THE UNIVERSITY OF CHICAGO

A VARIATIONAL BAYESIAN APPROACH FOR COMBINING WEAK LEARNERS
INTO A STRONG LEARNER IN REGRESSION PROBLEMS

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF STATISTICS

BY
ANDREW GOLDSTEIN

CHICAGO, ILLINOIS
DECEMBER 2022

Copyright (©) 2022 by Andrew Goldstein
All Rights Reserved

For Mickey

But this was a new year, and he felt that this time, with this new pair of shoes, he could
do anything, anything at all.
— Ray Bradbury

CONTENTS

LIST OF FIGURES vii
LIST OF TABLES e xiv
ACKNOWLEDGMENTS e XV
ABSTRACT . . . e xvi
1 INTRODUCTION e e e 1
1.1 Variational Inference: A Review 4
1.1.1 Variational Bayes 4

1.1.2 Empirical Bayes 6

1.1.3 Variational Empirical Bayes 8

2 THE VARIATIONAL ADDITIVE MODEL 9
2.1 Introductiono 9
2.2 Unweighted Bayesian Regression Problem 9
2.2.1 The Single Effect Regression 11

2.2.2 Generalized Single Effect Regression 14

2.3 The Variational Additive Model L. 18
2.4 Examples 21
2.5 Discussion Lo e 27

3 THE VEB-BOOST MODEL 28
3.1 Imtroduction 28
3.2 Weighted Bayesian Regression Problem 28
3.3 The VEB-Boost Model 30
3.3.1 Variational Approximation to the Posterior Distribution 32

3.3.2 Fitting a VEB-Boost Ensemble Learner 33

3.3.3 Growing the VEB-Boost Ensemble Learner 38

3.4 Some Practical Considerations 40
3.4.1 Including an Intercept in a Linear Weak Learner 40

3.4.2 Using a Homoskedastic Linear Solver on Arbitrary Noise Gaussian Data 44

3.5 The VEB-Boost R Package 46
3.5.1 Implementing the VEB-Boost Algorithm 46

3.5.2 Implementing a Default Bayesian Weak Learner 49

3.6 Examples 56
3.6.1 Simulation Study 56

3.6.2 Real Dataset Comparison 64

3.7 Discussion 69

4 MODULARITY WITH NON-GAUSSIAN RESPONSE DATA AND WEIGHTED

OBSERVATIONS e 73
4.1 Introduction 73
4.2 Different Types of Non-Gaussian Data 76
421 Binary Data 76
4.2.2 Multinomial Data o 78
4.2.3 Count Data 81
4.2.4 Accelerated Failure Time Model (Log-Logistic Distribution) 83
4.2.5 Ordinal Logistic Regression 87
4.2.6 Ranking Data 88
4.2.7 Cox Proportional Hazards Model 97
4.2.8 Multivariate Gaussian Data 99

4.3 Examples 101
4.3.1 Simulation Study 101
4.3.2 Real Data Examples L0 111

4.4 Observation Weights 122
4.5 Discussion 123
REFERENCES 126
A APPENDIX 132
A.1 Real Dataset Information. 132
A.2 Supplemental Figures Lo 133
A.2.1 VEB-Boost Simulation Supplemental Figures 133
A.2.2 Logistic Simulation Supplemental Figures 140

A3 Proofs e 150
A.3.1 Proof of Theorems 2.3.1,3.3.1,and 3.3.2 150
A.3.2 Proofs of Gaussian Approximations 156

vi

2.1

3.1

3.2

3.3

3.4

3.5

LIST OF FIGURES

GAM Simulation Relative RMSE This plot shows the relative RMSE of
the different GAM methods in this simulation. We see that the SpAM method
appears to be the best in the higher noise settings, but the SuSiE GAM model
pulls ahead in the lower noise setting.

VEB-Boost Ensemble Learner Example This tree represents the VEB-Boost

tree structure T'(pq, ..., Hy) = <u1 o (g + ;1,3)> + (paops)
Balanced Decision Tree as the Product of Decision Stumps The decision
tree above represents the product of two decision stumps: (a1+51R1)-(ag+52Ro).
Here, Ry and Ry are the rules of the stump, e.g. R} =]IXZ.].ZC].. Going left in
the decision tree means that the rule is not satisfied (so the indicator function
evaluates to 0), and going right means that the rule is satisfied (so the indicator
function evaluates to 1).
Friedman’s Function Relative RMSE This plot shows the relative RMSE of
the methods tested using Friedman test function. We can see that, on the whole,
the VEB-Boost methods frequently outperform both BART and cross-validated
XGBoost (and when they don’t, they aren’t much worse); only XBART appears
to be a competitor in this simulation. 0L
Friedman’s Function Running Time in Seconds, logy scale This plot shows
the running time of the methods tested using Friedman’s test function. We see
that VEB-Boost is often the fastest method, and starting with a larger learner
usually increases the overall running time. We also see that VEB-Boost is rela-
tively faster when the PVE is 0.1 vs. when the PVE is 0.5. This makes sense,
since BART and XBART are set a priori to run a certain number of iterations,
whereas VEB-Boost keeps running and growing until it can’t find any more sig-
nal. Thus, it will terminate faster in the higher noise setting, which is what we
see above. This is also why there is a larger spread in the observed running times
for VEB-Boost as compared with the others.
Relative RMSE Profile Plot This plot shows the empirical CDFs of the rela-
tive RMSE combining all values of n and p, but broken out by test function and
PV E. We can see that in the linear and null test cases, VEB-Boost dominate
the other methods. And in the Friedman and max test cases, XBART appears
to have a slight edge over VEB-Boost, with the exception of the Friedman test
function in the strong signal setting. We also see that, on the whole, VEB-Boost
starting with a larger learner performs slightly better than starting with a single
weak learner. L

vii

3.6

3.7

3.8

3.9

3.10

4.1

Relative Time Profile Plot, logy scale This plot shows the empirical CDF's
of the relative running times, on a logy scale, combining all values of n and p, but
broken out by test function and PV E. We can see that VEB-Boost wins for all
cases except for the Friedman and max test functions in the strong signal setting,
where it is roughly tied and loses to XBART, respectively. We also see that, on
the whole, VEB-Boost starting with a larger learner is slower than starting with
a single weak learner. Lo
OpenML AutoML Regression Benchmarks Relative RMSE This plot
shows the relative RMSEs for each method among all folds of all datasets, broken
out by how many extra null variables were added. Observations with a RRMSE
> 2 have been excluded for visual purposes. We can see that cross-validated
XGBoost appears to be the best, followed closely by BART and VEB-Boost with
a larger starging learner. We also see XGBoost’s advantage start to disappear in
the bottom row, where we’ve added 1000 null variables to each dataset.
OpenML AutoML Regression Benchmarks Relative Time, logy scale
This plot shows the relative running times on a logg scale for each method among
all folds of all datasets, broken out by how many extra null variables were added.
We can see that XBART is typically among the fastest, and that VEB-Boost is
more competitive in the cases where we add more null variables.
OpenML AutoML Regression Benchmarks Relative RMSE Profile Plot
This plot shows the empirical CDFs of the relative RMSE on a logy scale for
each method among all folds of all datasets, broken out by how many extra null
variables were added. Agreeing with Figure 3.7, we see that XGBoost is the
winner is most cases. But as we add more null variables, VEB-Boost starts to
become more competitive. We also see that there were a few cases of extremely
poor relative performance; I briefly touch on this in Section 3.7.
OpenML AutoML Regression Benchmarks Relative Time Profile Plot
This plot shows the empirical CDFs of the relative running times on a logs scale
for each method among all folds of all datasets, broken out by how many extra null
variables were added. We can see that VEB-Boost is in the middle of the pack,
and starts to over-perform in the case with 1000 additional null variables. We
also see that XGBoost can have some very long relative run-times with additional
null variables added.

Friedman Function Relative AUC and MCC This plot shows the relative
AUC and (1 + MCC)/2 for the logistic model using the Friedman test function
(higher is better). We can see that BART and XGBoost are quite good, with
VEB-Boost close behind. Somewhat interesting is that using the Gaussian VEB-
Boost model seems to yield better values of AUC and MCC than the logistic
VEB-Boost model. This is quite interesting, and is worth further exploration.

viil

104

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Friedman Function Relative logloss This plot shows the relative logloss for
the logistic model using the Friedman test function (lower is better). Somewhat
unsurprisingly, the Gaussian VEB-Boost model is not able to provide calibrated
probabilities, especially around 0 and 1, so it suffers on the logloss metric. We
see that XGBoost and BART still appear to be the best, with VEB-Boost not
far behind. 105
Friedman Function Running Time (logy scale) This plot shows the running
time for the logistic model using the Friedman test function (lower is better). We
see that the running times for VEB-Boost are quite competitive in most cases.
We also see the the Gaussian VEB-Boost model is much slower than the logistic
VEB-Boost model. 106
Profile Plot of Relative AUC This plot shows the empirical CDF of the
relative AUC from the logistic simulation by test function. In general, the VEB-
Boost models appear quite competitive. But as we saw in the boxplots above,
the Gaussian VEB-Boost model appears to outperform the logistic VEB-Boost

Profile Plot of Relative (1+MCC')/2 This plot shows the empirical CDF of the
relative MCC from the logistic simulation by test function. Again, the Gaussian
VEB-Boost model appears to perform better than the logistic VEB-Boost model 108
Profile Plot of Relative logloss This plot shows the empirical CDF of the
relative logloss from the logistic simulation by test function. As we saw above,
the Gaussian VEB-Boost model struggles to provide calibrated probabilities, and
thus it suffers on the logloss metric. The logistic VEB-Boost model appears
competitive with both BART and XGBoost. 109
Profile Plot of Relative Time (logy scale) This plot shows the empirical CDF
of the relative time (logy scale) from the logistic simulation by test function. We
see that, pretty much across the board, the logistic VEB-Boost model has some of
the fastest relative runtimes, and the Gaussian VEB-Boost model typically takes
longer torun. 110
Binary Classification Benchmarks This plot shows the relative logloss, AUC,
and (1 + MCC)/2 for the binary classification problems in this benchmarking
study. We can see that XGBoost and BART are towards the top of the list, but
VEB-Boost is not far behind. 0 0L 112
Binary Classification logloss Profile Plot This plot shows the logloss profile
plots for the binary classification problems in the benchmarking study, broken
up by how many null variables were added. We see that XGBoost appears to
be at the top, with XBART performing quite poorly on these problems for some
reason. We also see that VEB-Boost performs roughly on-par with Lasso; it would
be interesting to see how a linear version of VEB-Boost (i.e. logistic SuSiE) would
perform on these problems. oL 113

1X

4.10

4.11

4.12

4.13

4.14

4.15

Binary Classification AUC Profile Plot This plot shows the AUC profile
plots for the binary classification problems in the benchmarking study, broken
up by how many null variables were added. With this metric, BART appears
to perform the best. As opposed to the logloss metric, we see that XGBoost’s
relative performance degrades as we add more null variables. In the settings
with many null variables, VEB-Boost is on-par with XGBoost. Also opposed to
the logloss metric, we see that VEB-Boost outperforms Lasso; this suggests that
VEB-Boost may not be yielding calibrated probabilities. This could be caused
by the Gaussian approximation used. L.
Binary Classification MCC Profile Plot This plot shows the MCC profile
plots for the binary classification problems in the benchmarking study, broken up
by how many null variables were added. We see that as null variables are added,
VEB-Boost is able to become more competitive with XGBoost. We also see that
VEB-Boost outperforms Lasso, as it did when compared using AUC.
Binary Classification Relative Time Profile Plot This plot shows the rela-
tive time profile plots for the binary classification problems in the benchmarking
study. Aside from Lasso being the fastest by a long shot (which is not too sur-
prising), we see that VEB-Boost starts out relatively slow, but in the higher
dimensional settings is able to far outperform XGBoost. Conversely, XBART is
initially as fast as Lasso, but gets much slower as we add more null variables. . .
Multi-Class Classification Benchmarks This plot shows the relative logloss,
AUC, and (1+ MCC)/2 for the multi-class classification problems in this bench-
marking study. We see that XGBoost appears to perform quite well on all metrics.
We also see that the VEB-Boost model using the Titsias bound is quite compet-
itive when looking at the AUC and MCC metrics, and appears to outperforms
the VEB-Boost model using the Bouchard bound.
Multi-Class Classification logloss Profile Plot This plot shows the logloss
profile plots for the multi-class classification problems in the benchmarking study,
broken up by how many null variables were added. Right away, we see that
XGBoost dominates the field. We also see that VEB-Boost using the Titsias
bound appears a bit better than VEB-Boost using the Bouchard bound, and
both perform relative better as more null variables are added. We also see that
Lasso appears to perform better than both VEB-Boost models.
Multi-Class Classification AUC Profile Plot This plot shows the AUC pro-
file plots for the multi-class classification problems in the benchmarking study,
broken up by how many null variables were added. As opposed to the logloss met-
ric, we see that VEB-Boost using the Titsias bound is roughly on-par with Lasso;
this suggests that the VEB-Boost model is not providing calibrated probabilities.
This could be due to the Gaussian approximations that are used.

116

4.16

4.17

Al

A2

A3

A4

Multi-Class Classification MCC Profile Plot This plot shows the MCC
profile plots for the multi-class classification problems in the benchmarking study,
broken up by how many null variables were added. Here, we see that VEB-Boost
using the Titsias bound appears a bit more competitive, especially with additional
null variables. As with the AUC profile plot, we see that SPORF is quite good
with no additional null variables. It would be interesting to add a cross-validation
procedure to fitting SPORF in an attempt to yield better performance in the
higher-dimensional settings.
Multi-Class Classification Relative Time Profile Plot This plot shows
the relative time profile plots for the multi-class classification problems in the
benchmarking study. One interesting observation is that VEB-Boost using the
Titsias bound appears to be much slower than VEB-Boost using the Bouchard
bound. Since the Titsias bound appears to give better results, this could just be
a consequence of the algorithm taking more time to fit the data.

Max Function Relative RMSE This plot shows the relative RMSE of the
methods tested using the max test function. We see that XBART appears to be
the winner here pretty much across the board, with the only exception being in
the small sample-size setting (the top row), where the VEB-Boost method with
a large starting learner comes out on top. Even though VEB-Boost isn’t the
winner, we can see that it’s rarely much worse than XBART.
Max Function Running Time in Seconds, logy scale This plot shows the
running time of the methods tested using the max test function. Just as in the
case of Friedman’s test function, VEB-Boost appears to be quite competitive,
particularly in the higher noise setting. We still see similar trends for VEB-Boost
in terms of longer run-times for stronger signals, and more variable run-times
overall. Lo
Linear Function Relative RMSE This plot shows the relative RMSE of the
methods tested using the linear test function. It is clear that VEB-Boost outper-
forms the other methods. This is likely due to the inclusion of the linear terms in
the SER. In contrast to the Friedman and max settings, XBART performs quite
poorly here.
Linear Function Running Time in Seconds, logy scale This plot shows the
running time of the methods tested using the linear test function. We see that
VEB-Boost is the clear winner. We also see that on an absolute scale, VEB-Boost
is able to run much faster than it did with the other test functions. This is due to
the simplicity of the fit, and how few learners are needed to adequately explain
the signal due to the inclusion of the linear terms in the SER.

x1

A.5 Null Function Relative RMSE This plot shows the relative RMSE of the
methods tested using the null test function. As with the linear case, VEB-Boost
is the clear winner. This is likely at least partly due to the fact that VEB-Boost
starts with a single weak learner initialized to the sample mean. However, we see
that the VEB-Boost method starting with a larger learner still performs quite
well despite its more complicated initial structure. But while the structure is
more complicated, it’s still initialized to the sample mean, which likely helps in
the null setting.

A.6 Null Function Running Time in Seconds, logy scale This plot shows the
running time of the methods tested using the null test function. Again, VEB-
Boost comes out on top. This is the benefit of the empirical Bayes aspect of
VEB-Boost; instead of being forced to run for a fixed number of iterations, it can
learn that there is no more signal to fit and terminate.

A.7 Max Function Relative AUC and MCC This plot shows the relative AUC
and (1 + MCC)/2 for the logistic model using the max test function (higher is
better). XGBoost appears to have issues in some cases, especially when evaluated
using the MCC metric. VEB-Boost also appears to perform quite well here, as
long as the sample size isn’t toosmall.

A.8 Max Function Relative logloss This plot shows the relative logloss for the
logistic model using the max test function (lower is better). With the exception
of XBART, all other methods appear competitive with each other.

A.9 Max Function Running Time (logy scale) This plot shows the running time
for the logistic model using the max test function (lower is better). We see that
the VEB-Boost methods are typically the fastest, sometimes by a wide margin. .

A.10 Linear Function Relative AUC and MCC This plot shows the relative AUC
and (1 4+ MCC)/2 for the logistic model using the linear test function (higher is
better). Happily, VEB-Boost still outperforms the other methods, as it did in
the Gaussian simulations with this test function.

A.11 Linear Function Relative logloss This plot shows the relative logloss for the
logistic model using the linear test function (lower is better). VEB-Boost still
outperforms the other methods. And we see that the Gaussian VEB-Boost model
performs worse than the logistic VEB-Boost model.

A.12 Linear Function Running Time (logy scale) This plot shows the running
time for the logistic model using the linear test function (lower is better). We
see that VEB-Boost is the fastest, and the Gaussian VEB-Boost model ends up
being quite slow. L

A.13 Null Function Relative AUC and MCC This plot shows the relative AUC
and (1 + MCC)/2 for the logistic model using the null test function (higher is
better). All methods are more-or-less on-par with each other.

A.14 Null Function Relative logloss This plot shows the relative logloss for the
logistic model using the null test function (lower is better). Aside from XBART,
all methods appear on-par with each other..

xii

143

A.15 Null Function Running Time (logy scale) This plot shows the running time
for the logistic model using the null test function (lower is better). As in the
Gaussian response simulation study, VEB-Boost is orders of magnitude faster
than the other methods in the null case.

xiil

LIST OF TABLES

A.1 List of OpenML Regression Datasets This table provides summary informa-
tion about the benchmark datasets used in Section 3.6.2. It lists the task ID and
task name used by OpenML, the sample size n, the number of predictor variables
p, and the number of extra variables we were able to include in our analysis. . . 132

Xiv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Matthew Stephens; without his original
ideas and confidence in my abilities to bring them to fruition, none of this would have been
possible. While I have often chosen to be as independent as possible in my studies, Matthew
has always served as an intellectual rudder, making the necessary course corrections to keep
me sailing in the right direction.

I also want to thank the other members of my dissertation committee: Rebecca Willett
and Veronika Rockova. Their suggestions and questions helped me immensely with figuring
out how to convey my thoughts and research.

I would also like to thank the other faculty members in the Department of Statistics; I
have learned so much from taking and TA-ing your classes. In particular, I would like to
thank Chao Gao and Mihai Anitescu, whose classes ignited new scholarly interests in me. I
would also like to thank Rina Foygel Barber; being your TA so many times has given me an
appreciation for the fundamental concepts of linear regression that no applied statistician
should forget.

Next, I would like to thank all of my friends and colleagues in the Stephens lab and the
Department of Statistics. Getting to know you all has made my time here at UChicago so
enjoyable.

Lastly, I would like to thank all of my friends, my family, my partner Selene, and our
dog Mickey. You have all brought me such joy and laughter over the years; spending time

with all of you is what gives life meaning.

XV

ABSTRACT

One of the pillars of machine learning is that of non-linear regression on tabular data.
For the last few decades, the performance of ensemble methods based on a sum-of-trees
model (gradient boosting and random forest methods in particular) has been state-of-the-
art (Shwartz-Ziv and Armon [2022], Chen and Guestrin [2016], Fernandez-Delgado et al.
[2014]). However, such methods can suffer from a few weaknesses; in particular, they often
require time-consuming cross-validation procedures to tune a slew of hyper-parameters, and
they provide no level of uncertainty about their predictions. Bayesian methods can address
both through the use of hierarchical modelling. But many methods rely on Markov chain
Monte Carlo (MCMC) methods that can be slow and scale poorly, not to mention the further
complications that can arise due to poor mixing of the Markov chain.

In this dissertation, we introduce a new Bayesian framework, VEB-Boost, that aims to
address these challenges (implemented in our R package VEB.Boost). In particular, it relies
on empirical Bayes and variational inference, allowing us to bypass hyper-parameter tuning
while being able to scale well. In the VEB-Boost framework, we combine weak learners (a
la boosting) by adding and/or multiplying them together in an arbitrary order. Doing so
yields a modular fitting procedure that reduces to iteratively fitting a single weak learner at a
time. We demonstrate the potential of VEB-Boost with a simulation study and real-dataset
benchmarking analysis.

We also show how to extend the VEB-Boost model to non-Gaussian response data.
We derive extensions for: logistic regression, multinomial logistic regression, negative bino-
mial regression, accelerated failure time models, ordinal logistic regression, Bradley-Terry
pairwise ranking models, Plackett-Luce listwise ranking models, Cox proportional hazards
models, and multivariate Gaussian regression. Many of these approximations are new, and
we note some interesting connections between them. Lastly, we demonstrate the logistic and
multinomial logistic models in a simulation study and real-data benchmarking analysis.

Xvi

https://github.com/stephenslab/VEB.Boost/

CHAPTER 1
INTRODUCTION

In machine learning and statistics, there are few settings more commonly used than the gen-
eral regression setting y; = f(x;) +¢;. Here, f(+) is an unknown arbitrary function mapping
a feature vector x € RP to a conditional expectation E[y|x] € R, and € is independent mean-
zero random noise (commonly assumed to be Gaussian). The primary goal of regression
analysis is to learn an approximation f (1) = f(-) so that for a new input vector x we can
use f (x) as an accurate prediction for its unobserved response y.

One popular class of methods to approximate f(x) is ensemble methods, in particular
those using a sum-of-trees model. This class of methods includes, among others, boosted
decision trees (Freund and Schapire [1997], Friedman [2001], Chen and Guestrin [2016],
Prokhorenkova et al. [2018]), random forests (Breiman [2001]), and Bayesian additive regres-
sion trees (BART) (Chipman et al. [2010]). These methods all approximate the unknown

function as

L
f(x) &~y filx), (1.1)
=1

where each fl() is a regression tree. In the boosting literature, these functions fl are referred

)

to as “weak learners,” in that individually they are only weakly informative for the response,
but together can be combined into a “strong learner.” Despite the fact that some of these
methods were developed over 20 years ago, they remain popular in many applications of
machine learning where the practitioner’s goal is good prediction accuracy in the regression
context (see, e.g., Chen and Guestrin [2016]). In particular, these methods often yield
state of the art performance on tabular datasets where there is no inherent structure in the
observations that can be leveraged by complex and purpose-built deep learning architectures

(Shwartz-Ziv and Armon [2022]).

In recent years, there has been an increased interest in Bayesian methods, including

1

BART and its extensions (Tan and Roy [2019]). The benefits of Bayesian methods are
quite compelling; for example, they can provide estimates of uncertainty without compro-
mising predictive performance (Tan and Roy [2019]). However, the computational cost of the
Markov chain Monte Carlo (MCMC) schemes used to implement many of these methods are
prohibitively expensive, especially given the rapidly expanding nature of data in the modern
era. There have been some efforts to lessen the computational burden of BART, such as
accelerated BART (XBART) (He et al. [2019]). However this strategy relies on very few
samples (they recommend about 25) from an approximate sampling scheme, which could
make uncertainty estimates less reliable.

The approach outlined in this dissertation, variational empirical Bayes boosting (VEB-
Boost), fits a model similar to the ensemble model (1.1), but instead combines weak Bayesian
learners using an arbitrary sequence of addition and multiplication rather than just addition.
To fit the model, VEB-Boost relies on variational inference. Variational inference yields an
approximation to a posterior distribution that offers computational benefits over sampling
from the true posterior using MCMC schemes (Blei et al. [2017]). In addition, VEB-Boost
is adaptive in the sense that it allows for an empirical Bayes procedure to estimate the
prior distribution of each weak learner, which informs the algorithm as to which parts of
the estimating function can improve and which cannot. VEB-Boost is also flexible and
modular in that it can accommodate any prior distribution for the weak learners, provided
the practitioner supplies a function that can approximate the posterior distribution in the
context of a simpler problem outlined later in equation (3.1).

The VEB-Boost algorithm is implemented in an R-package that is available via github
(https://github.com/stephenslab/VEB.Boost); the package’s interface is stable, but the
back-end code is in active development and subject to change.

This dissertation is organized as follows. The remainder of the introduction provides

a brief review of variational Bayesian inference, empirical Bayes, and how the two can be

https://github.com/stephenslab/VEB.Boost

combined into a procedure dubbed “variational empirical Bayes” (VEB).

Chapter 2 presents what we call the variational additive model. This model bears a strong
resemblance to the ensemble model from (1.1) in that we are adding together many weak
learners. We show how to fit the model by iteratively fitting each weak learner to the residuals
from the other weak learners in a process that is reminiscent of the fitting procedure in
gradient boosting with a squared-error loss (Friedman [2001]) and the backfitting procedure
used to fit generalized additive models (GAMs) (Hastie and Tibshirani [1990]). We introduce
a very useful Bayesian weak learner that is used throughout the thesis in our numerical
examples, called the single effect regression (SER). We then provide a brief simulation study
showing the potential of this model to fit GAMs, comparing its performance with a few other
algorithms.

Chapter 3 makes the leap from only adding together weak learners to also being able
to multiply weak learners together in what we call the variational empirical Bayes boosting
(VEB-Boost) model. We show that, using a different notion of residual, we can fit the model
by iteratively fitting each weak learner on the residuals of the others. We also outline some
methods to utilize the empirical Bayes aspect of the model to add more weak learners until
the fit can no longer be improved. We wrap up chapter 3 with some simulated and real-data
examples comparing the VEB-Boost method to other popular non-linear regression methods.

Chapter 4 shows how to extend the VEB-Boost model to many types of non-Gaussian
data, and how to incorporate observation weights. In particular, we show how to extend the
model to: binary data, multinomial data, negative binomial data, accelerated failure time
data with log-logistic noise (accounting for left, right, and interval censoring), ranking data
(both pairwise and listwise comparisons), ordinal data, survival data with the proportional
hazards assumption, and multivariate Gaussian data. The approach we take to extend the
VEB-Boost model is to approximate each data type with a Gaussian distribution by lower-

bounding the log-likelihood of the model with a quadratic function. Although there are

known drawbacks to this approach (Minka [2001], Knowles and Minka [2011]), the benefit is
that the practitioner only needs to derive and implement the solution for fitting their weak
learner of choice to heteroskedastic Gaussian data. This substantially lowers the burden on
the user and allows for more weak learners to be explored for any/all of these different types
of data, without the need for any additional derivations or implementations. We conclude
this chapter with some simulated and real-data examples comparing the VEB-Boost method
to other popular non-linear logistic and multinomial logistic regression methods.
Throughout this dissertation, all proofs not presented in a chapter itself can be found
in Section A.3. A zenodo repository containing the scripts used for the simulations and
benchmarking studies performed in Chapters 3 and 4 can be found at https://doi.org/

10.5281/zenodo.7105767.

1.1 Variational Inference: A Review

In this section, we offer a brief review of variational Bayes (VB) in Section 1.1.1, empirical
Bayes (EB) in Section 1.1.2, and show how the two can be combined into a single procedure
— dubbed variational empirical Bayes (VEB) — in Section 1.1.3. For a high-level overview of

variational inference, see Blei et al. [2017].

1.1.1 Variational Bayes

Bayesian inference can be broken down into three components: the prior distribution of your
parameters, the likelihood of the observed data under a particular model, and the posterior

distribution of your parameters. These three components are related through Bayes’ theorem:

_9(8) - p(x[B)

p(B[x) ()

. (1.2)

https://doi.org/10.5281/zenodo.7105767
https://doi.org/10.5281/zenodo.7105767

Here, p(3|x) is the posterior distribution of your model parameters 3 given the observed
data x, g(3) is the prior distribution of these parameters, p(x|3) is the likelihood of the
observed data given the parameters, and p(x) is the marginal likelihood of the observed data
(sometimes referred to as the evidence).

The difficulty with Bayesian inference arises from the challenge of dealing with the
marginal likelihood p(x), since it involves the often intractable integral p(x) = [g(8)p(x|3)d3
Variational Bayesian inference, an alternative to exact Bayesian inference, was introduced to
yield computationally tractable approximations to the exact posterior distribution p(3|x).

Concretely, the goal of variational Bayes is to find

¢*(8) = argmin Dicr (a(@)Ip(B1x)). (1.3)

qeQ

where Q is referred to as a variational class of distributions, and Dy (q||p) is the KL-

divergence from the density ¢ to the density p, defined as

Dc(all) = Ege [1og 5] (1.4

The variational class Q is often chosen to facilitate easy and/or closed-form updates when
solving this optimization problem. If Q was the class of all distributions, then the mini-
mizer would be equal to the true posterior, so the hope is that Q is expressive enough to
contain distributions that are “close” to the true posterior while maintaining computational
tractability.

The objective function in the optimization problem in (1.3) is not tractable to compute,
since it relies on the unknown posterior distribution. Instead, we can perform some algebraic

manipulations to show that

¢"(8) = argmax Eg._,llog p(x|8)] — Drc., (a(8)19(8)). (15)
qeQ

The right-hand-side of this equation is referred to as the evidence lower bound (ELBO),
so named because it is (unsurprisingly) a lower bound on the log-evidence, log p(x). It is

straightforward to show that equivalent formulations of the ELBO F(g, ¢;x) are

F(g,4:%) = Eg-gllog p(xI8)] = Dicz (a(B)ll9(8)) (L.6a)

— I(g;x) ~ Dic (a(B)1p(B1%)). (1.6b)

The ELBO is typically a non-convex objective function and is thus difficult to maximize.
In principle, any non-convex optimization method can be used to find a (local) maximum of
the ELBO. But in practice, the most commonly-used algorithm is known as coordinate ascent
variational inference (CAVI), which is essentially just exact (block) coordinate maximization

of the ELBO (see Bishop [2006], Blei et al. [2017]).

1.1.2 Empirical Bayes

The goal of empirical Bayes is to perform Bayesian inference using a prior distribution

gd(B) € G learned from the data. Suppose we have the following Bayesian model

x ~ p(x|8.6) (1.7a)

B~geg, (1.7b)

where we observe data x from a data generating process with likelihood p(x|3,6) that
depends on (i) unobserved latent variables 3 coming from prior distribution g living in some
class of distributions G, and (ii) additional parameters 8 € O, either fixed or to be estimated.

Empirical Bayes is often framed as a two-step procedure. The steps are:

1. Estimating the prior by finding

(9,6) := argmax (g, 6;),
geg.0cO

where

(g.0;) = log / p(x18,0)9(8)dB

is the marginal log-likelihood of the observed data;

2. Given the estimated prior distribution § and parameters 0, compute the posterior

distribution of 3:

ﬁpost(ﬁ) = p(Blx, g, é)

x p(x|B,0)3(B).

However, this same EB procedure can be viewed as a one-step procedure, as outlined in

appendix B of Wang et al. [2020]. As in (1.6b), define the ELBO as

F(q,9.0;%) = U(g,0:%) = Dicr. (a(B)llppost(8)).

Using this formulation, it is easy to see that the two-step EB procedure can be performed

in a single step:

(ﬁpost7g7é) = argmax F(qaga 07X) (18)
q,9€G,0€0

This can be seen by making two key observations:

1. The first term of the ELBO, [(g, 8;x), does not depend on ¢, and so

¢ = argmax (g, g, 6;x)
q
= argmin Dy, (Q(ﬁ)“ﬁpost(ﬁ))
q

= ppost?

2. Since Dy p (q(ﬁ)Hﬁpost(B)) = 0 when q(8) = fost(8), we have max F(q,g.0:) =
l(g,0;x). And thus,

(g, 9) = argmax [(g, 0;x)
g€G.,0c0

= arg max max F'(q, g, 0;x).
geG.0ce 4

1.1.8 Variational Empirical Bayes

The variational empirical Bayes (Braun and McAuliffe [2010], Wang et al. [2020]) approach
makes one simple modification to the one-step EB procedure from (1.8); we only maximize

over g € Q for some variational class of distributions Q. That is, we aim to find

(¢*,9,0) = argmax F(q,g,0;x). (1.9)
q€Q,9€G.,0cO

The procedure can be thought of as being similar to EB, since we still learn a prior
distribution g and parameters @ from the data, but we are now also finding an approximation

to the true posterior ¢* € Q.

CHAPTER 2
THE VARIATIONAL ADDITIVE MODEL

2.1 Introduction

In building up to the full VEB-Boost model, the first step is to make the leap from fitting
data with a single weak learner to using a sum of weak learners. We refer to this sum as the
variational additive model. This model is outlined in Appendix B of Wang et al. [2020]. We
deviate slightly from their presentation, but the models are essentially the same.

The remainder of this chapter is organized as follows. Section 2.2 describes the Bayesian
regression setting that is used as the building-block for the additive model, and we describe
the useful example of the single effect regression (SER) in Section 2.2.1. We then present
a generalization to the SER which allows for the fitting of non-linear relationships in Sec-
tion 2.2.2. Section 2.3 then shows how we can combine weak learners that are solving the
Bayesian regression problem in 2.2 into a strong learner by adding them together. Finally,

we demonstrate the generalized additive model in a brief simulation study in Section 2.4.

2.2 Unweighted Bayesian Regression Problem

The building-block for the variational additive model, and what each weak learner aims to

fit, is the unweighted Bayesian regression problem:

y=p+e (2.1a)
€ ~ N(0,0%1,) (2.1b)
p = h(B) (2.1c)
B~geg. (2.1d)

Here € R" is our vector of responses, €; is iid Gaussian noise with given residual
9) 1
9

variance 02 > 0, 8 € RP is a random vector with prior distribution ¢ belonging to a prior
family G, and h : RP — R is a fixed function that maps 8 to a mean response vector p.
For example, h(3) might be X3 for a fixed design matrix X € R"*P. For terminology, we
often refer to pu = h(3) as a Bayesian weak learner.

In order to “solve” this Bayesian regression problem, we require a function that can
estimate a prior distribution ¢ € G using an empirical Bayes procedure, and then return
a variational approximation ¢* € Q to the true posterior distribution of 3, where Q is an
arbitrary variational class chosen by the practitioner. In fact, the VEB-Boost algorithm only
needs access to Eg.q+[h(8)], Egg [h(B)?], and Dyr.(q*]|9)-

Using the alternate formulations of the ELBO from (1.6), we denote the ELBO of model

(2.1) as:

Folg. v, h,0%) = — 5 og(2m) — 5 1og(0%) — 5 5Byl ~ H(B)IB] - Drcr (a08)]19(8))-
(2.2)

For the purpose of compact notation, let

FIT(y,h,0%,G, Q)

= (arg max Fy(g, q;y, h,0?), i = Egop[(B)]. u2 =Egy[h(B8)?], DKL<q*||9>> (2.3)
9€G,qeQ

be a function that maximizes the ELBO with respect to the prior distribution ¢ € G and
variational approximation to the posterior ¢ € Q (with arg max ¢ and ¢*, respectively), and
also returns the first and second posterior moments of the weak learner (fr and F), as well

as the KL-divergence from ¢* to g.

10

2.2.1 The Single Effect Regression

The single effect regression (SER) model, the foundational idea of which was introduced in
Servin and Stephens [2007] and used as the building-block of Wang et al. [2020], is a very
simple Bayesian linear model in which a single variable has a non-zero effect. Just like a
decision stump or small decision tree, it is clear that such a model is too simple to be of much
use on its own. But if we were to combine many such weak learners together, we should be
able to explain more signal in a dataset.

The SER model can be formalized as:

y=XB+e (2.4a)
e ~ N(0,0°1,) (2.4b)
B=by (2.4c)
b~ N(0,0}) (2.4d)
~ ~ Mult(1,). (2.4e)

Here, X € R"*P is a fixed design matrix, 3 € RP is an effect vector that is non-zero in
only a single position (i.e. l-sparse), b is the value of the non-zero entry in 3 which comes
from a mean-zero Gaussian prior distribution with variance 08, and ~y is a vector of 0’s with
a 1 in a single position indicating which entry of 3 is non-zero, which has a multinoulli prior
distribution with a fixed prior probability vector = € AP~1 ¢ RP.

One of the nice properties of this simple model is that the exact posterior distribution of

3 is available in closed form.

Proposition 2.2.1 (SER Posterior Distribution). For a given prior variance a% > 0, if we

X XLy . . .
;2 and vj := 0—32, then the posterior distribution of B is given by:

1
letTj —0_—8+

11

X, y, 0%, 05 ~ Mult(1, cx) (2.5a)

1 v?
Qj OC Ty [— exXPp {7} (2.5b)
J J

b X, y,0% 05,7 = 1~ N(pj,07) (2.5¢)
V; 1

pj = —j and 0]2- =—. (2.5d)
Tj 7j

Proof: Recalling that the prior places all of its mass on 1-sparse vectors (i.e. vectors
with a single non-zero entry), we see that the posterior will also place all of its mass on such
configurations. By Bayes’ theorem, and using the definitions for 7; and v; from above, and

defining e; to be the standard basis vector for dimension j, we have

P(B = bejly, X, o5, 7,0%) o P(B = bej|og, m) - P(y|X, 0%, B = be;)

_ 132 n
— 1 e 20(2]b H 1 e*ﬁ(yrinj)Q
= 5
27r08 i=1 2mo
1 1
fﬁbLQTQZLl(% bX;;)?
X ;e
J
1,2 1 2 %2
X ;e
J
. r \/2m/T;
— Wje_%(b_V]/T]) +7](V]/T])2 . —]
\/ 27/ 7;
a2
gy | e e~ F -/

We can recognize this as being proportional to the posterior described above in Proposition
2.2.1. QED
It is also straightforward to perform an empirical Bayes step to estimate the prior distri-

bution of B € G, which is fully parameterized by the prior variance 08 > 0.
12

Proposition 2.2.2. The likelihood of the SER model as a function of 08 > 0 can be written

as

L(o3;y, X, 7, 0?) Zw]/ (b;08)p(y; b, X.j,0%)db (2.6a)

V2
\/;] 1 [exp{;{j}, (2.6Db)

where v; and T; are defined in Proposition 2.2.1.

Proof: Starting from the expression for the likelihood, we get

b 00
L(od;y, X, 7,07 :Z / p(b; 08)p(y; b, X5, 0%)db
1 32

p b 1 12
Z / T8 (2ma?) /2 22 IR g

27700

\/2
Zﬂj 7j (b=v;/T) ?J(VJ/TJ) . 7T/Tjalb
\/ o2

0 =1 — ,/27r/7'J

= ij\f 2, QED
0031

Using the above expression for the likelihood of the SER model, we can perform an

empirical Bayes step by maximizing this likelihood with respect to 03 > 0 using the 1-

dimensional numerical optimizer of our choice, such as the Brent method available in the

base R function optimize.

We can also easily calculate the KL-divergence Dy (q%||g) as

72 2

] UO 1 J J
D g a;- | log () R R 97
KL q || Z 7 (j O.j 2 20_% ()

Jia;>0

13

2.2.2 Generalized Single Effect Regression

As an extension to the SER, suppose that instead of selecting one of a number of linear
terms, we are selecting between one of a number of models. For example, perhaps each
model corresponds to a non-linear function of a single variable, a la generalized additive
models (Hastie and Tibshirani [1990]). From here on, I will assume that these models rely
on only a single variable, but this applies to the more general case of arbitrary models. More

concretely, consider the model

y = Zw (B 5 xj)+e (2.8a)
e ~ N(0,0%1,) (2.8b)
B, ~ gi() € G (2.8¢)
v ~ Mult(1,). (2.8d)

Here, hj(- ; x;) are fixed functions of a single variable x; parameterized by 3; € RFJ (e.g.
hj(Bj ; x;) = x,;b; recovers the SER), g; is a prior distribution over 3; belonging to a prior
family G;, and v is a vector of 0’s with a 1 in a single position indicating which function
h;(-) has a non-zero weight, which has a multinoulli/categorical prior distribution with a
fixed prior probability vector w € AP~1 ¢ RP.

It is very easy to see that since the prior distribution places all of its mass on configura-
tions of a single non-linear function of a single variable, so too will the posterior distribution.
We can calculate the posterior probabilities of each function being non-zero in the straight-

forward fashion:

aj = P(y; =1ly) x P(y; =1)- P(yly; = 1) = 7 P(yly; = 1). (2.9)

Note that P(y|y; = 1) is simply the evidence of the model where there is only hj, i.e

14

y =h;(B;; xj) +e

Continuing on, it is easy to calculate the posterior distribution of ,Bj]'yj =1

P(Bjlv; = 1y) o< gj(B;) - P(ylv; = 1,85)- (2.10)

Note that this is proportional to the posterior probability of B; under the model where there
is only hj, ie. y =h;j(B;; x;) + €.

Thus, the posterior distribution is a mixture distribution over the posteriors from the
“univariate” models in which there is just a single function %, weighted by a;. So algorith-
mically, we can find the posterior distributions of these “univariate” models individually, and
then weight them by the appropriate weights «; (which are proportional to the product of
the prior probability that model j is the non-zero model, and the evidence for that model).
This is exactly the procedure that is done in the SER.

As a slight modification, suppose that for each model j we have a variational class of
distributions Q;, and our approximation to the posterior of 3; is a member of this class. In
this case, we can find an approximation to the posterior by carrying out the same procedure,
but instead we find an approximation to the posterior ¢; € Q; for each univariate model j.
We can then approximate the evidence of the model P(y|y; = 1) as exp{ ELBO,}, where
ELBO; is the ELBO from univariate model j. This is conceptually similar to using the
ELBOs as an approximate log-likelihood, which is done in Carbonetto and Stephens [2012].

We formalize this intuition in the following proposition:

15

Proposition 2.2.3. Consider the model

y=f(X; B)+e (2.11a)
e ~ N(0,0°1,) (2.11b)
b
B~ migi(), gi() €G; (2.11c)
j=1
{support g;} N {support gy} =0, j # k. (2.11d)

Suppose that we wish to find a variational approximation to the true posterior that takes
the form of the mizture model q(By,...,B,) = E?:l @;q;(B;), where o € AP~L and each
q; € Qj for a variational class Qj. Let M be the model where B ~ gj, i.e. m; =1, and
let ELBO;(g;,q;) be the ELBO we get from model M with prior g; € G; and variational
approzimation q; € Q; with argmax (ﬁj,q;f) and mazximum ELBO;T. Then the empirical

Bayes estimate for the prior is given by the mizture model

and the varitational approximation to the posterior is given by the mizture model
p
¢"(B) =>_ ;i (B),
j=1

where aj o exp{ELBO;f}.

Proof: Writing out the objective function in the variational optimization, and substitut-

ing in the expectations and KL-divergences we get with our specific prior g and variational

16

approximation ¢, we aim to find

max Eq [log P(Y|5)} — Dk r(dllg)
aeArP~1 g;ieG;q;€Q;

p p
- o Z%Eq [10g P(y18)] - DKL(Zajqu T

acAr! 195 €95:4 €95 5=

N Y N

aEAPT ,gjegj,qJGQJ] 1 k=1"kIk
= |{support ¢;} N { support gz} = for j # k]
p O
= max o E [logP y|B] a-[log—j—l—DKL(q-Hg-)}
w525, e, 2 Z o > aj|log il

i—1 J

.

p

- ma Mo

aenr- ,9;€G,4;€9Q;

Eq; [log P(y\ﬁ)] — Dk r(gjllg;) —log %]

j=1 J

= max Z aj; max KLBO;(gj,qj) — log %

acAr=1 = 7 |9;€0).4;€Q; i
b [s
= max o; | ELBO* —log -
N Z ’ 7%

j=1 L
p

s
= — min ajlo J .
]Z ji08 T exp{ELBO;-‘}

Noting that in this last line we are trying to minimize a discrete KL-divergence, we see that
this is minimized when a; o 7; exp{ELBO;'-‘}.

Thus, the solution that maximizes the ELBO over the prior distribution and variational

approximation is given by

p
g = Zajq;f. QED

17

Corollary 2.2.3.1. Since the model given by (2.8) can be re-written to satisfy the conditions
of Proposition 2.2.3, we can find a variational approrimation to the posterior by solving the

uniwariate models individually, and then weighting them accordingly.

2.3 The Variational Additive Model

The variational additive model is a direct extension of the unweighted Bayesian regression
problem in Section 2.2, in which we add together multiple weak learners. The model is

formalized as:

L
Y=Y m+e (2.12a)
=1
€ ~ N(0,0%1,) (2.12D)
pi = hy(B) (2.12¢)
B~ al)eq. (2.12d)

As before, 3; € Rl is a random vector with prior distribution g; belonging to a prior
class G;, all of the 8; are independent a priori, and h; : RPl — R™ are fixed functions that
map 3; to a vector ;. As before, we refer to these pu; = hj(3;) as Bayesian weak learners.

In order to “solve” this problem, we aim to find a variational approximation ¢ to the
true posterior distribution of (81,...,3). We restrict our approximation to belong to the

variational class
L
QZ{Q ‘ 9B, B) = [[a®B), ae Ql}- (2.13)
=1

Here, each Q) is an arbitrary variational class that restricts the approximation g;.
A nice property of this model is that the ELBO, when viewed as a function of a particular

(91,q1), holding all other (g_;,q_;) fixed, is equal to the ELBO in the unweighted Bayesian
18

regression subproblem (2.1) (up to a constant), where the response is a form of residual that
takes into account the fixed distributions.

As an illustrative example, consider the simple additive model
Y=t +pst+e €~N(0,0%L).
If we want to fit the weak learner po, we can subtract pq from both sides, which leaves
Yy — 1 =po+e€ €~N(0,0%).

It turns out that if we replace p; with Eq, [pe1] on the left hand side, then this is exactly the

correspondence we get between the ELBOs.

Theorem 2.3.1 (Variational Additive Model ELBO Equivalence). Let

F(g1,q1s -, 910, 95: Y b1, - -, hp,02) denote the ELBO of the additive model (2.12), and let
Fi(9,959-1,9-1,9, h, - .,hL,O'Q) denote this ELBO with respect to (g;,q;) while holding
all other distributions fized. And let Fy(g,q;y, h,aQ) denote the ELBO from the simple

2

regression model (2.1) with response y, residual variance o, and mean response p = h(3).

Then

F’l(gl,éﬂ;g,l,q,l, Y, hla s hL702) = FO(gbql; Yy— Z]Eﬂkqu[hk(ﬁk)]? hl,0'2) +c,
k+#l

where ¢ is a constant term in (g;, qp).
The proof is a special case of the proof in Section A.3.1.

Corollary 2.3.1.1 (Block Coordinate Maximization of the Variational Additive Model

19

ELBO). In the same setting as Theorem 2.5.1,

argmax F(g1,q1,---,97,45; Y, hi,-- -, b, 0%)

GEGLAUEQ
= argmax Fp(g;,q; Y — ZEﬁkqu[hk(/@k>]ahlaU2)-
9EGLUEL k£l

In other words, in order to perform a block coordinate maximization step of the full ELBO
in the additive model (2.12) over the prior distribution ¢g; € G; and variational approximation
q; € 9, we simply need to be able to solve the unweighted Bayesian regression problem for a
single weak learner using the response y :=y — > kA BBy ~qr [h.(B)] and residual variance

o2

Corollary 2.3.1.2 (Gradient of the Variational Additive Model ELBO). In the same setting
as Theorem 2.3.1, suppose that the prior family G; and variational family Q; are finite-

dimensional parametric families. Then

2 2
Vgh(ZlF(gl? qa1,---,91,4915 Y, hla SRR hLv 9) = Vgh(ZlFO(glv qr; y_ZEﬁkqu[hk(/Bk)L hlv o)7
kAl
where Vg, q, Tefers to the gradient with respect to the parameters of the distributions g; € G

and q € Q.

This means that if one wanted to maximize the ELBO using a first-order method instead
of (block) coordinate maximization, it is sufficient to be able to calculate the gradient in the
context of the unweighted Bayesian regression problem.

Using Corollary 2.3.1.1, we can write a coordinate ascent algorithm for the variational

additive model.

20

Algorithm 1: Variational Additive Model Coordinate Ascent Algorithm
Require: Data y; functions hy(+), prior classes Gj, variational classes

Q, 1=1,...,L

Require: initial residual variance o2.

Require: Functions FIT : (y, hy, 0%, G, Ql> — (gl,q;*,m, ,u_l2, DKL(ql*Hgl)> that

solve the unweighted Bayesian regression problem for each weak learner,

l=1,...,L.
1 Initialize posterior means f;, p,_lQ, forl=1,...,L;
2 Initialize residual variance to 62 := o2;
3 repeat
4 for [in1,...,L do
5 Compute y =y — > j4 B
6 (a1, 4 B3 17, Drcr(af190) FIT(3, 1,626y, Qp);
7 Update 62; // optional;

8 until convergence criterion satisfied,

return qj,...,q} .

©

This algorithm is reminiscent of the fitting procedures in boosting (because we fit each
weak learner to the residuals from the others), as well as backfitting in generalized additive

models (because we iteratively return to earlier fits and update them).

2.4 Examples

Perhaps the most well-known application of the variational additive model is the Sum of
Single Effects (SuSiE) model (Wang et al. [2020]). In this model, each effect p; is an

independent vector with the prior from the single effect regression outlined in Section 2.2.1.

21

Concretely, the model is given by

L
y:ZXﬂl+€

=1
€ ~ N(0,0°1)

Br = b

b SN (0, O'(Q)Z)

¥ i Mult(1,).
The SuSiE model has seen rapid interest and success in the context of, among other applica-
tions, genetic fine-mapping. This is due to SuSiE’s ability to perform sparse linear regression
and variable selection in highly correlated settings and yield uncertainty estimates about
which effects are non-zero.

There are a number of other ways in which the variational additive model can be po-
tentially useful. For example, one could add together a SuSiE model and a Bayesian ridge
regression model; this could be useful if you believe there are a few strong signals in the data
among correlated predictors, but that all predictors have some effect. A potential scenario
where this assumption may approximately hold is that of the omnigenic model of complex
traits (Boyle et al. [2017]), which maintains that while a few genetic variants will have a
large effect on a trait of interest, all genetic variants have a non-zero effect.

In this section, I instead focus on demonstrating an extension of the SuSiE model, going
from the sum of linear relationships of a single variable to the sum of non-linear relationships
of a single variable. In fact, this is exactly the model you get if you add together independent
instances of the model given in (2.8). There are many convenient ways to use variational
inference to learn a non-linear function of a single variable to use as our h; from model (2.8).
For example, Cheng et al. [2022] took inspiration from the SuSiE model and investigated

non-linear relationships using neural networks that are functions of a single input variable.

22

However, I have opted to use my own methods, which I will outline in Section 3.5.2. In
short, saving the details for this later section, the method I used learns functions of a single
variable which reduce to a piecewise polynomial, the degree of which is learned adaptively.

For this simulation study, I have used the function given in the example from Ravikumar

et al. [2009]. The data is generated as:

yi = f1(xi10) + fo(wi30) + f3(zi50) + falziz0) + €

€ ¢S N(0,02)

'
— $(2;0.5,0.8)—ag)/bg

sin(exp{—0.5z}) — a4> /by.

Here, ¢(x; p, 02) is the probability density function (pdf) of a Gaussian distribution with

2

mean 4 and variance o~ evaluated at x, and a; and b; are chosen so that for each simulation,

the sample mean of f;(x) is 0 and the sample variance of f;(zr) is 1.

The design matrix X € R1000x100 i5 generated according to
iid
x; ~ N1go(0, X).

In this simulation, we set 3 to the block-diagonal matrix:

23

\o
I
© o ©o o wm

© © o w» o
o © w»w o o
S w»n o o o
n o o© o O

Here, S;; = 0.9517=7 for i,j € {1,...,20}. That is, there are 5 groups of 20 highly correlated
predictors; the first four groups have a single non-null variable that has an effect on the
response, and the fifth group contains all null variables.

We also set the residual variance o2 such that the proportion of variance (PVE) explained

was either 0.1, 0.5, or 0.833, where PVE is defined as

Var <f(x)>

PrE= Var(f(x)) —1—02‘

I ran 20 replicates for each value of PVE.

The additive methods I considered in this simulation study were:

e “SpAM?”: Sparse Additive Models (Ravikumar et al. [2009)])
[used the R package SAM. I performed 5-fold cross-validation to estimate the parameter

lambda;

e “FLAM?”: Fused Lasso Additive Model (Petersen et al. [2016])
I used the R package flam. I performed 5-fold cross-validation to estimate the param-

eter lambda;

e “SuSiE Stumps”: Piecewise constant functions using a sum-of-decision-stumps model
(Wang et al. [2020])

I used the implementation in my R package. Each weak learner is a piecewise constant

24

function. Essentially, we fit the SuSiE model, but each predictor is an indicator vari-
able for if X;; > ¢; (which is equivalent to a decision stump); refer to Section 3.5.2; or

the section on change point detection in Wang et al. [2020];

e “SuSiE GAM?”: Piecewise polynomial functions
I used the defaults in my R package to learn non-linear functions of a single variable

(see chapter 3), and then combined them as per Section 2.2.2 and Proposition 2.2.3.

To evaluate the performance of the methods, I used the relative root-mean-squared-error

(RRMSE). The root-mean-squared-error (RMSE) is defined as

1000
1

S (e - e (214)
=1

where we are summing over unseen testing observations that were generated in the same
way as the training observations, f (+) is the fitted function returned by the algorithm, and
f(+) is the true mean response function. For the Bayesian methods, the posterior mean is
used as the estimated function value. Note that we are comparing with the true mean of the
new observations and are not taking into account any noise; this is to highlight the methods’

abilities to recover the true underlying mean.

The RRMSE for algorithm A is defined as

RMSE 4
minA/ RJWSE’A/7

(2.15)

where the minimum in the denominator is taken over all algorithms tested for that particular
simulation dataset.

The results are displayed below in Figure 2.1.

25

Generalized Additive Model Simulation
Block-Correlated Design

1.754

1.501

1.254

10 :and

3.01

2.51
2.01

1.04 L}

Relative RMSE

G0 :and

12

| + H

€€8'0 :ond

00 FLAM

B spam

Bl SusiE GAM
‘ SuSiE Stumps

Figure 2.1: GAM Simulation Relative RMSE This plot shows the relative RMSE of the
different GAM methods in this simulation. We see that the SpAM method appears to be
the best in the higher noise settings, but the SuSiE GAM model pulls ahead in the lower

noise setting.

26

2.5 Discussion

In this chapter, we have outlined the variational additive model. This model allows us to add
together many Bayesian weak learners. The SuSiE model (Wang et al. [2020]) is a special
case of this model, where each weak learner uses the SER from Section 2.2.1. The primary
purpose of this chapter was to familiarize the reader with the notation, terminology, setting,
etc, so that the next chapter is easier to follow. After introducing these concepts, I provided
a brief example of the model’s potential usefulness via a small simulation study. This study
demonstrated that we can use the variational additive model to fit a generalized additive
model in a Bayesian way. And what’s more, we can do so quite easily by combining Bayesian
weak learners that rely on a single variable, as outlined in Section 2.2.2.

While I have not done much investigation into the potential of additive models, the
rapid popularity of the SuSiE model speaks to the promise for such methods. One potential
avenue of exploration could be trying to fit a Bayesian sum-of-trees model by having each
weak learner be a single Bayesian regression tree (e.g. fitting a BART model with a single
tree with traditional MCMC methods). I have not explored the feasibility of fitting each weak
learner with MCMC methods, but since we can still get first and second posterior moments
from MCMC methods, and we only use the KL-divergence term to monitor convergence, I
don’t see any conceptual reason why such an approach wouldn’t work. It would be interesting
to see how such an approach compares with BART. It could also be interesting to try out
other methods to fit a GAM in the context of the example from this section, such as using
a Bayesian neural network as the non-linear univariate functions, much like in the work of

Cheng et al. [2022].

27

CHAPTER 3
THE VEB-BOOST MODEL

3.1 Introduction

Now that we have introduced how to fit a model in which we add Bayesian weak learners
together, we will introduce the ability to also multiply weak learners together. We show
that such a model, with an arbitrary sequence of additions and multiplications of weak
learners, can be fit by solving the weighted Bayesian linear regression sub-problem. Section
3.2 introduces this weighted Bayesian regression problem. Then, we introduce the full VEB-
Boost model in Section 3.3. We discuss how to fit the model with the weighted Bayesian
linear regression, how to adapt the complexity of the fit to the complexity of the signal, and
briefly introduce the Bayesian weak learner that we use for all simulations and benchmarks.
Section 3.4 outlines a few practical considerations: one approach on how to incorporate an
intercept into your weak learners, and a way to use a solver for the homoskedastic Gaussian
case in the heteroskedastic case. Section 3.5 outlines the R-package that implements the
VEB-Boost model, and goes into more detail of the weak learner we used. Finally, Section
3.6 walks through simulated and real-data comparisons with other non-linear /non-parametric

regression methods frequently used with tabular data.

3.2 Weighted Bayesian Regression Problem

Just as how the building-block of the variational additive model was the unweighted Bayesian
regression problem from Section 2.2, the weighted Bayesian regression problem serves as the
building-block for the VEB-Boost model. The weighted Bayesian regression problem is

formalized as

28

y=p-+e (3.1a)

€~ N(O, diag(02)> (3.1b)
p = h(B) (3.1¢)
B~yg()eEQ. (3.1d)

The only difference between this model and the unweighted Bayesian regression model is
that each observation has its own residual variance captured by o? € R" .. To keep the
math simple, we will continue to focus on independent observations, but the VEB-Boost
model can easily be extended to the case of correlated observations with known dependence
structure, i.e. € ~ N(0, A_l) for fixed and known precision matrix A. For details, refer to
Section A.3.1, which contains the main theorem and proof of this dissertation.

Analogous to the unweighted Bayesian model, we aim to “solve” this Bayesian regression
problem with a function that can estimate a prior distribution ¢ € G using an empirical
Bayes procedure, and then return a variational approximation ¢* € Q to the true posterior
distribution of 3, where Q is an arbitrary variational class. And just as before, VEB-Boost

only needs access to Eg«[h(8)], Egq [h(B)?], and Dgr.(q*]|9)-
Denote the ELBO of this model as:

Fylg,¢;y, h,o?)
:_alog(Qn ——Zlog ——EﬁNq[Hdmg /o) (y h(B)H } DKL(Bllg(B))

(3.2)

29

For the purpose of compact notation, let

FIT(y,h,6%,G,Q)

= (arg max Fy(g, ¢y, h,02), i = Egg+[0(B)], u2 =Eg_y:[n(B)?], Dxr(¢* H@)) (3.3)
g€G,qeQ

be a function that maximizes the ELBO with respect to the prior distribution g € G and
variational approximation to the posterior ¢ € Q (with arg max ¢ and ¢*, respectively), and
also returns the first and second posterior moments of the weak learner (@z and ﬁ), as well

as the KL-divergence from ¢* to g.

3.3 The VEB-Boost Model

As in the variational additive model, let a Bayesian weak learner p; € R" be defined as
hi(B;), where B; € RPl is a random vector that we place a prior distribution on and for
which we wish to approximate the posterior distribution, and h; : RPl — R" is a fixed
function (e.g. hy(8;) := X;3; for a fixed X; € R"*P1).

Using this definition of a Bayesian weak learner, we define a VEB-Boost ensemble learner
recursively as: (i) a Bayesian weak learner, (ii) the element-wise sum of two ensemble learn-
ers, or (iii) the element-wise (i.e. Schur or Hadamard) product of two ensemble learners.
The inclusion of multiplication of weak learners has been explored by others (see, e.g., Fried-
man and Popescu [2008], Kegl and Busa-Feketa [2009], Nalenz and Villani [2018]). We can
leverage our recursive definition to conveniently describe an ensemble learner with a binary
expression tree, where internal nodes represent binary operators to combine the ensemble
learners defined by the left and right sub-trees (“4” or “o” for addition or multiplication,
respectively), and the leaf nodes represent weak learners. For instance, Figure 3.1 depicts
the ensemble learner

(m o (p2 + u3)> + (kg 0 p5).
30

N
VANIVAN
/\

Figure 3.1: VEB-Boost Ensemble Learner Example This tree represents the VEB-
Boost tree structure T'(pq, ..., p5) = (.Ul o (g + Hs)) + (g 0 p5).

Let T(pq,.--, 1) : R™XL 5 R™ be the function that combines the weak learners
Wi,...,py, using the appropriate sequence of additions and multiplications to yield the
desired ensemble learner (e.g. for the ensemble learner in Figure 3.1, T(pq,..., pus) =
(1 0 (pg + p3)) + (g o). For now, we will assume 7'(+) is fixed, but in Section 3.3.3,
we will discuss ways in which 7'(+) can be “grown” in an adaptive fashion.

Given our response y € R", functions h; : Rl — R", expression tree T : R™L _ R,

2

and residual variance vector o<, our full model is as follows:

Y =Ty, .. pup) + € (3.4a)
€~ N(O,diag(02)> (3.4b)
= (8)), I=1,....L (3.4¢)
B~ g() € G, I=1,...,L. (3.4d)

Here, g;(+) is the prior distribution of 3;, which belongs to a class of distributions G;. We
can either fix g;(-) by having G; = {¢;(-)} or estimate it with an empirical Bayes procedure.

31

Our goals are to estimate the prior distributions g; using an empirical Bayes procedure to

obtain ¢;, and use these estimated prior distributions to calculate the posterior distribution

p(ﬂl?"'76L|y7T7§17"'7gL7h17"‘JhL70.2)' (3'5)

3.8.1 Variational Approximation to the Posterior Distribution

Rather than calculating the exact posterior distribution given in equation (3.5), we instead
find a variational approximation. As in the variational additive model, we use the variational
class of distributions that factorize over B;, where each factor in turn belongs to its own

variational class Qy, i.e.

L
Q= {q ‘ 9B, Br) =[[a®B), ae Qz}- (3.6)
=1

In the VEB-Boost model outlined in equations (3.4a) — (3.4d), there are additional pa-
rameters that must be estimated, e.g. any parameters needed to characterize g1,...,gy.
Using the variational empirical Bayes framework outlined in Section 1.1.3, we can combine
the empirical Bayes step and variational inference steps into a unified procedure of max-
imizing the ELBO. Note that the approaches here allow for global parameters 8 € © to
be included and estimated. For example, if you are using the methods of Carbonetto and
Stephens [2012] (so each weak learner corresponds to the effect of an individual variable)
then the shared prior probability of the effect being 0 is a global parameter which you can
estimate by maximizing the ELBO. However, for simplicity of notation, I exclude such a 6.

Our ELBO now takes the form

F(glaq17"'7gL7QL;Y7h17"'7hL7027T)' (3'7)

Thus, our goal to approximate the posterior distribution (3.5) is accomplished by com-
32

puting

~ ~ 2 2
(gl?q??""gL?qz?a) G argmax F(g:l?ql?""gL?qL?o' ;y’h17"'7hL7T)' (3'8)
91€G1,q1€9;,0%€©

We refer to maximizing this objective function as “solving” the variational empirical Bayes
problem associated with model (3.4).

Note that when optimizing over o2

, we typically either (i) fix it to a pre-specified
value/vector (i.e. © = {62 : o = n?® for fixed n° € R™ . }), or (ii) force o? = 521
for a o2 > 0 to be optimized over (ie. ® = {62 : o2 = 0?1 for 62 > 0}). But there

are other options that I have considered but not yet explored, which I touch upon briefly in

Section 3.7.

3.3.2 Fitting a VEB-Boost Ensemble Learner

The form of the ELBO in the VEB-Boost model is given below, which follows from (1.6):

n L
2 log(2m) — 3 S los(0?) — 1By [[diag(1/o) (y ~ Tur,) [} - 3 Drcstalan
=1 =1 (3.9)
Just like how the ELBO of the additive model (when viewed as a function of (g,)
holding everything else fixed) is equal (up to a constant) to the ELBO in the unweighted
Bayesian regression problem where the response is a form of residual, we can view the ELBO
of the VEB-Boost model as being equal to the ELBO in the weighted Bayesian regression

problem where the response and residual variance are a form of residual.

As an illustrative example, consider the simple learner
Yy=pm ous+E€E € NN(O,O'ZIn).

33

If we want to fit the weak learner po, we can perform element-wise division by pq from both

sides, which leaves

Y/ = po+€/py, €~ N(0,0%I).

It turns out that if we multiply by Eg, [p1]/Eq [p2] instead of dividing by g1 on the left
hand side, and divide by /Eg, [u%] instead of pq on the right hand side, then this is exactly

the correspondence we get between the ELBOs.

Theorem 3.3.1 (VEB-Boost Model ELBO Equivalence). Let

F(g1,q1,- -+ 971,95: Y. P1, ..., hp, 02, T) denote the ELBO of the VEB-Boost model (3.4),
and let Fy(g;, q;;9-1,9—1, Y, hi, ..., hy, o2, T) denote this ELBO with respect to (g;,q;) while
holding everything else fized. And let Fy(g,q;y,h, 0'2) denote the ELBO from the weighted

2

regression model (3.1) with response y, residual variance o, and mean response p = h(3).

Then

Fy90 a1 9-1:4—1 - 1, - b, 02 T) = Folgr, a3 9 by, 67) + ¢
for a particular § and &2 (given in Theorem 3.3.2), and c is a constant term in (g;,q;).

Corollary 3.3.1.1 (Block Coordinate Maximization of the VEB-Boost Model ELBO). In

the same setting as Theorem 3.3.1,

argmax F(g1,q1, .-, 97,90 %, 0, ... hp, 02, T) = argmax Fy(gy,q: 9, by, 6°).
GEGLUED GEGLUED

In other words, in order to perform a block coordinate maximization step of the full
ELBO in the VEB-Boost model (3.4) over the prior distribution g; € G; and variational
approximation ¢; € Q;, we simply need to be able to solve the weighted Bayesian regression

problem for a single weak learner using the response ¥ and residual variance 2.

Corollary 3.3.1.2 (Gradient of the VEB-Boost Model ELBO). In the same setting as The-

orem 3.3.1, suppose that the prior family G; and variational family Q; are finite-dimensional
34

parametric families. Then

2 - ~2
ng,qu(glvq1a"'7gLaQL;y7 hl)"'ahLaU 7T) = vgl,QlFO(glaQI;y7 hl,O’)7

where Vg, q, refers to the gradient with respect to the parameters of the distributions g; € G

and q; € Q.

This means that if one wanted to maximize the ELBO using a first-order method instead
of (block) coordinate maximization, it is sufficient to be able to calculate the gradient in the
context of the weighted Bayesian regression problem.

To derive what exactly ¥ and &2 are, we must first introduce some notation. Recall how
we can represent the arithmetic of the ensemble learner in the form of a binary tree (see
Section 3.3, in particular Figure 3.1). Let s = dy ---dg € {0, l}K represent the path string
from the root of the tree to a node in the tree, where the directions dj, are either 0 (for going
left in the tree) or 1 (for going right in the tree). Let the empty path string s = - refer to
the root of the tree, which I sometimes refer to as dy. Let dj, = 1 — dj, indicate switching
directions (i.e. changing a left to a right, or a right to a left). Let vs be the VEB-Boost
ensemble learner whose root node is located at path string s. And let &5 € {+,0} denote
the operator, + or o, at the internal node with path string s.

As a concrete example of this notation in action, in Figure 3.1, the weak learner po
can be found at path string s = 010 (starting from the root, we go left-right-left to get to
po). Thinking in terms of the recursive definition of a VEB-Boost ensemble learner, we can

represent the tree in terms of 9 as
vy + (Voo o (mg + V011)>-
In general, for a weak learner p; at path string s = dy - --dg, we can describe the tree in

35

terms of p; as

vy @ <Vd1d2 Da; (Vd1d2c23 Daydy (1 Bdydy-de_1 Vydydge_ydge))) (3.10)

This is easy to see once we see the correspondence between starting at a weak learner p;
and working our way up the tree (combining learners as we go), and working from the inside
out of the expression above.

Adding one final piece of notation, for a given operator @ and current variational distri-

bution over vo (with first and second posterior moments T3 and v_%), define

o Vl_V_27 lf@:+
v{dry =

2 .
vio=, ifd=o.
vy

With this notation established, we now have the ability to describe exactly what y and

2

o< are in Theorem 3.3.1:

Theorem 3.3.2 (VEB-Boost Residualized Response and Variance). In the context of The-
orem 3.3.1, consider a weak learner p; with path string s = dy---dg in the VEB-Boost
ensemble learner T'(pq, ..., ;). Then the response y we need for equivalence between the

full ELBO and the weighted Bayesian regression ELBO is

= (X <(y @'V&l)@dlydch)@dlﬁb .- .@dl“'dKlydy--dKldK))

In order to get the residual variance to use for this equivalence to hold, let

T o{ial VCQlO"'diCZi—l-l
@dO‘“di:O

be the Schur product of the second posterior moments of all ensemble learners you get by

36

traveling along path string s, and whenever you encounter an internal node with operator o,

take the child of that node that is in the opposite direction of ;. Then

For a proof of this theorem (in a more general form), refer to the Section A.3.1.
Under this framework, we can also estimate any global parameters 8 € ©. Holding ¢, ¢*

fixed, we can view
FH(O;Ya T7 hl? AR hL’g’ q*) = F(g7 q*70; y7 T7 h17 AR hL)'

We can then add a coordinate ascent step to optimize the ELBO with respect to these global
parameters to get 6 € ©. This can be viewed as an EM algorithm in which the E-step is
approximate (see section 3.1.3 of Wang et al. [2020]). The same can be done for o

For each weak learner p;, let FIT : (hl,y,a'2,gl, Ql) — (gl,ql*,m,u_%, DKL(q;‘Hgl))
be a function that takes in the required input for the weighted Bayesian regression problem
(3.1) and returns the prior estimated by empirical Bayes §; € G;, the approximation to
the posterior ¢ € @y, the first and second posterior moments of p; under 3; ~ ¢, and
Dgr,(q/]|g1). Combining these fitting functions and Theorems 3.3.1 and 3.3.2 leads to the

coordinate ascent algorithm for maximizing the ELBO with a fixed tree structure 7T'.

37

Algorithm 2: VEB-Boost Coordinate Ascent Algorithm (fixed T'(-))
Require: Data y; functions hy(+), prior classes Gj, variational classes

Q, I=1,..., L.

Require: Tree structure 7'(-); initial variance 2.
Require: Functions FIT : (hl,y,a2,gl, Ql> — (Ql,ql*,m, u_lQ, DKL(quQl)) that

solve the weighted Bayesian regression problem; see Corollary 3.3.1.1

1 Initialize posterior means gy, U_ZQ’ forl=1,...,L;

2 Initialize variance vector to 62 := o2

3 repeat

4 for [in1,...,L do

5 Compute (y, a~2) given Ty, 6'2,;Tk, u_%, k #1; // see Theorem 3.3.2
6 (a1, B3 13, Drcr(a 190) FIT(hy, §,02,Gp, Qp);

7 Update &2; // optional;

8 until convergence criterion satisfied,

return qj, ..., q} .

©

Using the formulation of the ELBO given in equation (3.9), it is easy to see that if we
are restricting 62 = 021, then we can maximize the ELBO with respect to o2 by setting
62 = %(F — 2Ty — y2>, where T and T2 are the first and second posterior moments of

the entire ensemble learner.

3.3.83 Growing the VEB-Boost Ensemble Learner

Up to now, we have treated the tree structure T as fixed; this is anologous to fixing the
number of decision trees and their depths in a boosting ensemble before fitting. However,
in many cases it is beneficial to “grow” the tree T" in such a way that the overall fit to the
data is improved; this is analogous to sequentially adding more trees and splits to a boosting

ensemble until some heuristic is met.

38

In the boosting framework, if the fit currently has L weak learners, ptq,..., p, and you
wish to add another, this can be viewed as splitting the last weak learner into the sum of
two weak learners, i.e. changing py into pur, + pr4 1, and then fitting py .

Using this view as motivation, we propose a similar weak learning splitting scheme to
grow the tree structure 7', but allow for the possibility of multiplying weak learners as well.
At each step we wish to grow the tree T', we propose splitting each learner p; into one of
the following: (i) p; + vy 1; (ii) py o vy 9; or (iil) (py o vy 2) + vy 1, for new weak learners
v 1 (initialized to identically 0) and v; 5 (initialized to identically 1). We then proceed with
Algorithm 2 using this new tree structure, but initialize the posterior moments from the
existing weak learners with their moments at convergence from the previous tree structure.
This can be viewed as warm-starting the optimization problem of maximizing the ELBO
using the new tree structure obtained after this splitting procedure.

Another way to look at this is to note that our VEB ensemble learner is invariant to (i)
adding a weak learner that is identically 0 to any weak learner p;, (ii) multiplying by a weak
learner that is identically 1 to any weak learner p;, or (iii) any combination of (i) and (ii).
So we can pretend that there are “hidden” learners that are adding 0 and multiplying by 1.
Then, as we grow the tree, we “activate” these suppressed weak learners by extending their
prior class from being a fixed constant (0 or 1) to a non-degenerate prior class like the other
weak learners. Assuming that the constant fits of 0 and 1 are part of the non-degenerate
prior class we assign to them (which is almost always the case), then this can be viewed as
an ascent step that can only increase the ELBO.

When determining which weak learners we should consider splitting when growing the
tree, the empirical Bayes portion of the framework suggests an intuitive rule. When we look
at each weak learner’s fitted prior distribution g; at convergence, if the weak learner is close
to being a constant value (e.g. Varg,.g,(8;) =~ 0 or Varg g, (hi(8;)) = 0), then we can

“lock” this weak learner and not split it when growing the tree, since the portion of the

39

overall fit that this area of the tree captures is likely not going to improve by making it more
complex. For weak learners that are not essentially a constant, we propose splitting them
since the fit is likely to improve by such a split. We can then continue to grow the tree in
this way after each round of convergence in Algorithm 2 until each weak learner that we
could add would be essentially a constant, or the ELBO does not appreciably increase by

splitting the weak learners.

3.4 Some Practical Considerations

In this section, we outline a few practical considerations. These may prove useful for prac-
titioners who wish to implement their own weighted linear regression weak learners. First,
we talk about one way to include an intercept with each weak learner. And second, we show
how to use a homoskedastic linear regression solver in the setting with arbitrary Gaussian

erTrors.

3.4.1 Including an Intercept in a Linear Weak Learner

Most regression models include an intercept term and/or additional covariates that can be
thought of as nuisance parameters (e.g. including the sex, age, top 10 genotype princi-
pal components, etc in a genome-wide association study, Price et al. [2006]). When using
Bayesian regression methods, we often choose not to penalize these coefficients as strongly,
and instead put a flat prior on them (Liseo [1993]). As a practical matter, when only dealing
with an intercept, this can be accomplished by centering the response y and all columns of
the design matrix X; such an approach can be motivated by integrating out the intercept
under a flat prior (Chipman et al. [2001]). However, doing this centering step once at the
beginning is not suitable for our purposes, because
i) the residual variance for each weak learner is heteroskedastic; and

ii) the residual variance changes each time we fit a weak learner due to the other learners

40

changing.

My recommendation on how to incorporate an intercept and/or additional covariate
effects in a linear weak learner is motivated by the above approach, but tailored to the VEB-
Boost setting where the variance is heteroskedastic and constantly changing. I re-write the
weighted Bayesian regression problem below, but now include an intercept and other effects
we wish to put a flat prior on, § € R, along with a covariate matrix Z € R™"*? (e.g. for just

an intercept, Z is a column of 1’s).

y=XB+7Zé+e€ (3.11a)

B~g()eg (3.11D)

e ~N(0,A7Y) (3.11c)

o3 ~ 5y—fﬁ (i.e. a point-mass at ¥ — X23), (3.11d)
where

y=(ZTAZ)"'ZTAy and X = (ZTAZ)"'ZTAX. (3.11e)

To serve as motivation, consider the model above, but instead, place a Jeffreys prior on
8|8 (which will be an improper prior o |ZTAZ|/2 & 1). Now, we can marginalize & out of

the likelihood. Doing so, and carrying out the algebra, we get:

41

PYX.B.A) = [PYIX.B.A.8)P(0]8)d5
x /(27r)_”/2|A|1/2 exp { - %(y ~XB-7Z8)TAly — X3 — Zé)}dd
= (2m) A esp { - v - XB) Ay - X))
: /exp { - % [(5T(ZTAZ)(5 — 26T ZT A(y — X,B)} }d5
= [Let A == ZTAZ]
= (2m) "2 |A[2 exp { - %(y ~XB) Ay - Xﬁ)}

e { - 5[(5- A2 Ay - x8)) A(5- 42" Ay - x9))]}
|A‘1/2
' |A[L/2

exp {2y~ XB)TAZAAA 2T Ay - X))

1 -
oc (21) 2| A Y2 exp { -5y - XB)T(A CAZA'ZTA) (y - Xﬁ)}.
Focusing on the matrix in the exponential term, we can simplify it as

. : ~1
A—AZA 'ZTA = [1, - AZ (zTAz) ZT] A
- —1
— [Noting that [In _AZ <ZTAZT) ZT} is idempotent}
- 1 -1
= [1, - AZ (ZTAZT> 77 [In _AZ (ZTAZT) ZT} A

_ :In —AZ (ZTAZT> _1ZT: [A _AZ (zTAzT) _1ZTA}

= [1, - AZ(2"AZT) _1ZT: Al - z(Z"azZ") _1ZTA]
— [P =1, - z(z"Az") 7T

— PTAP.

42

Thus, turning back to simplifying the marginal likelihood, we get

2m) A exp { - (v~ XB)T (A - AZA'ZTA) (y - XB)}

N — N —

x(2m) A 2 exp { — Sy - X8) PTAP(y - X8)}

:N<Py . PXg, A_1>.

So marginalizing out § leaves us with a likelihood that is proportional to the likelihood of
observing Py coming from a Gaussian with mean PX3 and precision A. Expanding y := Py

and X := PX, we get
-1
y=Py—y— z(zTAzT> ZTAy —y — Zy

and

-1 _
X=Xy=X-— Z(ZTAZT> 7ZTAX = X — ZX.

This means that in order to fit the model, we can use response y and design matrix X
and ignore d and Z. We can also confirm that 8|3 ~ N(? - Xg, (ZTAZ)_1>.

Note that if Z = 1 (i.e. there are no covariates, only an intercept) and A is diagonal, then
this amounts to centering y by subtracting its weighted mean and centering each column
of X by subtracting its weighted mean, where the weights are the diagonal elements of A
(i.e. the precisions of the observations). And then the posterior mean of §|3 is equal to the
weighted mean of y - (vector of weighted column means from X)Tﬁ

With the above result, one might be tempted to use such a Jeffreys prior on 8|3. However,
in my initial experiments, this occasionally resulted in convergence issues (e.g. the ELBO
wasn’t increasing at every step, and/or some infinite or NA variances arose in the fitting
procedure). To circumvent this issue, I have taken the approach outlined in equation (3.11),

which has the conditional distribution of §|3 being a point-mass at y — X3, which is the

43

conditional mean we get in the Jeffreys prior case. Doing so allows us to still slot in y and
X into our weighted Bayesian regression solver and ignore Z. The only difference is how we

compute the posterior second moment of our observations.

3.4.2 Using a Homoskedastic Linear Solver on Arbitrary Noise Gaussian

Data

Since the VEB-Boost model requires a weak learner “solver” for the weighted Bayesian
regression problem given in (3.1), it may seem that the practitioner has to fully derive a new
solution entirely separate from a solver for the unweighted (i.e. homoskedastic) case. But
it turns out that if we are fitting a linear model, the solver for the homoskedastic case can
be used to find the solution! We can even use the homoskedastic solver in the context of
arbitrary (possible correlated) Gaussian errors.

Suppose that our data follows the linear model
y=XB+e.

But now, let € ~ Ny (0, A~1) for an arbitrary full-rank precision matrix A € S .. We can

write the log-likelihood of this model as

1 1
U(y: X, B, A) = — log(2m) + 3 log [A] = 5 (v = X8)T Aly — X) (3.12a)
= —g log(27) + %log |A| — %(y - XB)TAl/QAl/Q(Y - XB) (3.12b)
n 1 1
=3 log(27) + §log |A| £ 5 log |1,
_ %(Al/Qy — AY2xXB)T1,(AY 2y — AY2X). (3.12¢)

44

Up to a constant in B, we can recognize this as the likelihood for the model
y = XB +¢€

where y := A1/2y, X = A/2X, and & ~ N, (0,1,); in particular, if

A = diag(1/o?,...,1/02), then this corresponds to g; = y;/o; and 5{? = XZT/JZ' (i.e. scaling
observations and rows by their corresponding standard deviations). Thus, one can simply
use their homoskedastic solver with response y, design matrix X, and residual variance
02 =1 in order to solve this problem. In the literature, this is referred to as the “whitening”
transformation (see, e.g., Kessy et al. [2018]).

While the current VEB-Boost package does not implement the case of correlated errors,
it is straightforward to extend the full model to this case. However, in order for VEB-Boost
to avoid taking matrix inverses and/or performing costly matrix factorizations, a solver that
is designed to be able to handle correlated errors should take in as inputs: X, A, and Ay
(instead of y). This is often a straight-forward task in the context of a linear model. To see

this, note that

4(8 = c) x exp { log g(c) +log p(y|X, 8 = C)}
X exp { log g(c) — %(Almy - A1/2XC)TIH(A1/2y — A1/2Xc)}

1
X exp { log g(c) — §CTXTAXC + CTXTAy},

which we can calculate if we know X, A, and Ay.

This modification allows us to avoid taking the matrix inverses needed to calculate the
necessary pseudo-response and -precision to use when fitting a weak learner (see the proof
for Theorem A.3.1). The VEB-Boost machinery can, in principle, then keep track of A
and Ay for each node in the ensemble learner instead (although again, this is not currently

implemented in the R package).
45

3.5 The VEB-Boost R Package

Much of my time has been spent developing and refining the VEB-Boost R package, available
via github (https://github.com/stephenslab/VEB.Boost, version 0.0.0.9038 at the time
of this writing). My efforts fall into two main categories: (i) implementing the VEB-Boost

algorithm, and (ii) implementing a default Bayesian weak learner.

3.5.1 Implementing the VEB-Boost Algorithm

In my implementation, I chose to utilize the (block) coordinate ascent fitting procedure
outlined in Corollary 3.3.1.1 and Algorithm 2. I did play around with the gradient-based
version mentioned in Corollary 3.3.1.2, but the algorithm proved to be impractical. In
particular, the step-sizes being taken were near 0, causing a slew of issues. Although one
could definitely dig into this further and attempt to solve these issues, I have decided to
stick with the coordinate ascent method, as it appears to perform fairly well.

As for the residual variance, I have taken the approach of assuming each observation has
the same variance o2. And in each iteration of the algorithm, we update our estimate of o2,
This approach may be too restrictive for real-world data, and I have considered a few other

approaches (mentioned in 3.7), but have not yet implemented/tested them.

User-Supplied Inputs

Since such a large part of the appeal to the VEB-Boost algorithm is the modularity that it
admits, I attempted to keep the package true to this feature. As a result, all the practitioner

must provide is a Bayesian weak learner object. The requirements for such an object are:

1. A function that can solve the weighted Bayesian regression problem from (3.1) for their
choice of function h : 3 — u, prior class G, and variational class Q. Concretely, we

require a function fitFunction that takes in as input:

46

https://github.com/stephenslab/VEB.Boost

X: a “predictor” object that the function knows how to use, most likely a design

matrix;

Y: a vector in R" of responses;

e sigma2: a vector in]RTJr - of observation-specific variances;

currentFit: the output from the previous call to fit_function, possibly used

for warm-starting a part of the fitting procedure.
As output, the function must return a list containing:

e mul : a vector in R™ containing the first posterior moments of each observation,

i.e. Eg«[h(B)] for the newly fit approximation to the posterior ¢*;

e mu2: a vector in R" containing the second posterior moments of each observation,

ie. [Egx [h(B)?] for the newly fit approximation to the posterior ¢*;

e KL div: Dk, <q* | g), i.e. the KL-divergence from the newly fit approximation to

the posterior ¢* to the estimated prior g;

e any other values that must be saved in order to describe the fitted approximation

¢* and predict on new data;

2. A function that can take a predictor object and fitted approximate posterior ¢*, and
calculate the first or second posterior moments of the observations. Concretely, we

require a function predFunction that takes as input:

e X new: a “predictor” object that the function knows how to use, most likely a
design matrix. This may or may not be the same as what was used for training,

i.e. this can be “test data”;
e currentFit: the output from a call to fit_function;

e moment: either 1 for calculating the first posterior moment, of 2 for calculating

the second posterior moment.

47

As output, the function simply returns a vector in R"*, where m is the number of

observations that X_new contains;

. A function that can take a predictor object and fitted approximate posterior ¢*, and
says whether the fit is close enough to being a constant. Concretely, we require a
function constCheckFunction that takes as input:

e currentFit: the output from a call to fit_function;

e Anything else required to test if the fit is a constant, e.g. a hyper-parameter.
As output, the function simply returns TRUE or FALSE;

. A predictor object X used for training. The only restriction with this is that the
supplied fitFunction has to know how to use it as an input. In essence, this captures

the data-specific components of the function h;
. A predictor object X_test used for testing. This can be NULL;

. A string growMode which determines how new nodes are grown in the tree. This can
be one of:

e "+x": This changes each weak learner from p to (povo) + vy;

e "+": This changes each weak learner from p to p + vq;

e "x": This changes each weak learner from p to p o vo;

e "NA": This is what’s used when the weak learner is not to be grown;
. A logical changeToConstant, which tells the algorithm whether we want to change
weak learners that are essentially constant (as determined by the supplied

constCheckFunction) to be fit as a constant rather than with the supplied

fitFunction.

48

With all of these components packaged into a list, the practitioner simply needs to supply
it, along with the response Y, to the R function veb_boost. There are a few other optional
inputs, such as the initial tree structure 7'(-) of the ensemble learner, but I leave those in
the package’s documentation for interested parties. You can also tell it which type of data
you're dealing with; see Chapter 4 for more details on which types of data are supported.
The R-package handles the work that calculates the pseudo-response and pseudo-variance

each weak learner needs to fit.

Memory Usage

One computational downside to the current VEB-Boost implementation is that it can be
memory-hungry, especially with large sample sizes and strong signals in the data. The
package stores the ensemble learner as a tree object, as depicted in Figure 3.1. In addition
to the memory needed to store each variational approximation ¢;, each node (both internal
and leaf) stores the first and second posterior moments for the learner you get if you take
that node to be the root of the learner. While this helps reduce computation time, it requires
potentially a lot of memory. In particular, if you have L weak learners, then the tree has
2L —1 total nodes, and thus the storage requirements for storing these intermediate moments
is O(nL), where n is the sample size of the training data.

I briefly considered porting the meat of the package over to C++ and re-implementing
it without storing these intermediate moments; and then when you need to calculate them,
do so in parallel using OpenMP tasks in order to reduce the computation time. However, I

have not done so at this time, and do not have any current plans to do so.

3.5.2 Implementing a Default Bayesian Weak Learner

Aside from implementing the VEB-Boost algorithm, I have implemented a default weak

learner which seems to work fairly well, accessible in the R function veb_boost_stumps. This

49

weak learner is a slightly modified version of the single effect regression outlined in Section
2.2.1; we implement the single effect regression (see equation (2.4)) where our data is encoded
as a catenation of the standard linear basis, as well as a step-function (i.e. “stumps”) basis
(see Wang et al. [2020] and Tibshirani [2014]).

In short, our weak learner can be described as being a distribution of selecting a single
linear term or decision stump, where the stumps are defined by different cut-points in our
linear predictors. Using sums/products of stumps has been attempted before in some forms
(see, e.g., Friedman and Popescu [2008], Kegl and Busa-Feketa [2009], Nalenz and Villani
[2018]). However, to the best of our knowledge, no one has allowed for an arbitrary sequence
of additions and multiplications of stumps, and no one has done so using variational inference.

As further justification for this weak learner, it is easy to show that the product of stumps
(each containing their own intercept term) results in a balanced decision tree, sometimes
referred to as an “oblivious” decision tree (see Figure 3.2 for an example). This is the basic
building-block of CatBoost (Prokhorenkova et al. [2018]), one of the three main gradient
boosting packages used by machine learning practitioners. Our decision to also include
linear terms stems from both ease of implementation, as well as experimental evidence that
doing so typically improves performance.

It is worth noting that while the product of two stumps will necessarily be a balanced
decision tree of depth two, not every balanced decision tree of depth two can be represented
as the product of two stumps. For example, consider the balanced decision tree that describes
the XOR function between two rules, Ry and Ry. Looking at the structure of the balanced
tree in Figure 3.2, this would mean that the predictions in each leaf node, going from left to
right, would be: 0, 1, 1, 0. This would mean that either ary = 0 or ag = 0 for the first leaf
to be 0, and either ay + 81 = 0 or ag + B9 = 0 for the last leaf to be 0. But this means that
at least one of the second and third leaves must also be 0, whereas we wanted them to be 1.

Thus, while the XOR function is a balanced decision tree, it cannot be represented as the

20

N
Ry Ry
N Y N Y
ap - ag ar-(ag+B2) ag- (o +pP1) (a1 +B1) - (a2 + f2)

Figure 3.2: Balanced Decision Tree as the Product of Decision Stumps The decision
tree above represents the product of two decision stumps: (a1 + f1R1) - (ag + SoRa). Here,
R and Rg are the rules of the stump, e.g. Ry =1 Xij>e;r Going left in the decision tree
means that the rule is not satisfied (so the indicator function evaluates to 0), and going right

means that the rule is satisfied (so the indicator function evaluates to 1).

product of two stumps. However, if we allow additions as well, then we can easily represent
the XOR function as Ry + Ry — 2R1Ro = R1(1 — 2R9) + R».

Suppose you have a design matrix X € R"*P. Focusing on a single variable X. j» suppose
for simplicity that there are n distinct values, and the matrix is sorted on those values, i.e.
X15 < -+ < Xpj. Then one could represent this variable in a basis of decision stumps,

J

stumps- Such a matrix will look something like

resulting in an n X n matrix, call it X

0 0 1
0 1 1
1 1 1
where the first column is]IXijZ Xpjo the second column is I Xij>X(n 1)) etc. Thus, each

column represents a decision stump that splits on variable j at a particular cut-point. In
actuality, since the matrix likely isn’t sorted by variable j, you must also multiply this

matrix with a permutation matrix, but such details obfuscate the high-level picture. We can

o1

| XP].

do this for all variables j, which lets us transform X — Xgtymps = [Xl stumps

stumps|)
Our matrix Xgpymps is a binary matrix whose columns are indicator functions (i.e. decision
stumps) splitting on a certain variable at a given cut-point.

As an aside, matrix-vector multiplications with a component on the stumps matrix (i.e.

xJ

stumps) can be performed in O(n) time. Looking at the above matrix, it is clear that

the product thumpsb is related to the cumulative sum of the reverse of b, which can be

J

stumps asannxn

computed in O(n) time. And similarly, we do not need to actually store X
matrix. This is outlined in Tibshirani [2014]. In practice, we also don’t have to take every
possible cut-point, and the default is to use far fewer than n ([min{n/5, max{100,/n}}]).
By not using all possible cut-points, we are able to save a bit on both computational cost
and memory requirements, as well as ensure that both leaves in each of our stumps has a
minimum number of observations. The curious reader can refer to VEB.Boost R package for

more details.

Once we have our stumps matrix, the final design matrix we use is

Xcombined - [X|Xstumps]7

i.e. we combine both the original design matrix (what I refer to as “linear terms”) and the
stumps matrix. And with this final design matrix, the weak learner is just the single effect
regression from Section 2.2.1 using the design matrix X, ,,pined- 1he time complexity of
fitting this SER model is O(np).

We also specify the range of the log-prior variance log 08 from the SER model using
the max_log prior_var argument, which has a default value of 0. When we perform the
empirical Bayes step to estimate the prior (i.e. estimate 08), we perform the maximization
only over log ag € [—15, max_log prior_var|. Restricting how large 0(2) can be can be
viewed as an additional form of shrinkage beyond the Bayesian computation, and can keep

each weak learner from being too strong. The prior probability vector 7 in the SER is set

52

up such that there is a specified probability (called 1in prior_prob in the R function, which
is a parameter the practitioner provides) that the non-zero effect is a linear term. And then
among the linear terms, each term is equally likely, and among the stumps terms, each term
is equally likely.

As an illustrative example, say there are two linear variables; from the first variable we
generate two stumps terms and from the second variable we generate three stumps terms; in
practice, most variables will have many more than just a few stumps, and will only have a
different number of stumps if they have fewer unique values than cut-points. Then if we set
lin prior_prob to 0.5 (which is the default in the R package), then the prior probability
vector will be

7 =(0.250.25]0.10.1]0.10.10.1)T.

The vertical lines are just there to highlight that the first two probabilities are for the linear
terms, the next two are for the stumps terms from the first variable, and the final three are
for the stumps terms from the second variable.

In words, this weak learner places all of its mass on being either a linear function of a
single variable or a decision stump. The justification for the decision stump portion is that
it is a very simple non-linear function that can be combined to effectively approximate any
function. As mentioned earlier, it is easy to see that the product of decision stumps yields
a balanced/oblivious decision tree, the building block of CatBoost. The justification for the
linear term is that it is still fairly simple and there’s very little additional cost to include
it. And as we will see in the simulation examples, having the linear term allows the VEB-
Boost method with this weak learner to outperform other non-linear regression methods in
a setting with a true linear relationship between the predictors and the response.

I have implemented this weak learner in C++, leveraging the OpenMP framework for its

multi-platform shared memory parallel computation. In particular, I have parallelized the

93

matrix computations needed to solve the SER. For an arbitrary matrix partitioned as

X =Xy || Xp] € R"*P,
we can calculate
by
Xb = [Xj || X] = Xiby + -+ Xy
by,
and
XlTy
Xy = [Xq [| Xyl y =
X%y
by
for appropriately partitioned vector b= | : | € RP and y € R".
by

We can thus calculate the components of these matrix products in parallel (split up by the
matrix partitions) and then combine the results. This allows us to leverage the structure of
the stumps matrices.

Another benefit of this weak learner is that we can provide measure of feature importance
quite easily, since the posterior distribution includes a posterior probability that the effect is
coming from a particular column in the design matrix (call this vector). The R function
stumpsVariableImportance can take in a fitted VEB-Boost ensemble learner that uses the
above weak learner and can provide some measures of variable importance. For each weak
learner, we can take a and add together the components that correspond to a particular
variable (i.e. add together the posterior probability of the linear term and the stumps terms

for each of the original variables). We now have a new probability vector ag e AP~L for

o4

each of our weak learner p;, [= 1,..., L. Using these vectors, we can calculate feature

importance measures as:

e Posterior inclusion probabilities (PIPs): This is the posterior probability that a variable
has a non-zero effect anywhere, i.e.
L
1 — P(variable j is not an effect variable in any weak learners) = H (1-— O‘l j
=1
e Sum of probabilities: We can simply add up the vectors and try to get a sense of overall

importance, i.e.
L
/
>_alj
=1

However, as written, there is one obvious improvement that can be made to the above
definitions; not all weak learners are equally important. A quick and easy (and readily
available) way to approximate the importance of a weak learner is to look at Dgr,(q/(|91);
a large value indicates that the weak learner is trying to fit more signal, and a small value
indicates that there isn’t much signal for the learner to fit. Let the KL-divergence for the

[-th weak learner be K'L;. Then we can change the above formulae to

L
=IO —aip™h
=1

and
L
> aji- KL
=1

As a simple justification for including the KL-divergence in the exponent instead of as a
multiplicative factor in the PIP case, a KL-divergence of 0 for a weak learner [would results

in an unchanged PIP when exponentiating but a PIP of 0 when multiplying.

95

3.6 Examples

In this section, I present results from both a simulation study, as well as from a real dataset
benchmarking analysis. All examples were run on the Midway2 high-performance computing
platform at the University of Chicago, which uses Intel E5-2680 v4 CPUs. I set up each node

with 8 CPUs and 48 GB of RAM. Version 0.0.0.9038 of VEB.Boost was used.

3.6.1 Simulation Study

In this subsection, I present the results from a small simulation study. I generate independent

observations according to the following model:

yi = f(x;) + €.

Here, f(x) is one of four functions:

1. Friedman’s 5-dimensional test function

f(x) = 10sin(rz1x9) + 20(z3 — 0.5)2 + 1024 + 55

2. Max test function

f(x) = max{wy, w0, 23};

3. Linear test function

4. Null test function

And ¢, ~ N (0,02), where o2 is set such that the proportional of variance explained
56

(PVE) is either 0.1 or 0.5. PVE is defined as

Var (f(x))

PrE= Var(f(x)) —1—02‘

In the case of the null test function, since PVE is 0 regardless of the noise level, I use the
noise level o2 = 9 instead of PVE = 0.1, and 02 = 1 instead of PVE = 0.5.

To generate the design matrix X € R™ P, T simulated x;; iud Unif(0,1) in the case of
Friedman’s function, and ;; i (0,1) otherwise.

The machine learning methods I considered in this simulation study were:

e “BART”: Bayesian Additive Regression Trees (Chipman et al. [2010])
I used the R package dbarts, with a burn-in of 1000 samples and 5000 posterior
samples. In the case where n = p = 1000, the R function gives an error unless I supply
it with a residual standard deviation. In this case, I supplied the function with the

true residual standard deviation. All other parameters were left at their default values;

e “XBART”: Accelerated Bayesian Additive Regression Trees (He et al. [2019])
I used the R package XBART (available at https://github.com/JingyuHe/XBART).
Following the recommendations in the paper and github code, I set num_trees to be
[0.25 log(n)1°8198 7] tau to 0.3Var(Y) / num_trees, num_sweeps to 40, burnin to 15,

alpha to 0.95, beta to 1.25, and num_cutpoints to max{100,+/n};

o “xgBoostCV”: XGBoost with cross-validation (Chen and Guestrin [2016))
I used the R package xgboost. I performed 5-fold cross-validation over a relatively
small parameter grid: (max_depth, eta, min child weight) € {2,4,8} x {0.1,0.3} x
{1,5,10}. I also set nrounds to 10000, early stopping rounds to 50, gamma to 0.1,

colsample_bytree to 0.8, subsample to 0.8, and nthread to §;

e “VEBBoost”: VEB-Boost with default settings
57

https://github.com/JingyuHe/XBART

I simply set nthreads to §;

e “VEBBoostBig”: VEB-Boost with a larger initial ensemble learner
I set nthreads to 8, k to 16, and d to sample(c(rep(1l, 6), rep(2, 4), rep(4,
4), rep(8, 2))), i.e. I started the ensemble learner as the product of 8 learners in
a randomized order, of which 6 were a single weak learner, 4 were the product of 2
weak learners, 4 were the product of 4 weak learners, and 2 were the product of 8 weak

learners.

I ran 5 replicates each of all combinations of (n,p, PV E, test_function) €
{1000, 10000, 100000} x {10,100,1000} x {0.1,0.5} x {friedman, maz,linear, null}. One
thing to note is that for n = 100000, p = 1000, XGBoost’s built-in cross-validation function,
xgb.cv, ran out of RAM when run with multiple threads and ran out of time when run
with a single thread, and so there are no results for this combination of inputs. This could
introduce some bias into the results and conclusions.

To evaluate the performance of the methods, I used the relative root-mean-squared-error

(RRMSE). The root-mean-squared-error (RMSE) is defined as

o 2 (707 seren)’ 319

where we are summing over unseen testing observations that were generated in the same
way as the training observations, f (+) is the fitted function returned by the algorithm, and
f(+) is the true mean response function. For the Bayesian methods, the posterior mean is
used as the estimated function value. Note that we are comparing with the true mean of the
new observations and are not taking into account any noise; this is to highlight the methods’

abilities to recover the true underlying mean.

o8

RMSE 4
minA/ R]WSE‘_A/7

(3.14)

where the minimum in the denominator is taken over all algorithms tested for that particular
simulation dataset.

I also use the running time of the algorithms to compare how fast they are. When the
presented times are relative, they are relative to the fastest algorithm for that particular
dataset.

I use two different types of plots to present the results. The first type is a boxplot; for
a particular combination of (n,p, PV E, test_function), we make a boxplot from the 5 runs
where each method gets its own box. We show boxplots for the Friedman test function as
an illustrative example; boxplots for the other test functions are provided in Section A.2.1,
Figures A.1 through A.6. The second type of plot shown is a profile plot (Dolan and Moré
[2002]); this is just a plot of the empirical CDF of the metric for the given algorithm.

Results are presented below in Figures 3.3 through 3.6. In general, VEB-Boost appears to
be quite competitive in these simulations, both in terms of performance and running times.
We are also able to see how VEB-Boost’s running time scales with the strength of the signal

in the dataset.

29

16

1.4

12

1.0

3.0

Relative RMSE
N IN]
o [5,]

=
o

1.0

21

18

15

12

friedman function relative RMSE

p: 10

p: 100

p: 1000

000T :u

0000T U

1

i

3

.

GO+9T ‘U

Figure 3.3: Friedman’s Function Relative RMSE This plot shows the relative RMSE
of the methods tested using Friedman test function. We can see that, on the whole, the
VEB-Boost methods frequently outperform both BART and cross-validated XGBoost (and
when they don’t, they aren’t much worse); only XBART appears to be a competitor in this

simulation.

01

05
PVE

60

05

B0 BART

B3 vEBBoOSt
Bl vEBBooStBig

BB xBART

- xgBoostCV

Running Time (seconds, log2 scale)

Figure 3.4: Friedman’s Function Running Time in Seconds, logy scale This plot
shows the running time of the methods tested using Friedman’s test function. We see that
VEB-Boost is often the fastest method, and starting with a larger learner usually increases
the overall running time. We also see that VEB-Boost is relatively faster when the PVE is
0.1 vs. when the PVE is 0.5. This makes sense, since BART and XBART are set a priori to
run a certain number of iterations, whereas VEB-Boost keeps running and growing until it
can’t find any more signal. Thus, it will terminate faster in the higher noise setting, which

is what we see above. This is also why there is a larger spread in the observed running times

644

32

4096 1

5124

64

friedman function runtime (seconds, log2 scale)

p: 10 p: 100 p: 1000
[}
- -) - ‘ - *-L ‘ﬁ -
: 2
n - |3
Te . l-
TR
B
- s - - r)
4T
;— _
- m
[
. . . N i. -
F-_ =
-I-+ ’
— .-—
L
01 05 01 ove 05 01 05

for VEB-Boost as compared with the others.

61

B3 BART

B VvEBBoost
Bl vEBBooStBig

BB XxBART

xgBoostCV

Relative RMSE Profile Plot by Test Function and PVE

test_function: friedman test_function: linear test_function: max test_function: null

’J

1.004

0.751

0.501

10 :and

0.25

[BART
I VEBBoost
I VEBBoOSstBig

.00 I XBART
"(- xgBoostCV
0.751
0.501 -
0.251
0.001 = =

10 15 20 25 30 25 50 75 10010 15 20 25 300 100 200 300 400
Relative RMSE

o
=}
=}

s
=)
=]

Empirical CDF

G0 :and

Figure 3.5: Relative RMSE Profile Plot This plot shows the empirical CDFs of the
relative RMSE combining all values of n and p, but broken out by test function and PV E.
We can see that in the linear and null test cases, VEB-Boost dominate the other methods.
And in the Friedman and max test cases, XBART appears to have a slight edge over VEB-
Boost, with the exception of the Friedman test function in the strong signal setting. We also
see that, on the whole, VEB-Boost starting with a larger learner performs slightly better
than starting with a single weak learner.

62

Relative Time (log2) Profile Plot by Test Function and PVE

test_function: friedman test_function: linear test_function: max test_function: null

I VEBBoost
I VEBBoOSstBig
0.751
6 4 32 256
Relative Time

10 :and

o
=}
=}

g
=)
=]

Empirical CDF

I XBART
- xgBoostCV

0.501

G0 :and

0.251

0.001

8 128 2048

Figure 3.6: Relative Time Profile Plot, logy scale This plot shows the empirical CDF's
of the relative running times, on a logy scale, combining all values of n and p, but broken
out by test function and PV E. We can see that VEB-Boost wins for all cases except for the
Friedman and max test functions in the strong signal setting, where it is roughly tied and
loses to XBART, respectively. We also see that, on the whole, VEB-Boost starting with a

larger learner is slower than starting with a single weak learner.

63

3.6.2 Real Dataset Comparison

To test out these methods on real data, I have used the AutoML regression benchmark
datasets available through OpenML (https://openml.org/search?type=benchmark&sort=
tasks_included&study_type=task&id=269). A total of 25 datasets from this list were used
in the benchmarks; a full list can be found in the Appendix in Table A.1. For each dataset,
I also added either 0, 100, or 1000 synthetic null variables simulated as iid N'(0,1). This was
to test out the methods in higher-dimensional/sparse settings as well, since some datasets
had n > p. As before, some algorithms could not be run with additional variables due to
the data being too large, so only results that include all algorithms are included.

Since the datasets did not come with pre-defined test/train splits, I opted to split each
dataset into 5 folds and calculate the RMSE obtained by having each fold serve as the test
set. That is, I partitioned each dataset into 5 disjoint folds, trained each model leaving a
fold out, and then getting the RMSE when evaluated using that fold.

Results are presented below in Figures 3.7 through 3.10. VEB-Boost’s performance is not
quite as good as it appeared in the simulations. I hypothesize a few possible explanations in

the discussion section to this chapter in Section 3.7.

64

https://openml.org/search?type=benchmark&sort=tasks_included&study_type=task&id=269
https://openml.org/search?type=benchmark&sort=tasks_included&study_type=task&id=269

Relative RMSE for OpenML's AutoML Benchmark Regression Datasets
Observatiosn with RRMSE > 2 have been excluded from this plot

2.001 ° °

s
° .
1.754
L]

0 SIen enxa

1.504

I

1.254

1.004

2.001

8 .
L] L] '
1751 , .
8
o ° . o o| BN BART
° =
= . . 5| B veBBoost
<
© 150 . = VEBBOOstBi
2 . . $. H a ‘ 9
kS H M o 5| BB xeart
2 ' : s
. ! . . xgBoostCV
1.251
o
[]

r
r
t..

o0 ﬁ

2.001

1.751 ©

1501 . .

i

| $
Figure 3.7 OpenML AutoML Regression Benchmarks Relative RMSE This plot
shows the relative RMSEs for each method among all folds of all datasets, broken out by

o o oo00
000T :SIen enxe

how many extra null variables were added. Observations with a RRMSE > 2 have been
excluded for visual purposes. We can see that cross-validated XGBoost appears to be the
best, followed closely by BART and VEB-Boost with a larger starging learner. We also see
XGBoost’s advantage start to disappear in the bottom row, where we’ve added 1000 null
variables to each dataset.

65

Relative Runtime (log2 scale) for OpenMLs AutoML Benchmark Regression Datasets

3 |
256
[}
32- -
]
B0 BART
B3 veBBoost
° Bl vEBBoOSBig
5 B8 xBART
‘ xgBoostCV
2561
i
321

Figure 3.8: OpenML AutoML Regression Benchmarks Relative Time, logy scale

0 SIen enxa

IS

N
a
>

Relative Runtime (log2 scale)
w
N
00T :Slen enxa

I

000T :SIen enxa

IS

This plot shows the relative running times on a logy scale for each method among all folds
of all datasets, broken out by how many extra null variables were added. We can see that
XBART is typically among the fastest, and that VEB-Boost is more competitive in the cases
where we add more null variables.

66

Relative RMSE Profile Plot for O Extra Variables (log2 scale)

1.001

0.754

0.50

0.251

0.004

8 32 128
Relative RMSE (log2 scale)

Relative RMSE Profile Plot for 100 Extra Variables (log2 scale)

1.004

©
~
a

I BART

[VEBBoost
I VEBBoOSstBig
I XBART

" xgBoostCV

Empirical CDF
o
3

o
N
a

0.00 e

2 32 256

Relative RMSE Profile Plot for 1000 Extra Variables (log2 scale)

1.004

0.754

0.50

0.254

0.004

2
Relative RMSE (log2 scale)

Figure 3.9: OpenML AutoML Regression Benchmarks Relative RMSE Profile
Plot This plot shows the empirical CDFs of the relative RMSE on a logy scale for each
method among all folds of all datasets, broken out by how many extra null variables were
added. Agreeing with Figure 3.7, we see that XGBoost is the winner is most cases. But
as we add more null variables, VEB-Boost starts to become more competitive. We also see

that there were a few cases of extremely poor relative performance; I briefly touch on this in
Section 3.7.

67

Relative Time Profile Plot by Extra Variables

1.004

o7e] -'J_,_/—/_/_'_/

0.501

0 SIen enxa

0.251

0.001

1.004

0.751

™ BART

a g -

o s [VvEBBoost
© <

8 0501 2 I VEBBoostBig
g' § I XBART

w [0 xgBoostcv

0.25

0.00

1.004

0.751

000T :Slen enxa

0.501

0.25

0.00

32
Relative Time (log2 scale)

Figure 3.10: OpenML AutoML Regression Benchmarks Relative Time Profile Plot
This plot shows the empirical CDF's of the relative running times on a logy scale for each
method among all folds of all datasets, broken out by how many extra null variables were
added. We can see that VEB-Boost is in the middle of the pack, and starts to over-perform
in the case with 1000 additional null variables. We also see that XGBoost can have some

very long relative run-times with additional null variables added.

68

3.7 Discussion

In this chapter, we have laid out the core of this dissertation: the VEB-Boost model. We have
built it up as an extension from the variational additive model from chapter 2 by allowing
for the multiplication of weak learners. We have shown that performing (block) coordinate
ascent updates can be achieved by solving the simpler weighted Bayesian regression sub-
problem from Section 3.2. We also briefly went over the R package that implements the
VEB-Boost framework, as well as a few useful weak learners; in particular, we describe the
SER learner that uses both linear and stumps terms. Finally, we concluded with a simulation
study and some real-world examples.

Looking at the simulations, we see that there truly is no “free lunch,” i.e. there is never
going to be a single algorithm that consistently outperforms the others. In this idealized
scenario, BART appears to be the loser. But this could just be due to MCMC convergence
issues, which are hard to detect/diagnose, or because vanilla BART does not have any sense
of sparsity in the prior. On the flip-side, we see that VEB-Boost and XBART are usually
at the top, with cross-validated XGBoost not far behind. We also see that in some settings
(e.g. the linear and null test functions), VEB-Boost’s performance greatly exceeds that of
the other methods tested. This could indicate that VEB-Boost is more conservative than
the other methods, in the sense that it is more than happy to fit the data with a simpler fit
(e.g. linear) or no fit at all (e.g. null).

In terms of run-time, we see that VEB-Boost compares quite favorably to the others. We
also see that VEB-Boost is able to run faster in the higher noise settings, since the empirical
Bayes nature allows it to scale with the signal strength. But due to the fact that VEB-Boost
is an iterative algorithm that doesn’t run for a fixed number of iterations, the run-times are
much more variable, and can occasionally go on for quite some time. But since VEB-Boost
uses CAVI (i.e. solves an optimization problem using coordinate ascent), then conceivably

the algorithm could be terminated at any time to give an approximate solution.

69

Turning to the real-world datasets, we see that cross-validated XGBoost and BART
make their way up to the top in terms of performance. Meanwhile, XBART appears to
struggle in these examples. And VEB-Boost is slightly worse than BART and XGBoost, on
average. | have a few theories as to why VEB-Boost’s performance diminished compared to

the simulation study:

e Many of these datasets contains categorical variables, for which I used one-hot encod-
ing. It is possible that VEB-Boost suffers when there are categorical variables with

many levels;

e VEB-Boost makes a somewhat-restrictive homoskedastic Gaussian assumption for the
response, whereas XGBoost doesn’t necessarily make/rely on such an assumption. If
the data deviated from this assumption, any likelihood-based approach could certainly

have issues;

e Some datasets had extreme outliers (some in the predictor space and some in the
response) that I did not remove. It is possible that VEB-Boost is more sensitive to

these extreme outliers than some of the other methods;

e There could be some bias in the datasets. In particular, for the larger datasets, some
algorithms couldn’t be run with additional variables (or even with no additional vari-
ables) with the computational resources provided, and thus these datasets are not
included in the comparison. It’s possible that VEB-Boost would have outperformed
the other methods on the datasets in these settings, but we weren’t able to include it
in the comparison. For example, the implementation of BART I was using couldn’t

handle sparse matrices, which limited the size of the data it could handle.

There are a number of future directions that I would be interested in exploring. First,
we only focused on VEB-Boost with our SER weak learner; I would be interested to test out

other types of weak learners. In particular, I'm curious about:
70

e higher-order trend-filtering (Tibshirani [2014]): although easy to implement in ho-

moskedastic cases, some computational difficulties arise in the heteroskedastic setting;

e the weak learner we used earlier for the examples with the variational additive model
in Section 2.4: as a reminder, in this weak learner we pick a single variable and then
fit a non-linear function in that variable alone. This is easy to implement using the

existing software, but would benefit greatly from parallelization;

e a single Bayesian tree fit using MCMC: as I mentioned earlier, it would be interesting
to compare a Bayesian sum-of-trees model made in this way with the other methods,

BART in particular.

Second, I would like to explore alternative ways to estimate the residual variance. There

are two different weak-points that I would like to address:

1. As hypothesized, it is possible that if the data deviates from the constant variance
assumption, then VEB-Boost runs into problems. One idea I had to fix this was to
move away from relying on this assumption, and instead try to fit multiple variances.

There are a few obvious ways one could go about implementing this:

(a) Place an inverse gamma prior of the residual variances for each observation, i.e.

02.2 iid IG(a, B). We can then perform an empirical Bayes step to estimate o and
£, and include the posterior distributions for 02-2 in the variational approximation.

The inverse gamma prior is chosen to maintain conjugacy;

(b) Tell the algorithm that there are k different possible residual variances that each
observation can have, estimate what these variances are, and then assign them
to observations. I believe that this could be achieved with some 1-d clustering
methods. While NP-hard to solve exactly, it should easy to at least increase the

ELBO each iteration;

71

2. In some cases, VEB-Boost terminates before the tree gains enough structure to see
the signal. For example, in the noiseless case where y; = ;1 - z;2 (like a continuous
version of XOR), VEB-Boost terminates at the null fit. This is because no variable has
a marginal association with the response. However, if I force the residual variance to
be extremely small, then the algorithm keeps running and is able to eventually learn
the correct function. One idea I had was to start with a very small residual variance
and update it more slowly (e.g. include a momentum term in the coordinate ascent
step for the residual variance). This potentially runs the risk of exposing ourselves to
over-fitting, since the residual variance term controls how much we over/under fit, but

I think this is worth exploring.

And third, I would be interested in trying to optimize the 1in prior_prob parameter
from the SER we used. Currently, this is a parameter that the user sets (defaults to 0.5).
In some cases, I have observed that the fit can be drastically better (or worse) if this is set
closer to 0 or 1. It would be relatively straight-forward to add this variable into the empirical

Bayes step that estimates the prior distribution when fitting each weak learner.

72

CHAPTER 4
MODULARITY WITH NON-GAUSSIAN RESPONSE DATA
AND WEIGHTED OBSERVATIONS

4.1 Introduction

The goal of variational inference — finding an approximation to a posterior distribution —
is usually framed as an optimization problem in which we maximize a lower-bound to the
marginal log-likelihood of the data called the evidence lower-bound (ELBO). Sometimes,
maximizing this lower-bound proves to be too difficult, so instead the practitioner finds a
lower-bound of the ELBO (referred to as a variational lower-bound) and maximizes that
instead. Often times, this variational lower-bound is chosen so that the optimization is
simple (e.g. the “likelihoods” become conjugate). For a brief description, see Blei et al.
[2017].

In particular, if we can find a quadratic lower-bound for the log-likelihood of a given
distribution, then we can utilize our weighted Bayesian regression solvers from Section 3.2.
In other words, we can attempt to approximate data from a non-Gaussian distribution as
coming from a Gaussian distribution, perform an iteration of the VEB-Boost model, and
then update our Gaussian approximations. This is analogous to how weighted least squares
is used in the context of the iteratively reweighted least squares algorithm for solving a
generalized linear model (Nelder and Wedderburn [1972], McCullagh and Nelder [1983]).

Using a lower-bound to the log-likelihood has some desirable properties. Perhaps most
desirably, it is guaranteed that each iteration will be non-decreasing in a lower-bound to
an objective function (i.e. the ELBO), and thus the algorithm is guaranteed to terminate.
However, one could choose to use other quadratic approximations to the log-likelihood, e.g.
using a Taylor series expansion. This could have some benefits too, such as being able

to include distributions with a log-likelihood that cannot be bounded by a quadratic (e.g.
73

Poisson with log-link), or having a better approximation in areas of high probability.

While using quadratic bounds has the appeal of being able to use Gaussian solvers, there
are certainly some downsides. In particular, other bounds can often be tighter, and thus
have have better performance (Minka [2001], Knowles and Minka [2011], Marlin et al. [2011]).
While exploring alternate bounds/approaches could definitely be interesting in this setting,
I believe that the modularity afforded by using quadratic approximations is too attractive a
feature to sacrifice, at least at this stage in VEB-Boost’s development.

On the topic of modularity, let T = T'(h1(81),...,hr(B)) be our VEB-Boost learner, £
be a vector of variational parameters, and [(31, ..., 8;¥, h1,. .., hr,T) be the log-likelihood
of our data. Then we want to find a matrix A(y,§) € S, a vector b(y,§) € R", and a

constant ¢(y, &) € R such that we have the following bound indexed by &:

By Briy i, b T) >~ TP A T 4 by, & T+ e(y,8). (41)

If we have such a matrix, vector, and constant, then we can approximate our data as being
Gaussian distributed with a mean T, precision matrix A(y, £), and response A(y, £) " 'b(y, &),
which we can fit with the existing VEB-Boost machinery made for the Gaussian case. We
can then maximize the lower bound to the ELBO with respect to the variational parameters
& at the end of each iteration.

The general CAVI algorithm is outlined below in Algorithm 3.

74

Algorithm 3: Coordinate Ascent Algorithm (Non-Gaussian data, fixed T'(+))

Require:
Require:
Require:

Require:

Require:

=

N

w

repeat

Data y; functions hy(-), prior classes G, variational classes

Q;, l=1,...,L

Distribution data comes from (e.g. Binary, Ordinal, etc).

Tree structure 7'(+); initial variational parameters &.

Functions FIT : (hl,y,O'Q,gl, Ql> — (Ql,qi‘,m,u_%, DKL@?”QZ)) that
solve the weighted Bayesian regression problem; see Corollary 3.3.1.1
Function FITg : <y,T, by, g1, 4 Do llan), 1 =1, ... ,L) — é that
updates the variational parameters for relevant distribution (handled

internally by the VEB-Boost package).

Initialize posterior means iy, ;L_ZQ, fori=1,...,L

Initialize variational parameters & := &

4 Update Gaussian precision approximation Axr := A(y, &);

5 Update Gaussian response approximation y s := Axflb(y, £);

6 for [in1,...,L do

7 Compute (y, 52) given T,y nrs Anr, B, [,l,_%, k #1; /] see Theorem 3.3.2

8 (glvq;aﬁb MIQ7DKL(QZ*HQZ)) A F]T(h175’,0'2,gl> Ql)a

o | €« FITe(y,T,hy.qf. 91, Drcr(a}|lgn), 1 =1,...,L);

10 until convergence criterion satisfied;

11 return ¢, ..., q7.

The modularity of this approach is, in my opinion, quite powerful. As an example, say

that you have binary data and you want to perform a non-parametric/non-linear logistic

regression model using the VEB-Boost framework. Then as the practitioner, all you need

to supply are the exact same solvers to the weighted Gaussian Bayesian regression from

Section 3.2, and the R package takes care of the Gaussian approximation for you. This

5

substantially lowers the burden for the practitioner, since deriving and coding up a solver
for the weighted Bayesian linear regression problem is often much simpler than a weighted

Bayesian generalized model with non-Gaussian data.

4.2 Different Types of Non-Gaussian Data

This section outlines the different types of non-Gaussian data that can be handled by the
VEB-Boost framework. Of particular note are the ranking models, accelerated failure time
(AFT) model, ordinal logistic regression, and Cox proportional hazards model, as I am
unaware of other instances in which these data types are approximated with Gaussian data
in the context of variational inference. Note that not all of these are implemented in the
R package, since some of them require dependent Gaussian approximations which is not

currently supported.

4.2.1 Binary Data

First, let us consider the case of logistic regression in which the response is binary. The

model we use is

log (%) = Ty, ... pr) (4.2a)
yi ~ Bern(p;) (4.2b)
1 = hy(B3)), I=1,...,L (4.2¢)
B ~gq()eg, 1=1,...,L (4.2d)

As in equation (3.4), T'(pq, ..., p) is the tree structure of the VEB-Boost learner and g

are the weak learners.

76

It is straightforward to show that the log-likelihood in this model is

By, BLy by hp, T) = Zloga(@yi - 1)Ti>, (4.3)
=1

1

where o(x) = T

is the logistic sigmoid function and 7; is the ith value of the VEB-Boost
output, T'(py, ..., pr)i-
In order to find a quadratic (as a function of 7;) lower-bound to this log-likelihood, we

utilize the bound proposed by Jaakkola and Jordan [1996].

Lemma 4.2.1 (Jaakkola-Jordan Bound). For all z, £ € R,
logo(z) = § — log(ex/2 + e_w/Q) > 5 — %(0(5) — %) (22 — €2) — log(ef/2 + 6_5/2)
This result allows us to find a quadratic lower-bound to the log-likelihood of the logistic

model. In particular, we have

- 1
>togo((2yi— 1) = ST AW OT+b(y.) T+c(y.8), (44a)
=1
where
1 1
Aly.€) = diag(d). d; = & (o(&) ~ 3) (4.4b)
b(y. &) = yi — % (4.4¢)
oy &) = Y logo (&) + L (die 1) (4.4q)
=1
Here, we have introduced variational parameters &;, 1 =1,...,n.

This means that when fitting our model, we can approximate our data as Gaussian with

response d%(yZ - %) and variance dl, We can then maximize the ELBO with respect to

&, which we can analytically show gives us £ = +\/EQ[T(M1, . ,;LL)ZZ]. A derivation is
provided in the appendix, Section A.3.2.
7

The Jaakkola-Jordan bound has been studied extensively since its introduction, mainly
when /why it performs well. One of the more recent investigations shows that the bound
amounts to a particular data augmentation strategy with Polya-Gamma distributed latent
factors (Durante and Rigon [2019]); their work provides an alternate perspective of this

approach.

4.2.2 Multinomial Data

Consider the setting of multinomial logistic regression with K classes. The model in this

context is

sp =Tl p},) (4.5a)

pri =P =kls1i,. .., ki) = ;Xp{ski} (4.5b)
Zj:l eXP{sz'}

Y; S Categorical(p.;) (4.5¢)

pi = nFBhy, k=1,...,K 1=1,...,L; (4.5d)

BEAgh(yegk, k=1, K 1=1,.. L, (45e)

The interpretation here is that for each class £ € {1,..., K}, we estimate a separate

vector s € R". Each of these K models can have a different ensemble tree structure Tk,
different weak learners uf , etc.

The log-likelihood in this model is

n Yi
exp{7};"}
1([3%,...,ﬂ{(K;y,h%,...,hfk,Tl,...,TK):Zlog<ZK ex;{Tk})' (4.6)
1=1 k=1 i

In order to find a quadratic lower-bound to this log-likelihood, there are two known

bounds we can use. The first bound is given by Bouchard [2008].

78

Lemma 4.2.2 (Bouchard Bound). For all &€ RE o e R, zeRK,
— log 25:1 etk > —%wTAw—i— z'b+ ¢,
where
A = diag(d) with dj, = £(o(&) - 3)
b=ad— 3
= T [55% - %(a? -) — log(1 +)| —a.
Using this bound, we can construct a quadratic lower-bound of the log-likelihood of the

multinomial model:

n Yi
exp{T;" }
UBL,....BL sy bl hE T TRy =3 bg(—t)
" * i=1 D k=1 eXP{Tk }

2”: Y log (Z eXp{Tk}>
1=1

n
1
zEj?—gTﬂwn+T%%+q
1=1

n
_Z——TTAT + T (b; +ey) +ci

1= 1
_ Z TkTAka TFTHE | Z o
=1

where

k . k k

AT =diag(dy,...,d;)

k k k
Here, we have introduced variational parameters 521{3, i1 =1,...,nand k = 1,..., K, and
Qg izl,...,n.

This means that when fitting our model for class k, we can approximate our data as

79

Gaussian with response ﬁ(]lyi:k — % + aidf) and variance dik We can then maximize the
(2

(3

ELBO with respect to a; and 521{7 , which can be done analytically. For fixed values for ff
(and hence, fixed df), we get that

K
. K/2-1+43 kZldeq[Tk(u]f,...,u%k)]i
o = .

i K ik
k=14

And then for fixed values of «;, we get that

& =+ BalTh(ueh, i)2 — 200Bg [Ti(ueh, i)] + 02,

We can either alternate between updating the «a;’s and élk’s until they converge, or just
perform a single update. I walk through the algebra in a proof in the appendix, Section
A.3.2.

The second bound is given by Titsias [2016].

Lemma 4.2.3 (Titsias Bound). Vs e Rk =1,..., K

log (%) > Y jxklogo(sg — s5)

This lemma can be combined with the Jaakkola-Jordan bound in Lemma 4.2.1 in order
further bound each summand on the right-hand-side of this expression to get a quadratic
lower-bound. Although I came up with this idea on my own, it unsurprisingly has been
applied at least once before (see Snell and Zemel [2021]). Doing so will result in variational
parameters {" for i = 1,...,n and m = 1,... K (m # y;), and as before we can define
d = gn(o(§") =).

Suppose we have an observation ¢ with y; = k. If we are fitting a model for class m # k,
some arithmetic shows that we can approximate that observation as being Gaussian with

=k . . .
response 1T, — QdLm and variance dLm If, instead, we are fitting a model for class k, some
K3 K3

arithmetic shows that we can approximate that observation as being Gaussian with response

80

ﬁ Zm;ﬁk[% + dZmT;n] and variance ﬁ Again, we can maximize the ELBO
m#k %4 m#k %q

over the &, which we can analytically show gives us "* = +\/ Tiyﬂ - 2@7;_’” +T"2. A

derivation of this result is given in the appendix, Section A.3.2.

4.2.8 Count Data

To handle count data, we utilize the negative binomial distribution. The reason we don’t
use the Poisson distribution is that if one wanted to use the typical log-link function used
in Poisson regression (e.g. E[y|x]| = eXp{XTﬁ}), it is not possible to construct a quadratic
lower-bound to the log-likelihood. It is conceivable that if one wanted to use quadratic
approximations that aren’t lower-bounds then this link function might be usable, however
we did not explore this possibility. We did consider alternative link functions, in particular
the soft-plus function: E[y|T]| = log(1 + exp{T'}). However, the lower-bound we were using
(based on the work of Seeger and Bouchard [2012]) wasn’t accurate enough to provide useful
inference unless all observed counts were small.

It is worth noting that technically, the negative binomial distribution can be used to

approximate the Poisson case. It is well-known that

. AND o, .
rlggo NB (r, Y A) = Poisson(\).

Thus, one could simply set a large value of r, estimate p = and then solve to get

A
T+’
A= rif—p. I've noticed that this sometimes works in practice, but it can take a long time to
converge, and can sometimes be difficult. I suspect the challenge comes from the fact that

we are trying to estimate a probability that approaches 0 as r — co.

For negative binomial-distributed data, recall that the probability mass function is

NB(k;r,p) = <k +]: N 1) (1-p)pF

81

for k € {0,1,2,...}, r € {1,2,3,...}, and p € (0,1). The data generating process is the
number of successes until the r-th failure among iid Bernoulli trials with success probability
p. The negative binomial distribution is often used to model count data, especially when the
variance doesn’t follow the restrictive assumption of the Poisson distribution.

This leads to the full model

yi ~ NB(rs, p;) (4.8a)

log (1 fip) =T(m1,. -, 1) (4.8b)
:hl<IBZ)> [= 1,...,L (4.8C)
Birg()eG, =1L (4.84)

where r; is fixed and known.

The log-likelihood of this model is given by

yi +r; —1
WB1,---,BLiy b, b, T 210 (Z yz)+7‘i10g0(—Tz‘)+yi10gU(Tz’)
-1 <
—Zl <yZ i)+yiTi—(yi+7“z')10g <1+€TZ)
n
:Zlog<yZ+TZ)erz i,
Yi 2

i=1
— (yi +1i)log (6Ti/2 + €_Ti/2>-

From this expression of the log-likelihood, it is evident that we can apply the Jaakkola-Jordan

bound in this context as well due to the log(e?/2 + e~%/2) term.

82

Performing some algebra, we get that we can bound the log-likelihood with

n
Zlog (yl + 7) + Y TZTZ' . (yz +Tz) 10g <€Ti/2 + G_Ti/2> (49&)

P Yi 2
> = STTA(Y, €T + by, T +c(y,), (1.90)
where
A(y.8) = diag (dly +1). di = = (a(6)—3) (4.9¢)
(v, €) > (4.9d)
Zlo (yZ +;Z 1) + (yi + i) [bg o(&i) + %(difi -1 (4.9¢)

This means that we can approximate our observations as coming from a Gaussian dis-

tribution with response s—Z—i - and variance We can then maximize the ELBO

1
2d;(yi+ri) di(yitri)
with respect to &;, which analytically gives us £ = —|—\/Eq[T(u1, . ,[LL)%]. A derivation

for this result is given in the appendix, Section A.3.2.

4.2.4 Accelerated Failure Time Model (Log-Logistic Distribution)

This next extension deals with survival analysis. In particular, it deals with modeling sur-
vival times using an accelerated failure time (AFT) model using a log-logistic distributional
assumption. As far as I know, the Gaussian lower-bound approximation in this context has

not been done before.

83

The model in this setting is

logy =T(py,..., 1) + € (4.10a)
€ i logistic(0, s) (4.10b)
w = h(8)), l=1,...,L (4.10c)
B~ g () € G, I=1,...,L, (4.10d)

where y; are the observed survival times and s > 0 is a scale parameter to be estimated.

For reference, the logistic(0, 1) distribution has the probability density function f(x) =
et
(1+e=7)2

One wrinkle in survival analysis is that the survival time is not always observed, but rather

= (¢*/2 + ¢7%/2)=2 and cumulative distribution function F(z) = lJé,m =o(z).
we observe a censored time. A survival time could be left censored (failure occurred sometime
in the interval (0,t)), right censored (failure occurred sometime in the interval (¢, 00)), or
interval censored (failure occurred sometime in the interval (¢1,t2)). In my derivations, I
have made the standard assumption that censoring is non-informative and random (Patti
et al. [2007]).

For censored data, the contributions to the likelihood can be shown to be f(t) if there
was no censoring, F'(t) if there was left-censoring at time ¢, 1 — F'(¢) if there was right-
censoring at time ¢, or F(t9) — F(t1) if there was interval censoring in the interval (1, %9)
(see, e.g., Kleinbaum and Klein [2012]). When finding a suitable quadratic lower-bound to
the log-likelihood, we can deal with each type of censoring individually.

For the case with no censoring, we observe a failure at time ei. Such an observation’s

84

additive contribution to the log-likelihood is

e_(ti_Ti)/S

log f(t;; T;,5) = log

where Tj is the predicted log-survival time from the VEB-Boost model. Recall the Jaakkola-

Jordan bound from Lemma 4.2.1; from the bound, it is clear that

(7(6) ~) (&% — €) ~ log(eS/% + &~/%)

Thus, we can use this bound for our uncensored observations, resulting in the following

lower-bound:

— log(s) — 2log (eimT/2 4 o=(=T)/2:)

> —tog(s) +2| = 52 (o6) = 3) (s = T)/5)" =€) — (e + e—f/2>] .

So we can approximate this observation as coming from a Gaussian distribution with response
2
t; and variance 28_di’ where d; = —é(a(@) - %)
For an observation that is right-censored at time e’ (i.e. the failure occurred in the

interval (eli,00)), this observation’s contribution to the log-likelihood is

log (1= F(t;; T 5)) = log (1 - o((t: — T1)/5))

—log o (T} —1;)/5).

Using the Jaakkola-Jordan bound, it is easy to see that we can approximate this observation

as coming from a Gaussian distribution with response ¢; + % and variance %, where d; =
(2 (2

85

1 1
¢ (0(&) —3)-
For an observation that is left-censored at time e’ (i.e. the failure occurred in the interval

(0, €!)), this observation’s contribution to the log-likelihood is

log F(t;;T;,8) = loga((ti - TZ)/S))

Using the Jaakkola-Jordan bound, it is easy to see that we can approximate this observation

as coming from a Gaussian distribution with response t; — ﬁ and variance %, where d; =
(2 (2

—&(0&) - 3).
Lastly, for an observation that is interval-censored in (etz e Z) this observation’s contri-

bution to the log-likelihood is

1 1
2. o el _ _
log <F(t@'7Tz7 s) — F(t;; T, s)) log (1 gy, e(t%T,-)/s>‘

Performing some algebra, we can show that this is equal to
2
log (6 /s _ et%/s> _¥_1 og ((12-T3)/s | ,~(t i—m/s> log ((H=T0)/5 4 o~ (t Z-—T»/s)
s

We can apply the Jaakkola-Jordan bound separately for the last two terms in the above

expression. Doing so leads to the conclusion that we can approximate this observation as

141, 72,2
. . C . . b +dit . 52
coming from a Gaussian distribution with response W and variance d1 Z where

d} = o L(o(¢}) - 1) and @? = 2 L(o(€?) — 1); the 51 and &2 come from the bounds
obtained on the penultimate and ultimate terms in the above expression, respectively.

We can then simply add up each observation’s contribution to the log-likelihood in order
to have a quadratic lower-bound to the log-likelihood, and hence a lower-bound to the ELBO.

This allows us to optimize the value of s by maximizing this lower-bound to the ELBO over

s. Similarly, we can optimize over all variational parameters (e.g. 62,521,512) A complete

86

derivation is provided in Section A.3.2.

4.2.5 Ordinal Logistic Regression

This next extension deals with the case of ordinal response data, i.e. the response is y; €
{1,2,..., K} where there exists some ordering 1 < 2 < --- < K. For example, the response
could be the rating a viewer gives a movie, where a rating of 1 star is the worst and 5
stars is the best. We take the approach of ordinal logistic regression. Given K + 1 “knots”

—oco=10y< b0 < - <Og_1 <O = o0, we have

P(y; <k) =00 — T(p1,--- 1L)i) (4.11a)
= Plyi=Fk) =00 — Tk, pp)i) —0(Op—1 —T(p1, -, 11)i) (4.11b)
! ! (4.11¢)

1 e O-T) 14 e0Oh1-T)

As far as I can tell, this model has not before been approximated with Gaussian data in the
context of variational inference.

There is a clear connection between this model and the AFT model with scale parameter
s = 1. For an observation with response y; = k ¢ {1, K}, this probability is the same as in
the AFT model for an interval-censored observation with log-survival time censored in the
interval (0;._1,0;]. For an observation with response y; = 1, this probability is the same as
the AFT model for a left-censored observation with log-survival time censored at 61. And
for an observation with response y; = K, this probability is the same as the AFT model for
a right-censored observation with log-survival time censored at 0j,_.

Thus, for fixed knots 0., we can simply fit the AFT model with scale parameter s = 1
and the log-survival times censored in the above manner. And after each iteration, we can
incorporate a step to optimize the values of the knots, i.e. maximize the lower-bound of the

ELBO over —oo =6y < 01 < --- < 0_1 < 0 = o0o. A complete derivation is given in

87

Section A.3.2.

4.2.6 Ranking Data

Pairwise Comparisons

The Bradley-Terry model (Bradley and Terry [1952]) is one of, if not the most commonly
used model when analyzing pairwise comparisons between n “players.” The model associates
a true rating m; > 0 to each pl