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CHAPTER 1

Deconstructive Synthesis of Bridged and Fused Rings via Transition Metal-Catalyzed

“Cut-and-Sew” Reactions of Benzocyclobutenones and Cyclobutanones

1.1. Introduction

Transition metal (TM)-catalyzed carbon—carbon bond (C—C) activation has been emerging
from organometallic curiosity to useful synthetic tools.! After numerous of efforts in the past
decades, the “inert” C—C bond can be cleavage by transition metal to form more active
carbon—metal (C—M) bonds in catalytic manner, which enable the following functionalization of
the C—C bond. Comparing to well-developed C—H activation, a unique character of C—C activation
is the potential to reconstruct carbon skeleton, which provides new strategies to synthetic

community to synthesize complex natural products.

Among all the C—C activation methodologies, “cut-and-sew” reaction,? the transition-metal
catalyzed C—C activation followed by insertion of an unsaturated 2r unit, has been found useful
for constructing various bridged and fused rings which are ubiquitous in natural products. Two
types of the most well-applied substrates for “cut-and-sew” reactions are benzocyclobutenone and

cyclobutanone, since the internal strain in the four-membered ring can facilitate oxidative addition
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of transition metal into C—C bonds (Scheme 1.1A).% The first catalytic intramolecular “cut-and-
sew” reaction between cyclobutanone and alkenes was developed by Murakami and co-workers
in 2002.* Inspired by the elegant work of Murakami, our group successfully realized the “cut-and-
sew” reaction between benzocyclobutenone and alkene in 2012.5 Up to date, many different types
of “cut-and-sew” reaction of benzocyclobutenone and cyclobutanone have been developed,
including 1) (4+2) or (4+2—1) cycloaddition between benzocyclobutenone and 27 unit to construct
[m.n.0] fused rings; 2) (4+1) cycloaddition between benzocyclobutenone and alkene to construct
2-indanone; 3) (4+2) cycloaddition between a-branched cyclobutanone and 2w unit to construct
[m.n.0] fused rings; 4) (4+2), (4+2—1) or (4+1) cycloaddition between g-branched cyclobutanone

and 2m unit to construct [m.n.1] bridged rings.

[m.n.0] fused rings and [m.n.1] bridged ring systems are abundant in many bioactive natural
products, such as terpenes, alkaloids and steroids. As a powerful tools to construct [m.n.0] and
[m.n.1] ring system, “cut-and-sew” strategy has been applied to several complex natural product
syntheses, including total synthesis of cycloinumakiol (1.1, proposed structure),® cycloclavine
(1.2),” xylanigripones A (1.3),® galanthamine (1.4),° morphine-family alkaloids (1.5—1.7)%° and
penicibilaenes (1.8, 1.9)* (Scheme 1.1B). In this chapter, we summarize the diverse reactivities
of “cut-and-sew” reaction of benzocyclobutenone and cyclobutanone, as well as the representative
total synthesis of alkaloids and terpenes enabled by “cut-and-sew” reaction during the past 10 years

in our laboratory.



Scheme 1.1. “Cut-and-Sew” Reaction of Benzocyclobutenone and Cyclobutanone, and Their

Applications.
A. Transition metal catalyzed "cut-and-sew" reaction of benzocyclobutenone and cyclobutanone
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1.2. Method Development

1.2.1 (4+2) “Cut-and-Sew” Reaction of Benzocyclobutenone

Benzocyclobutenone is a kind of readily available compounds contains four-membered
cyclobutanone motif,'? which can be easily prepared from [2+2] cycloaddition!® or some other
transformations.'* The C—C activation of benzocyclobutenone was facilitated by the ring strain in

four-membered ring. Thus, benzocyclobutenone was proved to be an excellent substrate for “cut-



and-sew” transformation, such as (4+2) “cut-and-sew” reaction. The first intramolecular “cut-and-
sew” reaction between benzocyclobutenone and alkene was accomplished by our group in 2012
(Scheme 1.2A).° This method shows good functional group tolerance (Scheme 1.2C), such as ester
and protected alcohol. Besides, this method not only works on less sterically hindered mono- and
1,1-di-substituted alkene, but also delivers moderate to good yield for 1,2-di- or tri-substituted
alkene. The ‘“cut-and-sew” reaction between benzocyclobutenone and alkene can also be
enantioselective with DTBM-segphos as ligand (Scheme 1.3A)."* The asymmetric version of “cut-
and-sew” reaction also shown great functional group tolerance and delivers high enantioselectivity

for most of the substrates (Scheme 1.3B).

After detailed computational and experimental study on this reaction, we proposed a
“rhodium migration” mechanism for this transformation (Scheme 1.2B).!® Instead of directly
oxidative addition into C(aryl)—C(carbonyl) bond in benzocyclobutenone 1.10 to generate more
thermodynamically stable intermediate 1.14, oxidative addition of less hindered
C(alkyl)-C(carbonyl) bond to generate intermediate 1.12 is more kinetically feasible.
Intermediate 1.12 can readily undergo a-elimination to give carbonyl complex 1.13, followed by
CO-reinsertion to deliver complex 1.14. Finally, migration insertion of alkene into
C(aryl)—C(carbonyl) bond gives seven-membered metallacycle 1.15, followed by reductive

elimination to release final product 1.11.



Scheme 1.2. Rhodium Catalyzed (4+2) “Cut-and-Sew” Reaction between Benzocyclobutenone

and Alkene.
A. (4+2) "cut-and-sew"
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Scheme 1.3. Rhodium Catalyzed Asymmetric (4+2) “Cut-and-Sew” Reaction between

Benzocyclobutenone and Alkene.
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In 2014, our group developed “cut-and-sew” reaction between benzocyclobutenone and
alkyne.!” Driven by aromatization, the initial ketone product would undergo keto-enol
tautomerization to generate 2-naphthol (Scheme 1.4). To our delight, in 2018 we found the same
type of reaction can be catalyzed by first-row metal, cobalt (Scheme 1.5A), which is much more
abundant and cheaper than rhodium catalyst.'® Using Co2(CO)s as the catalyst, (4+2) “cut-and-
sew” reaction between benzocyclobutenone and alkyne can deliver 2-naphthol 1.21 or enol 1.22.
Comparing with rhodium catalyzed condition, cobalt catalysis even shows higher efficiency on
some substrate, such as the substrate with methyl alkyne or enyne, which can deliver 2-naphthol
1.21a and 1.21b (Scheme 1.5B). It worth to notice that the rhodium catalysis and cobalt catalysis
go through different reaction pathway. Rhodium condition initiated by oxidative addition into less
hindered C(carbonyl)—C(alkyl) bond, then undergo carbonyl exclusion/reinsertion to get formally
C(carbonyl)—C(aryl) bond activation product. Whereas cobalt catalyst can directly undergo

oxidative addition into C(carbonyl)—C(aryl) bond, which “directed” by alkyne via alkyne-cobalt



complex. The special mechanism of cobalt catalysis enabled some unprecedented “cut-and-sew”
reactions, such as the (4+2) “cut-and-sew” between substituted benzocyclobutenone and alkyne to
give enone 1.22a. For comparison, the substituents on the ketone a position inhibit the oxidative
addition of C(carbonyl)—C(aryl) bond, which give no desired “cut-and-sew” product under

rhodium condition.

Scheme 1.4. Rhodium Catalyzed (4+2) “Cut-and-Sew” Reaction between Benzocyclobutenone

and Alkyne.
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Scheme 1.5. Cobalt Catalyzed (4+2) “Cut-and-Sew” Reaction between Benzocyclobutenone and

Alkyne.
A. Cobalt catalyzed (4+2) "cut-and-sew" ' B. Selected substrate scope
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Besides carbon—carbon multiple bond, polar carbon—hetero double bond can also serve as 2n
unit in “cut-and-sew” reaction. In 2016, our group developed asymmetrical “cut-and-sew” reaction
between benzocyclobutenone and imine (Scheme 1.6A).!° In this work, the combination of two
chiral ligands can deliver both high yield and high enantioselectivity of chiral lactam product
(Scheme 1.6B). Similar as imine, ketone can also serve as 2w unit in this type of “cut-and-sew”
reaction (Scheme 1.7A).2° After generation of initial (4+2) cycloaddition product, the lactone ring
can be spontaneously opened through a elimination, which driven by the aromatization to form

benzofuran 1.26 (Scheme 1.7B).



Scheme 1.6. Rhodium Catalyzed Asymmetric (4+2) “Cut-and-Sew” Reaction

Benzocyclobutenone and Imine.
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Scheme 1.7. Rhodium Catalyzed Asymmetric (4+2) “Cut-and-Sew” Reaction

Benzocyclobutenone and Ketone/Aldehyde.
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1.2.2 (4+2) “Cut-and-Sew” Reaction of Cyclobutanone

Both S-branched and a-branched cyclobutanone can undergo (4+2) “cut-and-sew’ reaction
with 27 unsaturated unit to give bridged or fused bicycles. The pioneer work by Murakami shown
that the cationic rhodium can catalyze ‘“cut-and-sew” reaction between benzene-tethered
cyclobutanone and alkene, albeit the scope of their method is limited (Scheme 1.8).* In 2012,
utilizing amino pyridine as transient directing group, our group accomplished nitrogen- or
malonate-tethered “cut-and-sew” reaction between cyclobutanone and alkene to construct
bicyclo[3.3.1] bridged ring system, which is difficult to be constructed by traditional type II
intramolecular Diels-Alder (IMDA) reaction (Scheme 1.9A).2! The reaction started from
condensation between amino pyridine and cyclobutanone 1.29 to form imine 1.31 (Scheme 1.9B).
Directed by pyridine, the rhodium(I) catalyst can undergo oxidative addition to give metallocycle
1.32, followed by migratory insertion of alkene and reductive elimination to give imine 1.34.
Finally, in-situ hydrolysis of imine 1.34 delivers the ketone 1.30 and regenerate amino pyridine.
Our method shown a broad substrate scope (Scheme 1.9C), and acid-sensitive functional group
such as silyl ether in 1.30b can be well tolerated. In particular, the linker in this reaction can be
largely expanded using our method, shorter linker in 1.30e and malonate linker in 1.30f also

delivered cyclized product in moderate yield.
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Scheme 1.8. Murakami’s Pioneer Work on Rhodium Catalyzed (4+2) “Cut-and-Sew” Reaction

between Cyclobutanone and Alkene.

A. (4+2) "Cut-and-sew"

0 Murakami, 2002 (0]

[Rh(nbd)dppp]PFg (5 mol%)
BHT (10 mol%)

| m-xylene, 135 °C

f N 72% — 89% -
RY _ 3 examples R\/\ /
1.27 1.28
B. Substrate scope
o] o] o
1.28a, 81% F3C Me
1.28b, 89% 1.28¢c, 72%
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Scheme 1.9. Transient Directing Group Enabled Rhodium Catalyzed (4+2) “Cut-and-Sew”

Reaction between Cyclobutanone and Alkene.

A. (4+2) "Cut-and-sew" E C. Select substrate scope

Dong, 2014
Q [Rh(C3Hy)2Cl]; (5 mol%) Q :
-~ P(3,5-CgH3(CF3)y)3 (24 mol%) - !
| 2-Amino-3-picoline (100 mol%) . o o
- ™ 14-dioxane, 150 °C -~ o
N 39% — 98% yield N '
! 17 examples ! 1
PG 1.29 PG 130 | Me Me Me oTes
B. Proposed mechanism ; N N
| Ts Ts
130 - Me 1.20 L 1.30a,87% 1.30b, 63%
oo || .
/ _ | |
) N NH2 Y ' o) (0]
Me ' 2-Amino- | " '
S 3-picoline e |
) : Y
N N \\\ /,’ N N/ ' Me Ph Et Me
' e H,0 ~----= | ; N N
| ' Ts CO,Me
Me Me [Rh'] Me J\Me 1.30c, 56% 1.30d, 76%
I \ |
b be 131 o
1.34 E 0
Me Me
Me Me . Me N
— ! T Et0,C CO,Et
NN N : y
\ N | N : 1.30e, 50% 1.30f, 54%
Rh" RAM '

In 2014, Cramer group found that high enantioselectivity can be achieved in (4+2) “cut-and-
sew” reaction between benzene-tethered cyclobutanone and alkene with DTBM-segphos as ligand
(Scheme 1.10).2% Besides alkene, ketone can also serve as the 27 unit in this work.?* In 2020, our
group developed the enantioselective “cut-and-sew” reaction between cyclobutanone and alkyne
(Scheme 1.11A).2* The detailed calculation study reveals that the rhodium-stabilized anti-Bredt

double bond would be generated at first, and then a rhodium-catalyzed hydride migration can
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deliver the final product. The enone product typically have a more thermodynamically favored £
double bond (Scheme 1.11B). However, kinetically favored Z product became predominated with

oxygen linkage in 1.40c, due to the reaction was run under room temperature in this entry.

Scheme 1.10. Rhodium Catalyzed (4+2) “Cut-and-Sew” Reaction between Cyclobutanone and

Alkene/Ketone/Aldehyde.

A. (4+2) "Cut-and-sew"

Cramer, 2014 (0]
[Rh(cod)Cl], (2.5 mol%) .
(R)-DTBM-segphos (6 mol%)

1,4-dioxane, 130 °C
73% — 96% -

96.6 — 99.6% ee R\/\ //
15 examples
1.36
Cramer, 2014 (0]
[Rh(cod)ClI], (2.5 mol%) o
(R)-DTBM-segphos (6 mol%) .
1,4-dioxane, 110 °C - o
64% — 89% -
94.4 — 99.6% ee R\/\ //
12 examples
1.38
B. Select substrate scope
le) O O
H
> (@) (@)
Ph H Ph Me Bu
1.36a, 73% 1.38a, 80% 1.38b, 81%
98.3:1.7 e.r. 99.4:.0.6 e.r. 99.8:0.2 e.r.
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Scheme 1.11. Rhodium Catalyzed (4+2) “Cut-and-Sew” Reaction between Cyclobutanone and

Alkyne.

A. (4+2) "Cut-and-sew”

0 R2 Dong, 2020 o
[Rh(COD),]NTf, (7 mol%)
(R)-DTBM-SEGPHOS (8.4 mol%) O R2
| | 1,4-DFB, 120 °C .
1 >
RS 18% — 83% yield R
~ 22% — 98% ee S
1.39 27 examples 1.40
2
o XR 0O R?
Y/ ,Rh/\\ - > @Rh
X ,’I R1 | |
R’ \\__,/141 L‘v’)1_42
desymmetrization metal-stabilized

anti-Bredt olefin

B. Select substrate scope

o 10 0 Me
= Me = Me =
Ve Et
N cl N o
Ts Ts
1.40a, 70% 1.40b, 74% ;;?%' 3? ?:/:
96.5:3.5 e.r. 991 eur. ZIE > 10:1

In addition to p-branched cyclobutanone, a-branched cyclobutanone can also undergo “cut-
and-sew” reaction with 27 unit. In 2018, our group found that the “cut-and-sew” reaction between
a-branched cyclobutanone and alkyne can be utilized to construct [4.3.0] fused enone (Scheme
1.12A).° Similar to “cut-and-sew” reaction of benzocyclobutenone, we proposed that the
rhodium(I) catalyst tend to undergo oxidative addition with less sterically hindered C—C bond in
cyclobutanone 1.43 to give complex 1.45, followed by CO elimination and reinsertion to generate
thermodynamically more stable metallocycle 1.47 (Scheme 1.12C). The sequential migratory
insertion and reductive elimination finally delivers the cyclized product 1.44. Besides alkyl and

phenyl alkyne, TMS protected alkyne also works under the standard condition (Scheme 1.12B).
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With DTBM-segphos as ligand, we can also realize kinetic resolution of a-branched
cyclobutanone 1.49 (Scheme 1.13A), to give high yield and enantioselectivity of cyclized product

1.50 with fused rings (Scheme 1.13B).%

Scheme 1.12. Rhodium Catalyzed (4+2) “Cut-and-Sew” Reaction between a-Branched

Cyclobutanone and Alkyne.

A. (4+2) "Cut-and-sew” , B. Selected substrate scope
o . Dong, 2018 0 ' O, T™MS
| | [Rh(CO),Cl]; (5 mol%) .o
PMe,Ph (16 mol%) oo
A~B/C 1,4-dioxane, 12_5 °C o c ' NTs
b hed 33% — 89% yield Ag
a-branche 22 examples B 1 1.44a 58% 1.44b, 73% 1.44¢c, 37%
1.43 1.44 '
C. Proposed mechanism
1.44 1.43

A.__C
B
C 1.45
B 148 X
| il
\_/
A B/C B~
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Scheme 1.13. Rhodium Catalyzed Asymmetric (4+2) “Cut-and-Sew” Reaction between a-

Branched Cyclobutanone and Alkyne.

A. (4+2) "Cut-and-sew" via kenitic resolution

Dong, 2019

o | [Rh(C5H4),>Cl]5 (5 mol%)

. (R)-DTBM-SEGPHOS (10 mol%)
I:[ J: AgSbFg (10 mol%)

1,4-dioxane, r.t.

N 75% — 98% vyield

R 65% — 99% ee

racemic 12 examples

1.49

Ts

1.50a: 46%, 98% e.e. 1.50b: 48%, 98% e.e. 1.50c: 32%, 99.5% e.e.

1.49a: 47%, 98% e.e. 1.49b: 50%, 98% e.e. 1.49c: 43%, 65% e.e.
C =50%, s =458 C =50%, s =458 C =40%, s =785

1.2.3 (4+2—-1) “Cut-and-Sew” Reaction of Benzocyclobutenone and Cyclobutanone

Besides (4+2) “cut-and-sew” reaction, other ‘“cut-and-sew” reaction such as (4+2—1)
cycloaddition can also be utilized to construct bridged or fused ring system. In 2014, our group
found that substituted indene can be prepared through (4+2—1) reaction between
benzocyclobutenone and alkyne when refluxing in xylene (Scheme 1.14A).!7 From mechanism
aspect, the initial stage of (4+2—1) “cut-and-sew” reaction is the same as (4+2) “cut-and-sew”
reaction, which started with oxidation addition of rhodium(I) into less hindered
C(carbonyl)—C(alkyl) bond in benzocyclobutenone 1.51 followed by a-carbon elimination to
generate metallocycle 1.54 (Scheme 1.14B). Afterward, instead of CO reinsertion, the CO ligand
in complex 1.54 would dissociate to give complex 1.55 in (4+2—1) “cut-and-sew” reaction due to
high temperature applied in this reaction. Finally, alkyne migratory insertion and reductive

elimination of complex 1.55 delivers the indene product 1.52. The substrate scope of this reaction
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is similar to related (4+2) “cut-and-sew” reaction, which can well tolerate alkyl alkyne in 1.52a,

phenyl alkyne in 1.52b and longer linkage in 1.52¢ (Scheme 1.14C).

Scheme 1.14. Rhodium Catalyzed (4+2-1) “Cut-and-Sew” Reaction between
Benzocyclobutenone and Alkyne.

A. (4+2-1) "Cut-and-sew"

- Dong, 2014
7 9
= [Rh(COD)CI], (7.5 mol%) '
O/\/ DTBM-SEGPHOS (18 mol%) o ' C. Selected substrate scope
o} xylene, reflux AN i
X > -
| 23% — 83% yield P
/G 13 examples R/
R

B. Proposed Mechanism

1.52a, 649
1.52 1.51 a, 64%
" —_
/’ _ ]
o O
. (0]
| AN 0 |
~ Rh'! | X - . 1.52b, 83%
R 1.56 v |
R 1.53 |
E 0
-/ (O
o/\“ 1

, 1) E 1.52c, 23%
AN thlll jele :
|// | NrRp! ;

Similar to benzocyclobutenone, (4+2—1) cycloaddition between saturated cyclobutanone and
alkene (Scheme 1.15A) was also accomplished under high temperature to construct bridged
cyclopentane (Scheme 1.15B).?” The monodentate bulky Buchwald ligand plays a key role in this
reaction, which not only promote CO exclusion, but also prevent the coordination of more than
one phosphine ligand, and that resulting unsaturation of the metal center should promote olefin

coordination.
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Scheme 1.15. Rhodium Catalyzed (4+2—1) “Cut-and-Sew” Reaction between Cyclobutenone and

Alkene.

A. (4+2-1) "Cut-and-sew"”

0 Ko, Dong, 2016
L [Rh(COE),ClI], (5 mol%)
|[ XPhos (10 mol%) Q
- “ 14-dioxane, 170°C >
A.g-C 48% — 86% yield A-p-C
1.57 17 examples 1.58

B. Select substrate scope

H H
Me H H
N =z
) i
Ts Ts

TBSO
1.58a, 67% 1.58b, 61% 1.58¢c, 76%

1.2.4 (4+1) “Cut-and-Sew” Reaction of Benzocyclobutenone and Cyclobutanone

Although intramolecular “cut-and-sew” reaction of benzocyclobutenone and cyclobutanone
has been well developed, the intermolecular “cut-and-sew” reaction is still very rare up to now.
Recently, during our exploration on an intermolecular “cut-and-sew” reaction between
benzocyclobutenone and styrene, to our surprise, (4+1) product 2-indanone instead of (4+2)
product 2-tetralone was found to be the major product in this reaction (Scheme 1.16A).%
Utilization of “ligandless” cationic rhodium catalyst was crucial for both reactivity and selectivity
towards (4+1) product. Our method exhibited a broad substrate scope on both benzocyclobutenone
and styrene parts (Scheme 1.16C), which facilitated construction of multi-substituted 2-indanone.
Interestingly, the reverse selectivity between (4+1) and (4+2) was observed when adding BNDHP

as a ligand in this reaction.

A fS-H elimination mechanism was proposed to explain the unique selectivity of this
intermolecular “cut-and-sew” reaction (Scheme 1.16B). Oxidative addition of rhodium(I) into

sterically less hinder C(carbonyl)-C(aryl) bond of imine derived from 2,2-disubstituted
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benzocyclobutenone 1.60 and amino pyridine DG1 gave metallacycle 1.62. And insertion of
styrene 1.59 into C(aryl)-Rh bond delivered seven-membered metallacycle 1.63. The selectivity
between (4+1) and (4+2) product comes from competition between f-H elimination and reductive
elimination of key intermediate 1.63. The calculation study shown that the f-H elimination
pathway is overall favored by 2.5 kcal/mol kinetically. The relatively small energy difference
between two pathways indicated that the selectivity of this intermolecular “cut-and-sew” reaction

sensitive to reactant and ligand, which supported by our experimental observation.

Scheme 1.16. Rhodium Catalyzed (4+1) “Cut-and-Sew” Reaction between Benzocyclobutenone

and Styrene.

A. [4+1] "Cut-and-sew” ' C. Select substrate scope
Dong, 2022 . TIPSO B
A 159 [RNCHCIl (5 mol%) Ar 5 (pin)
NaBArF, (10 mol%) ! O O
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| N PTSA (20 mol%) w o
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37 examples .
160 1.61 ; Me Me
------------ 1.61a, 66% 1.61b, 50% (>10:1)
B. Proposed mechanism !
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In 2015, our group developed a (4+1) “cut-and-sew” cycloaddition between cyclobutanones
and allenes, which can be utilized to construction [4.2.1] and [3.2.1] bicycles (Scheme 1.17A).%
This method shows a broad substrate scope on both cyclobutanone and allene part (Scheme 1.17C).
Based on experimental mechanism study, a unique mechanism was proposed to explain the special
reactivity of allene (Scheme 1.17B). The reaction starts from the oxidation addition of Rh(I) into
the a-C—C bond of cyclobutanone 1.66 to give intermediate 1.68, in which allene coordinated to
rhodium center. This is followed by migratory insertion of acyl group into allene to generate allyl-
rhodium complex 1.69, which then undergoes f-H elimination to give diene 1.70. There are two

possible routes after this step, either C—H or C—C migratory insertion followed by reductive

elimination can generate product 1.67.
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Scheme 1.17. Rhodium Catalyzed (4+1) “Cut-and-Sew” Reaction between Cyclobutenone and

Allene.

A. (4+1) "cut-and-sew"” between cyclobutanone and allene C. Selected substrate scope

Dong, 2015 :
[Rh(C4H4)5Cll, (5 mol%)
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30% — 96% yield .
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1.3. Application in Total Synthesis

As a powerful method to construct [m.n.0] fused ring and [m.n.1] bridged ring system, “cut-
and-sew” strategy has been applied in many natural product synthesis.*° In this section, we will
highlight the total synthesis of alkaloids and terpenes enabled by “cut-and-sew” strategy finished

in our group in past 10 years.
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1.3.1 Total Synthesis of Cycloinumakiol (Proposed Structure)

Isolated from extracts of podocarpus latifolius, cycloinumakiol (1.1) is a unique diterpenoid
in inumakiol family, which exhibited a distinct proposed chemical structure from other natural
products in this family.?! First, its oxygen substituent on the aromatic ring is para instead of meta
or ortho to the isopropyl group; second, cycloinumakiol contained an unusual tetracyclic skeleton

feature a dihydrofuran ring, along with an quaternary carbon center on C10.

A synthetic route based on ‘“cut-and-sew” strategy was proposed to construct the special
skeleton of cycloinumakiol (Scheme 1.18A).° We envisioned that the isopropyl group on the
phenyl ring can be introduced by am arene functionalization. Meanwhile. The C5 stereocenter
could be easily epimerized since it located on ketone a position to trace back to ketone 1.73. A
“cut-and-sew” reaction between benzocyclobutenone and alkene can be utilized to construct the
tetracyclic skeleton in ketone 1.73 from ketone 1.74. Finally, ketone 1.74 can be synthesize from

two simple fragments 1.75 and 1.76 in a convergent way.

The Mitsunobu reaction between compound 1.75 and 1.76 delivered ketone 1.74 in 90% yield
(Scheme 1.18B). although the “cut-and-sew” reaction between benzocyclobutenone and alkene
has been developed, the insertion of sterically hindered tri-substituted alkene is still challenged.
No desired product ketone 1.73 was observed under previous optimized condition. After condition
screening, we found that using electron-deficient rhodium is crucial for this transformation. The
[Rh(CO):Cl]2/P(CeFs); combination was found to be optimal for this “cut-and-sew” reaction,
which can deliver ketone 1.73 in 66% yield. The installation of isopropyl group on phenyl ring
was accomplished in 2 steps, including a bromination and an one-pot Suzuki
coupling/hydrogenation. Ketone 1.78 was epimerized and converted to olefin 1.79 in 4 steps, and

a following hydrogenation furnished the proposed structure of cycloinumakiol (1.1). Using “cut-
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and-sew” strategy, we accomplished the first total synthesis of proposed structure of
cycloinumakiol (1.1) in 9 steps from simple starting materials compounds 1.75 and 1.76, which

enable us to revise the proposed structure of cycloinumakiol.

Scheme 1.18. Total Synthesis of Cycloinumakiol (Proposed Structure)

A. Retrosynthetic analysis i B. Synthetic Route
. [4+2] "cut-and-sew" of
benzocyclobutenone

OH a.DIAD o
PPh3 o
90°/

Me Me ° Me Me 1.74
1.76

b. [Rh(CO),Cl],
P(CeFs5)3
— s 66%
s Z gg(PPh )4, 1.77
1 izati H . 3)4, 1+
functionalization 1.73 | - Me then PAIC. Hy
cycloinumakiol (1.1) 1 Me —-— ————
(proposed structure) "cut-and-sew" \U/ ‘ 0 BF4K
Me Me 178 Me
' 1.77
@j Q/\ l l 4 steps
Me Me Me Me ‘
1.76 ' |

cycloinumakiol (1.1)
(proposed structure)

1.3.2 Enantioselective Total Synthesis of (—)-Cycloclavine

Isolated from the seeds of Ipomoea hildebrandtii by Hofmann and co-workers in1969% and
later from Aspergillus japonicas in 1982,3 cycloclavine (1.2) is a special indole alkaloids in ergot
alkaloids family, as the only member contains a cyclopropane ring in this family. Although the full
biological profile of cycloclavine has not been established, a preliminary study shows that
cycloclavine exhibits promising activities on insecticidal and antiparasitic properties. From
structural aspect, cycloclavine processes a penta-cyclic core with unique [3.1.0] structural motif.
A sterically congested cyclopropane and three contiguous chiral centers including two adjacent
quaternary carbons bring the significant challenge for asymmetric total synthesis of cycloclavine.
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To develop a concise, efficient and enantioselective route towards (—)-cycloclavine, we
proposed a synthetic plan using “cut-and-sew” strategy (Scheme 1.19A).” From retrosynthetic
viewpoint, we envisioned that the D ring of cycloclavine can be constructed by reductive amination
from ketone 1.80, and the cyclopropane E ring can be established by rhodium catalyzed
cyclopropanation between 1,1-disubstituted alkene and a-diazoketone, which can be readily
prepared from ketone 1.81a. Finally, the 6-6-5 fused ring system (A/B/C rings) is expected to be
constructed by an asymmetric nitrogen-tethered “cut-and-sew” reaction of benzocyclobutenone

1.82, which can be easily prepared from diphenol 1.83 through benzyne [2+2] cycloaddition.

“Cut-and-sew” reaction precursor benzocyclobutenone 1.73 was prepared from commercially
available diphenol 1.83 in 3 steps (Scheme 19B). After detailed condition optimization, we found
that the combination of cationic rhodium [Rh(COD);]|BF4 and DTBM-segphos can efficiently
catalyze the desired “cut-and-sew” reaction to give desired ketone 1.81a in 95% yield and 97.5%
e.e. This nitrogen-tethered ‘“cut-and-sew” reaction between benzocyclobutenone and alkene
shown broad substrate scope and good functional group tolerance, giving high yields and excellent

enantioselectivity (Scheme 1.19C).

After the “cut-and-sew” step, diazo-transfer of ketone 1.72 selectively delivered a-diazo
ketone 1.78 in 92% yield. The next challenge is to efficiently construct tetrasubstituted
cyclopropane E ring in cycloclavine. To avoid the possible side reaction, the reaction was run under
low temperature and with less hindered 2-methylallyl chloride 1.79 as olefin substrate, which gave
desired cyclopropane product 1.71 in 85% yield and 5.8:1 diastereoselectivity.>* In the end game,
azide substitution, Boc deprotection and oxidation gave indole 1.80, followed by sequential aza-
Wittig/reduction/reductive amination delivered (—)-cycloclavine (1.2) in 78% yield and >20:1

diastereoselectivity. Comparing to prior synthetic works to cycloclavine, our “cut-and-sew”
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approach accomplished asymmetric total synthesis of (—)-cycloclavine in 10 steps with 30%

overall yield, which pave the way for further biological study on this natural product.

Scheme 1.19. Enantioselective Total Synthesis of (—)-Cycloclavine.
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1.3.3 Enantioselective Total Synthesis of (—)-Thebainone A

Morphine (1.5) and its congeners are among the oldest and most studied alkaloid natural
products. Many of them exhibit potent neurological and immunological activity.>> From structural
aspect, morphine-family alkaloids typically have a unique poly-bridged/fused ring system, a
quaternary center and a basic tertiary amine moiety and a 1,2,3,4-tetrasubstituted arene.

Thebainone A (1.7) is a unique morphine-family alkaloids which contains an enone-containing C
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rings. It has been used as a precursor to synthesize morphine (1.5) and codeine (1.6) by Gates and

co-workers.>®

The key strategy in our total synthesis of ()-thebainone A is deconstructive synthesis enabled
by “cut-and-sew” reaction, which builds new structures through bond cleavage of easily accessible
moieties (Scheme 1.20A).!° From retrosynthetic viewpoint, we first cut C—N bonds in D ring
through a deconstructive C—O bond cleavage of ether 1.87a. As the key intermediate in our
synthesis, tetracycle 1.87a, which contains the fused A/B/C rings, a 2-tetralone moiety along with
a quaternary carbon center, can be readily accessible by a rhodium catalyzed “cut-and-sew”
reaction from ketone 1.88. Finally, ketone 1.88 can be convergently synthesized from

commercially available starting materials 1.89 and 1.90.

The substrate of key “cut-and-sew” reaction, ketone 1.88, can be prepared from compounds
1.89 and 1.90 in 4 steps LLS (Scheme 1.20B). Although there has been several reports on oxygen
tethered “cut-and-sew” reaction between benzocyclobutenone and alkene, “cut-and-sew” reaction
of compound 1.88 is still challenged due to the presence of a acid-sensitive ketal, a sterically
hindered trisubstituted olefin and a relatively long linker. After condition screening,
[Rh(COD);INTf, was found to be the optimized pre-catalyst, with DTBM-segphos as the
optimized asymmetric ligand and 1,2-difluorobenzene as solvent, which can deliver 80% yield of
ketone 1.87a in 97:3 e.r. The optimized condition shown broad substrate scope on bulky olefins,
aromatic substitutions and linkers (Scheme 20C). Enabled by “cut-and-sew” reaction, we not only
constructed all the C—C bonds in the natural product, but also set the correct stereochemistry on

the quaternary carbon center.
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With ketone 1.87a in hand, the next phase is cleavage of C—O bond and constructing C—N
bonds in D ring. C—O bond in ketone 1.87a was cleavage to give bromide 1.91 in 4 steps. A
sequential ketone protection, Sn2 amination and de-acylation of ketone 1.87a can be achieved in
one pot and 76% yield, followed by elimination of secondary alcohol by Martin’s sulfurane to
generate amine 1.97. The final D ring of thebainone A can be constructed by a radical-induced
hydroamination of alkene, which initiated by generation of amine radical through sodium
naphthalenide reduction of tosyl amine 1.97. Finally, selective deprotection of middle phenol
methyl ether in ketone 1.98 by NaSEt delivered phenol 1.99, followed by desaturation through
palladium-catalyzed Stahl’s oxidation®’ furnished (—)-thebainone A (1.7). Phenol 1.99 is also a
known precursor to morphine (1.5) and codeine (1.6).%® In summary, the first enantioselective total
synthesis of (—)-thebainone A (1.7) was achieved in 13 (and 14) steps with 4.7% (and 7.2%) overall
yield from commercial available starting materials. The efficiency of our synthesis comes from
deconstructive strategy through rhodium-catalyzed “cut-and-sew” reaction, which enable us to set

up initial chirality and all the carbon cycles of natural product in one step.
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Scheme 1.20. Deconstructive Asymmetric Total Synthesis of (—)-Thebainone A.

A. Retrosynthetic analysis
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1.4. Summary and Outlook

In this chapter, we have summarized our efforts on development of rhodium catalyzed “cut-
and-sew” reaction of benzocyclobutenone and cyclobutanone, as well as the total synthesis of
complex alkaloids and terpenoids utilizing “cut-and-sew” strategy. Diverse types of cycloaddition
can be achieved by “cut-and-sew” reaction, including (4+2), (4+2—1) and (4+1) cycloaddition. The
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“cut-and-sew” reaction brings new thoughts and possibilities to construct [m.n.0] fused rings and
[m.n.1] bridged rings, which enable us to develop concise and efficient ways to synthesize natural
products. Comparing to the traditional approach of cycloaddition, our method not only can
construct some inaccessible ring system by IMDA such as [3.3.1] bicycle, but also remains a

ketone moiety after cycloaddition, which can serve as a handle for further functionalization.

Rhodium catalyzed “cut-and-sew” reaction of benzocyclobutenone and cyclobutanone has
shown its efficiency in construction of carbon skeleton in natural products. Nitrogen-tethered “cut-
and-sew” reaction of benzocyclobutenone enables the fast establishing of northern ring system in
cycloclavine in a catalytic and enantioselective way. And the challenged tetrasubstituted
cyclopropane ring can be constructed by a rhodium catalyzed cyclopropanation between alkene
and a-diazo ketone, which is prepared from the product of “cut-and-sew” reaction in one step. In
total synthesis of thebainone A, all the carbon—carbon bonds can be furnished after “cut-and-sew”
step, and a following deconstructive C—O bond cleavage and C—N bond formation construct the
final heterocycle in natural product. Together, these works demonstrate that “cut-and-sew” reaction
of benzocyclobutenone and cyclobutanone provides a new strategy to construct complex scaffold
in natural products containing fused/bridged ring systems. Although there are still many challenges
in “cut-and-sew” reaction, hopefully our continuous cultivation on this area can afford a useful

tool in organic synthesis.

(Some contents of this chapter were published in Acc. Chem. Res. 2022, DOI:

10.1021/acs.accounts.2¢00400)
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CHAPTER 2

Total Synthesis of Penicibilaenes via C—C Activaton-Enabled Deconstruction and

Desaturation Relay-Mediated C—H Functionalization

2.1. Introduction

Terpenes and their derivatives have been a rich source of therapeutic agents, agrochemicals,
and fragrances. In addition, they often exhibit intriguing and complex chemical structures, such as
bridged/fused rings and diverse substitutions. As such, terpenes have been highly attractive target
molecules in the synthetic community.! Inspired by the biosynthesis of terpenes, a “two-phase”
strategy has been advanced by Baran and coworkers, leading to a number of elegant total syntheses
since 2009.2 This strategy involves a cyclase phase to first build the carbon backbone from a linear
or less com-plex precursor, followed by an oxidase phase to install oxygen functionalities at proper
positions (Scheme 2.1.A). Notably, in the cyclase phase, polyene cyclization and various
cycloadditions such as Diels—Alder reaction and Robinson annulation, are commonly employed
for synthesizing multi-ring systems. On the other hand, the transition metal-catalyzed C—C
activation® of cyclic ketones followed by insertion of an un-saturated 2z-unit, namely a “cut-and-

sew” process,* has been found useful for constructing various bridged and fused rings. In addition,
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the resulting carbonyl moiety could provide a convenient handle for site-selective C—H
functionalization.® Thus, terpene synthesis could also be envisioned to go through a closely related
but complementary strategy, which utilizes C—C activation to construct the core skeleton® and then
ketone-directed or mediated C—H functionalization to introduce the substituents (Scheme 2.1.B).
Comparing to the “two-phase” strategy, one subtle difference with this “C—C/C—H” approach is
that not all carbons in the terpene core need to be introduced in the “C—C” stage as some carbon
substituents can be installed in the later “C—H” stage. Herein, we describe a proof-of-concept of

utilizing this “C—C/C—H” strategy in a concise total synthesis of penicibilaenes A (2.1) and B (2.2).

Scheme 2.1. Approach for Terpene Synthesis

A. The "two-phase” strategy (seminal example by Baran, since 2009)

O o cyclase oxidase
| phase phase
X Me  —
HO HO

MMQBF

Me

B. This work: a "C-C/C-H" strategy

Me
C-H stage Me
H " OR
o \) Me
N\~

OH H

"cut-and-sew” via desaturation R =H: penicibilaene A (1)
relay R = Ac: penicibilaene B (2)

Isolated from a marine fugus Penicillium bilaiae MA-267 by Wang and coworkers in 2014,
sesquiterpene penicibilaenes A (2.1) and B (2.2) display selective and potent activity against the
plant pathogenic fungus Colletotrichum gloeosporioides that are responsible for anthracnose in
many fruits and vegetables.” In particular, penicibilaene B even shows better efficacy than broad-
spectrum antibiotic zeocin. To the best of our knowledge, total synthesis of penicibilaenes had not

been reported before our work published. These sesquiterpenes possess interesting chemical
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structures, including a tricyclo[6.3.1.0°]dodecane skeleton constituted by [3.3.1] bridged and
[4.3.0] fused junctions, as well as five adjacent stereocenters with one being all-carbon quaternary.

Of note, the substitutions on the tricyclic skeleton exhibit a 1,3,5-triad pattern.

2.2. First Generation Route

To efficiently synthesize penicibilaenes A and B, we proposed a “cut-and-sew” pathway to
construct these two natural products (Scheme 2.2). For retrosynthetic viewpoint, the C14 methyl
group in penicibilaenes A and B can be introduced in a late-stage methylation of B-hydroxyl ketone
2.3, which can be constructed from an intramolecular aldol rection of aldehyde 2.4. The [3.3.1]
skeleton in compound 2.4 is expected to be furnished by “cut-and-sew” reaction from
cyclobutanone 2.5. In order to test the key “cut-and-sew” reaction, cyclobutanone 2.6 was designed
as an model substrate, which is proposed to be synthesized from triene 2.7 through a regioselective
[2+2] cycloaddition with ketene. Triene 2.7 is expected to be prepared by coupling between

bromide 2.8 and hydrazone 2.9.

Scheme 2.2. Retrosyntic Analysis of First Generation Route

15
Me o 10

H& &Z Jgg\/v @J\AOTBS

OH "Cut-and-Sew"

R=H: pen|C|b|IaeneA
R = Ac: penicibilaene B (2 2)

Me %
Me Br
| oTBS = Z + TrisylHNN
—_— = ‘ OTBS —_— X OTBS
° 26 2.7 2.9

2.8
model study

Following the reported procedure,® bromide 2.8 could be prepared from alcohol 2.10 in three
step sequence (Scheme 2.3). On the other hand, hydrazone 2.9 could be synthesized from ketone
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2.13 in 2 steps. However, the Shapiro reaction between bromide 2.8 and hydrazone 2.9 only give
triene 2.7 in 27% yield after several trials. Considering the difficulty of preparing triene 2.7 and
the potential selectivity issue for the following [2+2] cycloaddition, we decide to change a route

to synthesis cyclobutanone 2.6.

Scheme 2.3. Synthesis of Triene 2.7

Lindlar Cat., H,
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/OSH H,SO, X quinoline HO. PBrs, pyridine N
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)J\/\/OH B —— )J\/\/OTBS _— NJNH
DMF THF, RT |
2.13 85% 2.14 84% M~ _orss
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"BuLi, N

/\j\ . NH Li,Cu(CN)Cl,
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Br OTBS
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2.7

To solve the possible selectivity issue of [2+2] cycloaddition of triene 2.7, an alternative route
to cyclobutanone 2.6 was proposed (Scheme 2.4). Cyclobutanone 2.6 was proposed to be prepared
from Stille coupling between organic stannane 2.15 and acetate 2.16. Acetate 2.16 was planed to

be synthesized from a regioselective [2+2] cycloaddition of diene 2.12.
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Scheme 2.4. Alternative Route to Construct Cyclobutanone 2.6.

OTBS SnBug
OTBS +

0} 2.6 2.15
model study

The stannane 2.15 was initially prepared from hydrazone 2.9 through Shapiro reaction
(Scheme 2.5). However, this reaction suffered from the low yield. A more convenient way to
synthesize stannane 2.15 was found later from alkyne 2.17. Simply protection of alcohol 2.17
afforded alkyne 2.18. A nickel catalyzed hydroiodination® of alkyne 2.18 furnished iodide 2.19,
which was treated with n-butyl lithium and BusSnCl to give stannane 2.15. The new route enabled
the gram-scale and high-yield preparation of stannane 2.15 from commercially available alkyne

2.17.

On the other hand, acylation of alcohol 2.12 gave acetate 2.20, which readily underwent [2+2]
cycloaddition with dichloroketene in a regioselective manner to give compound 2.22. The
dichloroketene was selectively reacted with the less hindered double bond in diene to deliver the
desired selectivity. Although the compound 2.22 could be converted to cyclobutanone 2.16 using
classic reduction method in high yield (entry 1, Table 2.1), the internal alkene was totally
isomerized to a 1:1 Z/E mixture. After condition screening, we found that using zinc as reductant
along with a weaker acid NH4Cl under room temperature can afford cyclobutanone 2.16 in
moderate yield and remain with Z alkene (Z/E = 4:1) in the product (entry 2, Table 2.1). The higher

yield and Z/F ratio was achieved when shorten the reaction time to 1 h (entry 3, Table 2.1).

41



Scheme 2.5. Synthesis of stannane 2.15 and dichlorocyclobutanone 2.22.
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Table 2.1. Dechloronation of Compound 2.22.

= =
cl OAc  conditions OAc
Cl
o 2.22 5 2.16
Entry Conditions Scale Yield ZE
1 Zn, AcOH, 75 °C 50 mg quantitive 1:1
2 Zn, NH4CI, MeOH, rt. overnight 50 mg 63% 4:1
3 Zn, NH4CI, MeOH, rt., 1 h 10g9 75% 8:1

Cl
Cl

SnBuj

215

2.22

OTBS

OAc

With two coupling precursors, stannane 2.15 and acetate 2.16 in hand, we started to screen

the Stille coupling (Table 2.2). Some reported conditions'® of Stille coupling of acetate and

stannane (entry 1-2, Table 2.2) with do not work on our substrates. Trace amount of coupling

product 2.6 was observed when the temperature raised to 70 °C (entry 3, Table 2.2), and 51% yield

of compound 2.6 was obtained when the reaction temperature was further increased to 80 °C (entry

4, Table 2.2). Unfortunately, the reaction yield was not further improved after screening different
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palladium pre-catalysts (entry 5-10, Table 2.2), solvents (entry 11-12, Table 2.2) and additives

(entry 13-18, Table 2.2).

Table 2.2. Stille coupling of Stannane 2.15 and Acetate 2.16.

Pd] (10 mol¥
TBSOL/SQB% . ~ OAc [ de]ltgd(i)tivec; *) ~ oTBS
solvent, T °C
2.15 o 216 o 2.6
Entry [Pd] Additive Solvent Temperature Time Yield
1 Pd(dba), 3 equiv. LiCl DMF 40 °C 2h n.d.
2 Pd(PPh3), 0.2 equiv. Cul + 3 equiv. LiCl DMSO 60 °C 2h n.d.
3 Pd(dba), 3 equiv. LiCl DMF 70 °C 2h low conversion
4 Pd(dba), 3 equiv. LiCl DMF 80 °C 2h 51%
5 Pd(dba), 3 equiv. LiCl DMF 80 °C 16 h 29% (16 h)
6 Pd(OAc), 3 equiv. LiCl DMF 80 °C 16 h n.d. (16 h)
7 Pd(PPh3), 3 equiv. LiCl DMF 80 °C 16 h n.r. (16 h)
8 Pd(PPh3),Cl, 3 equiv. LiCl DMF 80 °C 16 h n.r. (16 h)
9 [Pd(allyl)Cl], 3 equiv. LiCl DMF 80 °C 16 h 24% (16 h)
10 Pd(OAc), + AsPhy 3 equiv. LiCl DMF 80 °C 16 h n.d. (16 h)
11 Pd(dba), 3 equiv. LiCl NMP 80 °C 2h 31%
12 Pd(dba), 3 equiv. LiCl THF 80 °C 2h n.d.
13 Pd(dba), 3 equiv. CsF DMF 80 °C 2h n.d.
14 Pd(dba), 0.2 equiv. Cul DMF 80 °C 2h n.d.
15 Pd(dba), 0.2 equiv. Cul + 3 equiv. LiCl DMF 80 °C 2h 44%
16 Pd(dba), 0.2 equiv. Cul + 3 equiv. CsF DMF 80 °C 2h n.d.
17 Pd(dba), 1 equiv. LiCl DMF 80 °C 2h 40%
18 Pd(dba), 10 equiv. LiCl DMF 80 °C 2h 35%

With “cut-and-sew” reaction precursor cyclobutanone 2.6 in hand, we started to explore the
key “cut-and-sew” reaction. However, the standard “cut-and-sew” condition reported in the
literature'" did not work well with cyclobutanone 2.6 as substrate, which did not deliver any
cyclized product 2.23 (entry 1, Table 2.3). Different rhodium pre-catalysts were then examined,
which were not fruitful (entry 2-11, Table 2.3). The aminopyridine played an important role in this
reaction, decarbonylated product cyclopropane was observed in the absence of aminopyridine

directing groups (entry 1, Table 2.4). Diverse ligands were also screened, including NHC ligands
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(entry 5-6), bidentate ligands (entry 7, 14, 15, Table 2.4) and monodentate ligands (entry 8-13).

However, no desired product 2.23 was observed under these conditions.

Table 2.3. Catalysts Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.6.

[Rh] pre-catalyst
P-(3,5-CeH3(CF3)2)3

| X
7 > Me
oTBS N” “NH, p\/\/OTBS
H
1,4-dioxane
o 26 O 223
Entry [Rh] pre-catalyst Temperature Result
1 [Rh(CoHy)oCll, 150 °C n.d.
2 [Rh(cod)Cl]» 150 °C n.r.
3 [Rh(cod)Cl]» 160 °C n.r.
4 [Rh(cod)Cl], 170 °C n.d.
5 [Rh(cod)Cl], 180 °C decomposed
6 [Rh(cod)OH], 170 °C n.r.
7 Rh(PPh3)3Cl 170 °C n.r.
8 [Rh(coe),Cl], 150 °C n.r.
9 [Rh(CO),Cl], 150 °C n.r.
10 [Rh(CH3CN),(cod)]BF, 150 °C n.d.
11 [Rh(dppb)(cod)]BF,4 150 °C n.d.
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Table 2.4. Ligands and Directing Groups Screening on “Cut-and-Sew” Reaction of Cyclobutanone

2.6.
[Rh(cod)CI]z
_ I|gl;3a(r31d Me oTBS
OTBS ) H
1,4-dioxane, 150 °C
o 2.6 o 2.23
Entry Ligand DG Result

1 P-(3,5-CgH3(CF3),)3 none decarbonylation
2 P-(3,5-CgH3(CF3),)3 2-aminopyridine n.r.
3 P-(3,5-CgH3(CF3),)3 6-methyl-2-aminopyridine n.r.
4 none 3-methyl-2-aminopyridine ring expansion?
5 IPr 3-methyl-2-aminopyridine n.r.
6 IMes 3-methyl-2-aminopyridine n.r.
7 BINAP 3-methyl-2-aminopyridine decarbonylation
8 XPhos 3-methyl-2-aminopyridine ring expansion?
9 P(p-CeH4F)3 3-methyl-2-aminopyridine n.r.
10 PCys 3-methyl-2-aminopyridine n.r.
11 PPhg 3-methyl-2-aminopyridine n.d.
12 P(CeF5)3 3-methyl-2-aminopyridine n.r.
13 P(OPh); 3-methyl-2-aminopyridine n.d.
14 dppb 3-methyl-2-aminopyridine decomposed
15 dppf 3-methyl-2-aminopyridine decomposed

The current results of “cut-and-sew” condition screening revealed that the alkene linker is too
labile, which underwent double bond migration and many other side reactions. Thus, we planed to
protect the C=C double bond in the linker to epoxide or ether, which proposed to be sufficient

stable under typical “cut-and-sew” conditions (Scheme 2.6).

Scheme 2.6. Protection of Double Bond.

Labile
(0] OR
Me 2 Protection Me Me
- 7 or gl
(0] (0] (0]
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Epoxidation of cyclobutanone 2.6 selectively occurred on more electron-rich trisubstituted
alkene to deliver epoxide 2.24 (Scheme 2.7). With epoxide linked cyclobutanone 2.24 in hand, we
started to examine different combinations of catalyst and ligand to find out a proper condition
which can give cyclized product 2.25. Screening of catalysts did not deliver any promising result,

including different rhodium (entry 1-5, Table 2.5) and nickel catalysts (entry 6-7, Table 2.5).

Scheme 2.7. Preparation of Epoxide 2.24.

o)
7
otBs —ToPPA 0TBS
DCM
65%
o 26 0 2.24

Table 2.5. Catalyst Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.24.

catalyst
ligand

X Me .
O | P (1 equiv.) Me. O

N NH, OTBS
OTBS H
1,4-dioxane, 150 °C

0 2.24 © 225
Entry Catalyst (10 mol%) Ligand (22 mol%) Result

1 [Rh(cod),Cl], P-(3,5-CgH3(CF3),)3 N.R.

2 [Rh(coe),Cl], P-(3,5-CgH3(CF3),)3 N.R.

3 [Rh(CoH,)2Cll2 P-(3,5-CgH3(CF3)2)3 N.R.

4 [Rh(CO),Cl], P-(3,5-CgH3(CF3),)3 N.R.

5 [Rh(nbd),]BF4 (20 mol%) P-(3,5-CgH3(CF3),)3  decomposed

6 Ni(COD), PCys N.R.

7 Ni(COD), (No DG) PCys N.R.

Besides catalysts, diverse types of ligands were also screened (Table 2.6). Although none of
the monodentate phosphine ligands, bidentate phosphine ligands, Buchward ligand or NHC ligand

could give desired bicycle 2.25, some interesting side products were generated under specific
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entries. Decarbonylation product 2.26 was observed when using dppe as the ligand (entry 4, Table
2.6), and lactone 2.27 (entry 8, Table 2.6) was isolated with dppp as the ligand in this reaction. We
proposed that this transformation contained a carbon cation rearrangement (Scheme 2.8). After
cleavage of a-C—C bond in cyclobutanone, the epoxide could attack the carbonyl group in
intermediate 2.28 and substitute rhodium to give intermediate 2.29. The following Wagner—
Meerwein rearrangement terminated by rhodium elimination delivered lactone 2.30. Finally,

double bond migration enabled the formation of conjugated lactone 2.27.

Table 2.6. Ligand Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.24.

[Rh(C3H4)2Cl]2 (10 mol%)

Ligand
o | b e (1 equiv.) o
N NH, Me OTBS
OTBS
1,4-dioxane, 150 °C H
o 224 225
Entry Ligand Result Entry Ligand Result
1 none N.R. 15 P(OMe); (22 mol%) N.D.
2 PPhs (22 mol%) N.R. 16 PMej3 (22 mol%) N.D.
3 P(OPh)3 (22 mol%) N.D. 17 STBM-SEGPHOS (11 mol%) Decomposed
4 dppe (11 mol%) 2.26 observed 18 DM-SEGPHOS (11 mol%) Decomposed
5 AsPhj (22 mol%) N.R. 19 BIPHEP (11 mol%) Decomposed
6 P(OiPr); (22 mol%) N.R. 20 dppf (11 mol%) Decomposed
7 dppm (11 mol%) N.R. 21 P(2-furan); (22 mol%) N.R.
8 dppp (11 mol%) 2.27 observed 22 P(4-CF3-CgHy)3 (22 mol%) N.R.
9 P'Bug (22 mol%) N.D. 23 P(CgFs)3 (22 mol%) N.R.
10 XPhos (11 mol%) N.R. 24 PCy; (22 mol%) N.R.
1 SPhos (11 mol%) N.D. 25 dppb (11 mol%) N.R.
12 TMTU (22 mol%) N.R. 26 BINAP (11 mol%) Decomposed
13 PMe,Ph (22 mol%) N.D. 27 IPr (22 mol%) Decomposed
14 PEt; (22 mol%) N.D. 28 IMes (22 mol%) N.R.
(0]
| O
0 OTBS OTBS
226 2.27
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Scheme 2.8. Proposed Mechanism of Rearrangement from 2.24 to 2.27.

(@)
OTBS % OTBS
—_— - [Rh|] = o0 ®
2.24 [Rh”'] 2.28 o 2.29
0] o
O -
| 0 OTBS
-—
OTBS 0
2.27 O 2.30

Since the epoxide tethered cyclobutanone cannot deliver the desired “cut-and-sew” product,
we then tested silyl ether linked cyclobutanone 2.36. The initial route to prepare cyclobutanone
2.36 was started from previously prepared cyclobutanone 2.6 (Scheme 2.9). Cyclobutanone 2.6
was treated by PTSA and HC(OMe)s to give compound 2.31, followed by protection of alcohol to
generate ketal 2.32. The epoxidation of ketal 2.32 also prefer more substituted double bond to

deliver epoxide 2.33, which readily reduced by LiAlH4 to afford tertiary alcohol 2.34.
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Scheme 2.9. Synthesis of Cyclobutanone 2.36 (Initial Route).

PTSA
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~ OTES HC(OMe)s o _TBDPSCI ~
B —_— T TBDP
MeOH 99% © s
99%
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OH OH O
PTSA LiAIH,
OTBDPS <——— OTBDPS -~ OTBDPS
acetone 38%
81%
2.33
o) 2.35 MeO OMe 2.34 MeO OMe
TMSOTf
2,6-lutidine
84%
OTMS
OTBDPS
o 2.36

Although we have successfully got cyclobutanone 2.36, but the initial synthetic route required
12 steps to access cyclobutanone 2.36 from commercially available starting materials, which
caused huge difficulties to accumulate enough amount of material for key “cut-and-sew” reaction
screening. Thus, we proposed and realized a more efficient route to construct cyclobutanone 2.36
(Scheme 2.10). The commercially available carboxylic acid 2.37 was converted to Weinreb amide
2.38, followed by protection of ketone to deliver amide 2.39. On the other hand, commercially
available alkyne 2.17 was converted to vinyl iodide 2.19 in 2 steps (refer to Scheme 2.5). Iodide
2.19 underwent lithium-iodide exchange with BuLi, followed by treatment with ethylene oxide
furnished alcohol 2.40. Sequential iodization/lithium-iodide exchange of alcohol 2.40 followed by
treating with Weinreb amide 2.39 generate ketone 2.42, which was attacked by methyl lithium to

give alcohol 2.43. Finally, global deprotection followed by reprotection of two hydroxyl groups
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delivered cyclobutanone 2.36. The optimized route was 3 steps shorter than the initial route,

meanwhile delivered higher total yield. The new synthetic route was also much easier to scale up

comparing to the original one.

Scheme 2.10. Synthesis of Cyclobutanone 2.36 (Optimized Route).
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With cyclobutanone 2.36 in hand, we started to explore the suitable condition for the “cut-

and-sew” reaction. Different rhodium catalysts (with or without ligands) were screened, but none

of the conditions delivered the desired cyclized product 2.45 (Table 2.7). It worth to mention that
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decarbonylated product, cyclopropane 2.46, was observed when using [Rh(COE):Cl]. as pre-

catalyst (entry 7, Table 2.7), which indicated that the C—C activation of cyclobutanone happened.

Screening of different ligands were also not fruitful, only decarbonylation side products could be

observed (Table 2.8).

Table 2.7. Catalysts Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.36.

OTBDPS

[Rh]
PR OTBDPS 2-Amino-3-pi|::go?ir|j1(¢ja (100 moloey ~ Me & 11> N
OTBDPS E:(
1,4-dioxane, T °C H N™ NH;
2-Amino-3-picoline
o 2.36 (6] 2.45
Entry [Rh] (20 mol%) Ligand (22 mol%) Temperature Result
1 [Rh(C5H4),Cll, P(3,5-CgH3(CF3)0)s 150 °C N.D.
2 [Rh(COD)CI], P(3,5-CH3(CF3))3 150 °C N.R.
3 [Rh(COE),Cl], P(3,5-CgH3(CF3)2)3 150 °C N.D.
4 [Rh(CH3CN)y(COD)IBF,  P(3,5-CgH3(CF3))s 150 °C N.R.
5 [Rh(CO),Cll, P(3,5-CgH3(CF3))3 150 °C N.R. OTMS
6 [Rh(COD)CI], / 130 °C N.D.
7 [Rh(COE),Cl], / 130 °C 2.46 observed 2.46
8 [Rh(C5H4),Cll / 130 °C N.R.
9 [Rh(COD),]BF, / 130 °C N.D.
10  [Rh(CH3CN),(COD)IBF, / 130 °C N.D.
11 [Rh(COD)CI], / 150 °C N.D.
12 [Rh(COD),]BF, / 150 °C N.D.
Table 2.8. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.36.
QTMS OTBDPS [Rh(CZH“)I?gCa:]rfd(m mot%) Me OTMS
2-Amino-3-picoline (100 mol%) OTBDPS
1,4-dioxane, 150 °C, 24 h H
2.36 o 2.45
O
Entry Ligand (45 mol%) Result Entry Ligand (20 mol%) Result
1 PPhs N.R. 7 SPhos N.D.
2 TFP N.D. 8 XPhos N.R.
3 P(CeF5)3 N.R. 9 RuPhos Decarbonylation
4 P(4-CgH4CF3)3 N.D. 10 tBuXPhos N.R.
5 P(4-CgH4F)5 N.D. 11 BrettPhos N.R.
6 P(3,5-CgH3(CF3)0)3 N.D. 12 DavePhos Decarbonylation
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It has been proved that the C—C activation of cyclobutanone readily occur without directing
group.'? Thus, multiple conditions without directing groups were screened (Table 2.9, 2.10).
Although still no desired product was detected, we found that decarbonylation became much easier
with the absence of directing groups. Under some conditions, the TMS protecting group were

removed.

Table 2.9. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.36 (No Directing
Group, Part I).

OTMS

OTBDPS [RA(C3H4)2Cllo (10 mol%) Me. OTMS
ligand OTBDPS
1,4-dioxane H
0 2.36 1507°C, 241 0 2.45
Entry Ligand (22 mol%) Result Entry Ligand (22 mol%) Result
1 SPhos Decarbonylation 16 PMe,Ph N.D.
2 XPhos N.R. 17 PMePh, N.R.
3 PPhj Decarbonylation 18 P(o-tol)3 N.D.
4 P(OPh); TMS removed 19 P(tBu)s N.D.
5 P(OMe); TMS removed 20 dppm Decarbonylation
6 P(CeFs)3 TMS removed 21 dppe Decarbonylation
7 P(4-CgH4F)3 TMS removed; decarbonylation 22 dppp Decarbonylation
8 P(4-C¢H4CF3)3 TMS removed; decarbonylation 23 dppb Decarbonylation
9 P(3,5-CgH3(CF3),)3 N.R. 24 dppf Decarbonylation
10 TFP TMS removed 25 dpppe N.R.
11 AsPhj TMS removed 26 dfppe N.D.
12 SbPhs TMS removed 27 BINAP Decarbonylation
13 PMej N.D. 28 DPEPhos Decarbonylation
14 PCy; Decarbonylation 29 dppbenz N.D.
15 P(nBu); Decarbonylation 30 BIPHEP Decarbonylation
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Table 2.10. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.36 (No Directing

Group, Part 11).

OTMS
OTBDPS [Rh(C,H,),Cl]o (10 mol%) Me. OTMS
ligand OTBDPS
’ H
1,4-dioxane
2.36 150 °C, 24 h 0 2.45
0 .
Entry Ligand (40 mol%) Result Entry Ligand (40 mol%) Result

1 PPh3 N.R. 9 AsPhg Decarbonylation
2 P(OPh); TMS removed; decarbonylation 10 PMej Decarbonylation
3 P(OMe); TMS removed 11 PCys; Decarbonylation
4 P(CgFs)3 TMS removed; decarbonylation 12 P(nBu)s Decarbonylation
5 P(4-CgH4F)3 Decarbonylation 13 PMe,Ph Decarbonylation
6 P(4-CgH4CF3)3 Decarbonylation 14 PMePh, N.R.
7 P(3,5-CgH3(CF3),)3 Decarbonylation 15 P(4-MeOCgHy)3 Decarbonylation
8 TFP Decarbonylation 16 P(o-tol)3 Decarbonylation

Besides the neutral rhodium catalysts, the cationic rhodium catalysts were also able to
catalyze C—C activation of cyclobutanone.'> Comparing to neutral rhodium catalysts, cationic
rhodium catalysts typically has higher reactivity on C—C oxidative addition and double bond
migratory insertion. Thus, we screened different ligands and temperatures with cationic rhodium
catalyst, [Rh(COD),]BF4, as catalyst (Table 2.11). However, the starting material decomposed
under these conditions. Lower temperature only reduced the conversion of the substrate. One
possible side product under these conditions is lactone 2.47. We proposed that TMS deprotection
and rhodium oxidative addition of cyclobutanone 2.36 delivered metallocycle 2.48 (Scheme 2.11).
The hydroxyl group in 2.48 could kicked off rhodium through acyl substitution to give
intermediate 2.49, which readily underwent protonation to generate lactone 2.47a. Considering

rhodium catalyst can promote double bond migration, 2.47b and 2.47c also formed.
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Table 2.11. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.36 (No Directing

Group, Part 11).

OTMS
OTBDPS  [Rh(COD),JBF, (20 mol%)  Me_ OTMS
ligand (20 mol%) OTBDPS
1,4-dioxane H
S 2.36 150 °C, 130 °C, 110 °C O 2.45
Entry Ligand Result Entry Ligand Result
1 dppm Decomposed 6 dpppe Decomposed
2 dppe Decomposed 7 dfppe Decomposed
3 dppp Decarbonylation | 8 BINAP Decomposed
4 dppb Decomposed 9 DPEPhos Decomposed
5 dppf Decomposed 10 dppbenz Decomposed
|
.‘\\\)'A\/\/OTBDPS
O
0} 2.47

possible side product

Scheme 2.11. Proposed Mechanism for Generation of Lactone 2.47.

™
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Based on current results, the TMS protecting group in cyclobutanone 2.36 was not stable
enough, which made nucleophilic attack to be favored than alkene migratory insertion. Thus, we
decided to change the protecting group on the tertiary alcohol to methyl group, which is one of the
most stable protecting group of alcohol. Preparation of methyl ether tethered cyclobutanone 2.52

was also started from alkyne 2.17. Alkyne 2.17 was converted to alcohol 2.43 in 6 steps (see
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Scheme 2.10 for detail), followed by deprotection by TBAF to give diol 2.50. Double methylation
of diol 2.50 afforded ketal 2.51 in 84% yield with potassium hydride as base. Finally, deprotection

of ketal by aqueous hydrochloride acid furnished cyclobutanone 2.52.

Scheme 2.12. Preparation of Methyl Ether Tethered Cyclobutanone 2.52.

6 steps oTBS TBAF
X OH
THF
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2.43 2.5
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96%
o) 2.52 MeO OMe 2.5

After getting cyclobutanone 2.52, we screened the different catalyst, ligands and solvent

(Table 2.12-2.14). However, no desired cyclized product 2.53 was captured under these conditions.

Table 2.12. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.52.

OMe [Rh(C,H4),Cl]> (10 mol%)
OMe ligand (20 mol%) Me. OMe
2-Amino-3-picoline (100 mol%) OMe
1,4-dioxane H%W

I 2.52 150 °C, 24 h 3 253
Entry Ligand Result Entry Ligand Result

1 SPhos Decarbonylation 7 P(4-CgH4CF3)3 N.D.

2 XPhos N.R. 8  P(3,5-CgH3(CF3))s N.D.

3 PPh; N.D. 9 TFP N.D.

4 P(OPh)3 N.D. 10 AsPhj N.D.

5 P(CgFs)3 N.D. 11 IPr Decarbonylation

6 P(4-CgH4F)3 N.D. 12 IMes Decarbonylation
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Table 2.13. Catalysts Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.52.

OMe OMe [Rh] (20 mol%)
ligand (20 mol%) Me. OMe
2-Amino-3-picoline (100 mol%) OMe
1,4-dioxane Hg\/\/
o) 2.52 150 °C, 24 h o 253
Entry [Rh] (20 mol%) ligands (20 mol%) Result

1 [Rh(COD)CI], / N.D.

2 [Rh(COE),Cl], / N.D.

3 [Rh(C,H,),Cl], / N.D.

4 [Rh(COD)CI], P(CeFs)3 N.D.

5 [Rh(COE),Cl], P(CgFs)s N.D.

6 [Rh(C5H4),Cl], P(CeFs)3 N.D.

Table 2.14. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.52 (Toluene as

Solvent).
QMe OMe [Rh(C2H4),Cll2 (10 mol%)
ligand (20 mol%) Me OMe
2-Amino-3-picoline (100 mol%) oMo
toluene, 150 °C, 24 h H%\/\/
o) 2.52 g ey
Entry Ligand Result
! ! N.R.
2 PPhg N.R.
3 P(OPh)s N.R.
4 P(CeFs)s N.R.
5 AsPhs N.R.
6 P(3,5-CgH3(CF3)2)s N.R.

Although screening of ligands with cationic rhodium also not provided promising results, a
side product amide 2.54 was determined (Table 2.15). In this case, oxidative addition of rhodium
into C—C bond delivered intermediate 2.56, which was attacked by water to give intermediate 2.58.

A following protonation furnished amide 2.54.
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Table 2.15. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.52 (Cationic

Rhodium).
2-Amino-3-picoline (100 mol%) OMe
1,4-dioxane, 150 °C, 24 h H
o) 2.52 ) 253
Entry Ligand Result Entry Ligand Result
1 dppm N.D. 9 P(OPh); Decarbonylation
2 dppe N.R. 10 P(OMe); Decarbonylation
3 dppp Decarbonylation 1 P(CsF5)3 Decarbonylation
4 dppb N.D. 12 P(4-CgHaF)3 N.D.
5 dppf Decarbonylation 13 P(4-CgH4CF3)3 N.D.
6 dpppe N.D. 14 P(3,5-CgH3(CF3))s N.D.
7 dfppe N.R. 15 TFP N.D.
8 PPh3 N.D. 16 AsPhy N.R.

OMe

Scheme 2.13. Preparation of Methyl Ether Tethered Cyclobutanone 2.54.
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Comparing the reported examples and previous failed substrates (Scheme 2.14), the major
difference is the linker between cyclobutanone and olefin. The reported linkers includes tosyl
amine linker in 2.59, malonic ester linker in 2.60 and benzene linker in 2.61. All of these linker
can make olefin part and cyclobutanone part to become closer, which reduces the activation
enthalpy and entropy. Thus, we designed a new model substrate cyclobutanone 2.62, which
contains a rigid ester linker. Comparing to alkene linker in cyclobutanone 2.6, ester linker in
cyclobutanone 2.62 is proposed to have several advantages. First, the rigid tetra-substituted double
bond could restrict the conformation, which make cyclobutanone and olefin to stay at the same
side of the linker. Second, the steric repulsion between ester and olefin would further promote
cyclobutanone part and olefin part to become closer. Third, the tetra-substituted double bond is

relatively inert and hard to coordinate with transition metal catalyst, which inhibit side reaction.

Scheme 2.14. Design of Ester Linker.
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A convergent synthetic route was developed to synthesize cyclobutanone 2.62 (Scheme 2.15).
On the one hand, (E)-enol triflate 2.65 was prepared from ethyl acetoacetate 2.63 through
alkylation'* and stereoselective enolization.'> On the other hand, bromide 2.66 was obtained from
carboxylic acid 2.37 by Hunsdiecker reaction,'® which further protected to ketal 2.67. Ketal 2.67

readily underwent copper-mediated coupling!” with triflate 2.65 to give ketal 6.68 in 44% yield.
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Finally, hydrolysis of ketal 2.68 provided the new substrate for “cut-and-sew” reaction,

cyclobutanone 2.62 in 96% yield.

Scheme 2.15. Preparation of Cyclobutanone 2.62.

NaH,
(0]
)J\/U\ NMe4OH, Tf20 N
> - > TfO OEt — ]
67% Hexane/H,O
66%
2.63 2.65
HgO
o MgSO,4 o OMe
Br, H,S0, Meo—b
_— I N _ |
DCM
COOH 98% Br Hcég(';:leh Br )
2.37 2.66 2.67 BuLi
CuCN
Et,0
EtO.__O EtO.__O 44%
P2 1M HCI Pz
THF
B — -
0,
96% 2.68
o) 2.62 MeO OMe

Due to the low yield of copper-mediated coupling between triflate 2.65 and bromide 2.67, we
decided to optimize the synthetic route to cyclobutanone 2.62. Inspired by a report in literature,'®
we proposed that cyclobutanone 2.62 could be prepared by three-component coupling (Scheme
2.16). Bromide 2.67 was treated with ‘BuLi to give alkyl lithium 2.69, which underwent
transmetalation with copper(I) salt to generate alkyl cuprate 2.70. Cuprate 2.70 was readily
inserted into ynoate 2.71 to deliver vinyl cuprate 2.72, which was captured by methallyl bromide
to give ketal 2.68. Further deprotection of ketal 2.68 delivered cyclobutanone 2.62 (see scheme
2.15 for detail). 48% yield of ketal 2.68 was obtained after adjusting the reaction temperature,

equivalence of regents and copper catalyst. The three-component coupling reaction enabled 4-step
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synthesis of cyclobutanone 2.62, in stead of 6 total steps in previous route. The new strategy also

avoided the usage of highly toxic CuCN, and delivered higher yield of cyclobutanone 2.62.

Scheme 2.16. Preparation of Ketal 2.68 through Three-Components Coupling.

OMe OMe OMe
MeO tBulLi MeO MeO
Et,0,-78°Cto 0 °C | a. CuBr-SMe;, (1 equiv.), THF, 0 °C e/X
Li| p. cucN (1 equiv.), THF, =78 °C Cu
2.67 2.69 c. CuBr-SMe, (0.5 equiv.), THF, =78 °C 2.70
a. 2 equiv. d. Cul (0.5 equiv.), THF, =78 °C /COOEt
b. 1 equiv. 2.71
c. 1 equiv. 1 equiv.
d. 1 equiv. _78°C
EtO. _O a. 2 equiv.
\)J\ b. 1 equiv.
a 379, _ Br c. 1 equiv. OMe
: ° d. 1 equiv. X
b. 18% q MeO \Cue
c.48% HMPA, THF _—
2.68
d.N.D. 0°C COOEt
MeO OMe
2.72

b

After successful preparation of cyclobutanone 2.62, we started to explore the “cut-and-sew’
reaction on this substrate. We first employ the reported condition,!! which gave no reaction. Crude
screening of ligands also did not provide any promising results (Table 2.16). However, we obtained
the desired “cut-and-sew” product in 15% yield by increasing the temperature to 170 °C (Table

2.17).
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Table 2.16. Initial Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62.

EtO.__0O
[Rh(C2H4),Cl]; (10 mol%) CO,Et
= lignad (40 mol%) Me
2-Amino-3-picoline (100 mol%)
H Me
1,4-dioxane, 150 °C, 24 h
2.62 o
o 2.73
Entry Ligand Result
1 PPh3 N.D.
2 P(CeFs5)3 N.R.
3 P(4-CgH4CF3)3 N.D.
4 TFP N.D.
5 P(3,5-CgH3(CF3),)3 N.R.

Table 2.17. Temperature Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62.

EtO.__0O
[Rh(C5H4)-Cl], (10 mol%) CO,Et
= ligand Me
2-Amino-3-picoline (100 mol%)
1,4-dioxane, 24 h H Me
2.62 (0]
(0] 2.73
Entry Ligand Temperature Result
1 P(3,5-CgH3(CF3)2)3 (20 mol%) 160 °C N.R.
2 P(3,5-CgH3(CF3)2)3 (40 mol%) 160 °C N.R.
3 P(3,5-CgH3(CF3)2)3 (20 mol%) 170 °C low conversion
4 P(3,5-CgH3(CF3)5)3 (40 mol%) 170 °C 16% (27% SM)

After confirming the structure of the “cut-and-sew” product, we started to optimize the
reaction conditions. Screening of some electron-deficient ligands and Buchward ligands shown
that the original used ligand (P(3,5-C¢H3(CF3)2)3) provided the highest yield (Table 2.18).
Meanwhile, tri(2-furyl)phosphine also delivered the “cut-and-sew” product, but in a lower yield
(entry 4, Table 2.18). Screening of the catalysts revealed that rhodium ethylene chloride is the

optimized for this reaction (Table 2.19).
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Table 2.18. Ligand Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62.

EtO (0]
[Rh(C2H4)>Cl], (10 mol%) CO,Et
= ligand (40 mol%) Me
2-Amino-3-picoline (100 mol%)
1,4-dioxane, 170 °C, 24 h H Me
2.62 o}
0 2.73
Entry Ligand Yield
1 P(3,5-CgH3(CF3)0)3 15%
2 P(CgF5)3 trace
3 P(4-CgH4CF3)3 trace
4 TFP <10%
5 AsPhg trace
6 PPh,(CgFs) trace
7 P(OPh)3 trace
8 SPhos trace
9 XPhos trace

Table 2.19. Catalysts Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62.

EtO.__O
[Rh] (20 mol%) CO,Et
= P(3,5-C6H3(CF3)2)3 (40 mol%) Me
2-Amino-3-picoline (100 mol%)
1,4-dioxane, 170 °C, 24 h H Me
2.62 )
(0] 2.73
Entry [Rh] Yield

1 [Rh(COD)CI], trace

2 [Rh(COE),Cl], trace

3 [Rh(CQH4)2C|]2 trace

4 [Rh(CO),Cl], 11% (35% S.M.)

5 [Rh(COD)OH], trace

6 [Rh(COD),]BF4 trace

The solvent effect was also explored for this reaction (Table 2.20). 1,4-dioxane, toluene,
chlorobenzene and xylene all could deliver desired cyclized product. Among the solvents,
chlorobenzene gave highest yield, but had a lower recovery of the starting materials. Since the

mass balance of the “cut-and-sew” reaction under 170 °C is pretty low, we screened different
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solvents at 150 °C (Table 2.21). Some aromatic solvents delivered the desired product 2.73 in low
yield at 150 °C, including chlorobenzene, toluene, benzene and hexafluorobenzene. Among all
these solvents, toluene gave the best BRSM yield, which was chosen as the standard solvent for

the further condition screening.

Table 2.20. Solvent Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62.

EtO.__O
[Rh(C4H,4),Cll, (10 mol%) M CO,Et

= P(3,5-CgH3(CF3)0)3 (40 mol%) '€

2-Amino-3-picoline (100 mol%)
H Me
solvent, 170 °C, 24 h
2.62 o
O 2.73

Entry Solvent Yield

1 1,4-dioxane 16% (27% S.M.)

2 PhCI 22% (15% S.M.)

3 toluene 13% (43% S.M.)

4 xylene 11% (0% S.M.)
5 DMF trace
6 DMSO trace

Table 2.21. Solvent Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62 (150 °C).

EtO.__O
[Rh(C,H4)2Cll, (10 mol%) CO,Et
= P(3,5-CgH3(CF3)2)3 (40 mol%) Me
2-Amino-3-picoline (100 mol%)
solvent, 150 °C, 24 h H Me
2.62 o
o) 2.73
Entry Solvent Yield
1 PhCI 8% (47% S.M.)
2 toluene 6% (80% S.M.)
3 DME trace
4 benzene 12% (14% S.M.)
5 CsFs 17% (15% S.M.)
6 PhF trace
7 1,2-difluorobenzene trace
8 PhCF3 trace
9 1,4-dioxane trace
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Besides neutral rhodium, we also screening many conditions with cationic rhodium as catalyst.
However, after testing diverse types of monodentate and bidentate ligands, no desired product was
detected (Table 2.22). In most cases the starting material was decomposed with cationic rhodium
catalyst. We tried to reduce reaction temperature to suppress decomposition, but the desired

product was still not detected when the reaction temperature was decreased to 130 °C (Table 2.23).

Table 2.22. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62 (Cationic

Rhodium).
EtO.__O
[Rh(COD),]BF4 (20 mol%) CO,Et
= ligand Me
2-Amino-3-picoline (100 mol%)
toluene, 150 °C, 24 h H Me
2.62 ©
o 2.73
Entry Ligand Yield Entry Ligand Yield
1 SPhos (20 mol%) N.D. 1 dfppe (20 mol%) N.D.
2 XPhos (20 mol%) N.D. 12 dppf (20 mol%) N.D.
3 QPhos (20 mol%) N.D. 13 BINAP (20 mol%) N.D.
4 COD (40 mol%) N.D. 14 dppbz (20 mol%) trace
5 PPh3 (40 mol%) trace 15 DPEPhos (20 mol%) trace
6 P(2,4,6-CgHy(OMe)3); (40 mol%) N.D. 16 XantPhos (20 mol%) N.D.
7 dppm (20 mol%) N.D. 17 DTBM-SEGPhos (20 mol%) N.D.
8 dppe (20 mol%) N.D. 18 dCypm (20 mol%) N.D.
9 dppp (20 mol%) N.D. 19 dCype (20 mol%) N.D.
10 dppb (20 mol%) trace 20 dCypb (20 mol%) N.D.
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Table 2.23. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62 (Cationic

Rhodium, 130 °C).

EtO.__0O
[Rh(COD),IBF, (20 mol%) CO,Et
P ligand Me
2-Amino-3-picoline (100 mol%)
toluene, 130 °C, 24 h H Me
(o)
2.62
0 2.73
Entry Ligand Yield
1 PPh3 (20 mol%) N.D.
2 dppb (20 mol%) N.D.
3 dppbz (20 mol%) N.D.
4 DPEPhos (40 mol%) N.D.

After screening the ligands for the cationic rhodium catalyst, our attention turned to the X
ligand of rhodium, which could be prepared from the reaction between rhodium chloride and
relative silver salts (Table 2.24). The rhodium acetylacetonate was found to be a promising catalyst
for the “cut-and-sew” reaction of compound 2.62, which delivered 14% vyield of ketone 2.73 as

well as 72% of cyclobutanone 2.62 recovery (entry 5, Table 2.24).
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Table 2.24. Additives Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.62.

EtO.__O [Rh(C2H,):Cl]; (10 mol%)
P(3,5-CgH3(CF3),)3 (40 mol%) CO,Et
= 2-Amino-3-picoline (100 mol%) Me
[Ag] (20 mol%)
toluene, 150 °C, 24 h H Me
2.62 (@)
) 2.73
Entry [Ag] Yield
1 AgOAc N.D.
2 AgOBz N.D.
3 Ag(TFA) N.D.
4 Ag(lactate) N.D.
5 Ag(acac) 14% (72% SM)
6 Ag(TMHD) N.D.
7 Ag(COD)(acac-Fg) 10% (21% SM)
O O O O
tBu)J\/U\tBu FchCFg
TMHD acac-Fg

As abrief summary at this stage, we have explored the linker effect in “cut-and-sew” reaction.
Compared to benzocyclobutenones, intramolecular [4+2] cycloaddition with saturated
cyclobutanones are generally more challenging due to (i) competing decarbonylation to form
cyclopropanes and (ii) lack of rigid scaffolds to promote cyclization. Clearly, the linkers between
cyclobutanones and olefins play a critical role in the “cut-and-sew” reaction, as they can provide
favorable conformations for the desired cyclization. To date, only three kinds of linkers including
benzo-, amide- and malonate-based ones (Lk1-3) have been succeeded in this type of annulation
reactions (Scheme 2.17). A strong Thorpe-Ingold effect appears to be important for bridged-ring
formation. In the context of penicibilaene synthesis, a number of carbon-based linkers were
attempted in the proposed “cut-and-sew” reaction. Using the native trisubstituted alkene as the
linker (LLk4), the olefin moiety proved to be labile and tended to isomerize under the reaction

conditions. “Masked” alkenes, such as epoxide (LKS), tertiary alcohol (Lk6) and ether (Lk7), were
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also prepared; however, they proven to be either unstable or inactive for cyclization. Finally, the
ester substituted alkenyl linker (Lk8) was found to be ideal. The conjugation and the electron-
withdrawing feature of the ester moiety inhibited double-bond migration. The enhanced rigidity
of the tetrasubstituted alkene and the buttressing effect between the methyl and the ester groups
are expected to be factors that benefit the cyclization. More importantly, with the ester moiety,

synthesis of the “cut-and-sew” precursor became much simpler.

Scheme 2.17. Linker Effect in the “cut-and-sew” reaction.
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Encouraged by the promising preliminary result in model study, we then moved to synthesize
of real substrate cyclobutanone 2.75, which contained a ester linker (Scheme 2.18). Following the
reported procedure,'® silane 2.77 was prepared dibromide 2.76 through hydrosilylation and
elimination (Scheme 2.19). Michael addition of methyl crotonate by Grignard reagent prepared
from bromide 2.77 furnished ester 2.78,%° which was reduced by LiAIH4 and protected by TBS to

give silane 2.80. Bromination of silane 2.80 by NBS delivered bromide 2.81.2! Finally,
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cyclobutanone 2.75 was prepared via a three-component coupling among bromide 2.67, ynoate

2.71 and bromide 2.81 followed by acid deprotection.

Scheme 2.18. Proposed Retrosynthetic Analysis Enabled by “Cut-and-Sew” Reaction of Ester

Tethered Cyclobutanone.
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OTBS
_ oTBS

R =H: pen|C|b|Iaene A(2.1)
R = Ac: penicibilaene B (2. 2) 2.74

Scheme 2.19. Preparation of Cyclobutanone 2.75.
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With cyclobutanone 2.75 in hand, we started to explore the “cut-and-sew” reaction based on
this substrate. However, after trying all the conditions that worked for model substrate, we found

that none of them delivered the desired cyclohexanone 2.74 (Table 2.25).
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Table 2.25. Attempts on “Cut-and-Sew” Reaction of Cyclobutanone 2.75.

CO,Et [Rh] CO,Et
Me Me P(3,5-C6H3(CF3)2)3 (40 mol%) Me
= 2-Amino-3-picoline (100 mol%) OTBS
OTBS H y
solvent, 24 h -
o) Me
(0]
2.75 2.74
Entry [Rh] Solvent Temperature Result
1 [Rh(C5H4),Cl], (10 mol%) 1,4-dioxane 170 °C N.D.
2 [Rh(C5H4),Cl]> (10 mol%) PhCI 170 °C N.D.
3 [Rh(C5H4),Cl], (10 mol%) + Ag(acac) (20 mol%) toluene 150 °C N.D.
4 [Rh(C,H4),Cl], (10 mol%) + Ag(acac) (20 mol%) toluene 160 °C N.D.
5 Rh(acac)(C,H4), (20 mol%) toluene 160 °C N.D.

Comparing the real substrate cyclobutanone 2.75 and the model substrate cyclobutanone 2.62,
we proposed that the key factor to affect their reactivities is the steric hindrance of the alkene
moiety. The tertiary carbon attached to alkene in cyclobutanone 2.75 was too bulky for the “cut-
and-sew” reaction. Thus, we proposed to introduce the methyl group on the five-membered ring

b

of penicibilaenes after “cut-and-sew” step. To test our hypothesis, cyclobutanone 2.91 was
synthesized (Scheme 2.20). Protection of alcohol 2.83 by TBS gave iodide 2.84, which was
attacked by alcohol 2.85 to deliver allyl alcohol 2.86.%? Two-step bromination®** of alcohol 2.86
furnished bromide 2.89 along with deprotected bromide 2.88, which could be reprotected to
bromide 2.89. Finally, three-component coupling of bromide 2.67, ynoate 2.71 and bromide 2.89

following by deprotection accomplished cyclobutanone 2.91. However, the “cut-and-sew” reaction

still did not work on cyclobutanone 2.91 under standard conditions (Table 2.26).
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Scheme 2.20. Preparation of Cyclobutanone 2.91.
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Table 2.26. Attempts on “Cut-and-Sew” Reaction of Cyclobutanone 2.91.

[Rh]
COEt P(3,5-CgH3(CF3)0)3 (40 mol%) CO,Et
Me pZ 2-Amino-3-picoline (100 mol%) Me
additives 0TBS
OTBS H
solvent, 24 h
o
(6] 2.91 2,92
Entry [Rh] Solvent Temperature Result

1 [Rh(C,H4),Cll5 (10 mol%) 1,4-dioxane 170 °C N.D.
2 [Rh(C3H4).Cl]5 (10 mol%) + Ag(acac) (20 mol%) toluene 150 °C N.D.
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2.3. Second Generation Route

The failure of the “cut-and-sew” reaction on the real substrates cyclobutanone 2.75 and 2.91
pushes us to make some change on the synthetic route. Although trisubstituted alkenes are
generally more challenging substrates for “cut-and-sew” reaction comparing with mono- or di-
substituted alkene, the “cut-and-sew” reaction on cyclic alkene is less explored. Due to the internal
ring strain (5.9 kcal/mol for cyclopentene),? cyclic alkene is proposed to be more reactive than
linear alkene, which inspires us to design a “cut-and-sew” reaction between cyclobutanone and
cyclopentene (Scheme 2.21). The ‘“cut-and-sew” reaction in the second generation strategy
constructs the all there rings in the natural product in a diastereoselective manner, which enables

a more efficient way to synthesize penicibilaenes.

Scheme 2.21. The Second Generation Strategy to Synthesize Penicibilaenes.

CO,Et
Me CO,Et CO,Et 2
Me Me Me 7 Me Me. -
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R = H: penicibilaene A (2.1) 2.03 294
R = Ac: penicibilaene B (2.2) . . model

ring strain in cyclopentene: 5.9 kcal/mol

To test our hypothesis, cyclobutanone 2.95 was chosen as the model. Synthesis of
cyclobutanone 2.95 was straightforward using three-component coupling method (Scheme 2.22).
Ester 2.96 was treated with DIBAL-H and then Br/PPhs to deliver bromide 2.97. Then the three-
component coupling of bromide 2.67, ynoate 2.71 and bromide 2.97 gave ketal 2.98, which was

further deprotected to afford cyclobutanone 2.95.

71



Scheme 2.22. Preparation of Cyclobutanone 2.95.
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With cyclobutanone 2.95 in hand, we started to explore the “cut-and-sew” reaction of the new
model (Table 2.27). Unfortunately, no desired product was detected under previous standard
conditions (entry 1-5, Table 2.27). To our surprise, when ZnCl; was added into the reaction system,
the desired product compound 2.99 was isolated in 12% to 13% yield (entry 6-7, Table 2.27). It
was the first time to find that Lewis acid can promote ‘“cut-and-sew” reaction between
cyclobutanone and alkene. We proposed the roles of Lewis acid in this reaction are three folds: (i)
Lewis acid could promote condensation between cyclobutanone and directing group, amino
pyridine; (ii) Lewis acid could bind to the imine, which made a-C—C bond to be more electron-
deficient and facilitate oxidative addition step; (iii) Lewis acid could help dissociation of

phosphine ligand, which promoted migratory insertion step.
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Table 2.27. “Cut-and-Sew” Reaction of Cyclobutanone 2.95.

CO,Et [Rh]
Me P(3,5-CgH3(CF3)2)3 (40 mol%) COEt
= 2-Amino-3-picoline (x mol%) e
additives
solvent, 12 h H
(o}
O 295 200
B CO.Et | )
\ Me-_~ /
Rh
L
N =
\
L R _J
proposed key
intermediate
Entry [Rh] Solvent x mol% additive Temperature Result
1 [Rh(C4H4),Cl], (10 mol%) 1,4-dioxane 100 / 170 °C N.D.
2 [Rh(C3H4),Cl], (10 mol%) + Ag(acac) (20 mol%)  toluene 100 / 150 °C N.D.
3 [Rh(C2H4),Cl], (10 mol%) 1,4-dioxane 20 / 170 °C N.D.
4 [Rh(CyHy4),Cl], (10 mol%) + Ag(acac) (20 mol%)  toluene 20 / 150 °C N.D.
5 [Rh(COD)CI], (10 mol%) 1,4-dioxane 100 / 170 °C N.D.
6 [Rh(C2H4)2Cl], (10 mol%) 1,4-dioxane 100 ZnCl, (1 equiv.) 170 °C 13%
7 [Rh(C2H4)2Cl], (10 mol%) 1,4-dioxane 100 ZnCl, (1 equiv.) 150 °C 12% (35% SM)
8 [Rh(C,H4)2Cl], (10 mol%) 1,4-dioxane 100 ZnCl, (1 equiv.) 130 °C N.D.

Due to the important role of Lewis acid in our “cut-and-sew” reaction, we screened more
Lewis acid (Table 2.28). Only several Lewis acid delivered the desired product, and zinc triflate

gave the highest yield (20%) among all the Lewis acid we screened (entry 5, Table 2.28).
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Table 2.28. Lewis Acid Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.95.

CO,Et

[Rh(C2H4),Cllo (10 mol%)

Me P(3,5-CoHa(CFa))s (40 mol%) e (O
= 2-Amino-3-picoline (100 mol%)
LA (100 mol%) H
1,4-dioxane, 150 °C, 12 h o)
© 2095 2.99
Entry LA Yield

1 CoCl, 15% (20% SM)

2 CoBr, 14% (20% SM)

3 Ni(OTf), 7% (33% SM)

4 Znl, 8% (17% SM)

5 Zn(OTf), 20% (21% SM)

6 Dy(OTf); 6% (40% SM)

7 Er(OTf), 7% (37% SM)
LiOTf MgBr,*OEt, TiCly Cr(acac); Co(acac), AuClj AICl3 CeCl3
Li(acac) Mg(OTf), Ti(OiPr), MnCl, NiCl, ZnF, In(OTf)3 Ce(OTf)3
LiCl MgSO, ZrFy FeCls Ni(acac), ZnCl,*TMEDA InCl3 Pr(OTf)3
LiBr Ca(OTf), ZrCI4'2THF Fe(acac); CuCl, Zn(OAc), BiCl3 Sm(OTf)3
Lil CaCl, Hf(acac), CoF, Cu(OTf), B(OH)3 Bi(OTf)3 Eu(OTf)3
MgCl, Sc(OTf); Cr(OAc)3 Co(OTf), CuOTf BF;°OEt, La(OTf); Yb(OTf)3

N.D. or trace

To exclude the possibility that this reaction was catalyzed by acid rather than rhodium, some
control experiments were conducted (Table 2.29). No desired product was detected without
rhodium catalyst, directing group or ligand (entry 2-4, Table 2.29), which prove the key role of the

rhodium catalyst. It also shown that the “cut-and-sew” reaction is not very sensitive to water. With

the presence of 1 equivalent of water, the yield does not drop (entry 6, Table 2.29).
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Table 2.29. Control Experiments on “Cut-and-Sew” Reaction of Cyclobutanone 2.95.

[Rh(C5H4),Cllo (10 mol%)

COEt P(3,5-CoH3(CF3)) (40 mol%) e 20
Me - 2-Amino-3-picoline (100 mol%)
Zn(OTf), (100 mol%) ’
1,4-dioxane, 150 °C, 12 h 3
O 595 2.99
Entry conditions yield
1 as above 18% (17% SM)
2 w/o [Rh] N.D. (85% SM)
3 w/o DG N.D. (63% SM)
4 w/o ligand N.D. (50% SM)
5 SPS dioxane 18% (21% SM)
6 +1 equiv. H,0O 18% (26% SM)

After confirming our “cut-and-sew” reaction was catalyzed by rhodium, we continued to
optimize the reaction yield. We found that the yield and substrate recovery increased when the
equivalence of the directing groups decreased (Table 2.30). As aniline derivatives, the amino
pyridine directing groups not only could promote “cut-and-sew” reaction, but also cause some side
reactions, such as aldol reaction. Decreasing the equivalence of directing groups may inhibit such
side reactions. Since there are still some substrate remained after 12 hours, we tried to prolong the
reaction time to increase the conversion (Table 2.31). The yield of the “cut-and-sew” reaction

reached to 34% with 0.2 equivalent of directing groups after 48 hours (entry 6, Table 2.31).
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Table 2.30. Directing Group Equivalence Screening on “Cut-and-Sew” Reaction of

Cyclobutanone 2.95.
[Rh(C3H,),Cll, (10 mol%)
CO,Et P(3,5-CgH3(CF3),)3 (40 mol%) CO,Et
Me._~ 2-Amino-3-picoline (x mol%) Me
Zn(OTf), (100 mol%)
1,4-dioxane, 150 °C, 12 h H
0
O 295 2.99
Entry x mol% GC yield
1 100 16% (14% SM)
2 80 16% (14% SM)
3 60 25% (18% SM)
4 40 28% (24% SM)
5 20 23% (35% SM)

Table 2.31. Directing Group Equivalence and Reaction Time Screening on “Cut-and-Sew”
Reaction of Cyclobutanone 2.95.

[Rh(C,H4)oCl]o (10 mol%)

COEt P(3,5-CgH3(CF3)s)s (40 mol%) CO,Et
Me  ~ 2-Amino-3-picoline (x mol%) Me
Zn(OTf), (100 mol%)
1,4-dioxane, 150 °C, y h H
o
o 295 2.99
Entry x mol% yh GC yield
1 40 12 21% (19% SM)
2 20 12 24% (30% SM)
3 40 24 22% (14% SM)
4 20 24 26% (26% SM)
5 40 48 29% (trace SM)
6 20 48 34% (14% SM)

After screening of the directing group equivalence, we moved to screen the species of the
directing groups (Table 2.32). The structure of the directing groups had significant influence on
the yield. By increasing the size of the 3-substituent on the directing group, the yield was enhanced

accordingly. It is possible that, like the linker effect, the larger steric on the DG can provide a
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more conformationally rigid intermediate that would be beneficial for the cyclization. However,
further increasing the bulkiness on the C3 of DG, such as using 2-amino-3-trimethylsilylpyridine
(DG4), only gave a trace amount of the product. Unlike the substituent on the C3 of DG, the
substituent on the C5 position of DG inhibit the reactivity, which may due to larger bulkiness on

C5 of DG inhibited rhodium catalyst coordination.

Table 2.32. Directing Group Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.95.

[Rh(C5H,)5Cll, (10 mol%)

COEt P(3,5-CqH3(CFa)g)s (40 mol%) CO,Et
Me. - DG (20 mol%) Me
Zn(OTf), (100 mol%)
1,4-dioxane, 150 °C, 48 h H
O
2.95 2.99
Me Me
N N Et N iPr N TMS N Me N N Me N Me Me N
® ® ® ® ® ® ® ® ®
N NH, N7 °NH, N7 NH, N7 TNH, N” "NH, N” "NH, Me” "N~ “NH, N "NH, N~ "NH,
DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8 DG9
27% SM 18% SM 13% SM 27% SM 26% SM 27% SM 16% SM 18% SM
16% pdt 35% pdt 47% pdt trace pdt 16% pdt 16% pdt 7% pdt 28% pdt 18% pdt
CF
OMe N 3
Ph Ph
PhO AN X Ph Me
S SRS S N X | ®
‘ P ‘ 7 ‘ pZ ‘ — = N/ NH, N/ NH, N/ NH
N~ “NH, N~ “NH, N~ “NH, N” “NH, N 'NH; 2
DG10 DG11 DG12 DG13 DG14 DG15 DG17 DG18
14% SM 17% SM 22% SM 15% SM 11% SM 11% SM 21% SM 14% SM
23% pdt 14% pdt 12% pdt 12% pdt 1% pdt 19% pdt 14% pdt 29% pdt
Me Me Me
Pr.
Et X Et N Me Et N Me Et ‘ N Cy. N ‘ A / _ ‘ Me
‘ Pz ‘ ‘ pZ Pz ‘ — N/ NH ~ ‘ X
NH, N/ NH, N NH, N NH, N NH, 2 Me N NH, N NH,
DG19 DG20 DG21 DG22 DG23 DG24 DG25 DG26
12% SM 14% SM 16% SM 24% SM 22% SM 23% SM 26% SM 7% SM
31% pdt 28% pdt 29% pdt 13% pdt 12% pdt 18% pdt 7% pdt 35% pdt

Besides Lewis acid, we also tested Brgnsted acid on our “cut-and-sew” reaction. However,

the typical Bronsted acids were failed to deliver any desired product (Table 2.33).
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Table 2.33. Brgnsted Acid Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.95.

CO,Et

Me pZ

2,95

TSOH-H,0

PPTS

After screening different concentrations, we found that our “cut-and-sew” reaction is not
sensitive to the concentration (Table 2.34). Both higher or lower concentrations than 0.1 M slightly
decrease the yield. Besides concentration, we also screened different solvents (Table 2.35). The
aromatic solvents generally were able to provide higher conversion comparing to 1,4-diaoxane.
And the toluene gave the highest yield among these solvents (entry 2, table 2.35). Since aromatic
solvents gave excellent conversion, we hope to suppress the side reactions and increase the yield
by decreasing the reaction temperature (Table 2.36) or the loading of the catalyst (Table 2.37).

However, although the mass balance become better under these conditions, the yields were

dropped.

[Rh(C3H4),Cll, (10 mol%)

P(3,5-CgH3(CF3)2)3 (40 mol%) CO,Et
2-Amino-3-picoline (20 mol%) Me
Acid (100 mol%)
1,4-dioxane, 150 °C, 48 h H
N.D. (6]
2.99
Il
PhCOOH MesSO3H PhO’P\OH
/
PhO

Pr OO 0
O,
CSA SO5H 4
o OH
A4
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Table 2.34. Concentration Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.95.

[Rh(C,H4),Cll, (10 mol%)

CO,Et P(3,5-CgH3(CF3)s)3 (40 mol%) CO,Et
Me - 2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (100 mol%)
1,4-dioxane, 150 °C, 48 h H
(o)
O 295 2.99
Entry Concentration GC yield

1 0.2M 39% (8% SM)

2 01 M 43% (17% SM)

3 0.05 M 40% (23% SM)

Table 2.35. Solvent Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.95.

CO,Et [Rh(C3H4),Cll, (10 mol%)

P(3,5-CgH3(CF3),)3 (50 mol%) CO,Et
Me Y 2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (100 mol%)
solvent, 150 °C, 48 h H
)
O 295 2.99
Entry solvent GC yield
1 1,4-dioxane 39% (15% SM)
2 toluene 48% (0% SM)
3 PhCI 34% (0% sm)
4 PhF 40% (0% SM)
5 1,2-CgH4F> 29% (0% SM)
6 1,3-CgH4F2 47% (0% SM)
7 1,4-CgH4F> 38% (0% SM)
8 CgFg 18% (0% SM)
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Table 2.36. Solvent Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.95 (140 °C).

[Rh(C5H4)>Cl], (10 mol%)
CO,Et P(3,5-CgH3(CF3),)3 (50 mol%) CO,Et
Me pZ 2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (100 mol%)

solvent, 140 °C, 48 h H
)
O 295 2.99
Entry solvent GC yield
1 toluene 38% (20% SM)
2 PhCI 20% (22% SM)
3 PhF 30% (26% sm)
4 1,3-CgH4F2 31% (23% SM)
5 1,4-CgH4F2 36% (35% SM)

Table 2.37. Solvent Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.95 (5 mol%
catalyst loading).

[Rh(C5H,),Cll, (5 mol%)

COAEt P(3,5-CoHa(CFa)y)s (25 mol%) CO,Et
Me Z 2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (100 mol%)
solvent, 150 °C, 48 h H
(¢}
O 295 2.99
Entry solvent GC yield
1 toluene 44% (23% SM)
2 PhCI 31% (20% SM)
3 PhF 28% (37% sm)
4 1,3-CgH4F> 40% (33% SM)
5 1,4-CgH4F> 35% (43% SM)

With the presence of the 2,6-di-fert-butylpyridine as a buffer, the gram-scale “cut-and-sew”
reaction of cyclobutanone 2.95 was realized in 42% yield, which paved the way for the further

synthesis (Scheme 2.22).
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Scheme 2.23. Gram-Scale “Cut-and-Sew” Reaction of Cyclobutanone 2.95.

[Rh(C2H4)2]2C|2 (1 0 mol%)

CO,Et P(3,5-CgH3(CF3),)3 (40 mol%)

DG3 (20 mol%) CO,Et
Me o Me
= Zn(OTf), (20 mol%)
2,6-di-tBu-py (20 mol%)
toluene, 150 °C, 48 h H
42% (gram-scale) o
O 295 2.99

Besides cyclopentenyl moiety, mono- and 1,1-disubstituted alkenes can also be efficiently
coupled to form bridged bicycles, which implied some generality of this method (entry 1-2, Table
2.38). However, cyclobutanone 2.104 contained a cyclohexene moiety only delivered trace
amounts of desired product under standard condition (entry 3, Table 2.38), which possibly due to

the high steric hinderance of the alkene part.
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Table 2.38. Preliminary Substrate Scope of the “Cut-and-Sew” Reaction of Ester-Tethered

Cyclobutanones.

[Rh(C2H4)212Cly (10 mol%)

COEL P(3,5-CoH3(CF3)z)s (40 mol%) COLE
Me. DG3 (20 mol%) Me
. Zn(OTf), (20 mol%)
| 2,6-di-tBu-py (50 mol%) H ~~
S~ toluene (0.1 M), 150 °C, 48 h 1) !
(0]
Entry Substrate Product Yield?
CO,Et
" CO,Et
e~ Me
1 N 85%
H H
(0]
(0]
2.100 2.101
CO,Et CO,Et
Me pZ e
2 H Me 64%
(0]
(0]
2.62 2.73
CO,Et CO,Et
Me 7 Me
3 H trace
(0]
(0]
2.104 2.105

Encouraged by the promising result on model study, we started to synthesize the real substrate.
The initial designed real substrate was cyclobutanone 2.94a, which had both methyl and protected
hydroxyl groups on the five-membered ring. Cyclobutanone 2.94a was proposed to be synthesized
from enone 2.108, which planed to be prepared from enyne 2.107 through a Pauson-Khand
reaction.”* Enyne 2.107 was readily prepared from silyl chloride 2.106 in 21% yield. However,

after trying the representative reported conditions of Pauson-Khand reaction, the best yield of
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enone 2.108 we obtained is only 10% (Table 2.39). Due to the low yield of Pauson-Khand reaction

on enyne 2.107, we gave up this route.

Table 2.39. Preparation of Cyclobutanone 2.94a through Pauson-Khand Reaction.

o MgBr P o I'ODE\Si/iPr COOEt
iPr\Si/iPr THF O’ Si condltlons .......... - =~
cl cl then // OH \l\ .
imidazole, DCM e} 0 OMOM
2.106 219 2.107 2.108 2.94a
Entry Conditions Result

1 Co,(CO)g (1.1 equiv.), then NMO (10 equiv.), DCM, RT, overnight 10%

2 Co,(CO)g (3 mol%), TMTU (18 mol%), CO (1 atm), toluene, 70 °C, 3 h N.D.

3 Co0,(CO)g (10 mol%), TMTU (60 mol%), CO (1 atm), toluene, 70 °C, 3 h N.D.

4 Co,(CO)g (10 mol%), TMTU (60 mol%), CO (1 atm), toluene, 90 °C, 3 h N.D.

5 Co,(CO)g (10 mol%), TMTU (60 mol%), CO (1 atm), toluene, 110 °C, 3 h N.D.

6 CoBr, (10 mol%), TMTU (60 mol%), Zn (2 equiv.), CO (1 atm), toluene, 70 °C, 3 h N.D.

7 [Rh(CO),Cl], (2 mol%), CO (1 atm), xylene, 110 °C, 3 h N.D.

8 [Rh(CO),Cl], (2 mol%), CO (1 atm), PhCI, 150 °C, 3 h N.D.

9 [Rh(CO),Cl], (2 mol%), CO (3 atm), toluene, 150 °C, overnight N.D.

10 [Rh(COD)CI], (2.5 mol%), dppp (10 mol%), cinnamaldhyde, 120 °C, 3 h N.D.

1 Mo(CO)3(DMF)3 (1.1 equiv.), DCM, RT N.D.

Due to the difficulty of synthesizing cyclobutanone 2.94a, we designed a new substrate,
cyclobutanone 2.110, for the key “cut-and-sew” reaction, which do not have methyl group on the
five-membered ring (Scheme 2.24). We proposed that the methyl group on C ring could be

introduced after “cut-and-sew” step.

Scheme 2.24. Total Synthesis of Penicibilaenes through “Cut-and-Sew” Reaction of

Cyclobutanone 2.110.

Me COzEt " COzEt
Me Me e\~
H
OR > H :
Me OPG
OH H cut-and-sew
o) H 0 OPG

R = H: penicibilaene A (2.1) 2109 2110
R = Ac: penicibilaene B (2.2) : .



Preparation of cyclobutanone 2.110 also started from ester 2.96 (Scheme 2.25). Ester 2.96
was oxidized by CrOs to generate ketone 2.111.2° Luche reduction of ketone 2.111 delivered
alcohol 2.112, which was protected by benzyl group to give ester 2.113. Ester 2.113 was treated
with DIBAL-H to form alcohol 2.114, followed by bromination to furnish bromide 2.115. Three-
component coupling of bromide 2.115 delivered ketal 2.116. However, ketal 2.116 decomposed
under typical mild conditions for ketal deprotection, which means that the allylic ether may not be
stable under acidic condition. Considering the crucial rule of Lewis acid in our “cut-and-sew”

reaction, we gave up this approach.

Scheme 2.25.Approach to Prepare Cyclobutanone 2.110.

CI'O3
ACZO CeC|3 MeOOC
MeOOC AcOH  MeOOC NaBH,
\@ DCM \Q MeOH
0, 0,
46% % 81% OH
2.96 2111 2.112
NaH, BnBr
THF, 53%
Bry MeOOC
Br PPhg HO DIBAL-H
DCM DCM
2.115 OBn 43% OBn 92% 5Bn
COOEt 2.114 2113
OMe /
OMe 2.71
26 tBuLi,CuBr-SMe,, SMe,
Br 67 | HMPA/THF
41%
COOEt
COOEt
=
N -
a. l,, acetone, decomposed
b. PPTS, acetone, decomposed
o} OBn
MeO OMe OBn
2.116 2.110

Since cyclobutanone 2.110 which contained allylic ether moiety was not stable in acid, we
planned to introduce the oxygen on the five-membered ring after “cut-and-sew” reaction. Thus,

84



we designed a new real substrate, cyclobutanone 2.118, which contained a methyl group on the

five-membered ring (Scheme 2.26).

Scheme 2.26. Total Synthesis of Penicibilaenes through “Cut-and-Sew” Reaction of

Cyclobutanone 2.118.
Me CO,Et COEt
Me Me Me = Me
H Me
y OR /> H —
e
OH H cut-and-sew
2.1) © ©

R = H: penicibilaene A (2.
R = Ac: penicibilaene B (2.2) 2417 2.118

Our first attempt to synthesize new substrate started from ester 2.119 (Scheme 2.27).
Methylation of ester 2.119 afforded ester 2.120,%° which readily underwent decarboxylation to
deliver ketone 2.121. After condensing with p-toluenesulfonyl hydrazide, ketone 2.121 was treated
with base and then quenched by DMF to form aldehyde 2.123. 1,2-Reduction of aldehyde 2.123
generated allylic alcohol 2.124. However, after several attempts to optimize the Shapiro reaction

of hydrazone 2.122, the yield was still only 44%. Thus, we gave up this route.

Scheme 2.27. Preparation of Alcohol 2.124.

o) 0}

OMe OMe
o) a. K2CO3, Mel 0 Me b. HBr o)
acetone 96% (2 steps)
2.119 2.120 2121
c. NH,NHTs
70%
d. nBuLi
Ho e. LiAIH, OHC then DMF TsHN ~ N
Et,0 TMEDA
44% (2 steps)
2.124 2123 2.122
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Another route to synthesize cyclobutanone 2.118 was developed from commercially available
acetal 2.125 (Scheme 2.28). Following the reported procedure,?’ acetal 2.125 was treated with
triethyl phosphonoacetate and base to give alcohol 2.126, which underwent acetylation to deliver
ester 2.127. Michael addition and elimination of ester 2.127 furnished ester 2.128,”® which was
reduced by DIBAL-H to give allylic alcohol 2.124. comparing to previous route, the new strategy
could synthesize alcohol 2.124 in higher yield and fewer steps. Bromination of alcohol 2.124
delivered bromide 2.129, which underwent three-component coupling with bromide 2.67 and
ynoate 2.71 to give ketal 2.130. Finally, deprotection of ketal 2.130 delivered cyclobutanone 2.118

in 28% yield.

Scheme 2.28. Preparation of Cyclobutanone 2.118.

a.0.6 MHCI, 70 °C

EtQ
EtO~p-"~
then P~ “COOEt
COOEt COOEt
MeO o)
D_ K,COs, RT b. Ac,0, Py., DMAP
oM
€ 54% OH DCM, RT Ohe
2.125 2.126 100% 2.127
c. MeMgBr
Cul
THF, =35 °C
91%
Br HO
COOEt
e. Bry, PPhy d. DIBAL-H
Me Me Me
DCM, RT DCM
OMe 2129 70% 2124 100% 2128
OMe| f tByLi
5 2.67 | cuBr-SMe,
r
P COOE ?é\ﬂ/PA/THF
0
/ 2.71
COOEt COOEt
7 7
g. PPTS
acetone, RT
28%
MeO OMe o)
2.130 2.118
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With cyclobutanone 2.118 in hand, we started to investigate “cut-and-sew” reaction of this
substrate. 3% of desired product 2.117 was observed under standard condition (entry 1, Table 2.40).
After screening of rhodium pre-catalysts, we found that Rh(COD)(acac) (entry 6, Table 2.40) and

Rh(CO)x(acac) (entry 7, Table 2.40) delivered higher yield comparing to [Rh(C2H4)2Cl]s.

Table 2.40. Catalyst Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

[Rh]

CO,Et P(3,5-CgH3(CF3),)3 (50 mol%) CO,Et
Me pZ Me 2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (20 mol%) Me
toluene, 150 °C, 48 h H
O 2118 © 217
Entry [Rh] SM% pdt%
1 [Rh(C4Hy4),Cll, (10 mol%) 3% 3%
2 [Rh(COD)CI], (10 mol%) 5% trace
3 [Rh(COE),Cl], (10 mol%) 2% trace
4 [Rh(CO),Cl], (10 mol%) 2% trace
5 [Rh(1,5-HD)Cl], (10 mol%) 0% trace
6 Rh(COD)acac (20 mol%) 0% 7%
7 Rh(CO),acac (20 mol%) 3% 6%

Besides rhodium pre-catalysts, different types of ligands were also tested (Table 2.41).
However, NHC ligands was not able to generate any desired product. Phosphoramidite ligands and
other electron-deficient ligands wither give trace amounts of ketone 2.117 or have low yield. We
also examined the influence of the ligand equivalence on this reaction, and it seems that the

equivalence of the ligand did not significantly affect the yield (Table 2.42).
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Table 2.41. Ligands Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

IPr
SM: 13%
pdt: trace
deCO: 5%

MeCAAC
SM: 17%
pdt: trace
deCO: 34%

Ph_Ph
o} o

>< O/P*NC>
Ph" ph

L3
SM: 5%
pdt: trace

P

F3C CF3

SM: 15%
pdt: trace
deCO: 5%*

F

SM: 10%
pdt: trace
deCO: trace*

CO,Et

Me = Me

O 2118

/\ =
Do QDD oy

IMes
SM: 10%
pdt: trace
deCO: 19%

CyCAAC
SM: 10%
pdt: trace
deCO: 37%

Ph_Ph

Ph" Ph

L4
SM: 6%
pdt: trace

CF3
@PQ%
mﬁ]

SM: 18%
pdt: trace
deCO: 5%*

A QL
Je

SM: 9%
pdt: trace
deCO: 2%*

*40 mol% ligand; adding 20 mol% 2,6-di-tBu-py

Rh(COD)acac (20 mol%)

Ligands (20 mol%) CO,Et
2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (20 mol%)
toluene, 150 °C, 24-36 h H
°© 2117

s,

IAd SIPr SiMes
SM: 15% SM: 19% SM: 7%
pdt: trace pdt: trace pdt: trace
deCO: trace deCO: trace deCO: 18%
Ph_ Ph Ph PN
N 0 0 Et 0 Q  pBn
[N P—N
X PN, R
o o Et (6] o Bn
Ph" ph Ph™ Ph
BiCAAC L1 L2
SM: trace SM: 5% SM: 4%
pdt: trace pdt: trace pdt: 5%
deCO: 53%
CF3 CF3
OO,
N FaC P CF
P-0 3 3
X
Ph FsC CF3
L5 Ph
SM: 12% SM: 6%
pdt: trace SM: 10% pdt: 7%
pdt: trace
F3C. : : CFy;  F3Co i :CFs CF3
P P
F3C CF3 P(CsFs)s
CF3 CF3
SM: 7% SM: 18% SM: 44%
pdt: trace pdt: trace pdt: trace
deCO: 2%* deCO: 5%* deCO: 2%*
o P
-
SM: trace
pdt: trace

deCO: trace*
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Table 2.42. Ligand Equivalence Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

Rh(COD)acac (20 mol%)

CO,Et P(3,5-CgH3(CF3),)3 (x mol%) CO,Et
Me - Me 2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (20 mol%) Me
toluene, 150 °C, 48 h H
(0]
O 2118 2117
Entry x mol% SM% pdt%
1 0 7% trace
2 20 6% 9%
3 40 trace 9%
4 60 trace 9%

In addition to ligands, we also screened several common solvents for “cut-and-sew” reaction
(Table 2.43), However, among all the solvents, toluene still provided the best result. Since we
always observed some double bonds migration side product, we proposed that zinc triflate can be
hydrolyzed under reaction conditions and generated trace amounts of triflic acid, which could
catalyze double bond migration. Thus, we tried to add some base to quench trace amounts of triflic
acid and suppress the side reaction. After screening of some inorganic and organic bases, we found
that adding base cannot further increase the yield (Table 2.44). We also screened Lewis acids
(Table 2.45), concentration (Table 2.46) and directing groups (Table 2.47). Unfortunately, none of

them could deliver a better yield.
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Table 2.43. Solvent Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

Rh(COD)acac (20 mol%)

CO,Et P(3,5-(CgH4(CF3))3 (40 mol%) CO,Et
Me = Me 2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (20 mol%) Me
solvent, 150 °C, 24 h H
O 2118 © 217
Entry solvent SM% pdt%
1 1,4-dioxane 22% 3%
2 toluene 17% 5%
3 PhCI 7% trace
4 MeTHF 14% trace
5 1,2-CgH4F, 3% 5%
6 1,3-CgH4Fs 8% 5%
7 1,4-CgH4F 18% 4%

Table 2.44. Base Additives Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

Rh(COD)acac (20 mol%)
P(3,5-CgH3(CF3)2)3 (50 mol%)

CO,Et 2-Amino-3-isopropylpyridine (20 mol%) CO,Et
Me._~ Me Zn(OTf), (20 mol%)
additives Me
toluene, 150 °C, 48 h H
O 2118 © 2117
Entry Base SM% pdt%
1 MgO (100 mol%) 34% trace
2 CaCO3 (100 mol%) trace 5%
3 K5sHPO,4 (100 mol%) 25% trace
4 2,6-ditBu-py (100 mol%) trace 9%
5 Zn(CO3)04(OH)1, (100 mol%)  trace 7%
6 2,6-di-tBu-py (20 mol%)* 7% 9%
7 DTBMP (20 mol%)* 12% 6%
8 pyridine (20 mol%)* trace trace
9 DIPEA (20 mol%)* 12% 5%
10 NEtz (20 mol%)* 10% 8%
1 2,6-lutidine (20 mol%)* 17% 5%
12 \* 10% 8%

*40 mol% ligand
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Table 2.45. Lewis Acids Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

Rh(COD)acac (20 mol%)
P(3,5-(CgH4(CF3)5)3 (40 mol%)

COREt 2-Amino-3-isopropylpyridine (20 mol%) CO,Et
Me. Me LA (20 mol%) Me
2,6-di-tBu-py (20 mol%) Me
toluene, 150 °C, 24 h H
O 2.118 0 2.117
Entry LA SM% pdt%
1 ZnCl, 31% trace
2 Zn(OTf), 21% 5%
3 CoCl, 40% trace
4 CoBr, 39% trace
5 Er(OTf), 9% 5%

Table 2.46. Concentration Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

Rh(COD)acac (20 mol%)
P(3,5-(CeH4(CF3)2)3 (40 mol%)

COoEt 2-Amino-3-isopropylpyridine (20 mol%) CO,Et
Me._~ Me Zn(OTf), (20 mol%) Me
2,6-di-tBu-py (20 mol%) Me
toluene, 150 °C, 24 h H
o
O 2.118 2.117
Entry concentration SM% pdt% decarbonylation
1 0.1 M 8% 7% 5%
2 0.05 M 17% 7% 3%
3 0.025 M 10% 5% 2%
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Table 2.47. Directing Groups Screening on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

Rh(COD)acac (20 mol%)
P(3,5-(CBH4(CF3)2)3 (40 mOlo/o)

COEt DG (20 mol%) CO,Et
Me - Me Zn(OTf), (20 mol%) Me
2,6-di-tBu-py (20 mol%) Me
toluene, 150 °C, 24 h H
(0]
O 2.118 2.117
Entry DG SM% pdt% decarbonylation
XN iPr
1 | _ 12% 5% 2%
N~ “NH,
XN Me
2 | 12% 5% 3%
N~ “NH,
XX
3 | _ 14% 5% 5%
N~ "NH,
4 — 21% trace 6%
N~ “NH,
xFh
5 | _ 16% 5% 5%
N NH,
MeO
6 A 15% trace 5%
| OMe
~
N NH,
| X Me
7 = 21% trace trace
N I}IH
TMS

We analyzed the side products of the “cut-and-sew” reaction of cyclobutanone 2.118 (Scheme
2.29). It seems that major side reactions contained double bond-migration and decarbonylation.

However, we failed to find a method to suppress these side reactions. Thus, we gave up the route.
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Scheme 2.29. Side Products Analysis on “Cut-and-Sew” Reaction of Cyclobutanone 2.118.

CO,Et
Me > Me
S.M.
Rh(COD)acac (20 mol%) ~26 mg
P(3,5-(CeHa(CF3)y)s (40 mol%) 0 2132
OB 2-Amino-3-isopropylpyridine (20 mol%) 19% Me CO,Et
Me - Me Zn(OTf), (20 mol%) . +
2,6-di-tBu-py (20 mol%) CO,Et H Me unknown
+ +
toluene, 150 °C, 24 h CO,Et Me - Me product
(0.1 mmol scale *5) Me  ~ Me 4 ~6mg
O 2.118 2.117
2.133 ~8mg
138 mg + 6%
0 2131
messy unpolar
~24 mg mixture
17% ~45 mg

2.4. Third Generation Route

At this stage, we have confirmed that the success of the “cut-and-sew” reactions on ester-
tethered cyclobutanone requires “naked” cyclopentenyl group, which means any substituents on
the five-membered ring would inhibit “cut-and-sew” reaction. Thus, our third-generation route to
penicibilaenes highlighted a “C—C/C—H” strategy, which in “C—C” stage we construct the skeleton
of natural products by “cut-and-sew” reaction, and in “C—H” stage the substituents on the carbon
backbone was introduced through S-functionalization. From the retrosynthetic viewpoint (Scheme
2.30), the C13 methyl group in penicibilaenes A (2.1) and B (2.2) could be introduced in the late
stage via the f-functionalization from intermediate 2.134. It can be further envisaged that the C4
oxygen functional group can also be installed via a similar S-functionalization from ketone 2.135,
and the C6 tertiary alcohol stereocenter can be introduced through an axial-selective carbonyl
addition reaction. The core tricyclic skeleton in 2.135 is then expected to be constructed by the
“cut-and-sew” reaction through C—C activation of cyclobutanone 2.99. Finally, the precursor (2.95)

for the “cut-and-sew” could be rapidly prepared via a Cu-mediated three-component coupling,
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ultimately from three commercially available chemicals: cyclobutanone 2.37, enoate 2.71 and
ynoate 2.96. It is noteworthy that an ester moiety is strategically introduced in the tricycle
intermediate 2.99 because it can (i) greatly simplify substrate preparation and (ii) play a pivotal

role in the “cut-and-sew” reaction.

Scheme 2.30. Retrosynthetic Analysis (Third Generation Route).

15

2.135
€-C stage two added\v H
benefits
Me—==—CO,Et CO,Et coEt
cop 2T Me~ Me 2
2
—— P — =
M802C
H
S 7
o 237 2.96 O 595 2on
three-component coupling "cut-and-sew" :

With ester 2.99 in hand, we started to explore the following transformations. Comparing ester
2.99 with penicibilaenes, we could find that all the three rings in the natural products has been
established. We needed to introduce functional groups on the five membered ring, methylate the
cyclohexanone to form tertiary alcohol, as well as remove the ester group on B ring. First, we
explored how to remove the ester group. Hydrolysis of ester 2.99 is straightforward (Table 2.48).
In this case, the harsh condition is required due to the extra stability of conjugated ester. The

structure of carboxylic acid 2.136 was confirmed by XRD experiment.
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Table 2.48. Hydrolysis of Ester 2.99.

CO,Et CO,H
Me Me
conditions
H H =
(0] (0]

2.99 2.136 o
Entry Conditions yield X-ray

1 LiOH, THF/H,O, RT N.R.

2 LiOH, THF/H,0, 50 °C, 2 days 100%

3 LiOH, THF/H,O0, 70 °C, overnight 99%

The decarboxylation of carboxylic acid 2.136 is more challenging compared to hydroxylation.
There are only few examples of decarboxylation of a,f-unsaturated carboxylic acids in the
literatures. Two general strategies for decarboxylation are transition metal catalysis*® and radical
approach,®® and both methods were tested in our reaction. Transition metal catalysis approaches,
such as silver- and gold-catalysis, were tried at the beginning. They have been reported to work
well for decarboxylation of aryl carboxylic acid. However, no desired product was observed under
these conditions (entry 1-2, Table 2.49). We then turned to radical approaches. Barton
decarboxylation of carboxylic acid 2.136 delivered ketone 2.135 in 27% yield in the first trial
(entry 3, Table 2.49). With this preliminary result in hand, we optimized this reaction by screening
hydrogen atom source, Barton auxiliary reagents, solvents under thermos- or photo-conditions
(entry 4-13, Table 2.49). We found that the Barton decarboxylation with AIBN as initiator, ‘BuSH
as HAT reagent and toluene as solvent gave the best yield as 62% (entry 13, Table 2.49). We also
tested nickel-catalyzed decarboxylation developed by Baran group.’*® However, this condition is
not as good as Barton decarboxylation (entry 14, Table 2.49). We then tried one-step
decarboxylation of carboxylic acid 2.136. Two photo-induced Barton decarboxylation were

examined (entry 15-16, Table 2.49), which delivered much lower yield comparing to two-step
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procedure. Finally, we found that directly removing the solvent after condensation without

quenching furnished ketone 2.135 in 53% yield, which is slightly lower than two-step procedure

(entry 17, Table 2.49).

Table 2.49. Decarboxylation of Carboxylic Acid 2.136.

CO,H H
Me Me
conditions
H H
o) (0]
2.136 2135
Entry Conditions yield
1 AgOAc, K,CO3, NMP, 140 °C, overnight decomposed
2 Au(SIPr)OH, AdCOOH, toluene, 120 °C, 16 h trace
3 EDC, 2.137, DCM, RT, then tBuSH, THF, hv 27% (two steps)
4 PBus;, 2.138, toluene, RT, then AIBN, (TMS)3SiH, 80 °C trace
5 PBuj, 2.138, CHCI3, RT, then hv 19% (two steps)
6 PBujs, 2.138, THF, RT, then tBuSH, hv 38% (two steps)
7 PBus, 2.138, DCM, RT, then tBuSH, hv 11% (two steps)
8 EDC, 2.137, then tBuSH, DCM, hv. 32% (two steps)
9 EDC, 2.137, then tBuSH, THF, hv. 31% (two steps)
10 EDC, 2.137, then tBuSH, MeCN, hv. 32% (two steps)
1 EDC, 2.137, then tBuSH, MeCN/H,0, hv. trace
12 EDC, 2.137, then tBuSH, toluene, hv. 33% (two steps)
13 EDC, 2.137, then tBuSH, AIBN, toluene, 80 °C 62% (two steps)
14 NHPI, DIC, DMAP, DCM, then NiCl,-6H,0, PhSiH3, Zn,THF/DMF/iPrOH 16%
15 isopropyl chloroformate, NMM, then pyrithione, TEA, then tBuSH, hv. n.d.
16 EDCI, 2.137, DCM, then tBuSH, hv. 30% (one step)
17 EDCI, 2.137, DCM, then AIBN, tBuSH, toluene, 80 °C 53% (one step)

o° N o°
Nas_ _N& L s k@
a ~
_ o0 —
2.137 2.138

The structure of ketone 2.135 was confirmed unambiguously by XRD experiment of its

derivative, hydrazone 2.139 (Scheme 2.31).
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Scheme 2.31. X-Ray Structure of hydrazone 2.139.

H
H M
Me ©
’ DNPH, HCI H _
—— 7 —
9 N
3 40% NG
2135
NO,
O,N 2.139

With ketone 2.135 in hand, we started to explore how to install functional group on the C ring.
We firstly checked Schénecker—Baran Oxidation®! to install hydroxyl group (Scheme 2.32).
However, a-oxygenated product 2.142 instead of desired S-oxygenated product was observed,

maybe due to the radical condition prefer to generate tertiary radical rather than secondary radical.

Scheme 2.32. Approach to Install Oxygen on C4 through Schonecker—Baran Oxidation.

Me
N NH
Me G\‘/\ 2 .y Cu(NO3), Me
=z 2.140 7 H,0, ‘
H _— _— H7 7
toluene N THF @
o reflux _N o

2135 2142

./
2.141

We also tested Sanford’s method for ketone f-oxygenation, which utilized O-methyl oxime

as directing group.’? The O-methyl oxime 2.143 was readily prepared in one step from ester 2.99

(Scheme 2.33). However, all the typical reported conditions were not able to deliver the desired

product 2.144 (Table 2.50). The rigid skeleton in compound 2.143 may prohibit the C—H activation

step, since the organometallacycle formed after C—H activation was highly strained.
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Scheme 2.33. Preparation of O-Methyl Oxime 2.143.

CO,Et CO,Et
Me Me
NH,OMe-HCI
H py., 80 °C, 2 h H/Z
0,
o 99% Meo*N
2.99 2.143

Table 2.50. Approach to Install Oxygen on C4 through Sanford’s C—H Oxygenation.

CO,Et
CO,Et Me
Me
conditions H ,
H ; Meo“N
MeO¥N AcO
2.143 2.144
Entry Conditions Result

1 Pd(OAc), (20 mmol%), PIDA (1.5 equiv.), AcOH/Ac,0, 100 °C, 1 h N.R.
2 Pd(OAc), (20 mmol%), PIDA (1.5 equiv.), AcOH/Ac,0, 100 °C, overnight N.R.
3 Pd(OAc), (20 mmol%), PIDA (1.5 equiv.), AcOH/Ac,0, 90 °C, overnight N.R.
4 Pd(OAc), (20 mmol%), PIDA (1.5 equiv.), AcOH/Ac,0, 80 °C, overnight N.R.
5 Pd(OAc), (1 equiv.), PIDA (1.5 equiv.), AcOH/Ac,0, 100 °C, 1 h N.R.

Besides Schonecker—Baran Oxidation and Sanford C—H oxygenation, we also tried some
other radical approaches based on 1,5-HAT (Scheme 2.34).>* Unfortunately, none of them

delivered the desired C—H oxygenated product.
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Scheme 2.34. Approach to Install Oxygen on C4 through 1,5-HAT.

e CO,Et Ve CO,Et TEMPO
NH,OH-HCI KoCOs
—
H pyridine, 80 °C H - DMF
© 99% HoN N.R
2.99 2.145
CO,Et o, SOZE!
Me Me
Selectfluor, TBAI
H
H 7 H
,\] DCE/H,0, 80 °C N
v N
HO 0 Ny
2.145 2.146

Besides trying C—H oxygenation based on ketone, we also investigated C—H oxygenation
based on alcohol. We proposed that C—H oxygenation based on alcohol is more promising on
account of the geometry of the molecule. Comparing the structure of ketone 2.135 and alcohol
2.148, it is clear that the hydroxyl group in alcohol 2.148 is much more closer to the C—H bond
which needed to be activated. In order to achieve methylation of ketone 2.135 in a
diastereoselective manner, we screened diverse methods of ketone methylation (Table 2.51). More
acidic methylation reagent such as MeTiCl; preferred to attack ketone from concave face to give
axial alcohol 2.147 (entry 5, Table 2.51).>* In contrast, methyl lithium favored to attack convex

face of ketone 2.135 to deliver equatorial alcohol 2.148 (entry 8, Table 2.51). The configuration of

alcohol 2.148 was confirmed by nOe analysis.
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Table 2.51. Methylation of Ketone 2.135.

Me Me Me T nOe
Ly e
o Me a HO a
2135 2.147 2.148
Entry Conditions SM% 2.147% 2.148% d.r.
1 Meli, THF, -78 °Ctort., 3 h 28% 9% 52% 1:5.8
2 MelLi, Et,0, -78 °Ctor.t.,, 3 h 29% 21% 45% 1:21
3 MeMgBr, THF, 0 °Ctort.,, 16 h 34% 20% 35% 1:1.8
4 MeMgBr, Et,0,0°Ctort., 16 h 27% 42% 26% 1.6:1
5  MeTiCl3, Et,0,-78 °Cto 0 °C, 3 h 28% 53% 8% 6.6:1
6 Yb(OTf)3, MeLi, THF, -78 °C, 1 h 87% / / /
7 Meli, HMPA/THF, -78 °Ctor.t.,, 3h 100% / / /
8 Meli, LiBr, THF, -78 °Ctort, 16 h  26% 8% 54% 1:6.8

With alcohol 2.148 in hand, we tried to activate the C—H bond on C ring by Hartwig C—H
hydroxylation,*® which went through an one-pot three-step process (Scheme 2.35A). The first step
is silylation of alcohol 2.148 to give silane 2.149, which was directly used in the next step without
further purification. Then an iridium catalyzed C—H silylation of silane 2.149 delivered siloxane
2.150, followed by a Fleming—Tamao oxidation to furnish diol 2.151. However, instead of
activation of secondary C—H bond on the C ring, the C—H activation occurred on a less hindered
methyl group to deliver undesired diol 2.151. We tried to decrease the temperature of C—H

silylation step to 100 °C, but diol 2.151 was still the only observed product (Scheme 2.35B).

Hartwig hydroxylation of other silane were also explored. We found that dimethyl silane
2.152 could be easily prepared in high yield (Scheme 2.35C). However, iridium catalyzed Hartwig
C—H hydroxylation of silane 2.152 also delivered undesired diol 2.151. We also tried rhodium
catalyzed Hartwig C—H hydroxylation,*® but only desilylation product 2.148 was observed under

this condition (Scheme 2.35D).
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Scheme 2.35. Approach to Install Oxygen on C4 through Hartwig C—H hydroxylation.
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S a L = DTBM-SEGPhos Hd a
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In addition to Hartwig C—H hydroxylation, Gevorgyan C—H functionalization based on 1,6-
HAT was also examined. The silyl iodide in siloxane 2.154 was served as directing group in
Gevorgyan’s methods,?” which was prepared form alcohol 2.148 in two steps (Scheme 2.36A).
However, the 1,6-HAT did not happen in both desaturation (Scheme 2.36B) and amination

(Scheme 2.36C).
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Scheme 2.36. Approach to Install Oxygen on C4 through Gevorgyan C—H Functionalization.

\ I acetone, 60 °C \ |

A

H
Me Cl

Since Hartwig C—H hydroxylation and Gevorgyan C—H functionalization cannot deliver the
desired product on our substrate, we turned to explore Du Bois C—H amination.*® We first tried to
prepare sulfonyl amide 2.157 from tertiary alcohol 2.148. However, instead of obtaining sulfonyl

amide 2.157, only the elimination product alkene 2.158 was observed under various conditions

(Table 2.52).

S|Mezc|
|m|dazo|e

DCM
84%

2.154

Me’s'
Me Cl
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@PPhZ

C : _P(tBu)2
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N.D.

® ©
/©/N2 BF4
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HCOOLIi-H,0

PhH, MeOH
N.D.
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Table 2.52. Attemps to Prepare sulfonyl amide 2.157.

H
H Me
Me Me
@ conditions H a H
—
H a O\
HO O=5~NH, Mé
2.148 (0] 2.158
2.157
Entry Conditions Result
1 MgO, CISO,NCO, HCOOH, MeCN/DMAc n.d.
2 NaH, CISO,NCO, HCOOH, MeCN/DMF n.d.
3 KH, CISO,NCO, HCOOH, MeCN/DMF n.d.
4 NEt;, CISO,NCO, HCOOH, DCM, 0 °C n.d.
5 NEtz, CISO,NCO, HCOOH, DCM, -78 °C n.d.
6 CISO,NH,, DMAc, 0 °C to RT n.d.

Then we paid our attention to prepare sulfonyl amide from secondary alcohol, which was
harder to undergo elimination. The first challenge we encountered was how to selectively reduce
ketone 2.135 to give equatorial alcohol 2.160. Typical axial-reducing reagents, such as LiAlHa4,
LiBH4 and NaBH4, were tested, but axial alcohol 2.159 was the favored product under these
conditions (entry 1-7, Table 2.53). In contrast, bulky reducing reagent, L-selectride, exclusively
underwent axial attack to deliver equatorial alcohol 2.150 (entry 10, Table 2.53), which indicate
concave-convex selectivity 1s dominated 1in our substrate. Besides L-selectride,
Meerwein—Ponndorf—Verley reduction also favored to give more thermodynamically stable

equatorial alcohol 2.150 (entry 9, Table 2.53).
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Table 2.53. Reduction of Ketone 2.135.

Me Me Me
conditions E
H -~ H + H
(e} H a HO
2.135 2.159 2.160
Entry Conditions 2.159%7 2.160%7 dr.
1 NaBH,, MeOH, 0 °C, 3 h 16% 5% 3:1
2 LiBH,4, THF, 0 °C, 3 h 38% 17% 23:1
3 LiBHy4, Et,0, 0 °C, 3 h 61% 38% 16:1
4 LiAlH4, THF, 0 °C, 3 h 66% 33% 2:1
5 LiAlHy4, Et,0,0 °C, 3 h 67% 32% 21:1
6 LiBH,, Et,0, -78 °C, 3 h / / /
7 NaBH,4, CeCl3, MeOH, -78 °C, 0.5 h 54% 45% 1.2:1
8 Mg, HgCl,, EtOH / / /
9 Al(OiPr)3, iPrOH, 80 °C, 5 h 17% 67% 1:3.8
10 L-selectride, THF, -78 °Ct0 0 °C, 3 h / 99% (78%) /

NMR yield; numbers in the parentheses are isolated yields

After establishing diastereoselective reduction of ketone 2.135, we then tried to prepare
sulfonyl amide 2.161 (Table 2.54). Sulfonyl amide 2.161 was obtained in 55% yield with MgO
served as a base in the reaction condition (entry 3, Table 2.54). With sulfonyl amide 2.161 in hand,
we next explored Du Bois C—H amination on this compound (Table 2.55). We observed that the
nitrene could insert into either f-C—H bonds on C4 to deliver two diastereomers 2.162 and 2.163
in 2.5:1 diastereoselectivity (entry 1, Table 2.55). Utilizing Rha(esp): as catalyst**® and adjusting

the concentration increased the yield to 73% with 4.2:1 diastereoselectivity (entry 6, Table 2.55).
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Table 2.54. Preparation of Sulfonyl Amide 2.161.

H
Me
Me HCOOH
CISO,NCO
base H
H
e MeCN Q
DMAc O:“S~ NH2
2.160
2.161
Entry base yield?
1 NaHCO, 71%
2 CaCO; 71%
3 MgO 93% (55%)
4 K,CO4 69%
5 K,HPO, 88%
6 NH,HCO, 82%

4NMR yield; numbers in the parentheses are isolated yields

Table 2.55. Du Bois C—H Amination of Sulfonyl Amide 2.161.

Me
Me Me
H H
conditions H + o
H 2
e} H-1
= O~ o—NH 0=S<\H
O=F~NH, ) o
o 00
2.161 2.162 2.163
Entry Conditions 2.162% 2.163% dr.
Rhy(OAc), (5 mol%), PIDA (1.1 equiv.)
1 MgO(3 equiv.), DCM (0.02 M), 40 °C, 3 h 32% 13% 25:
Rhy(esp), (5 mol%), PIDA (1.1 equiv.)
2 MgO(3 equiv.), DCM (0.02 M), 40 °C, 0.5 h 59% 12% 5:
Rhy(esp), (5 mol%), PIDA (1.1 equiv.)
3 MgO(3 equiv.), DCM (0.02 M), RT, 6 h 57% 17% 3.3:
Rh,(esp), (2 mol%), PIDA (1.1 equiv.) .
4 MgO(3 equiv.), DCM (0.02 M), 40 °C, 1 h 58% 13% 4.5:
Rhy(esp), (1 mol%), PIDA (1.1 equiv.) _
5 MgO(3 equiv.), DCM (0.02 M), 40 °C, 1 h 55% 15% 3.7:
o .
6 Rhy(esp), (2 mol%), PIDA (1.1 equiv.) 59% 14% 42

MgO(3 equiv.), DCM (0.01 M), 40 °C, 1 h
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Reduction of the mixture of sulfonyl amide 2.162 and 2.163 by Red-Al** provided amine

2.164. However, we were unable to convert amine 2.164 into ketone 2.165 after several trials

(Table 2.56).4

Table 2.56. Attempts to Prepare Ketone 2.165.

Me Me Me
H% Red-Al H% conditions H
_O\ ; tolu;;;, refltax, 3h HO s H
O_O“ \H o (crude) H,N OH 0
2.164 2.165
2,162 &
2.163 Entry Conditions Result
1 PIDA, TEMPO, DCM n.d.
2 DTBBQ, oxalic acid, MeOH/THF n.d.
3 Ru(BPY)3, K»;S,0g, MeCN/H,0, hv. decomposed
Bu
joy
Bu o
DTBBQ

The elimination product of sulfonylation, alkene 2.158 (Table 2.52), inspired us a new way
to functionalize f-C—H bond. We proposed that the double bond would place at more substituted
position when converting ketone to silyl enol ether, as the same regioselectivity in elimination of
2.148 (Table 2.52). The experiment results proved our hypothesis (Table 2.57). Silyl enol ether
2.166 was obtained in 77% yield from ketone 2.99 with DBU as base (entry 6, Table 2.57). A

following selenoxide elimination of enol ether 2.166 afforded enone 2.167 (entry 5, Table 2.58).
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Table 2.57. Preparation of Silyl Enol Ether 2.166.

e CO,Et Ve CO,Et
conditions
H _— H
0 TMSO
2.99 2.166
Entry Conditions Result
1 TMSCI, TBAI, NEt3, MeCN, RT n.r.
2 TMSCI, TBAI, NEt3, DCM, RT n.r.
3 TMSCI, KI, NEt3, DMF, RT n.r.
4 TMSCI, TBAI, DIPEA, DCM, RT n.r.
5 TMSCI, TBAI, proton sponge, DCM, RT n.r.
6 TMSCI, TBAI, DBU, DCM, RT 7%

Table 2.58. Preparation of enone 2.167.

CO,Et CO,Et
Me Me
conditions
H H
TMSO o
2.166 2.167
Entry Conditions Result
1 Pd(OAc),, diallyl carbonate, MeCN, RT, overnight trace
2 Pd,(dba)s, diallyl carbonate, MeCN, RT, overnight trace
3 Pd(OAc),, MeCN, RT, overnight trace
4 Pd(OAc),, 2,6-di-tBu-py, MeCN, RT 29%
5 PhSeCl, DCM, -78 °C to 0 °C, then H,0,, DCM, 0 °C 76%
6 PhSeCl, DCM, -78 °C to 0 °C, then mCPBA, DCM, 0 °C 44%
7 PhSeCl, 2,6-di-tBu-py, DCM, -78 °C to 0 °C, then mCPBA, DCM, 0 °C 31%

With enone 2.167 in hand, we planned to methylation of enone 2.167 to give tertiary alcohol
2.168, followed by hydroboration-elimination to install oxygen on C4. However, methylation of
ketone 2.167 delivered alcohol 2.169, instead of alcohol 2.168 (Scheme 2.37), since ester in
compound 2.167 is less sterically hindered than ketone. We then protected enone 2.167 by glycol,
and tried hydroboration-oxidation of ketal 2.170 (Table 2.59). Unfortunately, no desired product

alcohol 2.171 was observed after several trials.
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Scheme 2.37. Methylation of Protection of Enone 2.167.
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Table 2.59. Attemps on Hydroboration-Oxidation of Ketal 2.167.

CO,Et CO,Et
Me Me
H conditions H
—
o o OH
P P H
2170 2171
Entry Conditions Result
1 BH5 THF (3 equiv.), THF, then NaBOj, H,O decomposed
2 BH3 THF (1 equiv.), THF, then NaBO3, H,0O decomposed
3 BH3-DMS (0.5 equiv.), THF, then NaBO3, H,O decomposed
4 9-BBN (1.5 equiv.), THF, then NaBO3, H,O no reaction

Like ketone 2.99, ketone 2.135 could also be oxidized to enone. However, our previous
optimized condition suffered from low reaction rate and moderate conversion. After condition
screening (Table 2.60), we found that using in-situ generated trimethylsilyl iodide with HMDS as

base gave enone 2.173 in 87% yield within 12 h (entry 7, Table 2.60).

108



Table 2.60. Desaturation of Ketone 2.135.

Me Me

Me PhSeCl
conditions DCM
H _— H _— H
then H202
O TMSO DCM, 78% e}
2.135 2.172 2173
Entry Conditions Result

1 TBAI. TMSCI, DBU, DCM 68%

2 TBAI. TMSCI, DBU, THF low conversion

3 TMSOTf, DBU, DCM n.d.

4 TMSCI, Nal, HMDS, MeCN 65%

5 TMSCI, Nal, DBU, MeCN 55%

6 TMSCI, Nal, NEt3, MeCN low conversion

7 TMSCI, Nal, HMDS, MeCN 87%

Although selenoxide elimination of ketone 2.135 delivered enol 2.173 in good yield, this
transformation needed 3 steps. In the recent years, many methods to desaturate linear or cyclic
ketone have been developed. However, in most cases the a-carbon of ketone was secondary instead
of tertiary. The tertiary a-carbon in ketone 2.135 prevented interactions between substrate and
reagent, which made one-step desaturation of ketone 2.135 to be pretty challenged. IBX
dehydrogenation of ketone (entry 1, Table 2.61),*! one-step selenium oxide elimination (entry 2,
Table 2.61)* as well as bromination/elimination (entry 3-4, Table 2.61)* did not work on ketone
2.135. To our surprise, palladium catalyzed Stahl oxidation** of ketone 2.135 delivered enone

2.173 in 8% yield (entry 7, Table 2.61).
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Table 2.61. One-Step Desaturation of Ketone 2.135.

Me Me

H% conditions H%
© (e}
2.135 2,173
Entry Conditions Results
1 IBX, toluene/DMSO, 75 °C decomposed
2 PhSeCl, EA, then NaHCO3, H,0, n.d.
3 NBS, CCly, reflux, then aniline, RT decomposed
4 CuBr,, EA, CHCIj, reflux n.d.
5 Pd(OAc),, Ag,CO3, O,, DMSO n.r.
6 Pd(TFA)»(DMSO),, O, AcOH, 80 °C n.d.
7 Pd(OAc),, O,, DMSO, 80 °C 8% (69% SM)

We then tried to optimize Stahl oxidation (Table 2.62). TFA was found to be a crucial additive
for this reaction,* which increased the yield from 8% to 12% (entry 2, Table 2.62). We proposed
that TFA could facilitate enolization of ketone 2.135. Catalysts (entry 4-5, Table 2.62), other
additives (entry 6-7, Table 2.62) and ligands*® (entry 8-11, Table 2.62) were also screened, but not
fruitful. Increasing palladium catalyst loading to 20 mol% increased the yield to 21% (entry 12,
Table 2.62), but further raising the palladium catalyst loading to 100 mol% did not significantly
increase the yield (entry 13, Table 2.62). Other catalyst loading, temperature and reaction time
were also examined (Table 2.63). Finally, we found that 60 °C is the best temperature for this
reaction, which delivered enone 2.173 in 42% NMR vyield (38% isolated yield) using 30 mol%

palladium acetate as catalyst (entry 7 & 9, Table 2.63).
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Table 2.62. Optimization on Stahl Oxidation of Ketone 2.135 (Part I).

Me Me
O, (1 atm)
H DMSO, 80 °C, 12 h H
© (o)
2.135 2173
Entry Catalyst Ligand Additives Concentration yield
1 ﬁgg’;@)z E}g mg:z//zg / / DMSO (0.05 M) 7% (45% SM)
2 Pd(OAc), (10 mol%) / TFA (1 equiv) DMSO (0.05 M) 12% (73% SM)
3 Pd(OAc), (20 mol%) / TFA (3 equiv) DMSO (0.05 M) 14% (41% SM)
4 Pd(TFA), (20 mol%) / TFA (1 equiv) DMSO (0.05 M) 17% (50% SM)
5  Pd(OPiv), (20 mol%) / TFA (1 equiv) DMSO (0.05 M) N.D.
6 Pd(OAc);, (20 mol%) / PTSA (1 equiv) DMSO (0.05 M) 17% (34% SM)
7 Pd(OAc), (20 mol%) / TMSOTf (1 equiv)  DMSO (0.05 M) N.D.
8 Pd(TFA), (10 mol%)  2.174 (20 mol%) / DMSO (0.1 M) 6% (78% SM)
9 Pd(TFA), (20 mol%)  2.174 (20 mol%) / DMSO (0.05 M) 15% (61% SM)
10  Pd(TFA), (20 mol%)  2.174 (20 mol%)  TFA (1 equiv) DMSO (0.05 M) 14% (49% SM)
11 Pd(TFA), (20 mol%)  2.174 (20 mol%) / DMSO (0.2 M) 13% (73% SM)
12 Pd(OAc), (20 mol%) / TFA (1 equiv) DMSO (0.2 M) 21% (66% SM)
13 Pd(OAc), (1 equiv) / TFA (1 equiv) DMSO (0.05 M) 23% (33% SM)

Table 2.63. Optimization on Stahl Oxidation of Ketone 2.135 (Part I1).

O, (1 atm)
Me Pd(OAc), Me
TFA (1 equiv)
H H
DMSO
(o}
O
2.135 2173
Entry Catalyst loading Temperature Concentration Time yield
1 Pd(OAc), (20 mol%*4) 80 °C 0.05M 24 h 25% (25% SM)
2 Pd(OAc), (20 mol%) 60 °C 0.05M 24 h 28% (46% SM)
3 Pd(OAc), (20 mol%) 40 °C 0.05 M 24 h 7% (52% SM)
4 Pd(OAc), (30 mol%) 60 °C 0.05M 24 h 40% (34% SM)
5 Pd(OAc), (50 mol%) 60 °C 0.05M 24 h 36% (26% SM)
6 Pd(OAc), (30 mol%) 60 °C 0.05M 48 h 37% (31% SM)
7 Pd(OAc), (30 mol%) 60 °C 02M 24 h 42% (31% SM)
8 Pd(OAc), (30 mol%) 60 °C 0.2M 6h 35% (51% SM)
9 Pd(OAc), (30 mol%) 60 °C 02M 24 h 38% (15% SM, isolated yield)
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NHC-catalyzed p-silylation of enone 2.173 delivered ketone 2.175 in 29% yield (entry 1,
Table 2.64).*" the configuration of ketone 2.175 was confirmed by nOe analysis. Other silylation
methods were also tested,*® and copper catalyzed conjugated addition of PhMe,SiLi gave 80%
yield of ketone 2.175 (entry 4, Table 2.64).* However, methylation of ketone 2.175 was failed
under several typical conditions (Table 2.65), maybe due to the extra steric hinderance caused by

the huge silyl group.

Table 2.64. Silylation of Enone 2.173.

Me Me
conditions noe
H% D H 4 (J=9.1Hz)
© o173 Mezpasi“‘" noe
’ 2.175
Entry Conditions Results
1 DBU, PhMe,SiB(pin), SIMes-HCI, THF/H,0 29% (50% SM)
2 PhMe,SiB(pin), CuSOy, 4-picoline, H,O messy
3 Li, PhMe,SiCl, Et,Zn, THF low conversion
4 Li, PhMe,SiCl, CuCN, THF 80%
Table 2.65. Meylation of Ketone 2.175.
Me Me
H conditions H
o HO
Me,PhSi™ ~H Me,PhSi™ ~H
2.175 2.176
Entry Conditions Results
1 MelLi (1.5 equiv), THF, -78 °C low conversion
2 MeLi (1.5 equiv), THF, 0 °C messy
3 MelLi (3 equiv), THF, -78 °C n.d.
4 MeMgBr (3 equiv), THF, 0 °C n.d.

Due to the failure of methylation of ketone 2.175, we tried to oxidize f-silyl ketone 2.175 to

fS-hydroxyl ketone 2.177 firstly, which could make the carbonyl group to be less sterically hindered

(Scheme 2.38). Fleming-Tamao oxidation of ketone 2.175 successfully furnished ketone 2.177 in
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11% yield. Using LaCls as a chelating reagent, methylation of ketone 2.177 was achieved to give

diol 2.178 in 46% yield and as a single diastereomer under 2 mg scale.

Scheme 2.38. Oxidation of Ketone 2.175 and Methylation of Ketone 2.177.

Me

HBF 4*Et,0 LaClg+2LiCl
H DCM H then MeMgBr H ”
d then KF, KHCO3, H,0, THF Me H
Me,Phsi® “H MeOH/THF o' Sy 46% (2 mg scale) OH OH
1%
2.175 2177 2.178

At this stage, we have proved that diol 2.178 could be obtained from ketone 2.177 (Scheme
2.38). However, Fleming-Tamao oxidation®® of ketone 2.175 only gave 11% yield. Thus, an
alternative method needed to be established to synthesize ketone 2.177 in high efficiency. Besides
1,4-silylation of enone, 1,4-boration of enone is also well established.’! We found that boration of
enone 2.173 followed by oxidation delivered ketone 2.177 in high yield and the same diastereo-
selectivity as silylation (Scheme 2.39). This approach could also be realized in one step.

Methylation®? of ketone 2.177 furnished diol 2.178 in 88% yield as a single diastereomer.

Scheme 2.39. Preparation of Diol through Hoveyda f-Boration.

Bapin, Me

Me CuCl Me
IMes*HBF, LaClye2LiCl
’ NaOtBu H NaBO3 then MeMgBr  H
THF o\ THF/H,0 THF Me H
0 89% (pin)B*" TH 85% 88% OH OH
2173 2179 2178
B,pin,,CuCl
IMes+HBF,, NaOtBu
then NaBO3
THF/H,0

59%

However, oxidation of diol 2.178 was challenged, since B-hydroxyl ketone 2.134 was easy to

undergo dehydration to give enone 2.181. IBX oxidation with DMSO as solvent (entry 1, Table
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2.66) and DMP oxidation (entry 2, Table 2.66) only gave elimination product. Ley oxidation
delivered desired ketone 2.134, but the conversion of this reaction is low (entry 3, Table 2.66).

Finally, we found IBX oxidation in ethyl acetate® afforded ketone 2.134 in 67% yield (entry 4,

Table 2.66).

Table 2.66. Oxidation of Diol 2.178.

Me Me
H conditions H g
oo [/
Me Me 5
OH OH OH o)
2178 2134
Entry Conditions Results
1 IBX, DMSO, 90 °C 2.180 + 2.181
2 DMP, NaHCO3, DCM, RT 2.181 + 2.182
3 TPAP, NMO, DCM, RT 2134 + 2178
4 IBX, EA, 80 °C 93% 2.134
Me Me Me
Me 0 Me 0 Me o)
2.180 2.181 2.182

With ketone 2.134 in hand, we tried to synthesize enone 2.185 through Saegusa oxidation,
which used silyl enol ether 2.183 as an intermediate. Different bases were tested to prepare silyl
enol ether 2.183 (Table 2.67). However, silyl enol ether 2.183 was only formed in good selectivity
when LDA was used as base (entry 1, Table 2.67). And the condition delivered enol ether 2.183 in
28% yield with 35% starting material recovery. Other strong base, such as LIHMDS (entry 2-3,
Table 2.67), NaHMDS (entry 4, Table 2.67) and KHMDS (entry 5, Table 2.67), either gave poor
selectivity between enol ether 2.183 and 2.184, or only delivered enol ether 2.184. The following

Saegusa oxidation of enol ether 2.183 worked smoothly to deliver enone 2.185 in 99% yield
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(Scheme 2.40). In contrast, Saegusa oxidation of silyl enol ether 2.184 gave very low conversion,

which may due to the high steric hinderance caused by TMS protected tertiary alcohol.

Table 2.67. Preparation of Silyl Enol Ether 2.183.

Me Me Me
H g conditions H& . H&
Me Me Me
OH © OH  OTMS OTMS OTMS
2.134 2.183 2.184
Entry Conditions Results
1 "BuLi, DIPA (distilled), THF, then TMSCI, -78 °C 28% 2.183 + 35% 2.134
2 LHMDS, THF, then TMSCI, -78 °C low conversion
3 LHMDS, THF, then TMSCI, 0 °C only 2.184
4 NaHMDS, THF, then TMSCI, -78 °C 2.134 + 2.183 + 2.184
5 KHMDS, THF, then TMSCI, -78 °C 2.183 (minor) + 2.184 (major)

Scheme 2.40. Saegusa Oxidation of Silyl Enol Ether 2.183 and 2.184.

Me Me
Pd(OAc),
H 2,6-di-tBu-py H
MeCN
Me 99% Me
OH OTMS o o Y
2.183 2.185
Me Me
Pd(OAc),
H 2,6-di-tBu-py H
M MeCN
OTMS OTMS low conversion Me Srws B
2.184 2186

The two-step sequence to desaturate ketone 2.134 suffered from the low efficiency to form
silyl enol ether 2.183. Thus, we then moved to one-step desaturation of ketone 2.134, which is
highly challenged due to the presence of labile p-hydroxy group. We tested Ming’s
dehydrogenation (entry 1-5 Table 2.68),°* Stahl’s dehydrogenation (entry 6-7, Table 2.68),*
Newhouse’s dehydrogenation (entry 8-9, Table 2.68),°> Nicolaou-Baran’s hypervalent iodine

(entry 10-11, Table 2.68),*'®4!* one-pot Saegusa oxidation (entry 12-13, Table 2.68) and one-pot
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selenoxide elimination (entry 14, Table 2.68).® However, none of them gave the desired product.
Eventually, using Mukaiyama’s one-pot desaturation method®’ with N-zert-butyl
phenylsulfinimidoyl chloride (2.187) as desaturation reagent delivered enone 2.185 in 51% yield
without the need to protect C6 alcohol (entry 15, Table 2.68). The choice of base proved to be
crucial in this reaction. Other lithium strong base such as LIHMDS and LiTMP gave much lower

yield (entry 16-17, Table 2.68).

Table 2.68. One-Step Desaturation of Ketone 2.134.

Me Me
conditions C\;I
H T . H tBu\N//S\Ph
Me OH © Me OH ©O 2.187
2134 2185
Entry Conditions Results
1 Pt(COD)(TFA),, BQ, BaO, PhCl, 80 °C n.d.
2 Pt(COD)Cl,, AgTFA, DAC, Bu,BOTf, DIPEA, toluene n.d.
3 CuTC, CyPPh,, DTBP, benzene, 80 °C n.d.
4 Pt(COD)TFA,, DAC, Bu,BOTf, DIPEA, toluene n.d.
5 Pd(TFA),, DAC, Bu,BOTf, DIPEA, toluene,50 °C n.d.
6 Pd(TFA),, O,, DMSO, 80 °C n.d.
7 Pd(OAc),, Cu(OAc),, O,, DMSO, 40 °C n.d.
8 LiTMP, ZnCl,, [Pd(allyl)Cl],, allylOPiv, THF n.r.
9 LDA, ZnCly, [Pd(allyl)Cl],, allylOAc, THF n.d.
10 IBX, MPO, DMSO, rt n.r.
1 HIO3;, DMSO, 80 °C n.d.
12 TMSOTf, PMP, DCM, then Pd(OAc),, MeCN n.d.
13 Bu,BOTf, 2,6-di-tBu-py, Pd(OAc),, MeCN n.d.
14 LDA, PhSeBr, NalO,4, THF n.d.
15 LDA, then 2.187, -78 °C 51%
16 LHMDS, then 2.187, -78 °C trace
17 LiTMP, then 2.187, -78 °C 1%

We then moved to investigate conjugated methylation of enone 2.185. However, typical
copper catalyzed or mediated methylation didn’t give any desired product (entry 1-3, Table 2.69).

Comparing with copper, nickel-mediated conjugated methylation>® give desired ketone 2.188 in
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52% yield, albeit in low diastereoselectivity (entry 6, Table 2.69). Later, we found that
diastereoselective conjugated methylation of enone 2.185 was achieved when treated by

59
5

stoichiometric amount of CuBr-SMe, and methyl Grignard reagent,”” which only generated

convex-face methylation product ketone 2.188 (entry 9, Table 2.69).

Table 2.69. Conjugated Methylation of Enone 2.185.

Me Me

H 2 conditions ’ e

Me OH 04 Me 1 4

0]
2.185 2.188
Entry Conditions Result

1 MeLi, CuBreSMe,, Et,O n.r.
2 MelLi, Cul, Et,0 n.r.
3 MeMgBr, CuBreSMe,, THF/HMPA, -40 °C to 0 °C decomposed
4 AlMeg, Ni(acac), (0.2 equiv), THF low conversion
5 AlMeg, Ni(acac), (0.5 equiv), THF low conversion
6 AlMeg, Ni(acac), (1 equiv), THF 52% (d.r. =1.6:1)
7 AlMej3, Cu(OTf), (0.2 equiv), toluene elimination
8 MeLi, ZnBr,, Ni(acac), (0.5 equiv), THF n.d
9 CuBreSMe,, MeMgBr, THF, -78 °C to 0 °C 60% (d.r. > 20:1)

In the end game, an alcohol directed syn-reduction® of ketone 2.188 by NMes-BH(OAc);
delivered penicibilaene A (2.1) in 88% yield (Scheme 2.41). Penicibiaene B (2.2) can be further
prepared from penicibilaene A in good yield via a chemo-selective acylation of the secondary

alcohol.

Scheme 2.41. Synthesis of Penicibilaenes A and B.

Me Me Me
Me ™M NMeyBHOAS, | Me ™M A;;%EL\MP ] Me
H AcOH/MeCN G OH ~  pem Ve OAc
w1 89% ook 88% OH 1
2.188 penicibilaene A (2.1) penicibilaene B (2.2)
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2.5. Conclusion

In summary, we have described the first total synthesis of penicibilaenes A (2.1) and B (2.2)
in 13 and 14 steps, respectively, in the longest linear sequence from commercially available starting
materials. The synthesis features a deconstructive formation of the tricyclic skeleton via C—C
activation of cyclobutanones and the use of carbonyl desaturation relay to replace f-C—H bonds
with the desired functional groups. Such a “C—C/C—H” approach may inspire alternative bond-
disconnecting strategies for natural product syntheses. In addition, the discovery of a new linker
system and a Lewis acid effect in the Rh-catalyzed “cut-and-sew” reaction between
cyclobutanones and bulky alkenes could have broader implications on preparing other all-carbon

bridged/fused rings.

(Some contents of this chapter were published in J. Am. Chem. Soc. 2021, DOI:

10.1021/jacs.1c04335)

2.6. Experimental

2.6.1 General Information

Unless noted otherwise, all solvents were dried by filtration through a Pure-Solv MD-5
Solvent Purification System (Innovative Technology), all reactions were carried out under nitrogen
atmosphere, all commercially available substrates were used without further purification. Thin
layer chromatography (TLC) analysis was run on silica gel plates purchased from EMD Chemical
(silica gel 60, F254). Infrared spectrum was recorded on a Nicolet iS5 FT-IR Spectrometer.

Samples were scanned as neat liquids or dissolved in dichloromethane on potassium bromide (KBr)
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salt plates. Frequencies were reported in reciprocal centimeters (cm™'). High-resolution mass
spectra (HRMS) were obtained on an Agilent 6224 TOF-MS spectrometer and were reported for
the molecular ion [M]*, [M+Na]*, or [M+H]". Nuclear magnetic resonance (NMR) spectrum ('H
NMR and *C NMR) were recorded with a 400 MHz Bruker Avance-II1I-HD nanobay spectrometer
equipped with a BBFO SmartProbe (400 MHz for 'H, 101 MHz for '3C) or a 500 MHz Bruker
Avance-III spectrometer equipped with a 'H (1*C,*'P) TXI probe (500 MHz for 'H, 126 MHz for
13C). For CDCls solutions, the chemical shifts were reported as parts per million (ppm) referenced
to residual protium or carbon of the solvents: CHCl3 6 H (7.26 ppm) and CDCl3 & C (77.00 ppm).
For actone-D6 solutions, the chemical shifts were reported as parts per million (ppm) referenced
to residual protium or carbon of the solvents: acetone-D6 & H (2.05 ppm) and acetone-D6 & C
(29.84 ppm). Coupling constants were reported in Hertz (Hz). Data for 'H NMR spectra were
reported as following: chemical shift (3, ppm), multiplicity (br = broad, s = singlet, d = doublet, t
= triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of

doublets, m = multiplet), coupling constant (Hz), and integration.

2.6.2 Experimental Procedure and Characterization Data

Synthesis of compound 2.20

= Ac,0, py., DMAP =
= OH 79% = OAc

212 2.20

To a solution of compound 2.12 (200 mg, 2.04 mmol) in DCM (10 mL) was added pyridine (250
pL, 3.06 mmol), Ac,O (230 puL, 2.45 mmol) and DMAP (25 mg, 0.20 mmol). After stirring at room

temperature for 2 h, the reaction mixture was quenched by sat. NH4Cl, extracted by DCM. The
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organic phase was dried with NaxSO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel, hexane:EA = 15:1 to 10:1) to give compound 2.20

(227.1 mg, 79% yield) as a colorless oil.
Ry= 0.6 (hexane:EA =4:1)

H NMR (500 MHz, Chloroform-d) § 6.75 (ddd, J = 17.2, 10.8, 0.9 Hz, 1H), 5.52 (t, ] = 7.3 Hz,
1H), 5.33 (dt, J = 17.2, 1.0 Hz, 1H), 5.22 (dt, J = 10.8, 1.6 Hz, 1H), 4.72 (dd, J = 7.3, 1.1 Hz, 2H),

2.06 (s, 3H), 1.88 (q, ] = 1.1 Hz, 3H).

Synthesis of compound 2.22

Zn(Cu) =
= CCl,COCI o OAc
 oAc Et,0 o
2.20 50% 2.22

(84% BRSM) o)

To a solution of compound 2.20 (50 mg, 0.36 mmol) in Et2O (4 mL) was added Zn(Cu) (71 mg,
1.08 mmol), CCI3COCI (100 pL, 0.9 mmol). After sonicating at room temperature for 1 h, the
reaction mixture was quenched by saturated NaHCO3 solution, then filtered through Celite,
extracted by Et,O. The organic phase was dried with Na>SO4 and concentrated under reduced
pressure. The residue was purified by column chromatography (silica gel, hexane:EA = 15:1 to
10:1) to give the substrate 2.20 (14.0 mg) and compound 2.22 (36.2 mg, 40% yield, 56% BRSM)

as yellow oil.

Ry=0.3 (hexane:EA =4:1)
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H NMR (500 MHz, Chloroform-d) § 5.85 (ddt, J = 8.6, 5.6, 1.5 Hz, 1H), 4.90 — 4.80 (m, 1H),
4.52 (ddg, J = 13.0, 5.6, 1.5 Hz, 1H), 4.09 (t, ] = 9.9 Hz, 1H), 3.54 — 3.39 (m, 2H), 2.07 (s, 3H),

1.86 (d, ] = 1.6 Hz, 3H).

Synthesis of compound 2.16

2.22

= Z
cl OAc  zn, NH,CI OAc
—_—
cl MeOH
75%
(6] ° o)
2.16

To a solution of compound 2.22 (10.6 g, 42.4 mmol) in MeOH (440 mL, 0.1 M) was added NH4Cl
(22.5 g, 420 mmol) and Zn(Cu) powder (13.8 g, 210 mmol). After stirring at room temperature for
1 h, the reaction mixture was filtered through Celite. The organic phase was concentrated under
reduced pressure. The residue was dilute in water and extracted by DCM. The organic phase was
dried by Na>SO4 and concentrated under reduced pressure. The residue was purified by column
chromatography (silica gel, hexane:EA = 20:1 to 10:1) to give the compound 2.16 (5.77 g, 75%

yield) as colorless oil.
Ry= 0.4 (hexane:EA = 2:1)

IH NMR (500 MHz, Chloroform-d) 8 5.49 (tq,J = 7.1, 1.3 Hz, 1H), 4.62 (dd, J = 7.3, 1.0 Hz, 2H),

3.62 —3.53 (m, 1H), 3.25 — 3.06 (m, 4H), 2.05 (s, 2H), 1.84 (q, J = 1.1 Hz, 3H).

Synthesis of compound 2.6
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TBSO = =
Pd(dba
SnBus OAc _ Pd(dba), OTBS
51%
2.15

0 2.16 o 26

A flame dried flask was charged with LiCl (35 mg, 0.81 mmol), compound 2.15 (200 mg, 0.41
mmol), compound 2.16 (50 mg, 0.27 mmol), DMF (3 mL) and Pd(dba), (16 mg, 0.027 mmol).
The reaction mixture was degassed for 10 min with nitrogen buddle. After stirring at 70 °C for 2
h, the reaction mixture was quenched by water and extracted by ether. The organic phase was
washed by brine, dried by Na>xSO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel, hexane:EA = 100:1 to 50:1) to give the compound

2.6 (45.0 mg, 52% yield) as colorless oil.
Ry= 0.4 (hexane:EA =4:1)

IH NMR (500 MHz, Chloroform-d) & 5.34 (ddt, ] = 8.7, 7.3, 1.3 Hz, 1H), 4.73 (ddd, J = 7.0, 2.0,
1.0 Hz, 2H), 3.62 (t, ] = 6.5 Hz, 2H), 3.17 — 2.96 (m, 5H), 2.77 (d, J = 7.3 Hz, 2H), 2.09 — 2.03 (m,

2H), 1.70 — 1.68 (m, 3H), 1.68 — 1.63 (m, 2H), 0.89 (s, 9H), 0.05 (s, 6H).

I3C NMR (101 MHz, CDCls) § 207.2, 148.3, 136.6, 125.3, 122.3, 109.5, 63.0, 51.2, 34.9, 34.7,

32.5,31.4,31.1,26.1,24.3, 18.8, 18.5, 14.3, -5.1.

Synthesis of compound 2.24

oTBs —MCPBA OTBS

65%
2.6 o 224
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To a solution of compound 2.6 (45 mg, 0.14 mmol) in DCM (3 mL) was added mCPBA (34 mg,
0.20 mmol) at —10 °C. After stirring at —10 °C for 30 min, the reaction mixture was quenched by
NaHCOs (sat. in H>O) and Na»S,03 (sat. in H>O) and extracted by DCM. The organic phase was
washed by brine, dried by Na>SO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel, hexane:EA = 50:1 to 20:1) to give the compound

2.24 (30.7 mg, 65% yield) as colorless oil.

Ry=0.3 (hexane:EA = 4:1)

'TH NMR (500 MHz, Chloroform-d) & 4.86 (s, 1H), 4.82 (s, 1H), 3.63 (t, J = 6.4 Hz, 2H), 3.08 —
3.04 (m, 2H), 2.87 — 2.78 (m, 3H), 2.70 (p, J = 8.0 Hz, 1H), 2.38 (dd, J = 15.6, 6.3 Hz, 1H), 2.25
(dd, J =15.6, 6.2 Hz, 1H), 2.15 — 2.10 (m, 2H), 1.72 — 1.64 (m, 2H), 1.35 (s, 3H), 0.89 (s, 9H),

0.05 (s, 6H).

13C NMR (101 MHz, CDCI3) & 205.55, 145.73, 111.15, 62.75, 59.96, 49.05, 46.75, 35.33, 33.05,

30.98, 29.27, 26.10, 15.99, -5.13.

Synthesis of compound 2.27

OTBS [Rh(C2Hy4),Cll,, dppp | 0

3-methyl-2-aminopyridine (1 equiv.) OTBS

5 224 1,4-dioxane, 150 °C 227

A flame dried vial was charged with [Rh(C2H4)2Cl]2 (1.2 mg, 0.003 mmol), dppp (2.7 mg, 0.0066
mmol), 3-methyl-2-amino-pyridine (3.2 mg, 0.03 mmol), compound 2.24 (10 mg, 0.03 mmol) and

dioxane (0.5 mL) in glove box. Then the vial was sealed and removed from glovebox. The reaction
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was stirred at 150 °C overnight, before cooled to room temperature. Then the solvent was removed
under reduced pressure. The residue was purified by column chromatography (silica gel) to give

the compound 2.27 as colorless oil.

'H NMR (500 MHz, Chloroform-d) & 5.75 (q, J = 1.4 Hz, 1H), 4.91 — 4.88 (m, 2H), 4.52 (td, J =
7.2,3.0 Hz, 1H), 3.62 (t, ] = 6.3 Hz, 2H), 2.55 (dd, J = 14.5, 7.1 Hz, 1H), 2.33 (dd, ] = 14.6, 7.3
Hz, 1H), 2.17 - 2.07 (m, 3H), 1.99 (d, J = 1.4 Hz, 3H), 1.72 — 1.62 (m, 2H), 1.07 (d, J = 7.1 Hz,

3H), 0.89 (s, 9H), 0.04 (s, 6H).

I3C NMR (101 MHz, CDCI3) 6 163.89, 144.02, 115.86, 112.98, 78.06, 62.65, 38.02, 36.82, 32.26,

30.97, 26.09, 21.59, 18.47, 10.61, -5.14.

Synthesis of compound 2.31

PTSA, HC(OMe);

OTBS OH
MeOH

99%
2.6 MeO™ OMe 2-31

To a solution of compound 2.6 (400 mg, 1.24 mmol) in MeOH (12 mL) was added HC(OMe); (0.4
mL, 3.7 mmol) and PTSA (23 mg, 0.12 mmol). After stirring at room temperature for 3 h, the
reaction mixture was concentrated under reduced pressure. The residue was then diluted by DCM,
quenched by NaHCOs (saturated in H>O) and extracted by DCM. The organic phase was dried by
Na»S04 and concentrated under reduced pressure to give the crude compound 2.31 (327 mg, 1.29

mmol, 100% yield) as a colorless oil.

Ry=0.1 (hexane:EA = 4:1)
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H NMR (500 MHz, Chloroform-d) & 5.18 (tt, ] = 7.3, 1.6 Hz, 1H), 4.75 (s, 2H), 3.66 (q, J = 6.3
Hz, 2H), 3.18 (s, 3H), 3.14 (s, 3H), 2.74 (d, ] = 7.7 Hz, 2H), 2.67 — 2.62 (m, 1H), 2.37 — 2.30 (m,
2H), 2.09 (q, J = 8.8, 8.3 Hz, 2H), 1.95 (td, J = 9.4, 2.8 Hz, 2H), 1.77 — 1.68 (m, 2H), 1.59 (s, 3H),

1.39 (t, ] = 5.6 Hz, 1H).

Synthesis of compound 2.32

OH —'BDPSCI OTBDPS
99%

MeO” OMe 2-31 MeO OMe 2-32
To a solution of compound 2.31 (327 mg, 1.3 mmol) in DCM (8 mL) was added imidazole (140
mg, 2.0 mmol) and TBDPSCI (440 mg, 1.6 mmol). After stirring at room temperature overnight,
the reaction mixture was quenched by NH4Cl (saturated in H,O) and extracted by DCM. The
organic phase was dried by Na>xSO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel) to give the compound 2.32 (680.3 mg, 1.4 mmol,

100% yield) as colorless oil.

Ry= 0.6 (hexane:EA = 4:1)

'H NMR (500 MHz, Chloroform-d) § 7.69 (ddt, J = 24.3, 6.5, 1.6 Hz, 4H), 7.44 — 7.35 (m, 6H),
5.17 (tt, T = 7.3, 1.5 Hz, 1H), 4.73 — 4.66 (m, 2H), 3.67 (t, ] = 6.4 Hz, 2H), 3.19 (s, 3H), 3.13 (s,
3H), 2.70 (d, J = 7.4 Hz, 2H), 2.66 — 2.60 (m, 1H), 2.37 — 2.29 (m, 2H), 2.08 (q, ] = 6.9, 6.1 Hz,

2H), 1.94 (td, T = 9.4, 2.8 Hz, 2H), 1.74 — 1.67 (m, 2H), 1.56 (s, 3H), 1.05 (s, 9H).
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Synthesis of compound 2.33

OTBDPS ”‘(73%\3» OTBDPS
()

MeO  ‘OMe 2-32 MeO” "OMe
To a solution of compound 2.32 (680 mg, 1.38 mmol) in DCM (20 mL) was added mCPBA at —
20 °C. After stirring at —20 °C for 2 h, the reaction mixture was quenched by Na>S>O3 (saturated
in H>O) and NaHCOs (saturated in H»>O), extracted by DCM. The organic phase was washed by
NaHCOs (saturated in H20O), dried by Na>xSO4 and concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel) to give the compound 2.33 (517.7 mg,

74% yield) as colorless oil.

Ry=0.5 (hexane:EA = 4:1)

IH NMR (400 MHz, Chloroform-d) 8 7.69 (ddd, J = 20.9, 7.8, 1.7 Hz, 4H), 7.45 — 7.34 (m, 6H),
4.80 (s, 1H), 4.78 (s, 1H), 3.67 (t, J = 6.3 Hz, 2H), 3.16 (s, 3H), 3.11 (s, 3H), 2.77 (t, ] = 6.3 Hz,
1H), 2.36 — 2.22 (m, 3H), 2.20 — 2.10 (m, 3H), 2.06 — 1.90 (m, 2H), 1.82 — 1.67 (m, 3H), 1.21 (s,

3H), 1.05 (s, 9H).

Synthesis of compound 2.34

0 OH
LiAIH
OTBDPS ~ —————— OTBDPS
THF, reflux
2. 38%
MeO OMe 33 ’ MeO OMe 234
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To a solution of compound 2.33 (518 mg, 1.02 mmol) in THF (10 mL) was added LiAlIH4 (116
mg, 3.06 mmol) at 0 °C. After stirring at 70 °C for 3 h, the reaction mixture was quenched by EA,
then added water (120 uL), 15% NaOH (240 pL), water (360 pL) and filtered through Celite. The
organic phase was concentrate under reduced pressure. The residue was purified by column

chromatography (silica gel) to give the compound 2.34 (199.5 mg, 38% yield) as colorless oil.

Ry=0.3 (hexane:EA = 4:1)

'"H NMR (400 MHz, Chloroform-d) 8 7.69 — 7.63 (m, 4H), 7.46 —7.35 (m, 6H), 4.71 (s, 1H), 4.70
(s, 1H), 3.67 (t,J = 6.4 Hz, 2H), 3.18 (s, 3H), 3.14 (s, 3H), 2.20 — 1.99 (m, 11H), 1.74 — 1.64 (m,

3H), 1.57 (s, 3H), 1.05 (s, 9H).

Synthesis of compound 2.35

OH OH
PTSA
OTBDPS _ > OTBDPS
acetone
81%
MeO OMe 234 ° 0 2.35

To a solution of compound 2.34 (50 mg, 0.10 mmol) in acetone (2 mL) was added PTSA (2 mg,
0.010 mmol) at room temperature. After stirring at room temperature overnight, the reaction
mixture was concentrated under reduced pressure. The residue was diluted by DCM, quenched by
NaHCO:s (saturated in H>O) and extracted by DCM. The organic phase was dried by Na>SO4 and
concentrated under reduced pressure. The residue was purified by column chromatography (silica

gel) to give the compound 2.35 (37.1 mg, 81% yield) as colorless oil.

Ry= 0.3 (hexane:EA = 4:1)
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H NMR (400 MHz, Chloroform-d) & 7.70 — 7.63 (m, 4H), 7.46 — 7.34 (m, 6H), 4.74 (dd, ] = 4.7,
1.6 Hz, 2H), 3.68 (t, ] = 6.3 Hz, 2H), 3.17 — 3.06 (m, 2H), 2.97 — 2.81 (m, 2H), 2.42 (tt, ] = 8.7,

7.5 Hz, 1H), 2.10 (dt, J = 14.8, 7.1 Hz, 5H), 1.75 — 1.61 (m, 4H), 1.22 (s, 3H), 1.05 (s, 9H).

Synthesis of compound 2.36

OH oTMS
TMSOTf
oTBDPs = —2outidine OTBDPS
84%
2.35 2.36
o o)

To a solution of compound 2.35 (80 mg, 0.17 mmol) in DCM (3.5 mL) was added 2,6-lutidine (70
pL, 0.60 mmol) and TMSOTT (70 uL, 0.38 mmol) at 0 °C. After stirring at 0 °C for 20 min, the
reaction mixture was quenched by NaHCOs (saturated in H,O) and extracted by DCM. The organic
phase was dried by Na;SO4 and concentrated under reduced pressure. The residue was purified by
column chromatography (silica gel, hexane:EA = 20:1 to 10:1) to give the compound 2.36 (76.7

mg, 84% yield) as colorless oil.

Ry=0.7 (hexane:EA = 4:1)

'H NMR (400 MHz, Chloroform-d) § 7.69 — 7.64 (m, 4H), 7.44 — 7.34 (m, 6H), 4.72 — 4.69 (m,
2H), 3.67 (t, J = 6.3 Hz, 2H), 3.14 — 3.00 (m, 2H), 2.90 — 2.72 (m, 2H), 2.36 (tt, J = 8.4, 7.0 Hz,
1H), 2.13 —2.07 (m, 2H), 1.97 (t, J = 8.3 Hz, 2H), 1.74 — 1.61 (m, 4H), 1.23 (s, 3H), 1.05 (s, 9H),

0.12 (s, 9H).

13C NMR (101 MHz, CDCI3) 8 207.92, 149.36, 135.70, 134.13, 129.70, 127.75, 109.05, 75.65,
63.65,47.61,47.37,40.34, 33.26, 32.58, 31.52, 30.96, 27.00, 25.51, 19.37, 2.65.
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Synthesis of compound 2.38

0 EDCI, HOB, NEt, ©
MeNHOMe-HCI
o) DCM 0
0,
OH 84% /N‘OMe
Me
2.37 2.38

To a solution of compound 11(200 mg, 1.75 mmol) in DCM (9 mL) was added MeNHOMe-HCl
(170 mg, 1.75 mmol), HOBt-H>O (300 mg, 1.93 mmol), EDCI (370 mg, 1.93 mmol) and NEt3
(0.48 mL, 3.5 mmol) at room temperature. After stirring at RT for 10 h, the reaction mixture was
quenched by H>O and extracted by DCM. The organic phase was dried by Na>SOs4 and
concentrated under reduced pressure. The residue was purified by column chromatography (silica

gel, hexane:EA = 1:1) to give amide 2.38 (231.0 mg, 84% yield) as a colorless oil.

'TH NMR (400 MHz, Chloroform-d) 8 3.72 (s, 3H), 3.63 — 3.53 (m, 1H), 3.52 — 3.42 (m, 2H), 3.25

(s, 3H), 3.23 — 3.15 (m, 2H).

Synthesis of compound 2.39

o) OMe
OMe
lo) PTSA, HC(OMe); 0
MeOH
Me/N‘OMe 92% Me/N‘OMe
2.38 2.39

To a solution of compound 2.38 (2.75 g, 17.5 mmol) in MeOH (170 mL) was added HC(OMe)3

(5.8 mL, 52.5 mmol) and TsOH-H20 (330 mg, 1.75 mmol) at room temperature. After stirring at
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room temperature for 3 h, the reaction mixture was concentrated under reduced pressure. The
residue was diluted by DCM, quenched by NaHCO3 (saturated in H,O) and extracted by DCM.
The organic phase was dried by Na>xSO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel, hexane:EA = 1:1) to give ketal 2.39 (3.27 g, 92%

yield) as a colorless oil.

H NMR (400 MHz, Chloroform-d) & 3.66 (s, 3H), 3.19 (s, 3H), 3.19 (s, 3H), 3.14 — 3.17 (m, 4H),

2.40 (s, 2H), 2.38 (s, 2H).

Synthesis of compound 2.40

0
tBuLi /\ HO
N "otss v\ﬂ/\/\oms
| 78 °C to RT
2.19 48% 2.40

To a solution of compound 2.19 (1.0 g, 3.1 mmol) in THF (30 mL) was added /BuLi (1.7 M in
pentane, 4 mL, 6.7 mmol) at =78 °C. After stirring at —78 °C for 30 min, the reaction mixture was
added ethylene oxide (1.2 M in hexane, 5.2 mL, 6.2 mmol) at —78 °C. After stirring at room
temperature for 1 h, the reaction mixture was quenched by saturated NH4Cl and extracted by EA.
The organic phase was dried by Na>xSO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel, hexane:EA = 10:1) to give alcohol 2.40 (0.36 g,

48% yield) as a colorless oil.

Rr= 0.4 (hexane:EA =2:1)
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'H NMR (500 MHz, Chloroform-d) & 4.88 (g, J = 1.6 Hz, 1H), 4.85 — 4.81 (m, 1H), 3.72 (q, J =
6.1 Hz, 2H), 3.62 (t, J = 6.4 Hz, 2H), 2.31 (td, J = 6.3, 1.2 Hz, 2H), 2.09 (t, J = 7.8 Hz, 2H), 1.71

~ 1.63 (m, 2H), 1.48 (t, J = 5.9 Hz, 1H), 0.89 (s, 9H), 0.05 (s, 6H).

Synthesis of compound 2.41

I, PPh3
HO imi
\/\H/\/\OTBS M, I\/\”/\/\OTBS
74%
2.40 2.41

To a solution of PPh3 (130 mg, 0.49 mmol) in DCM (3 mL) was added I (135 mg, 0.53 mmol).
After stirring at room temperature for 30 min, the reaction mixture was added imidazole (36 mg,
0.53 mmol) and compound 2.40 (100 mg, 0.41 mmol) in DCM (1 mL) at 0 °C. After stirring at
room temperature for 3 h, the reaction mixture was flashed through silica gel (hexane:EA = 10:1)
and quenched by saturated Na,S,0;3. The organic phase was concentrated under reduced pressure

to give compound 2.41 (145.8 mg, 74% yield) as a colorless oil.

Rr=0.9 (hexane:EA =2:1)

H NMR (400 MHz, Chloroform-d) & 4.87 (s, 1H), 4.79 (s, 1H), 3.61 (t, J = 6.3 Hz, 2H), 3.25 (t,
J=17.7 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 2.07 (t, J = 7.9 Hz, 2H), 1.69 — 1.60 (m, 2H), 0.89 (s,

9H), 0.05 (s, 6H).

Synthesis of compound 2.42

131



OMe
OMe

o 2.39
N‘OMe

[ i Me
\/\n/\/\OTBS Buli Ve oTBS
86%

2.41

MeO~ OMe 2:42

To a solution of compound 2.41 (550 mg, 1.15 mmol) in Et2O (8 mL) was added /BuLi (1.7 M in
pentane, 1.4 mL, 2.4 mmol) at =78 °C. After stirring at —78 °C for 30 min, the reaction mixture
was added compound 2.39 (260 mg, 1.26 mmol) in Et;0 (2 mL) at =78 °C. After stirring at =78 °C
for 10 min, the reaction mixture was warmed to room temperature slowly. After stirring at room
temperature for 10 h, the reaction mixture was quenched by NH4Cl (saturated in H>O) and
extracted by Et2O. The organic phase was dried by Na>SO4 and concentrated under reduced
pressure. The residue was purified by column chromatography (silica gel, hexane:EA = 20:1) to

give ketone 2.42 (367.0 mg, 86% yield) as a colorless oil.

Ry= 0.5 (hexane:EA = 4:1)

TH NMR (400 MHz, Chloroform-d) & 4.74 (s, 1H), 4.68 (s, 1H), 3.60 (t, J= 6.4 Hz, 2H), 3.17 (s,
3H), 3.13 (s, 3H), 2.98 (p, /= 8.6 Hz, 1H), 2.58 — 2.53 (m, 2H), 2.38 — 2.26 (m, 6H), 2.08 — 2.03

(m, 2H), 1.69 — 1.60 (m, 2H), 0.89 (s, 9H), 0.04 (s, 6H).

Synthesis of compound 2.43

OH
MeLi
OTBS OTBS
71% (brsm 92%)

MeO OMe 2.42 MeO OMe 2.43
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To a solution of compound 2.42 (370 mg, 1.0 mmol) in THF (10 mL) was added MeLi (1.6 M in
Et,0, 0.75 mL, 1.2 mmol) at =78 °C. After stirring at =78 °C for 30 min, the reaction mixture was
quenched by saturated NH4ClI and extracted by Et>O. The organic phase was dried by NaSO4 and
concentrated under reduced pressure. The residue was purified by column chromatography (silica
gel, hexane:EA =10:1) to recover compound 2.42 (84.8 mg) and give alcohol 2.43 (275.0 mg, 71%

yield, 92% BRSM) as a colorless oil.

Ry= 0.4 (hexane:EA = 2:1)

'H NMR (500 MHz, Chloroform-d) & 4.72 (d, J = 4.5 Hz, 2H), 3.61 (t, J = 6.5 Hz, 2H), 3.18 (s,
3H), 3.14 (s, 3H), 2.18 — 2.12 (m, 4H), 2.09 — 2.03 (m, 6H), 1.68 — 1.62 (m, 2H), 1.46 (ddd, J =

13.6, 11.3, 5.8 Hz, 2H), 1.10 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H).

Synthesis of compound 2.44

OH OH
OTBS 1 MHCI OH
THF
75% (brsm 89%)
MeO OMe 2.43 0 2.44

To a solution of compound 2.43 (275 mg, 0.71 mmol) in THF (6 mL) was added HCI (1 M in H>O,
2 mL). After stirring at room temperature for 1 h, the reaction mixture was quenched by NaHCO3
(saturated in H>O) and extracted by EA. The organic phase was dried by Na>SO4 and concentrated

under reduced pressure to give diol 2.44 (121.2 mg, 75% yield, 89% BRSM) as a colorless oil.
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'H NMR (400 MHz, Chloroform-d) & 4.79 (s, 2H), 3.68 (t, J = 6.4 Hz, 2H), 3.17 - 3.09 (m, 2H),
2.99 - 2.83 (m, 2H), 2.44 (tt, J= 8.6, 7.4 Hz, 1H), 2.14 (dd, J = 9.4, 6.2 Hz, 4H), 1.77 — 1.64 (m,

4H), 1.23 (s, 3H).

Synthesis of compound 2.35

OH OH
imidazole
OH LPSC', OTBDPS
89%
0 2.44 0o 2.35

To a solution of compound 2.44 (120 mg, 0.53 mmol) in DCM (5 mL) was added imidazole (110
mg, 1.06 mmol) and TBDPSCI (210 pL, 0.80 mmol) at room temperature. After stirring at room
temperature for 10 h, the reaction mixture was quenched by saturated NH4Cl and extracted by
DCM. The organic phase was dried by Na;SO4 and concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel, hexane:EA = 20:1) to give alcohol

2.35 (219.5 mg, 89% yield) as a colorless oil.

'"H NMR (400 MHz, Chloroform-d) § 7.69 — 7.64 (m, 4H), 7.46 — 7.34 (m, 6H), 4.77 — 4.72 (m,
2H), 3.68 (t, J= 6.3 Hz, 2H), 3.18 — 3.05 (m, 2H), 2.97 — 2.81 (m, 2H), 2.42 (p, J = 7.9 Hz, 1H),

2.17 - 2.02 (m, 4H), 1.75 — 1.63 (m, 4H), 1.22 (s, 3H), 1.05 (s, 9H).

Synthesis of compound 2.51
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OH
OH PMe OMe

KH, Mel

THF

84%
MeO  “OMe  2:50 ° veo Jome 251

To a suspension of KH (0.69 g, 17.2 mmol) in THF (40 mL) was added Compound 23 (1.17 g, 4.3
mmol) in THF (10 mL) at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was added Mel
(1.1 mL, 17.2 mmol) at 0 °C. After stirring at room temperature for 1 h, the reaction mixture was
quenched by NH4Cl (saturated in H>O) and extracted by Et;O. The organic phase was dried by
Na;SO4 and concentrated under reduced pressure. The residue was purified by column
chromatography (silica gel, hexane:EA = 10:1) to give ketal 2.51 (1.09 g, 84% yield) as a colorless

oil.

TH NMR (500 MHz, Chloroform-d) § 4.73 (d, J= 1.6 Hz, 1H), 4.71 (d, J= 1.6 Hz, 1H), 3.37 (t, J
= 6.6 Hz, 2H), 3.33 (s, 3H), 3.17 (s, 3H), 3.16 (s, 3H), 3.13 (s, 3H), 2.25 (dt, /=9.4, 8.5 Hz, 1H),
2.16 — 2.04 (m, 5H), 1.95 (ddd, J = 13.3, 10.3, 8.2 Hz, 3H), 1.74 — 1.67 (m, 2H), 1.55 (ddd, J =

10.3, 6.7, 5.3 Hz, 2H), 1.07 (s, 3H).

Synthesis of compound 2.52

oM
OMe OMe e OMe
1 M HCI, THF
96%

MeO  OMe 2.51 o 2.52

To a solution of compound 2.51 (1.08 g, 3.6 mmol) in THF (30 mL) was added HCI1 (1 M in H2O,

10 mL) at room temperature. After stirring at RT for 3 h, the reaction mixture was quenched by

135



NaHCOs (saturated in H>O) and extracted by Et,O. The organic phase was dried by Na>SO4 and
concentrated under reduced pressure. The residue was purified by column chromatography (silica

gel, hexane:EA = 20:1) to give ketone 2.52 (0.88 g, 96% yield) as a colorless oil.

'H NMR (400 MHz, Chloroform-d) & 4.77 — 4.71 (m, 2H), 3.37 (t, J = 6.5 Hz, 2H), 3.33 (s, 3H),
3.21 (s, 3H), 3.19 — 3.03 (m, 2H), 2.95 — 2.79 (m, 2H), 2.53 (tt, J = 8.8, 7.3 Hz, 1H), 2.11 — 2.04

(m, 2H), 1.99 (tdd, J= 11.6, 10.6, 5.5, 2.7 Hz, 2H), 1.76 — 1.65 (m, 4H), 1.15 (s, 3H).

I3C NMR (101 MHz, CDCl3) 4 207.98, 149.27, 109.11, 75.62, 72.46, 58.73, 49.46, 48.07, 47.51,

34.53,32.72,32.17, 30.63, 27.92, 19.90.

Synthesis of compound 2.54

OMe [Rh(COD),]BF4 (20 mol%)
OMe PPh3 (20 mol%)
2-Amino-3-picoline (100 mol%)

1,4-dioxane, 150 °C

OMe

2.52

To a flame dried vial was added compound 2.52 (10 mg, 0.04 mmol), [Rh(COD);]BF4 (3.2 mg,
0.008 mmol), PPh3 (2.1 mg, 0.008 mmol), 2-amino-3-picoline (4 uL, 0.04 mmol) and 1,4-dioxane
(0.5 mL) in the glove box. The vial was then sealed and moved out of the glove box. After stirring
at 150 °C on a pi-block for 12 h, the reaction mixture was cooled to room temperature and
concentrated under reduced pressure. The residue was purified by PTLC to give amide 2.54 as a

colorless oil.
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'H NMR (400 MHz, Chloroform-d) & 8.27 — 8.22 (m, 1H), 7.76 (s, 1H), 7.56 (ddd, J = 7.5, 1.8,
0.8 Hz, 1H), 7.10 (dd, J = 7.6, 4.8 Hz, 1H), 4.77 — 4.70 (m, 2H), 3.38 (t, J = 6.5 Hz, 2H), 3.33 (s,
3H), 3.17 (s, 3H), 2.71 (dd, J = 14.6, 3.2 Hz, 1H), 2.46 (ddd, J = 10.1, 6.8, 3.2 Hz, 1H), 2.27 (s,
3H), 2.12 — 2.06 (m, 3H), 1.77 — 1.68 (m, 3H), 1.63 — 1.55 (m, 3H), 1.13 (s, 3H), 1.02 (d, /= 6.8

Hz, 3H).

Synthesis of compound 2.65

0O O 0
N
OEt NMe,OH, Tf,0 TfO OEt
Hexane/H,0
2.64 66% 2.65

To a solution of compound 2.64 (100 mg, 0.54 mmol) in hexane (2.7 mL) was added
NMe4OH:-5H20 (490 mg, 2.7 mmol) in H>O (2.8 mL) at 0 °C. After stirring at 0 °C for 30 min,
the reaction mixture was added Tf,0 (0.23 mL, 1.35 mmol) at 0 °C. After stirring at 0 °C for 10
min, the reaction mixture was diluted with water and extracted by Et;O. The organic phase was
dried by Na>2SO4 and concentrated under reduced pressure. The residue was purified by column
chromatography (silica gel, hexane:EA = 20:1) to enol triflate 2.65 (113.4 mg, 66% yield) as a

colorless oil.

Ry=0.5 (hexane:EA = 5:1)

'TH NMR (400 MHz, Chloroform-d) & 4.79 (q, J = 1.4 Hz, 1H), 4.68 — 4.65 (m, 1H), 4.23 (q, J =
7.1 Hz, 2H), 3.14 (s, 2H), 2.42 (d, J= 1.0 Hz, 3H), 1.74 (dd, /= 1.5, 0.8 Hz, 3H), 1.29 (t, /= 7.1

Hz, 3H).
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Synthesis of compound 2.67

o MeO_ OMe
B —
HC(OMe);
Br 69% Br
2.66 2.67

To a solution of compound 2.66 (6.7 g, 44 mmol) in HC(OMe)3 (15 mL, 135 mmol), H>SO4 was
added (0.47 mL, 8.8 mmol) at 0 °C. After stirring at room temperature for 3 h, the reaction mixture
was diluted with dichloromethane (100 mL), quenched with 1M HCI (50 mL), and extracted with
dichloromethane (3 x 50 mL). The organic phase was dried with NaxSO4 and concentrated under
reduced pressure. The residue was purified by column chromatography (silica gel, hexane:ethyl

acetate = 10:1) to give bromide 2.67 (5.90 g, 69% yield for 2 steps) as a colorless oil.

Ry=0.70 (hexane:ethyl acetate = 4:1)

TH NMR (500 MHz, CDCl3) § 4.24 — 4.16 (m, 1H), 3.15 (s, 3H), 3.13 (s, 3H), 2.93 — 2.86 (m, 2H),

2.56 - 2.49 (m, 2H).

13C NMR (126 MHz, CDCI3) § 100.5, 48.9, 48.8, 44.9, 32.9.

IR (KBr) vimax = 2999, 2952, 2832, 1448, 1410, 1276, 1158, 1042, 859, 543 cm’!

HRMS (CI) m/z calcd. for C¢Hi17BrO2" [M]*: 193.9937, found 193.9980; m/z calcd. for

CeH113'BrO," [M]': 195.9917, found 195.9864

138



Synthesis of compound 2.68

EtO O
(0] OMe
BulLi N =
0 ™ OEt + MeO tBuLi, CuC
5 Et,O
r 44%
2.65 2.67 ° 2.68
MeO OMe

To a solution of compound 2.67 (460 mg, 2.4 mmol) in Et2O (10 mL) was added /BuLi (1.7 M in
pentane, 3 mL, 5.1 mmol) at =78 °C. After stirring at —78 °C for 1 h, the reaction mixture was
added CuCN (285 mg, 3.2 mmol) at —78 °C. After stirring at =78 °C for 30 min, the reaction
mixture was added compound 2.65 (500 mg, 1.6 mmol) in THF (5 mL) at =78 °C. After stirring at
—78 °C for 1 h, the reaction mixture was quenched with NH4Cl (saturated in H>O) and extracted
by Et2O. The organic phase was dried with Na>SO4 and concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel, hexane:EA = 20:1) to give ketal 2.68

(194.4 mg, 44% yield) as a colorless oil.

Rr=0.47 (hexane:ethyl acetate = 4:1)

H NMR (500 MHz, CDCls) § 4.71 (s, 1H), 4.60 (s, 1H), 4.16 (q, J= 7.2 Hz, 2H), 3.20 — 3.11 (m,
7H), 3.00 (s, 2H), 2.33 — 2.26 (m, 2H), 2.14 — 2.07 (m, 2H), 1.97 (s, 3H), 1.70 (s, 3H), 1.26 (t, J =

7.1 Hz, 3H).

I3C NMR (101 MHz, CDCl3) 8 169.8, 145.7, 143.3, 127.1, 110.7, 99.9, 60.1, 48.7, 48.3, 37.3, 36.0,

28.4,22.7,16.4, 14.2.

IR (KBr) vimax = 2984, 2948, 1712, 1446, 1274, 1227, 1197, 1151, 1044 cm’!

HRMS (ESI): m/z caled for Ci16H2704" [M+H]": 283.1904, found 283.1902.
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Synthesis of compound 2.62

CO,Et CO,Et
Me Me

= =
HCI (2M)
acetone

85%
MeO OMe 0
2.68 2.62

To a solution of compound 2.68 (118.6 mg, 0.42 mmol) in acetone (8.5 mL), HCI (2 M in H>O,
0.4 mL, 0.8 mmol) was added at room temperature. After stirring at room temperature for 12 h,
the reaction mixture was quenched with NaHCO3 (sat. in H>O, 10 mL) and extracted with ethyl
acetate (3 x 10 mL). The organic phase was washed with brine (sat. in H>O, 20 mL) and dried with
NazSO4 and concentrated under reduced pressure. The residue was then purified by column
chromatography (silica gel, hexane:ethyl acetate = 20:1) to give compound 2.62 (84.2 mg, 85%

yield) as a colorless oil.

Ry= 0.50 (hexane:ethyl acetate = 4:1)

TH NMR (500 MHz, CDCl3) § 4.76 (s, 1H), 4.63 (s, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.53 (p, /= 8.2

Hz, 1H), 3.21 — 3.10 (m, 4H), 3.09 (s, 2H), 2.02 (s, 3H), 1.73 (s, 3H), 1.28 (t, /= 7.1 Hz, 3H).

13C NMR (101 MHz, CDCl3) § 205.9, 169.4, 144.1, 143.0, 128.3, 111.0, 60.4, 51.4, 37.5, 26.6,

22.7,15.5, 14.2.

IR (KBr) vmax = 2980, 2934, 1789, 1710, 1447, 1380, 1292, 1198, 1105, 1069 cm'!

HRMS (ESI): m/z calcd for C14H2105" [M+H]": 237.1485, found 237.1485.
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Synthesis of compound 2.68

tBulLi
then CuBr-SMe,

COOEt

th
en/
2.71 EtO O
OMe \)]\ =
MeO then Br.

Et,0, THF, HMPA 2.68

Br
2.67 48% MeO” OMe

To a solution of compound 2.67 (50 mg, 0.26 mmol) in Et2O (0.5 mL) was added /BuLi (1.7 M in
pentane, 0.3 mL, 0.55 mmol) at =78 °C. After stirring at =78 °C for 30 min, the reaction mixture
was warmed to 0 °C and stirred at 0 °C for 5 min. In another flame dried flask, to a suspension of
CuBr-SMe:> (30 mg, 0.143 mmol) in THF (2 mL) was added previous prepared alkyl lithium
solution at =78 °C. After stirring at —78 °C for 10 min, the reaction mixture was added compound
2.71 (31 pL, 0.26 mmol) at =78 °C. After stirring at —78 °C for 30 min, the reaction mixture was
added HMPA (0.5 mL) and 3-bromo-2-methylpropene (26 pL, 0.26 mmol) at =78 °C. After stirring
at 0 °C for 2 h, the reaction was quenched by NH4Cl (sat.) and extracted by Et;O. The organic
phase was dried with Na>SO4 and concentrated under reduced pressure. The residue was purified
by column chromatography (silica gel, hexane:EA = 20:1) to give compound 2.68 (34.9 mg, 48%

yield) as a colorless oil.

The analytic data of compound 2.68 were the same as above.

Synthesis of compound 2.73
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EtO.__O

% P(3,5-CgH3(CF3),)3 (40 mol%)  Me
2-Amino-3-picoline (100 mol%)
1,4-dioxane, 170 °C, 24 h H Me
2.62 16% o)
o 2.73

A flame dried vial was charged with compound 2.62 (20 mg, 0.085 mmol), [Rh(C2H4)2Cl]2 (3.3
mg, 0.0085 mmol), P(3,5-C¢H3(CF3)2)3 (22.8 mg, 0.034 mmol), 2-amino-3-picoline (8.6 uL, 0.085
mmol) and 1,4-dioxane (1.0 mL) in glove box. The vial was then sealed and removed from
glovebox. After stirring at 170 °C for 24 h, the reaction mixture was concentrated under reduced
pressure. The residue was purified by PTLC to give ketone 2.73 (3.1 mg, 15% yield) as a colorless

oil.

Ry= 0.6 (hexane:EA = 2:1)

IH NMR (500 MHz, Chloroform-d) & 4.14 (q, J = 7.1 Hz, 2H), 2.65 (q, J = 3.5 Hz, 1H), 2.44 (d,
J=3.9 Hz, 2H), 2.31 - 2.18 (m, 4H), 2.02 (t, /= 2.1 Hz, 3H), 1.87 — 1.78 (m, 2H), 1.27 (t, J= 7.2

Hz, 3H), 1.13 (s, 3H).

I3C NMR (126 MHz, CDCl3) 4 209.66, 167.86, 147.12, 123.44, 60.14, 55.43, 43.88, 40.75, 40.20,

37.47, 33.88, 31.28, 20.58, 14.24.

DEPT-135 NMR (126 MHz, CDCls) 6 60.10, 55.38, 43.84, 40.70, 40.15, 37.41, 31.23, 20.54,

14.19.

Synthesis of compound 2.78
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Mg, CuBr-SMe, Me

Me\/\
TMS/\( COOMe ™S COOMe
Br HMPA, THF

2.77 2,78

To a suspension of Mg (3.8 g, 155 mmol) in THF (20 mL) was added 1,2-dibromoethane (0.5 mL)
at room temperature. After initiation, the reaction mixture was added compound 2.77 (15 g, 77.7
mmol) in THF (60 mL) slowly. After refluxing for 30 min, the solution was transferred to another
flask charged with THF (50 mL) and HMPA (23 mL, 130 mmol). After cooling to —40 °C, the
reaction mixture was added CuBr-SMe; (0.4 g, 2 mmol), TMSCI (9.8 mL, 77.7 mmol) and methyl
crotonate (5.5 mL, 51.8 mmol) in THF (40 mL) at —40 °C. After stirring at —40 °C for 1.5 h, the
reaction mixture was warmed to room temperature. After stirring at room temperature for 1 h, the
reaction mixture was quenched by H>O (100 mL) and HCI (1 M, 25 mL). The reaction mixture
was then added pentane (100 mL) and extracted by Et>O. The organic phase was washed by brine,
dried with Na2SO4 and concentrated under reduced pressure. The residue was flashed through
silica gel to give crude compound 2.78 (11.05 g, crude) as a colorless oil. The crude product could

be directly used in next step without further purification.

Ry=0.7 (hexane:EA = 5:1)

'H NMR (500 MHz, Chloroform-d) & 4.63 (t, J= 1.1 Hz, 1H), 4.56 (d, J = 1.1 Hz, 1H), 3.66 (s,

3H), 2.55 — 2.43 (m, 2H), 2.23 (dd, J = 14.5, 8.3 Hz, 1H), 1.54 (dd, J = 3.8, 1.0 Hz, 2H), 1.06 (d,

J=6.7 Hz, 3H), 0.03 (s, 9H).

Synthesis of compound 2.79
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Me Me

LiAIH
s COOMe 4 TMS/\H)\/\OH
55% for 2 steps

2.78 2.79

To a suspension of LiAIH4 (5.9 g, 154.5 mmol) in EtO (500 mL) was added compound 2.78 (11
g, 51.5 mmol, crude) at 0 °C. After stirring at RT for 2 h, the reaction mixture was quenched by
EA, added H2O (5.9 mL), NaOH (15% in H>O, 11.8 mL) and H>O (17.7 mL). The reaction mixture
was then filtered through Celite to give compound 2.79 (5.35 g, 55% yield for 2 steps) as a

colorless oil.
Ry=0.2 (hexane:EA = 5:1)

'H NMR (400 MHz, Chloroform-d) & 4.66 (dd, J = 1.6, 1.0 Hz, 1H), 4.60 — 4.56 (m, 1H), 3.72 —
3.59 (m, 2H), 1.74 (dt, J = 13.5, 6.8 Hz, 1H), 1.62 — 1.56 (m, 1H), 1.53 (d, /= 1.0 Hz, 2H), 1.04

(d, J = 6.9 Hz, 3H), 0.03 (s, 9H).

Synthesis of compound 2.80

Me imidazole Me
TBSCI
TMS/\H)\/\OH TMS/\H)\/\OTBS
DCM
9 2.80
2.79 95%

To a solution of compound 2.79 (100 mg, 0.54 mmol) in DCM (3 mL) was added imidazole (74
mg, 1.08 mmol) and TBSCI (122 mg, 0.81 mmol) at room temperature. After stirring at room
temperature for 30 min, the reaction mixture was quenched by NH4Cl (sat. in H20) and extracted

by DCM. The organic phase was dried with NaxSO4 and concentrated under reduced pressure. The
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residue was purified by column chromatography (silica gel, hexane:EA = 20:1) to give compound

2.80 (154.5 mg, 95% yield) as a colorless oil.

Ry= 0.8 (hexane:EA = 5:1)

H NMR (500 MHz, Chloroform-d) & 4.61 (dd, J= 1.6, 0.9 Hz, 1H), 4.54 (d, J= 1.5 Hz, 1H), 3.63
~3.57 (m, 2H), 2.13 — 2.04 (m, 1H), 1.77 — 1.68 (m, 1H), 1.52 (d, J = 1.0 Hz, 2H), 1.43 (dddd, J

=13.5,7.7,6.7, 5.8 Hz, 1H), 1.01 (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H), 0.01 (s, 9H).

Synthesis of compound 2.81

Me

Me NBS
Propylene oxide
™S oTBs o eReoXEe Br/\ﬂ)\/\OTBS
DMF/DCM
2.80 0°C, 73% 2.81

To a solusion of compound 2.80 (6.5 g, 22 mmol) in DCM (200 mL) and DMF (200 mL) was
added propylene oxide (15.4 mL, 220 mmol) and NBS (11.8 g, 66 mmol) at —78 °C. After stirring
at —78 °C for 30 min, the reaction mixture was warmed to 0 °C. After stirring at 0 °C for 30 min,
the reaction mixture was poured into mixture of NaHCOj3 (sat. in H2O) and Na»>S>0s (sat. in H,0O)
at 0 °C, extracted by Et;O. The organic phase was dried with Na,SO4 and concentrated under
reduced pressure. The residue was purified by column chromatography (silica gel, hexane:EA =

100:1) to give compound 2.81 (5.58 g, 73% yield) as a colorless oil.

Ry=0.46 (hexane:EA =20:1)
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H NMR (500 MHz, Chloroform-d) & 5.21 (d, J= 0.9 Hz, 1H), 5.01 (s, 1H), 4.04 — 3.96 (m, 2H),
3.62 (t, J = 6.6 Hz, 2H), 2.54 (q, J = 6.9 Hz, 1H), 1.74 (dq, J = 13.4, 6.7 Hz, 1H), 1.61 — 1.55 (m,

1H), 1.11 (d, J= 6.9 Hz, 3H), 0.89 (s, 9H), 0.04 (d, J = 1.6 Hz, 6H).

Synthesis of compound 2.82

OMe
OMe  \e—==—CO,Et
2.67 2.71 CO,Et
Me Br Me .~ Me
tBuLi, CuBr-SMe,, TBAI
Br OTBS oTBS
HMPA/THF
2.81 51%

MeO OMe 2.82

To a solution of compound 2.67 (630 mg, 3.25 mmol) in Et,O (5 mL) was added rBuLi (1.7 M in
pentane, 4 mL, 6.8 mmol) at =78 °C. After stirring at —78 °C for 30 min, then reaction mixture
was warmed to 0 °C and stirred at 0 °C for 5 min. In another flame dried flask, to a suspension of
CuBr-SMe> (360 mg, 1.8 mmol) in THF (30 mL) was added previous prepared alkyl lithium
solution at =78 °C. After stirring at —78 °C for 10 min, the reaction mixture was added compound
2.71 (0.38 mL, 3.25 mmol) at —78 °C. After stirring at =78 °C for 30 min, the reaction mixture was
added HMPA (8 mL) and compound 2.81 (1.0 g, 3.25 mmol) at =78 °C. After stirring at 0 °C for
2 h, the reaction mixture was quenched by NH4Cl (sat. in H>O) and extracted by Et,O. The organic
phase was dried with Na>SO4 and concentrated under reduced pressure. The residue was purified
by column chromatography (silica gel, hexane:EA = 20:1) to give compound 2.82 (0.75 g, 51%

yield) as a colorless oil.

'H NMR (400 MHz, Chloroform-d) & 4.75 (dd, J= 1.5, 0.8 Hz, 1H), 4.57 (d,J= 1.6 Hz, 1H), 4.14

(q,J = 7.1 Hz, 2H), 3.58 (td, J = 6.8, 2.4 Hz, 2H), 3.16 (s, 3H), 3.14 (s, 3H), 3.10 (t, J = 9.0 Hz,
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1H), 3.05 — 2.92 (m, 2H), 2.34 — 2.26 (m, 3H), 2.16 — 2.08 (m, 2H), 2.01 (d, /= 0.9 Hz, 3H), 1.76
— 1.65 (m, 1H), 1.49 (dt, J = 13.6, 6.8 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H),

0.89 (s, 9H), 0.04 (s, 6H).

Synthesis of compound 2.75

CO,Et a. PPTS, acetone COEt
Me -~ Me b. TBSCI, imidazole Me -~ Me
OTBS DCM OTBS
90% (2 steps)
MeO OMe 2.82 0
2.75

To a solution of compound 2.82 (4 g, 8.7 mmol) in acetone (200 mL) was added PPTS (0.2 g, 0.87
mmol) at room temperature. After stirring at room temperature for 3 h, the reaction mixture was
quenched by NaHCOs (sat. in H>O) and extracted by Et;O. The organic phase was dried with
Na2SO4 and concentrated under reduced pressure. Then the residue was diluted by DCM (100 mL),
added imidazole (1.2 g, 17.4 mmol) and TBSCI (2.0 g, 13 mmol) at room temperature. After
stirring at RT for 30 min, the reaction mixture was quenched by NH4Cl (sat.) and extracted by
DCM. The organic phase was dried with Na;SO4 and concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel, hexane:EA = 20:1) to give compound

2.75 (3.20 g, 90% yield) as a colorless oil.

'H NMR (500 MHz, Chloroform-d) & 4.80 — 4.76 (m, 1H), 4.60 (d, J= 1.5 Hz, 1H), 4.17 (q, J =
7.1 Hz, 2H), 3.59 (td, J = 6.7, 1.5 Hz, 2H), 3.50 — 3.42 (m, 1H), 3.15 (s, 2H), 3.13 (s, 2H), 3.12 —

3.02 (m, 2H), 2.33 (q, J = 6.9 Hz, 1H), 2.06 (s, 3H), 1.70 (dq, J = 13.6, 6.8 Hz, 1H), 1.52 (dq, J =
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13.7, 6.8 Hz, 1H), 1.27 (t, J= 7.1 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.04 (d, J= 1.6

Hz, 6H).

13C NMR (101 MHz, CDCls) 6 205.91, 169.13, 151.03, 145.02, 127.96, 108.96, 61.24, 60.35,

51.51,51.47, 38.27, 36.59, 33.33, 26.75, 25.92, 19.81, 18.28, 15.56, 14.21, -5.30, -5.32.

Synthesis of compound 2.90

OMe

MeOﬁ \\\\\
Br COOEt
2.67 2.71 CO,Et
tBuLi Me
7
CuBr-SMe,
Br OTBS OTBS
HMPA/THF
2.89 45% MeO  OMe

2.90

To a solution of compound 2.67 (1 g, 5.1 mmol) in Et,O (10 mL) was added BuLi (1.7 M in
pentane, 6.3 mL, 10.7 mmol) at =78 °C. After stirring at =78 °C for 30 min, the reaction mixture
was warmed to 0 °C and stirred at 0 °C for 5 min. In another flame dried flask, to a suspension of
CuBr-SMe» (0.58 g, 2.8 mmol) in THF (40 mL) was added previous prepared alkyl lithium solution
at —78 °C. After stirring at —78 °C for 10 min, the reaction mixture was added compound 2.71 (0.6
mL, 5.1 mmol) at =78 °C. After stirring at —78 °C for 30 min, the reaction mixture was added
HMPA (10 mL) and compound 2.89 (1.5 g, 5.1 mmol) at =78 °C. After stirring at 0 °C for 2 h, the
reaction mixture was quenched by NH4Cl (sat. in H>O) and extracted by Et,O. The organic phase
was dried with Na;SO4 and concentrated under reduced pressure. The residue was purified by
column chromatography (silica gel, hexane:EA =20:1) to give compound 2.91 (1.02 g, 45% yield)

as a colorless oil.
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Synthesis of compound 2.91

CO,Et CO,Et
Me ~ PPTS Me. ~
otes . acetone OTBS
then TBSCI
imidazole
MeO OMe DCM 0
2.90 38% 2.91

To a solution of compound 2.90 (1.02 g, 2.3 mmol) in acetone (50 mL) was added PPTS (58 mg,
0.23 mmol) at room temperature. After stirring at RT for 3 h, the reaction mixture was quenched
by NaHCOs (sat.) and extracted by Et2O. The organic phase was dried with Na;SO4 and
concentrated under reduced pressure. The residue was diluted by DCM (25 mL), added imidazole
(0.32 g, 4.6 mmol) and TBSCI (0.53 g, 3.5 mmol) at room temperature. After stirring at RT for 30
min, the reaction mixture was quenched by NH4Cl (sat. in H2O) and extracted by DCM. The
organic phase was dried with Na2SO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel, hexane:EA =20:1) to give compound 2.91 (0.3448

g, 38% yield) as a colorless oil.

'"H NMR (500 MHz, Chloroform-d) & 4.77 (d, J = 1.4 Hz, 1H), 4.65 (d, /= 1.7 Hz, 1H), 4.18 (q,
J=7.1Hz, 2H), 3.61 (t,J=6.4 Hz, 2H), 3.53 — 3.49 (m, 1H), 3.15 (ddt, /= 8.3, 3.4, 1.3 Hz, 4H),
3.10 (s, 2H), 2.10 — 2.04 (m, 2H), 2.03 (d, J = 0.9 Hz, 3H), 1.67 (ddt, /= 9.4, 7.6, 6.4 Hz, 2H),

1.28 (t,J = 7.2 Hz, 3H), 0.89 (s, 9H), 0.05 (s, 6H).

Synthesis of compound S2.1
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MeQ, HO

o}
DIBAL-H
DCM
97%

2.96 S21

Following the literature reported procedure, a flask containing dichloromethane (600 mL) was
cooled to —78 °C, then diisobutylaluminum hydride (DIBAL-H, 1M in hexane, 540 mL, 540 mmol)
was added at =78 °C. Compound 2.96 (31.13 g, 247 mmol) was then added slowly to the reaction
mixture. After being stirred at =78 °C for 2 h and 0 °C for 30 min, the reaction mixture was
quenched with Rochelle salt (sat. in H>0O, 800 mL) and stirred at room temperature overnight. The
mixture was extracted with dichloromethane (3 x 300 mL). The organic phase was dried with
Na;SO4 and concentrated under reduced pressure. The residue was purified by column
chromatography (silica gel, hexane:ethyl acetate = 10:1) to give compound S2.1 (23.59 g, 97%

yield) as a colorless oil.

Spectra matched with literature report.

Synthesis of compound 2.97

HO

imidazole Br,
Brz, PPh3
DCM
91%
S2.1 2.97

To a solution of PPh3 (52 g, 198 mmol) in dichloromethane (800 mL), Br> was added (10.2 mL,
198 mmol) dropwise at 0 °C. Adding extra PPh; may be necessary at this stage, until the reaction

mixture becomes colorless. After this, imidazole (14.6 g, 214 mmol) and compound S2.1 (16.2 g,
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165 mmol) were added slowly to the reaction mixture at 0 °C. After being stirred at room
temperature overnight, the reaction mixture was quenched with Na>SOs (sat. in H>O, 400 mL) and
extracted with dichloromethane (3 x 300 mL). The organic phase was dried with Na>SO4 and
concentrated under reduced pressure. The residue was purified by column chromatography (silica

gel, pure pentane) to give bromide 2.97 (24.25 g, 91% yield) as a colorless oil.

Spectra matched with literature report.

Synthesis of compound 2.95

. CO,Et
MeO_ OMe {BuLi Me ~
COOEt CuBr-SMe,
%? + / +
Me then HCI
Br acetone
50% o
2.67 2.71 2.97 °
2.95

To a solution of compound 2.67 (3.9 g, 20 mmol) in Et;O (20 mL), ‘BuLi was added (1.7 M in
pentane, 25.6 mL, 41 mmol) at =78 °C, and stirred at —78 °C for 1 h. This alkyl lithium solution
was added to a separate flask containing CuBr-SMe: (4.1 g, 20 mmol) in tetrahydrofuran (THEF,
100 mL) at =78 °C. After stirring at —78 °C for 10 min, compound 2.71 (2.24 g, 20 mmol) was
added to the reaction mixture and stirred at —78 °C for an additional 30 min.
Hexamethylphosphoramide (HMPA, 20 mL) and compound 2.97 (4.3 g, 22 mmol) were then
added to the reaction mixture at —78 °C. After stirring at 0 °C for 2 h, the reaction mixture was
treated with HCI (2 M in H>O, 40 mL) and acetone (100 mL). The reaction was then stirred at
room temperature overnight and quenched with NaHCO3 (sat. in H2O, 200 mL) and extracted with

ethyl acetate (3 x 100 mL). The organic phase was washed with brine (sat. in H>O, 3 x 200 mL),
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dried with Na,SO4 and concentrated under reduced pressure. The residue was purified by column
chromatography (silica gel, hexane:ethyl acetate =20:1) to give compound 2.95 (2.65 g, 50% yield)

as a colorless oil.

Ry=0.28 (hexane:ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) & 5.30 (hept, J = 1.9 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.61 — 3.51
(m, 1H), 3.20 — 3.07 (m, 6H), 2.27 (tq, ] = 7.2, 2.3 Hz, 2H), 2.24 — 2.19 (m, 2H), 2.01 (s, 3H), 1.86

(tt, J=8.2, 6.7 Hz, 2H), 1.29 (t, ] = 7.1 Hz, 3H).

13C NMR (101 MHz, CDCls) § 206.0, 169.6, 143.1, 141.7, 128.7, 125.0, 60.4, 51.4, 35.2, 32.3,

31.6,26.5,23.4,15.5, 14.2.

IR (KBr) vmax = 2932, 2846, 1789, 1710, 1446, 1381, 1289, 1214, 1189, 1101, 1064 cm!

HRMS (ESI) m/z caled. for C16H2303" [M+H]": 263.1642, found 263.1610.

Synthesis of compound 2.99

[Rh(C2H4)212Cl,

CO,Et P(3,5-CB};|;33(CF3)2)3 CO,Et
Me -~ Zn(OTf), Me
2,6-di-tBu-py
toluene, 150 °C, 48 h H
O
O 295 2.99

0.05 mmol scale procedure:

A flame dried 4 mL vial was charged with P(3,5-C¢H3(CF3)2)3 (16.8 mg, 0.025 mmol), DG3 (1.4
mg, 0.01 mmol) and Zn(OTf), (18.2 mg, 0.05 mmol) in glove box. After adding a solution of
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compound 2.95 (13.1 mg, 0.05 mmol) and [Rh(C2H4)2CI]> (1.9 mg, 0.005 mmol) dissolved in
toluene (0.5 mL), the vial was sealed and removed from glovebox. The reaction was stirred at
150 °C in a pi-block for 48 h, before being cooled to room temperature. Then the solvent was
removed under reduced pressure to give ketone 2.99 (48% GC yield, 1-methylnaphthalene as

internal standard).

Gram-scale procedure:

A flame dried glass pressure vessel was charged with P(3,5-CsH3(CF3)2)3 (1.07 g, 1.6 mmol), DG3
(109 mg, 0.8 mmol), Zn(OTf)2 (290 mg, 0.8 mmol) and 2,6-di-tert-butylpyridine (380 mg, 2 mmol)
in glove box. After adding a solution of compound 2.95 (1.05 g, 4 mmol) and [Rh(C2H4)>Cl]2 (155
mg, 0.4 mmol) in toluene (40 mL), the vessel was sealed and removed from glovebox. The reaction
was then stirred at 150 °C in oil bath for 48 h before being cooled to room temperature. The
reaction mixture was quenched with NH4Cl (sat. in H>O, 50 mL) and extracted with ethyl acetate
(3 x 50 mL). The organic phase was dried with Na>SO4 and concentrated under reduced pressure.
The residue was then purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1
to 10:1) to give compound 2.99 (0.87 g, combining 2 parallel reactions, 42% yield) as a colorless

oil.

Rr=0.40 (hexane:ethyl acetate = 2:1)

IH NMR (500 MHz, CDCls) & 4.15 (q, J= 7.1 Hz, 2H), 2.60 (dt, J = 4.0, 1.9 Hz, 1H), 2.56 (dd, J
= 16.0, 5.6 Hz, 1H), 2.46 (dt, J = 17.6, 2.1 Hz, 1H), 2.36 (ddt, J = 16.0, 3.3, 1.6 Hz, 1H), 2.29 —
2.20 (m, 2H), 2.01 (t, J = 2.0 Hz, 3H), 1.98 (dq, J = 8.8, 5.2, 4.3 Hz, 1H), 1.91 — 1.80 (m, 3H),

1.78 — 1.72 (m, 1H), 1.64 — 1.59 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H).
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13C NMR (101 MHz, CDCls) & 213.1, 168.1, 147.5, 124.5, 60.2, 59.8, 44.4, 40.6, 40.25, 40.20,

39.7,32.8,29.6,22.3,20.4, 14.2.

IR (KBr) vmax = 2934, 1708, 1448, 1371, 1238, 1208, 1094, 1056 cm™!

HRMS (ESI) m/z calcd. for CisH2303" [M+H]": 263.1642, found 263.1643; CisH22NaOs3"

[M+Na]": 285.1461, found 285.1460.

Synthesis of compound §2.2

A~ Br CO,Et
MeO_ OMe tBuLi Me. -
. /COOEt CuBr-SMe, &
Me HMPA/Et,O/THF
Br 26% MeO OMe
2.67 2.71 S2.2

To a solution of compound 2.67 (195 mg, 1 mmol) in Et20 (1 mL), ‘BuLi (1.6 M in pentane, 1.3
mL, 2.05 mmol) was added at —78 °C and stirred for 1 h. The previously prepared alkyl lithium
solution was then added to another flask containing CuBr-SMe: (205 mg, 1 mmol) suspended in
tetrahydrofuran (THF, 5 mL) at =78 °C. After stirring at =78 °C for 10 min, compound 2.71 (112
mg, 1 mmol) was added, and the reaction mixture was stirred at —78 °C for 30 min.
Hexamethylphosphoramide (HMPA, 1 mL) and allyl bromide (133 mg, 1.1 mmol) were then added
to the reaction mixture at —78 °C. After stirring at 0 °C for 2 h, the reaction mixture was quenched
with NH4Cl (sat. in H>O, 10 mL) and extracted with ethyl acetate (3 x 5 mL). The organic phase
was washed with brine (sat. in H>O, 10 mL), dried with NA>SO4 and concentrated under reduced
pressure. The residue was purified by column chromatography (silica gel, hexane:ethyl acetate =

20:1) to give compound S2.2 (70.1 mg, 26% yield) as a colorless oil.
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Ry=0.50 (hexane:ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) § 5.76 (ddt, J=17.2, 10.1, 6.0 Hz, 1H), 5.04 — 4.94 (m, 2H), 4.18 (q,
J=7.1Hz, 2H), 3.23 — 3.18 (m, 1H), 3.18 (s, 3H), 3.14 (s, 3H), 3.08 — 3.04 (m, 2H), 2.36 — 2.29

(m, 2H), 2.14 — 2.07 (m, 2H), 1.97 (s, 3H), 1.28 (t, J= 7.1 Hz, 3H).

I3C NMR (101 MHz, CDCl3) 8 169.6, 145.9, 135.7, 126.7, 115.3,99.9, 60.2, 48.7, 48.4, 36.1, 33.6,

28.4,16.5,14.3.

IR (KBr) vmax = 2982, 2949, 1712, 1445, 1274, 1202, 1152, 1043 cm’!

HRMS (ESI): m/z caled for CisHas04" [M+H]™: 269.1747, found 269.1745.

Synthesis of compound 2.100

CO,Et CO,Et
Me Me
=z =
HCI (2M)
X acetone A
63%
MeO OMe [e)
S2.2 2.100

To a solution of compound S2.2 (70.1 mg, 0.26 mmol) in acetone (5 mL), HCI (2 M in H20, 0.25
mL, 0.5 mmol) was added at room temperature. After stirring at room temperature for 12 h, the
reaction mixture was quenched with NaHCOs (sat. in H>O, 10 mL) and extracted with ethyl acetate
(3 x 10 mL). The organic phase was then washed with brine (sat. in H>O, 20 mL), dried with

NayS04, and concentrated under reduced pressure. The residue was then purified by column

155



chromatography (silica gel, hexane:ethyl acetate = 20:1) to give compound 2.100 (36.4 mg, 63%

yield) as a colorless oil.
Ry=0.35 (hexane:ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) § 5.80 (ddd, J = 17.3, 10.8, 6.0 Hz, 1H), 5.07 — 4.98 (m, 2H), 4.21
(qd, J="7.1,2.0 Hz, 2H), 3.57 (dd, J=9.3, 7.2 Hz, 1H), 3.23 - 3.08 (m, 6H), 2.02 (s, 3H), 1.30 (1,

J=17.2Hz, 3H).

13C NMR (101 MHz, CDCls) 6 205.8, 169.2, 144.1, 135.3, 127.9, 115.6, 60.5, 51.5, 33.7, 26.5,

15.6, 14.2.
IR (KBr) vmax = 2980, 2932, 1789, 1710, 1446, 1381, 1286, 1207, 1106, 1053 cm!

HRMS (ESI): m/z caled for C13H1903" [M+H]™: 223.1329, found 223.1327.

Synthesis of compound 2.101

[Rh(C2H4)2]2Cl2
P(3,5-CgH3(CF3),)

CO,Et oCrakls CO,E

Me -~ Zn(OTf), Me
2,6-di-tBu-
A & H H
toluene, 150 °C, 48 h
85% (0]
O 2.100 2.101

A flame dried 4 mL vial was charged with P(3,5-CsH3(CF3)2)3 (13.4 mg, 0.02 mmol), DG3 (1.4
mg, 0.01 mmol), Zn(OT*) (3.6 mg, 0.01 mmol) and 2,6-di-tert-butylpyridine (5.6 uL, 0.025 mmol)
in glove box. After adding a solution of compound SS (11 mg, 0.05 mmol) and [Rh(C2H4)>Cl]>

(1.9 mg, 0.005 mmol) dissolved in toluene (0.5 mL), the vial was sealed and removed from the
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glove box. The reaction was stirred at 150 °C in a pi-block for 48 h, before it was cooled to room
temperature. The reaction mixture was then concentrated under reduced pressure and the residue
purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to give compound S6

(9.4 mg, 85% yield) as a colorless oil.

Ry=0.31 (hexane:ethyl acetate = 2:1)

H NMR (500 MHz, CDCl3) & 4.14 (q, J = 7.2 Hz, 2H), 2.65 — 2.49 (m, 4H), 2.47 (d, J = 3.8 Hz,
2H), 2.30 (dd, J = 16.9, 4.4 Hz, 2H), 2.06 — 2.02 (m, 1H), 2.01 (s, 3H), 1.98 — 1.91 (m, 1H), 1.26

(t,J=7.2 Hz, 3H).

I3C NMR (101 MHz, CDCl3) § 210.1, 168.0, 147.5, 122.9, 60.1, 48.7, 44.6, 38.9, 33.6, 29.7, 29.3,

20.8, 14.2.

IR (KBr) vmax = 2927, 1712, 1639, 1437, 1372, 1238, 1196, 1063 cm’!

HRMS (ESI): m/z calcd for Ci3Hi9Os" [M+H]": 223.1329, found 223.1327; Ci3H;sNaOs"

[M+Na]": 245.1148, found 245.1144.

Synthesis of compound 2.73

[Rh(C2H4)212Cl,

P(3,5-CgH3(CF3),)
y CO,Et SG% 3)2)3 COLE
A Zn(OTf), Me
2,6-di-tBu-py
toluene, 150 °C, 48 h H Me
64% o}
O 262 2.73
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A flame dried 4 mL vial was charged with P(3,5-CsH3(CF3)2)3 (13.4 mg, 0.02 mmol), DG3 (1.4
mg, 0.01 mmol), Zn(OT*) (3.6 mg, 0.01 mmol) and 2,6-di-tert-butylpyridine (5.6 uL, 0.025 mmol)
in glove box. After adding a solution of compound 2.62 (11.8 mg, 0.05 mmol) and [Rh(C2H4)>Cl]>
(1.9 mg, 0.005 mmol) dissolved in toluene (0.5 mL), the vial was sealed and removed from the
glove box. The reaction was stirred at 150 °C in a pi-block for 48 h, before being cooled to room
temperature. The reaction mixture was then concentrated under reduced pressure and purified by
column chromatography (silica gel, hexane:ethyl acetate = 10:1) to give compound 2.73 (7.6 mg,

64% yield) as a colorless oil.

Analytic data of compound 2.73 was the shown above.

Synthesis of compound DG4

Pd(dba),
P(o-tol);
TMS-TMS
™S
S Br KF, H,0 B

N~ NH, DMPU N~ “NH,
100 °C, 4 h
s2.3 13% DG4

To a solution of compound S2.3 (173 mg, 1 mmol) in N,N ~dimethylpropyleneurea (DMPU, 3.3

mL), bis(dibenzylideneacetone)palladium(0) (Pd(dba), 17 mg, 0.03 mmol), tri(o-tolyl)phosphine
(P(o-tol)s, 27 mg, 0.09 mmol), KF (290 mg, 5 mmol), hexamethyldisilane (244 pL, 1.2 mmol) and
H>0 (36 uL, 2 mmol) were added at room temperature. After stirring at 100 °C for 4 h, the reaction
mixture was quenched with H>O (10 mL) and extracted with ethyl acetate (3 x 10 mL). The organic

phase was washed with brine (sat. in H,O, 20 mL), dried with Na;SO4, and concentrated under
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reduced pressure. The residue was then purified by column chromatography (silica gel,

hexane:ethyl acetate = 4:1) to give compound DG4 (20.9 mg, 13% yield) as a white solid.

Ry=0.52 (pure ethyl acetate)

H NMR (500 MHz, CDCl3) § 8.05 (dd, J = 5.0, 2.0 Hz, 1H), 7.53 (dd, J=7.1, 2.0 Hz, 1H), 6.64

(dd, J=7.1, 5.0 Hz, 1H), 4.55 (s, 2H), 0.32 (s, 9H).

13C NMR (126 MHz, CDCl3) 6 161.7, 149.0, 143.9, 116.5, 114.2, -1.4.

IR (KBr) vmax = 3495, 3395, 3308, 3175, 2955, 1607, 1566, 1427, 1252, 873, 839 cm’!

HRMS (ESI): m/z calcd for CsHisN2Si™ [M+H]™: 167.0999, found 167.1001.

Melting point: 48.0 —48.8 °C

Synthesis of compound 2.113

MeOOC NaH, BnBr MeOOC
THF
OH 53% OBn
2.112 2.113

To a solution of compound 2.112 (2.4 g, 16.9 mmol) in THF (85 mL) was added NaH (0.81 g, 20.3
mmol) at 0 °C. After stirring at 0 °C for 20 min, the reaction mixture was added TBAI (0.6 g, 1.69
mmol) and BnBr (2.6 mL, 22.0 mmol) at 0 °C. After stirring at RT overnight, the reaction mixture
was quenched by NH4Cl (sat. in H>O) and extracted by Et,O. The organic phase was dried with

Na;SO4, and concentrated under reduced pressure. The residue was purified by column
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chromatography (silica gel, hexane:EA = 10:1) to give compound 2.113 (2.09 g, 53% yield) as a

colorless oil.
Ry=0.86 (hexane:EA =2:1)

H NMR (500 MHz, Chloroform-d)  7.35 (d, J = 4.4 Hz, 4H), 7.32 — 7.27 (m, 1H), 6.80 (q, J =
2.1 Hz, 1H), 4.74 (ddtd, J= 7.4, 4.7,2.3, 1.5 Hz, 1H), 4.56 (d, /= 1.8 Hz, 2H), 3.75 (s, 3H), 2.78
~2.70 (m, 1H), 2.52 — 2.44 (m, 1H), 2.31 (dddd, J = 13.7, 8.7, 7.6, 4.1 Hz, 1H), 1.95 (dddd, J =

13.8,9.1,5.7,4.9 Hz, 1H).

Synthesis of compound 2.114

MeOOC
DIBAL-H HO
DCM

OBn 92% OBn
2.113 2.114

To a solution of DIBAL-H (1 M in THF, 20.7 mL, 20.7 mmol) in DCM (45 mL) was added
compound 2.113 (2.09 g, 9.0 mmol) at the —78 °C. After stirring at —78 °C for 2 h, the reaction
mixture was warmed to 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was quenched
by MeOH and added potassium sodium tartrate (sat. in H2O, 50 mL). After stirring at RT for 2 h,
the reaction mixture was extracted by DCM. The organic phase was dried with Na>SO4, and
concentrated under reduced pressure. The residue was purified by column chromatography (silica

gel, hexane:EA = 1:1) to give compound 2.114 (1.68 g, 92% yield) as a colorless oil.

Ry=0.15 (hexane:EA = 2:1)
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H NMR (500 MHz, Chloroform-d) & 7.36 — 7.32 (m, 4H), 7.28 (dt, J= 5.3, 2.2 Hz, 1H), 5.81 (q,
J=1.8 Hz, 1H), 4.68 — 4.62 (m, 1H), 4.59 — 4.48 (m, 2H), 4.30 — 4.17 (m, 2H), 2.54 — 2.46 (m,

1H), 2.30 — 2.20 (m, 2H), 1.99 — 1.91 (m, 1H).

Synthesis of compound 2.115

HO PPh, Br
DCM
0,
OBn 43% 2.115 0Bn

To a solution of PPh3 (1.0 g, 3.8 mmol) in DCM (20 mL) was added Br; (0.2 mL, 3.8 mmol)
dropwise at 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was added imidazole (0.29
g, 4.2 mmol) and compound 2.114 (0.57 g, 2.8 mmol) at 0 °C. After stirring at RT overnight, the
reaction mixture was quenched by Na,SOs (sat. in H>O) and extracted by DCM. The organic phase
was dried with Na;SOs, and concentrated under reduced pressure. The residue was purified by
column chromatography (silica gel, hexane:ether = 20:1) to give compound 2.115 (0.39 g, 52%

yield) as a colorless oil.

Ry= 0.4 (hexane:EA = 5:1)

H NMR (400 MHz, Chloroform-d) § 7.36 — 7.32 (m, 4H), 7.30 — 7.27 (m, 1H), 5.92 (dt, J = 2.0,
1.0 Hz, 1H), 4.66 (dddd, J= 5.1, 4.0, 2.1, 1.1 Hz, 1H), 4.57 — 4.47 (m, 2H), 4.05 (dddt, J = 11.6,
10.6,9.8, 0.9 Hz, 2H), 2.62 — 2.51 (m, 1H), 2.47 — 2.38 (m, 1H), 2.31 (dddd, J= 13.5, 8.9, 7.3, 4.5

Hz, 1H), 2.02 — 1.92 (m, 1H).

161



Synthesis of compound 2.116

OMe
OMe COOEt

JEpul
5 267 /2_71 COOEt

=
Br tBuLi,CuBr-SMe,, SMe,
HMPA/THF
41%
OBn ° MeO~ OMe OBn
2.115 2.116

To a solution of compound 2.67 (150 mg, 0.75 mmol) in Et,O (1 mL) was added /BuLi (1.7 M in
pentane, 0.93 mL, 1.58 mmol) at =78 °C. After stirring at —78 °C for 30 min, the reaction mixture
was warmed to 0 °C and stirred at 0 °C for 5 min. In another flame dried flask, to a suspension of
CuBr-SMe: (85 mg, 0.41 mmol) in THF (5 mL) was added previous prepared alkyl lithium
solution at =78 °C. After stirring at —78 °C for 10 min, the reaction mixture was added compound
2.71 (90 pL, 0.75 mmol) at =78 °C. After stirring at —78 °C for 30 min, the reaction mixture was
added HMPA (1 mL) and compound 2.115 (200 mg, 0.75 mmol) at =78 °C and then warmed to
0 °C. After stirring at 0 °C for 2 h, the reaction mixture was quenched by NH4Cl (sat. in H20O) and
extracted by Et2O. The organic phase was dried with Na;SO4, and concentrated under reduced
pressure. The residue was purified by column chromatography (silica gel, hexane:EA = 20:1) to

give compound 2.116 (127.7 mg, 41% yield) as a colorless oil.

'"H NMR (500 MHz, Chloroform-d) & 7.34 — 7.29 (m, 4H), 7.26 — 7.22 (m, 1H), 5.49 (q, J= 1.8
Hz, 1H), 4.59 (ddt, J=5.4, 3.6, 2.0 Hz, 1H), 4.51 — 4.42 (m, 2H), 4.16 (q, J= 7.1 Hz, 2H), 3.21 —
3.07 (m, 9H), 2.47 — 2.37 (m, 1H), 2.34 — 2.28 (m, 2H), 2.22 — 2.15 (m, 2H), 2.14 — 2.06 (m, 2H),

1.99 (s, 3H), 1.90 — 1.83 (m, 1H), 1.26 (t, J= 7.1 Hz, 3H).
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Synthesis of compound 2.124

nBuLi oHC
LIAIH HO
TsHN /N\ then DMF \b IAIH,
TMEDA Et,O

0,
2.123 44% (2 steps) 2.124
2122

To a solution of compound 2.122 (15.4 g, 58 mmol) in TMEDA (85 mL, 580 mmol) was added
nBuLi (1.6 M in hexane, 93 mL, 231 mmol) dropwise over 30 min at —78 °C. After stirring at RT
for 1 h, the reaction mixture was cooled to 0 °C and added DMF (10 g, 139 mmol) at 0 °C. After
stirring at 0 °C for 1 h, the reaction mixture was quenched by H>O and extracted by Et,O. The
organic phase was washed by HCI (1 M), H>O, brine and dried with Na>xSOs4, and concentrated
under reduced pressure to give crude compound 2.123. The crude product could be directly used

in next step without further purification.

To a suspension of LiAlH4 (2.4 g, 64 mmol) in Et,O (500 mL) was added crude compound 2.123
at the 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was quenched by EA, then added
H>0 (2.4 mL), NaOH (15% in H>0, 4.8 mL) and H>O (7.2 mL). The reaction mixture was filtered

through Celite to give compound 2.124 (2.88 g, 44% yield for 2 steps) as a colorless oil.
Ry= 0.6 (hexane:EA =2:1)

'"H NMR (400 MHz, Chloroform-d) & 5.60 (q, J= 1.9 Hz, 1H), 4.26 —4.12 (m, 2H), 2.73 (ddddd,
J=9.0,7.0,4.7,2.2,1.2 Hz, 1H), 2.38 - 2.09 (m, 3H), 1.45 (dddd, J=15.3, 9.0, 5.7, 2.9 Hz, 2H),

1.04 (d, J= 6.9 Hz, 3H).

Synthesis of compound 2.124
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HO

COOEt
@7 DIBAL-H
Me ___Eii;__> Me

2.128 100% 2.124
To a solution of DIBAL-H (1 M in THF, 69 mL, 69 mmol) in DCM (100 mL) was added compound
2.128 (4.6 g, 30 mmol) at the —78 °C. After stirring at —78 °C for 2 h, the reaction mixture was
warmed to 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was quenched by MeOH,
then added potassium sodium tartrate (sat. in HoO, 100 mL). After stirring at RT for 2 h, the
reaction mixture was extracted by DCM. The organic phase was dried with Na>;SOs4, and

concentrated under reduced pressure to give compound 2.124 (3.47 g, 100% yield) as a colorless

oil.

The analytical data of compound 2.124 see above.

Synthesis of compound 2.129

HO Br
Br,, PPh
§Me _ PP &Me
DCM, RT
2.124 70% 2.129

To a solution of PPh3 (2.8 g, 10.7 mmol) in DCM (50 mL) was added Br; (0.55 mL, 10.7 mmol)
dropwise at 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was added imidazole (0.8
g, 11.6 mmol) and compound 2.124 (1 g, 8.9 mmol) at 0 °C. After stirring at RT overnight, the
reaction mixture was quenched by Na,SOs3 (sat. in HO) and extracted by DCM. The organic phase

was dried with Na;SOs, and concentrated under reduced pressure. The residue was purified by
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column chromatography (silica gel, pentane:ether = 100:1) to give compound 2.129 (1.10 g, 70%

yield) as a colorless oil.

H NMR (400 MHz, Chloroform-d) & 5.79 (t, J= 2.0 Hz, 1H), 4.11 (dt, J=10.3, 0.7 Hz, 1H), 4.05
—3.99 (m, 1H), 2.94 — 2.84 (m, 1H), 2.33 — 2.24 (m, 2H), 2.24 — 2.11 (m, 1H), 1.51 — 1.40 (m,

1H), 1.06 (d, J = 6.9 Hz, 3H).

Synthesis of compound 2.130

OMe
OMe COOEt

Pz COOEt
Br Brﬁz.e7/2_71
=
‘BuLi, CuBr-SMe,
Me

HMPA/THF
2.129 33%

MeO” 'OMe
2.130
To a solution of compound 2.67 (0.5 g, 2.2 mmol) in Et;O (2.5 mL) was added /BuLi (1.7 M in
pentane, 2.7 mL, 4.6 mmol) at —78 °C. After stirring at —78 °C for 30 min, the reaction mixture
was warmed to 0 °C and stirred at 0 °C for 5 min. In another flame dried flask, to a suspension of
CuBr-SMe: (0.25 g, 1.2 mmol) in THF (13 mL) was added previous prepared alkyl lithium solution
at —78 °C. After stirring at —78 °C for 10 min, the reaction mixture was added compound 2.71
(0.26 mL, 2.2 mmol) at =78 °C. After stirring at —78 °C for 30 min, the reaction mixture was added
HMPA (3 mL) and compound 2.129 (0.43 g, 2.2 mmol) at =78 °C. After stirring at 0 °C for 2 h,
the reaction mixture was quenched by NH4Cl (sat. in H>O) and extracted by Et,O. The organic

phase was dried with Na>SO4, and concentrated under reduced pressure. The residue was purified
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by column chromatography (silica gel, hexane:EA =20:1) to give compound 2.130 (0.2359 g, 33%

yield) as a colorless oil.

Synthesis of compound 2.118

COOEt COOEt
=z =z
PPTS
acetone, RT
28%
MeO OMe o)
2130 2118

To a solution of compound 2.130 (0.24 g, 0.73 mmol) in acetone (15 mL) was added PPTS (18
mg, 0.073 mmol) at room temperature. After stirring at RT overnight, the reaction mixture was
quenched by NaHCO:s (sat.) and extracted by Et,O. The organic phase was dried with Na>SQO4, and
concentrated under reduced pressure. The residue was purified by column chromatography (silica

gel, hexane:EA = 20:1) to give compound 2.118 (56.1 mg, 28% yield) as a colorless oil.

H NMR (500 MHz, Chloroform-d) & 5.21 (q, J = 2.0 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.51 (p,
J =82 Hz, 1H), 3.13 (dt, J = 8.1, 1.6 Hz, 5H), 3.04 — 2.95 (m, 1H), 2.58 — 2.51 (m, 1H), 2.25
(dddd, J = 14.1,9.4, 5.2, 2.7 Hz, 1H), 2.18 — 2.05 (m, 2H), 2.01 (s, 3H), 1.45 — 1.38 (m, 1H), 1.27

(t,J=7.1 Hz, 3H), 1.02 (d, J = 7.0 Hz, 3H).

13C NMR (101 MHz, CDCls) § 206.12, 169.51, 145.97, 143.30, 128.72, 124.35, 60.34, 51.51,

51.41,41.51, 32.84, 30.45, 29.58, 26.62, 19.25, 15.50, 14.21.

Synthesis of compound 2.117
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Rh(COD)acac (20 mol%)

CO,Et P(3,5-CgH3(CF3),)3 (40 mol%) CO,Et
Me P Me 2-Amino-3-isopropylpyridine (20 mol%) Me
Zn(OTf), (20 mol%) Me
toluene, 150 °C, 48 h H
9%
o)
0 2118 2117

A flame dried vial was charged with compound 2.118 (13.8 mg, 0.05 mmol) Rh(COD)acac (3.1
mg, 0.01 mmol), P(3,5-C¢H3(CF3)2)3 (13.4 mg, 0.02 mmol), 2-amino-3-isopropylpyridine (1.4 mg,
0.01 mmol), Zn(OTf) (3.6 mg, 0.01 mmol) and toluene (0.5 mL) in glove box. The vial was then
sealed and moved out of glove box. After stirring at 150 °C for 24 h, the reaction mixture was

cooled to room temperature and filtered through a short pad of silica gel to give compound 2.117

(9% NMR yield).

H NMR (400 MHz, CDCls) & 4.18 (q, J = 7.1 Hz, 2H), 2.60 — 2.52 (m, 2H), 2.45 (t, J= 9.8 Hz,
1H), 2.37 (d, J= 15.5 Hz, 2H), 2.20 (d, J= 17.8 Hz, 1H), 2.11 — 2.04 (m, 1H), 2.01 (t, J=2.0 Hz,
3H), 1.78 (td, J = 12.3, 11.1, 6.2 Hz, 2H), 1.68 (s, 2H), 1.46 — 1.35 (m, 3H), 1.29 (t, J= 7.1 Hz,

3H), 0.93 (d, /= 7.1 Hz, 3H).

Synthesis of compound 2.136

COQEt CO2H
Me Me
LIOH/H,0
_ PARY
H 99% H
0 0

2.99 2.136

To a solution of compound 2.99 (320 mg, 1.22 mmol) in tetrahydrofuran (THF, 7.2 mL),

LiOH-H>O (160 mg, 3.7 mmol), water (2.4 mL) and methanol (2.4 mL) were added at room
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temperature. After stirring at 70 °C overnight, the reaction mixture was extracted with EtoO (5 mL).
The organic phase was discarded and to the aqueous phase 1M HCI was added until pH = 1 and
extracted with dichloromethane (3 x 10 mL). The organic phase was dried with Na>SO4 and
concentrated under reduced pressure to give crude compound 2.136 (283.3 mg, 99% yield) as a

white solid. The crude compound 2.136 was directly used in next step without further purification.

Ry=0.42 (pure ethyl acetate)

H NMR (500 MHz, CDCls) § 2.66 (dq, J=4.0, 1.9 Hz, 1H), 2.59 (dd, J= 16.2, 5.7 Hz, 1H), 2.48
(dt, J=17.8, 2.0 Hz, 1H), 2.38 (dq, /= 16.1, 2.0 Hz, 1H), 2.31 — 2.23 (m, 2H), 2.10 (t, J= 2.0 Hz,
3H), 1.99 (ddt, J=13.2, 8.6, 4.6 Hz, 1H), 1.93 — 1.80 (m, 3H), 1.80 — 1.73 (m, 1H), 1.64 (dd, J =

7.5, 5.2 Hz, 3H).

I3C NMR (101 MHz, CDCl3) § 213.0, 173.3, 151.9, 123.4, 59.7, 44.3, 40.8, 40.6, 40.0, 39.7, 32.6,

29.5,22.3,20.9.

IR (KBr) vmax = 2932, 2626, 1704, 1629, 1449, 1415, 1273, 917, 732 cm’!

HRMS (ESI) m/z caled. for Ci4Hi9O3" [M+H]": 235.1329, found 263.1330; CisH;sNaOs"

[M+Na]": 257.1148, found 257.1150.

Melting point: 109.8 - 111.8 °C

Synthesis of compound 2.135
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CO,H H

Me EDC Me
pyrithione sodium
H then ‘BuSH H
o AIBN o
2.136 toluene 2.135

53%

To a solution of compound 2.136 (66 mg, 0.28 mmol) in dichloromethane (2.8 mL), pyrithione

sodium (51 mg, 0.34 mmol) and N-(3-Dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride

(EDC, 65 mg, 0.34 mmol) were added at room temperature. After stirring at room temperature for
2 h, the reaction mixture was concentrated under reduced pressure. To the residue, toluene (5.6

mL), 2,2'-azobis(2-methylpropionitrile) (AIBN, 4.6 mg, 0.028 mmol), and ‘BuSH (0.32 mL, 2.8

mmol) were added at room temperature. The solution was then bubbled with nitrogen gas for 20
min. Then, after stirring at 75 °C for 1 h, the resulting mixture was concentrated under reduced
pressure. The residue was purified by column chromatography (silica gel, hexane:ethyl acetate =

20:1) to give compound 2.135 (28.4 mg, 53% yield) as a white solid.

Ry= 0.56 (hexane:ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) 8 5.36 (dt, J= 4.9, 1.9 Hz, 1H), 2.51 (dd, J = 15.6, 5.0 Hz, 1H), 2.44
(t,J=3.5 Hz, 1H), 2.33 — 2.24 (m, 2H), 2.20 (t, J = 9.6 Hz, 1H), 2.01 — 1.92 (m, 1H), 1.91 — 1.86
(m, 2H), 1.85 — 1.69 (m, 3H), 1.64 (dt, J = 2.8, 1.5 Hz, 3H), 1.63 — 1.56 (m, 2H), 1.52 (ddd, J =

12.9,9.9, 8.1 Hz, 1H).

I3C NMR (101 MHz, CDCl3) § 214.3, 136.5, 121.6, 60.5, 44.9, 40.5, 39.6, 39.3, 37.2, 33.5, 29.6,

22.4,21.5.

IR (KBr) vmax = 2957, 2928, 2828, 1704, 1447, 1327, 1232, 1037, 931, 807 cm’!
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HRMS (ESI) m/z calcd. for C13H;90" [M+H]": 191.1430, found 191.1430.

Melting point: 45.0 —46.2 °C

Synthesis of compound 2.139

H
Me
H
Me 2,4-DNP H
HCI 7
_— > ~N
H MeOH HN
(0] 409
0% NO,
2135
2.139

O,N

To a solution of compound 2.135 (8.1 mg, 0.043 mmol) in methanol (0.5 mL), 24-
dinitrophenylhydrazine (2,4-DNP, 8.5 mg, 0.043 mmol) and HCI (conc. in H>O, 2.6 uL, 0.043
mmol) were added at room temperature. After stirring at room temperature overnight, the reaction
was quenched with NaHCOs (sat. in H20, 1 mL) and extracted with dichloromethane (3 x 1 mL).
The organic phase was dried with Na;SO4 and concentrated under reduced pressure. The residue
was purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1) to give compound

2.139 (6.3 mg, 40% yield) as an orange solid.

Ry=0.61 (hexane:ethyl acetate = 4:1)

'H NMR (500 MHz, CDCls) § 11.19 (s, 1H), 9.11 (d, J = 2.5 Hz, 1H), 8.27 (dd, J = 9.6, 2.6 Hz,
1H), 7.93 (d, J= 9.6 Hz, 1H), 5.39 (s, 1H), 2.77 (d, J = 15.3 Hz, 1H), 2.48 (t, J= 9.2 Hz, 2H), 2.36
—2.23 (m, 2H), 2.00 — 1.88 (m, 2H), 1.88 — 1.79 (m, 3H), 1.79 — 1.74 (m, 1H), 1.66 (s, 3H), 1.62

— 1.56 (m, 3H).
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BCNMR (101 MHz, CDCl3) § 162.7, 145.3, 137.4,135.2, 129.8, 128.7, 123.6, 122.5, 116.5, 54.6,

42.9,39.8,38.9,36.6,33.4,31.3,26.9,21.74, 21.72.

IR (KBr) vmax = 3321, 2928, 1619, 1591, 1518, 1426, 1336, 1136, 1074, 916, 831, 743 cm’!

HRMS (ESI) m/z calcd. for C19H23N4O4" [M+H]": 371.1714, found 371.1716.

Melting point: 140.7 — 141.4 °C

Synthesis of compound 2.141

Me @ANHz
N 2140 H
H —_— 4
N
toluene
o reflux _N
2135 N /
2141

To a solution of Compound 2.135 (10 mg, 0.05 mmol) in toluene (1 mL) was added compound
2.140 (10 pL, 0.1 mmol) and PTSA (1.7 mg, 0.01 mmol) at room temperature. After stirring at
110 °C for 2 h, the reaction mixture was quenched by NH4Cl (sat. in H>O) and extracted by diethyl
ether. The organic phase was dried with Na>SO4 and concentrated under reduced pressure to give
crude compound 2.141 as a yellow oil. The crude compound 2.141 was directly used in the next

step without further purification.

Synthesis of compound 2.142
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Me
H CU(NO3)2
7 H0,
N ——— H/ 7
THF
_N ©
N / 2.142
2141

To a solution of compound 2.141 (0.05 mmol) in THF (0.5 mL) was added Cu(NO3)2-3H>0 (13.3
mg, 0.055 mmol) at room temperature. After stirred at room temperature for 30 min, the reaction
mixture was added H>0> (30% in water, 26 pL, 0.25 mmol) dropwise at room temperature. After
stirring at room temperature for 1 h, the reaction mixture was diluted by EA and quenched by
Na;EDTA (sat. in H2O). After stirring at room temperature overnight, the reaction mixture was
extracted by EA. The organic phase was dried with Na;SO4 and concentrated under reduced
pressure. The residue was purified by column chromatography (silica gel, hexane:EA = 10:1) to

give compound 2.142 as a colorless oil.

'"H NMR (500 MHz, Chloroform-d) & 5.35 — 5.28 (m, 1H), 3.84 (s, 1H), 2.77 (dd, J = 14.5, 4.7
Hz, 1H), 2.53 (dt, J = 14.5, 2.8 Hz, 1H), 2.48 (t, /= 3.3 Hz, 1H), 2.35 (ddd, J=13.9, 9.8, 6.7 Hz,
2H), 2.04 (dt, J=13.2, 2.2 Hz, 1H), 2.01 — 1.93 (m, 2H), 1.92 — 1.83 (m, 2H), 1.75 (dt, /= 13.2,

3.2 Hz, 2H), 1.71 — 1.54 (m, 4H).

I3C NMR (101 MHz, CDCl3)  213.60, 135.19, 122.60, 86.37, 52.26, 41.15, 38.46, 38.43, 37.02,

36.46, 30.56, 29.68, 21.20, 20.47.

Synthesis of compound 2.143
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CO,Et CO,Et

Me Me
NH,OMe-HCI
H py., 80 °C, 2 h H/Z
o 99% MeovN
2.99 2.143

To a solution of compound 2.99 (20 mg, 0.076 mmol) in pyridine (0.4 mL) was added
NH>OMe-HCI (9.5 mg, 0.11 mmol) at room temperature. After stirring at 80 °C for 2 h, the reaction
mixture was cooled to room temperature and concentrated under reduced pressure. The residue
was purified by column chromatography (silica gel, hexane:EA = 20:1) to give compound 2.143

(22.4 mg, 99% yield) as a colorless oil.

'TH NMR (500 MHz, Chloroform-d) 8 4.19 — 4.12 (m, 2H), 3.77 (d, J= 7.6 Hz, 3H), 3.19 (dt, J =
15.6, 2.6 Hz, 1H), 2.48 — 2.35 (m, 3H), 2.27 (t, /= 9.5 Hz, 1H), 2.20 — 2.12 (m, 1H), 2.02 (d, J =
2.2 Hz, 3H), 1.91 — 1.70 (m, 4H), 1.60 — 1.51 (m, 1H), 1.49 — 1.39 (m, 1H), 1.28 (td, /= 7.2, 0.8

Hz, 3H).

Synthesis of compound 2.147

Me Me Me

oty e o
o} 78 °C 0 0 °C Me HO
2135 2.147 2.148
53% 8%

To a solution of Et2O (0.5 mL) was added TiCls4 (1 M in DCM, 0.2 mL, 0.21 mmol) and MeLi (1.6
M in Et;0, 0.13 mL. 0.21 mmol) slowly at the =78 °C. The reaction mixture was then added
compound 2.135 (20 mg, 0.11 mmol) in EtO (0.5 mL) at =30 °C. After stirring at 0 °C for 3 h, the

reaction mixture was quenched by water and extracted by Et2O. The organic phase was dried with
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Na;SO4 and concentrated under reduced pressure to give compound 2.147 and 2.148 (61% NMR

yield, d.r. = 6.6:1).

H NMR (500 MHz, Chloroform-d) & 5.55 (tt, J = 2.8, 1.4 Hz, 1H), 2.30 (ddt, J= 18.1, 3.6, 1.8
Hz, 1H), 2.19 — 2.15 (m, 1H), 1.97 (ddt, J= 18.4, 3.9, 1.8 Hz, 1H), 1.84 (dq, J= 8.8, 5.1, 4.5 Hz,
1H), 1.79 (q, J= 1.9 Hz, 3H), 1.75 — 1.69 (m, 2H), 1.64 — 1.54 (m, 4H), 1.53 — 1.41 (m, 2H), 1.28

~1.21 (m, 2H), 1.05 (s, 3H).

I3C NMR (101 MHz, CDCl3) 8 142.59, 123.40, 72.44, 57.57, 40.72, 39.04, 38.42, 36.22, 35.56,

32.84,29.21, 28.98, 22.23, 19.38.

Synthesis of compound 2.148

Me Me Me
MelLi
H LiBr H . H
THF a a
o -78 °C to r.t. Me HO
2.135 2.147 2.148
8% 54%

To a solution of compound 2.135 (20 mg, 0.11 mmol) in THF (0.5 mL) was added LiBr (14 mg,
0.16 mmol) at room temperature. The reaction mixture was then cooled to =78 °C, added MeLi
(1.6 M in Et20, 0.1 mL. 0.16 mmol) slowly at the =78 °C. After stirring at 0 °C for 2 h, the reaction
mixture was quenched by NH4Cl (sat. in H>O) and extracted by Et;O. The organic phase was dried
with Na;SO4 and concentrated under reduced pressure to give compound 2.147 and 2.148 (62%

NMR yield, d.r. = 1:6.8).
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H NMR (500 MHz, Chloroform-d) & 5.25 (dd, J=4.6, 2.4 Hz, 1H), 2.22 — 2.15 (m, 1H), 1.99 (dt,
J=17.8,2.4 Hz, 1H), 1.87 — 1.75 (m, 4H), 1.74 — 1.68 (m, 1H), 1.66 (q, J = 1.9 Hz, 4H), 1.62 —

1.50 (m, 4H), 1.46 — 1.38 (m, 1H), 1.34 (ddd, J = 12.1, 3.6, 1.7 Hz, 1H), 1.21 (s, 3H).

13C NMR (101 MHz, CDCl3) § 139.58, 120.72, 71.97, 53.72, 41.60, 40.45, 40.21, 39.94, 35.20,

32.82,31.45,29.68, 26.98, 22.01.

H NMR (500 MHz, Benzene-ds) & 5.23 (dt, J= 4.9, 1.8 Hz, 1H), 2.12 — 2.07 (m, 1H), 1.98 (dt, J
=11.6,2.2 Hz, 1H), 1.96 — 1.91 (m, 1H), 1.74 (ddd, J=6.3, 3.8, 2.1 Hz, 1H), 1.73 — 1.65 (m, 3H),

1.61 (dt, J=2.8, 1.7 Hz, 3H), 1.55 (s, 1H), 1.53 — 1.45 (m, 4H), 1.42 — 1.38 (m, 2H), 1.04 (s, 3H).

Synthesis of compound 2.151

a. HySiEt,, [I(COD)OMe],
THF, rt, overnight
b. [Ir(COD)OMe],, Me4Phen, NBE

H THF, 100 °C, 24 h H
Me c. TBAF, CsOH-H,0, TBHP Me. |
@ DMF, 80 °C, overnight HO
H H
a 25%
HO HO
2.148 2.151

In glovebox, to a solution of compound 2.148 (10 mg, 0.048 mmol) in THF (0.3 mL) was added
[Ir(COD)OMe]> (0.2 mg, 0.00024 mmol) and Et>SiH> (9.4 uL, 0.072 mmol) at room temperature.
After stirring at room temperature overnight, the reaction mixture was concentrated under reduced
pressure and placed under vacuum for 30 min to give crude mixture. The crude mixture was

directly used in the next step.
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To a solution of the crude mixture in THF (0.3 mL) was added NBE (5.5 mg, 0.058 mmol),
[Ir(COD)OMe]z (1.3 mg, 0.0019 mmol) and MesPhen (1.1 mg, 0.0048 mmol) at room temperature.
After stirring at 100 °C for 24 h, the reaction mixture was concentrated under reduced pressure to

give crude mixture. The crude mixture was directly used in the next step.

To a solution of the crude mixture in DMF (0.5 mL) was added CsOH-H>O (98 mg, 0.58 mmol),
TBAF (1 M in THF, 0.24 mL, 0.24 mmol) and TBHP (5.5 M in decane, 0.12 mL, 0.67 mmol) at
room temperature. After stirring at 80 °C overnight, the reaction mixture was quenched by N2SOs
(sat. in H2O) and extracted by Et>O. The organic phase was dried with Na>SO4 and concentrated
under reduced pressure. The residue was purified by column chromatography (silica gel,

hexane:EA = 10:1) to give compound 2.151 (2.7 mg, 25% yield) as a colorless oil.

'H NMR (500 MHz, Chloroform-d) 8 5.29 (ddt, J = 4.3, 2.7, 1.3 Hz, 1H), 3.53 (d, J = 10.8 Hz,
1H), 3.45 (d,J=10.8 Hz, 1H), 2.20 (dq, J=5.6, 2.7 Hz, 1H), 2.11 (dq, J=18.2, 2.3 Hz, 1H), 1.83
—1.77 (m, 2H), 1.74 (ddd, J= 8.3, 4.6, 2.3 Hz, 1H), 1.72 — 1.64 (m, 7H), 1.61 — 1.52 (m, 2H), 1.50

~ 1.42 (m, 1H), 1.31 (ddd, J= 12.2, 3.3, 1.7 Hz, 1H), 1.25 (s, 3H).

Synthesis of compound 2.152

H
M H Me
e Me,SiHCI @
NEts
a DCM g
HO 92% L
2.148 Me™ i 2.152

To a solution of compound 2.148 (20 mg, 0.097 mmol) in DCM (1 mL) was added NEt3 (21 pL,
0.19 mmol) and Me>SiHCI (55 pL, 0.39 mmol) at room temperature. After stirring at room
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temperature for 3 h, the reaction mixture was quenched by water and extracted by Et;O. The
organic phase was dried with NaxSO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel, hexane:EA =100:1) to give compound 2.152 (23.6

mg, 92% yield) as a colorless oil.

H NMR (500 MHz, Chloroform-d) § 5.22 — 5.17 (m, 1H), 4.75 (p, J = 2.8 Hz, 1H), 2.15 (d, J =
8.7 Hz, 1H), 1.99 (dd, J = 14.3, 8.5 Hz, 1H), 1.92 — 1.85 (m, 2H), 1.79 (dq, J = 4.9, 1.6 Hz, 1H),
1.77 - 1.69 (m, 2H), 1.64 (q, J= 1.8 Hz, 4H), 1.51 — 1.43 (m, 2H), 1.39 (dt, J = 14.3, 1.6 Hz, 1H),

1.37 - 1.33 (m, 1H), 1.29 (ddd, J=11.8, 3.5, 1.4 Hz, 1H), 1.21 (s, 4H), 0.15 (t, J = 2.5 Hz, 6H).

Synthesis of compound 2.153

H
H Me
Me CI” > SiMe,Cl @
@ imidazole H a
H a DCM Q

HO 84% Me~ S~
2.148 Me ci
2.153

To a solution of compound 2.148 (30 mg, 0.15 mmol) in DCM (0.75 mL) was added imidazole
(21 mg, 0.30 mmol) and Me>SiCICH>CI (30 pL, 0.23 mmol) at room temperature. After stirring at
room temperature for 3 h, the reaction mixture was quenched by NH4Cl (sat. in H>O) and extracted
by Et>0. The organic phase was dried with NaxSO4 and concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel, hexane:EA =100:1) to give compound

2.153 (39.5 mg, 84% yield) as a colorless oil.

177



H NMR (500 MHz, Chloroform-d) § 5.19 (dt, /= 3.9, 1.9 Hz, 1H), 2.75 (d, J= 4.4 Hz, 3H), 2.15
(d, J=8.5 Hz, 1H), 1.92 (dd, J = 14.3, 8.6 Hz, 1H), 1.88 (dt, J = 11.5, 2.5 Hz, 2H), 1.79 (dt, J =
5.1, 1.8 Hz, 1H), 1.77 — 1.70 (m, 2H), 1.64 (q, /= 1.8 Hz, 3H), 1.51 — 1.39 (m, 4H), 1.32 (dddd, J

=13.1, 11.8, 3.8, 1.7 Hz, 2H), 1.20 (s, 3H), 0.25 — 0.21 (m, 6H).

Synthesis of compound 2.154

H H
Me Me
H @a Nal H Eﬁ
_—
QS' acetone, 60 °C O\S
Me~ S 80% Me—S!
Me\\m Me\\l
2.153 2.154

To a solution of compound 2.153 (39.5 mg, 0.13 mmol) in acetone (0.7 mL) was added Nal (95
mg, 0.63 mmol) at room temperature. After stirring at 60 °C for 24 h, the reaction mixture was
quenched by Na»S»>03 (sat. in H>O) and extracted by Et;O. The organic phase was dried with
NaxSO4 and concentrated under reduced pressure. The residue was purified by column
chromatography (silica gel, hexane:EA = 100:1) to give compound 2.154 (42.1 mg, 80% yield) as

a colorless oil.

H NMR (500 MHz, Chloroform-d) § 5.19 (dt, J = 3.8, 1.9 Hz, 1H), 2.16 (d, J= 8.6 Hz, 1H), 2.02
(d, J=2.3 Hz, 3H), 1.97 — 1.85 (m, 3H), 1.81 — 1.71 (m, 3H), 1.64 (dd, J = 2.6, 1.4 Hz, 3H), 1.52

— 1.36 (m, SH), 1.31 (ddd, J = 11.8, 3.6, 1.4 Hz, 1H), 1.20 (s, 3H), 0.31 — 0.27 (m, 6H).

Synthesis of compound 2.160
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Me Me

L-selectride
H e S —— H
THF
o) -78°Cto 0 °C HO

2.135 78% 2.160

To a solution of compound 2.135 (37.5 mg, 0.20 mmol) in THF (2 mL) was added L-Selectride (1
M in THF, 0.3 mL. 0.2 mmol) slowly at the =78 °C. After stirring at =78 °C for 1 h, the reaction
mixture was warmed to 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was quenched
by NH4Cl (sat. in H20) and extracted by Et;O. The organic phase was dried with Na;SO4 and
concentrated under reduced pressure. The residue was purified by column chromatography (silica

gel, hexane:EA = 20:1 to 10:1) to give compound 2.160 (29.7 mg, 78% yield) as a white solid.

H NMR (500 MHz, CDCl3) § 5.36 (dt, J = 4.1, 2.3 Hz, 1H), 4.06 (dt, J=11.7, 5.9 Hz, 1H), 2.22
(dt, J=16.4,3.2 Hz, 2H), 1.94 — 1.84 (m, 1H), 1.80 — 1.69 (m, 4H), 1.65 (q, J=2.0 Hz, 3H), 1.54
(dt, J=12.4,2.1 Hz, 1H), 1.48 — 1.44 (m, 2H), 1.40 (td, J = 12.0, 3.7 Hz, 1H), 1.22 (dgq, J = 11.0,

1.8 Hz, 1H), 0.86 (dddd, J=17.2, 14.9, 7.6, 4.7 Hz, 2H).

Synthesis of compound 2.161

H
Me
Me HCOOH
CISO,NCO
MgO H
H -
MeCN 0
HO DMAc 0=S~NH
o 1 2
2.160 55%
2.161

To a flame dried flask was charged chlorosulfonyl isocyanate (31 pL, 0.36 mmol) and formic acid
(14 pL, 0.36 mmol) at 0 °C. After stirring vigorously at 0 °C for 10 min, the reaction mixture was

added MeCN (0.5 mL) at 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was warmed
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to RT and stirring at RT for 10 h. In another flame dried flask, to a solution of compound 2.160
(14 mg, 0.073 mmol) in DMA (0.24 mL) was added MgO (29 mg, 0.73 mmol) and above solution
at 0 °C. After stirring at RT for 2 h, the reaction mixture was quenched by water and extracted by
Et,0. The organic phase was dried with Na>SO4 and concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel, hexane:EA = 50:1) to give compound

2.161 (10.9 mg, 55% yield) as a white solid.

H NMR (500 MHz, CDCls) & 5.45 (s, 1H), 5.01 (dt, J= 11.9, 6.2 Hz, 1H), 4.62 (s, 2H), 2.27 (d,
J=20.5Hz, 2H), 2.16 (d, J= 7.8 Hz, 1H), 2.04 (s, 1H), 1.89 — 1.81 (m, 3H), 1.80 — 1.74 (m, 2H),

1.70 (d, J= 2.0 Hz, 4H), 1.52 — 1.48 (m, 2H), 1.29 (d, J = 11.7 Hz, 2H).

Synthesis of compound 2.162 and 2.163

Me Me Me
Rhy(esp), (2 mol%)
H PIDA (1.1 equiv.) H
MgO(3 equiv.)
(0] H H + H-c,>
_¢ DCM (0.01 M) O . _ 0=S-
O=8~NH, 40°C, 1h s 7 ~NH
o] 0 o

2.161 2.162 2.163
59% 14%

To a solution of compound 2.161 (5 mg, 0.018 mmol) in DCM (2 mL) was added MgO (2.2 mg,
0.054 mmol), PIDA (6.4 mg, 0.02 mmol) and Rha(esp) (0.3 mg, 0.00036 mmol) at room
temperature. After stirring at 40 °C for 3 h, the reaction mixture was cooled to RT, diluted with
DCM and filtered through Celite. The organic phase concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel, hexane:EA = 10:1) to give compound

2.162 (59% NMR yield) as a white solid, and 2.163 (14% NMR yield) as a white solid.
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Compound 2.162:

H NMR (500 MHz, CDCl3) § 5.28 — 5.24 (m, 1H), 5.10 (td, J = 6.7, 4.4 Hz, 1H), 4.21 (qd, J =
7.2,3.8 Hz, 1H), 4.05 (d, J= 7.6 Hz, 1H), 2.33 (ddt, J= 8.1, 4.2, 2.0 Hz, 1H), 2.11 (dddd, J= 16.4,
14.8, 7.0, 3.6 Hz, 3H), 2.05 — 1.99 (m, 1H), 1.89 — 1.80 (m, 2H), 1.78 — 1.69 (m, 2H), 1.67 (d, J =

2.2 Hz, 4H), 1.65 — 1.57 (m, 2H).

13C NMR (126 MHz, CDCl3) & 138.48, 119.51, 81.66, 59.34, 44.85, 41.47, 38.99, 38.56, 32.75,

32.50, 32.39, 30.35, 21.73.

DEPT-135 NMR (126 MHz, CDCls) 6 119.55, 81.71, 59.38, 44.89, 41.50, 38.59, 32.79, 32.53,

32.43,30.38, 21.77.

Compound 2.163:

'H NMR (500 MHz, CDCl3) § 5.41 (d, J = 4.4 Hz, 1H), 4.98 (dt, J= 13.4, 6.7 Hz, 1H), 4.24 (qd,
J=11.5,7.5 Hz, 1H), 4.06 (d, J= 11.3 Hz, 1H), 2.37 — 2.29 (m, 2H), 2.28 — 2.13 (m, 3H), 1.88 (d,
J=17.0 Hz, 1H), 1.79 (dd, J = 12.0, 6.6 Hz, 2H), 1.70 — 1.63 (m, SH), 1.60 (dd, J= 12.6, 2.3 Hz,

1H), 1.51 (d, J= 16.2 Hz, 1H).

Synthesis of compound 2.166

CO,Et
" CO,Et TMSCI Me 2
e TBAI
DBU H
H DCM, RT
0 7% TMSO
2.99 2.166
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To a solution of compound 2.99 (90 mg, 0.34 mmol) in DCM (3.4 mL) was added DBU (0.13 mL,
0.85 mmol), TMSCI (65 pL, 0.51 mmol) and TBAI (25 mg, 0.07 mmol) at room temperature. After
stirring at RT for 24 h, the reaction mixture was quenched by pH = 7 buffer and extracted by diethyl
ether. The organic phase was dried with Na>SO4 and concentrated under reduced pressure. The

residue was purified by column chromatography (silica gel, hexane:EA = 20:1) to give compound

2.166 (87.8 mg, 77% yield) as a colorless oil.

H NMR (500 MHz, CDCl3) § 4.21 — 4.09 (m, 2H), 2.50 (s, 1H), 2.41 — 2.29 (m, 3H), 2.22 (dd, J
=14.9, 11.2 Hz, 1H), 2.08 — 2.01 (m, 4H), 1.96 (d, /= 16.4 Hz, 1H), 1.85— 1.65 (m, 3H), 1.42 (td,

J=11.8, 8.6 Hz, 1H), 1.32 (dt, J= 117, 2.1 Hz, 1H), 1.29 — 1.24 (m, 4H), 0.13 (s, 9H).

Synthesis of compound 2.167

CO,Et CO,Et
Me PhSeCl, DCM Me
-78°Cto 0 °C
H then H202 H
DCM, 0 °C
TMSO 76% (0]
2.166 2.167

To a solution of compound 2.166 (80 mg, 0.24 mmol) in DCM (2.4 mL) was added PhSeCl (56
mg, 0.29 mmol) at the —78 °C. After stirring at =78 °C for 1 h, the reaction mixture was warmed
to 0 °C. After stirring at 0 °C for 30 min, the reaction mixture was quenched by NaHCOj3 (sat. in
H>0) and extracted by DCM. The organic phase was dried with Na>SO4 and concentrated under

reduced pressure to give crude intermediate.

To a solution of the crude intermediate in DCM (2.4 mL) was added H>0> (30% in H2O, 74 uL,
0.72 mmol) at 0 °C. After stirring at 0 °C for 1 h, the reaction mixture was quenched by Na>S>03
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(sat. in H20) and extracted by DCM. The organic phase was dried with Na>SO4 and concentrated
under reduced pressure. The residue was purified by column chromatography (silica gel,

hexane:EA = 10:1) to give compound 2.167 (42.3 mg, 76% yield) as a white solid.

H NMR (400 MHz, CDCl3) § 6.63 (dd, J=3.5, 2.1 Hz, 1H), 4.14 (g, J = 7.1 Hz, 2H), 2.66 — 2.52
(m, 3H), 2.50 — 2.34 (m, 4H), 2.09 (t, J = 3.2 Hz, 1H), 2.05 (dd, J=2.4, 1.7 Hz, 3H), 2.04 — 1.91

(m, 2H), 1.76 (dt, J=12.5, 1.9 Hz, 1H), 1.27 (t, J=7.1 Hz, 3H).

Synthesis of compound 2.170

CO,Et CO,Et
Me 2 HOPTSA, Me 2
~""0oH
H toluene, reflux H
58% (0]
(@) [\/O
2.167 2.170

In Dean-Stark apparatus was charged compound 2.167 (118 mg, 0.45 mmol), toluene (10 mL),
ethylene glycol (250 uL, 4.5 mmol) and PTSA (9 MG, 0.045 mmol) at room temperature. After
refluxing for 10 h, the reaction mixture was quenched by NaHCO3 (sat. in H,0O) and extracted by
Et0. The organic phase was dried with Na>SO4 and concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel, hexane:EA = 10:1) to give compound

2.170 (79.1 mg, 58% yield) as a colorless oil.

IH NMR (500 MHz, CDCl3) § 5.65 (t, J = 2.4 Hz, 1H), 4.22 — 4.13 (m, 2H), 3.96 — 3.87 (m, 2H),
3.85 —3.77 (m, 2H), 2.53 — 2.25 (m, 4H), 2.09 (t, J = 2.1 Hz, 3H), 2.04 (q, J = 1.8 Hz, 2H), 1.91 —

1.82 (m, 3H), 1.76 (ddd, J=11.9, 3.7, 2.0 Hz, 2H), 1.29 (t, J= 7.1 Hz, 3H).
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Synthesis of compound 2.172

TMSCI

Me Nal Me
HMDS
H Y
MeCN
o 87% TMSO
2.135 2.172

To a solution of compound 2.135 (50 mg, 0.26 mmol) in acetonitrile (2.6 mL),
hexamethyldisilazane (HMDS, 0.22 mL, 1.05 mmol), Nal (157 mg, 1.05 mmol), and
chlorotrimethylsilane (TMSCI, 99 pL, 0.78 mmol) were added at room temperature. After stirring
at room temperature for 12 h, the reaction mixture was quenched with pH = 7 buffer (aqueous, 5
mL) and extracted with EtcO (3 x 5 mL). The organic phase was then dried with Na>SO4 and
concentrated under reduced pressure, then purified by column chromatography (silica gel,

hexane:Et;O = 20:1) to give compound 2.172 (59.3 mg, 87% yield) as a colorless oil.

Ry=0.77 (hexane:ethyl acetate = 10:1)

H NMR (500 MHz, CDCls) & 5.24 (t, J = 3.9 Hz, 1H), 2.40 — 2.29 (m, 2H), 2.27 — 2.15 (m, 2H),
1.99 — 1.88 (m, 2H), 1.85 (d, J = 17.4 Hz, 1H), 1.79 (dd, J = 11.5, 3.9 Hz, 1H), 1.75 — 1.70 (m,
1H), 1.69 — 1.66 (m, 4H), 1.66 — 1.61 (m, 1H), 1.44 — 1.34 (m, 1H), 1.31 — 1.26 (m, 1H), 0.13 (s,

9H).

I3C NMR (101 MHz, CDCI3) & 140.6, 136.6, 124.3, 120.0, 40.8, 40.6, 37.5, 36.3, 36.2, 34.3, 25 4,

22.0,21.8,0.7.

IR (KBr) vmax = 2955, 2913, 1699, 1348, 1251, 1209, 1165, 1004, 873, 842 cm™!
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HRMS (ESI) m/z calcd. for C13H70" [M+H]": 189.1274, found 189.1280.

Synthesis of compound 2.173

Me Me

PhSeCl
DCM
H — > H
then H202
TMSG DCM, 78% 5
2172 2173

To a solution of compound 2.172 (20 mg, 0.076 mmol) in dichloromethane (1.5 mL), PhSeClI (21
mg, 0.11 mmol) was added at —78 °C. After stirring at —78 °C for 30 min, the reaction mixture was
warmed to 0 °C and stirred for 5 min. The reaction was then quenched with NaHCOj3 (sat. in H>O,
2 mL) and extracted with dichloromethane (3 x 2 mL). The organic phase was dried with Na;SO4
and concentrated under reduced pressure. The residue was added dichloromethane (1.5 mL) and
H>02 (30% in H>0O, 40 pL, 0.38 mmol) at the 0 °C. After stirring at 0 °C for 1 h, the reaction was
quenched with Na>S>03 (sat. in H>O, 2 mL) and extracted with dichloromethane (3 x 2 mL). The
organic phase was dried with Na;SO4 and concentrated under reduced pressure. The residue was
purified by column chromatography (silica gel, hexane:Et,O =20:1) to give compound 2.173 (11.2

mg, 78% yield) as a colorless oil.

Ry=0.46 (hexane:ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) § 6.56 (t, J = 2.9 Hz, 1H), 5.35 — 5.27 (m, 1H), 2.60 — 2.48 (m, 2H),
2.46 (t,J=3.5 Hz, 1H), 2.43 — 2.33 (m, 2H), 2.19 (dt, J= 17.5, 3.0 Hz, 1H), 2.10 (dt, J= 15.4, 3.1

Hz, 2H), 1.99 — 1.87 (m, 2H), 1.78 — 1.72 (m, 1H), 1.67 (d, J= 2.4 Hz, 3H).

185



I3C NMR (101 MHz, CDCl3) 6 199.1, 149.4, 137.7, 136.5, 120.7, 46.3, 44.2,41.0, 39.0, 38.1, 36.9,

29.9,21.5.
IR (KBr) vmax = 2921, 1683, 1612, 1436, 1328, 1261, 1221, 1048, 986, 919 cm’!

HRMS (CI) m/z calcd. for C1sH270Si" [M+H]"™: 263.1826, found 263.1826.

Synthesis of compound 2.173
O, (1 atm)

Me Pd(OAc), Me
% TFA (1 equiv) %
H H
DMSO
o 60 °C, 24 H

38% (15% SM) o st73

2135

To a solution of compound 2.135 (49 mg, 0.26 mmol) in dimethyl sulfoxide (DMSO, 1.3 mL),
trifluoroacetic acid (TFA, 20 pL, 0.26 mmol) and Pd(OAc), (17 mg, 0.077 mmol) were added at
room temperature. The solution was then bubbled with Oz for 20 min. After stirring at 60 °C under
O atmosphere for 24 h, the reaction was quenched with NaHCOs (sat. in H>O, 3 mL) and extracted
with Et20 (3 x 3 mL). The organic phase was dried with Na>SO4 and concentrated under reduced
pressure. The residue was then purified by column chromatography (silica gel, hexane:EtoO =

100:1) to give compound 2.173 (18.4 mg, 38% yield) and compound 2.135 (7.4 mg, 15% recovery).

Analytical data see above.

Synthesis of compound 2.175
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Me Li Me

H
PhMe,SiCl
H CuCN H
THF
(o}

o) 80%
Me,PhSi™ “H
2173 2175

To a flame dried 10 mL flask was charged Me>PhSiCl (195 mg, 1.14 mmol) and THF (2 mL) at
room temperature. The mixture was added lithium (32 mg, 4.6 mmol) at 0 °C and stirred at 0 °C
for 3 h. The obtained Me>PhSiLi solution was transferred to the suspension of CuCN (51 mg, 0.57
mmol) in THF (1 mL) at —78 °C. After stirring at 0 °C for 30 min, the reaction mixture was added
compound 2.173 (72 mg, 0.38 mmol) in THF (1 mL) at =78 °C. After stirring at —78 °C for 30
min, the reaction mixture was warmed to 0 °C. After stirring at 0 °C for 30 min, the reaction
mixture was quenched by NH4Cl (sat. in H>O) and extracted by Et2O. The organic phase was dried
with Na;SO4 and concentrated under reduced pressure. The residue was then purified by column
chromatography (silica gel, hexane:EA = 20:1) to give compound 2.175 (0.0990 g, 80% yield) as

a colorless oil.
Ry=0.53 (hexane:EA =4:1)

H NMR (400 MHz, CDCl3) § 7.55 — 7.51 (m, 2H), 7.32 (dd, J= 4.9, 1.9 Hz, 3H), 5.39 (d, J= 4.9
Hz, 1H), 2.60 (d, J = 9.1 Hz, 1H), 2.30 (s, 1H), 2.24 — 2.16 (m, 2H), 2.11 (dd, J= 17.2, 7.6 Hz,
1H), 1.91 (dd, J = 17.1, 4.9 Hz, 1H), 1.71 (g, J = 6.0 Hz, 1H), 1.68 — 1.66 (m, 4H), 1.62 (dd, J =

11.7, 5.9 Hz, 1H), 1.50 — 1.40 (m, 2H), 1.39 — 1.30 (m, 2H), 0.40 (s, 3H), 0.29 (s, 3H).

Synthesis of compound 2.177
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Me

HBF4‘Et20
H DCM
3 then KF, KHCO3, H,0,
MeOH/THF
Me,PhSi™ ~H Mo,
2175 2177

To a solution of compound 2.175 (28 mg, 0.086 mmol) in DCM (0.9 mL) was added HBF4-Et,O
(59 uL, 2.5 mmol) at the room temperature. After stirring at room temperature for 2 h, the reaction
mixture was quenched by NaHCOs (sat. in H>O) and extracted by DCM. The organic phase was

dried with Na>SO4 and concentrated under reduced pressure to give crude intermediate.

To a solution of the crude intermediate in THF (0.43 mL) and MeOH (0.43 mL) was added KHCO3
(17 mg, 0.17 mmol) and KF (9.9 mg, 0.17 mmol) at room temperature. After stirring at room
temperature for 15 min, the reaction mixture was cooled to 0 °C and added H>O: (30% in water,
130 pL, 1.3 mmol). After stirring at room temperature for 12 h, the reaction mixture was quenched
by NaxS;0; (sat.) and extracted by Et;O. The organic phase was dried with Na;SO4 and
concentrated under reduced pressure. The residue was then purified by column chromatography

(silica gel, hexane:Et;O =4:1) to give compound 2.177 (2.0 mg, 11% yield) as a colorless oil.

Ry=0.52 (hexane:ethyl acetate = 2:1)

H NMR (500 MHz, CDCl3) & 5.34 (dt, J= 5.1, 1.8 Hz, 1H), 4.60 (tt, J = 6.3, 3.2 Hz, 1H), 2.49
(dtd, J = 16.8, 2.2, 1.3 Hz, 1H), 2.43 (ddq, J = 6.1, 4.0, 2.0 Hz, 1H), 2.36 (dd, J = 16.9, 5.4 Hz,
1H), 2.27 (d, J= 3.6 Hz, 1H), 2.26 — 2.19 (m, 2H), 2.05 — 1.97 (m, 2H), 1.89 — 1.76 (m, 4H), 1.65

(dt, J=2.8, 1.5 Hz, 3H), 1.59 — 1.54 (m, 1H).

I3C NMR (101 MHz, CDCl3) 8 214.7, 137.5, 121.1, 76.1, 64.8, 44.9, 41.7, 41.2, 38.0, 36.0, 35.7,

33.0,21.5.
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IR (KBr) vmax = 3432, 2912, 2828, 1692, 1445, 1330, 1220, 1112, 1039, 808, 564 cm™!

HRMS (ESI): m/z calcd for C13H1902" [M+H]": 207.1380, found 207.1379.

Synthesis of compound 2.179

szinz
Me cucl Me
IMes*HBF,4
H NaOtBu H
THF o
0 89% (pin)B"" TH
2173 2179

To a suspension of CuCl (28 mg, 0.28 mmol) in THF (15 mL) was added IMes-HBF4 (110 mg,
0.28 mmol) and NaOtBu (54 mg, 0.56 mmol) at room temperature. After stirring at room
temperature for 40 min, the reaction mixture was added compound 2.173 (0.2647 g, 1.4 mmol)
and Bz(pin)2 (460 mg, 1.82 mmol) in THF (15 mL) at 0 °C. After stirring at 0 °C for 2 h and at
room temperature for 1 h, the reaction mixture was quenched by NH4Cl (sat. in H>O) and extracted
by Et0. The organic phase was dried with Na;SO4 and concentrated under reduced pressure. The
residue was purified by column chromatography (silica gel, hexane:EtoO = 10:1) to give compound

2.179 (0.3956 g, 89% yield) as a colorless oil.

Ry=0.39 (hexane:EA = 10:1, run twice)

H NMR (500 MHz, CDCls) & 5.43 — 5.39 (m, 1H), 2.77 (d, J= 8.8 Hz, 1H), 2.44 —2.31 (m, 3H),
2.19 (d, J=17.2 Hz, 1H), 1.94 (dd, J = 17.2, 5.0 Hz, 1H), 1.76 — 1.68 (m, 5H), 1.62 — 1.59 (m,
1H), 1.52 — 1.45 (m, 2H), 1.40 (dd, J = 11.5, 6.3 Hz, 1H), 1.37 — 1.31 (m, 1H), 1.28 (s, 6H), 1.25

(s, 6H).
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B NMR (128 MHz, CDCl3) & 33.28.

13C NMR (101 MHz, CDCl3) & 214.79, 138.01, 121.85, 82.75, 61.02, 43.68, 41.77, 41.73, 41.67,

35.60, 35.16, 27.04, 24.94, 24.79, 21.67.

DEPT-135 (101 MHz, CDCl;) ¢ 121.81, 60.97, 41.72, 41.68, 41.63, 35.55, 35.11, 26.99, 24.89,

24.75,21.62.
IR (KBr) vmax = 2974, 2929, 1705, 1447, 1409, 1377, 1313, 1199, 1147, 1114, 968, 862 cm’!

HRMS (ESI): m/z calcd for C19H20BNaO3" [M+Na]": 339.2102, found 339.2105.

Synthesis of compound 2.177

Me
H NaBO,
—_—
o THF/H,0
(pin)B" TH 85%
2179 2177

To a solution of compound 2.179 (0.3956 g, 1.25 mmol) in THF (12 mL) and H>O (12 mL) was
added NaBOs3-4H>O (0.58 g, 3.75 mmol) at the room temperature. After stirring at room
temperature for 3 h, the reaction mixture was quenched by Na>S>0; (sat. in H20) and extracted by
Et20. The organic phase was dried with Na>xSO4 and concentrated under reduced pressure. The
residue was then purified by column chromatography (silica gel, hexane:EtO = 4:1) to give

compound 2.177 (0.2340 g, 85% yield) as a colorless oil.

Analytic data of 2.177 see above.
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Synthesis of compound 2.177

B,pin,,CuCl
IMes*HBF,, NaOtBu
H
then NaBO3
THF/H,O

59%
2173 2177

To a suspension of CuCl (0.5 mg, 0.0054 mmol) in tetrahydrofuran (THF, 0.25 mL), 1,3-Bis(2,4,6-
trimethylphenyl)imidazolium tetrafluoroborate (IMes-HBF4, 2 mg, 0.0054 mmol), and NaO'Bu (1
mg, 0.0108 mmol) were added at room temperature. After stirring at room temperature for 40 min,
a solution containing compound 2.173 (5 mg, 0.027 mmol) and bis(pinacolato)diboron (B2(pin)a,
9 mg, 0.035 mmol) in tetrahydrofuran (THF, 0.25 mL) was added to the reaction mixture. After
stirring at 0 °C for 2 h and room temperature for 1 h, 0.5 mL H>O and NaBOs-4H20 (12.5 mg,
0.081 mmol) were added to the reaction mixture and stirred at room temperature for 3 h. The
reaction was then quenched with Na;S,0; (sat. in H2O, 1 mL) and extracted with ethyl acetate (3
x 2 mL), and the organic phase was dried with NA2SO4 and concentrated under reduced pressure.
The residue was purified by column chromatography (silica gel, hexane:Et;O = 4:1) to give

compound 2.177 (3.3 mg, 59% yield) as a colorless oil.

Analytic data of 2.177 see above.

Synthesis of compound 2.178
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LaClze2LiCl
then MeMgBr  H

THF H
88% OH OH

2178

To a solution of compound 2.177 (0.234 g, 1.13 mmol) in tetrahydrofuran (THF, 12 mL),
LaCl3-LiCl (0.5 M in THF, 2.5 mL, 1.25 mmol) was added at 0 °C. After stirring at 0 °C for 1 h,
MeMgBr (3M in Et;0, 0.83 mL, 2.49 mmol) was added to the reaction mixture at 0 °C. After
stirring at 0 °C for 30 min, the reaction was quenched with NH4Cl (sat. in H2O, 10 mL). HCl (2M
in water) was then added to the reaction mixture until all precipitate dissolved, and the resulting
mixture was extracted with ethyl acetate (3 X 10 mL). The organic phase was washed with NaHCO3
(sat. in H20, 30 mL) and brine (sat. in H>O, 30 mL), dried with Na;SO4 and concentrated under
reduced pressure. The residue was purified by column chromatography (silica gel, hexane:Et,O =

4:1) to give compound 2.178 (0.2202 g, 88% yield) as a white solid.

Ry= 0.36 (hexane:ethyl acetate = 2:1)

'H NMR (500 MHz, CDCL3) § 5.27 (tt, J = 2.8, 1.4 Hz, 1H), 4.63 (td, J = 6.6, 3.3 Hz, 1H), 3.02
(d, J=2.4 Hz, 1H), 2.81 (s, 1H), 2.25 (dd, J = 6.3, 2.9 Hz, 1H), 2.16 — 2.07 (m, 2H), 2.06 — 1.99
(m, 1H), 1.86 (dd, J = 13.6, 6.4 Hz, 1H), 1.75 — 1.69 (m, 3H), 1.67 (q, J= 1.9 Hz, 3H), 1.63 (d, J
= 13.3 Hz, 1H), 1.54 (dd, J= 6.5, 1.3 Hz, 1H), 1.48 — 1.42 (m, 1H), 1.38 (s, 3H), 1.36 (dt, /= 3.2,

1.4 Hz, 1H).

13C NMR (101 MHz, CDCl3) & 139.0, 121.1, 76.9, 73.2, 59.4, 41.6, 40.4, 40.3, 39.3, 35.7, 33.2,

33.1,32.4,21.9.
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IR (KBr) vimax = 3320, 2958, 2929, 2870, 1440, 1370, 1166, 1137, 1094, 1061, 1019, 920, 799 cm"

1

HRMS (ESI): m/z calcd for C14H2NaO," [M+Na]": 245,1512, found 245.1518.

Melting point: 88.3 — 89.6 °C

Synthesis of compound 2.134

Me Me

H IBX H

Me H EA80°C  Me
OH OH 93% OH e}
2178 2.134

To a solution of compound 2.178 (100 mg, 0.45 mmol) in ethyl acetate (9 mL), 2-iodoxybenzoic
acid (IBX, 378 mg, 1.35 mmol) was added at room temperature. After stirring at 80 °C for 3 h, the
reaction mixture was filtered through a short pad of silica gel and concentrated under reduced
pressure. The residue was purified by column chromatography (silica gel, hexane:Et;O = 4:1) to

give compound 2.134 (92.4 mg, 93% yield) as a white solid.

Rr=0.40 (hexane:ethyl acetate = 2:1)

H NMR (500 MHz, CDCl3) § 5.64 (d, J= 1.7 Hz, 1H), 5.37 (ddd, J= 4.4, 2.8, 1.5 Hz, 1H), 2.42
~2.31 (m, 2H), 2.31 — 2.23 (m, 2H), 2.11 — 2.03 (m, 2H), 1.83 — 1.78 (m, 1H), 1.78 — 1.66 (m,

5H), 1.57 (d, J=5.0 Hz, 1H), 1.44 — 1.35 (m, 2H), 1.31 (s, 3H).

I3C NMR (101 MHz, CDCl3) 8 222.7, 138.6, 121.6, 71.6, 64.2, 40.03, 39.97, 38.8, 35.8, 35.1, 33.5,

32.9, 30.8, 22.0.
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IR (KBr) vmax = 3444, 2922, 2867, 1704, 1439, 1406, 1367, 1154, 1137, 1040, 919, 895, 803 cm"

1

HRMS (ESI): m/z calcd for C14H2102" [M+H]"™: 221.1536, found 221.1532.

Melting point: 117.6 — 118.7 °C

Synthesis of compound 2.183

Me Me

LDA, THF
H g —_— = H
[/ then TMSCI &
Me 5 -78 °C Me S s
OH © 28% (35% SM) OH  OTM
2134 2183

To a solution of DIPA (12 pL, 0.086 mmol) in THF (0.3 mL) was added nBuLi (2.5 M in hexane,
33 uL, 0.082 mmol) at the 0 °C and stirred at 0 °C for 30 min. In another flask, to a solution o f
compound 2.134 (7.2 mg, 0.033 mmol) in THF (0.4 mL) was added the prepared LDA solution at
—78. After stirring at —78 °C for 1 h, the reaction mixture was added TMSCI (12.3 pL, 0.1 mmol)
at —78 °C. After stirring at —78 °C for 30 min, the reaction mixture was quenched by NH4Cl (sat.
in H20) and extracted by Et2O. The organic phase was dried with Na>xSO4 and concentrated under
reduced pressure. The residue was then purified by column chromatography (silica gel,
hexane:Et;O = 10:1) to give compound 2.183 (2.7 mg, 28% yield) as a colorless oil and recycle

compound 2.134 (2.5 mg, 35% recovery).

Ry=0.84 (hexane:EA = 2:1)
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H NMR (500 MHz, CDCl3) & 5.20 (dd, J = 4.4, 2.6 Hz, 1H), 4.82 (dt, J= 3.1, 1.6 Hz, 1H), 2.20
~2.12 (m, 3H), 2.11 — 2.05 (m, 2H), 2.00 — 1.88 (m, 3H), 1.64 (dt, J=2.8, 1.5 Hz, 3H), 1.54 (d, J

= 1.6 Hz, 1H), 1.48 — 1.42 (m, 2H), 1.32 (s, 3H), 0.21 (s, 9H).

Synthesis of compound 2.185

Pd(OAc),
H 2,6-di-tBu-py H
MeCN
Me 99% Me
OH OTMS OH O
2.183 2.185

To a solution of compound 2.183 (2.7 mg, 0.0092 mmol) in MeCN (0.2 mL) was added 2,6-di-
‘Bu-py (6.3 uL, 0.028 mmol) and Pd(OAc): (3.1 mg, 0.014 mmol) at the room temperature. After
stirring at room temperature for 5 h, the reaction mixture was filtered through a short pad of silica
gel and concentrated under reduced pressure. The residue was then purified by column
chromatography (silica gel, hexane:Et,0 = 2:1) to give compound 2.185 (2.1 mg, 99% yield) as a

white solid.

Rr=0.41 (hexane:ethyl acetate = 2:1)

H NMR (500 MHz, CDCls) § 7.56 (d, J= 5.7 Hz, 1H), 6.13 (d, J = 5.6 Hz, 1H), 5.31 (dt, J= 4.9,
1.7 Hz, 1H), 2.35 — 2.25 (m, 2H), 2.21 (dt, J= 11.9, 2.2 Hz, 1H), 1.96 (dd, J = 14.9, 9.7 Hz, 1H),
1.92 (s, 1H), 1.69 (dt, J = 2.6, 1.5 Hz, 3H), 1.62 — 1.59 (m, 1H), 1.59 — 1.56 (m, 1H), 1.55 (s, 3H),

1.55—1.52 (m, 1H), 1.32 (s, 1H).
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I3C NMR (101 MHz, CDCl3) $ 211.2,172.4, 141.0, 132.8, 118.6, 71.8, 59.1, 44.0, 42.4, 39.5, 32.8,

31.0,28.9,22.1.

IR (KBr) vmax = 3432, 2961, 2921, 1698, 1675, 1584, 1443, 1384, 1125, 934, 804 cm’!

HRMS (ESI): m/z calcd for C14H190," [M+H]": 219.1380, found 219.1374.

Melting point: 146.0 — 146.6 °C

Synthesis of compound 2.185

Me Me

LDA ¢l
H&Z _ then2.187 H% BusySepy,
e THF, -78°C
o Y 51% OH e} 2.187
2134 2185

To a solution of diisopropyl amine (7.4 pL, 0.053 mmol) in tetrahydrofuran (THF, 0.1 mL), "BuLi
(2.5 M in THF, 20 pL, 0.051 mmol) was added at 0 °C and stirred for 1 h. This lithium
diisopropylamide (LDA) solution was then added to another flask containing compound 2.134 (5
mg, 0.023 mmol) in tetrahydrofuran (THF, 0.1 mL) at =78 °C. After stirring at —78 °C for 30 min,
freshly prepared compound 2.187 (1M in benzene, 35 pL, 0.035 mmol) was added to the reaction
mixture.%! After stirring at —78 °C for 30 min, the reaction was quenched with NH4Cl (sat. in H>0,
1 mL) and extracted with ethyl acetate (3 X 1 mL). The organic phase was dried with Na,SO4 and
concentrated under reduced pressure. The residue was then purified by column chromatography

(silica gel, hexane:ethyl acetate = 10:1) to give compound 2.185 (51% NMR yield) as a white solid.

Analytically data of 2.185 see above.
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Synthesis of compound 2.188

Me Me

CuBreSMe,
H __ Memgsr Me
Me THF
OH o) -78°Cto 0 °C Me OH ol
60% (d.r. >20:1)
2.185 2.188

To a solution of compound 2.185 (4.5 mg, 0.021 mmol) in tetrahydrofuran (THF, 0.4 mL),
CuBr-SMe: (8.6 mg, 0.042 mmol) was added at room temperature. The mixture was then cooled
to -78 °C and MeMgBr (3 M in Et20O, 15 pL, 0.044 mmol) was added. After stirring at =78 °C for
1 h and 0 °C for 10 min, the reaction was quenched with NH4Cl (sat. in H>O, 1 mL) and extracted
with ethyl acetate (3 x 1 mL). The organic phase was dried with Na>SO4 and concentrated under
reduced pressure. The residue was then purified by column chromatography (silica gel,

hexane:ethyl acetate = 10:1) to give compound 2.188 (2.9 mg, 60% yield) as a white solid.

Ry=0.58 (hexane:ethyl acetate = 2:1)

H NMR (500 MHz, CDCl3) § 5.38 (ddq, J = 4.3, 3.0, 1.5 Hz, 1H), 5.12 (d, J= 1.2 Hz, 1H), 2.61
(dd, J=19.3, 8.3 Hz, 1H), 2.31 — 2.25 (m, 1H), 2.24 (s, 1H), 2.22 (dd, J = 5.7, 2.9 Hz, 1H), 2.06
—1.93 (m, 3H), 1.82 — 1.74 (m, 1H), 1.69 (q, J = 1.9 Hz, 3H), 1.66 — 1.62 (m, 1H), 1.45 (dt, J =

3.1, 1.4 Hz, 2H), 1.33 (t, J= 0.8 Hz, 3H), 1.07 (d, J= 7.1 Hz, 3H).

I3C NMR (101 MHz, CDCl3) 8 222.6, 138.5, 121.4, 71.5, 59.8, 44.5, 41.7, 40.7, 37.2, 35.7, 34.9,

30.8,21.9, 15.7.

IR (KBr) vimax = 3454, 2959, 2924, 1719, 1444, 1409, 1377, 1232, 1197, 1133, 1092, 899 cm’!
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HRMS (CI): m/z caled for CisH230," [M+H]": 235.1693, found 235.1690.

Melting point: 85.4 — 86.5 °C

Synthesis of compound 2.1

Me Me
Me NMe4*BH(OAC)3 Me
H& AcOH/MeCN ':A%OH
Me OH ) 89% e OH b
2.188 penicibilaene A (2.1)

To a solution of compound 2.188 (6.7 mg, 0.029 mmol) in acetonitrile (0.3 mL) and acetic acid
(0.3 mL), NMes-NH(OAc)3 (23 mg, 0.086 mmol) was added at room temperature. After stirring
at room temperature for 2 h, the reaction was quenched with NaHCO3 (sat. in H,O, 2 mL) and
extracted with ethyl acetate (3 x 2 mL). The organic phase was dried with Na>SO4 and concentrated
under reduced pressure. The residue was purified by column chromatography (silica gel,

hexane:ethyl acetate = 4:1) to give compound 2.1 (6.0 mg, 89% yield) as a white solid.

Ry=0.26 (hexane:ethyl acetate = 1:1)

'TH NMR (500 MHz, Acetone-D6) & 5.23 (d, J = 4.9 Hz, 1H), 4.45 (p, /= 6.9 Hz, 1H), 3.41 (d, J
= 5.3 Hz, 1H), 3.21 (s, 1H), 2.15 (d, J = 8.5 Hz, 1H), 2.10 — 2.04 (m, 3H), 2.04 — 1.97 (m, 2H),
1.93 - 1.86 (m, 1H), 1.90 — 1.83 (m, 2H), 1.78 — 1.70 (m, 1H), 1.73 — 1.65 (m, 2H), 1.63 (d, J =
2.0 Hz, 3H), 1.50 (d, J = 14.2 Hz, 1H), 1.46 (d, /= 6.2 Hz, 1H), 1.38 (td, J = 11.8, 8.6 Hz, 1H),

1.30 (ddd, J = 11.6, 4.0, 1.4 Hz, 1H), 1.26 (s, 3H), 0.89 (d, J = 7.0 Hz, 3H).
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I3C NMR (101 MHz, Acetone-D6) & 140.9, 120.7, 73.4, 71.3, 61.5, 42.6, 42.54, 42.48, 42 4, 36.0,

35.4,33.3,31.4,22.2,15.0.

IR (KBr) vmax = 3359, 3300, 2963, 1913, 1443, 1411, 1142, 1113, 1036, 922, 861 cm’!

HRMS (ESI): m/z calcd for CisHzs02" [M+H]"™: 237.1849, found 237.1842.

Melting point: 159.3 — 160.0 °C

Synthesis of compound 2.2

Me Me

Me Ac,0, DMAP Me
H pyridine H
Mo OH DCM M OAc
OH 88% ©
H OH H
penicibilaene A (2.1) penicibilaene B (2.2)

To a solution of compound 2.1 (6.0 mg, 0.025 mmol) in dichloromethane (0.5 mL), pyridine (6.1
pL, 0.075 mmol), acetic anhydride (Ac20, 4.7 uL, 0.051 mmol), and 4-(dimethylamino)pyridine
(DMAP, 0.3 mg, 0.0025 mmol) were added at room temperature. After stirring at room temperature
for 24 h, the reaction was quenched with NH4Cl (sat. in H,O, 1 mL) and extracted with
dichloromethane (3 x 2 mL). The organic phase was dried with Na>SO4 and concentrated under
reduced pressure. The residue was then purified by column chromatography (silica gel,

hexane:ethyl acetate = 10:1) to give compound 2.2 (6.2 mg, 88% yield) as a white solid.

Ry=0.76 (hexane:ethyl acetate = 1:1)

H NMR (500 MHz, CDCls) § 5.36 (ddd, J = 8.7, 7.6, 6.0 Hz, 1H), 5.26 (d, J = 4.9 Hz, 1H), 2.31

(ddd, J=12.8, 7.5, 5.8 Hz, 1H), 2.22 (d, J= 9.2 Hz, 1H), 2.05 (d, J = 17.0 Hz, 1H), 2.00 (s, 3H),
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1.83 (dd, J=14.7,9.1 Hz, 1H), 1.79 — 1.76 (m, 1H), 1.75 — 1.74 (m, 1H), 1.72 (d, J= 6.1 Hz, 1H),
1.72 — 1.68 (m, 1H), 1.65 (dt, J=2.7, 1.5 Hz, 3H), 1.53 (dt, J = 14.6, 1.3 Hz, 1H), 1.44 (ddd, J =
11.8, 3.9, 1.5 Hz, 1H), 1.37 (td, J = 12.4, 8.7 Hz, 1H), 1.15 (s, 3H), 1.13 (s, 1H), 0.91 (d, J= 6.9

Hz, 3H).

I3C NMR (101 MHz, CDCl3) § 170.9, 140.3, 119.4, 75.5, 71.1, 56.8, 41.8, 41.7, 41.2, 38.3, 34 .4,

34.2,31.9,30.3,21.8,21.4,13.9.

IR (KBr) vmax = 3505, 2958, 2926, 2886, 1736, 1719, 1458, 1375, 1271, 1245, 1114, 1030, 927,

805 cm’!

HRMS (ESI): m/z calcd for Ci17H2703" [M+H]™: 279.1955, found 237.1886; Ci7H26NaOs"

[M+Na]": 301.1774, found 301.1768.

Melting point: 122.8 —123.5 °C

2.6.3 Comparison of Spectroscopic Data of the Natural and Synthetic Products
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Table 2.70. Comparison of the *H-NMR (Acetone-D6) Data of the Synthetic Penicibilaene A (2.1)

Penicibilaene A (2.1)

No. Wang’s isolated natural penicibilaene (2.1)’ Our synthetic penicibilaene (2.1)

6 'H [ppm, mult, J (Hz)] 500 MHz 5 'H [ppm, mult, J (Hz)] 500 MHz
2 1.69 (m, 1H) 1.69 (m, 1H)
3a 2.07 (m, 1H) 2.07 (m, 1H)
3p 1.38 (dt,11.7, 8.6, 1H) 1.38 (dt, 11.8, 8.6, 1H)
4 4.45 (m, 1H) 4.45 (p, 6.9, 1H)
5 1.46 (d, 6.2, 1H) 1.46 (d, 6.2, 1H)
7o 1.86 (dd, 12.0, 4.8, 1H) 1.86 (m, 1H)
78 1.30 (dd, 12.0, 3.9, 1H) 1.30 (ddd, J=11.6, 4.0, 1.4 Hz, 1H)
8 2.15(dd, 4.8, 3.9, 1H) 2.15(d, 8.5, 1H)
10 5.23(dd, 3.1, 1.5, 1H) 5.23(d, 4.9 Hz, 1H)
Ila 2.01 (d, 16.3, 1H) 2.00 (m, 1H)
11B 1.74 (m, 1H) 1.74 (m, 1H)
12a 1.90 (dd, 14.2, 5.6, 1H) 1.89 (m, 1H)
128 1.50 (d, 14.2, 1H) 1.50 (d, 14.2, 1H)
13 0.89 (d, 7.1, 3H) 0.88 (d, 7.0, 3H)
14 1.26 (s, 3H) 1.26 (s, 3H)
15 1.63 (brs, 3H) 1.63 (d, 2.0, 3H)
4-OH 3.40 (d, 5.2, IH) 3.41 (d, 5.3, 1H)
6-OH 3.20 (s, 1H) 3.21 (s, IH)
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Table 2.71. Comparison of the *C-NMR (Acetone-D6) Data of the Synthetic Penicibilaene A (2.1)

Penicibilaene A (2.1)

No. Wang’s isolated natural penicibilaene (2.1)’ Our synthetic penicibilaene (2.1)
8 13C [ppm, mult, J (Hz)] 125 MHz 6 3C [ppm, mult, J (Hz)] 101 MHz
1 42.58 42.54
2 42.62 42.60
3 42.5 42.5
4 73.4 73.4
5 61.5 61.5
6 71.3 71.3
7 333 333
8 36.1 36.0
9 140.9 140.9
10 120.7 120.7
11 354 354
12 42.4 42.4
13 15.0 15.0
14 314 314
15 22.2 22.2
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Table 2.72. Comparison of the *H-NMR (CDCls) Data of the Synthetic Penicibilaene B (2.2)

No.

3o
3B

Ta.
B

10
Ila
11B
12a
1283

13

14

15

bR

6-OH

Penicibilaene B (2.2)

Wang’s isolated natural penicibilaene (2.2)’

6 'H [ppm, mult, J (Hz)] 500 MHz
1.80 (m, 1H)

2.28 (ddd, 12.5,7.1, 6.6, 1H)
1.34 (dt, 12.5, 8.7, 1H)
5.33 (ddd, 8.7, 6.6, 6.0, 1H)
1.70 (d, 6.0, 1H)

1.78 (dd, 11.9, 6.2, 1H)
1.41 (dd, 11.9, 2.5, 1H)
2.18(dd, 6.2, 2.5, 1H)
5.24(d, 4.2, 1H)

2.02 (d, 16.0, 1H)

1.70 (m, 1H)

1.75 (dd, 14.5, 6.3, 1H)
1.50 (d, 14.5, 1H)

0.88 (d, 6.9, 3H)

1.13 (s, 3H)

1.63 (m, 3H)

1.97 (s, 3H)

Our synthetic penicibilaene (2.2)
6 'H [ppm, mult, J (Hz)] 500 MHz
1.83 (dd, 14.7,9.1, 1H)
2.31(ddd, 12.8,7.5, 5.8, 1H)
1.37 (dt, 12.4, 8.7, 1H)
5.36 (ddd, 8.7, 7.6, 6.0, 1H)
1.72 (d, 6.1, 1H)
1.77 (m, 1H)
1.44 (ddd, 11.8, 3.9, 1.5, 1H)
2.22(d,9.2, 1H)
5.26 (d, 4.9, 1H)
2.05(d, 17.0, 1H)
1.70 (m, 1H)
1.75 (m, 1H)
1.53 (dt, 14.6, 1.3, 1H)
091 (d, 6.9, 3H)
1.15 (s, 3H)
1.65 (dt, 2.7, 1.5, 3H)
2.00 (s, 3H)
1.13 (s, 1H)

203



Table 2.73. Comparison of the *H-NMR (CDCIs) Data of the Synthetic Penicibilaene B (2.2)

Penicibilaene B (2.2)

No.  Wang’s isolated natural penicibilaene (2.2)’ Our synthetic penicibilaene (2.2)
6 3C [ppm, mult, J (Hz)] 125 MHz 6 13C [ppm, mult, J (Hz)] 101 MHz
1 41.5 41.2
2 42.1 41.8
3 38.6 383
4 75.8 75.5
5 57.1 56.8
6 71.3 71.1
7 32.2 31.9
8 34.7 34.4
9 140.5 140.3
10 119.7 119.4
11 34.4 34.2
12 41.9 41.7
13 14.1 13.9
14 30.5 30.3
15 22.1 21.8
I 171.1 170.9
2’ 21.6 21.4
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2.6.4 Crystal Data and Structure Refinement

e CO,H
H
0
2.136

CCDC #2078710
Identification code mo_ 1019 SHO YX Om
Empirical formula C14H1503
Formula weight 234.28
Temperature/K 100(2)
Crystal system monoclinic
Space group P2i/n
a/A 9.7164(6)
b/A 13.8970(8)
c/A 9.9583(6)
a/° 90
/e 115.861(2)
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/°

Volume/A3

Pealcg/cm’

w/mm’!

F(000)

Crystal size/mm?®

Radiation

90

1210.00(13)

1.286

0.089

504.0

0.586 x 0.574 x 0.332

MoKa (A =0.71073)

20 range for data collection/°4.888 to 48.904

Index ranges

Reflections collected

Independent reflections

Data/restraints/parameters

Goodness-of-fit on F?

Final R indexes [[>=2c (I)]

-11<h<11,-16<k<16,-11<I1<11

19941

2006 [Rint = 0.0243, Rsigma = 0.0106]

2006/0/156

1.045

R1=10.0356, wR> = 0.0930
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Final R indexes [all data] Ri1=0.0376, wR> =0.0948

Largest diff. peak/hole / e A= 0.22/-0.18
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CCDC #2078965

Identification code

Empirical formula

Formula weight

Temperature/K

Crystal system

Space group

a/A

b/A

c/A

o/°

p/e

O,N

xyb-3-286

C19H2oN404

370.40

100(2)

monoclinic

P2i/c

13.5093(13)

6.2144(6)

20.982(2)

90

96.738(2)

Me

HN-N

NO,
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v/° 90

Volume/A® 1749.3(3)

Z 4

Pealeg/cm’ 1.406

w/mm’! 0.101

F(000) 784.0

Crystal size/mm?® 0.514 x 0.225 x 0.126
Radiation MoKa (A =0.71073)

20 range for data collection/°4.66 to 61.44

Index ranges -19<h<19,-8<k<8§,-30<1<30

Reflections collected 55097

Independent reflections 5423 [Rint = 0.0328, Rsigma = 0.0173]

Data/restraints/parameters ~ 5423/0/249

Goodness-of-fit on F? 1.043

Final R indexes [[>=26 (I)] Ri=0.0401, wR> =0.0995
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Final R indexes [all data] R1=0.0497, wR, =0.1051

Largest diff. peak/hole / e A= 0.46/-0.17

2.6.5 NMR Spectra
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Figure 2.1. "H-NMR Spectrum of 2.20 in CDCls, 500 MHz
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Figure 2.2. "H-NMR Spectrum of 2.22 in CDCl3, 500 MHz
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Figure 2.3. "H-NMR Spectrum of 2.16 in CDCls, 500 MHz
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Figure 2.4. "H-NMR Spectrum of 2.6 in CDCl3, 500 MHz
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Figure 2.5. *C-NMR Spectrum of 2.6 in CDCls, 101 MHz
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Figure 2.6. 'H-NMR Spectrum of 2.24 in CDCl3, 500 MHz

S00
680
SET
S9'T
99T
L9T
L9°T
49T
89T

89T
89T
69T
69T
69T
7wt
e
faw4
L4 %4

9z'T
L

LET
or'e
89C
oLe
e
6LT

08T
8T

[4:n4
[4:x4
[4: x4
€8'C
€8'C
¥8'C

98T
vo'e
So'€
SO'€
SO'€
SO0'€
90°€
90°€
90°€

90
LO'E
L0’
LOE
80°€
80'€
19°¢€
€9°€
v9°€E

98V

A

66'S

£66'T
60
160

M/\ww.m

29T

Ezot

== Footz

OTBS

2.24

1 (ppm)

213



Figure 2.7. C-NMR Spectrum of 2.24 in CDCl3, 101 MHz
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Figure 2.8. 'H-NMR Spectrum of 2.27 in CDCl3, 500 MHz
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Figure 2.9. *C-NMR Spectrum of 2.27 in CDCl3, 101 MHz
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Figure 2.10. "H-NMR Spectrum of 2.31 in CDCls, 500 MHz
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Figure 2.11. '"H-NMR Spectrum of 2.32 in CDCl3, 500 MHz
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Figure 2.12. "H-NMR Spectrum of 2.33 in CDCls, 500 MHz
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Figure 2.13. "H-NMR Spectrum of 2.34 in CDCl3, 500 MHz
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Figure 2.14. 'H-NMR Spectrum of 2.35 in CDCls, 500 MHz
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Figure 2.15. "H-NMR Spectrum of 2.36 in CDCl3, 500 MHz
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Figure 2.16. >C-NMR Spectrum of 2.36 in CDCl3, 101 MHz
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Figure 2.17. "H-NMR Spectrum of 2.38 in CDCl3, 500 MHz
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Figure 2.18. 'TH-NMR Spectrum of 2.39 in CDCls, 500 MHz

8ET~_
oz

vTE
ma.m/.
9T'E —F¢
mﬁmxﬂ
6T°E

99°€ —

€12ad39T°L —

OMe

OMe

N-oMe

2.39

=TY

6'E
6'C
0'E

=00°€

f1 (ppm)

219



Figure 2.19. 'H-NMR Spectrum of 2.40 in CDCl3, 500 MHz
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Figure 2.20. 'H-NMR Spectrum of 2.41 in CDCls, 500 MHz
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Figure 2.21. '"H-NMR Spectrum of 2.42 in CDCl3, 500 MHz
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Figure 2.22. 'H-NMR Spectrum of 2.43 in CDCls, 500 MHz
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Figure 2.23. 'H-NMR Spectrum of 2.44 in CDCl3, 500 MHz
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Figure 2.24. 'H-NMR Spectrum of 2.51 in CDCls, 500 MHz

L0'T
ST
ST
vS'T
vS'T
SS'T
9s'T
95T
LS'T
L9°T
69'T

oLt
oLt
7wt
7T
wt
wt

w'T
€6'T
v6'T
v6'T
S6'T
96'T
96T
L6'T
S0T
90T
L0'C
80°C
60°C
60°C
[ x4
x4
e
e
e
e
ET'C
14%4
vTe
STt
9Tt
9zt
8T
ET'E
IT’e
LT'E
€E'E

LE'E
6EE
17a4
Ly
wy
€LY

oM

OMe

e

2.51

MeO OMe

0'T
60

1 (ppm)

222



Figure 2.25. 'H-NMR Spectrum of 2.52 in CDCl3, 500 MHz
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Figure 2.26. >*C-NMR Spectrum of 2.52 in CDCl3, 101 MHz
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Figure 2.27. "H-NMR Spectrum of 2.54 in CDCl3, 500 MHz
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Figure 2.28. 'H-NMR Spectrum of 2.65 in CDCls, 500 MHz
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Figure 2.29. 'H-NMR Spectrum of 2.67 in CDCl3, 500 MHz
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Figure 2.31. 'H-NMR Spectrum of 2.68 in CDCl3, 500 MHz
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Figure 2.32. C-NMR Spectrum of 2.68 in CDCl3, 101 MHz
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Figure 2.33. "H-NMR Spectrum of 2.62 in CDCl3, 500 MHz
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Figure 2.34. C-NMR Spectrum of 2.62 in CDCl3, 101 MHz
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Figure 2.35. "H-NMR Spectrum of 2.73 in CDCl3, 500 MHz
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Figure 2.36. >*C-NMR Spectrum of 2.73 in CDCl3, 101 MHz
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Figure 2.37. "H-NMR Spectrum of 2.78 in CDCl3, 500 MHz
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Figure 2.38. 'H-NMR Spectrum of 2.79 in CDCls, 500 MHz
Xyb-2-181.10.1.1r 538838R3838588833 RRIRRRRIARAAREY 8
ww %&&Wﬁz e 4 [
(
( A
/I / / /\‘ | )
Me
TMSWOH
2.79
] I i o ¥l
1 7 L )
3‘.5 8‘.0 7‘.5 7‘.0 6‘.5 6‘.0 5‘.5 §.0 4‘.5 4‘.0 3‘.5 3“0 2‘5 2‘.0 1‘ 5 1‘0 ds U‘.O

f1 (ppm)

229



Figure 2.39. 'H-NMR Spectrum of 2.80 in CDCl3, 500 MHz
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Figure 2.40. 'H-NMR Spectrum of 2.81 in CDCl3, 500 MHz
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Figure 2.41. "H-NMR Spectrum of 2.82 in CDCl3, 500 MHz
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Figure 2.43. >C-NMR Spectrum of 2.75 in CDCl3, 101 MHz
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Figure 2.44. "H-NMR Spectrum of 2.91 in CDCls, 500 MHz
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Figure 2.45. "H-NMR Spectrum of 2.95 in CDCl3, 500 MHz
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Figure 2.46. >C-NMR Spectrum of 2.95 in CDCl3, 101 MHz
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Figure 2.47. "H-NMR Spectrum of 2.99 in CDCl3, 500 MHz
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Figure 2.48. >C-NMR Spectrum of 2.99 in CDCl3, 101 MHz
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Figure 2.49. 'H-NMR Spectrum of $2.2 in CDCl3, 500 MHz
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Figure 2.50. >*C-NMR Spectrum of S2.2 in CDCl3, 101 MHz
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Figure 2.51. "H-NMR Spectrum of 2.100 in CDCl3, 500 MHz
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Figure 2.52. C-NMR Spectrum of 2.100 in CDCl3, 101 MHz
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Figure 2.53. "TH-NMR Spectrum of 2.101 in CDCl3, 500 MHz
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Figure 2.54. C-NMR Spectrum of 2.101 in CDCl3, 101 MHz
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Figure 2.55. "TH-NMR Spectrum of DG4 in CDCl3, 500 MHz
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Figure 2.56."°C-NMR Spectrum of DG4 in CDCl3, 101 MHz
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Figure 2.57. "TH-NMR Spectrum of 2.113 in CDCl3, 500 MHz
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Figure 2.58. 'H-NMR Spectrum of 2.114 in CDCl3, 500 MHz
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Figure 2.59. "H-NMR Spectrum of 2.115 in CDCl3, 500 MHz
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Figure 2.60. 'H-NMR Spectrum of 2.116 in CDCl3, 500 MHz
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Figure 2.61. "TH-NMR Spectrum of 2.124 in CDCl3, 500 MHz
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Figure 2.62. 'H-NMR Spectrum of 2.129 in CDCl3, 500 MHz
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Figure 2.63. "H-NMR Spectrum of 2.118 in CDCl3, 500 MHz
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Figure 2.64. >C-NMR Spectrum of 2.118 in CDCls, 101 MHz
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Figure 2.65. "H-NMR Spectrum of 2.117 in CDCl3, 500 MHz
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Figure 2.66. 'H-NMR Spectrum of 2.136 in CDCl3, 500 MHz
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Figure 2.67. C-NMR Spectrum of 2.136 in CDCl3, 101 MHz
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Figure 2.68. 'H-NMR Spectrum of 2.135 in CDCls, 500 MHz
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Figure 2.69. >C-NMR Spectrum of 2.135 in CDCl3, 101 MHz
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Figure 2.70. 'H-NMR Spectrum of 2.139
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Figure 2.71. BC-NMR Spectrum of 2.139 in CDCl3, 101 MHz
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Figure 2.72. "H-NMR Spectrum of 2.142 in CDCls, 500 MHz

mmmmmmmmmmmmmmmmm

2.142

|
R J A
d T
5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 1.0 0.5 0.0
f1 (ppm)

246



Figure 2.73. BC-NMR Spectrum of 2.142 in CDCl3, 101 MHz
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Figure 2.74. 'H-NMR Spectrum of 2.143 in CDCl3, 500 MHz
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Figure 2.75. "TH-NMR Spectrum of 2.147 in CDCl3, 500 MHz
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Figure 2.76. >*C-NMR Spectrum of 2.147 in CDCl3, 101 MHz
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Figure 2.77. "TH-NMR Spectrum of 2.148 in CDCl3, 500 MHz
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Figure 2.78. >C-NMR Spectrum of 2.148 in CDCl3, 101 MHz
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Figure 2.79. "H-NMR Spectrum of 2.148 in C¢De, 500 MHz
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Figure 2.80. COSY Spectrum of 2.148 in CsDs
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Figure 2.81. NOESY Spectrum of 2.148 in CsDs
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Figure 2.82. 'H-NMR Spectrum of 2.151 in CDCls, 500 MHz
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Figure 2.83. "H-NMR Spectrum of 2.152 in CDCl3, 500 MHz
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Figure 2.84. 'TH-NMR Spectrum of 2.153 in CDCls, 500 MHz
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Figure 2.85. "H-NMR Spectrum of 2.154 in CDCl3, 500 MHz
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Figure 2.86. 'H-NMR Spectrum of 2.160 in CDCl3, 500 MHz
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Figure 2.87. "H-NMR Spectrum of 2.161 in CDCl3, 500 MHz
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Figure 2.88. 'H-NMR Spectrum of 2.162 in CDCl3, 500 MHz
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Figure 2.89. 3C-NMR Spectrum of 2.162 in CDCl3, 101 MHz
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Figure 2.90. DEPT135-NMR Spectrum of 2.162 in CDCI3, 126 MHz
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Figure 2.91. COSY-NMR Spectrum of 2.162 in CDCls, 126 MHz
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Figure 2.92. 'H-NMR Spectrum of 2.163 in CDCl3, 500 MHz
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Figure 2.93. "TH-NMR Spectrum of 2.166 in CDCl3, 500 MHz
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Figure 2.94. 'TH-NMR Spectrum of 2.167 in CDCls, 500 MHz
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Figure 2.95. "TH-NMR Spectrum of 2.170 in CDCl3, 500 MHz
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Figure 2.96. 'H-NMR Spectrum of 2.172 in CDCls, 500 MHz
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Figure 2.97. BC-NMR Spectrum of 2.172 in CDCl3, 101 MHz
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Figure 2.98. 'H-NMR Spectrum of 2.173 in CDCls, 500 MHz
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Figure 2.99. C-NMR Spectrum of 2.173 in CDCl3, 101 MHz
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Figure 2.100. 'H-NMR Spectrum of 2.175 in CDCI3, 500 MHz
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Figure 2.101. "H-NMR Spectrum of 2.177 in CDCl3, 500 MHz
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Figure 2.102. C-NMR Spectrum of 2.177 in CDCl3, 101 MHz
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Figure 2.103. "H-NMR Spectrum of 2.179 in CDCl3, 500 MHz
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Figure 2.104. 3C-NMR Spectrum of 2.179 in CDCl3, 101 MHz
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Figure 2.105. DEPT135-NMR Spectrum of 2.179 in CDCls, 101 MHz
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Figure 2.106. 'B-NMR Spectrum of 2.179 in CDCls, 128 MHz
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Figure 2.107. "H-NMR Spectrum of 2.178 in CDCl3, 500 MHz
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Figure 2.108. >*C-NMR Spectrum of 2.178 in CDCls, 101 MHz
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Figure 2.109. "H-NMR Spectrum of 2.134 in CDCl3, 500 MHz
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Figure 2.110. '>*C-NMR Spectrum of 2.134 in CDCls, 101 MHz
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Figure 2.111. '"H-NMR Spectrum of 2.183 in CDCl3, 500 MHz
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Figure 2.112. 'H-NMR Spectrum of 2.185 in CDCls, 500 MHz
Xyb-6-36-2-2.1.1.1r
v Voo i eV e

2.185

1.00x
0.98=
1023 ———

T T T T T T T T T T T
15 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

f1 (ppm)

266



Figure 2.113. '>*C-NMR Spectrum of 2.185 in CDCls, 101 MHz
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Figure 2.114. "H-NMR Spectrum of 2.188 in CDCl3, 500 MHz
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Figure 2.115. '>*C-NMR Spectrum of 2.188 in CDCls, 101 MHz
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Figure 2.116. "H-NMR Spectrum of 2.1 in acetone-D6, 500 MHz
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Figure 2.117. ">*C-NMR Spectrum of 2.1 in acetone-D6, 101 MHz
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Figure 2.118. "H-NMR Spectrum of 2.2 in CDCl3, 500 MHz
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Figure 2.118. '>*C-NMR Spectrum of 2.2 in CDCl3, 101 MHz
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CHAPTER 3

Catalytic Activation of Unstrained C(aryl)—C(alkyl) Bonds in 2,2’-Methylenediphenols

3.1. Introduction

Transition metal (TM)-catalyzed carbon—carbon o-bond (C—C) activation has been emerging
from organometallic curiosity to useful synthetic tools in organic chemistry.! While enormous
progress has been achieved to date, one obstacle to realizing broadly applicable C—C activation
methods is still the scope of C—C bonds that can be selectively activated.!" The current methods
primarily rely on substrates with either high ring strain'™ ' and/or polar functional groups, such as
carbonyls,Y nitriles,'® ™ imines,'® and alcohols?. In contrast, cleavage of unstrained and nonpolar
C—C bonds remains underdeveloped.!® * ¥ In particular, catalytic approaches to realize
C(aryl)—C(alkyl) bond activation have been rare.® Conventional retro-Fridel-Craft reactions
require very strong acids for dealkylation, which raises concerns on functional group tolerance.*
The pioneer work by Milstein showed that C(alkyl)—C(aryl) bonds in pincer-type substrates can
be cut via direct oxidative addition of a TM (Scheme 1A);° however, this reaction typically needs
stoichiometric TMs because the product is also a strong chelating ligand, and the only report on

the use of catalytic TM exhibited low efficiency.5 Alternatively, C(aryl)~C(alkyl) bonds can be
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scissored under oxidative conditions, such as a suite of elegant methods based on oxidation-
Schmidt rearrangement reported by Jiao (Scheme 1B).® Recently, through a B-aryl elimination
process, Kakiuchi and co-workers realized the catalytic cleavage of C(allyl)~C(aryl) bonds, in
which the heteroarene directing group (DG) and the olefin moiety play critical roles in the C—C

activation (Scheme 1C).’

Encouraged by our recent reports on the catalytic cleavage of C(aryl)—C(aryl) bonds in
unstrained biaryl compounds (Scheme 1D),® we wondered whether the C(alkyl)~C(aryl) bonds in
2,2’-methylenediphenols, a common linkage in phenolic resins, could be cleaved in a catalytic,
oxidant-free and strong-acid-free manner. The success of this transformation could have
implications on upcycling of phenolic resins, which remains an unsolved problem.” We thus
proposed that, through installing phosphinites onto the phenol OH groups as an easily removable
directing group (RDG), ¥ oxidative addition of TMs into the target Csp>~Csp> bond may take place
to form a 5/6 spiro-metallocycle. The subsequent hydrogenolysis is expected to generate two
unsymmetrical mono-phenol products. Given that electron-rich phenol moieties can readily react
with oxidants and acids, this RDG approach could be attractive for sensitive phenol substrates.
Here, we describe our detailed development of a Rh-catalyzed hydrogenolysis of unstrained

C(alkyl)—C(aryl) bonds in 2,2’-methylenediphenols.
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Scheme 3.1. TM-mediated C(aryl)—C(alkyl) Bond Activation.
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3.2. Discovery and Optimization

A number of challenges could be envisaged for the proposed RDG-enabled cleavage of
C(alkyl)—C(aryl) bonds in 2,2’-methylenediphenols. First, the double-benzylic methylene C—H
bonds could outcompete the less reactive C(alkyl)—C(aryl) bonds when reacting with the TM
catalyst.!® Second, comparing to C(aryl)-C(aryl) bonds, C(alkyl)-C(aryl) bonds are more
directional, thus more difficult to coordinate well with TM catalysts. Third, considering that our
prior C(aryl)—C(aryl) bond activations®® and the Milstein’s pincer systems® all involve generating
two 5-membered metallocycles, it is uncertain whether the proposed 5/6 spiro-metallocycle
intermediate can actually be formed because such a mode of activation has not been reported

previously.

To tackle these challenges, diphenol 3.1a, representing a subunit of phenolic resin, was
employed as the model substrate. Phosphinites were subsequently introduced to both phenol
moieties as RDGs, due to their strong coordinative ability as well as the ease of installation and
removal under mild conditions.!! After a series of condition optimizations, to our delight, the
aryl—alkyl linkage in phosphinite 3.2a can indeed be effectively cleaved by employing 2.5 mol%
of [Rh(C2Ha4)2Cl): as the catalyst and 150 psi of hydrogen gas as the reductant; after silica gel work
up, the phosphinite RDGs were smoothly removed to afford monophenol products 3.3a and 3.4a
in 87% and 85% yields, respectively (entry 1, Table 3.1). Control experiments were subsequently
conducted to understand the role of each reactant. The reaction did not proceed without the
rhodium catalyst, or hydrogen gas, or the RDG (entries 2-4, Table 3.1). Replacing the diisopropyl-
derived phosphinite with the diphenyl one shut down the reactivity (entry 5, Table 3.1). Other

reductants, such as silanes and boranes, were tested but giving no desired product (entries 6 and 7,
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Table 3.1). A series of other rhodium catalysts were also surveyed (entries 8-11, Table 3.1). For
example, Rh(I) hydride complexes, i.e., RhH(PPhs)s, exhibited comparable reactivity, while
cationic rhodium species showed no reactivity. Other Rh(I) chloride complexes, such as
[Rh(COD)CI]>» and Wilkinson’s catalyst, also gave good yield, albeit slightly lower than
[Rh(C2H4)2Cl]o. Other TM complexes including ruthenium, iridium, nickel, and palladium were
also examined (entries 12-15, Table 3.1). Interestingly, a reasonably good yield was obtained with
the iridium catalyst, showing promise for alternative metal-catalyzed C—C activation in the future.
Switching the solvent to toluene led to somewhat lower efficiency (entry 16, Table 3.1) and more

coordinative acetonitrile shut down the reaction (entry 17, Table 3.1).
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Table 3.1. Control Experiments.

R=Pr OH H OH

[Rh(C3Hy)2Cl], M H M
(2.5 mol%) e e
"
H, (150 psi), 12 h
1,4-dioxane, 150 °C
silica gel work up Me Me
X=H,3.1a 3.3a 3.4a
:| Etz3N, CIPR,
X = PR, 3.2a
Entry? Variation from the Yield”

ntry standard condition 3.3a 3.4a 3.1a
1¢ None 87% 85% 0%
2 w/o catalyst 0% 0% 91%
3 150 psi Ar 0% 0% 82%
4 1a as substrate 0% 0% 94%
5 R = Ph instead of ‘Pr trace trace 51%
6 PhMe,SiH (4 equiv) 0% 0% 57%
7 HB(pin) (4 equiv) 0% 0% 93%
8° RhH(PPh;), (2.5 mol%) 73% 83% 0%
9 Rh(COD),BF, (5 mol%) 0% 0% 98%
1099 [Rh(COD)CI], (2.5 mol%) 79% 74% 0%
11¢ Rh(PPh3)sCl (2.5 mol%) 76% 68% 0%
12 Ru(COD)Cl, (5 mol%) 0% 0% 98%
13¢d [I(COD)CI1, (2.5 mol%) 54% 57% 30%
14 Ni(COD), (5 mol%) trace trace 62%
15 Pd(PPhs), (5 mol%) 0% 0% 79%
16° toluene as solvent 73% 68% 0%
17 MeCN as solvent 0% 0% 98%

“Unless otherwise mentioned, the reaction was run on 0.1 mmol scale. “Determined by 'H-NMR

using dibromomethane as the internal standard. “Isolated yield. 0.3 mmol scale.

While relatively high pressure of hydrogen gas and high temperature were used in the
standard conditions to ensure good yields of the reaction, the low limits of various reaction
parameters have also been investigated (Table 3.2). First, lowering the H» pressure from 150 psi
to 50 psi and dropping the reaction temperature from 150 °C to 100 °C only marginally affected

the yield for substrate 3.2a (entry 2, Table 3.2). Further reducing the reaction temperature to 70 °C
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with 50 psi hydrogen pressure still afforded moderate reactivity (entries 3-6, table 3.2). To our
delight, the catalyst loading could be decreased to as low as 0.5 mol% without significant erosion
of the yields of 3.3a and 3.4a (entries 8-11, Table 3.2). Comparing to the prior pincer system,’ the
high catalysis efficiency of this transformation could likely be attributed to the fact that the
products (monodentate ligands) are much weaker ligands than the substrates (chelating ligands).

(The experiments in Table 3.2 is conducted by Dr. Jun Zhu)

Table 3.2. Exploring the Limits of the Hydrogenolysis of C(aryl)—C(alkyl) Bonds.*

[Rh(C3Hy)>Cll>
Me (X mol%)
H, (Y psi), 12 h
1,4-dioxane, T °C
3.3a 3.4a

Me silica gel work up
P = P(Pr),
3.2a
Entry X (mol%) T (°C) Y (psi) Yield®
3.3a 3.4a
16d 25 150 150 87% 85%
2 25 150 50 80% 79%
3 25 100 150 76% 82%
4 2.5 100 100 77% 73%
5 25 100 50 79% 71%
6 25 70 50 20% 23%
7 2.5 50 50 trace trace
8 1.5 100 50 58% 62%
9 1.0 100 50 46% 45%
10 1.0 150 150 71% 79%
11 0.5 150 150 71% 79%

“Unless otherwise mentioned, the reaction was run on 0.3 mmol scale. “Determined by GC using

tetradecane as the internal standard. 0.1 mmol scale. “Isolated yield.

287



3.3. Substrate Scope and Applications

Under the optimized conditions, the substrate scope was subsequently explored to understand
the generality and robustness of the current catalytic system. First, alkyl groups at the 4,4’-
positions could be well tolerated, though longer alkyl chains required a higher catalyst loading to
achieve high yield (entries 1-5, Table 3.3). It is possible that longer alkyl chains may restrict free
rotation of the target C—C bonds to some extent. Aryl and heteroaryl substituents at the 4,4’-
positions also gave good yield (entries 6-14, Table 3.3). Additionally, common functional groups,
such as ether, acetal, thioether, ketone and electron-rich heterocycles (furan and thiophene), were
well tolerated under these conditions due to the strong-acid-free and oxidant-free features of this
reaction. Moreover, halogens (chlorine and bromine) and ester-substituted 2,2’-

methylenediphenols are competent substrates (entries 15-17, Table 3.3).

Substitution patterns on the phenol moieties have also been investigated. First, substitutions
at the 5,5 -positions do not much impact the reaction yield (entries 12 and 18, Table 3.3). In
addition, substitution at the ortho positions (6,6’) and para position (4,4’) proved to be not
necessary for the desired reactivity (entry 19 and 20, Table 3.3), which is in sharp contrast to the
case of cleaving the C(aryl)~C(aryl) bond in 2,2’-biphenols.®® The tolerance of hydrogen at the
6,6 -positions is critical for the proposed effective cleavage of phenolic resins (vide infra). On the
other hand, besides OMe and methyl groups, aryl substituents at the 6,6’-positions also worked
smoothly (entry 21, Table 3.3). It is exciting to note that substitution at the 3,3’-positions, which
may significantly increase steric hinderance around the target C—C bond, still delivered the desired
monophenol products. This again represents a distinct feature from the prior 2,2’-biphenol
system,® in which no substituents at the 3,3’-positions were tolerated. As expected, direct

substitution on the methylene linker gave no reactivity (entry 23, Table 3.3), as the added ethyl
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group vastly hindered metal coordination with the target C(aryl)—C(alkyl) bond. Finally, an
unsymmetric substrate containing two aryl groups of different electronic properties was tested,
which slightly favors cleavage at the more electron-deficient aryl side (entry 24, Table 3.3). (The
preparation and C—C cleavage of compounds 3.2a—t, 3.2u, 3.2w, 3.2x are conducted by Dr. Jun

Zhu).
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Table 3.3. Substrate Scope.?

Entry 1
"Pr. OMe  "Pr. OMe
\@:OH OH
H H
3.3b, 80% 3.4b, 77%
Entry 5
Bu Me Bu Me
OH OH
EH H
3.3f, 73% 3.4F,77%
Entry 9
Ar. Me Ar. Me
OH ' OH
EH H
Ar=

0]
0/ 3.4, 72%

3.3}, 75%

Entw 13
Ar. Me Me
OH OH
H
H
3.3n, 85%
Entry 17
Me
% ; OH
H
E = CO,;Me
3.3r, 79% 3.4r, 82%
Entry 21
Me Ar Me Ar
OH ' ; OH
& 1 H
H
Ar =
3.3u, 86% OMe 3.4u, 80%
Entry 24
_P(P _P(
o P(P2 (
ROAS
CO,Me
3.2x

R
X
[RN(CoH),Cll, I RN
. (2.5 mol%) A on + | P
H, (150 psi), 12 h OH
1,4-dioxane, 150 °C H H
silica gel work up 3.3 3.4
" Entry2 ! Entry 3° " Entry 4°
; 3 " Alkyl OMe  Alkyl OMe
' 'Pr. OMe OMe : "Bu OMe "By OMe | Y Y
: 1 : OH OH
; OH OH | oH OH | M
| i | H
| H " : H § ‘ M
! : ' = .- e
: 3.3c, 74% 3.4c, 73% ; 3.3d, 72% 3.4d, 70% : Allyl = =
; ; ; 3.3, 70% 3.4e, 72%
Entry 6 Entry 7 Entry 8
| Ar. Me Ar Me i Ar Me Ar Me
. Ph Me Ph Me '
: : oH OH | OH OH
. OH OH : 1 M ! i
! : ‘ H
' H : H ! H
| H | Ar = Ar=
! 3.39, 85% 3.49, 82% : OMe
3 3.3h, 83% Me  3.4h, 79% 3.3i, 74% 3.4i, 73%
. Entry 10 Entry 11 Entry 12
Me Me
1 Ar. Me Ar. Me Ar. Me Ar. Me Ar. Me Ar Me
; E '\OH ‘ OH E '\OH : OH OH OH
i i !
; ! H H
: H H H :
' Ar= = Ar =
3 3.3k, 75% 3.4k, 72% 3.31, 72% £ 3.41,68% 3.3m, 83% Ac  3.4m, 82%

SMe

Entry 14

! Entry 15¢
P A Me Ar Me cl Me cl Me . Br Me Br Me
3 OH OH \?OH oH | \?EOH OH
! H :
: H H H : H H
] 3.3p, 88% 3.4p, 87% ' 3.3, 77% 3.4q, 79%
| Entry 18 | Entry 19° | Entry 20
Me Me
Br. Me Br- Me Me H Me H ! H Me H Me
OH OH | % OH OH ! % OH OH
! H : 3 H H 3 H H
] 3.3s, 83% 3.4s, 82% i 3.4a, 79% 3.4t, 90% j 3.3, 72% 3.4, 72%
| Entry22° ' Entry23
Me Me . ( Pr)zP\ F’( Pr), [{ Pf)zP\ F’( Pr)z
! Me Me '
i | MeO. OMe OMe
! ! —%—
L Me OH Me OH | O O
| H H | Me
} 3.3v, 38% 3.4v, 60% | 3.2w, NP 33w 34w
Pr), OH H OH
Me Me H OH H OH
Me . . H i Me + '\ t Me
CO,Me CO,Me
3.3r, 28% 3.4r, 49% 3.4t 3.3t



“Reaction conditions: 3.2 (0.3 mmol), [Rh(C2H4)>Cl]> (0.0075 mmol) and H> (150 psi) in 1,4-
dioxane (6 mL), 150 °C, 12 h. All yields are isolated yield unless otherwise mentioned. °5S mol%
[Rh(C2H4)2Cl]> (0.015 mmol) was used. “Determined by GC using tetradecane as the internal

standard.

Regarding the synthetic utility of this transformation, the reaction was first found to be readily
scalable, and even higher yields were obtained when it was carried out on a gram scale (Scheme
3.2A, conducted by Dr. Jun Zhu). In addition, a one-pot procedure was realized, in which free

biphenol 3.1a can be directly used as the substrate (Scheme 3.2B).

Scheme 3.2. Gram-Scale Synthesis and One-Pot Synthesis.

A. gram-scale synthesis

O/P O/P OH OH
" TR G "
+
O O H, (100 psi), 12 h
1,4-dioxane, 150 °C
Ph Ph silica gel work up Ph Ph
P = P(iPr); 3.3g 3.4g
3.2g 1.77 g, 89% 1.60 g, 87%
6.11g

B. one-pot synthesis
CIP(iPr), (2.05 equiv)

OH OH NaH (2.3 equiv) OH OH
Me Me 1/4-dioxane,70°C,12h Me Me Me
RO IR
[RN(C2H4)oCl]2 " "
2.5 mol%) e e
M M (
€ 31 € H, (150 psi), 12 h, 150 °C 3.3a 342
1a silica gel work up ) )
71% 67%

Encouraged by the scope and robustness of this reaction, we next studied degradation of
methylenephenol oligomers, closer models for phenolic resins, with this method. As illustrated in
Scheme 3.3, trimer 3.2y, pentamer 3.2z and heptamer 3.2aa all reacted and provided moderate to
good yield of the corresponding monomers. Note that dimer products were only formed in an

appreciable amount with the heptamer substrate.
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Scheme 3.3. C—C Cleavage of Oligomers.

CIP(iPr),
NEt; [Rh C2H4 2Cll2
MeCN Hz (150 psi), 12 h
100 °C, 12 h 1,4-dioxane, 170 °C
silica gel work up 33a 3.4a 3.4t 34t
P =P(Pr), n=1° trace 55%° 28%° trace
3.2y, 99% n=23°% 6%° 29%° 16%° trace

n=1,
n= g ggz 92”;;/ n=5% 9%¢ 22%° 10%¢ 16%¢
n =235, 3.2aa, o

These results motivated us to explore catalytic hydrogenolysis of novolacs. Novolacs are
phenol-formaldehyde resins with a formaldehyde to phenol molar ratio of less than one, containing
10-20 repeating units; they generally serve as prepolymers to thermoset materials. To the best of
our knowledge, selective and catalytic methods to degrade novolacs to phenols remained
unexplored.” As a preliminary result, linear novolacs 3.1ab, prepared from p-cresol and
formaldehyde,'? underwent effective C—C cleavage reactions through the sequence of
phosphination and hydrogenolysis to give 56% total yield of three monomers 3.3a, 3.4a and 3.4t
(Scheme 3.4A). Using the same approach, a commercially available random-linked phenol-
formaldehyde novolacs 3.1ac can also be effectively converted to a mixture of low-molecular-

weight monomers, dimers, and oligomers detected by GC-MS (Scheme 3.4B).
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Scheme 3.4. C—C Cleavage of Novolacs.

A. C-C cleavage of linear novolacs

CIP(iPr), [Rh(C,H4),Cll, OH OH OH
NEts (5 mol%)’ Me Me Me
MeCN H, (150 psi), 12 h + +
100 °C, 12 h 1,4-dioxane, 170 °C
95% silica gel work up Me Me Me
) 3.3a 3.4a 3.4t
P =P(Pr), 6%° 33%¢ 17%®

3.2ab

B. C-C cleavage of commercial novolacs

~ CIP(iPr),
O O L e
OH

MeCN

[Rh(C2H,4),Cll,
5 mol%)

H, (150 psi), 12 h

100 °C, 12 h 1,4-dioxane, 170 °C
acid work up ‘ \/~ én
HO™ © OH 93% for 2 steps” Ao
3.1ac : + other oligomers
Plenco-148459 P=P(Pr), Mn = 221
Mn = 686 3.2ac Mw = 254
Mw = 876

3.4. Mechanism Study

The mechanism for the Rh-catalyzed hydrogenolysis of 2,2’-methylenebiphenols was next
explored. First, mixing 2,2’-methylenediphenol substrate 3.2g with [Rh(C;H4)2Cl]> at room
temperature smoothly generated the corresponding complex [Rh(3.2g)Cl]> (Scheme 3.5),
confirmed by X-ray crystallography (obtained by Dr. Jun Zhu), which suggests that bidentate
coordination is indeed favorable and ligand substitution is facile in this system. Second, heating
the mixture of 3.2g and stoichiometric RhH(PPh3)s or RhCI(PPhs3); at 70 °C for 6 h afforded an
orange solid (3.5) with C—H rhodation at the methylene position, showing that C-H activation of
the methylene group is a relatively fast process.'® The structure of complex 3.5 was unambiguously
determined by X-ray crystallography (Scheme 3.6A, X-ray structure obtained by Dr. Jun Zhu). In

addition, complex 3.5 was found to catalyze the desired C-C cleavage of 3.2g efficiently (Scheme
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3.6B), which indicates that either the C-H rhodation complex is an intermediate in the catalytic

cycle or the C-H activation is a reversible but off-cycle process, similar to what was observed by

Milstein and co-workers in the pincer system.>® 3% ¢

Scheme 3.5. Preparation of Intermediate [Rh(3.29)Cl]..

o oP
Me Me [RNCHCL, 7P O ° P O Fh
O O (50 moi%) P_ ci_ P
R Rh. R
THF, r.t. P/ Cl \P\
Ph Ph Ph O o o) O Ph

P = P(iPr),
3.2¢g Me [Rh(3.2g)Cl], Me
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Scheme 3.6. Mechanism Studies on Complex 3.5.

A. X-ray structure of C—H activation complex 3.5

[Rh] yield
RhH(PPh3)4 (100 mol%) 41%
RhCI(PPh3)3 (100 mol%) 1%
B. complex 3.5 as catalyst
PPh;
P P
@) @) o P‘F\:lh’ P\O OH OH
Me O O Me  wme Me H,(150psiy Me Me Me
+ H —_— +
O O 1,4-dioxane
150 °C, 12 h
Ph ] Ph Ph Ph silica gel work up Ph Ph
P = P(iPr), 3.5 3.3g 3.4g
3.2g 2.5 mol% 87% 74%
(1 equiv)

Moreover, running the catalytic reaction under 50 psi D> at 100 °C for 2 h afforded 3.3g-d
and 3.4g-d in 40% and 42% yield, respectively (Scheme 3.7). Based on the NMR analysis,
deuterium incorporation on the ortho-methyl of 3.3g-d and the ortho hydrogen of 3.4g-d were 91%
and 90%, respectively, which suggests that H/D exchange on the methylene group is likely faster
than the C-C activation process. Notably, the original methyl group in 3.3g-d stayed untouched,
indicating that the mono phosphinite-directed C-H activation was slower and less competitive
than the C-C activation. The low deuteration ratio of the methylene group in recovered 3.1g
implies that (a) the C-H activation is indeed reversible and (b) ligand exchange between substrates

is relatively slow.
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Scheme 3.7. Deuterium Labeling.

/ 11%D 91% D 90% D

[Rh(C,H4),Cl] QHp o oH § T
2H4)2Cll Me Cb; D Me
Me (2.5 mol%) O O Me .
D, (50 psi),
1,4-dioxane, 100 °C Ph Ph

silica gel work up

P P(/Pr 3.19-d 3.3g9-d 3.49-d
3.2¢g 28% 40% 42%
(1 equiv)

On the other hand, when a significantly higher loading of the rhodium catalyst was used, the
yield of products 3.3a and 3.4a dropped to different extents; however, the high yield can be
restored by adding a base (Table 3.4). According to our prior study,® this observation suggests that
a small amount of acid (HCI) may be generated, likely through catalyst activation by H» (vide
infra). Finally, kinetic studies were conducted. Considering that the reaction proceeds too fast at
the optimal temperature (150 °C), kinetic orders of the reactants were measured at a lower
temperature (120 °C) in benzene-d6, and the initial rate method was applied (Scheme 3.8,
conducted by Dr. Jun Zhu). The reaction was found to exhibit first-order dependence on the
concentration of [Rh(C2H4)>Cl]», zero-order dependence on the concentration of 3.2a (0.0375 M
—0.100 M), and first-order dependence on the pressure of H,. These results are consistent with the
prior observations on the fast/strong binding between the substrate and the catalyst. Besides, the
Hammett plot analysis shown the electron-deficient substituents on arene can promote the reaction,

which support that the C—C bond oxidative addition can be included in rate-determine step.
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Table 3.4. High Catalyst Loading Experiment.

P( F’r)2 _P(Pr), OH OH
[RN(C2Hy)Cll> Me Me Me

Me (25 mol%)
+
‘ ‘ H, (150 psi), 12 h

1,4-dioxane, 150 °C

silica gel work up Me Me
3.23 3.3a 3.4a
3.3a 3.4a
without NaH 85% 65%
. withNaH (Tequiv) 87% 84% __
From Table 1, [Rh] (2.5 mol%)  87% 85%

Scheme 3.8. Kenetic Order Measurement.

o P P

0 3.2a: Zero order
Me [Rh C2H4)2C|]2 Me Me Me
+ [Rh(C,H4),Cl],: First order
H,, 120 °C
CeDs : i

Me Me H, pressure: First order

p= P(/Pr) 3.3a' 3.4a'

3.2a

With the above mechanistic information in hand, at least two distinct pathways could be
possible for the Rh-catalyzed hydrogenolysis of 2,2’-methylenebiphenols (Scheme 3.9 and 3.10).
Based on our previous mechanistic study on the catalytic activation of aryl—aryl bonds in 2,2’-
biphenols,® a similar Rh-hydride-mediated “oxidative addition” catalytic cycle (path A, Scheme
3.9) can be proposed. In this proposal, the initially formed Rh—Cl complex was first converted to
a Rh—H species by H», which then undergoes oxidative addition with the C(aryl)—C(alkyl) bond
to give a 5/6 spiro rhodacycle (3.8). The subsequent C—H reductive elimination generated one
monomer coordinating to the metal center (3.9). The following oxidative addition with H> and
another C—H reductive elimination afforded another monomer with regeneration of the Rh—H
catalyst. Alternatively, the catalytic cycle may involve rhodium carbene formation (path B, Scheme
3.10). Directed activation of the benzylic methylene linker would afford the fused 6,6-rhodacyle
3.7, which could hypothetically undergo a-aryl elimination'? to deliver the 5,6-spiro rhodacycle
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3.12. The subsequent C—H reductive elimination would generate one monomer, and the carbene

species 3.13 could further react with H to form the other monomer and close the catalytic cycle.

Scheme 3.9. Proposed Catalytic Cycles and Computed Energies (Path A).

Products

Substrate 3.2

3.6 c-C
activation
31.7
(30.0)
HCI 0
H
Ao P~rn_/
P/ ] Hy oy | P
/  Rh— ethylene
o P \H
H Substrate 3.2a H
3.8
3.1 [RN(C2H4)Cll
Path A
H 0]
P— /
O/ Rh\P
M 'H
Ha
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Scheme 3.10. Proposed Catalytic Cycles and Computed Energies (Path B).

Products @

Substrate 3.2 O\P/Rh_H
()5
H
H HCI |
P H ’

Rh—5_0
P Hz ethylene

H Substrate 3.2a

[Rh(C2H,4).Cl],

Path B c-C
activation
TQ
H
2 H /P\Rh\ o
p_|H oH7| P
/ Rh,_0O
o] P H
H 3.12
— @ @ @ 42.3
3.13 (42.2)

To differentiate these two mechanisms, a density functional theory (DFT) study was carried

out (DFT calculation is conducted by Mr. Rui Zhang). As shown in Scheme 3.9, in Path A the

direct C—C activation of 6 requires an activation barrier of 31.7 kcal/mol and is the turnover-

limiting step (TLS). The subsequent two C—H reductive eliminations and Hz coordination are facile

and the whole process is exothermic by 16.0 kcal/mol. Compared with the C—C activation step,

the methylene C—H activation has a much lower barrier (10.2 kcal/mol). However, as shown in

Path B (Scheme 10), the following C—C activation of intermediate 3.7 via a-aryl elimination is

strongly disfavored, and the proposed carbene intermediate 3.12 appears to be highly unstable

(42.3 kcal/mol uphill). Therefore, Path B is expected to be much less favorable than Path A. The

isolation of the C—H activation product 3.5 (with additional ligands, see Scheme 3.3B) could be
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attributed to the reversible nature of the C—H activation step, which is consistent with the
experimentally observed H/D exchange in Scheme 3.3D. In addition, the DFT results correlate
well with the kinetic data that support the C—C activation step being the TLS in Path A. Note that
an alternative pathway involving Rh(I)—Cl-mediated direct oxidative addition into the C—C bond

cannot be excluded at this stage.

3.5. Conclusion

In summary, we have developed the rhodium-catalyzed activation of nonpolar and unstrained
C(aryl)-C(alkyl) bonds in 2,2’-methylenediphenols through the RDG strategy. Hydrogen is used
as the reductant and mono phenols are generated as the products. The reaction exhibits good
functional group tolerance and a broader substrate scope than the activation of the prior biaryl
systems. It is also readily scalable and can be operated with a low catalyst loading, which is
benefited from forming less coordinative products. Notably, initial promising results have been
obtained on the catalytic hydrogenolysis of the methylene linkages in phenolic resins, such as
linear or commercial novolacs, using this method. Given that this has been an underexplored area,
the efficiency and practicality of this approach remain to be further improved. The detailed
mechanistic study reveals a pathway involving direct oxidative addition of Rh(I) into the
C(aryl)—C(alkyl) bond with the methylene C—H activation being a competitive but reversible side-
reaction. The knowledge gained on the RDG-enabled 5/6 spirocyclic metallocycle formation could
have various implications for activation of other inert C—C bonds beyond this work. Efforts on

extending the reaction to substrates other than 2,2’-methylenediphenols are ongoing.
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(Some contents of this chapter were published in J. Am. Chem. Soc. 2022, DOI:

10.1021/jacs.1c13342)

3.6. Experimental

Unless noted otherwise, all solvents were dried by filtration through a Pure-Solv MD-5
Solvent Purification System (Innovative Technology), all reactions were carried out under nitrogen
atmosphere, all commercially available substrates were used without further purification. Thin
layer chromatography (TLC) analysis was run on silica gel plates purchased from EMD Chemical
(silica gel 60, F254). Infrared spectrum was recorded on a Nicolet iS5 FT-IR Spectrometer.
Samples were scanned as neat liquids or dissolved in dichloromethane on potassium bromide (KBr)
salt plates. Frequencies were reported in reciprocal centimeters (cm™). High-resolution mass
spectra (HRMS) were obtained on an Agilent 6224 TOF-MS spectrometer and were reported for
the molecular ion [M]", [M+Na]*, or [M+H]". MALDI-TOF mass spectra were obtained on a
Bruker Ultraflextreme MALDI-Tof-Tof. X-ray diffraction data were collected at 100(2) K on a
Bruker-Nonius Kappa CCD or Agilent SuperNova AtlasS2 CCD. Nuclear magnetic resonance
(NMR) spectrum ('"H NMR and *C NMR) were recorded with a 400 MHz Bruker Avance-I1I-HD
nanobay spectrometer equipped with a BBFO SmartProbe (400 MHz for 'H, 101 MHz for *C) or
a 500 MHz Bruker Avance-III spectrometer equipped with a 'H (**C,*'P) TXI probe (500 MHz for
'H, 126 MHz for '*C). For CDCls solutions, the chemical shifts were reported as parts per million
(ppm) referenced to residual protium or carbon of the solvents: CHCI3; 6 H (7.26 ppm) and CDCl3
0 C (77.00 ppm). For benzene-D6 solutions, the chemical shifts were reported as parts per million
(ppm) referenced to residual protium or carbon of the solvents: acetone-D6 6 H (7.16 ppm) and

acetone-D6 & C (128.06 ppm). Coupling constants were reported in Hertz (Hz). Data for 'H NMR
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spectra were reported as following: chemical shift (o, ppm), multiplicity (br = broad, s = singlet, d
= doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet

of doublet of doublets, m = multiplet), coupling constant (Hz), and integration.

General procedure for preparation of phenol 3.4

OH

OH
Pd(dppf)Cl,
B(OH), CsCO,
+ _
THF/H,0
Br @

S3.1 S3.2
3.4

General procedure: To a solution of phenol S3.1 (1 equiv) in THF (~50 mL/25 mmol), boronic

acid S3.2 (1.5 equiv), Pd(dppf)CL2 (1 mol%), Cs2COs3 (2 equiv) and H20 (~25 mmol/20 mL) were
added at room temperature. The reaction mixture was then heated to reflux. After refluxing for 12
h, the reaction mixture was quenched with HCI (1 M in H>0O) and extracted with dichloromethane
(3 times). The organic phase was dried with Na;SO4 and concentrated under reduced pressure. The

mixture was purified by column chromatography (silica gel) to give pure compound 3.4.

Preparation of compound 3.4i

Me

l OMe

3.4i
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4-Bromo-2-methylphenol (5.0 g) and 3-methoxyphenylboronic acid (6.09 g) was subjected to the

general procedure to afford 3.8 g of 3.4i with 67% yield as a colorless oil.

Analytical data see below.

Preparation of compound 3.4j

Me

HO
(Do
(L
(0]

3.4

4-Bromo-2-methylphenol (5.0 g) and 3,4-(Methylenedioxy)phenylboronic acid (6.65 g) was

subjected to the general procedure to afford 4.0 g of 3.4j with 66% yield as a white solid.

Analytical data see below.

Preparation of compound 3.41

Me

HO
L,

3.41

4-Bromo-2-methylphenol (5.0 g) and 4-fluorophenylboronic acid (5.61 g) was subjected to the

general procedure to afford 4.5 g of 3.41 with 83% yield as a white solid.
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Analytical data see below.

Preparation of compound 3.4n

HO

3.4n

4-Bromo-2-methylphenol (3.5 g) and 3-furanylboronic acid (3.14 g) was subjected to the general

procedure to afford 2.0 g of 3.4n with 61% yield as a pale yellow solid.

Analytical data see below.

(Preparation of compounds 3.4i, 3.4j, 3.41, 3.4n is conducted by Dr. Jun Zhu)

General procedure for preparation of compound 3.1

OH NaOH OH OH
CH,0
B —
() e T
3.4 3.1

General procedure: To a solution of NaOH (1.2 equiv) in H>2O (1 mmol/mL), phenol 3.4 (1 equiv)

and CH20 (37% in H20O, 2.5 equiv) were added at room temperature, and the reaction mixture was

then heated to reflux. After refluxing for 2 h, the reaction mixture was quenched with HCI (1 M in
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H>0) and extracted with dichloromethane (3 times). The organic phase was then dried with Na>xSO4
and concentrated under reduced pressure. The mixture was purified by column chromatography

(silica gel) to give compound 3.1.

Preparation of compound 3.1b

2-Methoxy-4-propylphenol (5.0 g) was subjected to the general procedure and the product was
purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to afford 0.825 g of

3.1b with 16% yield as a white solid.

Ry=0.37 (hexane : ethyl acetate = 2:1)

IH NMR (400 MHz, CDCls) § 6.61 (d, J = 1.9 Hz, 2H), 6.54 (d, J = 2.0 Hz, 2H), 5.99 (s, 2H),

3.93 (s, 2H), 3.83 (s, 6H), 2.50 — 2.40 (m, 4H), 1.62 — 1.51 (m, 4H), 0.90 (t, J = 7.3 Hz, 6H).

13C NMR (101 MHz, CDCls) § 146.4, 141.0, 134.0, 126.1, 122.4, 109.1, 55.9, 37.8, 29.4, 24.8,

13.8.

IR (KBr) vmax = 3267, 2957, 1593, 1501, 1464, 1295, 1141, 1067, 908, 842, 734 cm™.

HRMS (MIX) m/z calcd. for C21H2»04” [M—H] : 343.1915, found 343.1932.

Melting point: 102.4 — 103.7 °C

305



Preparation of compound 3.1¢

OH OH

MeOOMe
ipr iPr

3.1c

4-Isopropyl-2-methoxyphenol'* (5.0 g) was subjected to the general procedure and the product
was purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to afford 2.22 g

of 3.1¢ with 43% yield as a white solid.

Ry=0.33 (hexane : ethyl acetate = 2:1)

H NMR (400 MHz, CDCl3) & 6.68 (d, J = 2.0 Hz, 2H), 6.59 (d, J = 2.0 Hz, 2H), 6.04 (s, 2H),

3.95 (s, 2H), 3.83 (s, 6H), 2.78 (hept, J = 6.9 Hz, 2H), 1.19 (d, J = 6.9 Hz, 12H).

I3C NMR (101 MHz, CDCl3) 6 146.4, 141.1, 140.2, 126.1, 120.4, 107.1, 55.9, 33.8, 29.6, 24.2.

IR (KBr) vmax = 3540, 2958, 1604, 1501, 1462, 1289, 1220, 1089, 947, 843 cm™".

HRMS (ESI) m/z calcd. for C21H2704™ [M—H]: 343.1915, found 343.1934.

Melting point: 70.8 — 72.2 °C

Preparation of compound 3.1d

306



4-butyl-2-methoxyphenol® (3.0 g) was subjected to the general procedure and the product was
purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to afford 1.62 g of

3.1d with 52% yield as a white solid.

Ry=0.10 (hexane : ethyl acetate = 5:1)

H NMR (400 MHz, CDCl3) & 6.60 (d, J = 1.9 Hz, 2H), 6.54 (d, J = 1.9 Hz, 2H), 5.99 (s, 2H),
3.93 (s, 2H), 3.83 (s, 6H), 2.54 — 2.42 (m, 4H), 1.53 (tt, J=9.1, 6.9 Hz, 4H), 1.32 (h, J=7.3 Hz,

4H), 0.90 (t, J= 7.3 Hz, 6H).

13C NMR (101 MHz, CDCls) § 146.4, 141.0, 134.2, 126.1, 122.3, 109.1, 55.9, 35.4, 33.9, 29.4,

22.3,13.9.

IR (KBr) vmax = 3286, 2929, 1602, 1500, 1464, 1291, 1142, 1070, 909, 844, 733 cm™.

HRMS (ESI) molecular weight peak not found despite extensive efforts.

Melting point: 90.8 —91.8 °C

Preparation of compound 3.1e

307



OH OH

MeOOMe

n-CsHqp  n-CgHyq

3.1e

18b

2-Methoxy-4-pentylphenol® (3.0 g) was subjected to the general procedure and the product was

purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to afford 1.70 g of

3.1e with 55% yield as a white solid.
Ry=0.17 (hexane : ethyl acetate = 5:1)

IH NMR (400 MHz, CDCLs) § 6.61 (d, J = 1.9 Hz, 2H), 6.54 (d, J = 2.0 Hz, 2H), 6.00 (s, 2H),
3.93 (s, 2H), 3.83 (s, 6H), 2.52 — 2.42 (m, 4H), 1.54 (p, J = 7.4 Hz, 4H), 1.40 — 1.21 (m, 8H), 0.87

(t,J = 6.9 Hz, 6H).

I3C NMR (101 MHz, CDCls) & 146.4, 141.0, 134.2, 126.1, 122.3, 109.1, 55.9, 35.6, 31.5, 31.4,

29.4,22.5, 14.0.
IR (KBr) vmax = 3544, 3289, 2928, 1603, 1500, 1464, 1290, 1141, 1071, 909, 734 cm™'.
HRMS (ESI) molecular weight peak not found despite extensive efforts.

Melting point: 89.3 —90.4 °C

Preparation of compound 3.1g
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OH OH

MeWOOMQ

Ph Ph
3.1g

3-Methyl-[1,1'-biphenyl]-4-01%° (3.0 g) was subjected to the general procedure and the product was
purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to afford 1.3 g of 3.1g

with 42% yield as a white solid.
Ry= 0.38 (hexane : ethyl acetate = 2:1)

IH NMR (400 MHz, CDCls) § 7.54 — 7.47 (m, 4H), 7.43 — 7.35 (m, 6H), 7.31 — 7.25 (m, 2H), 7.24

—7.20 (m, 2H), 6.16 (s, 2H), 4.05 (s, 2H), 2.30 (s, 6H).

13C NMR (101 MHz, CDCl3) § 150.8, 140.9, 134.3, 128.6, 128.3, 127.2, 126.8, 126.6, 126.5,

124.3,31.5, 16.2.
IR (KBr) vmax = 3278, 3033, 1476, 1389, 1237, 1180, 763, 698 cm'.
HRMS (ESI) molecular weight peak not found despite extensive efforts.

Melting point: 146.5 — 147.7 °C

Preparation of compound 3.1h
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OH OH
Me l l Me
Me Me
3.1h

3,4'-dimethyl-[1,1'-biphenyl]-4-01'® (3.0 g) was subjected to the general procedure and the product
was purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1) to afford 1.1 g of

3.1h with 36% yield as a white solid.
Ry=0.31 (hexane : ethyl acetate = 4:1)

H NMR (400 MHz, CDCl3) § 7.43 — 7.38 (m, 4H), 7.36 (d, J = 2.3 Hz, 2H), 7.23 — 7.14 (m, 6H),

6.20 (s, 2H), 4.03 (s, 2H), 2.36 (s, 6H), 2.28 (s, 6H).

13C NMR (101 MHz, CDCl3) § 150.5, 138.1, 136.3, 134.2, 129.3, 128.1, 127.0, 126.7, 126.5,

124.3,31.5,21.0, 16.2.
IR (KBr) vimax = 3279, 2919, 1478, 1378, 1210, 1181, 907, 819, 776, 731 cm".
HRMS (ESI) molecular weight peak not found despite extensive efforts.

Melting point: 167.7 — 168.6 °C

Preparation of compound 3.1i
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OH OH
Me l l Me
MeO I I OMe

3.1

3'-methoxy-3-methyl-[1,1'-biphenyl]-4-ol (3.4i, 3.0 g) was subjected to the general procedure and
the product was purified by column chromatography (silica gel, hexane:ethyl

acetate:dichloromethane = 7:1:1) to afford 1.73 g of 3.1i with 56% yield as a white solid.
Ry=0.29 (hexane : ethyl acetate = 7:1)

IH NMR (400 MHz, CDCL3) § 7.37 (d, J = 2.3 Hz, 2H), 7.29 (t, J = 7.9 Hz, 2H), 7.24 — 7.17 (m,
2H), 7.12 — 7.06 (m, 2H), 7.03 (dd, J = 2.5, 1.6 Hz, 2H), 6.83 (ddd, J= 8.2, 2.6, 0.9 Hz, 2H), 6.36

(s, 2H), 4.03 (s, 2H), 3.83 (s, 6H), 2.26 (s, 6H).

13C NMR (101 MHz, CDCl3) 6 159.8, 150.8, 142.4, 134.1, 129.6, 128.2, 127.2, 126.6, 124.4,

119.4, 112.6, 112.0, 55.2, 31.4, 16.2.
IR (KBr) vmax = 3399, 2939, 1600, 1579, 1478, 1230, 1164, 1048, 909, 777, 734 cm™'.
HRMS (ESI) molecular weight peak not found despite extensive efforts.

Melting point: 136.2 —137.3 °C

Preparation of compound 3.1j
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OH OH
Me l l Me
Jole

6]
0o o—/

3.1j

4-(benzo[d][1,3]dioxol-5-yl)-2-methylphenol (3.4, 3.0 g) was subjected to the general procedure
and the product was purified by column chromatography (silica gel, hexane:acetone = 10:1) to

afford 1.2 g of 3.1j with 39% yield as a white solid.
Ry=0.33 (hexane : ethyl acetate = 4:1)

H NMR (400 MHz, CDCl3) & 7.29 (d, J = 2.4 Hz, 2H), 7.17 — 7.12 (m, 2H), 6.98 (d, J = 1.8 Hz,
2H), 6.96 (dd, J = 8.0, 1.8 Hz, 2H), 6.84 (d, J = 8.0 Hz, 2H), 6.11 (s, 2H), 5.97 (s, 4H), 4.01 (s,

2H), 2.29 (s, 6H).

13C NMR (101 MHz, CDCl3) & 150.5, 148.0, 146.6, 135.4, 134.0, 128.0, 127.0, 126.4, 124.3,

120.2, 108.5, 107.5, 101.0, 31.5, 16.2.
IR (KBr) vmax = 3407, 2883, 1475, 1233, 1182, 1038, 931, 733 cm’".
HRMS (ESI) molecular weight peak not found despite extensive efforts.

Melting point: 192.9 — 193.8 °C

Preparation of compound 3.1k
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OH OH
Me ! ! Me
SMe SMe
3.1k

3-methyl-4'-(methylthio)-[1,1'-biphenyl]-4-01%® (2.0 g) was subjected to the general procedure and
the product was purified by column chromatography (silica gel, hexane:acetone = 10:1) to afford

0.56 g of 3.1k with 27% yield as a white solid.
Ry=0.33 (hexane : ethyl acetate = 4:1)

IH NMR (400 MHz, CDCls) & 7.46 — 7.39 (m, 4H), 7.34 (d, J = 2.3 Hz, 2H), 7.28 (d, J = 8.3 Hz,

4H), 7.21 — 7.17 (m, 2H), 6.22 (s, 2H), 4.02 (s, 2H), 2.49 (s, 6H), 2.29 (s, 6H).

13C NMR (101 MHz, CDCl3) § 150.7, 137.8, 136.7, 133.5, 128.0, 127.2, 127.1, 126.9, 126.5,

124.5,31.4,16.2, 16.1.
IR (KBr) vmax = 3357, 2916, 1474, 1386, 1315, 1213, 1182, 1074, 908, 823, 776, 732 cm".

HRMS (ESI) molecular weight peak not found despite extensive efforts.

Preparation of compound 3.11
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OH OH
Me ! l Me

4'-Fluoro-3-methyl-[1,1'-biphenyl]-4-ol (3.41, 3.0 g) was subjected to the general procedure and
the product was purified by column chromatography (silica gel, hexane:ethyl

acetate:dichloromethane = 7:1:1) to afford 1.43 g of 3.11 with 46% yield as a white solid.
Ry=0.28 (hexane : ethyl acetate = 7:1)

H NMR (400 MHz, DMSO) & 8.68 (s, 2H), 7.61 — 7.45 (m, 4H), 7.30 — 7.14 (m, 8H), 3.9 (s,

2H), 2.24 (s, 6H).

13C NMR (101 MHz, DMSO) § 162.2 (d, J=242.9 Hz), 152.4, 137.0 (d, J= 3.0 Hz), 130.4, 128.1,

127.8 (d, J=8.0 Hz), 126.9, 126.2, 124.9, 115.4 (d, J=21.2 Hz), 30.6, 16.9.

19F NMR (376 MHz, DMSO) 6 -117.1.

IR (KBr) vmax = 3253, 1601, 1514, 1478, 1389, 1218, 1160, 1097, 835, 776 cm™..
HRMS (ESI) molecular weight peak not found despite extensive efforts.

Melting point: 166.0 — 166.7 °C

Preparation of compound 3.1m
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OH OH
Me Me
OH OH O O
:*/\#: Me M
Ac Ac

Br Br
3.1s
3.1m

NaH

MOMCI Amberlyst 15
THF MeOH, 75%
80% (HO),B

\©\ OMOM OMOM
Ac Me

Me
OMOM  OMOM Pd(dppfCl, O O
B
THF/H,0
Me Me 81%
Br Br
Ac Ac

S3.3
S3.4

To a solution of compound 3.1s (1.0 g, 2.4 mmol, see entry Preparation of compound 3.1s for
preparation) in THF (20 mL), NaH (60 % dispersion in mineral oil, 242 mg, 6.0 mmol) was added
at 0 °C. After being stirred at 0 °C for 30 min, chloromethyl methyl ether (0.46 mL, 6.0 mmol)
was added to the reaction mixture. After being stirred at room temperature for 12 h, the reaction
mixture was quenched with NH4Cl (saturated in H>O, 20 mL) and extracted with ethyl acetate (20
mLx3). The organic phase was then dried with Na>SO4 and concentrated under reduced pressure.
The mixture was purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1) to

give compound S3.3 (0.97 g, 80% yield).

To a solution of compound S3.3 (1.2 g, 2.39 mmol) in THF (9 mL), 4-acetylphenylboronic acid
(1.18 g, 7.17 mmol), Pd(dppf)Cl> (97.6 mg, 0.12 mmol), Cs2CO3 (2.34 g, 7.17 mmol) and H>O (1
mL) were added at room temperature, and the reaction mixture was then heated to 90 °C. After
being stirred at 90 °C for 12 h, the reaction mixture was quenched with HCI (1 M in H20, 5 mL)

and extracted with dichloromethane (5 mLx3). The organic phase was then dried with Na>SO4 and

315



concentrated under reduced pressure. The mixture was purified by column chromatography (silica

gel, hexane:ethyl acetate = 20:1) to give compound S3.4 (1.1 g, 81% yield).

To a solution of compound S3.4 (1.1 g, 1.9 mmol) in methanol (20 mL), Amberlyst 15 (0.93 g)
was added at room temperature, and the reaction mixture was then heated to reflux. After refluxing
for 3 h, the reaction mixture was filtered through Celite, then dried with Na>SO4 and concentrated
under reduced pressure. The mixture was purified by column chromatography (silica gel,

hexane:ethyl acetate = 10:1) to give compound 3.1m (0.70 g, 75% yield) as a white solid.

Ry=0.13 (hexane : ethyl acetate = 2:1)

H NMR (400 MHz, CDCl3) & 8.05 — 7.88 (m, 4H), 7.38 — 7.28 (m, 4H), 6.99 (s, 2H), 6.41 (s, 2H),

3.96 (s, 2H), 2.63 (s, 6H), 2.24 (s, 6H), 2.12 (s, 6H).

13C NMR (101 MHz, CDCl3) & 197.9, 150.7, 147.5, 135.2, 134.3, 133.7, 129.9, 128.8, 128.1,

123.8,123.4,31.3,26.6, 17.5, 12.5.
IR (KBr) vmax = 3314, 1667, 1601, 1475, 1355, 1268, 1182, 1090, 959, 836, 732 cm™".
HRMS (ESI) m/z calcd. for C33H3104™ [M—H]: 491.2228, found 491.2237.

Melting point: decomposed while heating.

Preparation of compound 3.1n
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To a solution of compound 3.1q (1.0 g, 2.6 mmol, see entry Preparation of compound 3.1q for
preparation) in THF (20 mL), NaH (60 % dispersion in mineral oil, 260 mg, 6.5 mmol) was added
at 0 °C. After being stirred at 0 °C for 30 min, chloromethyl methyl ether (0.50 mL, 6.5 mmol)
was added to the reaction mixture. After being stirred at room temperature for 12 h, the reaction
mixture was quenched with NH4Cl (saturated in H>O, 20 mL) and extracted with ethyl acetate (20
mLx3). The organic phase was then dried with Na;SO4 and concentrated under reduced pressure.
The mixture was purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1) to

give compound S3.5 (1.10 g, 90% yield).

To a solution of compound S3.5 (2.0 g, 4.22 mmol) in THF (8 mL), 3-furanylboronic acid (1.42 g,
12.7 mmol), Pd(dppf)Cl2-CH2Cl; (172 mg, 0.21 mmol), Cs2CO3 (4.12 g, 12.65 mmol) and H>O (2
mL) was added at room temperature, and the reaction mixture was then heated to 90 °C. After
being stirred at 90 °C for 12 h, the reaction mixture was quenched with HCI (1 M in H2O, 5 mL)

and extracted with dichloromethane (5 mL*3). The organic phase was then dried with Na,SO4 and
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concentrated under reduced pressure. The mixture was purified by column chromatography (silica

gel, hexane:ethyl acetate = 20:1) to give compound S3.6 (1.62 g, 86% yield).

To a solution of compound S3.6 (1.62 g, 3.61 mmol) in methanol (36 mL), Amberlyst 15 (1.77 g)
was added at room temperature, and the reaction mixture was then heated to reflux. After refluxing
for 3 h, the reaction mixture was filtered though Celite, then dried with Na>SO4 and concentrated
under reduced pressure. The mixture was purified by column chromatography (silica gel,

hexane:ethyl acetate = 20:1) to give compound 3.1n (1.05 g, 69% yield) as a white solid.

Ry=0.33 (hexane : ethyl acetate = 2:1)

TH NMR (400 MHz, CDCl3) 6 7.68 — 7.58 (m, 2H), 7.43 (t, J = 1.7 Hz, 2H), 7.25 — 7.22 (m, 2H),

7.15 - 7.10 (m, 2H), 6.62 (dd, J = 1.9, 0.9 Hz, 2H), 6.06 (s, 2H), 3.96 (s, 2H), 2.26 (s, 6H).

13C NMR (101 MHz, CDCl3) & 150.4, 143.4, 137.7, 127.2, 126.4, 126.1, 126.0, 125.4, 124.5,

109.0, 31.3, 16.1.
IR (KBr) vmax = 3433, 3296, 1507, 1480, 1454, 1316, 1191, 1159, 1108, 1022, 873, 776 cm’".
HRMS (ESI) m/z caled. for C23H1904™ [M—H]: 359.1289, found 359.1304.

Melting point: 174.9 — 176.0 °C.

Preparation of compound 3.10
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To a solution of compound S3.5 (2.0 g, 4.22 mmol, see entry Preparation of compound 3.1n for
preparation) in THF (8 mL), 3-thienylboronic acid (1.62 g, 12.7 mmol), Pd(dppf)Cl>-CH2Cl, (172
mg, 0.21 mmol), Cs2CO3 (4.12 g, 12.65 mmol) and H>O (2 mL) was added at room temperature,
and the reaction mixture was then heated to 90 °C. After being stirred at 90 °C for 12 h, the reaction
mixture was quenched with HCI (1 M in H>0, 5 mL) and extracted with dichloromethane (5 mLx3).
The organic phase was then dried with Na;SO4 and concentrated under reduced pressure. The
mixture was purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1) to give

compound S3.7 (1.9 g, 94% yield).

To a solution of compound S3.7 (1.9 g, 3.95 mmol) in methanol (40 mL), Amberlyst 15 (1.94 g)
was added at room temperature, and the reaction mixture was then heated to reflux. After refluxing
for 3 h, the reaction mixture was filtered through Celite, then dried with Na>SO4 and concentrated
under reduced pressure. The mixture was purified by column chromatography (silica gel,

hexane:ethyl acetate = 20:1) to give compound 3.10 (1.22 g, 74% yield) as a white solid.
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Ry=0.36 (hexane : ethyl acetate = 2:1)

H NMR (400 MHz, CDCl3) & 7.36 (d, J = 2.2 Hz, 2H), 7.33 (d, J = 3.8 Hz, 2H), 7.31 — 7.20 (m,

6H), 6.10 (s, 2H), 3.99 (s, 2H), 2.27 (s, 6H).

BCNMR (101 MHz, CDCl3) § 150.5, 142.1, 129.1, 127.7, 126.6, 126.4, 125.9, 124.4, 119.1, 31 4,

16.1.

IR (KBr) vimax = 3416, 1482, 1354, 1230, 1188, 1165, 773 729 cm..

HRMS (ESI) m/z calcd. for C23H1902S2™ [M—H] : 391.0832, found 391.0864.

Melting point: 177.8 —178.7 °C.

Preparation of compound 3.1p

O

OH o(\jo OH OH
Me H,S0, Me Me
O =
Cl 49% Cl Cl

3.4p 3.1p

Compound 3.1p was prepared following literature reported procedure.'® 4-Chloro-2-methylphenol
(7.13 g) was subjected to the reported procedure to afford 3.5 g of 3.1p with 49% yield as a white

solid.

Ry=0.38 (hexane : ethyl acetate = 2:1)
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H NMR (400 MHz, CDCls) § 7.07 (d, J=2.6 Hz, 2H), 7.02 — 6.95 (m, 2H), 5.90 (s, 2H), 3.83 (s,

2H), 2.21 (s, 6H).

13C NMR (101 MHz, CDCl3) § 149.7, 129.1, 128.0, 127.2, 125.7, 125.5, 30.6, 16.0.
IR (KBr) vmax = 3328, 1473, 1443, 1379, 1266, 1215, 949, 861, 776 cm™.

HRMS (ESI) m/z caled. for C1sH13CLO,” [M—H]: 295.0298, found 295.0303.

Melting point: decomposed while heating.

Preparation of compound 3.1q

" O O N
O O MeCN 80 °C

80%
3.1q

To a solution of compound 3.1t’'7 (4.0 g, 17.5 mmol) in MeCN (100 mL), N-bromosuccinimide
(6.39 g, 35.9 mmol) was added at 0 °C, and the reaction mixture was then heated to 80 °C. After
being stirred at 80 °C for 2 h, the reaction mixture was cooled to room temperature, quenched with
NaxS>05 (saturated in H,O, 50 mL), and extracted with ethyl acetate (100 mLx3). The organic
phase was then dried with Na;SO4 and concentrated under reduced pressure. The mixture was
purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to give compound

3.1q (5.4 g, 80% yield) as a white solid.

Ry=0.70 (hexane : ethyl acetate = 2:1)

321



H NMR (400 MHz, CDCl3) § 7.20 — 7.10 (m, 2H), 6.91 (d, J= 2.1 Hz, 2H), 5.95 (s, 2H), 3.94 (s,

2H), 2.22 (s, 6H).

13C NMR (101 MHz, CDCl3) § 147.6, 131.3, 130.7, 130.6, 127.2, 110.2, 31.3, 20.3.

IR (KBr) vmax = 3281, 1476, 1449, 1274, 1206, 1175, 1155, 1106, 921, 859, 826, 753 cm’.
HRMS (ESI) m/z caled. for C1sH3Br8!BrO, [M—H]: 384.9267, found 384.9288.

Melting point: 156.7 —157.8 °C

Preparation of compound 3.1r

OH OH OH OH
Me Me Me Me
O O 3 steps O O
B —
Br Br CO,Me CO,Me
3.1q 34r

NaH Amberlyst 15
MOMCI MeOH
THF 75% for 2 steps
90%

Pd(dppf)Cl,*CH,CI
OMOM  OMOM (pp,ZlEtz3 2Cl, OMOM  OMOM

MeWMe CO (100 psi) MeMe
O O MeOH
CO,Me  COyMe
$3.8

Br Br

$3.5
To a flame-dried Q-tube, compound S3.5 (2.0 g, 4.22 mmol, see entry Preparation of compound
3.1n for preparation), Pd(dppf)Cl2-CH2ClLz (172 mg, 0.21 mmol), triethyl amine (1.8 mL, 12.66
mmol) and MeOH (20 mL) was added at room temperature. The reaction vessel was then charged

with 100 psi CO and heated to 100 °C. After being stirred at 100 °C for 12 h, the reaction mixture
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was filtered through Celite, and the solution was concentrated under reduced pressure. The mixture

was purified by column chromatography (silica gel, hexane:ethyl acetate = 4:1) to give compound

S3.8.

To a solution of compound S3.8 (previous step obtained) in methanol (30 mL), Amberlyst 15 (1.5
g) was added at room temperature, and the reaction mixture was then heated to reflux. After
refluxing for 3 h, the reaction mixture was filtered through Celite, then concentrated under reduced
pressure and purified by recrystallization (methanol) to give compound 3.1r (1.1 g, 75% yield for

2 steps) as a white solid.

Ry=0.22 (hexane : ethyl acetate = 2:1)

H NMR (500 MHz, DMSO) 5 9.38 (s, 2H), 7.60 (d, J = 2.3 Hz, 2H), 7.49 (d, J = 2.3 Hz, 2H),

3.94 (s, 2H), 3.74 (s, 6H), 2.22 (s, 6H).

13C NMR (126 MHz, DMSO) 8 166.3, 157.8, 130.2, 129.5, 127.1, 124.4, 120.2, 51.6, 30.1, 16.7.

IR (KBr) vmax = 3409, 1681, 1594, 1446, 1322, 1305, 1264, 1205, 768 cm™..

HRMS (ESI) m/z caled. for Ci1oH1906 [M—H]: 343.1187, found 343.1213.

Melting point: decomposed while heating.

Preparation of compound 3.1s
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OH OH

OH OH
O e WO
Me Me MeCN,OBO (o} Me Me
85% Br Br

S3.9
3.1s

To a solution of compound $3.9'® (3.0 g, 11.7 mmol) in MeCN (30 mL), N-bromosuccinimide
(4.37 g, 24.6 mmol) was added at 0 °C, and the reaction mixture was then heated to 80 °C. After
being stirred at 80 °C for 2 h, the reaction mixture was cooled to room temperature, quenched with
NaxS»03 (saturated in H>O, 50 mL) and extracted with ethyl acetate (50 mLx3). The organic phase
was then dried with Na>xSO4 and concentrated under reduced pressure. The mixture was purified
by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to give compound 3.1s (4.1 g,

85% yield) as a white solid.
Ry=0.51 (hexane : ethyl acetate = 2:1)

IH NMR (400 MHz, CDCl3) § 7.29 (s, 2H), 5.98 (s, 2H), 3.79 (s, 2H), 2.39 — 2.26 (m, 6H), 2.25

—2.13 (m, 6H).

3C NMR (101 MHz, CDCl3) 8 150.0, 135.6, 131.0, 125.2, 124.5, 116.6, 30.6, 19.9, 13.2.
IR (KBr) vinax = 3458, 3289, 2937, 1464, 1408, 1348, 1271, 1184, 1085, 921, 882, 792 cm™".
HRMS (ESI) m/z calcd. for C17H17”°Br¥'BrO,” [M—H] : 412.9580, found 412.9534.

Melting point: 195.0 - 195.6 °C

Preparation of compound 3.1u
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OH OH OH OH OMOM  OMOM

MOMCI
_— _—
DCM THF
0,
96% Me Me

Me Me 79% Me Me

3.1t $3.10 $3.11
Pd(dppf)Cly, Cs,CO5

OMe THF/H20, 85%

MeO oM
€ OH OH © MeO OMOM  OMO OMe
HCI (6M)

HClem)

(T oy (T 10

90%
Me Me Me Me

3.1u S$3.12

S

To a solution of compound 3.1t (3.0 g, 13.14 mmol) in dichloromethane (50 mL), bromine (1.42
mL, 27.6 mmol) was added at 0 °C. After being stirred at room temperature for 3 h, the reaction
mixture was quenched with NaS;0; (saturated in H>O, 50 mL) and extracted with
dichloromethane (50 mLx3). The organic phase was then dried with Na>SO4 and concentrated
under reduced pressure. The mixture was purified by column chromatography (silica gel,

hexane:ethyl acetate = 10:1) to give compound S3.10 (4.0 g, 79% yield).

To a solution of compound S3.10 (4.0 g, 10.4 mmol) in THF (50 mL), NaH (60 % dispersion in
mineral oil, 1.04 g, 25.9 mmol) was added at 0 °C. After being stirred at 0 °C for 30 min,
chloromethyl methyl ether (2.09 g, 25.9 mmol) was added to the reaction mixture. After being
stirred at room temperature for 4 h, the reaction mixture was quenched with NH4Cl (saturated in
H>0, 40 mL) and extracted with diethyl ether (50 mLx3). The organic phase was then dried with
Na;SO4 and concentrated under reduced pressure. The mixture was purified by column
chromatography (silica gel, hexane:ethyl acetate = 20:1) to give compound S3.11 (4.7 g, 96%

yield).
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To a solution of compound S3.11 (1.0 g, 2.11 mmol) in THF (6 mL), 4-methoxyphenylboronic
acid (0.96 g, 6.33 mmol), Pd(dppf)Cl,-CH2Cl> (86 mg, 0.11 mmol), Cs2CO3 (2.75 g, 8.44 mmol)
and H>O (1.5 mL) were added at room temperature, and the reaction mixture was then heated to
90 °C. After being stirred at 90 °C for 12 h, the reaction mixture was quenched with HCI (1 M in
H>0, 5 mL) and extracted with dichloromethane (5 mLx3). The organic phase was then dried with
Na>SOs and concentrated under reduced pressure. The mixture was purified by column
chromatography (silica gel, hexane:ethyl acetate = 20:1) to give compound S3.12 (0.95 g, 85%

yield).

To a solution of compound S3.12 (0.95 g, 1.8 mmol) in THF (20 mL), HC1 (6 M in H2O, 1 mL)
was added at room temperature. After being stirred at room temperature for 12 h, the reaction
mixture was diluted with H>O (20 mL), extracted with ethyl acetate (20 mL*3). The organic phase
was then dried with Na>SO4 and concentrated under reduced pressure, then purified by column
chromatography (silica gel, hexane:ethyl acetate = 20:1) to give compound 3.1u (0.71 g, 90% yield)

as a white solid.

Ry=0.51 (hexane : ethyl acetate = 2:1)

H NMR (400 MHz, CDCls) § 7.41 — 7.33 (m, 4H), 7.08 (d, J= 2.2 Hz, 2H), 6.99 — 6.93 (m, 4H),

6.93 — 6.87 (m, 2H), 6.26 (s, 2H), 3.97 (s, 2H), 3.82 (s, 6H), 2.29 (s, 6H).

13C NMR (101 MHz, CDCl3) & 159.0, 147.5, 130.3, 130.3, 130.0, 129.9, 129.3, 128.3, 126.8,

114.3, 55.3,31.1, 20.6.

IR (KBr) vmax = 3408, 2933, 1608, 1513, 1470, 1290, 1248, 1178, 1033, 909, 833, 732 cm™.

HRMS (ESI) m/z calcd. for C2o0H2704 [M—H]: 439.1915, found 439.1929.
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Melting point: 70.3 — 71.8 °C

Preparation of compound 3.1v

OH OH OH
Me (CH,0), Me Me
:©\ xylene, 150 °C
Me Me 60% Me Me Me Me
3.4v 31v

To a solution of 2,3,5-trimethylphenol (20 g, 147 mmol) in xylene (100 mL), paraformaldehyde
(2.2 g, 73 mmol) was added at room temperature. The reaction mixture was then heated to 150 °C.
After being stirred at 150 °C for 12 h, the reaction mixture was quenched with HCI (1 M in H2O,
50 mL) and extracted with ethyl acetate (50 mLx3). The organic phase was then dried with Na>SO4
and concentrated under reduced pressure. The mixture was purified by column chromatography

(silica gel, hexane:ethyl acetate = 10:1) to give compound 3.1v (12.5 g, 60% yield).

Ry=0.65 (hexane : ethyl acetate = 2:1)

IH NMR (400 MHz, CDCL3) 8 6.62 (s, 2H), 5.60 (s, 2H), 3.95 (s, 2H), 2.33 (s, 6H), 2.19 (s, 6H),

2.05 (s, 6H).

I3C NMR (101 MHz, CDCl3) & 152.6, 135.9, 134.4, 124.7, 120.8, 120.6, 25.1, 20.1, 19.8, 11.6.

IR (KBr) vimax = 3431, 2914, 1562, 1464, 1404, 1298, 1258, 1201, 1170, 1080, 1045, 857 cm™.

HRMS (ESI) m/z calcd. for Ci9H2302" [M—H] : 283.1704, found 283.1728.

Melting point: 177 — 179 °C
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Preparation of compound 3. Iw

OH OH OH OH
O O B " cu,Eoac MO OMe
CHCI3 MeONa/MeOH
20%
Me Me 85% Me Me
$3.13 $3.14 31w

To a solution of compound $3.13%° (3.0 g, 11.7 mmol) in chloroform (10 mL) and CCls (10 mL),
bromine (3.74 g, 23.4 mmol) in chloroform (10 mL) was added dropwise at 0 °C. After being
stirred at room temperature for 30 min, the reaction mixture was quenched with Na>S>O3 (saturated
in H>0, 20 mL) and extracted with dichloromethane (20 mLx3). The organic phase was then dried
with Na;SO4 and concentrated under reduced pressure. The mixture was purified by column
chromatography (silica gel, hexane:ethyl acetate = 20:1) to give compound S3.14 (4.1 g, 85%

yield).

To a solution of compound S3.14 (4.1 g, 9.9 mmol) in ethyl acetate (1.2 mL), Cul (1.9 g, 9.9 mmol)
and MeONa (25 wt.% in methanol, 10 mL) were added at room temperature, and the reaction
mixture was then heated to 70 °C. After being stirred at 70 °C for 12 h, the reaction mixture was
quenched with HCI (2 M in H>O, 50 mL) and extracted with ethyl acetate (50 mLx3). The organic
phase was then dried with Na2SO4 and concentrated under reduced pressure. The mixture was
purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to give compound

3.1w (0.63 g, 20% yield).

Ry=0.32 (hexane : ethyl acetate = 2:1)
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H NMR (400 MHz, CDCl3) § 6.69 — 6.63 (m, 2H), 6.51 (d, J= 1.9 Hz, 2H), 5.96 (s, 2H), 4.47 (t,

J=17.7Hz, 1H), 3.81 (s, 6H), 2.26 (s, 6H), 2.04 (p, J= 7.4 Hz, 2H), 0.91 (t, J = 7.3 Hz, 3H).

13C NMR (101 MHz, CDCls) & 146.4, 140.8, 130.1, 128.8, 120.0, 109.5, 55.8, 37.8, 27.0, 21.4,

12.6.

IR (KBr) viax =

3320, 2967, 2938, 1592, 1498, 1462, 1352, 1297, 1203, 1149, 1070, 838 cm’'.

HRMS (ESI) molecular weight peak not found despite extensive efforts.

Melting point: 161.0 —162.1 °C

Preparation of compound 3.1x

Me
O O MeCN 80 °C

OMOM  OMOM
Me NaH
MOMCI Me
_ =
THF
Br s3.16
$3.15
Pd(BINAP)CI,
NEt,
CO (100 psi)
MeOH
7% for 3 steps
OH OH OMOM  OMOM
Me Me
O O Amberlyst 15 M€ O O Me
pmberlyst 15
MeOH
0,
COMe 2% CO,Me
3.1x $3.17

To a solution of compound 3.1t'7 (500 mg, 2.19 mmol) in MeCN (10 mL), N-bromosuccinimide

(390 mg, 2.19 mmol) was added at 0 °C, and the reaction mixture was then heated to 80 °C. After

being stirred at 80 °C for 2 h, the reaction mixture was cooled to room temperature, quenched with
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NaxS>03 (saturated in H>O, 10 mL) and extracted with ethyl acetate (10 mLx3). The organic phase
was then dried with Na;SO4 and concentrated under reduced pressure. The mixture was purified
by column chromatography (silica gel, hexane:ethyl acetate = 10:1) to give crude compound S3.15

(mixture of 3.1t’, monobromide and dibromide)..

To a solution of compound S3.15 (crude product from previous step) in THF (10 mL), NaH (60 %
dispersion in mineral oil, 0.22 g, 5.5 mmol) was added at 0 °C. After being stirred at 0 °C for 30
min, chloromethyl methyl ether (0.44 g, 5.5 mmol) was added to the reaction mixture. After being
stirred at room temperature for 4 h, the reaction mixture was quenched with NH4Cl (saturated in
H>0, 10 mL) and extracted with diethyl ether (10 mLx3). The organic phase was then dried with
Na;SO4 and concentrated under reduced pressure. The mixture was purified by column
chromatography (silica gel, hexane:ethyl acetate = 20:1) to give crude compound S3.16 (mixture

monobromide and dibromide).

To a flame-dried Q-tube, compound S3.16 (crude product from previous step), PA(BINAP)Cl, (24
mg, 0.03 mmol), triethyl amine (54 pL, 0.39 mmol) and MeOH (2 mL) were added at room
temperature. The reaction vessel was then charged with 100 psi CO and heated to 120 °C. After
being stirred at 120 °C for 12 h, the CO was released and the reaction mixture was filtered through
Celite, and the solution was concentrated under reduced pressure. The mixture was purified by
column chromatography (silica gel, hexane:ethyl acetate = 10:1) to give compound S3.17 (60 mg,

7% yield for 3 steps).

To a solution of compound S3.17 (60 mg, 0.16 mmol) in methanol (2 mL), Amberlyst 15 (80 mg)
was added at room temperature, and the reaction mixture was then heated to reflux. After refluxing

for 3 h, the reaction mixture was filtered through Celite, then concentrated under reduced pressure
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and purified by recrystallization (hexane/dichloromethane) to give compound 3.1x (33 mg, 72%

yield) as a white solid.

Ry=0.29 (hexane : ethyl acetate = 2:1)

H NMR (400 MHz, CDCl3) § 7.85 (t, J = 1.8 Hz, 1H), 7.68 (d, J=2.1 Hz, 1H), 7.28 (s, 1H), 7.16
(d, J=17.6 Hz, 1H), 6.99 (d, J= 7.5 Hz, 1H), 6.82 (td, J= 7.5, 1.5 Hz, 1H), 5.88 (s, 1H), 3.94 (s,

2H), 3.87 (d, J= 1.5 Hz, 3H), 2.25 (s, 3H), 2.22 (s, 3H).

13C NMR (101 MHz, CDCl3) & 167.3, 156.2, 150.2, 131.0, 130.3, 129.5, 128.7, 126.3, 125.9,

124.8, 123.4, 122.0, 121.6, 51.9, 30.9, 16.1, 15.9.

IR (KBr) vmax = 3360, 2951, 1692, 1602, 1471, 1436, 1323, 1295, 1214, 1022, 909, 772 cm’".

HRMS (ESI) molecular weight peak not found despite extensive efforts.

(Preparation of compounds 3.1¢—e, 3.1g—s, 3.1u—x is conducted by Dr. Jun Zhu).

General Procedure for preparation of compound 3.2

OH OH ‘ o PPz P(P)
I
CI\F,/F>r EtsN
CRCEE
Pr
3.1 3.2

General procedure: To a flame dried 40 mL vial charged with a stir bar, diphenol 3.1 (1.0 equiv.)

was dissolved in dry MeCN (10 mL/500 mg), 4 equiv. of dry EtsN was added in one portion. 2.1
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equiv. of chloro-diisopropylphosphine was then added dropwise at room temperature. The mixture
was heated to 70 °C under N> atmosphere overnight. Upon completion of the reaction, the reaction
mixture was extracted with pentane or hexane in glovebox and concentrated to give the
corresponding phosphinites, which were pure enough for the C—C activation reactions. (The
phosphinites were sensitive to moisture and must be stored in the glovebox. HRMS could not be

obtained.)

Preparation of compound 3.2a

iPr),P< iPr)oP<
(iPr)2 (iPr)2 o

3.2a

6,6'-methylenebis(2,4-dimethylphenol)?! (500 mg) was subjected to the general procedure to

afford 505 mg of 3.2a with 53% yield as a white solid.

H NMR (500 MHz, CDs) & 6.85 (s, 2H), 6.74 (s, 2H), 4.60 (s, 2H), 2.45 (s, 6H), 2.00 (s, 6H),

1.97 - 1.87 (m, 4H), 1.16 (dd, J = 11.0, 7.0 Hz, 6H), 1.05 (dd, J = 13.0, 7.0 Hz, 6H).

I3C NMR (125 MHz, C¢Ds) 6 152.3, 132.4, 131.9, 130.7, 130.0, 129.0, 32.8 (t, J = 7.2 Hz), 29.1

(d, J=23.2 Hz),20.7,18.9 (d, ] =9.0 Hz), 17.8 (d, ] = 16.5 Hz), 17.7 (d, ] = 12.3 Hz).

3P NMR (202 MHz, C¢Ds) & 155.5.

IR (NaCl) vinax = 2954, 2924, 2867, 1467, 1382, 1362, 1300, 1264, 1214, 1142, 1013 cm™.
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Melting point 70 — 72 °C.

Preparation of compound 3.2b

Pr)sPo_ (iPr)sP
(iPr)2 o (iPr)2 0

Meo“‘ ! OMe

"Pr "Pr
3.2b

6,6'-methylenebis(2-methoxy-4-propylphenol) (500 mg) was subjected to the general procedure to

afford 743 mg of 3.2b with 89% yield as a white solid.

H NMR (500 MHz, CsDs) 8 6.70 (s, 2H), 6.47 (d, J = 2.0 Hz, 2H), 4.53 (s, 2H), 3.45 (s, 6H), 2.33
(t, J=7.5 Hz, 4H), 2.08 — 1.92 (m, 2H), 1.57 — 1.40 (m, 4H), 1.30 (dd, J = 11.0, 7.0 Hz, 12H), 1.17

(dd, J=13.5,7.0 Hz, 12H), 0.82 (t, J = 7.0 Hz, 6H).

13C NMR (125 MHz, CeDe) 8 151.2, 144.3 (d, J = 4.0 Hz). 136.8, 133.1, 123.2, 111.7, 55.5, 38.2,

31.5,29.3 (d,J = 22.8 Hz), 25.1, 18.0 (d, J = 17.5 Hz), 17.8 (d, J = 12.6 Hz), 14.0.
3P NMR (202 MHz, CsDs) & 160.3.

IR (NaCl) vmax = 2956, 2868, 2836, 1585, 1485, 1460, 1424, 1383, 1350, 1334, 1305, 1271, 1255,

1226, 1183, 1148, 1100 cm’".

Melting point 56 — 58 °C.
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Preparation of compound 3.2¢

Pr)sPo_ (iPr)sP
(iPr)2 o (iPr)2 0

Meo“/! ! OMe

iPr iPr
3.2¢c

6,6'-methylenebis(4-isopropyl-2-methoxyphenol) (500 mg) was subjected to the general procedure

to afford 510 mg of 3.2¢ with 61% yield as a white solid.

IH NMR (500 MHz, CsDs) 5 6.78 (s, 2H), 6.55 (d, J = 2.0 Hz, 2H), 4.54 (s, 2H), 3.46 (s, 6H), 2.67
~2.55 (m, 2H), 2.04 — 1.92 (m, 4H), 1.29 (dd, J = 11.0, 7.0 Hz, 12H), 1.17 (dd, J = 13.5, 7.5 Hz,

12H), 1.12 (d, J = 6.5 Hz, 12H).

I3C NMR (125 MHz, CeéDs) 6 151.3, 144.3 (d, J = 4.0 Hz), 143.0, 133.1, 121.1, 109.7, 55.5, 34.3,

31.7,29.3 (d,J = 22.6 Hz), 24.3, 18.0 (d, J = 17.5 Hz), 17.8 (d, J = 12.5 Hz).
31p NMR (202 MHz, CeDe) & 160.1.

IR (NaCl) vmax = 2957,2867, 2835, 1585, 1481, 1463, 1424, 1383, 1361, 1337, 1297, 1270, 1220,

1189, 1169, 1134 cm™'.

Melting point 58 — 60 °C.

Preparation of compound 3.2d
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Pr)sPo_ (iPr)sP
(iPr)2 o (iPr)2 0

Meo“‘ ! OMe

"Bu "Bu
3.2d

6,6'-methylenebis(2-methoxy-4-propylphenol) (500 mg) was subjected to the general procedure to

afford 603 mg of 3.2d with 74% yield as a colorless oil.

IH NMR (500 MHz, CsDs) 3 6.69 (s, 2H), 6.53 (d, J = 1.7 Hz, 2H), 4.53 (s, 2H), 3.46 (s, 6H), 2.41
~2.28 (m, 4H), 2.05 — 1.92 (m, 2H), 1.57 — 1.38 (m, 8H), 1.34 — 1.23 (m, 6H), 1.21 — 1.09 (m,

18H), 0.80 (t, J = 7.4 Hz, 6H).

I3C NMR (125 MHz, CsD¢) 6 151.3, 144.4, 141.7, 133.0, 121.7, 110.2, 55.5,41.9, 31.6,29.4, 29.2,

22.3,18.0 (d,J = 17.5 Hz), 17.9 (d, ] = 12.3 Hz), 12.5.
3P NMR (202 MHz, CsDs) & 160.0.

IR (NaCl) vmax = 2955,2929, 2867, 1585, 1482, 1464, 1423, 1380, 1362, 1339, 1299, 1249, 1220,

1148 cm’!.

Preparation of compound 3.2e

(PP~ (Pr)PS

MeOOMe

n-CsHqp  n-CgHyq
3.2e
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6,6'-methylenebis(2-methoxy-4-pentylphenol) (500 mg) was subjected to the general procedure to

afford 625 mg of 3.2e with 79% yield as a colorless oil.

H NMR (500 MHz, CDCls) § 6.56 (s, 2H), 6.39 (s, 2H), 4.06 (s, 2H), 3.82 (s, 6H), 2.42 (t, ] =
7.7 Hz, 4H), 2.01 — 1.89 (m, 4H), 1.56 — 1.43 (m, 4H), 1.34 — 1.21 (m, 8H), 1.20 — 1.05 (m, 24H),

0.86 (t, J = 7.0 Hz, 6H).

13C NMR (125 MHz, CDCl3) 8 150.2, 143.2, 143.2, 136.6, 132.3, 122.5, 110.9, 55.6, 35.6, 31.4,

31.2,30.5, 28.8, 28.7, 22.5, 17.6 (d, I = 13.3 Hz), 17.5 (d, J = 8.8 Hz), 14.0.

31p NMR (202 MHz, CDCls) & 160.5.

IR (NaCl) vimax = 2954, 2928, 2866, 1585, 1482, 1464, 1422, 1380, 1362, 1295, 1215, 1147, 1100

cm™.

Preparation of compound 3.2f

(iPr)oP< . (iPr)oP<

3.2f

6,6'-methylenebis(4-(tert-butyl)-2-methylphenol)** (500 mg) was subjected to the general

procedure to afford 620 mg of 3.2f with 74% yield as a colorless oil.

H NMR (500 MHz, CeDe) & 7.13 (s, 2H), 7.10 (s, 2H), 4.68, (s, 2H), 2.52 (s, 6H), 1.92 (hept, 4H,

J=7.0Hz), 1.21, (s, 18H), 1.16 (dd, 12H, J = 11.5, 7.0 Hz), 1.05 (dd, 12 H, J = 13.5, 7.0 Hz)
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I3C NMR (125 MHz, C¢Ds) 8 152.4, 145.1, 132.0, 128.3, 128.0 (d, J = 24.4 Hz), 126.7 (d, ] = 19.3

Hz),34.2,33.2 (t, J=7.1 Hz), 31.7,29.1 (d, ] =22.9 Hz), 19.3 (d, T = 9.1 Hz), 17.8 (t, J = 5.3 Hz)

3P NMR (202 MHz, C¢Ds) 8 154.9.

Preparation of compound 3.2g

Pr),P_ (Pr)Pe
(iPr), o (iPr)2 o

MeWEEMe

Ph Ph
3.2¢g

5,5"-methylenebis(3-methyl-[ 1,1'-biphenyl]-4-o0l) (500 mg) was subjected to the general procedure

to afford 402.0 mg of 3.2g with 50% yield as a white solid.

H NMR (500 MHz, CDCls) § 7.47 (d, J = 7.5 Hz, 4H), 7.35 (t, ] = 7.5 Hz, 4H), 7.27 — 7.26 (m,

4H), 7.12 (d, J = 2.0 Hz), 4.38 (s, 2H), 2.47 (s, 6H), 2.10 — 1.97 (m, 4H), 1.23 — 1.08 (m, 24H).

13C NMR (125 MHz, CDCls) & 153.6, 141.0, 135.1, 132.3, 129.2, 128.5, 128.3, 127.5, 126.8,
126.5,32.4 (t, = 5.9 Hz), 28.8 (d, ] = 22.3 Hz) 18.9 (d, ] = 10.0 Hz), 17.6 (d, J = 12.9 Hz) 17.5

(d, J=9.3 Hz).
31p NMR (202 MHz, CDCls) & 157.4.

IR (NaCl) vmax = 3060, 3030, 2954, 2925, 2867, 1601, 1574, 1465, 1403, 1382, 1365, 1323, 1303,

1264, 1231, 1167 cm™.

Melting point 112 — 114 °C.
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Preparation of compound 3.2h

(iPr)oP< . (iPr),P<

(@) O

Me

OC
Me Me
3.2h

5,5"-methylenebis(3,4'-dimethyl-[1,1'-biphenyl]-4-0l) (500 mg) was subjected to the general

procedure to afford 672.0 mg of 3.2h with 86% yield as a white solid.

TH NMR (500 MHz, CDCl3) 5 7.35 (d, J = 8.0 Hz, 4H), 7.19 (s, 2H), 7.15 (d, ] = 7.8 Hz, 4H), 7.06

(s, 2H), 4.32 (s, 2H), 2.45 (s, 6H), 2.34 (s, 6H), 2.04 — 2.01 (m, 4H), 1.16 — 1.11 (m, 24H).

13C NMR (125 MHz, CDCls) & 153.3, 138.2, 136.1, 135.0, 132.3, 129.2, 129.1, 128.0, 127.3,
126.6,32.4 (d, J = 5.9 Hz), 28.8 (d, J = 22 Hz), 21.0, 18.9 (d, ] = 10.0 Hz), 17.6 (d, J = 10.8 Hz)

17.5 (d, J = 7.3 Hz).
31P NMR (202 MHz, CDCl3) § 157.1.

IR (NaCl) vmax = 3023, 2955, 2924, 2867, 1516, 1468, 1382, 1362, 1323, 1303, 1231, 1212, 1167

cm.

Melting point 118 — 120 °C.

Preparation of compound 3.2i
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(iPr),P< . (iPr),P.

(0]

(0]

lMe

Me

MeO OMe

2
3.2

5,5"-methylenebis(3'-methoxy-3-methyl-[1,1'-biphenyl]-4-ol) (500 mg) was subjected to the

general procedure to afford 521.0 mg of 3.2i with 68% yield as an amorphous foam.

TH NMR (500 MHz, C¢Ds) & 7.50 (s, 2H), 7.31 (d, J = 1.4 Hz, 2H), 7.11 (d, ] = 7.8 Hz, 2H), 7.06
(t, ] =7.8 Hz, 2H), 6.72 (dd, J = 8.0, 1.5 Hz, 2H), 4.78 (s, 2H), 3.30 (s, 6H), 2.49 (s, 6H), 1.98 —

1.85 (m, 4H), 1.22 — 1.11 (m, 12H), 1.10 — 0.96 (m, 12H).

13C NMR (125 MHz, CDCls) & 159.8, 153.7, 142.6, 134.9, 132.2, 129.4, 129.2, 128.3, 127.5,
119.3, 112.3, 112.2, 55.2, 32.4 (t, ] = 5.2 Hz), 28.8 (d, ] = 22.3 Hz), 18.9 (d, ] = 9.7 Hz), 17.6 (d,

J=15.0 Hz), 17.5 (d, ] = 11.6 Hz).
31P NMR (202 MHz, CDs) § 157.2.

IR (NaCl) vmax = 2955, 2867, 2835, 1576, 1470, 1396, 1383, 1362, 1308, 1282, 1243, 1155, 1090,

1050 cm™.

Preparation of compound 3.2j
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(iPr)oP< . (iPr),P<

(0] (0]

ROASH
(0] 6]
0 o—/
3.2j

6,6'-methylenebis(4-(benzo[d][1,3]dioxol-5-yl)-2-methylphenol) (500 mg) was subjected to the

general procedure to afford 534.0 mg of 3.2j with 60% yield as an amorphous foam.

IH NMR (400 MHz, CDCl3)  7.17 (d, J = 2.0 Hz, 2H), 7.02 (d, J = 2.0 Hz, 2H), 6.98 — 6.93 (m,
2H), 6.94 (d, J = 1.8 Hz, 2H), 6.82 (dd, J = 8.4, 0.8 Hz, 1H), 5.94 (s, 2H), 4.32 (s, 2H), 2.45 (s,

6H), 2.07 — 1.99 (m, 4H), 1.17 — 1.09 (m, 24H).

13C NMR (100 MHz, CDCls) & 153.3, 147.8, 146.4, 135.5, 134.8, 132.3, 129.2, 128.0, 127.1,
120.1, 108.3, 107.4, 100.9, 32.3 (t, ] = 6.3 Hz), 28.8 (d, J = 22 Hz), 18.8 (d, J = 9.8 Hz), 17.6 (d, J

= 12.5Hz), 17.5 (d, T = 7.9 Hz).
31p NMR (202 MHz, CDCls) & 157.4.

IR (NaCl) vmax = 2956, 2927, 2868, 2775, 1607, 1580, 1505, 1469, 1410, 1382, 1363, 1337, 1306,

1264, 1238, 1172 cm’.

Preparation of compound 3.2k
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(iPr)oP< . (iPr),P<

(0] (0]

Me

ROAS
SMe SMe
3.2k

5,5"-methylenebis(3-methyl-4'-(methylthio)-[ 1,1'-biphenyl]-4-0l) (500 mg) was subjected to the

general procedure to afford 559 mg of 3.2k with 75% yield as a white solid.

IH NMR (500 MHz, CDCls) § 7.38 (d, J = 8.2 Hz, 4H), 7.23 (d, J = 8.2 Hz, 4H), 7.19 (s, 2H), 7.04

(s, 2H), 4.32 (s, 2H), 2.48 (s, 6H), 2.45 (s, 6H), 2.08 — 1.97 (m, 4H), 1.18 — 1.06 (m, 24H).

13C NMR (126 MHz, CDCls) & 153.6, 138.0, 136.5, 134.3, 132.3, 129.3, 128.0, 127.1, 127.1,
127.0, 32.4 (t, ] = 6.6 Hz), 28.8 (d, J = 22.0 Hz), 18.9 (d, J = 9.6 Hz), 17.6 (d, J = 12.8 Hz), 17.5

(d, J=9.0 Hz), 16.1.
3P NMR (202 MHz, CDCl3) & 157.6.

IR (NaCl) vmax = 3022, 2955, 2922, 2866, 1597, 1467, 1382, 1319, 1232, 1168, 1098, 1075, 1013

cm™.

Melting point 143 — 145 °C.

Preparation of compound 3.21
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(iPr)oP< . (iPr),P<

0 o
F F

3.21

5,5"-methylenebis(4'-fluoro-3-methyl-[ 1,1'-biphenyl]-4-o0l) (500 mg) was subjected to the general

procedure to afford 510 mg of 3.21 with 65% yield as a white solid.

IH NMR (500 MHz, CDCls) § 7.45 — 7.39 (m, 4H), 7.19 (s, 2H), 7.08 — 7.00 (m, 6H), 4.36 (s, 2H),

2.48 (s, 6H), 2.11 — 1.97 (m, 4H), 1.22 — 1.08 (m, 24H).

13C NMR (125 MHz, CDCls) § 163.0, 161.0, 153.6, 137.1 (d, J = 2.9 Hz), 134.1, 132.4, 129.4,
128.2 (d, J = 7.5 Hz), 127.3, 115.3 (d, J = 20.9 Hz), 32.4, 28.9 (d, J = 22.3 Hz), 18.9 (d, ] = 9.9

Hz), 17.6 (d, J = 14.8 Hz), 17.4 (d, J= 11.9 Hz).
3P NMR (202 MHz, CDCls) § 157.8.
1F NMR (470 MHz, CDCl3) § -116.8.

IR (NaCl) vmax = 2957, 2927, 2868, 1601, 1513, 1469, 1383, 1363, 1322, 1226, 1158, 1097, 1080

cm’!

Melting point 100 — 102 °C.

Preparation of compound 3.2m
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(iPr)oP< . (iPr),P<

(0] (0]

Me

O
Me Me
Ac Ac
3.2m

1,1'-(methylenebis(4'-hydroxy-5',6'-dimethyl-[ 1, 1'-biphenyl]-3',4-diyl))bis(ethan-1-one) (500 mg,
1.31 mmol) was subjected to the general procedure to afford 510 mg of 3.2m with 65% yield as a

white solid.

IH NMR (400 MHz, CDCls) & 7.93 (d, J = 8.5 Hz, 4H), 7.29 (d, J = 8.5 Hz, 4H), 6.68 (d, J= 5.2
Hz, 2H), 4.33 (s, 2H), 2.62 (s, 6H), 2.29 (s, 6H), 2.10 (s, 6H), 2.07 — 1.96 (m, 4H), 1.17 — 1.06 (m,

24H).

13C NMR (100 MHz, CDCls) & 197.9, 153.6, 147.9, 135.4, 135.1, 133.1, 129.9, 129.5, 129.0,
128.5,127.9,32.3 (t, J= 5.9 Hz), 28.7 (d, J = 22.4 Hz), 26.6, 17.7 (d, J = 6.5 Hz), 17.5 (d, J = 3.6

Hz), 14.8 (d, J= 6.7 Hz).
31p NMR (202 MHz, CDCls) §158.7.

IR (NaCl) vmax = 2958, 2928, 2868, 1683, 1604, 1465, 1397, 1357, 1320, 1267, 1218, 1182, 1153,

1087, 1017 cm™.

Melting point 153 — 155 °C.

Preparation of compound 3.2n
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6,6'-methylenebis(4-(furan-3-yl)-2-methylphenol) (400 mg) was subjected to the general

procedure to afford 410 mg of 3.2n with 62% yield as a colorless oil.

H NMR (500 MHz, CDCls) § 7.56 (s, 2H), 7.39 (d, J = 1.4 Hz, 2H), 7.13 (s, 2H), 6.96 (s, 2H),

6.55 (s, 2H), 4.29 (s, 2H), 2.44 (s, 6H), 2.09 — 1.96 (m, 4H), 1.22 — 1.06 (m, 24H).

13C NMR (126 MHz, CDCls) & 153.1, 143.3, 137.8, 132.3, 129.4, 127.1, 126.4, 126.3, 126.2,
108.9, 32.2 (t, J = 6.9 Hz), 28.8 (d, J=22.1 Hz), 18.7 (d, J= 9.5 Hz), 17.6 (d, J= 16.1 Hz), 17.4

(d,J=12.1 Hz).

31P NMR (202 MHz, CDCls) § 157.6.

IR (NaCl) vmax = 3034, 2955, 2927, 2867, 1575, 1508, 1466, 1382, 1354, 1331, 1310, 1238, 1179,

1107 cm™.

Preparation of compound 3.20

(iPr)oP< . (iPr)oP<

(0} (0}
Me! !Me
7 AN
S/ \S

3.20
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6,6'-methylenebis(2-methyl-4-(thiophen-3-yl)phenol) (400 mg) was subjected to the general

procedure to afford 330 mg of 3.20 with 51% yield as a colorless oil.

H NMR (500 MHz, CDCl3) § 7.31 — 7.27 (m, 2H), 7.23 (d, J = 3.4 Hz, 6H), 7.05 (s, 2H), 4.30 (s,

2H), 2.44 (s, 6H), 2.08 — 1.95 (m, 4H), 1.21 — 1.05 (m, 24H).

13C NMR (125 MHz, CDCls) & 153.3, 142.2, 132.3, 130.0, 129.3, 127.6, 126.8, 126.3, 125.7,
119.0, 32.3 (t, J = 6.2 Hz), 28.8 (d, J=21.9 Hz), 18.8 (d, J= 9.5 Hz), 17.6 (d, J= 17.1 Hz), 17.4

(d,J=12.8 Hz).
31pP NMR (202 MHz, CDCl3) 5 157.6.

IR (NaCl) vmax = 3090, 3034, 2954, 2926, 2866, 1583, 1531, 1473, 1407, 1382, 1361, 1297, 1231,

1204, 1156 cm™!.

Preparation of compound 3.2p

(iPr)zP\o (iPr)zP\o

“”GWO -

Cl Cl
3.2p

6,6'-methylenebis(4-chloro-2-methylphenol) (500 mg) was subjected to the general procedure to

afford 330 mg of 3.2p with 51% yield as a white solid.

H NMR (500 MHz, CDCl3) § 6.97 (d, J=2.2 Hz, 2H), 6.70 (d, J = 2.3 Hz, 2H), 4.18 (d, /= 18.8

Hz, 2H), 2.35 (s, 6H), 2.04 — 1.90 (m, 4H), 1.20 — 1.01 (m, 24H).
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I3C NMR (125 MHz, CDCl3) 8 152.5, 133.1, 131.0, 129.4, 128.2, 127.0, 32.2 (t, J = 6.6 Hz), 28.8

(d,J=22.2 Hz), 18.6 (d, J=9.8 Hz), 17.5 (d, J= 16.1 Hz), 17.3 (d, J = 11.8 Hz).
31p NMR (202 MHz, CDCls) & 159.6.
IR (NaCl) vmax = 2955, 2928, 2868, 1582, 1463, 1382, 1361, 1320, 1263, 1208, 1186, 1146 cm’.

Melting point 93 — 95 °C.

Preparation of compound 3.2q

(iPr)zP\o (iPr)zP\o

“”GWO -

Br Br

3.2q

6,6'-methylenebis(4-bromo-2-methylphenol) (500 mg) was subjected to the general procedure to

afford 646 mg of 3.2q with 81% yield as a white solid.

IH NMR (500 MHz, CDCls) 8 7.14 (d, J = 1.3 Hz, 2H), 6.87 (s, 2H), 4.18 (s, 2H), 2.38 (s, 6H),

2.04 - 1.92 (m, 4H), 1.17 — 1.02 (m, 24H).

13C NMR (125 MHz, CDCls3) 6 153.0, 133.5, 132.3, 131.4, 131.1, 114.8, 32.1 (t, J= 7.1 Hz), 28.8

(d,J=22.4 Hz), 18.5 (d, J= 9.9 Hz), 17.5 (d, J= 15.6 Hz), 17.3 (d, J = 11.9 Hz).

3P NMR (202 MHz, CDCl3) & 159.7.
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IR (NaCl) vmax = 2953, 2918, 2888, 2868, 1585, 1574, 1462, 1431, 1421, 1380, 1319, 1283, 1258,

1206 cm™.

Melting point 135 — 137 °C.

Preparation of compound 3.2r

(iPr)zP\o (iPr)zP\o

“”GWO -

COzMe COQMG
3.2r

Dimethyl 5,5'-methylenebis(4-hydroxy-3-methylbenzoate) (400 mg) was subjected to the general

procedure to afford 320 mg of 3.2r with 48% yield as a colorless oil.

IH NMR (500 MHz, CDCL3) 8 7.70 (s, 2H), 7.44 (s, 2H), 4.26 (s, 2H), 3.80 (s, 6H), 2.41 (s, 6H),

2.04-1.91 (m, 4H), 1.16 — 1.01 (m, 24H).

13C NMR (125 MHz, CDCl3) 4 167.0, 158.1, 131.6, 131.5, 130.4, 129.2, 124.0, 51.7, 32.4 (t,J =

6.9 Hz),29.0 (d, J=22.3 Hz), 18.8 (d, J= 10.4 Hz), 17.4 (d, J = 16.1 Hz), 17.2 (d, J = 11.4 Hz).
31p NMR (202 MHz, CDCl3) 5 161.1.

IR (NaCl) vimax = 2962, 2932, 2871, 1715, 1604, 1464, 1434, 1312, 1203, 1141, 1018 cm”".

Preparation of compound 3.2s
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(iPr)zP\o (iPr)ZP\O

Me l l Me
Me Me
Br Br

3.2s

6,6'-methylenebis(4-bromo-2,3-dimethylphenol) (500 mg) was subjected to the general procedure

to afford 684 mg of 3.2s with 88% yield as a white solid.

H NMR (500 MHz, CDCls) § 6.95 (s, 2H), 4.19 (s, 2H), 2.33 (s, 6H), 2.31 (s, 6H), 2.05 — 1.94

(m, 4H), 1.16 — 1.04 (m, 24H).

3C NMR (125 MHz, CDCl3) 8 153.0, 135.3, 131.5, 130.7, 130.0, 118.6, 31.9 (t, /= 8.8 Hz), 28.7

(d, J=22.7 Hz), 20.0, 17.6 (d, J = 15.3 Hz), 17.5 (d, J = 11.6 Hz), 15.7 (d, J = 6.6 Hz).
31p NMR (202 MHz, CDCls) & 160.8.

IR (NaCl) vmax = 2956, 2922, 2868, 1589, 1555, 1461, 1395, 1313, 1252, 1218, 1205, 1192, 1141

cm™.

Melting point 90 — 92 °C.

Preparation of compound 3.2t

(PP (PP

Me Me
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2,2"-methylenebis(4-methylphenol)!® (300 mg) was subjected to the general procedure to afford

550 mg of 3.2t with 92% yield as a white solid.

H NMR (400 MHz, CsD¢) § 7.57 (dd, J = 8.2, 3.9 Hz, 2H), 6.94 (d, J = 9.5 Hz, 2H), 6.90 (d, J =
8.2 Hz, 2H), 4.27 (s, 2H), 2.05 (s, 6H), 1.84 — 1.70 (m, 4H), 1.18 — 1.06 (m, 12H), 1.04 — 0.92 (m,

12H).

13C NMR (101 MHz, CsDs) 8 155.4 (d, J = 8.5 Hz), 131.6, 130.3, 130.1, 116.5, 116.2, 31.3, 28.5

(d, J=18.0 Hz), 20.6, 17.9 (d, J=19.9 Hz), 17.2 (d, J = 8.8 Hz).
31pP NMR (202 MHz, CeDe) 5 141.4.

IR (NaCl) vmax = 2953, 2925, 2866, 1609, 1494, 1464, 1381, 1363, 1323, 1214, 1151, 1120, 1100

cm™.

Melting point 83 — 85 °C.

Preparation of compound 3.2t

(’Pr)zP\O (Pr),P<

(0]
3.2t'

6,6'-methylenebis(2-methylphenol)!” (457 mg) was subjected to the general procedure to afford

818.9 mg of 3.2t> with 89% yield as a colorless oil.
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H NMR (500 MHz, CsD¢) 5 6.96 (dd, J = 7.6, 1.8 Hz, 2H), 6.93 (dd, J= 7.5, 1.8 Hz, 2H), 6.80
(td, J=7.5, 0.8 Hz, 2H), 4.63 (s, 2H), 2.44 (s, 6H), 1.89 (heptd, J= 7.1, 3.2 Hz, 4H), 1.12 (dd, J =

11.3,7.0 Hz, 12H), 1.02 (dd, J=13.6, 7.2 Hz, 12H).

13C NMR (126 MHz, C¢De) & 154.5 (d, J = 1.7 Hz), 132.6, 130.0, 129.5, 129.4 (d, J = 1.9 Hz),
123.1(d, J= 1.2 Hz), 33.1 (t, J = 7.7 Hz), 29.1 (d, J = 22.9 Hz), 18.9 (d, /= 9.1 Hz), 17.8, 17.7,

17.6, 17.5.

31P NMR (202 MHz, CDs) § 156.5.

IR (NaCl) vmax = 2955, 2927, 2867, 1590, 1463, 1382, 1255, 1205, 1091, 868, 763 cm™.

Preparation of compound 3.2u

(iPr)R

MeO OMe

3.2u

3,3"-methylenebis(4'-methoxy-5-methyl-[1,1'-biphenyl]-2-0l) (500 mg) was subjected to the

general procedure to afford 648 mg of 3.2u with 85% yield as an amporphous foam.

IH NMR (400 MHz, C¢Ds) § 7.62 — 7.56 (m, 4H), 7.06 (s, 4H), 6.96 — 6.89 (m, 4H), 4.94 (s, 2H),
3.37 (s, 6H), 2.09 (s, 6H), 1.72 — 1.58 (m, 4H), 1.09 (dd, J= 11.5, 7.0 Hz, 12H), 0.93 (dd, J=13.2,

7.2 Hz, 12H).
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13C NMR (101 MHz, CeéD¢) & 159.3, 151.3, 134.8 (d, J = 2.2 Hz), 133.1, 133.1, 132.4, 131.9,
131.4,130.4, 128.6, 113.7, 54.8, 33.5 (t, J=11.2 Hz), 28.8 (d, /= 23.9 Hz), 20.9, 18.1 (d, J=13.1

Hz), 17.7 (d, J = 15.7 Hz).
31P NMR (162 MHz, CeDe) 5 160.9.

IR (NaCl) vmax = 2953, 2928, 2866, 2835, 1610, 1575, 1514, 1457, 1401, 1382, 1363, 1289, 1246,

1212, 1175 em’,

Preparation of compound 3.2v

(iPr)zP\o (iPr)ZP\O

Me:‘/\‘llMe
M M
€ Me Me ©

3.2v

6,6'-methylenebis(2,3,5-trimethylphenol) (500 mg) was subjected to the general procedure to

afford 410 mg of 3.2v with 45% yield as a white solid.

IH NMR (400 MHz, CsDe) 8 6.56 (s, 2H), 4.67 (s, 2H), 2.40 (s, 6H), 2.06 (s, 6H), 2.14 — 1.96 (m,

4H), 2.05 (s, 6H), 1.22 (dd, J = 11.0, 7.0 Hz, 12H), 1.12 (dd, J = 13.4, 7.2 Hz, 12H).

I3C NMR (101 MHz, C¢Dg) & 154.4, 135.8, 135.4,129.7, 127.7, 124.8,29.0 (d, J = 23.8 Hz), 27.6

(t,J=4.9 Hz), 20.1, 19.9, 18.1 (d, J = 16.3 Hz), 17.9, 14.8 (d, J= 9.3 Hz).

3P NMR (162 MHz, CsDs) 6 159.0.
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IR (NaCl) vmax = 3009, 2953, 2867, 1607, 1563, 1459, 1399, 1382, 1370, 1291, 1264, 1238, 1215,

1154 cm™.

Melting point 127 — 129 °C.

Preparation of compound 3.2w

(Pr),P<

MeO

6,6'-(propane-1,1-diyl)bis(2-methoxy-4-methylphenol) (500 mg) was subjected to the general

procedure to afford 578 mg of 3.2w with 67% yield as a colorless oil.

'H NMR (400 MHz, CeDe) & 6.82 (d, J = 2.0 Hz, 2H), 6.42 (d, J = 2.0 Hz, 2H), 5.02 (t, J = 7.7
Hz, 1H), 3.42 (s, 6H), 2.32 — 2.17 (m, 4H), 2.17 — 2.05 (m, 8H), 1.43 — 1.11 (m, 24H), 1.09 (t, J =

4.4 Hz, 3H).

13C NMR (101 MHz, C¢Ds) & 150.9 (d, J = 1.8 Hz), 144.2 (d, J = 4.3 Hz), 136.0 (d, J = 1.9 Hz),
130.9, 121.9, 112.8, 55.7 (d, J = 1.8 Hz), 40.3, 29.5 (d, J = 24.2 Hz), 29.1 (d, J = 22.7 Hz), 28.5,

21.4,18.4(d,J=16.0Hz), 18.2 (d,J=18.1 Hz), 18.1 (d,J=13.8 Hz), 17.8 (d,J=16.2 Hz), 13.3.

3P NMR (162 MHz, CsDs) 8 161.0.

IR (NaCl) vmax = 2952, 2867, 2835, 1585, 1464, 1418, 1381, 1363, 1311, 1217, 1187, 1149, 1113

cm™.
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Preparation of compound 3.2x

o P(Pr), o P(Pr),

MG“OO““

CO,Me
3.2x

Methyl 4-hydroxy-3-(2-hydroxy-3-methylbenzyl)-5-methylbenzoate (300 mg) was subjected to

the general procedure to afford 410 mg of 3.2x with 75% yield as a colorless oil.

H NMR (500 MHz, C¢Ds) & 8.01 (s, 2H), 6.90 (t, J = 6.6 Hz, 2H), 6.77 (t, J = 7.5 Hz, 1H), 4.60
(s, 2H), 3.42 (s, 3H), 2.41 (s, 3H), 2.35 (s, 3H), 1.93 — 1.75 (m, 4H), 1.17 — 1.09 (m, 6H), 1.08 —

0.89 (m, 18H).

13C NMR (125 MHz, CDe)  166.6, 158.6, 154.3, 132.8, 132.1, 131.9, 131.5, 130.2, 129.7, 129.5,
129.0, 125.2, 123.1, 51.3,33.2 (t, J = 7.6 Hz), 29.3 (d, J=22.7 Hz), 29.2 (d, J=22.7 Hz), 18.9 (d,
J=3.7Hz), 18.8 (d,J=2.4 Hz), 17.7 (d, J= 16.1 Hz), 17.6 (d, J= 10.0 Hz), 17.5 (d, J= 5.7 Hz),

17.4 (d, J=11.4 Hz).
31p NMR (202 MHz, CeDe) 5 160.3, 156.6.

IR (NaCl, cm™) 2954, 2928, 2868, 1721, 1603, 1463, 1433, 1382, 1363, 1308, 1278, 1253, 1233,

1199.

(Preparation of compounds 3.2a —t, 3.2u — x is conducted by Dr. Jun Zhu).
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General procedure for C—C bond cleavage

_P(P _P(P
o PPz o P(Pr);
[Rh(C3H4),Cll, (2.5 mol%) @ @
+
@ @ 150 psi Hy, 150 °C OH OH
1,4-dioxane Me H
3.2 silica gel work up 3.3 3.4

General procedure: To a Q-tube charged with a stir bar, substrate 3.2 (0.3 mmol), [Rh(C2H4)2Cl]2

(2.9 mg, 2.5 mol%) and 1,4-dioxane (6.0 mL) were added in the glovebox. The Q-tube was then
resembled and taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for
10 times and then charged with 150 psi H> followed by heating to 150 °C in a pre-heated oil bath
for 24 h. After the reaction was completed, the H, pressure was released and the solvent was
removed under vacuum. ~ 2 mL of dichloromethane and ~ 200 mg of silica gel were added and
reconcentrated to give the silica gel containing the crude product which was further purified by

silica gel chromatography to afford the corresponding phenols.

Preparation of compounds 3.3a and 3.4a

(1Pr)2P (iPr),P.
Me Me Me
Me [Rh(C,H4),Cll, (2.5 mol%)
+
O O 150 psi Hy, 150 °C ; OH OoH
1,4-dioxane Me Me
silica gel work up 3.3a 3.4a
3.2a

The reaction was run on 0.1 mmol scale. The product was purified by column chromatography

(silica gel, hexane:ethyl acetate = 20:1).
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3.3a: white solid (11.8 mg, 87% yield).

Ry=0.46 (hexane : ethyl acetate = 8:1)

'"H NMR (400 MHz, CDCl3) 8 6.78 (s, 2H), 4.44 (s, 1H), 2.21 (s, 3H), 2.20 (s, 6H).
13C NMR (101 MHz, CDCl3) & 149.8, 129.3, 129.1, 122.8, 20.3, 15.8.

Analytic data match the literature.?’

3.4a: colorless oil (10.4 mg, 85% yield).

Ry=0.37 (hexane : ethyl acetate = 8:1)

H NMR (400 MHz, CDCl3) § 6.92 (d, J=2.2 Hz, 1H), 6.86 (ddt, J = 8.0, 2.3, 0.7 Hz, 1H), 6.65

(d,J=8.0 Hz, 1H), 4.61 (s, 1H), 2.24 (s, 3H), 2.21 (s, 3H).
13C NMR (101 MHz, CDCl3) § 151.4, 131.6, 129.9, 127.4, 123.4, 114.7, 20.4, 15.6.

Analytic data match the literature.**

Preparation of compounds 3.3b and 3.4b

iPr),P< iPr),P<
(iPr)2 o (iPr)2

(0] o "Pr OMe pPr. OMe
MeO OMe [Rh(C2H4),Cl]5 (2.5 mol%)
O O 150 psi H,, 150 °C OH + OH
1,4-dioxane Me H
silica gel work up
"Pr "Pr

3.2b

3.3b, 80% 3.4b, 77%

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1).
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3.3b: Pale yellow oil (40.3 mg, 80% yield).

Ry=0.43 (hexane : ethyl acetate = 5:1)

H NMR (500 MHz, CDCl3) § 6.58 (s, 1H), 6.56 (s, 1H), 5.55 (s, 1H), 3.87 (s, 3H), 2.50 (t, J =

7.7 Hz, 2H), 2.25 (s, 3H), 1.70 — 1.55 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).

13C NMR (125 MHz, CDCls) & 145.9, 141.6, 133.6, 123.3, 122.8, 108.4, 55.9, 37.8, 24.9, 15.4,

13.8.

IR (film) vmax = 3550, 2958, 2929, 2871, 1607, 1504, 1464, 1428, 1365, 1339, 1297, 1236, 1218,

1151, 1097, 1001 cm’'.

HRMS (ESI) m/z calcd. for C11H702" [M+H]": 181.1223, found 181.1219.

3.4b: Colorless oil (38.4 mg, 77% yield).

Ry=0.30 (hexane : ethyl acetate = 5:1)

H NMR (500 MHz, CDCls) § 6.84 (d, J=7.7 Hz, 1H), 6.72 — 6.65 (m, 2H), 5.49 (s, 1H), 3.88 (s,

3H), 2.53 (t, J= 7.6 Hz, 2H), 1.69 — 1.57 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).

I3C NMR (125 MHz, CDCl3) 6 146.2, 143.5, 134.7, 120.9, 114.0, 111.0, 55.8, 37.7, 24.8, 13.8.

Analytic data match the literature.?

Preparation of compounds 3.3¢ and 3.4¢
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(iPr),P<. o (iPr)zP\O Pr OMe iPr OMe
MeO OMe [Rh(C2H4)2Cll, (2.5 mol%) \@[ . \Q:
1,4-dioxane Me H
ipr ipr silica gel work up 3.3c, 74% 3.4c, 73%

3.2¢
The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 25:1).
3.3¢: Pale yellow oil (40.1 mg, 74% yield).

Ry= 0.44 (hexane : ethyl acetate = 5:1)

IH NMR (500 MHz, CDCls) 3 6.63 (s, 1H), 6.61 (s, 1H), 5.56 (s, 1H), 3.89 (s, 3H), 2.90 — 2.74

(m, 1H), 2.27 (s, 3H), 1.24 (d, J = 7.0 Hz, 6H).
13C NMR § (125 MHz, CDCL:) 146.0, 141.6, 139.9, 123.3, 120.7, 106.5, 55.9, 33.8, 24.3, 15.5.

IR (film) vmax = 3550, 2959, 2869, 1606, 1506, 1464, 1427, 1382, 1362, 1324, 1295, 1261, 1220,

1175, 1134, 1095, 1069 cm™.

HRMS (ESI) m/z calcd. for Ci1H70," [M+H]": 181.1223, found 181.1279.
3.4c¢: Pale yellow oil (36.3 mg, 73% yield).

Ry=0.33 (hexane : ethyl acetate = 5:1)

IH NMR (500 MHz, CDCls) § 6.88 — 6.83 (m, 1H), 6.77 — 6.71 (m, 2H), 5.49 (s, 1H), 3.90 (s, 3H),

2.85 (m, 1H), 1.24 (d, J= 7.0 Hz, 6H).
13C NMR (125 MHz, CDCls) § 146.3, 143.5, 141.0, 118.7, 114.1, 109.0, 55.8, 33.8, 24.2.

Analytic data match the literature.'*
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Preparation of compounds 3.3d and 3.4d
(iPr);P< . (iPr),P

MeO OMe [Rh( C2H4)2C|]2 (5 mol%)
O O 150 psi Hy, 150 °C
1,4-dioxane

silica gel work up

3.2d

This example was run with 5 mol% [Rh(C2Ha4)>Cl]>.

chromatography (silica gel, hexane:ethyl acetate = 50:1).

3.3d: Pale yellow oil (41.7 mg, 72% yield).

Ry= 0.54 (hexane : ethyl acetate = 7:1)

"Bu. ; :OMe "By OMe
Me H

3.3d, 72% 3.4d, 70%

The product was purified by column

IH NMR (500 MHz, CDCls) 3 6.58 (s, 1H), 6.56 (s, 1H), 5.55 (s, 1H), 3.88 (s, 3H), 2.56 — 2.48

(m, 2H), 2.25 (s, 3H), 1.64 — 1.53 (m, 2H), 1.44 — 1.32 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H).

I3C NMR (125 MHz, CDCls) 145.9, 141.6, 133.6, 123.3, 122.8, 108.4, 55.9,37.8,24.9, 15.4, 13.8.

IR (film) vmax = 3551, 2956, 2928, 2856, 1607, 1504, 1464, 1428, 1363, 1330, 1296, 1234, 1218,

1151, 1097, 1005 cm™.

HRMS (ESI) m/z calcd. for C12H190," [M+H]": 195.1380, found 195.1397.

3.4d: Pale yellow oil (37.9 mg, 70% yield).

Ry=0.43 (hexane : ethyl acetate = 7:1)
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H NMR (500 MHz, CDCls) & 6.84 (d, J=7.7 Hz, 1H), 6.72 — 6.63 (m, 2H), 5.48 (s, 1H), 3.88 (s,
3H), 2.61 — 2.47 (m, 2H), 1.66 — 1.52 (m, 2H), 1.43 — 1.30 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H).
13C NMR (125 MHz, CDCl3) 146.2, 143.4, 134.9, 120.9, 114.0, 110.9, 55.8, 35.3, 34.0, 22.3, 13.9.

Analytic data match the literature.®®

Preparation of compounds 3.3e and 3.4e

(iPr)oP< . (iPr)oP<

o) 0
n-C5H11 OMe n-C5H11 OMe
MeO O O OMe  |Rh(C,H4),Cll, (5 mol%) \Q: . \©:
150 psi Hp, 150 °C OH OH

1,4-dioxane Me H
n-CeHey  n-CsHy silica gel work up
3.2e 3.3e, 70% 3.4e, 72%

This reaction was run with 5 mol% [Rh(C>H4)>Cl]o. The product was purified by column

chromatography (silica gel, hexane:ethyl acetate = 40:1).

3.3e: Pale yellow oil (43.9 mg, 70% yield).

Ry=0.46 (hexane : ethyl acetate = 7:1)

IH NMR (500 MHz, CDCls) 3 6.58 (s, 1H), 6.56 (s, 1H), 5.55 (s, 1H), 3.88 (s, 3H), 2.58 — 2.45

(m, 2H), 2.25 (s, 3H), 1.66 — 1.55 (m, 2H), 1.42 — 1.29 (m, 4H), 0.92 (t, J = 6.7 Hz, 3H).

13C NMR (126 MHz, CDCls) & 145.9, 141.5, 133.8, 123.3, 122.8, 108.4, 55.9, 35.7, 31.6, 31.6,

22.6,15.4, 14.0.
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IR (film) vmax = 3552, 2928, 2856, 1607, 1504, 1464, 1428, 1364, 1332, 1295, 1241, 1218, 1188,

1151, 1099, 1002 cm™.

HRMS (ESI) m/z calcd. for C13H210>" [M+H]™: 209.1536, found: 209.1541.

3.4e: Pale yellow oil (41.9 mg, 72% yield).

Ry=0.38 (hexane : ethyl acetate = 7:1)

H NMR (500 MHz, CDCls) § 6.84 (d, J=7.7 Hz, 1H), 6.72 — 6.66 (m, 2H), 5.49 (s, 1H), 3.89 (s,

3H), 2.57 — 2.52 (m, 2H), 1.66 — 1.54 (m, 2H), 1.41 — 1.28 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H).

13C NMR (125 MHz, CDCls) 8 146.2, 143.4, 134.9, 120.9, 114.1, 110.9, 55.8, 35.6, 31.5, 22.5,

14.0.

Analytic data match the literature.®®

Preparation of compounds 3.3f and 3.4f

(Pr),P< . (iPr),P<

0 ) Bu Me Bu Me
Me Me [Rh(C2H4),Cl]; (2.5 mol%) \@[ \Q:
O O 150 psi Hy, 150 °C oH " OH
By By _ _1 ,4-dioxane Me H
silica gel work up
3.2f 3.3f, 73% 3.4f, 77%

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 25:1).

3.3f: White solid (39.3 mg, 73% yield).

Ry=0.50 (hexane : ethyl acetate = 7:1)
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TH NMR (500 MHz, CDCls) § 7.02 (s, 2H), 4.50 (s, 1H), 2.27 (s, 6H), 1.31 (s, 9H).
13C NMR (125 MHz, CDCl3) 6 149.9, 142.9, 125.5, 122.3, 33.9, 31.6, 16.1.
Analytic data match the literature.?®

3.4f: Pale yellow oil (39.1 mg, 77% yield).

Ry=0.42 (hexane : ethyl acetate = 7:1)

TH NMR (500 MHz, CDCls) § 7.17 (d, J = 2.0 Hz, 1H), 7.12 (dd, J = 8.3, 2.3 Hz, 1H), 6.73 (d, J

=8.3 Hz, 1H), 4.71 (s, 1H), 2.28 (s, 3H), 1.31 (s, 9H).
13C NMR (125 MHz, CDCl3) & 151.4, 143.5, 128.0, 123.8, 122.9, 114.4, 34.0, 31.5, 16.0.

IR (film) vmax = 3389, 3029, 2963, 2868, 1611, 1511, 1463, 1411, 1393, 1363, 1275, 1202, 1128,

1104 cm™.

HRMS (ESI) m/z calcd. for C11H170" [M+H]™: 165.1274, found 165.1258.

Preparation of compounds 3.3g and 3.4g
(Pr)sP~ (Pr)zPs

o) Ph Me Ph Me
Me Me  [Rh(C2H4):Cll (2.5 mol%)
+
O 150 psi Hy, 150 °C OH OH
1,4-dioxane Me H
Ph

Ph silica gel work up

3.3g, 85Y% 3.4g, 82Y%
3.29 ° °

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 40:1).
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3.3g: White solid (50.6 mg, 85% yield).

Ry=0.41 (hexane : ethyl acetate = 7:1)

H NMR (500 MHz, CDCl3) & 7.60 (d, J = 7.3 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.34 (t, J= 7.4

Hz, 1H), 7.28 (s, 2H), 4.70 (s, 1H), 2.37 (s, 6H).

13C NMR (125 MHz, CDCl3) 6 151.8, 141.1, 133.4, 128.6, 127.4, 126.7, 126.5, 123.3, 16.0.
Analytic data match the literature.?’
3.4g: White solid (45.2 mg, 82% yield).

Ry=0.31 (hexane : ethyl acetate = 7:1)

TH NMR (500 MHz, CDCl3) § 7.57 (dd, J = 8.1, 0.9 Hz, 2H), 7.43 (t, J = 7.7 Hz, 2H), 7.40 (d, J

= 1.7 Hz, 1H), 7.37 — 7.30 (m, 2H), 6.86 (d, J = 8.2 Hz, 1H), 4.82 (s, 1H), 2.34 (s, 3H).

13C NMR (125 MHz, CDCl3) & 153.3, 140.9, 134.0, 129.8, 128.6, 126.7, 126.6, 125.8, 124.0,

115.2, 15.9.

Analytic data match the literature.®°

Preparation of compounds 3.3h and 3.4h
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(iPr),P< . (iPr)oP<

O (@)

Me

RO "
Rh(C,H4),Cl], (2.5 1%
[RN(C2H4)2Cll2 (2.5 mol%) O Me Me
150 psi H,, 150 °C O + O
O O 1,4-dioxane OH OH
Me Me

silica gel work u
g P Me H

3.3h, 83% 3.4h, 79%
3.2h

The product was purified by column chromatography (silica gel, hexane:ethyl

acetate:dichloromethane = 50:1:1).
3.3h: White solid (52.8 mg, 83% yield).
Ry=0.50 (hexane : ethyl acetate = 5:1)

H NMR (400 MHz, CDCls) & 7.34 (s, 1H), 7.32 (s, 1H), 7.11 (t, J = 3.9 Hz, 4H), 4.53 (s, 1H),

2.28 (s, 3H), 2.20 (s, 6H).

I3C NMR (101 MHz, CDCl3)  151.6, 138.2, 136.1, 133.3, 129.3, 127.1, 126.5, 123.2, 21.0, 16.0.
Analytic data match the literature.?®

3.4h: White solid (47.2 mg, 79% yield).

Ry=0.42 (hexane : ethyl acetate = 5:1)

IH NMR (400 MHz, CDCl3) 8 7.51 (d, J = 8.1 Hz, 2H), 7.43 (d, J=2.1 Hz, 1H), 7.37 (dd, J= 8.2,
2.3 Hz, 1H), 7.29 (d, J = 8.3 Hz, 2H), 6.88 (d, J = 8.2 Hz, 1H), 4.92 (s, 1H), 2.45 (s, 3H), 2.38 (s,

3H).

13C NMR (101 MHz, CDCl3) & 153.1, 138.0, 136.2, 133.9, 129.6, 129.4, 126.5, 125.6, 123.9,

115.2,21.0, 15.9.
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Analytic data match the literature. !>

Preparation of compounds 3.3i and 3.4i

(iPr)oP< (iPr),P<
? Q OMe OMe

Me Me

O O [Rh(C2H4),Cl]5 (2.5 mol%)

Me Me
150 psi Hay, 150 °C O N O
1,4-dioxane
O ‘ silica gel work up OH OH
MeO OMe
3.2i

Me H
3.3i, 74% 3.4i, 73%

The product was purified by column chromatography (silica gel, hexane:ethyl

acetate:dichloromethane = 30:1:1).

3.3i: White solid (50.5 mg, 74% yield).

Ry=0.44 (hexane : ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) § 7.36 (t, J = 7.9 Hz, 1H), 7.26 (s, 2H), 7.16 (t, J= 9.7 Hz, 1H), 7.12

(s, 1H), 6.89 (dd, J = 8.0, 1.5 Hz, 1H), 4.75 (s, 1H), 3.90 (s, 3H), 2.35 (s, 6H).

I3C NMR (125 MHz, CDCl3) 8 159.8, 151.9, 142.6, 133.2, 129.6, 127.4,123.2,119.3, 112.4, 111.9,

55.3, 16.0. (unknown)

IR (film) vmax = 3564, 3488, 3028, 2937, 2836, 1606, 1579, 1500, 1479, 1437, 1399, 1318, 1283,

1255, 1230, 1202, 1186, 1163, 1091, 1048 cm™.

HRMS (ESI) m/z caled. for C1sHi702" [M+H]": 229.1223, found 229.1218.
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Melting point 48 - 50 °C.

3.4i: Colorless oil (46.9 mg, 73% yield).

Ry=0.36 (hexane : ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) & 7.37 (s, 1H), 7.36 — 7.29 (m, 2H), 7.14 (d, J= 7.6 Hz, 1H), 7.09 (s,

1H), 6.89 — 6.85 (m, 1H), 6.84 (d, J= 8.2 Hz, 1H), 4.91 (s, 1H), 3.87 (s, 3H), 2.33 (s, 3H).

I3C NMR (125 MHz, CDCl3) 8 159.8, 153.5, 142.5, 133.7, 129.8, 129.6, 125.8, 124.0, 119.3, 115.2,

112.5, 112.0, 55.3, 15.9.

IR (film) vmax = 3410, 3027, 3000, 2940, 2836, 1609, 1579, 1513, 1481, 1465, 1436, 1402, 1317,

1270, 1233, 1162, 1121, 1093, 1058, 1040 cm™.

HRMS (ESI) m/z calcd. for C14His0," [M+H]": 215.1067, found 215.1067.

Preparation of compounds 3.3j and 3.4j

(PP~ (Pr)zPs

Me Me 0
SA® ° °
Rh(C5H4)-Cl]2 (2.5 mol%
[RN(C,Ha),Cll, (2.5 mol%) O e O e
150 psi Hy, 150 °C O + O
1,4-dioxane
O O silica gel work up OH OH
) ¢}
o o—/
3.2j 3.3j, 75% 3.4y, 72%

The product was purified by column chromatography (silica gel, hexane:ethyl

acetate:dichloromethane = 30:1:1).
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3.3j: White solid (54.6 mg, 75% yield).

Ry=0.57 (hexane : ethyl acetate = 4:1)

H NMR (400 MHz, CDCl3) § 7.15 (s, 2H), 7.00 (dd, J = 13.1, 5.0 Hz, 2H), 6.86 (d, J = 8.0 Hz,

1H), 5.98 (s, 2H), 4.66 (s, 1H), 2.31 (s, 6H).

13C NMR (125 MHz, CDCl3) § 151.5, 147.9, 146.4, 135.6, 133.1, 127.1, 123.2, 120.0, 108.4,

107.4, 101.0, 16.0.

IR (film) vmax = 3537, 2914, 1603, 1499, 1478, 1443, 1379, 1341, 1314, 1235, 1184, 1136, 1108,

1040 cm™.

HRMS (ESI) m/z calcd. for CisHisO3" [M+H]": 243.1016, found 243.1020.

Melting point 106 — 108 °C.

3.4j: White solid (49.3 mg, 72% yield).

Ry=0.43 (hexane : ethyl acetate = 4:1)

H NMR (500 MHz, CDCls) & 7.15 (s, 2H), 7.04 — 6.97 (m, 2H), 6.85 (d, J= 8.0 Hz, 1H), 5.98 (s,

2H), 4.66 (s, 1H), 2.31 (s, 6H).

13C NMR (125 MHz, CDCl3) & 153.1, 148.0, 146.5, 135.4, 133.7, 129.6, 125.5, 124.0, 120.0,

115.2,108.5, 107.4, 101.0, 15.9.

IR (film) vmax = 3467, 3026, 2894, 1607, 1500, 1482, 1444, 1412, 1340, 1233, 1194, 1172, 1116,

1040 cm.
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HRMS (ESI) m/z calcd. for C14H303" [M+H]"™: 229.0859, found 229.0854.

Melting point 97 — 99 °C.

Preparation of compounds 3.3k and 3.4k

(PP (Pr)2P

Me Me
OA® e
[RN(C2H4),Cll, (2.5 mol%) ‘ Me
150 psi Hy, 150 °C O ¥
1,4-dioxane OH
SMe SMe

silica gel work up Me H

3.3k, 75% 3.4k, 72%
3.2k

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 25:1).

3.3k: White solid (61.1 mg, 75% yield).

Ry= 0.44 (hexane : ethyl acetate = 6:1)

'H NMR (500 MHz, CDCls) § 7.48 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 7.22 (s, 2H),

471 (s, 1H), 2.53 (s, 3H), 2.32 (s, 6H).

I3C NMR (125 MHz, CDCl3) § 151.8, 138.0, 136.4, 132.6, 127.0, 123.3, 16.1, 16.0.

IR (film) vmax = 3424, 2971, 2919, 2853, 1597, 1474, 1423, 1386, 1350, 1319, 1301, 1223, 1182,

1115, 1095, 1075, 1026, 1012 cm’".

HRMS (ESI) m/z calcd. for C1sH;70S™ [M]*: 244.0916, found 244.0912.

Melting point 135 — 137 °C.
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3.4k: White solid (57.1 mg, 72% yield).
Ry=0.35 (hexane : ethyl acetate = 6:1)

H NMR (500 MHz, CDCl3) & 7.48 (d, J = 8.3 Hz, 2H), 7.40 — 7.27 (m, 4H), 6.84 (d, J = 8.2 Hz,

1H), 4.96 (s, 1H), 2.53 (s, 3H), 2.33 (s, 3H).

13C NMR (125 MHz, CDCl3) § 153.3, 137.8, 136.5, 133.2, 129.5, 127.1, 127.0, 125.4, 124.1,

115.3, 16.0, 15.9. Analytic data match the literature.®

Preparation of compounds 3.3l and 3.41

(iPr)oP< . (iPr)oP<

0 0
Me Me
O F
[RN(C2Hq),Cll, (2.5 mol%) ‘ Me Me
150 psi Hy, 150 °C O ¥ O
OH OH
F F

1,4-dioxane
silica gel work up Me H

3.31, 72% 3.41, 68%
3.21

The product was purified by column chromatography (silica gel, hexane:ethyl

acetate:dichloromethane = 50:1:1).
3.31: White solid (46.7 mg, 72% yield).
Ry=0.51 (hexane : ethyl acetate = 6:1)

TH NMR (500 MHz, CDCl3) § 7.53 — 7.46 (m, 2H), 7.18 (s, 2H), 7.13 — 7.06 (m, 2H), 4.68 (s, 1H),

2.33 (s, 6H).
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I3C NMR (125 MHz, CDCl3) 6 162.0 (d, J =244.0 Hz), 151.8, 137.2 (d, J=2.8 Hz), 132.4, 128.2

(d,J=7.9 Hz), 127.2, 123.3, 115.4 (d, /= 21.1 Hz), 16.0.

1F NMR (470 MHz, CDCl3) 8 -117.0.

Analytic data match the literature.?

3.41: White solid (41.4 mg, 68% yield).

Ry=0.40 (hexane : ethyl acetate = 6:1)

TH NMR (500 MHz, CDCls) §7.54 — 7.47 (m, 2H), 7.35 (d, J= 1.7 Hz, 1H), 7.29 (dd, J= 8.4, 1.9

Hz, 1H), 7.17 — 7.08 (m, 2H), 6.87 (d, J = 8.2 Hz, 1H), 4.87 (s, 1H), 2.35 (s, 3H).

13C NMR (125 MHz, CDCl3) & 162.0 (d, J = 244.3 Hz), 153.3, 137.0 (d,J=2.9 Hz), 133.0, 129.7,

128.2 (d, J=17.9 Hz), 125.6, 124.1, 115.4 (d, J= 21.3 Hz), 115.3, 15.8.

19F NMR (470 MHz, CDCl3) § -116.8.

IR (KBr) vmax = 3313, 1601, 1497, 1454, 1400, 1229, 1175, 1126, 843, 815 cm’".

HRMS (ESI) m/z caled. for CisHiiFO™ [M]™: 202.0794, found 202.0784.

Melting point 128 — 130 °C.

Preparation of compounds 3.3m and 3.4m
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(iPr)oP< . (iPr),P<

(0] O

Me

Me A
C Ot LY
Rh(C,H4),Cl]» (2.5 mol% Me M
Me Me [Rh(C3H4)2Cl]; (2.5 mol%) O . O e
150 psi Ho, 150 °C
O O Pl 2 OH OH
Ac Ac

1,4-dioxane
silica gel work up Me H

3.3m, 83% 3.4m, 82%

3.2m

The product was purified by column chromatography (silica gel, hexane:ethyl

acetate:dichloromethane = 10:1:1).

3.3m: White solid (63.5 mg, 83% yield).

Ry=0.47 (hexane : ethyl acetate = 3:1)

H NMR (400 MHz, CDCl3) & 7.99 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 6.88 (s, 1H),

4.91 (s, 1H), 2.65 (s, 3H), 2.28 (s, 3H), 2.26 (s, 3H), 2.16 (s, 3H).

13C NMR (100 MHz, CDCl3) & 198.0, 151.7, 147.8, 135.1, 133.4, 132.7, 129.9, 129.0, 128.1,

122.6, 120.1, 26.6, 17.4, 15.8, 12.3.

IR (film) vmax = 3389, 2923, 2855, 1668, 1602, 1556, 1509, 1472, 1399, 1362, 1285, 1274, 1253,

1222, 1200, 1157, 1112, 1092, 1015 cm’".

HRMS (ESI) m/z caled. for C17H1902" [M+H]": 255.1380, found 255.1383.

Melting point 182 — 184 °C.

3.4m: Pale yellow solid (59.1 mg, 82% yield).

Rr=0.39 (hexane : ethyl acetate = 3:1)
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H NMR (400 MHz, CDCl3) §8.05 — 7.95 (m, 2H), 7.41 — 7.33 (m, 2H), 6.96 (d, J = 8.2 Hz, 1H),

6.74 (d, J= 8.2 Hz, 1H), 5.23 (s, 1H), 2.66 (s, 3H), 2.26 (s, 3H), 2.18 (s, 3H).

13C NMR (100 MHz, CDCl3) & 198.3, 153.4, 147.9, 135.5, 135.1, 133.9, 129.9, 128.2, 127.6,

123.2,112.4,26.6, 17.5, 12.0.

IR (film) vmax = 3375, 2923, 2854, 1665, 1603, 1588, 1558, 1484, 1457, 1400, 1359, 1276, 1200,

1183, 1063, 1016 cm™.

HRMS (ESI) m/z calcd. for Ci6Hi70," [M+H]": 241.1223, found 241.1226.

Melting point 157 — 159 °C.

Preparation of compounds 3.3n and 3.4n

(iPr),P. (lPr)

° \
Me A\ | Me N\ Me
[Rh(C5H4),Cll, (2.5 mol%)
+
150 psi Hy, 150 °C OH OH
1,4-dioxane Me H
/ \ silica gel work up
0 o 3.3n, 85% 3.4n,87%
3.2n

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 30:1).

3.3n: Pale yellow solid (47.8 mg, 85% yield).

Ry=0.53 (hexane : ethyl acetate = 6:1)

IH NMR (500 MHz, CDCls) §7.65 (s, 1H), 7.46 (s, 1H), 7.13 (s, 2H), 6.66 (s, 1H), 4.66 (s, 1H),
2.29 (s, 6H).
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I3C NMR (125 MHz, CDCl3) & 151.4, 143.3, 137.5, 126.2, 124.5, 123.3, 108.9, 15.9.

IR (film) vmax = 3296, 2946, 2918, 1511, 1483, 1438, 1422, 1387, 1365, 1348, 1331, 1241, 1191,

1163, 1107, 1065, 1026 cm’".

HRMS (ESI) m/z calcd. for C12H1302" [M+H]"™: 189.0910, found 189.0924.

Melting point 95 — 97 °C.

3.4n: Pale yellow solid (45.7 mg, 87% yield).

Ry=0.44 (hexane : ethyl acetate = 6:1)

TH NMR (500 MHz, CDCl3) & 7.66 (s, 1H), 7.47 (s, 1H), 7.28 (s, 1H), 7.22 (d, J = 8.2 Hz, 1H),

6.79 (d, J= 8.2 Hz, 1H), 6.66 (s, 1H), 4.94 (s, 1H), 2.30 (s, 3H).

I3C NMR (125 MHz, CDCl3) 8 152.9, 143.4,137.6, 128.6, 126.1, 125.1, 124.6, 124.1, 115.2, 108.9,

15.8.

IR (film) vmax = 3333, 3134, 3019, 2928, 1515, 1492, 1352, 1246, 1179, 1162, 1125, 1096, 1058,

1021 cm™.

HRMS (ESI) m/z caled. for C11H11O2" [M+H]": 175.0754, found 175.0766.

Melting point 92 — 94 °C.

Preparation of compounds 3.30 and 3.40
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(iPr),P (iPr),P

o] S0

S S \
Me \
O O [Rh(CoHa),Cllp (2.5 mol%) N\ Me N\ Me

150 psi Hp, 150 °C + OH
/ N 1,4-dioxane OH
/ \ silica gel work up Me H
S S 3.30, 88% 3.40, 89%

3.20

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 30:1).

3.30: White solid (53.8 mg, 88% yield).

Ry=0.42 (hexane : ethyl acetate = 6:1)

H NMR (500 MHz, CDCls) 8 7.39 — 7.31 (m, 3H), 7.25 (s, 2H), 4.67 (s, 1H), 2.31 (s, 6H).

13C NMR (125 MHz, CDCl3) & 151.5, 142.2, 128.2, 126.7, 126.3, 125.8, 123.2, 118.7, 16.0.

IR (film) vmax = 3333, 3134, 3019, 2928, 1515, 1492, 1352, 1246, 1179, 1162, 1125, 1096, 1058,

1021 em™.

HRMS (ESI) m/z calcd. for C1oH130S* [M+H]™: 205.0682, found 205.0674.

Melting point 101 — 103 °C.

3.40: White solid (51.0 mg, 89% yield).

Ry=0.33 (hexane : ethyl acetate = 6:1)

H NMR (400 MHz, CDCl3) § 7.44 — 7.28 (m, 5H), 6.81 (d, J= 8.2 Hz, 1H), 4.87 (s, 1H), 2.32 (s,

3H).
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I3C NMR (101 MHz, CDCl3) 8 153.1, 142.1,129.2, 128.9, 126.3, 126.0, 125.2, 124.0, 118.8, 115.2,

15.8.

IR (film) vmax = 3326, 3103, 3026, 1611, 1537, 1507, 1492, 1457, 1398, 1384, 1352, 1243, 1205,

1165, 1121, 1086, 1048 cm’'.
HRMS (ESI) m/z calcd. for C11H110S™ [M+H]"™: 191.0525, found 191.0532.

Melting point 118 — 120 °C.

Preparation of compounds 3.3p and 3.4p

(/Pr)QP\ (iPr), P\

Cl Me Cl Me
Me  [Rh(CoHa)oCll, (2.5 mol%) \@[ \@[
+
O 150 psi Hy, 150 °C OH OH
1,4-dioxane Me H
silica gel work up

3.3p, 88% 3.4p, 87%
3.2p

Products 3.3p and 3.4p was found inseparable from chromatography on silica gel, their yields were

determined by GC-Fid.

Upon completion of the reaction, H» pressure was released and the reaction mixture was transferred
to a 20 mL vial, the solvent was then removed under reduced pressure to afford a yellow residue
which was dissolved in ~5 mL of dichloromethane and passed through a short silca gel pad (~10
cm). The short silica gel pad was flushed with ~25 mL dichloromethane, the combined filtrate was
concentrated under reduced pressure to afford a yellow oil as the crude product. 20.1 mg of
tetradecane and 25 mL of EtOAc were added to the crude mixture to afford a yellow solution which
was subjected to gas chromatography (GC) analysis to determine the yield.
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Preparation of compounds 3.3q and 3.4q

(iPr),P: (lPr) P\

Br. Me Br Me
Me  [Rh(C3H4),Cl]s (2.5 mol%)
O O 150 psi Hy, 150 °C OH OH
1,4-dioxane Me H
silica gel work up
3.39, 77% 3.4q, 79%
3.2q

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1).

3.3q: White solid (46.3 mg, 77% yield).

Ry=0.45 (hexane : ethyl acetate = 4:1)

IH NMR (500 MHz, CDCls) § 7.10 (s, 2H), 4.56 (s, 1H), 2.22 (s, 3H).

13C NMR (125 MHz, CDCl3) 6 151.2, 131.0, 125.1, 112.0, 15.7.

Analytic data match the literature.*°

3.4q: Pale yellow solid (44.3 mg, 79% yield).

Ry=0.39 (hexane : ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) § 7.24 (d, J= 1.6 Hz, 1H), 7.17 (dd, J = 8.5, 2.0 Hz, 1H), 6.65 (d, J

=8.5 Hz, 1H), 4.81 (s, 1H), 2.22 (s, 3H).

13C NMR (125 MHz, CDCl3) 6 152.9, 133.5, 129.7, 126.2, 116.5, 112.5, 15.6.

Analytic data match the literature.?!
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Preparation of compounds 3.3r and 3.4r

(iPr),P (/Pr) P\
MeO,C Me MeO,C Me
Me  [Rh(C,H,),Cll, (2.5 mol%)
* o)
150 psi Hy, 150 °C OH H
1,4-dioxane Me H

COMe  COyMe silica gel work up

3.3r, 79% 3.4r, 82%
3.2r

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 10:1).

3.3r: White solid (42.6 mg, 79% yield).

Ry= 0.38 (hexane : ethyl acetate = 3:1)

IH NMR (500 MHz, CDCls) § 7.69 (s, 2H), 5.50 (s, 1H), 3.87 (s, 3H), 2.27 (s, 6H).

13C NMR (125 MHz, CDCl3) 6 167.4, 156.6, 130.4, 123.0, 121.7, 51.8, 15.8.

Analytic data match the literature.*?

3.4r: White solid (40.8 mg, 82% yield).

Ry=0.31 (hexane : ethyl acetate = 3:1)

TH NMR (500 MHz, CDCl3) § 7.84 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H),

6.63 (s, 1H), 3.89 (s, 3H), 2.27 (s, 3H).

I3C NMR (125 MHz, CDCl3) § 167.8, 158.7, 132.8, 129.4, 124.2, 121.9, 114.7, 52.0, 15.7.

Analytic data match the literature.>?
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Preparation of compounds 3.3s and 3.4s

(iPr),P (lPr) P\ Me Me

Br Me Br Me
O O Me [Rh(C2H4)2Cl] (2.5 mol%)
+
150 psi H,, 150 °C OH OH
1,4-dioxane Me H
silica gel work up
3.2s 3.3s, 83% 3.4s, 82%

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 30:1).

3.3s: White solid (53.9 mg, 83% yield).

Ry= 0.45 (hexane : ethyl acetate = 6:1)

H NMR (500 MHz, CDCls) § 7.19 (s, 1H), 4.59 (s, 1H), 2.34 (s, 3H), 2.22 (s, 3H), 2.20 (s, 3H).

I3C NMR (125 MHz, CDCl3) § 151.1, 134.5, 131.0, 123.7, 122.0, 115.6, 19.7, 15.6, 13.0.

Analytic data match the literature.*?

3.4s: White solid (49.8 mg, 82% yield).

Ry= 0.38 (hexane : ethyl acetate = 6:1)

'H NMR (500 MHz, CDCls) § 7.27 (d, J = 8.7 Hz, 1H), 6.55 (d, J = 8.6 Hz, 1H), 4.81 (s, 1H),

2.39 (s, 3H), 2.25 (s, 3H).

I3C NMR (101 MHz, CDCl3) 6 152.6, 137.4, 129.8, 124.6, 116.3, 113.9, 19.9, 12.9.

Analytic data match the literature.®°
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Preparation of compounds 3.4a and 3.4t

(iPr)zP\O (iPr)ZP\o

Me Me
[Rh(C3H,)5Cl]» (5 mol%)
+
O O 150 psi Hp, 150 °C OH OH

1,4-dioxane Me H
Me Me silica gel work up
3.4a, 79% 3.4t, 90%

The product was purified by column chromatography (silica gel, pentane:ethyl acetate = 30:1).

3.4a: colorless oil (29.1 mg, 79% yield).

Data of 3.4a match the one obtained from substrate 3.2a.

3.4t: white solid (29.3 mg, 90% yield).

Ry=0.34 (hexane : ethyl acetate = 5:1)

H NMR (400 MHz, CDCls) & 7.08 — 6.95 (m, 2H), 6.72 (d, J = 8.5 Hz, 2H), 4.95 (s, 1H), 2.26 (s,

3H).

I3C NMR (101 MHz, CDCl3) 8 153.1, 130.1, 130.0, 115.1, 20.4.

Analytic data match the literature.**

Preparation of compounds 3.3t’ and 3.4t’
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(Pr),P<. o (Pr),P<

0 Me Me
Me Me [Rh(C2H4)2C|]2 (25 mol%)
+
O O 150 psi H,, 150 °C OH OH
1,4-dioxane Me H

silica gel work up
3.2t 3.3t", 72% 3.4t 72%

The product was purified by column chromatography (silica gel, pentane:ethyl acetate = 30:1).

3.3t>: white solid (26.4 mg, 72% yield).

Ry=0.45 (hexane : ethyl acetate = 4:1)

TH NMR (500 MHz, CDCl3) § 6.97 (d, J = 7.5 Hz, 2H), 6.75 (t, J= 7.5 Hz, 1H), 4.59 (s, 1H), 2.24

(s, 6H).

13C NMR (126 MHz, CDCl3) 6 152.1, 128.6, 122.9, 120.2, 15.8.

Analytic data match the literature.*®

3.4¢t’: colorless oil (23.3 mg, 72% yield).

Ry=0.39 (hexane : ethyl acetate = 4:1)

IH NMR (500 MHz, CDCl3)  7.14 — 7.10 (m, 1H), 7.08 (td, J = 7.7, 1.7 Hz, 1H), 6.84 (td, J =

7.4,1.2 Hz, 1H), 6.76 (dd, J= 8.0, 1.2 Hz, 1H), 4.73 (s, 1H), 2.25 (s, 3H).

I3C NMR (126 MHz, CDCl3) 8 153.7, 131.0, 127.1, 123.7, 120.7, 114.9, 15.7.

Analytic data match the literature. >3

Preparation of compounds 3.3u and 3.4u
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OMe

OMe OMe
[Rh(C5H,),Cl]5 (2.5 mol%) O O
Me Me
150 psi Hy, 150 °C O + O
1,4-dioxane OH

silica gel work up

3.2u 3.3u, 86% 3.4u, 80%

The product was purified by column chromatography (silica gel, pentane:ethyl acetate = 30:1).

3.3u: Pale yellow oil (58.6 mg, 86% yield)

Ry=0.52 (hexane : ethyl acetate = 4:1)

IH NMR (400 MHz, CDCl3) § 7.44 — 7.35 (m, 2H), 7.07 — 6.99 (m, 2H), 6.96 (d, J = 2.2 Hz, 1H),

6.89 (d, J=2.3 Hz, 1H), 4.67 (s, 1H), 3.87 (s, 3H), 2.31 (s, 3H), 2.30 (s, 3H).

13C NMR (100 MHz, CDCl3) § 159.2, 148.4, 130.8, 130.2, 129.6, 129.1, 128.1, 127.1, 124.2,

114.6, 55.3,20.4, 16.1.

Analytic data match the literature.>¢

3.4u: White solid (51.2 mg, 80% yield)

Ry=0.32 (hexane : ethyl acetate = 4:1)

H NMR (400 MHz, CDCls) § 7.44 — 7.38 (m, 2H), 7.10 — 6.98 (m, 4H), 6.92 — 6.85 (m, 1H), 4.72

(s, 1H), 3.87 (s, 3H), 2.33 (s, 3H).

13C NMR (100 MHz, CDCl3) 8 159.1, 150.2, 130.7, 130.2, 129.8, 129.4, 129.2, 127.5, 115.5, 114.6,

55.3,20.4.

Analytic data match the literature.?’
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Preparation of compounds 3.3v and 3.4v

(iPr),P< . (iPr)o,P< Me Me

(0] (0]
Me:‘/\‘Me [Rh(C,H4),Cll, (5 mol%) /@Me /@Me
|O |O +
150 psi Hy, 150 °C
Me Me 1,4-dioxane Me OH Me OH
Me Me Me H

silica gel work up

3.2v 3.3v, 38% 3.4v, 60%

This example was run with 5 mol% [Rh(C2H4):Cl]>. The product was purified by column

chromatography (silica gel, pentane:ethyl acetate = 30:1).

3.3v: white solid (16.9 mg, 38% yield)

Ry= 0.48 (hexane : ethyl acetate = 4:1)

IH NMR (500 MHz, CDCls) § 6.60 (s, 1H), 4.59 (s, 1H), 2.22 (s, 6H), 2.14 (s, 6H).

I3C NMR (101 MHz, CDCl3) 6 151.7, 134.3, 123.5, 118.9, 19.8, 11.6.

Analytic data match the literature.*®

3.4v: white solid (24.7 mg, 60% yield)

Ry= 0.40 (hexane : ethyl acetate = 4:1)

IH NMR (500 MHz, CDCl3) § 6.64 — 6.60 (m, 1H), 6.49 — 6.45 (m, 1H), 4.68 (s, 1H), 2.26 (d, J

= 1.4 Hz, 6H), 2.14 (s, 3H).

I3C NMR (101 MHz, CDCI3) 6 153.3, 138.0, 135.8, 123.2, 119.2, 113.3, 20.8, 20.0, 11.1.
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IR (KBr) vmax = 3293, 2922, 1623, 1457, 1306, 1080, 839, 583 cm.

HRMS (ESI) m/z calcd. for CoH;30" [M+H]": 137.0961, found 137.0953.

Melting point 93.4 —94.3 °C.

Preparation of compounds 3.3r and 3.4r

o/P("Pr)z O/P("Pr)z OH OH
Me Me M -
Me Me € o-cresol
E—— + + +
O O 2,6-dimethylphenol

CO,Me CO,M

CO,Me 2 2vie

3.2x 3.3r, 28% 3.4r, 49%

The product was purified by column chromatography (silica gel, hexane:ethyl acetate = 40:1).

3.3r: White solid (15.3 mg, 28% yield).

Data of 3r match the one obtained from substrate 3.2r.

3.4r: White solid (24.4 mg, 49% yield).

Data of 3.4r match the one obtained from substrate 3.2r.

(C—C cleavage of compounds 3.2b —t, 3.2u, 3.2w, 3.2x is conducted by Dr. Jun Zhu).

Preparation of compounds 3.3g and 3.4g in gram scale (Conducted by Dr. Jun Zhu)
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CIP(Pr),

oM oM [Rh(C5H,),Cl]
Me Me BN Me 2.5 mol%) -
O O MeCN O O H, (100 psi), 12 h
1,4-dioxane, 150 °C
Ph Ph

silica gel work up

3.19 P = P(iPr), 3.3g 3.4g
38¢g 3.2g 1.77 g, 89% 1.60g, 87%
6.11 g, 99%

To a 100 mL sealed tube charged with a stir bar, 3.1g (3.8 g, 10.0 mmol) and 50 mL of dry CH3CN
were added in glove box to afford a suspension. Et3N (4.05 g, 40.0 mmol) was then added to the
suspension to afford a colorless clear solution. To the clear solution, chloro-diisopropylphosphine
(3.20 g, 11.04 mmol) was then added dropwise. The sealed tube was then resembled and
transferred out of the glovebox. The reaction mixture was heated at 70 °C overnight. Upon
completion of the reaction, the mixture was transferred to glovebox, and the solvent was removed
under reduced pressure to afford the crude 3.2g with triethylamine hydrochloride. The crude
mixture was suspended in dry benzene (30 mL) and filtered to remove triethylamine hydrochloride.
The residue was subsequently washed by dry benzene (10 mL *3). The combined filtrate was
concentrated under reduced pressure to afford 3.2g (6.11 g, 99% yield) as white solid, which was

used directly in the next step.

To a 350 mL Q-tube charged with a stir bar, 3.2g (6.11 g, 10.0 mmol) from the previous step,
[Rh(C2H4)>C1]2 (97.2 mg, 0.25 mmol) and 100 mL dry 1,4-dioxane were added in the glovebox.
The Q-tube was then resembled and taken out of the glovebox. The reaction mixture was subjected
to the freeze-pump-thaw technique by following the standard procedure three times. The Q-tube
was then charged by 100 psi Hz and heated at 150 °C in a pre-heated oil bath for 12 h. (Caution:
the pressure inside may increase to 130 psi during the heating). Upon completion of the reaction,
the Q-tube was taken out of the oil bath and cooled to room temperature. The hydrogen gas

pressure was then released. The reaction mixture was concentrated under reduced pressure to
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afford a yellow crude residue. To the crude residue, ~50 mL dichloromethane and 5.0 g silica gel
were added to afford a silica gel slurry. The slurry was subjected to reduced pressure to remove
dichloromethane to deliver silica gel containing the products, which was further purified by
column chromatography on silica gel using hexane/EtOAc (9:1) as eluent to afford 3.3g (1.77 g,

89% yield) and 3.4g (1.60 g, 87% yield).

One-pot preparation of compounds 3.3a and 3.4a

CIP(iPr), (2.05 equiv)

OH OH NaH (2.3 equiv)
Me Me 1.4-dioxane, 70°C,12h Me
O
[Rh(C2H,),Cll,

2.5 mol%)
Me Me (
31a H, (150 psi), 12 h, 150 °C 3.3a 3.4a
silica gel work up

71% 67%

To a Q-tube charged with a stir bar, substrate 3.1a (77 mg, 0.3 mmol), NaH (17 mg, 0.69 mmol),
CIP('Pr); (94 mg, 0.62 mmol) and 1,4-dioxane (6.0 mL) were added in the glovebox. The Q-tube
was then resembled and taken out of the glovebox. The reaction mixture was heated to 70 °C and
stirred for 12 h. Then the Q-tube was taken into the glovebox, and [Rh(C2H4)>Cl]> (3 mg, 0.0075
mmol) was added to the Q-tube. The Q-tube was then resembled and taken out of the glovebox.
The reaction mixture was flushed with hydrogen gas for 10 times and then charged with 150 psi
H: followed by heating to 150 °C in a pre-heated oil bath for 12 h. After the reaction was completed,
the H» pressure was released and the solvent was removed under vacuum. To the mixture, ~ 2 mL
of dichloromethane and ~ 200 mg of silica gel were added and reconcentrated to give the silica gel
containing the crude product which was further purified by silica gel chromatography to afford

compound 3.3a (29.2 mg, 71%) and compound 3.4a (24.7 mg, 67%).
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General procedure for preparation of phenol oligomers

OH OH OH ? OH OH OH ? OH OH OH OH
HMTA _ NaBH, _
N O O O
reflux, 48 h 47% (2 steps)
Me Me Me
3.1y 33.19
p-cresol
PTSA
benzene
99%
NaBH, HMTA
MeOH TFA
26% (2 steps) reflux, 24 h
S3.21
p-cresol
PTSA
benzene
43%
Preparation of compounds $3.18
OH OH OH Cl) OH OH OH O
HMTA
TFA
100 °C, 24 h
Me Me Me Me Me Me
3.1y S$3.18

To a solution of compound 3.1y (3.48 g, 10 mmol) in trifluoroacetic acid (17 mL),
hexamethylenetetramine (8.4 g, 60 mmol) was added at 0 °C, and the reaction mixture was then
heated to 100 °C. After being stirred at 100 °C for 24 h, H>O (60 mL) was added to the reaction
mixture, and the reaction mixture was cooled to 80 °C. After being stirred at 80 °C for 4 h, the
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reaction mixture cooled to room temperature and filtered through a glass funnel. The solid
remained in the funnel was washed with H,O (3 x 10 mL) to give compound S3.18 (5.4095 g,
crude) as a yellow solid. The crude compound S3.18 could be directly used as substrate in next

step without further purification.

Preparation of compounds $3.19

O OH OH OH O OH OH OH OH
' ! _ NaBH,
T eon O O O
47% (2 steps)
Me Me Me
S$3.18 S319

To a solution of compound S3.18 (2.7 g, crude) in MeOH (50 mL), NaBHa4 (0.76 g, 20 mmol) was
added at 0 °C, and the reaction mixture was then warm to room temperature. After being stirred at
room temperature for 12 h, the reaction mixture was quenched with HCI (2 M in H20, 30 mL) and
extracted with ethyl acetate (3 x 50 mL). The organic phase was then dried with Na;SO4 and
concentrated under reduced pressure. Then the mixture was purified by column chromatography
(silica gel, hexane:ethyl acetate = 1:1) to give compound S3.19 (0.9699 g, 47% for 2 steps) as a

white solid.

Ry=0.56 (hexane : ethyl acetate = 1:1)

'H NMR (500 MHz, DMSO) & 8.45 (s, 3H), 6.89 (d, J = 2.2 Hz, 2H), 6.71 (d, J = 2.3 Hz, 2H),

6.64 (s, 2H), 5.29 (s, 2H), 4.55 (s, 4H), 3.81 (s, 4H), 2.14 (s, 6H), 2.06 (s, 3H).
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13C NMR (101 MHz, DMSO) & 149.6, 149.6, 129.0, 128.4, 128.0, 127.9, 127.7, 127.6, 127.4,

125.8, 59.9, 29.7, 20.4.
IR (KBr) viax = 3278, 2918, 2870, 1483, 1381, 1234, 1154, 1026, 863 cm'.
HRMS (ESI) m/z calcd. for C2sH2gNaOs™ [M+Na]": 431.1829, found 431.1830.

Melting point: decomposed while heating.

Preparation of compounds 3.1z

OH OH OH OH OH
p-cresol
SAGA®
_——
benzene
99%
Me Me Me
S$3.19

To a solution of compound S3.19 (0.50 g, 1.22 mmol) in benzene (12 mL) in a Dean—Stark
apparatus, p-cresol (0.53 g, 4.90 mmol) and p-toluenesulfonic acid (12 mg, 0.061 mmol) was
added at room temperature, and the reaction mixture was heated to reflux. After refluxing for 2 h,
the reaction mixture was concentrated under reduced pressure. The mixture was purified by
column chromatography (silica gel, hexane:ethyl acetate = 10:1) to give compound 3.1z (0.7077

g, 99% yield) as a white solid.

Ry=0.41 (hexane:ethyl acetate = 2:1)
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H NMR (500 MHz, CDCl3) § 9.19 (s, 2H), 9.14 (s, 1H), 8.87 (s, 2H), 7.08 (d, J = 2.2 Hz, 2H),
6.97 (d, J=2.2 Hz, 2H), 6.91 — 6.87 (m, 6H), 6.81 (d, J = 8.1 Hz, 2H), 3.81 (s, 4H), 3.71 (s, 4H),

2.24 (s, 6H), 2.22 (d, J = 0.7 Hz, 6H), 2.20 (s, 3H).

13C NMR (101 MHz, CDCl3) & 149.8, 147.5, 147.4, 131.3, 130.9, 130.9, 130.6, 129.8, 129.6,

128.5,127.4,127.0,127.0, 126.8, 116.0, 31.6, 31.6, 20.5, 20.5, 20.4.
IR (KBr) vmax = 3229, 3014, 2920, 1502, 1482, 1453, 1234, 909, 813, 733 cm’".
HRMS (ESI) m/z calcd. for C30HsoNaOs" [M+Na]™: 611.2768, found 611.2774.

Melting point 137.0 — 138.7 °C.

Preparation of compounds $3.20

HMTA

TFA
100 °C, 24 h

To a solution of compound 3.1z (250 mg, 0.42 mmol) in trifluoroacetic acid (0.7 mL),
hexamethylenetetramine (360 mg, 2.5 mmol) was added at 0 °C, and the reaction mixture was then
heated to 100 °C. After being stirred at 100 °C for 24 h, H>O (2 mL) was added to the reaction
mixture, and the reaction mixture was cooled to 80 °C. After being stirred at 80 °C for 4 h, the
reaction mixture cooled to room temperature and filtered through a glass funnel. The solid

remained in the funnel was washed with H>O (3 x 3 mL) to give compound S3.20 (0.3244 g, crude)
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as a yellow solid. The crude compound S3.20 could be directly used as substrate in next step

without further purification.

Preparation of compounds $3.21

NaBH,

MeOH
26% (2 steps)

To a solution of compound S3.20 (0.32 g, crude) in MeOH (4.2 mL), NaBH4 (112 mg, 2.94 mmol)
was added at 0 °C, and the reaction mixture was then warm to room temperature. After being
stirred at room temperature for 12 h, the reaction mixture was quenched with HCI (2 M in H20, 4
mL) and extracted with ethyl acetate (3 x 10 mL). The organic phase was then dried with Na>SO4
and concentrated under reduced pressure. The mixture was purified by column chromatography
(silica gel, hexane:ethyl acetate = 1:1) to give compound S3.21 (0.0746 g, 26% for 2 steps) as a

white solid.

Ry= 0.32 (hexane:ethyl acetate = 1:1)

H NMR (500 MHz, CDCl3) § 9.30 (s, 3H), 9.14 (s, 2H), 6.97 (d, J = 2.2 Hz, 2H), 6.90 (d, /= 3.8
Hz, 6H), 6.70 (d, J = 2.2 Hz, 2H), 4.77 (s, 4H), 3.80 (s, 4H), 3.74 (s, 4H), 2.21 (s, 9H), 2.19 (s,

6H).

13C NMR (101 MHz, CDCl3) & 149.9, 147.4, 147.3, 130.7, 130.6, 129.9, 129.6, 129.6, 129.5,

127.5,127.4,127.3,127.3, 127.1, 125.4, 64.1, 31.7, 31.1, 20.5, 20.5, 20.4.
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IR (KBr) vmax = 3220, 3012, 2917, 1483, 1451, 1380, 1233, 1157, 909, 858, 733 cm™.

HRMS (ESI) m/z calcd. for C41H4NaO7" [M+Na]": 671.2979, found 671.2974.

Melting point decomposed while heating.

Preparation of compounds 3.1aa

p-cresol
PTSA

—_—
benzene

43%

To a solution of compound S3.21 (27 mg, 0.04 mmol) in benzene (0.4 mL), p-cresol (17 mg, 0.16
mmol) and p-toluenesulfonic acid (0.4 mg, 0.002 mmol) was added at room temperature, and the
reaction mixture was heated to reflux. After refluxing for 2 h, the reaction mixture was
concentrated under reduced pressure. The mixture was purified by column chromatography (silica

gel, hexane:ethyl acetate = 10:1) to give compound 3.1aa (14.2 mg, 43% yield) as a white solid.

Ry= 0.35 (hexane:ethyl acetate = 2:1)

'H NMR (500 MHz, CDCls) § 10.17 (s, 1H), 10.07 (s, 2H), 9.77 (s, 2H), 9.46 (s, 2H), 7.08 (d, J
=2.2 Hz, 2H), 7.01 (d, J = 2.2 Hz, 2H), 6.96 (d, J= 2.2 Hz, 4H), 6.94 (d, J = 2.1 Hz, 2H), 6.92 (s,
2H), 6.79 (dd, J = 8.1, 2.2 Hz, 2H), 6.71 (d, J = 8.2 Hz, 2H), 3.93 (s, 4H), 3.82 (s, 4H), 3.80 (s,

4H), 2.26 (s, 6H), 2.24 (s, 6H), 2.22 (s, 6H), 2.21 (s, 3H).
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13C NMR (126 MHz, CDCl3) § 149.2, 147.3, 147.1, 146.9, 131.2, 131.1, 131.0, 131.0, 129.8,

129.7,129.6, 129.5, 128.4, 128.2, 128.1, 128.1, 127.9, 127.6, 127.4, 116.8, 32.1, 32.0, 31.7, 20.5.

IR (KBr) viax = 3169, 3014, 2921, 1501, 1482, 1451, 1234, 909, 732 cm™.

HRMS (ESI) m/z calcd. for CssHs707" [M+H]"™: 829.4099, found 829.4094.

Preparation of compounds 3.1ab

OH

p-cresol

To a mixture of p-cresol (2.70 g, 25 mmol) and formaldehyde (37 wt.% in H>O, 1.77 mL, 23.75
mmol), p-toluenesulfonic acid (95 mg, 0.5 mmol) was added at room temperature, and the reaction
mixture was heated to 100 °C. After being stirred at 100 °C for 12 h, the reaction mixture was filter
through a glass funnel, and then washed with hot water (3 x 20 mL). The residue was dissolved in
DCM (100 mL) and dried by Na>SO4. The solution was concentrated under reduced pressure to

give compound 3.1ab (2.966 g, 99% yield) as a white solid.

Molecular weight of compound 3.1ab was measured by GPC-MALS
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Figure 3.1. GPC-MALS Chromatography of Compound 3.1ab.
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Table 3.5. Molecular Weight of Compound 3.1ab.

Sample concentration (mg/ml) 6.4
M, (kDa) 0.537
Uncertainty 7.1%
My (kDa) 0.689
Uncertainty 4.98%
Polydispersity (Mw/Mn) 1.284
Uncertainty 8.67%
rh(v)(avg) (nm) 1.1
Uncertainty 0.1%
Mass fraction (%) 100
dn/dc (mL/g) 0.335
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Figure 3.2. MALDI-TOF Spectra of Compound 3.1ab.
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n =3, m/z caled. for C39H4NaOs" [M+Na]": 611.277, found 611.341;

n =4, m/z caled. for C47H4sNaOs" [M+Na]": 731.334, found 731.413;

n =35, m/z caled. for CssHssNaO7" [M+Na]": 851.392, found 851.489;

n =6, m/z calcd. for C¢3HsaNaOs" [M+Na]": 971.449, found 971.567;

n =7, m/z calcd. for C71H72NaOy" [M+Na]": 1091.507, found 1091.644;

n =8, m/z calcd. for C79HsoNaO1o" [M+Na]*: 1211.564, found 1211.722;
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n =9, m/z caled. for Cg7HssNaO;" [M+Na]™: 1331.622, found 1331.799;

n =11, m/z caled. for C193H104NaO3" [M+Na]": 1571.737, found 1571.956;

n =13, m/z calcd. for Ci19Hi20NaOs" [M+Na]": 1811.852, found 1812.110;

n =15, m/z calcd. for Ci35Hi36NaO7" [M+Na]": 2051.967, found 2052.261;

n =17, m/z calcd. for C;51Hi52NaO19" [M+Na]": 2292.082, found 2292.410;

n =19, m/z calcd. for Ci67H16sNaO21" [M+Na]": 2532.197, found 2532.562;

Preparation of compounds 3.2y

OH OH OH CIP(iPr),
_ NEtg
U T e O O O
70°C,12h
Me Me Me 99%
31y P= P(’Pr)2

3.2y

To a flame dried 8 mL vial charged with a stir bar, compound 3.1y (70 mg, 0.2 mmol), dry MeCN
(3 mL) and dry EtsN (166 pL, 1.2 mmol) were added. Chloro-diisopropylphosphine (95 mg, 0.62
mmol) was then added dropwise at room temperature. The mixture was heated and stirred at 70 °C
under N2 atmosphere for 12 h. Upon completion of the reaction, the reaction mixture was extracted
with hexane in glovebox and concentrated to give the compound 3.2y (0.1374 g, 99% yield), which

were pure enough for the next C—C activation reactions.
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H NMR (500 MHz, C¢Ds) & 7.60 (dd, J = 8.3, 4.0 Hz, 2H), 7.03 (d, J = 2.3 Hz, 2H), 6.92 (dd, J
=8.4,2.3 Hz, 2H), 6.82 (s, 2H), 4.51 (s, 4H), 2.10 (s, 6H), 1.97 (pd, J= 7.1, 3.1 Hz, 2H), 1.91 (s,
3H), 1.79 (pd, J = 7.1, 3.0 Hz, 4H), 1.20 (dd, J = 11.3, 7.0 Hz, 6H), 1.14 (dd, J = 10.6, 7.0 Hz,

12H), 1.08 — 0.98 (m, 18H).

I3C NMR (126 MHz, C¢Ds) 6 155.4, 155.4, 152.0, 152.0, 132.0, 132.0, 132.0, 130.4, 130.4, 130.4,
130.3, 129.9, 116.4, 116.2, 32.2, 32.2, 29.3, 29.1, 28.6, 28.5, 20.7, 20.7, 18.0, 17.9, 17.8, 17.8,

17.7,17.3,17.3.
31P NMR (162 MHz, CeDe) 5 156.4, 141.1.

IR (KBr) vmax = 2953, 2926, 2867, 1494, 1461, 1217, 1127, 846, 810, 695, 665 cm™'.

Preparation of compounds 3.2z

CIP(iPr),
NEt;
MeCN
100 °C, 12 h
99%
3.2 P=P(Pr);
3.2z

To a flame dried 8 mL vial charged with a stir bar, compound 3.1z (71 mg, 0.12 mmol), dry MeCN
(3 mL) and dry EtzN (166 uL, 1.2 mmol) were added. Chloro-diisopropylphosphine (101 mg, 0.66
mmol) was then added dropwise at room temperature. The mixture was heated and stirred at 100 °C
under N2 atmosphere for 12 h. Upon completion of the reaction, the reaction mixture was extracted
with benzene in glovebox and concentrated to give the compound 3.2y (0.1399 g, 99% yield),

which were pure enough for the next C—C activation reactions.
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TH NMR (500 MHz, C¢Ds) & 7.59 (dd, J = 8.3, 3.9 Hz, 2H), 7.02 (d, J = 2.3 Hz, 2H), 6.93 (dd, J
=9.3, 7.0 Hz, 6H), 6.83 (d, J = 2.3 Hz, 2H), 4.75 (s, 4H), 4.53 (s, 4H), 2.09 (s, 6H), 2.04 — 1.99
(m, 9H), 1.96 (s, 6H), 1.80 (pd, J = 7.1, 2.9 Hz, 4H), 1.25 (dt, J = 10.9, 5.3 Hz, 18H), 1.15 - 1.01

(m, 42H).

I3C NMR (101 MHz, C¢Ds) 6 155.4, 155.3,152.3, 152.1, 132.4, 132.4, 132.1, 132.0, 130.4, 130.4,
130.3, 129.9, 128.6, 116.4, 116.2, 33.1, 33.0, 32.3, 32.2, 29.4, 29.4, 29.2, 29.1, 28.7, 28.5, 21.0,

20.9, 20.8, 18.0, 18.0, 18.0, 179,179, 17.8,17.8,17.8, 17.4, 17.3.

3P NMR (162 MHz, C¢Ds) 8 157.1, 156.6, 141.0.

Preparation of compound 3.2aa

CIP(iPr),
NEt,
MeCN

100 °C, 12 h
89%

To a flame dried 4 mL vial charged with a stir bar, compound 3.1aa (26 mg, 0.031 mmol), dry
MeCN (1 mL) and dry Et3N (60 pL, 0.43 mmol) was added. Chloro-diisopropylphosphine (36 mg,
0.24 mmol) was then added dropwise at room temperature. The mixture was heated and stirred at
100 °C under N> atmosphere for 12 h. Upon completion of the reaction, the reaction mixture was
extracted with benzene in glovebox and concentrated to give the compound 3.2aa (0.0453 g, 89%

yield), which were pure enough for the next C—C activation reactions.
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H NMR (500 MHz, CeDe) 5 7.61 (dd, J = 8.3, 4.0 Hz, 2H), 7.03 (d, J = 2.3 Hz, 2H), 6.98 — 6.90
(m, 10H), 6.85 (d, J=2.3 Hz, 2H), 4.80 (s, 4H), 4.77 (s, 4H), 4.55 (s, 4H), 2.09 (s, 6H), 2.06 (dd,
J=6.9,2.5 Hz, 4H), 2.01 (d, J= 6.3 Hz, 15H), 1.96 (s, 6H), 1.80 (ddp, J= 10.1, 7.1, 2.9 Hz, 4H),

1.28 — 1.22 (m, 32H), 1.16 — 1.08 (m, 40H), 1.03 (dd, J = 15.5, 7.2 Hz, 12H).

I3C NMR (126 MHz, C¢Ds) & 155.4, 155.4,152.3, 152.1, 132.5, 132.5, 132.2,132.2, 132.1, 132.0,
130.4, 130.4, 129.9, 116.4, 116.2, 33.1, 33.0, 32.3, 32.2, 29.4, 29.3, 29.2, 29.2, 28.6, 28.5, 21.0,

20.9, 20.7, 18.0, 18.0, 179,179,179, 17.8,17.8,17.8, 17.3, 17.3.

3P NMR (202 MHz, CsDs) 8 157.3, 157.3, 156.9, 141.2.

C—C activation of compound 3.2y

P P P
0 0 o [Rh(CH4),Cll,
(7.5 mol%)
O O O H, (150 psi), 12 h
Me Me Me

1,4-dioxane, 170 °C

silica gel work up
3.4a 3.4t

— il
P=P(Pr), 55% 28%

3.2y
To a Q-tube charged with a stir bar, substrate 3.2y (137.4 mg, 0.2 mmol), [Rh(C2H4)2Cl]> (5.8 mg,
0.015 mmol) and 1,4-dioxane (6.0 mL) were added in the glovebox. The Q-tube was then
resembled and taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for
10 times and then charged with 150 psi H> followed by heating to 170 °C in a pre-heated oil bath
for 12 h. After the reaction was completed, the H> pressure was released and the solvent was
removed under vacuum. To the mixture, ~ 2 mL of dichloromethane and ~ 200 mg of silica gel

were added and reconcentrated to give the silica gel containing the crude product which was further
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purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1) to afford compound
3.4a and 3.4b (58.9 mg in total, molar ratio 3.4a:3.4b = 1.96:1 determined by 'H-NMR, yield of
3.4a = 55%, yield of 3.4b = 28%). All the yields were calculated based on the total phenol units,

the ideal total yield is 100%.

C—C activation of compound 3.2z

[Rh(C2Hy),Cll>
(25 mol%)
H, (150 psi), 12 h

1,4-dioxane, 170 °C
silica gel work up

3.3a 3.4a 3.4t
P = P(Pr), 6% 29% 16%
3.2z

To a Q-tube charged with a stir bar, substrate 3.2z (139.9 mg, 0.12 mmol), [Rh(C2H4)2Cl]2 (11.7
mg, 0.03 mmol) and 1,4-dioxane (6.0 mL) were added in the glovebox. The Q-tube was then
resembled and taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for
10 times and then charged with 150 psi H followed by heating to 170 °C in a pre-heated oil bath
for 12 h. After the reaction was completed, the H> pressure was released and the solvent was
removed under vacuum. To the mixture, ~ 2 mL of dichloromethane and ~ 200 mg of silica gel
were added and reconcentrated to give the silica gel containing the crude product which was further
purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1) to afford compound
3.3a (4.6 mg, 6% yield), compound 3.4a (20.9 mg, 29% yield) and compound 3.4t (10.5 mg, 16%

yield). All the yields were calculated based on the total phenol units, the ideal total yield is 100%.
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C—C activation of compound 3.2aa

OH OH OH OH OH
[Rh(C5Hy4),Cl]» Me Me Me
(35 mol%) . . . O O
H, (150 psi), 12 h
Me Me Me Me Me

1,4-dioxane, 170 °C
silica gel work up

3.3a 3.4a 3.4t 3.1t

P =P(Pr), 9% 22% 10% 16%
3.2aa

To a Q-tube charged with a stir bar, substrate 3.2aa (45 mg, 0.027 mmol), [Rh(C>H4).Cl]2 (3.7 mg,
0.0096 mmol) and 1,4-dioxane (2 mL) were added in the glovebox. The Q-tube was then resembled
and taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for 10 times
and then charged with 150 psi Hz followed by heating to 170 °C in a pre-heated oil bath for 12 h.
After the reaction was completed, the H» pressure was released and the solvent was removed under
vacuum. To the mixture, ~ 2 mL of dichloromethane and ~ 50 mg of silica gel were added and
reconcentrated to give the silica gel containing the crude product which was further purified by
column chromatography (silica gel, hexane:ethyl acetate = 20:1) to afford compound 3.3a (2.3 mg,
9% yield), compound 3.4a (5.0 mg, 22% yield), compound 3.4t (2.0 mg, 10% yield) and compound
3.1t (3.5 mg, 16% yield). All the yields were calculated based on the total phenol units, the ideal

total yield is 100%.

Compound 3.1t

Rr=0.44 (hexane:ethyl acetate = 2:1)

IH NMR (400 MHz, CDCl3) § 7.12 (s, 2H), 7.07 (d, J = 2.2 Hz, 2H), 6.90 — 6.83 (m, 2H), 6.69 (d,

J=28.1 Hz, 2H), 3.84 (s, 2H), 2.25 (s, 6H).

13C NMR (101 MHz, CDCl3) § 150.1, 131.2, 130.7, 128.4, 126.6, 115.8, 30.9, 20.5.
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Analytic data match the literature.*

C—C activation of linear novolacs

CIP(iPr), [Rh(C5H,),Cll, OH OH OH
NEt; (5 mol%) Me Me Me
W A
MeCN H, (150 psi), 12 h + +
100 °C, 12 h 1,4-dioxane, 170 °C
95% silica gel work up Me Me Me
3.3a 3.4a 3.4t

To a flame dried 8 mL vial charged with a stir bar, compound 3.1ab (72 mg, 0.6 mmol, counted
by the total phenol units), dry MeCN (3 mL) and dry EtsN (166 pL, 1.2 mmol) was added. Chloro-
diisopropylphosphine (96 mg, 0.63 mmol) was then added dropwise at room temperature. The
mixture was heated and stirred at 100 °C under N atmosphere for 12 h. Upon completion of the
reaction, the reaction mixture was extracted with benzene in glovebox and concentrated to give
the compound 3.2ab (crude, 0.1343 g, 95% yield, calculated based on phenol unit). The crude

compound 3.2ab was directly used in next step without further purification.

To a Q-tube charged with a stir bar, substrate 3.2ab (134.3 mg, 0.57 mmol), [Rh(C2H4).Cl]> (11
mg, 0.028 mmol) and 1,4-dioxane (6 mL) were added in the glovebox. The Q-tube was then
resembled and taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for
10 times and then charged with 150 psi H> followed by heating to 170 °C in a pre-heated oil bath
for 12 h. After the reaction was completed, the H> pressure was released and the solvent was
removed under vacuum. To the mixture, ~ 2 mL of dichloromethane and ~ 200 mg of silica gel
were added and reconcentrated to give the silica gel containing the crude product which was further

purified by column chromatography (silica gel, hexane:ethyl acetate = 20:1) to afford compound
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3.3a (4.4 mg, 6% yield), compound 3.4a (23.1 mg, 56% yield), and compound 3.4t (10.3 mg, 17%

yield). All the yields were calculated based on the total phenol units, the ideal total yield is 100%.

C—C activation of random novolacs

OH

OH

~ - CIP(iPr),

OAGA® e
OH

MeCN
O O 100 °C,12h
HO ‘ ‘ OH

3.1ac ‘
Plenco-148459 P =P(Pr),

[Rh(C2Hy),Cll Me
(5 mol%) +

H, (150 psi), 12 h
1,4-dioxane, 170 °C
Me,

acid work up
93% for 2 steps”
OH
+ other oligomers

Mn = 221
Mn = 686 3.2ac Mw = 254
Mw = 876

To a flame dried 8 mL vial charged with a stir bar, compound 3.1ac¢ (64 mg, 0.6 mmol, counted by
the total phenol units), dry MeCN (3 mL) and dry EtsN (166 pL, 1.2 mmol) were added. Chloro-
diisopropylphosphine (96 mg, 0.63 mmol) was then added dropwise at room temperature. The
mixture was heated and stirred at 100 °C under N> atmosphere for 12 h. Upon completion of the
reaction, the reaction mixture was extracted with benzene in glovebox and concentrated to give
the compound 3.2ac (crude, 0.1102 g). The crude compound 3.2ac was directly used in next step

without further purification.

To a Q-tube charged with a stir bar, substrate 3.2ac (110.2 mg), [Rh(C2H4)2Cl]2 (9.7 mg, 0.025
mmol) and 1,4-dioxane (5 mL) were added in the glovebox. The Q-tube was then resembled and
taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for 10 times and
then charged with 150 psi H> followed by heating to 170 °C in a pre-heated oil bath for 12 h. After
the reaction was completed, the H> pressure was released and HCI (2M in H>O, 3 mL) was added

to the reaction mixture. After being stirred at room temperature for 30 min, the reaction mixture
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was extracted by Et20 (3 x 10 mL). the organic phase was dried with Na>xSO4 and concentrated
under reduced pressure to give a mixture of monomer, dimer and oligomer of phenols (59.3 mg,
93% yield, calculated by weight ratio between product mixture and starting material compound
3.1ac). The average molecular weight of product mixture was determined by GPC-MALS, and the

component in the mixture was analyzed by GC-MS.

Compound 3.1ac:

Sample donated by Plastics Engineering Co.

Figure 3.3. GPC-MALS Chromatography of Compound 3.1ac.
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Table 3.6. Molecular Weight of Compound 3.1ac.

Sample concentration (mg/ml)
Mn (kDa)

Uncertainty

Mw (kDa)

Uncertainty
Polydispersity (Mw/Mn)
Uncertainty

th(v)(avg) (nm)
Uncertainty

Mass fraction (%)

dn/dc (mL/g)

Product mixture:

Molecular weight measured by GPC-MALS:
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8.1
0.686
11.99%
0.876
6.83%
1.278
13.80%
1.2
0.1%
100
0.3755



Figure 3.4. GPC-MALS Chromatography of Product Mixture.
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Table 3.7. Molecular Weight of Product Mixture.

Sample concentration (mg/ml)
Mn (kDa)

Uncertainty

Mw (kDa)

Uncertainty
Polydispersity (Mw/Mn)
Uncertainty

th(v)(avg) (nm)
Uncertainty

Mass fraction (%)

dn/dc (mL/g)

Components analyzed by GC-MS:

404

T
200

9.9
0.221
14.51%
0.254
11.72%
1.146
18.66%
0.8
0.1%
100
0.5278




Figure 3.5. General GC-MS Chromatography of Product Mixture.
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Figure 3.7. Mass Spectra of Peak B (Retention Time = 4.977 min).
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OH

| —Me
=

m/z caled. for C7HgO" [M]": 108.1, found 108.1.

Figure 3.8. Mass Spectra of Peak C (Retention Time = 8.441 min).
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Figure 3.9. Mass Spectra of Peak D (Retention Time = 8.645 min).
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Figure 3.10. Mass Spectra of Peak E (Retention Time = 8.875 min).
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Figure 3.11. Mass Spectra of Peak F (Retention Time = 9.099 min).
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No phosphorus peak was detected by >'P-NMR in the crude NMR of the product mixture
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Figure 3.12. *'P-NMR Spectrum of the Product Mixture in CDCls, 162 MHz, 8 scans

Xyb-6-288-crude-P-2.10.1.1r
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Preparation of complex [Rh(3.2g)Cl]>

o o
Me Me [RN(C2H4);Cll, Ph O 0 0 O Ph
O O (50 moi%) P ci_ P
Rh._ RA
CgHg, r.t. P/ Cl \P\
Ph Ph Ph O o o} O Ph

3.2¢g Me [Rh(3.2g)Cl], Me

To a flame dried 4 mL vial charged with a stir bar, a solution of compound 3.2g (31 mg, 0.05 mmol)
in dry benzene (0.5 mL) and [Rh(C2H4)2Cl]2 (9.7 mg, 0.025 mmol) was added in the glovebox at
room temperature. After being stirred at room temperature for 4 h, the reaction mixture was treated
with methanol (2 mL) and then filtered through a glass funnel. The solid remained in the funnel
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was washed with methanol (2 x 1 mL) to give compound [Rh(3.2g)Cl]> (10.1 mg, 27% yield) as

an orange solid.

H NMR (500 MHz, C¢Ds) & 7.45 (d, J = 2.5 Hz, 4H), 7.43 — 7.39 (m, 8H), 7.17 (s, 2H), 7.14 (s,
2H), 7.11 — 7.06 (m, 4H), 6.83 (d, J=2.7 Hz, 4H), 6.31 (d, J= 12.8 Hz, 2H), 3.75 (d, J= 12.9 Hz,
2H), 2.88 — 2.74 (m, 4H), 2.59 — 2.47 (m, 4H), 2.13 (s, 12H), 1.99 (s, 12H), 1.91 (q, J = 6.9 Hz,

12H), 1.62 (s, 12H), 0.91 — 0.81 (m, 12H).

I3C NMR (126 MHz, CsDs) 6 152.7, 141.0, 137.1, 135.8, 131.0, 128.9, 127.2, 127.1, 126.6, 123.0,

40.6, 34.6, 32.5, 22.8, 20.8, 19.8, 18.3, 16.3.

31p NMR (202 MHz, CDs) & 182.7 (d, J = 232.3 Hz).

Preparation of complex 3.5

_P _P PPh;
0 o} |
PP
Me Me RhH(PPh3), (100 mol%) 0" Rh O
|O |O M M
CGHG e 7 e
70°C,6h
Ph Ph 41%
P = P(iPr), Ph Ph
3.2g 3.5

To a flame dried 4 mL vial charged with a stir bar, a solution of compound 3.2g (15.3 mg, 0.025
mmol) in dry benzene (0.5 mL) and RhH(PPh3)s (28.8 mg, 0.025 mmol) were added in the
glovebox at room temperature. After being stirred at 70 °C for 6 h, the reaction mixture was treated
with methanol (2 mL) and then filtered through a glass funnel. The solid remained in the funnel

was washed with methanol (2 X 1 mL) to give complex 3.5 (9.9 mg, 41% yield) as an orange solid.
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H NMR (500 MHz, C¢Ds) & 7.74 (t, J= 7.9 Hz, 6H), 7.66 (dd, J = 12.0, 7.6 Hz, 4H), 7.36 (d, J =
2.5 Hz, 3H), 7.29 (d, J= 3.7 Hz, 2H), 7.25 (t, J = 7.6 Hz, 4H), 7.02 (d, J= 6.7 Hz, 5H), 6.92 (d, J
=7.0 Hz, 6H), 4.97 (d, J = 13.8 Hz, 1H), 2.46 (s, 3H), 2.42 (s, 3H), 2.03 — 1.95 (m, 2H), 1.57 (dd,
J=17.3,7.3 Hz, 3H), 1.40 (t, J= 8.0 Hz, 3H), 1.22 — 1.17 (m, 6H), 1.09 — 1.03 (m, 6H), 0.96 (dd,

J=9.4, 6.8 Hz, 3H), 0.67 — 0.60 (m, 2H), 0.54 (dd, J= 15.6, 7.1 Hz, 3H).

31P NMR (202 MHz, CsDe) § 196.2 (dd, J = 188, 25 Hz), 188.1 (dd, J = 187, 23 Hz), 32.5 (dt, J =

140, 24 Hz)
_P _P PPh,
o] o] |
P._| P
Me O O Me RhCI(PPh3); (100 mol%) 0" Rh O
M M
CeHe © 7 ©
70°C,6h
Ph Ph 1%
P = P(iPr), Ph Ph
3.2g 3.5

To a flame dried 4 mL vial charged with a stir bar, compound 3.2¢g (15.3 mg, 0.025 mmol) in dry
benzene (0.5 mL) and RhCI(PPh3); (23.1 mg, 0.025 mmol) were added in the glovebox at room
temperature. After being stirred at 70 °C for 6 h, the reaction mixture was treated with methanol
(2 mL) and then filtered through a glass funnel. The solid remained in the funnel was washed with

methanol (2 X 1 mL) to give complex 3.5 (2.8 mg, 11% yield) as an orange solid.

Complex 3.5 as catalyst
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PPh3

OH OH
Me H, (150 psi)y ~ Me Me Me
Me —— > +
O O O O 1,4-dioxane
150 °C, 12 h
Ph Ph

silica gel work up

P P(iPr), 3.3g 3.4¢
3. Zg 87% 74%
(1 equiv) 25 mol%

To a Q-tube charged with a stir bar, substrate 3.2g (61.2 mg, 0.1 mmol), complex 3.5 (2.5 mg,
0.0025 mmol) and 1,4-dioxane (2 mL) were added in the glovebox. The Q-tube was then resembled
and taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for 10 times
and then charged with 150 psi Hz followed by heating to 150 °C in a pre-heated oil bath for 12 h.
After the reaction was completed, the H» pressure was released and the solvent was removed under
vacuum. To the mixture, ~ 2 mL of dichloromethane and ~ 200 mg of silica gel were added and
reconcentrated to give the silica gel containing the crude product which was further purified by
column chromatography (silica gel, hexane:ethyl acetate = 20:1) to afford compound 3.3g (17.6

mg, 87% yield) and compound 3.4¢g (13.9 mg, 74% yield).

Deuterium labeling experiment

/‘ 11% D 91% D 90% D
OHp p OH OH OH
[Rh(C2H4),Cll, Me Me cb; D Me
3.2g (2.5 mol%) .
(1 equiv) D, (50 psi),
1,4-dioxane, 100 °C Ph
silica gel work up
3.19-d 3.3g9-d 3.49-d
28% 40% 42%

To a Q-tube charged with a stir bar, substrate 3.2g (184 mg, 0.3 mmol), [Rh(C2H4)2Cl]2 (2.9 mg,

0.0075 mmol) and 1,4-dioxane (6.0 mL) were added in the glovebox. The Q-tube was then
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resembled and taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for
10 times and then charged with 50 psi D> followed by heating to 100 °C in a pre-heated oil bath
for 2 h. After the reaction was completed, the H, pressure was released and the solvent was
removed under vacuum. To the mixture, ~ 2 mL of dichloromethane and ~ 200 mg of silica gel
were added and reconcentrated to give the silica gel containing the crude product which was further
purified by silica gel chromatography to afford compound 3.1g-d (51.7 mg, 28%), compound 3.3g-

d (23.6 mg, 40%) and compound 3.4g-d (23.8 mg, 42%)

High-loading catalyst experiment (without NaH)

O/P("Pr)z O/P(’Pr)z

[RNh(C2Hy4)2Cll2
Me Me (25 mol%)
O O H, (150 psi), 12 h
1,4-dioxane, 150 °C

Me Me silica gel work up

3.2a 3.3a 3.4a
85% 65%

To a Q-tube charged with a stir bar, substrate 3.2a (48.9 mg, 0.1 mmol), [Rh(C2H4)2Cl]> (9.7 mg,
0.025 mmol) and 1,4-dioxane (2.0 mL) were added in the glovebox. The Q-tube was then
resembled and taken out of the glovebox. The reaction mixture was flushed with hydrogen gas for
10 times and then charged with 150 psi H> followed by heating to 150 °C in a pre-heated oil bath
for 12 h. After the reaction was completed, the H> pressure was released and the solvent was
removed under vacuum. To the mixture, ~ 2 mL of dichloromethane and ~ 200 mg of silica gel
were added and reconcentrated to give the silica gel containing the crude product which was further
purified by silica gel chromatography to afford compound 3.3a (11.6 mg, 85%) and compound

3.4a (8.0 mg, 65%).
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High-loading catalyst experiment (with NaH)

O/P(’Pr)z O/P(’Pr)z [Rh(C,H,),Cll,

(25 mol%)
Me Me  NaH (1 equiv)
H, (150 psi), 12 h
1,4-dioxane, 150 °C

Me Me silica gel work up

3.2a 3.3a 3.4a
87% 84%

To a Q-tube charged with a stir bar, substrate 3.2a (48.9 mg, 0.1 mmol), [Rh(C2H4)>Cl]2 (9.7 mg,
0.025 mmol), NaH (2.4 mg, 0.1 mmol) and 1,4-dioxane (2.0 mL) were added in the glovebox. The
Q-tube was then resembled and taken out of the glovebox. The reaction mixture was flushed with
hydrogen gas for 10 times and then charged with 150 psi Hz followed by heating to 150 °C in a
pre-heated oil bath for 12 h. After the reaction was completed, the H, pressure was released and
the solvent was removed under vacuum. To the mixture, ~ 2 mL of dichloromethane and ~ 200 mg
of silica gel were added and reconcentrated to give the silica gel containing the crude product
which was further purified by silica gel chromatography to afford compound 3.3a (11.8 mg, 87%)

and compound 3.4a (10.3 mg, 84%).
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3.7. NMR Spectra

Figure 3.13. "TH-NMR Spectrum of 3.1b in CDCl3, 400 MHz
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Figure 3.15. "TH-NMR Spectrum of 3.1¢ in CDCl3, 400 MHz
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Figure 3.16. >*C-NMR Spectrum of 3.1¢ in CDCl3, 101 MHz
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Figure 3.17. "TH-NMR Spectrum of 3.1d in CDCl3, 400 MHz
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Figure 3.18. >*C-NMR Spectrum of 3.1d in CDCl3, 101 MHz
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Figure 3.19. "H-NMR Spectrum of 3.1e in CDCl3, 400 MHz
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Figure 3.20. >C-NMR Spectrum of 3.1e in CDCl3, 101 MHz
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Figure 3.21. "H-NMR Spectrum of 3.1g in CDCl3, 400 MHz
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Figure 3.22. C-NMR Spectrum of 3.1g in CDCl3, 101 MHz
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Figure 3.23. "TH-NMR Spectrum of 3.1h in CDCl3, 400 MHz
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Figure 3.24. 3C-NMR Spectrum of 3.1h in CDCl3, 101 MHz
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Figure 3.25. "H-NMR Spectrum of 3.1i in CDCl3, 400 MHz
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Figure 3.26. >*C-NMR Spectrum of 3.1i in CDCl3, 101 MHz
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Figure 3.27. "TH-NMR Spectrum of 3.1j in CDCl3, 400 MHz
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Figure 3.28. >C-NMR Spectrum of 3.1j in CDCls, 101 MHz
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Figure 3.29. 'H-NMR Spectrum of 3.1k in CDCl3, 400 MHz
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Figure 3.30. >*C-NMR Spectrum of 3.1k in CDCl3, 101 MHz
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Figure 3.31. "H-NMR Spectrum of 3.11 in DMSO-d6, 400 MHz
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Figure 3.32. >C-NMR Spectrum of 3.11 in DMSO-d6, 101 MHz

Xyb-7-48-10-DMSO-C.13.1.1r

29 @ muesemzvyaw

§8 § SaR3ERIIAG 3 g
dg § gsessnnssvmu I &
82 2 20088833300 R g

OH OH
Me l l Me
F F

341

T T T T T T T T T T T T T
40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
f1 (ppm)

423



Figure 3.33. "F-NMR Spectrum of 3.11 in DMSO-d6, 376 MHz
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Figure 3.34. "H-NMR Spectrum of 3.1m in CDCls, 400 MHz
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Figure 3.35. 3C-NMR Spectrum of 3.1m in CDCl3, 101 MHz
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Figure 3.36. 'H-NMR Spectrum of 3.1n in CDCl3, 400 MHz
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Figure 3.38. "H-NMR Spectrum of 3.10 in CDCl3, 400 MHz
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Figure 3.39. >C-NMR Spectrum of 3.10 in CDCl3, 101 MHz
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Figure 3.40. 'H-NMR Spectrum of 3.1p in CDCls, 400 MHz
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Figure 3.41. 3C-NMR Spectrum of 3.1p in CDCl3, 101 MHz
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Figure 3.42. 'H-NMR Spectrum of 3.1q in CDCl3, 400 MHz
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Figure 3.43. 3C-NMR Spectrum of 3.1q in CDCl3, 101 MHz
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Figure 3.44. 'H-NMR Spectrum of 3.1r in DMSO-d6, 500 MHz

Xyb-7-48-16-DMSO.1.1.1r

9.38
7.60
7.60
7.49
7.49

OH OH

Me l l Me

CO,Me CO,Me
31r

—3.94
— 37
— 2w

50 45 40 35 30 25 20 15 1.0 05 00 <C
f1 (ppm)

Figure 3.45. >*C-NMR Spectrum of 3.1r in DMSO-d6, 126 MHz
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Figure 3.46. 'H-NMR Spectrum of 3.1s in CDCls, 400 MHz
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Figure 3.47. >*C-NMR Spectrum of 3.1s in CDCl3, 101 MHz
Xyb-7-48-17-C.23.1.1r g 3892 g 2 e o
| ST TOoT
OH OH
Me [ [ Me
Me Me
Br Br
3.1s
‘40 2‘30 2‘20 2‘10 2;.)0 1‘90 1‘80 1‘70 1‘60 1‘50 1‘40 1‘30 1‘20 1‘10 lbO 9‘0 éO 7‘0 éO 5‘0 4‘0 .’lO Z‘O 1‘0 b

f1 (ppm)

431



Figure 3.48. 'H-NMR Spectrum of 3.1u in CDCls, 400 MHz
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Figure 3.49. >C-NMR Spectrum of 3.1u in CDCl3, 101 MHz
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Figure 3.50. 'H-NMR Spectrum of 3.1v in CDCls, 400 MHz
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Figure 3.51. C-NMR Spectrum of 3.1v in CDCl3, 101 MHz
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Figure 3.52. '"H-NMR Spectrum of 3.1w in CDCl3, 400 MHz
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Figure 3.53. °"C-NMR Spectrum of 3.1w in CDCls, 101 MHz
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Figure 3.54. 'TH-NMR Spectrum of 3.1x in CDCls, 400 MHz
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Figure 3.55. >*C-NMR Spectrum of 3.1x in CDCl3, 101 MHz
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Figure 3.56. 'H-NMR Spectrum of 3.2a in C¢De, 500 MHz
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Figure 3.57. >*C-NMR Spectrum of 3.2a in C¢De, 125 MHz
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Figure 3.58. *'P-NMR Spectrum of 3.2a in C¢Ds, 202 MHz
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Figure 3.59. "TH-NMR Spectrum of 3.2b in CsDs, 500 MHz
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Figure 3.60. >*C-NMR Spectrum of 3.2b in C¢Ds, 125 MHz
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Figure 3.61. *'P-NMR Spectrum of 3.2b in C¢Ds, 202 MHz
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Figure 3.62. 'H-NMR Spectrum of 3.2¢ in CsDs, 500 MHz
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Figure 3.63. >*C-NMR Spectrum of 3.2¢ in C¢Ds, 125 MHz
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Figure 3.64.

3IP-NMR Spectrum of 3.2¢ in CsDs, 202 MHz
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Figure 3.65. "TH-NMR Spectrum of 3.2d in CsDs, 500 MHz
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Figure 3.66. >*C-NMR Spectrum of 3.2d in C¢Ds, 125 MHz
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Figure 3.67.

3IP-NMR Spectrum of 3.2d in CsDs, 202 MHz
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Figure 3.68. "H-NMR Spectrum of 3.2e in CDCl3, 500 MHz
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Figure 3.69. >*C-NMR Spectrum of 3.2e in CDCls, 125 MHz
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Figure 3.70.

3IP-NMR Spectrum of 3.2e in CDCl3, 202 MHz
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Figure 3.71. "TH-NMR Spectrum of 3.2f in CsDs, 500 MHz
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Figure 3.72. C-NMR Spectrum of 3.2f in C¢Ds, 125 MHz
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Figure 3.73. *'P-NMR Spectrum of 3.2f in C¢De, 202 MHz
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Figure 3.74. "H-NMR Spectrum of 3.2g in CDCl3, 500 MHz
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Figure 3.76.

3IP-NMR Spectrum of 3.2g in CDCls, 202 MHz

157.443

(iPr)2P\o (iPr)zP\O

MQWO oy

Ph Ph
3.2g

200 150 100 50 0 -50 -100 -150

449

-200

PPM



Figure 3.77. 'TH-NMR Spectrum of 3.2h in CDCl3, 500 MHz

9044
€21l
LeVL
EELL
£FLL
: e
FILL

Loe
102
S20¢e
8E0T

LEET
8Fre

eeEF

850°L
6ELL
¥SLL
€614
0924
LPEL
€9€°L

O

(iPr),P<

(0]

(iPr),P<

24.21

Me

Me

Me

3.2h

6.08

8.00

4.00

4.04

200

2:9&901

0 PPM

Figure 3.78. 3C-NMR Spectrum of 3.2h in CDCls, 125 MHz
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Figure 3.79. *'P-NMR Spectrum of 3.2h in CDCl3, 202 MHz
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Figure 3.80. 'H-NMR Spectrum of 3.2i in C¢De, 500 MHz
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Figure 3.81. >C-NMR Spectrum of 3.2i in C¢Ds, 125 MHz
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Figure 3.82. *'P-NMR Spectrum of 3.2i in C¢Ds, 202 MHz
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Figure 3.83. 'H-NMR Spectrum of 3.2j in CDCl3, 400 MHz
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Figure 3.85.

3IP-NMR Spectrum of 3.2j in CDCl3, 202 MHz
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Figure 3.86. 'H-NMR Spectrum of 3.2k in CDCl3, 500 MHz
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Figure 3.87. 3*C-NMR Spectrum of 3.2k in CDCls, 126 MHz

£L0°94
SivLl
88y’ L1
LISZL
1941
95881
E£E6'81
9¥L'8T
22682
12e2e
L9E°CE
0ey'2e

8r.9L
000°LL
5eLL

+66°9Z1
6L0°L2)
EL1Lgl
0S6'2el
£62°621
SEETEL
9EEFEL
BLPIEL
EL6'LEL

655°E5)

(iPr)oP<

O

(iPr)oP<

SMe

SMe

Me

3.2k

0 PPM

50

100

150

200

456



Figure 3.88. *'P-NMR Spectrum of 3.2k in CDCl3, 202 MHz
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Figure 3.89. 'H-NMR Spectrum of 3.21 in CDCl3, 500 MHz
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Figure 3.90. >*C-NMR Spectrum of 3.2l in CDCl3, 126 MHz
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Figure 3.91. "F-NMR Spectrum of 3.21 in CDCl3, 470 MHz
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Figure 3.92. *'P-NMR Spectrum of 3.21 in CDCl3, 202 MHz
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Figure 3.93. '"H-NMR Spectrum of 3.2m in CDCl3, 400 MHz
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Figure 3.94. 3C-NMR Spectrum of 3.2m in CDCl3, 101 MHz
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Figure 3.95. *'P-NMR Spectrum of 3.2m in CDCl3, 202 MHz
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Figure 3.96. 'H-NMR Spectrum of 3.2n in CDCl3, 500 MHz
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Figure 3.97. BC-NMR Spectrum of 3.2n in CDCls, 126 MHz

0LeLl
297 L1
vey Ll
£29°L4
58984
19481
61L8T
968'82
0ziee
991°2¢
Lgeee

ar.9.
000°LL
eeLL

£98°801

08192}
Se'921
S.8'9¢1
950°/21
158621
PIEZEL

L08'LEL

LS2Erl

260°E51

(iPr)zP\o (iPr)zP\O

s
\O
—
[=
N
™
=
\_o
[}
=

PPM

50

100

150

462



Figure 3.98. *'P-NMR Spectrum of 3.2n in CDCl;, 202 MHz
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Figure 3.99. 'H-NMR Spectrum of 3.20 in CDCl3, 500 MHz
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Figure 3.100. *C-NMR Spectrum of 3.20 in CDCl3, 126 MHz
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Figure 3.101. *'P-NMR Spectrum of 3.20 in CDCl3, 202 MHz
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Figure 3.102. '"H-NMR Spectrum of 3.2p in CDCl3, 500 MHz
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Figure 3.103. 3C-NMR Spectrum of 3.2p in CDCls, 126 MHz
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Figure 3.104. *'P-NMR Spectrum of 3.2p in CDCls, 202 MHz
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Figure 3.105. '"H-NMR Spectrum of 3.2q in CDCl3, 500 MHz
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Figure 3.106. >*C-NMR Spectrum of 3.2q in CDCls, 126 MHz
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Figure 3.107. *'P-NMR Spectrum of 3.2q in CDCls, 202 MHz
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Figure 3.108. '"H-NMR Spectrum of 3.2r in CDCls, 500 MHz
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Figure 3.109. *C-NMR Spectrum of 3.2r in CDCl3, 126 MHz
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Figure 3.110.

3IP-NMR Spectrum of 3.2r in CDCl3, 202 MHz
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Figure 3.111. '"H-NMR Spectrum of 3.2s in CDCl3, 500 MHz
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Figure 3.112. '>*C-NMR Spectrum of 3.2s in CDCl3, 126 MHz
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Figure 3.113. *'P-NMR Spectrum of 3.2s in CDCl3, 202 MHz

160.764

(iPr)zP\o (iPr)zP\O

Me l l Me
Me Me
Br Br
3.2s

200 150 100 50 0 -50 -100 -150

473

-200

PPM



Figure 3.114. 'H-NMR Spectrum of 3.2t in CsDs, 400 MHz
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Figure 3.115. '>*C-NMR Spectrum of 3.2t in CsDs, 101 MHz
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Figure 3.116. *'P-NMR Spectrum of 3.2t in C¢Ds, 202 MHz
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Figure 3.117. 'TH-NMR Spectrum of 3.2t” in C¢De, 500 MHz
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Figure 3.118. '>*C-NMR Spectrum of 3.2t’ in CsDs, 126 MHz
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Figure 3.119. *'P-NMR Spectrum of 3.2¢’ in CsDs, 202 MHz
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Figure 3.120. "H-NMR Spectrum of 3.2u in CsDs, 400 MHz
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Figure 3.121. *C-NMR Spectrum of 3.2u in C¢Ds, 101 MHz
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Figure 3.122. *'P-NMR Spectrum of 3.2u in C¢De, 162 MHz
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Figure 3.123. "H-NMR Spectrum of 3.2v in C¢Ds, 400 MHz
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Figure 3.124. >C-NMR Spectrum of 3.2v in C¢Ds, 101 MHz
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Figure 3.125.

3IP-NMR Spectrum of 3.2v in C¢Ds, 162 MHz
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Figure 3.126. "H-NMR Spectrum of 3.2w in C¢Ds, 400 MHz
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Figure 3.127. *C-NMR Spectrum of 3.2w in CsDs, 101 MHz
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Figure 3.128.

3IP-NMR Spectrum of 3.2w in C¢Ds, 162 MHz
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Figure 3.129. "H-NMR Spectrum of 3.2x in C¢Ds, 500 MHz
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Figure 3.131. *'P-NMR Spectrum of 3.2x in CsDs, 202 MHz
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Figure 3.132. '"H-NMR Spectrum of 3.3a in CDCl3, 400 MHz
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Figure 3.133. 3*C-NMR Spectrum of 3.3a in CDCls, 101 MHz
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Figure 3.134. '"H-NMR Spectrum of 3.4a in CDCl3, 400 MHz
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Figure 3.135. 3C-NMR Spectrum of 3.4a in CDCl3, 101 MHz
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Figure 3.136. '"H-NMR Spectrum of 3.3b in CDCl3, 500 MHz
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Figure 3.137. *C-NMR Spectrum of 3.3b in CDCls, 126 MHz
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Figure 3.138. '"H-NMR Spectrum of 3.4b in CDCl3, 500 MHz
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Figure 3.139. *C-NMR Spectrum of 3.4b in CDCls, 126 MHz
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Figure 3.140. '"H-NMR Spectrum of 3.3¢ in CDCls, 500 MHz
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Figure 3.141. *C-NMR Spectrum of 3.3¢ in CDCl3, 126 MHz
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Figure 3.142. '"H-NMR Spectrum of 3.4¢ in CDCls, 500 MHz
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Figure 3.143. ’C-NMR Spectrum of 3.4¢ in CDCl3, 126 MHz
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Figure 3.144. '"H-NMR Spectrum of 3.3d in CDCl3, 500 MHz
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Figure 3.145. ’C-NMR Spectrum of 3.3d in CDCls, 126 MHz
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Figure 3.146. '"H-NMR Spectrum of 3.4d in CDCl3, 500 MHz
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Figure 3.147. 3C-NMR Spectrum of 3.4d in CDCls, 126 MHz
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Figure 3.148. '"H-NMR Spectrum of 3.3e in CDCls, 500 MHz
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Figure 3.149. *C-NMR Spectrum of 3.3e in CDCl3, 126 MHz
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Figure 3.150. '"H-NMR Spectrum of 3.4e in CDCls, 500 MHz
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Figure 3.151. 3C-NMR Spectrum of 3.4e in CDCl3, 126 MHz
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Figure 3.152. '"H-NMR Spectrum of 3.3f in CDCl3, 500 MHz
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Figure 3.153. 3C-NMR Spectrum of 3.3f in CDCls, 126 MHz

e w — — ~
2 & =X b4 14 5
g 2 23 R8% 25 =
s & o ai i as ]
g 9 g9 KRE B e
Bu Me
\@[OH
Me
3.3f
- " -
150 100 50 OPPM

496



Figure 3.154. '"H-NMR Spectrum of 3.4f in CDCl3, 500 MHz
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Figure 3.155. 3C-NMR Spectrum of 3.4f in CDCl3, 126 MHz
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Figure 3.156. '"H-NMR Spectrum of 3.3g in CDCl3, 500 MHz
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Figure 3.157. *C-NMR Spectrum of 3.3g in CDCl3, 126 MHz

20091

9rL9L
000°LL
SeLL

£52°€21
9P°921
£1L'921
eseLgl
185821
PSEEEL

2L0LpL

SBLTLS1

Me
OH

Rt

Me

3.3g

PPM

50

100

150

200

498



Figure 3.158. '"H-NMR Spectrum of 3.4g in CDCl3, 500 MHz
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Figure 3.159. *C-NMR Spectrum of 3.4g in CDCl3, 126 MHz
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Figure 3.160. '"H-NMR Spectrum of 3.3h in CDCl3, 400 MHz
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Figure 3.161. *C-NMR Spectrum of 3.3h in CDCls, 101 MHz
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Figure 3.162. '"H-NMR Spectrum of 3.4h in CDCl3, 400 MHz
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Figure 3.163. >*C-NMR Spectrum of 3.4h in CDCls, 101 MHz
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Figure 3.164. '"H-NMR Spectrum of 3.3i in CDCl3, 500 MHz
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Figure 3.165. >*C-NMR Spectrum of 3.3i in CDCl3, 126 MHz
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Figure 3.166. 'H-NMR Spectrum of 3.4i in CDCl3, 500 MHz
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Figure 3.167. 3*C-NMR Spectrum of 3.4i in CDCl3, 126 MHz
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Figure 3.168. '"H-NMR Spectrum of 3.3j in CDCls, 500 MHz
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Figure 3.169. *C-NMR Spectrum of 3.3j in CDCls, 126 MHz
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Figure 3.170. '"H-NMR Spectrum of 3.4j in CDCls, 400 MHz
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Figure 3.171. 3C-NMR Spectrum of 3.4j in CDCl3, 126 MHz
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Figure 3.172. '"H-NMR Spectrum of 3.3k in CDCl3, 500 MHz
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Figure 3.173. 3C-NMR Spectrum of 3.3k in CDCl3, 126 MHz
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Figure 3.175. 3C-NMR Spectrum of 3.4k in CDCls, 126 MHz

9./8'51
alosl

0SL'9L
wOO0'LL
85T LL

85¢°SHL
[01L'v2EL
2EF'STL
810421
907421
85F'62)
891°EEL
LSP'9EL
SPa/EL

E0E'ESL

MeS

Me
OH

3.4k

PPM

50

100

150

200

507



Figure 3.176. '"H-NMR Spectrum of 3.31 in CDCl3, 500 MHz
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Figure 3.177. 3C-NMR Spectrum of 3.31in CDCl3, 126 MHz
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Figure 3.178. ’F-NMR Spectrum of 3.31 in CDCl3, 470 MHz
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Figure 3.179. '"H-NMR Spectrum of 3.4l in CDCl3, 500 MHz
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Figure 3.180. 3*C-NMR Spectrum of 3.41 in CDCl3, 126 MHz
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Figure 3.181. ’F-NMR Spectrum of 3.41 in CDCl3, 470 MHz
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Figure 3.182. '"H-NMR Spectrum of 3.3m in CDCls, 400 MHz
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Figure 3.183. *C-NMR Spectrum of 3.3m in CDCl3, 101 MHz
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Figure 3.184. '"H-NMR Spectrum of 3.4m in CDCls, 400 MHz
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Figure 3.185. >*C-NMR Spectrum of 3.4m in CDCl3, 101 MHz
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Figure 3.186. '"H-NMR Spectrum of 3.3n in CDCl3, 500 MHz
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Figure 3.187. *C-NMR Spectrum of 3.3n in CDCls, 126 MHz
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Figure 3.188. '"H-NMR Spectrum of 3.4n in CDCl3, 500 MHz
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Figure 3.189. *C-NMR Spectrum of 3.4n in CDCls, 126 MHz
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Figure 3.190. '"H-NMR Spectrum of 3.30 in CDCl3, 500 MHz
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Figure 3.191. 3C-NMR Spectrum of 3.30 in CDCls, 126 MHz
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Figure 3.192. '"H-NMR Spectrum of 3.40 in CDCl3, 400 MHz
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Figure 3.193. *C-NMR Spectrum of 3.40 in CDCl3, 101 MHz
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Figure 3.194. '"H-NMR Spectrum of 3.3q in CDCl3, 500 MHz
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Figure 3.195. 3C-NMR Spectrum of 3.3q in CDCls, 126 MHz
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Figure 3.196. '"H-NMR Spectrum of 3.4q in CDCl3, 500 MHz
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Figure 3.197. 3C-NMR Spectrum of 3.4q in CDCls, 126 MHz
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Figure 3.198. '"H-NMR Spectrum of 3.3r in CDCls, 500 MHz
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Figure 3.199. *C-NMR Spectrum of 3.3r in CDCl3, 126 MHz
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Figure 3.200. '"H-NMR Spectrum of 3.4r in CDCls, 500 MHz
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Figure 3.201. 3C-NMR Spectrum of 3.4r in CDCl3, 126 MHz
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Figure 3.202. '"H-NMR Spectrum of 3.3s in CDCl3, 500 MHz
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Figure 3.203. 3C-NMR Spectrum of 3.3s in CDCls, 126 MHz
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Figure 3.204. '"H-NMR Spectrum of 3.4s in CDCl3, 500 MHz
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Figure 3.205. 3*C-NMR Spectrum of 3.4s in CDCl3, 101 MHz
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Figure 3.206. '"H-NMR Spectrum of 3.4t in CDCls, 400 MHz
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Figure 3.207. 3C-NMR Spectrum of 3.4t in CDCl3, 101 MHz
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Figure 3.208. '"H-NMR Spectrum of 3.3t in CDCl3, 500 MHz
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Figure 3.210. '"H-NMR Spectrum of 3.4t in CDCl3, 500 MHz
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Figure 3.211. '>*C-NMR Spectrum of 3.4t’ in CDCls, 126 MHz
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Figure 3.212. '"H-NMR Spectrum of 3.3u in CDCl3, 400 MHz
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Figure 3.213. *C-NMR Spectrum of 3.3u in CDCls, 101 MHz
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Figure 3.214. '"H-NMR Spectrum of 3.4u in CDCl3, 400 MHz
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Figure 3.215. 3C-NMR Spectrum of 3.4u in CDCl3, 101 MHz
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Figure 3.216. 'H-NMR Spectrum of 3.3v in CDCl3, 500 MHz
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Figure 3.217. 3C-NMR Spectrum of 3.3v in CDCl3, 101 MHz
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Figure 3.218. '"H-NMR Spectrum of 3.4v in CDCl3, 500 MHz
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Figure 3.219. 3C-NMR Spectrum of 3.4v in CDCl3, 101 MHz
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Figure 3.220. '"H-NMR Spectrum of $3.19 in DMSO-d6, 500 MHz
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Figure 3.221. 3C-NMR Spectrum of $3.19 in DMSO-d6, 101 MHz
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Figure 3.222. "H-NMR Spectrum of 3.1z in CDCl3, 500 MHz
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Figure 3.223. °’C-NMR Spectrum of 3.1z in CDCI3, 101 MHz
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Figure 3.224. '"H-NMR Spectrum of $3.21 in CDCls, 500 MHz
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Figure 3.225. 3C-NMR Spectrum of 83.21 in CDCI3, 101 MHz
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Figure 3.226. '"H-NMR Spectrum of 3.1aa in CDCl3, 500 MHz
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Figure 3.227. ’C-NMR Spectrum of 3.1aa in CDCl3, 101 MHz
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Figure 3.228. '"H-NMR Spectrum of 3.2y in C¢Ds, 500 MHz
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Figure 3.229. °C-NMR Spectrum of 3.2y in C¢Ds, 126 MHz
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Figure 3.230. *'P-NMR Spectrum of 3.2y in CsDs, 162 MHz
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Figure 3.231. "H-NMR Spectrum of 3.2z in CsDs, 500 MHz
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Figure 3.232. 3C-NMR Spectrum of 3.2z in C¢Ds, 101 MHz
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Figure 3.233. *'P-NMR Spectrum of 3.2z in C¢De, 162 MHz
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Figure 3.234. "H-NMR Spectrum of 3.2aa in C¢Ds, 500 MHz
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Figure 3.235. >C-NMR Spectrum of 3.2aa in CsDs, 126 MHz
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Figure 3.236. *'P-NMR Spectrum of 3.2aa in C¢Ds, 202 MHz
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Figure 3.237. '"H-NMR Spectrum of 3.1t in CDCls, 400 MHz
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Figure 3.238. 3C-NMR Spectrum of 3.1t in CDCl3, 101 MHz
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Figure 3.239. 'H-NMR Spectrum of [Rh(3.2¢)Cl]z in CsDs, 500 MHz
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Figure 3.240. 3C-NMR Spectrum of [Rh(3.2g)Cl]2 in C¢Ds, 126 MHz
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Figure 3.241. 3'P-NMR Spectrum of [Rh(3.2g)Cl]z in C¢Ds, 202 MHz
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Figure 3.242. '"H-NMR Spectrum of 3.5 in C¢De, 500 MHz
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Figure 3.243. *'P-NMR Spectrum of 3.5 in CsD¢, 202 MHz
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Figure 3.244. '"H-NMR Spectrum of 3.1g-d in CDCl3, 400 MHz
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Figure 3.245. 3C-NMR Spectrum of 3.1g-d in CDCl3, 101 MHz
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Figure 3.246. 'H-NMR Spectrum of 3.3g-d in CDCls, 400 MHz
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Figure 3.247. 3C-NMR Spectrum of 3.3g-d in CDCl3, 101 MHz
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Figure 3.248. '"H-NMR Spectrum of 3.4g-d in CDCl3, 400 MHz
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Figure 3.249. 3C-NMR Spectrum of 3.4g-d in CDCl3, 101 MHz
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(The NMR spectra of compounds 3.2a—x, 3.3b—o, 3.3q-s, 3.3u, 3.4b—o, 3.4q-s, 3.4u and *'P-

NMR spectra of compound 3.5 were collected by Dr. Jun Zhu).
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CHAPTER 4

Mono-Directed Catalytic Activation of Unstrained C(Aryl)—C(Alkyl) Bonds in a-Methyl

Phenols

4.1. Introduction

Transition metal catalyzed C—C bond activation has become a useful tool in organic
synthesis.? A deconstructive strategy to synthesize complex natural products with diverse scaffold
is developed in recent years based on the C—C bond activation.? However, most work on C—C
bond activation is still based on the substrates with high ring strain% * or polar functional groups,*®
1i, 1l

which limit the application of C—C bond activation. Activation and functionalization of non-

polar and unstrained C—C bond remains to be a challenge for the organic chemist.

Milstein and co-workers found that the unstrained C(aryl)-C(alkyl) bond in pincer type
ligands could be cleaved and hydrogenated mediated by transition metal (Scheme 4.1).2 Their
detailed mechanism study proved that the C(aryl)—C(alkyl) bond activation went through directly
oxidative addition of the transition metal.®® 39 However, their method typically required

stoichiometric amount of transition metal to realize this transformation. For contrast, the only
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catalytic case shown low efficiency, which caused by the competitive coordination between

substrate and product.®

Inspired by Milstein’s pioneer work, our group developed the catalytic activation of
unstrained C(aryl)—C(aryl) bonds.* Since the product of this reaction become monodentate ligand,
which is less competitive for metal center coordination, our reaction shown very high turn-over
number. In 2022, we extend this reaction to C(aryl)—C(alkyl) bonds activation, which also shown

high catalytic efficiency to give unsymmetric mono-phenols (See Section 3 for details).
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Scheme 4.1. Bidentate Ligand Chelation-Assisted Unstained C—C Bond Activation via Oxidative

Addition.

Milstein, 1993
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However, current methods of unstained C—C bond activation majorly relay on substate with
bidentate directing groups. The bidentate directing group can facilitate the C—C activation in two
aspects, including: (i) forming stable fused bicyclic or spiro-cyclic metallocycle after oxidative
addition; (i1) promoting the ligand exchange between product-metal complex and substrate driven
by entropy, which increase the catalytic efficiency. Although bidentate directing group can make
the C—C activation process become easier, it also restrict the scope and application of this method.
In 2001, Milstein group tested their C—C activation condition on substrate with monodentate
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phosphine directing group, but they cannot detected C—C bond activation product (Scheme 4.2).°
For instead, the only observe product is C—H activation product. In 2002, Whittlesey group found
that the methyl group in IMes ligand of a ruthenium complex could be cleaved upon heating.” To
our knowledge, this work represents the first example of unstrained C—C bond activation of
monodentate ligand. The following calculation study shown that the key intermediate contains
only one IMes ligand on metal center, and the strong electron-donating NHC ligand is crucial for
C—C activation.® In 2018, Kakiuchi group reported an elegant Rh-catalyzed C(aryl)—C(allyl) bond
activation via S-carbon elimination.’ In this work, both pyridine directing group and allyl group

are essential to realize this transformation.
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Scheme 4.2. Monodentate Ligand Chelation-Assisted Unstained C—C Bond Activation.

Milstein, 2001
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To overcome the current limitation on unstained C—C bond activation, we proposed that

through installation of phosphinite directing group, the a-C—C bond of phenols could be cleaved

by hydrogenation (Scheme 4.3). The NHC-coordinated transition metal was expected to be

sufficient electron-rich to undergo oxidative addition into C—C bond, and the subsequential

hydrogenation would generate a-unsubstituted phenol.
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Scheme 4.3. Mono-Directed Catalytic C—C Activation.
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4.2. Discovery and Optimization

Preparation of phosphinite 4.2a worked smoothly under standard condition in 93% yield
(Scheme 4.4). With phosphinite 4.2a in hand, we started to explore the key C—C cleavage reaction.
We firstly tested the combination between different transition metal catalysts and NHC ligands,
such as rhodium, ruthenium and iridium catalyst with IMes and IPr ligands (Table 4.1). However,

no desired product was observed under these conditions.

Scheme 4.4. Preparation of Phosphinite 4.2a.

, _P(Pr),
oH CIP(Pr), o
Me Me NEt, Me Me
MeCN, 100 °C, 16 h
93%
Me Me
4.1a 4.2a
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Table 4.1. Catalysts Screening on C—C Activation of Phosphinite 4.2a.

_P(Pr), catalyst
0 ligand OH oH
Me Me H, (150 psi) Me
or
1,4-dioxane (0.1 M)
150 °C, 12 h
Me silica gel work-up Me Me
4.2a 4.3a 4.4a
Entry Catalyst Ligand Result

1 [Rh(C2H4)2Cll, (5 mol%) IPr (10 mol%) or IMes (10 mol%) n.r.
2 Rh(PPh3)4H (2.5 mol%) IPr (10 mol%) or IMes (10 mol%) n.r.
3 Ru(COD)CI, (10 mol%) IPr (10 mol%) or IMes (10 mol%) n.r.
4 Ru(p-cymene)(PCy3)HCI (5 mol%) IPr (10 mol%) or IMes (10 mol%) n.r.
5 Ru(p-cymene)(PCy3)H, (5 mol%) IPr (10 mol%) or IMes (10 mol%) n.r.
6 Ru(COD)(COT) (5 mol%) IPr (10 mol%) or IMes (10 mol%) n.r.
7 [I(COD)CI], (2.5 mol%) IPr (10 mol%) or IMes (10 mol%) n.r.

Inspired by Whittlesey’s work,” we proposed that we can increase the bulkiness of the
phosphinite to avoid multiple coordination, which would inhibit C—C activation. Thus, we
designed phosphinite 4.5a, which bearing two fert-butyl groups. The preparation of phosphinite
4.5a is not as simple as phosphinite 4.2a, due to the huge steric hindrance of di-ters-
butylchlorophosphine. After condition screening, we found that the desired phosphinite 4.5a could
be obtained in high yield using sodium hydride as base and DMF as solvent (entry 5, Table 4.2).
And a 68% yield of phosphinite 4.5a was got under gram-scale at an elevated temperature (entry

6, Table 4.2).
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Table 4.2. Preparation of Phosphinite 4.5a.

OH o P(BU:
Me Me conditions Me Me
Me Me
4.1a 4.5a
Entry Conditions Result
1 CIP(‘Bu),, NEt;, MeCN, 100 °C, 16 h n.d.
2 CIP(“Bu)z, NEt;, DMF, 100 °C, 16 h low conversion
3 NaH, CIP('Bu),, 1,4-dioxane, 100 °C, 16 h 66% (~85% purity)
4 NaH, CIP('Bu),, THF, 100 °C, 16 h not pure
5 NaH, CIP(Bu),, DMF, 100 °C, 16 h 95%
6 NaH, CIP('Bu),, KI, DMF, 120 °C, 16 h 68% (gram scale)

To our surprise, the first trial on C—C cleavage of phosphinite 4.5a gave the desired product
4.3a in 14% yield with 22% yield of unreacted phenol 4.1a, which proved our original hypothesis
(entry 2, Table 4.3). We tried to decrease the temperature to 100 °C to prevent decomposition (entry

3-4, Table 4.3). However, only trace amount of phenol 4.3a was observed under 100 °C.

Table 4.3. Initial Attempts on C—C Activation of Phosphinite 4.5a.

_P(Bu), catalyst
Q ligand OH oH
Me Me H, Me Me Me
+
1,4-dioxane (0.05 M)
T, 12h
Me HCI work-up Me Me
4.5a 4.3a 4.1a
Entry Catalyst Ligand Temperature H, pressure Result
1 [Rh(C2H4)2Cll, (2.5 mol%) IPr (5 mol%) 150 °C 150 psi trace 4.3a
2 [Rh(C2H4)2Cl]> (2.5 mol%) IMes (5 mol%) 150 °C 150 psi  14% 4.3a + 22% 4.1a
3 [Rh(C2H4)2Cll, (2.5 mol%) IPr (5 mol%) 100 °C 100 psi trace 4.3a
4 [Rh(C2H4)2Cl], (2.5 mol%) IMes (5 mol%) 100 °C 100 psi trace 4.3a

With this preliminary result in hand, we started to screen different metal pre-catalysts. The

first-row metal catalysts were unreactive for our reaction (entry 1-5, Table 4.4). Ruthenium
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catalysts were found to be effective for this transformation (entry 6-14, Table 4.4), in which [Ru(p-
cymene)Clz]> was found to be optimized catalyst to give 25% yield of phenol 4.3a (entry 9, Table
4.4). It worth to notice that all the ruthenium dihydride catalysts did not deliver the desired C—C
cleavage product (entry 8, 12, 14, Table 4.4), which may indicate ruthenium dihydride is not an
intermediate in the catalytic cycle. Rhodium catalysts were also able to deliver phenol 4.3a,
although in a slightly diminished yield (entry 15-17, Table 4.4). Other transition metal catalysts,
such as palladium (entry 18, Table 4.4), iridium (entry 19, Table 4.4) and platinum (entry 20, Table

4.4), were unfruitful for this transformation.

Table 4.4. Catalysts Screening on C—C Activation of Phosphinite 4.5a.

f

B IMe(;a(tg Iﬁél%) oH OH

Me Me H, (150 psi) Me . Me Me
1,4-dioxane (0.05 M)
150 °C, 12 h

Me work-up: Me Me

4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry catalyst 4.3a 41a | Entry catalyst 4.3a 4.1a
1 FeCl, (5 mol%) nd.  100% | M Ru(PPhg)3(CO)HCI (5 mol%) nd.  99%
2 CoCl, (5 mol%) nd.  97% | 12 Ru(PPhg)3(CO)H, (5 mol%) nd.  98%
3 CoClI(PPhs); (5 mol%) nd. 100% | 13 Ru(PPh3)sCl, (5 mol%) n.d. 97%
4 Ni(COD); (5 mol%) nd.  99% | 14 Ru(PPhs)4H, (5 mol%) nd.  92%
5 NiCl,*DME (5 mol%) n.d. 98% | 15 [Rh(COD)Cl], (2.5 mol%) 15%  85%
6 Ru(COD)CI; (5 mol%) 16% 80% 16 Rh(OAc)3 (5 mol%) 10% 84%
7 Ru(p-cymene)(PCy3)HCI (5 mol%) 5% 89% 17 Rh(acac); (5 mol%) 7% 88%
8 Ru(p-cymene)(PCy3)H, (5 mol%) n.d. 94% 18 Pd(COD)ClI; (5 mol%) n.d. 87%
9 [Ru(p-cymene)Cls], (2.5 mol%) 25% 75% 19 [Ir(COD)CI]5 (2.5 mol%) n.d. 91%
10 Ru(PPh3)3HCl<toluene (5 mol%) n.d. 99% 20 Pt(COD)Cl, (5 mol%) n.d. 87%

Besides transition metal catalyst, different reaction temperature were also examined (Table
4.5). A slightly higher yield was obtained under 130 °C. We also screened different ligands for this

reaction (Table 4.6). However, IMes is still the optimized one among all the NHC ligands we tested.
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Table 4.5. Temperature Screening on C—C Activation of Phosphinite 4.5a.

P(Bu),  [Ru(p-cymene)Cl,], (2.5 mol%)

0 IMes (5 mol%) oH OH
Me Me H, (150 psi) Me  Me Me
+
1,4-dioxane (0.05 M)
T°C,12h
Me work-up: Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a

Entry Temperature 4.3a 4.1a

1 170 °C 17% 82%
2 150 °C 20% 7%
3 130 °C 24% 72%
4 110 °C 19% 78%
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Table 4.6. Ligands Screening on C—C Activation of Phosphinite 4.5a.

P(Bu),  [Ru(p-cymene)Cl,], (2.5 mol%)

o ligand (5 mol%) oH OH
Me Me H, (150 psi) Me  Me Me
+
1,4-dioxane (0.05 M)
130 °C, 12 h
Me work-up: Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry ligand 4.3a 4.1a Entry ligand 4.3a 4.1a
1 / 17% 77% 9 SIPr 17% 79%
2 IMes 25% 75% 10 MelPr 1% 83%
3 IMes (Sigma) 31% 62% 1 MeSIPr 8% 85%
4 NHC 1 30% 69% 12 super IPr* 16% 78%
5 H.Me-IMes 27%  73% 13 CyCAAC 19%  76%
6 NHC 2 17%  77% 14 MeCAAC 20%  80%
7 IMxyMe 10% 88% 15 BICAAC 18% 75%
8 IPr 20% 74% 16 MelCy 23% 77%
Me Me Me
Me —\ Me Me > ( Me Me ( Me —\ Me
N\/N N_ N N_ N Me/N\/N
M oo M NS NS oo M
e e x e e
Me Me
Me Me Me Me Me Me Me
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Solvent was found to be crucial for C—C activation reactions. After increasing the catalyst
loading to 5 mol%, we examined some representative solvent on this reaction. Comparing to 1,4-
dioxane, other ether-type solvent such as THF and MeTHF delivered a lower conversion (entry 1-
3, Table 4.7). Aromatic solvent such as benzene and toluene was found to be the optimized solvent
for this transformation, which delivered 45% — 46% yield (entry 4-5, Table 4.7). Considering the
toxicity of benzene and similar yields between benzene and toluene, we picked toluene as our
optimized solvent. Halogenated benzene is not as good as the unsubstituted benzene or toluene
(entry 6-8, Table 4.7). As our expected, strong coordinative solvent such as acetonitrile killed this

reaction (entry 9, Table 4.7).

Table 4.7. Solvent Screening on C—C Activation of Phosphinite 4.5a.

P(Bu),  [Ru(p-cymene)Cls], (5 mol%)

Q IMes (10 mol%) oH OH
Me Me H, (150 psi) Me Me Me
+
solvent (0.05 M)
130 °C, 12 h

Me work-up: Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 41a

Entry Solvent 4.3a 4.1a

1 THF 35% 65%

2 MeTHFE 32% 65%

3 1,4-dioxane 42% 50%

4 benzene 46% 51%

5 toluene 45%  51%

6 PhCI 17% 73%

7 PhF 9% 91%

8 1,2-DFB 10% 82%

9 MeCN n.d. 37%

We then explored different reaction time, reaction temperature and concentration. Longer
reaction time did not increase the reaction yield (entry 1-3, Table 4.8). Since we observed

ruthenium black generated after 12 hours, we proposed to decrease the reaction temperature to
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suppress catalyst decomposition. Unfortunately, lower reaction temperature did not deliver the
promising results (entry 4-6, Table 4.8). Besides temperature, lower or higher concentration was

not able to increase the yield (entry 7-9, Table 4.8).

Table 4.8. Reaction Time, Temperature and Concentration Screening on C—C Activation of
Phosphinite 4.5a.

o P('Bu), [Ru(p-cymene)Cly], (5 mol%)

IMes (10 mol%) oH OH
Me Me H, (150 psi) Me Me Me
+
toluene (x M)
T °C, Time

Me work-up: Me Me

4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry Time Temperature Concentration 4.3a 4.1a
1 12 h 130 °C 0.05 M 45% 51%
2 24 h 130 °C 0.05 M 41% 49%
3 48 h 130 °C 0.05M 43% 53%
4 12 h 120 °C 0.05M 43% 40%
5 12 h 110 °C 0.05 M 30% 54%
6 12 h 100 °C 0.05 M 24% 57%
7 12h 130 °C 0.025 M 38% 61%
8 12h 130 °C 01 M 37% 60%
9 12h 130 °C 0.2 M 41% 50%

Based on our previous mechanism study on ruthenium catalyzed reductive cleavage of
C(aryl)—C(aryl) bond, the real catalyst for this transformation might be ruthenium hydride chloride.
Thus, HCI would be generated when converting RuL,Cl> to RuL,HCI, which can destroy
phosphinite 4.5a. We tried to adding some base to absorb the HCI generated during the reaction
(entry 1-3, Table 4.9). However, extra base cannot increase the reaction yield. We also tested silver
salt additives to convert chloride in the catalyst into other anions (entry 4-9, Table 4.9). Although
adding silver salts did not provide a higher yield for this reaction, we surprisedly found that adding

10 mol% AgBF4 also get 43% yield of phenol 4.3a.
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Table 4.9. Additives Screening on C—C Activation of Phosphinite 4.5a.

O/P(fBu)z [Ru(p-cl:?\/ﬂrzzr}?z)crlﬁ]ozlo(/f)mol%) OH OH
Me H, (150 psi) Me . Me Me
toluene (0.05 M)

Me 13\/\(/)oc’r$(:-’u1p2: " Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry Additives A B
1 2,6-di-tBu-py (0.5 equiv) 34% 52%
2 Cs,CO05 (0.5 equiv) 27% 66%
3 NaH (0.5 equiv) n.d. 83%
4 AgOAc (10 mol%) 16% 81%
5 AgOAc (20 mol%) n.d. 91%
6 AgBF4 (10 mol%) 43% 46%
7 AgSbFg (10 mol%) 34% 60%
8 AgNTF, (10 mol%) 40% 58%
9 NaBArF (10 mol%) 42% 52%

Since we found cationic ruthenium can also catalyze this reaction, we then screened some

ligands (Table 4.10) and temperature (Table 4.11) based on cationic ruthenium catalyst. However,

other ligands and reaction temperatures did not provide a better result.

Table 4.10. Ligands Screening on C—C Activation of Phosphinite 4.5a (Cationic Ruthenium).

Me

[Ru(p-cymene)Cl,], (5 mol%)

_P(Bu), ligand (10 mol%)
0 AgBF, (10 mol%) OH OH
Me H, (150 psi) Me Me Me
+
toluene (0.05 M)
130°C,12h
Me work-up: Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry ligand 4.3a 41a
1 / n.d. 98%
2 SIMes n.d. 94%
3 MelMes 28% 71%
4 IPr 10% 86%
5 dppe N.R.
6 dppp N.R.
7 DPEphos N.R.
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Table 4.11. Temperature Screening on C—C Activation of Phosphinite 4.5a (Cationic Ruthenium).

_P(/Bu), IMes (10 mol%)
0 AgBF, (10 mol%

OH OH
Me Me H, (150 psi) Me  Me Me
+
toluene (0.05 M)
T°C,12h
Me Me

Me

[Ru(p-cymene)Cl,], (5 mol%)
)

work-up:
4.523 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry  Temperature 4.3a 4.1a
1 160 °C 36% 62%
2 150 °C 38% 62%
3 140 °C 42% 58%
4 130 °C 43% 46%
5 120 °C 28% 65%
6 110 °C 14% 83%
7 100 °C 15% 85%

Since we have proven that fert-butyl phosphinite delivered a better result comparing with iso-
propyl phosphinite, we are wondering if the better yield could be obtained using a more electron-
rich and bulky phosphinite. Thus, we synthesized adamentyl phosphinite 4.6a (Scheme 4.5).
However, the C—C cleavage reaction on phosphinite 4.6a didn’t provide a better yield (entry 1,
Table 4.12). But it is interesting that no desired product 4.3a was observed when treating adamentyl

phosphinite 4.6a with cationic ruthenium catalyst (entry 2, Table 4.12).

Scheme 4.5. Preparation of Phosphinite 4.6a.

_P(A
NaH
Me Me Me Me
Kl
DMF, 100 °C

37%

Me Me

4.1a 4.6a

570



Table 4.12. C—C Activation of Phosphinite 4.6a.

o P(Ad), [Ru(p-cymene)Cl,], (5 mol%)

IMes (10 mol%) oH
Me Me H, (150 psi) Me
toluene (0.05 M)
130 °C, 12 h
Me work-up: Me
4.6a 6M HCI, 70 °C, 3 h 4.3a
Entry Additives 4.3a 4.1a
1 / 44% 51%
2 AgBF,4 (10 mol%) n.d. 98%

We then moved to explore more additives, such as extra halide salts (entry 1-3, Table 4.13),

Lewis acid (entry 4-6, Table 4.13), silver fluoride (entry 7, Table 4.13), #°-ligands (entry 8-10,

Table 4.13) and triphenylphosphine oxide (entry 11, Table 4.13). However, none of them delivered

fruitful result. Other reductants, including secondary alcohol (entry 1, 4, 6, Table 4.14), silane

(entry 2, Table 4.14), borane (entry 3, Table 4.14) and Hantzsch ester (entry 5, Table 4.14) were

tested. However all these reductants give no or low conversion.

571



Table 4.13. Additives Screening on C—C Activation of Phosphinite 4.5a (Part 2).

O/P(tBU)z [Ru(p-cymene)Cly], (5 mol%)

Me Me IM::((%)O”;Z:;/O) T Me Me T Me
1,4-dioxane (0.05 M)
130°C,12h
Me work-up: Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry Additives 5.3a 5.1a
1 LiCl (1 equiv) 44% 49%
2 LiBr (1 equiv) 42% 38%
3 Nal (1 equiv) 24% 65%
4 ZnCl, (1 equiv) 36% 42%
5 ZnBr, (1 equiv) 35% 47%
6 Znl, (1 equiv) 22% 62%
7 AgF (20 mol%) 38% 47%
8 Anisole (1 equiv) 43% 48%
9 1,4-dimethoxybenzene (1 equiv) 35% 51%
10  1,3,5-trimethoxybenzene (1 equiv) 38% 49%
11 POPh;3 (1 equiv) 38% 43%
Table 4.14. Reductant Screening on C—C Activation of Phosphinite 4.5a.
O/P(tBU)z [Ru(p-cymene)Cl,], (5 mol%) oH oH
Me Me IMes (10 mol%) Me Me Me
toluene (0.05 M)
Me 13v(\zoerIC(:-’u1p2: " Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry Reductant 4.3a 4.1a
1 iPrOH 5% 71%
2 PhSiH, N.R.
3 Catecholborane N.R.
4 cyclopentanol low conversion
5 Hantzsch ester low conversion
6 cyclohexanol low conversion

To avoid the decomposition of catalyst, we tested our reaction using bidentate NHC ligands,

which can chelate the metal center and stabilize the metal catalyst (Scheme 4.6). However, these

bidentate NHC ligands did not delivered higher yield comparing to simple IMes ligand.
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Scheme 4.6. C—C Activation of Phosphinite 4.5a with bidentate NHC ligands.

_P(B
o P(Bu)

4.5a
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We also explored the kinetic profile of this reaction (Table 4.15). The experimental result

clearly shown that the reaction stopped after 3 hours, which may cause by catalyst decomposition

(Figure 4.1). The kinetic study also explained why the reaction yield remained the same when we

lengthen the reaction time to 24 or 48 hours.

Table 4.15. Kinetic Studies on C—C Activation of Phosphinite 4.5a.

O/P(tBU)z [Ru(p-cymene)Clyl, (5 mol%)
IMes (10 mol%)

Me Me H, (150 psi)
CeDg (0.05 M)
130 °C
Me
4.5a

Entry Time

Yield

2h
3h
4h
5h
6 h

D W N

22%
36%
40%
40%
40%
40%

Figure 4.1. Kinetic Profile on C—C Activation of Phosphinite 4.5a.
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We proposed that adding some extra ligands into the reaction system may prevent catalyst
decomposition. However, extra ligands such as pyridine or electron-deficient phosphine inhibit the
reactivity (entry 2-5, Table 4.16). To our surprise, we found that adding 10 mol% ‘BuOK increase
the reaction yield to 53% (entry 6, Table 4.16). However, further increasing the equivalence of
‘BuOK inhibited the reactivity (entry 7-8, Table 4.16), which indicated the key intermediate in this
reaction is RuL,HCI. Other bases did not work as well as ‘BuOK (entry 9-10, Table 4.16). We also
tested adding extra n6-ligands based on current optimized condition, which was not fruitful (Table

4.17).

Table 4.16. Additives Screening on C—C Activation of Phosphinite 4.5a (Part 3).

[Ru(p-cymene)Cl,], (5 mol%)

O/P(tBU)z IMes (10 mol%) OH OH
NP Radiives Mo Mo K _we
toluene (0.05 M) ’
Me 13v(;oor(l-:’-’u1p2: " Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry Additives 4.3a 41a
1 / 36% 44%
2 pyridine (40 mol%) 7% 60%
3 pyridine (20 mol%) 25% 66%
4 pyridine (10 mol%) 37% 50%
5 P(3,5-CgH3(CF3)2)3 (10 mol%) 7% 83%
6 tBuOK (10 mol%) 53% 40%
7 tBuOK (20 mol%) 15% 66%
8 tBuOK (30 mol%) 8% 62%
9 tBuONa (10 mol%) 8% 78%
10 tBuOLi (10 mol%) 43% 43%
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Table 4.17. Additives Screening on C—C Activation of Phosphinite 4.5a (Part 4).

[Ru(p-cymene)Cl,], (5 mol%)
IMes (10 mol%)
_P(Bu), H, (150 psi) OH

0 fBUOK (10 mol%) oH
Me Me Additives (100 mol%) Me Me Me
+
toluene (0.05 M)
130 °C, 12 h
Me work-up: Me Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a
Entry Additives 4.3a 4.1a
1 p-cymene 51% 33%
2 mesitylene 48% 35%
3 1,2,4,5-tetramethylbenzene 53% 34%
Me Me
Me:C[Me
Me/©\Me Me Me
Me Me mesitylene 1,2,4,5-tetramethylbenzene
p-cymene

The yield of this reaction could be further increased to 59% when increasing the ruthenium
catalyst loading to 10 mol% (entry 1, Table 4.18). Adding silver salt to remove the chloride in this
reaction did not further increase the yield (entry 2, Table 4.18). Other base such as NaOMe and
NaH also did not work well for this reaction (entry 3-4, Table 4.18). We surprisedly found that

adding the catalysts in two batches further increased the yield to 69% (Scheme 4.7).
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Table 4.18. Additives Screening on C—C Activation of Phosphinite 4.5a (Part 5).

. [Ru(p-cymene)Cl,], (10 mol%)
_P(Bu), IMes (20 mol_%) OH OH
H, (150 psi)
Me Me Additives Me Me Me
+
toluene (0.05 M)
130 °C, 12 h
Me work-up: Me Me
6M HCI, 70 °C, 3 h A B
Entry Additives A B
1 tBuOK (20 mol%) 59% 30%
2 AgBF, (20 mol%) / 'BuOK (20 mol%) 51% 28%
3 NaOMe (20 mol%) 18% 65%
4 NaH (20 mol%) 37% 50%

Scheme 4.7. C—C Activation of Phosphinite 4.5a (Adding Catalyst in Two Batches).

[Ru(p-cymene)Cl,], (2x5 mol%)

0,
O/P(tBU)z IMes (2x10 mol%)

H, (150 psi) OH OH
Me Me BUOK (2x10 mol%) Me Me Me
+
toluene (0.05 M)
130 °C, 5+12 h M
Me work-up: e Me
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a

69% 25%

Besides phosphinite 4.5a, we also tested our method on para-phenyl phosphite 4.5b (see
Scheme 4.8 for preparation). For C—C cleavage of phosphinite 4.5b, we found that the mixed
solvent between toluene and 1,4-dioxane can slightly increase the yield and the reproducibility,

which may due to the better solubility of ‘BuOK in 1,4-dioxane than in tolune (Table 4.19).

Scheme 4.8. Preparation of Phosphinite 4.5b.

Me Me NaH (1.1 equiv) Me Me
O KI (5 mol%) O
CIP(tBu), (1 equiv)
DMF, 120 °C, 16 h
‘ 61% O

4.1b 4.5b
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Table 4.19. Solvent Screening on C—C Activation of Phosphinite 4.5b.

Me ‘?,iMe

[Ru(p-cymene)Cl,], (10 mol%)

IMes (20 mol%)
H, (150 psi)
BUOK (20 mol%)

solvent (0.05 M)
130 °C, 12 h
— CH,

HCI work-up

Me

OH

4.3b

H

Entry

Solvent

4.3b

4.1b

o B~ W N

toluene
toluene/1,4-dioxane (9:1)
toluene/1,4-dioxane (3:1)
toluene/1,4-dioxane (1:1)
toluene/1,4-dioxane (1:3)

toluene/1,4-dioxane (1:9)

78%
23%
81%
78%
72%
61%

20%
68%
17%
16%
17%
26%

OH
Me

4.1b

With optimized condition in hand, we started to explore the substrate scope of this reaction

(Scheme 4.9). Para-methyl (4.5a), phenyl (4.5b) and tolyl phosphinites (4.5e) all worked well

under standard condition, to give 65% - 78% yields of C—C cleavage product. The standard

condition can also tolerate fluoride in substrate 4.5¢, which delivered 71% yield of phenol 4.3c.

The exploration of the scope on other substrates is still ongoing.

578



Scheme 4.9. Preliminary Substrate Scope.

Standard condition

[Ru(p-cymene)Cl,), (10 mol%)

Bu . IMes (20 mol%)
\ /Bu .
p H, (150 psi) OH OH
- 4
y (@) y BuOK (20 mol%) Me H + Me Me
e Me
‘%_L toluene/1,4-dioxane (3:1, 0.05 M) @ @
AW 130 °C, 12 h
[<n8 -
CH, 4.3 41
4.5 HCI work-up
0.3 mmol scale, isolated yield
OH
OH OH
OH M H Me H Me H
S ¢ ) g
e 0 ® ®
4.3a, 65% Me
(+4.1a,17%) 4.3b, 74% F 4.3e,78%
0,
(+4.1b, 22%) 4.3c,71% (+4.1e, 22%)

(+4.1¢c, 22%)

4.3. Conclusion

In summary, we have realized mono-directed ruthenium catalyzed nonpolar and unstrained
C(aryl)—C(alkyl) bonds in ortho-methyl phenols. Hydrogen gas was applied as a reductant in this
reaction to deliver demethylated phenols. The key designs to realize this challenged nonpolar and
unstrained C—C bond activation includes: (i) Using phosphinite as a removable direction group to
promote reversible coordination of the metal center; (ii) Using fert-butyl phosphinite to prevent
multiple coordination of phosphinite; (iii) Applying the NHC ligand as a strong electron-donating

ligand, which promote oxidation addition of C—C bond; (iv) Utilizing catalytic amounts of ‘BuOK
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to promote the formation of key RuL,HCI species and remove in-situ generated hydrochloride acid.

The investigations of substrate scope and mechanism of this reaction are still ongoing.

4.4. Experimental

Unless noted otherwise, all solvents were dried by filtration through a Pure-Solv MD-5
Solvent Purification System (Innovative Technology), all reactions were carried out under nitrogen
atmosphere, all commercially available substrates were used without further purification. Thin
layer chromatography (TLC) analysis was run on silica gel plates purchased from EMD Chemical
(silica gel 60, F254). Infrared spectrum was recorded on a Nicolet iS5 FT-IR Spectrometer.
Samples were scanned as neat liquids or dissolved in dichloromethane on potassium bromide (KBr)
salt plates. Frequencies were reported in reciprocal centimeters (cm™'). High-resolution mass
spectra (HRMS) were obtained on an Agilent 6224 TOF-MS spectrometer and were reported for
the molecular ion [M]", [M+Na]*, or [M+H]". MALDI-TOF mass spectra were obtained on a
Bruker Ultraflextreme MALDI-Tof-Tof. X-ray diffraction data were collected at 100(2) K on a
Bruker-Nonius Kappa CCD or Agilent SuperNova AtlasS2 CCD. Nuclear magnetic resonance
(NMR) spectrum ('"H NMR and *C NMR) were recorded with a 400 MHz Bruker Avance-I1I-HD
nanobay spectrometer equipped with a BBFO SmartProbe (400 MHz for 'H, 101 MHz for *C) or
a 500 MHz Bruker Avance-III spectrometer equipped with a 'H (**C,*'P) TXI probe (500 MHz for
'H, 126 MHz for '3C). For CDCl; solutions, the chemical shifts were reported as parts per million
(ppm) referenced to residual protium or carbon of the solvents: CHCI3; 6 H (7.26 ppm) and CDCl3
0 C (77.00 ppm). For benzene-D6 solutions, the chemical shifts were reported as parts per million
(ppm) referenced to residual protium or carbon of the solvents: acetone-D6 6 H (7.16 ppm) and

acetone-D6 & C (128.06 ppm). Coupling constants were reported in Hertz (Hz). Data for 'H NMR
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spectra were reported as following: chemical shift (o, ppm), multiplicity (br = broad, s = singlet, d
= doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet

of doublet of doublets, m = multiplet), coupling constant (Hz), and integration.

General procedure for preparation of phenol 4.1

OH

OH
Pd(dppf)Cl,
B(OH
(OH), CsCO,
+ _——
THF/H,0
Br @

S4.1 S$4.2
4.1

General procedure: To a solution of phenol S4.1 (1 equiv) in THF (~50 mL/25 mmol), boronic

acid S4.2 (1.5 equiv), Pd(dppf)Cl2 (1 mol%), Cs2COs3 (2 equiv) and H20 (~25 mmol/20 mL) were
added at room temperature. The reaction mixture was then heated to reflux. After refluxing for 12
h, the reaction mixture was quenched with HCI (1 M in H>0O) and extracted with dichloromethane
(3 times). The organic phase was dried with Na;SO4 and concentrated under reduced pressure. The

mixture was purified by column chromatography (silica gel) to give pure compound 4.1.

Preparation of compound 4.1c

581



4-Bromo-2,6-xylenol (2.01 g) and 4-fluorophenylboronic acid (2.10 g) was subjected to the
general procedure and recrystallized in CHCls/hexane to afford 1.30 g of 4.1¢ with 60% yield as a

yellow needle crystal.
Ry = 0.43 (hexane : ethyl acetate =4:1)

H NMR (500 MHz, CDCl3) § 7.52 — 7.38 (m, 2H), 7.15 (s, 2H), 7.07 (t, J = 8.7 Hz, 2H), 4.65 (s,

1H), 2.30 (s, 6H).

13C NMR (101 MHz, CDCl3) § 162.0 (d, J = 245.2 Hz), 151.8, 137.2 (d, J= 3.2 Hz), 132.4, 128.2

(d,J=79Hz),127.2,123.3,115.4 (d, J=21.3 Hz), 16.0.
F NMR (376 MHz, CDCl3) 3 -117.0.
Melting point: 116 — 118 °C

Analytic data match the literature.’

Preparation of compound 4.1d

HO
O ‘ OMe
4.1d

4-Bromo-2,6-xylenol (2.01 g) and 3-methoxyphenylboronic acid (2.28 g) was subjected to the

general procedure to afford 1.55 g of 4.1d with 68% yield as a white solid.
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H NMR (500 MHz, CDCl3) § 7.31 (t, J = 7.9 Hz, 1H), 7.21 (d, J= 0.8 Hz, 2H), 7.12 (ddd, J =
7.7,1.7,0.9 Hz, 1H), 7.06 (dd, J=2.6, 1.7 Hz, 1H), 6.84 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 4.67 (s,

1H), 3.85 (s, 3H), 2.30 (d, J= 0.7 Hz, 6H).

I3C NMR (101 MHz, CDCl3) 6 159.8, 151.9, 142.6, 133.2, 129.6, 127.4,123.2,119.3, 112.4, 111.9,

55.3, 16.0.

Analytic data match the literature.’

Preparation of compound 4.1e

4-Bromo-2,6-xylenol (2.01 g) and m-Tolylboronic acid (2.04 g) was subjected to the general

procedure to afford 2.01 g of 4.1e with 95% yield as a yellow oil.

Ry = 0.34 (hexane : ethyl acetate = 4:1)

H NMR (400 MHz, CDCl3) § 7.37 — 7.31 (m, 2H), 7.28 (td, J = 7.4, 0.7 Hz, 1H), 7.21 (s, 2H),

7.13 —7.04 (m, 1H), 4.65 (s, 1H), 2.40 (d, J = 0.8 Hz, 3H), 2.30 (d, J = 0.7 Hz, 6H).

13C NMR (101 MHz, CDCl3) & 151.7, 141.1, 138.1, 133.5, 128.5, 127.5, 127.4, 127.2, 123.8,

123.2,21.5, 16.0.
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General Procedure for preparation of compound 4.5

_P(Bu
OH . NaH o P(BU)
Cl~_.-Bu
. P KI
| DMF @
Bu
4.1 45

General procedure: To a 40 mL sealed tube charged with a stir bar, phenol 4.1 (1.0 equiv.) was

dissolved in dry DMF (10 mL/5 mmol), 5 mol% KI and 1.1 equiv. of NaH was added slowly. After
stirring under room temperature for 10 minutes, 1.1 equiv. of di-fert-butylchlorophosphine was
then added dropwise at room temperature. The mixture was heated to 120 °C under N; atmosphere
overnight. Upon completion of the reaction, the reaction mixture was extracted with pentane in
glovebox, washed with acetonitrile and concentrated to give the corresponding phosphinites,
which were pure enough for the C—C activation reactions. (The phosphinites were sensitive to

moisture and must be stored in the glovebox. HRMS could not be obtained.)

Preparation of compound 4.5a

(tBU)zP/()/\©\

4.5a

2,4,6-Trimethylphenol (1.36 g) was subjected to the general procedure to afford 1.90 g of 4.5a

with 68% yield as a white solid.

'H NMR (500 MHz, CeDe) 8 6.73 (s, 2H), 2.65 (s, 3H), 2.38 (d, J = 38.3 Hz, 3H), 2.13 (s, 3H),

1.15 (s, 9H), 1.13 (s, 9H).
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I3C NMR (126 MHz, CsDs) 6 153.0, 152.9, 131.7, 130.8, 130.0, 36.5, 36.3, 27.7, 27.6, 21.4, 20.5,

18.3.

3P NMR (202 MHz, C¢Ds) 8 160.6.

Preparation of compound 4.5b

o)
(‘Bu),P O

4.5b

4-Phenyl-2,6-dimethylphenol (0.99 g) was subjected to the general procedure to afford 1.04 g of

4.5b with 61% yield as a white solid.

H NMR (500 MHz, C¢D¢) 8 7.55 — 7.48 (m, 2H), 7.28 — 7.19 (m, 4H), 7.16 — 7.11 (m, 1H), 2.69

(s, 3H), 2.42 (dd, J = 42.8, 0.7 Hz, 3H), 1.16 (s, 9H), 1.13 (s, 9H).

31pP NMR (202 MHz, C¢De) 5 162.0.

Preparation of compound 4.5¢

(’Bu)zP/O O

4.5¢
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Compound 4.1¢ (0.54 g) was subjected to the general procedure to afford 0.6032 g of 4.5¢ with

67% yield as a white solid.

H NMR (500 MHz, CsDg) & 7.27 — 7.20 (m, 2H), 7.08 (s, 2H), 6.92 — 6.84 (m, 2H), 2.69 (s, 3H),

2.38 (s, 3H), 1.16 (s, 9H), 1.14 (s, 9H).

13C NMR (126 MHz, C¢Ds) & 162.6 (d, J = 245.0 Hz), 154.75, 154.73, 137.5 (d, J = 3.3 Hz),

134.0, 129.7, 128.7 (d, J= 7.7 Hz), 115.7 (d, J = 21.1 Hz), 36.6, 36.3, 27.7, 27.6, 21.7, 18.5.
31pP NMR (202 MHz, CeDe) 5 162.1.

19F NMR (470 MHz, C¢Ds) 5 -116.7.

Preparation of compound 4.5e

.0
(Bu),P O

4.5¢

lMe

Compound 4.1e (0.53 g) was subjected to the general procedure to afford 0.5943 g of 4.5¢ with

67% yield as a white solid.

TH NMR (500 MHz, C¢Ds) & 7.43 — 7.37 (m, 2H), 7.27 (s, 2H), 7.24 — 7.19 (m, 1H), 7.04 — 6.96

(m, 1H), 2.70 (s, 3H), 2.39 (s, 3H), 2.21 (s, 3H), 1.16 (s, 9H), 1.14 (s, 9H).

I3C NMR (126 MHz, CsDs) 8 154.7, 154.7, 141.5, 138.2, 135.3, 129.9, 128.9, 127.7, 124.5, 36.6,

36.3,27.7,27.6,21.9, 21.6, 18.6.
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3P NMR (202 MHz, C¢Ds) 8 161.7.

General procedure for C—C bond cleavage

[Ru(p-cymene)Cl,], (10 mol%)

0,
o P(Bu), IMes (20 mol%)

H, (150 psi) OH
Me\‘/Me BUOK (20 mol%) ‘/Me eMe
@ toluene/1,4-dioxane (3:1, 0.05 M)
130 °C, 16 h
4.5 work-up: 41

6M HCI, 70 °C, 3 h

General procedure: To a flame dried 4 mL vial charged with a stir bar, IMes (18.3 mg, 0.060

mmol), [Ru(p-cymene)Cl]> (18.4 mg, 0.030 mmol) and 1,4-dioxane (1.5 mL) were added in
glovebox. After stirring at room temperature for 5 minutes, ‘BuOK (6.7 mg, 0.060 mmol) was
added to the vial. The catalyst solution was stirred for another 10 minutes. To a Q-tube charged
with a stir bar, phosphinite 4.5 (0.3 mmol), previous prepared catalyst solution (1.5 mL), and
toluene (4.5 mL) were added in the glovebox. The Q-tube was then resembled and taken out of the
glovebox. The reaction mixture was flushed with hydrogen gas for 10 times and then charged with
150 psi Hz followed by heating to 130 °C in a pre-heated oil bath for 16 h.. After the reaction was
completed, the H» pressure was released. The reaction mixture was then charged with HCI (3 mL,
6 M in H20). After stirring at 70 °C for 3 h under N> atmosphere, the reaction mixture was extracted
by dichloromethane (10 mL X 3). The organic phase was concentrated under reduced pressure. The

residue was purified by column chromatography (silica gel) to give pure compound 4.3 and 4.1.

Preparation of compounds 4.3a

587



[Ru(p-cymene)Cl,], (10 mol%)
IMes (20 mol%)

o’ H, (150 psi)
Me Me BUOK (20 mol%)
toluene/1,4-dioxane (3:1, 0.05 M)
130 °C, 16 h
Me work-up:
4.5a 6M HCI, 70 °C, 3 h 4.3a 4.1a

Compound 4.5a (84.1 mg) was subjected to the general procedure to afford 23.7 mg of 4.3a with

65% yield as a white solid and 6.8 mg 4.1a with 17% yield as a white solid.

Analytical data of compound 4.3a:

Ry = 0.37 (hexane : ethyl acetate = 4:1)

IH NMR (500 MHz, CDCl:) & 6.95 (d, J=2.2 Hz, 1H), 6.89 (dd, J = 8.1, 2.2 Hz, 1H), 6.68 (d, J

= 8.1 Hz, 1H), 4.76 (s, 1H), 2.27 (s, 3H), 2.24 (s, 3H).

I3C NMR (126 MHz, CDCl3) § 151.5, 131.6, 129.8, 127.4, 123.4, 114.7, 20.4, 15.6.

Analytic data match the literature.’

Analytical data of compound 4.1a:

Ry = 0.43 (hexane : ethyl acetate = 4:1)

'H NMR (500 MHz, CDCl3) & 6.79 (s, 2H), 4.45 (s, 1H), 2.22 (d, J = 2.5 Hz, 9H).

I3C NMR (126 MHz, CDCl3) & 149.9, 129.3, 129.1, 122.7, 20.4, 15.8.

Analytic data match the literature.’
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Preparation of compounds 4.3b

1 - [
o P(‘Bu), [Ru(p-cymene)Cl,], (10 mol%) OH OH
IMes (20 mol%)

M M Me Me Me
© © H, (150 psi) .
BUOK (20 mol%)
toluene/1,4-dioxane (3:1, 0.05 M)
O 130 °C, 16 h ‘ O
work-up:

4.5b 6MHCI, 70°C, 3h 4.3b 4.1b

Compound 4.5b (102.8 mg) was subjected to the general procedure to afford 40.8 mg of 4.3b with

74% yield as a white solid and 12.9 mg 4.1b with 22% yield as a white solid.

Analytical data of compound 4.3b:

Ry =0.31 (hexane : ethyl acetate = 4:1)

IH NMR (500 MHz, CDCL3) § 7.65 — 7.53 (m, 2H), 7.44 (t, J = 7.7 Hz, 2H), 7.41 (d, J = 2.3 Hz,

1H), 7.38 — 7.29 (m, 2H), 6.86 (d, J= 8.2 Hz, 1H), 4.98 (s, 1H), 2.35 (s, 3H).

13C NMR (126 MHz, CDCl3) & 153.3, 140.9, 133.9, 129.8, 128.6, 126.7, 126.6, 125.7, 124.0,

115.2, 15.9.

Analytic data match the literature.’

Analytical data of compound 4.1b:

Ry = 0.40 (hexane : ethyl acetate = 4:1)

H NMR (500 MHz, CDCl3) & 7.57 — 7.49 (m, 2H), 7.39 (dd, J= 8.5, 7.0 Hz, 2H), 7.31 — 7.25 (m,

1H), 7.22 (s, 2H), 4.66 (s, 1H), 2.31 (s, 6H).

13C NMR (126 MHz, CDCl3) 6 151.8, 141.1, 133.4, 128.6, 127.4, 126.7, 126.5, 123.3, 16.0.
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Analytic data match the literature.’

Preparation of compounds 4.3¢

1 - [)
o P(‘Bu), [Ru(p-cymene)Cl,], (10 mol%) OH OH
IMes (20 mol%)

Me M
Me Me H, (150 psi) L
‘BuOK (20 mol%)
toluene/1,4-dioxane (3:1, 0.05 M)
O 130 °C, 16 h ‘ O
work-up:
F

Me

£ 6M HCI, 70 °C, 3 h

4.5¢c 4.3c 4.1c

Compound 4.5¢ (108.1 mg) was subjected to the general procedure to afford 42.9 mg of 4.3¢ with

71% yield as a white solid and 14.0 mg 4.1¢ with 22% yield as a white solid.

Analytical data of compound 4.3¢:

Ry = 0.33 (hexane : ethyl acetate = 4:1)

H NMR (400 MHz, CDCls) & 7.50 — 7.42 (m, 2H), 7.29 (d, J= 2.4 Hz, 1H), 7.26 — 7.21 (m, 1H),

7.11 - 7.04 (m, 2H), 6.81 (d, J= 8.2 Hz, 1H), 4.87 (s, 1H), 2.30 (s, 3H).

13C NMR (101 MHz, CDCl3) & 162.0 (d, J = 245.4 Hz), 153.3, 137.1 (d,J= 3.3 Hz), 133.0, 129.7,

128.2 (d, J=8.0 Hz), 125.6, 124.1, 115.5, 115.3 (d, J= 6.8 Hz), 15.9.

F NMR (376 MHz, CDCl3) 5 -116.8.

Analytic data match the literature.’

Analytical data of compound 4.1¢ see above.
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Preparation of compounds 4.3e

o P(Bu), [Ru(p-cymene)Cl,], (10 mol%)
IMes (20 mol%)

OH OH

Me M M
Me Me H, (150 psi) © €
BUOK (20 mol%)
+
toluene/1,4-dioxane (3:1, 0.05 M)
O 130°C, 16 h ‘ O
Me work-up: Me Me

6M HCI, 70 °C, 3 h
4.5e 4.3e 4.1e

Compound 4.5e (106.9 mg) was subjected to the general procedure to afford 46.7 mg of 4.3e with

78% yield as a white solid and 14.2 mg 4.1e with 22% yield as a yellow oil.

Analytical data of compound 4.3e:

Ry = 0.37 (hexane : ethyl acetate =4:1)

H NMR (400 MHz, CDCl3) § 7.33 (dt, J = 10.2, 2.1 Hz, 3H), 7.30 — 7.24 (m, 2H), 7.10 (dd, J =

7.5, 1.8 Hz, 1H), 6.79 (d, J= 8.2 Hz, 1H), 4.93 (s, 1H), 2.39 (s, 3H), 2.29 (s, 3H).

13C NMR (101 MHz, CDCl3) & 153.3, 140.9, 138.2, 134.0, 129.8, 128.5, 127.5, 127.3, 125.7,

124.0, 123.8, 115.2, 21.5, 15.9.

Analytical data of compound 4.1e see above.

4.5. NMR Spectra

591



Figure 4.2. "H-NMR Spectrum of 4.1¢ in CDCl3, 500 MHz
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Figure 4.4. "F-NMR Spectrum of 4.1¢ in CDCl3, 376 MHz
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Figure 4.5. "H-NMR Spectrum of 4.1d in CDCl3, 500 MHz
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Figure 4.7. "H-NMR Spectrum of 4.1e in CDCl3, 400 MHz
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Figure 4.9. "H-NMR Spectrum of 4.5a in C¢Ds, 500 MHz
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Figure 4.11. 3'P-NMR Spectrum of 4.5a in C¢Ds, 202 MHz
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Figure 4.12. "H-NMR Spectrum of 4.5b in CsDs, 500 MHz
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Figure 4.14. "H-NMR Spectrum of 4.5¢ in CsDs, 500 MHz
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Figure 4.16. *'P-NMR Spectrum of 4.5¢ in C¢Ds, 202 MHz
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Figure 4.17. ’F-NMR Spectrum of 4.5¢ in C¢Ds, 470 MHz
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Figure 4.18. "H-NMR Spectrum of 4.5e in CsDs, 500 MHz
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Figure 4.20. *'P-NMR Spectrum of 4.5e in C¢Ds, 202 MHz
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Figure 4.21. "H-NMR Spectrum of 4.3a in CDCl3, 500 MHz
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Figure 4.22. C-NMR Spectrum of 4.3a in CDCl3, 126 MHz
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Figure 4.23. "H-NMR Spectrum of 4.1a in CDCl3, 500 MHz
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Figure 4.25. "TH-NMR Spectrum of 4.3b in CDCl3, 500 MHz
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Figure 4.27. 'H-NMR Spectrum of 4.1b in CDCl3, 500 MHz
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Figure 4.28. >*C-NMR Spectrum of 4.1b in CDCl3, 126 MHz
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Figure 4.29. 'H-NMR Spectrum of 4.3¢ in CDCl3, 400 MHz
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Figure 4.31. ’F-NMR Spectrum of 4.3¢ in CDCl3, 376 MHz
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Figure 4.32. "H-NMR Spectrum of 4.3e in CDCl3, 400 MHz
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