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ABSTRACT

One of the pillars of machine learning is that of non-linear regression on tabular data.

For the last few decades, the performance of ensemble methods based on a sum-of-trees

model (gradient boosting and random forest methods in particular) has been state-of-the-

art (Shwartz-Ziv and Armon [2022], Chen and Guestrin [2016], Fernández-Delgado et al.

[2014]). However, such methods can suffer from a few weaknesses; in particular, they often

require time-consuming cross-validation procedures to tune a slew of hyper-parameters, and

they provide no level of uncertainty about their predictions. Bayesian methods can address

both through the use of hierarchical modelling. But many methods rely on Markov chain

Monte Carlo (MCMC) methods that can be slow and scale poorly, not to mention the further

complications that can arise due to poor mixing of the Markov chain.

In this dissertation, we introduce a new Bayesian framework, VEB-Boost, that aims to

address these challenges (implemented in our R package VEB.Boost). In particular, it relies

on empirical Bayes and variational inference, allowing us to bypass hyper-parameter tuning

while being able to scale well. In the VEB-Boost framework, we combine weak learners (à

la boosting) by adding and/or multiplying them together in an arbitrary order. Doing so

yields a modular fitting procedure that reduces to iteratively fitting a single weak learner at a

time. We demonstrate the potential of VEB-Boost with a simulation study and real-dataset

benchmarking analysis.

We also show how to extend the VEB-Boost model to non-Gaussian response data.

We derive extensions for: logistic regression, multinomial logistic regression, negative bino-

mial regression, accelerated failure time models, ordinal logistic regression, Bradley-Terry

pairwise ranking models, Plackett-Luce listwise ranking models, Cox proportional hazards

models, and multivariate Gaussian regression. Many of these approximations are new, and

we note some interesting connections between them. Lastly, we demonstrate the logistic and

multinomial logistic models in a simulation study and real-data benchmarking analysis.

xvi
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CHAPTER 1

INTRODUCTION

In machine learning and statistics, there are few settings more commonly used than the gen-

eral regression setting yi = f(xi) + ϵi. Here, f(·) is an unknown arbitrary function mapping

a feature vector x ∈ Rp to a conditional expectation E[y|x] ∈ R, and ϵ is independent mean-

zero random noise (commonly assumed to be Gaussian). The primary goal of regression

analysis is to learn an approximation f̂(·) ≈ f(·) so that for a new input vector x we can

use f̂(x) as an accurate prediction for its unobserved response y.

One popular class of methods to approximate f(x) is ensemble methods, in particular

those using a sum-of-trees model. This class of methods includes, among others, boosted

decision trees (Freund and Schapire [1997], Friedman [2001], Chen and Guestrin [2016],

Prokhorenkova et al. [2018]), random forests (Breiman [2001]), and Bayesian additive regres-

sion trees (BART) (Chipman et al. [2010]). These methods all approximate the unknown

function as

f(x) ≈
L∑
l=1

f̂l(x), (1.1)

where each f̂l(·) is a regression tree. In the boosting literature, these functions f̂l are referred

to as “weak learners,” in that individually they are only weakly informative for the response,

but together can be combined into a “strong learner.” Despite the fact that some of these

methods were developed over 20 years ago, they remain popular in many applications of

machine learning where the practitioner’s goal is good prediction accuracy in the regression

context (see, e.g., Chen and Guestrin [2016]). In particular, these methods often yield

state of the art performance on tabular datasets where there is no inherent structure in the

observations that can be leveraged by complex and purpose-built deep learning architectures

(Shwartz-Ziv and Armon [2022]).

In recent years, there has been an increased interest in Bayesian methods, including
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BART and its extensions (Tan and Roy [2019]). The benefits of Bayesian methods are

quite compelling; for example, they can provide estimates of uncertainty without compro-

mising predictive performance (Tan and Roy [2019]). However, the computational cost of the

Markov chain Monte Carlo (MCMC) schemes used to implement many of these methods are

prohibitively expensive, especially given the rapidly expanding nature of data in the modern

era. There have been some efforts to lessen the computational burden of BART, such as

accelerated BART (XBART) (He et al. [2019]). However this strategy relies on very few

samples (they recommend about 25) from an approximate sampling scheme, which could

make uncertainty estimates less reliable.

The approach outlined in this dissertation, variational empirical Bayes boosting (VEB-

Boost), fits a model similar to the ensemble model (1.1), but instead combines weak Bayesian

learners using an arbitrary sequence of addition and multiplication rather than just addition.

To fit the model, VEB-Boost relies on variational inference. Variational inference yields an

approximation to a posterior distribution that offers computational benefits over sampling

from the true posterior using MCMC schemes (Blei et al. [2017]). In addition, VEB-Boost

is adaptive in the sense that it allows for an empirical Bayes procedure to estimate the

prior distribution of each weak learner, which informs the algorithm as to which parts of

the estimating function can improve and which cannot. VEB-Boost is also flexible and

modular in that it can accommodate any prior distribution for the weak learners, provided

the practitioner supplies a function that can approximate the posterior distribution in the

context of a simpler problem outlined later in equation (3.1).

The VEB-Boost algorithm is implemented in an R-package that is available via github

(https://github.com/stephenslab/VEB.Boost); the package’s interface is stable, but the

back-end code is in active development and subject to change.

This dissertation is organized as follows. The remainder of the introduction provides

a brief review of variational Bayesian inference, empirical Bayes, and how the two can be
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combined into a procedure dubbed “variational empirical Bayes” (VEB).

Chapter 2 presents what we call the variational additive model. This model bears a strong

resemblance to the ensemble model from (1.1) in that we are adding together many weak

learners. We show how to fit the model by iteratively fitting each weak learner to the residuals

from the other weak learners in a process that is reminiscent of the fitting procedure in

gradient boosting with a squared-error loss (Friedman [2001]) and the backfitting procedure

used to fit generalized additive models (GAMs) (Hastie and Tibshirani [1990]). We introduce

a very useful Bayesian weak learner that is used throughout the thesis in our numerical

examples, called the single effect regression (SER). We then provide a brief simulation study

showing the potential of this model to fit GAMs, comparing its performance with a few other

algorithms.

Chapter 3 makes the leap from only adding together weak learners to also being able

to multiply weak learners together in what we call the variational empirical Bayes boosting

(VEB-Boost) model. We show that, using a different notion of residual, we can fit the model

by iteratively fitting each weak learner on the residuals of the others. We also outline some

methods to utilize the empirical Bayes aspect of the model to add more weak learners until

the fit can no longer be improved. We wrap up chapter 3 with some simulated and real-data

examples comparing the VEB-Boost method to other popular non-linear regression methods.

Chapter 4 shows how to extend the VEB-Boost model to many types of non-Gaussian

data, and how to incorporate observation weights. In particular, we show how to extend the

model to: binary data, multinomial data, negative binomial data, accelerated failure time

data with log-logistic noise (accounting for left, right, and interval censoring), ranking data

(both pairwise and listwise comparisons), ordinal data, survival data with the proportional

hazards assumption, and multivariate Gaussian data. The approach we take to extend the

VEB-Boost model is to approximate each data type with a Gaussian distribution by lower-

bounding the log-likelihood of the model with a quadratic function. Although there are
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known drawbacks to this approach (Minka [2001], Knowles and Minka [2011]), the benefit is

that the practitioner only needs to derive and implement the solution for fitting their weak

learner of choice to heteroskedastic Gaussian data. This substantially lowers the burden on

the user and allows for more weak learners to be explored for any/all of these different types

of data, without the need for any additional derivations or implementations. We conclude

this chapter with some simulated and real-data examples comparing the VEB-Boost method

to other popular non-linear logistic and multinomial logistic regression methods.

Throughout this dissertation, all proofs not presented in a chapter itself can be found

in Section A.3. A zenodo repository containing the scripts used for the simulations and

benchmarking studies performed in Chapters 3 and 4 can be found at https://doi.org/

10.5281/zenodo.7105767.

1.1 Variational Inference: A Review

In this section, we offer a brief review of variational Bayes (VB) in Section 1.1.1, empirical

Bayes (EB) in Section 1.1.2, and show how the two can be combined into a single procedure

– dubbed variational empirical Bayes (VEB) – in Section 1.1.3. For a high-level overview of

variational inference, see Blei et al. [2017].

1.1.1 Variational Bayes

Bayesian inference can be broken down into three components: the prior distribution of your

parameters, the likelihood of the observed data under a particular model, and the posterior

distribution of your parameters. These three components are related through Bayes’ theorem:

p(β|x) = g(β) · p(x|β)
p(x)

. (1.2)
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Here, p(β|x) is the posterior distribution of your model parameters β given the observed

data x, g(β) is the prior distribution of these parameters, p(x|β) is the likelihood of the

observed data given the parameters, and p(x) is the marginal likelihood of the observed data

(sometimes referred to as the evidence).

The difficulty with Bayesian inference arises from the challenge of dealing with the

marginal likelihood p(x), since it involves the often intractable integral p(x) =
∫
g(β)p(x|β)dβ.

Variational Bayesian inference, an alternative to exact Bayesian inference, was introduced to

yield computationally tractable approximations to the exact posterior distribution p(β|x).

Concretely, the goal of variational Bayes is to find

q∗(β) = argmin
q∈Q

DKL

(
q(β)∥p(β|x)

)
, (1.3)

where Q is referred to as a variational class of distributions, and DKL(q∥p) is the KL-

divergence from the density q to the density p, defined as

DKL(q∥p) ≡ Eβ∼q
[
log

q(β)

p(β)

]
. (1.4)

The variational class Q is often chosen to facilitate easy and/or closed-form updates when

solving this optimization problem. If Q was the class of all distributions, then the mini-

mizer would be equal to the true posterior, so the hope is that Q is expressive enough to

contain distributions that are “close” to the true posterior while maintaining computational

tractability.

The objective function in the optimization problem in (1.3) is not tractable to compute,

since it relies on the unknown posterior distribution. Instead, we can perform some algebraic

manipulations to show that

q∗(β) = argmax
q∈Q

Eβ∼q[log p(x|β)]−DKL

(
q(β)∥g(β)

)
. (1.5)
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The right-hand-side of this equation is referred to as the evidence lower bound (ELBO),

so named because it is (unsurprisingly) a lower bound on the log-evidence, log p(x). It is

straightforward to show that equivalent formulations of the ELBO F (g, q;x) are

F (g, q;x) = Eβ∼q[log p(x|β)]−DKL

(
q(β)∥g(β)

)
(1.6a)

= l(g;x) −DKL

(
q(β)∥p(β|x)

)
. (1.6b)

The ELBO is typically a non-convex objective function and is thus difficult to maximize.

In principle, any non-convex optimization method can be used to find a (local) maximum of

the ELBO. But in practice, the most commonly-used algorithm is known as coordinate ascent

variational inference (CAVI), which is essentially just exact (block) coordinate maximization

of the ELBO (see Bishop [2006], Blei et al. [2017]).

1.1.2 Empirical Bayes

The goal of empirical Bayes is to perform Bayesian inference using a prior distribution

ĝ(β) ∈ G learned from the data. Suppose we have the following Bayesian model

x ∼ p(x|β,θ) (1.7a)

β ∼ g ∈ G, (1.7b)

where we observe data x from a data generating process with likelihood p(x|β,θ) that

depends on (i) unobserved latent variables β coming from prior distribution g living in some

class of distributions G, and (ii) additional parameters θ ∈ Θ, either fixed or to be estimated.

Empirical Bayes is often framed as a two-step procedure. The steps are:
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1. Estimating the prior by finding

(ĝ, θ̂) := argmax
g∈G,θ∈Θ

l(g,θ;x),

where

l(g,θ;x) := log

∫
p(x|β,θ)g(β)dβ

is the marginal log-likelihood of the observed data;

2. Given the estimated prior distribution ĝ and parameters θ̂, compute the posterior

distribution of β:

p̂post(β) := p(β|x, ĝ, θ̂)

∝ p(x|β, θ̂)ĝ(β).

However, this same EB procedure can be viewed as a one-step procedure, as outlined in

appendix B of Wang et al. [2020]. As in (1.6b), define the ELBO as

F (q, g,θ;x) := l(g,θ;x)−DKL

(
q(β)∥p̂post(β)

)
.

Using this formulation, it is easy to see that the two-step EB procedure can be performed

in a single step:

(p̂post, ĝ, θ̂) = argmax
q,g∈G,θ∈Θ

F (q, g,θ;x). (1.8)

This can be seen by making two key observations:
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1. The first term of the ELBO, l(g,θ;x), does not depend on q, and so

q̂ = argmax
q

F (q, g,θ;x)

= argmin
q

DKL

(
q(β)∥p̂post(β)

)
= p̂post;

2. Since DKL

(
q(β)∥p̂post(β)

)
= 0 when q(β) = p̂post(β), we have max

q
F (q, g,θ;x) =

l(g,θ;x). And thus,

(ĝ, θ̂) = argmax
g∈G,θ∈Θ

l(g,θ;x)

= argmax
g∈G,θ∈Θ

max
q

F (q, g,θ;x).

1.1.3 Variational Empirical Bayes

The variational empirical Bayes (Braun and McAuliffe [2010], Wang et al. [2020]) approach

makes one simple modification to the one-step EB procedure from (1.8); we only maximize

over q ∈ Q for some variational class of distributions Q. That is, we aim to find

(q∗, ĝ, θ̂) = argmax
q∈Q,g∈G,θ∈Θ

F (q, g,θ;x). (1.9)

The procedure can be thought of as being similar to EB, since we still learn a prior

distribution ĝ and parameters θ from the data, but we are now also finding an approximation

to the true posterior q∗ ∈ Q.

8



CHAPTER 2

THE VARIATIONAL ADDITIVE MODEL

2.1 Introduction

In building up to the full VEB-Boost model, the first step is to make the leap from fitting

data with a single weak learner to using a sum of weak learners. We refer to this sum as the

variational additive model. This model is outlined in Appendix B of Wang et al. [2020]. We

deviate slightly from their presentation, but the models are essentially the same.

The remainder of this chapter is organized as follows. Section 2.2 describes the Bayesian

regression setting that is used as the building-block for the additive model, and we describe

the useful example of the single effect regression (SER) in Section 2.2.1. We then present

a generalization to the SER which allows for the fitting of non-linear relationships in Sec-

tion 2.2.2. Section 2.3 then shows how we can combine weak learners that are solving the

Bayesian regression problem in 2.2 into a strong learner by adding them together. Finally,

we demonstrate the generalized additive model in a brief simulation study in Section 2.4.

2.2 Unweighted Bayesian Regression Problem

The building-block for the variational additive model, and what each weak learner aims to

fit, is the unweighted Bayesian regression problem:

y = µ+ ϵ (2.1a)

ϵ ∼ N (0, σ2In) (2.1b)

µ ≡ h(β) (2.1c)

β ∼ g ∈ G. (2.1d)

Here, y ∈ Rn is our vector of responses, ϵi is iid Gaussian noise with given residual
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variance σ2 > 0, β ∈ Rp is a random vector with prior distribution g belonging to a prior

family G, and h : Rp → Rn is a fixed function that maps β to a mean response vector µ.

For example, h(β) might be Xβ for a fixed design matrix X ∈ Rn×p. For terminology, we

often refer to µ ≡ h(β) as a Bayesian weak learner.

In order to “solve” this Bayesian regression problem, we require a function that can

estimate a prior distribution ĝ ∈ G using an empirical Bayes procedure, and then return

a variational approximation q∗ ∈ Q to the true posterior distribution of β, where Q is an

arbitrary variational class chosen by the practitioner. In fact, the VEB-Boost algorithm only

needs access to Eβ∼q∗ [h(β)], Eβ∼q∗ [h(β)
2], and DKL(q

∗∥ĝ).

Using the alternate formulations of the ELBO from (1.6), we denote the ELBO of model

(2.1) as:

F0(g, q;y, h, σ
2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2
Eβ∼q

[
∥y− h(β)∥22

]
−DKL

(
q(β)∥g(β)

)
.

(2.2)

For the purpose of compact notation, let

FIT (y, h, σ2,G,Q)

:=

(
argmax
g∈G,q∈Q

F0(g, q;y, h, σ
2), µ ≡ Eβ∼q∗ [h(β)], µ2 ≡ Eβ∼q∗ [h(β)

2], DKL(q
∗∥ĝ)

)
(2.3)

be a function that maximizes the ELBO with respect to the prior distribution g ∈ G and

variational approximation to the posterior q ∈ Q (with argmax ĝ and q∗, respectively), and

also returns the first and second posterior moments of the weak learner (µ and µ2), as well

as the KL-divergence from q∗ to ĝ.
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2.2.1 The Single Effect Regression

The single effect regression (SER) model, the foundational idea of which was introduced in

Servin and Stephens [2007] and used as the building-block of Wang et al. [2020], is a very

simple Bayesian linear model in which a single variable has a non-zero effect. Just like a

decision stump or small decision tree, it is clear that such a model is too simple to be of much

use on its own. But if we were to combine many such weak learners together, we should be

able to explain more signal in a dataset.

The SER model can be formalized as:

y = Xβ + ϵ (2.4a)

ϵ ∼ N (0, σ2In) (2.4b)

β ≡ bγ (2.4c)

b ∼ N (0, σ20) (2.4d)

γ ∼Mult(1,π). (2.4e)

Here, X ∈ Rn×p is a fixed design matrix, β ∈ Rp is an effect vector that is non-zero in

only a single position (i.e. 1-sparse), b is the value of the non-zero entry in β which comes

from a mean-zero Gaussian prior distribution with variance σ20, and γ is a vector of 0’s with

a 1 in a single position indicating which entry of β is non-zero, which has a multinoulli prior

distribution with a fixed prior probability vector π ∈ ∆p−1 ⊂ Rp.

One of the nice properties of this simple model is that the exact posterior distribution of

β is available in closed form.

Proposition 2.2.1 (SER Posterior Distribution). For a given prior variance σ20 > 0, if we

let τj :=
1
σ20

+
XT

·jX·j
σ2

and νj :=
XT

·jy

σ2
, then the posterior distribution of β is given by:

11



γ|X,y, σ2, σ20 ∼Mult(1,α) (2.5a)

αj ∝ πj

√
1

τj
exp

{ ν2j
2τj

}
(2.5b)

b|X,y, σ2, σ20, γj = 1 ∼ N (µj , σ
2
j ) (2.5c)

µj =
νj
τj

and σ2j =
1

τj
. (2.5d)

Proof: Recalling that the prior places all of its mass on 1-sparse vectors (i.e. vectors

with a single non-zero entry), we see that the posterior will also place all of its mass on such

configurations. By Bayes’ theorem, and using the definitions for τj and νj from above, and

defining ej to be the standard basis vector for dimension j, we have

P (β = bej |y,X, σ20,π, σ
2) ∝ P (β = bej |σ20,π) · P (y|X, σ2,β = bej)

= πj
1√
2πσ20

e
− 1

2σ20
b2 n∏

i=1

1√
2πσ2

e
− 1

2σ2
(yi−bXij)

2

∝ πje
− 1

2σ20
b2− 1

2σ2

∑n
i=1(yi−bXij)

2

∝ πje
− 1

2σ20
b2− 1

2σ2

∑n
i=1−2yibXij+b2X2

ij

= πje
−

τj
2 (b−νj/τj)2+

τj
2 (νj/τj)

2
·

√
2π/τj√
2π/τj

∝ πj

√
1

τj
e

ν2j
2τj · 1√

2π/τj

e−
τj
2 (b−νj/τj)2 .

We can recognize this as being proportional to the posterior described above in Proposition

2.2.1. QED

It is also straightforward to perform an empirical Bayes step to estimate the prior distri-

bution of β ∈ G, which is fully parameterized by the prior variance σ20 > 0.
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Proposition 2.2.2. The likelihood of the SER model as a function of σ20 > 0 can be written

as

L(σ20;y,X,π, σ2) =

p∑
j=1

πj

∫ ∞
−∞

p(b;σ20)p(y; b,X·j , σ
2)db (2.6a)

∝
√

1

σ20

p∑
j=1

πj

√
1

τj
exp

{ ν2j
2τj

}
, (2.6b)

where νj and τj are defined in Proposition 2.2.1.

Proof: Starting from the expression for the likelihood, we get

L(σ20;y,X,π, σ2) =

p∑
j=1

πj

∫ ∞
−∞

p(b;σ20)p(y; b,X·j , σ
2)db

=

p∑
j=1

πj

∫ ∞
−∞

1√
2πσ20

e
− 1

2σ20
b2

· (2πσ2)−n/2e−
1

2σ2
∥y−bX·j∥22db

∝
√

1

σ20

p∑
j=1

πj

∫ ∞
−∞

e−
τj
2 (b−νj/τj)2+

τj
2 (νj/τj)

2
·

√
2π/τj√
2π/τj

db

∝
√

1

σ20

p∑
j=1

πj

√
1

τj
e
ν2j /2τj . QED

Using the above expression for the likelihood of the SER model, we can perform an

empirical Bayes step by maximizing this likelihood with respect to σ20 > 0 using the 1-

dimensional numerical optimizer of our choice, such as the Brent method available in the

base R function optimize.

We can also easily calculate the KL-divergence DKL(q
∗∥ĝ) as:

DKL(q
∗∥ĝ) =

∑
j:αj>0

αj ·

(
log
(αj
πj
· σ0
σj

)
− 1

2
+

σ2j + µ2j

2σ20

)
. (2.7)
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2.2.2 Generalized Single Effect Regression

As an extension to the SER, suppose that instead of selecting one of a number of linear

terms, we are selecting between one of a number of models. For example, perhaps each

model corresponds to a non-linear function of a single variable, à la generalized additive

models (Hastie and Tibshirani [1990]). From here on, I will assume that these models rely

on only a single variable, but this applies to the more general case of arbitrary models. More

concretely, consider the model

y =

p∑
j=1

γjhj(βj ; xj) + ϵ (2.8a)

ϵ ∼ N (0, σ2In) (2.8b)

βj
⊥∼ gj(·) ∈ Gj (2.8c)

γ ∼Mult(1,π). (2.8d)

Here, hj(· ; xj) are fixed functions of a single variable xj parameterized by βj ∈ Rpj (e.g.

hj(βj ; xj) = xjbj recovers the SER), gj is a prior distribution over βj belonging to a prior

family Gj , and γ is a vector of 0’s with a 1 in a single position indicating which function

hj(·) has a non-zero weight, which has a multinoulli/categorical prior distribution with a

fixed prior probability vector π ∈ ∆p−1 ⊂ Rp.

It is very easy to see that since the prior distribution places all of its mass on configura-

tions of a single non-linear function of a single variable, so too will the posterior distribution.

We can calculate the posterior probabilities of each function being non-zero in the straight-

forward fashion:

αj := P (γj = 1|y) ∝ P (γj = 1) · P (y|γj = 1) = πjP (y|γj = 1). (2.9)

Note that P (y|γj = 1) is simply the evidence of the model where there is only hj , i.e.
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y = hj(βj ; xj) + ϵ.

Continuing on, it is easy to calculate the posterior distribution of βj |γj = 1:

P (βj |γj = 1,y) ∝ gj(βj) · P (y|γj = 1,βj). (2.10)

Note that this is proportional to the posterior probability of βj under the model where there

is only hj , i.e. y = hj(βj ; xj) + ϵ.

Thus, the posterior distribution is a mixture distribution over the posteriors from the

“univariate” models in which there is just a single function hj , weighted by αj . So algorith-

mically, we can find the posterior distributions of these “univariate” models individually, and

then weight them by the appropriate weights αj (which are proportional to the product of

the prior probability that model j is the non-zero model, and the evidence for that model).

This is exactly the procedure that is done in the SER.

As a slight modification, suppose that for each model j we have a variational class of

distributions Qj , and our approximation to the posterior of βj is a member of this class. In

this case, we can find an approximation to the posterior by carrying out the same procedure,

but instead we find an approximation to the posterior qj ∈ Qj for each univariate model j.

We can then approximate the evidence of the model P (y|γj = 1) as exp{ELBOj}, where

ELBOj is the ELBO from univariate model j. This is conceptually similar to using the

ELBOs as an approximate log-likelihood, which is done in Carbonetto and Stephens [2012].

We formalize this intuition in the following proposition:
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Proposition 2.2.3. Consider the model

y = f(X ; β) + ϵ (2.11a)

ϵ ∼ N (0, σ2In) (2.11b)

β ∼
p∑

j=1

πjgj(·), gj(·) ∈ Gj (2.11c)

{support gj} ∩ {support gk} = ∅, j ̸= k. (2.11d)

Suppose that we wish to find a variational approximation to the true posterior that takes

the form of the mixture model q(β1, . . . ,βp) =
∑p

j=1 αjqj(βj), where α ∈ ∆p−1 and each

qj ∈ Qj for a variational class Qj. Let Mj be the model where β ∼ gj, i.e. πj = 1, and

let ELBOj(gj , qj) be the ELBO we get from model Mj with prior gj ∈ Gj and variational

approximation qj ∈ Qj with argmax (ĝj , q
∗
j ) and maximum ELBO∗j . Then the empirical

Bayes estimate for the prior is given by the mixture model

ĝ(β) =

p∑
j=1

πj ĝj(β)

and the variational approximation to the posterior is given by the mixture model

q∗(β) =
p∑

j=1

αjq
∗
j (β),

where αj ∝ πj exp{ELBO∗j}.

Proof: Writing out the objective function in the variational optimization, and substitut-

ing in the expectations and KL-divergences we get with our specific prior g and variational
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approximation q, we aim to find

max
α∈∆p−1,gj∈Gj ,qj∈Qj

Eq

[
logP (y|β)

]
−DKL(q∥g)

= max
α∈∆p−1,gj∈Gj ,qj∈Qj

p∑
j=1

αjEqj

[
logP (y|β)

]
−DKL

( p∑
j=1

αjqj∥
p∑

j=1

πjgj

)

= max
α∈∆p−1,gj∈Gj ,qj∈Qj

p∑
j=1

αjEqj

[
logP (y|β)

]
−

p∑
j=1

αjEqj

[
log

αjqj∑p
k=1 πkgk

]
=
[
{support qj} ∩ { support gk} = ∅ for j ̸= k

]
= max
α∈∆p−1,gj∈Gj ,qj∈Qj

p∑
j=1

αjEqj

[
logP (y|β)

]
−

p∑
j=1

αj

[
log

αj
πj

+DKL(qj∥gj)
]

= max
α∈∆p−1,gj∈Gj ,qj∈Qj

p∑
j=1

αj

[
Eqj

[
logP (y|β)

]
−DKL(qj∥gj)− log

αj
πj

]

= max
α∈∆p−1

p∑
j=1

αj

[
max

gj∈Gj ,qj∈Qj

ELBOj(gj , qj)− log
αj
πj

]

= max
α∈∆p−1

p∑
j=1

αj

[
ELBO∗j − log

αj
πj

]

=− min
α∈∆p−1

p∑
j=1

αj log
αj

πj exp{ELBO∗j}
.

Noting that in this last line we are trying to minimize a discrete KL-divergence, we see that

this is minimized when αj ∝ πj exp{ELBO∗j}.

Thus, the solution that maximizes the ELBO over the prior distribution and variational

approximation is given by

ĝ =

p∑
j=1

πj ĝj

q∗ =
p∑

j=1

αjq
∗
j . QED
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Corollary 2.2.3.1. Since the model given by (2.8) can be re-written to satisfy the conditions

of Proposition 2.2.3, we can find a variational approximation to the posterior by solving the

univariate models individually, and then weighting them accordingly.

2.3 The Variational Additive Model

The variational additive model is a direct extension of the unweighted Bayesian regression

problem in Section 2.2, in which we add together multiple weak learners. The model is

formalized as:

y =
L∑
l=1

µl + ϵ (2.12a)

ϵ ∼ N (0, σ2In) (2.12b)

µl ≡ hl(βl) (2.12c)

βl
⊥∼ gl(·) ∈ Gl. (2.12d)

As before, βl ∈ Rpl is a random vector with prior distribution gl belonging to a prior

class Gl, all of the βl are independent a priori, and hl : Rpl → Rn are fixed functions that

map βl to a vector µl. As before, we refer to these µl ≡ hl(βl) as Bayesian weak learners.

In order to “solve” this problem, we aim to find a variational approximation q to the

true posterior distribution of (β1, . . . ,βL). We restrict our approximation to belong to the

variational class

Q =
{
q
∣∣∣ q(β1, . . . ,βL) =

L∏
l=1

ql(βl), ql ∈ Ql

}
. (2.13)

Here, each Ql is an arbitrary variational class that restricts the approximation ql.

A nice property of this model is that the ELBO, when viewed as a function of a particular

(gl, ql), holding all other (g−l, q−l) fixed, is equal to the ELBO in the unweighted Bayesian
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regression subproblem (2.1) (up to a constant), where the response is a form of residual that

takes into account the fixed distributions.

As an illustrative example, consider the simple additive model

y = µ1 + µ2 + ϵ, ϵ ∼ N (0, σ2In).

If we want to fit the weak learner µ2, we can subtract µ1 from both sides, which leaves

y− µ1 = µ2 + ϵ, ϵ ∼ N (0, σ2In).

It turns out that if we replace µ1 with Eq1 [µ1] on the left hand side, then this is exactly the

correspondence we get between the ELBOs.

Theorem 2.3.1 (Variational Additive Model ELBO Equivalence). Let

F (g1, q1, . . . , gL, qL;y, h1, . . . , hL, σ
2) denote the ELBO of the additive model (2.12), and let

Fl(gl, ql; g−l, q−l,y, h1, . . . , hL, σ
2) denote this ELBO with respect to (gl, ql) while holding

all other distributions fixed. And let F0(g, q;y, h, σ
2) denote the ELBO from the simple

regression model (2.1) with response y, residual variance σ2, and mean response µ ≡ h(β).

Then

Fl(gl, ql; g−l, q−l,y, h1, . . . , hL, σ
2) = F0(gl, ql;y−

∑
k ̸=l

Eβk∼qk [hk(βk)], hl, σ
2) + c,

where c is a constant term in (gl, ql).

The proof is a special case of the proof in Section A.3.1.

Corollary 2.3.1.1 (Block Coordinate Maximization of the Variational Additive Model
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ELBO). In the same setting as Theorem 2.3.1,

argmax
gl∈Gl,ql∈Ql

F (g1, q1, . . . , gL, qL;y, h1, . . . , hL, σ
2)

= argmax
gl∈Gl,ql∈Ql

F0(gl, ql;y−
∑
k ̸=l

Eβk∼qk [hk(βk)], hl, σ
2).

In other words, in order to perform a block coordinate maximization step of the full ELBO

in the additive model (2.12) over the prior distribution gl ∈ Gl and variational approximation

ql ∈ Ql, we simply need to be able to solve the unweighted Bayesian regression problem for a

single weak learner using the response ỹ := y−
∑

k ̸=l Eβk∼qk [hk(βk)] and residual variance

σ2.

Corollary 2.3.1.2 (Gradient of the Variational Additive Model ELBO). In the same setting

as Theorem 2.3.1, suppose that the prior family Gl and variational family Ql are finite-

dimensional parametric families. Then

∇gl,qlF (g1, q1, . . . , gL, qL;y, h1, . . . , hL, σ
2) = ∇gl,qlF0(gl, ql;y−

∑
k ̸=l

Eβk∼qk [hk(βk)], hl, σ
2),

where ∇gl,ql refers to the gradient with respect to the parameters of the distributions gl ∈ Gl

and ql ∈ Ql.

This means that if one wanted to maximize the ELBO using a first-order method instead

of (block) coordinate maximization, it is sufficient to be able to calculate the gradient in the

context of the unweighted Bayesian regression problem.

Using Corollary 2.3.1.1, we can write a coordinate ascent algorithm for the variational

additive model.
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Algorithm 1: Variational Additive Model Coordinate Ascent Algorithm

Require: Data y; functions hl(·), prior classes Gl, variational classes

Ql, l = 1, . . . , L.

Require: initial residual variance σ2.

Require: Functions FIT :
(
y, hl, σ

2,Gl,Ql

)
→
(
ĝl, q

∗
l ,µl,µ

2
l , DKL(q

∗
l ∥ĝl)

)
that

solve the unweighted Bayesian regression problem for each weak learner,

l = 1, . . . , L.

1 Initialize posterior means µl,µ
2
l , for l = 1, . . . , L;

2 Initialize residual variance to σ̂2 := σ2;

3 repeat

4 for l in 1, . . . , L do

5 Compute ỹ = y−
∑

k ̸=l µk;

6 (ĝl, q
∗
l ,µl,µ

2
l , DKL(q

∗
l ∥ĝl))← FIT (ỹ, hl, σ̂

2,Gl,Ql);

7 Update σ̂2; // optional;

8 until convergence criterion satisfied ;

9 return q∗1, . . . , q
∗
L.

This algorithm is reminiscent of the fitting procedures in boosting (because we fit each

weak learner to the residuals from the others), as well as backfitting in generalized additive

models (because we iteratively return to earlier fits and update them).

2.4 Examples

Perhaps the most well-known application of the variational additive model is the Sum of

Single Effects (SuSiE) model (Wang et al. [2020]). In this model, each effect µl is an

independent vector with the prior from the single effect regression outlined in Section 2.2.1.
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Concretely, the model is given by

y =
L∑
l=1

Xβl + ϵ

ϵ ∼ N (0, σ2In)

βl = blγl

bl
⊥∼ N (0, σ20l)

γl
iid∼ Mult(1,π).

The SuSiE model has seen rapid interest and success in the context of, among other applica-

tions, genetic fine-mapping. This is due to SuSiE’s ability to perform sparse linear regression

and variable selection in highly correlated settings and yield uncertainty estimates about

which effects are non-zero.

There are a number of other ways in which the variational additive model can be po-

tentially useful. For example, one could add together a SuSiE model and a Bayesian ridge

regression model; this could be useful if you believe there are a few strong signals in the data

among correlated predictors, but that all predictors have some effect. A potential scenario

where this assumption may approximately hold is that of the omnigenic model of complex

traits (Boyle et al. [2017]), which maintains that while a few genetic variants will have a

large effect on a trait of interest, all genetic variants have a non-zero effect.

In this section, I instead focus on demonstrating an extension of the SuSiE model, going

from the sum of linear relationships of a single variable to the sum of non-linear relationships

of a single variable. In fact, this is exactly the model you get if you add together independent

instances of the model given in (2.8). There are many convenient ways to use variational

inference to learn a non-linear function of a single variable to use as our hj from model (2.8).

For example, Cheng et al. [2022] took inspiration from the SuSiE model and investigated

non-linear relationships using neural networks that are functions of a single input variable.
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However, I have opted to use my own methods, which I will outline in Section 3.5.2. In

short, saving the details for this later section, the method I used learns functions of a single

variable which reduce to a piecewise polynomial, the degree of which is learned adaptively.

For this simulation study, I have used the function given in the example from Ravikumar

et al. [2009]. The data is generated as:

yi = f1(xi,10) + f2(xi,30) + f3(xi,50) + f4(xi,70) + ϵi

ϵi
iid∼ N (0, σ2)

f1(x) =
(
− sin(1.5x)− a1

)
/b1

f2(x) =
(
x3 + 1.5(x− 0.5)2 − a2

)
/b2

f3(x) =
(
− ϕ(x; 0.5, 0.82)− a3

)
/b3

f4(x) =
(
sin(exp{−0.5x})− a4

)
/b4.

Here, ϕ(x;µ, σ2) is the probability density function (pdf) of a Gaussian distribution with

mean µ and variance σ2 evaluated at x, and aj and bj are chosen so that for each simulation,

the sample mean of fj(x) is 0 and the sample variance of fj(x) is 1.

The design matrix X ∈ R1000×100 is generated according to

xi
iid∼ N100(0,Σ).

In this simulation, we set Σ to the block-diagonal matrix:
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Σ =



S 0 0 0 0

0 S 0 0 0

0 0 S 0 0

0 0 0 S 0

0 0 0 0 S


Here, Sij = 0.95|i−j| for i, j ∈ {1, . . . , 20}. That is, there are 5 groups of 20 highly correlated

predictors; the first four groups have a single non-null variable that has an effect on the

response, and the fifth group contains all null variables.

We also set the residual variance σ2 such that the proportion of variance (PVE) explained

was either 0.1, 0.5, or 0.833, where PVE is defined as

PV E =
V ar

(
f(x)

)
V ar

(
f(x)

)
+ σ2

.

I ran 20 replicates for each value of PVE.

The additive methods I considered in this simulation study were:

• “SpAM”: Sparse Additive Models (Ravikumar et al. [2009])

I used the R package SAM. I performed 5-fold cross-validation to estimate the parameter

lambda;

• “FLAM”: Fused Lasso Additive Model (Petersen et al. [2016])

I used the R package flam. I performed 5-fold cross-validation to estimate the param-

eter lambda;

• “SuSiE Stumps”: Piecewise constant functions using a sum-of-decision-stumps model

(Wang et al. [2020])

I used the implementation in my R package. Each weak learner is a piecewise constant
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function. Essentially, we fit the SuSiE model, but each predictor is an indicator vari-

able for if Xij ≥ cj (which is equivalent to a decision stump); refer to Section 3.5.2, or

the section on change point detection in Wang et al. [2020];

• “SuSiE GAM”: Piecewise polynomial functions

I used the defaults in my R package to learn non-linear functions of a single variable

(see chapter 3), and then combined them as per Section 2.2.2 and Proposition 2.2.3.

To evaluate the performance of the methods, I used the relative root-mean-squared-error

(RRMSE). The root-mean-squared-error (RMSE) is defined as

√√√√ 1

1000

1000∑
i=1

(
f̂(xnewi )− f(xnewi )

)2
, (2.14)

where we are summing over unseen testing observations that were generated in the same

way as the training observations, f̂(·) is the fitted function returned by the algorithm, and

f(·) is the true mean response function. For the Bayesian methods, the posterior mean is

used as the estimated function value. Note that we are comparing with the true mean of the

new observations and are not taking into account any noise; this is to highlight the methods’

abilities to recover the true underlying mean.

The RRMSE for algorithm A is defined as

RMSEA
minA′ RMSEA′

, (2.15)

where the minimum in the denominator is taken over all algorithms tested for that particular

simulation dataset.

The results are displayed below in Figure 2.1.
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Figure 2.1: GAM Simulation Relative RMSE This plot shows the relative RMSE of the

different GAM methods in this simulation. We see that the SpAM method appears to be

the best in the higher noise settings, but the SuSiE GAM model pulls ahead in the lower

noise setting.
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2.5 Discussion

In this chapter, we have outlined the variational additive model. This model allows us to add

together many Bayesian weak learners. The SuSiE model (Wang et al. [2020]) is a special

case of this model, where each weak learner uses the SER from Section 2.2.1. The primary

purpose of this chapter was to familiarize the reader with the notation, terminology, setting,

etc, so that the next chapter is easier to follow. After introducing these concepts, I provided

a brief example of the model’s potential usefulness via a small simulation study. This study

demonstrated that we can use the variational additive model to fit a generalized additive

model in a Bayesian way. And what’s more, we can do so quite easily by combining Bayesian

weak learners that rely on a single variable, as outlined in Section 2.2.2.

While I have not done much investigation into the potential of additive models, the

rapid popularity of the SuSiE model speaks to the promise for such methods. One potential

avenue of exploration could be trying to fit a Bayesian sum-of-trees model by having each

weak learner be a single Bayesian regression tree (e.g. fitting a BART model with a single

tree with traditional MCMCmethods). I have not explored the feasibility of fitting each weak

learner with MCMC methods, but since we can still get first and second posterior moments

from MCMC methods, and we only use the KL-divergence term to monitor convergence, I

don’t see any conceptual reason why such an approach wouldn’t work. It would be interesting

to see how such an approach compares with BART. It could also be interesting to try out

other methods to fit a GAM in the context of the example from this section, such as using

a Bayesian neural network as the non-linear univariate functions, much like in the work of

Cheng et al. [2022].
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CHAPTER 3

THE VEB-BOOST MODEL

3.1 Introduction

Now that we have introduced how to fit a model in which we add Bayesian weak learners

together, we will introduce the ability to also multiply weak learners together. We show

that such a model, with an arbitrary sequence of additions and multiplications of weak

learners, can be fit by solving the weighted Bayesian linear regression sub-problem. Section

3.2 introduces this weighted Bayesian regression problem. Then, we introduce the full VEB-

Boost model in Section 3.3. We discuss how to fit the model with the weighted Bayesian

linear regression, how to adapt the complexity of the fit to the complexity of the signal, and

briefly introduce the Bayesian weak learner that we use for all simulations and benchmarks.

Section 3.4 outlines a few practical considerations: one approach on how to incorporate an

intercept into your weak learners, and a way to use a solver for the homoskedastic Gaussian

case in the heteroskedastic case. Section 3.5 outlines the R-package that implements the

VEB-Boost model, and goes into more detail of the weak learner we used. Finally, Section

3.6 walks through simulated and real-data comparisons with other non-linear/non-parametric

regression methods frequently used with tabular data.

3.2 Weighted Bayesian Regression Problem

Just as how the building-block of the variational additive model was the unweighted Bayesian

regression problem from Section 2.2, the weighted Bayesian regression problem serves as the

building-block for the VEB-Boost model. The weighted Bayesian regression problem is

formalized as
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y = µ+ ϵ (3.1a)

ϵ ∼ N
(
0, diag(σ2)

)
(3.1b)

µ ≡ h(β) (3.1c)

β ∼ g(·) ∈ G. (3.1d)

The only difference between this model and the unweighted Bayesian regression model is

that each observation has its own residual variance captured by σ2 ∈ Rn
++. To keep the

math simple, we will continue to focus on independent observations, but the VEB-Boost

model can easily be extended to the case of correlated observations with known dependence

structure, i.e. ϵ ∼ N (0,Λ−1) for fixed and known precision matrix Λ. For details, refer to

Section A.3.1, which contains the main theorem and proof of this dissertation.

Analogous to the unweighted Bayesian model, we aim to “solve” this Bayesian regression

problem with a function that can estimate a prior distribution ĝ ∈ G using an empirical

Bayes procedure, and then return a variational approximation q∗ ∈ Q to the true posterior

distribution of β, where Q is an arbitrary variational class. And just as before, VEB-Boost

only needs access to Eβ∼q∗ [h(β)], Eβ∼q∗ [h(β)
2], and DKL(q

∗∥ĝ).

Denote the ELBO of this model as:

F0(g, q;y, h,σ
2)

=− n

2
log(2π)− 1

2

n∑
i=1

log(σ2i )−
1

2
Eβ∼q

[∥∥∥diag(1/σ)(y− h(β)
)∥∥∥2

2

]
−DKL

(
q(β)∥g(β)

)
.

(3.2)
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For the purpose of compact notation, let

FIT (y, h,σ2,G,Q)

:=

(
argmax
g∈G,q∈Q

F0(g, q;y, h,σ
2), µ ≡ Eβ∼q∗ [h(β)], µ2 ≡ Eβ∼q∗ [h(β)

2], DKL(q
∗∥ĝ)

)
(3.3)

be a function that maximizes the ELBO with respect to the prior distribution g ∈ G and

variational approximation to the posterior q ∈ Q (with argmax ĝ and q∗, respectively), and

also returns the first and second posterior moments of the weak learner (µ and µ2), as well

as the KL-divergence from q∗ to ĝ.

3.3 The VEB-Boost Model

As in the variational additive model, let a Bayesian weak learner µl ∈ Rn be defined as

hl(βl), where βl ∈ Rpl is a random vector that we place a prior distribution on and for

which we wish to approximate the posterior distribution, and hl : Rpl → Rn is a fixed

function (e.g. hl(βl) := Xlβl for a fixed Xl ∈ Rn×pl).

Using this definition of a Bayesian weak learner, we define a VEB-Boost ensemble learner

recursively as: (i) a Bayesian weak learner, (ii) the element-wise sum of two ensemble learn-

ers, or (iii) the element-wise (i.e. Schur or Hadamard) product of two ensemble learners.

The inclusion of multiplication of weak learners has been explored by others (see, e.g., Fried-

man and Popescu [2008], Kegl and Busa-Feketa [2009], Nalenz and Villani [2018]). We can

leverage our recursive definition to conveniently describe an ensemble learner with a binary

expression tree, where internal nodes represent binary operators to combine the ensemble

learners defined by the left and right sub-trees (“+” or “◦” for addition or multiplication,

respectively), and the leaf nodes represent weak learners. For instance, Figure 3.1 depicts

the ensemble learner (
µ1 ◦ (µ2 + µ3)

)
+ (µ4 ◦ µ5).
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+

◦

µ1 +

µ2 µ3

◦

µ4 µ5

Figure 3.1: VEB-Boost Ensemble Learner Example This tree represents the VEB-

Boost tree structure T (µ1, . . . ,µ5) =
(
µ1 ◦ (µ2 + µ3)

)
+ (µ4 ◦ µ5).

Let T (µ1, . . . ,µL) : Rn×L → Rn be the function that combines the weak learners

µ1, . . . ,µL using the appropriate sequence of additions and multiplications to yield the

desired ensemble learner (e.g. for the ensemble learner in Figure 3.1, T (µ1, . . . ,µ5) :=

(µ1 ◦ (µ2 + µ3)) + (µ4 ◦ µ5)). For now, we will assume T (·) is fixed, but in Section 3.3.3,

we will discuss ways in which T (·) can be “grown” in an adaptive fashion.

Given our response y ∈ Rn, functions hl : Rpl → Rn, expression tree T : Rn×L → Rn,

and residual variance vector σ2, our full model is as follows:

y = T (µ1, . . . ,µL) + ϵ (3.4a)

ϵ ∼ N
(
0, diag(σ2)

)
(3.4b)

µl ≡ hl(βl), l = 1, . . . , L (3.4c)

βl
⊥∼ gl(·) ∈ Gl, l = 1, . . . , L. (3.4d)

Here, gl(·) is the prior distribution of βl, which belongs to a class of distributions Gl. We

can either fix gl(·) by having Gl ≡ {gl(·)} or estimate it with an empirical Bayes procedure.
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Our goals are to estimate the prior distributions gl using an empirical Bayes procedure to

obtain ĝl, and use these estimated prior distributions to calculate the posterior distribution

p(β1, . . . ,βL|y, T, ĝ1, . . . , ĝL, h1, . . . , hL,σ2). (3.5)

3.3.1 Variational Approximation to the Posterior Distribution

Rather than calculating the exact posterior distribution given in equation (3.5), we instead

find a variational approximation. As in the variational additive model, we use the variational

class of distributions that factorize over βl, where each factor in turn belongs to its own

variational class Ql, i.e.

Q =
{
q
∣∣∣ q(β1, . . . ,βL) =

L∏
l=1

ql(βl), ql ∈ Ql

}
. (3.6)

In the VEB-Boost model outlined in equations (3.4a) – (3.4d), there are additional pa-

rameters that must be estimated, e.g. any parameters needed to characterize g1, . . . , gL.

Using the variational empirical Bayes framework outlined in Section 1.1.3, we can combine

the empirical Bayes step and variational inference steps into a unified procedure of max-

imizing the ELBO. Note that the approaches here allow for global parameters θ ∈ Θ to

be included and estimated. For example, if you are using the methods of Carbonetto and

Stephens [2012] (so each weak learner corresponds to the effect of an individual variable)

then the shared prior probability of the effect being 0 is a global parameter which you can

estimate by maximizing the ELBO. However, for simplicity of notation, I exclude such a θ.

Our ELBO now takes the form

F (g1, q1, . . . , gL, qL;y, h1, . . . , hL,σ
2, T ). (3.7)

Thus, our goal to approximate the posterior distribution (3.5) is accomplished by com-
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puting

(ĝ1, q
∗
1, . . . , ĝL, q

∗
L,σ

2) ∈ argmax
gl∈Gl,ql∈Ql,σ

2∈Θ
F (g1, q1, . . . , gL, qL,σ

2;y, h1, . . . , hL, T ). (3.8)

We refer to maximizing this objective function as “solving” the variational empirical Bayes

problem associated with model (3.4).

Note that when optimizing over σ2, we typically either (i) fix it to a pre-specified

value/vector (i.e. Θ = {σ2 : σ2 = η2 for fixed η2 ∈ Rn
++}), or (ii) force σ2 = σ21

for a σ2 > 0 to be optimized over (i.e. Θ = {σ2 : σ2 = σ21 for σ2 > 0}). But there

are other options that I have considered but not yet explored, which I touch upon briefly in

Section 3.7.

3.3.2 Fitting a VEB-Boost Ensemble Learner

The form of the ELBO in the VEB-Boost model is given below, which follows from (1.6):

− n

2
log(2π)− 1

2

n∑
i=1

log(σ2i )−
1

2
Eq

[∥∥∥diag(1/σ)(y − T (µ1, . . . ,µL)
)∥∥∥2

2

]
−

L∑
l=1

DKL(ql∥gl).

(3.9)

Just like how the ELBO of the additive model (when viewed as a function of (gl, ql)

holding everything else fixed) is equal (up to a constant) to the ELBO in the unweighted

Bayesian regression problem where the response is a form of residual, we can view the ELBO

of the VEB-Boost model as being equal to the ELBO in the weighted Bayesian regression

problem where the response and residual variance are a form of residual.

As an illustrative example, consider the simple learner

y = µ1 ◦ µ2 + ϵ, ϵ ∼ N (0, σ2In).
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If we want to fit the weak learner µ2, we can perform element-wise division by µ1 from both

sides, which leaves

y/µ1 = µ2 + ϵ/µ1, ϵ ∼ N (0, σ2In).

It turns out that if we multiply by Eq1 [µ1]/Eq1 [µ
2
1] instead of dividing by µ1 on the left

hand side, and divide by
√
Eq1 [µ

2
1] instead of µ1 on the right hand side, then this is exactly

the correspondence we get between the ELBOs.

Theorem 3.3.1 (VEB-Boost Model ELBO Equivalence). Let

F (g1, q1, . . . , gL, qL;y, h1, . . . , hL,σ
2, T ) denote the ELBO of the VEB-Boost model (3.4),

and let Fl(gl, ql; g−l, q−l,y, h1, . . . , hL,σ
2, T ) denote this ELBO with respect to (gl, ql) while

holding everything else fixed. And let F0(g, q;y, h,σ
2) denote the ELBO from the weighted

regression model (3.1) with response y, residual variance σ2, and mean response µ ≡ h(β).

Then

Fl(gl, ql; g−l, q−l,y, h1, . . . , hL,σ
2, T ) = F0(gl, ql; ỹ, hl, σ̃

2) + c

for a particular ỹ and σ̃2 (given in Theorem 3.3.2), and c is a constant term in (gl, ql).

Corollary 3.3.1.1 (Block Coordinate Maximization of the VEB-Boost Model ELBO). In

the same setting as Theorem 3.3.1,

argmax
gl∈Gl,ql∈Ql

F (g1, q1, . . . , gL, qL;y, h1, . . . , hL,σ
2, T ) = argmax

gl∈Gl,ql∈Ql

F0(gl, ql; ỹ, hl, σ̃
2).

In other words, in order to perform a block coordinate maximization step of the full

ELBO in the VEB-Boost model (3.4) over the prior distribution gl ∈ Gl and variational

approximation ql ∈ Ql, we simply need to be able to solve the weighted Bayesian regression

problem for a single weak learner using the response ỹ and residual variance σ̃2.

Corollary 3.3.1.2 (Gradient of the VEB-Boost Model ELBO). In the same setting as The-

orem 3.3.1, suppose that the prior family Gl and variational family Ql are finite-dimensional
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parametric families. Then

∇gl,qlF (g1, q1, . . . , gL, qL;y, h1, . . . , hL,σ
2, T ) = ∇gl,qlF0(gl, ql; ỹ, hl, σ̃

2),

where ∇gl,ql refers to the gradient with respect to the parameters of the distributions gl ∈ Gl

and ql ∈ Ql.

This means that if one wanted to maximize the ELBO using a first-order method instead

of (block) coordinate maximization, it is sufficient to be able to calculate the gradient in the

context of the weighted Bayesian regression problem.

To derive what exactly ỹ and σ̃2 are, we must first introduce some notation. Recall how

we can represent the arithmetic of the ensemble learner in the form of a binary tree (see

Section 3.3, in particular Figure 3.1). Let s = d1 · · · dK ∈ {0, 1}K represent the path string

from the root of the tree to a node in the tree, where the directions dk are either 0 (for going

left in the tree) or 1 (for going right in the tree). Let the empty path string s = · refer to

the root of the tree, which I sometimes refer to as d0. Let d̄k = 1 − dk indicate switching

directions (i.e. changing a left to a right, or a right to a left). Let νs be the VEB-Boost

ensemble learner whose root node is located at path string s. And let ⊕s ∈ {+, ◦} denote

the operator, + or ◦, at the internal node with path string s.

As a concrete example of this notation in action, in Figure 3.1, the weak learner µ2

can be found at path string s = 010 (starting from the root, we go left-right-left to get to

µ2). Thinking in terms of the recursive definition of a VEB-Boost ensemble learner, we can

represent the tree in terms of µ2 as

ν1 +
(
ν00 ◦ (µ2 + ν011)

)
.

In general, for a weak learner µl at path string s = d1 · · · dK , we can describe the tree in
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terms of µl as

ν d̄1 ⊕·

(
νd1d̄2 ⊕d1

(
νd1d2d̄3 ⊕d1d2 · · · (µl ⊕d1d2···dK−1

νd1d2···dK−1d̄K
) · · ·

))
. (3.10)

This is easy to see once we see the correspondence between starting at a weak learner µl

and working our way up the tree (combining learners as we go), and working from the inside

out of the expression above.

Adding one final piece of notation, for a given operator ⊕ and current variational distri-

bution over ν2 (with first and second posterior moments ν2 and ν22), define

ν1⊕ν2 =


ν1 − ν2, if ⊕ = +

ν1 ◦ ν2

ν2
2

, if ⊕ = ◦.

With this notation established, we now have the ability to describe exactly what ỹ and

σ̃2 are in Theorem 3.3.1:

Theorem 3.3.2 (VEB-Boost Residualized Response and Variance). In the context of The-

orem 3.3.1, consider a weak learner µl with path string s = d1 · · · dK in the VEB-Boost

ensemble learner T (µ1, . . . ,µL). Then the response ỹ we need for equivalence between the

full ELBO and the weighted Bayesian regression ELBO is

ỹ =

(
· · ·
(
(y ⊕·ν d̄1)⊕d1νd1d̄2

)
⊕d1d2 · · · ⊕d1···dK−1

νd1···dK−1d̄K

)
.

In order to get the residual variance to use for this equivalence to hold, let

τ = ◦K−1i=0
⊕d0···di=◦

ν2
d0···did̄i+1

be the Schur product of the second posterior moments of all ensemble learners you get by
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traveling along path string s, and whenever you encounter an internal node with operator ◦,

take the child of that node that is in the opposite direction of µl. Then

σ̃2 = σ2 ◦ 1

τ
.

For a proof of this theorem (in a more general form), refer to the Section A.3.1.

Under this framework, we can also estimate any global parameters θ ∈ Θ. Holding ĝ, q∗

fixed, we can view

Fθ(θ;y, T, h1, . . . , hL, ĝ, q
∗) := F (ĝ, q∗,θ;y, T, h1, . . . , hL).

We can then add a coordinate ascent step to optimize the ELBO with respect to these global

parameters to get θ̂ ∈ Θ. This can be viewed as an EM algorithm in which the E-step is

approximate (see section 3.1.3 of Wang et al. [2020]). The same can be done for σ2.

For each weak learner µl, let FIT :
(
hl,y,σ

2,Gl,Ql

)
→
(
ĝl, q

∗
l ,µl,µ

2
l , DKL(q

∗
l ∥ĝl)

)
be a function that takes in the required input for the weighted Bayesian regression problem

(3.1) and returns the prior estimated by empirical Bayes ĝl ∈ Gl, the approximation to

the posterior q∗l ∈ Ql, the first and second posterior moments of µl under βl ∼ q∗l , and

DKL(q
∗
l ∥ĝl). Combining these fitting functions and Theorems 3.3.1 and 3.3.2 leads to the

coordinate ascent algorithm for maximizing the ELBO with a fixed tree structure T .
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Algorithm 2: VEB-Boost Coordinate Ascent Algorithm (fixed T (·))
Require: Data y; functions hl(·), prior classes Gl, variational classes

Ql, l = 1, . . . , L.

Require: Tree structure T (·); initial variance σ2.

Require: Functions FIT :
(
hl,y,σ

2,Gl,Ql

)
→
(
ĝl, q

∗
l ,µl,µ

2
l , DKL(q

∗
l ∥ĝl)

)
that

solve the weighted Bayesian regression problem; see Corollary 3.3.1.1

1 Initialize posterior means µl,µ
2
l , for l = 1, . . . , L;

2 Initialize variance vector to σ̂2 := σ2;

3 repeat

4 for l in 1, . . . , L do

5 Compute (ỹ, σ̃2) given T,y, σ̂2,µk,µ
2
k, k ̸= l; // see Theorem 3.3.2

6 (ĝl, q
∗
l ,µl,µ

2
l , DKL(q

∗
l ∥ĝl))← FIT (hl, ỹ, σ̃

2,Gl,Ql);

7 Update σ̂2; // optional;

8 until convergence criterion satisfied ;

9 return q∗1, . . . , q
∗
L.

Using the formulation of the ELBO given in equation (3.9), it is easy to see that if we

are restricting σ2 = σ21, then we can maximize the ELBO with respect to σ2 by setting

σ̂2 := 1
n

(
T2 − 2Ty − y2

)
, where T and T2 are the first and second posterior moments of

the entire ensemble learner.

3.3.3 Growing the VEB-Boost Ensemble Learner

Up to now, we have treated the tree structure T as fixed; this is anologous to fixing the

number of decision trees and their depths in a boosting ensemble before fitting. However,

in many cases it is beneficial to “grow” the tree T in such a way that the overall fit to the

data is improved; this is analogous to sequentially adding more trees and splits to a boosting

ensemble until some heuristic is met.
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In the boosting framework, if the fit currently has L weak learners, µ1, . . . ,µL, and you

wish to add another, this can be viewed as splitting the last weak learner into the sum of

two weak learners, i.e. changing µL into µL + µL+1, and then fitting µL+1.

Using this view as motivation, we propose a similar weak learning splitting scheme to

grow the tree structure T , but allow for the possibility of multiplying weak learners as well.

At each step we wish to grow the tree T , we propose splitting each learner µl into one of

the following: (i) µl + νl,1; (ii) µl ◦ νl,2; or (iii) (µl ◦ νl,2) + νl,1, for new weak learners

νl,1 (initialized to identically 0) and νl,2 (initialized to identically 1). We then proceed with

Algorithm 2 using this new tree structure, but initialize the posterior moments from the

existing weak learners with their moments at convergence from the previous tree structure.

This can be viewed as warm-starting the optimization problem of maximizing the ELBO

using the new tree structure obtained after this splitting procedure.

Another way to look at this is to note that our VEB ensemble learner is invariant to (i)

adding a weak learner that is identically 0 to any weak learner µl, (ii) multiplying by a weak

learner that is identically 1 to any weak learner µl, or (iii) any combination of (i) and (ii).

So we can pretend that there are “hidden” learners that are adding 0 and multiplying by 1.

Then, as we grow the tree, we “activate” these suppressed weak learners by extending their

prior class from being a fixed constant (0 or 1) to a non-degenerate prior class like the other

weak learners. Assuming that the constant fits of 0 and 1 are part of the non-degenerate

prior class we assign to them (which is almost always the case), then this can be viewed as

an ascent step that can only increase the ELBO.

When determining which weak learners we should consider splitting when growing the

tree, the empirical Bayes portion of the framework suggests an intuitive rule. When we look

at each weak learner’s fitted prior distribution ĝl at convergence, if the weak learner is close

to being a constant value (e.g. V arβl∼ĝl(βl) ≈ 0 or V arβl∼ĝl(hl(βl)) ≈ 0), then we can

“lock” this weak learner and not split it when growing the tree, since the portion of the
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overall fit that this area of the tree captures is likely not going to improve by making it more

complex. For weak learners that are not essentially a constant, we propose splitting them

since the fit is likely to improve by such a split. We can then continue to grow the tree in

this way after each round of convergence in Algorithm 2 until each weak learner that we

could add would be essentially a constant, or the ELBO does not appreciably increase by

splitting the weak learners.

3.4 Some Practical Considerations

In this section, we outline a few practical considerations. These may prove useful for prac-

titioners who wish to implement their own weighted linear regression weak learners. First,

we talk about one way to include an intercept with each weak learner. And second, we show

how to use a homoskedastic linear regression solver in the setting with arbitrary Gaussian

errors.

3.4.1 Including an Intercept in a Linear Weak Learner

Most regression models include an intercept term and/or additional covariates that can be

thought of as nuisance parameters (e.g. including the sex, age, top 10 genotype princi-

pal components, etc in a genome-wide association study, Price et al. [2006]). When using

Bayesian regression methods, we often choose not to penalize these coefficients as strongly,

and instead put a flat prior on them (Liseo [1993]). As a practical matter, when only dealing

with an intercept, this can be accomplished by centering the response y and all columns of

the design matrix X; such an approach can be motivated by integrating out the intercept

under a flat prior (Chipman et al. [2001]). However, doing this centering step once at the

beginning is not suitable for our purposes, because

i) the residual variance for each weak learner is heteroskedastic; and

ii) the residual variance changes each time we fit a weak learner due to the other learners
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changing.

My recommendation on how to incorporate an intercept and/or additional covariate

effects in a linear weak learner is motivated by the above approach, but tailored to the VEB-

Boost setting where the variance is heteroskedastic and constantly changing. I re-write the

weighted Bayesian regression problem below, but now include an intercept and other effects

we wish to put a flat prior on, δ ∈ Rq, along with a covariate matrix Z ∈ Rn×q (e.g. for just

an intercept, Z is a column of 1’s).

y = Xβ + Zδ + ϵ (3.11a)

β ∼ g(·) ∈ G (3.11b)

ϵ ∼ N (0,Λ−1) (3.11c)

δ|β ∼ δy−Xβ (i.e. a point-mass at y−Xβ), (3.11d)

where

y = (ZTΛZ)−1ZTΛy and X = (ZTΛZ)−1ZTΛX. (3.11e)

To serve as motivation, consider the model above, but instead, place a Jeffreys prior on

δ|β (which will be an improper prior ∝ |ZTΛZ|1/2 ∝ 1). Now, we can marginalize δ out of

the likelihood. Doing so, and carrying out the algebra, we get:
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P (y|X,β,Λ) =

∫
P (y|X,β,Λ, δ)P (δ|β)dδ

∝
∫

(2π)−n/2|Λ|1/2 exp
{
− 1

2
(y−Xβ − Zδ)TΛ(y−Xβ − Zδ)

}
dδ

= (2π)−n/2|Λ|1/2 exp
{
− 1

2
(y−Xβ)TΛ(y−Xβ)

}
·
∫

exp
{
− 1

2

[
δT (ZTΛZ)δ − 2δTZTΛ(y−Xβ)

]}
dδ

= [Let Λ̂ := ZTΛZ]

= (2π)−n/2|Λ|1/2 exp
{
− 1

2
(y−Xβ)TΛ(y−Xβ)

}
·
∫

exp
{
− 1

2

[(
δ − Λ̂

−1
ZTΛ(y−Xβ)

)T
Λ̂
(
δ − Λ̂

−1
ZTΛ(y−Xβ)

)]}
· exp

{1
2
(y−Xβ)TΛZΛ̂

−1
Λ̂Λ̂
−1

ZTΛ(y−Xβ)
}
· |Λ̂|

1/2

|Λ̂|1/2
dδ

∝ (2π)−n/2|Λ|1/2 exp
{
− 1

2
(y−Xβ)T

(
Λ−ΛZΛ̂

−1
ZTΛ

)
(y−Xβ)

}
.

Focusing on the matrix in the exponential term, we can simplify it as

Λ−ΛZΛ̂
−1

ZTΛ =
[
In −ΛZ

(
ZTΛZ

)−1
ZT
]
Λ

=
[
Noting that

[
In −ΛZ

(
ZTΛZT

)−1
ZT
]
is idempotent

]
=
[
In −ΛZ

(
ZTΛZT

)−1
ZT
][
In −ΛZ

(
ZTΛZT

)−1
ZT
]
Λ

=
[
In −ΛZ

(
ZTΛZT

)−1
ZT
][
Λ−ΛZ

(
ZTΛZT

)−1
ZTΛ

]
=
[
In −ΛZ

(
ZTΛZT

)−1
ZT
]
Λ
[
In − Z

(
ZTΛZT

)−1
ZTΛ

]
= [P := In − Z

(
ZTΛZT

)−1
ZTΛ]

= PTΛP.
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Thus, turning back to simplifying the marginal likelihood, we get

(2π)−n/2|Λ|1/2 exp
{
− 1

2
(y−Xβ)T

(
Λ−ΛZΛ̂

−1
ZTΛ

)
(y−Xβ)

}
∝(2π)−n/2|Λ|1/2 exp

{
− 1

2
(y−Xβ)TPTΛP(y−Xβ)

}
=N

(
Py ; PXβ, Λ−1

)
.

So marginalizing out δ leaves us with a likelihood that is proportional to the likelihood of

observing Py coming from a Gaussian with mean PXβ and precision Λ. Expanding ỹ := Py

and X̃ := PX, we get

ỹ = Py = y− Z
(
ZTΛZT

)−1
ZTΛy = y− Zy

and

X̃ = Xy = X− Z
(
ZTΛZT

)−1
ZTΛX = X− ZX.

This means that in order to fit the model, we can use response ỹ and design matrix X̃

and ignore δ and Z. We can also confirm that δ|β ∼ N
(
y−Xβ, (ZTΛZ)−1

)
.

Note that if Z = 1 (i.e. there are no covariates, only an intercept) and Λ is diagonal, then

this amounts to centering y by subtracting its weighted mean and centering each column

of X by subtracting its weighted mean, where the weights are the diagonal elements of Λ

(i.e. the precisions of the observations). And then the posterior mean of δ|β is equal to the

weighted mean of y - (vector of weighted column means from X)Tβ.

With the above result, one might be tempted to use such a Jeffreys prior on δ|β. However,

in my initial experiments, this occasionally resulted in convergence issues (e.g. the ELBO

wasn’t increasing at every step, and/or some infinite or NA variances arose in the fitting

procedure). To circumvent this issue, I have taken the approach outlined in equation (3.11),

which has the conditional distribution of δ|β being a point-mass at y − Xβ, which is the
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conditional mean we get in the Jeffreys prior case. Doing so allows us to still slot in ỹ and

X̃ into our weighted Bayesian regression solver and ignore Z. The only difference is how we

compute the posterior second moment of our observations.

3.4.2 Using a Homoskedastic Linear Solver on Arbitrary Noise Gaussian

Data

Since the VEB-Boost model requires a weak learner “solver” for the weighted Bayesian

regression problem given in (3.1), it may seem that the practitioner has to fully derive a new

solution entirely separate from a solver for the unweighted (i.e. homoskedastic) case. But

it turns out that if we are fitting a linear model, the solver for the homoskedastic case can

be used to find the solution! We can even use the homoskedastic solver in the context of

arbitrary (possible correlated) Gaussian errors.

Suppose that our data follows the linear model

y = Xβ + ϵ.

But now, let ϵ ∼ Nn(0,Λ
−1) for an arbitrary full-rank precision matrix Λ ∈ Sn

++. We can

write the log-likelihood of this model as

l(y;X,β,Λ) = −n

2
log(2π) +

1

2
log |Λ| − 1

2
(y−Xβ)TΛ(y−Xβ) (3.12a)

= −n

2
log(2π) +

1

2
log |Λ| − 1

2
(y−Xβ)TΛ1/2Λ1/2(y−Xβ) (3.12b)

= −n

2
log(2π) +

1

2
log |Λ| ± 1

2
log |In|

− 1

2
(Λ1/2y−Λ1/2Xβ)T In(Λ

1/2y−Λ1/2Xβ). (3.12c)
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Up to a constant in β, we can recognize this as the likelihood for the model

ỹ = X̃β + ϵ̃,

where ỹ := Λ1/2y, X̃ := Λ1/2X, and ϵ̃ ∼ Nn(0, In); in particular, if

Λ = diag(1/σ21, . . . , 1/σ
2
n), then this corresponds to ỹi = yi/σi and x̃Ti = xTi /σi (i.e. scaling

observations and rows by their corresponding standard deviations). Thus, one can simply

use their homoskedastic solver with response ỹ, design matrix X̃, and residual variance

σ2 ≡ 1 in order to solve this problem. In the literature, this is referred to as the “whitening”

transformation (see, e.g., Kessy et al. [2018]).

While the current VEB-Boost package does not implement the case of correlated errors,

it is straightforward to extend the full model to this case. However, in order for VEB-Boost

to avoid taking matrix inverses and/or performing costly matrix factorizations, a solver that

is designed to be able to handle correlated errors should take in as inputs: X, Λ, and Λy

(instead of y). This is often a straight-forward task in the context of a linear model. To see

this, note that

q(β = c) ∝ exp
{
log g(c) + log p(y|X,β = c)

}
∝ exp

{
log g(c)− 1

2
(Λ1/2y−Λ1/2Xc)T In(Λ

1/2y−Λ1/2Xc)
}

∝ exp
{
log g(c)− 1

2
cTXTΛXc+ cTXTΛy

}
,

which we can calculate if we know X, Λ, and Λy.

This modification allows us to avoid taking the matrix inverses needed to calculate the

necessary pseudo-response and -precision to use when fitting a weak learner (see the proof

for Theorem A.3.1). The VEB-Boost machinery can, in principle, then keep track of Λ

and Λy for each node in the ensemble learner instead (although again, this is not currently

implemented in the R package).
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3.5 The VEB-Boost R Package

Much of my time has been spent developing and refining the VEB-Boost R package, available

via github (https://github.com/stephenslab/VEB.Boost, version 0.0.0.9038 at the time

of this writing). My efforts fall into two main categories: (i) implementing the VEB-Boost

algorithm, and (ii) implementing a default Bayesian weak learner.

3.5.1 Implementing the VEB-Boost Algorithm

In my implementation, I chose to utilize the (block) coordinate ascent fitting procedure

outlined in Corollary 3.3.1.1 and Algorithm 2. I did play around with the gradient-based

version mentioned in Corollary 3.3.1.2, but the algorithm proved to be impractical. In

particular, the step-sizes being taken were near 0, causing a slew of issues. Although one

could definitely dig into this further and attempt to solve these issues, I have decided to

stick with the coordinate ascent method, as it appears to perform fairly well.

As for the residual variance, I have taken the approach of assuming each observation has

the same variance σ2. And in each iteration of the algorithm, we update our estimate of σ2.

This approach may be too restrictive for real-world data, and I have considered a few other

approaches (mentioned in 3.7), but have not yet implemented/tested them.

User-Supplied Inputs

Since such a large part of the appeal to the VEB-Boost algorithm is the modularity that it

admits, I attempted to keep the package true to this feature. As a result, all the practitioner

must provide is a Bayesian weak learner object. The requirements for such an object are:

1. A function that can solve the weighted Bayesian regression problem from (3.1) for their

choice of function h : β → µ, prior class G, and variational class Q. Concretely, we

require a function fitFunction that takes in as input:
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• X: a “predictor” object that the function knows how to use, most likely a design

matrix;

• Y: a vector in Rn of responses;

• sigma2: a vector in Rn
++ of observation-specific variances;

• currentFit: the output from the previous call to fit function, possibly used

for warm-starting a part of the fitting procedure.

As output, the function must return a list containing:

• mu1 : a vector in Rn containing the first posterior moments of each observation,

i.e. Eq∗ [h(β)] for the newly fit approximation to the posterior q∗;

• mu2: a vector in Rn containing the second posterior moments of each observation,

i.e. Eq∗ [h(β)
2] for the newly fit approximation to the posterior q∗;

• KL div: DKL

(
q∗∥ĝ

)
, i.e. the KL-divergence from the newly fit approximation to

the posterior q∗ to the estimated prior ĝ;

• any other values that must be saved in order to describe the fitted approximation

q∗ and predict on new data;

2. A function that can take a predictor object and fitted approximate posterior q∗, and

calculate the first or second posterior moments of the observations. Concretely, we

require a function predFunction that takes as input:

• X new: a “predictor” object that the function knows how to use, most likely a

design matrix. This may or may not be the same as what was used for training,

i.e. this can be “test data”;

• currentFit: the output from a call to fit function;

• moment: either 1 for calculating the first posterior moment, of 2 for calculating

the second posterior moment.
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As output, the function simply returns a vector in Rm, where m is the number of

observations that X new contains;

3. A function that can take a predictor object and fitted approximate posterior q∗, and

says whether the fit is close enough to being a constant. Concretely, we require a

function constCheckFunction that takes as input:

• currentFit: the output from a call to fit function;

• Anything else required to test if the fit is a constant, e.g. a hyper-parameter.

As output, the function simply returns TRUE or FALSE;

4. A predictor object X used for training. The only restriction with this is that the

supplied fitFunction has to know how to use it as an input. In essence, this captures

the data-specific components of the function h;

5. A predictor object X test used for testing. This can be NULL;

6. A string growMode which determines how new nodes are grown in the tree. This can

be one of:

• "+*": This changes each weak learner from µ to (µ ◦ ν2) + ν1;

• "+": This changes each weak learner from µ to µ+ ν1;

• "*": This changes each weak learner from µ to µ ◦ ν2;

• "NA": This is what’s used when the weak learner is not to be grown;

7. A logical changeToConstant, which tells the algorithm whether we want to change

weak learners that are essentially constant (as determined by the supplied

constCheckFunction) to be fit as a constant rather than with the supplied

fitFunction.
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With all of these components packaged into a list, the practitioner simply needs to supply

it, along with the response Y, to the R function veb boost. There are a few other optional

inputs, such as the initial tree structure T (·) of the ensemble learner, but I leave those in

the package’s documentation for interested parties. You can also tell it which type of data

you’re dealing with; see Chapter 4 for more details on which types of data are supported.

The R-package handles the work that calculates the pseudo-response and pseudo-variance

each weak learner needs to fit.

Memory Usage

One computational downside to the current VEB-Boost implementation is that it can be

memory-hungry, especially with large sample sizes and strong signals in the data. The

package stores the ensemble learner as a tree object, as depicted in Figure 3.1. In addition

to the memory needed to store each variational approximation ql, each node (both internal

and leaf) stores the first and second posterior moments for the learner you get if you take

that node to be the root of the learner. While this helps reduce computation time, it requires

potentially a lot of memory. In particular, if you have L weak learners, then the tree has

2L−1 total nodes, and thus the storage requirements for storing these intermediate moments

is O(nL), where n is the sample size of the training data.

I briefly considered porting the meat of the package over to C++ and re-implementing

it without storing these intermediate moments; and then when you need to calculate them,

do so in parallel using OpenMP tasks in order to reduce the computation time. However, I

have not done so at this time, and do not have any current plans to do so.

3.5.2 Implementing a Default Bayesian Weak Learner

Aside from implementing the VEB-Boost algorithm, I have implemented a default weak

learner which seems to work fairly well, accessible in the R function veb boost stumps. This
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weak learner is a slightly modified version of the single effect regression outlined in Section

2.2.1; we implement the single effect regression (see equation (2.4)) where our data is encoded

as a catenation of the standard linear basis, as well as a step-function (i.e. “stumps”) basis

(see Wang et al. [2020] and Tibshirani [2014]).

In short, our weak learner can be described as being a distribution of selecting a single

linear term or decision stump, where the stumps are defined by different cut-points in our

linear predictors. Using sums/products of stumps has been attempted before in some forms

(see, e.g., Friedman and Popescu [2008], Kegl and Busa-Feketa [2009], Nalenz and Villani

[2018]). However, to the best of our knowledge, no one has allowed for an arbitrary sequence

of additions and multiplications of stumps, and no one has done so using variational inference.

As further justification for this weak learner, it is easy to show that the product of stumps

(each containing their own intercept term) results in a balanced decision tree, sometimes

referred to as an “oblivious” decision tree (see Figure 3.2 for an example). This is the basic

building-block of CatBoost (Prokhorenkova et al. [2018]), one of the three main gradient

boosting packages used by machine learning practitioners. Our decision to also include

linear terms stems from both ease of implementation, as well as experimental evidence that

doing so typically improves performance.

It is worth noting that while the product of two stumps will necessarily be a balanced

decision tree of depth two, not every balanced decision tree of depth two can be represented

as the product of two stumps. For example, consider the balanced decision tree that describes

the XOR function between two rules, R1 and R2. Looking at the structure of the balanced

tree in Figure 3.2, this would mean that the predictions in each leaf node, going from left to

right, would be: 0, 1, 1, 0. This would mean that either α1 = 0 or α2 = 0 for the first leaf

to be 0, and either α1+ β1 = 0 or α2+ β2 = 0 for the last leaf to be 0. But this means that

at least one of the second and third leaves must also be 0, whereas we wanted them to be 1.

Thus, while the XOR function is a balanced decision tree, it cannot be represented as the
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R1

R2

α1 · α2

N

α1 · (α2 + β2)

Y

N

R2

α2 · (α1 + β1)

N

(α1 + β1) · (α2 + β2)

Y

Y

Figure 3.2: Balanced Decision Tree as the Product of Decision Stumps The decision

tree above represents the product of two decision stumps: (α1 + β1R1) · (α2 + β2R2). Here,

R1 and R2 are the rules of the stump, e.g. R1 = IXij≥cj . Going left in the decision tree

means that the rule is not satisfied (so the indicator function evaluates to 0), and going right

means that the rule is satisfied (so the indicator function evaluates to 1).

product of two stumps. However, if we allow additions as well, then we can easily represent

the XOR function as R1 +R2 − 2R1R2 = R1(1− 2R2) +R2.

Suppose you have a design matrix X ∈ Rn×p. Focusing on a single variable X·j , suppose

for simplicity that there are n distinct values, and the matrix is sorted on those values, i.e.

X1j < · · · < Xnj . Then one could represent this variable in a basis of decision stumps,

resulting in an n× n matrix, call it X
j
stumps. Such a matrix will look something like



0 . . . 0 1

0 . . . 1 1

...
...

. . .
...

1 . . . 1 1


where the first column is IXij≥Xnj

, the second column is IXij≥X(n−1)j
, etc. Thus, each

column represents a decision stump that splits on variable j at a particular cut-point. In

actuality, since the matrix likely isn’t sorted by variable j, you must also multiply this

matrix with a permutation matrix, but such details obfuscate the high-level picture. We can
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do this for all variables j, which lets us transform X→ Xstumps = [X1
stumps| · · · |X

p
stumps].

Our matrix Xstumps is a binary matrix whose columns are indicator functions (i.e. decision

stumps) splitting on a certain variable at a given cut-point.

As an aside, matrix-vector multiplications with a component on the stumps matrix (i.e.

X
j
stumps) can be performed in O(n) time. Looking at the above matrix, it is clear that

the product X
j
stumpsb is related to the cumulative sum of the reverse of b, which can be

computed in O(n) time. And similarly, we do not need to actually store X
j
stumps as an n×n

matrix. This is outlined in Tibshirani [2014]. In practice, we also don’t have to take every

possible cut-point, and the default is to use far fewer than n (⌈min{n/5,max{100,
√
n}}⌉).

By not using all possible cut-points, we are able to save a bit on both computational cost

and memory requirements, as well as ensure that both leaves in each of our stumps has a

minimum number of observations. The curious reader can refer to VEB.Boost R package for

more details.

Once we have our stumps matrix, the final design matrix we use is

Xcombined = [X|Xstumps],

i.e. we combine both the original design matrix (what I refer to as “linear terms”) and the

stumps matrix. And with this final design matrix, the weak learner is just the single effect

regression from Section 2.2.1 using the design matrix Xcombined. The time complexity of

fitting this SER model is O(np).

We also specify the range of the log-prior variance log σ20 from the SER model using

the max log prior var argument, which has a default value of 0. When we perform the

empirical Bayes step to estimate the prior (i.e. estimate σ20), we perform the maximization

only over log σ20 ∈ [−15, max log prior var]. Restricting how large σ20 can be can be

viewed as an additional form of shrinkage beyond the Bayesian computation, and can keep

each weak learner from being too strong. The prior probability vector π in the SER is set

52



up such that there is a specified probability (called lin prior prob in the R function, which

is a parameter the practitioner provides) that the non-zero effect is a linear term. And then

among the linear terms, each term is equally likely, and among the stumps terms, each term

is equally likely.

As an illustrative example, say there are two linear variables; from the first variable we

generate two stumps terms and from the second variable we generate three stumps terms; in

practice, most variables will have many more than just a few stumps, and will only have a

different number of stumps if they have fewer unique values than cut-points. Then if we set

lin prior prob to 0.5 (which is the default in the R package), then the prior probability

vector will be

π = (0.25 0.25 | 0.1 0.1 | 0.1 0.1 0.1)T .

The vertical lines are just there to highlight that the first two probabilities are for the linear

terms, the next two are for the stumps terms from the first variable, and the final three are

for the stumps terms from the second variable.

In words, this weak learner places all of its mass on being either a linear function of a

single variable or a decision stump. The justification for the decision stump portion is that

it is a very simple non-linear function that can be combined to effectively approximate any

function. As mentioned earlier, it is easy to see that the product of decision stumps yields

a balanced/oblivious decision tree, the building block of CatBoost. The justification for the

linear term is that it is still fairly simple and there’s very little additional cost to include

it. And as we will see in the simulation examples, having the linear term allows the VEB-

Boost method with this weak learner to outperform other non-linear regression methods in

a setting with a true linear relationship between the predictors and the response.

I have implemented this weak learner in C++, leveraging the OpenMP framework for its

multi-platform shared memory parallel computation. In particular, I have parallelized the
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matrix computations needed to solve the SER. For an arbitrary matrix partitioned as

X = [X1 | · · · | Xk] ∈ Rn×p,

we can calculate

Xb = [X1 | · · · | Xk]


b1
...

bk

 = X1b1 + · · ·+Xkbk

and

XTy = [X1 | · · · | Xk]
Ty =


XT

1 y

...

XT
k y



for appropriately partitioned vector b =


b1
...

bk

 ∈ Rp and y ∈ Rn.

We can thus calculate the components of these matrix products in parallel (split up by the

matrix partitions) and then combine the results. This allows us to leverage the structure of

the stumps matrices.

Another benefit of this weak learner is that we can provide measure of feature importance

quite easily, since the posterior distribution includes a posterior probability that the effect is

coming from a particular column in the design matrix (call this vector α). The R function

stumpsVariableImportance can take in a fitted VEB-Boost ensemble learner that uses the

above weak learner and can provide some measures of variable importance. For each weak

learner, we can take α and add together the components that correspond to a particular

variable (i.e. add together the posterior probability of the linear term and the stumps terms

for each of the original variables). We now have a new probability vector α′l ∈ ∆p−1 for
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each of our weak learner µl, l = 1, . . . , L. Using these vectors, we can calculate feature

importance measures as:

• Posterior inclusion probabilities (PIPs): This is the posterior probability that a variable

has a non-zero effect anywhere, i.e.

1− P (variable j is not an effect variable in any weak learners) = 1−
L∏
l=1

(1− α′lj);

• Sum of probabilities: We can simply add up the vectors and try to get a sense of overall

importance, i.e.
L∑
l=1

α′lj .

However, as written, there is one obvious improvement that can be made to the above

definitions; not all weak learners are equally important. A quick and easy (and readily

available) way to approximate the importance of a weak learner is to look at DKL(q
∗
l ∥ĝl);

a large value indicates that the weak learner is trying to fit more signal, and a small value

indicates that there isn’t much signal for the learner to fit. Let the KL-divergence for the

l-th weak learner be KLl. Then we can change the above formulae to

1−
L∏
l=1

(1− α′lj)
KLl

and
L∑
l=1

α′lj ·KLl.

As a simple justification for including the KL-divergence in the exponent instead of as a

multiplicative factor in the PIP case, a KL-divergence of 0 for a weak learner l would results

in an unchanged PIP when exponentiating but a PIP of 0 when multiplying.
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3.6 Examples

In this section, I present results from both a simulation study, as well as from a real dataset

benchmarking analysis. All examples were run on the Midway2 high-performance computing

platform at the University of Chicago, which uses Intel E5-2680 v4 CPUs. I set up each node

with 8 CPUs and 48 GB of RAM. Version 0.0.0.9038 of VEB.Boost was used.

3.6.1 Simulation Study

In this subsection, I present the results from a small simulation study. I generate independent

observations according to the following model:

yi = f(xi) + ϵi.

Here, f(x) is one of four functions:

1. Friedman’s 5-dimensional test function

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5;

2. Max test function

f(x) = max{x1, x2, x3};

3. Linear test function

f(x) =
10∑
j=1

4

(
j − 1

9
− 1

2

)
;xj

4. Null test function

f(x) = 0.

And ϵi ∼ N (0, σ2), where σ2 is set such that the proportional of variance explained
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(PVE) is either 0.1 or 0.5. PVE is defined as

PV E =
V ar

(
f(x)

)
V ar

(
f(x)

)
+ σ2

.

In the case of the null test function, since PVE is 0 regardless of the noise level, I use the

noise level σ2 = 9 instead of PVE = 0.1, and σ2 = 1 instead of PVE = 0.5.

To generate the design matrix X ∈ Rn×p, I simulated xij
iid∼ Unif(0, 1) in the case of

Friedman’s function, and xij
iid∼ N (0, 1) otherwise.

The machine learning methods I considered in this simulation study were:

• “BART”: Bayesian Additive Regression Trees (Chipman et al. [2010])

I used the R package dbarts, with a burn-in of 1000 samples and 5000 posterior

samples. In the case where n = p = 1000, the R function gives an error unless I supply

it with a residual standard deviation. In this case, I supplied the function with the

true residual standard deviation. All other parameters were left at their default values;

• “XBART”: Accelerated Bayesian Additive Regression Trees (He et al. [2019])

I used the R package XBART (available at https://github.com/JingyuHe/XBART).

Following the recommendations in the paper and github code, I set num trees to be

⌈0.25 log(n)log log n⌉, tau to 0.3Var(Y) / num trees, num sweeps to 40, burnin to 15,

alpha to 0.95, beta to 1.25, and num cutpoints to max{100,
√
n};

• “xgBoostCV”: XGBoost with cross-validation (Chen and Guestrin [2016])

I used the R package xgboost. I performed 5-fold cross-validation over a relatively

small parameter grid: (max depth, eta, min child weight) ∈ {2, 4, 8} × {0.1, 0.3} ×

{1, 5, 10}. I also set nrounds to 10000, early stopping rounds to 50, gamma to 0.1,

colsample bytree to 0.8, subsample to 0.8, and nthread to 8;

• “VEBBoost”: VEB-Boost with default settings
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I simply set nthreads to 8;

• “VEBBoostBig”: VEB-Boost with a larger initial ensemble learner

I set nthreads to 8, k to 16, and d to sample(c(rep(1, 6), rep(2, 4), rep(4,

4), rep(8, 2))), i.e. I started the ensemble learner as the product of 8 learners in

a randomized order, of which 6 were a single weak learner, 4 were the product of 2

weak learners, 4 were the product of 4 weak learners, and 2 were the product of 8 weak

learners.

I ran 5 replicates each of all combinations of (n, p, PV E, test function) ∈

{1000, 10000, 100000} × {10, 100, 1000} × {0.1, 0.5} × {friedman,max, linear, null}. One

thing to note is that for n = 100000, p = 1000, XGBoost’s built-in cross-validation function,

xgb.cv, ran out of RAM when run with multiple threads and ran out of time when run

with a single thread, and so there are no results for this combination of inputs. This could

introduce some bias into the results and conclusions.

To evaluate the performance of the methods, I used the relative root-mean-squared-error

(RRMSE). The root-mean-squared-error (RMSE) is defined as

√√√√ 1

ntest

ntest∑
i=1

(
f̂(xnewi )− f(xnewi )

)2
, (3.13)

where we are summing over unseen testing observations that were generated in the same

way as the training observations, f̂(·) is the fitted function returned by the algorithm, and

f(·) is the true mean response function. For the Bayesian methods, the posterior mean is

used as the estimated function value. Note that we are comparing with the true mean of the

new observations and are not taking into account any noise; this is to highlight the methods’

abilities to recover the true underlying mean.
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RMSEA
minA′ RMSEA′

, (3.14)

where the minimum in the denominator is taken over all algorithms tested for that particular

simulation dataset.

I also use the running time of the algorithms to compare how fast they are. When the

presented times are relative, they are relative to the fastest algorithm for that particular

dataset.

I use two different types of plots to present the results. The first type is a boxplot; for

a particular combination of (n, p, PV E, test function), we make a boxplot from the 5 runs

where each method gets its own box. We show boxplots for the Friedman test function as

an illustrative example; boxplots for the other test functions are provided in Section A.2.1,

Figures A.1 through A.6. The second type of plot shown is a profile plot (Dolan and Moré

[2002]); this is just a plot of the empirical CDF of the metric for the given algorithm.

Results are presented below in Figures 3.3 through 3.6. In general, VEB-Boost appears to

be quite competitive in these simulations, both in terms of performance and running times.

We are also able to see how VEB-Boost’s running time scales with the strength of the signal

in the dataset.
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Figure 3.3: Friedman’s Function Relative RMSE This plot shows the relative RMSE

of the methods tested using Friedman test function. We can see that, on the whole, the

VEB-Boost methods frequently outperform both BART and cross-validated XGBoost (and

when they don’t, they aren’t much worse); only XBART appears to be a competitor in this

simulation.
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Figure 3.4: Friedman’s Function Running Time in Seconds, log2 scale This plot

shows the running time of the methods tested using Friedman’s test function. We see that

VEB-Boost is often the fastest method, and starting with a larger learner usually increases

the overall running time. We also see that VEB-Boost is relatively faster when the PVE is

0.1 vs. when the PVE is 0.5. This makes sense, since BART and XBART are set a priori to

run a certain number of iterations, whereas VEB-Boost keeps running and growing until it

can’t find any more signal. Thus, it will terminate faster in the higher noise setting, which

is what we see above. This is also why there is a larger spread in the observed running times

for VEB-Boost as compared with the others.
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Figure 3.5: Relative RMSE Profile Plot This plot shows the empirical CDFs of the

relative RMSE combining all values of n and p, but broken out by test function and PV E.

We can see that in the linear and null test cases, VEB-Boost dominate the other methods.

And in the Friedman and max test cases, XBART appears to have a slight edge over VEB-

Boost, with the exception of the Friedman test function in the strong signal setting. We also

see that, on the whole, VEB-Boost starting with a larger learner performs slightly better

than starting with a single weak learner.
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Figure 3.6: Relative Time Profile Plot, log2 scale This plot shows the empirical CDFs

of the relative running times, on a log2 scale, combining all values of n and p, but broken

out by test function and PV E. We can see that VEB-Boost wins for all cases except for the

Friedman and max test functions in the strong signal setting, where it is roughly tied and

loses to XBART, respectively. We also see that, on the whole, VEB-Boost starting with a

larger learner is slower than starting with a single weak learner.
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3.6.2 Real Dataset Comparison

To test out these methods on real data, I have used the AutoML regression benchmark

datasets available through OpenML (https://openml.org/search?type=benchmark&sort=

tasks_included&study_type=task&id=269). A total of 25 datasets from this list were used

in the benchmarks; a full list can be found in the Appendix in Table A.1. For each dataset,

I also added either 0, 100, or 1000 synthetic null variables simulated as iid N (0, 1). This was

to test out the methods in higher-dimensional/sparse settings as well, since some datasets

had n ≫ p. As before, some algorithms could not be run with additional variables due to

the data being too large, so only results that include all algorithms are included.

Since the datasets did not come with pre-defined test/train splits, I opted to split each

dataset into 5 folds and calculate the RMSE obtained by having each fold serve as the test

set. That is, I partitioned each dataset into 5 disjoint folds, trained each model leaving a

fold out, and then getting the RMSE when evaluated using that fold.

Results are presented below in Figures 3.7 through 3.10. VEB-Boost’s performance is not

quite as good as it appeared in the simulations. I hypothesize a few possible explanations in

the discussion section to this chapter in Section 3.7.

64

https://openml.org/search?type=benchmark&sort=tasks_included&study_type=task&id=269
https://openml.org/search?type=benchmark&sort=tasks_included&study_type=task&id=269


extra_vars: 0
extra_vars: 100

extra_vars: 1000

1.00

1.25

1.50

1.75

2.00

1.00

1.25

1.50

1.75

2.00

1.00

1.25

1.50

1.75

2.00

R
el

at
iv

e 
R

M
S

E BART

VEBBoost

VEBBoostBig

XBART

xgBoostCV

Observatiosn with RRMSE > 2 have been excluded from this plot

Relative RMSE for OpenML's AutoML Benchmark Regression Datasets

Figure 3.7: OpenML AutoML Regression Benchmarks Relative RMSE This plot

shows the relative RMSEs for each method among all folds of all datasets, broken out by

how many extra null variables were added. Observations with a RRMSE > 2 have been

excluded for visual purposes. We can see that cross-validated XGBoost appears to be the

best, followed closely by BART and VEB-Boost with a larger starging learner. We also see

XGBoost’s advantage start to disappear in the bottom row, where we’ve added 1000 null

variables to each dataset.
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Figure 3.8: OpenML AutoML Regression Benchmarks Relative Time, log2 scale

This plot shows the relative running times on a log2 scale for each method among all folds

of all datasets, broken out by how many extra null variables were added. We can see that

XBART is typically among the fastest, and that VEB-Boost is more competitive in the cases

where we add more null variables.
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Figure 3.9: OpenML AutoML Regression Benchmarks Relative RMSE Profile

Plot This plot shows the empirical CDFs of the relative RMSE on a log2 scale for each

method among all folds of all datasets, broken out by how many extra null variables were

added. Agreeing with Figure 3.7, we see that XGBoost is the winner is most cases. But

as we add more null variables, VEB-Boost starts to become more competitive. We also see

that there were a few cases of extremely poor relative performance; I briefly touch on this in

Section 3.7.
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Figure 3.10: OpenML AutoML Regression Benchmarks Relative Time Profile Plot

This plot shows the empirical CDFs of the relative running times on a log2 scale for each

method among all folds of all datasets, broken out by how many extra null variables were

added. We can see that VEB-Boost is in the middle of the pack, and starts to over-perform

in the case with 1000 additional null variables. We also see that XGBoost can have some

very long relative run-times with additional null variables added.
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3.7 Discussion

In this chapter, we have laid out the core of this dissertation: the VEB-Boost model. We have

built it up as an extension from the variational additive model from chapter 2 by allowing

for the multiplication of weak learners. We have shown that performing (block) coordinate

ascent updates can be achieved by solving the simpler weighted Bayesian regression sub-

problem from Section 3.2. We also briefly went over the R package that implements the

VEB-Boost framework, as well as a few useful weak learners; in particular, we describe the

SER learner that uses both linear and stumps terms. Finally, we concluded with a simulation

study and some real-world examples.

Looking at the simulations, we see that there truly is no “free lunch,” i.e. there is never

going to be a single algorithm that consistently outperforms the others. In this idealized

scenario, BART appears to be the loser. But this could just be due to MCMC convergence

issues, which are hard to detect/diagnose, or because vanilla BART does not have any sense

of sparsity in the prior. On the flip-side, we see that VEB-Boost and XBART are usually

at the top, with cross-validated XGBoost not far behind. We also see that in some settings

(e.g. the linear and null test functions), VEB-Boost’s performance greatly exceeds that of

the other methods tested. This could indicate that VEB-Boost is more conservative than

the other methods, in the sense that it is more than happy to fit the data with a simpler fit

(e.g. linear) or no fit at all (e.g. null).

In terms of run-time, we see that VEB-Boost compares quite favorably to the others. We

also see that VEB-Boost is able to run faster in the higher noise settings, since the empirical

Bayes nature allows it to scale with the signal strength. But due to the fact that VEB-Boost

is an iterative algorithm that doesn’t run for a fixed number of iterations, the run-times are

much more variable, and can occasionally go on for quite some time. But since VEB-Boost

uses CAVI (i.e. solves an optimization problem using coordinate ascent), then conceivably

the algorithm could be terminated at any time to give an approximate solution.
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Turning to the real-world datasets, we see that cross-validated XGBoost and BART

make their way up to the top in terms of performance. Meanwhile, XBART appears to

struggle in these examples. And VEB-Boost is slightly worse than BART and XGBoost, on

average. I have a few theories as to why VEB-Boost’s performance diminished compared to

the simulation study:

• Many of these datasets contains categorical variables, for which I used one-hot encod-

ing. It is possible that VEB-Boost suffers when there are categorical variables with

many levels;

• VEB-Boost makes a somewhat-restrictive homoskedastic Gaussian assumption for the

response, whereas XGBoost doesn’t necessarily make/rely on such an assumption. If

the data deviated from this assumption, any likelihood-based approach could certainly

have issues;

• Some datasets had extreme outliers (some in the predictor space and some in the

response) that I did not remove. It is possible that VEB-Boost is more sensitive to

these extreme outliers than some of the other methods;

• There could be some bias in the datasets. In particular, for the larger datasets, some

algorithms couldn’t be run with additional variables (or even with no additional vari-

ables) with the computational resources provided, and thus these datasets are not

included in the comparison. It’s possible that VEB-Boost would have outperformed

the other methods on the datasets in these settings, but we weren’t able to include it

in the comparison. For example, the implementation of BART I was using couldn’t

handle sparse matrices, which limited the size of the data it could handle.

There are a number of future directions that I would be interested in exploring. First,

we only focused on VEB-Boost with our SER weak learner; I would be interested to test out

other types of weak learners. In particular, I’m curious about:
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• higher-order trend-filtering (Tibshirani [2014]): although easy to implement in ho-

moskedastic cases, some computational difficulties arise in the heteroskedastic setting;

• the weak learner we used earlier for the examples with the variational additive model

in Section 2.4: as a reminder, in this weak learner we pick a single variable and then

fit a non-linear function in that variable alone. This is easy to implement using the

existing software, but would benefit greatly from parallelization;

• a single Bayesian tree fit using MCMC: as I mentioned earlier, it would be interesting

to compare a Bayesian sum-of-trees model made in this way with the other methods,

BART in particular.

Second, I would like to explore alternative ways to estimate the residual variance. There

are two different weak-points that I would like to address:

1. As hypothesized, it is possible that if the data deviates from the constant variance

assumption, then VEB-Boost runs into problems. One idea I had to fix this was to

move away from relying on this assumption, and instead try to fit multiple variances.

There are a few obvious ways one could go about implementing this:

(a) Place an inverse gamma prior of the residual variances for each observation, i.e.

σ2i
iid∼ IG(α, β). We can then perform an empirical Bayes step to estimate α and

β, and include the posterior distributions for σ2i in the variational approximation.

The inverse gamma prior is chosen to maintain conjugacy;

(b) Tell the algorithm that there are k different possible residual variances that each

observation can have, estimate what these variances are, and then assign them

to observations. I believe that this could be achieved with some 1-d clustering

methods. While NP-hard to solve exactly, it should easy to at least increase the

ELBO each iteration;
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2. In some cases, VEB-Boost terminates before the tree gains enough structure to see

the signal. For example, in the noiseless case where yi ≡ xi1 · xi2 (like a continuous

version of XOR), VEB-Boost terminates at the null fit. This is because no variable has

a marginal association with the response. However, if I force the residual variance to

be extremely small, then the algorithm keeps running and is able to eventually learn

the correct function. One idea I had was to start with a very small residual variance

and update it more slowly (e.g. include a momentum term in the coordinate ascent

step for the residual variance). This potentially runs the risk of exposing ourselves to

over-fitting, since the residual variance term controls how much we over/under fit, but

I think this is worth exploring.

And third, I would be interested in trying to optimize the lin prior prob parameter

from the SER we used. Currently, this is a parameter that the user sets (defaults to 0.5).

In some cases, I have observed that the fit can be drastically better (or worse) if this is set

closer to 0 or 1. It would be relatively straight-forward to add this variable into the empirical

Bayes step that estimates the prior distribution when fitting each weak learner.
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CHAPTER 4

MODULARITY WITH NON-GAUSSIAN RESPONSE DATA

AND WEIGHTED OBSERVATIONS

4.1 Introduction

The goal of variational inference – finding an approximation to a posterior distribution –

is usually framed as an optimization problem in which we maximize a lower-bound to the

marginal log-likelihood of the data called the evidence lower-bound (ELBO). Sometimes,

maximizing this lower-bound proves to be too difficult, so instead the practitioner finds a

lower-bound of the ELBO (referred to as a variational lower-bound) and maximizes that

instead. Often times, this variational lower-bound is chosen so that the optimization is

simple (e.g. the “likelihoods” become conjugate). For a brief description, see Blei et al.

[2017].

In particular, if we can find a quadratic lower-bound for the log-likelihood of a given

distribution, then we can utilize our weighted Bayesian regression solvers from Section 3.2.

In other words, we can attempt to approximate data from a non-Gaussian distribution as

coming from a Gaussian distribution, perform an iteration of the VEB-Boost model, and

then update our Gaussian approximations. This is analogous to how weighted least squares

is used in the context of the iteratively reweighted least squares algorithm for solving a

generalized linear model (Nelder and Wedderburn [1972], McCullagh and Nelder [1983]).

Using a lower-bound to the log-likelihood has some desirable properties. Perhaps most

desirably, it is guaranteed that each iteration will be non-decreasing in a lower-bound to

an objective function (i.e. the ELBO), and thus the algorithm is guaranteed to terminate.

However, one could choose to use other quadratic approximations to the log-likelihood, e.g.

using a Taylor series expansion. This could have some benefits too, such as being able

to include distributions with a log-likelihood that cannot be bounded by a quadratic (e.g.
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Poisson with log-link), or having a better approximation in areas of high probability.

While using quadratic bounds has the appeal of being able to use Gaussian solvers, there

are certainly some downsides. In particular, other bounds can often be tighter, and thus

have have better performance (Minka [2001], Knowles and Minka [2011], Marlin et al. [2011]).

While exploring alternate bounds/approaches could definitely be interesting in this setting,

I believe that the modularity afforded by using quadratic approximations is too attractive a

feature to sacrifice, at least at this stage in VEB-Boost’s development.

On the topic of modularity, let T ≡ T (h1(β1), . . . , hL(βL)) be our VEB-Boost learner, ξ

be a vector of variational parameters, and l(β1, . . . ,βL;y, h1, . . . , hL, T ) be the log-likelihood

of our data. Then we want to find a matrix A(y, ξ) ∈ Sn++, a vector b(y, ξ) ∈ Rn, and a

constant c(y, ξ) ∈ R such that we have the following bound indexed by ξ:

l(β1, . . . ,βL;y, h1, . . . , hL, T ) ≥ −
1

2
TTA(y, ξ)T+ b(y, ξ)TT+ c(y, ξ). (4.1)

If we have such a matrix, vector, and constant, then we can approximate our data as being

Gaussian distributed with a meanT, precision matrixA(y, ξ), and responseA(y, ξ)−1b(y, ξ),

which we can fit with the existing VEB-Boost machinery made for the Gaussian case. We

can then maximize the lower bound to the ELBO with respect to the variational parameters

ξ at the end of each iteration.

The general CAVI algorithm is outlined below in Algorithm 3.
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Algorithm 3: Coordinate Ascent Algorithm (Non-Gaussian data, fixed T (·))
Require: Data y; functions hl(·), prior classes Gl, variational classes

Ql, l = 1, . . . , L.

Require: Distribution data comes from (e.g. Binary, Ordinal, etc).

Require: Tree structure T (·); initial variational parameters ξ.

Require: Functions FIT :
(
hl,y,σ

2,Gl,Ql

)
→
(
ĝl, q

∗
l ,µl,µ

2
l , DKL(q

∗
l ∥ĝl)

)
that

solve the weighted Bayesian regression problem; see Corollary 3.3.1.1

Require: Function FITξ :
(
y, T, hl, ĝl, q

∗
l , DKL(q

∗
l ∥ĝl), l = 1, . . . , L

)
→ ξ̂ that

updates the variational parameters for relevant distribution (handled

internally by the VEB-Boost package).

1 Initialize posterior means µl,µ
2
l , for l = 1, . . . , L

2 Initialize variational parameters ξ̂ := ξ

3 repeat

4 Update Gaussian precision approximation ΛN := A(y, ξ);

5 Update Gaussian response approximation yN := Λ−1N b(y, ξ);

6 for l in 1, . . . , L do

7 Compute (ỹ, σ̃2) given T,yN ,ΛN ,µk,µ
2
k, k ̸= l; // see Theorem 3.3.2

8 (ĝl, q
∗
l ,µl,µ

2
l , DKL(q

∗
l ∥ĝl))← FIT (hl, ỹ, σ̃

2,Gl,Ql);

9 ξ̂ ← FITξ(y, T, hl, q
∗
l , ĝl, DKL(q

∗
l ∥ĝl), l = 1, . . . , L);

10 until convergence criterion satisfied ;

11 return q∗1, . . . , q
∗
L.

The modularity of this approach is, in my opinion, quite powerful. As an example, say

that you have binary data and you want to perform a non-parametric/non-linear logistic

regression model using the VEB-Boost framework. Then as the practitioner, all you need

to supply are the exact same solvers to the weighted Gaussian Bayesian regression from

Section 3.2, and the R package takes care of the Gaussian approximation for you. This
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substantially lowers the burden for the practitioner, since deriving and coding up a solver

for the weighted Bayesian linear regression problem is often much simpler than a weighted

Bayesian generalized model with non-Gaussian data.

4.2 Different Types of Non-Gaussian Data

This section outlines the different types of non-Gaussian data that can be handled by the

VEB-Boost framework. Of particular note are the ranking models, accelerated failure time

(AFT) model, ordinal logistic regression, and Cox proportional hazards model, as I am

unaware of other instances in which these data types are approximated with Gaussian data

in the context of variational inference. Note that not all of these are implemented in the

R package, since some of them require dependent Gaussian approximations which is not

currently supported.

4.2.1 Binary Data

First, let us consider the case of logistic regression in which the response is binary. The

model we use is

log
( p

1− p

)
= T (µ1, . . . ,µL) (4.2a)

yi
⊥∼ Bern(pi) (4.2b)

µl ≡ hl(βl), l = 1, . . . , L (4.2c)

βl
⊥∼ gl(·) ∈ Gl, l = 1, . . . , L. (4.2d)

As in equation (3.4), T (µ1, . . . ,µL) is the tree structure of the VEB-Boost learner and µl

are the weak learners.
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It is straightforward to show that the log-likelihood in this model is

l(β1, . . . ,βL;y, h1, . . . , hL, T ) =
n∑

i=1

log σ
(
(2yi − 1)Ti

)
, (4.3)

where σ(x) ≡ 1
1+e−x is the logistic sigmoid function and Ti is the ith value of the VEB-Boost

output, T (µ1, . . . ,µL)i.

In order to find a quadratic (as a function of Ti) lower-bound to this log-likelihood, we

utilize the bound proposed by Jaakkola and Jordan [1996].

Lemma 4.2.1 (Jaakkola-Jordan Bound). For all x, ξ ∈ R,

log σ(x) = x
2 − log(ex/2 + e−x/2) ≥ x

2 −
1
2ξ

(
σ(ξ)− 1

2

)
(x2 − ξ2)− log(eξ/2 + e−ξ/2)

This result allows us to find a quadratic lower-bound to the log-likelihood of the logistic

model. In particular, we have

n∑
i=1

log σ
(
(2yi − 1)Ti

)
≥ −1

2
TTA(y, ξ)T+ b(y, ξ)TT+ c(y, ξ), (4.4a)

where

A(y, ξ) = diag(d), di =
1

ξi

(
σ(ξi)−

1

2

)
(4.4b)

b(y, ξ) = yi −
1

2
(4.4c)

c(y, ξ) =
n∑

i=1

log σ(ξi) +
ξi
2
(diξi − 1). (4.4d)

Here, we have introduced variational parameters ξi, i = 1, . . . , n.

This means that when fitting our model, we can approximate our data as Gaussian with

response 1
di
(yi − 1

2) and variance 1
di
. We can then maximize the ELBO with respect to

ξi, which we can analytically show gives us ξ∗i = +
√
Eq[T (µ1, . . . ,µL)

2
i ]. A derivation is

provided in the appendix, Section A.3.2.
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The Jaakkola-Jordan bound has been studied extensively since its introduction, mainly

when/why it performs well. One of the more recent investigations shows that the bound

amounts to a particular data augmentation strategy with Polya-Gamma distributed latent

factors (Durante and Rigon [2019]); their work provides an alternate perspective of this

approach.

4.2.2 Multinomial Data

Consider the setting of multinomial logistic regression with K classes. The model in this

context is

sk = T k(µk
1 , . . . ,µ

k
Lk

) (4.5a)

pki := P (Yi = k|s1i, . . . , sKi) =
exp{ski}∑K
j=1 exp{sji}

(4.5b)

yi
⊥∼ Categorical(p·i) (4.5c)

µk
l ≡ hkl (β

k
l ), k = 1, . . . , K l = 1, . . . , Lk (4.5d)

βk
l
⊥∼ gkl (·) ∈ G

k
l , k = 1, . . . , K l = 1, . . . , Lk. (4.5e)

The interpretation here is that for each class k ∈ {1, . . . , K}, we estimate a separate

vector sk ∈ Rn. Each of these K models can have a different ensemble tree structure T k,

different weak learners µk
l , etc.

The log-likelihood in this model is

l(β1
1, . . . ,β

K
LK

;y, h11, . . . , h
K
Lk

, T 1, . . . , TK) =
n∑

i=1

log

(
exp{T yi

i }∑K
k=1 exp{T k

i }

)
. (4.6)

In order to find a quadratic lower-bound to this log-likelihood, there are two known

bounds we can use. The first bound is given by Bouchard [2008].
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Lemma 4.2.2 (Bouchard Bound). For all ξ∈ RK , α ∈ R,x ∈ RK ,

− log
∑K

k=1 e
xk ≥ −1

2x
TAx+ xTb+ c,

where

A = diag(d) with dk = 1
ξk
(σ(ξk)− 1

2)

b = αd− 1
2

c =
∑K

k=1

[
ξk+α
2 − dk

2 (α2 − ξ2k)− log(1 + eξk)
]
− α.

Using this bound, we can construct a quadratic lower-bound of the log-likelihood of the

multinomial model:

l(β1
1, . . . ,β

K
LK

;y, h11, . . . , h
K
Lk

, T 1, . . . , TK) =
n∑

i=1

log

(
exp{T yi

i }∑K
k=1 exp{T k

i }

)

=
n∑

i=1

T
yi
i − log

( K∑
k=1

exp{T k
i }
)

≥
n∑

i=1

T
yi
i −

1

2
TT
i AiTi +TT

i bi + ci

=
n∑

i=1

−1

2
TT
i AiTi +TT

i (bi + eyi) + ci

=
K∑
k=1

−1

2
Tk
·
TAk
· T

k
· +Tk

·
Tbk· +

n∑
i=1

ci,

where

Ak
· = diag(dk1 , . . . , d

k
n)

bk· = (bk1 + Iy1=k, . . . , b
k
n + Iyn=k).

Here, we have introduced variational parameters ξki , i = 1, . . . , n and k = 1, . . . , K, and

αi, i = 1, . . . , n.

This means that when fitting our model for class k, we can approximate our data as
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Gaussian with response 1
dki
(Iyi=k − 1

2 + αid
k
i ) and variance 1

dki
. We can then maximize the

ELBO with respect to αi and ξki , which can be done analytically. For fixed values for ξki

(and hence, fixed dki ), we get that

α∗i =
K/2− 1 +

∑K
k=1 d

k
i Eq[Tk(µ

k
1 , . . . ,µ

k
Lk

)]i∑K
k=1 d

k
i

.

And then for fixed values of αi, we get that

ξk∗i = +
√

Eq[Tk(µ
k
1 , . . . ,µ

k
Lk

)2i ]− 2αiEq[Tk(µ
k
1 , . . . ,µ

k
Lk

)i] + α2i .

We can either alternate between updating the αi’s and ξki ’s until they converge, or just

perform a single update. I walk through the algebra in a proof in the appendix, Section

A.3.2.

The second bound is given by Titsias [2016].

Lemma 4.2.3 (Titsias Bound). ∀sk ∈ R, k = 1, . . . , K

log

(
esk∑K
j=1 e

sj

)
≥
∑

j ̸=k log σ(sk − sj)

This lemma can be combined with the Jaakkola-Jordan bound in Lemma 4.2.1 in order

further bound each summand on the right-hand-side of this expression to get a quadratic

lower-bound. Although I came up with this idea on my own, it unsurprisingly has been

applied at least once before (see Snell and Zemel [2021]). Doing so will result in variational

parameters ξmi for i = 1, . . . , n and m = 1, . . . K (m ̸= yi), and as before we can define

dmi = 1
ξmi

(σ(ξmi )− 1
2).

Suppose we have an observation i with yi = k. If we are fitting a model for class m ̸= k,

some arithmetic shows that we can approximate that observation as being Gaussian with

response T
k
i − 1

2dmi
and variance 1

dmi
. If, instead, we are fitting a model for class k, some

arithmetic shows that we can approximate that observation as being Gaussian with response

80



1∑
m̸=k d

m
i

∑
m ̸=k[

1
2 + dmi T

m
i ] and variance 1∑

m ̸=k d
m
i
. Again, we can maximize the ELBO

over the ξmi , which we can analytically show gives us ξmi
∗ = +

√
T
yi
i

2 − 2T
yi
i Tm

i + Tm
i

2. A

derivation of this result is given in the appendix, Section A.3.2.

4.2.3 Count Data

To handle count data, we utilize the negative binomial distribution. The reason we don’t

use the Poisson distribution is that if one wanted to use the typical log-link function used

in Poisson regression (e.g. E[y|x] = exp{xTβ}), it is not possible to construct a quadratic

lower-bound to the log-likelihood. It is conceivable that if one wanted to use quadratic

approximations that aren’t lower-bounds then this link function might be usable, however

we did not explore this possibility. We did consider alternative link functions, in particular

the soft-plus function: E[y|T ] = log(1 + exp{T}). However, the lower-bound we were using

(based on the work of Seeger and Bouchard [2012]) wasn’t accurate enough to provide useful

inference unless all observed counts were small.

It is worth noting that technically, the negative binomial distribution can be used to

approximate the Poisson case. It is well-known that

lim
r→∞

NB
(
r,

λ

r + λ

) D
= Poisson(λ).

Thus, one could simply set a large value of r, estimate p = λ
r+λ , and then solve to get

λ = r p
1−p . I’ve noticed that this sometimes works in practice, but it can take a long time to

converge, and can sometimes be difficult. I suspect the challenge comes from the fact that

we are trying to estimate a probability that approaches 0 as r →∞.

For negative binomial-distributed data, recall that the probability mass function is

NB(k; r, p) =

(
k + r − 1

k

)
(1− p)rpk
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for k ∈ {0, 1, 2, . . . }, r ∈ {1, 2, 3, . . . }, and p ∈ (0, 1). The data generating process is the

number of successes until the r-th failure among iid Bernoulli trials with success probability

p. The negative binomial distribution is often used to model count data, especially when the

variance doesn’t follow the restrictive assumption of the Poisson distribution.

This leads to the full model

yi
⊥∼ NB(ri, pi) (4.8a)

log
( pi
1− pi

)
= T (µ1, . . . ,µL)i (4.8b)

µl ≡ hl(βl), l = 1, . . . , L (4.8c)

βl
⊥∼ gl(·) ∈ Gl, l = 1, . . . , L, (4.8d)

where ri is fixed and known.

The log-likelihood of this model is given by

l(β1, . . . ,βL;y, h1, . . . , hL, T ) =
n∑

i=1

log

(
yi + ri − 1

yi

)
+ ri log σ(−Ti) + yi log σ(Ti)

=
n∑

i=1

log

(
yi + ri − 1

yi

)
+ yiTi − (yi + ri) log

(
1 + eTi

)
=

n∑
i=1

log

(
yi + ri − 1

yi

)
+

yi − ri
2

Ti

− (yi + ri) log
(
eTi/2 + e−Ti/2

)
.

From this expression of the log-likelihood, it is evident that we can apply the Jaakkola-Jordan

bound in this context as well due to the log(ex/2 + e−x/2) term.
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Performing some algebra, we get that we can bound the log-likelihood with

n∑
i=1

log

(
yi + ri − 1

yi

)
+

yi − ri
2

Ti − (yi + ri) log
(
eTi/2 + e−Ti/2

)
(4.9a)

≥− 1

2
TTA(y, ξ)T+ b(y, ξ)TT+ c(y, ξ), (4.9b)

where

A(y, ξ) = diag
(
d(y+ r)

)
, di =

1

ξi

(
σ(ξi)−

1

2

)
(4.9c)

b(y, ξ) =
y− r

2
(4.9d)

c(y, ξ) =
n∑

i=1

log

(
yi + ri − 1

yi

)
+ (yi + ri)

[
log σ(ξi) +

ξi
2
(diξi − 1)

]
. (4.9e)

This means that we can approximate our observations as coming from a Gaussian dis-

tribution with response yi−ri
2di(yi+ri)

and variance 1
di(yi+ri)

. We can then maximize the ELBO

with respect to ξi, which analytically gives us ξ∗i = +
√
Eq[T (µ1, . . . ,µL)

2
i ]. A derivation

for this result is given in the appendix, Section A.3.2.

4.2.4 Accelerated Failure Time Model (Log-Logistic Distribution)

This next extension deals with survival analysis. In particular, it deals with modeling sur-

vival times using an accelerated failure time (AFT) model using a log-logistic distributional

assumption. As far as I know, the Gaussian lower-bound approximation in this context has

not been done before.
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The model in this setting is

log y = T (µ1, . . . ,µL) + ϵ (4.10a)

ϵi
iid∼ logistic(0, s) (4.10b)

µl ≡ hl(βl), l = 1, . . . , L (4.10c)

βl
⊥∼ gl(·) ∈ Gl, l = 1, . . . , L, (4.10d)

where yi are the observed survival times and s > 0 is a scale parameter to be estimated.

For reference, the logistic(0, 1) distribution has the probability density function f(x) =

e−x

(1+e−x)2
= (ex/2 + e−x/2)−2 and cumulative distribution function F (x) = 1

1+e−x = σ(x).

One wrinkle in survival analysis is that the survival time is not always observed, but rather

we observe a censored time. A survival time could be left censored (failure occurred sometime

in the interval (0, t)), right censored (failure occurred sometime in the interval (t,∞)), or

interval censored (failure occurred sometime in the interval (t1, t2)). In my derivations, I

have made the standard assumption that censoring is non-informative and random (Patti

et al. [2007]).

For censored data, the contributions to the likelihood can be shown to be f(t) if there

was no censoring, F (t) if there was left-censoring at time t, 1 − F (t) if there was right-

censoring at time t, or F (t2) − F (t1) if there was interval censoring in the interval (t1, t2)

(see, e.g., Kleinbaum and Klein [2012]). When finding a suitable quadratic lower-bound to

the log-likelihood, we can deal with each type of censoring individually.

For the case with no censoring, we observe a failure at time eti . Such an observation’s
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additive contribution to the log-likelihood is

log f(ti; Ti, s) = log
e−(ti−Ti)/s

s
(
1 + e−(ti−Ti)/s

)2
= − log(s)− 2 log

(
e(ti−Ti)/2s + e−(ti−Ti)/2s

)
,

where Ti is the predicted log-survival time from the VEB-Boost model. Recall the Jaakkola-

Jordan bound from Lemma 4.2.1; from the bound, it is clear that

− log(ex/2 + e−x/2) ≥ − 1

2ξ

(
σ(ξ)− 1

2

)
(x2 − ξ2)− log(eξ/2 + e−ξ/2).

Thus, we can use this bound for our uncensored observations, resulting in the following

lower-bound:

− log(s)− 2 log
(
e(ti−Ti)/2s + e−(ti−Ti)/2s

)
≥− log(s) + 2

[
− 1

2ξ

(
σ(ξ)− 1

2

)((
(ti − Ti)/s

)2 − ξ2
)
− log(eξ/2 + e−ξ/2)

]
.

So we can approximate this observation as coming from a Gaussian distribution with response

ti and variance s2

2di
, where di = − 1

ξi

(
σ(ξi)− 1

2

)
.

For an observation that is right-censored at time eti (i.e. the failure occurred in the

interval (eti ,∞)), this observation’s contribution to the log-likelihood is

log
(
1− F (ti;Ti, s)

)
= log

(
1− σ

(
(ti − Ti)/s

))
= log σ

(
(Ti − ti)/s

)
.

Using the Jaakkola-Jordan bound, it is easy to see that we can approximate this observation

as coming from a Gaussian distribution with response ti +
s
2di

and variance s2

di
, where di =
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1
ξi

(
σ(ξi)− 1

2

)
.

For an observation that is left-censored at time eti (i.e. the failure occurred in the interval

(0, eti)), this observation’s contribution to the log-likelihood is

logF (ti;Ti, s) = log σ
(
(ti − Ti)/s)

)
.

Using the Jaakkola-Jordan bound, it is easy to see that we can approximate this observation

as coming from a Gaussian distribution with response ti − s
2di

and variance s2

di
, where di =

− 1
ξi

(
σ(ξi)− 1

2

)
.

Lastly, for an observation that is interval-censored in (et
1
i , et

2
i ), this observation’s contri-

bution to the log-likelihood is

log
(
F (t2i ;Ti, s)− F (t1i ;Ti, s)

)
= log

(
1

1 + e−(t
2
i−Ti)/s

− 1

1 + e−(t
1
i−Ti)/s

)
.

Performing some algebra, we can show that this is equal to

log
(
et

2
i /s− et

1
i /s
)
−

t1i + t2i
2s

− log
(
e(t

2
i−Ti)/s+ e−(t

2
i−Ti)/s

)
− log

(
e(t

1
i−Ti)/s+ e−(t

1
i−Ti)/s

)
.

We can apply the Jaakkola-Jordan bound separately for the last two terms in the above

expression. Doing so leads to the conclusion that we can approximate this observation as

coming from a Gaussian distribution with response
d1i t

1
i+d2i t

2
i

d1i+d2i
and variance s2

d1i+d2i
, where

d1i = − 1
ξ1i

(
σ(ξ1i ) −

1
2

)
and d2i = − 1

ξ2i

(
σ(ξ2i ) −

1
2

)
; the ξ1i and ξ2i come from the bounds

obtained on the penultimate and ultimate terms in the above expression, respectively.

We can then simply add up each observation’s contribution to the log-likelihood in order

to have a quadratic lower-bound to the log-likelihood, and hence a lower-bound to the ELBO.

This allows us to optimize the value of s by maximizing this lower-bound to the ELBO over

s. Similarly, we can optimize over all variational parameters (e.g. ξi, ξ
1
i , ξ

2
i ). A complete
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derivation is provided in Section A.3.2.

4.2.5 Ordinal Logistic Regression

This next extension deals with the case of ordinal response data, i.e. the response is yi ∈

{1, 2, . . . , K} where there exists some ordering 1 ≺ 2 ≺ · · · ≺ K. For example, the response

could be the rating a viewer gives a movie, where a rating of 1 star is the worst and 5

stars is the best. We take the approach of ordinal logistic regression. Given K + 1 “knots”

−∞ = θ0 < θ1 < · · · < θK−1 < θK =∞, we have

P (yi ≤ k) = σ
(
θk − T (µ1, . . . ,µL)i

)
(4.11a)

⇐⇒ P (yi = k) = σ
(
θk − T (µ1, . . . ,µL)i

)
− σ

(
θk−1 − T (µ1, . . . ,µL)i

)
(4.11b)

=
1

1 + e−(θk−Ti)
− 1

1 + e−(θk−1−Ti)
. (4.11c)

As far as I can tell, this model has not before been approximated with Gaussian data in the

context of variational inference.

There is a clear connection between this model and the AFT model with scale parameter

s = 1. For an observation with response yi = k /∈ {1, K}, this probability is the same as in

the AFT model for an interval-censored observation with log-survival time censored in the

interval (θk−1, θk]. For an observation with response yi = 1, this probability is the same as

the AFT model for a left-censored observation with log-survival time censored at θ1. And

for an observation with response yi = K, this probability is the same as the AFT model for

a right-censored observation with log-survival time censored at θk−1.

Thus, for fixed knots θk, we can simply fit the AFT model with scale parameter s ≡ 1

and the log-survival times censored in the above manner. And after each iteration, we can

incorporate a step to optimize the values of the knots, i.e. maximize the lower-bound of the

ELBO over −∞ = θ0 < θ1 < · · · < θK−1 < θK = ∞. A complete derivation is given in
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Section A.3.2.

4.2.6 Ranking Data

Pairwise Comparisons

The Bradley-Terry model (Bradley and Terry [1952]) is one of, if not the most commonly

used model when analyzing pairwise comparisons between n “players.” The model associates

a true rating πi > 0 to each player i. For a pairwise comparison between players i and j,

the probability that i “beats” j, denoted i ≻ j, is given by

πi
πi + πj

.

When modelling these ratings, it is common to instead model the log of the true rating,

si ≡ log πi, sometimes referred to as a “skill.” And thus,

P (i ≻ j|si, sj) =
esi

esi + esj

=
1

1 + esj−si

= σ(si − sj).
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The VEB-Boost model for pairwise comparison rankings thus becomes

Yij = #{i ≻ j} (4.12a)

P (i ≻ j|si, sj) = σ(si − sj) (4.12b)

s = T (µ1, . . . ,µL) (4.12c)

µl ≡ hl(βl), l = 1, . . . , L (4.12d)

βl
⊥∼ gl(·) ∈ Gl, l = 1, . . . , L, (4.12e)

where Y is a matrix whose (i, j)-th entry counts the number of times player i beat player j.

The log-likelihood of this model is given by

l(β1, . . . ,βL;Y, h1, . . . , hL, T ) =
n−1∑
i=1

∑
j>i

Yijσ(Ti − Tj) + Yjiσ(Tj − Ti).

Applying the Jaakkola-Jordan bound to each sigmoid function, we get a lower-bound of

l(β1, . . . ,βL;Y, h1, . . . , hL, T ) =
n−1∑
i=1

∑
j>i

Yijσ(Ti − Tj) + Yjiσ(Tj − Ti)

≥
∑
i>j

[
Yij

[
−

dij
2
(Ti − Tj)

2 +
1

2
(Ti − Tj)

+
dij
2
(dijξij − 1) + log σ(ξij)

]
+ Yji

[
−

dji
2
(Tj − Ti)

2 +
1

2
(Tj − Ti)

+
dji
2
(djiξji − 1) + log σ(ξji)

]]
.

Knowing what we do about optimizing over ξij , it is clear that at the end of our derivation,

we will get

ξ∗ij = +
√
Eq[(Ti − Tj)2] = +

√
Eq[(Tj − Ti)2] = ξ∗ji.
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Thus, for now, let us assume ξij = ξji and dij = dji.

Careful accounting of combining like terms lets us simplify this expression as

n∑
i=1

−1

2
T 2
i

[∑
j ̸=i

Yijdij + Yjidji

]
+

1

2
Ti

[∑
j ̸=i

Yij − Yji

]

+
1

2

∑
j ̸=i

TiTj

[
Yijdij + Yjidji

]
+ const

=− 1

2
TTL(Y, ξ)TT + b(Y, ξ) + const,

where

Lij =


∑

j ̸=i dij(Yij + Yji), if i = j

−dij(Yij + Yji), if i ̸= j

dij =
1

ξij

(
σ(ξij)−

1

2

)

bi =
1

2

∑
j ̸=i

Yij − Yji.

The astute reader will notice that I have switched my notation for the precision matrix

of the Gaussian approximation from A to L. Although your first thought may be that I

switched because Λ is the canonical symbol used for precision matrices, the reason I have

switched notation in this case is because L is the canonical symbol used for the graph

Laplacian. “But what does the graph Laplacian have to do with this setting?” you may be

asking.

For a refresher on what the graph Laplacian is, consider an undirected weighted graph.

The adjacency matrix of this graph, A, is defined such that Aij is the weight of the edge

connecting nodes i and j. The degree matrix, D, is a diagonal matrix defined such that

Dii is the sum of the weights of all edges connected to node i. The graph Laplacian is then

defined as L = D−A.

Now, let us define a graph G = (V,E), where the vertices are the players, 1, . . . , n, and the
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weight of the edge between nodes i and j is dij(Yij +Yji). Then the Laplacian of this graph

is equal to the precision matrix in the Gaussian approximation we’ve derived above. Noting

that Yij + Yji is equal to the number of times players i and j competed against each other,

this leads to the intuition that the precision of our approximation depends on how often

these players competed; the more times they played against each other, the more certain

we are about their relative skill. Graphs have long played a role in ranking problems; the

class of methods known as spectral ranking methods, of which Google’s famous PageRank

algorithm is a member, center around graphs, adjacency matrices, etc (Vigna [2019]). So

this is a neat little connection to the existing ranking literature.

Those familiar with Bradley-Terry models will recall that the likelihood is translation-

invariant in s, i.e. we can shift all of our skills si by a constant c and the resulting likelihood

does not change. The complication that this additional degree of freedom brings manifests

itself in the precision matrix L. Assume that the graph G we defined above is connected,

i.e. there exists a path from every node i to every other node j. Then the Laplacian of

this graph, and hence our precision matrix, has rank n − 1. This means that our Gaussian

approximation is a degenerate Gaussian. There are two obvious ways that we can remedy

the situation:

1. We can arbitrarily pick a player i and restrict si ≡ 0; or equivalently, we change what

we are modeling from sj to sj − si;

2. We can add a small multiple of the identity matrix to L

I have tried option (1) in my experiments, but have not yet tried option (2).

The more complicated setting is where our graph G is not connected, but is instead

comprised of K disjoint connected graphs. The interpretation is that there are K leagues of

players who play within their league, but there are no “exhibition games” between leagues.

In this setting, we now have K additional degrees of freedom, since we can shift the scores in

league k by a constant ck independently for all leagues, and the likelihood will not change.
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This makes sense, since there is no way to compare the relative skills between teams in

different leagues. In this case, the graph Laplacian will have rank n − K. Similarly, there

are a few obvious ways that we can remedy the situation:

1. In each league k ∈ {1, . . . , K}, we can arbitrarily pick a player ik and restrict sik ≡ 0;

2. We can add a small multiple of the identity matrix to L

I have not experimented with either option. Just at a glance, option 1 appears flawed,

because it equalizes arbitrary players across leagues, even though they could have vastly

different skill levels.

One way to side-step all of these issues entirely is to take a slightly different approach:

instead of learning a mapping from xi → si, learn a mapping from (xi,xj) → si − sj . To

do this, we simply form a new input feature x̃g, which is simply the catenation of xi and

xj for a “game” g between players i and j. The new response is yg = Ii≻j in game g, and we

can just run a logistic regression with these new features and response. This is in the spirit

of dyad ranking (Schäfer and Hüllermeier [2018]).

This approach introduces a new issue, since it is ambiguous if we should add an observa-

tion with feature vector (xi,xj) and response Ii≻j in game g, or if we should add an observa-

tion with feature vector (xj ,xi) and response Ij≻i in game g. Consider the simple case of a

linear model, where our coefficient vector is (12β,−
1
2β), i.e. our model is β0 + (xi − xj)

Tβ.

Then the intercept of this model, β0, is the advantage of being placed first in the catenation,

like a “home field advantage” in sports (see, e.g., Agresti [2003]). So if the observations have

a symmetry-breaking feature such as which player was the home team, then this method

could conceivable be explored. However, I have not performed any experiments with this

approach.

92



Listwise Comparisons

The Plackett-Luce model (Plackett [1975]) is a commonly used model when analyzing listwise

ranking between n “players,” and is an extension of the Bradley-Terry model. Just as how the

response for each observation in the Bradley-Terry model was a pairwise ranking between

two players, the response for each observation in the Plackett-Luce model is a complete

ranking of ≥ 2 players. And also like the Bradley-Terry model, the Plackett-Luce model

associates a true rating πi > 0 to each player i. For a listwise ranking between these players,

the probability of observing the total ordering i1 ≻ i2 ≻ · · · ≻ in is given by

n−1∏
j=1

πij∑
k≥j πik

.

In words, this is the probability of observing the total ordering i1 ≻ i2 ≻ · · · ≻ in in the

process of first choosing i1 as the overall best player, then choosing i2 as the best from the

remaining players, and so on until there are no players left.

The terminology of listwise rankings is taken from the world of document/information

retrieval. Let the total number of players be n and their underlying ratings be πi. Let the

total number of ranked lists/queries be J , and let qj ⊆ {1, . . . , n} be the subset of players

seen in query j. And for query j, let the observed ranking be rj ∈ σqj , where σqj is the set

of all permutations of elements in qj . So for a query j and observed ranking rj , we have

rj1 ≻ rj2 ≻ · · · ≻ rj|qj |. With this notation in place, we can now write the likelihood of the

set of all rankings as

J∏
j=1

|qj |−1∏
t=1

πrjt∑|qj |
v=t πrjv

=
J∏

j=1

|qj |−1∏
t=1

e
srjt∑|qj |

v=t e
srjv

].
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Taking logs, we get a log-likelihood of

J∑
j=1

|qj |−1∑
t=1

log

(
e
srjt∑|qj |

v=t e
srjv

)
.

Recognizing the log-sum-exponential in this expression, we can appeal to either the

Bouchard bound or Titsias bound in order to derive a quadratic lower bound.

Starting with the Bouchard bound, we can derive the bound as

J∑
j=1

|qj |−1∑
t=1

log

(
e
srjt∑|qj |

v=t e
srjv

)
=

J∑
j=1

|qj |−1∑
t=1

srjt − log

( |qj |∑
v=t

e
srjv

)

≥ [Bouchard]

≥
J∑

j=1

|qj |−1∑
t=1

srjt −
1

2
sT
rtj
At

js
T
rtj

+ srtj
btj + ctj ,

where

srtj
= (srjt , . . . , srj|qj |

)T ∈ R|qj |−t+1

is the vector of scores for players in query qj with a rank ≥ t

At
j = diag(dtj), dtjv =

1

ξtjv

(
σ(ξtjv)−

1

2

)
btj = αtjd

t
j −

1

2
1

ctj =

|qj |∑
v=t

[ξtjv + αtj
2

−
dtjv

2
(αtj

2 − ξtj
2
v)− log(1 + e

ξtjv)
]
− αtj .

As before, we can show that when optimizing over ξtjv, we can perform a coordinate
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maximization step by setting

ξtj
∗
v = +

√
s2rjv − 2αtjsrjv + αtj

2.

And when optimizing over αtj , we can perform a coordinate maximization step by setting

αtj =

( |qj |−t+1
2 − 1

)∑|qj |
v=t d

t
jvsrjv∑|qj |

v=t .d
t
jv

To reduce the above expression to a quadratic in s = T, consider a query qj and a rank

t ∈ {1, . . . , |qj | − 1}. Define the matrix Ãt
j ∈ Rn×n to have its (|qj | − t+ 1)× ((|qj + t− 1)

sub-matrix corresponding to players in query qj with rank ≥ t given by At
j , and 0 elsewhere.

And similarly, define the vector b̃tj ∈ Rn to have its entries corresponding to the players

in query qj with rank ≥ t be given by btj , and 0 elsewhere. Then we can re-write the

lower-bound as

J∑
j=1

|qj |−1∑
t=1

srjt −
1

2
sT
rtj
At

jsrtj
+ sT

rtj
btj + ctj

=
J∑

j=1

|qj |−1∑
t=1

srjt −
1

2
sT Ã

t
js+ sT b̃

t
j + ctj

=
J∑

j=1

|qj |−1∑
t=1

−1

2
sT Ã

t
js+ sT

(
b̃
t
j + erjt

)
+ ctj

=− 1

2
sT

[
J∑

j=1

|qj |−1∑
t=1

Ã
t
j

]
s+ sT

[
J∑

j=1

|qj |−1∑
t=1

(
b̃
t
j + erjt

)]
+

J∑
j=1

|qj |−1∑
t=1

ctj .

The above expression is a quadratic in s = T, so we can use it to form our Gaussian

approximation.

Just as a note, we could have instead applied the Bouchard bound to
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− log
(∑|qj |

v=t e
srjv−srjt

)
. This would have given us a correlated Gaussian approximation,

just like in the Bradley-Terry model. It is unclear to me which, if either, is preferable. But I

suspect this other approach may have more potential, simply due to the increased flexibility

afforded by the correlated Gaussian approximation. This is one area where more exploration

is needed.

Turning to the Titsias bound, we stumble across an interesting connection between the

bound and ranking data. In Titsias’s paper, they hypothesize that there is a connection be-

tween the bound and Bradley-Terry models. Once we see the bound applied to the Plackett-

Luce model, the supposed connection will be immediate.

Focusing on just the top ranking for a single query j in which rj1 ≻ rj2 ≻ · · · ≻ rj |qj |,

we can apply the Titsias bound to get a lower-bound to the likelihood of

esrj1∑|qj |
v=1 e

srjv
≥
∏
v>1

σ(srj1 − srjv).

We can immediately recognize the right-hand size of this bound as the probability in a

Bradley-Terry model where we observe the pairwise rankings

rj1 ≻ rj2, rj1 ≻ rj3, . . . , rj1 ≻ rj |qj |. That is, we bound the probability of having player

rj1 be the top-ranked item from the query with the probability of player rj1 being preferred

to each other player in the query in a pairwise comparison. Intuitively, this bound makes

sense; it seems much more likely that a player will be voted the best among a group of

players when we’re making a complete ordering, as opposed to that player winning every

single head-to-head comparison without a single loss. The case in which these probabilities

are close is when player rj1 is significantly better than all other players in the query, i.e.

srj1 ≫ srjv for v = 2, . . . , |qj |, since the chance of the top player losing in any one of the

pairwise comparisons is negligible. This jibes with the math, which says that the Titsias

bound will be tight when srj1 ≫ srjv for v = 2, . . . , |qj |.
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We can then repeat the above with the remaining items in the query. As an example,

we would convert the ranking 1 ≻ 2 ≻ 3 ≻ 4 into the pairwise rankings 1 ≻ 2, 1 ≻ 3, 1 ≻

4, 2 ≻ 3, 2 ≻ 4, and 3 ≻ 4. And keeping with the above intuition, the bound we get would

be tight if s1 ≫ s2 ≫ s3 ≫ s4, i.e. there is a clear separation between the skills of all

players.

Now, applying this result to all top rankings in all queries, we get an overall lower-bound

to the likelihood of

J∏
j=1

|qj |−1∏
t=1

e
srjt∑|qj |

v=t e
srjv
≥

J∏
j=1

|qj |−1∏
t=1

|qj |∏
v=t+1

σ(srjt − srjv).

So we can simply convert all of our queries to pairwise comparisons, and then fit the resulting

comparisons as a Bradley-Terry model. Casting listwise comparisons as pairwise comparisons

is frequently done to fit listwise rankings data with pairwise methods (Cao et al. [2007]), and

the Titsias bound appears to be at least one justification for doing so.

4.2.7 Cox Proportional Hazards Model

Similar to the AFT model, the Cox proportional hazards model deals with survival time

data. However, the assumptions made aren’t of a particular parametric data distribution,

but rather the semi-parametric proportional hazards assumption:

λ(t|Xi) = λ0(t)θi.

Here, λ is the hazard function, λ0 is the baseline hazard function, and log θi = Ti is the

quantity being modelled.

Let the observed survival times be the pairs (yi, ci), where yi is the observed time (or right-

censored time), and ci is an indicator for if observation i is observed (i.e. not right-censored).

Note that unlike the AFT model, I am only allowing for right-censored observations and not
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left-censored or interval-censored observations.

Using Breslow’s method for handling ties (Breslow [1974]), we can write the partial log-

likelihood of the model as

l(β1, . . . ,βL;y, c, h1, . . . , hL, T ) =
∑
i:ci=1

log
eTi∑

j:yj≥yi,j ̸=i e
Tj
.

Noting that this expression contains the log-sum-exponential function, we can utilize the

Bouchard or Titsias bounds in order to approximate this data as Gaussian. I will note that

my initial experiments of trying to use the Bouchard bound failed spectacularly for unknown

reasons (but my best guess is that the bound performs too poorly, especially when the log-

sum-exponential function contains many terms). However, the Titsias bound appears to

provide better results, with the drawback that the Gaussian approximation we derive is not

an independent Gaussian. While the VEB-Boost framework can handle correlated Gaussian

data, this feature is not implemented in the R package. However, I will still state the results

here, since this appears to be a new application of the Titsias bound.

When applying the Titsias bound and then Jaakkola-Jordan bound to this data and

performing some algebra, we arrive at the result that

l(β1, . . . ,βL;y, c, h1, . . . , hL, T ) =
∑
i:ci=1

log
eTi∑

j:yj≥yi,j ̸=i e
Tj

≥ −1

2
TTA(y, c, ξ)T+ b(y, c, ξ)TT+ c(y, c, ξ),
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where

Aij =


ci ·
[∑

k:yk≥yi,k ̸=i dik

]
−
∑

k:yi≥yk,ck=1,k ̸=i dki, if i = j

ci · Iyj≥yidij + cj · Iyi≥yjdji, if i ̸= j

dij =
1

ξij

(
σ(ξij)−

1

2

)
b(y, c, ξ)i =

1

2

[
ci −

∑
j:cj=1,j ̸=i

Iyi≥yj
]

c(y, c, ξ) =
∑
i:ci=1

∑
j:yj≥yi,j ̸=i

log σ(ξij) +
ξij
2

(
dijξij − 1

)
.

And we would update the variational parameters with

ξ∗ij = +
√
T 2
i − 2TiTj + T 2

j , for (i, j) s.t. ci = 1 & yj ≥ yi & j ̸= i.

This yields a Gaussian approximation with precision matrix A(y, c, ξ) and response

A(y, c, ξ)−1b(y, c, ξ). A complete derivation is given in Section A.3.2.

4.2.8 Multivariate Gaussian Data

While this last type of data is technically Gaussian, I believe that it is still different enough

to include. Note that I have not attempted to implement this, so I haven’t performed any

experiments to gauge its potential.

Multiple response data is the scenario where each observation’s response is vector-valued.

The idea is that if you know a bit about the structure of the relationships between the

different elements of the response, then you can potentially increase power/accuracy/etc by

modelling them jointly. For simplicity, I will assume that the response is an R×n-dimensional
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matrix Normal, i.e. the model is

Y ∼MNR×n(T,V,U) (4.13a)

T = T (µ1, . . . ,µL) ∈ RR×n (4.13b)

µl = hl(βl), l = 1, . . . , L (4.13c)

βl
⊥∼ gl(·) ∈ Gl, l = 1, . . . , L. (4.13d)

Here, V ∈ SR++ is a covariance matrix that describes the relationship between the R response

variables and U ∈ Sn++ is a covariance matrix that describes the relationship between the

observations.

Equivalently, vec(Y) ∼ NR·n(vec(T),U
⊗

V), where vec(·) is the vectorization operator

of a matrix (i.e. stacking the columns on top of each other) and
⊗

is the Kronecker product.

Written out for clarity, this gives


Y·1
...

Y·n

 ∼ NR·n(


T·1
...

T·n

 ,Σ),

where

Σ = U
⊗

V =


U11V . . . U1nV

...
. . .

...

Un1V . . . UnnV

 = Λ−1.

Just as a note, if the observations are independent, U will be diagonal, and so Σ will be

block-diagonal, as will Λ.

We can simply apply the same VEB-Boost machinery proved in A.3.1, with the proper

vectorization of our now matrix-valued weak learners µl ∈ RR×n. When I started doing

the math, my hope was that we’d be able to have the building-block of multivariate VEB-
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Boost be solving the multivariate Bayesian regression with matrix normal response, however

the math ended up showing that we do not get a matrix normal when we (Schur) multiply

learners together.

As a note, the multivariate single effect regression has a closed-form solution, which is a

generalization of the regular SER. It involves some Kronecker products with identity matrices

that reduce to 1 in the regular SER case and yields the same closed-form updates.

4.3 Examples

In this section, I walk through a simulation study using logistic regression, as well as a real-

data benchmarking analysis using both the logistic and multinomial logistic models. In the

multinomial case, I use both bounds in the VEB-Boost package: Bouchard and Titsias.

4.3.1 Simulation Study

In this subsection, I present the results from a small simulation study. I generate independent

observations according to the following model:

yi
⊥∼ Bern

(
1

1 + e−f(xi)

)
.

For f(x), I use the same four functions as in Section 3.6.1: Friedman’s 5-dimensional

test function, max test function, linear test function, and null test function. However, I

have modified the Friedman test function by subtracting 15 so that we get a more balanced

response.

To generate the design matrix X ∈ Rn×p, I simulated xij
iid∼ Unif(0, 1) in the case of

Friedman’s function, and xij
iid∼ N (0, 1) otherwise.

Since all methods included in the study from Section 3.6.1 can also handle binary data,

I have included them in this simulation study as well. I have also added a few additional
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methods:

• “VEBBoostGaussian”: VEB-Boost with homoskedastic Gaussian response

I included this method to compare directly with the logistic model. In order to return

a fitted probability, I used min{1− 1e-8,max{1e-8, posterior mean}};

• “SPORF”: Sparse Projection Oblique Random Forests (Tomita et al. [2020])

I opted to use the defaults and did not perform any cross-validation. However, it

definitely could have benefited from such. I used the R package available at https:

//github.com/neurodata/SPORF.

For BART and XBART, the average posterior probability was used as the prediction,

and for VEB-Boost the inverse-logit-transform of the posterior mean was used. I also looked

into using the average of the inverse-logit-transform, which is technically more “proper,” but

the results were very similar so they are not included.

I ran 5 replicates each of all combinations of (n, p, test function) ∈ {1000, 10000, 100000}×

{10, 100, 1000} × {friedman,max, linear, null}. One thing to note is that for many runs

with n = 100000, p = 1000, XGBoost, VEB-Boost with a Gaussian response, and XBART

typically either ran out of RAM or ran out of time, so results are missing for them in those

settings. This could certainly introduce bias into the results.

Using the same test functions as in the Gaussian simulation can help us diagnose issues

with the Gaussian approximation. For example, in the Gaussian case, we know that VEB-

Boost far out-performed the others with the linear test function. If VEB-Boost is now under-

performing with the linear test function, this would certainly give us pause. To evaluate the

performance of the methods, I used three relative performance metrics:

1. Relative logloss (relative to the minimum);

2. Relative AUC (relative to the maximum);

3. Relative (1 +MCC)/2 (relative to the maximum).
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Since Matthews correlation coefficient (MCC) falls between [−1, 1], performing this transfor-

mation puts everything on the [0, 1] scale. We chose MCC over Cohen’s κ in this comparison,

since it has been shown to exhibit more desirable behavior in the cases when the two metrics

qualitatively disagree (Delgado and Tibau [2019]). The MCC was calculated using predic-

tions set with a thresholded probability of 0.5.

I also use the relative and absolute running times of the algorithms to compare how fast

they are; the times are all relative to the fastest algorithm for that particular dataset.

Just like in the linear simulation study, I employ the use of boxplots and profile plots.

The boxplots for the Friedman test function are presented below; boxplots for the other test

functions are provided in Section A.2.2, Figures A.7 through A.15. In general, VEB-Boost

still performs well, but not quite as well as the Gaussian simulations from Section 3.6.1.
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Figure 4.1: Friedman Function Relative AUC and MCC This plot shows the relative

AUC and (1 + MCC)/2 for the logistic model using the Friedman test function (higher is

better). We can see that BART and XGBoost are quite good, with VEB-Boost close behind.

Somewhat interesting is that using the Gaussian VEB-Boost model seems to yield better

values of AUC and MCC than the logistic VEB-Boost model. This is quite interesting, and

is worth further exploration.
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Figure 4.2: Friedman Function Relative logloss This plot shows the relative logloss

for the logistic model using the Friedman test function (lower is better). Somewhat un-

surprisingly, the Gaussian VEB-Boost model is not able to provide calibrated probabilities,

especially around 0 and 1, so it suffers on the logloss metric. We see that XGBoost and

BART still appear to be the best, with VEB-Boost not far behind.
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Figure 4.3: Friedman Function Running Time (log2 scale) This plot shows the running

time for the logistic model using the Friedman test function (lower is better). We see that

the running times for VEB-Boost are quite competitive in most cases. We also see the the

Gaussian VEB-Boost model is much slower than the logistic VEB-Boost model.
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Figure 4.4: Profile Plot of Relative AUC This plot shows the empirical CDF of the

relative AUC from the logistic simulation by test function. In general, the VEB-Boost

models appear quite competitive. But as we saw in the boxplots above, the Gaussian VEB-

Boost model appears to outperform the logistic VEB-Boost model.

107



test_function: friedm
an

test_function: linear
test_function: m

ax
test_function: null

0.70.80.91.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Relative (MCC + 1)/2

E
m

pi
ric

al
 C

D
F

BART

SPORF

VEBBoost

VEBBoostGaussian

XBART

xgBoostCV

Relative MCC Profile Plot by Test Function (all n, p)

Figure 4.5: Profile Plot of Relative (1 +MCC)/2 This plot shows the empirical CDF of

the relative MCC from the logistic simulation by test function. Again, the Gaussian VEB-

Boost model appears to perform better than the logistic VEB-Boost model
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Figure 4.6: Profile Plot of Relative logloss This plot shows the empirical CDF of the

relative logloss from the logistic simulation by test function. As we saw above, the Gaussian

VEB-Boost model struggles to provide calibrated probabilities, and thus it suffers on the

logloss metric. The logistic VEB-Boost model appears competitive with both BART and

XGBoost.

109



test_function: friedm
an

test_function: linear
test_function: m

ax
test_function: null

8 128 2048

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Relative Time (log2 scale)

E
m

pi
ric

al
 C

D
F

BART

SPORF

VEBBoost

VEBBoostGaussian

XBART

xgBoostCV

Relative Time (log2 scale) Profile Plot by Test Function (all n, p)

Figure 4.7: Profile Plot of Relative Time (log2 scale) This plot shows the empirical

CDF of the relative time (log2 scale) from the logistic simulation by test function. We see

that, pretty much across the board, the logistic VEB-Boost model has some of the fastest

relative runtimes, and the Gaussian VEB-Boost model typically takes longer to run.
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4.3.2 Real Data Examples

In this subsection, we display the results of comparing different methods on real binary and

multi-class classification datasets available on the UCI machine learning repository (Dua and

Graff [2017]). Specifically, we used the pre-processed datasets and test/train splits used by

the original manuscript of Tomita et al. [2020], available at

https://github.com/ttomita/RandomerForest/tree/master/Data/Benchmarks. In ad-

dition to the other models, I have included a logistic Lasso model (“Lasso CV”), fit with

cross-validation, using the R package glmnet. I also note that for fitting BART models on

the multi-class classification problems, we used the R package BART. And in the multi-class

case, we ran VEB-Boost using both the Titsias bound (“VEB-Boost Titsias”) and the

Bouchard bound (“VEB-Boost Bouchard”). We consider the same metrics as in the

logistic simulation study:

1. Relative logloss (relative to the minimum);

2. Relative AUC (relative to the maximum);

3. Relative (1 +MCC)/2 (relative to the maximum).

As with the continuous response real data examples from Section 3.6.2, we added 0, 100,

or 1000 null variables generated as iid N (0, 1). And as with these earlier examples, some

algorithms couldn’t be run on these larger datasets. As a result, there is likely some bias

that is introduced in the cases where we added null variables.

The results are provided below in Figures 4.8 through 4.16. When measured using

the AUC and MCC metrics in both the binary and multi-class classification tasks, VEB-

Boost (using the Titsias bound for the multi-class case) appears competitive in the higher-

dimensional settings when we add many null variables; it suffers some when compared using

logloss, suggesting an issue with the calibration of probabilities.
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Figure 4.8: Binary Classification Benchmarks This plot shows the relative logloss, AUC,

and (1 + MCC)/2 for the binary classification problems in this benchmarking study. We

can see that XGBoost and BART are towards the top of the list, but VEB-Boost is not far

behind.

112



extra_vars: 0
extra_vars: 100

extra_vars: 1000

4 32 256 2048

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Relative logloss

E
m

pi
ric

al
 C

D
F

BART

Lasso CV

SPORF

VEB−Boost

XBART

xgBoost CV

Relative logloss Profile Plot for Binary Classification Benchmarks

Figure 4.9: Binary Classification logloss Profile Plot This plot shows the logloss profile

plots for the binary classification problems in the benchmarking study, broken up by how

many null variables were added. We see that XGBoost appears to be at the top, with XBART

performing quite poorly on these problems for some reason. We also see that VEB-Boost

performs roughly on-par with Lasso; it would be interesting to see how a linear version of

VEB-Boost (i.e. logistic SuSiE) would perform on these problems.

113



extra_vars: 0
extra_vars: 100

extra_vars: 1000

0.20.40.60.81.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Relative AUC

E
m

pi
ric

al
 C

D
F

BART

Lasso CV

SPORF

VEB−Boost

XBART

xgBoost CV

Relative AUC Profile Plot for Binary Classification Benchmarks

Figure 4.10: Binary Classification AUC Profile Plot This plot shows the AUC profile

plots for the binary classification problems in the benchmarking study, broken up by how

many null variables were added. With this metric, BART appears to perform the best. As

opposed to the logloss metric, we see that XGBoost’s relative performance degrades as we

add more null variables. In the settings with many null variables, VEB-Boost is on-par with

XGBoost. Also opposed to the logloss metric, we see that VEB-Boost outperforms Lasso;

this suggests that VEB-Boost may not be yielding calibrated probabilities. This could be

caused by the Gaussian approximation used.
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Figure 4.11: Binary Classification MCC Profile Plot This plot shows the MCC profile

plots for the binary classification problems in the benchmarking study, broken up by how

many null variables were added. We see that as null variables are added, VEB-Boost is

able to become more competitive with XGBoost. We also see that VEB-Boost outperforms

Lasso, as it did when compared using AUC.
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Figure 4.12: Binary Classification Relative Time Profile Plot This plot shows the

relative time profile plots for the binary classification problems in the benchmarking study.

Aside from Lasso being the fastest by a long shot (which is not too surprising), we see that

VEB-Boost starts out relatively slow, but in the higher dimensional settings is able to far

outperform XGBoost. Conversely, XBART is initially as fast as Lasso, but gets much slower

as we add more null variables.
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Figure 4.13: Multi-Class Classification Benchmarks This plot shows the relative logloss,

AUC, and (1 + MCC)/2 for the multi-class classification problems in this benchmarking

study. We see that XGBoost appears to perform quite well on all metrics. We also see that

the VEB-Boost model using the Titsias bound is quite competitive when looking at the AUC

and MCC metrics, and appears to outperforms the VEB-Boost model using the Bouchard

bound.

117



extra_vars: 0
extra_vars: 100

extra_vars: 1000

4 32 256

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Relative logloss

E
m

pi
ric

al
 C

D
F

BART

Lasso CV

SPORF

VEB−Boost Bouchard

VEB−Boost Titsias

XBART

xgBoost CV

Relative logloss Profile Plot for Multi−Class Classification Benchmarks

Figure 4.14: Multi-Class Classification logloss Profile Plot This plot shows the logloss

profile plots for the multi-class classification problems in the benchmarking study, broken up

by how many null variables were added. Right away, we see that XGBoost dominates the

field. We also see that VEB-Boost using the Titsias bound appears a bit better than VEB-

Boost using the Bouchard bound, and both perform relative better as more null variables

are added. We also see that Lasso appears to perform better than both VEB-Boost models.
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Figure 4.15: Multi-Class Classification AUC Profile Plot This plot shows the AUC

profile plots for the multi-class classification problems in the benchmarking study, broken

up by how many null variables were added. As opposed to the logloss metric, we see that

VEB-Boost using the Titsias bound is roughly on-par with Lasso; this suggests that the VEB-

Boost model is not providing calibrated probabilities. This could be due to the Gaussian

approximations that are used.
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Figure 4.16: Multi-Class Classification MCC Profile Plot This plot shows the MCC

profile plots for the multi-class classification problems in the benchmarking study, broken

up by how many null variables were added. Here, we see that VEB-Boost using the Titsias

bound appears a bit more competitive, especially with additional null variables. As with

the AUC profile plot, we see that SPORF is quite good with no additional null variables. It

would be interesting to add a cross-validation procedure to fitting SPORF in an attempt to

yield better performance in the higher-dimensional settings.
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Figure 4.17: Multi-Class Classification Relative Time Profile Plot This plot shows

the relative time profile plots for the multi-class classification problems in the benchmarking

study. One interesting observation is that VEB-Boost using the Titsias bound appears to be

much slower than VEB-Boost using the Bouchard bound. Since the Titsias bound appears

to give better results, this could just be a consequence of the algorithm taking more time to

fit the data.
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4.4 Observation Weights

One final extension, which applies to both Gaussian and non-Gaussian data, is to add fixed

observation weights wi > 0. Observation weights can be useful in many application, such as

logistic regression with imbalanced class proportions. For example, if a binary response y

has 99% of its values as 0 and only 1% of its values as 1, we may wish to assign a relative

weight to the 1 observations of 99, so that there is equal weight on the 0’s and the 1’s.

The most common way observation weights are incorporated into a model is by multi-

plying observation i’s contribution to the log-likelihood by its weight wi. It is easy to see

that for Gaussian data, this corresponds to changing the variance of observation i from σ2i

to σ2i /wi. Similarly, if we are using a Gaussian approximation with variance σ2i , we change

the variance to σ2i /wi. We must also modify the optimization step for the other parameters

in the model (e.g. σ2 if we have homoskedastic Gaussian data, or the knots in an ordinal

logistic regression), but this is a simple adjustment.

There is one final decision to make when adding observation weights; whether we should

normalize the weights to have an average of 1, or keep the weights un-normalized. The main

consideration is that the size of the weights changes the relative importance between the

expected log-likelihood term and KL-divergence term in the ELBO. If the weights have an

average less than 1, the KL-divergence term matters more than it did before, so we will

shrink more heavily towards the prior. And if the weights have an average greater than 1,

the KL-divergence term matters less than it did before, so we will shrink less towards the

prior. The VEB-Boost package allows for both, the user simply needs to specify if they want

to normalize the weights (the default) or not.
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4.5 Discussion

In this chapter, we have outlined our strategy for dealing with non-Gaussian data. In par-

ticular, we form a Gaussian approximation to the data, fit the Gaussian VEB-Boost model,

update our approximation, and iterate to convergence. We chose our approximations so that

we get a lower-bound to the ELBO. Taking this approach has some appealing properties (e.g.

guaranteed to terminate), but some drawbacks as well (e.g. not possible for all data types).

Our approximations make use of three bounds: the Jaakkola-Jordan bound, the Bouchard

bound, and the Titsias bound. Using these bounds, we walked through the approximations

to many types of models for non-Gaussian data, including:

• logistic model;

• multinomial logistic model;

• negative binomial model for count data;

• accelerated failure time model (with log-logistic noise), allowing for left-, right-, and

interval-censoring;

• ordinal logistic regression;

• Bradley-Terry model (for pairwise comparison data) and Plackett-Luce model (for

listwise ranking data);

• Cox proportional hazards model, allowing for right-censoring.

Of the models above, the logistic, multinomial logistic, and negative binomial models are well-

known, since the aforementioned bounds were crafted with these models in mind. However,

as far as I can tell, the bounds have not before been used in the context of the other models.

Not all of these models are implemented in the VEB-Boost package, since some of them

require dependent Gaussians in their approximations. While the VEB-Boost framework can
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easily handle these cases, it just isn’t implemented yet. However, the logistic and multinomial

logistic models are among those that are implemented, and due to the large number of

methods that can handle these types of data, we chose them to participate in a simulation

study and real-dataset benchmarking.

There are some things I would like to investigate in the future. Namely,

1. I would like to implement the dependent Gaussian case, which would allow for fitting

the Bradley-Terry, Plackett-Luce, and Cox proportional hazards (using the Titsias

bound) models. It would be interesting to explore how they compare with other meth-

ods, e.g. XGBoost and Lasso;

2. I would like to see how alternative quadratic bounds, such as a second-order Taylor

series approximation, would perform, and see if the theoretical convergence issues are

a problem or not in practice;

3. I would like to see if there is a way to incorporate piecewise quadratic bounds, which

can be much more accurate (Marlin et al. [2011]). It is not clear to me how this could

be done, but it might be worth looking at in more detail.

We then demonstrated the logistic model’s potential in a simulation study. This study

showed that logistic VEB-Boost certainly has potential. One interesting observation is that

the VEB-Boost model using a Gaussian response outperformed the logistic VEB-Boost when

compared using the AUC and MCC metrics, at the cost of increased running times. So if the

practitioner cares more about these metrics, and less about a metric like logloss, then they

should also consider fitting a Gaussian VEB-Boost model. However, just as a reminder, the

simulation was set up so that the response would be fairly balanced between positive and

negative instances; the most unbalanced was the case of the max test function, with about 2
3

of the responses being positive instances. It would be interesting to see how these methods

compare with more unbalanced datasets; this would be easy to accomplish simply by varying
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the intercept when generating the log-odds. This could also be a way to demonstrate the

usage of observations weights, as outlined in Section 4.4.

We then demonstrated the logistic and multinomial logistic models using real datasets.

These further demonstrated the potential of the VEB-Boost model, especially in higher-

dimensional settings. However, they also highlight the fact that these models can at times

suffer when evaluated using the logloss metric as compared to AUC or MCC; this suggests

that the fitted probabilities may not be calibrated. I suspect that this is a result of the

Gaussian approximations used.
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APPENDIX A

APPENDIX

A.1 Real Dataset Information

The OpenML regression datasets used in Section 3.6.2 are described in the table below.

Task ID Task Name n p Extra Variables
1 167210 Moneyball 1232 14 0, 100, 1000
2 233211 diamonds 53940 9 0
3 233214 Santander transaction value 4459 4992 0, 100, 1000
4 233215 Mercedes Benz Greener Manufacturing 4209 377 0, 100, 1000
5 359930 quake 2178 3 0, 100, 1000
6 359931 sensory 576 11 0, 100, 1000
7 359932 socmob 1156 5 0, 100, 1000
8 359933 space ga 3107 6 0, 100, 1000
9 359934 tecator 240 124 0, 100, 1000
10 359935 wine quality 6497 11 0, 100, 1000
11 359936 elevators 16599 18 0, 100, 1000
12 359937 black friday 166821 9 0, 100
13 359938 Brazilian houses 10692 12 0, 100
14 359939 topo 2 1 8885 266 0, 100, 1000
15 359940 yprop 4 1 8885 251 0, 100, 1000
16 359942 colleges 7063 47 0
17 359944 abalone 4177 8 0, 100, 1000
18 359945 us crime 1994 127 0, 100, 1000
19 359946 pol 15000 48 0
20 359948 SAT11-HAND-runtime-regression 4440 120 0, 100, 1000
21 359949 house sales 21613 22 0, 100
22 359950 boston 506 13 0, 100, 1000
23 359951 house prices nominal 1460 80 0, 100, 1000
24 359952 house 16H 22784 16 0, 100
25 360945 MIP-2016-regression 1090 147 0, 100, 1000

Table A.1: List of OpenML Regression Datasets This table provides summary informa-

tion about the benchmark datasets used in Section 3.6.2. It lists the task ID and task name

used by OpenML, the sample size n, the number of predictor variables p, and the number

of extra variables we were able to include in our analysis.

The pre-processing for each dataset was minimal. The steps were:
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1. Remove observations with any missing data;

2. If log(y) appeared more Gaussian than y, transform y → log(y). The normality was

gauged by the r2 value of the regression line fit to the normal QQ-plot of either y or

log(y);

3. Use one-hot encoding for all categorical predictors;

4. Optionally add 0, 100, or 1000 columns of iid N (0, 1) noise;

5. Shuffle the rows of the response and the design matrix, and shuffle the columns of the

design matrix;

6. Partition the data into 5 disjoint folds to be used to calculate the cross-validated

RMSE.

A.2 Supplemental Figures

In this section, we include supplemental figures from the simulation studies given in Sections

3.6.1 and 4.3.1.

A.2.1 VEB-Boost Simulation Supplemental Figures

This subsection contains supplemental figures from the simulation study in Section 3.6.1. It

contains boxplots showing the relative RMSE and runtimes of the max, linear, and null test

functions.
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Figure A.1: Max Function Relative RMSE This plot shows the relative RMSE of the

methods tested using the max test function. We see that XBART appears to be the winner

here pretty much across the board, with the only exception being in the small sample-size

setting (the top row), where the VEB-Boost method with a large starting learner comes out

on top. Even though VEB-Boost isn’t the winner, we can see that it’s rarely much worse

than XBART.
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Figure A.2: Max Function Running Time in Seconds, log2 scale This plot shows the

running time of the methods tested using the max test function. Just as in the case of

Friedman’s test function, VEB-Boost appears to be quite competitive, particularly in the

higher noise setting. We still see similar trends for VEB-Boost in terms of longer run-times

for stronger signals, and more variable run-times overall.
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Figure A.3: Linear Function Relative RMSE This plot shows the relative RMSE of the

methods tested using the linear test function. It is clear that VEB-Boost outperforms the

other methods. This is likely due to the inclusion of the linear terms in the SER. In contrast

to the Friedman and max settings, XBART performs quite poorly here.
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Figure A.4: Linear Function Running Time in Seconds, log2 scale This plot shows the

running time of the methods tested using the linear test function. We see that VEB-Boost

is the clear winner. We also see that on an absolute scale, VEB-Boost is able to run much

faster than it did with the other test functions. This is due to the simplicity of the fit, and

how few learners are needed to adequately explain the signal due to the inclusion of the

linear terms in the SER.
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Figure A.5: Null Function Relative RMSE This plot shows the relative RMSE of the

methods tested using the null test function. As with the linear case, VEB-Boost is the clear

winner. This is likely at least partly due to the fact that VEB-Boost starts with a single

weak learner initialized to the sample mean. However, we see that the VEB-Boost method

starting with a larger learner still performs quite well despite its more complicated initial

structure. But while the structure is more complicated, it’s still initialized to the sample

mean, which likely helps in the null setting.
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Figure A.6: Null Function Running Time in Seconds, log2 scale This plot shows the

running time of the methods tested using the null test function. Again, VEB-Boost comes

out on top. This is the benefit of the empirical Bayes aspect of VEB-Boost; instead of being

forced to run for a fixed number of iterations, it can learn that there is no more signal to fit

and terminate.
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A.2.2 Logistic Simulation Supplemental Figures

This subsection contains supplemental figures from the logistic simulation study given in

4.3.1. It contains boxplots showing the relative logloss, AUC, MCC, and running times for

the max, linear, and null test functions.
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Figure A.7: Max Function Relative AUC and MCC This plot shows the relative AUC

and (1 + MCC)/2 for the logistic model using the max test function (higher is better).

XGBoost appears to have issues in some cases, especially when evaluated using the MCC

metric. VEB-Boost also appears to perform quite well here, as long as the sample size isn’t

too small.
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Figure A.8: Max Function Relative logloss This plot shows the relative logloss for the

logistic model using the max test function (lower is better). With the exception of XBART,

all other methods appear competitive with each other.
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Figure A.9: Max Function Running Time (log2 scale) This plot shows the running

time for the logistic model using the max test function (lower is better). We see that the

VEB-Boost methods are typically the fastest, sometimes by a wide margin.
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Figure A.10: Linear Function Relative AUC and MCC This plot shows the relative

AUC and (1 + MCC)/2 for the logistic model using the linear test function (higher is

better). Happily, VEB-Boost still outperforms the other methods, as it did in the Gaussian

simulations with this test function.
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Figure A.11: Linear Function Relative logloss This plot shows the relative logloss for the

logistic model using the linear test function (lower is better). VEB-Boost still outperforms

the other methods. And we see that the Gaussian VEB-Boost model performs worse than

the logistic VEB-Boost model.
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Figure A.12: Linear Function Running Time (log2 scale) This plot shows the running

time for the logistic model using the linear test function (lower is better). We see that VEB-

Boost is the fastest, and the Gaussian VEB-Boost model ends up being quite slow.
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Figure A.13: Null Function Relative AUC and MCC This plot shows the relative AUC

and (1 +MCC)/2 for the logistic model using the null test function (higher is better). All

methods are more-or-less on-par with each other.
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Figure A.14: Null Function Relative logloss This plot shows the relative logloss for the

logistic model using the null test function (lower is better). Aside from XBART, all methods

appear on-par with each other.
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Figure A.15: Null Function Running Time (log2 scale) This plot shows the running

time for the logistic model using the null test function (lower is better). As in the Gaussian

response simulation study, VEB-Boost is orders of magnitude faster than the other methods

in the null case.
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A.3 Proofs

A.3.1 Proof of Theorems 2.3.1, 3.3.1, and 3.3.2

In order to prove Theorems 2.3.1, 3.3.1, and 3.3.2, I will re-state the theorem for the VEB-

Boost model with an arbitrary precision matrix for the Gaussian errors. From this, we can

derive the results of the theorems as special cases.

Theorem A.3.1. Consider the VEB-Boost model with arbitrary dependence structure among

the errors:

y = T
(
h1(β1), . . . , hL(βL)

)
+ ϵ (A.1)

ϵ ∼ N (0,Λ−1) (A.2)

βl
⊥∼ gl ∈ Gl l = 1, . . . , L. (A.3)

Denote the ELBO of this model using the variational class that factorizes over βl as

F (g1, q1, . . . , gL, qL;y, h1, . . . , hL,Λ, T ).

Denote the ELBO for this model where there is only a single weak learner, i.e. E[y] =

h(β) as

F0(g, q;y, h,Λ).

For ν1 and ν2, where ν1 has precision Λ and ν2 has current posterior variational ap-

proximation q, let ν2 = Eν2∼q[ν2] and let V = Eν2∼q[ν2ν
T
2 ]. Finally, let

ν1⊕ν2 =


ν1 − ν2, if ⊕ = +

(Λ ◦V)−1diag(ν2)Λν1, if ⊕ = ◦.
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Consider a weak learner µl = hl(βl) that has path string s = d1 · · · dK in the ensemble

learner T . Then

F (g1, q1, . . . , gL, qL;y, h1, . . . , hL,Λ, T ) = F0(gl, ql; ỹ, hl, Λ̃) + (const in gl, ql),

where

ỹ =

(
· · ·
(
(y ⊕·ν d̄1)⊕d1νd1d̄2

)
⊕d1d2 · · · ⊕d1···dK−1

νd1···dK−1d̄K

)
and

Λ̃ = Λ ◦K−1i=0,⊕d0···di=◦
Vd0···did̄i+1

.

N.B. As a technical consideration, note that since Λ ≻ 0 and Vl ⪰ 0, then as long as

no Vl has a row/column of all 0’s, then by the Schur product theorem Λ̃ ≻ 0. A Vl will

have a row/column of all 0’s ⇐⇒ νl,i
βl∼ql≡ 0 (i.e. an entry of the ensemble learner νl is

a point-mass on 0 under the variational approximation ql). Barring a degenerate case, this

should almost never happen in practice.

Proof: As outlined in Section 3.3.2, define the learner T in terms of weak learner µl

with path string s = d1 · · · dK as

ν d̄1 ⊕·

(
νd1d̄2 ⊕d1

(
νd1d2d̄3 ⊕d1d2 · · · (µl ⊕d1d2···dK−1

νd1d2···dK−1d̄K
) · · ·

))
.

We will proceed with an inductive proof over K.

Base case: K = 1 In this case, the ELBO F is

Eql

[
− n

2
log(2π) +

1

2
log |Λ| − 1

2
Eq−l

[
∥Λ1/2(y− (µl ⊕· ν d̄1))∥

2
2

]]
−

L∑
j=1

DKL(qj∥gj).
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i) ⊕· = + Starting from the full ELBO, we have

Eql

[
− n

2
log(2π) +

1

2
log |Λ| − 1

2
Eq−l

[
∥Λ1/2(y− (µl + ν d̄1))∥

2
2

]]
−

L∑
j=1

DKL(qj∥gj)

=Eql

[
− 1

2
Eq−l

[
∥Λ1/2((y− ν d̄1)− µl)∥22

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Eq−l

[
− 2(y− ν d̄1)

TΛµl + µT
l Λµl

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2

[
− 2(y− ν d̄1)

TΛµl + µT
l Λµl

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2

[
∥Λ1/2((y− ν d̄1)− µl)∥22

]]
−DKL(ql∥gl) + (const in gl, ql)

=F0(gl, ql;y− ν d̄1 , hl,Λ) + (const in gl, ql). ✓

ii) ⊕· = ◦ Starting from the full ELBO, we have

Eql

[
− n

2
log(2π) +

1

2
log |Λ| − 1

2
Eq−l

[
∥Λ1/2(y− (µl ◦ ν d̄1))∥

2
2

]]
−

L∑
j=1

DKL(qj∥gj)

=Eql

[
− 1

2
Eq−l

[
∥Λ1/2(y− diag(ν d̄1)µl)∥22

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Eq−l

[
∥Λ1/2diag(ν d̄1)(diag(1/ν d̄1)y− µl)∥22

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Eq−l

[
− 2(diag(1/ν d̄1)y)

T diag(ν d̄1)Λdiag(ν d̄1)µl + µT
l diag(ν d̄1)Λdiag(ν d̄1)µl

]]

−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2

[
− 2yTΛdiag(ν d̄1)µl + µT

l Eq−l [diag(ν d̄1)Λdiag(ν d̄1)]µl

]]

−DKL(ql∥gl) + (const in gl, ql).

152



Note that

[diag(ν)Λdiag(ν)]ij = Λijνiνj

⇒ Eq−l [diag(ν d̄1)Λdiag(ν d̄1)]ij =


Λiiν

2
d̄1,i

if i = j,

Λijν d̄1,i
ν d̄1,j

if i ̸= j.

So if we let

V = Eq−l [ν d̄1ν
T
d̄1
]⇒ Vij = Eq−l [ν d̄1,i

ν d̄1,j
] = ν d̄1,iν d̄1,j ,

we get

Eq−l [diag(ν d̄1)Λdiag(ν d̄1)] = Λ ◦V.

Thus, the ELBO further reduces to

Eql

[
− 1

2

[
∥(Λ ◦V)1/2((Λ ◦V)−1diag(ν d̄1)Λy− µl)∥22

]]
−DKL(ql∥gl) + (const in gl, ql)

=F0(gl, ql; (Λ ◦V)−1diag(ν d̄1)Λy, hl,Λ ◦V) + (const in gl, ql). ✓

Inductive step: Assume true for K-1 In this case, the ELBO F is

Eql

[
− n

2
log(2π) +

1

2
log |Λ|

− 1

2
Eq−l

[
∥Λ1/2(y− ν d̄1⊕·(

νd1d̄2 ⊕d1

(
νd1d2d̄3 ⊕d1d2 · · · (µl ⊕d1d2···dK−1

νd1d2···dK−1d̄K
) · · ·

))
)∥22
]]

−
L∑

j=1

DKL(qj∥gj).
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Let

νd1 =

(
νd1d̄2 ⊕d1

(
νd1d2d̄3 ⊕d1d2 · · · (µl ⊕d1d2···dK−1

νd1d2···dK−1d̄K
) · · ·

))
.

Then we can simplify the ELBO as

Eql

[
− 1

2
Eq−l

[
∥Λ1/2(y− ν d̄1 ⊕· νd1)∥

2
2

]]
−DKL(ql∥gl) + (const in gl, ql).

Note that νd1 is an ensemble learner in which µl has a path string length (i.e. depth) of

K − 1.

In the below, let Ed1 [·] be the expectation with respect to the distributions of all compo-

nents of νd1 excluding µl, and let Ed̄1
[·] be the expectation with respect to the distributions

of all components of ν d̄1 .

i) ⊕· = + Starting from the above simplification of the ELBO, we have

Eql

[
− 1

2
Eq−l

[
∥Λ1/2(y− (ν d̄1 + νd1))∥

2
2

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Eq−l

[
∥Λ1/2((y− ν d̄1)− νd1)∥

2
2

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1Ed̄1

[
∥Λ1/2((y− ν d̄1)− νd1)∥

2
2

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1Ed̄1

[
− 2(y− ν d̄1)

TΛνd1 + νTd1Λνd1

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1

[
− 2(y− ν d̄1)

TΛνd1 + νTd1Λνd1

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1

[
∥Λ1/2((y− ν d̄1)− νd1)∥

2
2

]]
−DKL(ql∥gl) + (const in gl, ql)

=
[
Inductive step, using response y− ν d̄1 and precision Λ

]
=Eql

[
− 1

2
∥Λ̃1/2

(ỹ− µl)∥22
]
−DKL(ql∥gl) + (const in gl, ql). ✓
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ii) ⊕· = ◦ Starting from the above simplification of the ELBO, we have

Eql

[
− 1

2
Eq−l

[
∥Λ1/2(y− (ν d̄1 ◦ νd1))∥

2
2

]]
−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Eq−l

[
∥Λ1/2diag(ν d̄1)(diag(1/ν d̄1)y− νd1)∥

2
2

]]

−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1Ed̄1

[
∥Λ1/2diag(ν d̄1)(diag(1/ν d̄1)y− νd1)∥

2
2

]]

−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1Ed̄1

[
− 2(diag(1/ν d̄1)y)

T diag(ν d̄1)Λdiag(ν d̄1)νd1 + νTd1diag(ν d̄1)Λdiag(ν d̄1)νd1

]]

−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1Ed̄1

[
− 2yTΛdiag(ν d̄1)νd1 + νTd1diag(ν d̄1)Λdiag(ν d̄1)νd1

]]

−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1

[
− 2yTΛdiag(ν d̄1)νd1 + νTd1Ed̄1

[diag(ν d̄1)Λdiag(ν d̄1)]νd1

]]

−DKL(ql∥gl) + (const in gl, ql)

=
[
Let Vd̄1

:= Ed̄1
[ν d̄1ν

T
d̄1
]
]

=Eql

[
− 1

2
Ed1

[
− 2yTΛdiag(ν d̄1)νd1 + νTd1(Λ ◦Vd̄1

)νd1

]]

−DKL(ql∥gl) + (const in gl, ql)

=Eql

[
− 1

2
Ed1

[
∥(Λ ◦Vd̄1

)1/2((Λ ◦Vd̄1
)−1diag(ν d̄1)Λy− νd1)∥

2
2

]]

−DKL(ql∥gl) + (const in gl, ql)
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=
[
Inductive step, using response (Λ ◦Vd̄1

)−1diag(ν d̄1)Λy and precision Λ ◦Vd̄1

]
=Eql

[
− 1

2
∥Λ̃1/2

(ỹ− µl)∥22
]
−DKL(ql∥gl) + (const in gl, ql). ✓

Thus, we have shown the desired result QED

Note that from this, we recover the proofs for the additive model Theorem 2.3.1 (only

let ⊕ = + in the tree structure T and force Λ ≡ 1
σ2

In) and the VEB-Boost model Theorems

3.3.1 and 3.3.2 (force Λ ≡ diag(1/σ2)).

A.3.2 Proofs of Gaussian Approximations

In this section, I walk through the algebra for the Gaussian approximations to the non-

Gaussian data. To keep this subsection self-contained, I will repeat some important bounds

here.

The Jaakkola-Jordan bound, given in Lemma 4.2.1, says that for all x, ξ ∈ R,

log σ(x) =
x

2
− log(ex/2 + e−x/2) ≥ x

2
− 1

2ξ

(
σ(ξ)− 1

2

)
(x2 − ξ2)− log(eξ/2 + e−ξ/2).

This bound will be used in the cases of binary data, multinomial data (using the Titsias

bound), count data, accelerated failure time survival data, ordinal data, pairwise ranking

data, listwise ranking data (using the Titsias bound), and proportional hazards survival data

(using the Titsias bound).

The Bouchard bound, given in Lemma 4.2.2, says that for all ξ ∈ RK , α ∈ R,x ∈ RK ,

− log
K∑
k=1

exk ≥ −1

2
xTAx+ xTb+ c,
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where

A = diag(d), dk =
1

ξk
(σ(ξk)−

1

2
)

b = αd− 1

2

c =
K∑
k=1

[ξk + α

2
− dk

2
(α2 − ξ2k)− log(1 + eξk)

]
− α.

And the Titsias bound, given in Lemma 4.2.3, says that for all sk ∈ R, k = 1, . . . , K,

log

(
esk∑K
j=1 e

sj

)
≥
∑
j ̸=k

log σ(sk − sj).

These two bounds will be used in the case of multinomial data, (listwise) ranking data, and

proportional hazards survival data.

Proof for Logistic Model for Binary Data

Restating the logistic model for binary response data in equation (4.2), we have

log
( p

1− p

)
= T (µ1, . . . ,µL)

yi
⊥∼ Bern(pi)

µl ≡ hl(βl), l = 1, . . . , L

βl
⊥∼ gl(·) ∈ Gl, l = 1, . . . , L.

As in equation (3.4), T (µ1, . . . ,µL) is the tree structure of the VEB-Boost learner and µl

are the weak learners.
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As stated in equation (4.3), the log-likelihood of this model is

l(β1, . . . ,βL;y, h1, . . . , hL, T ) =
n∑

i=1

log σ
(
(2yi − 1)Ti

)
,

where σ(x) ≡ 1
1+exp{−x} is the logistic sigmoid function and Ti is the ith value of the

VEB-Boost output, T (µ1, . . . ,µL)i.

Proposition A.3.2. Given VEB-Boost output T ∈ Rn, variational parameters ξ ∈ Rn
+,

and observations y ∈ {0, 1}n we can bound the log-likelihood of the logistic model with

n∑
i=1

log σ
(
(2yi − 1)Ti

)
≥ −1

2
TTA(y, ξ)T+ b(y, ξ)TT+ c(y, ξ),

where

A(y, ξ) = diag(d), di =
1

ξi

(
σ(ξi)−

1

2

)
b(y, ξ) = yi −

1

2

c(y, ξ) =
n∑

i=1

log σ(ξi) +
ξi
2
(diξi − 1).
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Proof: Using the Jaakkola-Jordan bound, we have

log σ
(
(2yi − 1)Ti

)
≥ (2yi − 1)Ti

2
− 1

2ξi

(
σ(ξi)−

1

2

)((
(2yi − 1)Ti

)2 − ξ2i

)
− log

(
eξi/2 + e−ξ

2
i

)
=
[
yi ∈ {0, 1} ⇒ 2yi − 1 ∈ {−1, 1} ⇒ (2yi − 1)2 = 1

]
=
(
yi −

1

2

)
Ti −

1

2ξi

(
σ(ξi)−

1

2

)(
T 2
i − ξ2i

)
− log

(
eξi/2 + e−ξ

2
i

)
= −di

2
T 2
i +

(
yi −

1

2

)
Ti +

di
2
ξ2i ±

ξi
2
− log

(
eξi/2 + e−ξ

2
i

)
=
[
log σ(x) =

x

2
− log

(
ex/2 + e−x

2
)]

= −di
2
T 2
i +

(
yi −

1

2

)
Ti + log σ(ξi) +

ξi
2
(diξi − 1).

Therefore, we get

n∑
i=1

log σ
(
(2yi − 1)Ti

)
≥ −di

2
T 2
i +

(
yi −

1

2

)
Ti + log σ(ξi) +

ξi
2
(diξi − 1)

= −1

2
TTA(y, ξ)T+ b(y, ξ)TT+ c(y, ξ),

where A(y, ξ), b(y, ξ), and c(y, ξ) are as defined above. QED

Corollary A.3.2.1. Given the results from the introduction to chapter 4, we can approxi-

mate our data as Gaussian with response 1
di
(yi − 1

2) and variance 1
di
.

Proposition A.3.3. For fixed variational distributions q1, . . . , qL, we can maximize the

lower-bound to the ELBO with respect to ξi by setting

ξ∗i = +

√
Eq

[
T (µ1, . . . ,µL)

2
i

]
.

Proof: First, note that the lower-bound to the log-likelihood factorizes into a sum of

terms, each depending on ξi. And furthermore, neither the variational approximation q, nor
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the KL-divergence term in the ELBO, depends on ξi. Thus, we can optimize with respect

to each ξi individually. For a given ξi, recall that the lower-bound to the log-likelihood is

−di
2
T 2
i +

(
yi −

1

2

)
Ti + log σ(ξi) +

ξi
2
(diξi − 1).

Thus, the contribution of this term to the ELBO is

Eq

[
− di

2
T 2
i +

(
yi −

1

2

)
Ti + log σ(ξi) +

ξi
2
(diξi − 1)

]
=− di

2
T 2
i +

(
yi −

1

2

)
Ti + log σ(ξi) +

ξi
2
(diξi − 1)

=− 1

2ξi

(
σ(ξi)−

1

2

)
(T 2

i − ξ2i ) + log σ(ξi)−
ξi
2
+ const.

By analytically maximizing this function with respect to ξi using the first and second order

optimality conditions (or plugging it into Wolfram Alpha), we get that ξ∗i = ±
√

T 2
i . We

just take the positive solution, so we get ξ∗i = +

√
Eq

[
T (µ1, . . . ,µL)

2
i

]
. QED

Proof for Multinomial Data

Restating the multinomial logistic model for categorical response data in equation (4.5), we

have

sk = T k(µk
1 , . . . ,µ

k
Lk

)

pki := P (Yi = k|s1i, . . . , sKi) =
exp{ski}∑K
j=1 exp{sji}

yi
⊥∼Multi(1,p·i)

µk
l ≡ hkl (β

k
l ), k = 1, . . . , K l = 1, . . . , Lk

βk
l
⊥∼ gkl (·) ∈ G

k
l , k = 1, . . . , K l = 1, . . . , Lk.
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The interpretation here is that for each class k ∈ {1, . . . , L}, we estimate a score vector

sk ∈ Rn. Each of these K models can have a different ensemble tree structure T k, different

weak learners µk
l = hkl (β

k
l ), etc.

As stated in equation (4.6), the log-likelihood in this model is

l(β1
1, . . . ,β

K
LK

;y, h11, . . . , h
K
Lk

) =
n∑

i=1

log

(
exp{T yi

i }∑K
k=1 exp{T k

i }

)
.

Proposition A.3.4. Given VEB-Boost outputs T1, . . . ,TK ∈ Rn for our K classes, varia-

tional parameters ξi ∈ RK
+ , i = 1, . . . , n and α ∈ Rn, and observations y ∈ {1, 2, . . . , K}n,

we can use the Bouchard bound to bound the log-likelihood of the multinomial model with

l(β1
1, . . . ,β

K
LK

;y, h11, . . . , h
K
Lk

, T 1, . . . , TK) =
n∑

i=1

log

(
exp{T yi

i }∑K
k=1 exp{T k

i }

)

≥
K∑
k=1

−1

2
Tk
·
TAk
· T

k
· +Tk

·
Tbk· +

n∑
i=1

ci

where

Ak
· = diag(dk1 , . . . , d

k
n), dki =

1

ξki

(
σ(ξki )−

1

2

)
bk· = (bk1 + Iy1=k, . . . , b

k
n + Iyn=k), bki = αi(d

k
i )−

1

2

ci =
K∑
k=1

[ξki + αi
2

−
dki
2
(α2i − ξki

2)− log(1 + eξ
k
i )
]
− αi.

Proof: For notation, let Ti := (T 1
i , . . . , T

K
i )T ∈ RK and let Tk

· := (T k
1 , . . . , T

k
n )

T ∈ Rn.
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Using the Bouchard bound, for fixed variational parameters ξi and α, we have

log

(
exp{T yi

i }∑K
k=1 exp{T k

i }

)
= T

yi
i − log

( K∑
k=1

exp{T k
i }
)

≥ T
yi
i −

1

2
TT
i AiTi +TT

i bi + ci,

where

Ai = diag(di) ∈ RK×K , dki =
1

ξki

(
σ(ξki )−

1

2

)
bi = αidi −

1

2
1 ∈ RK

ci =
K∑
k=1

[ξki + αi
2

+
dki
2
(α2i − ξki

2) + log(1 + eξ
k
i )
]
− αi.

Thus,

l(β1
1, . . . ,β

K
LK

;y, h11, . . . , h
K
Lk

, T 1, . . . , TK) =
n∑

i=1

log

(
exp{T yi

i }∑K
k=1 exp{T k

i }

)

=
n∑

i=1

T
yi
i − log

( K∑
k=1

exp{T k
i }
)

≥
n∑

i=1

T
yi
i −

1

2
TT
i AiTi +TT

i bi + ci

=
n∑

i=1

−1

2
TT
i AiTi +TT

i (bi + eyi) + ci

=
K∑
k=1

−1

2
Tk
·
TAk
· T

k
· +Tk

·
Tbk· +

n∑
i=1

ci,
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where

Ak
· = diag(dk1 , . . . , d

k
n)

bk· = (bk1 + Iy1=k, . . . , b
k
n + Iyn=k).

This follows simply from switching the order of summation of i = 1, . . . , n and k = 1, . . . , K,

which we can do since all matrices here are diagonal. QED

Corollary A.3.4.1. Given the results from the introduction to chapter 4, when fitting our

model for class k, we can use the Bouchard bound to approximate our data as Gaussian with

response 1
dki
(Iyi=k − 1

2 + αid
k
i ) and variance 1

dki
.

Proposition A.3.5. For fixed variational distributions and fixed αi, we can maximize the

lower-bound to the ELBO with respect to ξki by setting

ξk∗i = +
√
Eq[T k(µk

1 , . . . ,µ
k
Lk

)2i ]− 2αiEq[Tk(µ
k
1 , . . . ,µ

k
Lk

)i] + α2i .

And for fixed variational distributions and fixed ξi, we can maximize the lower-bound to the

ELBO with respect to αi be setting

α∗i =
K/2− 1 +

∑K
k=1 d

k
i Eq[T

k(µk
1 , . . . ,µ

k
Lk

)]i∑K
k=1 d

k
i

.

We can either alternate between updating the αi’s and ξki ’s until they converge, or just

perform a single update.

Proof: First, note that the lower-bound to the log-likelihood factorizes into a sum of

terms, each depending on ξki . And furthermore, neither the variational approximation q, nor

the KL-divergence term in the ELBO, depends on ξki . Thus, we can optimize with respect

to each ξki individually. For a given ξki , note that the lower-bound to the log-likelihood can
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be expressed as

− 1

2ξki

(
σ(ξki )−

1

2

)
T k
i
2 +

( αi

2ξki

(
σ(ξki )−

1

2

)
− 1

2
+ Iyi=k

)
T k
i

+
ξki + αi

2
+

1

2ξi

(
σ(ξki )−

1

2

)
(α2i − ξki

2) + log(1 + eξ
k
i )− αi + const.

Thus, the contribution of this term to the ELBO is

Eq

[
− 1

2ξki

(
σ(ξki )−

1

2

)
T k
i
2 +

( αi

2ξki

(
σ(ξki )−

1

2

)
− 1

2
+ Iyi=k

)
T k
i

+
ξki + αi

2
− 1

2ξi

(
σ(ξki )−

1

2

)
(α2i − ξki

2)− log(1 + eξ
k
i )− αi + const

]
=− 1

2ξki

(
σ(ξki )−

1

2

)
T k
i
2 +

( αi

2ξki

(
σ(ξki )−

1

2

))
T k
i

+
ξki + αi

2
− 1

2ξi

(
σ(ξki )−

1

2

)
(α2i − ξki

2)− log(1 + eξ
k
i ) + const.

By analytically maximizing this function with respect to ξki using the first and second order

optimality conditions (or plugging it into Wolfram Alpha), we get that

ξk∗i = ±
√

Eq[Tk(µ
k
1 , . . . ,µ

k
Lk

)2i ]− 2αiEq[Tk(µ
k
1 , . . . ,µ

k
Lk

)i] + α2i .

We just take the positive solution, so we get

ξk∗i = +
√
Eq[Tk(µ

k
1 , . . . ,µ

k
Lk

)2i ]− 2αiEq[Tk(µ
k
1 , . . . ,µ

k
Lk

)i] + α2i .
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Now, focusing on αi, the ELBO as a function of αi can be written as

− αi +
K∑
k=1

αid
k
i T

k
i +

αi
2
−

dki
2
α2i + const

=
(K
2
− 1 +

K∑
k=1

dki T
k
i

)
αi −

α2i
2

K∑
k=1

dki .

Again, by analytically maximizing this function with respect to αi, we get

α∗i =
K/2− 1 +

∑K
k=1 d

k
i Eq[Tk(µ

k
1 , . . . ,µ

k
Lk

)]i∑K
k=1 d

k
i

.

QED

Proposition A.3.6. Given VEB-Boost outputs T1, . . . ,TK ∈ Rn for our K classes, vari-

ational parameters ξi ∈ RK
+ , i = 1, . . . , n, and observations y ∈ {1, 2, . . . , K}n, we can use

the Titsias bound in conjunction with the Jaakkola-Jordan bound to bound the log-likelihood

of the multinomial model with

l(β1
1, . . . ,β

K
LK

;y, h11, . . . , h
K
Lk

, T 1, . . . , TK) =
n∑

i=1

log

(
exp{T yi

i }∑K
k=1 exp{T k

i }

)

≥
n∑

i=1

∑
m̸=yi

− 1

2ξmi

(
σ(ξmi )− 1

2

)(
(T

yi
i − Tm

i )2 − ξmi
2
)
+

T
yi
i − Tm

i

2
− log

(
eξ

m
i /2 + e−ξ

m
i /2
)
.

Proof: With the same notation as in the proof for the Bouchard multinomial bound,
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focusing on a single observation i, we have

log

(
exp{T yi

i }∑K
k=1 exp{T k

i }

)
≥
[
Titsias bound

]
≥
∑
m̸=yi

log σ(T
yi
i − Tm

i ) ≥
[
Jaakkola-Jordan bound applied to each term in the sum

]
≥
∑
m̸=yi

− 1

2ξmi

(
σ(ξmi )− 1

2

)[
(T

yi
i − Tm

i )2 − ξmi
2
]
+

T
yi
i − Tm

i

2
− log

(
eξ

m
i /2 + e−ξ

m
i /2
)
.

Thus, when combing all n observations, we get the desired result. QED

Corollary A.3.6.1. Focusing on the quadratic approximation for a given observation i and

class k, when fitting our model for class k, we can use the Titsias bound to approximate our

data as Gaussian with response T
yi
i −

1
2dki

and variance 1
dki

for k ̸= yi, and as a Gaussian

with response 1∑
m̸=k d

m
i

∑
m ̸=k

1
2 + dmi Tm

i and variance 1∑
m ̸=k d

m
i

for k = yi.

Proposition A.3.7. For fixed variational distributions, we can maximize the lower-bound

to the ELBO with respect to ξmi by setting

ξm∗i = +

√
T
yi
i

2 − 2T
yi
i Tm

i + Tm
i

2.

Proof: As a function of ξmi for m ̸= yi, it is easy to see that the ELBO can be expressed

as

− 1

2ξmi

(
σ(ξmi )− 1

2

)[
(T

yi
i − Tm

i )2 − ξmi
2
]
− log

(
eξ

m
i /2 + e−ξ

m
i /2
)
+ const.

With the same optimization results as in the logistic case, we see that
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ξmi
∗ = +

√
(T

yi
i − Tm

i )2

= +

√
T
yi
i

2 − 2T
yi
i Tm

i + Tm
i

2

=
[
T
yi
i ⊥ Tm

i because of our choice of variational family Q
]

= +

√
T
yi
i

2 − 2T
yi
i Tm

i + Tm
i

2.

And for m = yi, there is no ξmi QED

Proof for Negative Binomial Count Data

Restating the negative binomial count data model given in equation (4.8), we have

yi
⊥∼ NB(ri, pi)

log
( pi
1− pi

)
= T (µ1, . . . ,µL)i

µl ≡ hl(βl), l = 1, . . . , L

βl
⊥∼ gl(·) ∈ Gl, l = 1, . . . , L,

where ri is fixed and known.

Proposition A.3.8. Given VEB-Boost output T ∈ Rn, variational parameters ξ ∈ Rn
+,

and observations y ∈ Nn, we can bound the log-likelihood of the negative binomial model with

l(β1, . . . ,βL;y, h1, . . . , hL, T )

=
n∑

i=1

log

(
yi + ri − 1

yi

)
+ ri log σ(−Ti) + yi log σ(Ti)

≥− 1

2
TTA(y, ξ)T+ b(y, ξ)TT+ c(y, ξ),
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where

A(y, ξ) = diag(d(y+ r)), di =
1

ξi

(
σ(ξi)−

1

2

)
b(y, ξ) =

y− r

2

c(y, ξ) =
n∑

i=1

log

(
yi + ri − 1

yi

)
+ (yi + ri)

[
log σ(ξi) +

ξi
2
(diξi − 1)

]
.

Proof: Performing some algebra on the log-likelihood, we get

n∑
i=1

log

(
yi + ri − 1

yi

)
+ ri log σ(−Ti) + yi log σ(Ti)

=
n∑

i=1

log

(
yi + ri − 1

yi

)
− ri log(1 + eTi) + yi log

eTi

1 + eTi

=
n∑

i=1

log

(
yi + ri − 1

yi

)
− ri log(1 + eTi) + yiTi − yi log(1 + eTi)

=
n∑

i=1

log

(
yi + ri − 1

yi

)
+ yiTi + (yi + ri) log σ(−Ti)

=
[
log σ(x) =

x

2
− log(ex/2 + e−x/2)⇒ log σ(−x) = −x

2
− log(ex/2 + e−x/2)

]
=

n∑
i=1

log

(
yi + ri − 1

yi

)
+ yiTi + (yi + ri)

(
− Ti

2
− log(eTi/2 + e−Ti/2)

)
≥
[
Jaakkola-Jordan

]
≥

n∑
i=1

[
log

(
yi + ri − 1

yi

)
+ yiTi + (yi + ri)

(
− Ti

2
− 1

2ξi

(
σ(ξi)−

1

2

)
(T 2

i − ξ2i )

− log(eξi/2 + e−ξi/2)
)]

=− 1

2
TTA(y, ξ)T+ b(y, ξ)TT+ c(y, ξ),
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where

A(y, ξ) = diag(d(y+ r)), di =
1

ξi

(
σ(ξi)−

1

2

)
b(y, ξ) =

y− r

2

c(y, ξ) =
n∑

i=1

log

(
yi + ri − 1

yi

)
+ (yi + ri)

[
log σ(ξi) +

ξi
2
(diξi − 1)

]
.

QED

Corollary A.3.8.1. Given the results from the introduction to chapter 4, we can approxi-

mate our data as Gaussian with response yi−ri
2di(yi+ri)

and variance 1
di(yi+ri)

.

Proposition A.3.9. For fixed variational distributions q1, . . . , qL, we can maximize the

lower-bound to the ELBO with respect to ξi by setting

ξ∗i = +
√

Eq[T (µ1, . . . ,µL)
2
i ].

Proof: This follows directly from the results of the analogous proposition for the case of

the logistic model. QED

Proof for AFT (log-logistic) Survival Data

Restating the model in this setting, we have

log y = T (µ1, . . . ,µL) + ϵ

ϵi
iid∼ logistic(0, s),

where the logistic(µ, s) distribution has pdf

f(x;µ, s) =
e−(x−µ)/s

s(1 + e−(x−µ)/s)2
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and CDF

F (x;µ, s) =
1

1 + e−(x−µ)/s
= σ

(x− µ

s

)
.

In the setting of survival data, we can have censored observations. An observation is

uncensored if we observe yi exactly, left-censored if we know yi ∈ (0, et2), right-censored if

we know yi ∈ (et1 ,∞), and interval-censored if we know yi ∈ (et1 , et2), for t1 > t2 ∈ R.

We make the assumption of non-informative and random censoring (Patti et al. [2007]).

Thus, the contribution to the likelihood of uncensored observations is f(log yi;Ti, s), the

contribution to the likelihood of left-censored observations is F (t2;Ti, s), the contribution

of right-censored observations if 1 − F (t1;Ti, s), and the contribution for interval-censored

observations is F (t2;Ti, s)− F (t1;Ti, s).

Denote the log of an uncensored time for observation i as ti, the log of a left-censored

time as t2i , the log of a right-censored time as t1i , and the log of the left and right endpoints

of an interval-censored time as t1i and t2i , respectively. With this in mind, we can express

the log-likelihood of the model (up to a constant) as

∑
i:uncensored

log
e−(ti−Ti)/s

s(1 + e−(ti−Ti)/s)2

+
∑

i:left-censored

log σ
(t2i − Ti

s

)
+

∑
i:right-censored

log
[
1− σ

(t1i − Ti
s

)]
+

∑
i:interval-censored

log
[
σ
(t2i − Ti

s

)
− σ

(t1i − Ti
s

)]
.

Performing some simple algebra, along with the facts that 1− σ(x) = σ(−x) and

log
[
σ
(t2i − Ti

s

)
− σ

(t1i − Ti
s

)]
=
Ti
s
− log

(
eTi/s + et

2
i /s
)
− log

(
eTi/s + et

1
i /s
)
+ log

(
et

2
i /s − et

1
i /s
)
,
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we can simplify this expression as

∑
i:uncensored

Ti − ti
s
− log(s) + 2 log σ

(ti − Ti
s

)
+

∑
i:left-censored

log σ
(t2i − Ti

s

)
+

∑
i:right-censored

log σ
(Ti − t1i

s

)
+

∑
i:interval-censored

Ti
s
− log

(
eTi/s + et

2
i /s
)
− log

(
eTi/s + et

1
i /s
)
+ log

(
et

2
i /s − et

1
i /s
)
.

Focusing on the interval-censored observations, we can further manipulate the expression

to get

∑
i:interval-censored

Ti
s
− log

(
eTi/s + et

2
i /s
)
− log

(
eTi/s + et

1
i /s
)
+ log

(
et

2
i /s − et

1
i /s
)

=
∑

i:interval-censored

Ti
s
− log

(
et

2
i /s(1 + e(Ti−t

2
i )/s)

)
− log

(
et

1
i /s(1 + e(Ti−t

1
i )/s)

)
+ log

(
et

2
i /s − et

1
i /s
)

=
∑

i:interval-censored

Ti
s
−

t2i
s
+ log σ((t2i − Ti)/s)−

t2i
s
+ log σ((t1i − Ti)/s) + log

(
et

2
i /s − et

1
i /s
)

=
[
log σ(x) =

x

2
− log(ex/2 + e−x/2)

]
=

∑
i:interval-censored

[
Ti − t2i − t1i

s
+

t2i − Ti
2s

− log
(
e(t

2
i−Ti)/2s + e−(t

2
i−Ti)/2s

)
+

t1i − Ti
2s

− log
(
e(t

1
i−Ti)/2s + e−(t

1
i−Ti)/2s

)
+ log

(
et

2
i /s − et

1
i /s
)]

=
∑

i:interval-censored

[
−

t2i + t1i
2s

− log
(
e(t

2
i−Ti)/2s + e−(t

2
i−Ti)/2s

)
− log

(
e(t

1
i−Ti)/2s + e−(t

1
i−Ti)/2s

)
+ log

(
et

2
i /s − et

1
i /s
)]

.
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We can then apply the Jaakkola-Jordan bound separately to the uncensored observations,

left-censored observations, right-censored observations, and each of the two terms in the

expression above for the interval-censored observations.

Uncensored Observations: For the uncensored observations, an application of the

Jaakkola-Jordan bound gives

Ti − ti
s
− log(s) + 2 log σ

(ti − Ti
s

)
≥Ti − ti

s
− log(s) + 2

[ti − Ti
2s

− 1

2ξi

(
σ(ξi)−

1

2

)((Ti − ti)
2

s2
− ξ2i

)
− log

(
eξi/2 + e−ξi/2

)]
= log(s)− 1

2

2di
s2

(Ti − ti)
2 + diξ

2
i − 2 log

(
eξi/2 + e−ξi/2

)
.

Thus, we can approximate the uncensored observations as being Gaussian with response

ti and variance s2

2di
. We can also use the previous results to show that when updating ξi, we

set

ξ∗i = +

√
Eq

[(Ti − ti)2

s2

]
= +

1

s

√
T 2
i − 2tiTi + t2i .

Left-censored Observations: For the left-censored observations, an application of the

Jaakkola-Jordan bound gives

log σ
(t2i − Ti

s

)
≥

t2i − Ti
2s

− 1

2ξi

(
σ(ξi)−

1

2

)((t2i − Ti)
2

s2
− ξ2i

)
− log

(
eξi/2 + e−ξi/s

)
= − di

2s2

(
T 2
i − 2t2iTi +

s

di
Ti

)
+ const

= − di
2s2

(
Ti − (t2i −

s

2di
)
)2

+ const.

Thus, we can approximate the left-censored observations as being Gaussian with response

t2i −
s
2di

and variance s2

di
. And as for optimizing with respect to the variational parameter

ξi, we set

ξ∗i = +

√
Eq

[(t2i − Ti)2

s2

]
= +

1

s

√
T 2
i − 2t2iTi + t2i

2.

172



Right-censored Observations: For the left-censored observations, an application of

the Jaakkola-Jordan bound gives

log σ
(Ti − t1i

s

)
≥

Ti − t1i
2s

− 1

2ξi

(
σ(ξi)−

1

2

)((Ti − t1i )
2

s2
− ξ2i

)
− log

(
eξi/2 + e−ξi/s

)
= − di

2s2

(
T 2
i − 2t1iTi −

s

di
Ti

)
+ const

= − di
2s2

(
Ti − (t1i +

s

2di
)
)2

+ const.

Thus, we can approximate the right-censored observations as being Gaussian with re-

sponse t1i + s
2di

and variance s2

di
. And as for optimizing with respect to the variational

parameter ξi, we set

ξ∗i = +

√
Eq

[(Ti − t1i )
2

s2

]
= +

1

s

√
T 2
i − 2t1iTi + t1i

2.

Interval-censored Observations: Finally, focusing on interval-censored observations,

we can apply the Jaakkola-Jordan bound separately to each of the two terms. The the first

term use variational parameter ξ2i , and for the second term use variational parameter ξ1i .

This yields

− log
(
e(t

2
i−Ti)/2s + e−(t

2
i−Ti)/2s

)
− log

(
e(t

1
i−Ti)/2s + e−(t

1
i−Ti)/2s

)
+ const

≥− 1

2ξ2i

(
σ(ξ2i )−

1

2

)((Ti − t2i )
2

s2
− ξ2i

2
)
− log

(
eξ

2
i /2 + e−ξ

2
i /2
)

− 1

2ξ1i

(
σ(ξ1i )−

1

2

)((Ti − t1i )
2

s2
− ξ1i

2
)
− log

(
eξ

1
i /2 + e−ξ

1
i /2
)
+ const

= −1

2

d2i
s2

(Ti − t2i )
2 − 1

2

d1i
s2

(Ti − t1i )
2 + const

= −1

2

d1i + d2i
s2

[
Ti −

1

d1i + d2i
(d1i t

1
i + d2i + t2i )

]2
+ const.
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Thus, we can approximate the interval-censored observations as being Gaussian with

response
d1i t

1
i+d2i t

2
i

d1i+d2i
and variance s2

d1i+d2i
. And as for optimizing with respect to the variational

parameters ξ1i and ξ2i , we set

ξ1i
∗ = +

√
Eq

[(Ti − t1i )
2

s2

]
= +

1

s

√
T 2
i − 2t1iTi + t1i

2

and

ξ2i
∗ = +

√
Eq

[(Ti − t2i )
2

s2

]
= +

1

s

√
T 2
i − 2t2iTi + t2i

2.

Proof for Ordinal Data

Restating the likelihood for ordered response data, given K + 1 “knots” −∞ = θ0 < θ1 <

· · · < θK−1 < θK =∞, we have

P (yi ≤ k) = σ(θk − T (µ1, . . . ,µL)i)

⇐⇒ P (yi = k) = σ(θk − T (µ1, . . . ,µL)i)− σ(θk−1 − T (µ1, . . . ,µL)i)

=
1

1 + e−(θk−Ti)
− 1

1 + e−(θk−1−Ti)
.

It is immediately obvious that, given these knots, this is equivalent to the likelihood of

the AFT model with log-logistic noise, where:

• s = 1

N.B. This model could be generalized as P (yi ≤ k) = σ
((

θk − T (µ1, . . . ,µL)i
)
/s
)
for

s > 0. This could be advisable if the prior on Ti is scale-dependent ;

• for an observation with response yi = k /∈ {1, K}, this probability is the same as in

the AFT model for an interval-censored observation with log-survival time censored in

the interval (θk−1, θk];
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• for an observation with response yi = 1, this probability is the same as the AFT model

for a left-censored observation with log-survival time censored at θ1;

• for an observation with response yi = K, this probability is the same as the AFT

model for a right-censored observation with log-survival time censored at θk−1.

Thus, the only remaining thing to show is the lower-bound to the ELBO as a function of

these knots so that we can maximize over these knots.

Using the Jaakkola-Jordan bound in the AFT model, for an observation with yi = k /∈

{1, K}, we get a lower-bound to the log-likelihood of

θk − θk−1
2

+ log
(
1− eθk−1−θk

)
−
d2i
2

[
(Ti − θk)

2 − ξ2i
2
]
− log

(
eξ

2
i /2 + e−ξ

2
i /2
)

−
d1i
2

[
(Ti − θk−1)

2 − ξ1i
2
]
− log

(
eξ

1
i /2 + e−ξ

1
i /2
)
.

And for an observation with yi = 1, we get a lower-bound to the log-likelihood of

θ1 − Ti
2

− di
2

[
(θ1 − Ti)

2 − ξ2i

]
− log

(
eξi/2 + e−ξi/2

)
.

And for an observation with yi = K, we get a lower-bound to the log-likelihood of

Ti − θK
2

− di
2

[
(Ti − θK)2 − ξ2i

]
− log

(
eξi/2 + e−ξi/2

)
.

Putting these together, we can write the lower-bound to the ELBO as a function of the

θk’s as
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∑
i:y1=1

θ1
2
− di

2
(θ21 − 2θ1Ti)

+
K∑
k=2

∑
i:yi=k

θk − θk−1
2

+ log
(
1− eθk−1−θk

)
−

d2i
2
(θ2k − θkTi)−

d1i
2
(θ2k−1 − 2θk−1Ti)

+
∑

i:yi=K

− θK
2
− di

2
(θ2K − 2θKTi).

Combining like-terms and counting carefully, we can simplify this as

n1
2
θ1 − θ21

∑
i:yi=1

di
2
+ 2θ1

∑
i:yi=1

di
2
Ti

+
K∑
k=2

[
nk

[θk − θk−1
2

+ log
(
1− ek−1−θk

)]
− θ2k

∑
i:yi=k

d2i
2

+ 2θk
∑

i:yi=k

d2i
2
Ti

− θ2k−1
∑

i:yi=k

d1i
2

+ 2θk−1
∑

i:yi=k

d1i
2
Ti

]

− nK
2

θK−1 − θ2K−1
∑

i:yi=K

di
2
+ 2θK−1

∑
i:yi=K

di
2
Ti,

where nk = |{i : yi = k}|.

Finally, combining terms for the same θk and θ2k, we get

−
K−1∑
k=1

[
θ2k

[ ∑
i:yi=k

d2i
2

+
∑

i:yi=k+1

d1i
2

]
+ θk

[nk − nk+1

2
+
∑

i:yi=k

d2iTi +
∑

i:yi=k+1

d1iTi

]

+ nk log
(
1− eθk−1−θk

)]
,

with the convention that θ0 = −∞.

With this expression in place, we can use off the shelf numerical optimization methods

to maximize this function over θ1 < θ2 < · · · < θK−1.
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Proof for Pairwise Ranking Data

Section 4.2.6 contains sufficient details.

Proof for Listwise Ranking Data

Section 4.2.6 contains sufficient details.

Proof for Cox Proportional Hazards Model

Restating the partial log-likelihood for the Cox proportional hazards model using Breslow’s

method for handling ties, we have

l(β1, . . . ,βL;y, c, h1, . . . , hL, T ) =
∑
i:ci=1

log
eTi∑

j:yj≥yi,j ̸=i e
Tj
,

where, as before, yi is the survival time, and ci is an indicator for if observation i is uncensored

(ci = 1) or right-censored (ci = 0).

Performing some algebra, along with the same combination of the Titsias and Jaakkola-

Jordan bounds used in the multinomial case, we can lower-bound this partial log-likelihood

with:
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∑
i:ci=1

log
eTi∑

j:yj≥yi,j ̸=i e
Tj

≥
[
Titsias bound

]
≥
∑
i:ci=1

∑
jLyj≥yi,j ̸=i

log σ(Ti − Tj)

≥
[
Jaakkola-Jordan bound

]
≥
∑
i:ci=1

∑
jLyj≥yi,j ̸=i

Ti − Tj
2

−
dij
2

(
T 2
i − 2TiTj + T 2

j − ξ2ij

)
− log

(
eξij/2 + e−ξij/2

)
=− 1

2
TTAT+ bTT+ c,

where

Aij =


ci ·
[∑

k:yk≥yi,k ̸=i dik

]
−
∑

k:yi≥yk,ck=1,k ̸=i dki, if i = j

ci · Iyj≥yidij + cj · Iyi≥yjdji, if i ̸= j

dij =
1

ξij

(
σ(ξij)−

1

2

)

bi =
1

2

[
ci −

∑
j:cj=1,j ̸=i

Iyi≥yj
]

c =
∑
i:ci=1

∑
j:yj≥yi,j ̸=i

log σ(ξij) +
ξij
2

(
dijξij − 1

)
.

This last step, going from the double-sum to the matrix formula, simply involves careful

accounting and grouping of terms relating to T 2
i and TiTj .

We can also use the results for the optimal ξij from the binomial case in order to see that

ξ∗ij = +
√
Eq[T 2

i − 2TiTj + T 2
j ] = +

√
T 2
i − 2TiTj + T 2

j .

Note that the middle term is the expectation of the product of Ti and Tj , and not the
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product of their expectations.

Proof for Multivariate Gaussian Data

Section 4.2.8 contains sufficient details.
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