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ABSTRACT

The field of quantum computing is at an exciting time where we are constructing novel

hardware, evaluating algorithms, and finding out what works best. As qubit technology

grows and matures, we need to be ready to design and program larger quantum computer

systems. An important aspect of systems design is layered abstractions to reduce complexity

and guide intuition. Classical computer systems have built up many abstractions over their

history including the layers of the hardware stack and programming abstractions like loops.

Researchers initially ported these abstractions with little modification when designing quan-

tum computer systems and only in recent years have some of those abstractions been broken

in the name of optimization and efficiency.

We argue that new or quantum-tailored abstractions are needed to get the most bene-

fit out of quantum computer systems. We keep the benefits gained through breaking old

abstraction by finding abstractions aligned with quantum physics and the technology. This

dissertation is supported by three examples of abstractions that could become a core part of

how we design and program quantum computers: third-level logical state as scratch space,

memory as a third spacial dimension for quantum data, and hierarchical program structure.
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CHAPTER 1

INTRODUCTION

Moore’s Law and the expectation that computers double in speed every 18 months is at

an end, so hard problems in chemistry, physics simulation, and combinatorial optimization

cannot be solved by waiting for a faster computer. Since the end of Moore’s Law, researchers

have been developing special-purpose accelerators to squeeze better performance out of each

transistor. However once fully realized, quantum computers can solve specific classes of

problems in simulation and cryptography exponentially faster.

Quantum computers work by harnessing quantum physics instead of classical Newtonian

physics. Because quantum physics is a superset of classical physics, we often treat quantum

computers as classical computers with the additional features of superposition, entanglement,

and interference. This view is apparent in Shor’s algorithm (Shor [1997]) which creates a

quantum superposition, followed by classical arithmetic, and finishes with quantum phase

estimation.

Seeing quantum programming through a classical lens can be limiting and sometimes

harmful. It is common for programmers who are new to quantum to invent a “quantum

algorithm” that is simply a randomized classical algorithm run on a quantum computer, using

quantum measurements as random number generators. More subtly, concepts such as binary

representation of data, random access memory, and hierarchical modularity of programs

when used in the design of quantum computers limit the performance due to mismatches

with the underlying technology. Even classical concepts of causality and movement of data

can be limiting; quantum teleportation, a quantum protocol described in Nielsen and Chuang

[2011], moves quantum data long distances by pre-transferring another resource before the

data exists.

When we design quantum architectures and compilers, the abstractions we use are key

to a good design. The abstraction of two-level bits is very beneficial for classical computer
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reliability but is yet to be decided for quantum. Early classical computers used base-10 ad-

dresses and arithmetic until early computer architects settled on binary as the most efficient

and reliable design. This history informs the general assumption that binary (base-2) is

best for quantum computers, but that is not necessarily the case. We discuss this further in

Chapter 2.

Because quantum computing is a rapidly developing field with many competing technolo-

gies there is no clear “best” for any use case. Each quantum technology has capabilities and

constraints that inform a variety of hardware designs and architectures that show how to

turn a qubit technology into a practical quantum computer. The principles of abstraction

and modularity we use to build any complex system still apply when we design a quantum

computer hardware layout, instruction set, compiler, and programming language, but we

must tailor the abstractions to best fit the physics and the technology or we will limit future

efficiency.

This dissertation presents three cases of new or old abstractions that we have tailored for

quantum computing. We discuss the methodologies to select these abstractions and how we

use them with a particular class of quantum architectures. We show that good abstractions

can allow more space efficient algorithms and more effective compilers.

This dissertation is comprised of three core papers introducing three abstractions covered

in the following chapters. Additional content from other work is included that shows further

benefits and refinement to the abstractions. We start in Chapter 2 by introducing three-

level quantum trits and other d-level quantum dits : Asymptotic Improvements to Quantum

Circuits via Qutrits, Gokhale et al. [2019] and Efficient Quantum Circuit Decompositions via

Intermediate Qudits, Baker et al. [2020a]. These abstractions replace and augment the use of

binary qubits with three-level qutrits or d-level qudits, but require us to completely rethink

how algorithms and compilers allocate and use scratch space. Most quantum technologies can

reliably support three or more quantum states with minor changes to the control signal design
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and no change to the hardware design. Supported technologies include superconducting

transmon, ion trap, and neutral atom, but notably not some types of photonic qubits.

Chapter 3 considers abstractions that spatially separate quantum data storage or memory

from computation on that data: Virtualized Logical Qubits: A 2.5D Architecture for Error-

Corrected Quantum Computing, Duckering et al. [2020]. Classical computers contain high

speed buses that can transfer data between memory (RAM) and computation (CPU), but

this extreme separation of memory from compute does not make sense either for current small

(NISQ) or for future (fault-tolerant) quantum computers. The typical abstraction for both

kinds is a monolithic 2D array of qubits because NISQ computers cannot sacrifice the data-

parallelism and fault-tolerance requires constant error correction to prevent errors. Compiler

design is simple in this monolithic model because there is no heterogeneity; compilers can

place related data nearby in the plane. But we compare an alternative to the monolithic

model. We redesign the surface code to use small amounts of distributed memory and find

that it improves the space efficiency of fault-tolerant algorithms.

Classical programmers have used a hierarchy of function calls and modules in the design

of a program to great effect. Hierarchy gives structure to what would otherwise be a very long

list of primitive instructions. Compilers use this structure to guide optimizations and to avoid

duplicate work of repeated components. However, quantum programmers currently trend

toward highly hand-optimized programs with no hierarchy; they use optimization passes that

erase any hierarchy and perform flat, program-wide optimizations. Chapter 4 introduces

Orchestrated Trios: Compiling for Efficient Communication in Quantum Programs with 3-

Qubit Gates, Duckering et al. [2021], to show that hierarchy can guide quantum compiler

heuristics even for small- to mid-size programs. Program hierarchy enables sequences of

compiler passes to repeat for each level, improving heuristic performance and allowing new

kinds of passes like our connectivity-aware split pass. This is key for quantum where data

locality constraints restrict data movement and can inform program structure.

3



Picking the right abstractions are crucial for quantum programming, compiling, and

execution. Chapter 5 concludes with a discussion and other places where we still need better

abstractions.
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CHAPTER 2

BEYOND BINARY

2.1 Introduction

Recent advances in both hardware and software for quantum computation have demon-

strated significant progress towards practical outcomes. While early research efforts focused

on longer-term systems employing full error correction to execute large programs for algo-

rithms like Shor [1997] and Grover [1996], recent work has focused on NISQ (Noisy Interme-

diate Scale Quantum, Preskill [2018]) computation. The NISQ regime considers near-term

machines with just tens to hundreds of quantum bits (qubits) and moderate errors.

In the NISQ regime, quantum programs rely directly on the individual qubits in the

quantum device and severe resource constraints prohibit the use of error correction. Given

the severe constraints on quantum resources, it is critical to fully optimize the compilation

of a quantum program in order to have successful computation. Prior architectural research

on techniques such as mapping, scheduling, and parallelism (Ding et al. [2018], Javadi-

Abhari et al. [2017], Guerreschi and Park [2018]) have helped to extend the amount of useful

computation possible, but without error correction, programs are exposed to noise and errors

in their qubits. On the flip side, programs in the NISQ regime can directly take advantage

of typically unused technology capabilities.

This chapter shows how to greatly reduce resource requirements by replacing the binary

abstraction required by two-level qubits with a new abstraction enabled by three-level qutrits

or multi-level qudits. Qutrits and qudits are natural features of technologies in the NISQ

regime, which we evaluate, but the takeaways from this chapter may require further research

to apply in an error-corrected setting.

While quantum computation is typically expressed as a two-level binary abstraction of

qubits, the underlying physics of quantum systems are not intrinsically binary. Whereas
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classical computers operate in binary states at the physical level (e.g. clipping above and

below a threshold voltage), quantum computers have natural access to an infinite spectrum

of discrete energy levels. In fact, hardware must actively suppress higher level states in order

to achieve the two-level qubit approximation. Hence, using three-level qutrits is simply a

choice of including an additional discrete energy level, albeit at the cost of more opportunities

for error.

Prior work on qutrits (or more generally, d-level qudits) identified only constant factor

gains from extending beyond qubits. In general, the prior work Pavlidis and Floratos [2017]

has emphasized the information compression advantages of qutrits. For example, N qubits

can be expressed in base-3 ternary as N
log2(3)

qutrits, which leads to log2(3) ≈ 1.6-constant

factor improvements in space and runtime.

This chapter evaluates the benefits of a novel abstraction that uses qutrits in a novel

fashion. We use the first two states as usual to represent computed values in binary but use

the third state as temporary storage when needed. The per-operation error rate of qutrit

operations is higher but the runtime (i.e. circuit depth or critical path) is asymptotically

faster, and the overall reliability of computations is improved due to the novel temporary

storage. Moreover, this abstraction only applies qutrit operations in an intermediary stage:

the input and output are still qubits, which is important for initialization and measurement

on real devices (Randall et al. [2015, 2018]) and reduces the burden to transition to the new

abstraction.

We consider the benefits of different applications of this temporary qutrit abstraction.

The first application we consider is a novel implementation of the generalized Toffoli circuit

by Gokhale et al. [2019], a subroutine used in many quantum algorithms. By cleverly storing

intermediate computations in the unused third state of input qubits, our implementation

avoids the use of costly additional temporary qubits (called ancilla), but it achieves the

speed of the fastest implementations that require many ancilla qubits.
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In contrast, we also consider potential automated uses of temporary qutrits. The hand-

designed generalized Toffoli implementation makes excellent use of one additional logical

state and, while hand-optimization can be a good way to squeeze performance out of

resource-constrained devices, codifying manual strategies into our compilers can have wider

performance benefit and free most programmers to think at a higher level. By intelligently

“compressing” the data in groups of idle qubits into smaller groups of qutrits as in Baker

et al. [2020a]1 (using the log2(3) compression ratio) or qudits (log2(d) ratio), similar benefits

for resource-constrained quantum computers can be achieved for a wider range of quantum

programs.

The main benefit of compression is to produce ancilla, specifically clean ancilla, generated

locally during the compilation of an algorithm into a quantum circuit. That is, we propose a

new circuit which performs qubit-qudit compression storing the information of many qubits

as a small number of qudits at the cost of some gate overhead. These compression circuits

produce clean ancilla in the |0〉 state. The stored data can be retrieved later when needed

since all quantum operations are reversible (this is technically a re-encoding, not compres-

sion). Essentially, when certain groups of qubits will be unused for a long period of time,

we can repurpose them by compressing them and using the produced ancilla. This “com-

pression” is a rearrangement of the stored binary values into higher states, letting us store

more information into the same number of physical quantum devices and free up qubits for

computation. We evaluate this compression strategy in the design of an improved quantum

adder circuit.

The key result of this chapter is that use of this abstraction by quantum subroutines

or compilers extends the frontier of what limited-size quantum computers can compute. In

particular, the frontier is defined by the zone in which every machine qubit is a data qubit,

1. CD’s contributions to the works that comprise this chapter, Gokhale et al. [2019] and Baker et al.
[2020a], include the novel circuit designs (in addition to contributions from PG and JMB for the ancilla-free
Generalized Toffoli and with equal contributions from JB for all others), the qudit circuit implementations,
numerical simulations, validation, and simulation results.

7



for example a 100-qubit program running on a 100-qubit machine. In this frontier zone, we

do not have room for non-data workspace qubits known as ancilla. The lack of ancilla in the

frontier zone is a costly constraint that generally leads to inefficient circuits. For this reason,

typical circuits instead operate well below the frontier zone, with many machine qubits used

as ancilla. This chapter demonstrates that ancilla can be substituted with qutrits, enabling

us to operate efficiently within the ancilla-free frontier zone.

We highlight the primary contributions of this chapter:

1. A circuit construction for the generalized Toffoli subroutine that uses temporary qutrits

and no ancilla qubits. This is an asymptotically faster circuit (633N → 38 log2N) than

equivalent qubit-only ancilla-free constructions.

2. Qutrit and qudit “compression” circuit designs.

3. A circuit construction for arithmetic addition in binary using qudit compression and

no ancilla qubits.

4. An open-source qudit circuit library and simulator, now a core feature of Google’s Cirq

(Cirq).

This chapter is organized as follows: Section 2.2 presents relevant background about

quantum computation and Section 2.3 outlines related prior work that we benchmark our

work against. Section 2.4 demonstrates our key circuit construction, and Section 2.5 sur-

veys applications of this construction toward important quantum algorithms. Section 2.6

introduces our open-source qudit circuit simulator. Section 2.7 explains our noise modeling

methodology, and Section 2.8 presents simulation results for the generalized Toffoli circuits

under these noise models.

In the remainder of the chapter, we present an application of this technique to give

logarithmic depth decompositions of quantum arithmetic circuits—a carry lookahead adder

and, by extension, addition by a constant. In Section 2.9 we present two compression circuits
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for qubit-qutrit and qubit-ququart (d = 4) compression and evaluate advantages of various

compression schemes. In Section 2.10 we present our decomposition of the zero-ancilla,

in-place A + B adder which takes as input two registers A and B of qubits and possibly

carry-in and carry-out; any fresh |0〉 states used are generated locally. We then evaluate

the costs of this decomposition. We end with extensions to our arithmetic decomposition in

Sections 2.10.1 and 2.10.2 and finish with a discussion and summary in Section 2.11.

2.2 Background

A qubit is the fundamental unit of quantum computation. Compared to their classical

counterparts which take values of either 0 and 1, qubits may exist in a superposition of the

two states. We designate these two basis states as |0〉 and |1〉 and can represent any qubit

as |ψ〉 = α |0〉+ β |1〉 with ‖α‖2 + ‖β‖2 = 1. ‖α‖2 and ‖β‖2 correspond to the probabilities

of measuring |0〉 and |1〉 respectively.

Quantum states can be acted on by quantum gates which (a) preserve valid probability

distributions that sum to 1 and (b) guarantee reversibility. For example, the X gate trans-

forms a state |ψ〉 = α |0〉 + β |1〉 to X |ψ〉 = β |0〉 + α |1〉. The X gate is also an example of

a classical reversible operation, equivalent to the NOT operation. In quantum computation,

we have a single irreversible operation called measurement that transforms a quantum state

into one of the two basis states with a given probability based on α and β.

In order to interact different qubits, two-qubit operations are used. The CNOT gate

appears both in classical reversible computation and in quantum computation. It has a

control qubit and a target qubit. When the control qubit is in the |1〉 state, the CNOT

performs a NOT operation on the target. The CNOT gate serves a special role in quantum

computation, allowing quantum states to become entangled so that a pair of qubits cannot

be described as two individual qubit states. Any operation may be conditioned on one or

more controls that act like the conditions of an if-statement, only performing the operation
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on the states where all controls are |1〉.

Many classical operations, such as AND and OR gates, are irreversible and therefore

cannot directly be executed as quantum gates. For example, consider the output of 1 from

an OR gate with two inputs. With only this information about the output, the value of

the inputs cannot be uniquely determined. These operations can be made reversible by the

addition of extra, temporary workspace bits initialized to 0. Using a single additional ancilla,

the AND operation can be computed reversibly as in Figure 2.1.

|q0〉 • |q0〉
|q1〉 • |q1〉
|0〉 |q0 AND q1〉

Figure 2.1: Reversible AND circuit using a single ancilla bit. The inputs are on the left,
and time flows rightward to the outputs. This AND gate is implemented using a Toffoli
(CCNOT) gate with inputs q0, q1 and a single ancilla initialized to 0. At the end of the
circuit, q0 and q1 are preserved, and the ancilla bit is set to 1 if and only if both other inputs
are 1.

Classical operations are fed an input state and produce an output state but quantum

operations do more. Quantum operations take a superposition state, a complex linear com-

bination of some or all 2n classical (binary) input states and produce an output superposition

state. For example, the quantum CNOT gate applied to a pair of control and target qubits

|ct〉 transforms an input superposition α1 |00〉 + α2 |01〉 + α3 |10〉 + α4 |11〉 to the output

superposition α1 |00〉+ α2 |01〉+ α3 |11〉+ α4 |10〉 = α1 |00〉+ α2 |01〉+ α4 |10〉+ α3 |11〉.

Physical systems in classical hardware are typically binary. However, in common quan-

tum hardware, such as in superconducting and trapped ion computers, there is an infinite

spectrum of discrete energy levels. The qubit abstraction is an artificial approximation

achieved by suppressing all but the lowest two energy levels. Instead, the hardware may

be configured to manipulate the lowest three energy levels by operating on qutrits. In gen-
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eral, such a computer could be configured to operate on any number of d levels, except as

d increases the number of opportunities for error, termed error channels, increases. Here,

we focus on d = 3 and later d = 4 with which we achieve the desired improvements to the

Generalized Toffoli gate and qudit “compression”. For a complete guide to superconducting

qubits we refer to Krantz et al. [2019].

In a three level system, we consider the computational basis states |0〉, |1〉, and |2〉 for

qutrits. A qutrit state |ψ〉 may be represented analogously to a qubit as |ψ〉 = α |0〉+β |1〉+

γ |2〉, where‖α‖2 +‖β‖2 +‖γ‖2 = 1. Qutrits are manipulated in a similar manner to qubits;

however, there are additional gates which may be performed on qutrits.

For instance, in quantum binary logic, there is only a single X gate. In ternary, there

are three X gates denoted X01, X02, and X12. Each of these Xij for i 6= j can be viewed

as swapping the amplitudes of |i〉 and |j〉 and leaving the third basis element unchanged.

For example, for a qutrit |ψ〉 = α |0〉 + β |1〉 + γ |2〉, applying X02 produces X02 |ψ〉 =

γ |0〉+ β |1〉+α |2〉. Each of these operations’ actions can be found in the left state diagram

in Figure 2.2.

There are two additional non-trivial operations on a single trit. They are the +1 and

−1 (sometimes referred to as a +2) operations (with + meaning addition modulo 3). These

operations can be written as X01X12 and X12X01, respectively; however, for simplicity, we

will refer to them as X+1 and X−1 operations. A summary of these gates’ actions can be

found in the right state diagram in Figure 2.2.

When we use qudits with more than three levels, there are many mores gates which can

be used depending on d. For a single qudit we have access to every permutation of the d

basis states, or d! − 1 nontrivial operations, but in practice, many of these operations are

unnecessary and only a small number are needed for universal computation. We make use

of the increment permutations, denoted X+k where + is addition modulo d, which rotates

a state |i〉 to |i+ k mod d〉 and the flip permutations denoted Xij which flip or switch the
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|0〉

|1〉 |2〉

X01

X12

X02

|0〉

|1〉 |2〉
X−1

X+1

X+1

X+1

Figure 2.2: The five nontrivial permutations on the basis elements for a qutrit. (Left)
Each operation here switches two basis elements while leaving the third unchanged. These
operations are self-inverses. (Right) These two operations permute the three basis elements
by performing a +1 mod 3 and −1 mod 3 operation. They are each other’s inverses.

states |i〉 and |j〉, leaving all others unchanged. X01 is equivalent to the qubit X gate.

Other, non-classical, operations may be performed on a single qudit. For example, the

Hadamard gate (Nielsen and Chuang [2011]) can be extended to work on qudits in a similar

fashion as the X gate was extended. In fact, all single qubit gates, like rotations, may be

extended to operate on qudits. In order to distinguish qubit, qutrit, and qudit gates, all

non-qubit gates will appear with an appropriate subscript.

Each of these operations can be extended to two qudits as a controlled operation that

applies the single-qudit operation conditioned on the control qudit being in a certain state.

For example, consider applying an X+2 operation on a d = 4 level system conditioned

on a control qudit being in the |3〉 state. These controlled qudits have been physically

realized and they are universal for qudit computation, as shown by Muthukrishnan and

Stroud [2000]. This can be extended to any number of controls but only two-qudit gates can

be directly executed on typical quantum hardware; any use of a multi-controlled gate has a

decomposition into one and two qudit gates since these gates are universal. We only require

a single 3-qubit, 2-controlled gate (Toffoli-like) whose decomposition is given by Di and Wei

[2011] into basic one- and two-qubit gates. We represent these gates in circuit diagrams

with the control types indicated by circles with the control values inside. The applied gates,

specifically the increment (X+i) and flip gates (Xij) will be given as a square labeled with

the name of the gate.

12



One question concerning the feasibility of using higher states beyond the standard two

is whether these gates can be implemented and perform the desired manipulations. Qudit

gates have been successfully implemented by Di and Wei [2011], Muthukrishnan and Stroud

[2000], Klimov et al. [2003], Chi et al. [2022], indicating that it is possible to consider higher

level systems apart from qubit only systems.

In order to evaluate an implementation of a quantum circuit, we consider quantum circuit

costs. Quantum circuits consist of a sequence of operations, also called gates, applied to a

set of input qubits. These circuits do not have fan-in or fan-out and so when represented

each horizontal line in the circuit diagram corresponds to a single qubit and time flows from

left to right from inputs to outputs. The space cost of a circuit is therefore the number of

qubits (or qudits) and this cost is referred to as circuit width. Requiring ancilla increases

the circuit width and therefore the space cost of a circuit. The time cost for a circuit is the

depth of a circuit. The depth is the length of the critical path (in number of gates) from

input to output.

2.3 Prior Work

2.3.1 Qudits

Qutrits, and more generally qudits, have been been studied in past work both experimentally

and theoretically. Experimentally, d as large as 10 has been achieved (including with two-

qudit operations) by Kues et al. [2017], and d = 3 qutrits are commonly used internally in

many quantum systems, including Bækkegaard et al. [2018], Fedorov et al. [2011].

However, in past work, qudits have conferred only an information compression advantage.

For example, n qubits can be compressed to n
log2(d)

qudits, giving only a constant-factor

advantage in Pavlidis and Floratos [2017] at the cost of greater errors from operating qudits

instead of qubits. Under the assumption of linear cost scaling with respect to d, Greentree
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et al. [2003], Khan and Perkowski [2007] demonstrated that d = 3 is optimal, although as

we show in Section 2.7 the cost is generally superlinear in d.

The information compression advantage of qudits has been applied specifically to Grover’s

search algorithm by Fan [2008], Li et al. [2011], Wang and Perkowski [2011], Ivanov et al.

[2012] and to Shor’s factoring algorithm by Bocharov et al. [2016]. Ultimately, the trade-off

between information compression and higher per-qudit errors has not been favorable in past

work. As such, the past research towards building practical quantum computers has focused

on qubits.

We introduce qutrit-based, ancilla-free circuits which are asymptotically better than

equivalent qubit-only, ancilla-free circuits. Unlike prior work, we demonstrate a compelling

advantage in both runtime and reliability, thus justifying the use of qutrits.

2.3.2 Generalized Toffoli Gate Circuits

We start by focusing on the Generalized Toffoli gate, which simply adds more controls to

the Toffoli circuit in Figure 2.1. The Generalized Toffoli gate is an important primitive used

across a wide range of quantum algorithms, and it has been the focus of extensive past

optimization work. Table 2.1 compares past circuit constructions for the Generalized Toffoli

gate to our construction, which is presented in full in Section 2.4.2.

Among prior work, the Gidney [2015], He et al. [2017], and Barenco et al. [1995] designs

are all qubit-only. The three circuits have varying trade-offs. While Gidney and Barenco op-

erate at the ancilla-free frontier, they have large circuit depths: linear with a large constant

for Gidney and quadratic for Barenco. The Gidney design also requires rotation gates for

very small angles, which can pose an experimental challenge. While the He circuit achieves

logarithmic depth, it requires an ancilla for each data qubit, effectively halving the effective

potential of any given quantum hardware. Nonetheless, in practice, most circuit implemen-

tations use these linear-ancilla constructions due to their small depths and gate counts.
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Depth Ancilla Qudit Types Constants

This Work log n 0 Controls are qutrits Small

Gidney [2015] n 0 Qubits Large

He et al. [2017] log n n Qubits Small

Barenco et al. [1995] n2 0 Qubits Small

Wang and Perkowski [2011] n 0 Controls are qutrits Small

Lanyon et al. [2008],

Ralph et al. [2008]
n 0 Target is d = n-level qudit Small

Table 2.1: Asymptotic comparison of n-controlled gate decompositions. The total gate count
for all circuits scales linearly (except for Barenco et al. [1995], which scales quadratically).
Our construction uses qutrits to achieve logarithmic depth without ancilla. We benchmark
our circuit construction against Gidney [2015], which is the asymptotically best ancilla-free
qubit circuit.

As in our approach, circuit constructions from Lanyon et al. [2008], Ralph et al. [2008],

and Wang and Perkowski [2011] have attempted to improve the ancilla-free Generalized Tof-

foli gate by using qudits. Both the Lanyon et al. [2008] and Ralph et al. [2008] constructions,

which have been demonstrated experimentally, achieve linear circuit depths by operating the

target as a d = n-level qudit. Wang and Perkowski [2011] also achieves a linear circuit depth

but by operating each control as a qutrit.

Our circuit construction, presented in Section 2.4.2, has similar structure to the He design,

which can be represented as a binary tree of gates. However, instead of storing temporary

results with a linear number of ancilla qubits, our circuit temporarily stores information

directly in the qutrit |2〉 state of the controls. Thus, no ancilla are needed.

In our simulations, we benchmark our circuit construction against the Gidney [2015]

construction because it is the asymptotically best qubit circuit in the ancilla-free frontier

zone. We label these two benchmarks as QUTRIT and QUBIT. The QUBIT circuit handles
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the lack of ancilla by using dirty ancilla, which unlike clean (initialized to |0〉) ancilla, can

have an unknown initial state. Dirty ancilla can therefore be bootstrapped internally from

a quantum circuit. However, this technique requires a large number of Toffoli gates which

makes the decomposition particularly expensive in gate count.

Augmenting the base Gidney construction with a single ancilla or dirty ancilla does

reduce the constants for the decomposition significantly, although the asymptotic depth

and gate counts are maintained. For completeness, we also benchmark our circuit against

this augmented construction, QUBIT+ANCILLA. However, the augmented circuit does not

operate at the ancilla-free frontier, and it can conflict with parallelism.

2.4 Circuit Construction

In order for quantum circuits to be executable on hardware, they are typically decomposed

into single- and two-qudit gates. Performing efficient, low depth, and low gate count decom-

positions is important in both the NISQ regime and beyond. Our circuits assume all-to-all

connectivity, same as prior work. If the quantum device does not support all-to-all connec-

tivity, additional gates would be inserted by the compiler as needed, but this should not

change our results.

2.4.1 Key Intuition

To develop intuition for our technique, we first present a Toffoli gate decomposition (the first

step of implementation) which lays the foundation for our generalization to multiple controls.

In each of the following constructions, all inputs and outputs are qubits, but we may occupy

the |2〉 state temporarily during computation. Maintaining binary input and output allows

these circuit constructions to be inserted into any preexisting qubit-only circuits.

In Figure 2.3, a Toffoli decomposition using qutrits is given. A similar construction for

the Toffoli gate is known from past work Lanyon et al. [2008], Ralph et al. [2008]. The goal
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is to perform an X operation on the last (target) input qubit q2 if and only if the two control

qubits, q0 and q1, are both |1〉. First a |1〉-controlled X+1 is performed on q0 and q1. This

elevates q1 to |2〉 iff q0 and q1 were both |1〉. Then a |2〉-controlled qubit-X gate is applied to

q2. Therefore, X is performed only when both q0 and q1 were |1〉, as desired. The controls

are restored to their original states by a |1〉-controlled X−1 gate, which undoes the effect

of the first gate. The key intuition in this decomposition is that the qutrit |2〉 state can be

used to store temporary information.

|q0〉 1 1

|q1〉 X+1 2 X−1

|q2〉 X

Figure 2.3: A Toffoli decomposition via qutrits. Each input and output is a qubit. The
red controls activate on |1〉 and the blue controls activate on |2〉. The first gate temporarily
elevates q1 to |2〉 if both q0 and q1 were |1〉. We then perform the qubit-X operation only if
q1 is |2〉. The final gate restores q1 to its original state.

2.4.2 Generalized Toffoli Gate Using Temporary Qutrits

We now present our circuit decomposition for the Generalized Toffoli in Figure 2.4. The

decomposition is expressed in terms of three-qutrit gates (two controls, one target) instead

of single- and two-qutrit gates, because the circuit can be understood as purely classical

reversible operations at this granularity. For implementation and in our simulation, we

use a decomposition from Di and Wei [2011] that requires 6 two-qutrit and 7 single-qutrit

physically implementable quantum gates.
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|q0〉 1 1

|q1〉 X+1 2 2 X−1

|q2〉 1 1

|q3〉 X+1 2 2 X−1

|q4〉 1 1

|q5〉 X+1 2 2 X−1

|q6〉 1 1

|q7〉 X+1 2 X−1

|q8〉 1 1

|q9〉 X+1 2 2 X−1

|q10〉 1 1

|q11〉 X+1 2 2 X−1

|q12〉 1 1

|q13〉 X+1 2 2 X−1

|q14〉 1 1

|q15〉 U

Figure 2.4: Our circuit decomposition for the Generalized Toffoli gate is shown for 15 controls
and 1 target. The inputs and outputs are both qubits, but we allow occupation of the |2〉
qutrit state in between. The circuit has a tree structure and maintains the property that
the root of each subtree can only be elevated to |2〉 if all of its control leaves were |1〉.
Thus, the U gate is only executed if all controls are |1〉. The right half of the circuit
performs uncomputation to restore the controls to their original state. This construction
applies more generally to any multiply-controlled U gate. Note that the three-input gates
are decomposed into 6 two-input and 7 single-input gates in our actual simulation, as based
on the decomposition in Di and Wei [2011].
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Our circuit decomposition is most intuitively understood by treating the left half of the

circuit as a tree structure. The desired property is that the root of the tree, q7, is |2〉 if and

only if each of the 15 controls was originally in the |1〉 state. To verify this property, we

observe the root q7 can only become |2〉 iff q7 was originally |1〉 and q3 and q11 were both

previously |2〉. At the next level of the tree, we see q3 could have only been |2〉 if q3 was

originally |1〉 and both q1 and q5 were previously |2〉, and similarly for the other triplets.

At the bottom level of the tree, the triplets are controlled on the |1〉 state, which are only

activated when the even-index controls are all |1〉. Thus, if any of the controls were not |1〉,

the |2〉 states would fail to propagate to the root of the tree. The right half of the circuit

performs uncomputation to restore the controls to their original state.

After each subsequent level of the tree structure, the number of qubits under consideration

is reduced by a factor of ∼ 2. Thus, the circuit depth is logarithmic in n. Moreover, each

qutrit is operated on by a constant number of gates, so the total number of gates is linear

in n.

Our circuit decomposition still works in a straightforward fashion when the control type of

the top qubit, q0, activates on |2〉 or |0〉 instead of activating on |1〉. These two constructions

are necessary for the Incrementer circuit in Section 2.5.2.

We verified our circuits, both formally and via simulation. Our verification scripts are

available on our GitHub (Qutrits Code).

2.5 Application to Algorithms

The Generalized Toffoli gate is an important primitive in a broad range of quantum algo-

rithms. In this section, we survey some of the applications of our circuit decomposition.
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2.5.1 Grover’s Algorithm

Grover’s Algorithm for search over M unordered items requires just O(
√
M) oracle queries.

However, each oracle query is followed by a post-processing step which requires a multiply-

controlled gate with N = dlog2Me controls (Nielsen and Chuang [2011]). The explicit circuit

diagram is shown in Figure 2.5.

Our log-depth circuit construction directly applies to the multiply-controlled gate. Thus,

we reduce a logM factor in Grover search time complexity to log logM via our ancilla-free

qutrit decomposition.

Oracle

H X 1 X H

H X 1 X H

H X 1 X H

H X Z X H

Figure 2.5: Each iteration of Grover Search has a multiply-controlled Z gate. Our logarithmic
depth decomposition, reduces a logM factor in Grover’s algorithm to log logM .

2.5.2 Incrementer

The Incrementer circuit performs the +1 mod 2N operation to a register of N qubits. While

logarithmic circuit depth is achieved with linear ancilla qubits by Draper [2000], the best

ancilla-free incrementers require either linear depth with large linearity constants as in Gid-

ney [2017] or quadratic depth in Barenco et al. [1995]. Using alternate control activations for

our Generalized Toffoli gate decomposition, the incrementer circuit is reduced to O(log2N)

depth with no ancilla, a significant improvement over past work.

Our incrementer circuit construction is shown in Figure 2.6 for an N = 8 wide register.

The multiple-controlledX+1 gates perform the job of computing carries: a carry is performed
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iff the least significant bit generates (represented by the |2〉 control) and all subsequent bits

propagate (represented by the consecutive |1〉 controls). We present an N = 8 incrementer

here and have verified the general construction, both by formal proof and by explicit circuit

simulation for larger N .

The critical path of this circuit is the chain of logN multiply-controlled gates (of width

N
2 , N

4 , N
8 , . . . ) which act on |a0〉. Since our multiply-controlled gate decomposition has

log-depth, we arrive at a total circuit depth circuit scaling of log2N .

|a0〉 X+1 2 2 2 2 2 X02 |(a+ 1)0〉

|a1〉 1 1 X01 0 0 |(a+ 1)1〉

|a2〉 1 X+1 2 X02 0 |(a+ 1)2〉

|a3〉 1 X01 0 |(a+ 1)3〉

|a4〉 X+1 2 2 2 X02 |(a+ 1)4〉

|a5〉 1 X01 0 |(a+ 1)5〉

|a6〉 X+1 2 X02 |(a+ 1)6〉

|a7〉 X01 |(a+ 1)7〉

Figure 2.6: Our circuit decomposition for the Incrementer. At each subcircuit in the recursive
design, multiply-controlled gates are used to efficiently propagate carries over half of the
subcircuit. The |2〉 control checks for carry generation and the chain of |1〉 controls checks
for carry propagation. The circuit depth is log2N , which is only possible because of our log
depth multiply-controlled gate primitive.

2.5.3 Arithmetic Circuits and Shor’s Algorithm

The Incrementer circuit is a key subcircuit in many other arithmetic circuits such as constant

addition. By adding a control to the first and last X gates, this circuit can be used for

addition, modular multiplication, and modular exponentiation. Modular exponentiation

was shown to be a bottleneck in the runtime for executing Shor’s algorithm for factorization
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by Gidney [2017], Häner et al. [2016]. While a shallower Incrementer circuit alone is not

sufficient to reduce the asymptotic cost of modular exponentiation (and therefore Shor’s

algorithm), it does reduce constants relative to qubit-only circuits. Qudit arithmetic circuits

using qudit “compression” are discussed in Section 2.9.

2.5.4 Error Correction and Fault Tolerance

One possible benefit for qutrits in error correction and error mitigation is as an error flag

(Chao and Reichardt [2018]). Flag qubits are extra qubits that are toggled by carefully

placed extra gates in a way that does not change program outcome. If no errors occur

during execution, these qubits are always returned to the |0〉 state but if an error occurs,

this often leads to a flag qubit measured in the |1〉 state, indicating an error occurred. Qutrits

can be used in the same way but on resource constrained-devices with no qubits to spare.

The Generalized Toffoli gate has applications to circuits for both error correction (Cory

et al. [1998]) and fault tolerance (Dennis [1999]). We foresee two paths of applying these

circuits. First, our circuit construction can be used to construct error-resilient logical qubits

more efficiently. This is critical for quantum algorithms like Grover’s and Shor’s which are

expected to require such logical qubits. In the nearer-term, NISQ algorithms are likely to

make use of limited error mitigation. For instance, recent results have demonstrated that

error correcting a single qubit at a time for the Variational Quantum Eigensolver algorithm

can significantly reduce total error (Otten and Gray [2018]). Thus, our circuit construction

is also relevant for NISQ-era error correction.

2.6 Simulator

To simulate our circuit constructions, we developed a qudit simulation library, built on

Google’s Cirq Python library (Cirq). Cirq is a qubit-based quantum circuit library and

includes a number of useful abstractions for quantum states, gates, circuits, and scheduling.
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Our work extends Cirq by discarding the assumption of two-level qubit states. Instead,

all state vectors and gate matrices are expanded to apply to d-level qudits, where d is a

circuit parameter. We include a library of common gates for d = 3 qutrits. Our software

adds a comprehensive noise simulator, detailed below in Section 2.6.1.

In order to verify our circuits are logically correct, we first simulated them with noise

disabled. We wrote a Cirq simulator for classical subcircuits that allows gates to specify

their action on classical non-superposition input states without considering full state vec-

tors. Therefore, each classical input state can be verified in space and time proportional to

the circuit width. By contrast, Cirq’s default simulator relies on a dense state vector repre-

sentation requiring space and time exponential in the circuit width. Reducing this scaling

from exponential to linear dramatically improved our verification procedure, allowing us to

verify circuit constructions for all possible classical inputs across circuit sizes up to widths

of 14.

Our software is fully open source (Qutrits Code) and the core qudit support has also

been added to Cirq.

2.6.1 Noise Simulation

Figure 2.7 depicts a schematic view of our noise simulation procedure which accounts for

both gate errors and idle errors, described below. To determine when to apply each gate and

idle error, we use Cirq’s scheduler which schedules each gate as early as possible, creating a

sequence of Moment’s of simultaneous gates. During each Moment, our noise simulator applies

a gate error to every qudit acted on. Finally, the simulator applies an idle error to every

qudit. This noise simulation methodology is consistent with previous simulation techniques

such as Miller et al. [2018] which accounted for gate errors and Khammassi et al. [2017] for

idle errors.

Gate errors arise from the imperfect application of quantum gates. Two-qudit gates are
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U1 U1 Gate Error Idle Error

Idle Error

U2 =⇒ U2 Gate Error Idle Error

U3 U3 Gate Error
Idle Error

Idle Error

Figure 2.7: This Moment comprises three gates executed in parallel. To simulate with noise,
we first apply the ideal gates, followed by a gate error noise channel on each affected qudit.
This gate error noise channel depends on whether the corresponding gate was single- or two-
qudit. Finally, we apply an idle error to every qudit. The idle error noise channel depends
on the duration of the Moment.

noisier than single-qudit gates (IBM Devices), so we apply different noise channels for the

two. Our specific gate error probabilities are given in Section 2.7.

Idle errors arise from the continuous decoherence of a quantum system due to energy

relaxation and interaction with the environment. The idle errors differ from gate errors in

two ways which require special treatment:

1. Idle errors depend on duration, which in turn depend on the schedule of simultaneous

gates (Moments). In particular, two-qudit gates take longer to apply than single-qudit

gates. Thus, if a Moment contains a two-qudit gate, the idling errors must be scaled

appropriately. Our specific scaling factors are given in Section 2.7.

2. For the generic model of gate errors, the error channel is applied with probability

independent of the quantum state. This is not true for idle errors such as T1 amplitude

damping, which only applies when the qudit is in an excited state. This is treated in

the simulator by computing idle error probabilities during each Moment, for each qutrit.

Gate errors are reduced by performing fewer total gates, and idle errors are reduced by

decreasing the circuit depth. Since our circuit constructions asymptotically decrease the
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depth, this means our circuit constructions scale favorably in terms of asymptotically fewer

idle errors.

Our full noise simulation procedure is summarized in Algorithm 1. The ultimate metric

of interest is the mean fidelity, which is defined as the squared overlap between the ideal

(noise-free) and actual output state vectors. Fidelity expresses the probability of overall

successful execution. We do not consider initialization errors and readout errors, because

our circuit constructions maintain binary input and output, only occupying the qutrit |2〉

states during intermediate computation. Therefore, the initialization and readout errors for

our circuits are identical to those for conventional qubit circuits.

We also do not consider crosstalk errors, which occur when gates are executed in paral-

lel. The effect of crosstalk is very device-dependent and difficult to generalize. Moreover,

crosstalk can be mitigated by breaking each Moment into a small number of sub-moments

and then scheduling two-qutrit operations to reduce crosstalk, as demonstrated in Venturelli

et al. [2017], Booth et al. [2018].

2.6.2 Simulator Efficiency

Simulating a quantum circuit with a classical computer is, in general, exponentially difficult

in the size of the input because the state of N qudits is represented by a state vector of

dN complex numbers. For 14 qutrits, with complex numbers stored as two 8-byte floats

(complex128 in NumPy), a state vector occupies 77 megabytes.

A naive circuit simulation implementation would treat every quantum gate or Moment as

a dN × dN matrix. For 14 qutrits, a single such matrix would occupy 366 terabytes—out of

range of simulability. While the exponential nature of simulating our circuits is unavoidable,

we mitigate the cost by using a variety of techniques which rely only on state vectors, rather

than full square matrices. For example, we maintain Cirq’s approach of applying gates by

Einstein Summation (Biamonte and Bergholm [2017]), which obviates computation of the
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|Ψ〉 ← random initial state vector

|Ψ〉ideal = circuit applied to |Ψ〉 without noise

foreach Moment do

foreach Gate ∈ Moment do

|ψ〉 ← Gate applied to |ψ〉

GateError ← DrawRand(GateError Prob.)

|ψ〉 ← GateError applied to |ψ〉

end

foreach Qutrit do

if Moment has 2-qudit gate then

IdleErrors ← long-duration idle errors

else

IdleErrors ← short-duration idle errors

end

Prob. ← [‖M |Ψ〉 ‖2 for M ∈ IdleErrors]

IdleError ← DrawRand(Prob.)

|ψ〉 ← IdleError applied to |ψ〉

Renormalize(|ψ〉)

end

end

return 〈Ψideal|Ψ〉2, fidelity between ideal & actual output;
Algorithm 1: Pseudocode for each simulation trial, given a particular circuit and

noise model.
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dN × dN matrix corresponding to every gate or Moment.

Our noise simulator only relies on state vectors, by adopting the quantum trajectory

methodology of Brun [2001], Schack and Brun [1996], which is also used by the Rigetti

PyQuil noise simulator (Smith et al. [2016]). At a high level, the effect of noise channels like

gate and idle errors is to turn a coherent quantum state into an incoherent mix of classical

probability-weighted quantum states (for example, |0〉 and |1〉 with 50% probability each).

The most complete description of such an incoherent quantum state is called the density

matrix and has dimension dN × dN . The quantum trajectory methodology is a stochastic

approach—instead of maintaining a density matrix, only a single state is propagated and the

error term is drawn randomly at each timestep. Over repeated trials, the quantum trajectory

methodology converges to the same results as from full density matrix simulation (Smith et al.

[2016]). Our simulator employs this technique—each simulation in Algorithm 1 constitutes

a single quantum trajectory trial. At every step, a specific GateError or IdleError term is

picked, based on a weighted random draw.

Finally, our random state vector generation function was also implemented in O(dN )

space and time. This is an improvement over other open source libraries, Johansson et al.

[2011, 2012], which perform random state vector generation by generating full dN × dN uni-

tary matrices from a Haar-random distribution and then truncating to a single column. Our

simulator directly computes the first column and circumvents the full matrix computation.

With optimizations, our simulator is able to simulate circuits up to 14 qutrits in width.

This is in the range as other state-of-the-art noisy quantum circuit simulations (since 14

qutrits ≈ 22 qubits, Chernyavskiy et al. [2018]). While each simulation trial took several

minutes (depending on the particular circuit and noise model), we were able to run trials in

parallel over multiple processes and multiple machines, as described in Section 2.8.
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2.7 Noise Models

In this section, we describe our noise models at a high level. We chose noise models which

represent realistic near-term machines. We first present a generic, parametrized noise model

roughly applicable to all quantum systems. We then present specific parameters, under the

generic noise model, which apply to near-term superconducting quantum computers. Finally,

we present a specific noise model for trapped ion quantum computers.

2.7.1 Generic Noise Model

Gate Errors

The scaling of gate errors for a d-level qudit can be roughly summarized as increasing as d4

for two-qudit gates and d2 for single-qudit gates. For d = 2, there are 4 single-qubit gate

error channels and 16 two-qubit gate error channels. For d = 3 there are 9 and 81 single-

and two-qutrit gate error channels respectively. Consistent with other simulators, Smith

et al. [2016], Khammassi et al. [2017], we use the symmetric depolarizing gate error model,

which assumes equal probabilities between each error channel. Under these noise models,

two-qutrit gates are (1 − 80p2)/(1 − 15p2) times less reliable than two-qubit gates, where

p2 is the probability of each two-qubit gate error channel. Similarly, single-qutrit gates are

(1− 8p1)/(1− 3p1) times less reliable than single-qubit gates, where p1 is the probability of

each single-qubit gate error channel.

Idle Errors

Our treatment of idle errors focuses on the relaxation from higher to lower energy states in

quantum devices. This is called amplitude damping or T1 relaxation. This noise channel

irreversibly takes qudits to lower states. For qubits, the only amplitude damping channel is

from |1〉 to |0〉, and we denote this damping probability as λ1. For qutrits, we also model

28



damping from |2〉 to |0〉, which occurs with probability λ2.

2.7.2 Superconducting QC

We chose four noise models based on superconducting quantum computers expected in the

next few years. These noise models comply with the generic noise model above and are

thus parametrized by p1, p2, λ1 and λ2. The λi probabilities are derived from two other

experimental parameters: the gate time ∆t and T1, a timescale that captures how long a

qudit persists coherently.

As a starting point for representative near-term noise models, we consider parameters for

current superconducting quantum computers. For IBM’s public cloud-accessible supercon-

ducting quantum computers, we have 3p1 ≈ 10−3 and 15p2 ≈ 10−2. The duration of single-

and two-qubit gates is ∆t ≈ 100ns and ∆t ≈ 300ns respectively, and the IBM devices have

T1 ≈ 100µs (IBM Devices, Linke et al. [2017]).

However, simulation for these current parameters indicates an error is almost certain to

occur during execution of a modest size 14-input Generalized Toffoli circuit. This motivates

us to instead consider noise models for better devices which are a few years away. Accord-

ingly, we adopt a baseline superconducting noise model, labeled as SC, corresponding to a

superconducting device which has 10x lower gate errors and 10x longer T1 duration than the

current IBM hardware. This range of parameters has already been achieved experimentally

in superconducting devices for gate errors by Barends et al. [2014], Barnes et al. [2016] and

for T1 duration by Reagor et al. [2015], Earnest et al. [2017] independently. Faster gates

(shorter ∆t) are yet another path towards greater noise resilience. We do not vary gate

speeds, because errors only depend on the ∆t/T1 ratio, and we already vary T1. In practice

however, faster gates could also improve noise-resilience.

We also consider three additional near-term device noise models, indexed to the SC noise

model. These three models further improve gate errors, T1, or both, by a 10x factor. The
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specific parameters are given in Table 2.2. Our 10x improvement projections are realistic

extrapolations of progress in hardware. In particular, Schoelkopf’s Law—the quantum ana-

logue of Moore’s Law—has observed that T1 durations have increased by 10x every 3 years

for the past 20 years Girvin. Hence, 100x longer T1 is a reasonable projection for devices

that are ∼ 6 years away.

Noise Model 3p1 15p2 T1

SC 10−4 10−3 1 ms

SC+T1 10−4 10−3 10 ms

SC+GATES 10−5 10−4 1 ms

SC+T1+GATES 10−5 10−4 10 ms

Table 2.2: Noise models simulated for superconducting devices. Current publicly accessible
IBM superconducting quantum computers have single- and two-qubit gate errors of 3p1 ≈
10−3 and 15p2 ≈ 10−2, as well as T1 lifetimes of 0.1 ms (IBM Devices, Linke et al. [2017]).
Our baseline benchmark, SC, assumes 10x better gate errors and T1. The other three
benchmarks add a further 10x improvement to T1, gate errors, or both.

2.7.3 Trapped Ion 171Yb+ QC

We also simulated noise models for trapped ion quantum computing devices. Trapped ion

devices are well matched to our qutrit-based circuit constructions because they feature all-

to-all connectivity (Brown et al. [2016]), and many ions that are ideal candidates for QC

devices are naturally multi-level systems.

We focus on the 171Yb+ ion, which has been experimentally demonstrated as both a qubit

and qutrit by Randall et al. [2015, 2018]. Trapped ions are often favored in QC schemes

due to their long T1 times. One of the main advantages of using a trapped ion is the ability

to take advantage of magnetically insensitive states known as “clock states”. By defining

the computational subspace on these clock states, idle errors caused from fluctuations in

the magnetic field are minimized—this is termed a DRESSED_QUTRIT, in contrast with
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a BARE_QUTRIT. However, compared to superconducting devices, gates are much slower.

Thus, gate errors are the dominant error source for ion trap devices. We modelled a fun-

damental source of these errors: the spontaneous scattering of photons originating from the

lasers used to drive the gates. The duration of single- and two-qubit gates used in this

calculation was ∆t ≈ 1 µs and ∆t ≈ 200 µs respectively (Brown and Brown [2018]). The

single- and two-qudit gate error probabilities are given in Table 2.3.

Noise Model p1 p2

TI_QUBIT 6.4× 10−4 1.3× 10−4

BARE_QUTRIT 2.2× 10−4 4.3× 10−4

DRESSED_QUTRIT 1.5× 10−4 3.1× 10−4

Table 2.3: Noise models simulated for trapped ion devices. The single- and two-qutrit gate
error channel probabilities are based on calculations from experimental parameters. For
all three models, we use single- and two-qudit gate times of ∆t ≈ 1 µs and ∆t ≈ 200 µs
respectively.

2.8 Simulation Results

Figure 2.8 plots the exact circuit depths for all three benchmarked circuits. The qubit-

based circuit constructions from past work are linear in depth and have a high linearity

constant. Augmenting with a single borrowed ancilla reduces the circuit depth by a factor of

8. However, both circuit constructions are surpassed significantly by our qutrit construction,

which scales logarithmically in N and has a relatively small leading coefficient.

Figure 2.9 plots the total number of two-qudit gates for all three circuit constructions.

As noted in Section 2.4, our circuit construction is not asymptotically better in total gate

count—all three plots have linear scaling. However, as emphasized by the logarithmic vertical

axis, the linearity constant for our qutrit circuit is 70x smaller than for the equivalent ancilla-

free qubit circuit and 8x smaller than for the borrowed-ancilla qubit circuit.
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Figure 2.8: Exact circuit depths for all three benchmarked circuit constructions for the N-
controlled Generalized Toffoli up to N = 200. Both QUBIT and QUBIT+ANCILLA scale
linearly in depth and both are bested by QUTRIT’s logarithmic depth.

Our simulations under realistic noise models were run in parallel on over 100 n1-standard-

4 Google Cloud instances. These simulations represent over 20,000 CPU hours, which was

sufficient to estimate mean fidelity to an error of 2σ < 0.1% for each circuit-noise model

pair.

The full results of our circuit simulations are shown in Figure 2.10. All simulations are

for the 14-input (13 controls, 1 target) Generalized Toffoli gate. We simulated each of the

three circuit benchmarks against each of our noise models (when applicable), yielding the

16 bars in the figure.

Figure 2.10 demonstrates that our QUTRIT construction (orange bars) significantly out-

performs the ancilla-free QUBIT benchmark (blue bars) in fidelity (success probability) by

more than 10,000x.

For the SC, SC+T1, and SC+GATES noise models, our qutrit constructions achieve

between 57–83% mean fidelity, whereas the ancilla-free qubit constructions all have almost

0% fidelity. Only the lowest-error model, SC+T1+GATES achieves modest fidelity of 26%

for the QUBIT circuit, but in this regime, the qutrit circuit is close to 100% fidelity.
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Figure 2.9: Exact two-qudit gate counts for the three benchmarked circuit constructions for
the N-controlled Generalized Toffoli. All three plots scale linearly; however the QUTRIT
construction has a substantially lower linearity constant.

The trapped ion noise models achieve similar results—the

DRESSED_QUTRIT and the BARE_QUTRIT achieve approximately 95% fidelity via the

QUTRIT circuit, whereas the TI_QUBIT noise model has only 45% fidelity. Between the

dressed and bare qutrits, the dressed qutrit exhibits higher fidelity than the bare qutrit, as

expected. Moreover, the dressed qutrit is resilient to leakage errors, so the simulation results

should be viewed as a lower bound on its advantage over the qubit and bare qutrit.

Based on these results, trapped ion qutrits are a particularly strong match to our qutrit

circuits. In addition to attaining the highest fidelities, trapped ions generally have all-to-

all connectivity (Brown et al. [2016]) within each ion chain, which is critical as our circuit

construction requires operations between distant qutrits.

The superconducting noise models also achieve good fidelities. They exhibit a particularly

large advantage over ancilla-free qubit constructions because idle errors are significant for

superconducting systems, and our qutrit construction significantly reduces idling (circuit

depth). However, most superconducting quantum systems only feature nearest-neighbor or

short-range connectivity. Accounting for data movement on a nearest-neighbor-connectivity
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Figure 2.10: Circuit simulation results for all possible pairs of circuit constructions and noise
models. Each bar represents 1000+ trials, so the error bars are all 2σ < 0.1%. Our QUTRIT
construction significantly outperforms the QUBIT construction. The QUBIT+ANCILLA
bars are drawn with dashed lines to emphasize that it has access to an extra ancilla bit,
unlike our construction.

2D architecture would expand the qutrit circuit depth from logN to
√
N (since the distance

between any two qutrits would scale as
√
N). However, Naik et al. [2017] has experimentally

demonstrated fully-connected superconducting quantum systems via random access memory.

Such systems would also be well matched to our circuit construction.

For completeness, Figure 2.10 also shows fidelities for the

QUBIT+ANCILLA circuit benchmark, which augments the ancilla-free QUBIT circuit with

a single dirty ancilla. Since QUBIT+ANCILLA has linearity constants ∼ 10x better than

the ancilla-free qubit circuit, it exhibits significantly better fidelities. While our QUTRIT

circuit still outperforms the QUBIT+ANCILLA circuit, we expect a crossing point where

augmenting a qubit-only Generalized Toffoli with enough ancilla would eventually outper-

form QUTRIT. However, we emphasize that the gap between an ancilla-free and constant-

ancilla construction for the Generalized Toffoli is actually a fundamental rather than an

incremental gap, because:
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• Constant-ancilla constructions prevent circuit parallelization. For example, consider

the parallel execution ofN/k disjoint Generalized Toffoli gates, each of width k for some

constant k. An ancilla-free Generalized Toffoli would pose no issues, but an ancilla-

augmented Generalized Toffoli would require Θ(N/k) ancilla. Thus, constant-ancilla

constructions can impose a choice between serializing to linear depth or regressing to

linear ancilla count. The Incrementer circuit in Figure 2.6 is a concrete example of this

scenario—any multiply-controlled gate decomposition requiring a single clean ancilla

or more than 1 dirty ancilla would contradict the parallelism and reduce runtime.

• Even if we only consider serial circuits, given the exponential advantage of certain

quantum algorithms, there is a significant practical difference between operating at

the ancilla-free frontier and operating just a few data qubits below the frontier.

While we only performed simulations up to 14 inputs in width, we would see an even

bigger advantage in larger circuits because our construction has asymptotically lower depth

and therefore asymptotically lower idle errors. We also expect to see an advantage for the

circuits in Section 2.5 that rely on the Generalized Toffoli, although we did not explicitly

simulate these circuits.

2.9 Qubit-Qudit Compression

We see, using qudits as temporary storage can benefit our circuit for the Generalized Toffoli

but can the abstraction of using extra levels as temporary storage be useful in other contexts?

In this section, we show how to re-encode, or “compress” idle data to free-up extra workspace

ancilla, without requiring a larger quantum computer.

Typically, when using a higher radix computing paradigm, we express a circuit entirely in

the specified base, that is all inputs and outputs are in the designated radix. An alternative

approach is to fix the input and output radix but allow the use of higher level states tem-
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porarily during the computation, i.e. we are permitted to occupy any level up to a specified

d during a computation with the guarantee that we return to the specified radix.

What does this gain for us? It is known that by simply fully encoding a computation

into a higher radix we obtain a constant space and time advantage over binary-only circuits.

However, as we showed earlier, the use of these higher states can act as temporary storage,

similar to the use of an ancilla, and can convey an asymptotic reduction in circuit depth.

This circuit construction suggests we can obtain better circuits while using fewer qubits by

accessing higher states temporarily.

We take this a step further and generate ancilla temporarily out of input qubits in order to

take advantage of previously known efficient binary circuit decompositions like that of Draper

et al. [2006]. Using this method, we can reduce the number of external ancilla needed from

O(n) to 0 while keeping the same asymptotic circuit depth. To do this, we allow subsets

of qubits to temporarily store higher values, becoming qudits, to store the information of

many qubits within a few qudits. As a concrete example, consider three qubits. There are

23 = 8 total basis states while for two qutrits there are 32 = 9 basis states. Therefore all

the information of 3 qubits can be stored in two qutrits and the third qubit can be left in

a chosen state, |0〉, a clean ancilla. We refer to this process as compression, that is storing

the information of many qubits in a smaller number of qudits. While a better term for this

process might be re-encoding with a different radix, its behavior from a systems perspective

is similar to lossless compression of data to save memory.

We consider various reversible compression schemes labeled x-y-z compression, where x is

the radix of the input qudits, y is the radix of the output qudits, and z is the number of ancilla

generated. Such operations exist if xm ≤ yn with 0 < n < m andm−n = z for some integers

m,n, the number of input qudits and the number of non-ancilla outputs, respectively. Put

more simply, these proposed compression circuits exist if the number of basis states of the

inputs is fewer than the number of basis states of the non-ancilla outputs and the number
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A B C A’ B’ C’

0 0 0 0 0 0

0 0 1 2 2 0

0 1 0 0 1 0

0 1 1 0 2 0

1 0 0 1 0 0

1 0 1 2 1 0

1 1 0 1 1 0

1 1 1 1 2 0

Table 2.4: Truth table for 2-3-1 Compression

of non-ancilla outputs is strictly smaller than the number of inputs. Ideally, we choose

compression schemes with a good compression ratio, i.e. those for which xm/yn ≈ 1.

In this section, we consider 2-3-1 and 2-4-1 compression as methods of generating an-

cilla for simplicity. Many other schemes such as 2-8-2 and 3-9-1 are possible but require

increasingly complex compression circuits.

2.9.1 Qubit to Qutrit Compression

In 2-3-1 compression we take as input three qubits and output 2 qutrits and a single ancilla,

a qubit guaranteed to be in the |0〉 state. First, consider the truth table of Table 2.4. We

note the partial function represented by this truth table is invertible, implying there exists a

reversible circuit that realizes it. The third output, C’, is guaranteed to be in the |0〉 state,

an ancilla. By storing qubit information used infrequently we can generate an extremely

useful ancilla to be used elsewhere in the circuit. Because we ensure all inputs are binary, we

do not need to consider the inputs with value 2 to the ternary circuit. An example circuit

realizing this truth table is given in Figure 2.11. When a compression circuit of this type is
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A(d = 2)

2− 3− 1

+1 2 +1 2 A′(d = 3)

B(d = 2) = +1 2 +1 2 B′(d = 3)

C(d = 2) 1 X01 1 X01 1 1 X01 |0〉

Figure 2.11: The compression of 3 qubits into 2 qutrits and an ancilla, |0〉. All +1 gates
are done modulo 3. Using a sequence of qutrit gates, we can transform three input qubits
into the desired ancilla. When A, B and C are not going to be used for a long time in the
circuit, they can be temporarily repurposed as an ancilla bit elsewhere in the circuit. When
we want to operate on these stored bits, we run the inverse of this circuit using any ancilla
for the third qubit.

applied, we need to keep track of which pair of qutrits encodes the three qubits, in order.

When the compressed data is needed, we can decompress by applying the inverse of this

function. The inverse circuit is simply the gates in reverse order with +1 replaced with −1.

Notably, this inversion requires an ancilla as input. To retrieve the information, the inverse

should be applied taking in any free ancilla and then the stored bits can be computed on as

normal.

This circuit, while accomplishing what is desired, can be rather inefficient. For example,

in architectures with limited connectivity this circuit requires some number of expensive com-

munication operations since every input qubit must be adjacent at some point. Furthermore,

this circuit requires the use of a two-controlled qutrit gate which is typically decomposed

into a sequence of 6 two-qutrit gates and 10 single-qutrit gates as in Di and Wei [2011]. In

total this compression requires 22 gates, 12 two-qutrit and 10 single-qutrit gates.

2.9.2 Qubit to Ququart Compression

While 2-3-1 compression required a fairly substantial number of gates, the 2-4-1 compression

circuit can convert qubit inputs into ancilla more simply and with few gates. This does not
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come for free. In quantum computing, we subject our computation to a greater probability

of error by using higher radix gates and by persisting for longer durations in higher energy

states. In Table 2.5, we show that two qubits can be compressed into a single ququart and

one ancilla. 2-4-1 compression is simpler than 2-3-1 compression because 22 states fit evenly

in a single ququart with 4 states. In Figure 2.12, we show a compression circuit using only

3 two-ququart gates in total, a substantial reduction over the 2-3-1 counterpart. In the next

section, we show how compression and decompression can be used to design efficient circuits

requiring no ancilla.

A B A’ B’

0 0 0 0

0 1 2 0

1 0 1 0

1 1 3 0

Table 2.5: Truth table for 2-4-1 Compression

A(d = 2)

2− 4− 1
+2 2 3 A′(d = 4)

B(d = 2) = 1 X01 X01 |0〉

Figure 2.12: The compression of 2 qubits into a single ququart and generating an ancilla,
|0〉. The +2 gate here is done modulo 4. This operation takes as input two qubits, A and
B, and produces a single ququart and an ancilla |0〉. To do this, we need only 3 two-ququart
gates. Similarly, to retrieve the stored information, we can do the inverse of this operation
using any ancilla for the second qubit.
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2.10 A+B Adder

We now present our A + B adder. This circuit takes as input two equal-sized registers of

qubits, A and B, and optionally carry-in or carry-out bits. This decomposition uses no

ancilla and instead generates ancilla locally when needed by sub-components. In prior work,

to achieve a logarithmic depth decomposition, O(n) many ancilla were required where n is

the size of the input register. We will demonstrate how this efficient decomposition can be

used along with our new compression technique to obtain an O(log n) depth decomposition

of the same adder in-place without the extra use of ancilla.

We first briefly review the work of Draper et al. [2006] which gives a qubit-only in-

place adder with ancilla which we will refer to as (A+B)2. We give the decomposition

for registers of size 4 in Figure 2.13. One of the key contributions of this prior work is to

demonstrate how, in logarithmic depth, the carry bits could be computed and used (and

subsequently uncomputed to restore input ancilla back to the |0〉 state). This decomposition

requires 2m − w(m) − blogmc ancilla, where w(m) is the number of 1’s appearing in the

binary expansion of the number of inputs, m. We will use this number later to determine

how many ancilla to generate via compression. This same prior work demonstrates several

variants of this circuit. We require those with either a carry-in bit, a carry-out bit, or both.

We will now present our decomposition shown in Figure 2.14. Let A = (a1a2 . . . an) and

B = (b1b2 . . . bn) be the input registers with a1, b1 the least significant bits of each register.

We divide these registers into c blocks R1, . . . , Rc each of size 2n/c. We assume for clarity

that n is a multiple of c but our constructions will work for any n, with one additional block

containing the remaining 2(n mod c) qubits. Take

Ri = (a(i−1)(c/n)+1b(i−1)(c/n)+1 . . . ai(c/n)bi(c/n))

then notice for i > 1 we can perform an addition circuit (A+B)2 with carry-in and carry-out
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a0

(A
+
B

) 2

• • • • a0

b0 • X • X s0

|0〉 • • • |0〉
a1 • • • • • a1

b1 • • X • • X s1

|0〉 • • • • |0〉
a2 = • • • • • a2

b2 • • • X • • • X s2

|0〉 • |0〉
|0〉 • • |0〉
a3 • • a3

b3 • • • • s3

|0〉 cout

a b c d e
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 2.13: An adder circuit from Draper et al. [2006] on two four-bit registers A and B
with a carry-out bit using ancilla. The sum S is computed in-place on register B while A is
untouched and the ancilla are restored to |0〉. We use this as a sub-component of our general
decomposition. Each of the ancilla in this circuit can be generated from other input qubits
not shown here via our compression circuits. Part a of the circuit computes carry, generate,
and propagate for each bit position. Part b computes the carry-in for every bit position.
Part c does the addition, storing the output in register B. Parts d and e uncompute b and
a respectively, restoring the ancilla back to |0〉.

on block Ri in O(log
(
n/c
)
) = O(log n) depth by generating the proper number of ancilla out

of the other input qubits, specifically 2(n/c) − w(n/c) − blog n/cc ancilla. We will assume

a worst case scenario of 2n/c ancilla to simplify the analysis. Suppose we are performing

(A+B)2 on block Ri while every other block is unused. We can perform compression on

the currently unused qubits in all other blocks {Rj |j 6= i} to obtain generated ancilla which

can then be used by the current adder subcircuit.

Recall 2-3-1 compression takes 3 qubits and outputs a single ancilla. Let a 2-3-1 Compress

circuit be a circuit which takes any number of qubits m as input and applies 2-3-1 compres-
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sion to triplets resulting in bm/3c ancilla. Then applying 2-3-1 compression to all qubits in

{Rj |j 6= i} we obtain b(c−1)2n/3cc ancilla. We now have constraints on what the constant c

should be for our decomposition to be feasible. That is we must have b(c−1)2n/3cc ≥ 2n/c.

Because we must store intermediate carry values between each (A+B)2, we will actually

require an additional c− 1 ancilla, giving us b(c− 1)2n/3cc ≥ 2n/c+ c− 1. By solving the

inequality, this implies our construction is feasible for c = 5 and n ≥ 30. An alternative

adder that is ancilla-free but does not scale well asymptotically, like the O(n)-depth adder

by Cuccaro et al. [2004], may be used where our construction is infeasible on small problem

sizes with n < 30.

The circuit construction now goes as follows, first considering the case when we have no

carry-in and no carry-out. To add in these additional features requires only minor adjust-

ments, discussed later. First, we compress the qubits in blocks {Rj |j 6= 1}. Then we apply

(A+B)2 with carry-out to the block R1 using the newly generated ancilla. The compression

block is constant depth (O(1)) and the adder is logarithmic depth (O(log
(
n/c
)
) = O(log n)).

The qubits b1, . . . , bn/c now store the first n/c bits of the addition, s1, . . . , sn/c. Also note

the adder circuit restores all ancilla (except the carry-out) to |0〉. Then, apply a compression

block to R1. Swap the carry-out, cout,1, to any of the ancilla generated to hold on to whether

a carry should be applied to the next block (these carries are where the additional c−1 term

come from above). Next, we uncompress all of the bits in R2 so we can apply (A+B)2

with carry-out and carry-in (cin = cout,1) to block R2 using the other generated ancilla. We

repeat this process until the last block, Rc. In this case, since we do not have a carry-out

bit we apply (A+B)2 with only carry-in (cin = cout,c−1).

We have now computed the sum A + B and now must cleanup the intermediate carry

bits. This can be done by working in reverse to uncompute each carry-out without undoing

the addition. One intuitive way would be to simply apply the inverse of the (A+B)2 circuit

we applied to block Rc−1 which will uncompute the addition and cout,c−1 and then re-apply
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it without carry-out. Now the ancilla storing cout,c−1 is restored to |0〉. We repeat this

process on each of the blocks in reverse order. Finally, after cout,1 has been uncomputed and

the ancilla restored to |0〉, we uncompress all of the qubits. The resulting output will be the

sum S in register B with register A left unchanged from the input.

Uncomputing the intermediate carry-out bits can be improved dramatically by noticing

that by applying the inverse of (A+B)2 with carry-in and carry-out and the subsequently

applying (A+B)2 with only carry-in is unnecessary. Instead we can uncompute the carry-

out by only applying the inverse of the second half of (A+B)2 with carry-out and then

executing the second half of (A+B)2 with a few extra gates in Figure 2.13d to cancel the

carry-out.

Earlier, we show our decomposition only works when c = 5 using 2-3-1 compression.

However, due to page size constraints, we do not show some of the repeated blocks in Figure

2.14. The block of gates surrounded by a dashed line is simply repeated in a block diagonal

pattern indicated by the ellipsis. If we instead used 2-4-1 compression, the factor of 3 in

the earlier inequality would be replaced with 2 making c = 4 feasible with a constraint of

n ≥ 12.

Our decomposition performs addition in-place with zero ancilla, taking advantage of

qutrits (qudits in general) to obtain ancilla instead of extra qubits for ancilla. Each of the

(A+B)2 blocks has depth O(log n) for input register size n and we perform only a constant

2c− 1 of them so our decomposition also has O(log n) depth.

2.10.1 Carry-in and Carry-out

We can extend the above decomposition to allow for carry-in quite simply. When computing

the (A+B)2 and Undo carry on R1 we simply use the (A+B)2 circuit with carry-in.

Similarly, we can allow for carry-out by simply substituting an (A+B)2 with carry-in and

carry-out on block Rc.
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2.10.2 +K Adder

The method used to construct the A + B adder shown above can be applied to any circuit

that can be divided into blocks while only needing to pass a constant number of bits to the

input of the following block. One example that follows from A + B is the +K adder. The

+K adder acts on a single register of qubits B and computes the sum B+K in-place where

K is a classical constant known when creating the circuit.

The design of our +K adder will use as subcircuits the (+K)2 circuit derived from

(A+B)2 from Draper et al. [2006] and described earlier. The design of (+K)2 is the same

as (A+B)2 except the qubits of register A are removed and all CNOT gates with a control

on ai are removed and only replaced with X gates if ki = 1. Similarly, the Toffoli gates

(controlled-controlled-not gates) are removed and replaced with CNOT gates in the same

way. Depending on the value of K, some of the ancilla may also be removed but in the worst

case, (+K)2 may still require 2n/c−w(n/c)− blog n/cc − 1 ancilla for input size n/c which

we upper bound by 2n/c. The circuit still has O(log n) depth.

We use the same diagonal block structure as A+B but now we define

Ri = (b(i−1)(c/n)+1 . . . bi(c/n))

At step i, the number of ancilla generated by applying 2-3-1 compression to all qubits in

{Rj |j 6= i} is b(c−1)n/3cc. From this, we obtain the inequality b(c−1)n/3cc ≥ 2n/c+ c−1

which determines when there are enough unused qubits to generate the required ancilla.

The extra c − 1 ancilla are needed to store intermediate carry values. When we solve this

inequality, we find that c = 8 blocks are required and the circuit will only have enough

ancilla when n ≥ 168. Both the number of blocks and the minimum n are larger than for

A + B because the input to +K is only a single register so the ancilla required per input

qubit is doubled, resulting in a higher minimum n.
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2-3-1 compression is not the only option. If we use 2-4-1 compression instead, more ancilla

can be generated per input qubit and we obtain the inequality b(c− 1)n/2cc ≥ 2n/c+ c− 1.

The solution to this tells us that the minimum c = 6 and we can use the circuit for n ≥ 60.

2.11 Discussion and Summary

We have shown a new use of qudits in circuit designs, to generate ancilla in-place, and its

application to the class of quantum circuits that can be split into blocks. We give a new

construction for an in-place addition circuit that uses no ancilla but still obtains the same

O(log n) asymptotic depth as the qubit circuit it was based on that needed O(n) ancilla.

The new circuit can be used as a drop-in replacement in algorithms to use significantly fewer

total qubits. These results should encourage further use of the temporary-qudit abstraction

in qudit-assisted quantum computing.

A number of useful quantum circuits, especially arithmetic circuits, make extensive use of

multiply-controlled gates. However, these circuits are typically pre-compiled into single- and

two-qubit gates using one of the decompositions from prior work, usually one that involves

ancilla qubits. Revisiting these arithmetic circuits from first principles, with our qutrit

circuit as a new tool, could yield novel and improved circuits like our Incrementer circuit in

Section 2.5.2 and Adder circuit in Section 2.10.

It still remains to be seen what the most intuitive way for quantum programmers to

use qudits. We have only shown hand-designed subroutines and compression strategies

to use temporary qutrits. The hand-designed generalized Toffoli implementation makes

excellent use of one additional logical state and, while hand-optimization can be a good

way to squeeze performance out of resource-constrained devices, codifying manual strategies

into our compilers can have wider performance benefit and free most programmers to think

at a higher level. The qubit “compression” strategy shows benefit in the design of the

quantum adder arithmetic circuit, indicating that this strategy could have wider uses. For
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example, a compiler could intelligently “compress” binary quantum data (stored in groups

of idle qubits) into smaller groups of qutrits (using the log2(3) compression ratio) or qudits

(log2(d) ration). This has the potential to automate the benefits of temporary qutrits to all

quantum programs.

Our circuit constructions and compression strategies point towards the benefit of tempo-

rary qudit abstraction. Researchers will undoubtedly find more uses for qudits as a form of

temporary data storage, enabled by this new way of thinking about quantum data beyond

the binary representation.
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CHAPTER 3

SPATIALLY LOCAL MEMORY

3.1 Introduction

From the previous chapter, when we abstract multi-level qudits as a two-level qubit with

additional storage we enable improvements in new circuit designs and design strategies.

In this chapter, we look at a different form of storage, viewed through the lens of spacial

constrains in 2D and 3D. These constraints come from 2D chip limitations and the 3D world

we live in due to the fragility of qubit-to-qubit communications.

Here we focus on error correction, the underlying architecture needed for future fault-

tolerant quantum computing. We are currently in the NISQ (Noisy Intermediate-Scale Quan-

tum, Preskill [2018]) era where great progress has been made at the software level such as

improved compilation procedures reducing required overhead for program execution. How-

ever, these machines will be too small for error correction and unable to run large-scale

programs due to unreliable qubits. The ultimate goal is to construct fault-tolerant machines

capable of executing thousands of gates and, in the long-term, to execute large-scale algo-

rithms such as Shor [1997] and Grover [1996] with speedups over classical algorithms. There

are a number of promising error correction schemes which have been proposed such as the

color code from Landahl et al. [2011] or the surface code from Fowler et al. [2012a], Horsman

et al. [2012], Gidney and Ekerå [2019]. The surface code is a particularly appealing candidate

because of its low overhead, high error threshold, and its reliance on few nearest-neighbor

interactions in a 2D array of qubits, a common feature of superconducting transmon qubit

hardware. In fact, Google’s next milestone is to demonstrate error corrected qubits (Arute

et al. [2019], Martinis [2019]).

Current architectures for both NISQ and fault-tolerant quantum computers make no dis-

tinction between the memory and processing of quantum information (typically represented
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in qubits). While monolithic designs are currently viable, the engineering challenges of scal-

ing up to hundreds of qubits become readily apparent as larger devices are considered. For

transmon technology used by Google, IBM, and Rigetti, some of these issues include fab-

rication consistency and crosstalk during parallel operations. Every qubit needs dedicated

control wires and signal generators which fill the refrigerator the device runs in. To scale

to the millions of qubits needed for useful fault-tolerant machines like in Gidney and Ekerå

[2019], we need some kind of memory-like abstraction to manage the massive scale these

devices will need to achieve. Memory, in essence, decouples the amount of data storage

(qubit-count) from the scale of the instruction processor (transmon-count or laser waveguide

size, this is classically the CPU). Finding the most appropriate memory-like abstraction will

enable quantum computers to scale more effectively.

In this chapter, we evaluate a recently realized qubit memory technology which stores

quantum data in a superconducting cavity local to each qubit (Naik et al. [2017]). This

technology, while new, is expected to become competitive with existing transmon devices.

Stored in cavity, qubits have a significantly longer lifetime (coherence time) but must be

loaded into a transmon for computation. This longer lifetime can increase the total amount

of computation before data is lost to errors. Although the basic concept of a compute

qubit and associated memory has been demonstrated experimentally, the contribution of the

chapter is to design and evaluate a system-level organization of these components within

the context of a novel surface code embedding and fault-tolerant quantum operations. We

provide a proof of concept in the form of a practical use case motivating more complex

experimental demonstrations of larger systems using this technology.

Our proposed 2.5D memory-based design (originally presented in Duckering et al. [2020]1)

is a typical 2D grid of transmons with memory added as shown in Figure 3.1. This can be

compared with the traditional 2D error correction implementation in Figure 3.2, where the

checkerboards represent error-corrected logical qubits. The logical qubits in this system are

49



mode 0

mode 1

mode 2

cavity cavity cavity

data
ancilla

logical
qubit

Figure 3.1: Our fault-tolerant architecture with random-access memory local to each trans-
mon. On top is the typical 2D grid of transmon qubits. Attached below each data transmon
is a resonant cavity storing error-prone data qubits (shown as black circles). This pattern
is tiled in 2D to obtain a 2.5D array of logical qubits. Our key innovation here is storing
the qubits that make up each logical qubit (shown as checkerboards) across many cavities
to enable efficient computation.

stored at unique virtual addresses in memory cavities when not in use. They are loaded to a

physical address in the transmons and made accessible for computation on request and are

periodically loaded to correct errors, similar to DRAM refresh. This design allows for more

efficient operations such as the transversal CNOT between logical qubits sharing the same

physical address, i.e. co-located in the same cavities. This is not possible on the surface code

in 2D which requires methods such as braiding or lattice surgery for a CNOT operation.

We introduce two embeddings of the 2D surface code to this new architecture that spread

logical qubits across many cavities. Despite serialization due to memory access, we are able to

store and error-correct stacks of these logical qubits. Furthermore, we show surface code op-

erations via lattice surgery can be used unchanged in this new architecture while also enabling

a more efficient CNOT operation. Similarly, we are able to use standard and architecture-

specific magic-state distillation protocols like Litinski [2019b] in order to ensure universal

1. CD and JMB contributed equally to the work that comprises this chapter. CD’s contributions include
refinements to the surface code mapping, compact embedding and CNOT sequence, numerical results, and
magic state analysis.
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computation. Magic-state distillation is a critical component of error-corrected algorithms

so any improvement will directly speed up algorithms including Shor’s and Grover’s.

We discuss several important features of any proposed error correction code, such as the

threshold error rate (below which the code is able to correct more errors than its execution

causes), the code distance, and the number of physical qubits to encode a logical qubit. In

many codes, the number of physical qubits can be quite large. We develop an embedding

from the standard representation to this new architecture which reduces the required number

of physical transmon qubits by a factor of approximately k, the number of resonant modes

per cavity. We also develop a Compact variant saving an additional 2x. This is significant

because we can obtain a code distance
√

2k times greater or use hardware with only 1
2k the

required physical transmons for a given algorithm. In the near-to-intermediate term, when

qubits are a highly constrained resource, this will accelerate a path towards fault-tolerant

computation. In fact, the smallest instance of Compact requires only 11 transmons and 9

cavities for k logical qubits.

We evaluate variants of our architecture by comparing against the surface code on a larger

2D device. Specifically, we determine the error correction threshold rates via simulation

for each and find they are all close to the baseline threshold. This shows the additional

error sources do not significantly impact the performance. We explore the sensitivity of the

threshold to many different sources of error, some of which are unique to the memory used

in this architecture. We end by evaluating magic-state distillation protocols which have a

large impact on overall algorithm performance and find a 1.22x speedup normalized by the

number of transmon qubits.

In summary, we make the following contributions:

• We introduce a 2.5D architecture where qubit-local memory is used for random access

to error-corrected, logical qubits stored across different memories. This allows a simple

virtual and physical address scheme that exemplifies exposing native data locality to
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the application level. Error correction is performed continuously by loading each from

memory.

• We give two efficient adaptations of the surface code in this architecture, Natural and

Compact. Unlike a naive embedding, both support fast transversal CNOTs in addition

to lattice surgery operations with improved connectivity between logical qubits.

• We develop an error correction implementation optimized for Compact and designed

to maximise parallelism and minimize the spread of errors.

• Via simulation, we determine the surface code adapted to our 2.5D architecture is still

an effective error correction code while greatly reducing hardware requirements.

3.2 Background

In this section we briefly introduce the basics of quantum computation. We review current

superconducting qubit architectures and memory technology our proposed design takes ad-

vantage of. We then discuss the noise present in these physical systems. Next, we introduce

the basics of quantum error correction and give a detailed introduction to the surface code

and lattice surgery. We conclude with a review of the basic procedure for decoding physical

errors.

3.2.1 Basics of Quantum Computing

The fundamental unit of quantum computing is the qubit. Like the classical bit, it can exist

in the |0〉 or |1〉 state, but it may also exist in a coherent superposition of the two states and

n qubits may exist in a superposition of all 2n bit strings. For example, a single qubit state

is |ψ〉 = α |0〉+ β |1〉 where |α|2 +|β|2 = 1 and α, β ∈ C. To manipulate these bits we apply

quantum operations, often called gates. Single qubit gates like X (bit flip), Z (phase flip),

H (Hadamard basis change), and T (π4 phase) and two-qubit gates like CNOT (reversible
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XOR with output b′ = a ⊕ b) are unitary and reversible (invertible). We may measure

a qubit to obtain either a 0 or a 1 outcome with probabilities |α|2 and |β|2, respectively.

Multi-qubit operations like CNOT can create entanglement between qubits. Using only

CNOT and single qubit gates, universal computation is possible, meaning any reversible

multi-qubit operation is possible. The three-qubit Toffoli (reversible AND gate with output

c′ = (a ∧ b) ⊕ c), a common primitive in error-corrected algorithms, can be implemented

by performing a few CNOT, H, and T gates. See Nielsen and Chuang [2011] for a more

comprehensive background.

3.2.2 Superconducting Qubit Architectures

In contrast to other leading qubit technologies such as trapped ion devices with one or

more fully-connected qubit chains, superconducting qubits are typically connected in nearest-

neighbor topologies, often a 2D mesh on a regular square grid as shown in Figure 3.2. For

near-term computation, this limitation makes engineering these devices easier but results in

high communication costs, increasing the chance of errors on NISQ devices and communica-

tion congestion for error corrected operations. This is a leading technology in industry, used

by Rigetti, IBM, and Google.

3.2.3 Qubit Memory Technology

Recently studies, including Naik et al. [2017], Hann et al. [2019], have demonstrated random

access memory for quantum information. Qubit states can be stored in the resonant modes

of physical superconducting cavities attached to a transmon qubit as depicted in Figure 3.3.

In these devices, transmon-transmon interactions are essentially the same as other super-

conducting transmon technology and transmon-cavity interactions are expected to perform

similarly. Currently demonstrated error rates are promising, and there is nothing fundamen-

tal preventing this technology from becoming competitive with other transmon devices. We
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data
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logical qubit logical qubit

logical qubit logical qubit

connectivity

Figure 3.2: A typical 2D superconducting qubit architecture. The dots are transmon qubits
where black are used as data and gray are used as ancilla for error correction. The lines
indicate physical connections between qubits that allow operations between them. Four
logical qubits, each consisting of 9 error-prone data qubits, are shown here in the rotated
surface code with distance 3. Z parity checks are shaded yellow (light) and X parity checks
are shaded blue (dark) where checks on only 2 data are drawn as half circles.

expect operation error rates to improve, cavity sizes and coherence times to increase and in

general expect performance to improve as it has with other quantum technologies.

Local memory is not free. Stored qubits cannot be operated on directly. Instead, op-

erations on this information are mediated through the transmon. Furthermore, to operate

on qubits stored in memory, we first load the qubit from memory. Then we perform the

desired operation on the transmons, and store the qubit back in its original location. A

two-qubit operation such as a CNOT can also be performed directly between the transmon

and a qubit in its connected cavity by manipulating higher states of the transmon. We use

this transmon-mode CNOT later.

In this architecture, qubits stored in the same cavity cannot be operated on in parallel.

For example, consider two qubits stored in different modes of the same cavity (two virtual

addresses corresponding to the same physical address). If we want to perform an H gate on

each of them in parallel, this would not be possible. Instead, we serialize these operations.

There are two primary benefits of this technology. First, we are able to quickly perform
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Figure 3.3: A close-up representation of the qubit memory technology we use. On top is a
superconducting transmon qubit physically connected to a resonant superconducting cavity.
This cavity has many resonant modes each used to store a qubit. These qubits can be loaded
and stored (with random access) via the transmon.

two-qubit interactions between any pair of qubits stored in the same cavity because we have

star-graph connectivity between the transmon and its cavity modes. Second, qubits stored

in the cavity are expected to have longer coherence times by about one order of magnitude

i.e. there will be 10x fewer idle errors when qubits are stored in the cavity.

3.2.4 Quantum Errors

Quantum systems are inherently noisy, subject to a variety of coherent and non-coherent

error. For example, when attempting to apply some gate U to a qubit we may actually apply

some other gate U ′ which is close to the desired operation but may include an additional

undesired operation. Fortunately, this type of coherent error is fairly easy to model. Since

every single-qubit unitary can be expressed as a linear combination of the Pauli matrices2

I,X, Y, Z we can express this coherent error as a combination of bit flip (X) and phase flip

(Z) errors where I is no error and Y is simultaneous bit and phase errors (Y = iXZ). For a

quantum error correcting code this will play a part in digitizing errors, meaning we will be

able to simply detect and correct X and Z errors.

2. The Pauli matrices along with I form a complete basis over complex matrices so any single-qubit

unitary U = aI + bX + cY + dZ where X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.
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Errors such as decoherence errors can be attributed to interaction with the environment.

These errors are inevitable because manipulating qubits requires they not be perfectly iso-

lated. When modeling and simulating this type of error we require the use of full density

matrix simulation. In this paper, we opt not to model coherence errors in this way because

simulation of this class of errors is hard (density matrices have size exponential in the number

of qubits), we instead also model storage errors as Pauli errors. This is a common simplifi-

cation and a conservative overestimate for the error causing our error threshold estimation

to be slightly more conservative. For example, when decoherence resets a qubit to |0〉, this

causes an error to a qubit in the |1〉 state but not to a qubit already in the |0〉 state whereas

a Pauli X error causes a bit flip which is an error on either state.

The above errors apply to all superconducting systems and we often assume consistent

error rates across the device. We treat all two-qubit interactions equally so gates like a

CNOT incur some fixed error cost, a fixed chance of some error U1 ⊗ U2 is applied to |ψ〉

where U1, U2 ∈ {I,X, Y, Z}. In traditional superconducting architectures (our baseline), we

consider a few error sources — storage error, one and two-qubit gate error, and measurement

error. In superconducting architectures with resonant cavities such as our design, there is

more nuance. We consider cavity storage and transmon storage error rates separately since

each has its own coherence time and we separate transmon-transmon two-qubit gates and

transmons-cavity two-qubit gates. We detail this and our other assumptions for simulation

in experimental setup.

3.2.5 Surface Codes, Error Decoding, and Lattice Surgery

The surface code by Fowler et al. [2012a] is one of the most promising quantum error cor-

rection protocols because it requires only nearest neighbor connectivity between physical

qubits. The surface code is implemented on a two-dimensional array of physical qubits.

These qubits are either data, where the state of the logical qubit is stored, or ancilla used
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|A〉 = |0〉 |C〉

|T 〉
(a) Create ancilla

|A〉 |C〉

|T 〉
(b) Merge A and T

to measure A⊕T

(X-basis)

|A〉 |C〉

|T 〉
(c) Split

|A〉 |C〉

|T 〉
(d) Merge A and C

to measure A⊕C

(Z-basis)

|A〉 |C〉

|T 〉
(e) Split then

measure X-basis

of A
Figure 3.4: The lattice surgery operations to perform a logical CNOT on the standard
surface code (and directly supported in our architecture). Given control and target qubits
|C〉 and |T 〉, a CNOT is performed by enabling and disabling the parity checks as shown
across 6 timesteps ((e) is two steps). We show this complex process to contrast with the fast
transversal CNOT enabled by our architecture (described later in Section 3.3.2).

for syndrome extraction (parity checks). These ancilla qubits are measured to stabilize the

entangled state of the data. These ancilla fall into two categories, measure-Z and measure-X

for Z syndromes and X syndromes designed to detect bit and phase errors respectively. Data

qubits not on the boundary are adjacent to two measure-Z and two measure-X qubits.

In Figure 3.2 we show four logical qubits with code distance 3 mapped to a 2D lattice

of superconducting qubits. Dark physical qubits are used as data and light qubits are used

as measure qubits. In this paper, we opt to explicitly indicate qubits in order to make clear

how logical qubits, formed of many square and half-circle plaquettes, are mapped directly

to hardware. In our diagrams however, we use customary notation by shading X-plaquettes

blue (dark) and Z-plaquettes yellow (light). Half-plaquettes contain only 2 data qubits and

are shown as half circles.

Each X (Z) plaquette corresponds to a single measure-X (Z) qubit and the four data

which it interacts with. The corners of each plaquette are the data qubits. For the baseline,

we use standard Z and X syndrome extraction (parity measurement) circuits where the

qubits of this circuit are physical qubits. The Z-syndrome measures the bit-parity of its
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corner qubits and the X-syndrome measures their phase-parity. By repeatedly performing

syndrome extraction and detecting parity changes we are able to locate errors. This repeated

syndrome extraction collapses any error to a correctable Pauli error and forces the data to

remain in what is called the code, or quiescent, state. Once the qubits are in this state,

subsequent syndrome extraction should result in the same outcomes. If errors occur, we

detect them as changes in measurement outcomes.

Errors are decoded by running a classical algorithm on the measured syndromes as spec-

ified by Fowler et al. [2012b]. In the surface code, when an error occurs on a data qubit, for

example a single X bit-flip error, we see this as a change in the measurement outcome of both

of the Z-syndrome ancilla adjacent to it. If an error occurs on every data qubit in a chain

of neighbors, only the two syndromes at the ends will detect a change. The standard way of

performing error decoding is to collect all of these changed syndromes into a complete graph

with edge weights given by the log-probability of that chain of errors occurring. We perform

a maximum likelihood perfect matching of this graph to find the most probable set of error

locations which we correct or track in the classical control. If errors are sufficiently low these

error chains will be well isolated and this decoding algorithm will be able to determine the

correct set of corrections to be made. If errors are less sparse, this matching algorithm may

misidentify which error chains have actually occurred and this can result in a logical error,

that is a logical bit flip or phase flip is applied. These logical errors cannot be detected

because they result from misidentifying the physical errors.

There are two primary ways to manipulate the logical qubits of the surface code to per-

form desired logical operations — braiding and lattice surgery. In this paper we will primarily

consider lattice surgery which has been shown to have some advantages over braiding like

using fewer physical qubits. For a more thorough introduction to lattice surgery we refer the

reader to Horsman et al. [2012], Litinski [2019b], Lao et al. [2018]. In our proposed scheme,

all primitive lattice surgery operations can be used such as split and merge which together
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perform a logical CNOT as shown in Figure 3.4. For universal quantum computation in

surface codes we allow for the creation and use of magic states such as |T 〉 or |CCZ〉. These

states are necessary because the T and CCZ operations cannot be done transversely (using

physical gates on the data in parallel to reliably perform the logical gate) in this type of

code. However, high fidelity versions of these states can be generated via distillation as

in Bravyi and Haah [2012], Litinski [2019b] where many error-prone copies of the state are

combined to generate the state with low error probability. Our scheme permits the use of

these methods in the same way as other surface code schemes and also allows more efficient

implementations.

3.3 Virtualized Logical Qubits

In this section we describe in detail our proposed architecture, an embedding of the sur-

face code which virtualizes logical qubits, saving over 10x in required number of transmons.

This takes advantage of quantum resonant cavity memory technology described above to

store logical qubits, in the form of surface code patches, in memory local to the computa-

tional transmons. In this section we describe how we can embed surface code tiles in two

variations, Natural and Compact. We show the hardware operations needed to perform effi-

cient syndrome extraction for both in our new fault-tolerant architecture. We then describe

how typical lattice surgery operations are translated into operations in this new scheme,

and finally how our system supports fault-tolerant transversal interactions between logical

qubits sharing the same virtual address. We verify these operations via process tomography.

We briefly describe how magic state distillation, an important primitive for algorithms, is

translated to our system.
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3.3.1 Natural Surface Code Embedding

Our goal here is to take logical qubits stored in a plane and find an embedding of that plane

in 3D where the third dimension (our transmon-local memory) is a limited size, k. The

intuitive answer is to simply fold the surface k times. While this works, it does not have the

benefits of a more clever embedding. We propose slicing the plane into many pieces, storing

them flat in memory to enable them to stitch together on-demand. This embedding enables

the fast transversal CNOT and high connectivity we will describe later.

Consider the high-level three dimensional view of the quantum memory architecture

presented in Naik et al. [2017]. For every transmon in this architecture (the compute qubits

in the top layer of Figure 3.1) there is a cavity attached with a fixed number of resonant

modes, k. Each cavity can store k qubits, one per mode. Each transmon can load and store

qubits from its attached cavity by performing a transmon mediated iSWAP. We assume all

transmons can be operated on in parallel as is the case in most superconducting hardware

(i.e. from IBM or Google). For example, we can load qubit qiz to transmon ti and load

qjz to transmon tj in parallel, simultaneously execute single qubit operations on each qubit,

then store in parallel. Any other qubits stored in cavities i or j will be unaffected by these

operations. We expect this technology to allow cavity size k on the order of 10 to 100 qubits

and it will likely not be practical to scale k along with the size of the 2D grid as hardware

improves so we cannot implement a true 3D code such as Bombín [2015]. For our analysis,

we conservatively assume k = 10 and view this as a 2.5D architecture where we expect the

width and height of the grid to scale while the depth, k, remains small.

We demonstrate how our system is sensitive to the length of these cavities in Section 3.6

where the amount of time between error correction cycles is directly a function of this cavity

size k. As the size of the cavity becomes very large, the physical qubits stored are expected

to be subject to more and more decoherence errors which will reduce our ability to properly

decode the errors.
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Consider the rotated surface code of Figure 3.2 and the high level view of this architecture

in Figure 3.1. We imagine mapping each of the physical qubits of this logical qubit qL,1 to

the same mode z of each cavity in this memory architecture. Another logical qubit qL,2

can be mapped to mode z2 6= z of the same set of cavities. We view this as stacking the

surface code patches, the logical qubits, together under the same set of transmon qubits.

The transmons themselves are only used for logical operations and error correction cycles

performed on the patches.

For logical qubits with code distance d we define patches on the architecture, contiguous

grids of size d×d data qubits and d×d ancilla qubits. Logical qubits are mapped to multiples

of d coordinates on the grid and a specific mode, z, for storage. For example, logical qubit qL

is mapped to a pair (Pxy, z) where Pxy refers to the square patch of data transmons qd·x,d·y

to qd·x+d−1,d·y+d−1 and z indicates which cavity mode it is stored in. A virtual memory

address of a logical qubit refers to exactly the pair (transmon patch, index). We sometimes

refer to all pairs with the same transmon patch collectively as a stack where transmon patch

is the physical memory address where a patch is loaded.

In this memory architecture, recall we are unable to operate on qubits stored in the same

cavity in parallel, however we are permitted to operated on qubits stored in different cavities

in parallel. This implies for two logical qubits qL,1 and qL,2 stored in the same stack we are

only able to perform syndrome extraction on at most one of these qubits at a time. In order

to detect measurement errors, we typically require d rounds of syndrome extraction before

we perform our decoding algorithm and correct errors. If all indices are occupied by logical

qubits and we want to perform d rounds of correction to each one we have two primary

strategies. We can load a logical qubit (meaning load all data in parallel to each transmon),

perform all d rounds of extraction, then store the qubit.

Alternatively, we can Interleave the extraction cycles by loading the logical qubit in index

0, performing one syndrome extraction step, then storing. We execute this same procedure
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Figure 3.5: Circuit showing how to execute our Natural embedding on hardware. Left: The
layout of six data (black) and two ancilla (gray) in hardware. CNOT operations between
qubits are drawn between. Right: A circuit diagram of the operations applied over time
where each horizontal line corresponds to a qubit and each box or symbol is an operation.
The steps are Lz: load from memory mode z, |0〉: reset ancilla, CNOTs: compute the Z or
X parity, Meter: measure the result, Sz: store back to memory.

for every logical qubit in the stack and repeat d times. We expect this latter procedure to

be less efficient, subjecting the data qubits to d load and store errors per d cycles as opposed

to performing exactly one set of loads and stores when collecting all d measurements at

once. We study the effect of this choice of syndrome extraction on the error threshold in

Section 3.5. We detail these extraction protocols for each syndrome in Figure 3.5. Here we

use Lz (Sz) to indicate loading (storing) the data from (to) index z of the attached cavity.

Intuitively, this scheme is stacking many different logical tiles together in a single location.

This includes mapping measure-Z/X ancilla to cavity modes. However, this is unnecessary,

because measure ancilla do not actually store any data and are reset before every extraction

step. Therefore, we can reduce the number of cavities required for this system by simply

omitting any cavity where ancilla are stored. Instead, every patch in the same stack shares

the same ancilla, the transmons at the top layer with no attached cavity.

In our system, up to k logical qubits share the same set of transmons, more efficiently

storing these qubits than on a single large surface. In order to interact logical qubits in
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CNOT gate

mode z

logical
control

logical
target

Figure 3.6: The transversal CNOT enabled by our 2.5D architecture. The data qubits for the
control logical qubit are loaded into the transmons. Transmon-mediated CNOTs to mode z
for every data qubit perform the logical operation. This takes one timestep to perform, 6x
better than a lattice surgery CNOT.

different stacks we load them in parallel to the transmons then interact them via lattice

surgery operations like the CNOT shown in Figure 3.4. In these cases, all of the other

stacks’ transmons between the interacting logical qubits act as a single (possibly large)

logical ancilla. In typical planar architectures, we are unable to execute transversal two-

qubit operations due to limited connectivity. We can perform physical operations between

qubits in the same cavity, mediated by the transmon. Therefore, in our system, we are able

to perform transversal two-qubit interactions if the logical qubits are co-located in the same

stack. We describe this next.

3.3.2 Transversal CNOT

A major advantage of this 2.5D architecture, enabled by our embedding of patches across

memories, is the ability to do two-qubit operations transversely using the third dimension.

The logical operation is performed directly by doing the same physical gate to every data

qubit and correcting any resulting errors. On typical 2D architecture error correcting codes

like the surface code, the only transversal operations are single-qubit Clifford operations like
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X or Z. Two-qubits operations are not possible because the corresponding data qubits of two

logical patches cannot all be made adjacent. However, with memory, it is possible to load

one patch into the transmons and apply two-qubit gates mediated by each transmon onto

the data qubits for a second qubit stored in one mode of the cavities. This works in both

Natural and Compact (described later).

Figure 3.6 demonstrates this for the transversal CNOT gate which we verified via process

tomography (Neeley [2010], Nielsen and Chuang [2011]) to apply the expected CNOT unitary

in simulation. This can be performed in a single round of d error correction cycles while the

lattice surgery CNOT shown in Figures 3.4 (and later 3.9) takes 6 rounds. This can translate

to major savings in runtime for algorithms.

The transversal CNOT is not limited to logical qubits currently stored in the same 2D

address. With an extra step it is possible to transversely interact any two logical qubits.

To do this one of the qubits must be moved to the same 2D address as the other using

the move operation described in Litinski [2019b]. The move operation involves growing the

patch toward the move target in one step by adding new plaquettes along the entire path

and performing d cycles, one timestep, of error correction. Once grown, the patch can be

shrunk from the other end back to its original size. The data qubits freed during the shrink

are measured and used to determine any fixup operation. Once the two qubits are in the

same 2D address, the transversal CNOT can be applied. It can then be moved back, left

where it is, or moved somewhere else as determined during compilation. This process takes

2 timesteps or 3 if including the second move.

3.3.3 Compact Surface Code Embedding

In the previous scheme, half of the transmons did not have attached cavities (or they did

not make use them). An ancilla and data qubit could share a transmon because the data are

stored in the cavity the majority of the time and the ancilla are reset every cycle. This leads
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to a more efficient, Compact embedding which halves the required number of transmons.

We will see that this comes at the cost of additional loads and stores from memory due

to contention during error correction, effectively trading some error and time for significant

space savings.

In the above memory architecture, because we do not store any logical qubits in the

transmon layer, these qubits can act as the measurement ancilla, rather than have separate

transmons only there to act as the syndrome measurement ancilla. With this observation, we

can pack the data qubits of the surface code patch of Figure 3.7a more efficiently with every

transmon having a cavity attached. Each plaquette of the rotated surface code has a single

ancilla at its center, interacting with each data qubit. For Z plaquette (yellow or light) in

this mapping scheme we colocate the upper-right data and the ancilla; the upper-right data

is located in the cavity attached to the transmon corresponding to the ancilla. Similarly, for

each X plaquette (blue or dark) we colocate the lower-left data and the ancilla; the lower-left

data is located in the cavity attached to the transmon corresponding to the ancilla.

(a) (b) (c)

Figure 3.7: Transformation from Natural to Compact. (a) Natural embedding: Only data
have attached cavities (not shown). (b) The transformation: Z ancilla (over yellow/light
areas) merge with the upper-right data transmon and X ancilla (over blue/dark areas) merge
with the lower-left data transmon. The opposite parings are key to keeping 4-way grid
connectivity. (c) Compact embedding: All ancilla transmons without attached cavities have
been removed. All remaining transmons have cavities and are used as both data and ancilla.

This mapping results in plaquettes which resemble triangles rather than squares, where

the center of the hypotenuse of each triangle corresponds to both the ancilla qubit and
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the data qubit, stored “beneath” in its cavity. Every data qubit is still mapped to the same

index. Notice in this scheme every data (sans the boundary) is still adjacent to two measure-

Z and two measure-X ancilla where adjacent means either in the cavity of the ancilla or in

a cavity adjacent to the ancilla. We illustrate this transformation from our undistorted

Natural surface code patch to Compact in Figure 3.7 and a diagram of this architecture with

a cavity for every transmon in Figure 3.8. If a different ancilla location were chosen, for

example all sharing with the upper-right data, some of the syndrome extraction gates in the

resulting arrangement would require six-way connectivity, two diagonal to the grid, which

would be much more difficult to engineer with low noise. This scheme where X and Z ancilla

share with data in opposite directions is the best scheme we found to satisfy the hardware

connectivity.

mode 0

mode 1

mode 2

cavity cavity cavity

dataancilla
shared data/ancilla

logical
qubit

Figure 3.8: A 3D view of our Compact embedding. Shown at the top is the 2D grid of
transmon qubits. Attached below every transmon is a resonant cavity. Compact surface
code patches are shown stored, one in each mode. This deformed patch can be tiled in 2D.

In Natural, we assign square patches to predetermined square patches on the hardware.

In Compact, we assign square patches to predetermined rhombus or diamond patches on the

hardware. Previously, operations on the virtualized patches closely resembled the original

operations because the shape was unchanged, except with the addition of loads and stores to

retrieve the logical qubit from memory. The same operations apply here. We can examine
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|A〉 = |0〉
|C〉

|T 〉
(a) Create ancilla

|A〉
|C〉

|T 〉
(b) Merge A and T

to measure A⊕T

(X-basis)

|A〉
|C〉

|T 〉
(c) Split

|A〉
|C〉

|T 〉
(d) Merge A and C

to measure A⊕C

(Z-basis)

|A〉
|C〉

|T 〉
(e) Split then

measure X-basis

of A
Figure 3.9: The Compact lattice surgery operations to perform a CNOT. The logical oper-
ations performed are identical to Figure 3.4 but the corresponding physical operations are
arranged as shown in Figure 3.7. This uses half as many transmons as Natural. As before,
it takes 6 timesteps of d error correction cycles each.
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Figure 3.10: The CNOT sequence for parity checks in Compact. Top: A quantum circuit
showing the hardware operations over time. Bottom: The CNOT execution order repeats
A0D2, A1D3, A2C0, A3C1, B0C2, B1C3, B2D0, B3D1. The AB and CD sequences run
in parallel but offset to ensure ancilla and data use do not conflict. CNOTs for A0D2 are
marked in red where an isolated circle indicates a transmon-mediated CNOT.
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the original, unmapped surface code patch and perform the same sequence of operations

modulo loads and stores, on the transformed coordinates of the mapped version.

This new mapping also requires a new syndrome extraction procedure because data

cannot be loaded while a transmon is in use as an ancilla. A single round of syndrome

extraction can be executed by dividing the plaquettes into four groups, with each group

containing non-interfering plaquettes. Two plaquettes are non-interfering if they do not

share their ancilla with any data qubits of the other plaquette. This process is detailed

explicitly in Figure 3.10. It is imperative this process use both the minimum number of

loads and stores and keep data qubits loaded for as short a time as possible as the error

incurred during this circuit directly impacts the error threshold for the code. This has a

similar cost as Natural, Interleaved where a higher numbers of load and store gates were also

required.

Error correction can be performed Interleaved or All-at-once just as with Natural. This

should be chosen dependent on how likely storage errors and gate errors are. For example,

if storage errors are expected to be significant, we may opt to use Interleaved syndrome

extraction. This will cost more loads and stores so if gate errors are more significant than

storage errors we may opt for All-at-once.

3.3.4 Architectural Considerations

When compiling and executing programs in our system there are several important architec-

tural features to keep in mind. First, it is always possible to execute a transversal two-qubit

interaction, rather than requiring use of split and merge. In surface code architectures, the

logical qubits are not bound to a specific hardware location and are free to move around

on the grid. This qubit movement is fairly cheap requiring only a single round of d error

correction cycles (usually referred to as a single timestep) to move any distance. However,

we require a clear area of unused patches to move through; typically, this requires about
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1/3 to 1/2 of the total area to be kept as open channels to allow for distant qubit interac-

tions. In our architecture this translates to keeping one of the resonant modes in every stack

unused (1/k of total qubits for cavity depth k ≈ 10) and loading this mode along a path

when a logical qubit needs to move, i.e. there is an index in the stack which has no logical

qubit mapped to it. This enables our system to transport logical qubits between stacks to

execute more time and space efficient transversal CNOTs. The empty mode is necessary for

Compact because data is always stored back to the cavity during syndrome extraction but

not required for Natural, All-at-once where the transmons themselves can act as the unused

qubits to move the logical qubit through.

Unfortunately, this qubit movement is not entirely free. During the compilation process if

we request many logical qubits to move in parallel this can be expensive due to serialization of

intersecting move paths. Just as in current quantum systems without error correction where

it is imperative to map and schedule multi-qubit interactions in a way which minimizes total

execution time, it is also important in our system that logical qubits which interact heavily

be located close by for similar reasons. The mapping problem on the system presented

here is interesting because there is now a tradeoff between locality and serialization between

operations with qubits sharing the same 2D address.

Second, we stress even though the logical qubits are stored in memory, they are still

subject to errors and it is critical that every logical qubit be error corrected regularly. In

the case of Interleaved syndrome extraction, every logical qubit of a stack will be roughly

guaranteed to get a round of correction every k time steps, where k is the cavity depth.

This rate is during steady state, when qubits are idle. When logical operations are being

executed, this rate may be reduced slightly. When compiling and executing on this system,

we may need to delay some operations in order to ensure stored logical qubits get the required

amount of error correction and are not left so long that errors accumulate and error correction

becomes less likely to succeed.
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Finally, many lattice surgery operations require the use of ancilla logical qubits, for ex-

ample to measure specific stabilizers which are done to execute a particular set of operations

in Litinski [2019b]. This restriction requires our architecture and any compiler to guarantee

one free mode of every stack be allocated to temporarily obtain large logical qubits. This

free mode may be shared with qubit movement or separate if many ancilla logical qubits are

used.

3.4 Evaluation

In this section, we outline our error model and experimental setup used to determine error

thresholds for our mapping and syndrome extraction schemes. We compare to the surface

code on a typical 2D architecture. Our goal is to demonstrate the error thresholds for

various error correction schemes, i.e. to determine the necessary physical error rate required

to begin obtaining exponentially better logical error rate as the code distance increases.

Currently, neither transmon devices nor transmon-memory devices used for our schemes

have consistently achieved physical error rates below this threshold and instead the threshold

serves as a goal or checkpoint.

3.4.1 Error Model and Noise Assumptions

For our experiments we make the following further assumptions about how noise and errors

behave in both a typical 2D architecture and our 2.5D cavity memory architecture since

both have the same fundamental underlying transmon technology:

• The error rates in the device do not fluctuate appreciably over time.

• Transmon qubits can be actively reset and reinitialized to |0〉 efficiently and without

significant error.

• All errors are independent. No leakage errors and no correlated noise.
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• All classical processing of the syndromes is instantaneous and error-free.

• Every n-qubit gate with the same n is equally error-prone. For example, every one

qubit operation has the exact same chance of failure regardless of which actual physical

qubit it is applied to.

• All errors are Pauli, i.e. drawn from the set {I,X, Y, Z}⊗n. For example, if a one-qubit

error occurs with probability p then we apply an X, Y , or Z with probability p/3 and

I (no error) with probability 1− p.

• We detect and correct X and Z errors independently. A Y error is both an X and Z

error.

For each of our experiments we rely on realistic device data for current superconducting

devices, provided by IBM Devices. For the memory hardware, we use experimental data

from Naik et al. [2017]. These parameters are listed in Table 3.1, where T1,c is the coherence

time of the cavity, T1,t is the coherence time of the transmon, ∆t is the single qubit gate

time, ∆t−t is the two-qubit transmon-transmon gate time, ∆t−m is the two-qubit gate time

of transmon-mode interactions, and ∆l/s is the load and store times. In every experiment,

the gate durations for one- and two-qubit interactions is fixed. In a first set of experiments,

we vary all gate errors and coherence times together, all derived from a single probability

of error p given as the probability of an SC-SC (Transmon-Transmon gates) two-qubit gate

error. We consider T1 times of both cavities and transmons to determine the probability

of storage error given as λ = 1 − exp
{
−∆t/T1

}
, where ∆t is the duration stored. We

consider the same potential gate error rates for each of these devices since the underlying

technology behaves very similarly. While typical coherence errors are not generally Pauli, we

model them as Pauli errors here as a worst-case approximation since correcting Pauli errors

is harder than correcting coherence errors in general.
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Table 3.1: Starting point coherence times and constant gate times for the hardware models.

Hardware Parameter Baseline Transmons Transmons with Memory

T1,t 100 µs 100 µs

T1,c — 1 ms

∆t−t 200 ns 200 ns

∆t 50 ns 50 ns

∆t−m — 200 ns

∆l/s — 150 ns

3.4.2 Experimental Setup

In every experiment, we run 2,000,000 simulated trials per data point with each trial con-

sisting of a round of error correction. We compute the logical error rate as the number of

logical errors (misidentified error chains) over the total number of trials. The large number

of trials is required to estimate logical error rates to 10−5. To determine the error threshold

values for different surface code schemes, we vary the physical error rate over several differ-

ent code sizes. The goal is to find an intersection point for each of these lines which gives a

physical error rate below which we expect our logical error rate to get better as the physical

error rate improves. Below the threshold we also expect the logical error rate to get better

exponentially in the code distance d.

We study 5 setups to determine initial error thresholds.

• The surface code on a 2D superconducting architecture as our baseline.

• Our Natural embedding with either the All-at-once or Interleaved syndrome extraction.

• Our Compact embedding with either the All-at-once or Interleaved syndrome extrac-

tion.
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In our designs, the possible sources of error are more nuanced and we study the thresholds’

sensitivity to variation in the parameters. In all threshold experiments, we assume cavity

depth of 10 but later study sensitivity to cavity size. The simulation code used to generate

our results is available on GitHub (VLQ Code).

3.5 Error Threshold Results

We detail our threshold results in Figure 3.11. We study 5 different code distances in order

to obtain the physical error threshold value. The threshold value indicates at which point

increasing the code distance, d, improves the logical error rate instead of hurting it. This

threshold is a function of both the physical system model, the chosen syndrome extraction

circuit, and the specific decoding procedure. For example, decoding procedures which do

not accurately represent the probability of certain error chains occurring will do a poor job

of correcting those errors. The decoding process should be directly informed by the error

model. In systems with more complicated error models, the decoder should be aware of

these further details to inform its decision about which types of errors occurred and the

proper way to correct them. We use the usual maximum likelihood decoder because we use

standard assumptions in our error model.

The major difference in each procedure is the additional error sources and different syn-

drome extraction procedures. For example, the baseline is not subject to any of the effects

related to cavity storage or transmon-mode operations. These syndrome extraction pro-

cedures differ by the amount of storage time of data qubits in different locations (cavity

vs. transmon) as well as the number of different physical gate operations applied to them.

These differences however, do not cause substantial variation in the error threshold for the

different setups which is extremely promising. Second, the slopes for each code distance

compared across the various schemes is stable, indicating each scheme improves at a similar

rate, post error threshold, and showing that the logical error rate decays exponentially with
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Figure 3.11: Error thresholds for the baseline 2D architecture and Natural and Compact
variants of our 2.5D architecture. The thresholds are comparable to the baseline indicating
the space savings obtained in our system does not substantially reduce the error thresholds.
The slopes of the lines in this figure indicate, post-threshold, how much improvement in
physical error rates improve logical error rate. Except for the baseline, all use a cavity size
of 10.
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d as desired. This is significant because it means we will be able to save on total number of

transmons without major shifts in the error threshold. Since transmon memory technology

is expected to perform as well as other competing transmon technology, we obtain higher

distance codes, and hence better logical error rate, with fewer total transmons.

3.6 Error Sensitivity Results

In this section, we study the effects of different sources of error on the thresholds obtained

in Section 3.5. Specifically, we show how different system-level details affect the threshold

of the code. Here we focus on Compact, Interleaved as the most efficient physical qubit

mapping and subject to a wide variety of errors. In these studies, the physical error rates

of all but a single error source are fixed at a typical operating point below the threshold

obtained previously, 2 × 10−3 and the cavity depth is fixed at 10. Gate times are fixed

while we vary the physical error rate of SC-SC gates, SC-Cavity gates, Load-Store gates or

the coherence times of the cavity and the transmon. We additionally study the duration

of load/store, the gates unique to memory technology. We note the effect of the SC-Cavity

gate duration will be a similar, smaller effect since it occurs only once per qubit per error

correction cycle. Finally, we study the effect of cavity size by varying the number of modes

per cavity, causing a proportional delay between error correction cycles.

The results of these sensitivity studies are found in Figure 3.12. The logical error rate

is sensitive to a particular error source’s probability if the slope of the line is pronounced

at the marked reference value. The logical error rate for Compact, Interleaved is sensitive

to all changes in system-level details to some degree. The gate error rates show the highest

sensitivity, indicating improvement in these will give the greatest benefit. Coherence times

are not quite as sensitive but the slightly over 10x offset between the cavity and transmon

plots shows that there is no benefit in transmon T1 being longer than 1/10 cavity T1 when

the cavity size is 10. The lines taper off, indicating other errors sources eventually dominate.
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Figure 3.12: Sensitivity of logical error rate to various error sources in Compact, Interleaved.
The logical error rates are most sensitive to physical error of Loads/Stores and SC-SC gates.
The logical error rate is less sensitive to the coherence times and mostly insensitive to effects
of load-store duration and cavity size.
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Figure 3.13: (a) The T-state generation rates of three different circuits. Higher generation
rate is better. (b) The space, in terms of number of patches, required to produce a single
|T 〉 per time step. Lower is better. Fast Litinski [2019a] and Small Litinski [2019b] work in
the surface code and do not use memory. VQubits is implemented with transversal CNOTs
in our 2.5D architecture. All are based on Bravyi and Haah [2012].

Initially, we expected the cavity size to have a large impact on the logical error rate. However,

when coherence times are high and gate error rates are fairly low below the threshold, the

logical error rate does increase proportional to the length of the cavity but the effect is very

minor. This indicates, given cavities with good coherence times, our proposed system will

be able to scale smoothly into the future as cavity sizes increase.

While larger cavity sizes will make this architecture even more advantageous, there will

be a point at which it has a vanishing benefit because the delay between error correction

becomes too long and decoherence error dominates. For the error rates used in the evaluation,

we find that cavity decoherence error starts dominating after cavity size k ≈ 150. After this

point, it would be more beneficial to improve cavity coherence time.

3.7 Magic State Distillation Resource Estimates

Now that we have shown error correction is effective in our virtualized qubit architecture, we

analyze how the transversal CNOT and memory connectivity can benefit the performance of
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an algorithm overall. In error-corrected quantum algorithms, the dominating cost (commonly

> 90%) in both space and time resources is magic state distillation (Tannu et al. [2017], Ding

et al. [2018], Gidney and Ekerå [2019]). For this analysis we consider how T-state distillation,

a commonly used magic state, is improved. Any improvements here will translate directly

to improvements in important algorithms like Shor’s and Grover’s.

We take the 15-to-1 distillation circuit of Bravyi and Haah [2012] to generate a T magic

state using a single patch of transmons with 6 logical qubits stored in the attached cavities.

This circuit consists of 16 qubit initializations, 15 measurements, 35 CNOT gates and a few

other operations. It takes a total of 110 surface code timesteps to generate a T-state using

only a single patch of transmons. If pairs of these circuits are executed in lock-step, they

only take 99 timesteps.

In Figure 3.13 we compare the T-state generation rate with memory against two repre-

sentative extremes designed for speed or size, Fast Lattice from Litinski [2019a] and Small

Lattice from Litinski [2019b] (also based on Bravyi and Haah [2012]). Fast Lattice generates

a T-state every 6 timesteps but uses 30 patches of space whereas Small Lattice, generates

a T-state every 11 timesteps using only 11 patches of space. We compare these results by

computing the T-state generation rate per timestep if we filled 100 patches with copies of

the circuit running in parallel. Table 3.2 show the qubit cost of each and chip area will be

proportional to the number of transmons. Using our VQubits protocol generates 1.82x as

many T-states as Fast Lattice and 1.22x as many as Small Lattice. This improvement allows

an algorithm like Shor’s to run roughly 1.22x faster or work on smaller hardware.
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Table 3.2: Transmon, depth-10 cavity, and total qubit costs of each T-state generation
protocol for d = 5.

Protocol # transmons # cavities total qubits

Fast Lattice from Litinski [2019a] 1499 — 1499

Small Lattice from Litinski [2019b] 549 — 549

VQubits (Natural) 49 25 299

VQubits (Compact) 29 25 279

3.8 Summary

Realizable quantum error correction protocols are a critical step in the path towards fault-

tolerant quantum computing. There has been great progress in NISQ-era devices, but it is

equally critical to look towards designing architectures for QEC. In this paper, we introduce

a system which virtualizes logical, error corrected qubits and is both space and time efficient

without sacrificing in terms of fault tolerance.

By taking advantage of recent advances in quantum memory technology, we present a

new architecture that substantially reduces hardware requirements by storing logical qubits

distributed in spatially-local memory. This technology allows memory to be separated but

local to computation in a quantum system. By finding a memory abstraction that keeps

application data spatially local, we find application-level efficiencies in communication of

logical qubit data.

We provide two direct mappings of the surface code to this new system with virtual ad-

dressing and illustrate how syndrome extraction and error correction procedures can be exe-

cuted efficiently on the embedded surface code. Our embedding, combined with the random-

access nature of the memory is important for several reasons. It enables fast transversal gates

like the CNOT which can reduce program execution time by allowing faster operations and

indirectly through improved magic-state distillation protocols. It significantly reduces the

total number of transmon qubits required (10x for our analysis) which allows larger code
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distance patches while using 10x fewer transmon qubits and classical control wires. This

allows error correction to be realized much sooner on small architectures while also enabling

these devices to scale. Our results show superconducting cavity-based technology offers a

promising path towards realizing spatially local memory and quickly scaling fault-tolerant

quantum computation. This design can be evaluated with 10 logical qubits using as few

as 11 transmons and 9 cavities which we hope motivates further experimental efforts and

prompts industry to adopt and scale-up this architecture.
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CHAPTER 4

HIERARCHICAL PROGRAM STRUCTURE

4.1 Introduction

The two previous chapters cover abstractions that allow us to conceptualize storage of quan-

tum data in the same qubit devices or nearby. Because quantum information is delicate and

prone to error from interactions with the environment, it is challenging to move. This is in

part why the previous abstractions have shown benefit due to allowing the data-locality of

the application to influence the implementation and match the data layout of the technology.

In this chapter, we explicitly look at data movement. When we compile quantum pro-

grams with arbitrary data usage patterns, the compiler will insert explicit data movement

operations. Typically, a quantum program is flattened to its basic executable gates before

data movement is determined, but this leads to ineffective heuristics or impractical opti-

mization problems for the compiler. This chapter takes a small example of hierarchy, the

three-qubit operation called the Toffoli gate, and shows how even a little hierarchy, used

properly, can have large gains in compiled program performance.

Quantum program compilation involves many passes of transformations and optimiza-

tions similar in many ways to classical compilers. Some optimizations occur at the abstract

circuit level, independent of the underlying hardware, such as the gate cancellation from Nam

et al. [2018]. One of the first steps usually taken is to convert an input program into a gate

set (ISA) supported by the target hardware. For example, on IBM devices, gates are typi-

cally rewritten using only gates in the set {u1, u2, u3, cx} (IBM Devices, single-qubit gates

and the common CNOT gate described later). One critical limitation of many current avail-

able architectures is the inability to execute more complex multi-qubit operations, like the

Toffoli, directly; instead, these gates must be decomposed into the supported one- and two-

qubit gates. Furthermore, many current superconducting architectures only support two
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Figure 4.1: Example routing from Qiskit (a) vs. Trios (b) for a single Toffoli operation.
Circles represent qubits and lines indicate two qubits are connected. Input qubits are high-
lighted in red. SWAP arrows are labeled by timestep. The routed locations for Trios routing
are highlighted in green while Qiskit moves them several times. Qiskit adds 16 SWAPs (=48
CNOTs), some during the Toffoli, while Trios adds only 7 SWAPs (=21 CNOTs) all before
the Toffoli. Performing multiple passes of decomposition allows direct routing and enables
this huge reduction in communication, increasing the probability of program success.
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Input program

Unroll+Decompose

Circuit of 1- and 2-qubit gates

(between any qubit pairs)

Map and Route

Circuit of 1- and 2-qubit gates

(between connected qubits)

Schedule

Executable Circuit

Input program

Unroll+Decompose to Toffoli

Circuit of 3-qubit Toffoli

and other 1- and 2-qubit gates

Map and Route

Circuit of Toffoli gates

between nearby qubits

Mapping-Aware Decompose
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(between connected qubits)

Schedule

Executable Circuit

(a) Conventional compilation (b) Trios compilation

Figure 4.2: (a) Typical compilation passes used by Qiskit (simplified). (b) Trios compilation
passes. The Unroll+Decompose pass is split into two parts: decompose into medium-size
operations (Toffoli gates), later finish decomposition, but using information from the Map
and Route pass.

qubit operations on adjacent hardware qubits wired together with a coupler. This requires

the insertion of additional operations called SWAPs to move the data onto adjacent qubits

(which are connected with a coupler).

The process of transforming an optimized and decomposed program to the desired target

is typically broken down into three distinct steps: decomposing the program into basic

gates, mapping the abstract qubits of a program to specific hardware qubits and routing

interacting quantum data so that they occupy adjacent qubits on hardware when they have
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an operation, and scheduling operations in order to minimize total program run time (depth)

or to minimize errors due to crosstalk as in Murali et al. [2020b]. Each of these steps is critical

to the success of the input program. A well-mapped and well-routed program will reduce

the total number of communication (SWAP) operations added and subsequently reduce the

compiled program’s depth, both of which will increase the chance of success. Conventionally,

these three steps occur sequentially. By doing so, current strategies are unable to account

for any hierarchical structure in the input program, resulting in inefficient routing of qubits.

An optimal compiler could find the best routing despite the lack of structure but at the

cost of much slower, typically impractical, compilation. Consider the SWAP sequences

inserted by IBM’s Qiskit compiler for a single Toffoli compiled to IBM’s Johannesburg device

in Figure 4.1a. This baseline strategy adds a large number of unnecessary SWAPs as it

individually routes each CNOT composing the Toffoli, dramatically reducing the probability

of successful execution.

Our approach, Orchestrated Trios (originally presented in Duckering et al. [2021]1) de-

composes and routes qubits in multiple stages, as seen in Figure 4.2b. Trios first decomposes,

or flattens, a program into intermediate one-, two-, and three-qubit gates (e.g. it does not de-

compose Toffoli gates). Trios performs qubit routing as usual except for three-qubits, routing

all three to a common location with minimal SWAPs. This new program can then undergo

a second round of decomposition to produce a circuit containing only hardware-permitted

primitive one- and two-qubit gates. The second round may use information from previous

passes (i.e. locations of data qubits on the device) to generate fine-tuned decompositions for

the architecture.

This layered approach has a major advantage over current routing techniques: we are

better able to capture program structure by inspecting intermediate, non-primitive, oper-

ations for routing. This better informs how data should be placed and moved around the

1. CD’s contributions to the work that comprises this chapter include design of the split decompose and
mapping-aware passes and the application benchmark compilation, simulation, and sensitivity.
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device during program execution. In Figure 4.1, the Trios strategy reduces the total number

of SWAPs added to 21: fewer than half compared to Qiskit. This was an extreme example

we selected to present the issue, not an average case.

We specifically propose a split-pass approach to circuit decomposition. We will focus on

superconducting hardware systems like IBM’s cloud accessible devices, but our strategy can

easily be adapted to other systems. An overview of our compilation structure is found in

Figure 4.2b. This strategy has a substantial benefit on the overall success rate of programs.

We demonstrate these improvements by executing Toffoli gates on a real IBM quantum

computer and estimating success probability of a suite of benchmarks via simulation.

Our contributions are as follows:

• A new compiler structure, Trios, with two passes for decomposition with a modified

routing pass in between which greatly improves qubit routing.

• A simple method for architecture-tuned Toffoli decompositions during the second de-

compose pass that allows for a new kind of location-aware optimization.

• On Toffoli-only experiments, Trios reduces the total number of gates by 35% geomean

(geometric mean) resulting in 23% geomean increase in success rate when run on real

IBM hardware as compared to Qiskit.

• On near-term algorithms shown in Figure 4.11 (4 to 20 qubit benchmarks), Trios

reduces total gate count by 37% geomean resulting in 344% geomean increase (or

4.44x) in simulated success rate on IBM Johannesburg with noise rates of near-future

hardware as compared to programs compiled without Trios. A sensitivity analysis over

four architecture types shows the benefit range from 133% to 3020% increase in success

rate.
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4.2 Background

4.2.1 Quantum Computing Basics

The most basic object in quantum computing is the quantum bit (qubit). Unlike a classical

bit which is either 0 or 1, the qubit has two basis states |0〉 and |1〉 and can exist as a linear

superposition over these two states, i.e. for a quantum state |ψ〉 = α |0〉+β |1〉 with α, β ∈ C

and ‖α‖2+‖β‖2 = 1. In general, a quantum system consisting of n qubits can exist in a linear

superposition of 2n basis states in contrast to a classical system of n bits which can exist as

exactly a single of these states. An important feature which gives quantum computing its

power is the ability to entangle qubits via two qubit operations like the CNOT. This, along

with quantum interference between the complex amplitudes, allows quantum programs to

solve certain problems faster than classical computers. Another common two-qubit gate is

the SWAP gate which switches quantum data, in-place, between two qubits.

While a qubit system can exist in these superpositions during computation, at the end

of the computation, the qubits are measured producing a classical binary outcome. The

probability of each outcome depends on the amplitude of each basis state (the values of

α, β, γ, . . . ). Consequently, since the outcome of a quantum program is a classical bitstring

and because quantum systems are inherently noisy, programs are usually run thousands of

times to obtain a distribution over possible answers. A comprehensive background can be

found in Nielsen and Chuang [2011].

4.2.2 Quantum Circuits

Quantum programs are typically represented as a circuit which, like a classical program, is an

ordered list of instructions. Here the instructions are quantum logic gates applied to qubits.

The input circuit may not be expressed in the instruction set supported by the underlying

hardware or it might even be structured as hierarchical modules.
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Quantum circuits have a single line for each qubit, with time flowing from left to right.

Gates in a quantum circuits have the same number of inputs and outputs and gates on

disjoint sets of lines can be executed in parallel. Single qubit gates are represented as boxes

labeled with the indicated operations. Controlled operations, like the CNOT and Toffoli,

have one or two control qubits respectively indicated by • and a target qubit given by ⊕.

Currently available superconducting quantum hardware, like that of IBM and Rigetti,

only supports one-qubit gates and two-qubit gates on specific pairs. Therefore, more complex

instructions must be decomposed into multiple simpler, supported operations and SWAPs

must me inserted to move quantum data around the device. For example, many quantum

algorithms and subroutines make use of the Toffoli gate, a three-input gate which performs

the logical AND between two control bits and writes the output onto the target bit. This

gate cannot typically be executed directly on available hardware and instead is decomposed

into an equivalent sequence of one- and two-qubit operations. Two such decompositions

are given in Figures 4.3 and 4.4. There are two key distinctions in these decompositions

illustrating a more general trade off. The first, taught in Nielsen and Chuang [2011], is the

ubiquitous decomposition using the minimum 6 CNOT gates, but it requires CNOTs between

all three pairs of qubits. This would require either inserted SWAPs or a device connectivity

containing a triangle. The second, originally discovered by Schuch [2002], uses a total of 8

CNOT gates but requires all three inputs be only linearly connected (only two of the three

qubit pairs are required to be connected). While the first is apparently more efficient, this

is not true if the connectivity of the underlying hardware does not directly support it. It

is more efficient to use the 8-CNOT version than to use the 6-CNOT version with SWAPs

added for feasibility.

For superconducting qubits, current quantum computers support gates only between

adjacent hardware qubits. In order to use qubits which are currently mapped far apart on

the hardware, extra SWAP operations must be inserted, each of these SWAPs is usually
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• • • • T •

• = • • T T †

H T † T T † T H

Figure 4.3: The common 6-CNOT decomposition of the Toffoli gate.

• T • • • •

• = T • • T † • •

H T T T † T † H

Figure 4.4: An 8-CNOT decomposition of the Toffoli gate with the same behavior.

decomposed as a series of 3 CNOT gates (equivalent to a classical memory in-place swap

using 3 alternating XORs). In the case of the 6-CNOT Toffoli decomposition above, when

mapped to a device with linear or square grid connectivity, no triangles exist so extra SWAPs

will need to be inserted, resulting in a greater total number of CNOTs due to the mismatch

with hardware details.

4.2.3 Current Quantum Devices

In this paper we focus primarily on currently available superconducting quantum devices.

This type of hardware is the primary focus of many industry players like IBM, Rigetti, and

Google (Smith et al. [2016], IBM Devices, Google Bristlecone). We show some representative

topologies for superconducting devices in Figure 4.5abd. For completeness, we include a

clustered device shown in Figure 4.5c representative of a QCCD ion trap device such as Moses

et al. [2020]. These systems exhibit all of the properties previously discussed. They have a

small universal supported gate set which all programs must be transformed into and only

support local two-qubit operations. The connectivity of these devices is given as a coupling

graph specifying which pairs of qubits can execute CNOTs.
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Figure 4.5: Example topologies of near-term quantum devices. Orange (a): IBM Johannes-
burg. Yellow (b): 2D Grid. Purple (c): four groups of five fully connected clusters. Green
(d) Linear. Our real experiments run on Johannesburg and our simulations explore all of
these topologies. Colors correspond with the bars in Figures 4.9, 4.10, and 4.11.
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Furthermore, these systems are subject to a wide variety of noise which cause programs

to fail. Some noise is due to manufacturing imperfections or calibration error. Some is

inherent to quantum program execution resulting from the imperfect physical isolation of

the qubits from the environment required to manipulate the quantum state (Krantz et al.

[2019]). In IBM machines, the experimental devices of this work, single-qubit gate errors

are small, occurring on average 1 in 2000 operations. CNOT gate errors are more significant

occurring on roughly 1 in 100 gates. Measurement error is also significant, with errors on

the same order of magnitude as CNOT gates. Finally, qubit lifetimes (coherence times) are

relatively short, allowing on the order of 50 CNOT gate durations before the qubit state is

lost (but gates can often run in parallel while imposing additional crosstalk error, Gambetta

and Sheldon [2019]). Therefore, quantum compilation is essential to reduce both of these

sources of error: add as few extra gates as possible and minimize total execution time.

4.2.4 The Compilation Problem

In the NISQ era, quantum programs are highly optimized in order to reduce the effect on

errors and maximize the probability the correct answer is observed. Similar to many classical

programs, compilation uses a pass structure, where a set of transformation and optimizations

are applied in a fixed order resulting in the compilation of an input quantum program to

an executable for the target hardware (JavadiAbhari et al. [2015], Nam et al. [2018]). For

the most part, these optimizations take place at the circuit-gate level. Some optimizations

are hardware independent, for example, reducing total number of gates via commutativity-

aware gate cancellation or find-and-replace with circuit identities. Other passes are focused

on decomposing gates into the hardware’s ISA (Sasanian and Miller [2012], Amy [2013],

Maslov et al. [2008]).

One of the most important parts of this compilation process is mapping and routing

the optimized program to one executable on the target hardware, typically done post-
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decomposition. Quantum mechanics imposes new constraints on these, different from clas-

sical compilation or logic synthesis. By the no cloning theorem, quantum states cannot be

copied, only entangled, which prevents fan-out or fan-in. Instead, the data must be routed

sequentially (i.e. moved with SWAP gates) to each place it is needed.

Compilation involves three main steps. First, mapping program qubits to hardware qubits

in order to minimize the total distance between qubits that will need to be close by in the

future (Murali et al. [2019], Tannu and Qureshi [2019], Wille et al. [2019]). Second, routing

pairs of CNOT inputs to be adjacent by inserting SWAPs (Cowtan et al. [2019], Hirata et al.

[2011]). Finally, scheduling operations to minimize total execution time (Guerreschi and

Park [2018], Murali et al. [2020b]). In general, the compilation problem is computationally

hard and, while some attempts at optimal solutions have been pursued by Tan and Cong

[2020], Siraichi et al. [2018], Wille et al. [2014], the dominant approach is heuristics. In this

work we focus on two pieces of this compilation problem: decomposition and routing.

IBM’s Qiskit compiler, the standard for compiling programs to execute on an IBM device,

has a default sequence of passes. First, all high level optimization and analysis passes are

performed and all gates are unrolled and decomposed to the target gate set. Then single

passes of mapping, routing, and scheduling are performed (Abraham et al. [2019]).

4.2.5 Evaluation Metrics

When evaluating compiler methods, we use a few metrics to compare our results. Our

primary metric is program success rate, the fraction of circuit executions that result in the

correct output. Others use fidelity, which can stand-in for success rate when evaluating

sub-circuits where the output is not measured. When executing a quantum algorithm, the

corresponding quantum circuit is typically executed thousands of times to gather output

statistics or identify the error-free result.

Program success rate is highly dependent on the noise characteristics of the quantum
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computer the program runs on. The rates of these device errors can fluctuate day-to-day so

we also use the simpler metric of two-qubit gate count. The number of two-qubit operations

in the final compiled circuit is inversely correlated with the success rate because they are

usually the largest source of noise.

4.2.6 Simulation

Simulating general quantum systems is exponentially expensive in the size of the system

and therefore it is difficult to realistically model all of the errors during the execution of a

quantum program. We use a simplified model for simulation to predict, specifically to obtain

a close upper bound on, the success rate of a program with specified gate error rates and

qubit coherence times. In our simplified model, we compute the probability of a program

succeeding as the probability that no gate errors occur: (pgate)
ngates times the probability

no coherence errors occur, pcoherence, where the latter is computed as e∆/T1+∆/T2 , ∆ is the

total program duration, and T1 and T2 are the relaxation and dephasing times (collectively

decoherence).

Current error rates, while rapidly improving, are still insufficient to obtain high probabil-

ities of success, making it difficult to compare our mid-size benchmarks that are large enough

to need many SWAPs. For our simulations we use error rates 20x improved over current

IBM Johannesburg error rates to obtain reasonable success rates and we study sensitivity to

this choice later.

4.3 Motivation: Conventional Compilation

In this section we motivate the need for a split decomposition pass with routing in between.

We look closely at the Qiskit compiler which does not effectively account for the structure

in programs. It often produces circuits with an excessive number of swaps, suggesting room

for improvement.
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The default compilation framework in Qiskit, used to transform input circuits to be

executed on their hardware, ensures a fully decomposed circuit before mapping, routing,

and scheduling occur. As a simple example, consider three qubits placed fairly distant on

IBM’s Johannesburg device, but for which we need to execute a Toffoli gate on them as

in Figure 4.1a. Qiskit decomposes this Toffoli as Figure 4.3 with 6 CNOTs. Each CNOT

acts on distant qubits so the many SWAPs inserted for all 6 CNOTs gets expensive quickly.

When routing, we first SWAP the first interacting pair together (usually by adding SWAPs

from control to target or the reverse, but a meet-in-the-middle strategy is also possible) and

the qubit mapping is updated. The next CNOT is also distant so we add SWAPs to move

them together and there is an even chance that the SWAPs for the second CNOT separate

the two qubits that were just brought together.

Ideally, we move the third qubit to the already adjacent pair, but Qiskit cannot recognize

this situation and could just as well move the other way. This is clearly sub-optimal and could

continue on for the other four CNOTs. Even in the case where it makes the correct decision

to move the distant third qubit, there are problems. Because each pair of qubits needs to

interact, we may need single additional SWAPs as the qubits compete to be neighbors. This

causes the 6-CNOT Toffoli decomposition to use many more than 6 CNOTs when there is

not a triangle in the qubit connectivity graph. The core idea is that the routing strategy fails

to take advantage of two things. First, it has effectively forgotten the desired operation is a

Toffoli (which requires all three qubits be adjacent) and second, that a more efficient Toffoli

decomposition could be chosen that was more suitable for the underlying device architecture.

In the example, inefficient compilation adds a total of 16 SWAPS or 48 CNOTs in total.

Some approaches in the past have attempted to solve the first of these problems, for ex-

ample Wille et al. [2016], Baker et al. [2020c] use lookahead when choosing routing strategies

and while this helps to treat the symptoms of pre-decomposing all operations it does not

remedy the underlying problem.
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4.4 Orchestrated Trios

In this section we describe our proposed compilation structure compared to the conventional

one as outlined in Figure 4.2 earlier. Specifically, we focus on improving the routing and

decomposition stages of compilation. Previously, we identified a key problem in current

methods: decomposing the program to one- and two-qubit gates up front hinders the ability

of heuristic-based compilers to effectively minimize the communication cost, i.e. the number

of SWAPs added, and eliminates the possibility of location-aware decompositions.

We propose a new pass structure. Rather than performing a single round of decomposition

and routing, we propose a split approach. Any program processing prior to decomposition

stays the same. The decomposition pass is then divided so the majority of decomposition

occurs next but any Toffoli gates are left as-is before moving on to mapping and routing.

The mapping and routing passes come next like normal but must be modified slightly

to handle three-qubit gates. The mapper can simply treat the non-decomposed Toffoli as it

would the equivalent 6 CNOTs for the purposes of determining which qubits most need to be

placed nearby. We then do the modified routing pass, moving groups of qubits together in-

stead of only pairs where all or all-but-one of the group are moved into a single neighborhood

via SWAPs. This greatly improves the effectiveness of the routing heuristics when applied

to this modified routing pass. There are some subtleties when coordinating the routing of

multiple qubits to the same place to ensure the paths don’t overlap. For the purposes of our

evaluations we do the following but many similar heuristic strategies are possible.

Taking the next operation to apply, we first find the shortest paths (using any shortest

path algorithm on a graph) between all the pairs of qubits. We choose the qubit with the

shortest sum of paths to the other two qubits as the destination. SWAPS following these

two paths are then inserted into the circuit. The two shortest paths are checked for overlap.

If the ending points overlap, the second is only routed to the penultimate hardware location

along the swap path and the first becomes the middle qubit adjacent to both others. This
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can save one valuable SWAP but doesn’t affect the correctness. Once they are adjacent, the

Toffoli gate is now on adjacent qubits and routing can continue to the next operation.

Finally, the second decomposition pass is run. This is different from normal decomposi-

tion as there are only Toffoli gates to decompose and they are already mapped to neighboring

qubits. We could use the default 6-CNOT decomposition and still get the above benefit of

improved routing but now that we have more information, this can be exploited to further

reduce SWAPs due to a mismatch between the decomposition and the hardware connectiv-

ity. If all three pairs of qubits are connected, then the 6-CNOT Toffoli of Figure 4.3 is best,

otherwise use the 8-CNOT Toffoli of Figure 4.4, ensuring the middle qubit is used for the

middle of the decomposition (Any of the three qubits can be the target by simply moving

the two H gates to that qubit).

When routing complex operations like the Toffoli, we recognize the underlying hardware

does not usually support triangles in the connectivity graph but linear connectivity is suf-

ficient for a decent decomposition. Since we are creating operations on three qubits, the

qubits must be routed into a valid linear connectivity. That is, a configuration where each

qubit is connected with at least one of the other qubits.

This method can be easily extended to be noise-aware like previous work, Murali et al.

[2019], Tannu and Qureshi [2019], by using a noise-aware mapper with the simple modifica-

tion described earlier where the path-finding graph has weighed edges with the – log value of

the CNOT success rate. The path distance represents the – log probability of success of that

particular path where lower values indicate a higher success rate and the shortest path can

be found just as before and the routing steps are unchanged. Any routing strategy designed

for one and two-qubit gates can be modified to work for one, two, and three-qubit gates and

used as the first routing step of Trios.

In programs where there are no three qubit gates as in the typical NISQ benchmark,

Bernstein and Vazirani [1993], which is specified directly as CNOT gates, our strategy will
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have no effect. Many benchmarks, however, are written using Toffoli gates because they

are the quantum analog of the AND gate, ubiquitous in arithmetics and other common

subroutines.

Trios can naturally be extended to any multi-qubit operation of three or more qubits but

this introduces the challenges of simultaneously routing many qubits and of designing de-

compositions that are efficient with whichever grouping the simultaneous router can achieve.

It is not obvious how to route more than three qubits into a line or other desired shape. As

many NISQ benchmarks are not typically written with more complex structures and usu-

ally phrase them in terms of one-, two-, and three-qubit gates, this extension may only be

desirable for larger-scale quantum computing.

4.5 Evaluation

4.5.1 Toffoli Only Circuits

We first evaluate the effect of our new compilation strategy by studying simple circuits

containing only a single Toffoli gate. In these experiments, we place the three input qubits

at random locations on the target hardware to emulate the potential locations of the qubits

at some intermediate point in the execution of a more complex circuit.

We study these circuits on a real IBM device, namely IBM Johannesburg, a 20-qubit

device with limited connectivity, shown in Figure 4.5a. We use the default Qiskit compiler

which decomposes the Toffoli gates before doing shortest path routing compared to our

proposed method where we do shortest path routing first and then decompose the Toffoli.

We study the use of two different Toffoli implementations: a 6 CNOT decomposition with

full qubit connectivity and an 8 CNOT decomposition with linear qubit connectivity.

In all four configurations, we compare the total compiled CNOT counts which correlates

with the total success probability of a program. For execution on Johannesburg, we prepare
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the qubits in the states |110〉, perform the compiled Toffoli, then measure the three qubits

of interest and compute the success rate as the probability of obtaining the correct answer

(here the |111〉 state), where each experiment is performed with 8192 trials.

4.5.2 NISQ Benchmarks and Quantum Subroutines

We also study Trios on real quantum benchmarks of moderate size using simulation only.

The error rates of current devices are still too high to run benchmarks of these sizes but are

expected to run on current devices as errors improve in the near future. We choose error

rates 20x better than Johannesburg rates as this make the estimated success probabilities

within a reasonable range and is a realistic near-term estimate. We discuss sensitivity to

this choice later.

We study four implementations of the many-controlled-NOT (CnX) gate. This subroutine

has many use cases from Grover’s algorithm to various arithmetics. The implementations

take advantage of differing numbers of ancilla and are chosen based on the number of available

qubits on hardware. We study three adder implementations: Cuccaro, Takahashi, and QFT.

The first two have many uses of the Toffoli gate while the latter has no such gates, for

comparison. We study a small version of Grover’s algorithm as well which makes use of the

cnx_logancilla subroutine. Finally, we compile two common NISQ benchmarks: QAOA

for Max-Cut and Bernstein Vazirani (BV). We expect no gain on these benchmarks since

they do not contain any Toffoli gates. A summary of our benchmarks is found in Table 4.1

using implementations found in Baker et al. [2020b].

As noted previously, the connectivity of the underlying hardware has a significant impact

on the number of required SWAPs. For example, on a completely connected set of qubits,

no SWAPs are ever needed. In architectures with greater connectivity, we may opt for a

more efficient Toffoli decomposition using 6 CNOTs. With simulation we study the effect of

connectivity on the overall expected success rates and gate counts. We study four different
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Benchmark Qubits Toffolis CNOTs*

cnx_dirty, Baker et al. [2019] 11 16 128

cnx_halfborrowed, Gidney [2015] 19 32 256

cnx_logancilla, Barenco et al. [1995] 19 17 136

cnx_inplace, Gidney [2015] 4 54 490

cuccaro_adder, Cuccaro et al. [2004] 20 18 190

takahashi_adder, Takahashi et al. [2009] 20 18 188

incrementer_borrowedbit, Gidney [2015] 5 50 448

grovers, Grover [1996] 9 84 672

qft_adder, Ruiz-Perez and Garcia-Escartin [2017] 16 0 92

bv, Bernstein and Vazirani [1993] 20 0 19

qaoa_complete, Farhi et al. [2014] 10 0 90

Table 4.1: Details about our benchmarks both NISQ programs and other quantum subrou-
tines. We consider circuits with and without Toffoli gates where we expect advantage only
for circuits containing Toffoli gates. For BV we assume the all 1-bit string. The different
CnX (many-controlled-NOT) gates use various numbers of ancilla. *The total number of
CNOT gates is after decomposition with the 8-CNOT Toffoli but does not including any
SWAPs for routing.

98



connectivity models, all shown in Figure 4.5, each with 20 qubits, the topology of IBM’s

Johannesburg device containing four connected rings, a 2D mesh, a line, and a small clustered

architecture representative of a QCCD ion trap.

We use error rates reported by IBM obtained via randomized benchmarking on a daily ba-

sis; for simulations we use error numbers obtained from Johannesburg obtained on 8/19/2020

with an average T1 time of 70.87µs, T2 time of 72.72µs, two qubit gate time of 0.559µs, a

one qubit gate time of 0.07µs, two qubit gate error of 0.0147, one qubit gate error of 0.0004.

Source code for all experiments is available on GitHub (Trios Code). Experiments using

IBM are tested with version 0.14.0 through their Python API. When compiling with Qiskit

for the single Toffoli experiments, we use the default settings for the transpile function

while specifying the Johannesburg backend. This means light optimization is performed: a

stochastic routing policy is chosen, and some simple optimizations such as single qubit gate

consolidation is performed. We fix the initial mapping to force routing to occur.

4.6 Results and Discussion

4.6.1 Trios Reduces Total Number of Gates

In both sets of experiments, the total number of gates required to make the input programs

executable is much less than when using the default Qiskit compiler. When compiling our

simple programs consisting of a single Toffoli gate with qubits mapped in random locations,

we reduce the average number of gates by 35% geomean.

In Figure 4.7 we show 35 different triplets of hardware qubits for each of the four strate-

gies. For each triplet, we note the total distance between the qubits on the hardware, given

by the shortest path distance in the underlying topology. Even when the distance is relatively

small, Trios outperforms Qiskit, reducing overall gate count. As the distance increases, this

performance margin tends to increase. In the small distance cases, this can be attributed
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to Trios choosing the better Toffoli decomposition for a linearly connected topology. This

is significant for two reasons. First, the fewer the gates, the less likely an error occurs due

to qubit manipulation. Second, fewer gates, especially long sequential chains of SWAPs,

often means lower circuit depth, meaning fewer chances for decoherence errors. Together

this translates into faster and more successful programs.

This advantage extends to our NISQ benchmarks which contain various numbers of Toffoli

gates. In Figure 4.10 we note substantial reductions in total gates across all benchmarks

containing Toffoli gates across all underlying topologies. The only exception is the two

smallest benchmarks (on 4 and 5 qubits) for the clustered topology because they could be

compiled with zero SWAPs.

An extreme of the clustered topology is a single cluster with all-to-all connected qubits.

On this device, Orchestrated Trios would have no benefit as operations can be performed

between any pair of qubits so no SWAPs are needed and routing is trivial. However, as

quantum technologies scale to more than a few qubits, fully-connected architectures hits

physical limitations and must be re-engineered. As trapped ion qubit chains get longer, for

example, gate operations become slower and lower fidelity. Murali et al. [2020a] showed that

the optimal trap size is 15–25 ions interconnected similar to our cluster model with cluster

sizes of 15–25 where Trios does benefit.

On average, for Toffoli-containing programs we reduce gate count 37%, 36%, 48%, 26%

for Johannesburg, Grid, Line, and Cluster topologies respectively with the maximum gain

obtained for linear devices.

4.6.2 Trios Improves Overall Success Rate

In general, we expect programs with fewer total two-qubit gates to succeed with higher

probability. In devices with limited connectivity, the addition of routing operations like

SWAPs, usually decomposed to 3 CNOTs, can severely reduce the chance an input program
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Figure 4.6: Success probabilities of Toffoli gates between random triplets of qubits. Higher
is better. The x-labels specify the three qubits and total swap distance. The geometric mean
success rates for each compiler are 41%, 35%, 47%, and 50% respectively. Trios (8-CNOT)
improves average success rate by 23% vs. the Qiskit baseline.
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Figure 4.7: Total number of two-qubit (CNOT) gates required to execute a Toffoli gate
between various distant qubits. Lower is better. The x-labels specify the three qubits and
total swap distance. The geometric mean gate counts for each compiler are 29, 28, 23, and
19 respectively. Trios (8-CNOT) reduces average gate count by 35%.
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Figure 4.8: Normalized success probabilities of Toffoli gates between triplets of qubits. Higher
is better. Bars below 100% indicate lower success rate for Trios. The geometric mean increase
in success rate is 23%. The x-labels indicate the qubit distance for a range of bars.

can succeed. While success rate is inversely correlated with number of gates, gate error is not

the only reason a program can fail and reducing gate counts does not guarantee improved

success rates.

In Figure 4.6 we show the success rates of our Toffoli-only experiments when the two

controls are initialized to |1〉 and the target is initialized to |0〉 so we measure the probability

of obtaining |111〉. These results are obtained from Johannesburg on 8/19/2020. The x-axes

of both Figures 4.6 and 4.7 line up to compare gate counts and resulting success rate. In

general, experimentally, fewer gates results in substantial improvements to success rates. For

example, a Toffoli on qubits 6, 17, and 3 compiled with Trios improves success rate from

around 30% to over 50%. On average, we improve success rates by 23 % geomean with max

of 286%. In Figure 4.8, we show improvements compiled with Trios normalized to baseline

for 99 different triplets of varying total distance on Johannesburg.

Trios on average improves the probability of success for these circuits. However, there

are a small number of cases where Trios performs worse despite having a smaller number

of total gates. This can be attributed to several different factors. For example, the chosen
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edges for SWAP paths may be more noisy, or on pairs of edges with greater crosstalk, or the

final qubits which are measured have worse readout error. Regardless, reducing the overall

gate count of a program is an important contributing factor to improving expected success

rate.

For our simulated NISQ benchmarks, we see even larger gains. The reduced gate counts

in Figure 4.10 translate to major improvements in simulated success rate in Figure 4.9

(normalized success rates in Figure 4.11). For example, in cnx_logancilla-19, Trios more

than doubles the expected success rates when compiled to each of the architectures. In

many cases, the expected success rate of programs compiled with Qiskit is effectively zero

while Trios has a realistic chance of obtaining the correct answer. As expected, on programs

containing no Toffoli gates, Trios has no effect on success showing that it introduces no

measurable overhead. This suggests Trios can easily be added to other quantum compilation

tool flows.

4.6.3 Trios Routes Complex Interactions Better

Trios improves gate counts, and consequently improves success rates, by routing more effi-

ciently and choosing more appropriate Toffoli decompositions based on the underlying archi-

tecture’s connectivity. Current compilers, like Qiskit, perform routing on fully decomposed

and unrolled programs, and while this must eventually be done, it leads to less efficient

routing policies and relies on assumptions that a theoretically good decomposition (fewest

CNOTs) is the best decomposition for the hardware. Trios eliminates this by choosing a

context-dependent Toffoli decomposition and routing multi-qubit gates as single units.

Trios greatly improves effectiveness compared to a heuristic-based compiler by applying

similar heuristics to the higher abstraction level Toffoli gates. An optimal routing of the

decomposed circuit would be better except it cannot select the best architecture location-

specific decomposition. This makes a huge difference specifically with Toffolis on any square-
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Figure 4.9: Simulated upper-bounds on the program execution success probability on various
hardware (using 20x lower idle and gate errors than Johannesburg). Neighboring pairs of bars
compare the baseline with Trios compiled for Johannesburg. Higher is better when comparing
pairs of bars with the same color. The geometric mean success rates over the benchmarks that
use Toffoli gate for each device type respectively are 2.2%→9.8%, 3.2%→12%, 0.19%→6.0%,
7.3%→17%. The rightmost three benchmarks contain zero Toffoli gates so have no change
vs. the baseline.
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Figure 4.11: Normalized Figure 4.9 to show our consistent increase in program success with
Trios. Above 100 indicates benefit. Some improvement factors are huge due to near-zero
baseline success rates. The geometric mean increases in success rate are 4.4x, 3.7x, 31x,
and 2.3x respectively. The rightmost three benchmarks contain zero Toffoli gates so have no
change vs. the baseline.
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dashed line (20x improvement) indicates values of the near future used in simulation. In
our approximation of success rate factors of improvement in gate error rates lead to an
exponential fall off in success ratios, as expected. In the very near term, we expect Trios to
drastically improve the execution of quantum programs.

grid-based device. One might choose to improve the solution found by an optimal compiler

by always decomposing Toffolis to the 8-CNOT version before optimally routing, but this

will still limit the solution. There are multiple possible qubit orders for the decomposition

and the best can only be selected after the routing pass.

4.6.4 Simulation Sensitivity to Error Rates

For our simulations we use an error model (20x better than current errors on Johannesburg)

which is forward looking. As errors improve, we expect Trios to have a reduced impact on

program success rates since gate errors will contribute less and less to program failure though

Trios will never perform worse than the baseline. In Figure 4.12 we study the sensitivity of

simulation results to two qubit error rates beginning with current IBM error rates. For poor
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error rates, the benefit of Trios is extremely large, owed to the fact that programs compiled

with the baseline have probabilities of success very close to 0. In our simplified simulation

framework, as error rates improve we expect an exponential drop off in improvement with

the most advantage obtained with current error rates.

4.7 Summary

We present a new quantum compilation structure, Trios, with a split decomposition pass

to greatly reduce compiled communication cost and enable architecture-tuned decomposi-

tions. We specifically target the three-qubit Toffoli operation to capture program structure

enabling more optimal compiled circuits. Because current quantum computers are especially

error prone, they require high levels of optimization to reduce gate counts and maximize

the probability the compiled program will succeed. Prior optimization strategies discarded

hierarchy to better maximize flat program optimization but Trios shows that the extra struc-

tural information from program hierarchy can be more helpful than the increased flexibility

of a flattened program structure.

Orchestrated Trios both greatly improves the effectiveness of qubit routing given newly

exposed program structure and, additionally, improves decompositions with a connectivity-

aware second pass. These both greatly benefit the program success rate, a critical metric

for today’s error-prone and resource-constrained quantum computers. We hope this inspires

more hierarchically designed NISQ algorithms now that we have shown that keeping the

abstraction of hierarchy and reorganizing compilation passes can help bridge the gap between

these noisy quantum hardware and practical applications.
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CHAPTER 5

CONCLUSION

From the three cases we present and evaluate, we find that the right abstraction enables

system design, compiler design, and program design to align. Each of the abstraction’s rep-

resentation of quantum computation preserved the data locality of the application in ways

that reduced communication costs during program execution. This aspect of keeping related

data close-by emerged from fundamental constraints of quantum computing technology and

we found useful abstractions that worked within this. First, we treat additional logical lev-

els as scratch space to enable program subroutines with simplified communication patterns.

Second, qubit-local memory enables a third spacial dimension, improving fault-tolerant op-

erations and fault-tolerant data movement. And finally, by re-introducing a small amount

of hierarchical program abstraction, we can greatly improve compiler heuristics and enable

smarter compiler passes.

5.1 Future Abstractions

The abstractions in this dissertation are just the tip of the iceberg of what will eventu-

ally become a cohesive set of high-level concepts for understanding and describing a quan-

tum algorithm or quantum program. Quantum programmers, quantum compiler designers,

and quantum architects use the models they have to understand and manipulate quantum

algorithms at an abstract level. Below, we consider some important categories of future

abstractions and current research towards new abstractions.

5.1.1 Programmer Abstractions

The job of a programmer is to describe an algorithm as a concrete program, or list of in-

structions. This program describes precisely, step-by-step, how a computer should execute
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the algorithm. However, computers can only follow extremely simple instructions that would

be tedious for the computer programmer to write down one-by-one. This is why modern

classical programming languages represent high-level concepts such as variables, functions,

loops, and threads that can be translated into simple instructions. Abstractions like vari-

ables, functions, loops, and threads work well to express classical algorithms, making the

translation process from algorithm to program as intuitive as possible.

The majority of quantum programmers right now describe their algorithms in a quan-

tum assembly language, a list of basic instructions that a quantum computer can execute.

Common abstractions used are named qubits and subroutines (similar to variables and non-

recursive functions in classical programming) but this is not enough. High-level concepts

common to multiple quantum algorithms are a useful starting point to build new quantum

program abstractions.

Many fault-tolerant algorithms like Shor’s factoring and Grover’s database search use

classical subroutines or oracles. Languages like Q# (Svore et al. [2018], Singhal et al. [2022])

make this easier for quantum programmers by automatically writing the uncomputation and

inverse subroutines.

The no-cloning theorem of quantum physics (Nielsen and Chuang [2011]) means that

quantum data cannot be copied. Classically, data copying happens implicitly, all the time

in function calls and variable assignments for example. When a quantum programming

language is based on a classical programming language, this makes it very easy to mistakenly

write a quantum program the violates the no-cloning theorem. Ideally, when the limitations

of the programming language align with the limitations of the computer, programs will be

easier to write and easier to understand. Research in programming language type theory has

found type systems to check if a quantum program uses its qubits correctly to not violate

the no-cloning theorem of quantum physics, Fu et al. [2020]. Our goal should not be to

have a language where no-cloning is enforced but one where the program structure implicitly
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assumes no-cloning. For example, a data flow-like language where every subroutine output

only connects to a single subroutine input would make is impossible to the physics of quantum

information.

Some types of quantum algorithms, especially those performing Hamiltonian simulation,

have many subroutines that commute. When two subroutines commute, either one can be

executed first with the same result. The compiler presented in Lao and Browne [2022] is

told which subroutines it is allowed to reorder. The flexibility to reorder subroutines allows

the compiler to find much more efficient ways to execute the quantum program. Lao and

Browne [2022] demonstrates the advantage of reordering flexibility at the compiler level, but

a valuable addition to a quantum programming language would be a syntax to concisely

represent commutation relations between Hamiltonian terms or other subroutines.

5.1.2 Intermediate Representations

Intermediate representations of quantum programs are used by quantum compilers during

the process of translating a high-level quantum programming language into basic instructions

ready to execute on a quantum computer. The most common intermediate representation is

the quantum circuit as used throughout this dissertation. Sometimes blocks of the circuit are

annotated by the compiler to indicate high-level properties of the circuit that are invisible

when considering the circuit. An example of this is the Hamiltonian term compiler described

earlier where annotations of circuit blocks that can be reordered allows the compiler to make

optimizations to the circuit that would otherwise be computationally intractable to find.

Orchestrated Trios (Section 4) relies directly on different forms of the quantum circuit as

intermediate representations between each of its passes.

Quantum circuits are the de facto intermediate representation but they may actually be

limiting. A model of quantum computation called Measurement Based Quantum Computa-

tion (Briegel et al. [2009]) presents an alternative to executing gates on qubits. In MBQC,
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a large entangled graph state is prepared and computation is performed by executing single-

qubit gates and measurements one at a time, conditioned on earlier measurements. For this

model of computation, a measurement graph represents the quantum program instead of a

quantum circuit. A measurement graph is an open graph (with ordered input edges and

output edges) containing nodes and edges where each node is parameterized by an angle and

a measurement basis. Efficient algorithms exist to convert between quantum circuits and

(some) measurement graphs (Mhalla and Perdrix [2008], Backens et al. [2021]), enabling us

to use whichever representation best enables a particular compiler pass.

ZX diagrams are closely related to measurement graphs but have simpler structure and

well-studied rewrite rules (a ZX Calculus) that preserve their meaning while modifying their

structure (van de Wetering [2020]). Circuit optimizations written for ZX diagrams are often

simpler and produce better results than equivalent optimizations written for quantum circuits

(Kissinger and van de Wetering [2019]).

ZX diagrams are currently only used for individual compiler passes and converted back

to circuits but they may eventually replace quantum circuits as the primary representation

of quantum programs. Particularly when compiling algorithms for fault tolerant quantum

computers, ZX diagrams are promising because of the close correspondence between ZX

diagram nodes and Lattice Surgery merge and split operations (de Beaudrap and Horsman

[2020]). The ZX calculus does not represent measurement outcomes or ancilla well, which

can limit its uses to ancilla-free unitary blocks of a quantum algorithm. However, the study

of the ZX calculus has motivated study of other graphical calculi that may overcome these

limitations (Chardonnet et al. [2022]). These calculi are more flexible than a quantum

circuit, enabling easier optimization, but a key property to note is their lack of an order of

operations, data flow, or causality. Quantum physics itself often disregards the direction of

time as exemplified in quantum teleportation where, one interpretation says, the quantum

data flows backward in time through the Bell pair to reach the target. There is much work
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to be done, but these diagrams bring us closer to a quantum program representation that

expresses the underlying physics in an intuitive way.

5.2 Outlook

These future ideas for abstractions, along with those evaluated in the body of this disser-

tation, will eventually be an entire ecosystem that fits together and integrates with the

quantum computer scientist’s programming languages, hardware stack, and toolchain. As

qubit technology improves, as new error correction protocols are developed, and as new algo-

rithms are invented, our abstractions may need to be modified or replaced and co-designed

with the technology stack. As the stack evolves, the paradigm around quantum computing

will continue to grow into its own, fundamentally new niche and become more than a classical

computer under superposition.
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