
UNIVERSITY

THE UNIVERSITY OF CHICAGO

TIME-SPACE TRADE-OFFS IN

CRYPTOGRAPHIC PRIMITIVES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

AKSHIMA

CHICAGO, ILLINOIS

DECEMBER 2022

© Copyright by Akshima, 2022

All rights reserved.

Abstract

of the Thesis of

Akshima for PhD

in Computer Science

Title: Time-Space Trade-offs in Cryptographic Primitives

The research in complexity theory, for a long time now, has been conscious of memory as

a resource in building algorithms with improved asymptotic complexity. There is an un-

derstanding to compare time-memory trade-offs as opposed to only running times while

choosing between algorithms to solve any problem. While cryptographers have recognized

memory to be a resource, there has been little effort to analyze cryptographic primitives in

a memory-conscious manner until recently.

This work contributes towards the recent efforts of understanding the role of memory in the

security of cryptographic primitives. Our study is two-fold:

1. How much better can any adversary that is capable of performing pre-computation and

storing a bounded amount of information about the cryptographic primitive (under

iii

attack) do?

2. Are there cryptographic applications which are provably more secure against adver-

saries with lesser memory?

This work focuses on cryptographic hash functions for the first part of the study. The study

analyzes properties of collision resistance and multi-way collision resistance for these func-

tions.

For the second part of the study, the aim is to analyze double encryption against the memory-

bounded non-adaptive adversaries. It is known that meet-in-the-middle (MITM) adversary

against double encryption runs in about the time required to brute force a single key, leading

to the common-knowledge that double encryption is no more secure than the original block

cipher. However, this is when the adversary is allowed to use as much memory as it would

like. However, this is when the adversary is allowed to use as much memory as it would like.

iv

To myself, my parents, Mukesh Kumar and Renu Bala, and my brother, Mahaksh Verma.

Acknowledgements

First and foremost I would like to thank my adviser, David Cash. I owe everything I know

about research and a lot of my perspective on Cryptography to him. I still remember our first

meeting and how I was a ball of nerves because I knew little to nothing about cryptography.

Years later, I still don’t know a lot about cryptography but he has taught me that it is

alright and we are all here to learn. His guidance and insights, not only in our projects but

research and writing papers in general has always been helpful and enlightening. I feel very

fortunate that he gave me the opportunity to learn and work with him. I will always be

grateful for his continuous encouragement and understanding of my social awkwardness.

I would like to thank all my wonderful collaborators for sharing their knowledge and

helping me grow: Andrew Drucker, Siyao Guo, Alex Hoover, Qipeng Liu, Adam Rivkin,

Jesse Stern, Hoeteck Wee. I would like to specially thank Siyao and Qipeng for all the

wonderful conversations on research and more that provided the much needed respite during

the times of the pandemic.

I would like to thank the committee members for taking time out of their busy schedules

and agreeing to do this: Aloni Cohen and Hoeteck Wee.

I would like to thank the CS department at both UChicago and Rutgers for providing

the good environment that fostered inquisitiveness and allowed me to focus on my research.

vi

I would like to especially thank the Director of CS department, Janos Simon, for his help in

getting me academically settled when I first transferred to UChicago and allowing accom-

modations. I would also like to thank Margaret Jaffey, Megan Woodward and Nita Yack for

always offering their help whenever I struggled with administrative work.

I want to take this opportunity to thank Donghoon Chang and Somitra Sanadhya as

it was their courses at IIIT-Delhi that first introduced me to Cryptography and got me

interested in the field. Nothing would have been possible without their faith in my potential

to do research when all I could show them was eagerness.

I would like to thank Alankrita Pathak for dragging me to try the Introduction to Cryp-

tography elective class when I thought some other programming class would be more useful.

I am grateful to her, Aarushi Goel and Meenakshi Raman for eventually choosing to take

and get through the Introduction to Cryptography class with me, even though it was harder

(but also more exciting!) than some other elective options and Jasmine Kaur for listening

to us ramble about our weekly homeworks in the course. I want to thank Aarushi further

for being my partner-in-crime when I first dipped my toes into Cryptography beyond the

premise of a classroom.

Last but most importantly, I want to thank my parents and my brother. Without their

rock solid support, I could not have gotten through the highs and lows of my graduate

studies. They have been at the receiving end of my frustration and anger innumerable times

and yet have been nothing but understanding and encouraging. Everyday without fail, my

parents would wake up as early as 4:30am just so they could talk to me before work because

they knew I would have barely interacted with anyone outside of research all through the

day. At times, my brother would stay up until 3am just so he could talk to me because

he knew I was having a hard day. Honestly, there are no words that can express my deep

gratitude towards my family and there will never be enough space to share everything my

vii

parents have done for me.

viii

Table of Contents

LIST OF FIGURES xiv

LIST OF TABLES xv

TERMINOLOGY xvi

ABBREVIATIONS xix

THESIS OUTLINE xx

1 Introduction 1

1.1 Short Collisions with Pre-computation in MD Hash Functions 2

1.1.1 Related Work . 3

1.1.2 Our Contributions . 4

1.2 Bounded-Length Collisions with Pre-computation in MD Hash Functions . . 6

1.2.1 More Related Work after [1] . 6

1.2.2 Our Contribution . 7

1.2.3 Comparison of Techniques . 8

1.3 Multi-collisions with Pre-computation in MD Hash Functions 10

1.3.1 Our Contributions . 11

1.4 Double Encryption as a PRP . 12

ix

1.4.1 Related Work . 12

1.4.2 Our Contributions . 14

2 Preliminaries 18

2.1 Notations . 18

2.2 Definitions . 18

2.2.1 Random Oracle [47] . 18

2.2.2 Merkle-Damg̊ard Hash Functions (MD) 19

2.2.3 Collision-Resistance against Auxiliary Input (AI). 19

2.2.4 Multi-Instance Collision-Resistance (MI). 21

2.2.5 Bit-Fixing Collision-Resistance (BF) 23

2.3 Useful Results . 25

2.3.1 Chernoff Bound. 25

2.3.2 Reduction to MI collision-resistance 25

3 Short Collisions 27

3.1 Bounded-Length Auxiliary-Input Attack . 34

3.2 Length 2 Collisions are Relatively Easy in the BF Model 36

3.3 Unbounded Length Collision AI Bound . 38

3.3.1 Proof of Lemma 8 . 38

3.4 Length 2 Collision AI Bound . 46

3.4.1 Proof for Lemma 12 . 47

3.5 Impossibility of Improving Zero-Walk AI Attacks 59

3.5.1 Proof of Lemma 49 . 62

4 Bounded Length Collisions 68

4.0.1 Our results . 69

x

4.1 Auxiliary Input Collision Resistance for B = 2 Merkle-Damg̊ard 82

4.1.1 Bounding Ei
1,E

i
2,E

i
3 . 91

4.2 Auxiliary Input Collision Resistance for B Merkle-Damg̊ard 96

4.2.1 Proof of Claim 35 . 100

4.2.2 Proof of Claim 33 . 104

4.2.3 Proof of Claim 34 . 110

5 Multi-Collisions 113

5.1 Definitions . 114

5.2 Results . 115

5.3 Proof of Theorem 39 . 117

5.3.1 Lower Bound . 117

5.3.2 Upper Bound . 118

5.4 Proof of Theorem 40 . 119

5.4.1 Lower Bound . 119

5.4.2 Upper Bound . 119

5.5 Proof of Theorem 41 . 122

5.5.1 Security bound . 122

5.6 Proof of Theorem 42 . 133

5.7 Proof of Theorem 43 . 135

6 Double Encryption 136

6.1 Preliminaries . 136

6.1.1 Notation. 136

6.1.2 Double-Encryption Security Definitions 136

6.2 Lower bound . 138

6.3 Bound on Memory Bounded MITM . 140

xi

6.3.1 Proof of Lemma 49 . 145

6.4 Bound on Memory Bounded Generalized MITM 159

6.5 Reduction to Unique Disjointness . 182

6.5.1 Preliminaries . 182

6.5.2 MITM adversary . 183

6.5.3 G-MITM Adversary . 185

Bibliography 192

xii

List of Figures

2.1 Security game AI-CRh,a(A) . 20

2.2 Security game B-AICRh,a(A) . 21

2.3 Security game 2-AICRh,a(A) . 21

2.4 Security game MICRS
h,a(A). 22

2.5 Security game B-MICRS
h,a(A). 23

2.6 Security game BF-CRh,a(B,L). 24

3.1 Depiction of Cases from Claim 10 . 43

3.2 Types of queries in 2-Block colliding chains 49

3.3 Depiction of cases in Claim 13 . 49

3.4 Compression for different types of 2-Block collisions 54

4.1 Depiction of ’Knowledge gaining’ event E1 74

4.2 Depiction of ’Knowledge gaining’ event E2 and E3 76

4.3 Depiction of a type of B-length collision . 78

4.4 Sub-type 1 of B-length collision . 78

4.5 Sub-type 2 and 3 of B-length collision . 79

4.6 Events Ei
1,E

i
2,E

3
i . 84

4.7 All types of 2-block collisions. 87

4.8 All possible types of 2-block collisions and queries 89

xiii

4.9 All types of colliding chains . 101

4.10 Pictorial depiction of Conditions 1-5 . 102

4.11 Sub-types for Condition 5 . 103

5.1 Security game m-AICRh,a(A) . 115

5.2 Security game m-AICRB
h,a(A) . 115

5.3 u-length chain of v-way collisions . 118

5.4 All types of 2-block m-way colliding chains 123

5.5 Security game m-MICRS,t
h,a(A) . 123

6.1 Security games G(0)
k,n,b, G

(1)
k,n,b. 141

6.2 Security games G(2)
k,n,b. 144

6.3 Security games H
(0)
k,n,b, H

(1)
k,n,b. 189

6.4 Security game H
(2)
k,n,b,ℓ,ℓ′ . 190

6.5 Security game H
(3)
k,n,b,ℓ,ℓ′ . 191

xiv

List of Tables

1.1 Summary of results for B-Block collision finding in MD Hash Functions . . . 9

4.1 Summary of results for B-block collision finding in MD hash functions 71

4.2 Summary of bounds for Condition 1-5 . 112

5.1 Summary of results for B-block m-way collisions in MD hash functions . . . 117

xv

Terminology

Definition 1. Adversary is a malicious entity that attempts to prevent any cryptosystem

from achieving its goal.

Definition 2. Cryptographic Hash Functions, or simply referred to as Hash Functions,

are functions that map inputs of arbitrary size to fixed size outputs, i.e., H : {0, 1}∗ → {0, 1}ℓ

for some fixed positive integer ℓ. They are one-way functions, which means they are hard

to invert. Brute force search or rainbow tables are used for inverting these functions. Often

times salted hash functions are used in applications to make them harder to invert by brute

force search or using rainbow tables. Salted hash functions take an additional fixed size input

called salt.

Definition 3. A Collision in a hash function H is defined as finding two distinct messages

in {0, 1}∗ that have the same output under H. m-way Collision in a hash function H is

defined as finding m distinct messages {0, 1}∗ that have the same output under H where m

is a positive integer.

Definition 4. Merkle Damg̊ard is a popular construction scheme for building a collision

resistant Hash function for arbitrary input sizes from collision resistant compression func-

tions on fixed input size. The scheme essentially breaks arbitrary sized inputs into blocks of

fixed size and applies the compression function in sequence on these blocks.

xvi

Definition 5. Random Oracle O can be thought of as a machine implementing a function

H. Its internal working are assumed unknown. An input to it is called query.

Definition 6. Pseudo Random Functions is a family of deterministic functions that are

efficiently computable and indistinguishable from a truly random function by any efficient

adversary.

Definition 7. Pseudo Random Permutations is a family of deterministic permutations

that are efficiently computable and indistinguishable from a truly random permutation by any

efficient adversary.

Definition 8. To prove security of an application using H in the Random Oracle Model,

analysis assumes H to be a truly random function.

To prove security of an application using H in the Auxiliary-Input Random Oracle

Model, analysis assumes H to be a truly random function and 2-stage adversaries A =

(A0,A1) such that:

1. A0 gets computationally unbounded access to H and outputs a bounded size information

about H, say of S-bits, and called advice.

2. A1 takes the advice output by A0 and the challenge as input and gets to make a bounded

number of queries, say T to H to solve the challenge.

Definition 9. To prove security of an application using H in the Bit-Fixing Random

Oracle Model, analysis assumes H to be a truly random function and 2-stage adversaries

A = (A0,A1) such that:

xvii

1. A0 fixes some bounded number of bits of H, say P bits, to obtain say H ′

2. A1 takes the challenge as input and gets to make a bounded number of queries, say T

queries, to H ′ to solve the challenge for H ′.

Definition 10. A streaming adversary is characterized by two parameters m, q such that

the adversary gets to make q queries and receives the responses in a stream, i.e., the adversary

cannot access the response to a particular query unless it stores that in its memory, which is

bounded to m-bits.

Definition 11. Block ciphers are all functions E : {0, 1}k × {0, 1}n → {0, 1}n such that

for every K ∈ {0, 1}k, EK := E(K, ·) is a permutation on {0, 1}n. For a block cipher E,

we write E−1 to denote the inverse cipher, i.e. for every K ∈ {0, 1}k, E−1K (·) is inverse

permutation of EK(·).

Definition 12. For a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n, we define Double

Encryption with E as a function in {0, 1}2k × {0, 1}n → {0, 1}n that on inputs K̂1||K̂2, x

returns EK̂2
(EK̂1

(x)).

xviii

Abbreviations

PRP Pseudo Random Permutation

PRF Pseudo Random Function

RO Random Oracle

AI-RO Auxiliary Input Random Oracle

BF-RO Bit Fixing Random Oracle

CR Collision Resistance

MCR Multi-way Collision Resistance

MD Merkle Damg̊ard

DE Double Encryption

xix

Thesis Outline

Chapter 1 gives an introduction to the works presented in the thesis. Chapter 2 presents the

definitions and useful results used in Chapters 3 and 4. Chapters 3 and 4 give an overview

of the works already published in conferences ([1], [2]).

Chapter 3 talks about our results for 2-block collisions for MD based hash functions in the

AI-RO model. Chapter 4 talks about our follow-up results for any B-block collisions, again

for MD based hash functions in the AI-RO model.

Chapters 5 and 6 present unpublished works. First of the two is a work in progress. Chapter

5 talks about m-way collisions for MD based hash functions in the AI-RO model and our

results so far.

Chapter 6 is a proposed work contributing towards the second part of this study. The chapter

focuses on analyzing double encryption scheme as a PRP.

xx

Chapter 1

Introduction

Memory has been considered an important resource in the study of algorithms and complexity

classes. The study has always been two fold:

1. How to use memory with pre-computation to improve algorithmic efficiency?

Rainbow tables for inverting functions and pre-calculating BSP trees in 3D Graphic

for visibility calculations are some popular examples.

2. How memory can be used to improve efficiency of algorithms, such as with Dynamic

programming.

We attempt to translate such studies to cryptographic primitives to better our under-

standing of the security they provide. More precisely, we address the following questions:

Can we use pre-computation to make bounded-length collision-finding easier in MD-based

hash functions? What are the minimum time and space requirements for the task?

Does the efficiency of algorithms distinguishing double encryption from PRP reduce when

there is limited memory available?

1

1.1 Short Collisions with Pre-computation in MD Hash Functions

The results for this part of thesis are based on the results in the paper titled “Time-Space

Tradeoffs and Short Collisions in Merkle-Damg̊ard Hash Functions” with David Cash, An-

drew Drucker and Hoeteck Wee published in Crypto 2020.

We study 2-block collision-finding against Merkle-Damg̊ard hashing in the random-oracle

model by adversaries with an arbitrary S-bit auxiliary advice input about the random oracle

and T queries. This model is referred to as Auxiliary-input random-oracle model. This

model allows adversaries to be computationally unbounded while computing the auxiliary

advice.

Why study AI-RO Model. The model as defined allows the adversary to use an advice

that could be computationally unconstructable as the adversary gets unbounded time to

generate the bounded size advice. However, assuming no bound on running time during

pre-computation phase simplifies definitions and proofs. It also captures adversaries that

use auxiliary information (something the adversary does not necessarily computes but just

knows) for attacks.

Some prior works justify the model on the grounds that it is practical for an adversary

to spend significant time during preprocessing to speed up the actual attack, especially if

the adversary wants to attack many instances at once. This reduces the amortized cost of

one-time preprocessing. The works [3]–[6] claim that the model captures the attackers in

the non-uniform setting. However, we do understand and point out that the bounds in our

model are possibly loose upper bounds on the advantage of non-uniform adversaries. That’s

because the advice in the non-uniform setting has to be same for inputs of the same size.

However, our model allows the adversary to generate different advice strings for different

2

compression functions of the same size (i.e., with same domain and range).

Our work considers a purely theoretical question of the ease of finding short collisions

as compared to finding unbounded length collisions, with possible practical interests. We

eliminate a class of non-practical adversaries from our analysis on the advantage of finding

collisions with precomputation, that are deemed successful on finding collisions of imprac-

tical length by previous work. The analysis in this work still includes a class of unrealistic

adversaries (that use unconstructable advice during online attacks). However, we argue that

it is better to find even these conservative bounds as opposed to ignoring that preprocessing

is a usable attack strategy. We leave improving the model to capture running time bounds

during preprocessing as an open question.

1.1.1 Related Work

Hellman [7] was the first to study pre-processing attacks for inverting functions, which was

followed up by the famous work Fiat and Naor[8]. Recently, several works [4], [9] set out to

understand the power of such attacks for finding collisions. All of them have studied this

question in the auxiliary-input random oracle (AI-RO) model proposed by Unruh [3], for

dealing with non-uniform and preprocessing attackers.

Dodis, Guo, and Katz [4] studied the collision resistance of a salted random function

(which also corresponds to the B = 1 case for Merkle-Damg̊ard). They prove an Õ(S/N +

T 2/N) security upper bound (with respect to a random salt). This bound shows the naive

attack which precomputes collisions for S distinct salts as the advice (the Õ(T 2/N) term is

tight due to birthday attack) to be optimal.

Coretti, Dodis, Guo and Steinberger [5] further studied collision finding for salted Merkle-

Damg̊ard hash functions (corresponds to arbitrary B). Interestingly, unlike the B = 1 case,

3

they show an attack achieving advantage Ω̃(ST 2/N), improving the birthday attack by a

factor of S. They also prove this attack is optimal.

We mention that time-space lower bounds of attacks (or non-uniform security) against

other fundamental cryptographic primitives, such as one-way functions, pseudorandom ran-

dom generators, discrete log, have been investigated in various idealized models [4], [5], [9]–

[14].

1.1.2 Our Contributions

As mentioned before, recent work showed that such adversaries can find collisions (with

respect to a random IV) with advantage Ω(ST 2/2n), where n is the output length, beating

the birthday bound by a factor of S. These attacks were shown to be optimal.

We observe that the collisions produced are very long, on the order of T blocks, which

would limit their practical relevance. Motivated by real-world hash functions like SHA-256,

where N = 2n = 2256, M = 2512, we are interested in parameter settings with B ≪ T ,

such as S = 270, T = 295 and B = 218, which corresponds to computing a 256-bit digest of

a 16MB message using SHA-256. Here, (ignoring constants) the CDG bound is meaning-

less, since ST 2/N > 1, whereas the corresponding attack achieves constant advantage when

T = B ≈ 293, collisions which are several yottabytes (= 1024 bytes) long.

We prove several results related to improving these attacks to find short collisions. We first

exhibit a simple attack for finding B-block-long collisions achieving advantage Ω̃(STB/2n).

We then study if this attack is optimal. We show that the prior technique based on the bit-

fixing model (used for the ST 2/2n bound) provably cannot reach this bound, and towards a

general result we prove there are qualitative jumps in the optimal attacks for finding length

1, length 2, and unbounded-length collisions. Namely, the optimal attacks achieve (up to

4

logarithmic factors) order of (S + T)/2n, ST/2n and ST 2/2n advantage. We also give an

upper bound on the advantage of a restricted class of short-collision finding attacks via a

new analysis on the growth of trees in random functional graphs that may be of independent

interest.

STB conjecture: The best attack with time T and space S for finding collisions

of length B in salted MD hash functions built from hash functions with n-bit

outputs achieves success probability Θ((STB + T 2)/2n).

Our results in a nutshell. We study the STB conjecture in the AI-RO model, studying

both upper bounds (better attacks) and lower bounds (ruling out better attacks). Our

contributions are as follows:

• Upper bounds. We present an attack that achieves success probability O(STB/2n).

The attack exploits the existence of expanding depth-B trees of size O(B) in random

functional graphs defined by h.

• Limitations of prior lower bounds. We show that the CDGS [5] techniques cannot

rule out attacks with success probability ST 2/N , even for B = 2. In particular, the

crux of the CDGS technique is a O(ST/N) bound in an intermediate idealized model

(that translates to an AI-RO bound with a multiplicative loss of T), and we provide a

matching attack with B = 2 in this intermediate model.

• A lower bound for B = 2. We present new techniques to prove the STB conjecture for

B = 2 in the AI-RO model. That is, the optimal attack achieves success probability

Θ((ST + T 2)/N) for B = 2. This is the main technical contribution of this work.

Interestingly, this means that for B = 2, if the space S ≤ T , then there is no better

attack than the birthday attack!

5

• Bounding low-depth trees. We rule out the existence of expanding depth-B trees of size

Õ(B2) in random functional graphs, which shows that simple extensions of our attack

cannot achieve success probability better than STB/N .

1.2 Bounded-Length Collisions with Pre-computation in MDHash

Functions

The results for this part of thesis are based on the results in the paper titled “Time-Space

Lower Bounds for Finding Collisions in Merkle-Damg̊ard Hash Functions” with Siyao Guo

and Qipeng Liu published in Crypto 2022.

We study B-block collision-finding against Merkle-Damg̊ard hashing in the random-oracle

model by adversaries with an arbitrary S-bit auxiliary advice input about the random oracle

and T queries.

1.2.1 More Related Work after [1]

Following up on the previous work that combined with known results for B = 1 and B = T ,

demonstrated qualitative jumps in the optimal attacks for finding length 1, length 2, and

unbounded-length collisions. Very recently, Ghoshal and Komargodski [15] revisited the

problem for other choices of B. Ghoshal and Komargodski proved the bound STB2(log2 S)B−2

N

+ T 2

N
for any 2 < B < T . Note that when B = O(1), the poly-log factor exponentially

large in B is just a poly-log factor and the bound can be simplified to Õ(ST/N + T 2/N),

hence proving the STB conjecture for the parameter range. However, the bound quickly

becomes meaningless as B grows larger. Thus, Ghoshal and Komargodski proved another

bound Õ(S4TB2/N +T 2/N) for any B. However, notice that this bound can be worse than

Õ(ST 2/N) bound in [5] when S3B2 > T .

6

Motivated by analyzing post-quantum non-uniform security, several recent works [16],

[17] studied the same question in the quantum setting, in which the adversary is given S-

(qu)bit of advice and T quantum oracle queries. However, Unlike the classical setting, no

matching bounds are known, even for B = 2 and B = T . The Ω(ST 3/N) security bound

by Guo et al., suggests that the optimal attack may speed up the trivial quantum collision

finding by a factor of S. However, the best known attack achieves O(ST 2/N + T 3/N) for

every 2 ≤ B ≤ T .

1.2.2 Our Contribution

Even though Ghoshal and Komargodski confirmed STB conjecture for all constant B, there

is still a significant gap between the best-known attack [1] and known security upper bound

Õ(S4TB2/N + T 2/N) by [15] or Õ(ST 2/N) by [5] for B = ω(1) and less than T . That

motivated us to study the following question in [2]:

Can we further bridge the gap between the security upper and lower bounds, and prove STB

conjecture for more choices of parameters?

Since prior techniques are limited or laborious even for B = 2, we start by asking:

Can we prove STB conjecture for B = 2 in a simpler way?

Looking ahead, we answer both questions affirmatively.

Our main contribution is the following theorem.

Theorem 1 (Informal). For any 2 < B < T , the advantage of the best adversary with S-bit

advice and T queries for finding B-block collisions in Merkle-Damg̊ard hash functions in the

7

auxiliary-input random oracle model, is

Õ
(
(STB/N) ·max{1, ST 2/N}+ T 2/N

)
.

Our bound confirms the STB conjecture for any 2 < B < T for the range of S, T such

that ST 2 ≤ N . For the other range of S, T , as T 2 ≤ N (otherwise, finding a collision is

trivial by the birthday attack), Our bound is at most Õ(S2TB/N +T 2/N), which is optimal

up to a factor of S.

Comparing to the Õ(STB2(log2 S)B−2/N+T 2/N) bound by [15], our bound works for any

2 < B < T , while their bound becomes vacuous when B > logN . However, for B ≤ logN ,

unlike our bound, their bound could be tight even when ST 2 > N . In particular, their bound

confirms STB conjecture for B = O(1).

Our bound strictly improves the Õ(S4TB2/N+T 2/N) bound by [15], and the Õ(S2T/N)

bound by [5] for any 2 < B < T and non-trivial choices of S, T (specifically, when STB at-

tack succeeds with at most a constant probability, i.e., STB = O(N)). The two bounds by

[15] only beat [5] for B ≪
√
T .

A comparison of all the relevant results is summarized in 4.1. Overall, our results in [2]

subsume all previous upper bounds except for the range of S, T,B such that B ≤ logN and

ST 2 > N .

1.2.3 Comparison of Techniques

Here we briefly compare between the techniques used in the two works. The similarity be-

tween the two is that both the works adopt the idea of reducing the problem to multi-instance

8

Best
known
attacks

Security bounds Ref. Proof tech-
niques

B = 1 S
N

+ T 2

N
S
N

+ T 2

N
[4] Compression

B = 2 ST
N

+ T 2

N
ST
N

+ T 2

N
Theorem 24[1] Multi-

instance
problems

B = 2 ST
N

+ T 2

N
ST
N

+ T 2

N
Theorem 23[2] Multi-

instance
games

2 < B < T STB
N

+ T 2

N
STB2(log2 S)B−2

N
+ T 2

N
[15] Multi-

instance
problems

2 < B < T STB
N

+ T 2

N
S4TB2

N
+ T 2

N
[15] Multi-

instance
problems

2 < B < T STB
N

+ T 2

N
STB
N
·max{1, ST 2

N
}+T 2

N
Theorem 22[2] Multi-

instance
games

Unbounded ST 2

N
ST 2

N
[5] Presampling

Table 1.1: Asymptotic security bounds on the security of finding B-block-long collisions in
Merkle-Damg̊ard Hash Functions constructed from a random function H : [N]× [M] 7→ [N]
against (S, T)-algorithms. For simplicity, logarithmic terms and constant factors are omitted.

variant, in which the adversary solves multiple copies of the given problem.

The first work directly analyzes the probability of solving all the instances using the

compression paradigm, which typically requires a non-trivial case analysis of the compli-

cated multi-instance problem. This analysis can be quite laborious and detached from the

single-instance problem and thus fails to give any straight-forward insight on the single-

9

instance problem.

The second work analyzes the multi-instance problem in a framework that corresponds

to a simple variant of the single-instance problem. More precisely the variant corresponds

to a single round of the multi-instance game conditioned on winning in the previous games.

This variant is more similar to the original problem. For the analysis itself of this variant, we

introduce “knowledge gaining events” related to collision-finding. More detailed comparison

can be found in Chapter 4.

1.3 Multi-collisions with Pre-computation in MD Hash Functions

As far as we know, no prior work has studied finding multi-collisions with auxiliary input

and this work is the first to study it. This part of the thesis is a work in progress and will

become a part of future paper.

Multi-collisions have been studied in the random-oracle model, where any adversary

making T queries to the oracle achieve an advantage of θ(Tm/Nm−1) in finding m-way

collision. As for collisions, studying multi-collisions with pre-computation is a meaningful

and non-trivial problem only for the salted hash functions.

Why study multi-collisions in AI-ROM. The notion of multi-collision resistance has

been used in signature schemes [18], identification schemes [19], micropayment scheme [20]

and commitment scheme [21]. This is generally due to the belief that finding multi-collision is

harder than finding collisions. Some works like [22], [23] have used the notion multi-collision

resistance to find secure keyless hash functions. While this indeed holds true in the random

oracle model (advantage of θ(Tm/Nm−1) for m-way collisions vs θ(T 2/N) establishing it),

it cannot be definitely said to hold true for MD based hash functions in the auxiliary-input

10

random oracle model.

In fact, we learn through our study that finding multi-collisions is as easy as finding

collisions in the AI-RO model if the collisions are allowed to be sufficiently long.

In their work [24] analyzing multi-collisions in the quantum setting, Liu and Zhandry

listed several other applications where either the security is based on multi-collision resistance

or multi-collision finding algorithms are used to attack it: security of randomized CBC-MAC

construction [25], ChopMD hash function [26], Lesamnta lightweight hash function [27],

PHOTON hashing algorithm [28], SpongeWrap hash function [29] and attacks on MDC-

2 [30], ChopMD-MAC, HMAC/NMAC [31], iterated Even-Mansour scheme [32], reduced

round LED [33].

1.3.1 Our Contributions

We sum up our results for m-way collision-finding next. S denotes the size of auxiliary input

in bits, T is the number of the queries made to oracle implementing a random function h

in [N] × [M] → [N] and B is the length of accepted multi-collisions. We assume M >> N

such that m-way 1-block collisions exist on every salt.

1. For B = 1, it can be shown that it is impossible for any adversary in AI-RO model to

achieve advantage better than Õ
(

S
mN

+ Tm

Nm−1

)
. Note that this bound shows a loss of

factor of m in advantage compared to collision-finding when S/mN is the dominating

term or the loss is same as in the random oracle model otherwise. The trivial attack

matches this bound.

We obtain this result following the technique of ‘global’ compression with an easy

modification from [4].

11

2. Our result for B = 2 does not follow trivially from prior works on collision-finding

or using their techniques. We show that no adversary in AI-RO model can achieve

better than Õ
(

ST
mN

)
when S ≥ T . This bound again shows a loss of factor of m in

advantage compared to collision-finding and the advantage of the naive attack matches

this bound.

We reduce the problem to ‘parallel’ multi-instance problem of m-way collision finding

(unlike the reduction to ‘sequential’ multi-instance problem for collision-finding) and

analyze it.

3. For B = T , a reduction to the collision-finding problem bounds the advantage to

Õ(ST 2/N). Our interesting finding is a matching attack whose pre-computation phase

slightly differs from that of the best collision-finding attack.

4. For any other B, the best we manage to do is bound the advantage via reduction to the

collision-finding problem. The bounded-length version of our attack from (3) matches

the bound when B ≥ 2 logm and SB ≥ T .

1.4 Double Encryption as a PRP

Diffie and Hellman suggested key extension to increase security guarantees of the systems,

without raising compatibility issues, as the computational capabilities of the attackers im-

prove over time. Diffie and Hellman suggested using Cascade encryption to perform key

extension for the popular block cipher constructions like DES. We study the simplest 2-

cascade encryption, namely double encryption, in the bounded memory regime.

1.4.1 Related Work

Prior works that have studied Streaming algorithms are all relevant. We will focus on prior

works that have studied streaming adversaries specifically for cryptographic applications.

12

Some of the most noteworthy recent works have revisited the switching lemma, results on

popular symmetric encryption designs and authenticated encryption designs and many other

results by considering the role of the adversary’s memory capability. Memory had tradition-

ally been considered by cryptanalysts, as a large-memory algorithm may be infeasible to

implement even if its runtime is within reach. However, from the direction of proving impos-

sibility results, memory was not considered until recently, when it was pointed out [34], [35]

that computational reductions in cryptography could be made “memory tight” and some-

times yield a wider range of effective bounds. In particular, when a problem becomes harder

for small-memory algorithms (such as LPN), a memory-tight reduction may be important.

On the other hand, some problems (like finding a collision in a generic hash function) are

solved optimally with small memory and do not benefit from memory-tightness. Subsequent

work [36]–[40] has explored possibility and impossibility results on memory tightness. Fur-

ther work [41], [42] extended the consideration of memory to information-theoretic steps as

well.

Jaegar and Tessaro in [42] were the first to study the switching lemma with bounded memory.

They realized that giving time-memory lower bounds for adversaries that can repeat queries

would be difficult. This is because such an adversary can make use of Pollard-rho type mem-

oryless algorithms to find collisions. Hence, they focused on adversaries that cannot repeat

queries. The authors, however, found proving an unconditional bound out of reach. Their

proof relied on a combinatorial conjecture on hypergraphs being true to give a conditional

loose upper boundon the advantage. Dinur [43] succeeded in proving a bound which has a

matching attack up to log factors, by giving a reduction from the Disjointness problem in

the communication model to streaming and using the existing results from communication

complexity. Another recent work [44] improved the result from [42].

13

Tessaro and Thiruvengadam [41] showed equivalence between Double Encryption and a spe-

cial case of Element distinctness, which is list disjointness, and used that to give a conjectured

time-space lower bound on Double Encryption. This bound was later proved unconditionally

in a restricted model, namely the post filtering model, by Dinur [45]. It must be noted that

our aim is to study Double Encryption for a restricted class of adversary, namely the non-

adaptive and non-repeating in the streaming model. Follow-up works [36], [37], [41], [42],

[46] have studied more primitives, namely authenticated encryption, symmetric encryption

for streaming adversaries.

1.4.2 Our Contributions

Given possible keys k1, k2, k3, ..., kt for a block cipher E, Cascade encryption, as the name

suggests, performs encryption as follows: Ekt ◦ · · · ◦ Ek3 ◦ Ek2 ◦ Ek1 . The smallest cascade

possible is Ek2 ◦Ek1 which requires 2 keys and is referred to as double encryption. However,

it was quickly concluded that double encryption does not asymptotically increase security

over single encryption. In order to increase security off the DES block cipher, which was

famously deployed with key length too short (56 bits) to provide meaningful security against

modern adversaries, without dealing with the difficulty of redeploying with replacement block

ciphers, Triple-DES X9.52, which runs DES three times under some keying strategy, has

become the standard in some domains.

This conclusion about double encryption was based on an attack strategy called meet-

in-the-middle attack, proposed by Diffie and Hellman. The attack roughly works as follows:

adversary queries the double encrypting oracle on some plaintext, say X, to obtain cipher-

text, say Z. Next, adversary queries E on the set of all possible keys with X and E−1 on the

set of all possible keys with Z. Then adversary looks for a collision between the responses

from E and E−1. The keys corresponding to the colliding responses are potential keys used

14

in double encryption.

An adversary performing meet-in-the-middle attack on double encryption with 2 keys,

each of size k-bits, can recover the keys with constant probability after making 2 ·2k = O(2k)

queries which is an order of 2k better than a brute-force attack. For an adversary making q

queries to each of E and E succeeds in recovering the correct keys with probability O(q2/22k)

which is better than brute force by a factor of O(q).

However, one caveat of the meet-in-the-middle attack, that has not received much atten-

tion, is that it requires O(2k · n) space to succeed with constant probability, where k is the

key size and n is the block size of the underlying block cipher in bits. To mount meet-in-

the-middle attack on DES, which has key size of 56 bits, over 261 bits ∼ 250 petabytes of

space is required. Not every attacker can afford to have this much memory.

Understandably, memory is a valuable and limited resource, sometimes even more than

time, and thus should be accounted for in the abilities of the adversary while analyzing their

advantage against any primitive. Security bounds ignoring memory as a parameter may

be too pessimistic and their employment to decide optimal security parameter maybe an

overkill of resources, in terms of computation cycles and bits of randomness used.

Oorschot and Wiener studied algorithms with time-memory trade-offs for attacking dou-

ble encryption adaptively. They gave an attack for a more general problem of collision search

which can be applied for cryptanalysis of double encryption. The collision search problem

is as follows: given a function f : [N] → [N] and C, the adversary needs to find C pairs of

distinct inputs that collide under f using m-bits of bounded memory and making at most

q queries to f . Their attack achieves the best known trade-off of mq2 = Õ(C2N). The

15

algorithm can be interpreted to achieve the advantage of mq2/23k for key-recovery in double

encryption, which is faster for q > 2k and currently the best known.

This trade-off is optimal for m ≈ C trivially. However, for C >> m, it is hard to prove

the optimality of the bound. Proving optimality for C >> m is relevant for cryptanalysis of

double encryption.

Dinur in [45] proved that the bound is optimal in the Post Filtering Model. It is worth to

note that this does not prove that a better trade-off for recovering keys in Double encryption

with adaptive queries is impossible. It just says that no attack that reduces the problem to

collision search can do any better than the attack given by Oorschot and Wiener.

Overall, recovering keys for Double encryption with bounded time and memory using

adaptive queries is a well-studied problem. The motivation for this work comes from the

lack of similar treatment given to what we refer to as the semi-adaptive setting. This work

investigates the role that adaptivity plays in the gap between these algorithms. Both are

known-plaintext attacks, but MITM is non-adaptive while the better tradeoffs use adaptive

queries (akin to cycle finding techniques). We show that this is in some sense inherent: For

a large class of non-adaptive attacks against double encryption (that includes MITM), we

prove in the ideal-cipher model (ICM) that mq/22k is the optimal advantage. This work

studies the security of double encryption under this setting, and questions the need for triple

encryption where the potential adversaries do not have hundreds of petabytes of data space

at their disposal.

Our results in a nutshell.

1. We give an information theoretic proof that advantage of traditional MITM adversary

16

with m-bit memory, making q queries to E and E−1 each is bounded by O
(
mq
22k

)
.

2. We give an information theoretic proof that advantage of traditional MITM adversary

with m-bit memory, making q queries to E and E−1 each in any arbitrary order is

bounded by Õ
(
mq
22k

)
.

3. We also prove tighter versions of results (1) and (2) via reduction to the problem of

communication complexity of Unique Disjointness. This proving strategy is inspired

from the work of Dinur [43]

17

Chapter 2

Preliminaries

This chapter presents the notations, definitions and results used in Chapters 3 and 4.

2.1 Notations

For non-negative integers N, k, we write [N] for {1, 2, · · · , N} and
(
[N]
k

)
for the collection of

all size-k subsets of [N]. For a finite set X, we write X+ for the set of tuples of 1 or more

elements of X. Random variables will be written in bold, and we write x←$ X to indicate

that x is a uniform random variable in X.

2.2 Definitions

2.2.1 Random Oracle [47]

In random oracle model, we model a hash function as a random function h that is sampled

uniformly at random from all functions at the beginning. h is publicly accessible to every

entity.

A useful property about random oracle model is that, instead of sampling h uniformly

18

at random, one can assume h is initialized as a function that always outputs ⊥; which

indicates the response has not been sampled. Whenever an input x is queried and h(x) has

not been sampled (i.e. h(x) = ⊥), the random oracle samples y uniformly from the range

and h(x) := y.

2.2.2 Merkle-Dam̊gard Hash Functions (MD)

A hash function usually is required to function over inputs with different lengths. Many

practical hash functions are based on the Merkle-Damg̊ard construction (MD). It takes a

hash function with fixed length input to a new hash function with arbitrary input lengths.

We treat the underlying hash function as a random oracle h : [N]× [M]→ [N]. We call

a message m is a B-block message if m can be written as m = (m1, · · · ,mB) where each

mi ∈ [M]. The function MDh(a,m) evaluates on a salt a ∈ [N] and a message m as the

follows:

MDh(a,m) = MDℓ
h(a, (m1, · · · ,mℓ)) =


h(MDℓ−1

h (a, (m1, · · · ,mℓ−1)),mℓ) ℓ > 1

h(a,m1) ℓ = 1

It applies the fixed-length hash function H on the salt a and the first block m1 to get a new

salt a2; it then applies H again on a2 and m2 until finally it outputs a single string in [N].

2.2.3 Collision-Resistance against Auxiliary Input (AI).

We start by defining the security game of collision-resistance against auxiliary input adver-

saries. The adversary is unbounded in the preprocessing stage and leave nothing but a piece

of bounded-length advice for the online stage.

19

Definition 13 ((S, T)-AI algorithm). A pair of algorithms A = (A1,A2) is an (S, T)-AI

adversary for MD if

• Ah
1 is unbounded (making unbounded number of oracle queries to h) and outputs S bits

of advice σ;

• Ah
2 takes σ and a salt a ∈ [N], issues T queries to H and outputs m1,m2.

We are ready to define the security game of collision-resistance against an (S, T)-AI

adversary.

Definition 14 (Auxiliary-Input Collision-Resistance). We define the following game AI-CR

for a fixed random oracle h and a salt a ∈ [N] in 2.1. The game outputs 1 (indicating that the

adversary wins) if and only if A outputs a pair of MD collisions. For an (S, T)-AI adversary

Game AI-CRh,a(A)
σ ← Ah

1

m1,m2 ← Ah
2(σ, a)

If m1 ̸= m2 and MDh(a,m1) = MDh(a,m2)
Then Return 1

Else Return 0

Figure 2.1: Security game AI-CRh,a(A)

A = (A1,A2), we define the advantage of A as its winning probability in the AI-CRh,a with

uniformly random h← {f : [N]× [M]→ [N]} and random a← [N]. We define the (S, T)-

auxiliary-input collision-resistance of Merkle-Damg̊ard, denoted by AdvAI-CR
MD (S, T), as the

maximum of advantage taken over all (S, T)-AI adversaries A.

Definition 15. We define the following game B-AICR for a fixed random oracle h and a

salt a ∈ [N] in 2.2, where B is a function of N (the range size of the random oracle). The

game outputs 1 (indicating that the adversary wins) if and only if A outputs a pair of MD

collision with at most B(N) blocks.

20

Game B-AICRh,a(A)
σ ← Ah

1

m1,m2 ← Ah
2(σ, a)

If m1 or m2 consists of more than B(N) blocks
Then Return 0

If m1 ̸= m2 and MDh(a,m1) = MDh(a,m2)
Then Return 1

Else Return 0

Figure 2.2: Security game B-AICRh,a(A)

Game 2-AICRh,a(A)
σ ← Ah

1

m1,m2 ← Ah
2(σ, a)

If m1 or m2 consists of more than 2 blocks
Then Return 0

If m1 ̸= m2 and MDh(a,m1) = MDh(a,m2)
Then Return 1

Else Return 0

Figure 2.3: Security game 2-AICRh,a(A)

For an (S, T)-AI adversary A = (A1,A2), we define the advantage of A as its winning

probability in the B-AICRh,a with uniformly random h← {f : [N]× [M]→ [N]} and random

a ← [N]. We define the (S, T,B)-auxiliary-input collision-resistance of Merkle-Damg̊ard,

denoted by AdvAI-CR
B-MD (S, T), as the maximum of advantage taken over all (S, T)-AI adversaries

A.

For convenience, we similarly define AdvAI-CR
2-MD (S, T) as the maximum of advantage of

winning the game 2-AICR (see 2.3) taken over all (S, T)-AI adversaries A.

2.2.4 Multi-Instance Collision-Resistance (MI).

We then define the sequential multi-instance collision-resistance of Merkle-Damg̊ard. As

shown by [16], the AI-security is closely related to the (sequential) MI-security. Note that

in the MI security, an adversary does not take any advice but tries to solve independent

instances sequentially.

21

Definition 16 (Multi-Instance Collision-Resistance). Fixing function S, and a random or-

acle h, we define the following game MICRS in 2.4. In this game, A will receive S freshly

independent and uniform salts and it needs to find a MD collision with respect to each salt

ai, in a sequential order. In other words, A will never see the next challenge salt until it

solves the current one.

Game MICRS
h,a(A)

For i ∈ {1, 2, · · · , S}:
Sample ai ← [N]
m1,m2 ← Ah(ai)
If MDh(ai,m1) ̸= MDh(ai,m2)

Return 0
Return 1

Figure 2.4: Security game MICRS
h,a(A).

In this security game, A is a stateful algorithm that maintains its internal state between

each stage. We usually consider an (S, T)-MI adversary A which makes at most T queries

in each of these S stages.

For an (S, T)-MI adversary A, we define the advantage of A as its winning probability

in the MICRS
h,a with uniformly random h and a← [N].

We define the (S, T)-multi-instance collision-resistance of Merkle-Damg̊ard, denoted by

AdvMI-CR
MD (S, T), as the maximum of advantage taken over all (S, T)-MI adversaries A.

Definition 17. Fixing functions B and S, and a random oracle h, we define the following

game B-MICRS in 2.5. In this game, A will receive S freshly independent and uniform salts

and it needs to find a MD collision with respect to each salt ai of at most B blocks, in a

sequential order. In other words, A will never see the next challenge salt until it solves the

current one.

In this security game, A is a stateful algorithm that maintains its internal state between

each stage. We usually consider an (S, T)-MI adversary A which makes at most T queries

in each of these S stages. We similarly define 2-MICR by setting B = 2 in B-MICR.

22

Game B-MICRS
h,a(A)

For i ∈ {1, 2, · · · , S}:
Sample ai ← [N]
m1,m2 ← Ah(ai)
If m1 or m2 consists of more than B blocks,
or MDh(ai,m1) ̸= MDh(ai,m2)

Return 0
Return 1

Figure 2.5: Security game B-MICRS
h,a(A).

For an (S, T)-MI adversary A, we define the advantage of A as its winning probability

in the B-MICRS
h,a with uniformly random h and a← [N].

We define the (S, T,B)-multi-instance collision-resistance of Merkle-Damg̊ard, denoted

by AdvMI-CR
B-MD (S, T), as the maximum of advantage taken over all (S, T)-MI adversaries A.

For convenience, we similarly define AdvMI-CR
2-MD (S, T) as the maximum of advantage of

winning the game 2-MICRS
h,a (for random h, a) taken over all (S, T)-MI adversaries A.

2.2.5 Bit-Fixing Collision-Resistance (BF)

We recall the bit-fixing model of Unruh [3]. When f : X → Y is a function on some

domain and range, and L is an independent list (xi, yi)
|L|
i=1 where xi ∈ X and yi ∈ Y for all

i ∈ 1, . . . , |L| and all the xi are distinct, we define fL as follows:

fL(x) =


yi if ∃(xi, yi) ∈ L such that x = xi

f(x) otherwise.

In other words, L is a list of input/output pairs, and fL is just f , but with outputs overwritten

by the tuples in L.

Definition 18. Let h : [N] × [M] → [N], and a ∈ [N]. For an adversary B and a list L

of input/output pairs for h we define BF-CRh,a(B,L) in Figure 2.6. We define the bit-fixing

23

Game BF-CRh,a(B,L)
α, α′ ← BhL(a)
If α ̸= α′ and MDhL(a, α) = MDhL(a, α

′)
Then Return 1

Else Return 0

Figure 2.6: Security game BF-CRh,a(B,L).

collision-resistance advantage of (B,L) against Merkle-Damg̊ard as

Advbf-crMD (B,L) = Pr[BF-CRh,a(B,L) = 1],

where h
$← Func([N]× [M], [N]), a

$← [N] are independent.

We say (B,L) is an (P, T)-BF adversary if L has at most P entries and B issues T

queries to its oracle (for any inputs and oracles). We define the (P, T)-bit-fixing collision

resistance of MD, denoted Advbf-crMD (P, T), as the maximum of Advbf-crMD (B,L) taken over all

(P, T)-BF adversaries (B,L).

As with AI security, we also consider bounded-length collision resistance against BF

adversaries.

Definition 19. We say (B,L) is an (P, T,B)-BF adversary if L has at most P entries, B

issues T queries to its oracle (for any inputs and oracles). and the outputs of B each consist

of B or fewer blocks.

We define the (P, T,B)-bit-fixing collision resistance of MD, denoted Advbf-crMD (P, T,B),

as the maximum of Advbf-crMD (B,L) taken over all (P, T,B)-BF adversaries (B,L).

24

2.3 Useful Results

2.3.1 Chernoff Bound.

Suppose X1, · · · ,Xt are independent binary random variables. Let X denote their sum and

µ = E[X]. For any δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

2.3.2 Reduction to MI collision-resistance

The following theorem will be useful for proving the AI collision-resistance of Merkle-

Damg̊ard. It says a lower bound for the MI collision-resistance implies a lower bound for

the AI security. Therefore, in the rest of the paper, we will focus on the MI collision-

resistance of Merkle-Damg̊ard with different lengths B. The theorem is based on the idea

of Theorem 4.1 in [16], which implies that if AdvMI-CR
B-MD (S + logN + 1, T) ≤ δS+logN+1, then

AdvAI-CR
B-MD (S, T) ≤ 4δ. We slightly improve their parameter, and obtain a considerably cleaner

statement.

Theorem 2. For any S, T,B and 0 ≤ δ ≤ 1, if AdvMI-CR
B-MD (S, T) ≤ δS, then AdvAI-CR

B-MD (S, T) ≤

2δ.

Proof of 3. We prove by contradiction. Assume there is an (S, T)-AI adversaryA = (A1,A2)

such that

Pr
h,a

[B-AICRh,a(A) = 1] > 2δ,

Consider the following (S, T)-MI adversary B:

1. B samples a uniformly random σ of S bits.

25

2. For each stage i ∈ [S]:

• B receives ai from the challenger.

• B runs Ah
2(σ, ai) to obtain and output m1,m2.

We will show that Prh,a1,...,aS
[
B-MICRS

h(B) = 1
]
> δS. For every fixed choice of h, we define

δh := Pr
a
[B-AICRh,a(A) = 1] .

Observe that Eh[δh] = Prh,a [B-AICRh,a(A) = 1] > 2δ. For every fixed choice of h, condition-

ing on that B guesses the output of Ah
1 correctly, then B perfectly simulates A. Therefore,

Pr
a1,...,aS

[B-MICRh(B) = 1] ≥ Pr
a1,...,aS

[B-MICRh(B) = 1|σ = Ah
1] · Pr[σ = Ah

1] = δSh/2
S .

By averaging over the randomness of H,

Pr
h,a1,...,aS

[B-MICRh,a(B) = 1] ≥ Eh[δ
S
h]/2

S ≥ E[δh]
S/2S > δS ,

where the second inequality is by Jensen’s inequality, and the last inequality is by Eh[δH] >

2δ.

We can prove the following theorem in a similar manner.

Theorem 3. For any S, T and 0 ≤ δ ≤ 1, if AdvMI-CR
MD (S, T) ≤ δS, then AdvAI-CR

MD (S, T) ≤ 2δ.

26

Chapter 3

Short Collisions

The works presented in this part consider the security of random-oracle-based hash functions

against preprocessing adversaries which have a bounded amount of arbitrary auxiliary infor-

mation on the random oracle to help them. Attacks in this model were first considered by

Hellman [7], who gave a heuristic time-space tradeoff for inverting cryptographic functions.

We would like to understand the power of these attacks in the context of finding collisions

in hash functions, and in particular, salted hash functions based on the widely used Merkle-

Damg̊ard paradigm (MD).

Finding short collisions. In the works, we focus on understanding the best attacks for

finding short collisions, as motivated by real-world applications. Concretely, across two

works we put forth and study the following conjecture:

STB conjecture: The best attack with time T and space S for finding collisions

of length B in salted MD hash functions built from hash functions with n-bit

outputs achieves success probability Θ((STB + T 2)/2n).

The birthday attack achieves O(T 2/2n), and we will describe an attack from [1] that

achieves Ω(STB/2n). Short of proving circuit lower bounds, we cannot hope to rule out

27

better attacks, except in idealized models, where we treat the underlying hash function as a

random oracle.

The AI-RO model. We use the auxiliary-input random oracle (AI-RO) model introduced

by Unruh [3], which was originally motivated by dealing with the non-uniformity of adver-

saries that is necessary for some applications of the random-oracle model [47]. In the AI-RO

model, two parameters S, T are fixed, and adversaries are divided into two stages (A1,A2):

The first has unbounded access to a random function h, and computes an auxiliary input

(or advice string) for A2, σ of length S bits. Then the second stage accepts σ as input, and

gets T queries to an oracle computing h, and attempts to accomplish some goal involving

the function h. We typically think of the adversaries as information-theoretic and ignore

runtime. Adversaries in the AI-RO correspond roughly to circuits of size O(S + T).

Salted-collision resistance of MD hash functions at the AI-RO model was first studied by

Coretti, Dodis, Guo and Steinberger (CDGS) [5]. They proved the STB conjecture in the

setting B = T , showing an attack with success probability ST 2/2n and proving its optimality.

Collision-resistance in the AI-RO. We consider salted collision resistance following

Dodis, Guo and Katz [4], in order to rule out trivial attacks where the adversary hardwires

a collision on h. Assume, as we shall for the rest of the paper, that the function has the

form h : [N]× [M]→ [N], where [N] = [2n] and [M] = [2m], which we identify with {0, 1}n

and {0, 1}m respectively. In salted collision-resistance in the AI-RO model, the second stage

adversary gets in addition as input a random “salt” a ∈ [N] and must find α ̸= α′ ∈ [M]

such that h(a, α) = h(a, α′). The prior work obtained a bound of O(S/N + T 2/N) on the

success probability of any adversary, which is optimal (their result actually covers a wider

parameter range and different forms of h that are not relevant for our results here). These

28

results were interestingly proven via compression arguments [48], [49], where it is shown that

an adversary that is successful too often can be used to compress uniformly random strings,

which is impossible (cf. [50] for other applications of encoding arguments in computer sci-

ence and combinatorics).

In order to better model in-use hash functions, the afore-mentioned work of Coretti,

Dodis, Guo and Steinberger examined the salted-collision resistance of an MD hash function

built from h in the AI-RO model [5]. Here, the first stage adversary works as before, but

the second adversary only needs to find a collision in the iterated MD function built from h,

starting at a random salt; We give precise definitions in the next section. That work showed

that finding these collisions is substantially easier, giving an attack and matching lower

bound of O(ST 2/N). This was surprising in a sense, as it shows there exists an S = T ≈ 260

attack against a hash function with 180-bit output, well below the birthday attack with

T ≈ 290.

A closer look at this attack reveals that the collisions it finds are very long (on the order

of T blocks), so in our example the colliding messages each consist of 260 blocks. While

technically violating collision-resistance, this adversary is not damaging in any widely-used

application we are aware of, as the colliding messages are several petabytes long. Addressing

whether or not this attack, or the lower bound, can be improved to find shorter collisions is

the starting point for our work.

The starting point of this work is the observation that Hellman’s attack (or an easy mod-

ification of the attack in [5]) can find length-B collisions with success probability roughly

STB/N . We make this formal in Section 3.1.

29

While the attack was easy to modify for short collisions, proving that it is optimal is an

entirely different matter with significant technical challenges. In order to explain them, we

recall the approach of [5] used to prove the O(ST 2/N) bound for salted MD. They used a

technical approach (with tighter parameters) first developed by Unruh [3], which connects

the AI-RO model to the bit-fixing random oracle (BF-RO) model (we defer the definition to

the next section). Their work transfers lower bounds in the BF-RO model to lower bounds

in the AI-RO model.

We show that the BF-to-AI template inherently cannot give a lower bound for finding

short collisions, because finding short collisions in the BF-RO model is relatively easy. That

is, the lower bound of the form we would need for BF-RO model simply does not hold. In

the notation introduced above, we would need to show that no adversary finding length-2

collisions can do better than O((P + T)/N) advantage, but we give a simple attack in BF-

RO model that finds length-2 collisions with advantage Ω(PT/N). Thus another approach

is required.

Our lower bound technique. Given that the BF-to-AI technique cannot distinguish

between short and long collision finding, we must find another approach. There are two

options from the literature: The previously-mentioned compression arguments, and another

lesser-known but elegant method of Impagliazzo using concentration inequalities.

Compression arguments which were previously observed [5] to be difficult (or “intractable”)

to apply to the setting of salted MD collision finding despite working in the original non-MD

setting [4]. Given that compression was already difficult in this setting, it does not seem

promising to extend it to the harder problem of short collisions.

30

To address these difficulties, we introduce a new technique that first applies a variant

of the “constructive” Chernoff bound of Impagliazzo and Kabanets [51] to prove time-space

tradeoff lower bounds.

The concentration-based approach to time-space tradeoff lower bounds was, to our knowl-

edge, first introduced by Impagliazzo in an unpublished work, and then later elucidated in

an appendix [52] (there an older work of Zimand [53] is also credited). The high-level idea is

to first prove that any adversary (with no advice) can succeed on any fixed U ∈ [N] of Ω(S)

of inputs with probability εΩ(S). (In some sense bounding every sufficiently large “moment of

the adversary”). The argument continues by applying a concentration bound to the random

variable that counts the number of winning inputs for this adversary, showing that it wins on

a O(ε)-fraction of inputs except with probability 2−Ω(S). In a final elegant step, one shows

that every advice string is likely to be bad via a union bound over all possible 2S advice

strings, to get a final bound of ε.

The technique of Impagliazzo gives a direct and simple proof for the optimal bound on

inverting a random permutation. There are two issues in applying it to short MD collisions

however. First, as we formally show later, it provable fails for salted MD hashing. The issue

is that the adversary may simply succeed with probability greater than εS on some subsets

U , so the first step cannot be carried out.

We salvage the technique by showing it is sufficient to bound the adversary’s average

advantage for random subsets U rather than all subsets. In the language of probability, we

use a concentration bound that only needs average of the moments to be bounded by εΩ(S),

rather than all of the moments; see Theorem ??.

31

So far we have been able to reduce the problem of proving a lower bound in AI-RO model

to the problem of bounding the probability that an adversary with no advice can succeed

on every element of a random subset of inputs. For the problems we considered, even this

appeared to be complicated. To tame the complexity of these bounds, we apply compression

arguments; Note that we are only proving the simpler bound needed for the Impagliazzo

technique, but using compression, when previously compression was used for the problem

directly. Our variation has the interesting twist that we can not only compress the random

function (as other work did), but also the random subset U on which the adversary is being

run. This turns out to vastly simplify such arguments.

Applications of our technique. We first apply our technique to reprove the O(ST 2/N)

bound for (non-short) collision finding against salted MD hash functions. We then turn to

the question of short collisions. Proving a general bound (perhaps O(STB/N)) for finding

length-B collisions appears to be very difficult, so we start by examining the first new case

of B = 2.

We show that there are qualitative gaps between finding length 1 collisions, length 2

collisions, and arbitrary-length collisions. Specifically, while for length 1 collisions we have

ε = O((S + T 2)/N), we show that length 2 collisions are easier when S > T , as the optimal

bound is O((ST + T 2)/N). For arbitrary-length collisions there is another gap, where the

optimal bound is O(ST 2/N). Our bound for length 2 collisions uses our new compression

approach used above.

It appears that we could, in principle, obtain similar bounds for other small length bounds

like 3 and 4, but these proofs appear to be too long and complex for us to write down; Going

to arbitrary length bounds seems to be out of reach, but there is no inherent obstruction in

32

applying our technique to the general case with new ideas.

Bound for a restricted class of attacks. Given the difficulty of proving the general case,

we instead consider ruling out the class of attacks that gives optimal attacks in the known

cases. Roughly speaking, these attacks use auxiliary information consisting of S collisions

at well-chosen points in the function graph. In the online phase, the attack repeatedly tries

to “walk” to these points by taking one “randomizing” step followed by several steps with

zero-blocks.

For this class of attacks, we show that the best choice of collision points will result in

ε = O(STB/N). This result requires carefully analyzing the size of large, low-depth trees

in random functional graphs, a result that may be of independent interest.

The results of [5] did not use compression. Instead they applied a tightening of the

remarkable and powerful bit-fixing (or presampling) method of Unruh [3], which we briefly

recall here. In the bit-fixing random oracle (BF-RO) model, the adversary no longer receives

an advice string. Instead the first stage adversary can fix, a priori, some bits P of the table

of h. Then the rest of h is sampled, and the second stage attempts to find a salted collision

as before. Building on Unruh’s results, Coretti et al. showed (very roughly) that a bound

of O((T + P)T/N) on the advantage of any adversary in the BF-RO implies a bound of

O(ST 2/N) in the AI-RO. Moreover, the BF-RO bound was very easily proved, resulting in

a simple and short proof.

33

3.1 Bounded-Length Auxiliary-Input Attack

Coretti et al. in [6] gave an Ω(ST 2) bound attack where adversary gets S-bit advice and

T oracle queries to find (unbounded length) collisions against MDh. It is easy to adapt the

attack to B-bounded length collision finding attack for adversary with S-bit advice and T

oracle queries with advantage Ω(STB). We describe this attack and its analysis.

Theorem 4. For any positive integers S, T,B such that B ≤ T < N/4, STB ≤ N/2 and

M ≥ N ,

AdvAI-CR
B-MD (S, T) ≥ STB − 96S

48N logN

Proof. We construct an (S, T,B)-AI adversary A = (A1,A2) with the required advantage

for the case M = N . This attack easily extends to the case where M > N , since given

h : [N] × [M] → [N], we can run the attack on for the function h′ : [N] × [N] → [N] that

coincides with h on all its inputs.

Below we write h0(·) = h(·, 0). The adversary A = (A1,A2) works as follows:

• A1(h): For i = 1, . . . , S/(3⌈logN⌉), do the following:

1. Pick ai
$← [N].

2. Compute yi ← hB′
0 (ai), where B′ = ⌊B/2⌋ − 1.

3. If there exist α, α′ ∈ [M] such that α ̸= α′ and h(yi, α) = h(yi, α
′), then set

(αi, α
′
i) = (α, α′). If not, then set (αi, α

′
i) = (⊥,⊥).

Output the triples (yi, αi, α
′
i) for i = 1, . . . , S/3⌈logN⌉.

• Ah
2(σ, a): If a = yi for some i, return (αi, α

′
i). Otherwise, for j = 1, . . . , ⌊T/B⌋ do the

following:

34

1. Compute â0 = h(a, j).

2. For k = 1, . . . , B − 1:

(a) If âk−1 = yi for some i, return j||0k−1||αi and j||0k−1||α′i.

(b) If âk−1 = âj for some j < k − 1, return j||0j and j||0k−1.

(c) Compute âk = h0(âk−1).

If no collision is found, output ⊥ to indicate failure.

Next, we analyze the advantage of A. This proof is very similar to the proof of Lemma 5

in [6], but we include it for completeness.

We first bound the probability that A1 ever fails to find a collision in step 3 (i.e. that

some (αi, α
′
i) is set to (⊥,⊥)) by

S

3 logN

N !

NN
≤ S

3 logN
· e−(N−1)/2 ≤ 2S

N logN
.

The attack succeeds if â ∈ G during an iteration with k ≤ B/2, because after that there

will be enough steps left to reach the end of the chain. Let R be the event that â repeats at

some point during the algorithm. Let Ft be the event that â ∈ G for the first time on the

(t+ 1)th iteration of the next loop in A2 (1 ≤ t ≤ T). Then for any A ⊆ [N],

Pr[Ft|¬R,G = A] =
|A|

N − t+ 1

t∏
i=1

(
1− |A|

N − i+ 1

)

≥ |A|
N

(
1− 2|A|

N

)t

≥ |A|
N

(
1− 2t|A|

N

)
≥ |A|

2N
.

35

The Ft are disjoint, so the probability that Ft occurs for some t within B/2 steps of a start

point, conditioned on not-R and G = A, is at least

T |A|
4N

.

Putting this together we have

AdvAI-CR
B-MD (A) ≥ E

[
T |G|
4N

]
− Pr[R] + Pr[R]− 2S

N⌈logN⌉
.

Finally we bound E[|G|] ≥ SB/12 logN in exactly the same manner as[6].

3.2 Length 2 Collisions are Relatively Easy in the BF Model

Unruh in [3] proved a remarkable general relationship between the AI-RO and BF-RO mod-

els that was sharpened by Coretti et al. [6]. We recall their theorem now, and then show that

this method, when applied to salted MD hashing, is insensitive to the length of collisions

found and hence cannot give the improved bound we seek in the AI-RO model. We note

that the second part of this theorem was not stated there, but follows exactly from their proof.

Theorem 5. For any positive integers S, T, P and γ > 0 such that P ≥ (S + log γ−1)T ,

AdvAI-CR
2-MD (S, T) ≤ 2Advbf-crMD (P, T) + γ.

Moreover, for any positive integer B,

AdvAI-CR
2-MD (S, T) ≤ 2Advbf-crMD (P, T, 2) + γ.

The following is a simple extension of an attack of [5], which shows that finding even just

36

length-2 collisions in the BF model is much easier than finding length-1, and in fact as easy

as finding general length collisions.

Theorem 6. For all positive integers P, T such that PT ≤ 2N , there exists a (P, T, 2)-BF

adversary (B,L) such that

Advbf-crMD (B,L) =
(
1− 1

e

)
PT

2N
.

Proof. We construct a (P, T, 2)-BF adversary (B,L) to prove the theorem. We assume P is

even for simplicity of notation. To define the list L, let α, α′ ∈ [M], a1, . . . , aP/2, y ∈ [N] be

some arbitrary points, and let L consist of the P entries

((a1, α), y), ((a1, α
′), y), . . . ((aP/2, α), y), ((aP/2, α

′), y).

Adversary B does the following on input a and oracle hL: Let α1, · · · , αT ∈ [M] be arbitrary

distinct points. For j = 1, . . . , T , query (a, αj) to the oracle hL. If the output is an element

of {a1, . . . , aP/2}, then output colliding messages αj∥α and αj∥α′.

We lower bound Advbf-crMD MD(B,L). Let E be the event that the output of some query

made by B is in the set {a1, . . . , aP/2}. Clearly, when E happens, our adversary wins the

game. Thus

Advbf-crMD (B,L) ≥ 1− Pr[¬E] ≥ 1−
(
1− P

2N

)T

≥ 1− e−PT/2N ≥
(
1− 1

e

)
PT

2N

where the last inequality holds because 0 ≤ PT
2N
≤ 1.

This adversary shows that applying Theorem 5 can at best give AdvAI-CR
MD MD(S, T, 2) =

O(ST 2/N), which we show to be suboptimal in Section 4.1, where using compression tech-

niques we prove a bound of Õ (ST/N).

37

3.3 Unbounded Length Collision AI Bound

In this section we give a different proof of the O(ST 2) bound of Coretti et al.[6], formalized

as follows.

Theorem 7. For any positive integers S, T ,

AdvAI-CR
MD (S, T) ≤ 192e(S + logN)T 2 + 1

N
.

Following Impagliazzo [51], we proceed by analyzing an adversary without auxilliary

input “locally.”

Lemma 8. For any positive integers S, T ,

AdvMI-CR
MD (A) ≤

(
32eST 2

N

)S

.

where A is an (S, T)-MI adversary.

This lemma is proved below.

3.3.1 Proof of Lemma 8

Colliding chains. We start with some useful definitions and a simplifying lemma.

Definition 20. Let h : [N] × [M] → [N]. A list of elements (x0, α0), . . . , (xℓ, αℓ) from

[N]×[M] is called an MD-chain (for h) when h(xi, αi) = xi+1 for i = 0, . . . , ℓ−1. We say two

chains (x0, α0), . . . (xℓ, αℓ) and (x′0, α
′
0), . . . (x

′
ℓ′ , α

′
ℓ′) collide (for h) if h(xℓ, αℓ) = h(x′ℓ′ , α

′
ℓ′).

We will treat chains as strings (over [N] × [M]) and speak of prefixes and suffixes with

their usual meaning.

38

Lemma 9. Let C,C ′ be distinct non-empty colliding chains for h. Then C,C ′ contain

prefixes C̃, C̃ ′ respectively, C̃ = (x0, α0), . . . (xℓ, αℓ) and C̃ ′ = (x′0, α
′
0), . . . (x

′
ℓ′ , α

′
ℓ′) where

either (xℓ, αℓ) ̸= (x′ℓ′ , α
′
ℓ′) or one of C̃, C̃ ′ is a strict suffix of the other.

Proof. Induction on the maximum length of C,C ′. For length 1 this is obvious. For the

inductive step, suppose neither is a strict suffix of the other, and that the final entries are

equal. Then we can remove the final entries from both chains to get two non-empty shorter

chains and apply the inductive hypothesis.

Proof of Lemma 8. We prove the lemma by compression. Let U
$←
(
[N]
u

)
and h

$←

Func([N] × [M], [N]) be independent. Let A = (A1,A2) be (S, T)-AI adversary where A1

always outputs some fixed string σ̂. Observe that if, for all a ∈ U, A2 never queries a point

of h with input salt a′ ∈ U, a ̸= a′ among the T queries it makes for input a, and also that

the chains produced for each a are disjoint from the chains for a′, then it is relatively simple

to carry out a compression argument, by storing two pointers [T] to compress an entry in [N]

(which would translate to a bound (T 2/N)u). But of course A might “cross up” queries for

the different salts. If we tried to prove a version of the lemma for all U ⊂
(
[N]
u

)
(as was done

in the original context of the appendix in [52]) rather than a random U, then the adversary

could be specialized for the set U ; In section ?? we give an attack that finds collisions of

B = 2 for a fixed subset with greater probability than the upper bound on the advantage of

attacking a random subset of same size.

Also, when we choose U at random, a fixed A can’t be specialized for the set, and the

“crossed up” queries between salts are unlikely. Formally, if A queries a salt a′ ∈ U while

attacking a ∈ U, we take advantage of this by compressing an entry of the random set U

when a crossed-up query occurs. Very roughly, this requires a pointer in [T] and saves a

factor N/S (because we are omitting one entry from an (unordered) set of size about S). The

39

net compression is then about ST/N per crossed-up query. The details are a bit more com-

plicated, as this compression actually experiences a smooth trade-off as more such queries

are compressed and the set shrinks. We handle the case when the chains for a ̸= a′ intersect

via a simpler strategy that also results in ST/N factors.

Once the crossed-up queries are handled, the proof effectively reduces to the simpler case

without crossed-up queries.

Proof. For the rest of the proof we fix some A = (A1,A2), where A1 always outputs some

fixed σ̂. Let

G = {(U, h) | ∀a ∈ U : AI-CRh,a(A) = 1} ⊆
(
[N]

u

)
×H.

Let

ε = Advu-AI-CR
MD MD(A).

So |G| = ε
(
N
u

)
NMN . We define an injection

f : G → {0, 1}L

with L satisfying

2L(
N
u

)
NMN

≤
(
32euT 2

N

)u

.

Pigeonhole then immediately gives the bound on ε.

For (U, h) ∈ G, f(U, h) outputs an L-bit encoding, where L will be determined below, of

(F,UFresh,Pred,Cases,Coll, h̃),

where the first output F is an integer between 1 and u, UFresh is a subset of U of size F ,

40

Pred is a set of pointers, Cases is a list of elements in {1a, 1b, 2}, and Coll is a list of pairs of

pointers, and the last output h̃ is h but rearranged and with some entries deleted. We now

define these outputs in order.

Fresh salts and prediction queries. Fix some (U, h) ∈ G, and let U = {a1, . . . , au},

where the ai are in lexicographic order. Let Qrs(ai) ∈ ([N] × [M])T denote the queries A2

makes to its oracle when run on input (σ̂, ai). Let us abuse notation by writing ai /∈ Qrs(aj)

to mean that ai is not the first component of any entry in Qrs(aj) (in other words, the salt

ai is not queried when A2 runs on aj).

We define UFresh ⊆ U inductively by

ai ∈ UFresh ⇔ ∀1 ≤ j < i : aj ∈ UFresh ⇒ ai /∈ Qrs(aj).

The set UFresh trivially contains a1. For i > 1, ai ∈ UFresh if no prior salt in UFresh causes A2

to query ai. Conversely, for any ai ∈ U \ UFresh, there is a prior salt aj ∈ UFresh such that

ai ∈ Qrs(aj).

Let us denote the size of UFresh by F , and let us write UFresh = {a′1, . . . , a′F} where the a′j

are in lexicographic order. From now on we will only need to deal with the queries issued

when the adversary is run on fresh salts. Let Qj = Qrs(a′j) for j = 1, . . . , F and

QFresh = Q1∥ · · · ∥QF ∈ ([N]× [M])FT .

Going forward, we will sometimes use indices from [FT] to point to queries in QFresh and

sometimes indices from [T] to point to queries in Qj for some j.

For each a ∈ U \ UFresh, there exists a minimum ta ∈ [FT] such that QFresh[ta] is a query

41

with input salt a. We define Pred ⊆ [FT], the prediction queries, to be

Pred = {ta | a ∈ U \ UFresh} ⊆ [FT].

We have |Pred| = u− F .

New and old queries. Call an index r ∈ [FT] new if QFresh[r] does not appear earlier

in QFresh (more precisely, if s < r implies QFresh[s] ̸= QFresh[r]). For j ∈ [F] we will speak

of an index t ∈ [T] being new in Qj, technically meaning that (j − 1)T + t ∈ [FT] is new.

Since we assume that the queries in Qj are distinct, Qj[t] being new is equivalent to Qj[t]

not appearing in Q1∥ · · · ∥Qj−1. When a query is not new, we say it is old.

Claim 10. Let QFresh = Q1∥ · · · ∥QF ∈ ([N]× [M])FT be defined as above. Then for each j,

at least one of the following cases holds:

1. (a) There exists sj ∈ [T] such that sj is new in Qj and h(Qj[sj]) = a′j ,

(b) There exists s′j < sj ∈ [T] such that sj and s′j are new in Qj and h(Qj[sj]) =

h(Qj[s
′
j])

2. There exists sj ∈ [T] and s′j ∈ [FT] such that sj is new in Qj, s
′
j points to query in

Q1|| . . . ||Qj−1, and h(Qj[sj]) equals the input salt of QFresh[s
′
j].

These cases are depicted in Figure 3.1.

Proof of claim. For each j, Qj contains a pair of colliding chains that both start from a′j.

Either some query in the chains is old, or else all the queries in both chains are new.

Suppose first that some query is old, and focus on the chain containing the old query.

Since a′j is fresh, this old query cannot be the first query of the chain. Thus, starting from

42

Qj

sj

Q1

···
Q2

···

Qj−1

(i) Case 1(a)

Qj

(sj,s
′
j)

···

Q1

Q2

···

Qj−1

(ii) Case 1(b)

Qj

Q1

····
···
·
·······

Qj−1

···

···

(sj,s
′
j)

(iii) Case 2
Figure 3.1: Cases from claim 10. Box denotes an index. White box denotes query at the
index is new.

the beginning of this chain, we eventually reach a query that is new but the next query is

old. Because these queries form a chain, this new query will output the old query’s input

salt. So we take sj to point to this new query in Qj, and s′j to point to the earlier query in

Q1∥ · · · ∥Qj−1, and Case 2 of the claim holds.

Now suppose that all queries in the chains are new. By Lemma 9, we can assume without

loss of generality that either the last queries of the chains are distinct, or that one chain is a

strict suffix of the other. If the chains have distinct final queries, then we can take sj, s
′
j to

point to these distinct (new) queries in Qj and Case 1b of the claim holds. If one chain is a

strict suffix of the other, then the longer chain must contain a (new) query that outputs a′j,

since both chains start with salt a′j. Then Case 1a of the claim holds.

Definition of f . On input (U, h), f(U, h) first computes UFresh and Pred as defined above.

It then computes QFresh, and Qj for each j = 1, . . . , F . It initializes: (1) Array Cases and

Coll, each of size F , the latter of which will hold entries from domains depending on cases,

(2) h̃ to be the table of h, but sorted to contain the responses for QFresh, followed by the rest

of the table in lexicographic order.

For j = 1, . . . , F , f examines Qj and determines which of the cases in the claim occurs.

It sets Cases[j] ∈ {1a, 1b, 2} and performs one of the following:

43

Case 1a: Set Coll[j]← sj ∈ [T] and delete the entry corresponding to Qj[sj] from h̃.

Case 1b: Set Coll[j] ← (sj, s
′
j) ∈ [T] × [T] and delete the entry corresponding to query

Qj[sj] from h̃.

Case 2: Set Coll[j] ← (sj, s
′
j) ∈ [T] × [FT] and delete the entry corresponding to query

Qj[sj] from h̃.

This completes the description of f . After this process, h̃ consists of the responses to the

queries of A2 when it is run on the salts in UFresh, except for the deleted queries, followed by

the remaining outputs of h in lexicographic order. Since at least one case always holds by

the claim, and we delete exactly one new query from each Qj, we have h̃ ∈ [N]MN−F .

Analysis of f . We first argue that the output length of f is not too long, and later that is

it injective. Let the number of salts in UFresh having compression type 1a, 1b and 2 be δ1, δ
′
1

and δ2, respectively. Then F = δ1 + δ′1 + δ2. We set the output length L to the maximum of

the following expression, over 1 ≤ F ≤ u, and δ1 + δ′1 + δ2 = F , rounded to the next integer:

log

(
u · 22F

(
N

F

)(
FT

u− F

)
T δ1T 2δ′1(FT 2)δ2NMN−F

)
.

This formula is explained by considering the outputs of f in turn:

• F and UFresh account for log u+ log
(
N
F

)
bits together,

• Pred needs log
(

FT
u−F

)
bits,

• Cases is an array of size F , storing a ternary value in each entry, and thus less than

2F bits total,

• Coll stores δ1 log T + δ′1 log T
2 + δ2 logFT 2 bits,

44

• h̃ stores (MN − F) logN bits.

We have

2L(
N
u

)
NMN

≤ max
F=δ1+δ′1+δ2

u · 22F ·
(
N
F

)(
FT
u−F

)(
N
u

) ·
(
T δ1 · (T 2)δ

′
1 · (FT 2)δ2

NF

)
.

We bound the middle term by

(
N
F

)(
FT
u−F

)(
N
u

) ≤
(
eN

F

)F(
u

N

)u(
eFT

u− F

)u−F

=

(
eu

F

)F(
euFT

N(u− F)

)u−F

≤
(
e2u/F

)F(
e2u/(u−F)FT

N

)u−F

≤ (4e)u
(
FT

N

)u−F

.

Assuming f is injective, by pigeonhole we have 2L ≥ ε
(
N
u

)
NMN . Plugging this in and using

F ≤ u ≤ 2u, we obtain

ε ≤ max
F=δ1+δ′1+δ2

(32e)u
(
FT

N

)u−F (
T

N

)δ1 (T 2

N

)δ′1
(
FT 2

N

)δ2

≤
(
32euT 2

N

)u

.

It remains to show that f is injective, i.e. that (U, h) is determined by f(U, h) =

(F,UFresh,Pred,Cases,Coll, h̃). The inversion algorithm works as follows:

1. Decode the binary input by reading off F from the first log u bits. The size of UFresh,

Pred, and Cases are determiend by F . Then Coll can be parsed out using Cases, and

finally h̃ can be parsed out easily.

2. Initialize h and QFresh to be empty tables.

3. For each a′j ∈ UFresh (in lexicographic order) the j-th entry of Cases indicates the type

of tuple of pointers stored in the j-th entry of Coll. Run A2 on a′j. Respond to queries

using the entries of h̃ in order (except if the query is a repeat) and populating the

entires of h and QFresh until except when one of the following happens:

45

(a) For Cases[j] = 1a, when Qj[sj] is queried, respond to the query with a′j.

(b) For Cases[j] = 1b, when Qj[sj] is queried, respond with h(Qj[s
′
j]) (using the partial

table for h).

(c) For Cases[j] = 2, when Qj[sj] is queried, respond with the input salt of query

QFresh[s
′
j].

After responding, continue running A2 on a′j and populating the tables.

4. After running A2 on all of the salts in UFresh, populate the rest of h using the remaining

entries of h̃ in order.

5. Finally, examine the queries QFresh, and form U by adding the salts pointed to by the

indices of Pred to UFresh. (More formally, output U = UFresh ∪ {input salt of QFresh[t] :

t ∈ Pred}.)

We first argue inversion replies to the queries issued byA2 on a′j correctly, for each a′j ∈ UFresh.

For queries that are not deleted from h̃, these are simply copied from h̃. By construction

and Claim 10, the queries that were deleted will be copied correctly. Finally, once QFresh is

correctly computed, we have that U is correctly recovered.

3.4 Length 2 Collision AI Bound

We next prove an upper bound on the advantage of an adversary producing collisions of

length at most 2.

Theorem 11. For any positive integers S, T ,

AdvAI-CR
2-MD (S, T) ≤ 6 · (29e3)max

{(
ST

N

)
,

(
T 2

N

)}
+

1

N
.

46

We prove this theorem in exactly the same fashion to Theorem 7, where an adversary is

analyzed without auxiliary input “locally,” as in the lemma below. We present it again for

the sake of completeness.

Lemma 12. For any positive integers S, T ,

AdvMI-CR
2-MD (A) ≤ (29e3)S max

{(
ST

N

)S

,

(
T 2

N

)S
}

where A is (S, T)-MI adversary.

3.4.1 Proof for Lemma 12

Intuition. At a high level this proof is similar to that of Lemma 8. The primary differ-

ence is that we must avoid the ST 2 factors that come from chains hitting old edges. This

turns out to be quite subtle, as the adversary may have generated some structures involving

collisions in early queries and later hit them. But if we try to compress these structures

preemptively, we find they are not profitable (i.e. the required pointers are bigger than the

savings). In our proof, however, this strategy is actually a gambit: We make some losing

moves up front, and then later are able to compress multiple edges and eventually profit.

Looking forward, this happens for either version of Case 4 in Figure 3.3, where the early

edges are blue. There it is not profitable to compress the second blue edge on its own, but

later get a super-profit by compressing one or two black edges, resulting in a net compression.

We now proceed with the formal compression proof. Let U
$←
(
[N]
u

)
and h

$← Func([N]×

[M], [N]) be independent. Let A = (A1,A2) be an adversary as specified in the lemma. Let

G = {(U, h) | 2-MICRU,h(A) = 1} ⊆
(
[N]

u

)
×H.

47

and ε = Advu-AI-CR
MD MD(A), so |G| = ε

(
N
u

)
NMN . We define an injection

f : G → {0, 1}L

with L satisfying

|{0, 1}L|(
N
u

)
NMN

≤ (29e3)u
(
max {T 2, uT}

N

)u

.

Pigeonhole then immediately gives the bound on ε.

For (U, h) ∈ G, f(U, h) outputs an L-bit encoding, where L will be determined below, of

(F,UFresh,Pred,Cases,Coll, Loops,Bulbs,Diamonds, h̃),

which we define below. The first, second and third outputs F , UFresh and Pred are com-

puted exactly as in the proof of Lemma 8, and in particular UFresh ⊆ U and Pred ⊆ [FT],

|Pred| = u− F , where |UFresh| = F .

In order to describe the remaining outputs of f , we need some definitions. Write

UFresh = {a′1, · · · , a′F} and let QFresh and Qj be defined exactly as in the proof of Lemma 8.

Without loss of generality, for each j ∈ [F], we assume that an adversary makes distinct

queries in Qj. In other words, for each fresh salt a′j, Qrs(a
′
j) contains distinct queries.

Used queries. For j = 1, . . . , F Qj contains a pair of colliding chains of length at most

2, and that when the adversary outputs its collision, the chains are formed from amongst

at most 4 entries of Qj. Note that in some cases one entry of Qj could appear multiple

times in the colliding chains (for instance, if there is a self loop, or both chains start with

the same edge). By examining the colliding chains, we can always find a subset of queries

corresponding to one of the case in Figure 3.2. This subset will be strict sometimes (for

48

(i) (ii) (iii) (iv) (v) (vi)

Figure 3.2: Types of queries used to obtain colliding chains for B = 2. Bold arrows indicate
that the query is necessarily new.

*

(i) Case 1(a)

*

(ii) Case 2

*

(iii) Case 3(a)

*
*

*

*

*

*

(iv) Case 3(b)

*
*

(v) Case 4(a)

*

**

(vi) Case4(b)

Figure 3.3: Cases in Claim 13. Red dotted arrow represents a reused old query. Blue dashed
arrow represents an unused-old query. ‘*’ marks the queries that will be compressed by f .

instance, in case (iii), the adversary may have opted to add the same query to the end of

both chains, or even to add another pair of colliding queries; In these cases we only consider

the queries shown in the diagram). We define used queries in Qj, denoted Usedj, to be the

subset of [T] that are indices of the queries corresponding to the appropriate case in the

Figure. We have that 1 ≤ |Usedj| ≤ 4.

New, reused, and unused-old queries. For any j ∈ [F], a query in Qj is said to be

new if it does not appear in Q1|| · · · ||Qj−1. If query is not new, it is said to be old. If a

query in Qj is old, and that query appears amongst the queries pointed to by Usedk for some

k < j (i.e. the query equals Qk[s] for some s ∈ Usedk), then we say the query is reused and

otherwise it is unused-old.

Claim 13. Let QFresh, Qj, and Usedj be j = 1, . . . , F be defined as above. Then for each j,

at least one of the following cases (which are depicted in Figure 3.3) holds:

49

1. [Usedj contains only new queries.]

(a) There exists sj ∈ [T] such that Qj[sj] is new and h(Qj[sj]) = a′j ,

(b) There exists s1j ̸= s2j ∈ [T] such that Qj[s
1
j] and Qj[s

2
j] are new, and h(Qj[s

1
j]) =

h(Qj[s
2
j])

2. [Usedj contains at least one reused query.] There exists sj ∈ [T] and tj ∈ [F]

such that Qj[sj] is new and h(Qj[sj]) equals input salt of some query in Qtj pointed to

by Usedtj .

3. [Usedj contains exactly 1 unused old query.]

(a) There exists sj ∈ [T] and uj ∈ [FT] such that Qj[sj] is new, uj is new (in its

respective Qk, k < j) and h(Qj[sj]) and h(QFresh[uj]) both equal input salt of query

QFresh[uj],

(b) There exists s1j ̸= s2j ∈ [T] and uj ∈ [FT] such that Qj[s
1
j],Qj[s

2
j] are new, and

h(Qj[s
1
j]) equals input salt of QFresh[uj], and h(Qj[s

2
j]) = h(QFresh[uj]).

4. [Usedj contains exactly 2 unused old queries.]

(a) There exists sj ∈ [T] and u1
j < u2

j ∈ [FT] such that Qj[sj] is new, u2
j is new

(in its respective Qk, k < j)1, the input salt of queries, the input salt of queries

QFresh[u
1
j] and QFresh[u

2
j] are equal, h(Qj[sj]) equals their common input salt, and

h(QFresh[u
2
j]) = h(QFresh[u

1
j]),

(b) There exists s1j ̸= s1j ∈ [T], u1
j < u2

j ∈ [FT] such that Qj[s
1
j],Qj[s

2
j] are new, u2

j is

new (in its respective Qk, k < j), h(Qj[s
1
j]) equals the input salt of query QFresh[u

1
j],

h(Qj[s
2
j]) equals the input salt of query QFresh[u

2
j], and h(QFresh[u

2
j]) = h(QFresh[u

1
j]).

1Query at u1
j is not compressed, so it does not matter whether it is new or not.

50

Proof of claim. Fix j ∈ [F] and consider Usedj. The queries in Qj corresponding to Usedj

fall into one of the cases in Figure 3.2. Since a′j is fresh, the queries with input salt a′j must

be new (otherwise a′j would be predicted). Thus the bold edges in the figure must be new

queries. The other queries can be new, reused or unused-old.

Suppose all of the queries of Qj in Usedj are new. For cases (ii)–(vi) in Fig. 3.2 there are

2 distinct queries that have the same output, so we take s1j , s
2
j to point to these queries in

Qj and case 1(b) holds. In the remaining case (i), the output of the query is a′j, so we take

sj to point at the relevant query in Qj and case 1(a) of the claim holds.

From now on we assume that not all queries are new. Next, suppose an edge in Usedj is

reused, say appearing in the used queries for Qk, k < j. Since a′j is fresh, the reused query

cannot be the first query in the chain, so it is the second edge of one of the chains. As these

queries form a chain, the output of the new query will be the input of the reused query. So

we take tj = k (i.e. to point to the kth-salt a′k in UFresh from which the query is being reused),

and sj ∈ [T] to point to the new query in Qj that outputs the input salt of some query in

Usedk, and thus case 2 of the claim holds.

We have dealt with the case where the old query is a reused query. What remains is if

the old query is unused-old. There are either 1 or 2 unused-old queries and we handle these

separately.

Suppose there exists exactly one query in the colliding chains that is unused-old. Again

this query has to be the last edge of the chain. Since the chain has length 2, we are in case

(ii) or (iv)-(vi) of Figure 3.2. In case (ii), we have that case 3(a) of the claim holds as we

can take uj ∈ [FT] to point to the loop. Otherwise we can find queries pointed to by sj, s
′
j

51

in Qj and uj ∈ [FT] such that case 3(b) holds.

Finally suppose are exactly two unused-old queries in the colliding chains. Then we must

be in case (iv) or (vi) of Figure 3.2. By inspection we can find the required pointers, and

either case 4(a) or (b) holds.

Definition of f . On input (U, h), f(U, h) first computes UFresh and Pred (and F) as before.

It then computes QFresh, and Qj and Usedj for each j = 1, . . . , F . It initializes: (1) Array

Cases and Coll, each of size F , which will hold entries from domains depending on cases,

(2) A list Loops which will hold elements of [FT] (i.e. “large pointers”) (3) A set Bulbs

which will hold elements of [FT] (i.e. “large pointers”) (4) A list Diamonds which will hold

elements of [FT]× [FT], (i.e. pairs of “large pointers”) (5) h̃ to be the table of h, but sorted

to contain the responses for QFresh, followed by the rest of the table in lexicographic order.

The computation of f next populates the sets Loops,Bulbs, and Diamonds. Specifically,

for j = 1, . . . , F , it checks which case holds; If case 3a, 4a, or 4b holds, then it does the

following:

Case 3a: Add uj to Loops and delete the entry corresponding to QFresh[uj] from h̃,

Case 4a: Add u1
j and u2

j to Bulbs, and delete the entry corresponding to QFresh[u
2
j] from h̃,

Case 4b: Add the pair (u1
j , u

2
j) to Diamonds and delete the entry corresponding to QFresh[u

2
j]

from h̃.

There is a subtlety in Case 4a: It may be that two bulbs are hanging off of the same

vertex, when the adversary produces two Case-(iv) (from Figure 3.2) collisions with the same

intermediate node. In this case our algorithm will put the second collision into Case 2 and

not 4a, even though strictly speaking there was no reused edge - only a reused node (which

52

Case 2 allows). This ensures that the queries in Bulbs will be partitioned into pairs with the

same input salts, which our inversion algorithm will leverage.

We have now defined all of the outputs of f except for Cases, Coll and h̃, which we define

now. For j = 1, . . . , F , f examines Qj and determines which of the cases above occurs

for Usedj. It sets Cases[j] ∈ {1a, 1b, 2, 3a, 3b, 4a, 4b} and performs one of the following (see

Figure 3.4):

Case 1a: Set Coll[j]← sj ∈ [T] and delete the entry corresponding to Qj[sj] from h̃.

Case 1b: Set Coll[j] ← (s1j , s
2
j) ∈ [T] × [T] and delete the entry corresponding to query

Qj[s
2
j] from h̃.

Case 2: Compute vj ∈ [4] to point to which of the (at most) four used queries in Qtj

is reused, and then set Coll[j] ← (sj, tj, vj) ∈ [T] × [F] × [4] and delete the entry

corresponding to Qj[sj] from h̃.

Case 3b: Set Coll[j] ← (s1j , s
2
j , uj) and delete entries corresponding to queries Qj[s

1
j] and

Qj[s
2
j] from h̃.

Case 4a: Compute vj, index of u1
j in Bulbs. Set Coll[j]← (sj, vj) ∈ [T]× [|Bulbs|] and delete

the entry corresponding to query Qj[sj] from h̃.

Case 4b: Set Coll[j]← (s1j , s
2
j) ∈ [T]× [T], and delete the entries corresponding to queries

Qj[s
1
j] and Qj[s

2
j] from h̃.

Thus, h̃ consists of the query responses for A2 when run on the salts in UFresh, except for

the queries indicated to be deleted by compressor, followed by the remaining outputs of h

in lexicographic order. This completes the description of f .

Analysis of f . We first argue the output length of f is not too long, and later that it is

injective. Let the number of salts in UFresh having compression type 1(a) and 1(b) be δ1 and

53

Qj

(sj)

Q1

···
Q2

···

Qj−1

(i) Type 1-a

Qj

(s1j ,s
2
j)

···

Q1

Q2

···

Qj−1

(ii) Type 1-b

Qj

(sj, tj,

Qtj

vj = 2)

Q1

···

···

Qj−1

···

···

(iii) Type 2

Qj

Q1

····
···
·
·······

Qj−1

···

···

· · · uj · · ·

List Loops

sj

(iv) Type 3-a

Qj

(s1j , s
2
j ,

Q1

····
···
·
·······

Qj−1

···

···

uj)

(v) Type 3-b

···

···

···

Q1

······

Qj−1

Qj

· · ·

queries with
equal input salt

· · · · · · Set Bulbs
(sj, vj)

(vi) Type 4-a

···

···

···

Q1

······

Qj−1

Qj

· · · · · ·(u1
j ,u

2
j)

List Diamonds

(s1j , s
2
j)

(vii) Type 4-b

Figure 3.4: Compression of different cases for B = 2 by f . Boxes denote an index. Boxes
with blue stripes denote used queries in Qj. White box denotes query at the index is new
(and gets compressed).

δ′1 respectively, compression type 2 be δ2, compression type 3(b) to be δ3 and compression

type 4(a) be δ4 = |Bulbs|/2. Let |Bulbs| = nb, |Loops| = nℓ and |Diamonds| = nd. Then

F = δ1 + δ′1 + δ2 + nℓ + δ3 + δ4 + nd.

Claim 14. The number of entries deleted from h̃ by f is equal to δ1 + δ′1 + δ2 + nℓ + 2δ3 +

nb

2
+ δ4 + 3nd.

54

Proof. Observe that f does the following:

• deletes 1 entry from h̃ for each index added to Loops. So, nℓ entries deleted from h̃

when f populates Loops.

• deletes 1 entry from h̃ for each pair of indices added to Bulbs. So, nb/2 entries deleted

from h̃ when f populates Bulbs.

• deletes 1 entry from h̃ for each pair of indices added to Diamonds. So, nd entries deleted

from h̃ when f populates Diamonds.

• for every fresh salt of type 1a, 1b, 2 and 4a one entry corresponding to a new query

among the queries of the salt is deleted from h̃. Thus, δ1, δ
′
1, δ2 and δ4 entries will be

deleted by f from h̃ due to fresh salts belonging to Case 1a, 1b, 2 and 4a, respectively.

• for every salt of type 3b and 4b, entries corresponding to two queries that are new in

Qrs of salt are deleted from h̃, thus 2δ3 and 2nd entries are deleted by f from h̃ for

fresh salts undergoing compression of type 3b and 4b, respectively.

This totals to δ1 + δ′1 + δ2 + nℓ + 2δ3 +
nb

2
+ δ4 + 3nd entries being deleted. Therefore, to

prove the claim, we need to show that f deletes the entry of any query exactly once from h̃.

To this end, we proceed in 3 steps as follows:

Claim 15. Any query belongs to at most one of Loops, Bulbs or Diamonds.

Proof. We prove the above claim by contradiction. Lets assume there exists a query q that

belongs in both Loops and Bulbs. Without loss of generality, we can assume that the query’s

first occurrence is at index i ∈ [FT], it is added in Loops for some fresh salt a′j of type 3a

and added to Bulbs for some fresh salt a′k of type 4a such that j, k ∈ [F] and j < k. However,

as index i is added to Loops, query q becomes a used query in Qj. When q is used in Qk, it

55

will be a reused query and hence a′k should be of type 2 instead of type 4a and q would not

be added to Bulbs, contradicting our assumption.

We can similarly show that no query can simultaneously be in Loops and Diamonds or

Bulbs and Diamonds, thus proving the claim.

For every j ∈ [F] and for any value of Cases[j], f deletes an entry corresponding to a new

query in Qj from h̃ while populating Cases[j] and Coll[j]. Lets assume there exists j, k ∈ [F]

such that j < k and f deletes some query q while populating Cases and Coll for both a′j and

a′k. Then q should be a new query both in queries of a′j and queries of a′k for it to be deleted.

However, this is not possible by the definition of new queries.

Claim 16. If f adds a query to one of Loops, Bulbs and Diamonds, then it never deletes its

entry from h̃ while populating Cases and Coll.

Proof. Lets assume otherwise that f adds some query q to Loops for some salt a′j of type

3a and for some k ∈ [F], it deletes the entry corresponding to q from h̃ while populating

Cases[k] and Coll[k]. This means, q should be a used query in both Qj and Qk. However, it

can be a new query in at most one of Qj and Qk and has to be an old query in the queries

of the other salt depending on whether j < k or j > k. Thus, q would be a reused query in

one of Qj or Qk. If j < k, then q is a reused query among the used queries of a′k. This means

a′k would be of type 2 (as it is not a new query and not the first query in the chain). This

means, q would not be deleted while processing Cases[k] and Coll[k]. This contradicts our

assumption. When j > k, then q would be a reused query among the queries for a′j and then

a′j should not be of type 3a, again contradicting our assumption. Similarly, we can prove

when a′j is of type 4a or 4b. This proves the above claim.

56

We set the output length of L via the following equation, where the maximum is taken

over 1 ≤ F ≤ u and the δi, δ
′
1, nℓ, nb, nd summing to F :

2L =max

(
N

u

)
NMN · u · 23F ·

(
N
F

)(
FT
u−F

)(
N
u

) ·
(
T

N

)δ1

·
(
T 2

N

)δ′1

·
(
4FT

N

)δ2

·
(
FT

N

)nℓ

·
(
FT · T 2

N2

)δ3

·
(
FT
nb

)
(T · nb)

δ4

Nnb/2+δ4
·
(
(FT)2T 2

N3

)nd

Then using Stirling’s approximation, we bound
(NF)(

FT
u−F)

(Nu)
≤ (4e)u

(
FT
N

)u−F
exactly as before.

Next, using nb/2 = δ4 ≤ F and T 2 ≤ N we simplify,

(
FT
nb

)
· (T · nb)

δ4

Nnb/2+δ4
≤
(

eFT

nb ·N

)nb

· (T · nb)
nb/2 =

(
2e2F 2T 2 · T · nb

2n2
bN

2

)nb/2

≤
(
e222F/nbFT 2 · T

2N2

)nb/2

≤ (2e2)F
(
FT

N

)nb/2
(
T 2

N

)nb/2

≤ (2e2)u
(
FT

N

)δ4

·
(
T 2

N

)nb/2

Thus, putting everything together and simplifying using F ≤ u ≤ 2u, and assuming f is

injective, we obtain:

2L(
N
u

)
NMN

≤ 24u · (4e)u · (2e2)u ·
(
FT

N

)u−F

·
(
T 2

N

)δ1+δ′1

·
(
4FT

N

)δ2

·

(
FT

N

)nℓ

·
(
FT · T 2

N2

)δ3

·
(
FT

N

)δ4

·
(
T 2

N

)nb/2

·
(
(FT)2T 2

N3

)nd

≤ (29e3)u ·
(
uT

N

)u−F+δ2+nℓ+δ3+δ4+2nd

·
(
T 2

N

)δ1+δ′1+δ3+nb/2+nd

≤ (29e3)u ·max

{(
T 2

N

)u

,

(
uT

N

)u}

Next, we need to prove the assumption that f is injective. In other words, it needs to be

shown that given f(U, h) = (F,UFresh,Pred,Cases,Coll, Loops,Bulbs, Diamonds, h̃), (U, h) can

57

be uniquely determined. The inversion algorithm works as follows:

1. Parse the inputs, starting with F , as with the previous proof.

2. Initialize h and QFresh to be empty tables and array U = UFresh.

3. For each a′j ∈ UFresh (in lexicographic order), the j-th entry of Cases indicates the type

of tuple of pointers stored in the j-th entry of Coll. Run A2 on a′j and respond to

queries using the entries of h̃ in order (except if the query is a repeat) and populating

the entries of h and QFresh except when one of the following happens:

(a) For Cases[j] = 1a, when Qj[sj] is queried, respond to the query with a′j. If

Cases[j] = 1b continue until it reaches query at index s2j in Qj. To respond to this

query, return the output of the query Qj[s
1
j].

(b) For Cases[j] = 2, when Qj[sj] is queried, return the input salt of query Qtj [Usedtj [vj]].

(c) For Cases[j] = 3b, if query pointed by s1j in Qj is made, return the input salt of

the query pointed by uj. If query pointed by s2j in Qj is made, return the output

of the query pointed by uj.

(d) For Cases[j] = 4a, when Qj[sj] is queried, return the input salt of the query at

index vj in the set Bulbs.

(e) For Cases[j] = 4b, when Qj[s
1
j] or Qj[s

2
j] is queried, return the input salt of first

and second query in the first unused element of list Diamonds, respectively.

(f) The query is in Loops, then respond to the query with the input salt of the query.

(g) The query is in Bulbs and there is a prior query with the same input salt in Bulbs,

then respond to the query with the output of this prior query.

(h) The second query of an element in Diamonds, then respond to the query with the

output of the first query of the same element in Diamonds.

58

After responding, continue running A2 on a′j and populating the tables.

4. After running A2 on all of the salts in UFresh, populate the rest of h using the remaining

entries of h̃ in order.

5. Finally, examine the queries QFresh, and form U by adding the salts of queries in QFresh

indexed by the elements of Pred to UFresh.

We first argue inversion replies to the queries issued byA2 on a′j correctly, for each a′j ∈ UFresh.

For queries that are not deleted from h̃, these are simply copied from h̃. By construction, the

queries that were deleted will be copied correctly. Finally, once QFresh and Q are correctly

computed, we have that U is correctly recovered.

3.5 Impossibility of Improving Zero-Walk AI Attacks

The attack in Section 3.1 and the attack of Corretti et al. follow the same template: The

first unbounded phase can find collisions for some salts a1, . . . , as, and then the second phase

tries to “walk” to these salts by querying a fixed message repeatedly. The bounded-length

version needs to restart the walk to obey the length bound.

A obvious improvement to these attacks would be to examine the functional graph2 for

the function h0(·) := h(·, 0) and select a1, . . . , as that are especially likely to be reached by

the random walking stage. It is tempting to conjecture such an attack is optimal for the

bounded case, as it was for the unbounded case, and we are not aware of a better attack.

In this section we formalize the approach in these attacks and show that these “zero

walk” attacks cannot do much better than the basic attack in Section 3.1. Concretely, we

2That is, the graph on vertex set [N] with edges directed from a to f(a).

59

will show that these attacks can do no better (up to logarithmic factors) than O(STB/N)

advantage. The bound of known attacks and our bound matches up to logarithmic factors.

At the heart of this bound is a delicate concentration inequality for the size of bounded-

depth trees in random functional graphs, which may be of independent interest: Essentially,

we show that with high probability, in the functional graph for a random f : [N]→ [N], all

of the directed depth-D trees will have at most Õ(D2) nodes. Typical results in this area

(cf. EC:FlaOdl89) only give asymptotic expectations.

Below we formalize the notion of zero-walk adversaries and then state and prove our

bound.

Definition 21. An (S, T)-AI adversary A = (A1, A2) finding B-block collisions is said to be

a zero-walk adversary if it has the following form:

1. The first stage A1 always produces a bit-encoded output of the form

σ = {(a1, α1, α
′
1), . . . , (as, αs, α

′
s)} where s = S/⌈(logN + 2 logM)⌉, ai ∈ [N], αi, α

′
i ∈

[M].

2. The second stage A2, on input a and σ = {(a1, α1, α
′
1), . . . , (as, αs, α

′
s)} and given oracle

h, does the following:

If a ∈ {a1, . . . , as}, say a = ak, then output αk and α′k.

Else: For i in 1, . . . , ⌊T/B⌋:

(a) Choose α̂i
$← [M]. Query c0 ← h(a, α̂i).

(b) For j in 1, . . . , B − 1:

If cj−1 ∈ {a1, . . . , as}, say cj = ak, then output α̂i∥0j−1∥αk and α̂i∥0j−1∥ α′k.

Else: Query cj ← h(cj−1, 0).

60

Theorem 17. For any positive integers S, T,B such that B ≤ T , SB ≥ T and any zero-walk

(S, T)-AI adversary A,

AdvAI-CR
B-MD (A) = O

(
STB ln(NB)

N

)
.

This theorem follows easily from Lemma 49 which we state now, but the proof of that

lemma is technical. For a function f ∈ Func([N], [N]), an element a ∈ [N], and non-negative

integer g, we define f−g(a) =
⋃g

i=0{a′ ∈ [N] : f i(a′) = a}, where we define f 0 to be the

identity function. Note that f−g(a) includes all of the elements that iterate to a in g or

fewer steps, so we have in particular that a ∈ f−g(a) for any g ≥ 0. We say that an element

a ∈ [N] is (r, B′)-rich for f if |f−B′
(a)| ≥ r.

Lemma 18. Let f
$← Func([N], [N]). Define r = ⌈1000(B′)2 ln(NB′)⌉ + 1 and let ε be the

probability that there exists a ∈ [N] that is (r, B′)-rich for f . Then

ε < 1/N.

We remark that lemma is much easier to prove if we settle for a weaker result with r

proportional to Ω̃(B′3).

Proof of Theorem 17. Let C be a constant to be fixed later. Let A be zero-walk adver-

sary, and write h0(·) for h(0, ·). Let E be the event that there exist a1, . . . , as such that⋃s
i=1 h

−(B−2)
0 (ai) has size at least CSB2 ln(NB). Then

Pr[B-AICRh,a(A) = 1] ≤ Pr[B-AICRh,a(A) = 1|¬E] + Pr[E]

≤

 ∑
i∈[⌊T/B⌋]

CSB2 ln(NB)

N

+
1

N
= O

(
STB ln(NB)

N

)
.

The first probability bound holds because for a fixed h, we have that A wins only if one of

61

its T chosen c0 values lies in
⋃s

i=0 h
−(B−2)
0 (ai), which has size at most CSB2 ln(NB) when

E does not hold; We simply apply a union bound over the ⌊T/B⌋ choices of c0. The second

probability bound is by Lemma 49, with B′ = B−2 and the constant C set appropriately.

3.5.1 Proof of Lemma 49

Proof. In this section we dispense with writing random variables in bold.

Let f ∈ Func([N], [N]) be uniformly random, and fix a ∈ [N]. Define generations Gj

(random variables), j = 0, . . . , B′, by G0 = {a} and for j > 0

Gj = f−1(Gj−1) \ (
⋃
l<j

Gl).

Thus, Gj consists of elements a′ ∈ [N] such that f j(a′) = a but for all l < j, f l(a′) ̸= a.

Define the jth population as Pj = |Gj|. Then a being (r, B′)-rich is equivalent to
B′∑
j=0

Pj ≥ r.

We are going to analyze the probability that any individual Pj is exceptionally large, but

this is complicated by the fact that they will typically grow to a reasonable size.

We define Pj to be:

• “small” if Pj < 100B′ ln(NB′),

• “big” if Pj ≥ 100B′ ln(NB′),

• “really big” if Pj ≥ 200B′ ln(NB′),

• “huge” if Pj ≥ 1000B′ ln(NB′).

We will show that with probability at least 1 − 1/N , there are no huge values Pj. Then

Theorem 17 follows by summing Pj over j = 0, . . . , B′.

62

Claim 19. For any subsets g0, . . . , gj ⊆ [N] such that Pr[G0 = g0, . . . , Gj = gj] ̸= 0,

the distribution of Pj+1, conditioned on G0 = g0, . . . , Gj = gj, is stochastically dominated

by a binomial sum of nj+1 = N −
∑j

i=0 |gi| i.i.d. 0/1 random variables with expectation

pj+1 · nj+1 ≤ |gj|.

Proof of claim. Condition on some g0, . . . , gj. We know that none of the elements of these

previous generations can appear in Gj+1, so for any a′ ̸∈
⋃j

i=0 gi, the conditional distribution

of f(a′) is uniform over [N] \
⋃j−1

i′=0 gi′ . Moreover, for these a′, f(a′) is independent of any

other value of f(a′′) under our conditioning. Thus

Pr[a′ ∈ Gj+1|G0 = g0, . . . , Gj = gj] = pj+1 where pj+1 =
|gj|

N −
∑j−1

i′=0 |gi′ |
.

The random variable Pj+1, conditioned upon g0, . . . , gj, is equal to the sum over a′ of indicator

random variables for the event a′ ∈ Gj+1, which gives the claim.

We first bound the probability that either there is ever a jump from small directly to

really big (or huge). Once that possibility has been dealt with, the only other way a huge

generation can come about is if there is a consecutive series of generations that are all big or

really big that immediately precede a huge generation. This plan is formalized in the next

two claims.

Claim 20. The probability that there exists j = 0, . . . , B′− 1 such that Pj is small and Pj+1

is really big is at most N−30.

Proof of claim. Fix some j and condition on any g0, . . . , gj that occur with non-zero prob-

ability and assume |gj| < 100B′ ln(NB′). Then by the first claim Pj+1 is stochastically

dominated by a binomial random variable X with expectation at most 100B′ ln(NB′). By

63

the multiplicative Chernoff bound we have that X ≤ 200B′ ln(NB′) except with probability

exp

(
−1 · 100B′ ln(NB′)

2 + 1

)
< (NB′)−33B

′

Since this holds conditioned on any g0, . . . , gj, it holds without the conditioning. Finally

taking a union bound over j = 0, . . . , B′−1 gives the claim (with a lot of slack to spare).

Obtaining a cubic bound. A variant of the previous claim is already enough to prove the

aforementioned weaker version of the lemma, where r is cubic in B′. We sketch how now.

Instead of focusing on a jump from small to really big, we simply bound the probability

that, say, Pj ≥ 100jB′ ln(NB′). Conditioned on the previous generations not violating this

bound, a simple application of Chernoff shows that Pj is very unlikely to violate this bound.

Taking a union bound, we can show that for all j, Pj < 100jB′ ln(NB′) with high probability.

Finally summing these bounds up to j = B′ gives the cubic bound.

We now return to obtaining the tighter quadratic bound. This will depend on the next

claim.

Claim 21. The probability that for some ℓ′ and ℓ, Pℓ′ is big but not really big, Pℓ′ , . . . , Pℓ−1

are big or really big, and Pℓ is huge, is at most N−4.2.

The proof of this claim is much longer and more delicate. We observe that the proof of

the lemma will be complete using these two claims and a union bound over a ∈ [N]; The

key is that both claims sum to a bound below N−2.

Proof of claim. Define random variables δj by

Pj = (1 + δj)Pj−1.

64

We have δj ≥ −1. If we condition on some (g0, . . . , gj), we have the expected value of δj ≤ 0

by the first claim. Moreover, we have for any 0 < δ < 1

Pr[δj+1 ≥ δ | g0, . . . , gj] = Pr[Pj+1 ≥ |gj|(1 + δ) | g0, . . . , gj].

By the first claim and the multiplicative Chernoff bound,

Pr[δj+1 ≥ δ | g0, . . . , gj] ≤ exp

(
−δ2 · 100B′ ln(NB′)

3

)
< (NB′)−33δ

2B′
. (3.1)

On the other hand, if Pℓ is huge and Pℓ′ is not really big, we have Pℓ ≥ 5Pℓ′ . In terms of the δj

this means
∏ℓ

j=ℓ′+1(1+ δj) ≥ 5. By 1+x ≤ ex, if this inequality holds then
∑ℓ

j=ℓ′+1 δj ≥ 1.6.

We let Q =
∑ℓ

j=ℓ′+1 δj and now aim to bound Pr[Q ≥ 1.6] ≤ N−4.2, which is small enough

to allow us to take a final union bound over all a ∈ [N].

To streamline what follows, we actually consider random variables

δ′j :=


δj if Pj−1 is big,

−N100 otherwise

.

Note that δ′j ≤ δj and for the event {Q ≥ 1.6} ∩ {Pl′ , . . . , Pl big} to hold it is necessary and

sufficient that Q′ :=
∑

l′<j≤l
δ′j > 1.6.

Bounding this probability is a delicate operation as the summands of Q′ are only quasi-

independent, and yet we still want to apply a Chernoff bound to this sum. Our plan is to

apply a version of the “exponential method” usually used for Chernoff-like bounds. Namely,

65

let u(x) = x3, so by Markov’s inequality

Pr[Q′ ≥ 1.6] ≤ Pr[u(Q′) ≥ N4.5] ≤ E[u(Q′)]

N4.5
=

E
[∏ℓ

j=ℓ′+1N
3δ′j

]
N4.5

. (3.2)

Thus we need to bound this expectation. We will do this by showing, for any of the relevant

j, and any g0, . . . , gj−1, that E[N δ′j |g0, . . . , gj−1] is not too large. Since this conditioning is

arbitrary, we will get that the expectation of the product of N δ′j is bounded by the product

of the bounds.

We now bound E[N δ′j |g0, . . . , gj−1]. If the condition puts gj−1 as small, then δ′j = −N100

and we easily have E[N δ′j |g0, . . . , gj−1] < 21/B
′
.

Next suppose the condition puts gj−1 as big. Recall that for any non-negative random

variable X, E[X] =
∫∞
0

P [X ≥ x]. Apply this to X = N3δ′j and splitting the sum, we have

E[N3δ′j |g0, . . . , gj−1] ≤ Pr[δ′j ≤ 0.2/B′] ·N0.2/B′
+

∫ ≤N3

N0.2/B′
Pr[N3δ′j ≥ c] dc (3.3)

+

∫
c>N3

Pr[N3δ′j ≥ c] dc ≤ N0.2/B′
+ I1 + I2,

using I1, I2 to denote the two integrals above.

The probability appearing in I1 is Pr[δ′j ≥ δ] where δ := ln c
3 lnN

, a value in
(
0.06
B′ , 1

)
. By

Eq. (3.1),

Pr[δ′j ≥ δ] ≤ (NB′)−33δ
2·B′ ≤ (NB′)−33(0.06/B

′)δ·B′
< (NB′)−1.8δ

= exp

(
−1.8 ln(NB′) ln(c)

3 lnN

)
≤ c−0.6 ln(NB′).

66

Then,

I1 ≤
∫
N0.2/B′≤c≤N3

c−0.6 ln(NB′) dc <
N−0.12 ln(NB′)/B′+0.2/B′

0.6 ln(NB′)− 1

Bounding I2 is similar. Applying Chernoff with δ = ln c
3 lnN

≥ 1, we have

Pr[δ′j ≥ δ] ≤ (NB′)−33δ
2B′/(1+δ) ≤ (NB′)−15B

′δ ≤ exp

(
−15B′ ln(NB′) ln(c)

3 lnN

)
≤ c−5B

′
,

and then

I2 ≤
∫
c>N3

c−5B
′
dc < N−B

′
.

Combining our three terms in (3.3), and the easy case where Pj−1 was small, we have

under any conditioning that

E[N3δ′j |g0, . . . , gj−1] ≤ N .3/B′

since the first of the three segments in the split integral dominates. We can now apply this

bound and get

E[u(Q′)] ≤ (N .3/B′
)ℓ−ℓ

′ ≤ N .3

since ℓ − ℓ′ ≤ B′. By (3.2) this proves Pr[Q′ ≥ 1.6] < N .3−4.5 = N−4.2 and establishes the

third claim.

67

Chapter 4

Bounded Length Collisions

We revisit the problem of finding B-block-long collisions in Merkle-Damg̊ard Hash Functions

in the auxiliary-input random oracle model, in which an attacker gets a piece of S-bit advice

about the random oracle and makes T oracle queries.

Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work of Coretti, Dodis,

Guo and Steinberger (EUROCRYPT 2018), showed a simple attack for 2 ≤ B ≤ T (with

respect to a random salt). The attack achieves advantage Ω̃(STB/2n+T 2/2n) where n is the

output length of the random oracle. They conjectured that this attack is optimal. However,

this so-called STB conjecture was only proved for B ≈ T and B = 2. Very recently, Ghoshal

and Komargodski (CRYPTO 22) confirmed STB conjecture for all constant values of B, and

provided an Õ(S4TB2/2n + T 2/2n) bound for all choices of B.

In this work, we prove an Õ((STB/2n) · max{1, ST 2/2n} + T 2/2n) bound for every

2 < B < T . Our bound confirms the STB conjecture for ST 2 ≤ 2n, and is optimal up

to a factor of S for ST 2 > 2n (note as T 2 is always at most 2n, otherwise finding a collision

is trivial by the birthday attack). Our result subsumes all previous upper bounds for all

68

ranges of parameters except for B = Õ(1) and ST 2 > 2n.

We obtain our results by adopting and refining the technique of Chung, Guo, Liu, and

Qian (FOCS 2020). Our approach yields more modular proofs and sheds light on how to

bypass the limitations of prior techniques. Along the way, we obtain a considerably simpler

and illuminating proof for B = 2, recovering the main result of Akshima, Cash, Drucker and

Wee.

4.0.1 Our results

Our main contribution is the following theorem.

Theorem 22 (Informal). For any 2 < B < T , the advantage of the best adversary with

S-bit advice and T queries for finding B-block collisions in Merkle-Damg̊ard hash functions

in the auxiliary-input random oracle model, is

Õ
(
(STB/N) ·max{1, ST 2/N}+ T 2/N

)
.

Our bound confirms the STB conjecture for any 2 < B < T for the range of S, T such

that ST 2 ≤ N . For the other range of S, T , as T 2 ≤ N (otherwise, finding a collision is

trivial by the birthday attack), Our bound is at most Õ(S2TB/N +T 2/N), which is optimal

up to a factor of S.

Comparing to the Õ(STB2(log2 S)B−2/N+T 2/N) bound by [15], our bound works for any

2 < B < T , while their bound becomes vacuous when B > logN . However, for B ≤ logN ,

unlike our bound, their bound could be tight even when ST 2 > N . In particular, their bound

confirms STB conjecture for B = O(1).

69

Our bound strictly improves the Õ(S4TB2/N+T 2/N) bound by [15], and the Õ(S2T/N)

bound by [5] for any 2 < B < T and non-trivial choices of S, T (specifically, when STB at-

tack succeeds with at most a constant probability, i.e., STB = O(N)). The two bounds by

[15] only beat [5] for B ≪
√
T .

As an additional contribution, we give a considerably simpler proof for proving the tight

bound for B = 2, recovering the main result of [1].

Theorem 23 (Informal). The advantage of the best adversary with S-bit advice and T

queries for finding 2-block collisions in Merkle-Damg̊ard hash functions in the auxiliary-input

random oracle model, is Õ (ST/N + T 2/N).

A comparison of our results with the prior works is summarized in 4.1. Overall, our results

subsume all previous upper bounds except for the range of S, T,B such that B ≤ logN and

ST 2 > N .

Our techniques In this section, we describe our techniques, how to use them to prove

our main results, and what makes our techniques different from prior approaches used in [1],

[5], [15].

Existing reduction to sequential multi-instance games.

Our initial inspiration is the recent framework of Chung, Guo, Liu, Qian [16] for establishing

tight time-space tradeoffs in the quantum random oracle model. Generally speaking, they

reduce proving the security of a problem with S-bit advice to proving the security of multi-

ple random instances of the problem, presented one at a time, without advice. Specifically,

they observe that1, if any adversary (with no advice) can solve S instances of the problem

1The framework of Chung, Guo, Liu, Qian [16] reduces to analyzing sequential multi-instance security for
S+logN+1 instances instead of S-instances. We slightly improve their parameters and obtain a considerably
cleaner version in Theorem 3.

70

Best at-
tacks

Security bounds Ref. Proof tech-
niques

B = 1 S
N

+ T 2

N
S
N

+ T 2

N
[4] Compression

B = 2 ST
N

+ T 2

N
ST
N

+ T 2

N
[1] Multi-

instance
problems

B = 2 ST
N

+ T 2

N
ST
N

+ T 2

N
Theorem 23 Multi-

instance
games

2 < B < T STB
N

+ T 2

N
STB2(log2 S)B−2

N
+ T 2

N
[15] Multi-

instance
problems

2 < B < T STB
N

+ T 2

N
S4TB2

N
+ T 2

N
[15] Multi-

instance
problems

2 < B < T STB
N

+ T 2

N
STB
N
·max{1, ST 2

N
}+ T 2

N
Theorem 22 Multi-

instance
games

Unbounded ST 2

N
ST 2

N
[5] Presampling

Table 4.1: Asymptotic security bounds on the security of finding B-block-long collisions in
Merkle-Damg̊ard Hash Functions constructed from a random function H : [N]× [M] 7→ [N]
against (S, T)-algorithms. For simplicity, logarithmic terms and constant factors are omitted.

“sequentially” with success probability at most δS, then any adversary with S-bit advice can

solve one instance of the problem with success probability at most 2δ.

This idea of reducing the security of a problem with advice to the security of a multi-

instance problem without advice was first introduced by Impagliazzo and Kabanets in [51].

The idea was also used by later works [1], [15]. The difference between [51] and the later

71

works, including this work, is that we reduce to a “sequential” multi-instance game as op-

posed to a “parallel” multi-instance problem. More concretely, in the parallel multi-instance

problem, the adversary is presented with all the randomly chosen instances of the challenge

problems to solve once at the start. Whereas in the multi-instance game, the adversary gets

a new randomly chosen instance of challenge problem one at a time and only after solving

all the previous challenges.

Chung et al. [16] recently demonstrated a separation between “sequential” multi-instance

games and “parallel” multi-instance problems in the context of function inversion in the

quantum setting2. Guo, Li, Liu and Zhang [17] pointed out a connection between “sequen-

tial” multi-instance game and the presampling technique (first introduced by Unruh [3], and

further optimized by Coretti et al. [5]) —— the main technique used by Coretti et al. [5]

for proving the O(ST 2/N) bound. Roughly speaking, all results relying on presampling

technique can be reproved using “sequential” multi-instance games. That suggested that

“sequential” multi-instance games have the potential to prove stronger results. Therefore we

are motivated to adapt and take full advantage of “sequential” multi-instance games in the

context of collision finding.

To better illustrate the connection between “sequential” multi-instance games and the

presampling technique, we show how to recover the O(ST 2/N) bound by Coretti et al. [5].

Recall that presampling technique by Coretti et al. [5] generically reduces security proofs

of unpredictability applications (including collision finding) in the AI-ROM to a much sim-

pler P -bit-fixing random-oracle model (BF-ROM), where the attacker can arbitrarily fix the

values of the random oracle on some P := O(ST) coordinates, but then the remaining coor-

2In particular, they showed that “sequentially” inverting S random images (with T quantum queries per
round to a given random function f : [N]→ [N]) admits security O(ST/N+T 2/N)S , and the corresponding
“parallel” multi-instance problems admits an attack with advantage Ω(ST 2/N)S .

72

dinates are chosen at random. Coretti et al. [5] showed that the security of finding collisions

in Merkle-Damg̊ard Hash Functions in the BF-ROM is O(ST/N).

Using “sequential” multi-instance games, it suffices to bound the advantage of any ad-

versary (with no advice) winning a new game, conditioning on winning all previous (up to

at most S) ones, by O(ST 2/N). The adversary wins all games with advantage O(ST 2/N)S,

which implies the desired security against S-bit advice. The key point is that the adversary

(with no advice) made at most ST queries in previous games. Therefore, conditioning on

any possible events of earlier games, from the view of the adversary, the random oracle is

essentially a (convex combination of) bit-fixing random oracles (BF-ROM) [5], where at most

ST -positions are known, and the rest remains independent and random. Hence, it suffices

to prove the security of a single game in BF-ROM by O(ST 2/N), which has been shown by

Coretti et al. [5] as a necessary step to use the presampling technique.

Barriers of the above idea.

Akshima et al. [1] pointed out a barrier to using the vanilla presampling technique towards

proving B = 2. In particular, one can only hope to achieve Ω(ST 2/N) in the BF-ROM even

for B = 2. Recall that, to prove the sequential multi-instance security, it is sufficient to

bound the advantage of any adversary that finds a 2-block collision for a fresh salt a, condi-

tioned on it finds 2-block collisions for all the previous random challenge salts a1, · · · , aS.

We will call these ST queries made during the first S rounds as offline queries. Among

the T queries made for a, we will call the queries that were not made during the first S

rounds as online queries. Throughout the discussion, we will focus on the case that the new

salt a has never been queried before in offline queries, because the other case happens with

73

probability at most ST/N (so won’t affect our conclusion). As a result, all queries starting

with the challenge salt a have to be online queries.

It is clear that the adversary learns about the function not only using the online queries

but also from the offline queries. The information this algorithm can take advantage of from

the offline queries varies by a lot. The followings are two extreme cases:

1. The offline queries consist of exactly one single query for each of ST distinct salts.

2. The offline queries consist of one collision for each of ST/2 distinct salts

For the first case, the offline queries can barely help3. Whereas, in the second case, as

long as an adversary can find a pre-image (starting with the challenge salt a) of any of these

ST/2 salts, it finds a 2-block collision (figure 4.1). Since there are T online queries, the

algorithm achieves advantage at least ST 2/(2N) in the second case.

a

...

Figure 4.1: Nodes indicate salts in [N]. An arrow connected two salts means there is a query
on the starting salt and a message in [M] such that the output is the other salt. An online
query hits an existing collision. Solid lines denote offline queries. The dotted line denotes
the online query that forms a 2-block collision.

The vanilla presampling approach works for worst-case offline queries. Given the above

example, the best security bound one can hope to achieve in the BF-ROM for B = 2 is

3We do not prove it rigorously here. Instead, we focus on the more interesting case – offline queries do
provide advantages.

74

Ω(ST 2/N).

Our main technical novelty.

Our main insight is that, unlike the presampling technique in which offline queries can

be arbitrary, the worst offline queries are not typical and can be tolerated by refining the

technique. In the above example, the chance that offline queries form ST/2 pairs of collisions

is quite unlikely. We define the following “high knowledge gaining” event E1:

E1: By making ST queries, there are more than S distinct salts with 1-block collision.

The name “high knowledge gaining” suggests that whenever this event happens, the on-

line algorithm can behave significantly better than average (following the attack in 4.1). If

this event E1 does not happen, the probability that an online algorithm finds a query hitting

an existing offline collision is bounded by O((S/N) · T); it is much better compared to the

worst case – which is O(ST 2/N). Remember that we have not shown how to prove that E1

happens with a tiny probability. We will not do that in this section since this is not our

main technical novelty.

We then show two more “high knowledge gaining” events, which are all the events we

consider. Conditioned on none of them happens, no online algorithms can find 2-block

collisions with advantage better than O(ST/N + T 2/N). The second event E2 is defined as:

E2: By making ST queries, there are more than S2 pairs of queries forming collisions.

In 4.2i, we denote a multi-collision by a claw. E2 says that many pair-wise collisions are

found among all the offline queries. E1 only cares about collisions starting with the same

salt, whereas E2 counts every pair of collisions (even starting with distinct salts). If there

are many pairs of collisions, as long as an online adversary can hit two queries that form a

collision, it finds a 2-block collision. The probability that an online algorithm having two

75

queries hitting one particular existing collision is at most O(T 2/N2); if E2 does not happen,

by union bound, the advantage of this type of attack is bounded by O(S2 · (T 2/N2)), again

smaller than O(ST/N).

a

...

(i) E2

a

...

(ii) E3

Figure 4.2: Other two “high knowledge gaining” events and their corresponding attacks.

The final event E3 is very similar to E1:

E3: By making ST queries, there are more than S distinct salts with self-loops.

If an online algorithm hits an offline self-loop, it forms a 2-block collision. Following the

same reasoning as E1, if E3 does not happen, the probability that an online algorithm finds

a query hitting an existing self-loop is bounded by O((S/N) · T).

By identifying the “high knowledge gaining” events and managing to show that they are

all unlikely (which is intuitive but non-trivial to prove), we obtain a considerably simpler

proof for the B = 2 result from [1] using our approach in 4.1 for illustration. More precisely,

with all these “high knowledge gaining” events, we show that4: (1). these events happen

with probability at most O(N−S), even conditioned on the adversary winning all the previ-

ous rounds;(2). when none of them happens, an online algorithm making T queries can find

a 2-block collision with advantage O(ST/N + T 2/N): such a 2-block collision will consist of

either hybrid queries (both online and offline queries) or solely online queries; but for both

4This is not a formal argument but captures the intuition behind our technique. For the formal proofs,
please refer to 4.1.

76

cases, the probability is small.

It is an upside of our technique that it modularises and separates the bad events, making

the overall proof more straightforward and intuitive. Following the same structure, we then

extend our proof to larger B by identifying a few events, and obtaining our main result.

Applying our new techniques to larger B.

As for B = 2, we present results for the sequential multi-instance model and use the reduc-

tion to prove results in the auxiliary input model. We simplify the sequential multi-instance

model into the offline phase and online phase as in the B = 2 result and again use our insight

that worst offline queries are unlikely and better bounds than O(ST 2/N) can be achieved

using a more refined analysis. However, unlike for B = 2 analysis, our larger B analysis is

not as straightforward and requires some creative case analysis in terms of collision types.

We call offline queries that share an image under H with other offline query/ queries as

marked queries. We define the following “high knowledge gaining” event:

E: By making ST queries, there are more than κ marked queries where κ = S ·

max{1, ST 2/N}.

We can show that this event happens with probability at most O(N−S), even conditioned

on the adversary finding B-length collisions in all the previous rounds. When event E does

not happen, there are two possibilities: 1) The B-length collisions found ‘use’ at least one

of these (at most) κ marked queries 2) The B-length collisions found ‘use’ none of those κ

marked queries. For case (1), we will show that some online query should hit one of (at most)

κ ·B offline queries en route to one of κ queries within B steps to succeed, and this happens

with probability at most O(κTB/N). For case (2), note that it implies at least one of the two

77

a

· · ·

· · ·
(i)

a

· · ·

· · ·
(ii)

Figure 4.3: Dotted lines denote online queries. Solid lines denote offline queries. Dash-dotted
lines can be either offline or online queries. Red lines denote ‘colliding’ queries.

a
· · ·

· · ·

≤ B-length

Figure 4.4: The B-length collision uses some marked query. The solid red line denotes the
first marked query along the B-length collisions. The dotted blue line denote the closest
online query to the red line along the B-length collisions.

‘colliding’ queries among the B-length collisions is a ‘new’ online query. Then, using this fact

along with the structural knowledge of the type of B-length collision, we can show that prob-

ability of finding any of these types of B-length collisions is bounded by O(STB/N+T 2/N).

Here, we focus on one type of B-length collisions to reiterate our strategy with more

details. Refer to Section 4.2 for the complete proof. Consider the type of B-length collision

depicted in Figure 4.3i on input salt a.

First, as we have discussed at the beginning of the section, note that the probability that

the input salt a has been queried in the offline queries is at most ST/N (as a is randomly

and independently sampled). So, it suffices to focus on the case that a has not being queried

during offline queries depicted in Figure 4.3ii. For this case, there should exist some queries

(including the queries on a) along with the outputted B-length collisions that are online

78

a
· · ·

· · ·
(i)

a

· · ·

· · ·
(ii)

Figure 4.5: The B-length collision uses no marked queries. The solid red line (if any) denotes
the colliding query made in the offline phase. The dotted blue lines denote the two closest
online queries to the colliding queries along the B-length collisions (they can also be colliding
queries themselves).

queries (i.e., made for the first time during the online phase).

In addition, we can also condition on event E not happening as we can show that the

probability of event E is at most O(N−S), even conditioned on the adversary winning all the

previous rounds. Now observe that the queries in any found this type of B-length collisions

would satisfy one of the two following possibilities:

1. The B-length collision uses some marked query.

2. None of the offline queries used by B-length collision is a marked query.

We first analyze B-length collisions with queries satisfying (1) above. Refer to Figure 4.4 for

a pictorial depiction of such collisions. Conditioned on event E not happening, there will be

at most κ marked queries. Consider the first such query along the B-length collisions. There

is a unique ‘chain’ consisting of at most B offline queries connecting some online query to this

marked query. Thus, the probability of finding B-length collisions satisfying (1) conditioned

on event E is at most the probability of some online query whose output is one of (the salts

of) these κB offline queries, which is at most O(κTB/N).

79

Note that when queries in the B-length collision satisfy (2) above, it implies at least one

of the ‘colliding queries’ (two queries denoted by red arrows in Figure 4.3ii) is made for the

first time in the online phase.

The probability of both the colliding queries happening for the first time in the online

phase (see Figure 4.5ii) is bounded by O(T 2/N).

In the case exactly one of the colliding queries happens in the offline phase, there are at

most ST possibilities for this offline colliding query. There is a unique ‘chain’ of at most B

offline queries from some online query to this query and the output of another online query

should be the output of this query (see Figure 4.5i). Thus, the probability of finding such

B-length collisions is bounded by O(STB · T/N · T/N) = O(STB/N + T 2/N).

For other types of B-length collisions, we can analyze each type in a similar way. Instead

of analyzing each type of B-length collisions, we further abstract out 5 conditions such that

any type of B-length collisions must satisfy one of them. By considering one more “high

knowledge gaining” event, and upper bounding the probability for every condition, we show

that the probability of finding B-length collisions is bounded by O(κTB/N + T 2/N).

Please see Section 4.2 for the details. It is worth noting that the S2T 2/N term in κ cannot

be further improved, because it is expected to have Ω(S2T 2/N) marked queries among ST

random oracle queries. Thus, it seems unlikely to obtain a better bound by just improving

event E and its analysis.

A detailed comparison with prior techniques.

The similarity between [1], [15] and us is that we all adopt the idea of reducing the problem

of interest to a multi-instance variant, in which an adversary has to solve multiple copies of

80

the given problem.

Both [1] and [15] directly analyze the probability of solving all instances using the com-

pression paradigm, which typically requires a non-trivial case analysis of the more compli-

cated multi-instance problem. These case analyses may be quite laborious and detached

from the single-instance problem (thus may not give many insights for the single-instance

problem).

Our approach differs significantly from [1] and [15] in two places. First, we focus on ana-

lyzing a simple variant of the single-instance problem (corresponding to a single round of the

sequential multi-instance game conditioning on winning previous games), which is sufficient

to establish desired results in multi-instance security. This variant is more similar to the

original problem, and may be easier to analyze than the multi-instance problems. The first

step (reducing to a variant of the single-instance problem) is somewhat used and captured in

the presampling technique (via a different route [5]). We do think this step is more modular

than [1] and [15], but don’t consider this as our main technical novelty.

The second place, also our main technical novelty, is that we further introduce “knowl-

edge gaining events” for analyzing the variant of the single-instance problem. These events

can be isolated and analyzed on their own, and precisely highlight the correlation in finding

collisions given “typical” presampled random oracles. Before this work, all the presampling

techniques for time-space tradeoffs considered worst-case presampled random oracles. The

worst-case presampling may make the existing analyses sub-optimal. Our approach analyzes

the “average-case” presampling random oracles and shows that those “worst-case” ones can

never happen except with a tiny probability. To our best knowledge, this is the first work

that takes advantage of “average-case” presampling and achieves tight bounds.

81

Overall, we consider our proofs more modular, because we utilize sequential games to

focus on variants of the single-instance game (rather than directly compressing multi-instance

games used by [1] and [15]). We further introduce “knowledge gaining events” to take

advantage of “average-case” presampling (rather than working with worst-case ones used

by [5]).

4.1 Auxiliary Input Collision Resistance for B = 2Merkle-Damg̊ard

In this section we prove the following theorem, which recovers Theorem 7 in [1].

Theorem 24. For any S, T and N ≥ 64,

AdvAI-CR
2-MD (S, T) ≤ (200 log2N) · ST + T 2

N
.

By 3, it suffices to prove the following lemma.

Lemma 25. For any S, T and N ≥ 64, AdvMI-CR
2-MD (S, T) ≤ 100(ST+T 2) log2 N

N
.

The purpose of this section is to show the simplicity of our new framework. The proof

will also serve as a stepping stone for a better understanding of our proof for larger B cases.

First, we give a useful definition.

Definition 22 (Lazy Sampling and Databases). We refer to the table of sampled queries

(for those H(x) ̸= ⊥) on H and their responses as the database or the partially sampled

random oracle.

The set of offline queries is the set of distinct queries made in the offline stage. The

set of online queries is the set of distinct queries made in the online stage and had not

been made in the offline stage.

While dealing with algorithms with both offline and online stages, the table of only the

offline queries on H and their responses is referred to as the offline database.

82

Note that the outputs of the offline and online queries are independent and uniformly

distributed.

Proof of Lemma 25. Let H be a random oracle in the game 2-MICRS and A be an arbi-

trary (S, T)-MI adversary. We show that its advantage of succeeding in 2-MICRS is at most

(100(ST + T 2) log2N/N)S. In this proof, we will also assume the random oracle H is lazily

sampled by the challenger, which is equivalent to being sampled at the very beginning.

Let Xi be the indicator variable that A wins the i-th stage on a uniformly random salt

ai. The advantage of A can be then written as Pr[X1∧ · · ·∧XS]. We additionally define the

indicator variable X<i = X1 ∧ · · · ∧Xi−1, meaning whether A wins the first (i− 1) stages of

the sequential game. Then

Pr[X1 ∧ . . . ∧XS] =
S∏

i=1

Pr[Xi|X<i]. (4.1)

We will bound Pr[X<i+1] < (δS)
i for each i ∈ {1, · · · , S} by induction, where δS =

100 · (ST+T 2) log2 N
N

.

If Pr[X<i] is already bounded by (δS)
i, then it trivially holds for Pr[X<i+1]. Otherwise,

we assume Pr[X<i] ≥ (δS)
i.

We want to bound Pr[Xi|X<i] ≤ δS for any arbitrary i ∈ [S]. In the following proof, we

will carefully deal with the conditioning onX<i, since A learns about the functionH not only

using the T queries in the i-th stage, but also from these (i− 1)T queries in the early stages.

We will call all the queries made in the previous (i− 1) stages as “offline” queries and those

made in the i-th stage as “online” queries. We also recall the definition for “databases” in 22.

As mention in the introduction, one bad example is that the previous (i − 1)T queries

consist of (i− 1)T/2 distinct salts, each has a pair of 1-block collision. An online adversary

83

can use T queries to hit any of these salts and form a 2-block collision with probability

roughly iT 2/N . Below, we will show that this event (and other events that give non-trivial

advantage to the online adversary) happens with very small probability.

Defining Knowledge-Gaining Events.

To bound the knowledge that A learns in the previous stages, we define the following events:

all events are defined for the lazily sampled random oracle right after the first (i− 1) stages.

We are going to show that these events are the “only events” that A can learn take advantage

of the previous queries but they happen with very small probability.

• Let Ei
1 be the event that 1-block collisions can be found for at least 10i logN distinct

salts within (i− 1)T queries.

Formally, in the database, there exist 10i logN salts: for each such salt a, there exists

m ̸= m′ ∈ [N] satisfying H(a,m) = H(a,m′). See 4.6i.

...

(i) Ei
1

...

(ii) Ei
2

...

(iii) Ei
3

Figure 4.6: All events Ei
1,E

i
2,E

3
i . Nodes indicate salts in [N]. An arrow connected two salts

means there is a query on the starting salt and a message in [M], and the output is the other
salt.

• Let Ei
2 be the event that at least 10i2 log3N pairs of block collisions can be found

within (i− 1)T queries.

Formally, in the database, there exist 10i2 log3N pairs of inputs (a,m) ̸= (a′,m′)

satisfying H(a,m) = H(a′,m′). We emphasize that we do not ask a pair of collision

84

to start with distinct salts. See 4.6ii.

• Let Ei
3 be the event that self loops can be found for at least 10i logN distinct salts

within (i− 1)T queries.

Formally, in the database, there exist 10i logN distinct salts: for each such salt a,

there exists some m ∈ [N] satisfying H(a,m) = a. See 4.6iii.

Then

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] + Pr[Ei

1 ∨ Ei
2 ∨ Ei

3|X<i]

≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
.

Here we use the fact that Pr[A|B] ≤ Pr[A]/Pr[B] for Pr[B] > 0.

Next, we will show that assuming none of Ei
1,E

i
2,E

i
3 happens, an adversary can not take

too much advantage of the information from the previous stages. We show that its advantage

Pr[Xi|X<i∧Ei
1∧Ei

2∧Ei
3] is bounded by 98·(ST+T 2) log2N/N . Secondly, any of these event

happens with very small probability. We can safely “assume” these events never happen. In

total, the conditional probability is at most 100 · (ST + T 2) log2N/N = δS.

Claim 26. For any i ∈ [S] and T 2 ≤ N/2, Pr[Ei
1] ≤ N−10i.

Claim 27. For any i ∈ [S], iT + T 2 < N/2 and N ≥ 64, Pr[Ei
2] ≤ 4N−2i.

Claim 28. For any i ∈ [S], N ≥ 4 and T ≤ N/2, Pr[Ei
3] ≤ N−4i.

The proofs for these lemma are deferred to the end of this section (4.1.1). For now,

readers may skip the proofs for all these claims.

The proofs are not necessary for understanding the rest of the proof.

85

Recall that we assume Pr[X<i] ≥ (δS)
i, otherwise Pr[X1∧ . . .∧Xi] ≤ (δS)

i holds trivially

for the first i stages. Therefore,

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
(4.2)

≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

1

N
, (4.3)

where the last inequality comes from the fact that 1/Pr[X<i] ≤ N i but (Pr[Ei
1] + Pr[Ei

2] +

Pr[Ei
3]) ≤ 6N−2i.

Bounding the Last Term.

Finally, we are going to bound Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3]. In order to do that, we define

another event G as the event that the input salt ai has been queried among the queries in

the previous (i − 1) iterations; i.e., for some m ∈ [N], (ai,m) is in the lazily sampled hash

function. Then it holds that:

Pr
[
Xi

∣∣∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3

]
≤Pr

[
G
∣∣∣X<i ∧ Ei

1 ∧ Ei
2 ∧ Ei

3

]
+ Pr

[
Xi

∣∣∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧G

]
≤(i− 1)T

N
+ Pr

[
Xi

∣∣∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧G

]
.

Now all that remains to bound is Pr
[
Xi

∣∣∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧G

]
, which requires colli-

sion type-wise analysis. By enumeration, there are total 6 types of 2-block collisions (4.7).

A dashed line origins from ai. It indicates that the query should be made online, condi-

tioned on G. Other queries can be either made online or offline in the previous iterations.

86

The label ♣, ♦, ♥ and ♠ will be used later for a better presentation of our proof. By enu-

merating each solid edge being an online query or a offline query, we show that it is sufficient

to consider the cases in Claim 29.

ai

(♣)

(i) Type 1

ai
(♣)

(♦)

(ii) Type 2

ai
(♣)

(♦)

(iii) Type 3

ai
(♣) (♦)

(♥)

(iv) Type 4

ai
(♣)

(♦) (♥)

(v) Type 5

ai
(♣)

(♦)

(♥)

(♠)

(vi) Type 6

Figure 4.7: All types of 2-block collisions.

Claim 29. For any i ∈ [S], to find a 2-block collision on ai conditioned on G, the queries

should satisfy at least one of the following conditions:

1. There exists an online query (i.e., a query among the T queries in the i-th iteration

after receiving the challenge input ai), denoted (a,m) such that H(a,m) = a.

In other words, a self loop is found among the online queries. This covers the case

when (♣) edge in type 1 collisions and the (♦) edge in type 2 collisions are online

queries. See 4.8i.

2. There exists two online queries, denoted (a,m) and (a′,m′), such that (a,m) ̸= (a′,m′)

and H(a,m) = H(a′,m′).

A collision is found among the online queries. This covers the case when the (♣) and

(♦) edges in Type 3 collisions, the (♦) and (♥) edges in Type 4 collisions, the (♣) and

87

(♥) edges in Type 5 collisions, the (♥) and (♠) edges in Type 6 collisions are online

queries. See 4.8ii.

3. There exists an online query, denoted by (a,m), and one offline query, denoted by

(a′,m′), such that a ̸= a′, H(a,m) = a′ and H(a′,m′) = a′.

This denotes an online query hits an existing self loop. This covers the case when the

(♣) edge in type 2 collisions is an online query. See 4.8iii.

4. There exists an online query, denoted by (a,m), and two offline queries, denoted by

(a′,m′) and (a′,m′′), such that a ̸= a′, H(a,m) = a′ and H(a′,m′) = H(a′,m′′).

This denotes an online query hits an existing collision (starting with the same salt a′).

This covers the case when (♣) edge in type 4 collisions is an online query. See 4.8iv.

5. There exists two online queries, denoted by (a,m) and (a′,m′), and an offline query,

denoted by (a′,m′′) such that a ̸= a′, H(a,m) = a′ and H(a′,m′) = H(a′,m′′).

This covers the case when the (♣) and (♦) edges in type 4 collisions are online queries.

See 4.8v.

6. There exists two online queries, denoted by (a,m) and (a′,m′), and an offline query,

denoted by (a′′,m′′) such that H(a,m) = a′ and H(a′,m′) = H(a′′,m′′).

This denotes two online queries hit two ends of an existing queries. This covers the

case when the (♣) and (♦) edges in type 5 collisions, the (♣) and (♠) edges in type 6

collisions are online queries. See 4.8vi.

7. There exists two online queries, denoted by (a,m) and (a,m′), and two offline queries,

denoted by (b, y), (b′, y′) such that b ̸= b′, H(a,m) = b,H(a,m′) = b′ and H(b, y) =

H(b′, y′).

88

This covers the case when the (♣) and (♦) edges in type 6 collisions are online queries.

See 4.8vii.

a
m

(i) Case 1

a

a′

m

m′

a = a′

m

m′

(ii) Case 2

m
m′

a a′

(iii) Case 3

m

m′

m′′

a a′

(iv) Case 4

m

m′

m′′

a a′

(v) Case 5

m′

m m′′

a

a′′

a′

m′

m m′′

a = a′

a′′

(vi) Case 6

m y′

m′ ya
b

b′

(vii) Case 7

Figure 4.8: All possible types of collisions. A dotted line denotes an online query. A solid
line denotes a offline query.

Proof for Claim 29. We only prove for type 6 collisions. Other five cases are easier and

similar.

When both (♥) and (♠) are offline queries, it is Case 7. If only one of the two edges is

offline, it is Case 6. If they are all online queries, we can reduce it to Case 2.

Finally, we show that for each case in Claim 29, the advantage is bounded by (98(ST +

T 2) log2N)/N .

Case 1. By making T new queries, each query (a,m) has 1/N chance to satisfy H(a,m) =

a. Therefore, the probability is bounded by T/N .

Case 2. The probability of finding a collision among these T new queries is smaller than

T 2/N , by birthday bound.

89

Case 3. Recall Ei
3: there are at most 10i logN salts that has a self loop in the offline

queries. By making T new queries, each query (a,m) has (10i logN)/N chance to hit

any of these salts. Therefore, the probability is bounded by (10iT logN)/N .

Case 4. Recall Ei
1: there are at most 10i logN salts that has a collision starting from it

in the offline queries. By making T new queries, each query (a,m) has (10i logN)/N

chance to hit any of these salts. Therefore, the probability is bounded by (10iT logN)/N .

Case 5. andCase 6. The proofs are identical. Fixing any offline query (a′′,m′′), by making

T queries, the chance of hitting both ends is T 2/N2. This is because we can enumerate

which are the first queries that hit the starting salt a′′ and the end H(a′′,m′′). Each

case happens w.p. at most 1/N2.

Since there are total (i− 1)T offline queries, by union bound, the advantage is at most

(i− 1)T · T 3/N2 ≤ iT
N
· T 2

N
for both cases.

Case 7. Recall Ei
2: there are at most 10i2 log3N pair-wise collisions. For every such

collision that start with different salts, the probability of hitting both salts within T

queries is T 2/N2. This is due to the same counting argument in the analysis of Case

5 and Case 6.

By union bound, the advantage is at most (10i2T 2 log3N)/N2.

We have shown all the cases in Claim 29. Therefore,

Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] ≤

98(iT + T 2) log2N

N
.

Combining with 4.1 and 4.2, we conclude 25: Pr[X1 ∧ . . . ∧XS] ≤ (δS)
S.

90

4.1.1 Bounding Ei
1,E

i
2,E

i
3

Without loss of generality, we assume the algorithm does not make duplicate queries since

it can record every query it makes. We also assume an algorithm makes iT queries instead

of (i− 1)T queries, for the convenience of presentation.

We first show Claim 28 for Ei
3, which is the easiest one.

Proof of Claim 28. Let Bj be the indicator random variable, denote that the j-th query

gives a self loop. Since each output of the random oracle is freshly sampled, it is clearly to

see that {Bj} are independent. For every j ∈ [iT], E[Bj] = 1/N . By Chernoff bound (see

Preliminary), setting δ = (9N logN)/T, µ = iT/N ,

Pr [B1 +B2 + · · ·+BiT ≥ 10i logN] ≤ exp(−δ2µ/(2 + δ)) ≤ exp(−4i logN).

Then we show Claim 26 for Ei
1.

Proof for Claim 26. Let aj be the j-th distinct salt where an algorithm finds a collision on.

If the algorithm only finds collisions for fewer than j salts, aj is defined as ⊥. Then the

probability of finding collisions for at least t = 10i logN salts is Pr [∀j ∈ [t], aj ̸= ⊥].

Let Zj be the number of queries that are already made towards salt aj; if aj = ⊥, we

define Zj = 0. We know that Z1 + · · ·+ Zt ≤ iT , since aj are pairwise different.

For every z1, · · · , zt > 0 and z1 + · · · + zt ≤ iT , the following probability denotes the

event that collisions are found for at least t salts, and for the j-th collision, it happens at

91

the zj-th queries for the salt aj:

Pr [∀j ∈ [t], aj ̸= ⊥ ∧ Zj = zj] ≤
t∏

i=j

zj
N
≤
(
iT

tN

)t

. (4.4)

The first inequality is due to the fact that for every j ∈ [t], the image of the zj-th query

should match the one of the images among the first zj − 1 queries made towards aj. For

each j ∈ [t], the probability is at most (zj − 1)/N . The last inequality follows from the fact

z1 + · · ·+ zt ≤ iT .

By union bound, we have:

Pr [∀j ∈ [t], aj ̸= ⊥] ≤
∑

z1,··· ,zt>0
z1+···+zt≤iT

Pr [∀j ∈ [t], aj ̸= ⊥ ∧ Zj = zj]

≤
∑

z1,··· ,zt>0
z1+···+zt≤iT

(
iT

tN

)t

.

The last inequality follows 4.4.

Because
∑

z1,··· ,zt>0
z1+···+zt≤iT

1 ≤
(
2iT
t

)
, assuming T 2 < N/2, the above probability is then

bounded by

(
2iT

t

)(
iT

tN

)t

≤
(

2ei2T 2

100i2 log2N ·N

)10i logN

< 2−10i logN .

Finally, we prove Claim 27 for Ei
2.

Proof for Claim 27. We first notice that adaptive queries will not be more useful than non-

adaptive queries. This is simply because when every query is a new query (never queried

before), its image is uniform at random (assuming the random oracle is lazily sampled).

92

Thus, let Yj be the random variable for the image of the j-th query, j ∈ [iT]. We know

that: (1). Yj is a uniform random variable in [N]; (2). {Yj} are independent.

To prove the claim, it is equivalent to show:

Pr

[∑
j<k

1Yj=Yk
≥ 10i2 log3N

]
≤ 2 exp(−2i logN).

For every image w ∈ [N], let Zw denote the number of images among all queries that are equal

to w. Then we have
∑

j<k 1Yj=Yk
=
∑

w∈[N]

(
Zw

2

)
. This is because if there are Zw queries

that have image w, every pair of the queries will contribute one to the sum
∑

j<k 1Yj=Yk
.

For the sake of convenience, we say a pair of collision belong to a claw of size ℓ if their image

w satisfies that Zw = ℓ, similar to 25.

We define the following 3 events:

• Event Fi
1: at least 2i

2 log3N pairs of collisions belong to claws of size in [2, logN).

• Event Fi
2: at least 2i

2 log2N pairs of collisions belong to claws of size in [logN, i logN).

• Event Fi
3: at least 2i

2 log2N pairs of collisions belong to claws of size at least i logN .

Note that the only event we have a log3N factor in the number of pairs of collisions is Fi
1.

Claim 30.

Pr[Ei
2] ≤ Pr[Fi

1] + Pr[Fi
2] + Pr[Fi

3].

Proof. For the event Ei
2 to occur, at least one of the events Fi

1,F
i
2,F

i
3 has to happen. There-

fore,

Pr[Ei
2] ≤ Pr[Ei

2 ∩ Fi
1] + Pr[Ei

2 ∩ Fi
2] + Pr[Ei

2 ∩ Fi
3].

It implies the claim as for any j ∈ {1, 2, 3}, Pr[Ei
2 ∩ Fi

j] ≤ Pr[Fi
j].

93

Thus, in order to bound Pr[Ei
2], it is sufficient to bound the probability of events

Pr[Fi
1],Pr[F

i
2],Pr[F

i
3].

Fi
1.

We then apply counting arguments for bounding all the probabilities. If 2i2 log3N pairs

of collisions have to be obtained from claws of size at most logN , it implies that at least

t = 2i2 logN such claws have to be found. Therefore,

Pr[Fi
1] ≤ Pr[finding t claws of size ≤ logN in iT queries]

≤
(
iT
t

)
·
(
iT
t

)
· (t!)

N t
<

(
T 2

N

)t

.

The counting argument works in the following way: we enumerate which pairs of Yj,Yk

will collide, and they pairwise collide with probability 1/N t. When T 2 ≤ N/2, it is at most

N−2i.

Fi
3.

Before bounding the probability of event Fi
2, we will bound the probability of event Fi

3 first.

Pr[Fi
3] ≤ Pr[finding 1 claw of size i logN in iT queries]

=

(
iT

i logN

)
N i logN−1 ≤

(eiT
i logN

)i logN

N i logN
·N

≤
(
T

N

)i logN

·
(

1

N i

)
·N ≤

(
T

N

)i logN

,

where the second last inequality is obtained using logN ≥ 2. In the counting argument,

we enumerate which i logN queries have the same image and they collide with probability

N i logN−1. This is at most 2−2i logN = N−2i when T ≤
√
N and logN ≥ 2e.

94

Fi
2.

Finally, we look at event Fi
2. Assume for some k ∈ [logN, i logN) there exists j claws of size

exact k such that they make 2i2 log2N pairs of collisions. Then

j ·
(
k

2

)
≥ 2i2 log2N ⇒ j ≥ 2i2 log2N(

k
2

) ≥ 2i logN

k
.

For any k ∈ [logN, i logN) the probability of finding 2i logN
k

claws each of size k in iT

queries is

[(
iT
k

)
Nk−1

]2i logN/k

≤

(eiT
k

N

)k

·N

2i logN/k

≤ 2

(
iT

2N

)2i logN

,

where the last inequality holds using k ≥ logN ≥ 2e.

Then following union bound, the probability that there exists some k ∈ [logN, i logN)

such that 2i logN
k

claws each of size k can be found in iT queries is at most

2i logN ·
(

iT

2N

)2i logN

≤ 2

(
iT

N

)2i logN

, (4.5)

using x ≤ 2x for all x.

Let Sk denote the number of claws of size k found in iT queries. Then the number of

pairs of collisions found for k ∈ [logN, i logN) is

i logN∑
k=logN

Sk ·
(
k

2

)
=

i logN∑
k=logN

Sk ·

(
k∑

ℓ=1

ℓ

)
=

i logN∑
k=logN

Sk ·

(
logN∑
ℓ=1

ℓ

)
+

i logN∑
k=logN

Sk ·

(
k∑

ℓ=logN

ℓ

)

≤ log2N

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

ℓ ·

(
i logN∑
k=ℓ

Sk

)
,

95

where
∑i logN

k=ℓ Sk is the number of claws of size at least ℓ. Note that any claw of size (ℓ+ x)

for x ≥ 0 contains a claw of size ℓ. Thus,
∑i logN

k=ℓ Sk can be bounded by 2i logN/ℓ with

probability at least 1− 2
(
iT
N

)2i logN
, by 4.5.

Then, with probability at least 1 − 2
(
iT
N

)2i logN
, the number of pairs of collisions found

from claws of size k ∈ [logN, i logN) in iT queries is

≤ log2N

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

ℓ ·

(
i logN∑
k=ℓ

Sk

)

≤ log2N · 2i logN
logN

+

i logN∑
ℓ=logN

ℓ · 2i logN
ℓ

≤ 2i log2N + 2i2 log2N ≤ 4i2 log2N.

Thus assuming iT < N/2,

Pr[Fi
3] ≤ 2

(
iT

N

)2i logN

< 2N−2i.

Putting together the above results we obtain Pr[Ei
2] < 4N−2i.

4.2 Auxiliary Input Collision Resistance for B Merkle-Damg̊ard

In this section we prove the following theorem.

Theorem 31. For any functions S, T,B, and N ≥ 64

AdvAI-CR
B-MD (S, T) ≤ (34 log2N) · STB

N
·max

{
1,

ST 2

N

}
+ 2 · T

2

N
.

Lemma 32. For any functions S, T,B, and N ≥ 64,

AdvMI-CR
B-MD (S, T) ≤

(
17κTB log2N + T 2

N

)S

96

where κ = S ·max{1, ST 2/N}.

As for the case of B = 2, we prove an upper bound on the advantage of B-block collision

finding adversary in the MI-CR model, which implies an upper bound in the AI-CR model

via 3.

Proof of 32. We prove this lemma in similar fashion as 25. Let H be a random oracle (which

is lazily sampled) in the game B-MICRS and A be any (S, T)-MI adversary.

We analogously define Xi to be the indicator variable that A finds at most B-length

collisions on uniformly random salt ai given as input in the i-th stage of the game. We also

define X<i = X1 ∧ · · · ∧Xi−1. So, the advantage of A is

Pr[X1 ∧ . . . ∧XS] =
S∏

i=1

Pr[Xi|X<i].

As in the proof for B = 2 case, we will inductively bound Pr[X<i+1] for each i ∈ [S].

Here we will bound Pr[X<i+1] to ((17κiTB log2N + T 2)/N)i where κi = i ·max{1, iT 2/N}.

Recall that we will analogously assume Pr[X<i] ≥ ((17κiTB log2N + T 2)/N)i. Otherwise

Pr[X<i+1] ≤ ((17κiTB log2N + T 2)/N)i holds trivially.

In order to prove the lemma, it suffices to upper bound Pr[Xi|X<i] by 17κiTB log2N/N+

T 2/N for any arbitrary i ∈ [S]. That is because Pr[X<i+1] = Pr[Xi|X<i] · Pr[X<i] where

Pr[X<i] ≤ ((17κiTB log2N + T 2)/N)i−1 by the inductive hypothesis. In the proof, we will

handle the conditioning on X<i in a similar fashion to our proof for B = 2 case.

First we state some useful definitions.

Definition 23. A list of elements (a1,m1), . . . , (aℓ,mℓ) in [N]×[M] are said to form a chain

for H when for every j ∈ [ℓ− 1], H(aj,mj) = aj+1.

97

A chain (a1,m1), . . . , (aℓ,mℓ) for H is called a cycle when H(aℓ,mℓ) = a1. The length of a

cycle is the number of elements in it, ℓ here.

Definition 24. Two distinct chains (a1,m1), . . . , (aℓ,mℓ) and (a′1,m
′
1), . . . , (a

′
ℓ′ ,m

′
ℓ′) are

called colliding chains for H if H(aℓ,mℓ) = H(a′ℓ′ ,m
′
ℓ′).

Definition 25. For any a ∈ [N], a set of elements (a1,m1), . . . , (aℓ,mℓ) in [N] × [M] are

said to form a claw at a under H if ℓ > 1, a1, . . . , aℓ are distinct and H(a1,m1) = . . . =

H(aℓ,mℓ) = a. We refer to a1, . . . , aℓ as the pre-images of a.

Next, we define events to illustrate the bound on ‘useful’ information gained by A from

the prior iterations in the B-MICR game. Each of these events are defined over responses

from the random oracle in the first (i− 1) iterations.

• Let Y be the set of salts with more than one pre-image on it in the offline database.

Then we define Ei
2 to be the event that

∑
a∈Y (# pre-images on a) ≥ 16κi log

2N after

(i− 1)T queries where κi = max
{
i, i

2T 2

N

}
.

• Let Ei
3 be the event that there exists at least i logN ‘special’ cycles of length in [B−1]

among the (i − 1)T offline queries. A cycle (a1,m1), . . . , (aℓ,mℓ) is called ‘special’ if

the number of pre-images on ai is exactly 1 for every i ∈ [ℓ].

Next, we can write

Pr[Xi|X<i] = Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] + Pr[Ei
2 ∨ Ei

3|X<i]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] +
Pr[Ei

2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] +
1

N

98

where the last inequality holds via Claim 33, Claim 34 (which are stated next) and our

assumption that Pr[X<i] ≥ ((17κiTB log2N + T 2)/N)i.

Claim 33. For any i ∈ [S], iT + T 2 < N/2, 2i logN + 1 ≤ N/2 and N ≥ 64, Pr[Ei
2] ≤ 5

N2i .

Claim 34. For any i ∈ [S], Pr[Ei
3] ≤

(
T
N

)i logN
.

We will prove Claim 33 and 34 later.

Next, we want to study Pr[Xi|X<i∧Ei
2∧Ei

3]. We define G to be the event that input salt ai

has been queried among the previous (i− 1) iterations or that input salt ai is the output of

some query among the previous (i− 1) iterations. So, we can rewrite Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3]

as follows:

Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] ≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧G] + Pr
[
G
∣∣∣X<i ∧ Ei

2 ∧ Ei
3

]
≤ Pr[Xi|X<i ∧ Ei

2 ∧ Ei
3 ∧G] +

2(i− 1)T

N
.

Note that ai is chosen uniformly and independently and as queries in the previous iterations

could be made on at most (i − 1)T distinct salts and can output at most (i − 1)T distinct

salts in the previous (i− 1) iterations, it is easy to bound

Pr
[
G
∣∣∣X<i ∧ Ei

2 ∧ Ei
3

]
≤ 2(i− 1)T

N
.

Finally, we analyze Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧G].

Claim 35. For any any i ∈ [S],

Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧G] ≤ 16κiTB log2N + T 2

N
.

99

Proof of claim 35 requires different analysis for different types of colliding chains which we

show in subsection 4.2.1. Before we move onto that subsection, we first show how we obtain

the lemma by putting together all the claims.

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧G] + Pr
[
G
∣∣∣X<i ∧ Ei

2 ∧ Ei
3

]
+ Pr[Ei

2 ∨ Ei
3|X<i]

≤ 16κiTB log2N + T 2

N
+

2(i− 1)T

N
+

1

N

≤ 17κiTB log2N

N
+

T 2

N

where the last inequality holds from that κi = max{i, i2T 2/N} and N ≥ 4.

4.2.1 Proof of Claim 35

To this end, we state the following claim.

Claim 36. For any i ∈ [S], to find a B-length collision on ai, the queries in the database

should satisfy at least one of the following conditions given there exists no query in the offline

database that takes ai as input or outputs ai:

1. There exists an online query (i.e., a query among at most T queries that were made

for the first time in the i-th iteration after receiving the challenge input ai), denoted

(a,m) such that H(a,m) = ai.

2. There exists two distinct online queries, denoted (a,m) and (a′,m′) such that H(a,m)

= H(a′,m′).

This includes both of the following possibilities: the online queries are such (1) a = a′

(and thus m and m′ will be distinct); (2) a ̸= a′.

100

(i) (ii)

· · ·

(iii)

· · ·
· · ·

· · ·
(iv)

· · ·

· · ·
(v)

Figure 4.9: All types of colliding chains

3. There exists an online query, denoted (a,m), a chain (recall definition 23) of offline

queries1, denoted (b1,m1), . . . , (bℓ,mℓ) for some 0 < ℓ < B , and an offline query

(b,m′) ̸= (bℓ,mℓ) such that H(a,m) = b1, H(b,m′) = H(bℓ,mℓ) and the number of

pre-images for every salt in {b2, . . . , bℓ} in the offline database is exactly 1.

4. There exists two online queries, denoted (a,m) and (a′,m′), and a chain of offline

queries, denoted (b1,m1), . . . , (bℓ,mℓ) for some ℓ < B, such that H(a,m) = b1, H(a′,m′) =

H(bℓ,mℓ) and the number of pre-images on every salt in {b2, . . . , bℓ} in the offline

database is exactly 1.

5. There exists an online query, denoted (a,m), and a cycle in the offline database, de-

noted (b1,m1), . . . , (bℓ,mℓ) for some ℓ < B, such that H(a,m) = b1 and the number of

pre-images on every salt in {b1, b2, . . . , bℓ} in the offline database is exactly 1.

Proof for Claim 36. Fig. 4.9 enumerates all the possible types of colliding chains. Depending

on where the queries in the chains are first made for each of the types, we show that the list

1The set of Offline queries is the set of distinct queries made in the previous (i−1) iterations. So there
are at most (i− 1)T of these queries and their outputs are independent and uniformly distributed. The set
of Online queries is the set of distinct queries made in the i-th iteration after receiving the challenge input
ai that had not been made in any of the previous (i− 1) iterations. Note that the outputs of online queries
are also independent and uniformly distributed.

101

a

m

ai

(i)

a

a′

m

m′

a = a′

m

m′

(ii)

a b1 b2 bℓ

b

m1 · · ·
mℓm

m′

(iii)

a b1 b2 bℓ

a′

m1 · · ·
mℓm

m′

(iv)

m1

b1
b2

m2

mℓ bℓ

m
a

(v)

Figure 4.10: Pictorial depiction of Conditions 1-5. A dotted line denotes an online query. A
solid line denotes an offline query.

of conditions in the claim is complete. (Refer to fig. 4.10 for a visual representation of the

conditions in the claim.)

We know that all the queries with output ai or of the form (ai, ·) in the colliding chains

are online queries. This implies if the colliding chains are of the types in fig. 4.9i or 4.9ii,

the queries in the database will satisfy condition 1.

For the remaining types of colliding chains (ref fig. 4.9iii,4.9iv,4.9v), one of the following

3 cases can happen:

1. Both the ‘colliding’ queries are online In this case, the queries in the database

will satisfy condition 2.

2. Both the ‘colliding’ queries are offline In this case, the queries in the database

will satisfy condition 3. Note that bℓ can be thought of as the earliest query among

the chains that has more than one pre-image in the offline database.

3. One of the ‘colliding’ queries is offline and online each For the colliding chains

102

· · ·

(i)

· · ·

(ii)

Figure 4.11: A dotted line denotes an online query. A solid line denotes an offline query.

of types in fig. 4.9iv and 4.9v), the queries in the database will satisfy condition 4.

For the colliding chains of type in 4.9iii, there are two possibilities as shown in Fig.

4.11. For the possibility in fig. 4.11i, the queries in the database satisfy condition 4.

On the other hand, for the possibility in fig. 4.11ii, the queries in the database satisfy

condition 5.

Claim 37. For j ∈ [5], let ϵj be the advantage in achieving condition j from claim 36 when

Ei
2, E

i
3 and G hold. Then for any i ∈ [S], the results summarized in Table 4.2 on the upper

bounds of ϵj hold.

We prove the bounds stated in Claim 37 next.

Condition 1. Recall that online queries are ‘new’ queries, as in they are made for the first

time among the T queries in the i-th iteration after receiving ai. Thus, the output of online

queries is independent of output from offline queries and has 1/N chance to be ai under H

via lazy sampling. By taking a union bound over at most T online queries, we can bound

the probability to T/N .

Condition 2. By birthday bound, it holds that the probability of finding ’colliding’ queries

among T online queries is at most T 2/N .

103

Condition 3. Given Ei
2 implies that there can be at most 16κi log

2N queries in the offline

database that are part of some claw. As per the definition of condition 4, there will be a

unique chain of length < B in the offline database ending in each of these at most 16κi log
2N

queries, such that an online query hits the start of this chain. The probability of hitting one

of these at most B · 16κi log
2N salts within T queries is at most 16κiTB log2N/N .

Condition 4. As per the definition of condition 5, there can be at most iT such chains of

length < B in the offline database, such that an online query hits the start of this chain and

another online hits the end of this chain. The probability of hitting both the salts within at

most T queries is bounded by T 2/N2. By union bound the advantage is at most iT 3/N2.

Condition 5. Given Ei
3 implies there are at most i logN ’special’ cycles in the offline

database, each with at most B queries in it. So, there are at most iB logN queries in these

cycles and the probability of hitting one of the starting salts of these queries within T online

queries is bounded by iB logN · T/N .

From Claim 37 it holds that the advantage of achieving any of the conditions in Claim

36 given Ei
2, E

i
3 and G is bounded by (16κiTB log2N + T 2)/N . Note that for i ≤ S, when

ST 2 < N implies iT 2 < N . Hence κi = i if κS = S.

Finally to complete this proof, we prove our Claim 33 and 34 next.

4.2.2 Proof of Claim 33

We first note that proof of claim 33 is similar to the proof of claim 27 in essence. We again

use that adaptive queries will not be more useful than non-adaptive queries because output

of every new query (never queried before) is uniform at random (assuming the random oracle

is lazily sampled).

104

For every a ∈ [N], let Za denote the number of pre-images of a. Then proving Claim 33

is equivalent to showing

Pr

 ∑
a∈[N];Za ̸=1

Za ≥ max{16i log2N, 16i2T 2 log2N/N}

 ≤ 2 exp (−2i logN).

We will separate the salts into 3 buckets depending on the number of their pre-images

(in the offline database) and analyze the sum of number of pre-images separately for each

bucket. Let’s define the buckets:

• Bucket1 := {a|Za ∈ [2, logN)}

• Bucket2 := {a|Za ∈ [logN, i logN)}

• Bucket3 := {a|Za ≥ i logN}

So for
∑

a∈[N];Za ̸=1 Za to exceed max{16i log2N, 16i2T 2 log2N/N}, the sum of number of

pre-images of salts in at least one of the buckets has to exceed

max{4i log2N, 4i2T 2 log2N/N}. We show that this happens with exponentially small chance.

In order to do that we define the following 3 events:

• Event F1:
∑

a∈Bucket1 Za ≥ 4i log2N ·max{1, iT 2/N}.

• Event F2:
∑

a∈Bucket2 Za ≥ 4i log2N ·max{1, iT 2/N}.

• Event F3:
∑

a∈Bucket3 Za ≥ 2i logN ·max{1, iT 2/N}.

In order to prove the claim, it is sufficient to bound the probability of events F1,F2,F3.

We begin with the easiest to analyze events, which is F3.

Bounding Pr[F3]

105

For F3, we can actually obtain the following stronger statement:

Pr

[∑
a∈Bucket3

Za ≥ 2i logN

]
≤ 2 exp (−2i logN).

That is because

Pr

[∑
a∈Bucket3

Za ≥ 2i logN

]
≤ Pr[finding 1 claw of size i logN in iT queries]

=

(
iT

i logN

)
N i logN−1 ≤

(eiT
i logN

)i logN

N i logN
·N

≤
(
T

N

)i logN

·
(

1

N

)
·N ≤

(
T

N

)i logN

,

where the second last inequality is obtained using logN ≥ 2. In the counting argument,

we enumerate which i logN queries have the same image and they collide with probability

N i logN−1.
(
T
N

)i logN
is at most 2−2i logN = N−2i when T ≤

√
N and logN ≥ 2e.

Bounding Pr[F2]

Next, we prove bound for Pr[F2]. Again we can show the following stronger statement:

Pr

[∑
a∈Bucket2

Za ≥ 4i log2N

]
≤ 2 exp (−2i logN).

Assume for some k ∈ [logN, i logN) there exists j claws of size exact k such that the

sum of the number of their pre-images is 2i logN . Then

j · k ≥ 2i logN ⇒ j ≥ 2i logN

k
.

For any k ∈ [logN, i logN) the probability of finding 2i logN
k

claws each of size k in iT

106

queries is

[(
iT
k

)
Nk−1

]2i logN/k

≤

(eiT
k

N

)k

·N

2i logN/k

≤ 2

(
iT

2N

)2i logN

,

where the last inequality holds using k ≥ logN ≥ 2e.

Then taking a union bound, the probability that there exists some k ∈ [logN, i logN)

such that 2i logN
k

claws each of size k can be found in iT queries is at most

2i logN ·
(

iT

2N

)2i logN

≤ 2

(
iT

N

)2i logN

, (4.6)

using x ≤ 2x for all x.

Let Sk denote the number of claws of size k found in iT queries. Then the sum of number

of pre-images of salts in Bucket2 is

i logN∑
k=logN

Sk · k =

i logN∑
k=logN

Sk ·

(
k∑

ℓ=1

1

)
=

i logN∑
k=logN

Sk ·

(
logN∑
ℓ=1

1

)
+

i logN∑
k=logN

Sk ·

(
k∑

ℓ=logN

1

)

≤ logN

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

(
i logN∑
k=ℓ

Sk

)
,

where
∑i logN

k=ℓ Sk is the number of claws of size at least ℓ. Note that any claw of size (ℓ+ x)

for x ≥ 0 contains a claw of size ℓ. Thus,
∑i logN

k=ℓ Sk can be bounded by 2i logN/ℓ with

probability at least 1− 2
(
iT
N

)2i logN
, by eq. 4.6.

Then, with probability at least 1− 2
(
iT
N

)2i logN
, the sum of number of pre-images of salts

107

in Bucket2 in iT queries is

≤ logN

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

(
i logN∑
k=ℓ

Sk

)

≤ logN · 2i logN
logN

+

i logN∑
ℓ=logN

2i logN

ℓ
≤ 2i logN + 2i log2N ≤ 4i log2N

where the second-to-last inequality holds from the fact that the upper bound on the m-th

harmonic series is log(m+ 1) and 2i logN + 1 ≤ N/2.

Again using the assumption iT < N/2,

[∑
a∈Bucket2

Za ≥ 4i log2N

]
≤ 2

(
iT

N

)2i logN

< 2N−2i.

Bounding Pr[F1] Finally we analyze the event F1.

For analyzing F1, first let’s consider the case when iT 2 ≥ N , i.e., we have to prove

Pr

[∑
a∈Bucket1

Za ≥ 4i2T 2 log2N/N

]
≤ 2 exp (−2i logN).

Note that there have to be at least 4i2T 2 logN/N salts in Bucket1 to make∑
a∈Bucket1 Za ≥ 4i2T 2 log2N/N . This means there should be at least 4i2T 2 logN/N claws

of size 2. Then,

108

Pr

[∑
a∈Bucket1

Za ≥ 4i2T 2 log2N/N

]

≤Pr[finding 4i2T 2 logN/N distinct claws of size 2 in iT queries]

≤

(
iT

4i2T 2 logN/N

)
·
(

iT
4i2T 2 logN/N

)
· (4i2T 2 logN/N)!

N4i2T 2 logN/N

≤

(
e2i2T 2

4i2T 2·logN
N

·N

)4i2T 2 logN/N

≤
(

e2

4 logN

)4i logN

where the last inequality holds because iT 2 ≥ N .

Next, consider the case when iT 2 < N . So we have to show

Pr

[∑
a∈Bucket1

Za ≥ 4i log2N

]
≤ 2 exp (−2i logN).

Proceeding in a similar fashion as above,

Pr

[∑
a∈Bucket1

Za ≥ 4i log2N

]
≤ Pr[finding 4i logN distinct claws of size 2 in iT queries]

≤
(

iT
4i logN

)
·
(

iT
4i logN

)
· (4i logN)!

N4i logN

≤
(

e2i2T 2

4i · logN ·N

)4i logN

≤
(

e2

4 logN

)4i logN

where the last inequality holds using iT 2 < N .

109

4.2.3 Proof of Claim 34

We prove the claim via compression. To that end, we use the following lemma from [10].

Lemma 38 ([10], restated in [4]). For any pair of encoding and decoding algorithms, (E ,Dec),

where E : {0, 1}x → {0, 1}y and Dec : {0, 1}y → {0, 1}x such that Dec(E(z)) = z with

probability at least ϵ where z ←$ {0, 1}x, then y is at least x− log 1/ϵ.

Before we present the encoding algorithm, recall the definition of ‘special’ cycles. They

are cycles where the input salt of each query has exactly one pre-image. This implies that no

salt is part of more than 1 of the i logN ‘special’ cycles by definition. Thus, for each cycle

there is a unique and distinct query, denoted (b,m), that is made after all the other queries

in the cycle. Moreover, the input salt of this query, b, has a unique pre-image (among the

offline queries), which itself has a unique pre-image and so on until H(b,m) is the unique

pre-image of another salt in the cycle. Our encoding compresses the output of the last query

made on each of the i logN cycles.

We give a formal description of our encoding algorithm next.

• Store the i logN queries that are the last queries made in their respective

‘special’ cycle in an unordered set, say W . This would require log
(

iT
i logN

)
bits.

• Delete the output of the queries, each logN bits long, in the unordered set

W from the database (table of sampled queries on H).

The decoding algorithm is trivial. For every query (b,m) in the set W , it follows the

chain backward using the uniqueness of pre-image, until it reaches some query whose input

salt, denote b′, has no pre-image and set H(b,m) = b′. For completeness we give a formal

description of the decoding algorithm, which is as follows:

110

For every query in W , say (a,m):

• Set temp= a

• While true:

– If there is no query with output temp: break.

– Find the query in the table with output temp. Say the query is (a′,m′).

– Set temp= a′.

• Output H(a,m) =temp.

Let ϵ = Pr[Ei
3]. Then,

log

(
1

ϵ

)
+ log

(
iT

i logN

)
≥ i logN · logN

⇒ log

(
1

ϵ

)
+ i logN · log

(
eiT

i logN

)
≥ i logN · logN

⇒ ϵ ≤
(
T

N

)i logN

.

111

Condition j 1 2 3 4 5

ϵj
T
N

T 2

N
16κiTB log2 N

N
iT
N
· T 2

N
iTB logN

N

Table 4.2: Summary of upper bounds on ϵj for j ∈ [5] where κi := max{i, i2T 2/N}.

112

Chapter 5

Multi-Collisions

We study multi-collisions in MD hash functions in the AI-RO model. Formally, by multi-

collisions we mean the adversary has to find m distinct messages, for some parameter m,

that have the same output under a given cryptographic hash function. We focus on MD

based hash functions.

Say the MD hash function uses a one-way compression function h in [N]× [M]→ [N], then

an m-way multi-collision is m distinct messages in [M]+ that have the same output under

MDh and a given salt a ∈ [N]. We consider the following question.

How efficiently can an adversary in AI-RO model running in time T and com-

puting an S-bit advice, find m-way multi-collisions in MD based hash functions?

We further study bounded length multi-collisions in MD hash functions in the AI-RO model.

An m-way B-length multi-collision is m distinct messages in [M]≤B that have the same

output under MDh and a given salt a ∈ [N]. We consider the following question.

How efficiently can an adversary in AI-RO model running in time T and com-

puting an S-bit advice, find m-way B-length multi-collisions in MD based hash

functions?

113

Some of the existing digital signature constructions reduce their security to multi-collision

resistance which motivates this study. Multi-collision resistance is considered a better as-

sumption than collision resistance as finding multi-collisions is harder (than finding collisions)

in the RO model and thus should be easier to achieve. We want to know if this the case in

AI-ROM too. Our study in the AI-RO model shows otherwise for unbounded length and

B-length multi-collisions for sufficiently large B.

5.1 Definitions

We start by defining m-way multi-collision resistance game for MD against auxiliary input

adversaries. Such an adversary works in two stages: (1) In the Offline/pre-processing stage,

the adversary is unbounded but outputs a bounded length string, which we will refer to as

advice. (2) In the online stage, the adversary takes the advice and makes a bounded number

of queries.

Definition 26 ((S, T, m)-AI adversary). A pair of algorithms A = (A1,A2) is an (S, T,m)-

AI adversary against MDh if

• Ah
1 is unbounded (making unbounded number of oracle queries to h) and outputs S bits

of advice σ;

• Ah
2 takes σ and a salt a ∈ [N], issues T queries to h and outputs msg1, . . . ,msgm

where h is a function in [N]× [M]→ [N].

The m-way multi-collision resistance security game, namely m-AICR, is defined next.

Definition 27. For a fixed random function h in [N] × [M] → [N] and a random salt

a ∈ [N], the game m-AICR is defined in fig. 5.1.

For an (S, T,m)-AI adversary A = (A1,A2), the advantage of A, denoted as Advm-AICR(A),

is defined as the probability of m-AICRh,a(A) returning 1. We define the (S, T,m)-AI multi-

114

Game m-AICRh,a(A)
σ ← Ah

1

msg1, . . . ,msgm ← Ah
2(σ, a)

If msgi ̸= msgj and MDh(a,msgi) = MDh(a,msgj) ∀i ̸= j ∈ [m]

Then Return 1
Else Return 0

Figure 5.1: Security game m-AICRh,a(A)

collision resistance, denoted by Advm-AICR(S, T,m), as the maximum advantage taken over

all (S, T,m)-AI adversaries.

Definition 28. For a fixed random function h in [N] × [M] → [N] and a random salt

a ∈ [N], the game m-AICRB is defined in fig. 5.2.

Game m-AICRB
h,a(A)

σ ← Ah
1

msg1, . . . ,msgm ← Ah
2(σ, a)

If any of msg1, . . . ,msgm have more than B blocks
Then Return 0

If msgi ̸= msgj and MDh(a,msgi) = MDh(a,msgj) ∀i ̸= j ∈ [m]

Then Return 1
Else Return 0

Figure 5.2: Security game m-AICRB
h,a(A)

For an (S, T,m)-AI adversary A = (A1,A2), the advantage of A in the game m-AICRB,

denoted as Advm-AICR
B (A), is defined as the probability of m-AICRB

h,a(A) returning 1. We

define the (S, T,m)-AI B-length multi-collision resistance, denoted by Advm-AICR
B (S, T,m),

as the maximum advantage taken over all (S, T,m)-AI adversaries.

5.2 Results

We assume M is sufficiently larger than N such that it is guaranteed that m-way collisions

exist on every salt.

115

Theorem 39. For any S, T,m,N and M ,

Advm-AICR(S, T,m) = θ̃

(
ST 2

N

)
.

Theorem 40. For any S, T,m,N,M and B = 1,

Advm-AICR
B (S, T,m) = θ̃

(
S

mN
+

(T/m)m

Nm−1

)
.

Theorem 41. For any S, T,m,N,M and B = 2 such that T ≤ S and m ≤ ST ,

Advm-AICR
B (S, T,m) = θ̃

(
ST

mN

)
.

Theorem 42. For any S, T,m,B,N and M such that T ≤ SB

Advm-AICR
B (S, T,m) = Ω̃

(
ST

m1/(B−1)N

)
.

and

Advm-AICR
B (S, T,m) = Ω̃

(
STB

N

)
when B ≥ 2 logm.

Theorem 43. For any S, T,m,N and M such that T ≤ SB,

Advm-AICR
B (S, T,m) = Õ

(
max

{
1,

ST 2

N

}
· STB

N

)
.

We summarize our results in table 5.1.

116

Best attacks Security bounds Proof techniques

B = 1 S
mN

+ (T/m)m

Nm−1
S

mN
+ (2T/m)m

Nm−1 Global compres-
sion

B = 2 ST
mN

+ (T/m)m

Nm−1
ST
mN

+ (eT/m)m

Nm−1 Parallel Multi-
instance prob-
lems

B < 2 logm ST
m1/(B−1)N

+ (T/m)m

Nm−1
STB
N
·max{1, ST 2

N
}+ T 2

N
Reduction to 2-
way collision

2 logm ≤ B < T STB
N

+ (T/m)m

Nm−1
STB
N
·max{1, ST 2

N
}+ T 2

N
Reduction to 2-
way collision

Unbounded ST 2

N
ST 2

N
Reduction to 2-
way collision

Table 5.1: Asymptotic security bounds on the security of finding B-block m-way collisions in
Merkle-Damg̊ard Hash Functions constructed from a random function H : [N]× [M] 7→ [N]
against (S, T)-algorithms. For simplicity, logarithmic terms and constant factors are omitted.

5.3 Proof of Theorem 39

5.3.1 Lower Bound

We will first present an attack achieving the bound in the theorem. We assume M > N

and thus collisions exist for every salt in [N] under h. We also assume m ≤ N . Then our

(S, T,m)- AI adversary A = (A1,A2) is as follows:

1. In Offline stage, A1 picks s = S/(3 logm · logM) random salts, denoted {a1, . . . , as}

and zero-walks for T/2 times on each of them to obtain, say {a′1, . . . , a′s} set of salts.

Then for each of the salt a′i in this set, A1 finds a logm-length chain of 2-ways collisions

(refer fig. 5.3 for a pictorial depiction u-length chain of v-way collisions) and store these

along with a′i as advice.

117

. . .

u blocks

z11

z21

zv1

z12

z22

zv2

z1u

z2u

zvu

Figure 5.3: u-length chain of v-way collisions

2. In Online stage, A2 takes the advice output by A1 and random salt a and zero walks

up to T times. If output of any of these queries is some a′ ∈ {a′1, . . . , a′s}, then A2

succeeds in outputting an m-way collision.

Then,

Advm-AICR(A) = Ω̃

(
ST 2

N

)
.

5.3.2 Upper Bound

We will give a reduction from AICR to this end. Say there exists an (S, T,m)-AI adversary

A = (A1,A2) that finds anm-way multi-collision with advantage ω̃(ST 2/N), then we present

an (S, T, 2)-AI adversary A′ = (A′1,A′2) that finds a collision with the same advantage.

From [5], we know that is impossible. Hence, showing that there exists no (S, T,m)-AI

adversary with advantage ω̃(ST 2/N) in the m-AICR game.

Adversary A′ is as follows:

A′1:

• Run A1 and answer the queries of A1 using it’s own oracle

• Return output of A1

A′2:

• Forward the input salt to A2 and answer the queries of A2 using it’s own oracle.

118

• Say the output of A2 is msg1, . . . ,msgm, return msg1,msg2.

5.4 Proof of Theorem 40

5.4.1 Lower Bound

The following trivial attack:

1. In pre-computation phase, stores m-way collisions for Ω̃(S/m) salts as part of the

advice.

2. In online phase, if the challenge salt is among the salts whose m-way collision is con-

tained in the advice, adversary returns the corresponding m-way collision. Else the

adversary tries to find m-way collision using it’s queries to the h.

achieves Ω̃
(

S
mN

+ (T/M)m

Nm−1

)
advantage.

5.4.2 Upper Bound

We will follow the approach of global compression from the work of [4] to prove the security

bound in theorem.

It is worth noting that the approach of reducing the problem to multi-instance m-way col-

lision finding game from our work in [ACDW20] and work of [CGLQ20] does not seem to

give a tight security bound. It is unclear whether this is due to lack of sophistication in

our analysis or an indication of a gap between pre-computation and Multi-instance game

models.

We present our proof next.

119

Fix an (S, T,m)-AI adversary A = (A1,A2) having advantage ϵ. Let σ denote the S-bit

advice output by A1 and let G be the set of salts in [N] on which A2 succeeds in finding

m-way collision when given σ and makes T queries to h.

We want to show that the set G cannot be large for any (S, T,m)-AI adversary. In other

words, it is impossible for any (S, T,m)-AI adversary to succeed in finding m-way collisions

on ‘too’ many salts, irrespective of what information is contained in the S-bit advice σ. The

idea is to give an encoding algorithm that uses such an adversary that succeeds on a ‘lot’ of

salts to compress h, which should be impossible as h is a random function.

Note that since A2 finds m-way collisions on each of the salts in G, for every a ∈ G there

should exist m queries of the type (a, ∗) ∈ [N]× [M] such that outputs of all the m queries

are same under h. Our encoding algorithm uses this repetition in outputs to compress as

follows:

1. Store the advice σ (requires S-bits)

2. Store the size of the set G (in other words, the number of elements in G), denoted |G|

(requires logN bits)

3. Store the set G (requires log
(
N
|G|

)
bits)

4. Store the unordered set of |G| · m queries corresponding to the m-way collisions for

each salt in G. Let’s denote this set by X . Note that X is a subset of the |G| ·T queries

made by A2 using the assumption that A2 has to query it’s outputs. Thus, storing X

requires log
(|G|T
|G|m

)
bits.

5. Delete the outputs of G|(m− 1) queries in X from table of h. (Note that the table for

h is stored as follows: table contains output of h on the queries made by A2 on the

set G followed by the output of h on the remaining entries of queries in [N] × [M] in

lexicographic order.) This saves |G|(m− 1) · logN bits.

120

Via the compression argument of De et al. [10], the following holds:

S + logN + log

(
N

|G|

)
+ log

(
|G|T
|G|m

)
+NM logN − |G|(m− 1) · logN ≥ NM logN

⇒S + logN + |G| log
(
N

|G|

)
+ |G|m log

(
|G|T
|G|m

)
≥ |G|(m− 1) logN

⇒S + logN ≥ |G| log
(

Nm−1|G|
N(T/m)m

)

We take expectation on both sides of the above equation and use convexity of the function

x log x along with E[|G|] = ϵN as follows:

E[S + logN] ≥ E
[
|G| log

(
Nm−1|G|
N(T/m)m

)]
⇒ S + logN ≥ E[|G|] log

(
Nm−1E[|G|]
N(T/m)m

)
≥ ϵN · log

(
Nm−1 · ϵN
N(T/m)m

)
≥ ϵN · log

(
Nm−1 · ϵ
(T/m)m

)

Consider the following two cases:

1. If

Nm−1ϵ

(T/m)m
≤ 2m

This simply implies

ϵ ≤ (2T/m)m

Nm−1

2. Otherwise

Nm−1ϵ

(T/m)m
> 2m

121

which implies

S + logN ≥ ϵN log 2m ⇒ ϵ ≤ S + logN

mN

This completes the proof for the security bound.

5.5 Proof of Theorem 41

5.5.1 Security bound

Following the approach of several prior works [IK10, ACDW20, CGLQ20, GK22, AGL22],

we will use reduction of security in the auxiliary input RO model to the security in the

Multi-instance game and then bound the security in the Multi-instance game to prove the

theorem. It is worth-noting that unlike all these prior works (except [IK10]), for us it would

suffice to analyze the parallel version of the Multi-instance game. Also our analysis is slightly

different from that of all the other prior works.

To put it simply, we will define the parallel version of Multi-instance game for each type

of m-way collision and analyze each of them separately. To this end, we first identify all

the types of 2-block m-way collisions. See fig. 5.4 for a pictorial depiction of the types. It

is worth noting that in our analysis we assume m = ω(logc n) for a constant c. And that

is because for m = O(logc n), the theorem holds trivially from the reduction presented in

section 5.3.2 and the result of [ACDW20].

Let’s fix an (S, T,m)-AI adversary A. Let Et be the event that A wins game m-AICR2

by outputting m-way collision of type t in fig. 5.4. Then

Advm-AICR
2 (A) ≤

6∑
t=1

Pr[m-AICR2
h,a(A) = 1 ∧ Et]

Definition 29. For a fixed random function h in [N] × [M] → [N], fixed function S, a

random salt a ∈ [N] any t ∈ [6], the game m-MICRS,t is defined in fig. 5.5.

122

m-way

(i) Type 1

m-way

(ii) Type 2

m-sized
claw

(iii) Type 3

m/x-wayx-way

(iv) Type 4

··
·

··
·

··
·

··
·

δ1-way γ1-way

(v) Type 5

Figure 5.4: All types of 2-block m-way colliding chains

Game m-MICRS,t
h,a(A)

Sample {a1, . . . , aS} ←$

[(
N
S

)]
(msgi1, . . . ,msgim)Si=1 ← Ah({a1, . . . , aS})
If for any i ∈ [S] and any of msgi1, . . . ,msgim have more than 2 blocks

Then Return 0
If ∀i ∈ [S]: (msgi1, . . . ,msgim) is m-way collision of type t on ai

Then Return 1
Else Return 0

Figure 5.5: Security game m-MICRS,t
h,a(A)

For an (S, T,m)-MI adversary A, the advantage of A in the game m-MICRS,t, denoted

as Advm-MICR
t (A), is defined as the probability of m-MICRS,t

h,a(A) returning 1. We define the

(S, T,m)-MI 2-length multi-instance multi-collision resistance, denoted by

Advm-MICR
t (S, T,m), as the maximum advantage taken over all (S, T,m)-MI adversaries.

123

Lemma 44. For any S, T,N,m and t ∈ [6] such that m = ω(log2N) and m ≤ ST ,

Advm-MICR
t (S, T,m) =

(
Õ

(
ST

mN
+

(T/m)m

Nm−1

))S

.

Proof of theorem 41 follows from this lemma and AI-to-MI reduction as follows:

∀t ∈ [6] : Pr[m-AICR2
h,a(A) = 1 ∧ Et] ≤ Advm-MICR

t (S, T,m)

⇒ Advm-AICR
2 (A) ≤

6∑
t=1

Pr[m-AICR2
h,a(A) = 1 ∧ Et] ≤

6∑
t=1

Advm-MICR
t (S, T,m)

=

(
Õ

(
ST

mN
+

(T/m)m

Nm−1

))S

To complete the proof of theorem 41, we prove this lemma next.

Proof. Let’s fix a (S, T,m)-MI adversary A and let h be a random oracle. We denote the

input of random S-sized set of salts by {a1, . . . , aS}. Let Xt
i be the indicator variable that

A wins on salt ai, i.e., A finds m-way collision of type t on salt ai for t ∈ [6].

Next we will show for each t ∈ [6], that Advm-MICR
t (S, T,m) =

(
Õ
(

ST
mN

+ (T/m)m

Nm−1

))S
.

Let’s begin with t = 1.

Advm-AICR
1 (S,T,m) = Pr[∀i ∈ [S] ∃1-block m-way collision for ai in ST queries]

≤
(
ST
Sm

)
NS(m−1) ≤

[
(eT/m)m

Nm−1

]S
.

Next, we analyze for t = 2. The analysis would be trivial and same as for t = 1 if m-way

collision for each salt used distinct queries. However, queries can be reused among collisions

for different salts. Refer to fig. 5.4ii for a visual depiction.

In the analysis, we consider the following cases:

124

1. x ≥ m

It would suffice to take into account the probability of x of the ST queries having the

same output, which is:

(
ST
x

)
Nx−1 ≤

(
eST

xN

)x

·N ≤
(
2eST

xN

)x

· 1
2x
·N ≤

(
2eST

mN

)x

where the last inequality uses that 1
2x
≤ 1

2m
≤ N as x ≥ m ≥ logN .

2. x < m

Then the probability of an m-way collision is:

≤
(
ST
m

)
Nm−1 ≤

(
eST

mN

)m

·N ≤
(
2eST

mN

)m

· 1

2m
·N ≤

(
2eST

mN

)x

where the last inequality holds for m ≥ logN and 2eST/mN ≤ 1.

Now we give a proof via compression. Say the number of structures shown in fig. 5.4ii among

ST queries be y with the in-degree of the input salt of the m-way collision being δ1, . . . , δy

respectively. Then it holds that

δ1 + · · ·+ δy ≥ S

The encoding algorithm will be as follows:

1. Store the subset of ST queries forming m-way collisions in an unordered fashion. From

the table of h, delete the entries corresponding to the queries in the set except the first

query. There will be y such m-sized sets.

2. For i ∈ [y]: if δi > m do the following

• Store δi

• Store the δi-sized set of queries that have the same output. From the table of h,

delete the entries corresponding to the queries in the set except the first query.

125

Say ϵ is the advantage. Then via the compression argument, following holds:

log ϵ ≤ y log

(
ST

m

)
− y · (m− 1) logN +

∑
i∈[y]:δi>m

[
logS + log

(
ST

δi

)
− (δi − 1) logN

]

⇒ ϵ ≤
(
4eST

mN

)S

using δ1 + · · ·+ δy ≥ S and for any i such that δi > m > logN the following holds:

S ·
(
ST
δi

)
N δi−1

≤
(
eST

δiN

)δi

· S ·N ≤
(
4eST

xN

)δi

· 1
4x
· S ·N ≤

(
4eST

mN

)δi

.

Next, we analyze t = 3. Again analysis will be trivial if the collisions for each salt used

distinct queries. So, we will focus when that is not the case. Say there are x ≥ m queries

with the same output and y salts ‘use’ them to get m-way collision. Again in the analysis,

there are two cases:

1. y ≤ x

Again it suffices to take into account that the probability of x of the ST queries having

the same output is ‘small’ as follows:

(
ST
x

)
Nx−1 ≤

(
eST

xN

)x

·N ≤
(
2eST

xN

)x

· 1
2x
·N ≤

(
2eST

mN

)y

where the last inequality uses that y ≤ x (along with that 2eST ≤ mN) and 1
2x
≤

1
2m
≤ N as x ≥ m ≥ logN .

2. y > x

Note that for this case, it should be that the there are x queries among ST queries

that have the same output and that each of the y salts need to at least m-way ‘hit’

this x-sized claw. Let the in-degree of each node in the x-sized claw be denoted by

126

δ1, . . . , δx. Then we will show it suffices to compress only for i ∈ [x] where δi ≥ m.

First, let’s consider the number of queries(or edges) from the y salts hitting the claw.

There should be at least y ·m such queries(or edges). Then the average in-degree of

each node on the claw is ≥ (y · m)/x ≥ m as y > x. This implies that there exists

nodes in the claw with in-degree ≥ m.

For simplicity and WLOG, let’s assume δ1 ≤ δ2 ≤ · · · ≤ δx. Let’s say for some

z < x, δ1, . . . , δz < m and δz+1, . . . , δx ≥ m. Then

δz+1 + · · ·+ δx ≥ y ·m− (δ1 + · · ·+ δz)

≥ y ·m− z ·m = m(y − z)

≥ m(y − x) ≥ y − x.

Then the probability of finding such a structure is:

(
ST
x

)
Nx−1 ·

x∏
i=z+1

[(
ST
δi

)
N δi−1

]
≤
(
eST

xN

)x

·N
x∏

i=z+1

[(
eST

δiN

)δi

·N

]

≤
(
2eST

mN

)x+δz+1+···+δx

≤
(
2eST

mN

)y

Say there are z structures as given in fig. 5.4iii. We give a proof via compression.The

encoding algorithm will be as follows.

For each of the z structures:

1. Store x and the subset of ST queries forming x-sized claw in an unordered fashion.

From the table of h, delete the entries corresponding to the queries in the set except

the first query.

127

2. For i ∈ [x]: if δi > m do the following

• Store δi

• Store the δi-sized set of queries that have the same output. From the table of h,

delete the entries corresponding to the queries in the set except the first query.

It is worth noting that as the size of each of the sets in the encoding algorithm above is at

most ST , storing their size requires at most logST bits. And since each of these sets have

a size of at least m ≥ logN we can use the following:

(
2eST

mN

)δ

· ST ≤
(
4eST

mN

)δ

· 1
2δ
· ST ≤

(
4eST

mN

)δ

when δ ≥ logN . Thus, the advantage for t = 3 can be bounded to
(
4eST
mN

)S
.

Next, we analyze for t = 4. Refer to fig. 5.4iv for a visual depiction of this case.

We would like to clarify at this point that we cheated a bit before. Actually event E4

would have logN sub-events and each of them gets their own reduction to MI game and

separate analysis but we clubbed them together for simplicity. Note that having logN sub-

events only adds a multiplicative factor of logN in the final bound which is tolerable. We

describe these sub-events next.

1. Sub-event E1
4 : x ≥ logN

It suffices to analyze this collision type in a similar fashion to collision-type 1. That is

advantage of the adversary in MI game would be bounded by the probability of finding

logN -way collision on S distinct salts among ST queries, which is

(
ST

S logN

)
(N logN−1)S

≤
(

eT

logN ·N

)S logN

·NS ≤
(

1

N

)S

128

where the last inequality holds using logN ≥ 2, eT ≤ 2N and ST ≥ m.

2. (logN − 1) Sub-events, one for each x ∈ [2, logN):

For any x < logN ⇒ m/x > m/ logN

Then the probability of finding each 1-block (m/ logN)-way collision is

(
ST

m/ logN

)
Nm/ logN−1 ≤

(
eST logN

mN

)m/ logN

·N ≤
(
2eST logN

mN

)m/ logN

using 1
2m/ logN ·N ≤ 1 when m ≥ log2N .

Say there exists y such structures of 1-block (m/ logN)-way collision in ST queries.

If y ≥ S logN/m, then it suffices to only compress these structures to get the desired

bound. When y < S logN/m, it becomes necessary to take into account the probabil-

ity of different salts sharing a structure.

So, we analyze the case y < S logN/m more closely. It is important to note S salts

imply at least S ·x queries hitting one of these y structures. Then the average number

of queries hitting a structure is at least S · x · m
S logN

≥ m
logN

. This implies there exists

structures hit by more than m/ logN queries and these can be compressed in a similar

fashion as 1-block (m/ logN)-way collisions.

Let δi denote the number of queries hitting the ith structure. Then

δ1 + · · ·+ δy ≥ S · x

WLOG, we can assume δ1 ≤ · · · ≤ δy and let z < y be such that ∀i ∈ [z] : δi < m/ logN

129

and ∀i > z : δi ≥ m/ logN . Then

δz+1+ · · ·+δy ≥ S ·x−(δ1+ · · ·+δz) ≥ S ·x−z · m

logN
≥
(
S − m

logN

)
·x ≥ S− m

logN

We give a proof via compression.The encoding algorithm will be as follows.

For i ∈ [y]:

(a) Store the subset of ST queries forming ith structure in an unordered fashion. From

the table of h, delete the entries corresponding to the queries in the set except

the first query.

(b) If δi > m/ logN do the following

• Store δi

• Store the δi-sized set of queries that hit the ith structure in an unordered

fashion. From the table of h, delete the entries corresponding to the queries

in the set except the first query.

It is worth noting that as the size of each of the sets in the encoding algorithm above

is at most S, storing their size requires at most logS bits. And since each of these sets

have a size of at least logN we can use the following:

(
2eST logN

mN

)δ

· S ≤
(
4eST logN

mN

)δ

· 1
2δ
· S ≤

(
4eST logN

mN

)δ

when δ denotes the size of the set. Thus, the advantage for t = 4 can be bounded to(
4eST logN

mN

)S
.

Finally, we analyze t = 5. To this end, we consider a structure with x branches, where the

ith branch is 1-block γi-way collision and all x branches have the same output. Let y be the

number of salts that use this structure in collisions. Let δi denote the number of queries

130

hitting the ith branch of the structure. Let δji denote the number of queries from the jth of

y salts hitting the ith branch of the structure. Then δi =
∑y

j=1 δ
j
i .

We would like to state that we had cheated earlier when we stated E5 as a single event

and defined the MI game corresponding to it. Actually event E5 corresponds to 2 sub-

events, each of which we need to reduce to MI game and analyze on its own. This affects

the final bound only by a constant factor. We describe the sub-events next.

1. ∀j ∈ [y],∃i ∈ [x] such that δji ≥ logN

Analysis for this collision type is similar to that for event E1
4 . That is advantage of

the adversary in MI game would be bounded by the probability of finding logN -way

collision on S distinct salts among ST queries, which is

(
ST

S logN

)
(N logN−1)S

≤
(

eT

logN ·N

)S logN

·NS ≤
(

1

N

)S

≤
(

ST

mN

)S

where the second-to-last inequality holds using logN ≥ 2 and eT ≤ 2N and the last

inequality holds using ST ≥ m.

2. ∀i ∈ [x], j ∈ [y] : δji < logN

We inspect the second sub-event above. We need to analyze two cases:

1. y ≤ γ1 + · · ·+ γx

Given δji < logN for all i, j, we can bound δi =
∑y

j=1 δ
j
i ≤ y · logN for every i. Using

this together with the fact that

δ1 · γ1 + · · ·+ δx · γx ≥ y ·m

131

implies

γ1 + · · ·+ γx ≥
y ·m
y logN

=
m

logN

and as y ≤ γ1 + · · · + γx, it suffices to compress the structure. Encoding algorithm

should compress for each such structure as follows:

(a) Store the sum of size of the x branches, i.e., γ1 + · · · + γx which is at most ST

and hence requires at most log(ST)-bits.

(b) Store the subset of ST queries forming the x branches in an unordered fashion.

From the table of h, delete the entries corresponding to the queries in the set

except the first query.

Via the compression argument, we obtain the probability of A finding such a structure

is at most

ST ·

((
ST
z

)
N z−1

)
≤
(
eST

zN

)z

· ST ·N ≤
(
4eST logN

mN

)y

where z = γ1+ · · ·+γx ≥ m/ logN and the last inequality uses y ≤ z and m ≥ log2N .

2. y > γ1 + · · ·+ γx

As in the previous case, it holds that

γ1 + · · ·+ γx ≥
m

logN

and we will compress the x branches. However, in this case that wouldn’t suffice to get

the desired bound and we will have to use that salts are sharing the branches. Since

more salts are using fewer branches, this would lead to lots of collisions some of which

can be compressed.

Let Z be the subset of x branches such that for every i ∈ Z the in-degree of the

132

ith branch, i.e., δi < m/ logN . We will compress the queries hitting the rest of the

branches in a manner similar to the previous case. What remains to be shown is we

can compress sets such that the sum of their sizes is y − (γ1 + · · · + γx), which we do

next.

δ1 · γ1 + · · ·+ δx · γx ≥ y ·m

⇒
∑

i∈[x]\Z

δi · γi ≥ y ·m−

(∑
i∈Z

δi · γi

)
≥ y ·m− m

logN
·

(∑
i∈Z

γi

)

≥ m ·

(
y −

∑
i∈Z

γi

)

Then using that γi ≤ m for every i ∈ [x], we get

∑
i∈[x]\Z

δi ·m ≥
∑

i∈[x]\Z

δi · γi ≥ m ·

(
y −

∑
i∈Z

γi

)
⇒

∑
i∈[x]\Z

δi ≥

(
y −

∑
i∈Z

γi

)
.

5.6 Proof of Theorem 42

We present an attack that achieves the bound in the theorem. We assume M > (m−1)N+1

and thus m-way collisions exist for every salt in [N] under h. We also assume m = O(N c)

for some constant c. Then our proposed (S, T,m)-AI adversary A = (A1,A2) is a trivial

variation of our attack proposed in the proof of theorem 39 and is as follows:

1. In Offline stage, A1 picks s random salts, denoted {a1, . . . , as}. For salt ai (any i ∈ [s]),

A1 zero-walks for x := max{0, ⌊(B − logm)/2⌋} times to obtain a′i and then finds

y := min{log2m,B − 1}-length chain of m1/y-way collision. A1 stores a′i and the

corresponding chain as advice.

133

2. In Online stage, given advice from offline stage and random salt denoted a, A2 runs

for i ∈ [⌊T/(2x+ 1)⌋]:

• A2 queries h(a, i) {a′1, . . . , a′s}.

• A2 zero-walks up to 2 · x times

After any step above, if the output is in {a′1, . . . , a′s}, A2 can use the advice to output

m-way collision on a consisting of i concatenated with appropriate number of 0s and

the corresponding chain in the advice.

Analysis of the attack

Case 1: B ≤ logm

In this case, x = 0 and A2 stores (B − 1)-length chain of m1/(B−1)-way collision for each

randomly chosen salt. Thus, S-bit advice can contain the salt and the corresponding chain

for at least

s =
S

logm(m1/(B−1) logM + logN) + logN
= Ω̃

(
S

m1/(B−1)

)
salts.

This implies A2 can achieve an advantage of

Ω̃

(
ST

m1/(B−1)N

)
.

Case 2: logm < B < 2 logm

In this case, A1 zero-walks for ⌊(B − logm)/2⌋ times on each randomly chosen salt and

then finds a logm-length chain of 2-collisions on the output of zero-walking. Thus, the S-bit

advice can contain the salt and the corresponding chain for at least

s =
S

logm(2 · logM + logN) + logN
= Ω̃ (S)

134

salts.

This implies A2 can achieve an advantage of

Ω̃

(
ST

N

)
.

Case 3: B ≥ 2 · logm

In this case, A1 zero-walks for ⌊(B − logm)/2⌋ ≥ B/4 times on each randomly chosen

salt and then finds a logm-length chain of 2-collisions on the output of zero-walking. Thus,

the S-bit advice, as in the previous case, can contain the salt and the corresponding chain

for at least

s =
S

logm(2 · logM + logN) + logN
= Ω̃ (S)

salts.

This implies A2 can achieve an advantage of

Ω̃

(
STB

N

)
.

5.7 Proof of Theorem 43

The proof for the theorem follows from the reduction presented in section 5.3.2 and the result

from [2].

135

Chapter 6

Double Encryption

6.1 Preliminaries

6.1.1 Notation.

For positive integers a, b we write [b] for {1, 2, . . . , b}. and [a, b] for {a, a + 1, . . . , b − 1, b}.

For positive integers x, y we define Distinctyx ⊆ ({0, 1}x)y to y-tuples of bit strings of length

x, with all entries distinct.

For positive integers k, n, we let BCk,n be the set of all block ciphers with k-bit keys and

n-bit blocks. Formally these are all functions E : {0, 1}k × {0, 1}n → {0, 1}n such that for

every K ∈ {0, 1}k, EK := E(K, ·) is a permutation on {0, 1}n. For a block cipher E, we write

E−1 to denote the inverse cipher, i.e. for every K ∈ {0, 1}k, E−1K (·) is inverse permutation

of EK(·).

For any finite non-empty set S, we will denote US as the uniform distribution on S.

6.1.2 Double-Encryption Security Definitions

For a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n, define double encryption with E, denoted

DE = DE[E], as DE : {0, 1}2k × {0, 1}n → {0, 1}n, DE(K̂1∥K̂2, x) = EK̂2
(EK̂1

(x)).

136

Definition 30. Let k, n be positive integers and b ∈ {0, 1}, and let A be an adversary. We

define the PRP-advantage of A against double encryption (DE) in the ideal cipher model to

be

Advprp
DE(A) =

∣∣∣∣Pr [AE,E−1,DE[E]
K̂1∥K̂2

,DE[E]−1

K̂1∥K̂2 = 1

]
− Pr

[
AE,E−1,Π,Π−1

= 1
]∣∣∣∣ ,

where E is uniform on BCk,n, Π is uniform on BC2k,n and K̂1, K̂2 are uniform on {0, 1}k

(and all are independent).

Our definitions will consider the advantage of a restricted classes of adversaries. The

most restricted are meet-in-the-middle (MITM) adversaries, which intuitively follow exactly

the classical MITM strategy, except they may manage their bounded memory arbitrarily.

More precisely, we use the following definition.

Definition 31. An adversary A is a (t, q,m)-MITM adversary (against double encryp-

tion DE, with k, n) if it always uses at most m bit of memory, and for some fixed distinct

X1, . . . , Xt ∈ {0, 1}n, and fixed distinct K1, . . . , K2q ∈ {0, 1}k, it queries its oracles in the

following way:

1. It non-adaptively queries its third oracle (Π or DE[E]K1∥K2) at X1, . . . , Xt ∈ {0, 1}n.

Let Z1, . . . , Zt ∈ {0, 1}n be responses.

2. For each i = 1, . . . , q, it queries its first oracle E at (Ki, X1), . . . , (Ki, Xt).

3. For each i = q + 1, . . . , 2q, it queries its second oracle E−1 at (Ki, Z1), . . . , (Ki, Zt).

We call the queries to the first oracle E as the forward queries and queries to the second

oracle E−1 as the backwards queries. Note as per our definition above, the key is not repeated

between the forward and the backward queries.

We also define a less restricted class of MITM-style adversaries as follows.

137

Definition 32. An adversary A is a (t, q,m)-generalized-MITM (GMITM) adversary (against

double encryption DE, with k, n) if it always uses at most m bit of memory, and for some

fixed distinct X1, . . . , Xt ∈ {0, 1}n, fixed distinct K1, . . . , K2q ∈ {0, 1}k, and a partition of

[2q] = Q+ ∪Q−,it queries its oracles in the following way:

1. It non-adaptively queries its third oracle (Π or DE[E]K1∥K2) at X1, . . . , Xt ∈ {0, 1}n.

Let Z1, . . . , Zt ∈ {0, 1}n be responses.

2. For each i = 1, . . . , 2q:

(a) If i ∈ Q+: query first oracle E at X1, . . . , Xt with key K̂i to get response Yi =

Yi,1, . . . ,Yi,t.

(b) Else: query second oracle E−1 at Z1, . . . ,Zt with key K̂i to get response Yi =

Yi,1, . . . ,Yi,t.

We remark that all of our results hold in a slightly more general setting where the

adversary can select the keys K1, . . . , K2q after the first phase.

6.2 Lower bound

Theorem 45. For any positive integers s,m, q, n, k such that m ≥ n and s ≥ 2k+1
n

, there

exists a (s, q,m)-MITM adversary A such that

Advprp
DE(A) ≥ C · mq

ns · 22k

for some constant C > 0.

Proof. Here, we give a (t, q,m)-MITM adversary A that achieves this advantage. We prove

this adversary to be optimal (up to factor of n · t where t is usually small e.g. t = 3 for

138

Double-DES, and n · t can be of the order of k) among (t, q,m)-MITM adversaries (for the

restricted parameters) in the next section.

A does the following:

1. picks some fixed distinct X1, . . . , Xt ∈ {0, 1}n and picks distinct keys K̂1, . . . , K̂2q ∈

{0, 1}k.

2. queries X1, . . . , Xt to the third oracle to obtain the corresponding responses denoted

Z1, . . . ,Zt ∈ {0, 1}n.

3. For each i = 1, . . . , q, it queries its first oracle E at (K̂i, X1), . . . , (K̂i, Xt) to get the

responses denoted Yi,1, . . . ,Yi,t.

4. stores the responses Yi,1, . . . ,Yi,t for i ∈ ⌊ m
n·t⌋ and discards other responses in the

stream.

5. For each i = q + 1, . . . , 2q, it queries its second oracle E−1 at (K̂i,Z1), . . . , (K̂i,Zt) to

get the responses denoted Wi,1, . . . ,Wi,t.

6. If there exists i ∈ [⌊m/(n · t)⌋], j ∈ [q] such that ∀index ∈ [t] Yi,index = Wj,index, return

1.

7. Else return 0.

139

Let N = 2n, then

Advprp
DE(A) =

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1
]
− Pr

[
AE,E−1,Π,Π−1

= 1
]∣∣∣

=
∣∣∣Pr[K1 ̸= K2] · Pr

[
AE,E−1,DE[E]K1∥K2

,DE[E]−1
K1∥K2 = 1|K1 ̸= K2

]
+Pr[K1 = K2] · Pr

[
AE,E−1,DE[E]K1∥K2

,DE[E]−1
K1∥K2 = 1|K1 = K2

]
−Pr

[
AE,E−1,Π,Π−1

= 1
]∣∣∣

≥
(q

22k
· m

n · t
+ 0− q

N t
· m

n · t

)
≥ C · mq

n · t · 22k
.

6.3 Bound on Memory Bounded MITM

Theorem 46. For every (t, q,m)-MITM adversary A,

Advprp
DE(A) =

1

2k
+O

(
mq log n

22k

)

Proof. Let A be any (t, q,m)-MITM adversary. Define the event K1 = K2 as bad. Then

Pr[bad] =
2k

22k
=

1

2k
.

140

Game G(0)
k,n,b(A)

E
$← BCk,n

K̂1, K̂2
$← {0, 1}k such that K̂1 ̸= K̂2

Π
$← Perms({0, 1}n, {0, 1}n)

If b = 0
Zi ← Π(Xi), ∀i ∈ [t]

Else
Zi ← E

K̂1
(E

K̂2
(Xi)), ∀i ∈ [t]

Set σ0 = ⊥
For i ∈ [q]:

Yi ← EKi(X)

σi ← A(σi−1,Yi)
For i ∈ [2q] \ [q]:

Yi ← E−1Ki
(Z)

σi ← A(σi−1,Yi)
b′ ← A(σ2q)
Return b′

Game G(1)
k,n,b(A)

E
$← BCk,n

K̂1, K̂2
$← {0, 1}k such that K̂1 ̸= K̂2

Π
$← Perms({0, 1}n, {0, 1}n)

If b = 0
Zi ← Π(Xi),∀i ∈ [t]

Else
Zi ← E

K̂1
(E

K̂2
(Xi)),∀i ∈ [t]

Y1, . . . ,Y2q
$← (Distincttn)

2q

If b = 1:

(i, j)
$← [q]× ([2q] \ [q])

Set Yj = Yi

For i ∈ [2q]:
σi ← A(σi−1,i)

b′ ← A(σ2q)
Return b′

Figure 6.1: Security games G(0)
k,n,b, G

(1)
k,n,b.

Then

Advprp
DE(A) =

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1
]
− Pr

[
AE,E−1,Π,Π−1

= 1
]∣∣∣

≤ 1

2k
·
∣∣∣Pr [AE,E−1,DE[E]K1∥K2

,DE[E]−1
K1∥K2 = 1|bad

]
− Pr

[
AE,E−1,Π,Π−1

= 1|bad
]∣∣∣+(

1− 1

2k

)
·
∣∣∣Pr [AE,E−1,DE[E]K1∥K2

,DE[E]−1
K1∥K2 = 1|bad

]
− Pr

[
AE,E−1,Π,Π−1

= 1|bad
]∣∣∣

Note

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1|bad
]
− Pr

[
AE,E−1,Π,Π−1

= 1|bad
]∣∣∣

= |Pr[G(0)
k,n,0(A) = 1]− Pr[G(0)

k,n,1(A) = 1]|

where game G(0)
k,n,b is defined in figure 6.1 for any positive integers k, n, b ∈ {0, 1} and

states σi such that |σi| ≤ m bits.

This is true because A interacting in games G(0)
k,n,0 and G(0)

k,n,1 is equivalent to when the

141

third oracle is Π and DE[E]K1∥K2 , respectively in Definition 31. Thus,

Advprp
DE(A) ≤

1

2k
+ |Pr[G(0)

k,n,0(A) = 1]− Pr[G(0)
k,n,1(A) = 1]|

Claim 47. For every (t, q,m)-MITM adversary A,

|Pr[G(0)
k,n,0(A) = 1]− Pr[G(0)

k,n,1(A) = 1]|

≤ O

(
q2

22k

)
· |Pr[G(1)

k,n,0(A) = 1]− Pr[G(1)
k,n,1(A) = 1]|

where game G(1)
k,n,b is defined for b ∈ {0, 1} in figure 6.1. In G(1)

k,n,b every state σi should be at

most m-bits long.

Proof. For A in G(0)
k,n,b, the responses to distinct queries to the oracles E,E−1 may or may

not be random and independent given the input X,Z.

In game G(0)
k,n,0, where X,Z are input-output of a permutation independent of E, Yi will

be random and independent given X,Z. Thus,

Pr[G(0)
k,n,0(A) = 1] = Pr[G(1)

k,n,0(A) = 1].

In game G(0)
k,n,1, Z = EK̂2

(EK̂1
(X)).

We define following events:

Event E : K̂1, K̂2 ∈ (K1, . . . , K2q)

Then

Pr[E] =

(
2q
1

)
·
(
2q
1

)
22k

=
4q2

22k

Then, we analyze for each possible case:

1. Case E:

142

This implies K̂1 ̸∈ (K1, . . . , K2q) or K̂2 ̸∈ (K1, . . . , K2q). Then Pr[G(0)
k,n,1 = 1|E] =

Pr[G(1)
k,n,0 = 1] as when E/E−1 are not queried on both K̂1, K̂2, the responses will be

random and independent given (X,Z).

2. Case E:

There are following three possibilities:

(a) Event E1 : K̂1 ∈ (K1, . . . , Kq) and K̂2 ∈ (Kq+1, . . . , K2q)

Then Pr[G(0)
k,n,1 = 1|E1] = Pr[G(1)

k,n,1 = 1].

(b) Event E2 : K̂1, K̂2 ∈ (K1, . . . , Kq)

Adversary can use such queries to distinguish iff ∃i such that EK̂1
(Xi) ∈ X which

happens with probability at most t/N .

(c) Event E3 : K̂1, K̂2 ∈ (Kq+1, . . . , K2q)

Symmetrically, adversary can use such queries to distinguish iff ∃i such that

EK̂1
(Zi) ∈ Z which happens with probability at most t/N .

Then putting everything together:

Pr[G(0)
k,n,1 = 1] ≤ Pr[E] · Pr[G(0)

k,n,1 = 1|E] + Pr[E] ·
(
Pr[G(0)

k,n,1 = 1|E1] +
2t

N

)
≤
(
1− 4q2

22k

)
· Pr[G(1)

k,n,0 = 1] +
8q2

22k
· Pr[G(1)

k,n,1 = 1]

where the last inequality assumes t is a constant and thus 2t/N ≤ Pr[G(1)
k,n,1 = 1]. Then,

|Pr[G(0)
k,n,0(A) = 1]− Pr[G(0)

k,n,1(A) = 1]|

≤ 8q2

22k
· |Pr[G(1)

k,n,1 = 1]− Pr[G(1)
k,n,0 = 1]|

143

Game G(2)
k,n,b(A

′)

E
$← BCk,n

K̂1, K̂2
$← {0, 1}k such that K̂1 ̸= K̂2

Π
$← Perms({0, 1}n, {0, 1}n)

If b = 0
Zi ← Π(Xi), ∀i ∈ [t]

Else
Zi ← E

K̂1
(E

K̂2
(Xi)), ∀i ∈ [t]

Y1, . . . ,Y2q
$← (Distincttn)

2q

σ ← A′(Y1, . . . ,Yq)
If b = 1:

(i, j)
$← [q]× ([2q] \ [q])

Set Yj = Yi

OUTb = (σ,Yq+1, . . . ,Y2q)
b′ ← A′(OUTb)
Return b′

Figure 6.2: Security games G(2)
k,n,b.

which proves the claim.

For every (m, q)-MITM adversary, denoted A, there exists adversary A′ such that A′ has

at most m-bits of memory and makes at most 2q queries as A except it gets to generate

it’s m-bit state after seeing all the responses Y1, . . . ,Yq from the oracle instead of seeing

them as a stream. And A′ gets to guess b on the m-bit state on Y1, . . . ,Yq and responses

Yq+1, . . . ,Y2q. Then we can make the following claim referring to game G(2)
k,n,b defined in

figure 6.2 for b ∈ {0, 1}.

Claim 48.

|Pr[G(1)
k,n,0(A) = 1]− Pr[G(1)

k,n,1(A) = 1]| ≤ |Pr[G(2)
k,n,0(A

′) = 1]− Pr[G(2)
k,n,1(A

′) = 1]|

Proof. The claim can be proved via trivial reduction of A′ to A.

144

Lemma 49. For any positive integers m, q, k, n,

|Pr[G(2)
k,n,0(A

′) = 1]− Pr[G(2)
k,n,1(A

′) = 1]| = O

(
m log n

q

)
.

We will prove the lemma next. However, we first show that using the lemma, theorem 46

can be proved as follows:

Advprp
DE,k,n(A) ≤

1

2k
+O

(
q2

22k

)
· |Pr[G(2)

k,n,0(A
′) = 1]− Pr[G(2)

k,n,1(A
′) = 1]|

≤ 1

2k
+O

(
q2

22k

)
·O
(
m log n

q

)
=

1

2k
+O

(
mq log n

22k

)

6.3.1 Proof of Lemma 49

We use US to denote the uniform distribution on finite set S, and also (abusing notation a

bit) Ut to denote the uniform distribution on {0, 1}t.

Review: divergence inequalities

We use D(P ||Q) := Ex∼P [log2(P (x)/Q(x))] to denote the binary KL divergence. We also

use the notation

Div(p||q) := p log2(p/q) + (1− p) log2((1− p)/(1− q))

for the divergence of a p-Bernoulli over a q-Bernoulli binary random variable. Note that

Div(p||q) = Div(1− p||1− q).

145

Fact 1 (Wiki article on Chernoff bounds—cite properly or prove). (i) For 0 ≤ x < y ≤ 1,

Div(x||y) ≥ (y − x)2

2y
.

In particular, if y ≥ 4x, then

Div(x||y) ≥ (.75y)2

2y
> .28y .

(ii) For 0 ≤ y < x ≤ 1,

Div(x||y) ≥ (x− y)2

2x
.

In particular, if x ≥ 4y, then

Div(x||y) ≥ (.75x)2

2x
> .28x .

Let M,N be two measures on a finite set A, and let A′ ⊆ A. Let MA′ :=
∑

σ∈A′ Mσ.

Fact 2 (Log-sum inequality). It holds that

∑
a∈A′

Ma · log2 (Ma/Na) ≥ MA′ · log2 (MA′/NA′) .

Fact 3 (Basic divergence inequality). Let P,Q be two probability distributions on a set S,

and let S ′ ⊂ S. Let p := P (S ′), q := Q(S ′). Then it holds that

D(P ||Q) ≥ Div(p||q) .

The proof follows from two applications of the log-sum inequality, applied once on S ′ and

once on its complement.

Lemma 50 (Variant divergence inequality). Let P,Q be two probability distributions on a

146

set S, with Q supported on all of S. Let S0 := {a ∈ S : Pa/Qa ≤ 4}. Let p := P (S0).

Then it holds that

D(P ||Q) ≥ .002
∑
a∈S0

Qa (Pa/Qa − 1)2 + .1(1− p) .

Proof. We have

D(P ||Q) =
∑
a∈S

Pa · log2(Pa/Qa) =
∑
a∈S

Qa · (Pa/Qa) · log2(Pa/Qa)

= Ea∼Q[T log2 T] , T := Pa/Qa .

Now we have for T ∈ (0, 4]

T log2 T ≥ (log2 e)[(T − 1) + .02(T − 1)2]

And for T distributed as above, E[T] = 1 and E[(T − 1) · 1a∈S0] ≥ −(1− p). Thus,

D(P ||Q) ≥ (log2 e)Ea∼Q[1a∈S0 · {(T − 1) + .02(T − 1)2}]

≥ .02 · Ea∼Q[1a∈S0 · (T − 1)2] − 1.5(1− p) .

Now,

Ea∼Q[1a∈S0 · (T − 1)2] =
∑
a∈S0

Qa · (Pa/Qa − 1)2

so that

D(P ||Q) ≥ .02
∑
a∈S0

Qa (Pa/Qa − 1)2 − 1.5(1− p) . (6.1)

On the other hand, let

q := Q(S0) .

147

By Fact 3 applied to the complement of S0, we also have

D(P ||Q) ≥ Div(1− p||1− q) ≥ .28(1− p) , (6.2)

the latter step holding by Fact 1 and the property that P (S0) = 1− p ≥ 4Q(S0) = 4(1− q),

which holds by definition of S0.

Now we do something slightly unusual, and combine Eqs. (6.1) and (6.2) in an unequal

mixture: taking a (.1, .9)-convex mixture of the two respective bounds, we get

D(P ||Q) ≥ .002
∑
a∈S0

Qa (Pa/Qa − 1)2 + .102(1− p) ,

which yields the Lemma.

Main setting

f : ({0, 1}3n)q → {0, 1}m

is some “leakage” function. We wish to upper-bound the statistical distance between the

output distributions of the following two related Experiments:

Expt. 0:

• Y = Y 1, . . . , Y q are i.i.d. and uniform from {0, 1}3n;

• σ ← f(Y 1, . . . , Y q);

• Z = Z1, . . . , Zq “fresh” i.i.d. uniform from {0, 1}3n;

• output OUT0 ← (σ, Z1, . . . , Zq).

Expt. 1:

148

• Y = Y 1, . . . , Y q are i.i.d. and uniform from {0, 1}3n;

• σ ← f(Y 1, . . . , Y q);

• Z = Z1, . . . , Zq “fresh” i.i.d. uniform from {0, 1}3n;

• i ∈r [q];

• j ∈r [q];

• output OUT1 ← (σ, Z1, . . . , Zj−1, Y i, Zj+1, . . . , Zq).

Mnemonically, one can think of Expt. 1 as the “1-insertion” experiment (Y i gets inserted

into Z) and Expt. 0 as the “0-insertion” experiment.

Now let us focus on a possible conditioning [σ = σ0] over the joint probability space of

these two variables (in which all same-named variables are jointly used).

Consider any out ∈ {0, 1}m+3n·q that could potentially be output as OUT0 or OUT1, with

first σ0 as the first m coordinates.

Define a distribution Y i
σ0

on {0, 1}3n, by the density function

Y i
σ0
(y) := Pr

i∈r[q]
[Y i = y|σ = σ0] =

1

q

q∑
i=1

Pr[Y i = y|σ = σ0]

As Z1, . . . , Zq are uniform in Expt. 0, we have

Pr[OUT0 = out|σ = σ0] = (2−3n)q = uq ,

where we’ll take

u := 2−3n

149

throughout. On the other hand, if z1, . . . , zq are the Z-values in out, then

Pr[OUT1 = out|σ = σ0] =
1

q

∑
j∈[q]

uq−1 · Yσ0(z
j)

= uq · 1
q

∑
j∈[q]

Yσ0(z
j)

u
,

Thus, if we let

OUT σ0
0 , OUT σ0

1

be OUT0, OUT1 respectively conditioned on [σ = σ0], we have

||OUT σ0
0 − OUT σ0

1 ||stat =
1

2

∑
z1,...,zq∈{0,1}3n

uq ·

∣∣∣∣∣∣
1

q

∑
j∈[q]

Yσ0(z
j)

u

− 1

∣∣∣∣∣∣
=

1

2q
· Ez1,...,zq∼U3n

∣∣∣∣∣∣
∑
j∈[q]

(
Yσ0(z

j)

u
− 1

)∣∣∣∣∣∣
 . (6.3)

Now we are tempted to apply the second-moment method to bound this; but it appears better

to first separate out the “large terms”, namely those where the quantity
(
Yσ0 (z

j)

u
− 1
)
> 3.

To do so it will be helpful to recenter certain “split” variables to have mean zero. We let

µ+ := Ez∼U3n

[
1[Yσ0 (z)>4u] ·

(
Yσ0(z)

u
− 1

)]
.

Note that

µ+ ≥ 0 and Ez∼U3n

[
1[Yσ0 (z)≤4u] ·

(
Yσ0(z)

u
− 1

)]
= −µ+ .

150

We now write∣∣∣∣∣∣
∑
j∈[q]

(
Yσ0(z

j)

u
− 1

)∣∣∣∣∣∣ (6.4)

=

∣∣∣∣∣∣
∑
j∈[q]

{
µ+ + 1[Yσ0 (zj)≤4u]

(
Yσ0(z

j)

u
− 1

)}
+
∑
j∈[q]

{
−µ+ + 1[Yσ0 (zj)>4u]

(
Yσ0(z

j)

u
− 1

)}∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j∈[q]

{
µ+ + 1[Yσ0 (zj)≤4u]

(
Yσ0(z

j)

u
− 1

)}∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈[q]

{
−µ+ + 1[Yσ0 (zj)>4u] ·

(
Yσ0(z

j)

u
− 1

)}∣∣∣∣∣∣ (6.5)

We try to separately analyze the two RHS terms of Eq. (6.4).

151

Bounding the first RHS term of Eq. (6.4)

First, we use the second-moment bound for the first term. By the general relation

E[|X|] ≤
√

E[X2] (by applying Jensen’s inequality on concave functions, square root function

here), that term is at most

√√√√√Ez1,...,zq∼U3n

∑
j∈[q]

µ+ + 1[Yσ0 (zj)≤4u] ·
(
Yσ0(z

j)

u
− 1

)2 .

Now,

Ez1,...,zq∼U3n

∑
j∈[q]

µ+ + 1[Yσ0 (zj)≤4u] ·
(
Yσ0(z

j)

u
− 1

)2
=
∑
j∈[q]

Ez∼U3n

[(
µ+ + 1[Yσ0 (z)≤4u] ·

(
Yσ0(z)

u
− 1

))2
]

where we used that the terms µ+ +
(
Yσ0 (z)

u
− 1
)

are pairwise independent AND, have

expectation zero (over z ∼ U3n). NOTE: this latter requirement is why we are fussing with

the µ+ terms at all.

Expanding out the square, we see the RHS above is equal to

∑
j∈[q]

(
(µ+)2 + 2µ+ · (−µ+) + Ez∼U3n

[(
1[Yσ0 (z)≤4u] ·

(
Yσ0(z)

u
− 1

))2
])

=
∑
j∈[q]

Ez∼U3n

[(
1[Yσ0 (z)≤4u] ·

(
Yσ0(z)

u
− 1

))2
]
− (µ+)2

152

Applying Lemma 50 to each term, with P := Yσ0 and Q := U3n, we sum that for j ∈ [q],

Ezj∼U3n

[
1[Yσ0 (z)≤4u] ·

(
Yσ0(z)

u
− 1

)2
]

=
∑

z∈{0,1}3n\B

u

(
Yσ0(z)

u
− 1

)2

≤ 500 ·D(Yσ0||U3n) − 50 · Yσ0(B)

where

B := {z : Yσ0(z) > 4u} .

So the first RHS term in Eq. (6.4) is, in expectation, at most

√∑
j∈[q]

500 ·D(Yσ0||U3n) − 50 · Yσ0(B)− (µ+)2

153

We get that the first part of the contribution to ||OUT σ0
0 − OUT σ0

1 ||stat is

≤ 12

q

√∑
j∈[q]

D(Yσ0||U3n) ,

which in expectation over σ0 ∼ σ is at most

12

q
E

√∑
j∈[q]

D(Yσ0 ||U3n)

 ≤ 12

q

√√√√√E

∑
j∈[q]

D(Yσ0 ||U3n)

 ≤ 12
√
m

q
.

This can be proved true as below:

Let’s define the distributions for every j ∈ [q]:

Pj(y) := Pr[Y j = y|σ = σ0]

Next, define

P :=
1

q

q∑
j=1

Pj = Yσ0 .

Then,

D(P ||U3n) = D

(
P1 + · · ·+ Pq

q
|| U3n

)
≤ 1

q
(D(P1||U3n) + · · ·+D(Pq||U3n))

The distribution Pj characterizes the mutual information

Eσ0∼σ[D(Pj||U3n)] = I(σ;Y j)

between the message σ and the jth coordinate Y j, by standard facts relating information

and divergence (and using that Y 1, . . . , Y q ∼ U3n).

By the independence of Y 1, . . . , Y q, and using the m-bit message length assumption we

154

have ∑
j∈[q]

I(σ;Y j) ≤ I(σ;Y) ≤ |σ| = m .

155

Bounding the second RHS term of Eq. (6.4)

We recall that

µ+ := Ezj∼U3n

[
1[Yσ0 (zj)>4u] ·

(
Yσ0(z

j)

u
− 1

)]
,

an expectation of a nonnegative expression.

We now wish to show that∣∣∣∣∣∣
∑
j∈[q]

{
−µ+ + 1[Yσ0 (zj)>4u]

(
Yσ0(z

j)

u
− 1

)}∣∣∣∣∣∣ (6.6)

is, in expectation over z1, . . . , zq, at most

O

log(n) ·
∑
j∈[q]

D(Yσ0||U3n)

 ,

Ideally we could do this by proving the stronger statement that

µ+ ≤ O (log(n) ·D(Yσ0||U3n)) . (6.7)

(And, note that the j-term in Eq. (6.6) has expected absolute value at most 2 · µ+.)

Eq. (6.7) in conjunction with Eq. (6.3) and our work in the previous subsection, will give

us a bound of

O

log(n) · 1
q

∑
j∈[q]

D(Yσ0 ||U3n)


on ||OUT σ0

0 − OUT σ0
1 ||stat. Then in expectation over σ0 ∼ σ, we will get an

O(m · log(n)/q)

156

bound on Eσ0 [||OUT σ0
0 − OUT σ0

1 ||stat]. And recall that this in turn gives a bound on the

overall distinguishing advantage.

Let us follow the old note’s notation, and use

M3 := Ez∼U3n

[
1[Yσ0 (z)>4u] · (Yσ0(z)/u− 1)

]
.

157

Bounding the “upper-deviation” sets and M3

In what follows, we will temporarily return to a “generic” distribution P = {Pz}|z|=3n,

here standing in for Yσ0 .

For k ≥ 2, let

Bk := {z : P (z) ∈ [2ku, 2k+1u)} ,

and let P (Bk) denote
∑

z∈Bk
P (z). We have

P (Bk) =
∑
z∈Bk

P (z) ≥ 2ku · |Bk| ,

so that |Bk| < 2−k · 23n · P (Bk).

Using the Basic Divergence Inequality in the first step below, we also have, for the binary

KL divergence,

D(P ||U3n) ≥ P (Bk) log2

(
P (Bk)

u|Bk|

)
+ [1− P (Bk)] log2

(
1− P (Bk)

1− u|Bk|

)
≥ P (Bk) · k + (1− P (Bk)) log2 (1− P (Bk))

≥ P (Bk) · (k − 1.5) ,

the last bound based on the (slack) observation that f(x) := (1 − x) log2(1 − x) satisfies

f(x) ≥ −1.5x on the unit interval. Thus also D(P ||U3n) ≥ .5P (Bk) since k ≥ 2.

Thus,

|Bk| < 2−k · 23n ·D(P ||U3n)/(k − 1.5) . (6.8)

Also, |Bk| = 0 for k > 3n, from the definition and using that probabilities are ≤ 1. From

158

this,

Ez∼U3n

[
1[P (z)>4u] ·

{
P (z)

u
− 1

}]
≤

∑
2≤k≤3n

|Bk|
23n
·
(
2k+1 − 1

)
≤

∑
2≤k≤3n

2 ·D(P ||U3n)

k − 1.5

≤ (8 lnn) ·D(P ||U3n) .

This gives us an upper-bound for the quantity M3 (using our definition of P):

M3 ≤ (8 lnn) ·D(Yσ0||U3n) . (6.9)

With that and our above plan, we’re basically done.

6.4 Bound on Memory Bounded Generalized MITM

Theorem 51. For any (t, q,m)-generalized MITM (GMITM) adversary A such that t =

O(1),

Advprp
DE(A) =

1

2k
+ Õ

(mq

22k

)
Proof. Let’s denote a (t, q,m)-GMITM adversary as A. Then we need to show

Advprp
DE(A) =

1

2k
+ Õ

(mq

22k

)
.

As in proof of theorem 46, we define event bad as when K̂1 = K̂2. Then

Pr[bad] =
2k

22k
=

1

2k
.

159

Then we can say:

Advprp
DE(A) =

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1
]
− Pr

[
AE,E−1,Π,Π−1

= 1
]∣∣∣

≤ 1

2k
·
∣∣∣Pr [AE,E−1,DE[E]K1∥K2

,DE[E]−1
K1∥K2 = 1|bad

]
− Pr

[
AE,E−1,Π,Π−1

= 1|bad
]∣∣∣+(

1− 1

2k

)
·
∣∣∣Pr [AE,E−1,DE[E]K1∥K2

,DE[E]−1
K1∥K2 = 1|bad

]
− Pr

[
AE,E−1,Π,Π−1

= 1|bad
]∣∣∣

=
1

2k
+ |Pr[H(0)

k,n,0(A) = 1]− Pr[H
(0)
k,n,1(A) = 1]|

where game H
(0)
k,n,b is defined in figure 6.3 for b ∈ {0, 1}. The last equality holds because

A interacting in games H
(0)
k,n,0 and H

(0)
k,n,1 is equivalent to when the third oracle is Π and

DE[E]K1∥K2 , respectively in Definition 32.

In the games, we denote the set of indices in [2q] corresponding to queries made to E

oracle as Q+. Identically, we define Q− as the set of indices in [2q] that correspond to queries

made to E−1 oracle. Note that Q+ ∩Q− = ∅ and Q+ ∪Q− = [2q].

Claim 52. For any (t, q,m)-GMITM adversary A:

|Pr[H(0)
k,n,0(A) = 1]− Pr[H

(0)
k,n,1(A) = 1]|

= O

(
q2

22k

)
· |Pr[H(1)

k,n,0(A) = 1]− Pr[H
(1)
k,n,1(A) = 1]|

where games H
(0)
k,n,b and H

(1)
k,n,b are defined in figure 6.3 for b ∈ {0, 1}.

Proof. For A in H
(0)
k,n,b, the responses to distinct queries to the oracles E,E−1 may or may

not be random and independent given the input X,Z.

In game H
(0)
k,n,0, where X,Z are input-output of a permutation independent of E, Yi will

always be random and independent given X,Z. Thus,

Pr[H
(0)
k,n,0(A) = 1] = Pr[H

(1)
k,n,0(A) = 1].

160

In game H
(0)
k,n,1, Z = EK̂2

(EK̂1
(X)).

We define following events as in the previous section:

We define following events:

Event E : K̂1, K̂2 ∈ (K1, . . . , K2q)

Then

Pr[E] =

(
2q
1

)
·
(
2q
1

)
22k

=
4q2

22k

Then, we analyze for each possible case:

1. Case E:

This implies K̂1 ̸∈ (K1, . . . , K2q) or K̂2 ̸∈ (K1, . . . , K2q). Then Pr[H
(0)
k,n,1 = 1|E] =

Pr[H
(1)
k,n,0 = 1] as when E/E−1 are not queried on both K̂1, K̂2, the responses will be

random and independent given (X,Z).

2. Case E:

There are following three possibilities:

(a) Event E1 : K̂1 ∈ (K1, . . . , Kq) and K̂2 ∈ (Kq+1, . . . , K2q)

Then Pr[H
(0)
k,n,1 = 1|E1] = Pr[H

(1)
k,n,1 = 1].

(b) Event E2 : K̂1, K̂2 ∈ (K1, . . . , Kq)

Adversary can use such queries to distinguish iff ∃i such that EK̂1
(Xi) ∈ X which

happens with probability at most t/N .

(c) Event E3 : K̂1, K̂2 ∈ (Kq+1, . . . , K2q)

Symmetrically, adversary can use such queries to distinguish iff ∃i such that

EK̂1
(Zi) ∈ Z which happens with probability at most t/N .

161

Then putting everything together in the similar manner as the proof in the previous

section, we get:

|Pr[H(0)
k,n,0(A) = 1]− Pr[H

(0)
k,n,1(A) = 1]| ≤ 8q2

22k
· |Pr[H(1)

k,n,1 = 1]− Pr[H
(1)
k,n,0 = 1]|

which proves the claim.

In game H
(0)
k,n,1, let E be the event that A makes the queries (K̂1, X) to E and (K̂2,Z)

to E−1. We define event Fℓ,ℓ′ where ℓ ∈ [log(2q)] and ℓ′ is an odd integer in [2ℓ] as follows:

∃i, j such that

Ki = K̂1 such that i ∈ Q+ ∩
[
(ℓ′−1)
2ℓ
· 2q + 1, (ℓ

′)
2ℓ
· 2q
]
and Kj = K̂2 such that j ∈ Q− ∩[

(ℓ′)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]

OR

Kj = K̂2 such that j ∈ Q− ∩
[
(ℓ′−1)
2ℓ
· 2q + 1, (ℓ

′)
2ℓ
· 2q
]
and Ki = K̂1 such that i ∈ Q+ ∩[

(ℓ′)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]

Without loss of generality, we can assume q is a power of 2 for simplicity. Then

Pr[E] =

log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[Fℓ,ℓ′].

In game H
(1)
k,n,1, we define an equivalent notion of the event Fℓ,ℓ′ , as follows:

i ∈
[
(ℓ′−1)
2ℓ
· 2q + 1, (ℓ

′)
2ℓ
· 2q
]
and j ∈

[
(ℓ′)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
or vice versa.

162

Claim 53. For any (m, q)-GMITM adversary A, there exists an adversary, denoted A′, such

that A′ has at most m-bits of memory and makes at most 2q queries as A except A′ gets to

generate it’s m-bit state after seeing all the responses Y1, . . . ,Y (ℓ′)
2ℓ
·2q from the oracle instead

of seeing them as a stream for any ℓ ∈ log(2q) and ℓ′ ∈ [2ℓ] such that ℓ′%2 = 1. And A′

guesses b on this m-bit state and Y (ℓ′)
2ℓ
·2q+1

, . . . ,2q. Then,

|Pr[H(1)
k,n,0(A) = 1]− Pr[H

(1)
k,n,1(A) = 1]|

≤
log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[Fℓ,ℓ′] · |Pr[H(2)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(2)
k,n,1,ℓ,ℓ′(A

′) = 1]|

where game H
(2)
k,n,b,ℓ,ℓ′ is defined in figure 6.4 for b ∈ {0, 1}.

Proof. By the law of total probability,

Pr[H
(1)
k,n,1(A) = 1] =

log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[H
(1)
k,n,1(A) = 1 ∩ Fℓ,ℓ′]

Similarly, it holds:

Pr[H
(1)
k,n,0(A) = 1] =

log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[H
(1)
k,n,0(A) = 1 ∩ Fℓ,ℓ′]

163

Thus,

∣∣∣Pr[H(1)
k,n,0(A) = 1]− Pr[H

(1)
k,n,1(A) = 1]

∣∣∣
=

∣∣∣∣∣∣
log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[H
(1)
k,n,0(A) = 1 ∩ Fℓ,ℓ′]

−
log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[H
(1)
k,n,1(A) = 1 ∩ Fℓ,ℓ′]

∣∣∣∣∣∣
≤

log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

∣∣∣Pr[H(1)
k,n,0(A) = 1 ∩ Fℓ,ℓ′]− Pr[H

(1)
k,n,1(A) = 1 ∩ Fℓ,ℓ′]

∣∣∣
=

log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[Fℓ,ℓ′] ·
∣∣∣Pr[H(1)

0 (Am,q) = 1|Fℓ,ℓ′]− Pr[H
(1)
1 (Am,q) = 1|Fℓ,ℓ′]

∣∣∣
≤

log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[Fℓ,ℓ′] · |Pr[H(2)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(2)
k,n,1,ℓ,ℓ′(A

′) = 1]|

where the last inequality holds because A′ can be reduced to A trivially.

Claim 54.

|Pr[H(2)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(2)
k,n,1,ℓ,ℓ′(A

′) = 1]|

= |Pr[H(3)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1]|

Proof. For any ℓ ∈ log(2q) and odd integer ℓ′ ∈ [2ℓ], when flag = 0 in H
(3)
k,n,1,ℓ,ℓ′ , the distribu-

tion of i and j in H
(3)
k,n,1,ℓ,ℓ′ is equal to the distribution of i and j in H

(2)
k,n,1,ℓ,ℓ′ , respectively. In

the case flag = 1 in H
(3)
k,n,1,ℓ,ℓ′ , the distribution of i and j in H

(3)
k,n,1,ℓ,ℓ′ is equal to that j and i

in H
(2)
k,n,1,ℓ,ℓ′ respectively. And before setting Y = Yi in either game, Y,Yj are independent

and randomly distributed on .

164

Lemma 55. For any positive integers m, ℓ, ℓ′,

|Pr[H(3)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1]| = O

(√
m

d
+

m log n · 2q
2ℓ

d

)

where

d =

∣∣∣∣[(ℓ′ − 1)

2ℓ
· 2q, (ℓ

′)

2ℓ
· 2q
]
∩Q+

∣∣∣∣× ∣∣∣∣[(ℓ′)2ℓ · 2q + 1,
(ℓ′ + 1)

2ℓ
· 2q
]
∩Q−

∣∣∣∣
+

∣∣∣∣[(ℓ′ − 1)

2ℓ
· 2q, (ℓ

′)

2ℓ
· 2q
]
∩Q−

∣∣∣∣× ∣∣∣∣[(ℓ′)2ℓ · 2q + 1,
(ℓ′ + 1)

2ℓ
· 2q
]
∩Q+

∣∣∣∣ .
Using lemma 57, we can prove the theorem 51 as follows: Putting everything together,

we get

|Pr[H(0)
0 (Am,q) = 1]− Pr[H

(0)
1 (Am,q) = 1]|

≤ O

(
q2

22k

) log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[Fℓ,ℓ′] · |Pr[H(3)
0,ℓ,ℓ′(A

′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1]|

≤ O

(
q2

22k

) log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

d

q2
·O

(√
m

d
+

m log n · 2q
2ℓ

d

)

≤ O

(
m log n

22k

) log(2q)∑
ℓ=1

2ℓ

2
·O
(
2q

2ℓ

)
≤ O

(
m log n

22k

) log(2q)∑
ℓ=1

q = O

(
mq log n log(2q)

22k

)

where
√
d ≤ 2q

2ℓ
holds from the next claim.

Next, let’s define x := 2q
2ℓ

for any fixed ℓ ∈ [log(2q)]. Then we prove the following claim:

Claim 56. For any odd integer ℓ′ in [2ℓ],

Pr[Fℓ,ℓ′] ≤
x2

q2

where equality holds only when the first d queries in index range of [(ℓ
′−1)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q]

165

are to E oracle and last d are to the oracle E−1 or vice versa.

Lemma 57. For any positive integers m, ℓ, ℓ′,

|Pr[H(3)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1]| = O

(√
m

d
+

m log n · 2q
2ℓ

d

)

where

d =

∣∣∣∣[(ℓ′ − 1)

2ℓ
· 2q, (ℓ

′)

2ℓ
· 2q
]
∩Q+

∣∣∣∣× ∣∣∣∣[(ℓ′)2ℓ · 2q + 1,
(ℓ′ + 1)

2ℓ
· 2q
]
∩Q−

∣∣∣∣
+

∣∣∣∣[(ℓ′ − 1)

2ℓ
· 2q, (ℓ

′)

2ℓ
· 2q
]
∩Q−

∣∣∣∣× ∣∣∣∣[(ℓ′)2ℓ · 2q + 1,
(ℓ′ + 1)

2ℓ
· 2q
]
∩Q+

∣∣∣∣ .
Using lemma 57, we can prove the theorem 51 as follows: Putting everything together,

we get

|Pr[H(0)
0 (Am,q) = 1]− Pr[H

(0)
1 (Am,q) = 1]|

≤ O

(
q2

22k

) log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

Pr[Fℓ,ℓ′] · |Pr[H(3)
0,ℓ,ℓ′(A

′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1]|

≤ O

(
q2

22k

) log(2q)∑
ℓ=1

∑
ℓ′∈[2ℓ]∧ℓ′%2=1

d

q2
·O

(√
m

d
+

m log n · 2q
2ℓ

d

)

≤ O

(
m log n

22k

) log(2q)∑
ℓ=1

2ℓ

2
·O
(
2q

2ℓ

)
≤ O

(
m log n

22k

) log(2q)∑
ℓ=1

q = O

(
mq log n log(2q)

22k

)

where
√
d ≤ 2q

2ℓ
holds from the next claim.

Next, let’s define x := 2q
2ℓ

for any fixed ℓ ∈ [log(2q)]. Then we prove the following claim:

Claim 58. For any odd integer ℓ′ in [2ℓ],

Pr[Fℓ,ℓ′] ≤
x2

q2

166

where equality holds only when the first d queries in index range of [(ℓ
′−1)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q]

are to E oracle and last d are to the oracle E−1 or vice versa.

Proof. There are a total of 2x queries to the oracles E and E−1 in the index range [(ℓ
′−1)
2ℓ
·

2q+1, (ℓ
′+1)
2ℓ
·2q]. Let’s say the fraction of queries to E in these 2d queries is 1/f1 and fraction

of 2d/f1 queries to E in first d queries is 1/f2. Note that f1, f2 ≥ 1 will always hold. Then

following holds:

1. Number of queries to E in queries at index in [(ℓ
′−1)
2ℓ
· 2q + 1, (ℓ

′)
2ℓ
· 2q] = 2x

f1f2

2. Number of queries to E in queries at index in [(ℓ
′)

2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q] = 2x

f1
− 2d

f1f2

3. Number of queries to E−1 in queries at index in [(ℓ
′−1)
2ℓ
· 2q + 1, (ℓ

′)
2ℓ
· 2q] = x− 2x

f1f2

4. Number of queries to E−1 in queries at index in [(ℓ
′)

2ℓ
· 2q+ 1, (ℓ

′+1)
2ℓ
· 2q] = x− 2x

f1
+ 2d

f1f2

Then for any odd integer ℓ′ ∈ [2ℓ], we have:

Pr[Fℓ,ℓ′] =
1

q2

[
2x

f1f2
× x

(
1− 2

f1
+

2

f1f2

)
+ 2x

(
1

f1
− 1

f1f2

)
× x

(
1− 2

f1f2

)]
=

2x2

q2

[
1

f1
− 4

f 2
1 f2

+
4

f 2
1 f

2
2

]

1. Case 1: f1 ≥ 2

2x2

q2

[
1

f1
− 4

f 2
1 f2

+
4

f 2
1 f

2
2

]
=

2x2

q2

[
1

f1
− (4f2 − 4)

f 2
1 f

2
2

]
≤ 2x2

q2
· 1
2
=

x2

q2

The ≤ relation above holds true as f2 ≥ 1 which implies 4f2 − 4 is always positive. In

fact the two sides are equal only in the case f1 = 2 and f2 = 1.

2. Case 2: 1 ≤ f1 < 2

167

2x2

q2

[
1

f1
− 4

f 2
1 f2

+
4

f 2
1 f

2
2

]
=

2x2

q2

[
1

f1
− 4

f 2
1

(
1

f2
− 1

f 2
2

)]
As 2x

f1f2
≤ d ⇒ f2 ≥ 2

f1
. Then 1 < f2 ≤ 2 holds. And function g(y) = 1/y − 1/y2 is

increasing for y ∈ [1, 2]. Thus,

2x2

q2

[
1

f1
− 4

f 2
1 f2

+
4

f 2
1 f

2
2

]
≤ 2x2

q2

[
1

f1
− 4

f 2
1

(
f1
2
− f 2

1

4

)]
=

2x2

q2

[
1− 1

f1

]
<

2x2

q2

[
1− 1

2

]
=

x2

q2

168

Proof of lemma 57.

|Pr[H(3)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1]|

=
∣∣∣Pr[H(3)

k,n,0,ℓ,ℓ′(A
′) = 1]

−
(
Pr[H

(3)
k,n,1,ℓ,ℓ′(A

′) = 1 ∧ flag = 0] + Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1 ∧ flag = 1]
)∣∣∣

=
∣∣∣Pr[H(3)

k,n,0,ℓ,ℓ′(A
′) = 1]

−
(
Pr[flag = 0] · Pr[H(3)

k,n,1,ℓ,ℓ′(A
′) = 1|flag = 0]

+Pr[flag = 1] · Pr[H(3)
k,n,1,ℓ,ℓ′(A

′) = 1|flag = 1]
)∣∣∣

=
∣∣∣(Pr[flag = 0] + Pr[flag = 1]) Pr[H

(3)
k,n,0,ℓ,ℓ′(A

′) = 1]

−
(
Pr[flag = 0] · Pr[H(3)

k,n,1,ℓ,ℓ′(A
′) = 1|flag = 0]

+Pr[flag = 1] · Pr[H(3)
k,n,1,ℓ,ℓ′(A

′) = 1|flag = 1]
)∣∣∣

= Pr[flag = 0] ·
∣∣∣Pr[H(3)

k,n,0,ℓ,ℓ′(A
′) = 1]− Pr[H

(3)
k,n,1,ℓ,ℓ′(A

′) = 1|flag = 0]
∣∣∣

+ Pr[flag = 1] ·
∣∣∣Pr[H(3)

k,n,0,ℓ,ℓ′(A
′) = 1]− Pr[H

(3)
k,n,1,ℓ,ℓ′(A

′) = 1|flag = 1]
∣∣∣

Claim 59.

∣∣∣Pr[H(3)
0,ℓ,ℓ′(A

′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1|flag = 0]

∣∣∣
= O

 √
m√∣∣∣[(ℓ′−1)2ℓ

· 2q, (ℓ′)
2ℓ
· 2q
]
∩Q+

∣∣∣× ∣∣∣[(ℓ′)2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q−

∣∣∣
+

m log n∣∣∣[(ℓ′−1)2ℓ
· 2q, (ℓ′)

2ℓ
· 2q
]
∩Q+

∣∣∣


169

and

∣∣∣Pr[H(3)
0,ℓ,ℓ′(A

′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1|flag = 1]

∣∣∣
= O

 √
m√∣∣∣[(ℓ′−1)2ℓ

· 2q, (ℓ′)
2ℓ
· 2q
]
∩Q−

∣∣∣× ∣∣∣[(ℓ′)2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q+

∣∣∣
+

m log n∣∣∣[(ℓ′−1)2ℓ
· 2q, (ℓ′)

2ℓ
· 2q
]
∩Q−

∣∣∣


We will prove the claim later. From the claim, the lemma holds as follows:

|Pr[H(3)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1]|

=

∣∣∣[(ℓ′−1)2ℓ
· 2q, (ℓ

′)
2ℓ
· 2q
]
∩Q+

∣∣∣× ∣∣∣[(ℓ′)2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q−

∣∣∣
d

·
∣∣∣Pr[H(3)

0,ℓ,ℓ′(A
′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1|flag = 0]

∣∣∣
+

∣∣∣[(ℓ′−1)2ℓ
· 2q, (ℓ

′)
2ℓ
· 2q
]
∩Q−

∣∣∣× ∣∣∣[(ℓ′)2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q+

∣∣∣
d

·
∣∣∣Pr[H(3)

0,ℓ,ℓ′(A
′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1|flag = 1]

∣∣∣
= O

(√
m

d

)
+O

(
m log n

d

)
·
(∣∣∣∣[(ℓ′)2ℓ · 2q + 1,

(ℓ′ + 1)

2ℓ
· 2q
]
∩Q−

∣∣∣∣
+

∣∣∣∣[(ℓ′)2ℓ · 2q + 1,
(ℓ′ + 1)

2ℓ
· 2q
]
∩Q+

∣∣∣∣)

= O

(√
m

d

)
+O

(
m log n · 2q

2ℓ

d

)

170

Proof of lemma 57.

|Pr[H(3)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1]|

=
∣∣∣Pr[H(3)

k,n,0,ℓ,ℓ′(A
′) = 1]−

(
Pr[H

(3)
k,n,1,ℓ,ℓ′(A

′) = 1 ∧ flag = 0]

+Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1 ∧ flag = 1]
)∣∣∣

=
∣∣∣Pr[H(3)

k,n,0,ℓ,ℓ′(A
′) = 1]−

(
Pr[flag = 0] · Pr[H(3)

k,n,1,ℓ,ℓ′(A
′) = 1|flag = 0]

+Pr[flag = 1] · Pr[H(3)
k,n,1,ℓ,ℓ′(A

′) = 1|flag = 1]
)∣∣∣

=
∣∣∣(Pr[flag = 0] + Pr[flag = 1]) Pr[H

(3)
k,n,0,ℓ,ℓ′(A

′) = 1]

−
(
Pr[flag = 0] · Pr[H(3)

k,n,1,ℓ,ℓ′(A
′) = 1|flag = 0]

+Pr[flag = 1] · Pr[H(3)
k,n,1,ℓ,ℓ′(A

′) = 1|flag = 1]
)∣∣∣

= Pr[flag = 0] ·
∣∣∣Pr[H(3)

k,n,0,ℓ,ℓ′(A
′) = 1]− Pr[H

(3)
k,n,1,ℓ,ℓ′(A

′) = 1|flag = 0]
∣∣∣

+ Pr[flag = 1] ·
∣∣∣Pr[H(3)

k,n,0,ℓ,ℓ′(A
′) = 1]− Pr[H

(3)
k,n,1,ℓ,ℓ′(A

′) = 1|flag = 1]
∣∣∣

Claim 60.

∣∣∣Pr[H(3)
0,ℓ,ℓ′(A

′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1|flag = 0]

∣∣∣
= O

 √
m√∣∣∣[(ℓ′−1)2ℓ

· 2q, (ℓ′)
2ℓ
· 2q
]
∩Q+

∣∣∣× ∣∣∣[(ℓ′)2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q−

∣∣∣
+

m log n∣∣∣[(ℓ′−1)2ℓ
· 2q, (ℓ′)

2ℓ
· 2q
]
∩Q+

∣∣∣


and

171

∣∣∣Pr[H(3)
0,ℓ,ℓ′(A

′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1|flag = 1]

∣∣∣
= O

 √
m√∣∣∣[(ℓ′−1)2ℓ

· 2q, (ℓ′)
2ℓ
· 2q
]
∩Q−

∣∣∣× ∣∣∣[(ℓ′)2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q+

∣∣∣
+

m log n∣∣∣[(ℓ′−1)2ℓ
· 2q, (ℓ′)

2ℓ
· 2q
]
∩Q−

∣∣∣


We will prove the claim later. From the claim, the lemma holds as follows:

|Pr[H(3)
k,n,0,ℓ,ℓ′(A

′) = 1]− Pr[H
(3)
k,n,1,ℓ,ℓ′(A

′) = 1]|

=

∣∣∣[(ℓ′−1)2ℓ
· 2q, (ℓ

′)
2ℓ
· 2q
]
∩Q+

∣∣∣× ∣∣∣[(ℓ′)2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q−

∣∣∣
d

·
∣∣∣Pr[H(3)

0,ℓ,ℓ′(A
′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1|flag = 0]

∣∣∣
+

∣∣∣[(ℓ′−1)2ℓ
· 2q, (ℓ

′)
2ℓ
· 2q
]
∩Q−

∣∣∣× ∣∣∣[(ℓ′)2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q+

∣∣∣
d

·
∣∣∣Pr[H(3)

0,ℓ,ℓ′(A
′
m,q) = 1]− Pr[H

(3)
1,ℓ,ℓ′(A

′
m,q) = 1|flag = 1]

∣∣∣
= O

(√
m

d

)
+O

(
m log n

d

)
·
(∣∣∣∣[(ℓ′)2ℓ · 2q + 1,

(ℓ′ + 1)

2ℓ
· 2q
]
∩Q−

∣∣∣∣
+

∣∣∣∣[(ℓ′)2ℓ · 2q + 1,
(ℓ′ + 1)

2ℓ
· 2q
]
∩Q+

∣∣∣∣)

= O

(√
m

d

)
+O

(
m log n · 2q

2ℓ

d

)

Next, we prove claim 60.

172

Proof of claim 60. Now let us focus on a possible conditioning [σ = σ0] over the joint prob-

ability space of these two variables (in which all same-named variables are jointly used).

Consider any out ∈ {0, 1}m+tn·q that could potentially be output as OUT0 or OUT1,

with first σ0 as the first m coordinates.

Thus, if we let

OUT0
σ0 , OUT1

σ0

be OUT0,OUT1 respectively conditioned on [σ = σ0], we have

δstat(OUT0,OUT1) = Eσ0∼σ[δstat(OUT0
σ0 , OUT1

σ0)]

Let’s define Q+
ℓ,ℓ′ :=

[
(ℓ′−1)
2ℓ
· 2q, (ℓ

′)
2ℓ
· 2q
]
∩Q+ and Q−ℓ,ℓ′ :=

[
(ℓ′)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q−.

Next, let’s define a distribution Yσ0 on D := , by the density function

Yσ0(y) := Pr
i∈rQ+

ℓ,ℓ′

[Yi = y|σ = σ0] =
1

|Q+
ℓ,ℓ′|

∑
i∈Q+

ℓ,ℓ′

Pr[Yi = y|σ = σ0]

Claim 61.

δstat(OUT0
σ0 , OUT1

σ0)

≤ 12

|Q−ℓ,ℓ′|

√√√√ ∑
j∈Q−

ℓ,ℓ′

D(Yσ0||UD) +
1

|Q−ℓ,ℓ′|
∑

j∈Q−
ℓ,ℓ′

(2et ln(tn)) ·D(Yσ0||UD)

Claim 62.

Eσ0∼σ[D(Yσ0||UD)] ≤
|Q−ℓ,ℓ′ | ·m
|Q+

ℓ,ℓ′|

173

Claim 61 and 62 proves the lemma for any constant t as follows:

Eσ0∼σ[δstat(OUT0
σ0 , OUT1

σ0)]

≤ Eσ0∼σ

 12

|Q−ℓ,ℓ′ |

√√√√ ∑
j∈Q−

ℓ,ℓ′

D(Yσ0||UD) +
1

|Q−ℓ,ℓ′ |
∑

j∈Q−
ℓ,ℓ′

(2et ln(tn)) ·D(Yσ0||UD)



=
12

|Q−ℓ,ℓ′|
· Eσ0∼σ

√√√√ ∑
j∈Q−

ℓ,ℓ′

D(Yσ0||UD)

+
(2et ln(tn))

|Q−ℓ,ℓ′ |
· Eσ0∼σ

 ∑
j∈Q−

ℓ,ℓ′

D(Yσ0||UD)



≤ 12

|Q−ℓ,ℓ′ |
·

√√√√√√Eσ0∼σ

 ∑
j∈Q−

ℓ,ℓ′

D(Yσ0 ||UD)

+
(2et ln(tn))

|Q−ℓ,ℓ′ |
· Eσ0∼σ

 ∑
j∈Q−

ℓ,ℓ′

D(Yσ0||UD)


=

12

|Q−ℓ,ℓ′|
·
√√√√ ∑

j∈Q−
ℓ,ℓ′

Eσ0∼σ [D(Yσ0||UD)] +
(2et ln(tn))

|Q−ℓ,ℓ′|
·
∑

j∈Q−
ℓ,ℓ′

Eσ0∼σ [D(Yσ0||UD)]

=
12

|Q−ℓ,ℓ′|
·
√√√√ ∑

j∈Q−
ℓ,ℓ′

m/|Q+
ℓ,ℓ′| +

(2et ln(tn))

|Q−ℓ,ℓ′|
·
∑

j∈Q−
ℓ,ℓ′

m/|Q+
ℓ,ℓ′ |

= O

(√
m

|Q+
ℓ,ℓ′ | · |Q

−
ℓ,ℓ′|

+
m log n

|Q+
ℓ,ℓ′ |

)

Identically, we can prove the other part of the claim 60.

We prove claims 61 and 62 next.

Proof of Claim 61. Let’s define a := ℓ′ · 2q
2ℓ

for some fixed ℓ ∈ [log(2q)] and odd integer

ℓ′ ∈ [2ℓ].

174

As Ya+1, . . . ,Y2q are uniform in game H
(3)
0 , we have

Pr[OUT0 = out|σ = σ0] =

(
1

|D|

)2q−a

= u2q−a ,

where we’ll take

u :=
1

|D|
≤
(e

2n

)t
.

On the other hand, if yq+1, . . . , y2q are the Y -values in out, then

Pr[OUT1 = out|σ = σ0] =
∑

j∈Q−
ℓ,ℓ′

Pr[j = j] · Pr[OUT1 = out|(σ = σ0 ∧ j = j)]

=
1

|Q−ℓ,ℓ′ |
∑

j∈Q−
ℓ,ℓ′

u2q−a−1 · Yσ0(yj)

= u2q−a · 1

|Q−ℓ,ℓ′|
∑

j∈Q−
ℓ,ℓ′

Yσ0(yj)

u
,

||OUT0
σ0 − OUT1

σ0||stat =
1

2

∑
ya+1,...,y2q∈D

u2q−a ·

∣∣∣∣∣∣∣
 1

|Q−ℓ,ℓ′|
∑

j∈Q−
ℓ,ℓ′

Yσ0(yj)

u

− 1

∣∣∣∣∣∣∣
=

1

2|Q−ℓ,ℓ′|
· Eya+1,...,y2q∼UD


∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

(
Yσ0(yj)

u
− 1

)∣∣∣∣∣∣∣
 . (6.10)

Next we will bound the “large terms”, namely those where the quantity
(
Yσ0 (yj)

u
− 1
)
> 3,

separately. To do so it will be helpful to recenter certain “split” variables to have mean zero.

We let

µ+ := Ey∼UD

[
1[Yσ0 (y)>4u] ·

(
Yσ0(y)

u
− 1

)]
.

175

Note that

µ+ ≥ 0 and Ey∼UD

[
1[Yσ0 (y)≤4u] ·

(
Yσ0(y)

u
− 1

)]
= −µ+ .

We now write∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

(
Yσ0(yj)

u
− 1

)∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

{
µ+ + 1[Yσ0 (yj)≤4u]

(
Yσ0(yj)

u
− 1

)}
(6.11)

+
∑

j∈Q−
ℓ,ℓ′

{
−µ+ + 1[Yσ0 (yj)>4u]

(
Yσ0(yj)

u
− 1

)}∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

{
µ+ + 1[Yσ0 (yj)≤4u]

(
Yσ0(yj)

u
− 1

)}∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

{
−µ+ + 1[Yσ0 (yj)>4u] ·

(
Yσ0(yj)

u
− 1

)}∣∣∣∣∣∣∣ (6.12)

Claim 63.

Eya+1,...,y2q∼UD


∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

{
µ+ + 1[Yσ0 (yj)≤4u]

(
Yσ0(yj)

u
− 1

)}∣∣∣∣∣∣∣
 (6.13)

≤ 24 ·
√√√√ ∑

j∈Q−
ℓ,ℓ′

D(Yσ0 ||UD) (6.14)

176

and

Eya+1,...,y2q∼UD


∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

{
−µ+ + 1[Yσ0 (yj)>4u] ·

(
Yσ0(yj)

u
− 1

)}∣∣∣∣∣∣∣
 (6.15)

≤ 2 ·
∑

j∈Q−
ℓ,ℓ′

(2et ln(tn)) ·D(Yσ0||UD) (6.16)

Proving claim proves claim. So, we prove that to complete our proof for lemma.

Proof. First we give proof for equation ?? in the claim.

By the general relation E[|X|] ≤
√

E[X2] (by applying Jensen’s inequality on concave

functions, square root function here), that term is at most

√√√√√√Eya+1,...,y2q∼UD


 ∑

j∈Q−
ℓ,ℓ′

µ+ + 1[Yσ0 (yj)≤4u] ·
(
Yσ0(yj)

u
− 1

)
2 .

Now,

Eya+1,...,y2q∼UD


 ∑

j∈Q−
ℓ,ℓ′

µ+ + 1[Yσ0 (yj)≤4u] ·
(
Yσ0(yj)

u
− 1

)
2

=
∑

j∈Q−
ℓ,ℓ′

Ey∼UD

[(
µ+ + 1[Yσ0 (y)≤4u] ·

(
Yσ0(y)

u
− 1

))2
]

where we used that the terms µ+ +
(
Yσ0 (y)

u
− 1
)
are pairwise independent AND, have

expectation zero (over y ∼ UD). NOTE: this latter requirement is why we are fussing with

the µ+ terms at all.

177

Expanding out the square, we see the RHS above is equal to

∑
j∈Q−

ℓ,ℓ′

(
(µ+)2 + 2µ+ · (−µ+) + Ey∼UD

[(
1[Yσ0 (y)≤4u] ·

(
Yσ0(y)

u
− 1

))2
])

=
∑

j∈Q−
ℓ,ℓ′

Ey∼UD

[(
1[Yσ0 (y)≤4u] ·

(
Yσ0(y)

u
− 1

))2
]
− (µ+)2

Applying Lemma 50 to each term, with P := Yσ0 and Q := UD, we sum that for j ∈ Q−ℓ,ℓ′ ,

Ey∼UD

[
1[Yσ0 (y)≤4u] ·

(
Yσ0(y)

u
− 1

)2
]

=
∑

y∈D\B

u

(
Yσ0(y)

u
− 1

)2

≤ 500 ·D(Yσ0||UD) − 50 · Yσ0(B)

where

B := {y : Yσ0(y) > 4u} .

So the LHS term in Eq. (??) is, in expectation, at most

√√√√ ∑
j∈Q−

ℓ,ℓ′

500 ·D(Yσ0||UD) − 50 · Yσ0(B)− (µ+)2

which is

≤ 24

√√√√ ∑
j∈Q−

ℓ,ℓ′

D(Yσ0||UD) ,

Next, we bound Eq. ?? in the claim.

178

We recall that

µ+ := Eyj∼UD

[
1[Yσ0 (yj)>4u] ·

(
Yσ0(yj)

u
− 1

)]
,

an expectation of a nonnegative expression.

We now wish to show that∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

{
−µ+ + 1[Yσ0 (yj)>4u]

(
Yσ0(yj)

u
− 1

)}∣∣∣∣∣∣∣ (6.17)

is, in expectation over ya+1, . . . , y2q, at most

O

log(n) ·
∑

j∈Q−
ℓ,ℓ′

D(Yσ0||UD)

 ,

Ideally we could do this by proving the stronger statement that

µ+ ≤ O (log(n) ·D(Yσ0||UD)) . (6.18)

And, note that LHS in Eq. (??) has expected absolute value at most 2 ·µ+. Mathematically,

Eya+1,...,y2q∼UD


∣∣∣∣∣∣∣
∑

j∈Q−
ℓ,ℓ′

{
−µ+ + 1[Yσ0 (yj)>4u] ·

(
Yσ0(yj)

u
− 1

)}∣∣∣∣∣∣∣


≤ Eya+1,...,y2q∼UD

 ∑
j∈Q−

ℓ,ℓ′

µ+

+ Eyq+1,...,y2q∼UD

 ∑
j∈Q−

ℓ,ℓ′

1[Yσ0 (yj)>4u] ·
(
Yσ0(yj)

u
− 1

)
≤ 2

∑
j∈Q−

ℓ,ℓ′

µ+

179

In what follows, we will temporarily return to a “generic” distribution P = {Py}y∈D, here

standing in for Yσ0 .

For k ≥ 2, let

Bk := {y : P (y) ∈ [2ku, 2k+1u)} ,

and let P (Bk) denote
∑

y∈Bk
P (y). We have

P (Bk) =
∑
y∈Bk

P (y) ≥ 2ku · |Bk| ,

so that |Bk| < 2−k · 2tn · P (Bk).

Using the Basic Divergence Inequality in the first step below, we also have, for the binary

KL divergence,

D(P ||UD) ≥ P (Bk) log2

(
P (Bk)

u|Bk|

)
+ [1− P (Bk)] log2

(
1− P (Bk)

1− u|Bk|

)
≥ P (Bk) · k + (1− P (Bk)) log2 (1− P (Bk))

≥ P (Bk) · (k − 1.5) ,

the last bound based on the (slack) observation that f(x) := (1 − x) log2(1 − x) satisfies

f(x) ≥ −1.5x on the unit interval. Thus also D(P ||UD) ≥ .5P (Bk) since k ≥ 2.

Thus,

|Bk| < 2−k · 2tn ·D(P ||UD)/(k − 1.5) . (6.19)

Also, |Bk| = 0 for k > tn, from the definition and using that probabilities are ≤ 1. From

180

this,

Ey∼UD

[
1[P (y)>4u] ·

{
P (y)

u
− 1

}]
≤

∑
2≤k≤tn

et · |Bk|
2tn

·
(
2k+1 − 1

)
≤

∑
2≤k≤tn

2 · et ·D(P ||UD)
k − 1.5

≤ (2et ln(tn)) ·D(P ||UD) .

Proof of claim 62. Let’s define the distributions for every i ∈ Q+
ℓ,ℓ′ :

Pi(y) := Pr[Yi = y|σ = σ0]

Next, define

P :=
1

|Q+
ℓ,ℓ′ |

∑
i∈Q+

ℓ,ℓ′

Pi = Yσ0 .

Then,

D(P ||UD) = D

(∑
i∈Q+

ℓ,ℓ′
Pi

|Q+
ℓ,ℓ′|

|| UD

)
≤ 1

|Q+
ℓ,ℓ′|

 ∑
i∈Q+

ℓ,ℓ′

D(Pi||UD)


The distribution Pi characterizes the mutual information

Eσ0∼σ[D(Pi||UD)] = I(σ;Yi)

between the message σ and the ith coordinate Yj, by standard facts relating information

and divergence (and using that Y1, . . . ,Yℓ′· 2q
2ℓ
∼ UD).

181

By the independence of Y1, . . . ,Yℓ′· 2q
2ℓ
, and using the m-bit message length assumption

we have ∑
i∈Q+

ℓ,ℓ′

I(σ;Yi) ≤ I(σ; (Y1, . . . ,Yℓ′· 2q
2ℓ
)) ≤ |σ| = m .

6.5 Reduction to Unique Disjointness

Next, we present the easier but less intuitive proofs that follow the approach of reducing

the problem to the communication complexity of Unique Disjointness problem. Dinur in

[43] first used to prove the bounded memory switching lemma. We say that this proof is

less intuitive because the results from Unique Disjointness problem are used in a black-box

fashion and do not shed much light on our problem itself. But nevertheless the reduction is

simple and allows us to obtain results for multi-pass streaming attackers for our problem.

6.5.1 Preliminaries

We define Unique Disjointness problem, which we will denote as UDISJ through the rest

of the paper.

Definition 33. Function UDISJ : {0, 1}q ×{0, 1}q → {0, 1} takes two incident vectors a, b

representing subsets of [q] as input. The inputs are guaranteed to be equal at at most one

index. Then UDISJ is defined as follows:

UDISJ(a, b) :=


1 ∀i ∈ [q] : a[i] ̸= b[i]

0 otherwise.

Theorem 64. There exists a constant C ≥ 1 such that any public-coin randomized protocol

P for UDISJ that achieves advantage γ on every pair of valid inputs a, b ∈ {0, 1}q to

182

UDISJ must communicate at least 1
C
γq − C log q bits.

6.5.2 MITM adversary

We can prove the following tighter version of the theorem 46.

Theorem 65. There exists a constant C ≥ 1 such that for any (t, q,m)-MITM adversary A

where m ≥ n, q ≤ K and q ≤ N/3

Advprp
DE(A) ≤ C · m · q

22k
.

Proof Extending Dinur’s Technique. We prove the theorem by showing a reduction from

any valid instance of UDISJ problem, denoted (a, b) to an instance of responses f1(a) =

Y1,1, . . . , Y1,s, . . . , Yq,1, . . . , Yq,t and f2(b) = W1,1, . . . ,W1,t, . . . ,Wq,1, . . . ,Wq,t to the queries of

an arbitrary chosen (t, q,m)-MITM adversary A, such that:

1. If UDISJ(a, b) = 1, then f1(a) and f2(b) are responses to queries in step 2 (a) and (b)

in Definition 31, respectively where Z = Π(X).

2. Otherwise, f1(a) and f2(b) are responses to queries in step 2 (a) and (b) in Definition 31,

respectively where Z = DE[E]K1∥K2(X).

Next, we give randomized functions f1, f2 that satisfy the requirements mentioned above.

Then using Theorem 64, theorem 3 holds.

Let’s denote N = 2n and K = 2k. If Sx is some subset of [N] and x is the incident vector

corresponding to Sx, then HW (x) := |Sx| and SEQ(x) := Sx.

Given any arbitrary a, b ∈ {0, 1}K2/q as input where a, b are the incident vectors representing

subsets of [K2/q]. Let’s denote a = a1a2 . . . aK2/q and b = b1b2 . . . bK2/q.

183

1. Uniformly pick q-sized subset of [K2/q], denoted {i1, . . . , iq} and set a1 = ai1 . . . aiq

and b1 = bi1 . . . biq .

2. Set a2 = a1||1q−HW (a1)||0q+HW (a1) and b2 = b1||0q||1q−HW (b1)||0HW (b1).

3. Define sets Sa = SEQ(a2) and Sb = SEQ(b2) where |Sa| = |Sb| = q and Sa,Sb ⊆ [3q]

with elements in lexicographic order.

4. Using independent and random permutations Π1,Π2 : [q]→ [q] obtain sets S′a,S
′
b as

follows:

S′a[i] = Sa[Π1(i)] and S′b[i] = Sb[Π2(i)] ∀i ∈ [q].

5. Let f : [3q]→ [N]s be a random function obtained using public coins. Apply f to every

element of the sets S′a,S
′
b to get corresponding elements of tuples Ta,Tb, respectively.

6. Return f1(a) = Ta and f2(b) = Tb.

Analysis

Consider the case when UDISJ(a, b) = 1. Then the set S′a ∩ S′b should be empty and

hence for every i, j the probability Ta[i] = Tb[j] is 1/N
t as f is a random function.

When UDISJ(a, b) = 0, the probability |Sa ∩ Sb| = 1 is
((K

2/q−1)
(q−1))

(K
2/q
q)

= q2

K2 .

Say for some (t, q,m)-MITM adversary A

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1
]
− Pr

[
AE,E−1,Π,Π−1

= 1
]∣∣∣ = ω

(
m

K2/q

)

then A can be used decide to UDISJ for any arbitrary a, b with the same success probability

which contradicts Theorem 64.

184

6.5.3 G-MITM Adversary

Theorem 66. There exists a constant C ≥ 1 such that for any (t, q,m)-GMITM adversary

A where m ≥ n, q ≤ K and q ≤ N/3

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1 ∩ E
]
− Pr

[
AE,E−1,Π,Π−1

= 1 ∩ E
]∣∣∣ ≤ C · m · q

22k

where E denotes the event that either the correct keys are not guessed or the queries with the

correct key guesses are made in different halves, i.e., either A does not query (K1, X1|| . . . ||Xt)

to the second oracle and (K2,Z1|| . . . ||Zt) to the third oracle or one of the queries has index

in [q] and the other has index in [2q] \ [q].

Let’s establish some notations first. Let q→1 = |Q+ ∩ [q]| and q←1 = q − q→1 . Similarly let

q→2 = |Q+ ∩ ([2q] \ [q])| and q←2 = q − q→2 .

Note that in the following proof we will not use that |Q+| = q so that this proof can be

used in the next theorem. We will only use that each of q→1 , q←1 , q→2 , q←2 are greater than or

equal to 0 and at most q.

Let E1 denote the event that the queries with correct key guesses are made at indices in

Q+ ∩ [q] and [2q] \ ([q] ∪Q+). And let E2 denote the event that the correct key guesses are

made at indices in [q] \Q+ and ([2q] \ [q]) ∩Q+. Then

185

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1 ∩ E
]
− Pr

[
AE,E−1,Π,Π−1

= 1 ∩ E
]∣∣∣

≤
∣∣∣Pr [AE,E−1,DE[E]K1∥K2

,DE[E]−1
K1∥K2 = 1 ∩ E ∩ E1

]
−Pr

[
AE,E−1,Π,Π−1

= 1 ∩ E ∩ E1

]∣∣∣
+
∣∣∣Pr [AE,E−1,DE[E]K1∥K2

,DE[E]−1
K1∥K2 = 1 ∩ E ∩ E2

]
−Pr

[
AE,E−1,Π,Π−1

= 1 ∩ E ∩ E2

]∣∣∣
We next show that each of these terms on the right hand side of the equation above is

bounded by C ′ · mq
K2 for some C ′ ≥ 1, thus proving the theorem.

For any (q′, q′′) ∈ {(q→1 , q←2), (q←1 , q→2)}, we will give a reduction from any valid instance

of UDISJ as in theorem 3.

Given any arbitrary a, b ∈ {0, 1}K2/max{q′,q′′} as input where a, b are the incident vectors

representing subsets of [K2/max{q′, q′′}]. Let’s denote a = a1a2 . . . aK2/max{q′,q′′} and b =

b1b2 . . . bK2/max{q′,q′′}.

1. Uniformly pick min{q′, q′′}-sized subset of [K2/max{q′, q′′}], denoted

{i1, . . . , imin{q′,q′′}} and set a1 = ai1 . . . aimin{q′,q′′}
and b1 = bi1 . . . bimin{q′,q′′}

.

2. Set a2 = a1||1min{q′,q′′}−HW (a1)||0min{q′,q′′}+HW (a1) and

b2 = b1||0min{q′,q′′}||1min{q′,q′′}−HW (b1)||0HW (b1).

3. Define sets Sa = SEQ(a2) and Sb = SEQ(b2) where |Sa| = |Sb| = min{q′, q′′} and

Sa,Sb ⊆ [3 ·min{q′, q′′}] with elements in lexicographic order.

4. Let f : [3 · min{q′, q′′}] → [N]s be a random function obtained using public coins.

Apply f to every element of the sets S′a,S
′
b to get corresponding elements of tuples

Ta,Tb, respectively.

186

5. Extend Ta to contain q′ elements with element consisting of s distinct random values

from [N] if necessary. Similarly extend Tb to contain q′′ elements.

6. Using independent and random permutations Π1 : [q′] → [q′],Π2 : [q′′] → [q′′] obtain

sets T′a,T
′
b as follows:

T′a[i] = Ta[Π1(i)] ∀i ∈ [q′] and T′b[i] = Tb[Π2(i)] ∀i ∈ [q′′].

7. Return f1(a) = T′a and f2(b) = T′b.

Use the elements of f1(a) and f2(b) to answer the queries. So if (q′, q′′) = (q→1 , q←2), use f1(a)

to answer queries in Q+∩ [q] and f2(b) to answer queries in [2q]\([q]∪Q+). The other queries

will be answered with s distinct random values from [N]. Similarly answer the queries when

(q′, q′′) = (q←1 , q→2).

Analysis

Consider the case when UDISJ(a, b) = 1. Then the set S′a ∩ S′b should be empty and

hence for every i, j the probability Ta[i] = Tb[j] is 1/N
t as f is a random function.

When UDISJ(a, b) = 0, the probability |Sa ∩ Sb| = 1 is
(K

2/(max{q′,q′′})−1

min{q′,q′′}−1)

(K
2/max{q′,q′′}
min{q′,q′′})

= q′·q′′
K2 .

Theorem 67. There exists a constant C ≥ 1 such that for any (t, q,m)-GMITM adversary

A where m ≥ n, q ≤ K and q ≤ N/3

Advprp
DE(A) ≤ C · m · q log q

22k
.

Proof. For any (t, q,m)-GMITM adversary A, let Fi,ℓ denote the event that either the queries

with correct key guesses are not made or they are made in different halves of the (i+1)th sec-

tion of size 2q/2ℓ where 0 ≤ i ≤ 2ℓ−1 for ℓ ∈ {0, . . . , log 2q−1}. In other words, Fi,ℓ denotes

187

that either A does not query (K1, X1|| . . . ||Xt) to the second oracle and (K2,Z1|| . . . ||Zt) to

the third oracle or that one of those queries has index in [i · 2q
2ℓ
+1, i · 2q

2ℓ
+ 2q

2ℓ+1] and the other

has index in [i · 2q
2ℓ
+ 2q

2ℓ+1 + 1, (i+ 1) · 2q
2ℓ
]. Then

Advprp
DE(A) ≤

∑
ℓ∈{0,...,log 2q−1}

∑
0≤i≤2ℓ−1

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1 ∩ Fi,ℓ

]
−Pr

[
AE,E−1,Π,Π−1

= 1 ∩ Fi,ℓ

]∣∣∣
Let’s denote

∣∣∣Pr [AE,E−1,DE[E]K1∥K2
,DE[E]−1

K1∥K2 = 1 ∩ Fi,ℓ

]
− Pr

[
AE,E−1,Π,Π−1

= 1 ∩ Fi,ℓ

]∣∣∣
as fi,ℓ. Next, we want to show that for every value of ℓ,

∑
0≤i≤2ℓ−1 fi,ℓ = C · mq

22k
for some

constant C ≥ 1. This would imply the theorem. For any ℓ

fi,ℓ = Ci ·
m · q/2ℓ

22k

holds for some constant Ci ≥ 1 via Theorem 5.

Then for some constant C ≥ 1

∑
0≤i≤2ℓ−1

fi,ℓ =
∑

0≤i≤2ℓ−1

Ci ·
m · q/2ℓ

22k
≤ 2ℓ · C · m · q/2

ℓ

22k
= C · m · q

22k
.

188

Game H
(0)
k,n,b(A)

E
$← Block(k, n)

K̂1, K̂2
$← {0, 1}k such that K̂1 ̸= K̂2

Π
$← Perms({0, 1}n, {0, 1}n)

If b = 0
Zi ← Π(Xi),∀i ∈ [t]

Else
Zi ← E

K̂1
(E

K̂2
(Xi)), ∀i ∈ [t]

Set σ0 = ⊥
For i ∈ [2q]:

If i ∈ Q+: Yi ← EKi(X)

Else: Yi ← E−1Ki
(Z)

σi ← A(σi−1,Yi)
b′ ← A(σ2q)
Return b′

Game H
(1)
k,n,b(A)

E
$← Block(k, n)

K̂1, K̂2
$← {0, 1}k such that K̂1 ̸= K̂2

Π
$← Perms({0, 1}n, {0, 1}n)

If b = 0
Zi ← Π(Xi), ∀i ∈ [t]

Else
Zi ← E

K̂1
(E

K̂2
(Xi)), ∀i ∈ [t]

Y1, . . . ,Y2q
$← (Distincttn)

2q

If b = 1:

i
$← [2q] ∩Q+

j
$← [2q] \Q+

Set Yj = Yi

Set σ0 = ⊥
For a ∈ [2q]:

σa = A(σa−1,a)
b′ ← A(σ2q)
Return b′

Figure 6.3: Security games H
(0)
k,n,b, H

(1)
k,n,b.

189

Game H
(2)
k,n,b,ℓ,ℓ′(A

′)

E
$← Block(k, n)

K̂1, K̂2
$← {0, 1}k such that K̂1 ̸= K̂2

Π
$← Perms({0, 1}n, {0, 1}n)

If b = 0
Zi ← Π(Xi),∀i ∈ [t]

Else
Zi ← E

K̂1
(E

K̂2
(Xi)), ∀i ∈ [t]

Y1, . . . ,Y2q
$← (Distincttn)

2q

σ ← A′(Y1, . . . ,Y ℓ′
2ℓ
·2q)

If b = 1:

i
$←
[
(ℓ′−1)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q+

If i ∈
[
(ℓ′−1)
2ℓ
· 2q + 1, (ℓ

′)
2ℓ
· 2q
]
:

j
$←
[
(ℓ′)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q−

Else:

j
$←
[
(ℓ′−1)
2ℓ
· 2q + 1, (ℓ

′)
2ℓ
· 2q
]
∩Q−

Set Yj = Yi

OUTb = (σ,Y ℓ′
2ℓ
·2q+1

, . . . ,Y2q)

b′ ← A′(OUTb)
Return b′

Figure 6.4: Security game H
(2)
k,n,b,ℓ,ℓ′ .

190

Game H
(3)
k,n,b,ℓ,ℓ′(A

′)

E
$← Block(k, n)

K̂1, K̂2
$← {0, 1}k such that K̂1 ̸= K̂2

Π
$← Perms({0, 1}n, {0, 1}n)

If b = 0
Zi ← Π(Xi),∀i ∈ [t]

Else
Zi ← E

K̂1
(E

K̂2
(Xi)), ∀i ∈ [t]

Y1, . . . ,Y2q
$← (Distincttn)

2q

σ ← A′(Y1, . . . ,Y ℓ′
2ℓ
·2q)

If b = 1:
Set flag = ⊥
i

$←
[
(ℓ′−1)
2ℓ
· 2q + 1, (ℓ

′)
2ℓ
· 2q
]

If i ∈ Q+:
Set flag = 0

j
$←
[
(ℓ′)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q−

Else:
Set flag = 1

j
$←
[
(ℓ′)
2ℓ
· 2q + 1, (ℓ

′+1)
2ℓ
· 2q
]
∩Q+

Set Yj = Yi

OUTb = (σ,Y ℓ′
2ℓ
·2q+1

, . . . ,Y2q)

b′ ← A′(OUTb)
Return b′

Figure 6.5: Security game H
(3)
k,n,b,ℓ,ℓ′ .

191

Bibliography

[1] Akshima, D. Cash, A. Drucker, and H. Wee, “Time-space tradeoffs and short collisions

in merkle-damg̊ard hash functions,” in Advances in Cryptology - CRYPTO 2020 -

40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,

USA, August 17-21, 2020, Proceedings, Part I, D. Micciancio and T. Ristenpart, Eds.,

ser. Lecture Notes in Computer Science, vol. 12170, Springer, 2020, pp. 157–186.

[2] Akshima, S. Guo, and Q. Liu, Time-space lower bounds for finding collisions in merkle-

damg̊ard hash functions, Cryptology ePrint Archive, Paper 2022/885, https://eprint.

iacr.org/2022/885, 2022. [Online]. Available: https://eprint.iacr.org/2022/

885.

[3] D. Unruh, “Random oracles and auxiliary input,” in Annual International Cryptology

Conference, Springer, 2007, pp. 205–223.

[4] Y. Dodis, S. Guo, and J. Katz, “Fixing cracks in the concrete: Random oracles with

auxiliary input, revisited,” in Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Springer, 2017, pp. 473–495.

[5] S. Coretti, Y. Dodis, S. Guo, and J. Steinberger, “Random oracles and non-uniformity,”

in Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Springer, 2018, pp. 227–258.

192

https://eprint.iacr.org/2022/885
https://eprint.iacr.org/2022/885
https://eprint.iacr.org/2022/885
https://eprint.iacr.org/2022/885

[6] S. Coretti, Y. Dodis, and S. Guo, “Non-uniform bounds in the random-permutation,

ideal-cipher, and generic-group models,” in Advances in Cryptology - CRYPTO 2018

- 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August

19-23, 2018, Proceedings, Part I, H. Shacham and A. Boldyreva, Eds., ser. Lecture

Notes in Computer Science, vol. 10991, Springer, 2018, pp. 693–721.

[7] M. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Trans. Inf. Theor., vol. 26,

no. 4, pp. 401–406, Jul. 1980.

[8] A. Fiat and M. Naor, “Rigorous time/space tradeoffs for inverting functions,” in Pro-

ceedings of the twenty-third annual ACM symposium on Theory of computing, 1991,

pp. 534–541.

[9] S. Coretti, Y. Dodis, and S. Guo, “Non-uniform bounds in the random-permutation,

ideal-cipher, and generic-group models,” in Annual International Cryptology Confer-

ence, Springer, 2018, pp. 693–721.

[10] A. De, L. Trevisan, and M. Tulsiani, “Time space tradeoffs for attacks against one-way

functions and prgs,” in Annual Cryptology Conference, Springer, 2010, pp. 649–665.

[11] D. Chawin, I. Haitner, and N. Mazor, “Lower bounds on the time/memory tradeoff of

function inversion,” in Theory of Cryptography - 18th International Conference, TCC

2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, 2020, pp. 305–

334.

[12] H. Corrigan-Gibbs and D. Kogan, “The discrete-logarithm problem with preprocess-

ing,” in Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Springer, 2018, pp. 415–447.

[13] ——, “The function-inversion problem: Barriers and opportunities,” in Theory of Cryp-

tography Conference, Springer, 2019, pp. 393–421.

193

[14] N. Gravin, S. Guo, T. C. Kwok, and P. Lu, “Concentration bounds for almost k -wise

independence with applications to non-uniform security,” in Proceedings of the 2021

ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference,

January 10 - 13, 2021, 2021, pp. 2404–2423. doi: 10.1137/1.9781611976465.143.

[Online]. Available: https://doi.org/10.1137/1.9781611976465.143.

[15] A. Ghoshal and I. Komargodski, On time-space tradeoffs for bounded-length collisions

in merkle-damg̊ard hashing, Cryptology ePrint Archive, Paper 2022/309, https://

eprint.iacr.org/2022/309, 2022. [Online]. Available: https://eprint.iacr.org/

2022/309.

[16] K.-M. Chung, S. Guo, Q. Liu, and L. Qian, “Tight quantum time-space tradeoffs for

function inversion,” in 2020 IEEE 61st Annual Symposium on Foundations of Com-

puter Science (FOCS), IEEE, 2020, pp. 673–684.

[17] S. Guo, Q. Li, Q. Liu, and J. Zhang, “Unifying presampling via concentration bounds,”

in Theory of Cryptography Conference, Springer, 2021, pp. 177–208.

[18] E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung, “Design validations for dis-

crete logarithm based signature schemes,” in International Workshop on Public Key

Cryptography, Springer, 2000, pp. 276–292.

[19] M. Girault and J. Stern, “On the length of cryptographic hash-values used in iden-

tification schemes,” in Annual International Cryptology Conference, Springer, 1994,

pp. 202–215.

[20] R. L. Rivest and A. Shamir, “Payword and micromint: Two simple micropayment

schemes,” in International workshop on security protocols, Springer, 1996, pp. 69–87.

[21] I. Komargodski, M. Naor, and E. Yogev, “Collision resistant hashing for paranoids:

Dealing with multiple collisions,” in Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Springer, 2018, pp. 162–194.

194

https://doi.org/10.1137/1.9781611976465.143
https://doi.org/10.1137/1.9781611976465.143
https://eprint.iacr.org/2022/309
https://eprint.iacr.org/2022/309
https://eprint.iacr.org/2022/309
https://eprint.iacr.org/2022/309

[22] N. Bitansky, Y. T. Kalai, and O. Paneth, “Multi-collision resistance: A paradigm for

keyless hash functions,” in Proceedings of the 50th Annual ACM SIGACT Symposium

on Theory of Computing, 2018, pp. 671–684.

[23] I. Berman, A. Degwekar, R. D. Rothblum, and P. N. Vasudevan, “Multi-collision resis-

tant hash functions and their applications,” in Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Springer, 2018, pp. 133–161.

[24] Q. Liu and M. Zhandry, “On finding quantum multi-collisions,” in Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,

Springer, 2019, pp. 189–218.

[25] É. Jaulmes, A. Joux, and F. Valette, “On the security of randomized cbc-mac beyond

the birthday paradox limit a new construction,” in International Workshop on Fast

Software Encryption, Springer, 2002, pp. 237–251.

[26] D. Chang and M. Nandi, “Improved indifferentiability security analysis of chopmd

hash function,” in International Workshop on Fast Software Encryption, Springer,

2008, pp. 429–443.

[27] S. Hirose, K. Ideguchi, H. Kuwakado, T. Owada, B. Preneel, and H. Yoshida, “A

lightweight 256-bit hash function for hardware and low-end devices: Lesamnta-lw,”

in International Conference on Information Security and Cryptology, Springer, 2010,

pp. 151–168.

[28] Y. Naito and K. Ohta, “Improved indifferentiable security analysis of photon,” in

International Conference on Security and Cryptography for Networks, Springer, 2014,

pp. 340–357.

[29] P. Jovanovic, A. Luykx, and B. Mennink, “Beyond 2 c/2 security in sponge-based

authenticated encryption modes,” in International Conference on the Theory and Ap-

plication of Cryptology and Information Security, Springer, 2014, pp. 85–104.

195

[30] L. R. Knudsen, F. Mendel, C. Rechberger, and S. S. Thomsen, “Cryptanalysis of

mdc-2,” in Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Springer, 2009, pp. 106–120.

[31] Y. Naito, Y. Sasaki, L. Wang, and K. Yasuda, “Generic state-recovery and forgery

attacks on chopmd-mac and on nmac/hmac,” in International Workshop on Security,

Springer, 2013, pp. 83–98.

[32] I. Dinur, O. Dunkelman, N. Keller, and A. Shamir, “Cryptanalysis of iterated even-

mansour schemes with two keys,” in International Conference on the Theory and Ap-

plication of Cryptology and Information Security, Springer, 2014, pp. 439–457.

[33] I. Nikolić, L. Wang, and S. Wu, “Cryptanalysis of round-reduced led,” in International

Workshop on Fast Software Encryption, Springer, 2013, pp. 112–129.

[34] B. Auerbach, D. Cash, M. Fersch, and E. Kiltz, “Memory-tight reductions,” in Annual

International Cryptology Conference, Springer, 2017, pp. 101–132.

[35] Y. Wang, T. Matsuda, G. Hanaoka, and K. Tanaka, “Memory lower bounds of reduc-

tions revisited,” in Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Springer, 2018, pp. 61–90.

[36] A. Ghoshal, J. Jaeger, and S. Tessaro, “The memory-tightness of authenticated en-

cryption,” in Annual International Cryptology Conference, Springer, 2020, pp. 127–

156.

[37] A. Ghoshal and S. Tessaro, “On the memory-tightness of hashed elgamal,” in Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

Springer, 2020, pp. 33–62.

[38] D. Diemert, K. Gellert, T. Jager, and L. Lyu, Digital signatures with memory-tight

security in the multi-challenge setting, Cryptology ePrint Archive, Report 2021/1220,

https://eprint.iacr.org/2021/1220, 2021.

196

https://eprint.iacr.org/2021/1220

[39] R. Bhattacharyya, “Memory-tight reductions for practical key encapsulation mecha-

nisms,” 2020, pp. 249–278. doi: 10.1007/978-3-030-45374-9_9.

[40] A. Ghoshal, R. Ghosal, J. Jaeger, and S. Tessaro, Hiding in plain sight: Memory-tight

proofs via randomness programming, Cryptology ePrint Archive, Report 2021/1409,

https://eprint.iacr.org/2021/1409, 2021.

[41] S. Tessaro and A. Thiruvengadam, “Provable time-memory trade-offs: Symmetric cryp-

tography against memory-bounded adversaries,” in Theory of Cryptography Confer-

ence, Springer, 2018, pp. 3–32.

[42] J. Jaeger and S. Tessaro, “Tight time-memory trade-offs for symmetric encryption,”

in Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Springer, 2019, pp. 467–497.

[43] I. Dinur, “On the streaming indistinguishability of a random permutation and a ran-

dom function,” in Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Springer, 2020, pp. 433–460.

[44] I. Shahaf, O. Ordentlich, and G. Segev, “An information-theoretic proof of the stream-

ing switching lemma for symmetric encryption,” in IEEE International Symposium

on Information Theory, ISIT 2020, Los Angeles, CA, USA, June 21-26, 2020, IEEE,

2020, pp. 858–863.

[45] I. Dinur, “Tight time-space lower bounds for finding multiple collision pairs and their

applications,” in Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Springer, 2020, pp. 405–434.

[46] W. Dai, S. Tessaro, and X. Zhang, “Super-linear time-memory trade-offs for symmetric

encryption,” in Theory of Cryptography Conference, Springer, 2020, pp. 335–365.

197

https://doi.org/10.1007/978-3-030-45374-9_9
https://eprint.iacr.org/2021/1409

[47] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for design-

ing efficient protocols,” in Proceedings of the 1st ACM Conference on Computer and

Communications Security, ser. CCS ’93, Fairfax, Virginia, USA: Association for Com-

puting Machinery, 1993, pp. 62–73, isbn: 0897916298. doi: 10.1145/168588.168596.

[Online]. Available: https://doi.org/10.1145/168588.168596.

[48] R. Gennaro and L. Trevisan, Lower bounds on the efficiency of generic cryptographic

constructions, Cryptology ePrint Archive, Paper 2000/017, https://eprint.iacr.

org/2000/017, 2000. [Online]. Available: https://eprint.iacr.org/2000/017.

[49] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan, “Bounds on the efficiency of generic

cryptographic constructions,” SIAM journal on Computing, vol. 35, no. 1, pp. 217–246,

2005.

[50] P. Morin, W. Mulzer, and T. Reddad, “Encoding arguments,” ACM Computing Sur-

veys (CSUR), vol. 50, no. 3, pp. 1–36, 2017.

[51] R. Impagliazzo and V. Kabanets, “Constructive proofs of concentration bounds,”

in Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques, 13th International Workshop, APPROX 2010, and 14th International

Workshop, RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, 2010,

pp. 617–631.

[52] R. Impagliazzo, “Relativized separations of worst-case and average-case complexities

for np,” in Proceedings of the 2011 IEEE 26th Annual Conference on Computational

Complexity, ser. CCC ’11, IEEE Computer Society, 2011, pp. 104–114, isbn: 978-0-

7695-4411-3. doi: 10.1109/CCC.2011.34. [Online]. Available: https://doi.org/10.

1109/CCC.2011.34.

[53] M. Zimand, “How to privatize random bits,” University of Rochester, Tech. Rep., Apr.

1996.

198

https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2000/017
https://eprint.iacr.org/2000/017
https://eprint.iacr.org/2000/017
https://doi.org/10.1109/CCC.2011.34
https://doi.org/10.1109/CCC.2011.34
https://doi.org/10.1109/CCC.2011.34

[54] M. Bellare and P. Rogaway, “The security of triple encryption and a framework for

code-based game-playing proofs,” in Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Springer, 2006, pp. 409–426.

[55] A. J. Stam, “Distance between sampling with and without replacement,” Statistica

Neerlandica, vol. 32, no. 2, pp. 81–91, 1978.

[56] C. Hall, D. Wagner, J. Kelsey, and B. Schneier, “Building prfs from prps,” in Annual

International Cryptology Conference, Springer, 1998, pp. 370–389.

[57] S. Gilboa, S. Gueron, and B. Morris, “How many queries are needed to distinguish

a truncated random permutation from a random function?” Journal of Cryptology,

vol. 31, no. 1, pp. 162–171, 2018.

[58] S. Gilboa and S. Gueron, “The advantage of truncated permutations,” Discrete Applied

Mathematics, vol. 294, pp. 214–223, 2021.

[59] N. Gravin, S. Guo, T. C. Kwok, and P. Lu, “Concentration bounds for almost k-wise

independence with applications to non-uniform security,” in Proceedings of the 2021

ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2021, pp. 2404–2423.

[60] C. Freitag, A. Ghoshal, and I. Komargodski, “Time-space tradeoffs for sponge hashing:

Attacks and limitations for short collisions,” Cryptology ePrint Archive, 2022.

[61] K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota, “Birthday paradox for multi-

collisions,” in International conference on information security and cryptology, Springer,

2006, pp. 29–40.

199

	LIST OF FIGURES
	LIST OF TABLES
	TERMINOLOGY
	ABBREVIATIONS
	THESIS OUTLINE
	Introduction
	Short Collisions with Pre-computation in MD Hash Functions
	Related Work
	Our Contributions

	Bounded-Length Collisions with Pre-computation in MD Hash Functions
	More Related Work after AkshimaCDW20
	Our Contribution
	Comparison of Techniques

	Multi-collisions with Pre-computation in MD Hash Functions
	Our Contributions

	Double Encryption as a PRP
	Related Work
	Our Contributions

	Preliminaries
	Notations
	Definitions
	Random Oracle CCS:BelRog93
	Merkle-Damg̊ard Hash Functions (MD)
	Collision-Resistance against Auxiliary Input (AI).
	Multi-Instance Collision-Resistance (MI).
	Bit-Fixing Collision-Resistance (BF)

	Useful Results
	Chernoff Bound.
	Reduction to MI collision-resistance

	Short Collisions
	Bounded-Length Auxiliary-Input Attack
	Length 2 Collisions are Relatively Easy in the BF Model
	Unbounded Length Collision AI Bound
	Proof of Lemma 8

	Length 2 Collision AI Bound
	Proof for Lemma 12

	Impossibility of Improving Zero-Walk AI Attacks
	Proof of Lemma 49

	Bounded Length Collisions
	Our results
	Auxiliary Input Collision Resistance for B=2 Merkle-Damgard
	Bounding all the events

	Auxiliary Input Collision Resistance for B Merkle-Damgard
	Proof of Claim 35
	Proof of Claim 33
	Proof of Claim 34

	Multi-Collisions
	Definitions
	Results
	Proof of Theorem 39
	Lower Bound
	Upper Bound

	Proof of Theorem 40
	Lower Bound
	Upper Bound

	Proof of Theorem 41
	Security bound

	Proof of Theorem 42
	Proof of Theorem 43

	Double Encryption
	Preliminaries
	Notation.
	Double-Encryption Security Definitions

	Lower bound
	Bound on Memory Bounded MITM
	Proof of Lemma 49

	Bound on Memory Bounded Generalized MITM
	Reduction to Unique Disjointness
	Preliminaries
	MITM adversary
	G-MITM Adversary

	Bibliography

