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ABSTRACT 

 

Innate immune memory is a burgeoning field in immunology, yet there still remain many 

unanswered questions regarding its inherent duration in mitotic and post-mitotic cells, and its 

applicability in clinical settings. Clinically, the BCG vaccine is hypothesized to induce long-

lasting innate immune memory in humans indirectly by reprogramming hematopoietic stem and 

progenitor cells (HSPCs) in the bone marrow. Although this model is supported by mouse 

studies, very little is known about whether reprogramming of HSPCs in response to BCG occurs 

in humans, and whether this has implications for the function of mature innate immune cells 

entering the peripheral circulation. In this work we first used single cell sequencing to probe the 

gene expression and chromatin accessibility landscape of human bone marrow samples before 

and 90 days after BCG vaccination and integrated these data with secondary response data 

collected on donor paired PBMCs. We find that the most uncommitted stem cells exhibit 

persistent signatures of myeloid bias and upregulation of immune genes. On the epigenetic level, 

downstream progenitors contained thousands of sites of differential accessibility at sites which 

enriched for the motifs of KLF/SP and EGR transcription factors which were predominantly 

active within upstream HSCs, suggesting that long-lasting TF activity and differential gene 

expression at the level of HSCs may impact the chromatin accessibility landscape of downstream 

progenitors. Myeloid bias, HSC activation signatures, and progenitor chromatin accessibility 

levels were all found to correlate significantly with Il1β secretion of donor paired PBMCs in 

response to a C. albicans challenge, indicating that BCG vaccination re-wires transcription factor 

activity, gene expression, chromatin accessibility, and lineage bias in human bone marrow in a 
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way that is linked to responses of PBMCs to secondary immune challenge with non-

mycobacterial pathogens. 

In addition, we utilized an in vitro macrophage model to study basic mechanisms by which 

innate immune memory can be retained within dividing cell populations. The encoding of innate 

immune memory has often been linked to histone post-translational modifications (PTMs). Since 

there is no known mechanism whereby stimulus-induced histone PTMs can be directly copied 

from parent to daughter strand during DNA replication, it is expected that these signatures be 

rapidly lost in dividing cells. Yet, in vivo studies have demonstrated that a state of trained 

immunity can persist for months, which paradoxically suggests that histone PTMs may persist. 

Using time course RNA-seq, ChIP-seq, and functional assays, we find that dividing macrophages 

harbor H3K4me1 signatures at hundreds of sites for at least 14 cell divisions after stimulus 

washout, however these marks are dynamic, timepoint specific, and tightly coupled to the 

continued activity of transcription factor (TF) circuits. Our work emphasizes the central role of 

continued TF activation in driving the continued detection of H3K4me1 signatures across cell 

divisions and suggests that innate immune memory in dividing cells may be a phenomenon that 

is mechanistically separate from that observed in non-dividing cells. 

 

 

 

 

  



 

 

aParts of this section are reproduced with modification from Sun, S., & Barreiro, L. B. (2020). 
The epigenetically-encoded memory of the innate immune system. Current opinion in 
immunology, 65, 7-13. 
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CHAPTER I: INTRODUCTIONa 

 

 

Overview of adaptive immune memory and the response to infection 

The immune system is a highly complex network of diverse cell types. Any one defect affecting 

a particular component of the immune system can seriously undermine one’s ability to fight 

infection, underscoring the clinical and scientific importance of understanding how all aspects of 

the immune system function in concert.  

Cells of the vertebrate immune system are classically divided into two branches. The adaptive 

immune system is comprised of cells such as T- and B-lymphocytes that can form antigen-

specific immunological memory. Innate immune cells include monocytes, dendritic cells, and 

neutrophils, and have historically been viewed as general, “non-specific” responders to pathogen 

challenge. Upon infection, a complex interplay between cells of the innate and adaptive immune 

systems is initiated. Innate immune cells are found both in the peripheral circulation, as well as 

within tissues and barrier sites and express germline encoded pathogen recognition receptors 

(PRRs) that recognize pathogen-associated or danger-associated molecular patterns introduced 

during infections. While recognition is not antigen-specific per se, different receptors recognize 

different classes of pathogens (i.e., gram negative or positive bacteria, viruses, fungi), allowing a 

response that is tailored to some extent1. Innate immune cells typically act as first responders to 

infection by phagocytosing pathogen, producing pro-inflammatory cytokines, presenting antigen, 
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and trafficking to secondary lymphoid organs to present this antigen to naïve T-cells1. The 

presentation of antigen by APCs (most notably dendritic cells) to naïve T-lymphocytes then 

initiates a series of selective expansion and differentiation events that lead to a memory T-cell 

pool and the formation of high-affinity immunoglobulins. The exact models and steps by which 

memory T-cells are formed are still debated, but generally, a naïve T-cell specific to a particular 

antigen first undergoes a high level of clonal expansion (believed to be around 400,000-fold in 

many cases2). A portion of these clonally expanded cells develop a memory-precursor phenotype 

and over time, in the presence of cytokine exposure, develop into fully fledged memory T-cells3. 

The end result is that after an initial infection, there is a larger number of T-cells capable of 

recognizing the antigens of that infection. Not only are the T-cell clones expanded, but they are 

intrinsically altered, harboring permanently rewired transcriptional programs driven by sustained 

changes in the levels of transcription factors such as T-bet, EOMES, BLIMP, and BCL63,4. Thus, 

adaptive immune memory is driven by antigen-specific selective clonal expansion, and a 

rewiring of transcriptional programs caused by changes to the balance of critical transcription 

factors that collectively make memory lymphocytes more capable of rapidly engaging effector 

functions and expanding upon re-exposure to the same antigen4. 

Innate immune memory 

The type of immunological memory described above is an exclusive hallmark of the adaptive 

immune system. However, the rigid view that other cells are devoid of any memory-like 

properties, has changed over the past 10-15 years with research in both mice and humans 

demonstrating memory-like features within innate immune cells5–7. While innate immune cells 

lack antigen specificity and the diversity of receptors that bestow T-cells and B-cells with the 
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collective ability to recognize a virtually unlimited number of antigens, they can undergo 

fundamental changes in response to immune challenge, can maintain these changes on a variable 

scale of days, weeks, or months, and can mount qualitatively and quantitatively altered responses 

to a broad range of secondary pathogens. Broadly, this ability to mount enhanced secondary 

responses after an initial priming event has been referred to as trained immunity, or innate 

immune memory. 

The concept of trained immunity was formalized in the 2010’s in a series of in vitro studies 

performed on human monocytes. These studies demonstrated that human monocytes isolated and 

placed in cell culture could gain short-term enhanced recall responses after priming with C. 

albicans or the C. albicans cell wall component, β-glucan8,9. In these initial experiments, the 

purified monocytes were stimulated with C. albicans or β-glucan for 24 hours, washed, rested for 

1 week, then challenged again. Primed monocytes, as compared to naïve monocytes, secreted 

significantly higher levels of the proinflammatory cytokines IL6 and TNFα, but not the anti-

inflammatory cytokine IL-10, in response to a wide range of secondary stimuli including 

lipopolysaccharide (LPS), C. albicans, and Mycobacterium tuberculosis (Mtb)8,9. 

Subsequent studies in vivo have led to more complex readouts, broadening the concept of innate 

immune memory to accommodate these diverse memory-like phenotypes. In vivo, a wide variety 

of different pathogens have been shown to modulate the innate immune system of mice. One 

group reported that intraperitoneal injection of LPS led to changes in the basal expression levels 

of Stat1 genes in peritoneal macrophages for three weeks and decreased the bacterial burden of 

S. aureus following a subsequent infection10. BCG vaccination protected SCID mice against 

subsequent C. albicans infection two weeks later11 even though these mice lack a fully functional 



 4 

adaptive immune system, suggesting a critical role for innate immunity. Additionally, respiratory 

infections with adenovirus12, influenza13, S. aureus14 and E.coli14, have all been shown to 

modulate alveolar macrophages on the functional,  protein, gene expression, or epigenetic level 

within the lungs of mice for one or more months. 

The role of epigenetics in innate immune memory 

Although we still lack a clear picture of the mechanistic underpinnings of the various forms of 

innate immune memory that have been described, innate immune cells developing altered 

phenotypes following a primary challenge, almost always harbor epigenetic alterations. Thus, a 

predominant hypothesis is that epigenetic reprogramming induced upon a primary stimulation 

serves as the “language” by which innate immune memory is encoded.  

In the most fundamental sense, epigenetic changes refer to changes that impact cell biology 

without being genetic - meaning that they do not change the DNA coding sequence. The most 

common way by which this can occur is through alterations in the way DNA is packaged. DNA 

is naturally packaged together with proteins called histones into chromatin of which the basic 

unit is the nucleosome (which is comprised of the histone protein and the 147 base pairs of DNA 

wrapped around it). The spacing and density of nucleosomes is highly heterogenous. Regions 

referred to as heterochromatin contain densely packed nucleosomes while euchromatin refers to 

those portions of chromatin where nucleosomes are spaced farther apart making the DNA more 

accessible15. Not surprisingly, while only 2-3% of DNA is accessible, these minority regions 

make up more than 90% of binding sites for transcription factors16 highlighting the fact that 

chromatin structure is tightly intertwined with control of gene expression.  
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It is now well established that chemical modifications, either to histone proteins, or to DNA 

bases can change chromatin packaging, thereby modulating the ability of transcription factors to 

bind. Since this ultimately impacts gene expression and cellular behavior these modifications are 

seen as prototypical epigenetic modifications (although by some definitions only modifications 

heritable though replication are truly epigenetic thus excluding some histone modifications 

which are nonetheless referred to as epigenetic in this document). The chemical modification 

5mC (DNA methylation) has been directly linked to gene repression. Its importance to cell 

biology is clear by the number of critical process in which DNA methylation is involved, ranging 

from X-chromosome inactivation, genomic imprinting, and the silencing of retroviral elements to 

its consistent dysregulation in various disease contexts such as cancer, in which DNA 

methylation levels are often unusually high at tumor suppressor regions15. The enzymes 

DNMT3a/b and DNMT1 are enzymatic writers of DNA methylation that catalyze DNA 

methylation de novo and retain DNA methylation across DNA replication respectively17. The 

TET1-3 enzymes subsequently can remove DNA methylation, meaning that this modification is 

ultimately reversible17. A large percentage of the genome is methylated, except for at CpG 

islands17 which are CpG-dense regions occurring near promoters that serve as attractive binding 

sites for proteins that inhibit the activity of DNMT enzymes, ultimately preventing DNA-

methylation mediated silencing of gene promoters15.  

Among histone modifications, methylation, acetylation, and phosphorylation are the most 

studied and believed to be the most important and prevalent15. Histone acetylation has generally 

been linked to active gene expression going as far back as the 1960’s when the first HAT 

(histone acetyltransferase) was purified and cloned and found to be an orthologue of a protein 

known to be involved in gene activation – providing a link between histone acetylation and gene 
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expression upregulation15. One of the most widespread and studied histone acetylation 

modifications H3K27Ac for example, is a particular histone modification widely associated with 

active transcription and can be found at both active enhancers and promoter regions. Histone 

methylation depending on the type, is variably linked to both gene activation and repression. 

ChIP-seq studies, for example, have demonstrated that H3K4me3 is located at active promoter 

regions while H3K27me3 is associated with repressed regions and is generally anticorrelated 

with H3K4me3. As the number of such genome-wide ChIP-seq studies have increased it has 

generally become clear that promoters and enhancers, the primary regulatory regions, are 

associated with distinct combinations of histone modifications and DNA methylation that 

correlate not only with the region identity (enhancer versus promoter) but also the activation 

level of that region (see Table 0.1). While the correlative versus causal relationship between 

histone modifications and regulatory region activity remains to be completely understood, these 

modifications are believed to causally influence regulatory region activity and gene expression 

through both cis and trans mechanisms15. In trans, unique combinations of histone modifications 

can attract binding by unique combinations of proteins complexes containing transcription 

factors that promote or repress specific gene expression programs. In addition, in cis, histone 

modifications can increase or decrease steric hindrance making physically it less or more likely 

for TFs to bind16. 



 7 

 

Table 0.1. Specific combinations of histone modifications and DNA methylation levels occur at 
different regulatory elements and can also be used to identify these elements de novo 
(reproduced with modification from Sun, S., & Barreiro, L. B. (2020). The epigenetically-
encoded memory of the innate immune system. Current opinion in immunology, 65, 7-13.)  
       

 

Histone post translational modifications (PTMs) are the modifications that appear to be the most 

responsive to immune challenges. Immune-induced changes to the histone PTM landscape often 

involves the deposition or the loss of histone PTMs at known enhancer or promoter sites that 

often already harbor some low levels of these same PTMs at baseline (H3K4me1 at enhancers, 

H3K4me3 at promoters, and H3K27Ac at active enhancers and promoters15,18). Immune 

stimulation can then modulate the levels of these histone PTMs at their respective locations. For 

example, mouse bone marrow derived macrophages (BMDMs) stimulated with LPS quickly gain 

higher levels of H3K27Ac at more than 5000 pre-defined enhancers19. Similarly, human 

Genomic element Epigenetic marks Notes

Silenced promoter High DNA methylation Methylated promoters are usually 
irreversibly silent 

Poised/inactive promoter H3K4me3, hypomethylated May be more susceptible to DNA 
methylation in disease contexts 

Active promoter 
H3K4me3hi, H3K27Ac, 

hypomethylated, high RNA 
PolII, moderate p300

Poised enhancer H3K4me1, moderate p300
Poised enhancers are established and 

bound by pioneering transcription 
factors 

Active enhancers 
H3K4me1, H3K27Ac, 

hypomethylated under certain 
conditions, p300, H3K4me2

Latent enhancer unmarked
Defined by a lack of marks associated 
with poised or active enhancers, but 

gains these marks when a cell is 

Active Gene body H3K36me3, DNA methylation
Unlike at regulatory regions, DNA 
methylation within gene bodies is 

associated with increased transcription

Heterochromatin, repressed 
regions H3K9me3, H3K27me3
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monocytes stimulated with certain β-glucans, BCG, or LPS, undergo genome wide changes in 

H3K27Ac levels, as well as more modest changes in H3K4me1 and H3K4me3 levels at 

enhancers and promoters, respectively5,9,10,20,21. In  addition to the deposition of modified 

histones at preexisting promoters and enhancers, it is also possible for pro-inflammatory stimuli 

to induce the de novo formation of enhancer elements through the deposition of H3K4me1 at 

sites with previously undetectable levels of this mark. The infection of human dendritic cells 

(DC) with Mycobacterium tuberculosis (Mtb) leads to the emergence of hundreds of de novo 

enhancers22. A recent paper investigating the effects of IL-1β and IFNG on human pancreatic 

islet cells identified 3800 regulatory elements responsive to cytokine stimulation and attributed 

45% of changes to the induction of new regulatory elements23.  

The degree to which other epigenetic features may encode innate immune memory phenotypes 

remains unclear. DNA methylation has been particularly understudied, due to the belief that 

methylation marks are highly stable, and unlikely to respond to environmental perturbations on a 

short time scale. Despite this belief, recent studies have suggested that DNA methylation may be 

more plastic than previously appreciated. For example, infection of post-mitotic human DCs or 

macrophages with live Mtb led to an active loss of DNA methylation at thousands of enhancers 

throughout the genome22,24 suggesting a potential role for this epigenetic mark in innate immune 

memory.  

These stimulus-induced changes to the epigenome are thought to have direct consequences for 

future cellular behavior and function, although most current data is based on correlational 

analyses. For example, stimulating macrophages with LPS led to widespread deposition of  

H3K27Ac and H3K4me3 onto gene promoters. Although only some of these marks were 
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maintained, they coincided with genes that were primed, while tolerized genes lost these marks, 

linking increased H3K4me3 and H3K27Ac levels at specific gene promoters with priming and 

the loss of these marks with tolerance25. More recent work in an epidermal stem cell system, has 

suggested that the selective maintenance of activating histone modifications such as H3K27Ac 

and H3K4me1 at some sites after priming may involve the selective continued binding of 

transcription factors26. In a stem cell model, it has been demonstrated that long lasting increases 

in chromatin accessibility and histone PTMs in response to inflammation occurs only at a subset 

of “memory” peaks identified as binding sites for Stat3, FOS and JUN. Sites retaining H3K4me1 

and H3K27Ac also remained bound by Stat3 and FOS following the resolution of inflammation. 

These memory peaks were then selectively bound rapidly by JUN upon a secondary stimulus, 

suggesting a global mechanism whereby transcription factors co-bind to chromatin, maintain 

increased levels of histone modifications, and keep the chromatin open, allowing more rapid 

binding of partner TFs upon a second challenge. Other epigenetic marks besides H3K4me1, 

H3K4me3, and H3K27Ac could also serve a similar role in marking chromatin. IFNβ stimulation 

of MEFs induced H3.3 and H3K36me3 at selective sites residing close to genes that were primed 

upon a secondary IFNβ challenge27 and DNA methylation appears to be involved in the encoding 

of memory within NK cells which upon HCMV infection are primed to secrete increased IFNγ in 

response to a second HCMV infection28. In summary, most work has pointed to the same general 

paradigm whereby an initial stimulation induces chromatin-level changes - most often consisting 

of altered H3K4me1/H3K4me3/H3K27Ac levels, but also potentially involving retained binding 

of transcription factors, other histone PTMs, or DNA methylation- to keep the chromatin “book-

marked” for faster binding upon a secondary challenge.  

The intersection of metabolism and epigenetics in trained immunity 
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In addition, the regulation of epigenetics has been shown to be tightly linked to cell 

metabolism9,29–31. Multiple studies have suggested that the induction of epigenetic changes 

associated with trained immunity relies on concomitant metabolic rewiring6,  although the 

direction of causality remains unclear. On one hand, both in vitro and in vivo studies have 

demonstrated that primed cells have altered histone PTM levels at the promoter or enhancer 

regions of metabolic genes, which could reflect the fact that a primary stimulation induces 

epigenetic changes that impact the expression levels of metabolic genes which in turn, lead to the 

detected metabolic changes (in other words, metabolic changes are just a result of epigenetic 

changes). For example, human monocytes stimulated with beta glucan in vitro have increased 

histone methylation and acetylation on the promoters of genes involved in glycolysis and the 

mTOR pathway and the cells themselves have increased aerobic glycolysis9. Likewise, BCG 

vaccination induced changes in H3K27Ac in human monocytes at genes involved in similar 

metabolic pathways29.  

On the other hand, the byproducts and metabolites produced by metabolic processes can 

modulate the activity of enzymes that deposit or remove histone PTMs. For example, the TCA 

cycle metabolite fumarate downregulates the activity of the histone demethylase KDM530. 

Moreover α-ketoglutarate produced during glutamine metabolism induces Jmjd3 to catalyze 

demethylation of H3K27me3 at promoters of immune related genes31, demonstrating the ability 

of metabolism to regulate epigenetics. Thus, changes to metabolism may be required for changes 

in epigenetics to occur in the first place. In support of this idea, blocking the AKT-mTOR-HIF1α 

pathway abrogated BG-induced trained immunity in human monocytes, demonstrating the 

requirement of metabolic rewiring for trained immunity in this system9.  
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Critical questions in the field of trained immunity 

Despite the impressive pace at which new discoveries about innate immune memory are made, 

several key questions remain in the field, spanning from very basic mechanistic questions about 

the heritability of histone PTM-based memory across cell divisions to more general questions of 

clinical applicability.  

First, on a basic science level, what dictates the longevity of innate immune memory? 

Mechanistic work linking innate memory phenotypes to epigenetic reprogramming would 

suggest the loss of innate memory should coincide with the return to a ‘baseline’ or pre-

stimulation epigenetic landscape, however the kinetics by which this occurs have not been fully 

characterized. This question is made more complicated due to the diversity of possible scenarios. 

For example, is the experimental setting in vitro or in vivo, are the cells mitotic, or post-mitotic, 

and how easily cleared is the priming stimulus? Some information is already known about the 

post-mitotic, in vitro setting. In these settings we know that not all epigenetic modifications are 

maintained equally well. For instance, H3K27Ac is deposited very quickly onto activated 

enhancers and promoters32, but also lost very rapidly (by 4 hours post stimulation in one study) 

even if the stimulus is still present19. In contrast, H3K4me1 has been shown to be a much more 

stable mark, requiring between 6 to 24 hours to appear32, but also remaining at high levels at 24 

hours of stimulation (compared to 4 hours for H3K27Ac)28. Similarly, DNA methylation changes 

have a slow onset but a high level of stability. In human dendritic cells infected with Mtb, it 

takes as long as 18 hours before active enhancers first become DNA demethylated, although 

these enhancers remained demethylated over the course of the 72-hour study period24. These 

kinetics likely differ a lot when comparing cells in culture to those within a mouse. In culture, 
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cells are isolated from interactions with other cells, including other adaptive immune cells with 

which there could potentially be crosstalk in an in vivo setting. In vivo, cells are also placed 

within a more dynamic microenvironment, and primary stimulus removal is less easily 

controlled. It also remains to be established whether self-renewing cells can independently retain 

epigenetic changes induced by a primary challenge. During mitosis, histones are displaced from 

the DNA wrapped around them during passage of the replication fork33. As of now, there is no 

known mechanism by which histone modifications can be faithfully copied from mother cell to 

daughter cells independently of the presence of TFs. Work in the fission yeast S. pombe 

demonstrated that H3K9me3 (critical for heterochromatin formation) can be inherited though 

more than 50 cell divisions only if the demethylase Epe1 was deleted34,35. However, in the native 

context, inheritance of H3K9me3 was shown to require the DNA binding of CREB family TFs 

indicating a requirement for transcription factor binding even in this case36. Although many of 

the in vivo studies discussed in this thesis suggest that some self-renewing cell populations may 

have the capacity to maintain stimulus-induced epigenetic changes, it remains difficult to prove 

whether this is due to a cell intrinsic ability to copy histone PTMs from parent to daughter 

strands via an unknown mechanism, relies on other epigenetic changes such as DNA methylation 

entirely, or rather is dependent upon cells, cytokines, or low-level stimulus persistence in the 

microenvironment.   

Second, from a clinical perspective, does trained immunity have relevance to humans and 

generally how is human innate immune system in its entirety modulated by immune challenges? 

Trained immunity is hypothesized to play a potentially important role in the context of BCG 

vaccination which has been associated with the induction of heterologous protection against a 

variety of non-mycobacterial pathogens in multiple clinical trials and observational studies 
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published between present-day and the early 2000’s29,37–41, suggesting a role for innate immune 

training. The durability of this protection, reportedly spanning from 6 to 18 months, suggests that 

if innate immunity is involved, then memory must be induced in cells with the ability to survive 

and self-renew for at least as long as the window of protection. The human clinical data thus 

underscores the idea that innate immunity only has long-term clinical relevance if it can be 

encoded centrally in some form of long-lived innate immune cell or precursor type. New models 

of trained immunity taking these clinical data into account have proposed that long-lived innate 

immune memory could be induced within long-lived immune stem cells (referred to as 

hematopoietic stem and progenitor cells, HSPCs) residing in the bone marrow5.  

Briefly, “HSPC” is an umbrella term referring to all the cells at various stages of hematopoietic 

differentiation (the process through which a hematopoietic stem cell gives rise to mature cells of 

the immune system). General models of hematopoiesis have shifted over time. Originally, 

hematopoiesis was thought to occur through a simple bifurcation model whereby pluripotent 

HSCs first make a myeloid (innate immune cells, megakaryocytes, and erythrocytes)42 versus 

lymphoid (T-cells, B-cells, or NK cells)42 fate decision by differentiation into either a CMP 

(common myeloid progenitor) or a CLP (common lymphoid progenitor)43. However, it is now 

widely believed that at the earliest point of lineage choice HSCs choose between the CMP fate or 

prior to becoming a CLP must transition through an LMPP/MLP state in which they gain bias 

towards the lymphoid lineage but retain the potential to give rise to myeloid cells. HSCs (the 

stem cells at the top of the hematopoietic hierarchy) are subcategorized into 3 main types – the 

LT-HSC, ST-HSC, and MPP, based on their ability to reconstitute the entire immune system of a 

lethally irradiated mouse long-term43. LT-HSCs are defined by their ability to do this for at least 

12 weeks, while ST-HSCs and MPP only have temporary reconstitution ability. Although most 
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of these definitions are based on work in mice, xenograft models involving transplantation of 

human HSCs into mice have demonstrated similar levels of heterogeneity with rare populations 

of HSCs having the ability to reconstitute the immune system long-term. Theoretically any HSC 

can divide symmetrically or asymmetrically giving rise to 2 stem cells, 2 progenitors, or 1 stem 

and 1 progenitor cell. Differential distributions of TFs within daughter HSCs are believed to 

dictate their ages43, which highlights the overall importance of TFs in both the maintenance of 

HSC stem-like fate and differentiation. Although most studies are based in mouse models, a few 

key TFs are believed to be critical to maintaining HSC function or in pushing HSCs towards 

either a myeloid or lymphoid lineage. Within HSCs, HOX TFs are believed to play a critical role 

in HSC self-renewal43,44. Mice deficient in Hoxa9, for example, have severe hematopoietic 

defects. Notch and Wnt signaling are also generally seen as critical TFs for proper HSC 

function44. Then, in order for differentiation to happen, other TFs must be upregulated. In 

general, it is believed that the myeloid lineage is the “default” and that in order for lymphoid 

specification to occur certain TFs must be activated which repress the myeloid program. 

Indicative of this default myeloid program within HSCs is the fact that HSCs “prime” or lowly 

express certain lineage-specific TFs and genes including MPO, CEBPα, and MCSFR44. During 

lymphoid development, Ikaros (IKZF1) is believed to play a driving role, both in repressing the 

activity of myeloid-specific TFs but also in driving lymphoid programs. LMPPs that lack Ikaros, 

for example, fail to upregulate Flt3, leading to a loss of lymphoid committed CLPs. Ikaros also 

regulates the activity of Gfi1 which represses PU.1 and drives B-cell development44. On the 

myeloid side, GATA1, PU.1, and the CEBP TFs are critical in determining cell fate. GATA1 is a 

key TF that drives differentiation in the erythrocyte/megakaryocyte fates. PU.1 when active 

represses GATA1, preventing MEP differentiation and driving GMP differentiation instead. 
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GMPs can differentiate into either monocytes/macrophages or into granulocytes and this fate 

choice depends largely in the relative balance between PU.1 and the CEBP TFs with higher 

CEBP TF levels driving a granulocytic fate44.  

Within the field of innate immune memory, it is hypothesized that “trained” stem cells 

continuously give rise to trained innate immune cells, which would explain the functional and 

epigenetic changes observed in monocytes and whole blood for at least 28 days after 

vaccination29,41, while simultaneously accounting for their short lifespan. A plethora of studies in 

mice have demonstrated that HSPCs are responsive to immune stimuli, including work from our 

lab which recently showed that intravenous vaccination of mice with BCG led to substantial 

changes in gene expression within HSCs and MPP of the bone marrow, as well as changes in 

HSPC cell proportions 4 weeks after vaccination45. Almost all current work studying trained 

immunity in humans has relied on epigenetic and stimulation assays of PBMCs ex vivo. 

Currently, we lack a thorough investigation of the impacts of immune challenges on human 

HSPCs.  

Areas addressed in this thesis 

In the second chapter of this thesis, we investigate the impact of BCG vaccination on HSPCs 

isolated from human bone marrow, with the aim of better understanding how a vaccine can 

modulate the human innate immune system in a way that is long-lasting. Our experiments help to 

directly inform whether current models (that the BCG vaccine can induce lasting changes to 

HSPCs that are transmitted to their progeny) are valid directly in humans and could help re-

shape the way we think about the systemic impacts of vaccines beyond the adaptive immune 

system. In the third chapter we tackle the basic question of whether histone PTMs induced by 
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immune stimulation, thought to be critical for innate immune memory, can be propagated 

through multiple cell divisions in macrophages. More generally we explore the dynamic nature 

of the histone PTM landscape, gene expression, and functional properties of these cells in a 

dense time course. Together, the work presented in this thesis aims to utilize advanced 

experimental techniques combined with computational analysis to shed new light on some of 

foremost questions in the field of trained immunity.  
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CHAPTER II: BCG VACCINATION IMPACTS THE EXPRESSION AND 
EPIGENETIC LANDSCAPE OF HSPCs IN HUMAN BONE MARROW 

 

 

INTRODUCTION 

Trained immunity is hypothesized to play an important role in the context of the BCG vaccine. 

Although BCG is administered for the purpose of protecting against Mycobacterium tuberculosis 

infection, it has also shown effectiveness in other areas, such as in the protection against bladder 

cancer46. Moreover, clinical data suggests that the BCG vaccine may also provide a degree of 

heterologous protection against non-mycobacterial infections29,37–41. Clinical studies conducted in 

Africa and Europe have reported that BCG vaccination could decrease the risk of death due to 

secondary non-mycobacterial infections in the range of 6-18 months37–39. For instance, studies 

conducted in both Guinea Bissau and Denmark have reported that children not receiving the 

BCG vaccine have higher mortality rates due to causes other than Tuberculosis37,38 and a 

different study reported that elderly adults receiving the BCG vaccine were significantly less 

likely to experience a new infection within the next year (HR=0.21, p=0.013)39. Overall, the 

global use of BCG as the only protective measure against Tuberculosis, combined with its other 

potential clinical uses, highlight the need for a more complete and molecular understanding of 

how BCG interacts with the immune system in its entirety.  

One area of increasing focus has been on understanding how the BCG vaccine interacts with the 

innate branch of the immune system. Potentially long-lasting impacts of the BCG vaccine on 

innate immune cells has been hypothesized to underlie some of the vaccine’s apparent 

heterologous protective effects due to the ability of innate cells to respond broadly to a range of 
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different pathogens. Innate immune cells can be “trained”, at least in the short term, to mount 

stronger responses to heterologous secondary challenge, a phenomenon first shown to occur in 

human monocytes stimulated with beta glucan8,9. The hallmark features of beta glucan-induced 

trained immunity - reconfiguration to the histone modification and chromatin accessibility 

landscape and increased pro-inflammatory cytokine responses to heterologous secondary 

challenge – have also been observed following BCG vaccination. For example, one study found 

increased H3K27Ac levels in monocytes following BCG vaccination, which was accompanied 

by increased IL1β production by PBMCs secondarily challenged with Candida albicans29. Thus, 

it has been hypothesized that these BCG-induced changes in innate immune cells, may underlie 

its clinically observed heterologous protective effects. 

One aspect that this model fails to explain is the durability of BCG-induced heterologous 

protection, reported to last for over a year in some studies37–39. In contrast, memory within 

peripheral blood innate cells would only be expected to last for a few days, given the short 

lifespan of these cells. To bridge this gap, newer models have proposed that BCG could impact 

the functional responses of innate immune cells through an indirect route, by inducing a 

memory-like state within long-lived hematopoietic stem and progenitor cells (HSPCs) that could 

be encoded in the immune cells they give rise to5. The idea that stem cells can harbor 

inflammatory memory is a paradigm that has been shown in other stem cell types such as within 

the skin and nasal airways. Epidermal stem cells of the skin primed with the inflammatory agent 

imiquimod (IMQ) gain long-lasting differences in chromatin accessibility for more than 180 days 

and are able to close a subsequent punch wound at a significantly faster rate compared to 

previously unexposed skin47. Epidermal stem cells can also migrate from an old niche to a new 

one following inflammation, yet still retain epigenetic signatures of the original niche from 
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which they came48. Another study found that chronic rhinosinusitis could imprint long lasting 

transcriptional and functional changes in basal stem cells. Even after 5 weeks in culture, basal 

stem cells from patients with polyps remained transcriptionally distinct from controls and 

exhibited tolerance like characteristics with a decreased capacity to respond to cytokine 

stimulation49.  

Whether BCG vaccination could trigger similar epigenetic memories within HSPCs remains an 

active area of investigation. Our lab recently showed that intravenous vaccination of mice with 

BCG led to substantial changes in gene expression within HSCs and MPP of the bone marrow, 

as well as changes in HSPC cell proportions 4 weeks after vaccination45. Moreover, even if the 

mice were treated with antibiotics following vaccination, bone marrow derived macrophages 

(BMDMs) from these mice harbored epigenetic, transcriptional, and functional differences for at 

least 5 months post vaccination, which is supportive of the hypothesis that innate immune 

training can be encoded at the level of stem cells and can be propagated to mature innate immune 

cells.  

Nonetheless, very little is still known about the relevance of this model in humans, and about the 

overall impact of BCG vaccination on human bone marrow. Recent work by Cirovic et al. 

investigated a 20-person cohort from which bone marrow aspirates were collected before and 90 

days after intradermal BCG vaccination, enabling a rare look into how BCG vaccination can 

impact human bone marrow50. Since this study was based on bulk RNA-seq performed on 

HSPCs sorted from these bone marrow samples, it has opened the door for many additional 

questions, such as which HSPC cell types are most impacted, and whether these expression 

changes are also coupled to epigenetic changes. 
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Here we combined single cell analyses, flow cytometry, functional analyses, and computational 

approaches performed on the samples from Cirovic et al. to address these questions. We 

performed droplet-based scRNA- and scATAC-sequencing on the human bone marrow aspirates 

from all 20 healthy individuals involved in the study, both before and 90 days after intradermal 

BCG vaccination or placebo. Even 90 days after a single intradermal vaccination, we found that 

the most uncommitted stem cells exhibited multiple hallmarks of granulocyte/neutrophil bias, 

which was accompanied by higher percentages of classically defined CMPs in BCG compared to 

placebo individuals. On the epigenetic level, we identified over 2000 sites of differential 

chromatin accessibility across multiple CD34 subpopulations. Specifically, within progenitor 

clusters, these peaks of differential chromatin accessibility were enriched for motifs of KLF/SP 

and EGR transcription factors which were predominantly active within upstream HSCs, 

suggesting that long-lasting TF activity and differential gene expression at the level of HSCs 

may impact the chromatin accessibility landscape of downstream progenitors. Within individual 

donors, the extent of myeloid bias and the expression levels of a core set of BCG-induced genes 

and transcription factors within HSCs were found to significantly correlate with increased Il1β 

secretion of donor paired PBMCs in response to a C. albicans challenge. BCG-induced changes 

in chromatin accessibility within downstream GMPs were also predictive of IL1B production 

capacity demonstrating that BCG vaccination induces both a protracted period of baseline 

activation within HSCs, myeloid skewing, and the accumulation of epigenetic memories in 

downstream progenitors, all directly correlated with changes in the production of cytokines by 

donor-matched PBMCs. These data indicate that BCG vaccination re-wires transcription factor 

activity, gene expression, chromatin accessibility, and lineage bias in human bone marrow in a 



 21 

way that is linked to responses of PBMCs to secondary immune challenge with non-

mycobacterial pathogens. 

 

RESULTS 

 

Single cell analysis of human bone marrow 

Bone marrow aspirates and PBMCs were collected and cryopreserved from a cohort of 20 BCG-

naïve volunteers prior to (D0) and 90 days following (D90) intradermal vaccination with BCG 

(n=15) or placebo (n=5) (Figure 1.1a). To specifically isolate hematopoietic stem and progenitor 

cells (HSPCs) from each bone marrow sample, we stained bone marrow aspirates with 

fluorescence-conjugated antibodies targeting CD34, a transmembrane phosphoglycoprotein 

specific to HSPCs51. We also stained all bone marrow aspirates with a panel of antibodies 

targeting canonical markers (CD3, CD56, CD14, etc. for mature immune cells and CD90, CD10, 

CD110, etc. to distinguish between CD34+ HSPC subtypes; 16 total markers, Table 1.1). We 

then used fluorescence activated cell sorting to sort out live, CD34+ cells for downstream 

droplet-based scRNA-seq and scATAC-seq processing while simultaneously collecting flow 

cytometry data (Figure 1.1b). 

BCG vaccination leaves a lasting impact on gene expression within HSPCs 

We started by first broadly asking whether BCG vaccination had a lasting impact on the gene 

expression landscape of each HSPC subtype. Our initial scRNA-sequencing data set contained 

115,698 cells across all samples, which we filtered down to 92,014 high quality cells to retain for 

subsequent analyses. We clustered these cells into 23 initial groups, and then condensed these 
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groups into 13 non-overlapping clusters which we assigned to known HSPC cell subtypes 

(HSCs, CMPs, MLPs, GMPs, MEPs, and Pre-BNK cells) (Figure 1.1c) based on similarity to a 

pre-labelled reference. To verify our cluster assignments, we plotted the expression levels of 

known lineage-specific genes including GATA1 (erythroid), DNTT (lymphoid), MPO 

(myeloid/neutrophilic), and HOXA9 (stem) whose expression was restricted to specific clusters 

with matching cell-type labels (Figures 1.1d-g). 

 

 

Figure 1.1. Bone marrow and PBMC sample processing 

a. Overview schematic of experimental timeline and samples collected. Bone marrow aspirates 
and PBMCs were collected from 20 total donors on D0 prior to BCG (n=15) or placebo (n=5) 
and D90 (90 days after BCG or placebo). b. Schematic showing processing steps for all bone 
marrow samples. Cryopreserved bone marrow samples were stained with a cocktail of lineage 
and HSPC-specific antibodies to enable flow cytometric analysis of cellular composition as well  
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Figure 1.1, continued 

as simultaneous sorting of all CD34+ cells. Sorted CD34+ cells were immediately processed for 
scRNA-seq and scATAC-seq according to the respective 10X genomics protocols. c. UMAP of 
the scRNA-seq data collected from bone marrow CD34+ HSPCs of BCG or placebo vaccinated 
individuals at D0 or D90. Clustering based on gene expression grouped cells into 13 non-
overlapping clusters: HSC_a (n=9637), HSC_b (n=10953), CMP_a (n=9174), CMP_b 
(n=14918), CMP_c (n=1715), GMP_a (n=6631), GMP_b (n=6423), MEP_a (n=8871), MEP_b 
(n=5439), MEP_c (n=3811), MLP_a (n=5153), MLP_b (n=3837), PreBNK (n=3371). d-g. 
UMAP colored by expression levels of lineage defining genes (D. GATA1 – MEP; E. DNTT – 
lymphoid; F. MPO – myeloid/neutrophilic; HOXA9 – stem) 

 

 

 

 

  

Table 1.1. Antibody panel for bone marrow samples and cell type-defining surface markers 

Cryopreserved bone marrow aspirates from each donor/timepoint were stained with the panel of 
fluorochrome conjugated antibodies shown on the left. Mature immune and HSPC cell types 
were defined based on the presence or absence of the cell surface proteins shown on the table to 
the right.  

 

 

Antibody Fluorochrome
L/D L/D fixable blue
CD16 PE Alexa Fluor 700
CD14 Spark Nir 685
CD3 PerCP
CD56 PerCP eFluor 710
CD45RA BUV496
CD38 BUV737
HLA-DR V500
CD34 PE
CD33 PE-Vio770
CD45 BV650
CD4 BUV615
CD20 BV605
CD90 APC
CD10 FITC
CD110 BV421
CD8 BV711

CD4
CD8

B-cell
classical monocyte

nc monocyte
NK cell

DC
HSC
MPP
CMP
CLP 
MLP
GMP
MEP

L/D- CD34+ CD38- CD45RA+ CD90-
L/D- CD34+ CD38+ CD45RA+ CD10-

L/D- CD34+ CD38lo CD45RA- CD110+ CD33-

L/D- CD45+ CD3- CD20- CD14- CD56+
L/D- CD45+ CD3- CD20- CD14- HLA-DR+

L/D- CD34+ CD38- CD45RA- CD90+
L/D- CD34+ CD38- CD45RA- CD90-

L/D- CD34+ CD38+ CD45RA- 
L/D- CD34+ CD38lo CD45RA+ CD90- CD10+

Expected markers for each population
L/D- CD45+ CD4+ CD8- CD20-
L/D- CD45+ CD4- CD8+ CD20-
L/D- CD45+ CD4- CD8- CD20+

L/D- CD45+ CD3- CD20- CD14+ CD16-
L/D- CD45+ CD3- CD20- CD14+ CD16+
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We then performed a differential gene expression analysis separately for each of the 13 unique 

clusters. For this analysis we collapsed single cell expression counts into pseudobulk expression 

(Figure 1.2a) to allow a bulk RNAseq-like approach. Since measured gene expression may 

naturally shift over time, we focused on genes whose across-time change in gene expression 

(D90 vs. D0) differed between the BCG vaccinated and placebo cohorts (Figure 1.2b). We refer 

to these genes as being differentially regulated (DR) across time due to BCG vaccination. We 

quantified the number of DR genes in the positive and negative directions independently for each 

cell-type (Figure 1.2c) which revealed that BCG effects on gene expression were generally 

upward biased and heterogenous, with a disproportionate percentage of DR genes residing within 

the most stem-like clusters, HSC_a and HSC_b (Figures 1.2c, d). Strikingly, in HSC_a and 

HSC_b, more than 200 and 150 genes respectively were significantly differentially regulated 90 

days following BCG vaccination, even when using a stricter lfsr < 0.01 cutoff. Thus, these data 

demonstrate that a single intradermal BCG vaccination impacts the gene expression landscape of 

HSPCs in the bone marrow for at least 3 months. 

To determine enriched pathways among DR genes we performed a gene set enrichment analysis 

(Figure 1.2e). We identified 27 Hallmark pathways that were enriched in at least one cluster (p < 

0.05). Most enriched pathways were generally representative of either immune (blue), 

metabolism (red), or proliferation/apoptosis (green) pathways. The immune-related pathways, 

IL2/Stat5 signaling, complement, and inflammatory response, were significantly positively 

enriched (padj < 0.1) predominantly within HSC clusters, demonstrating a baseline activated 

immune state within stem cells. The ‘TNFα via NFκB signaling pathway’, however, was 

significantly enriched in HSC, CMP, GMP, MLP, and Pre-BNK clusters, indicating that immune 

gene expression related to NFκB signaling was impacted across multiple HSPC subtypes. The 
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metabolism-related pathway ‘oxidative phosphorylation’ also had strong, positive enrichments 

across almost all clusters, in line with previous observations that immune challenges can induce 

persisting metabolic changes5,6,9. We observed a dichotomy when comparing metabolic pathway 

enrichments in MEPs with that of HSCs and other non-MEP progenitor clusters. For example, 

HSCs and GMPs had no enrichments in glycolysis or MTOR signaling, but instead had 

significant (padj < 0.1) enrichments in stress-related pathways (hypoxia, reactive oxygen species, 

and apoptosis pathways). In direct contrast, MEPs trended towards pro-glycolytic and pro-

proliferative enrichments (glycolysis and MTOR signaling and MYC signaling), but for the most 

part did not have significant enrichments of ROS, hypoxia, or apoptosis pathways, indicating that 

BCG vaccination heterogeneously rewires the metabolism of HSPCs. For a general comparison 

of pathway enrichments between HSPC subtypes, we performed a principal component analysis 

on each cluster using gsea pathway enrichment scores as input (Figure 1.2f). This revealed a 

tight and distinct clustering of HSC_a with HSC_b and of MEP_a with MEP_b and MEP_c, 

away from the zero-reference point. HSCs and MEPs, the cell types whose gene expression 

landscapes were the most impacted by BCG vaccination, clustered on opposite ends of PC1, 

further demonstrating the differential impact of BCG vaccination on these cell types. The other 

progenitor clusters, including CMPs, GMPs, MLPs, and PreBNK cells clustered together, closer 

to the zero-reference point, but in the negative direction of PC1, suggesting greater similarity to 

HSCs, compared to MEPs. These data collectively suggest that different HSPC cell types, 

namely HSCs and MEPs, may have a stronger propensity to maintain a lasting state of activation, 

compared to others. We note that of enriched pathways within the other myeloid and lymphoid 

progenitor clusters, very few were unique to only one cluster. Rather most were shared across all 

cell types. Thus, given that CMPs, GMPs, MLPs, and PreBNK cells appear to predominantly 
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harbor differences in gene expression that are shared with HSCs, we speculate that gene 

expression differences within these myeloid and lymphoid clusters may be retained as a form of 

transcriptional memory from activation within upstream HSCs. Overall, our data indicate that 

BCG vaccination variably impacts the expression of immune, metabolism, and proliferative 

genes across HSPC subtypes and has the strongest direct impact on HSCs and MEPs. 

 

 

 

Figure 1.2. BCG vaccination has heterogenous impacts on gene expression after 90 days 

a. Schematic showing the general scRNA-seq analysis approach. Raw ‘CELL x GENE’ UMI 
counts generated through the Seurat pipeline were transformed into ‘SAMPLE x GENE’ 
pseudobulk matrices for each cell-type/cluster. Pseudobulk expression was fit to a linear model 
that estimates and corrects for natural expression changes across time in placebo individuals and  
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Figure 1.2, continued 

allows identification of BCG-specific effects on gene expression. b. Example boxplots showing a 
gene (LINC01128) for which BCG vaccination had a significant differential impact on 
expression compared to placebo and a non-significant gene (AL157893.2) that exhibited similar 
across-time changes in expression in both placebo and BCG vaccinated individuals. c. Bar graph 
summarizing the total number of significant genes (lfsr<0.01) in each cell type. Bars extending in 
the positive and negative direction indicate genes whose expression was impacted positively and 
negatively, respectively, by BCG vaccination compared to placebo. Bars are color-coded by cell 
type. d. UMAP colored to indicate the number of significant genes in each cluster as shown in c. 
Darker red colors indicate higher total numbers of significant genes. e. Summary plot of gene set 
enrichment analysis (GSEA) performed separately for each cell type. Genes were ordered by the 
rank statistic –log10(pval)*logFC and compared against Hallmark gene sets. Pathway names are 
manually color-coded according to category (green: apoptosis/proliferation, blue: immune, red: 
metabolic, black: other). Square size is scaled to –log10(pval). All shown squares are pathways 
with p<=0.05. All squares with border have padj<=0.1; squares are color-coded by cell type. f. 
Principal component analysis showing cell types clustered by Hallmark pathway enrichment 
(NES) scores as computed for GSEA in E. “Ref” point (gray diamond) is a vector of zeros, 
representing a baseline unaffected state with no enrichment of any pathway. NES values for 
pathways with p>0.05 were set to 0.  

 

 

 

BCG vaccination impacts lineage bias of HSPCs 

We next focused our analyses on the HSC clusters, HSC_a and HSC_b, which harbored the 

largest overall changes in gene expression. We asked whether BCG vaccination was associated 

with any systematic change in HSC lineage bias, given that DR genes within HSCs were related 

to NFκB, Stat5 activity, and ROS pathways (Figure 1.2e), which are known to be involved in 

myelopoiesis-like responses to bacterial infections52–55. Previous murine and human studies have 

reported that BCG vaccination can induce acute emergency myelopoiesis56,57, although its 

persistence has not been thoroughly investigated. Thus, we asked whether long-lasting, inherent 

myeloid-leaning bias within HSCs was directly detectable 90 days after BCG vaccination. To 

computationally predict lineage bias we utilized CellRank58, a similarity-based trajectory 
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inference method that utilizes RNA-velocity information (measurements of unspliced to spliced 

mRNA) to infer developmental directionality. Applying CellRank to HSCs in each sample, we 

computed the most likely terminal state (CMP, GMP, MLP, MEP, or Pre-BNK) for each cell 

(Figure 1.3a). Then for each individual we determined the percentage of HSCs predicted to 

differentiate into each terminal state and found the difference across time (Figure 1.3b). Even 90 

days after a single intradermal vaccination, BCG vaccination had a significant (p = 0.026) and 

exclusive positive effect on differentiation biases towards the CMP_b terminal state (Figure 

1.3c-h). This was also true when directly comparing the percentage of CMP_b biased HSCs in 

individuals of the BCG and placebo cohorts at day 90 (Figure 1.3i, p = 0.018). Although not 

reaching a p-value threshold of 0.05, individuals in the BCG-vaccinated cohort also had relative, 

positive shifts in overall CMP (p = 0.104; Figure 1.3f) bias and a compensatory decrease in 

erythroid bias (p = 0.138; Figure 1.3g).  
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Figure 1.3. BCG vaccination increases granulocyte bias of HSPCs 

a. Example CellRank analysis for donor S14. Terminal fates of individual HSCs (cells in HSC_a 
or HSC_b clusters; colored grey within the red dotted box) were predicted with CellRank at D0 
and D90 for each donor. The righthand side of the figure shows HSCs color-coded by predicted 
terminal fate (orange: CMP_b, dark blue: CMP_a, brown: MEP_a, purple: GMP_b, light blue: 
MLP_b, turquoise: MLP_a) at D0 (top) and D90 (bottom). b. Line graph showing the percentage 
(y-axis) of HSCs from donor S14 predicted to differentiate into each possible fate (x-axis) at D0 
(solid line) and D90 (dotted line). c-h. Comparison of the across-time change (%D90-%D0) in 
the percentage of biased-HSCs for different terminal fates. Figures D-F show data for CMP_b 
bias, CMP_a bias, and CMP_c bias respectively. Figures G-I show combined results for broad 
cell types: CMP = CMP_a + CMP_b + CMP_c; erythroid = MEP_a + MEP_b + MEP_c; 
lymphoid = MLP_a + MLP_b + PreBNK. All values are shown normalized to the median of the 
control group. i. Absolute percentages of CMP_b biased HSCs for each donor at D90 (p=0.018). 
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CMP_b, the myeloid cluster towards which HSCs were significantly biased, expressed clear 

neutrophilic/granulocytic signatures on the gene expression level, suggesting that long-lasting 

BCG-induced myelopoiesis was specifically oriented towards production of granulocytes and 

neutrophils (a long-lasting emergency granulopoiesis-like state). The granulocytic identity of 

CMP_b was exemplified by the exclusive expression of MPO (Figure 1.4d, e) and the strong 

expression of CSF3R (Figure 1.4b). Moreover, CMP_b displayed a CEBPA to CEBPB 

expression gradient (Figure 1.4a,c) in agreement with the known essential role in CEBPA in 

initial neutrophil differentiation and the later developmental roles of CEBPB, which largely 

replaces CEBPA activity52,59. We investigated whether there was evidence that HSCs may be 

responding to any bacterial remnants or PAMPs remaining at D90 by looking at the expression 

levels of cytokines IL6, IL3, IL1B, G-CSF, TNF, IFNG, and GM-CSF, which are produced by 

non-hematopoietic cells or by HSPCs themselves upon bacterial infection or LPS 

challenge52,60,61. However, in our data set we detected no differential gene expression of any of 

these cytokines in any HSPC cell type. Most were expressed at such low levels that they were 

excluded from the original gene expression matrix and not included in our linear model (Figure 

1.4f). Cytokines IL3, IL6, IFNG, and G-CSF had negligible expression in all HSPC clusters and 

GM-CSF had appreciable expression only in the HSC_a and MEP_a clusters but with a padj 

value > 0.9 when comparing expression between the BCG and placebo cohorts. Likewise, 

several clusters expressed some IL1B and TNF, but we detected no differences in expression 

between cohorts, indicating that HSPCs themselves are likely not acutely responding to bacterial 

challenge at the 90-day timepoint. 
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Figure 1.4. The CMP_b cluster is granulocytic 

a-d. UMAPs colored by expression levels of granulocyte-specific genes (a. CEBPB; b. CSF3R; 
c. CEBPA; d. MPO) e. Comparison of MPO expression levels across clusters. f. Raw, 
normalized log2CPM expression levels of pro-inflammatory and myeloid-differentiation 
cytokines (IL1B, TNFA, GM-CSF, IL3, IL6, IFNG, G-CSF) in each cluster.  

 

Despite finding no changes in cytokine expression, several genes that are involved in promoting 

neutrophil development, or whose expression is known to change during emergency 

granulopoiesis were differentially expressed in HSCs 90 days post-BCG (Figure 1.5a-e). These 

included genes such as KLF6 (Figure 1.5c) and IRF1 (Figure 1.5d), which are transcription 

factors that promote neutrophil development and reach maximal expression in mature 
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neutrophils62,63. We detected decreased expression of MAPK14 (Figure 1.5b), a prototypical p38 

MAPK, in line with reports that p38 MAPKs inhibit granulopoiesis, unlike their MAPK 

counterparts ERK and JNK64. Importantly we detected a near-significant increase in gene 

expression of CEBPB (Figure 1.5e, lfsr = 0.129), the transcription factor most critical for driving 

a granulopoiesis response52,59, and a significant increase in suppressor of cytokine signaling 5 

(SOCS5, Figure 1.5a) which is in the same family as SOCS3, also known to be upregulated 

during emergency granulopoiesis65.  

To further validate our computational findings of BCG-induced granulopoiesis, we looked within 

our previously collected flow cytometry data (Figure 1.1b, Table1.1) to see whether proportions 

of CD34 cell subtypes as defined by classical cell surface markers were also altered between 

BCG and placebo vaccinated groups. In agreement with the myeloid/CMP biased differentiation 

predicted by CellRank, we found a significant increase in the number of CMPs in the bone 

marrow of BCG vaccinated versus placebo volunteers at D90 (Figure 1.5f) and a non-significant 

trend towards increased GMPs (Figure 1.5i). Although we did not find a statistically significant 

difference in MEPs, we found significantly lower numbers of CLPs and a trend towards 

decreased MLPs in BCG vaccinated individuals, confirming that the granulopoiesis-like 

phenotype we detected computationally using CellRank also manifested in increased numbers of 

classically defined myeloid progenitors at the expense of other lineages (Figure 1.5g, h). 

Notably, although we combined LT-HSCs, ST-HSCs, and MPPs under the composite label 

‘HSC’ in our single cell dataset, we were able to approximate changes in MPP percentages in our 

flow cytometry data, since our antibody cocktail contained MPP defining cell surface markers 

(CD34+ CD38- CD45RA- CD90-). In the flow cytometry data, percentages of MPPs were also 

higher (p = 0.0945) in the bone marrow of BCG vaccinated individuals, resembling the 
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inflammation induced MPP expansions reported in mice challenged with LPS, beta glucan, and 

BCG38,61 (Figure 1.5l).  

 

 

 

Figure 1.5. Genes involved in granulocyte development are differentially expressed in 
HSCs; Altered proportions of HSPC cell types determined by flow cytometry 

a-e. D90 vs. D0 Log2FC expression of select genes with reported roles in neutrophil 
development or granulopoiesis for each donor. f-i. Bar graphs showing the percentage of each 
cell type among live CD34+ HSPCs at D90 as determined by flow cytometry analysis. 
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These lineage-bias analyses suggested that differentially expressed genes within HSCs as a 

whole could be explained by two possible scenarios (Figure 1.6a). First, BCG vaccination could 

induce shifts in HSC subtype proportions (here a subtype being defined by HSC lineage bias) 

without inducing novel changes in gene expression within any lineage-biased group. More 

specifically, overall changes in gene expression could simply be the result of increased 

proportions of CMP_b biased HSCs, even if gene expression programs within CMP_b biased 

HSCs was unaffected by vaccination. Alternatively, BCG vaccination could induce both a shift 

in subtype proportions, and within-group changes in gene expression.  

To differentiate between these two models, we subset HSCs by their CellRank predicted terminal 

fates (Figure 1.6b). Then within each terminal fate group we performed a differential gene 

expression analysis as we had previously done for the broader HSC_a and HSC_b groups in 

Figure 1.2a and b. Although some of the terminal fate groups did not contain enough Td0 and 

Tm3 samples from both placebo and BCG vaccinated individuals to perform a reliable 

differential gene expression analysis, the biggest HSC subgroups –  those with bias towards 

CMP_a, CMP_b, MLP_a, or MLP_b, all harbored significant differences in gene expression 

(Figure 1.6c). Apart from MLP_b, the other three clusters harbored more than 200 DE genes as a 

result of BCG vaccination, showing that differential gene expression detected within HSCs as a 

whole is reflective of both shifts in composition, and within subtype changes in gene expression.  

More generally, the clear heterogeneous nature of the HSCs prompted us to perform further 

unbiased sub clustering of the HSCs. We subset all cells belonging to clusters HSC_a and 

HSC_b and then clustered the cells into subgroups based on the most variably expressed genes, 

forming 10 total HSC subtypes (Figure 1.6d, e). Several of the HSC subgroups defined by this 
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unbiased gene expression-based clustering approach contained a majority of cells with a single 

lineage bias (Figure 1.6f, Figure 1.7). For example, most cells within subcluster 8 were biased 

towards the MLP_b lineage, more than 75% of cells within subcluster 4 had CMP_a bias, and the 

majority of CMP_b biased cells overlapped with subcluster 2, demonstrating that many HSCs 

with different lineage biases have different baseline gene expression programs and therefore can 

be naturally grouped into different clusters. However other subclusters contained a mixture of 

cells with different lineage biases. For example, subclusters 0 and 9 contained almost evenly split 

proportions of MEP, MLP, and CMP biased cells (Figure 1.7), indicating that it is also possible 

for cells with very similar baseline gene expression programs to harbor potentially stochastic 

differentiation velocities towards different lineages.  

Since there already exist known sub-classifications of HSCs (LT-HSC, ST-HSC, MPP) we also 

assessed whether our 10 HSC subclusters could be roughly identified as one of these three 

known groups. The standard markers used to differentiate between MPPs and LT-HSCs/ST-

HSCs are a lack of the cell surface proteins CD90, CD49f, and CD45RA51,66. Although we 

lacked information on protein levels in our scRNA-seq dataset, we found that expression of 

CD90, CD49f, and CD45RA was variable across the different HSC subclusters (Figure 1.6g) and 

lowest within subclusters 2 and 8, indicating that these subclusters are most likely MPPs. Since 

the vast majority of CMP_b biased cells fell within subcluster 2 and BCG vaccination increases 

the proportion of  these CMP_b biased cells, this indicated that BCG vaccination specifically 

promotes increased CMP_b biased MPPs, in agreement with our flow cytometry data in which 

we detected increased percentages of MPPs in BCG vaccinated compared to placebo individuals 

(Figure 1.5l), and with previous work in mouse models demonstrating that among “subtypes” of 

HSCs (LT-HSCs, ST-HSCs, or MPPs) inflammation and infection often induces the most clear 
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effects and expansions on MPPs45,67. Differential gene expression performed on each subcluster 

identified more than 50 DE genes, mostly in the upward direction, within each HSC subgroup. 

Notably, PCA to compare differentially expressed pathways between different subtypes 

demonstrated clear separation between the MPP-like cluster c2 (dominated by CMP_b biased 

cells) and the MPP-like cluster c8 (dominated by MLP_b biased cells), suggesting that the total 

differential gene expression program detected within the broad HSC_a and HSC_b clusters is 

actually reflective of heterogenous differences in expression across smaller HSC subclusters and 

that HSC subclusters dominated by CMP_b biased cells, compared to those dominated by 

MLP_b biased cells, are impacted differently by BCG vaccination. Collectively, these data 

indicate that BCG vaccination induces differential immune, stress, and metabolism gene 

expression most predominantly within HSCs and MEPs, as well as a granulopoiesis-like bias 

inherent within HSCs manifesting as increased proportions of CMP_b biased MPPs. This 

suggests that a single intradermal BCG vaccination induces a protracted period of increased 

immune activation leading to some changes in gene expression within all cell types but 

prominent activation signatures within HSCs in human bone marrow. 
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Figure 1.6. BCG induces differential expression within HSCs of the same lineage bias  

a. Proposed models for how BCG vaccination impacts total gene expression within HSCs. In 
proposed model 1 (left, bottom), BCG vaccination alters the proportion of HSCs biased towards 
the CMP_b lineage but does not induce gene expression changes within any given lineage biased 
group. The net effect is still a global change in expression due to the compositional shift. In 
proposed model 2 (right bottom) BCG vaccination induces changes in lineage bias in addition to 
changes in gene expression within any lineage biased group, leading not only to increased 
numbers of CMP_b biased cells, but also changes in gene expression among CMP_b biased 
HSCs. b. UMAP of all cells classified as HSC_a or HSC_b. Cells were grouped and colored 
according to the predicted terminal fate assigned b CellRank in Figure 3a. c. The number of 
differentially expressed genes within each lineage-biased subgroup. Colors of the bars match the 
colors in b. Upward and downward bars indicate increased or decreased gene expression due to 
BCG vaccination respectively. d. UMAP of all HSCs (HSC_a and HSC_b) subclustered using 
the Seurat pipeline. e. Subclusters projected onto the original UMAP f. Pie charts indicating the 
proportion of cells within each subcluster with different predicted terminal fates. The pie charts 
show example subclusters which contained a majority of cells with a single predicted terminal 
fate. Subcluster 2 contained more than 50% of CMP_b biased HSCs and the majority of cells in 
subcluster 8 were biased towards the MLP_b lineage. g. Subclusters colored by 
CD90/CD49f/CD45RA (average z-score across the three genes). Darker shading indicates a  
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Figure 1.6, continued 

higher score. Subclusters with lighter shading (2 and 8) are predicted to be more MPP-like since 
MPPs are defined by their lack of all three surface markers on the protein level. h. The number 
of differentially expressed genes within each subcluster. i. PCA of each subcluster based on 
Hallmark gene set enrichment scores. Subclusters are shown relative to a reference “zero 
enrichment” cluster (grey diamond).  

 

 

 

 

 

 

Figure 1.7. Lineage bias composition of each HSC subcluster 

Pie charts showing the proportion of HSCs within each subcluster with Cellrank predicted 
lineage bias towards the CMP_a, CMP_b, GMP, MEP, MLP_a, or MLP_b fate. 
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BCG vaccination impacts the chromatin accessibility of immune progenitors 

Since changes in gene expression are often coupled to changes in the epigenome, and because 

epigenetic alterations are believed to be central to innate immune memory6, we next investigated 

whether BCG vaccination was associated with changes in the epigenetic landscape of HSPCs 

using the scATAC-sequencing data we collected on bone marrow before and after BCG 

vaccination, in parallel with our gene expression data (Figure 1.1b). We retained 58,988 total 

high-quality cells in this dataset, for an average of 1,552 cells per sample. We clustered these 

cells into 16 primary groups (Figure 1.8a) and labeled the clusters according to cell type using 

‘gene activity’ scores calculated for each gene based on the accessibility of nearby peaks (Figure 

1.8b).  

 

 

 

Figure 1.8. scATAC-sequencing profiles on human bone marrow 

a. UMAP of the scATAC-seq data collected from bone marrow CD34+ HSPCs of BCG or 
placebo vaccinated individuals at D0 or D90. Clustering based on chromatin accessibility 
grouped cells into 16 clusters: CMP1 (n=5041), CMP2 (n=2942), HSC1 (n=5750), HSC2 
(n=5052), MEP1 (n=4436), PreBNK (n=1876), GMP1 (n=3798), CLP (n=2146), MEP2 
(n=2653), MEP3 (n=3886), CMP3 (n=1458), MEP4 (n=2230), CMP4 (n=1952), CMP5  
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Figure 1.8, continued 

(n=5590), GMP2 (n=962), GMP3 (n=2806). b. UMAPs colored by gene activity scores of 
lineage defining genes (PAX5 – lymphoid; GATA1 – MEP; CD34 – stem; MPO – 
granulocytic/myeloid; IRF8 – DC; CD14 - myeloid). Gene scores are indicative of the degree of 
chromatin accessibility within a 100 kb window on either side of the gene body. 

 

 

In the same way we had previously detected differentially regulated genes, we asked whether 

BCG vaccination led to changes in peak accessibility (differentially regulated, or DR, peaks). 

Across all clusters we identified more than 2000 DR peaks (Figure 1.9a-e), demonstrating that 

BCG vaccination not only has lasting impacts on gene expression, but also on the epigenetic 

landscape of HSPCs. While these data were in line with our expectation that changes in gene 

expression would be coupled to some changes in chromatin accessibility, we had initially 

expected DR peak counts to mirror DR gene counts (more DR peaks in HSCs and fewer DR 

peaks in downstream progenitor cell types). In contrast we found an unexpectedly large number 

of DR peaks within peripheral CMP, GMP, and MEP clusters, and lower counts within HSCs 

(Figure 1.9a). Clusters CMP3 and GMP2, which are small myeloid clusters, harbored the 

greatest changes in chromatin accessibility, although many DR peaks were also detected within 

MEPs, MLPs, and other CMP/GMP clusters.  
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Figure 1.9. BCG vaccination impacts the chromatin accessibility landscape of HSPC 
progenitors after 90 days 

a. The total number of significant peaks (FDR<0.1) for each cluster. Bars extending in the 
positive and negative direction indicate peaks whose accessibility was impacted positively and 
negatively, respectively, by BCG vaccination compared to placebo. Bars are color-coded by 
cluster. b-e. Log2FC accessibility (D90 vs. D0) for significant peaks found within different 
clusters (b. HSC_b, c. PreBNK, d. MEP_c, e. MLP_a). 

 

 

 

To better understand the nature of BCG-induced differences in chromatin accessibility, we 

started by performing a transcription factor (TF) motif enrichment analysis at DR peaks. To 

simplify the analysis, we grouped DR peaks within similar clusters into broader groups (i.e., DR 

peaks within CMP1-5 were combined into a unique ‘CMP’ peak set; Figure 1.10a) and then used 

HINT68 to find TF motifs enriched within DR peaks of each broad group (Figure 1.10b). 

Significantly enriched TF motifs (FDR< 0.001) belonged to a large number of zinc finger 

transcription factors, including 4 different KLF transcription factor classes, as well as EGR1. 
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ERG, FOS/JUN, and multiple ETS transcription factor groups were also enriched. The most 

significant enrichments resided largely within myeloid lineage clusters (CMPs and GMPs), and 

both the identity and degree of enrichment of significant TFs were highly similar when 

comparing CMPs with GMPs. Likely due to the overall lower numbers of DR peaks, enriched 

motifs within erythroid and lymphoid clusters were less significant although they involved 

similar motifs to those found within CMPs and GMPs. 

Overall, these peak counts and motif enrichments suggested that on the one hand, BCG 

vaccination broadly impacts gene expression programs in HSCs, while having limited detectable 

effects on chromatin accessibility. On the other hand, only a limited set of DR genes were 

detected in the downstream progenitor clusters - CMP, GMP, MLP, and PreBNK, even though 

changes in chromatin accessibility were more pronounced. To more formally investigate whether 

there was any evidence of differential TF activity within downstream progenitors remaining at 

D90, we performed a regulon analysis using SCENIC69,70, an approach that groups genes into 

transcription factor modules, each module containing a transcription factor and it’s predicted 

gene targets. Gene expression data can then be used to infer whether there is differential activity 

of entire TF modules (regulons) based on correlated patterns of differential expression of many 

genes within the module. We define transcription factor (TF) activity from this point on as 

evidence for differential expression of TF target genes as indicated by significant regulon scores. 

Not unexpectedly, BCG vaccination had the largest impact on TF activity within HSCs and 

MEPs (Figure 1.10 c, d), which we predicted would be the case given that HSCs and MEPs had 

the largest total number of detected DR genes in our scRNA-sequencing dataset (Figure 1.2c,d). 

In comparison, we found fewer than 10 regulons with persisting differential activity within the 

other progenitor clusters (CMPs, GMPs, MLPs, PreBNK). The lack of differential activity was 
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most predominant within CMPs or GMPs (Figure 1.10c) which, when using a p<0.05 threshold, 

had only 6 and 2 TFs respectively with differential activity by day 90, supporting the general 

idea that progenitors, apart from MEPs, have a much more limited repertoire of differential TF 

activity and gene expression compared to HSCs.  

 

 

 

Figure 1.10. Changes in chromatin accessibility and TF activity are uncoupled 

a. Number of unique differentially regulated peaks within broad cluster groups HSC (HSC1 and 
HSC2), CMP (CMP1-5), GMP (GMP1-3), MEP (MEP1-4), PreBNK, and MLPs. b. 
Transcription factor motif enrichments for broad cluster groups. Both circle size and color are 
scaled to –log10(FDR). TFs shown with a circle have FDR < 0.001 and are present in at least 
15% of DR peaks in at least one cell type. Areas with no circle indicate an enrichment with FDR 
>= 0.001. c. Number of transcription factor regulons with differential activity (p < 0.05) in each 
broad cluster group. d. Bubble plot indicating differential regulon activity of transcription factors 
matching those in b. Circle size and color are scaled to –log10(p). Areas with no circle indicate p 
>= 0.15 
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DR peaks across different HSPC clusters are bound by a core set of shared TFs 

To further investigate the role of transcription factors in the establishment and/or maintenance of 

DR peaks we next performed genome-wide transcription factor foot printing. This analysis goes 

beyond motif enrichments and can be used to determine whether there is evidence of physical 

transcription factor binding within a peak before and after BCG vaccination. In general, and in 

line with the motif enrichment analysis in Figure 1.10b, we observed low levels of TF footprint 

enrichments at DR peaks in HSCs. However, among TFs with enriched binding at DR peaks in 

HSCs, we found that most were only enriched (p <0.05) either before vaccination or after, but 

not at both timepoints (Figure 1.11a). The transcription factor groups EGR1 and ETS_2, which 

had enriched levels of binding at DR peaks only after BCG vaccination, also had increased 

activity within HSCs at D90 as determined by regulon analysis. Other TF groups had differential 

activity at D90 (Figure 1.10d) but not differential binding enrichments at D90 compared to D0, 

suggesting that they continue to bind the same numbers of DR peaks, but still upregulate or 

downregulate their target genes perhaps through stronger or more frequent binding. In contrast, 

most of the top TFs with enriched binding within DR peaks of CMPs and GMPs were strongly 

enriched both before and after BCG vaccination (Figure 1.11b, c), suggestive of roughly equal 

binding at DR peaks at 90 days post-BCG vaccination compared to before vaccination. We 

found this to be generally true for all of the progenitor clusters, including MEPs, MLPs, and 

PreBNKs (Figure 1.11d-f), supporting the idea that while HSCs continue to have altered 

transcription factor activities and/or binding patterns 90 days following BCG vaccination, 

transcription factors within progenitor clusters return closer to pre-BCG activity levels and 

binding patterns at this time point. 



 45 

 

                                 

 

 

Figure 1.11. Transcription factor footprinting  

 



 46 

 

                                            

 

Figure 1.11, continued 

a-f. Chi-squared transcription factor footprinting enrichments for each cluster. Footprints 
overlapping DR peaks were used as foreground and all footprints overlapping any peak was used 
as background. The x-axis shows the D0 (prior to BCG) enrichment and the y-axis shows the 
D90 (post vaccination) enrichments. The top 10 most enriched TFs (either at D0 or D90) for 
each cluster are labelled. Point size is scaled to –log10(p-value). Dotted vertical and horizontal 
lines indicate p = 0.05 on the x and y axes respectively. Highlighted transcription factors (red 
label and outline) are transcription factors with differential activity at D90 within the cluster. 
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From the foot printing enrichments performed for each progenitor cluster shown in Figure 1.11, 

we noticed that every cluster contained a standout set of prominently enriched TFs and that a 

high degree of overlap existed when comparing these top-enriched transcription factors between 

clusters. For example, the transcription factor group ‘KLF/SP_1’ was among the most enriched 

transcription factors within all five progenitor clusters and ‘EGR1/2/3/4’ was highly enriched 

within CMPs, GMPs, and PreBNKs, suggesting that DR peaks within progenitor clusters may 

have been established at the binding sites of a common repertoire of transcription factors. To 

more systematically investigate the degree to which the most enriched TFs were shared across 

clusters we made a list of the top 10 most enriched TFs at DR peaks of each cluster (Table 1.2) 

and counted the occurrence of each TF among this top 10 table. We found nine core transcription 

factors appearing among the top 10 within at least three clusters. The TF group ZNF/MAZ was 

ranked in the top 10 for all 6 clusters and ZNF740/VEZF1, KLF/SP, and KLF/SP were in the top 

10 for 5 clusters. In total, 75% of all TFs listed in Table 1.2 were shared with at least one other 

cluster and 68% were shared with at least two other clusters, demonstrating that DR peaks across 

HSPC clusters are constitutive binding sites of a common set of transcription factors.  
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Table 1.2. Top 10 transcription factor classes with enriched binding in each HSPC cell type 

Table showing the top 10 most significantly enriched transcription factor classes (ranked by p-
value) within each HSPC cluster. Transcription factors are colored according to the number of 
times they appear in the table, which corresponds to the numbers of clusters within which they 
are highly enriched. 

 

 

 

 

 

 

Among the top nine shared transcription factors with highly enriched binding in at least three 

clusters, we noticed that several had continued differential activity within HSCs (Table 1.3). 

Four of the transcription factors among the top seven (~57%) had differential regulon activity 

(p<0.1) within HSCs, representing a significant enrichment (OR=8.05, p=0.012). We note that 

not all four of these differentially active TFs had clear differential binding at D0 compared to 

D90 at DR peaks (Figure 1.11a) within HSCs, suggesting that BCG vaccination does not always 
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change the identity or types of sites bound by these TFs, but rather the strength at which they up- 

or down-regulate their targets. Nonetheless, the data collectively suggest that establishment of 

differential chromatin accessibility within progenitor clusters likely utilized, in part, a common 

set of transcription factors, and that a significant proportion of these common transcription 

factors, although exhibiting no differential activity in progenitor clusters themselves, have 

continued differential activities within upstream HSCs. Our data support a model whereby this 

continued activation within HSCs actively shapes the chromatin accessibility landscape of cells 

downstream (Figure 1.12). 

 

 

 

 

TF Occurrence HSC diff activity 
pval 

ZNF/MAZ 6 0.23 
KLF/SP_1 5 0.03 
KLF/SP_2 5 0.1 
ZNF740 5 No activity 

EGR1/2/3/4 4 0.06 
CTCF 3 0.23 

KLF2/3/6 3 0.1 
TCFL5 3 No activity 
E2F6 3 0.28 

 

Table 1.3. Top shared transcription factor classes 

Table showing the top transcription factor classes shared across 3 or more clusters. The 
‘Occurrence’ column indicates the number of clusters for which the TF class falls with the top 10 
most enriched. Among TFs with the same total number of occurrences, order was determined by 
the sum of ranks across clusters. The ‘HSC diff activity pval’ corresponds to the p-value for 
differential regulon activity within HSCs as determined in Figure 10d. 
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Figure 1.12. A preliminary model. BCG-induced differences in chromatin accessibility within 
progenitor clusters (red nucleus) occur at binding sites of TFs harboring continued differential 
activity within upstream HSCs (red cytoplasm). HSCs and MEPs exhibit the largest continued 
differences in gene expression and transcription factor activity while other clusters exhibit fewer 
signs of continued activation. Due to the hierarchical nature of hematopoietic differentiation 
(whereby HSCs differentiate into progenitor cell types), we hypothesize that activation of 
transcription factor circuits within upstream HSCs, directly impacts chromatin accessibility of 
downstream progenitors.  
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DR peaks are not directly transmitted across differentiation  

Initially, we hypothesized that differentially active TFs within HSCs may help establish 

memory-like DR peaks within immediate downstream progenitors which could be maintained 

across further differentiation. To test this model more directly we looked for patterns of DR peak 

sharing across clusters (Figure 1.13). For example, if differential transcription factor activity in 

HSCs were to induce “memory” peaks transmitted to CMPs and then to GMPs, one would 

expect to find a high level of overlap between DR peaks within HSCs and CMPs and between 

CMPs and GMPs. However, when we looked at patterns of sharing for individual peaks in HSCs, 

CMPs, and GMPs, we found only 5 (0.2%) shared peaks between HSCs and CMPs, and only 16 

(0.5%) DR peaks shared between CMPs and GMPs, indicating a lack of long-term propagation 

of the same DR peaks across differentiation. Similarly, only 0.06% of DR peaks within the HSC-

MEP trajectory, and no peaks in the HSC-MLP-PreBNK trajectory were shared – collectively 

making it unlikely that a constant state of activation within HSCs leads to sites of differential 

accessibility which are precisely retained across hematopoietic differentiation.  
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Figure 1.13. DR peaks do not overlap across clusters 

Venn diagrams are proportional to the total number of DR peaks (FDR<0.1) within each group 
and show the overlap of peaks within each expected trajectory (top row: HSC-CMP and CMP-
GMP; middle: HSC-MEP; bottom: HSC-MLP and MLP-PreBNK) 

 

 

Thus, DR peaks within progenitor clusters enrich for a shared repertoire of TFs which remain 

activated within upstream HSCs, but for which we do not detect differential activity in 

downstream progenitors. Nonetheless, the locations of these DR peaks shift across 

differentiation, suggesting that there must be some active mechanism in place to modulate these 

across-differentiation changes. Taking all of these factors into account we hypothesized that 

activated TFs in HSCs (either due to increased protein levels of these TFs, or post-translational 

modifications such as phosphorylation) may remain upregulated or phosphorylated across 

differentiation, yet shift from binding a wide repertoire of open sites within HSCs and 
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upregulating their own gene targets, to binding preferentially to a more restricted subset of sites 

within downstream progenitors that are co-bound by cluster specific TFs, thus regulating a much 

more limited repertoire of cluster-specific gene targets. In other words, TFs maintain the 

potential for activated binding across differentiation, but bind to altered sites within downstream 

progenitor clusters in a manner that is strongly influenced by the cluster specific trans 

environment. This is supported by that fact that in addition to enriching for shared, HSC-active 

TFs such as KLF and EGR1, almost every cluster also enriched strongly for at least one cluster-

specific TF. Examples include ZIC1/3/4/5 and INSM1 within MEPs, OSR1/2 and TCF7 within 

MLPs, and GLIS and STAT1/3 in PreBNKs (Table 1.2). Although CMPs and GMPs were bound 

by an extremely similar repertoire of TFs, there were also differences in the co-enriched factors 

within these two clusters. For example, ETS_3 and ELF transcription factors were much more 

enriched within GMPs. Moreover, although not within the top 10, FOS and JUN transcription 

factors were also enriched within GMPs but not at all within CMPs, further exemplifying 

differences in the trans environment even between closely related clusters of the same lineage.  

To further investigate this hypothesis, we performed a focused analysis of the HSC – CMP – 

GMP differentiation trajectory (Figure 1.14). As shown previously, HSCs contain many 

transcription factors with sustained differential activity 90 days following BCG vaccination 

(Figure 1.10c,d; Figure 1.14a) – KLF transcription factors KLF/SP_1, KLF/SP_2, KLF2/3/6, and 

the EGR1/2/3/4 transcription factors being of particular interest due to the fact that these are also 

strongly enriched within DR peaks in downstream progenitor clusters of multiple lineages (Table 

1.3) and are therefore particularly implicated as TFs that shape the downstream epigenetic 

landscape. Within CMPs, the immediate cluster downstream of HSCs, we no longer detected 

significant differential activity of KLF/SP_1, KLF/SP_2, or EGR1/2/3/4, however we continued 



 54 

to detect some differential activity (i.e. increased expression of TF targets) of the KLF2/3/6 

transcription factor group (Figure 1.11b, Figure 1.14b). In line with this observation, the 

KLF2/3/6 TF group was the most enriched TF group at DR peaks within CMPs (Table 1.2, 

Figure 1.14c), indicating that while most activated TFs in HSCs lose activity during the process 

of CMP differentiation, KLF2/3/6 continued to activate its downstream targets and plays a 

predominant role in shaping the DR peak landscape in CMPs. DR peaks in CMPs co-enriched 

for the HSC-active TFs KLF/SP_1, KLF/SP_2, and EGR1/2/3/4 (Figure 1.14c), which no longer 

actively induced their own targets (as indicated by a lack of differential activity) but likely 

shifted to a  supportive role in driving the differential expression of KLF2/3/6 targets. Many 

HSC-specific TFs were not enriched at DR peaks within CMPs including MZF1, 

CREB/ATF6/XBP1, HNF1, and VAX. Instead, DR peaks in CMPs also co-enriched for a new 

set of TFs including TCFL5 and NRF1, exemplifying the idea that the trans environment is 

dynamic across differentiation (Figure 1.14c). In GMPs, immediately downstream of CMPs, we 

no longer detected differential activity of KLF2/3/6 (Figure 1.14d). Instead, KLF2/3/6 co-bound 

together with KLF/SP_1, KLF/SP_2, and EGR1/2/3/4, to a new set of DR peaks which co-

enriched for ETS transcription factors (Figure 1.14e). The loss of KLF2/3/6 activity upon CMP 

to GMP differentiation suggests that KLF2/3/6 shifts from promoting its own target genes at 

CMP sites, to acting as a co-binding factor to promote increased ETS target expression at GMP 

DR peaks. This hypothesis was supported by the fact that DR peaks in GMPs uniquely co-

enriched for ETS_3 binding and that ETS_3 exhibited differential activity within GMPs but not 

CMPs (Figure 1.14d, e).  
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Figure 1.14. HSC-active TFs traverse unique trans-environments to induced cluster-
specific DR peaks. 

a. Transcription factors with differential activity within HSCs. b. Activity levels for the same 
transcription factor groups in a for CMPs. Red boxplots are for TFs with p < 0.1 differential 
activity. c. Barplots showing the enrichments of TFs in CMPs grouped by type: 1) shared and 
HSC-active, 2) co-enriched at DR peaks in HSCs only, 3) co-enriched in DR peaks in 
CMP/GMP clusters only, 4) and co-enriched only at DR peaks in GMPs. d. Activity levels of 
TFs in GMPs. EGR1/2/3/4 is not shown because this TF group had no detectable activity within 
GMPs. e. As in c for GMPs. 
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The overall model proposed for HSC to CMP and CMP to GMP differentiation is notably also 

consistent with additional transcription factor footprinting data in other progenitor clusters. For 

example, DR peaks within MLPs uniquely and strongly enrich for TCF7 binding (Table 1.2), and 

regulon analysis shows that TCF7 has significant differential activity only within MLPs (Figure 

1.11c) suggesting that TCF7 cooperates with KLF and EGR1 TFs to module expression of its 

own targets in a similar manner to how ETS_3 cooperates with KLF and EGR1 TFs within 

GMPs to activate ETS_3 targets. Collectively these data support the hypothesis that HSC-active 

TFs traverse a unique trans-environment during differentiation, and shift from activating their 

own targets to co-binding together with cluster-specific TFs, selectively shaping the epigenetic 

landscape in a way that is tailored to each cell type (Figure 1.15). 
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Figure 1.15. Proposed final model for how a shared set of BCG-responsive TFs modulate the 
downstream epigenetic landscape of progenitor clusters. a. Many TFs are activated in HSCs. b. 
Active TFs within HSCs co-bind with CMP/GMP specific transcription factors to target CMP 
specific peaks that regulate KLF2/3/6 targets. c. During differentiation from a CMP to a GMP, 
HSC-active TFs shift towards peaks co-bound by ETS_3 to differentially regulate ETS_3 targets. 
Evidence for a similar paradigm within MLPs is evidenced by the MLP-specific differential 
activity of TCF7 and co-enrichment of TCF7 at DR peaks in MLPs.  

 

 

BCG-induced differential chromatin accessibility within GMPs predicts increased IL1B 

secretion by PBMCs 

Given that BCG vaccination induced changes in chromatin accessibility in the bone marrow at 

day 90, we asked whether changes within the most differentiated clusters (for example, GMPs or 
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PreBNKs) could have functional implications for the mature immune cells that these progenitors 

give rise to. First, to get a general sense of the genes associated most closely to DR peaks within 

progenitor clusters, we performed an over-representation analysis by assigning each DR peak to 

its closest gene and comparing the resulting DR peak-associated genes to a background set of all 

peak associated genes. Overall, we found that the strongest immune-related enrichments were 

present in GMPs, whose DR peaks enriched for biological process pathways such as ‘myeloid 

leukocyte activation’ (Figure 1.16a). GMPs also notably had several significant enrichments in 

biological process pathways related to MAPK signaling and myeloid development (Figure 1.16a) 

and multiple reactome pathways related to TLR signaling, signaling by interleukins, and GM-

CSF signaling (Figure 1.16b). Upstream CMPs had fewer total significant pathway enrichments 

but also enriched for MAPK and myeloid development pathways, while very few significant 

pathways were found in MEPs, PreBNKs, and MLPs.  
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Figure 1.16. Gene ontology analysis of DR peak-associated genes 

DR peaks within each cluster were assigned to the gene with the closest TSS. Gene ontology 
enrichment analysis was performed for biological process pathways (a) and reactome pathways 
(b) using all peak associated genes as background and genes associated with DR peaks as 
foreground. Plot circle size and shading darkness are both scaled to –log10(p-value) of 
enrichment. In a, pathways related to immunity, immune development, and MAPK signaling are 
outlined in pink. 

 

 

 

 

 

These results suggested that DR peaks within GMPs in particular, may regulate immune 

pathways, and thus could impact immune functionality within myeloid cells entering the 

peripheral circulation. As a measure of peripheral blood cell immune functionality, we used 
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cytokine secretion data from donor-matched PBMCs43 that had been collected in the original 

study from which our BM samples were derived (Figure 1.17a). This data set contained secreted 

cytokine concentrations for each donor in response to a 24-hour stimulation with heat killed C. 

albicans and demonstrated that BCG vaccination increases the ability to PBMC to secrete IL1B 

and IL6 in response to C. albicans. 

Since GMPs were the most enriched for immune related pathways, we investigated whether 

BCG-induced changes in chromatin accessibility of GMPs was directly predictive of cytokine 

secretion by donor paired PBMCs. We leveraged the fact that even within BCG vaccinated 

individuals there was clear heterogeneity wherein some individuals had larger changes in peak 

accessibility compared to other BCG vaccinated individuals. In the PBMC cytokine data set, we 

also observed a high level of heterogeneity in cytokine secretion levels between individuals. 

Thus, if differential accessibility at DR peaks were truly related to functional alterations in 

PBMCs, one would expect to find individuals with the greatest magnitude of epigenetic rewiring 

to be the same individuals with the greatest increases in cytokine secretion. To formally 

determine whether this was true, we used elastic net regression to determine whether levels of 

differential accessibility at DR peaks (raw Tm3 vs. Td0 log2FC values) had power to predict 

cytokine responses (FC Tm3 vs. Td0) across individual donors. This analysis strikingly showed 

that fold change cytokine secretion of IL1B could be predicted by log2FC DR peak accessibility  

to a high level of accuracy (Figure 1.17b; R = 0.72, p = 0.0037). Notably this was only the case 

for IL1B, but not IL6, the other cytokine found to be significantly primed in response to BCG 

vaccination, demonstrating that altered chromatin accessibility could selectively predict one facet 

of the altered immune response by PBMCs. These data establish a link between BCG-induced 
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rewiring of chromatin accessibility in GMPs, and specific rewiring of C.albicans-induced IL1B 

responses by matched PBMCs.   

 

 

 

 

Figure 1.17. Chromatin accessibility changes in GMPs predict changes in IL1B secretion of 
PBMCs in response to C. albicans challenge 

a. Schematic outlining PBMC experiment. PBMCs were collected from each donor at the same 
time collection of bone marrow samples (Td0 and Tm3). PBMCs were stimulated with heat-
killed C. albicans for 24 hours at both time points and cytokine secretion of IL1B, IL6, TNF, 
IFNG, IFNA, IL1RA, and IL10 were measured using ELISA. b. Results of the elastic net 
regression. The scatterplot shows real IL1B FC (D90 vs. D0) for each donor on the x-axis and 
predicted values from the model on the y-axis 
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Finally, given that DR peaks within GMPs were found to enrich for binding of TFs which had 

persistent differential activity within HSCs, we hypothesized that the same individuals harboring 

the largest changes in GMP chromatin accessibility and increased cytokine secretion, may also 

be the same individuals harboring the greatest BCG-induced changes in transcription factor 

activity and differential gene expression in HSCs, which would further support the hypothesis 

that persistent gene expression and TF activity in HSCs is directly linked to differential 

chromatin accessibility in downstream progenitors, which is linked to IL1B secretion capacity of 

mature immune cells in the periphery. First, using the same approach as for DR peaks within 

GMPs, we used elastic net regression to determine whether levels of differential expression of  

DR genes within HSCs had power to predict IL1B responses (FC Tm3 vs. Td0) across individual 

donors (Figure 1.18a). Here we found differential gene expression within HSCs to have strong 

and significant predictive power (R = 0.815, p=2x10-4), establishing that changes in IL1B 

secretion capacity are also tightly linked to day-90 differential gene expression within HSCs. 

Log2FC responses of hundreds of individuals genes within HSCs correlated significantly (padj < 

0.1) with IL1B responses, further supporting the elastic net regression findings (Figure 1.18 b-d). 

Importantly, we noticed that the log2FC values of several transcription factors such as FOSB 

(Figure 1.18 b) and KLF6 (Figure 1.18 c; in the KLF2/3/6 family) were among significantly 

correlated genes with R > 0.8. Thus, we directly tested whether TF activity scores in HSCs were 

correlated with IL1B production. We found that activity scores of TFs in HSCs had remarkably 

strong correlations with IL1B production but not IL6 (Figure 1.18 e-g), thus formally 

demonstrating that BCG-induced differential TF activity and gene expression in HSCs, 

progenitor chromatin accessibility, and peripheral immune cell cytokine secretion are linked 

processes.  
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Figure 1.18. Gene expression and TF activity in HSCs correlates strongly with IL1B 
production by PBMCs 

a. Results of the elastic net regression using gene expression data for HSCs. The scatterplot 
shows real IL1B FC (D90 vs. D0) for each donor on the x-axis and predicted values from the 
model on the y-axis. b-c. Spearman correlations between log2FC expression levels of the 
transcription factors FOSB and KLF6 and fold change IL1B secretion between D0 (before) and 
D90 (3 months-post BCG vaccination). d. quantification of the total number of DR genes in 
HSCs with significant spearman correlations with fold change IL1B secretion for each cytokine 
tested. e-f. Example scatter plots correlating TF activity (regulon) scores in HSCs from the 
regulon analysis described in Figure 10d, with fold change IL1B (left) and fold change IL6 
(right) in PBMCs. g. Violin plot comparing spearman rho values for IL1B and IL6 (p < 2.2e-16) 
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DISCUSSION 

Overview 

Since clinical evidence and mouse models have suggested that the BCG vaccine may impact the 

immune system at the stem-cell level9,45,47–49,67,71,72, we used single cell RNA and ATAC 

sequencing on HSPCs isolated from human bone marrow aspirates to investigate how BCG 

vaccination effects gene expression and chromatin accessibility after 3 months. Our data 

indicated that BCG vaccination impacted the bone marrow through multiple modalities. We 

detected differential expression of nearly 200 genes within the most primitive and stem-like 

HSCs, even 90 days following a single intradermal vaccination. HSCs, together with MEPs, 

harbored changes in the expression of genes related to immunity, metabolism, and 

apoptosis/proliferation while fewer changes in gene expression were detected in other progenitor 

clusters. By taking a focused look at the consequences of differential expression within HSCs, 

we used a computational approach to predict that the differential gene expression program biased 

them towards the granulocytic fate – a finding that was supported by flow cytometric data 

demonstrating that the bone marrow of BCG vaccinated individuals contained significantly 

higher percentages of CMPs relative to that of individuals in the placebo group. When integrated 

with single cell ATAC sequencing data collected to probe the epigenetic landscape of the same 

samples, we found evidence that the granulocytic-oriented differential gene expression program 

in HSCs was driven by the increased activity of several transcription factors, which were the 

same transcription factors enriched within differentially accessible peaks of downstream 

progenitors. These epigenetic changes were not directly propagated through differentiation - 

rather our data supported a model whereby activated transcription factors within HSCs traversed 
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a continuously changing trans environment, binding to unique sets of peaks within each 

progenitor cluster during the differentiation process.  Changes in gene expression and 

transcription factor activity in HSCs, and differential accessibility of downstream progenitors, all 

correlated directly with IL1B secretion by donor paired PBMCs in response to a C. albicans 

challenge, supporting the hypothesis that long-lasting activation within HSC at the “top” of the 

differentiation hierarchy directly influenced the epigenetic landscape of downstream progenitors, 

which entered the circulation as functionally reprogrammed cells.  

Lasting effects of BCG vaccination on gene expression are heterogeneous and centered on 

HSCs and MEPs  

BCG induced lasting changes in the expression of immune, metabolism, and 

apoptosis/proliferation genes heterogeneously across cell types. HSCs and MEPs, compared to 

other cell types, had the largest number of differentially regulated genes at day 90. Pathways 

enriched among DR genes in HSCs were characteristic of a stress-like response and included 

apoptosis, ROS, and hypoxia pathways while DR genes in MEPs enriched for pro-proliferative 

and glycolytic pathways. Since HSCs can differentiate into MEPs, we considered the possibility 

that differential expression in MEPs could be retained from the differential expression occurring 

in upstream HSCs. However, the clear differences between activated pathways in HSCs and 

MEPs were more supportive of a scenario whereby lingering signals at D90 acted directly on 

HSCs and MEPs to induce different activation programs. Upon sub-clustering HSCs into 

different sub-groups, we had found that MEP-biased HSCs harbored fewer differences in gene 

expression compared to myeloid or lymphoid biased sub-groups, further supporting this idea. On 

the other hand, our data were more supportive of a model whereby myeloid and lymphoid 
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progenitors may have derived some of their limited differential expression programs from 

activation that was originally induced within upstream HSCs. Both our GSEA results, and HSC 

sub-clustering analyses supported this idea. Most pathways enriched in these progenitors were 

similar or shared with pathways enriched within HSCs, and sub-clusters of HSCs biased towards 

the myeloid or lymphoid lineages harbored hundreds of DR genes. As discussed later in this 

section, this model is also in line with our general findings that active TFs, which drove the 

differential expression of many gene networks in HSCs, switched to a supportive role by co-

binding together with cluster-specific TFs at specific sites in downstream progenitors to maintain 

a limited number of differential gene expression programs, while shutting down most of the gene 

networks which were differentially expressed in HSCs.  

In either case, these observations shed new light on the specific cell types that are most likely to 

be persistently affected by an immune stimulus and open up new avenues of investigation into 

better understanding, for example, whether there are particular shared receptors on HSCs and 

MEPs that allow them, but not other clusters, to respond to BCG-induced signals present in the 

bone marrow at day 90. HSCs are known to express both Toll-like receptors (TLRs) and 

pathogen recognition receptors (PRRs) through which they can directly sense pathogens and pro-

inflammatory cytokines73,74. In comparison, much less is known about the repertoire of such 

receptors on MEPs. One could also speculate an alternative model in which an initial state of 

large-scale activation and differential gene expression was initially induced in all cell types 

directly, but in which only HSCs and MEPs continued to maintain a high level of activation over 

an extended period of time while others developed a more refractory state, shutting down many 

differential gene expression programs. We found that CMP and GMP progenitor clusters 

harbored many epigenetic changes, not only in the positive direction, but also in the negative 
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direction – implying that at several sites, chromatin closes following BCG vaccination. Closing 

of chromatin could prevent continued differential expression of select genes much in the same 

way that strong LPS exposure can lead to a refractory state to secondary LPS stimulations25,75. 

Although our work demonstrated that PBMCs in the periphery secreted higher levels of 

proinflammatory cytokines in response to secondary stimuli, it remains possible for progenitors 

in the bone marrow to selectively close and shut down certain gene expression programs while 

increasing chromatin accessibility to promote other expression programs, similarly to how 

antimicrobial and inflammatory pathways are primed and tolerized respectively within the same 

macrophages stimulated with LPS25. From an evolutionary perspective, this could be beneficial, 

preventing the release of overly activated myeloid cells into the periphery where they could 

induce tissue damage76. 

Another important question relates to the source of continued activation, for which two general 

models are believed to be possible52,73. In the indirect model, pro-inflammatory cytokines 

released by other cell types such as stromal cells or bone marrow resident immune cells could 

activate differential gene expression programs within HSCs and MEPs. Alternatively, pathogens 

could be directly detected through PRRs which are, at least on HSCs, known to be present and 

functional. We hypothesize that continued activation within HSCs and MEPs was due to indirect 

activation by proinflammatory cytokines due to the fact that cultures of these bone marrow 

samples were negative for BCG, directly suggesting a lack of direct PRR ligation50. Moreover, 

even if bacterial remnants remained in the bone marrow to stimulate TLRs and PRRs, this would 

likely be accompanied by some increase in the expression of pro-inflammatory cytokines such as 

IL660,61 which one would have expected to detect on the gene expression level, but which was not 

the case in our data. These data suggest that HSCs and MEPs were more likely responding to 
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proinflammatory cytokines produced by other cell types, than secreting these cytokines 

themselves in response to direct pathogen sensing. Interactions between HSPCs and other mature 

immune cells and stromal cells could be an important area of further investigation in this regard. 

Previous work has already demonstrated that different cell types within the hematopoietic niche 

can interact with and regulate HSCs. For example, it has been demonstrated that TLR signaling 

can suppress the differentiation of osteoclasts, which is in turn believed to promote HSC 

differentiation77,78. Other studies have reported roles for bone marrow resident macrophages in 

controlling the properties and functions of HSCs79. Thus, better understanding the niche within 

which our HSPCs resided could provide substantial new insight into continued sources of 

activation.  

HSCs have granulocytic bias  

Through a more focused analysis we found that HSCs were biased towards the myeloid, and 

specifically granulocytic fate at D90, thus exhibiting a low-level emergency granulopoiesis-like 

state. The finding that BCG vaccination could induce emergency granulopoiesis was not 

surprising on its own given that neonatal mice vaccinated with BCG-Denmark had increased 

numbers of neutrophils in the spleen 4-5 days following vaccination, and increased numbers of 

neutrophils were found in the peripheral blood of human newborns given the same vaccine56. 

However, our findings were novel because they suggested that this state could persist for at least 

3 months. HSCs expressed many signatures of interleukin-1 signaling at D90, including 

increased transcription factor activity of CEBPB, IRF1, and EGR1 all involved in activated IL1β 

signaling80. IL-1 has been shown to play an important role in driving emergency granulopoiesis 

in mouse models of inflammation and humans80–82. A recent study demonstrated that the 
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induction of inflammation through ligature-induced periodontitis induced a strong upregulation 

of IL1β and G-CSF within the bone marrow extracellular fluid which was accompanied by 

multiple signatures of emergency granulopoiesis including increased MPP3 cells, GMPs, and 

peripheral granulocytes80. Moreover, the specific deletion of the IL-1 receptor within HSPCs 

abrogated the induction of emergency granulopoiesis, directly showing the necessity of IL1 

signaling in mice. In this study, HSCs harbored increased accessibly at binding sites of EGR1, 

IRF1, and CEBPB (the same TFs activated in our data) following the resolution of inflammation, 

and HSCs within the bone marrow were primed to induce an even stronger granulopoiesis 

response to a second inflammatory event, suggesting that an initial bout of emergency 

granulopoiesis could increase the likelihood of a stronger second occurrence. Unlike in the 

situation in mice, BCG vaccination within humans appears to induce a longer period of 

continued activation, as opposed to transient activation followed by the induction of epigenetic 

memory within HSCs. However, it is possible that the emergency granulopoiesis response 

induced in response to BCG vaccination in humans, once resolved, could eventually prime 

stronger granulopoiesis responses to subsequent infections. Although the total number of 

differentially accessible sites within HSCs was not large at D90, EGR1 was among the 

transcription factors most enriched at the differentially accessible sites we did detect in HSCs, 

supporting the idea that IL1β-induced emergency granulopoiesis in humans can also induce 

similar epigenetic changes in HSCs compared to that observed in mice, which could potentially 

have similar priming effects. 

Beyond the detection of emergency granulopoiesis, we found evidence that BCG vaccination 

could differentially impact different subclusters of HSCs. We determined that although the 

composition of lineage-biased HSCs changes and is marked by an increase in granulocyte-biased 
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HSCs, differences in gene expression in the broader HSC clusters are not only reflective of these 

changes in composition, but also reflective of true changes in gene expression occurring within 

each lineage-biased group of cells. In other words, even among all cells biased towards the 

granulocyte fate, we detected BCG-induced differences in expression. Differences in expression 

within HSCs did not appear to be completely homogenous. The MPP-like HSC cluster 

containing a majority of CMP_b (granulocyte) biased cells harbored BCG-induced differences in 

expression that differed from those found within the other MPP-like cluster containing a majority 

of MLP-biased cells, implying that any changes that HSCs propagate through differentiation may 

differ between different lineages.  

Chromatin accessibility changes in progenitors are linked to continued differential 

transcription factor activity in HSCs 

Single-cell ATAC sequencing performed in parallel with scRNA-seq revealed that BCG 

vaccination induces differential accessibility at thousands of total sites and impacts all HSPC 

clusters. Surprisingly, the largest number of significant sites were within progenitor clusters, for 

which we had detected relatively lower numbers of DR genes. The presence of differential 

chromatin accessibility within progenitors in the absence of equally large numbers of 

differentially expressed genes was suggestive of a, broadly defined, memory-like state wherein 

epigenetic changes were present despite a lack of evidence that progenitors are being directly 

activated by an external stimulus. This disconnect between chromatin accessibility and gene 

expression was most obvious within CMPs and GMPs and less apparent within MEPs for which 

we detected relatively high levels of differentially expressed genes and differentially accessible 

peaks within MEPs. Moreover, MLPs and PreBNK cells harbored fewer numbers both of 



 71 

epigenetic and gene expression changes, making it difficult to conclusively determine to what 

extent epigenetic changes are reflective of current, versus past, activation. With that being said, 

we did not detect differential transcription factor activity for most of the TFs enriched at DR 

peaks in these progenitor clusters, suggesting that DR peaks in MLPs, MEPs, and PreBNKs may 

have been reflective both of past or upstream activation and of current differential gene 

expression programs.  

Two questions stood out from these data. First, why did HSCs have such few changes in 

chromatin accessibility despite having clear signatures of continued activation, including 

hundreds of differentially expressed genes and active transcription factors? We speculate that 

because HSCs are pluripotent and can theoretically “choose” to differentiate down any lineage, 

most of the chromatin would generally be expected to be more open at baseline, allowing the 

stem cells to maintain the potential to make diverse fate decisions. We reason that on one hand, it 

could be challenging to detect the increased opening of something that is already very accessible 

and on the other hand, it would likely not, from an evolutionary perspective, be very beneficial 

for stem cells to dramatically close chromatin, as this could lead to a long-lasting impairment of 

pluripotency. Future investigations into the baseline levels of openness of peaks within HSCs, 

would directly indicate whether chromatin is, at baseline, truly more open in stem cells. 

Second, what drove the chromatin accessibility changes seen in progenitor clusters, given the 

lack of evidence for large-scale activation? We performed transcription factor foot printing and 

found that CMPs and GMPs are highly enriched for binding of specific transcription factors 

families, including EGR1 and multiple KLF families. Enrichments of these TFs were shared 

across almost all other progenitor clusters as well, which suggested a potential shared set of TFs 
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responsible for inducing DR peaks. We identified a core set of 9 transcription factor classes with 

significantly enriched binding within at least 3 clusters. Strikingly, among the top 7 of these TFs, 

4 (almost 60%) continued to have differential activity within upstream HSCs at day 90, nearly 4 

times the proportion one would have expected by mere chance (p=0.012). These data suggested 

that current differential transcription factor activity within HSCs at D90 could have directly 

influenced downstream epigenic changes. However, we found a very low rate of physical 

overlap when comparing differentially accessible peaks between progressively differentiated 

clusters of the same lineage (for example, HSC vs. CMP, CMP vs. GMP), directly demonstrating 

that sites of differential accessibility within one cluster were not precisely maintained or copied 

during the differentiation process. The lack of peak sharing, despite the common set of enriched 

transcription factors suggested that in general, differential chromatin accessibility was 

established by a core set of required transcription factors interacting with a cluster-specific trans-

environment. Indeed, when looking at the top-most enriched TFs within each cluster we found 

that DR peaks within most clusters enriched both for common TFs, and at least one other TF that 

was unique only to the cluster. For example, MLPs and GMPs both had strong enrichments for 

KLF/SP1 binding, but MLPs co-enriched for TCF7 binding, while GMPs uniquely co-enriched 

for ETS binding.  

Based on these collective findings, we hypothesize a model whereby BCG vaccination induces 

continued activation of a core set of TFs within HSCs (including KLF/SP and EGR families), 

either though increases in TF abundance, which we found to be true for KLF6, or through post-

translational modifications such as phosphorylation. Within HSCs these activated TFs bound to 

several sites to promote activation of their respective gene targets, leading to many detected DR 

genes in our scRNA-seq data and differential TF activity detected in the regulon analysis. 
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However, during differentiation (for example, HSC to CMP differentiation), binding of these 

TFs was restrained by their interactions with cluster specific TFs, leading to cluster specific DR 

peaks and a more limited differential gene expression program. In line with this model, DR 

peaks in MLPs enriched for common HSC-active TFs such as KLF/SP_1 but also strongly 

enriched for TCF7, a unique TF to MLPs which had differential activity only in MLPs, 

exemplifying the idea that a common set of transcription factors co-bind to DR peaks together 

with a cluster-specific TF to help promote its gene expression program. The same paradigm was 

found to be true within GMPs, in which ETS_3 binding was enriched at DR peaks and 

accompanied by significant ETS_3 differential activity (Figure 1.19).   

 

Figure 1.19. Model 1 

BCG vaccination induces TF activation and differential gene expression within HSCs and MEPs 
(halo around HSC and MEPs, left figure). Changes in chromatin accessibility in downstream 
progenitors occurs at binding sites of these HSC-active TFs which co-bind with cluster specific 
TFs (HSC color-matched nucleus in progenitors, left figure). The figure on the right depicts an 
activated TF in HSCs that co-binds with cluster-specific TFs in CMPs and then GMPs, leading to 
cell-type specific peaks and gene expression programs.  
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This model would explain why differentially accessible peaks within every progenitor cluster 

enriched strongly for at least one transcription factor containing current differential activity 

within HSCs yet also each co-enriched for binding of a cluster-specific transcription factor. The 

fact that 3 out of the 4 core transcription factors enriched across many progenitor clusters and 

harboring differential activity within upstream HSCs were of the KLF or KLF/SP family was 

notable and supportive of this hypothesis given the known role of KLF/SP transcription factors 

as ubiquitous transcription factors that are still able to mediate tissue and context specific 

expression due in large part to co-binding83. For example, in one study corticosteroids were 

found to induce gene expression through the coordinated co-binding of KLF4 and the 

glucocorticoid receptor (which also acts as a transcription factor) to sites that harbor a CACCC 

box and GRE element84. Within macrophages, on the other hand, KLF4 cooperated with STAT6 

to induce an M2 polarized state85, demonstrating that the same KLF transcription factor can 

perform completely different functions when placed in different cellular contexts and forced to 

interact with different binding partners.   

One added layer of complexity that also likely contributed to cluster specific DR peaks is the fact 

that different clusters falling along different pseudotimes, such as CMPs and GMPs, are derived 

from HSCs from different points in time. In other words, the CMPs profiled in our data were not 

the same exact cells which gave rise to the GMPs profiled in this same data set. Any epigenetic 

memory of upstream HSC activation harbored within CMPs is actually representative of HSCs at 

a more recent point in time compared to the memory encoded within GMPs, which is reflective 

of the state of HSCs from a time point farther in the past. Thus, this adds an additional level of 

complexity whereby, in addition to cluster specific interactions between shared HSC-active TFs 

and cluster-specific TFs, the exact inflammatory memory propagated from HSCs downward is 
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not constant over time, but changes depending on the dynamic nature of upstream HSC 

activation. When plotted onto a UMAP, our scATAC data indicated that within each lineage, the 

clusters harboring the greatest total number of differentially accessible peaks were all 

approximated to have the same pseudotime (Figure 1.20), suggesting that a previous stronger 

wave of inflammation once acted on upstream HSCs, encoding more extensive epigenetic 

changes now present within progenitor clusters at later pseudotimes, while clusters at earlier 

pseudotimes in our data, have fewer total numbers of DR peaks due to a dampened level of 

activation within upstream HSCs (Figure 1.20).  

 

 

Figure 1.20. Model 1 part 2 

Clusters at different pseudotimes harbor epigentic memory induced by HSCs at different 
timepoints. Clusters with the greatest number of differentially accessible peaks appear at similar 
pseudotimes suggestive of a past wave of heightened HSC activity.  
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Altogether, model 1 suggested that interactions between common TFs and cluster-specific TFs, 

combined with the dynamic nature of HSC activation across time, led to different sets of 

differentially accessible peaks within different lineages and different pseudotimes. Notably, these 

data do not completely rule out other possibilities. The second possible scenario is that the 

epigenetic changes within each cluster were encoded independently through direct immune 

activation acting on each progenitor, representing a fundamentally different model of continued 

direct activation as opposed to the downward propagation of HSC transcription factor-based 

memory proposed in model 1. In this case it would still not be surprising that differentially 

accessible peaks all enrich for a common set of transcription factors. These shared transcription 

factors could just reflect the fact that BCG vaccination induces a response within each cluster 

that involves the activation of a shared set of TFs in addition to cluster specific TFs (Figure 

1.21).  

 

 

Figure 1.21. Model 2 

BCG vaccination directly activates each HSPC cell type independently inducing differences in 
chromatin accessibility in each cluster.  
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Nonetheless, model 2 still leaves some observations unanswered. This model suggests that the 

nature by which HSCs and MEPs, compared to other progenitor clusters are activated is 

fundamentally different. Specifically, it suggests that HSCs and MEPs respond to external 

activation by engaging a strong differential expression program, whereas other progenitors only 

activate one or two transcription factors but gain many changes in chromatin accessibility. In that 

sense model 1 fit the data better since it modelled two different processes to account for the 

differences observed when comparing HSCs and MEPs with the other progenitor clusters: 

activation in HSCs and MEPs, and residual “memory” of activation within other downstream 

progenitors.  

Many of the experiments that would be required to differentiate between the proposed ideas 

(Model 1 versus model 2) center around answering the key recurring question of whether BCG 

vaccination acts directly on each HSPC cluster individually, or whether only certain clusters such 

as HSCs can sense pathogens or pro-inflammatory cytokines and then propagate these gene 

expression and/or epigenetic features to downstream clusters. In theory, myeloid progenitors can 

sense and respond to certain cytokines. For example, G-CSF can be sensed directly by GMPs, 

causing them to expand52, however it is not known exactly what happens in the context of BCG 

within humans. Experiments performed on individual HSPC clusters characterizing their 

capacity to respond directly to BCG or to pro-inflammatory cytokines would already provide 

great insight into determining whether model 2 is feasible.  

In general, additional mechanistic-level experiments should center on understanding the 

consequences of knocking out some of the core transcription factors discovered in this data. 

Particularly interesting targets would be KLF6, KLF5, and EGR1 given that all three of these 
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TFs had increased activity within upstream HSCs at D90 and were significantly enriched among 

differentially accessible sites within multiple downstream progenitors. For example, one-by-one 

knockout of EGR1, KLF5, and KLF6, and triple knockout across all HSPCs followed by BCG 

vaccination would help determine the necessity and sufficiency of these transcription factors for 

the induction of differential chromatin accessibility. Another more challenging experiment to 

directly test the sufficiency of differential transcription factor activity within HSCs in encoding 

differentially accessibility within downstream progenitors would involve inducible knockout of 

EGR1 or KLF transcription factors within all non LSK (all progenitor) cells allowing these TFs 

only to be activated within HSCs. Subsequent time course scATAC-seq would determine if 

activation of these TFs within upstream HSCs is sufficient to induce the full repertoire of DR 

peaks and associated DR genes within downstream progenitors.  

DR peaks and HSC differential expression predict cytokine secretion in PBMCs 

Using cytokine secretion data from donor matched PBMCs, we found that log2FC chromatin 

accessibility values of GMPs had significant power to predict fold change IL1B secretion of 

PBMCs 3 months after BCG vaccination compared to before. Similarly, we found that log2FC 

expression values of more than 200 genes within HSCs, including several transcription factors, 

also had equally significant power to predict IL1B responses. In addition to gene expression, 

transcription factor activity scores as determined via regulon analysis correlated very strongly (R 

> 0.7) and significantly with IL1B. These results support two main ideas. First, the fact that peak 

accessibility within GMPs correlated with IL1B production suggests that GMPs harboring 

differences in peak accessibility continued to be epigenetically modified even as they 

differentiated into mature myeloid cells and entered the peripheral circulation, a model which is 
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in line with the idea that innate immune epigenetic memory encoded within stem cells of the 

bone marrow have the potential to produce epigenetically rewired innate immune cells6. Notably, 

chromatin accessibility differences within other downstream clusters such as PreBNK cells were 

not found to predict cytokine responses in the periphery, perhaps due to the fact that PreBNK 

cells had fewer total epigenetic changes and the fact that DR peaks did not enrich for nearby 

genes directly related to immunity and interleukin signaling as in GMPs.  

Second, the fact that gene expression and transcription factor activity within HSCs was equally 

as predictive of IL1B responses directly supports the model that continued transcription factor 

activity (which manifests as differential gene expression) within HSCs played an instructive role 

in shaping the chromatin accessibility landscape of downstream progenitors. It implies that in 

general, those individuals harboring greater increases in transcription factor activity, matched the 

same individuals with greater log2FC increases in chromatin accessibility within progenitor 

clusters downstream, which were also the same individuals with the greatest BCG-induced 

increases in IL1B production in the periphery, a model that has been supported by many mouse 

studies45,50,67,71,72,80  but for which mechanistic data is lacking.     

Immediate future work will focus on investigating the properties of mature PBMCs in the 

periphery using 10x genomics multiome analysis through which chromatin accessibility and 

gene expression can be measured all within the same cell. These multiome analyses will enable 

direct investigations into the locations of differentially accessible peaks in different mature 

immune cell types and to characterize the relationship between epigenetic differences within the 

most differentiated progenitor clusters of the bone marrow, and their respective mature immune 

cell counter parts in the peripheral circulation. Given the complex binding patterns of 
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transcription factors during differentiation within the bone marrow, it is likely that mature 

immune cells may harbor differences in chromatin accessibility at sites that also enrich for KLF 

and EGR transcription factors, yet do not completely overlap the specific sites found within 

GMPs. Finally, the ability to characterize differences in gene expression within the same cell will 

provide clearer insight into the exact relationship between DR peaks and differential expression 

programs.   

Limitations and primary future directions 

Although I believe this work provides significant novel insight into human bone marrow in the 

context of BCG vaccination, there are many ways in which this work could be improved and 

extended.  

First, as alluded to earlier, this work profiles HSPCs but does not include any of the surrounding 

stromal or mature immune cells that could play important roles in communicating with HSPCs. 

This has made it difficult to draw conclusions about the broader inflammatory state of each bone 

marrow sample, and therefore difficult to infer whether continued changes in gene expression, 

which we believe to be driving most of the overall changes seen across HSPCs, are driven by 

continued inflammation, or by intrinsic changes to the gene expression program of the HSCs. 

Although the exclusion of these broader bone marrow cell types in this work was largely cost 

driven, additional captures of whole bone marrow on a subset of samples as well as cytokine 

measurements of bone marrow comparing placebo and BCG vacationed donors would greatly 

inform the broader bone marrow environment within which the HSPCs are residing.  

Second, in general, this work is limited primarily to genomic/computational analyses and 

therefore generates models that could benefit from additional experimental validation. This is 
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particularly the case for our integration of scRNA and scATAC-seq data in which we proposed 

that upstream TF activity within HSCs shapes the downstream chromatin accessibility landscape 

of progenitors. This hypothesis was drawn utilizing genomic and statistical evidence. Primarily, 

HSCs harbor numerous TFs with significant regulon activity, and these significantly overlap 

with TFs that are enriched within differentially accessible sites within downstream progenitors. 

Thus, we inferred a connection between continued TF activity within stem cells, and changes in 

chromatin accessibility downstream. Direct experiments to further investigate this model should 

generally involve, first, direct ChIP-seq or similar experimental approaches (CUT&RUN for low 

cell numbers) to directly probe the binding of the topmost enriched TFs within each celltype. The 

primary TFs targeted in these experiments should be KLF and EGR TFs because they were 

among the most highly enriched, commonly bound, and shared across at least 3 different 

progenitors. ChIP-seq binding for these transcription factors should be performed within each 

cell type and the binding sites should be compared to identified sites of differential accessibility 

within our scATAC-seq data to verify their binding to these sites. Additional ChIP-seq would 

ideally be performed for a series of cluster specifically enriched TFs (for example TCF7 enriched 

only in MLPs, or ETS3 enriched in GMPs). We would hypothesize that KLF and EGR binding 

sites within each cluster would also overlap with the binding sites of cluster specific TFs which 

in our model, are hypothesized to co-bind together with KLF and EGR TFs at cluster specific 

sites of differential accessibility that enriched for the shared set of KLFs and EGRs, but occur at 

different physical locations. Additional mouse experiments, although arguably riskier and further 

removed from the human setting, could also serve as experimental validation. For instance, one 

could compare whether downstream progenitors harbor differences in chromatin accessibility 

following BCG vaccination in WT mice versus mice treated with RNA-interference based 
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downregulation of KLF/EGR transcription factors, or heterozygotes with significantly decreased 

levels of these TFs. This would establish the necessity of these TFs within HSCs in establishing 

changes in chromatin accessibly within downstream progenitors. Oppositely, forced upregulation 

of these TFs within upstream HSCs would indicate whether increased levels of certain TFs are 

sufficient to induce downstream chromatin accessibility changes.  

A third limitation of this work is the lack of coupled measurements in gene expression and 

chromatin accessibility within the same cells. Our current datasets were collected by splitting 

cells for either scATAC-seq or scRNA-seq ultimately leading to measurements on the same 

population of cells, although the exact cells profiled in the two datasets are not the same. 

Multiome analyses, at least on a few samples, would help to directly demonstrate whether or not 

changes in accessibility and gene expression are truly uncoupled, or whether power-differences 

partially drive these observations.  

Finally, as the types of epigenetic experiments that can be performed at single cell resolution or 

small cell numbers expands, more detailed measurements of specific marks (either DNA 

methylation or histone modifications) would provide more specific insight into the molecular 

players that drive changes in chromatin accessibility in our data. Although changes in chromatin 

accessibility are often accompanied by other epigenetic changes or histone modifications, these 

cannot be directly probed with the current scATAC-seq data, limiting our interpretation of the 

molecular signatures that either drive, or are accompanied by these changes in accessibility. 
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MATERIALS AND METHODS 

 

Bone marrow aspirate staining, sorting, and sample collection 

Cryopreserved bone marrow aspirates were processed, following the steps detailed below, on 7 

separate days/batches, each batch containing 1) males and females and 2) samples collected on 

both D0 and D90. Five out of the seven batches contained samples from both placebo and BCG 

vaccinated cohorts (two contained only BCG cohort samples when there were no remaining 

controls).  

Initial thawing and incubation: Cryopreserved samples were thawed and cultured in RPMI 1640 

(Fisher) supplemented with 10% fetal bovine serum (Corning), 2 mM L-glutamine (Fisher), 2% 

HEPES (Thermo Fisher Scientific), 1% non-essential amino acids (Thermo Fisher Scientific), 

1% essential amino acids (Thermo Fisher Scientific), 0.14% 5N NaOH, 1mM sodium pyruvate 

(Thermo Fisher Scientific), 100U/ml penicillin (Thermo Fisher Scientific), and 100μg/ml 

streptomycin (Thermo Fisher Scientific) for 2 hours. After incubation, samples were washed 

with PBS, passed through a 100 µm filter, and counted.  

Antibody staining: To prepare samples for flow cytometry analysis and sorting, cells were 

incubated with 1:50 Live/dead fixable blue (Invitrogen) at a final cell concentration of 1M 

cells/100 µL for 20 mins (on ice). Samples were washed with 1% BSA (Miltenyi Biotec) in PBS 

(used for all further washing and staining steps) and resuspended in F/C block solution (BD 

Biosciences) for 10 minutes. Cells were washed and resuspended in a cocktail of antibodies 

targeting mature and stem/progenitor cell surface markers (See Table 1 in Results-chapter 1) for 

a final cell concentration of 1M cells per 100 µL. After 30 minutes on ice, cells were washed, 
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resuspended, and passed through a 70 um Flowmi cell strainer (Fisher) immediately prior to 

sorting.  

Sorting: Sorting was performed on a Symphony S6 cell sorter in the UChicago Human Disease 

and Immune Discovery core (HDID) using a 100 µm nozzle. For any given batch, samples 

collected from the same donor were sorted sequentially alternating between starting timepoints 

(for example, batch1: S1 D0, S1 D90, S2 D0, S2 D90; batch 2: S3 D90, S3 D0, S4 D90, S4 D0). 

Following sorting, CD34+ cells were washed in 1% BSA in PBS, counted, and then processed 

for single cell RNA and ATAC captures are described below:  

Single cell RNA capture: Immediately prior to capture, samples were combined into two pools (2 

or 3 samples per pool). Multiplexed cell pools were used as input for the single cell captures. For 

pools containing 2 or 3 samples, 6600 cells or 10,000 cells respectively were targeted for 

collection using the Chromium Single Cell 3’ Reagent (v3.1 chemistry) kit (10X Genomics). 

Post Gel Bead-in-Emulsion (GEM) generation, the reverse transcription (RT) reaction was 

performed in a thermal cycler as described (53°C for 45 min, 85°C for 5 min), and post-RT 

products were stored at -20°C until downstream processing. 

Single cell ATAC capture: Leftover cells in each pool not used for single cell RNA capture were 

lysed for 3 minutes to isolate nuclei, transposed, and used as input for the single cell ATAC 

captures. Variable numbers of nuclei (ranging from 2,026 to 9,085, depending on the number of 

leftover cells) were targeted for collection using the Chromium Next GEM Single Cell ATAC 

Reagent (v1.1 chemistry) kit (10X Genomics). Post Gel Bead-in-Emulsion (GEM) generation, 

the GEMs were incubated in a thermal cycler as described (72°C for 5 min, 98°C for 30 sec, 12 
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cycles of 98°C for 10 sec, 59°C for 30 sec and then 72°C for 1 min), and post-incubation 

products were stored at -20°C until downstream processing. 

Bulk CD34- processing: Total RNA was extracted from the sorted CD34- cell fraction of each 

sample using the miRNeasy Micro kit (Qiagen) or miRNeasy Mini kit (Qiagen). RNA-

sequencing libraries were prepared using the Illumina TruSeq protocol. Indexed cDNA libraries 

were pooled in equimolar amounts and sequenced single-end 100 bp reads on an Illumina 

NovaSeq. 

Single cell library preparation and sequencing 

Single cell RNA libraries: Post-RT reaction cleanup, cDNA amplification, and sequencing 

library preparation were performed as described in the Single Cell 3’ Reagent Kits v3.1 User 

Guide (10X Genomics). Briefly, cDNA was cleaned with DynaBeads MyOne SILANE beads 

(ThermoFisher Scientific) and amplified in a thermal cycler using the following program: 98°C 

for 3 min, 11 cycles x 98°C for 15 s, 63°C for 20 s, 72°C for 1 min, and 72°C 1 min. After 

cleanup with the SPRIselect reagent kit (Beckman Coulter), the libraries were constructed by 

performing the following steps: fragmentation, end-repair, A-tailing, SPRIselect cleanup, adaptor 

ligation, SPRIselect cleanup, sample index PCR (98°C for 45 s, between 11 and 13 cycles x 

98°C for 20 s, 54°C for 30 s, 72°C for 20 s, and 72°C 1 min), and SPRIselect size selection. Prior 

to sequencing, all multiplexed single-cell libraries were quantified using the KAPA Library 

Quantification Kit for Illumina Platforms (Roche) and pooled in an equimolar ratio. Libraries 

were sequenced 100 base pair (read1: 28, i7: 10, i5: 10, read2: 90) on an Illumina NovaSeq. 

Single cell ATAC libraries: Post GEM incubation cleanup and sequencing library preparation 

were performed as described in the Single Cell ATAC Reagent Kits v1.1 User Guide (10X 
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Genomics). Briefly, post-incubation GEMs were cleaned up first with DynaBeads MyOne 

SILANE beads (ThermoFisher Scientific) and then with SPRIselect reagent (Beckman Coulter). 

Libraries were constructed by performing sample index PCR (98°C for 45 s, 9 or 10 cycles of 

98°C for 20 s, 67°C for 30 s, 72°C for 20 s, and 72°C 1 min) followed by SPRIselect size 

selection. Prior to sequencing, all multiplexed single-cell libraries were quantified using the 

KAPA Library Quantification Kit for Illumina Platforms (Roche) and pooled in an equimolar 

ratio. Libraries were sequenced 100 base pair (read1: 50, i7: 8, i5: 16, read2: 50) on an Illumina 

NovaSeq. 

Mapping, demultiplexing, and cell filtering  

Single-cell RNA-seq data: FASTQ files from each multiplexed capture (n=14) were mapped to 

the GRCh38-2020-A-2.0.0 human reference genome using cellranger (v6.0.2) (10X Genomics). 

Demuxlet86 was used to demultiplex each capture into its constituent samples based on 

genotypes in a common VCF file containing genotype (GT) and genotype likelihood (PL) for 

each individual. Demuxlet implements a statistical model to determine the likelihood of RNA-

seq reads from any given single cell to map to a set of single nucleotide polymorphisms, 

therefore leveraging natural genetic variation to differentiate between samples from different 

individuals. Following demultiplexing, the Seurat (v3.2.3 Rv4.1.0) pipeline was used to retain 

only high-quality cells based on the following criteria: “singlet” as determined by Demuxlet 

(“doublets” and “ambiguous” cells removed), percent mitochondrial reads < 15%, and RNA read 

count (nCount_RNA) > 500. Out of the initial 115,698 cells captured across all batches, 92,014 

were retained as high-quality singlets.  
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Single-cell ATAC-seq data: FASTQ files from each multiplexed capture (n=14) were mapped to 

the GRCh38-2020-A-2.0.0 human reference genome using cellranger-atac (v2.0.0) (10X 

Genomics). Demuxlet86 was used to demultiplex each capture into its constituent samples as 

described above using the same common VCF file. Following demultiplexing, we used the 

ArchR (v1.0.1, ArchRGenome: hg38) pipeline to filter the data, retaining only high-quality cells. 

Cell filtering and the creation of ArrowFiles was performed in a single step using the 

createArrowFiles function on cells with “singlet” demuxlet status and using parameters minTSS  

= 4 and minFrags  = 1000 to further retain only cells with a sufficient signal to background ratio 

(high accessibility at transcription start sites) and at least 1000 unique nuclear fragments. Across 

all batches, 58,988 cells were retained as high-quality singlets. 

Clustering, cell type assignments, and UMAP analysis 

scRNA-seq data: Following quality-control filtering, we split cells first by timepoint giving rise 

to two groups of cells: Td0 (from D0 samples, n=42,493) and Tm3 (from D90 samples, 

n=49,521). Since individuals received either the BCG vaccine or placebo, we further split Tm3 

cells into two subgroups: BCG (n=37,999) or CTL (n=11,522) – leading to 3 final groups of 

cells: Td0, Tm3_BCG, and Tm3_CTL. We ran the function SCTransform separately for each 

group to normalize and scale UMI counts, to identify the most variable features, and to regress 

out variables corresponding to percent mitochondrial reads or capture. We then integrated the 

transformed data using the following Seurat functions: SelectIntegrationFeatures 

(nfeatures=3000), PrepSCTIntegration, FindintegrationAnchors, and IntegrateData. To perform 

dimensionality reduction downstream of integration we used the functions RunPCA (npcs=30), 
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RunUMAP (dims=1:30), FindNeighbors (dims=1:20), and FindClusters (resolution=0.5). This 

resulted in 23 preliminary clusters. 

To annotate the clusters according to HSPC cell type, we used the FindTransferAnchors function 

(dims = 1:30, reference.reduction = "pca", reference.assay = "SCT", query.assay = "integrated") 

to map our integrated scRNA-seq data onto a pre-labelled human bone marrow reference dataset 

(thawed, stained, sorted, and processed for scRNA-seq as described above) we previously 

annotated using CellID87.  

scATAC-seq data: Following quality-control filtering and creation of arrow files for each sample, 

we combined all arrow files into a ArchRProject used in all downstream processing steps. 

Dimensionality reduction, batch effect correction, clustering, and UMAP visualization were 

performed using the following functions of the ArchR pipeline: addIterativeLSI (with 

parameters: iterations = 2, resolution = c(0,2), sampleCells = 10000, n.start = 10, varFeatures = 

25000, dimsToUse = 1:30), addHarmony, addClusters (resolution=0.8, reducedDims=Harmony), 

and addUMAP (nNeighbors = 30, minDist = 0.5, metric = “cosine”). To annotate clusters 

according to HSPC cell type matching those in the scRNA-seq data, we first performed an 

unconstrained integration using the addGeneIntegrationMatrix function to broadly map each 

scATAC cluster to a cell type within our scRNA-seq data. Using this approach, we made the 

following preliminary assignments: 

scATAC clusters "C5", "C6", "C19", "C8"  “HSC”  

scATAC clusters "C22", "C17", "C2", "C4", "C3", "C1", "C21", "C16"  “CMP” 

scATAC clusters "C10", "C23", "C24"  “GMP” 
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scATAC clusters "C7", "C14", "C15", "C18"  “MEP” 

scATAC clusters "C12", "C13"  “MLP” 

scATAC clusters "C11", "C9"  “PreBNK” 

scATAC cluster “C20”  “unknown” 

To generate more detailed cluster mappings (i.e., separating “HSCs” into “HSC_a” or “HSC_b”) 

we then performed a second-round constrained integration by rerunning 

addGeneIntegrationMatrix with the newly defined broad group labels, generating the following 

final cluster assignments: C1: CMP_a; C2: CMP_a; C3: CMP_b; C4: CMP_a; C5: HSC_b; C6: 

HSC_a; C7: MEP_a; C8: HSC_b; C9: PreBNK; C10: GMP_b; C11: PreBNK; C12: MLP_b; 

C13: MLP_b; C14: MEP_a; C15: MEP_c; C16: CMP_a; C17: CMP_c; C18: MEP_c; C19: 

HSC_b; C20: unknown1; C21: CMP_b; C22: CMP_b; C23: GMP_a; C24: GMP_a  

scATAC-seq Peak calling 

We called peaks using the ArchR function addReproduciblePeakSet which utilizes MACS2 to 

call cluster-specific peaks using pseudo-replicates, and then creates a merged peak set using 

iterative overlap peak merging. For peak calling we used the initial raw, unprocessed alignment 

data but with added cell type labels derived as described above.  

Pseudobulk estimates 

For downstream analyses of scRNA-seq data we summarized single cell expression into 

pseudobulk estimates for each sample (each unique donor-timepoint pair), allowing a bulk 

RNAseq-like approach to investigating effects of BCG vaccination on human bone marrow for 

each cell type. For each of the final 13 unique clusters with a defined cell type label (HSC_a, 
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HSC_b, CMP_a, CMP_b, CMP_c, GMP_a, GMP_b, MEP_a, MEP_b, MEP_c, MLP_a, MLP_b, 

and PreBNK) we summed raw UMI counts belonging to all cells from the same sample using the 

sparse_Sums function in textTinyR (v1.1.4). Thus, for each cluster we converted an initial cell 

by gene (n x m) matrix to a sample by gene (s x m) matrix. 

For scATAC-seq data, we summarized single cell peak counts into pseudobulk estimates as 

described above, only using called peaks instead of genes. As described above, we summed raw 

peak counts belonging to all cells from the same sample using the sparse_Sums function in 

textTinyR separately for all clusters (n=24). Thus, for each cluster we converted an initial cell by 

peak (n x p) matrix to a sample by peak (s x p) matrix. 

Modelling effect of BCG on gene expression and integration with mashr 

Data filtering/normalization/transformation 

Gene expression data: For each cell type, we analyzed pseudobulk gene expression as if it were 

bulk-RNA sequencing expression data. We first removed any samples for which there were 

fewer than 20 cells, and any samples for which there was not a matching Td0 or Tm3 timepoint 

(retaining only paired samples). Lowly expressed genes were filtered by removing all genes for 

which the median logCPM was below a cell-type specific threshold (thresholds: 1.5 for CMP_c 

and MLP_b; 2 for MEP_c and PreBNK, and 0.5 for all other clusters). Then, we normalized gene 

expression counts across all samples using the calcNormFactors function implemented in the 

edgeR R package (version 3.34.1) which utilizes the TMM algorithm (weighted trimmed mean 

of M-values) to compute normalization factors, and we log-transformed the data using the voom 

function from the limma package. 
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Peak accessibility data: Similarly for peak accessibility data, we analyzed each pseudobulk peak 

count matrix as if it were bulk-ATAC sequencing data. Data was filtered by removing samples 

with fewer than 20 cells and any samples for which there was not a matching Td0 or Tm3 

timepoint. We filtered out low-count peaks for which the logCPM was below a cell-type specific 

threshold (0.75 for C4, C12, and C25, 1 for C18, 2 for C21, 2.5 for C9, C17, and C23, and 0.5 

for all other clusters), then normalized peak counts across all samples using the calcNormFactors 

function in edgeR, and log-transformed the data using the voom function in limma. 

Model fitting 

We wanted to investigate the 90-day impact of BCG vaccination on gene expression and peak 

accessibility in human bone marrow by comparing expression/accessibility levels from 

vaccinated individuals at day 90 (after vaccination) and day 0 (prior to vaccination). However, 

expression and peak accessibility measurements can naturally change across time, independent 

of whether the individual received the BCG vaccine or only a placebo. Moreover, although 

individuals assigned to the placebo or BCG cohorts were matched for age, sex, and lack of 

previous BCG exposure there could be random preexisting baseline differences when comparing 

the cohorts. To correct for these effects, we independently fit scRNA and scATAC pseudobulk 

data to a mixed model to estimate the impact of time and cohort assignment on 

expression/accessibility while also giving an estimate of the independent contribution of BCG-

vaccination to changes in expression/accessibility at day 90.  

Separately, for each feature (genes or peaks) and each cell type, we fit the following model: 
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𝑀𝑀1:𝐸𝐸(𝑖𝑖, 𝑗𝑗) ~ 

⎩
⎨

⎧
𝛽𝛽0(𝑖𝑖) + 𝑍𝑍𝑍𝑍 +  𝜀𝜀(𝑖𝑖, 𝑗𝑗) 𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶 𝑝𝑝𝐶𝐶 𝐷𝐷0

𝛽𝛽0(𝑖𝑖) + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵_𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑜𝑜𝑜𝑜(𝑖𝑖) +  𝑍𝑍𝑍𝑍 +  𝜀𝜀(𝑖𝑖, 𝑗𝑗)  𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 = 𝐵𝐵𝐶𝐶𝐵𝐵 𝑝𝑝𝐶𝐶 𝐷𝐷0
𝛽𝛽0(𝑖𝑖) +  𝛽𝛽𝐷𝐷90(𝑖𝑖) +  𝑍𝑍𝑍𝑍 +  𝜀𝜀(𝑖𝑖, 𝑗𝑗)  𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶 𝑝𝑝𝐶𝐶 𝐷𝐷90

𝛽𝛽0(𝑖𝑖) + 𝛽𝛽𝐷𝐷90(𝑖𝑖) + 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵_𝑐𝑐𝑐𝑐ℎ𝑐𝑐𝑜𝑜𝑜𝑜(𝑖𝑖) + 𝛽𝛽𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑜𝑜𝑣𝑣𝑐𝑐𝑣𝑣(𝑖𝑖) +   𝑍𝑍𝑍𝑍 +  𝜀𝜀(𝑖𝑖, 𝑗𝑗)  𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶 = 𝐵𝐵𝐶𝐶𝐵𝐵 𝑝𝑝𝐶𝐶 𝐷𝐷90

 

 

Where E(i,j) represents the estimate for each feature i and sample j. E(i,j) is modelled as a 

function of the fixed effects, β0, βD90, βBCG_cohort, and βvaccination, and the random effects Zu. β0(i) 

represents the intercept for the feature i, βD90(i) is the natural effect of time on feature i, 

βBCG_cohort(i) represents pre-existing baseline differences in feature i between the control and 

BCG cohorts, and βvaccination(i) represents the effect of BCG vaccination on feature i at D90. The 

vector u is an mx1 vector of random effects to control for individual donor differences where m 

is the number of unique donors (m=X; m=j/2). Z is an incidence matrix of 1’s and 0’s that maps 

each sample j to one of m individuals. The model was fit using the R package EMMREML. 

Mashr 

To increase our power to detect BCG-responsive genes shared or unique to each cell type, we 

applied Multivariate Adaptive Shrinkage in R (mashr version 0.2.57) to outputs from emmreml 

for scRNA-seq data. We did not apply mashr to scATAC data because peaks accessible enough 

to pass initial filtering steps are highly cell type specific, decreasing the utility of mashr in this 

context. For scRNA data, effect sizes were obtained by extracting the betas (βvaccination) for each 

cell type and the standard error of the effect size for each gene was given by taking the square 

root of varbeta estimates from emmreml.  Effect sizes and standard errors for each cell type were 

arranged into n x m matrices, n being the number of genes and m being the number of cell types. 

We then fit the mash model using canonical and data driven covariance matrices and then 

stringently defined significant genes as those with an lfsr < 0.01. 
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Gene set enrichment analysis 

Gene set enrichment analyses (GSEA) were performed using the fgsea R package (version 

1.18.0) with parameters: maxSize  = 500, nperm=100000. To investigate biological pathway 

enrichments among BCG-responsive genes, we ordered genes by the rank statistic: -

log10(lfsr)*PM where lfsr and PM (posterior mean) were output from running mashr as 

described above. The rank-ordered gene list was compared with the Hallmark gene sets from the 

MSigDB collections. 

Velocyto, Cellrank, and terminal state prediction 

We used velocyto followed by the CellRank58 pipeline to determine single cell RNA-velocity 

measurements and to predict the terminal lineage fate of HSCs from each sample.  

We first used the velocyto run10x command to quantify spliced and unspliced read counts 

(which are required downstream in the pipeline to estimate RNA velocities) for each gene within 

every cell of our scRNA-seq dataset. Then, separately for cells of each unique donor-timepoint 

sample, we ran the CellRank pipeline in python to predict terminal fates of individual HSCs 

within each sample. Briefly, for each sample, we first removed genes with very low 

spliced/unspliced mRNA counts, normalized and log-transformed the data, subset on only the 

top-most variable genes, and computed principal components and moments for velocity 

estimation using the following CellRank functions: scv.pp.filter_and_normalize (with parameters 

min_shared_counts=20 and n_top_genes=2000), sc.tl.pca, sc.pp.neighbors (with parameters 

n_pcs=30 and n_neighbors=30), and scv.pp.moments (with parameters n_pcs=None and 

n_neighbors=None). Next, we used dynamical modelling to estimate RNA velocities for each 

single cell using the function scv.tl.recover_dynamics and computed a velocity graph indicating 
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the likelihood that one cell will transition into another based on their RNA velocities and relative 

positions using scv.tl.velocity(mode="dynamical") and scv.tl.velocity_graph. Visualization of 

these velocity graphs was performed with the function scv.pl.velocity_embedding_stream.  

We then used a velocity Kernel to formally predict the terminal lineage fate of each HSC for 

each sample. We first used the commands VelocityKernel and vk.compute_transition_matrix on 

the single cell data, pre-processed as described above, to compute a cell-cell transition matrix 

based on RNA velocity. We combined this velocity kernel with a connectivity kernel to create a 

less noisy combined kernel (combined_kernel = 0.8 * vk + 0.2 * ck). Using a GPCCA 

(Generalized Perron Cluster Analysis) estimator, we computed a schur decomposition with 

g.compute_schur(n_components=20). Finally, we pre-defined all possible terminal states using 

g.set_terminal_states (with possible states: MLP_a, MLP_b, GMP_a, GMP_b, MEP_a, MEP_b, 

MEP_c, CMP_a, CMP_b, CMP_c, PreBNK) and then calculated the terminal state probabilities 

for each HSC using g.compute_absorption_probabilities(use_petsc=True, n_jobs=5, 

solver='gmres'). 

To compare terminal state differentiation probabilities across time for any given donor we 

labelled each single HSC with the terminal state towards which it had the greatest differentiation 

probability. For each donor (excluding donors with fewer than 20 total HSCs) we then computed 

the percentage of HSCs at day 0 and day 90 having maximal differential probability towards 

each terminal state and computed the difference across time (%day90 - %day0), leading to a 

“differentiation-shift” score for each possible terminal state, for each donor. Differentiation-shift 

scores were normalized by subtracting the median score among placebo vaccinated individuals 
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from every donor. For statistical comparisons of normalized differentiation-shift scores of BCG 

and placebo groups we used a Wilcoxon test. 

MPP score 

Calculation of the MPP score was based on known differences in the expression of CD90, 

CD49f, and CD45RA between MPPs and LT/ST-HSCs. To calculate the score, we first obtained 

mean expression values for each of the three genes across single cells for each HSC subcluster. 

The unprocessed mean values were centered and scaled using the scale function in R to 

normalize all values to a mean=0 and standard deviation of 1. Scaled scores for each individual 

gene were averaged to generate the final composite score. 

scHINT 

Preprocessing: Transcription factor motif enrichments and foot printing were performed using 

HINT-ATAC from the Regulatory Genomics Toolbox68. Raw bam files for each 10X capture 

were split by vaccination cohort, timepoint, and assigned cell type using samtools (v1.9) view. 

We focused on comparing BCG samples at D0 and D90, so only BCG samples (i.e., 

BCG_D0_HSC, BCG_D90_HSC, BCG_D0_CMP, BCG_D90_CMP, …) were processed 

further. Matching bam files from each capture were merged using samtools merge to generate 

BCG D0 and BCG D90 merged bam files for HSCs, CMPs, GMPs, MEPs, MLPs, and PreBNK 

(12 total files) for downstream foot printing and motif analyses. 

Motif enrichment: To determine which motifs were present within DR peaks we performed rgt-

motifanalysis matching on DR peaks using the JASPAR CORE Vertebrates set of curated 

position frequency matrices88 to determine whether specific motifs were significantly enriched 
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we used the rgt-motifanalysis enrichment function with cluster-specific DR peaks as the 

foreground and the shared total peak set as the background for all clusters.  

Foot printing: To predict the locations of transcription factor footprints we ran the rgt-hint 

footprinting function with parameters --atac-seq --paired-end --organism=hg38 on all peaks for 

each merged bam file generated in the preprocessing step. To predict which transcription factors 

were likely bound at each predicted footprint, we used the rgt-motifanalysis matching function to 

find motifs present within footprints.  

Assigning DR peaks to genes and GO enrichment 

To investigate which genes were located closest to differentially regulated peaks, we assigned 

each DR peak to the gene with the closest TSS using the Homer function annotatePeaks with 

default parameters. This peak-gene association was performed separately for DR peaks within 

CMPs, GMPs, HSCs, MEPs, MLPs, and PreBNK clusters. To determine whether specific 

pathways were enriched among genes closest to DR peaks we specified the parameter -GO when 

running the annotatePeaks function which outputs peak-gene assignments and gene ontology 

enrichments using DR peaks as foreground peaks and a total peak set (common to all clusters) as 

background. Output gene ontology enrichment p-values were corrected with the p.adjust 

function in R. 

Regulon analysis 

We used pySCENIC70, the python implementation of the SCENIC pipeline69, to predict 

transcription factor activity levels within each cluster. Briefly, we first created a loom file for 

each cluster for which the analysis was to be performed using the build_loom function 

implemented in the SCopeLoomR package. Then we used the pyscenic grn function on the loom 
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object to derive co-expression modules from the single cell expression data. Next, the pyscenic 

ctx function was run with default parameters to search for transcription factor motifs at promoter 

regions among members of each co-expression module and to trim targets lacking the target 

transcription factor motifs. Finally, pyscenic aucell was used to generate an activity score for 

each pruned co-expression module for every cell.  

To compare transcription factor module activity scores across different conditions, we averaged 

activity scores for all cells belonging to the same sample to generate average TF activity scores 

per donor per timepoint. For each donor, we computed the Tm3/Td0 activity score ratio to 

compute the fold change in activity score across time. Then we compared Tm3/Td0 activity 

scores between donors of the placebo versus BCG cohorts and used the Wilcoxon rank sum test 

to derive a p-value.   

Elastic net regression 

We built an elastic net model using the glmnet R package89 to determine whether the magnitude 

of BCG-induced differential accessibility of peaks within progenitors, or differential gene 

expression in HSCs, was predictive of the log2FC value of cytokine production of PBMCs after 

BCG vaccination. To choose the optimal value of alpha, we tested alphas ranging from 0 to 1 in 

increments of 0.1 and chose the alpha that maximized the R2 value between the elastic net 

predicted IL1B log2FC values, and their experimentally measured values. The regularization 

parameter lambda was chosen to minimize mean-squared error during n-fold internal cross-

validation. 

We used a leave-one-out cross-validation approach to generate predicted IL1B log2FC values for 

each donor. We first separated all samples (each sample corresponding to a donor) into training 
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and test samples and quantile normalized the raw log2FC values (BCG vs. placebo) for each 

differentially accessible peak, or differentially expressed gene, within each sample to a standard 

normal distribution. Then, we split the test sample from the training samples, and on the 

remaining training samples, quantile normalized across samples to a standard normal 

distribution. For each peak/gene within the test sample, we compared log2FC differential 

accessibility/expression to the empirical cumulative distribution function for the training 

samples. This allowed us to estimate the quantile into which the peak/gene fell and to assign this 

quantile value using the qnorm function in R.  

Correlations 

All correlations were performed with the cor.test function in R with parameter method= 

“spearman”. 

 

 

 

 

 

 

 

 

 

 

 



 99 

CHAPTER III: PERSISTANT EPIGENETIC SIGNATURES OF 
PREVIOUS ACTIVATION ARE COUPLED TO CONTINUED 

TRANSCRIPTON FACTOR ACTIVITY 

 

 

INTRODUCTION 

 

Although trained immunity has emerged as a focal point in immunology research there are still 

many unknowns regarding the mechanisms required for its development and maintenance. 

Historically, trained immunity has primarily been linked to histone post translational 

modifications (PTMs)8,9,19,20,25,27, often co-occurring with differences in chromatin accessibility 

but not easily profiled at single cell resolution. Histone modifications are well known to be 

highly dynamic in response to stimulation6,25,27,90, occur at well-defined regulatory regions such 

as enhancers and promoters18,91,92, and can be studied in bulk populations using functional 

genomics techniques such as ChIP-seq. Early studies in vitro, demonstrated that monocyte-

derived macrophages stimulated with β-glucan gain histone modifications H3K4me1, H3K4me3, 

and H3K27Ac at regulatory regions and that these changes can be detected throughout their in 

vitro lifespan8,9,20. These macrophages are reprogrammed (“trained”) to secrete higher levels of 

proinflammatory cytokines IL-6 and TNFα upon a secondary challenge8,9,20. Due to the 

correlative nature of these studies, however, we do not know the extent to which changes in 

histone modifications are causally required for the induction of trained macrophages. 

In dividing cells, such as tissue resident macrophages or pluripotent stem cells, the situation is 

further complicated. During DNA replication parental PTMs are diluted on sister chromatids. 

Thus, if the newly synthetized histones on daughter strands are not modified post-replication, the 
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information encoded in histone PTMs will be rapidly lost by dilution in successive rounds of cell 

division. Moreover, frequent histone exchange post-replication in active chromatin regions can 

further challenge the inheritance of histone PTMs93, which is expected to primarily compromise 

the mitotic inheritance of active chromatin states. Supporting that view, a recent study found 

preservation across the cell cycle of biotinylated histones in repressed domains, but not among 

transcriptionally active sites94,95. This suggests that chromatin components that bookmark active 

regions – thought to be central for the trained immunity phenotype – should be short-lived, 

which seems hard to reconcile with the long-term effects – sometimes in the scale of several 

years post primary stimulus – described for trained immunity12,14,29,38,39,45,47,67,71,96. To date, most 

of the studies that have investigated long-term effects of trained immunity in self-renewing cell 

types have focused on tissue resident macrophages or hematopoietic stem and progenitor cells 

(HSPCs) using mouse models97. In chapter II we found that BCG vaccination also induced 

differential chromatin accessibility for at least 90 days in human bone marrow. While this work 

and other in vivo based studies may be the best way to study trained immunity in the biological 

context they pose barriers to answering basic questions related to the inherent ability of dividing 

cells to retain trained immunity signatures without input from other cell types in the 

microenvironment or from continued low-level stimulus-persistence and inflammation. While 

transplantation studies can partially solve this problem in mouse studies, it is often difficult to 

isolate enough cells to enable deep profiling over the course of many cell divisions.  

Here we explored the mechanistic basis of innate immune memory in an isolated, dividing 

macrophage population through dense time course transcriptional, epigenetic, and functional 

profiling of macrophages following stimulation and washout of beta-glucan – a common trained 

immunity inducing stimulus. We find that trained macrophages are transcriptionally, 
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epigenetically, and functionally re-programmed for at least 14 cell divisions after stimulus 

washout. However, epigenetic signatures remaining through multiple rounds of cell division are 

always coupled with the continued activity of transcription factors – a finding consistent with our 

model that suggests that stimulus induced epigenetic signatures may not be self-sustained. In this 

macrophage model we find that many of the differences observed at late timepoints arise not 

from retention of beta-glucan induced signatures, but from new waves of coupled transcription 

factor activity and H3K4me1 deposition beginning days following stimulus washout. Thus, our 

data points to a dynamic process, as opposed to static retention and propagation of histone 

modifications, as underlying long-lasting trained immunity within isolated, dividing 

macrophages. 

 

RESULTS 

 

iBMDMNFκB-GFP cells enable dense time course profiling of epigenetic and gene 

transcriptional dynamics after beta glucan stimulation 

We sought to investigate how exposure to beta glucan impacts the transcriptional, epigenetic, 

and functional profile of dividing macrophages over the course of many cell divisions post 

stimulus-washout. Specifically, we wanted to choose an experimental setup that would allow 1) 

controlled stimulus application and removal, 2) synchronous cell divisions, and 3) a pure 

population of cells large enough to enable multimodal profiling at many timepoints (Figure 

2.1a). Although we explored the possibility of using cultured primary bone marrow derived 

macrophages (BMDMs) as a pure population of dividing macrophages, we found it difficult to 

control their division rates and to passage these cells for an extended period of time. This 
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prompted us to explore the possibility of using immortalized BMDMs (iBMDMs) as a 

representative, and easily manipulatable, model of primary BMDMs.  

To generate a reporter iBMDM line, we transduced iBMDMs (mouse BMDMs immortalized by 

infection with J2 retrovirus97) with lentiviral particles containing an NF-kB inducible GFP 

construct and then clonally selected successfully transduced iBMDMs to generate monoclonal 

reporter cells (hereafter referred to as iBMDMNFκB-GFP), which express GFP when NF-kB is 

active. A population of GFP+ cells emerged after stimulation of iBMDMNFκB-GFP cells with β-

glucan or Pam3CSK4 (a known NF-κB inducer), but not IFNα, confirming the specificity of the 

reporter and its ability to distinguish activated from non-activated cells within a population 

(Figure 2.1b). To characterize the division rates of our reporter line, we incubated iBMDMNFκB-

GFP cells with EdU (a thymidine analog that is incorporated into actively replicating DNA), 

harvested cells at multiple timepoints, and fluorescently labelled the EdU such that the extent of 

incorporation could be detected using flow cytometry. Using this method, we found that EdU 

positivity first reached a maximum in cells incubated for 12 hours, implying full replication of 

DNA within this time frame (Figure 2.1c). EdU positivity also peaked at 12 hours in the same 

time course incubation experiment performed on iBMDMNFκB-GFP cells that had previously been 

stimulated with beta glucan, indicating that, on a population level, both naïve and post-

stimulation iBMDM cells undergo one cycle of DNA replication within approximately 12 hours. 
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Figure 2.1. iBMDM reporters respond to beta glucan and divide rapidly 

a. General experimental plan. b. Bar plot quantification (plotted as mean ± SD) of percent GFP+ 
cells among unstimulated cells, or cells stimulated with IFN (negative control), Pam3CSK4, or 
BG. Data is representative of 3 replicates per condition. c. Naïve (no stimulus) iBMDMNFκB-GFP 
cells or iBMDMNFκB-GFP cells previously stimulated with 30 µg/mL beta glucan were incubated 
with EdU for 6, 9, 12, 13, 14, or 15 hours. At each time point, paired unstimulated and post-
stimulation cells were collected. EdU was fluorescently labelled (BV421) by Click-it reaction 
performed as described in the Click-it-EdU protocol. EdU incorporation was quantified by flow 
cytometry (gated on single cells) 

 

 

Having established a reporter system with defined division rates, we characterized the initial 

gene expression response of iBMDMNFκB-GFP cells to beta glucan stimulation. iBMDMNFκB-GFP 

cells were stimulated with beta glucan and harvested for RNA-sequencing at multiple timepoints 
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to examine genome-wide dynamic changes in gene expression. iBMDMNFκB-GFP cells rapidly 

upregulated hundreds of immune genes (Figure 2.2a,b). The total gene expression response 

peaked after 7 hours of beta glucan stimulation, after which the total number of differentially 

expressed genes declined (Figure 2.2b). The response of iBMDMNFκB-GFP cells to beta glucan is 

comparable to the one engaged by primary BMDMs (Figure 2.2c; Pearson’s r = 0.61, P< 1x10-

16, 82% concordant in the direction of the effects), further supporting their validity as an 

experimental model to study gene regulatory responses to immune stimulation. To confirm that 

beta glucan could be fully removed after stimulation, we took advantage of the fact that 

iBMDMNFκB-GFP cells act as a reporters of cell activation (NF-kB activity). We quantified GFP 

levels among sorted iBMDMNFκB-GFP GFP+ cells compared to paired control cells at 12-hour 

intervals (every cell division) following BG washout (Figure 2.2d). GFP levels in the BG-

stimulated cells were significantly higher compared to controls immediately following 

stimulation (T0) and for the next two cell divisions. By D3 population-level GFP differences 

became insignificant. Thus, we defined any timepoint beyond 2 cell divisions as representative 

of an inactivated state. Collectively these data demonstrated that iBMDMNFκB-GFP cells divide 

within 12 hours, induce an immune response to BG resembling that of primary BMDMs, become 

strongly and selectively GFP+ in response to BG activation, and can return to an inactivated state 

within 3 cell divisions after beta glucan washout. 
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Figure 2.2. iBMDM reporters return to baseline within 3 divisions 

a. Gene ontology analysis with biological process (BP) pathways performed on significant genes 
(FDR<0.05, abs(logFC)>1 after 7 hrs beta glucan stimulation). The top 10 pathways with the 
lowest p.adj values are shown. b. Quantification of the number of differentially expressed genes 
(Log2FC>1, FDR<0.05) in iBMDMs after various hours of BG stimulation. c. Correlation 
analysis of DE genes in primary BMDMs and iBMDMs at 7 hours of BG stimulation (Pearson’s 
r = 0.61, P< 1x10-16, 82% concordant in the direction of the effects, red dotted line indicates line 
of best fit). d. Histograms from flow cytometry analysis of GFP levels (FITC channel) in BGexp 
cells over time relative to paired controls.  
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Beta glucan experienced iBMDMs have long-lasting H3K4me1 signatures of previous beta 

glucan exposure 

To assess the long-term impact of beta glucan on iBMDMNFκB-GFP cells across multiple cell 

divisions, and to investigate whether stimulus-induced histone modifications could be 

propagated though cell divisions independently of continued gene activation, we designed a time 

course experiment to probe gene expression (via RNA-seq) and histone PTM levels (via ChIP-

seq) of histone marks associated with promoters (H3K4 trimethylation, or H3K4me3), enhancers 

(H3K4 monomethylation, or H3K4me1), and their activation levels (H3K27 acetylation, or 

H3K27ac) every 2 cell divisions (up to 14 divisions) after washout of a 24-hour beta glucan 

stimulation. We stimulated iBMDMNFκB-GFP cells with beta glucan for 24 hours and sorted GFP+ 

cells to enrich for cells that were responsive to the stimulation (Figure 2.3a). Following sorting, 

we returned control (C) and beta-glucan stimulated, GFP+ cells (BGGFP+) to cell culture 

(hereafter referred to as BG-experienced/ BGexp) and collected an aliquot of C and BGexp cells at 

timepoints corresponding to 2, 4, 6, 8, 10, 12, and 14 cell divisions (referred to as D2, D4, etc.) 

post sorting for transcriptional and epigenetic profiling (Figure 2.3b). Time 0 (T0; immediately 

after 24 hours beta glucan) samples were collected in a separate set of experiments. 

Using these time course data sets (3 independent replicates per time point), we first explored the 

impact of beta glucan on genome-wide dynamics of H3K4me3, H3K4me1, and H3K27Ac. We 

focused on these three histone modifications because of their hypothesized role in encoding 

innate immune memory8,9,19,20,25,27,90. For each time point, we first quantified the number of sites 

with significantly (false discovery rate (FDR) < 0.1) altered levels of each histone modification 

(Figure 2.3c,d). In line with fact that enhancer associated H3K4me1 and H3K27Ac are known to 
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be more highly responsive to immune-related stimuli and environmental perturbations compared 

to H3K4me319,90,91,98, we detected larger numbers of sites with altered levels of H3K4me1 and 

H3K27Ac in BGexp cells collected at T0 (immediately after BG washout, Figure 2.3c,d). In total, 

we detected only 541 peaks (3% of total peaks tested) with significantly altered levels of 

H3K4me3 at T0. This number dropped more than 10-fold by D4 and to near-zero levels by D10 

(Figure 2.3c,d). Likewise, while more than 7000 (~18%) peaks had altered levels of H3K27Ac at 

T0, this number dropped to only 70 peaks by D4 and to near-zero levels as early as D8. 

H3K4me1 was the most responsive histone PTM, with more than 23,000 significant sites (~33%) 

at T0 but also declined rapidly – to only ~6,500 sites (~5%) within 2 cell divisions.  

 

 

 

Figure 2.3. ChIP-seq and RNA-seq time course design 

a. Cell stimulation and sorting workflow. iBMDMNFκB-GFP cells are left unstimulated (C, top) or 
stimulated with 30 µg/mL β-glucan (BG, bottom) for 24 hours. After 24 hours C and BG cells  
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Figure 2.3, continued 

were collected and sorted (C: gated on live, single cells; BG: gated on live, single, GFP+ cells). 
b. Sorted C and BGGFP+ cells were returned to cell culture. Aliquots of C and BGexp cells were 
collected every 24 hours up to 168 hours (D2-D14) and used for downstream RNA-seq and 
ChIP-seq analysis, number of features that pass all quality control metrics are shown in 
parenthesis. c. Summary bar plots showing the proportion of differentially accessible H3K4me1, 
H3K4me3, and H3K27Ac peaks at T0, early (D2, D4 and D6) and late (D8 ,D10, D12, D14) 
timepoints. Red dotted line marks the direction of effect. d. Full bar graph showing the 
proportion of differentially accessible H3K4me1, H3K4me3, and H3K27Ac peaks at every time 
point 

 

 

For all three histone PTMs, the initial kinetics of decay closely resembled a model of passive 

decay, suggesting a lack of mechanisms to preserve these histone PTMs through each round of 

cell division. This was apparent when we plotted the percentage of histone modifications 

significant at T0 remaining significant at each subsequent timepoint and compared this to a 

model of 50% loss with each cell division (Figure 2.4a; K-S test PH3K4me1 = 0.9639, PH3K4me3 = 

0.27, PH3K27Ac = 0.6272) – demonstrating that most beta-glucan induced histone modifications 

are readily lost with each round of DNA replication. 

Despite this being the global pattern, we did detect significantly altered levels of H3K4me1 at 

more than 300 sites across the entire time course, even after 14 cell divisions following BG 

removal (Figure 2.3c late). Moreover, principal component analyses performed separately for 

each histone modification (Figure 2.4b-d) revealed H3K4me1 patterns to be distinct from that of 

H3K4me3 and H3K27Ac. In the H3K4me1 PCA we observed clear and significant separation 

along PC2 between control and BGexp samples at every timepoint (Figure 2.4b). In the H3K27Ac 

PCA, BGexp samples were generally distinguishable from control samples at most timepoints, 

likely reflecting the fact that although differences in H3K27Ac are no longer statistically 
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significant at later time points, some differences in the H3K27Ac landscape may remain. 

However, separation between BGexp and control samples at late timepoints was not as clear as for 

H3K4me1 (Figure 2.4c). In the H3K4me3 PCA we observed no significant separation between 

control and BGexp samples along either PC1 or PC2, consistent with the finding that H3K4me3 is 

the least responsive to BG stimulation and that few significant differences remain past D4 

(Figure 2.4d). 

We reasoned that the altered levels of H3K4me1 likely reflected a selective rewiring of the 

enhancer landscape, given that H3K4me1 occurs predominantly at enhancers18,91,92 and can 

increase or decrease based on enhancer activity levels. To investigate whether BG stimulation 

induced long-lasting chromatin state transitions (e.g., a transition from an inactive enhancer to an 

active enhancer), we input H3K4me1, H3K27Ac, and H3K4me3 data sets collected at D14 into 

ChromHMM99, which uses a multivariate hidden Markov model to define chromatin states along 

the genome. Using ChromHMM, we generated genome-wide state segmentations separately for 

control cells and BGexp at D14 and then determined all regions across the genome for which state 

assignments differed between C and BGexp (Figure 2.4e). While most of the genome was in the 

same state in both C and BGexp samples by D14, we detected significant state transitions at 

genomic regions covering more than 44M total base pairs. All of the most prevalent state 

transitions occurred at enhancer regions and represented 3 main types of transitions: a complete 

loss of enhancer activity (‘enhancer_inactive’ to ‘none’), a gain of new enhancer regions de novo 

(‘none’ to ‘enhancer_inactive’), or a switch from an inactive to an active enhancer 

(‘enhancer_inactive’ to ‘enhancer_active’) (Figure 2.4e). These data show that beta glucan 

stimulation initially induced widespread changes in levels of H3K4me1 and H3K27Ac, all of 

which were initially lost with kinetics of passive decay. However, we found that differences 
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between histone PTMs emerged at late timepoints at which point BGexp cells continued to harbor 

differences exclusively in H3K4me1. These continued differences were accompanied by both the 

loss of enhancer activity and the uncovering of novel latent enhancers19. 

 

 

 

Figure 2.4. BGexp dividing iBMDMs have long-lasting H3K4me1 signatures of previous 
beta glucan exposure 

a. Line plot showing the percentage of significant peaks at T0 (FDR<0.05) remaining significant 
at each subsequent timepoint. Orange line models expected percentages assuming 50% loss with 
each cell division. b. principal component analysis (PCA) of H3K4me1 levels in BGexp cells 
collected between D2 and D14 and time-paired controls across (across 3 experimental 
replicates). PCs were calculated using scaled and centered log2(counts per million) reads for  
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Figure 2.4, continued 

each sample across all H3K4me1 peaks. c and d, represent same analysis as in b but for 
H3K27Ac and H3K4me3. e. Transition matrix displaying the proportion of base pairs in each 
transition state at D14. ChromHMM was used to segment the genome into 6 states using 
H3K4me1, H3K4me3, and H3K27Ac ChIP-seq data. Separate segmentations were performed 
with control and BG D14 ChIP-seq profiles. State assignments between control and BG D14 
segmentation outputs were compared across the entire genome using 200 base pairs as the 
minimal unit. 

 

 

 

Residual H3K4me1 differences are accompanied by changes in gene expression 

At first glance, H3K4me1 profiles suggested that BGexp cells may intrinsically retain select 

stimulus induced H3K4me1 despite dividing multiple times after loss of NFκB activity after only 

3 cell divisions (Figure 2.2d). To better understand whether long-lasting differences in H3K4me1 

were occurring in the presence or absence of any concomitant differential gene expression at all, 

we used our time series RNA-sequencing data to quantify the number of significantly 

differentially expressed (DE) genes between control and BGexp macrophages (FDR<0.1) at each 

time point (Figure 2.5a,b). Not surprisingly, we detected the greatest number of DE genes at T0 

and the first BG-washout timepoint, D2. This number dropped precipitously between divisions 2 

and 4 from 1578 to 198 DE genes. However, we continued to detect similar numbers of DE 

genes (>100) at almost all subsequent time points (Figure 2.5b). Indeed, principal component 

analysis revealed that BGexp samples remained clearly distinguishable from all control cells 

regardless of the collection time point (Figure 2.5c). Unsupervised hierarchical clustering 

confirmed both the long-lasting separability from control samples, and time point specific 

clustering of BGexp samples (Figure 2.5e) based on gene expression, suggesting that exposure to 

beta glucan may permanently alter the baseline transcriptional state of macrophages. 



 112 

Interestingly, we found that pc1*pc2 values in the gene expression PCA (Figure 2.5c) correlated 

strongly with pc1*pc2 values of the H3K4me1 PCA (Figure 2.4b), suggesting a relationship 

between patterns of continued differential gene expression and H3K4me1 levels (Figure 2.5g; 

correlation coef = -0.626). To better understand the nature of DE genes, we performed a gene set 

enrichment analysis (GSEA) to look for enriched hallmark pathways at each time point (D2-

D14) as well as at multiple time points during BG stimulation (using data shown in Figure 2.2b). 

As expected, immune-related pathways such as ‘Inflammatory response’ and ‘Tnfa signaling via 

nfkb’, were the predominantly enriched pathways in direct response to BG stimulation (2-7 hours 

of stimulation) (Figure 2.5f). Surprisingly, we noticed that most of these beta-glucan responsive 

pathways were no longer enriched early on during the washout period (D2). However, multiple 

pathways, such as the complement pathway and the interferon alpha/gamma response pathways, 

reappeared at later timepoints (D10-D14) during the washout period. Other pathways such as 

Coagulation became enriched only post-BG while never being enriched in direct response to beta 

glucan. Moreover, when looking at the overlap of DE genes at the first and last timepoints, we 

found that more than 50% of DE genes at D14 were not significant at D2 (Figure 2.5d), 

suggesting that continued differential gene expression following beta glucan washout may not be 

indicative of retained immune activation per se, but rather indicative of new waves of expression 

emerging within the washout period. 
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Figure 2.5. Transcriptional changes at late divisions correlate with H3K4me1 changes.  

a. RNA-seq sample overview. b. bar plots showing the proportion of differentially expressed 
genes (DEG) at T0, early (D2, D4 and D6) and later (D8 ,D10, D12, D14). Red dotted line marks 
the direction of effect. c. principal component analysis (PCA) of gene expression for BGexp cells 
collected between D2 and D14 and time-paired controls across (across 3 experimental 
replicates). PCs were calculated using scaled and centered log2(counts per million) reads for 
each sample across. d. Euler diagram displaying the overlapped DEG between the earliest 
division (D2) and latest one (D14). e. Unsupervised hierarchical clustering analysis of samples 
based on transformed log2(counts per million) values of the set of differentially expressed genes 
(FDR<0.05) detected across all time points. Log (CPM) values of control replicates within each 
time point were averaged and displayed as a single point. f. Gene set enrichment analysis of 
Hallmark pathways performed using the fgsea R package. A separate gene set enrichment 
analysis was performed at each time point. Genes were ordered in descending order according to 
-log10(pvalue)*log2FC values (NES is Normalized Enrichment Score). Colored boxes indicate 
significant (pvalue<0.05) enrichment and color shading corresponds to NES score as indicated in 
the legend. Only pathways with significant enrichments for at least one time point are displayed.  
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Figure 2.5, continued 

g. Correlation analysis of PC1*PC2 values in PCA using gene expression data  (x-axis) 
compared to PC1*PC2 values in PCA using H3K4me1 peaks values. 

 

 

Post-BG changes in the H3K4me1 landscape are accompanied by signatures of altered 

transcription factor activity 

Our gene expression and ChIP data collectively suggested that BGexp cells co-regulate their 

enhancer and gene expression landscapes. We hypothesized that although we could detect 

differences in H3K4me1 as far out as 14 cell divisions after BG washout, this may be reliant on 

differential transcription factor activity, rather than self-sustained, as suggested by the fact that 

overall trends of differential gene expression matched H3K4me1 patterns. Since we had 

generally observed that individual genes and H3K4me1 peaks followed variable dynamics after 

BG-washout, we asked whether there existed a clear relationship between genes and peaks 

following similar trajectories. We reasoned that if this were the case, it would likely indicate that 

epigenetic remodeling is intertwined with remodeling of the gene expression program. First, for 

H3K4me1 peaks we focused on those peaks which were significantly different (FDR<0.05) at 

either only the beginning (DED2, N=4080), the end (DED14, N=124), or both timepoints of the 

time course (DED2, D14, N=51), representing non-persistent, induced, or retained peaks, 

respectively (Figure 2.6a). For each group, we plotted the average absolute log2FC of peaks in 

the group at each timepoint (Figure 2.6b). The log2FC values of DED2 peaks declined steadily 

throughout the washout period while values for induced peaks rose beginning as early as D4. 

Log2FC values for the small set of retained peaks dipped between D2 and D4 but remained at 
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around 0.3 for most of the washout period before rising back to levels similar to D2 at the end. 

Next, we performed the same analysis on differentially expressed genes and found the same 3 

patterns with markedly similar trajectories (Figure 2.6c,d; N=1081 DED2, N=100 DED14, N=70 

DED2, D14). On a global scale and in line with our overall quantifications of DE genes and peaks in 

Figures 2.3c and 2.5b, we found that more than 85% of both genes and peaks were in the “non-

persistent” group (Figure 2.6a,c) further confirming the overall finding that the vast majority of 

H3K4me1 and gene expression signatures initially induced by beta glucan are rapidly lost.  

Among the small percentage of retained and induced features, we explored to what extent peaks 

and genes following the same trajectories (i.e., retained peaks and retained genes; induced peaks 

and induced genes) were related to each other. As a representative example, we focused on genes 

and H3K4me1 peaks both following an “induced” pattern. We performed a gene ontology 

analysis on genes for which gene expression dynamics belonged to the “induced group” (Figure 

2.6e) and compared it to enriched transcription factor motifs within induced H3K4me1 peaks - 

all induced peaks in Figure 2.6a,b and a broader set of peaks whose patterns followed a 

significant upward linear trajectory (Figure 2.6f). Among induced genes we found a strong 

enrichment of viral response pathways (Figure 2.6e) and individually, we observed clear upward 

gene expression trajectories of transcription factors including Irf7 and Stat1 and downstream 

targets of these TFs such as Oas1a (Figure 2.6g-i). We found that 42% of the genes within the 

induced trajectory were direct targets of either the transcription factor Irf7 or Stat1 – these TFs 

themselves in the induced trajectory, suggesting that that the induced wave of novel gene 

expression as a whole may largely be driven by these TFs. Among enriched motifs at increasing 

H3K4me1 peaks we found strong, significant enrichment of IRF/ISRE motifs (Figure 2.6j). 

These motifs were enriched selectively among increasing H3K4me1 peaks, indicating the 



 116 

specificity of IRF motifs enrichments to the induced trajectory and demonstrating consistency 

with the finding that viral response pathways were only enriched among induced genes. When 

we assigned each peak to its closest gene, we found that induced or non-persistent peaks 

enriched significantly for induced or non-persistent genes, respectively (Pinc = 8.55x10-5, Pdec = 

1.07x10-42; Figure 2.6k). Constant peaks enriched for constant genes with a higher but near-

significant p-value (Pcons = 0.195) likely due to the low power arising from the small total 

number of genes and peaks within this trajectory. 
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Figure 2.6. Post-BG changes in the H3K4me1 landscape are accompanied by signatures of 
altered transcription factor activity 

a. Venn diagram of showing how H3K4me1 peaks were grouped into 3 trajectories based on 
differential levels at D2 (non-persistent), D14 (induced), or both timepoints (retained). b. 
Trajectories of significant (fdr<0.05) H3K4me1 peaks categorized as non-persistent, induced, or 
retained. Y-axis is the mean absolute value of log2FC differential abundance across all peaks in 
the group. c. Venn diagram of showing how genes were grouped into 3 trajectories based on 
differential expression at D2 (non-persistent), D14 (induced), or both timepoints (retained). d. 
Trajectories of significant (fdr<0.05) genes categorized as non-persistent, induced, or retained. 
Y-axis is the mean absolute value of log2FC differential expression across all genes in the group. 
e. Gene ontology analysis (Biological process pathways) on genes within each trajectory. Shown 
pathways are the top 10 most significantly enriched (fdr<0.05) pathways in the “increasing” 
group. Circle size and color are scaled to –log10(fdr). f. H3K4me1 peaks in the increasing  
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Figure 2.6, continued 

trajectory. g-i. Examples of induced genes (green trajectory), Irf7, Oas1a, and Stat1. j. Summary 
of homer motif enrichment results for interferon motifs performed on increasing and non-
increasing H3K4me1 peaks (* denotes fdr < 0.05). k. Log2 odds ratio (x axis) enrichment of 
genes in the ‘increasing’, ‘constant’, or ‘decreasing’ trajectories, among genes annotated to peaks 
in the ‘increasing’, ‘constant’, or ‘decreasing’ trajectories respectively 

 

 

Collectively our data demonstrates that H3K4me1 peaks that are significant at D14 represent 

peaks that followed either a retained or induced trajectory following beta glucan washout and are 

significantly associated with transcription factor networks following the same expression 

patterns. We find little evidence that stimulus-induced histone modifications can be retained as 

an “epigenetic scar’ independently of matched changes in transcription factor activities and gene 

expression in the context of an isolated and dividing cell.  

Changes in H3K4me1 and gene expression are associated with evolving functional 

responses 

It has been hypothesized that the presence of altered levels of H3K4me1 at enhancer regions may 

enable transcription factors to rapidly upregulate gene expression upon a secondary immune 

challenge, a phenomenon that is often referred to as “priming”5,6. A prototypical example of this 

was demonstrated in human monocytes stimulated with beta glucan, which subsequently secreted 

higher levels of proinflammatory cytokines following an LPS or Pam3CSK secondary challenge 

6 days later and had differences in histone PTMs at that time point8,9,20. Since the small numbers 

of retained or induced H3K4me1 signatures we detected in this data varied across time, we 

hypothesized that primed genes may be quite different depending on the timepoint interrogated. 

To assess responses of BGexp cells to secondary challenges, we stimulated a subset of control and 
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BGexp cells with Pam3CSK4 for 5 hours at each time point and compared their ability to rapidly 

upregulate genes in response to the secondary stimulation. We detected small numbers of primed 

genes whose log2FC response to secondary stimulation in BGexp cells was significantly different 

compared to controls. (Figure 2.7c, c-e, local false sign rate (lfsr) < 0.01). The largest total 

number of primed genes was detected at D2, also the time point with the greatest number of 

differences in all histone modifications profiled. We found various levels of overlap between 

primed genes at different time points (Figure 2.7b). The largest percentage of primed genes were 

specific to the first time point, D2, while the second most common pattern was shared priming 

across all time points. We also observed genes which were primed only at later timepoints (D12, 

D14, or both) and genes whose direction of priming reversed, consistent with the idea that the set 

of primed genes identified at one time point could differ significantly from the primed genes at 

another time point arguably because of the lack of overlap between significant H3K4me1 peaks 

at D2 compared to D14. These data suggest that as for H3K4me1, most priming is centered at 

early timepoints, and most of these primed genes are not maintained. Rather the repertoire of 

primed genes changes over time much in line with the overall dynamic nature of gene expression 

and H3K4me1 patterns we detected. Interestingly, GSEA on primed genes revealed that the 

strongest priming occurred at interferon alpha and gamma pathways early on – also the pathways 

whose baseline expression was induced most strongly at later time points (Figure 2.7f). We 

speculate that the reinduction of interferon and inflammatory pathways may be related to their 

priming at early timepoints. Given that priming at D2 and D4 still intersects with a state of 

continued NFκB activity and differential expression of other genes, it is not unfathomable that 

cells could self-engage their own primed pathways post-washout, thus driving new differential 

gene expression waves as seen here. This would explain why the pathways most strongly 
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responsive to BG stimulation, the most strongly primed pathways, and the pathways re-engaged 

post-washout are so strongly overlapping (Figure 2.5f, 2.7f).  

Finally, we tested whether timepoint specific differential gene expression, epigenetics, and/or 

priming, may impact functional responses of iBMDMs to bacterial infection, mimicking a more 

biologically relevant situation. We infected control and BGexp iBMDMs with S. Typhimurium at 

D2, D6, D10, D14, and D20 after BG washout and quantified the ability of iBMDMs to control 

bacterial growth over a 4-hour period using a CFU assay (Figure 2.7g). In these experiments 

BGexp cells gained an approximately 2-fold increase in the ability to control bacterial growth, 

however this “trained” phenotype emerged only at later timepoints (D10-D20; Figure 2.7h) and 

followed kinetics highly correlated with the induced wave of baseline interferon expression we 

previously observed (Figure 2.7i). Thus, functional protection was much more closely correlated 

to the newly emerging gene expression program, H3K4me1 marks, and primed genes found at 

later timepoints, compared to the retained signatures of activation still present at D2. These data 

point to a role for newly induced changes post-washout, rather than the immediate post-BG 

priming, in shaping functional outcomes in response to secondary pathogen encounters. 
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Figure 2.7. Changes in H3K4me1 and gene expression are associated with evolving 
functional responses 

a. Bar plot quantification of the number of primed genes per time point (lfsr < 0.01). b. Upset 
plot showing overlap of primed genes across timepoints (showing only combinations with n>=3 
genes). Bar colored by number of shared time points (black=1, red=2, green=3, dark blue=4, teal 
= 5, magenta=6). c-e. Individual examples of primed genes (Log2FC gene expression after 5 
hours Pam stimulation of C or BG cells). f. Significantly enriched (circle with black outline, 
FDR<0.1) hallmark immune pathways among primed genes (top panel) and differentially 
expressed genes at baseline (bottom panel). Pathways with a circle but no outline have a p-value 
< 0.05. Circle size is scaled to –log10(padj). Color is scaled to normalized enrichment score 
(NES). g. Depiction of S. Typhimurium infection performed at D2, D6, D10, D14, and D20. At 
each time point 300,000 C and BGexp cells were infected at a MOI of 10 for 2 and 6 hours. 
Quantification of bacterial load during the 4-hour period was performed by CFU assay. h.  
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Figure 2.7, continued 

Relative bacterial growth in BGexp relative to timepoint and experiment paired control. The y-
axis represents fold change bacterial growth over a 4-hour period in BGexp samples normalized 
to experiment-paired control. i. Scatterplot showing log2FC expression of IRF7 at D2, D6, D10, 
and D14 on the x-axis and bacterial protection on the y-axis, with line of best fit (p=0.03, 
pearson correlation = 0.967). 

 

 

DISCUSSION 

In this study, we performed time course ChIP- and RNA-sequencing to track the gene expression 

and epigenetic dynamics of dividing macrophages following a 24-hour stimulation with beta 

glucan. Our results demonstrate that a completely isolated, dividing macrophage population can 

harbor long-term changes in levels of H3K4me1 for at least 14 cell divisions following beta 

glucan stimulation. Notably, these differences made up a very small proportion of total stimulus 

responsive H3K4me1 peaks, of which over 85% were lost with kinetics matching a model of 

passive decay, suggesting that cells likely do not actively copy histone modifications during 

DNA replication. Nonetheless, the residual H3K4me1 “memory” was present even after all NF-

kB activity had returned to baseline levels, demonstrating that H3K4me1 signatures can be 

detected independently of acute cell activation. In contrast, the other two histone modifications 

profiled – H3K4me3 and H3K27Ac returned to baseline levels after a few cell divisions post-BG 

stimulation, demonstrating a potentially unique role for H3K4me1 as a marker of previous beta 

glucan exposure. These data are consistent with previous findings that trained immunity can 

induce epigenetic reprogramming of long-lived cell populations, particularly at enhancer regions 

- which are the primary sites of H3K4me15,9,10,19–21. Our experimental system is unique in that it 

demonstrates the presence of these signatures in a macrophage population undergoing rapid cell 
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divisions in culture, whereby cells are isolated from interactions with other cells and continually 

passaged and washed ensuring more complete removal of the stimulus. The idea that H3K4me1 

signatures can remain in our experimental system seems to contradict current evidence that 

dividing cells lack the ability to actively copy PTMs during DNA replication93–95. Our results 

demonstrate how differences in the H3K4me1 landscape can be present after many cell divisions 

even though histone PTMs cannot be actively copied. We found that BGexp cells evolve new sets 

of DE genes and associated H3K4me1 peaks during the washout phase, which largely 

contributed to why we were able to detect significant H3K4me1 peaks, even at D14. Primarily, 

we detected a novel set of interferon genes and transcription factors that were induced during the 

washout period and that were accompanied by increased H3K4me1 levels at peaks containing 

IRF/ISRE motifs. We found overall patterns of differential gene expression and H3K4me1 to be 

strongly correlated, supporting our hypothesis that differential transcription factor activity may 

be driving, and required for, the continued presence of H3K4me1 differences. 

These results suggest that “memory” may be a misleading term, at least in our system. Rather, 

the gene expression and epigenetic program continues to be shaped, even after the stimulus has 

been removed, and the cells are no longer activated. Performing secondary stimulations of BGexp 

cells with Pam3CSK, we assessed whether and how BGexp cells were primed at multiple 

timepoints and found that, although some genes were primed at multiple timepoints, many were 

primed in a time point specific manner. Priming was strongest at D2 – a time point during which 

the cells still had active NFκB activity and thousands of differential H3K4me1 peaks. We note 

that the specific pathways which were the most strongly primed at these early timepoints, 

including the interferon alpha and gamma pathways, were among the pathways most strongly 

upregulated during BG stimulation, confirming the basic principle that BG stimulation has a 
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short-term priming effect specifically on those pathways engaged during the initial immune 

response. Despite some degree of sharing across timepoints, the primed genes at D2 were largely 

unique, suggesting that initial priming likely decays in the same way as H3K4me1 marks decay. 

Functional protection, remarkably, followed the opposite pattern, and was much more closely 

correlated to the newly emerging gene expression program, H3K4me1 marks, and primed genes 

found at later timepoints. These data point to a role for newly induced changes post-washout, 

rather than the immediate post-BG priming, in shaping functional outcomes in response to 

secondary pathogen encounters. The fact that pathways that were initially responsive to BG 

stimulation, pathways exhibiting priming early on, and induced pathways at late timepoints were 

largely shared, suggest that newly emerged phenotypes are closely linked and shaped by the 

initial response to BG, and therefore do constitute a form of “memory”, although perhaps 

different in nature from the typical “memory” of retained histone PTMs seen in non-dividing 

cells. We speculate that the primed state of BGexp cells, which is strongest between D2 and D6, 

may interface with transcription factors that continued to remain activated at these time points, 

potentially causing cells to re-active their own primed pathways. Specifically, this model 

suggests that interferon pathways are temporarily primed between D2 and D6 due to their strong 

upregulation in response to BG stimulation. Although this primed state itself is not long-lasting 

(likely to the dilution of histone PTMs across cell divisions), primed interferon pathways are re-

engaged by transcription factors that continued to remain activated at D2 and D4 such as NFκB, 

leading to baseline increases in the expression of genes in these pathways. Although more work 

is required to further explore this hypothesis, our data demonstrate that stimulus-induced 

inflammatory programs can remain dynamic for an extended period, even after the initiating 

stimulus is cleared, which may have important functional implications.  
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Fundamentally, our model suggests that a fine-tuned series of events with specific timing is 

essential to induce the phenotypes observed here. Cells must be primed at a timepoint during 

which the cells still remain marginally active, allowing transcription factors to engage the primed 

pathways on their own. This model suggests that cells which become deactivated too quickly, or 

cells which don’t become primed during the time frame of this continued activation will likely 

not induce new gene expression programs or H3K4me1 signatures. The fact that there may be 

several specific requirements needed to induce long-lasting epigenetic signatures is ultimately 

consistent with the fact that trained immunity has proven to be incredibly sensitive to 

experimental design. We propose that the central mechanistic findings in this study – the 

coupling of transcription factor activity with novel or retained H3K4me1 signatures, passive 

histone decay, timepoint specific priming, and the ability of priming to drive stimulus-

experienced cells down a unique path – may represent general requirements for trained immunity 

within dividing cell populations devoid of any help from other cell populations of a pro-

inflammatory microenvironment.  More time course studies in primary cells or transplantation 

studies in animal models utilizing genomic methods that require only extremely small cell 

numbers will be necessary to investigate this question further. 
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MATERIALS AND METHODS  

 

Cells and reagents 

All mice were housed in the University of Chicago animal facility in accordance with the 

policies of, and approved by, the University of Chicago Institutional Animal Care and Use 

Committee. Mice were housed under SPF conditions. 

Bone marrow derived macrophages from the bone marrows of C57BL/6 mice were generated as 

described in Kaufmann et al.45 but using DMEM (Gibco) supplemented with 10% heat-

inactivated FBS (Gibco) and penicillin-streptomycin-glutamine (Gibco) in place of RPMI and 25 

ng/mL M-CSF (Prospec protein specialists) instead of 30% L929-conditioned media.  

LM1 cells from were a gift from Dr. Martin Olivier (McGill University) and were cultured in 

DMEM supplemented with 10% heat-inactivated FBS and pen-strep glutamine unless indicated 

otherwise in T75 flasks (Falcon). NF-κB GFP reporter LM1 cells were cultured in DMEM 

supplemented with 10% heat-inactivated FBS and pen-strep glutamine and 2.5 ug/mL puromycin 

(Sigma) unless indicated otherwise in T75 flasks. DMEM supplemented with 10% heat 

inactivated FBS and L-glutamine (Gibco) was used during all steps of Salmonella Typhimurium 

infections.  

Beta glucan was provided by D. Williams (East Tennessee State University) and was added to a 

final concentration of 30 ug/mL in all experiments. 

Monoclonal Reporter generation 
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LM1 cells were transduced with lentiviral particles (Qiagen) containing multiple repeats of the 

NFκB promoter driving the expression of GFP, using SureENTRY (Qiagen) at an MOI of 10. 

After 24 hours cells were washed with PBS and given new media. To isolate stably transduced 

clones, we added 2.5 ug/mL puromycin (Sigma) to the cell culture medium for 24 hours and 

allowed the cells to reach confluency (~5 days). Cells were harvested and single cells were 

sorted into 96-well plates. After 2 weeks, reporter activity of individual clones was tested by 

stimulating clones with beta glucan followed by flow cytometry analysis of GFP fluorescence. 

One highly responsive clone was chosen and used for all subsequent experiments. 

Flow cytometry analysis of reporter activity  

To assess NFκB activity at various timepoints following beta glucan washout, cells were 

harvested by removing media, washing with PBS, and incubating adherent cells in 10 mL 

Accutase (Sigma) for 5 mins at room temp. Detached cells were pooled, washed 1x with PBS, 

and resuspended in 1% BSA in PBS. Cells were analyzed immediately on a Fortessa flow 

cytometer (BD Biosciences) using the FITC channel to measure GFP fluorescence. Data was 

analyzed using FlowJo version 10. 

EdU labelling  

EdU incorporation time course assays were performed using Click-iT™ Plus EdU flow 

cytometry assay kit (Invitrogen) per manufacturer’s instructions. Briefly, naïve LM1 cells or 

LM1 cells stimulated with 30 ug/mL beta glucan 24 hours prior were incubated with 10 µM EdU 

for 0, 6, 9, 12, 13, 14, or 15 hours as indicated. After the incubation, cells were harvested, 

washed once with 1% BSA in PBS and fixed in 100 μL of Click-iT™ fixative for 15 minutes at 

room temperature. Following fixation, cells were washed with 1% BSA in PBS and incubated for 
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15 minutes in 100 μL of 1X Click-iT™ permeabilization and wash reagent. Cells were stained 

with Click-iT™ Plus reaction cocktail containing fluorescent Pacific Blue picolyl azide, 

incubated for 30 minutes at room temp in the dark, washed with 1X Click-iT™ permeabilization 

and wash reagent, and analyzed on a Fortessa (BD biosciences). 

Cell sorting and post-sort culture of time course experiments 

Cell collection for sorting: Prior to sorting, reporter LM1 macrophages either unstimulated or 

stimulated with beta glucan for 24 hours, were harvested by removing all media, washing with 

PBS, and incubating adherent cells in Accutase at room temp for 5-10 mins. Detached cells were 

pooled, washed with PBS, and resuspended in PBS to a concentration of approximately 1 million 

cells per milliliter. Cells were filtered through a 40 µM sterile filter. Live-dead stain was 

performed for all samples by addition of 1:10 propidium iodide solution 10 minutes prior to 

sorting. Cells were sorted on a FACSAria II or FACSAria IIIu instrument. All PI-, singlet control 

cells were sorted and all PI-, singlet, GFP+ BG-stimulated cells were sorted.  

Post-sort cell culture: Sorted control and BG-experienced cells were washed with PBS, 

resuspended in media, counted, and seeded into T75 flasks (0.6M cells per flask for harvest at 

D4 and beyond, or ~2M for D2 collection). Cells seeded into flasks for later timepoints (D4 and 

beyond) were passaged every 48 hours. 

Cell harvest: At each harvest timepoint, cells were harvested using Accutase to detach cells, 

followed by a wash with 1x PBS. Cells were aliquoted into tubes for downstream ChIP-seq or 

RNA-seq processing. Whenever possible, we aimed to collect 3M cells for ChIP-seq and at least 

0.5M cells for RNA-seq. A subset of cells was plated into four wells of a 6-well plate (600,000 

cells per well) and stimulated with Pam3CSK4 to assess priming (conditions: control unstim., 
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BG unstim., control + pam, BG + pam). After 5 hours of stimulation, plated cells were harvested 

in Accutase for RNA extraction and sequencing.  

RNA extractions 

Adherent LM1 macrophages were harvested with Accutase, washed with PBS, and lysed with 

1mL of Qiazol. RNA extractions were performed using the miRNeasy mini or miRNeasy micro 

kits (Qiagen). RNA quality was evaluated with the 2100 Bioanalyzer (Agilent Technologies). 

For primary BMDMs, cells were harvested by incubating cells in 10-15 mL CellStripper 

dissociation reagent (Corning) for 20 mins at 37C, and cells were further detached using Cell 

Lifter (Corning). BMDMs were washed with PBS, lysed, and processed as described above for 

LM1 cells.  

Bulk RNA sequencing (RNA-Seq) 

RNA library preparations were carried out on 100-500 ng of RNA with RIN 1.2 to 9.8 using the 

Illumina TruSeq Stranded Total RNA Sample preparation kit, according to the manufacturer's 

instructions. The libraries were size-selected using Ampure XP Beads (Beckman Coulter) and 

quantified using the KAPA Library Quantification kit - Universal (KAPA Biosystems). 

Sequencing of the RNA-Seq libraries was performed on the Illumina NovaSeq 6000 system 

using 100-bp single-end sequencing. 

RNA-seq data processing 

Adaptor sequences and low-quality score bases were first trimmed using Trimmomatic with 

parameters -phred33 SE ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36100. The resulting reads were aligned to the mm10 mouse 
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reference genome using STAR101. Read counts are obtained using featureCounts102 with default 

parameters. 

Differential gene expression analyses  

For each RNA-sequencing data set, gene expression levels across all samples were first 

normalized using the calcNormFactors function implemented in the edgeR R package (version 

3.34.0) which utilizes the TMM algorithm (weighted trimmed mean of M-values) to compute 

normalization factors. Then, the voom function implemented in the limma package (version 

3.38.3) was used to log-transform the data and to calculate precision-weights. A weighted fit 

using the voom-calculated weights was performed with the lmFit function from limma.  

Effect of BG stimulation on gene expression: To investigate the impact of beta-glucan 

stimulation on LM1 cells at various timepoints of stimulation (2, 4, 7, 12, 15, and 18 hours), 

normalized, log-transformed gene expression levels were fit to the linear model Expression ~  1 

+ time + stimulus:time, which corrects for natural changes across time independent of beta-

glucan stimulation and therefore captures the independent effect of beta-glucan on gene 

expression at each time point (BG at 2 hrs., BG at 4 hrs., …, BG at 18 hours). LM1 cells 

stimulated for 24 hours, and their respective controls were collected in an additional set of extra 

experiments. Normalized gene expression for these samples was fit to the linear model 

Expression ~ 1 + experiment + stimulus to correct for “batch” effects between replicate samples 

while giving an independent estimation of the impact of 24-hours BG stimulation on gene 

expression. 

Effect of previous BG exposure on expression: For samples collected post-BG washout in the 

time course experiment, the design Experiment ~1 + experiment + time + primary:time + 
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((Pam:time):primary) was used to correct for batch effects between replicate experiments and 

natural variations across time while giving an estimate of the lasting impact of previous BG 

exposure at each time point (effect of BG on expression at D2, D4, etc.).  

Hierarchical clustering: Normalized, log-transformed expression values were also used for 

downstream hierarchical clustering analysis. Expression values were corrected to remove the 

effect of experimental variation and natural across-time changes by subtracting the “experiment” 

and “time” effects from all samples. Corrected, normalized expression values were scaled and 

centered such that each gene had a mean = 0 and sd = 1 across all samples. Scaled expression 

was used to compute a distance matrix between samples using the dist function in R with 

parameters: method = “Euclidean” and diag=TRUE. Samples were clustered based on calculated 

Euclidean distances using the function hclust and viewed as a dendrogram using the fviz_dend 

function implemented in the R package factoextra (version 1.0.7) with parameters: k=7, 

type=phylogenetic. 

Effect of pervious BG exposure on secondary responses to Pam3CSK4: To investigate whether 

BG-experienced LM1 cells were primed at various time points post-washout, we used the design 

Expression ~1 + experiment + primary + Pam:primary to estimate priming (the effect of Pam 

secondary stimulation on naïve/control cells compared to the effect of Pam on BG-experienced 

cells) independently for each time point using the makeContrasts and contrasts.fit functions 

implemented in limma. Mashr: To increase our power to detect primed genes shared or unique to 

each time point we applied Multivariate Adaptive Shrinkage in R (mashr version 0.2.57) to 

outputs from contrasts.fit. Effect sizes were obtained from contrasts.fit in limma and the standard 

error of the effect size for each gene was given by multiplying the square root of the posterior 
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variance by the standard deviation for effect size. Effect sizes and standard errors for each time 

point (n = 6; D2, D4, D6, D10, D12, D14) were arranged into n x m matrices, n being the 

number of genes and m being the number of timepoints. We then fit the mash model using 

canonical and data driven covariance matrices and then stringently defined primed genes as those 

with an lfsr < 0.01. 

Gene ontology analysis  

We used the enrichGO function implemented in the clusterProfiler R package (version 4.0.5) to 

identify gene ontology terms enriched among DE genes (FDR<0.05, abs(logFC)>1) in LM1 cells 

at 7 hours of beta glucan stimulation. We used the parameters: OrgDb = "org.Mm.eg.db", ont = 

"BP", pAdjustMethod = "BH", minGSSize = 10, maxGSSize = 500. The same parameters were 

used to determine gene ontology enrichments among genes grouped into specific trajectories 

(increasing, constant, and decreasing). 

GSEA 

Gene set enrichment analyses (GSEA) were performed using the fgsea R package (version 

1.18.0) with parameters: maxSize  = 500, nperm=100000. To investigate biological pathway 

enrichments among DE genes during BG stimulation, or at various timepoints after BG washout, 

genes at each time point were ordered by the rank statistic: -log10(pvalue)*logFC and compared 

with the Hallmark gene sets from the MSigDB collections.  

Enrichments for primed genes after Pam secondary stimulation were performed using the same 

parameters. For each time point, genes were ordered by the mashr calculated values: -

log10(lfsr)*PosteriorMean and compared with the Hallmark gene sets from the MSigDB 

collections. 



 133 

ChIP-sequencing 

Samples collected at various timepoints of the post-BG time course were crosslinked with 1% 

v/v formaldehyde for 10 mins shaking at 50 rpm at room temperature and then quenched for 5 

minutes by addition of 1.25M Glycine to a final concentration of 125 mM. Formaldehyde fixed 

samples were sonicated for 12 mins using a Biorupter (Diagenode) with 105 peak power and 200 

cycles/burst. ChIP-DNA was prepared by incubating chromatin with antibody for at least 10 

hours at 4C on a thermomixer set to 300 rpm, followed by Dynabeads (protein A) incubation for 

2 hours and washes with Low Salt wash buffer, High Salt wash buffer, LiCl wash buffer, and TE 

buffer. The number of input cells used for each ChIP ranged from 0.5 million to 1 million. The 

following antibodies were used: H3K4me1 (company: CST; ref: 5326S), H3K4me3 (company: 

CST; ref: 9751S), H3K27Ac (company: Abcam; ref: ab4729). ChIP and input libraries were 

sequenced on the Illumina NovaSeq 6000 system at the University of Chicago Genomics Facility 

using 100-bp paired-end sequencing. A subset of samples was sequenced a second time to obtain 

greater sequencing depth across all samples and histone modifications. These samples were 

sequenced 100-bp single-end on the Illumina NovaSeq 6000 system at the University of Chicago 

Genomics Facility. 

ChIP-seq data processing 

ChIP-seq reads were mapped to the mouse reference genome (GRCm38/mm10) using Bowtie2 

with default parameters. Mapped reads were sorted and filtered using the samtools function view 

(with parameter -q 30 to retain only high-quality mapped reads), and sort with default 

parameters. PCR duplicates were removed using Picard MarkDuplicates program with parameter 

“REMOVE_DUPLICATES=True”. Peaks were subsequently called independently for each 
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sample using the callpeak function from the MACS2 software suite with parameters -q 0.05 –

keep-dup all. For each histone modification, a merged peak file combining called peaks across 

all samples was generated using the bedops merge function with default parameters. Read counts 

overlapping the merged peak set were obtained using featureCounts102. 

ChIP-seq analysis/differential testing  

Initial processing of ChIP-seq count data was performed as described for RNA-seq data: The 

number of reads overlapping each peak across all samples for a given histone modification were 

normalized using the calcNormFactors function implemented in the edgeR R package (version 

3.34.0). Then, the voom function implemented in the limma package (version 3.38.3) was used 

to log-transform the data and to calculate precision-weights. A weighted fit using the voom-

calculated weights was performed with the lmFit function from limma. 

Effect of previous BG exposure on histone modification levels: For samples collected post-BG 

washout in the time course experiment, the design Experiment ~1 + experiment + time + 

primary:time was used to correct for batch effects between replicate experiments and natural 

variations across time while giving an estimate of the lasting impact of previous BG exposure at 

each time point (effect of BG on histone PTM levels at D2, D4, etc.). 

ChromHMM 

We used ChromHMM99 to segment the genome into gene regulatory states for control (n=3 

replicates) and BG-experienced cells (n=3 replicates) at D14 using aligned histone PTM bam 

files for H3K4me1, H3K4me3, and H3K27Ac. Briefly, we first used BinarizeBam with default 

parameters (binsize=200) to learn chromatin states in 200 bp intervals for each histone PTM. 

Then we used the LearnModel function (default parameters except n=7 emission states) to 
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partition the genome into states based on the combinatorial presence or absence of each histone 

PTM. We manually assigned each emission state to a gene regulatory state as follows: 

H3K4me1lo/H3K4me3hi/H3K27Achi – “promoter_active”, 

H3K4me1hi/H3K4me3hi/H3K27Achi – “enh/prom_active”, 

H3K4me1hi/H3K4me3lo/H3K27Achi – “enhancer_active”, 

H3K4me1lo/H3K4me3lo/H3K27Aclo – “none”, H3K4me1hi/H3K4me3lo/H3K27Aclo – 

“enhancer_inactive”, H3K4me1hi/H3K4me3hi/H3K27Aclo – “enh/prom_inactive”. 

Motif enrichment analysis 

Motif enrichment analyses were performed using the Homer function findMotifsGenome with 

parameters -size 1000 -mask. For motif enrichment analyses performed on subsets of H3K4me1 

peaks (i.e., “increasing” or “not-increasing”), we used the entire set of called H3K4me1 peaks 

(n=122,962) as background. 

Gene networks of post-washout increasing genes 

We used the interferome database (interferome.org) containing manually curated sets of type I, 

II, and III interferon genes to predict which genes characterized as “increasing” during the post-

BG washout period were predicted to be regulated by IRF7 or STAT1. We defined each 

increasing gene as belonging to the same network as IRF7, STAT1, or both based on the 

presence or absence of the respective TF motifs in the gene’s promoter region. Network 

visualization was performed using cytoscape (v3.8.2) in which all circles represent genes in the 

increasing trajectory, and lines connecting genes to IRF7, STAT1, or both indicate a likely 

binding of the respective transcription factors to the gene’s promoter region.   

Relationship between significant H3K4me1 peaks and genes of different trajectories 
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To investigate the genomic association between H3K4me1 peaks and genes following the same 

trajectories, we assigned H3K4me1 peaks following “increasing”, “constant”, or “decreasing” 

trajectories to their nearest genes using the Homer function annotatePeaks with default 

parameters. Background peaks were defined as all H3K4me1 peaks and foreground peaks were 

defined as peaks in the “increasing”, “constant”, or “decreasing” trajectories. Gene-peak 

enrichment was performed using a two-sided Fisher’s exact test (fisher.test in base R) using the 

frequencies of genes within a given trajectory being assigned to a H3K4me1 peak within the 

same trajectory. 

Salmonella Typhimurium infections 

Salmonella culture: Salmonella Typhimurium was grown in TSB media (15g TSB in 500 mL DI 

water). For infections, the concentration of bacteria was determined by taking the OD600 and 

bacteria were diluted in media to a concentration of 1.5M bacteria per milliliter of solution. 

Bacterial infections: Control and beta-glucan experienced LM1 macrophages were infected with 

Salmonella Typhimurium at various time points following beta glucan washout to compare 

functional ability. Approximately 12 hours prior to the desired time of infection, Salmonella 

Typhimurium cultures were established by incubating a small aliquot of frozen bacterial stock in 

TSB media at 37C and rotations set to 250 rpm. On the day of infections, cells were seeded at a 

density of 300,000 cells per well in 6-well plates containing 2 mL media 2 hours prior to 

infection. Cells were infected for 40 minutes with Salmonella Typhimurium at an MOI=10 by 

removing supernatant from attached cells, washing with pre-warmed Phosphate-buffered saline, 

and adding 2 mL per well of bacterial solution (see ‘Salmonella culture’ above). After 40 

minutes, bacterial solution was removed, and cells were washed with pre-warmed PBS. Media 
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containing concentration gentamycin was added to cells and cells were incubated at 37C for 1 

hour to kill any remaining extracellular bacteria. Following 1-hour incubation (designated 

Time0/T0), cells were washed and new media containing gentamycin was added to cells. 

Colony forming unit assay 

To quantify the kinetics of intracellular bacterial growth in vitro, over a 4-hour period, cells were 

harvested at 2- and 6-hours post-infection (T2 and T6 respectively) by removing all supernatant 

and washing cells with PBS. Cells were lysed to release intracellular bacteria by adding 1 mL 

sterile water supplemented with 1% TritonX-100 and pipetting up and down vigorously 10 times. 

Serial dilutions made in PBS were plated on TSB plates. Plates were incubated at 37C and 

counted the next day. Bacterial growth was quantified as the fold-change difference in CFUs 

between the 6-hour and 2-hour plates. 
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CONCLUSION 

 

In this work, we tackled key questions in the field of trained immunity spanning the spectrum 

from basic questions about epigenetic heritability to analyses of human patient samples. In 

chapter II we performed a single cell-level analysis of rare human bone marrow samples 

collected before and 90 days after BCG vaccination. By integrating a multitude of different 

computational approaches, combined with in vitro assays and flow cytometry, we showed that 

BCG vaccination can have a lasting impact on both the gene expression and chromatin 

accessibility landscape of HSPCs in a way that is linked to the functional properties of immune 

cells in the periphery. Through our analyses of this data set, we identified key transcription 

factors that may be critical to this process, validated findings that have been described in mouse 

models, and proposed a new model for how lasting inflammation within stem cells can shape the 

downstream epigenetic landscape of progenitors. Our findings lay the groundwork for additional 

experimental approaches to further test and refine this model, and hopefully underscore the 

importance of considering how live vaccines, and inflammation more generally, impact the 

immune system in its entirety. On a more basic level, our analyses continued to raise 

longstanding questions related to the inherent heritability of trained immunity-associated 

epigenetic changes across cell divisions in long-lived cell types. In chapter III we pivoted 

towards a reductionist, more basic model system to further investigate this question. Through 

dense time course ChIP-seq and RNA-seq we found a tight coupling between transcription factor 

activity and histone PTMs at all timepoints, and also discovered that new gene expression 

programs and coupled epigenetic changes emerge after primary stimulus removal and are 

associated with new changes in cell functionality that only emerge at later timepoints. Ultimately 
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our results point to the general idea that gene expression and epigenetic rewiring remain coupled 

in dividing cell types and that the complete loss of TF-driven activation of gene expression 

would ultimately be expected to lead to the rapid loss of any epigenetic changes. Collectively the 

findings presented in this thesis suggest that “memory” is more similar to a low-level activation 

program that is maintained over long periods of time, than to a situation whereby epigenetic 

marks are deposited and then maintained in a vacuum, which would effectively imply an 

uncoupling of epigenetics from gene transcription. This work contributes to our mechanistic 

understanding of innate immune memory in dividing and long-lived cell types, which is 

ultimately critical to making informed decisions about whether and how innate memory can be 

used to improve the care of patients.  
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FUTURE DIRECTIONS 

 

Future directions should focus on a few key questions. First, what is the true duration of BCG-

induced inflammation and what are the key players involved in maintaining this state? Assessing 

human bone marrow samples at time points beyond 90 days would undoubtedly help answer this 

question. However, as a logistically easier first step, it would also be informative to re-assess 

some of the pre-existing bone marrow samples by using single cell RNA-sequencing to capture a 

broader set of cells, including the mature and stromal cells of the bone marrow, which would 

open the door for investigations into how HSCs interact and potentially remain activated by 

adaptive immune cells, osteoclasts, and bone marrow resident macrophages, given that we find 

little evidence for direct pathogen sensing by HSCs themselves. The other key question raised by 

our work in chapter II revolves around the role of transcription factors in establishing chromatin 

accessibility within progenitor cells. Our current data implicates a handful of transcription 

factors as potentially being important in the establishment of DR peaks, however experimental 

validation will still be critical. It would be interesting to make a few single knockout mice, for 

example, knockouts for KLF5, KLF6, or EGR1 within LSK cells, to narrow down the current list 

of TFs to an experimentally validated list of critical TFs which are necessary to establish BCG-

induced epigenetic memories.   

Chapter III raises critical questions related to the correlation versus causation relationship 

between epigenetic reprogramming and functional reprogramming. It still remains unclear 

whether the long-lasting changes in H3K4me1 observed in our data are required for the 

functional reprograming of macrophages or are just a correlate of variation in activity of specific 

TFs (in our specific setting primarily IRFs). Future studies should move beyond large genome-
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wide analyses and towards more precise epigenetic editing (CRISPR dCas9 – based approached 

for example) to dissect whether particular epigenetic changes alone are necessary and sufficient 

for the induction of innate immune memory or, if instead, the cornerstone of innate memory is 

the long-term rewiring of baseline TF activity in response to an initial challenge. 
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