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ABSTRACT 

 

Genetic variation contributes greatly to differences between people, including differences 

in susceptibility to disease. A critical way that genetic variation influences traits is through impacts 

on gene regulation. In particular, context-specific gene regulation only visible during certain points 

in an organism’s development or under specific conditions is likely an important and understudied 

contributor to trait and disease variation. Using induced pluripotent stem cell-derived 

chondrogenic cells and in vitro mechanical and cytokine treatments, I characterized a system to 

study context-specific gene regulation in the lab, with relevance to the joint disease osteoarthritis 

(OA). First, I used bulk and single cell transcriptional information from iPSC-derived 

chondrogenic cells (iPSC-chondrocytes) from three individuals subjected to control and 

mechanical stress conditions used to model OA. From this study, I found that patterns of gene 

expression that differ between conditions are relevant for gene sets related to joint health and OA. 

I also found examples of genes that exhibit inter-individual differences in responses to 

biomechanical strain, potentially representing examples of gene-by-environment interactions in 

response to perturbations. I expanded this system to survey transcription from iPSC-chondrocytes 

derived from 22 genotyped individuals under static, biomechanical strain, and inflammatory 

cytokine conditions. Through this study, I found shared and unique gene expression patterns that 

are activated in iPSC-chondrocytes in response to the two treatments. I further performed 

expression quantitative trait locus (eQTL) mapping to correlate genetic variation to gene regulation 

in each treatment condition. By comparing eQTLs between conditions, I determined a set of 

dynamic response eQTLs that are only visible in specific environmental contexts and represent the 

effects of gene-by-environment interactions on gene regulation. This work represents a study of 
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genetic control of gene regulation in a disease-relevant cell type in disease-relevant environmental 

contexts.  
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CHAPTER 1 

INTRODUCTION

 

1.1 Human genetics and the genetic determinants of phenotypic diversity in humans 

Humans share 99.5% sequence identity across a genome containing 3 billion nucleotides 

[1], and the wide range of phenotypic diversity observed between individuals results from 

variation in the remaining 0.5% as well as epigenetic differences and differences in 

environmental exposures. A primary goal of human genetics is to identify genetic contributions 

to observed phenotypic variation, including variation in disease phenotypes. Knowledge of how 

genetic variation contributes to human disease variation can aid in the development of prediction 

tools, allow for the establishment of preventative measures, and guide treatments for diseases in 

the clinic. Many advances in human genetics, including genome-wide association studies 

(GWAS), clarified somewhat the correlation between genetic variation and trait variation. 

GWAS take measurements of genetic variants at hundreds of thousands to millions of locations 

(loci) in the genomes of study subjects and test these variants for statistical associations with 

phenotypic measurements from the same individuals. GWAS have been performed for hundreds 

of human traits and diseases [2], revealing that many phenotypes, despite being highly heritable,  

often have polygenic genetic architectures. Such complex traits result from the actions of and 

interactions between many genes, in contrast to monogenic phenotypes that result from 

mutations in a single gene. One example of a highly heritable complex human phenotype is 

height, which varies considerably across human populations and results from the aggregate effect 
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of hundreds of genetic variants throughout the genome, each contributing small effects and 

interacting with each other and the environment [3]. 

In GWAS of complex traits, trait-associated genetic loci that fall within protein-coding 

regions of the genome can be biochemically predicted to directly impact the structure and 

function of proteins. However, most trait-associated loci fall within non-coding regions, which 

make up over 99% of the human genome [2]. While it is difficult to predict and test the 

functional consequences of variants in non-coding regions, these regions may impact phenotypes 

indirectly by regulating the expression of gene products rather than their structure. Determining 

which gene is impacted by a particular trait-associated variant is also a challenging task, as 

regulatory sequences may be far from the genes they impact [4,5]. Additionally, isolating the 

causal variant driving a trait association is further complicated by linkage disequilibrium, or the 

tendency of neighboring genetic variants to correlate with each other due to co-segregation 

during meiotic recombination [6]. Therefore, more broadly identifying which non-coding loci 

impact gene regulation is currently an active area of study in human genetics, which will help to 

clarify the mechanisms of action by which trait-associated non-coding genetic loci impact 

phenotypes [7,8]. 

 

1.2 Identifying the potential functional role of trait-associated variants 

Regulatory quantitative trait locus (QTL) mapping is one method that is helping to 

elucidate the potential functional role of genetic variants in non-coding genomic loci. Much like 

in GWAS, QTL approaches seek to statistically associate variation at genomic loci with 

phenotypic variation. However, the phenotypes of interest for QTL analyses are typically 

intermediate regulatory molecular phenotypes such as RNA or protein expression levels [9–11]. 
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Thus, regulatory QTLs can offer potential explanations as to how trait-associated genomic 

variants may mechanistically impact their associated traits. For example, suppose a genetic locus 

is associated with both a trait and the transcriptional expression levels of a gene, making it both a 

GWAS locus and an expression QTL (eQTL). In that case, it is plausible that this genetic locus 

impacts its associated trait by regulation of an intermediate gene expression phenotype. This 

potential mechanism becomes more credible when the locus acts as an eQTL in a relevant cell 

type (e.g., developing bones) and acts on relevant genes (e.g., genes regulating growth and 

development). Regulatory QTLs for gene expression, splicing, and chromatin accessibility are all 

enriched among trait-associated genetic variants [12,13], suggesting that genetic variants have 

the potential to mediate their effects on complex traits through many mechanisms of gene 

regulation. In addition to clarifying these mechanisms, regulatory QTLs can also help to reveal 

novel trait-associated loci. For instance, GWAS are often underpowered to detect the many 

genetic loci associated with complex traits because these loci contribute very small effects to the 

overall heritability of their associated traits [14]. However, the statistical power of this approach 

can be increased by incorporating prior information of which genetic loci have evidence for 

functional effects [15]. Thus, integrating regulatory QTL (especially eQTL) studies with GWAS 

has both the potential to enhance the discovery of complex trait-associated genetic loci and to 

uncover an understanding of the biology underlying those complex traits. 

When designing regulatory QTL analyses to examine trait-associated loci, an important 

consideration is the cell and tissue type of interest. While the genetic sequences of cells 

throughout an organism’s body are almost entirely identical, gene regulatory patterns can differ 

substantially from tissue to tissue and from cell type to cell type [16]. Depending on the complex 

trait of interest, functionally consequential regulatory changes may be isolated to specific cell 
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types or tissues, making it essential to study regulatory QTLs in many cell types. One 

coordinated effort to broadly study eQTLs in dozens of human tissues was the Genotype-Tissue 

Expression (GTEx) consortium [17], first established in 2010 and completed in 2020. The GTEx 

project collected RNA sequencing and genotype data from 54 adult tissues and cell lines across 

838 donors. With these data, the project has mapped over 4.2 million eQTLs in at least one of the 

studied tissues, including at least one eQTL for 94.7% of all protein coding genes, representing a 

large step towards understanding the cell type specificity of gene regulatory programs in human 

cell types [17]. However, while the great wish of QTL analyses is to explain trait associations, 

applying even this massive collection of detected eQTLs to existing GWAS loci has been less 

than satisfying. Only 43% of GWAS disease-associated loci are also classified as GTEx eQTLs 

in any tissue [17]. While this low proportion may be attributed to a lack of power with current 

eQTL study sample sizes or to the contribution of other regulatory QTLs aside from eQTLs, 

there may be further explanations to clarify this gap [18]. 

 

1.3 Context-specificity of gene regulation and dynamic eQTLs 

Context-specific gene regulation likely contributes to the gap in disease-association 

eQTLs. Much like different cell and tissue types, a cell’s environmental context and state are 

also integral determinants of gene regulation. An expansive definition of cell state encompasses 

cell type, the stage of differentiation, and the cellular environment brought on by infection, local 

nutrient availability, signaling, or other perturbations. Genetic variants associated with complex 

traits may only impact gene regulation under specific conditions. Thus, it is possible that 

condition-specific eQTLs play essential roles in mediating the effects of trait-associated genetic 

loci. Prior eQTL research has predominantly focused on cells and tissues collected at steady-state 
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conditions (static eQTLs), which are often shared across tissues and are not disease- or context-

specific [5,18]. However, as gene regulation is highly dynamic and context-specific, the potential 

of identifying eQTLs throughout continuous cellular differentiation and environmental 

perturbation states has not been fully realized.  

Furthermore, non-steady state environmental contexts, including cellular stress, infection, 

or chemical stimuli, may represent selective pressures that have shaped inter-population and 

potentially inter-individual genetic variation [19]. Along this line, dynamic eQTLs, or eQTLs 

associated with gene expression in certain developmental or environmental states but not others, 

can better explain trait-associations than static eQTLs that have been identified in more powerful 

studies [16,20,21]. Therefore, it becomes important to consider the nature of gene regulation in 

disease-relevant cell types and within dynamic temporal and environmental contexts to more 

fully understand the genetic basis of complex human traits and diseases. As such, dynamic eQTL 

studies offer a potentially fruitful complementary approach to solving the eQTL-trait associated 

variant gap as opposed to increasing the size of static eQTL studies. 

 

1.4 Genetic and environmental underpinnings of osteoarthritis susceptibility 

 One complex human disease where both genetic variation and environmental context is 

highly relevant is the joint disease osteoarthritis (OA). OA is characterized by progressive 

articular cartilage degeneration, altered bone structure resulting from changes to the 

biomechanics of movement at affected joints, pain, and low-grade chronic joint inflammation. 

OA affects 12% of adults in the United States between 25-74 years of age [22], and this 

proportion is expected to increase as the population ages and the prevalence of obesity increases. 

There are no disease-modifying treatments for this disorder, which often results in disability and 
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joint replacement. Although initially described as a disease of “wear and tear,” OA is now 

known to result from perturbations of joint homeostasis. These perturbations trigger active 

disease processes, including excessive degradation of extracellular matrix [23], hypertrophy and 

mineralization of chondrocytes (the primary cells of cartilage) [24], and increased apoptosis of 

chondrocytes [25,26]. Furthermore, gene expression patterns differ between intact and degraded 

cartilage in OA patients, reflecting the activation of biological pathways associated with OA 

[27,28]. 

Genetic variation plays a meaningful role in OA risk. The heritability of OA, estimated 

through familial and twin studies, is between 40-70% depending on the affected joint [29,30]. 

Large-scale GWAS of OA have identified over 100 disease-associated variants at 95 independent 

loci throughout the genome, meaning OA is a highly polygenic disease [31,32]. As these known 

OA-associated loci still only account for around one-fifth of the measured heritability of OA, 

though, there remain many more loci to be discovered [33].  

The effect sizes of individual OA-associated variants are typically small, and they usually 

reside in non-coding regions of the genome, with less than 10% of OA-associated variants found 

in protein-coding sequences [32]. However, many OA-implicated variants are located near genes 

that code for protein components of the extracellular matrix that encase chondrocytes in cartilage 

tissue, genes that are integral during cartilage and bone development, and genes involved in 

mechanosensation and mechanoadaptation [31]. OA-associated variants are also enriched in gene 

regulatory elements that impact chondrocyte development and joint shape formation [34,35], 

suggesting that genetic contributions to OA risk may mediate their effects at least partly during 

joint development rather than solely in later life. 
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While genetics seem to have a clear influence on OA risk and susceptibility,, 

observational and experimental evidence also points to the importance of environmental factors 

in determining joint disease risk. Two important factors include mechanical stress and 

inflammation, and it remains a question of active debate within the field as to whether OA is 

primarily a mechanical or inflammatory disease. 

 

1.4.1 The influence of the joint mechanical environment on OA 

Biomechanical factors are particularly interesting in OA as joint health is impacted 

negatively by excessive [36–39] or insufficient [39–41] mechanical loading. In animal models, 

surgically-induced joint instability leads to changes in biomechanical loading at joints that result 

in the development of skeletal changes that mimic early human OA [42–49]. Similarly, human 

joint developmental abnormalities, such as hip dysplasia that alters the load distribution at joints 

with an increased cumulative contact stress-time, are also associated with increased risk for OA 

[50–53]. Biomechanical stress caused by acute joint injuries can also lead to post-traumatic OA, 

which is responsible for 12% of the overall burden of OA [54]. Furthermore, even in uninjured 

human joints, observational studies of physically demanding occupations, ranging from miners 

to professional sports players, suggest that repetitive excessive joint loading is associated with 

early onset of OA [55–61]. Biomechanics can promote healthy homeostasis in normal loading 

conditions and lead to dysregulation and degeneration in non-physiologic loading conditions. 

This external force may mediate its effect on joints through gene regulation. 

Studying molecular responses to mechanical stress in the context of OA development at 

an organismal level is difficult. Still, the impact of biomechanical factors on joint health has been 

modeled in the lab. For example, in vitro models have measured the response of joint cells to 
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mechanical stress treatments, including the effect on cultured primary joint cell viability, joint 

chondrocyte calcification, and developmental regulatory factor expression in chondrocytes [62–

67]. Additionally, in vitro biomechanical stress models using cultured primary joint cells have 

been developed that use specific types and patterns of biomechanical strain to induce 

transcriptional and biochemical changes characteristic of human OA [68–71]. Altogether, these 

systems allow for further investigation of the mechanisms by which mechanical forces contribute 

to the pathogenesis of OA, particularly at load-bearing joints such as the hips and knees. 

 
 

1.4.2 The influence of the joint inflammatory environment on OA 

While the appreciation for mechanical forces in OA development and progression is 

longstanding, it has also been long known that low grade chronic inflammation is a common 

symptom of this disease and that it plays a role in the process of cartilage degeneration and 

repair, even in early stages [72–75]. The inflammation observed in OA is characterized by an 

innate immune response rather than an adaptive autoimmune response in which the body’s 

immune cells attack its own joint tissues as is the case in rheumatoid arthritis. 

Joint inflammation, also known as synovitis, can be triggered by factors like 

biomechanical stress, which stimulate immune and synovial cells to release early-stage 

inflammatory cytokines such as interleukin-1 beta (IL-1β) and downstream inflammatory 

molecules [76]. Subsequently, inflammation pathways initiated by immune cells induce the 

expression of catabolic enzymes in chondrocytes, including matrix metalloproteinases, that work 

to degrade the extracellular matrix surrounding chondrocytes in cartilage [77,78]. Inflammatory-

stimulated chondrocytes also make specific pro-inflammatory molecules that help to initiate and 
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perpetuate low grade inflammation in the OA joint [79,80]. Inflammation can be triggered by age 

or conditions that create a pro-inflammatory environment such as obesity. For example, the 

metabolic disorders diabetes or obesity, which are known to increase inflammatory activity 

throughout the body, increase risk for OA in non-load-bearing joints like the hands [81]. 

Therefore, although increased biomechanical stress on load-bearing joints in obesity may directly 

or indirectly contribute to OA through mechanically-induced inflammatory responses, the close 

link between obesity and OA may also be due to the high levels of circulating pro-inflammatory 

cytokines common in this metabolic disease, which can lead to increased synovitis [82]. 

In animal models and in vitro models of OA, exposing joint cells to the inflammatory 

cytokines IL-1β and TNFα suppresses the synthesis of extracellular matrix components such as 

proteoglycans and type II collagen, induces chondrogenic apoptosis, and promotes the 

expression of matrix metalloproteinases by chondrocytes [77,78,83–87], all processes observed 

in human OA. Overall, inflammation mediated through the release of inflammatory cytokines by 

immune cells and joint cells contribute to the pathogenesis and progression of OA. Moreover, in 

vitro inflammatory cytokine treatment systems allow for further investigation of the mechanisms 

by which inflammatory forces contribute to the pathogenesis of OA. 

 

1.5 iPSC-derived cell types for quantitative genetic studies of gene regulation 

Given the complex combination of genetic and environmental factors that play a driving 

role in susceptibility to OA, this disease could benefit from additional studies of gene regulation 

and gene-by-environment interactions. Nevertheless, it is difficult to obtain adequate high-

quality cell and tissue samples from many healthy human joints. Indeed, despite its expansive 

survey of tissues and cell lines, the GTEx project does not include any gene expression data from 



 10 

bone and cartilage [17]. Conversely, in vitro differentiated cell types have great potential to 

expand the scope of eQTL studies, allowing access to cell types that are otherwise difficult to 

obtain due to obstacles surrounding their sample collection or their rarity in adult human 

subjects. 

Such cell types can be differentiated from induced pluripotent stem cells (iPSCs), which 

are cells reprogrammed from adult somatic cells into a pluripotent state [88]. iPSCs can be 

generated ethically and noninvasively from many volunteer subjects by inducing the transient 

expression of a few transcription factors in adult cell types like skin fibroblasts or transformed B 

cells [89–91]. In addition to their ever-increasing accessibility, iPSCs can also self-replicate and 

be cryopreserved, meaning they can serve as a dependable renewable resource for functional 

genomics studies. Further, differentiating iPSCs into desired cell types using established 

protocols allows otherwise difficult to access cells to be studied in the lab [92]. Of note, iPSCs 

and iPSC-derived cell types reliably recapitulate the gene expression patterns of their primary 

cell counterparts and have been successfully used to identify several types of static and dynamic 

regulatory QTLs [16,20,93–96]. Finally, the existence of genetically diverse iPSC panels makes  

performing QTL studies in differentiated cells a realistic possibility, allowing for studies of the 

genetic basis of gene regulation and gene-by-environment interactions in many different cell 

types [96,97]. 

 

1.6 Dissertation overview 

The work I will present in this dissertation examines the role of gene-by-environment 

interactions in determining inter-individual susceptibility for OA. In chapter two, I describe the 

establishment and characterization of a system for investigating gene regulation and gene-by-
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environment interactions in iPSC-derived chondrogenic cells (iPSC-chondrocytes) and in vitro 

environmental treatments. I also describe the potential of this system for use in studies of gene 

regulation relevant to OA. In chapter three, I describe the use of this system to identify 

differential gene regulation responses between two established models of OA. I also use a 

quantitative genetics approach to identify genetic variation associated with gene expression 

variation in iPSC-chondrocytes in several different environmental contexts, as well as context-

specific associations that represent the effects of gene-by-environment interactions on gene 

regulation. Overall, these analyses establish iPSC-derived joint cells and in vitro OA treatments 

as tractable and powerful models of context-specific gene regulation for improving our 

understanding of joint health and OA. 

  



 12 

CHAPTER 2 

CHARACTERIZING GENE EXPRESSION IN AN IN VITRO BIOMECHANICAL 

STRAIN MODEL OF JOINT HEALTH 

 

2.1 Abstract1 

Both genetic and environmental factors appear to contribute to joint health and disease. 

For example, pathological levels of biomechanical stress on joints play a notable role in initiation 

and progression of osteoarthritis (OA), a common chronic degenerative joint disease affecting 

articular cartilage and underlying bone. Population-level gene expression studies of cartilage 

cells experiencing biomechanical stress may uncover gene-by-environment interactions relevant 

to human joint health. To build a foundation for population-level gene expression studies in 

cartilage, we applied differentiation protocols to develop an in vitro system of chondrogenic cell 

lines (iPSC-chondrocytes). We characterized gene regulatory responses of three human iPSC-

chondrocyte lines to cyclic tensile strain treatment. We measured the contribution of biological 

and technical factors to gene expression variation in this system. We identified patterns of gene 

regulation that differ between strain-treated and control iPSC-chondrocytes. Differentially 

expressed genes between strain and control conditions are enriched for gene sets relevant to joint 

health and OA. Furthermore, even in this small sample, we found several genes that exhibit inter-

individual expression differences in response to mechanical strain, including genes previously 

implicated in OA. Expanding this system to include iPSC-chondrocytes from a larger number of 

 
1 This chapter is reproduced, with some modification, from Hung A, Housman G, Briscoe EA et al. Characterizing 
gene expression in an in vitro biomechanical strain model of joint health [version 1; peer review: 1 approved with 
reservations.] F1000Research 2022, 11:296 (https://doi.org/10.12688/f1000research.109602.1) 
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individuals will allow us to characterize and better understand gene-by-environment interactions 

related to joint health. 

 

2.2 Introduction 

Disorders of the joints can often lead to pain and disability and have far-reaching impacts 

on quality of life. For example, osteoarthritis (OA) is a chronic degenerative joint disease 

characterized by defects in articular cartilage integrity and alterations to underlying bone 

structure [98]. OA is a major cause of disability in older adults and impacts approximately 300 

million people worldwide [99]. There are no disease-modifying treatments for this painful 

disorder, and its specific pathogenic mechanisms are still under investigation.  

Genome-wide association studies (GWAS) have identified over 86 genetic loci associated 

with OA risk [33]. Most of these loci fall within non-coding regions of the genome and have 

eluded functional characterization. Therefore, it remains unclear how associated genetic factors 

modulate OA onset and progression. One possibility is that regulatory changes in key structural 

and metabolic genes may modulate OA-related outcomes. Regulatory changes occurring in 

response to relevant environmental factors, including biomechanical stress, may be particularly 

important. Indeed, gene expression studies have identified broad patterns of gene expression that 

differ markedly between healthy and osteoarthritic human cartilage [27,28]. These gene 

expression differences reflect activation of biological pathways associated with joint disease, 

suggesting that studies of gene regulation in cartilage and other skeletal tissues are valuable for 

understanding normal joint health and joint disease and pathogenesis in joint conditions like OA.  

However, few studies have measured gene regulatory phenotypes in human skeletal 

tissues or cells. Even the Genotype-Tissue Expression (GTEx) Project, one of the largest efforts 
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to examine gene expression variation across human tissues and cell types, does not include 

samples from cartilage [17]. This lack of tissues is partially due to the practical limitations and 

ethical issues associated with collecting healthy, high-quality cartilage samples from human 

donors. Nevertheless, protocols to differentiate induced pluripotent stem cells (iPSCs) into cells 

relevant to joint health and disease, such as chondrocytes (the primary cells of cartilage), exist 

[92,100], and these methods can circumvent some of the challenges associated with inaccessible 

primary tissues. 

iPSC-derived cells also allow for the study of dynamic cellular responses to specific 

environmental conditions. It has become increasingly evident that studying gene regulation in 

disease-relevant states is crucial for understanding the genetic basis of disease [18]. Thus, 

numerous studies have begun identifying dynamic regulatory expression quantitative trait loci 

(eQTLs) in various cell types and contexts, including drug-induced cardiotoxicity [21], 

cardiomyocyte differentiation [20], vitamin D exposure [101], and response to infection [19,102–

105]. These studies highlight the merits of exploring gene regulation beyond steady-state 

conditions. 

In human joints, biomechanical stress is a particularly relevant environmental condition. 

Joint health deteriorates in response to excessive or insufficient amounts of mechanical loading 

[36,37,39–41]. Further, biomechanical factors may impact gene expression regulation in joint 

tissues and may interact with genetic factors to impact risk for joint diseases [106]. Such 

interactions are difficult to examine in vivo. However, iPSC-derived chondrogenic cells (iPSC-

chondrocytes) provide an alternative system in which to study the effects of cyclic tensile strain 

(CTS), a type of controlled biomechanical stress regimen designed to induce joint disease-like 

phenotypes [68–71]. Thus, iPSC-chondrocytes offer an opportunity to study gene expression 
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responses to joint disease-relevant states. Studies of iPSC-chondrocytes may also help uncover 

mechanisms through which OA-associated genetic loci modulate OA outcomes. 

Both chondrocyte differentiation protocols and methods for inducing CTS in vitro existed 

prior to this study. Still, little is known about the suitability of this system for studies of gene 

regulatory dynamics. Therefore, we designed a study using human iPSC-chondrocytes to 

examine the combined effects of genetic variation and biomechanical stress on gene regulation 

during CTS. Through this study, we evaluated whether the process of chondrocyte differentiation 

is robust to individual differences. We also ascertained whether iPSC-chondrocytes exhibit a 

robust gene expression response to CTS. Finally, we determined whether expanding the sample 

size of this experimental system might further improve our understanding of gene-by-

environment interactions within joint health.  

 

2.3 Results 

We designed this study to determine whether iPSC-chondrocytes are a useful system for 

studying gene-by-environment regulatory interactions relevant to joint health. First, we asked 

whether the efficiency of chondrocyte differentiation is similar in different individuals. Next, we 

evaluated the effects of CTS on gene regulation in iPSC-chondrocytes to determine whether this 

system is suitable for studying gene regulatory effects on joint health. Finally, we estimated the 

contribution of sample and batch effects to variation in gene expression response to CTS, to 

assess the suitability of our iPSC-chondrocyte system for response eQTL mapping studies.  

 

2.3.1 Study design and data collection in the iPSC-based in vitro system 
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We used three human iPSC lines that were previously established and characterized as 

part of a panel of iPSCs derived from Yoruba individuals [96]. We differentiated the iPSCs along 

the chondrogenic lineage with an intermediate differentiation step into mesenchymal stem cells 

(MSCs; Figure 2.1a) using previously established protocols [92]. iPSC-derived MSCs (iPSC-

MSCs) exhibited phenotypes and cell surface marker expression patterns characteristic of 

primary MSCs [107] (Supplementary Figure 2.1). iPSC-chondrocytes showed a modest increase 

in collagenous extracellular matrix (ECM) production as compared to matched iPSC-MSCs 

(Figure 2.1b; Supplementary Figure 2.2a). Additionally, immunostaining for COL2A1 of iPSC-

chondrocytes from one individual demonstrated increased expression compared to matched 

iPSC-MSCs (Supplementary Figure 2.2b). 

We treated iPSC-chondrocytes from each individual with 24 hours of CTS, which is 

known to induce a hypertrophic phenotype in cartilage [68–71]; see Methods). We 

simultaneously kept a second, matched set of untreated iPSC-chondrocytes in the same incubator 

for the same period as a control. We performed three technical replicates of this experiment, 

starting with MSCs from the same cryopreservation batch and carrying out an independent 

differentiation of the MSCs to iPSC-chondrocytes in each replicate. We extracted bulk RNA 

from all biological and technical iPSC-chondrocyte treated and untreated replicates (n=9). We 

also collected single cell RNA sequencing (scRNA-seq) data from one technical replicate (n=3) 

using the 10X Genomics platform. 

We could not detect differential expression between treatment conditions for markers of 

chondrocyte degeneration and hypertrophy in the bulk RNA sequencing data. This is because 

these genes are expressed at a low level across all samples and are filtered out in pre-processing 

steps. To evaluate the changes in the expression of these gene markers between treatment  
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Figure 2.1: Description of in vitro biomechanical strain study design. 
 
(a) In our study design, iPSCs generated from three Yoruba individuals were first differentiated 
along the chondrogenic lineage with an intermediate differentiation step into mesenchymal stem 
cells (MSCs). iPSC-derived MSCs from each individual were cryopreserved. For each replicate 
of the experiment, iPSC-MSCs from the same cryopreservation batch were differentiated into 
iPSC-chondrocytes over a period of 14 days. Subsequently, we treated iPSC-chondrocytes from 
each individual with 24 hours of a CTS treatment that is known to induce an OA-like phenotype. 
We simultaneously kept a second, matched control set of iPSC-chondrocytes in the same 
incubator for the same period of time, but without CTS treatment. We performed three technical 
replicates of this experiment, starting with MSCs from the same cryopreservation batch. 
Following strain-treated and control conditions, we extracted bulk RNA from all biological and 
technical iPSC-chondrocyte replicates and collected scRNA-seq data from one technical 
replicate from each cell line using the 10X Genomics Chromium Single Cell Gene Expression 
platform. (b) Representative images of Alcian blue staining of 14-day iPSC-chondrocytes and 
matched iPSC-MSCs demonstrating increased proteoglycan production in iPSC-chondrocytes. 
Images are cropped to show the central seeded area of wells of BioFlex Type I Collagen coated 
6-well Culture Plate (seeded area diameter 25mm). Additional images for other cell lines are 
available in Supplementary Figure 2. 
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conditions more sensitively, we performed quantitative real-time reverse transcription PCR (RT-

PCR) on control and strained iPSC-chondrocytes. We detected modest increases in expression of 

gene markers of chondrocyte hypertrophy MMP1 and MMP13 in response to CTS [69,108], 

while gene marker TIMP2 did not change in expression, in line with previous reports 

(Supplementary Figure 2.3) [69].  

 

2.3.2 iPSC-chondrocytes likely represent an early stage of chondrogenesis 

As a next step in our analysis, we confirmed that iPSCs successfully differentiated to 

chondrogenic cells. Using standard staining protocols (see Methods), we demonstrated that our 

cells produce glycosaminoglycan ECM, a hallmark of chondrogenesis (Figure 2.1b; 

Supplementary Figure 2.2a). Our cells also produce the collagen COL2A1, a protein that is 

almost exclusive to cartilage tissues [109,110] (Supplementary Figure 2.2b). We also used our 

scRNA-seq data to address two major questions: First, what is the approximate proportion of 

iPSCs that differentiated into chondrogenic cells in each individual? Second, what is the relative 

maturity of iPSC-chondrocytes? 

We expected that chondrocyte differentiation might result in heterogeneous populations 

of cells at different stages along the chondrogenic lineage and that iPSC-chondrocyte purity 

might differ across cell lines. We used scRNA-seq data to assess potential differences in 

differentiation efficiency among the three individuals. Following standardization and 

normalization (see Methods), unsupervised clustering of the single cell data revealed three 

clusters of cells in our untreated control samples (Figure 2.2a). The proportion of cell 

membership in each cluster is comparable across individuals (Figure 2.2b). Five percent of cells 

from individual NA18855 fall into cluster 2, along with 8% of cells from NA18856 and 7% of  
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Figure 2.2: Characterization of cell type composition in iPSC-chondrocyte cultures. 
 
(a) Uniform Manifold Approximation and Projection (UMAP) of normalized and integrated single 
cell RNA sequencing data from control samples from all three individuals included in the study. 
(Left) UMAP colored by sample label. Cells from different samples are well-integrated. (Right) 
UMAP colored by Seurat cluster determined from normalized gene expression data. (b) Proportion 
of membership of cells from each individual in each Seurat cluster. The relative membership in 
each Seurat cluster is comparable between individuals. (c) Cumulative distribution function (CDF) 
of marginal distributions of latent gene expression of COL11A1 determined through fitting a 
Poisson adaptive shrinkage model to raw gene expression counts in each sample. (Left) CDF 
curves colored by Seurat cluster. Cells in cluster 2 contain a higher latent gene expression of 
COL11A1 on average. (Right) CDF curves colored by Individual. (d) STRUCTURE plot 
representing the relative proportional membership of single cells (columns) in 7 different topics in 
a topic model fit to scRNA-seq data derived from iPSC-chondrocytes collected in this study 
(“Current Study iPSC-Chondrocytes”); matched iPSCs, iPSC-MSCs, iPSC-osteoblasts, and iPSC-
chondrocytes collected from a single individual (“GH iPSCs, GH iPSC-MSCs, GH iPSC-
Osteoblasts, GH iPSC-Chondrocytes”);  primary hepatocytes (“MacParland et al. Hepatocytes”); 
a time-course of iPSC-Chondrocyte pellet culture differentiation through the use of pellet culture 
(“Wu et al. iPSC-Chondrocytes (day 7 – day 42)”; and primary adult chondrocytes described in 
two separate publications (“Chou et al. Chondrocytes”, “Ji et al. Chondrocytes”). The ordering of 
individual cells within each study are determined through a one-dimensional tSNE algorithm 
applied to topic memberships of each cell. For each data source and cell type on the x-axis, a 
random subset of 800 cells is plotted with the exception of Current Study iPSC-Chondrocytes, for 
which all 1,815 cells are plotted. 
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cells from NA19160. Based on gene expression patterns, cluster 2 consists of cells that are most 

like chondrocytes; for example, these cells show high expression of COL11A1, an essential gene 

for normal cartilage collagen fibril formation [111] (Figure 2.2c; see Methods; additional genes 

in Supplementary Figure 2.4). In contrast, clusters 0 and 1 contain more MSC-like cells, 

characterized by expression of MSC genes and lower expression of chondrogenic genes. We 

found no substantial difference in COL11A1 expression between individuals. Based on staining 

and gene expression patterns, iPSC-chondrocytes are undergoing chondrogenesis, and cell type 

composition does not differ substantially among the three individuals in this study. 

In addition to discerning heterogeneity in our samples, we also evaluated the relative 

maturity of our iPSC-chondrocytes. To do this, we used topic modeling, analyzing our single cell 

data along with single cell datasets from multiple cell types, including primary adult 

chondrocytes (see Methods). Topic modeling is an unsupervised classification approach that, 

when applied to single cell gene expression data, allows one to find recurring patterns of gene 

expression, or topics, present across a collection of cells. By allowing each cell to have grades of 

membership in multiple topics simultaneously, rather than assigning cells to only one cluster 

[112], topic modeling can identify both discrete and continuous variation between cells. 

A model fit with seven topics to the combined dataset shows that both iPSC-

chondrocytes and primary chondrocytes are equally reliably distinct from unrelated cell types 

(e.g., hepatocytes). iPSC-chondrocytes retain a large proportion of gene expression patterns 

characteristic of iPSC-MSCs (topic 1), but they also possess certain gene expression patterns 

seen in adult primary chondrocytes and in iPSC-chondrocytes differentiated through a 

chondrogenic pellet (topics 4, 6, and 7) (Figure 2.2d). Topics 4-7 display relatively high levels of 

expression of several markers of chondrogenesis or cartilage fate, including SOX9, SOX5, SOX6 
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[113], and COL9A1 [114] (Supplementary Figure 2.5). Furthermore, differential expression 

analyses across topics identified type IX collagen gene COL9A3 [114] as highly occurring in 

topic 7 relative to all other topics (Supplementary Figure 2.5). Similarly, in topics 4 and 6, the 

chondrogenic marker COMP [115] has a high occurrence relative to all other topics. Thus, we 

conclude our iPSC-chondrocytes are likely in the early stages of chondrogenesis and are readily 

distinguishable from iPSCs and iPSC-MSCs. 

 

2.3.3 Analysis of bulk RNA sequencing data 

After confirming we can generate chondrogenic cells from iPSCs, we next sought to 

understand gene expression variation in this system. For this we focused on bulk RNA-seq data 

collected from all replicates. We generated an average of 22.3M raw reads per sample (s.d. 4M 

reads). We excluded one sample from further analyses because it displayed a particularly low 

percentage of mapped reads. We note the mapped reads from this sample cluster as expected 

with other technical replicates from the same individual and treatment (Supplementary Figure 

2.6), but we still excluded it because it failed standard QC metrics. We filtered the remaining 

data for lowly expressed genes and standardized gene counts with respect to library size (see 

Methods). 

As a first step of our analysis of the bulk data, we identified gene expression responses to 

strain treatment. We used the limma R package to fit a linear mixed model for each of the 10,486 

expressed genes in the filtered bulk RNA-seq data, accounting for the random effect of 

experimental batch and the fixed effects for individual cell line, sex, treatment status, two factors 

of unwanted variation, and RIN score (see Methods). Using this model, we tested for differential 

expression between treated and untreated cultures. At an FDR of 0.05, 987 genes are  
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Figure 2.3: Results from linear mixed model differential expression (DE) analysis between 
treatment conditions.  
 
The linear mixed model used to conduct the analysis also accounted for the random effect of 
experimental batch and the fixed effects of individual cell line, sex, treatment status, two factors 
of unwanted variation, and RIN score. (a) Histogram of raw p values from DE analysis conducted 
independently for each gene between control and strain-treated conditions. Highlighted in red are 
genes with an FDR-adjusted p value < 0.05 (987 of 10,486 tested genes). (b) Volcano plot of –
log10 raw p values vs log-fold change between treatment conditions. Highlighted in red are genes 
with an FDR-adjusted p value < 0.05. Genes plotted to the right of 0 on the x-axis represent genes 
with higher average expression in control iPSC-chondrocyte samples compared to strain-treated 
samples. (c) Top 20 Biological processes enriched among DE genes compared to background set 
of 987 genes. These GO biological process terms include those related to extracellular matrix 
organization and metabolism of extracellular matrix structure. 
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significantly differentially expressed (DE) between treated and untreated chondrogenic cells 

(Figure 2.3a-b). 

To evaluate the potential relevance of the DE genes to joint health and OA, we first 

considered their enrichment among gene ontology (GO) terms. The top 20 most highly enriched 

GO biological process terms include those related to ECM organization and metabolism of ECM 

structure (Figure 2.3c). These functions make intuitive sense given that ECM homeostasis is 

important for joint cartilage health; moreover, imbalances in this homeostasis are associated with 

OA [23,116]. 

We also determined whether the DE genes may be overrepresented in gene sets 

previously implicated in OA. We examined results from one of the largest GWAS for OA 

susceptibility, which identified 64 independent significant associations with OA [33]. We used a 

Fisher’s exact test to assess enrichment of DE genes among a set of 553 genes located within 500 

kb of the 64 associated loci. These 553 genes were also identified as having prior evidence of 

involvement in animal models of skeletal disease or human bone diseases [33]. We found that 

DE genes in our study are significantly enriched within the set of 553 genes previously 

associated with OA (p = 0.002).  

Next, we evaluated results from a separate study, which profiled mRNA and protein 

samples in low-grade and high-grade osteoarthritic cartilage from 115 patients undergoing joint 

replacement [28]. Steinberg et al., 2019 found 409 genes with evidence of significant differential 

expression between patients with low-grade and high-grade osteoarthritic cartilage, at both the 

RNA and protein levels. Though causality is difficult to infer, this observation suggests at least a 

subset of these genes is involved in OA cartilage degradation. A Fisher’s exact test reveals that 
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our DE genes are also significantly enriched among this gene set (p = 0.02). Of note, the two 

genes that overlap between the two external gene sets, LTBP3 and LAMC1, are also DE our 

study. LTBP3 is a regulator of the TGF-ß signaling family, which plays roles in cartilage 

formation and development [117]. LAMC1 has been identified as a blood-based biomarker for 

detecting mild knee OA, with lower RNA expression identifying mild OA [118]. Based on these 

GO and gene set enrichment results we concluded that the DE genes identified between strain-

treated and control iPSC-chondrocytes are relevant to joint health. 

Due to differential power, highly expressed genes are more likely to be detected as DE 

than lowly expressed genes in any RNA sequencing dataset [119]. Therefore, it is possible the 

magnitude of expression of different genes in our data can explain our enrichment results. To 

assess the robustness of our findings, we permuted the labels of treatment condition among our 

samples and re-performed DE and enrichment analyses a total of ten times. In nine permutations, 

we failed to identify ECM-related GO terms among the top 20 enriched terms (one permutation 

revealed two ECM-related GO terms). Further, we did not find any enrichment of DE genes 

within the two OA-relevant gene sets using permuted data. As our permuted data do not display 

the same enrichment patterns as our actual data, we concluded our results are not due to 

differential power to detect DE. 

 

2.3.4 Certain gene expression responses to stress are heterogeneous between individuals 

In our DE analysis, we focused on identifying inter-treatment differences in gene 

expression rather than inter-individual differences. Ultimately, we would like to use this system 

to study gene-by-environment interactions, which occur at the intersection of inter-treatment and 

inter-individual differences. A gene-by-environment interaction occurs when the magnitude or 
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direction of gene expression response to an environmental stimulus is associated with an 

individual’s genotype at a particular locus. The sample size of this current study is far too small 

to detect gene-by-environment interactions. Still, we identified several genes that exhibit inter-

individual differences in expression in response to CTS (Figure 2.4). 

For example, MMP14 displays a different pattern of expression in each cell line before 

and after CTS (Figure 2.4a): MMP14 expression remains constant between control and strain-

treated NA18855 cells, is upregulated in strain-treated NA18856 cells, and is downregulated in 

strain-treated NA19160 cells. MMP14 is expressed constitutively in adult joint cartilage and 

upregulated in diseased states [120]. In addition, EXOSC8 and COPG1 (Figure 2.4b-c) are both 

involved in the formation of secretory vesicles originating from the Golgi complex. These genes 

also display differences in direction or magnitude of gene expression response to CTS between 

individuals. If heterogenous responses to biomechanical stress exist more broadly and are 

associated with genotypic differences, this experimental system will be able to identify them in 

population-level eQTL studies. 

 

2.3.5 Sources of variation in bulk RNA sequencing data 

Thus far, our results show that CTS elicits a robust, joint health-relevant gene expression 

response in iPSC-chondrocytes, and that, anecdotally, this response can differ between 

individuals. Next, we sought to more generally evaluate the utility of this system for studying the 

effects of genetic variation and biomechanical stress on gene regulation. Specifically, we 

considered dynamic expression quantitative trait loci (dynamic eQTLs), which are genetic 

variants associated with a change in gene expression in response to a treatment. For our system 

to be useful in identifying dynamic eQTLs, individual differences should drive a substantial  



 26 

 
Figure 2.4: Examples of inter-individual differences in gene expression responses to cyclic 
tensile strain (CTS). 
 
(a-c) MMP14, COPG1, and EXOSC8 each demonstrate inter-individual differences in gene 
expression in our dataset. Dot plots are the expression level (log2 cpm) of each gene in each 
sample, with each individual and treatment condition plotted separately. Lines represent +/- one 
standard deviation. For each candidate gene, expression is relatively consistent between 
individuals in the control condition but differs in magnitude or direction between individuals in 
the strain condition (in response to CTS). These heterogenous responses do not all involve 
differing magnitudes of changes in the same direction. In the case of MMP14, while NA18855 
does not seem to respond to CTS through altering MMP14 expression, NA18856 responds through 
upregulation of this gene and NA19160 responds through downregulation. If heterogenous 
responses to CTS such as these exist more broadly between individuals and are associated with 
genotypic differences, they should be identifiable in population-level eQTL studies using this 
experimental system. 
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amount of the variation in gene expression response to the treatment. To quantify the 

contribution of individual differences to gene expression variation in iPSC-chondrocytes, we 

estimated how much of this variation is attributable to technical and biological factors. Our study 

design allows us to do so, as we collected bulk RNA-seq data from three independent technical 

replicates of each cell line.  

First, we evaluated the contributions of experimental variables to major axes of variation 

in our bulk RNA-seq data by performing a principal components analysis (PCA; Supplementary 

Figures 2.7 and 2.8). Our results indicate the primary source of gene expression variation is 

individual (regression of PC1 by individual, p = 1.34 x 10-7, regression of PC2 by individual, p 

= 4.61 x 10-4). The second largest source of variation in the data is sex (regression of PC2 by 

sex, p = 2.67 x 10-4), which is unsurprising given our study included one female and two male 

cell lines. Although treatment shows a minor correlation with PC2 (R2 = 0.14), PC3 (R2 = 0.14), 

and PC4 (R2 = 0.3), none of these correlations are statistically significant. 

Encouragingly, we did not find technical replicate (or ‘batch’) to be significantly 

associated with any of the first five PCs in the data. Nevertheless, we took advantage of our 

replicated experimental design to account for two factors of unwanted technical variation in the 

data [121]; see Methods). Following this we observed the top three sources of gene expression 

variation are individual (regression of PC1 by individual, p = 7.34 x 10-8, regression of PC2 by 

individual, p = 3.98 x 10-4), sex (regression of PC2 by sex, p = 1.79x 10-4), and treatment effect 

(regression of PC3 by treatment, p = 3.92 x 10-2), all three of which are significant (Figure 2.5a-

b, Supplementary Figure 2.9). 
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Figure 2.5: Characterization of sources of variation in bulk RNA sequencing data. 
 
(a) Principal components (PC) plot of normalized and RUVs-corrected bulk RNA sequencing 
samples colored by individual and shaped by treatment condition. Samples largely separate by 
Individual, with strain-treated samples from NA18856 showing a large separation from control 
samples from the same Individual. (b) Correlation between each of the first 5 PCs and several 
experimental variables, determined through linear regression analysis on normalized and RUVs-
corrected bulk RNA sequencing data. Significant regressions (Benjamini-Hochberg corrected 
FDR < 0.05) are highlighted with an asterisk. (c) Violin-box plots displaying the fraction of 
variation explained by a number of experimental variables of the study design, including a single 
factor of unwanted variation fit using RUVg. Variables are ordered from largest to smallest by the 
median fraction of variation explained except for Residuals. The boxplots indicate the median, 
inner quartile range (IQR) and 1.5 times the IQR. Data beyond this are plotted as points. Violin 
plots indicate the density of data points based on their width. 
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Next, we took a more systematic approach to modeling the contribution of biological and 

technical factors to gene expression variation. Our goal was to leverage the total amount of 

variation in our data rather than focusing only on a few major axes of variation, as in the PCA 

above. We quantified the contributions of several experimental variables to gene expression 

variation on the level of individual genes using a linear mixed model (see Methods). To do so, 

we modeled a single factor of unwanted variation in the data by using a set of 100 genes with the 

least amount of variation in the data as negative control genes [121] (see Methods). A single 

factor of unwanted variation was chosen as it was the minimum number of factors required to 

obtain correlations between gene expression residuals of technical replicates that were higher 

than those between samples from different individuals or treatments. We then included the 

filtered and normalized gene expression data and this single factor of unwanted variation in the 

model (see Methods; Figure 2.5c).  

We determined that individual cell line contributes the largest amount of variance to the 

data (median of 42% variance explained). The additional factor of unwanted variation explains a 

median of 3.6% of the variance, and treatment explains a median of 3.5% of the variance. In 

contrast, technical replicate batch and cDNA library preparation batch explain a negligible 

amount of variance (median of 8.7x10-7 % and 3.5x10-7 % variance explained, respectively). 

We observed similar results when running a model that did not include the factor of unwanted 

variation (Supplementary Figure 2.10). Therefore, the biological variables of individual cell line 

and treatment contribute more to gene expression variation than technical variables. However, 

unwanted variation still seems to contribute to gene expression variation. Therefore, gene 

expression studies using this system should account for potential latent sources of variation. 
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2.3.6 A power analysis 

Our results are encouraging for our goal of verifying the feasibility of using iPSC-

chondrocytes to study gene-by-environment interactions in joint health. One possible way to 

study these interactions would be to use this system to map static eQTLs and dynamic response 

eQTLs (i.e., eQTLs that emerge in response to CTS). We conducted a power analysis to 

determine the potential impact of expanding this system to include 58 iPSC lines (Figure 2.6; we 

chose n=58 because this is the number of YRI iPSCs available to us). Under the assumptions of a 

simple linear regression to map eQTLs and a conservative Bonferroni correction for multiple 

testing (FWER = 0.05; see Methods), we estimated that a sample of 58 individuals will provide 

80% power to detect eQTLs with a standardized effect size of 0.7 in each of the control and 

treatment conditions. This standardized effect size corresponds to a heritability of (0.72 / (0.72 

+1) = 0.33). At this effect size, the power to detect eQTLs comes with a correspondingly low 

FPR of calling a dynamic eQTL (0.22). 

To contextualize these results, we reanalyzed eQTL summary statistics from a set of 

previous dynamic eQTL studies that come from a variety of different research contexts 

[102,122,123] (Figure 2.6). In each of these studies, hundreds to thousands of genes in each 

treatment condition have at least one eQTL which meets the standardized effect size threshold of 

0.7 above. While none of these examples perfectly recapitulates the results of our system and 

while the estimated effect sizes required to meet the threshold are fairly large, the fact these 

estimates are conservative and come from eQTL studies in three different stimulus conditions 

demonstrates the potential effectiveness of this approach.  
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Figure 2.6: Power analysis for eQTL and dynamic eQTL study with two conditions. 
 
Power curves are derived under the assumption of a simple linear regression for expression 
Quantitative Trait Locus (eQTL) mapping and plotted over standardized effect sizes (effect sizes 
divided by the phenotype standard deviation) for a range of sample sizes. Dynamic QTL false 
positive rates are computed as the probability of a SNP being called as significant in only one of 
two treatment conditions, assuming the standardized effect size was in fact identical in both 
conditions. The horizontal red line represents a power to detect eQTLs of 0.80. Vertical transparent 
lines represent the 99th percentile of the standardized effect size estimated from an empirical 
cumulative distribution function fit to eQTL summary statistics from 3 published dynamic eQTL 
studies from different contexts, with the mean value over all the conditions in each study plotted. 
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2.4 Discussion 

We conducted a study to establish the feasibility of an in vitro iPSC-chondrocyte model 

for studying gene-by-environment interactions in joint health. Gene-by-environment interactions, 

particularly those related to biomechanical stress, may play a role in pathogenesis in joint related 

diseases such as OA. However, numerous ethical and logistical obstacles limit the study of these 

interactions and their effects on gene regulation in human chondrocytes. iPSC-chondrocytes may 

be a suitable alternative to circumvent these obstacles when paired with in vitro CTS models. 

Overall, our in vitro system allows for both the precise control of iPSC-chondrocyte 

environmental exposures and measurement of gene expression responses relevant to human joint 

health. While no in vitro model can completely accurately mimic in vivo disease, our results 

demonstrate this system has tremendous potential to increase our understanding of human joint 

health.  

iPSC-chondrocytes are a valuable system to address the current lack of gene expression 

studies in human joint cells. Although iPSC-chondrocytes do not completely emulate mature, 

primary human chondrocytes, they do exhibit protein and gene expression patterns characteristic 

of both adult chondrocytes and developing chondrocytes. The relatively early differentiation 

stage of our cells may be due to a variety of factors, including a shorter differentiation time and 

the culturing of cells as a monolayer as opposed to a 3-dimensional pellet [124]. Nevertheless, 

iPSC-chondrocytes provide a unique opportunity to learn about gene regulation in human joints 

and the basis of adult joint disease phenotypes. For instance, the ability to generate cells along 

the trajectory between iPSC-MSCs and mature chondrocytes allows for gene expression studies 

at a level infeasible with human primary tissues. Furthermore, prior studies have shown that 
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studying iPSC-derived cells can uncover potentially important and transient forms of gene 

regulation masked in terminal cell types [20]. 

Our results point to a robust gene expression response to CTS in iPSC-chondrocytes. We 

detected 987 DE genes in our study between treated and control cultures. These DE genes are 

enriched for gene sets relevant to joint health and OA. Thus, our results highlight the potential of 

this system as a platform for gene expression studies of human joint cells that circumvent the 

limitations of primary tissues. Our observations also suggest that studying gene regulation in this 

relatively simple system may provide insight into more complex biological processes relevant to 

human joint disease.  

One potential cause for reservation in our GWAS analysis is the mismatch in population 

ancestries between our DE results (African ancestry) and OA GWAS results (European 

ancestry). However, prior studies have found that genetic associations between causal variants 

and complex traits are largely shared between populations [125–127]. Furthermore, our analyses 

focus on the genes implicated in the OA GWAS results, rather than the causal variants 

themselves. As such, we expect the relevance of these gene sets to carry over more faithfully 

between populations. Finally, the population mismatch would likely have the effect of biasing 

our results towards the null rather than introducing false positive findings. Therefore, we believe 

the observed enrichment is meaningful despite the current lack of equivalent OA GWAS results 

from a more comparable African ancestry population. 

We acknowledge that in vitro CTS models do not directly mimic the compressive 

biomechanical stress felt by joint chondrocytes in vivo. However, CTS models are recognized as 

a valid method for studying the effects of extra-physiological stresses in cultured cells. Others 

have previously used CTS models to measure responses of joint cells to controlled 



 34 

biomechanical stress treatments [62–65,68–71,128]. Other groups have also developed models 

that use specific types and patterns of biomechanical strain to induce transcriptional and 

biochemical changes characteristic of early human OA [68–71]. Our RT-PCR and bulk RNA-seq 

results further attest to the utility of CTS as a model of biomechanical stress in studies of human 

joint health. 

We also found that an in vitro iPSC-chondrocyte system may be useful for studying the 

effects of genetic variation on gene regulation; moreover, it offers a way to study how 

biomechanical stress interacts with genetic factors to affect gene regulation. Indeed, individual-

level differences drive a substantial amount of gene expression variation in this system. 

Therefore, eQTL and dynamic eQTL studies would be feasible using iPSC-chondrocytes. We 

identified specific differences in the gene expression response to CTS between individuals in this 

study. As such, iPSC-chondrocytes may be fruitful for uncovering gene-by-environment 

interactions involved in pathogenesis of joint diseases.  

Investigating dynamic and context-specific gene regulatory effects may reveal the 

mechanisms contributing to joint disease development and progression, as this approach has 

been successfully applied to a variety of other cell types and trait contexts [19,21,102–

105,122,129]. Previous studies have found that dynamic eQTLs are more enriched for relevant 

significant GWAS alleles than non-dynamic (‘standard’) eQTLs, which show consistent effects 

between conditions [20,21,103,105]. Our power analysis suggests that a study with a few dozen 

individuals may grant sufficient power to detect many static and dynamic eQTLs. Dynamic 

eQTLs may be more useful for identifying candidate susceptibility genes in joint diseases than 

steady state eQTLs, and they may also improve our understanding of gene-by-environment 

interactions related to joint health and disease. 



 35 

Future studies using the iPSC-chondrocyte system should account for the possibility that 

transcriptional heterogeneity between and within individual iPSC-chondrocyte lines may 

confound association results in an eQTL study. Our analysis of the scRNA-seq data from control 

iPSC-chondrocytes suggests that differentiation efficiency does not differ substantially between 

individuals. Nonetheless, it is possible that differentiation efficiency may differ for other 

individuals not included in this study. There may also still exist transcriptional heterogeneity 

between iPSC-chondrocytes in their response to CTS that bulk RNA-seq would not adequately 

capture. Measuring and accounting for transcriptional heterogeneity in iPSC-chondrocytes will 

also allow future gene expression studies to focus specifically on iPSC-chondrocytes, which 

represent only a minority of cells in each culture. This will increase power to detect both 

standard and dynamic eQTLs. 

Our iPSC-chondrocyte system also facilitates investigations beyond those involving only 

human cells. The existence of panels of human and nonhuman primate iPSCs [130] introduces 

the possibility of inter-species comparisons of response to CTS. Comparative studies may help 

uncover gene-by-environment interactions that contribute to the differential prevalence of OA 

and other joint diseases observed across primate species [131–133].  

We believe the in vitro iPSC-chondrocyte CTS model shows great promise when applied 

to studies of gene expression in human joints. We hope such a system enables future studies of 

gene regulation in joint cells and their connections to joint health and disease. 

 

2.5 Methods 

2.5.1 Chondrogenic differentiation 
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iPSCs in this study were previously generated from lymphoblastoid cell lines (LCLs) 

derived from three Yoruba individuals (NA18855, female; NA18856, male; and NA19160; 

male) [96]. These LCLs were originally derived from individuals collected as part of the 

HapMap project [134]. Undifferentiated iPSCs were cultured on Matrigel-coated plates (Corning 

356230) in Essential 8 (E8) medium at 37°C, 5% CO2, and atmospheric O2 until iPSCs reached 

30% confluency. E8 medium was subsequently changed to mesenchymal stem cell (MSC) 

culture medium, which consists of low glucose Dulbecco’s Modified Eagle Medium (DMEM) 

with 20% stem cell-qualified fetal bovine serum (FBS), and 100 mg/mL Penicillin/Streptomycin. 

The MSC medium was changed every day for 3 days, at which point cells were 80-100% 

confluent. On day 3, cells were detached from the Matrigel-coated petri dishes using a 0.05% 

Trypsin/EDTA solution and cultured on uncoated polystyrene flasks in MSC medium. The 

medium was changed every 2-3 days until the cells reached 90% confluency. The cells were then 

sub-cultured at a ratio of 1:3 until passage 4, at which point cells were classified as iPSC-derived 

MSCs (iPSC-MSCs). iPSC-MSCs were cryopreserved with cryopreservation media (80% FBS, 

10% MSC culture medium, 10% Dimethyl Sulfoxide) in liquid nitrogen at passage 5 to 7. 

iPSC-MSCs were detached from culture flasks using 0.05% Trypsin/EDTA and seeded at 

a density of 250,000 cells/well onto the center of wells of BioFlex Type I Collagen coated 6-well 

Culture Plates (FlexCell International BF-3001C) using BioFlex cell seeders (FlexCell 

International). Cells were seeded using a regimen of 15% elongation for 2 hours followed by 

overnight culture in MSC culture medium. After seeding, cells were cultured in serum-free 

chondrogenic differentiation medium [92], consisting of high glucose DMEM, 100 mg/mL 

Penicillin/Streptomycin, 50mg/mL L-Proline, 200mM GlutaMax, 50mg/mL L-Ascorbic acid-2-
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Phosphate, 11g/L Sodium pyruvate, 5mM Dexamethasone, 1x ITS Premix, and supplemented 

with 10 ng/mL TGF-β3. The chondrogenic medium was changed every 2-3 days for 14 days. 

 

2.5.2 Standard phenotyping of iPSC-derived cells 

Flow cytometry of iPSC-MSCs was performed using the BD Biosciences Human MSC 

Analysis Kit (BD Biosciences 562245), in combination with the Zombie Violet Fixable Viability 

Kit (BioLegend 423113). The Human MSC Analysis Kit assesses the surface markers CD90, 

CD105, CD73, CD34, CD45, CD11b or CD14, CD19, CD79α, and HLA-DR. In each flow 

experiment, matched iPSCs from the same line as each iPSC-MSC were included as a negative 

staining control. Samples were run on a BD LSRII Special Order System machine at the 

University of Chicago Cytometry and Antibody Technology Core Facility. 

iPSC-chondrocytes were fixed using 4% paraformaldehyde in phosphate-buffered saline 

(PBS) before staining using Alcian blue and Nuclear Fast Red. Alcian blue binds proteoglycans, 

which are found in connective tissue, particularly in cartilage [135]. Stained iPSC-chondrocytes 

and matched iPSC-MSCs from the same individuals were imaged using an Olympus dissecting 

microscope. 

 

2.5.3 Immunostaining for COL2A1 

iPSC-chondrocytes differentiated in chondrogenic media from MSCs for 14 days in 

either monolayer or pellet culture, MSCs, and primary cartilage tissue were fixed using 4% 

paraformaldehyde in PBS. iPSC-chondrocyte pellets were generated as in Nejadnik et al., (2015) 

[92], fixed in 4% paraformaldehyde in PBS, dehydrated sequentially in 15% sucrose in PBS and 

30% sucrose in PBS, and then embedded in optimal cutting temperature compound (OCT). 
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Primary human articular cartilage samples were obtained from a patient undergoing hip 

replacement surgery (University of Chicago BSD/UCMC IRB Protocol 19-0990). Under sterile 

conditions, cartilage scrapings were obtained from the medial portion of the femoral head and 

cut into small pieces using a scalpel. Samples were washed with PBS twice and flash frozen. 

Primary cartilage tissues were then thawed and embedded in OCT. Cartilage tissue and iPSC-

chondrocyte pellets were sectioned on a cryostat to a thickness of 18 µm and 5 µm respectively 

and sections were mounted on slides prior to staining. Cells and sections were immunostained 

using a rabbit Collagen II polyclonal primary antibody (Thermo PA5-85108, 

RRID:AB_2792256) and a secondary antibody HRP/DAB detection IHC kit (Abcam ab64261, 

RRID:AB_2810213). Immunostained cells and sections were imaged using an EVOS 

microscope under the brightfield setting. 

 

2.5.4 Cyclic tensile strain regimen 

iPSC-chondrocytes were treated with a cyclic tensile strain (CTS) regimen that is known 

to induce an OA-like phenotype using the Flexercell FX6000 Tension System (Flexcell 

International) [68–71]. Plates were loaded onto the Flexercell baseplate (located in an incubator 

at 37°C, 5% CO2, and atmospheric O2), and a vacuum was used to deform the cell culture plate 

membrane and create uniform biaxial cyclic tensile strain. Specifically, 2.5% elongation (15kPa) 

of CTS was applied to the cells at a rate of 0.5 Hz for 24 hours. 

 

2.5.5 Quantitative real-time reverse transcription PCR (RT-PCR) of chondrocyte hypertrophy-

related marker genes 
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RNA was extracted from iPSC-chondrocytes following CTS or control treatments using 

the ZR-Duet™ DNA/RNA MiniPrep kit according to manufacturer instructions (Zymo D7001). 

To quantify target gene expression of GUSB, MMP1, MMP13, and TIMP2, we used RT-PCR 

with a QuantStudio 6 Flex Real-Time PCR System and SYBR Green reagents according to 

manufacturer instructions (Applied Biosystems). The cycle threshold (Ct) values were measured, 

and relative transcript levels were calculated for each target gene in each sample. The efficiency 

(E) of each PCR amplification reaction was calculated based on the slope of a linear curve of a 

series of dilutions of target DNA with known concentrations (E =10^(-1/slope)). Data were 

plotted as relative expression, which is calculated as E^(− ΔΔCt), using GUSB as a 

housekeeping gene in all cases [136].  

 

2.5.6 Droplet-based single cell RNA sequencing 

iPSC-chondrocytes were dissociated from adherent conditions into single cell suspension 

as follows: first, cells were rinsed once with 1X PBS. Then, 1mg/mL of collagenase II in 1X 

HBSS was added to cell culture wells at room temperature for 5 minutes. The collagenase II was 

neutralized with MSC medium and removed before further processing of the cells. Cells were 

rinsed once again with 1X PBS. A 0.25% Trypsin/EDTA solution was added to wells at room 

temperature for 2 minutes until cells detached. The trypsin was neutralized with MSC culture 

medium, and the cells were pelleted at 1000 rpm for 5 minutes and resuspended in FBS Stain 

Buffer. Cells were counted separately for each sample and combined in equal proportions before 

loading into a Chromium Single Cell A Chip kit according to manufacturer instructions (10X 

Genomics, 120236). To ensure that collection batch, individual, and treatment conditions were 

not confounded, samples were pooled strategically. One GEM well of a Chromium single cell 
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chip targeting a collection of 5000 cells contained NA19160 control, NA18856 control, and 

NA18855 strain-treatment cells. A second GEM well of the same Chromium single cell chip 

targeting a collection of 5000 cells contained NA19160 strain-treatment and NA18855 control 

cells. The cells collected from sample NA18856 strain-treatment were not processed due to 

viability issues. Single cell cDNA libraries were established following the 10x Genomics 

Chromium Single Cell protocol [137]. In brief, the RNA of the captured cells was released by 

lysis, barcoded via a reverse transcription process, and amplified to produce gene expression 

libraries. The libraries were sequenced to 100 base pairs, paired-end on one lane using the 

Illumina HiSeq4000 at the University of Chicago Genomics Core Facility according to 

manufacturer instructions. 

 

2.5.7 Single cell data processing 

FastQC (RRID:SCR_014583) was used to confirm that the reads were of high quality. 

Using an in-house computational pipeline, we extracted 10X cell barcodes and UMIs from raw 

scRNA-seq reads and mapped remaining reads to genes in the hg38 genome using STARsolo 

from the STAR software with default parameters (version 2.6.1b, RRID: RRID:SCR_004463) 

[138]. The software demuxlet was used to deconvolute sample identity of individual cell droplets 

and detect multiplets in multiplexed samples with default parameters [139]. Previously collected 

and imputed genotype data for the three Yoruba individuals from the HapMap and 1000 

Genomes Project were used as input for demuxlet [134,140]. 

Processed gene count per cell barcode matrices were imported into R using the Seurat 

package (v3.2.0, RRID:SCR_007322) [141,142]. Data were filtered to remove cells with fewer 

than 2000 UMIs detected and more than 10% of reads mapping to mitochondrial genes. Cells 
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assigned as multiplets by demuxlet were also removed. A Uniform Manifold Approximation and 

Projection (UMAP) plot of the merged and unintegrated data shows that cells originating from 

the same individual cluster with each other (Supplementary Figure 2.11).  

 

2.5.8 Integration of individual level scRNA-seq data and characterization of cell clusters 

Filtered scRNA-seq data was integrated across individuals using Seurat. Cells that were 

assigned as singlets by demuxlet were treated as individual datasets. Specifically, we focused on 

just those datasets deriving from control cell culture conditions (n=3), as opposed to strain-

treated conditions (n=2). Using Seurat, the SCTransform normalization function was applied to 

each of these datasets, and then datasets were integrated using integration anchors identified 

using the FindIntegrationAnchors function. Five-thousand features were selected as integration 

features for the SCT integration. 

Seurat’s FindClusters function was used with 38 gene expression principal components 

(PCs) and a resolution of 0.4 as parameters to perform unsupervised clustering of transformed 

and integrated data. Thirty-eight gene expression PCs were chosen by locating the elbow in an 

elbow plot of PCs. To characterize the resulting three clusters that emerged, a Poisson adaptive 

shrinkage model was fit to the raw count data from the cells in each pseudo-sample described 

above using the ashR package [143]. Poisson ashR models were fit separately for cell droplets 

assigned to each unsupervised cluster or separately for cell droplets from each individual. The 

cumulative density function of the inferred prior distributions for each of the fitted Poisson ashR 

models was plotted as in Sarkar and Stephens 2020 [144], for chondrogenic gene markers. 

 

2.5.9 Topic modeling of single cell RNA sequencing data 
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An unsupervised topic model with k=7 topics was fit to the scRNA-seq raw count data 

from several published sources and data from iPSCs and iPSC-derived cell types generated by 

our laboratory. Briefly, single cell data from iPSCs, iPSC-MSCs, iPSC-chondrocytes, and iPSC-

osteoblasts collected by our group from a single human cell line were combined with single cell 

data from primary human hepatocytes [145], iPSC-chondrocytes from an iPSC-chondrogenic 

pellet time-course [146], primary human chondrocytes [147,148], and the iPSC-chondrocytes 

from the present study.  

First, the 10X Genomics Chromium Single Cell Gene Expression platform was used to 

collect scRNA-seq data from iPSCs, iPSC-MSCs, iPSC-chondrocytes, and iPSC-osteoblasts. All 

of these cells, which were derived from a single human cell line, were included in the topic 

modeling analysis. This human iPSC line was previously generated and characterized in our lab 

[130]. The same protocol used to generate other iPSC-MSCs in the current study was also used 

to generate iPSC-MSCs here, with the exception that DMEM:F-12 (Thermo fisher 11330032) 

was used instead of low glucose DMEM (see Methods). The same chondrogenic media 

formulation was used to differentiate iPSC-chondrocytes here as in this current study. iPSC-

osteoblasts were generated by culturing iPSC-MSCs in osteogenic differentiation medium, 

consisting of high glucose DMEM (Gibco 11965092), 100 mg/mL Penicillin/Streptomycin 

(Corning 30002Cl), 10% stem cell-qualified fetal bovine serum (FBS, Thermo fisher 10567014), 

50ug/mL Vitamin C, 100nM Dexamethasone, 10mM β-glycerophosphate, and 1uM Vitamin D. 

The osteogenic medium was changed every 2-3 days. Our iPSC-chondrocyte and iPSC-

osteoblast protocols each included a total of 21 days of differentiation in their respective media 

before isolation and data collection, compared to 14 days for iPSC-chondrocytes in the current 

study.  
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Also included in the analysis were single-cell data from 3,490 hepatocytes published in 

MacParland et al., 2018, which were subset from a larger dataset of single cell results from 

whole liver homogenate [145]. Data from MacParland et al., 2018 are accessible using the R 

package HumanLiver and were originally obtained using the 10X Genomics Chromium Single 

Cell Gene Expression platform. These cells belong to clusters 1, 3, 5, 6, 14, and 15, identified in 

the original paper as showing enriched ALB (Albumin) expression, a hallmark of hepatocytes.  

Additionally, data from iPSC-derived chondrocytes from a time-course of iPSC-

chondrocyte pellet differentiation published in Wu et al., 2021 were obtained from GEO (GEO 

SRP290799) [146]. Data from single cells collected on day 7, day 14, day 28, and day 42 of 

differentiation were used to fit the topic model. Wu et al. chondrogenic pellets were treated with 

C59 for WNT inhibition during chondrogenesis to improve homogeneity of hiPSC 

chondrogenesis and avoid off-target cells. 

Finally, data from 6,200 and 1,464 primary human chondrocytes were obtained from 

Chou et al., 2020 and Ji et al., 2018, respectively [147,148], for use in the topic modeling 

analysis. Cells from Chou et al. 2020 were isolated from the intact outer lateral tibial plateau of a 

single male individual and processed using the 10X Genomics Chromium Single Cell Gene 

Expression platform. Data from these cells were downloaded from GEO (GEO Sample 

GSM4626766). Cells from Ji et al., 2018 were obtained from 10 patients with OA undergoing 

knee arthroplasty and underwent a modified single cell tagged reverse transcription (STRT) 

protocol for single cell transcriptional data collection. Data from all cells included in the original 

study were used. In both primary chondrocyte studies, isolated chondrocytes were not cultured in 

vitro before processing for scRNA-seq. 
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Genes with non-zero counts in at least one cell in any of the six single cell datasets were 

included in the raw count matrix used to fit the topic model. A Poisson non-negative matrix 

factorization (NMF) model with 7 ranks was fit to the data using the fit_poisson_nmf function in 

the fastTopics R package with default parameters (v0.4.35) [149]. After fitting the Poisson NMF 

model, the fitted loadings and factors matrices were rescaled to sum to a total of 1 across each 

barcode for the loadings matrix and across each gene for the factors matrix to convert the 

Poisson NMF model into a topic model. The rescaled loadings matrix became the topic 

probabilities, and the rescaled factors matrix became the word probabilities in the resulting topic 

model. 

The diff_counts_analysis function in fastTopics was applied to the topic model to 

evaluate differential expression of individual genes in each topic. Briefly, the function calculates 

a β statistic, which represents the log-fold change in relative occurrence of a gene in a single 

topic compared to its occurrence in all other topics. The function also calculates a standard error 

and z-score for each β statistic based on a Laplace approximation to the likelihood at the MLE. 

 

2.5.10 Bulk RNA extraction and sequencing 

RNA was extracted from cells following CTS or control treatments using the ZR-Duet™ 

DNA/RNA MiniPrep kit (Zymo D7001). RNA concentration and quality were measured using 

the Agilent 2100 Bioanalyzer. Library preparation was performed over two batches using the 

Illumina TruSeq RNA Sample Preparation Kit v2 (RS-122-2001 & -2002, Illumina). Samples 

were sequenced to 50 base pairs, single-end on one lane using the Illumina HiSeq4000 at the 

University of Chicago Genomics Core Facility according to manufacturer instructions. A 

minimum of 17,284,094 raw reads were generated per sample. We used FastQC to confirm that 
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the reads were of high quality. One bulk RNA-seq sample was found to have a very low 

proportion of mapped reads (38.40%) and was excluded from subsequent analyses. 

 

2.5.11 Quantifying the number of bulk RNA-seq reads mapping to genes 

Reads were mapped to the hg38 genome using STAR (version 2.6.1b) [138]. Gene 

expression levels were quantified using the featureCounts function in Subread (v1.6.5 

RRID:SCR_009803) using standard parameters [150]. All downstream processing and analysis 

steps were performed in R (v3.6.1, RRID:SCR_001905) unless otherwise stated.  

 

2.5.12 Transformation and normalization of bulk RNA-seq reads 

Log2-transformed counts per million (CPM) were calculated from raw counts for each 

sample using the edgeR package (RRID:SCR_012802) [151]. Lowly expressed genes were 

filtered such that only genes with an expression level of log2(CPM) > 2.5 in at least 4 samples 

were kept for downstream analyses. For the remaining 10,486 genes, the raw read counts were 

normalized using the relative log expression (RLE) method to account for the median number of 

reads sequenced across samples.  

 

2.5.13 Removing unwanted variation from bulk RNA-seq data 

To account for batch effects arising between technical replicates before differential 

expression analysis, we modeled factors of unwanted variation using the RUVs correction 

method (RRID:SCR_006263) [121] with k=2. RUVs is a method that uses technical replicate 

samples to estimate factors of unwanted variation from RNA-seq data. Individual-treatment pairs 

were constant within replicate blocks, which are used for the RUVs correction. RUVg is distinct 
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from RUVs in that it uses negative control genes to estimate factors of unwanted variation from 

RNA-seq data rather than knowledge of technical replicate samples in the data.  

 

2.5.14 Differential expression analysis with bulk RNA-seq data 

Differential expression (DE) was measured using a linear-model-based empirical Bayes 

method in the limma R package (RRID:SCR_010943). The voom function from the limma 

package was also used to calculate weights to account for the mean-variance relationship in the 

RNA-seq count data.  

Replicate batch was modeled as a random effect while treatment, individual, two RUVs 

coefficients, and RIN score were modeled as fixed effects in the linear mixed model for DE 

comparisons as in equation (1). The ashR package [143] was used to perform multiple testing 

correction on the DE tests using an adaptive shrinkage method. Genes with an FDR-adjusted p 

value < 0.05 were considered DE. 

Equation 1: 

𝑌	~	𝛽! + 𝛽" ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +	𝛽# ∗ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	 + 𝛽$ ∗ 𝑠𝑒𝑥 + (1|𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒) + 𝛽% ∗ 𝑅𝑈𝑉&" + 𝛽'

∗ 𝑅𝑈𝑉&# + 𝛽( ∗ 𝑅𝐼𝑁 + 𝜀 

 

2.5.15 Enrichment of DE genes in biological pathways and OA-related gene sets 

Using topGO (RRID:SCR_014798), we assessed enrichment of Gene Ontology (GO) 

biological processes among DE genes. A Kolmogorov-Smirnov test using ashR adjusted p values 

was used for assessing enrichment of GO processes, and the top 20 most enriched terms were 

reported. To test for enrichment of sets of OA-related genes in our DE genes [28,33], a Fisher’s 
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exact test was used. In all enrichment tests, the background gene set was the complete set of 

genes tested for DE in our analyses (n = 10,486 genes). 

There is the possibility that the enrichment of DE genes for GO categories and outside 

gene sets is driven by differential power due to some genes having higher expression in our 

samples. We therefore repeated the DE and enrichment analyses ten times, permuting the 

treatment condition labels for the samples each time. 

 

2.5.16 Analysis of sources of variation in bulk RNA-seq data 

Principal component analysis (PCA) was performed on the normalized log2(CPM) values 

from above. A linear regression analysis was then performed between each of the top 5 PCs and 

several biological and technical variables. These variables included number of reads sequenced, 

library preparation batch, RIN score, treatment condition, replicate, and individual. P values 

from the regression were corrected using the Benjamini Hochberg (BH) procedure. Results with 

a BH-adjusted p value < 0.05 were considered significant. 

The variancePartition (RRID:SCR_019204) package was applied to the filtered and RLE-

normalized CPM values [152]. variancePartition uses a linear mixed model to quantify the 

contribution of variance from different sources. Our linear mixed model included variation due 

to individual cell line, treatment status, replicate batch, and library preparation batch. In addition, 

a single coefficient of unwanted variation was determined using the RUVg correction method 

[121] with k=1; this coefficient was also included in the model. The RUVg correction method 

estimates factors of unwanted variation in RNA-seq data through negative control genes, which 

have the lowest variation in expression between samples. The 100 least variable genes in the data 

ranked by coefficient of variation were used as the set of control genes for the RUVg correction. 
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2.5.17 Power curves for expression QTL (eQTL) and dynamic eQTL mapping 

To ascertain the power to detect eQTLs and dynamic eQTLs across a range of sample 

sizes and standardized effect sizes, we followed the example presented in Ward et al., 2021 

[123]. In brief, for the power analysis we assumed a simple linear regression for eQTL mapping 

and a conservative Bonferroni correction for multiple testing (FWER=0.05). Standardized effect 

sizes are defined as the true additive effect size of genotype on gene expression divided by the 

phenotype standard deviation. To estimate the false positive rate of calling a dynamic eQTL, we 

computed the probability of a SNP being called as significant in only one of the two treatment 

conditions, assuming the standardized effect size was in fact identical in both conditions. 

 

2.5.18 Reanalysis of previous dynamic eQTL studies 

We used summary statistics from eQTL mapping in three prior dynamic eQTL studies 

[102,122,123] to determine standardized effect sizes for eQTL association tests in each treatment 

condition. Briefly, p values from association tests were converted into Z-scores using the 

appropriate quantile function. Z-scores were then converted to standardized effect sizes by 

adjusting for the square root of the sample size of the study. For summary statistics from Alasoo 

et al., 2018, and Caliskan et al., 2015, an adaptive shrinkage model was fit to the distribution of 

effect sizes and standard errors using ashR [143]. The ashR posterior estimates of effect sizes 

and standard deviations were used to compute the standardized effect size. Standardized effect 

size thresholds for at least 0.8 power under a sample size of 10, 30, 58, or 100 individuals were 

determined as described above. The number of genes with at least one association test that meets 

each of these thresholds in each condition were tabulated. Empirical distribution functions were 
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fit to the distributions of the standardized effect sizes from each condition in each of the three 

studies. The 99th percentile of these standardized effect sizes was determined from the empirical 

distribution function. 

 

2.5.19 Data and code availability 

The data have been deposited in NCBI’s gene expression omnibus and are accessible through: 

Characterizing gene expression responses to biomechanical strain in an in vitro model of 

osteoarthritis. Accession number: GSE165874; https://identifiers.org/geo:GSE165874 and 

Evolutionary insights into primate skeletal gene regulation using a comparative cell culture 

model. Accession number: GSE167240; https://identifiers.org/geo:GSE167240. All 

computational scripts and analysis pipelines can be found on GitHub at: 

https://github.com/anthonyhung/invitrostrain_pilot_repository and in webpage format at: 

https://anthonyhung.github.io/invitrostrain_pilot_repository/index.html. 
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2.7 Supplementary Information 

2.7.1 Supplementary Figures 

 
Supplementary Figure 2.1: iPSC-MSC characterization. 
 
(a) EVOS microscope images of iPSC-derived MSCs from all three individuals demonstrate 
elongated morphology characteristic of MSCs. (Scale bar 250um) (b) Flow cytometry plots from 
labeling of iPSC-MSCs and matched iPSCs for cell-surface markers characteristic of MSCs. 
Compared to iPSCs, iPSC-MSCs demonstrate increased labeling of CD90 and CD73, while they 
do not show increased staining of several negative markers of MSCs (CD45, CD34, CD11b, CD19, 
and HLA-DR). iPSC-MSC staining of CD105, a third positive marker of MSCs, is variable across 
the three individuals.  
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Supplementary Figure 2.2: Staining of 14-day iPSC-chondrocytes and matched iPSC-
MSCs. 
 
(a) Brightfield dissecting microscope images are cropped to show circular central seeded area of 
cells on BioFlex Type I Collagen coated 6-well Culture Plates (diameter 25mm). (b) EVOS 
microscope brightfield images of MSCs, 14-day iPSC-chondrocytes, and primary human cartilage 
stained for COL2A1 by immunocytochemistry/immunohistochemistry.  
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Supplementary Figure 2.3: Effect of cyclic tensile strain on the expression of chondrocyte 
hypertrophy markers in iPSC-chondrocytes.  
 
Bar plots of relative expression of MMP1, MMP13, and TIMP2 measured by RT-PCR in control 
and CTS-treated iPSC-chondrocytes from (a) H20157, (b) H23555, and (c) NA18855. H20157 
and H23555 are differentiated from human fibroblast-derived iPS cell lines generated in Romero 
et al., 2015. Relative expression values are calculated via the delta-delta Ct method, using GUSB 
as a housekeeping gene in all cases and the efficiency (E) of each PCR amplification calculated 
based on the slope of a linear curve of a series of dilutions of target DNA. Error bars represent 
standard deviation from 3 technical replicates of the RT-PCR reaction.  



 53 

 
Supplementary Figure 2.4: Additional gene markers of single cell clusters. 
 
Cumulative distribution function (CDF) of marginal distributions of latent gene expression of (a) 
TIMP2 and (b) TIMP3 determined through fitting a Poisson adaptive shrinkage model to raw 
gene expression counts in each sample. In each panel, (Left) CDF curves are colored by Seurat 
cluster. Cells in cluster 2 contain a higher latent gene expression of TIMP2 and TIMP3 on 
average. (Right) CDF curves colored by Individual.  
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Supplementary Figure 2.5: Characterization of topics from topic model. 
 
(a) Heatmap of word probabilities for selected marker genes for different cell types across a topic 
model containing seven topics. Heatmap cells are colored by word probabilities after applying a 
standard normal centering and scaling across each row. Colored bars on the left side of the heatmap 
denote the category of selected marker genes. Topic k2 demonstrates the highest word probability 
for hepatocyte marker gene ALB, while k3 demonstrates highest word probabilities for iPSC 
marker genes. Topic k1 demonstrates high word probabilities for MSC marker genes. Topics k4, 
k5, k6 and k7 demonstrate high word probabilities for several chondrocyte marker genes. (b) 
Volcano plots for log2 fold change relative occurrence (β) of individual genes in one topic 
compared to all other topics. |Z-scores| represent the absolute value of the z-scores for the β 
statistic. Positive β represent relative increase in occurrence of the gene in the topic compared to 
all other topics. Genes with |z-scores| above the 0.999 quantile are labeled in each plot.  
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Supplementary Figure 2.6: PCA plots for normalized and filtered bulk RNA-seq data 
before RUVs correction including sample that failed QC. 
 
(a-c) Principal components analysis (PCA) plots for principal components 1-6 are plotted for data 
including the single bulk RNA sequencing sample that was removed during quality control, 
corresponding to cells from individual NA19160 in the control condition from the first technical 
replicate of the experiment. When included in the PCA, this sample clusters as expected with 
corresponding samples from the other two technical replicates.  
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Supplementary Figure 2.7: PCA plots for normalized and filtered bulk RNA sequencing 
data before RUVs correction. 
 
(a-c) PCA plots for principal components 1-6 are plotted for data absent RUVs correction.  
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Supplementary Figure 2.8: Correlation between each of the first 5 PCs and several 
experimental variables with normalized and non RUVs-corrected bulk RNA sequencing 
data. 
 
Significant regressions (Benjamini-Hochberg corrected FDR < 0.05) are highlighted with an 
asterisk.  
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Supplementary Figure 2.9: PCA plots of additional PCs for normalized and filtered bulk 
RNA sequencing data after RUVs correction. 
 
(a-c) PCA plots for PC3-6 for normalized and filtered bulk RNA sequencing data. PCA plot for 
PC1-2 is duplicated in Figure 2.3.  
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Supplementary Figure 2.10: Variance partition results on normalized and filtered bulk 
RNA sequencing data without the inclusion of RUVg factors of unwanted variation. 
 
Individual and treatment both explain a larger proportion of variance of individual genes on 
average compared to technical factors of replicate and library preparation batch.  
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Supplementary Figure 2.11: Uniform Manifold Approximation and Projection (UMAP) 
plot of merged scRNA-seq data. 
 
Raw scRNA-seq data from the two 10x GEM wells were merged and filtered to retain cells with 
fewer than 10% of reads coming from mitochondria and containing at least 2000 features. After 
log normalization, a UMAP plot was created for the data based on 2000 variable features and 50 
gene expression principal components. No integration was applied to the data across the two 
GEM wells. Cells originating from the same individual cluster with each other.  
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CHAPTER 3 

DETERMINING THE GENETIC BASIS OF GENE EXPRESSION RESPONSES TO 

TWO IN VITRO MODELS OF OSTEOARTHRITIS 

 

3.1 Abstract 

 Osteoarthritis (OA), a painful degenerative disease of joint tissues that often leads to 

disability, results from the interplay between genetic and environmental factors. To study gene-

by-environment interactions in OA and joint health, we established a panel of induced-

pluripotent stem cell-derived chondrocytes and paired these iPSC-chondrocytes with OA-

relevant in vitro inflammatory cytokine and mechanical stress treatments. We measured gene 

expression levels from iPSC-chondrocyte lines derived from 22 genotyped individuals following 

exposure to a control treatment and the two OA-relevant treatment conditions and characterized 

gene regulatory changes between treatments. We further identified 1070 genes with cis 

expression quantitative trait loci (eQTLs) across the three conditions as well as 257 genes with 

dynamic eQTLs, which have different effects across conditions. This study of an OA-relevant 

cell type exposed to two OA-relevant environments represents a step towards understanding the 

role of gene-by-environment interactions in joint health. 

 

3.2 Introduction   

 Osteoarthritis (OA) is the most common form of arthritis, affecting over an estimated 

32.5 million adults in the United States [153]. OA impacts all cells and tissues of the joint, 

leading to degeneration of cartilage, inflammation of the synovial capsule, and structural changes 

to subchondral bone [154]. Patterns of gene expression have been observed to differ between 
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healthy and OA cartilage, reflecting activation of biological pathways in this disease and 

potential gene dysregulation in diseased joint tissues [27,28]. Genetic variation plays a 

meaningful role in this disorder, with the heritability of OA estimated to be between 40-70% 

[29,30]. Genome-wide association studies (GWAS) of OA have linked over one hundred variants 

to OA, most of which are found in non-coding regions of the genome and thought to impact the 

regulation of genes [31,32].  

 Efforts to map regulatory quantitative trait loci, including gene expression quantitative 

trait loci (eQTLs), have sought to provide functional annotations for trait-associated variants as a 

way to connect non-coding variants to their associated phenotypes. Enrichment of gene 

expression, splicing, and chromatin accessibility QTLs has been found among a wide range of 

trait-associated GWAS variants [12,13], suggesting that these intermediate molecular phenotypes 

may contribute to complex traits. Nevertheless, completely bridging the gap between genotype 

and phenotype is difficult. Even the Genotype-Tissue Expression (GTEx) project, a large eQTL 

mapping effort which has identified tens of thousands of eQTLs across dozens of tissues and 

hundreds of donors in steady-state conditions, has only confirmed that 43% of GWAS disease-

associated loci are also classified as  eQTLs [17].  

As gene regulation is highly dynamic and context specific, looking for eQTLs in specific 

cell types that have different environmental or developmental contexts may help to increase the 

number of detectable eQTLs and to close the trait-associated variant-eQTL gap. Non-steady state 

environmental contexts relevant to disease may also represent selective pressures that have 

shaped inter-population and inter-individual genetic variation underlying disease associations 

[19]. Fittingly, eQTLs associated with gene expression in certain developmental or 

environmental states but not others (often referred to as dynamic eQTLs) have the potential to 
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explain trait-associations better than static eQTLs identified in higher-powered studies 

[16,20,21]. Dynamic eQTL studies have been performed to great effect in various cell types and 

contexts, including drug-induced cardiotoxicity [21], cardiomyocyte differentiation [20], vitamin 

D exposure [101], and response to infection [19,102–105]. 

Despite these advances, similar efforts to examine dynamic eQTLs and other regulatory 

QTLs relevant for OA and joint health have been limited given the relative inaccessibility of 

joint cells and tissues from healthy donors. As an alternate, there are protocols to differentiate 

induced pluripotent stem cells (iPSCs) into cells relevant to joint health and disease, such as 

chondrocytes [92,100] which are the primary cells of cartilage. Additionally, cultured joint cells 

can be exposed to in vitro environmental treatments like inflammatory cytokine (e.g., IL-1β) 

exposures [77,78,83–87] and biomechanical strain [68–71] in order to induce phenotypes 

characteristic of human OA. Pairing such iPSC-derived chondrogenic differentiations with in 

vitro OA perturbations would allow researchers to circumvent many of the obstacles of primary 

tissue collection and to more thoroughly investigate of regulatory and dynamic QTLs related to 

OA. 

 Along this line, we designed a study to further explore the genetic determinants of gene 

expression responses to an OA-relevant cell type to two OA-relevant environments. Specifically, 

we collected bulk RNA-sequencing data from a panel of iPSCs-derived chondrocytes from 22 

genotyped individuals exposed to a control treatment, an inflammatory cytokine treatment, and a 

biomechanical stress treatment. We used these data to study the gene expression responses of 

iPSC-chondrocytes to the two different conditions, including shared and condition-specific 

responses. We then leveraged the genetic diversity of the panel to better understand genetic 

associations with gene regulation by mapping eQTLs in each condition. We further investigated 
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gene-by-environment interactions on gene regulation by identifying dynamic eQTLs. Lastly, to 

better interpret the biology of both static and dynamic eQTLs, we overlapped our results with 

several external datasets pertaining to OA and joint health. We evaluated the enrichment of 

mapped eQTLs and eGenes for functional categories and heritability of GWAS related to OA 

and joint health. Overall, this study represents a step towards understanding the contributions of 

genetics, environment factors, and gene-by-environment interactions towards inter-individual 

risk for joint disease. 

 

3.3 Results 

We differentiated iPSC-MSC lines from 22 iPSCs derived from Yoruba YRI individuals 

from the HapMap project [134]. We then further differentiated iPSC-MSCs towards iPSC-

chondrocytes over 14 days after seeding on BioFlex Type I Collagen coated 24-well Culture 

Plates (see Methods). We assigned iPSC-chondrocytes from each individual that were seeded 

from the same flask of iPSC-MSCs and differentiated concurrently to one of three treatment 

groups: an untreated control group, an IL-1β treated group, and a cyclic tensile strain treated 

group (see Methods). We sought to use this system to better understand the patterns of gene 

regulation and the nature of dynamic genetic control of gene expression across treatments in 

iPSC-chondrocytes. To this end, we collected and sequenced bulk total RNA from all three 

treatment groups for each individual simultaneously over each of seven batches, with all 

treatment groups for each individual included in the same batch (Figure 3.1a). 

A principal components analysis and a pairwise correlation analysis of the bulk RNA 

sequencing data both demonstrate strong separation of samples by their individual of origin  



 65 

 
Figure 3.1: Study design and bulk RNA sequencing data. 
  
(a) In our study design, iPSCs generated from 22 Yoruba individuals were first differentiated along 
the chondrogenic lineage with an intermediate differentiation step into mesenchymal stem cells 
(MSCs). iPSC-MSCs from each individual were differentiated into iPSC-Chondrocytes over a 
period of 14 days on flexible bottom cell culture plates. Subsequently, we treated separate iPSC-
chondrocyte cultures from each individual with 3 treatments in the same cell culture incubator: 24 
hours of no treatment, 24 hours of exposure to IL-1β cytokine, and 24 hours of exposure to a cyclic 
tensile strain treatment that is known to induce an OA-like phenotype. Following 24 hours of 
treatment, we extracted bulk RNA from all iPSC-chondrocyte replicates simultaneously. (b) 
Principal components analysis (PCA) plot of the first two principal components of normalized and 
filtered expression data collected across batches of the experiment. Each sample dot is shaped 
according to treatment (A = control, B = IL-1β, C = CTS) and colored by individual. (c) Pairwise 
Pearson correlations between normalized and filtered expression data from all samples reordered 
according to dendrogram correlation weights between samples. Columns are colored 
corresponding to individual, and rows are colored corresponding to treatment. (d) A PCA plot of 
the first two principal components of normalized expression data that has been corrected for the 
effects of individual, collection batch, RIN score, and sex through the use of a linear mixed model. 
Samples are colored and shaped according to treatment status (A = control, B = IL-1β, C = CTS). 
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(Figure 3.1b-c). Upon investigating the correlation of several experimental variables to top 

principal components of variation in the data, our results indicate the primary source of gene 

expression variation is individual (regression of PC1 by individual, R2 = 0.98, regression of PC2 

by individual, R2 = 0.98, regression of PC3 by individual, R2 = 0.92). The second largest source 

of variation in the data is collection batch (regression of PC1 by collection batch, R2 = 0.21, 

regression of PC2 by collection batch, R2 = 0.52, regression of PC3 by collection batch, R2 = 

0.49. RIN score also contributes to variation in the data (regression of PC3 by RIN, R2 = 0.31). 

Although treatment shows a minor correlation with PC3 (R2 = 0.05), this correlation is not 

statistically significant.  

The strong contribution of individual, collection batch, and RIN score to the variation in 

the data demonstrates the need to account for these variables when performing downstream 

analyses seeking to examine differences between the variable of interest, treatment. To 

demonstrate the ability to robustly segregate samples from different treatment groups after 

accounting for these variables, we fit a linear mixed model to the gene expression data 

accounting for individual, collection batch, RIN score, and sex to the data (Equation 1). We then 

extracted the residuals from the fitted model, which represent gene expression data after 

accounting for the variables included in the linear mixed model. A principal components analysis 

of the corrected data demonstrates a clear separation of samples by treatment on the first two 

major axes of variation (Figure 3.1d). 

 

3.3.1 Gene expression changes in response to in vitro OA treatments 
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 To identify gene expression differences between treatments while accounting for 

confounding experimental variables, we fit a linear mixed model accounting for individual, 

collection batch, sex, and RIN variables to test for differential expression between the control 

samples and each of the two treatment groups (see Methods). At an FDR of 0.05, 2881 genes are 

significantly differentially expressed between control and IL-1β samples (Figure 3.2a-b). These 

differentially expressed genes are enriched for gene ontology biological processes corresponding 

to immune responses to cytokines and external stimuli. At an FDR of 0.05, 3449 genes are 

significantly differentially expressed between control and CTS samples (Figure 3.2c-d). These 

differentially expressed genes are enriched for gene ontology biological processes corresponding 

to connections between cells and between cells and the extracellular matrix, as well as 

extracellular matrix organization and metabolism.  

 

3.3.2 Shared and condition specific responses to in vitro OA treatments reveal patterns of gene 

expression activated across different cellular environments 

We next sought to evaluate the sharing of differential gene expression patterns across 

each of our two comparisons (control-IL-1β and control-CTS). To more accurately determine the 

sharing of effects between comparisons and to leverage the information that can be gained by 

sharing across the two comparisons, we fit a multivariate adaptative shrinkage (mash) model to 

the DE results (see Methods). Congruent with increased power, the number of differentially 

expressed genes in each comparison (defined as a mash posterior lfsr < 0.05) increased, with 

3291 genes significantly DE in the control-IL-1β comparison and 4564 genes significantly DE in 

the control-CTS comparison. From the posterior estimates obtained after fitting the mash model 

to the data, we defined three groups of DE genes corresponding to effects unique to each of the  
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Figure 3.2: Differential expression results for IL-1β and CTS treatments. 
  
(a and b) Volcano plot of –log10 raw p values vs log-fold change between control and IL-1β (a) 
and control and CTS (b) conditions. Highlighted in red are genes with an FDR-adjusted p value < 
0.05. Genes plotted to the right of 0 on the x-axis represent genes with higher average expression 
in IL-1β or CTS-treated iPSC-chondrocyte samples compared to control samples. (c-d) Top 20 
Biological processes enriched among DE genes compared to background set of 10,821 genes 
included in the analysis of control and IL-1β (c) and control and CTS (d) comparisons. 
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two comparisons (“IL-1β specific effects” and “CTS specific effects”) and effects shared 

between the two treatments (“shared-effects”).  

We defined IL-1β specific effects as those genes significant at a local false sign rate (lfsr) 

< 0.05 in the IL-1β comparison and without a significant lfsr or an effect size within a factor of 2 

difference in the CTS comparison. CTS specific effects were those genes with a significant lfsr 

in the CTS comparison and without a significant lfsr or a comparable effect observed in the IL-

1β comparison within a factor of 2. Shared effects were those that had a significant lfsr in both 

conditions or were significant in one condition and had a comparable effect size within a factor 

of 2 in the other condition. Effects that were significant in both conditions also must have been in 

the same direction of effect to be classified as shared. Based on these definitions, we determined 

there were 1536 DE genes specific to the control-IL-1β comparison, 2485 DE genes specific to 

the control-CTS comparison, and 2234 DE genes shared between the two comparisons.  

Shared DE genes are enriched for GO terms corresponding to extracellular matrix 

organization and cartilage and joint development (Table 3.1, Figure 3.3). While control-IL-1β 

specific DE genes are enriched for GO terms corresponding to immune and inflammatory 

response, bone development, and extracellular matrix disassembly, control-CTS specific DE 

genes are not enriched for any terms corresponding to extracellular matrix organization or cell-

cell adhesions (Table 3.1, Figure 3.3). Furthermore, while shared and control-IL-1β specific DE 

genes are enriched for genes previously implicated in two differential gene expression studies 

between healthy and OA human cartilage [155] and damaged vs intact OA cartilage [156], 

control-CTS specific DE genes are not found to be enriched for either of these external DE gene 

sets (Figure 3.3). Thus, gene expression pathways activated specifically by CTS treatments in 

chondrogenic cells and that are not also activated by inflammatory cytokine treatment may not   
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Category of 
gene set 

GO Term Enrichmen
t p value 

Example genes 

Shared GO:0030198 extracellular matrix 
organization 

0.00045 COL11A1, COL14A1 

Shared GO:0001501 skeletal system 
development  

0.0041 EXT1 

Shared GO:0003417 growth plate 
cartilage development  

0.00149 COL27A1 

Shared GO:0032330 regulation of 
chondrocyte differentiation 

0.00362 BMP4, BMP6 

Shared GO:1905049 negative regulation 
of metallopeptidase activity 

0.00765 TIMP2, TIMP3 

IL1B specific GO:0045087 innate immune 
response  

4.10E-09 ADAM15, CCL2, 
CCL20 

IL1B specific GO:0006954 inflammatory 
response  

3.90E-07 STAT3, CXCL8 

IL1B specific GO:0060348 bone development  0.00434 SMAD5, BMPR2, 
TGFB3 

IL1B specific GO:0071260 cellular response to 
mechanical stimulus  

0.00469 MAP3K2, PIEZO1, 
SOX9 

IL1B specific GO:0022617 extracellular matrix 
disassembly  

0.00223 MMP1, MMP13, 
ADAMTS5 

CTS specific GO:0045454 cell redox 
homeostasis  

0.0016 NQO1, PRDX1 

CTS specific GO:0030262 apoptotic nuclear 
changes  

0.00876 BLCAP, ACIN1 

 
Table 3.1: Curated list of significantly enriched GO terms amongst shared and specific 
differentially expressed gene sets. 
 
Shared, IL1B specific, CTS specific differentially expressed gene sets are defined based on the 
posterior estimates of local false sign rate and effect size from mash. GO terms were annotated as 
significantly enriched if the Fisher’s exact test p value < 0.01. Gene expression plots of some 
example genes are located in Figure 3.3.  
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Figure 3.3: Shared and specific patterns of differential expression. 
 
(a-c) Box plots of normalized expression accounting for several experimental variables by a linear 
mixed model fit using equation (1) to the data. In each plot, samples are separated by treatment 
group (A = control, B = IL-1β, C = CTS). (a) COL27A1 is a shared differentially expressed gene 
across both control-IL-1β and control-CTS comparisons (both A-B and A-C comparisons are 
significant). (b) PIEZO1 is an example of a control-IL-1β specific differentially expressed gene 
(only the A-B comparison is significant). (c) NQO1 is an example of a control-CTS specific 
differentially expressed gene (only the A-C comparison is significant). (d) Forest plot of 
enrichments of two publicly-available osteoarthritis-related differential expression datasets 
amongst shared (“Shared DE”), control-IL-1β specific (“IL1B specific DE”), control-CTS specific 
(“CTS-specific DE”), control-IL-1β DE (“IL1B DE”), and control-CTS DE (“CTS DE”) gene sets 
generated in this current study. Odds ratios and 95% confidence interval estimates of the odds 
ratios are plotted for each enrichment tests. 
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adequately reflect OA diseases processes. However, CTS treatments as a whole are still a 

relevant model for OA, as the set of genes found to be differentially expressed (not uniquely 

differentially expressed) in CTS vs control are enriched for both external DE gene sets (Figure 

3.3). 

 

3.3.3 Dynamic eQTLs are revealed following environmental perturbations 

 With our RNA sequencing data collected from genotyped individuals, we sought to 

identify eQTLs in each of our treatment conditions. Using the TReCASE framework, an 

approach that leverages total and allele-specific read count information for QTL mapping [157], 

followed by multiple testing correction, we identified 965 genes with an eQTL (eGenes) in at 

least one condition (control: 379 eGenes, IL-1β: 351 eGenes, CTS: 389 eGenes;  FDR < 0.01).  

We further sought to identify dynamic response eQTLs, which display condition-specific 

effects. Due to the sample size of our study, we expect incomplete power to detect eQTLs in any 

condition. Determining dynamic eQTLs by analyzing a simple overlap of the sets of eQTLs in 

each condition would therefore lead to an overestimation of the number of dynamic eQTLs, by 

underestimating the true amount of sharing of eQTLs between conditions. To better account for 

incomplete power in eQTL detection, we defined a shared eQTL as one which is significant in 

one of the three conditions (FDR < 0.01) and with a nominal p value < 0.0548 (see Methods) in 

another condition. Defining dynamic eQTLs as those either significant in control (FDR < 0.01) 

but not in any other conditions (p value > 0.0548), or as those significant in IL-1β and/or CTS 

(FDR <0.01) but not in control (p value > 0.0548), we identify 262 dynamic eQTLs 

corresponding to 257 unique genes (dynamic eGenes; Figure 3.4, Supplementary Figure 3.3).  
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Figure 3.4: Sharing

 
Figure 3.4: Sharing of eQTLs between conditions and dynamic eQTLs. 

(a) Upset plot of distinct sets of eQTLs after analysis of sharing of eQTLs across conditions by 
an FDR < 0.01 in the primary condition and a more lenient secondary cutoff of p value < 0.548 
for sharing in other conditions (see Methods). Each column corresponds to the size of the set of 
shared eQTLs across the conditions with filled-in pegs in the lower plot. Set sizes of eQTLs 
found to be significant at either the primary cut-off of FDR < 0.01 or at the cutoff of p < 0.548 in 
the secondary sharing analysis are plotted to the right of the plot. eQTLs that are either specific 
(not shared with any other condition) to one condition, or shared between the IL-1B and CTS but 
not control condition, are termed dynamic eQTLs. (b-d) Box plots of example dynamic eQTLs. 
The expression counts of the gene, log normalized and adjusted for library size and 7 gene 
expression PCs, are plotted on each y axis. Box plots are broken down by genotype at the SNP 
listed on the x axis and faceted by treatment condition group. (b) Represents an IL-1β condition-
specific dynamic eQTL, (c) represents a CTS condition-specific dynamic eQTL, and (d) 
represents an IL-1β-CTS dynamic eQTL. 
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3.3.4 Dynamic eQTLs are more specific than nondynamic eQTLs 

 Previous analyses of eQTLs across dozens of different tissues in static conditions by the 

GTEx project have found a high degree of eQTL sharing between tissues [17]. Despite the lack 

of either cartilage or bone within the GTEx dataset, we sought to contextualize the specificity of 

the eQTLs identified in iPSC-chondrocytes by considering the naïve overlap between dynamic 

and nondynamic iPSC-chondrocyte eQTLs with the sets of eQTLs identified in each GTEx 

tissue. We find that in general, more closely related tissues to chondrocytes, including mesoderm 

derived tissues such as adipose and skeletal muscle, display higher degree of overlap of eQTLs 

with both dynamic and nondynamic eQTLs identified in iPSC-chondrocytes than more distantly 

related tissues such as brain or liver (Figure 3.5; Supplementary Figure 3.4). Furthermore, in 

almost all GTEx tissues, the proportional overlap observed for nondynamic eQTLs was higher 

than that of dynamic eQTLs, further reinforcing the context-specificity of dynamic regulatory 

effects. Although the overlaps of eQTLs with GTEx are likely underestimations in each tissue 

due to incomplete power, we expect this to only result in a bias towards an observation of greater 

overlap in GTEx tissues with more eQTL mapping power. We do not expect the incomplete 

power issue to impact the result of dynamic eQTLs being more specific than nondynamic 

eQTLs. 

 

3.4 Discussion 

 While gene expression is impacted by genetic variation, some patterns of gene regulation 

are only revealed during and therefore can only be studied in cells undergoing perturbed states. 

In order to study the genetic control of gene regulation of cartilage in both static and dynamic 

conditions, we differentiated iPSC-chondrocytes and treated these cells with control, pro-  
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Figure 3.5: Dynamic eQTLs are more specific than nondynamic eQTLs. 

Proportion of dynamic and nondynamic eQTLs (SNP-gene test pairs) that are also detected in 
GTEx tissues. The Y axis is ordered according to the size of the sum of the proportion of the two 
eQTL overlaps for each tissue, from largest to smallest. Due to incomplete power in GTEx 
tissues, the proportion of overlap is likely an underestimate of the true overlap of effects. 
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inflammatory, and biomechanical stress conditions. The responses of the cells, as well as the 

dynamic patterns of gene regulation uncovered through quantitative trait locus mapping, are in a 

disease-relevant cell type in disease-relevant conditions. The gene-by-environment interactions 

revealed by comparing the effects of eQTLs across conditions represent context-specific gene 

regulation that may help to explain the basis for interindividual differences in susceptibility to 

disease. 

 

3.4.1 Relevance and limitations of in vitro OA models for human disease 

 While in vitro treatment models of OA seek to recreate environmental conditions seen in 

the disease to induce phenotypes mimicking human OA, no model of disease is perfect at 

recapitulating all aspects of in vivo biology. Here, we present the responses of iPSC-

chondrocytes to two differing dimensions of treatment types: a physical treatment in the form of 

mechanical stress and a chemical treatment in the form of the pro-inflammatory cytokine IL-1β. 

Both of these treatments have been used in primary tissue culture of cartilage to produce 

phenocopies of OA in vitro. Despite the obvious differences between the conditions in a cell 

culture dish and those within synovial capsules, the patterns of gene expression activated by 

these individual treatments hold relevance to OA, as demonstrated by the enrichment of activated 

genes in sets of genes that are known to be altered during the course of the joint disease. 

 Additionally, monolayer culture of iPSC-chondrocytes, as done in this study, necessarily 

places chondrogenic cells in an unfamiliar context; monolayer culture of primary chondrocytes is 

known to lead to transcriptional and phenotypic changes characteristic of hypertrophy and 

dedifferentiation [158]. Therefore, despite the detected expression of several chondrogenic genes 

amongst our collected samples (Supplementary Figure 3.1), the relative immaturity of our iPSC-
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chondrocytes is not surprising. Three-dimensional cell culture of iPSC-chondrocytes during 

differentiation and treatment would improve the maturity of cells [159], but this would also 

introduce additional heterogeneity within and between cultures. Therefore, the monolayer 

cultures presented here represent a first step towards understanding the cells of human joints 

without the need for invasive sampling of volunteers. 

 

3.4.2 Shared and specifically activated gene expression patterns in methods of OA induction 

 By comparing the sets of differentially expressed genes in the two OA induction 

treatments and using a statistically robust method to better estimate sharing of effects across 

treatments, we identify patterns of gene activation that are shared and unique across the two in 

vitro OA treatments. 

 The set of differentially expressed genes that are shared between comparisons is enriched 

for annotations corresponding to development of skeletal system components and organization of 

the extracellular matrix. The same set of genes is also enriched amongst two publicly available 

OA-related DE gene sets, demonstrating relevance to joint disease. Given that both IL-1β and 

CTS are used as models of OA and are known to induce expression of catabolic genes and 

hypertrophic differentiation in cartilage [68–71,77,83–87], these gene expression response 

patterns and enrichments are in line with expectations. 

Furthermore, as expected, the set of genes uniquely activated by IL-1β treatment is 

enriched for pathways related to immune and inflammatory responses. However, pathways 

related to development of bone, disassembly of the extracellular matrix, and proteoglycan 

biosynthetic processes are also uniquely impacted by the cytokine treatment. For example, the 

SMAD5 gene, involved in signaling of bone morphogenic protein BMP in chondrogenesis and 
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endochondral bone formation [160], is specifically downregulated in iPSC-chondrocytes in the 

context of IL-1β treatment. Interestingly, genes annotated with the “cellular response to 

mechanical stimulus” gene ontology term such as the mechanically activated ion channel 

PIEZO1, are also found to specifically respond to IL-1β treatment. 

In contrast, the control-CTS specific DE gene set is enriched for pathways related to 

cellular stress and apoptosis, but not enriched for terms related to extracellular matrix 

metabolism or amongst the two external OA DE sets. This lack of enrichment is not due to 

insufficient numbers of unique DE genes in this set, as at 2234 genes, the set is larger than that of 

the control-IL-1β specific gene set. Nor does this lack of enrichment due to a lack of relevance of 

CTS treatment, as the entire set of CTS-impacted genes (not restricted to those uniquely 

impacted by CTS) is enriched for relevant terms and gene sets (Figure 3.2; Figure 3.3).  

Taken together, the nature of the enrichments amongst genes specifically impacted by IL-

1β and the lack of enrichment amongst the set of genes specifically impacted by CTS treatment 

suggest that the form and degree of mechanical stress used in these experiments induces gene 

expression changes that are relevant to joint health and osteoarthritis, but that these changes may 

not necessarily be specific to mechanical stress. In comparison, inflammatory cytokine 

treatments may not only directly impact inflammatory pathways in iPSC-chondrocytes but may 

also impact these cells in a way that sensitizes them to mechanical stress. Indeed, prior studies of 

another inflammatory cytokine IL-1α in cartilage have found similar enhancements of PIEZO1 

expression and potential increased function of the resulting protein [161]. As PIEZO1/2 are both 

highly expressed in OA cartilage and respond particularly to injurious strains [162,163], there 

may be interactions between these two environmental treatments that merit further study. 

Another relationship between mechanical stress and inflammation in cartilage is the fact that 
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mechanical loading of cartilage may have a protective effect against the matrix-degrading 

phenotypes induced by cytokine administration [164]. Although not performed here, a 

combination treatment encompassing simultaneous exposure to both treatments could not only 

help refine the understanding of the shared pathways activated by the two treatments 

individually, but also the potential interactions between the two treatments on the transcriptional 

level and their potential impacts on cartilage degradation in OA. 

  
3.4.3 Dynamic eQTLs reveal context-specific genetic control of gene regulation  

 We identify several classes of dynamic eQTLs in our data, depending on the conditions 

in which they are detected (Figure 3.4, Supplementary Figure 3.3). One example of an IL-1β 

specific eQTL affects CENPU (Figure 3.4b). This gene has been identified as a marker for 

chondrogenic progenitor cells (CPCs) [148], thought to migrate to sites of damaged cartilage in 

OA to participate in tissue repair. As inflammation in the joint in response to acute injury has 

conflicting effects, stimulating both repair and continued degeneration of tissue [165], inter-

individual differences in the ability to recover from cartilage damage in the early stages of joint 

disease may be influenced by genetic regulation of genes activated by inflammation. 

CTS-specific dynamic eQTLs display effects in CTS conditions, but not in other 

conditions. Interestingly, we identify dynamic eQTLs in CTS that affect genes related to cellular 

responses to inflammation. (Figure 3.4c; Supplementary Figure 3.3e). DUSP5 is known to 

regulate cellular inflammation, has reduced expression in OA cartilage, and negatively regulates 

IL-1β induced inflammation in a rat chondrocyte model of OA [166]. As in the differential 

expression analysis, the interplay between different perturbations relevant to OA and their effects 
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on gene regulation may present key insights into their role in contributing to OA disease 

progression. 

IL-1β – CTS specific dynamic eQTLs display effects under perturbation but not in 

steady-state control conditions. An example of such an eQTL is one affecting SLC2A5 

expression (Figure 3.4d). This gene is differentially expressed and possesses enhancers that 

display differential chromatin accessibility between damaged and intact OA cartilage [156,167]. 

One potential mechanism behind dynamic eQTLs such as this may be a lack of expression or 

gene regulatory activity of a particular gene in static conditions. Only under perturbations such 

as inflammation or mechanical stress, or under conditions of cartilage damage in disease, is the 

regulation of these genes visible, and therefore subject to identification via QTL or other 

analyses. 

Overall, dynamic eQTLs offer a view into gene regulation that is not possible when 

studying cells and tissues under steady-state conditions alone. We also identify nondynamic 

eQTLs in the data, including eQTLs with effects found across in all three conditions. Some of 

these shared eQTLs affect the expression of genes responsible for the production or modification 

of extracellular matrix protein components (Supplementary Figure 3.3g-h). In particular, the 

lysyl hydroxylase 1 gene (PLOD1) catalyzes the conversion of lysine to hydroxylysine in 

collagens and is associated with Ehlers-Danlos Syndrome, a connective tissue disorder that 

results in generalized joint hypermobility and skin fragility [168,169]. Similarly, chondroitin 

polymerizing factor 2 (CHPF2) is affected by a nondynamic shared eQTL and is involved in the 

polymerization of chondroitin, a structural component of cartilage. Nondynamic eQTLs display 

their effects more generally across multiple environmental conditions and may impact more 



 81 

general pathways in chondrocytes, including developmental pathways that are dysregulated in a 

variety of joint diseases not directly related to OA. 

The difference in overlap between our two sets of eQTLs identified in perturbed and 

unperturbed iPSC-chondrocytes and steady-state GTEx eQTLs demonstrates the context-specific 

nature of the gene regulatory programs that dynamic eQTLs represent. The fact that many 

eQTLs in iPSC-chondrocytes do overlap with both related and unrelated tissues in this external 

dataset is not altogether unsurprising, given the large amount of overlap in eQTL discovery 

between GTEx tissues themselves. However, despite the sizable statistical power of GTEx, the 

ability to detect eQTLs in this study that are not identified in this external dataset highlight the 

potential for additional discoveries when searching in other cell types and cell states. 

A recent study investigating eQTLs mapped in matched low-grade and high-grade OA 

cartilage samples from 115 patients found 32 genes displaying so-called “differential eQTLs”, 

with an effect that could be detected in either low-grade or high-grade cartilage but not both 

groups [170]. While this represents a method of investigating disease context-specific genetic 

control of gene regulation, the sharing of the joint space and overall synovial environment 

between low-grade and high-grade samples in this study may mask differences in gene 

regulation that would be observed between truly healthy and diseased tissue, potentially 

explaining the low number of dynamic eQTLs identified. Despite its limitations, modeling the 

cellular environment in vitro is a potential way to control for the cellular environment to more 

specifically interrogate gene-by-environment interactions. 

 In summary, here we profiled the response to inflammatory cytokine exposure and 

mechanical stress in iPSC-derived chondrogenic cells. We find shared and specific patterns of 
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responses to different in vitro OA treatments and examples of hidden patterns of genetic control 

of gene regulation that are made visible by changes to the cellular environment. 

 

3.5 Methods 

3.5.1 Samples 

We selected 22 individuals from the Yoruba YRI HapMap population [134]. iPSCs were 

previously reprogrammed from lymphoblastoid cell lines from these individuals [96]. This 

number of individuals has been sufficient to identify eQTLs in previous studies [123,171]. 

Experiments were performed to avoid confounding of technical variables with the variable of 

interest of condition (Figure 3.1). 

 

3.5.2 iPSC-MSC and iPSC-chondrocyte differentiation 

Mesenchymal stem cells (MSCs) were differentiated from iPSCs as previously described 

[172]. iPSC-MSCs have been previously shown to display phenotypes and cell surface markers 

characteristic of primary MSCs [172]. A random subset of 16 iPSC-MSC lines used in this study 

were characterized through flow cytometry to display cell surface markers characteristic of 

primary MSCs. iPSC-MSCs were detached from culture flasks using 0.05% Trypsin/EDTA and 

seeded at a density of 92,000 cells/well onto the center of wells of BioFlex Type I Collagen 

coated 24-well Culture Plates (FlexCell International HTPW-3001C) using BioFlex cell seeders 

(FlexCell International). Cells were seeded using a regimen of 5% elongation for 2.5 hours. After 

seeding, cells were cultured in serum-free chondrogenic differentiation medium [92], consisting 

of high glucose DMEM, 100 mg/mL Penicillin/Streptomycin, 50mg/mL L-Proline, 200mM 

GlutaMax, 50mg/mL L-Ascorbic acid-2-Phosphate, 11g/L Sodium pyruvate, 5mM 
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Dexamethasone, 1x ITS Premix, and supplemented with 10 ng/mL TGF-β3. The chondrogenic 

medium was changed every 2-3 days for 14 days. iPSC-chondrocytes differentiated for 14 days 

have been previously shown to display Alcian blue and COL2A1 immunostaining demonstrating 

production of proteoglycans and collagen II [172], the latter being specifically expressed in 

human cartilage. iPSC-chondrocytes also demonstrate expression of several chondrogenic-

related genes (Supplementary Figure 3.1). 

 

3.5.3 Cyclic tensile strain regimen and Interleukin-1 beta cytokine treatment 

iPSC-MSCs from each individual were seeded simultaneously on BioFlex Type I 

Collagen coated 24-well Culture Plates and differentiated for 14 days in chondrogenic media. 

Plates containing iPSC-chondrocytes from each individual were then assigned to one of three 

treatment groups: an untreated control group, a cyclic tensile strain treated group, and an IL-1β 

treated group. Cells from all groups were placed in the same incubator (at 37°C, 5% CO2, and 

atmospheric O2), during the 24 hours of treatment. 

iPSC-chondrocytes in the control group were fed with serum-free chondrogenic 

differentiation medium for 24 hours. 

iPSC-chondrocytes in the cyclic tensile strain group were fed with serum-free 

chondrogenic differentiation medium and treated with a cyclic tensile strain (CTS) regimen that 

is known to induce an OA-like phenotype using the Flexercell FX6000 Tension System (Flexcell 

International) [68–71]. Plates were loaded onto the Flexercell baseplate and a vacuum was used 

to deform the cell culture plate membrane and create uniform biaxial cyclic tensile strain. 

Specifically, 1.8% elongation (15kPa) of CTS was applied to the cells at a rate of 0.5 Hz for 24 

hours. This strain loading regimen has been previously shown to induce the expression of 
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chondrocyte hypertrophy-related marker genes in iPSC-chondrocytes by quantitative real-time 

reverse transcription PCR (RT-PCR) compared to matched untreated controls [172]. 

 iPSC-chondrocytes in the IL-1β treated group were fed with serum-free chondrogenic 

differentiation medium containing IL-1β (10 ng/ml) for 24 hours. This concentration of IL-1β 

has been shown to induce an OA-like phenotype in primary chondrocytes [173–177]. 

 

3.5.4 Bulk RNA extraction and sequencing 

RNA was extracted from cells following control, CTS, and IL-1β treatments using the 

ZR-Duet™ DNA/RNA MiniPrep kit (Zymo D7001). RNA concentration and quality were 

measured using the Agilent 2100 Bioanalyzer. Library preparation was performed over three 

batches using the Illumina TruSeq Stranded mRNA library prep kit (20020594, Illumina). 

Samples were sequenced to 28+89 base pairs, paired-end on three SP flow-cells using the 

Illumina NovaSeq at the University of Chicago Genomics Core Facility according to 

manufacturer instructions. A minimum of 10 million reads mapped to the hg38 genome were 

generated per sample. We used FastQC to confirm that the reads were of high quality. 

 

3.5.5 Quantifying the number of bulk RNA-seq reads mapping to genes 

Reads were mapped to the hg38 genome using STAR (version 2.6.1b) [138]. Gene 

expression levels were quantified using the featureCounts function in Subread (v1.6.5 

RRID:SCR_009803) using standard parameters [150]. All downstream processing and analysis 

steps were performed in R (v4.2.0, RRID:SCR_001905) unless otherwise stated.  

 

3.5.6 Transformation and normalization of bulk RNA-seq reads 
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Log2-transformed counts per million (CPM) were calculated from raw counts for each 

sample using the edgeR package (RRID:SCR_012802) [151]. Lowly expressed genes were 

filtered such that only genes with an expression level of log2(CPM) > 3 in at least 8 samples 

were kept for downstream analyses. Genes originating from the mitochondrial or sex 

chromosomes were removed from downstream analyses. Raw read counts from 10,821 genes 

that passed these filters were normalized using the upper quartile normalization method to 

account for the number of reads sequenced across samples for each gene [178]. 

 

3.5.7 Analysis of sources of variation in bulk RNA-seq data 

Principal component analysis (PCA) was performed on the normalized log2(CPM) values 

from above. A linear regression analysis was then performed between each of the top 5 PCs and 

several biological and technical variables. These variables included individual cell line, 

treatment, RIN score, collection batch, number of passages as a feeder iPSC, number of passages 

as a feeder-free iPSC, and number of passages as an iPSC-MSC. P values from the regression 

were corrected using the Benjamini Hochberg (BH) procedure. Results with a BH-adjusted p 

value < 0.05 were considered significant. 

Pairwise Pearson correlations were computed between normalized log2(CPM) values 

between samples. Correlation values were plotted in a heatmap using the gplots::heatmap.2 

function in R, and dendrograms organizing the samples by correlation weights between samples 

were used to reorder samples in the heatmap. 

 

3.5.8 Regressing out experimental variables in RNA sequencing data 
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A linear mixed model was fit to the gene expression data using the dream function of the 

variancePartition R package to trimmed mean of M-values normalized read counts 

(RRID:SCR_019204). Collection batch and individual were modeled as random effects while 

sex and RIN score were modeled as fixed effects in the linear mixed model for DE comparisons 

as in equation (1). Residuals of the model fit to the gene expression data, representing measured 

gene expression after accounting for the variables included in the linear mixed model, were 

extracted and examined using PCA. 

Equation 1: 

𝑌	~	𝛽" ∗ 𝑠𝑒𝑥 + (1|𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) 	+ (1|c𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑏𝑎𝑡𝑐ℎ) + 𝛽% ∗ 𝑅𝐼𝑁 + 𝜀 

 

3.5.9 Differential expression analysis of bulk RNA-seq data 

Differential expression (DE) was measured using a linear-model-based empirical Bayes 

method in the dream function of the variancePartition R package to trimmed mean of M-values  

normalized read counts that passed filtering steps (RRID:SCR_019204). 

Collection batch and individual were modeled as random effects while treatment, sex and 

RIN score were modeled as fixed effects in the linear mixed model for DE comparisons as in 

equation (2). Genes with an adjusted p value < 0.05 in comparisons between control-CTS 

treatment and control-IL-1β treatment were considered DE. 

Equation 2: 

𝑌	~	𝛽" ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +	(1|𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) 	+ (1|c𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑏𝑎𝑡𝑐ℎ) + 𝛽% ∗ 𝑅𝐼𝑁 + 𝛽' ∗ 𝑠𝑒𝑥 + 𝜀 

 

3.5.10 Enrichment of DE genes in biological pathways  
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Using topGO (RRID:SCR_014798), we assessed enrichment of Gene Ontology (GO) 

biological processes among DE genes. For DE genes in each of the two treatment comparisons, a 

Kolmogorov-Smirnov test using adjusted p values was used for assessing enrichment of GO 

processes, and the top 20 most enriched terms were reported. For assessing the GO enrichments 

of shared and unique gene sets between the two treatment comparisons, the weight01 algorithm 

was used with a Fisher’s exact test. Terms with a p value < 0.01 were considered significantly 

enriched. 

 

3.5.11 Analysis of sharing of DE genes between conditions 

A multivariate adaptive shrinkage (mash) model was fit to the DE genes detected in the 

control-CTS treatment and control-IL-1β treatment to estimate sharing of significant effects 

between the two conditions [179]. To account for correlations between tests from the two 

comparisons due to both groups sharing the same control samples, the correlations between null 

tests from both comparisons were estimated. The mash model was fit using the null correlation 

matrix, data-driven covariance matrices determined through empirical Bayes matrix factorization 

and PCA, as well as canonical covariance matrices to best account for multiple potential patterns 

of covariance between tests across the two comparisons.  

 

3.5.12 Enrichment of DE gene sets in OA-related DE gene sets 

To test for enrichment of sets of OA-related genes in our DE genes, a two-sided Fisher’s 

exact test was used. In all enrichment tests, the background gene set was the complete set of 

genes tested for DE in our analyses (n = 10,821 genes). Two differential gene expression studies 

between healthy and OA human cartilage [155] and damaged vs intact OA cartilage [156] were 
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used to assess enrichment amongst DE gene sets. Specifically, the first gene set comprised 2692 

DE genes detected in Soul et al., 2018 from comparisons between RNA-Seq collected from total 

knee replacement cartilage from 60 patients with OA and 10 control patients without OA. The 

second gene set comprised 1575 differentially expressed genes detected in Dunn et al., 2016 

between damaged and intact knee cartilage from 8 OA patients undergoing total knee 

replacement. 

 

3.5.13 Expression quantitative trait locus mapping 

  We used the TReCASE framework in the asSeq software package to leverage both total 

read counts and allele-specific expression in our RNA sequencing samples to identify cis-eQTLs 

in iPSC-chondrocytes separately in control, IL-1β, and CTS conditions [157,180]. We selected 

the TReCASE method to maximize the power to detect eQTLs given the relatively small sample 

size of the study through using allele-specific expression information. Phased genotypes for hg38 

from our 22 individuals were obtained from the 1000 Genomes project [140]. Total read counts 

for each gene in each sample were obtained, and allele specific counts mapped to non-

overlapping exons comprising haplotypes for each gene were obtained using asSeq functions. 

We required over half of samples to have at least 5 mapped counts for a given gene for it to be 

tested within the TReC model, and for at least 5 samples to have at least 10 allele specific counts 

for a gene to be tested in the ASE model. Seven gene expression PCs (computed using the 

log(raw total count + 1 / library size) of genes in each sample) and the total library size of each 

sample were included as covariates in the eQTL mapping procedure. We tested variants 50 kb 

upstream and 50 kb downstream of the TSS, resulting in 3,508,367 shared tests across all three 

conditions (control: 3,710,311 tests, IL-1β: 3,721,204 tests, CTS: 3,753,050 tests). For 
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downstream analyses, we subsetted the eQTL mapping results to include those coming from the 

set of tests that were included across all three conditions. 

 TReCASE p values were adjusted on two hierarchical levels, first using eigenMT to 

account for multiple SNP-gene tests for each gene and LD between SNPs [181]. Then, the SNP-

gene pair with the lowest p value for each gene was selected from each gene. A secondary p 

value adjustment was performed across the selected SNP-gene pairs over all genes using the 

Benjamini-Hochberg procedure [182]. SNP-gene tests with an FDR < 0.01 were considered 

significant. This FDR threshold was chosen to maximize the amount of sharing of eQTL effects 

determined between conditions (see “Identification of dynamic eQTLs”) in order to increase the 

reliability of dynamic eQTL calling. 

 

3.5.14 Identification of dynamic eQTLs 

To overcome incomplete power in our dataset when calling dynamic eQTLs, we 

employed a strategy utilizing Storey’s π1 method [183]. Specifically, we first identified 

significant eQTLs using an FDR cutoff of < 0.01 separately in each of the three conditions. We 

then determined and plotted the union of all nominal p values assigned to these tests in the other 

two conditions, conditioning on an FDR > 0.01 in each of the other two conditions (the tests are 

not also called as significant in the other two conditions). These p values are expected to follow a 

uniform distribution if we have complete power to detect eQTLs. We further plotted the p value 

distribution of all tests in all conditions with an FDR < 0.01 (Supplementary Figure 3.2). The 

enrichment of p values on the low-end of the histogram in the first distribution of p values over 

the second distribution is due to the sharing of effects between conditions. To determine the 

secondary nominal p value cutoff at which to determine sharing of effects between conditions, 
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we obtained the intersection of the density functions of the two distributions. This intersection (p 

value: 0.0548) represents the point at which values deviate from the null distribution under a 

model assuming no sharing between conditions. 

We iterated through this procedure, choosing a range of FDR thresholds between 0.1 and 

0.001, in order to determine the FDR cutoff at which sharing of eQTL effects between conditions 

is maximized. We chose this value (FDR < 0.01) as it maximized pairwise sharing of eQTLs 

between conditions to increase the robustness of called dynamic eQTLs 

 

3.5.15 Integration of eQTLs with GTEx data 

eQTL summary statistics from the Genotype Tissue Expression Project (GTEx, v8) were 

obtained [17]. eGenes, eSNPs, and significant test pairs from GTEx from each of the 49 tissues 

were intersected with our eQTL sets.  
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3.6 Supplementary Information 

3.6.1 Supplementary Figures 

 

Supplementary Figure 3.1: Expression levels of several chondrogenic genes across RNA 
sequencing samples. 

Y axis in each plot is gene expression counts per million reads normalized by upper quantile 
normalization across libraries. X axis in each plot is bulk RNA sequencing samples grouped by 
condition (A= control, B = IL-1β, C = CTS). 
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Supplementary Figure 3.2: Graphical depiction of the method used to determine the 
secondary cutoff for calling dynamic eQTLs. 

(a) Histogram of nominal p values from all tests in all conditions that were not significant (FDR 
> 0.01). (b) Distribution of nominal p values of non-significant tests (FDR > 0.01) conditioned 
on being significant in a different condition (FDR < 0.01). For example, a test called as 
significant in control and not called as significant in IL-1B or CTS would have its p values from 
the IL-1B and CTS tests included in this histogram. (c) The density functions of the two 
histograms from (a) and (b) are plotted, and the intersection of the two plots, signifying the point 
at which the p values in distribution in (b) deviate from the null, is marked with a red circle and 
orange vertical line. We used this point (p value 0.0548) as our second more lenient cutoff when 
assessing sharing of eQTLs between conditions. 
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Supplementary Figure 3.3: Additional eQTL box plots. 

Box plots of additional example dynamic eQTLs. The expression counts of the gene, log 
normalized and adjusted for library size and 7 gene expression PCs, are plotted on each y axis. 
Box plots are broken down by genotype at the SNP listed on the x axis and faceted by treatment 
condition group. (a) Represents a control condition-specific dynamic eQTL, (b) represents an IL-
1β condition-specific dynamic eQTL, (c-e) represent CTS condition-specific dynamic eQTLs, (f) 
represents an IL-1β-CTS dynamic eQTL, and (g-h) represent two eQTLs with effects detected 
across all treatments. 
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Supplementary Figure 3.4: Additional plots of GTEx overlap with dynamic and 
nondynamic eQTLs. 

Overlap of dynamic and nondynamic (a) eGenes or (b) eSNPs and those detected in GTEx 
tissues. The Y axis is ordered according to the size of the sum of the proportion of the two 
overlaps for each tissue, from largest to smallest. 
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CHAPTER 4 

DISCUSSION 

 

Together, the two projects presented in this thesis leverage the power of induced 

pluripotent stem cell (iPSC) derived cell types and in vitro treatments to explore the impacts of 

gene-by-environment interactions on gene regulation. First, in chapter 2, I characterize an 

experimental system for studying gene regulation changes relevant to joint health and 

osteoarthritis (OA). Although the cells that resulted from iPSC-derived chondrogenic 

differentiation in this work were relatively immature, following an in vitro biomechanical strain 

treatment, they displayed gene expression responses relevant to adult disease processes. 

Additionally, this system induced robust gene expression responses that we could reliably detect 

across cells with different genetic backgrounds. In chapter 3, I present a project that leverages 

and builds upon this experimental system to characterize dynamic gene regulation in static 

conditions and two environmental perturbations relevant to OA. Gene expression changes 

stimulated by both in vitro OA treatments suggest that inflammatory pathways play shared and 

important roles in active disease progression and response of joint cells to pathological 

environmental conditions. Simultaneously, the presence of genetic control of gene expression 

unique to each environmental perturbation reinforces the importance of cell context in 

understanding the genetic basis of complex diseases such as OA, and these context-specific 

genetic impacts on gene regulation may help to explain inter-individual disease risk in OA and 

other joint diseases.  
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4.1 Relevance of cell type and environmental context to disease 

The difficulty of sampling skeletal tissues, like bone and cartilage, has hampered efforts 

to investigate the role of gene regulation in skeletal traits and diseases. As an alternative to 

primary cells, I used iPSCs, which can be obtained relatively readily from many genetically 

diverse individuals and subsequently differentiated into multiple cell lineages, to obtain 

chondrogenic cells to study regulatory patterns in cartilage. Further, I exposed these iPSC-

chondrocytes to controlled environmental conditions that can be adjusted to reflect contexts 

relevant to osteoarthritis. Specifically, the work presented here investigates one joint-related cell 

type (iPSC-chondrogenic cells) in two disease-relevant contexts that model aspects of the OA 

joint (biomechanical strain and inflammatory cytokine exposure). While the in vitro treatment 

models of OA used in this work seek to recreate environmental conditions seen in the disease to 

induce phenotypes mimicking human OA, I acknowledge that neither model of disease is a 

perfect copy of in vivo biology. At the same time, each of these treatments have been used in 

primary tissue culture of cartilage to produce phenocopies of OA in vitro. The patterns of gene 

expression activated by these individual treatments hold relevance to OA, as demonstrated by the 

enrichment of activated genes in sets of genes that are known to be altered during the course of 

the joint disease. Thus, while imperfect, the system constructed here has much relevance to 

human joint health and holds many advantages compared to alternative models, thus serving as a 

good first step into investigating gene regulation in OA. 

 

4.1.1 Advantages of an in vitro system for modeling gene regulation in OA 

In vitro systems offer the ability to finely control cellular environments and are therefore 

advantageous for research of gene regulation patterns, as such patterns can be highly context 
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dependent. However, in vivo models of osteoarthritis, especially those in mice, exist and see 

wide use in OA studies and offer genetically and experimentally tractable ways to study OA 

[184]. Furthermore, human studies of diseased OA joints sampled after joint replacement surgery 

also offer a view into the biology of this disease in the entire synovial capsule, unabstracted as in 

they are in OA models that contain only one or a few cell types [170]. At the same time, these 

human and animal in vivo studies contend with several issues when attempting to study the 

precise impact of cellular environments on gene regulation.  

For one, animal models of OA do not necessarily develop OA in the same way that 

humans do. Animal models of OA typically require the destabilization of joints through surgical 

resection of joint ligaments to lead to mechanical changes within the joint environment [184], 

making them more a closer model of post-traumatic OA. While animals of many species do 

naturally develop OA in the wild and captivity [184], naturally occurring animal models of OA 

require lengthy experimental time to allow for animals to reach maturity and further develop 

disease, greatly increasing the financial and temporal cost of experiments and making short-term 

experiments difficult. In contrast, in vitro OA models of primary or differentiated human joint 

cells allow for the induction and observation of OA phenotypes on a faster time scale while also 

ensuring the species-relevance of findings to humans. 

Human OA tissue samples that are available for sampling in OA research studies are 

typically collected at the end stages of disease as opportunistic samples from joint replacement 

surgery. These tissues are therefore often characterized by extensive joint tissue degeneration. 

The severity of disease in these samples make it difficult to understand the early disease process 

of OA. Furthermore, it is difficult to determine whether gene expression changes that can be 

observed in late stage OA are the drivers or results of the disease process. Furthermore, 
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confounding from medication status of patients, environmental exposures not measured by 

researchers, and logistical difficulties associated with high quality sample collection and 

preservation can all introduce noise to gene-by-environment studies in human subjects. A recent 

study mapped eQTLs separately in matched low-grade and high-grade OA cartilage samples 

from 115 patients and found 32 genes displaying so-called “differential eQTLs”, with an effect 

that could be detected only in one group of cartilage but not both groups [170]. As the synovial 

environment of low-grade and high-grade samples in this study is the same within each 

individual, differences in gene regulation that would be observed between truly healthy and 

diseased tissue are masked in this study design. This fact potentially explains the low number of 

differential eQTLs identified despite the large sample size of the study. Despite its limitations, 

modeling the cellular environment in vitro is a potential way to control for the cellular 

environment to more specifically interrogate gene-by-environment interactions. Thus, in vitro 

studies such as the one conducted in this thesis work can detect many more examples of robust 

dynamic genetic control of gene regulation with relatively small sample sizes [21,123].  

Overall, the ability to finely control the cellular environment of human cells in vitro 

makes such experimental systems tractable and advantageous for gene-by-environment studies of 

gene regulation in human disease. 

 

4.1.2 Mechanical strain compared to other mechanical stresses in OA models 

CTS models do not directly mimic the compressive or shear biomechanical stresses 

experienced by joint chondrocytes in vivo. However, the previous extensive use of CTS as a 

model for studying the effects of extra-physiological stresses in cultured cells validates its use as 

an OA model [62–65,68–71,128]. Furthermore, the patterns of sharing observed on both the 
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differential expression and eQTL levels between CTS perturbation and IL-1β treatment suggest 

that there are pathways that are conserved even across types of treatments, and likely will be 

shared pathways between types of mechanical treatments as well. Furthermore, the lack of 

compressive force models of OA that can be applied to monolayer cultures of chondrocytes 

necessitated the use of CTS in this work. Adapting the system to include three-dimensional 

differentiated iPSC-chondrocytes is possible, but would also introduce additional undesired 

consequences such as heterogeneity of cultures. 

 

4.1.3 Monolayer vs three-dimensional culture of iPSC-chondrocytes 

Monolayer culture of iPSC-chondrocytes necessarily places these chondrogenic cells in 

an unfamiliar context compared to being embedded as they would be in primary cartilage tissues. 

In fact, monolayer culture of primary chondrocytes is known to lead to transcriptional and 

phenotypic changes due to hypertrophy and dedifferentiation [158]. Therefore, the relative 

immaturity of our iPSC-chondrocytes observed in chapter 2 is not surprising. Three-dimensional 

cell culture of iPSC-chondrocytes during differentiation and perturbation treatments would 

improve the maturity of cells and potentially the relevance of the findings to primary disease 

[92,146]. However, three-dimensional culturing would also introduce additional heterogeneity 

within and between cultures compared to the relative uniformity of monolayer cultures, due to 

the differential permeability of cellular aggregates to differentiation factors in differentiation 

media or oxygen as well as cytokine treatments [185]. Therefore, while the monolayer cultures 

presented here represent a first step towards understanding the cells of human joints without the 

need for invasive sampling of volunteers, cellular aggregates may further improve the power of 

this system to model primary human OA. Application of single-cell sequencing methods to 
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deconvolute three-dimensional cultures into cell types of interest would be a further option to 

ameliorate the heterogeneity of such culture systems. 

 

4.1.4 Alternative environmental contexts relevant in skeletal biology  

In general, every cell type and environmental perturbation will vary in relevance and 

explanatory power for a given complex trait. Still, there may be groupings of cell types and 

conditions that produce common regulatory responses and shared phenotypic effects. Therefore, 

it is important to consider multiple environmental factors that may be relevant for particular traits 

to clarify core responses versus truly context-specific ones. With respect to joint health, 

biomechanical forces and inflammation are particularly influential, which is why they were 

examined in this thesis. Additionally, several other environmental factors affect skeletal 

development and pathogenesis, such hypoxia and cell-cell signaling – both of which can be 

further explored using similar cell culture systems. 

Hypoxia may be a particularly interesting environmental context to examine with respect 

to the skeletal system, as the synovial environment which contains cartilage, bone, synovial, and 

infiltrating immune cells can become hypoxic in response to inflammatory, metabolic, and 

mechanical perturbations. This hypoxia can lead to structural and pathogenic changes to joint 

tissues, similar to that observed in rheumatoid arthritis and OA [186–188], and may be a part of 

the disease process of these conditions. Studying how gene regulation is impacted by low oxygen 

environments and identifying which regulatory changes are unique to joint cell types as 

compared to other cell types, like heart, muscle, and neuronal cells, could improve our 

understanding of how transient and chronic hypoxia impacts and contributes to pathogenic states 

specifically in the joints. 
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In addition to the joints, several other regions within the skeletal system experience 

different environmental exposures. One critically important area is the bone marrow niche in 

long bones, where different skeletal and hematopoietic cells occupy the same space. In 

particular, mesenchymal stem cells (MSCs) and their derivatives interact with and modulate the 

development of immature immune cells. Such cell-cell signaling can impact aspects of health 

and disease. Establishing a model of this unique bone marrow signaling environment may be 

possible by co-culturing iPSC-derived MSCs with hematopoietic stem cells or other related 

immune cells. Given that the bone marrow is also a mechanically dynamic environment, it would 

be especially interesting to investigate how mechanical stimulation impacts the signaling 

capacity of iPSC-derived MSCs with immune cells, how such responses may contribute to 

disease initiation and progression, and how such environmental factors may mediate their 

phenotypic effects through interactions with underlying genetic variation. 

 

4.2 Validation of eQTL findings 

The eQTLs mapped in this work have the potential to help explain the causative 

mechanisms behind OA GWAS loci. Should the same genetic locus be simultaneously 

associated with disease risk and gene expression changes in chondrocytes, these gene expression 

changes may mediate the effect of genetic variation on susceptibility. However, in order to 

definitively establish this connection, we will need to take additional steps to validate our eQTL 

findings. 

A first step will be to overlap eQTL variants with OA GWAS associated variants. In 

order to overcome issues with linkage disequilibrium between adjacent genetic variants in the 

human genome, applying methods to colocalize causal genetic variants across different traits will 
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be necessary for this work [189,190]. The differences in population between the participants in 

the vast majority of OA GWAS, which have been almost exclusively performed in European 

ancestry subjects, and the population of Yoruba individuals surveyed in my work, will 

potentially pose a problem for determining overlaps in causal loci. However, as genetic variants 

used to map both GWAS loci and eQTLs are common and therefore likely to be shared across 

populations [191], I do expect an effort to overlap European OA GWAS loci and eQTLs mapped 

in Yoruba iPSC-chondrocytes to be fruitful. Alternatively, determining an overlap of iPSC-

chondrocyte eGenes and genes implicated in OA GWAS through examining genes that are 

located close to GWAS variants may be less affected by population differences but still yield 

interesting insight by serving as additional evidence to connect GWAS variants to genes they 

may impact. Further integration of the eQTL data with functional annotation data encompassing 

chromatin accessibility, transcription factor binding, and three-dimensional chromatin structure 

from cartilage could lend further evidence as to the functional relevance of eQTL variants. For 

example, a dynamic eQTL identified in chapter 3 affects expression of SLC2A5, a gene that is 

differentially expressed between and possesses gene regulatory elements that display differential 

chromatin accessibility between damaged and intact OA cartilage [156,167]. One potential 

reason for the ability to detect this eQTL in only perturbed conditions may be the lack of 

expression or gene regulatory activity of the gene in unperturbed conditions. Understanding 

potential mechanisms underlying eQTLs or dynamic eQTLs can aid in discovery of additional 

instances of genetic control of gene regulation in these cells. 

Functional studies also can certify eQTLs as causally impacting gene expression. For 

example, CRISPR/Cas9 genome editing strategies to precisely introduce genetic changes at 

mapped eQTLs and observing their impacts on gene expression would be one way to establish 
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conclusively the direct connection between genetic variation and gene expression in 

chondrocytes [192].  

Despite the drawbacks of many in vivo models of OA, validation of my findings in such 

models would be warranted to overcome some of the experimental blind spots of our system. 

One step to validate the ability of this iPSC-chondrocyte model to mimic both chondrogenic cells 

and diseased cells would involve studying patients with OA. One such study could involve 

collecting primary chondrocytes from patients who have OA and are undergoing hip or knee 

replacement. Gene expression and phenotypic measurements from these primary cells could then 

be compared to gene expression patterns in iPSC chondrocytes reprogrammed blood or skin cells 

collected from those same patients. This comparison would allow for an assessment of the ability 

of iPSC derived cells to model primary cells. A further comparison of the gene expression 

profiles of these cells following CTS or IL-1β treatment would allow us to anchor our 

observations of iPSC-chondrocytes with primary disease cells collected from the same 

individuals. As a way to overcome the degraded nature of primary late stage OA chondrocytes, 

differentiating primary MSCs collected from these patients into chondrocytes using 

differentiation protocols would allow us to generate more comparable cell types to match against 

iPSC-chondrocytes. Such a study would lend more credence to the claim that these iPSC models 

can be used to understand the gene expression behaviors of primary cells without the need for 

invasive sampling. 

Additionally, animal models could be used to validate the disease implications of 

dysregulation of genes in an organismal context. Induced overexpression or knock down 

expression of eGenes with eSNPs that overlap OA GWAS associated variants in animal joints 
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and observing the impacts of these gene expression perturbations on joint health would help to 

connect the impact of these variants on gene regulation with their impact on phenotype.  

 

4.3 Clinical implications of findings for understanding of joint health 

Understanding how inter-individual differences influence joint health could identify new 

therapeutic targets to treat OA. The gene-by-environment interactions revealed by comparing the 

effects of eQTLs across conditions represent context-specific gene regulation that contribute to 

these inter-individual differences in susceptibility to this disease. The analysis of differential 

expression and differential gene regulation between the individuals in my studies reveals insights 

into the interplay between inflammatory and mechanical environments in OA, contributing to an 

ongoing discussion in the field about the relative importance of each factor in OA development. 

 

4.3.1 Interplay between inflammatory and mechanical environments in OA 

In chapter 3, I evaluated the gene expression responses of iPSC-chondrocytes to two 

different types of OA induction treatments, namely IL-1β and CTS. While both inflammatory 

and mechanical factors are known to play contributing roles in OA risk, a current topic of 

research within the OA field surrounds whether this disease is primarily the result of the impacts 

of one factor or the other [193–195]. My results from both differential expression and eQTL 

analyses from these two different forms of environmental perturbations highlight the interplay 

between the factors and the necessity to consider both when evaluating the disease. 

First, by comparing the sets of differentially expressed genes in the two OA induction 

treatments, I identified shared and unique patterns of gene activation. Around a third of the union 

of differentially expressed genes in either comparison between perturbation and control are 
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differentially expressed in the same direction in both comparisons (2234 shared DE genes out of 

6255 DE genes in either comparison). This shared set of DE genes is enriched for annotations 

corresponding to skeletal system development and extracellular matrix organization and amongst 

two publicly available OA-related DE gene sets, reinforcing their relevance to joint disease. 

Since the two models used in this work are both models of OA and are known to induce OA like 

phenotypes [68–71,77,83–87], these gene expression response patterns and enrichments are in 

line with expectations. However, the fact that they activate similar gene expression response 

programs further suggests that they may act through common pathways in producing OA 

phenotypes. 

Interestingly, even looking to those genes that are specifically DE in one perturbation but 

not the other, I can observe evidence of the cross-talk between inflammation and mechanical 

stress. Genes specifically responding to IL-1β treatment are enriched for the “cellular response to 

mechanical stimulus” gene ontology term. One example is the mechanically activated ion 

channel PIEZO1, which is found to respond specifically to IL-1β treatment in my data. Prior 

studies of response of cartilage to inflammatory cytokines have found similar enhancements of 

PIEZO1 expression on the RNA level and potential increased function of the resulting protein 

within inflamed cartilage tissue cultures [161]. PIEZO1/2 are both highly expressed in OA 

cartilage compared to healthy cartilage and act particularly in response to injurious mechanical 

stresses [162,163], joint inflammation may also predispose joints to respond negatively to 

mechanical stimuli in a disease-promoting fashion. At the same time, the relationship between 

these two factors may not always be synchronistic. Indeed, moderate mechanical loading of 

cartilage may have a protective effect against the matrix-degrading phenotypes induced by 

cytokine administration [164].  
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In the eQTL analysis from the same study, I find several examples of CTS-specific 

dynamic eQTLs that are associated with changes in expression of genes that have been 

previously shown to be related to cellular responses to inflammation. For example, the gene 

DUSP5 is known to regulate cellular inflammation, has reduced expression in OA cartilage 

compared to healthy cartilage, and has been shown to negatively regulate IL-1β induced 

inflammation in a rat chondrocyte cell culture model of OA [166]. As in the differential 

expression analysis, the interplay between different perturbations relevant to OA and their effects 

on gene regulation may present key insights into their role in contributing to OA disease 

progression. 

Based on these observations from the current studies, it is difficult to disentangle the 

impacts of mechanical stress from those of inflammation and vice versa. Instead, use of a 

liability model encompassing the cumulative impacts of both genetic variation and multiple 

environmental factors may be more accurate when approaching the issue of defining 

osteoarthritis [196]. Combination treatments whereby chondrocytes are exposed simultaneously 

to both mechanical stress and inflammatory cytokines at different dosages could help refine the 

understanding of the shared pathways activated by the two treatments individually and the 

interplay between these two environmental factors in a dynamic human joint context. This type 

of study may also further reveal the interactions between the two treatments on the 

transcriptional level and their potential impacts on cartilage degradation in OA. 

 

4.4 Skeletal traits and comparative biology 

While human cell lines provide genetic backgrounds and cellular environments relevant 

for certain studies of human-specific gene regulation, the utility of animal models should not be 
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overlooked. This is especially true for our closest nonhuman primate (NHP) relatives, which can 

provide additional evolutionary context for understanding the basis for human trait variation and 

disease. While the general functions of the skeleton are conserved across primate species, the 

different behaviors and evolutionary histories of humans and NHPs have led to specialized 

skeletal features, such as the bicondylar angle of the femur that enables is bipedal locomotion in 

humans. Gene regulation may provide insight into how such morphological skeletal differences 

develop and evolve across species. Additionally, examining regulatory patterns in NHP skeletal 

cells may help to clarify aspects of human disease. For example, there are cases of rhesus 

macaques and chimpanzees developing conditions similar to those observed in human OA [132]. 

Although the prevalence of this degenerative joint disease in wild and captive NHPs is not well 

documented, evaluating how gene regulation may contribute to or protect against OA in NHPs 

will better inform our understanding of human OA. 

Unfortunately, like human skeletal tissues, NHP skeletal tissues are difficult to access. 

An alternative way to investigate comparative gene regulation dynamics in skeletal cell types 

would be to use existing panels of matched human and chimpanzee iPSCs [197,198]. Studies 

using these primate iPSCs and derived cell types, including skeletal cells, have been fruitful in 

advancing our understanding of gene regulatory variation in NHPs and how these patterns 

compare to those in humans [197–200]. Extending the cell culture systems developed and 

characterized in this thesis to other NHP iPSCs would help to build a complete evolutionary 

picture of skeletal cell regulatory responses in the context of joint health and disease. 

 

4.5 Future directions in dynamic skeletal cell gene regulation studies 



 108 

While the work presented here contributes to and expands our understanding of context-

specific gene regulation in the skeleton, there is still much to be discovered by exploring 

additional dimensions of developmental time and spatial location. In this work, growing cells in 

a two-dimensional monolayer promoted homogeneity in culture conditions and treatment 

responses – desirable qualities for transcriptional assays at a bulk resolution. However, recent 

advances in single-cell technologies alongside increasing numbers of protocols to culture three-

dimensional cellular aggregates, including aggregates of iPSCs known as embryoid bodies, have 

enabled more complex and potentially more efficient experiments to survey dozens of 

developmental trajectories simultaneously [201]. The potential for such systems for dynamic 

gene regulation studies is substantial. 

In particular for skeletal and related cell types, spheroid cultures of aggregated MSCs 

(mesenspheres) have been previously generated to enhance the differentiation potential and 

immunomodulatory capabilities of MSCs [202,203]. Mesenspheres of differing sizes and 

compositions can undergo directed differentiation into bone, cartilage, fat, and muscle cells 

[159,204,205]. Alternatively, it may be possible to promote spontaneous and undirected 

differentiation in mesenspheres. This spontaneous differentiation would generate heterogenous 

cellular aggregates (mesenchymal bodies) that have broad samplings of mesodermal cell types, 

including potential transient lineages that are currently impossible to obtain from primary 

sampling of adult skeletons either because they only exist at early developmental stages or at 

very small proportions in adult tissues. Additionally, these mesenchymal bodies could be paired 

with environmental treatments to further expand the range of regulatory dynamics that can be 

studied in mesodermal cell types. Although mesenchymal bodies would likely not recreate the 
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precise structure and context of in vivo mesodermal biology, their heterogeneity is a strength, and 

the potential for cross-cell signaling in this model may lead to further insights. 

 

4.6 Concluding remarks 

 While much has been done to advance the knowledge of gene regulation in diverse cell 

types and tissues, we have only scratched the surface in terms of understanding the dynamic 

nature of how gene expression is controlled throughout time and space. My work in this 

dissertation contributes to this effort by sampling – with the help of iPSC differentiation – an 

area of the cellular differentiation space that has been difficult to access using primary tissues, 

namely chondrogenic cells. The observations between mechanical and inflammatory 

perturbations of chondrogenic cells in this work adds to current discussion about the relevance of 

these environmental factors in OA development. The field of genomics is in an exciting moment, 

with ever-increasing technological and methodological advances that are enabling researchers to 

survey the vast landscape of gene regulation. With each discovery, the field of Human Genetics 

continues to move closer and closer to better understanding the connections between human 

genotypes and phenotypes. 
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