sub-problem, the Boolean satisfiability problem (SAT), is NP-complete [48], state-of-the-art

SMT solvers deploy smart searching strategies [33] to solve typical SMT problems efficiently.

They are widely used in static program analysis, hardware/software verification, and test-
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case generation [33].

SAT/SMT solvers are efficient tools to explore the search space in program synthesis [49].

Previous work has synthesized various types of programs using logical specifications [110, 64]

or input-output examples [66] as input constraints. Once the input constraints are set, the

program search space could be a hole in the program, several lines of loop-free code [66],

regular expressions [93], or more [49]. Compared to prior SMT-based program synthesizers,

Trace2TAP and TapDebug are unique in how they obtain and handle constraints, their

search space, and their human-in-the-loop presentation of the results. They are unique in

setting their requirements based on the device-interaction traces and/or explicit input or

specifications from users. They are unique in symbolically executing the trace to translate

users’ implicit requirements into constraints. To our knowledge, Trace2TAP and TapDebug’s

search space of trigger-action programs/patches also differs from all prior work. Furthermore,

Trace2TAP and TapDebug clusters and ranks the synthesized rules to enable intelligible and

scalable presentation to users.

5.4 Non-Formal Program Synthesis for Smart Home Automation

Researchers have also developed techniques other than formal methods to synthesize TAPs

for smart homes. Some works [56, 21, 102, 29] develop systems that synthesize TAPs based

on natural language conversations with users. RuleSelector [109] identified most promising

TAP rules for users with data mining on their history. Our third work, TapDebug, makes

program synthesis foray into the field of TAP debugging - we synthesize TAP patches that

can fix misbehavior cases in the history. The different goals led to different techniques used

by us and previous work.
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5.5 Property-Specification Interfaces

Past work in requirements engineering investigated how to let engineers specify desired soft-

ware properties. KAOS provided guidelines that helped engineers gradually summarize or

break down vague requirements into deployable specifications [31]. PSPWizard provided

an interface where developers could choose from a comprehensive list of templates, fill in

the blanks of the chosen template, and then have their inputs translated into formal spec-

ifications [79]. In contrast with those efforts, in AutoTap, we employed a user study to

identify commonly desired properties in smart-home scenarios. We then designed property-

specification templates for expressing those properties through a compact graphical inter-

face. AutoTap users specify properties through only mouse clicks, which is suitable for

non-technical users.

5.6 Automating Smart Spaces From Traces

While our second work, Trace2TAP is the first system to comprehensively synthesize TAP

rules from traces as part of a human-in-the-loop framework, a number of prior systems have

used other algorithms and other user experience approaches to predict user activities and/or

automate smart devices based on traces. Below, we briefly describe the different features of

each approach and comment on their common limitations.

The CASAS system analyzes a smart home’s trace and utilizes machine learning tech-

niques to generate automation policies [104]. The automation policy itself is completely

hidden from users. Users can only indirectly refine the automation policy by expressing

whether they like, or do not like, some of the automation sequences. Minor et al. take a trace

as input and use imitation learning algorithms to predict future human activities [87, 88].

The prediction model is completely based on the trace. It is not meant to be intelligible

to, or adjustable by, human users. Furthermore, the model focuses on predicting high-level
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activities like “having dinner” instead of directly automating specific devices. The PUBS

system [7] discovers frequent patterns from users’ traces and turns them into event-driven

rules that represent a subset of TAP rules. Similar to Trace2TAP, it enables users to see

the synthesized automation in the form of TAP rules. In contrast, Trace2TAP uses symbolic

constraint solving to generate rules more comprehensively, including rules that do not follow

the exact event order in the trace.

Finally, a key difference that distinguishes Trace2TAP from all of these prior systems is

that all the prior work treats the trace as a precise “role model,” finding the automation

that most closely mimics past behaviors observed. However, our field study (Section 3.8)

highlights that there is often a gap between users’ past behavior and their ideal automations.

In contrast to prior work, Trace2TAP instead exhaustively synthesizes a comprehensive list of

programs that can automate some portion of users’ past behavior in a more generalized way.

Such an approximate-search approach improves the odds of covering users’ ideal automations.

Moreover, Trace2TAP also clusters and visualizes the impacts of the rules it synthesizes to

make the prospective rules intelligible for users.

5.7 Context-Aware Computing

Context-aware systems customize services based on the context of usage [37]. By absorbing

information about complex and dynamic real-world environments, systems can adapt to

better meet a user’s needs, such as providing different recommendations based on the user’s

location or running apps in different modes based on the user’s style. Previous work has

enabled systems to automatically adapt their behaviors to optimize resource management [72,

101], provide personalized services [130], and even make crucial decisions regarding security

and privacy [6, 67]. Unlike Trace2TAP, they do not aim to automate most of the manual

interaction with devices.

Some work has argued that users need control in a context-aware system [9, 38, 41, 124,
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85]. Instead of making decisions fully on the user’s behalf, a context-aware system should

communicate and collaborate with users. Recent work has thus attempted to provide useful

information about the system to users [77, 65, 59] and designed interfaces that establish

constructive collaboration between systems and users [23, 84, 51].

5.8 Smart Home Visualization

Our TAP behavior visualization in Trace2TAP and TapDebug is inspired by prior works on

TAP visualization. Mennicken et al. [84] built an interactive calendar-like interface that

visualized behaviors of smart devices. The interface was evaluated with a field study in 2

commercial smart homes. Castelli et al. [18] developed a dashboard for smart home users

that presented current and history status of devices. Corno et al. [28] and De Russis et

al. [34] allowed users to simulate behaviors of their TAPs step-by-step. Coppers et al.[27]

predicted and simulated potential future behaviors of TAPs for users. Zhao et al.[132] helped

users to distinguish between two set of TAPs by visualizing their differences. Compared with

these prior works, our work goes beyond visualizing behaviors of specific TAP rules - in the

Explicit-Feedback workflow of TapDebug, it uses the history visualization of the smart home

as an interactive interface to collect system misbehavior experienced by users.
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CHAPTER 6

SUMMARY

This thesis introduces our efforts to assist users with automated tools throughout their

trigger-action programming experience. We introduced AutoTap, a system that lets novice

users specify desired properties for devices and services. It translates these properties to

linear temporal logic (LTL) and synthesizes property-satisfying TAP rules [127]. We also

designed Trace2TAP, which synthesizes TAP rules from users’ past behaviors and presents

them to users in a carefully designed way [128]. Finally, we introduced TapDebug, a system

that helps users automatically fix their trigger-action programs when unexpected behavior

happens. With a series of user studies, our 3 works were shown to improve users performance

in trigger-action programming compared to letting them use only manual TAP interfaces.

6.1 Lessons learnt

The first, and most important lesson we learnt was that studies about TAP should be

user-centric. A large body of prior works about TAP focuses on challenges pre-defined by

researchers - e.g., existence of infinite loops caused by trigger-action programs, unexpected

permission leakage in TAP, etc. Of course, these are very important problems, but they are

inspired by, if not directly borrowed from, challenges faced by real programmers in technical

programming. They could only represent a small portion of challenges non-technical users

face in TAP. In our studies, we found that novice users often faced unique challenges unseen

in traditional software engineering literature. In fact, given this observation, our works has

become more and more user-centric. In AutoTap, we never observed the process where users

created TAP rules or properties. In Trace2TAP, we let users read TAP rules prepared by us

and express their thoughts. In TapDebug, we observed the users’ whole process to experience

TAP behaviors and to fix trigger-action rules.
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Secondly, we should let user studies guide the design of TAP assisting tools. In the

Trace2TAP and TapDebug studies, we found that challenges users faced were often not ones

we expected in the tool designing phase. For example, in TapDebug, we initially hypothesized

users would struggle with identifying the wrongly behaved automation in the past. However,

on the contrary of this expectation, users often succeeded in this. We unexpectedly found

that failing to relate the wrong behaviors with TAP rules was the main obstacle in their

debugging process. Without the guide from user studies, we would never know what is the

bottleneck in our tool design.

Lastly, participant recruiting in smart home field studies takes a lot of time and should

always be planned early. In Trace2TAP, we did not start recruiting participants for our user

study until very late. However, we found that recruiting participants and installing devices

took longer than what we expected - even longer than time for the whole tool implementation.

6.2 Limitations

All three works, especially Trace2TAP and TapDebug, focused on a small number of device

types (e.g., lights). On one hand, in smart home, people have not found many usage scenarios

for automation other than automating lights. Our three works all worked under the context

of smart homes and were thus limited within the scenarios. On the other hand, though TAP

can be also used in other contexts such as web services, we did not have enough time to

re-implement our TAP infrastructure for smart home devices in these contexts.

In AutoTap and TapDebug, we, as researchers, pre-defined tasks users needed to achieve

with TAP in the user study. The tasks might not be representative enough of all tasks users

face in smart home trigger-action programming. It would be better if our task design were

guided by observation of users’ real TAP experience in their smart homes.
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6.3 Future Works

It would be nice to conduct a long-term user study throughout the whole TAP lifespan.

During the study, users would interact with smart devices, come up with trigger-action

programs spontaneously, and refine them throughout a long time. This can benefit our

studies in two ways. First, we can summarize tasks users would achieve in their real life,

which is more representative than pre-defined tasks we used in AutoTap and TapDebug.

Secondly, in all three studies, participants only interacted with trigger-action programs in

short term, i.e. within a couple of minutes in a survey or an interview. Long-term challenges

and needs were not exposed in our study.

Moreover, the current TAP assisting tools we implemented are still intrusive - users need

to go to a web interface to specify their needs or select synthesized trigger-action programs.

More studies can be done to integrate our techniques with less intrusive communication ways

such as natural-language based voice assistants.
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